
http://www.cambridge.org/9780521842631


MODERN CANONICAL QUANTUM
GENERAL RELATIVITY

Modern physics rests on two fundamental building blocks: general relativity and
quantum theory. General relativity is a geometric interpretation of gravity, while
quantum theory governs the microscopic behaviour of matter. According to Ein-
stein’s equations, geometry is curved when and where matter is localized. There-
fore, in general relativity, geometry is a dynamical quantity that cannot be pre-
scribed a priori but is in interaction with matter. The equations of nature are
background independent in this sense; there is no space-time geometry on which
matter propagates without backreaction of matter on geometry. Since matter is
described by quantum theory, which in turn couples to geometry, we need a quan-
tum theory of gravity. The absence of a viable quantum gravity theory to date is
due to the fact that quantum (field) theory as currently formulated assumes that
a background geometry is available, thus being inconsistent with the principles of
general relativity. In order to construct quantum gravity, one must reformulate
quantum theory in a background-independent way. Modern Canonical Quantum
General Relativity is about one such candidate for a background-independent
quantum gravity theory: loop quantum gravity.

This book provides a complete treatise of the canonical quantization of gen-
eral relativity. The focus is on detailing the conceptual and mathematical frame-
work, describing the physical applications, and summarizing the status of this
programme in its most popular incarnation: loop quantum gravity. Mathemat-
ical concepts and their relevance to physics are provided within this book, so
it is suitable for graduate students and researchers with a basic knowledge of
quantum field theory and general relativity.

T homas Th i emann is Staff Scientist at the Max Planck Institut für
Gravitationsphysik (Albert Einstein Institut), Potsdam, Germany. He is also
a long-term researcher at the Perimeter Institute for Theoretical Physics and
Associate Professor at the University of Waterloo, Canada. Thomas Thiemann
obtained his Ph.D. in theoretical physics from the Rheinisch-Westfälisch Tech-
nische Hochschule, Aachen, Germany. He held two-year postdoctoral positions at
The Pennsylvania State University and Harvard University. As of 2005 he holds
a guest professor position at Beijing Normal University, China.



CAMBRIDGE MONOGRAPHS ON MATHEMATICAL PHYSICS

General editors: P. V. Landshoff, D. R. Nelson, S. Weinberg

S. J. Aarseth Gravitational N-Body Simulations
J. Ambjørn, B. Durhuus and T. Jonsson Quantum Geometry: A Statistical Field Theory Approach
A. M. Anile Relativistic Fluids and Magneto-Fluids: With Applications in Astrophysics and

Plasma Physics
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Figure 1 Copyright: Max Planck Institute for Gravitational Physics (Albert Einstein Insti-
tute), MildeMarketing Science Communication, Exozet. To see the animation, please visit the
URL http://www.einstein-online.info/de/vertiefung/Spinnetzwerke/ index.html.

Quantum spin dynamics
This is a still from an animation which illustrates the dynamical evolution of quantum geometry
in Loop Quantum Gravity (LQG), which is a particular incarnation of canonical Quantum
General Relativity.

The faces of the tetrahedra are elementary excitations (atoms) of geometry. Each face is
coloured, where red and violet respectively means that the face carries low or high area respec-
tively. The colours or areas are quantised in units of the Planck area �2P ≈ 10−66 cm2. Thus
the faces do not have area as they appear to have in the figure, rather one would have to shrink
red and stretch violet faces accordingly in order to obtain the correct picture.

The faces are dual to a four-valent graph, that is, each face is punctured by an edge which
connects the centres of the tetrahedra with a common face. These edges are ‘charged’ with
half-integral spin-quantum numbers and these numbers are proportional to the quantum area
of the faces. The collection of spins and edges defines a spin-network state. The spin quantum
numbers are created and annihilated at each Planck time step of τP ≈ 10−43 s in a specific
way as dictated by the quantum Einstein equations. Hence the name Quantum Spin Dynamics
(QSD) in analogy to Quantum Chromodynamics (QCD).

Spin zero corresponds to no edge or face at all, hence whole tetrahedra are created and anni-
hilated all the time. Therefore, the free space not occupied by tetrahedra does not correspond
to empty (matter-free) space but rather to space without geometry, it has zero volume and
therefore is a hole in the quantum spacetime. The tetrahedra are not embedded in space, they
are the space. Matter can only exist where geometry is excited, that is, on the edges (bosons)
and vertices (fermions) of the graph. Thus geometry is completely discrete and chaotic at the
Planck scale, only on large scales does it appear smooth.

In this book, this fascinating physics is explained in mathematical detail.
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Foreword

Over half a century of collective study has not diminished the fascination of
searching for a consistent theory of quantum gravity. I first encountered the
subject in 1969 when, as a young researcher, I spent a year in Trieste work-
ing with Abdus Salam who, for a while, was very interested in the subject. In
those days, the technical approaches adopted for quantum gravity depended very
much on the background of the researcher: those, like myself, from a theoreti-
cal particle-physics background used perturbative quantum field theory; those
whose background was in general relativity tended to use relatively elementary
quantum theory, but taking full account of the background general relativity
(which the other scheme did not).

The perturbative quantum field theory schemes foundered on intractable ultra-
violet divergences and gave way to super-gravity – the super-symmetric exten-
sion of standard general relativity. In spite of initial optimism, this approach
succumbed to the same disease and was eventually replaced by the far more
ambitious superstring theories. Superstring theory is now the dominant quan-
tum gravity programe in terms of the number of personnel involved and the
number of published papers, per year, per unit researcher.

However, notwithstanding my early training as a quantum field theorist, I
quickly became fascinated by the “canonical quantization”, or “quantum geome-
try,” schemes favored by those coming from general relativity. The early attempts
for quantizing the metric variables were rather nave, and took on various forms
according to how the intrinsic constraints of classical general relativity are han-
dled. In the most popular approach, the constraints are imposed on the state
vectors and give rise to the famous Wheeler–DeWitt equation arguably one of
the most elegant equations in theoretical physics, and certainly one of the most
mathematically ill-defined. Indeed, it was the very intractability of this equation
that first intrigued me and prompted me to see what could be done with more
sophisticated quantization methods. After much effort it became clear that the
answer was “not much.”

The enormous difficulty of the canonical quantum gravity scheme eventually
caused it to go into something of a decline, until new life was imparted with
Ashtekar’s discovery of a set of variables in which the constraint equations sim-
plify significantly. This scheme slowly morphed into “loop quantum gravity:” an
approach which has, for the first time, allowed real insight into what a non-
perturbative quantisation of general relativity might look like. A number of
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genuine results were obtained, but it became slowly apparent that the old prob-
lems with the Wheeler–DeWitt equation were still there in transmuted form,
and the critical Hamiltonian constraint was still ill-defined.

It was at this point that Thomas Thiemann – the author of this book – entered
the scene. I can still remember the shock I felt when I first read the papers he
put onto the web dealing with the Hamiltonian constraint. Suddenly, someone
with a top-rate mathematical knowledge had addressed this critical question
anew, and with considerable success. Indeed, Thiemann succeeded with loop
quantum gravity where I had failed with the old Wheeler–DeWitt equation, and
he has gone on since that time to become one of the internationally acknowledged
experts in loop quantum gravity.

Thiemann’s deep knowledge of mathematics applied to quantum gravity is
evident from the first page of this magnificent book. The subject is explored
in considerable generality and with real mathematical depth. The author starts
from first principles with a general introduction to quantum gravity, and then
proceeds to give, what is by far, the most comprehensive, and mathematically
precise, exposition of loop quantum gravity that is available in the literature. The
reader should be warned though that, when it comes to mathematics, the author
takes no hostages, and a good knowledge of functional analysis and differential
geometry is assumed from the outset. Still, that is how the subject is these days,
and anyone who seriously aspires to work in loop quantum gravity would be
advised to gain a good knowledge of this type of mathematics. In that sense,
this is a text that is written for advanced graduate students, or professionals
who work in the area.

My graduate students not infrequently ask me what I think of the current
status of canonical quantum gravity and, in particular, what I think the chances
are of ever making proper mathematical sense of the constraints that define the
theory. For some years now I have replied to the effect that, if anybody can do
it, it will be Thomas Thiemann and, if he cannot do it, then probably nobody
will. Anyone who reads right through this major new work will understand why
I place so much trust in the author’s ability to crack this central problem of
quantum gravity.

Chris Isham,
Professor of Theoretical Physics at

The Blankett Laboratory, Imperial College, London



Preface

Quantum General Relativity (QGR) or Quantum Gravity for short is, by def-
inition, a Quantum (Field) Theory of Einstein’s geometrical interpretation of
gravity which he himself called General Relativity (GR). It is a theory which
synthesises the two fundamental building blocks of modern physics, that is, (1)
the generally relativistic principle of background independence, sometimes called
general covariance and (2) the uncertainty principle of quantum mechanics.

The search for a viable QGR theory is almost as old as Quantum Mechan-
ics and GR themselves, however, despite an enormous effort of work by a vast
amount of physicists over the past 70 years, we still do not have a credible QGR
theory. Since the problem is so hard, QGR is sometimes called the ‘holy grail of
physics’. Indeed, it is to be expected that the discovery of a QGR theory revolu-
tionises our current understanding of nature in a way as radical as both General
Relativity and Quantum Mechanics did.

What we do have today are candidate theories which display some promising
features that one intuitively expects from a quantum theory of gravity. They are
so far candidates only because for each of them one still has to show, at the end
of the construction of the theory, that it reduces to the presently known standard
model of matter and classical General Relativity at low energies, which is the
minimal test that any QGR theory must pass.

One of these candidates is Loop Quantum Gravity (LQG). LQG is a modern
version of the canonical or Hamiltonian approach to Quantum Gravity, originally
introduced by Dirac, Bergmann, Komar, Wheeler, DeWitt, Arnowitt, Deser and
Misner. It is modern in the sense that the theory is formulated in terms of
connections (‘gauge potentials’) rather than metrics. It is due to this fact that
the theory was called Loop Quantum Gravity since theories of connections are
naturally described in terms of Wilson loops. This also brings GR much closer to
the formulation of the other three forces of nature, each of which is described in
terms of connections of a particular Yang–Mills theory for which viable quantum
theories exist. Consequently, the connection reformulation has resulted in rapid
progress over the past 20 years.

The purpose of this book is to provide a self-contained treatise on canon-
ical – and in particular Loop Quantum Gravity. Although the theory is still
under rapid development and the present book therefore is at best a snap-
shot, the field has now matured enough in order to justify the publication of
a new textbook. The literature on LQG now comprises more than a thousand
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articles scattered over a vast number of journals, reviews, proceedings and con-
ference reports. Structures which were believed to be essential initially turned
out to be negligible later on and vice versa, thus making it very hard for the
beginner to get an overview of the subject. We hope that this book serves as a
‘geodesic’ through the literature enabling the reader to move quickly from the
basics to the frontiers of current research. By definition, a geodesic cannot touch
on all the subjects of the theory and we apologise herewith to our colleagues
if we were unable to cover their work in this single volume manuscript. How-
ever, guides to further reading and a detailed bibliography try to compensate
for this incompleteness. A complete listing of all LQG-related papers, which is
periodically being updated, can be found in [1, 2].1

Loop Quantum Gravity is an attempt to construct a mathematically rigorous,
background-independent, non-perturbative Quantum Field Theory of Lorentzian
General Relativity and all known matter in four spacetime dimensions, not
more and not less. In particular, no claim is made that LQG is a unified the-
ory of everything predicting, among other things, matter content and dimen-
sionality of the world. Hence, currently there is no restriction on the allowed
matter couplings although these might still come in at a later stage when
deriving the low energy limit. While the connection formulation works only
in four spacetime dimensions and in that sense is a prediction, higher p-form
formulations in higher dimensions are conceivable. Matter and geometry are
not unified in the sense that they are components of one and the same geo-
metrical object, however, they are unified under the four-dimensional diffeo-
morphism group which in perturbative approaches is broken. LQG provides a
universal framework for how to combine quantum theory and General Relativ-
ity for all possible matter and in that sense is robust against the very likely
discovery of further substructure of matter between the energy scales of the
LHC and the Planck scale which differ by 16 orders of magnitude. This is almost
the same number of orders of magnitude as between 1 mm and the length scales
that the LHC can resolve, and we found a huge amount of substructure there.

The stress on mathematical rigour is here no luxurious extra baggage but
a necessity: in a field where, to date, no experimental input is available,
mathematical consistency is the only guiding principle to construct the theory.
The strategy is to combine the presently known physical principles and to
drive them to their logical frontiers without assuming any extra, unobserved
structure such as extra dimensions and extra particles. This deliberately
conservative approach has the advantage of either producing a viable theory or
of deriving which extra structures are needed in order to produce a successful
theory. Indeed, it is conceivable that at some point in the development of the
theory a ‘quantum leap’ is necessary, similar to Heisenberg’s discovery that the

1 See also the URLs http://www.nucleares.unam.mx/corichi/lqgbib.pdf and
http://www.matmor.unam.mx/corichi/lqgbib.pdf.
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Bohr–Sommerfeld quantisation rules can be interpreted in terms of operators.
The requirement to preserve background independence has already led to new,
fascinating mathematical structures. For instance, a fundamental discreteness of
spacetime at the Planck scale of 10−33 cm seems to be a prediction of the theory
which is a first substantial evidence for a theory in which the gravitational field
acts as a natural cutoff of the usual ultraviolet divergences of QFT.

Accordingly, the present text tries to be mathematically precise. We will
develop in depth the conceptual and mathematical framework underlying LQG,
stating exact definitions and theorems including complete proofs. Many of the
calculations or arguments used during the proofs cannot be found anywhere in
the literature detailed as they are displayed here. We have supplied a vast amount
of mathematical background information so that the book can be read by readers
with only basic prior knowledge of GR and QFT without having to consult too
much additional literature. We have made an effort to stress the basic principles
of canonical QGR, of which LQG is just one possible incarnation based on a
specific choice of variables.

For readers who want to get acquainted first with the physical ideas and con-
ceptual aspects of LQG before going into mathematical details, we strongly rec-
ommend the book by Carlo Rovelli [3]. The two books are complementary in the
sense that they can be regarded almost as Volume I (‘Introduction and Concep-
tual Framework’) and Volume II (‘Mathematical Framework and Applications’)
of a general presentation of QGR in general and LQG in particular. While this
book also develops a tight conceptual framework, the book by Carlo Rovelli is
much broader in that aspect. Recent review articles can be found in [4–14]. The
status of the theory a decade ago is summarised in the books [15–17].

The present text is aimed at all readers who want to find out in detail how
LQG works, conceptually and technically, enabling them to quickly develop their
own research on the subject. For instance, the author taught most of the material
of this book in a two-semester course to German students in physics and mathe-
matics who were in their sixth semester of diploma studies or higher. After that
they could complete diploma theses or PhD theses on the subject without much
further guidance. Unfortunately, due to reasons of space, exercises and their solu-
tions had to be abandoned from the book, see [12] for a selection. We hope to
incorporate them in an extended future edition. As we have pointed out, LQG is
far from being a completed theory and aspects of LQG which are at the frontier
of current research and whose details are still under construction will be critically
discussed. This will help readers to get an impression of what important open
problems there are and hopefully encourage them to address these in their own
research.

The numerous suggestions for improvements to the previous online version
of this book (http://www.arxiv.org/list/gr-qc/0110034) by countless colleagues
is gratefully acknowledged, in particular those by Jürgen Ehlers, Christian
Fleischhack, Stefan Hofmann, Chris Isham, Jurek Lewandowski, Robert Oeckl,
Hendryk Pfeiffer, Carlo Rovelli, Hanno Sahlmann and Oliver Winkler. Special
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thanks go to my students Johannes Brunnemann, Bianca Dittrich and Kristina
Giesel for a careful reading of the manuscript and especially to Kristina Giesel
for her help with the figures.
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Notation and conventions

Symbol Meaning

G = 6.67 ×
10−11 m3 kg−1 s−2

Newton’s constant

κ = 16πG/c3 gravitational coupling constant
�p =

√
�κ ≈ 10−33 cm Planck length

mp =
√

�/κ/c ≈
1019 GeV/c2

Planck mass

Q Yang–Mills coupling constant
M, dim(M) = D + 1 spacetime manifold
σ, dim(σ) = D abstract spatial manifold
Σ spatial manifold embedded into M

G compact gauge group
Lie(G) Lie algebra
N − 1 rank of gauge group
μ, ν, ρ, .. = 0, 1, . . . , D tensorial spacetime indices
a, b, c, .. = 1, . . . , D tensorial spatial indices
εa1..aD

Levi–Civita totally skew tensor pseudo density
of weight −1

gμν spacetime metric tensor
qab spatial (intrinsic) metric tensor of σ
Kab extrinsic curvature of σ
R curvature tensor
h group elements for general G
hmn, m, n, o, .. = 1, . . . , N matrix elements for general G
I, J,K, .. = 1, 2, . . . ,dim (G) Lie algebra indices for general G
τ I Lie algebra generators for general G
kIJ = −tr(τ IτJ)/N := δIJ : Cartan–Killing metric

for G
[τ I , τJ ] = 2fIJ KτK structure constants for G
π(h) (irreducible) representations for general G or

algebra
h group elements for SU(2)
hAB , A,B,C, .. = 1, 2 matrix elements for SU(2)
i, j, k, .. = 1, 2, 3 Lie algebra indices for SU(2)
τi Lie algebra generators for SU(2)
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kij = δij Cartan–Killing metric for SU(2)
fij

k = εijk structure constants for SU(2)
πj(h) (irreducible) representations for SU(2) with

spin j

A connection on G-bundle over σ

AI
a pull-back of A to σ by local section

ιA, oA; A = 1, 2 øAιA := εAB
AιB = 1: spinor dyad

ῑA′ , ōA′ ; A′ = 1, 2 primed (complex coinjugate) spinor dyad
g gauge transformation or element of

complexification of G
P principal G-bundle
A connection on SU(2)-bundle over σ

Ai
a pull-back of A to σ by local section

∗E pseudo-(D − 1)-form in vector bundle
associated to G-bundle under adjoint
representation

∗EI
a1..,aD−1

:= kIJεa1..,aD
EaD

J : pull-back of ∗E to σ by
local section

∗E pseudo-(D − 1)-form in vector bundle
associated to SU(2)-bundle under adjoint
representation

∗Ei
a1..,aD−1

:= kijεa1..,aD
EaD

j : pull-back of ∗E to σ by
local section

Ea
j := εa1..aD−1(∗E)ka1..aD−1

kjk/((D − 1)!):
‘electric fields’

e one-form co-vector bundle associated to the
SU(2)-bundle under the defining representation
(D-bein)

eia pull-back of e to σ by local section
Γi
a pull-back by local section of SU(2) spin

connection over σ

R,X right-invariant vector field on G
L Left-invariant vector field on G
Y = iX momentum vector field
M phase space
E Banach manifold or space of smooth electric

fields
T(a1..an) := 1

n!

∑
ι∈Sn

Taι(1)..aι(n) : symmetrisation of
indices

T[a1..an] := 1
n!

∑
ι∈Sn

sgn(ι) Taι(1)..aι(n) :
antisymmetrisation of indices

A space of smooth connections
G space of smooth gauge transformations
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A space of distributional connections
AC space of smooth complex connections
GC space of smooth complex gauge transformations
G space of distributional gauge transformations
A/G space of smooth connections modulo smooth

gauge transformations
A/G space of distributional connections modulo

distributional gauge transformations
A/G space of distributional gauge equivalence classes

of connections
AC

space of distributional complex connections

A/GC
space of distributional complex gauge
equivalence classes of connections

C set of semianalytic curves or classical
configuration space

C quantum configuration space
P set (groupoid) of semianalytic paths or set of

punctures
Q set (group) of semianalytic closed and

basepointed paths
L set of tame subgroupoids of P or general label

set
S set of tame subgroups of Q (hoop group) or set

of spin-network labels
l subgroupoid
s spin-net= spin-network label
[s] (singular) knot-net= diffeomorphism

equivalence class of s
Γω

0 set of semianalytic, compactly supported graphs
Γω
σ set of semianalytic, countably infinite graphs

Diff(σ) group of smooth diffeomorphisms of σ
Diffω

sa(σ) group of semianalytic diffeomorphisms of σ
Diffω

sa,0(σ) group of semianalytic diffeomorphisms of σ
connected to the identity

Diffω
0 (σ) group of analytic diffeomorphisms of σ

connected to the identity
Diffω(σ) group of analytic diffeomorphisms of σ
ϕ (semi-)analytic diffeomorphism
c semianalytic curve
p semianalytic path
e entire semianalytic path (edge)
α entire semianalytic closed path (hoop) or

algebra automorphism
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γ semianalytic graph
v vertex of a graph
E(γ) set of edges of γ
V (γ) set of vertexes of γ
hp(A) = A(p) holonomy of A along p

≺ abstract partial order
Ω vector state or symplectic structure or

curvature two-form
F pull-back to σ of 2Ω by a local section
ω general state on ∗algebra
X, X, Y measure space or topological space
L(X,Y ), L(X) linear (un)bounded operators between X,Y or

on X

B(X,Y ), B(X) bounded operators between X,Y or on X

K(X) compact operators on X

B1(X) trace class operators on X

B2(X) Hilbert–Schmidt operators on X

B σ-algebra
μ, ν, ρ measure
H general Hilbert space
Cyl space of cylindrical functions
D dense subspace of H equipped with a stronger

topology
D′ topological dual of D
D∗ algebraic dual of D
H0 = L2(A, dμ0) uniform measure L2 space
H⊗ infinite tensor product extension of H0

Cyll restriction of Cyl to functions cylindrical over l

[.], (.) equivalence classes
A,B abstract (∗-)algebra or C∗-algebra
Δ(A) spectrum on Abelian C∗-algebra
χ character (maximal ideal) of unital Banach

algebra or group or characteristic function of a
set

I, J ideal in abstract algebra
P classical Poisson∗-algebra
G automorphism group (of principal fibre bundle)
D Dirac or hypersurface deformation algebra
M Master Constraint algebra
M Master Constraint



Introduction: Defining quantum gravity

In the first section of this chapter we explain why the problem of quantum gravity
cannot be ignored in present-day physics, even though the available accelerator
energies lie way beyond the Planck scale. Then we define what a quantum theory
of gravity and all interactions is widely expected to achieve and point out the two
main directions of research divided into the perturbative and non-perturbative
approaches. In the third section we describe these approaches in more detail and
finally in the fourth motivate our choice of canonical quantum general relativity
as opposed to other approaches.

Why quantum gravity in the twenty-first century?

It is often argued that quantum gravity is not relevant for the physics of this cen-
tury because in our most powerful accelerator, the LHC to be working in 2007,
we obtain energies of the order of a few 103 GeV while the energy scale at which
quantum gravity is believed to become important is the Planck energy of 1019

GeV. While that is true, it is false that nature does not equip us with particles
of energies much beyond the TeV scale; we have already observed astrophysical
particles with energy of up to 1013 GeV, only six orders of magnitude away from
the Planck scale. It thus makes sense to erect future particle microscopes not on
the surface of the Earth any more, but in its orbit. As we will sketch in this book,
even with TeV energy scales one might speculate about quantum gravity effects
in the close future with γ-ray burst physics and the GLAST detector. Next,
quantum gravity effects in the early universe might have left their fingerprint
in the cosmological microwave background radiation (CMBR) and new satellites
such as WMAP and PLANCK which have considerably increased the precision of
experimental cosmology might reveal those. Notice that these data have already
given us new cosmological puzzles recently, namely they have, for the first time,
enabled us to reliably measure the energy budget of the universe: about 70%
is a so-called dark energy component which could be a positive1 cosmological
constant, about 25% is a dark matter component which is commonly believed
to be due to a weakly interacting massive particle (WIMP) (possibly supersym-
metric) and only about 5% is made out of baryonic matter. Here ‘dark’ means

1 Recent independent observations all indicate that the expansion of the universe is currently
accelerating.
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that these unknown forms of matter do not radiate, they are invisible. Hence we
see that we only understand 5% of the matter in the universe and at least as
far as dark energy is concerned, quantum gravity could have a lot to do with it.
What we want to argue here is that quantum gravity is not at all of academic
interest but possibly touches on brand new observational data which point at
new physics beyond the standard model and are of extreme current interest. See,
for example, [18–20] for recent accounts of modern cosmology.

But even apart from these purely experimental considerations, there are good
theoretical reasons for studying quantum gravity. To see why, let us summarise
our current understanding of the fundamental interactions:

Embarassingly, the only quantum fields that we fully understand to date in
four dimensions are free quantum fields on four-dimensional Minkowski space.
Formulated more provocatively:

In four dimensions we only understand an (infinite) collection of
uncoupled harmonic oscillators on Minkowski space!

In order to leave the domain of these rather trivial and unphysical (since non-
interacting) quantum field theories, physicists have developed two techniques:
perturbation theory and quantum field theory on curved backgrounds. This
means the following: with respect to accelerator experiments, the most important
processes are scattering amplitudes between particles. One can formally write
down a unitary operator that accounts for the scattering interaction between
particles and which maps between the well-understood free quantum field Hilbert
spaces in the far past and future. Famously, by Haag’s theorem [21] whenever
that operator is really unitary, there is no interaction and if it is not unitary,
then it is ill-defined giving rise to the ultraviolet divergences of ordinary QFT. In
fact, one can only define the operator perturbatively by writing down the formal
power expansion in terms of the generator of the would-be unitary transforma-
tion between the free quantum field theory Hilbert spaces. The resulting series is
divergent order by order but if the theory is ‘renormalisable’ then one can make
these orders artificially finite by a regularisation and renormalisation procedure
with, however, no control on convergence of the resulting series. Despite these
drawbacks, this recipe has worked very well so far, at least for the electroweak
interaction.

Until now, all we have said applies only to free (or perturbatively interact-
ing) quantum fields on Minkowski spacetime for which the so-called Wightman
axioms [21] can be verified. Let us summarise them for the case of a scalar field
in (D + 1)-dimensional Minkowski space:

W1 Representation
There exists a unitary and continuous representation U : P → B(H) of the
Poincaré group P on a Hilbert space H.
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W2 Spectral condition
The momentum operators Pμ have spectrum in the forward lightcone:
ημνP

μP ν ≤ 0; P 0 ≥ 0.
W3 Vacuum

There is a unique Poincaré invariant vacuum state U(p)Ω = Ω for all
p ∈ P .

W4 Covariance
Consider the smeared field operator-valued tempered distributions φ(f) =∫
RD+1

dD+1xφ(x)f(x) where f ∈ S(RD+1) is a test function of rapid
decrease. Then finite linear combinations of the form φ(f1) . . . φ(fN )Ω lie
dense in H (that is, Ω is a cyclic vector) and U(p)φ(f)U(p)−1 = φ(f ◦ p)
for any p ∈ P .

W5 Locality (causality)
Suppose that the supports (the set of points where a function is differ-
ent from zero) of f, f ′ are spacelike separated (that is, the points of
their supports cannot be connected by a non-spacelike curve) then [φ(f),
φ(f ′)] = 0.

The most important objects in this list are those that are highlighted in
boldface letters: the fixed, non-dynamical Minkowski background metric η with
its well-defined causal structure, its Poincaré symmetry group P , the associated
representation U(p) of its elements, the invariant vacuum state Ω and finally
the fixed, non-dynamical topological, differentiable manifold RD+1. Thus
the Wightman axioms assume the existence of a non-dynamical, Minkowski
background metric which implies that we have a preferred notion of causality
(or locality) and its symmetry group, the Poincaré group from which one builds
the usual Fock Hilbert spaces of the free fields. We see that the whole structure
of the theory is heavily based on the existence of these objects which come with
a fixed, non-dynamical background metric on a fixed, non-dynamical topological
and differentiable manifold.

For a general background spacetime, things are already under much less
control: we still have a notion of causality (locality) but generically no symmetry
group any longer and thus there is no obvious generalisation of the Wightman
axioms and no natural perturbative Fock Hilbert space any longer. These obsta-
cles can partly be overcome by the methods of algebraic quantum field theory [22]
and the so-called microlocal analysis [23–26] (in which the locality axiom is taken
care of pointwise rather than globally), which recently have also been employed
to develop perturbation theory on arbitrary background spacetimes [27–33] by
invoking the mathematically more rigorous implementation of the renormal-
isation programme developed by Epstein and Glaser in which no divergent
expressions ever appear at least order by order (see, e.g., [34]). This way one
manages to construct the interacting fields, at least perturbatively, on arbitrary
backgrounds.
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In order to go beyond a fixed background one can consider ‘all backgrounds
simultaneously’ [35, 36]. Namely, the notion of a local quantum field theory
A(M, g) (thought of as a unital C∗-algebra for convenience) on a given curved
background spacetime (M, g) can be generalised in the following way:2 given
an isometric embedding ϕ : (M, g) → (M ′, g′) of one spacetime into another,
one relates A(M, g), A(M ′, g′) by asking that there is a ∗-algebraic homomor-
phism αϕ : A(M, g) → A(M ′, g′). The homomorphisms αψ could for instance
just act geometrically by pulling back the fields. More abstractly, what one
has then is the category Man whose objects are globally hyperbolic spacetimes
(M, g) and whose morphisms are isometric embeddings with unit 1(M,g) := idM ,
the identity diffeomorphism. On the other hand, we have the category Alg
whose objects are unital C∗-algebras A and whose morphisms are injective
∗-homomorphisms with unit 1A = idA, the identity element in the algebra.
A local quantum field is then a covariant functor A : Man → Alg; (M, g) �→
A(M, g), ϕ �→ αϕ which relates objects and morphisms of Man with those of
Alg. The functor is called causal if those quantum field theories A(Mj , gj)
for which there exist isometric embeddings ϕj : (Mj , gj) → (M, g); j = 1, 2 so
that ϕ1(M1), ϕ2(M2) are spacelike separated with respect to g satisfy the
causality axiom [αϕ1(A(M1, g1)), αϕ2(A(M2, g2))] = {0}. The functor is said to
obey the time slice axiom when αϕ(A(M, g)) = A(M ′, g′)) for all isometries
ϕ : (M, g) → (M ′, g′) such that ϕ(M) contains a Cauchy surface for (M ′, g′).
This framework is background-independent because the functor A considers all
backgrounds (M, g) simultaneously.

Unfortunately, QFT on curved spacetimes, even stated in this background-
independent way, is only an approximation to the real world because it com-
pletely neglects the backreaction between matter and geometry which classi-
cally is expressed in Einstein’s equations. Moreover, it neglects the fact that
the gravitational field must be quantised as well, as we will argue below. One
can try to rescue the framework of ordinary QFT by studying the quantum
excitations around a given classical background metric, possibly generalised in
the above background-independent way. However, not only does this result in a
non-renormalisable theory without predictive power when treating the gravita-
tional field in the same fashion, it is also unclear whether the procedure leads
to (unitarily) equivalent results when using backgrounds which are physically
different, such as two Schwarzschild spacetimes with different mass (the cor-
responding spacetimes are not isometric). More seriously, it is expected that
especially in extreme astrophysical or cosmological situations (black holes, big
bang) the notion of a classical, smooth spacetime breaks down altogether!
In other words, the fluctuations of the metric operator become deeply quantum
and there is no semiclassical notion of a spacetime any more, similarly to the

2 The following paragraph can be skipped on a first reading, however, the appearing notions
are all explained in this book (see, e.g., Definition 6.2.6 and Chapter 29).



Why quantum gravity in the twenty-first century? 5

energy spectrum of the hydrogen atom far away from the continuum limit. It is
precisely here where a full-fledged quantum theory of gravity is needed: we must
be able to treat all backgrounds on a common footing, otherwise we will never
understand what really happens in a Hawking process when a black hole loses
mass due to radiation. Moreover, we need a background-independent theory of
GR where the lightcones themselves start fluctuating and hence locality becomes
a fuzzy notion. Let us phrase this again, provocatively, as:

The whole framework of ordinary quantum field theory breaks down
once we make the gravitational field (and the differentiable manifold)
dynamical, once there is no background metric any longer!

Combining these issues, one can say that we have a working understanding of
scattering processes between elementary particles in arbitrary spacetimes as long
as the backreaction of matter on geometry can be neglected and that the cou-
pling constant between non-gravitational interactions is small enough (with QCD
being an important exception) since then the classical Einstein equation, which
says that curvature of geometry is proportional to the stress energy of matter,
can be approximately solved by neglecting matter altogether. Thus, in this limit,
it seems fully sufficient to have only a classical theory of general relativity and
perturbative quantum field theory on curved spacetimes.

From a fundamental point of view, however, this state of affairs is unsatisfac-
tory for many reasons among which we have the following:

(i) Classical geometry – quantum matter inconsistency
There are two kinds of problem with the idea of keeping geometry classical
while matter is quantum:
(i1) Backreaction

At a fundamental level, the backreaction of matter on geometry cannot
be neglected. Namely, geometry couples to matter through Einstein’s
equations

Rμν − 1
2
R · gμν = κ Tμν [g]

and since matter underlies the rules of quantum mechanics, the right-
hand side of this equation, the stress–energy tensor Tμν [g], becomes
an operator. One has tried to keep geometry classical while matter is
quantum mechanical by replacing Tμν [g] by the Minkowski vacuum Ωη

expectation value < Ωη, T̂μν [η]Ωη >, but the solution of this equation
will give g �= η which one then has to feed back into the definition
of the vacuum expectation value, and so on. Notice that the notion
of vacuum itself depends on the background metric, so that this is a
highly non-trivial iteration process. The resulting iteration does not
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converge in general [37]. Thus, such a procedure is also inconsistent,
whence we must quantise the gravitational field as well. This leads to
the quantum Einstein equations

R̂μν − 1
2
R̂ · ĝμν = κ T̂μν [ĝ]

Of course, this equation is only formal at this point and must be
embedded into an appropriate Hilbert space context.

(i2) UV regime
There is another piece of evidence for the need to quantise geometry:
recall that in perturbative QFT one integrates over virtual particles
in higher loop diagrams with arbitrarily large energy. Suppose that
such a particle has energy E and momentum P ≈ E/c in some rest
frame. According to quantum mechanics, such a particle has a lifetime
τ ≈ h̄/E and a spatial extension given by the Compton radius λ ≈
h̄c/E. According to classical GR, such a lump of energy collapses to a
black hole if the Compton radius drops below the Schwarzschild radius
r ≈ GE/c4, in other words, when the energy exceeds the Planck energy
Ep =

√
h̄c/Gc2. The problem is now not only that in ordinary QFT this

general relativistic effect is neglected, but moreover that this effect leads
to new processes: according to the Hawking effect, after the lifetime τ

the black hole evaporates. However, it evaporates into particles of all
possible species. Suppose for instance that the original particle was a
neutrino. All that the resulting black hole remembers is its mass and
spin. Now while the neutrino only interacts electroweakly according to
the standard model, the black hole can produce gluons and quarks,
which is impossible within the standard model.

Of course, all of these arguments are only heuristic, however, they reveal
that it is problematic to combine classical geometry with quantum matter.
They suggest that it is problematic or even inconsistent to resolve spacetime
distances below the Planck scale 	p =

√
h̄cG/c2. It is due to considerations

of this kind that one expects that gravity provides a natural UV cutoff for
QFT. If that is the case, then it is natural to expect that the quantum
spacetime structure reveals a discrete structure at Planck scale. We will see
a particular incarnation of this idea in LQG.

(ii) Inherent classical geometry inconsistency
Even without quantum theory at all Einstein’s field equations predict space-
time singularities (black holes, big bang singularities, etc.) at which the
equations become meaningless. In a truly fundamental theory, there is no
room for such breakdowns and it is suspected by many that the theory cures
itself upon quantisation in analogy to the hydrogen atom whose stability is
classically a miracle (the electron should fall into the nucleus after a finite
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time lapse due to emission of Bremsstrahlung) but is easily explained by
quantum theory which bounds the electron’s energy from below.

(iii) Inherent quantum matter inconsistency
As outlined above, perturbative quantum field theory on curved spacetimes
is itself also ill-defined due to its UV (short distance) singularities which
can be cured only with an ad hoc recipe order by order which lacks a
fundamental explanation; moreover, the perturbation series is usually diver-
gent. Besides that, the corresponding infinite vacuum energies being usually
neglected in such a procedure contribute to the cosmological constant and
should have a large gravitational backreaction effect. That such energy sub-
tractions are quite significant is maybe best demonstrated by the Casimir
effect. Now, since general relativity possesses a fundamental length scale,
the Planck length 	p ≈ 10−33 cm, it has been argued ever since that grav-
itation plus matter should give a finite quantum theory since gravitation
provides the necessary, built-in, short distance cutoff.

(iv) Cosmological constant problem
However, that cutoff cannot work naively: consider for simplicity a free mass-
less scalar field on Minkowski space. The difference between the Hamiltonian
and its normal ordered version is given by the divergent expression

Ĥ− : Ĥ := h̄

∫
d3x[

√
−Δδ(x, y)]y=x = h̄

∫
d3x

∫
d3k |k|

where Δ is the flat space Laplacian. If we assume a naive momentum cut-
off due to quantum gravity at |k| ≤ 1/	P the divergent momentum integral
becomes proportional to 	−4

P . Comparing this with the cosmological con-
stant Hamiltonian Λ

G

∫
d3x

√
det(q) where Λ is the cosmological constant, G

is Newton’s constant and q is the spatial metric (which is flat on Minkowski
space) then we conclude that Λ	2P ≈ 1 where h̄G = 	2P was used. However,
experimentally we find Λ	2P ≈ 10−120. Thus the cosmological constant is
unnaturally small and presents the worst fine-tuning problem ever encoun-
tered in physics. Notice that the cosmological constant is a possible candi-
date for dark energy.

(v) Perturbative quantum gravity inconsistency
Given the fact that perturbation theory works reasonably well if the coupling
constant is small for the non-gravitational interactions on a background
metric it is natural to try whether the methods of quantum field theory
on curved spacetime work as well for the gravitational field. Roughly, the
procedure is to write the dynamical metric tensor as g = η + h where η is
the Minkowski metric and h is the deviation of g from it (the graviton) and
then to expand the Lagrangian as an infinite power series in h. One arrives
at a formal, infinite series with finite radius of convergence which becomes
meaningless if the fluctuations are large. Although the naive power counting
argument implies that general relativity so defined is a non-renormalisable



8 Introduction: Defining quantum gravity

theory, it was hoped that due to cancellations of divergences the perturba-
tion theory could actually be finite. However, that this hope was unjustified
was shown in [38, 39] where calculations demonstrated the appearance of
divergences at the two-loop level, which suggests that at every order of
perturbation theory one must introduce new coupling constants which the
classical theory did not know about and one loses predictability.

It is well known that the (locally) supersymmetric extension of a given
non-supersymmetric field theory usually improves the ultraviolet conver-
gence of the resulting theory as compared with the original one due to
fermionic cancellations [40]. It was therefore natural to hope that quantised
supergravity might be finite. However, in [41] a serious argument against the
expected cancellation of perturbative divergences was raised and recently
even the again popular (due to its M-theory context) most supersymmet-
ric 11D ‘last hope’ supergravity theory was shown not to have the magical
cancellation property [42–44].

Summarising, although a definite proof is still missing up to date (mainly
due to the highly complicated algebraic structure of the Feynman rules
for quantised supergravity) it is today widely believed that perturbative
quantum field theory approaches to quantum gravity are meaningless.

The upshot of these considerations is that our understanding of quantum field
theory and therefore fundamental physics is quite limited unless one quantises
the gravitational field as well. Being very sharply critical one could say:

The current situation in fundamental physics can be compared with
the one at the end of the nineteenth century: while one had a success-
ful theory of electromagnetism, one could not explain the stability of
atoms. One did not need to worry about this from a practical point of
view since atomic length scales could not be resolved at that time but
from a fundamental point of view, Maxwell’s theory was incomplete.
The discovery of the mechanism for this stability, quantum mechanics,
revolutionised not only physics. Similarly, today we still have no thor-
ough understanding for the stability of nature in the sense discussed
above and it is similarly expected that the more complete theory of
quantum gravity will radically change our view of the world. That
is, considering the metric as a quantum operator will bring us beyond
standard model physics even without the discovery of new forces, par-
ticles or extra dimensions.

The role of background independence

The twentieth century has dramatically changed our understanding of nature: it
revealed that physics is based on two profound principles, quantum mechanics
and general relativity. Both principles revolutionise two pivotal structures of
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Newtonian physics. First, the determinism of Newton’s equations of motion evap-
orates at a fundamental level, rather dynamics is reigned by probabilities under-
lying the Heisenberg uncertainty obstruction. Second, the notion of absolute time
and space has to be corrected; space and time and distances between points of
the spacetime manifold, that is, the metric, become themselves dynamical, geom-
etry is no longer just an observer. The usual Minkowski metric ceases to be a
distinguished, externally prescribed, background structure. Rather, the laws of
physics are background-independent, mathematically expressed by the classical
Einstein equations which are generally (or four-diffeomorphism) covariant. As we
have argued, it is this new element of background independence brought in with
Einstein’s theory of gravity which completely changes our present understanding
of quantum field theory.

A satisfactory physical theory must combine both of these fundamental prin-
ciples, quantum mechanics and general relativity, in a consistent way and will be
called ‘Quantum Gravity’. However, the quantisation of the gravitational field
has turned out to be one of the most challenging unsolved problems in theoretical
and mathematical physics. Although numerous proposals towards a quantisation
have been made since the birth of general relativity and quantum theory, none
of them can be called successful so far. This is in sharp contrast to what we see
with respect to the other three interactions whose description has culminated
in the so-called standard model of matter, in particular, the spectacular success
of perturbative quantum electrodynamics whose theoretical predictions could be
verified to all digits within the experimental error bars until today.

Today we do not have a theory of quantum gravity, what we have is:

1. The Standard Model, a quantum theory of the non-gravitational interactions
(electromagnetic, weak and strong) or matter which, however, completely
ignores General Relativity.

2. Classical General Relativity or geometry, which is a background-independent
theory of all interactions but completely ignores quantum mechanics.

What is so special about the gravitational force that it has persisted in its
quantisation for about 70 years already? As outlined in the previous section, the
answer is simply that today we only know how to do QFT on fixed background
metrics. The whole formalism of ordinary QFT relies heavily on this background
structure and collapses to nothing when it is missing. It is already much more
difficult to formulate a QFT on a non-Minkowski (curved) background but it
seems to become a completely hopeless task when the metric is a dynamical,
even fluctuating quantum field itself. This underlines once more the source of
our current problem of quantising gravity: we have to learn how to do QFT on
a differential manifold (or something even more rudimentary, not even relying
on a fixed topological, differentiable manifold) rather than a spacetime.

In order to proceed, today a high-energy physicist has the choice between
the following two, extreme approaches. Either the particle physicist’s, who
prefers to take over the well-established mathematical machinery from QFT
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on a background at the price of dropping background independence altogether
to begin with and then tries to find the true background-independent theory
by summing the perturbation series (summing over all possible backgrounds).
Or the quantum geometer’s, who believes that background independence lies at
the heart of the solution to the problem and pays the price to have to invent
mathematical tools that go beyond the framework of ordinary QFT right from
the beginning. Both approaches try to unravel the truly deep features that are
unique to Einstein’s theory associated with background independence from dif-
ferent ends.

The particle physicist’s language is perturbation theory, that is, one writes
the quantum metric operator as a sum consisting of a background piece and a
perturbation piece around it, the graviton, thus obtaining a graviton QFT on a
Minkowski background. We see that perturbation theory, by its very definition,
breaks background independence and diffeomorphism invariance at every finite
order of perturbation theory. Thus one can restore background independence
only by summing up the entire perturbation series, which is of course not easy.
Not surprisingly, as already mentioned, since h̄κ = 	2p has negative mass dimen-
sion in Planck units, applying this programme to Einstein’s theory itself results
in a mathematical disaster, a so-called non-renormalisable theory without any
predictive power. In order to employ perturbation theory, it seems that one has
to go to string theory which, however, requires the introduction of new additional
structures that Einstein’s classical theory did not know about: supersymmetry,
extra dimensions and an infinite tower of new and very heavy particles next to
the graviton. This is a fascinating but extremely drastic modification of general
relativity and one must be careful not to be in conflict with phenomenology as
superparticles, Kaluza Klein modes from the dimensional reduction and those
heavy particles have not been observed until today. On the other hand, string
theory has a good chance to be a unified theory of the perturbative aspects of
all interactions in the sense that all interactions follow from a common object,
the string, thereby explaining the particle content of the world.

The quantum geometer’s language is a non-perturbative one, keeping back-
ground independence as a guiding principle at every stage of the construction of
the theory, resulting in mathematical structures drastically different from the
ones of ordinary QFT on a background metric. One takes Einstein’s theory
absolutely seriously, uses only the principles of General Relativity and quantum
mechanics and lets the theory build itself, driven by mathematical consistency.
Any theory meeting these standards will be called Quantum General Relativity
(QGR). Since QGR does not modify the matter content of the known interac-
tions, QGR is therefore not in conflict with phenomenology but also it does not
obviously explain the particle content of the world. However, it tries to unify all
interactions in a different sense: all interactions must transform under a com-
mon gauge group, the four-dimensional diffeomorphism group which on the other
hand is almost completely broken in perturbative approaches.
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Let us remark that even without specifying further details, any QGR theory
is a promising candidate for a theory that is free from two divergences of the
so-called perturbation series of Feynman diagrams common to all perturbative
QFTs on a background metric: (1) each term in the series diverges due to the
ultraviolet (UV) divergences of the theory which one can cure for renormalis-
able theories through so-called renormalisation techniques and (2) the series
of these renormalised, finite terms diverges, one says the theory is not finite.
The first, UV, problem has a chance to be absent in a background-independent
theory for a simple but profound reason: in order to say that a momentum
becomes large one must refer to a background metric with respect to which it is
measured, but there simply is no background metric in the theory. The second,
convergence, problem of the series might be void as well since there are simply
no Feynman diagrams! Thus, the mere existence of a consistent background-
independent quantum gravity theory could imply a finite quantum theory of all
interactions. Of course, a successful quantum gravity theory must recover all the
results that have been obtained by perturbative techniques and that have been
verified in experiments.

Approaches to quantum gravity

The aim of the previous section was to convince the reader that background inde-
pendence is, maybe, the Key Feature of quantum gravity to be dealt with. No
matter how one deals with this issue, whether one starts from a perturbative (=
background-dependent) or from a non-perturbative (= background-independent)
platform, one has to invent something drastically new in order to quantise the
gravitational field. Roughly speaking, if one wants to keep perturbative renor-
malisability as a criterion for a meaningful theory, then one has to increase the
amount of symmetries, resulting in superstring theory which hopefully has Gen-
eral Relativity and the standard model as an effective low-energy limit. (Compare
the historically similar case of the non-renormalisable Fermi model of the weak
interaction with massive gauge bosons which was replaced by the more symmet-
ric and renormalisable electroweak Yang–Mills theory.) If one considers General
Relativity as a fundamental theory then one cannot introduce extra structure,
one has to give up the renormalisability principle and instead has to invent a
new mathematical framework which can deal with background independence.
(Compare the historically similar case of the bizarre ether model based on the
Newtonian notion of absolute spacetime which was abandoned by the special
relativity principle.)

We will now explain these approaches in more detail.

1. Perturbative approach: string theory
The only known consistent perturbative approach to quantum gravity is string
theory which has good chances to be a theory that unifies all interactions.
String theory [45] is not a field theory in the ordinary sense of the word.
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Originally, it was a two-dimensional field theory of worldsheets embedded
into a fixed, D-dimensional pseudo-Riemannian manifold (M, g) of Lorentzian
signature which is to be thought of as the spacetime of the physical world.
The Lagrangian of the theory is a kind of non-linear σ-model Lagrangian for
the associated embedding variables X (and their supersymmetric partners
in case of the superstring). If one perturbs g(X) = η + h(X) as above and
keeps only the lowest order in X one obtains a free field theory in two dimen-
sions which, however, is consistent (Lorentz covariant) only when D + 1 = 26
(bosonic string) or D + 1 = 10 (superstring), respectively. Strings propagat-
ing in those dimensions are called critical strings, non-critical strings exist
but have so far not played a significant role due to phenomenological reasons.
Remarkably, the mass spectrum of the particle-like excitations of the closed
worldsheet theory contains a massless spin-two particle which one interprets
as the graviton. Until recently, the superstring was favoured since only there
was it believed to be possible to get rid of an unstable tachyonic vacuum state
by the GSO projection. However, one recently also tries to construct stable
bosonic string theories [46].

Moreover, if one incorporates the higher-order terms h(X) of the string
action, sufficient for one-loop corrections, into the associated path integral
one finds a consistent quantum theory up to one loop only if the background
metric satisfies the Einstein equations. These are the most powerful outcomes
of the theory: although one started out with a fixed background metric, the
background is not arbitrary but has to satisfy the Einstein equations up to
higher loop corrections, indicating that the one-loop effective action for the
low-energy quantum field theory in those D dimensions is Einstein’s theory
plus corrections. Finally, only recently has it been shown [47] that at least
the type II superstring theories are one- and two-loop and, possibly, to all
orders, finite. String theorists therefore argue to have found candidates for a
consistent theory of quantum gravity with the additional advantage that they
do not contain any free parameters (like those of the standard model) except
for the string tension.

These facts are very impressive, however, some cautionary remarks are
appropriate, see also the beautiful review [48]:
– Vacuum degeneracy

Dimension D + 1 = 10, 26 is not the dimension of everyday physics so that
one has to argue that the extra D − 3 dimensions are ‘tiny’ in the Kaluza–
Klein sense although nobody knows the mechanism responsible for this
‘spontaneous compactification’. According to [49] there exist at least 104

consistent, distinct Calabi–Yau compactifications (other compactifications
such as toroidal ones seem to be inconsistent with phenomenology), each
of which has an order of 102 free, continuous parameters (moduli) like the
vacuum expectation value of the Higgs field in the standard model. For each
compactification of each of the five string theories in D = 10 dimensions
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and for each choice of the moduli one obtains a distinct low-energy effective
theory. This is clearly not what one expects from a theory that aims to unify
all the interactions, the 18 (or more for massive neutrinos) free, continuous
parameters of the standard model have been replaced by 102 continuous
plus at least 104 discrete ones.

This vacuum degeneracy problem is not cured by the M-theory inter-
pretation of string theory but it is conceptually simplified if certain con-
jectures are indeed correct: string theorists believe (bearing on an impres-
sively huge number of successful checks) that so-called T (or target space)
and S (or strong–weak coupling) duality transformations between all these
string theories exist, which suggests that we do not have 104 unrelated 102-
dimensional moduli spaces but that rather these 102-dimensional manifolds
intersect in singular, lower-dimensional submanifolds corresponding to cer-
tain singular moduli configurations. This typically happens when certain
masses vanish or certain couplings diverge or vanish (in string theory the
coupling is related to the vacuum expectation value of the dilaton field).
Crucial in this picture are so-called D-branes, higher-dimensional objects
additional to strings which behave like solitons (‘magnetic monopoles’) in
the electric description of a string theory and like fundamental objects
(‘electric degrees of freedom’) in the S-dual description of the same string
theory, much like the electric–magnetic duality of Maxwell theory under
which strong and weak coupling are exchanged. Further relations between
different string theories are obtained by compactifying them in one way
and decompactifying them in another way, called a T-duality transforma-
tion. The resulting picture is that there exists only one theory which has
all these compactification limits just described, called M-theory. Curiously,
M-theory is an 11D theory whose low energy limit is 11D supergravity and
whose weak coupling limit is type IIA superstring theory (obtained by one
of these singular limits since the size of the 11th compactified dimension
is related to the string coupling again). Since 11D supergravity is also the
low-energy limit of the 11D supermembrane, some string theorists inter-
pret M-theory as the quantised 11D supermembrane (see, e.g., [50,51] and
references therein).

– Phenomenology match
Until today, no conclusive proof exists that for any of the compactifications
described above we obtain a low-energy effective theory which is experi-
mentally consistent with the data that we have for the standard model [52],
although one seems to get at least rather close. The challenge in string phe-
nomenology is to consistently and spontaneously break supersymmetry in
order to get rid of the so far non-observed superpartners. There is also
an infinite tower of very massive (of the order of the Planck mass and
higher) excitations of the string, but these are too heavy to be observable.
More interesting are the Kaluza–Klein modes whose masses are inverse
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proportional to the compactification radii and which have recently given
rise to speculations about ‘sub-mm-range’ gravitational forces [53], which
one must make consistent with observation also.

– Fundamental description
Even before the M-theory revolution, string theory has always been a the-
ory without Lagrangian description, S-matrix element computations have
been guided by conformal invariance but there is no ‘interaction Hamil-
tonian’, string theory is a first-quantised theory. Second quantisation of
string theory, called string field theory [54], has so far not attracted as
much attention as it possibly deserves. However, a fascinating possibility
is that the 11D supermembrane, and thus M-theory, is an already second-
quantised theory [55].

– Background dependence
As mentioned above, string theory is best understood as a free 2D field
theory propagating on a 10D Minkowski target space plus perturbative cor-
rections for scattering matrix computations. This is a heavily background-
dependent description, issues like the action of the 10D diffeomorphism
group, the fundamental symmetry of Einstein’s action, or the probabil-
ity amplitude for the quantum evolution of one background into another
cannot be questioned. Perturbative string theory, as far as quantum grav-
ity is concerned, can describe graviton scattering in a background space-
time, however, the most interesting problems near classical singularities
require a non-perturbative description, such as the fundamental descrip-
tion of Hawking radiation. As a first step in that direction, recently stringy
black holes have been discussed [56]. Here one uses so-called BPS D-brane
configurations which are so special that one can do a perturbative cal-
culation and extend it to the non-perturbative regime since the results
are protected against non-perturbative corrections due to supersymmetry.
So far this works only for extremely charged, supersymmetric black holes
which are astrophysically not very realistic. But still these developments
are certainly a move in the right direction since they use for the first time
non-perturbative ideas in a crucial way and have been celebrated as one of
the triumphs of string theory.

– The landscape
Coming back to the D-branes mentioned above, these are surfaces on
which open strings must end (D stands for Dirichlet boundary condi-
tions). Since these D-branes are completely arbitrary and not constrained
by the theory, M-theory contains as many vacua as there are D-brane con-
figurations (sometimes called charges or fluxes), which of course have to
be gauge-invariant, in particular supersymmetric. This makes the num-
ber of string vacua plain infinite [57] and the number of physically rel-
evant (e.g., consistent with cosmological observations, supersymmetry,
topology and/or stable) vacua has been estimated to be of the order of
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10100–10500 [58,59] or even infinite [60] depending on one’s assumptions (all
analyses count compactification possibilities as well). Whether this number
is infinite or just very large seems to be currently under debate, however,
the number seems to be robustly above the 1080 particles contained in
the observable (causally connected, i.e., of Hubble radius size) universe.
This number of vacua, called the landscape, is so vast that some string
theorists [61] employ the anthropic principle in order to rescue predictabil-
ity of string theory, which is not unproblematic [62]. From the point of
view of a background-independent theory which in some sense describes all
background-dependent quantum field or string theories (i.e., vacua) simul-
taneously, the landscape could be an artifact of trying to describe quantum
gravity by a collection of background-dependent theories which are not con-
nected to each other while they should be. See [63] for more details.

– AdS/CFT and cosmology
In a celebrated paper [64, 65], Maldacena conjectured that string theory
on an anti-de Sitter (AdS) background can be described by a conformal
quantum field theory (CFT)3 on the boundary of the AdS space. For an
introduction to CFT, see [66]. This is yet another duality conjecture of
string theory whose most studied incarnation is string theory on an AdS5 ×
S5 background and N = 4 Super–Yang–Mills theory (SYM). The latter is
finite order by order in perturbation theory. The AdS/CFT correspondence
can be considered as a concrete application of the holographic principle
(see, e.g., [67]).

Unfortunately, so far this conjecture has mostly been checked at the
level of the low-energy limit of string theory, that is, the corresponding
supergravity theory, while there has been recent progress [68] as far as the
conformal field theory side of the correspondence is concerned, based on the
discovery of certain integrability structures. Moreover, in a mathematically
precise formulation of the conjecture [69–72] one can show by the methods
of algebraic QFT (local quantum physics) that if the theory in the bulk is
described by a local Lagrangian then the boundary theory is non-local and
vice versa. There is no contradiction because the full low-energy effective
action of string theory is non-local (containing an infinite tower of α′ cor-
rections), however, it then becomes hard to verify the conjecture just using
the tree term.

3 That is, a QFT on D-dimensional Minkowski space whose underlying Lagrangian is not
only invariant under the Poincaré group ISO(1,D − 1) but also under conformal
transformations. The resulting enlarged group is called the conformal group and its
elements g satisfy g∗η = Ω2η where η is the Minkowski metric and Ω is an arbitrary
function. For isometries Ω = 1, for non-trivial conformal transformations Ω �= 1. The
AdS/CFT correspondence or conjecture is based on the fact that the isometry groups on an
AdS space in D + 1 spacetime dimensions, as well as the conformal group of Minkowski
space in D spacetime dimensions, have (locally) the structure of SO(2,D).
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Notice that current observations indicate that our universe is in a de
Sitter phase (positive cosmological constant). However, a de Sitter back-
ground, in contrast to an anti-de Sitter background, does not have a positive
energy supersymmetric extension of the de Sitter algebra (the analogue of
the Poincaré algebra). One way to see this is to note that in supersymmetric
theories the energy is always positive while de Sitter space does not admit
a global timelike Killing field and hence no positive energy. String theories
based on de Sitter space, if they exist, thus tend to be unstable since the
corresponding low-energy supergravity theories are. In general it is hard to
formulate string theory on time-dependent backgrounds which, however,
are the most relevant ones for cosmology. Quite generally it is simply not
true that every solution of Einstein’s equations without Rarita–Schwinger
fields has a supersymmetric extension including Rarita–Schwinger fields,
that is, not every Einstein space is compatible with supergravity (local
supersymmetry).

2. Non-perturbative approaches
The non-perturbative approaches to quantum gravity can be grouped into the
following five main categories.
2a. Canonical Quantum General Relativity

If one wanted to give a definition of this theory then one could say the
following:

Canonical Quantum General Relativity is an attempt
to construct a mathematically rigorous, non-perturbative,
background-independent Quantum Field Theory of four-
dimensional, Lorentzian general relativity plus all known
matter in the continuum.

This is the oldest approach and goes back to the pioneering work
by Dirac [73–76] started in the 1940s and was further developed by
Bergmann and Komar [77–80] as well as Arnowittt, Deser and Mis-
ner [81] in the 1950s and especially by Wheeler and DeWitt [82–85] in
the 1960s. The idea of this approach is to apply the Legendre transform
to the Einstein–Hilbert action by splitting spacetime into space and time
and to cast it into Hamiltonian form. The resulting ‘Hamiltonian’ H

is actually a so-called Hamiltonian constraint, that is, a Hamiltonian
density which is constrained to vanish by the equations of motion. A
Hamiltonian constraint must occur in any theory that, like general
relativity, is invariant under local reparametrisations of time. According
to Dirac’s theory of the quantisation of constrained Hamiltonian systems,
one is now supposed to impose the vanishing of the quantisation Ĥ of
the Hamiltonian constraint H as a condition on states ψ in a suitable
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Hilbert space H, that is, formally

Ĥψ = 0

This is the famous Wheeler–DeWitt equation or quantum Einstein
equation of canonical quantum gravity and resembles a Schrödinger
equation, only that the familiar ∂ψ/∂t term is missing, one of several
occurrences of the ‘absence or problem of time’ in this approach (see,
e.g., [86] and references therein).

Since the status of this programme, that is, its Loop Quantum Grav-
ity (LQG) incarnation, is the subject of the present book we will not
go too much into details here. The successes of LQG are a mathemati-
cally rigorous framework, manifest background independence, a manifestly
non-perturbative language, an inherent notion of quantum discreteness of
spacetime which is derived rather than postulated, certain UV finiteness
results, a promising path integral formulation (spin foams) and finally a
consistent formulation of quantum black hole physics. A conceptually very
similar but technically different canonical programme has been launched
by Klauder [87–91] to which the following remarks apply as well.

The following issues are at the moment unresolved within this approach:
* Tremendously non-linear structure

The Wheeler–DeWitt operator is, in the so-called ADM formulation,
a functional differential operator of second order of the worst kind,
namely with non-polynomial, not even analytic (in the basic configura-
tion variables) coefficients. To even define such an operator rigorously
has been a major problem for more than 60 years. What should be a
suitable Hilbert space that carries such an operator? It is known that
a Fock–Hilbert space is not able to support it. Moreover, the struc-
ture of the solution space is expectedly very complicated. Thus we see
that one meets a great deal of mathematical problems before one can
even start addressing physical questions. As we will describe in this
book, there has been a huge amount of progress in this direction since
the introduction of new canonical variables due to Ashtekar [92, 93] in
1986. However, the physics of the Wheeler–DeWitt operator is still only
poorly understood.

* Loss of manifest four-dimensional diffeomorphism covariance
Due to the split of spacetime into space and time the treatment of
spatial and time diffeomorphisms is somewhat different and the orig-
inal four-dimensional covariance of the theory is no longer manifest.
Classically one can prove (and we will in fact do that later on) that
four-dimensional diffeomorphism covariance is encoded in a precise
sense into the canonical formalism, although it is deeply hidden. In the
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quantum theory the issue reappears in the form of possible anomalies
of the constraint algebra. We will show how to avoid those anomalies
but possibly at the price of having a physical Hilbert space which is
too small, which affects the classical limit, see below.

Let us clarify an issue that comes up often in debates between
quantum geometers and string theorists: what one means by (D + 1)-
dimensional covariance in string theory on a Minkowski target space is
just (D + 1)-dimensional Poincaré covariance but not diffeomorphism
covariance. Clearly the Poincaré group is not even a subgroup of the dif-
feomorphism group (for asymptotically flat spacetimes). The Poincaré
group is a group of symmetries of asymptotically flat spacetimes while
the diffeomorphisms, which are asymptotically trivial by definition, are
gauge transformations. The latter group is completely broken in string
theory, the former is also present in General Relativity.

* Interpretational (conceptual) issues
Once one has found the solutions of the quantum Einstein equations
one must find a complete set of Dirac observables (operators that leave
the space of solutions invariant), which is a hard task to achieve even in
classical General Relativity. One must therefore find suitable approxi-
mation methods, which is a development that has just recently started.
However, even if one had found those (approximate) operators, which
would be in some sense even time-independent and therefore extremely
non-local, one would need to deparametrise the theory, that is, one
must find an explanation for the local dynamics in our world. There
are technically precise proposals for dealing with the classical part of
this issue, but there is no rigorous quantum framework available at the
moment.

* Classical limit
As we will see, our Hilbert space is of a new (background-independent)
kind, operators are regulated in a non-standard (background-
independent) way. It is therefore no longer clear that the theory that
has been constructed so far indeed has General Relativity as its clas-
sical limit. The issue must be settled by a semiclassical analysis for
canonical QGR, a programme that has only been launched recently.

2b. Continuum functional integral approach
Here one tries to give meaning to the sum over histories of e−SE where
SE denotes the Euclidean Einstein–Hilbert action [94]. It is extremely
hard to do the path integral and apart from semiclassical approximations
and steepest descent methods in simplified models with a finite number
of degrees of freedom one could not get very far within this framework
yet [95–98]. There are at least the two following reasons for this:
1. The action functional SE is unbounded from below. Therefore the

path integral is badly divergent from the outset and although rather
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sophisticated proposals have been made on how to improve the
convergence properties, none of them has been fully successful to the
best knowledge of the author.

2. The Euclidean field theory underlying the functional integral and the
quantum theory of fields propagating on a Minkowski background are
related by Wick rotating the Schwinger distributions of the former into
the Wightman distributions of the latter (see, e.g., [99]). However, in
the case of quantum gravity the metric itself becomes dynamical and is
being integrated over, therefore the concept of Wick rotation becomes
ill-defined. In other words, there is no guarantee that the Euclidean
path integral even has any relevance for the quantum field theory under-
lying the Lorentzian Einstein–Hilbert action.

Nevertheless, one can try to define such a Euclidean path integral non-
perturbatively by looking for non-Gaußian fixed points in Wilson’s renor-
malisation analysis corresponding to an interacting microscopic theory (an
asymptotically safe theory in Weinberg’s terminology [100]). This line of
thought has recently again picked up momentum due to non-trivial new
results by Reuter and coworkers [101–108] and Niedermaier [109–111].

2c. Lattice quantum gravity
This approach can be subdivided into two main streams (see [112] for a
review):
(a) Regge calculus [113–115]. Here one introduces a fixed triangulation

of spacetime and integrates with a certain measure over the lengths
of the links of this triangulation. The continuum limit is reached by
refining the triangulation.

(b) Dynamical triangulations [116]. Here one takes the opposite point
of view and keeps the lengths of the links fixed but sums over all
triangulations. The continuum limit is reached by taking the link
length to zero.

In both approaches one has to look for critical points (second-order phase
transitions). An issue in both approaches is the choice of the correct
measure. Although there is no guideline, it is widely believed that the
dependence on the measure is weak due to universality in the statistical
mechanical sense. The reason for the possibility that the path integral
exists although the Euclidean action is unbounded from below is that
the configurations with large negative action have low volume (measure)
so that ‘entropy wins over energy’. Especially in the field of dynamical
triangulations there has been a major breakthrough recently [117–120]:
the convergence of the partition function could be established analytically
in two dimensions (the action is basically a cosmological constant term)
and the relation between the Lorentzian and Euclidean theory becomes
transparent. This opens the possibility that similar results hold in higher
dimensions, in particular, it seems as if the Lorentzian theory is much
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better behaved than the Euclidean theory because one has to sum over
fewer configurations (those that are compatible with quantum causality).
There are also promising new results concerning a non-perturbative Wick
rotation [121–125] as well as a dynamical explanation for why the world
is four-dimensional [126–128].

What is still missing within this approach (in more than two dimen-
sions), as in any path integral approach for quantum gravity that has
been established so far, is a clear physical interpretation of the expecta-
tion values of observables as transition amplitudes or expectation values
in a physical Hilbert space. A possible way out could be proposed if one
were able to establish reflection positivity of the measure (see [99]) from
which the existence of a Hilbert space structure follows automatically.

2d. Covariant canonical approaches
As already mentioned, the standard canonical formalism as being used in
canonical QGR needs, almost by definition, a notion of time in order that
one can obtain the momentum phase space underlying the Hamiltonian
formulation from the velocity phase space of the Lagrangian formula-
tion through the Legendre transform. While the Lagrangian formulation
is manifestly covariant, the Hamiltonian formulation is not, in order to
establish covariance one has to do some extra work, even at the classical
level. At the quantum level the issue of the covariance of the measurement
process appears [129]. On the other hand, for generic interacting systems
only the canonical formulation allows for a straightforward quantisation
by well-defined axioms, as we will see later on. The covariant canoni-
cal approaches try to combine the virtues of both formulations, manifest
covariance on the one hand and a well-defined quantisation procedure on
the other. They can roughly be grouped as follows:
2d(i) Covariant phase space methods

If the time evolution is well-defined, then there exists a bijection
between the initial data (instantaneous or canonical phase space)
and the space of solutions (covariant phase space) which can be
turned into an isometry of the associated symplectic structures
by simply pulling back the canonical one. One can imagine bas-
ing a quantisation on this procedure [130]. However, it is very
likely that such an approach is in a sense too classical because
by construction the singularities of the classical theory (e.g., big
bang) are imported into the quantum theory. More generally, the
path integral approach suggests that one has to deal with all pos-
sible histories in quantum theory, not only with the classical ones.
See [131, 132] for the most advanced results within this approach
based on the so-called ‘Peierls bracket’ which uses the classical
solutions in the definition of propagators.
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2d(ii) Multisymplectic Ansätze
One way to get rid of a preferred time direction is to use as many
canonical momenta as there are spacetime coordinates. In other
words, there are as many momenta as there are velocities, which is
why such an approach has been coined multisymplectic [133–139].
While the classical theory is well under control and equivalent to
the standard canonical formalism, the quantisation of the multi-
symplectic Poisson bracket turns out to be rather difficult. To the
best of our knowledge, major advances have only been obtained
by Kanatchikov, see [140–142] for the state of the art in this
subject.

2d(iii) History bracket formulation
The history bracket formulation grew out of the consistent his-
tories formulation of quantum mechanics due to Gell-Mann,
Griffiths, Hartle, Omnés and others [143–155] which is in many
senses superior over the Copenhagen interpretation of quantum
mechanics, especially when it comes to closed systems (cosmolo-
gies) for which there is no ‘outside observer’ any more. This theory
is closely related to the path integrals in that it is based on chains
of propositions, within the standard canonical Hilbert space, that
is, projection operators onto states at certain points of time, sand-
wiched between the corresponding unitary time evolution opera-
tors. An obstacle for a long time had been that these propositions
are no longer projections and therefore lack probabilistic features
because projection operators do not necessarily commute. The final
form was reached by Isham, Linden, Savvidou and Schreckenberg,
now called the history projection operator approach [156–158], by
blowing up the instantaneous Hilbert space into a continuous infi-
nite tensor product Hilbert space for which now projections at dif-
ferent points of time are uncorrelated (they live in different copies
of the standard Hilbert space) and thus define projections again.
Savvidou then realised that this structure suggests a new classical
canonical formulation, namely a history bracket [159–163] phase
space, which allows us to compute Poisson brackets between func-
tions at different points of time without using the dynamics, it
is a purely kinematical construction as it should be. This obser-
vation allows us to clearly distinguish between the kinematical
four-dimensional diffeomorphism invariance of General Relativity,
which is always there (even in the standard canonical formalism)
and the invariance group generated by the instantaneous con-
straints [221–226] which is not obviously a subgroup thereof, as
we will see. These findings have been further developed by Kuchař



22 Introduction: Defining quantum gravity

and Koutlesis in [164]. The classical time evolution is generated
by the action (four-dimensional integral over the Lagrangian den-
sity) rather than by the Hamiltonian (three-dimensional integral
over the Hamiltonian density) and thus manifestly covariant. One
should now proceed and quantise the history bracket formulation,
see [165,166] for first promising steps in that direction.

2e. Non-orthodox approaches
Approaches belonging to this category start by questioning standard quan-
tum field theory at an even more elementary level. Namely, if the ideas
about spacetime foam (discrete structure of spacetime) are indeed true
then one should not even start formulating quantum field theory on a dif-
ferentiable manifold but rather something intrinsically discrete. Maybe
we even have to question the foundations of quantum mechanics and to
depart from a purely binary logic. Among theories of this kind we find
Non-Commutative Geometry by Alain Connes [167, 168] also considered
recently by string theorists [169], Topos Theory by Chris Isham [170–174],
Twistor Theory by Roger Penrose [175–180], the Causal Set Programme
by Rafael Sorkin [181–186] and finally the Deterministic Quantum Gravity
Programme by Gerard ’t Hooft [187, 188]. These approaches are, maybe,
the most radical reformulations of fundamental physics but they are also
the most difficult ones because the contact with standard quantum field
theory is, a priori, very small. These programmes are in some sense ‘far-
thest’ from observation and are consequently least developed so far.4

However, the ideas spelt out in these programmes could well reappear
in the former approaches as well once these have reached a sufficiently
high degree of maturity in order to take the ‘quantum leap’ to a more
fundamental formulation.

All of these five non-perturbative programmes are mutually loosely con-
nected: roughly, the operator formulation of the standard canonical approach
is equivalent to the continuous path integral formulation through some kind of
Feynman–Kac formula, a concrete implementation of which are the so-called
spin foam models of LQG to be mentioned later, path integrals are even closer
to the covariant canonical approaches, lattice quantum gravity is a discreti-
sation of the path integral formulation and finally both the canonical and the
lattice approach seem to hint at discrete structures on which the non-orthodox
programmes are based.

Finally, every non-perturbative programme better contains a sector which
is well described by perturbation theory and therefore string theory, which
then provides an interface between the two big research streams. A more
immediate connection could be provided through the so-called Pohlmeyer

4 It would take us too far apart to even describe the basics of these rather abstract theories,
however, the references listed provide excellent introductions to the subject.
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string [189–204], which is based on a reduced phase space quantisation of the
algebra of Dirac observables for the string which can be explicitly constructed
in this case.

This ends our survey of the existent quantum gravity programmes.

Motivation for canonical quantum general relativity

In the previous section we have tried to give a very rough overview of the avail-
able approaches to quantum gravity, their main successes and their major unre-
solved problems. We will now motivate our choice to follow the non-perturbative,
canonical approach. Of course, our discussion cannot be entirely objective.

I. Non-perturbative versus perturbative
Our preference for a non-perturbative approach is twofold:

The first reason is certainly a matter of taste, a preference for a certain
methodology. Try to combine the two fundamental principles, General Rela-
tivity and quantum mechanics with no additional structure, explore the log-
ical consequences and push the framework until success or until there is a
contradiction (inconsistency) either within the theory or with the experi-
ment. In the latter case, examine the reason for failure and try to modify
the theory appropriately. The reason for not allowing additional structure
(principle of minimality) is that unless we only use structures which have
been confirmed to be a property of nature, then we are standing in front of
an ocean of possible new theories which a priori could be equally relevant.
In a sense we are saying that if gravity cannot be quantised perturbatively
without extra structures such as necessary in string theory, then one should
try a non-perturbative approach. If that still fails then maybe we find out
why and exactly which extra structures are necessary rather than guessing
them. Such a methodology has proved to be very successful in the history of
science.

The second reason, however, is maybe more serious: it is not at all true
that perturbation theory is always a good approximation in a non-empty neigh-
bourhood of the expansion point. To quote an example from [10], consider the
harmonic oscillator Hamiltonian H = p2 + ω2q2 and let us treat the poten-
tial V = ω2q2 as an interaction Hamiltonian perturbing the free Hamiltonian
H0 = p2 at least for low frequencies ω. The exact spectrum of H is discrete
while that of H0 is continuous. The point is now that one is never going to
see, for any value of the ‘coupling constant’ ω > 0, the discreteness of the
spectrum of the unperturbed Hamiltonian by doing perturbation theory and
thus one completely misses the correct physics!

Finally, borrowing from [15], let us exhibit a calculation which demon-
strates the regularising mechanism of a non-perturbative treatment of gen-
eral gravity taking its very non-linear nature very seriously. Consider the
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self-energy of a homogeneously charged and massive ball of radius r with
bare charge e0 and bare rest mass m0 due to static electromagnetic and
gravitational interaction. From the point of view of Newtonian physics, this
energy is of the form (̄h = c = 1, the bare Newton’s constant is denoted by
G0 and we have absorbed numerical multiples of π into e0,m0)

m(r) = m0 + e2
0/r −G0m

2
0/r

and diverges as r → 0 unless e0,m0, G0 are fine-tuned. However, General
Relativity tells us that all of the mass of the charge, that is rest mass plus
field energy within a shell of radius r couples to the gravitational field, which
is why the above equation should be replaced by

m(r) = m0 + e2
0/r −G0m(r)2/r

which can be solved for

m(r) =
r

2G0

[

−1 +

√

1 +
4G0

r

(
m0 +

e2
0

r

)]

Notice that now the bare mass m(r = 0) = e0/
√
G0 is finite without fine-

tuning. Moreover, the result is non-analytical in Newton’s constant G0 and
is not accessible by perturbation theory, in particular, the bare mass is inde-
pendent of the rest mass! Of course, this calculation should not be taken
too seriously since, for example, no quantum effects have been brought in, it
merely serves to illustrate our point that General Relativity could serve as
a natural regulator of field theory divergences. (However, a proper general
relativistic treatment can be performed, see also [15] for more details.)

These arguments can be summarised by saying that there is a good chance
that perturbative quantum gravity completely misses the point although, of
course, there is no proof!

II. Canonical versus other non-perturbative approaches
Here our motivation is definitely just a matter of taste, that is, we take a

practical viewpoint:
Path integrals have the advantage that they are manifestly four-

dimensionally diffeomorphism-invariant but their huge disadvantage is that
they are hard to compute analytically, even in quantum mechanics. While
numerical methods will certainly enter the canonical approach as well in the
close future, one gets further with analytical methods. However, it should be
stressed that path integrals and canonical methods are very closely related
and usually one can derive one from the other through some kind of Feynman–
Kac formula.

The non-orthodox approaches have the advantage of starting from a
discrete/non-commutative spacetime structure from scratch, while in canon-
ical quantum gravity one begins with a smooth spacetime manifold and
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obtains discrete structures as a derived concept only, which is logically less
clean: the true theory is the quantum theory and if the world is discrete one
should not begin with smooth structures at all. Our viewpoint is here that,
besides the fact that again the canonical approach is more minimalistic, at
some stage in the development of the theory there must be a quantum leap
and in the final reformulation of the theory everything is just combinatorial.
This can actually be done in 2 + 1 gravity, as we will describe later on!

Outline of the book

In this section we briefly describe what is covered in this book. We will drop all
references here, they will be properly supplied as we move on. The road map is
as follows:

(A) Classical formulation
It is mandatory to start with the classical theory. That is, we explain in detail
what exactly is meant by the canonical formulation of General Relativity.
Roughly speaking, we take the Einstein–Hilbert action S for a differentiable
four-manifold M and foliate M into a one-parameter family of hypersurfaces
t �→ Σt which is always possible classically. The Einstein–Hilbert action is
an integral over M of a Lagrangian which involves the metric tensor g and
its first and second derivative. The parameter t is one of the four coordinates
of M and serves to identify the velocities v = ∂q/∂t of the components q

of the metric tensor so that we can perform the Legendre transformation
p = δS/δq̇ from the velocity phase space to the momentum phase space. The
functions q, p then have canonical equal time brackets, that is, if we denote
coordinates on Σt by �x then roughly {q(t, �x), p(t, �x′)} = δ(�x, �x′). The param-
eter t, however, is not to be identified with a distinguished time variable.
Indeed, coordinates have no a priori physical meaning since the action is
invariant under diffeomorphisms, that is, arbitrary smooth bijections of M
so that the inverse is also smooth.

The split of the manifold M into space and time is not unique and in
fact there are as many foliations as there are diffeomorphisms of M . Since
the Einstein–Hilbert action is diffeomorphism-invariant, all the foliations are
physically equivalent. Now for each foliation we can perform the Legendre
transform and obtain a phase space and a Hamiltonian. It turns out that
the phase space M together with its Poisson bracket does not depend on the
choice of the foliation, they are all mutually isomorphic. What does depend
on the choice of the foliation is the form of the Hamiltonian. Since the action
does not depend on the choice of the foliation, the variation of the action
with respect to the foliation must vanish. As a result, one gets an infinite
number of local constraints, one for each point of Σt for all t ∈ R, which
together are equivalent to the condition that the Hamiltonian is constrained
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to vanish for every foliation. The vanishing of the Hamiltonian is in fact a
consequence of the Einstein equations, that is, the Euler–Lagrange equations
derived from the Einstein–Hilbert action.

The vanishing of the Hamiltonian may seem strange at first sight but
is in fact a logical consequence of diffeomorphism invariance. Namely, nor-
mally the Hamiltonian flow of the Hamiltonian generates time translations.
In GR these time translations are diffeomorphisms, that is, gauge trans-
formations and physical observables must not depend on the choice of the
coordinate system. Thus we arrive at the conclusion that physical observ-
ables must have vanishing Poisson brackets with the Hamiltonian. One can
also understand this from the fact that the Hamiltonian and hence its flow
is foliation-dependent, which must not be the case for physical observables.
Moreover, we are only interested in the constraint submanifold of the phase
space where the Hamiltonian vanishes. We see that the physical phase space
is parametrised by those functions on the constraint submanifold which have
vanishing Poisson brackets with all the Hamiltonians.

Naively one expects that the Hamiltonian flow of the Hamiltonians sim-
ply corresponds to diffeomorphisms of M . It turns out that this is indeed
the case, however, only in the solutions to the equations of motion. The
reason for this is that the Hamiltonian is a specific functional of the canon-
ical variables which depends on the action that one started from. There
are an infinite number of algebraically independent action functionals of the
metric tensor field, all of which are diffeomorphism-invariant. Their canon-
ical formulation gives rise to the same phase space (if the number of higher
derivatives is the same). Yet their dynamics, encoded in the Euler–Lagrange
equations, is different. Hence, while the motions are gauge motions in all
cases, they are generated by different functionals and if they are to be inter-
preted as diffeomorphisms then this can hold only on the corresponding
trajectories. We will also give a simple, more technical explanation for this
phenomenon later on. For the same reason, the Poisson algebra of the vari-
ous Hamiltonians for different foliations reduces only on shell to the algebra
of infinitesimal diffeomorphisms of M .

The appearance of an infinite number of Hamiltonian constraints rather
than a single Hamiltonian is a particular feature of diffeomorphism-invariant
field theories and gives rise to much confusion, summarised under the abbre-
viation ‘problem of time’. Namely, since there is no Hamiltonian there is
no physical time, which one would interpret as the parameter that enters
the definition of the Hamiltonian flow of the Hamiltonian. Instead, physi-
cal observables are completely ‘frozen’ because they are supposed to have
trivial flow under all the Hamiltonian constraints. There seems to be no
time notion at all, in sharp contrast to what we observe in everyday life.
The resolution of the puzzle is the relational point of view: consider two
non-observables T,O, sometimes called partial observables, which are not
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invariant under the gauge flow of all the Hamiltonian constraints. Consider
their flow αt(T ) and αt(O) with respect to one of the Hamiltonians. Then
fix some parameter τ and invert, if possible, the condition αt(T ) = τ for t.
Insert the solution tT (τ) into the function t �→ αt(O) and obtain OT (τ). It
is easy to check that OT (τ) is invariant under the flow, αt(OT (τ)) = OT (τ),
and it has a simple interpretation: it is the value of O when T has the
value τ . Thus, although both T,O are not invariant, we can construct a
simple invariant OT (τ) which is frozen but still has a dynamical interpre-
tation. A moment of thought reveals that this is precisely how we perceive
time in physics: time is not itself an object that we can grasp, rather we
observe relative motions such as the distance that one has travelled after
the pointer of a clock has changed by a certain angle. Moreover, one can
show that the evolution with respect to τ has a canonical generator, that is,
a physical Hamiltonian which is completely independent of the Hamiltonian
constraint: it is itself gauge-invariant and does not need to vanish on the
constraint surface.

This is a beautiful idea and yet there is a flaw in this argument: we have
an infinite number of Hamiltonian constraints rather than a single one. Thus
we must consider the flow of all of them and we seem to obtain an infinite
number of times and physical Hamiltonians. Moreover, the different flows
do not commute and hence the above idea to construct an observable does
not work. We will show how to overcome this problem, for instance, by
combining all the constraints into a single one which is called the Master
Constraint. Also other conceptual problems which are particular to quan-
tum gravity, such as how to interpret quantum mechanics in cosmological
circumstances when the observer is part of the system, will be addressed
and a consistent picture will be proposed.

(B) Connection formulation
Classical GR is a dynamical theory of metrics on a differential manifold M .
However, it has been known for a long time that one can recast the Einstein–
Hilbert action, which involves the metric and its first and second derivative,
into the Palatini action, which involves a connection for an SO(1, 3) gauge
theory and its first derivative as well as a Vierbein field. The two actions
are equivalent when the spacetime is orientable and this is precisely the case
when one can consistently couple spinor fields, which is necessary anyway.
What was not known is that one can choose the connection and the Vier-
bein field (or rather their pull-backs to the three-dimensional leaves of the
foliation) as configuration and momentum variable of a canonical pair with
canonical Poisson brackets, just like in Yang–Mills theory. This key observa-
tion really enabled the huge amount of progress that occurred over the past
almost 20 years in LQG. Hence we will derive in detail how the traditional
Hamiltonian formulation in terms of metrics is related to the connection
formulation.
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(C) General canonical quantisation
Having cast GR into canonical form as a dynamical system with constraints
we will explain how to quantise such a system. Roughly speaking, one selects
a ∗-Poisson subalgebra of the Poisson algebra on the unconstrained phase
space M which separates the points of M and which is closed under complex
conjugation. Every function on the phase space can then be expressed in
terms of (limits of) elements of this algebra.

One then defines an abstract ∗-algebra A by promoting bounded functions
of the generators of the ∗-subalgebra formally to abstract operators which
satisfy the canonical commutation relations and the adjointness relations.
That is, commutators are given by the Poisson bracket of the corresponding
functions times īh and adjoint algebra elements are given by the algebra
elements corresponding to the complex conjugate functions. Notice that at
this point these operators have not been implemented on any particular
Hilbert space, we have just defined an abstract algebra from the Poisson
bracket and the complex conjugation on the phase space.

In the next step one must study the representation theory of A. That is,
one looks for all irreducible representations of A as bounded operators on
some Hilbert space. The additional requirement is that this Hilbert space
also allows us to represent the constraints as operators and that their algebra
is not anomalous. By this we mean the following: classically the constraints
form a first-class system, that is, the Poisson bracket of the constraints
among themselves is a linear combination of constraints. Since the con-
straints simultaneously define the constraint surface in the phase space and
the gauge motions, geometrically this means that the constraint surface is
gauge-invariant. This is important as otherwise it would be inconsistent to
impose the constraints, physical quantities must be gauge-invariant. Now
in quantum theory we must have a similar consistency condition: the com-
mutator of two constraint operators must be again a linear combination
of constraint operators. If that were not the case then the following would
happen: suppose that {C1, C2} = C3 but that [Ĉ1, Ĉ2] = īhĈ3 + h̄2Â. Here
Cj are some first-class constraint functions and the term proportional to
Â is a quantum correction. It is a quantum correction because the classi-
cal limit h̄ → 0 of the commutator divided by īh gives the correct classical
result. Now suppose that we have found a simultaneous solution ψ to all con-
straints Ĉjψ = 0, j = 1, 2, 3. Then it is easy to see that also Âψ = 0. Now
unless Â is a linear combination of constraint operators, this is an extra
condition on ψ which has no classical counterpart. It follows that the quan-
tum theory has less physical states than the classical theory has observables,
whence the quantum theory does not have the correct limit. The operator
Â is then called an anomaly, and such anomalies must be avoided by all
means.
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The origin of such anomalies are ordering and regularisation ambigui-
ties in the definition of the operators Ĉj . Namely, unless the Cj are lin-
ear in q, p there is an issue with the ordering of products such as qp.
If one wants to have a symmetric operator one will choose a symmet-
ric ordering (q̂p̂ + p̂q̂)/2. Next, in field theories q, p are functions of t, �x

and in quantum theory become operator-valued distributions rather than
operators. Since the product of distributions is generically singular, one
must regularise products such as (q · p)(t, �x), for instance by point splitting
(q̂ · p̂)(t, �x) = lim�ε→0(q̂(t, �x) · p̂)(t, �x + �ε). Then one writes this in the form∑

I cI(�x, �x + �ε)ÔI(t, �x) called an operator product expansion (OPE) where
the operators ÔI are well-defined and the coefficients cI are singular. Finally
one applies some procedure, called renormalisation, to remove the singular
terms (in �ε) as we remove the UV regulator. This usually cannot be done in
a unique fashion. The most familiar OPEs are normal orderings of products
of normal-ordered operators on Fock space. It is clear that ordering prescrip-
tions and regularisation ambiguities strongly affect the issue of anomalies.

Next one must solve the quantum constraints by asking that physical
states be annihilated by them. One can show that this amounts to selecting
gauge-invariant states. If zero lies in the continuous part of the spectrum
of the constraint operators then the solutions to the constraints do not lie
in the Hilbert space that one started with. In this case one must construct
a new Hilbert space with a new scalar product with respect to which the
physical states are normalisable. There are several constructive procedures
available to do this, which we will discuss and apply in great detail.

Finally, one must represent the gauge-invariant observables as self-adjoint
operators on this physical Hilbert space. As mentioned, in field theories
all of these steps are to be supplemented by sophisticated regularisation
procedures and it is therefore a non-trivial question whether the theory that
one ends up with does in fact have the original classical theory as its classical
limit. Hence one must prove that there exist semiclassical physical states
with respect to which gauge-invariant operators have the correct expectation
values.

(D) Application to General Relativity
We then apply this quantisation programme to General Relativity. As we
indicated above, it turns out to be important to reformulate the theory in
terms of connections and frame fields. This can be achieved, for instance,
starting from Palatini’s reformulation of classical GR. The canonical formu-
lation of this theory is based on electric and magnetic fluxes familiar from an
SU(2) Yang–Mills theory with the crucial difference that there is no Hamil-
tonian but instead four Hamiltonian constraints per spacetime point. The
canonical flow of three of them generates diffeomorphisms of the spatial
hypersurfaces while the fourth one generates time reparametrisations (on
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shell, i.e., when the equations of motion hold). We will refer to them as the
spatial diffeomorphism and Hamiltonian constraint respectively.

As the algebra A we choose exponentials of the electric and magnetic
fluxes times the imaginary unit with canonical commutation relations and
adjointness relations imposed. We then study the representation theory of
this algebra. Since we want to solve in particular the spatial diffeomorphism
constraint, we impose as a restriction on the class of representations to be
considered that the corresponding ‘ground state’ can be chosen spatially
diffeomorphism-invariant. Under some mild technical assumptions one can
show that there is a unique representation of A. In this representation, states
are labelled by loops, or more generally by graphs. These arise from the
holonomy (path-ordered exponential) of the connection along paths which
is related to the magnetic flux via (the non-Abelian version of the) Stokes’
theorem and which become operators on the Hilbert space. They generate
a dense subset of the Hilbert space by acting on the ‘vacuum’ just like the
usual creation operators on Fock space generate a dense set of states by
acting on the vacuum.

One can then explicitly solve the spatial diffeomorphism constraint and
construct the Hilbert space of spatially diffeomorphism-invariant states.
These turn out to be labelled by knot classes. This is not surprising
because a knot class is the spatial diffeomorphism equivalence class of a
loop.

Next one implements the Hamiltonian constraint on the Hilbert space
of spatially diffeomorphism-invariant states. It turns out that this is not
directly possible when one works with the infinite number of constraints.
However, one can use the above-mentioned reformulation in terms of a sin-
gle constraint in order to achieve this. Surprisingly one does not encounter
UV divergences. One can trace this back to background independence: UV
divergences are a short distance phenomenon of background-dependent the-
ories, where ‘short’ is meant as a qualifier with respect to the background
metric in question. In background-independent theories ‘short’ has no mean-
ing, hence the theory protects itself against UV divergences. One can then
show that the total physical Hilbert space exists and is non-trivial.

What is still missing is a representation of the gauge-invariant observables
on the physical Hilbert space and the demonstration that the theory has
classical GR as one of its semiclassical sectors. This brings us to the frontiers
of current research.

(E) Applications
Before one has analysed the physical Hilbert space in sufficient detail so that
one can tell whether LQG has classical GR as its classical limit, it is not
possible to make reliable physical predictions for physics beyond the stan-
dard model. A lot of effort within LQG is currently devoted to completing
this final missing step. Nevertheless, one can probe the theory in various
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aspects before one solves it completely. These provide either consistency
checks or development of tools for later use. In what follows we list the most
important of these applications.
1. Kinematical geometrical operators

It turns out that operators corresponding to length, area and volume
of curves, surfaces and regions in the spatial hypersurfaces can be con-
structed on the unconstrained Hilbert space. This is very surprising
because none of them exists on the usual background-dependent Fock
spaces. Even more beautifully, their spectra are entirely discrete, given
as multipla of Planck length, area and volume respectively. This provides
a first concrete hint that the theory is fundamentally discrete or combi-
natorial. It means that in order to build the area of a piece of A4 paper
we must use a state which is a complicated weave of at most 1068 loops.
This number is huge but finite. Moreover, the area eigenvalue jumps by
a discrete amount of the order of 	2P if we add or remove a loop from the
state, just like the energy eigenvalues of the hydrogen atom do.

It would be wrong to say that this proves that the physical area of a
surface has discrete spectrum because the area operator constructed does
not commute with the constraints. However, it is conceivable that the
Dirac observable constructed from it as a partial observable does.

2. Coupling to matter
It turns out that what we have said above in item D can also be applied
to the matter of the standard model (including possible supersymmetric
extensions). One gets as far with the quantisation programme as without
matter and there are no UV singularities. Up to this point there is no hint
that there is any restriction on the possible matter couplings. However,
these could still show up in the final step of the programme because
switching on and off matter degrees of freedom affects the spectrum of
the single Master Constraint, which is always a subset of the non-negative
real numbers but does not automatically contain zero.

3. Quantum black hole physics
If one arranges that the manifold M has an inner boundary and that the
classical phase space is supplemented with boundary conditions there that
are suitable for black hole formation then one can treat quantum black
holes within LQG. Doing this it was possible to isolate and count the
microcosmic states that account for the celebrated Bekenstein-Hawking
entropy S = A/(4	2P ) where A is the area of the corresponding black
hole. Due to the boundary conditions the area of the black hole is a truly
gauge-invariant observable. It turns out that the entropy is due to loops
which intersect the horizon. It is lack of knowledge of all possible ways to
intersect the horizon while producing a given area that accounts for the
entropy. This works in particular for all astrophysically relevant rotating,
charged, dilatonic black holes and those with Yang–Mills hair.
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4. Spin foam models
For systems with a Hamiltonian one can construct a corresponding path
integral which has the physical meaning of a transition amplitude between
initial and final states. For systems without a Hamiltonian but a sin-
gle Hamiltonian constraint the corresponding quantity is a (generalised)
projector on physical states which solve the constraints. The two objects
are related by an integral over the unphysical time t mentioned above
that produces from the time evolution operator exp(itH) the generalised
projector δ(H), which can be given rigorous meaning by the spectral
theorem. For GR the Hamiltonian constraint acts by creating and anni-
hilating loops to or from a given graph. The time evolution of a loop
is a surface and hence the dynamics looks like that of a foam where
surfaces are created and annihilated all the time. This is how one intu-
itively expects to derive a covariant path integral over spacetime fields
from the canonical formulation of fields at a given time. To date this
connection is not very well understood, mainly because so far spin foam
models have not really been derived from the Hamiltonian formulation
but rather start with the postulate that the final path integral should be
exp(iS) times some measure on the space of spacetime fields (a space-
time connection and a Vierbein in Palatini’s first-order formulation)
where S is the Palatini action for M ∼= [0, t] × σ and σ is any three-
manifold. A lot of activity in LQG is currently devoted towards mak-
ing this connection more concrete, one possibility given by the Master
Constraint.

5. Semiclassical analysis
It turns out that it is possible to find a precise, background-independent
analogue of the usual coherent states for free quantum field theories on
Minkowski spacetime for non-Abelian gauge theories. These can then be
applied, in particular, to GR as far as the kinematical, that is, uncon-
strained Hilbert space is concerned. For linearised gravity, which is a
free field theory of gravitons on Minkowski space, one can even do this,
using the Minkowski background, at the level of the physical Hilbert space
which is not a Fock space but rather LQG inspired. What we need for the
full theory are coherent states on the spatially diffeomorphism-invariant
Hilbert space and on the physical Hilbert space. The former are needed
in order to test whether the Hamiltonian constraint, which generates the
physical Hilbert space from the spatially diffeomorphism-invariant one,
has the correct classical limit (there is no way to test the Hamiltonian
constraint on the physical Hilbert space where it is the zero operator by
definition). The physical coherent states are needed in order to test the
classical limit of gauge-invariant observables. Work is in progress at both
fronts.
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These are technically hard problems and it is worthwhile to think about
approximation schemes which are technically simpler. One such scheme
consists of quantum gauge fixing: kinematical coherent states are labelled
by a point on the constraint surface of the phase space and that point
will lie on some gauge orbit. Doing this for all gauge orbits is equiv-
alent to saying that kinematical coherent states are labelled by points
on the constraint surface on a gauge cut of the orbit space. We call this
quantum gauge fixing because all the degrees of freedom, also the unphys-
ical ones, are fluctuating, however, their fluctuations are suppressed by
the semiclassical state. It turns out that one can define an alternative
Master Constraint on the kinematical Hilbert space and its expectation
value with respect to those states, as well as its fluctuation, is close to
zero.

6. Tests in model systems
LQG is a background-independent, non-perturbative QFT of GR and
due to the non-linearities of GR it is the most complicated, most non-
linearly interacting QFT that was ever studied. It is therefore, in the
absence of a perturbative scheme like the quantum gauge fixing just men-
tioned, very hard to do any practical computations. A huge simplifica-
tion occurs if we artificially reduce the number of degrees of freedom. In
classical GR this is done either by dimensional reduction or by Killing
symmetry reduction. In both cases one imposes a symmetry on the met-
ric tensor and thus reduces the number of degrees of freedom. The most
extensively studied symmetry reduction is 2 + 1 gravity, which is a topo-
logical field theory (a background-independent theory with only a finite
number of physical degrees of freedom; 1 + 1 gravity is trivial since the
Einstein–Hilbert action is a topological invariant in this case). The most
familiar forms of Killing reduction are (a) spherical symmetry leading to
Schwarzschild spacetimes, (b) homogeneity leading to Bianchi cosmolo-
gies, (c) additional isotropy leading to Friedman–Robertson–Walker uni-
verses, (d) cylindrical symmetry leading to Gowdy universes (two modes)
or cylindrically symmetric waves (one mode). All these models, with a
few exceptions among the Bianchi-type models and the two-mode Gowdy
model, are classically completely integrable and hence quantisation is
straightforward.

These models thus provide an ideal testing ground for LQG. Of course,
a model never has all aspects in common with the real theory and, in par-
ticular, switching off modes, which is no problem in the classical theory,
is not necessarily quantum mechanically stable due to quantum fluctu-
ations so that a model can never prove or predict anything about the
full theory. In other words, the quantum model is not embedded in the
full quantum theory. However, a model can probe technical methods and
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conceptual ideas used in the full theory in a much simpler context, which
provides important insights and intuition for the full theory.

We will show that one can successfully quantise homogeneous models
by LQG methods, which leads to a spectacular new picture of the early
universe if confirmed by later calculations in full LQG, some of which
have already started.

7. Quantum gravity phenomenology
Due to the weakness of the gravitational interaction it is widely believed
that we cannot see any quantum gravity effects in the close future. Even
if there was an effect linear in E/Ep where E is the energy of a probe and
EP is the Planck energy, today we are at least 15 orders of magnitude
away with collider energies. However, recently physicists have started to
speculate how to get around this problem. The idea is quite similar to the
one that was used to probe the lifetime of the proton: a proton is expected
to decay after some 1030 years. Nobody can wait that long to see whether
a given proton decays. But we can observe 1030 protons over a year to
see whether there is at least one decay. Similarly, for quantum gravity
effects the general idea is to use the accumulation of a large number of
tiny effects to something that lies within reach of present-day detector
sensitivity. More specifically, these Gedankenexperimente start from the
general idea of a discrete structure at Planck scale which should have
some effect on matter propagation, just like a crystal does compared
with a vacuum. We will report on some of these ideas, all of which point
to an effective modification of the Poincaré group at high energies when
the gravitational state is concentrated around Minkowski space. More
generally, in this branch of the theory one should make contact with the
physics of the standard model and beyond.

(F) Mathematical tools
In an effort to make the book self-contained we have supplied a large amount
of mathematical background material. The experience from teaching the
subject to (under)graduate students is that this material is most welcome.
This material is not specific to our LQG applications but rather is helpful
for any (quantum) field theory. Also physical applications of this mathemat-
ical theory, relevant to the main topics of this book, are contained in this
last part. For instance, geometric quantisation, which is needed for black
hole physics, uses in an important way differential, Riemannian, symplec-
tic and complex geometry as well as fibre bundle theory. Another example
is the Bohr compactification of the real line, which is a baby version of
the distributional space of connections that underlies LQG and illustrates
Gel’fand’s abstract theory of Abelian C∗-algebras, another application of
which is an elegant proof of the spectral theorem. Operator algebraic tech-
niques, especially the GNS construction, are reviewed and used heavily in
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the representation theoretic part of the book. The direct integral decompo-
sition of a Hilbert space adapted to a given self-adjoint operator is explicitly
derived as it is needed for the construction of the physical Hilbert space of
LQG (Master Constraint Programme). Finally, harmonic analysis on com-
pact Lie groups is developed and in particular the Peter and Weyl theorem
is proved and then applied to the explicit construction of spin-network func-
tions for SU(2).





I

Classical foundations, interpretation and the

canonical quantisation programme





1

Classical Hamiltonian formulation
of General Relativity

In this chapter we provide a self-contained exposition of the classical Hamiltonian
formulation of General Relativity. It is mandatory to know all the details of
this classical work as it lays the ground for the interpretation of the theory, the
understanding of the problem of time and its implication for the interpretation of
quantum mechanics, the meaning of observables, the relation between spacetime
diffeomorphisms and gauge transformations and finally (Poincaré) symmetries
versus gauge transformations. It also defines the platform on which the quantum
theory is based. Only a solid knowledge of topology and differential geometry is
necessary for this chapter, of which we give an account in Chapters 18 and 19.

1.1 The ADM action

The contents of this section were developed by Arnowitt et al. [206]. Modern
treatments can be found in the beautiful textbooks by Wald [207] (especially
appendix E and chapter 10) and by Hawking and Ellis [208]. We will treat only
the vacuum case. Matter and cosmological terms can be treated the same way.

What we are going to do in what follows seems to be a dangerous enter-
prise in a generally covariant theory: we will split the spacetime manifold into
space and time. While this is necessary in a canonical approach, as otherwise
we cannot define velocities and hence momenta conjugate to the configuration
variables, this seems to break diffeomorphism invariance. However, this is not
the case because we do not fix the split into space and time, rather we keep it
arbitrary, we do not fix a coordinate system. The arbitrariness in fact exhausts
the full diffeomorphism group. Since the action is diffeomorphism-invariant it
does not depend on this auxiliary split and varying with respect to it leads, not
surprisingly, to the generators of this invariance group subject to an important
reservation which we will derive.

The object of interest is the Einstein–Hilbert action for metric tensor fields
gμν of Lorentzian (s = −1) or Euclidean (s = +1) signature which propagate on
a (D + 1)-dimensional manifold M

S =
1
κ

∫

M

dD+1X
√
|det(g)|R(D+1) (1.1.1)

In this book we will mostly be concerned with s = −1, D = 3 but since the subse-
quent derivations can be done without extra effort we will be more general here.
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Our signature convention is ‘mostly plus’, that is, (−,+, . . . ,+) or (+,+, . . . ,+)
in the Lorentzian or Euclidean case respectively so that timelike vectors have
negative norm in the Lorentzian case. Here μ, ν, ρ, . . . = 0, 1, . . . , D are indices
for the components of spacetime tensors and Xμ are the coordinates of M in local
trivialisations. R(D+1) is the curvature scalar associated with gμν and κ = 16πG
where G is Newton’s constant (in units where c = 1). The definition of the
Riemann curvature tensor is in terms of one-forms given by

[∇μ,∇ν ]uρ =(D+1) Rμνρ
σ uσ (1.1.2)

where ∇ denotes the unique, torsion-free, metric-compatible, covariant differen-
tial associated with gμν . To make the action principle corresponding to (1.1.1)
well-defined one has, in general, to add boundary terms (unless one assumes that
M is spatially compact without boundary) which we will explicitly derive below.

In order to cast (1.1.1) into canonical form one makes the assumption that
M has the special topology M ∼= R × σ where σ is a fixed three-dimensional
manifold of arbitrary topology. By a theorem due to Geroch [209], if the space-
time is globally hyperbolic (existence of Cauchy surfaces1 in M ; loosely speaking,
everywhere spacelike surfaces which are connected to any point in M by a causal
curve – in accordance with the determinism of classical physics) then it is nec-
essarily of this kind of topology. Therefore, for classical physics our assumptions
about the topology of M seem to be no restriction at all, at least in the Lorentzian
signature case. In quantum gravity, however, different kinds of topologies and,
in particular, topology changes are conceivable. Our philosophy will be first to
construct the quantum theory of the gravitational field based on the classical
assumption that M ∼= R × σ and then to lift this restriction in the quantum
theory. It will turn out that in LQG topology change is all over the place in
the sense that typical states, but not semiclassical states, correspond to a com-
pletely degenerate spatial geometry. For more information on topology change
in quantum gravity see, for example, [210–215] and references therein.

Having made this assumption, one knows that M foliates into hypersur-
faces Σt := Xt(σ), that is, for each fixed t ∈ R we have an embedding (a
globally injective immersion) Xt : σ → M defined by Xt(x) := X(t, x) where
xa, a, b, c, . . . = 1, 2, . . . , D are local coordinates of σ. Likewise we have a dif-
feomorphism X : R × σ �→ M ; (t, x) �→ X(t, x) := Xt(x). Any diffeomorphism
ϕ ∈ Diff(M) of M is of the form ϕ = X ′ ◦X−1 where X,X ′ are two different foli-
ations and any two foliations are related by a diffeomorphism via X ′ = ϕ ◦X.
It follows that up to this point the freedom in the choice of the foliation is
equivalent to Diff(M). In fact, since the action (1.1.1) is invariant under all dif-
feomorphisms of M the foliations X are not specified by it and we must allow
them to be completely arbitrary.

1 Any inextendible causal (= nowhere spacelike) curve intersects the Cauchy surface in
precisely one point.
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Figure 1.1 Foliation of spacetime into spacelike hypersurfaces and the meaning
of lapse and shift.

We now use these foliations in order to give a D + 1 (space and time)
decomposition of the action (1.1.1). A useful parametrisation of the embedding
and its arbitrariness can be given through its deformation vector field

Tμ(X) :=
(
∂Xμ(t, x)

∂t

)

|X=X(x,t)

=: N(X)nμ(X) + Nμ(X) (1.1.3)

Here nμ is a unit normal vector to Σt, that is, gμνnμnν = s and Nμ is tangential,
gμνn

μXν
,a = 0. Clearly, the vector field nμ is completely determined as a function

of g,X by these two requirements. The coefficients of proportionality N and
Nμ respectively are called lapse function and shift vector field respectively.
See Figure 1.1 for an illustration of the geometrical situation. Notice that
implicitly information about the metric gμν has been invoked into (1.1.3),
namely we are only dealing with spacelike embeddings and metrics of the
above-specified signature. Hence the foliation T is required to be timelike
everywhere, which leads to the constraint −N2 + gμνN

μNν < 0 and in par-
ticular implies that the lapse is nowhere vanishing. Moreover, we take N to
be positive everywhere as we want a future directed foliation (negative sign
would give a past directed one and mixed sign would not give a foliation at
all since then necessarily the leaves of the foliation would intersect). Hence
at this point we are dealing with a proper subset of all embeddings and this
subset is dynamically constrained as it depends on the metric tensor gμν . This
will have important consequences for what follows. A more precise character-
isation of these ‘dynamical foliations’ as compared to Diff(M) can be found
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in [216,217]. We need one more property of n : by the inverse function theorem,
the surface Σt can be defined by an equation of the form f(X) = t = const.
Thus, 0 = limε→0[f(Xt(x + εb)) − f(Xt(x))]/ε = baXμ

,a(f,μ)X=Xt(x) for any
tangential vector b of σ in x. It follows that up to normalisation the normal
vector is proportional to an exact one-form, nμ = Ff,μ or, in the language of
forms, n = nμdX

μ = Fdf . Actually, this fact is an easy corollary from Frobe-
nius’ theorem (the surfaces Σt are the integral manifolds of the distribution
v : M → T (M); X �→ VX(n) = {v ∈ TX(M); iv(n) = 0} ⊂ TX(M)).

Let us forget about the foliation for a moment and just suppose that we are
given a hypersurface σ embedded into M via the embedding X. Let n be its
unit normal vector field and Σ = X(σ) its image. We now have the choice to
work either on σ or on Σ when developing the tensor calculus of so-called spatial
tensor fields. To work on Σ has the advantage that we can compare spatial tensor
fields with arbitrary tensor fields restricted to Σ because they are both tensor
fields on a subset of M . Moreover, once we have developed tensor calculus on Σ
we immediately have the one on σ by just pulling back (covariant) tensor fields
on Σ to σ via the embedding, see below.

Consider then the following tensor fields, called the first and second funda-
mental form of Σ

qμν := gμν − snμnν and Kμν := qρμq
σ
ν∇ρnσ (1.1.4)

where all indices are moved with respect to gμν . Notice that both tensors in
(1.1.4) are ‘spatial’, that is, they vanish when either of their indices is con-
tracted with nμ. A crucial property of Kμν is its symmetry: we have K[μν] =
qρμq

σ
ν ((∇[ρ ln(F ))nσ] + F∇[ρ∇σ]f) = 0 since ∇ is torsion free. The square brack-

ets denote antisymmetrisation defined as an idempotent operation. From this
fact one derives another useful differential geometric identity by employing the
relation between the covariant differential and the Lie derivative:

2Kμν = qρμq
σ
ν

(
2∇(ρnσ)

)

= qρμq
σ
ν (Lng)ρσ = qρμq

σ
ν (Lnq + sLnn⊗ n)ρσ

= qρμq
σ
ν (Lnq)ρσ = (Lnq)μν (1.1.5)

since nμLnqμν = −qμν [n, n]μ = 0. Using nμ = (Tμ −Nμ)/N we can write (1.1.5)
in the form

2Kμν =
1
N

(LT−Nq)μν − 2nρqρ(μ ln(N),ν) =
1
N

(LT−Nq)μν (1.1.6)

Next we would like to construct a covariant differential associated with the
metric qμν . We would like to stress that this metric is non-degenerate as a bijec-
tion between spatial tensors only and not as a metric between arbitrary tensors
defined on Σ. Recall that, by definition, a differential ∇ is said to be covari-
ant with respect to a metric g (of any signature) on a manifold M if it is (1)
metric compatible, ∇g = 0 and (2) torsion free, [∇μ,∇ν ]f = 0 ∀ f ∈ C∞(M).
According to a classical theorem reviewed in Section 19.2, these two
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conditions fix ∇ uniquely in terms of the Christoffel symbols (which defines
the so-called Levi–Civita connection), which in turn are defined by the action of
∇ on one-forms through ∇μuν := ∂μuν − Γρ

μνuρ. Since the tensor q is a metric
of Euclidean signature on Σ we can thus apply these two conditions to q and we
are looking for a covariant differential D on spatial tensors only such that (1)
Dμqνρ = 0 and (2) D[μDν]f = 0 for scalars f . Of course, the operator D should
preserve the set of spatial tensor fields. It is easy to verify that Dμf := qνμ∇ν f̃

and Dμuν := qρμq
σ
ν∇ρũσ, for uμn

μ = 0 and extended to arbitrary tensors by lin-
earity and Leibniz’ rule, does the job and thus, by the above-mentioned theorem,
is the unique choice. Here, f̃ and ũ denote arbitrary smooth extensions of f and
u respectively into a neighbourhood of Σ in M , necessary in order to perform
the ∇ operation. The covariant differential is independent of that extension as
derivatives not tangential to Σ are projected out by the q tensor (go into a local,
adapted system of coordinates to see this) and we will drop the tilde again. One
can convince oneself that the action of D on arbitrary spatial tensors is then
given by acting with ∇ in the usual way followed by spatial projection of all
appearing indices including the one with respect to which the derivative was
taken.

We now ask what the Riemann curvature R
(D)σ
μνρ of D is in terms of that of

∇. To answer this question we need the second covariant differential of a spatial
co-vector uρ which, when carefully using the definition of D, is given by

DμDνuρ = qμ
′

μ qν
′

ν qρ
′

ρ ∇μ′Dν′uρ′

= qμ
′

μ qν
′

ν qρ
′

ρ ∇μ′qν
′′

ν′ q
ρ′′

ρ′ ∇ν′′uρ′′ (1.1.7)

The outer derivative hits either a q tensor or ∇u, the latter of which will give
rise to a curvature term. Consider then the ∇q terms.

Since ∇ is g compatible we have ∇q = s∇n⊗ n = s[(∇n) ⊗ n + n⊗ (∇n)].
Since all of these terms are contracted with q tensors and q annihilates n, the
only terms that survive are proportional to terms either of the form

(∇μ′nν′)(nρ′′
(∇ν′′uρ′′)) = −(∇μ′nν′)(∇ν′′nρ′′

)uρ′′

where nμuμ = 0 ⇒ ∇ν(nμuμ) = 0 was exploited, or of the form (∇μ′nν′)(∇nuρ′).
Concluding, the only terms that survive from ∇q terms can be transformed
into terms proportional to ∇n⊗∇n or ∇n⊗∇nu where the ∇n factors, since
contracted with q tensors, can be traded for extrinsic curvature terms (use uμ =
qνμuν to do that).

It turns out that the terms proportional to ∇nu cancel each other when com-
puting the antisymmetrised second D derivative of u due to the symmetry of K,
and we are thus left with the famous Gauß equation

R(D)σ
μνρ uσ := 2D[μDν]uρ

=
[
2sKρ[μK

σ
ν] + qμ

′

μ qν
′

ν qρ
′

ρ qσσ′R
(D+1)
μ′ν′ρ′

σ′]
uσ

R(D)
μνρσ = 2sKρ[μKν]σ + qμ

′

μ qν
′

ν qρ
′

ρ qσ
′

σ R
(D+1)
μ′ν′ρ′σ′ (1.1.8)
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Using this general formula we can specialize to the Riemann curvature scalar
which is our ultimate concern in view of the Einstein–Hilbert action. Employing
the standard abbreviations K := Kμνq

μν and Kμν = qμρqνσKνσ (notice that
indices for spatial tensors can be moved either with q or with g) we obtain

R(D) = R(D)
μνρσq

μρqνσ

= s[K2 −KμνK
μν ] + qμρqνσR(D+1)

μνρσ (1.1.9)

Equation (1.1.9) is not yet quite what we want since it is not yet purely expressed
in terms of R(D+1) alone. However, we can eliminate the second term in (1.1.9)
by using g = q + sn⊗ n and the definition of curvature R

(D+1)
μνρσ nσ = 2∇[μ∇ν]nρ

as follows:

R(D+1) = R(D+1)
μνρσ gμρgνσ

= qμρqνσR(D+1)
μνρσ + 2sqρμnν [∇μ,∇ν ]nρ

= qμρqνσR(D+1)
μνρσ + 2snν [∇μ,∇ν ]nν (1.1.10)

where in the first step we used the antisymmetry of the Riemann tensor to
eliminate the term quartic in n and in the second step we used again q = g −
sn⊗ n and the antisymmetry in the μν indices. Now

nν([∇μ,∇ν ]nμ) = −(∇μn
ν)(∇νn

μ) + (∇μn
μ)(∇νn

ν) + ∇μ(nν∇νn
μ − nμ∇νn

ν)

and using ∇μs = 2nν∇μnν = 0 we have

∇μn
μ = gμν∇νnμ = qμν∇νn

μ = K

(∇μn
ν)(∇νn

μ) = gνσgρμ(∇μnσ)(∇νnρ) = qνσqρμ(∇μnσ)(∇νnρ) = KμνK
μν

(1.1.11)

Combining (1.1.9), (1.1.10) and (1.1.11) we obtain the Codacci equation

R(D+1) = R(D) − s[KμνK
μν −K2] + 2s∇μ(nν∇νn

μ − nμ∇νn
ν) (1.1.12)

Inserting this differential geometric identity back into the action, the third term
in (1.1.12) is a total differential which we drop for the time being as one can
retrieve it later on when making the variational principle well-defined.

At this point it is useful to pull back various quantities to σ. Consider the D

spatial vector fields on Σt defined by

Xμ
a (X) := Xμ

,a(x, t)|X(x,t)=X (1.1.13)

Then we have due to nμX
μ
a = 0 that

qab(t, x) :=
(
Xμ

,aX
ν
,bqμν

)
(X(x, t)) = gμν(X(t, x))Xμ

,a(t, x)Xν
,b(t, x) (1.1.14)

and

Kab(t, x) :=
(
Xμ

,aX
ν
,bKμν

)
(X(x, t)) =

(
Xμ

,aX
ν
,b∇μnν

)
(t, x) (1.1.15)
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Using qab and its inverse qab = εaa1...aD−1εbb1...bD−1qa1b1 . . . qaD−1bD−1/[det((qcd))
(D − 1)!] we can express qμν , q

μν , qνμ as

qμν(X) =
[
qab(x, t)Xμ

,aX
ν
,b

]
(x, t)|X(x,t)=X

qνμ(X) = gμρ(X)qρν(X)

qμν(X) = gνρ(X)qρμ(X) (1.1.16)

To verify that this coincides with our previous definition q = g − sn⊗ n it is suf-
ficient to check the matrix elements in the basis given by the vector fields n,Xa.
Since for both definitions n is annihilated we just need to verify that (1.1.16)
when contracted with Xa ⊗Xb reproduces (1.1.14), which is indeed the case.

Next we define N(x, t) := N(X(x, t)), 
Na(x, t) := qab(x, t)(Xμ
b gμνN

ν)
(X(x, t)). Then it is easy to verify that

Kab(x, t) =
1

2N
(q̇ab − (L �Nq)ab)(x, t) (1.1.17)

We can now pull back the expressions quadratic in Kμν that appear in (1.1.12)
using (1.1.16) and find

K(x, t) = (qμνKμν)(X(x, t)) = (qabKab)(x, t)

(KμνK
μν)(x, t) = (KμνKρσq

μρqνσ)(X(x, t)) = (KabKcdq
acqbd)(x, t) (1.1.18)

Likewise we can pull back the curvature scalar R(D). We have

R(D)(x, t) =
(
R(D)

μνρσq
μρqνσ

)
(X(x, t))

=
(
R(D)

μνρσX
μ
aX

ν
b X

ρ
cX

σ
d

)
(X(x, t))qac(x, t)qbd(x, t) (1.1.19)

We would like to show that this expression equals the curvature scalar R as
defined in terms of the Christoffel symbols for qab. To see this it is sufficient
to compute (Xμ

aDμf)(X(x, t)) = ∂af(X(x, t)) =: (Daf)(x, t) with f(x, t) :=
F (X(x, t)) and with ua(x, t) := (Xμ

a uμ)(X(x, t)), ua(x, t) = qab(x, t)ub(x, t)

(Daub)(x, t) :=
(
Xμ

aX
ν
b Dμuν

)
(X(x, t))

= Xμ
,a(x, t)X

ν
,b(x, t)(∇μuν)(X(x, t))

= (∂aub)(x, t) −Xμ
,abuμ(X(x, t))

−uc(x, t)Γ(D+1)
ρμν (X(x, t))Xρ

,c(x, t)X
μ
,a(x, t)X

ν
,b(x, t)

= (∂aub)(x, t) − Γ(D)
cab (x, t)uc(x, t) (1.1.20)

where in the last step we have used the explicit expressions of the Christof-
fel symbols Γ(D+1) and Γ(D) in terms of gμν and qab respectively. Now since
every tensor field W is a linear combination of tensor products of one-forms and
since Dμ satisfies the Leibniz rule we easily find (Xμ

aX
ν
b . . . DμWν...)(X(x, t)) =:

(DaWb...)(x, t) where now Da denotes the unique torsion-free covariant differ-
ential associated with qab and Wa... is the pull-back of Wμ.... In particular, we
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have Xμ
aX

ν
b X

ρ
cDμDνuρ = DaX

μ
b X

ν
c Dμuρ = DaDbuc, from which our assertion

follows since
(
Rabcdu

d
)
(x, t) := ([Da, Db]uc)(x, t) =

(
Xμ

aX
ν
b X

ρ
c [Dμ, Dν ]uρ

)
(X(x, t))

=
(
Xμ

aX
ν
b X

ρ
cX

σ
dR

(D)
μνρσ

)
(X(x, t))ud(x, t) (1.1.21)

From now on we will move indices with the metric qab only.
One now expresses the line element in the new system of coordinates x, t

using the quantities qab, N,Na (we refrain from displaying the arguments of the
components of the metric)

ds2 = gμνdX
μ ⊗ dXν

= gμν(X(t, x))
[
Xμ

,tdt + Xμ
,adx

a
]
⊗

[
Xν

,tdt + Xν
,bdx

b
]

= gμν(X(t, x))
[
Nnμdt + Xμ

,a(dx
a + Nadt)

]
⊗

[
Nnνdt + Xν

,b(dx
b + N bdt)

]

= [sN2 + qabN
aN b]dt⊗ dt + qabN

b[dt⊗ dxa + dxa ⊗ dt] + qabdx
a ⊗ dxb

(1.1.22)

and reads off the components gtt, gta, gab of X∗g in this frame. Since the
volume form Ω(X) :=

√
|det(g)|dD+1X is covariant, that is, (X∗Ω)(x, t) =√

|det(X ∗ g)|dtdDx, we just need to compute det(X∗g) = sN2 det(qab) in order
to finally cast the action (1.1.1) into D + 1 form. The result is (dropping the
total differential in (1.1.12)) the ADM action

S =
1
κ

∫

R

dt

∫

σ

dDx
√

det(q)|N |
(
R− s

[
KabK

ab −
(
Ka

a

)2]) (1.1.23)

We could drop the absolute sign for N in (1.1.23) since we took N positive but we
will keep it for the moment to see what happens if we allow arbitrary sign. Notice
that (1.1.23) vanishes identically for D = 1, indeed in two spacetime dimensions
the Einstein action is proportional to a topological charge, the so-called Euler
characteristic of M , and in what follows we concentrate on D > 1.

1.2 Legendre transform and Dirac analysis of constraints

We now wish to cast this action into canonical form, that is, we would like
to perform the Legendre transform from the Lagrangian density appearing in
(1.1.23) to the corresponding Hamiltonian density. The action (1.1.23) depends
on the velocities q̇ab of qab but not on those of N and Na. Therefore we obtain
for the conjugate momenta (use (1.1.17) and the fact that R does not contain
time derivatives)

P ab(t, x) :=
δS

δq̇ab(t, x)
= −s

|N |
Nκ

√
det(q)

[
Kab − qab

(
Kc

c

)]

Π(t, x) :=
δS

δṄ(t, x)
= 0

Πa(t, x) :=
δS

δṄa(t, x)
= 0 (1.2.1)
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The Lagrangian in (1.1.23) is therefore a singular Lagrangian, one cannot solve
all velocities for momenta [218]. In order to further analyse the system one must
therefore apply Dirac’s algorithm [219] for constrained Hamiltonian systems,
which we summarise in Chapter 24.

We can solve q̇ab in terms of qab, N,Na and P ab using (1.1.17) but this is not
possible for Ṅ , Ṅa, rather we have the so-called primary constraints

C(t, x) := Π(t, x) = 0 and Ca(t, x) := Πa(t, x) = 0 (1.2.2)

According to [219] we are supposed to introduce Lagrange multiplier fields λ(t, x),
λa(t, x) for the primary constraints and to perform the Legendre transform
as usual with respect to the remaining velocities which can be solved for. We
have

q̇ab = 2NKab + (L �Nq)ab

q̇abP
ab = (L �Nq)abP ab − 2

s|N |
κ

√
det(q)[KabK

ab −K2]

PabP
ab =

det(q)
κ2

(KabK
ab + (D − 2)K2)

P 2 :=
(
P a
a

)2 =
(1 −D)2

κ2
det(q)K2 (1.2.3)

and by means of these formulae we obtain the canonical form of the action
(1.1.23)

S =
∫

R

dt

∫

σ

dDx{q̇abP ab + ṄΠ + ṄaΠa − [q̇ab(P, q,N, 
N)P ab + λC + λaCa

−
√

det(q)
|N |
κ

(R− s[KabK
ab −K2])(P, q,N, 
N)]}

=
∫

R

dt

∫

σ

dDx{q̇abP ab + ṄΠ + ṄaΠa − [(L �Nq)abP ab + λC + λaCa

−
√

det(q)
|N |
κ

(R + s[KabK
ab −K2])(P, q,N, 
N)]}

=
∫

R

dt

∫

σ

dDx

{

q̇abP
ab + ṄΠ + ṄaΠa −

[

(L �Nq)abP ab + λC + λaCa

+
|N |
κ

(

− sκ2

√
det(q)

[
PabP

ab − 1
D − 1

P 2

]
−

√
det(q)R

)]}

(1.2.4)

Upon performing a spatial integration by parts (whose boundary term we drop
for the moment, it will be recovered later on) one can cast it into the following
more compact form

S =
∫

R

dt

∫

σ

dDx{q̇abP ab + ṄΠ + ṄaΠa − [λC + λaCa + NaHa + |N |H]}

(1.2.5)
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where

Ha := −2qacDbP
bc

H := −
(

sκ
√

det(q)

[
qacqbd −

1
D − 1

qabqcd

]
P abP cd +

√
det(q)R/κ

)

(1.2.6)

are called the (spatial) Diffeomorphism constraint and Hamiltonian constraint
respectively, for reasons that we will derive below.

The geometrical meaning of these quantities is as follows. At fixed t the
fields (qab(t, x), Na(t, x), N(t, x);P ab(x, t),Πa(t, x),Π(t, x)) are points (configu-
ration; canonically conjugate momenta) in an infinite-dimensional phase space
M (or symplectic manifold). Strictly speaking, we should now specify on what
Banach space this manifold is modelled [220], however, we will be brief here as
we are not primarily interested in the metric formulation of this chapter but
rather in the connection formulation of the next chapter for which we will give
more details in Chapter 33. For the purpose of this section it is sufficient to
say that we can choose the model space to be the direct product of the space
T2(σ) × T1(σ) × T0(σ) of smooth symmetric covariant tensor fields of rank 2, 1, 0
on σ respectively and the space T̃ 2(σ) × T̃ 1(σ) × T̃ 0(σ) of smooth symmetric
contravariant tensor density fields of weight one and of rank 2, 1, 0 on σ respec-
tively, equipped with some Sobolev norm. In particular, one shows that the action
(1.2.5) is differentiable in this topology. The precise functional analytic descrip-
tion is somewhat more complicated in case that σ has a boundary; we postpone
boundary conditions until Section 1.5.

The phase space carries the strong (see [220] or Chapter 33) symplectic struc-
ture Ω or Poisson bracket

{P (f2), F2(q)} = κF2(f2), {
Π(
f1), 
F1( 
N)} = κ
F1(
f1), {Π(f), F (N)} = κF (f)

(1.2.7)

(all other brackets vanishing) where we have defined the following pairing, invari-
ant under diffeomorphisms of σ, for example

T̃ 2(σ) × T2(σ) → R; (F2, f
2) → F 2(f2) :=

∫

σ

dDxF ab
2 (x)f2

ab(x) (1.2.8)

and similar for the other fields. Physicists use the following shorthand notation
for (1.2.7)

{P ab(t, x), qcd(t, x′)} = κδa(cδ
b
d)δ

(D)(x, x′) (1.2.9)

In the language of symplectic geometry, of which we give an account in Chapter
19, the first term in the action (1.2.5) is a symplectic potential for the symplectic
structure (1.2.7).

The Poisson bracket between arbitrary functionals G,G′ : M → C follows
from the basic ones (1.2.7) by imposing the Leibniz rule, that is, that the Poisson
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bracket is a derivation. It then follows that

{G,G′} = κ

∫

σ

dDx

[
δG

δP ab(x)
δG′

δqab(x)
− δG′

δP ab(x)
δG

δqab(x)

]
(1.2.10)

where we observe the appearance of functional derivatives. For a precise definition
of the functional derivative we would again need to make use of the theory of
Banach manifolds, however, the following definition will be sufficient for our
purposes.

Definition 1.2.1. Let φ belong to some manifold Φ of fields (usually given
as smooth tensor fields over a (D + 1)-manifold M with appropriate boundary
conditions) and let δφ ∈ Tφ(Φ) belong to the tangent space of that manifold
at φ (the vector space of allowed variations). Then we say that a functional
G : Φ → C is functionally differentiable at φ ∈ Φ if there exists a tensor density
DGφ dual (i.e. with opposite index structure) to φ such that

(
d

ds

)

r=0

G[φ + sδφ] =
∫

M

dD+1x (DG)φ(x) · δφ(x)

Here we allow DGφ(x) to be a distribution over Tφ(Φ), that is, it is not necessa-
rily itself a smooth tensor density. It is called the functional derivative of G at φ.

It is easy to check that with this definition, for example, δF2(q)/δqab(x) =
F ab(x) and hence we indeed reproduce (1.2.9). The motivation for introduc-
ing the Poisson bracket as above in field theory, as in classical mechanics, is
that it reproduces the Euler–Lagrange equations of motion δD+1S/δgμν(X) =
G

(D+1)
μν (X) = 0, where Gμν is the Einstein tensor, as the Hamiltonian equations

of motion q̇ := {H, q} and similar for P . Here we have written δ(D+1) instead of
δ in order to stress that with respect to the action we perform a variation over
M while in Poisson brackets we perform a variation with respect over σ. We will
see this correspondence between the Lagrangian and Hamiltonian formulation
explicitly in the next section. However, let us point out that these equations,
while often called ‘evolution equations’, just describe infinitesimal gauge trans-
formations, they do not correspond to the physical evolution with respect to a
physical (gauge-invariant) Hamiltonian.

We now turn to the meaning of the term in square brackets in (1.2.5), that is,
the ‘Hamiltonian’

κH :=
∫

σ

dDx[λC + λaCa + NaHa + |N |H]

=: C(λ) + 
C(
λ) + 
H( 
N) + H(|N |) (1.2.11)

of the action and the associated equations of motion.
The variation of the action with respect to the Lagrange multiplier fields 
λ, λ

reproduces the primary constraints (1.2.2). If the dynamics of the system is to be
consistent, then these constraints must be preserved under the evolution of the
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system, that is, we should have, for example, Ċ(t, x) := {H, C(t, x)} = 0 for all
x ∈ σ, or equivalently, Ċ(f) := {H, C(f)} = 0 for all (t-independent) smearing
fields f ∈ T0(σ). However, we do not get zero but rather

{
C(
f),H} = 
H(
f) and {C(f),H} = H

(
N

|N |f
)

(1.2.12)

which is supposed to vanish for all f, 
f . Thus, consistency of the equations of
motion asks us to impose the secondary constraints

H(x, t) = 0 and Ha(x, t) = 0 (1.2.13)

for all x ∈ σ. Since these two functions appear next to the C,Ca in (1.2.11), in
General Relativity the ‘Hamiltonian’ is constrained to vanish! General Relativ-
ity is an example of a so-called constrained Hamiltonian system with no true
Hamiltonian. The reason for this will become evident in a moment.

Now one might worry that imposing consistency of the secondary constraints
under evolution results in tertiary constraints and so on, but fortunately, this is
not the case. Consider the smeared quantities H(f), 
H(
f ) where, for example,

H( 
N) :=

∫
σ
d3xNaHa (notice that indeed H,Π and Ha,Πa are, respectively,

scalar and co-vector densities of weight one on σ). Then we obtain

{H, 
H(
f)} = 
H(L �N

f) −H(L�f |N |)

{H, H(f)} = H(L �Nf) + 
H( 
N(|N |, f, q)) (1.2.14)

where 
N(f, f ′, q)a = qab(ff ′
,b − f ′f,b). Equations (1.2.14) are equivalent to the

Dirac algebra D [219]

{ 
H(
f), 
H(
f ′)} = −κ 
H(L�f

f ′)

{ 
H(
f), H(f)} = −κH(L�ff)

{H(f), H(f ′)} = sκ 
H( 
N(f, f ′, q)) (1.2.15)

also called the hypersurface deformation algebra which we will derive in full
detail below. The meaning of (1.2.12) and (1.2.15) is that the constraint surface
M of M, the submanifold of M where the constraints hold, is preserved under
the motions generated by the constraints. In the terminology of Dirac [219], all
constraints are of first class (determine co-isotropic constraint submanifolds [218]
of M) rather than of second class (determine symplectic constraint submanifolds
[218] of M). See Figure 1.2 for a sketch of these notions and Sections 19.3, 24.2
for the explanation of the terminology.

1.3 Geometrical interpretation of the gauge transformations

We turn now to the study of the equations of motion of the canonical coordi-
nates on the phase space. Since C = Π, Ca = Πa it remains to study those of
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M

M

[m]

M

–

̂

Figure 1.2 Unconstrained phase space, constraint surface, gauge orbit and
reduced phase space.

N,Na, qab, P
ab. For shift and lapse we obtain Ṅa = λa, Ṅ = λ. Since λa, λ are

arbitrary, unspecified functions we see that also the trajectory of lapse and shift
is completely arbitrary. Moreover, the equations of motion of qab, P ab are com-
pletely unaffected by the term 
C(
λ) + C(λ) in H. It is therefore completely
straightforward to solve the equations of motion as far as N,Na,Π,Πa are
concerned: simply treat N,Na as Lagrange multipliers and drop all terms pro-
portional to C,Ca from the action (1.2.5). The result is the reduced action

S =
1
κ

∫

R

dt

∫

σ

dDx{q̇abP ab − [NaHa + |N |H]} (1.3.1)

called the canonical Arnowitt–Deser–Misner (ADM) action [206] . It is straight-
forward to check that as far as qab, P

ab are concerned, the actions (1.2.5) and
(1.3.1) are completely equivalent.

The equations of motion of qab, P
ab then finally allow us to interpret the

motions that the constraints generate on M geometrically. Since the reduced
Hamiltonian (using the same symbol as before)

H =
1
κ

∫

σ

dDx[NaHa + |N |H] (1.3.2)

is a linear combination of constraints, we obtain the equations of motion once we
know the Hamiltonian flow of the functions 
H(
f), H(f) for any 
f, f separately.
Denoting, for any function J on M,

δ�fJ := { 
H(
f), J} and δfJ := {H(f), J} (1.3.3)

it is easiest to begin with the corresponding equations for J = F2(q) since upon
integration by parts we have 
H(
f) =

∫
dDxP ab(L�fq)ab so that both constraint

functions are simple polynomials in P ab not involving their derivatives. We then
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readily find

δ�fF2(q) = κF2(L�fq)

δfF2(q) = −2sκ
∫

σ

dDx F ab
2 f

Pab − Pqab/(D − 1)
√

det(q)
(1.3.4)

Using the relations (1.2.1), (1.1.17) the second identity in (1.3.4) can be written
as

δ|N |qab = 2NκKab = κ(q̇ab − (L �Nq)ab)

In order to interpret this quantity, notice that the components of nμ in the
frame t, xa are given by nt = nμX

μ
,t = sN, na = nμX

μ
,a = 0. In order to com-

pute the contravariant components nμ in that frame we need the corresponding
contravariant metric components. From (1.1.22) we find the covariant compo-
nents to be gtt = sN2 + qabN

aN b, gta = qabN
b, gab = qab so that the inverse met-

ric has components gtt = s/N2, gta = −sNa/N2, gab = qab + sNaN b/N2. Thus
nt = 1/N, na = −Na/N and since qat = qtt = 0 we finally obtain

δ|N |F2(q) = κF2(LNnq) (1.3.5)

which of course we guessed immediately from the (D + 1) dimensional identity
(1.1.6). Concluding, as far as qab is concerned, Ha generates diffeomorphisms of
M that preserve Σt while H generates diffeomorphisms of M orthogonal to Σt,
however, only when the equations of motion q̇ab = {H, qab} are satisfied which
we used in re-expressing P in terms of q̇.

The corresponding computation for P (f2) is harder by an order of magnitude
due to the curvature term involved in H and due to the fact that the identity
corresponding to (1.3.5) holds only on shell, that is, when the (vacuum) Einstein
equations G

(D+1)
μν := R

(D+1)
μν − gμν

2 R(D+1) = 0 hold. The variation with respect
to 
H(
f) = −

∫
σ
dDxqab(L�fP )ab (notice that P ab carries density weight one to

verify this identity) is still easy and yields the expected result

δ�fP (f2) = κ(L�fP )(f2) (1.3.6)

We will now describe the essential steps for the analogue of (1.3.5). The ambitious
reader who wants to fill in the missing steps should expect to perform at least
one Din A4 page of calculation in between each of the subsequent formulae.

We start from formula (1.2.6). Then

{H(|N |),P ab} =
δH(|N |)
δqab

=
s|N |

√
det(q)

[
2
(
P acP b

c − P abP/(D − 1)
)

− qab

2
(P cdPcd− P 2/(D − 1))

]
+

δ

δqab

∫
dDx|N |

√
det(q)R

(1.3.7)
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where the second term comes from the
√

det(q)
−1

factor and we used the well-
known formula δ det(q) = det(q)qabδqab. To perform the remaining variation in
(1.3.7) we write

δ
√

det(q)R = [δ
√

det(q)]R +
√

det(q)[δqab]Rab +
√

det(q)qab[δRab]

use δδab = δ[qacqcb] = 0 in the second variation and can simplify (1.3.7)

{H(|N |), P ab} =
s|N |

√
det(q)

[
P acP b

c − P abP/(D − 1)
]

+
qab|N |H

2
+ |N |

√
det(q)(qabR−Rab)

+
∫

dDx|N |
√

det(q)qcd
δ

δqab
Rcd (1.3.8)

The final variation is the most difficult one since Rcd contains second derivatives
of qab. Using the explicit expression of Rabcd in terms of the Christoffel symbol
Γc
ab and observing that, while the connection itself is not a tensor, its variation

in fact is a tensor, we find after careful use of the definition of the covariant
derivative

qcdδRcd = qcd
[
−DcδΓe

ed + DeδΓe
cd

]
(1.3.9)

We now use the explicit expression of Γa
bc in terms of qab and find

δΓa
bc =

qad

2
[Dcδqbd + Dbδqcd −Ddδqbc] (1.3.10)

Next we insert (1.3.9) and (1.3.10) into the integral appearing in (1.3.8) and inte-
grate by parts twice using the fact that for the divergence of a vector va we have√

det(q)Dav
a = Da(

√
det(q)va) = ∂a(

√
det(q)va) where we keep all boundary

terms for later use and find
∫

dDx|N |
√

det(q)qcdδRcd =
∫

dDx
√

det(q)qcd
[
(Dc|N |)δΓe

ed − (De|N |)δΓe
cd

]

+
∫

∂σ

√
det(q) qcd|N |

[
−dScδΓe

ed + dSeδΓe
cd

]

=
∫

dDx
√

det(q)qcdqef [(Dc|N |)(Ddδqef )

− (De|N |)(Dcδqdf )] +
∫

∂σ

√
det(q) qcd|N |

×
[
−dScδΓe

ed + dSeδΓe
cd

]

=
∫

dDx
√

det(q)[−(DcD
c|N |)qab + (DaDb|N |)]δqab

+
∫

∂σ

√
det(q)qcdqef [(Dc|N |)(dSdδqef )
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− (De|N |)(dScδqdf )] +
∫

∂σ

√
det(q)qcd|N |

×
[
−dScδΓe

ed + dSeδΓe
cd

]
(1.3.11)

Collecting all contributions and neglecting the boundary term which we will take
care of in the next section we obtain the desired result

{H(|N |), P ab} =
2s|N |

√
det(q)

[
P acP b

c − P abP/(D − 1)
]
+

qab|N |H
2

+ |N |
√

det(q)(qabR−Rab) +
√

det(q)[−(DcD
c|N |)qab

+ (DaDb|N |)] (1.3.12)

which does not look at all as LNnP
ab!

In order to compute LNnP
ab we need an identity for LNnKμν = NLnKμν

which we now derive. Using the definition of the Lie derivative in terms of the
covariant derivative ∇μ and using g = q + sn⊗ n one finds first of all

LnKμν = −KKμν + 2KρμK
ρ
ν +

[
∇ρ(nρKμν) + 2sKρ(μnν)∇nn

ρ
]

(1.3.13)

Using the Gauß equation (1.1.8) we find for the Ricci tensor R
(D)
μν the following

equation (use again g = q + sn⊗ n and the definition of curvature as R = [∇,∇])

R(D+1)
ρσ qρμq

σ
ν −R(D)

μν = s
[
−KμνK + KμρK

ρ
ν + qρμq

σ
νn

λ[∇ρ,∇λ]nσ

]
(1.3.14)

We claim that the term in square brackets on the right-hand side of (1.3.13)
equals (−s) times the sum of the left-hand side of (1.3.14) and the term
−s(DμDνN)/N . In order to prove this we manipulate the commutator of covari-
ant derivatives appearing in (1.3.14) making use of the definition of the extrinsic
curvature. One finds

qρμq
σ
νn

λ[∇ρ,∇λ]nσ] = qρμq
σ
νn

λ(∇ρ∇λnσ) + KKμν −∇ρ(nρKμν)

− s(∇nn
ρ)nνKμρ − s(∇n(nμn

ρ))(∇ρnν) (1.3.15)

Using this identity we find for the sum of the term in square brackets on the
right-hand side of (1.3.13) and s times the sum of the right-hand side of (1.3.14)
the expression (dropping the obvious cancellations)

KμρK
ρ
ν + qρμq

σ
νn

λ(∇ρ∇λnσ) + s[Kρνnμ(∇nn
ρ) − (∇n(nμn

ρ))(∇ρnν)]

= KμρK
ρ
ν +qρμq

σ
νn

λ(∇ρ∇λnσ)+s[nμ(∇nn
ρ)

{
qσρ −δσρ

}
(∇σnν)−(∇nnμ)(∇nnν)]

= KμρK
ρ
ν + qρμq

σ
ν (∇ρ∇nnσ) − qρμq

σ
ν (∇ρn

λ)(∇λnσ) − s(∇nnμ)(∇nnν)

= + qρμq
σ
ν (∇ρ∇nnσ) − s(∇nnμ)(∇nnν) (1.3.16)

where in the second step use has been made of the fact that the curly bracket
vanishes since it is proportional to nρ and contracted with the spatial vector
∇nn

ρ, in the third step we moved nλ inside a covariant derivative and picked up
a correction term and in the fourth step one realises that this correction term is



1.3 Geometrical interpretation of the gauge transformations 55

just the negative of the first term using Kμν = qρμ∇ρnν . Our claim is equivalent
to showing that the last line of (1.3.16) is indeed given by −s(DμDνN)/N .

To see this notice that if the surface Σt is defined by t(X) = t = const. then
1 = Tμ∇μt. Since ∇μt is orthogonal to Σt we have nμ = sN∇μt as one verifies
by contracting with Tμ and thus N = 1/(∇nt). Thus

DμN = −N2Dμ(∇nt) = −N2qνμn
ρ(∇ρ∇νt)

= −sN(∇nnμ) = −sN∇nnμ (1.3.17)

where in the first step we interchanged the second derivative due to torsion
freeness and could pull nρ out of the second derivative because the correction
term is proportional to nρ∇nρ = 0 and in the second we have pulled in a factor of
N , observed that the correction is annihilated by the projection, used once more
sN∇t = n and finally used that ∇nnν is already spatial. The second derivative
then gives simply

DμDνN = −s(DμN)∇nnν − sNqρμq
σ
ν∇ρ∇nnσ

= N(∇nnμ)(∇nnν) − sNqρμq
σ
ν∇ρ∇nnσ (1.3.18)

which is indeed N times (1.3.16) as claimed. Notice that in (1.3.18) we cannot
replace N by |N | if N is not everywhere positive so the interpretation that we
are driving at would not hold if we did not set N = |N | everywhere. It is at this
point that we must take N positive in all that follows.
We have thus established the key result

LNnKμν = N
(
−KKμν + 2KρμK

ρ
ν

)
− s

[
DμDνN + N

(
R(D+1)

ρσ qρμq
σ
ν −R(D)

μν

)]

(1.3.19)

In order to finish the calculation for LNnP
μν we need to know

LNn

√
det(q),LNnq

μν . So far we have defined det(q) in the ADM frame only,
its generalisation to an arbitrary frame is given by

det((qμν)(X)) :=
1
D!

[(∇μ0t)(X)εμ0...μD ][(∇ν0t)(X)εν0...νD ]qμ1ν1(X) . . . qμDνD
(X)

(1.3.20)

as one can check by specialising to the ADM coordinates Xμ = (t, xa). Here
εμ0...μD is the metric-independent, totally skew Levi–Civita tensor pseudo-
density of weight one. One can verify that with this definition we have det(g) =
sN2 det(q) by simply expanding g = q + sn⊗ n. It is important to see that
LT∇μt = LN∇μt = 0, from which then it follows immediately that

LNn

√
det(q) =

1
2

√
det(q)qμνLNnqμν = N

√
det(q)K (1.3.21)

where (1.1.6) has been used. Finally, using once more (1.3.17) we find indeed

LNnq
μν = −qμρqνσLNnqρσ = −2NKμν (1.3.22)



56 Classical Hamiltonian formulation of General Relativity

We are now in a position to compute the Lie derivative of Pμν =
−s

√
det(q)[qμρqνσ − qμνqρσ]Kρσ. Putting all six contributions carefully together

and comparing with (1.3.12) one finds the non-trivial result

{H(N), Pμν} =
qμνNH

2
−N

√
det(q)[qμρqνσ − qμνqρσ]R(D+1)

ρσ + LNnP
μν

(1.3.23)

that is, only on the constraint surface and only when the (vacuum) equations of
motion hold, can the Hamiltonian flow of Pμν with respect to H(N) be inter-
preted as the action of a diffeomorphism in the direction perpendicular to Σt.
Now, using again the definition of curvature as the commutator of covariant
derivatives it is not difficult to check that

Gμνn
μnν =

sH

2
√

det(q)

Gμνn
μqνρ = − sHρ

2
√

det(q)
(1.3.24)

so that the constraint equations actually are equivalent to D + 1 of the Einstein
equations. Since (1.3.23) contains, besides H, all the spatial projections of Gμν

we see that our interpretation of {H(N), Pμν} holds only on shell, Gμν = 0. This
finishes our geometrical analysis of the Hamiltonian flow of the constraints.

1.4 Relation between the four-dimensional diffeomorphism group
and the transformations generated by the constraints

The following issue has caused much confusion in the literature: the Einstein–
Hilbert action is invariant under four-dimensional, passive diffeomorphisms, that
is, the group Diff(M). This is the case whether or not the equations of motion
hold. On the other hand, we have just seen that the gauge transformations gen-
erated by the constraints can be interpreted as infinitesimal diffeomorphisms
only when the equations of motion hold. Thus, off-shell the two groups are gen-
uinely different. This is already obvious from the form of the Dirac algebra D

(1.2.15) which, in contrast to the infinitesimal diffeomorphisms, is not a Lie alge-
bra because, while {H(N1), H(N2)} is of the form 
H( 
N3), the field 
N3 depends
on the phase space, it is not a structure constant (independent of the phase
space) but a so-called structure function. Bergmann and Komar [221–226] have
studied in detail the canonical structure of constraints whose Lagrange multipli-
ers depend on the phase space and the group (rather: enveloping algebra) they
generate. We will refer to this ‘group’ as the Bergmann–Komar group BK(M).

The fact that Diff(M) = BK(M) is often taken by critics as a manifestation
that four-dimensional diffeomorphism invariance is already classically broken in
the canonical formulation. We will now explain why this interpretation is false.

1. First of all, on solutions Diff(M) = BK(M), therefore classically we would
never see any difference. In quantum theory we will of course implement
BK(M) as an off-shell gauge symmetry, however, in the semiclassical regime
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when the theory becomes on-shell we will again recover Diff(M). Hence it is
legitimate to disregard Diff(M) altogether as the fundamental symmetry.

2. Next, it is simply wrong that the canonical formulation does not admit a
representation of Diff(M). After all, given a foliation X and an element ϕ ∈
Diff(M) we get a new foliation ϕ ◦X. Given a metric gμν one can work out
explicitly how the spacetime quantities nμ, N,Nμ, qμν ,Kμν derived from the
structures X, gμν change as we switch from X to ϕ ◦X and not surprisingly
it is precisely the expected action of Diff(M). It is just that this action of
Diff(M) does not coincide with that of BK(M) unless we are on-shell. Hence
we have an action of two different groups on our tensor fields, the kinematical
group Diff(M) and the dynamical group BK(M) and GR is invariant under
both with the peculiar feature that Diff(M) = BK(M) when the equations of
motion hold.

3. Let us explain the origin of the difference between Diff(M) and BK(M). Notice
that Diff(M) is a kinematical symmetry of any diffeomorphism-invariant
action. Here by kinematical we mean that the invariance group is insensi-
tive to the form of the Lagrangian. For instance, the Einstein–Hilbert action
and a higher-derivative action of the form

∫

M

dD+1X
√

|det(g)| Rμνρσ Rμνρσ

both have the group Diff(M) as a kinematical symmetry group. But of course
the equations of motion (Euler–Lagrange equations) they generate are com-
pletely different. The Einstein–Hilbert action leads to second-order partial
differential equations while the above action leads to fourth-order partial dif-
ferential equations. Even the number of degrees of freedom of the two theories
is in general different because not only does one have to prescribe the D-
metric qab and its first-time derivative (velocity) as initial data, moreover one
has to prescribe accelerations and higher-time derivatives. Now the equations
of motion are obtained in the canonical formulation by calculating Poisson
brackets with the constraints. Since the constraints therefore know about the
dynamics, even though it is considered as an infinitesimal gauge transforma-
tion, the constraints must know about the specific form of the Lagrangian.
Thus we see that the Bergmann–Komar group that the constraints gener-
ate is a dynamical symmetry group. It is therefore not at all surprising that
Diff(M) = BK(M). In fact, from our discussion it is clear that there can be
a relation only after taking the equations of motion into account and this is
precisely what happens for the Einstein–Hilbert action.

Given these observations it is hard to believe that there is an exact relation
between the canonical formulation and a fully Diff(M)-invariant path integral of
the form

Z =
∫

[Dg] exp(iS)
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where we integrate over four metric histories weighted by the exponential of the
Einstein–Hilbert action. The symmetry of the path integral is Diff(M) while that
of the canonical theory would be BK(M). One would expect a relation only in
the semiclassical regime. We will come back to this point in the spin foam models
of Chapter 14.

Related to this are the following issues:

I. Can one construct, in the canonical formulation, a phase space functional
V [u], where u is a vector field on M , which generates infinitesimal four-
diffeomorphisms of M on the full phase space, that is, off-shell? It is easy to
see that this is hard to achieve, if it can be done at all: since V [u] would have
to implement the Lie algebra of Diff(M) we would need that {V [u], V [v]} =
V [Luv]. Now suppose that V [u] depends on temporal derivatives of u up to
some finite order, say n. Then V [Luv] depends on temporal derivatives of
both u, v up to order n + 1 since L is a spacetime Lie derivative rather than
a spatial one. On the other hand, {V [u], V [v]} depends only on temporal
derivatives of both u, v up to order n because the Poisson bracket does not
generate new temporal derivatives. Hence we get a contradiction unless n =
∞. On the other hand, if we take the equations of motion into account then
the Poisson bracket does create an additional time derivative if V involves
the constraints. This explains, at a completely non-technical level, why the
equations of motion have to enter the canonical representation of Diff(M).

There is an apparent exception to this caveat: suppose we have D + 1
scalar fields φμ with conjugate momenta πμ. Let uμ be a vector field on M

and consider the functional

D[u] :=
∫

σ

dDx uμ(X)Xν=φν(x) πμ(x)

Then it is easy to verify that {V (u), V (v)} = V ([u, v]). The reason why
we now have an honest representation is that we have identified spacetime
coordinates with canonical fields. The catch is that D[u] is not related at
all to the contribution of D + 1 scalar fields to the spatial and Hamiltonian
constraints derived in Chapter 12. Hence, while it is possible to obtain a
canonical representation of Diff(M) at least for certain types of matter, again
this group has nothing to do with BK(M) off-shell. See also the discussion
in [164].

II. One often hears the statement that a spacetime diffeomorphism-invariant
functional F [gμν ] evaluated on a history, that is, a solution of the equations
of motion, is a full Dirac observable, that is, it commutes with all the con-
straints. In order to make this precise, what we have to do in order to evaluate
F [gμν ] on solutions is to choose lapse and shift functions N(x, t), Na(x, t)
as well as a point in phase space x �→ (qab(x), P ab(x)) and then construct
a solution gab(x, t;N, 
N, q, P ] where the square bracket is to denote func-
tional dependence and gab is the pull-back to σ of gμν in some foliation.
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The quantities N, 
N, gab are of course explicitly foliation-dependent. Since
M is diffeomorphic to R × σ by means of a foliation X(t, x) and F [gμν ] is
spacetime diffeomorphism-invariant, we can equivalently think of F [gμν ] as a
functional F [N,Na, gab]. Evaluating F [gμν ] on a solution now means setting
F [N,Na, qab, P

ab] := F [N,Na, gab(N, 
N, q, P ]], which for fixed N,Na is a
concrete functional on phase space. Let us fix N = N0, N

a = Na
0 , then the

above statement amounts to the claim that F [q, P ] := F [N0, 
N0, q, P ] has
(weakly) vanishing Poisson brackets with all the constraints H(N), 
H( 
N)
for all N, 
N . The argument that is usually brought forward in favour of
this is that on-shell the constraints generate infinitesimal spacetime dif-
feomorphisms and since F [gμν ] is spacetime diffeomorphism-invariant, the
claim seems to follow. However, there is a catch: that H(N), 
H( 
N) generate
spacetime diffeomorphisms on a solution N0, N

a
0 , gab(N0, N

a
0 , q, P ) requires

N = N0, N
a = Na

0 as we have seen explicitly in Section 1.3. Therefore, the
only way that the claim can hold is to show that F [N0, 
N0, q, P ] is indepen-
dent of N0, 
N0. One might think that this is possible due to the foliation
independence of F [g], because changing the foliation (1) is equivalent to a
spacetime diffeomorphism and (2) induces a change in N0, 
N0. However, a
change in foliation also induces a change in gab, which is just the pull-back
to σ of gμν . This, purely kinematical change of gab, is not the same as the
full change of the solution gab[N0, 
N0, q, P ] at fixed q, P which takes the
dynamics into account. To illustrate these subtleties, consider the simplest
example, a cosmological term

F [gμν ] : =
∫

M

dD+1X
√
|det(gμν(X))|

=
∫

R

dt

∫

σ

d3x N(x, t)
√

det(gab(x, t)) =: F [N, 
N, gab]

Let us fix a static choice of lapse and shift N(x, t) = N0(x), 
N(x, t) = 
N0(x).
Then the Hamiltonian H(N0, 
N0) = H(N0) + 
H( 
N0) is not explicitly time-
dependent and we can explicitly write the solution as

gab(x, t;N0, 
N0, q, P ] =
∞∑

n=0

tn

n!
{H(N0, 
N0)[q, P ], qab(x)}(n)

Inserting this into F [N0, 
N0, gab] and taking the functional derivative, say,
with respect to N0 one sees that the result is non-vanishing.

More details are contained in [227]. Hence, in order to construct Dirac
observables, more sophisticated work is required which we will describe in
the next chapter.

III. One of the reasons for why the Hamiltonian constraints can only gener-
ate diffeomorphisms along the timelike vector field Nn when the equations
of motion hold and why the Dirac algebra involves structure functions is as
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follows. We have restricted attention to spacelike embeddings X with respect
to a given metric g. However, since the kinematical group Diff(M) only
depends on M but not on g, for every spacelike embedding X we find an
element ϕ ∈ Diff(M) such that ϕ ◦X is no longer spacelike with respect to g.
Therefore, the kinematical group Diff(M) is incompatible with the dynami-
cal dependence of X on g. In order to make it compatible, Diff(M) must be
restricted to those diffeomorphisms2 which preserve the spacelike nature of
the embedding, that is, it must depend on g. This is why the Hamiltonian
constraint as the canonical generator of these timelike diffeomorphisms can
only close with structure functions depending on the spatial metric and why
its algebra mirrors that of Diff(M) only when the equations of motion hold.
See [216,217] for a deeper elaboration on this point.

Let us close this section by referring to work which clarifies these issues
from various points of view. For more information on the relation between
Diff(M) and BK(M) from the Hamiltonian point of view see [216, 217]. For an
explanation from the Lagrangian point of view in terms of Noether currents
see [228–232]. The relation between the Dirac algebra and the Lie algebra of
spacetime diffeomorphisms and its geometrical interpretation as a hypersurface
deformation algebra has been further elaborated on in [233], which exhibits
beautifully that the Dirac algebra has a purely geometrical origin (subject to
rather mild assumptions) which holds for any possible covariant matter coupling.

1.5 Boundary conditions, gauge transformations and symmetries

So far we have been rather careless about the boundary conditions on the fields
for the case that σ is not compact without boundary. Hence strictly speaking all
we have said so far is valid only when the Lagrange multipliers have compact
support or are of rapid decrease. We will now generalise this to the important
case of asymptotic flatness, which will allow us to derive a true Hamiltonian and
hence solve the problem of time at least in that case.

1.5.1 Boundary conditions

A mathematically precise treatment would again lead us into the realm of Sobolev
spaces, which would really go beyond the scope of this book. See, for example,
[234, 235] for an account and [236] for a pedagogical application thereof to the
proof of the positive gravitational energy theorem [237–240] which is strongly
related to this section. See also Chapter 33 for a sketch of the infinite-dimensional
symplectic geometry underlying gauge field theories.

We will content ourselves with the following simpler definition (for D = 3).

2 This is not a group because iteration of diffeomorphisms may boost a spacelike surface
more and more until it receives null or timelike portions. This is why BK(M) is not a group.
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Definition 1.5.1. A spacetime (M, g) is said to be asymptotically flat provided
that:

1. There is a compact region B homeomorphic to a compact ball in R4 such that
M −B = ∪N

n=1En where the mutually disjoint manifolds En, called ends, are
homeomorphic to the complement of a ball in R4.

2. In each end En the metric g approaches the Minkowski (Euclidean) metric
η at spatial infinity as follows. Choose standard Cartesian coordinates (t, 
x)
for η in which it takes the usual form η = diag(s, 1, 1, 1) and define the radius
r2 = 
x · 
x as usual. Spatial infinity is defined as the 3-manifold defined by
r = const. → ∞ which is homeomorphic to R × S2. Then we require that

gμν(x) = ημν +
fμν

(
t, �xr

)

r
+ O(r−2) (1.5.1)

for r → ∞ in each En where fμν is a smooth tensor on the asymptotic sphere
S2.

The fall-off behaviour (1.5.1) is motivated by the Schwarzschild metric which,
in the exterior region where the Cartesian coordinates are valid, takes the form
(for D = 3)

ds2 = −dt2φ(r) + dr2/φ(r) + r2(dθ2 + sin2(θ)dϕ2)

where φ(r) = 1 + s 2GM
r . Every gravitating system approaches a Schwarzschild

metric if one observes it from sufficient distance, which provides the physical
motivation for definition (1.5.1 ).

Definition (1.5.1 ) does not make any reference to the fall-off behaviour of the
extrinsic curvature, which is what we need in order to formulate the canonical
action principle. In ADM coordinates we require

qab(x) = δab +
fab

(
t, x

r

)

r
, P ab(x) =

F ab
(
t, x

r

)

r2
(1.5.2)

where fab, F
ab are again smooth tensor fields on the sphere at spatial infinity.

We will now derive and refine these requirements.
The first condition in (1.5.2) of course follows directly from (1.5.1). Now fur-

ther conditions are that the action be finite and that it is functionally differ-
entiable. The integrand of the kinetic term

∫
σ
d3xP abq̇ab should therefore decay

as r3+ε, ε > 0 which would lead to P = O(r2+ε), however, this would make the
ADM momentum vanish as we will see. Moreover, finiteness of the ADM momen-
tum requires precisely the r−2 decay. Hence a possible way out is that the func-
tions fab, F

ab be of opposite parity, that is,

fab

(
t,−x

r

)
= fab

(
t,
x

r

)
, F ab

(
t,−x

r

)
= −F ab

(
t,
x

r

)
(1.5.3)
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The logarithmically divergent radial integral in the kinematical term is then in
fact cancelled because d3x = r2drdΩ2 is a measure, that is, even under parity.
To see this we take the r integral up to finite r ≤ R and only then take the limit
R → ∞. As we will see one cannot switch the parity behaviour (1.5.3) because
this would again make the ADM energy momentum vanish.

Given these boundary conditions let us consider the constraint functionals

H( 
N), H(N). As we have seen explicitly in the previous section, the Hamiltonian
flow of the constraints generates spacetime diffeomorphisms on the phase space
when the equations of motions are satisfied and when N, 
N are at least of rapid
decrease. Infinitesimally the spacetime diffeomorphism is given by ϕ �N,N (X) =

Xμ + Nnμ + Nμ, hence asymptotically (t, 
x) �→ (t + (N(t, 
x), 
x + 
N(t, 
x)). In
the asymptotically flat context it makes sense to try to allow more general decay
behaviour of the smearing functions N, 
N corresponding to infinitesimal Poincaré
transformations. Thus we would like to allow for the following 10-parameter set
of functions

N(t, 
x) = b0 + βbx
b + S(t, 
x), Na(t, 
x) = ba + ωabx

b + Sa(t, 
x) (1.5.4)

where ωab = εacbϕ
c and all indices are moved with the flat Euclidean spatial met-

ric δab. Here the constant parameters bμ correspond to an infinitesimal transla-
tion, 
β to an infinitesimal boost and 
ϕ to an infinitesimal rotation of the asymp-
totic system of coordinates. The functions S, 
S will be specified below.

The constraint functions H(N), 
H( 
N) diverge for the decay behaviour (1.5.4).
They are also not functionally differentiable. The idea to cure both problems in
one stroke is to add a boundary term to both functionals which on the one hand
cancels the boundary term picked up in a variation and on the other hand makes
the volume integral converge. We will now derive these boundary terms. We have

δ 
H( 
N) =
∫

σ

d3x[(δP ab) [L �Nqab] − [L �NP ab] (δqab) − 2
∫

∂σ

dSbN
aδP b

a (1.5.5)

where at spatial infinity dSa = εabcdx
b ∧ dxc = R2dΩrna(Ω), R → ∞. Here Ω =

(θ, ϕ) denote angular coordinates, dΩ = sin2(θ)dθdϕ is the standard measure
on S2 and na = xa/r is the unit normal on S2. The volume term in (1.5.1) is
finite: since 
N is an asymptotic Killing field of δab we have L �Nqab = O(r−2) odd
or O(r−1) even respectively for asymptotic translation or boost and rotation
respectively while δP ab is O(r−2) odd, hence the first volume term is either
O(r−4) even or O(r−3) odd. Likewise L �NP ab = O(r−3) even or O(r−2) odd
respectively while δqab = O(r−1) even. Now the boundary term in (1.5.1) is exact,
that is,

2
∫

∂σ

dSbN
aδP b

a =: κδ 
P ( 
N), 
P ( 
N) :=
2
κ

∫

∂σ

dSbN
aδP b

a (1.5.6)

We thus define an improved generator


J( 
N) := κ−1 
H( 
N) + 
P ( 
N) (1.5.7)
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whose variation reduces to the volume term in (1.5.5) and moreover by applying
Stokes’ theorem backwards

κ 
J( 
N) =
∫

σ

d3x P ab L �Nqab (1.5.8)

which is finite by an argument similar to the one just outlined. For an asymptotic
spatial translation we get


P ( 
N) = baPADM
a , PADM

a =
2
κ

∫

∂σ

dSb P
b
a (1.5.9)

called the ADM momentum. Notice that the parity and decay behaviour of P ab

are precisely such that 
PADM is well-defined.
We will now repeat the procedure for H(N). Schematically its integrand is

of the form P 2 − ∂Γ + Γ2 where contractions with qab and powers of
√

det(q)
were neglected since they are O(1) even. Both P 2, Γ2 are O(r−4) even and hence
convergent for both even translations and odd boosts while ∂Γ is only O(r−3)
even and hence divergent even for a translation. Next, as far as variations are
concerned, δ(P 2) contains terms of the form P 2δq, PδP all of which are well-
defined while δ(Γ2) contains terms of the form Γ2δq,ΓδΓ ∝ Γ∂δq. The former is
well-defined since Γ = O(r−2) odd while the latter gives rise to a boundary term
with integrand Γ∂q which vanishes identically. Finally the term δ∂Γ gives rise to
terms of the form (∂Γ)δq, ∂δΓ of which only the latter is not well-defined. Thus
the term which makes H(N) divergent is also the one that spoils its variation
and we may therefore concentrate on the boundary term of the variation δC(N).
We just need to specialise (1.3.11) to D = 3 and get

−[δH(N)]| Bdry Term =
∫

σ

d3x
√

det(q)[−(DcD
cN)qab + (DaDbN)]δqab

+
∫

∂σ

√
det(q)qcdqef [(DcN)(dSdδqef ) − (DeN)(dScδqdf )]

+
∫

∂σ

√
det(q) qcdN

[
−dScδΓe

ed + dSeδΓe
cd

]
(1.5.10)

The volume term is well-defined because DN vanishes for a translation and is
constant for a boost in leading order, hence D2N is O(r−2) odd for a boost and
O(r−3) even for a translation while δq is O(r−1) even so the integral converges.

We must now write the boundary term as a total differential. In the second
term proportional to δΓ we can immediately pull the variation out of the surface
integral because the correction terms would be of the form NΓδq which is O(r−3)
odd for a translation and O(r−2) even for a boost and thus would vanish in both
cases because dS is O(r2) odd. In the first boundary term we cannot immediately
pull out the variation from the surface integral because the correction terms
would be of the form (∂N)δq which is non-vanishing only for a boost and in that
case would be ill-defined since O(r) and even which thus would give rise to an
expression of the form 0 · ∞. However we notice that δqab = δ(qab − δab) and so
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we may replace δqab by δ(qab − δab) in the first surface term. After having done
this we may pull the variation out of the surface integral because the correction
terms are now of the form (∂N)(δq)(q − δ) which is non-vanishing for a boost
and in that case is O(r−2) even and thus does not contribute. We thus define
the improved generator

J(N) = κ−1H(N) + E(N)

κE(N) =
∫

∂σ

√
det(q)qcdqef [(DcN)(dSd[qef − δef ]) − (DeN)(dSc[qdf − δdf ])]

+
∫

∂σ

√
det(q) qcdN

[
− dScΓe

ed + dSeΓe
cd

]
(1.5.11)

which now is functionally differentiable. Applying Stokes’ theorem in reverse
order we may write E(N) in (1.5.11) as a volume integral and we should check
whether its combination with the divergence-causing second-order derivative
term ∂Γ in H(N) is finite. We have

κ−1H(N)|2ndord. + E(N) =
1

κ

∫

σ
d3x

{√
det(q)qcd

(
∂cΓ

e
ed − ∂eΓ

e
cd

)

+(∂d(
√

det(q)qcdqef (DcN)[qef − δef ])

− ∂c(
√

det(q)qcdqef (DeN)[qdf − δdf ]))

+
(
−∂c

[√
det(q) qcdNΓe

ed

]
+ ∂e

[√
det(q) qcdNΓe

cd

])}

=
1

κ

∫

σ
d3x

{
(∂d(

√
det(q)qcdqef (DcN)[qef − δef ])

− ∂c(
√

det(q)qcdqef (DeN)[qdf − δdf ]))

+
(
− ∂c[

√
det(q) qcdN ]Γe

ed + ∂e[
√

det(q) qcdN ]Γe
cd

)}

=
1

κ

∫

σ
d3x

{
(∂d(

√
det(q)qcdqef (DcN))[qef − δef ]

− ∂c(
√

det(q)qcdqef (DeN))[qdf − δdf ])

+ (
√

det(q)qcdqef [(DcN)∂dqef − (DeN)∂cqdf )])

+N
(
−∂c[

√
det(q) qcd]Γe

ed + ∂e[
√

det(q) qcd]Γe
cd

)

+
√

det(q) qcd
(
− (DcN)Γe

ed + (DeN)Γe
cd

)}

=
1

κ

∫

σ
d3x

{
(∂d(

√
det(q)qcdqef (DcN))[qef − δef ]

− ∂c(
√

det(q)qcdqef (DeN))[qdf − δdf ])

+N
(
−∂c[

√
det(q) qcd]Γe

ed + ∂e[
√

det(q) qcd]Γe
cd

)

+
√

det(q) qcd
(
(DcN)

[
−Γe

ed + qef∂dqef
]

+(DeN)
[
Γe
cd − qef∂cqdf

])}
(1.5.12)

where in the first step we cancelled the ∂Γ terms, in the second step we separated
out some of the derivative contributions of the first and second term of the first
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step and in the third step we combined the third and fourth term of the second
step.

Consider first the third term in the third step of (1.5.12). We have up to terms
of order O(r−3) odd

qcd
[
−Γe

ed + qef∂dqef
]

= δcdδef
(
qef,d −

1
2
(qfe,d + qfd,e − qed,f

)
=

1
2
δcdδefqef,d

qcd
[
Γe
cd − qef∂cqdf

]
= δcdδef

(
1
2
(qfc,d + qfd,c − qcd,f ) − qdf,c

)

=
1
2
δcdδef (qfc,d − qfd,c − qcd,f ) = −1

2
δcdδefqcd,f (1.5.13)

Hence the whole third term in the third step of (1.5.13) becomes up to O(r−3)
odd terms

1
2

∫

σ

d3x δcdδef [qef,d N,c − qcd,fN,e] = 0 (1.5.14)

(relabel (cd) ↔ (ef) in the second term). Therefore the third term in the last
step of (1.5.12) is of the form O(r−3) odd times DN which is either O(r−3) odd
for a boost or O(r−4) even for a translation. The first two terms in the last step
of (1.5.12) are already finite by inspection, hence we have shown that (1.5.11) is
indeed finite and functionally differentiable even for a boost.

In case that N = a0 generates a translation the boundary term is finite and
becomes a0 times the ADM energy

EADM =
1
κ

∫

∂σ

√
det(q) qcd

[
−dScΓe

ed + dSeΓe
cd

]

=
1
2κ

∫

∂σ

δcdδef [−dSc(qfe,d + qfd,e − qed,f ) + dSe(qfc,d + qfd,c − qcd,f )]

=
1
2κ

∫

∂σ

dScδ
cdδef [−(qfe,d + qfd,e − qed,f ) + (qde,f + qdf,e − qef,d)]

=
1
κ

∫

∂σ

dScδ
cdδef [qed,f − qef,d] (1.5.15)

It is instructive to evaluate (1.5.15) for the Schwarzschild solution N2 = φM (r),
Na = 0, qab = δab + [φM (r)−1 − 1]x

axb

r2 , φM (r) = 1 − 2GM/r which will also
ensure that κ = 16πG has the correct normalisation. Noticing that dSa = r2nadΩ
with na = xa/r, that na na,b = 0, that φM (r)−1 − 1 = 2GM/r + O(r−2) and
that

∫
S2 dΩ = 4π one checks that EADM = M , that is, the ADM energy equals

the Schwarzschild mass when evaluated on the Schwarzschild solution.

1.5.2 Symmetries and gauge transformations

Let us summarise: we discovered that if the constraints are to generate asymp-
totic Poincaré transformations then we have to supplement them by boundary
terms as otherwise their Hamiltonian vector fields are not well-defined. Hence
the full generator is of the form J(N) = κ−1H(N) + B(N) where B(N) is the
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boundary term. Notice that on the constraint surface we have J(N) = B(N),
however, B(N) itself is neither finite (for boosts or rotations) nor is it function-
ally differentiable. Thus, in Poisson brackets one must always use J(N) even
when restricting to H(N) = 0 later on. The question now arises whether we
should attribute to J(N) the role of a gauge transformation generator or not. To
answer this question, notice that Dirac’s constraint analysis has unambiguously
resulted in the functionals Ha(x), H(x) as (secondary) constraints. The Hamil-
tonian H = C(N) + 
H( 
N) is well-defined for asymptotically vanishing N, 
N and
generates unphysical motions on the phase space because the functions N,Na

are unspecified. Hence there is no question that H(N), 
H( 
N) generate gauge
transformations for asymptotically trivial N,Na. The crucial point is now that
for asymptotically non-trivial N,Na the functionals H(N), 
H( 
N) are ill-defined.
Hence the well-defined functionals J(N), 
J( 
N) must be considered as indepen-
dent functionals on phase space for asymptotically non-trivial N, Na. Indeed
they are different from H(N), 
H( 
N) since they do not vanish on the constraint
surface for asymptotically non-vanishing N, Na. In other words, since in func-
tional analysis the smearing fields N,Na serve as labels for phase space functions
we should distinguish J(N) for different N ’s. For asymptotically trivial N the
functional J(N) equals H(N) but not otherwise. Dirac’s analysis only forces
us to interpret the J(N) for asymptotically trivial N as generators of gauge
transformations. Hence the issue is open for asymptotically non-trivial N .

To settle the question we ask whether the J(N) for asymptotically non-trivial
N transform between physically distinct solutions of the field equations, that is,
those that correspond to distinct physical observations. The key to the answer
lies in working out the algebra of the functionals J(N), 
J( 
N). So far we have
not specified the functions S, Sa in (1.5.4). These correspond to the so-called
supertranslations. They are odd O(1) functions on the asymptotic S2 and it is
clear that 
B(
S) = B(S) = 0 because the integrand, modulo the smearing func-
tions, with respect to the measure dΩ on S2 is an even function. Thus while
S, 
S are not asymptotically trivial, they still generate gauge transformations
because J(S) = H(S), 
J(
S) = 
H(
S) and hence they vanish on the constraint
surface. We absorb all higher orders of r−1 into S, 
S as well. This supertrans-
lation ambiguity has been analysed in great detail in [241, 242] using Penrose’s
powerful conformal techniques. Including the supertranslations we arrive at the
most general decay behaviour of N, Na which still allows for well-defined and
differentiable J(N), 
J( 
N). In addition we require that L�Sqab is not only O(r−1)
but actually O(r−2) so that the dominant part of L �Nqab comes from the rotation

N0 = 
N − 
S.

Let us now work out the algebra for the functionals or ‘currents’ J(N, 
N) =
J(N) + 
J( 
N). By definition of the Poisson bracket

{J(N1, 
N1), J(N2, 
N2)} =
∫

σ

d3x[{J(N1, 
N1), qab(x)} {P ab(x), J(N2, 
N2)}

−{J(N2, 
N2), qab(x)} {P ab(x), J(N1, 
N1)}] (1.5.16)
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Luckily, all the appearing Poisson brackets have been worked out already.
Indeed, we computed so far those between H(N, 
N) = H(N) + 
H( 
N) and
qab(x), P ab(x) for asymptotically trivial N, Na. Now the boundary term
B(N, 
N) = B(N) + 
B( 
N) by construction is such that the functional deriva-
tives of J(N, 
N) coincide with those of H(N, 
N) even when extending N, 
N

non-trivially to spatial infinity. In other words, we may use formulae (1.3.3),
(1.3.4), (1.3.6) and (1.3.12) with H replaced by J . We split the task into the
three different kinds of brackets that appear in (1.5.16).

1. { 
J( 
N1), 
J( 
N2)} = κ−1

∫

σ

d3x [−(L �N1
qab) (L �N2

P ab)(L �N2
qab) (L �N1

P ab)]

= κ−1

∫

σ

d3x P ab
[
L �N2

(L �N1
qab)) − L �N1

(L �N2
qab))

+Dc

(
P ab

(
−N c

2 (L �N1
qab) + N c

1 (L �N2
qab)

)]

= κ−1

∫

σ

d3x P ab(L[ �N2, �N1]
qab) = 
J(L �N2


N1). (1.5.17)

where we have used [Lu,Lv] = L[u,v] and the boundary term vanishes because
both 
N1, 
N2 are at best asymptotic symmetries.
2. { 
J( 
N1), J(N2)}

= κ−1

∫

σ

d3x

{

−(L �N1
qab)

(
2sN2√
det(q)

[
P acP b

c − P abP/2
]

+
qabN2H

2
+ N2

√
det(q)(qabR−Rab)

+
√

det(q)[−(DcD
cN2)qab + (DaDbN2)]

)

+

(

−2sN2
Pab − Pqab/2√

det(q)

)

(L �N1
P ab)

}

= κ−1

∫

σ

d3x

{

N2

{(
∂

∂qab

[

− s
√

det(q)
(P cdPcd − P 2/2)

])

(L �N1
qab)

+

(
∂

∂P ab

[

− s
√

det(q)
(P cdPcd − P 2/2)

])

(L �N1
P ab)

}

−
√

det(q)
[
N2

(
1
2
qabR−Rab

)
− qabDcD

cN2 + DaDbN2

]
(L �N1

qab)
}

= κ−1

∫

σ

d3x

{

N2

(

L �N1

[

− s
√

det(q)
(P cdPcd − P 2/2)

])}

−N2Rab(L �N1
(
√

det(q)qab)) +
√

det(q)[qabDcD
cN2 −DaDbN2] (L �N1

qab)

= κ−1

∫

σ

d3x
{
N2(L �N1

H) + N2

√
det(q)qab (L �N1

Rab) +
√

det(q)[qabDcD
cN2

−DaDbN2] (L �N1
qab)

}
(1.5.18)
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Now by the very definition of the Lie derivative we have

L �N1
Rab = (δRab)δq=L �N1

q

and thus we may use (1.3.11) in order to rewrite the last line of (1.5.18) as

−
∫

σ

d3x N2

√
det(q)qab (L �N1

Rab)

=
{
−

∫

σ

d3x(−qabDcD
cN2 + DaDbN2) δqab − κδE(N2)

}

δq=L �N1
q

(1.5.19)

where we have observed in the second line that the variation in the first line is
precisely the one that gives rise to the boundary term picked up in δH(N2) and
that boundary term is the negative of (1.5.11) by definition. Inserting (1.5.19)
into (1.5.18) now gives

{ 
J( 
N1), J(N2)} = κ−1

{
−H(L �N1

N2) +
∫

∂σ

dSa Na
1 N2H + [δE(N2)]δq=L �N1

q

}

(1.5.20)

where we have performed an integration by parts in order to write the first term
as a smeared Hamiltonian constraint.

It remains to check that the two additional boundary terms combine to
−E(L �N1

N2). The easiest way to do this is to realise that upon defining the
quantity Qcd := qcd − δcd we have

κE(N) =
∫

∂σ

dSc[N,cQdd −N,dQcd + N(Qcd,d −Qdd,c)]
∫

∂σ

dSa Na
1 N2H =

∫

∂σ

dSa Na
1 N2(Qdd,cc −Qcd,cd) (1.5.21)

where all indices are raised and lowered with δab. To simplify the calculation
we notice that the supertranslation part in (1.5.4) drops out in both the vari-
ation of the first term and the second term. To see this, notice that ∂2Q is
O(r−3) even while Saβbx

b, Sωabx
b are both O(r) even, thus their combination

drops out of the second integral in (1.5.20). Now when splitting 
N = 
N0 + 
S we
have

δQ = δq = L �N1
q = L �N01

q + L�Sq = L �N01
Q + L�Sq

where in the last step we have used that L �N01
δab = 0. Since by definition of the

supertranslations L�Sq is O(r−2) even we have that both (∂N)L�Sq,N∂(L�Sq) are
at most O(r−2) even, which drops again out of the surface integral. Notice that
for similar reasons E(N) = E(N0), 
P ( 
N) = 
P ( 
N0) is independent of S, 
S as we
noticed before.
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We may therefore replace N2, 
N1 by N0
2 = b0 + βbx

b, ( 
N0
1 )a = ba + ωabx

b in
the boundary terms of (1.5.20). It follows (dropping the superscript ‘0’)

κδ �N1
E(N2)=

∫

∂σ

dSc{[βcN
aQdd,a−βd(NaQcd,a+2Qa(cω

a
d))]

+N2[ωad(Qcd,a+Qca,d) + ωac(Qda,d + Qdd,a)

+Na(Qcd,ad −Qdd,ac)]} (1.5.22)

Since E(N) does not have ∂2Q terms we will first manipulate the ∂2Q terms of∫
dSaN

a
1 N2H + κδ �N1

E(N2) which is given by

−
∫

Na
1 N2{[([Qdd,c),adSc − ([Qdd,c),cdSa] − [([Qcd,d),adSc − ([Qcd,d),cdSa]}

= −
∫

Na
1 N2εacb[([Qdd,c),e − ([Qcd,d),e]εbefdSf

= −
∫

Na
1 N2εacb[Qdd,ce −Qcd,de]dxb ∧ dxe

=
∫

Na
1 N2εacbd([Qdd,c −Qcd,d]dxb)

= −
∫

εacbd
(
Na

1 N2

)
∧ dxb[Qdd,c −Qcd,d]

= −
∫

εacb
(
Na

1 N2

)
,e
dxe ∧ dxb[Qdd,c −Qcd,d]

= −
∫

dSf εacbε
ebf

(
Na

1 N2

)
,e

[Qdd,c −Qcd,d]

=
∫

[Qdd,c −Qcd,d]
[(
Na

1 N2

)
,a
dSc −

(
Na

1 N2

)
,c
dSa

]

=
∫

dSc

{(
Na

1 N2

)
,a

[Qdd,c −Qcd,d] −
(
N c

1N2

)
,a

[Qdd,a −Qad,d]
}

(1.5.23)

Here we applied Stokes’ theorem in the fourth step (remember that we keep r = R

finite and then take the limit R → ∞ so that we may apply Stokes’ theorem)
exploiting that ∂2σ = ∅ and made frequent use of the identities dSa = εabcdx

b ∧
dxc/2, dxa ∧ dxb = εabcdSc.

Reinserting (1.5.23) into (1.5.22) we see that all the terms without derivatives
of N2 cancel each other and we are left with

κ−1

∫
dSc{(L �N1

N2)[Qdd,c −Qcd,d] + βd[Qacωad + Qadωac]

+Qdd,a[Naβc −Ncβa] + βa[NcQda,d −NdQca,d]} (1.5.24)

This expression contains four square brackets of which the first is already of
the required form and contain the terms proportional to ∂Q. Hence we must
manipulate the remaining terms such that no derivatives of Q appear any more.
This is already the case for the second square bracket. The third square bracket
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can be written as
∫

dScQdd,a[Naβc −Ncβa] =
∫

dSc(ωcaβa)Qdd (1.5.25)

where again Stokes’ theorem was applied using manipulations similar to those
in (1.5.23). By the same token

∫
dScβa[NcQda,d −NdQca,d] = −

∫
dScβaωcdQda (1.5.26)

Inserting (1.5.25) and (1.5.26) back into (1.5.24) and noticing that (L �N1
N2),a =

ωbaβb all the terms indeed combine to −E(L �N1
N2). We summarise

{ 
J( 
N1), J(N2)} = −J(L �N1
N2) (1.5.27)

3.

{J(N1), J(N2)}

= κ−1
∫

d3x

{[

2sN1
Pab − Pqab/2√

det(q)

] [

N2

{
2s

√
det(q)

(PacP b
c − qabP/2)

+ qabH/2 +
√

det(q)(qabR−Rab)

}

+
√

det(q)(−qabDcD
cN2 + DaDbN2)

]

− (N1 ↔ N2)

}

= 2sκ−1
∫

d3x

{

N1
Pab − Pqab√

det(q)

√
det(q)[−qabDcD

cN2 + DaDbN2] − (N1 ↔ N2)

}

= 2sκ−1
∫

d3x

{

N1
Pab − Pqab√

det(q)

√
det(q)[−qabDcD

cN2 + DaDbN2] − (N1 ↔ N2)

}

= 2sκ−1
∫

d3x

{
N1P

abDaDbN2 −N2P
abDaDbN1

}

= 2sκ−1
∫

d3x

{
N1

[
(DaP

abDbN2) +
1

2
HaD

aN2

]
− (N1 ↔ N2)

}

= 2sκ1

∫
d3x

{
[∂a(N1P

abDbN2) − (DaN1)P
ab(DbN2)

+
1

2
N1HaD

aN2] − (N1 ↔ N2)

}

= sκ−1
∫

d3x Ha[N1D
aN2 −N2D

aN1]

+ 2sκ

∫
dSa;Pab[N1DbN2 −N2DbN1] (1.5.28)

Defining

Na
12(q) := qab[N1∂bN2 −N2∂bN1] (1.5.29)
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we may write (1.5.28) as

{J(N1), J(N2)} = sκ−1

[∫
d3x

(
−2Da

(
P a
b

))
N b

12(q) + 2
∫

dSa;P a
b N

b
12(q)

]

= sκ−1

∫
d3x P ab[DaNb12(q) + DbNa12(q)]

= sκ−1

∫
d3x P ab

(
L �N12(q)

q
)
ab

= sJ( 
N12(q)) (1.5.30)

We may summarise our findings in the compact expression

{J(N1, 
N1), J(N2, 
N2)} = J(L �N2
N1 − L �N1

N2,L �N2

N1 + s 
N12(q))

=: J(N3, 
N3) (1.5.31)

From (1.5.31) we may read off the following properties:

(i) If both (N1, 
N1) and (N2, 
N2) are supertranslations then (N3, 
N3) is again
a supertranslation. Since we have identified the supertranslation generators
as gauge transformation generators already, this is the statement that the
supertranslation gauge algebra closes.

(ii) If one of (N1, 
N1) and (N2, 
N2) is a supertranslation while the other contains
an asymptotically non-trivial piece then (N3, 
N3) is still a supertranslation.
This is the statement that a gauge transformation transforms an asymp-
totically non-trivial generator into a gauge generator which vanishes on the
constraint surface.

(iii) If both (N1, 
N1) and (N2, 
N2) contain an asymptotically non-trivial piece
then so does (N3, 
N3). On the constraint surface the dependence of
J(N3, 
N3) reduces to the surface term where all supertranslation depen-
dence drops out and 
N12(q) may be evaluated at qab = δab. Let us write

J(NI , 
NI) =: b0IE + βa
IBa + baIPa + ϕa

IJa (1.5.32)

Then on the one hand we read off

b03 = 
b2 · 
β1 −
b1 · 
β2


β3 = 
β1 × 
β2 − 
β2 × 
β1


b3 = 
ϕ1 ×
b2 − 
ϕ2 ×
b1 + s
(
b01

β2 − b02


β1

)


ϕ3 = 
ϕ1 × 
ϕ2 + sβ1 × β2 (1.5.33)

and on the other we may simply calculate the Poisson brackets among
E,Pa, Ba, Ja. Let us introduce the notation

P 0 := E, M0a := −M0a := Ba, Mab := εacbJc, ω0a := βa, ωab := εacbϕ
c

(1.5.34)
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then

J(N, 
N) = bμP
μ +

1
2
ωμνM

μν (1.5.35)

and we arrive at the compact expression

{J(N1, 
N1), J(N2, 
N2)} = b1μb
2
ρ{Pμ, P ρ} +

1
2
b1μω

2
ρσ{Pμ,Mρσ}

+
1
2
ω1
μνb

2
ρ{Mμν , P ρ} +

1
4
ω1
μνω

2
ρσ{Mμν ,Mρσ}

(1.5.36)

and by comparing coefficients we conclude that the Pμ,Mμν satisfy the
Euclidean or Lorentzian Poincaré algebra

{Pμ, P ρ} = 0

{Mμν , P ρ} = 2ηρ[μP ν]

{Mμν ,Mρσ} = 2s
(
ηρ[μMν]σ − ησ[μMν]ρ

)
(1.5.37)

Interpretation: We have seen that P 0 defines the mass for the Schwarzschild
solution and thus measures gravitational energy at spatial infinity. This energy
of course depends on the observer at spatial infinity and must transform non-
trivially under a boost. This boost is an observable, that is, measurable transfor-
mation. This is precisely accommodated in (iii) as we just saw. It follows that,
for example, the boost generator Ba must not be considered as a gener-
ator of a gauge (unobservable) transformation. Similar arguments show
that all the ten Poincaré generators Pμ, Mμν must be considered as observable
quantities and hence they define charges which generate symmetries. They are
called symmetries because they transform solutions to the equations of motions
into, possibly different, solutions of the equations of motion which are them-
selves determined up to a gauge transformation. This follows from the fact that,
as we have seen in the previous section, on-shell the transformations generated
by J(N, 
N) are simply diffeomorphisms and the equations of motion are covari-
ant under diffeomorphisms. For example, in vacuum the Ricci flatness condition
is unaffected.

This interpretation fits quite nicely with (ii) because on the constraint
surface the gauge generators have vanishing Poisson brackets with these charges
whence they define conserved charges or weak Dirac observables. In fact, up to
now these are the only Dirac observables for General Relativity which are known
to be globally defined on the phase space (see below for weak Dirac observables
which presumably are only locally defined). They exist only in the asymptotically
flat case and not in the compact case without boundary. Generically, boundaries
lead to conserved charges because the then necessary boundary conditions impose
certain restrictions on the allowed gauge transformations which gives birth to
physical degrees of freedom which would otherwise be considered as gauge. We
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will see a concrete realisation of this effect in the isolated horizon framework for
quantum black holes in Chapter 15.

Summarising, we have derived that J(N, 
N) is a gauge generator if (N, 
N) is a
supertranslation but otherwise a symmetry generator of the equations of motion
which in particular is a weak Dirac observable. By (i), the gauge generators
close among themselves, the constraint system is first class. We remark that
the algebra (1.5.31) and its interpretation holds irrespective of which matter
we couple to gravity, which means that it has a purely geometric origin. This
origin, the geometry of hypersurface deformations, has been beautifully worked
out in [233].

In summary, General Relativity can be cast into Hamiltonian form, however,
its equations of motion are complicated non-linear partial differential equations of
second order and very difficult to solve. Nevertheless, the Cauchy problem is well-
posed and the classical theory is consistent up to the point where singularities
(e.g., black holes) appear [207,208]. This is one instance where it is expected that
the classical theory is unable to describe the system appropriately any longer
and that the more exact theory of quantum gravity must take over in order to
remove the singularity. This is expected to be quite in analogy to the case of
the hydrogen atom whose stability was a miracle to classical electrodynamics
but was easily explained by quantum physics. Of course, the quantum theory
of gravity is expected to be even harder to handle mathematically than the
classical theory, however, as a zeroth step an existence proof would already be
a triumph. Notice that up to date a similar existence proof for, say, QCD is
lacking as well [99]. Before we dive into the quantum theory we further develop
the physical interpretation of the formalism in the next chapter.
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The problem of time, locality and
the interpretation of quantum mechanics

In this chapter we are going to address the famous ‘problem of time’ which has
become the headline for all the physical interpretational problems of the math-
ematical formalism. Roughly speaking the problem of time is that there is none
in GR: at least in the spatially compact case without boundaries the Hamil-
tonian vanishes on the physical, constraint surface. This is physically relevant
because we seem to live in a universe with precisely that spatial topology. Since
the Hamiltonian generates time translations in any canonical theory we arrive
at the conclusion that ‘nothing moves’ in GR, which is in obvious contradiction
to experiment. Since there is no time also the usual interpretation of quantum
mechanical measurements at given moments of time breaks down. One can fill
books about this issue and we will not even try to cover a substantial amount
of the existing literature. A superb source of information on these conceptual
problems is Carlo Rovelli’s book [3]. Rather, what we will do in what follows
is to collect various proposals for solutions to the problem of time taken from
other authors, especially Rovelli’s relational approach to classical and quantum
physics and Hartle et al.’s consistent history interpretation, and combine them
into a consistent picture. We do not want to suggest that the resulting picture
is to be accepted, rather we want to draw attention to the problems involved
and to develop a working hypothesis. The discussion on the interpretation of
quantum mechanics is very alive and some authors such as Penrose [243] not
only propose to alter the interpretational aspect of quantum mechanics but also
the mathematical framework.

On the other hand, if one accepts this proposal, then we want to stress that
conceptually the problem of time can be solved completely within the canonical
framework. There remain technical challenges, which much of this book is about,
and many of them have already been addressed as we will see but conceptually
one knows precisely what to do. This is one of the strengths of the canonical
approach to quantum gravity, namely that there is a precise programme which
one has to implement technically for the case of GR and which we will present
in the next chapter.

Notice that in the asymptotically flat case discussed in the previous chapter the
problem of time does not arise, there the ADM Hamiltonian generates classical
and quantum time evolution and even the Copenhagen interpretation of quantum
mechanics is applicable where the system is the isolated gravitational system
interacting with matter in the bulk while the external measurement apparatus
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is located at the spatial infinity boundary. Hence in what follows we will discuss
mostly the case that there is no Hamiltonian but rather an infinite number of
Hamiltonian constraints, which is especially relevant for (quantum) cosmology.

2.1 The classical problem of time: Dirac observables

Let us summarise the structure at which we have arrived so far. The Hamiltonian
of GR is not a true Hamiltonian but a linear combination of constraints. Rather
than generating time translations it generates spacetime diffeomorphisms at least
on-shell and specific canonical transformations otherwise. Since the parameters
of these canonical transformations N,Na are completely arbitrary unspecified
functions, the corresponding motions on the phase space have to be interpreted
as gauge transformations. This is quite similar to the gauge motions generated
by the Gauß constraint in Maxwell theory [219]. The basic variables of the
theory qab, P

ab are not observables of the theory because they are not gauge-
invariant. Let us count the number of kinematical and dynamical (true) degrees
of freedom: the basic variables are both symmetric tensors of rank two and thus
have D(D + 1)/2 independent components per spatial point. There are D + 1
independent constraints so that D + 1 of these phase space variables can be
eliminated. D + 1 of the remaining degrees of freedom can be gauged away by
a gauge transformation leaving us with D(D + 1) − 2(D + 1) = (D − 2)(D + 1)
phase space degrees of freedom or (D − 2)(D + 1)/2 configuration space degrees
of freedom per spatial point. For D = 3 we thus recover the two graviton degrees
of freedom.

The further classical analysis of this system could now proceed as follows:

(i) One determines a complete set of gauge-invariant observables on the
constraint surface M and computes the induced symplectic structure Ω
on the so-reduced symplectic manifold M̂. Equivalently, one obtains the
full set of solutions to the equations of motion, the set of Cauchy data are
then the searched-for observables. This programme of ‘symplectic reduction’
could never be completed due to the complicated appearance of the Hamil-
tonian constraint. In fact, until today one does not know any such so-called
Dirac observable for full General Relativity rigorously (with exception of
the generators of the Poincaré group as derived in the previous chapter in
the asymptotically flat case [244, 245]; notice, however, that formal Dirac
observables will be constructed in what follows). The results of [246, 247]
reveal that such Dirac observables are necessarily highly non-local, involving
an infinite number of spatial derivatives of the canonical variables. This will
be confirmed in the constructions that follow.

(ii) One fixes a gauge and solves the constraints. Decades of research in the
field of solving the Cauchy problem for General Relativity reveal that such a
procedure works at most locally, that is, there do not exist, in general, global



76 The problem of time, locality and the interpretation of quantum mechanics

gauge conditions. This is reminiscent of the Gribov problem in non-Abelian
Yang–Mills theories.

However, the problem of time is not concerned with these technical obsta-
cles. Rather, it addresses the following problem: suppose that we have found
a complete set of Dirac observables Oα, α ∈ J which at least weakly (that
is, on the constraint surface) Poisson commute with the constraints, that is,
{H(N), Oα} = { �H( �N), Oα} = 0 for all N, �N when H(N) = �H( �N) = 0 for all
N, �N . The problem of time is now that there is no time in this picture. The
formalism is completely frozen, nothing moves. This is certainly very strange
and in contradiction with experiment.

To resolve this issue let us analyse how one measures movements physically.
Usually, that is in the presence of a true Hamiltonian rather than a Hamiltonian
constraint, we have a measurable quantity T , called a clock, and another mea-
surable quantity S, called a system. For instance, T could be the position of a
pointer on a real clock and S could be the distance covered by a runner. We
register the movement of S by recording the values of S in relation to the values
of T . Of course, in the presence of a Hamiltonian there is no problem of time
because the parameter of the Hamiltonian flow of that Hamiltonian is a natural
time parameter. However, that parameter may not be the one that is directly
related to the readings of a physical clock that we are interested in. If we translate
the time parameter into the readings of a clock under investigation, we discover
a mechanism that can be generalised to the case without a true Hamiltonian.

We will now describe this process mathematically, working our way upwards
while increasing the complexity of the system.

1. Case of a true Hamiltonian
If there is a true Hamiltonian H we therefore may obtain a curve τ �→ ST (τ) as
follows. The Hamiltonian H generates a Hamiltonian flow on the phase space
generated by its Hamiltonian vector field χH. It transforms any function on
phase space as (see Section 19.3 for an account on symplectic geometry)

F �→ αH
t (F ) := etLχH · F =

∞∑

n=0

tn

n!
{H, F}(n) (2.1.1)

where {G,F}(0) := F, {G,F}(n+1) := {G, {G,F}(n)} is the iterated Poisson
bracket. One can check that the map (2.1.1) defines an automorphism on
the Poisson algebra C∞(M) of functions on the phase space M, hence
αH
t (F + G) = αH

t (F ) + αH
t (G) and αH

t (FG) = αH
t (F ) αH

t (G). Moreover, the
collection t �→ αH

t forms an Abelian 1-parameter group of automorphisms,
that is, αH

t ◦ αH
s = αH

s+t.
The physical process of measuring the movement of S relative to the move-

ment of T may then be described mathematically as follows. We are interested
in the value of S when T takes the value τ . Thus we should solve the equation
αH
t (T ) = τ for t, which is always possible locally unless T is a constant of the
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motion. Denote the solution by tT (τ), which is now phase space-dependent.
Then

ST (τ) :=
[
αH
t (S)

]
t=tT (τ)

=
[
αH
t (S)

]
αH

t (T )=τ
(2.1.2)

Now not very surprisingly, (2.1.2) is a constant of the motion. The intuitive
reason is that ST (τ) is the value of S frozen at the point of parameter t time
when T takes the value τ , hence ST (τ) cannot move in parameter t time.
However, it can move in clock τ time. The mathematical reason is as follows.
From the identity

[
αH
t (T )

]
t=tT (τ)

= τ (2.1.3)

we derive

0 = {H, τ} =
{
H, αH

t (T )
}
t=tT (τ)

+
[
d

dt
αH
t (T )

]

t=tT (τ)

{H, tT (τ)}

=
{
H, αH

t (T )
}
t=tT (τ)

[1 + {H, tT (τ)}] (2.1.4)

by definition of αH
t , hence {H, tT (τ)} = −1 unless T is a constant of the

motion. The same calculation then reveals

{H, ST (τ)} =
{
H, αH

t (S)
}
t=tT (τ)

[1 + {H, tT (τ)}] = 0 (2.1.5)

Of course, the constant of the motion (2.1.2) might be trivial (e.g., if time
evolution is ergodic in which case the only constants of the motion are numer-
ical constants) or it might not be well-defined on the whole phase space (e.g.,
if there simply is no αH

t -invariant function of S, T in which case (2.1.2) can-
not be globally defined), however, in principle this recipe gives a constructive
algorithm to find constants of the motion:
(i) Take any two non-constants T, S such that t �→ αH

t (T ) is locally invertible.
(ii) Construct ST (τ).

2. Case: single constraint
The only difference between a single constraint H and a true Hamiltonian
H is that the only physically interesting quantities are now the constants
of the motion. We now call them Dirac observables. In the case of a true
Hamiltonian all the functions on phase space were observables. An observable
is a quantity which is gauge-invariant. Therefore only the Dirac observables
are actually observable. The role of the quantities S, T is now that they can be
mathematically determined at any point of unphysical parameter time t := λ,
which is here just a Lagrange multiplier. However, the value αH

λ (T ) depends
non-trivially on the gauge parameter λ and thus is gauge-dependent. In other
words, we must choose a gauge parameter λ to assign a definite value, namely
αH
λ (T ), to T which is like fixing a coordinate system. Physical quantities are

coordinate-independent, see below. The difference with the case of a Hamil-
tonian H is that the time t parameter there does not have the status of a
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gauge parameter but actually the time parameter defined by the Hamiltonian
which corresponds to the notion of time of a physical observer. For instance,
in the context of GR in the asymptotically flat case the time t parameter
corresponding to the ADM Hamiltonian is actually the time parameter used
by an observer in an asymptotic inertial system in Minkowski space.

Such gauge-dependent quantities are called, following Rovelli [248–251],
partial observables. According to Rovelli, they can be measured but are not
predictable. However, we can now use the same mathematics as before to
construct a gauge-invariant quantity

ST (τ) :=
[
αH
λ (S)

]
αH

λ (T )=τ
(2.1.6)

which now has the interpretation of the value of S in that gauge λ in which T

takes the value τ . Following again Rovelli, we call (2.1.6) an evolving constant
or complete observable.

This terminology is perhaps a bit misleading because by definition an
observable is something that can be measured in physics. The following inter-
pretation is maybe more appropriate: a measurable quantity is always a
complete observable, even pointers of a clock are observables and not par-
tial observables. Now complete observables are defined with respect to non-
measurable (since gauge-dependent) quantities T and S which we will sim-
ply call non-observables. From these we construct two complete observables,
namely ST (τ) and TT (τ) = τ . These are Dirac observables and they are mea-
surable. In this book we will conform with Rovelli’s terminology, however, we
stress that the partial observables S, T cannot be measured, only ST (τ), τ are
measurable. In physics we are not aware of the non-observable T , rather we
construct two observables ST (τ), S′

T (τ) and may treat τ for the value of S′
T (τ)

in order to determine the value of ST (τ) when S′
T (τ) has a given value. In this

sense the observable τ or the unobservable T is a ‘hidden clock’ and an open
issue is whether and how physics depends on the choice of those hidden clocks.

For readers who find this construction awkward we mention here that the
case of a Hamiltonian H can be phrased in the language of a single Hamilto-
nian constraint as follows. Assign to the phase space M an additional canoni-
cal pair (q0, p0) and extend the Poisson bracket in such a way that q0, p0 have
vanishing Poisson bracket with any function on M. Now define the constraint

H := p0 + H(p, q) (2.1.7)

where (p, q) collectively denote the phase space coordinates of M. Now
define a partial clock observable T := q0 and a partial system observable S

which does not depend on q0, p0. Then αH
λ (T ) = T + λ, αH

λ (S) = αH
λ (S) and

ST (τ) = αH
τ−T (S). Thus we see that in the gauge T = 0 the Dirac observables

are described precisely by the usual evolution with respect to H.
Hence the formalism described above can be viewed as an extension of the

formalism when a true Hamiltonian is available. In general, if the Hamiltonian
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constraint can be split as in (2.1.7) then we say that we can deparametrise the
system. Unfortunately, for most physically interesting systems it is not known
how to deparametrise them nor whether it is possible at all. However, as we
will see in the next section, the τ evolution is automatically Hamiltonian,
that is, a canonical transformation, and therefore has a generator. That
generator is what one could call a true Hamiltonian for the gauge system.
In contrast to unconstrained systems, that Hamiltonian is not defined by a
Legendre transformation but rather is selected by a choice of clock variable.

3. Case: several, mutually Poisson-commuting constraints
If we have several constraints HI , I ∈ I which however are in involution
{HI , HJ} = 0 then we may define their respective flows αHI

λI
and introduce

several clocks TI and parameters τI . We now define

S{T}({τ}) =
([

◦I∈I αHI

λI

]
(S)

)
α

HI
λI

(TI)=τI
(2.1.8)

Notice that the sequence in which we apply the respective gauge evolutions
is irrelevant due to the commutativity of the constraints assumed. It is only
for this reason that (2.1.8) indeed defines an, even strong, Dirac observable.
The quantity (2.1.8) has a physical interpretation analogous to (2.1.6) just
that one has to use several gauges and clocks.

4. Case: several, mutually non-Poisson-commuting constraints
As we have seen, GR does not fall in either of the categories just described.
We have an infinite number of constraints H(N), one for each choice of
lapse function. The space of lapse functions is now infinite-dimensional,
hence we have an infinite number of gauge parameters or Lagrange mul-
tipliers. Moreover, {H(N), H(N ′)} �= 0. In order to apply the framework
of the third case just mentioned one would like to work on the space of
spatially diffeomorphism-invariant functions, that is, functions satisfying
{ �H( �N), O} = 0 because then we have {{H(N), H(N ′)}, O} = 0 at least on
the surface defined by Ha(x) = 0 for all x ∈ σ so that one might be able to
show that it does not matter in which sequence we apply the α

H(N)
tN . How-

ever, unfortunately α
H(N)
tN (O) is no longer spatially diffeomorphism-invariant

because { �H( �N), H(N)} = −κH(L �NN) is not invariant, hence we have

α
H(N1)
tN1

◦ αH(N2)
tN2

◦ αH(N3)
tN3

(O) �= α
H(N2)
tN2

◦ αH(N1)
tN1

◦ αH(N3)
tN3

(O)

even if { �H( �N), O} = 0.
Thus, in this case we need a new idea. One possibility is the Master

Constraint Programme introduced in [252] and tested in [253–257]. See
also [87–91] for related proposals and Chapter 30 for the mathematical imple-
mentation. The currently preferred proposal [258–260], closer to Rovelli’s
original idea, will be the subject of the next section. A third proposal, also
based on a perturbative expansion like [258], is given in [261, 262], which we
will not outline in this book for reasons of space.
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The classical part of the Master Constraint Programme, to which one is
naturally led in GR as we will show later, consists of the following: given a
collection of constraints HI , I ∈ I which may be first class or not and which
may involve structure functions, consider the associated Master Constraint

M =
1
2

∑

I,J∈I
HIK

IJHJ (2.1.9)

where KIJ is a positive operator on the space of square summable sequences
over the index set I. It may depend on the phase space. Similar conditions
hold when we are dealing with continuous label sets. Then the constraint
surface defined by M = 0 coincides with the one defined by HI = 0, ∀ I ∈ I.
This is why it is called the Master Constraint. Now we are in the situation
of a single Hamiltonian constraint and we can again apply the mathematics
from above. However, notice the following subtlety: for any function F on
the phase space we have {M, F}M=0 = 0. Thus, the Master Constraint is
qualitatively different from the usual single Hamiltonian constraints in that
it does not generate gauge transformations on the constraint surface. In
particular, it seems that it does not detect weak Dirac observables at all
because F could be completely arbitrary. However, notice that

{F, {F,M}}M=0 =
∑

I,J

{F,HI}M=0K
IJ{F,HJ}M=0 (2.1.10)

Thus the single Master Equation {F, {F,M}}M=0 = 0 is equivalent to
the infinite number of equations {F,HI}M=0 = 0 ∀ I and therefore (2.1.10)
precisely detects weak Dirac observables. Now obviously (2.1.10) is identically
satisfied if

{F,M} = 0 (2.1.11)

holds on the full phase space. Functions F with this property are called
strong Dirac observables (with respect to M). Thus, as far as strong Dirac
observables are concerned, we would again construct

ST (τ) =
(
αM
λ (S)

)
αM

λ (T )=τ
(2.1.12)

However, we must now be careful with its interpretation: it is the value of S
in the gauge, with respect to M, in which T takes the value τ away from the
constraint surface. Now, ST (τ) formally commutes everywhere with M by
construction, however, it may be discontinuous there, see the next section. If
it is continuous, then we can continue it to the surface M = 0 and ST (τ) keeps
its τ -dependence. In terms of the individual constraints HI the interpretation
of (2.1.12) would then be the value of S in the gauge when T takes the
value τ and where gauge now means that we are considering simultaneous
gauge transformations generated by the constraint H(λ) =

∑
I λ

IHI and
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where the ‘Lagrange multipliers’ are now specified phase space functions
λI =

∑
J KIJHJ which actually vanish on the constraint surface.

We will elaborate more on the Master Constraint Programme in the
concrete case of GR in Chapter 10.

This solves the problem of time classically in terms of evolving constants which
have a clear physical interpretation in terms of partial observables. We see that
we can regain a notion of time as the measurable parameter τ in all cases, at
least in principle. On the other hand, the Dirac observables ST (τ) are completely
non-local in the unphysical time t since by construction, for example

ST (τ) = lim
R→∞

1
2R

∫ R

−R

dt αM
t (ST (τ)) (2.1.13)

The expression on the right-hand side of (2.1.13) is called an ergodic mean with
respect to the unphysical time t.

An interesting question is whether we can extract from ST (τ) a physical
Hamiltonian Hphys which itself is a Dirac observable by defining ST (τ) =:
α

Hphys
τ (ST (0)). Taking the derivative with respect to τ results in the equation

{Hphys, ST (τ)} =

({
H,αH

t (S)
}

{
T, αH

t (S)
}

)

t=tT (τ)

(2.1.14)

which can be solved for Hphys since this is a first-order, linear partial differential
equation for Hphys (although possibly in infinite dimensions). However, the solu-
tion should be independent of S, it may depend on T . It is easy to check that in
the deparametrised case T = q0, H = p0 + H we find Hphys = H which indeed
is a Dirac observable, {Hphys, H} = 0. In general, whether a suitable Hphys can
be found at least locally in τ -time evolution will depend crucially on the choice of
the clock variable T . We will have to say more on this point in the next section.

2.2 Partial and complete observables for general
constrained systems

As we will see shortly, given partial observables S, T one can formally solve
equation (2.1.12) by

ST (τ) =
∞∑

n=0

(τ − T )n

n!

(
1

{M, T}χM

)n

· S (2.2.1)

provided the series converges in a neighbourhood of the constraint surface. Here
χM is the Hamiltonian vector field of M. We see that (2.2.1) is very likely not to
converge unless S, T are carefully chosen. The reason is that on the constraint
surface both the Hamiltonian vector field of M and the quantity {M, T} vanish.
Hence, the vector field X := 1

{M,T}χM becomes ill-defined at M = 0, unless the
two zeros cancel unambiguously in the sense of de l’Hospital’s theorem when
expanding numerator and denominator in terms of the individual constraints CI .
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This is equivalent to assigning an unambiguous value to the quantity CI/
√
M

at M = 0 for all the indices I appearing in that quotient which is ambiguous,
in general, if there are more than two. This means that in most cases one has
to resort to the stronger condition {O, {O,M}}M=0 = 0 which in general only
selects weak Dirac observables.

This condition, however, cannot be solved by the partial observable Ansatz
since the very definition of the partial observable uses the Hamiltonian vector
field of the constraint. The advantage of the above Master Equation is that it is
a single equation, its disadvantage is that it is a non-linear condition on O. Since
it is equivalent to the infinite number of conditions {CI , O}M=0 the question
is whether one cannot make progress with these linear equations, even if the
constraints CI do not mutually commute. One of the achievements of [258, 259]
is to notice that, at least locally, the constraints CI can be replaced by equivalent
ones C ′

I which have the property that their Hamiltonian vector fields commute
weakly. This means that the structure functions of the new constraints vanish
on the constraint surface, which is not the case for the CI . It turns out that
this condition is sufficient in order to use the partial observable Ansatz because
the Hamiltonian flows of the C ′

I weakly commute and we are back to case (3)
in the previous section. We will now describe elements of [258, 259], using the
notation of [260] which contains additional ideas concerning the quantisation of
the resulting complete (Dirac) observables. In particular, we will derive a formal
power series in the general case which is as explicit as (2.2.2). Notice, however,
that the results will generically be at most valid locally in phase space.

2.2.1 Partial and weak complete observables

We begin with a more geometrical description of the situation: let Cj , j ∈ I be
a system of first-class constraints on a phase space M with (strong) symplectic
structure given by a Poisson bracket {., .} where the index set has countable
cardinality. This includes the case of a field theory for which the constraints
are usually given in the local form Cμ(x), x ∈ σ, μ = 1, . . . , n < ∞ where σ is a
spatial, D-dimensional manifold corresponding to the initial value formulation
and μ are some tensorial and/or Lie algebra indices. This can be seen by choosing
a basis bI of the Hilbert space L2(σ, dDx) consisting of smooth functions of
compact support and defining Cj :=

∫
σ
dDx bI(x) Cμ(x) with j := (μ, I). We

assume the most general situation, namely that {Cj , Ck} = fjk
lCl closes with

structure functions, that is, fjk l can be non-trivial functions on M.
The partial observable Ansatz to generate Dirac observables is now as follows.

Take as many functions on phase space Tj , j ∈ I as there are constraints. These
functions have the purpose of providing a local (in phase space) coordinatisation
of the gauge orbit [m] of any point m in phase space, at least in a neighbourhood
of the constraint surface M = {m ∈ M; Cj(m) = 0 ∀j ∈ I}. The gauge orbit [m]
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of m is given by [m] := {αβ1 ◦ . . . ◦ αβN
(m); N < ∞, βj

k ∈ R, k = 1, . . . , N, j ∈
I}. Here αβ is the canonical transformation (automorphism of (C∞(M), {., .})
generated by the Hamiltonian vector field χβ of Cβ := βjCj , that is αβ(f) :=
exp(χβ) · f . (Notice that if the system had structure constants, then it would be
sufficient to choose N = 1.)

In other words, we assume that it is possible to find functions Tj such that
each m ∈ M is completely specified by [m] and by the Tj(m). This means that
if the value τj is in the range of Tj then the gauge fixing surface Mτ := {m ∈
M; Tj(m) = τj} intersects each [m] in precisely one point. In practice this is
usually hard to achieve globally on M due to the possibility of Gribov copies,
but here we are only interested in local considerations. It follows that the matrix
Ajk := {Cj , Tk} must be locally invertible so that the condition [αβ(Tj)](m) =
Tj(αβ(m)) = τj can be inverted for β (given m′ ∈ [m] we may write it in the
form [αβ(m)]|β=B(m′) for some B(m′) which may depend on m′).

Take now another function f on phase space. Then the weak Dirac observable
F τ
f,T associated with the partial observables f, Tj , j ∈ I is defined by

(
F τ
f,T

)
(m) := [f(αβ(m))]|β=Bτ

T (m), [Tj(αβ(m))]|β=Bτ
T (m) = τj (2.2.2)

The physical interpretation of F τ
f,T is that it is the value of f at those ‘times’ βj

when the ‘clocks’ Tj take the values τj .
We will now derive an explicit expression for (2.2.2) from an Ansatz for a

Taylor expansion. Namely, on the gauge cut Mτ the function F τ
f,T equals f

since then Bτ
T (m) = 0. Away from this section, F τ

f,T can be expanded into a
Taylor series.1 Thus we make the Ansatz

F τ
f,T =

∞∑

{kj}j∈I=0

∏

j∈I

(τj − Tj)kj

kj !
f{kj}j∈I (2.2.3)

with f{kj}={0} = f . We assume that (2.2.3) converges absolutely on an open
set S and is continuous there, hence is uniformly bounded on any compact set
contained in S. We may then interchange summation and differentiation on S

and compute

{
Cl, F

τ
f,T

}
=

∞∑

{kj}j∈I=0

∏

j∈I

(τj − Tj)kj

kj !

[
∑

m∈I
−Al,mf{k′

j(m)}j∈I +
{
Cl, f{kj}j∈I

}
]

(2.2.4)

where k′j(m) = kj for j �= m and k′m(m) = km + 1. Setting (2.2.4) (weakly) to
zero leads to a recursion relation with the formal solution

f{kj}j∈I =
∏

j∈I
(X ′

j)
k
j · f, X ′

j · f =
∑

k∈I
(A−1)jk{Ck, f} (2.2.5)

1 In other words, F τ
f,T is the gauge-invariant extension of the restriction of f to Mτ

mentioned in [263] for which however no explicit expression was given there.



84 The problem of time, locality and the interpretation of quantum mechanics

Expression (2.2.5) is formal, among other things, because we did not specify
the order of application of the vector fields X ′

j . We will now show that, as a
weak identity, the order in (2.2.5) is irrelevant. To see this, let us introduce the
equivalent constraints (at least on S)

C ′
j :=

∑

k∈I
(A−1)jkCk (2.2.6)

and notice that with the Hamiltonian vector fields Xj · f = {C ′
j , f} we have

X ′
j1
. . . X ′

jn
· f ≈ Xj1 . . . Xjn · f for any j1, . . . , jn due to the first-class property

of the constraints. Here and in what follows we write ≈ for a relation that
becomes an identity on M. Then we can make the following surprising observa-
tion.

Theorem 2.2.1. Let Cj be a system of first-class constraints and Tj be any
functions such that the matrix A with entries Ajk := {Cj , Tk} is invertible on
some open set S intersecting the constraint surface. Define the equivalent C ′

j

constraints (2.2.6). Then their Hamiltonian vector fields Xj := χC′
j

are mutually
weakly commuting.

Proof: The proof consists of a straightforward computation and exploits the
Jacobi identity. Abbreviating Bjk := (A−1)jk we have

{C ′
j , {C ′

k, f}} − {C ′
k, {C ′

j , f}}
≈

∑

m,n

Bjm{Cm, [Bkn{Cn, f} + Cn{Bkn, f}]} − j ↔ k

≈
∑

m,n

Bjm[{Cm, Bkn}{Cn, f} + Bkn{Cm, {Cn, f}}] − j ↔ k

=
∑

m,n

Bjm

⎡

⎣−
∑

l,i

Bkl{Cm, Ali}Bin{Cn, f} + Bkn{Cm, {Cn, f}}

⎤

⎦ − j ↔ k

=
∑

m,n

Bjm

⎡

⎣−
∑

l,i

BklBin{Cn, f}({Cm, {Cl, Ti}} − {Cl, {Cm, Ti}})

+Bkn({Cm, {Cn, f}} − {Cn, {Cm, f}})]

=
∑

m,n

Bjm

⎡

⎣
∑

l,i

BklBin{Cn, f}{Ti, {Cm, Cl}} −Bkn({f, {Cm, Cn}}

⎤

⎦

≈
∑

m,n

Bjm

⎡

⎣−
∑

l,i,p

BklBin{Cn, f}fml
pApi + Bkn

∑

l

fmn
l{Cl, f}

⎤

⎦

=
∑

m,n,l

Bjm

[
−Bkl{Cn, f}fml

n + Bknfmn
l{Cl, f}

]

= 0 (2.2.7)
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Due to

{C ′
j , {C ′

k, f}} − {C ′
k, {C ′

j , f}} = {{C ′
j , C

′
k}, f} ≈ f ′

jk
l{C ′

l , f} ≈ 0 (2.2.8)

this means that the structure functions f ′
jk

l with respect to the C ′
j are weakly

vanishing, that is, themselves proportional to the constraints. �

We may therefore write the Dirac observable generated by f, Tj indeed as

F τ
f,T =

∞∑

{kj}j∈I=0

∏

j∈I

(τj − Tj)kj

kj !

∏

j∈I
(Xj)kj · f (2.2.9)

Expression (2.2.9) is, despite the obvious convergence issues to be checked in the
concrete application, remarkably simple. Of course, especially in field theory it
will not be possible to calculate it exactly and already the computation of the
inverse A−1 may be hard, depending on the choice of the Tj . However, for points
close to the gauge cut, expression (2.2.9) is rapidly converging and one may be
able to do approximate calculations.

Remark: Let α′
β(f) := exp(

∑
j βjXj) · f be the gauge flow generated by the

new constraints C ′
j for real-valued gauge parameters βj . We easily calculate

α′
β(Tj) ≈ Tj + βj . The condition α′

β(Tj) = τj can therefore be easily inverted to
βj ≈ τj − Tj . Hence the complete observable prescription with respect to the
new constraints C ′

j

F τ
f,T := [α′

β(f)]|α′
β(T )=τ (2.2.10)

weakly coincides with (2.2.9).

2.2.2 Poisson algebra of Dirac observables

In [263] we find the statement that the Poisson brackets among the Dirac observ-
ables obtained as the gauge-invariant extension of Mτ of the respective restric-
tions to the gauge cut of functions f, g is weakly given by the gauge-invariant
extension of their Dirac bracket with respect to the associated gauge fixing func-
tions. Expression (2.2.9) now enables us to give an explicit, local proof (modulo
convergence issues). See [258] for an alternative one.

Theorem 2.2.2. Let F τ
f,T be defined as in (2.2.9) with respect to partial observ-

ables Tj. Introduce the gauge conditions Gj := Tj − τj and consider the system of
second-class constraints C1j := Cj , C2j := Gj and abbreviate μ = (I, j), I = 1, 2.
Introduce the Dirac bracket

{f, f ′}∗ := {f, f ′} − {f, Cμ}Kμν{Cν , f
′} (2.2.11)

where Kμν = {Cμ, Cν}, KμρKρν = δμν . Then
{
F τ
f,T , F

τ
f ′,T

}
≈ F τ

{f,f ′}∗,T (2.2.12)
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Proof: Let us introduce the abbreviations

Y{k} =
∏

j

(τj − Tj)kj

kj !
, f{k} =

∏

j

(Xj)kj · f,
∑

{k}
=

∞∑

k1,k2,...=0

(2.2.13)

We have

{
F τ
f,T , F

τ
f ′,T

}

=
∑

{k},{l}

{
Y{k}f{k}, Y{l}f

′
{l}

}

≈
∑

{k},{l}
Y{k}Y{l}

⎡

⎣
{
f{k}, f

′
{l}

}
−

∑

j

(Xj · f){k}
{
Tj , f

′
{l}

}

+
∑

j

(Xj · f ′){l}{Tj , f{k}} +
∑

j,m

(Xj · f){k}(Xm · f ′){l}{Tj , Tm}

⎤

⎦

=
∑

{n}
Y{n}

∑

{k};kl≤nl

∏

l

(
nl

kl

) ⎡

⎣{
f{k}, f

′
{n−k}

}
−

∑

j

(Xj · f){k}
{
Tj , f

′
{n−k}

}

+
∑

j

(Xj · f ′){n−k}{Tj , f{k}} +
∑

j,m

(Xj · f){k}(Xm · f ′){n−k}{Tj , Tm}

⎤

⎦

(2.2.14)

By definition of a Hamiltonian vector field we have Xj{f, f ′} = {Xjf, f
′} +

{f,Xjf
′}. Thus, by the (multi) Leibniz rule

∏

l

(Xl)nl {f, f ′} =
∑

{k}; kl≤nl

∏

l

(
nl

kl

) {
f{k}, f

′
{n−k}

}
(2.2.15)

is already the first term we need. It therefore remains to show that

∏

l

(Xl)nl [{f, f ′}∗ − {f, f ′}]

≈
∑

{k}; kl≤nl

∏

l

(
nl

kl

) ⎡

⎣−
∑

j

(Xj · f){k}
{
Tj , f

′
{n−k}

}

+
∑

j

(Xj · f ′){n−k}{Tj , f{k}} +
∑

j,m

(Xj · f){k}(Xm · f ′){n−k}{Tj , Tm}

⎤

⎦

(2.2.16)
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We will do this by multi-induction over N :=
∑

l nl.
The case N = 0 reduces to the claim

{f, f ′}∗ − {f, f ′} ≈ −
∑

j

(Xj · f){Tj , f
′} +

∑

j

(Xj · f ′){Tj , f}

+
∑

j,m

(Xj · f)(Xm · f ′){Tj , Tm} (2.2.17)

To compute the Dirac bracket explicitly we must invert the matrix
KJj,Kk with entries K1j,1k = {Cj , Ck} = fjk

lCl ≈ 0,K1j,2k = {Cj , Tk} = Ajk =
−K2k,1j and K2j,2k = {Tj , Tk}. By definition

∑
L,l K

Jj,LlKLl,Kk = δJKδjk there-
fore K1j,1k ≈ ∑

m,n(A−1)mj{Tm, Tn}(A−1)nk, K1j,2k ≈ −(A−1)kj ≈ −K2k,1j

and K2j,2k ≈ 0. It follows

−{f, f ′}∗ + {f, f ′} = {f, Cj}K1j,1k{Ck, f
′} + {f, Cj}K1j,2k{Tk, f

′}

+ {f, Tj}K2j,1k{Ck, f
′} + {f, Tj}K2j,2k{Tk, f

′}

≈
∑

m,n

{f, Cj}(A−1)mj{Tm, Tn}(A−1)nk{Ck, f
′}

−{f, Cj}(A−1)kj{Tk, f
′} + {f, Tj}(A−1)jk{Ck, f

′}

≈ −
∑

m,n

(Xm · f){Tm, Tn}(Xn · f ′) + (Xk · f){Tk, f
′}

− (Xk · f ′){Tk, f} (2.2.18)

which is precisely the negative of (2.2.17).
Suppose then that we have proved the claim for every configuration {nl} such

that
∑

l nl ≤ N . Any configuration with N + 1 arises from a configuration with
N by raising one of the nl by one unit, say nj → nj + 1. Then, by assumption

Xj

∏

l

(Xl)nl [{f, f ′}∗ − {f, f ′}]

≈ Xj

∑

{k}; kl≤nl

∏

l

(
nl

kl

) [

−
∑

l

(Xl · f){k}
{
Tl, f

′
{n−k}

}

+
∑

l

(Xl · f ′){n−k}{Tl, f{k}} +
∑

l,m

(Xl · f){k}(Xm · f ′){n−k}{Tl, Tm}

⎤

⎦

≈
∑

{k}; kl≤nl

∏

l

(
nl

kl

)[

−
∑

l

[
(Xl · f){kj}

{
Tl, f

′
{n−k}

}
+(Xl · f){k}

{
Tl, f

′
{nj−k}

}

+ (Xl · f){k}
{
Xj · Tl, f

′
{n−k}

}]
+

∑

l

[
(Xl · f ′){kj}

{
Tl, f{n−k}

}

+ (Xl · f ′){k}
{
Tl, f{nj−k}

}
+ (Xl · f ′){k}{Xj · Tl, f{n−k}}

]
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+
∑

l,m

[
(Xl · f){kj}(Xm · f ′){n−k}{Tl, Tm}

+(Xl · f){k}(Xm · f ′){nj−k}{Tl, Tm}

+ (Xl · f){k}(Xm · f ′){n−k}({XjTl, Tm} + {Tl, XjTm})
]
]

(2.2.19)

where {kj} coincides with {k} except that kj → kj + 1 and similarly for {nj}. By
the multi-binomial theorem the first two terms in each of the three sums in the
last equality combine precisely to what we need. Hence it remains to show that

0 ≈
∑

{k}; kl≤nl

∏

l

(
nl

kl

)[

−
∑

l

(Xl · f){k}
{
Xj · Tl, f

′
{n−k}

}

+
∑

l

(Xl ·f ′){k}
{
Xj · Tl, f{n−k}

}
+

∑

l,m

(Xl · f){k}(Xm · f ′){n−k}({XjTl, Tm}

+ {Tl, XjTm})

⎤

⎦ (2.2.20)

We have

Xj · Tl = δjl +
∑

m

Cm{(A−1)jm, Tl} =: δjl +
∑

m

CmBjlm (2.2.21)

Hence

{Xj · Tl, g} ≈
∑

m,n

BjlmAmn(Xn · g) =:
∑

n

Djln(Xn · g) (2.2.22)

Next, using (2.2.21) and (2.2.22)

{XjTl, Tm} + {Tl, XjTm} ≈
∑

n

(BjlnAnm −BjmnAnl) = Djlm −Djml

(2.2.23)
We can now simplify the right-hand side of (1.1.17)

∑

{k}; kl≤nl

∏

l

(
nl

kl

) ∑

l,m

Djlm

[
−(Xl · f){k}

(
Xm · f ′

{n−k}
)

+ (Xl · f ′){k}
(
Xm · f{n−k}

)
+ [Djlm −Djml](Xl · f){k}(Xm · f ′){n−k}

]

∑

l,m

Djlm

∏

i

(Xi)ni [−(Xl · f)(Xm · f ′) + (Xl · f ′)(Xm · f)

+ (Xl · f)(Xm · f ′) − (Xm · f)(Xl · f ′)] = 0 (2.2.24)

as claimed. Notice that by using the Jacobi identity we also have Djkl = Djlk

so the two terms in the second and third line of (2.2.24) even vanish separately
(important for the case that {Tj , Tk} = 0). �



2.2 Partial and complete observables for generalconstrained systems 89

We can now rephrase Theorem 2.2.2 as follows: consider the map

F τ
T : (C∞(M), {., .}∗T ) → (D∞(M), {., .}∗T ); f �→ F τ

f,T (2.2.25)

where D∞(M) denotes the set of smooth, weak Dirac observables and {., .}∗T is
the Dirac bracket with respect to the gauge fixing functions Tj . Then Theorem
2.2.2 says that F τ

T is a weak Poisson homomorphism (i.e., a homomorphism on
the constraint surface). To see this, notice that for (weak) Dirac observables the
Dirac bracket coincides weakly with the ordinary Poisson bracket. Moreover, the
map F τ

T is linear and trivially

F τ
f,T F τ

f ′,T =
∑

{k},{l}
Y{k}Y{l}f{k}f

′
{l}

=
∑

{n}
Y{n}

∑

{k}; kl≤nl

∏

l

(
nl

kl

)
f{k}f

′
{n−k}

≈
∑

{n}
Y{n}

∏

l

(Xl)nl(f f ′) = F τ
ff ′,T (2.2.26)

[We can make the homomorphism exact by dividing both C∞(M) and D∞(M)
by the ideal (under pointwise addition and multiplication) of smooth functions
vanishing on the constraint surface.] Notice that F τ

T is onto because F τ
f,T ≈ f if

f is already a weak Dirac observable.

2.2.3 Evolving constants

The complete or Dirac observable F τ
f,T has the physical interpretation of giving

the value of f when the Tj assume the values τj . In constrained field theories
we thus arrive at the multi-fingered time picture, there is no preferred time but
there are infinitely many. Accordingly, we define a multi-fingered time evolution
on the image of the maps F τ

T by

ατ : F τ0

T (C∞(M)) → F τ+τ0

T (C∞(M)); F τ0

f,T �→ F τ+τ0

f,T (2.2.27)

As defined, ατ forms a weakly Abelian group. However, it has even more inter-
esting properties:

F τ+τ0
f,T =

∑

{n}

∏

j

(
τj + τ0

j − Tj

)nj

nj !

∏

j

X
nj

j · f

≈
∑

{n}

∑

{k}; kl≤nl

∏

l

1
nl!

(
nl

kl

) ∏

j

(
τ0
j − Tj

)kj
τ
nj−kj

j

∏

j

X
kj

j X
nj−kj

j · f

≈
∑

{k}

∏

j

(
τ0
j − Tj

)kj

kj !

∏

j

X
kj

j ·

⎡

⎣
∑

{l}

τ
lj
j

lj !

∏

j

X
lj
j

⎤

⎦ · f

= F τ0
α′

τ (f),T (2.2.28)
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where α′
τ (f) is the automorphism on C∞(M) generated by the Hamiltonian

vector field of
∑

j τjC
′
j with the equivalent constraints C ′

j =
∑

k(A
−1)jkCk. This

is due to the multinomial theorem

α′
τ (f) =

∞∑

n=0

1
n!

⎛

⎝
∑

j

τjXj

⎞

⎠

n

· f

=
∞∑

n=0

1
n!

∑

j1,...,jn

n∏

k=1

τjkXjk · f

=
∞∑

n=0

1
n!

∑

{k};∑j kj=n

n!
∏

j(kj)!

∏

j

τ
kj

j

∏

j

X
kj

j · f

=
∑

{k}

∏

j

τ
kj

j

kj !

∏

j

X
kj

j · f (2.2.29)

Thus, our time evolution on the observables is induced by a gauge transformation
on the partial observables. From this observation it follows, together with the
weak homomorphism property, that

{
ατ

(
F τ0
f,T

)
, ατ

(
F τ0
f ′,T

)}
=

{
F τ0+τ
f,T , F τ0+τ

f ′,T

}

≈ F τ0+τ
{f,f ′}∗,T = ατ

(
F τ0
{f,f ′}∗,T

)

≈ ατ
({

F τ0
f,T , F

τ0
f ′,T

})
(2.2.30)

In other words, τ �→ ατ is a weakly Abelian, multi-parameter group of automor-
phisms on the image of each map F τ0

f,T . This is in strong analogy to the properties
of the one-parameter group of automorphisms on phase space generated by a true
Hamiltonian.

2.2.4 Reduced phase space quantisation of the algebra of

Dirac observables and unitary implementation of the

multi-fingered time evolution

In this section we present an idea for how to combine the observations of the
previous section with quantisation. Moreover, we will derive equations for the
physical Hamiltonians that drive the physical time τ evolution.

We assume that it is possible to choose the functions Tj as canonical coor-
dinates. In other words, we choose a canonical coordinate system consisting of
canonical pairs (qa, pa) and (Tj , P

j) where the first system of coordinates has
vanishing Poisson brackets with the second so that the only non-vanishing brack-
ets are {pa, qb} = δba, {P j , Tk} = δjk. (In field theory the label set of the a, b, . . .

will be of countably infinite cardinality corresponding to certain smeared quan-
tities of the canonical fields.) The virtue of this assumption is that the Dirac
bracket reduces to the ordinary Poisson bracket on functions which depend only
on qa, pa. We will shortly see why this is important. We define with FT := F 0

T the
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weak Dirac observables at multi-fingered time τ = 0 (or any other fixed allowed
value of τ)

Qa := FT (qa), Pa := FT (pa) (2.2.31)

Notice that F τ
Tj ,T

≈ τj , so the Dirac observable corresponding to Tj is just a
constant and thus not very interesting (but evolves precisely as a clock). Like-
wise F τ

Cj ,T
≈ 0 is not very interesting. Since at least locally we can solve the

constraints Cj for the momenta P j , that is P j ≈ Ej(qa, pa, Tk) and FT is a
homomorphism with respect to pointwise operations we have

FT (Pj) ≈ Ej(FT (qa), FT (pa), FT (Tk)) ≈ Ej(Qa, Pa, τk) (2.2.32)

and thus also does not give rise to a Dirac observable which we could not already
construct from Qa, Pa. The importance of our assumption is now that due to the
homomorphism property

{Pa, Q
b} ≈ F 0

{pa,qb}∗,T = F 0
δba,T

= δba, {Qa, Qb} ≈ {Pa, Pb} ≈ 0 (2.2.33)

In other words, even though the functions Pa, Q
a are very complicated expres-

sions in terms of qa, pa, Tj they have nevertheless canonical brackets at least on
the constraint surface. If we had to use the Dirac bracket then this would not
be the case and the algebra among the Qa, Pa would be too complicated and no
hope would exist towards its quantisation. However, under our assumption there
is now a chance.

Now reduced phase space quantisation consists in quantising the subalgebra of
D, spanned by our preferred Dirac observables Qa, Pa evaluated on the constraint
surface. As we have just seen, the algebra D itself is given by the Poisson algebra
of the functions of the Qa, Pa evaluated on the constraint surface. Hence all the
weak equalities that we have derived now become exact. We are therefore looking
for a representation π : D → L(H) of that subalgebra of D as self-adjoint, linear
operators on a Hilbert space such that [π(Pa), π(Qb)] = īhδba.

At this point it looks as if we have completely trivialised the reduced phase
space quantisation problem of our constrained Hamiltonian system because there
is no Hamiltonian to be considered and so it seems that we can just choose any of
the standard kinematical representations for quantising the phase space coordi-
natised by the qa, pa and simply use it for Qa, Pa because the respective Poisson
algebras are (weakly) isomorphic. However, this is not the case. In addition to
satisfying the canonical commutation relations we want that the multi-parameter
group of automorphisms ατ on D be represented unitarily on H (or at least a
suitable, preferred one-parameter group thereof). In other words, we want that
there exists a multi-parameter group of unitary operators U(τ) on H such that
π(ατ (Qa)) = U(τ)π(Qa)U(τ)−1 and similarly for Pa.

Notice that due to the relation (which is exact on the constraint surface)

ατ (Qa) = Fα′
τ (qa),T =

∑

{k}

∏

j

τ
kj

j

kj !
F∏

j X
kj
j ·qa,T (2.2.34)
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and where on the right-hand side we may replace any occurrence of Pj , Tj by
functions of Qa, Pa according to the above rules. Hence the automorphism ατ

preserves the algebra of functions of the Qa, Pa, although it is a very complicated
map in general and in quantum theory will suffer from ordering ambiguities. On
the other hand, for short time periods (2.2.34) gives rise to a quickly converging
perturbative expansion. Hence we see that the representation problem of D will
be severely constrained by our additional requirement to implement the multi-
time evolution unitarily, if at all possible. Whether or not this is feasible will
strongly depend on the choice of the Tj .

A possible way to implement the multi-fingered time evolution unitarily is by
quantising the Hamiltonians Hj that generate the Hamiltonian flows τj �→ ατ

where τk = δjkτj . This can be done as follows: the original constraints Cj

can be solved for the momenta P j conjugate to Tj and we get equivalent
constraints C̃j = P j + Ej(qa, pa, Tk). These constraints have a strongly Abelian
constraint algebra.2 We may write C ′

j = KjkC̃k for some regular matrix K.
Since {C ′

j , Tk} ≈ δjk = {C̃j , Tk} it follows that Kjk ≈ δjk. In other words C ′
j =

C̃j + O(C2) where the notation O(C2) means that the two constraint sets dif-
fer by terms quadratic in the constraints. It follows that the Hamiltonian vec-
tor fields Xj , X̃j of C ′

j , C̃j are weakly commuting. We now set Hj(Qa, Pa) :=
F 0
Ej ,T

≈ Ej(F 0
qa,T , F

0
pa,T

, F 0
Tk,T

) ≈ Ej(Qa, Pa, 0). Now let f be any function
which depends only on qa, pa. Then we have

{
Hj , F

0
f,T

}
≈ F 0

{Ej ,f}∗,T = F 0
{Ej ,f},T = F 0

{C̃j ,f},T

=
∑

{k}

∏

l

(τl − Tl)kl

kl!

∏

l

Xkl

l · X̃j · f

≈
∑

{k}

∏

l

(τl − Tl)kl

kl!
X̃j ·

∏

l

Xkl

l · f

≈ X̃j · F 0
f,T −

∑

{k}

(

X̃j ·
∏

l

(τl − Tl)kl

kl!

)
∏

l

Xkl

l · f

≈ +
∑

{k}

∏

l

(τl − Tl)kl

kl!
Xj ·

∏

l

Xkl

l · f

=
(

∂

∂τj

)

τ=0

ατ (FT (f)) (2.2.35)

where we have used in the second step that {Tj , Ek} = {Tj , f} = 0, in the third
we have used that {Pj , f} = 0, in the fifth we have used that the Xj , X̃k are

2 Proof: We must have {C̃j , C̃k} = f̃jk
lC̃l for some new structure functions f̃ by the

first-class property. The left-hand side is independent of the functions P j , thus must be the
right-hand side, which may therefore be evaluated at any value of P j . Set P j = −Ej . �
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weakly commuting, in the seventh we have used that F 0
f,T is a weak observable,

and in the last the definition of the flow. We conclude that the Dirac observables
Hj generate the multi-fingered flow on the space of functions of the Qa, Pa when
restricted to the constraint surface. The algebra of the Hj is weakly Abelian
because the flow ατ is a weakly Abelian group of automorphisms.

Thus, the problem of implementing the flow unitarily can be reduced to find-
ing a self-adjoint quantisation of the functions Hj . Preferred one-parameter
subgroups will be those for which the corresponding Hamiltonian generator is
bounded from below. Notice, however, that in (2.2.35) we have computed the
infinitesimal flow at τ = 0 only. For an arbitrary value of τ the infinitesimal
generator Hj(Qa, Pa, τ) defined by3

{
Hj(τ), F τ

f,T

}
:=

∂

∂τj
ατ (FT (f)) (2.2.36)

may not coincide with F 0
Ej ,T

since the Hamiltonian could be explicitly time τ -
dependent. In particular, the calculation (2.2.35) does not obviously hold any
more even by setting Hj(τ) := F τ

Ej ,T
because even if f depends on qa, pa only,

α′
τ (f), α′

τ (Ej) may depend on Pj as well.
Finally let us remark that the physical Hamiltonians defined in this section

are not only required for reduced phase space quantisation but also for the Dirac
quantisation (quantisation before reducing) that will be chosen for the remainder
of the book. For instance, in [264] a one-parameter family s �→ τj(s) is obtained,
using suitable matter, such that the Hamiltonian H(s) =

∑
j τ̇j(s)Hj(τ(s)) is

actually time s-independent and bounded from below. This physical Hamilto-
nian turns out to be close to the Hamiltonian of the standard model when the
metric is close to being flat. When properly quantised its ground state could
be a candidate for a physical vacuum state for General Relativity. This would
be an improvement of the situation for QFT on curved, non-stationary space-
times (such as our universe) where no natural candidate for a vacuum state
exists.

2.3 Recovery of locality in General Relativity

The relational point of view also resolves another puzzle about the mathematical
formalism: the apparent lack of locality. The observables (2.1.14) are completely
smeared out over the unphysical coordinate time t which contradicts our physical
intuition that we can make local measurements in spacetime. In GR the Dirac
observables will also be smeared out over all of space as we will see, therefore
Dirac observables are not local with respect to the unphysical coordinates t, xa

at all. However, the resolution lies precisely in what one means by ‘local’. By local

3 Notice that, due to the Jacobi identity and the fact that the τ derivative of F τ
f,T is a Dirac

observable, the Hamiltonian (2.2.36) must be a complete observable, too.
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we mean that some property of a system S is measured over a finite time interval
in a finite region of space. This spacetime region in which the measurement takes
place however is not specified in terms of some coordinates but rather in terms
of other measurements. Usually one does this in terms of matter degrees of
freedom. For instance, we could use lightrays and mirrors to measure the spatial
extension of the laboratory and the decay time of some radioactive element
to measure time durations. Abstractly we are using D + 1 partial observables,
one for each spacetime direction, and their values specify a spacetime region.
Mathematically these correspond to D + 1 scalar fields T (t, �x), Y a(t, �x) on our
spacetime manifold M which we can describe in any unphysical coordinates
X = (t, xa) and we assume that we have constructed them in such a way that
the spacetime region of interest is defined precisely as the set of coordinates R

where these fields are simultaneously non-vanishing. Suppose now that we have
one more field S(t, �x) which mathematically is a scalar density on M . An example
would be S =

√
|det(g)| for the spacetime metric g. Then

ST,Y :=
∫

R

dD+1XS(X) =
∫

M

dD+1X χR(x) S(x)

=
∫

M

dD+1x S(x)θ̃

(∣∣∣∣∣
T (x)

D∏

a=1

Y a(x)

∣∣∣∣∣

)

(2.3.1)

is Diff(M)-invariant and would measure, in the example just given, the space-
time volume of the spacetime region specified by the support of the matter fields
T, Y a. Here χR denotes the characteristic function of a set and θ̃(x) = 1 − θ(−x)
where θ is the step function. Hence the integrand is a scalar density and the inte-
gral is invariant under passive diffeomorphisms. Notice that the integral (2.3.1)
is over all of M , it is therefore completely non-local in the unphysical coordi-
nates t, �x. However, its actual support is possibly compact and is determined
by the dynamical fields T, Y a. It is therefore local in the physical, relational
sense.

Notice, however, that (2.3.1) does not define a Dirac observable because the
symmetry group of our theory is not Diff(M) but rather BK(M), which coin-
cide only on-shell. Hence what one should do is something along the following
lines: first construct a spatially diffeomorphism-invariant, local observable of the
form

SY :=
∫

σ

dxS(x) θ̃

(∣∣
∣∣∣

D∏

a=1

Y a(x)

∣∣∣
∣∣

)

(2.3.2)

which Poisson commutes with the �H( �N). Then define the gravitational Master
Constraint as

M :=
∫

σ

d3x
H(x)2

√
det(q(x))

(2.3.3)
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which also Poisson commutes with the �H( �N). Next we take any other spatially
diffeomorphism-invariant clock variable such as the total volume of σ (which is
finite in the spatially compact case)

T :=
∫

σ

d3x
√

det(q(x)) (2.3.4)

and finally define the corresponding ST,Y (τ) (or F τ
S,(T,Y ) with the method of

Section 2.2 using more than one clock T ) which is ultralocal (since defined at
the physical moment of time τ) or the smeared out version

ST,Y (I) =
∫

I

dτST (τ) (2.3.5)

where I is a bounded interval. In summary, physical locality can easily be accom-
modated in quantum gravity while coordinate locality is completely lost. Notice
the importance of matter in (2.3.5). In fact, while mathematically in loop quan-
tum gravity we seem to be able to quantise geometry without matter, when it
comes to physical observables it seems that matter becomes mandatory.

Remark: Canonical QFT is often criticised on the basis that by Haag’s theorem,
about which more will be said later, the fields on a spatial slice (unsmeared in
time) do not exist in the interacting case. This is often stated as the fact that the
interaction picture does not exist. In GR this ‘no-go-theorem’ is evaded due to
two reasons. First, Haag’s theorem only applies to Wightman fields on Minkowski
space. The fields in a background-independent QFT are not Wightman fields by
definition. Second, the Dirac observables F τ

f,T are completely smeared out in the
unphysical time anyway. Hence on the physical Hilbert space the argument does
not apply.

2.4 Quantum problem of time: physical inner product and
interpretation of quantum mechanics

There are two sides to the quantum problem of time. The first deals again
with the problem of the frozen picture that one obtains in quantum gravity, the
absence of time. The second is more a problem with the interpretation of quan-
tum mechanics itself which, however, becomes especially acute in the context of
quantum gravity or, more specifically, quantum cosmology. We will discuss them
separately.

2.4.1 Physical inner product

In the classical theory we are supposed to find the gauge-invariant Dirac observ-
ables. In the quantum theory, in addition we are supposed to find the states
annihilated by all the (Hamiltonian) constraint operators ĤI or equivalently by
the single Master Constraint operator M̂. We will make this mathematically
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precise in the next chapter, for the purposes of this section we focus on the
conceptual issues which arise from this quantum constraint equation

ĤIΨ = 0 ∀ I ⇔ M̂Ψ = 0 (2.4.1)

Here Ψ belongs to some Hilbert space on which we constructed the operators
ĤI or M̂. We will call this the kinematical Hilbert space Hkin because its states,
called kinematical states, typically do not solve (2.4.1). Those that do are called
physical states.

If there was a Hamiltonian then rather we would solve a Schrödinger equation

īh
∂Ψ
∂t

+ ĤΨ = 0 (2.4.2)

The difference between (2.4.1) and (2.4.2) is again striking, there is no quantum
evolution at all!

To see how this comes about we will consider the case of a single constraint or
more generally the Master Constraint. Heuristically, given a state in the ψ ∈ Hkin

we can produce a physical state by the so-called rigging map

η : ψ �→ Ψ := δ(M̂)ψ :=
∫

R

dt

2π
e−it M̂ /̄h ψ (2.4.3)

That this solves the constraint formally is due to the identity xδ(x) = 0. More
precisely, since (2.4.3) is t-time translation-invariant, exp(it M̂ /̄h)Ψ = Ψ due to
the translation invariance of the measure dt. The solutions (2.4.3) to (2.4.1)
usually are not normalisable, that is, they do not belong to Hkin due to the
fact that δ(M̂)2 is ill-defined. What one does, heuristically, is to observe that
formally δ(M̂)2 = δ(M̂)δ(0) and to ‘renormalise’ by dividing by δ(0). The result
is the physical inner product

< Ψ,Ψ′ >phys:=< ψ, δ(M̂)ψ′ >kin (2.4.4)

which is well-defined.
Therefore we see what happens: a physical state is produced by actually inte-

grating the quantum evolution generated by the constraint over the associated
unphysical time. Its physical interpretation is thus to be a coherent superposi-
tion of all unphysical time evolutions of ψ, that is, of solutions to the would-be
Schrödinger equation (2.4.2). Ψ is completely non-local in the unphysical time
parameter t which is to be expected in a time reparametrisation-invariant theory
where time evolution is to be considered as a gauge transformation. One often
calls (2.4.4) a ‘transition amplitude’. This terminology is misleading because
transition amplitudes are matrix elements of Û(t). But (2.4.4) is actually the
time average of all transition amplitudes between the unphysical states ψ,ψ′.
One should really abandon this notion and call (2.4.4) the physical inner prod-
uct between the physical states Ψ,Ψ′.

What can we do with (2.4.4) and how do we make contact with everyday
life where we actually do compute transition amplitudes? How can it be that



2.4 Quantum problem of time 97

in quantum gravity there is no time while it makes perfect sense to compute
transition amplitudes, say in atomic physics? First of all, it makes sense to define
the operators ŜT (τ) corresponding to the classical Dirac observables ST (τ) on
Hphys. In particular, we may compute

< Ψ, ŜT (τ)Ψ′ >phys (2.4.5)

It is tempting to attribute to (2.4.5) the following interpretation: if we had a true
Hamiltonian H then in the Schrödinger picture the states are evolved unitarily
by the operator Û(t) = exp(−iτĤ/̄h), that is, ΨH �→ Û(τ)ΨH =: ΨS(τ), while
the observables are time-independent. Conversely, in the Heisenberg picture the
observables evolve unitarily, that is ÔS �→ Û(τ)−1ÔSÛ(τ) =: ÔH(τ) while the
states are time-independent. The two pictures are equivalent in the sense that
the expectation value

< ψS(τ), ÔSψS(τ) >=< ψH , ÔH(τ)ψH > (2.4.6)

is interpreted as the mean value of repeated measurements of the classical quan-
tity αH

τ (O) in the state ψH .
Equations (2.4.5) and (2.4.6) suggest interpreting the Dirac observables ST (τ)

as Heisenberg operators with respect to some physical Hamiltonian, if it exists,
see above. The physical states are then simply states in the Heisenberg picture.
They are not annihilated by the physical Hamiltonian, just by the Hamiltonian
constraints. We could then define physical transition amplitudes with respect to
the corresponding physical Hamiltonian. This works perfectly in the case that we
can exactly deparametrise the system and presumably in more general cases, at
least locally. Therefore, upon finding a suitable clock variable T one can recast
the frozen picture totally in terms of the usual picture of quantum mechanics.
Thus, the reason for why we can do effective computations in everyday life using
the usual notion of time and usual Hamiltonians is that these are indeed physical
Hamiltonians generated by a proper choice of partial observable T which we
actually do not know in detail. In cosmological models it seems to be related to
the total three-volume of space.

Notice that the discussion reveals that both the classical and the quantum,
physical time evolution is not absolute but a relative notion: for the same system
variable S it depends on the choice of clock variable T .

How should we interpret physical states? As one sees from simple examples
of time reparametrisation-invariant systems such as the relativistic particle, the
interpretation is simply that they are gauge (time reparametrisation)-invariant
states. They form an honest, infinite-dimensional Hilbert space with respect to
whose inner product physical states must have non-vanishing and finite norm.
They can be labelled by the simultaneous (generalised) eigenvalues of a maximal
ideal (i.e., set of mutually commuting operators) of Dirac observables and thus
acquire a definite physical interpretation as (generalised) eigenstates of those
Dirac observables. We are just mentioning this here because, especially when
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it comes to cosmology, one might think that the Hilbert space should be one-
dimensional, given by the state Ω that was somehow born at the big bang and
which evolves unitarily. This is mathematically wrong, because unless the physi-
cal time evolution leaves all physical states invariant (up to a phase) the physical
states do evolve under time evolution so the time evolution will produce an infi-
nite number of distinct physical states from a given initial one and in order to do
expectation value computations with those we need the full infinite-dimensional
Hilbert space inner product. For instance, among the Dirac observables we are
especially interested in the relational ones ST (τ) which, as we just said, should
be interpreted as physical time evolutions with respect to a physical Hamilto-
nian H(τ) (which could be explicitly physical time-dependent) in the Heisenberg
picture. In the simplest case of a time-independent physical Hamiltonian we just
have ST (τ) = exp(iτH/̄h) ST (0) exp(−iτH/̄h) and thus the initial state of the
big bang Ω is a Heisenberg picture state which monitors the time evolution of
the system S as measured by the clock T by τ �→< Ω, ST (τ)Ω > as the uni-
verse expands. Notice that we are abusing the notation here as in GR we need
an infinite number of clocks and we must select a suitable one-parameter time
evolution among all the possible bubble time evolutions.

In any case, the interpretation of Ω is clear once we know its decomposition
in terms of the generalised eigenstates of a maximal set of mutually commuting
Dirac observables. This problem is not specific to GR but arises also in usual
quantum mechanics: given an L2 function for the hydrogen atom, what is its
interpretation? One way of answering this question is certainly by decomposing it
with respect to energy and angular momentum eigenstates en,l,m (and generalised
unbounded energy eigenstates).

The big question in cosmology really is what that initial physical state Ω is
and how to do quantum mechanics in the case of closed systems. This brings us
to the next section.

2.4.2 Interpretation of quantum mechanics

The fact that there is no natural Hamiltonian which drives the quantum time
evolution in quantum gravity poses several problems with the usual Copenhagen
interpretation of quantum mechanics. Recall that in the Copenhagen interpreta-
tion of quantum mechanics or quantum field theory one artificially subdivides the
available observables into quantum observables S of the system that one wants
to get information about and classical observables T which are associated with
the measurement apparatus. A state ψ in the system Hilbert space undergoes
unitary evolution ψ �→ Û(t)ψ, Û(t) = exp(−itĤ/̄h) with respect to the dynam-
ics generated by the Hamiltonian H until it is measured. When this happens,
the state collapses to an eigenfunction ψλ of the system operator Ŝ and the cor-
responding eigenvalues λ are the possible measurement outcomes. (This can be
generalised to the case that we are dealing with mixed rather than pure states
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and that the spectrum of Ŝ has a continuous part, see below.) The probability
for measuring λ is | < ψλ, Û(t)ψ > |2. In a strict Copenhagen interpretation one
would make a stronger statement, namely that this is the probability for the
outcome λ in a repeated number of experiments. If λ was measured then ψ has
collapsed to ψλ and hereafter evolves again unitarily until the next measurement.

1. No time problem
The unitary evolution with respect to a Hamiltonian plays a crucial role in
the Copenhagen interpretation. Again, in the a priori absence of any Hamil-
tonian as in the case of a universe without spatial boundary no Hamiltonian
is available a priori.

2. Closed system problem
When we are dealing with quantum gravity in a cosmological context then
we are talking about measurements taking place on observables of the whole
universe. Thus the whole universe is the system and all measurement devices
and potential human observers are part of the system. Since there is no outside
of the universe by definition, the zeroth step in the Copenhagen interpretation,
to talk about an outside measurement apparatus, is invalidated.

Moreover, in cosmology we might ask about probabilities for or expectation
values of properties of the universe as a whole such as its lifetime, etc. which
depend on the initial conditions (initial in the relational sense, that is at the
unphysical time when the spatial extension of the universe was close to zero).
It is clear that such answers cannot be addressed in the strict Copenhagen
context because we can hardly repeat the big bang ‘experiment’.

3. Collapse problem
Even if there is a Hamiltonian, people discuss the collapse problem or, in
other words, Schrödinger’s cat problem. Is the system really in a coherent
superposition of eigenstates of the system operator Ŝ until it is measured? Or
does the system have a definite reality even without any measurement? What
causes the wave function to collapse?

4. Non-locality problem
The usual Einstein–Podolsky–Rosen Gedankenexperiment shows that there is
a fundamental non-locality in quantum mechanics. This seems to contradict
the axioms of usual (algebraic) quantum field theory which requires algebras
of local operators supported in spacelike separated, that is, causally discon-
nected, regions to (anti)commute.

5. Arrow of time problem
If there is unitary evolution by a Hamiltonian, how can it be that there is
obviously a time asymmetry in nature towards increasing entropy, sometimes
called the (thermodynamic) arrow of time.

6. Information loss problem
In connection with black holes the following problem arises. Complex systems
containing a lot of information such as a star can collapse to a black hole
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but the black hole is completely described by a few parameters such as mass,
charge and spin. There is possibly Hawking radiation coming out of the black
hole but it is completely thermal and does not carry any information. In fact,
as long as the black hole has not completely evaporated the total system
is described by a tensor product of Hilbert spaces for the inside and the
outside of the black hole and by taking the partial trace4 of a given pure state
with respect to the inside Hilbert space one artificially produces a density
matrix for the outside Hilbert space. The full state is still pure, until the
black hole evaporates and the inside Hilbert space is gone, now there is only
the density matrix left and we do have information loss. What happened with
that information? Obviously, unitary evolution cannot create a mixed state
from a pure state.

Let us now attempt a resolution of these problems. Many of these ideas again
follow Rovelli [3].

1. No time problem
As we have shown in Section 2.4.1 one can regain a notion of time. However,
this is with respect to a clever choice of partial clock observable giving rise
to a physical Hamiltonian. This description should be valid at least locally in
physical τ -time. Thus, the ‘absence of time problem’ can be solved, at least in
principle, although it may not be easy to find suitable clock variables. One is
then back in the conceptually easier realm of a quantum mechanical system
with a Hamiltonian.

2. Closed system problem
The whole idea of separating the world into a classical and a quantum part is
anyway fundamentally wrong. The world is uniformly described by quantum
mechanics. Therefore one should discard the classicality of the measurement
device altogether and just speak about the compound aggregate consisting
of the system under study interacting with the measurement device, be it
macroscopic or microscopic.

The reason for why the Copenhagen interpretation works so well is that
macroscopic objects display an interesting feature: they decohere, that is,
quantum mechanical interference is negligible. Thus, for those the decoherence
condition derived below is satisfied with an extremely high precision. That

4 Let HI , I = 1, 2 be separable Hilbert spaces with orthonormal bases (b
(1)
α ), (b

(2)
j )

respectively. A general vector state in the tensor product Hilbert space H = H1 ⊗H2 is
given by Ψ =

∑
α,j

Ψα,jb
(1)
α ⊗ b

(2)
j where Ψα,j ∈ C,

∑
α,j

|Ψα,j |2 = 1. The partial trace of

Ψ with respect to H1 is given by the operator ρ :=
∑

i,j
ρij < b

(2)
i , . >H2 b

(2)
j on H2 where

ρij :=
∑

α
ΨαiΨαj . The operator ρ is bounded and of unit trace, hence trace class. It

appears naturally in the form TrH2 (ρA) =< Ψ, [1H1 ⊗A]Ψ >H where A is an operator on
H2. These are the kind of operators that one considers when one does not have information
about part of the system in question, here encoded by the degrees of freedom described by
H1.
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is why their classical description is valid. Technically this happens because
macroscopic objects are described by a large number of degrees of freedom
and while every single degree of freedom displays the fundamental quantum
mechanical coherence, the interference terms of the ensemble become small.
More specifically, the Hilbert space of the macroscopic system is a large ten-
sor product of Hilbert spaces for the individual microscopic systems and even
if we have a coherent superposition of those large tensor product states, the
interference terms (inner products between different states of that linear com-
bination) drop out because they are nearly orthogonal, being the large product
of numbers of modulus less than one (by the Schwarz inequality). To illus-
trate this, consider a crude example, namely the interaction of a single spin
system S0 with a measurement device SN which we assume to be a system
of N spins where N is large. As an, of course physical, interaction Hamil-
tonian we take Ĥ = h̄

∑N
n=1 gnŝ

0
3 ⊗ ŝn3 where ŝnj is the jth component of the

spin operator for the individual spin degree of freedom and gn is a coupling
constant. The Hilbert space of the compound system is the large tensor prod-
uct H = ⊗N

n=0 Hn where Hn = C2. Let us assume that the ground state is
such that all spins are down. One can easily solve the associated Schrödinger
equation for any given initial (pure) state Ψ = ⊗N

n=0ψn. When computing the
decoherence functional for alternative values of projections for the spin oper-
ator nj ŝ

0
j for the system spin S0 one finds that the off-diagonal, interference,

entries of the decoherence matrix to be defined below are proportional to

N∏

n=1

[cos(2gnt) + i sin(2gnt)[2|bn|2 − 1]]

where t = t2 − t1 is the time interval for only two branchings and bn is deter-
mined by ψn = an|+ >n +bn|− >n, |an|2 + |bn|2 = 1. The modulus of this
term decays to zero exponentially fast with t for sufficiently random distribu-
tion of the bn.

This is the mathematical explanation for why in the famous double slit
experiment the quantum mechanical interference is destroyed once there is
an interaction between some macroscopic measurement device which detects
through which slit the electron has passed as compared with the situation
when no such detector exists. Surprisingly, decoherence is rather hard to model
for realistic physical situations although it is apparently such a widespread
phenomenon and is the underlying reason why the macroscopic world is so well
described by classical physics. See, for example, [265] for more information.

It is worth pointing out that the relational approach to observables is espe-
cially well suited to the closed system problem because when we talk about
the complete observable ST (τ) built from the partial ones S, T , we just call S
the system and T the clock. Nevertheless, both are treated as operators in the
quantum theory and in that sense there is no classical measurement apparatus
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any longer, both partial observables are subject to quantum fluctuations, the
quantum system and classical measurement device separation is absent.

3. Collapse problem
An interesting reinterpretation of quantum mechanics is the consistent his-
tory approach [143–155] sometimes called post-Everett interpretation. It arose
from the desire to get rid of the artificial separation of the world into classical
and quantum that we just discussed. It resolves the collapse problem in the
following way.
(i) There is no separation between a quantum system and a classical mea-

surement apparatus, everything is fundamentally quantum. There is only
one system.

(ii) Consequently, there is no such thing as a classical measurement of a
quantum property. Rather, there is interaction between all components
of the system all the time.

(iii) Given a self-adjoint operator Â on the full Hilbert space H describ-
ing some property of the full system, we know its spectral projections
λ �→ E(λ) where λ ∈ R, satisfying limλ→−∞ E(λ) = 0, limλ→+∞ E(λ) =
1H, limλ→λ0+ E(λ) = E(λ0), E(λ)E(λ′) = E(min(λ, λ′)). At any given
time we can decompose the spectrum of Â into mutually disjoint inter-
vals I = (aI , bI ] and define P̂I = E(bI) − E(aI) so that

∑
I P̂I = 1H and

P̂I P̂J = δIJ P̂I .
(iv) In the Copenhagen interpretation, given an initial density matrix ρ̂, that

is, a trace class operator of unit trace, of the full system at t = 0 it
evolves unitarily according to t �→ Û(t)ρ̂Û(t)−1 until some measurement
of some property, corresponding to some operator Â, of the system takes
place. If one measures the system property to be in the range of the
interval I (taking care of the fact that in physics we can never make
absolute precision measurements, measurement values always take some
finite range) then the probability for that measurement is

Tr(P̂I Û(t)ρ̂Û(t)−1P̂I) (2.4.7)

and the density matrix gets reduced to

P̂I Û(t)ρ̂Û(t)−1P̂I

Tr(P̂I Û(t)ρ̂Û(t)−1P̂I)
(2.4.8)

and hereafter the reduced density matrix again evolves unitarily.
In the consistent history interpretation of quantum mechanics one takes a

radical further step: there are no measurements, simply the system branches
out, that is, at each moment of time it has mutually exclusive possibilities
of alternatives to decide for each of its properties Â. Suppose that at time
tn, n = 1, . . . , N we consider a decomposition of the Hilbert space into alter-
native projections P̂n

In
, In ∈ In corresponding to self-adjoint operators Ân.
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The probability for taking the branch In at time tn after having gone through
the branches I1, . . . , In−1 at t1, . . . , tn−1 is given by (2.4.7), that is

Tr
(
P̂n
InÛ(tn − tn−1)ρ̂(I1,t1)...(In−1,tn−1)Û(tn − tn−1)−1P̂n

In

)
(2.4.9)

and when this branch is chosen, the density matrix for that branch is given
by (2.4.10), that is

ρ̂(I1,t1)...(In,tn) =
P̂n
In
Û(tn − tn−1)ρ̂(I1,t1)...(In−1,tn−1)Û(tn − tn−1)−1P̂n

In

Tr
(
P̂n
In
Û(tn − tn−1)ρ̂(I1,t1)...(In−1,tn−1)Û(tn − tn−1)−1P̂n

In

)

(2.4.10)

We conclude that the joint probability for having followed the history, that
the range In of property Ân was realised at tn, is given by the product of the
conditional probabilities (2.4.9) which is

D({I}, {I}; {t}; ρ̂) := Tr
(
P̂n
InÛ(tn − tn−1) . . . P̂ 1

I1Û(t2 − t1)ρ̂

× [P̂n
InÛ(tn − tn−1) . . . P̂ 1

I1Û(t2 − t1)]†
)

(2.4.11)

There is, however, a potential problem with the interpretation of (2.4.11) as
the probability of a history ({I}, {t}): if it was a probability then the sum of
the probabilities for all branches must add up to unity. However, this does
not follow automatically from (2.4.11). Thus, one must impose an additional
condition on the choice of branching that one considers: define the decoherence
functional

D({I}, {J}; {t}; ρ̂) := Tr
(
P̂n
InÛ(tn − tn−1) . . . P̂ 1

I1Û(t2 − t1)ρ̂

× [P̂n
Jn
Û(tn − tn−1) . . . P̂ 1

J1
Û(t2 − t1)]†

)
(2.4.12)

We say that the set of histories is consistent whenever the decoherence func-
tional is close to δ{I},{J}. This means that all interference terms are subdom-
inant and implies that

∑

{I}
D({I}, {I}; {t}; ρ̂) ≈

∑

{I},{J}
D({I}, {J}; {t}; ρ̂) = 1 (2.4.13)

where
∑

In∈In
P̂n
In

= 1H was used.
How well the decoherence condition is satisfied depends on both the initial

density matrix, the set of chosen alternatives and the amount of coarse grain-
ing (i.e., the number of alternatives per chosen point of time and the number
of branching points of time tn per physical unit time interval). As shown
in [154, 155] it is not at all straightforward or granted to satisfy the deco-
herence condition. However, decoherence is a phenomenon obviously satisfied
for macroscopic systems in nature as illustrated above, hence it a reasonable
condition to assume.
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Given this set-up one may then attribute the following interpretation to
quantum mechanics: the evolution of the density matrix is not unitary but
rather follows a particular path or history in the set of all possible histories.
The probability for a particular history is computable. If we know the density
matrix at a given point of time we can compute what is most likely to hap-
pen next but there is no certainty. The collapse of the density matrix is no
longer a mysterium of the measurement process but rather an integral part
of the quantum mechanical evolution of the density matrix of the full system,
consisting of both the would-be Copenhagen system and the would-be Copen-
hagen measurement apparatus, as it proceeds along its history of alternatives.
It is interaction between the components of the complete system which makes
complex sets of alternatives possible, as otherwise the density matrix of the
system would not change with probability one.

At this point one may debate whether (a) all the alternative histories are
realised but no history knows about the other (many-world or Everett inter-
pretation) or (b) there is always only one history realised, the one that we
experience, just that we can never determine with certainty what happens
next. The present author prefers the second possibility as the first could never
be distinguished experimentally from the second anyway. Notice that the spe-
cial role of a human observer has completely disappeared from this picture.
Schrödinger’s cat, as a macroscopic and hence decoherent system, is either
alive or dead at any given moment of time and not in a coherent superposi-
tion, whether or not a human verifies it and we can compute the probability for
the time evolution of either alternative. This also resolves the other interpre-
tational problem with quantum cosmology: there is no repeated experiment
interpretation of expectation values necessary.

The real challenge for quantum cosmology lies in understanding the physics
of the initial conditions, that is, whether some initial states are preferred over
others or whether all are equally probable. In other words, do we happen
to live in a universe which somehow is generic or is it one of zillions of
possibilities some of which produce life? Is there a big bang in quantum
theory at all and if not what replaces it? Is there a time before the big bang?
In either case, in our interpretation this would be a prediction about one
universe rather than many branches of universes, that is, a multiverse.

Notice that this resolution of the collapse problem is beautifully compatible
with the relational resolution of the closed system problem as in both cases
the fundamental distinction between system and measurement device is
absent. Moreover, in GR of course the projections must be those of Dirac
observables, the time is a physical time selected by partial clock observables
and the Hamiltonian must be the corresponding physical one. All three can
be derived using the partial observable approach. This way the decoherence
functional is also a relational object.
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4. Locality problem
In algebraic QFT [22] one talks about algebras of local observables A(O)
where O are certain spacetime regions. Since in algebraic QFT one works
on a background spacetime (M,η) this formulation can only be valid in the
semiclassical limit of quantum gravity in which the fluctuations of the grav-
itational field are small and concentrated around η. It then makes sense to
talk about spacelike separated regions. Next, from the point of view of the
full quantum gravity theory as we discussed before, locality should really be
understood as dynamical locality and not as coordinate locality. In QFT one
implicitly assumes that this has been done so that the coordinates actually
do have physical meaning, that is, a name.

Assuming that all of this has been achieved, one can make the EPR
objection, namely that there are quantum mechanical correlations between
causally disconnected regions, which seems to contradict the axioms of
algebraic QFT, namely that the algebras A(O),A(O′) (anti)commute.
However, there is no contradiction for two reasons. First, the axioms of
algebraic QFT are purely algebraic, they do not even refer to any particular
representation of the algebras. On the other hand, the EPR type of paradoxes
refer to a particular state that has been prepared in such a way that when
a measurement has been made in O the measurement in O′ has a definite
outcome. This has something to do with the non-locality of the state and not
with that of the algebras. Second, even if there is a correlation between the
outcomes in O, O′ the corresponding observers actually have no way to find
out about it before they have communicated. But this requires extending
O and O′ such that they are no longer causally disconnected and now the
associated algebras are no longer required to (anti)commute.

5. Arrow of time problem
If we accept the consistent history point of view of quantum mechanics then
it is clear from where the direction of time comes: from the fact that there
is an initial density matrix but no final one. This could be generalised to a
decoherence functional with a final density matrix as well and the question
of time symmetry becomes a question of choice of final and initial density
matrix. Thus, the time asymmetry is related to the boundary conditions
while the mathematical framework is completely time symmetric.

6. Information loss problem
In the mind of the author there is no convincing argument which speaks for
or against information loss in quantum gravity. After all, the reasoning which
leads to the black hole information loss problem is a semiclassical one in
which matter is treated quantum mechanically, geometry classically and the
backreaction of geometry on matter is completely neglected. Moreover, any
Hawking radiation mode which reaches us at future null infinity is infinitely
blue shifted at the black hole horizon and thus reaches the Planck energy
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close to the horizon at which new physics should happen and a fundamental
quantum gravity theory must take over. In other words, one should not trust
these arguments since they are made outside the domain of their validity and
it is not clear whether there is any problem at all in the full quantum gravity
theory. In fact, in LQG it seems that spacetime singularities can indeed be
resolved as we will see, hence there just may not be any information paradox
if the physical Hamiltonian stays well-defined all the time so that an initially
pure state remains pure and no information loss (entropy) emerges.



3

The programme of canonical quantisation

In this chapter we give a systematic description of which steps the method of
canonical quantisation consists of. The basic idea, due to Dirac, is that one quan-
tises the unconstrained phase space, resulting in a kinematical Hilbert space and
then imposes the vanishing of the constraints as operator equations on physical
states. The motivation behind this ‘quantisation before constraining’ is that in
the opposite procedure one would need to know the full set of Dirac observables.
This may not only be practically hard even classically as in the case of interact-
ing field theories such as GR but, even if the full set of Dirac observables could
be found, it could be very hard to find representations of their corresponding
Poisson algebra, see, for example, [189,205,260] and the previous chapter.

Thus, Dirac quantisation is a way to enter the quantum regime even if the
underlying classical system is too complicated in order to find all its gauge invari-
ants. While it will be even harder to find all the quantum Dirac observables, the
real advantage is that (1) in a concrete physical situation we only need a few
of these invariants rather than all of them and (2) starting from the kinemat-
ical representation of non-observable quantities we automatically arrive at an
induced representation of the invariants which can be expressed in terms of the
non-observables.

The canonical approach is ideally suited to constructing background metric-
independent representations of the canonical commutation relations as is needed,
for example, in quantum gravity. Dirac’s original work was subsequently refined
by many authors, see, for example, [16, 17, 266–278]. In what follows we present
a modern account. As we will see, in its modern form Dirac’s programme uses
some elements of the theory of operator algebras and algebraic QFT (AQFT) [22]
but what is different from AQFT is that the canonical approach is, by defini-
tion, a quantum theory of the initial data, that is, operator-valued distributions
are smeared with test functions supported in (D − 1)-dimensional slices rather
than D-dimensional regions. While needed in order to define a background-
independent quantum theory, this is usually believed to be a bad starting point
in AQFT because of the singular behaviour of the n-point Wightman distribu-
tions of interacting scalar fields in perturbation theory when smeared with ‘test
functions’ supported in lower-dimensional submanifolds. The way out of this ‘no-
go theorem’ is twofold. (1) In usual perturbation theory one uses very specific
(Weyl) algebras and corresponding representations (of Fock type in perturba-
tion theory) to formulate the canonical commutation relations, but the singular



108 The programme of canonical quantisation

behaviour might be different for different algebras and their associated represen-
tations. (2) In a reparametrisation-invariant theory such as General Relativity
the observables are by definition time-independent, hence already smeared out
in unphysical time, see our discussion in Chapter 2. Thus the AQFT criticism is
certainly removed at the physical level.

3.1 The programme

Assume we are given an (infinite-dimensional) constrained symplectic manifold
(M,Ω) modelled on a Banach space E with strong symplectic structure Ω and
first-class constraint functionals HI(N I) (in case of second-class constraints one
should replace Ω by the corresponding Dirac bracket [219]). Here I takes values
in some finite index set and HI(N I) is an appropriate pairing as in the previous
chapter between the constraint density HI(x), x a point in the D-dimensional
manifold of the Hamiltonian framework, and its corresponding Lagrange mul-
tiplier N I . Unless otherwise specified no summation over repeated indices I is
assumed. We may or may not have a physical Hamiltonian H which Poisson
commutes with the constraints.

The quantisation algorithm for this system consists of the following.

I. Classical Poisson ∗-subalgebra P

The phase space can be coordinatised in many ways by a set S of ‘elementary
variables’, that is, global coordinates such that all functions on M can be
expressed in terms of them. Since we want to quantise the system by asking
that commutators be represented as īh times the quantisation of the Poisson
bracket, we must ask that the elementary variables form a closed Poisson
subalgebra of the full Poisson algebra C∞(M). It may be convenient to use
complex coordinates and in that case we require that the Poisson subalgebra
is closed under complex conjugation because we want that operator adjoints
are represented by the quantisations of the complex conjugates. We can
guarantee all that by starting with any set S of functions which separates the
points of M and construct from it and their complex conjugates the smallest
Poisson algebra they generate. Mathematically speaking, the resulting object
is a separating Poisson ∗-subalgebra P on M. In the field theory context it
is certainly necessary to smear the fields in order that the Poisson brackets
be non-distributional.

The choice of P is guided by physical considerations: P should be min-
imal, in the sense that removing members would violate the definition of
a separating ∗-algebra, because the quantisation of a redundant function is
already determined by that of a smaller set of functions. One set of ele-
mentary variables may be more convenient than another in the sense that
the equations of motion or the constraint functions CI look more or less
complicated in terms of them. Moreover, it is convenient if the members of
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P have a simple transformation behaviour under the gauge transformations
generated by the constraints because otherwise invariant functions, that is,
Dirac observables will be complicated functions of the elementary variables
and hence difficult to quantise. The most important condition is that the
symplectic structure among the members of P should be as simple as pos-
sible, ideally the Poisson brackets should be independent of M, so that one
has a chance to find representations of P as operators on a Hilbert space.

Further complications may arise in case that the phase space does not
admit an independent set of global coordinates. In this case it may be nec-
essary to work with an overcomplete set of variables and to impose their
relations among each other as conditions on states on the Hilbert space.
For example, suppose we want to coordinatise the cotangent bundle over
the sphere S2. The sphere cannot be covered by a single coordinate patch,
but we can introduce Cartesian coordinates on R3 and impose the condition
(x̂1)2 + (x̂2)2 + (x̂3)2 − 1 = 0 on states depending on R3.

If M has the structure of a cotangent bundle T ∗Q over some configura-
tion space Q then a natural candidate for P is as follows. Select a suitable
algebra Fun(Q) of (smeared) functions on Q, say suitable functions of the
F (q) for GR. The Hamiltonian vector fields on M of the (smeared) momen-
tum functions, say the P (f) for GR, preserve the space Fun(Q) if chosen
sufficiently smooth, hence they define elements of the space V (Q) of vector
fields on Q. The product space Fun(Q) × V (Q) carries a Lie algebra struc-
ture according to {(f, u), (f ′, u′)} := (u[f ′] − u′[f ], [u, u′]) where u[f ] is the
action of vector fields on functions and [u, u′] is the Lie bracket of vector
fields. In slight abuse of notation we still refer to this Lie algebra bracket
on Fun(Q) × V (Q) as a ‘Poisson bracket’. The Poisson algebra P can then
be identified as the closed Lie subalgebra of Fun(Q) × V (Q) generated by
the chosen functions of the configuration variables and the Hamiltonian vec-
tor fields of the momentum functions. Notice that the Lie bracket between
Hamiltonian vector fields of functions is the Hamiltonian vector field of the
Poisson bracket between the corresponding functions. It may be easier to
compute the Lie bracket rather than the Poisson bracket and the former
determines the latter up to a constant. See Section 19.3.

II. Quantum ∗-algebra A

Given the classical Poisson ∗-algebra P of elementary kinematical variables
(kinematical in the sense that they do not Poisson commute with the con-
straints) we want to define an abstract ∗-algebra A based on P which in
a precise sense implements īh times the Poisson bracket structure on P

as commutation relations in A and the reality structure on P as involu-
tion relations in A. Recall that an involution in an algebra is defined as
an antilinear automorphism which reverses order and squares to the iden-
tity, that is, (z1a + z2b)∗ := z̄1a

∗ + z̄2b
∗, (ab)∗ := b∗ a∗ and (a∗)∗ = a for

a, b ∈ A, z1, z2 ∈ C. The involution should not be confused with the adjoint
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operation in a Hilbert space, in fact, we have not talked about a Hilbert
space yet which arises only when we consider representations of the algebra
A. For the same reason we will not denote elements of A with ‘operator hats’,
we will use operator hats only when considering specific representations of
A on a Hilbert space.

In order to construct A from P one proceeds as follows. We consider the
(free) tensor algebra T (P) over P defined as

T (P) := C ⊕ ⊕∞
n=1 ⊗n

k=1 P (3.1.1)

with elements a = (a0, a1, . . . , an, . . .) where a0 ∈ C and an is a finite lin-
ear combination of monomials an = a1n ⊗ . . .⊗ ann of elements akn ∈ P of
which all but finitely many vanish. The associative product, addition, mul-
tiplication by scalars and involution are defined in the obvious way

(a⊗ b)n =
∑

k+l=n

ak ⊗ bl; ak ⊗ bl = a1k ⊗ . . .⊗ akk ⊗ b1l ⊗ . . .⊗ bll

(a + b)n = an + bn

(za)n = zan; zan = (za1n) ⊗ . . .⊗ ann = a1n ⊗ . . .⊗ (zann)

a∗ = ā0 ⊕ ⊕∞
n=1a

∗
n; a∗n = ānn ⊗ . . .⊗ ā1n (3.1.2)

We now divide T (P) by the two-sided ideal generated from elements of the
form

a1 ⊗ b1 − b1 ⊗ a1 − īh{a1, b1} (3.1.3)

with a1, b1 ∈ P. This results in the enveloping algebra A of the Lie algebra
P which, in contrast to T (P), does not carry a (tensor degree) grading.

In view of the representation theory of A to which we turn in the subse-
quent item, when defining A from P one will usually consider not directly the
elements of P but rather bounded functions of them, usually called Weyl
elements, which, considered as functions, would still separate the points
of M. Thus, for real-valued but unbounded a ∈ P one will consider the
one-parameter family of unitary operators R � t �→ Wt(a) := exp(ita) with
a ∈ P which for t → 0 approximates 1 + ita where 1 is the unit operator in
A. Now (3.1.3) is replaced for a, b ∈ P by

Ws(a)Wt(b)W−s(a) := Wt

( ∞∑

n=0

(ish̄)n

n!
{a, b}(n)

)

(Ws(a))∗ := W−s(a) = (Ws(a))−1 (3.1.4)

where {a, b}(0) = b, {a, b}(n+1) := {a, {a, b}(n)} is the iterated Poisson
bracket.

The reason for dealing with Weyl elements rather than the a in case that a
is classically unbounded is that in physically interesting representations the
operators corresponding to a will be unbounded, hence one can define them
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only on a dense domain. But it is not at all clear that different self-adjoint
operators can be defined on a common and invariant dense domain in which
case (3.1.3) would be ill-defined. Dealing with bounded operators which are
everywhere defined avoids these so-called domain questions.

Thus, it is often mathematically more convenient to construct instead of
T (P) the free tensor algebra generated by the Weyl elements and then to
quotient it by the two-sided ideal generated by (3.1.4) in order to obtain A.

III. Representations of A

A representation of an abstract ∗-algebra A is a ∗-morphism π : A →
L(Hkin) into a subalgebra of linear operators on a Hilbert space Hkin. That
is, we have π(1) = 1Hkin , π(z1a + z2b) = z1π(a) + z2π(b), π(a b) = π(a)π(b)
and π(a∗) = (π(a))† where the latter is the adjoint operation on Hkin and
1Hkin is the unit operator on Hkin. Here we have made it clear that the
Hilbert space Hkin is the kinematical representation space of the kinemati-
cal algebra A, it is not the physical Hilbert space. See Section 29.1.

Operator algebra theoretic methods such as the GNS construction are of
great importance for constructing representations, see Section 29.1. In gen-
eral, the theory of representations of a given A is very rich and not under
much control unless one imposes further physical restrictions. Guiding prin-
ciples here are again gauge invariance, see Section 29.1 and (weak) continuity
with respect to t �→ Wt(a). For GR the requirement of background indepen-
dence turns out to be a very tight condition as we will see. Moreover, the
representation should be irreducible on physical grounds (otherwise we have
superselection sectors, that is, closed invariant subspaces of A, implying that
the physically relevant information is already captured in any one of the
closed subspaces). Sometimes one is even able to invoke uniqueness results
if one invokes dynamical information such as that the representation should
support (i.e., allow a representation of) a Hamiltonian operator [279] or the
constraint operators.

Among all possible representations π we are, of course, only interested in
those which support the constraints HI as operators. Since, by assumption,
A separates the points of M it is possible to write every HI as a function
of the a ∈ P, however, that function is far from unique due to operator
ordering ambiguities and in field theory usually involves a limiting procedure
(regularisation and renormalisation). We must make sure that the resulting
limiting operators π(HI) are densely defined and closable (i.e., their adjoints
are also densely defined) on a suitable domain of Hkin. This step usually
severely restricts the abundance of representations. (Alternatively, in rare
cases it is possible to quantise the finite gauge transformations generated
by the classical constraints provided they exponentiate to a group.) In more
detail: by assumption we can write the classical constraint functions HI(N I)
as certain functions HI(N I) = hI(N I , {a}) of the elementary variables where
the curly brackets denote dependence on an, in general, infinite collection of
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variables. A naive quantisation procedure would be to define its quantisation
as ĤI(N I) = hI(N I , {â}) where from now on we abbreviate â := π(a) for
all a ∈ A. This will in general not work, at least not straightforwardly, for
several reasons.
(a) As is well known, the quantisation of a phase space function is not

unique, to a given candidate we can add arbitrary h̄ corrections and still
the classical limit of the corrected operator will be the original function.
This is called the factor ordering ambiguity.

(b) While such corrections in quantum mechanics are relatively harmless,
in quantum field theory they tend to be disastrous, a simple example
is quantum Maxwell theory where the straightforward quantisation of
the Hamiltonian gives a divergent nowhere-defined operator. It is only
after normal ordering that one obtains a densely defined operator. This
is what is called a factor ordering singularity.

(c) More seriously, in general the singularities of an operator are of an even
worse kind and cannot be simply removed by a judicious choice of fac-
tor ordering. One has to introduce a regularisation of the operator and
subtract its divergent piece as one removes the regulator again. This is
called the renormalisation of the operator. The end result must be a
densely defined operator on Hkin.

(d) If HI(N I) is classically a real-valued function then one would like to
implement HI(N I) as a self-adjoint operator on Hkin, the reason being
that this would guarantee that its spectrum (and therefore its measure-
ment values) is contained in the set of real numbers. While this would
certainly be a necessary requirement if HI(N I) was a true Hamiltonian
(i.e., not a constraint), in the case of a constraint this condition can be
relaxed as long as the value 0 is contained in its spectrum because this
is the only point of the spectrum that we are interested in. On the other
hand, a self-adjoint constraint operator is sometimes of advantage when
it comes to actually solving the constraints [267,268,276–278], see below.

IV. Solving the quantum constraints, physical inner product and Dirac
observables
We would now like to solve the constraints in the quantum theory. A first
guess of how to do that is by saying that a state ψ ∈ Hkin is physical provided
that ĤI(N I)ψ = 0 for all N I . The study of the simple example of a particle
moving in R2 with the constraint H = p2 reveals that this does not work in
general: in the momentum representation H = L2(C := R2, dμ0 := d2p) the
physical state condition becomes p2ψ(p1, p2) = 0 with the general solution
ψf (p1, p2) = δ(p2)f(p1) for some function f . The problem is that ψf is not
an element of Hkin. This is a necessary feature of an operator with continu-
ous spectrum: such an operator does not have eigenfunctions in the ordinary
sense. However, it has so-called ‘generalised eigenfunctions’ of which ψf is
an example [280].
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There are essentially two different strategies for dealing with this problem,
the first one is called ‘Group Averaging’ and the second one is called ‘Direct
Integral Decomposition’. The first method makes additional assumptions
about the structure of the quantum constraint algebra while the second does
not and is therefore of wider applicability. We will discuss both methods in
more detail in Chapter 30 and can be brief here.
(a) For ‘Group Averaging’ [280] the first assumption is that the π(HI(NI))

are actually self-adjoint operators on Hkin, defined on a common, dense
and invariant domain D (that is, π(HI(N I))D ⊂ D so that we may
define polynomials of constraint operators such as commutators) and
that the structure functions of the constraints are actually constants
on M.

As a second assumption, we require that there is no anomaly: recall that
by assumption the constraint algebra is first class. To be specific, consider
the case of a field theory based on three-dimensional manifold σ in the
3 + 1 decomposition of the action. Consider a real-valued basis eα of h :=
L2(σ, d3x) consisting of smooth functions or rapid decrease and let HIα :=
HI(eα) hence HI(x) =

∑
α HIαeα(x) since the constraints are elements of

h. Then the first-class property means that there exist so-called structure
functions fKγ

Iα,Jβ on M such that

{HIα, HJβ} = fKγ
Iα,JβHKγ

The quantum version of this condition is, in the case that the structure
functions are structure constants (do not depend on M)

[π(HIα), π(HJβ)] = īhfKγ
Iα,Jβπ(HKγ) (3.1.5)

which makes sense because all operators are defined on the common dense
and invariant domain D. This condition could be somewhat relaxed, some-
times it may be useful to allow for projective representations of the cor-
responding Lie group (representations up to a multiplier [281]). More on
anomalies will be said below.

Since we are now in the position of a proper (infinite-dimensional) Lie
algebra we can define the unitary operators

U(t) := exp

(

i
∑

Iα

tIαπ(HIα)

)

(3.1.6)

where the parameters take a range in a subset of R depending on the
π(HI(NI)) in such a way that the U(t) define a unitary representation of
the Lie group G determined by the Lie algebra generators HIα.

The third assumption is that G has an invariant (not necessarily finite) bi-
invariant Haar measure μH . This is guaranteed if G is a finite-dimensional,
locally compact group with respect to a suitable topology. In this case we
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may define an anti-linear rigging map

η : D → Hphys; ψ �→
∫

G

dμH(t) < U(t)ψ, . >Hkin (3.1.7)

with physical inner product

< η(ψ), η(ψ′) >Hphys := [η(ψ′)](ψ) (3.1.8)

Notice that η(ψ) defines a distribution on D and solves the constraints in
the sense that

[η(ψ)](U(t)ψ′) = [η(ψ)](ψ′) ∀ t ∈ G, ψ′ ∈ D (3.1.9)

Moreover, given any kinematical algebra element O ∈ A we may define a
candidate for a corresponding Dirac observable by

[O] :=
∫

G

dμH(t) U(t) O U(t)−1 (3.1.10)

which formally commutes with the U(t).
(b) Let us now come to the ‘Direct Integral Method’ [252–257] which is

developed in more detail in Section 30.2. Here we do not need to assume
that the π(HIα) are self-adjoint. Also the structure functions fKγ

Iα,Jβ

may have non-trivial dependence on M. This is actually the case in
GR and hence only this method is available there, see below. Con-
sider an operator-valued positive definite matrix Q̂Iα,Jβ such that the
Master Constraint operator

M̂ :=
1
2

∑

Iα,Jβ

[π(HIα)]†Q̂Iα,Jβ [π(HJβ)] (3.1.11)

is densely defined. Obvious candidates for Q̂Iα,Jβ are quantisations
π(QIα,Jβ) of positive definite, possibly M-valued, matrices with suitable
decay behaviour in the space of labels Iα. Then, since M̂ is positive by con-
struction it has self-adjoint extensions (e.g., its Friedrich extension, see the
first volume of [282] and Theorem 26.8.1) and its spectrum is supported on
the positive real line. Let λM

0 = inf σ(M̂) be the minimum of the spectrum
of M̂ and redefine M̂ by M̂−λM

0 idHkin . Notice that λM
0 < ∞ by assumption

and proportional to h̄ by construction. We now use the well-known fact that
Hkin, if separable, can be represented as a direct integral of Hilbert spaces

Hkin
∼=

∫ ⊕

R+
dμ(λ)H⊕

kin(λ) (3.1.12)

where M̂ acts on H⊕
kin(λ) by multiplication by λ. The measure μ and the

scalar product on H⊕
kin(λ) are induced by the scalar product on Hkin. More-

over, μ is unique up to an equivalent measure (with the same measure zero
sets, see Chapter 25) and the H⊕

kin(λ) are, in fact, unique up to measure
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theoretical niceties which are explained in detail in Section 30.2. The phys-
ical Hilbert space is then simply Hphys := H⊕

kin(0) and candidates for Dirac
observables constructed from bounded self-adjoint operators O on Hkin can
be given by the ergodic mean

[O] = lim
T→∞

1
2T

∫ T

−T

dt eit M̂ O e−it M̂ (3.1.13)

and they induce bounded self-adjoint operators on Hphys.
Notice that both methods can be combined. Indeed, it may happen that a

subset of the constraints can be solved by group averaging methods while the
remainder can only be solved by direct integral decomposition methods. In
this case, one will construct an intermediate Hilbert space which the first set
of constraints annihilates and which carries a representation of the second
set of constraints. This is actually the procedure followed in LQG and it will
be convenient to adopt this ‘solution in two steps’.

V. Quantum anomalies and classical limit
Especially if, as in GR (see 1.2.15), the fKγ

Iα,Jβ depend on the phase space
coordinates, we are not guaranteed that the right-hand side of (3.1.5) can
actually be written in the form

∑
Kγ π(HKγ)π(fKγ

Iα,Jβ) with the ĤKγ ordered
to the left. If that is not the case then the following inconsistency might arise.
For any solution η(ψ) we find

0 = [η(ψ)]([π(HIα), π(HJβ)] ψ′) =
∑

Kγ

[η(ψ)]
(
π
(
fKγ
Iα,Jβ HKγ

)
ψ′) (3.1.14)

for all ψ′ ∈ D, Iα, Jβ if π is a representation of the classical constraint alge-
bra. Thus, every η(ψ) not only satisfies the constraints (3.1.9) but also the
additional constraints (3.1.14). Depending on how π(fKγ

Iα,Jβ HKγ) is ordered
in terms of the individual operators π(fKγ

Iα,Jβ) and π(HKγ) one possibly
obtains additional conditions which are absent in the classical theory. Since
(3.1.14) will in general be new constraints, algebraically independent from
the original ones, the number of physical degrees of freedom in the classical
and the quantum theory would differ from each other. In other words, the
physical Hilbert space would have a too small number of semiclassical states
in order to qualify as a viable quantisation of the classical theory.

Hence, for the group averaging proposal one must make sure that (3.1.14)
is automatically satisfied once (3.1.9) holds, which puts additional restric-
tions on the freedom to order the constraint operators, if at all possible.
Such a requirement is not necessary for the direct integral method as we
have explained. In particular, the requirement that the π(HIα) be to the
left of the structure function operators is in conflict with the requirement
that the π(HIα), π(fKγ

Iα,Jβ) be symmetric operators if they do not com-
mute [283, 284]. This is because the only way that a classical relation of
the form {a, b} = cd between real-valued functions a, b, c, d can hold as an



116 The programme of canonical quantisation

operator condition between at least symmetric, mutually non-commuting
operators is [â, b̂] = īh(ĉd̂ + d̂ĉ)/2. Thus, in order to avoid quantum anoma-
lies in GR it seems that we would need non-symmetric operators. We will
see that this is precisely the case in LQG. But then the group averaging
method to solve the constraints clearly breaks down and we must use the
direct integral method.

Now in the direct integral decomposition method we just have a single con-
straint so that anomalies for the Master Constraint itself cannot arise. Yet,
anomalies within the individual constraints could still be present and would
express themselves in the fact that the spectrum of the Master Constraint
does not contain zero. Hence, if we did not subtract the spectral gap, the
physical Hilbert space would be empty. Subtracting the gap makes it non-
empty but so far there is no proof that the resulting physical Hilbert space
is then large enough. So far this proposal has just been successfully tested
in a few examples. The simplest is the following: consider a phase space
described by canonical pairs (pα, qα) and (yj , xj) subject to the constraints
H1α = pα, H2α = qα; α = 1, 2, . . .. Then {HIα, HJβ} = εIJδαβ , hence the
constraints are second class. Let cα > 0,

∑
α cα = ε < ∞ and define the Mas-

ter Constraint by M :=
∑

α cα(q2
α + p2

α)/2. Consider the kinematical Hilbert
space Hkin = HF ⊗H′

F where HF, H′
F are Fock spaces based on the annihi-

lation operators aα = (qα − ipα)/
√

2̄h and aj = (xj − iyj)/
√

2̄h respectively.
Now M̂ is a weighted sum of harmonic oscillator Hamiltonians and the min-
imum of its spectrum is the ‘zero point energy’ λ0 =

∑
α cαh̄/2 = ε̄h/2. Now

M̂
′
= M̂−λ0 =: M̂ : is the normal ordered constraint with pure point spec-

trum and its unique zero eigenvectors are of the form Ω ⊗ ψ′ where Ω ∈ HF

is the vacuum of the first Fock space and ψ′ ∈ H′
F is an arbitrary vector in

the second. Hence the physical Hilbert space is isomorphic to H′
F, which is

obviously the correct answer for this example.
Thus, nothing is swept under the rug. Hence, the real advantage of the

direct integral method is that it allows us to construct the physical inner
product even in the case of structure functions, however, while there is some
physical intuition from selected examples, there is no proof yet that the
semiclassical limit of the theory is the correct one.

The issue of the semiclassical limit is a non-trivial one also from another
perspective. Notice that our construction is entirely non-perturbative, there
are no (at least not necessarily) Fock spaces and there is no perturbative
expansion (Feynman diagrams) even if the theory is interacting. While this
is attractive, the price to pay is that the representation Hkin to begin with
and also the final physical Hilbert space Hphys will in general be far removed
from any physical intuition. Hence, we must make sure that what we have
constructed is not just some mathematical object but has, at the very least,
the classical theory as its classical limit. In particular, if classical Dirac
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observables are known, then the quantum Dirac observables (3.1.10) and
(3.1.13) should reduce to them in the classical limit. To address such ques-
tions one must develop suitable semiclassical tools, in particular the con-
struction of suitable semiclassical or coherent states.

We see that the construction of the quantum field theory in AQFT as well as in
LQG is nicely separated: first one constructs the algebra and then its representa-
tions. In fact, the kinematical algebra from which one starts is the only input if
one can prove later on uniqueness results concerning the representation theory.
What is new in LQG as compared with AQFT is that it also provides a frame-
work for dealing with constraints. However, solving the constraints and hence
the physical Hilbert space is more or less tightly prescribed by the kinematical
analysis already.

We will see that in LQG this programme could so far be systematically carried
out until step IV, except for the construction of Dirac observables. Work is
now in progress regarding the quantum Dirac observables; there are already
proposals for the classical ones as we have seen in Chapter 2. Furthermore, in
Chapter 11 semiclassical tools are developed by means of which the correctness
of the infinitesimal dynamics of LQG could already be verified. To show that the
theory has classical General Relativity as a classical limit would mean showing
in addition that the quantum Dirac observables have the correct classical limit.
Once these missing steps have been completed (at least in some approximation)
and GR has been confirmed as a semiclassical limit of theory, LQG will be in a
position to make falsifiable physical predictions.



4

The new canonical variables of Ashtekar for
General Relativity

One would now like to apply the programme outlined in Chapter 3 to canonical
GR in the ADM formulation of Chapter 1. Unfortunately, to date it has not been
possible to go beyond the first two steps in a mathematically rigorous fashion.
In other words, while suitable algebras P, A can be defined, nobody succeeded
in finding a rigorously defined, background-independent representation of those
which also support the Hamiltonian constraint operator. As a consequence, all
the other steps of the programme could be addressed only formally, except in sit-
uations with a lot of symmetries (called midi- or minisuperspace models respec-
tively depending on whether there are still an infinite or finite number of physical
degrees of freedom). Nevertheless, these early investigations resulted in impor-
tant physical intuition and culminated in DeWitt’s three seminal papers [82–84].
Moreover, Wheeler and DeWitt formally quantised the Hamiltonian constraint,
and the associated quantum constraint equation is now known as the Wheeler–
DeWitt equation. By inspection of (1.2.6) it is not surprising that it is hard to
give mathematical meaning to the Hamiltonian constraint operator because it
depends not even polynomially on the field variables, which in quantum theory
become operator-valued distributions, thus non-polynomial expressions of these
are hopelessly divergent, at least in the usual Fock representations of QFT.

It is not clear whether it is impossible to make progress with the ADM vari-
ables, maybe there simply is no representation that satisfies all our require-
ments. In any case, the field was more or less stuck for two decades. The situ-
ation changed dramatically when Ashtekar introduced new canonical variables
for GR [92,93], which cast the theory into the language of gauge theories of the
Yang–Mills type. This chapter derives the classical Ashtekar variables in detail
from the ADM framework.

4.1 Historical overview

The history of the classical aspects of the new variables is approximately 20 years
old and we wish to give a brief account of the developments (the history of the
quantum aspects will be given in Section 5.1):

� 1981–82
The starting point was a series of papers due to Sen [285–287] who generalised
the covariant derivative ∇μ of Chapter 1 for s = −1 to SL(2,C) spinors of
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left (right)-handed helicity resulting in an (anti)self-Hodge-dual connection
which is therefore complex-valued. An exhaustive treatment on spinors and
spinor calculus can be found in [288, 289]. See also Section 15.1.4 for a brief
introduction.

� 1986–87
Sen was motivated in part by a spinorial proof of the positivity of energy
theorem of General Relativity [237–240]. But it was only Ashtekar [15,16,92,
93] who realised that modulo a slight modification of his connection, Sen had
stumbled on a new canonical formulation of General Relativity in terms of the
(spatial projection of) this connection, which turns out to be a generalisation
of Dμ to this class of spinors, and a conjugate electric field kind of variable,
such that the initial value constraints of General Relativity (1.2.6) can be
written in polynomial form if one rescales H by H �→ H̃ =

√
det(q)H (which

looks like a harmless modification at first sight). In fact, H̃ is only of fourth
order in the canonical coordinates, not worse than non-Abelian Yang–Mills
theory and thus a major roadblock on the way towards quantisation seemed
to be removed. Ashtekar also noted the usefulness of the connection for s = +1
in which case it is actually real-valued [290,291].

� 1987–88
Ashtekar’s proofs were in a Hamiltonian context. Samuel as well as Jacobson
and Smolin discovered independently that there exists in fact a Lagrangian
formulation of the theory by considering only the (anti)self-dual part of the
curvature of Palatini gravity [292–294]. Jacobson also considered the coupling
of fermionic matter [295] and an extension to supergravity [296]. Coupling to
standard model matter was considered by Ashtekar et al. [297]. All of these
developments still used a spinorial language which, although not mandatory,
is of course quite natural if one wants to treat spinorial matter.

A purely tensorial approach to the new variables was given by Gold-
berg [298] in terms of triads and by Henneaux et al. in terms of tetrads
[299].

� 1989–92
While the Palatini formulation of General Relativity uses a connection and
a tetrad field as independent variables, Capovilla, Dell and Jacobson realised
that there is a classically equivalent action which depends only on a connection
and a scalar field; moreover, they were able to solve both initial value con-
straints of General Relativity algebraically for a huge (but not the complete)
class of field configurations. Unfortunately, there is a third constraint besides
the diffeomorphism and Hamiltonian constraint in this new formulation of
General Relativity, the so-called Gauß constraint, which is not automatically
satisfied by this so-called ‘CDJ-Ansatz’ [300–303].

This line of thought was further developed by Bengtsson and Peldan
[304–306] culminating in the discovery that in the presence of a cosmological
constant the just-mentioned scalar field can be eliminated by a field equation,
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resulting in a pure connection Lagrangian for General Relativity (but not a
polynomial one). For an overview of these ideas see [307] and for ideas towards
gauge group unification see [308,309].

� 1994–96
As mentioned above, for Lorentzian (Euclidean) signature one considered com-
plex (real)-valued connection variables. Meanwhile, it turned out that it is
very hard to implement the reality conditions for the complex-valued case as
adjointness conditions on the measure in the quantum theory while for the
real valued case it is relatively easy. This motivated Barbero [310,311] to con-
sider real-valued connections also for Lorentzian signature. Barbero discovered
that one can give a Hamiltonian formulation even for all complex values of a
parameter considered earlier by Immirzi [312–314] for either choice of signa-
ture. However, in order to keep polynomiality of the Hamiltonian constraint
when using real-valued connections one has to multiply it by an even higher
power of det(q). Moreover, the constraint becomes algebraically much more
complicated.

This caveat is removed by a so-called ‘phase space Wick rotation’ introduced
in [315, 316] and later considered also in [317] where one can work with real
connections while keeping the algebraic form of the constraint simple. This
line of development was motivated by a seminal paper due to Hall [318–320]
who constructed a unitary transform from a Hilbert space of square integrable
functions on a compact gauge group to a Hilbert space of square integrable,
holomorphic functions on the complexification of that gauge group and this
transform was generalised in [321] to gauge theories for compact gauge groups.
Mena Marugán clarified the relation between this phase space Wick rotation
and the usual one (analytic continuation in the time parameter) [322,323]. A
toy model test was performed in [324].

The last development in this respect is the result of [325], which states that
polynomiality of the constraint operator is not only unimportant in order to
give a rigorous meaning to it in quantum theory, it is in fact disastrous. The
important condition is that the constraint be a scalar of density of weight one.
This forbids rescaling of H, which is already a density of weight one, by any
non-trivial power of det(q). It is only in that case that the quantisation of the
operator can be done in a background-independent way without picking up UV
divergences on the kinematical Hilbert space. For this reason, real connection
variables are currently favoured as far as quantum theory is concerned. In
retrospect, what is really important is that one bases the quantum theory
on connections and canonically conjugate electric fields (which is dual in a
metric-independent way to a two-form). The reason is that n-forms can be
naturally integrated over n-dimensional submanifolds of σ without requiring
a background structure, this is not possible for the metric variables of the
ADM formulation and has forbidden progress for such a long time. We will
come back to this point in the next chapter.
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� 1996–2000
So far a Lagrangian action principle had been given only for the following
values of signature s and Immirzi parameter β, namely Lorentzian General
Relativity s = −1, β = ±i and Euclidean General Relativity s = +1, β = ±1.
For arbitrary complex β and either signature a Lagrangian formulation was
discovered by Holst, Barros e Sá and Capovilla et al. [326–328]. Roughly speak-
ing the action is given by a modification of the Palatini action

S =
∫

M

tr(F ∧ [∗ − β−1](e ∧ e)) (4.1.1)

(it results for β = ∞) where ∗ denotes the Hodge dual with respect to the
internal Minkowski metric, F = F (ω) is the curvature of some connection ω

which is considered as an independent field next to the tetrad e. This action
should be considered in analogy with the θ angle modification of (the bosonic
contribution of the action to) QCD

S =
∫

M

tr(F ∧ [∗ + θ]F ) (4.1.2)

where ∗ denotes the Hodge dual with respect to the background spacetime
Minkowski metric. In the gravitational case the β term drops out by an equa-
tion of motion, in the QCD case the variation of the θ term is exact and also
drops out of the equations of motion. This holds for the classical theory, but
it is well known that in the quantum theory the actions with different values
of θ do not result in unitarily equivalent theories. A similar result holds for
general relativity [312].

Samuel [329,330] criticised the use of real connection variables for Lorentzian
gravity because of the following reason: the Hamiltonian analysis of the action
(4.1.1) leads, unless β = ±i for s = −1, to constraints of second class which
one has to solve by imposing a gauge condition. It eliminates the boost part of
the original SO(1, 3) Gauß constraint and one is left with an SO(3) Gauß con-
straint (which also appears in the case β = ±i). That gauge condition fixes the
direction of an internal SO(1, 3) vector which is automatically preserved by the
remaining SO(3) subgroup and by the evolution derived from the associated
Dirac bracket, so that everything is consistent. Now, while for β = ±i, s = −1
the spatial connection is simply the pull-back of the (anti)self-dual part of the
four-dimensional spin connection to the spatial slice, for real β its spacetime
interpretation is veiled due to the appearance of the second-class constraints
and the gauge fixing.

Samuel now asked the following question: for any value of β can it be
shown that every SO(3) gauge-invariant function of the spatial connection
and the triad can be expressed in terms of the (pull-back to the spatial slice of
the) spacetime fields qμν ,Kμν? In the previous chapter we have shown that
the Hamiltonian evolution of these fields under the Hamiltonian constraint
coincides, on the constraint surface, with their infinitesimal transformation



122 The new canonical variables of Ashtekar for General Relativity

under a timelike diffeomorphism. Is it then true that the induced Hamiltonian
transformation of SO(3) gauge-invariant functions of the connection (such as
traces of its holonomy around a loop in a spatial slice) coincides with that
of (the pull-back to the spatial slice of) a spacetime connection? He found
that this is the case if and only if β = ±i. The simple algebraic reason is that
only for an (anti)self-dual connection AIJ , I, J = 0, 1, 2, 3 are the components
A0j already determined by Aj = 1

2εjklA
kl so that the pull-back to the spatial

slice of Aj determines the pull-back of an SO(1, 3) connection with its full
spacetime interpretation only then.

It should be stressed, however, that Samuel’s criticism is purely aesthetical
in nature, for interpretational reasons it is certainly convenient to have a space-
time interpretation of the spatial connection but it is by no means mandatory,
one just has to bear in mind that the connection does not have the naive trans-
formation behaviour under Hamiltonian evolution on the constraint surface.
In fact, to date a satisfactory quantum theory has been constructed only for
β real (which in turn does not mean that it is impossible to do for β = ±i). In
fact, as we will show in this section, at the classical level all complex values of
the Immirzi parameter lead to Hamiltonian formulations completely equivalent
to the ADM formulation.

� 2000–2002
In [331–334] Alexandrov and coworkers used the results of [326–328] and tried
to set up a simultaneously canonical and covariant formulation of General Rel-
ativity in terms of connection variables. This involves working with real-valued
SL(2,C) connections rather than SU(2) connections. In order to implement
the necessarily arising second-class constraint one must use the Dirac bracket
rather than the canonical brackets, as a result of which one ends up with con-
nections that have non-vanishing Poisson brackets among themselves. As a
result, in the quantum theory the quantum connection operators must not be
mutually commuting, which is why it is impossible to construct a connection
representation in this approach (by definition, in such a representation the
connection operator acts by multiplication; in fact, so far no non-trivial repre-
sentation could be constructed this way). Notice that the criticism by Samuel
as spelt out is really just aesthetical in nature and not an obstruction to imple-
menting spacetime covariance. Namely, as we will prove in this chapter, the
SU(2)-connection formulation of General Relativity is completely equivalent
to the ADM formulation, which is as manifestly four-dimensionally covariant
as any canonical approach can possibly be. One just must not commit the
mistake of thinking that the SU(2) connection is the pull-back of a spacetime
connection. The transformation properties of the connection under the flow
of the Hamiltonian constraint take this explicitly into account, remembering
how the connection is built out of the extrinsic curvature and the triads. More-
over, the real complication with four-dimensional diffeomorphism invariance is
that it is not implemented everywhere on the phase space (just on-shell) as a
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canonical transformation induced by the Hamiltonian constraint, as we
emphasised in Section 1.4. In their ‘covariant’ formulation the authors of
[331–334] face this issue of a mixture of dynamics and gauge symmetries as
well.

4.2 Derivation of Ashtekar’s variables

This concludes our historical digression and we now come to the actual deriva-
tion of the new variable formulation. We decided for the extended phase space
approach to use triads as this makes the contact and equivalence with the ADM
formulation most transparent and quickest and avoids the introduction of addi-
tional SL(2,C) spinor calculus which would blow up our exposition unnecessarily.
Furthermore, the method displayed here, namely to extend a given phase space
and reduce its extension to the original one by imposing constraints, can be
generalised and is therefore of independent interest, for example, in trying to
construct higher-dimensional analogues of what we will do here. Also we do this
for either signature and any complex value of the Immirzi parameter. What is no
longer arbitrary is the dimension of σ: we will be forced to work with D = 3 as
will become clear in the course of the derivation if one uses the type of extension
of the phase employed here.

The construction actually consists of two steps: first an extension of the ADM
phase space and second a canonical transformation on the extended phase space.
We will first assume that the SU(2)-bundle to be introduced is trivial and later
explain why this is not a restriction. See Chapter 21 for an introduction to
fibre bundle theory. For a derivation from an action principle, see the paragraph
around equation (12.1.5) in Chapter 12.

4.2.1 Extension of the ADM phase space

We would like to consider the phase space described in Section 1.1 as the sym-
plectic reduction of a larger symplectic manifold with co-isotropic constraint
surface, see [218] or Chapter 23. One defines a so-called co-D-Bein field eia on σ

where the indices i, j, k, . . . take values 1, 2, . . . , D. The D-metric is expressed in
terms of eia as

qab := δjke
j
ae

k
b (4.2.1)

Notice that this relation is invariant under local SO(D) rotations eia �→ Oi
je

j
a and

we can therefore view eia, for D = 3, as an su(2)-valued one-form (recall that the
adjoint representation of SU(2) on its Lie algebra is isomorphic with the defining
representation of SO(3) on R3 under the isomorphism R3 → su(2); vi → viτi
where τi is a basis of su(2) (also called ‘soldering forms’ [288])). This observation
makes it already obvious that we have to get rid of the D(D − 1)/2 rotational
degrees of freedom sitting in eia but not in qab. Since the Cartan–Killing metric
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of so(D) is just the Euclidean one we will in the sequel drop the δij and also do
not need to care about index positions.

Next we introduce yet another, independent one-form Ki
a on σ which for D = 3

we also consider as su(2)-valued and from which the extrinsic curvature is derived
as

−sKab := Ki
(ae

i
b) (4.2.2)

We see immediately that Ki
a cannot be an arbitrary D ×D matrix but must

satisfy the constraint

Gab := Kj
[ae

j
b] = 0 (4.2.3)

since Kab was a symmetric tensor field. Consider the quantity

Ea
j := sgn

(
det

((
eia

))) 1
(D − 1)!

εaa1...aD−1εjj1...jD−1e
j1
a1

. . . ejD−1
aD−1

=
√

det(q)eaj

(4.2.4)

where the D-Bein is defined by the relations eaj e
k
a = δkj , e

a
j e

j
b = δab .

Remark: At this point an important remark about the sign sgn(det((eia))) of
det((eja)) is appropriate. In classical GR the three-metric qab is assumed to
be everywhere non-degenerate and of Euclidean signature. Therefore det(q) =
|det(e)|2 > 0. Since one also assumes that the fields eja, qab are everywhere
smooth, it follows that det(e) has constant sign. It follows that we are implic-
itly imposing that σ is orientable because then εj1...jDe

j1 ∧ . . . ∧ ejD is a glob-
ally defined D-form. We will see that this classical condition can be completely
relaxed in the quantum theory, thus allowing for topology change!!!

With the help of (4.2.4) one can equivalently write (4.2.3) in the form

Gjk := Ka[jE
a
k] = 0 (4.2.5)

Consider now the following functions on the extended phase space

qab := Ej
aE

j
b

∣∣ det
((
Ec

l

))∣∣2/(D−1)
, P ab := 2

∣∣ det
((
Ec

l

))∣∣−2/(D−1)
Ea

kE
d
kK

j
[dδ

b
c]E

c
j

(4.2.6)

where Ej
a is the inverse of Ea

j . It is easy to see that when Gjk = 0, the functions
(4.2.6) precisely reduce to the ADM coordinates. Inserting (4.2.6) into (1.2.6)
we can also write the diffeomorphism and Hamiltonian constraint as functions
on the extended phase space, which one can check to be explicitly given by

Ha := 2sDb

[
Kj

aE
b
j − δbaK

j
cE

c
j

]

H := − s
√

det(q)

(
Kl

aK
j
b −Kj

aK
l
b

)
Ea

jE
b
l −

√
det(q)R (4.2.7)
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where
√

det(q) := |det((Ea
j ))|1/(D−1) and qab = Ea

jE
b
j/det(q) by which R =

R(q) is considered as a function of Ea
j . Notice that, using (4.2.2), (4.2.4), expres-

sions (4.2.7) indeed reduce to (1.2.6) up to terms proportional to Gjk.
Let us equip the extended phase space coordinatised by (Ki

a, E
a
i ) with the

symplectic structure (formally, that is without smearing) defined by
{
Ea

j (x), Eb
k(y)

}
=

{
Kj

a(x),Kk
b (y)

}
= 0,

{
Ea

i (x),Kj
b (y)

}
=

κ

2
δab δ

j
i δ(x, y)

(4.2.8)

We claim now that the symplectic reduction with respect to the constraint Gjk

of the constrained Hamiltonian system subject to the constraints (4.2.5), (4.2.7)
results precisely in the ADM phase space of Section 1.1 together with the original
diffeomorphism and Hamiltonian constraint.

To prove this statement we first of all define the smeared ‘rotation constraints’

G(Λ) :=
∫

σ

dDxΛjkKajE
a
k (4.2.9)

where ΛT = −Λ is an arbitrary antisymmetric matrix, that is, an so(D)-valued
scalar on σ. They satisfy the Poisson algebra, using (4.2.8)

{G(Λ), G(Λ′)} =
κ

2
G([Λ,Λ′]) (4.2.10)

in other words, G(Λ) generates infinitesimal SO(D) rotations as expected. Since
the functions (4.2.6) are manifestly SO(D)-invariant by inspection, they Poisson
commute with G(Λ), that is, they comprise a complete set of rotational-invariant
Dirac observables with respect to G(Λ) for any Λ. As the constraints defined in
(4.2.7) are in turn functions of these, G(Λ) also Poisson commutes with the
constraints (4.2.7), whence the total system of constraints consisting of (4.2.9),
(4.2.7) is of first class.

Finally we must check that Poisson brackets among the qab, P
cd, considered

as the functions (4.2.6) on the extended phase space with symplectic structure
(4.2.8), are equal to the Poisson brackets of the ADM phase space (1.2.7), at least
when Gjk = 0. Since qab is a function of Ea

j only it is clear that {qab(x), qcd(y)} =
0. Next we have

{P ab(x), qcd(y)} = ([qa(eqbf)−qabqef ]Ej
f )(x){Kj

e(x), (|det(E)|2/(D−1)Ek
cE

k
d )(y)}

= ([qa(eqbf)−qabqef ]Ej
f )(x)

[
2

D − 1
qcd(y)

{Kj
e(x), |det(E)|(y)}
|det(E)|(x)

+ 2( det(q)Ek
(c(x){Kj

e(x), Ek
d)(y)}

]

= κ

(
[qa(eqbf) − qabqef ]

[
− 1
D − 1

qcdqef + qe(cqd)f

])
(x)δ(x, y)

= κδa(cδ
b
d)δ(x, y) (4.2.11)
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where we used δE−1 = −E−1δEE−1, [δ|det(E)|]/|det(E)| = [δ det(E)]/det(E)
= Ej

aδE
a
j . The final Poisson bracket is the most difficult one. By carefully

inserting the definitions, making use of the relations Ea
j = |det(e)|eaj , Ej

a =
eja/|det(e)|, eaj = qabejb at various steps one finds after two pages of simple but
tedious algebraic manipulations that

{P ab(x), P cd(y)} = −κ

(
det(e)

4
[qbcGad + qbdGac + qacGbd + qadGbc]

)
(x)δ(x, y)

(4.2.12)

where Gab = qacqbdGcd and so (4.2.12) vanishes only at Gab := Gjke
j
ae

k
b = 0.

Let us summarise: the functions (4.2.6) and (4.2.7) reduce at Gjk = 0 to the
corresponding functions on the ADM phase space, moreover, their Poisson brack-
ets among each other reduce at Gjk = 0 to those of the ADM phase space. Thus,
as far as rotationally invariant observables are concerned, the only ones we are
interested in, both the ADM system and the extended one, are completely equiv-
alent and we can as well work with the latter. This can be compactly described
by saying that the symplectic reduction with respect to Gjk of the constrained
Hamiltonian system described by the action

S :=
1
κ

∫

R

dt

∫

σ

dDx
(
2K̇j

aE
a
j −

[
−ΛjkGjk + NaHa + NH

])
(4.2.13)

is given by the system described by the ADM action of Section 1.1. Notice that,
in accordance with what we said before, there is no claim that the Hamiltonian
flow of Kj

a, E
a
j with respect to Ha, H is a spacetime diffeomorphism. However,

since the Hamiltonian flow of H,Ha on the constraint surface Gjk = 0 is the
same as on the ADM phase space for the gauge-invariant observables qab, P

ab,
a representation of Diff(M) (on-shell) is still given on the constraint surface of
Gjk = 0.

4.2.2 Canonical transformation on the extended phase space

Up to now we could work with arbitrary D ≥ 2, however, what follows works
only for D = 3.1 First we introduce the notion of the spin connection, which is
defined as an extension of the spatial covariant derivative Da from tensors to
generalised tensors with so(D) indices. One defines

Daub...vj := (Daub)...vj + · · · + ub...(Davj) where Davj := ∂avj + Γajkv
k

(4.2.14)

1 One can introduce higher p-form fields, see [335] and references therein, however, it is not
clear that such a reformulation preserves the simplicity of the symplectic structure, which is
mandatory in order to have a chance to find kinematical Hilbert space representations.
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extends by linearity, Leibniz rule and imposes that Da commutes with con-
tractions, see Chapters 19, 21. Moreover, we extend the metric compatibility
condition Daqbc = 0 to eja, that is

Dae
j
b = 0 ⇒ Γajk = −ebk

[
∂ae

j
b − Γc

abe
j
c

]
(4.2.15)

Then Daδjk = Dae
b
je

k
b = 0, which implies that Dav

j = ∂av
j + Γajkv

k since
Γa(jk) = 0. Obviously Γa takes values in so(D), that is, (4.2.15) defines an anti-
symmetric matrix.

Our aim is now to write the constraint Gjk in such a form that it becomes
the Gauß constraint of an SO(D) gauge theory, that is, we would like to write it
in the form Gjk = (∂aEa + [Aa, E

a])jk for some so(D) connection A. It is here
where D = 3 is singled out: what we have is an object of the form Ea

j which
transforms in the defining representation of so(D) while Γa

jk transforms in the
adjoint representation of so(D). It is only for D = 3 that these two are equivalent.
Thus from now on we take D = 3.

The canonical transformation that we have in mind consists of two parts: (1)
a constant Weyl (rescaling) transformation and (2) an affine transformation.

Constant Weyl transformation

Observe that for any non-vanishing complex number β 
= 0, called the Immirzi
parameter, the following rescaling (Kj

a, E
a
j ) �→ ((β)Kj

a := βKj
a,

(β) Ea
j := Ea

j /β) is
a canonical transformation (the Poisson brackets (4.2.8) are obviously invariant
under this map). We will use the notation K = (1)K,E = (1)E. In particular,
the rotational constraint, which we write in D = 3 in the equivalent form,

Gj = εjklK
k
aE

a
l = εjkl

((β)
Kk

a

)((β)
Ea

l

)
(4.2.16)

is invariant under this rescaling transformation. We will consider the other two
constraints (4.2.7) in a moment.

Affine transformation

We notice from (4.2.15) that DaE
b
j = 0. In particular, we have

DaE
a
j = [DaE

a]j + Γaj
kEa

k = ∂aE
a
j + εjklΓk

aE
a
l = 0 (4.2.17)

where the square bracket in the first identity means that D acts only on tensorial
indices, which is why we could replace D by ∂ as Ea

j is an SU(2)-valued vector
density of weight one. We also used the isomorphism between antisymmetric
tensors of second rank and vectors in Euclidean space to define Γa =: Γl

aTl where
(Tl)jk = εjlk are the generators of SO(3) in the defining – or, equivalently, of
SU(2) in the adjoint representation if the structure constants are chosen to be
εijk. Next we explicitly solve the spin connection in terms of Ea

j from (4.2.15)
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by using the explicit formula for Γa
bc and find

Γi
a =

1
2
εijkebk

[
eja,b − ejb,a + ecje

l
ae

l
c,b

]

=
1
2
εijkEb

k

[
Ej

a,b − Ej
b,a + Ec

jE
l
aE

l
c,b

]

+
1
4
εijkEb

k

[
2Ej

a

(det(E)),b
det(E)

− Ej
b

(det(E)),a
det(E)

]
(4.2.18)

where in the second line we used that |det(E)| = [det(e)]2 in D = 3. Notice that
the second line in (4.2.18) explicitly shows that Γj

a is a homogeneous rational
function of degree zero of Ea

j and its derivatives. Therefore we arrive at the
important conclusion that

((β)Γj
a

)
:= Γj

a

((β)
E

)
= Γj

a = Γj
a

((1)
E

)
(4.2.19)

is itself invariant under the rescaling transformation. This is obviously also
true for the Christoffel symbol Γa

bc since it is a homogeneous rational function
of degree zero in qab and its derivatives and qab = |det(E)|Ej

aE
j
b �→ ((β)qab) =

(β2/
√
β2

3
) ((1)qab). Thus the derivative Da is, in fact, independent of β and we

therefore have in particular Da((β)Ea
j ) = 0. We can then write the rotational

constraint in the form

Gj = 0 + εjkl
((β)

Kk
a

)((β)
Ea

l

)
= ∂a

((β)
Ea

j

)
+ εjkl

[
Γk
a +

((β)
Kk

a

)]((β)
Ea

l

)

=: (β)Da
(β)Ea

j (4.2.20)

This equation suggests introducing the new connection
((β)

Aj
a

)
:= Γj

a +
((β)

Kj
a

)
(4.2.21)

This connection could be called the Sen–Ashtekar–Immirzi–Barbero connection
(names in historical order) for the historical reasons mentioned at the beginning
of this chapter. More precisely, the Sen connection arises for β = ±i, Gj = 0,
the Ashtekar connection for β = ±i, the Immirzi connection for complex β and
the Barbero connection for real β. For simplicity we will refer to it as the new
connection which now replaces the spin connection Γj

a and gives rise to a new
derivative (β)Da acting on generalised tensors as the extension by linearity of
the basic rules (β)Davj := ∂avj + εjkl((β)Ak

a)vl and (β)Daub := Daub. Notice that
(4.2.20) has precisely the structure of a Gauß law constraint for an SU(2) gauge
theory, although (β)A qualifies as the pull-back to σ by local sections of a con-
nection on an SU(2) fibre bundle over σ only when β is real. Henceforth we will
call Gj the Gauß constraint.

Given the complicated structure of (4.2.18) it is quite surprising that the
variables ((β)A,(β) E) form a canonically conjugate pair, that is

{(β)
Aj

a(x),(β) Ak
b (y)

}
=

{(β)
Ea

j (x),(β) Eb
k(y)

}
= 0,

{(β)
Ea

j (x),(β)Ak
b (y)

}

=
κ

2
δab δ

k
j δ(x, y) (4.2.22)
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This is the key feature for why these variables are at all useful in quantum theory:
if we did not have such a simple bracket structure classically then it would be
very hard to find Hilbert space representations that turn these Poisson bracket
relations into canonical commutation relations.

To prove (4.2.22) by means of (4.2.8) (which is invariant under replacing K,E

by (β)K,(β)E) we notice that the only non-trivial relation is the first one since
{Ea

j (x),Γk
b (y)} = 0. That relation is explicitly given as

β
[{

Γj
a(x),Kk

b (y)
}
−

{
Γk
b (y),K

j
a(x)

}]
= β

κ

2

[
δΓj

a(x)
δEb

k(y)
− δΓk

b (y)
δEa

j (x)

]

= 0 (4.2.23)

which is just the integrability condition for Γj
a to have a generating potential F .

A promising candidate for F is given by the functional

F =
∫

σ

d3xEa
j (x)Γj

a(x) (4.2.24)

since if (4.2.23) holds we have

δF

δEa
j (x)

− Γj
a(x) =

∫
d3yEb

k(y)
δΓk

b (y)
δEa

j (x)
=

∫
d3yEb

k(y)
δΓj

a(x)
δEb

k(y)

=
2
κ

{
Γj
a(x),

∫
d3yKk

b (y)Eb
k(y)

}
= 0 (4.2.25)

because the function
∫
d3yKk

b (y)Eb
k(y) is the canonical generator of constant

scale transformations under which Γj
a is invariant as already remarked above. To

show that F is indeed a potential for Γj
a we demonstrate (4.2.25) in the form∫

d3xEa
j (x)δΓj

a(x) = 0. Starting from (4.2.18) we have (using δejae
b
j = δejbe

b
k = 0

repeatedly)

Ea
i δΓ

i
a =

1
2
εijk|det(e)|eai δ

(
ebk

[
eja,b − ejb,a − ecje

l
ae

l
c,b

])

=
1
2
εijk|det(e)|

[
eai δ

(
ebk

(
eja,b − ejb,a

))
− δ

(
ebke

c
je

i
c,b

)
+

(
δeai

)
ecje

l
ae

b
ke

l
c,b

]

=
1
2
εijk|det(e)|

[
eai δ

(
ebk

(
eja,b − ejb,a

))
− δ

(
ebke

a
j e

i
a,b

)
−

(
δela

)
eai e

c
je

b
ke

l
c,b

]

=
1
2
εijk|det(e)|

[
δ
(
eai e

b
k(e

j
a,b − ejb,a

)
− ebke

a
j e

i
a,b

)
+

(
δeai

)
ebk

(
eja,b − ejb,a

)

−
(
δela

)
eai e

c
je

b
ke

l
c,b

]

=
1
2
εijk|det(e)|

[
δ
(
ebk

(
eaj e

i
a,b + eai e

j
a,b

)
− eai e

b
ke

j
b,a

)
+

(
δebk

)
eai e

j
b,a

+
(
δeai

)
ebke

j
b,a −

(
δela

)
eai e

c
je

b
ke

l
c,b

]

= −1
2
εabc

[
ejcδe

j
b,a −

(
δeja

)
ejc,b

]
sgn(det(e))

= −1
2
εabc∂a

[(
δejb

)
ejc

]
sgn(det(e)) = −1

2
εabc∂a

[(
δejb

)
ejcsgn(det(e))

]

(4.2.26)
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From the first to the second line we pulled eai into the variation of the third term
of δΓa

i resulting in a correction proportional to δeia, in the next line we relabelled
the summation index c into a in the third term and traded the variation of eai for
that of ela in the fourth term, in the next line we pulled again eai inside a variation
resulting in altogether six terms, in the next line we collected the total variation
terms and reordered them and in the fourth term we relabelled the summation
indices a, b into b, a and i, k into k, i or i, j into j, i resulting in a minus sign from
the εijk, in the next line we realised that the first two terms are symmetric in i, j

which thus drop out due to the εijk and that the eai and ebk variation pieces of the
third term cancel against the fourth and fifth term, in the next line we made use
of the relations det(e)εijkebje

c
k = εabceia,det(e)εijkeai e

b
je

c
k = εabc and relabelled j

for l and in the last line finally we relabelled a for b in the second term resulting
in a minus sign which allows us to write the whole expression as a derivative.
We also exploited that sgn(det(e)) = const. (classically).

It follows that
∫

σ

d3xEa
j δΓ

j
a = −1

2

∫

σ

d3x∂a
(
εabc

(
δejb

)
ejcsgn(det(e))

)

= −1
2

∫

∂σ

dSaε
abcejb

(
δejc

)
sgn(det(e)) (4.2.27)

which vanishes if ∂σ = ∅. If σ has a boundary such as spatial infinity then we
must improve (4.2.24). To do this we must use the boundary conditions on
((β)Aj

a,
(β)Ea

j ) which were derived from the ADM boundary conditions stated
in Section 1.1 in [244, 245, 336] by simply carefully reinserting the definitions of
the new variables in terms of the ADM variables and the Gauß constraint. These
considerations can be summarised as follows.

Recall (1.5.2), that for the ADM variables we had asymptotically qab = δab +
fab(n)/r + O(r−2) and Pab = F ab(n)/r2 + O(r−3) where na = xa/r is an asymp-
totically flat Cartesian coordinate system and fab, F

ab have even and odd par-
ity respectively on the asymptotic S2. It follows that Kab = Fab(n)/r2 + O(r−3)
and Fab has odd parity. For the co-triad we make the Ansatz eja = δja + f j

a(n)/r
which leads to fab(n) = f j

(a(n)δjb), hence f j
a has even parity (a potentially anti-

symmetric contribution can be excluded). Thus, Ea
j = δaj + fa

j (n)/r + O(r−2)
and fa

j has even parity. Next, from −sKab = Kj
(ae

j
b) we conclude that Kj

a =
F j
a (n)/r2 + O(r−3) and F j

a has odd parity. Finally, since by (4.2.18) Γj
a is a

homogeneous function of eja and its first derivatives which appear in first power
only it follows that Γj

a = γj
a(n)/r2 + O(r−3) where γj

a has odd parity. Thus
(β)Aj

a = (β)F j
a (n)/r2 + O(r−3) and (β)F j

a (n) has odd parity.
We see that

∫
σ
d3xEa

j Γj
a diverges linearly. To cure this we add a boundary

term just as in Section 1.1.6. Notice that

Ea
j Γj

a = −1
2
sgn(det(e))εabceja∂be

j
c (4.2.28)
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Hence with δj = δjadx
a

∫

σ

d3x Ea
j Γj

a = −1
2

∫

σ

sgn(det(e))ej ∧ dej

= −1
2

∫

σ

sgn(det(e))ej ∧ d(ej − δj)

=
1
2

∫

σ

sgn(det(e))dej ∧ (ej − δj) − 1
2

∫

∂σ

sgn(det(e))ej ∧ (ej − δj)

(4.2.29)

The integrand of the bulk term in (4.2.27) is O(r−3) odd and hence convergent,
so we define the improved generator

F :=
∫

σ

d3xEa
j Γj

a +
1
2

∫

∂σ

sgn(det(e))ej ∧ (ej − δj) (4.2.30)

Using the boundary conditions it is easy to see that the surface term (4.2.27)
arising from the variation of the bulk term of F precisely cancels the variation
of the surface term of F . Thus we have shown that (4.2.30) is indeed a potential
for Γj

a even in the asymptotically flat case. This completes the proof that the
map (Ea

j ,K
j
a) �→ ((β)Ea

j ,
(β)Aj

a) is a canonical transformation.

Expression of the constraints in the new variables

It remains to write the constraints (4.2.7) in terms of the variables (β)A,(β) E.
To that end we introduce the curvatures

Rj
ab := 2∂[aΓ

j
b] + εjklΓk

aΓ
l
b

(β)F j
ab := 2∂[a

(β)Aj
b] + εjkl

(β)Ak
a

(β)Al
b (4.2.31)

whose relation with the covariant derivatives is given by [Da, Db]vj = Rabjlv
l =

εjklR
k
abv

l and [(β)Da,
(β) Db]vj =(β) Fabjlv

l = εjkl
(β)F k

abv
l. Let us expand (β)F

in terms of Γ and (β)K

(β)F j
ab = Rj

ab + 2βD[aK
j
b] + β2εjklK

k
aK

l
b (4.2.32)

Contracting with (β)E yields

(β)F j
ab

(β)Eb
j =

Rj
abE

b
j

β
+ 2D[a

(
Kj

b]E
b
j

)
+ βKj

aGj (4.2.33)

where we have used the Gauß constraint in the form (4.2.16). We claim that the
first term on the right-hand side of (4.2.33) vanishes identically. To see this we
first derive from (4.2.15) due to torsion freeness of the Levi–Civita connection in
the language of forms the algebraic Bianchi identity

dxa ∧ dxbDae
j
b = dej + Γj

k ∧ ek = 0

⇒ 0 = −d2ej = dΓj
k ∧ ek − Γj

l ∧ del =
[
dΓj

k + Γj
l ∧ Γl

k

]
∧ ek = Ωj

k ∧ ek

(4.2.34)
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Now Ωj
k = Ωi(Ti)jk =: (Ω)jk and we see that

Ω = dΓ + Γ ∧ Γ = dΓi Ti +
1
2
[Tj , Tk]Γj ∧ Γk =

1
2
dxa ∧ dxbRi

abTi

Thus the Bianchi identity can be rewritten in the form

εijkε
efcRj

efe
k
c = 0 ⇒ 1

2
εijkε

efcRj
efe

k
ce

i
a =

1
2
Eb

j εcabε
efcRj

ae = Rj
abE

b
j = 0

(4.2.35)

as claimed. Now we compare with the first line of (4.2.7) and thus arrive at the
conclusion

(β)F j
ab

(β)Eb
j = −sHa + (β)Kj

aGj (4.2.36)

Next we contract (4.2.32) with εjkl
(β)Ea

k
(β)Eb

l and find

(β)F j
abεjkl

(β)Ea
k

(β)Eb
l = −det(q)

Rabkle
a
ke

b
l

β2
− 2

Ea
jDaGj

β

+
(
Kj

aE
a
j

)2 −
(
Kj

bE
a
j

)(
Kk

aE
b
k

)
(4.2.37)

Expanding vj = eaj va, va = ejavj , using Dae
j
b = 0 and comparing [Da, Db]vj with

[Da, Db]vc for any vj we find Rabij = Rabcde
c
ie

d
j and so (4.2.37) can be rewritten

as

(β)F j
abεjkl

(β)Ea
k

(β)Eb
l = −det(q)

R

β2
− 2 (β)Ea

jDaGj

+
(
Kj

aE
a
j

)2 −
(
Kj

bE
a
j

)(
Kk

aE
b
k

)
(4.2.38)

and comparing with the second line of (4.2.7) we conclude that modulo a poly-
nomial in the Gauß constraint coming from −sKab = Kj

ae
j
b + Gab

(β)F j
abεjkl

(β)Ea
k

(β)Eb
l + 2 (β)Ea

jDaGj

=
√

det(q)

[

−
√

det(q)
R

β2
−

(
Kj

bE
a
j

)(
Kk

aE
b
k

)
−

(
Kj

aE
a
j

)2

√
det(q)

]

=

√
det(q)
β2

[

−
√

det(q)R− β2

(
Kj

bE
a
j

)(
Kk

aE
b
k

)
−

(
Kj

aE
a
j

)2

√
det(q)

]

=

√
det(q)
β2

[

H + (s− β2)

(
Kj

bE
a
j

)(
Kk

aE
b
k

)
−

(
Kj

aE
a
j

)2

√
det(q)

]

= s
√

det(q)

[

− s
√

det(q)

[(
Kj

bE
a
j

)(
Kk

aE
b
k

)
−

(
Kj

aE
a
j

)2] − s

β2

√
det(q)R

]

= s
√

det(q)
[
H +

(
1 − s

β2

) √
det(q)R

]
(4.2.39)

We see that the left-hand side of (4.2.39) is proportional to H if and only if
β = ±√

s, that is, imaginary (real) for Lorentzian (Euclidean) signature. We
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prefer, for reasons that become obvious only in a later chapter, to solve (4.2.39)
for H as follows

H =
β2

√
|det((β)Eβ)|

[(β)
F j
abεjkl

(β)Ea
k

(β)Eb
l + 2 (β)Ea

jDaGj

]

+ (β2 − s)

((β)
Kj

b
(β)Ea

j

)((β)
Kj

a
(β)Eb

j

)
−

((β)
Kk

c
(β)Ec

k

)2

√
|det((β)Eβ)|

(4.2.40)

In formula (4.2.40) we wrote everything in terms of (β)A,(β) E if we understand
(β)K =(β) A− Γ.

We notice that both (4.2.36) and (4.2.40) still involve the Gauß constraint.
Since the transformation Kj

a �→(β) Aj
a, E

a
j �→(β) Ea

j is a canonical one, the Pois-
son brackets among the set of first-class constraints given by Gj , Ha, H are
unchanged. Let us write symbolically Ha = H ′

a + f j
aGj , H = H ′ + f jGj where

H ′
a, H

′ are the pieces of Ha, H respectively not proportional to the Gauß con-
straint. Since Gj generates a subalgebra of the constraint algebra it follows that
the modified system of constraints given by Gj , H

′
a, H

′ not only defines the same
constraint surface of the phase space but also gives a first-class system again,
of course, with somewhat modified algebra (which, however, coincides with the
Dirac algebra on the submanifold Gj = 0 of the phase space). In other words, it
is completely equivalent to work with the set of constraints Gj , H

′
a, H

′ which we
write once more, dropping the prime, as

Gj = (β)Da
(β)Ea

j = ∂a
(β)Ea

j + εjkl
(β)Aj

a
(β)Ea

j

Ha = −s (β)F j
ab

(β)Eb
j

H =
[
β2 (β)F j

ab − (β2 − s)εjmn
(β)Km

a
(β)Kn

b

]εjkl (β)Ea
k

(β)Eb
l√

|det((β)Eβ)|
(4.2.41)

For easier comparison with the literature we also write (4.2.41) in terms of
(β)Aj

a,K
j
a, E

a
j , which gives

Gj =
[(β)DaE

a
j

]/
β =

[
∂aE

a
j + εjkl

(β)Aj
aE

a
j

]/
β

Ha = −s
((β)

F j
abE

b
j

)/
β

H =
[(β)

F j
ab − (β2 − s)εjmnK

m
a Kn

b

]εjklEa
kE

b
l√

det(q)
(4.2.42)

Summarising, we have rewritten the Einstein–Hilbert action in the following
equivalent form

S =
1
κ

∫

R

dt

∫

σ

d3x
(
2(β)Ȧi

a
(β)Ea

i − [ΛjGj + NaHa + NH]
)

(4.2.43)

where the appearing constraints are the ones given by either (4.2.42) or
(4.2.41).

We close this chapter with some remarks.
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� Four-dimensional interpretation
Let us try to give a four-dimensional meaning to (β)A. To that end we must
complete the Dreibein eai to a Vierbein eμα where μ is a spacetime tensor
index and α = 0, 1, 2, 3 an index for the defining representation of the Lorentz
(Euclidean) group for s = −1(+1). By definition gμνe

μ
αe

ν
β = ηαβ is the flat

Minkowski (Euclidean) metric. Thus eμ0 , e
μ
i are orthogonal vectors and we thus

choose eμ0 = nμ and in the ADM frame with μ = t, a we choose (eμi )μ=a =
eai . Using the defining properties of a tetrad basis and the explicit form of
nμ, gμν in the ADM frame derived earlier, the above choices are sufficient
to fix the tetrad components completely to be et0 = 1/N, ea0 = −Na/N, eti =
0, eai . Inversion gives (notice that e0

μ = seμ0 = sgμνe
ν
0 = sgμνn

μ = snμ) e0
t =

N, e0
a = 0, eit = Naeia, e

i
a. Finally we have for qμν = δμν − snμnν = δμν − eμ0e

0
ν

in the ADM frame qtt = 0, qta = 0, qat = Na, qab = δab . Thus we obtain, modulo
Gj = 0

Kj
a = −sebjKab = −sebjq

μ
a q

ν
b∇μnν = −ebj(∇aeb)0 = ebj(ωa)0αe

α
b

= 2ebj(ωa)0ke
k
b = 2(ωa)0j (4.2.44)

where in the second identity the bracket denotes that ∇ only acts on the
tensorial index and in the third we used the definition of the four-dimensional
spin connection ∇μe

α
ν = (∇μeν)α + (ωμ)αβe

β
ν = 0. On the other hand we have

(Γa)
j
ke

k
b = −(Daeb)j = −qμa q

ν
b (∇μeν)j = −(∇aeb)j = (ωa)jke

k
b (4.2.45)

whence ωajk = Γajk. It follows that

(β)Aajk = ωajk − βsωa0lεjkl (4.2.46)

The Hodge dual of an antisymmetric tensor Tαβ is defined by ∗Tαβ =
1
2εαβγδη

γγ′
ηδδ

′
Tγ′δ′ . Since ε0ijk = εijk we can write (4.2.46) in the form

(β)Aajk = ωajk − sβ ∗ ωajk (4.2.47)

Now an antisymmetric tensor is called (anti)self-dual provided that ∗Tαβ =
±√

sT with
√
s := i[1−s]/2 and the (anti)self-dual piece of any Tαβ is defined by

T± = 1
2 [T ± ∗T/√s] since ∗ ◦ ∗ = s id. An (anti)self-dual tensor therefore has

only three linearly independent components. This case happens for (4.2.47)
provided that either s = 1, β = ∓1 or s = −1, β = ±i and in this case the new
connection is just (twice) the (anti)self-dual piece of the pull-back to σ of the
four-dimensional spin connection. In all other cases (4.2.47) is only half of
the information needed in order to build a four-dimensional connection and
therefore we do not know how it transforms under internal boosts. That is,
from this perspective, the reason why one has to gauge fix the boost symme-
try of the action (4.1.1) (by the time gauge eαμn

μ = δα0 ) in order to remove
the then present second-class constraints and to arrive at the present formula-
tion. Obviously, this is no obstacle because there does exist a four-dimensional
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interpretation even in that case, since the new variables capture the same infor-
mation as the ADM variables on the constraint surface defined by the Gauß
constraint and the latter do have a four-dimensional interpretation. From an
aesthetic point of view it would be desirable to work with these complex vari-
ables (for Lorentzian signature), however, to date we do not know how to
quantise a theory based on complex connections in a rigorous way. We will
comment on that later.

� Reality conditions
When β is real-valued (β)A, (β)E are both real-valued and can be interpreted
directly as the canonical pair for the phase space of an SU(2) Yang–Mills
theory. If β is complex then these variables are complex-valued. However, they
cannot be arbitrary complex functions on σ but are subject to the following
reality conditions

(β)E/β = (β)E/β,
[(β)

A− Γ
]/
β =

[(β)
A− Γ

]/
β (4.2.48)

where Γ = Γ((β)) is a non-polynomial, not even analytic function. These real-
ity conditions guarantee that there is no doubling of the number of degrees of
freedom and one can check explicitly that they are preserved by the Hamil-
tonian flow of the constraints provided that Λj , the Lagrange multiplier of
the Gauß constraint, is real-valued. Thus, only SU(2) gauge transformations
are allowed but not general SL(2,C) transformations. These non-polynomial
reality conditions are difficult to implement in the quantum theory, which is
one of the reasons why dealing with complex connections is so far out of reach.

� Simplification of the Hamiltonian constraint
The original motivation to introduce the new variables was that for the quan-
tisation of General Relativity it seemed mandatory to simplify the algebraic
structure of the Hamiltonian constraint, which for s = −1 requires β = ±i

since then the constraint becomes polynomial after multiplying by a factor pro-
portional to

√
det(q). On the other hand, then the reality conditions become

non-polynomial. Finally, if one wants polynomial reality conditions then one
must have β real and then the Hamiltonian constraint is still complicated.
Thus it becomes questionable what has been gained. The answer is the follow-
ing: for any choice of β one can actually make both the Hamiltonian constraint
and the reality conditions polynomial by multiplying by a sufficiently high
power of det(q). But the real question is whether the associated classical func-
tions will become well-defined operator-valued distributions in quantum the-
ory while keeping background independence. As we will see in later chapters,
the Hilbert space that we choose does not support any quantum versions of
these functions rescaled by powers of det(q) and there are abstract arguments
that suggest this is a representation-independent statement. The requirement
seems to be that the Hamiltonian constraint is a scalar density of weight one
and thus we must keep the factor of 1/

√
det(q) in (4.2.42) whatever the choice

of β (and therefore the motivation for polynomiality is lost completely). The
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motivation to have a connection formulation rather than a metric formulation
is then that one can go much farther in the background-independent quantisa-
tion programme provided that β is real. For instance, a connection formulation
enables us to employ the powerful arsenal of techniques that have been devel-
oped for the canonical quantisation of Yang–Mills theories, specifically Wilson
loop techniques.

� Choice of fibre bundle
In the whole exposition so far we have assumed that we have a trivial princi-
pal SU(2) bundle over σ (see, e.g., [337] for a good textbook on fibre bundle
theory and Chapter 21) so that we can work with a globally defined connec-
tion potential and globally defined electric field (β)A, (β)E respectively. What
about different bundle choices?

Following the notation of Chapter 21 our situation is that we are dealing
with a principal SU(2) bundle over σ with pull-backs (β)AI by local sections
of a connection and local sections (β)EI of an associated (under the adjoint
representation) vector bundle of two-forms and would like to know whether
these bundles are trivial. Since the latter is built out of the Dreibein we can
equivalently look also at the frame bundle of orthonormal frames in order to
decide for triviality. Triviality of the frame bundle is equivalent to the triviality
of its associated principal bundle and in turn to σ being parallelisable. But this
is automatically the case for any compact, orientable three-manifold provided
that G = SU(2) (see [338], paragraph 12, exercise 12-B). More generally, in
order to prove that a principal fibre bundle is trivial one has to show that
the cocycle hIJ of transition functions between charts of an atlas of σ is a
coboundary, that is, its (non-Abelian) Čech cohomology class is trivial. In [338]
one uses a different method, obstruction theory, where triviality can be reduced
to the vanishing of the coefficients (taking values in the homotopy groups of
G) of certain cohomology groups of σ related to Stiefel–Whitney classes.

So far we did not make the assumption that σ is compact but we used
the fact that σ is orientable. If σ is not compact but orientable then one
usually requires that there is a compact subset B of σ such that σ −B has
the topology of the complement of a ball in R3. Then the result holds in B

and trivially in σ −B and thus all over σ. Thus, compactness is not essential.
If σ is not orientable then a smooth nowhere singular frame cannot exist and
the above quoted result does not hold, there are no smooth Dreibein fields
in this case. We explicitly exclude such σ as it does not allow us to couple
(chiral) Weyl spinor fields which do appear in the standard model and do
require orientability as well as time orientability of M and thus orientability
of σ.

However, as we will see, the choice of the bundle will become completely
irrelevant even before solving the Gauß constraint in the quantum theory
because the distributional space of connections contains connections on all
bundles and even many, many more than those.
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� Boundary terms
We have shown that the symplectic reduction of the new phase space by the
Gauß constraint reproduces the ADM phase space. Moreover, the constraints
H,Ha are SU(2)-invariant. Hence, for the boundary terms necessary in order
to make these constraints functionally differentiable and finite we just need to
take the boundary terms of Section 1.5 and write them in the new variables.
The fact that modulo the Gauß constraint the difference between the ADM
variables and the new variables is just a canonical transformation guarantees
that the Poisson brackets between these functionals on the new variable phase
space continue to be well-defined and reproduce all the results of Section 1.5.
This has been verified explicitly in [244,336].

As far as the functional differentiability and finiteness of the Gauß con-
straint itself is concerned, let Λj be any test function. Then the boundary
term of the variation of

∫
σ
d3xΛjGj equals

∫
∂σ

dSaΛjδEa
j = δ

∫
∂σ

dSaΛjEa
j .

Now subtracting the SU(2) charge Qj =
∫
∂σ

dSaΛjEa
j from the bulk gives

−
∫

σ

d3x
[
Λj
,a + εjkl

(β)AkΛl
]
Ea

j

The first term is finite provided ∂Λ is O(r−3) odd while the second is finite
provided Λ is O(r−1) even. The only solution is that Λ is O(r−2) even, but
then Qj = 0. There is no SU(2) charge (Dirac observable) in GR because in
the ADM formulation we would never see any SU(2) gauge degrees of freedom
anyway.

In view of these considerations we will from now on only consider positive β

unless otherwise specified. In order to simplify the notation in what follows we
will drop the label β but will mean by the field E really the field (β)E for β = 1
while A is actually (β)A for arbitrary β.
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Introduction

5.1 Outline and historical overview

In the first part of this book we have derived a canonical connection formulation
of classical General Relativity. We have defined precisely what one means by the
canonical quantisation of a field theory with constraints and have emphasised
the importance of n-form fields for a background-independent quantisation of
generally covariant theories. In this part we will systematically carry out the
canonical quantisation programme step by step and almost complete it. In more
detail we will show that:

1. There exists a mathematically rigorous and, under natural physical assump-
tions, unique kinematical platform from which constraint quantisation is
launched.

2. There exists at least one, consistent, well-defined quantisation of the Wheeler–
DeWitt constraint operator whose action is explicitly known.

3. A corresponding physical inner product is known to exist.
4. There is a concrete proposal for constructing Dirac observables and physical

Hamiltonians.

What is left to do is to check whether this solution of the quantisation prob-
lem has the correct semiclassical limit (semiclassical states at the kinematical
level are already under control, however, not yet on the space of solutions to
the constraints) and to construct quantisations of the classical formula for com-
plete Dirac observables explicitly. This will involve, besides the improvement
of the already available semiclassical techniques, the development of appropri-
ate approximation schemes because the exact theory is too complicated to be
solvable explicitly. After these steps have been completed one is ready to make
physical predictions from the theory. The task will then be to identify quantum
gravity effects, which lie in the realm of today’s experimental precision, and to
falsify the theory.

In the remainder of this chapter we sketch the history of the subject and the
results obtained so far, which serves as a guideline as well and will help the
reader to bring earlier publications into the context of the present-day adopted
point of view.

We have seen that for β = ±i, s = −1 the Hamiltonian constraint greatly sim-
plifies, up to a factor of 1/

√
det(q) it becomes a fourth-order polynomial in
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CAj
a, E

a
j . In order to find solutions to the quantum constraint we chose a holo-

morphic connection representation, that is, wave functions are functionals of CA

but not of CA, the connection itself becomes a multiplication operator while the
electric field becomes a functional differential operator. In formulae for the choice
β = −i,

(C
Âj

a(x)ψ
)
[CA] = CAj

a(x)ψ[CA] and
(
Êa

j (x)ψ
)
[CA] =

�2p
2

δψ[CA]
δCAj

a(x)
(5.1.1)

(notice that 2iE/κ is conjugate to CA, �2p = h̄κ is the Planck area). With this
definition, which is only formal at this point since one does not know what the
functional derivative means without specifying the function space to which the
CA belong, the canonical commutation relations

[C
Âj

a(x),C Âk
b (y)

]
=

[
Êa

j (x), Êb
k(y)

]
= 0,

[
Êa

j (x),C Âk
b (y)

]
=

�2p
2
δab δ

k
j δ(x, y)

(5.1.2)

are formally satisfied. However, the adjointness relations
(
Êa

j (x)
)† = Êa

j (x), CÂj
a(x) +

(C
Âj

a(x)
)† = 2Γ̂j

a(x) (5.1.3)

could not be checked because no scalar product was defined with respect to which
(5.1.3) should hold. Besides simpler mathematical problems such as domains of
definitions of the operator-valued distributions (5.1.1), equation (5.1.3) looks
disastrous in view of the explicit formula (4.2.18) for the spin connection where
operator-valued distributions would appear multiplied not only at the same point
but also in the denominator, which would be extremely difficult to define if
possible at all and could prevent one from defining a positive definite scalar
product with respect to which the adjointness conditions should hold.

The implementation of the adjointness relations (which one can make polyno-
mial by multiplying CA by a sufficiently high power of the operator corresponding
to det(q)) continues to be the major obstacle with the complex connection for-
mulation even today, which is why the real connection formulation is favoured at
the moment. However, in these pioneering years at the end of the 1990s nobody
thought about using real connections since the simplification of the Hamiltonian
constraint seemed to be the most important property to preserve, which is why
researchers postponed the solution of the adjointness relations and the defini-
tion of an inner product to a later stage and focused first on other problems.
There was no concrete proposal at that time on how to do that, but the fact
that the complex connection CA = Γ − iK is reminiscent of the harmonic oscil-
lator variable z = x− ip made it plausible that one could possibly make use of
the technology known from geometric quantisation concerning complex Kähler
polarisations [218] and the relevant Bargmann–Segal transformation theory. A
concrete proposal in terms of the phase space Wick rotation transformation
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mentioned earlier appeared only later in [315], but until today these ideas have
not been mathematically rigorously implemented.

Still there was a multitude of results that one could obtain by formal manipu-
lations even in absence of an inner product. The most important observation at
that time, in the opinion of the author, is the discovery of the importance of the
use of holonomy variables (also known as Wilson loop functions). We will drop
the superscripts β,C in what follows.

Already in the early 1980s Gambini et al. [339–341] pointed out the usefulness
of Wilson loop functions for the canonical quantisation of Yang–Mills theory.
Given a directed loop (closed path) α in σ and a G-connection A for some
gauge group G one can consider the holonomy hα(A) of A along α. The holon-
omy of a connection is abstractly defined via principal fibre bundle theory, but
physicists prefer the formula hα(A) := P exp(

∮
α
A) where P stands for path-

ordering the power expansion of the exponential in such a way that the con-
nection variables are ordered from left to right with the parameter along the
loop on which they depend increasing. We will give a precise definition later on.
The connection can be taken in any representation of G but we will mostly be
concerned with G = SU(2) and will choose the fundamental representation (in
case of G = SL(2,C) one chooses one of its two fundamental representations).
The Wilson loop functions are then given by

Tα(A) := tr(hα(A)) (5.1.4)

where tr denotes the corresponding trace. The importance of such Wilson loop
functions is that, at least for compact groups, one knows that they capture the
full gauge-invariant information about the connection [342]. For the case at hand,
SL(2,C), an independent proof exists [343].

After the introduction of the new variables which display General Relativity
as a special kind of Yang–Mills theory, Jacobson, Rovelli and Smolin indepen-
dently rediscovered and applied Gambini et al.’s ideas to canonical quantum grav-
ity [344, 345]. Since the connection representation was holomorphic, one needed
only one of the fundamental representations of SL(2,C) (and not its complex
conjugate).

We do not want to go into very much detail about the rich amount of formal
and exact results that were obtained by working with these loop variables before
1992, but just list the most important ones. An excellent review of these issues
is contained in the book by Gambini and Pullin [346], which has become the
standard introductory reference on the loop representation.

1. Formal solutions to the Hamiltonian constraint in the connection representa-
tion
By ordering the operators Ê to the right in the quantisation of the rescaled
density weight-two operator corresponding to H̃, one can show [344,345] that

formally ˆ̃HTα = 0 for every non-intersecting smooth loop α (see also [347–349]
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for an extension to more complicated loops). The formal character of this argu-
ment is due to the fact that this is a regulated calculation where in the limit
as the regulator is removed one multiplies zero by infinity. An important role
is played by the notion of a so-called ‘area-derivative’.

2. Loop transform and knot invariants
Since the diffeomorphism constraint maps a Wilson loop function to a Wil-
son loop function for a diffeomorphic loop one immediately sees that knot
invariants should play an important role. Let μ be a diffeomorphism-invariant
measure on some space of connections, α a loop and ψ any state. One can
then define a loop transformed state by ψ′(α) :=

∫
dμ(A)Tα(A)ψ(A). The

state Ψ = 1 is annihilated by the diffeomorphism constraint if we define
the action of an operator Ô′ in this loop representation by (Ô′ψ′)(α) :=∫
dμ(A)(ÔTα)(A)ψ(A) where Ô is its action in the connection representation.

Likewise one sees, at least formally, that if α is a smooth non-self-intersecting
loop then ψ′(α) is annihilated by the Hamiltonian constraint. Of course, again
this is rather formal because a suitable diffeomorphism-invariant measure μ

was not known to exist.
3. Chern–Simons theory

If one considers, in particular, the loop transform with respect to the for-
mal measure given by Lebesgue measure times the exponential of i/λ times
the Chern–Simons action where λ is the cosmological constant then one
can argue to obtain particular knot invariants related to the Jones polyno-
mial [346, 350], the coefficients of which seem to be formal solutions to the
Hamiltonian constraint in the loop representation with a cosmological term.
Since the exponential of the Chern–Simons action is also a formal solution
to the Hamiltonian constraint with a cosmological term in the connection
representation [351] with momenta ordered to the left, one obtains solu-
tions to the Hamiltonian constraint (provided a certain formal integration
by parts formula holds) which correspond to arbitrary, possibly intersecting,
loops.

4. Commutators
Also, commutators of constraints were studied formally in the loop representa-
tion reproducing the Poisson algebra up to quantities which become singular
as the regulator is removed (see [346]). These singular coefficients will later
be seen to come from the fact that H̃ is a density of weight two rather than
one. Such singularities must be removed, but this could be done for H̃ only
by breaking diffeomorphism invariance, which is unacceptable in quantum
gravity. We will come back to this point later.

5. Model systems
One could confirm the validity of the connection representation in exactly
solvable model systems such as the familiar mini- and midisuperspace models
based on Killing or dimensional reduction for which the reality conditions can
be addressed and solved quantum mechanically [352–361].
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These developments in the years 1987–92 confirmed that using Wilson loop func-
tions was something extremely powerful and a rigorous quantisation of the theory
should be based on them. Unfortunately, all the nice results obtained so far in
the full theory, especially concerning the dynamics as, for example, the existence
of solutions to the constraints, were only formal because there was no Hilbert
space available that would enable one to say in which topology certain limits
might exist or not.

The time had come to invoke rigorous functional analysis in the approach.
Unfortunately, this was not possible so far for quantum theories of connections
for non-compact gauge groups such as SL(2,C) but only for arbitrary compact
gauge groups. The motivation behind pushing these developments anyway at that
time had been, again, that by using Bargmann–Segal transformation theory one
would be able to transfer the results obtained to the physically interesting case.
Luckily, due to the results of [325] one could avoid this additional step and make
the results of this chapter directly available for Lorentzian quantum gravity,
although in the real connection formulation rather than the complex one.

We describe the developments of the time period 1992–2006 in chronological
order where we only quote the main papers. Additional papers will be quoted as
we move along in the main text.

(i) 1992: quantum configuration space
The first functional analytic ideas appeared in the seminal paper by
Ashtekar and Isham [362] in which they constructed a quantum configu-
ration space of distributional connections A by using abstract Gel’fand–
Naimark–Segal (GNS) theory for Abelian C∗ algebras, see Chapter 27.
In quantum field theory it is generic that the measure underlying the
scalar product of the theory is supported on a distributional extension
of the classical configuration space and therefore it was natural to look
for something similar, although in a background-independent context.
Rendall [363] was able to show that the classical configuration space of
smooth connections A is topologically densely embedded into A.

(ii) 1993–94: measure theory, projective techniques
Ashtekar and Lewandowski [364] then succeeded in providing A with
a σ-algebra of measurable subsets of A and giving a cylindrical defini-
tion of a measure μ0 which is invariant under G gauge transformations
and invariant under the spatial diffeomorphisms of Diff(σ). In [365, 366]
Marolf and Mourão established that this cylindrically defined measure
has a unique σ-additive extension to the just mentioned σ-algebra. More-
over, they proved that, expectedly, A is contained in a measurable subset
of A of measure zero and introduced projective techniques into the frame-
work. In [367, 368] Ashtekar and Lewandowski developed the projective
techniques further and used them in [369] to set up integral and differen-
tial calculus on A. Also Baez [370,371] had constructed different spatially
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diffeomorphism-invariant measures on A, however, they are not faithful
(do not induce positive definite scalar products).

(iii) 1994: complex connections and heat kernel measures
The Segal–Bargmann representation in ordinary quantum mechanics on
the phase space R2 is a representation in which wave functions are holo-
morphic, square integrable (with respect to the Liouville measure) func-
tions of the complex variable z = q − ip ∈ C. One can obtain this rep-
resentation by heat kernel evolution followed by analytic continuation
from the usual position space representation. In [318] Hall generalised
this unitary, so-called Segal–Bargmann transformation, to phase spaces
which are cotangent bundles over arbitrary compact gauge groups based
on the observation that a natural Laplace operator (generator of the heat
kernel evolution) exists on such groups. The role of C is then replaced by
the complexification GC of G. Since it turns out that the Hilbert space
of functions on A labelled by a piecewise analytic (semianalytic)1 loop
reduces to SU(2)N for some finite natural number N , one can just apply
Hall’s construction to quantum gravity which would seem to map us from
the real connection representation to the complex one. This was done
in [321]. The question remained whether the so obtained inner product
incorporates the correct adjointness – and canonical commutation rela-
tions among the complexified holonomies. In [315, 316] this was shown
not to be the case but at the same time a proposal was made for how to
modify the transform in such a way that the correct adjointness – and
canonical commutation relations – are guaranteed to hold. This so-called
Wick rotation transformation is a special case of an even more general
method, the so-called complexifier method, which consists in replacing
the Laplacian by a more general operator (the complexifier) and can be
utilised, as in the case of quantum gravity, to keep the algebraic structure
of an operator simple while at the same time trivialising the adjointness
conditions on the inner product. Unfortunately, the Wick rotation gen-
erator for quantum gravity is very complicated, which is why there is no
rigorous proof to date for the existence and the unitarity of the proposed
transform. The complexifier method, however, plays a central role for the
semiclassical analysis as we will see.

(iv) 1994–2001: relation with constructive quantum (gauge) field theory
One may wonder whether the techniques associated with A can be applied
to ordinary Yang–Mills theory on a background metric. The rigorous
quantisation of Yang–Mills theory on Minkowski space is still one of the

1 Any smooth manifold admits a real analytic structure. Roughly speaking, a piecewise
analytic manifold is composed out of finitely many entire analytic pieces which intersect in
lower-dimensional submanifolds where it is only C(m) with m ≥ 0. A semianalytic manifold
is almost the same thing as a piecewise analytic manifold, however, the gluing of the entire
analytic pieces must be C(m) with m > 0.
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major challenges of theoretical and mathematical physics [372]. There is a
vast literature on this subject [373–393] and the most advanced results in
this respect are undoubtedly due to Balaban et al., which are so difficult
to understand ‘. . . that they lie beyond the limits of human communica-
tional abilities . . . ’ [394]. Technically the problem has been formulated in
the context of constructive (Euclidean) quantum field theory [99], which
is geared to scalar fields propagating on Minkowski space. In [395,396] a
proposal for a generalisation of the key axioms of the framework, the so-
called Osterwalder–Schrader axioms [397,398], has been given. These were
then successfully applied in [399] to the completely solvable Yang–Mills
theory in two dimensions by making explicit use of A, μ0 and spin-network
techniques which so far had not been done before, although the literature
on Yang–Mills theory in two dimensions is rather vast [400–414]. These
results have been refined by Fleischhack [415, 416]. It became clear that
these axioms apply only to background-independent gauge field theories,
which is why it works in two dimensions only (in two dimensions Yang–
Mills theory is not background-independent but almost: it is invariant
under area-preserving diffeomorphisms, which turns out to be sufficient
for the constructions to work out). However, it is possible to generalise
the Osterwalder–Schrader framework to general diffeomorphism-invariant
quantum field theories [417]. Surprisingly, the key theorem of the whole
approach, the Osterwalder–Schrader reconstruction theorem that allows
us to obtain the Hilbert space of the canonical quantum field theory from
the Euclidean one, can be straightforwardly adapted to the more general
context. Unfortunately, we do not have space to describe these findings
in more detail and must refer the reader to the literature cited.

One of the Osterwalder–Schrader axioms is the uniqueness of the vac-
uum, which is stated in terms of the ergodicity property of the underlying
measure with respect to the time translation subgroup of the Euclidean
group (see, e.g., [282]) which in turn has consequences for the support
properties of the measure. In [418] these issues were analysed for μ0 and
ergodicity with respect to any infinite, discrete subgroup of the diffeo-
morphism group was found, which implied a refinement of the support
properties established in [365,366].

(v) 1995: Hilbert space, adjointness relations and canonical commutation
relations
In [266] it was shown that the Hilbert space H0 = L2(A, dμ0) in fact solves
the adjointness – and canonical commutation relations for any canonical
quantum field theory of connections that is based on a compact gauge
group provided one represents the connection as a multiplication opera-
tor and the electric field as a functional derivative operator. The results
of [266] demonstrated that the Hilbert space H0 provides in fact a phys-
ically correct, kinematical representation for such theories. Kinematical
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here means that this Hilbert space carries a representation of the con-
straint operators but its vectors are not annihilated by them, that is, they
are not physical (or dynamical) states. Moreover, the complete set of solu-
tions of the spatial diffeomorphism constraint (labelled by singular (inter-
secting) knot classes) and a natural class of scalar products thereon using
group averaging methods [277, 278] (Gel’fand triple techniques) could
be given which showed, as a side result, that the Husain–Kuchař [361]
model is a completely integrable, diffeomorphism-invariant quantum field
theory.

(vi) 1995: loop and connection representation: spin-network functions
Quite independently, Rovelli and Smolin as well as Gambini and Pullin et
al. had pushed another representation of the canonical commutation rela-
tions, the so-called loop representation already mentioned above for which
states of the Hilbert space are to be thought of as functionals of loops
rather than connections. Since the Wilson loop functionals (polynomials
of traces of holonomies) are not linearly independent, they are subject to
the so-called Mandelstam identities; it was mandatory to first find a set
of linearly independent functions. Using older ideas due to Penrose [419],
Rovelli and Smolin [420] were able to write down such loop function-
als, later called spin-network functions, that are labelled by a smooth
SU(2) connection. They then introduced an inner product between these
functions by simply defining them to be orthonormal. Baez [421] then
proved that, using the fact that spin-network functions (considered as
functionals of connections labelled by loops) can in fact be extended to
A, the spin-network functions are indeed orthonormal with respect to H0,
moreover, they form a basis, the two Hilbert spaces defined by Ashtekar
and Lewandowski on the one hand and Rovelli and Smolin are indeed
unitarily equivalent. In [422] a Plancherel theorem [282] was proved, say-
ing that, expectedly, the loop representation and the connection repre-
breaksentation are like mutual, non-Abelian Fourier transforms (called
the loop transform as mentioned above) of each other where the role of
the kernel of the transform is played by the spin-network functions as one
would intuitively expect because they are labelled by both loops and con-
nections. The same was established by De Pietri [423], using a graphical
language to relate the two representations.

(vii) 1995–99: kinematical geometrical operators
It is possible to define operators on H0 that measure length [424], area
and volume [425–428] and angles [429,430] of curves, surfaces and regions
and between curves intersecting at vertices in σ respectively. It turns out
that their spectrum is pure point (discrete), the eigenvectors are essen-
tially just spin-network functions and the eigenvalues are multipla of the
appropriate power of the Planck length. Notice that these operators are
not Dirac observables, they are partial observables and while one can
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make them commute with the spatial diffeomorphism constraint using
matter without affecting their spectral properties [227], it will depend
crucially on the choice of the time partial observable whether the spec-
trum continues to be discrete when we construct the corresponding Dirac
observable. In fact, in simple systems it is easy to see that all 16 combi-
nations (σ(C), σ(T ), σ(P ), σ(DT (P ))) ∈ {d, c}4 are possible [227] where
C, T, P,DT (P ) denote constraint, clock variable, partial observable and
corresponding Dirac observable respectively, σ(A) denotes the spectrum
of A and c, d means continuous or discrete respectively.

(viii) 1995–98: (semi)analytical versus smooth and piecewise linear loops
In all these developments it was crucial, for reasons that will be explained
below, that σ is an analytic manifold and that the loops were piecewise
analytic (semianalytic). Baez and Sawin [431, 432] were able to transfer
much of the structure to the case that the loops are only piecewise smooth
and intersect in a controlled way (a so-called web) and some of their
results were strengthened in [433, 434]. In [435, 436] Zapata introduced
the concept of piecewise linear loops. The motivation for these modifica-
tions was that the analytical category is rather unnatural from a physical
viewpoint, although it is a great technical simplification. For instance, in
the smooth category there is no spin-network basis any longer. Both in
the analytic and smooth category the Hilbert space is non-separable after
modding out by analytic or smooth diffeomorphisms respectively, while in
the piecewise linear category one ends up with a separable Hilbert space.
The motivation for the piecewise linear category is, however, unclear from
a classical viewpoint (for instance the classical action is not invariant
under piecewise linear diffeomorphisms). In [437] arguments were given
to support the fact that the (mutually orthogonal, unitarily equivalent)
Hilbert spaces labelled by the continuous moduli that still appear in the
diffeomorphism-invariant (semi)analytic and smooth category are super-
selected. If one fixes the moduli, the Hilbert space becomes separable.

(ix) 1996–98: Hamiltonian constraint and matter coupling
In [325] it was observed that it is impossible to provide a well-defined,
background-independent quantisation for the rescaled Hamiltonian con-
straint. The basic reason is, as we will explain in more detail as we pro-
ceed, that only integrals of density weight one valued scalars can be quan-
tised without encountering ultraviolet problems. However, the rescaled
constraint is of density weight two.

The way out is a new, background-independent regularisation and fac-
tor ordering technique which was then applied in [437–442] to define
the quantum Hamiltonian constraint Ĥ(N) on H0 for arbitrary N . The
result is well-defined operators on H0 whose constraint algebra closes
in the sense that the commutator annihilates spatially diffeomorphism-
invariant states as it should. It is possible to systematically construct all
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of its solutions. This works for arbitrary matter coupling whose corre-
sponding background-independent representations were defined in [443].
See also [444–447] for earlier and later related work on matter field rep-
resentations. The matrix elements of this operator were studied, for the
simplest cases in [451] and some of its quantisation ambiguities were anal-
ysed in [452].

It is only due to the results [437–443] that all the mathematical work
invested before was actually of any relevance for Lorentzian GR. They
put the quantum dynamics on a solid mathematical footing and made
H0 a carrier space of the Wheeler–DeWitt constraint operator.

It was previously believed that polynomiality of the constraints is
mandatory in order to have any chance to give them mathematical mean-
ing as operators. This in turn required that one used complex-valued
connections for Lorentzian signature, which meant that one must (1)
find Hilbert space representations for the non-compact group SL(2,C)
and (2) solve the non-polynomial reality conditions (5.1.3) so that non-
polynomiality re-entered through the back-door. Even today there is only
representation theory for compact gauge groups available and hence both
problems 1 and 2 remain unsolved. The above-mentioned results removed
both obstacles in one stroke by making the work for compact gauge groups
relevant and, moreover, provided a rigorous quantisation of the Hamilto-
nian constraint for Lorentzian signature in spite of its tremendous non-
polynomiality.

The application of the results [437–443] in cosmological minisuperspace
truncations of LQG, called Loop Quantum Cosmology (LQC) which will
be summarised below, is nowadays celebrated as one of the major results
of LQG.

(x) 1997–2006: path integral formulation: spin foam models
Reisenberger and Rovelli [453] used the Hamiltonian constraint operator
just mentioned in order to provide a heuristic path integral representa-
tion of the ‘projector’ onto the space of physical states. This seminal
work gave birth to the so-called spin foam models. The name comes from
the fact that the coordinate time translation of a graph sweeps out a
worldsheet of faces that intersect in edges, the resulting picture is that
of a foam. Spin foam models are closely related to state sum models well
known in topological QFTs (TQFT). Until today it has not been possi-
ble to make the ideas of [453] mathematically precise, and therefore one
started from an independent definition of the path integral resulting in a
whole set of models, the most well-studied of which is the Barrett–Crane
model [454, 455] for both the Euclidean and the Lorentzian signature.
However, the connection with the Hamiltonian theory is presently not
very well understood, see [456–460] for first steps, which is why it is not
yet established that these models implement the dynamics of GR.
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So far spin foam models are triangulation-dependent, in other words,
they are defined only with a cutoff. For these cutoff models finiteness
results have been obtained by Perez and Rovelli [461] and Perez [462].
Group field theory methods [463, 464] have been proposed by De Pietri
et al. [465] in order to remove the triangulation dependence.

(xi) 1997–2006: quantum black holes: isolated horizons
Any quantum theory of gravity must explain the microscopic origin of the
Bekenstein–Hawking black hole entropy SBH = Ar(H)/(̄hG) where Ar(H)
is the area of the event horizon H. The idea [467, 468], due to Krasnov,
is to count the number of eigenstates of the area operator of the horizon
whose eigenvalues are in the interval [A− �2p, A + �2P ] where A is a given
area value. Unless carefully done this entropy is infinite. However, when
making use of a sufficient amount of classical input through boundary con-
ditions at H and through Einstein’s classical equations, the counting gives
precisely the correct answer [469]. This has become possible through the
development of a very powerful new notion of horizon, so-called isolated
horizons, which are locally defined in contrast to event horizons which
require global information. Event horizons and also cosmological horizons
are special cases of isolated horizons. Moreover, due to the boundary
conditions necessary at H, the function Ar(H) actually becomes a
Dirac observable. Hence the framework incorporates all the usual black
hole solutions such as those from the Schwarzschild–Kerr–Reissner–
Nordstrøm family and black holes with Yang–Mills and dilatonic hair
[470–472].

These are very convincing and encouraging results and future work
will address the issue of Hawking radiation from first principles where
one must take into account the backreaction of geometry on matter.

(xii) 1999–2001: categories and groupoids, hyphs and gauge orbit structure of A
Following an earlier idea due to Baez [473], Velhinho [474] gave a nice
categorical and purely algebraic characterisation of A and all the struc-
ture that comes with it without using C∗ techniques. The technical
simplifications that are involved rest on the concept of a groupoid of
piecewise analytic (semianalytic) paths in σ rather than (base-pointed)
loops.

In [475, 476] Fleischhack, motivated by his results in [415, 416], dis-
cussed a new notion of ‘loop independence’ which has the advantage of
being independent of the differentiability category of the graphs under
consideration and in particular includes the analytical and smooth cate-
gory. The new type of collections of loops are called hyphs. A hyph is a
finite collection of piecewise Cr paths together with an ordering α �→ pα of
its paths pα where α belongs to some linearly ordered index set such that
pα is independent of all the paths {pβ ;β < α}. Here a path p is said to be
independent of another path p′ if there exists a free point x on p (which
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may be one of its boundary points), that is, there is a segment of p inci-
dent at x which does not overlap with a segment of p′ (although p, p′ may
intersect in x). That is, path independence is based on the germ of a path.
In contrast to graphs or webs (collections of piecewise analytical (semi-
analytical) or smooth paths), a hyph requires an ordering. Nevertheless,
one can get as far with hyphs as with webs but not as far as with graphs.

Fleischhack also investigated the issue of Gribov copies in A [477,478]
with respect to SU(2) gauge transformations. It should be noted that
fortunately Gribov copies are not a problem in our context: the measure
is a probability measure and the gauge group therefore has finite volume.
Integrals over gauge-invariant functions are therefore well-defined and
gauge fixing is not necessary.

(xiii) 2000–2001: infinite tensor product extension, loop representation
The Hilbert space H0 is sufficient for semiclassical applications of quan-
tum General Relativity only if σ is compact. In the non-compact case
an extension from compactly supported to non-compactly supported,
piecewise analytic (semianalytic) paths becomes necessary. In [479] it was
discovered that the framework of the infinite tensor product of Hilbert
spaces, developed by von Neumann more than 60 years ago, is ideally
suited to deal with this problem. In contrast to H0 the extended Hilbert
space H⊗ is not L2 space any longer. Considerations along similar lines
have been performed by Arnsdorf [480].

As already mentioned, the loop representation is unitarily equivalent
to the Hilbert space H0 but so far the loop representation had not
been displayed as an L2 space over ‘the space of loops’ (more precisely:
hoops). An investigation to what extent that is possible has been started
in [481]. Connected with this is a mathematically rigorous analysis of the
spectrum of the holonomy algebras for non-trivial fibre bundles [482,483].

(xiv) 2000–2006: semiclassical states
To date we only have kinematical semiclassical states, that is, they are
not annihilated by the Hamiltonian constraints. The motivation for
considering such states at all is that one would like to test with them
the semiclassical properties of the Hamiltonian constraint, which is
obviously not possible with states that are in the kernel of the constraint.
Ultimately, of course, one should construct physical semiclassical states.

Weave states had been considered in [484] by Ashtekar, Rovelli and
Smolin as candidate semiclassical states for probing the properties of
the kinematical operators mentioned above, which depend only on the
electric field. However, they do not probe very well operators that depend
non-trivially on the connection. In [485–487] the complexifier method
was introduced in order to define coherent states which behave semiclas-
sically for both kinds of variables. This programme was then carried out
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in [488–490] for a specific choice of complexifier and applied to QFT on
curved spacetime situations in [637, 638]. Varadarajan [491–494] showed
how to define the Fock states of Maxwell theory and linearised gravity as
distributions over (a dense subspace of) H0. Ashtekar and Lewandowski
[495] extended this map to the case of coherent states for these two
theories and gave a measure theoretic interpretation of [491]. The
complexifier method can be applied to these theories and reproduces the
results of [491–495].

Due to the non-separability of H0 these semiclassical states turn out
not to be normalisable, they are distributions (sometimes even mea-
sures [495]). Moreover, they only solve at most the Gauß constraint. In
order to work with them one has to use certain graph-dependent versions
which are normalisable. These cutoff states [487] or shadow states [495]
are, however, only suited for operators which do not change the graph
underlying the spin-network state on which they act. The Hamiltonian
constraint does not have this property. An idea for overcoming this
problem is to construct spatially diffeomorphism-invariant coherent
states because the spatially diffeomorphism-invariant Hilbert space
decomposes into separable Hilbert spaces each of which is an invariant
subspace of the Hamiltonian constraint. The resulting semiclassical
states could then be both graph-independent and normalisable.

On the other hand, in [487] it was argued that the state on the holon-
omy algebra used in LQG is universal in the sense that any other state
can be obtained as a weak limit from vector states in the LQG Hilbert
space. This was proved in [496] based on the notion of cutoff states.

(xv) 2000–2006: loop quantum cosmology
Bojowald and Kastrup [497–499] used the LQG type of Hilbert space
representations for minisuperspace models of GR, in particular for
cosmological models. The effect of this is a very drastic departure from
the properties of the standard approach for these models, at least at
very small scales, while at large scales the properties of the standard
approach are recovered. For instance, as expected from the finiteness
results of the full theory for the Hamiltonian constraint, there is no big
bang singularity in the quantum theory. Moreover, one can propagate,
with respect to a partial observable time, through the would-be big bang
singularity. There are certain implications of the modified short distance
behaviour at short scales for inflation, which one might even be able to
see in the WMAP data [500]. For a more precise analysis of possible LQG
effects on the spectrum of anisotropies derived from an LQG-inspired
cosmological model using the ADM variables [501], see [502].

Of course, these calculations have to be backed up by calculations
in the full theory in order to qualify as predictions. However, at the
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very least this work already now positively tests the validity of certain
technical aspects of the full theory.

(xvi) 2000–2006: quantum gravity phenomenology
In [503–506] the idea was put forward that quantum gravity effects,
although tiny when measured over short time periods, might accumulate
to a more realistic size over large time scales. The basic idea is that
matter would react to the existence of the discrete Planck scale structure
by modified dispersion relations just as if it was propagating through a
crystal rather than the vacuum. A nice overview of possible signature
experiments which always probe violation of Lorentz invariance (which
in standard QFT is an exact symmetry) can be found in [507]. This
triggered the field of LQG phenomenology [508–512]. Recently it was
found that present experimental accuracy already rules out the existence
of a preferred reference frame which would lead to Lorentz invariance
breaking. It could, however, be that the Lorentz group is realised in a
non-standard way at very short distances [513].

(xvii) 2002–2006: algebraic methods and representation theory
Up to now one had always been working in the representation H0, which
seemed to be a rather natural choice. However, usually in QFT the
famous Stone–von Neumann uniqueness theorem for quantum mechanics
fails due to the infinite number of degrees of freedom for QFT and there-
fore one has an abundance of unitarily inequivalent representations of the
canonical commutation relations. In special cases one can select a unique
representation if one asks in addition that a Hamiltonian operator can be
densely defined [279]. In [514, 515] Sahlmann systematically investigated
the general representation theory of the holonomy–flux algebra which
underlies LQG by using tools from algebraic QFT. While it is not easy
to classify all possible representations, if one makes natural additional
physical assumptions, namely (1) the same that underlie the Stone–von
Neumann theorem of quantum mechanics and (2) that the spatial dif-
feomorphism group is unitarily represented then one gets that H0 is the
unique representation of the kinematical algebra. The second assumption
is precisely the additional dynamical input that is expected to give rise to
such a strong result. Sahlmann’s original proof worked only for Abelian
gauge groups but was later simplified and extended to the non–Abelian
case [516–521]. The essential idea, however, is due to Sahlmann.

The importance of this result lies in the fact that once we decided
to base quantisation on the holonomy–flux algebra and have the spatial
diffeomorphism group unitarily implemented, there is no choice in
the kinematical Hilbert space (if it is a cyclic representation; every
representation decomposes into cyclic ones). Since one is naturally led
to the holonomy–flux algebra from physical considerations, we have very
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strong reasons to believe that we chose the only reasonable starting point
for quantisation. On the other hand, once a kinematical representation
has been chosen in which the constraints can be defined as operators, the
physical representation follows by a rather tight procedure discussed in
Chapter 3 and Section 30.2. Hence, the whole quantisation programme
is altogether put on a very robust footing.

(xviii) 2003–2006: physical inner product and Dirac observables: Master Con-
straint programme
As mentioned above, while the Hamiltonian constraint can be defined
on H0, so far there was no idea for defining the physical inner product
and Dirac observables. One of the obstacles is that the Hamiltonian
constraints do not form a Lie algebra, there are structure functions rather
than structure constants, which is why group averaging techniques, dis-
cussed in Chapter 3, cannot be applied. In [252] the Master Constraint
programme was initiated. What it does, as discussed in Chapter 3, is
to replace the constraint algebra by an equivalent one to which group
averaging or direct integral techniques can be applied. Luckily the
results mentioned in item (ix) can be used to define the new quantum
algebra [522] (see also [523]). These ideas have been successfully tested in
other constrained systems such as Maxwell theory, linearised gravity and
for the Gauß constraint of Yang–Mills theory coupled to gravity [253–257].

Thus, once we have agreed on a quantisation of the Hamiltonian con-
straints (rather: Master Constraint) we are granted that there exists a
(unique, up to unitary equivalence and up to measure zero issues) physi-
cal inner product on the space of solutions of the Master Constraint and
what is left to do is to construct Dirac observables by using averaging
techniques and to check the correctness of the classical limit of the theory.

In the above list the following items provide complete or almost complete, robust
results: (i)–(viii), (xii), (xiii), (xvii). On the other hand, items (ix), (x), (xi), (xiv),
(xvi) and (xviii) comprise the current active research in the field where the main
ideas have probably been spelt out already while the details are still in flow. As
we see, all of these research programmes of the second category are related to
the quantum dynamics of the theory. This is not surprising as the solution of the
quantum dynamics of a highly interacting QFT such as GR is the final and most
difficult step in any such theory. It is at least as difficult as rigorously proving
the existence of QCD as a mathematical theory and showing that the theory
describes confinement.

In the remainder of this part of the book we will summarise the status of the
quantisation programme. The third part focuses on the applications. The fourth
part injects mathematical physics techniques into the main text that may be
useful for some readers in order to follow the proofs.
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In fact, we could keep the discussion in the subsequent chapters shorter if
we just wanted to prove the statements made in the above summary. However,
in order to equip the reader with the technology necessary in order to experi-
ment with possible modifications of the quantisation programme in places where
certain mathematical or physical choices have to be made, we keep the discus-
sion very general so that the results proved can be applied in a maximally broad
context.
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Step I: the holonomy–flux algebra P

For steps I, II, III of the quantisation programme the choice of the compact
group G and the dimensionality of σ will be unimportant, hence we keep the
discussion quite general.

6.1 Motivation for the choice of P

Before we dive into the mathematical details, let us motivate our choice for the
classical algebra P on which the quantum theory is to be based and which has
been defined in mathematically precise terms for the first time in [524]. For the
sake of these heuristic considerations we will not pay attention to mathematical
details, these will be supplemented as we move along.

Remember that we are interested in a background-independent formulation,
therefore we are not allowed to use any background metric in defining P. Next,
since the Poisson brackets among the fields Aj

a, E
a
j are singular, we should smear

them with test functions as we did for the fields qab, P
ab in Section 1.2. Hence

our first guess would be to use

E(f) :=
∫

σ

d3xf j
aE

a
j , F (A) :=

∫

σ

d3xF a
j A

j
a (6.1.1)

which gives rise to the non-distributional Poisson brackets (remember our con-
vention at the end of Section 4.2.2)

{F (A), F ′(A)} = {E(f), E(f ′)} = 0, {E(f), F (A)} = β
κ

2

∫

σ

d3x F a
j f j

a

(6.1.2)
The functionals (6.1.1) certainly satisfy our requirement to separate the points
of (A,E) on the phase space as one can see by restricting the support of the
smearing fields f j

a , F
a
j . However, the problem with the choice (6.1.1) is that

these variables do not transform nicely under gauge transformations. Denoting
the smeared Gauß constraint by G(Λ) =

∫
d3xΛjGj we find

{G(Λ), F (A)} = −β
κ

2

∫
d3xF a

j

[
Λj
,a + εjklA

k
aΛ

l
]

and {G(Λ), E(f)}

= β
κ

2

∫
d3xf j

aεjklΛ
kEa

l (6.1.3)

This is precisely the infinitesimal version of the transformation law of an SU(2)
connection one-form and a Lie algebra-valued vector density transforming in the
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adjoint representation of SU(2), that is, A �→ −dg g−1 + gAg−1 and E �→ gEg−1

as one can check by introducing a basis τj of su(2) and g = exp(Λjτj). In this
book we will be using τj = −iσj where σj are the Pauli matrices. As we are even-
tually interested in gauge-invariant objects, it is clear that it will be very difficult
to use (6.1.1) because of the non-local dependence of say {G(Λ), F (A)} on Λ.

A second idea would be to use the magnetic field of A given by Ba
j :=

εabcF j
bc and to construct from these directly the gauge-invariant combinations

Tr(BaBb), Tr(BaEb), Tr(EaEb). However, since the functions are quartic in
the basic fields A,E, the Poisson bracket among them does not close, we do
not get a subalgebra. Next one can try to use the non-gauge-invariant function
B(f) :=

∫
d3xf j

aB
a
j but again the algebra does not close unless we consider also

F (A) as elements of P. Thus we are led to look for a more suitable choice of P.
The problem we just described is not unique to gravity but appears, of course,

in any non-Abelian Yang–Mills theory. Hence we can take advantage of the expe-
rience gained there. The only known solution to the problem just mentioned is to
work with so-called Wilson loops. Given a curve c : [0, 1] → σ in σ we denote by
the holonomy hc(A) ∈ SU(2) of the connection A along c the unique solution
to the differential equation

d

ds
hcs(A) = hcs(A)A(c(s)), hc0 = 12, hc(A) := hc1(A) (6.1.4)

where cs(t) := c(st), s ∈ [0, 1] and A(c(s)) := Aj
a(c(s))τj/2ċ

a(s). One can write
this explicitly as

hc(A) = P exp
(∫

c

A

)
= 12 +

∞∑

n=1

∫ 1

0

dt1

∫ 1

t1

dt2 . . .

∫ 1

tn−1

dtnA(c(t1)) . . . A(c(tn))

(6.1.5)
where P denotes the path ordering symbol which orders the smallest path
parameter to the left. Using the fact that the gauge transformed connection is
Ag = −dgg−1 + gAg−1 it is easy to check that hc(Ag) = g(c(0))hc(A)g(c(1))−1.
Hence the holonomy transforms locally under gauge transformations. As is obvi-
ous from (6.1.5), the connection gets smeared only along the curve c, that is,
in one dimension, which is very natural because a connection is, in particular,
a one-form and as known from differential geometry, there is a natural pairing,
called Poincaré duality, between p-forms and p-dimensional submanifolds (see,
e.g., Chapter 19).

Next we turn to the conjugate electric field E. Since A is smeared in one
dimension only, the field E must be smeared in at least D − 1 = 2 dimensions
in order that the Poisson bracket with the holonomy be non-distributional. Can
it be smeared in D = 3 dimensions? The answer is no because otherwise we do
not get a closed algebra. Indeed one can check that

{E(f), (hc(A))mn}

= β
κ

2

[∫ 1

0

dt ċa(t) f j
a(c(t)) (hct(A)(τj/2)hct(A)−1)mk

]
(hc(A))kn (6.1.6)
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where m,n = ± 1
2 denotes the matrix indices of the 2 × 2 matrix hc(A). The

right-hand side of (6.1.6) is not a polynomial in some holonomies any longer
but rather a continuous sum of those, that is, an integral. Hence the right-hand
side of (6.1.6) depends on an infinite number of holonomies rather than a finite
number. Therefore, with a D = 3-dimensional smearing the algebra would not
close.

Thus we are forced to work with D − 1 = 2-dimensional smearing of E. This is
again very natural because the vector density Ea

j is dual to the pseudo-(D − 1)-
form

(∗E)ja1...aD−1
:= εaa1...aD−1E

a
j

(
= sgn(det(e))εjkleka1

elaD−1

)
(6.1.7)

where εa1...aD
is the background metric-independent totally skew symbol and

the last identity holds for D = 3. The appearance of the sign factor explains the
word pseudo-form. Since a two-form is naturally integrated in two dimensions
we are naturally led to consider the quantities

E{p}(S,A) :=
∫

S

Tr(Adhpx (A)(∗E)(x)) (6.1.8)

Here ∗E = (∗E)ja1...aD−1
dxa1 ∧ . . . ∧ dxaD−2τj , {p} denotes a system of paths

x �→ px, x ∈ S within S from a fixed interior point x0 ∈ S to x ∈ S and Adg(.) :=
g(.)g−1 is the adjoint action of the Lie group on its own Lie algebra.

It is easy to check that with Eg = gEg−1 we have a local gauge transformation
behaviour Eg

{p}(S,A
g) = g(x0), E{p}(S,A)g(x0)−1. Moreover, as we will show in

detail later, the algebra of (6.1.5) and (6.1.8) closes and separates the points
of the phase space. However, (6.1.8) is too complicated to work with because
we have to choose, next to S, the path system {p} and, moreover, (6.1.8) also
depends on A. It is easier to work with the (electric) fluxes

En(S) :=
∫

S

nj (∗E)j (6.1.9)

where n = nj is a Lie algebra-valued scalar function. While the gauge transfor-
mation of (6.1.9) is again non-local, it will turn out later that all gauge-invariant
functions that we will be ultimately interested in can be written in terms of lim-
its of the fluxes as the surfaces S shrink to points. Hence, from this perspective
and since (6.1.5) and (6.1.9) separate the points, the algebra P generated from
holonomies and fluxes satisfies all our requirements of Chapter 3 for it to be a
classical starting point of quantisation and actually nobody has found a more
natural one.

As a bonus, from the Poincaré duality between chains and forms, the
holonomies and fluxes also have a simple transformation behaviour under spatial
diffeomorphisms. To see this, let Va := Ha −Aj

aGj then

{�V ( �N), A} = β
κ

2
L �NA, {�V ( �N), E} = β

κ

2
L �NE (6.1.10)

which is precisely the transformation law under infinitesimal spatial diffeo-
morphisms of a one-form and vector density respectively. Now recall from
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Chapter 19 the definition of a one-parameter family of diffeomorphisms t �→ ϕ
�N
t

generated by the integral curves of a vector field �N . With the pull-back action
Aϕ = ϕ∗A and (∗E)ϕ = ϕ∗(∗E) under finite diffeomorphisms it is easy to check
that, for example, [d/dt(ϕ �N

t )∗A]t=0 = L �NA. It follows that

exp(tLχ�V ( �N)
)F [A, (∗E)]=

∞∑

n=0

tn

n!
{�V ( �N), F}(n) = F

[(
ϕ

�N
κβt/2

)∗
A,

(
ϕ

�N
κβt/2

)∗(∗E)
]

exp(tLχG(Λ))F [A, (∗E)] =
∞∑

n=0

tn

n!
{G(Λ), F}(n) = F

[
AgΛ

κβt/2 ,
(
∗ EgΛ

κβt/2
)]

(6.1.11)

where gΛ
t = exp(tΛjτj). Here F [A, (∗E)] is an arbitrary function on phase space

M and χ(.) denotes the Hamiltonian vector field of (.). To check this it is sufficient
to check the equation and its first derivative at t = 0 and to rely on uniqueness
of the solutions of ordinary differential equations.

We may therefore generalise the transformations (6.1.11) which are connected
to the identity of the gauge group and the spatial diffeomorphism group respec-
tively to arbitrary transformations. Since transformations on phase space gener-
ated by the flow of Hamiltonian vector fields are canonical transformations (they
preserve Poisson brackets; see, e.g., Section 19.3) we see that SU(2) gauge trans-
formations and spatial diffeomorphisms are implemented on P as automorphisms
(they preserve the algebraic structure of P)

αg(hc(A), En(S)) = (hc(Ag), Eg
n(S)) = (g(b(c))hc(A)g(f(c))−1, EAdg−1n(S))

αϕ(hc(A), En(S)) = (hc(Aϕ), Eϕ
n (S)) = (hϕ(c)(A), E(ϕ−1)∗n(ϕ(S))) (6.1.12)

The transformation of the holonomy–flux variables is therefore quite natural, it
consists simply in a geometrical change of the label.

A few technical remarks are in order:

1. Since M = T ∗A has a cotangent bundle structure we can make use of the
framework displayed in Chapter 3 in order to define P and A. A natural choice
of functions on A, the so-called cylindrical functions Cyl, are complex-valued
functions of a finite collection of holonomies along mutually non-intersecting
paths. In order that this class of functions forms an algebra it must be closed
under pointwise multiplication. Now the following issue arises: consider, for
example, the product hp(A) hp′(A). If p, p′ are arbitrary (piecewise) smooth
paths then it is possible that they intersect in a Cantor set and hence the result
is a function depending on an infinite number of mutually non-intersecting
paths. While it is possible to deal with these complications as we mentioned,
it is easier to restrict the paths to be (piecewise) analytic (semianalytic). Two
analytic paths intersecting an infinite number of times are actually analytic
continuations of each other, hence the product of the corresponding cylindrical
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functions is a cylindrical function again. In order to define an analytic path we
must equip σ with a real analytic structure. Fortunately [525], any paracom-
pact smooth manifold admits an analytic structure which is smooth diffeo-
morphic to the given differentiable structure and any two such chosen analytic
structures are then, of course, smooth diffeomorphic.

2. Likewise we must be careful that the Hamiltonian vector field Yn(S) := χEn(S)

of the fluxes En(S) defined by Yn(S) ·A(p) = {En(S), A(p)} preserves the
cylindrical functions. Now a given surface S cuts a path p ∈ P into pieces and
the Poisson bracket will receive a contribution from every possible intersection
point. Hence, in order that the space of cylindrical functions be preserved it
is necessary that the number of these intersection points be finite for every
p ∈ P. This is clearly impossible for paths p some of whose segments lie inside
a given S, but it will turn out from the detailed calculation that those segments
do not contribute. Hence, all that is important is that the number of isolated
intersection points is finite. It follows that the set of allowed surfaces includes
the piecewise analytic (semianalytic) ones because in case that a given analytic
segment of a path intersects S in an infinite number of isolated points, it must
actually lie inside S along an analytic curve and hence does not have isolated
intersection points at all.

3. Interestingly, the Lie bracket [Yn(S), Yn′(S′)] does not vanish if S ∩ S′ �= ∅
although classically we have {E(f), E(f ′)} = 0 by (6.1.2). The reason for
this unexpected non-commutativity is the singular smearing in the definition
of P. Indeed, {Ea

j (x), Eb
k(y)} may be non-vanishing and still be compati-

ble with {E(f), E(f ′)} = 0 if the right-hand side vanishes when integrated
against

∫
dDxf j

a(x)
∫
dD(y)(f ′)jb(y). This is indeed the case: introduce one-

parameter families of surfaces t �→ St which fill out a D-dimensional region.
Then consider

∫
dt

∫
dt′[Yn(St), Yn′(S′

t′)] applied to a cylindrical function.
The integrand turns out to be non-vanishing provided that the cylindri-
cal function depends on holonomies along paths p such that the set of iso-
lated points in St ∩ S′

t′ ∩ p is not empty. The set of values t, t′ for which
this happens has dt dt′ measure zero, hence the integral of the commutator
vanishes as expected. We are therefore forced not to set {En(S), En′(S′)} =
0, otherwise the Jacobi identity between, say, En(S), En′(S′), A(p) would
be violated. Rather, we need to define this bracket via the Hamiltonian
vector field χ{En(S),En′ (S′)} := [χEn(S), χEn′ (S′)] where χEn(S) = Yn(S). Of
course, only vector fields of the form Yn(S) have an immediate classical
interpretation.

4. Given that both the paths and the surfaces are restricted to be piecewise ana-
lytic (semianalytic), (6.1.12) defines an automorphism of the corresponding
algebra only if the class of allowed diffeomorphisms preserves the piecewise
analytic (semianalytic) paths and surfaces respectively. The set of these dif-
feomorphisms includes the analytic diffeomorphisms of the chosen analytic
structure of σ but there is an extension which is larger: these are the piecewise
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analytic (semianalytic) diffeomorphisms which are analytic everywhere except
on lower-dimensional submanifolds of σ where they are only differentiable of
class C(n0), n0 > 0 as advocated by Zapata [435, 436]. We will construct them
in detail in Chapter 20. These not entire analytic diffeomorphisms are impor-
tant because the analytic ones are rather global: an entire analytic function
is already determined by its values in an arbitrarily small neighbourhood of
any point while this is not the case for smooth functions and our piecewise
analytic (semianalytic) diffeomorphisms. This global aspect would prevent,
for instance, the uniqueness result of the representation theory of A that
we are going to prove on general manifolds different from σ = RD by using
the piecewise (or more precisely semi-) analytic structure. The largest possible
extension of the diffeomorphism group preserving the given structure is the
automorphism group Aut(P) of the groupoid of paths P, to be defined below,
as has recently been advocated in [526].

This ends our motivational remarks. We will now proceed to the mathematical
details.

6.2 Definition of P: (1) paths, connections, holonomies
and cylindrical functions

In what follows, holonomies play a fundamental role. For a fibre bundle theoretic
definition see Chapter 21. In this section we will follow closely Velhinho [474].
For simplicity we stick to the piecewise analytic, or more precisely, semianalytic
category to which an introduction is given in Chapter 20. For generalisation to
the other categories discussed above, please refer to the literature cited there.
So in what follows, σ is a semianalytic, connected and orientable D-dimensional
manifold which is locally compact (every point has an open neighbourhood with
compact closure, automatic if σ is finite-dimensional) and paracompact (for
finite-dimensional σ equivalent to the condition of being the countable union
of compact sets). The generalisation to non-connected and non-orientable σ is
straightforward.

We will actually develop more structure than is strictly necessary in order to
define P. However, we will need this additional technology later on when we
study representations anyway and this is a good place to introduce it.

6.2.1 Semianalytic paths and holonomies

In all that follows we work with connection potentials, thus we assume that in
each fibre of the principal G-bundle a reference point has been chosen. A change
of reference point corresponds to a gauge transformation, thus upon passage
to the gauge-invariant sector nothing will depend on that choice any more, as
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shown in Chapter 22 where holonomies in non-trivial fibre bundles are discussed
in detail.

We notice that all the developments that follow use a concrete manifold σ

and that the loops or paths are embedded into it. However, in order to describe
topology change within quantum gravity it would be desirable to formulate a
Hilbert space using non-embedded (algebraic) graphs [527–531]. The state of the
abstract Hilbert space itself should tell us into which σ’s the algebraic graph on
which it is based can be embedded. For some ideas in that direction in connection
with semiclassical issues, see [490].

Definition 6.2.1. By C we denote the set of continuous, oriented, piecewise
semianalytic, parametrised, compactly supported curves embedded into σ. That
is, an element c ∈ C is given as a map

c : [0, 1] → σ; t �→ c(t) (6.2.1)

such that there is a finite natural number n and a partition [0, 1] =
[t0 = 0, t1] ∪ [t1, t2] ∪ . . . ∪ [tn−1, tn = 1] and such that (a) c is continuous at
tk, k = 1, . . . , n− 1, (b) real semianalytic in [tk−1, tk], k = 1, . . . , n and (c)
c((tk−1, tk)), k = 1, . . . , n− 1 is an embedded one-dimensional submanifold of σ.
Moreover, there is a compact subset of σ containing c.

For a precise definition of semianalyticity, see Chapter 20. However, intuitively,
a semianalytic curve c is a finite composition of entire analytic curves ck where
the differentiability class at the boundaries pk = ck ∩ ck+1 is Cmk with mk > 0.
More precisely, a semianalytic curve is an oriented semianalytic submanifold
of dimension one with a two-point boundary. Roughly speaking, the difference
between a piecewise analytic curve and a semianalytic curve is that at points
of non-analyticity a piecewise analytic curve just has to be continuous while a
semianalytic curve has to be at least C(1). See Figure 6.1 for examples.

Recall that a differentiable map φ : M1 → M2 between finite-dimensional
manifolds M1,M2 is called an immersion when φ has everywhere rank dim(M1).
An immersion need not be injective but when it is, it is called an embed-
ding. For an embedding, the map φ : M1 → φ(M1) is a bijection and the mani-
fold structure induced by φ on φ(M1) is given by the atlas {φ(UI), ϕI ◦ φ−1}
where {UI , ϕI} is an atlas of M1. This differentiable structure need not be
equivalent to the submanifold structure of φ(M1) which is given by the atlas
{VJ ∩ φ(M1), φJ} where {VJ , φJ} is an atlas of M2. When both differential struc-
tures are equivalent (diffeomorphic in the chosen differentiability category, say
Cr, r ∈ N ∪ {∞} ∪ {ω} where ∞, ω denotes smooth and analytic respectively)
the embedding is called regular. The above definition allows a curve to have
self-intersections and self-overlappings so that it is only an immersion, but on
the open intervals (tk−1, tk) a curve c is a regular Cm, m > 0 embedding, in
particular, it does not come arbitrarily close to itself.
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Figure 6.1 Top figure: curve with points of non-differentiability and a retrac-
ing. Bottom figure: a (differentiable) edge.

Definition 6.2.2

(i) The beginning point, final point and range of a curve c ∈ C is defined, respec-
tively, by

b(c) := c(0), f(c) := c(1), r(c) := c([0, 1]) (6.2.2)

(ii) Composition ◦ : C × C → C of composable curves c1, c2 ∈ C (those with
f(c1) = b(c2)) and inversion −1 : C → C of c ∈ C are defined by

(c1 ◦ c2)(t)
{

:=
c1(2t) t ∈

[
0, 1

2

]

c2(2t− 1) t ∈
[
1
2 , 1

] , c−1(t) := c(1 − t) (6.2.3)

Notice that the operations (6.2.3) do not equip C with the structure of a
group for several reasons. First of all, not every two curves can be composed.
Second, composition is not associative because (c1 ◦ c2) ◦ c3, c1 ◦ (c2 ◦ c3) differ
by a reparametrisation. Finally, the retraced curve c ◦ c−1 is not really just given
by b(c) so that c−1 is not the inverse of c and anyway there is no natural ‘identity’
curve in C.

Definition 6.2.3. Two curves c, c′ ∈ C are said to be equivalent, c ∼ c′ if and
only if

1. b(c) = b(c′), f(c) = f(c′) (identical boundaries) and
2. c′ is identical with c up to a combination of a finite number of retracings and

a semianalytic reparametrisation.

It is easy to see that ∼ defines an equivalence relation on C (reflexive: c ∼ c,
symmetric: c ∼ c′ ⇒ c′ ∼ c, transitive: c ∼ c′, c′ ∼ c′′ → c ∼ c′′). The equiva-
lence class of c ∈ P is denoted by pc and the set of equivalence classes is denoted
by P. In order to distinguish the equivalence classes from their representa-
tive curves we will refer to them as paths. As always, the dependence of P
on σ will not be explicitly displayed. The second condition means that c′ =
c′1 ◦ c̃′1 ◦ (c̃′1)

−1 ◦ . . . ◦ c′n−1 ◦ c̃′n−1 ◦ (c̃′n−1)
−1 ◦ c′n for some finite natural number

n and curves c′k, c̃
′
l, k = 1, . . . , n, l = 1, . . . , n− 1 and that there exists a diffeo-

morphism f : [0, 1] → [0, 1] such that c ◦ f = c′1 ◦ . . . ◦ c′n.



6.2 (1) Paths, connections, holonomies and cylindrical functions 165

Definition 6.2.3 has the following fibre bundle theoretic origin (see, e.g., [337]
and Chapter 21): recall that a connection ω on a principal G bundle P may be
defined in terms of local connection potentials AI(x) over the chart UI of an atlas
{UI , ϕI} of σ which are the pull-backs to σ by local sections sφI (x) := φI(x, 1G)
of ω where φI : UI × G → π−1(UI) denotes the system of local trivialisations of
P adapted to the UI and π is the projection of P . The holonomy hcI := hcI(1)
of AI along a curve in the domain of a chart UI is uniquely defined by the
differential equation

ḣcI(t) = hcI(t)AIa(c(t))ċa(t); hcI(0) = 1G (6.2.4)

and one may check that under a change of trivialisation within UI ∩ UJ

AI(x) �→ AJ(x) = −dhJI(x)hJI(x)−1 + AdhJI(x)(AI(x)) (6.2.5)

the holonomy transforms as

hcI �→ hcJ = hJI(b(c))hcIhJI(f(c))−1 (6.2.6)

Denote by A the space of smooth connections (abusing the notation by identify-
ing the collection of potentials with the connection itself) over σ (the dependence
on the bundle is not explicitly displayed) and in what follows we will write hc(A)
for the holonomy of A along c, understood as an element of G which is possi-
ble once a reference set of points in each fibre is fixed, see Chapter 22. We will
denote by Ag := −dgg−1 + Adg(A) a gauge transformed connection for a func-
tion g : x �→ G (which corresponds to a change of reference points) and have

hg
c(A) := hc(Ag) = g(b(c))hc(A)g(f(c))−1 (6.2.7)

which can be checked directly from (6.2.4) if c is in the domain of a chart but also
holds in general bundles. Besides these transformation properties, the holonomy
has the following important algebraic properties, even in a non-trivial bundle:

1. hc1◦c2(A) = hc1(A)hc2(A)
2. hc−1(A) = hc(A)−1

as may easily be checked by using the differential equation (6.2.4). Further-
more, one can verify that the differential equation (6.2.4) is invariant under
reparametrisations of c. These three properties guarantee that hc(A) does not
depend on c ∈ C but only on the equivalence class pc ∈ C.

One might therefore also have given the following definition of equivalence of
curves:

Definition 6.2.4. Two curves c, c′ ∈ C are said to be equivalent, c ∼ c′ if and
only if

1. b(c) = b(c′), f(c) = f(c′) (identical boundaries) and
2. hc(A) = hc′(A) for all A ∈ A.
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In fact, Definitions 6.2.4 and 6.2.3 are equivalent if G is compact and non-
Abelian [433] since then every group element can be written as a commutator,
that is, in the form h = h1h2h

−1
1 h−1

2 so that curves of the form c1 ◦ c2 ◦ c−1
1 are

not equivalent with c2. In the Abelian case, Definition 6.2.4 is stronger than
Definition 6.2.3 . In what follows we will work with Definition 6.2.3 .

Property (1) of Definition 6.2.3 implies that the functions b, f can be extended
to P by b(pc) := b(c), f(pc) =: f(c), the right-hand sides are independent of the
representative. However, the function r can be extended only to special elements
which we will call edges.

Definition 6.2.5. An edge e ∈ P is an equivalence class of a curve ce ∈ C which
is semianalytic in all of [0, 1]. In this case r(e) := r(ce).

For a semianalytic curve we may find an equivalent one which is not entire
semianalytic but contains a retracing. However, we do not allow such represen-
tatives in the definition of r(e). The difference between a generic curve c and ce
is that apart from retracings c may be a composition of entire analytic segments
such that at the endpoints of those segments the curve is only continuous but
not differentiable. It may be checked that pc1 ◦ pc2 := pc1◦c2 and p−1

c := pc−1 are
well-defined. The advantage of dealing with paths P rather than curves is that
we now have almost a group structure since composition becomes associative
and the path pc ◦ p−1

c = b(pc) is trivial (stays at its beginning point). However,
we still do not have a natural identity element in P and not all of its elements
can be composed. The natural structure behind this is that of a groupoid. Let us
recall the slightly more general definition of a category.

Definition 6.2.6

(i) A category K is a class (in general, more general than a set), the members
of which are called objects x, y, z, . . . , together with a collection M(K) of
sets hom(x, y) for each ordered pair of objects (x, y), the members of which
are called morphisms. Between the sets of morphisms there is defined a
composition operation

◦ : hom(x, y) × hom(y, z) → hom(x, z); (f, g) �→ f ◦ g (6.2.8)

which satisfies the following two rules:
(a) Associativity: f ◦ (g ◦ h) = (f ◦ g) ◦ h for all f ∈ hom(w, x), g ∈

hom(x, y), h ∈ hom(y, z).
(b) Identities: for every x ∈ K there exists a unique element idx ∈ hom(x, x)

such that for all y ∈ K we have idx ◦ f = f for all f ∈ hom(y, x) and
f ◦ idx = f for all f ∈ hom(x, y).

(ii) A subcategory K′ ⊂ K is a category which contains a subclass of the class
of objects in K and for each pair of objects (x, y) in K′ we have for the set
of morphisms hom′(x, y) ⊂ hom(x, y).
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(iii) A morphism f ∈ hom(x, y) is called an isomorphism provided there exists
g ∈ hom(y, x) such that f ◦ g = idy, g ◦ f = idx.

(iv) If K1, K2 are categories with collections of sets of morphisms
M(K1), M(K2) respectively, then a map F : [K1,M(K1)] → [K2,M(K2)]
is called a covariant [contravariant] functor, also denoted by F∗ [F ∗], pro-
vided that the algebraic structures are preserved, that is
1. f ∈ hom(x, y) ⇒ F (f) ∈ hom(F (x), F (y)) [hom(F (y), F (x))].
2. F (f ◦ g) = F (f) ◦ F (g) [F (g) ◦ F (f)].
3. F (idx) = idF (x).

(v) A category in which every morphism is an isomorphism is called a groupoid.

This definition obviously applies to our situation with the following identifica-
tions:

Category: σ.
Objects: points x ∈ σ.
Morphisms: paths between points hom(x, y) := {p ∈ P; b(p) = x, f(p) = y}.

Obviously, every morphism is an isomorphism.
Collection of sets of morphisms: all paths M(σ) = P.
Composition: composition of paths pc1 ◦ pc2 = pc1◦c2 .
Identities: idx = p ◦ p−1 for any p ∈ P with b(p) = x.

We will call this category σ the category of points and paths and denote it
synonymously by P as well.

Subcategories: l ⊂ P consisting of a subset of σ as the set of objects and for each
two such objects x, y a subset hom′(x, y) ⊂ hom(x, y).

It is clear that every path is a composition of edges, however, P is not freely
generated by edges (free of algebraic relations among edges) because the com-
position e ◦ e′ of two edges e, e′ defined as the equivalence class of semiana-
lytic curves ce, ce′ which are semianalytic continuations of each other defines
a new edge e′′ again. Notice that hom(x, y) �= ∅ for any x, y ∈ σ because we
have assumed that σ is connected, one says that P is connected. Moreover,
hom(x, x) is actually a group with the identity element idx being given by
the trivial path in the equivalence class of the curve c(t) = x, t ∈ [0, 1]. The
groups hom(x, x) are all isomorphic: fix an arbitrary path pxy ∈ hom(x, y), then
hom(x, x) = pxy ◦ hom(y, y) ◦ p−1

xy .

Definition 6.2.7. Fix once and for all x0 ∈ σ. Then Q := hom(x0, x0) is called
the hoop group.

The name ‘hoop’ is an acronym for ‘holonomy equivalence class of a loop
based at x0’. We use the word hoop to distinguish a hoop (a closed path) from
its representative loop (a closed curve).
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Lemma 6.2.8. Fix once and for all a system of paths px ∈ hom(x0, x) with
px0 = idx0 . Then for any p ∈ P there is a unique α ∈ Q such that

p = p−1
b(p) ◦ α ◦ pf(p) (6.2.9)

The proof consists in solving equation (6.2.9) for α.

Lemma 6.2.9. Denote, for any subgroupoid l ⊂ P containing x0 as an object,
by homl(x0, x0) the subgroup of Q consisting of hoops within l.

Let Q′ be any subgroup of Q and let X ⊂ σ be any subset containing x0. Then
l := {p−1

x ◦ α ◦ py; x, y ∈ X, α ∈ Q′} is a connected subgroupoid of P (px the
above fixed path system) and Q′ = homl(x0, x0).

Proof

(i) l is a connected subgroupoid: given p ∈ l there exist x, y ∈ X, α ∈ Q′ such
that p = p−1

x ◦ α ◦ py. Thus p−1 = p−1
y ◦ α−1 ◦ px ∈ l since Q′ is a subgroup.

Also given p′ = p−1
y ◦ β ◦ pz ∈ l we have p ◦ p′ = p−1

x ◦ α ◦ β ◦ pz ∈ l since Q′

is a subgroup. l is trivially connected since by construction every x ∈ X is
connected to x0 ∈ X through the path p−1

x ◦ α ◦ py with y = x0, α = idx0 .
(ii) We have

homl(x0, x0) = {p ∈ Q; p ∈ l} =
{
p−1
x0

◦ α ◦ px0 ; α ∈ Q′} = Q′ (6.2.10)

since px0 = idx0 . �

6.2.2 A natural topology on the space of generalised connections

We have noticed above that for an element A ∈ AP its holonomy hc(A) (under-
stood as taking values in G, subject to a fixed trivialisation of the bundle P )
depends only on pc. We have momentarily explicitly displayed the dependence
of the space of smooth connections on the bundle for clarity. To express this we
will use the notation

A(pc) := hc(A) (6.2.11)

It follows then that

A(p ◦ p′) = A(p)A(p′), A(p−1) = A(p)−1 (6.2.12)

in other words, every A ∈ AP defines a groupoid morphism.

Definition 6.2.10. Hom(P,G) is the set of all (algebraic, no continuity
assumptions) groupoid morphisms from the set of paths in σ into the gauge group.

What we have just shown is that AP can be understood as a subset of
Hom(P,G) via the injection H : AP → Hom(P,G); A �→ HA where HA(p) :=
A(p). That H is an injection (HA = HA′ implies A = A′) is the content of
Giles’ theorem [342] and can easily be understood from the fact that for a
smooth connection A ∈ AP we have for short curves cε : [0, 1] → σ; cε(t) = c(εt),
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0 < ε < 1 an expansion of the form hcε(A) = 1G + εċa(0)Aa(c(0)) + o(ε2) so that
( d
dε )ε=0hcε(A) = ċa(0)Aa(c(0)), that is, by varying the curve c we can recover A

from its holonomy.
We now show that AP is certainly not all of Hom(P,G), that is, H is not a sur-

jection, suggesting that Hom(P,G) is a natural distributional extension of AP :
first of all, as we have said before, unless σ is three-dimensional and G = SU(2)
the bundle P is not necessarily trivial and the classical spaces AP are all different
for different bundles. However, the space Hom(P,G) depends only on σ and not
on any P , which means that it contains all possible classical spaces AP at once
and thus is much larger. Beyond this union of all the AP it contains distribu-
tional elements, for instance the following: let f : S2 → G be any map, x ∈ σ any
point. Given a path p choose a representative cp. The curve cp can pass through
x only a finite number of times, say N times, due to piecewise (semi)analyticity
(see below). At the kth passage denote by n±

k the direction of ċp(t) at x when
it enters (leaves) x. Then define H(p) := [f(−n−

1 )−1f(n+
1 )] . . . [f(−n−

N )−1f(n+
N )]

(for N = 0 defined to be 1G). Notice that a retracing through x does not affect
this formula because in that case n+

k = −n−
k and since we are taking only the

direction of a tangent, also reparametrisations do not affect it. It follows that it
depends only on paths rather than curves. It is easy to check that this defines an
element of Hom(P,G). It is not of the form HA, A ∈ AP because H has support
only at x, it is distributional. However, it is not a Schwarz distribution due to
its direction dependence. More examples of distributional elements can be found
in [364].

Having motivated the space Hom(P,G) as a distributional extension of AP ,
the challenge is now to equip this so far only algebraically defined space with a
topology. The reason is that, being distributional, it is a natural candidate for
the support of a quantum field theory measure as we have stressed before, but
measure theory becomes most powerful in the context of topology. In order to
define such a topology, projective techniques [532] suggest themselves. We begin
quite generally.

Definition 6.2.11

(i) Let L be some abstract label (index) set. A partial order ≺ on L is a relation,
that is, a subset of L × L, which is reflexive (l ≺ l), symmetric (l ≺ l′, l′ ≺
l ⇒ l = l′) and transitive (l ≺ l′, l′ ≺ l′′ ⇒ l ≺ l′′). Not all pairs of elements
of L need to be in relation and if they are, L is said to be linearly ordered.

(ii) A partially ordered set L is said to be directed if for any l, l′ ∈ L there exists
l′′ ∈ L such that l, l′ ≺ l′′.

(iii) Let L be a partially ordered, directed index set. A projective family
(Xl, pl′l)l≺l′∈L consists of sets Xl labelled by L together with surjective pro-
jections

pl′l : Xl′ → Xl ∀ l ≺ l′ (6.2.13)
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satisfying the consistency condition

pl′l ◦ pl′′l′ = pl′′l ∀ l ≺ l′ ≺ l′′ (6.2.14)

(iv) The projective limit X of a projective family (Xl, pl′l) is the subset of the
direct product X∞ :=

∏
l∈L Xl defined by

X := {(xl)l∈L; pl′l(xl′) = xl ∀ l ≺ l′} (6.2.15)

The idea of using this definition for our goal to equip Hom(P,G) with a topol-
ogy is the following: we will readily see that Hom(P,G) can be displayed as a
projective limit. The compactness of the Hausdorff space G will be responsible for
the fact that every Xl is compact and Hausdorff. Now on a direct product space
(independent of the cardinality of the index set) in which each factor is compact
and Hausdorff one can naturally define a topology, the so-called Tychonov topol-
ogy, such that X∞ is compact again. If we manage to show that X is closed in
X∞ then X will be compact and Hausdorff as well in the subspace topology (see,
e.g., [533]). However, for compact Hausdorff spaces powerful measure theoretic
theorems hold which will enable us to equip Hom(P,G) with the structure of a
σ-algebra and to develop measure theory thereon.

In order to apply Definition 6.2.11 then to our situation, we must decide on
the label set L and the projective family.

Definition 6.2.12

(i) A finite set of edges {e1, . . . , en} is said to be independent provided that the
ek intersect each other at most in the points b(ek), f(ek).

(ii) A finite set of edges {e1, . . . , en} is said to be algebraically independent pro-
vided none of the ek is a finite composition of the e1, . . . , ek−1, ek+1, . . . , en
and their inverses.

(iii) An independent set of edges {e1, . . . , en} defines an oriented graph γ by
γ := ∪n

k=1r(ek) where r(ek) ⊂ γ carries the arrow induced by ek (e ∪ e′ :=
pce∪ce′ ). From γ we can recover its set of edges E(γ) = {e1, . . . , en} as the
maximal semianalytic segments of γ together with their orientations as well
as the set of vertices of γ as V (γ) = {b(e), f(e); e ∈ E(γ)}. Denote by Γω

0

the set of all finite, semianalytic graphs.
(iv) Given a graph γ we denote by l(γ) ⊂ P the subgroupoid generated by γ with

V (γ) as the set of objects and with the e ∈ E(γ) together with their inverses
and finite compositions as the set of homomorphisms.

Notice that independence of sets of edges implies algebraic independence
but not vice versa (consider independent e1, e2 with f(e1) = b(e2) and define
e′1 = e2, e

′
2 = e1 ◦ e2; then e′1, e

′
2 is algebraically independent but not indepen-

dent) and that l(γ) is freely generated by the e ∈ E(γ) due to their algebraic
independence. Also, l(γ) does not depend on the orientation of the graph since
e1, . . . , en and es11 , . . . , esnn , sk = ±1 generate the same subgroupoid. The labels
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ω, 0 in Γω
0 stand for ‘semianalytic’ and ‘of compact support’ respectively for

obvious reasons.
The following theorem finally explains why it was important to stick with the

analytic, compact category. The proof is elementary, see Chapter 20 for a more
abstract proof using semianalyticity.

Theorem 6.2.13. Let L be the set of all tame subgroupoids l(γ) of P, that is,
those determined by graphs γ ∈ Γω

0 . Then the relation l ≺ l′ iff l is a subgroupoid
of l′ equips L with the structure of a partially ordered and directed set.

Proof: Since l is a subgroupoid of l′ iff all objects of l are objects of l′ and all
morphisms of l are morphisms of l′ it is clear that ≺ defines a partial order. To see
that L is directed consider any two graphs γ, γ′ ∈ Γω

0 and consider γ′′ := γ ∪ γ′.
We claim that γ′′ has a finite number of edges again, that is, it is an element
of Γω

0 . For this to be the case it is obviously sufficient to show that any two
edges e, e′ ∈ P can only have a finite number of isolated intersections or they are
semianalytic extensions of each other. Clearly they are semianalytic extensions
of each other if e ∩ e′ is a common finite segment. Suppose then that e ∩ e′ is
an infinite discrete set of points. We can assume without loss of generality that
e, e′ are entire analytic, otherwise apply the following argument to each of the
finite entire analytic segments out of which semianalytic edges are composed. We
may choose parametrisations of their representatives c, c′ such that each of its
component functions f(t)a := e′(t)a − e(t)a vanishes in at least a countably infi-
nite number of points tm, m = 1, 2, . . .. We now show that for any function f(t)
which is real analytic in [0, 1] this implies f = 0. Since [0, 1] is compact there is
an accumulation point t0 ∈ [0, 1] of the tm (here the compact support of the
c ∈ C comes into play) and we may assume without loss of generality that
tm converges to t0 and is strictly monotonous. Since f is analytic we can
write the absolutely convergent Taylor series f(t) =

∑∞
n=0 fn(t− t0)n (here

analyticity comes into play). We show fn = 0 by induction over n = 0, 1, . . . .
The induction start f0 = f(t0) = limm→∞ f(tm) = limm→∞ 0 = 0 is clear. Sup-
pose we have shown already that f0 = . . . = fn = 0. Then f(t) = fn+1(t−
t0)n+1 + rn+1(t)(t− t0)n+2 where rn+1(t) is uniformly bounded in [0, 1]. Thus
0 = f(tm)/(tm − t0)n+1 = fn+1 + rn+1(tm)(tm − t0) for all m, hence fn+1 =
limm→∞[fn+1 + rn+1(tm)(tm − t0)] = 0. �

Notice that the subgroupoids l ∈ L also conversely define a graph up to orien-
tation through its edge generators.

Now that we have a partially ordered and directed index set L we must specify
a projective family.

Definition 6.2.14. For any l ∈ L define Xl := Hom(l, G), the set of all homo-
morphisms from the subgroupoid l to G.
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Notice that for l = l(γ) any xl ∈ Xl is completely determined by the group
elements xl(e), e ∈ E(γ) so that we have a bijection

ργ : Xl → G|E(γ)|; xl �→ (xl(e))e∈E(γ) (6.2.16)

Since Gn for any finite n is a compact Hausdorff space (here compactness of
G comes into play) in its natural manifold topology we can equip Xl with a
compact Hausdorff topology through the identification (6.2.16). This topology is
independent of the choice of edge generators of l since any map (e1, . . . , en) �→
(es1π(1), . . . , e

sn
π(n)) for any element π ∈ Sn of the permutation group of n elements

and any s1, . . . , sn = ±1 induces a homeomorphism (topological isomorphism)
Gn → Gn.

Next we must define the projections.

Definition 6.2.15. For l ≺ l′ define a projection by

pl′l : Xl′ → Xl; xl′ �→ (xl′) (6.2.17)

restriction of the homomorphism xl′ defined on the groupoid l′ to its subgroupoid
l ≺ l′.

It is clear that the projection (6.2.17) satisfies the consistency condition
(6.2.14) since for l ≺ l′′ we have (xl′′) = ((xl′′)′)l for any intermediate l ≺ l′ ≺ l′′.
Surjectivity is less obvious.

Lemma 6.2.16. The projections pl′l, l ≺ l′ are surjective, moreover, they are
continuous.

Proof: Let l = l(γ) ≺ l′ = l(γ′) be given. Since l is a subgroupoid of l′ we may
decompose any generator e ∈ E(γ) in the form

e = ◦e′∈E(γ′)(e′)see′ (6.2.18)

where see′ ∈ {±1, 0}. Notice that |see′ | > 1 is not allowed and that any e′ appears
at most once in (6.2.18) because e is an edge (cannot overlap itself).

Surjectivity: we must show that for any xl ∈ Xl there exists an xl′ ∈ Xl′ such
that pl′l(xl′) = xl. Since xl is completely determined by he := xl(e) ∈ G, e ∈
E(γ) and xl′ is completely determined by h′

e′ := xl′(e′) ∈ G, e′ ∈ E(γ′) and since
he could be any value in G, what we have to show is that there exist group
elements h′

e′ ∈ G, e′ ∈ E(γ′) such that for any group elements he ∈ G, e ∈ E(γ)
we have

he = ◦e′∈E(γ′) (he′)se,e′ (6.2.19)

However, since the e ∈ E(γ) are disjoint up to their boundaries we have see′sẽẽ′ =
0 for any e �= ẽ in E(γ′) so that we may select for each e ∈ E(γ) one of the
e′ ∈ E(γ′) with se,e′ �= 0, say e′(e) ∈ E(γ′). These e′(e) are then disjoint up to
their boundaries. Since also the h′

e′ can independently take any value we may
choose h′

e′(e) = he, h
′
e′ = 1G for e′ �∈ {e′(e)}e∈E(γ).
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Continuity: under the identification (6.2.16) the projections are given as maps

pl′l : G(γ′) → G(γ); (h′
e′)e′∈E(γ′) �→

⎛

⎝
∏

e′∈E(γ′)

(h′
e′)

see′

⎞

⎠

e∈E(γ)

(6.2.20)

By definition, a net (hα
k )nk=1 converges in Gn to (hk)nk=1 if and only if every net

limα(hα
k ) = hk, k = 1, . . . , n individually converges (i.e., (hα

k )AB − (hk)AB → 0
for all matrix elements AB). Suppose then that (h′α

e′ )e′∈E(γ′) converges to
(h′

e′)e′∈E(γ′). By definition, in a Lie group inversion and finite multiplication
are continuous operations. Therefore (

∏
e′∈E(γ′)(h

′α
e′ )

see′ )e∈E(γ) converges to
(
∏

e′∈E(γ′)(h
′
e′)

see′ )e∈E(γ) (as one can also check explicitly). �

We can now form the projective limit X of the Xl. In order to equip it with
a topology we start by providing the direct product X∞ with a topology. The
natural topology on the direct product is the Tychonov topology.

Definition 6.2.17. The Tychonov topology on the direct product X∞ =∏
l∈L Xl of topological spaces Xl is the weakest topology such that all the projec-

tions

pl : X∞ → Xl; (xl′)l′∈L �→ xl (6.2.21)

are continuous, that is, a net xα = (xα
l )l∈L converges to x = (xl)l∈L iff xα

l → xl

for every l ∈ L pointwise (not necessarily uniformly) in L.

We then have the following non-trivial result.

Theorem 6.2.18 (Tychonov). Let L be an index set of arbitrary cardinality
and suppose that for each l ∈ L a compact topological space Xl is given. Then the
direct product space X∞ =

∏
l∈L Xl is a compact toplogical space in the Tychonov

topology.

An elegant proof of this theorem in terms of universal nets is given in Chapter
18, where also other relevant results from general topology including proofs can
be found.

Since X ⊂ X∞ we may equip it with the subspace topology, that is, the open
sets of X are the sets U ∩X where U ⊂ X∞ is any open set in X∞.

Lemma 6.2.19. The projective limit X is a closed subset of X∞.

Proof: Let (xα) := ((xα
l )l∈L) be a convergent net in X∞ such that xα :=

(xα
l )l∈L ∈ X for any α. We must show that the limit point x = (xl)l∈L lies in X.

By Lemma 6.2.16, the projections pl′l : Xl′ → Xl are continuous, therefore

pl′l(xl′) = lim
α

pl′l
(
xα
l′
)

= lim
α

xα
l = xl (6.2.22)

where the second equality follows from xα ∈ X. Thus, the point x ∈ X∞ qualifies
as a point in X. �
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Since closed subspaces of compact spaces are compact in the subspace topology
(see Chapter 18), we conclude that X is compact in the subspace topology
induced by X∞.

Lemma 6.2.20. Both X∞, X are Hausdorff spaces.

Proof: By assumption, G is a Hausdorff topological group. Thus Gn for any finite
n is a Hausdorff topological group as well and since Xl is topologically identified
with some Gn via (6.2.16) we see that Xl is a topological Hausdorff space for
any l ∈ L. Let now x �= x′ be points in X∞. Thus, there is at least one l0 ∈ L
such that xl0 �= x′

l0
. Since Xl0 is Hausdorff we find disjoint open neighbourhoods

Ul0 , U
′
l0
⊂ Xl0 of xl0 , x

′
l0

respectively. Let U := p−1
l0

(Ul0), U
′ := p−1

l0
(U ′

l0
). Since

the topology of X∞ is generated by the continuous functions pl : X∞ → Xl from
the topology of the Xl, it follows that U,U ′ are open in X∞. Moreover, U,U ′

are obviously neighbourhoods of x, x′ respectively since pl(U) = Xl = pl(U ′) for
any l �= l0. Finally, U ∩ U ′ = ∅ since pl0(U ∩ U ′) = Ul0 ∩ U ′

l0
= ∅ so that U,U ′

are disjoint open neighbourhoods of x �= x′ and thus X∞ is Hausdorff.
Finally, to see that X is Hausdorff, let x �= x′ be points in X, then we find

respective disjoint open neighbourhoods U,U ′ in X∞ whence U ∩X,U ′ ∩X are
disjoint open neighbourhoods in X by definition of the subspace topology. �

Let us collect these results in the following theorem.

Theorem 6.2.21. The projective limit X of the spaces Xl = Hom(l, G), l ∈ L
where L denotes the set of all tame subgroupoids of P is a compact Hausdorff
space in the induced Tychonov topology whenever G is a compact Hausdorff topo-
logical group.

The purpose of our efforts was to equip Hom(P,G) with a topology. Theorem
6.2.21 now enables us to do this provided we manage to identify Hom(P,G)
with the projective limit X via a suitable bijection. Now an elementary exercise
is that any point of Hom(P,G) defines a point in X if we define xl := H|l since
the projections pl′l encode the algebraic relations that are induced by asking
that H be a homomorphism. That this map is actually a bijection is the content
of the following theorem.

Theorem 6.2.22. The map

Φ : Hom(P,G) → X; H �→ (H|l)l∈L (6.2.23)

is a bijection.

Proof: Injectivity: suppose that Φ(H) = Φ(H ′), in other words, H|l = H ′
|l for

any l ∈ L. Thus, if l = l(γ) we have H(e) = H ′(e) for any e ∈ E(γ). Since l is
arbitrary we find H(p) = H ′(p) for any p ∈ P, that is, H = H ′.

Surjectivity: suppose we are given some x = (xl)l∈L ∈ X. We must find Hx ∈
Hom(P,G) such that Φ(Hx) = x. Letp ∈ P be any path, then we can always find
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a graph γp such that p ∈ l := l(γp). We may then define

Hx(p) := xl(γp)(p) (6.2.24)

Of course, the map p �→ γp is one to many and therefore the definition (6.2.24)
seems to be ill-defined. We now show that this is not the case, that is, (6.2.24)
does not depend on the choice of γp. Thus, let γ′

p be any other graph such that
p ∈ l′ := l(γ′

p). Since L is directed we find l′′ with l, l′ ≺ l′′. But then by the
definition of a point x in the projective limit

xl(p) = [pl′′l(xl′′)](p) = (xl′′)|l(p) ≡ xl′′(p) ≡ (xl′′)|l′(p) = [pl′′l′(xl′′)](p) = xl′(p)
(6.2.25)

It remains to check that Hx is indeed a homomorphism. We have for any p, p′, p ◦
p′ ∈ l with f(p) = b(p′)

Hx(p−1) = xl(p−1) = (xl(p))−1 = Hx(p)−1 and Hx(p ◦ p′) = xl(p ◦ p′)
= xl(p)xl(p′) = Hx(p)Hx(p′) (6.2.26)

since xl ∈ Hom(l, G). �

Definition 6.2.23. The space A := Hom(P,G) of homomorphisms from the set
of semianalytical paths into the compact Hausdorff topological group G, identified
set-theoretically and topologically via (6.2.23) with the projective limit X of the
spaces Xl = Hom(l, G), where l ∈ L runs through the tame subgroupoids of P,
is called the space of distributional connections over σ. In the induced Tychonov
topology inherited from X∞ it is a compact Hausdorff space.

Once again it is obvious that the space of distributions A no longer carries
any sign of the bundle P , it depends only on the base manifold σ via the set of
embedded paths P.

6.2.3 Gauge invariance: distributional gauge transformations

The space A contains connections (from now on considered as morphisms P →
G) which are nowhere continuous as we will see later on, and these turn out to
be measure-theoretically much more important than the smooth ones contained
in A. Therefore we are motivated to generalise also the space of smooth gauge
transformations G := C∞(σ,G) to the space of all functions

G := Fun(σ,G) (6.2.27)

with no restrictions (e.g., continuity). It is clear that g ∈ G may be thought of
as the net (g(x))x∈σ and thus G is just the continuous infinite direct product
G =

∏
x∈σ G.

The transformation property of A under G (6.2.7) can be understood
as an action λ : G ×A → A; (g,A) �→ Ag := λg(A) := λ(g,A)where Ag(p) :=
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g(b(p))A(p)g(f(p))−1 for any p ∈ P which we may simply lift to A,G as

λ : G ×A → A; (g,A) �→ Ag := λg(A) := λ(g,A) where

Ag(p) := g(b(p))A(p)g(f(p))−1 ∀ p ∈ P (6.2.28)

Notice that this is really an action, that is, Ag is really an element of A =
Hom(P,G) – it satisfies the homomorphism property

Ag(p−1)=g(b(p−1))A(p−1)g(f(p−1))−1 =g(f(p))A(p)−1g(b(p))−1 =(Ag(p))−1

Ag(p)Ag(p′) = [g(b(p))A(p)g(f(p))−1][g(b(p′))A(p′)g(f(p′))−1]

= g(b(p))A(p)A(p′)g(f(p′))−1

= g(b(p ◦ p′))A(p ◦ p′)g(f(p ◦ p′))−1 = Ag(p ◦ p′) (6.2.29)

because f(p) = b(p′), b(p) = b(p ◦ p′), f(p′) = f(p ◦ p′). The action (6.2.28) is also
continuous on A, that is, for any g ∈ G the map λg : A → A is continuous. To
see this, let (Aα) be a net in A converging to A ∈ A. Then limα(λg(Aα)) = λg(A)
if and only if limα(pl(λg(Aα))) = pl(λg(A)) for any l ∈ L. Identifying A|l with
some Gn via (6.2.16) and using the bijection (6.2.23) we have for any p ∈ l

[pl(λg(Aα))](p) = [(λg(Aα))|l](p) = [λg(Aα)](p) = g(b(p))Aα(p)g(f(p))−1

= g(b(p))[pl(Aα)](p)g(f(p))−1 (6.2.30)

Since group multiplication and inversion are continuous in Gn we easily get
limα[pl(λg(Aα))](p) = [pl(λg(A))](p) for any p ∈ l, that is, limα pl(λg(Aα)) =
pl(λg(A)), thus λg is continuous for any g ∈ G.

Since A is a compact Hausdorff space and λ is a continuous group action on
A it then follows immediately from abstract results (see Chapter 18) that the
quotient space

A/G := {[A]; A ∈ A} where [A] := {Ag; g ∈ G} (6.2.31)

is a compact Hausdorff space in the quotient topology. The quotient topology on
the quotient A/G is defined as follows: the open sets in A/G are precisely those
whose pre-images under the quotient map

[ ] : A → A/G; A �→ [A] (6.2.32)

are open in A, that is, the quotient topology is generated by asking that the
quotient map be continuous.

Now as G is a continuous direct product of the compact Hausdorff spaces
G it is a compact Hausdorff space in the Tychonov topology by the theorems
proved in Section 6.2.2. More explicitly, the projective construction of G proceeds
as follows: given l ∈ L with l = l(γ) we define Gl :=

∏
v∈V (γ) G and extend the

surjective projection pl : A → Al; A �→ A|l to pl : G → Gl; g �→ g|l and for l ≺ l′

the surjective projection pl′l : Al′ → Al; Al′ �→ (Al′)|l to pl′l : Gl′ → Gl; gl′ �→
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(gl′)|l. These projections are obviously surjective again because G is actually a
direct product of copies of G, one for every x ∈ σ.

Notice that the projective limit G = {(gl)l∈L; pl′l(gl′) = gl} is a group since
pl′l(gl′g′l′) = glg

′
l = pl′l(gl′)pl′l(g′l′) and pl′l((g−1)l′) = (g−1)l = g−1

l = pl′l(gl′)−1

so that actually the pl′l are surjective group homomorphisms. Since the Gl are
compact Hausdorff topological groups it follows that G is also a compact Haus-
dorff topological group.

Summarising: A/G is the quotient of two projective limits both of which are
compact Hausdorff spaces.

On the other hand, observe that for l ≺ l′ we have

pl′l(λgl′ (Al′)) = λgl(Al) (6.2.33)

for any A ∈ A, g ∈ G, one says the group action λ is equivariant. Consider then
the quotients

[Al]l := Al/Gl := {[Al]l; Al ∈ Al} where []l : Al → Al/Gl; Al �→ [Al]l
:= {λgl(Al); gl ∈ Gl} (6.2.34)

Due to the equivariance property for l ≺ l′

pl′l([Al′ ]l′) = {pl′l(λgl′ (Al′)); gl′ ∈ Gl′} = {λgl(Al); gl ∈ Gl} = [Al]l (6.2.35)

since the projections pl′l : Gl′ → Gl are surjective. Now Al is a compact Haus-
dorff space and λ a continuous group action on Gl thereon, thus [Al]l is a compact
Hausdorff space in the quotient topology induced by []l. By the results proved
in Section 6.2.2 we find that the projective limit of these quotients, denoted by
A/G, is again a compact Hausdorff space in the induced Tychonov topology.

We therefore have two compact Hausdorff spaces associated with gauge invari-
ance, on the one hand the quotient of projective limits A/G and on the other
hand the projective limit of the quotients A/G. The question arises of what the
relation between the spaces A/G,A/G is. In what follows we will show by purely
algebraic and topological methods (without using C∗ algebra techniques) that
they are homeomorphic.

We begin by giving a characterisation of A/G similar to the characterisation
of A as Hom(P,G). Here the role of edges will be replaced by the role of hoops
as they allow us to take the quotient with respect to the gauge transformations
straightforwardly.

Definition 6.2.24. Let, as in Definition 6.2.7, a point x0 ∈ σ be fixed once and
for all and denote by Q := hom(x0, x0) the hoop group of σ.

(i) A finite set {α1, . . . , αn} of hoops is said to be independent if for any αk

representatives can be chosen containing an edge that is traversed precisely
once and that is intersected by the representatives of the αl, l �= k in at most
a finite number of points.



178 Step I: the holonomy–flux algebra P

(ii) An independent set of hoops {α1, . . . , αn} defines an unoriented, closed
graph γ̌ by γ̌ := ∪n

k=1r(αk) (α ∪ α′ := pcα∪cα′ ) up to x0. Here closed up
to x0 means that every vertex is at least bivalent except, possibly, for the
vertex x0. From an unoriented graph γ we can recover one set H(γ) =
{β1, . . . , βn} of independent hoops generating the fundamental group π1(γ)
of γ (although not a canonical one whence possibly {αk} �= {βk} but the
number n is identical for both sets) as well as the set of vertices of γ as
V (γ) = {b(e), f(e); e ∈ E(γ)}. We fix once and for all generators of π1(γ)
for every oriented graph γ.

(iii) Given a graph γ we denote by s(γ) ⊂ Q the tame subgroup generated by the
generators of π1(γ), that is, s(γ) = π1(γ).

We now have an analogue of Theorem 6.2.13, the proof of which is similar and
will be omitted.

Theorem 6.2.25. Let S be the set of all tame subgroups s(γ) of Q, that is, those
freely generated by graphs γ ∈ Γω

0 . Then the relation s ≺ s′ iff s is a subgroup of
s′ equips Q with the structure of a partially ordered and directed set.

Let now Ys := Hom(s,G). As with Xl = Hom(l, G) we can identify Ys with
some Gn displaying it as a compact Hausdorff space. Likewise we have surjective
projections for s ≺ s′ given by the restriction map, ps′s : Ys′ → Ys; xs′ �→ (xs′)|s
which satisfy the consistency condition ps′s ◦ ps′′s′ = ps′′s for any s ≺ s′ ≺ s′′.
We therefore can form the direct product Y∞ =

∏
s∈S Ys and its projective limit

subset

Y = {y = (ys)s∈S ; ps′s(ys′) = ys ∀ s ≺ s′} (6.2.36)

which in the Tychonov topology induced from Y∞ is a compact Hausdorff space.
Repeating step by step the proof of Theorem 6.2.21 we find that the map

Φ : Hom(Q,G) → Y ; H �→ (H|s)s∈S (6.2.37)

is a bijection so that we can identify Hom(Q,G) with Y and equip it with the
topology of Y (open sets of Hom(Q,G) are the sets Φ−1(U) where U is open
in Y ). This topology is the weakest one so that all the projections ps : Y →
Ys; y �→ ys are continuous.

The action λ of G on A = X reduces on Y to

λ : G × Y → Y ; (g, y) �→ λ(g, y) = λg(y) = Adg(y); [Adg(y)]s = Adg(x0)(ys)

(6.2.38)

where for α ∈ s we have [Adg(x0)(ys)](α) = Adg(x0)(y(α)) and Ad : G × G →
G; (g, h) �→ ghg−1 is the adjoint action of G on itself. In other words, (λG)|Y =
AdG where G can be identified with the restriction of G to x0. Clearly Ad acts
continuously on Y .
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Consider then the quotient space Hom(Q,G)/G (notice that we mod out by
G and not G!) which by the results obtained in the previous section is a compact
Hausdorff space in the quotient topology. Now the action Ad on Y is completely
independent of the label s, that is

Adg ◦ ps′s = ps′s ◦ Adg (6.2.39)

so that the points in Y /G are given by the equivalence classes

(y) := {Adg(y); g ∈ G} = {(Adg(ys))s∈S ; g ∈ G} = ((ys)s)s∈S (6.2.40)

where ()s : Ys → (Ys)s ys �→ (ys)s = {Adg(ys); g ∈ G} denotes the quotient
map in Ys. It follows that Hom(Q,G)/G is the projective limit of the (Ys)s.
On the other hand, consider the quotients [Xl]l discussed above. If l′ = l(γ′) and
γ′ is not a closed graph then by the action of G on Xl′ we get [Xl′ ]l′ = [Xl]l
where l = l(γ) and γ is the closed graph obtained from γ′ by deleting its open
edges (monovalent vertices). Next, if x0 �∈ γ then we add a path to γ connecting
any of its points to x0 without intersecting γ otherwise and obtain a third graph
γ′′ where again [Xl′′ ]l′′ = [Xl]l with l′′ = l(γ′′) due to quotienting by the action
of the gauge group. But now γ′′ is a closed graph up to x0. Thus we see that
the projective limit of the [Xl]l, l ∈ L and of the [Ys]s, s ∈ S coincides, in other
words we have the identity

A/G = Hom(Q,G)/G (6.2.41)

Our proof of the existence of a homeomorphism between A/G and A/G will be
based on the identity (6.2.41) and the fact that A = Hom(P,G). We will break
this proof into several lemmas.

Fix once and for all a system of edges

E := {ex ∈ Hom(x0, x); x ∈ σ} (6.2.42)

where ex0 is the trivial hoop based at x0. Let Gx0 := {g ∈ G; g(x0) = 1G} be the
subset of all gauge transformations that are the identity at x0 and consider the
following map

fE : Hom(P,G) → Hom(Q,G) × Gx0 ; A �→ (B, h) where

B(α) : = A(α) ∀ α ∈ Q and h(x) := A(ex) ∀x ∈ σ (6.2.43)

Clearly h(x0) = A(ex0) = 1G. From the known action λ of G on A we induce the
following action of G on Hom(Q,G) × Gx0

λ′ :G ×(Hom(Q,G)× Gx0)→(Hom(Q,G)×Gx0); (g, (B, h)) �→(Bg, hg)=λ′
g(B, h)

where Bg(α) = Adg(x0)(B(α));∀ α ∈ Q and hg(x)

= g(x0)h(x)g(x)−1 ∀ x ∈ σ (6.2.44)

The action (6.2.44) evidently splits into a G-action by Ad on Hom(Q,G) (with
G ≡ G|x0) as already observed above and a G-action on Gx0 (indeed hg(x0) = 1G).
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Theorem 6.2.26. For any choice of E the map fE in (6.2.43) is a homeomor-
phism which is λ-equivariant, that is,

fE ◦ λ = λ′ ◦ fE (6.2.45)

Proof: Bijection: the idea is to construct explicitly the inverse f−1
E . The Ansatz

is, of course, that given any p ∈ P we can construct a hoop based at x0 by using
E , namely αp := eb(p) ◦ p ◦ e−1

f(p), which we can use in order to evaluate a given
B ∈ Hom(Q,G). Since we want that Ag(p) = g(b(p))A(p)g(f(p))−1 we see that
given h ∈ Gx0 the only possibility is

f−1
E : Hom(Q,G) × Gx0 → Hom(P,G); (B, h) �→ A where

A(p) := h(b(p))−1B
(
eb(p) ◦ p ◦ e−1

f(p)

)
h(f(p)) (6.2.46)

One can verify explicitly that this is the inverse of (6.2.43).
Equivariance: trivial by construction.
Continuity: by definition of the topology on the spaces Hom(P,G),

Hom(Q,G), G respectively, a corresponding net (Aα), (Bα), (gα) converges to
A,B, g iff the nets (Aα

l ) = (pl(Aα)), (Bα
s ) = (ps(Bα)), (gαx ) = (px(gα)) converge

to Al = pl(A), Bs = ps(B), gx = px(g) where gx = g(x) for all l ∈ L, s ∈ S, x ∈ σ.
Continuity of fE then means that (ps × px) ◦ fE is continuous for all s ∈ S, x ∈

σ while continuity of f−1
E means that pl ◦ f−1

E is continuous for all l ∈ L. Recalling
the map (6.2.16) it is easy to see that

px ◦ fE = ρex ◦ pl(ex) (6.2.47)

and since the ργ are by definition continuous we easily get continuity of px ◦ fE
as the composition of two continuous maps.

To establish the continuity of ps ◦ fE , pl ◦ f−1
E requires more work.

Lemma 6.2.27

(i) For all s ∈ S there exists a connected subgroupoid l ∈ L such that s is a
subgroup of l, that is, s ≺ l (s ∈ L in particular). The projection

pls : Xl → Ys; xl �→ (xl)|s (6.2.48)

is continuous and satisfies ps ◦ fE = pls ◦ pl for any choice of E.
(ii) For any l ∈ L there exists s ∈ S and a connected subgroupoid l′ ∈ L such

that with l = l(γ), l′ = l(γ′) we have V (γ′) = V (γ) ∪ {x0}, moreover l ≺
l′ and homl′(x0, x0) = s. Let Gx0(l

′) := Fun(V (γ′), G) ∩ Gx0 and let πl′ :
Gx0 → Gx0(l

′) be the restriction map. The projection pl′l : Xl′ → Xl induces
a continuous map psl : Ys × Gx0(l

′) → Xl which satisfies

pl ◦ f−1
E(l) = psl ◦ (ps × πl) (6.2.49)

for an appropriate choice E(l) of E.
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(iii) For any two choices E , E ′ the map

fE ◦ f−1
E′ : Y × Gx0 → Y × Gx0 (6.2.50)

is a homeomorphism.

Proof

(i) Let s ∈ S be freely generated by the independent hoops α1, . . . , αm, let γ̌

be the unoriented graph they determine and choose some orientation for
it. Then every αk is a finite composition of the edges e1, . . . , en ∈ E(γ)
demonstrating that s is a subgroup of l = l(γ) consisting of hoops based at
x0 ∈ V (γ). We have bijections ρα1,...,αm

: Ys → Gm and ρe1,...,en : Ys → Gn

as in (6.2.16) which can be used to define the projection pls : Xl → Ys. In
particular we get Xs = Ys so that pls is continuous. It follows that ps ◦
fE(A) = As = pls(Al) = (pls ◦ pl)(A) so that ps ◦ fE is continuous.

(ii) Let l ∈ L be freely generated by independent edges e1, . . . , en and let γ be
the oriented graph they determine. If x0 ∈ V (γ) invert the orientation of
ek if necessary in order to achieve that f(ek) �= x0 for any k = 1, . . . , n.
For every vertex v ∈ V (γ) not yet connected to x0 through one of the
edges e1, . . . , en add another edge ev connecting x0 with v to the set
{e1, . . . , en} so that the extended set remains independent. The extended
set {e1, . . . , en′} determines an oriented graph γ′ with x0 ∈ V (γ′) and
every vertex of γ′ is connected to x0 through at least one edge. Given
v ∈ V (γ′) choose one edge elv ∈ hom(x0, v) from e1, . . . , en′ with the con-
vention that elx0

be the trivial hoop. Define E ′(l) := {elv; v ∈ V (γ) ∪ {x0}}
and let {e′1, . . . , e′m} := {e1, . . . , en′} − E ′(l). The hoops based at x0 given by
αk := elb(e′k) ◦ e′k ◦ (elf(e′k))

−1, k = 1, . . . ,m are independent due to the seg-
ments e′k traversed precisely once and which are intersected by the other αl

in only a finite number of points (namely the end points). Let s be the sub-
group of Q generated by the αk and let l′ ∈ L be the subgroupoid generated
by the (elx)

−1 ◦ αk ◦ ely, x, y ∈ V (γ) ∪ {x0}, k = 1, . . . ,m (we know that it
is a connected subgroupoid with homl′(x0, x0) = s from Lemma 6.2.9).
We claim l ≺ l′. To see this, consider the original set of edges {e1, . . . , en}.
Each ek, k = 1, . . . , n is either one of the elv, v ∈ V (γ) ∪ {x0} or one of
the e′j , j = 1, . . . ,m. In the first case we have ek = elv = e−1

x0
◦ ex0 ◦ elv ∈ l′

where ex0 is the trivial hoop. In the latter case by definition ek = e′j =
(elb(e′j))

−1 ◦ αj ◦ el(f(e′j)) ∈ l′.
Consider now the bijection

f l′

E′(l) : Xl′ → Ys × Gx0(l
′) (6.2.51)

defined exactly as in (6.2.43) but restricted to Xl′ so that only the system
of edges E ′(l) is needed in order to define it. We can define now

psl := pl′l ◦
(
f l′

E′(l)

)−1 : Ys × Gx0(l
′) → Xl (6.2.52)
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which is trivially continuous again because both Xl and Ys × Gx0(l
′) are

identified with powers of G.
Let finally E(l) be any system of paths ex ∈ hom(x0, x) that contains

E ′(l). Then for any B ∈ Hom(Q,G), g ∈ Gx0 , p ∈ l we have
[(
pl ◦ f−1

E(l)

)
(B, g)

]
(p)=

[
f−1
E(l)(B, g)

]
(p) = g(b(p))−1B

(
elb(p) ◦ p ◦

(
elf(p)

)−1)
g(f(p))

= (πl ◦ g)(b(p))−1(ps ◦B)
(
elb(p) ◦ p ◦

(
elf(p)

)−1)
(πl ◦ g)(f(p))

=
[(
f l

′

E′(l)

)−1
(ps ◦B, πl ◦ g)

]
(p) =

(
pl′l ◦

(
f l

′

E′(l)

)−1)
(ps ◦B, πl ◦ g)(p)

= [psl ◦ (ps × πl)(B, g)](p) (6.2.53)

where in the second line we exploited that b(p), f(p) ∈ V (γ) and that elb(p) ◦
p ◦ (elf(p))

−1 ∈ s, in the third we observed that only the subset E ′(l) ⊂ E(l) is
being used and that p ∈ l ≺ l′ and finally we used (6.2.52). Thus, pl ◦ f−1

E(l) =
psl ◦ (ps × πl) is a composition of continuous maps and therefore continuous.

(iii) Let E = {ex, x ∈ σ}, E ′ = {e′x, x ∈ σ} and α ∈ Q, x ∈ σ, then
[
fE ◦ f−1

E′ (B, g)
]
(α, x) =

([
f−1
E′ (B, g)

]
(α),

[
f−1
E′ (B, g)

]
(ex)

)

= (g(b(α))−1B
(
e′b(α) ◦ α ◦

(
e′f(α)

)−1)
g(f(α)), g(b(ex))−1

×B
(
e′b(ex) ◦ ex ◦

(
e′f(ex)

)−1)
g(f(ex)))

= (B(α), B
(
ex ◦

(
e′x

)−1)
g(x)) (6.2.54)

where in the last step we noticed that f(ex) = x, b(α) = f(α) = b(ex) =
x0, g(x0) = 1G because g ∈ Gx0 and that e′x0

is the trivial hoop based at
x0. It follows that the map (6.2.50) is given by (B, g) �→ (B′, g′) with B′ =
B, g′(.) = B(ex ◦ (e′x)

−1)g(.). The inverse map is given similarly by (B, g) �→
(B′, g′) with B′ = B, g′(.) = B(e′x ◦ (ex)−1)g(.) so that it will be sufficient
to demonstrate continuity of the former.

To show that fE ◦ f−1
E′ is continuous requires to show that (ps ×

px) ◦ fE ◦ f−1
E′ is continuous for all s ∈ S, x ∈ σ. Now obviously ps ◦ fE ◦

f−1
E′ = ps is continuous by definition. Next [px ◦ fE ◦ f−1

E′ (B, g)](x) = B(ex ◦
(e′x)

−1)g(x). Define the restriction map

fE,E
′

x := pex◦(e′x)−1 × px : Y × Gx0 → Yex◦(e′x)−1 × (Gx0)|x (6.2.55)

and denote by m : G × G → G; (g1, g2) → g1g2 multiplication in G. Then

px ◦ fE ◦ f−1
E′ = m ◦ (pex◦(e′x)−1 × px) (6.2.56)

is a composition of continuous maps and therefore continuous. Hence, fE ◦
f−1
E′ is a homeomorphism. �

We can now complete the proof of continuity of both fE and f−1
E for a given,

fixed E . We showed already that px ◦ fE is continuous for all x ∈ σ and by
Lemma 6.2.27 (i) we have that ps ◦ fE is continuous for all s ∈ S, hence fE is
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continuous. Next

pl ◦ f−1
E =

[
pl ◦ f−1

E(l)

]
◦

[
fE(l) ◦ f−1

E
]

(6.2.57)

is a composition of two continuous functions since the function in the first
bracket is continuous by Lemma 6.2.27(ii) and the second by Lemma 6.2.27(iii),
thus f−1

E is continuous. �

Theorem 6.2.28. The spaces A/G = Hom(P,G)/G and A/G = Hom(Q,G)/G
are homeomorphic.

Proof: By Theorem 6.2.26 we know that

1. Hom(P,G) and Hom(Q,G) × Gx0 are homeomorphic and
2. G acts equivariantly on both spaces via λ, λ′ respectively.

We now use the abstract result that if a group acts (not necessarily con-
tinuously) equivariantly on two homeomorphic spaces then the corresponding
spaces continue to be homeomorphic in their respective quotient topologies (see
Chapter 18). We therefore know that Hom(P,G)/G and (Hom(Q,G) × Gx0)/G
are homeomorphic. But G is a direct product space, that is, G = Gx0 × G
whence (Hom(Q,G) × Gx0)/G = Hom(Q,G)/G. More explicitly, recalling the
action of λ′ in (6.2.44) and writing g ∈ G as g = (g1, g0) ∈ Gx0 × G where g(x) =
g1(x) for x �= x0 and g(x0) = g0 we see that Bg(α) = Adg0(B(α)) and hg(x) =
g0h(x)g(x)−1 which gives hg(x0) = h(x0) = 1G and hg(x) = g0h(x)g1(x)−1 for
x �= x0. It follows that, given h ∈ Gx0 , for any choice of g0 we can gauge
hg(x) = 1G for all x ∈ σ by choosing g1(x) = g0h(x). The remaining gauge free-
dom expressed in g0 then only acts by Ad on Hom(Q,G). �

6.2.4 The C∗ algebraic viewpoint and cylindrical functions

In the previous sections we have defined the quantum configuration spaces of
(gauge equivalence classes of) distributional connections A (A/G) as Hom(P,G)
(Hom(P,G)/G) and equipped them with the Tychonov topology through pro-
jective techniques. We could be satisfied with this because we know that these
spaces are compact Hausdorff spaces and this is a sufficiently powerful result in
order to develop measure theory on them as we will see later.

However, the result that we want to establish in this section, namely that
both spaces can be seen as the Gel’fand spectra of certain C∗ algebras, has the
advantage of making the connection with so-called cylindrical functions on these
spaces explicit, which then helps to construct (a priori only cylindrically defined)
measures on them. Moreover, it has a wider range of applicability in the sense
that it does not make use of the concrete label sets used in the previous section.
It therefore establishes a concrete link with constructive quantum gauge field
theories. A brief introduction to Gel’fand–Naimark–Segal theory can be found
in Chapter 27. The constructions that follow will be based on that theory. For
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a simpler, illustrative application to the case of the algebra of almost periodic
functions on the real line, which provides good intuition about the mathematical
concepts such as the spectrum of an algebra, please refer to Chapter 28. We will
follow closely Ashtekar and Lewandowski [369].

We begin again quite generally and suppose that we are given a partially
ordered and directed index set L which labels compact Hausdorff spaces Xl and
that we have surjective and continuous projections pl′l : Xl′ → Xl for l ≺ l′ sat-
isfying the consistency condition pl′l ◦ pl′′l′ = pl′′l for l ≺ l′ ≺ l′′. Let X∞, X be
the corresponding direct product and projective limit respectively with Tychonov
topology with respect to which we know that they are Hausdorff and compact
from the previous sections.

Definition 6.2.29

(i) Let C(Xl) be the continuous, complex-valued functions on Xl and consider
their union

Cyl′(X) := ∪l∈LC(Xl) (6.2.58)

Given f, f ′ ∈ Cyl′(X) we find l, l′ ∈ L such that f ∈ C(Xl), f ′ ∈ C(Xl′) and
we say that f, f ′ are equivalent, denoted f ∼ f ′ provided that

p∗l′′lf = p∗l′′l′f
′ ∀ l, l′ ≺ l′′ (6.2.59)

(pull-back maps).
(ii) The space of cylindrical functions on the projective limit X is defined to be

the space of equivalence classes

Cyl(X) := Cyl′(X)/ ∼ (6.2.60)

We will denote the equivalence class of f ∈ Cyl′(X) by [f ]∼.

Notice that we are actually abusing the notation here since an element f ∈
Cyl(X) is not a function on X but an equivalence class of functions on the Xl.
We will justify this later by showing that Cyl(X) can be identified with C(X),
the continuous functions on X.

Condition (6.2.59) seems to be very hard to check but it is sufficient to find just
one single l′′ such that (6.2.59) holds. For suppose that fl1 ∈ C(Xl1), fl2 ∈ C(Xl2)
are given and that we find some l1, l2 ≺ l3 such that p∗l3l1fl1 = p∗l3l2fl2 . Now let
any l1, l2 ≺ l4 be given. Since L is directed we find l1, l2, l3, l4 ≺ l5 and due to
the consistency condition among the projections we have

(i) pl4l1 ◦ pl5l4 = pl5l1 = pl3l1 ◦ pl5l3 and (ii) pl4l2 ◦ pl5l4 = pl5l2 = pl3l2 ◦ pl5l3
(6.2.61)

whence

p∗l5l4p
∗
l4l1fl1 =i) p∗l5l3p

∗
l3l1fl1 = p∗l5l3p

∗
l3l2fl2 =ii) p∗l5l4p

∗
l4l2fl2 (6.2.62)



6.2 (1) Paths, connections, holonomies and cylindrical functions 185

where in the middle equality we have used (6.2.59) for l′′ = l3. We con-
clude that p∗l5l4 [p

∗
l4l1

fl1 − p∗l4l2fl2 ] = 0. Now for any fl4 ∈ C(Xl4) the condition
fl4(pl5l4(xl5)) = 0 for all xl5 ∈ Xl5 means that fl4 = 0 because pl5l4 : Xl5 → Xl4

is surjective.

Lemma 6.2.30. Given f, f ′ ∈ Cyl(X) there exists a common label l ∈ L and
fl, f

′
l ∈ C(Xl) such that f = [fl]∼, f ′ = [f ′

l ]∼.

Proof: By definition we find l1, l2 ∈ L and representatives fl1 ∈ C(Xl1), fl2 ∈
C(Xl2) such that f = [fl1 ]∼, f

′ = [fl2 ]∼. Choose any l1, l2 ≺ l then fl := p∗ll1fl1 ∼
fl1 (choose l′′ = l in (6.2.59) and use pll = idXl

) and f ′
l := p∗ll2fl2 ∼ fl2 . Thus

f = [fl]∼, f ′ = [f ′
l ]∼. �

Lemma 6.2.31

(i) Let f, f ′ ∈ Cyl(X) then the following operations are well-defined (indepen-
dent of the representatives)

f + f ′ :=
[
fl + f ′

l

]
∼, ff

′ :=
[
flf

′
l

]
∼, zf := [zfl]∼, f̄ := [f̄l]∼ (6.2.63)

where l, fl, f
′
l are as in Lemma 6.2.30 , z ∈ C and f̄l denotes complex con-

jugation.
(ii) Cyl(X) contains the constant functions.
(iii) The sup-norm for f = [fl]∼

||f || := sup
xl∈Xl

|fl(xl)| (6.2.64)

is well-defined.

Proof

(i) We consider only pointwise multiplication, the other cases are similar. Let
l, fl, f

′
l and l′, fl′ , f ′

l′ be as in Lemma 6.2.30 . We find l, l′ ≺ l′′ and have
p∗l′′lfl = p∗l′′l′fl′ and p∗l′′lf

′
l = p∗l′′l′f

′
l′ . Thus

p∗l′′l(flf
′
l ) = p∗l′′l(fl)p

∗
l′′l(f

′
l ) = p∗l′′l′(fl′)p

∗
l′′l′(f

′
l′) = p∗l′′l′(fl′f

′
l′) (6.2.65)

so flf
′
l ∼ fl′f

′
l′ .

(ii) The function fz
l : Xl → C; xl → z for any z ∈ C certainly is an element of

C(Xl) and for any l, l′ ≺ l′′ we have z = (p∗l′′lf
z
l )(xl′′) = (p∗l′′l′f

z
l′)(xl′′) for

all xl′′ ∈ Xl′′ so fz := [fz
l ]∼ is well-defined.

(iii) If f = [fl]∼ = [fl′ ]∼ is given, choose any l, l′ ≺ l′′ so that we know that
p∗l′′lfl = p∗l′′l′fl′ . Then from the surjectivity of pl′′l, pl′′l′ we have

sup
xl∈Xl

|fl(xl)| = sup
xl′′∈Xl′′

|(p∗l′′lfl)(xl′′)| = sup
xl′′∈Xl′′

|(p∗l′′l′fl′)(xl′′)|

= sup
xl′∈Xl′

|fl′(xl′)| (6.2.66)

�
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Lemma 6.2.31(i) tells us that Cyl(X) is an Abelian, ∗-algebra defined by the
pointwise operations (6.2.63). Lemma 6.2.31(ii) tells us that Cyl(X) is also uni-
tal, the unit being given by the constant function 1 = [1l]∼, 1l(xl) = 1. Finally,
Lemma 6.2.31(iii) tells us that Cyl(X) is a normed space and that the norm is
correctly normalised, that is, ||1|| = 1. Notice that here the compactness of the
Xl comes in since the norm (6.2.64) certainly does not make sense any longer on
C(Xl) for non-compact Xl. If Xl is at least locally compact we can replace the
C(Xl) by C0(Xl), the continuous complex-valued functions of compact support
and still would get an Abelian ∗-algebra with norm although no longer a unital
one. One can always embed an algebra isometrically into a larger algebra with
identity (even preserving the C∗ property, see below) but this does not solve all
problems in C∗-algebra theory. Fortunately, we do not have to deal with these
complications in what follows.

Recall that a norm induces a metric on a linear space via d(f, f ′) := ||f − f ′||
and that a metric space is said to be complete whenever all its Cauchy sequences
converge. Any incomplete metric space can be uniquely (up to isometry) embed-
ded into a complete metric space by extending it by its non-converging Cauchy
sequences (see, e.g., [282] and Chapter 26). We can then complete Cyl(X) in the
norm ||.|| in this sense and obtain an Abelian, unital Banach ∗-algebra Cyl(X).
But we notice that not only the submultiplicativity of the norm (||ff ′|| ≤
||f || ||f ′||) holds but in fact the C∗ property ||ff̄ || = ||f ||2. Thus Cyl(X) is in
fact a unital, Abelian C∗-algebra. This observation suggests applying Gel’fand–
Naimark–Segal theory, to which an elementary introduction can be found in
Chapter 27.

Denote by Δ(Cyl(X)) the spectrum of Cyl(X), that is, the set of all (algebraic,
i.e., not necessarily continuous) homomorphisms from Cyl(X) into the complex
numbers and denote the Gel’fand isometric isomorphism by

∨
: Cyl(X) → C(Δ(Cyl(X))); f �→ f̌ where f̌(χ) := χ(f) (6.2.67)

where the space of continuous functions on the spectrum is equipped with the
sup-norm. The spectrum is automatically a compact Hausdorff space in the
Gel’fand topology, the weakest topology in which all the f̌ , f ∈ Cyl(X) are con-
tinuous.

Notice the similarity between the spaces Cyl(X) and C(Δ(Cyl(X))): both are
spaces of continuous functions over compact Hausdorff spaces and on both spaces
the norm is the sup-norm. This suggests that there is a homeomorphism between
the projective limit space X and the spectrum Hom(Cyl(X),C). This is what
we are going to prove in what follows.

Consider the map

X : X→Δ(Cyl(X));x = (xl)l∈L �→ X (x)

where [X (x)](f) :=fl(pl(x)) for f = [fl]∼ (6.2.68)
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Notice that (6.2.68) is well-defined since f = p∗l fl = p∗l′fl′ for any fl ∼ fl′ , which
follows from

p∗l fl(x) = fl(xl) = (p∗l′′lfl)(xl′′) = (p∗l′′l′fl′)(xl′′) = fl′(xl′) = p∗l′fl′(x) (6.2.69)

for any x ∈ X, l, l′ ≺ l′′. Notice also that (6.2.68) a priori defines X (x) only
on Cyl(X) and not on the completion Cyl(X). We now show that every X (x)
is actually continuous: let (fα) be a net converging in Cyl(X) to f , that is,
limα ||fα − f || = 0. Then (fα = [fα

lα
]∼, f = [fl]∼, l, lα ≺ lα,l)

|[X (x)](fα)−[X (x)](f)| =
∣∣(p∗lαf

α
lα − p∗l fl

)
(x)

∣
∣ =

∣
∣(p∗lα,l lαf

α
lα − p∗lα,l lfl

)
(xlα,l

)
∣∣

=
∣
∣(fα

lα,l
−flα,l

)
(xlα,l

)
∣∣ ≤ sup

xlα,l
∈Xlα,l

∣
∣(fα

lα,l
− flα,l

)
(xlα,l

)
∣∣

= ||fα − f || (6.2.70)

hence limα[X (x)](fα) = [X (x)](f) so X (x) is continuous. It follows that X (x) is
a continuous linear (and therefore bounded) map from the normed linear space
Cyl(X) to the complete, normed linear space C. Hence, by the bounded linear
transformation theorem [282] (or BLT theorem, see Chapter 26) each X (x) can
be uniquely extended to a bounded linear transformation (with the same bound)
from the completion Cyl(X) of Cyl(X) to C by taking the limit of the evaluation
on convergent series in Cyl(X) which are only Cauchy in Cyl(X). We will denote
the extension of X (x) to Cyl(X) by X (x) again and it is then easy to check
that this extended map X is an element of Δ(Cyl(X)) (a homomorphism), for
example, if fn → f, f ′

n → f ′ then

[X (x)](ff ′) := lim
n→∞

[X (x)](fnf ′
n) = lim

n→∞
([X (x)](fn)) ([X (x)](f ′

n))

= ([X (x)](f)) ([X (x)](f ′)) (6.2.71)

The map X in (6.2.68) is to be understood in this extended sense.

Theorem 6.2.32. The map X in (6.2.68) is a homeomorphism.

Proof: Injectivity: suppose X (x) = X (x′), then in particular [X (x)](f) =
[X (x′)](f) for any f ∈ Cyl(X). Hence fl(xl) = fl(x′

l) for any fl ∈ C(Xl), l ∈ L.
Since Xl is a compact Hausdorff space, C(Xl) separates the points of Xl by the
Stone–Weierstrass theorem [282] (see Chapter 18), hence xl = x′

l for all l ∈ L. It
follows that x = x′.

Surjectivity: let χ ∈ Hom(Cyl(X),C) be given. We must construct xχ ∈ X

such that X (xχ) = χ. In particular for any f = [fl]∼ ∈ Cyl(X) we have fl(x
χ
l ) =

χ([fl]∼). Given l ∈ L the character χ defines an element χl ∈ Hom(C(Xl),C)
via χl(fl) := χ([fl]∼) for all fl ∈ C(Xl). Since Xl is a compact Hausdorff
space, it is the spectrum of the Abelian, unital C∗-algebra C(Xl), hence Xl =
Hom(C(Xl),C) (see Chapter 27). It follows that there exists xχ

l ∈ Xl such that
χl(fl) = fl(x

χ
l ) for all fl ∈ C(Xl). We define xχ := (xχ

l )l∈L and must check that
it defines an element of the projective limit.
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Let l ≺ l′ and f = [fl]∼. Then fl ∼ fl′ := p∗l′lfl (choose l′′ = l′ and use pl′l′ =
idXl′ ) and therefore

fl(x
χ
l ) = χl(fl) = χ([fl]∼) = χ([fl′ ]∼) = χl′(fl′) = fl′(x

χ
l′) = fl(pl′l(x

χ
l′))
(6.2.72)

for any fl ∈ C(Xl), l ∈ L. Since C(Xl) separates the points of Xl we conclude
xχ
l = pl′l(x

χ
l′) for any l ≺ l′, hence xχ ∈ X.

Continuity: we have established that X is a bijection. We must show that both
X ,X−1 are continuous.

The topology on Δ(Cyl(X)) is the weakest topology such that the Gel’fand
transforms f̌ , f ∈ Cyl(X)) are continuous while the topology on X is the weakest
topology such that all the projections pl are continuous, or equivalently that all
the p∗l fl, fl ∈ C(Xl) are continuous.

Continuity of X : let (xα) be a net in X converging to x, that is, every net
(xα

l ) converges to xl. Let first f = [fl]∼ ∈ Cyl(X). Then

lim
α

[X (xα)](f) = lim
α

(p∗l fl)(x
α) = (p∗l fl)(x) = [X (x)](f) (6.2.73)

for any f ∈ Cyl(X). Now given ε > 0 for general f ∈ Cyl(X) we find fε ∈ Cyl(X)
such that ||f − fε|| < ε/3 because Cyl(X) is dense in Cyl(X). Also, by (6.2.73),
we find α(ε) such that |[X (xα)(fε) − [X (x)](fε)| ≤ ε/3 for any α(ε) ≺ α. Finally,
since X (xα),X (x) are characters they are bounded (by one) linear functionals
on Cyl(X) as we have shown above (continuity of the X (x)). It follows that

|[X (xα)](f) − [X (x)](f)| ≤ |[X (xα)](f − fε)| + |[X (x)](f − fε)|
+ |[X (xα)](fε) − [X (x)](fε)|

≤ 2||f − fε|| + ε/3 ≤ ε (6.2.74)

for all α(ε) ≺ α. Thus

lim
α

f̌(X (xα)) = f̌(X (f)) (6.2.75)

for all f ∈ Cyl(X), hence X (xα) → X (x) in the Gel’fand topology.
Continuity of X−1: let (χα) be a net in Δ(Cyl(X)) converging to χ, so χα(f) →

χ(f) for any f ∈ Cyl(X) and so in particular for f = [fl]∼ ∈ Cyl(X). Therefore

χα(f) = χα(p∗l fl) = (p∗l fl)(x
χα) = (p∗l fl)(X−1(χα)) → (p∗l fl)(X−1(χ)) = χ(f)

(6.2.76)

for all fl ∈ C(Xl), l ∈ L. Hence X−1(χα) → X−1(χ) in the Tychonov
topology. �

Corollary 6.2.33. The closure of the space of cylindrical functions Cyl(X) may
be identified with the space of continuous functions C(X) on the projective limit
X.
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This follows from the fact that via Theorem 6.2.32 we may identify X set-
theoretically and topologically with the spectrum Δ(Cyl(X)) and the fact that
the Gel’fand transform between Cyl(X) and C(Δ(Cyl(X))) is an (isometric) iso-
morphism. This justifies in retrospect the notation Cyl(X) although cylindrical
functions are not functions on X but rather equivalence classes of functions on
the Xl under ∼.

Next we give an abstract and independent C∗-algebraic proof for the fact that
the spaces X/G and X/G are homeomorphic whenever a topological group G
acts continuously and equivariantly on the projective limit X, that is, we reprove
Theorem 6.2.28.

Suppose then that for each l ∈ L we have a group action

λl : G ×Xl → Xl; (g, xl) �→ λl
g(xl) (6.2.77)

where λl
g is a continuous map on Xl which is equivariant with respect to the

projective structure, that is,

pl′l ◦ λl′ = λl ◦ pl′l ∀l ≺ l′ (6.2.78)

Due to continuity of the group action and since Xl is Hausdorff and compact, the
quotient space Xl/G is again compact and Hausdorff in the quotient topology
(see Chapter 18) and due to equivariance the net of equivalence classes ([xl]l)l∈L
is a projective net again (with respect to the same projections pl′l) so that we can
form the projective limit X/G of the Xl/G which is then a compact Hausdorff
space again. Here [.]l : Xl → Xl/G denotes the individual quotient maps with
respect to the λl.

On the other hand, we may directly define an action of G on X itself by

λ : X × G → X; x = (xl)l∈L �→ λg(x) := (λl
g(xl))l∈L (6.2.79)

Since X is compact and Hausdorff and λg is a continuous map on X (since it is
continuous iff all the λl

g are continuous) it follows that the quotient space X/G
is again a compact Hausdorff space.

We now want to know what the relation between X/G and X/G is. Let [.] :
X → X/G be the quotient map with respect to λ. We may then define a map

Φ : X/G → X/G; [x] = [(xl)l∈L] �→ ([xl]l)l∈L (6.2.80)

as follows: we have

[x] = {λg(x); g ∈ G} := {(λl
g(xl))l∈L g ∈ G} (6.2.81)

Now take an arbitrary representative in [x], say λg0(x) for some g0 ∈ G and
compute its class in X/G, that is,

Φ([x]) := ([pl(λg0(x))]l)l∈L = ({λl
g(λ

l
g0

(xl)); g ∈ G})l∈L = ({λl
g(xl); g ∈ G})l∈L

(6.2.82)

which shows that Φ is well-defined, that is, independent of the choice of g0.
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Theorem 6.2.34. The map Φ defined in (6.2.80) is a homeomorphism.

Proof: The strategy of the proof is to (1) show that the pull-back map

Φ∗ : C(X/G) → C(X/G) (6.2.83)

is a bijection and then (2) show that for any compact Hausdorff spaces A,B such
that Φ∗ : C(B) → C(A) is a bijection it follows that Φ : A → B is a homeomor-
phism.

Step 1: let f ∈ C(X/G) be given. Via Corollary 6.2.33 we may think of f as
an element of Cyl(X/G) and elements of Cyl(X/G) lie dense in that space. Now
any f ∈ Cyl(X/G) is given by f = [fl]∼ where fl is a λl invariant function on
Xl. Then

fl([xl]l) = p∗l fl(Φ([x])) (6.2.84)

Thus the functions on Cyl(X/G) are obtained as p∗l fl for some l ∈ L where fl is
λl invariant and then Φ∗p∗l fl is a λ-invariant function on X. But such functions
are precisely those that lie dense in C(X/G) because a function f ∈ C(X/G) is
simply a λ-invariant function in C(X), that is, via Corollary 6.2.33 a λ-invariant
function in Cyl(X) in which the λ-invariant functions in Cyl(X) lie dense and
the latter are of the form p∗l fl for some l ∈ L and λ-invariant.

To see that Φ∗ is injective on Cyl(X/G) suppose that Φ∗p∗l fl = Φ∗p∗l′f
′
l′ for

some l, l′. Then trivially p∗l fl(x) = p∗l′f
′
l′(x) for all x ∈ X. Let l, l′ ≺ l′′ then

p∗l fl(x) = fl(xl) = p∗l′′lfl(xl′′) = p∗l′f
′
l′(x) = fl′(xl′) = p∗l′′l′fl′(xl′′) ∀ xl′′ ∈ Xl′′

(6.2.85)

which shows that fl ∼ f ′
l′ , hence [fl]∼ = [f ′

l′ ]∼ define the same element of
Cyl(X/G).

To see that Φ∗ is a surjection we notice that it maps the dense set of functions
in Cyl(X/G) of the form p∗l fl (fl being λl-invariant) into the dense set of func-
tions in Cyl(X/G) of the form Φ∗p∗l fl that are λ-invariant. If we can show that
Φ∗ : Cyl(X/G) → Cyl(X/G) is continuous then it can be uniquely extended as a
continuous map to the completion Φ∗ : Cyl(X/G) → Cyl(X/G) by the bounded
linear transformation theorem and it will be a surjection since any f ∈ Cyl(X/G)
can be approximated arbitrarily well by elements in Cyl(X/G) which we know
to lie in the image of Φ∗ already. To prove that Φ∗ is continuous (bounded), we
show that it is actually an isometry and therefore has unity bound.

||Φ∗p∗l fl||Cyl(X/G)
= sup

[x]∈X/G

|fl(pl(Φ([x])))|

= sup
([xl′ ]l′ )l′∈L∈X/G

|fl(pl(([xl′ ]l′)l′∈L))| = ||p∗l fl||Cyl(X/G)

(6.2.86)
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Step 2: let Φ : A → B be a map between compact Hausdorff spaces such that
Φ∗ : C(B) → C(A) is a bijection.

Injectivity: suppose Φ(a) = Φ(a′). Then for any F ∈ C(B) we have (Φ∗F )(a) =
(Φ∗F )(a′). Since Φ∗ is a surjection and C(A) separates the points of A it follows
that a = a′.

Surjectivity: since A,B are the Gel’fand spectra Hom(C(A),C),Hom(C(B),C)
of C(A), C(B) respectively and Φ∗ is a bijection we obtain a corresponding bijec-
tion between A,B (since the spectrum can be constructed algebraically from the
algebras) via

Φ∗ : A = Δ(C(A)) → B = Δ(C(B)); a �→ a ◦ Φ∗ (6.2.87)

where

f(a) ≡ a(f) = a(Φ∗F ) = (a ◦ Φ∗)(F ) = F (Φ(a)) = (Φ(a))(F ) (6.2.88)

for any f = Φ∗F ∈ C(A), F ∈ C(B). It follows that any b ∈ B can be written
in the form b = Φ(a) for some a ∈ A.

Continuity: we know that both Φ−1, (Φ∗)−1 exist. Then (Φ∗)−1 = (Φ−1)∗ since

f(a) = [(Φ∗ ◦ (Φ∗)−1)f ](a) = [(Φ∗)−1f ](Φ(a))

= f((Φ−1 ◦ Φ)(a)) = [(Φ−1)∗f ](Φ(a)) (6.2.89)

for any f ∈ C(A), a ∈ A. Let now (aα) be a net in A converging to a. This
is equivalent with limα f(aα) = f(a) for all f ∈ C(A), which in turn implies
limα F (Φ(aα)) = F (Φ(a)) for all F ∈ C(B) since any f can be written as Φ∗F ,
which is then equivalent with the convergence of the net Φ(aα) to Φ(a) in B.
The proof for Φ−1 is analogous. �

This completes the detailed investigation of the quantum configuration space.
We now turn to the quantum momentum space.

6.3 Definition of P: (2) surfaces, electric fields, fluxes
and vector fields

Holonomies of connections were labelled by semianalytic paths. The analogue
labelling set for the electric fields are semianalytic surfaces.

Definition 6.3.1. A piecewise analytic surface S is a finite union of entire ana-
lytic, connected, embedded (D − 1)-dimensional submanifolds SI of σ (without
boundary), whose closures intersect at most in their boundaries, subject to the
following conditions:

1. The boundaries themselves are piecewise analytic (D − 2)-submanifolds.
2. The union of the entire analytic submanifolds is a connected (D − 1)-

dimensional submanifold (without boundary) of differentiability class C(0).
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analytic surfaces joining in analytic curves such that
the combined surface is still Cm 

Figure 6.2 Semianalytic surface composed of faces.

3. The closure of S is contained in a compact (D − 1)-dimensional C(0) subman-
ifold with boundary.

4. S is orientable in the sense that it is contained in an open neighbourhood U

such that U − S = U+ ∪ U− where U+, U− are disjoint, connected, non-empty
open sets.

For a generalisation see [521]. Let us explain the ingredients of this definition:
the analyticity of the entire analytic patches will ensure the finite intersection
property with piecewise analytic edges discussed before. (1) and (2) describe
how the analytic patches are glued together, the gluing is continuous but not
necessarily differentiable. An entire analytic surface will be transformed into a
piecewise (semi)analytic surface with the gluing properties indicated under a
piecewise (semi)analytic diffeomorphism, defined below. (3) makes sure that the
surface is ‘finite’, that is, contained in a compact set. Finally, (4) makes sure
that S is orientable in the sense that we know which sides of the surface are up
or down. Notice that S is a C(0) submanifold without boundary. The openness
of S removes the necessity to discuss what happens if an edge intersects the
boundary of a surface. A typical example of a surface in D = 3 is the boundary
of a solid cube with one of the closed square faces removed. See Figure 6.2 for
an illustration.

The above definition is intuitive but rather complicated. An equivalent and
simpler, however, less intuitive definition is as follows (see Chapter 20 for more
details):

Definition 6.3.2. A piecewise analytic surface is a connected C0 manifold, pos-
sibly with boundary, consisting of a disjoint union (up to boundary points) of faces
whose orientations agree in the sense that the surface can be equipped with an



6.3 Definition of P: (2) surfaces, electric fields, fluxesand vector fields 193

orientation. A face is a connected semianalytic submanifold of codimension one
without boundary whose normal bundle is orientable.

We will work with Definition 6.3.2 and it will turn out that it is sufficient to
restrict attention to faces in most applications. Notice that the difference between
a semianalytic and a piecewise analytic manifold is, roughly speaking, that both
are finite unions of entire analytic patches but those are glued in the former case
in an at least C(1) fashion while in the latter case the gluing is possibly only C(0).
This is in complete analogy to the difference between semianalytic and piecewise
analytic edges.

Since Ea
j is a vector density of weight one, the function (∗E)a1...aD−1 :=

Ec
j εca1...aD−1τj is a pseudo-(D − 1)-form which we may integrate in a

background-independent way over S. That is

Definition 6.3.3. Let n be a Lie algebra-valued, semianalytic scalar function of
compact support. The corresponding electric flux of the Lie algebra-valued vector
density Ea

j through the face S is defined by

En(S) := −1
2

∫

S

Tr(n (∗E)) =
∫

S

nj (∗E)j (6.3.1)

These functions certainly separate the space E of smooth electric fields on σ: to
see this consider a face of the form S : (−1/2, 1/2)D−1 → σ; (u1, . . . , uD−1) �→
S(u1, . . . , uD−1) with semianalytic but at least once differentiable functions
S(u1, . . . , uD−1) and let Sε(u1, . . . , uD−1) := S(εu1, . . . , εuD−1). Choose nk = δkj .
Then (29.1.1) becomes

En(Sε) =
∫

(−ε/2,ε/2)D−1
du1 . . . duD−1εaa1...aD−1(∂S

a1/∂u1)(u1, . . . , uD−1) . . .

× (∂SaD−1/∂uD−1)(u1, . . . , uD−1)Ea
j (S(u1, . . . , uD−1))

= εD−1εaa1...aD−1(∂S
a1/∂u1)(0, . . . , 0) . . . (∂SaD−1/∂uD−1)

× (0, . . . , 0)Ea
j (S(0, . . . , 0)) + O(εD) (6.3.2)

where we have written the lowest-order term in the Taylor expansion in the
second line. It follows that

lim
ε→0

En(Sε)
εD−1

= εaa1...aD−1(∂S
a1/∂u1)(0, . . . , 0) . . . (∂SaD−1/∂uD−1)

× (0, . . . , 0)Ea
j (S(0, . . . , 0)) (6.3.3)

and by varying S we may recover every component of Ea
j (x) at x = S(0, . . . , 0).

In Section 6.2.3 we had introduced the distributional gauge transformations
on the space of generalised connections. These do not have a natural action on
the classical functions (6.3.1), only the smooth ones do. However, the vector
fields on the cylindrical functions which we are going to derive do admit an
extension to a G action. We are therefore going to postpone the discussion of
gauge transformation to a later section.
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6.4 Definition of P: (3) regularisation of the holonomy–flux
Poisson algebra

The reality conditions are simply that A(p) is G-valued and that En(S) is real-
valued. The Poisson brackets among A(p), En(S) are, however, a priori ill-defined
because the Poisson brackets that we derived in Chapter 1 required that the
fields A,E be smeared in D directions by smooth functions while the functions
A(p), En(S) involve one- and (D − 1)-dimensional smearings only. Therefore it
is not possible to simply compute their Poisson brackets: the aim to have a
background-independent formulation of the quantum theory forces us, as we
heuristically derived above, to consider such singular smearings and prevents us
from using the Poisson brackets on M directly. The strategy will therefore be to
regularise the functions A(p), E(S) in order to arrive at a D-dimensional smear-
ing, then to compute the Poisson brackets of the regulated functions and finally
we will remove the regulator and hope to arrive at a well-defined symplectic
structure for the A(p), En(S).

The simplest way to do this is to define a tube T ε
p with central path p to be a

smooth function of the form

T εt
p : RD−1 × [0, 1] → σ;T εt

p (s1, . . . , sD−1, t
′)

:= δε(t′ − t)δε(s1, . . . , sD−1)ps1,...,sD−1(t
′) (6.4.1)

where ps1,...,sD−1 is a smooth assignment of mutually non-intersecting paths dif-
feomorphic to p := p0,...,0 (a congruence) and δε is a smooth regularisation of the
δ-distribution in RD−1 and R respectively. See Figure 6.3. We then define (recall
formula (21.2.14) for the holonomy)

hε
p(A) := Pe

∫
RD−1 dD−1s δε(s1,...,sD−1)

∫ 1
0 dt

∫
ps1,...,sD−1

dt′ δεtA (6.4.2)

where path ordering is with respect to the t parameter. We obviously have
limε→0 hT ε

p
= hp pointwise in A for any choice of δε.

Likewise we define a disc Dε
S with central surface S to be a smooth function

of the form

Dε
S : R × U → σ; Dε

p(s;u1, . . . , uD−1) := δε(s)Ss(u1, . . . , uD) (6.4.3)

where Ss is a smooth assignment of mutually non-intersecting surfaces diffeo-
morphic to S := S0 (a congruence). See Figure 6.4. Here U denotes the subset
of RD−1 in the pre-image of S. We then define

Eε
n(S) :=

∫

R

ds δε(s)En(Ss) (6.4.4)

We obviously have limε→0 E(Dε
S)n = En(S) pointwise in E , the space of smooth

electric fields over σ. Next recall that the Poisson bracket algebra among the
functions F (A) =

∫
dDxAj

aF
a
j , E(f) =

∫
dDxEa

j f
j
a of Chapter 1 is isomorphic

with a subalgebra of the Lie algebra C∞(A) × V ∞(A) of smooth functions and
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p

Tp
ε

Figure 6.3 A tube to regularise the holonomy.

vector fields (derivatives on functions) on A respectively. This Lie algebra is
defined by

[(φ, ν), (φ′, ν′)] := (ν(φ′) − ν′(φ), [ν, ν′]) (6.4.5)

where ν(φ) denotes the action of the vector field ν on the function φ and [ν, ν′]
denotes the Lie bracket of vector fields. The subalgebra of C∞(A) × V ∞(A)
which is isomorphic to the Poisson subalgebra generated by the functions
F (A), E(f) is given by the elements (F (A), E(f)) �→ (φF , βκ/2νf ) with algebra

[(φF , νf ), (φF ′ , νf ′)] := (F ′(f) − F (f ′), 0) (6.4.6)

and if one would like to quantise the system based on the real-valued functions
and vector fields φF, νf respectively, then one would ask to promote them to
self-adjoint operators with commutator algebra isomorphic with (6.4.6).
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S

t

t = +ε

t = 0

t = −ε

Figure 6.4 A disc to regularise the flux.

As already motivated, we are interested in quantising the system based
on another algebra similar to C∞(A) × V ∞(A) given by (A(p), En(S)) �→
(φp, βκ/2Yn(S)), which we now must derive using the above regularisation. Let

F εkt
p (x)aj

:= δkj

∫

RD−1
dD−1s δε(s1, . . . , sD−1)

∫ 1

0

dt′δε(t′ − t)ṗas1,...,sD−1
(t′)δ(x, ps1,...,sD−1(t

′))

f εn
S (x)ja

:= nj(x)
∫

R

ds δε(s)
∫

U

dD−1uεaa1...aD−1

× ∂Sa1
s (u1, . . . , uD−1)

∂u1
. . .

∂S
aD−1
s (u1, . . . , uD−1)

∂uD−1
δ(x, Ss(u1, . . . , uD−1)) (6.4.7)

then we trivially have

hε
p(A) = Pe

∫ 1
0 dt F εjt

p (A)τj/2

Eε
n(S) = E

(
f εn
S

)
(6.4.8)

Notice that the smearing functions (6.4.7) are not quite smooth due to the sharp
cutoff at the boundary of the family of paths and surfaces respectively but this
does not cause any trouble, the smeared functions are still functionally differen-
tiable with respect to the phase space coordinates because the functional deriva-
tives (6.4.7) define a bounded linear functional on M (see Chapter 33).
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Formula (6.4.8) thus enables us to map our regulated holonomy and surface
variables into the Lie algebra C∞(A) × V ∞(A) via

hε
p(A) �→ φε

p := Pe

∫ 1
0 dtφ

F
εjt
p

τj/2
and Eε

n(S) �→ Y ε
n(S) := νfεn

S
(6.4.9)

compute their algebra and then take the limit ε → 0 where we may use the known
action of νf on φF .

Now the following issue arises: by (6.4.6) the vector fields νfεj
S

are Abelian at
finite ε. On the other hand, we will compute a vector field Yn(S) by Yn(S)[φp] :=
limε→0 ν

ε
Sn(φε

p). But taking the limit ε → 0 and computing Lie brackets of vector
fields does not commute in our case. This is no cause of trouble because, as
already mentioned, we will take the resulting limit Lie algebra as a starting
point for quantisation.

Let us then actually compute φp, Yn(S): to simplify the analysis, we notice
that, given a piecewise (semi)analytic surface S we can decompose it into faces.
A piecewise (semi)analytic path p can be decomposed into a finite number of
entire semianalytic edges e, some of which appear with opposite orientation in
that decomposition, of the following four types (subdivide edges into two halves
at an interior point if necessary; the sets U± are defined in Definition 6.3.1). See
Figure 6.5.

up
e ∩ S = b(e) is an isolated intersection point and the beginning segment of e lies

in U+.
down
e ∩ S = b(e) is an isolated intersection point and the beginning segment of e lies

in U−.
inside
e ∩ S = e, that is, e is contained in the closure of an entire analytic patch of S.
outside
e ∩ S = ∅, that is, e does not intersect S at all. This includes the case that e

intersects the boundary ∂S = S − S of the closure of S because S has no
boundary, it is open.

To see that the number of edges of either type is finite, it will be sufficient
to show that this is the case for each of the finite number of entire semianalytic
pieces of S. Hence, assuming that S is a semianalytic face, notice that if a given
analytic segment s of an edge e of p intersects S in an infinite number of isolated
points, then we can draw a curve c within S through this chain of points which is
analytic (choose an analytic coordinate system for the domain of a chart in which
a piece of S, containing an infinite number of intersection points, coincides with
a piece of the xD = 0 plane. Then use c(t) := (e1(t), . . . , eD−1(t), 0)). But then
e = c by analyticity, hence e is actually of the inside type. Hence the number
of ‘up’ and ‘down’ type edges is finite. Next, suppose that there are an infinite
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S
ein

eout

eup

edown

nS

Figure 6.5 Types of edges with respect to a face.

number of ‘inside’ or ‘outside’ type edges, then there must be an infinite number
of ‘outside’ or ‘inside’ type edges as well since the number of ‘up’ and ‘down’
types is finite. But then e must infinitely often leave and re-enter S through the
boundary of S, which is a piecewise (semi)analytic (D − 1)-manifold, intersecting
it in an infinite number of isolated points. Applying the same argument as above,
we conclude that all but a finite number of those ‘inside’ and ‘outside’ segments
must lie on the boundary of S and hence combine to a finite number of edges of
the ‘outside’ type. The more abstract version of this elementary reasoning is the
content of Theorem 20.2.1.

Thus, if p = eσ1
1 ◦ . . . ◦ eσn

n , σk = ±1, k = 1, . . . , n is a decomposition of p with
respect to S into edges of definite type then we first use the identity hp(A) =
he1(A)σ1 · . . . · hen(A)σn , then regularise hε

p(A) = hε
e1(A)σ1 · . . . · hε

en(A)σn and
use the Leibniz rule

{Eε′

n (S), hε
p(A)} =

n∑

k=1

σkh
ε
e1(A)σ1 . . . hε

ek−1
(A)σk−1

×{Eε′

n (S), hε
ek

(A)σk} hε
ek+1

(A)σk+1 . . . hε
en(A)σn (6.4.10)

Finally use

{Eε′

n (S), hε
e(A)−1} = −hε

e(A)−1{Eε′

n (S), hε
e(A)}hε

e(A)−1 (6.4.11)

in order to reduce all our calculations to expressions of the form {Eε′
n (S), hε

e(A)}
where e is an edge of a definite type. We will also first assume that S is entire
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analytic and then extend the result to arbitrary piecewise (semi)analytic S later
on.

The following calculation is quite lengthy and involves expanding out carefully
the path-ordered exponential in (6.4.9) and using the known action νf (φF ) =
F (f) =

∫
dDxF a

j (x)f j
a(x). We find

Y ε′

n (S)[φε
e] =

∞∑

n=1

∫ 1

0

dtn

∫ tn

0

dtn−1 . . .

∫ t2

0

dt1

×
n∑

k=1

(
φ
F

εj1t1
e

τj1/2
)
. . .

(
φ
F

εjk−1tk−1
e

τjk−1/2
)[
νfε′n

S

(
φ
F

εjktk
e

)
τjk/2

]

×
(
φ
F

εjk+1tk+1
e

τjk+1/2
)
. . .

(
φF εjntn

e
τjn/2

)
(6.4.12)

Using

νfε′n
S

(φF εkt
e

) =
∫

RD−1
dD−1sδε(s1, . . . , sD−1)

∫

R

dsδε
′
(s)

×
∫ 1

0

dt′δε(t′ − t)
∫

U

dD−1uėas1,...,sD−1
(t′)εaa1...aD−1

× ∂Sa1
s (u1, . . . , uD−1)

∂u1
. . .

∂S
aD−1
s (u1, . . . , uD−1)

∂uD−1

× δ(Ss(u1, . . . , uD−1), es1,...,sD−1(t
′))nk(Ss(u1, . . . , uD−1))

(6.4.13)

we can now take first the limit ε → 0 and then ε′ → 0 (the reason for doing this
will become transparent below). The result is

Y ε′

n (S)[φe] :=
∞∑

n=1

∫ 1

0

dtn

∫ tn

0

dtn−1 . . .

∫ t2

0

dt1

×
n∑

k=1

A(t1) . . . A(tk−1)
[
lim
ε→0

νfε′n
S

(
φ
F

εjktk
e

)
τjk/2

]
A(tk+1) . . . A(tn)

(6.4.14)

with A(t) = Aj
a(e(t))ė

a(t)τj/2 and where the limit in the square bracket is given
by the distribution
∫

R

dsδε
′
(s)

∫

U

dD−1u ėa(tk)njk(p(tk))εaa1...aD−1

×∂Sa1
s (u1, . . . , uD−1)

∂u1
. . .

∂S
aD−1
s (u1, . . . , uD−1)

∂uD−1
δ(Ss(u1, . . . , uD−1), p(tk))

(6.4.15)

Luckily, there is an additional tk integral involved in (6.4.14) so that the end
result will be non-distributional. Let t �→ F (t) be any (integrable) function and
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consider the integral
∫

R

dsδε
′
(s)

∫

U

dD−1u

∫ tk+1

0

dtF (t) ėa(t)εaa1...aD−1

×∂Sa1
s (u1, . . . , uD−1)

∂u1
. . .

∂S
aD−1
s (u1, . . . , uD−1)

∂uD−1
δ(Ss(u1, . . . , uD−1), e(t))

(6.4.16)

Notice first of all that the derivative ė is well-defined since e is entire analytic.
We can now discuss the integral (6.4.16) according to the type of edge e.

Case outside: this case is trivial, since for sufficiently small ε′ the δ-distribution
vanishes identically.

Case inside: since s �→ Ss is a congruence it is clear that
δ(Ss(u1, . . . , uD−1), e(t)) has support at s = 0 and the unique solution
u1(t), . . . , uD−1(t) (which are interior points of U since S is open) of the
equation S(u) = e(t). Thus (6.4.16) becomes

δε
′
(0)

∫ tk

0

dtF (t)
ėa(t)εaa1...aD−1

[
∂Sa1

∂u1
. . . ∂SaD−1

∂uD−1

]

u(t)

|det(∂Ss(u)/∂(s, u1, . . . , uD−1))s=0,u=u(t)|
(6.4.17)

which vanishes at finite ε′ since the denominator is finite while the numera-
tor vanishes by definition of an inside edge which is everywhere tangential to
the surface. Since (6.4.17) vanishes at finite ε′ its limit ε′ → 0 vanishes as well.
Expression (6.4.17) is the precise reason for why we have not synchronised the
limits ε → 0, ε′ → 0 as otherwise we would have obtained an ill-defined result of
the form 0 · ∞.

Case up: in this case, for sufficiently small ε′ and for every s > 0 the edge e

cuts the surface Ss transversally in a single interior point qs = e(ts) = Ss(us).
Let Tqs(Ss) be the (D − 1)-dimensional subspace of the tangent space Tqs(σ) at
qs spanned by the vectors ∂Ss/∂uk(u1, . . . , uD−1)Ss(u)=qs tangential to Ss at qs
carrying the orientation induced from Ss, that is,

ns
a(u) := εaa1...aD−1

∂Sa1
s (u1, . . . , uD−1)

∂u1
. . .

∂S
aD−1
s (u1, . . . , uD−1)

∂uD−1
(6.4.18)

is the outward normal direction. Since ė(ts) does not lie in Tqs(Ss) for s > 0,
the combination ėa(ts)ns

a(us) is positive for s > 0. For s = 0 it may happen that
ė(t0) = ė(0) and all of its higher derivatives lie in Tq0(S0) without that e is
then automatically of the inside type (consider for instance the case that S is a
sphere in R3 and that e is a straight line in the tangent plane of the north pole).
Hence this combination could actually vanish, however, the point s = 0 is of ds
measure zero. Thus we can perform the t, u integral in (6.4.16) by changing to
new coordinates Xs(t, u) = Ss(u) − e(t), the Jacobean of which is |ns

a(u)ėa(t)|
and then evaluate the δ-distribution δ(Xs(t, u)). The result is

∫

R

dsδε
′
(s)θ(tk+1 − ts)θ(s)F (ts)

ns
a(us)ėa(ts)
|ns

a(u)ėa(t)| (6.4.19)
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where θ(x) = 1 for x ≥ 0 and zero otherwise denotes the step function. The
factor θ(s) comes from the fact that δ(Xs(t, u)) = 0 for all s < 0. The fraction
in (6.4.19) equals +1 except possibly at s = 0. Thus we may replace it by +1 at
finite ε′ because the point s = 0 is of ds measure zero. We may then perform the
limit ε′ → 0 in (6.4.19) with the result (notice that t0 = 0)

F (0)
∫ ∞

0

dsδ(s) = rF (0) (6.4.20)

where 0 < r < 1 is a number that results from integrating the δ-distribution only
over R+ rather than R.

Case down: this case is completely analogous to the ‘up’ case, the difference
being that now ns

a(us)ėa(ts) equals −1 for s < 0, vanishes for s > 0 and takes
the value −1 or 0 at s = 0. The result of the integral is then

F (0)
∫ 0

−∞
dsδ(s) = (1 − r)F (0) (6.4.21)

It is possible to fix the parameter r to be r = 1/2 as follows: under a change of
orientation of S the up and down type edges interchange their role. Now the area
operator for a surface S, to be derived in a later chapter, should be invariant
under change of orientation of S. Since the parameter r enters the formula for
the area operator as we will see, we must fix r = 1 − r to achieve orientation
independence.

We can summarise the analysis by defining ε(e, S) to be +1,−1, 0 whenever
e has type up, down or in(out)side respectively whence the value of (6.4.16) is
given by

1
2
ε(e, S)F (0) (6.4.22)

Inserting (6.4.22) into (6.4.14) we obtain

Yn(S)[he] := lim
ε′→0

lim
ε→0

νε
′

Sn

(
φε
e

)

=
1
2
ε(e, S)

∞∑

n=1

n∑

k=1

∫ 1

0

dtn

∫ tn

0

dtn−1 . . .

∫ tk+2

0

dtk+1

∫ tk+2

0

dtk+1

∫ 0

0

dtk−1

×
∫ tk−1

0

dtk−2 . . .

∫ t2

0

dt1A(t1) . . . A(tk−1)
n(b(e))

2
A(tk+1) . . . A(tn)

=
1
2
ε(e, S)

n(b(e))
2

(

1 +
∞∑

n=2

∫ 1

0

dtn

∫ tn

0

dtn−1 . . .

∫ t3

0

dt2A(t2) . . . A(tn)

)

=
1
2
ε(e, S)

n(b(e))
2

he (6.4.23)

where n(x) = nj(x)τj . Here in the second step we saw that the sum
∑n

k=1 col-
lapses to the term k = 1 because

∫ 0

0
dtF (t) = 0 and in the third step we have

relabelled terms.
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Formula (6.4.23) is our end result. Notice that the details of the regularisation
of the delta-distributions did not play any role. It was seemingly important
that we smeared via congruences of curves and surfaces as compared with more
general smearings, however, any ‘reasonable’ smearing admits a foliation via
curves and surfaces respectively. Thus, the result (6.4.23) is general. Finally,
recall that (6.4.23) was derived under the assumption that S is entire analytic.
However, the formula is insensitive to this assumption since the type function
ε(e, S) can simply be extended to piecewise (semi)analytic surfaces. Hence we
may simply lift the formula to the general case.

6.5 Definition of P: (4) Lie algebra of cylindrical functions
and flux vector fields

The amazing feature of expression (6.4.23) and its generalisation to arbitrary
paths is that it is again a product of a finite number of holonomies, the harvest of
having started from a manifestly background-independent formulation. If we had
started from a function of E which is smeared in all D directions then this would
no longer be true, (6.4.23) would be replaced by a more complicated expression
in which an additional integral over the extra dimension would appear.

The fact that (6.4.23) is again a product of holonomies enables us to gen-
eralise the action of Yn(S) to arbitrary cylindrical functions, restricted to
smooth connections. Let f ∈ Cyl1(A), then we find a subgroupoid l = l(γ) ∈
L and fl ∈ C1(Xl) such that f = p∗l fl = [fl]∼ and a complex-valued func-
tion Fl on G|E(γ)| such that f(A) = fl(pl(A)) = Fl(ρl(pl(A))) with ρl(Al) =
{Al(e)}e∈E(γ) = {A(e)}e∈E(γ). We may choose γ in such a way that it is adapted
to a given surface S, that is, each edge of γ has a definite type with respect to S.
This will make the following computation simpler. Notice that every graph can
be chosen to be adapted by subdividing edges appropriately. Let us now restrict
f to A then

[Yn(S)(f)](A) =
1
2

∑

e∈E(γ)

ε(e, S)
[
n(b(e))

2
A(e)

]

AB

∂Fl

∂A(e)AB
({A(e′)}e′∈E(γ))

(6.5.1)
Evidently, (6.5.1) leaves C∞(Xl) restricted to A invariant which is why we can
extend it to all of A!

More precisely: define the so-called right- and left-invariant vector fields on G
by

(Rjf)(h) :=
(

d

dt

)

t=0

f(etτjh) =:
(

d

dt

)

t=0

[L∗
etτj

f ](h)

(Ljf)(h) :=
(

d

dt

)

t=0

f(hetτj ) =:
(

d

dt

)

t=0

[R∗
etτj

f ](h) (6.5.2)
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where Rh(h′) = h′h, Lh(h′) = hh′ denotes the right and left action of G on itself.
The right (left) invariance of Rj (Lj), that is, (Rh)∗Rj = Rj ((Lh)∗Lj = Lj), fol-
lows immediately from the commutativity of left and right translations LhRh′ =
Rh′Lh. Notice, however, that the right-invariant field generates left translations
and vice versa. Then we can write (6.5.1) in the compact form

Y n
l (S)[fl] =

1
4

∑

e∈E(γ)

ε(e, S)nj(b(e))Rj
efl (6.5.3)

where Rj
e is Rj on the copy of G labelled by e and where from now on we just

identify Xl with G|E(γ)| via ρl. Expression (6.5.3) obviously does not require us
to restrict f = p∗l fl to A any more. Notice that while Y n

l (S), just as En(S) does
not have a simple transformation behaviour under gauge transformations, Rj

e, L
j
e

in fact do
[(
λe
g

)∗([(
λe
g

)
∗R

j
e

]
(fe)

)]
(he) =

[
Rj

e

((
λe
g

)∗
fe

)]
(he)

=
(

d

dt

)

t=0

fe
(
g(b(e))etτjheg(f(e))−1

)

=
(

d

dt

)

t=0

fe
(
etadg(b(e))(τj)g(b(e))heg(f(e))−1

)

=
[(
λe
g

)∗(
Radg(b(e))(τj)fe

)]
(he) (6.5.4)

so that (λe
g)∗R

j
e = [Adg(b(e))]jkRk

e where Adg(b(e))(τj) =: [Adg(b(e))]jkτk. Simi-
larly (λe

g)∗L
j
e = [Adg(f(e))]jkLk

e . This shows once more that Rj
e (Lj

e) is right
(left)-invariant.

We thus have found a family of vector fields Y n
l (S) whenever l is adapted to

S. If l = l(γ) is not adapted then we can produce an adapted one lS = l(γ′), for
example, by choosing r(γ) = r(γ′) and by subdividing edges of γ into those with
definite type with respect to S and where the edges of γ′ carry the orientation
induced by the edges of γ. Since p∗lSlfl ∼ fl we then simply define

p∗lSl(Y
n
l (S)(fl)) := Y n

lS (p∗lSlfl) (6.5.5)

We must check that (6.5.5) does not depend on the choice of an adapted sub-
groupoid. Hence, let l′S be another adapted subgroupoid then we find lS , l

′
S ≺ l′′S

which is still adapted (take for instance the union of the corresponding graphs
and subdivide edges as necessary). Since (6.5.5) is supposed to be a cylindrical
function and plSl ◦ pl′′SlS = pl′Sl ◦ pl′′Sl′S

we must show that

p∗l′′SlS
Y n
lS (S)

(
p∗lSlfl

)
= p∗l′′Sl′S

Y n
l′S

(S)
(
p∗l′Slfl

)
(6.5.6)

As usual, if (6.5.6) holds for one such adapted l′′S then it holds for all. To see
that (6.5.6) holds, it will be sufficient to show that for any adapted subgroupoids
lS ≺ l′′S we have

p∗l′′SlS
Y n
lS (S)(flS ) = Y n

l′′S
(S)

(
p∗l′′SlS

flS
)

(6.5.7)
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from which then (6.5.6) will follow due to plsl ◦ pl′′SlS = pl′sl ◦ pl′′Sl′S
. We again

need to check three cases:

(a) e ∈ E(γ′′
S) but e �∈ E(γS), then (6.5.7) holds because p∗l′′SlS

flS does not depend
on A(e) so that the additional terms proportional to Rj

e, L
j
e in (6.5.3) drop

out.
(b) e ∈ E(γ′′

S) but e−1 ∈ E(γS). By definition of an adapted subgroupoid, this
case is only allowed for edges of the inside and outside type because all edges
with ε(e, S) �= 0 must be outgoing from S. However ε(e, S) = 0 ⇔ ε(e−1, S) =
0.

(c) e1, e2 ∈ E(γ′′
S) but e = e1 ◦ e2 ∈ E(γS). Then e1 ∩ S = b(e1) and ε(e, S) =

ε(e1, S) while e2 ∩ S = ∅ and ε(e2, S) = 0 (recall that ε(e, S) �= 0 implies that
e, S intersect in only one point). Let f1(h1) := f2(h2) = f(h1h2) then due to
right invariance

(Rjf1)(h1) = (Rjf)(h1h2) (6.5.8)

hence

∑

I=1,2

ε(eI , S)Rj
eIp

∗
(e1,e2),e1◦e2fe = ε(e1, S)Rj

e1p
∗
(e1,e2),e1◦e2fe

= ε(e, S)Rj
efe (6.5.9)

as claimed.

Hence our family of vector fields (Y n
l (S))l∈L is now defined for all possible l ∈ L,

in the language of Section 8.2.2 we have the co-final set l0 := l(∅) ≺ L. Let us
check that it is a consistent family, that is

p∗l′l
([
Y n
l (S)

]
(fl)

)
=

[
Y n
l′ (S)

]
(p∗l′lfl) (6.5.10)

for all l ≺ l′ which are not necessarily adapted. Given l ≺ l′ we find always an
adapted subgroupoid l, l′ ≺ lS . Now by the just established independence on the
adapted graph we may equivalently show that

p∗lSl′p
∗
l′l

(
Y n
l (S)(fl)

)
= p∗lSl′Y

n
l′

(
p∗l′lfl

)
(6.5.11)

Now since p∗lSl′p
∗
l′l = p∗lSl the left-hand side equals p∗lSl(Y

n
l (S)(fl) ≡ Y n

lS
(p∗lSlfl)

by definition of Y n
l on arbitrary, not necessarily adapted graphs and the right-

hand side equals Y n
lS

(p∗lsl′p
∗
l′lfl) = Y n

lS
(p∗lSlfl) for the same reason.

We have thus established that the family of vector fields (Y n
l (S))l∈L is a

consistent family and defines a vector field Yn(S) on A. Notice moreover that
Yn(S) is real-valued: from (6.5.3) this will follow if Rj is real-valued. Now we
have embedded G into a unitary group which means that h̄T = h−1, in particular
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τ̄Tj = −τj . Hence

Rj
h = (τjh)AB∂/∂h̄AB = −(h−1τj)BA∂/∂h

−1
BA

= −(h−1τj)AB

(
∂hCD/∂h−1

AB

)
∂/∂hCD = (h−1τj)ABhCAhBD∂/∂hCD

= Rj
h (6.5.12)

where use was made of δh−1 = −h−1hh−1 and the fact that the symbol ∂/∂hAB

acts as if all components of hAB were independent by definition of Rj(f) =
(τjh)AB∂f/∂hAB .

The definition of P is now complete:

Definition 6.5.1. The classical Poisson algebra P is the Lie ∗-subalgebra of
Cyl∞ × V (Cyl∞) generated by the smooth cylindrical functions Cyl∞ and the flux
vector fields Yn(S) on Cyl∞. The involution on P is just complex conjugation,
specifically A(e) = A(e−1)T and Yn(S) = Yn(S). It is called the holonomy–flux
algebra.

Here a cylindrical function f = p∗l fl is smooth if any of its representatives fl
is smooth on the respective power on Gn, see Section 8.2.2. Notice that, as we
have seen, P can be thought of as an algebra of the form C∞(X) × V ∞(X) with
either choice of space X = A or X = A respectively.
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Step II: quantum ∗-algebra A

Since (generalised) holonomies take values in a compact group, cylindrical func-
tions f = p∗l fl with fl a bounded function on a corresponding power of G are
bounded functions of (generalised) connections and will be promoted to bounded
operators in the quantum theory. However, the flux vector fields will be promoted
to unbounded operators and therefore domain questions will arise when we study
representations later on. In order to avoid the complications that come with this
unboundedness we will pass to an abstract ∗-algebra of operators which will be
promoted to bounded operators in any representation by exponentiating the vec-
tor field elements of P. The result A could be called a non-Abelian Weyl algebra.
We will follow [518,521].

7.1 Definition of A

Definition 7.1.1. For t ∈ R define the Weyl elements

Wn
t (S) := etβ�

2
p/2Yn(S) = e−it[iβ�2P /2Yn(S)] (7.1.1)

where �2P = h̄κ and similarly for all vector fields in P generated by the fluxes
Yn(S). The algebra A is generated from all elements f ∈ Cyl and the Weyl ele-
ments subject to the following ∗ relations

f∗ := f and
(
Wn

t (S)
)∗ := Wn

−t(S) = W−n
t (S) =

(
Wn

t (S)
)−1 (7.1.2)

and the following Weyl relations: if f = p∗l fl, l = l(γ) then

[f, f ′] := 0

Wn
t (S) f (Wn

t (S))−1 := (Wn
t (S))·f = p∗l fl({etβ�

2
pn

j(b(e))τj/8A(e)}e∈E(γ))

Wn
t (S) Wn′

t′ (S′) (Wn
t (S))−1 = exp

(

t′β�2p/2
∞∑

m=0

(tβ�2P /2)m

m!
[Yn(S), Yn′(S′)](m)

)

(7.1.3)

and similarly for the Weyl elements of the other vector fields in P. Here the
multiple commutator is inductively defined by [Y, Y ′](0) := Y ′ and [Y, Y ′](m+1) :=
[Y, [Y, Y ′](m)].

That the right-hand side in the second equation of (7.1.3) is really the action of
the exponentiated flux on a cylindrical function follows from Section 6.5, where
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we showed that the fluxes generate infinitesimal left translations on the group.
One can verify this by taking the derivative at t = 0 for smooth f and rely on the
uniqueness theorem for ordinary differential equations. One can then actually lift
this relation derived on Cyl∞ to all of Cyl but we will not need that. The third
equation in (7.1.3) is the exponential of a vector field element of P again and one
can actually write it down explicitly. We will do that below for completeness,
although we do not need that expression in the sequel.

Definition 7.1.2

(i) Let x ∈ σ be given. The germ [e]x of an entire analytic edge e with b(e) =
e(0) = x is defined by the infinite number of Taylor coefficients e(n)(0) in
some parametrisation.

(ii) The germ [e]x encodes the orientation of e and its knowledge allows us
to reconstruct e(t) from x up to reparametrisation due to analyticity. We
identify two germs at x if they reconstruct the same edges from x.

(iii) The set of all germs [e]x at given x ∈ σ does not depend on x and will be
denoted by K.

(iv) Let x ∈ σ, [e]x ∈ K. We define vector fields Rj
x,[e]x

as the following deriva-
tives on Cyl∞ (assume w.l.g. that l = l(γ) is adapted to x in the sense that
each edge is either disconnected or outgoing from x)

Rj
x,[e]x

p∗l fl := p∗l
∑

e′∈E(γ)

δx,b(e′)δ[e]x,[e′]xR
j
e′fl (7.1.4)

(v) Let x ∈ σ, [e]x ∈ K and S a surface. We define

ε(S, [e]x) := ε(S, e′) for any e′ s.t. [e]x = [e′]x (7.1.5)

Lemma 7.1.3

(i) The vector fields Rj
x,[e]x

satisfy the following commutation relations
[
Rj

x,[e]x
, Rk

x′,[e′]x

]
= −f jk

lδ[e]x,[e′]xδx,x′Rl
[x],[e]x

(7.1.6)

where [τj , τk] = fjk
lτl defines the structure constants.1

(ii) The flux vector fields Yn(S) can be expressed in terms of the Rj
x,[e]x

by the
formula

Yn(S) =
∑

x∈S

∑

[e]x∈K
ε(S, [e]x)nj(x)Rj

x,[e]x
(7.1.7)

The proof of the lemma is straightforward by using the formulae and defini-
tions of Section 6.5. Although the definition of Yn(S), Rj

x,[e]x
involves sums over

1 Since G is a compact, connected Lie group, we have G/D ∼= A× S where D is a central
discrete subgroup and A,S are Abelian and semisimple Lie groups respectively. Indices are
dragged w.r.t. the Cartan–Killing metric Tr(TjTk) = −δjk where (Tj)

k
l = fk

lj , fjkl totally

skew for the semisimple generators.
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an uncountably infinite number of terms, when applying these vector fields to
elements of Cyl∞ these sums reduce to a finite number of terms. The impor-
tance of Lemma 7.1.3 is that it shows that the vector fields Rj

x,[e]x
are the basic

building blocks of the Yn(S) and, in contrast to them, form a closed algebra.
In particular, we may use them in order to define generalised flux vector fields:
classically the electric flux is additive, that is, if S = ∪n

k=1Sk is a disjoint union of
(D − 1)-dimensional subsets of S then En(S) =

∑n
k=1 En(Sk). The problem in

transferring this to the Yn(S) is that if the sets Sk are really disjoint, then some
of them must contain part of their common boundaries and others do not, that
is, they are partly open and/or closed. However, the definition of Yn(S) assumes
that S has no boundary. For the definition of En(S) this is irrelevant because
the boundary points are sets of measure zero in the corresponding integral over
S. The expression (7.1.7) now shows how to fix this. We have

Yn(S) =
n∑

k=1

Yn,S(Sk), Yn,S(Sk) :=
∑

x∈Sk

∑

[e]x∈K
σ(S, [e]x)nj(x)Rj

x,[e]x
(7.1.8)

that is, we simply restrict the sum over x ∈ S to the sum over x ∈ Sk. The infor-
mation about S, however, sits in the type indicator function ε(S, [e]x). Alterna-
tively we may define the action of Yn,S(Sk) on cylindrical functions to equal the
action of Yn(S) on all edges of the inside or outside type and on those edges of
the up and down type which intersect Sk and to disregard those edges of the up
and down type which do not intersect Sk. Here the type is defined with respect
to S.

The vector fields Rj
x,[e]x

have no physical meaning at all; only those vector field
elements of P which can be written as linear combinations of some Yn(S) have
physical meaning. This does not mean that one cannot get fluxes of more general
surfaces than faces: take for instance an open disc D and another, smaller one D′

which is contained in it, D′ ⊂ D. Then Yn(D) − Yn(D′) =: Yn,D(D −D′) is the
flux through the annulus D −D′ which has one open and one closed boundary.
Hence, Yn,D(D −D′) can be expressed directly in terms of fluxes through faces.
However, the vector field elements of P form a complicated closed subalgebra
of the simpler closed algebra of the Rj

x,[e]x
which enables us to compute the

right-hand side of (7.1.3) explicitly. We find after some algebra

Wn
t (S)Wn′

t′ (S′)
(
Wn

t (S)
)−1

= exp

⎛

⎝t′β�2p/8

⎡

⎣
∑

x∈S′−S

n′
k(x)

∑

[e]x∈K
ε(S′, [e]x) +

∑

x∈S∩S′

n′
j(x)

×
∑

[e]x∈K
ε(S′, [e]x)[e−tβ�2p/8ε(S,[e]x)adn(x) ]jkRk

x,[e]x

⎤

⎦

⎞

⎠ (7.1.9)
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where adτ (τ ′) := [τ, τ ′] is the adjoint action of the Lie algebra on itself and
n(x) = nj(x)τj . This is again easy to check by differentiation with respect to t, t′.

7.2 (Generalised) bundle automorphisms of A

Automorphisms of the principal G-bundle (P,G,Π, σ), where Π : P → σ is the
bundle projection are invertible pairs of maps (F, f) with F : P → P, f : σ → σ

such that Π ◦ F = f ◦ Π, meaning that F maps entire fibres to entire fibres
and such that F is G-equivariant, that is, F ◦ ρ = ρ ◦ F where ρ is the right
action on P . The group of such maps will be denoted by G := Aut(P ). Here
we will restrict f to semianalytic diffeomorphisms ϕ of σ. Writing p = φ(x, h)
and conversely (X(p), H(p)) = φ−1(p) in a local trivialisation φ : U × G → P ,
U ⊂ σ and provided that Π(F (p)) ∈ U we find from Π ◦ F = ϕ ◦ Π that
F (φ(x, h)) = φ(ϕ(x), H(F (φ(x, h)))). Using the equivariance condition and the
action ρg(φ(x, h)) = φ(x, hg) we find that H(F (φ(x, hg))) = H(F (φ(x, h)))g.
Setting h = 1G we find H(F (φ(x, g))) = H(F (φ(x, 1G)))g =: g(x)−1g. Hence, in
a local trivialisation φ, F (φ(x, h)) = φ(ϕ(x), g(x)h) and thus F is completely
characterised by the diffeomorphism ϕ and a map g : σ → G which we restrict
to be semianalytic in the classical theory. It follows that

g · g′ · p = φ([ϕ ◦ ϕ′](x), [g ◦ ϕ′ · g′](x)h) (7.2.1)

Thus, in a local trivialisation G is isomorphic to the semidirect product2

G ∼= G � Diff(σ) with normal subgroup G.
The group G has a natural action on our basic variables A(e), En(S), if we

replace smooth diffeomorphisms by semianalytic ones as already pointed out in
Section 6.1 and the action of its connected identity component is in fact gen-
erated by the Hamiltonian flow of the Hamiltonian vector fields of the Gauß
constraint and diffeomorphism constraint respectively. Since canonical transfor-
mations preserve the Poisson brackets (more precisely: Lie brackets) among the
basic variables, we actually get an action of G by Poisson automorphisms on P

as displayed in formula (6.1.11). Specifically for f = p∗l fl, l = l(γ)

αg((f, Yn(S)) : = (λ∗
gf, (λg)∗Yn(S))

= (p∗l fl({g(b(e))A(e)g(f(e))−1}e∈E(γ)), YAdg−1 (n)(S))

αϕ((f, Yn(S)) : = (δ∗ϕf, (δϕ)∗Yn(S))

= (p∗l fl({A(ϕ(e))}e∈E(γ)), Yϕ−1(n)(ϕ(S))) (7.2.2)

2 A normal subgroup N of a group G is a subgroup invariant under conjugation, that is,
gng−1 ∈ N for all n ∈ N, g ∈ G. One writes N� G. Let H be a subgroup of G then
G = N � H is said to be the semidirect product of N,H if G = NH and N ∩H = 1G.
Conversely given a group action (an automorphism of N) H ×N → N ; (h, n) �→ h · n we
may form the semidirect product G := N � H by (n1, h1) (n2, h2) := (n1 h1 · n2, h1h2) or
(n1, h1) (n2, h2) := (h2 · n1 n2, h1h2). We may identify
N ∼= (N, 1H), H ∼= (1N , H), 1G = (1N , 1H) and verify that N is a normal subgroup.
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Amazingly, this action of G by automorphisms on P, considered as the Lie
algebra of smooth cylindrical functions on A and smooth derivatives thereon,
can be generalised in two respects. First of all the algebra can be considered
as smooth cylindrical functions on A and smooth derivatives thereon. Hence
we have the generalisation A → A and the action (7.2.2) simply lifts. Second,
we may generalise G itself: the semianalytic gauge transformations G can be
replaced by arbitrarily discontinuous ones: G := Fun(σ,G). The entire analytic
diffeomorphisms Diffω(σ) can be replaced by semianalytic ones Diffω

sa(σ) which
are defined in Chapter 20 as maps between semianalytic charts. Equivalently:

Definition 7.2.1. The group of semianalytic diffeomorphisms Diffω
sa(σ) is the

subgroup of homeomorphisms of σ which preserves the set of all semianalytic
edges and all semianalytic faces. A semianalytic bundle automorphism is such
that its projection to σ is a semianalytic diffeomorphism.

A typical example of an element of Diffω
sa(σ) is as follows: consider two open

regions U0 ⊂ U1 ⊂ σ where U1 has compact closure such that the boundaries
∂U0, ∂U1 are finite unions of lower-dimensional analytic submanifolds of σ. Next,
choose a vector field v on σ which (1) vanishes identically on σ − U1, (2) is ana-
lytic on both U0 and U1 − U0 and (3) is at least continuous at the boundaries
∂U0, ∂U1, say C(n0) with 0 ≤ n0 < ∞. (n0 = ∞ is not allowed because then v

could be analytically continued from σ − U0 and hence would have to vanish
identically.) Finally, construct the one-parameter family t �→ ϕv

t of homeomor-
phisms defined by the integral curves of v. These diffeomorphisms exist because v
has compact support, hence ϕv

t is the identity map on σ − U0.3 These diffeomor-
phisms are precisely those that arise in applications: we want a diffeomorphism
that has a certain property in region U0 but leaves everything outside a second
region U1 untouched. This requires some locality of that action and this is why
entire analytic diffeomorphisms are not general enough: if we specify it in U0

then it is specified everywhere and we are not sure what it does globally. For
instance, in an asymptotically flat context the specification of an entire ana-
lytic diffeomorphism in some compact region could be such that the analytically
extended map fails to be the identity map at spatial infinity and thus would be
no longer an element of the diffeomorphism group.

To be even more specific, suppose that U1 is contained in the domain of a
chart. Choose an analytic coordinate system x1, . . . , xD and define spherical
coordinates. Suppose that both U0, U1 are solid, open balls in this coordinate
system of radius r0, r1 respectively. Consider functions ξ0, ξ12 : RD → R which
are some polynomials of x1, . . . , xD and define ξ to equal ξ0 for 0 ≤ r ≤ r0, to

3 Notice that given a classical connection A0 ∈ A we may construct the horizontal lifts
c̃vp(t), p ∈ P of the integral curves cvx(t) with Π(p) = x which then defines a piecewise

(semi)analytic bundle automorphism ϕ̃v
t which projects to ϕv

t , hence we can make the
construction global in the bundle P .
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equal ξ12 on r0 ≤ r ≤ r1 and to vanish for r ≥ r1. Given ξ0 we always find ξ12
such that ξ is C(n0). Now finish the construction by defining the radial vector
field v(x) := rξ(x)∂r.

This shows by elementary means that semianalytic diffeomorphisms exist and
the ones just displayed are precisely those that arise in applications. See Chapter
20 for more details and precise definitions.

Remark: the maximal possible extension of the diffeomorphism or automorphism
group appears to be simply the group of all, not necessarily continuous, bundle
automorphisms [534] but they have not yet found an application in the frame-
work.
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Step III: representation theory of A

In this chapter we will show that, under reasonable physical assumptions, there
is a unique representation of A. This means that, once the algebra A has been
chosen, we can be confident to use that unique, kinematical representation as a
basis for the constraint quantisation programme.

8.1 General considerations

We are interested in a representation, that is a ∗-morphism, between A and
a subalgebra of the set of linear operators on a Hilbert space H. See Section
29.1 for a dictionary on the representation theory of ∗-algebras. Our ∗-algebra is
generated by unitary elements, that is, those which satisfy a∗ = a−1 (take expo-
nentials exp(itf) of cylindrical functions to see this) and hence in any representa-
tion these generating elements will become unitary, that is, bounded operators.
Moreover, since A is unital and contains invertible elements, it follows from the
representation property that π(1) = idH. Therefore any representation of A is
not degenerate. This brings us into the position to apply the following result.

Lemma 8.1.1. Every non-degenerate representation of the generators of a
∗-algebra by bounded operators is a direct sum of cyclic representations.

Proof: The proof is usually made in the context of C∗-algebras [535–537] but
works as well under the assumptions made in the lemma without a Banach or
C∗-norm. By Zorn’s lemma we are granted that there exists a maximal set of
vectors ΩI in the representation space H such that < ΩI , π(a)ΩJ >= 0 for all
a ∈ A unless I = J . Here I, J, . . . are taken from some, in general uncountably
infinite, index set. Notice that no domain questions arise because the elements
of A are polynomials of the generators and hence π(a) is a bounded operator.
Let HI be the completion of π(A)ΩI and let PI : H → HI be the orthogonal
projection. Define πI(a) := PIπ(a)PI on HI . Then H = ⊕I HI because the set
of ΩI is maximal and the representation is non-degenerate. Hence π = ⊕I πI and
(πI ,HI ,ΩI) is a cyclic representation of A. �

It follows that cyclic representations are the basic building blocks of all repre-
sentations of our concrete A and therefore it is no loss of generality to consider
the latter. Now given a cyclic representation (π,H, ω) we can construct a positive
linear functional, that is a state, on A by ω(a) :=< Ω, π(a)Ω >H. Conversely, a
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state ω on a ∗-algebra, even when not generated by unitary elements, determines
a unique, up to unitary equivalence, cyclic representation (πω,Hω,Ωω) via the
GNS construction, see Section 29.1. Hence, studying cyclic representations on
∗-algebras is completely equivalent to studying states.

In general there are an infinite number of states on ∗-algebras and in order
to control this abundance of representations one must make additional physical
assumptions. For instance, the uniqueness theorem due to Stone and von Neu-
mann [538] for the Weyl algebra of quantum mechanics generated by (a, b ∈ R)

U(a) := exp(iaq/̄h), V (b) := exp(−ibp/̄h)

U(a)U(a′) = U(a + a′), V (b)V (b′) = V (b + b′), V (b)U(a) = eiab/̄hU(a)V (b)

U(a)∗ = U(−a), V (b)∗ = V (−b) (8.1.1)

that the only possible representation is the Schrödinger representation on H :=
L2(R, dx) defined by (π(U(a))ψ)(x) = exp(iax)ψ(x), (π(V (b))ψ)(x) = ψ(x + b)
holds only under the assumption that the representation is irreducible and
weakly continuous. Irreducible means that every vector is cyclic and weakly con-
tinuous means that lima→0 < ψ, π(U(a))ψ′ >=< ψ,ψ′ > for all ψ,ψ′ ∈ H and
similarly for V (b). The Bohr compactification of the real line constructed in
Chapter 28 demonstrates that weak continuity cannot be dropped: define a non-
separable Hilbert space with orthonormal states Tx, x ∈ R and set π(U(a))Tx :=
Tx+a, π(V (b))Tx := eibxTx. This defines a representation by unitary operators
but lima→0 < Tx, π(U(a))Tx >= lima→0 δx,x+a = 0 �=< Tx, Tx >= 1.

Even worse than in quantum mechanics (finite number of degrees of free-
dom) is the situation in quantum field theory (infinite number of degrees of
freedom) where the Stone–von Neumann theorem is no longer correct. Rather,
there are an uncountably infinite number of unitarily inequivalent representa-
tions of the (analogue of the) Weyl algebra. Take for instance a scalar field φ on
(D + 1)-dimensional Minkowski space with canonically conjugate momentum π

and consider the following Weyl algebra generated by the Weyl elements (a, b
are real-valued test functions of rapid decrease on RD)

U(a) := exp(iφ(a)), V (b) := exp(−iπ(b))

U(a)U(a′) = U(a + a′), V (b)V (b′) = V (b + b′), V (b)U(a) = ei<a,b>U(a)V (b)

U(a)∗ = U(−a), V (b)∗ = V (−b) (8.1.2)

where φ(a) =< a, φ >, π(b) =< b, π >, < a, b >=
∫
dDx a(x) b(x). Take two

cyclic Fock representations (πm,Hm,Ωm) corresponding to the free massive
Hamiltonian Hm =

∫
dDx [π2 + φ(−Δ + m2)φ]/2, where Δ is the Laplacian,

with different masses. It is easy to see that any Fock representation is weakly
continuous and irreducible. Moreover, one can show that the vacuum state
Ωm is the only spatial translationally and rotationally invariant state in
Hm. The Euclidean group E is implemented unitarily on Hm by u((�c,R))
πm(U(a))Ωm = πm(α�c,R(U(a)))Ωm = πm(U(a−�c,R−1))Ωm and similarly for V (b)
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where a�c,R(�x) = a(R�x + �c). This brings us into the situation of the following
result [21,22].

Theorem 8.1.2 (Haag’s theorem). Suppose that (1) two weakly continuous
and irreducible representations (πI ,HI), I = 1, 2 of the Weyl algebra A of a
scalar1 field theory are given, (2) the Euclidean group E of spatial translations
and rotations is implemented unitarily and weakly continuously by representa-
tions uI on HI such that uI(e)πI(a)u−1

I (e) = πI(αe(a)) for all e ∈ E, a ∈ A and
(3) there is a unique Euclidean invariant state ΩI ∈ HI , that is, uI(e)ΩI = ΩI .

If the two representations of the Weyl algebra are unitary equivalent, that is,
there exists a unitary operator W : H1 → H2 such that Wπ1(a)W−1 = π2(a) for
all a ∈ A, then Wu1(e)W−1 = u2(e) for all e ∈ E and V Ω1 = cΩ2 where c is a
complex number of modulus one.

Notice that the notion of unitary equivalence does not require the repre-
sentations to be cyclic and even if they are it does not mean that the cyclic
states are related by W . Applied to our case we conclude that scalar field
theories with different masses correspond to unitarily inequivalent representa-
tions of the Weyl algebra because if they were equivalent then by Haag’s the-
orem WΩm = cΩm′ and Wπm(a)W−1 = πm′(a) for all a ∈ A. We would con-
clude, in particular, ωm(a) =< Ωm, πm(a)Ωm >= ωm′(a) for all a ∈ A. However,
for instance ωm(U(a)) = exp(− < a,

√
−Δ + m2

−1
a > /2) clearly depends on m,

hence the representations are unitarily inequivalent. What is going on here is that
the following canonical transformation, a special case of a Bogol’ubov transfor-
mation, between the annihilation and creation functions

αmm′(zm) =
1
2

([√
Km

Km′
+
√

Km′

Km

]

zm′ +

[√
Km

Km′
−
√

Km′

Km

]

zm′

)

(8.1.3)

with zm = (
√
Kmφ− i

√
Km

−1
π),Km =

√
−Δ + m2 cannot be implemented uni-

tarily because its classical generator

C =
i

2

∫
dDk[zm′χmm′zm′ − zm′χmm′zm′ ], cosh(χmm′)

=

[√
Km

Km′
+
√

Km′

Km

]/

2 (8.1.4)

is too singular, it is not even defined on the vacuum vector as one can easily
check.

In particular, Haag’s theorem implies that representations of interacting and
free field theories are unitarily inequivalent and hence means that the interaction
picture underlying perturbative QFT of Wightman fields strictly speaking does
not exist, it exists only if there is no interaction.

1 This can be generalised to arbitrary spin.
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The discussion shows that there are many unitarily inequivalent representa-
tions of the Weyl algebra in QFT and the choice of the physically correct one
needs additional dynamical input. In fact, in some cases one can prove [279]
that the requirement that the automorphisms on the Weyl algebra, generated
by the Hamiltonian flow on the classical phase space of a given Hamiltonian
function, be implemented unitarily leads to the selection of a unique represen-
tation of the Weyl algebra. Hence we expect that for LQG we can arrive at
a reasonably small, physically interesting subset of representations only if we
impose (1) irreducibility, (2) weak continuity and (3) the unitary implementabil-
ity of a physically interesting automorphism group of the Weyl algebra. The
natural automorphism group to consider is, of course, the group G of bundle
automorphisms considered in the previous chapter.

Now we have already shown that there is no loss of generality in considering
cyclic representations and that cyclic representations come from states. Cyclic
representations are not necessarily irreducible because irreducibility means that
every vector is cyclic, however, they provide good candidates for irreducible rep-
resentations. Next, as shown in Section 29.1, if the state ω is G-invariant, that
is, ω ◦ αg = ω for all g ∈ G then G is unitarily implementable in the correspond-
ing GNS representation by Uω(g)πω(a)Ωω = πω(αg(a))Ωω. Thus, to require G

invariance of the state is natural and sufficient to guarantee a unitary represen-
tation of G. Finally, as in the Stone–von Neumann theorem one might want to
require that the Weyl algebra is represented weakly continuously. States whose
GNS representation has this property are called regular.

Actually we will consider representations in which the continuity assumption
on the Weyl algebra is slightly relaxed in one direction and slightly tightened
in the other. Discontinuous representations were studied in QED, for instance
in [539], and in string theory [205]. These representations are physically moti-
vated, among other things, by the fact that they avoid the negative norm states
(ghosts) of the more commonly known Gupta–Bleuler construction. These are
representations which are unitarily inequivalent to Fock-type representations.
Here we are forced to study such representations by background independence.

An important test of validity of such type of representations turns out to be
parametrised field theory (PFT) [216, 540, 541] and the just mentioned LQG
string [205]. Let us mention the salient features of these investigations.

(A) Parametrised field theory This is just a free (massive) scalar field theory on
Minkowski space in any dimension on a manifold of topology M ∼= R × T d

but such that in the canonical d + 1 split of the action, arbitrary space-
like foliations are allowed. To do this, one turns the one-parameter family
of embeddings t 	→ Xμ

t = Xμ(t, .) of the d-torus T d of the spacetime mani-
fold into a dynamical variable with conjugate momentum Pμ. These extra
degrees of freedom are eliminated by imposing d + 1 first-class constraints
Cμ := Pμ + Hμ = 0 where Xμ

,aHμ would be the scalar field contribution to
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the spatial diffeomorphism constraint while nμHμ would be the contribution
to the Hamiltonian constraint if the metric were considered as a dynamical
field (see Chapter 12). The Poisson algebra of these constraints is isomor-
phic to the diffeomorphism algebra diff(M). The interesting question is now
whether the Schrödinger picture and the Heisenberg picture are related by
a unitary transformation for an arbitrary foliation as we are used to from
foliations that are generated by Poincaré transformations.

The surprising answer is that for d > 1 this is not the case [542–544].
More in detail, consider some initial slice Σ0 of a foliation t 	→ Xt. Then
the Heisenberg representation is the one obtained by classically evolving the
embedding-dependent creation and annihilation operators according to this
foliation while leaving the Fock vacuum at t = 0 invariant. The Schrödinger
picture is obtained by evolving the Fock vacuum at t = 0 with the canon-
ical Hamiltonian2 operator corresponding to that foliation while leaving
the creation and annihilation operators at t = 0 invariant. Interestingly,
these explicitly embedding X-dependent states solve the quantum constraint
equations Cμ = 0 formally. By formally we mean that we represent Xμ as a
multiplication operator and Pμ by functional differentiation with respect to
Xμ while Hμ is represented on Fock space as usual (notice that Hμ involves
X but not P ).

However, no rigorous Dirac quantisation of the embedding variables is
provided in [542–544]. The beauty is now that a rigorous quantisation which
precisely uses this type of discontinuous representations mentioned before
and application of the group averaging techniques to solve the constraints
provides a physical Hilbert space which is unitarily equivalent to the Fock
space representation on flat slices [545], such that on the corresponding
kinematical Hilbert space (a certain enlargement of a restriction of) Diff(M)
is represented without anomalies. This underlines the power of background-
independent quantisation techniques, which naturally lead to discontinuous
representations3 and removes this so-called Torre–Varadarajan obstruction
which otherwise would seem to imply that Dirac quantisation has no chance
to deliver representations that are unitarily equivalent to usual background-
dependent (Fock) representations.

(B) LQG string Using discontinuous representations one can quantise the
closed bosonic string in any spacetime dimension without encountering

2 That is, the linear combination of the contributions to the Hamiltonian and spatial
diffeomorphism constraint of the scalar field with metric fixed to be the Minkowski metric.

3 In order to achieve this one must exponentiate diff(M) which would result in the connected
component of Diff(M). However, this group does not preserve the set of spacelike
embeddings [216,217]. Hence one should restrict to the subgroup, if it exists, of
diffeomorphisms which act transitively on the space of spacelike embeddings. Since it is far
from obvious that such a group exists it is safer to extend Diff(M) to the symmetric
(permutation) group of all spacelike embeddings. This enlargement is similar to the
combinatorial extension discussed in [436].
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anomalies, ghosts (negative norm states) or a tachyon state (instabilities).
The representation-independent and purely algebraic no-go theorem of [546]
that the Virasoro anomaly is unavoidable is circumvented by quantising the
Witt group Diff(S1)× Diff(S1) rather than its algebra diff(S1)⊕diff(S1).
Since the representation of the Witt group is discontinuous, the infinitesimal
generators do not exist and there is no Virasoro algebra in this discontinuous
representation, exactly like in LQG. However, as in LQG, a unitary repre-
sentation of the Witt group is sufficient in order to obtain the Hilbert space
of physical states via group averaging techniques and even a representation
of the invariant charges [189,204] of the closed bosonic string.

This representation of the string has been much discussed and criticised in
various physics forums. We discuss here two of the most debated questions.
(i) A folklore statement that seems to have entered several physics blogs

is that weakly discontinuous representations of the kind used in LQG
do not work for the harmonic oscillator so why should they work for
more complicated theories? This is also the conclusion reached in [547].
As we will now show, while [547] is technically correct, its physi-
cal conclusion is false. In [547] one used a representation discussed
first for QED [539] in order to avoid the negative norm states of the
Gupta–Bleuler formulation. In this representation neither position q

nor momentum p operators are well-defined, only the Weyl operators
U(a) = exp(iaq), V (b) = exp(ibp) exist. Hence the usual harmonic oscil-
lator Hamiltonian H = q2 + p2 does not exist in this representation.
Consider the substitute Hε = [sin2(εq) + sin2(εp)]/ε2. What is pointed
out in [547] is that this operator is ill-defined as ε → 0. This is no sur-
prise, we knew this without calculation, the representation is not weakly
continuous after all. However, what is physically much more interest-
ing is the following. Fix an energy level E0 above which the harmonic
oscillator becomes relativistic and thus becomes inappropriate to model
the correct physics. Let4 a†ε := [sin(qε) + i sin(pε)]/ε. Consider the finite
number of observables

bε,n :=
1
n!

(aε)n (a†εaε)(a
†
ε)

n, n = 0, . . . , N = E0/̄h (8.1.5)

Let Ω0 be the Fock vacuum in the Schrödinger representation and ω the
state underlying the discontinuous representation. Fix a finite measure-
ment precision δ. Since the Fock representation is weakly continuous we
find ε0(N, δ) such that | < Ω0, bε,nΩ0 > −n̄h| < δ/2 for all ε ≤ ε0. On
the other hand, by Fell’s theorem, Theorem 29.1.4, applicable to the
unique C∗-algebra [548] generated by the Weyl operators U(a), V (b)
and the faithful representation considered in [547], we find a trace class

4 Notice that classically Hε = |aε|2.
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operator ρN,δ in the GNS representation determined by ω such that
|Tr(ρN,δbε0,n)− < Ω0, bε0,nΩ0 > | < δ/2 for all n = 0, 1, . . . , N . It follows
that with arbitrary, finite precision δ > 0 we find states in the Fock and
discontinuous representations respectively whose energy expectation val-
ues are given with precision δ by the usual value n̄h. This implies that
the two states cannot be physically distinguished.

In [549,550] even more was shown:5 there the spectrum of the operator
Hε was studied and the eigenvalues and eigenvectors were determined
explicitly. One could show that by tuning ε according to N, δ even the
first N eigenvalues do not differ more than δ from (n + 1)̄h. Moreover,
having fixed such an ε, the non-separable Hilbert space is a direct sum of
separable Hε-invariant subspaces and if we just consider the algebra gen-
erated by aε each of them is superselected. Hence we may restrict to any
one of these irreducible subspaces and conclude that the physics of the
discontinuous representation is indistinguishable from the physics of the
Schrödinger representation within the error δ. This should be compared
with the statement found in [547] that in discontinuous representations
the physics of the harmonic oscillator is not correctly reproduced.

(ii) Does this mean that the magical dimension D = 26 cannot be seen in
this representation? Of course it can: one way to detect it in the usual
Fock representation of the string is by considering the Poincaré algebra
(in the lightcone gauge) and ask that it closes. For the LQG string [205]
again the Poincaré group is represented unitarily but weakly discontinu-
ously. However, we can approximate the generators as above in terms of
the corresponding Weyl operators using some tiny but finite parameter
ε. Since these are a finite number of operators in the corresponding C∗-
algebra, an appeal to Fell’s theorem and using continuity of the Weyl
operators in the Fock representation guarantees that we find a state in
the folium of the LQG string with respect to which the expectation val-
ues of the approximate Poincaré generators coincide with their vacuum
(or higher excited state) expectation values in the Fock representation
to arbitrary precision δ.

Thus D = 26 is also hidden in this discontinuous representation, it is
just that for no D there is a quantisation obstruction. Of course, much
still has to be studied for the LQG string, for example, a formulation
of scattering theory, however, the purpose of [205] was not to propose a
phenomenologically interesting model but rather to indicate that D =
26 is not necessarily sacred but rather a feature of the specific Fock
quantisation used.

5 In a representation which was continuous in one of p or q but discontinuous in the other.
But similar results hold in this completely discontinuous representation considered here.
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This provides sufficient motivation for allowing discontinuous representations.
More precisely, in LQG on the one hand we do not require that the Abelian
subalgebra Cyl is represented weakly continuously. By this we mean that matrix
elements of cylindrical functions do not need to be continuous under continu-
ous deformations (homotopies) of edges to points. On the other hand, we not
only require that the exponentiated fluxes (and the exponentials of more general
vector fields in P) are represented weakly continuously but actually smoothly.
By this we mean that the cyclic GNS vector Ωω is a common C∞-vector for all
the Wn

t (S) as S, n vary. Recall that a vector ψ is said to be a C∞-vector for a
weakly continuous, one-parameter group of unitarities t 	→ U(t) iff it is in the
common invariant domain of all powers of the corresponding self-adjoint gener-
ator A defined by U(t) = exp(itA). One can show that the set of C∞-vectors for
one generator is dense. What is less trivial to show is that this is still the case
when we have an infinite number of generators. We call a representation of this
kind a semi-weakly smooth representation. Then the following theorem holds.

Theorem 8.1.3. There is a unique, semi-weakly smooth, G-invariant state on
(equivalently, cyclic representation of) A. Moreover, the corresponding cyclic
GNS representation is irreducible.

In the existence part of the proof we follow [364–369] and describe the rep-
resentation in great detail, since it is a fundamental building block of the cur-
rent formulation of LQG. We develop a general framework which is useful, for
instance, for studying states on A which are not necessarily G-invariant. Namely,
while G-invariant states are natural in LQG, other representations might even-
tually be required if one cannot complete the programme based on the invariant
one.6 After all, since even the invariant state only results in a kinematical rep-
resentation in which none of the constraints has been implemented one might
want to consider other (cyclic) representations which also do not implement the
constraints and in which G is not implemented unitarily or maybe projectively
(no invariant vector Ω).

We also add supplementary material which is not needed on a first reading,
marked by +. In the uniqueness and irreducibility part we follow [519].

8.2 Uniqueness proof: (1) existence

The aim of this section is to prove the following theorem.

Theorem 8.2.1. Consider the Hilbert space H0 := L(A, dμ0) where A is the
space of generalised connections defined in Definition 6.2.23 equipped with its

6 To avoid confusion, notice that a G-invariant state does not mean that the corresponding
GNS representation contains only G-invariant vectors, it just means that there is a unitary
representation of G.
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natural Borel σ-algebra and μ0 is the uniform measure defined in Definition
8.2.4. Consider the following operations defined on the dense subspace D given
by the finite linear span of spin-network functions defined in Definition 8.2.11
(or the once differentiable cylindrical functions)

π0(f) · ψ := f ψ

π0(Yn(S)) · ψ := īhκβYn(S)[ψ] (8.2.1)

where the right-hand side is the action of the vector field Yn(S) on the function
ψ ∈ D. Then π0 is a representation of A. In other words, cylindrical functions
act by multiplication, vector fields as derivations and (8.2.1) satisfies both the
canonical commutation relations and the ∗ relations.

That the canonical commutation relations hold is immediately clear because
the definition of π0 is such that the operators π0(Yn(S)) act as the derivations
in P. The non-trivial part of the proof is in the rigorous construction of the
measure μ0 and to show that π0(Yn(S)) is (essentially) self-adjoint.

The proof of this theorem again naturally breaks into several steps which we
provide in the following subsections. For the existence proof alone not all of this
material is needed, but it is natural to provide it here because we will need
properties of the measure μ0 in later chapters of the book.

8.2.1 Regular Borel measures on the projective limit: the

uniform measure

In this subsection we describe a simple mechanism, based on the Riesz repre-
sentation theorem, of how to construct σ-additive measures on the projective
limit X starting from a so-called self-consistent family of (so-called cylindrical)
measures μl on the various Xl. See Chapter 25 for some useful measure-theoretic
terminology and the references cited there for further reading. We follow again
closely Ashtekar and Lewandowski [364,367,368].

Our spaces Xl are compact Hausdorff spaces and in particular topological
spaces and are therefore naturally equipped with the σ-algebra Bl of Borel sets
(the smallest σ-algebra containing all open (equivalently closed) subsets of Xl).
Let μl be a positive, regular, Borel, probability measure on Xl, that is, a positive
semidefinite, σ-additive function on Bl with μl(Xl) = 1 and regularity means that
the measure of every measurable set can be approximated arbitrarily well by open
and compact sets (hence closed since Xl is compact Hausdorff) respectively.
Since the measure is Borel, the continuous functions C(Xl) are automatically
measurable.

Definition 8.2.2. A family of measures (μl)l∈L on the projections Xl of a
projective family (Xl, pll′)l≺l′∈L where the pl′l : Xl′ → Xl are continuous and
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surjective projections is said to be consistent provided that

(pl′l)∗μl′ := μl′ ◦ p−1
l′l = μl (8.2.2)

for any l ≺ l′. The measure (pl′l)∗μl′ on Xl is called the push-forward of the
measure μl′ .

The meaning of condition (8.2.2) is the following: let Bl  Ul ⊂ Xl be mea-
surable. Since pl′l is continuous the pre-images of open sets in Xl are open in
Xl′ and therefore measurable, hence pl′l is measurable. Since Ul is generated
from countable unions and intersections of open sets it follows that p−1

l′l (Ul) is
measurable. Then we require that

μl′
(
p−1
l′l (Ul)

)
= μl(Ul) (8.2.3)

for any measurable Ul. We can rewrite condition (8.2.3) in the form
∫

Xl′
dμl′(xl′)χp−1

l′l (Ul)
(xl′) =

∫

Xl

dμl(xl)χUl
(xl) (8.2.4)

where χS denotes the characteristic function of a set S. Here it is strongly moti-
vated to have surjective projections pl′l as otherwise p−1

l′l (Xl) is a proper subset
of Xl′ so that 1 = μl(Xl) = μl′(p−1

l′l (Xl)) could give a contradiction with the μl

being probability measures if Xl′ − p−1
l′l (Xl) is not a set of measure zero with

respect to μl′ .
Condition (8.2.4) extends linearly to linear combinations of characteristic func-

tions, so-called simple functions (see Chapter 25) and the (Lebesgue) integral of
any measurable function is defined in terms of simple functions (see Chapter 25).
Therefore we may equivalently write (8.2.2) as

∫

Xl′
dμl′(xl′)[p∗l′lfl](xl′) =

∫

Xl

dμl(xl)fl(xl) (8.2.5)

for any l ≺ l′ and any fl ∈ C(Xl) since every measurable function can be approxi-
mated by simple functions and measurable simple functions can be approximated
by continuous functions by Lusin’s theorem, Theorem 25.1.14 (which are auto-
matically measurable). In the form (8.2.5) the consistency condition means that
integrating out the degrees of freedom in Xl′ on which p∗l′lfl does not depend,
we end up with the same integral as if we had integrated over Xl only.

To summarise: let f = [fl]∼ ∈ Cyl(X) with fl ∈ C(Xl). Then (8.2.5) ensures
that the linear functional

Λ : Cyl(X) → C; f = [fl]∼ 	→ Λ(f) :=
∫

Xl

dμl(xl)fl(xl) (8.2.6)

is well-defined, that is, independent of the representative fl ∼ p∗l′lfl of f . More-
over, it is a positive linear functional (integrals of positive functions are positive)
because the μl are positive measures. Since Cyl(X) ⊂ Cyl(X) is a subset of a
unital C∗-algebra, Λ is automatically continuous (see the end of Section 25.1)
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and therefore extends uniquely and continuously to the completion Cyl(X) by
the bounded linear transformation theorem, Theorem 26.1.8. Now in Sections
6.2.2, 6.2.3 we showed that the Gel’fand isomorphism applied to Cyl(X) leads
to an (isometric) isomorphism of Cyl(X) with C(X) given by

∨
: Cyl(X) → C(X); f = [fl]∼ 	→ p∗l fl (8.2.7)

(and extended to Cyl(X) using that Cyl(X) is dense). It follows that we may
consider (8.2.5) as a positive linear functional on C(X). Since X is a compact
Hausdorff space we are in a position to apply the Riesz–Markov (or representa-
tion) theorem.

Theorem 8.2.3. Let (Xl, pl′l)l≺l′∈L be a compact Hausdorff projective family
with continuous and surjective projections pl′l : Xl′ → Xl, projective limit X

and projections pl : X → Xl.

(i) If μ is a regular Borel probability measure on X then (μl := μ ◦ p−1
l )l∈L

defines a consistent family of regular Borel probability measures on Xl.
(ii) If (μl)l∈L defines a consistent family of regular Borel probability measures

on Xl then there exists a unique, regular Borel probability measure μ on X

such that μ ◦ p−1
l = μl.

(iii) The measure μ is faithful if and only if every μl is faithful.

Proof
(i) Define the positive linear functional on C(Xl)

Λl : C(Xl) → C; fl 	→
∫

X

dμ(x)(p∗l fl)(x) (8.2.8)

which satisfies Λl(1) = 1. Since Xl is a compact Hausdorff space, by the
Riesz representation theorem there exists a unique, positive, regular Borel
probability measure μl on Xl that represents Λl, that is

Λl(fl) =
∫

Xl

dμl(xl)fl(xl) (8.2.9)

Since pl′l ◦ pl′ = pl, the consistency condition (8.2.5) is obviously met.
(ii) As was shown above, the positive linear functional on C(X)

Λ : C(X) → C; f = p∗l fl ≡ [fl]∼ 	→
∫

Xl

dμl(xl)fl(xl) (8.2.10)

is well-defined due to the consistency condition and satisfies Λ(1) = 1. Since
X is a compact Hausdorff space the Riesz representation theorem guarantees
the existence of a unique, positive, regular Borel probability measure μ on
X representing Λ, that is

Λ(f) =
∫

X

dμ(x)f(x) (8.2.11)
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(iii) Consider f ∈ C(X) of the form f = p∗l fl for some l ∈ L, fl ∈ C(Xl). Func-
tions of the form p∗l fl lie dense in C(X). Now f = p∗l fl is non-negative iff
fl is non-negative because pl is a surjection. It follows that we can restrict
attention to all non-negative functions of the form f = p∗l fl for arbitrary
fl ∈ C(Xl), l ∈ L as far as faithfulness is concerned. Let Λμ,Λμl

be the
positive linear functionals determined by μ, μl respectively. Then: μ faithful
⇔ Λμ(p∗l fl) = Λμl

(fl) = 0 for any non-negative fl ∈ C(Xl) and any l ∈ L
implies f = p∗l fl = 0 ⇔ for any l ∈ L and any non-negative fl ∈ C(Xl) the
condition Λμl

(fl) implies fl = 0 ⇔ all μl are faithful. �

We now define a natural measure on the spectrum of interest namely A, the
so-called uniform measure. To do this we must specify the space of cylindrical
functions. Given a subgroupoid l ∈ L with l = l(γ) we think of an element xl ∈ Xl

as a collection of group elements {xl(e)}e∈E(γ) = ρl(xl) and Xl can be identified
with G|E(γ)| (see (6.2.16)). Thus, an element fl ∈ C(Xl) is simply given by

fl(xl) = Fl

(
{xl(e)}e∈E(γ)

)
= (ρ∗l Fl)(xl) (8.2.12)

where Fl is a continuous complex-valued function on G|E(γ)|. For l ≺ l′ with
l = l(γ), l′ = l(γ′) we define ρl′l : G|E(γ′)| → G|E(γ)| by ρl ◦ pl′l = ρl′l ◦ ρl′ (recall
that ρl is a bijection).

Definition 8.2.4. Let L be the set of all tame subgroupoids of the set of semi-
analytic paths P in σ and Xl = Hom(l,G) identified with G|E(γ)| if l = l(γ) via
(6.2.16). Then we define for any f ∈ C(Xl)

μ0l(fl) =
∫

Xl

dμ0l(xl)ρ∗l Fl(xl) :=
∫

G|E(γ)|

⎡

⎣
∏

e∈E(γ)

dμH(he)

⎤

⎦ Fl

(
{he}e∈E(γ)

)

(8.2.13)

where μH is the Haar probability measure on G which, thanks to the compactness
of G, is invariant under left and right translations and under inversions.

Lemma 8.2.5. The linear functionals μ0l in (8.2.13) are positive and consis-
tently defined.

Proof: That μl defines a positive linear functional follows from the explicit for-
mula (8.2.12) in terms of the positive Haar measure on Gn. That (μ0l)l∈L
defines a consistent family follows from the observation that if l ≺ l′ with
l = l(γ), l′ = l(γ′) then we can reach l from l′ by a finite combination of the
following three steps:

(a) e0 ∈ E(γ′) but e0 ∩ γ ⊂ {b(e0), f(e0)} (deletion of an edge).
(b) e0 ∈ E(γ′) but e−1

0 ∈ E(γ) (inversion of an edge).
(c) e1, e2 ∈ E(γ′) but e0 = e1 ◦ e2 ∈ E(γ) (composition of edges).
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It therefore suffices to establish consistency with respect to all of these elementary
steps.

In general we have

p∗l′lfl = p∗l′lρ
∗
l Fl = ρ∗l′ρ

∗
l′lFl (8.2.14)

whence

μ0l′(p∗l′lfl) = μ0l′(ρ∗l′ [ρ
∗
l′lFl]) =

∫

G|E(γ′)|

⎡

⎣
∏

e∈E(γ′)

dμH(he)

⎤

⎦ [ρ∗l′lFl]({he}e∈E(γ′))

(8.2.15)

In what follows we will interchange freely orders of integration and break the
integral over Gn in integrals over Gm,Gn−m. This is allowed by Fubini’s theorem
(see Theorem 25.1.6) since the integrand, being bounded, is absolutely integrable
in any order.

(a) We have ρl′l({he}e∈E(γ′)) = {he}e∈E(γ) thus

μ0l′(p∗l′lfl) =

⎧
⎨

⎩

∫

G|E(γ)|

⎡

⎣
∏

e∈E(γ)

dμH(he)

⎤

⎦Fl({he}e∈E(γ))

⎫
⎬

⎭

×
{∫

G

dμH(he0) 1
}

= μ0l(fl) (8.2.16)

since μH is a probability measure.
(b) We have ρl′l({he}e∈E(γ′)) = {{he}e∈E(γ)−{e0}, h

−1
e0 } thus

μ0l′(p∗l′lfl)

=
∫

G|E(γ)|−1

⎡

⎣
∏

e∈E(γ)−{e0}
dμH(he)

⎤

⎦
∫

G

dμH(he0)Fl

(
{he}e∈E(γ)−{e0}, he−1

0

)

=
∫

G|E(γ)−1|

⎡

⎣
∏

e∈E(γ)−{e0}
dμH(he)

⎤

⎦
∫

G

dμH

(
h−1
e0

)
Fl

(
{he}e∈E(γ)−{e0}, h

−1
e0

)

=
∫

G|E(γ)|

⎡

⎣
∏

e∈E(γ)

dμH(he)

⎤

⎦Fl

(
{he}e∈E(γ)

)
= μ0l(fl) (8.2.17)

since the Jacobian of the Haar measure with respect to the inversion map
on G equals unity and where we have defined a new integration variable
he−1

0
:= h−1

e0 .
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(c) We have ρl′l({he}e∈E(γ′)) = {{he}e∈E(γ)−{e0}, he1he2} thus

μ0l′(p∗l′lfl)

=
∫

G|E(γ)|−1

⎡

⎣
∏

e∈E(γ)−{e0}
dμH(he)

⎤

⎦
∫

G2
dμH(he1)dμH(he2)

×Fl

(
{he}e∈E(γ)−{e0}, he1he2

)

=
∫

G|E(γ)|−1

⎡

⎣
∏

e∈E(γ)−{e0}
dμH(he)

⎤

⎦
∫

G

dμH(he1)
∫

G

dμH

(
h−1
e1 he1◦e2

)

×Fl

(
{he}e∈E(γ)−{e0}, he1◦e2

)

=
∫

G|E(γ)|−1

⎡

⎣
∏

e∈E(γ)−{e0}
dμH(he)

⎤

⎦
∫

G

dμH(he1◦e2)Fl

(
{he}e∈E(γ)−{e0}, he1◦e2

)

×
[∫

G

dμH(he1)1
]

=
∫

G|E(γ)|

⎡

⎣
∏

e∈E(γ)

dμH(he)

⎤

⎦Fl

(
{he}e∈E(γ)

)
= μ0l(fl) (8.2.18)

since the Jacobian of the Haar measure with respect to the left or right transla-
tion map on G equals unity and where we have defined a new integration variable
by he1◦e2 := he1he2 . �

It follows from Theorem 8.2.3 that the family (μ0l) defines a regular Borel
probability measure on X.

We can now equip the quantum configuration space A with a Hilbert space
structure.

Definition 8.2.6. The Hilbert space H0 is defined as the space of square inte-
grable functions over A with respect to the uniform measure μ0, that is

H0 := L2(A, dμ0) (8.2.19)

Notice that since we have identified cylindrical functions over A/G with gauge-
invariant, cylindrical functions over A the measure μ0 can also be defined as a
measure on A/G: simply restrict the μ0l to the invariant elements, which still
defines a positive linear functional on C([Xl]l), and then use the Riesz represen-
tation theorem. It is easy to check that the obtained measure coincides with the
restriction of μ0 to A/G with σ-algebra given by the sets U ∩ A/G where U is
measurable in A. We will denote the restricted and unrestricted measure by the
same symbol μ0.

In the next section we introduce useful machinery which allows us to define
momentum operators from derivations.
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8.2.2 Functional calculus on a projective limit

This subsection rests on the simple but powerful observation that in the case
of interest the projections pl′l are not only continuous and surjective but also
analytic. This can be seen by using the bijection (6.2.16) between Xl and Gn for
some n and using the standard differentiable structure on Gn. We follow closely
Ashtekar and Lewandowski [369] once more.

Functions
We have seen that we can identify C(X) with the (completion of the) space
of cylindrical functions f = [fl]/ ∼= p∗l fl, fl ∈ C(Xl). This suggests proceed-
ing analogously with the other differentiability categories. Let n ∈ {0, 1, 2, . . .} ∪
{∞} ∪ {ω}, then we define

Cyln(X) :=

(
⋃

l∈L
Cn(Xl)

)/

∼ (8.2.20)

That is, a typical element f = [fl]∼ ∈ Cyln(X) can be thought of as an equiv-
alence class of elements of the form fl ∈ Cn(Xl) where fl ∼ fl′ iff there exists
l, l′ ≺ l′′ such that p∗l′′lfl = p∗l′′l′fl′ . As in the previous subsection, the existence
of one such l′′ implies that this equation holds for all l, l′ ≺ l′′. Notice that
fl ∈ Cn(Xl) implies p∗l′lfl ∈ Cn(Xl′) due to the analyticity of the projections,
this is where their analyticity becomes important. Notice that differentiability
here means differentiability of the representatives fl on the respective power of
Gn. The space A does not carry a natural manifold structure by itself, hence
this notion of differentiability is as close as we can get.

Differential forms
In fact, since the Grassman algebra of differential forms on Xl is generated by
finite linear combinations of monomials of the form f

(0)
l df

(1)
l ∧ . . . ∧ df

(p)
l with

0 ≤ p ≤ dim(Xl), f
(0)
l ∈ Cn(Xl), f

(k)
l ∈ C(n+1)(Xl), k = 1, . . . , p we can define

the space of cylindrical p-forms and the cylindrical Grassman algebra by
p∧

(X) =

(
⋃

l∈L

p∧
(Xl)

)/

∼ (8.2.21)

because the pull-back commutes with the exterior derivative, that is, p∗l′′lfl =
p∗l′′l′fl′ implies p∗l′′ldfl = d(p∗l′′l′fl′). In other words, the exterior derivative is a
well-defined operation on the Grassmann algebra. Notice that if ω = [ωl]∼ ∈∧

(X) and ωl has degree p then also p∗l′lωl has degree p, hence the degree of
forms on X is well-defined.

Volume forms
The case of volume forms is slightly different because a volume form on an
orientable Xl is a nowhere vanishing differential form of degree dim(Xl) so that
the degree varies with the label l. However, volume forms on X (even in the non-
orientable case) are nothing else than cylindrically defined measures satisfying
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the consistency condition μl′ ◦ p−1
l′l = μl for all l ≺ l′. If they are probability

measures we can extend them to σ-additive measures on X using the Riesz–
Markow theorem as in the previous section.

Vector fields
Differentiable vector fields V n(Xl) on Xl are conveniently introduced alge-
braically on Xl as derivatives, that is, they are linear functionals Yl :
Cn+1(Xl) → Cn(Xl) annihilating constants and satisfying the Leibniz rule. We
want to proceed similarly with respect to X and the first impulse would be to
define

V n(X) =

(
⋃

l∈L
V n(Xl)

)/

∼

where the equivalence relation is given through the push-forward map. The push-
forward is defined by

(pl′l)∗ : V n(Xl′) → V n(Xl′); p∗l′l([(pl′l)∗Yl′ ](fl)) := Yl′(p∗l′lfl) (8.2.22)

and we could try to define Yl ∼ Yl′ iff for any l′′ ≺ l, l′ we have (pl′l′′)∗Yl′ =
(pll′′)∗Yl. The problem with this definition is that the push-forward moves us
‘down’ in the directed label set L instead of ‘up’ as is the case with the pull-back,
so it is not guaranteed that, given l, l′, there exists any l′′ at all that satisfies
l′′ ≺ l, l′ whence the consistency condition might be empty. This forces us to
adopt a different strategy, namely to define V n(X) as projective nets (Yl)l0≺l∈L
with the consistency condition

(pl′l)∗Yl′ = Yl ⇔ p∗l′l[Yl(fl)] = Yl′(p∗l′lfl) ∀ fl ∈ Cn(Xl), l0 ≺ l ≺ l′ (8.2.23)

The necessity of restricting attention to l0 ≺ l is that it may not be possible or
necessary to define Yl for all l ∈ L or to have (8.2.23) satisfied. This question
never came up of course for the pull-back. Notice that (8.2.23) means that if
fl′ = p∗l′lfl then Yl′(fl′) = p∗l′lYl(fl) for l0 ≺ l ≺ l′, that is consistently defined
vector fields map cylindrical functions to cylindrical functions.

It is clear that for f = [fl]∼ = p∗l fl with l0 ≺ l the formula

Y (p∗l fl) := p∗l Yl(fl) =: p∗l [(pl)∗Y ](fl) (8.2.24)

is well-defined, for suppose that fl ∼ f ′
l′ with l0 ≺ l′ then we find l0 ≺ l, l′ ≺ l′′

such that p∗l′′lfl = p∗l′′l′f
′
l′ whence, using pl′′l ◦ pl′′ = pl, pl′′l′ ◦ pl′′ = pl′

p∗l′Yl′(f ′
l′) = p∗l′′p

∗
l′′l′Yl′(f ′

l′) = p∗l′′Yl′′(p∗l′′l′f
′
l′) = p∗l′′Yl′′(p∗l′′lfl) = p∗l Yl(fl)

(8.2.25)

Lie brackets
Suppose that Y = (Yl)l0≺l∈L, Y ′ = (Y ′

l )l′0≺l∈L ∈ V n(X) are consistently defined
vector fields. We certainly find l0, l

′
0 ≺ l′′0 and claim that [Y, Y ′] :=
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([Yl, Yl])l′′0 ≺l∈L ∈ V n−1(X) is again consistently defined. To see this, consider
l′′0 ≺ l ≺ l′ then for any fl ∈ Cn(Xl) we have due to l0 ≺ l and l′0 ≺ l

p∗l′l([Yl, Y
′
l ](fl)) = Yl′ [p∗l′l(Y

′
l (fl))] − Y ′

l′ [p
∗
l′l(Yl(fl))] = [Yl′ , Y

′
l′ ](p

∗
l′lfl) (8.2.26)

Vector field divergences
Recall that the Lie derivative of an element ωl ∈

∧n(Xl) with respect to a vector
field Yl ∈ V n(Xl) is defined by LYl

ωl = [iYl
d + diYl

]ωl where

iYl
f

(0)
l df

(1)
l ∧ . . . ∧ df

(p)
l

= f
(0)
l

p∑

k=1

(−1)k+1Yl

(
f

(k)
l

)
df

(1)
l ∧ . . . df

(k−1)
l ∧ df

(k+1)
l ∧ . . . ∧ df

(p)
l

denotes contraction of forms with vector fields, annihilating zero forms. Let now
μl be a volume form on Xl. Since Xl is finite-dimensional, all smooth volume
forms are absolutely continuous with respect to each other and there exists a
well-defined function, called the divergence of Yl with respect to μl, uniquely
defined by

LYl
μl =: [divμl

Yl]μl (8.2.27)

We say that a vector field Y = (Yl)l0≺l∈L is compatible with a volume form
μ = (μl)l∈L provided that the family of divergences defines a cylindrical function,
that is

p∗l′l[divμl
Yl] = divμl′Yl′ ∀l0 ≺ l ≺ l′ (8.2.28)

Hence there exists a well-defined cylindrical function divμY := [divμl
Yl]∼, called

the divergence of Y with respect to μ.

Lemma 8.2.7. Let μ be a smooth volume form, Y, Y ′ μ-compatible vector fields
and f, f ′ ∈ Cyl1(X) cylindrical functions on X.

(i) If ∂Xl = ∅ has no boundary then
∫

X

μ f Y (f ′) = −
∫

X

μ (Y (f) + f [divμY ])f ′ (8.2.29)

(ii) The Lie bracket [Y, Y ′] is again μ-compatible and

divμ[Y, Y ′] = Y (divμY
′) − Y ′(divμY ) (8.2.30)

Proof
(i) We find l0, l

′
0 ≺ l such that f = p∗l fl, f

′ = p∗l f
′
l . Then

μ(fY (f ′)) = μ([p∗l fl][p
∗
l Yl(f ′

l )]) = μl(flLYl
[f ′

l ])

=
∫

Xl

{LYl
[μlflf

′
l ] − (LYl

[μlfl])f ′
l}

=
∫

Xl

{d iYl
[μlflf

′
l ] − μl(Yl(fl) + fl [divμl

Yl])f ′
l )}

= −μ((Y (f) + f [divμY ])f ′) (8.2.31)
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where in the third line we have applied Stokes’ theorem and that the Lie
derivative satisfies the Leibniz rule.

(ii) We find l0, l
′
0 ≺ l′′0 so that ([Yl, Y

′
l ])l′′0 ≺l∈L is consistently defined as shown

above. From the fact that the Lie derivative is an isomorphism between
the Lie algebra of vector fields and the derivatives respectively on Cn(Xl),
L[Yl,Y ′

l ] = [LYl
, LY ′

l
], and the fact that Lie derivation and exterior derivation

commute, [d, LYl
] = 0, we have

(divμl
[Yl, Y

′
l ])μl = [LYl

, LY ′
l
](μl) = LYl

([divμl
Y ′
l ]μl) − LY ′

l
([divμl

Yl]μl)

= [Yl(divμl
Y ′
l ) − Y ′

l (divμl
Yl)]μl (8.2.32)

It follows from the consistency of the Yl and the compatibility with the μl

that for l ≺ l′

p∗ll′Yl(divμl
Y ′
l ) = Yl′(p∗ll′(divμl

Y ′
l )) = Yl′(divμl′Y

′
l′) (8.2.33)

�

Momentum operators
Let Y be a vector field compatible with σ-additive measure (volume form) μ

such that it is together with its divergence divμY real-valued. We consider the
Hilbert space Hμ := L2(X,μ) and define the momentum operator

P (Y ) := i

(
Y +

1
2
(divμY )1Hμ

)
(8.2.34)

with dense domain D(P (Y )) = Cyl1(X). From (8.2.29) we conclude that for
f, f ′ ∈ D(P (Y ))

< f, P (Y )f ′ >μ= μ(fP (Y )f) = μ(P (Y )ff) =< P (Y )f, f ′ >μ (8.2.35)

from which we see that

D(P (Y )) ⊂ D(P (Y )†)

:= {f ∈ Hμ; sup
||f ′||>0

| < f, P (Y )f ′ > |/||f ′|| < ∞} and P (Y )†|D(P (Y ))

= P (Y )

whence P (Y ) is a symmetric unbounded operator.
Finally we notice that if Y, Y ′ are both μ-compatible then

[P (Y ), P (Y ′)] = iP ([Y, Y ′]) (8.2.36)

by a straightforward computation using Lemma 8.2.7.

Remark: That divμl
Yl is a cylindrical function is a sufficient criterion for P (Y )

to be well-defined, but it is too strong a requirement because it means that for
given l on any other l ≺ l′ the function divμl′Yl′ ≡ p∗l′l(divμl

Yl) does not depend
on the additional degrees of freedom contained in Xl′ . That is, if some special
graphs are not to be distinguished then divμY = const. is the only possibility.
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So compatibility between μ and Y is only sufficient but has not been shown to
be necessary in order to define interesting momentum operators. It would be
important to replace the compatibility criterion by a weaker one. See [514, 515]
for first steps in that direction.

General operators
More generally we have the following abstract situation: we have a partially
ordered and directed index set L, a family of Hilbert spaces Hl := Hμl

:=
L2(Xl, dμl) and isometric monomorphisms (linear injections)

Ûll′ : Hl → Hl′ (8.2.37)

for every l ≺ l′ which in our special case is given by Ûll′fl := p∗l′lfl. The isometric
monomorphisms satisfy the compatibility condition

Ûl′l′′Ûll′ = Ûll′′ (8.2.38)

for any l ≺ l′ ≺ l′′ due to pl′l ◦ pl′′l′ = pl′′l. A system (Hl, Ûll′)l≺l′∈L of this sort
is called a directed system of Hilbert spaces. A Hilbert space H is called the
inductive limit of a directed system of Hilbert spaces provided that there exist
isometric monomorphisms

Ûl : Hl → H (8.2.39)

for any l ∈ L such that the compatibility condition

Ûl′Ûll′ = Ûl (8.2.40)

holds. In our case, obviously Ûlfl := p∗l fl provides these monomorphisms so that
we have displayed Hμ as the inductive limit of the Hμl

.
Likewise we have a family of operators Ôl = P (Yl) with dense domain D(Ôl) =

C1(Xl) in Hl which are defined for a co-final subset L(Ô) = {l ∈ L; l0 ≺ l} (that
is, for any l ∈ L there exists l ≺ l′ ∈ L(Ô)) of L. These families of domains and
operators satisfy the compatibility conditions

Ûll′D(Ôl) ⊂ D(Ôl′) (8.2.41)

for any l ≺ l′ ∈ L(Ô) since p∗l′lC
1(Xl) ⊂ C1(Xl′) (the pull-back of functions is

C1 with respect to the Xl arguments but Cω with respect to the remaining
arguments in Xl′). Furthermore

Ûll′Ôl = Ôl′Ûll′ (8.2.42)

for any l ≺ l′ ∈ L(Ô) since p∗l′l(Yl(fl) + [divμl
Yl]fl/2) = (Yl′(p∗l′lfl) +

[divμl′Yl′ ]p∗l′lfl/2) due to consistency and compatibility. A structure of
this kind is called a directed system of operators. An operator Ô with dense
domain D(Ô) is called the inductive limit of a directed system of operators
provided the above-defined isometric isomorphisms interact with domains and
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operators in the expected way, that is,

ÛlD(Ôl) ⊂ D(Ô) (8.2.43)

and

ÛlÔl = ÔÛl (8.2.44)

In our case this is by definition satisfied since p∗lC
1(Xl) ⊂ Cyl1(X) and

p∗l (Yl(fl) + [divμl
Yl]fl/2) ≡ (Y (p∗l fl) + [divμY ]p∗l fl/2).

It turns out that directed systems of Hilbert spaces and operators always have
an inductive limit which is unique up to unitary equivalence.

Lemma 8.2.8

(i) Given directed systems of Hilbert spaces (Hl, Ûll′)l≺l′∈L and operators
(Ôl, D(Ôl), Ûll′)l≺l′∈L(Ô) with a co-final index set L(Ô), there is a, up to

unitary equivalence, unique inductive limit Hilbert space (H, Ûl)l∈L as well
as a unique inductive limit operator (Ô,D(Ô), Ûl)l∈L(Ô) densely defined on
the inductive limit Hilbert space.

(ii) If the Ôl are essentially self-adjoint with core D(Ôl) then Ô is essentially
self-adjoint with core D(Ô).

(iii) If the Ôl are essentially self-adjoint then (Ô′
l, D(Ô′

l), Ûll′)l≺l′∈L(Ô) is a
directed system of operators where O′

l denotes the self-adjoint extension of
Ôl.

Proof

(i) In the case of bounded operators, that is D(Ôl) = Hl, part (i) is standard
in operator theory, see, for example, vol. 2 of [535] for more details and
an extension of the theorem to directed systems of C∗-algebras and von
Neumann algebras which have a unique inductive limit up to algebra iso-
morphisms.

We consider the vector space V of equivalence classes of nets f =
(fl)l0≺l∈L(f) for some co-final L(f) ⊂ L with fl ∈ Hl satisfying Ûll′fl = fl′

for any l0 ≺ l ≺ l′ and where f ∼ f ′ are equivalent if fl = f ′
l for all l ∈

L(f) ∩ L(f ′). Let us write [f ]∼ for the equivalence class of f . We define

Ûl : Hl → V ; fl 	→ [(Ûll′fl)l≺l′∈L]∼ (8.2.45)

Due to isometry of the Ûll′ the norm on V given by ||[f ]∼|| := ||fl||l is
independent of the choice of l ∈ L(f), in particular, Ûl becomes an isometry.
We have for l ≺ l′

Ûl′Ûll′fl = [(Ûl′l′′Ûll′fl)l′≺l′′ ]∼ = [(Ûll′′fl)l′≺l′′ ]∼ = [(Ûll′′fl)l≺l′′ ]∼ = Ûlfl
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Finally we consider the subspace of V given by the span of elements of the
form Ûlfl with fl ∈ Hl and complete it to arrive at the Hilbert space

H :=
⋃

l

ÛlHl (8.2.46)

to which Ûl can be extended uniquely as an isometric monomorphism by
continuity. To see the uniqueness one observes that given another inductive
limit (H′, V̂l) we may define Wl := V̂lÛ

−1
l : ÛlHl → V̂lHl which one checks

to be an isometry. Also for l ≺ l′ we have Wl′Ûl = Ŵl′Ûl′Ûll′ = V̂l′Ûll′ =
Vl = ŴlÛl, in other words, Wl′ is an extension of Wl for l ≺ l′. This means
that we have a densely defined isometry Ŵ :

⋃
ÛlHl →

⋃
V̂lHl defined by

Ŵ|ÛlHl
= Wl which extends by continuity uniquely to an isometry between

the two Hilbert spaces.
Next, define an operator on the dense subspace of H given by D(Ô) :=⋃
l∈L(Ô) ÛlD(Ôl)

Ô
[
(fl)l∈L(Ô)

]
∼ :=

[
(Ôlfl)l∈L(Ô)

]
∼ (8.2.47)

Since L(Ô) ∩ {l′ ∈ L; l ≺ l′} = {l′ ∈ L(Ô); l ≺ l′} is co-final we have

ÔÛlfl = Ô[(Ûll′fl)l≺l′∈L]∼ = Ô
[
(Ûll′fl)l≺l′∈L(Ô)

]
∼ =

[
(Ôl′Ûll′fl)l≺l′∈L(Ô)

]
∼

=
[
(Ûll′Ôlfl)l≺l′∈L(Ô)

]
∼ =

[
(Ûll′Ôlfl)l≺l′∈L

]
∼

= ÛlÔlfl (8.2.48)

(ii) By the basic criterion of essential self-adjointness we know that (Ôl ± i ·
1Hl

)D(Ôl) is dense in Hl. It follows that

(Ô ± i · 1H)D(Ô) =
⋃

l∈L(Ô)

(Ô ± i · 1H)ÛlD(Ôl)

=
⋃

l∈L(Ô)

Ûl(Ôl ± i · 1Hl
)D(Ôl) (8.2.49)

hence (Ô ± i · 1H)D(Ô) is dense in H so that Ô is essentially self-adjoint by
the basic criterion of essential self-adjointness.

(iii) Recall that the self-adjoint extension Ô′
l of an essentially self-adjoint oper-

ator Ôl with core D(Ôl) is unique and given by its closure, that is, the
set D(Ô′

l) given by those fl ∈ Hl such that (fl, Ôlfl) ∈ ΓÔl
, the closure in

Hl ×Hl of the graph ΓÔl
= {(fl, Ôlfl); fl ∈ D(Ôl)} of Ôl with respect to

the norm ||(fl, f ′
l )||2 = ||fl||2 + ||f ′

l ||2.
To see that Ûll′D(Ô′

l) ⊂ D(Ô′
l′) we notice that Ûll′D(Ôl) ⊂ D(Ôl′).

Hence, the closure D(Ô′
l′) of D(Ôl′) will contain the closure of Ûll′D(Ôl)

which coincides with Ûll′D(Ô′
l) because Ûll′ is bounded.

To see that Ûll′Ô
′
l = Ô′

l′Ûll′ holds on D(Ô′
l) we notice that Ûll′Ôl = Ôl′Ûll′

holds on D(Ôl). Since Ô′
l, Ô

′
l′ are just the extensions of Ôl, Ôl′ from
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D(Ôl), D(Ôl′) to D(Ô′
l), D(Ô′

l′) and since Ûll′D(Ô′
l) ⊂ D(Ô′

l′) the claim fol-
lows. �

Passage to the quotient space
Finally we consider the case of interest, namely the quotient space A/G projective
limit. The significance of the result A/G = A/G is that we can identify cylindrical
functions on A/G simply with G-invariant functions on A. More precisely, if
λ : G ×A → A; A 	→ λg(A) is the G-action and f ∈ Cyln(A) is G-invariant then
we may define f̃ ∈ Cyln(A/G) by f̃([A]) := f(A) = f(λg(A)) for all g ∈ G where
[.] : A → A/G ≡ A/G denotes the quotient map. Thus we define zero-forms on
A/G as zero-forms on A which satisfy f = λ∗

gf for any g ∈ G. Notice that this is
possible for any differentiability category because the G-action is evidently not
only continuous but even analytic!

Since pull-backs commute with exterior derivation we can likewise define the
Grassman algebra

∧
(A/G) as the subalgebra of

∧
(A) given by the G-invariant

differential forms, that is, those that satisfy λ∗
gω = ω for all g ∈ G (if f is G-

invariant, so is df because λ∗
gdf = dλ∗

gf = df).
Next, volume forms on A/G are just G-invariant volume forms on A, that is

(λg)∗μ = μ ◦ λ−1
g = μ ◦ λg−1 = μ for all g ∈ G. Given any volume form μ on A

we may derive a measure μ on A/G by μ(f) := μ(f) for all G-invariant functions
f on A. If we denote the Haar probability measure on G ≡∏

x∈σ G by μH then
from μ(f) = μ(λ∗

gf) = [(λg)∗μ](f) for all G-invariant measurable functions we
find

μ([A]) =
∫

G
dμH(g) [(λg)∗μ](A) (8.2.50)

Finally, we define vector fields on A/G as G-invariant vector fields on A, that
is, those satisfying (λg)∗Y = Y for all g ∈ G, more precisely, if Y = (Yl)l0≺l then

(
λl
g

)∗([(λl
g)∗Yl

]
(fl)

)
:= Yl

[(
λl
g

)∗
fl
]

=
(
λl
g

)∗(Yl(fl)) (8.2.51)

for any fl ∈ Cn(A) and l0 ≺ l.

8.2.3 + Density and support properties of A,A/G
with respect to A,A/G

In this subsection we will see that A lies topologically dense, but measure the-
oretically thin in A (similar results apply to A/G with respect to A/G = A/G)
with respect to the uniform measure μ0. More precisely, there is a dense embed-
ding (injective inclusion) A → A but A is embedded into a measurable subset
of A of measure zero. The latter result demonstrates that the measure is con-
centrated on non-smooth (distributional) connections so that A is indeed much
larger than A. We follow closely Rendall [363], Marolf and Mourão [365, 366]
and [418].
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We have seen in Section 6.2.2 that every element A ∈ A defines an element of
Hom(P,G) and that this space can be identified with the projective limit X ≡ A.
Now via the C∗-algebraic framework we know that Cyl(X) can be identified with
C(X) and the latter space of functions separates the points of X by the Stone–
Weierstrass theorem since it is Hausdorff and compact. The question is whether
the smaller set of functions Cyl(X) separates the smaller set of points A. This
is almost obvious and we will do it for G = SU(N ), other compact groups can
be treated similarly.

Let A �= A′ be given then there exists a point x ∈ σ such that A(x) �= A′(x).
Take D = dim(σ) edges ex,α ∈ P with b(ex,α) = x and linearly independent tan-
gents ėx,α(0) at x. Consider the cylindrical function

F ε
x : A → C; A 	→ 1

ε2

∑

α,j

[
tr
(
τjA

(
eεx,α

))]2 (8.2.52)

where τj is a basis of Lie(G) with normalisation tr(τjτk) = −Nδjk and eεx,α(t) =
ex,α(εt). Using smoothness of A it is easy to see that (8.2.11) can be expanded
in a convergent Taylor series with respect to ε with zeroth-order component∑

j,eα
|Aj

a(x)ėax,α(0)|2 whence F ε
x ∈ Cyl(X) separates our given A �= A′. The

proof for A replaced by A/G is similar and was given by Giles [342] and will
not be repeated here. In that proof it is important that G is compact.

We thus have the following abstract situation: a collection C = Cyl(X) of
bounded complex-valued functions on a set X = A including the constants which
separate the points of X. The set X may be equipped with its own topology (e.g.,
the Sobolov topology that we defined in Chapter 33) but this will be irrelevant for
the following result which is an abstract property of Abelian unital C∗-algebras.

Theorem 8.2.9. Let C be a collection of real-valued, bounded functions on a
set X which contains the constants and separates the points of X. Let C be the
Abelian, unital C∗-algebra generated from C by pointwise addition, multiplication,
scalar multiplication and complex conjugation, completed in the sup-norm. Then
the image of X under its natural embedding into the Gel’fand spectrum X of C
is dense with respect to the Gel’fand topology on the spectrum.

Remark: Actually the theorem also holds if C does not separate the points, this
is just convenient in order that we may naturally identify X with a subset of
X. Also that C is unital is inessential because we may always add a unit to a
C∗-algebra.

Proof: Consider the following map

J : X → X; x 	→ Jx where Jx(f) := f(x) ∀ f ∈ C (8.2.53)

This is an injection since Jx = Jx′ implies in particular f(x) = f(x′) for all f ∈ C,
thus x = x′ since C separates the points of X by assumption, hence J provides
an embedding.
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Let J(X) be the closure of J(X) in the Gel’fand topology on X of pointwise
convergence on C. Suppose that X − J(X) �= ∅ and take any χ ∈ X − J(X).
Since X is a compact Hausdorff space we find a ∈ C(X) such that 1 = a(χ) �=
a(Jx) = 0 for any x ∈ X by Urysohn’s lemma. (In Hausdorff spaces one-point
sets are closed, hence {χ} and J(X) are disjoint closed sets and finally compact
Hausdorff spaces are normal spaces, see Chapter 18.)

Since the Gel’fand map
∨

: C → C(X) is an isometric isomorphism we find
f ∈ C such that f̌ = a. Hence 0 = a(Jx) = f̌(Jx) = Jx(f) = f(x) for all x ∈ X,
hence f = 0, thus a ≡ 0 contradicting a(χ) = 1. Therefore χ in fact does not
exist whence X = J(X). �

Of course in our case C = Cyl(A) and X = A.
Our next result is actually much stronger than merely showing that A is

contained in a measurable subset of A of μ0-measure zero. Let e be an edge and
if e(t) is a representative curve then consider the family of segments es with
es(t) := e(st), s ∈ [0, 1]. Consider the map

he : A → Fun([0, 1],G); A 	→ he
A where he

A(s) := A(es) (8.2.54)

The set Fun([0, 1],G) of all functions from the interval [0, 1] into G (no continu-
ity assumptions) can be thought of as the uncountable direct product G[0,1] :=∏

s∈[0,1] G via the bijection E : Fun([0, 1], G) → G[0,1]; h → (hs := h(s))s∈[0,1].
The latter space can be equipped with the Tychonov topology generated by the
open sets on G[0,1] which are generated from the sets P−1

s (Us) = [
∏

s′ 
=s G] × Us

(where Us ⊂ G is open in G) by finite intersections and arbitrary unions. Here
Ps : G[0,1] → G is the natural projection. Now the pre-image of such sets under
he is given by

(he)−1
(
P−1
s (Us)

)
=
{
A ∈ A; he

A ∈ P−1
s (Us)

}

=
{
A ∈ A; he

A(s) ∈ Us, h
e
A(s′) ∈ G for s′ �= s

}

= {A ∈ A; A(es) ∈ Us} = p−1
es (Us) (8.2.55)

where pes : A → Hom(es, G) is the natural projection in A. Since A is equipped
with the Tychonov topology, the maps pes are continuous and since A is equipped
with the Borel σ-algebra, continuous functions (pre-images of open sets are open)
are automatically measurable (pre-images of open sets are measurable). Hence
we have shown that he is a measurable map.

Let f be a function on G[0,1], that is, a complex-valued function h 	→
f({hs}s∈[0,1]). We have an associated map of the form (6.2.16), that is, ρle :
Xle → G[0,1]; Ale 	→ (Ale(es) = he

A(s))s∈[0,1] where le is the subgroupoid gener-
ated by the algebraically independent edges es. Thus he = ρle ◦ ple . The push-
forward of the uniform measure ν := he

∗μ0 = μ0 ◦ (he)−1 is then the measure on
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G[0,1] given by
∫

G[0,1]

dν(h)f(h) = μ0((he)∗f) = μ0le(ρ∗lef)

=
∫

G[0,1]

∏

s∈[0,1]

dμH(hes)f
(
{hes}s∈[0,1]

)

≡
∫

G[0,1]

∏

s∈[0,1]

dμH(hs)f
(
{hs}s∈[0,1]

)
(8.2.56)

Theorem 8.2.10. The measure μ0 is supported on the subset De of A defined
as the set of those A ∈ A such that he

A is nowhere continuous on [0, 1].

Proof: Trivially

De =
{
A ∈ A;he

A nowhere continuous in [0, 1]
}

= (he)−1
(
{h ∈ G[0,1]; s 	→hs nowhere continuous in [0, 1]}

)
=:(he)−1(D)

(8.2.57)

If we can show that D contains a measurable set of ν-measure one or that
G[0,1] −D is contained in a measurable set D′ of ν-measure zero then we have
shown that De contains a measurable set D′

e = (he)−1(G[0,1] −D′) of mea-
sure one because μ0(De) = [μ0 ◦ (he)−1](G[0,1] −D′) = ν(G[0,1] −D′) = 1 and
because he is measurable (since G[0,1] is equipped with the Borel σ-algebra).
In other words, De will be a support for μ0.

Let us then show that G[0,1] −D = {h ∈ G[0,1]; ∃s0 ∈ [0, 1]  h

continuous at s0} is contained in a measurable set of ν-measure zero. Let
h0 ∈ G[0,1] −D, then we find s0 ∈ [0, 1] such that h0 is continuous at s0.
Fix any 0 < r < 1 and consider an open cover of G by sets U with Haar
measure μH(U) = r. Since G is compact, we find a finite subcover, say
U1, . . . , UN . Now there is k0 ∈ {1, . . . , N} such that h0(s0) ∈ Uk0 . By defi-
nition of continuity at a point we find an open interval I ⊂ [0, 1] such that
h(I) ⊂ Uk0 . This motivates us to consider the subsets Sk := {h ∈ G[0,1];
∃I ⊂ [0, 1] open  h(I) ⊂ Uk} ⊂ G[0,1] and obviously h0 ∈ Sk0 . Our aim is to
show that these sets are contained in measure-zero sets.

Let B(q, 1/m) := {s ∈ [0, 1]; |s− q| < 1/m} with q ∈ Q, m ∈ N. It is easy to
show that these sets are a countable basis for the topology for [0, 1] (every open
set can be obtained by arbitrary unions and finite intersections). Hence any
open interval is given as a countable union of these open balls, that is, I =⋃

B(q,m)⊂I B(q,m). Since h(I ∪ J) = h(I) ∪ h(J) we have

Sk =

⎧
⎨

⎩
h ∈ G[0,1]; ∃I ⊂ [0, 1] 

⋃

B(q,m)⊂I

h(B(q,m)) ⊂ Uk

⎫
⎬

⎭

=
⋃

(q,m)∈(Q×N)k

Sk,q,m

Sk,q,m :=
{
h ∈ G[0,1]; h(B(q,m)) ⊂ Uk

}
(8.2.58)
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where (Q × N)k are defined to be the subsets of rational and natural numbers
(q,m) respectively such that SUk,q,m �= ∅. (We could also remove that restric-
tion.)

We now show that Sk,q,m is contained in a measure-zero set. Let (sn) be a
sequence of points in B(k, q,m). Then Sk,q,m ⊂ {h ∈ G[0,1]; h(sn) ∈ Uk ∀sn} =
∩n{h ∈ G[0,1]; h(sn) ∈ Uk}. Now the sets {h ∈ G[0,1]; h(sn) ∈ Uk} = P−1

sn (Uk)
are measurable because Ps is continuous and Uk is open, hence so is ∩n{h ∈
G[0,1]; h(sn) ∈ Uk}. But

ν
(
∩n

{
h ∈ G[0,1]; h(sn) ∈ Uk

})
= ν

⎛

⎝

⎡

⎣
∏

s 
=sn

G

⎤

⎦×
[
∏

n

Uk

]⎞

⎠

=
∏

n

μH(Uk) =
∏

n

r = 0 (8.2.59)

since r < 1. Hence Sk,q,m is contained in a measure-zero subset and since ν is
σ-additive also Sk is since (8.2.58) is a countable union.

Finally, any h0 ∈ G[0,1] −D is contained in one of the Sk, thus G[0,1] −D ⊂⋃N
k=1 Sk is contained in a measurable subset of measure zero. �

8.2.4 Spin-network functions and loop representation

In order to study the properties of μ0 we need to introduce an important concept,
the so-called spin-network basis. We will distinguish between gauge-variant and
gauge-invariant spin-network states. For representation theory on compact Lie
groups, the Peter and Weyl theorem and Haar measures the reader is referred
to [551], an extract of which is given in Chapter 31. We will follow closely Baez
[421,422].

Definition 8.2.11. Fix once and for all a representative from each equivalence
class of irreducible representations of the compact Lie group G and denote the
collection of these representatives by Π. Let l = l(γ) be given. Associate with
every edge e ∈ E(γ) a non-trivial, irreducible representation πe ∈ Π which we
assemble in a vector �π = (πe)e∈E(γ).

We consider the functions

Tγ,�π,�m,�n : A → C; A 	→
∏

e∈E(γ)

√
dπe [πe(A(e))]mene (8.2.60)

where dπ denotes the dimension of π and �m = {me}e∈E(γ), �n = {ne}e∈E(γ) with
me, ne = 1, . . . , dπe label the matrix elements of the representation.

Given a vertex v ∈ V (γ) consider the subsets of edges given by Eb
v(γ) := {e ∈

E(γ); b(e) = v} and Ef
v (γ) := {e ∈ E(γ); f(e) = v}. For each v ∈ V (γ), con-

sider the tensor product representation
(
⊗e∈Eb

v(γ) πe

)
⊗
(
⊗e∈Ef

v (γ) π
c
e

)
(8.2.61)
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where h 	→ πc(h) := π(h−1)T denotes the representation contragredient to π ((.)T

denotes matrix transposition). Since G is compact, every representation is com-
pletely reducible and decomposes into an orthogonal sum of irreducible repre-
sentations (not necessarily mutually inequivalent). Let Iv(�π, π′

v) be the set of
all representations that appear in that decomposition of (8.2.61) and which are
equivalent to π′

v ∈ Π with πt ∈ Π a representative of the trivial representation. An
element Iv ∈ Iv(�π, π′

v) is called an intertwiner and we assemble a given choice
of intertwiners into a vector �I = (Iv)v∈V (γ). By construction, we can project
the representation (8.2.61) into the representation Iv ∈ Iv(�π, π′

v) by contracting
(8.2.61) with a corresponding intertwiner. Since the function

A 	→
(
⊗e∈Eb

v(γ) πe(A(e))
)
⊗
(
⊗e∈Ef

v (γ) πe(A(e))
)

(8.2.62)

transforms in the representation (8.2.61) under gauge transformations at v it
therefore transforms in the representation Iv at v when contracted with the inter-
twiner Iv ∈ Iv(�π, π′

v). We now take the function

A 	→ ⊗e∈E(γ)πe(A(e)) (8.2.63)

and for each vertex v consider the subproduct (8.2.61) and then contract with an
appropriate intertwiner Iv. The result is a cylindrical function on A over l = l(γ)
which we denote by Tγ,�π,�I(A) and which transforms in the representation Iv at v.
If we vary the π′

v, Iv then the set of functions Tγ,�π,�I span the same vector space
as the space of functions Tγ,�π,�m,�n. In particular, we may take these functions to
be normalised with respect to H0.

(i) These normalised functions are the so-called (gauge-variant) spin-network
functions. Notice that by definition every interior point of an edge defines
a two-valent vertex whose adjacent edges are at least C(1) continuations of
each other and such that the corresponding intertwiner is trivial (equal to πt).
Thus, in the labelling Tγ,�π,�I it is implicitly assumed that Iv is not trivial for
each two-valent vertex whose adjacent edges are at least C(1) continuations
of each other. It is also assumed that all the representations πe are not trivial
because for πe = πt we may restrict to E(γ) − {e}.

(ii) The gauge-invariant spin-network functions result when we restrict the
gauge-variant ones to those with π′

v trivial, that is, equal to πt with the
convention that Tγ,�π,�I vanishes if Iv(�π, πt) = ∅ for any v ∈ V (γ). Since
these functions are gauge-invariant, we may consider them as functions
Tγ,�π,�I : A/G → C.

For the concrete example of G = SU(2), spin-network functions are analysed in
more detail in Chapter 32.

The importance of spin-network functions is that they provide a basis for H0.

Theorem 8.2.12

(i) The gauge-variant spin-network states provide an orthonormal basis for the
Hilbert space L2(A, dμ0).
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(ii) The gauge-invariant spin-network states provide an orthonormal basis for
the Hilbert space L2(A/G, dμ0).

Proof
(i) The inner product on L2(A, dμ0) is defined by

< f, f ′ >L2(A,dμ0)
:= Λμ0(ff

′) (8.2.64)

where Λμ0 is the positive linear functional on C(A) determined by μ0 via the
Riesz representation theorem. The cylinder functions of the form p∗l fl, fl ∈
C(Xl) are dense in C(A) (in the sup-norm) and since A is a (locally) compact
Hausdorff space and μ0 comes from a positive linear functional on the space
of continuous functions on A (of compact support), these functions are dense
in L2(A, dμ0) (in the L2 norm ||f ||2 =< f, f >1/2). This follows again from
Lusin’s theorem, Theorem 25.1.14 (see, e.g., [552]). It follows that L2(A, dμ0)
is the completion of Cyl(A) in the L2 norm. Now

Cyl(A) =
⋃

l∈L
p∗lC(Xl) (8.2.65)

and since by the same remark C(Xl) is dense in L2(Xl, dμ0l) it follows that

L2(A, dμ0) =
⋃

l∈L
p∗l L2(Xl, dμ0l) (8.2.66)

Now by definition (ρl)∗μ0l = ⊗e∈E(γ)μH for l = l(γ) so that L2(Xl, dμ0l) is
isometric isomorphic with L2(G|E(γ)|,⊗|E(γ)|dμH), which in turn is isometric
isomorphic with ⊗e∈E(γ)L2(G, dμH) since ⊗|E(γ)|μH is a finite product of
measures. By the Peter and Weyl theorem proved in Chapter 31 the matrix
element functions

πmn : G → C; h 	→
√
dππmn(h), π ∈ Π, m, n = 1, . . . , dπ (8.2.67)

form an orthonormal basis of L2(G, dμH) for any compact gauge group G,
that is,

< πmn, π
′
m′n′ >:=

∫

G

dμH(h)πmn(h)π′
m′n′(h) =

δππ′δmm′δnn′

dπ
(8.2.68)

This shows that functions of the form (8.2.60) span L′
2(Xl, dμ0l), which by

definition is isomorphic to ⊗|E(γ)|L′
2(G, dμH) restricted to non-trivial inter-

twiners for two-valent vertices whose adjacent edges are analytical continua-
tions of each other. Here L′

2(G, dμH) is the closed linear span of the functions
πmn with π �= πt (only non-trivial representations allowed).

It remains to prove (1) that p∗l L
′
2(Xl, dμ0l) ⊥ p∗l′L

′
2(Xl′ , dμ0l′) unless l =

l′ and (2) that L2(Xl, dμ0l) = ⊕l′≺lL′
2(Xl′ , dμ0l′) where completion is with

respect to L2(Xl, dμ0l).
(1) To see the former, notice that if l = l(γ) �= l′ = l(γ′) there is l, l′ ≺

l′′ := l(γ ∪ γ′). Since γ �= γ′ are semianalytic, there must be either (A) an
edge e ∈ E(γ) which contains a segment s ⊂ e that is disjoint from γ′ and
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this segment is certainly contained in γ ∪ γ′ or (B) the ranges of γ and γ′

actually coincide but there is at least one two-valent vertex v of γ such that
the adjacent edges are at least C(1) continuations of each other and such
that the corresponding intertwiner is non-trivial (reverse the roles of γ, γ′

if necessary) while v is simply an interior point of an edge of γ′ and thus
carries a trivial intertwiner.

Let fl ∈ L′
2(Xl, dμ0l), fl′ ∈ L′

2(X′l, dμ0l′) then

< p∗l fl, p
∗
l′fl′ >= μ0l′′(p∗l′′lflp

∗
l′′l′fl′) = 0 (8.2.69)

This follows since p∗l′′lfl, p
∗
l′′l′fl′ are (Cauchy sequences of) functions Tγ,�π,�I

over γ ∪ γ′ where either (A) the dependence on s of the former function
is through a non-trivial representation and of the latter through a trivial
representation or (B) the dependence of the former is through a non-trivial
intertwiner at v but through a trivial one for the latter. Hence, in case (A)
the claim follows from formula (8.2.68). In case (B) the claim follows from
the fact that due to gauge-invariance of μ0l′′ under gauge transformations
at v (to be demonstrated below) we have
∫

dμ0l′′ Tγ,�π,�I Tγ′,�π′,�I′ =
∫

dμH(g)
∫

dμ0l′′ ◦ λl′′

g Tγ,�π,�I Tγ′,�π′,�I′

=
∫

dμH(g)
∫

dμ0l′′ Tγ,�π,�I ◦ λl
g−1 Tγ′,�π′,�I′ ◦ λl′

g−1

=
∫

dμ0l′′

([∫
dμH(g) πIv (g)

]
· Tγ,�π,�I

)
Tγ′,�π′,�I′

= 0 (8.2.70)

again due to (8.2.68) where λl denotes the gauge group action on Xl as
before, which reduces to πIv by construction when g is non-trivial at v only.

(2) To see the latter, observe that L2(G, dμH) = L′
2(G, dμH) ⊕ span({1})

and that a function cylindrical over γ which depends on e ∈ E(γ) through
the trivial representation is cylindrical over γ − e as well.

Summarising, if we define H0
l := p∗l L2(Xl, dμ0l), H0l := p∗l L

′
2(Xl, dμ0l)

then

H0 =
⋃

l∈L
H0

l = ⊕l∈L H0l (8.2.71)

(ii) The assertion follows easily from (i) and the fact that L2(A/G, dμ0) is simply
the restriction of L2(A, dμ0) to the gauge-invariant subspace: that subspace
is the closed linear span of gauge-invariant spin-network states by (i) and the
specific choice that we have made in Definition 8.2.11 shows that they form
an orthonormal system since we have chosen them to be normalised and the
intertwiners to be projections onto mutually orthogonal subspaces of a ten-
sor product representation space of G. More specifically, the inner product
between two spin-network functions Tγ,�π,�I , Tγ′,�π′,�I′ is non-vanishing only if
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γ = γ′ and �π = �π′. In that case, consider v ∈ V (γ) and assume w.l.g. that all
edges e1, . . . , eN incident at v are outgoing. An intertwiner Iv ∈ Iv(�π, πt) can
be thought of as a vector In1,...,nN

v := (Iv)m0
1,...,m

0
N ;n1,...,nN

in the representa-
tion space of the representation ⊗N

I=1πI where m0
I are some matrix elements

that we fix once and for all. Since Iv is a trivial representation and in par-
ticular represents 1G = (1G)T we have (Iv)m0

1,...,m
0
N ;n1,...,nN

= In1,...,nN
v :=

(Iv)n1,...,nN ;m0
1,...,m

0
N

, moreover the intertwiners are real-valued because the
functions πmn(h) depend analytically on h and 1G is real-valued. Now the
spin-network state restricted to its dependence on e1, . . . , eN is of the form

In1,...,nN
v

[
⊗N

I=1 πI(A(eI))
]
n1,...,nN ;k1,...,kN

(8.2.72)

It follows from (8.2.68) that the inner product between Tγ,�π,�I , Tγ,�π,�I′ will be
proportional to

In1,...,nN
v (I ′)n1,...,nN

v = [(Iv)(I ′v)]m0
1,...,m

0
N ;m′0

1 ,...,m′0
N
∝ δIvI′

v
(8.2.73)

(if Iv = I ′v then m0
I = m0′

I by construction) since the Iv are representations
on mutually orthogonal subspaces. �

We remark that the spin-network basis is not countable because the set of
graphs in σ is not countable, whence H0 is not separable. We will see that
this is even the case after modding out by spatial semianalytic diffeomorphisms,
although one can show that after modding out by diffeomorphisms the remain-
ing space is an orthogonal, uncountably infinite, almost direct sum of mutually
isomorphic, separable Hilbert spaces [437] which might be superselected in terms
of the full algebra of observables (i.e., they are separately left-invariant).

Definition 8.2.13. The gauge-variant spin-network representation is a vector
space H̃0 of complex-valued functions

ψ : S → C; s 	→ ψ(s) (8.2.74)

where S is the set of spin networks, that is, the set of triples (γ, �π, �I) which label a
spin-network state. Likewise, the loop representation is the gauge-invariant spin-
network representation defined analogously. This vector space is equipped with
the scalar product

< ψ,ψ′ >H̃0 :=
∑

s∈S
ψ(s)ψ′(s) (8.2.75)

between square summable functions.

Clearly the uncountably infinite sum (8.2.75) converges if and only if ψ(s) = 0
except for countably many s ∈ S. The next corollary shows that the connection
representation that we have been dealing with so far and the spin-network rep-
resentation are in a precise sense Fourier transforms of each other where the role
of the kernel of the transform is played by the spin-network functions.
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Corollary 8.2.14. The spin-network (or loop) transform

T : H0 → H̃0; f 	→ f̃(s) :=< Ts, f >H0 (8.2.76)

is a unitary transformation between Hilbert spaces with inverse

(T−1ψ)(A) :=
∑

s∈S
ψ(s)Ts(A) (8.2.77)

Proof: If f ∈ H0 then

f =
∑

s∈S
< Ts, f > Ts (8.2.78)

since the Ts form an orthonormal basis (Bessel’s inequality is saturated). Since
the Ts form an orthonormal system we conclude that ||f ||2 =

∑
s | < Ts, f > |2

converges, meaning in particular that < Ts, f >= 0 except for countably many
s ∈ S. It follows that ||Tf ||2 :=

∑
s |f̃(s)|2 = ||f ||2 which shows that T is a partial

isometry. Comparing (8.2.77) and (8.2.78) we see that T−1f̃ = f is indeed the
inverse of T . Finally, again by the orthogonality of the Ts, we have ||T−1ψ||2 =∑

s |ψ(s)|2 = ||ψ||2 so that T−1 is a partial isometry as well. Since T is a bijection,
T is actually an isometry. Notice that T̃s(s′) = δs,s′ . �

Whenever it is convenient we may therefore think of states either in the loop
or the connection representation. In this book we will work entirely in the con-
nection representation.

Remark: As we have seen, the Tγ,�π,�m,�n with all πe non-trivial almost form an
orthonormal basis, we just have to be careful to contract with non-trivial inter-
twiners at two-valent vertices whose adjacent edges are at least C(1) continua-
tions of each other. If we contract with a trival intertwiner, that vertex is actu-
ally not counted as a vertex. With this understanding we will often use Tγ,�π,�m,�n

instead of Tγ,�π,�I .

8.2.5 Gauge and diffeomorphism invariance of μ0

In the previous subsection we investigated the topological and measure theoret-
ical relation between A and A. In this subsection we will investigate the action
of the gauge and diffeomorphism group on A. The uniform measure has two
further important properties: it is invariant under both the gauge group G and
the diffeomorphism group Diffω

sa(σ) (semianalytic diffeomorphisms). To see this,
recall the action of G on A defined through its action on the subspaces Xl by
xl 	→ λg(xl) with [λg(xl)](p) = g(b(p))xl(p)g(f(p))−1 for any p ∈ l. This action
has the feature of leaving the Xl invariant for any l ∈ L and therefore lifts to X

as x 	→ λg(x) with [λg(x)](p) = g(b(p))x(p)g(f(p))−1 for any p ∈ L. Likewise we
have an action of Diffω

sa(σ) on X defined by

δl : Diffω
sa(σ) ×Xl → Xϕ(l); (ϕ, xl) 	→ δlϕ(xl) = xϕ(l) (8.2.79)
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where ϕ(l) = l(ϕ(γ)) if l = l(γ). This action does not preserve the various Xl.
The action on all of X is then evidently defined by

δ : Diffω
sa(σ) ×X → X; (ϕ, x = (xl)l∈L) 	→ δϕ(x) =

(
δlϕ(xl)

)
l∈L (8.2.80)

Clearly δϕ(x) is still an element of the projective limit since it just permutes the
various xl among each other. Moreover, l ≺ l′ iff ϕ(l) ≺ ϕ(l′) so the diffeomor-
phisms preserve the partial order on the label set. Therefore

pϕ(l′)ϕ(l)

(
δl

′

ϕ(xl′)
)

= xϕ(l) = δlϕ(pl′l(xl′)) (8.2.81)

for any l ≺ l′, so we have equivariance

pϕ(l′)ϕ(l) ◦ δl
′

ϕ = δlϕ ◦ pl′l (8.2.82)

It is now easy to see that for the push-forward measures we have
(λg)∗μ0 = μ0, (δϕ)∗μ0 = μ0. For any f = p∗l fl ∈ C(X), fl = ρ∗l Fl ∈ C(Xl), Fl ∈
C(G|E(γ)|), l = l(γ) ∈ L we have

μ0(λ∗
gf) = μ0

(
p∗l
(
λl
g

)∗
fl
)

= μ0l

((
λl
g

)∗
fl
)

=
∫

G|E(γ)|

⎡

⎣
∏

e∈E(γ)

dμH(he)

⎤

⎦Fl

(
{g(b(e))heg(f(e))−1}e∈E(γ)

)

=
∫

G|E(γ)|

⎡

⎣
∏

e∈E(γ)

dμH(g(b(e))−1heg(f(e)))

⎤

⎦Fl

(
{he}e∈E(γ)

)

=
∫

G|E(γ)|

⎡

⎣
∏

e∈E(γ)

dμH(he)

⎤

⎦Fl

(
{he}e∈E(γ)

)
= μ0(f) (8.2.83)

where we have made a change of integration variables he → g(b(e))heg(f(e))−1

and used the fact that the associated Jacobian equals unity for the Haar measure
(translation invariance). Next

μ0(δ∗ϕf) = μ0

(
p∗ϕ(l)

(
δlϕ
)∗
fl
)

= μ0ϕ−1(l)

((
δlϕ
)∗
fl
)

=
∫

G|E(ϕ(γ))|

⎡

⎣
∏

e∈E(ϕ(γ))

dμH(he)

⎤

⎦Fl

(
{he}e∈E(ϕ(γ))

)

=
∫

G|E(γ)|

⎡

⎣
∏

e∈E(γ)

dμH(he)

⎤

⎦Fl

(
{he}e∈E(γ)

)
= μ0(f) (8.2.84)

where we have written {he}e∈E(ϕ(γ)) = {hϕ(e)}e∈E(γ) and have performed a sim-
ple relabelling hϕ(e) → he. It is important to notice that in contrast to other
measures on some space of connections the ‘volume of the gauge group is finite’:
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the space C(A/G) is a subspace of C(A) and we may integrate them with the
measure μ0, which is the same as integrating them with the restricted measure.
We do not have to fix a gauge and never have to deal with the problem of Gribov
copies.

One may ask now why one does not repeat with the diffeomorphism group
what has been done with the gauge group: passing from semianalytic diffeomor-
phisms Diffω

sa(σ) to distributional ones Diff(σ) and passing to the quotient space
(A/G)/Diff(σ). There are two problems:

First, in the case of G there was a natural candidate for the extension G → G
but this is not the case for diffeomorphisms because distributional diffeomor-
phisms will not lie in any differentiability category any more, they might be
arbitrarily discontinuous bijections (e.g., arbitrary permutations of points) and
hence much of the structure of present LQG does not generalise, for example,
paths and fluxes would not remain semianalytic. The most general structure-
preserving extension would be the set of all maps that preserve piecewise ana-
lyticity (rather than semianalyticity) of paths and surfaces, however it is not
clear that such maps are invertible and thus form a group. The structure of a
group would be desirable in order to be able to solve the spatial diffeomorphism
constraint by group averaging.

Second, as we will now show, even the entire analytic diffeomorphisms act
ergodically on the measure space, which means that there are no non-trivial
invariant functions.

Thus, one either has to proceed differently (e.g., downsizing rather than
extending the diffeomorphism group), change the representation or solve the
diffeomorphism constraint differently. We will select the third option in Chap-
ter 9. It should be pointed out, however, that the last word of how to deal with
diffeomorphism invariance has not been spoken yet. In a sense, it is one of the key
questions for the following reason: the concept of a smooth spacetime should not
have any meaning in a quantum theory of the gravitational field where probing
distances beyond the Planck length must result in black hole creation, which then
evaporate in Planck time, that is, spacetime should be fundamentally discrete.
But clearly smooth diffeomorphisms or even homeomorphisms have no room
in such a discrete quantum spacetime. The fundamental symmetry is probably
something else, maybe a combinatorial one, that looks like a diffeomorphism
group at large scales. See Section 10.6.5 for a proposal.

Also, if one wants to allow for topology change in quantum gravity then talk-
ing about the diffeomorphism group for a fixed σ does not make much sense.
We see that there is a tension between classical diffeomorphism invariance and
the discrete structure of quantum spacetime which in the opinion of the author
has not been satisfactorily resolved yet and which we consider as one of the
most important conceptual problems left open so far. A first step in overcom-
ing this tension might be the extended Master Constraint proposal sketched in
Section 10.6.4.
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8.2.6 + Ergodicity of μ0 with respect to spatial diffeomorphisms

We show that μ0 has an important ergodicity property with respect to spatial dif-
feomorphisms which is the underlying reason for why the solutions to the spatial
diffeomorphism constraint, in contrast to the solutions to the Gauß constraint,
do not lie in H0. We follow closely [418].

The above discussion reveals that as far as G and Diff(σ) are concerned we
have the following abstract situation (see Chapter 25): we have a measure space
with a measure-preserving group action of both groups (so that the pull-back
maps λ∗

g, δ
∗
ϕ provide unitary actions on the Hilbert space) and the question is

whether that action is ergodic. That is certainly not the case with respect to
G since the subspace of gauge-invariant functions is by far not the span of the
constant functions as we have shown.

Theorem 8.2.15. The group Diffω
0 (σ) of analytic diffeomorphisms on an ana-

lytic manifold σ connected to the identity acts ergodically on the measure space
A with respect to the uniform Borel measure μ0.

Proof: The diffeomorphism group acts unitarily on H0 via

[Û(ϕ)f ](A) = f(δϕ(A)) (8.2.85)

which means for spin-network states that Û(ϕ)Ts = Tϕ(s) where

ϕ(s) =
(
ϕ(γ), {πϕ(e) = πe}e∈E(γ), {mϕ(e) = me}e∈E(γ), {nϕ(e) = ne}e∈E(γ)

)

(8.2.86)

for s = (γ, �π, �m,�n). Let now f =
∑

s∈S cs Ts ∈ H0 be given with cs = 0 except
for countably many. Suppose that Û(ϕ)f = f μ0-a.e. for any ϕ ∈ Diffω

0 (σ). Since
S is left-invariant by diffeomorphisms, this means that

∑

s

csTϕ(s) =
∑

s

cϕ−1(s)Ts =
∑

s

csTs (8.2.87)

for all ϕ. Since the Ts are mutually orthogonal we conclude that cs = cϕ(s)

for all ϕ ∈ Diffω
0 (σ). Now for any s �= s0 = (∅,�0,�0,�0) the orbit [s] = {ϕ(s); ϕ ∈

Diffω
0 (σ)} contains infinitely many different elements (take any vector field that

does not vanish in an open set which contains the graph determined by s and
consider the one-parameter subgroup of diffeomorphisms determined by its inte-
gral curve – this is where we can make the restriction to the identity compo-
nent). Therefore cs = const. for infinitely many s. Since f is normalisable, this is
only possible if const. = 0, hence f = cs0Ts0 is constant μ0-a.e. and therefore δ

ergodic. �

We see that the theorem would still hold if we replaced Diffω
0 (σ) by any infinite

subgroup D with respect to which each orbit [s], s �= s0 is infinite. An example
would be the case σ = RD and D a discrete subgroup of the translation group
given by integer multiples of translations by a fixed non-zero vector.
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The theorem shows that the only vectors in H0 invariant under diffeomor-
phisms are the constant functions, hence we cannot just pass to that trivial
subspace in order to solve the diffeomorphism constraint. The solution to the
problem lies in passing to a larger space of functions, distributions over a dense
subspace of H0 in which one can solve the constraint. The proof of the theo-
rem shows already how that distributional space must look: it must allow for
uncountably infinite linear combinations of the form

∑
s csTs where cs is a gen-

eralised knot invariant (i.e., cs = cϕ(s) for any ϕ, generalised because γ(s) has
in general self-intersections and is not a regular knot). This is already the basic
idea for how to solve the diffeomorphism constraint in step IV of the quantisation
programme.

8.2.7 Essential self-adjointness of electric flux

momentum operators

We had established in Section 6.5 that the flux vector fields Yn(S) are well-
defined derivatives on Cyl∞. To finally finish the proof that L2(A, dμ0) is a
representation of A we must show that the corresponding electric flux momentum
operators are essentially self-adjoint (or their exponentials unitary). To do this,
consider the family of divergences of Yn(S) with respect to the uniform measure
μ0. Now the projection μ0l is simply the Haar measure on G|E(γ)|. Since the
Haar measure is right- and left-invariant, that is, (Lh)∗μH = μH = (Rh)∗μH we
have divμH

Rj = divμH
Lj = 0 as the following calculation shows:

−
∫

G

μh[divμH
Rj ]f = +

∫

G

μHRj(f) =
(

d

dt

)

t=0

∫

G

μHL∗
etτjf

=
(

d

dt

)

t=0

∫

G

(Letτj )∗μHf = 0 (8.2.88)

It follows that divμ0lY
n
l (S) = 0 so that Yn(S) is automatically μ0-compatible

(and the divergence is real-valued).
Since Yn(S) is a consistently defined smooth vector field on A which is μ0-

compatible, all the results from Section 8.2.2 with respect to the definition
of corresponding momentum operators apply and the remaining question is
whether the family of symmetric operators Pn

l (S) := iY j
l (S) with dense domain

D(P j
l (S)) = C1(Xl) is an essentially self-adjoint family.

Looking at (6.5.3), essential self-adjointness of Pn
l (S) on L2(Xl, dμ0l) will fol-

low if we can show that iRj is essentially self-adjoint on L2(G, dμH) with core
C1(G). That they are symmetric operators we know already. Now we invoke the
Peter and Weyl theorem that tells us

L2(G, dμH) = ⊕π∈ΠL2(G, dμH)|π (8.2.89)

where Π is a collection of representatives of irreducible representations of G, one
for each equivalence class, and L2(G, dμH)|π is the closed subspace of L2(G, dμH)
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spanned by the matrix element functions h 	→ πmn(h). The observation is now
that Rj leaves each L2(G, dμH)|π separately invariant. For instance

(Rjπmn)(h) =
(
dπmm′(etτj )

dt

)

t=0

πm′n(h) (8.2.90)

It follows that iRj are symmetric operators on the finite-dimensional Hilbert
space L2(G, dμH)|π of dimension dim(π)2 and therefore are self-adjoint. Since
the matrix element functions are smooth, by the basic criterion of essential self-
adjointness it follows that (i(Rj)|π ± i · 1π)C∞(G)|π is dense in L2(G, dμH)|π,
hence so is (i(Rj)|π ± i · 1π)C1(G)|π. Correspondingly,

(iRj ± i · 1)C∞(G) = ⊕π∈Π(i(Rj)|π ± i · 1π)C∞(G)|π (8.2.91)

is dense in L2(G, dμH) and thus iRj is essentially self-adjoint.
This completes the existence proof.

8.3 Uniqueness proof: (2) uniqueness

The goal of this section is to show that the representation defined in the previous
section is the unique GNS representation which derives from a G-invariant state.

Notice that by the Weyl relations (7.1.3) we may write any element a of
A as a finite linear combination of elements of the form ft1...tn ·Wt1 . . .Wtn

where Wtk is a (generalised) Weyl element and ft1...tn ∈ Cyl∞ depend smoothly
on t1, . . . , tn. Hence, if Ωω is a common C∞-vector for all the πω(Y ), Y ∈ P

defined as the self-adjoint generators of the corresponding π(Wt), then all the
elements πω(a)Ωω ∈ Hω are common C∞-vectors for all the πω(Y ). By using
the commutation relations πω(Y )πω(f) = πω(Y · f) + πω(f)πω(Y ) we see that
by multiple differentiation with respect to the parameters tk at tk = 0 the most
general expressions we get are finite linear combinations of elements of the form
πω(f · Y1 . . . Yn).

We must show that the representation defined in Section 8.2 is the only one
satisfying the assumptions of Theorem 8.1.3 . The corresponding positive linear
functional is defined by

ω0(f Y1 . . . Yn) = δn,0μ0(f) (8.3.1)

for any f ∈ Cyl∞ in terms of the fluxes or equivalently

ω0(f W1 . . . Wn) = μ0(f) (8.3.2)

in terms of the Weyl elements. Equation (8.3.2) can actually be extended to all
of Cyl with respect to f . That ω0 satisfies all the requirements of Theorem 8.1.3
is obvious: semi-weak smoothness is manifest because ω0(Wn

t (S)) = 1 is trivially
smooth in t for all n, S. Moreover, the G-invariance reduces to G-invariance of
μ0, which we established in the previous chapter.
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Thus, our aim is to show that ω = ω0 once ω satisfies the assumptions of
Theorem 8.1.3 . We will break the proof into several steps. We will denote
‘semianalytic’ by s.a., not to be confused with self-adjoint, for the rest of this
section.

Step I

Lemma 8.3.1. Let ω be a G-invariant state on A, S a face, n a Lie(G)-valued,
s.a. scalar of compact support. Then [Yn(S)] = 0.

Here [a] := {a + b : b ∈ A s.t. ω(b∗b) = 0} denotes the equivalence class of a ∈
A with respect to the Gel’fand ideal of null vectors, see Section 29.1.

Proof: For any p ∈ supp(n), by the definition of a face S we find a neighbourhood
Up of p and a chart xp whose domain contains Up such that

xp(S ∩ Up) = {(x1, . . . , xD) ∈ RD : xD = 0; 0 < x1, . . . , xD−1 < 1} (8.3.3)

The Up define an open cover of supp(n) =: K which is compact and thus we find
a finite subcover UI , I = 1, . . . , N with associated charts xI . By the results of
Chapter 20 we may construct a s.a. partition of unity eI , that is supp(eI) ⊂ UI

and
∑N

I=1 eI = 1 on K. Hence n =
∑N

I=1 nI everywhere on σ where nI = n ·
eI . Furthermore, we may decompose nI =

∑
j n

j
Iτj where τj is a basis in the

Lie algebra of G and set nIj = nj
Iτj (no summation). It follows that [Yn(S)] =

∑N
I=1

∑dim (G)
j=1 [YnIj

(S)] and it suffices to show that [YnIj
(S)] = 0.

Consider for fixed I, j the functional

(nIj , n
′
Ij)S :=< [YnIj

(S)], [Yn′
Ij

(S)] >:= ω(YnIj
(S)∗ Yn′

Ij
(S)) (8.3.4)

which for n = n′ equals ||[YnIj
]||2. So we must show that (8.3.4) vanishes for

n = n′. We will show this for each fixed I, j separately.
(8.3.4) is obviously bilinear and, due to the reality of the n, n′, also symmetric.

Furthermore, it is invariant under s.a. diffeomorphisms ϕ which preserve S and
have support in UI . This follows immediately from the G-invariance of ω since,
dropping the label I, j

(nIj , n
′
Ij)S = ω

(
αϕ

[
YnIj

(S)∗Yn′
Ij

(S)
])

:= ω
(
YnIj◦ϕ−1(ϕ(S))∗Yn′

Ij◦ϕ−1(ϕ(S))
)

= ω(YnIj◦ϕ−1(S)∗Yn′
Ij◦ϕ−1(S)) = (nIj ◦ ϕ−1, n′

Ijϕ
−1)S (8.3.5)

Using the coordinate system xI associated with UI we set U ′
I = xI(UI), S′

I =
xI(S ∩ UI) = {x ∈ RD : xD = 0, 0 < x1, . . . , xD−1 < 1} and construct n′

Ij :=
nIj ◦ x−1

I : S′
I → R. Notice that while n may be defined everywhere on σ, as

far as Yn(S) is concerned we only know its restriction to S. In particular,
n′
Ij has compact support in S′

I . To extend n′
Ij to U ′

I , let f ′ : R → R be an
arbitrary s.a. function subject to f ′(0) := 1 and such that ñ′

Ij(x
1, . . . , xD) :=

n′
Ij(x

1, . . . , xD−1)f ′(xD) has compact support in U ′
I . Finally, for real t we define

ϕ′
t(x

1, . . . , xD) := (x1 + tñ′
Ij(x

1, . . . , xD), x2, . . . , xD) (8.3.6)
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We now show that there exists t0 > 0 such that for all 0 < t < t0 the map ϕ′
t

defines a s.a. diffeomorphism of RD which equals the identity outside of U ′
I and

preserves U ′
I . To see this we compute

det
(
∂ϕ′

t(x)
∂x

)
= 1 + t

ñ′
Ij(x)
∂x1

= 1 + tf ′(xD)
n′
Ij(x

1, . . . , xD−1)
∂x1

(8.3.7)

The function f ′∂n′
Ij/∂x

1 has compact support in U ′
I and is at least continu-

ous there. Thus, it is uniformly bounded whence there exists t0 > 0 such that
1 + tf ′∂n′

Ij/∂x
1 > 0 for all 0 < t < t0. Hence ϕ′

t is locally (i.e., within UI) a s.a.
(since f ′, n′

Ij , x
k
I are s.a.) diffeomorphism for 0 < t < t0 which is also globally

defined because it restricts to the identity outside of U ′
I by inspection. That it

preserves U ′
I follows also from the fact that it is a diffeomorphism, in partic-

ular a bijection, which is the identity outside of U ′
I , thus it must preserve the

complement.
Let now N ′

Ij be a s.a. function with support in U ′
I such that N ′

Ij(x) = x1 when-
ever x ∈ supp(ñ′

Ij). To construct such a function, one may use a s.a. partition of
unity. We compute

[(ϕ′
t)

∗N ′
Ij ](x

1, . . . , xD) = N ′
Ij(x

1 + tñ′
Ij(x

1, . . . , xD), x2, . . . , xD)

=
{
N ′

Ij(x
1 + tñ′

Ij(x), x2, . . . , xD) x ∈ supp(ñ′
Ij)

N ′
Ij(x

1, x2, . . . , xD) x �∈ supp(ñ′
Ij)

=
{

x1 + tñ′
Ij(x) x ∈ supp(ñ′

Ij)
N ′

Ij(x
1, x2, . . . , xD) x �∈ supp(ñ′

Ij)

=
{
N ′

Ij(x) + tñ′
Ij(x) x ∈ supp(ñ′

Ij)
N ′

Ij(x) x �∈ supp(ñ′
Ij)

= N ′
Ij(x) + tñ′

Ij(x) (8.3.8)

Let us denote by NIj , nIj , f, ϕt the pull-back by xI of N ′
Ij , n

′
Ij , f

′, ϕ′
t. Since xI is

a bijection and N ′
Ij , ñ

′
Ij have compact support in U ′

I , it follows that NIj , ñIj =
fnIj have compact support UI = x−1

I (U ′
I). We may thus extend them to all of

σ by setting them equal to zero outside of UI . Likewise, ϕt equals the identity
outside of UI and preserves UI for 0 < t < t0. Furthermore, (8.3.8) translates
into

(ϕt)∗NIj = NIj + tfnIj (8.3.9)

Notice also that [ϕ′
t(x)]D = xD preserves xD = 0, hence it preserves S′

I and there-
fore ϕt preserves SI = UI ∩ S. Since it is the identity outside of UI , ϕt and its
inverse are diffeomorphisms which preserve S. We may therefore apply (8.3.5)
to (8.3.9) and obtain

(NIj , NIj)S = (ϕ∗
tNIj , ϕ

∗
tNIj)S = (NIj + tfnIj , NIj + tfnIj)S

= (NIj + tnIj , NIj + tnIj)S
= (NIj , NIj)S + 2t(NIj , nIj)S + t2(nIj , nIj)S (8.3.10)
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where in the second step we used that f = 1 on SI since f ′ = 1 when xD = 0 and
in the third we used symmetry of (., .)S . Since (8.3.10) holds for all 0 < t < t0
we may divide by t > 0 and find

2(NIj , nIj)S + t(nIj , nIj)S = 0 (8.3.11)

for all 0 < t < t0. Subtracting equations (8.3.11) evaluated at 0 < t1 < t2 < t0
reveals (nIj , nIj)S = 0 which we intended to show. �

It is instructive to see how the semianalyticity of all the structures involved
went crucially into the proof: for instance, had we worked with analytical
diffeomorphisms, we would not have been able to establish the existence of an
analytical diffeomorphism ϕt with the properties displayed, because we would
have no control over what ϕt would do outside the domain of a chart. For
s.a. diffeomorphisms we can simply ‘switch off’ their action outside a compact
region, much like for smooth diffeomorphisms.

Step II

We already saw that the GNS Hilbert space is the closed linear span of vectors
of the form [fY1 . . . YN ], N = 0, 1, . . . where Yk are flux vector fields associated
with faces and f ∈ Cyl∞. Now by the GNS representation for N > 0 we have
[fY1 . . . YN ] = πω(fY1 . . . YN−1)[YN ] = 0 since [Y ] = 0 as we just showed. It fol-
lows that the state ω is already determined by its restriction to Cyl∞. Now we
make use of the following elementary result:

Lemma 8.3.2. Let Fun(X) be some unital ∗-subalgebra of the algebra of bounded
functions on some space X with pointwise operations which is closed under taking
square roots of non-negative elements. Then every positive linear functional Λ on
Fun(X) is automatically continuous with respect to the natural sup-norm ||.||∞
and Λ extends to the C∗-algebra completion Fun(X) of Fun(X).

Remarkably, there are no topological restrictions on X. The condition on the
square root closure is just to ensure that Λ(f) ≥ 0 for f ≥ 0 is equivalent with
Λ(|f |2) ≥ 0.

Proof: The proof is usually given for C∗-algebras of continuous functions
on compact spaces X [282, pp. 106, 107] but works also in our more
general situation. If f is real-valued then obviously −||f ||∞ ≤ f ≤ ||f ||∞
hence −||f ||∞Λ(1) ≤ Λ(f) ≤ Λ(1)||f ||∞ by positivity and linearity, that is,
|Λ(f)| ≤ Λ(1) ||f ||∞. If f is complex-valued and Λ(f) = reiφ then |Λ(f)| = r =
e−iφΛ(f) = Λ(e−iφf). We have 0 ≤ Λ(e−iφf) = Λ(�(e−iφf)) + iΛ(�(e−iφf)),
hence Λ(�(e−iφf)) = 0. Thus by the result established for real-valued functions
|Λ(f)| ≤ Λ(1) ||�(e−iφf)||∞ ≤ Λ(1) ||f ||∞ as claimed. �

We can apply Lemma 8.3.2 to the subalgebra Cyl∞ ⊂ Cyl and the restriction
Λ of ω to Cyl∞. By the bounded linear function theorem the functional Λ can
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then be extended, by continuity, to the algebra completion Cyl of Cyl∞ with
respect to the sup-norm. By the results of Section 6.2 Cyl is isometric isomorphic
to C(A) and7 by the results of Section 8.2 the functional Λ comes from a regular
Borel and probability measure μ on A. Now for f ∈ Cyl∞ we have

ω(|f |2) = ||[f ]||2Hω
= Λ(|f |2) = μ(|f |2) = ||f ||2

L2(A,dμ)
≤ ||f ||2∞ (8.3.12)

since Λ(1) = 1. Here we have used the GNS notation [a] = πω(a)Ωω of Section
29.1. It follows that the Hilbert space-norm topology of Hω on Cyl∞ is weaker
than the sup-norm topology on Cyl∞ so that f 	→ πω(f) can be extended
to Cyl. The Hilbert space Hω thus contains [Cyl]. (Notice that the Hilbert
space completion Hω of [Cyl] is non-trivial because every C(A) function is an
L2 function because continuous functions on compact spaces are uniformly
bounded, but this is not necessarily the case for L2 functions.)

Step III

We compute for f, f ′ ∈ Cyl∞

< [f ], [Yn(S)f ′] >ω = < [f ], [[Yn(S), f ′]] − [f ′Yn(S)] >ω=< [f ], [[Yn(S), f ′]] >ω

= īh < [f ], [Yn(S) · f ′] >ω

= ω(fYn(S)f ′) = ω([f, Yn(S)]f ′) + ω(Yn(S)ff ′)

= −īhω((Yn(S) · f)f ′) + ω(Yn(S)ff ′)

= −īhω((Yn(S) · f)∗f ′) + ω(Yn(S)∗ff ′)

= −īh < [Yn(S) · f ], [f ′] >ω + < [Yn(S)], [ff ′] >ω

= −īh < [Yn(S) · f ], [f ′] >ω (8.3.13)

where in the first step we used [f ′Yn(S)] = 0, in the second we used the com-
mutation relations, in the third we employed the defintion of the scalar product,
in the fourth we used the commutation relations again, in the fifth we employed
the adjointness relations and in the last we used [Yn(S)] = 0. This shows that
iπω(Yn(S)) is a symmetric operator and that πω(Yn(S))[f ] = īh[Yn(S) · f ]. In
terms of the measure μ in (8.3.12) this means that μ is invariant under the flow
generated by the Yn(S), that is, the divergence of Yn(S) with respect to μ van-
ishes.

Step IV

Given γ, in Lemma 8.4.1 we construct a linear combination Yγ(tγ) out of vector
fields of the form Yn0(Sv,e) or commutators thereof where n0 = const. on Sv,e.
Here Sv,e is a face contained in a compact set intersecting γ in v ∈ V (γ) and
which has the property to contain a beginning segment of e ∈ E(γ), b(e) = v

7 One might suspect that one only gets C∞(A) this way but this space is not complete, its

completion being C(A) by the Weierstrass theorem.
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and to intersect all other edges adjacent to v transversally in v, except possibly
for one other edge which is an analytic continuation of e.

We now claim that any of the vector fields Yγ(tγ) has vanishing divergence
with respect to the measure μ. For this it will be sufficient to show that any
vector field of the form [Yn(S), Yn′(S′)] has zero μ-divergence. However, this
follows from the already established symmetry of the πω(Yn(S))

< [f ], [[Yn(S), Yn′ ] · f ′] >ω= − < [[Yn(S), Yn′ ] · f ], f ′ >ω (8.3.14)

The corresponding Weyl operator πω(Wγ(tγ)), see (8.4.22), therefore simply
acts as πω(Wγ(tγ))[f ] = [Wγ(tγ) · f ]. By construction, it generates arbitrary left
translations on cylindrical functions over γ and is unitary. Hence the push-
forward measure μl = μ ◦ p−1

l , l = l(γ) is a left translation-invariant measure
on G|E(γ)|. Since G|E(γ)| is compact and μ is a probability measure, this measure
must be the product Haar measure by Theorem 31.1.4.

We conclude that μ is actually the uniform measure, hence [Cyl∞] ∼=
L2(A, μ0) = H0. This concludes the uniqueness proof.

Notice that we did not even use the full group G, only the subgroup Diffω
sa(σ).

However, it should be noted that a more desirable result would be if the repre-
sentation or state ω0 was already determined if it was regular with respect to the
fluxes, not only smooth. An extension of that sort has been achieved in [520],
however, it uses an additional assumption of a different kind whose physical
significance is unclear, so we refrain from displaying any of those details here.

8.4 Uniqueness proof: (3) irreducibility

The irreducibility proof must be made in terms of the exponentiated flux opera-
tors, that is, the Weyl elements rather than the fluxes themselves. The reason for
this can be explained already for the Weyl algebra of ordinary quantum mechan-
ics that we mentioned at the beginning of this chapter. By the Stone–von Neu-
mann theorem every irreducible, weakly continuous representation of the Weyl
algebra is unitarily equivalent to the Schrödinger representation. However, the
Schrödinger representation contains many invariant subspaces in the common
dense domain of the Heisenberg algebra generated by the unbounded self-adjoint
operators q̂, p̂ which exist thanks to weak continuity and Stone’s theorem. To
see this, consider a closed interval I and the set C∞

I (R) of C∞-functions which
vanish on R − I. It is clear that C∞

I (R) is left-invariant by any polynomial in the
q̂, p̂ and it is non-empty because it contains functions of the form (set I = [−a, a]
for simplicity) f(x) := exp(−1/(x− a)2 − 1/(x + a)2) for |x| ≤ a and f(x) = 0
for |x| ≥ a. Hence the Heisenberg algebra can never change the support of these
functions. On the other hand, (V (b)f)(x) = f(x + b) changes the support and
hence there is a chance that the Weyl algebra is represented in an irreducible
fashion. For the Hilbert space H0 and the representation π0 of A one can make a
similar argument on any cylindrical subspace by considering smooth functions on



8.4 Uniqueness proof: (3) irreducibility 253

the group which vanish outside a compact subset. The Weyl elements generate
arbitrary left translations which are transitive, hence only for the Weyl elements
is there a chance for irreducibility.

The proof that follows is based on [519] and is analogous to the original proof
by von Neumann for the Schrödinger representation of the standard Weyl algebra
[538]. A different proof is given in [538].

Before we prove the theorem, we first need two preparational results. Let γ

be a graph. Split each edge e ∈ E(γ) into two halves e = e′1 ◦ (e′2)
−1 and replace

the e’s by the e′1, e
′
2. This leaves the range of γ invariant but changes the set of

edges in such a way that each edge is outgoing from the vertex b(e′) = v ∈ V (γ)
(notice that by a vertex we mean a point in γ which is not the interior point of
a semianalytic curve so that the break points e′1 ∩ e′2 do not count as vertices).
We call a graph refined in this way a standard graph. Every cylindrical function
over a graph is also cylindrical over its associated standard graph so there is no
loss of generality in sticking with standard graphs in what follows.

With this understanding, the following statement holds.

Lemma 8.4.1. Let γ be a standard graph. Assign to each e ∈ E(γ) a vector
te = (tje)

dim (G)
j=1 and collect them into a label tγ = (te)e∈E(γ).

Then there exists a vector field Y (tγ , γ) in the Lie algebra generated by the
flux vector fields Yn(S) such that for any cylindrical function f = p∗γfγ over γ

we have

Yγ(tγ)p∗γfγ = p∗γ
∑

e∈E(γ)

tjeR
e
jfγ (8.4.1)

Proof: Any compact connected Lie group G has the structure G/Z = A× S

where Z is a discrete central subgroup, A is an Abelian Lie group and S is a
semisimple Lie group.

We will first construct an appropriate vector field Y j
e for each j and each e ∈

E(γ). The construction is somewhat different for the Abelian and non-Abelian
generators respectively so that we distinguish the two cases.

Abelian factor
Let j label only Abelian generators for this paragraph. Consider any e ∈ E(γ)
and take any compactly supported face Se which intersects γ only in an interior
point of e and such that the orientation of Se agrees with that of e2 where
e = e−1

1 ◦ e2, e1 ∩ e2 = Se ∩ γ. Then for any cylindrical function f = p∗γfγ we
have

Yj(Se)p∗γfγ = p∗γ
[
Rj

e2 −Rj
e1

]
fγ (8.4.2)

Due to gauge-invariance [Rj
e1 + Rj

e2 ]fγ = 0, thus

Y j
e p

∗
γfγ =

1
2
Yj(Se)p∗γfγ (8.4.3)

is an appropriate choice.
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Non-Abelian factor
Let j label only non-Abelian generators for this paragraph. Given γ select a
vertex v and one e ∈ E(γ) with b(e) = v. We will have to distinguish two cases:
the case where no e ∈ E(v) is (a segment of) the analytic extension through v of
another edge e′ ∈ E(v), and the case where at least one pair e, ẽ ∈ E(v) of edges
exists that are analytic extensions of one another through v. The latter case will
require some special consideration and therefore we begin with the:

First case
We will prove that in this case, for any e ∈ E(v), there exists an analytic surface
Sv,e through v such that

1. se ⊂ Sv,e for some beginning segment se of e, and the other edges e′ ∈
E(v), e′ �= e intersect Sv,e transversally in v.

2. For e′ ∈ E(v), e′ �= e we have e′ ∩ Sv,e = v, and for e′ �∈ E(v), e′ ∩ Sv,e = 0.

To start with, we note that if we can find a surface that satisfies (1), we can
always make it smaller in such a way that it will also satisfy (2). Therefore we
focus on (1): an analytic surface S is completely determined by its germ [S]v, that
is, the Taylor coefficients in the expansion of its parametrisation (we consider
the case D = 3, the case D ≥ 2 is similar)

S(u, v) =
∞∑

m,n=0

um vn

m! n!
S(m,n)(0, 0) (8.4.4)

Likewise, consider the germ [e]v of e

e(t) =
∞∑

n=0

tn

n!
e(n)(0) (8.4.5)

In order that se ⊂ Sv,e we just need to choose a parametrisation of S such that,
say, S(t, 0) = e(t) which fixes the Taylor coefficients

S(m,0)(0, 0) = e(m)(0) (8.4.6)

for any m. By choosing the range of t, u, v sufficiently small we can arrange that
se ⊂ S.

We now choose the freedom in the remaining coefficients to satisfy the addi-
tional requirements. We must avoid that for finitely many, say n, edges e′1, . . . , e

′
n

there is any beginning segment sk of e′k with sk ⊂ S. If sk was contained in S then
there would exist an analytic function t 	→ vk(t), such that sk(t) = S(t, vk(t)).
Notice that vk must be different from the zero function in a sufficiently small
neighbourhood around t = 0 as otherwise we would have sk = se, which is not
the case. For each k let nk > 0 be the first derivative such that v(nk)

k (0) �= 0. By
relabelling the edges we may arrange that n1 ≤ n2 ≤ . . . ≤ nN . Consider k = 1
and take the n1th derivative at t = 0. We find

s
(n1)
1 (0) = S(n1,0)(0, 0) + S(0,1)(0, 0)v(n1)

1 (0) (8.4.7)
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Since v
(n1)
1 (0) �= 0 we can use the freedom in S(0,1)(0, 0) in order to violate this

equation. Now consider k = 2 and take the (n2 + 1)th derivative. We find

s
(n2+1)
2 (0) = S(n2+1,0)(0, 0) + 2S(1,1)(0, 0)v(n2)

2 (0) + S(0,1)(0, 0)v(n2+1)
2 (0)

(8.4.8)

Since v
(n2)
2 (0) �= 0 we can use the freedom in S(1,1) in order to violate this equa-

tion. Proceeding this way we see that we can use the coefficients S(k−1,1)(0, 0)
in order to violate sk(t) = S(t, vk(t)) for k = 1, . . . , N .

Having constructed the surfaces Sv,e we can compute the associated vector
field applied to a cylindrical function over γ

Yj(Sv,e)p∗γfγ = p∗γ
∑

e′∈E(γ)−{e},b(e′)=v

σ(Sv,e, e
′)Rj

e′fγ (8.4.9)

where by construction |σ(Sv,e, e
′)| = 1 for any e′ �= e, b(e) = v. Taking the com-

mutator

[Yj(Sv,e), Yk(Sv,e)]p∗γfγ = fjklp
∗
γ

∑

e′∈E(γ)−{e},b(e′)=v

Rj
e′fγ (8.4.10)

Using the Cartan–Killing metric normalisation for the totally skew structure
constants fjklflmj = −δkm and writing

Rj
v :=

∑

e′∈E(γ), b(e′)=v

Rj
e′ (8.4.11)

we get

U j
e p

∗
γfγ := fjkl[Yk(Sv,e), Yl(Sv,e)]p∗γfγ = p∗γ

[
Rj

v −Rj
e

]
fγ (8.4.12)

Thus, if nv = |{e ∈ E(γ); b(e) = v}| denotes the valence of v

Y j
e p

∗
γfγ :=

⎧
⎨

⎩
−fjkl[Yk(Sv,e), Yl(Sv,e)]+

1
nv − 1

∑

e∈E(γ)

(fjkl[Yk(Sv,e), Yl(Sv,e)])

⎫
⎬

⎭
p∗γfγ

= p∗γR
j
efγ (8.4.13)

Second case
Now we return to the case where there is at least one pair of edges e, ẽ ∈ E(v) that
are (segments of) analytic continuations of each other through v. We will denote
the set of these special edges as P , and for e ∈ P , ẽ stands for its ‘partner’. We
start by observing that now, for e ∈ P , we cannot construct a surface Sv,e with
the property (1) as above, because if a beginning segment of e is contained in an
analytic surface (without boundary) then so is at least part of ẽ. We can, however,
still construct a surface Se,v such that se, sẽ ⊂ Sv,e for beginning segments se, sẽ
of e, ẽ, such that for e′ ∈ E(v), e′ �= e, ẽ; e′ intersect Sv,e transversally, and such
that (2) holds, with exactly the same method as above. For edges e ∈ E(v) − P ,
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we construct the analytic surfaces as above. Then with the definition U j
e :=

fjkl[Yk(Sv,e), Yl(Sv,e)], we find in analogy with (8.4.12):

U j
e p

∗
γfγ = p∗γ

{[
Rj

v −Rj
e −Rj

ẽ

]
fγ if e ∈ P

[
Rj

v −Rj
e

]
fγ if e ∈ E(v) − P

(8.4.14)

Consequently we can form the linear combination

V jp∗γfγ :=

⎛

⎝1
2

∑

e∈P

U j
e +

∑

e∈E(v)−P

U j
e

⎞

⎠ p∗γfγ (8.4.15)

= p∗γ

⎛

⎝1
2
|P | Rj

v−
∑

e∈P

Rj
e + (|E(v)|−|P |)Rj

v −
∑

e∈E(v)−P

Rj
e

⎞

⎠fγ (8.4.16)

= p∗γ

(
|E(v)| − 1

2
|P | − 1

)
Rj

vfγ (8.4.17)

Note that since |E(v)| ≥ |P |, the prefactor of Rj
v can at most be zero if |E(v)| =

2 = |P |. But that type of vertex is excluded due to our conventions. So we can
define

Ỹ j
e p

∗
γfγ :=

{

−U j
e +

(
|E(v)| − 1

2
|P | − 1

)−1

V j

}

p∗γfγ

= p∗γ

{(
Rj

e + Rj
ẽ

)
fγ if e ∈ P

Rj
efγ if e ∈ E(v) − P

(8.4.18)

We see that for e ∈ E(v) − P , Ỹ j
e is already what we need, and consequently we

set Y j
e := Ỹ j

e in these cases.
For e ∈ P , we observe that we can certainly construct an analytic surface S′

e

such that S′
e ∩ γ = v and which is intersected transversally by e. Choosing the

orientation of such a surface appropriately, we have

1
2
(
Yj(S′

e) + Ỹ j
e

)
= p∗γ

(
Rj

e + · · ·
)
fγ (8.4.19)

where ‘. . .’ stands for terms that contain derivatives only with respect to edges
other than e and ẽ. Therefore

Y j
e := fjkl

[
1
2
(
Yk(S′

e) + Ỹ k
e

)
, Ỹ l

e

]
p∗γfγ = p∗γR

j
efγ (8.4.20)

Thus for any configuration of edges beginning at any vertex v of γ we have now
constructed vector fields Y j

e that act as Rj
e on functions cylindrical on γ. Col-

lecting the vector fields Y j
e for the Abelian and non-Abelian labels j respectively

and contracting them with tje and summing over e ∈ E(γ) yields an appropriate
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vector field

Yγ(tγ) =
∑

e∈E(γ)

tejY
j
e (8.4.21)

�

Lemma 8.4.1 has the following important implication: the algebra P also con-
tains the vector field Yγ(tγ) and therefore A contains the corresponding Weyl
element

Wγ(tγ) := eYγ(tγ) (8.4.22)

Also, let us write Iγ = ({πe}, {me}, {ne})e∈E(γ) for a spin-network s = (γ, Iγ)
over γ. Denoting by Ts = Tγ,Iγ the corresponding spin-network function (where
we also allow trivial πe for any e) we define for any two ψ,ψ′ ∈ H0 the function

(tγ , Iγ) 	→ Mψ,ψ′(tγ , Iγ) :=< ψ, Tγ,Iγ Wγ(tγ)ψ′ >H0 (8.4.23)

We now exploit that for a connected Lie group the exponential map is
onto. Thus, there exists a region DG ⊂ Rdim (G) such that exp : DG → G;
t 	→ exp(tjτj) is a bijection. Consider the measure μ on DG defined by
dμ(t) = dμH(exp(tjτj)) where μH is the Haar measure on G. Finally, let Dγ =∏

e∈E(γ) DG and let Lγ be the space of the Iγ . We now define an inner product
on the functions of the type (8.4.23) by

(Mψ1,ψ′
1
,Mψ2,ψ′

2
)γ :=

∫

Dγ

dμ(tγ)
∑

Iγ

Mψ1,ψ′
1
(tγ , Iγ) Mψ2,ψ′

2
(tγ , Iγ) (8.4.24)

where dμ(tγ) =
∏

e∈E(γ) dμ(te).
The inner product of the type (8.4.24) is a crucial ingredient in an elemen-

tary irreducibility proof of the Schrödinger representation of ordinary quantum
mechanics [267,268] and we can essentially copy the corresponding argument. Of
course, we must extend the proof somewhat in order to be able to deal with an
infinite number of degrees of freedom. The following result prepares for that.

Lemma 8.4.2

(i) For any ψ1, ψ
′
1, ψ2, ψ

′
2 ∈ H0 we have

|(Mψ1,ψ′
1
,Mψ2,ψ′

2
)γ | ≤ ||ψ1|| ||ψ′

1|| ||ψ2|| ||ψ′
2|| (8.4.25)

(ii) For any ψ1, ψ
′
1, ψ2, ψ

′
2 ∈ H0,γ we have

(Mψ1,ψ′
1
,Mψ2,ψ′

2
)γ =< ψ2, ψ1 >H0 < ψ′

1, ψ
′
2 >H0 (8.4.26)

where H0,γ denotes the closure of the cylindrical functions over γ.



258 Step III: representation theory of A

Proof: We simply compute

(Mψ1,ψ′
1
,Mψ2,ψ′

2
)γ =

∫

Dγ

dμ(tγ)
∑

Iγ

∫

A
dμ0(A)

∫

A
dμ0(A′)Tγ,Iγ (A)Tγ,Iγ (A′)

×ψ1(A)[Wγ(tγ)ψ′
1](A)ψ2(A′)[Wγ(tγ)ψ′

2](A
′)

=
∫

Dγ

dμ(tγ)
∫

A
dμ0(A)

∫

A
dμ0(A′)[

∑

Iγ

Tγ,Iγ (A)Tγ,Iγ (A′)]

×ψ1(A)[Wγ(tγ)ψ′
1](A)ψ2(A′)[Wγ(tγ)ψ′

2](A
′)

=
∫

A
dμ0(A)

∫

A
dμ0(A′)

∫

Dγ

dμ(tγ)δγ(A,A′)

×ψ1(A)[Wγ(tγ)ψ′
1](A)ψ2(A′)[Wγ(tγ)ψ′

2](A
′) (8.4.27)

where we have defined the cylindrical δ-distribution

δγ(A,A′) =
∏

e∈E(γ)

δμH
(A(e), A′(e)) (8.4.28)

which arises due to the Plancherel formula

δμH
(g, g′) =

∑

π,m,n

Tπ,m,n(g) Tπ,m,n(g′) (8.4.29)

The interchange of integrals over A×A and the sum over Lγ in (8.4.27) is
justified by the Plancherel theorem which here is equivalent to the Peter and
Weyl theorem proved in Section 31.2.

(i) In order to evaluate the cylindrical δ-distribution in (8.4.28) we subdivide
the degrees of freedom A ∈ A into the set Aγ = A|γ and the complement Aγ̄ =
A−Aγ in the following sense: each of the functions f1, f

′
1, f2, f

′
2 is a countable

linear combination of spin-network functions Ts, each of which is cylindrical over
some graph γ(s). We may consider those functions as cylindrical over the graph
γ ∪ γ(s) and since the edges e ∈ E(γ) are holonomically independent, we can
express each edge ẽ ∈ E(γ(s)) as a finite composition of the edges of E(γ) and
some other edges e′ of γ(s) ∪ γ such that no segment of any of the e′ is a beginning
segment of one of the e. Thus, each Ts(A) depends on the A(e), e ∈ E(γ) and
some other A(e′) which are not finite compositions of the A(e). We can thus
write symbolically for any f ∈ H0

f(A) = F (A|γ̄ , A|γ) (8.4.30)

where the separation of the degrees of freedom is to be understood in the sense
just discussed, that is, A|γ ∈ Aγ , Aγ̄ ∈ Aγ̄ . It just means that when expanding
out inner products of L2 functions into those of spin-network functions, one
can perform the integrals over the degrees of freedom A(e) ∈ Aγ and A(ẽ) ∈ Aγ̄

independently. Given a function of the type (8.4.30) we define the measure on
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Aγ by μ0γ = μ0 ◦ p−1
γ and the (effective) measure on Aγ̄ by

∫

Aγ̄

dμ0γ̄(A|γ̄)

[∫

Aγ

dμ0γ(A|γ)F (A|γ̄ , A|γ)

]

:=
∫

A
dμ0(A)f(A) (8.4.31)

In order to perform concrete integrals of f ∈ L1(A, dμ0) over either Aγ or Aγ̄

we notice that all our occurring f are countable linear combinations of spin-
network functions. Thus either integral can be written as a countable linear
combination of integrals over spin-network functions Ts and then the prescription
is to integrate only either over the degrees of freedom A(e), e ∈ E(γ) or A(e′), e′ ∈
E(γ(s) ∪ γ) − E(γ) for each individual integral with the corresponding product
Haar measure. It follows that μ0 = μ0γ̄ ⊗ μ0γ is a product measure.8

We may therefore neatly split (8.4.31) as

(Mψ1,ψ′
1
,Mψ2,ψ′

2
)γ =

∫

Dγ

dμ(tγ)
∫

Aγ̄

dμ0γ̄(A|γ̄)
∫

Aγ̄

dμ0γ̄(A′
|γ̄)
∫

Aγ

dμ0γ(A|γ)

×Ψ1(A|γ̄ , Aγ)[Wγ(tγ)Ψ′
1](A|γ̄ , Aγ)Ψ2(A′

|γ̄ , Aγ)

× [Wγ(tγ)Ψ′
2](A

′
|γ̄ , Aγ) (8.4.32)

In order to evaluate the Weyl operators, consider a spin-network function Ts

cylindrical over γ(s) which we write in the form

Ts(A) = F
(
{A(e′)}e′∈E(γ∪γ(s))−E(γ), {A(e)}e∈E(γ)

)
(8.4.33)

Our concrete vector field Yγ(tγ) involves a finite collection of surfaces to which
the edges e ∈ E(γ) are already adapted in the sense that they are all of a definite
type (‘in’, ‘out’, ‘up’ or ‘down’) and we may w.l.g. assume that the same is true
for the e′. Then it is easy to see that the action of Yγ(tγ) on Ts is given by

Yγ(tγ)Ts = p∗γ(s)∪γ

⎡

⎣
∑

e′∈E(γ∪γ(s))−E(γ)

te
′

j (tγ)Rj
e′ +

∑

e∈E(γ)

tejR
j
e

⎤

⎦ F (8.4.34)

where te
′

j (tγ) is a certain linear combination of the tej depending on e′ and the
concrete surfaces Se, Sv,e used in the construction of Yγ(tγ). Since the beginning
segments of the e′, e are mutually independent, the corresponding vector fields
commute and it follows that

(Wγ(tγ)Ts)(A) = F
({

et
e′
j (tγ)τjA(e′)

}
e′∈E(γ∪γ(s))−E(γ)

,
{
et

e
jτjA(e)

}
e∈E(γ)

)

= F
(
{Wγ(tγ)A(e′)Wγ(tγ)−1}e′∈E(γ∪γ(s))−E(γ),

{Wγ(tγ)A(e)Wγ(tγ)−1}e∈E(γ)

)
(8.4.35)

8 That A = A|γ ×A|γ̄ and μ0 = μ0γ × μ0γ̄ can also be described more formally by using

projective language [519] but it is equivalent to our reasoning here.
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Consider now any L2 function ψ. Since it is a countable linear combination of
spin-network functions we can generalise (8.4.35) to

(Wγ(tγ)ψ)(A) = Ψ(Wγ(tγ)A|γ̄Wγ(tγ)−1,Wγ(tγ)A|γWγ(tγ)−1) (8.4.36)

where the crucial point is that for each tγ ∈ Dγ the map αtγ : A → A; A 	→
Wγ(tγ)AWγ(tγ)−1 is just some right or left translation. We can thus estimate
(notice that we can interchange the sequence of integration w.r.t. the factors of
a product measure)

|(Mψ1,ψ′
1
,Mψ2,ψ′

2
)γ | ≤

∫

Dγ

dμ(tγ)
∫

Aγ

dμ0γ(A|γ)

×
[∫

Aγ̄

dμ0γ̄(A|γ̄)|Ψ1(A|γ̄ , Aγ)| |Ψ′
1(αtγ (A|γ̄), αtγ (Aγ))|

]

×
[∫

Aγ̄

dμ0γ̄(A′
|γ̄)|Ψ2(A′

|γ̄ , Aγ)| |Ψ′
2(αtγ (A′

|γ̄), αtγ (Aγ))|
]

≤
∫

Dγ

dμ(tγ)
∫

Aγ

dμ0γ(A|γ) ||Ψ1(Aγ)|||γ̄ ||Ψ′
1(αtγ (Aγ))||γ̄

× ||Ψ2(Aγ)||γ̄ ||Ψ′
2(αtγ (Aγ))||γ̄ (8.4.37)

where we have used the Cauchy–Schwarz inequality applied to functions such as
Ψ1(Aγ) on L2(Aγ̄ , dμ0γ̄) defined by [Ψ1(Aγ)](A|γ̄) = Ψ1(A|γ̄ , Aγ). Here it was
crucial to note that due to the bi-invariance of the measure μ0γ̄ we have, for
example,
∫

Aγ̄

dμ0γ̄(A|γ̄)|Ψ′
1(αtγ (A|γ̄), αtγ (Aγ))|2 =

∫

Aγ̄

dμ0γ̄(A|γ̄)|Ψ′
1(A|γ̄ , αtγ (Aγ))|2

= ||Ψ′
1(αtγ (Aγ))||2γ̄ (8.4.38)

To see this, expand ψ′
1 into spin-network functions. Then the integral is of the

form
∞∑

m,n=1

z̄mzn

∫

Aγ̄

dμ0γ̄(A|γ̄)Tsm(αtγ (A)) Tsn(αtγ (A))

=
∞∑

m,n=1

z̄mzn

∫

Aγ̄

dμ0γ̄(A|γ̄)Tsm(αtγ (A))Tsn(αtγ (A))

=
∞∑

m,n=1

z̄mzn

∫

G|E(γ(sm)∪γ(sn)∪γ)−E(γ)|

⎡

⎣
∏

e′∈E(γ(sm)∪γ(sn)∪γ)−E(γ)

dμH(he′)

⎤

⎦

× Tsm

({
et

e′
j (tγ)τjA(e′)

}
,
{
et

e
jτjA(e)

})
Tsn

({
et

e′
j (tγ)τjA(e′)

}
,
{
et

e
jτjA(e)

})
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=
∞∑

m,n=1

z̄mzn

∫

G|E(γ(sm)∪γ(sn)∪γ)−E(γ)|

⎡

⎣
∏

e′∈E(γ(sm)∪γ(sn)∪γ)−E(γ)

dμH(he′)

⎤

⎦

× Tsm

(
{A(e′)},

{
et

e
jτjA(e)

})
Tsn

(
{A(e′)},

{
et

e
jτjA(e)

})

=
∞∑

m,n=1

z̄mzn

∫

Aγ̄

dμ0γ̄(A|γ̄)Tsm(A|γ̄ , αtγ (A|γ)) Tsm(A|γ̄ , αtγ (A|γ))

=
∫

Aγ̄

dμ0γ̄(A|γ̄)|Ψ′
1(A|γ̄ , αtγ (A|γ))|2 (8.4.39)

We now exploit that

αtγ (A|γ) =
{
et

e
jτjA(e)

}
e∈E(γ)

(8.4.40)

and introduce new integration variables A′(e) := g(te)A(e) where g(te) =
exp(tejτj). Since by definition

dμ(tγ) =
∏

e∈E(γ)

dμ(te) =
∏

e∈E(γ)

dμH(g(te)) (8.4.41)

we can estimate further

|(Mψ1,ψ′
1
,Mψ2,ψ′

2
)γ | ≤

∫

G|E(γ)|

∏

e∈E(γ)

dμH(ge)
∫

Aγ

dμ0γ(A|γ)

× ||Ψ1(A|γ)|||γ̄ ||Ψ′
1({geA(e)}e∈E(γ))||γ̄

× ||Ψ2(A|γ)||γ̄ ||Ψ′
2({geA(e)}e∈E(γ))||γ̄

=

[∫

Aγ

dμ0γ(A|γ)||Ψ1(A|γ)|||γ̄ ||Ψ2(A|γ)||γ̄
]

=

[∫

Aγ

dμ0γ(A′
|γ)||Ψ′

1(A
′
|γ)||γ̄ ||Ψ′

2(A
′
|γ)||γ̄

]

≤ || ||Ψ1||γ̄ ||γ || ||Ψ′
1||γ̄ ||γ || ||Ψ2||γ̄ ||γ || ||Ψ′

2||γ̄ ||γ
(8.4.42)

where we have used Fubini’s theorem and have again applied the Cauchy–
Schwarz inequality to functions in L2(Aγ , dμ0γ). But

|| ||Ψ1||γ̄ ||2γ =
∫

Aγ

dμ0γ(A|γ)| ||Ψ1(A|γ)||γ̄ |2

=
∫

Aγ

dμ0γ(A|γ)
∫

Aγ̄

dμ0γ̄(A|γ̄)|Ψ1(A|γ̄ , A|γ)|2

=
∫

A
dμ0(A)|ψ1(A)|2 = ||ψ1||2H0

(8.4.43)

so we get (8.4.25).
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(ii) If all functions in question are cylindrical L2-functions over γ then the
integrals over A|γ̄ are trivial and (8.4.32) simplifies to

(Mψ1,ψ′
1
,Mψ2,ψ′

2
)γ =

∫

Dγ

dμ(tγ)
∫

Aγ

dμ0γ(A|γ)

×Ψ1(Aγ)[Wγ(tγ)Ψ′
1](Aγ)Ψ2(Aγ)[Wγ(tγ)Ψ′

2](Aγ)

=
∫

Aγ

dμ0γ(A|γ)
∫

Aγ

dμ0γ(A′
|γ)Ψ1(Aγ)Ψ′

1(A′
γ)Ψ2(Aγ)Ψ′

2(A
′
γ)

=
[∫

A
dμ0(A)ψ2(A)ψ1(A)

] [∫

A
dμ0(A′)ψ′

1(A′)ψ′
2(A

′)
]

= < ψ2, ψ1 >H0 < ψ′
1, ψ

′
2 >H0 (8.4.44)

that is, (8.4.26). �

We may now complete the irreducibility part of the uniqueness Theorem 8.1.3
: suppose that the representation π0 of A is not irreducible, that is, not every
vector is cyclic. Thus, we find non-zero vectors ψ,ψ′ ∈ H0 such that

< ψ, aψ′ >= 0 ∀ a ∈ A (8.4.45)

Since the cylindrical functions lie dense in H0, for any ε > 0 we find a graph γ

and functions f, f ′ cylindrical over γ such that

||ψ − f || < ε, ||ψ′ − f ′|| < ε (8.4.46)

Notice that due to the Cauchy–Schwarz inequality (6.2.45) implies | ||ψ|| −
||f || | < ε hence ||ψ|| − ε ≤ ||f ||. Since ψ,ψ′ �= 0 we may assume ε < ||ψ||, ||ψ′||
so that

| ||ψ|| − ε| ≤ ||f ||, | ||ψ′|| − ε| ≤ ||f ′|| (8.4.47)

From (8.4.45) we have in particular that Mψ,ψ′(tγ , Iγ) = 0 for all tγ ∈ Dγ , Iγ ∈
Lγ , hence

0 = (Mψ,ψ′ ,Mψ,ψ′)γ
= (Mψ−f,ψ′ ,Mψ,ψ′)γ + (Mf,ψ′−f ′ ,Mψ,ψ′)γ + (Mf,f ′ ,Mψ−f,ψ′)γ

+ (Mf,f ′ ,Mf,ψ′−f ′)γ + (Mf,f ′ ,Mf,f ′)γ
= (Mψ−f,ψ′ ,Mψ,ψ′)γ + (Mf,ψ′−f ′ ,Mψ,ψ′)γ + (Mf,f ′ ,Mψ−f,ψ′)γ

+ (Mf,f ′ ,Mf,ψ′−f ′)γ + ||f ||2 ||f ′||2 (8.4.48)
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where (8.4.26) has been used. Using (8.4.47) and (8.4.25) we have

(||ψ|| − ε)2 (||ψ′|| − ε)2 ≤ ||f ||2 ||f ′||2

≤ ||ψ − f || ||ψ′|| ||ψ|| ||ψ′|| + ||f || ||ψ′ − f ′|| ||ψ|| ||ψ′||
+ ||f || ||f ′|| ||ψ − f || ||ψ′|| + ||f || ||f ′|| ||f || ||ψ′ − f ′||
≤ ε{||ψ′||2 ||ψ|| + (||ψ|| + ε) ||ψ|| ||ψ′||
+ (||ψ|| + ε) (||ψ′|| + ε) ||ψ′|| + (||ψ|| + ε)2 ||f ′||} (8.4.49)

Since this inequality holds for all ε ≤ ||ψ||, ||ψ′|| we can take ε → 0 and find

||ψ||2 ||ψ′||2 = 0 (8.4.50)

that is, either ψ = 0 or ψ′ = 0 in contradiction to our assumption. Hence π0 is
irreducible.

This completes the irreducibility proof and hence proves Theorem 8.1.3.
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Step IV: (1) implementation and solution of the
kinematical constraints

In this chapter we implement the kinematical constraints on the Hilbert space
H0. By kinematical we mean here the Gauß and spatial diffeomorphism con-
straints which will be the same for any background-independent gauge field the-
ory. The feature that distinguishes such different theories is the Hamiltonian
constraint which is the only one that depends on the Lagrangian of the classical
theory. The Hamiltonian constraint will be treated in a separate chapter. We
will also describe the complete set of solutions to the kinematical constraints
and derive an inner product on the combined solution space.

9.1 Implementation of the Gauß constraint

We do not really need to implement the Gauß constraint since we can work
directly with gauge-invariant functions (that is, one solves the constraint clas-
sically and quantises only the phase space reduced with respect to the Gauß
constraint). However, we will nevertheless show how to get to gauge-invariant
functions starting from gauge-variant ones by using the technique of refined alge-
braic quantisation outlined in Chapter 30.

9.1.1 Derivation of the Gauß constraint operator

We proceed similarly as in the case of the electric flux operator and start from
the classical expression

G(Λ) := −
∫

dDx[DaΛj ]Ea
j ≡ −E(DΛ) (9.1.1)

where DaΛj = ∂aΛj + f j
klA

k
aΛ

l is the covariant derivative of the smearing field
Λj . Notice that (9.1.1) is almost an electric field smeared in D dimensions except
that the smearing field DΛ depends on the configuration space. Nevertheless, the
vector field on A corresponding to it is given by −κβ/2νDΛ. Next we apply it to
Cyl(A) by first computing its action on the special functions φp (see the notation
in Section 6.3) and then use the chain rule for general cylindrical functions. In
order to compute its action on φp we must regulate it similarly to what we did for
the flux operators and then define νDΛ(φp) := limε→0 νDΛ(φε

p). Finally we hope
that the end result is again a cylindrical function which we may then extend to
A and thus derive a cylindrical family of hopefully consistent vector fields on A.
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We will not write all the steps, the details are precisely as for the regularisation
of P, just that the additional limit ε′ → 0 is missing. For the same reason a split
of p into edges of different type is not necessary because E is smeared in D

directions. One finds

νDΛ(φp) = βκ

∫ 1

0

dtṗa(t)(DaΛj)(p(t))hp([0,t])(A)
τj
2
hp([t,1])(A) (9.1.2)

Let us use the notation Λ = Λjτj and A(p(t)) = ṗa(t)Aj
a(p(t))τj/2. Using

[τj , τk] = 2fjk lτl we can then recast (9.1.2) into the form

νDΛ(φp) =
βκ

4

∫ 1

0

dthp([0,t])(A)
{

d

dt
Λ(p(t)) + [A(p(t)),Λ(p(t))]

}
hp([t,1])(A)

(9.1.3)

Now we invoke the parallel transport equation for the holonomy

d

dt
hp([0,t])(A) = hp([0,t])(A) ċ(t) ·A(p(t)) (9.1.4)

and use hp([t,1])(A) = hp([0,t])(A)−1hp(A). Then it is easy to see that (9.1.3)
becomes

νDΛ(φp) =
βκ

2

∫ 1

0

dt
d

dt

{
hp([0,t])(A)Λ(p(t))h(p([t,1])(A)

}

=
βκ

2
[−Λ(b(p))hp(A) + hp(A)Λ(f(p))] (9.1.5)

where we have performed an integration by parts in the last step. So indeed we
are lucky: (9.1.5) is a cylindrical function again. Let us write νΛ := −νDΛ, then
for any fl ∈ C∞(Xl) for any subgroupoid l = l(γ) we have

[νΛ(fl)](A) =
βκ

4

∑

e∈E(γ)

[Λ(b(e))A(e) −A(e)Λ(f(e))]AB(∂fl/∂A(e)AB)(A)

=
βκ

4

∑

e∈E(γ)

([
Λj(b(e))Rj

e − Λj(f(e))Lj
e

]
fl

)
(A) (9.1.6)

Finally we write this as a sum over vertices in the compact form

Gl(Λ)[fl] := νΛ(fl) =
βκ

4

∑

v∈V (γ)

Λj(v)

⎡

⎣
∑

e∈E(γ); v=b(e)

Rj
e −

∑

e∈E(γ); v=f(e)

Lj
e

⎤

⎦ fl

(9.1.7)

Hence we have successfully derived a family of vector fields Gl(Λ) ∈ V ∞(Xl)
for any l ∈ L. No adaption of the graph was necessary this time. Since Λj is
real-valued for compact G, it follows from our previous analysis that Gl(Λ) is
real-valued. Using the steps (a), (b) and (c) of Section 6.5 one quickly verifies
that it is a consistent family and that it is trivially μ0-compatible because it
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is divergence-free, since it is a linear combination of left- and right-invariant
vector fields. For the same reason, the associated momentum operator

Ĝl(Λ)[fl] =
iβ
2p

2

∑

v∈V (γ)

Λj(v)

⎡

⎣
∑

e∈E(γ); v=b(e)

Rj
e −

∑

e∈E(γ); v=f(e)

Lj
e

⎤

⎦ fl (9.1.8)

is essentially self-adjoint with dense domain C1(A).

9.1.2 Complete solution of the Gauß constraint

Using the Lie algebra of the left- and right-invariant vector fields on Xl given by
[
Rj

e, R
k
e′

]
= −2δee′f jk

lR
l,

[
Lj
e, L

k
e′

]
= 2δee′f jk

lL
l, [Rj , Lk] = 0 (9.1.9)

(e.g., ([Rj , Rk]f)(h) = ( ∂2

∂s∂s′ )s=s′=0f([es
′τk , esτj ]h)) we find

[Gl(Λ), Gl(Λ′)] =
(
βκ

4

)2 ∑

e∈E(γ)

{
Λj(b(e))Λ′

k(b(e))
[
Rj

e, R
k
e

]

+ Λj(f(e))Λ′
k(f(e))

[
Lj
e, L

k
e

]}

= −βκ/2G([Λ,Λ′]) (9.1.10)

where we have defined Λ(x) := Λj(x)τj/2. We see that the Lie algebra of Gl(Λ)
represents the Lie algebra Lie(G) for each l ∈ L separately and also represents
the classical Poisson brackets among the Gauß constraints, see Chapter 1. This
is already a strong hint that the condition Ĝ(Λ) = 0 for all smooth Λj really
means imposing gauge invariance.

Let us see that this is indeed the case. According to the programme of RAQ we
must choose a dense subspace of H0, which we choose to be D := Cyl∞(A). Let
f = [fl]∼ be a smooth cylindrical function, that is, fl ∈ C∞(Xl), then Ĝ(Λ)f =
p∗l (Ĝl(Λ)fl). We are looking for an algebraic distribution L ∈ D∗ such that

L(p∗l Ĝl(Λ)fl) = 0 (9.1.11)

for all Λj , l ∈ L, fl ∈ C∞(Xl). Since, given l, the smooth function Λ is still
arbitrary, we may restrict its support to one of the vertices of γ with l = l(γ)
and see that (9.1.11) is completely equivalent to

L

⎛

⎝p∗l

⎡

⎣
∑

e∈E(γ); v=b(e)

Rj
e −

∑

e∈E(γ); v=f(e)

Lj
e

⎤

⎦ fl

⎞

⎠ = 0 (9.1.12)

for any v ∈ V (γ), l ∈ L, fl ∈ C∞(Xl).
We now use the fact that any function in D = C∞(A) is a finite linear combi-

nation of spin-network functions Ts (or can be approximated by those). There-
fore, an element L ∈ D∗ is completely specified by the complex values L(Ts)
with no growth condition on these complex numbers (an algebraic distribution is
well-defined if it is definedpointwise in D). We conclude that any element L ∈ D∗
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can be written in the form

L =
∑

s∈S
Ls < Ts, . > (9.1.13)

where < ., . > denotes the inner product on L2(A, dμ0) and S denotes the set of
all spin-network labels. Now, first of all (9.1.12) is therefore completely equivalent
to

L

⎛

⎝p∗l(γ(s))

⎡

⎣
∑

e∈E(γ(s)); v=b(e)

Rj
e −

∑

e∈E(γ(s)); v=f(e)

Lj
e

⎤

⎦Ts

⎞

⎠ = 0 (9.1.14)

for any v ∈ V (γ(s)), s ∈ S where γ(s) is the graph that underlies s. Since the
operator involved in (9.1.14) leaves γ(s), �π(s) invariant and spin-network func-
tions are mutually orthogonal we find that

∑

s′∈S, γ(s′)=γ(s);�π(s′)=�π(s)

Ls′ < Ts′ ,

⎡

⎣
∑

e∈E(γ(s)); v=b(e)

Rj
e −

∑

e∈E(γ(s)); v=f(e)

Lj
e

⎤

⎦Ts >= 0

(9.1.15)

for any v ∈ V (γ(s)), s ∈ S. Effectively the sum over s′ is now reduced over all
�m,�n with me, ne = 1, . . . , dπe

for any e ∈ E(γ(s)) and is therefore finite. From
this it follows already that the most general solution L is an arbitrary linear
combination of solutions of the form < ψ, . > where ψ is actually normalisable.

Consider now an infinitesimal gauge transformation gt(x) = etΛj(x)τj for some
function Λj(x) with t → 0. Since G ∼= Gσ we may arrange that g = 1 at all ver-
tices of γ(s) except for v. Our spin-network function is of the form

Ts =

⎡

⎣
∏

e∈E(γ(s)); b(e)=v

fe(he)

⎤

⎦

⎡

⎣
∏

e∈E(γ(s)); f(e)=v

fe(he)

⎤

⎦Fs (9.1.16)

where Fs is a cylindrical function that does not depend on the edges incident at
v. Then under an infinitesimal gauge transformation the spin-network function
changes as

(
d

dt

)

t=0

λ∗
gtTs

=
(

d

dt

)

t=0

⎡

⎣
∏

e∈E(γ(s));b(e)=v

fe(gt(v)he)

⎤

⎦

⎡

⎣
∏

e∈E(γ(s));f(e)=v

fe(hegt(v)−1)

⎤

⎦Fs

=
(

d

dt

)

t=0

[
◦e∈E(γ(s));b(e)=v

(
Le
gt(v)

)∗] ◦
[
◦e∈E(γ(s));f(e)=v

(
Re

gt(v)−1

)∗]
Ts

= Λj(v)

⎡

⎣
∑

e∈E(γ(s));b(e)=v

Rj
e −

∑

e∈E(γ(s));f(e)=v

Lj
e

⎤

⎦Ts

= Gl(γ(s))(Λ)[Ts] (9.1.17)
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which proves that Gl(Λ) is the infinitesimal generator of λl
etΛ . It is therefore

clear that the general solution L is a linear combination of solutions of the form
< ψ, . > where ψ ∈ H0 is gauge-invariant. Strictly speaking, ψ has to be invariant
under infinitesimal gauge transformations only but since G is connected there is
no difference with requiring it to be invariant under all gauge transformations
(the exponential map between Lie algebra and group is surjective since there is
only one component, that of the identity).

We could therefore also have equivalently required that

L(λ∗
gf) = L(f) (9.1.18)

for all g ∈ G and all f ∈ D := C∞(A). In passing we recall that we have defined
in the previous section a unitary representation of G on H0 defined densely
on C(A) by Û(g)f := λ∗

gf . Let t �→ gt be a continuous one-parameter sub-
group of G, meaning that limt→0 gt(x) = g0(x) ≡ 1G for any x ∈ σ, meaning that
t �→ gtx := gt(x) is a continuous one-parameter subgroup of G for any x ∈ σ (if
gt is continuous at t = 0 then also at every s since limt→s gt = limt→0 gtgs = gs
since group multiplication is continuous). We claim that the one-parameter
subgroup of unitary operators Û(t) := Û(gt) is strongly continuous, that is,
limt→0 ||Û(t)ψ − ψ|| = 0 for any ψ ∈ H0. Since any Û(t) is bounded and C∞(A)
is dense in H0 it will be sufficient to show that strong continuity holds when
restricted to D. Also, strong continuity follows already from weak continu-
ity (i.e., < ψ, Û(t)ψ′ >→< ψ,ψ′ > for any ψ,ψ′ ∈ H0) since ||Û(t)ψ − ψ||2 =
2(||ψ||2 −�(< ψ, Û(t)ψ >). Since D is spanned by finite linear combinations
of mutually orthonormal spin-network functions (they are in fact smooth),
it will then be sufficient to show that < Ts, Û(t)Ts′ >→< Ts, Ts′ >= δss′ . If
s = (γ, �π, �m,�n) , s′ = (γ′, �π′, �m′, �n′) then a short computation, using that λg

leaves γ(s), �π(s) invariant, shows that

< Ts, Û(t)Ts′ >= δγ,γ′δ�π,�π′
∏

e∈E(γ)

[πe(gt(b(e)))m′
eme πe(gt(f(e))−1)]nen′

e
(9.1.19)

and since the matrix element functions are smooth, the claim follows. We con-
clude therefore from Stone’s theorem that for gt(x) = exp(tΛ(x)) the operator
Ĝ(Λ) is the self-adjoint generator of Û(t).

Finally we display the corresponding rigging map. Since G is a group, the
obvious Ansatz is

η(f) :=<

∫

G
dμH(g) < λ∗

gf, . > (9.1.20)

which, since λ∗
g preserves C(Cl), is actually a map D → D. Since μ0 is a proba-

bility measure we could therefore immediately take the inner product on H0 for
the solutions η(f). But let us see where the rigging map proposal takes us. By
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definition

< η(f), η(f ′) >η := η(f ′)[f ] =
∫

G
μH(g) < λ∗

gf, f
′ >

=
∫

G
μH(g)

∫

G
μH(g′)< λ∗

gf, λ
∗
g′f ′>=< η(f)†, η(f ′)† >

(9.1.21)

where in the second equality we have observed that < λ∗
gf, f

′ > is invariant
under gauge transformations of f ′ and η(f)† :=< .,

∫
G μH(g)λ∗

gf >. So, indeed
the gauge-invariant inner product is just the restricted gauge-variant inner prod-
uct. Finally, for any gauge-invariant observable we trivially have Ô′η(f) = η(Ôf).

9.2 Implementation of the spatial diffeomorphism constraint

Again we could just start from the fact that we have a unitary representation of
the diffeomorphism group already defined, but we wish to make the connection
to the classical diffeomorphism constraint more clear in order to show that the
representation defined really comes from the classical constraint. We will work
at the gauge-variant level in this section for convenience, however, we could
immediately work at the gauge-invariant level and all formulae in this section go
through with obvious modifications. The reason for this is that the Gauß con-
straint not only forms a subalgebra in the full constraint algebra but actually an
ideal, that is, since the diffeomorphism and Hamiltonian constraint are actually
gauge-invariant, the corresponding operators leave the space of gauge-invariant
cylindrical functions invariant. Hence one can solve the Gauß constraint inde-
pendently before or after solving the other two constraints.

9.2.1 Derivation of the spatial diffeomorphism constraint operator

The representation Û(ϕ) of Diff(σ) was densely defined on spin-network functions
as

Û(ϕ)Ts := Tϕ·s where

ϕ · s := (ϕ · e := ϕ(e), (ϕ · �π(s))ϕ(e) := πe, (ϕ · �m(s))ϕ(e) := me, (ϕ · �n(s))ϕ(e)

:= ne)e∈E(γ(s)) (9.2.1)

Let u be a semianalytic vector field on σ and consider the one-parameter sub-
group t → ϕu

t of Diffω
sa(σ) (semianalytic diffeomorphisms) determined by the

integral curves of u, that is, solutions to the differential equation ċu,x(t) =
u(c(t)), cu,x(0) = x with ϕu

t (x) := cu,x(t). The classical diffeomorphism con-
straint is given by

Va = Ha −Aj
aGj = 2

(
∂[aA

j
b]

)
Eb

j −Aj
a∂bE

b
j (9.2.2)
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Smearing it with u gives

V (u) =
∫

d3x(LuA
j)a(x)Ea

j (x) = E(LuA) (9.2.3)

where L denotes the Lie derivative. Since the constraint is again linear in
momenta we can associate with it a vector field βκνLuA on A which again
depends on A as well. Proceeding similarly as with the Gauß constraint we
find for its action on holonomies of smooth connections

νLuAφp =
∫ 1

0

dshp([0,s])(A)(LuA)(p(s))hp([s,1])(A) (9.2.4)

We claim that (9.2.4) equals
(

d

dt

)

t=0

hp

((
ϕu
t

)∗
A

)
(9.2.5)

To see this, one uses the expansion (ϕu
t )∗A = A + t(LuA) + O(t2) and the

fact that with p = p1 ◦ . . . ◦ pN we have hp = hp1 . . . hpN
with pk = p([tk−1, tk]),

0 = t0 < t1 < . . . < tN = 1, tk − tk−1 = 1/N . Denote δhpk
:= hpk

(A + δA) −
hpk

(A). Hence

hp(A + δA) − hp(A)

=
N∑

n=1

∑

1≤k1<...<kn≤N

(
hp1◦...◦pk1−1(A)

[
δhpk1

])(
hpk1+1◦...◦pk2−1(A)

[
δhpk2

])
. . .

×
(
hpkn−1+1◦...◦pkn−1(A)

[
δhpkn

])(
hpkn+1◦...◦pN

(A)
)

(9.2.6)

which holds at each finite N . Now using the formula hpk
(A) = P exp(A(pk))

where A(pk) =
∫
pk

Ajτj/2 we obtain

δhpk
= P

{
e[A+δA](pk) − eA(pk)

}
(9.2.7)

so that δhpk
is at least linear in δA and therefore in t for δA = (ϕu

t )∗A−A.
Thus, dividing (9.2.6) by t and taking the limit t → 0 we find
(

d

dt

)

t=0

hp

((
ϕu
t

)∗
A

)
=

N∑

k=1

hp1◦...◦pk−1(A)
[(

d

dt

)

t=0

hpk

((
ϕu
t

)∗
A

)]
hpk+1◦...◦pN

(9.2.8)

Finally we have hpk
(A + δA) − hpk

(A) = δA(pk) + O(1/N2) so that in the limit
t → 0 indeed (9.2.8) turns into (9.2.4).

Unfortunately, (9.2.4) is no longer a cylindrical function and therefore we can-
not construct a consistent family of cylindrically defined vector fields on A, in
other words, (9.2.4) cannot be extended to A. Of course for each s the func-
tions hp([0,s])(A) = A(p([0, s])) can be extended directly to A, however, LuA

only makes sense for smooth A. Moreover, we recall from Section 6.2.4 that the
measure μ0 is supported on connections A such that for any p ∈ P the function
s �→ A([0, s]) is nowhere continuous and therefore unlikely to be measurable with
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respect to ds. Thus, we are not able to define an operator that corresponds to
the infinitesimal diffeomorphism constraint.

The way out is the observation that the action of finite diffeomorphisms can be
extended to A. In fact, the identity νLu

hp(A) = ( d
dt )t=0hp((ϕu

t )∗A) suggests con-
sidering the exponentiation of the vector field νLuA which then gives the action
hp(A) �→ hp((ϕu

t )∗A). Since classically we can always recover the infinitesimal
action from the exponentiated one, we do not lose any information. Moreover,
we may consider general finite diffeomorphisms ϕ which unlike the ϕu

t are not
necessarily connected to the identity. Now, by the duality between p-chains and
p-forms we have for smooth A

hp(ϕ∗A) = Pe
∫
p
ϕ∗A = Pe

∫
ϕ(p) A = hϕ(p)(A) (9.2.9)

which is exactly as we defined the action of the diffeomorphism group in Section
8.2.5. In the form (9.2.9), it is clear that the finite action of Diffω

sa(σ) on A can
be extended to A when considering it as a map between homomorphisms. We
can also generalise it to semianalytic diffeomorphisms Diffω

sa(σ) not connected to
the identity. Hence

δ : Diffω
sa(σ) ×A → A; (ϕ,A) �→ δϕ(A) where [δϕ(A)](p) := A(ϕ(p)) (9.2.10)

This furnishes the derivation of the action (9.2.10) already defined in the previous
chapter from the classical diffeomorphism constraint. Notice that by construction
the diffeomorphism quantum constraint algebra is free of anomalies

Û(ϕ)Û(ϕ′)Û(ϕ−1)Û((ϕ′)−1) = Û(ϕ ◦ ϕ′ ◦ ϕ−1 ◦ (ϕ′)−1) (9.2.11)

9.2.2 General solution of the spatial diffeomorphism constraint

We have seen that we can define a unitary representation of Diffω
sa(σ) on H0

by (9.2.1) and that it is impossible to construct an action of the Lie algebra of
Diffω

sa(σ) on A. We will now see that this has a counterpart for the represen-
tation Û(ϕ): if there is a quantum operator V̂ (u) which generates infinitesimal
diffeomorphisms, then it would be the self-adjoint generator of the one-parameter
subgroup t �→ Û(ϕu

t ), that is, we would have Û(ϕu
t ) = eitV̂ (u). However, that gen-

erator exists only if the one-parameter group is strongly continuous by Stone’s
theorem, Theorem 26.7.3. We will now show that it is not strongly continuous. To
see this, take any non-zero vector field and find an open subset U ⊂ σ in which
it is non-vanishing. We find a non-trivial graph γ contained in U and an infinite
decreasing sequence (tn) with limit 0 such that the graphs ϕu

tn(γ) are mutu-
ally different. Take any spin-network state Ts with γ(s) = γ. Since spin-network
states over different graphs are orthogonal we have ||Û(ϕu

tn)Ts − Ts||2 = 2 for all
n, thus proving our claim. This small computation demonstrates once again how
distributional A in fact is: once a path just differs infinitesimally from a second
one, they are algebraically independent and a distributional homomorphism is
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able to assign to them completely independent values, there is no continuity at
all. This behaviour is drastically different from that of Gaußian measures and
is deeply rooted in the background independence of our formalism: the covari-
ance of a Gaußian measure depends on a background metric which is able to tell
us how far apart two points are. However, in a diffeomorphism-invariant theory
there is no distinguished background metric, in contrast, there are diffeomor-
phisms which, with respect to any background metric, can take the two points
as far apart or as close together as we desire, the positions of the two points are
not gauge-invariant.

The absence of an infinitesimal generator of diffeomorphisms is not necessarily
bad because we can still impose diffeomorphism invariance via finite diffeomor-
phisms, in fact finite diffeomorphisms are even better suited to constructing a
rigging map as we will see. However, it should be kept in mind that the passage
from the connected component of Diffω

0,sa(σ) of Diffω
sa(σ) to all of Diffω

sa(σ) is a
non-trivial step which is not forced on us by the formalism. Since the so-called
mapping class group Diffω

sa(σ)/Diffω
0,sa(σ) is huge and not very well understood

(see, e.g., [553–556]), to take all of Diffω
sa(σ) is at least the most practical option

then. Furthermore, one should stress once more that while entire analytic diffeo-
morphisms are not too bad (every smooth paracompact manifold admits a real
analytic differentiable structure which is unique up to smooth diffeomorphisms,
see, e.g., [525]) they are at least rather unnatural because the classical action
has smooth diffeomorphisms as its symmetry group and also because an entire
analytic diffeomorphism is determined already by its restriction to an arbitrar-
ily small open subset U of σ. In particular, an entire analytic diffeomorphism
cannot be the identity in U and non-trivial elsewhere. This is why the generali-
sation to Diffω

sa(σ) is forced on us: they are local in contrast to the entire analytic
ones.

On the other hand, there is an important difference between allowing semi-
analytic C(n0)-diffeomorphisms with n0 > 0 and n0 = 0 (piecewise analytic
homeomorphisms): we will see that in D = 3 vertices of valence five or higher
contain continuous diffeomorphism-invariant information, so called moduli, pro-
vided the diffeomorphisms are at least C(1) while these moduli can be changed if
we allow piecewise analytic homeomorphisms. Using homeomorphisms is attrac-
tive because then the diffeomorphism-invariant Hilbert space would be separa-
ble as advertised in [557, 558], on the other hand, some operators of the theory
such as the volume operator [425, 427, 428, 559] depend on some C(1) structure
and would therefore forbid us to use homeomorphisms, thus keeping the spa-
tially diffeomorphism-invariant Hilbert space Hdiff which we construct below,
non-separable. Fortunately, Hdiff is the uncountable (almost direct) sum over
the moduli of mutually isomorphic separable Hilbert spaces which appear to
be individually preserved by all diffeomorphism-invariant (also invariant under
the action of the Hamiltonian constraint) operators constructed so far and in
that sense are superselected. In other words, an irreducible representation of the
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algebra of diffeomorphism-invariant observables would pick one of these sectors
and which one is irrelevant because they are unitarily equivalent.

As we see, some fine points related to spatial diffeomorphisms still need to be
fixed within the formalism and hopefully these details will no longer be important
in the final picture of the theory in which diffeomorphisms of any differentiability
category should have at most a semiclassical meaning anyway. First steps are:
for a combinatorial extension of the diffeomorphism group using piecewise linear
structures, see [435,436]. For an extension to the full automorphism group of the
groupoid P, see [526,534]. See also Section 10.6.4 for an algebraic generalisation
independent of the manifold structure.

Let us then go ahead and solve the finite diffeomorphism constraint. We do this
for the case of semianalytic diffeomorphisms which have the important locality
property as compared with the entire analytic ones. Notice that under semiana-
lytic C(m)-diffeomorphisms, gauge-invariant two-vertices, at which the adjacent
edges meet in some C(n)-fashion with n ≥ m are to be identified with no vertex
at all. Hence, by the methods of RAQ we are looking for algebraic distributions
L ∈ D∗ with D = C∞(A) such that

L(Û(ϕ)f) = L(f) ∀ϕ ∈ Diffω
sa(σ), f ∈ D (9.2.12)

Here we have explicitly written out the invariance condition in terms of semian-
alytic diffeomorphisms. Since the span of spin-network functions is dense in D,
(9.2.12) is equivalent to

L(Û(ϕ)Ts) = L(Ts) ∀ϕ ∈ Diffω
sa(σ), s ∈ S (9.2.13)

In order to solve (9.2.12), recall from Section 9.1.2 that every element of D∗ can
be written in the form L =

∑
s Ls < Ts, . > where Ls are some complex numbers.

Then (9.2.13) becomes a very simple condition on the coefficients Ls given by

Lϕ·s = Ls ∀ϕ ∈ Diffω
sa(σ), s ∈ S (9.2.14)

Equation (9.2.14) suggests introducing the orbit [s] of s given by

[s] =
{
ϕ · s; ϕ ∈ Diffω

sa(σ)
}

(9.2.15)

and therefore (9.2.14) means that s �→ Ls is constant on every orbit. Obviously, S
is the disjoint union of orbits which motivates us to introduce the space of orbits
N whose elements we denote by ν. Introducing the elementary distributions
Lν :=

∑
s∈ν < Ts, . > we may write the general solution of the diffeomorphism

constraint as

L =
∑

ν∈N
cνLν (9.2.16)

for some complex coefficients cν which depend only on the orbit but not on the
representative. Notice that Lν(Ts) = χν(s) where χ denotes the characteristic
function.
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We still do not have a rigging map but the structure of the solution space
suggests we define

η(Ts) := η[s]L[s] (9.2.17)

for some complex numbers ην for each ν ∈ N and extend (9.2.17) by linearity to
all of D, that is, one writes a given f ∈ D in the form f =

∑
s fsTs with complex

numbers fs = 0 except for finitely many s and then defines η(f) =
∑

s fsη(Ts).
This way the map η is tied to the spin-network basis. The crucial question is
now whether the coefficients can be chosen in such a way that η satisfies all
requirements to be a rigging map.

First we demand that the coefficients η[s] are such that the rigging inner prod-
uct is well-defined. By definition

< η(Ts), η(Ts′) >η:= η(Ts′)[Ts] = η[s′]χ[s′](s) (9.2.18)

Thus, positivity requires that η[s] > 0. Imposing hermiticity then requires that

η[s′]χ[s′](s) = < η(Ts′), η(Ts) > = η(Ts)[Ts′ ] = η[s]χ[s](s′) (9.2.19)

Now both the right- and left-hand side are non-vanishing if and only if [s] = [s′]
so that (9.2.19) is correct with no extra condition on the η[s].

Notice that η is almost an integral over the diffeomorphism group: one could
have considered instead of η the following transformation

Ts �→
∑

ϕ∈Diffω
sa(σ)

< Û(ϕ)Ts, . > (9.2.20)

and the right-hand side is certainly diffeomorphism-invariant. The Haar mea-
sure that is being used here is a counting measure which is trivially translation-
invariant.

Unfortunately (9.2.20) does not even define an element of D∗ because there
are uncountably infinitely many semianalytic diffeomorphisms which leave γ(s)
invariant, simply because semianalytic diffeomorphisms can be chosen to be non-
trivial only in regions which do not contain the range of the graph γ(s) due to
locality. This is even true for entire analytic diffeomorphisms as one can show
[266] with more work.

In a sense then, η is a group averaging map in which these trivial action
diffeomorphisms have been factored out. These form a subgroup but not an
invariant one. Unfortunately, the corresponding coset depends on [s] so there is
no universal coset. Put differently, while one can find a subset (coset) Diffω

[s],sa(σ)
of Diffω

sa(σ) such that

η(Ts) = η[s]

∑

ϕ∈Diffω
sa,[s](σ)

< Û(ϕ)Ts, . > (9.2.21)
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(just choose once and for all a representative sν in ν and precisely one diffeo-
morphism that maps sν to a given s ∈ ν), unfortunately these cosets depend on
[s] so one cannot view (9.2.21) as a regularised rigging map.

On the other hand, the formal action of (9.2.20) on s′ with [s] �= [s′] van-
ishes. This justifies doing the group averaging in each of the Hilbert spaces
H[γ] separately where [γ] is the orbit of γ and H[γ] is the closed linear span
of SNWFs over γ′ ∈ [γ]. In order to do this appropriately we need to con-
sider diffeomorphism-invariant observables. Their hermiticity properties then will
impose further restrictions on the rigging map.

We call an operator Ô a strong observable if Û(ϕ)ÔÛ(ϕ)−1 = Ô. We call it a
weak observable if Ô′ leaves the solution space invariant, in other words

L(Û(ϕ)f) = L(f) ∀ ϕ ∈ Diffω
sa(σ) ⇒ [Ô′L](Û(ϕ)f) = L(Ô†Û(ϕ)f)

= L(Û(ϕ)−1Ô†Û(ϕ)f) = Ô′L(f) (9.2.22)

We first show that restricting attention to strong observables would lead to
superselection sectors. Namely, suppose that Ô is a densely defined, closed,
strongly diffeomorphism-invariant operator and consider any two spin-network
functions Ts, Ts′ with r(γ(s)) �= r(γ(s′)). Then by the above remark we find
an at least countably infinite number of semianalytic diffeomorphisms ϕn with
ϕn(γ(s)) = γ(s) but such that the ranges of the ϕn(γ(s′)) are mutually different.
Hence for any n

< Ts′ , ÔTs >=< Ts′ , Û(ϕn)−1ÔÛ(ϕn)Ts >=< Û(ϕn)Ts′ , ÔTs > (9.2.23)

Since the states Û(ϕn)Ts′ are mutually orthogonal and since

||ÔTs||2 =
∑

s′′∈S
| < Ts′′ , ÔTs > |2 ≥

∞∑

n=1

| < Û(ϕn)Ts′ , ÔTs > |2

= | < Ts′ , ÔTs > |2
∞∑

n=1

1 (9.2.24)

we conclude that < Ts′ , ÔTs >= 0. In other words, strongly diffeomorphism-
invariant, closed and densely defined operators cannot have matrix elements
between spin-network states defined over graphs with different ranges so that
the Hilbert space would split into mutually orthogonal superselection sectors.
If σ is compact, the total spatial volume would be an operator of that kind, it
actually preserves the graph on which it acts. More generally, operators which
are built entirely from electric field operators will have this property. However,
classically the theory contains many strongly diffeomorphism-invariant functions
which are not built entirely from electric fields but depend on the curvature of the
connection (for instance the Hamiltonian constraint) and hence, as operators, do
not necessarily leave the graph on which they act invariant (see the next chapter).
This means that such operators simply cannot be defined on H0 but must in fact
be constructed directly on the spatially diffeomorphism-invariant Hilbert space
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where graph (rather knot class) changing operators can be defined, an example
being the Master Constraint. Since we presumably need those graph-changing,
diffeomorphism-invariant operators in order to encode information about the
connection, very likely no superselection takes place [560].

As presently graph-changing spatially diffeomorphism-invariant operators have
not been constructed, we focus on the strongly diffeomorphism-invariant ones to
begin with. We now show that there exists a choice of the η[s] such that Ô′η(f) =
η(Ôf) at least for strongly invariant operators which then, by the general theory
of Chapter 30, implies that the reality conditions (Ô′)� = (Ô†)′ are satisfied
where � denotes the adjoint on diff .

To see this we must discuss the so-called graph symmetry groups. Let k ∈ [Γ]
be a graph orbit. Select a representative γk ∈ k and choose for each γ ∈ k a
semianalytic diffeomorphism ϕk,γ such that ϕk,γ(γk) = γ. Furthermore, consider
the subgroup Pk of the permutation group of the edges of γk such that for each
p ∈ Pk there exists at least one semianalytic diffeomorphism which preserves γk
as a set but permutes the edges among each other.1 For each p ∈ Pk fix such a
diffeomorphism ϕk,p. These permutation diffeomorphisms are important for the
following reason: let, for instance, γk be the figure-eight loop (with intersection)
and let e, e′ be its two edges. Then the orbit size of s = (γk, πe = πe′ ,me =
me′ , ne = ne′) is half of the orbit size of s′ with γ(s′) = γk but, for example,
πe �= πe′ . (In the gauge-invariant case choose me = ne, me′ = ne′ and sum over
me,me′ to get a gauge-invariant intertwiner.) This demonstrates that the orbit-
generating sets Diffω

[s],sa(σ) can have different sizes for [s] �= [s′] even if γ(s), γ(s′)
are diffeomorphic. The orbit size of [s] is the larger, the less symmetrically the
graph is charged with spin labels.

We now define for [γ(s)] = k

η(Ts) := η[s]T[s] := ηk
∑

γ∈k

∑

p∈Pk

< Û(ϕk,γ)Û(ϕk,p)Û(ϕk,γ(s))−1Ts, . > (9.2.25)

where ηk are positive numbers. It is clear that η[s] is just ηk times the ratio of
the orbit size of the least symmetric [s′] with [γ(s′)] = k divided by the orbit size
of [s], which is always a finite natural number.

1 The correspondence to the terminology used in [266] is as follows: given γ ∈ k let
IDiffω

γ,sa(σ) be the subgroup of Diffω
sa(σ) which maps γ to itself (‘isotropy group’) and let

TDiffω
γ,sa(σ) be the subgroup of IDiffω

γ,sa(σ) which maps each e ∈ E(γ) to itself (‘trivial

action subgroup’). This subgroup is a normal subgroup because for each graph isotropy ϕ2,
each trivial action isotropy ϕ1 and each e ∈ E(γ) we have ϕ2(e) ∈ E(γ) thus

ϕ2 ◦ ϕ1 ◦ ϕ−1
2 (e) = ϕ2 ◦ ϕ−1

2 (e) = e hence ϕ2 ◦ ϕ1 ◦ ϕ−1
2 is a trivial action isotropy. Then

Pk and the quotient group (rather than just a coset) GSγ := IDiffω
γ,sa(σ)/TDiffω

γ,sa(σ)

(‘graph symmetries’) are naturally isomorphic. In [266] one was working with the analytic
category and due to the non-locality of analytic structures had to work with equivalence
classes of maximal analytic extensions of graphs and in particular with graphs of type I
(there exists an analytic function which vanishes exactly on the maximal analytic extension
and nowhere else) or type II (such a function does not exist). In the semianalytic case these
subtleties drop out due to the locality properties of semianalytic structures.
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Let now Ô be a strong observable, then with k = [γ(s)] we have

< η(f), Ô′η(Ts) >η = [Ô′η(Ts)](f) = [η(Ts)](Ô†f)

= ηk
∑

γ∈k,p∈Pk

< Û(ϕk,γ)Û(ϕp)Û
(
ϕk,γ(s)

)−1
Ts, Ô

†f >

= ηk
∑

γ∈k,p∈Pk

< Û(ϕk,γ)Û(ϕp)Û
(
ϕk,γ(s)

)−1
ÔTs, f >

= < η(f), η(ÔTs) >η (9.2.26)

where in the last step we have used that ÔTs is a countable linear combination
of spin-network states Ts′ with γ(s) = γ(s′) on each of which the averaging is
performed in exactly the same way as on Ts. This was the point of making
(9.2.25) depend only on k and not on [s].

There are no additional conditions on ηk as far as non-graph-changing, strong
observables are concerned. It follows that the relative normalisations between
the η(Ts) are only determined for those s with the same [γ(s)]. The ambiguity is
encoded in the freedom to choose the positive numbers ηk. In order to fix those,
what we need is to study knot class-changing spatially diffeomorphism-invariant
operators and require that they be symmetric (if their classical counterpart is
real-valued). One expects that among the infinite number of inner products on
the space of solutions to the spatial diffeomorphism constraint a relatively small
number survives when implementing self-adjointness of operators corresponding
to real-valued, classical, strongly spatially diffeomorphism-invariant observables
which are knot class-changing as operators. See, for example, [561] for a system-
atic investigation in a simplified context.

One can question, however, why we bother about existence or non-existence
of a spatially diffeomorphism-invariant inner product at all. The reason is the
following: remember that the classical constraint algebra between the Hamilto-
nian constraint H(N) and diffeomorphism constraint �H( �N) respectively has the
structure

{ �H( �N), �H( �N ′)} ∝ �H([ �N, �N ′]),

{ �H( �N), H(N)} ∝ H( �N [N ]), {H(N), H(N ′)} ∝ �H(q−1(NdN ′ −N ′dN)) (9.2.27)

Thus, the Poisson Lie algebra of diffeomorphism constraints is actually a subal-
gebra (the first identity) of the full constraint algebra but it is not an ideal (the
second identity). It is therefore not possible to solve the full constraint algebra
in two steps by first solving the diffeomorphism constraint and then solving the
Hamiltonian constraint in a second step: as (9.2.27) shows, the dual Hamilto-
nian constraint operator must not leave the space of diffeomorphism-invariant
distributions invariant and it is therefore meaningless to try to construct an
inner product that solves only the diffeomorphism constraint. Rather, one has to
construct the space of solutions of all constraints first before one can tackle the
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issue of the physical inner product. The only way out of this fact and to make
use of Hdiff during the quantisation process as a carrier space of the constraint
operators is to replace the non-diffeomorphism-invariant Hamiltonian constraints
by an equivalent set of constraints which are spatially diffeomorphism-invariant.
This is the Master Constraint Proposal to which we turn in the next chapter.



10

Step IV: (2) implementation and solution of the
Hamiltonian constraint

We come now to the ‘Holy Grail’ of Canonical Quantum General Relativity, the
implementation and solution of the Hamiltonian constraint. It is the benchmark
which decides whether all the previous efforts were in vain or not. Without an
admissible implementation of the Hamiltonian constraint no progress can be
made and no reliable predictions of LQG are possible.

10.1 Outline of the construction

The Hamiltonian constraint is technically and conceptually much more difficult
than the kinematical constraints because:

Problem 1
The Hamiltonian constraint is tremendously non-linear.
Problem 2
The Dirac algebra D is not a Lie algebra due to the structure functions.

The first issue is bound to create UV problems while the second prohibits solving
the constraints by the method of refined algebraic quantisation.

Actually the new complex variables AC = Γ + iK,EC = −iE were originally
introduced precisely in order to deal with Problem 1. Namely the rescaled
Hamiltonian constraint

√
det(q)H ∝ Tr(FC [EC, EC]) is at least polynomial in

these variables. Moreover, the degree of this polynomial is only four, no worse
than for non-Abelian Yang–Mills theory. However, as already mentioned in
Chapter 5 there are two obstacles to using complex variables:

� Obstacle 1
All the machinery that we have used in order to arrive at H0 makes crucial
use of the fact that the connection is real-valued so that the corresponding
holonomies are valued in a compact gauge group. To date there is no repre-
sentation theory available for the case of a non-compact gauge group, in this
case SL(2,C). By this we mean that, while it is actually possible to define
positive linear functionals on the corresponding spaces of cylindrical func-
tions (see, e.g., [562] and [456]) none of them is a representation space for
the corresponding ∗-algebra which must implement the non-polynomial rela-
tion A + Ā = 2Γ(E). Hence, non-polynomiality enters through the backdoor.
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� Obstacle 2
It turns out that it is impossible, on general grounds, to construct a UV-
finite, background-independent operator-valued distribution corresponding to√

det(q)H. The reason is that the rescaled Hamiltonian constraint is a den-
sity of weight two while we will see that only densities of weight one have a
chance to result in well-defined operators. Thus, one is forced to work with the
unrescaled original, density one-valued, Hamiltonian constraint H. However,
H is not polynomial and hence the whole virtue of the complex variables is
questioned. In fact, all the solutions to the Hamiltonian constraint which were
constructed in the late 1980s and early 1990s were only formally solutions, the
result of the calculation was of the form 0 · ∞ and hence vanishes only at finite
regularisation which, however, introduces a background.

There are two proposals to deal with Obstacle 1:

Proposal 1
One works with real rather than complex connections and thus simplifies the
representation problem as has been pointed out in [310,311].
Proposal 2
One tries to give rigorous meaning to the Wick transform [315] which maps us
from spaces of real connections to spaces of complex connections while automat-
ically implementing the correct reality conditions. We will describe this briefly
in a later subsection.

However, both proposals still do not cure Obstacle 2. Therefore, currently
complex variables are somewhat disfavoured compared with the real variables
for which at least we can use the results from steps I, II, III.

Thus we are back to both problems mentioned above, where it is understood
that we will be using real-valued variables from now on. The idea to solve the
first problem is to exploit spatial diffeomorphism invariance: in a background-
independent theory such as LQG it is a priori meaningless to talk about ‘short’
and ‘long’ distances because these notions depend on a (spatial) background met-
ric. In other words, short and long distances are fundamentally1 spatially diffeo-
morphism equivalent. Therefore, there should not be any ultraviolet divergence
if we manage to implement the Hamiltonian constraint on the Hilbert space Hdiff

of spatially diffeomorphism-invariant states. That, however, is again prohibited
by the structure of the algebra D which imposes that the spatial diffeomorphism
constraints do not form an ideal, or in other words, that the Hamiltonian con-
straint operator must not leave the Hilbert space Hdiff invariant. In order to still

1 This does not mean that we cannot talk about short and long distances at all. It just
means that this is a background-dependent concept. Thus, in order to make contact with
these notions we must construct a physical semiclassical state which approximates a given
background 4-metric and then we can talk about physical spatial distances between, say,
lumps of matter. However, these physical distances have nothing to do with the
kinematical, coordinate distances that are important for the UV behaviour of the operator
algebra and which in turn are gauge-dependent.



10.1 Outline of the construction 281

use spatial diffeomorphism invariance as a UV regulator one therefore has to
proceed differently.

Solution 1A
The first solution to Problem 1 is to implement regulated Hamiltonian operators
Ĥε(N) on the kinematical Hilbert space H0 and to use an operator topology
which uses spatially diffeomorphism-invariant states and in which these nets of
regulated operators converge as we remove the regulator ε. There is a natural
operator topology which suggests itself: recall that a net Ôε of (unbounded)
operators on a Hilbert space H with common dense domain D is said to converge
in the weak ∗ operator topology to an operator Ô with dense domain D provided
that l[(Ôαf)] converges to l[(Ôf)] for all f ∈ D and l ∈ D∗ where D∗ is the
algebraic (i.e., not necessarily bounded) linear functional on D. Now we have seen
in the previous chapter that the solutions to the diffeomorphism constraint are
elements of D∗ where D is the dense, finite linear span of spin-network functions.
Thus, in order to make use of Hdiff we are naturally led to consider the weak
∗-topology for the Ĥε(N) where D∗ is restricted to the spatially diffeomorphism-
invariant subspace D∗

diff ⊂ D∗ and it turns out that this actually works. Moreover,
the operators Ĥ(N) on H0 are consistent in the sense that their commutator
annihilates the elements of D∗

diff , that is, l([Ĥ(N), Ĥ(N ′)]f) = 0 for all f ∈ D
and l ∈ D∗

diff as it should according to the algebra D since {H(N), H(N ′)} is
proportional to a spatial diffeomorphism constraint. The way the calculation
works is actually interesting because the generator of spatial diffeomorphisms
does not exist as we have seen in the previous chapter. Hence the only way that
l([Ĥ(N), Ĥ(N ′)]f) = 0 can hold is if [Ĥ(N), Ĥ(N ′)]f is proportional to a finite
linear combination of terms of the form (U(ϕ) − 1)f ′ and this is precisely what
happens.

Solution 1B
The second solution to Problem 1 is to use the Master Constraint Programme
(MCP), the classical part of which was used in Section 2.1 already. Basically
one replaces the infinite number of Hamiltonian constraints by a single Master
Constraint which is the weighted sum (actually integral) of the squared Hamil-
tonian constraints. The weight is carefully chosen in such a way that the Master
Constraint is spatially diffeomorphism-invariant. Since, as we show in Chap-
ter 30, the Master Constraint encodes the same reduced phase space as the infi-
nite number of Hamiltonian constraints, no relevant information is lost and we
are now able to implement the Master Constraint operator M̂ on Hdiff . It turns
out that the same mechanism that makes the Ĥε(N) converge in the aforemen-
tioned topology, that is, background independence, leads to a UV-finite Master
Constraint operator on Hdiff .

Hence Problem 1 mentioned above can be successfully dealt with and so we
managed to resolve both Obstacle 1 and Obstacle 2 in a single stroke. We will
display both Solutions 1A, 1B in this chapter. The second solution, however,
is preferred in the sense that it automatically leads to an existence result for
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the physical Hilbert space which only uses the spectral theory of the Master
Constraint operator. This is out of reach with Solution 1A due to Problem 2
mentioned above. For both methods it is possible to systematically construct a
huge class of solutions to all constraints, but only Solution 1B provides us with
an induced physical inner product on the space of these solutions and a new
handle on Dirac observables. It follows that Problem 2 can also be dealt with.

While this is promising, it should be pointed out that this does not yet mean
that the mathematical construction of LQG is completed. The reason for this is
three open issues.

Issue 1
We have seen that < ., . >diff is ambiguous due to the unspecified normalisation
of the η(Ts). This ambiguity carries over to < ., . >phys.
Issue 2
The limit of the regularisations of both Ĥ(N) and M̂ is not unique, they depend,
not surprisingly, on certain spatially diffeomorphism-inequivalent characteristics
that survive the removal of the regulator, as we will see.
Issue 3
Also the inner product < ., . >phys can be fixed only if one insists on an
irreducible representation of the algebra of Dirac observables. Hence, before we
have these at our disposal, < ., . >phys is ambiguous just like < .,>diff .

Hence for any given choice of < ., . >diff , M̂ we obtain a different induced phys-
ical Hilbert space Hphys with induced inner product < ., . >phys. The correct
< ., . >diff will be selected by implementing a suitable algebra of self-adjoint
and spatially diffeomorphism-invariant graph-changing operators which are clas-
sically real-valued. The correct M̂ will be selected by constructing semiclassical
states on Hdiff with respect to which M̂ has admissible expectation values and
with respect to which the semiclassical sector of Hphys captures classical GR.
Hence these issues will be solved in step V.

To summarise, while not all the problems with the Hamiltonian constraint
have been solved yet, not only is there a large class of consistent proposals but
moreover we have explicit control over the freedom involved and for each possible
choice we know what the physical Hilbert space is. Hence it is fair to say that step
IV of the programme is completed while the restriction of the amount of freedom
is reserved for step V. This should be contrasted with the situation before the
mid-1980s when one could not even complete step III of the programme.

10.2 Heuristic explanation for UV finiteness due to
background independence

Looking at the explicit, complicated expression of the Hamiltonian constraint
it is truly astonishing, and even more so for the Master Constraint, that one
can make sense out of it at all. Such a result would not hold in a Fock space
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representation. The underlying reason is the manifest background independence
of the LQG approach which by definition excludes the background-dependent
Fock space representations. In this section we give a heuristic explanation before
we go into mathematical details: there is a very simple, geometric mechanism at
work which directly relies on background independence.

It is simplest to exhibit this mechanism by the example of Einstein–Klein–
Gordon theory, see Chapter 12 for more details on matter coupling. The matter
phase space is determined by a canonically conjugate pair (φ, π) with non-trivial
equal time Poisson brackets {π(x), φ(y)} = λδ(x, y) and the kinetic matter con-
tribution to the Hamiltonian constraint is

HKG
kin (N) =

1
2λ

∫

σ

d3xN
π2

√
det(q)

(10.2.1)

where N is the lapse test function. We take φ to be dimensionless and hence
	2s := h̄λ has dimension cm2. For simplicity we disregard the potential term and
the Einstein–Hilbert term to which the subsequent analysis equally applies.

Crucial for what follows is that the function x �→ π(x), in contrast to x �→ φ(x),
is not a scalar on σ but rather a scalar density of weight one which transforms
like

√
det(q) under diffeomorphisms of σ. This is reflected, for example, in the

Poisson bracket {π(x), φ(y)} because the δ-distribution δ(x, y) on σ is a scalar
density of weight one in x and a scalar in y. Consequently, in quantum theory
the density weight finds its way into the associated canonical commutation rela-
tions of the corresponding operator-valued distributions [π̂(x), φ̂(y)] = i	2sδ(x, y),
any representation of which must implement the density weight of π,

√
det(q).

Notice that the integrand of (10.2.1) comes out automatically with density weight
one as is required by any background-independent theory that derives from a
diffeomorphism-invariant action on M .

We will now compare ordinary QFT and LQG in the way they quantise
(10.2.1).

1. Background-dependent ordinary QFT
We choose Minkowski spacetime (M, g) = (R4, g0) with g0 = diag(−1, 1, 1, 1)
as a background. Then (10.2.1) becomes the kinetic Klein–Gordon energy on
Minkowski space

HKG
kin,0 =

1
2λ

∫

σ

d3xπ2 (10.2.2)

In ordinary QFT we quantise this functional on Fock space HF and find the
usual normal ordering correction

ĤKG
kin,0− : Ĥkin,0 : =

h̄

4

∫

R3
d3x (

√
−Δxδ(x, y))x=y (10.2.3)

where Δ = δab∂a∂b is the Laplacian on flat Euclidean space which enters the
definition of the annihilation operators â = [ 4

√
−Δφ̂− i( 4

√
−Δ)−1π̂]/(

√
2	2s).

Expression (10.2.3) explicitly displays the short distance singularity as x → y.
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(The potential term would give the same singularity.) The presence of the sin-
gularity is not surprising on geometrical grounds because π̂(x)2 is a density
of weight two which transforms as the ill-defined expression δ(x, 0)2. Notice
that subtractions of the vacuum energy are not allowed in LQG: first of all
it contributes to the cosmological constant term and therefore cannot be dis-
carded, second it evidently depends on a background metric and hence is not
allowed.

2. Background-independent LQG
This time we have to keep the field qab in (10.2.1) dynamical and we must turn
it into an operator. This has two consequences: first, the net density weight of
the integrand of (10.2.1) remains unity. Indeed, switching off gravity by locking
the dynamical metric field qab at the fixed value q0

ab = δab as in (10.2.2) is a
crime from a geometrical point of view because one has replaced the scalar
density

√
det(q) of weight one by a constant of density weight zero, a drastic

modification of the geometrical character of (10.2.1) which is responsible for
the singularity (10.2.3) as we will show. Second, for the matter sector we
cannot use a Fock space representation because HF is background-dependent,
for example, through the Laplacian which enters the annihilation operators.

Consequently, in LQG entirely new, background-independent representa-
tions appear. Skipping the mathematical details, which we supply later, they
can be described as follows. The matter Hilbert space HKG is a space of cer-
tain square integrable functionals, on the space of scalar fields φ, of the form
ψKG
S [φ], depending on φ only through the field values φ(v), v ∈ S where S is

an arbitrary finite set of points v of σ. Similarly, the Hilbert space HE for the
gravitational degrees of freedom consists of certain square integrable function-
als, on a space of (SU(2)) connections A, of the form ψE

γ [A], depending on A

only through the holonomies A(e), e ∈ γ where γ is an arbitrary finite set of
paths, that is a graph, in σ. The operator-valued distributions corresponding
to π(x),

√
det(q)(x) are respectively represented by

π̂(x)ψKG
S = i	2s

∑

v∈S

δ(x, v) Ŷ (v)ψKG
S

√̂
det(q)(x)ψE

γ = 	3P
∑

v∈V (γ)

δ(x, v)V̂vψ
E
γ (10.2.4)

Here Ŷ (v) = ∂/∂φ(v) is a scalar operator on HKG, V (γ) denotes the set of
vertices (endpoints of paths) of γ and V̂v is a local, self-adjoint, positive,
dimensionless, scalar operator on HE which is closely related to the volume
operator of LQG. Notice that in (10.2.4) the distributional features are neatly
separated from the non-distributional ones and the density weight is explicit
on both sides of the equations. Finally, the Hilbert space of the coupled sys-
tem is the subspace of HEKG = HE ⊗HKG consisting of states of the form
ψE
γ ⊗ ψKG

V (γ) where the automatic restriction S = V (γ), which can be derived,
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implements the physical fact that matter can be excited only in regions with
non-zero volume.

The existence of a UV singularity as in (10.2.3) is tested by formally insert-
ing (10.2.4) into (10.2.1) resulting in (these heuristics can be justified by a
rigorous background-independent regularisation procedure, see Chapter 12).

ĤKG
kin (N)ψE ⊗ ψKG

= −mP

(
�s
�P

)2 ∑

v∈V (γ)

∫

σ
d3x

⎡

⎢⎢⎢
⎣

1

V̂v

1

δ(x, v)
︸ ︷︷ ︸

↑

ψE
γ

⎤

⎥⎥⎥
⎦
⊗
[
δ(x, v)
︸ ︷︷ ︸

↑
︸ ︷︷ ︸

Cancellation

δ(y, v)Ŷ (v)Ŷ (v)ψKG
V (γ)

]
y→x

(10.2.5)

where mP =
√
h̄/G is the Planck mass and 1/V̂v is defined by the spectral

theorem.
Formula (10.2.5) precisely unveils the regularising mechanism of quantum

gravity: the matter part of (10.2.5), as before, displays the short distance
singularity stemming from the product of two densities of weight one, hence
‘nothing is swept under the rug’. However, one of these δ-distributions in
the numerator coming from matter gets precisely cancelled by the one in the
denominator coming from geometry, leaving us with only one δ-distribution,
correctly accounting for the fact that the net density weight of the integrand
is +1, which is an automatic feature of any background-independent theory.
The integral can then be performed, resulting in the finite expression

ĤKG
kin (N)ψE ⊗ ψKG = −mP

(
	s
	P

)2 ∑

v∈V (γ)

[
1
V̂v

ψE
γ

]
⊗
[
Ŷ (v)2ψKG

V (γ)

]
(10.2.6)

the zero modes of V̂v being taken care of in the rigorous derivation.

The finiteness result (10.2.6) is quite remarkable because, in a formal Fock space
quantisation of the gravitational sector using perturbations of the Minkowski
metric, the highly interacting operator corresponding to (10.2.1) would have
been hopelessly divergent. Indeed, (10.2.6) is a non-perturbative result because
the eigenvalues of (10.2.6) scale with 	−3

P which is not analytic in Newton’s
constant and in fact the short distance singularity is recovered in the G → 0,
that is, 	P → 0 limit.

In summary, in LQG there is a simple, geometrical mechanism, directly relying
on background independence, which avoids certain short distance singularities.
This does not prove that LQG is ultraviolet finite because the above calculations
are not carried out at the level of physical states. However, LQG here succeeds
where every other approach has failed so far, which can be taken as a promising
hint.

We will now make these heuristics precise, following [252,253,315,325,437–439].
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10.3 Derivation of the Hamiltonian constraint operator

The importance of the density weight spelt out in the previous section was
noted by many working on formal solutions to the Hamiltonian constraint
(see, e.g., [344–349, 563–566] and references therein). In order to solve the asso-
ciated problem with the density two-valued rescaled constraint H

√
det(q) even

multiplicative renormalisations were considered, that is, one multiplies the oper-
ator by a regulator which vanishes in the limit. While this removes the back-
ground dependence one now has a quantum operator whose classical limit is
zero.

Another suggestion was to take the square root of the Hamiltonian constraint
H̃ since this reduces the density weight to one and to quantise this square root
(see [567], in particular in connection with matter coupling [568,569]). However,
since H̃ is famously indefinite it is unclear how to define the square root of an
infinite number of non-self-adjoint, non-positive and non-commuting operators,
moreover, classically the square root of a constraint has an ill-defined Hamilto-
nian vector field and therefore does not generate gauge transformations.

A brute force method finally to remove the singularities is to go to a lattice
formulation but the problem must undoubtedly reappear when one takes the
continuum limit (see, e.g., [570,571] and references therein).

For those reasons, the factor 1/
√

det(q) in H compared with H̃ =
√

det(q)H
is, in fact, needed and one cannot work with the rescaled constraint. Now sur-
prisingly, by means of a novel quantisation technique the non-polynomial pref-
actor can be absorbed into a commutator between well-defined operators. Since
a commutator is essentially a derivation one can intuitively understand that this
operation will express a denominator in terms of a numerator which has a better
chance of being well-defined as an operator. Even more is true: the new tech-
nique turns out to be so general that it applies to any kind of field theory for
which a Hamiltonian formulation exists [437–443]. The series of these papers is
entitled ‘Quantum Spin Dynamics (QSD)’ for the following reason: the Hamilto-
nian constraint Ĥ acting on a spin-network state creates and annihilates the spin
quantum numbers with which the edges of the underlying graph are coloured. On
the other hand, the ADM energy surface Hamiltonian operator [442] is essentially
diagonal on spin-network states where its eigenvalue is also determined by the
spin quantum numbers. Thus, we may interpret the spin-network representation
as the non-linear Fock representation of Quantum General Relativity,
the spin quanta playing the role of the occupation numbers of momentum exci-
tations of the usual Fock states of, say, Maxwell theory. The excitations of the
gravitational quantum field are string-like, labelled by the edges of a graph, and
the degree of freedom corresponding to an edge can be excited only according to
half-integral spin quantum numbers.

The rest of this section is devoted to a hopefully pedagogical explanation of
the main idea on which [438] is based (see also [325,572]).
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Usually, the Hamiltonian constraint is written in terms of the real connection
variables as follows [310, 311, 570, 571] (we set β = 1 in this section, the gen-
eralisation to arbitrary positive values is trivial, and drop the label β from all
formulae)

H =
1

κ
√

det(q)
tr([Fab −Rab][Ea, Eb]) (10.3.1)

(we have a trace and a commutator for the Lie algebra-valued quantities and
kept explicitly a factor of 1/κ coming from an overall factor of 1/κ in front of
the action). The reason for this is clear: since A,E are the elementary variables
one better avoids the appearance of Ki

a = Ai
a − Γi

a. We, however, will work para-
doxically with the following identical formula (up to an overall numerical factor)

H =
4

κ
√

det(q)
tr([Ka,Kb][Ea, Eb]) −HE (10.3.2)

where

HE =
2

κ
√

det(q)
tr(Fab[Ea, Eb]) (10.3.3)

is called the Euclidean Hamiltonian constraint because it would be the Hamil-
tonian constraint of canonical Euclidean gravity. Its natural appearance here is
not a coincidence as we will see. The reason for doing this will become clear in a
moment. Notice that we have correctly introduced the overall factor 1/κ in front
of the action into HE, H which will get the dimensionalities right and we have
used the notation Fab = F j

abτj/2, E
a = Ea

j τj/2,Ka = Kj
aτj/2, Aa = Aj

aτj/2, τj =
−iσj .

Consider the following two quantities:

(i) The volume of an open region R of σ

V (R) :=
∫

R

d3x
√
|det(q)| (10.3.4)

(ii) The integrated densitised trace of the extrinsic curvature

K :=
∫

σ

d3xKi
aE

a
i (10.3.5)

(the latter of which is nothing else than the generator of the Wick transform
up to a factor of −π/(2κ), see Section 10.7.1). Notice that in (10.3.5) we have
taken absolute values under the square root. However, det((qab)) = [det((eia))]

2

is anyway positive so that we can drop the absolute value at the classical level.
However, since Ea

j = eaj
√

det(q) we have det(E) = sgn(det(e)) det(q) so that we
only have det(q) = |det(E)| if we allow both signs of det(e). In the classical
theory the sign of det(e) is constant, however, in the quantum theory, which
is an extension of the classical theory, we must allow for both signs although
semiclassical states will be peaked on constant sign. If we do not allow for both
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signs then Ea
j cannot become a derivative operator in the quantum theory. Hence

we will be using
√

det(q) :=
√
|det(E)| in order to allow for this possibility.

The following two classical identities are key for all that follows:
(

sgn(det(e))
Ea
kE

b
l εjkl√

det(q)

)

(x)= εabcejc(x) = 2εabc
δV (R)

δEa
j (x)

= 2εabc
{
V (R), Aj

a(x)
}/

(κ/2)

(10.3.6)

for any region R such that x ∈ R and

Kj
a(x) =

δK

δEa
j (x)

=
{
K,Aj

a(x)
}/

(κ/2) (10.3.7)

where (10.3.7) relies on {Γi
a,K} = 0 which follows from the fact that K canon-

ically generates constant rescalings while Γ is a homogeneous, rational function
of E and its first spatial derivatives of order zero. In the sequel we will use the
notation Rx for any open neighbourhood of x ∈ σ.

Using these key identities the reader can quickly convince herself that

(sgn(det(e))[H −HE])(x) = −8εabctr({Aa,K}{Ab,K}{Ac, V (Rx)})/(κ/2)4 (10.3.8)

(sgn(det(e))HE)(x) = −2εabctr(Fab{Ac, V (Rx)})/(κ/2)2 (10.3.9)

or, in integrated form, H(N) =
∫
σ
d3xN(x)H(x), and so on for some lapse func-

tion N and any smooth neighbourhood-valued function R : x �→ Rx

(H −HE)(N) = −8
∫

σ

N ′tr({A,K} ∧ {A,K} ∧ {A, V (R)})/(κ/2)4 (10.3.10)

HE(N) = −2
∫

σ

N ′tr(F ∧ {A, V (R)})/(κ/2)2 (10.3.11)

Here we have absorbed the classical constant sgn(det(e)) into N and denoted it
by N ′. In what follows we will drop the prime again.2 What we have achieved in
(10.3.8), (10.3.9) or (10.3.10), (10.3.11) is to remove the problematic 1/

√
det(q)

from the denominator by means of Poisson brackets.
The reader will now ask what the advantage of all this is. The idea behind these

formulae is the following: what we want to quantise is H(N) on H0 and since H0

is defined in terms of generalised holonomy variables A(e) we first need to write
(10.3.10), (10.3.11) in terms of holonomies. This can be done by introducing
a triangulation T (ε) of σ by tetrahedra which fill all of σ and intersect each
other only in lower-dimensional submanifolds of σ. The small parameter ε is to
indicate how fine the triangulation is, the limit ε → 0 corresponding to tetrahedra
of vanishing volume (the number of tetrahedra grows in this limit so as to always
fill out σ). So let eI(Δ) denote three edges of an analytic tetrahedron Δ ∈ T (ε)
and let v(Δ) be their common intersection point with outgoing orientation (the
quantities Δ, eI(Δ), v(Δ), of course, also depend on ε but we do not display this in

2 Alternatively we may actually quantise sgn(det(e)) along the lines of the volume operator,
see Chapter 13 and [573,574].
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order not to clutter the formulae with too many symbols). The matrix consisting
of the tangents of the edges e1(Δ), e2(Δ), e3(Δ) at v(Δ) (in that sequence) has
non-negative determinant, which induces an orientation of Δ. Furthermore, let
aIJ(Δ) be the arc on the boundary of Δ connecting the endpoints of eI(Δ), eJ(Δ)
such that the loop αIJ(Δ) = eI(Δ) ◦ aIJ(Δ) ◦ eJ(Δ)−1 has positive orientation
in the induced orientation of the boundary for (I, J) = (1, 2), (2, 3), (3, 1) and
negative in the remaining cases. One can then see that in the limit as ε → 0 the
quantities
(
Hε −Hε

E

)
(N) =

8
3(κ/2)4

∑

Δ∈T (ε)

εIJKN(v(Δ))tr
(
heI(Δ)

{
h−1
eI(Δ),K

}
heJ (Δ)

×
{
h−1
eJ (Δ),K

}
heK(Δ)

{
h−1
eK(Δ), V

(
Rv(Δ)

)})
(10.3.12)

Hε
E(N) =

2
3(κ/2)2

∑

Δ∈T (ε)

N(v(Δ))εIJKtr
(
hαIJ (Δ)heK(Δ)

×
{
h−1
eK(Δ), V

(
Rv(Δ)

)})
(10.3.13)

converge to (10.3.10), (10.3.11) respectively pointwise on M for any choice of
triangulation! This independence of the limit, for the classical theory, from the
choice of the family of triangulations enables us to choose the triangulations
state-dependent just as for the area operator, see below.

In order to verify (10.3.13) one makes use of the following facts: let e, e′ be
arbitrary paths which are images of the interval [0, 1] under the corresponding
embeddings, which we also denote by e, e′ such that v = e(0) = e′(0). For any 0 <

ε < 1 set eε(t) := e(εt) for t ∈ [0, 1] and likewise for e′. Then we expand heε(A) in
powers of ε. It is not difficult to see that heε(A) = 12 + εėa(0)Aj

a(v)τj/2 + O(ε2).
Next, consider the loop αeε,e′ε where in a coordinate neighbourhood

αeε,e′ε(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

eε(4t) 0 ≤ t ≤ 1/4
eε(1) + e′ε(4t− 1) − v 1/4 ≤ t ≤ 1/2
e′ε(1) + eε(3 − 4t) − v 1/2 ≤ t ≤ 3/4

e′ε(4 − 4t) 3/4 ≤ t ≤ 1

(10.3.14)

Now expanding again in powers of ε we easily find hαeε,e
′
ε

= 12 + ε2F j
abė

a ×
(0)ė′b(0)τj/2 + O(ε3). Due to the unimodularity of SU(2) and the fact that con-
stants drop out of Poisson brackets we see that the Poisson bracket in (10.3.13)
is of order ε while the loop contribution is proportional to εIJKhαIJ (Δ) =
εIJK [hαIJ (Δ) − h−1

αIJ (Δ)]/2 and thus to ε2. Thus these two terms together are
already of order ε3 in lowest order, which is precisely the order that we need in
order to recast (10.3.12) into a Riemann sum approximation of the continuum
integral.

Suppose now that we can turn V (R) and K into well-defined operators on H,
densely defined on cylindrical functions. Then, according to the rule that upon
quantisation one should replace Poisson brackets by commutators times 1/(īh)
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(10.3.12), (10.3.13) would become densely defined regulated operators on H0 with-
out any divergences for a specific choice of factor ordering! We will discuss the
issue of what happens upon removal of the regulator ε later.

Is it then true that V̂ (R) and K̂ exist? We will see in Chapter 13 that the
answer is affirmative for the case of the volume operator. We use the version
of the volume operator that was constructed in [427] compared with the one
in [425] because it turns out that only the operator [427] gives a densely defined
Hamiltonian constraint operator in the regularisation scheme that we advertise
here: it is important that the volume vanishes on planar vertices (that is, the
tangent space at the vertex spanned there by the tangents of the edges incident
at it is at most two-dimensional). We will describe in Chapter 13 that also a
purely kinematical consistency check [573,574] leads to this conclusion.

We will see in Chapter 13 that the volume operator of [427] acts on a function
cylindrical over a graph γ as follows:

V̂ (R)fγ :=
	3p
8

∑

v∈V (γ)∩R

√√
√√
∣
∣
∣∣∣
i

3!

∑

e∩e′∩ẽ=v

ε(e, e′, ẽ)εijkRi
eR

j
e′R

k
ẽ

∣
∣
∣∣∣
fγ (10.3.15)

where the sum is over the set V (γ) of all vertices v of the graph γ that lie in R and
over all unordered triples of edges that start at v (we can take the orientation
of each edge incident at v to be outgoing by suitably splitting an edge into
two halves if necessary). The function ε(e, e′, ẽ) takes the values +1,−1, 0 if the
tangents of the three edges at v (in that sequence) form a matrix of positive,
negative or vanishing determinant and the right-invariant vector fields Ri

e were
defined in Chapter 9. The absolute value |B̂| of the operator B̂ indicates that
one is supposed to take the square root of the operator B̂†B̂. The dense domain
of this operator consists of the thrice differentiable cylindrical functions. Notice
that planar vertices of arbitrary valence do not contribute. Surprisingly, also
arbitrary tri-valent vertices do not contribute3 [575] if the corresponding state is
gauge-invariant.

Thus, it seems that one can make sense out of a regulated operator corre-
sponding to (10.3.12) for each N , in particular for N = 1. Now recall the classi-
cal identity that the integrated densitised trace of the extrinsic curvature is the
‘time derivative’ of the total volume

K = −{HE(1), V (σ)} = {H(1), V (σ)} (10.3.16)

where N = 1 is the constant lapse equal to unity and s = −1. This formula makes
sense even if σ is not compact (see [438] for the details; basically one takes the
Poisson bracket at finite volume and then takes the limit to infinite volume).

3 Proof: We have −(Rj
1 + Rj

2) = Rj
3 due to gauge invariance where Rj

I = Rj
eI , I = 1, 2, 3.

Substituting this into εjklR
j
1R

j
2R

j
3 and using [Rj

I , R
k
J ] = −2δIJ εjklR

l
I completes the proof.
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But if we then replace again Poisson brackets by commutators times 1/(īh) and
define

K̂ε :=
i

h̄

[
Ĥε

E(1), V̂ (σ)
]

(10.3.17)

using the already defined quantities Ĥε(1), V̂ (σ) it seems that we can also define
a regulated operator corresponding to (10.3.12)!

This concludes the explanation of the main idea. The next section displays a
concrete implementation.

10.4 Mathematical definition of the Hamiltonian
constraint operator

Obviously, central questions regarding the concrete implementation of the tech-
nique are:

I. What are the allowed, physically relevant choices for a family of triangula-
tions T (ε)?

II. How should one treat the limit ε → 0 for the operator Ĥε(N)? That is,
should one keep ε finite and just refine γ → σ for cylindrical functions or
is there an operator topology such that this limit can be given a meaning?
Secondly, does the refined or limit operator remember something about the
choice of the family T (ε) or is there some notion of universality?

III. What is the commutator algebra of these (limits of) operators, is it free of
anomalies?

We will address these issues separately.

10.4.1 Concrete implementation

A natural choice for a triangulation turns out to be the following (we simplify the
presentation drastically, the details can be found in [438]): given a graph γ one
constructs a triangulation T (γ, ε) of σ adapted to γ which satisfies the following
basic requirements.

(a) The graph γ is embedded in T (γ, ε) for all ε > 0.
(b) The valence of each vertex v of γ, viewed as a vertex of the infinite graph

T (ε, γ), remains constant and is equal to the valence of v, viewed as a vertex
of γ, for each ε > 0.

(c) Choose a system of semianalytic arcs aεγ,v,e,e′ , one for each pair of edges e, e′

of γ incident at a vertex v of γ, which do not intersect γ except in its endpoints
where they intersect transversally. These endpoints are interior points of e, e′

and are those vertices of T (ε, γ) contained in e, e′ closest to v for each ε > 0
(i.e., no others are in between). For each ε, ε′ > 0 the arcs aεγ,v,ee′ , a

ε′
γ,v,e,e′ are

diffeomorphic with respect to semianalytic diffeomorphisms. The segments of
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e, e′ incident at v with outgoing orientation that are determined by the end-
points of the arc aεγ,v,e,e′ will be denoted by sεγ,v,e, s

ε
γ,v,e′ respectively. Finally,

if ϕ is a semianalytic diffeomorphism then sεϕ(γ),ϕ(v),ϕ(e), a
ε
ϕ(γ),ϕ(v),ϕ(e),ϕ(e′)

and ϕ(sεγ,v,e), ϕ(aεγ,v,e,e′) are semianalytically diffeomorphic.
(d) Choose a system of mutually disjoint neighbourhoods U ε

γ,v, one for each
vertex v of γ, and require that for each ε > 0 the aεγ,v,e,e′ are contained in
U ε
γ,v. These neighbourhoods are nested in the sense that U ε

γ,v ⊂ U ε′
γ,v if ε < ε′

and limε→0 U
ε
γ,v = {v}.

(e) Triangulate U ε
γ,v by tetrahedra Δ(γ, v, e, e′, ẽ), one for each ordered

triple of distinct edges e, e′, ẽ incident at v, bounded by the segments
sεγ,v,e, s

ε
γ,v,e′ , s

ε
γ,v,ẽ and the arcs aεγ,v,e,e′ , a

ε
γ,v,e′,ẽ, a

ε
γ,v,ẽ,e from which loops

αε(γ; v; e, e′), etc. are built and triangulate the rest of σ arbitrarily. The
ordered triple e, e′, ẽ is such that their tangents at v, in this sequence, form
a matrix of positive determinant.

Requirement (a) prevents the action of the Hamiltonian constraint operator from
being trivial. Requirement (b) guarantees that the regulated operator Ĥε(N) is
densely defined for each ε. Requirements (c), (d) and (e) specify the triangulation
in the neighbourhood of each vertex of γ and leave it unspecified outside of them.
The more detailed prescription of [438] that uses Puisseaux’ theorem shows that
triangulations satisfying all of these requirements always exist4 and can also
deal with degenerate situations, for example, how to construct a tetrahedron for
a planar vertex. More specifically, what was done in [438] is to fix the routing or
braiding of the analytical arcs through the ‘forest’ of the already present edges
in such a way that it is invariant under semianalytic diffeomorphisms that leave
γ invariant and the arcs semianalytic. Here we are more general than in [438] in
that we just use the axiom of choice. That is, we only use that a choice function

aε : Γω
0 → Γω

0 ; γ �→
{
aεγ,v,e,e′

}
v∈V (γ); e,e′∈E(γ); v∈∂e∩∂e′

(10.4.1)

subject to requirements (a)–(e) always exists and leave it unspecified otherwise.
The reason why those tetrahedra lying outside the neighbourhoods of the vertices
described above are irrelevant rests crucially on the choice of ordering (10.3.13)
with [ĥ−1

s , V̂ ] on the rightmost and on our choice of the volume operator [427]: if
f is a cylindrical function over γ and s has support outside the neighbourhood

4 Basically one wants that the arcs intersect the graph only in their endpoints. Thus for
sufficiently fine triangulations it is enough to avoid intersections with the edges ẽ �= e, e′

also incident at the vertex in question. One first shows that there always exists an adapted
frame, that is, a frame such that se, se′ lie in the x, y plane for sufficiently short se, se′ .
Now one shows that for any other edge ẽ of the graph whose beginning segment is not
aligned with either se or se′ there are only two possibilities. (A) Either for all adapted
frames the beginning segment of ẽ lies above or below the x, y plane and whether it is
above or below is independent of the adapted frame. (B) Or there exists an adapted frame
such that the beginning segment ẽ lies above the x, y plane. This can be achieved
simultaneously for all edges incident at the vertex in question. The natural prescription is
then to let the arc ae,e′ be the straight line in the selected frame connecting the endpoints
of se, se′ at which it intersects transversally.
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s2 a12α12

Figure 10.1 The meaning of tetrahedron, segments and arcs determined by a
triple of edges meeting in a common vertex.

of any vertex of γ, then V (γ ∪ s) − V (γ) consists of planar at most four-valent
vertices only so that [ĥ−1

s , V̂ ]f = 0. Notice, however, that [425] does not vanish
on planar vertices and so [ĥ−1

s , V̂ ]f would not vanish even on trivalent vertices
in V (γ ∪ s) − V (γ) because it is not gauge-invariant. In other words, in the limit
of small ε the operator would map us out of the space of cylindrical functions.
Therefore the Hamiltonian constraint operator inherits from the volume operator
a basic property: it annihilates all states cylindrical with respect to graphs with
only co-planar vertices as can be understood from the fact that the volume
operator enters the construction of both Ĥε

E(N), Ĥε(N). In other words, the
dynamics ‘happens only at the vertices of a graph’. See Figure 10.1 for a sketch
of these objects.

Notice that (a)–(e) are natural extensions to arbitrary graphs of what one does
in lattice gauge theory [576] with one exception: what we will get is not an opera-
tor Ĥε(N) to begin with, but actually a family of operators Ĥε

γ(N), one for each
graph γ. This happened because we adapted the triangulation to the graph of the
state on which the operator acts. One must then worry that this does not define
a linear operator any more, that is, it is not cylindrically consistently defined.
Here we circumvent that problem as follows: we do not define the operator on
functions cylindrical over graphs but cylindrical over coloured graphs, that is, we
define it on spin-network functions. The domain for the operator that we will
choose is a finite linear combination of spin-network functions, hence this defines
the operator uniquely as a linear operator. Any operator automatically becomes
consistent if one defines it on a basis, the consistency condition simply drops out.

Moreover, the regulated operator Ĥε(N) is by construction background-
independently defined for each ε but not symmetric which, as described in Chap-
ter 30, is not a necessary requirement for a constraint operator and even argued
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to be better not the case [283, 284] in order for the constraint algebra to be
non-anomalous for open constraint algebras.

Finally, we point out that beyond the freedom of a choice function (10.4.1)
requirements (a)–(e) could possibly be generalised and the regularisation itself
can be generalised. For instance in [452] one uses instead of tr(τjhα) the function

∑N
k=1 tr

(
τjh

nk
α

)

∑N
k=1 nk

(10.4.2)

for any choice of integers nk such that the denominator is non-vanishing, which
again gives the correct continuum limit since all the functions (10.4.1) are iden-
tical in the leading order that we need. Hence, there is room for generalisations.
Which choice is ‘more physical’ than another, whether they are all equivalent or
whether all of them are unphysical can only be decided in the investigation of
the classical limit. We will summarise the possible modifications below.

Let us then display the action of the Hamiltonian constraint on a spin-network
function fγ cylindrical with respect to a graph γ. It is given by

[
Ĥε

E(N)
]†
fγ =

32
3iκ	2p

∑

v∈V (γ)

N(v)
E(v)

∑

v(Δ)=v

εIJK

× tr
(
hαIJ (Δ)heK(Δ)

[
h−1
eK(Δ), V̂ (Uε(v))

])
fγ (10.4.3)

[(
Ĥε−Ĥε

E

)
(N)
]†
fγ =

128

3κ
(
i	2p
)3

∑

v∈V (γ)

N(v)
E(v)

∑

v(Δ)=v

εIJKtr
(
heI(Δ)

[
h−1
eI(Δ), K̂

ε
]
heJ (Δ)

×
[
h−1
eJ (Δ), K̂

ε
]
heK(Δ)

[
h−1
eK(Δ), V̂ (Uε(v))

])
fγ (10.4.4)

where K̂ε is defined by (10.3.17).
The reason for the adjoint operation is as follows: since H is classically real-

valued it does not make any difference whether we quantise H or H. We chose
to quantise H resulting in Ĥ† in order to be able to easily use the definition of a
dual operator as given in Chapter 30. Clearly, this does not make any difference
if Ĥ is self-adjoint, however, as (10.4.3) and (10.4.4) stand the operator is not
even symmetric. This actually is required for a first-class algebra with structure
functions [283, 284] in order that it closes as we have shown already, see also
Chapter 30. The difference between the symmetrised version of (10.4.3), (10.4.4)
and (10.4.3), (10.4.4) itself is of course an h̄ correction but the ordering (10.4.3),
(10.4.4) turns out to be the only one in which (1) the constraint algebra closes
and (2) the final operator is densely defined as we remove the regulator.5

5 Basically, in case that the curvature term would be ordered to the right then the volume
operator would contribute for all the interior points of an edge in the limit ε → 0, not only
at vertices, because the volume operator does not vanish on 3- or 4- valent gauge-variant
vertices. For the same reason it is required that the volume operator does not make
contributions at planar vertices, which is why we must use version [427] rather than [425] as
otherwise the retraced path holonomies hs intersecting any interior point of an edge would
contribute.



10.4 Mathematical definition of the Hamiltonianconstraint operator 295

Let us explain the notation: the first sum is over all the vertices of a graph
and the second sum over all ordered tetrahedra of the triangulation T (ε, γ) that
saturate the vertex (the remaining tetrahedra drop out). The symbols eI(Δ),
etc. mean the same as in (10.3.12), (10.3.13) just that now the tetrahedra in
question are the particular ones as specified in (a)–(e) above. Here the numerical

factors E(v) =
(
n(v)

3

)
, where n(v) is the valence of the vertex v, come about as

follows.
Given a triple of edges (e, e′, e′′) incident at v with outgoing orienta-

tion consider the tetrahedron Δε(γ, v, e, e′, e′′) bounded by the three seg-
ments sεγ,v,e ⊂ e, sεγ,v,e′ ⊂ e′, sεγ,v,e′′ ⊂ e′′ incident at v and the three arcs
aεγ,v,e,e′ , a

ε
γ,v,e′,e′′ , a

ε
γ,v,e′′,e. We now define the ‘mirror images’ (see Figure 10.2)

sεγ,v,p̄(t) := 2v − sεγ,v,p(t)

aεγ,v,p̄,p̄′(t) := 2v − aεγ,v,p,p′(t)

aεγ,v,p̄,p′(t) := aεγ,v,p̄,p̄′(t) − 2t
[
v − sεγ,v,p′(1)

]

aεγ,v,p,p̄′(t) := aεγ,v,p,p′(t) + 2t
[
v − sεγ,v,p′(1)

]
(10.4.5)

where p �= p′ ∈ {e, e′, e′′} and we have chosen some parametrisation of segments
and arcs. Using the data (10.4.5) we build seven more ‘virtual’ tetrahedra
bounded by these quantities so that we obtain altogether eight tetrahedra that
saturate v and triangulate a neighbourhood U ε

γ,v,e,e′,e′′ of v. Let U ε
γ,v be the

union of these neighbourhoods as we vary the ordered triple of edges of γ inci-
dent at v. The U ε

γ,v, v ∈ V (γ) were chosen to be mutually disjoint in point (d)
above. Let now

Ū ε
γ,v,e,e′,e′′ := U ε

γ,v − U ε
γ,v,e,e′,e′′

Ū ε
γ := σ −

⋃

v∈V (γ)

U ε
γ,v (10.4.6)

then we may write any classical integral (symbolically) as
∫

σ

=
∫

Ūε
γ

+
∑

v∈V (γ)

∫

Uε
γ,v

=
∫

Ūε
γ

+
∑

v∈V (γ)

1
E(v)

∑

v=b(e)∩b(e′)∩b(e′′)

[∫

Uε
γ,v,e,e′,e′′

+
∫

Ūε
γ,v,e,e′,e′′

]

≈
∫

Ūε
γ

+
∑

v∈V (γ)

1
E(v)

⎡

⎣
∑

v=b(e)∩b(e′)∩b(e′′)

8
∫

Δε
γ,v,e,e′,e′′

+
∫

Ūε
γ,v,e,e′,e′′

⎤

⎦ (10.4.7)

where in the last step we have noticed that classically the integral over U ε
γ,v,e,e′,e′′

converges to eight times the integral over Δε
γ,v,e,e′,e′′ . Now when triangulating

the regions of the integrals over Ūv,e,e′,e′′ and Ū ε
γ in (10.4.7), regularisation and

quantisation gives operators that vanish on fγ because the corresponding regions
do not contain a non-planar vertex of γ.
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Figure 10.2 The construction of the mirror edges saturating a vertex.

Notice that (10.4.3) and (10.4.4) are finite for each ε > 0, that is, densely
defined without that any renormalisation is necessary and with range in the
smooth cylindrical functions again. Furthermore, the adjoints of the expressions
(10.4.3) and (10.4.4) are densely defined on smooth cylindrical functions again so
that we get in fact a consistently and densely defined family of closable operators
on H0 (see below).

Let us check the dimensionalities: the volume operator in (10.4.3) is given
by 	3p times a dimension-free operator, hence (10.4.3) is given by 	p/κ = mp

times a dimension-free operator. Hence the correct dimension of Planck mass
mp =

√
h̄/κ has popped out. Therefore, by inspection, (10.3.17) has dimension of

	3pmp/̄h = 	2p which is correct since K(x) =
√

det(q)(x)Kab(x)qab(x) has dimen-
sion cm−1 so that K =

∫
d3xK(x) has dimension cm2. Finally therefore (10.4.4)

has the correct dimension of (	2p)
2	3p/κ	

6
p = mp again.

10.4.2 Operator limits

Basically there are two, technically equivalent viewpoints towards treating the
limit ε → 0.

(A) Effective operator viewpoint
The more radical proposal is to drop the parameter ε from all formulae. That
is, take a choice function a once and for all. One gets a densely defined family
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of closed operators. One may object that on a given graph γ with only a
few edges one does not get a quantisation of the full classical expressions
(10.3.12), (10.3.13), however, that is only because the graph γ does not fill
all of σ. In other words, the continuum limit of infinitely fine triangulation
of the Riemann sum expressions (10.3.12), (10.3.13) in the classical theory is
nothing else than taking the graphs, on which the operator is probed, finer
and finer. This is a new viewpoint not previously reported in the literature
and could be called the effective operator viewpoint because on fine but not
infinitely fine graphs the classical limit of the operator will only approximate
the exact classical expression in the same way as (10.3.12) and (10.3.13) only
approximate (10.3.10) and (10.3.11). However, it may be that this is the
fundamental theory and classical physics is just an approximation to it. This
way the UV regulator ε corresponding to the continuum limit is trivially
removed and our family of operators is really defined on H0. Whether the
operator Ĥ† that we then obtain has the correct classical limit cannot be
decided at this stage but is again subject to a rigorous semiclassical analysis
which requires new input, see Chapter 11.

(B) Limit operator viewpoint
The challenge is to find an operator topology (see, e.g., Chapter 26)6 in
which the one-parameter family of operators (Ĥε)† converges. The operators
(10.4.3) and (10.4.4) are easily seen to be unbounded (already the volume
operator has this property). Thus, a convergence in the uniform topology is
ruled out. Next, one may try the weak operator topology (matrix elements
converge pointwise) but with respect to this topology the limit would be
the zero operator (it is too weak): for instance, a matrix element between
two spin-network states is non-zero for at most one value of ε. Since the
weak operator topology is coarser than the strong, also the strong operator
topology does not work. Finally, we try the weak∗ topology, that is, we
must check whether Ψ((Ĥε(N))†f) converges for each Ψ ∈ D′, f ∈ D where
D = C∞(A) with its natural nuclear7 topology is a dense domain and D′

is its topological dual. It turns out that this topology is a little bit too
strong, however, convergence holds with respect to a topology which we

6 A net of bounded operators AI is said to converge uniformly to a bounded operator A
provided that ||AI −A|| → 0 where ||A|| := sup||ψ||=1 ||Aψ||. A net of unbounded operators

AI is said to converge (1) strongly, (2) weakly or (3) in the weak ∗-topology to an
unbounded operator A provided that all AI , A have a common domain D and (1)
||(AI −A)ψ|| → 0 for every ψ ∈ D or (2) < ψ, (AI −A)ψ′ >→ 0 for every ψ′ ∈ D and all
ψ ∈ H or (3) D is invariant under A,AI and l[(AI −A)ψ] → 0 for every ψ ∈ D and all
l ∈ D∗ where D∗ is some space of linear functionals on D. In case that D carries its own
topology finer than that of H, we may restrict D∗ to the space of continuous linear
functionals on D which in this case is larger than H. The rate of convergence in the case of
the strong, weak and weak ∗-topology may depend on ψ,ψ′, l.

7 This is the topology inherited from the nuclear topology on C∞(G) generated by the
Schwarz seminorms ||f ||αβ = suph∈G |hα1 . . . hαm∂nf/∂hβ1 . . . ∂hβn | where αk, βl = (AB)
run through the set of matrix indices.
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might call Uniform Rovelli–Smolin Topology (URST) in appreciation of the
fact that Rovelli and Smolin first pointed out in [567] that, if instead of D′ we
consider the space D∗

diff of diffeomorphism-invariant algebraic distributions
on D, then objects of the form Ψ((Ĥε(N))†f) do not depend at all on the
position or shape of the arcs aεγ,v,e,e′ alluded to above. In their original
work [567] Rovelli and Smolin did not spell out this property in the context
of H0 and also they did not have a well-defined constraint operator, but their
observation applies to a huge class of operators, their only feature being an
analogue of property (c) above. This is how one proceeded in [437–439].

Therefore, since all the triangulations T (γ, ε) restricted to each of the
neighbourhoods U ε

γ,v are diffeomorphic by property (c) above, the numbers
Ψ((Ĥε(N))†f) are actually already independent of ε! Accordingly, we have
the striking result that with respect to the URST

(Ĥ(N))† := lim
ε→0

(Ĥε(N))† = (Ĥε0(N))† (10.4.8)

where ε0 is an arbitrary but fixed positive number. Notice that we require
that for each δ > 0 there exists an ε′(δ) > 0 such that for each f ∈ D,Ψ ∈
D∗

diff

|Ψ((Ĥε(N))†f) − Ψ((Ĥε0(N))†f)| < δ

for all ε < ε′(δ) where ε′(δ) depends only on δ but not on f,Ψ. In other words,
we have convergence uniform in D ×D∗

diff rather than pointwise. This will
be important in what follows.

Notice that therefore the convergence in the URST is very similar to the
effective operator viewpoint in the sense that it gives a topology in which it is
allowed to drop the label ε from the choice function altogether. In particular
we stress that in contrast to the viewpoint taken in [579, 580] we still have
the operator defined on H0 and not on the dual subspace D∗

diff ⊂ D∗ or an
extension thereof, precisely in the same sense as the limit of a family of
operators which converges in the weak ∗-topology on D is still considered
an operator on D and not a dual operator on D′. In fact, the dual of Ĥ(N)
cannot be defined on D∗

diff because that space is not left-invariant by Ĥ(N)′

as we pointed out frequently, which is why the authors of [579, 580] have
to take an extension to the so-called ‘vertex smooth’ distributions D∗

diff ⊂
D∗

	 ⊂ D∗ which is genuinely bigger than D∗
diff and therefore unphysical. Our

viewpoint is completely different: we do not want to define Ĥ ′(N) at all, we
just use D∗

diff as a means to define a topology!
On the other hand, the physical reason for testing convergence of the

operator only on D∗
diff rather than on a bigger space is precisely because

we are eventually going to look for the space of solutions to all constraints,
which in turn must be a subspace D∗

phys of D∗
diff , so in a sense we do not
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need stronger convergence. Notice that D∗
phys is left-invariant by the dual

action of Ĥ(N) (namely it is mapped to zero).
Again, whether the continuum operator thereby obtained has the correct

classical limit must be decided in an additional step.

Which viewpoint one takes is a matter of taste, technically they are completely
equivalent. The limit operator viewpoint has the advantage that it shows that
many choice functions are going to be physically equivalent and this decreases
(but does not remove) the degree of redundancy. In what follows we will therefore
drop the label ε.

The limit (10.4.8) certainly only depends on the diffeomorphism-invariant
characteristics of the particular triangulation T (γ, ε) that we chose. For instance,
the limit would be different if we used arcs that intersect the graph tangentially or
which are smooth rather than semianalytical. Other than that, there is no resid-
ual ‘memory’ of the triangulation. This is important for the following reason: by
the axiom of choice, a choice function certainly exists and for each different choice
function we get a different operator on the kinematical Hilbert space. Thus, we
get a huge ambiguity at the kinematical level. This is, however, worrysome only
if the physical states depend on that ambiguity. Fortunately, physical states
are in particular spatially diffeomorphism-invariant and thus the dependence on
the choice function up to its diffeomorphism class drops out completely. Hence,
the amount of ambiguity is vastly removed at the level of the physical Hilbert
space.

Let us show that the operator (Ĥ(N))† is not only densely defined on the
finite linear span D of spin-network functions but that it is also closable, that
is, its adjoint8 Ĥ(N) is also densely defined. Recall that the domain D(T †) of
the adjoint T † of an operator T densely defined on a domain D(T ) of a Hilbert
space H is given by

D(T †) :=

{

ψ ∈ H; sup
f∈D(T ), ||f ||=1

|< ψ, Tf >| < ∞
}

(10.4.9)

For ψ ∈ D(T †) the linear form f �→<ψ, Tf > is therefore bounded and can be
extended to all of H by the bounded linear functional theorem with the same
bound. By the Riesz lemma this then defines a unique vector T †ψ defined by
<T †ψ, f >:=<ψ, T f >.

We now claim that D ⊂ D(Ĥ(N)). To see this it is enough to show that
Ts ∈ D(Ĥ(N)) for any spin-network s ∈ S. Now for given s, by inspection of
the explicit formulae (10.4.3), (10.4.4) the set S(s) of those s′ ∈ S for which
<Ts, (Ĥ(N))†Ts′ >�= 0 is finite.Thus for arbitrary f =

∑
s′∈S zs′ Ts′ with at

8 To be precise we should write ((Ĥ(N))†)† but we can drop the adjoints by passing to the
closures. We will abuse the notation somewhat this way.
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most finitely many zs′ �= 0 and
∑

s′ |zs′ |2 = 1 we have

|<Ts, (Ĥ(N))†f > | ≤
∑

s′∈S(s)

|<Ts, (Ĥ(N))† Ts′ > | (10.4.10)

where we have used |zs′ | ≤ 1. The right-hand side no longer depends on f , hence
Ts ∈ D(Ĥ(N)) for arbitrary s as claimed.

10.4.3 Commutator algebra

We now come to question III, whether the commutator between two Hamiltonian
constraints and between Hamiltonian and diffeomorphism constraints exists and
is free of anomalies.

1. Hamiltonian and diffeomorphism constraint
Recall that the infinitesimal generator of diffeomorphisms is ill-defined so that
we must check the commutator algebra in terms of finite diffeomorphisms. The
classical infinitesimal relation { �H(u), H(N)} = −H(u[N ]) can be exponenti-
ated and gives

e
tLχ�H(u) ·H(N) = H

(([
ϕu
t

]−1)∗
N
)

where χ 
H(u) denotes the Hamiltonian vector field of �H(u) on the classical con-
tinuum phase space M and ϕu

t the one-parameter family of diffeomorphisms
generated by the integral curves of the vector field u. It tells us that H(x) is a
scalar density of weight one. Therefore we expect to have in quantum theory
the relation

Û(ϕ)−1(Ĥ(N))†Û(ϕ) = (Ĥ(ϕ∗N))† (10.4.11)

To check whether (10.4.11) is satisfied, we notice that for a spin-network
function fγ we have by the definition of the action of the diffeomorphism
group Û(ϕ) on H0 on the one hand

Û(ϕ)−1(Ĥ(N))†fγ = Û(ϕ)
∑

v∈V (γ)

N(v)Ĥ†
v,a(γ)fγ

=
∑

v∈V (γ)

N(v)Ĥ†
ϕ−1(v),ϕ−1(a(γ))fϕ−1(γ)

=
∑

v∈V (γ)

(ϕ∗N)(ϕ−1(v))Ĥ†
ϕ−1(v),ϕ−1(a(γ))fϕ−1(γ)

= [Û(ϕ)−1(Ĥ(N))†Û(ϕ)]Û(ϕ)−1fγ

= [Û(ϕ)−1(Ĥ(N))†Û(ϕ)]fϕ−1(γ) (10.4.12)
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and on the other hand

(Ĥ(ϕ∗N))†fϕ−1(γ) =
∑

v∈V (ϕ−1(γ))

(ϕ∗N)(v)Ĥ†
v,a(ϕ−1(γ))fϕ−1(γ)

=
∑

v∈V (γ)

(ϕ∗N)(ϕ−1(v))Ĥ†
ϕ−1(v),a(ϕ−1(γ))fϕ−1(γ) (10.4.13)

Here Ĥ†
v,a(γ) is the operator coefficient of N(v) in (10.4.3), (10.4.4) which

depends on the graph a(γ) assigned to γ through the choice function a, that
is, the segments sγ,v,e and arcs aγ,v,e,e′ . Comparing (10.4.12) and (10.4.13)
we get equality provided that

ϕ ◦ a = a ◦ ϕ ∀ϕ ∈ Diff ω
sa(σ) (10.4.14)

This seems to burden us with the proof that such a choice function really
exists and in fact we do not have a proof, although it would be very nice
to have one since it would decrease the possible number of choice functions.
However, we can avoid this by the observation that our choice function was
constructed in such a way that the assignments a(γ) and a(ϕ(γ)) are piecewise
(semi)analytically diffeomorphic. In other words we always find a semianalytic
diffeomorphism ϕ′

ϕ−1(γ) which preserves ϕ−1(γ) such that
[
Û(ϕ)−1(Ĥ(N))†Û(ϕ)

]
fϕ−1(γ) =

[
Û
(
ϕ′
ϕ−1(γ)

)
(Ĥ(ϕ∗N))†Û

(
ϕ′
ϕ−1(γ)

)−1]
fϕ−1(γ)

(10.4.15)
for any γ and any fϕ−1(γ). Thus, while (10.4.11) is violated, it is violated
in an allowed way because the ‘anomaly’ is a constraint operator again. Put
differently, the ‘anomaly’ is not seen in the URST so that (10.4.11) is an exact
operator identity in the URST.

In that sense then, (Ĥ(N))† is a diffeomorphism covariant, densely defined,
closable operator on H0.

2. Hamiltonian and Hamiltonian constraint
There are three important properties of the operator (Ĥ(N))† that follow
from our class of choice functions (properties (a)–(e)):
(A) First of all, we observe that (Ĥ(N))† has dense domain and range consist-

ing of smooth (in the sense of D) cylindrical functions. Therefore it makes
sense to multiply operators and in particular to compute commutators.

(B) Secondly, it annihilates planar vertices.
(C) Thirdly, for no other choice of triangulation proposed so far other than the

one proposed in [438] and only when using the volume operator of [427]
rather than the one of [425] is it true that in fact any finite product
of operators (Ĥε1(N1))† . . . (Ĥεn(Nn))† is independent of the parameters
ε1, . . . , εn in the URST.

The second and third properties do not hold for a more general class of oper-
ators considered in the papers [579, 580] so that there is no convergence in
the URST – not even of the operators themselves, not to speak of their
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commutators. Since certainly none (of the duals) of these operators leaves
the space D∗

diff invariant, in order to compute commutators these authors
suggest introducing the larger, unphysical space D∗

	 already mentioned on
which one can compute limits Ĥ ′(N) = limε→0(Ĥε(N))′ pointwise in D∗

	 ×D
of their duals and products of these limits.

Let again fγ be a spin-network function over some graph γ. Then we com-
pute

[(Ĥ(N))†, (Ĥ(N ′))†]fγ =
∑

v∈V (γ)

[N ′(v)(Ĥ(N))† −N(v)(Ĥ(N ′))†]Ĥ†
a(γ)|v

fγ

=
∑

v∈V (γ)

∑

v′∈V (γ)∪a(γ)|v

[N ′(v)N(v′)

−N(v)N ′(v′)]Ĥ†
a(γ∪a(γ)|v)|v′ Ĥ

†
a(γ)|v

fγ (10.4.16)

where for clarity we have written Ĥ†
a(γ)|v

≡ Ĥ†
v,a(γ) in order to indicate that

Ĥ†
v,a(γ) does not depend on all of a(γ) but only on its restriction to the arcs and

segments around v. We are abusing somewhat the notation in the second step
because one should really expand Ĥ†

a(γ)|v
fγ into spin-network functions over

γ ∪ a(γ)|v and then apply the second operator to that expansion into spin-
network functions. In particular, Ĥ†

a(γ)|v
fγ is really a finite linear combination

of terms where each of them depends only on γ ∪ a(γ)|v,e,e′ for some edges
e, e′ incident at v and each of those should be expanded into spin-network
functions. We will not write this explicitly because it is just a bookkeeping
exercise and does not change anything in the subsequent argument. So either
one writes out all the details or one just assumes for the sake of the argument
that Ĥ†

a(γ)|v
fγ is a spin-network function over γ ∪ a(γ)|v. Everything we say is

more or less obvious for the Euclidean Hamiltonian constraint, but a careful
analysis shows that it extends to the Lorentzian one as well [438].

Let us now analyse (10.4.16). The right-hand side surely vanishes for v′ =
v. We notice that any vertex v′ ∈ V (γ ∪ a(γ)|v) − V (γ) is planar and since
Ĥ†

v′,a(γ∪a(γ)) has an operator of the form [h−1
s , V̂ ] to the outmost right-hand

side where s is a segment, incident at v′, of an edge incident at v′, it follows
that none of these vertices contributes. Here it was again crucial that we used
the operator [427] rather than the operator [425]! Thus (10.4.16) reduces to

[(Ĥ(N))†, (Ĥ(N ′))†]fγ =
∑

v 
=v′∈V (γ)

[N ′(v)N(v′) −N(v)N ′(v′)]

× Ĥ†
a(γ∪a(γ)|v))|v′ Ĥ

†
a(γ)|v

fγ

=
1
2

∑

v 
=v′∈V (γ)

[N ′(v)N(v′) −N(v)N ′(v′)]

×
[
Ĥ†

a(γ∪a(γ)|v)|v′ Ĥ
†
a(γ)|v

− Ĥ†
a(γ∪a(γ)|v′ )|v

Ĥ†
a(γ)|v′

]
fγ

(10.4.17)
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Figure 10.3 Vanishing of the commutator between two (Euclidean) Hamilto-
nian constraints up to a diffeomorphism.

where in the second step we used the antisymmetry of the expression
[N ′(v)N(v′) −N(v)N ′(v′)] in v, v′. Now the crucial point is that for v �= v′ ∈
V (γ) the prescription of how to attach the arcs first around v and then around
v′ compared with the opposite may not be the same because our prescription
depends explicitly on the graph to which we apply it, however, they are cer-
tainly analytically diffeomorphic (see Figure 10.3). Thus, there exist analytical
diffeomorphisms ϕγ,v,v′ preserving γ ∪ a(γ)|v such that

Ĥ†
a(γ∪a(γ)|v)|v′ Ĥ

†
a(γ)|v

fγ = Û(ϕγ,v,v′)Ĥ†
a(γ)|v′ Ĥ

†
a(γ)|v

fγ (10.4.18)

for any v �= v′ ∈ V (γ). It follows that

[(Ĥ(N))†, (Ĥ(N ′))†]fγ =
1
2

∑

v 
=v′∈V (γ)

[N ′(v)N(v′) −N(v)N ′(v′)]

× [Û(ϕγ,v,v′) − Û(ϕγ,v′,v)]Ĥ
†
a(γ)|v′ Ĥ

†
a(γ)|v

fγ

(10.4.19)
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where we have used [Ĥ†
a(γ)|v′ , Ĥ

†
a(γ)|v

] = 0 for v �= v′ since the derivative oper-
ators involved act on disjoint sets of edges.

Expression (10.4.19) is to be compared with the classical formula
{H(N), H(N ′} = �H(q−1[(dN)N ′ − (dN ′)N ]). The fact that we get a dif-
ference between finite diffeomorphism constraint operators looks promising,
because for next-neighbour vertices v, v′ this could be interpreted as a sub-

stitute for the operator �̂H which somehow had to be written in terms of
finite diffeomorphism anyway because we know that the infinitesimal genera-
tor does not exist. Unfortunately there could also be contributions from pairs
v, v′ which are far apart. This we could avoid by specifying the choice function
more closely in the sense that the arcs aγ,v,e,e′ should, for a given vertex v,
not depend on all of γ but only on γv ⊂ γ, the subset of γ consisting of all
edges incident at v. But still (10.4.19) does not obviously resemble the classi-
cal calculation too closely because there it is crucial that {H(x), H(x′)} �= 0
as x → x′ while [Ĥ†

a(γ)|v′ , Ĥ
†
a(γ)|v

] = 0 for any v �= v′.
Certainly then for Ψ ∈ D∗

diff , f ∈ D we have in the URST

Ψ([(Ĥ(N))†, (Ĥ(N ′))†]f) := lim
ε→0

lim
ε′→0

Ψ([(Ĥε(N))†, (Ĥε′(N ′))†]f) = 0

(10.4.20)

where the limit is again uniform in both Ψ, f . This is a crucial result because it
means that the quantisation of the Hamiltonian constraint proposed is math-
ematically consistent, there is no anomaly. The commutator is annihilated
precisely by the spatially diffeomorphism-invariant distributions as it should
be according to the classical algebra.

Yet, one would like to have a stronger result, namely that the right-
hand side of (10.4.19) can be manifestly considered as a quantisation of
�H(q−1(dNN ′ − dN ′N)). In the next section we will quantise the function
�H(q−1(dN N ′ − dN ′ N)) independently on H0 and see that the regulated
net of operators converges in the URST and is annihilated by spatially
diffeomorphism-invariant distributions. Hence, in the URST there is no dif-
ference between (10.4.19) and that operator. But that would be the case for
all operators which are of the form (Û(ϕ) − 1H0)Ô where Ô is an arbitrary
operator. This therefore does not show that on H0 these two operators have
anything to do with each other.

Why is this so difficult to decide? If we recall that we needed pages of cal-
culation in Section 1.5 in order to write {H(N), H(N ′)} as �H(q−1(dN N ′ −
dN ′ N)) where we have used manipulations such as (1) integrations by parts,
(2) reordering of terms, (3) differential geometric identities and (4) multiply-
ing fractions by functions in both numerator and denominator then it is not
surprising that one cannot simply see a relation between the two operators.
Not only is the classical calculation already quite involved, but moreover the
above-mentioned operations are difficult to perform at the quantum level due
to the non-commutativity of operators and their possible non-invertabilty.
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But maybe we are asking too much: after all, a classical identity must be
reproduced in the semiclassical limit only. This is precisely the reason why
one should test the correspondence between these two operators by using
coherent states, because within the corresponding expectation values one can
basically replace all operators by their corresponding classical functions (plus
quantum corrections) and perform the above-mentioned calculations. Thus,
the ‘correctness’ of any choice of Hamiltonian constraint can be answered
maybe only in step V of the programme.

To summarise: the constraint algebra of the Hamiltonian constraints among
each other is mathematically consistent but this does not yet prove that it has
the correct classical limit.

The proposed quantisation of H(N) has been criticised in the literature on
several grounds. In order to avoid confusion and to clarify what really has been
shown, let us briefly discuss them and show why these criticisms are inconclusive
and sometimes simply false. See also the discussion in [577,578].

(i) In [579,580] the authors prove a statement similar to (10.4.20) on their space
D∗

	. The algebra of their dual constraint operators becomes Abelian for a
large class of operators, which even classically do not need to be propor-
tional to a diffeomorphism constraint. They then argue that the quantisation
method proposed here cannot be correct because it either implies a depar-
ture from the classical calculation or, even worse, that the (dual of the)
quantum metric operator q̂ab vanishes identically.

We disagree with both conclusions for two reasons:
1. Their limit dual operators are defined by

[Ĥ ′(N)Ψ](f) := lim
ε→0

Ψ((Ĥε(N))†f) (10.4.21)

where convergence is only pointwise, that is, for any δ > 0, Ψ ∈ D∗
	, f ∈ D

there exists ε(δ,Ψ, f) such that

|[Ĥ ′(N)Ψ](f) − Ψ((Ĥε(N))†f)| < δ (10.4.22)

for any ε < ε(δ,Ψ, f). Thus, while they have blown up D∗
diff to D∗

	, their
convergence is weaker when restricted to D∗

diff so that it is not easy to
compare the two operator topologies (notice that we can also define a dual
operator via (10.4.21) restricted to D∗

diff considered as a subspace of D∗,
however this subspace is just not left-invariant so we cannot compute
commutators of duals). However, it is clear that the subspace D∗

	 is a
sufficiently small extension of D∗

diff in order to make sure that a much
wider class of operators converges in their topology than the class that
we have in mind for our topology, since our topology roughly requires
that Ψ((Ĥε(N))†f) is already independent of ε while their topology only
requires that the ε dependence rests in the smearing functions N which
are required to be smooth at vertices.



306 Step IV: (2) implementation and solution of the Hamiltonian constraint

Therefore our first conclusion is that it is not surprising that in their
topology more operators converge.

Next, let us turn to commutators. In our topology, what is required
is that the expression Ψ([(Ĥε(N))†, (Ĥε′(N ′))†]f) just equals zero inde-
pendently of how large the graph is on which f depends because we have
identified (Ĥε(N))† with the continuum operator. In their topology what
happens is that unless the operator (Ĥ(N))† also has the properties (B),
(C) besides (A) then one gets for the commutator an expression of the
form (10.4.17) on which one acts with an element Ψ ∈ D∗

	, the result of
which is that one gets

([Ĥ(N ′)′, Ĥ(N)′]Ψ)(fγ)= lim
ε→0

lim
ε′→0

∑

v∈V (γ)

∑

v′∈V (γ∪aε(γ)|v)−V (γ)

[N ′(v)N(v′)

−N(v)N ′(v′)]Ψ
[
Ĥ†

aε′ (γ∪aε(γ)|v)|v′
Ĥ†

aε(γ)|v
fγ
]

(10.4.23)

For the same reason as for Ψ ∈ D∗
diff each evaluation of Ψ that appears

on the right-hand side is already independent of ε, ε′ for any Ψ ∈ D∗
	

by definition of that space. Therefore the only ε, ε′ dependence rests in
the function [N ′(v)N(v′) −N(v)N ′(v′)]. Now, while each of the roughly
|V (γ)| Ψ-evaluations is non-vanishing, since we take the limit pointwise
and the N,N ′ are smooth, the limit vanishes. If we had not taken point-
wise convergence, then for each finite ε, ε′ we could find fγ ,Ψ such that
the right-hand side of (10.4.23) takes an arbitrarily large value. The rea-
son why this happens is that since one of the conditions (B), (C) does
not hold, now the vertices V (γ ∪ aε(γ)|v) − V (γ) in fact do contribute.

We conclude that their topology is too weak in order to detect even a
mathematical inconsistency. In fact, the extension D∗

	 is rather unphysi-
cal because it is not annihilated by the spatial diffeomorphism constraint.
Since physical states will be in particular spatially diffeomorphism-
invariant, nothing has been gained by considering D∗

	, which is why this
space should not be used at all. The Hamiltonian constraint must be
defined on the kinematical Hilbert space and there can be absolutely no
debate about that.

2. Coming to their second conclusion, we will explicitly display in the next
subsection a quantisation of �H(q−1[(dN)N ′ − (dN ′)N ]). Now in their
topology, the dual of that operator again annihilates D∗

	 but this is again
only because one takes only pointwise rather than uniform limits. If one
tests this operator on a finite graph then, again because there are finitely
many contributions each of which is evidently proportional to a term
of the form [N ′(v)N(v′) −N(v)N ′(v′)], the limit must vanish pointwise,
however, uniformly it blows up for operators not satisfying (B), (C).
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Finally, it is false that in LQG q̂ab is the zero operator. For instance,
it was shown [581] that for any one-form ω the operator corresponding
to Q(ω) :=

∫
d3x
√

det(q)qab ωa ωb admits a well-defined quantisation on
H0 and is non-trivial. By the same methods one can show that this holds
with respect to Q1(ω) :=

∫
d3x
√

det(q)qab ωa ωb. However, Q1 is just the
smeared volume operator with the ‘smearing function’ q(ω) := qabωaωb.
Hence, if q̂(ω) = 0 then Q̂1(ω) = 0 which is not the case.

(ii) Unfortunately, the papers [579,580] have led to a folklore knowledge in the
field that the operators Ĥ(N) are (1) defined on Hdiff and (2) mutually
commuting. Both statements are false: first of all, we have shown that the
operators (Ĥ(N))† defined on H0 are not mutually commuting. Next, we
have shown that their dual cannot be defined on Hdiff due to the structure
of the Dirac algebra D. What is true is that the net of regulated dual
operators can be defined on an unphysical extension D∗

	 of D∗
diff and converge

there, in a topology which we just have argued to be too weak, to mutually
commuting dual operators.

(iii) In [582] we find the claim that the action of the Hamiltonian constraint is too
local in order to allow for interesting critical points in the renormalisation
flow of the theory and that therefore the Hamiltonian constraint must be
changed drastically if possible at all.

Four comments are appropriate:
1. First of all the claim is not even technically correct, how non-local the

operator (Ĥ(N))† is depends on our choice function a which builds a
new graph around any vertex of a given graph γ and the details of that
new graph around v may depend on an arbitrarily large neighbourhood of
v (where a neighbourhood of degree n can be background-independently
defined as the set of edges that one can trace within γ if one performs
a closed loop with endpoints v using at most n edges).

2. Second, it is unclear what role a renormalisation group should play
in a diffeomorphism-invariant theory; after all, renormalisation group
analysis has much to do with scale transformations (integrating out
momentum degrees of freedom above a certain scale) which are difficult
to deal with in absence of a background metric.

3. Third, suppose that we managed to write down a physically correct
Hamiltonian operator of the type (Ĥ(N))†. We could order it symmetri-
cally and presumably find a self-adjoint extension. It would then be possi-
ble to diagonalise it and in the associated ‘eigenbasis’ the operator would
act in an ultralocal way! Thus any non-local operator can be made ultralo-
cal in an appropriate basis. A good example is given by the Laplace opera-
tor in Rn which is non-local in position space but ultralocal in momentum
space. Of course the momentum eigenfunctions are not eigenfunctions but
rather distributions and we must take an uncountably infinite linear com-
bination of them (rather, an integral against a sufficiently nice function,
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that is, a Fourier transform) in order to obtain an L2 function on which
the Laplacian looks rather non-local. Thus, non-locality is hidden in infi-
nite linear combinations, which is the reason why we are working with D∗

rather than with D. This is precisely what happens in 2 + 1 gravity [440].
4. Finally, the intuition on which [582] is based comes from lattice gauge

theory. However, we are already working in a continuum theory. Thus, in
renormalisation group language, we are right at the fix point and there
is no renormalisation, no second-order phase transition necessary. Hence
it is inappropriate to use intuition based on a discrete approximation to
a continuum limit as a guideline, these are just two different theories.
Another difference with lattice gauge theory is that there one works
with an honest Hamiltonian, that is, one looks for eigenfunctions of
H =

∫
d3xH(x) in contrast to simultaneous zero eigenvectors of the

H(x). Obviously, H is more non-local than the H(x), hence intuition
based on Hamiltonians rather than Hamiltonian constraints might be
very misleading.

(iv) The Hamiltonian constraint operators potentially suffer from a huge amount
of ambiguities. There are several qualitatively different sources of ambigui-
ties:
1. We have attached the loop in the spin j = 1/2 representation. However,

the analysis in [452] shows that one can work with higher spin repre-
sentations without affecting the naive semiclassical limit of the operator.
Recently [583] it was shown that higher spin representations lead to spu-
rious solutions of the Hamiltonian constraint in 2 + 1 dimensions (where
one knows the physical Hilbert space by independent methods). This
result presumably extends to 3 + 1 dimensions so that this kind of higher
spin ambiguity is apparently absent.

Notice also that this kind of ambiguity is also present in ordinary
QFT: take a canonically quantised free scalar field theory and consider
instead of the momentum operator-valued distribution π(x) the quan-
tity πF(x) = [Fπ(x)F−1 + F̄−1π(x)F̄ ]/2 where F is an arbitrary never-
vanishing multiplication operator. Clearly classically π(x) = πF(x) but in
quantum theory this substitution will generically lead to a different spec-
trum of the Hamiltonian so that the two theories are unitarily inequiva-
lent. Of course, it is unnatural to perform this substitution. To use higher
spin representations is equally unnatural.

2. We have decided to order the dependence of the Hamiltonian constraint
operator on the electric field to the right of the connection operators.
Could we have chosen a different ordering? The answer is negative:
a different ordering leads to an operator which is ill-defined on every
spin-network state because it makes a contribution at every vertex of the
triangulation, not only at the vertices of the graph. Thus it maps, as
the triangulation is refined, a normalisable state to a non-normalisable
‘state’. Thus, there is in fact no normal ordering ambiguity.
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3. As discussed above, if one takes the habitat D∗
	 point of view, then there

are an infinite number of these spaces that one could consider as a domain
of definition of the unregularised dual of the Hamiltonian constraint oper-
ators. Fortunately, the habitats are not only irrelevant as we have seen,
they are unphysical. Hence this habitat ambiguity is absent.

4. The largest amount of ambiguity comes from the loop attachment. In
the above discussion we have chosen to align the beginning and ending
segments of the loop with the edges of the graph and we have chosen to let
the additional edges intersect the graph transversally. This is not forced
on us. We could for instance detach the beginning and ending segments
slightly from the edges of the graph, we could let them wind an arbitrary
number of times around those edges, we could let the additional edge not
intersect the graph at all or in a C(n) fashion.

The first observation is that these ambiguities are only bad if they
affect the structure of the space of solutions. Since solutions are spa-
tially diffeomorphism-invariant, only the (semianalytic) diffeomorphism-
invariant characteristics of these different loop assignments are impor-
tant. These are counted by a discrete number of possibilities, namely
(A) aligned or not, (B) transversal additional edge or at least C(1) (all
C(n), n > 0 possibilities can be reduced to C(1) by semianalytic diffeo-
morphisms), (C) the braiding of the additional edge through the present
edges of the graph and (D) the winding number n. If we appeal to the
notion of naturalness, then we can rule out the winding number n > 0
because this is not what one would do in lattice gauge theory. Also detach-
ment would never be considered in lattice gauge theory and there is an
additional argument given in [578] which comes from a different point
splitting regularisation of the Hamiltonian constraint operators which
speaks in favour of alignment. Finally, a natural choice of braiding, based
on Puisseaux’ theorem was shown to exist in [438].

Thus we conclude that the amount of ambiguity of the operator is not as bad as
it first appears. In fact, the concrete proposal given above is free of ambiguities
once we pass to the physical Hilbert space.

10.4.4 The quantum Dirac algebra

Recall from Section 10.4.3 that in the URST the commutator of two Hamiltonian
constraints vanishes: the non-zero operator on H0 given by [(Ĥ(N))†, (Ĥ(N ′))†]
is indistinguishable from the zero operator in the URST. We would like to know
whether there exists an operator corresponding to �H(q−1[(dN)N ′ − (dN ′)N ])
and if it is also indistinguishable from the zero operator in the URST. If that
were true, then we could equate the two operators in the URST. Notice that this
is still not satisfactory because one cannot test the correctness of the algebraic
form of an operator on its kernel, but it is still an important consistency check
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whether an operator corresponding to �H(q−1[(dN)N ′ − (dN ′)N ]) exists at all.
More explicitly, we wish to study whether we can quantise

O(N,N ′) :=
∫

d3x
(
NN ′

,a −N,aN
′)qabHb (10.4.24)

In [437] this question is answered affirmatively, that is, we manage to quantise
a regulated operator Ôε(N,N ′) corresponding to (10.4.24) and prove that it
converges in the URST to an operator Ô(N,N ′). We will not derive the operator
but merely give its final expression. However, let us point out once more that
while Ha and qab are known not to have well-defined quantisations because the
infinitesimal generator of diffeomorphisms does not exist (Section 13.6) and since
qab has the wrong density weight (Section 10.4.1), the combination ωaq

abVb is a
scalar density of weight one and therefore has a chance to result in a well-defined
operator for any co-vector field ωa such as ωa = NN ′

,a −N,aN
′.

Let γ be a graph, V (γ) its set of vertices, v ∈ V (γ) a vertex of γ, introduce the
triangulation T (γ) of Section 10.4 adapted to γ, let Δ be a tetrahedron of that
triangulation such that v(Δ) = v, let χε,v(x) be the smoothed out characteristic
function of the neighbourhood U(v) (using, for instance, a smooth partition of
unity) and finally let sI(Δ) be the endpoint of the edge eI(Δ) of Δ incident at
v. We define a vector field on σ of compact support by

ξaε,v,Δ,I(x) := χU(v)(x)
saI (Δ) − va

ε
(10.4.25)

where ε3 is the coordinate volume of U(v) and for any vector field ξ on σ let
ϕξ
t be the one-parameter group of diffeomorphisms that it generates. Let us also

introduce the short-hand notation V̂ (v) := V̂ (U(v)). It was shown in [437] that
there is a classical object Oγ(N,N ′) which uses the triangulation T (γ) and whose
limit, as γ → σ, in the topology of the phase space coincides with (10.4.24). The
quantisations of these objects define densely defined operators Ô(N,N ′) with
consistent cylindrical projections Ôγ(N,N ′) given by their action on functions
fγ cylindrical over a graph γ. The explicit form of these projections is given by

Ô(N,N ′)fγ = −i
16εijkεilm

h̄	2p

∑

v∈V (γ)

∑

v(Δ)=v(Δ′)=v

[Û(ϕ
ξε,v,Δ′,R
ε ) − idH]

× εRST εNPQ[N(v)N ′(sN (Δ)) −N(sN (Δ))N ′(v)]

× tr
(
τjheP (Δ)

[
h−1
eP (Δ),

√
V̂ (v)

])
tr
(
τkheQ(Δ)

[
h−1
eQ(Δ),

√
V̂ (v)

])

× tr
(
τlheS(Δ′)

[
h−1
eS(Δ′),

√
V̂ (v)

])

× tr
(
τmheT (Δ′)

[
h−1
eT (Δ′),

√
V̂ (v)

])
fγ (10.4.26)
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Basically, what happened in the quantisation step was that one had to introduce
a point splitting which is why one has a double sum over tetrahedra and again
factors of 1/

√
det(q) got absorbed into Poisson brackets which then were replaced

by commutators. Notice that in (10.4.26) the square root of the volume operator
appears.

The fact that the combination [Û(ϕ
ξε,v,Δ′,R
ε ) − idH] stands to the left shows

that Ψ(Ô(M,N ′)f) = 0 uniformly in Ψ ∈ D∗
diff and f ∈ D for any N,N ′.

10.5 The kernel of the Wheeler–DeWitt constraint operator

In [439] it was investigated to what extent one can solve the quantum Einstein
equations for Ψ ∈ D∗

diff

Ψ((Ĥ(N))†f) = 0 (10.5.1)

for all N ∈ C∞(σ), f ∈ D. This section is devoted to an outline of an explicit
construction of the complete and rigorous kernel of the proposed operator
(Ĥ(N))†. The methods that we display here will prove useful for all possible
choices of (Ĥ(N))† of the type described. Notice that these solutions are
rigorous solutions to the Wheeler–DeWitt constraint in full four-dimensional,
Lorentzian quantum General Relativity in terms of connections compared with
the calculations performed in [344–349]. Also, they are the first ones that have
non-zero volume and which do not need non-zero cosmological constant.

We first want to give an intuitive picture of the way that the Hamiltonian
constraint acts on cylindrical functions. When looking at (10.4.3) and (10.4.4)
one realises the following: the Euclidean Hamiltonian constraint operator, when
acting on, say, a spin-network state T over a graph γ, looks at each non-planar
vertex v of γ and for each such vertex considers each triple of distinct edges
e, e′, ẽ incident at it. For each such triple, the constraint operator contains three
terms labelled by the three possible pairs of edges that one can form from
{e, e′, ẽ}. Let us look at one of them, say (neglecting numerical factors)

tr
(
[hα(v;e,e′) − hα(v;e,e′)−1 ]hs̃

[
h−1
s̃ , V̂ (U(v))

])
T (10.5.2)

The notation is as follows: s, s′, s̃ are the segments of e, e′, ẽ incident at v that
end in the endpoints of the three arcs a(v; e, e′), etc., α(v; e, e′) is the loop
s ◦ a(v; e, e′) ◦ (s′)−1 and U(v) is any system of mutually disjoint neighbour-
hoods, one for each vertex v. For notational simplicity we have dropped the
graph label. Let j, j′, j̃ be the spins of the edges e, e′, ẽ in T . First of all it is
easy to see that the piece hs̃[h−1

s̃ , V̂ (Uε0(v))] is invariant under a gauge trans-
formation at the endpoint p̃ of s̃. Therefore the state (10.5.2) is also invariant
at p̃ and since p̃ is a two-valent vertex this is only possible if the segments s̃ and
ẽ− s̃ of ẽ carry the same spin in the decomposition of (10.5.2) into spin-network
states T ′. But since ẽ− s̃ carries still spin j̃ (no holonomy along ẽ− s̃ appears
in (10.5.2)) we conclude that the spin of ẽ is unchanged in T ′ compared with T .
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However, the same is not true for e, e′: the piece [hα(v;e,e′) − hα(v;e,e′)−1 ] is a
multiplication operator and raises the spin of a(v; e, e′) from zero to 1/2 and
(10.5.2) decomposes into, in general, four spin-network states T ′ where the spins
of the segments s, s′ are raised or lowered in units of 1/2 compared with T ,
that is, they are j ± 1/2, j′ ± 1/2 respectively while the spins of the segments
e− s, e′ − s′ remain unchanged, namely j, j′. All this follows from basic Clebsch–
Gordan decomposition theory for SU(2).

Next we look at the remaining piece (Ĥ(N))† + (ĤE(N))† of the Lorentzian
Hamiltonian constraint. Its most important ingredient are the two factors of
the operator K̂ which, up to a numerical factor, equal [V̂ (σ), (ĤE(1))†]. Now as
shown in [438], when inserting this operator into (10.4.4) what survives in the
term corresponding to the vertex v of the graph is just [V̂ (U(v)), (ĤE(U(v)))†].
Thus, since the volume operator does not change any spins, the spin-changing
ingredient of the action of the remaining piece of (Ĥ(N))† at v are two successive
actions of (ĤE(U(v)))† as just outlined.

In summary, the Hamiltonian constraint operator has an action similar to a
fourth-order polynomial consisting of creation and annihilation operators. What
is being created or annihilated are the spins of edges of a graph (notice that an
edge with spin zero is the same as no edge at all).

Let us now look at this action in more detail. We will restrict attention only
to the Euclidean piece, for the more complicated full action see [439].

Notice that the Euclidean constraint operator creates edges of a special kind,
called extraordinary edges, namely the arcs a = a(v; e, e′). What is special about
them is that they end in planar vertices which are either bi- or trivalent. If they
are trivalent then, moreover, the vertex is the intersection of the two semiana-
lytical edges a, e where a just ends on an interior point of e. Moreover, let e, e′

be the edges on which a ends. Then there exist semianalytical extensions of e, e′

which end in at least one point and the two possible earliest of these intersection
points away from a ∩ e, a ∩ e′ are, together with these semianalytical extensions,
non-planar vertices of γ. However, not only are these edges special, also the spin
they carry is special, namely the arc a carries always spin 1/2. We will continue
to call this whole set of extraordinary structures an extraordinary edge.

The special nature of these edges allows us to classify the full set of labels
S of spin-network states, called spin-nets, as follows. Denote by S0 ⊂ S, called
sources, the set of spin-nets, corresponding to graphs with no extraordinary edges
at all.

From these sources one constructs iteratively derived sets Sn(s0), n =
0, 1, 2, . . . for each source s0 ∈ S0, called spin-nets of level n based on s0. Put
S0(s0) := {s0} and define Sn+1(s0) as follows: take each s ∈ Sn(s0), compute
(ĤE(N))†Ts for all possible lapse functions N , decompose it into spin-network
states and enter the appearing spin-nets into the set Sn+1(s0).

In [439] it is shown that the sets Sn(s0),Sn′(s′0) are disjoint unless s0 = s′0 and
n = n′. It is easy to see that the complement of the set of sources S0 = S − S0
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coincides with the set of derived spin-nets of level greater than zero. Moreover,
for each s ∈ S there is a unique integer n and a unique source s0 such that
s ∈ Sn(s0).

The purpose for doing all this is, of course, that this classification leads to
a simple construction of all rigorous solutions of the Euclidean Hamiltonian
constraint based on the observation that

(ĤE(N))† · span{Ts}s∈Sn(s0) ⊂ span{Ts}s∈Sn+1(s0) (10.5.3)

Since a solution Ψ of (10.5.1) is a diffeomorphism-invariant distribution in
D∗

diff we define first [Sn(s0)] := {[s]}s∈Sn(s0) where [s] is the label for the
diffeomorphism-invariant distribution T[s] (recall Section 13.6). We can now make
an Ansatz for a basic solution of the form

Ψ := Ψ[s0],
n :=
N∑

k=1

∑

[s]∈[Snk
(s0)]

c[s]T[s] (10.5.4)

with complex coefficients c[s] which are to be determined from the quantum Ein-
stein equations (10.5.1). Now from (10.5.4) it is clear that Ψ[s0],[
n]((ĤE(N))†Ts)
can be non-vanishing if and only if [s] ∈ [Snk−1(s0)] for some k = 1, . . . , n, say
k = l. Choose a representative s ∈ [s] and let γ be the graph underlying s and
V (γ) its set of vertices. We then find, writing (ĤE(N))† =

∑
v∈V (γ) N(v)Ĥ†

E(v),
that

Ψ[s0],
n((ĤE(N))†Ts) =
∑

[s′]∈[Snl
(s0)]

c[s′]
∑

v∈V (γ)

N(v)T[s′]

(
Ĥ†

E(v)Ts

)
(10.5.5)

should vanish for any choice of lapse function N(v). Since N(v) can be any
smooth function we find the condition that

∑

[s′]∈[Snl
(s0)]

c[s′]T[s′]((ĤE(v))†Ts) = 0 (10.5.6)

should vanish for each choice of the finite number of vertices v ∈ V (γ) and for
each of the finite number of spin-nets s ∈ Snl−1(s0). This follows from the fact
that the numbers T[s′]((ĤE(v))†Ts) are diffeomorphism-invariant and therefore
do not actually depend on v itself but only on the diffeomorphism-invariant
information that is contained in the graph γ together with the vertex v singled
out.

Therefore, (10.5.6) is a finite system of linear equations for the coefficients c[s′].
As the cardinality of the sets Sn(s0) grows exponentially with n this system is far
from being overdetermined and we arrive at an infinite number of solutions. The
most general solution will be a linear combination of the elementary solutions
(10.5.6). Qualitatively the same result holds for the Lorentzian constraint [439],
however, it is more complicated because coefficients from different levels get cou-
pled and so one gets solutions labelled also by the highest level that was used
(possibly one has to allow all levels, that is, the highest level is always infinity).
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Nevertheless it is remarkable how the solution of the quantum Einstein equa-
tions is reduced to an exercise in finite-dimensional linear algebra (although the
computation of the coefficients T[s′]((ĤE(v))†Ts) is far from easy, see, e.g., [451]
which, although the authors restrict to trivalent graphs and (ĤE(N))† only, is
already rather involved). On the other hand, it is expected that physically inter-
esting solutions will actually be infinite linear combinations of coupled solutions,
that is, solutions of infinite level, an intuition coming from [440].

Notice that the solutions (10.5.6) are bona fide elements of D∗
diff and therefore

give rigorously defined solutions to the diffeomorphism and the Hamiltonian
constraint of full, four-dimensional Lorentzian quantum General Relativity in the
continuum, subject to the reservation that we still have to prove that the classical
limit of this theory is in fact General Relativity. One should now organise these
solutions into a Hilbert space such that adjointness and canonical commutation
relations of full Dirac observables are faithfully implemented. However, since
group averaging does not work for open algebras, there is no good proposal at
this point for how to do that. This is precisely one of the motivations for the
Master Constraint Programme, to which we turn in the next section.

Remark: One could hope that the so-called Kodama state ΨKodama[A] :=
exp(− 2i

Λ̄hκSCS[A]) is an exact solution of all quantum constraints of vacuum
loop quantum gravity (see, e.g., [584] and references therein for a recent review)
with a cosmological constant Λ. Here

SCS =
∫

σ

Tr
(
A ∧ F − 1

3
A ∧A ∧A

)

is the Chern–Simons action for the connection A which has the property that,
considered as a functional of smooth connections, we have δSCS[A]/δAj

a =
Ba

j , B
a
j = 1

2ε
abcF j

bc, that is, it is the generating functional for the magnetic
field B of A. The hope could be based on the fact that the classical Hamil-
tonian constraint with a cosmological constant can be written in the form
H̃ = εabcTr(EaEb[Bc − ΛEc]) and if we quantise as Êa

j (x) := īhκ/2δ/δAj
a(x)

then in this ordering for H̃ we formally have ̂̃H(x)ΨKodama = 0.
We will now show that this argument is at least very misleading and far from

established for many reasons:

� The constraint H = H̃/
√
|det(E)| is the vacuum constraint for GR with a

cosmological constant only if we use the complex-valued self-dual variables.
However, in this case we do not even have a kinematical inner product for two
reasons: First, the uniform measure, the analogue of the measure μ0 that we
have constructed, does not exist for non-compact gauge groups such as SL(2,C)
because the Haar measure is not normalisable and there does not exist a G-
invariant mean for any gauge group which contains SL(2,R) as a subgroup
since SL(2,R) is a non-amenable group [562,585]. The second problem is even
worse: even if an analogue of the uniform measure existed, it would implement
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the wrong reality conditions. Namely, for the self-dual connection we would
need to impose the operator analogue of E − Ē = 0 and A + Ā = 2Γ[E] where
Γ is the highly non-polynomial spin connection of E.

Formally this can be done as follows: we consider an L2 space holomorphic of
holomorphic wave functions ψ(A) of the form L2(A,K(A, Ā)[DA DĀ]) where
A is some unspecified space of SL(2,C) connections, [DA] denotes the formal
infinite-dimensional Lebesgue measure and K is a kernel to be determined.
The canonical brackets {Ea

j (x), Ak
b (y)} = iκδbaδ

k
j δ(x, y) motivate us to repre-

sent Aj
a(x) as a multiplication operator and Ea

j (x) as the functional derivative
−	2P δ/δA

j
a(x). Since wave functions are holomorphic, in order that Ê be sym-

metric9 we need that K(A, Ā) = ρ(�(A)) for some functional ρ. In order to
satisfy the second reality condition we display ρ by its formal Fourier func-
tional integral

ρ(�(A)) =
∫

E
[dE] exp

(
i

∫

σ

d3x Ea
j�(A)ja

)
ρ(Ẽ) (10.5.7)

over some unspecified space of electric fields because the exponential function
in (10.5.7) is a generalised eigenfunction of the functional derivative operator.
The adjointness relation Â†(x) + Â(x) = 2Γ(Ê(x)) is then equivalent10 to the
following system of functional differential equations

[
�
(
Aj

a(x)
)
− Γj

a

(
	2P
2
δ/δ�(A(x))

)]
ρ(�(A)) = 0 (10.5.8)

which can be solved, using (10.5.7) by11

K(A, Ā) =
∫

E
dE ei

∫
σ

d3x[
A

j
a+Ā

j
a

2 −Γj
a]Ea

j (10.5.9)

Unfortunately, this gauge-invariant kernel does not satisfy the decay assump-
tions under which it was derived. Moreover, the kernel is not manifestly positive
so that it is unclear whether the corresponding formal inner product is positive
(semi)definite.

In summary, for the self-dual connection there is presumably no Hilbert space
representation at all. Therefore we do not even know whether (the smeared

form of) ̂̃H is densely defined. Even worse, the fact that H̃ is a density of
weight two makes this impossible to happen in any background-independent
representation, as we showed in this chapter.

9 When performing the corresponding functional integration by parts we must require that
K decays sufficiently fast at infinity in A. This is not possible for the holomorphic wave
functions by Liouville’s theorem.

10 This only holds formally if we think of E �→ Γ(E) as being approximated by a Taylor
series in E.

11 Use that Γ is a homogeneous rational function of degree zero and that Γ has the
generating functional (4.2.24).
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� Even when including the proper factor 1/
√

|det(E)| which turns H into a
density of weight one then we do not know how to quantise the volume oper-
ator associated with

√
|det(E)| because we would need to know whether the

associated flux operators are self-adjoint, otherwise we do not know what oper-
ators are positive and we cannot define the absolute value |A| :=

√
A†A of an

operator A nor the square root. We need the volume operator in order to
define 1/

√
|det(E)| via the Poisson bracket identity between the connection

and the volume, otherwise the operator corresponding to H would not be
densely defined in any representation due to the zero modes of the volume
operator (e.g., constant functions, assuming that they are normalisable).

� We might think of ̂̃H as the dual of an operator where the dual is defined on
some space of distributions over some space of functions of connections and
then the above chosen ordering is formally the same as we have defined for
the Hamiltonian constraint in that the connection dependence is to the right
for the dual operator (to the left for the actual operator). However, none of
these spaces can be specified and thus it is not possible to see what the actual
operator should be, that is, we do not know whether ̂̃H is the dual quantisation
of H̃. Since we do not know what the spaces involved are we cannot perform
spectral analysis. We therefore cannot determine the physical inner product
and cannot check whether ΨKodama is normalisable and has non-zero norm.

� If we take the connection to be real-valued then all these mathematical notions
are rigorously defined, however, then the Kodama state is no solution to the
constraints any more because in this case the constraint H̃ acquires an extra
term. Without this term we just have the Euclidean piece of the constraint.
Even then it is not at all clear that ΨKodama can be extended to a measur-
able function on A, but even if one could somehow define the Chern–Simons
action as some limit of functions of holonomies then the resulting functional
would not be an L2 function any more, being an at least uncountably infinite
linear combination of mutually orthogonal spin-network states. Hence at best
it can be defined as a distribution on the finite linear span of spin-network
functions. But then the dual of the Hamiltonian constraint does not annihi-
late it, not even the Euclidean piece, because in order to define the Euclidean
Hamiltonian constraint we have to take the factor 1/

√
|det(E)| into account

and quantise it with the Poisson bracket identity. In that form then we get at
each vertex an actual, smeared Euclidean Hamiltonian constraint of the form
Tr(hαhe[h−1

e , V̂ ] − ΛV̂ ) whose dual does not annihilate ΨKodama because there
is no factor B − ΛE any more.

� Finally, while SCS is formally spatially diffeomorphism-invariant, it is well
known not to be invariant under finite (rather than infinitesimal) gauge trans-
formations. Hence it does not even solve the Gauß constraint.

Hence, if one wants to define a rigorously defined Kodama state as an element
of D∗ using all the machinery of A then a lot more work is required.
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10.6 The Master Constraint Programme

In this section we describe the Master Constraint Programme applied to GR.
For an outline of the method for a general theory see Chapter 30.

10.6.1 Motivation for the Master Constraint Programme

in General Relativity

There are three good reasons for setting up the Master Constraint Programme
(MCP):

1. Unconventional operator topology
We have seen that spatial diffeomorphism-invariance plays a very important
role in showing that the limit of the Hamiltonian constraint, as the regulator is
removed, converges to a well-defined operator on H0. It is therefore natural to
try to define Ĥ(N) (or rather the dual Ĥ ′(N)) directly on Hdiff . However, we
simply cannot do that because the relation { �H,H} ∝ H of the Dirac algebra D

dictates that Ĥ ′(N) must not preserve Hdiff . This is the reason for introducing
a topology of the kind of the URST which allows us to take advantage of
spatial diffeomorphism-invariance while (Ĥ(N))† is defined on the kinematical
Hilbert space H0. However, it would be much cleaner to work directly on Hdiff

and to use a usual strong or weak operator topology. In particular, the axiom of
choice would no longer be necessary because all choice functions are spatially
diffeomorphically equivalent up to diffeomorphism-invariant characteristics.

2. Non-existence of the generator of spatial diffeomorphisms
We have seen that one-parameter subgroups of the spatial diffeomorphism
group are not weakly continuous, hence a self-adjoint generator corresponding
to �H( �N) does not exist. Therefore it is not possible to implement the rela-
tion {H(N), H(N ′)} =∝ �H(q−1(dNN ′ −NdN ′)) in the quantum theory with
infinitesimal �H, it is at most possible with finite diffeomorphisms U(ϕ) − 1H0

and it seems that this is what actually happens. Notice that due to the unique-
ness of H0 it is not possible to switch to another representation in which the
infinitesimal generator does exist unless one changes the algebra P, that is,
the very starting point of the quantisation programme. Hence, trouble with
implementing the relation {H(N), H(N ′)} =∝ �H(q−1(dNN ′ −NdN ′)) is to
be expected and it would be nice to circumvent that problem.

3. Absence of true Lie algebra
The fact that we get structure functions q−1(dNN ′ −NdN ′) rather than
structure constants (with respect to the phase space) disqualifies D as an
honest Lie algebra and prohibits using group averaging techniques in order
to construct solutions to the infinite number of Hamiltonian constraints, a
physical inner product thereon and Dirac observables by RAQ methods, see
Chapter 30. It would be important to develop methods for dealing with first-
class algebras which are not Lie algebras.
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These three observations motivate us to reformulate the constraint algebra D

such that the new algebra M, the Master Constraint algebra, is free from all
three problems while still encoding the same reduced phase space, that is, the
same constraint surface and the same (weak) Dirac observables. To circumvent
problem 1 one would need to define the new Hamiltonian constraints directly
as operators on Hdiff . This is clearly only possible if the corresponding classical
Hamiltonian constraints are spatially diffeomorphism-invariant and hence would
solve problem 2 as well. To solve problem 3 the new constraints would need
to close with structure constants but without involving the infinitesimal spatial
diffeomorphism constraints. Finally they would need to be spatial scalars with
density weight one in order to have a chance of resulting in well-defined smeared
operators. Hence, denoting the new Hamiltonian constraints with the symbol
M(x) and their smeared version with M(N) we would need { �H( �N),M(N)} = 0
and {M(N),M(N ′)} ∝ M(N ′′(N,N ′)) where N ′′ is a phase space-independent
functional of N,N ′ with N ′′(N,N ′) = −N ′′(N ′, N). The latter condition implies
that N ′′ cannot be ultralocal, that is, it must involve at least spatial derivatives
of N,N ′. But then it must depend on qab which is not allowed. Hence we conclude
N ′′ = 0, that is, {M(N),M(N ′)} = 0.

Quite surprisingly one can classify all solutions to this Abelian condition
[586–588]. The corresponding M(x) are algebraic aggregates built from H(x)
and qabHaHb. Unfortunately, the only density one-valued solution is M(x) =√
H2 − qabHaHb whose Hamiltonian vector field vanishes on the constraint sur-

face and therefore does not result in a well-defined gauge flow. Apart from this
classical problem the argument of the square root is indefinite and hence it is
hard to give meaning to it in the quantum theory. However, the worst problem is
that the M(x), just as the H(x), are scalar densities of weight one, therefore we
have automatically { �H( �N),M(N)} ∝ M(L 
NN) which therefore does not solve
problem 1. The only spatially diffeomorphism-invariant quantity that can be
built from M(x) is M(N)N=1 =

∫
d3xM(x), however, this gives us not enough

information because we need all the M(N) for arbitrary N in order to conclude
from M(N) = 0 for all N that M(x) = 0 for all x.

The way out is the Master Constraint

M =
1
2

∫

σ

d3x
H(x)2

√
det(q)(x)

(10.6.1)

Clearly the integrand is a density of weight one, therefore { �H( �N),M} = 0 which
solves problem 1.12 Since the integrand is positive, the single Master Equation
M = 0 is in fact equivalent to the infinite number of constraints H(x) = 0, thus
the problem just stated does not appear.13 Also the integrand is differentiable on

12 Since qab is classically non-degenerate the integrand is classically non-singular.
13 Actually we can only conclude that H(x) = 0 a.e. with respect to d3x. However, also

H(N) = 0 for all N just means that H(x) = 0 for a.a. x. But since x �→ H(x) is classically
continuous, even smooth, we in fact may conclude H(x) = 0 for all x ∈ σ.
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the constraint surface in contrast to M(x). Now since we are proposing to take
only one constraint M instead of infinitely many, the constraint algebra among
the ‘Master Constraints’ trivialises {M,M} = 0.

Thus we have managed to solve all three problems listed above. However, while
we have verified that M = 0 defines the same constraint surface as the H(N), we
must still check that M is able to detect the same (weak) Dirac observables as the
H(N) do. Recall that a spatially diffeomorphism-invariant function O is called
a weak Dirac observable provided that {O,H(N)}M=0 = 0 for all N . Now the
analogous condition {O,M}M=0 = 0 is trivially satisfied for arbitrary O because

{O,M} =
∫

σ

d3x
{O,H(x)} H(x) − 1

2{O, ln(
√

det(q)(x))}H(x)2
√

det(q)(x)
(10.6.2)

obviously vanishes at M = 0 as long as O is differentiable. Thus it seems that M

is not enough in order to detect Dirac observables. However, we notice that

{O, {O,M}}M=0 =
∫

σ

d3x

(
{O,H(x)}M=0

)2
√

det(q)(x)
(10.6.3)

vanishes if and only if {O,H(N)}M=0 = 0 for all N . Thus, again the infinite
number of conditions {O,H(N)}M=0 = 0 for all N is replaced by the single
Master Condition {O, {O,M}}M=0 = 0, the only price we have to pay is that we
need to work with double Poisson brackets instead of a single one.14

Since we now have managed to recast the constraint algebra D into a much
simpler form, namely the Master Constraint algebra M

{ �H( �N), �H( �N ′)} = −κ �H( 
N
�N ′)

{ �H( �N),M} = 0

{M,M} = 0 (10.6.4)

we propose to quantise M rather than the H(N) directly on Hdiff and to apply
the direct integral method reviewed in Chapter 30 in order to solve the constraint,
to define the physical inner product and to find Dirac observables. In fact, it is
necessary to define the Master Constraint operator M̂ directly on Hdiff because,
as we have seen, graph-changing spatially diffeomorphism-invariant operators
cannot be defined on H0. Thus we see that several facts work nicely together.

One may ask why we then took the effort to go through the construction of
(Ĥ(N))† at all. The answer is that the same techniques that we used to define
(Ĥ(N))† can be applied to define M̂ because M̂ is closely related to the square
of the H(x), modulo the important factor 1/

√
det(q).

14 In fact we could have used any even power of H, that is, H2n/
√

det(q)
2n−1

and then

would have to consider multiple Poisson brackets of order 2n. However, n = 1 is the
simplest choice.
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10.6.2 Definition of the Master Constraint

The strategy to implement the Master Constraint is as follows. Let T (ε) be a
triangulation of σ into tetrahedra Δ and denote by ε → 0 the limit in which the
triangulation is infinitely refined. Then the classical Master Constraint is the
limit of the Riemann sum

M = lim
ε→0

∑

Δ∈T (ε)

H(Δ)2

V (Δ)
(10.6.5)

where H(Δ) = H(χΔ), V (Δ) =
∫
Δ
d3x
√

det(q) and χΔ is the characteristic func-
tion of the set Δ. Now recall formulae (10.3.12), (10.3.13) and consider there the
term for a given Δ. It is easy to see that in the limit ε → 0 this term coincides
with N(v(Δ))H(Δ) where H(Δ) is defined as above. Now H(Δ) is proportional
to the Poisson bracket {h−1

eK(Δ), V (Rv(Δ))} where V (Rv(Δ)) can be chosen to be
identical to the V (Δ) used in the notation used in this section. We now write

H(Δ)2

V (Δ)
=

(
H(Δ)
√
V (Δ)

)2

=: C(Δ)2 = C(Δ)C(Δ) (10.6.6)

where we used {., V (Δ)}/
√
V (Δ) = 2{.,

√
V (Δ)} and defined C(Δ) to be

the same as H(Δ) just that {h−1
eK(Δ), V (Rv(Δ))} is replaced by 2{h−1

eK(Δ),√
V (Rv(Δ))}.
This is a huge simplification because the C(Δ) can be quantised precisely as

the H(Δ) with this simple change in the power of the volume operator. All the
qualitative features remain the same, only the numerical values of the matrix ele-
ments of the corresponding regularised Ĉ†

ε (Δ) change. We may therefore compute
the corresponding, regularised dual operators Ĉ ′

ε(Δ) on D∗ and when restricted
to l ∈ D∗

diff the dependence on ε in Ĉ ′
ε(Δ)l actually drops out. However, as before

Ĉ ′
ε(Δ) does not preserve Hdiff . Now since we have managed to recast (10.6.5)

into the form

M = lim
ε→0

∑

Δ∈T (ε)

C(Δ)C(Δ) (10.6.7)

and since we must implement M̂ directly on Hdiff we try to define the quadratic
form

QM(l, l′) := lim
ε→0

∑

Δ∈T (ε)

< l, (Ĉ ′
ε(Δ))∗Ĉ ′

ε(Δ)l′ >diff

= lim
ε→0

∑

Δ∈T (ε)

< Ĉ ′
ε(Δ)l, Ĉ ′

ε(Δ)l′ >diff (10.6.8)

where (.)∗ denotes the adjoint operation on Hdiff . However, at least at finite ε

equation (10.6.8) is ill-defined because we are using the scalar product on Hdiff

while Ĉ ′
ε(Δ)l �∈ Hdiff . For the same reason the adjoint operation carried out in

the second step is unjustified.
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The hope is, of course, that (10.6.8) makes sense in the limit ε → 0 when
the corresponding classical quantity becomes spatially diffeomorphism-invariant.
The tool to arrive at this is to equip the space D∗ with an inner product which
reduces to the one on Hdiff when evaluated on D∗

diff . This can be done, formally,
as follows: given a spin-network diffeomorphism equivalence class [s] we define
the non-standard number or Cantor aleph

ℵ([s]) := |[s]| := |{s′ ∈ S; [s′] = [s]}| (10.6.9)

as the size of the orbit [s]. Now recall that the preferred elements of D∗
diff were

given by

l[s] :=
∑

s′∈[s]

< Ts′ , . >kin, η(Ts) = η[s]l[s] (10.6.10)

with positive numbers η[s] and

< η(Ts), η(Ts′) >diff= η(Ts′)[Ts] (10.6.11)

An arbitrary element of D∗ is of the form l =
∑

s∈S cs < Ts, . >kin. Formally,
we may define an inner product < .,>∗ on D∗ by

< l, l′ >∗ :=
∑

s,s′

csc
′
s′ << Ts, . >kin, < Ts′ , . >kin>∗

:=
∑

s,s′

csc
′
s′ < Ts′ , Ts >kin

√
η[s]η[s′]√

ℵ([s])ℵ([s′])
=
∑

s

csc
′
s

η[s]

ℵ([s])
(10.6.12)

This reproduces the inner product between the η[s] which correspond to cs′ =
χ[s](s′). It also formally corresponds to formally extending (10.6.12) to Hkin with

< Ts, Ts′ >∗:=< Ts, Ts′ >kin

√
η[s]η[s′]√

ℵ([s])ℵ([s′])
(10.6.13)

but of course elements of Hkin have zero norm in this inner product. Hence by far
not all elements of D∗ are normalisable in this inner product and many elements
have zero norm with respect to it. By passing to the quotient by the null vectors
and completing we may turn the normalisable elements of D∗ into a Hilbert
space H∗ ⊂ D∗. Notice that (10.6.12) is the first inner product to be proposed
on (a subset of) D∗.

It is curious to note that we may formally define a partial isometry

V : H∗ → Hkin; l =
∑

s

cs < Ts, . >kin �→ l̃ =
∑

s

cs

√
η[s]

ℵ([s])
Ts (10.6.14)

so that we may formally identify < ., . >∗ with the kinematical inner product
< ., . >kin under the map l �→ l̃.
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The idea is then to use < ., . >∗ and its associated adjoint operation to define
(10.6.8) properly, that is,

QM(l, l′) := lim
ε→0

∑

Δ∈T (ε)

< l, (Ĉ ′
ε(Δ))∗ Ĉ ′

ε(Δ) l′ >∗

= lim
ε→0

∑

Δ∈T (ε)

< Ĉ ′
ε(Δ) l, Ĉ ′

ε(Δ) l′ >∗ (10.6.15)

which is now well-defined. To evaluate < ., . >∗ we write

Ĉ ′
ε(Δ)l =

∑

s∈S
cls(Δ, ε) < Ts, . >kin ⇒ cls(Δ, ε) = l

(
C†

ε (Δ)Ts

)
(10.6.16)

where the dependence on ε is actually trivial. Hence (10.6.16) becomes

QM(l, l′) = lim
ε→0

∑

Δ∈T (ε)

∑

s

cls(Δ, ε) cl
′

s (Δ, ε)
η[s]

ℵ([s])

= lim
ε→0

∑

Δ∈T (ε)

∑

[s]

η[s]

ℵ([s])

∑

s′∈[s]

cls′(Δ, ε) cl
′

s′(Δ, ε) (10.6.17)

We notice that for given l, l′ only a finite number of [s] contribute to (10.6.17):
namely, both l, l′ are finite linear combinations of the l[s1] in (10.6.10), hence it
suffices to show that for any [s1], [s2] the numbers

c
l[s1]

s′ (Δ, ε) c
l[s2]

s′ (Δ, ε) (10.6.18)

are non-vanishing only when s′ ∈ [s] and [s] ranges over a finite number of classes.
In order that c

l[s1]

s′ (Δ, ε) �= 0 we must have that Ĉ†
ε (Δ)Ts′ is a finite linear combi-

nation of spin-network states which involves at least one of the Ts′1
with s′1 ∈ [s1].

But from the explicit action of Ĉ†
ε (Δ) it is clear that for each s′1 ∈ [s1] there is

only a finite set S(s′1) of s′ with this property.15 Moreover, for each s′1 ∈ [s1]
the number of elements of S(s′1) is the same and the classes of the elements of
S(s′1) do not depend on the representative s′1 ∈ [s1]. Denote the finite set of these
classes by [S]([s1]).

The sum over [s] in (10.6.17) is therefore only over the finite set [S]([s1]) ∩
[S]([s1]) for l = l[s1], l

′ = l[s2], hence for any l, l′ ∈ Hdiff the sum over [s] in
(10.6.17) is finite. We may therefore interchange the sum

∑
[s] with the

∑
Δ

and the limit limε→0 and arrive at

QM(l, l′) =
∑

[s]

η[s]

ℵ([s])
lim
ε→0

∑

Δ∈T (ε)

∑

s′∈[s]

cls′(Δ, ε) cl
′

s′(Δ, ε) (10.6.19)

15 This is only true if we restrict attention to those s′ such that [s′] is in a given, invariant θ

equivalence class as discussed in Section 10.6.3. The reason is that Ĉ†
ε (Δ) may remove

moduli within Ts′ that Ts′1
does not know about. Hence, without this assumption we

would need to sum over uncountably many [s] with different moduli. Thus we will make
this restriction here and in the next subsection which will be justified in Section 10.6.3.
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Fix s′ ∈ [s] and consider Ĉ†
ε (Δ)Ts′ . From Section 10.4 we know that this can be

written in the form

Ĉ†
ε (Δ)Ts′ =

∑

v∈V (γ(s′))∩Δ

Ĉ†
ε,vTs′ (10.6.20)

For sufficiently small ε each Δ contains at most one vertex and the sum over Δ
therefore reduces to the finite set T (ε, s′) of those Δ’s containing precisely one
vertex of γ(s′). We may therefore interchange the sum

∑
s′ with the

∑
Δ and

the limit ε → 0 and obtain

QM(l, l′) =
∑

[s]

η[s]

ℵ([s])

∑

s′∈[s]

lim
ε→0

∑

Δ∈T (ε,s′)

cls′(Δ, ε) cl
′

s′(Δ, ε)

=
∑

[s]

η[s]

ℵ([s])

∑

s′∈[s]

lim
ε→0

∑

v∈V (γ(s′))

cls′(v, ε) c
l′

s′(v, ε)

=
∑

[s]

η[s]

ℵ([s])

∑

s′∈[s]

∑

v∈V (γ(s′))

cls′(v) c
l′

s′(v) (10.6.21)

where

cls′(v, ε) = l
(
Ĉ†

ε,vTs′
)

= l
(
Ĉ†

ε0,vTs′
)

=: cls′(v) (10.6.22)

for any choice ε0 by spatial diffeomorphism-invariance of l. In the second step
the sum over the contributing Δ could be replaced by the sum over vertices and
since then nothing depends on ε any more the limit ε → 0 is trivial.

We now claim that

a(s′) :=
∑

v∈V (γ(s′))

cls′(v) c
l′

s′(v) (10.6.23)

only depends on the class [s] of s′. Indeed,

a(ϕ · s′) =
∑

v∈V (γ(ϕ·s′))
clϕ·s′(v) c

l′

ϕ·s′(v)

=
∑

v∈ϕ(V (γ(s′)))

clϕ·s′(v) c
l′

ϕ·s′(v)

=
∑

v∈V (γ(s′))

clϕ·s′(ϕ(v)) cl
′

ϕ·s′(ϕ(v)) (10.6.24)

but

clϕ·s′(ϕ(v)) = l
(
Ĉ†

ε0,ϕ(v)Û(ϕ)Ts′
)

= l
(
Û(ϕ)Ĉ†

ε′0,v
Ts′
)

= l
(
Ĉ†

ε′0,v
Ts′
)

= l
(
Ĉ†

ε0,vTs′
)

= cls′(v) (10.6.25)

where in the first step we used the fact that Diffω
sa(σ) is unitarily implemented, in

the second we have used the covariance relation (10.4.15) up to a diffeomorphism
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under which the choice ε0 may change but two choices are related by a diffeo-
morphism and in the last two steps we used diffeomorphism-invariance of l.

It follows that all the ℵ([s]) terms in the sum
∑

s′∈[s] are identical. Let s0([s])
be a representative of [s] then we may finish our derivation and get the final
result

QM(l, l′) =
∑

[s]

η[s]

∑

v∈V (γ(s0[s]))

l
(
Ĉ†

vTs0([s])

)
l′
(
Ĉ†

vTs0([s])

)
(10.6.26)

The explicit expression for l(Ĉ†
vTs0([s])) is given by the evaluation of l on (10.4.3),

(10.4.4) with V̂ (Uε0(v)) replaced by 2
√
V̂ (Uε0(v)). We have dropped the irrele-

vant label ε0. Since we showed that the sum over [s] collapses to a finite number of
terms, (10.6.26) is well-defined. Readers who dislike the formal steps performed
involving division by and summing over ℵ([s]) terms may take (10.6.26) as a
definition.

However, we are not yet finished because QM only defines a quadratic form. See
Definition 26.8.1. In our case we can take as the domain D(QM) the finite linear
span of the l[s]. Our QM is manifestly positive and sesqui linear. It remains to
show that it is closable. The problem that one might encounter is the following:
the Hilbert space Hdiff has the orthonormal basis T[s] := l[s]/

√
η[s] and we would

like to define an operator M̂ densely on D(QM) by

M̂ T[s2] :=
∑

[s1]

QM(T[s1], T[s]) T[s1] (10.6.27)

However, the right-hand side should be an element of Hdiff , that is

|| M̂ T[s]||2 :=
∑

[s1]

|QM(T[s1], T[s2])|2 < ∞ (10.6.28)

Hence there is a convergence issue to be resolved.

Theorem 10.6.1
(i) The positive quadratic form QM (10.6.26) is closable and induces a unique,

positive self-adjoint operator M̂ on Hdiff .
(ii) Moreover, the point zero is contained in the point spectrum of M̂.

Proof
(i) Since, given [s2] the ‘matrix element’ QM(T[s1], T[s2]) is finite for every [s1]

in order to prove convergence of (10.6.28) it will be sufficient to show that
QM(T[s1], T[s2]) �= 0 for at most a finite number of [s1] only.
1. Let us fix [s1], [s2] and consider the term corresponding to [s] in (10.6.26).

In order that it does not vanish, the expression
∑

v∈V (γ(s0[s]))

T[s1]

(
Ĉ†

vTs0([s])

)
T[s2]

(
Ĉ†

vTs0([s])

)
(10.6.29)



10.6 The Master Constraint Programme 325

must be non-zero. Hence the spin-network decomposition of Ĉ†
vTs0([s])

must contain a term diffeomorphic to Ts1 and a term diffeomorphic to
Ts2 for at least one v ∈ V (γ(s0([s]))). Let us estimate the number of [s]
for which this is possible. The action of Ĉ†

v on Ts0([s]) consists of two
terms.

First term
The first term adds an arc in between any possible pair of edges with
two possible orientations and changes the spin of the two corresponding
adjacent segments by ±1/2. Therefore it adds two more vertices. Work-
ing at the gauge-variant level (there are more gauge-variant SNWFs than
invariant ones) this also changes the magnetic quantum numbers at the
endpoints of all three edges by ±1/2, which results in an additional fac-
tor of 43 at most. Hence per vertex of valence n(v) we get this way no
more than 4 · 2 · 43n(v)(n(v) − 1)/2 = 44n(v)(n(v) − 1) new spin-network
states from the first term.
Second term
The second term is the square of the first term as far as the counting of
new states is concerned. Hence we get 48n(v)2(n(v) − 1)2 new spin net-
work states from the second term depending on two more arcs and four
more vertices.

Now in order that any of those is diffeomorphic to Ts1 the graph
γ(s0([s])) must have one or two edges less than γ(s1) and two or four
vertices less than γ(s1). Moreover, the spins of the segments of edges
adjacent to the arcs must differ by ±1/2 and the magnetic quantum num-
bers of arcs and edges must differ by ±1/2. We conclude that if N1 is
the maximal valence of a vertex of γ(s1) then the number of [s] that can
contribute is bounded by 48N4

1 |V (γ(s1))| which depends only on [s1]. The
same applies to s2 of course. The actually contributing number of [s] is
certainly smaller than the maximum of 48N4

1 |V (γ(s1))|, 48N4
2 |V (γ(s2))|.

2. Let us now fix [s2] and let [s1] run. There are only 48N4
2 |V (γ(s2))|

classes [s] which can contribute no matter which [s1] we choose. By a
similar argument, for each of those [s] the number of [s1] which lead
to a non-vanishing contribution is bounded by 48N4|V (γ(s0([s])))| + 2
where N is the maximal vertex valence of γ(s0([s])). Since N = N2

and |V (γ(s0([s])))| ≤ |V (γ(s2))| we conclude that QM(T[s1], T[s2]) is
non-vanishing for at most 416N8

2 |V (γ(s0([s2])))|2 of the classes [s1].
We thus have shown that there is a positive symmetric operator M̂

with dense domain Ddiff , the finite linear span of the T[s], defined by
(10.6.28) whose quadratic form coincides with QM on the form domain
D(QM) = Ddiff . Hence by Theorem 26.8.2 (iii) QM has a positive closure
and induces a unique self-adjoint (Friedrich) extension of M̂ by Theorem
26.8.2 which we denote by M̂ as well.
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(ii) Notice that the construction of the solutions of Ĥ ′(N)l = 0 for all N (which
produces zero eigenvectors, i.e., normalisable elements of Hdiff) which we
sketched in Section 10.5 can be directly transcribed to the construction of
solutions to M̂ l = 0. Namely, M̂ l = 0 implies QM(l, l) = 0 which in turn
enforces l(Ĉ†

vTs0([s])) = 0 for all [s] and all v ∈ V (γ(s0([s]))). This is equiva-
lent to l(Ĉ†(N)Ts) = 0 for all s and all N where Ĉ†(N) is defined identically
as Ĥ†(N) just that one of the volume operators is replaced by two times its
square root. Thus, in particular T[s] where s has no extraordinary edges are
normalisable solutions. �

Hence the Master Constraint operator has a kernel as rich as the Hamiltonian
constraint. Moreover, it gives us additional flexibility in the following sense:
in order to have a consistent constraint algebra the action of the Hamiltonian
constraint had to be trivial at the vertices that it creates itself. However, the
Master Constraint does not have to satisfy any non-trivial constraint algebra,
hence this restriction can be relaxed which is probably welcome to those [582] who
believe that the action of the operator is too local. Whether such modifications
lead to a sufficiently large semiclassical sector is, of course, not clear a priori and
is subject to a detailed semiclassical analysis in step V.

10.6.3 Physical inner product and Dirac observables

Given the self-adjoint Master Constraint operator M̂ on Hdiff of the previous
section one would now like to use the machinery of the direct integral decompo-
sition of Chapter 30 in order to define the physical Hilbert space. However, there
is one additional obstacle: while the spectral theorem holds also in non-separable
Hilbert spaces, the direct integral decomposition can be performed only in the
separable case for the reasons spelt out in Chapter 30. However, Hdiff is not
separable unless, possibly, if we admit piecewise analytic diffeomorphisms, that
is, bijections which are almost everywhere analytic but only homeomorphisms
on certain lower-dimensional submanifolds, which remove the continuous moduli
for vertices of valence five or higher. Now using homeomorphisms is forbidden
because we must use the volume operator [427] rather than [425], which depends
on a C(1) structure and which is absolutely crucial in order that M̂ or Ĥ ′(N)
be even densely defined. Thus, the direct integral method seems not to be
applicable.

Fortunately, Hdiff can be decomposed as an uncountably infinite, almost direct,
sum of separable, invariant Hilbert spaces as follows.

Definition 10.6.2. We say that two embedded, semianalytic graphs γ1, γ2 are
θ-equivalent (or homotopic up to the degeneracy type) provided that there exists
a homeomorphism b of σ such that:
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1. b(γ1) = γ2.
2. γ1, γ2 are topologically equivalent, that is, all vertices have the same connec-

tivities with other vertices and edges are braided (knotted) and oriented the
same way.

3. At each v ∈ V (γ2) and for each triple e1, e2, e3 ∈ E(γ1) of distinct, inci-
dent edges the corresponding sign functions in (10.3.15) coincide, that is,
ε(e1, e2, e3) = ε(b(e1), b(e2), b(e3)).

The definition almost introduces piecewise analytic homeomorphisms but not
quite because the graphs remain semianalytic (i.e., edges remain at least C(1)).
Also we do not know whether the inverse of a piecewise analytic homeomorphism
is still piecewise semianalytic, that is, we do not know whether they form a
group. However, definition (10.6.2 ) retains some tangential space structure in
terms of the degeneracy type which is enough for the volume operator [426] to
remain consistent. In fact we could have equivalently defined θ-equivalence by
asking that for each triple of edges e1, e2, e3 in E(γ1) there exists a semianalytic
diffeomorphism ϕe1,e2,e3 such that ϕe1,e2,e3(eI) ∈ E(γ2) is consistently defined as
we vary the triples, such that these maps altogether define a bijection E(γ1) →
E(γ2) and such that ε(e1, e2, e3) = ε(ϕe1,e2,e3(e1), ϕe1,e2,e3(e2), ϕe1,e2,e3(e3)).

Denote by [Γ] the set of semianalytic diffeomorphism equivalence classes [γ] of
graphs γ ∈ Γ and by (Γ) the set of θ-equivalence classes (γ) of graphs. Given (γ),
let Θ′

(γ) be the set of moduli that are necessary to specify all the [γ′] with (γ′) =
(γ). Hence any element [γ] ∈ [Γ] is now uniquely specified by a pair ((γ), θ′) ∈
(Γ) × Θ′

(γ). Let

Θ′ := ×(γ)∈(Γ) Θ′
(γ) � θ′ = {θ′(γ)}(γ)∈(Γ) (10.6.30)

Then the direct sum of Hilbert spaces

Hdiff = ⊕[γ]∈[Γ]H[γ]
diff (10.6.31)

where H[γ]
diff is the closure of the finite linear span of T[s] with non-trivial repre-

sentations on all edges can be decomposed also as

Hdiff = ⊕(γ)∈(Γ) ⊕θ′
(γ)∈Θ′

(γ)
H((γ),θ′

(γ))

diff (10.6.32)

However, it cannot be written as

Hdiff �= ⊕θ′∈Θ′ ⊕(γ)∈(Γ) H
((γ),θ′

(γ))

diff =: ⊕θ′∈Θ′ H′θ′

diff (10.6.33)

This is because two points θ′1 �= θ′2 in Θ′ are different whenever there is at least
one entry θ′1,(γ) �= θ′2,(γ).

Thus the Hilbert spaces H′θ′
diff corresponding to a fixed choice θ′ ∈ Θ′ are not

mutually orthogonal. However, they are naturally isomorphic under the unitary
operator that maps the basis of spin knot work functions over ((γ), θ′1,(γ)) into

the basis over ((γ), θ′1,(γ)). Moreover, the Hilbert spaces H′θ′
diff are separable. Sep-

arability follows from the fact that at fixed θ′ a spin-network label is completely
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specified by (1) the number of vertices and their connectivities, (2) the braiding
and orientation of the corresponding edges, (3) the degeneracy type and (4) the
spin and intertwining quantum numbers. Each of the four label sets is countable,
hence it has at most cardinality N4, which is countable.

Unfortunately, the spaces H′θ′
diff are generically not left-invariant by M̂: this

follows from the fact that M̂ can have non-vanishing matrix elements between
T[s], T[s′] where γ(s), γ(s′) differ by an arc and possibly in addition by one or
two edges which are the beginning segments of edges within γ(s) that connect
the vertex in question to the arc in γ(s′) (this happens when one or two of
the corresponding edges carries spin 1/2). The attachment of the arc creates a
new trivalent or bivalent vertex and thus does not require moduli. However, the
moduli created by the annihilation of one or two edges at the given vertex in
γ(s′) may differ from the value θ′(γ(s′)) which is assigned to the entry with label

(γ(s′)) in θ′, which labels H′θ′
.

Hence, if we do not want to identify all the H′θ′
, which is not what the for-

malism forces us to do, then in order to select an invariant element H′θ′
we

must proceed differently. We can combine the θ-moduli classification with the
classification by sources S0 and derived spin nets Sn(s0) of level n developed in
Section 10.5 as follows.

Denote by [S0] the set of diffeomorphism equivalence classes of sources. For
any two representatives s1([s0]), s2([s0]) ∈ S0 the set of diffeomorphism equiva-
lence classes of the members of Sn(s1([s0])),Sn(s2([s0])) coincide, that is, they
depend only on [s0]. We will denote this set therefore by [Sn]([s0]). We notice
that the moduli parameters of all the [s] ∈ [Sn]([s0]), n = 0, 1 . . . are completely
determined by those of [s0]. The completion of the finite linear span of these
T[s] will be denoted H[s0]

diff and this Hilbert space is separable by construction.
Now the following issue arises: the action of M̂ consists in adding and remov-
ing arcs to a graph and sometimes it reduces the valence of a vertex by one or
two units. It therefore happens that given [s0] �= [s′0] with (s0) = (s′0) the set
[Sn]([s0]) ∩ [Sn]([s′0]) is not empty. For instance, a five-valent vertex, which has
moduli, could be turned into a three-valent one which does not have moduli.
Hence it is almost but not quite true that Hdiff is the uncountable direct sum of
the H[s0]

diff , [s0] ∈ [S0].
Let us write [s0] = ((s0), θ(s0) := θ(γ(s0))) where (s0) is the θ-equivalence class

of s0 which is determined by the (γ(s0)). Let (S0) be the set of those (s0) and
let Θ′ be the collection of the θ(s0), (s0) ∈ (S0). Then

Hdiff = ∪θ∈Θ Hθ
diff := ∪(s0)∈(S0) H

((s0),θ(s0))

diff (10.6.34)

Notice that the unions are almost direct sums but not quite as just pointed out.
However, each of the spaces Hθ

diff is a separable and M̂-invariant subspace of
Hdiff and all of them are mutually isomorphic. Moreover, each of them contains
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information about all θ-equivalence classes of spin-network states and therefore
all the physically relevant information.

Thus, while these are not sectors in the strict sense, we may just pick one of
these subspaces and apply the direct integral decomposition method to it.

Theorem 10.6.3. There is a unitary operator V such that VHθ
diff is the direct

integral Hilbert space

Hθ
diff ∝

∫ ⊕

R+
dμ(λ) Hθ

diff(λ) (10.6.35)

where the measure class of μ and the Hilbert spaces Hθ
diff(λ), in which V M̂V −1

acts by multiplication by λ, are uniquely determined.
The physical Hilbert space is given by16 Hθ

phys = Hθ
diff(0).

Thus, we see that we can complete the fourth step of the quantisation pro-
gramme by supplying a physical inner product and a separable physical Hilbert
space. Notice that there is an explicit construction behind Theorem 10.6.3 as
outlined in Chapter 30, however, it is rather involved. Therefore, while Theorem
6.2.26 gives us existence and, possibly uniqueness, of Hθ

phys once < ., . >diff , θ, M̂

have been specified, to be practically useful, approximation methods must be
developed.

Dirac observables could now be constructed from spatially diffeomorphism-
invariant operators which preserve any Hθ

diff , for example, by using the ergodic
projection technique or the partial observable Ansatz of Chapter 30. Any spa-
tially diffeomorphism-invariant operator regularised in the same fashion as the
Hamiltonian constraint operator has the property of preserving each of the sub-
spaces Hθ

diff separately, hence this is no restriction.

10.6.4 Extended Master Constraint

We sketch here another possibility to implement the Master Constraint Pro-
gramme [252, 589–591]: this is based on the fact that we may consider the
extended Master Constraints

ME =
∫

σ

d3x
C2 + qabCaCb√

det(q)

MEE =
∫

σ

d3x
C2 + qabCaCb + CjCj√

det(q)
(10.6.36)

where C, Ca, Cj denote Hamiltonian, spatial diffeomorphism and Gauß con-
straint respectively. Both constraints are spatially diffeomorphism-invariant.

16 Actually the spaces Hθ
diff(λ) are defined up to measure μ zero sets. See Chapter 30 for

physical criteria to choose an appropriate candidate.
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However, ME allows us to implement both the Hamiltonian and the spatial dif-
feomorphism constraint on Hkin (and MEE also the Gauß constraint in addition)
provided we implement the corresponding operators in a non-graph-changing
fashion. Both operators will implement spatial diffeomorphism-invariance in
a completely different way than we have done in the main text because the
operator corresponding to qabCaCb/

√
det(q), which exists as we will show in

Section 12.3.4, is the ‘weighted square’ of the infinitesimal generator of spatial
diffeomorphisms which does not exist for the representation ϕ �→ U(ϕ) on Hkin.
This is possible because the weight is phase space-dependent and thus effectively
turns the operator into something less singular than the square of the genera-
tors. Hence, the space Hdiff will not be in the kernel of this weighted integral
of squared spatial diffeomorphism constraint operators and thus we are actually
forced to implement them on Hkin. Incidentally, since the spatial diffeomorphism
group is not implemented by its pull-back action as in Chapter 7, the uniqueness
theorem of Chapter 8 is not available and one may look for new representations.

For the sake of this section, let us stick with the representation Hkin derived in
the main text. In order to define the corresponding operator M̂E in a non-graph-
changing way we may proceed as in [252] where a diffeomorphism-invariant rule
is prescribed for how to select a loop αγ,v,e,e′ within the graph. Basically one calls
a loop within γ with endpoint v ∈ V (γ), starting and ending along e ∈ E(γ) and
(e′)−1 respectively, minimal if there is no other loop with the same properties
and fewer edges of γ traversed. If there is more than one minimal loop then
one averages over them. The operator M̂E is similarly defined as M̂, just that
αγ,v,e,e′ is chosen as explained and no limits of triangulations are to be taken.
This way one is able to define M̂E on all graphs but only on sufficiently fine ones
does one recover the semiclassical limit because only then are the loops attached
sufficiently small.

As we have shown in previous sections, a non-graph-changing Hamiltonian con-
straint that effectively enters the construction of the extended Master Constraint
is anomalous. This will be detected by the spectrum of the M̂E which will pre-
sumably not include zero. As we have explained in Chapter 30, this can be dealt
with by subtracting the minimum of the spectrum from the Master Constraint
(assuming it to be finite and proportional to h̄ such that the modified operator
has the same classical limit as the original one) and thus poses no problem for
the Master Constraint Programme. For instance, in lattice quantum gravity (see,
e.g., [112] for a review) an obstacle is usually the spatial diffeomorphism group
because the discrete generators are anomalous and the representation ϕ �→ U(ϕ)
does not preserve the lattice unless ϕ is a symmetry of the lattice. This is no
obstacle any longer when using ME instead since there is no non-trivial alge-
bra to be checked. While that is true, it would still be desirable to work with
non-anomalous constraints. A possibility for doing that is the concept of perfect
actions [593], which is based on renormalisation group ideas and basically consists
in replacing naive next-neighbour discretisations by more complicated ones with
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Figure 10.4 Countable subset of D families of congruences of curves and faces
respectively for D = 2.

improved continuum limit properties. For instance, it is possible to construct a
perfect, discretised Laplace operator which nevertheless has the spectrum of the
continuum operator [594,595].

By the methods of [589–591] one can indeed show that the extended Master
Constraint of LQG has the correct classical limit at least when σ is compact
and the graph-dependent semiclassical states chosen are sufficiently fine. This
graph dependence of the semiclassical states is one of the motivations for a
reformulation of LQG, called Algebraic Quantum Gravity (AQG), to which we
turn now.

10.6.5 Algebraic Quantum Gravity (AQG)

In [589–591] the following observation was made: to consider all graphs γ and all
surfaces S is a vast overcoordinatisation of the space of connections and electric
fields respectively. It would be sufficient to consider three linearly independent
congruences of curves and foliations of σ respectively and just to consider paths
within the elements of the congruence and surfaces within the leaves of the folia-
tions respectively. From these one can extract all possible holonomies and fluxes
by limiting procedures. The set of paths and surfaces within those structures is
still an uncountably infinite set. Let us consider a countable subset. This con-
sists of a graph γ of cubic topology and a dual cell complex γ∗ consisting of
squares as faces. See Figure 10.4 for the situation in D = 2. Let us define M̂E by
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discretising it using the holonomies and fluxes allowed by γ, γ∗ respectively. The
point is now, while this is completely analogous to lattice gauge theory, due to
background independence the lattice length completely drops out of M̂E. In other
words, as long as the sets of edges and faces of γ, γ∗ have countably infinite
cardinality, one cannot tell how fine the (dual) lattice is, whether it is straight or
curved or whether it is random or regular! In other words: the continuum limit is
already taken. In fact, the operator has even lost information about the topology
and differential structure of σ.

The graph that we started from was an embedded graph, however, due to
the diffeomorphism invariance of the classical expression, the final operator
looks exactly the same on every cubic (dual) graph no matter which σ we
started from and no matter how γ, γ∗ were embedded because any two dif-
feomorphic embeddings into the same σ are of course related by a diffeomor-
phism. In addition, the final expression just knows about which vertices are
connected how many times with other vertices but does not know about the
knotting or braiding of the corresponding edges. This means that the extended
Master Constraint operator is automatically lifted to such an algebraic graph
[527–529] and this is where the name Algebraic Quantum Gravity (AQG) stems
from.

The proposal is then just to work with the countably infinite γ, γ∗ indicated.
Notice that since there is precisely one face of γ∗ dual to a given edge of γ,
eventually all fluxes are just labelled by the edges which the corresponding face
intersects, so that the final algebra of holonomies and fluxes just depends on
the algebraic abstraction of γ which we denote by α. All operators are labelled
by α. There is just this one algebraic graph and therefore all graph dependence
disappears. The algebraic graph acquires the meaning of a fundamental structure.
The extended Master Constraint and all other operators live on α, which is
why cylindrical consistency is automatically satisfied, there are no subgraphs to
consider.

It is tempting to think that at this algebraic level spatial diffeomorphism
invariance is automatically taken care of and that one should therefore work
with the unextended Master Constraint, that is, without imposing spatial diffeo-
morphism invariance, but that was shown to be wrong in [592]. It would reduce
an insufficient number of degrees of freedom only.

The information about the topology and differential structure of σ as well as
the embedding of the algebraic graph and its dual is recovered in the semiclassical
limit. The corresponding semiclassical states are similar to the cutoff (or graph-
dependent) states as discussed in the next chapter. However, there is a crucial
difference: in LQG these states are labelled by an embedded graph and they are
linear combinations of spin-network functions over the embedded graphs with
judiciously chosen coefficients. In AQG the states are also labelled by an embed-
ded graph, however, they are linear combinations of spin-network states when
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embedded into compact17 σ over the algebraic graph with the same coefficients.
This means that the AQG semiclassical states always control the fluctuations of
all present degrees of freedom because all of them live on the algebraic graph. In
contrast, in LQG there are, for any given graph, zillions of degrees of freedom
on other graphs whose fluctuations the given semiclassical state cannot control.
This is what makes the AQG semiclassical analysis superior over that in LQG.

Precisely due to this fact it is possible to show that M̂E does have the cor-
rect semiclassical limit [589–591]. Thus, the extended Master Constraint pro-
posal together with the AQG framework could be an interesting alternative to
the LQG Master Constraint Programme derived above, which is very close in
spirit to lattice gauge theory and in a sense conceptually and technically much
simpler.

As far as the computation of the physical inner product is concerned, the
same construction (the direct integral decomposition) applies to both M, ME.
The difference is, of course, that M is defined on Hdiff while ME is defined on
a space of the form H0

γ , however, γ is an infinite graph. Such infinite graph
Hilbert spaces are not contained in the kinematical Hilbert space and we must
pass to the infinite tensor product extension discussed in Section 11.2.6. Both
spaces are not separable and we have dealt with the associated problems on the
level of Hdiff in Section 10.6.3. As far as the infinite tensor product is con-
cerned it turns out that H0

γ decomposes into an uncountably infinite direct
sum of separable spaces which are left-invariant by M̂E.18 These separable sub-
spaces are closures of finite linear combinations of states which can be obtained by
exciting a given infinite tensor product state in finitely many factors. The oper-
ator M̂E is a countable sum of operators which affect an infinite tensor product
state in finitely many factors only, hence if the given state is in the domain of
the operator at all then it preserves the given sector. Thus non-separability is no
obstacle in defining the physical inner product by direct integral decomposition
in AQG.

It is an interesting speculation that some of these separable subspaces of the
infinite tensor product correspond to Fock-like spaces and thus maybe to cer-
tain QFTs on given background spacetimes because also Fock states are closed
linear spans of finite excitations of a given vacuum vector. See especially the
introduction of [589] for the conceptual framework of AQG and all the details
which we do not want to incorporate here because the proposal is yet rather
unexplored.

17 If σ is spatially compact, this means that the embedded infinite graphs γ, γ∗ have
accumulation points of edges and faces. This does not lead to problems because we can
leave the degrees of freedom associated with all but finitely many edges of the algebraic
graph unexcited in the semiclassical state under consideration.

18 All sectors on which M̂E is not densely defined are dropped from the Hilbert space. As
shown in [589–591], M̂E is densely defined on the semiclassical sectors.
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10.7 + Further related results

We list here further results that are directly connected to the issues that we
have touched upon in this section, which however can safely be skipped on a
first reading.

10.7.1 The Wick transform

This section describes an idea for how to write the theory in complex variables,
thus simplifying the Hamiltonian constraint, while being able to use the Hilbert
space machinery developed in earlier chapters.

The Bargmann–Segal transform for quantum gravity discussed in [321] gives a
rigorous construction of quantum kinematics on a space of complexified, distri-
butional connections by means of key results obtained by Hall [318–320]. Since
the transform depended on a background structure, it was clear that the asso-
ciated scalar product did not implement the correct reality conditions. To fix
this was the purpose of [315], where a general theory was developed of how to
trivialise reality conditions while keeping the algebraic structure of a functional
as simple as when complex variables are being used. The same idea proves very
useful in order to obtain a very general class of coherent states, as we will see
in Chapter 11. Moreover, as a side result, it is possible to improve the coherent
state transform as defined by Hall in the following sense.

Notice that the prescription given by Hall turns out to establish indeed a
unitary transformation but that it was ‘pulled out of the hat’, that is, it was
guessed by an analogy consideration with the transform on Rn and turned out to
work. It would be much more satisfactory to have a derivation of the transform Ût

and the measure νt on the complexified configuration space from first principles,
that is, one should be able to compute them just from the knowledge of the two
polarisations of the phase space. We will first describe the general scheme in
formal terms and then apply it to quantum gravity, following closely [315].

10.7.1.1 The general scheme

Consider an arbitrary phase space M of cotangential bundle type, finite or infi-
nite, with local real canonical coordinates (p, q) where q is a configuration variable
and p its conjugate momentum (we suppress all discrete and continuous indices
in this subsection). Furthermore, we have a Hamiltonian (constraint) H ′(p, q)
which unfortunately looks rather complicated in the variables p, q (the reason
for the prime will become evident in a moment). Suppose that, however, we are
able to perform a canonical transformation on M which leads to the complex
canonical pair (pC, qC) such that the Hamiltonian becomes algebraically simple
(e.g., a polynomial HC in terms of pC, qC). That is, we have a complex sym-
plectomorphism (pC, qC) := W−1(p, q) such that HC = H ′ ◦W is algebraically
simple. Notice that we are not complexifying the phase space, we just happen to
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find it convenient to coordinatise it by complex-valued coordinates. The reality
conditions on pC, qC are encoded in the map W .

We now wish to quantise the system. We choose two Hilbert spaces, the first
one, H, for which the q’s become a maximal set of mutually commuting, diago-
nal operators and a second one, HC, for which the qC’s become a maximal set
of mutually commuting, diagonal operators. According to the canonical com-
mutation relations we represent p̂, q̂ on ψ ∈ H by (p̂ψ)(x) = īh∂ψ(x)/∂x and
(q̂ψ)(x) = xψ(x). Likewise, we represent p̂C, q̂C on ψC ∈ HC by (p̂CψC)(z) =
īh∂ψC(z)/∂z and (q̂Cψ)(x) = zψC(z). The fact that p, q are real-valued forces us
to set H := L2(C, dμ0) where C is the quantum configuration space and μ0 is the
uniform (translation-invariant) measure on C in order that p̂ be self-adjoint.

In order to see what the Hilbert space HC should be, we also represent the
operators p̂C, q̂C on H by choosing a particular ordering of the function W−1

and substituting p, q by p̂, q̂. In order to avoid confusion, we will write them as
(p̂′, q̂′) := W−1(p̂, q̂) where the prime means that the operators are defined on
H but are also quantisations of the classical functions pC, qC. Now, the point is
that the operators p̂′, q̂′, possibly up to h̄ corrections, automatically satisfy the
correct adjointness relations on H declining from the reality conditions on pC, qC.
This follows simply by expanding the function W−1 in terms of p̂, q̂, computing
the adjoint and defining the result to be the quantisation of p̄C, q̄C on H which
equals any valid quantisation prescription up to h̄ corrections. Thus, if we could
find a unitary operator Û : H → HC such that

p̂C = Û p̂′Û−1 and q̂C = Û q̂′Û−1 (10.7.1)

then we have automatically implemented the reality conditions on HC as well
because by unitarity

(p̂C)† = Û(p̂′)†Û−1 and (q̂C)† = Û(q̂′)†Û−1 (10.7.2)

where the † operations in (10.7.2) on the left- and right-hand side respectively
are to be understood in terms of HC and H respectively. In other words, the
adjoint of the operator on HC is the image of the correct adjoint of the operator
on H.

To see what Û must be, let K̂ : H ∩ Ana(C) → HC be the operator of analytical
extension of real analytical elements of H and likewise K̂−1 the operator that
restricts the elements of HC (all of which are holomorphic) to real values. We
then have the identities

p̂C = K̂p̂K̂−1 and q̂C = K̂q̂K̂−1 (10.7.3)

We now exploit that W−1 was supposed to be a canonical transformation (an
automorphism of the phase space that preserves the symplectic structure but not
the reality structure). Let C be itsinfinitesimal generator, called the complexifier,
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that is, for any function f on M,

f(pC, qC) := fC(p, q) := ((W−1)∗f)(p, q) =
∞∑

n=0

in

n!
{C, f}(n) (10.7.4)

where the multiple Poisson bracket is inductively defined by {C, f}(0) = f and
{C, f}(n+1) = {C, {C, f}(n)}. Using the substitution rule that Poisson brackets
become commutators times 1/(īh) we can quantise (10.7.4) by

f̂ ′ := fC(p̂, q̂) :=
∞∑

n=0

1
h̄nn!

[Ĉ, f̂ ](n) = (Ŵt)−1f̂Ŵt (10.7.5)

where we have defined the generalised ‘heat kernel’ operator

Ŵt := e−tĈ (10.7.6)

and t = 1/̄h. That is, the generator C motivates a natural ordering of W−1(p, q).
Substituting (10.7.6) into (10.7.4) we find

p̂C = Ûtp̂
′Û−1

t and q̂C = Ûtq̂
′Û−1

t (10.7.7)

where we have defined the generalised coherent state or Wick rotation transform

Ût := K̂Ŵt (10.7.8)

with t = 1/̄h. The reason for the names we chose will become obvious in the next
subsection.

It follows that if Ĉ, Ŵt exist on real analytic functions and if we can then
extend Ût to a unitary operator from H to HC := L2(CC, dνt) ∩ Hol(CC) where
CC denotes the complexification of C then we have completed the programme.

Moreover, as a bonus we would have simplified the spectral analysis of the
operator that corresponds to the quantisation of H ′.

First of all we define an unphysical Hamiltonian (constraint) operator Ĥ on
H simply by choosing a suitable ordering of the function

H(p, q) := HC(pC, qC)|pC→p,qC→q = (K−1 ·HC)(p, q) (10.7.9)

and substituting p, q by the operators p̂, q̂. Thus we obtain an operator ĤC

on HC by ĤC := K̂ĤK̂−1. It follows that if we define the quantisation of the
physical Hamiltonian (constraint) H ′ on H by Ĥ ′ := Ŵ−1

t ĤŴt then in fact
ĤC = ÛtĤ

′Û−1
t and since Ût is unitary the spectra of Ĥ ′ on H and of ĤC on

HC coincide. But since ĤC is an algebraically simple function of the elementary
operators p̂C, q̂C it follows that one has drastically simplified the spectral analysis
of the complicated operator Ĥ ′! Finally, given a (generalised) eigenstate ψC of
ĤC, we obtain a (generalised) eigenstate ψ := Û−1

t ψC of Ĥ ′ by the inverse of
the coherent state transform.

The crucial question then is whether we can actually make Ût unitary. In
[315] the following formula forthe unitarity implementing measure νt on CC was
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derived:

dνt(z, z̄) := νt(z, z̄)dμC
0 (z) ⊗ dμ̄C

0 (z̄)

νt(z, z̄) := (K̂[[Ŵt]†]K̂−1)−1((K̂[[Ŵt]†]K̂−1))−1δ(z, z̄) (10.7.10)

The adjoint operation is meant in the sense of H, K̂ means analytical extension as
before and the bar means complex conjugation of the expression of the operator
(i.e., any appearance of multiplication or differentiation by z is replaced with
multiplication or differentiation by z̄ and vice versa, and, of course, also numerical
coefficients are complex conjugated). Here μC

0 and μ̄C
0 are just the analytic and

anti-analytic extensions of the measure μ0 on C (they are just complex conjugates
of each other thanks to the positivity of μ0) and the distribution in the second
line of (10.7.9) is defined by

∫

CC

dμC
0 (z)dμ̄C

0 (z̄)f(z, z̄)δ(z, z̄) =
∫

C
dμ0(x)f(x, x) (10.7.11)

for any smooth function f on the complexified configuration space of rapid
decrease with respect to μ0.

Whenever (10.7.9) exists (it is straightforward to check that (10.7.9) does
the job formally), the extension of Ût to a unitary operator (isometric, densely
defined and surjective) in the sense above can be expected [315]. A concrete proof
is model-dependent.

In summary, we have solved two problems in one stroke: we have implemented
the correct adjointness relations and we have simplified the Hamiltonian (con-
straint) operator.

A couple of remarks are in order:

� The method does not require that Ĉ is self-adjoint, positive, bounded or at
least normal. All that is important is that Ŵt exists on real analytic functions
in the sense of Nelson’s analytic vector theorem, see [282 vol. 2].

� It reproduces the cases of the harmonic oscillator and the case considered
by Hall [318]. But it also explains why it works the way it works, namely it
answers the question of how to identify analytic continuation with a given
complex polarisation of the phase space as is obvious from K̂ = ÛtŴ

−1
t . The

computation of νt via (10.7.9), (10.7.11) is considerably simpler. The harmonic
oscillator corresponds to the complexifier C = 1

2p
2.

� One might wonder why one should compute νt at all and bother with HC [317]?
Could one not just forget about the analytic continuation and work only on
H simply by studying the spectral analysis of the unphysical operator Ĥ and
defining the physical operator by Ĥ ′ := Ŵ−1

t ĤŴt? The problem is that, while
it is true that restrictions to real arguments of (generalised) eigenvectors of ĤC

are formal eigenvectors of Ĥ, these are typically not (generalised) eigenvectors
in the sense of the topology of H. Intuitively, what happens is that the measure
νt provides for the necessary much stronger fall-off in order to turn the analytic
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extension of the badly behaved formal eigenvectors Ŵ−1
t ψ of Ĥ ′ into well-

defined (generalised) eigenvectors K̂ψ of ĤC. One can see this also from another
point of view: by unitarity, whenever ĤC is self-adjoint, so is Ĥ ′ but in general
Ĥ is not. Thus, one would not expect the spectra of Ĥ, Ĥ ′ to coincide. See the
appendix of [315] for a discussion of this point.

� There are also other applications of this transform, for example in Yang–Mills
theory it can be used to turn the Hamiltonian from a fourth-order polynomial
into a polynomial of order three only [315]!

This completes the outline of the general framework. We will now turn to the
interesting case of quantum gravity.

10.7.1.2 Wick transform for quantum gravity

As Barbero [310,311] correctly pointed out, all the machinery that is associated
with the quantum configuration space A and the uniform measure μ0 is actually
also available for Lorentzian Quantum General Relativity if one chooses the
Immirzi parameter β to be real. However, the Hamiltonian constraint then does
not simplify at all compared with the ADM expression and so the virtue of the
new variables would be lost. The coherent state transform as derived below in
principle combines both advantages, namely a well-defined calculus on A and a
simple Wheeler–DeWitt constraint.

Let us then apply the framework of the previous section. The phase space of
Lorentzian General Relativity can be given a real polarisation through the canon-
ical pair (Aj

a := Γj
a + Kj

a, E
a
j /κ) (the case considered by Barbero with β = 1) and

a complex polarisation through the canonical pair ((CAi
a) := Γj

a − iKj
a, (

CEa
j ) :=

iEa
j /κ) (the case considered by Ashtekar). The rescaled Hamiltonian constraint

looks very simple in the complex variables, namely

H̃C(AC, EC) = εijk
(C

F i
ab

)(C
Ea

j

)(C
Eb

k

)
(10.7.12)

but if we write AC, EC in terms of A,E then the resulting Hamiltonian H̃ ′(A,E)
becomes extremely complicated. Let us compute the map W . We first of all
see that we can go from (A,E) to (AC, EC) in a sequence of three canonical
transformations given by

(A = Γ + K,E/κ) → (K,E/κ) → (−iK, iE/κ) → (AC = Γ − iK,EC = iE/κ)

That the first and third step are indeed canonical transformations was already
shown. The second step is a phase space Wick rotation. Since (K,E) is a canonical
pair it is trivial to see that we have

−iK =
∞∑

n=0

in

n!
{C,K}(n) and iE =

∞∑

n=0

in

n!
{C,E}(n) (10.7.13)
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where the complexifier or generator of the Wick transform is given by

C = − π

2κ

∫

σ

d3xKi
aE

a
i (10.7.14)

which is easily seen to be the integrated densitised trace of the extrinsic curva-
ture. C generates infinitesimal constant scale transformations. It now seems that
we need to compute the generator of the transform that adds and subtracts the
spin-connection Γ. However, we have seen in Chapter 1 that the spin-connection
in three dimensions is a homogeneous polynomial of degree zero in E and its
derivatives, and since a constant scale factor is unaffected by derivatives we have
{Γ, C} = 0. Thus in fact we have

AC =
∞∑

n=0

in

n!
{C,A}(n) and EC =

∞∑

n=0

in

n!
{C,E}(n) (10.7.15)

The task left is to define the operator Ĉ and to compute the corresponding
measure νt. This seems to be a very hard problem because Ki

a = Ai
a − Γi

a and
Γi
a is just a very complicated function to quantise. Nevertheless, it can be done

as we have seen in this chapter.
We conclude this section with a few remarks:

1. The Wick transform is a phase space Wick rotation and has nothing to do
with analytical continuation in the time parameter t! Mena Marugán [322,323]
has given a formal relation with the usual Wick rotation corresponding to an
analytical continuation of time together with a complex conformal rescaling
of the four-dimensional metric.

2. As we have seen in this chapter, one can construct a well-defined operator
Ĉ, whether its exponential makes any sense though is an open question.
Notice that in principle one can dispense with the complex variables alto-
gether because one can give meaning to the unrescaled, original Hamiltonian
constraint H ′ = H̃ ′/

√
det(q) in terms of the real variables (A,E) as we have

seen. Still, although the complexifier C is then not used any more for the
purpose of a Wick rotation, it still plays a crucial role in the quantisation
scheme displayed there (in order to write the extrinsic curvature as a triple
Poisson bracket between the Euclidean Hamiltonian constraint, the volume
and the Wick rotator). It comes out rigorously quantised from that scheme.
The corresponding operator Ĥ which we construct directly on the Hilbert
space H0 is surprisingly not terribly complicated. Still, it may be important
to construct a Wick transform one day because (a) it could simplify the con-
struction of rigorous solutions and since (b) a coherent state transform always
has a close connection with semiclassical physics which is important for the
interpretation and the classical limit of the theory.

3. In order to define the exponential of C one could use the spectral theo-
rem applied to a self-adjoint extension of the symmetrised version of C or
Nelson’s analytic vector theorem. Self-adjoint extensions of C + C† exist by
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von Neumann’s theorem.19 or Nelson’s analytic vector theorem.20 See [315]
for more details.

4. Not surprisingly, the unphysical Hamiltonian H̃(A,E) := H̃C(AC := A,EC :=
E) can be recognised as the Hamiltonian constraint that one obtains from
the Hamiltonian formulation of Riemannian General Relativity (i.e., ordinary
General Relativity just that one considers four-metrics of Euclidean signa-
ture).

5. The Wick transform derived in [315] is the first concrete proposal for a solution
of the reality conditions for the complex connection variables. For a different
proposal geared to a Minkowski space background, see [596].

10.7.2 Testing the new regularisation technique by

models of quantum gravity

Presently there are two positive tests for the quantisation procedure that we
applied to the Hamiltonian constraint, namely Euclidean 2 + 1 gravity [440] and
isotropic and homogeneous Bianchi cosmologies quantised in a non-standard
fashion [497–499]. (For an introduction to quantum cosmology, see, e.g., the
reviews [597–599] and Section 16.2.)

The first model is a dimensional reduction of 3 + 1 gravity which one can
formulate also as a quantum theory of SU(2) connections and SU(2) electric
fluxes with precisely the same algebraic form of all constraints. Hence, one can
introduce the full mathematical structure of A, μ0,H0 as well as the quantum
constraints Gj = DaE

a
j , Va = F j

abE
b
j , HE = F j

abE
a
kE

b
l εjkl/

√
det(q), the only dif-

ference with the Lorentzian 3 + 1 theory being that now indices a, b, c, . . . = 1, 2
have range in one dimension less and that there is only the Euclidean constraint.

The second model is 3 + 1 Lorentzian gravity but all degrees of freedom except
for finitely many are switched off by hand by performing the usual Killing reduc-
tion. However, instead of using a Schrödinger representation of the canonical
commutation relations one uses an LQG type of representation, the Bohr repre-
sentation, see Section 16.2 and Chapter 28.

In both models one then follows step by step the regularisation procedure
outlined in Sections 10.3, 10.4. The outcomes in the 2 + 1 theory are as follows
(we devote Section 16.2 to the quantum cosmology models): The quantisation of
2 + 1 general relativity is an exhaustively studied problem (see, e.g., [600–612]
and [354,355] as well as references in all of those). Several different quantisation

19 This says that if a densely defined symmetric operator commutes on its domain with a
conjugation operator that preserves its domain then there exist self-adjoint extensions. A
conjugation operator is a bounded, anti-linear operator which squares to the identity. In
our case the expression for C + C† is real and an appropriate conjugation operator is just
complex conjugation.

20 This does not assume that C is even symmetric, however, one must show that there exists
a dense set D of vectors on which the power expansion of the exponential converges
absolutely pointwise, that is,

∑∞
n=0

tn||Cnψ||/(n!) < ∞ for all ψ ∈ D and for all |t| ≤ h̄−1.
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techniques have been applied and were shown to give consistent results. The
reader might wonder why 2 + 1 Euclidean quantum gravity should serve as a
test model for 3 + 1 Lorentzian quantum gravity. The reason for this is that,
as pointed out in [609–612], the Hamiltonian formulation of 2 + 1 gravity via
connections leads to the non-compact gauge group SU(1, 1) for three-metrics of
Lorentzian signature while for three-metrics of Euclidean signature we have the
same compact gauge group as in Lorentzian 3 + 1 gravity, namely SU(2). Thus,
in order to maximally simulate the 3 + 1 theory, we should consider Euclidean
2 + 1 gravity.

However, in order to maximally test the new technique introduced in Sections
10.3, 10.4 and the constraints of the 3 + 1 theory one has to develop techniques
different from those that people normally employ in 2 + 1 gravity which make
[440] of interest by itself. In particular, it contains a full-fledged derivation of
the 2 + 1 volume operator. The reason is the following: pure 2 + 1 gravity on a
Riemann surface of some fixed genus is a topological field theory, that is, there
are only finitely many degrees of freedom. This can easily be seen from the fact
that we have six canonical pairs and six first-class constraints. When the metric
qab is non-degenerate, the diffeomorphism and Hamiltonian constraint together
are equivalent to the flatness constraint Cj := εabF j

ab = 0. Almost exclusively
the theory is quantised using Cj rather than Va, H, see in particular [602] and
[354, 355]. But of course we must use Va, H in order to test the 3 + 1 theory
appropriately and this is what has been done successfully in [440].

10.7.3 Quantum Poincaré algebra

In [442] an investigation was started in order to settle the question whether H0

supports the quantisation of the ADM energy surface integral

EADM(N) = − 2
κ

∫

∂σ

dSa
N

√
det(q)

Ea
j ∂bE

b
j (10.7.16)

for an asymptotically flat spacetime M (here ∂σ corresponds to spatial infinity i0

in the Penrose diagram describing the conformal completion of M). As we saw in
Section 1.5.2, (10.7.16) is the value of the gravitational energy (at unit lapse N =
1) only when the constraints are satisfied, otherwise one has to add to (10.7.16)
the Hamiltonian constraint H(N). In particular one has to use HADM(N) =
H(N) + EADM(N) in order to compute the equations of motion. If N is, say, of
rapid decrease, then HADM(N) = H(N) generates gauge transformations (time
reparametrisations), if it is asymptotically constant then it generates symmetries.
There are nine more surface integrals of the type (10.7.16) and together they
generate the asymptotic Poincaré algebra. They are the only ten global (in phase
space) Dirac observables known for full, Lorentzian, asymptotically flat gravity
in four dimensions. For a discussion of these and related issues, see, for example,
[336] and references therein.
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In [442] only time translations (10.7.16), spatial translations and spatial rota-
tions were treated. Boosts, which are much harder to define, see Section 1.5.2,
were not considered here but there is no principal problem to do so. We will
focus here only on the quantisation of (10.7.16) for reasons of brevity. The meth-
ods of regularisation and quantisation completely parallel those displayed in
Sections 10.3, 10.4 and will not be repeated here. The only new element that
goes into the classical regularisation is the exploitation of the fall-off conditions
on the classical fields, in particular that A = O(1/r2) in an asymptotic radial
coordinate. This enables one to replace, effectively, ∂bEb

j by the gauge-invariant
quantity Gj = DbE

b
j in (10.7.16), that is, the Gauß constraint. At first sight one

is tempted to set it equal to zero. However, the detailed analysis of Section 1.5.2
shows that for the Gauß constraint to be functionally differentiable, its Lagrange
multiplier must fall off as 1/r2, which means that the Gauß constraint does not
need to hold at ∂σ although the smeared constraint

∫
d3xΛjĜj vanishes identi-

cally on states which are gauge-invariant at finite r but not at r = ∞. Thus, it
would be physically incorrect to require Gj = 0 at ∂σ, in other words, quantum
states do not need to be gauge-invariant at ∂σ or, put differently, the motions
generated by Gj at ∂σ are not gauge transformations but symmetries.

The final answer is (EADM = EADM(1))

ÊADMfγ = −2mp

∑

v∈V (γ)∩∂σ

	3p

V̂v

Rj
vR

j
vfγ (10.7.17)

where Rj
v =

∑
f(e)=v R

j
e, V̂v = limRv→{v} V̂ (Rv) and x �→ Rx is an open region-

valued function with x ∈ Rx. The operator (10.7.17) is defined actually on an
extension of H0 which allows for edges that are not compactly supported. More-
over, we must require that (1) for each v ∈ γ ∩ ∂σ the eigenvalues of V̂v are
non-vanishing and (2) e ∩ ∂σ is a discrete set of points for every e ∈ E(γ). We
have assumed w.l.g. that all edges with e ∩ ∂σ �= ∅ are of the ‘up’ type with
respect to the surface ∂σ.

Under these assumptions one can show the following:

(i) Positive semi-definiteness
(10.7.17) defines a self-consistent family of essentially self-adjoint, positive
semi-definite operators. This is like a quantum positivity of energy theorem
but it rests heavily on the two assumptions (1) and (2) made above whose
physical justification is unclear.

(ii) Fock space interpretation
Since the volume operator is gauge-invariant, it follows that it commutes
with the Laplacian Δv = (Rj

v)
2 and therefore we can simultaneously diag-

onalise these operators. It is clear that the eigenstates are certain linear
combinations of spin-network states and the eigenvalues are of the form
jv(jv + 1)/λv (where λv is a volume eigenvalue) times mp. Thus we can com-
plete the intuitive picture that the Hamiltonian constraint gave us: while
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the constraint changes the spin quantum numbers, the energy is diagonal
in very much the same way as the annihilation and creation operators of
quantum mechanics change the occupation number of an energy eigenstate.
We may thus interpret the spin quantum numbers as occupation numbers
of a non-linear Fock representation. In quantum field theory we label Fock
states by occupation numbers nk for momentum modes k. Here we have
occupation numbers je for ‘edge modes’ e.

(iii) Spectral properties
The eigenvalues are discrete and unbounded from above but in contrast to
the geometry operators there is no energy gap. Rather there is an accumu-
lation point at zero because [Δv, V̂v] = 0 (we can choose the state to be very
close to being gauge-invariant but to have arbitrarily large volume). This
is to be expected on physical grounds because we should be able to detect
arbitrarily soft gravitons at spatial infinity.

(iv) Quantum Dirac observable and Schrödinger equation
(10.7.17) trivially commutes with all constraints (since diffeomorphisms ϕ

and lapses N that generate gauge transformations are trivial (identity and
zero) at ∂σ) and therefore represents a true quantum Dirac observable. In
principle we can now solve ‘the problem of time’ since a physically mean-
ingful time parameter is selected by the one-parameter unitary groups gen-
erated by ÊADM, in other words, we have a Schrödinger equation

−īh
∂Ψ
∂t

= ÊADMΨ (10.7.18)

and thus have solved the quantum problem of time because (10.7.18) puts us into
the conceptual situation of a standard canonical theory with a Hamiltonian. In
fact, (10.7.18) is only correct if we impose the quantum analogue of H(x) = 0 also
at ∂σ, which is not what the formalism tells us to do because

∫
d3xN(x)Ĥ(x) van-

ishes on all states which only satisfy the constraint at finite r but are otherwise
arbitrary at r → ∞, since for gauge transformations N must vanish at ∂σ. Hence,
in the general situation we must add to the right-hand side of (10.7.18) the term∫
σ
d3xĤ(x) which contains both matter and geometry contributions and explains

why the matter Hamiltonian densities derived in Chapter 12, and which reduce
to the usual energy densities of Minkowski space when we evaluate the gravita-
tional field on Minkowski initial data, still determine energy also when coupled to
gravity. Writing Hmatter =

∫
d3xHmatter(x) and Hgeometry =

∫
d3xHgeometry(x)

we find for the total Hamiltonian H = EADM + Hmatter + Hgeometry. Physical
states must then satisfy [Hmatter(x) + Hgeometry(x)]Ψ = 0 at finite r and evolve
according to (10.7.18) with EADM replaced by H. Since Hmatter is manifestly
positive even when coupled to geometry, one way to ensure H ≥ 0 is by look-
ing for physical states satisfying [EADM + Hgeometry]Ψ = 0, which is an equation
that involves only the gravitational degrees of freedom. This implies in particular
that EADM = Hmatter.
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Actually in [442] concepts that go beyond H0 were needed and introduced
heuristically. They go under the name ‘Infinite Tensor Product Extension’ and
were properly defined only later in [479]. They will be discussed briefly in Section
11.2.

10.7.4 Vasiliev invariants and discrete quantum gravity

Recently, a second approach towards solving the Hamiltonian constraint has been
proposed [613, 614] which is constructed on (almost) diffeomorphism-invariant
distributions which are based on Vasiliev invariants. What is exciting about
this is that one can define something like an area derivative [346] in this space
and therefore the arc attachment which we described above becomes much less
ambiguous.

Also recently a third approach has emerged [615–627] which starts with a
fundamentally discrete formulation at the classical level. The discrete evolution
equations then become inconsistent unless one solves for lapse and shift func-
tions, which means that the discretisation acts like a gauge-fixing procedure. In
this formalism there are therefore no constraints, which has technical and concep-
tual advantages. Moreover, the formalism was demonstrated to work in several
models and leads to possibly observable effects such as quantum gravity-induced
decoherence.

Since these developments are somewhat removed from the main thrust of the
book, unfortunately we cannot review them here due to reasons of space, but
must refer the reader to the literature.
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Step V: semiclassical analysis

Normally, when constructing a perturbative quantum field theory on Minkowski
space or any other background spacetime one never doubts that the resulting
theory has the correct classical limit. One is satisfied with having found a Fock
representation and a definition of the S-matrix, that is, matrix elements of pow-
ers of a normal ordered Hamiltonian operator. In fact it is clear from the outset
that a theory written in terms of (an infinite number of) annihilation and cre-
ation operators has the correct classical limit because one can construct the usual
coherent states for the underlying free field theory and then one knows that oper-
ators written in terms of the annihilation and creation operators have expectation
values very close to the classical values that the corresponding classical function
takes at the point in phase space where the coherent state is peaked.1

In a constrained, non-perturbative quantum field theory without background
structure the question about the classical limit is much less trivial. First of all,
since we are using a non-perturbative approach we cannot expand around a
free field theory and hence cannot use Fock space (coherent state) techniques.
Secondly, since we must work without a background spacetime we are forced to
use completely new types of Hilbert spaces for which no semiclassical techniques
have been developed so far. Thirdly, the theory is highly non-linear: for example,
the constraint operators are simply not polynomials of the basic variables A,E

for which one would hope to be able to construct semiclassical states which
approximate those. Thus, not only is there no natural choice of operators to
which one should adapt the coherent states, moreover, the calculations to be
performed are going to be of a new type since we must deal with expectation
values of square roots of powers of those variables. Finally, there is even the basic
question of what we mean by coherent states in the presence of constraints: do we
mean states that are completely kinematical or at least gauge-invariant and/or at
least spatially diffeomorphism-invariant or do we mean physical coherent states?

As we mentioned several times in Chapter 10, the goals of the semiclassical
analysis to be performed in step V are twofold:

1 This does not guarantee, however, that the finite quantum time evolution is close to the
classical one. Consider, for example, the anharmonic oscillator Hλ = H0 + λq4 where
H0 = (p2 + q2)/2. Let ψm0 be the harmonic oscillator coherent state peaked at
m0 = (q0, p0) for the free Hamiltonian H0 and let mt be the classical time evolution of the

initial data m0 with respect to Hλ. Then exp(itĤλ)ψm0 is very different from ψmt for
large t, they match only for small t.
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1. We must verify that the Hamiltonian constraint Ĥ(N) or the Master Con-
straint M̂ have the correct classical limit.

2. We must check that the physical Hilbert space determined by either of these
two operators contains enough semiclassical states.

Concerning the first goal, since Ĥ(N), M̂ are defined on Hkin,Hdiff respectively,
the semiclassical states that test them must be taken from Hkin,Hdiff respec-
tively. In particular, it does not make sense to construct physical semiclassical
states in order to test these operators since on Hphys they are identically zero
by definition. Concerning the second goal, we must construct physical coherent
states with respect to which Dirac observables have good semiclassical properties.

Hence, given a quantum field theory with constraints, the following questions
arise:

(A) What are semiclassical states if there is no Hamiltonian which would suggest
them?

(B) On which Hilbert space H do we want to construct semiclassical states, that
is, before or after imposing all or some of the constraints?

(C) Which (kinematical) algebra A of observables should be approximated espe-
cially well?

(D) How do we construct coherent states once (H,A) have been chosen?
(E) What is the relation between kinematical semiclassical states and physical

semiclassical states?

In the next sections we will address these questions in more detail. For now, let
us briefly outline what we will do:

(A) First of all we will give a possible, reasonable definition for semiclassical or
coherent states for a general theory.

(B) Next, as we have argued above, we need semiclassical states on all three
Hilbert spaces Hkin,Hdiff ,Hphys.

(C) For Hkin it is of course natural to assume that the appropriate algebra A

to approximate is the one that we have based the kinematical representa-
tion theory on. As we will see, due to the non-separability of Hkin this is not
quite true: natural coherent states for A are distributions Ψm, peaked at the
field configuration m = (A,E) of the classical phase space and hence are not
normalisable in Hkin. One can write them as an uncountable sum over all
graphs Ψm

kin =
∑

γ < ψm
γ , . >kin where ψm

γ ∈ Hkin is a linear combination of
spin-network states over the finite graph γ with only non-trivial spins of all
edges. The ψm

γ are normalisable, however, these states do not approximate
all elements of A, for example, only those holonomies along paths which are
compositions of edges of γ. However, it turns out that they approximate
well a restricted class of compound operators arising from classical func-
tions of the form O =

∫
σ
d3xF (A,E) where F has density weight one. In
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particular, O could be spatially diffeomorphism-invariant. The restriction
consists in the requirement that Ô be non-graph-changing, as otherwise the
edges that Ô adds to γ are not approximated in < ψm

γ , Ôψm
γ > /||ψm

γ ||2.
It also does not help to replace this by Ψm

kin(Ôψγ)/||ψγ ||2 as we will see.
Thus, at the level of Hkin the currently available techniques only suffice
to approximate non-graph-changing operators, which excludes, for example,
Ĥ(N) but includes the extended Master Constraint which also incorporates
the spatial diffeomorphism constraint.

Things look better at the spatially diffeomorphism-invariant level because
now the Hilbert space Hdiff is (or can be chosen to be) separable. What one
does is to replace Ψkin

m by Ψdiff
m =

∑
(γ) ψm,(γ) where the sum is over θ-

equivalence classes of graphs and ψm,(γ) arises from ψm,γ =
∑

γ(s)=γ ψm,sTs

by replacing Ts by T[s] where we have made a definite choice θ0
(γ) for the

θ-moduli involved in the decomposition [γ] = ((γ), θ(γ)), see Section 10.6.3.
The states Ψdiff

m are now (potentially) normalisable. Notice that Ψdiff
m is not

labelled by spatial diffeomorphism equivalence classes [m] of points m in
the classical phase space but rather by points in the unconstrained phase
space. However, if Ô is an operator on Hdiff which is well approximated by
Ψdiff

m in the sense that the expectation value is O(m) to zeroth order in h̄,
then the choice of m in the class [m] is irrelevant. Hence we see that the
construction of Ψkin

m , while not helpful for Ĥ(N), could still be of help for
the knot class-changing operator M̂ in that Ψkin

m suggests natural candidates
Ψdiff

m .
Finally, in order to construct a physical coherent state, a natural Ansatz

is Ψphys
m := Ψdiff

m (0) where Ψdiff
m = (Ψdiff

m (λ))λ∈R+ is the direct integral pre-
sentation of Ψdiff

m , see Section 30.2. Thus we see that natural Ansätze for
coherent states on all three Hilbert spaces can be obtained by constructing
(distributional) coherent states for the kinematical algebra A on Hkin.

(D) This leaves us with the problem of constructing coherent states for A. It
turns out that there is a general construction principle available, called the
complexifier method, which is applicable if the underlying phase space is
a cotangent bundle (which is the case for our unconstrained phase space).
In fact, all coherent states for free field, background-dependent Wightman
theories can be formulated in this language. The only input is a certain
positive function on phase space, called the complexifier C, which generates
these states. The choice of C is constrained by the desire to achieve an
optimal approximation of a given Hamiltonian (constraint) and the time
evolution it generates.

(E) Calculating at the level of Hphys is of course very hard because Hphys is only
implicitly known. Hence the question arises whether one cannot approximate
expectation value calculations in Hphys by calculations in Hdiff or Hkin. The
idea would be to compare, for Dirac observables Ô, for instance, the expecta-
tion values < Ψm

phys, ÔΨm
phys >phys with < Ψm

diff , ÔΨm
diff >diff assuming that
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Ô has a representation on Hdiff as well. Under certain circumstances it hap-
pens that these numbers and the corresponding fluctuations are close to each
other and work is in progress to systematically analyse sufficient criteria for
this to happen.

Three proposals for semiclassical states have appeared in the literature so far:
historically the first ones are the so-called ‘geometrical weaves’ [484,628–630,640,
641] which try to approximate kinematical geometric operators only, see Chap-
ter 13. Also ‘connection weaves’ have been considered [631, 632] (see also [633]
for a related proposal) which are geared to approximate kinematical holonomy
operators on a given graph. Finally, one can get rid of a certain graph dependence
of geometrical weaves through a clever statistical average [634–636] resulting in
‘statistical weaves’.

The second proposal consists in the complexifier method [487] just mentioned
above for any canonical quantum field theory whose underlying phase space is
a cotangent bundle. Also the Wick transform [315, 316], see Section 10.7.1, is
based on the complexifier method. This programme was applied to full non-
linear, non-Abelian Loop Quantum Gravity [485–490] for a specific choice of
complexifier. As already said, these states are not normalisable but rather are
distributions in C∞(A)∗. However, their cylindrical projections, which we will
call cutoff states, are normalisable as we outlined above. For these the desired
properties like overcompleteness, saturation of the Heisenberg uncertainty rela-
tion, peakedness in phase space (thus both connection and electric flux are
well approximated), construction of annihilation and creation operators and
corresponding Ehrenfest theorems were confirmed. Given such cutoff coherent
state, its excitations can be interpreted as the analogue of the usual graviton
states [637, 638]. One can combine these methods with a statistical average of
the kind considered above to eliminate some of the graph dependence of the cutoff
states.

The complexifier method also encompasses an apparently different third pro-
posal [491] which seems to be especially well-suited for the semiclasscal analysis
of free Maxwell theory and linearised gravity. It was originally discovered by
using a striking isomorphism between the usual Poisson algebra in terms of con-
nections smeared in D dimensions and unsmeared electric fields on the one hand
and the algebra obtained by one-dimensionally smeared connections and electric
fields smeared in D dimensions on the other hand. Using this observation, which
however does not carry over to the non-Abelian case, one can carry states on the
usual Fock–Hilbert space into distributions over C∞(A) and drag the Fock inner
product into a new inner product on the space of these distributions with respect
to which they are normalisable. In [495] these observations were interpreted in
a more abstract way, in particular, a measure-theoretic interpretation of the
distributions constructed via the technique of [491–493] was given. In [495] the
states that we refer to as cutoff states were called ‘shadows’ and in [549] a simple



11.1 + Weaves 349

quantum mechanical model was studied using these.2 In [639] it is shown that,
for the Abelian case, the dragged Fock measure and the uniform measure are
mutually singular with respect to each other and that the dragged Fock measure
does not support an electric field operator smeared in D − 1 dimensions, which
are essential to use in the non-Abelian case. This indicates that all the nice struc-
ture that comes with U(1) does not generalise to SU(2) [487] even if one allows
background-dependent representations. In fact, under very mild assumptions one
seems always to be back to the representation of A on H0 [514,515]. This shows
that the representation theory of the holonomy flux algebra is rather robust. It is
therefore rather certain that the only useful coherent states on Hkin are normal-
isable linear combinations of cutoff states (and of their diffeomorphism-invariant
images on Hdiff).

In what follows we will mainly describe the complexifier method and specific
realisations thereof as it seems to be the currently unifying framework.

11.1 + Weaves

Let us briefly summarise the early work on semiclassical states.

(a) Geometric weaves
The early geometric weaves [484] were constructed as follows: let q0

ab be a
background metric. Notice that we are not introducing some background
dependence here, all states still belong to the background-independent
Hilbert space H0, we are just looking for states that have low fluctua-
tions around a given classical three-metric. Using that metric, sprinkle non-
intersecting (but possibly linked), circular, smooth loops at random with
mean separation ε and mean radius ε (as measured by q0

ab). The union of
these loops is a graph, more precisely a link, γ without intersections (see
Figure 11.1 for an example). The random process used was, however, not
specified in [484]. Consider the state given by the product of the traces of
the holonomies along those loops. The reason for choosing non-intersecting
loops was that such a state was formally annihilated by the Hamiltonian
constraint. Consider any surface S. From our discussion in Chapter 13 it is
clear that this state is an eigenstate of the area operator Âr(S) with eigen-
value �2p

√
3N(S, q0, ε)/4 where N(S, q0, ε) is the number of intersections of S

with the link γ. If q0 does not vary too much at the scale ε then this number

2 The shadow framework is almost the same as the cutoff state framework, the only
difference being that one considers, instead of the real-valued expectation values

< ψγ , Ôψγ >Hkin /||ψγ ||2 where ψγ is the cutoff state on γ of the distribution Ψ, the

complex numbers Ψ[Ôψγ ]/Ψ[ψγ ]. For non-graph-changing operators these two numbers
coincide, for graph-changing ones there is a small difference. However, as we will see, this
more general prescription is also not able to reproduce the correct expectation values for
graph-changing operators.
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Figure 11.1 The Booromean rings – a simple example of a link. A complicated
fabric of a vast number of such linked loops defines a weave.

is roughly given by Arq0(S)/ε2. Notice that all of this was done still in the
complex connection representation and therefore outside of a Hilbert space
context. Yet, the eigenvalue equation �2pArq0(S)/ε2 tells us that canonical
quantum gravity seems to have a built-in finiteness: it does not make sense
to take an arbitrarily fine graph ε → 0 since the eigenvalue would blow up.
In order to get the correct eigenvalue one must take ε ≈ �p, that is, the loops
have to be sprinkled at Planck scale separation. This observation rests cru-
cially on the fact that there is an area gap. These calculations were done
for metrics q0 that are close to being flat. In [640] weaves for Schwarzschild
backgrounds were considered, which requires an adaption of the sprinkling
process to the local curvature of q0 in order that one obtains reasonable
results.

Finally, in [641] the link γ was generalised to disjoint collections of triples
of smooth multi-loops. Each triple intersects in one point with linearly inde-
pendent tangents there. The motivation for this generalisation was that then
the volume operator (which vanishes if there are no intersections) could also
be approximated by the same technique.
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(b) Connection weaves
For an element h of SU(2) we have Tr(h) ≤ 2 where equality is reached only
for h = 1. Thus h �→ 2 − tr(h) is a non-negative function. Let now α be one
of the loops considered in [641] and let A ∈ A. Then A �→ e−β[2−tr(A(α))] is
sharply peaked at those A ∈ A with A(α) = 0, that is, at a flat connection
(since the α are contractible). Arnsdorf [480] then considers the product
of all those functions for loops which generate the fundamental group of a
given graph γ (this function is precisely of the form of the exponential of the
Wilson action employed in lattice gauge theory [576]).

Since [480] is written in the context of the Hilbert space H0 and since non-
compact topologies of σ were considered, in contrast to [484] one had to deal
with the case that the graph γ becomes infinite (the number of loops becomes
infinite). Since such a state is not an element of H0, Arnsdorf constructed a
positive linear functional on the algebra of local operators using that formal
state and then used the GNS construction (see Chapter 29) in order to obtain
a new Hilbert space in which one can now compute expectation values of
various operators. Expectedly, holonomy operators along paths in l have
expectation values close to their classical value at flat connections while the
semiclassical behaviour of electric flux operators is not reproduced.

(c) Statistical weaves
In both the geometric and connection weave construction an arbitrary but
fixed graph γ had to be singled out. This is unsatisfactory because it involves
a huge amount of arbitrariness. Which graph should one take? Also, unless
the graph γ is sufficiently random the expectation values, say of the area
operator in a geometric weave for a flat background metric q0, are not rota-
tionally invariant.

To improve this, Ashtekar and Bombelli [634, 635] have employed the
Dirichlet–Voronoi construction, often used in statistical mechanics [642], to
the geometrical weave (see Figure 11.2). Roughly, this works as follows: given
a background metric q0, a compact hypersurface σ and a density parameter
λ one can construct a subset Γ(q0, λ) ⊂ Γω

sa of semianalytic graphs each of
which, in D spatial dimensions, is such that each of its vertices is (D + 1)-
valent. A member γx1,...,xN

∈ Γ(q0, λ) is labelled by N ≈ [λVolq0(σ)] points
xk ∈ σ where [.] denotes the Gauß bracket. The graph γx1,...,xN

is obtained
unambiguously from the set of points x1, . . . , xN and the metric q0 (pro-
vided that it is close to being flat) by employing natural notions like mini-
mal geodesic distances, etc. Next, given a spin label j and an intertwiner I

we can construct a gauge-invariant spin-net sx1,...,xN
(j, I) by colouring each

edge with the same spin and each vertex with the same intertwiner. From
these data one can construct the ‘density operator’

ρ̂(q0, λ, I,j) :=
∫

σN

dμq0(x1) . . . dμq0(xN )Tsx1,...,xN
(j,I) < Tsx1,...,xN

(j,I), . >

(11.1.1)
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Figure 11.2 A Dirichlet–Voronoi graph in 2D: the random process creates the
faces depicted in dark grey while the dual graph is depicted in light grey. In
D dimensions, the valence of each vertex is precisely D + 1.

where

dμq0(x) :=

√
det(q0)(x)dDx

Volq0(σ)
(11.1.2)

is a probability measure (it is here where compactness of σ is important).
The reason for the inverted commas in ‘density operator’ is that (11.1.1)
actually is the zero operator. To see this, notice that for any spin-network
state Ts we have < Tsx1,...,xN

(j,I), Ts >= δsx1,...,xN
(j,I),s which in particular

means that γx1,...,xN
= γ(s). But the set of points satisfying this is certainly

thin with respect to the measure (11.1.2). What happens is that although
for any spin-network state Ts the one-dimensional projector Ts < Ts. > is
a trace class operator of unit trace, the trace operation does not commute
with the integration in (11.1.1). However, one can then define a positive
linear functional ωq0,λ,I,j on the algebra of linear operators on H0 by

ωq0,λ,j,I(Ô) :=
∫

σN

dμq0(x1) . . . dμq0(xN ) < Tsx1,...,xN
(j,I), ÔTsx1,...,xN

(j,I) >

(11.1.3)
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which would equal Tr(ρ̂(q0, λ, j, I)Ô) if integration and trace commuted. Via
the GNS construction one can now define a new representation H0

q0,λ,j,I

which depends on a background structure. The representations H0 and
H0

q0,λ,j,I are certainly not (unitarily) inequivalent. The problem that (11.1.1)
is the zero operator in LQG is avoided in Algebraic Quantum Gravity (AQG)
because there the algebraic graph is not subject to the sprinkling process,
see the discussion in [589].

What is interesting about (11.1.3) is that for an exactly flat background
the expectation values of, say the area operator, are Euclidean invariant. In
order to match the expectation values of Âr(S) with the value Arq0(S) one
must choose j according to [

√
j(j + 1)�2pβλ

2/3/2] = 1. A similar calculation
for the volume operator presumably fixes the value I for the intertwiner.

11.2 Coherent states

Especially the statistical weave construction of the previous section looks like
a promising starting point for semiclassical analysis. However, there are several
drawbacks with weaves:

(i) Phase space approximation
All the weaves discussed above seem to approximate either the connection or
the electric field appropriately, although the degree of their approximation
has never been checked (are the fluctuations small?). However, what we
really need are states which approximate the connection and the electric
field simultaneously with small fluctuations.

(ii) Arbitrariness of spins and intertwiners
All weaves proposed somehow seem to arbitrarily single out special and
uniform values for spin and intertwiners. Drawing an analogy with a system
of uncoupled harmonic oscillators, it is like trying to build a semiclassical
state by choosing an arbitrary but fixed occupation number (spin) for each
mode (edge). However, we know that the preferred semiclassical states for
the harmonic oscillator are coherent states which depend on all possible
occupation numbers. As we will see, issues (i) and (ii) are closely related.

(iii) Arbitrariness of graphs
Even in the statistical weave construction we select arbitrarily only a certain
subclass of graphs. Again, drawing an analogy with the harmonic oscillator
picture, this is like selecting a certain subset of modes in order to build a
semiclassical state. However, then not all modes can behave semiclassically.

(iv) Missing construction principle
The weave states constructed suffer from a missing enveloping construction
principle that would guarantee from the outset that they possess desired
semiclassical properties.

The aim of the series of papers [485–490] was to decrease this high level
of arbitrariness, to look for a systematic construction principle and to make
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semiclassical states for quantum gravity look more similar to the semiclassical
states for free Maxwell theory, which are in fact coherent states and have been
extremely successful (see, e.g., [643,644] and references therein).

11.2.1 Semiclassical states and coherent states

Recall that quantisation is, roughly speaking, an attempt to construct a ∗ homo-
morphism

∧
: (M, {., .},O, (.)) →

(
H,

[., .]
īh

, Ô, (.)†
)

(11.2.1)

from a subalgebra O ⊂ C∞(M) of the Poisson algebra of complex-valued func-
tions on the symplectic manifold (M, {., .}) to a subalgebra Ô ⊂ L(H) of the
algebra of linear operators on a Hilbert space H with inner product < ., . > such
that Poisson brackets turn into commutators and complex conjugation into the
adjoint operation. Notice that the map cannot be extended to all of C∞(M)
(only up to quantum corrections) unless one dives into deformation quantisa-
tion (see, e.g., [645] and references therein), the subalgebra for which it holds
is referred to as the algebra of elementary functions (operators). The algebra
O should be sufficiently large in order that more complicated functions can be
expressed in terms of elements of it so that they can be quantised by choosing a
suitable factor ordering (mathematically speaking, O should separate the points
of M).

Dequantisation is the inverse of the map (11.2.1). A possible way to phrase
this more precisely is:

Definition 11.2.1. A system of states {ψm}m∈M ∈ H is said to be semiclassical
for an operator subalgebra Ô ⊂ L(H) provided that for any Ô, Ô′ ∈ Ô and any
generic point m ∈ M

1. Expectation value property
∣∣
∣
∣∣
< ψm, Ôψm >

O(m)
− 1

∣
∣∣
∣∣
	 1 (11.2.2)

2. Infinitesimal Ehrenfest property
∣∣
∣
∣∣
< ψm, [Ô, Ô]ψm >

īh{O,O′}(m)
− 1

∣
∣∣∣
∣
	 1 (11.2.3)

3. Small fluctuation property
∣∣
∣
∣∣
< ψm, Ô2ψm >

< ψm, Ôψm >2
− 1

∣
∣
∣∣
∣
	 1 (11.2.4)

The quadruple (M, {., .},O, (.)) is then called the classical limit of
(H, [.,.]

īh , Ô, (.)†).
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Clearly Definition 11.2.1 makes sense only when none of the denominators
displayed vanish, so they will hold at most at generic points m of the phase space
(meaning a subset of M whose complement has Liouville measure comparable
to a phase cell), which will be good enough for all practical applications. An
alternative definition could depend on additional scale parameters s, one for
each observable to be approximated, which says that, for example, (11.2.2) is
replaced by | < ψm, Ôψm > −O(m)| 	 s.

Notice that if (1) holds for Ô then it holds for Ô† automatically. Condition
(1) is for polynomial operators sometimes required in the stronger form that
(11.2.2) should vanish exactly, which can always be achieved by suitable (normal)
ordering prescriptions. Condition (2) ties the commutator to the Poisson bracket
and makes sure that the infinitesimal quantum dynamics mirrors the infinitesimal
classical dynamics. If the error in (2) vanishes then we have a finite Ehrenfest
property, which in non-linear systems is very hard to achieve. Finally, (3) controls
the quantum error, the fluctuation of the operator.

Coherent states have further properties which can be phrased roughly as fol-
lows:

Definition 11.2.2. A system of states {ψm}m∈M ∈ H is said to be coherent
for an operator subalgebra Ô ⊂ L(H) provided that for any Ô, Ô′ ∈ Ô and any
generic point m ∈ M in addition to properties (1)–(3) we have

4. Overcompleteness property
There is a resolution of unity

1H =
∫

M
dν(m)ψm < ψm, . > (11.2.5)

for some measure ν on M.
5. Annihilation operator property

There exist elementary operators ĝ (forming a complete system) such that

ĝψm = g(m)ψm (11.2.6)

6. Minimal uncertainty property
For the self-adjoint operators x̂ := (ĝ + ĝ†)/2, ŷ := (ĝ − ĝ†)/(2i) the
(unquenched) Heisenberg uncertainty relation is saturated

< (x̂− < x̂ >m)2 >m=< (ŷ− < ŷ >m)2 >m=
1
2
| < [x̂, ŷ] >m | (11.2.7)

7. Peakedness property
For any m ∈ M, the overlap function

m′ �→ | < ψm, ψm′ > |2 (11.2.8)

is concentrated in a phase cell of Liouville volume 1
2 | < [p̂, ĥ] >m | if p̂ is a

momentum operator and ĥ a configuration operator.



356 Step V: semiclassical analysis

These four conditions are not completely independent of each other, in par-
ticular, (5) implies (6) but altogether (1)–(7) comprises a fairly complete list of
desirable properties for semiclassical (coherent) states.

We have phrased our definitions in terms of pure states for simplicity. But
more generally we might need to consider families of positive linear functionals
m �→ ωm on the algebra of operators to be approximated and which do not need
to be pure. Properties (1)–(3), (6) and (7) can then be phrased with ωm(.) instead
of < ψm, . ψm > /||ψm||2. However, conditions (4) and (5) are specific to pure
states.

An additional property which is satisfied for the harmonic oscillator coherent
states is that the quantum evolution ψm0 �→ ψt

m0
:= exp(itĤ)ψm0 driven by a

Hamiltonian operator Ĥ approximates the classical trajectory ψm0 �→ ψmm0 (t)

where m �→ mm0(t) is the solution of the classical equations of motion with
initial condition mm0(0) = m0. This condition is difficult, actually unknown, to
meet even in non-linear systems with a finite number of degrees of freedom as
simple as the anharmonic oscillator.

11.2.2 Construction principle: the complexifier method

Usually one introduces coherent states for the harmonic oscillator as eigenstates
of the annihilation operator in terms of superpositions of energy eigenstates.
This method has the disadvantage that one needs a preferred Hamiltonian, that
is, dynamical input in order to define suitable annihilation operators. Even if
one has a Hamiltonian, the construction of annihilation operators is no longer
straightforward if we are dealing with a non-linear system. Since we neither
have a Hamiltonian nor a linear system, and since for the time being we are
anyway interested in kinematical coherent states, we have to look for a different
constructive strategy.

A hint comes from a different avenue towards the harmonic oscillator coherent
states. Let the Hamiltonian be given by

H :=
1
2
[p2/m + mω2x2] = ωz̄z where z =

√
mωx− ip/

√
mω√

2
(11.2.9)

Define the complexifier function

C :=
p2

2mω
(11.2.10)

then it is easy to see that

z =
√

mω

2

∞∑

n=0

(−i)n

n!
{C, x}n (11.2.11)
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(recall that in our terminology {p, x} = 1). Translating this equation into quan-
tum theory we find

ẑ =
√
mω√
2

∞∑

n=0

(−i)n

n!
[Ĉ, x̂]n
(īh)n

= e−t(−Δ/2) x̂
√
mω√
2

(
e−t(−Δ/2)

)−1 (11.2.12)

where the classicality parameter

t := h̄/(mω) (11.2.13)

has naturally appeared and which for this system has dimension cm2. The oper-
ator ẑ is usually chosen by hand as the annihilation operator. Let us accept that
coherent states ψz are eigenstates of ẑ. Given formula (11.2.13) we can trivially
construct them as follows: let δx be the δ-distribution, supported at x, with
respect to the Hilbert space measure dx. Define ψx := e−tĈ/̄h2

δx. Then formally

ẑψx = e−tĈ/̄h2
√
mωx̂√

2
δx =

x
√
mω√
2

ψx (11.2.14)

because δx is an eigendistribution of the operator x̂. The crucial point is now that
ψx is an analytic function of x as one can see by using the Fourier representation
for the δ-distribution δx =

∫
R
dk/(2π)eikx. We can therefore analytically extend

ψx to the complex plane x → x− ip/(mω) and arrive with the trivial redefinition
ψx−ip/(mω) �→ ψz at

ẑψz = zψz (11.2.15)

One can check that the state ψz/||ψz|| coincides with the usual harmonic oscil-
lator coherent states up to a phase.

We see that the harmonic oscillator coherent states can be naturally put into
the language of the Wick rotation transform of Section 10.7.1. This observation,
stripping off the particulars of the harmonic oscillator, admits a generalisation
that applies to any symplectic manifold M, {., .} which is a cotangent bundle
M = T ∗C where C is the configuration base space of M. It is called the com-
plexifier method and provides a systematic construction mechanism. The method
has been introduced for the first time in [315] and is by now also appreciated
by mathematicians (see [319, 320]). See [487] for a more detailed account and
comparison with other proposals.

Let (M,Ω) be a symplectic manifold with strong symplectic structure Ω
(notice that M is allowed to be infinite-dimensional). We will assume that
M = T ∗C is a cotangent bundle. Let us then choose a real polarisation of M, that
is, a real Lagrangian submanifold C which will play the role of our configuration
space. Then a loose definition of a complexifier is as follows:

Definition 11.2.3. A complexifier is a positive definite function C on M with
the dimension of an action, which is smooth a.e. (with respect to the Liouville
measure induced from Ω) and whose Hamiltonian vector field is everywhere non-
vanishing on C. Moreover, for each point q ∈ C the function p �→ Cq(p) = C(q, p)
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grows stronger than linearly with ||p||q where p is a local momentum coordinate
and ||.||q is a suitable norm on T ∗

q (C).

In the course of our discussion we will motivate all of these requirements.
The reason for the name complexifier is that C enables us to generate a complex

polarisation of M from C as follows: if we denote by q local coordinates of C (we
do not display any discrete or continuous labels but we assume that local fields
have been properly smeared with test functions) then

z(m) :=
∞∑

n=0

in

n!
{q, C}(n)(m) (11.2.16)

define local complex coordinates of M provided we can invert z, z̄ for m := (q, p)
where p are the fibre (momentum) coordinates of M. This is granted at least
locally by definition (11.2.3 ). Here the multiple Poisson bracket is inductively
defined by {C, q}(0) = q, {C, q}(n+1) = {C, {C, q}(n)} and makes sense due to
the required smoothness. What is interesting about (11.2.16) is that it implies
the following bracket structure

{z, z} = {z̄, z̄} = 0 (11.2.17)

while {z, z̄} is necessarily non-vanishing. The reason for this is that (11.2.16)
may be written in the more compact form

z = e−iLχC q =
([
ϕt
χC

]∗
q
)
t=−i

(11.2.18)

where χC denotes the Hamiltonian vector field of C, unambiguously defined
by iχC

Ω + dC = 0, L denotes the Lie derivative and ϕt
χC

is the one-parameter
family of symplectomorphisms generated by χC . Formula (11.2.18) displays the
transformation (11.2.16) as the analytic extension to imaginary values of the one-
parameter family of diffeomorphisms generated by χC and since the flow gen-
erated by Hamiltonian vector fields leaves Poisson brackets invariant, (11.2.17)
follows from the definition of a Lagrangian submanifold. The fact that we have to
continue to the negative imaginary axis rather than the positive one is important
in what follows and has to do with the required positivity of C.

The importance of this observation is that either of z, z̄ are coordinates of a
Lagrangian submanifold of the complexification MC, that is, a complex polar-
isation and thus may serve to define a Bargmann–Segal representation of the
quantum theory (wave functions are holomorphic functions of z). The diffeomor-
phism M → CC; m �→ z(m) shows that we may think of M either as a symplectic
manifold or as a complex manifold (complexification of the configuration space).
Indeed, the polarisation is usually a positive Kähler polarisation with respect to
the natural Ω-compatible complex structure on a cotangent bundle defined by
local Darboux coordinates, if we choose the complexifier to be a function of p
only. These facts make the associated Segal–Bargmann representation especially
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attractive. For a short account on symplectic and complex geometry respectively
see Sections 19.3 and 19.4 respectively.

We now apply the rules of canonical quantisation: a suitable Poisson algebra
O of functions O on M is promoted to an algebra Ô of operators Ô on a Hilbert
space H subject to the condition that Poisson brackets turn into commutators
divided by īh and that reality conditions are reflected as adjointness relations,
that is,

[Ô, Ô′] = īh ̂{O,O′} + O(̄h), Ô† = ˆ̄O + O(̄h) (11.2.19)

where quantum corrections are allowed (and in principle unavoidable except if
we restrict O, say, to functions linear in momenta). We will assume that the
Hilbert space can be represented as a space of square integrable functions on (a
distributional extension C of) C with respect to a positive, faithful probability
measure μ, that is, H = L2(C, dμ) as it is motivated by the real polarisation
(cotangent bundle structure).

The fact that C is positive motivates to quantise it in such a way that it
becomes a self-adjoint, positive definite operator. We will assume this to be the
case in what follows. Applying then the quantisation rules to the functions z in
(11.2.16) we arrive at

ẑ =
∞∑

n=0

in

n!
[q̂, Ĉ](n)

(īh)n
= e−Ĉ/̄hq̂eĈ/̄h (11.2.20)

The appearance of 1/̄h in (11.2.20) justifies the requirement for C/̄h to be dimen-
sionless in (1.1.1). We will call ẑ the annihilation operator for reasons that will
become obvious in a moment.

Let now q �→ δq′(q) be the δ-distribution with respect to μ with support at
q = q′. (In more mathematical terms, consider the complex probability measure,
denoted as δq′dμ, which is defined by

∫
δq′dμf = f(q′) for measurable f .) Notice

that since C is non-negative and necessarily depends non-trivially on momenta
(which will turn into (functional) derivative operators in the quantum theory),
the operator e−Ĉ/̄h is a smoothing operator. Therefore, although δq′ is certainly
not square integrable, the complex measure (which is probability if Ĉ · 1 = 0)

ψq′ := e−Ĉ/̄hδq′ (11.2.21)

has a chance to be an element of H. Whether or not it is depends on the details
of M,Ω, C. For instance, if C as a function of p at fixed q has flat directions,
then the smoothing effect of e−Ĉ/̄h may be insufficient, so in order to avoid this
we required that C is positive definite and not merely non-negative. If C was
indefinite, then (11.2.21) has no chance to make sense as an L2 function.

We will see in a moment that (11.2.21) qualifies as a candidate coherent state
if we are able to analytically extend (1.1.6) to complex values z of q′ where the
label z in ψz will play the role of the point in M at which the coherent state is
peaked. In order that this is possible (and in order that the extended function is
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still square integrable), (11.2.21) should be entire analytic. Now δq′(q) roughly
has an integral kernel of the form eik[(q−q′)] (where k as a cotangential vector is
considered as a linear functional k[.] on the space of tangential vectors) which is
analytic in q′ but the integral over k, after applying e−Ĉ/̄h, will produce an entire
analytic function only if there is a damping factor which decreases faster than
exponentially. This provides the intuitive explanation for the growth requirement
in Definition 11.2.3 . Notice that the ψz are not necessarily normalised.

Let us then assume that

q �→ ψm(q) := [ψq′(q)]q′→z(m) =
[
e−Ĉ/̄hδq′(q)

]
q′→z(m)

(11.2.22)

is an entire L2 function. Then ψm is automatically an eigenfunction of the anni-
hilation operator ẑ with eigenvalue z since

ẑψm =
[
e−Ĉ/̄hq̂δq′

]
q′→z(m)

=
[
q′e−Ĉ/̄hδq′

]
q′→z(m)

= z(m)ψm (11.2.23)

where in the second step we used the fact that the delta distribution is a gener-
alised eigenfunction of the operator q̂. But to be an eigenfunction of an annihi-
lation operator is one of the accepted definitions of coherent states!

Next, let us verify that ψm indeed has a chance to be peaked at m. To see
this, let us consider the self-adjoint (modulo domain questions) combinations

x̂ :=
ẑ + ẑ†

2
, ŷ :=

ẑ − ẑ†

2i
(11.2.24)

whose classical analogues provide real coordinates for M. Then we have auto-
matically from (1.1.8)

< x̂ >m:=
< ψm, x̂ψm >

||ψm||2 =
z(m) + z̄(m)

2
=: x(m) (11.2.25)

and similar for y. Equation (11.2.25) tells us that the operator ẑ should really
correspond to the function m �→ z(m), m ∈ M.

Now we compute by similar methods that

< [δx̂]2 >m:=
< ψm, [x̂− < x̂ >m]2ψm >

||ψm||2 =< [δŷ]2 >m=
1
2
| < [x̂, ŷ] >m |

(11.2.26)
so that the ψm are automatically minimal uncertainty states for x̂, ŷ, moreover
the fluctuations are unquenched. This is the second motivation for calling the
ψm coherent states. Certainly one should not only check that the fluctuations
are minimal but also that they are small compared with the expectation value,
at least at generic points of the phase space, in order that the quantum errors
are small.

The infinitesimal Ehrenfest property

< [x̂, ŷ] >z

īh
= {x, y}(m) + O(̄h) (11.2.27)

follows if we have properly implemented the canonical commutation relations
and adjointness relations. The size of the correction, however, does not follow



11.2 Coherent states 361

from these general considerations but the minimal uncertainty property makes
small corrections plausible. Condition (11.2.27) supplies information about how
well the symplectic structure is reproduced in the quantum theory.

For the same reason one expects that the peakedness property

|< ψm, ψm′ > |2
||ψm||2 ||ψm′ ||2 ≈ χKm(m′) (11.2.28)

holds, where Km is a phase cell with centre m and Liouville volume ≈√
< [δx̂]2 >m< [δŷ]2 >m and χ denotes the characteristic function of a set.
Finally one wants coherent states to be overcomplete in order that every state

in H can be expanded in terms of them. This has to be checked on a case-by-case
basis but by the fact that our complexifier coherent states are for real z, nothing
else than regularised δ-distributions which in turn provide a (generalised) basis
makes this property plausible to hold.

The reader should verify explicitly that the usual coherent states for the har-
monic oscillator fall precisely into our scheme.

Remark: It is crucial to know the map m �→ z(m). If we are just given some states
ψz with z ∈ CC then we have no way of finding the point m ∈ M to which z cor-
responds (there are certainly infinitely many diffeomorphisms between M, CC)
and the connection with the classical phase space is lost. Without this knowl-
edge we cannot check, for instance, whether the infinitesimal Ehrenfest property
holds. This is one of the nice things that the complexifier method automatically
does for us. In order to know the function z(m) we must know what the classical
limit of Ĉ is, if we are just given some abstract operator without classical inter-
pretation, then again we do not know z(m). Of course, if we are given just some
set of states ψz we could try to construct an appropriate map m �→ z(m) as fol-
lows: find a (complete) set of basic operators Ô whose fluctuations are (close
to) minimal and define a map z �→ O′(z) :=< ψz, Ôψz > /||ψz||2. Also define
{O′, Ō′}′(z) := lim̄h→0 < ψz,

[Ô,Ô†]
īh ψz > /||ψz||2. Now construct m �→ z(m) by

asking that the pull-back functions O(m) := O′(z(m)) satisfy

{O, Ō}(m) = {O′, Ō′}′(z(m)) (11.2.29)

in other words, that the symplectic structure defined by {., .}′ is the symplec-
tomorphic image of the original symplectic structure {., .} under the canonical
transformation m �→ z(m). The reader will agree that this procedure is rather
indirect and especially in field theory will be hard to carry out. Notice that by
far not all symplectic structures are equivalent, so that even to find appropriate
operators for given ψz such that at least one map m �→ z(m) exists will be a
non-trivial task. The complexifier method guarantees all of this to be the case
from the outset, since the transformation (11.2.16) is a canonical transformation
by construction.
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11.2.3 Complexifier coherent states for diffeomorphism-invariant

theories of connections

After having chosen a Hilbert space H0 = L2(A, dμ0), the only input required
in the complexifier construction is the choice of a complexifier itself. We will
restrict our class of choices to functions C = C(E) which are gauge-invariant but
not necessarily diffeomorphism-invariant (since we can use the (D-)metric to be
approximated as a naturally available background metric) and only depend on
the electric field to make life simple. We suppose that the associated operator Ĉ is
a densely defined positive definite operator on H0 whose spectrum is pure point
(discrete). The latter assumption is not really a restriction because operators
which are constructed from (limits of) electric flux operators quite generically
have this sort of spectrum, as we will see in Chapter 13. Let Ts, s ∈ S be the
associated uncountably infinite orthonormal basis of eigenvectors. The labels s =
(γ, �π, �I) are triples consisting of a semianalytic graph γ, an array of equivalence
classes of non-trivial irreducible representations πe, one for each edge e of γ and
an array of intertwiners Iv, one for each vertex v of γ. The intertwiners are chosen
in such a way that the Ts are not only gauge-invariant but also eigenfunctions
of Ĉ. The space of possible �I at given �π is always finite-dimensional and the
operators of the form Ĉ which we consider here can never change �π, γ. Thus, the
Ts are just suitable linear combinations of the usual spin-network functions.

Let λs be the corresponding eigenvalues. Then

δA′ =
∑

s∈S
Ts(A′)Ts (11.2.30)

is a suitable representation of the δ distribution with respect to μ0, that is,
∫

A
dμ0(A)δA′(A)f(A) =

∑

s

Ts(A′) < Ts, f >= f(A′) (11.2.31)

and our complexifier coherent states become explicitly

ψm =
∑

s∈S
e−λs/̄hTs(Z(m))Ts (11.2.32)

where we have made use of the fact that the expression for Ĉ is real, m = (A,E)
is the point in M to be approximated and

[
Zj
a(m)

]
(x) :=

[(C)
Aj

a(m)
]
(x) := Aj

a(x) − iκ
δC

Ea
j (x)

=
∞∑

n=0

in

n!
{
Aj

a(x), C
}

(n)

(11.2.33)
is a complex-valued G-connection since C is supposed to be gauge-invariant.

Since there are more than countably many terms different from zero in
(11.2.32) the states ψm are not elementsof H0. Rather, they define algebraic
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distributions in Cyl∗ defined by

ψm[f ] := < 1, ψm f >

= < 1,
[
e−Ĉ/̄hδA′

]
f >A′→Z(m)=< f,

[
e−Ĉ/̄hδA′

]
>A′→Z(m)

= < e−Ĉ/̄hf, δA′ >A′→Z(m)=< 1, δA′e−Ĉ/̄hf >A′→Z(m)

=
(
δA′

[
e−Ĉ/̄hf

])
A′→Z(m)

(11.2.34)

For f = Ts the right-hand side of (11.2.33) becomes e−λs/̄hTs(Z(m)) and since
C is supposed to depend on a sufficiently high power of E and since |Ts(Z(m))|
grows at most exponentially with the highest weight of �π, these numbers are actu-
ally bounded from above so that the distribution is well-defined. Equivalently,
we can consider ψm as a complex probability measure (since the δ distribution
is).

Consider for each semianalytic path e the annihilation operators

ĝe := e−Ĉ/̄hÂ(e)eĈ/̄h (11.2.35)

which are the quantum analogues of the classical functions Z(m)(e) =
he((C)A(m)) = ge(m) where he(A) = A(e) denotes the holonomy of A along e.
Thus ge(m) is the holonomy along e of the complex connection (C)A. The holon-
omy property can also be explicitly checked for the operators ĝe themselves, since
for a composition of paths e = e1 ◦ e2 we have from the holonomy property for
Â that

ĝe1 ĝe2 = e−Ĉ/̄hÂ(e1)Â(e2)eĈ/̄h = ĝe and ĝe−1 = (ĝe)−1 (11.2.36)

where product and inversion is that within GC.
As one can explicitly check, ψm is a simultaneous generalised eigenvector of

all the ĝe, that is,

(ĝeψm)[f ] := < 1, [ĝeψm] f >

= < ĝ†ef, ψm >=< 1, ψmĝ†ef >= ψm[ĝ†ef ]

= he(Z(m))ψm[f ] (11.2.37)

The crucial point is now that although the ψm are not normalisable, we may
be able to define a positive linear functional ωm on our algebra of functions as
expectation value functional

ωm(Ô) :=
< ψm, Ôψm >

||ψm||2 (11.2.38)

where we have used the inner product on H0 and no other additional inner prod-
uct! This is conceptually appealing because, if we can give meaning to (11.2.38),
then we arrive at a new representation of the canonical commutation relations
which is derived from H0, whence H0 plays the role of the fundamental represen-
tation, very much in the same way as temperature representations in ordinary
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quantum field theory can be derived from the Fock representation by limits of
the kind performed in (11.2.38). This idea has been made mathematically precise
in [496].

Expression (11.2.38) is very formal in the sense that it is the quotient of two
uncountably infinite series. However, notice that we can easily give meaning to
it at least for normal ordered functions of annihilation and creation operators as

ωm(: Ô :) = O(m) = O({ge(m), ge(m)}) (11.2.39)

which has no quantum corrections at all. Thus, if the functions m �→ ge(m) sep-
arate the points of M as e varies, then we may use them as the basic variables
in the quantum theory and they, together with their adjoints, have the correct
expectation values in the representation induced by ωm via the GNS construc-
tion, moreover, that representation by construction also solves the adjointness
and canonical commutation relations. Of course, (11.2.39) will be an interesting
functional only if the normal ordering corrections of interesting operators are
finite. This can only be decided in a case-by-case analysis.

As an illustrative example (see [485,486] for more details) let Qab := Ea
jE

b
kδ

jk

and consider the diffeomorphism-invariant complexifier (recall that E is a density
of weight one)

C :=
1
aκ

∫

σ

dDx(
√

det(Q))1/(D−1) (11.2.40)

where a is a parameter with units of (̄hκ)1/(D−1). Our convention is that A has
dimension of cm−1, thus 1

κ

∫
R
dt
∫
σ
dDxȦj

aE
a
j , the kinetic term in the canonical

action, must have dimension of an action, therefore E/(̄hκ) must have dimen-
sion cm−(D−1). Thus, in order that C/̄h be dimension-free, a must have the
said dimension. For example, for general relativity in D + 1 = 4 dimensions,
(̄hκ)1/(D−1) = �p is the Planck length, (11.2.40) is essentially the volume func-
tional V for σ and if we are interested in cosmological questions or scales, then
a = 1/

√
Λ would be a natural choice, where Λ is the cosmological constant. In

that case the quantised complexifier would simply be given by

Ĉ/̄h =
1
a�2p

V̂ =
�p
a
v̂ (11.2.41)

where v̂ = V̂ /�3p is the dimension-free volume functional which has discrete spec-
trum (the eigenvalues of the volume itself are multiples of �3p). Thus Ĉ = tv̂ where
the tiny classicality parameter

t =
�p
a

=
√
h̄κΛ (11.2.42)

has entered the stage (it equals 10−60 for the current value of Λ). We easily
compute the complexified connection in this case as

(C)A = A− ie/(2a) (11.2.43)
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where e is the dimension-free co-triad. Thus, with the volume as the complexifier,
the ge(m) indeed separate the points of M!

However, in order to qualify as a good semiclassical state, at the very least the
fluctuations of our basic operators with respect to ωm should be small compared
with the expectation values at generic points of the phase space, in particular,
they should be finite. Whether or not this is the case has to be checked for the
explicit choices for C.

It should be noted, however, that even if the fluctuations do not come out
finite, then we can still produce graph-dependent coherent states, which we will
call cutoff states, because the finite graph on which they are based serves as
a cutoff in the number of degrees of freedom to be considered. In particular,
they are elements of H0 defined as follows: given a graph γ, consider all of its
subgraphs γ′ ⊂ γ obtained by removing edges in all possible ways. Given a label
s we write s = (γ(s), �π(s), �I(s)) and define a graph-dependent δ-distribution

δA′,γ(A) :=
∑

γ′⊂γ

∑

s; γ(s)=γ′

Ts(A′)Ts(A) (11.2.44)

It is easy to check that (11.2.44) is a δ-distribution restricted to those functions
on A which can be written in terms of the holonomies A(p) where p ⊂ γ. In
fact, (11.2.44) is the cutoff of (1.1.14) with the cutoff given by the graph γ since
(11.2.44) is the restriction of the uncountably infinite series in (11.2.30) to the
countably infinite one in (11.2.44) given by restricting the sum over s ∈ S to
s ∈ Sγ where

Sγ = {s ∈ S; γ(s) ⊂ γ} (11.2.45)

In fact, we can consider the Hilbert space H0
γ = L2(Aγ , dμ0,γ) where μ0,γ is the

push-forward of μ0 to the space Aγ which is the spectrum of holonomy algebra
restricted to paths within γ. Then δγ is in fact the δ-distribution with respect to
μ0γ . In other words, δγ is the cylindrical projection of the complex measure δ.

We now obtain normalisable, graph-dependent coherent states

ψγ,m(A) =
([
e−Ĉ/̄hδγ,A′

]
A′→ (C)A(m)

)
(A) =

∑

s∈Sγ

e−λs/̄hTs((C)A(m))Ts(A)

(11.2.46)
with norm

||ψγ,m||2 =
∑

s∈Sγ

e−2λs/̄h|Ts((C)A(m))|2 (11.2.47)

which converges due to our assumptions on the spectrum λs. Notice that these
assumptions might not hold for the volume complexifier (the volume operator
is only non-negative but not positive definite, the spectrum has flat directions
and it would be crucial to know how generic these are, a problem very similar
in nature (but much simpler) to the convergence proof of the partition function
of Euclidean Yang–Mills theory). By arguments very similar to those from
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above it is easy to check that the ψγ,m are still eigenstates of the operators
ĝe provided that the path e lies within γ. In other words, for normal ordered
functions of some set of operators ĝe, ĝ

†
e it is unimportant whether we work

with the complete state ψm or with the cutoff state ψγ,m, as far as expectation
values are concerned, as long as γ contains all the paths e under consideration.
However, the fluctuations will be significantly different in general since the
square of a normal ordered operator is no longer normal ordered. As one might
expect, it is the finiteness of the fluctuations which will force us to usually work
with graph-dependent coherent states.

Thus, we arrive at a coherent state family {ψγ,m}γ∈Γω
0

for each m ∈ M where
Γω

0 denotes the set of semianalytic, compactly supported graphs embedded into
σ. They define a complex probability measure μm through the consistent family
of measures dμγ,m := ψγ,mdμ0,γ . To see that this family of measures is automat-
ically consistent we consider for γ′ ⊂ γ the projections pγ′γ : Aγ → Aγ′ defined
by restricting connections from paths within γ to paths within γ′. Now the
Hilbert space H0 is in fact the inductive limit of the Hilbert spaces H0

γ , that is,
there exist isometric monomorphisms

Ûγ′γ : H0
γ′ → H0

γ ; fγ′ �→ p∗γγ′fγ′ (11.2.48)

for all γ′ ⊂ γ. These maps satisfy the consistency condition

Ûγ̃γÛγ′γ̃ = Ûγ′γ (11.2.49)

for all γ′ ⊂ γ̃ ⊂ γ. Recall that an operator Ô on H0 can be thought of as the
inductive limit of a family of operators {Ôγ}γ∈Γ, that is, Ôγ is densely defined
on Hγ subject to the consistency condition

ÔγÛγ′γ = Ûγγ′Ôγ′ (11.2.50)

for all γ′ ⊂ γ (there is also a condition for the domains of definition which we
skip here). Thus, in particular, the complexifier is a consistently defined operator
family all of whose members are self-adjoint and positive on the respective H0

γ .
Therefore, if fγ′ depends only on connections restricted to paths within γ′ we
have

∫

A/Gγ

dμγ,m

[
p∗γγ′fγ′

]
=

(∫

A/Gγ

dμγ,0δA′,γ

[
e−Ĉγ /̄hÛγ′γfγ′

]
)

A→A(C)

=

(∫

A/Gγ

dμγ,0δA′,γ

[
Ûγ′γe

−Ĉγ′ /̄hfγ′
]
)

A→A(C)

=

(∫

A/Gγ′
dμγ′,0δA′,γ′

[
e−Ĉγ′ /̄hfγ′

]
)

A→A(C)

=
∫

A/Gγ′
dμγ′,mfγ′ (11.2.51)
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The projective limit of these measures coincides with the measure ψmdμ0. The
notation is abusing because it suggests that μm is absolutely continuous with
respect to μ0, which certainly is not the case because ψm �∈ L1(A, dμ0).

11.2.4 Concrete example of complexifier

The first example of complexifier coherent states for the gauge group SU(2)
was constructed in [488, 489]. Here we will exhibit an improved derivation [487]
of those states starting from a gauge-invariant classical complexifier whose
corresponding operator is densely and cylindrically consistently defined with
explicitly known pure point spectrum. This works for arbitrary compact gauge
groups. Moreover, the complexifier does not require the additional structure
of the dual cell complex introduced in [488]. The cell complex is replaced by
another structure which in turn defines dimensionless numbers le subject to
le◦e′ = le + le′ , le−1 = le which are important for cylindrical consistency. The
analysis of the semiclassical properties of these states can be reduced to that
carried out in [488] as we will show, and will not be repeated here.

The clue for how to construct a complexifier with all of these properties comes
from the observation that for non-Abelian gauge theories whose Hilbert space
is based on holonomies the only known, well-defined and cylindrical momentum
operators come from electric fluxes

Ej(S) =
∫

S

dSa(x)Ea
j (x) (11.2.52)

These objects are not gauge-invariant, however, there are precisely two
basic invariants that one can build from those, namely Ej(S)Ek(S′)δjk and
Ej(S)Ek(S′)El(S′)εjkl in the limit as the surfaces involved shrink to a single
point. The operators on H0 for which this shrinking process converges to a well-
defined operator are precisely the area operator on the one hand and volume
and length operators on the other hand, as we will see in Chapter 13. We have
already discussed the volume operator as a possible complexifier above and, in
fact, it seems to be the more natural possibility because we do not need to intro-
duce any other structure, however, since its spectrum is presently only poorly
understood, we will turn to the area operator. By definition, the area operator
is only supported on a given surface but we must obtain a complexifier which
is supported everywhere in order that a damping factor is produced for every
graph. Moreover, as we have shown in Section 11.2.2, we must use a power of the
area operator which is greater than one in order to arrive at an entire analytic
function (convergence) and since with an embedding X : Š ⊂ R2 → S

Ar(S) =
∫

X−1(S)

d2u
√

det(X∗q)(u) =
∫

X−1(S)

d2u

√[
Ea

j (X(u))nS
a (u)

]2

(11.2.53)
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Figure 11.3 A foliation by surfaces.
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Figure 11.4 A parquet within a leaf of the foliation.

where nS
a (u) = εabcX

b
,u1Xc

,u2 we see easily that limS→x[Ar(S)]2/[Ej(S)Ej(S)] =
1. Thus, the natural power, from the point of view of [488,489] which was built on
a gauge-invariant version of objects of the type Ej(S)Ej(S), is two. We will then
approximate a Gaußian decay as closely as we can in the non-Abelian context.

How should we then construct a complexifier built from objects of the kind
[Ar(S)]2 which is supported everywhere in σ? There are many possibilities and we
will present just one of them based on the structure of a foliation and parquet (see
Figure 11.4): let us introduce D linearly independent foliations XI

t of σ, that is,
for each t ∈ R we obtain an embedding of a D − 1 surface3 XI

t : ŠI
t ⊂ RD−1 → σ

3 The topology of that surface will depend on t if σ is topologically non-trivial.
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whose topology may vary with t, I and linear independence means that at each
point x ∈ σ the D ‘normal’ co-vectors

nI
a(x) := εaa1...aD−1

[
XIa1

t,u1 . . . X
IaD−1

t,uD−1

]
XI

t (u)=x
(11.2.54)

or the D tangents [(∂XI
t (u))/∂t]XI

t (u)=x are linearly independent. Within each
leaf of the foliation XI

t fix a parquet P I
t , that is, a partition into smaller D − 1

surfaces of fixed (say simplicial) topology and we require that for each I the
parquet varies smoothly with I. Notice that all of these structures do not refer to
a background metric. The parquet is quite similar in nature to the polyhedronal
decomposition dual to a graph defined in [488], but it is different because it
is graph-independently defined so that the resulting complexifier can be defined
already classically rather than only in quantum theory graph-wise. We then
propose

C =
1

2aκ

D∑

I=1

∫

R

dt
∑

�∈P I
t

[Ar(�)]2 (11.2.55)

where a is again an appropriate dimensionful parameter. For instance, for Quan-
tum General Relativity in D = 3, a would have dimension cm2 if we take the
parameter t dimension-free.

The corresponding complexified connection would be

ACj
a (x) = Aj

a(x) − i
D∑

I=1

⎛

⎝ Ar
(
�I
x

)

| det
(
∂XI

t /∂(t, u)
)
|

Eb
j (x)n

�I
x

b (t, u)
√[

Ec
j (x)n

�I
x

c (t, u)
]2

n
�I
x

a (t, u)

⎞

⎠

XI
t (u)=x

(11.2.56)

where �I
x ∈ P I

tI(x), X
I
tI(x)(u

I(x)) = x is the surface containing x. From (11.2.56)
we see why we cannot do without the parquet since then we would have to work
with the areas of the whole leaves, which would be an insufficiently local object.
However, even (11.2.56) only allows us to reconstruct E from AC with a precision
that is defined by how fine the parquet is. Strictly speaking then, AC does not
separate the points of M, but it does so with a precision that is sufficient for
semiclassical purposes depending on how fine the parquet is.

The spectrum of the corresponding complexifier operator is essentially
derived from the known spectrum of the area operator, together with an
important key observation which is responsible for making this operator
really leave all the Cylγ separately invariant. As we will see in detail in
Chapter 13, given an open, semianalytic, oriented surface S and a graph γ

we can always subdivide its edges in such a way that any of them belongs
to precisely one of the four disjoint subsets Ein, Eout, Eup, Edown of edges of
γ where e ∈ Ein ⇒ e ∩ S = e, e ∈ Eout ⇒ e ∩ S = ∅, e ∈ Eup ⇒ e ∩ S = b(e)
and e points up, e ∈ Edown ⇒ e ∩ S = b(e) and e points down. Here ‘up, down’
means that there exists a neighbourhood U of b(e) such that e ∩ U lies
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entirely within U+, U− respectively. Here U+, U− are the two disjoint halves
into which S cuts U and U+ is the half into which the co-normal of S

points. Let P (S, γ) = {b(e), e ∈ Eup ∪ Edown} and given p ∈ P (S, γ) let
Xj

up(p) =
∑

e∈Eup(p) X
j
e , X

j
down(p) =

∑
e∈Edown(p) X

j
e . The operators Δup(p) =

(Xj
up(p))2, Δdown(p) = (Xj

down(p))2, Δupdown(p) = (Xj
up(p) + Xj

down(p))2 are
simultaneously diagonisable with (−2 times) total angular momentum spectrum.
The area operator is given by

[Âr(S)]Cylγ =
h̄κ

8

∑

p∈P (S,γ)

√
−2Δup(p) − 2Δdown(p) + Δupdown(p) (11.2.57)

and its spectrum for SU(2) reads explicitly

[Spec(Âr(S))]Cylγ

=
h̄κ

4

∑

p∈P (S,γ)

√
2ju(p)(ju(p) + 1) + 2jd(p)(jd(p) + 1) − jud(p)(jud(p) + 1)

(11.2.58)

with ju(p) + jd(p) ≥ jud(p) ≥ |ju(p) − jd(p)|. We have set β = 1 for simplicity.
The key point is now that the subdivision of edges of γ into the classes

Ein, Eout, Eup, Edown depends on the surface S! That is, a given spin-network
state Ts is not an eigenstate of a given operator Âr(S), rather we must subdi-
vide the edges of γ(s) adapted to S and then decompose the intertwiners I(s)
in such a way that we get eigenfunctions of Δup(p),Δdown(p),Δupdown(p) for all
vertices p of γ respectively. It follows that the function Âr(S)Ts depends, in the
non-Abelian case, generally no longer only on the edges of γ but also on the
subdivision of the edges of γ as adapted to S. This is dangerous because we are
dealing with operators of the form

∫
dt[Âr(St)]2 for a foliation t �→ St and the

function [Âr(St)]2Ts therefore depends on the parameter t. If it depended on a
graph γt where γt depends on a subdivision of edges according to St then the
operator Ĉ would not exist since [Âr(St)]2Ts is not dt-measurable as we showed
in Section 8.2.3. Fortunately this does not happen.

A point p ∈ P (St, γ) falls into only one of the two categories: either it is a ver-
tex of γ in which case the subdivision of edges does not change the graph or p is an
interior point of a single edge. However, in the latter case a spin-network function
is already an eigenfunction: if e = eu(t) ◦ e−1

d (t) denotes the adapted decompo-
sition of the corresponding edge of γ with p := St ∩ e = b(eu(t)) = b(ed(t)) then
from (13.6.2) due to gauge-invariance at p

√
−2Δup(p) − 2Δdown(p) + Δupdown(p)Ts = h̄κ

√
je(je + 1) (11.2.59)

is completely independent of t. We conclude that spin-network functions Ts are
simultaneous eigenfunctions of all possible Âr(St) as long as St does not contain
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a vertex of γ(s). However, for given Ts the number of vertices of γ is finite and
the set {t ∈ R;St ∩ V (γ) �= ∅} is discrete and thus has dt-measure zero.

The spectrum of our complexifier operator therefore can easily be computed
as follows: we will assume that the graph γ(s) is contained in a region such that
each of the embedded surfaces t �→ XI

t , t ∈ [a, b] has topology independent of t
with γ ⊂ ∪t∈[a,b]X

I
t for all I. The more general case including topology change

just involves introducing more notation and does not lead to new insights and
thus will be left to the reader. Our assumptions about the parquet imply then
that, given I, we have a corresponding family of surfaces SI

�,t with a discrete
label �. Fix I,�, and a set of intersection numbers nI,�

e = 0, 1, 2, . . . ; e ∈ E(γ)
one for each edge of γ and denote by tI�(γ, �n�,I) the dt-measure of the set
{t ∈ [a, b]; |SI

�,t ∩ e| = n�,I
e ∀ e ∈ E(γ)} (notice that we only count isolated inter-

section points). Then

Ĉ

h̄
Ts =

�2p
a

⎧
⎪⎨

⎪⎩

∑

I,�,
n�,I(s)

tI�(γ(s), �n�,I(s))

⎡

⎣
∑

e∈E(γ)

n�,I
e

√
je(je + 1)

⎤

⎦

2
⎫
⎪⎬

⎪⎭
Ts

=
�2p
a

⎧
⎨

⎩

∑

e,e′∈E(γ)

√
je(je + 1)

√
je′(je′ + 1)

∑

I,�,
n�,I(s)

tI�
(
γ(s), �n�,I(s)

)
n�,I
e n�,I

e′

⎫
⎬

⎭
Ts

=:
�2p
a

⎧
⎨

⎩

∑

e,e′∈E(γ)

Ge,e′
s

√
je(je + 1)

√
je′(je′ + 1)

⎫
⎬

⎭
Ts (11.2.60)

The last equality defines a non-Abelian generalisation of an edge metric [491]
which is automatically consistent because the area operator is.

Interestingly, if the parquet is much finer than the graph then each of the
surfaces SI

� will typically intersect at most one edge eI� of the graph and if so
then only once. Therefore, tI�(γ(s), �n�,I(s))n�,I

e n�,I
e′ vanishes unless n�,I

e = δe,eI�
up to small corrections in the vicinity of vertices. Thus the sum over edges
reduces approximately to diagonal contributions and the sum over surfaces and
their intersection numbers at given e reduces approximately to lIe , the dt-measure
of the set {t ∈ [a, b]; |SI

t ∩ e| = 1}. This means that (13.6.4) is approximated by

Ĉ

h̄
Ts ≈

�2p
a

∑

e∈E(γ)

je(je + 1)

[
∑

I

lIe

]

Ts =:
�2p
a

∑

e∈E(γ)

je(je + 1)leTs (11.2.61)

which provides a concrete realisation and classical interpretation of the numbers
le. In other words, at least for parquets much finer than a given graph, the
function (11.2.55) provides a suitable continuum limit of the complexifier used
in [488]! Of course, the exact operator has a non-diagonal edge metric and one
has to take care of this when repeating all the estimates of [488,489] for this more
general case, however, on graphs sufficiently coarse compared with the parquet
the approximation given by (11.2.61) is quite good.
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These are the general formulae. For the rest of this section we consider a
specific situation in which these formulae simplify drastically and enable us to
use the analytical results from [488,489].

First of all, on sufficiently coarse graphs we can describe the results as follows
(we fix D = 3 for simplicity): define

δγA :=
∑

s∈S; γ(s)=γ

Ts(A) < Ts, . >

δγ,A :=
∑

γ′⊂γ

δγ
′

A (11.2.62)

We evidently have the identity

δA =
∑

γ∈Γω
0

δγA (11.2.63)

so that the second line in (11.2.62) is the ‘δ-distribution cutoff at γ’. A simplifi-
cation arises at the gauge-variant level since then evidently

δγ,A =
∏

e∈E(γ)

δe,A (11.2.64)

factorises. Now δe,A = δA(e) where the latter distribution is with respect to the
Haar measure. Due to the Peter and Weyl theorem

δh(h′) =
∑

π∈Π

dπχπ(h(h′)−1) (11.2.65)

which demonstrates that with δeA = δe,A − 1 we also have

δγA =
∏

e∈E(γ)

δeA (11.2.66)

Let us now specify Cγ . First of all, if we set Aj
e :=

∫
e
Aj then we see that for

sufficiently fine parquet (11.2.56) reduces to

AjC
e ≈ Aj

e −
i

a2

∑

I

∫
dt

∑

�∈P I
t

ε(e,�)Ej(�) (11.2.67)

where we have assumed that e intersects each of the � at most once transver-
sally.4 Here ε(e,�) is the signed intersection number of e,� which by assumption
takes only values ±1 for transversal intersections and 0 for segments of e within
�. This formula can be simplified further if we assume that the graph under
consideration is cubic and adapted to the parquet in the sense that the edges
running in the direction of I (1) intersect the leaves of the Ith foliation transver-
sally and such that σ(e,�) ≥ 0 and (2) intersect the leaves of the other foliations

4 By the same computation as for the holonomy–flux algebra, contributions from segments
lying entirely within the � drop out.
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e

Se

nSe
�

Figure 11.5 The contributing faces of the parquet in the approximate descrip-
tion of the coherent state. If the coarseness of graph and parquet are compa-
rable, the contributing faces form a dual polyhedronal decomposition.

not at all or they lie entirely within the leaves of those other foliations. Then, for
not too wild functions E and sufficiently small � we may pick for each e ∈ E(γ)
one of the surfaces �e =: Se which intersects e in an interior point of both e, Se

and then (11.2.67) simplifies further to

AjC
e ≈ Aj

e −
ile
a2

Ej(�e) (11.2.68)

where le is the dt-measure of the set {t ∈ R : P I
t ∩ e �= ∅} for e in I direction.

Notice that e is of type ‘up’ with respect to Se by construction. Equation (11.2.68)
holds to a good approximation only if the � with � ∩ e �= ∅ vary little compared
with �e over the range of e. In the situation described the �e chosen forms
almost a complex dual to the graph if the graph is of the same fineness as the
parquet, which is then very similar to the situation of [488] (see Figure 11.5).
In [488,489] instead, with −�(AC) one was dealing with the following functions

P e
j (A,E) := − 1

2a2
e

Tr
(
τj

∫

Se

AdA(exe◦ρe(x))(∗E(x))
)

(11.2.69)
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which approximate −�(AC) to lowest order ε2 (the parameter area of Se). Here
ρe(x), x ∈ Se is a system of non-self-intersecting paths with b(ρe(x)) = xe and
f(ρe(x)) = x and exe

is the segment of e with b(exe
) = b(e), f(exe

) = xe while
∗E = εabcE

a
j τjdx

b ∧ dxc.
The advantage of the system of functions he, P

e is that they are gauge-
covariant, λ∗

gP
e = Adg(b(e))(P e), in contrast to the Ej(S) of Section 29.1.1,

diffeomorphism-covariant if ae = a is a constant (all edges, paths, surfaces just
get mapped to diffeomorphic images) and they form a closed Poisson subalgebra
of C∞(M) given by

{he, he′} = 0
{
P e
j , he′

}
=

κ

a2
e

δee′
τj
2
he

{
P e
j , P

e′

k

}
= −δee

′ κ

a2
e

εjklP
e
l (11.2.70)

However, this Poisson algebra is isomorphic to the natural Poisson algebra on
Mγ :=

∏
e∈E(γ) T

∗(SU(2)) so what we have achieved is to construct a map

Φ′
γ : M → Mγ ; (A,E) �→

(
he(A), P e

j (A,E)
)
e∈E(γ)

(11.2.71)

which is a partial symplectomorphism. (Notice that it is neither one to one nor
onto for fixed γ. Here we are abusing the notation somewhat because Φ′

γ certainly
also depends on the Se, ρe(x).) This is convenient for the following reason: what
the complexifier Ĉγ does for us is to construct coherent states for the phase space
Mγ := [T ∗(SU(2))]|E(γ)| and since the Poisson structures of the phase spaces
Φ′

γ(M) and Mγ coincide we automatically have proved the Ehrenfest property
for Φ′

γ(M). Now, if γ gets sufficiently fine, we can approximate any function on
M by functions in Φ′

γ(M) and in that sense we are constructing approximate
coherent states for M.

Next we describe the cylindrical projections Cγ . They really come from
(11.2.55), (11.2.60) and (11.2.61) but the following description holds if γ is suf-
ficiently coarse with respect to the parquet. One finds

Cγ :=
a

2κ

∑

e∈E(γ)

l−1
e

(
P e
j

)2 (11.2.72)

One may check that this leads to the complexification

ge :=
∞∑

n=1

(−i)n

n!
{Cγ , he}n = e−iP e

j τj/2he (11.2.73)

where the Poisson brackets are those of M. In (11.2.73) we have stumbled nat-
urally on the diffeomorphism

T ∗(SU(2)) → SL(2,C); (h, P ) �→ e−iP jτj/2h (11.2.74)

where the inverse of (11.2.74) is given by polar decomposition. Now, while the
complexification of R is given by C, the complexification of a Lie group G with
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Lie algebra Lie(G) is given by the image under the exponential map of the
complexification of its Lie algebra (that is, we allow arbitrary complex coefficients
θj of the Lie algebra basis τj rather than only real ones) and (11.2.73) tells us
precisely how this is induced by the complexifier. The map (11.2.74) allows us
to identify Mγ with SL(2,C)|E(γ)| so that we have altogether a map

Φγ : M → Mγ ; (A,E) �→ mγ(A,E) :=
(
ge(A,E) := e−iP e

j τj/2he

)
e∈E(γ)

(11.2.75)

The Poisson algebra (11.2.70) is consistent with the quantisation P̂ e
j = iteR

j
e/2

on H0
γ while ĥe is a multiplication operator. Here the classicality parameters

te := le
�2p
a2

(11.2.76)

have naturally appeared and it follows that

Ĉγ /̄h = −1
2

∑

e∈E(γ)

teΔe (11.2.77)

where Δe = (Rj
e)

2/4. Our annihilation operators become

ĝe := e−Ĉγ /̄hĥe

(
e−Ĉγ /̄h

)−1 = e−teτ
2
j /8e−iP̂ e

j τj/2ĥe (11.2.78)

which up to a quantum correction is precisely the quantisation of (11.2.73). Then
we can define abstract coherent states for Hγ by

ψγ,mγ :=
[
e−Ĉγ /̄hδγ,hγ

]
hγ→mγ

=
∏

e∈E(γ)

[
eteΔe/2δhe

]
he→ge

ψγ
mγ

:=
[
e−Ĉγ /̄hδγhγ

]
hγ→mγ

=
∏

e∈E(γ)

[
eteΔe/2δhe − 1

]
he→ge

ψg :=
[
etΔ/2δh

]
h→g

=
∑

j=0,1/2,1,3/2,...

(2j + 1)e−tj(j+1)/2χj(gh−1) (11.2.79)

and coherent states on H0 by

ψγ,m := Ûγψγ,Φγ(m) and ψγ
m := Ûγψ

γ
Φγ(m) (11.2.80)

where Ûγ : H0
γ → H0 is the usual isometric monomorphism.

In [488, 489] peakedness, expectation value, small fluctuation and Ehrenfest
properties for the gauge-variant states ψγ,mγ and the algebra of operators L(H0

γ)
were proved. All proofs can be reduced to proving it for a single copy of SU(2).
Overcompleteness follows from the results due to Hall [318] for the states ψg on
L2(SU(2), dμH). Annihilation and creation operators have been defined above
and for those minimal uncertainty properties follow. See Figure 11.6 for a
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Figure 11.6 Resolution of the Gaußian-shaped peak in the overlap function of
the coherent states (peakedness in phase space) for one edge. For illustrative
purposes only two dimensions of the six-dimensional phase space are displayed,
one electric flux component and one holonomy angle.

graphical illustration of these properties. For examples of semiclassical calcu-
lations, see Section 32.4.

11.2.5 Semiclassical limit of loop quantum gravity: graph-changing

operators, shadows and diffeomorphism-invariant coherent states

One of the most important tasks of the semiclassical analysis is to verify that the
quantum dynamics is implemented correctly. Hence one would need to show that
the Master Constraint in either the graph-changing version on the level of Hdiff

or the non-graph-changing version (the extended Master Constraint) on the level
of Hkin has the correct classical limit. Alternatively one can try to do this for the
Hamiltonian constraint on the level of Hkin. For the Hamiltonian constraint only
the graph-changing version is available because the non-graph-changing version
is anomalous as one immediately derives from the results of Section 10.4.3. A
version on Hdiff is also not possible since the Hamiltonian constraint is itself not
spatially diffeomorphism-invariant.

In what follows we will describe the status of these programmes in some detail.

I. Non-graph-changing approach
Here one uses cutoff states for which in general the question arises how to
choose the graph γ on which they are based. This question is analysed in
detail in [490]. One possibility is to form a density matrix similar to the
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one we discussed before for the statistical weave but averaging only over
a countable number of states (thus not leaving H0). Another would be to
choose for γ a generic random graph which does not display any direction
dependence on large scales. In any of these scenarios the picture that arises is
the following: given γ,m we can extract from these two data two scales. The
first is a graph scale ε given by the average edge length as measured by the
metric determined by m. The second is a curvature scale L determined both
by the mean curvature radius of the four-dimensional metric determined by m

and the mean curvature of the induced metric on the embedded submanifolds
e, Se, ρe(x) (so that even in the case that m are exactly flat initial data the
scale L is not necessarily infinity). We then must decide which (kinematical)
observables should behave maximally semi-classically. This is a choice that
must be made and the choice of γ will depend largely on this physical input.
In [490] we chose these observables to be electric and magnetic fluxes. When
one then tries to minimise the fluctuations of these observables the parameters
ε and a (the parameter that appears in te = le�

2
p/a

2) get locked at a ≈ L and
ε = �αpL

1−α for some 0 < α < 1. These considerations suggest the following
conclusions:
1. Three scales

There are altogether three scales; the microscopic Planck scale �p, the
mesoscopic scale ε and the macroscopic scale L. Since �p 	 L we have
�p 	 ε 	 L provided that (as in this case) α is not too close to the values
0, 1.

2. Geometric mean
The mesoscopic scale takes a geometric mean between the microscopic and
macroscopic scales. In particular, it lies well above the microscopic scale
�p in contrast to the geometric weave states. The reason for this is that
not only electric fluxes had to be well approximated but also magnetic
ones: the weave states are basically spin-network functions which in turn
are very similar to momentum eigenfunctions. Since then electric fluxes
are very sharply peaked, magnetic ones are not peaked at all due to the
Heisenberg uncertainty relation. This can best be seen by the observation
that < Ts, (ĥp)ABTs >= 0 for any spin-network state and any A,B = 1, 2
(and therefore also ωq0,λ,j,I(ĥp) = 0 for the statistical weave) which is an
unacceptable expectation value since ĥp should be SU(2)-valued. In order
to approximate holonomies one must take an average over large numbers
of spins. This is precisely what our coherent states do. As a consequence,
the elementary observables, those that are defined at the smallest scale
which still allows semiclassical behaviour, are now defined at scales not
smaller than ε � �p.

3. Continuum limit
Notice that all our states and operators are defined in the continuum,
therefore no continuum limit has to be taken. Yet, the scale ε could be
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associated with a measure for closeness to the continuum in which the
graphs with which we probe operators tend to the continuum. The relation
ε = �αpL

1−α reveals that not only can one not take ε → 0 at finite �p because
fluctuations would blow up, but also the ‘continuum limit’ ε → 0 and the
classical limit �p → 0 get synchronised.

4. Staircase problem
The states displayed above have been criticised due to the following prob-
lem: if one computes the area operator expectation value for a surface
which is not aligned with the surfaces dual to the graph by which the
coherent state is labelled then it does not take the classical value. Even
worse, if one computes the expectation value for a holonomy operator for
a path not lying in the graph by which the coherent state is labelled,
then one gets zero. One could take the point of view that therefore the
states displayed above are not good. Unfortunately, averaging them does
not help as shown in [487]. However, a natural way out is the following:
electric flux and holonomy operators are simply not well approximated
by these states but they approximate very well other observables of the
theory which suffice to separate the points of the phase space. They are
classically given as three-dimensional integrals over phase space functions
rather than one- or two-dimensional ones, hence the direction dependence
of holonomies, fluxes and areas disappears. The reason is that these func-
tions have support everywhere and thus in particular along the graph
where the coherent state is excited. Technically this leads to the fact, as
we have seen for the example of the Master Constraint, that the operator
corresponding to the three-dimensional integral is automatically adapted
to the graph by which the coherent state is labelled, since it uses precisely
the edges of that graph in its cylindrical projections. This happens due to
background independence, however, it only holds for non-graph-changing
operators.

We expect many of those properties to hold generically for any cutoff semiclas-
sical states that one may want to build for canonical Quantum General Rel-
ativity and that the extensive proofs of their properties provided in [488,489]
will be useful for a whole class of states of this kind.

The machinery of [488,489] has been applied already to the extended Mas-
ter Constraint which is not graph-changing. The extended Master Constraint
is exactly of the type of operators to which the cutoff states are especially well
adapted: it derives from a classical three-dimensional integral of a density of
weight one. The result is positive: using cutoff states on cubical graphs one
can prove [589–591] that the extended Master Constraint has the correct clas-
sical limit. This result is very promising and one of the facts that makes the
extended Master Constraint especially attractive. The result, however, does
not yet establish that the physical Hilbert space that ME constructs is large
enough. The next step must therefore be to gain sufficient information about
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the corresponding space of physical states and the semiclassical behaviour of
Dirac observables.

II. Graph-changing approach
So far the graph-changing approach is not very well developed. In what fol-
lows we will try to explain the underlying reasons and technical difficulties
with graph-changing operators in the context of the current semiclassical
framework.
1. Spatially diffeomorphism-invariant approach

Working with spatially diffeomorphism-invariant semiclassical states is
appropriate for the unextended Master Constraint. Since Hdiff is (or can
be made) separable, cutoff states are not necessary here which is good
because this removes the graph (or spatial diffeomorphism equivalence
class of graphs) dependence while the state remains normalisable. On the
other hand, since Hdiff is not obviously of the form L2(A/Diff(σ), dμ) we
do not know how to define the δ-distribution with respect to the measure
μ, if it exists at all. All we can do at the moment is to take, as an Ansatz
for a spatially diffeomorphism-invariant semiclassical state

Ψm := ηdiff [ψm]; ψm = e−Ĉ/̄h
∑

[s]

Ts0([s])(Z(m)) < Ts0([s]), . >kin

(11.2.81)

Here the sum is over equivalence classes of spin-network labels, s0([s])
is a representative of the class [s] and l[s] = η(Ts0([s])) is an orthonormal
basis of Hdiff . As before, ηdiff denotes group averaging with respect to the
spatial diffeomorphism group and Z(m) = AC is the complexification of
a connection induced by a complexifier. For instance, if Ĉ/̄h is diagonal
on spin-network functions Ts with eigenvalues λs then (11.2.81) becomes
explicitly

Ψm =
∑

[s]

Ts0([s])(m) e−λs0([s]) l[s] (11.2.82)

The resulting states are possibly normalisable elements of Hdiff upon
choosing suitable Ĉ. They are simply ‘projections’ onto Hdiff of certain
elements of Hkin which are no longer of the cutoff form because the union
of the graphs involved is no longer finite. However, at this point their
semiclassical properties are unknown and further work is required. Notice
that the graph dependence of cutoff states is replaced by the dependence
on the representative s0, or, equivalently, by the representative m because
Ts(ϕ∗(m)) = Tϕ·s(m). It is not clear how to get rid of this nor whether it
is necessary.

2. Kinematical approach
Let us now turn to problems associated with the graph-changing nature of
operators at the kinematical level, which is appropriate for the Hamiltonian
constraint itself defined on Hkin.
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(A) Cutoff states
We consider first cutoff coherent states on a graph γ. The states are
of the form ψγ,m =

∑
γ(s)=γ cs(m)Ts and we have

Ĥ(N)ψγ,m =
∑

v∈V (γ)

N(v) Ĥγ,v ψγ,m (11.2.83)

Here, as before, Ĥγ,v is a linear combination of operators each of which
changes the graph γ in the vicinity of the vertex v by adding one or
more edges aγ,v,e,e′ , one for each pair of edges e, e′ adjacent to v,
in a representation with non-trivial spin. Notice that aγ,v,e,e′ never
coincides with an edge in E(γ). It follows that trivially

< Ĥ(N) >γ,m:=
< ψγ,m, Ĥ(N)ψγ,m >

||ψγ,m||2 = 0 (11.2.84)

because the decomposition of Ĥ(N)ψγ,m into spin-network states con-
sists only of terms which depend with non-zero spin on the edge
aγ,v,e,e′ . Hence, cutoff states are not suitable to establish the semi-
classical limit of Ĥ(N).

(B) Coherent states on fractals
A possible solution could be states defined on fractals: remember
that the Hamiltonian constraint changes a graph in the vicinity
of its vertices. Choose a graph γ0 and let Γn(γ0) be the set of
all graphs on which the spin-networks in the decomposition of any
Ĥ(N)nTs; γ(s) = γ0, N ∈ C∞(σ) into spin-network states depend
(see Figure 11.7). Define

Ψn
γ0,m :=

n∑

n′=0

∑

γ∈Γn′ (γ0)

ψγ,m (11.2.85)

The sum is orthogonal (we have suppressed a possible different weight
for the individual terms) and now the analogue of (11.2.84) is certainly
not trivial because by design for γ ∈ Γn′ , n′ = 0, 1, . . . , n the spin-
network decomposition of Ĥ(N)ψγ,m produces terms contained in the
ψγ′,m, γ′ ∈ Γn′+1. We call (11.2.85) a fractal state because around
each vertex the structure of arcs attached is reproducing when looked
at at ever finer resolutions (as n → ∞). However, again the semiclas-
sical properties of these states remain largely unexplored so far.

(C) Shadows
Another proposal is the shadow framework. Given a distributional
state Ψm =

∑
γ ψγ,m with cutoffs ψγ,m we define the generalised

‘expectation value’

< Ĥ(N) >′
γ,m:=

Ψ[Ĥ(N)ψγ,m]
Ψm[ψγ,m]

(11.2.86)
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Figure 11.7 Solutions of the Hamiltonian constraint depend on a fractal graph
because it acts in the vicinity of a vertex by adding arcs closer and closer to it.
Hence, resolving the vertex at an ever finer scale unveils a self-similar structure.
Here, for illustrative purposes, we have allowed the action of the operator to
be non-trivial at the vertices it creates.

which is non-vanishing. For non-graph-changing operators Â, this pre-
scription coincides with (11.2.84), however for graph-changing ones,
even if self-adjoint or positive, the result is not necessarily real-valued
or non-negative and thus does not qualify as an expectation value
functional. We will now show that this functional still does not pro-
duce the correct semiclassical physics: we will do the calculation in
the Abelian context, the non-Abelian one is technically more dif-
ficult but reveals the same effects. We just consider the simplest
graph γ = {e1, e2, e3} consisting of three edges meeting in two vertices
{v1, v2} = e1 ∩ e2 ∩ e3 in their common endpoints. It will be sufficient
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to consider the Euclidean part of the Hamiltonian constraint. The
SU(2) vector fields Xj

eI that enter the definition of the volume opera-
tor are simply replaced by their U(1)3 analogues. Then Ĥ(N) reduces
to N(v1)Ĥγ,v1 + N(v2)Ĥγ,v2 with, for example,

Ĥγ,v1 = −i

3∑

j=1

[
hj
αγ,v1,e1,e2

−
(
hj
αγ,v1,e1,e2

)−1]
hj
e3

[(
hj
e3

)−1
, Vv1

]
+ cyclic

(11.2.87)

Here αγ,v1,e1,e2 = s1 ◦ aγ,v1,e1,e2 ◦ s−1
2 where s1, s2 are segments

of e1, e2 respectively which are adjacent to v and hj
e(A) =

exp(i
∫
e
Aj) denotes the three U(1) holonomies. The operator ejI(v1) :=

hj
eI [(h

j
eI )

−1, Vv1 ] is not graph-changing and the cutoff states are almost
diagonal with respect to them. Hence to zeroth order in h̄ we may write
êjI(v)ψγ,m =< ψγ,m, êjI(v)ψγ,m > ψγ,m/||ψγ,m||2 so that

< Ĥγ,v1 >′
γ,m ≈ −i

∑

j

Ψ
[(
hj
αγ,v,e1,e2

−
(
hj
αγ,v,e1,e2

)−1)
ψγ,m

]

||ψγ,m||2

× < êj3(v1) >γ,m + cyclic (11.2.88)

It remains to evaluate explicitly the first term for a definite choice of
coherent states. Our cutoff states introduced in the previous section
have the form

ψγ,m =
∏

j,e∈E(γ)

ψj
e,m, ψj

e,m(A) =
∑

n∈Z−{0}
e−ten

2/2
(
gje(m)

(
hj
e(A)

)−1)n

(11.2.89)

where gje(m) = hj(AC) = exp(i
∫
e
[Aj − i{C,Aj}]) for a complexifier

C = C(E) which depends only on the electric fields. We can drop the
index j since the calculation is the same for every j and everything
factorises. We find to zeroth order in h̄

− i
Ψ[(hα − (hα)−1)ψγ,m]

||ψγ,m||2

= −i
< ψs1,m ⊗ ψs̄1,m, hs1ψe1,m >

||ψe1,m||2

× < ψs2,m ⊗ ψs̄2,m, h−1
s2 ψe2,m >

||ψe2,m||2 < ψa,m, ha1>

+ i
< ψs1,m ⊗ ψs̄1,m, h−1

s1 ψe1,m >

||ψe1,m||2

× < ψs2,m ⊗ ψs̄2,m, hs2ψe2,m >

||ψe2,m||2 < ψa,m, h−1
a 1> (11.2.90)
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where we have split the edges as eI = sI ◦ s̄I . We now employ the
Poisson resummation formula, Theorem 32.4.1 or [488,646]

∑

n∈Z

f(ns) =
1
s

∑

n∈Z

∫

R

dx e2πinx/sf(x) (11.2.91)

whose conditions of applicability are satisfied because of the expo-
nential damping factor e−n2t/2, t = s2. Using the relations he =
hshs̄, ge = gsgs̄, ge = epehe, te = ts + ts̄ we find, to zeroth order in
h̄ ∝ te, ts, ts̄ that (for examples of coherent state calculations see Sec-
tion 32.4)

Ψ[(hα − (hα)−1)ψγ,m]
||ψγ,m||2

= − ihα exp
(
ts1ps̄1 − ts̄1ps1

te1
− pa −

ts2ps̄2 − ts̄2ps2
te2

)

+ ih−1
α exp

(
−
[
ts1ps̄1 − ts̄1ps1

te1
− pa −

ts2ps̄2 − ts̄2ps2
te2

])

(11.2.92)

where pe denotes, approximately, the electric flux of a surface Se

divided by a2
e, te = �2P /a

2
e, which typically intersects only the edge

e of γ (in an interior point) if the graph γ is sufficiently coarse com-
pared with the parquet. The loop α encloses a surface Sα which has a
parameter area of the same order of magnitude, say ε2, as the surfaces
Se and we are precisely interested in that order ε2 since the replace-
ment of the magnetic field B(Sα) =

∫
Sα

dA =
∮
α
A appearing in the

classical Hamiltonian constraint by [hα − h−1
α ]/(2i) is correct precisely

to that order of magnitude. Notice that the quotients ts1/te1 are of
order zero in h̄. It follows that to order ε2 equation (11.2.92) equals

2
[
B(α) − i

{
ts1ps̄1 − ts̄1ps1

te1
− pa −

ts2ps̄2 − ts̄2ps2
te2

}]
(11.2.93)

We see that the shadow expectation value is off the expected result
to the required order in ε unless the second term in (11.2.93) van-
ishes to order ε2. Since this is generically not the case for general γ
we conclude that more work is required in order to define semiclas-
sical states for graph-changing operators. For instance, the ‘expec-
tation value’ (11.2.93) becomes generically complex-valued and is in
fact purely imaginary for flat space for which A(x) = 0, E(x) = const.
Moreover, when summing over vertices (corresponding to lapse func-
tions of large support) the expectation value of the full Hamiltonian
constraint blows up because E(x) compared with A(x) does not decay
at infinity.

We close this section with some concluding remarks:
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1. Let us come back once more to the issue of using kinematical rather than
dynamical coherent states. Given the complicated structure of the Hamilto-
nian constraint or Master Constraint it is not likely that one will determine
the physical Hilbert space exactly even after we have settled the issue of which
Hamiltonian or Master Constraint to use. Thus, a more practical approach
than to construct physical semiclassical states will be to consider kinematical
coherent states ψm where m is a point on the constraint surface of the full
phase space. The virtue of this is that the expectation value of full Dirac
observables is approximately gauge-invariant since

δN < ψm, Ôψm >=< ψm,
[(Ĥ(N))†, Ô]

īh
ψm >≈ {H(N), O}(m) = 0

because O is a Dirac observable. Moreover

< ψm, Ôψm >≈ O(m) = O([m])

does not depend on the point m in the gauge orbit [m] for the same rea-
son. Thus, at least to zeroth order in h̄ the expectation values of full Dirac
observables and their infinitesimal dynamics should coincide whether we use
kinematical or dynamical coherent states. This attitude is similar as in numer-
ical classical gravity where one cannot just compute the time evolution of a
given initial data set because for practical reasons one can only evolve approx-
imately. The art is then to gain control on the error of these computations.
Notice that Dirac observables themselves are difficult to construct even clas-
sically as shown in Section 2.2. However, the infinite series involved can be
truncated close to the gauge cut defined by the clock variables after the first
few terms and if we choose the point m on the gauge cut then we may use
these approximate Dirac observables to very high accuracy. This will be dis-
cussed in more detail also in Section 16.1 in the context of quantum gauge
fixing.

2. The classical starting point of Loop Quantum Gravity is a manifold diffeo-
morphic to R × σ where σ has fixed topology. Thus, in the classical theory
there is no topology change. Now let us look at typical (i.e., a dense set of)
kinematical states: these are finite superpositions of spin-network states over
finite graphs. The volume operator for sufficiently small regions R vanishes
identically on such states. Now physically, if R has empty volume then R

does not exist! In other words, typical quantum states do not describe σ, they
describe σ with a large number of holes. However, a manifold with holes has
a topology different from σ. Therefore, in Loop Quantum Gravity dynamical
topology change is already built in because the Hamiltonian constraint changes
the hole structure of σ in each time step. It is only when we pass to states
which are excited everywhere that we will regain the topology of σ. This is
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again the realm of semiclassical states: given a spatial metric q0 to be approx-
imated we can define a resolution length L with respect to q0 up to which
we do not want to have holes. Then we must take a coherent state in the
completion of the Hilbert space whose underlying graph scale is smaller than
L. Such states will then have non-zero volume ‘everywhere’ (up to L at least).

11.2.6 + The infinite tensor product extension

Quantum field theory on curved spacetimes is best understood if the spacetime
is actually flat Minkowski space on the manifold M = R4. Thus, when one wants
to compute the low-energy limit of canonical Quantum General Relativity to
show that one gets the standard model (plus corrections) on a background met-
ric one should do this first for the Minkowski background metric. Any classical
metric is macroscopically non-degenerate. Since the quantum excitations of the
gravitational field are concentrated on the edges of a graph, in order that, say,
the expection values of the volume operator for any macroscopic region is non-
vanishing and changes smoothly as we vary the region, the graph must fill the
initial value data slice densely enough, the mean separation between vertices of
the graph must be much smaller than the size of the region (everything is mea-
sured by the three-metric, determined by the four-metric to be approximated,
in this case the Euclidean one). Now R4 is spatially non-compact and therefore
such a graph must necessarily have an at least countably infinite number of edges
whose union has non-compact range.

However, the Hilbert spaces in use for Loop Quantum Gravity have as dense
subspace the space of cylindrical functions labelled either by a semianalytic graph
with a finite number of edges or by a so-called web, a piecewise smooth graph
determined by the union of a finite number of smooth curves that intersect in a
controlled way, albeit possibly a countably infinite number of times. Moreover, in
both cases the edges or curves respectively are contained in compact subsets of the
initial data hypersurface. These categories of graphs will be denoted by Γω

0 and
Γ∞

0 respectively where ω,∞, 0 stands for semianalytic, smooth and compactly
supported respectively. Thus, the only way that the current Hilbert spaces can
actually produce states depending on a countably infinite graph of non-compact
range is by choosing elements in the closure of these spaces, that is, states that
are countably infinite linear combinations of cylindrical functions.

The question is whether it is possible to produce semiclassical states of this
form, that is, ψ =

∑
n znψγn where γn is either a finite semianalytic graph or

a web, zn is a complex number and we are summing over the integers. It is
easy to see that this is not the case: Minkowski space has the Poincaré group
as its symmetry group and thus we will have to construct a state which is at
least invariant under (discrete) spatial translations. This forces the γn to be
translations of some γ0 and zn = z0. Moreover, the dependence of the state on
each of the edges has to be the same and therefore the γn have to be mutually
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disjoint. It follows that the norm of the state is given by

||ψ||2 = |z0|2
⎧
⎨

⎩
2

[
∑

n

1

]

[1 − | < 1, ψγ0 > |2] +

[
∑

n

1

]2

| < 1, ψn > |2
⎫
⎬

⎭

where we assume without loss of generality that ||ψγ0 || = 1 and we use the dif-
feomorphism invariance of the measure and 1 is the normalised constant state.
Decompose ψn := ψ′

n+ < 1, ψn > 1 to see this using that the states ψ′
n are mutu-

ally orthogonal and orthogonal to 1. By the Schwartz inequality the first term
is non-negative and convergent only if ψγ0 = 1 while the second is non-negative
and convergent only if < 1, ψγ0 >= 0. Thus the norm diverges unless z0 = 0.

This caveat points to its resolution: we notice that the formal state ψ :=∏
n ψγn

really depends on an infinite graph and has unit norm if we formally
compute it by limN→∞ ||∏N

n=−N ψγn || = limN→∞
∏N

n=−N ||ψγn || = 1 where the
second identity follows from the disjointness of the γn. For instance with
cn =< 1, ψn >

||ψ1ψ2||2 = ||c1c2 + c1ψ
′
2 + c2ψ

′
1 + ψ′

1ψ
′
2||2

= |c1|2 |c2|2 + |c1|2 ||ψ′
2||2 + |c2|2 ||ψ′

1||2 + ||ψ′
1||2 ||ψ′

2||2 = ||ψ1||2 ||ψ2||2

The only problem is that this state is no longer in our Hilbert space, it is not the
Cauchy limit of any state in the Hilbert space: defining ψN :=

∏N
n=−N ψγn

we
find | < ψN , ψM > | = | < 1, ψγ0 > |2|N−M | so that ψN is not a Cauchy sequence
unless ψγ0 = 1. However, it turns out that it belongs to the Infinite Tensor
Product (ITP) extension of the Hilbert space.

To construct this much larger Hilbert space [479] we must first describe the
class of graphs that we want to consider. We will consider graphs of the category
Γω
σ where σ now stands for countably infinite. More precisely, an element of Γω

σ

is the union of a countably infinite number of semianalytic, mutually disjoint
(except possibly for their endpoints) curves called edges of compact or non-
compact range which have no accumulation points of edges or vertices. In other
words, the restriction of the graph to any compact subset of the hypersurface
looks like an element of Γω

0 . These are precisely the kinds of graphs that one
would consider in the thermodynamic limit of lattice gauge theories and are
therefore best suited for our semiclassical considerations since it will be on such
graphs that one can write actions, Hamiltonians and the like.

The construction of the ITP of Hilbert spaces is due to von Neumann [647]
and already more than 60 years old. We will try to outline briefly some of the
notions involved, see [479] for a concise summary of all definitions and theorems
involved.

Let for the time being I be any index set whose cardinality |I| = ℵ takes values
in the set of non-standard numbers (Cantor’s alephs). Suppose that for each
e ∈ I we have a Hilbert space He with scalar product < ., . >e and norm ||.||e.
For complex numbers ze we say that

∏
e∈I ze converges to the number z provided



11.2 Coherent states 387

that for each positive number δ > 0 there exists a finite set I0(δ) ⊂ I such that for
any other finite J with I0(δ) ⊂ J ⊂ I it holds that |∏e∈J ze − z| < δ. We say that∏

e∈I ze is quasi-convergent if
∏

e∈I |ze| converges. If
∏

e∈I ze is quasi-convergent
but not convergent we define

∏
e∈I ze := 0. Next we say that for fe ∈ He the ITP

⊗f := ⊗efe is a C0 vector (and f = (fe) a C0 sequence) if || ⊗f || := ∏
e∈I ||fe||e

converges to a non-vanishing number. Two C0 sequences f, f ′ are said to be
strongly or weakly equivalent respectively provided that

∑

e

| < fe, f
′
e >e −1| resp.

∑

e

|| < fe, f
′
e >e | − 1|

converges. The strong and weak equivalence class of f is denoted by [f ] and
(f) respectively and the set of strong and weak equivalence classes by S and W
respectively. We define the ITP Hilbert space H⊗ := ⊗eHe to be the closed linear
span of all C0 vectors. Likewise we define H⊗

[f ] or H⊗
(f) to be the closed linear

spans of only those C0 vectors which lie in the same strong or weak equivalence
class as f . The importance of these notions is that they determine much of the
structure of H⊗, namely:

1. All the H⊗
[f ] are isomorphic and mutually orthogonal.

2. Every H⊗
(f) is the closed direct sum of all the H⊗

[f ′] with [f ′] ∈ S ∩ (f).
3. The ITP H⊗ is the closed direct sum of all the H⊗

(f) with (f) ∈ W.
4. Every H⊗

[f ] has an explicitly known orthonormal von Neumann basis.
5. If s, s′ are two different strong equivalence classes in the same weak one then

there exists a unitary operator on H⊗ that maps H⊗
s to H⊗

s′ , otherwise such
an operator does not exist, the two Hilbert spaces are unitarily inequivalent
subspaces of H⊗.

Notice that two isomorphic Hilbert spaces can always be mapped into each other
such that scalar products are preserved (just map some orthonormal bases) but
here the question is whether this map can be extended unitarily to all of H⊗.
Intuitively then, strong classes within the same weak classes describe the same
physics, those in different weak classes describe different physics such as an infi-
nite difference in energy, magnetisation, volume, etc. See [648] and references
therein for illustrative examples.

Next, given a (bounded) operator ae on He we can extend it in the natural way
to H⊗ by defining âe densely on C0 vectors through âe⊗f = ⊗f ′ with f ′

e′ = fe′

for e′ �= e and f ′
e = aefe. It turns out that the algebra of these extended operators

is automatically a von Neumann algebra [22,167,168,535–537,649–651] for H⊗

(a weakly closed subalgebra of the algebra of bounded operators on a Hilbert
space) and we will call the weak closure of all these algebras the von Neumann
algebra R⊗ of local operators. This way, adjointness relations and canonical
commutation relations (Weyl algebra) are preserved.

Given these notions, the strong equivalence class Hilbert spaces can be charac-
terised further as follows. First of all, for each s ∈ S one can find a representative
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Ωs ∈ s such that ||Ωs|| = 1. Moreover, one can show that H⊗
s is the closed lin-

ear span of those C0 vectors ⊗f ′ such that f ′
e = Ωs

e for all but finitely many e.
In other words, the strong equivalence class Hilbert spaces are irreducible sub-
spaces for R⊗, Ωs is a cyclic vector in H⊗

s for R⊗ on which the local operators
annihilate and create local excitations and thus, if I is countable, H⊗

s is actually
separable. We see that we naturally make contact with Fock space structures,
von Neumann algebras and their factor type classification [167, 168], modular
theory and algebraic quantum field theory [22]. The algebra of operators on the
ITP which are not local (i.e., are not elements of R⊗) do not have an imme-
diate interpretation but it is challenging that they map between different weak
equivalence classes and thus change the physics in a drastic way.

A number of warnings are in order:

1. Scalar multiplication is not multi-linear! That is, if f and z · f are C0 sequences
where (z · f)e = zefe for some complex numbers ze then ⊗z·f = (

∏
e ze) ⊗f is

in general wrong, it is true if and only if
∏

e ze converges.
2. Unrestricted use of the associative law of tensor products is false! Let us

subdivide the index set I into mutually disjoint index sets I = ∪αIα where α

runs over some other index set A. One can now form the different ITP H′⊗ =
⊗αH⊗

α , H⊗
α = ⊗e∈IαHe. Unless the index set A is finite, a generic C0 vector

of H′⊗ is orthogonal to all of H⊗. This fact has implications for quantum
gravity which we outline below.

Let us now come back to canonical Quantum General Relativity. In applying
the above concepts we arrive at the following surprises:

(i) First of all, we fix an element γ ∈ Γω
σ and choose the countably infinite

index set E(γ), the edge set of γ. If |E(γ)| is finite then the ITP Hilbert
space H⊗

γ := ⊗e∈E(γ)He is naturally isomorphic with the subspace H0
γ of H0

obtained as the closed linear span of cylinder functions over γ. However, if
|E(γ)| is truly infinite then a generic C0 vector of H⊗

γ is orthogonal to any
possible H0

γ′ , γ′ ∈ Γω
0 . Thus, even if we fix only one γ ∈ Γω

σ , the total H0 is
orthogonal to almost every element of H⊗

γ .
(ii) Does H⊗

γ have a measure-theoretic interpretation as an L2 space? By the
Kolmogorov theorem [532] the infinite product of probability measures is
well-defined and thus one is tempted to identify H⊗

γ = ⊗eL2(SU(2), dμH)
with H0′

γ := L2(×eSU(2),⊗edμH). However, this cannot be the case, the ITP
Hilbert space is non-separable (as soon as dim(He) > 1 for almost all e and
|E(γ)| = ∞) while the latter Hilbert space is separable, in fact, it is the
subspace of H0 consisting of the closed linear span of cylindrical functions
over γ′ with γ′ ∈ Γω

0 ∩ E(γ).
(iii) Yet, there is a relation between H⊗

γ and H0 through the inductive limit of
Hilbert spaces: we can find a directed sequence of elements γn ∈ Γω

0 ∩ E(γ),
that is, γm ⊂ γn for m ≤ n, such that γ is its limit in Γω

σ . The subspaces
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H0
γn

⊂ H0 are isometric isomorphic with the subspaces of H⊗
γ given by

the closed linear span of vectors of the form ψγn
⊗ [⊗e∈E(γ−γn)1] where

ψγn
∈ H0

γn
≡ H⊗

γn
, which provides the necessary isometric monomorphism

to display the strong equivalence class H⊗
γ,[1] as the inductive limit of the

H0
γn

.
(iv) So far we have looked only at a specific γ ∈ Γω

σ . We now construct the total
Hilbert space

H⊗ := ∪γ∈Γω
σ
H⊗

γ

equipped with the natural scalar product derived in [479]. This is to be
compared with the Hilbert space

H0 := ∪γ∈Γω
0
H0

γ = ∪γ∈Γω
σ
H0

γ,[1]

The identity in the last line enables us to specify the precise sense in which
H0 ⊂ H⊗: for any γ ∈ Γω

σ the space H0′
γ is isometric isomorphic as speci-

fied in (iii) with the strong equivalence class Hilbert subspace H⊗
γ,[1] where

1e = 1 is the constant function equal to one. Thus, the Hilbert space H0

describes the local excitations of the ‘vacuum’ Ω0 with Ω0
e = 1 for any pos-

sible semianalytic path e.
Notice that both Hilbert spaces are non-separable, but there are two

sources of non-separability: the Hilbert space H0 is non-separable because
Γω

0 has uncountable infinite cardinality. This is also true for the ITP Hilbert
space but it has an additional character of non-separability: even for fixed γ

the Hilbert space H⊗
γ splits into an uncountably infinite number of mutually

orthogonal strong equivalence class Hilbert spaces and H0′
γ is only one of

them.
(v) Recall that spin-network states form a basis for H0. The result of (iv) states

that they are no longer a basis for the ITP. The spin-network basis is in fact
the von Neumann basis for the strong equivalence class Hilbert space deter-
mined by [Ω0] but for the others we need uncountably infinitely many other
bases, even for fixed γ. The technical reason for this is that, as remarked
above, the unrestricted associativity law fails on the ITP.

We would now like to justify this huge blow-up of the original Hilbert space
H0 from the point of view of physics. Clearly, there is a blow-up only when the
initial data hypersurface is non-compact as otherwise Γω

0 = Γω
σ . Besides the fact

that like H0 it is another solution to implementing the adjointness and canonical
commutation relations, we have the following:

(a) Let us fix γ ∈ Γω
σ in order to describe semiclassical physics on that graph in

one of the cutoff schemes described in the previous section. Given a classical
initial data set m we can construct a coherent state ψγ,m which in fact is a
C0 vector ⊗γ

ψm
for H⊗

γ of unit norm. This coherent state can be considered
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as a ‘vacuum’ or ‘background state’ for quantum field theory on the asso-
ciated spacetime. As remarked above, the corresponding strong equivalence
class Hilbert space H⊗

γ,[ψm] is obtained by acting on the ‘vacuum’ by local
operators, resulting in a space isomorphic with the familiar Fock spaces and
which is separable. In this sense, the fact that H⊗

γ is non-separable, being an
uncountably infinite direct sum of strong equivalence class Hilbert spaces,
could simply account for the fact that in quantum gravity all vacua have to be
considered simultaneously, there is no distinguished vacuum as we otherwise
would introduce a background dependence into the theory.

(b) The Fock space structure of the strong equivalence classes immediately sug-
gests trying to identify suitable excitations of ψγ,m as graviton states prop-
agating on a spacetime fluctuating around the classical background deter-
mined by m [637,638]. Also, it is easy to check whether for different solutions
of Einstein’s equations the associated strong equivalence classes lie in differ-
ent weak classes and are thus physically different. For instance, preliminary
investigations indicate that Schwarzschild black hole spacetimes with differ-
ent masses lie in the same weak class. Thus, unitary black hole evaporation
and formation seems not to be excluded from the outset.

(c) From the point of view of H0′
γ the Minkowski coherent state is an every-

where excited state like a thermal state, the strong classes [Ω0] and [ψm] for
Minkowski data m are orthogonal and lie in different weak classes. The state
Ω0 has no obvious semiclassical interpretation in terms of coherent states for
any classical spacetime.

(d) It is easy to see that the GNS Hilbert space used in [631, 632] is isometric
isomorphic with a strong equivalence class Hilbert space of our ITP con-
struction. Thus, our ITP framework collects a huge class of representations
in the ‘folium’ [22] of the representation corresponding to the Hilbert space
H0 and embeds them isometrically into one huge Hilbert space H⊗, thus
we have now an inner product between different GNS Hilbert spaces! This
demonstrates the power of this framework because inner products between
different GNS Hilbert spaces are normally not easy to motivate.

11.3 Graviton and photon Fock states from L2(A, dμ0)

In [491–493] Varadarajan investigated the question of in which sense the tech-
niques of A, μ0, which in principle apply to any gauge field theory of connections
for compact gauge groups, can be used to describe the Fock states of Maxwell
theory and linearised gravity on a Minkowski background spacetime. Both the-
ories are Abelian gauge theories.5 This is not at all an academic question: while
we will explicitly couple Maxwell fields to gravity in a background-independent

5 Linearised gravity can be described in terms of connections as well [652,653] where it

becomes effectively a U(1)3 Abelian gauge theory just like Maxwell theory.
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way in Chapter 12, in order to make contact with low-energy physics we must
understand how to recover background-dependent ordinary QFT from this per-
spective.

This therefore seems a hard problem to solve because the languages that one
uses in both frameworks are so different: the photon Fock space uses the back-
ground metric in many important ways while there is no room for this metric
in LQG. The way Varadarajan partly solved this problem was by discovering
a background-dependent representation of a (modified) holonomy–flux algebra.
See [654, 655] for earlier work on this subject but where the relation with LQG
was not clear. Thus the new representation is background-dependent but it is
based on the (at least partly) background-independent modified algebra A which
is similar to the one employed in LQG. We should point out that this modified
algebra exists only in the Abelian case and does not admit an immediate general-
isation to the non-Abelian case. Nevertheless, these works lie somewhat halfway
between what one wants to achieve. More precisely, Varadarajan succeeded in
displaying Fock states within the framework of A, μ0 in a very precise way. We
describe these results in some detail below for the Maxwell case, the linearised
gravity case is completely analogous.

The crucial observation, unfortunately only valid if the gauge group is Abelian,
is the following isomorphism between two different Poisson subalgebras of the
Poisson algebra on M: consider a one-parameter family of test functions of rapid
decrease which are regularisations of the δ-distribution, for instance

fr(x, y) =
e−

||x−y||2
2r2

(
√

2πr)3
(11.3.1)

where we have made use of the Euclidean spatial background metric. Given a
path p ∈ P we denote its form factor by

Xa
p (x) :=

∫ 1

0

dtṗa(t)δ(x, p(t)) (11.3.2)

The smeared form factor is defined by

Xa
p,r(x) :=

∫
d3yfr(x, y)Xa

p (y) =
∫ 1

0

dtṗa(t)fr(x, p(t)) (11.3.3)

which is evidently a test function of rapid decrease. Notice that a U(1) holonomy
can be written as

hp(A) := ei
∫
d3xXa

p (x)Aa(x) (11.3.4)

and we can define a smeared holonomy by

hp,r(A) := ei
∫
d3xXa

p,r(x)Aa(x) (11.3.5)

It is possible to show that the smeared holonomies (11.3.5) are algebraically
independent and that the finite linear span of form factors (for the same value
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of r) is dense in the space of test functions of rapid decrease [491]. Likewise we
may define smeared electric fields as

Ea
r (x) :=

∫
d3yfr(x, y)Ea(y) (11.3.6)

If we denote by q the electric charge (notice that in our notation α = h̄q2 is the
fine structure constant), then we obtain the following Poisson subalgebras: on
the one hand we have smeared holonomies but unsmeared electric fields with

{hp,r, hp′,r} = {Ea(x), Eb(y)} = 0, {Ea(x), hp,r} = iq2Xa
p,r(x)hp,r (11.3.7)

and on the other hand we have unsmeared holonomies but smeared electric fields
with

{hp, hp′} =
{
Ea

r (x), Eb
r(y

}
= 0,

{
Ea

r (x), hp

}
= iq2Xa

p,r(x)hp (11.3.8)

Thus the two Poisson algebras are isomorphic and also the ∗ relations are iso-
morphic, both Ea(x), Ea

r (x) are real-valued while both hp, hP,r are U(1)-valued.
Thus, as abstract ∗- Poisson algebras these two algebras are indistinguishable
and we may ask if we can find different representations of it. Even better, notice
that hp,rhp′,r = hp◦p′,r, h

−1
p,r = hp−1,r so the smeared holonomy algebra is also

isomorphic to the unsmeared one. It is crucial to point out that the right-hand
side of both (11.3.7), (11.3.8) is a cylindrical function again only in the Abelian
case. Therefore all that follows is not true for SU(2), see [487] for a proof.

Now we know that the unsmeared holonomy algebra is well represented on
the Hilbert space H0 = L2(A, dμ0) while the smeared holonomy algebra is well
represented on the Fock–Hilbert space HF = L2(S ′, dμF) where S ′ denotes the
space of divergence-free, tempered distributions and μF is the Maxwell–Fock
measure of the Gaußian type. These measures are completely characterised by
their generating functional

ωF(ĥp,r) := μF(hp,r) = e−
1
4α

∫
d3xXa

p,r(x)
√
−Δ

−1
Xb

p,rδab (11.3.9)

since finite linear combinations of the hp,r are dense in HF [491]. Here Δ =
δab∂a∂b denotes the Laplacian and we have taken a loop p rather than an open
path so that Xp,r is transversal. Also unsmeared electric fields are represented
through the Fock state ωF by

ωF(ĥp,rÊ
a(x)ĥp′,r) = −α

2
[
Xa

p,r(x) −Xa
p′,r(x)

]
ωF(ĥp◦p′,r) (11.3.10)

and any other expectation value follows from these and the commutation rela-
tions.

Since ωF defines a positive linear functional we may define a new representation
of the algebra hp, E

a
r by

ωr(ĥp) := ωF(ĥp,r) and ωr

(
ĥpÊ

a
r (x)ĥp′

)
:= ωF(ĥp,rÊ

a(x)ĥp′,r) (11.3.11)
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called the r-Fock representation. In order to see whether there exists a measure
μr on A that represents ωr in the sense of the Riesz representation theorem
we must check that ωr is a positive linear functional on C(A). This can be
done [491]. In [639] Velhinho has computed explicitly the cylindrical projections
of this measure and showed that the one-parameter family of measures μr are
expectedly mutually singular with respect to each other and with respect to the
uniform measure μ0. Thus, none of these Hilbert spaces is contained in any other.
The Hilbert space Hr, for any r, is unitarily equivalent to HF (and thus they are
mutually unitarily equivalent for different r) by construction but certainly not
to the kinematical Hilbert space H0 since HF is separable while H0 is not.

In fact, we have a natural map

Θr : S ′ → A/G; A �→ Θr(A) where [Θr(A)](p) := ei
∫
d3xXa

p,rAa(x) (11.3.12)

and Velhinho showed that μr = (Θr)∗μF is just the push-forward of the Fock
measure.

Recall that the Fock vacuum ΩF is defined to be the zero eigenvalue coherent
state, that is, it is annihilated by the annihilation operators

â(f) :=
1√
2α

∫
d3xfa[ 4

√
−ΔÂa − i( 4

√
−Δ)−1Êa] (11.3.13)

where fa is any transversal smearing field. We then have in fact that ωF(.) =
< ΩF, .ΩF >HF , that is, ΩF is the cyclic vector that is determined by ωF through
the GNS construction. The idea is now the following: from (11.3.11) we see that
we can easily answer any question in the r-Fock representation which has a pre-
image in the Fock representation, we just have to replace everywhere hp,r, E

a(x)
by hp, E

a
r (x). Since in the r-Fock representations only exponentials of connections

are defined, we should exponentiate the annihilation operators and select the
Fock vacuum through the condition

eiâ(f)ΩF = ΩF (11.3.14)

In particular, choosing f =
√

2α( 4
√
−Δ)−1Xp,r for some loop p we get

e
∫
d3xXa

p,r[iÂa+(
√
−Δ)−1Êa]ΩF = ΩF (11.3.15)

Using the commutation relations and the Baker–Campell–Hausdorff formula one
can write (11.3.15) in terms of ĥp,r and the exponential of the electric field
appearing in (11.3.15) times a numerical factor. The resulting expression can
then be translated into the r-Fock representation.

This was Varadarajan’s idea. He found that in fact there is no state in H0 which
satisfies the translated analogue of (11.3.15) but that there exists a distribution
that does (we must translate (11.3.15) first into the dual action to compute that
distribution). It is given (up to a constant) by

Ωr =
∑

s

e−
α
2

∑
e,e′∈E(γ(s)) Gr

e,e′ne(s)ne′ (s)Ts < Ts, . >H0 (11.3.16)
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where s = (γ(s), {ne(s)}e∈E(γ(s))) denotes a charge-network (the U(1) analogue
of a spin-network) and

Gr
e,e′ =

∫
d3xXa

e,r

√
−Δ

−1
Xb

e′,rδ
T
ab (11.3.17)

where δTab = δab − ∂aΔ−1∂b denotes the transverse projector.
Several remarks are in order concerning this result:

1. Distributional Fock states
n-particle state excitations of the state ΩF (and also coherent states [495]) can
easily be translated into distributional n-particle states (coherent states) by
using Varadarajan’s prescription above. Thus, we get in fact a Varadarajan
map

V : (HF,L(HF) �→ (D∗,L′(D)) (11.3.18)

Since none of the image states is normalisable with respect to μ0, this raises
the question of in which sense the kinematical Hilbert space is useful at all
in order to do semiclassical analysis. One can in this case define a new scalar
product on these distributions simply by

< V · ψ, V · ψ′ >r:=< ψ,ψ′ >F (11.3.19)

In particular we obtain < Ωr, . Ωr >r= ωr so Ωr can be interpreted as the
GNS cyclic vector underlying ωr. With respect to this inner product one can
now perform semiclassical analysis. But how would one have guessed (11.3.19)
from first principles? In [487] it is shown that one can arrive at the new
representation (11.3.19) directly from the kinematical Hilbert space through a
limiting procedure by using the complexifier machinery, thus one can take the
point of view that the kinematical, background-independent representation
is the fundamental one from which certain others, including the background-
dependent one (11.3.19), can be derived (in this case motivated by providing
a suitable Hamiltonian operator).

2. Electric flux operators
In the non-Abelian theory it was crucial not to work with electrical fields
smeared in D dimensions but rather with those smeared in D − 1 dimensions.
However, (D − 1)-smeared electrical fields have no pre-image under V and
in fact Velhinho showed that there is no electric flux operator in the r-Fock
representation as to be expected. This seems to be an obstruction to transfer
the Varadarajan map to the non-Abelian case.

3. Comparison with complexifier coherent states
Formula (11.3.16) reminds us of the complexifier framework with complexifier
chosen to be a quadratic function of the electric fields (see also [495]). We can
write (11.3.16) more suggestively as

Ωr =
∑

s

e
α
2

∑
e,e′∈E(γ(s)) Gr

e,e′ReRe′Ts < Ts, . >H0 (11.3.20)
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where Re are right-invariant vector fields on U(1). This formula just asks to be
analytically continued in order to arrive at a coherent state as in the complex-
ifier framework. The deeper origin of this apparent coincidence is unravelled
in [487] where it is shown that the Varadarajan coherent distributions are
complexifier distributions generated by the complexifier

C =
α

2

∫

R3
d3x δabE

a
r

√
−Δ

−1
Eb

r

In [495] it is proposed that one should generalise (11.3.20) in the obvious way
to the non-Abelian case by replacing charge nets by spin nets and ReRe′ by
Rj

eR
j
e′ and using the associated cutoff states (called ‘shadows’ there) for semi-

classical analysis. However, it is unclear whether these shadows have similarly
nice properties as the cutoff states introduced in [485, 486, 488–490] because
the metric Gr

ee′ is not diagonal. Also it is unclear how one should define the
corresponding distributional non-Abelian Fock states since the Laplacians do
not form a cylindrically consistent family. Finally it is not clear what the inter-
pretation of the complexified connection should be because the Laplacians do
not obviously come from a classical function. Progress on these questions has
been made recently in [487] by using the complexifier approach and where
instead of Laplacians one uses area operators as displayed in Section 11.2.6.

4. Other operators
One should not forget that important operators of Maxwell theory such as
the Hamiltonian operator are expressed as polynomials of non-exponentiated
annihilation and creation operators. However, such operators are not defined
either in the r-Fock representation or in H0. In [637, 638] it is shown how to
circumvent that problem.

In conclusion, Varadarajan’s construction [491–493] is an important contribution
to building the semiclassical sector of the theory and [447,495] rest crucially on
it. In particular, at least as far as free field theories on a (Minkowski) background
spacetime are concerned, one can construct a polymer-like image of the usual
Fock space starting from the background-independent kinematical loop quantum
gravity Hilbert space through a limiting procedure. The open issue is of course the
construction of semiclassical states for an interacting, background-independent
theory which was started in [485–490]. Here the idea is that the background
metric is supplied by a semiclassical state. Those states are still elements of
a background-independent representation, however, they are peaked on (initial
data of) a certain background spacetime. See in particular [637, 638] where the
interacting Klein–Gordon–Maxwell–Einstein system was considered. Also one
should understand how to describe gravitons and in particular the vacuum state
from the point of view of the SU(2) theory rather than from the U(1)3 theory.
See [652, 653] for first steps in that direction.
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Notice that the developments of Sections 11.2 (coherent states for interact-
ing quantum field theories and cutoff states) and 11.3 (Varadarajan states for
background-dependent linear quantum field theories and shadow states) started
independently of each other. However, as we just said, the complexifier method
spelt out initially in [486] is also the underlying framework for [447, 491–493,
495] as was demonstrated in [487] so that there is actually one enveloping con-
cept: the complexifier concept. This is helpful to know as it unifies the recently
started semiclassical programmes.



III

Physical applications
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Extension to standard matter

The exposition of Chapter 10 would be incomplete if we could not extend the
framework to matter also, at least to the matter of the standard model. This is
straightforward for gauge field matter, however for fermionic and Higgs matter
one must first develop a background-independent mathematical framework [443].
We will discuss the essential steps in the next section and then outline the quan-
tisation of the matter parts of the total Hamiltonian constraint in the section
after that, see [441] for details.

We should point out that these representations are geared towards a
background-independent formulation. The matter Hamiltonian operator of the
standard model in a background spacetime is not carried by these representa-
tions. They make sense only if we couple quantum gravity. Also, while we did
not treat supersymmetric matter explicitly, the following exposition reveals that
it is straightforward to extend the formalism to Rarita–Schwinger fields. We will
follow closely [441,443].

Before we start we comment on a frequently stated criticism: as we will see
there is no obstacle in finding background-independent kinematical representa-
tions of standard matter quantum field theories and these support the matter
contributions to the Hamiltonian constraint. Thus, it seems as if in LQG there
is no restriction on the matter content of the world. However, that is a prema-
ture conclusion: the associated Master Constraint of geometry and matter could
have zero in its spectrum depending on the type of matter coupled. Indeed, the
reason why the spectrum of the Master Constraint could not contain zero is
due to normal or factor ordering effects which are finite but similar in nature to
the infinite vacuum energies of background-dependent quantum field theories. A
well-known procedure for how to cancel these (infinite) vacuum energies is by
supersymmetry: every positive contribution from a bosonic mode is cancelled by
a negative contribution from a fermionic mode. Hence, in LQG, when it comes to
the construction of the physical Hilbert space, restrictions on the matter content
of the world might occur by a mechanism rather similar to those that lead to
supersymmetry.
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12.1 The classical standard model coupled to gravity

The Lagrangian of the standard model coupled to gravity can be reduced to a
linear combination of actions of the following types

SEinstein =
1
κ

∫

M

d4X
√
|det(g)|R

Scosmo =
Λ
κ

∫

M

d4X
√
|det(g)|

SYM = − 1
4Q2

∫

M

d4X
√
|det(g)|gμνgρσF I

μρF
J
νσδIJ

SHiggs =
1
2λ

∫

M

d4X
√
|det(g)|(gμν [∇μφI ][∇νφJ ] + V (φ))

SDirac =
i

2

∫

M

d4X
√
|det(g)|

([
Ψrγ

αεμα∇μΨs −∇μΨrγ
αεμα∇μΨs

]
δrs − iJ(Ψ,Ψ)

)

(12.1.1)

The first two terms are the already familiar Einstein–Hilbert action and a cosmo-
logical term. The third is a Yang–Mills action for some compact gauge group G
where F is the curvature of some G-connection A and Q is a coupling constant.
For the standard model G = U(1) × SU(2) × SU(3). The fourth term is a scalar
(Higgs) contribution with some potential V which for the standard model is a
fourth-order polynomial which induces spontaneous symmetry breaking and λ is
a coupling constant. For definiteness we have written a Higgs field which as F

also transforms in the adjoint representation of Lie(G), however, that is not nec-
essary. In fact, for the standard model the Higgs transforms in the fundamental
representation of the electroweak SU(2). Finally, the last term is the fermionic
contribution where for definiteness we have assumed that Ψ is a Dirac spinor.
Here γα, α = 0, 1, 2, 3 are Minkowski space Dirac matrices and eμα are tetrads.
As usual, Ψ̄ = (Ψ∗)T γ0 denotes the conjugate spinor.

In the form displayed the action is appropriate for the quarks. For the lep-
tons we must insert additional appropriate chiral projectors (14 ± γ5)/2, γ5 =
iγ0 . . . γ3 to isolate the left-handed and right-handed contributions (notice that
by now it is fairly sure that neutrinos have masses leading to neutrino oscil-
lations). In the terminology used in Section 15.1.4, Dirac spinors transform in
the direct sum of the two fundamental representations of SL(2,C) (unprimed
and primed spinors) while the Weyl fermions corresponding to the chiral pro-
jections transform in one of the two fundamental representations (left-handed
corresponds to unprimed). In addition, as is the case for the standard model,
the fermions may transform in some irreducible representation of G, here indi-
cated by the indices r, s. For quarks this is the tensor product of the defining
representation of U(1) × SU(3) while for the leptons it is U(1) × SU(2) for the
charged particles while only SU(2) for the neutrinos. We are describing here the
standard model in the form before symmetry breakdown and thus refrain from
introducing Higgs vacuum expectation values and Cabibbo–Kobayashi–Maskawa



12.1 The classical standard model coupled to gravity 401

mass matrices (and similar ones for the neutrinos). These could be absorbed into
the current J which is supposed to be a real-valued, bilinear, G-invariant scalar.
Notice that all fermion fields are taken to be Grassman-valued.

Finally, ∇μ denotes the SL(2,C) × G covariant derivative. Thus it annihi-
lates gμν , e

μ
α, γ

α and takes the explicit form ∇φI = dφI + fIJKAKφK ,∇Ψr =
dΨr + ΓΨr + AI(τ I)rsΨs. Here fIJK are the structure constants for the cho-
sen basis τ I of Lie(G) with (τJ)IK = fIJK , Γ is the spin connection of the
tetrad acting on the corresponding spinor type, see Section 15.1.4, and (τ I)rs =
(d/dt)t=0[ρ(exp(tτ I))]rs where ρ is the G-representation in which the fermions
transform. We are using the second-order formalism since we require that Γ is
defined by e.

One can also consider any of the supersymmetric generalisations of the stan-
dard model, thus leading to 4D supergravity theories. The presentation below
would not change, we would just need to introduce additional Rarita–Schwinger
fields and superpartners in order to complete the super multiplets. The canonical
formulations of such extensions can be found, for example, in [295,296]. All the
essentially new ideas can already be understood from the types of matter consid-
ered above, in fact, as we will show, the matter quantisation in LQG is universal
and can deal with any type of matter, at least before solving the constraints.
Restrictions on allowed matter couplings will arise, as already metioned, when
solving the corresponding Master Constraint: adding or deleting matter modes
may result in a shift of the minimum of the spectrum away from zero, which
would mean that the space of solutions is empty. Hence we expect that certain
types of matter are dynamically excluded.

We must now cast (12.1.1) into canonical form. Clearly the cosmological term
just reduces to Λ

κ

∫
R
dt σ d3xN

√
det(q) and does not need to be discussed any

further, it thus contributes the volume operator to the Hamiltonian constraint.

12.1.1 Fermionic and Einstein contribution

We begin with the fermionic contribution and want to write this in terms of the
(Ai

a = Γi
a + βKi

a, E
a
i ) where for simplicity we set β = 1. Let us write the Dirac

bi-spinor explicitly as Ψr = (ψr, ηr) where ψr = (ψA
r ) and ηr = (ηA′r) transform

according to the fundamental representations of SL(2,C), the representation ρ

of G and are scalars of density weight zero. We take as usual M = R × σ, let
Tμ be the time foliation vector field of M and denote by nμ the normal vector
field of the time slices σ. Then the tetrad can be written εμα = eμα − nμnα with
eμαnμ = eμαn

α = 0 so that eμα is a triad and ηαβnαnβ = −1 is an internal unit
timelike vector which we may choose to be nα = −δα,0 (η = diag(−,+,+,+) is
the Minkowski metric). Finally, inserting lapse and shift fields by (∂t)μ = Tμ =
Nnμ + Nμ with Nμnμ = 0 one sees that the action can be written, after lengthy
computations, in terms of Weyl spinors as (using the Weyl representation for
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the Dirac matrices, for instance, to expand out various terms) and neglecting
the current J and the indices r over which implicit summation is assumed

SDirac =
i

2

∫

R

dt

∫

Σ

d3xN
√

det(q)
[
Tμ −Nμ

N
(ψ†∇+

μψ + η†∇−
μ η − c.c.)

+ eμi (ψ†σi∇+
μψ − η†σi∇−

μ η − c.c.)
]

(12.1.2)

where the c.c. in (∗ + c.c.) stands for ‘complex conjugate of ∗’. Here we
have defined eμα = (0, eμi ) and abused the notation in writing eμi = (eti =
0, eai ), σi are the Pauli matrices, ψ† := (ψ�)T and ∇±

μ is the self-dual
respectively anti-self-dual part of ∇μ in the Weyl representation. More
precisely, ∇±

μ = ∂μ + ω±
μ + Aμ, ω

±
μ = −iσjω

j±
μ , ωj+

μ = −1/2εjklωkl+
μ , ωαβ+

μ =
1
2 (ωαβ

μ − iεαβ γδω
γδ
μ ), ωj−

μ = ωj+
a and ωαβ

μ is the spin-connection of εaα. These
formulae can be derived directly from Section 15.1.4.

It is easy to see that the spatial part of ωj+
μ is just given by 1

2A
jC
a

where AjC
a = Γj

a + iKj
a is the complex-valued Ashtekar connection. We have

already seen this in Chapter 4. Denoting DC
a ψr = (∂a + AjC

a τj)ψr + Ars
a ψs and

DC

a ηr = (∂a + Aa
jC
τj)ηr + Ars

a ηs with τj = − i
2σj (Pauli matrices) and AjC

t =
Tμωj+

μ , ψ̇ = Tμ∂μψ we end up with

SDirac =
i

2

∫
dt

∫
d3x

√
det(q)

[
(ψ†ψ̇ + η†η̇ − c.c.)

−
(
−

(
AjC

t ψ†τjψ + AjC
t η†τjη − c.c.

)
+ iArs

t δAB(ψ̄AψB + η̄AψB)

+Na
(
ψ†DC

a ψ + η†DC

a η − c.c.
)

+ Neai
(
− ψ†σiDC

a ψ + η†σiD
C

a η − c.c.
))]

(12.1.3)

Let us now introduce Daψ = (∂a + τjΓj
a)ψ, E

a
i = |det(eia)|eai , Aj

t := �(AjC
t )

then we see by explicitly evaluating c.c. that

SDirac =
i

2

∫
dt

∫
d3x

√
det(q)[(ψ†ψ̇ + η†η̇ − c.c.)

− (−2Aj
t (ψ

†τjψ + η†τjη) + Na(ψ†Daψ + η†Daη − c.c.)

+ iArs
t δAB(ψ̄AψB + η̄AψB) + N

Ea
i√

det(q)
([−ψ†σiDaψ + η†σiDaη − c.c.]

+ 2[Ka, E
a]j(ψ†τjψ − η†τjη)))] (12.1.4)

This is the 3 + 1 split Dirac action that we are going to combine with the 3 + 1
split Einstein action to obtain the desired form in terms of (Ai

a, E
a
i ).

We come to the Einstein action which now derives in terms of the new variables
from an action principle following [295,296]. One takes the Palatini Lagrangian in
first-order form L = Fαβ(ω) ∧ ∗(eα ∧ eβ) where ∗Tαβ = 1

2ε
αβγδTγδ denotes the

flat Hodge dual (see Section 15.1.4; all flat indices are moved with the Minkowski
metric η), use the identity T = T+ + T− where T± = (T ∓ i ∗ T )/2 as well as
F±(ω) = F (ω±) and see that L = i(L+ − L−) where L± = F±

αβ(ω) ∧ (eα ∧ eβ).
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It follows that SEinstein = �(S+
Einstein) where S+

Einstein is the self-dual part of
SEinstein, which in our notation is written as

S+
Einstein =

1
κ

∫
dt

∫
d3x

[

−iȦjC
a Ea

j −
(

iAjC
t DC

a E
a
j − iNatr

(
FC
abE

b
)

+
N

2
√

det(q)
tr

(
FC
ab[E

a, Eb]
)
)]

(12.1.5)

where FC denotes the curvature of AC and κ the gravitational coupling constant.
Computing the real part reveals

SEinstein =
1
κ

∫
dt

∫
d3x

[

K̇j
aE

a
j −

(

−Aj
t [Ka, E

a]j + 2NaD[aK
j
b]E

b
j

− N

2
√

det(q)
tr(([Ka,Kb] −Rab)[Ea, Eb])

)]

(12.1.6)

where Rab is the curvature of eia.
The point of this alternative derivation is that it gives a four-dimensional

interpretation of the Lagrange multiplier Λj = Aj
t of the gravitational Gauß con-

straint. Thus, putting both actions together, we find that the gravitational Gauß
constraint is given by (no other matter contributes to it)

Gj =
1
κ

[Ka, E
a]j + i

√
det(q)[ψ†τjψ + η†τjη] (12.1.7)

Here we have assumed that Ψ transforms trivially under G. Otherwise we have
to sum over r for each species ψr, ηr.

We can now perform a canonical point transformation on the gravitational
phase space given by (Ki

a, E
a
i ) → (Ai

a, E
a
i ) (the generator is

∫
d3xΓi

aE
a
i as we

checked) and we must then express the constraints in terms of Ai
a. Let us there-

fore introduce the real-valued derivative Daψ := (∂a + Aj
aτj)ψ and denote by Fab

the curvature of Ai
a. Using that DaE

a
i = 0 we can immediately write

Gj =
1
κ
DaE

a
j + i

√
det(q)[ψ†τjψ + η†τjη] (12.1.8)

Next, we expand Fab in terms of Γa,Ka, use the Bianchi identity tr(RabE
b) = 0

and find that the vector constraint Ha, the coefficient of Na in SDirac + SEinstein

is given, up to a term proportional to Gj , by

Ha = tr(FabE
b) +

i

2

√
det(q)(ψ†Daψ + η†Daη − c.c.) (12.1.9)

Finally, let, as in the source-free case

HE =
1
2κ

tr

(

Fab
[Ea, Eb]
√

det(q)

)

(12.1.10)
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which has the interpretation of the source-free Euclidean Hamiltonian constraint.
Furthermore, let

HG := −HE +
2
2κ

tr

(

[Ka,Kb]
[Ea, Eb]
√

det(q)

)

(12.1.11)

which in the source-free case would be the full Lorentzian Hamiltonian constraint.
Then the Einstein contribution to the Hamiltonian constraint of SDirac + SEinstein

is given by

H = HG − 2
2κ

Datr

(

[Kb, E
b]

Ea

√
det(q)

)

=: HG + T (12.1.12)

Notice that in the source-free case the correction T of H to HG is proportional
to a Gauß constraint and therefore would vanish separately on the constraint
surface. However, in our case, using the Gauß constraint (12.1.7) we find that

T = −1
2
(
[Ka, E

a]j − Ea
jDa

)
Jj (12.1.13)

where we have defined the current Jj := ψ†σjψ + η†σjη. On the other hand,
writing also the Dirac contribution to the Hamiltonian constraint in terms of
Da rather than Da and combining with H we find that the first term on the
right-hand side of (12.1.13) cancels against a similar term. We end up with the
contribution H from both the Einstein and Dirac sector to the Hamiltonian
constraint which is given, up to a term proportional to the gravitational Gauß
constraint, by

H = HG +
Ea

j

2
√

det(q)

(
Da

(√
det(q)Jj

)
+ i

√
det(q)[ψ†σjDaψ − η†σjDaη − c.c.]

−Kj
a

√
det(q)(ψ†ψ − η†η)

)
(12.1.14)

In order to arrive at (12.1.14) one has to use the Pauli matrix algebra σjσk =
δjk1SU(2) + iεjklσl at several stages when computing c.c. Notice that we can
write (12.1.14) also in terms of the half-densities ξ = 4

√
det(q)ψ, ρ = 4

√
det(q)η

by absorbing the
√

det(q) appropriately and using that Da det(q) = 0. We find

H = HG +
Ea

j

2
√

det(q)

(
Da(ξ†σjξ + ρ†σjρ)

+ i[ξ†σjDaξ − ρ†σjDaρ− c.c.] −Kj
a(ξ

†ξ − ρ†ρ)
)

(12.1.15)

Note also that i
√

det(q)[ψ†ψ̇ − ψ̇†ψ] = i[ξ†ξ̇ − ξ̇†ξ] so that our change of vari-
ables is actually a symplectomorphism!

This is the form of the constraint that we have been looking for: up to Ki
a

we have expressed everything in terms of real-valued quantities and the canon-
ically conjugate pairs (ξ, iξ), (ρ, iρ). Now, let us in the source-free case denote
by V =

∫
σ
d3x

√
det(q) the total volume of σ and HE(1) =

∫
σ
d3xHE(x). Then it
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is still true that Kj
a = −{Aj

a, {V,HE(1)}} and since V,HE(1) admit well-defined
quantisations as we saw in Chapter 9 we conclude that despite its complicated
appearance (12.1.15) admits a well-defined quantisation as well. Note that if we
did not work with half-densities ξ, ρ but with the ψ, η then, while i

√
det(q)ψ̄ is

the momentum conjugate to ψ, the gravitational connection would get a correc-
tion proportional to ieia[ψ

†ψ + η†η]. Thus we would have had to admit a complex
connection, which would be disastrous as our Hilbert space techniques would not
be at our disposal. Hence we will use the half-densities.

12.1.2 Yang–Mills and Higgs contribution

By carrying out literally the same steps as for the fermionic contribution and
using the explicit expression for the metric and its inverse in the ADM frame
one finds after performing the Legendre transform

SYM =
1
Q2

∫

R

dt

∫

σ

d3x

{

Ȧ
I

aE
a
I −

[

−AI
tDaE

a
I + NaF I

abE
b
I

+
qab

2
√

det(q)

(
Ea

IE
b
J + Ba

IB
b
J

)
δIJ

]}

SHiggs =
1
λ

∫

R

dt

∫

σ

d3x

{

φ̇Iπ
I −

[

−AI
t fIJKφJπK + NaπIDaφI

+
1
2

([
πIπJ

√
det(q)

+
√

det(q) [DaφI ] [DaφI ]

]

δIJ +
√

det(q)V (φ)

)]}

(12.1.16)

Here Da acts like the Levi–Civita connection on tensor indices and like A

on indices connected with representations of G. For instance, DaE
a
I = ∂aE

a
I +

fIJKAJ
aE

a
K and DaφI = ∂aφI + fIJKAJ

aφK . Of course, F is the pull-back to σ of
the four-dimensional Yang–Mills curvature and Ba = εabcF bc its magnetic field.

The Legendre transform which has given rise to (12.1.16) can be rediscovered
by solving the equation of motion for A, φ respectively, which follow by imposing
that (A,E), (φ, π) are canonical pairs, in other words by varying (12.1.16) with
respect to E, π respectively. We find

πI =
√

det(q)nμDμφI , Ea
I =

√
det(q)qabnμFμb (12.1.17)

where Nnμ = Tμ −Nμ, Tμ = Xμ
,t, N

μ = NaXμ
,a in terms of the foliation

X(t, σ) = Σt of M .
From (12.1.16) we read off the contributions to the spatial diffeomorphism

constraint and the Hamiltonian constraint. In particular, the Yang–Mills Gauß
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constraint becomes

GI = DaE
a
I + fIJKφJπK + i

√
det(q)δAB [ρ(τ I)]rsψ̄

r
Aψ

s
B + [ρ(τ I)]rsη̄

r
Aη

s
B

(12.1.18)

where we have taken care of the G-transformation behaviour of the fermions.
As in the matter-free case, the spatial diffeomorphism constraint and Gauß

constraints generate the expected gauge transformations on the matter extended
phase space and therefore we will quantise them precisely as for the pure geom-
etry part. The non-trivial structure lies again with the Hamiltonian constraint
on which we focus in what follows. Before we do that we must first introduce
suitable background-independent representations for the matter degrees of free-
dom based on suitable kinematical algebras. With respect to the gauge fields we
proceed exactly as with gravity, so this is already achieved because our consid-
erations in the second part of the book did not impose any restriction on G.
However, for fermions and scalars we must invest additional work. This is what
we will do in the next section.

12.2 Kinematical Hilbert spaces for diffeomorphism-invariant
theories of fermion and Higgs fields

First attempts to couple quantum field theories of fermions to Quantum General
Relativity gravity were made in the pioneering work [444, 445]. However, these
papers were still written in terms of the complex-valued Ashtekar variables for
which the kinematical framework was missing. Later on [446] appeared, in which
a kinematical Hilbert space for diffeomorphism-invariant theories for fermions
was proposed, coupled to arbitrary gauge fields and real-valued Ashtekar vari-
ables using the kinematical framework developed in Part II. Also, the diffeomor-
phism constraint was solved in [446] but not the Hamiltonian constraint. How-
ever, that fermionic Hilbert space did implement the correct reality conditions
for the fermionic degrees of freedom only for a subset of all kinematical observ-
ables. In [443] this problem was removed by introducing new fermionic variables,
so-called Grassmann-valued half-densities, and the framework was extended to
Higgs fields. This section is accordingly subdivided into one subsection each for
the fermionic and the Higgs sector respectively and in the third subsection we
collect results and define the most general gauge and diffeomorphism-invariant
states of connections, fermions and Higgs fields by group averaging.

12.2.1 Fermionic sector

We will take the fermionic fields to be Grassmann-valued, see [235, 656] for a
mathematical introduction into these concepts. Furthermore, the Grassmann
field ηAr is a scalar with respect to diffeomorphisms of σ which carries two
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indices, A,B,C, . . . = 1, 2 and r, s, t = 1, . . . ,dim (G) corresponding to the fact
that it transforms according to the fundamental representation of SU(2) and
some irreducible representation of the compact, connected, unimodular gauge
group G of a Yang–Mills gauge theory to which it may couple. This can be
generalised to arbitrary representations of SU(2) × G but we refrain from doing
that for the sake of concreteness. Notice that it is no loss of generality to restrict
ourselves to only one helicity of the fermion as we can always perform a canonical
transformation (iσ̄A′

, σA′) → (iεAB′
σB′ , εAB′ σ̄B′

) =: (iη̄A, ηA). We will restrict
to only one fermionic species in order not to clutter the formulae.

Recall the Hamiltonian form for any diffeomorphism-invariant theory of
fermions from the preceding section

SF =
∫

R

dt

∫

σ

d3x

(
i

2

√
det(q)[η̄Arη̇Ar − ˙̄ηArη̇Ar] − [more]

)
(12.2.1)

where summation over A, r is understood and where ‘more’ stands for various
constraints and possibly a Hamiltonian and det(q) is the determinant of the grav-
itational three-metric which appears because in four spacetime dimensions one
needs a metric to define a diffeomorphism-invariant theory of fermions. Notice
that (12.2.1) is real-valued with respect to the usual involution (θ1 . . . θn)∗ =
θ̄n . . . θ̄1 for Grassmann variables θ1, . . . , θn since indices A, r are raised and low-
ered with the Kronecker symbol (the involution is just complex conjugation with
respect to bosonic variables).

The immediate problem with (12.2.1) is that it is not obvious what the momen-
tum πAμ conjugate to ηAr should be. One strategy would be to integrate the
second term in (12.2.1) by parts (the corresponding boundary term being the
generator of the associated canonical transformation) and to conclude that it
is given by i

√
det(q)η̄Ar. However, there is a second term from the integra-

tion by parts given by iĖa
i e

i
aη̄

ArηAr which after a further integration by parts
combines with the symplectic potential of the real-valued Ashtekar variables to
the effect that Ai

a is replaced by (CAi
a) = Ai

a − ieiaη̄
ArηAr (recall that Ea

i is the
momentum conjugate to Ai

a). This is bad because the connection is now complex-
valued and the techniques from Part II do not apply any longer so that we are
in fact forced to look for another method. The authors of [446] also noticed this
subtlety in the following form. If one assumes that the connection is still real-
valued while π = i

√
det(q)η is taken as the momentum conjugate to η then one

discovers the following contradiction: by assumption we have the classical Pois-
son bracket {π(x), A(y)} = 0. Taking the involution of this equation results in
0 = −iη(x){

√
det(q)(x), A(y)} �= 0. If we, however, insert instead of A the above

complex variable (CA) into these equations then in fact there is no contradiction
as was shown in [443].

The idea of how to preserve the real-valuedness of Ai
a and to simplify the

reality conditions on the fermions is as follows: notice that if we define the
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Grassmann-valued half-density

ξAr := 4
√

det(q)ηAr (12.2.2)

then (12.2.1) in fact equals

SF =
∫

R

dt

∫

σ

d3x

(
i

2
[ξ̄Ar ξ̇Ar − ˙̄ξAr ξ̇Ar] − [more]

)
(12.2.3)

without picking up a term proportional to d det(q)/dt. Thus the momentum con-
jugate to ξAr and the reality conditions respectively are simply given by

πAr = iξ̄Ar and (ξ)∗ = −iπ, (π)∗ = −iξ (12.2.4)

The fact that ξ, π are half-densities may seem awkward at first sight but it does
not cause any immediate problems. Also, recall that ‘half-density-quantisation’
is a standard procedure in the theory of geometric quantisation of phase spaces
with real polarisations [218].

It is in fact possible to base the quantisation on the half-density ξ as a quantum
configuration variable as far as the solution to the Gauß constraint is concerned.
Namely, as has been pointed out by many (see, e.g., [444,445]) an example for a
natural, classical, gauge-invariant observable is given by

Pe(ξ, A,A) := ξAr(e(0))CAr,Cs
1 (he(A))CD(π(he(A)))stC

Dt,Bu
2 ξBu(e(1))

(12.2.5)
where the notation is as follows: by (A, he, π(he)) and (A, he, π(he)) respec-
tively we denote (connection, holonomy along an edge e, irreducible represen-
tation evaluated at the holonomy) of the gravitational SU(2) and the Yang–
Mills gauge group G respectively. The matrices CAr,Bt are projectors on singlet
representations of the decomposition into irreducibles of tensor product repre-
sentations that appear under gauge transformations on both ends of the path
[0, 1] 	 t → e(t) and the irreducible representation π has to be chosen in such a
way that a singlet can occur. For example, if G = SU(N ) then we can choose
π to be the complex conjugate of the defining representation. In particular, if
G = SU(2) as well we can take π to be the fundamental representation and
CAr,Cs

1 = εACεrs, CDt,Bu
2 = δDBεtu. For more general groups we may have to

take more than one spinor field at each end of the path in order to satisfy gauge
invariance.

All this works fine until it comes to diffeomorphism invariance: notice that the
objects (12.2.5) behave strangely under a diffeomorphism ϕ, namely ϕ · Pe =
Pϕ(e)(Jϕ(e(0))Jϕ(e(1)))−1/2 where Jϕ(x) = |det(∂ϕ(x)/∂x)| is the Jacobian.
Since there are semianalytic diffeomorphisms which leave e invariant but such
that, say, Jϕ(e(0)) can take any positive value it follows that the average of Pe

over diffeomorphisms is meaningless. We are therefore forced to adopt another
strategy.

The new idea [443] is to ‘dedensitise’ ξ by means of the δ-distribution δ(x, y)
which itself transforms as a density of weight one in one argument and as a scalar
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in the other. Let θ(x) be a smooth Grassmann-valued scalar (we drop the indices
Aμ) and we define ξ(x) not to be a smooth function but rather a distribution
(already classically). Let δx,y = 1 for x = y and zero otherwise (a Kronecker
δ, not a distribution). Then on the space of test functions of rapid decrease the
distribution

√
δ(x, y)δ(z, y) is well-defined and equals δx,zδ(x, y) [443]. As shown

in [443] the following transformations (and corresponding ones for the complex
conjugate variables)

θ(x) :=
∫

σ

d3y
√
δ(x, y)ξ(y) (12.2.6)

ξ(x) =
∑

y∈σ

√
δ(x, y)θ(y) (12.2.7)

are canonical transformations between the symplectic structures defined by the
symplectic potentials i

∫
σ
d3xξ̄(x)ξ̇(x) and i

∑
x∈σ θ̄(x)θ̇(x) respectively. Notice

that (12.2.6) makes sense precisely when ξ is a distributional half-density and in
fact one can show that ξ = η 4

√
det(q) will precisely display such a behaviour (at

least upon quantisation) since
√

det(q) becomes an operator-valued distribution
proportional to the δ-distribution (recall the formula for the volume operator).
The non-trivial anti-Poisson brackets in either case are given by

{ξ(x), ξ̄(y)}+ = −iδ(x, y) and {θ(x), θ̄(y)}+ = −iδx,y (12.2.8)

In summary, we conclude that we can base the quantisation of the fermionic
degrees of freedom on θ as a configuration variable with conjugate momentum
and reality structure given by

πAr = iθ̄Ar and (θ)∗ = −iπ, (π)∗ = −iθ (12.2.9)

Notice that only the half-densities ξ have a classical meaning, more precisely,
local bilinear expressions (currents) constructed from them. Consider for instance
the current J(x) := ξ̄(x)ξ(x). Using the formal identity

√
δ(x, y)δ(x, z) =

δ(x, y)δy,z we see that J(B) :=
∫
B

d3xJ(x) =
∑

x∈B θ̄(x)θ(x). Since in matter
Hamiltonians we encounter precisely limits of smeared currents such as J(B) as
B shrinks to a point, we see that the currents j(x) = θ̄(x)θ(x) appear naturally.

We now have to develop integration theory. This will be based, of course,
on the Berezin ‘integral’ [235, 656]. Let F(x) be the superspace underlying
the 2d fermionic configuration degrees of freedom θAμ(x) for any x ∈ σ where
d = 2 dim (G). Of course, all these spaces are just copies of a single space F .
This superspace can be turned into a trivial σ-algebra B(x) consisting of F(x)
and the empty set. On B(x) one can define a probability ‘measure’ dmx with
the additional property that it is positive on ‘holomorphic’ functions (that
is, those which depend on θ(x) only and not on θ̄(x)) in the sense that∫
F dmxf(θ(x))∗f(θ(x)) ≥ 0 where equality holds if and only if f = 0. This
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measure is given by

dm(θ̄, θ) =
∏

Ar

(1 + θ̄ArθAr)dθ̄ArdθAr (12.2.10)

and dmx = dm(θ̄(x), θ(x)).
Let now F := ×x∈σFx be the fermionic quantum configuration space with σ-

algebra B given by the direct product of the B(x). The Kolmogorov theorem [532]
for uncountable direct products of probability measures ensures that

dμF(θ̄, θ) := ⊗x∈σdmx (12.2.11)

is a rigorously defined probability measure on F . It can be recovered as the direct
product limit (rather than projective limit) from its finite-dimensional joint dis-
tributions defined by cylindrical functions. Here a function F on F is said to be
cylindrical over a finite number of points x1, . . . , xn if it is a function only of the
finite number of degrees of freedom θ(x1), . . . , θ(xn) and their complex conju-
gates, that is, F (θ) = fx1,...,xn

(θ̄1(x1), θ1(x1), . . . , θ̄n(xn), θn(xn)) where fx1,...,xn

is a function on Fn. We then have
∫

F
dμFF =

∫

Fn

dm(θ̄1, θ1) . . . dm(θ̄n, θn)fx1,...,xn
(θ̄1, θ1, . . . , θ̄n, θn)

(12.2.12)

Basic cylindrical functions are the fermionic vertex functions. These are defined
as follows: order the labels Ar from 1 to 2d and denote them by i, j, k, . . .

(confusion with the SU(2) labels should not arise). Denote by I an array
1 ≤ i1 < . . . < ik ≤ 2d and define |I| = k in this case (confusion with the Lie(G)
or spin-network labels should not arise). Then for each set of distinct points
v1, . . . , vn we define

F�v,�I =
n∏

l=1

Fvl,Ivl
, Fvl,Ivl

=
|Ivl |∏

j=1

θij(vl)(vl) (12.2.13)

Is this the correct measure, that is, are the adjointness relations π̂† =
−iθ̂, θ̂† = −iπ̂ and the canonical anti-commutation relations [θ̂Ar(x), π̂Bs(y)]+ =
īhδBAδsrδx,y faithfully implemented? It is sufficient to check this to be the case
on cylindrical subspaces if we represent θ̂(x) as a multiplication operator and
π̂(x) as īh∂l/∂θ(x) where the superscript stands for the left ordinary derivative
(not a functional derivative). In fact, the measure dμF is uniquely selected by
these relations given the representation just as in the case of the theory of dis-
tributional connections A. Also, it is trivially diffeomorphism invariant since the
integrals of a function cylindrical over n points and of its diffeomorphic image
coincide.

In summary, the correct kinematical fermion Hilbert space is therefore defined
to be HF := L2(F , dμF). It follows immediately from these considerations that
the quantum fermion field at a point (i.e., totally unsmeared) becomes a densely
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defined operator. This seems astonishing at first sight but it is only a little bit
more surprising than to assume that Wilson loop operators, the quantum connec-
tion being smeared in one direction only, are densely defined. When quantising
diffeomorphism-invariant theories which lack a background structure one has to
give up standard representations and construct new ones.

12.2.2 Higgs sector

It turns out that it is also not possible to combine the well-developed theory
of Gaußian measures for scalar field theories with diffeomorphism invariance in
order to obtain a kinematical framework for diffeomorphism-invariant theories of
Higgs fields. The basic obstacle is that a Gaußian measure is completely defined
by its covariance which, however, depends on a background structure (see [441]
for a detailed discussion of this point). We are therefore again led to a new non-
standard representation. We will describe two possible avenues. The first is very
similar to the procedure adopted for the fermion field, the second is more similar
to the procedure adopted for the gauge fields.

12.2.2.1 Diffeomorphism-invariant Fock representation

We have seen that the successful quantisation of the gauge fields was based on
the fact that we had a canonical pair consisting of a p = 1-form (the connection)
and a (D − p)-pseudo-form (the electric field). These fields were then smeared
in their natural dimensions. For scalar fields the situation is similar: we have a
canonical pair (φI , π

I) consisting of a 0-form φ and a pseudo D-form π. Here
we assume that we are considering a real Higgs field φI transforming in some
irreducible representation of a compact Yang–Mills gauge group G. The case of
a complex field can be reduced to that case by treating the real and complex
parts separately, giving rise to two scalar species. Hence we are naturally led to
the following object

π(f) :=
∫

σ

dDx fI(x)πI(x) (12.2.14)

for some test field of compact support, for example, fI(x) = χB(x)nI(x) where
B is an open region σ contained in a compact set and nI is a s.a. function. The
functions fI transform in the same representation as the fields φ, π.

As we have seen, the canonical action of a scalar field takes the form

S =
1
λ

∫

R

dt

∫

σ

dDx [φ̇Iπ
I − more] (12.2.15)

where ‘more’ contains constraints and possibly a Hamiltonian and λ is some
coupling constant. The Hamiltonian constraint always has a term proportional
to π2 if the scalar field action is polynomial in the scalar field and is minimally
coupled to the geometry. We will assume that φ is dimensionless so that π ∝
φ̇ (according to the equations of motion) has dimension cm−1. Hence h̄λ has
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dimension cmD−1. From (12.2.15) we see that (φ, π) form a canonical pair and
as just motivated we would like to base the quantisation on the closed Poisson
algebra of the φI(x), π(f), that is,

{φI(x), φJ(y)} = {π(f), π(f ′)} = 0, {π(f), φI(x)} = λfI(x) (12.2.16)

Notice that the functions φ(x) are unsmeared. Now it would seem natural to base
a quantisation on annihilation and creation operators whose classical counterpart
has the form

a′I(x) :=
1√

2̄hλL
[φI(x) − iLπI(x)] (12.2.17)

where L is some length scale needed in order to match the dimensions of the
objects in the square brackets. However, that is not compatible with diffeomor-
phism covariance: the imaginary part of a′I transforms as a scalar density while
the real part transforms as a scalar. Thus a′I does not make sense as a linear
combination of tensors of different type.

From experience with the fermions we are thus led to the idea to ‘dedensitise’
π. Consider the formal object

pI(x) :=
∫

σ

dDy δx,y π
I(y) (12.2.18)

where δx,y is the Kronecker δ, not the δ-distribution. Notice that p has dimension
cmD−1. Formally, the inversion of (12.2.18) is given by

πI(x) =
∑

y∈σ

δ(x, y) pI(y) (12.2.19)

which one can check by interchanging the discrete sums with the integrals and
using

∫
dDyδx,yδ(y, z) = δx,z as well as

∑
y δ(x, y)δy,z = δ(x, z). Of course, for

smooth π the quantity (12.2.18) vanishes identically and for smooth p the quan-
tity (12.2.19) would blow up. Hence, these formulae will make sense only for
the corresponding operator-valued distributions for which indeed π will have a
δ-distribution-like singularity structure with support on a finite number of points
while p will be discontinuous with support at a finite number of points.

Using these formulae one can check that formally (12.2.16) becomes

{φI(x), φJ(y)} = {pI(x), pJ(y)} = 0, {pI(x), φJ(y)} = λδIJδx, y

(12.2.20)

and that p transforms as an honest scalar so that the following object makes
geometrical and dimensional sense

aI(x) :=
1√

2̄hλL−(D−1)

[
φI(x) − iL−(D−1)pI(x)

]
(12.2.21)
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We now impose canonical commutation relations for the corresponding operators

[âI(x), âJ(y)] = [â†I(x), â†J(y)] = 0, [âI(x), â†J(y)] = δIJδx,y (12.2.22)

Notice that these are really operators, not operator-valued distributions!
In seeking representations of the algebra (12.2.23) we use a Fock representation

defined by declaring the existence of a ground state Ω satisfying âI(x)Ω = 0 for all
x ∈ σ, I. Then the expectation value functional ω :=< Ω, .Ω > is positive and the
corresponding Fock space is the GNS Hilbert space descending from ω. We may
also describe this measure theoretically: we consider dimension-free functions
fI : σ → R with the property that the support of fI is compact and discrete,
that is, it consists of a finite number of points. Let φ(f) :=

∑
x∈σ fI(x)φI(x)

and let us consider the C∗-algebra A of functions of smooth φ generated by the
‘holonomies’ h(f) := exp(iφ(f)) and completed in the sup-norm. We define the
positive linear functional

Λ(h(f)) := ω
(
eiφ̂(f)

)
= e−

h̄λ

2LD−1 ||f ||2 (12.2.23)

where we expressed φ̂(f) :=
√

h̄λ
2LD−1 (â(f) + â†(f)) and used the properties of

Ω and the Baker–Campbell–Hausdorff formula. The norm squared of f is
||f ||2 =

∑
x∈σ fI(x)2 which converges due to the assumptions about f . Formula

(12.2.23) together with the Riesz–Markov theorem of Chapter 25 reveals that
Λ(.) =

∫
Φ
dμS(.) (.) where μS is a white noise Gaußian measure with covari-

ance C(f) = ||f ||2h̄λ/LD−1 and where Φ is a space of distributional scalar fields,
namely the spectrum of A. A more geometric characterisation of Φ can be given
as well. From the point of view of the scalar field theory, L := D−1

√
h̄λ is a natural

choice since there is no other scale in the problem and we will adopt this choice
for what follows.

In order to draw an analogy with the case of gauge fields we define cylindrical
functions as functions of the form F (φ) = FP ({φ(x)}x∈S) where P is a finite set
of points in σ and FP is a complex-valued function of the arguments displayed.
We call a cylindrical function smooth if FP is smooth. For the case of h(f) we
see that P = supp(f). The sets P form a directed set by inclusion so that we
may apply the framework adopted for gauge fields. It follows that the cylindrical
projections μP

S of the Gaußian measure are given by

dμP
S (φ) =

∏

x∈S

dμG(φ(x)), dμG(X) =
1√
2π

n e−
∑n

I=1 X2
I dnX (12.2.24)

where n is the dimension of the representation in which φ transforms. Of course
we only consider normalisable cylindrical functions.

Consider then the Hilbert space H0 := L2(Φ, dμS). The GNS Hilbert space
Hω can be realised as H0 such that Ω = 1 (constant function) and in which the
operators φ̂I(x) act by multiplication and the p̂I(x) as follows: let F, F ′ be any
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C1 cylindrical functions, then

< F, p̂I(x)F ′ >0 := < Ω, πω(F̄ pI(x)F ′)Ω >ω

=
īhλ√

2
< Ω, πω(F̄ (aI(x) − āI(x))F ′)Ω >ω

=
īhλ√

2
(< πω(F )Ω, [πω(aI(x)), πω(F ′)]Ω >ω

− < [πω(aI(x)), πω(F )]Ω, πω(F ′)Ω >ω)

=
1
2
(< πω(F )Ω, [πω(pI(x)), πω(F ′)]Ω >ω

+ < [πω(pI(x)), πω(F )]Ω, πω(F ′)Ω >ω)

=
īhλ

2
(< πω(F )Ω, πω(YI(x) · F ′)Ω >ω

− < πω(YI(x) · F )Ω, πω(F ′)Ω >ω)

=
īhλ

2
(< F, YI(x) · F ′ >0 − < YI(x) · F, F ′ >0) (12.2.25)

where YI(x) = ∂/∂φI(x) is the Hamiltonian vector field of pI(x). Using (12.2.24)
it follows that

p̂I(x) = īhλ

[
YI(x) − 1

2
φI(x)

]
(12.2.26)

An orthonormal basis for H0 are functions of the form

TS,�n(φ) =
∏

x∈S,I

HnxI
(φI(x)) (12.2.27)

where �n = {nI(x)}, S runs through all finite point sets and Hn are Hermite
functions.

We notice that the state ω is G invariant where

αg(aI(x)) = ρIJ(g(x))aJ(x), αϕ(aI(x)) = aI(ϕ(x)) (12.2.28)

since the matrices ρ(g) are unitary (ρ is the irreducible representation of G in
which the Higgs field transforms). Hence G is implemented unitarily. We also
notice that we could have defined Weyl operators

W (a, b) = exp(i[φ(a) + π(b)/(̄hλ)]) (12.2.29)

and that the representation H0 is weakly continuous in both a, b. This is different
from the case of the gauge field. Of course, the representation Hω is far from
unique: for instance, we could have used any other (white noise) covariance to
define a Gaußian measure without breaking background independence. This is
also different from the case of the gauge field.

We may ask whether the original operators corresponding to π(f) are well-
defined in this representation where f is a s.a. function. It is easy to see that
this is not the case: using (12.2.19) we see that π̂(f) =

∑
x∈σ f

I(x)p̂I(x) so that
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||π̂I(f)1||2 ∝ ||f ||2 = ∞ is not even defined on the vacuum state because a s.a.
function f does not have discrete support. Since the objects p have no classical
interpretation in contrast to the π we may ask what has been gained. The answer
is that, as we will see, it is the p’s which are of relevance when we couple geometry
to matter (recall that the representations used here are anyway of use only
when coupling geometry to matter). Basically this happens because interesting,
spatially diffeomorphism-invariant observables will come from functionals that
depend on both geometry and matter. The geometry part of the corresponding
operator will force the action to be non-trivial at the vertices of a graph so that
one will be forced to take the limit of π̂(f) as the support of f shrinks to one
point v. But that is precisely the definition of p̂(v).

We will define in the next subsection also representations for which the π(f)’s
can be defined, however, in these representations part of the Weyl operators are
again not weakly continuous and Fock representations are therefore not available.

12.2.2.2 Point holonomies

In the following we restrict ourselves to real-valued Higgs fields φI which trans-
form according to the adjoint representation of G. Other cases can be treated
by similar methods. This also covers the case of scalar fields (without internal
degrees of freedom). Actually, we are not going to deal with φI itself but with the
point-holonomies, which also play a crucial role in Bojowald’s series [497–499]

Ux(φ) := exp(φI(x)τI) (12.2.30)

where τI denotes a basis of the Lie algebra Lie(G) of the Yang–Mills gauge group.
The name stems from the fact that under a gauge transformation g(x) at x we
have that U(x) → Adg(x)(U(x)) which is precisely the transformation behaviour
of a holonomy he starting at x in the limit of vanishing edge length. In the case
of a simple scalar field we define Ux = eiφ(x). These variables play a role similar
to the Wilson loop variables in lattice gauge theory [576] and it is understood
that any action written in terms of φI should be rewritten in terms of the U(x)
in analogy to the replacement of the Yang–Mills action by the Wilson action.

Notice that while one can easily extract the connection from a path holonomy
by considering the limit of paths shrinking to a point, one cannot do the same for
point holonomies which are already labelled by points. Hence it seems that point
holonomies do not separate the points of the classical configuration space because
the map φI(x) �→ U(x) is many to one (the φI have non-compact range while the
U have compact range). However, this is not the case: for instance in the case of
U(1) (scalar field) we have (dU(x))U−1(x)/i = dφ(x), for SU(2) we have
dχ = −dTr(U(x))/

√
4 − [Tr(U(x))]2 where we have parametrised U = cos(χ) +

τjnj sin(χ) with φj = χnj , n
2
j = 1 so that nj = −Tr(τjU)/

√
4 − [Tr(U(x))]2. For

higher groups similar formulae hold. Thus we are able to construct the differen-
tial dφI(x) from knowledge of all the U(x) so that φI(x) − φI(x0) =

∫ x

x0
dφI . If

σ is asymptotically flat we may choose x0 = ∞ and then φI(x0) = 0. Of course
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∫ x

x0
dφI [U ] is not a cylindrical function but it can be approximated arbitrarily

well by a Riemann sum which is a cylindrical function. An alternative possibility
adopted in the application of LQG methods to string theory [205] is to actu-
ally use ‘two-point’ holonomies U(p) = U(f(p))U(b(p))−1 = exp(i

∫
p
dφ) which

however only works for U(1). Yet another possibility [447–450] is to use the gen-
eralised point holonomies Uλ(x) = exp(iλφI(x)τI) where λ is any real number.
These have the advantage of extracting φI more locally in the limit λ → 0 for
every single point x. One is naturally led to such a procedure in quantum cos-
mology where due to spatial homogeneity there is only one spatial point left so
that the differentials used above are not available in order to separate the points,
see Chapter 16, or for the polymer particle [549]. This procedure has recently
been criticised in [657] because already a much smaller algebra of generalised
point holonomies separates the points of the classical configuration space, see
Chapter 16. However, one can combine the proposal of [447, 657] with the one
advertised here because for spatially compact σ we can extract only differences
φ(x) − φ(x0) since there is no distinguished point x0 w.t. which φ takes a desig-
nated value. If we do not want to fix x0, φ(x0) by hand we must extract φ(x0)
in a local way for one single point. This can be done, for example, by consider-
ing a finite set Uλ1(x0), . . . , Uλn

(x0) where n depends on the gauge group (e.g.,
λ1 = 1, λ2 =

√
2;n = 2 for U(1), see Chapter 16). Summarising, we may extract

φI from point holonomies and therefore can construct mass terms and poten-
tials and the like albeit in a non-local way (derivative terms can be constructed
locally).

This analogy with holonomies suggests a step-by-step repetition of the
Ashtekar–Isham–Lewandowski framework of Part II [443], which we are going
to consider below. The integrated quantity

πI(B) :=
∫

B

d3xπI(x) (12.2.31)

for any open region B in σ is diffeomorphism covariantly defined and the formal
Poisson brackets {πI(x), φJ(y)} = δIJδ(x, y) translate into

{πI(B), Ux} = χB(x)
1
2
[τIUx + UxτI ] (12.2.32)

(in order to see this one must regularise Ux as in [443] and then remove the
regulator. Only in the Abelian case this works without regularisation). The other
elementary Poisson bracket is {Ux, Uy} = 0. Actually one has to generalise the
Poisson algebra to the Lie algebra of functions on smooth φI ’s and vector fields
thereon just as in the case of connections in order to obtain a true Lie algebra
which one can quantise. Finally, the reality conditions are that πI(B) is real-
valued and Ux is G-valued.

The construction of a quantum configuration space U and a diffeomorphism-
invariant measure dμU thereon now proceeds just in analogy with Part II: a
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Higgs vertex function H�v,�π,�μ,�ν is just given by

H�v,�π,�μ,�ν =
n∏

k=1

√
dπk

(πk(U(vk)))μkνk
(12.2.33)

where πk are chosen from a complete set of irreducible, inequivalent representa-
tions of G and v1, . . . , vk are distinct points of σ. Consider the Abelian C∗-algebra
given by finite linear combinations of Higgs vertex functions and completed in
the sup-norm over the set of smooth Higgs fields U . Then U , the quantum con-
figuration space of distributional Higgs fields, is the spectrum of that algebra
equipped with the weak ∗-topology (Gel’fand topology).

The characterisation of the spectrum is as follows: points φ̄ in U are in one-
to-one correspondence with the set Fun(σ,G) of G-valued functions on σ, the
correspondence being given by φ̄ ↔ Uφ̄ where

√
dπ0(Uφ̄)μν(v) = φ̄(Hv,π0,μ,ν) and

π0 is the fundamental representation of G.
Again, since the spectrum is a compact Hausdorff space one can define a

regular Borel probability measure μ on it through positive, normalised, linear
functionals Γ on the set of continuous functions f thereon, the correspondence
being given by Γ(f) =

∫
U dμf . We define the measure μU by

ΓμU(H�v,�π,�μ,�ν) =
{

1 H�v,�π,�μ,�ν = 1
0 otherwise

(12.2.34)

and one easily sees that this measure is just the Haar measure on Gn for functions
cylindrical over n distinct points. In particular, the Higgs vertex functions form
a complete orthonormal basis by an appeal to the Peter and Weyl theorem. The
measure μU can be shown [443] to be concentrated on nowhere continuous Higgs
fields, in particular μU(U) = 0.

Finally, Û(x) is just a multiplication operator on cylindrical functions and
if we replace πI by −īhδ/δφI then we find for a function F = f�v cylin-
drical over n points �v that π̂I(B)F = −īh

∑n
k=1 χB(vk)XI

vk
f�v where XI

v =
XI(U(v)), XI(g) = 1

2 [XI
R(g) + XI

L(g)] and XL, XR are, respectively, left- and
right-invariant vector fields on G. The canonical commutation relations as well
as the adjointness relations are then faithfully implemented and an appropriate
kinematical Higgs field Hilbert space can be chosen to be HU := L2(U , dμU).

12.2.3 Gauge and diffeomorphism-invariant subspace

We now put everything together to arrive at the complete solution to the Gauß
and diffeomorphism constraint for quantum gravity coupled to gauge fields,
Higgs fields and fermions. To be explicit, let us do this for the representation of
Section 12.2.2.1.

We begin with the kinematical Hilbert space

H = L2

(
ASU(2), dμ

SU(2)
0

)
⊗ L2

(
AG, dμ

G
0

)
⊗ L2(F , dμF) ⊗ L2(Φ, dμU) (12.2.35)
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and now consider its subspace consisting of gauge-invariant functions. A basis
of such functions is labelled by a graph γ, a labelling of its edges e by spins
je and colours ce corresponding to irreducible representations of SU(2) and G
respectively and a labelling of its vertices v by an array Iv, another colour Cv and
two projectors pv, qv. The array Iv indicates a fermionic dependence at v by Fv,Iv

and Cv stands for an irreducible representation of G which one forms out of tensor
products of the representation ρ in which the Higgs field transforms. Finally,
decompose the tensor product of irreducible representations of SU(2) given by
the fundamental representations corresponding to Fv,Iv and the representations
πje for those edges e incident at v and project with pv on a singlet that appears.
Likewise, decompose the tensor product of irreducible representations of G given
by the fundamental representations corresponding to Fv,Iv , the representations
πce for those edges e incident at v and the representation πCv

and project with
qv on a singlet that appears.

The result is a gauge-invariant state Tγ,[�j,�I,�p],[�c, �C,�q] called a spin-colour-network
state extending the definition of a purely gravitational spin-network state. Con-
sider the action G of the gauge group SU(2) × G on all distributional fields.
Then the spin-colour-network states contain the space of gauge-invariant func-
tions, which is the same as the Hilbert space

H = L2

(
[ASU(2) ×AG ×F × Φ]/G, dμSU(2)

0 ⊗ dμG
0 ⊗ dμF ⊗ dμU

)
(12.2.36)

that is, the L2 space on the moduli space.
To get the solution to the diffeomorphism constraint one considers the spaces

DSU(2),DG,DF,DS of smooth cylindrical functions (smooth in the sense of the
nuclear topology of SU(2)n,Gn,Fn,Gn respectively) and their corresponding
algebraic duals. Then we form the gauge-invariant subspaces of the spaces

D := DSU(2) ×DG ×DF ×DU and D∗ := D∗
SU(2) ×D∗

G ×D∗
F ×D∗

U (12.2.37)

Now the spin-colour-network states span the invariant subspace of D and the
diffeomorphism group acts unitarily by

Û(ϕ)Tγ,[�j,�I,�p],[�c, �C,�q] = Tϕ(γ),[�j,�I,�p],[�c, �C,�q] (12.2.38)

and similar as in the purely gravitational case we get diffeomorphism-invariant
distributions in D∗ by judiciously group averaging the action (12.2.38), that is,
we take the continuous sum over all states contained in an orbit under the action
(12.2.38).

12.3 Quantisation of matter Hamiltonian constraints

The quantisation of matter Hamiltonian constraints follows the same pattern as
for the pure geometry Hamiltonian constraint so that we do not need to display
all the details, which we leave to the ambitious reader. The details can be found
in [441].
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What we will find is that certain ultraviolet divergences, which appear when we
consider matter fields propagating on a background spacetime, disappear when
we let the spacetime metric fluctuate as well. The underlying reason is back-
ground independence as heuristically explained in Section 10.2. We do not claim
that this proves finiteness of quantum gravity because, first, we must prove that
the quantum theory constructed has General Relativity as its classical limit, and
second, besides the Hamiltonian constraint we also must show that quantisations
of classical observables of the theory are finite and, third, we must establish that
those operators remain non-singular upon passing to the physical Hilbert space.
However, at the very least, these are first promising indications for an UV finite
theory.

In the next three subsections we explain the quantisation of various mat-
ter Hamiltonians. One can verify that the quantum Dirac algebra of the com-
plete Hamiltonian constraint consisting of the sum of all matter and geometry
contributions closes in a similar fashion as outlined in Section 10.5 and which
is shown explicitly in [441]. We will not repeat this here because the mech-
anism is identical to the one for the case of pure geometry. In the last sec-
tion of this chapter we will show that this is no coincidence: we will explain
the general scheme, how coupling to gravity is able to regulate certain ultra-
violet divergences in a consistent way for any background-independent matter
coupling.

12.3.1 Quantisation of Einstein–Yang–Mills theory

The canonical pair coordinatising the Yang–Mills phase space is given by
(Ea

I , A
I
a) with symplectic structure formally given by

{
Ea

I (x), AJ
b (y)

}
= Q2δab δ

J
I δ(x, y) (12.3.1)

where as before I, J,K, . . . . = 1, . . . ,dim (G) denote Lie(G) indices. The contri-
bution of the Yang–Mills field to the Hamiltonian constraint is

HYM =
qab

2Q2
√

det(q)

[
Ea

IE
b
I + Ba

IB
b
I

]
(12.3.2)

where Q is the Yang–Mills coupling constant, Ba
I := 1

2ε
abcF I

bc the magnetic field
of the connection AI

a and F I
ab its curvature. The integrated form is given by

HYM(N) =
∫
σ
d3xNHYM where N is the lapse function.

We will focus first on the electric part of HYM(N) which we write in the form

HYM,el(N) =
1

2Q2

∫
d3xN

[
eiaE

a
I

]

√
det(q)

[
eibE

b
I

]
(12.3.3)
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where Q is the Yang–Mills coupling constant. Using the same notation as in
Chapter 10 we can also write this as

HYM,el(N) =
1

8κ2Q2

∫
d3xN(x)

[{
Ai

a(x), V (Rx)
}
Ea

I (x)
]

√
det(q)(x)

[{
Ai

b(x), V (Rx)
}
Eb

I(x)
]

(12.3.4)

Since Ea
I = 1

2ε
abceIbc is Hodge dual to a two-form eI we can also write this as

HYM,el(N) =
1

8κ2Q2

∫
d3xN(x)

[{
Ai

a(x), V (Rx)
}
Ea

I (x)
]

√
det(q)(x)

[{Ai(x), V (Rx)} ∧ eI(x)]

(12.3.5)

which suggests approximating the integral by a Riemann sum utilising a trian-
gulation of σ as in Section 10.3. Using the same notation as there we get

Hε
YM,el(N) =

1
8κ2Q2

∑

Δ∈T (ε)

N(v(Δ))

[{
Ai

a(v(Δ)), V (Rv(Δ))
}
Ea

I (v(Δ))
]

√
det(q)(v(Δ))

× εLMN
[
tr

(
τiheL(Δ)

{
h−1
eL(Δ), V (Rv(Δ))

})
EI(SMN (Δ))

]
(12.3.6)

where we have used that SMN (Δ) is any oriented triangular surface with bound-
ary eM (Δ) ◦ aMN (Δ) ◦ eN (Δ)−1.

We now apply the same trick that we used already in previous sections: let
χε,x(y) be the characteristic function of a box Uε(x) with coordinate volume ε3

and centre x. Then

V (Uε(x)) = ε3
√

det(q)(x) + o(ε4) (12.3.7)

and

∫
χε,x(y)

[{Ai(y), V (Ry)} ∧ eI(y)]√
V (Uε(y))

= ε3
[{
Ai

a(x), V (Rx)
}
Ea

I (x)
]

√
V (Uε(x))

+ o(ε3)

(12.3.8)

which allows us to replace (12.3.6) by

Hε
YM,el(N) =

1
2κ2Q2

∑

Δ,Δ′∈T (ε)

N(v(Δ))χε,v(Δ)(v(Δ′))εLMN εRST

×
tr

(
τiheL(Δ)

{
h−1
eL(Δ), V (Rv(Δ))

})
EI(SMN (Δ))

2
√
V (Uε(v(Δ)))

×
tr

(
τiheR(Δ′)

{
h−1
eR(Δ′), V (Rv(Δ′))

})
EI(SST (Δ′))

2
√
V (Uε(v(Δ′)))

(12.3.9)

Again, the region-valued function x → Rx is completely arbitrary up to this point
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and if we choose Rx = Uε(x) then we obtain the final formula

Hε
YM,el(N) =

1
2κ2Q2

∑

Δ,Δ′∈T (ε)

N(v(Δ))χε,v(Δ)(v(Δ′))εLMN εRST

×
[
tr

(
τiheL(Δ)

{
h−1
eL(Δ),

√
V (Uε(v(Δ)))

})
EI(SMN (Δ))

]

×
[
tr

(
τiheR(Δ′)

{
h−1
eR(Δ′),

√
V (Uε(v(Δ′)))

})
EI(SST (Δ′))

]

(12.3.10)

in which the 1/
√

det(q) was removed from the denominator and so qualifies as
the starting point for the quantisation. The pointwise limit of (12.3.10) on the
phase space gives back (12.3.2) for any triangulation.

The theme repeats: in order to arrive at a well-defined result on a dense set of
vectors given by functions cylindrical over graphs γ one must adapt the triangu-
lation to the γ in question. The limit of (12.3.10) with respect to the so-obtained
T (ε, γ) still gives back (12.3.2). The only new ingredient of the triangulation
compared with the one outlined in Section 10.4 is that, at fixed ε, we deform
the surfaces SMN (Δ), controlled by a further parameter δ, to the effect that
limδ→0 SMN (Δ, δ) = SMN (Δ) and at finite δ the edge eL(Δ), εLMN = 1 is the
only one that intersects SMN (Δ, δ) transversally. This can be achieved by detach-
ing SMN (Δ) slightly from v(Δ) and otherwise choosing the shape of SMN (Δ)
appropriately. After replacing Poisson brackets by commutators times 1/(īh) and
the Yang–Mills electric field by −īhQ2 times functional derivatives we first get a
family of operators (Ĥε,δ

YM,el(N)γ)†, the limit δ → 0 of which, in the topology of
smooth connections, converges to a family of operators (Ĥε

YM,el(N)γ)† which can
be extended to all of A. One verifies that this family of operators, for sufficiently
small ε depending on γ, qualifies as the set of cylindrical projections of an opera-
tor (Ĥε

YM,el(N))† and the limit (ĤYM,el(N))† as ε → 0 in the URST exists and is
given by (Ĥε0

YM,el(N))† for any arbitrary but fixed ε0 > 0. We give the final result

(ĤYM,el(N))†fγ = −mpαQ

2�3p

∑

v∈V (γ)

∑

b(e)=b(e′)=v

N(v)tr
(
τihe

[
h−1
e ,

√
V̂ (Uε0(v))

])

× tr
(
τihe′

[
h−1
e′ ,

√
V̂ (Uε0(v))

])
RI

eR
I
e′ fγ (12.3.11)

where the Planck mass mp =
√
h̄/κ and the dimensionless fine structure con-

stant αQ = h̄Q2 have peeled out (in our notation, Q2 has the dimension of 1/̄h)
while the Planck volume �3p in the denominator makes the rest of the expres-
sion dimensionless. As before, RI

e = RI(he) and RI(g) is the right-invariant
vector field on G and he is the holonomy of A along e. Expression (12.3.11)
is manifestly gauge-invariant and diffeomorphism-covariant. Notice that for ε0
sufficiently small we can relace V̂ (Uε0(v)) by the regulator-independent operator
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V̂v := limε0→0 V̂ (Uε0(v)) which exists and is ε0 independent. As one can check,
V̂v is uniquely defined by V̂ (R)fγ = V̂vfγ whenever R ∩ V (γ) = {v}.

Notice that, expectedly, (12.3.11) resembles (minus) a Laplacian. Indeed, one
can show [441] that (ĤYM,el(N = 1))† is an essentially self-adjoint, positive
semidefinite operator on H. In particular, (12.3.11) is densely defined and does
not suffer from any singularities, it is finite! This extends to the magnetic part
of the Yang–Mills Hamiltonian whose action on cylindrical functions is given by

(ĤYM,mag(N))†fγ

= − mp

2αQ(12N)2�3p

∑

v∈V (γ)

∑

v(Δ)=v(Δ′)=v

N(v)
(

8
E(v)

)2

εLMN εRST

× tr
(
τiheL(Δ)

[
h−1
eL(Δ),

√
V̂v

])

× tr
(
τiheR(Δ′)

[
h−1
eR(Δ′),

√
V̂v

])
tr

(
τ IhαMN (Δ)

)
tr

(
τ IhαST (Δ′)

)
fγ

(12.3.12)

(we use the convention tr(τ IτJ) = −δIJ/N for the normalisation of the gener-
ators of Lie(G)). Here the sum is over tetrahedra Δ adapted to the graph as
defined for the gravitational constraint, that is, each Δ is defined by beginning
segments sI(Δ) of triples of edges eI , I = 1, 2, 3 incident at v = v(Δ) and the
corresponding arcs connecting the endpoints of the sI(Δ) from which the loops
αIJ(Δ) are formed. Notice the non-perturbative dependence of (12.3.12) on the
fine structure constant. The regulator dependence on those choices of begin-
ning segments and arcs drops out trivially in the URST upon choosing a loop
attachment, just as for the gravitational term.

In summary, the Yang–Mills contribution to the Hamiltonian constraint can
be densely defined on H. We can see explicitly the regularising role that the
gravitational quantum field has played in the quantisation process: the volume
operator acts only at vertices of a graph and therefore also restricts the Yang–
Mills Hamiltonian to an action at those points. Therefore, the volume operator
acts as an infrared cutoff! Next, the divergent factor 1/ε3 stemming from the
point splitting of the two Yang–Mills electric fields was absorbed by the volume
operator which must happen in order to preserve diffeomorphism covariance as
the point-splitting volume should not be measured by the coordinate background
metric but by the dynamical metric itself. Therefore, the volume operator also
acts as an ultraviolet cutoff! The volume operator thus plays a key role in the
quantisation process, which is why a more detailed knowledge about its spectrum
would be highly desirable.

12.3.2 Fermionic sector

In this section we will only focus on the first term displayed in the expression
for HDirac. The other two terms can be quantised similarly, for the quantisation
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of Ki
a we adopt a procedure identical to the one used for the quantisation of the

Einstein contribution to the Hamiltonian constraint.
We begin by rewriting the classical constraint using that classically Ea

i =
± 1

2ε
abcεIJK ejbe

k
c . We find by an already familiar procedure that

HDirac(N) = − i

2κ2

∫
d3xN(x)εIJK εabc

4
{
Ai

a(x), V (x, δ)
}{

Aj
b(x), V (x, δ)

}

√
det(q)(x)

× [(τkDcξ)Aμ(x)πAμ(y) − c.c.] (12.3.13)

where δ is an arbitrarily small but finite parameter and a possible sign was
absorbed into N (we could also quantise the sign function as mentioned previ-
ously). The minus sign comes from moving the classical momentum variable to
the right.

The first task is to rewrite (12.3.13) in terms of the quantities θ. To that end let
fa
i be a real-valued, AdSU(2) transforming vector field and consider the discrete

sum (we abbreviate A, r, etc. as I, etc.)
∑

x

fa
i (x)(τiDaθ)I(x)θ̄I(x) (12.3.14)

Recall that θI(x) :=
∫
d3y

√
δ(x, y)ξI(y) := limε→0 θ

ε
I(x) where θεI(x) =

∫
d3y χε(x,y)√

ε3
ξI(y) and χε(x, y) denotes the characteristic function of a box

with Lebesgue measure ε3 and centre x. We define (∂aθI)(x) := limε→0 ∂xaθε(x)
and find

∂xaθεI(x) =
∫

d3y
∂xaχε(x, y)√

ε3
ξI(y)

= −
∫

d3y
∂yaχε(x, y)√

ε3
ξI(y) =

∫
d3y

χε(x, y)√
ε3

∂yaξI(y)

since χε(x, y) = χε(y, x) and there was no boundary term dropped in the integra-
tion by parts because χε is of compact support. Let us partition σ by a countable
number of boxes Bn of Lebesgue measure ε3 and centre xn and interpret (12.3.14)
as the ε → 0 limit of

∑

n

fa
i (xn)(τiDaθ

ε)I(xn)θ̄εI(xn) (12.3.15)

Substituting for θε in terms of ξ, (12.3.15) becomes
∫

d3x

∫
d3y

[
∑

n

fa
i (xn)

χε(x, xn)χε(y, xn)
ε3

]

[(τi∂aξI(x) + (ωa(xn)ξ(x))I ]ξ̄I(y)

(12.3.16)

We have not written the Levi–Civita connection in (12.3.16) which is needed due
to the density weight of ξ because it drops out in the final antisymmetric sum
i[(.) − (.)�] = i[(.) − c.c.] in (12.3.13). Now, as ε → 0 (the partition of σ becomes
finer and finer) we can replace χε(x, xn) by δ(x, xn) and χε(y, xn) by δxn,y and
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(12.3.16) becomes, upon performing the x-integral and the sum over xn,
∫

d3xfa
i (x)(τiDaξI)(x)ξ̄I(y) (12.3.17)

which is precisely (12.3.13) with the proper interpretation of fa
i . Expression

(12.3.17) is written in a form that is well defined on the kinematical Hilbert
space, which consists of functions of θ rather than ξ.

Now, in quantising expression (12.3.14) we keep the fermionic momenta to
the right and replace θ̄Ar(x) by h̄∂/∂θAr, which is the proper quantisation rule
for the θ variables as derived in Section 12.2. Also, we multiply nominator and
denominator by δ3 and replace δ3

√
det(q)(x) by V (x, δ) in the denominator,

which by the standard trick we can absorb into the Poisson bracket. Finally
we replace the Poisson bracket by a commutator times 1/(īh). Labelling the
regulated operator with the parameter δ, we find a function fγ cylindrical with
respect to a graph γ with fermionic insertions θAμ at the vertices v ∈ V (γ)

Ĥδ
Dirac(N)fγ = − h̄

2�4p

∑

v∈V (γ)

∑

x

N(x)εIJK εabcδ3

[
Ai

a(x),
√
V̂ (x, δ)

]

×
[
Aj

b(x),
√
V̂ (x, δ)

] [
(τkDcθ)Ar(v)

∂

∂θAr(v)
δx,v + h.c.

]
fγ

(12.3.18)

Notice that the sum over all x ∈ Σ already collapses to a sum over the ver-
tices of γ. Next we triangulate σ in adaption to γ. We have the expansion
hs(0, δ)θ(s(δ)) − θ(s(0)) = δṡa(0)(Daθ)(s(0)) for the holonomy. Therefore we
just introduce as in the sections before a holonomy at various places to absorb
the factor of δ3 and replace V̂ (v, δ) by V̂v. Thus,

Ĥδ
Dirac(N) = −mp

2�3p

∑

v∈V (γ)

Nv
1

E(v)

∑

v(Δ)=v

εIJK εmnp tr
(
τihsm(Δ)

[
h−1
sm(Δ),

√
V̂v

])

× tr
(
τjhsn(Δ)

[
h−1
sn(Δ),

√
V̂v

])

×
[
(τk[Hsp(Δ)θ(sp(Δ)(δ)) − θ(v)]Ar

∂

∂θAr(v)
+ h.c.

]

= −mp

2�3p

∑

v∈V (γ)

Nv

∑

v(Δ)=v

εIJK εmnp tr
(
τihsm(Δ)

[
h−1
sm(Δ),

√
V̂v

])

× tr
(
τjhsn(Δ)

[
h−1
sn(Δ),

√
V̂v

])
[(Yk(sp(Δ))) − Yk(v) + h.c.]

=: ĤT
Dirac (12.3.19)

where E(v) =
(
nv

3

)
, nv is the valence of v and where the label T reminds us of

the triangulation dependence (we have naturally chosen the value of δ in such
a way that (a) e(δ) coincides with the endpoint of the segment of e starting at
v = e(0) and (b) is part of the definition of the triangulation adapted to γ). We



12.3 Quantisation of matter Hamiltonian constraints 425

have defined

Yi(e) := tr
(
τiHeξ(e(1))

∂

∂ξ(e(0))

)
and Yi(v) := Yi(e = v)

and e : [0, 1] → σ is a suitable parametrisation of the edge e.
The Hermitian conjugation operation ‘h.c.’ involved in (12.3.19) is meant with

respect to the inner product on the Hilbert space and with respect to the oper-
ator of which the first term in (12.3.19) is the projection on the cylindrical
subspace labelled by the graph γ. Again the sum is over tetrahedra Δ adapted
to γ with beginning segments sI(Δ) of all triples of edges eI , I = 1, 2, 3 incident
at v = v(Δ). Removing the triangulation dependence in the URST now simply
corresponds, as before, to choosing the beginning segments of all edges si(Δ)
once and for all for all graphs in (12.3.19).

Notice that the classical fermionic Hamiltonian constraint is a density of weight
one and that the operator defined by (12.3.19) precisely respects this because the
θ are scalar-valued and not density-valued. If we were dealing with the ξ instead
of the θ we would run into conflict with diffeomorphism covariance at this point.

12.3.3 Higgs sector

We finally come to regularise the Higgs sector. Especially for this sector a general
scheme will become evident of how to systematically take advantage of the factor
ordering ambiguity in order to arrive at a densely defined operator.

The term in the scalar Hamiltonian constraint proportional to (πI)2 looks
hopelessly divergent: even if we could manage to replace the denominator by the
volume operator we end up with a singular, not densely defined operator because
the volume operator has a huge kernel. We need a new trick as follows: we insert
the number 1 = [det(eia)]

2/[
√

det(q)]2 (one) into the kinetic term, which appar-
ently makes the singularity even worse. However, consider the following regulated
four-fold point splitting of the kinematic term (we set λ = κ for simplicity which
is dimensionally possible)

Hε
Higgs,kin(N) =

1
2κ

∫
d3xN(x)πI(x)

∫
d3y πI(y)

∫
d3u

(
det

(
eia

)

[
√
V (u, ε)]3

)

(u)

×
∫

d3v

(
det

(
eia

)

[
√
V (v, ε)]3

)

(v) χε(x, y)χε(u, x)χε(v, y)

=
1
2κ

(−2)2

(3!)2κ6

∫
d3xN(x)πI(x)

∫
d3yπI(y)

×
∫

tr
({

A(u),
√
V (u, ε)

}
∧

{
A(u),

√
V (u, ε)

}
∧

{
A(u),

√
V (u, ε)

})

×
∫

tr
({

A(v),
√
V (v, ε)

}
∧

{
A(v),

√
V (v, ε)

}
∧

{
A(v),

√
V (v, ε)

})

×χε(x, y)χε(u, x)χε(v, y) (12.3.20)
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Recall that
∫
d3xdet(eia) = 1

3!

∫
εIJK ei ∧ ej ∧ ek = − 1

3

∫
tr(e ∧ e ∧ e) in order to

see this.
Now we replace πI by −īh(κ)δ/δφI , replace the volume by its operator version

and Poisson brackets by commutators times 1/(īh) and find, when applying the
operator to a cylindrical function fγ , that

Ĥε
Higgs,kin(N)fγ

=
(−i)2

i6
h̄2κ2

18̄h6κ7

∑

v,v′∈V (γ)

N(v)Y I(v)Y I(v′)χε(v, v′)

×
∫

tr
([

A(x),
√
V̂ (x, ε)

]
∧

[
A(x),

√
V̂ (x, ε)

]
∧

[
A(x),

√
V̂ (x, ε)

])

×
∫

tr
([

A(y),
√
V̂ (y, ε)

]
∧

[
A(y),

√
V̂ (y, ε)

]
∧

[
A(y),

√
V̂ (y, ε)

])

× fγχε(x, v)χε(y, v′) (12.3.21)

where XI(x) = YI(x) − 1
2φI(x), Y I(x) = ∂/∂φI(x), recall (12.2.26) for the Fock

space quantisation. The expression for the point holonomy quantisation is simi-
lar, see [441].

Certainly we are now going to triangulate σ in adaption to γ in an already
familiar fashion and write
∫

Δ

tr
([

A(x),
√
V̂ (x, ε)

]
∧

[
A(x),

√
V̂ (x, ε)

]
∧

[
A(x),

√
V̂ (x, ε)

])

≈ 1
6
εijk tr

(
hsi(Δ)

[
h−1
si(Δ),

√
V̂ (v(Δ), ε)

])
tr

(
hsj(Δ)

[
h−1
sj(Δ),

√
V̂ (v(Δ), ε)

])

× tr
(
hsk(Δ)

[
h−1
sk(Δ),

√
V̂ (v(Δ), ε)

])
(12.3.22)

which results in

Ĥε
Higgs,kin(N)fγ =

mp

18�9p

1
36

∑

p,q,r,s∈V (γ)

N(p)XI(p)XI(q)χε(p, q)
8

E(r)
χε(r, p)

×
∑

v(Δ)=r

εijk
8

E(s)
χε(s, q)

∑

v(Δ′)=s

εlmntr
(
hsi(Δ)

[
h−1
si(Δ),

√
V̂ (v(Δ), ε)

])

× tr
(
hsj(Δ)

[
h−1
sj(Δ),

√
V̂ (v(Δ), ε)

])
tr

(
hsk(Δ)

[
h−1
sk(Δ),

√
V̂ (v(Δ), ε)

])

× tr
(
hsl(Δ′)

[
h−1
sl(Δ′),

√
V̂ (v(Δ′), ε)

])
tr

(
hsm(Δ′)

[
h−1
sm(Δ′),

√
V̂ (v(Δ′), ε)

])

× tr
(
hsn(Δ′)

[
h−1
sn(Δ′),

√
V̂ (v(Δ′), ε)

])
fγ (12.3.23)

since only tetrahedra based at vertices of γ contribute in the sum
∫
Σ

=
∑

Δ

∫
Δ

.
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Now we just take ε to zero, realise that only terms with v = p = q = r = s

contribute and find that

ĤHiggs,kin(N)fγ =
8mp

92�9p

∑

v∈V (γ)

N(v)XI(v)XI(v)
1

E(v)2
∑

v(Δ)=v(Δ′)=v

εijk

× tr
(
hsi(Δ)

[
h−1
si(Δ),

√
V̂v

])
tr

(
hsj(Δ)

[
h−1
sj(Δ),

√
V̂v

])

× tr
(
hsk(Δ)

[
h−1
sk(Δ),

√
V̂v

])
εlmntr

(
hsl(Δ′)

[
h−1
sl(Δ′),

√
V̂v

])

× tr
(
hsm(Δ′)

[
h−1
sm(Δ′),

√
V̂v

])
tr

(
hsn(Δ′)

[
h−1
sn(Δ′),

√
V̂v

])
fγ (12.3.24)

The operator (12.3.24) is certainly quite complicated but it is densely defined!
Next we turn to the term containing the derivatives of the scalar field. We

write

qab
√

det(q) =
Ea

i E
b
i√

det(q)
and Ea

i = ±εacdεijk
ejce

k
d

2

where the sign drops out when taking the square and regulate (again we could
have chosen to replace only one of the Ea

i by the term quadratic in eia and
would still arrive at a well-defined result at the price of losing symmetry of the
expression)

Hε
Higgs,der(N)

=
1
2κ

∫
d3x

∫
d3yN(x)χε(x, y)εijk εimnεabc

(
DaφIe

j
be

k
c

)
(x)

√
V (x, ε)

εbef
(
DbφIe

m
e enf

)
(y)

√
V (y, ε)

=
1

2κ5

(
2
3

)4 ∫
N(x)εijkDφI(x) ∧ {Aj(x), V (x, ε)3/4} ∧ {Ak(x), V (x, ε)3/4}

×
∫

χε(x, y)εimnDφI(y) ∧ {Am(x), V (y, ε)3/4} ∧ {An(y), V (y, ε)3/4}

(12.3.25)

It is clear what we are driving at. We replace Poisson brackets by commutators
times 1/īh and V by its operator version. Furthermore we introduce the already
familiar triangulation of σ and have, using that with v = s(0) for some path s

Ad(hs(0, δt))[φ(s(δt))]− U(v) = hs(0, δt)φ(s(δt))hs(0, δt)
−1 − φ(v)

= exp([1 + δtṡa(0)Aa][φ(v) + δtṡa(0)∂aφ(v)]

× [1 − δtṡa(0)Aa] + o((δt)2)) − φ(v)

= exp(δtṡa(0)(∂aφ(v) + [Aa, φ(v)]) + o((δt)2))

= −φ(v)δtṡa(0)Daφ(v) + o((δt)2) (12.3.26)
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and with tr(τiτj) = −δij/2, tr(τ IτJ) = −dδIJ , d the dimension of the fundamen-
tal representation of G that

6
∫

Δ

DφI(x) ∧ {Aj(x), V (x, ε)3/4} ∧ {Ak(x), V (x, ε)3/4}

≈ −4
d
εmnptr

(
τ I

[
Ad

(
hsm(Δ)

)
[φ(sm(Δ))] − φ(v(Δ))

])

× tr
(
τjhsn(Δ)

{
h−1
sn(Δ), V (v(Δ), ε)3/4

})
tr

(
τkhsp(Δ)

{
h−1
sp(Δ), V (v(Δ), ε)3/4

})

(12.3.27)

Then we find on a cylindrical function

Ĥε
Higgs,der(N)fγ =

1
2κ5h̄4
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3

)4 (
2
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)2 ∑

v,v′∈V (γ)

N(v)χε(v, v′)εijk εilm

×
∑

v(Δ)=v

8
E(v)

εnpqtr
(
τ I

[
Ad

(
hsn(Δ)

)
[φ(sn(Δ))] − φ(v(Δ))

])

× tr
(
τjhsp(Δ)

[
h−1
sp(Δ), V̂

3/4
v

])
tr

(
τkhsq(Δ)

[
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3/4
v

])

×
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8
E(v′)

εrsttr
(
τ I

[
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(
hsr(Δ′)

)
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(
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[
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3/4
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tr

(
τmhst(Δ′)

[
h−1
st(Δ′), V̂

3/4
v′

])
fγ

(12.3.28)

since only tetrahedra with vertices as basepoints contribute. Thus we find in the
limit ε → 0 in the URST (i.e., choose finite beginning segments of the edges at
each vertex once and for all, identical with the choice for the other Hamiltonian
constraint contributions) s(Δ)

ĤHiggs,der(N)fγ =
46mp

2�9pd236

∑

v∈V (γ)

N(v)εijk εilm

×
∑

v(Δ)=v(Δ′)=v

1
E(v)2
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(
τ I

[
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(
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)
[φ(sn(Δ))] − φ(v)
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(
τjhsp(Δ)

[
h−1
sp(Δ), V̂

3/4
v

])
tr

(
τkhsq(Δ)

[
h−1
sq(Δ), V̂

3/4
v

])

× tr
(
τ I

[
Ad

(
hsr(Δ′)

)
[φ(sr(Δ′))] − φ(v)

])

× tr
(
τlhss(Δ′)

[
h−1
ss(Δ′), V̂

3/4
v

])
tr

(
τmhst(Δ′)

[
h−1
st(Δ′), V̂

3/4
v

])
fγ

(12.3.29)

Again, despite its complicated appearance, (12.3.29) defines a densely defined
operator. Finally the potential term, like the cosmological constant term, is trivial
to quantise because φ is just a multiplication operator and the

√
det(q) plus
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the integral just becomes the sum over vertices times the volume operator at
those times the potential evaluated at those. Hence this term becomes like the
cosmological term

ĤHiggs,pot(N)fγ =
mp

�3p

∑

v∈V (γ)

NvV (φ(v))V̂vfγ

Ĥcosmo(N)fγ =
mpλ

�3p

∑

v∈V (γ)

NvV̂vfγ (12.3.30)

This furnishes the quantisation of the matter sector. Notice that all Hamiltoni-
ans have the same structure, namely an operator which carries out a discrete
operation on a cylindrical function, like adding or subtracting lines, fermions or
Higgs fields, multiplied by the Planck mass and divided by an appropriate power
of the Planck length which compensates the power of the Planck length coming
from the action of the volume operator. It follows that in this sense the matter
Hamiltonians are quantised in multipla of the Planck mass when we go to the
diffeomorphism-invariant sector.

12.3.4 A general quantisation scheme

Looking at what happened in Sections 10.4 and 12.3.1 it seems that one can
quantise any Hamiltonian constraint which is a scalar density of weight one in
such a way that it is densely defined. Indeed, in [441] a proof of this observation is
given which we sketch below (we restrict ourselves here to non-fermionic matter
and to D = 3 spatial dimensions for the sake of clarity). It applies to any field
theory in any dimension D ≥ 2 which is given in Hamiltonian form, that is,
any generally covariant field theory deriving from a Lagrangian (for theories
including higher derivatives as in higher derivative gravity [658] or as predicted
by the effective action of string theory [45] one can apply the Ostrogradsky
method [659] to bring it into Hamiltonian form).

Suppose then that we are given a scalar density H(x) of weight one. Without
loss of generality we can assume that all the momenta P of the theory are ten-
sor densities of weight one and act by functional derivation with respect to the
configuration variables Q which are associated dual tensor densities of weight
zero. By contracting them with triad and co-triad fields we obtain new canon-
ical variables without tensor indices but with su(2) indices. The corresponding
canonical transformation is generated by a functional which changes the defini-
tion of the real-valued connection variable Ai

a but preserves its real-valuedness
and thus does not spoil the kinematical Hilbert space of Part II. Spatial covariant
derivatives are then with respect to Ai

a.
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The general form of this density H(x) is then a sum of homogeneous polyno-
mials of the form (not displaying internal indices)

Hm,n(x) = [P (x)]nEa1(x) . . . Eam(x)fm,n[Q]a1...am
(x)

1
[
√

det(q)(x)]m+n−1

(12.3.31)

where f is a local tensor depending only on configuration variables and their
covariant derivatives with respect to Ai

a. In order to quantise (12.3.31) we must
point split the momenta P,Ea. Multiply (12.3.31) by 1 = [ | det((eia))|√

det(q)
]k where

k = 0, 1, 2, . . . . is an integer to be specified later on. Since up to a numerical
constant |det((eia))| equals εabcεijk{Ai

a, V (R)}{Aj
b, V (R)}{Ak

c , V (R)} for some
appropriately chosen region we see that this factor is worth Dk volume func-
tionals in the numerator and k factors of

√
det(q) in the denominator. We

now introduce m + n + k − 1 point splittings by the point splitting functions
χε,x(y)/εD of the previous section to point split both the momenta and the
factors of |det((eia))|. The factor 1/εD(m+n+k−1) can be absorbed into the√

det(q)’s as before so that we get a power of m + n + k − 1 of volume function-
als of the form V (Uε(x)) in the denominator. Now choose k large enough until
Dk > m + n + k − 1 or (D − 1)k > m + n− 1. By suitably choosing the argu-
ments in the process of point splitting and choosing R. = Uε(.) we can arrange,
as in the previous section, that the only dependence of (12.3.31) on the volume
functional is through Dk factors of the form

{
Ai

a, V (Uε)
}

V (Uε)
m+n+k−1

Dk

=

{
Ai

a, V (Uε)1−
m+n+k−1

Dk

}

1 − m+n+k−1
Dk

(12.3.32)

so that the volume functional is removed from the denominator. The rest of
the quantisation proceeds by choosing a triangulation of σ replacing connections
by holonomies along its edges, Higgs fields by point holonomies at vertices or
corresponding gauge-covariant polynomials, momenta by functional derivatives
and Poisson brackets by commutators. By carefully choosing the factor ordering
(momenta to the right-hand side) one always finds a densely defined operator
whose limit (as the regulator is removed) exists in the URST and whose com-
mutator algebra is non-anomalous.

The proof shows that the density weight of one for H(x) was crucial: if it was
lower than one then point splitting would result in a regulated operator whose
limit is the zero operator and if it was higher than one then the limit diverges,
as mentioned earlier. Notice that the final result suffers from factor ordering
ambiguities but not from factor ordering singularities.
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Kinematical geometrical operators

In this chapter we will describe the so-called kinematical geometrical operators
of Loop Quantum Gravity. These are gauge-invariant operators which measure
the length, area and volume respectively of coordinate curves, surfaces and
volumes for D = 3. The area and volume operators were first considered
by Smolin in [660] and then formalised by Rovelli and Smolin in the loop
representation [425]. In [575] Loll discovered that the volume operator vanishes
on gauge-invariant states with at most trivalent vertices and used area and
volume operators in her lattice theoretic framework [661–663]. Ashtekar and
Lewandowski [427] used the connection representation defined in previous
chapters and could derive the full spectrum of the area operator, while their
volume operator differs from that of Rovelli and Smolin on graphs with vertices
of valence higher than three, which can be seen as the result of using different
diffeomorphism classes of regularisations. In [664] de Pietri and Rovelli computed
the matrix elements of the RS volume operator in the loop representation and
de Pietri created a computer code for the actual case-by-case evaluation of the
eigenvalues. In [559] the connection representation was used in order to obtain
the complete set of matrix elements of the AL volume operator.

Area and volume operators could be quantised using only the known quan-
tisations of the electric flux of Section 6.3 but the construction of the length
operator [424] required the new quantisation technique of using Poisson brack-
ets with the volume operator, which was first employed for the Hamiltonian
constraint, see Chapter 10. To the same category of operators also belong the
ADM energy surface integral [442], angle operators [429, 430] and other similar
operators that test components of the three-metric tensor [581].

In D-dimensions we have analogous objects corresponding to d-dimensional
submanifolds of σ with 1 ≤ d ≤ D. To get an idea of the constructions involved
we will start with the simplest operator, the so-called area operator which we
construct in D dimensions and which measures the area of an open (D − 1)-
dimensional submanifold of σ. A common feature of all these operators is that
they are essentially self-adjoint, positive semidefinite unbounded operators with
pure point (discrete) spectrum which has a length, area, volume, . . . gap respec-
tively of the order of the Planck length, area, volume, etc. (that is, zero is not
an accumulation point of the spectrum).

We call these operators kinematical because they do not (weakly) commute
with the spatial diffeomorphism or Hamiltonian constraint operator. One may
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therefore ask what their physical significance should be. Apart from the fact that
the kinematical volume operator plays a pivotal role for the very definition of the
Hamiltonian constraint, as a partial answer we will sketch a proof that if the
curves, surfaces and regions are not coordinate manifolds but are invariantly
defined through matter, then they not only weakly commute with the spatial
diffeomorphism constraint but also their spectrum remains unaffected. There is
no such argument with respect to the Hamiltonian constraint yet, however. We
will follow the treatment in [427,559,665].

13.1 Derivation of the area operator

Let S be an oriented, embedded, open, compactly supported, semianalytical
surface and let X : U0 → S be the associated embedding where U is an open
submanifold of RD−1. The area functional Ar[S] of the D-metric tensor qab is
the volume of X−1(S) in the induced (D − 1)-metric

Ar[S] :=
∫

U0

dD−1u
√

det([X∗q](u)) (13.1.1)

which coincides with the Nambu–Goto action for the bosonic Euclidean (D − 1)-
brane propagating in a D-dimensional target spacetime (σ, qab). Using the co-
vector densities

na(u) := εaa1...aD−1

D−1∏

k=1

∂Xak

∂uk
(u) (13.1.2)

familiar from Section 6.3 it is easy to see that we can write (13.1.1) in the form

Ar[S] :=
∫

U0

dD−1u
√
na(u)nb(u)Ea

j (X(u))Eb
j (X(u)) (13.1.3)

Let now U0 =
⋃

U∈U U be a partition of U0 by closed sets U with open interior
and let U be the collection of these open sets. Then the Riemann integral (13.1.3)
is the limit as |U| → ∞ of the Riemann sum

ArU [S] :=
∑

U∈U

√
Ej(SU)Ej(SU) (13.1.4)

where SU = X(U) and Ej(SU) is the electric flux function of Section 6.3. The
strategy for quantising (13.1.4) will be to use the known quantisation of Ej(SU),
to plug it into (13.1.4), to apply it to cylindrical functions and to hope that in
the limit |U| → ∞ we obtain a consistently defined family of positive semidef-
inite operators. Notice that the square root involved makes sense because its
argument will be a sum of squares of (essentially) self-adjoint operators which
has non-negative real spectrum and we may therefore define the square root by
the spectral resolution of the operator.
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Let then l = l(γ) be any subgroupoid and fl ∈ C2(Xl). Using the results of
Section 6.3 we obtain for any surface S

Êj(S)Êj(S)p∗l fl = −p∗lS
�4pβ

2

64

⎧
⎨

⎩

∑

e∈E(γS)

ε(e, S)Rj
e

⎫
⎬

⎭

2

p∗lSlfl (13.1.5)

where lS = l(γS) is any adapted subgroupoid l ≺ lS .
When we now plug (13.1.5) into (13.1.4) we can exploit the following fact:

since (13.1.4) classically approaches (13.1.3) for any uniform refinement of the
partition U , for given l and adapted lS we can refine in such a way that for all
e ∈ E(γ) with ε(e, S) �= 0 (e is of the up or down type with respect to S) we have
always that e ∩ S is an interior point of some U ∈ U . Notice that then ε(e, S) =
ε(e, SU) and e ∩ S = e ∩ SU. If on the other hand ε(e, S) = 0 but S ∩ e �= ∅ (e is
of the inside type with respect to S) then for those U with U ∩ e �= ∅ we also
have ε(e, SU) = 0. Clearly, if e ∩ S = ∅ then e ∩ U = ∅ for all U ∈ U so again
ε(e, S) = ε(e, SU). We conclude that under such refinements the subgroupoid lS
stays adapted for all SU. Let us denote an adapted partition and their refinements
by Ul. Then

ÂrUl
[S]p∗l fl =

�2pβ

8
p∗lS

∑

U∈Ul

√√√√√−

⎧
⎨

⎩

∑

e∈E(γS)

ε(e, SU)Rj
e

⎫
⎬

⎭

2

p∗lSlfl (13.1.6)

Let us introduce the set of isolated intersection points between γ and S

Pl(S) := {e ∩ S; ε(e, S) �= 0, e ∈ E(γS)} (13.1.7)

which is independent of the choice of γS of course. After sufficient refinement,
every SU will contain at most one point which is the common intersection point
of edges of the up or down type respectively. Let then for each x ∈ Pl(S) the
surface that contains x be denoted by SUx

. From our previous discussion we
know that then ε(e, S) = ε(e, SUx

) for any e ∈ E(γS) with x ∈ ∂e. It follows
that (13.1.6) simplifies after sufficient refinement to

ÂrUl
[S]p∗l fl =

�2pβ

8
p∗lS

∑

x∈Pl(S)

√√√√√−

⎧
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⎩
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e∈E(γS),x∈∂e

ε(e, S)Rj
e

⎫
⎬

⎭

2

p∗lSlfl (13.1.8)

Now the right-hand side no longer depends on the degree of the adapted
refinement and hence the limit becomes trivial

Ârl[S]p∗l fl =
�2pβ

8
p∗lS

∑

x∈Pl(S)

√√√
√√−

⎧
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⎩
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e

⎫
⎬

⎭

2

p∗lSlfl (13.1.9)

Thus, we have managed to derive a family of operators Ârl[S] with dense domain
Cyl2(A). The independence of (13.1.9) of the adapted graph follows from that
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of the Êj(S). Here we have encountered again a common theme throughout the
formalism: a state (or graph)-dependent regularisation. One must make sure
therefore that the resulting family of operators is consistent.

13.2 Properties of the area operator

The following properties go through with minor modifications also for the length
and volume operators.

1. Consistency
We must show that for any l ≺ l′ it holds that (a) Ûll′C

2(Xl) ⊂ C2(Xl′) and
(b) Ûll′Ârl[S] = Ârl′ [S]Ûll′ where Ûll′fl = p∗l′lfl. Since the p∗ll′ are analytic,
(a) is trivially satisfied. To verify (b) we notice that (13.1.9) can be written
as

ÛlÂrl[S] = ÛlS ÂrlS [S]ÛllS (13.2.1)

where ÂrlS [S] is simply the middle operator in (13.1.9) between the two pull-
backs for the case that l is already adapted. First we must check that (13.2.1)
is independent of the adapted subgroupoid l ≺ lS . Let l ≺ l′S be another sub-
groupoid and take a third adapted subgroupoid with lS , l

′
S ≺ l′′S . If we can

show that for any adapted subgroupoids with lS ≺ l′′S we have

Ârl′′S [S]ÛlSl′′S
= ÛlSl′′S

ÂrlS [S] (13.2.2)

then we will be done. To verify (13.2.2) we must make a case-by-case analysis
as in Section 6.5 for the electric flux operator. But since (13.1.9) is essentially
the sum of square roots of the sum of squares of electric flux operators, the
analysis is completely analogous and will not be repeated here.

Finally, let l ≺ l′. We find an adapted subgroupoid l, l′ ≺ lS . Then

Ûl′Ârl′ [S]Ûll′ = ÛlS ÂrlS [S]Ûl′lS Ûll′ = ÛlS ÂrlS [S]ÛllS = ÛlÂrl[S]

= Ûl′Ûll′Ârl[S] (13.2.3)

which is equivalent with consistency.
That the operator exists at all is like a small miracle: not only did we mul-

tiply two functional derivatives Êa
j (x) at the same point, even worse, we took

the square of it. Yet it is a densely defined, positive semidefinite operator
without encountering any need for renormalisation after taking the regula-
tor (here the fineness of the partition) away. The reason for the existence
of the operator is the payoff for having constructed a manifestly background-
independent representation. We will see more examples of this ‘miracle’ in the
sequel.
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2. Essential self-adjointness
To see that the area operator is symmetric, let fl ∈ C2(Xl), fl′ ∈ C2(Xl′).
Then we find an adapted subgroupoid l, l′ ≺ lS whence

< p∗l fl, Âr[S]p∗l′fl′ > = < p∗lSlfl, ÂrlS [S]p∗lSl′fl′ >L2(XlS
,dμ0lS )

= < ÂrlS [S]p∗lSlfl, p
∗
lSl′fl′ >L2(XlS

,dμ0lS )

= < Âr[S]p∗l fl, p
∗
l′fl′ > (13.2.4)

where in the second step we used the fact that ÂrlS [S] is symmetric on
L2(XlS , dμ0lS ) with C2(XlS ) as dense domain.

Thus, the area operator is certainly a symmetric, positive semidefinite oper-
ator. Therefore we know that it possesses at least one self-adjoint extension,
the so-called Friedrich extension, see Theorem 26.8.1.

However, we can show that Âr[S] is even essentially self-adjoint. The proof is
quite similar to proving essential self-adjointness for the electric flux operator:
let H0

γ,�π be the finite-dimensional Hilbert subspace of H0 given by the closed
linear span of spin-network functions over γ where all edges are labelled with
the same irreducible representations given by �π. Then the Hilbert space may
be written as

H0 = ⊕γ∈Γω
0 ,�πH0

γ,�π (13.2.5)

Given a surface S we can without loss of generality restrict the sum over graphs
to adapted ones because for r(γ) = r(γS) we have H0

γ,�π ⊂ H0
γS ,�π′ for the choice

π′
e′ = πe with E(γS) � e′ ⊂ e ∈ E(γ). Since then Âr[S] preserves each H0

γ,�π

its restriction is a symmetric operator on a finite-dimensional Hilbert space,
therefore it is self-adjoint. It follows that Âr|γ,�π[S] ± i · 1γ,�π has dense range
on H0

γ,�π = C∞(Xl(γ))�π = C2(Xl(γ))�π. Therefore

[Âr[S] ± i · 1H0 ]C2(A) = ⊕γ,�π[Âr|γ,�π[S] ± i · 1γ,�π]C2(Xl(γ))�π

= ⊕γ,�π[Âr|γ,�π[S] ± i · 1γ,�π]H0
γ,�π = ⊕γ,�πH0

γ,�π (13.2.6)

is dense in H0, hence Âr[S] is essentially self-adjoint. Here we have used the
criterion of (essential) self-adjointness, Theorem 26.7.1.

3. Spectral properties
(i) Discreteness

Since Âr[S] leaves the H0
γ,�π invariant it is simply a self-adjoint matrix

there with non-negative eigenvalues. Since

H0
γ = ⊕�πH0

γ,�π

and the set of �π is countable it follows that H0
γ has a countable basis

of eigenvectors for Âr[S] so that the spectrum is pure point (discrete),
that is, it does not have a continuous part. Now, as we vary γ we get
a non-separable Hilbert space, however, the spectrum of Âr[S] depends
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only on (a) the number of intersection points with edges of the up and
down type, (b) their respective number per such intersection point and (c)
the irreducible representations they carry and not on any other intersec-
tion characteristics. These possibilities are countable, whence the entire
spectrum is pure point and each eigenvalue comes with an uncountably
infinite multiplicity.

(ii) Complete spectrum
It is even possible to compute the complete spectrum directly and to
prove the discreteness from an explicit formula. Such a closed formula
is unfortunately not yet available for the volume and length operators,
while highly desirable for purposes in particular connected with quantum
dynamics as we will see in the next chapter.

From the explicit formula (13.1.9) it is clear that we may compute the
eigenvalues for each intersection point x of S with edges of γS of the
up or down type separately. Let Ex,�(γS) = {e ∈ E(γS); x = b(e); e =

 type} where 
 = u,d, i for ‘up, down, inside’ respectively and let Rj

x,� =∑
e∈Ex,�(γS) R

j
e. Then we have

⎧
⎨

⎩

∑

e∈E(γS),x∈∂e

ε(e, S)Rj
e

⎫
⎬

⎭

2

=
[
Rj

x,u−Rj
x,d

]2 =
(
Rj

x,u

)2+
(
Rj

x,d

)2−2Rj
uR

j
d

= 2
(
Rj

x,u

)2 + 2
(
Rj

x,d

)2 −
(
Rj

u + Rj
d

)2 (13.2.7)

where we have used the fact that [Rj
x,u, R

k
x,d] = 0 (independent degrees of

freedom). We check that [Rj
x,�, R

k
x,�] = −2fjk lRj

x,� so that also [Rj
x,u+d,

Rk
x,u+d] = −2fjk lRj

x,u+d with Rj
x,u+d = Rj

u + Rj
d. From this follows

that [Rk
� , (R

j
u)2] = [Rk

� , (R
j
d)2] = 0 so that Δu = (Rj

x,u)2/4,Δd =
(Rj

x,d)2/4,Δu+d = (Rj
x,u+d)2/4 are mutually commuting operators and

each of Rj
x,u, R

j
x,d, R

j
x,u+d satisfies the Lie algebra of right-invariant vector

fields. Thus their respective spectrum is given by the eigenvalues −λπ < 0
of the Laplacian 4Δ = (Rj)2 = (Lj)2 on G in irreducible representa-
tions π for which all matrix element functions πmn are simultaneous
eigenfunctions with the same eigenvalue, see Chapter 31. It follows that

Spec(Âr[S]) =

{
�2pβ

4

N∑

n=1

√
2λπ1

n
+ 2λπ1

n
− λπ12

n
; N ∈ N, π1

n, π
2
n, π

12
n ∈ Π;

π12
n ∈ π1

n ⊗ π2
n

}

(13.2.8)

where the last condition means that π12
n is an irreducible representation

that appears in the decomposition into irreducibles of the tensor product
representation π1

n ⊗ π2
n. In case we are looking only at gauge-invariant

states we actually have Rj
x,u+v = −Rj

x,i. The spectrum (13.2.8) is
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manifestly discrete by inspection. It is bounded from below by zero and is
unbounded from above and depends explicitly on the Immirzi parameter.

(iii) Area gap
Let us discuss the spectrum more closely for G = SU(2). Then per
intersection point we have eigenvalues of the form

λ =
�2pβ

4

√
2j1(j1 + 1) + 2j2(j2 + 1) − j12(j12 + 1) (13.2.9)

where |j1 − j2| ≤ j12 ≤ j1 + j2 by recoupling theory, see Chapter 32.
Recoupling theory [666], that is, coupling of N angular momenta also
tells us how to build the corresponding eigenfunctions through an
appropriate recoupling scheme. The lowest positive eigenvalue is given
by the minimum of (13.2.9). At given j1, j2 the minimum is given at
j12 = j1 + j2 which gives

�2pβ

4

√
(j1 − j2)2 + j1 + j2 =

�2pβ

4

√
(j2 − (j1 − 1/2))2 + 2j1 − 1/4

(13.2.10)
Since (13.2.10) vanishes at j1 = j2 = 0 at least one of them must
be greater than zero, say j1. Then (13.2.10) is minimised at j2 =
j1 − 1/2 ≥ 0 and proportional to

√
2j1 − 1/4 which takes its minimum

at j1 = 1/2. Thus we arrive at the area gap

λ0 =

√
3�2pβ
8

(13.2.11)

(iv) Main series
It is sometimes claimed [667] that the regularisation of the area operator
is incorrect and that a different regularisation gives eigenvalues propor-
tional to

√
j(j + 1) or j + 1/2 rather than (13.2.9). If that was the case

then this would be of some significance for black hole physics, as we
will see in Chapter 15. However, first of all regularisations in quantum
field theory are never unique and may lead to different answers, the only
important thing is that all of them give the same classical limit. Sec-
ondly, even if the regularisation performed in [667] is more aesthetic to
some authors it is incomplete: in [667] one looks only at the so-called main
series which results if we choose j1 = j2 = j, j12 = 0 and then just gives

�2p
2
β
√
j(j + 1)

(plus a quantum correction j(j + 1) �→ j(+1/2)2 due to the different
regularisation which results in integral quantum numbers). However,
the complete spectrum (13.2.9) is much richer, the side series have
physical significance for the black hole spectrum as we will see and
lead to a correspondence principle, that is, at large quantum numbers
the spectrum approaches a continuum. To see this notice that at large
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eigenvalue, λ changes as

δλ

λ
≈ 2(2j1 + 1)δj1 + 2(2j2 + 1)δj2 − (2j12 + 1)δj12

2[(j1 + 1)j1 + (j2 + 1)j2 − (j12 + 1)j12]
(13.2.12)

Suppose we choose j1 = j2 = j � 1. Then 0 ≤ j12 ≤ 2j and we may
choose j12 = 0, δj12 = 1/2, δj1 = δj2 = 0 (notice that such a transition is
ignored if we do not discuss the side series). Then (13.2.12) can be written

δλ ≈ − (λ0)2

λ
(13.2.13)

which becomes arbitrarily small at large j. The subsequent eigenvalues
have been calculated numerically in [803], displaying a rapid transition
to the continuum.

However, more is true: even if we just use the main series, the
spectrum lies dense in R+ for large j. This happens when we take a large
number of intersections into account as we will do for black hole physics
in Chapter 15, in which the main series spectrum becomes �2P /2

∑
p√

jp(jp + 1). Due to the square roots involved the spectrum is not equally
spaced as would happen if we replaced

√
j(j + 1) by

√
j(j + 1) + 1/4 =

j + 1/2, as is favoured by some authors. However, this choice is not
only physically unacceptable in view of the black body spectrum of
the Hawking radiation as we will explain in Chapter 15, it is also
mathematically incorrect as it leads to a cylindrically inconsistent
operator, that is, to no operator at all [668].

(v) Sensitivity to topology
The eigenvalues (13.2.9) do detect some topological properties of σ as
well. For instance, in the gauge-invariant sector the spectrum depends
on whether ∂S = ∅ or not. Moreover, for ∂S = ∅ the spectrum depends
on whether S divides σ into two disjoint regions or not.

13.3 Derivation of the volume operator

As we have seen, the volume operator is fundamental in order to even define the
quantum constraints. We will now derive it using the point-splitting regularisa-
tion technique of [559]. We will set β = 1 for simplicity, otherwise multiply the
final formula by β3/2.

Let R ⊂ Σ be an open, connected region of Σ. Since Ea
j =

√
det(q)eaj we have

the identity
1
3!
εabcε

ijkEa
i E

b
jE

c
k = det

((
Ea

i

))
= sgn(det(E)) det((qab)) (13.3.1)

Notice that det(q) = [det((eia))]
2 ≥ 0. Since classically det(E) �= 0 we can write

the volume of the region R as measured by the metric qab as follows

V (R) :=
∫

R

d3x
√

det(q) =

√∣
∣
∣∣
1
3!
εijkεabcEa

i E
b
jE

c
k

∣
∣
∣∣ (13.3.2)
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where the absolute values are necessary because det(E) is not positive. The next
step is to smear the fields Ea

i . Let χΔ(p, x) be the characteristic function in the
coordinate x of a cube with centre p spanned by the three vectors �Δi = Δi�ni(Δ)
where �ni is a normal vector in the frame under consideration and which has
coordinate volume vol = Δ1Δ2Δ3 det(�n1, �n2, �n3) (we assume the three normal
vectors to be right-oriented). In other words, χΔ(p, x) =

∏3
i=1 θ(

Δi

2 − | < ni, x−
p > |) where < ., . > is the standard Euclidean inner product and θ(y) = 1 for
y > 0 and zero otherwise.

We consider the smeared quantity

E(p,Δ,Δ′,Δ′′) :=
1

vol(Δ)vol(Δ′)vol(Δ′′)

∫

σ

d3x

∫

σ

d3y

∫

σ

d3zχΔ(p, x)χΔ′(2p, x + y)

×χΔ′′(3p, x + y + z)
1
3!
εabcε

ijkEa
i (x)Eb

j (y)E
c
k(z) (13.3.3)

Notice that if we take the limits Δi,Δ′
i,Δ

′′
i → 0 in any combination and in any

rate with respect to each other then we get back to (13.3.1) evaluated at the point
p. This holds for any choice of linearly independent normal vectors �ni, �n

′
i, �n

′′
i . The

strange arguments x + y, x + y + z will turn out to be very crucial in obtaining
a manifestly diffeomorphism-covariant result. We will see this in a moment.

Then it is easy to see that the classical identity

V (R) = lim
Δ→0

lim
Δ′→0

lim
Δ′′→0

∫

R

d3p
√
|E(p,Δ,Δ′,Δ′′)| (13.3.4)

holds. Observe that (13.3.3) is not gauge-invariant any longer in contrast to
V (R), however, we will be interested only in the limit of shrinking all Δ to
points and, as it turns out, recover gauge invariance in that limit.

The virtue of introducing the quantities (13.3.3) is that they enable us to define
operators corresponding to V (R), in the limit that all Δ shrink to a point, and
which have the dense domain Cyl3(A/G). To do this we adopt the same strategy
which led to the fundamental flux operators: according to the canonical brackets
{Ai

a(x), Eb
j (y)} = −κ

2 δ
b
aδ

i
jδ

(3)(x, y) we represent, just as for the flux operator,

the operator corresponding to Ea
i by Êa

i (x) = i
	2p
2 δ/δAi

a(x) where �p =
√
h̄κ is

the Planck length (we set β = 1 for simplicity). The functional derivative makes
sense only on functions of smooth connections. However, after removing the
regulator we will see that the final formula can simply be lifted to functions on
A. Hence the limit of vanishing regulator will map from a family of operators on
the space of spin-network functions restricted to A to an honest operator on the
kinematical Hilbert space of Loop Quantum Gravity.

Let a graph γ be given. In order to simplify the notation, we subdivide each
edge e with endpoints v, v′ which are vertices of γ into two segments s, s′ where
e = s ◦ (s′)−1 and s has an orientation such that it is outgoing at v while s′ has an
orientation such that it is outgoing at v′. This introduces new vertices s ∩ s′ which
we will call pseudo-vertices because they are not points of non-semianalyticity
of the graph. Let E(γ) be the set of these segments of γ but V (γ) the set
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of true (as opposed to pseudo) vertices of γ. Let us now evaluate the action
of Êa

i (p,Δ) := 1/vol(Δ)
∫
Σ
d3xχΔ(p, x)Êa

i (x) on a function f = p∗γfγ cylindrical
with respect to γ. We find (e : [0, 1] → σ; t → e(t) being a parametrisation of
the edge e)

2Êa
i (p,Δ)f =

i�2p
vol(Δ)

∑

e∈E(γ)

∫ 1

0

dtχΔ(p, e(t))ėa(t)

× 1
2
tr
(

[he(0, t)τihe(t, 1)]T
∂

∂he(0, 1)

)
fγ (13.3.5)

Here we have used (0) {Ea
j (x), Ak

b (y)} = κ/2δ(x, y)δab δ
k
j , �

2
P = h̄κ, (1) the fact

that a cylindrical function is already determined by its values on A/G rather
than A/G so that it makes sense to take the functional derivative, (2) the defi-
nition of the holonomy as the path-ordered exponential of

∫
e
A with the small-

est parameter value to the left, (3) A = dxaAi
aτi/2 where SU(2) � τj = −iσj , σj

being the usual Pauli matrices, so that [τi/2, τj/2] = εijkτk/2 and we have defined
(4) tr(hT∂/∂g) = hAB∂/∂gAB , A,B,C, . . . being SU(2) indices. The state that
appears on the right-hand side of (13.3.5) is actually well-defined, in the sense of
functions of connections, only when A is smooth for otherwise the integral over
t does not exist, see [418] and Section 8.2.3. However, as announced, we will be
interested only in quantities constructed from operators of the form (13.3.5) and
for which the limit of shrinking Δ → 0 to a point has a meaning in the sense of
H = L2(A/G, dμ0) and therefore will not be concerned with the actual range of
the operator (13.3.5) for the moment.

We now wish to evaluate the whole operator Ê(p,Δ,Δ′,Δ′′) on f . It is clear
that we obtain three types of terms, the first type comes from all three functional
derivatives acting on f only, the second type comes from two functional deriva-
tives acting on f and the remaining one acting on the trace appearing in (13.3.5)
and finally the third type comes from only one derivative acting on fγ and the
remaining two acting on the trace. Explicitly we find (we mean by θ(t, t′) the
theta function which is unity if 0 < t < t′ < 1 and zero otherwise and likewise
θ(t, t′, t′′) is 1 if 0 < t < t′ < t′′ < 1 and zero otherwise)

8Ê(p,Δ,Δ′,Δ′′)f

= −
i�6p

8 · 3!vol(Δ)vol(Δ′)vol(Δ′′)
εabcε

ijk

∫

[0,1]3
dtdt′dt′′

×

⎧
⎨

⎩

∑

e,e′,e′′∈E(γ)

ė(t)aė′(t′)bė′′(t′′)cχΔ(p, e(t))χΔ′ (2p, e(t) + e′(t′))

×χΔ′′ (3p, e(t) + e′(t′) + e′′(t′′))tr

(

he′′ (0, t
′′)τkhe′′ (t

′′, 1)
∂

∂hT
e′′ (0, 1)

)

× tr

(

he′ (0, t
′)τjhe′ (t

′, 1)
∂

∂hT
e′ (0, 1)

)

tr

(
he(0, t)τihe(t, 1)

∂

∂hT
e (0, 1)

)

+
∑

e′,e′′∈E(γ)

ė′′(t)aė′(t′)bė′′(t′′)cχΔ(p, e′′(t))χΔ′ (2p, e′′(t) + e′(t′))χΔ′′ (3p, e′′(t)
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+e′(t′) + e′′(t′′))

[

θ(t, t′′)tr

(

he′′ (0, t)τihe′′ (t, t
′′) × τkhe′′ (t

′′, 1)
∂

∂hT
e′′ (0, 1)

)

+θ(t′′, t)tr

(

he′′ (0, t
′′)τkhe′′ (t

′′, t)τihe′′ (t, 1)
∂

∂hT
e′′ (0, 1)

)]

× tr

(

he′ (0, t
′)τjhe′ (t

′, 1)
∂

∂hT
e′ (0, 1)

)

+
∑

e′,e′′∈E(γ)

ė′(t)aė′(t′)bė′′(t′′)cχΔ(p, e′(t))χΔ′

×(2p, e′(t) + e′(t′))χΔ′′ (3p, e′(t) + e′(t′) + e′′(t′′))tr

(

he′′ (0, t
′′)τkhe′′ (t

′′, 1)
∂

∂hT
e′′ (0, 1)

)

×
[

θ(t, t′)tr

(

he′ (0, t)τihe′ (t, t
′)τjhe′ (t

′, 1)
∂

∂hT
e′ (0, 1)

)

+ θ(t′, t)tr

(

he′ (0, t
′)τjhe′

× (t′, t)τihe′ (t, 1)
∂

∂hT
e′ (0, 1)

)]

+
∑

e,e′′∈E(γ)

ė(t)aė′′(t′)bė′′(t′′)cχΔ(p, e(t))χΔ′ (2p, e(t) + e′′(t′))

×χΔ′′ (3p, e(t) + e′′(t′) + e′′(t′′))

[

θ(t′, t′′)tr

(

he′′ (0, t
′)τjhe′′ (t

′, t′′)τkhe′′ (t
′′, 1)

∂

∂hT
e′′ (0, 1)

)

+ θ(t′′, t′)tr

(

he′′ (0, t
′′)τkhe′′ (t

′′, t′)τjhe′′ (t
′, 1)

∂

∂hT
e′′ (0, 1)

)]

tr

(
he(0, t)τihe(t, 1)

∂

∂hT
e (0, 1)

)

+
∑

e′′∈E(γ)

ė′′(t)aė′′(t′)bė′′(t′′)cχΔ(p, e′′(t))χΔ′ (2p, e′′(t) + e′′(t′))χΔ′′ (3p, e′′(t)

+ e′′(t′) + e′′(t′′))

[

θ(t, t′, t′′)tr

(

he′′ (0, t)τihe′′ (t, t
′)τjhe′′ (t

′, t′′)τkhe′′ (t
′′, 1)

∂

∂hT
e′′ (0, 1)

)

+ θ(t, t′′, t′)tr

(

he′′ (0, t)τihe′′ (t, t
′′)τkhe′′ (t

′′, t′)τjhe′′ (t
′, 1)

∂

∂hT
e′′ (0, 1)

)

+ θ(t′, t′′, t)tr

(

he′′ (0, t
′)τjhe′′ (t

′, t′′)τkhe′′ (t
′′, t)τihe′′ (t, 1)

∂

∂hT
e′′ (0, 1)

)

+ θ(t′, t, t′′)tr

(

he′′ (0, t
′)τjhe′′ (t

′, t)τihe′′ (t, t
′′)τkhe′′ (t

′′, 1)
∂

∂hT
e′′ (0, 1)

)

+ θ(t′′, t, t′)tr

(

he′′ (0, t
′′)τkhe′′ (t

′′, t)τihe′′ (t, t
′)τjhe′′ (t

′, 1)
∂

∂hT
e′′ (0, 1)

)

+ θ(t′′, t′, t)tr

(

he′′ (0, t
′′)τkhe′′ (t

′′, t′)τjhe′′ (t
′, t)τihe′′ (t, 1)

∂

∂hT
e′′ (0, 1)

)]}

fγ

=: [Ô1,2,3 + Ô2,31 + Ô12,3 + Ô1,23 + Ô123]fγ (13.3.6)

The fact that the integrand of the terms involved in Ô12,3, Ô1,23, Ô2,31, Ô123

vanishes if either of the cases 0 < t = t′ < 1, 0 < t′ = t′′ < 1, 0 < t = t′ = t′′ < 1
occurs is due to the fact that in this case in Ô12,3, Ô1,23, Ô2,31, Ô123 we get a
trace which contains τ(iτj), τ(jτk), τ(kτi) contracted with εijk which vanishes (to
see this recall that the functional derivative is

δhe(A)/δAi
a(x) =

1
2

∫ 1

0

dt

[
1
2
δ(3)(e(t+), x)ė(t+)ahe(0, t)τihe(t, 1)

+
1
2
δ(3)(e(t−), x)ė(t−)ahe(0, t)τihe(t, 1)

]
(13.3.7)
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(one-sided derivatives and δ-distributions). This expression is also correct if x is
an endpoint of e (in which case there is only one term which survives in (13.3.7):
namely, in the case that we consider he1τjhe2 instead of he, e = e1 ◦ e2 where
x = e1 ∩ e2 is a point of analyticity the result of (13.3.7) is a term involving
τ(iτj)).

Given a triple e, e′, e′′ of (not necessarily distinct) edges of γ, consider the
functions

xee′e′′(t, t′, t′′) := e(t) + e′(t′) + e′′(t′′) (13.3.8)

This function has the interesting property that the Jacobian is given by

det

(
∂
(
x1
ee′e′′ , x

2
ee′e′′ , x

3
ee′e′′

)
(t, t′, t′′)

∂(t, t′, t′′)

)

= εabcė(t)aė′(t′)bė′′(t′′)a (13.3.9)

which is precisely the form of the factor which enters all the integrals in (13.3.6).
This is why we have introduced the strange argument x + y + z.

We now consider the limit Δi,Δ′
i,Δ

′′
i → 0. The idea is that all quantities in

(13.3.6) are meaningful in the sense of functions on smooth connections and thus
limits of functions as Δ → 0 are to be understood with respect to any Sobolov
topology. The miracle is that the final function is again cylindrical and thus the
operator that results in the limit has an extension to all of A/G.

Lemma 13.3.1. For each triple of edges e, e′, e′′ there exists a choice of vectors
�ni, �n

′
i, �n

′′
i and a way to guide the limit Δi,Δ′

i,Δ
′′
i → 0 such that

∫

[0,1]3
det

(
∂
(
xa
ee′e′′

)

∂(t, t′, t′′)

)

χΔ(p, e)χΔ′(2p, e + e′)χΔ′′(3p, e + e′ + e′′)Ôee′e′′

(13.3.10)
vanishes

(a) if e, e′, e′′ do not all intersect p or
(b) det

(
∂(xa

ee′e′′ )
∂(t,t′,t′′)

)

p
= 0 (which is a diffeomorphism-invariant statement).

Otherwise it tends to 1/8sgn
(
det
(

∂(xa
ee′e′′ )

∂(t,t′,t′′)

))

p
Ôe,e′,e′′(p)

∏3
i=1 Δ′′

i . Here we

have denoted by Ôee′e′′(t, t′, t′′) the trace(s) involved in the various terms of
(13.3.6).

Remark: To adapt the regularisation to each triple of edges is justified by the fact
that the classical expression does not depend on the way we regularise when we
take the limit. This has been used already before for the Hamiltonian constraint.

Proof: If at least one of e, e′, e′′ does not intersect p then, if we choose Δi,
etc. smaller than some finite number Δ0, (13.3.10) vanishes identically since the
support of the characteristic functions is in a neighbourhood around p which
shrinks to zero with the Δi, etc. So let us assume that all of e, e′, e′′ intersect
p at parameter value t0, t

′
0, t

′′
0 (this value is unique because the edges are not
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self-intersecting). Then we can write e(t) = p + c(t− t0) where c is analytic and
vanishes at τ = t− t0 = 0. We have the case subdivision:

Case I: det
(

∂(xa
ee′e′′ )

∂(t,t′,t′′)

)

t0
= 0.

Case I(a): All of ċ(0), ċ′(0), ċ′′(0) are co-linear.
Case I(b): Two of ċ(0), ċ′(0), ċ′′(0) are co-linear and the third is linearly inde-
pendent of them.
Case I(c): No two of ċ(0), ċ′(0), ċ′′(0) are co-linear.
Case II: det

(
∂(xa

ee′e′′ )
∂(t,t′,t′′)

)

t0
�= 0.

Notice that all vectors ċ(0), ċ′(0), ċ′′(0) are non-vanishing by the definition of a
curve.

We consider first case I. We exclude the trivial case that all three curves lie
in a coordinate plane or line such that the determinant already vanishes for all
finite values of the Δ’s. Therefore there exist linearly independent unit vectors
u, v, w (not necessarily orthogonal) in terms of which we may express c, c′, c′′.

In case I(a) we have an expansion of the form

c(t) = au(t + o(t2)) + bv(tm + o(tm+1)) + cw(tn + o(tn+1))

c′(t) = au(t + o(t2)) + b′v(tm
′
+ o(tm

′+1)) + c′w(tn
′
+ o(tn

′+1))

c′′(t) = a′′u(t + o(t2)) + b′′v(tm
′′

+ o(tm
′′+1)) + c′′w(tn

′′
+ o(tn

′′+1))

(13.3.11)

where a, b, c, a′, b′, c′, a′′, b′′, c′′ are real numbers with aa′a′′ �= 0 and at least one of
the b’s and c’s being different from zero (also not for instance b = c = b′ = c′ = 0).
Furthermore m,m′,m′′, n, n′, n′′ ≥ 2. The characteristic functions have support
in coordinate cubes spanned by the vectors �ni, �n

′
i, �n

′′
i . Now, since u, v, w are

linearly independent we may simply choose, for instance, �ni := u, �n′
i := v, �n′′

i :=
w. It follows then and from the fact that 0 ≤ χ ≤ 1 that

χΔ(p, e)χΔ′(2p, e + e′)χΔ′′(3p, e + e′ + e′′)

= χ̃Δ(0, c)χ̃Δ′(0, c + c′)χ̃Δ′′(0, c + c′ + c′′)

≤ θΔ1(< c, u >)θΔ′
1
(< c + c′, v >)θΔ′′

1
(< c + c′ + c′′, w >) (13.3.12)

From the explicit expansions of c, c′, c′′ we conclude that (13.3.12) has the bound

θδ1Δ1(t)θδ′1Δ′
1
(t′)θδ′′1 Δ′′

1
(t′′) (13.3.13)

for some sufficiently large numbers δ1, δ
′
1, δ

′′
1 . On the other hand we also see

from the explicit expansion of |det
(

∂(xa
ee′e′′ )

∂(t,t′,t′′)

)
| around t0 that it is bounded by

M(|t|k + |t′|k + |t′′|k) where M is a positive number and where k = min(m +
n′,m + n′′,m′ + n,m′ + n′′,m′′ + n,m′′ + n′) − 2 ≥ 2.
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The prescription of how to guide the limit in case I(a) is then to synchronise
Δ1 = Δ′

1 = Δ′′
1 = Δ and to take the limit Δ → 0 first. The integral is at least of

order Δ5 while we divide only by an order of Δ3 so that the result vanishes.
In case I(b) we have an expansion of the form (let w.l.g. c, c′ have co-linear

tangents)

c(t) = au(t + o(t2)) + bv(tm + o(tm+1)) + cw(tn + o(tn+1))

c′(t) = au(t + o(t2)) + b′v(tm
′
+ o(tm

′+1)) + c′w(tn
′
+ o(tn

′+1))

c′′(t) = a′′v(t + o(t2)) + b′′u(tm
′′

+ o(tm
′′+1)) + c′′w(tn

′′
+ o(tn

′′+1)) (13.3.14)

We now argue as above and find that the product of the characteristic functions
can be estimated by

θδ1Δ1(t)θδ′1Δ′
1
(t′)θδ′′2 Δ′′

2
(t′′)

while the determinant can be estimated as above just that k is now given by
k = min(m,m′,m′′, n, n′, n′′) − 1 ≥ 1.

The prescription is now Δ1 = Δ′
1 = Δ′′

2 =: Δ → 0 first and we conclude that
the integral is at least of order Δ4 while we divide again only by Δ3 such that
the limit vanishes.

In case I (c) finally we have an expansion of the form

c(t) = au(t + o(t2)) + bv(tm + o(tm+1)) + cw(tn + o(tn+1))

c′(t) = av(t + o(t2)) + b′v(tm
′
+ o(tm

′+1)) + c′w(tn
′
+ o(tn

′+1))

c′′(t) = a′′u(t + o(t2)) + b′′v(t + o(t2)) + c′′w(tn
′′

+ o(tn
′′+1)) (13.3.15)

This time we estimate the product of the characteristic functions for instance by

θδ1Δ1(t)θδ′2Δ′
2
(t′)θδ′′2 Δ′′

2
(t′′)

while the determinant can be estimated as above and k is given by k =
min(m,m′, n, n′, n′′) − 1 ≥ 1 so that we have actually the same situation as in
case I(b) upon synchronising this time Δ1 = Δ′

2 = Δ′′
2 =: Δ → 0.

As for case II we observe that the non-vanishing of the functional determinant
at p implies that the map xee′e′′ is actually invertible in a neighbourhood of p by
the inverse function theorem. In other words, there is only one point (t0, t′0, t

′′
0)

such that xee′e′′(t0, t′0, t
′′
0) = p. Moreover, since the determinant is non-vanishing

at p, all three edges must be distinct from each other. It follows now from our
choice of edges that p must be a vertex v = e ∩ e′ ∩ e′′ of γ in order that the result
is non-vanishing and thus from the choice of parametrisation t0 = t′0 = t′′0 = 0.

Therefore, if we take the limit Δ′′
i → 0 first in any order then the condition

χΔ′′(p, xee′e′′) = 1 will actually imply χΔ(p, e) = χΔ′(2p, e + e′) = 1 for small
enough Δ′′

i so that we can take these characteristic functions out of the integral
and replace them by 1 if p is a common vertex of all three edges. Also we can
replace the operator Ôee′e′′(t, t′, t′′) by Ôee′e′′(v). This holds only if the triple
intersects in p.
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If not all of e, e′, e′′ intersect in p then the limit will vanish anyway if we take
a suitable limit of the Δi as we have shown before. We can account for that case
by replacing χΔ(p, e), χΔ′(2p, e + e′) by χΔ(p, v)χΔ′(p, v). Here v is the common
vertex at which the distinct e, e′, e′′ must be incident otherwise they could not
even pass through a small enough neighbourhood of p. We can also assume that
all three edges have linearly independent tangents at v and expand still around
t = 0. The remaining integral divided by Δ′′

1Δ′′
2Δ′′

3 then tends to
∫

[0,1]3
d3tdet

(
∂xee′e′′

∂t

)
δ(3)(p, xee′e′′) = s(e, e′, e′′)

∫

Cee′e′′
d3xδ(3)(p, x)

=
1
8
s(e, e′, e′′) (13.3.16)

where

s(e, e′, e′′)v := sgn(det(ė(0), ė′(0), ė′′(0))) (13.3.17)

The factor 1/8 is due to the fact that in the limit Δ′′ → 0 we obtain an inte-
gral over C(e, e′, e′′), the cone based at p and spanned by ė(0), ė′(0), ė′′(0)
where the orientation is taken to be positive. This integral just equals∫
R3

+
d3tδ(0, t)δ(0, t′)δ(0, t′′) = 1/8 as one can easily check. This furnishes the

proof. �

We conclude that (13.3.6) reduces to (in particular, the operators
Ô12,3Ô1,23Ô2,31Ô123 drop out)

lim
Δ′′→0

Ê(p,Δ,Δ′,Δ′′)f =
∑

e,e′,e′′

i�6ps(e, e
′, e′′)v

83 · 3!vol(Δ)vol(Δ′)

×χΔ(p, v)χΔ′(p, v)Ôe,e′,e′′(0, 0, 0)

where v on the right-hand side is the intersection point of the triple of edges and
it is understood that we only sum over such triples of edges which are incident
at a common vertex. There is no factor of 33 missing because it cancels against
a similar factor in vol(Δ′′). Moreover,

Ôe,e′,e′′(0, 0, 0) = εijkX
i
e′′X

j
e′X

k
e and Xi

e := Xi(he(0, 1))

:= tr
(

(τihe(0, 1))T
∂

∂he(0, 1)

)
(13.3.18)

is a right-invariant vector field in the τi direction of SU(2), that is, X(hg) =
X(h). We have also extended the values of the sign function to include 0, which
takes care of the possibility that one has triples of edges with linearly dependent
tangents.

The final step consists in choosing Δ = Δ′ and taking the square root of the
modulus. We replace the sum over all triples incident at a common vertex

∑
e,e′,e′′

by a sum over all vertices followed by a sum over all triples incident at the same
vertex

∑
v∈V (γ)

∑
e∩e′∩e′′=v. Now, for small enough Δ and given p, at most one
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vertex contributes, that is, at most one of χΔ(v, p) �= 0 because all vertices have
finite separation. Then we can take the relevant χΔ(p, v) = χΔ(p, v)2 out of the
square root and take the limit, which results in

V̂ (R)γ =
∫

R

d3p
̂

√
det(q)(p)γ =

∫

R

d3pV̂ (p)γ

V̂ (p)γ =
(
�p
2

)3 ∑

v∈V (γ)

δ(3)(p, v)V̂v,γ

V̂v,γ =

√√
√
√
√

∣
∣
∣
∣
∣
∣

i

3! · 8
∑

e,e′,e′′∈E(γ),e∩e′∩e′′=v

s(e, e′, e′′)qee′e′′

∣
∣
∣
∣
∣
∣

qee′e′′ = εijkX
i
eX

j
e′X

k
e′′ (13.3.19)

where we could switch the order of the X’s because a triple contributes only if
the corresponding edges are distinct and so the X’s commute.

Expression (13.3.19) is the final expression for the volume operator and coin-
cides precisely1 with the expression found in [427]. Note that the final expression
is manifestly diffeomorphism-covariant. Although the procedure of adapting the
limiting to a given triple of edges is somewhat non-standard there is an argu-
ment in favour of such a procedure: the discussion in Lemma 13.3.1 reveals
that any other regularisation which would result in a finite contribution for the
case where s(e, e′, e′′) is zero would necessarily depend on the higher-order inter-
section characteristics of a triple of edges. However, since such a quantity is
not diffeomorphism-covariant, which is unacceptable, the dependence must be
trivial.

As we will see, there are both kinematical and dynamical reasons to prefer
the operator of [427] over [425]. The kinematical reason is that one can show
that [425] is inconsistent with the flux operator on which the volume operator is
based [573,574]. We will discuss this in more detail in Section 13.5. The dynamical
reason is that the Hamiltonian constraint or Master Constraint would not even
be densely defined if one used [425] in place of [427]. This is due to the fact
that the volume operator of [425] does not annihilate coplanar at least trivalent
and non-gauge-invariant vertices. Therefore, following the regularisation of the
Hamiltonian constraint of Section 10.4 one realises that the resulting operator
would not only act at the vertices of the graph of a spin-network function but
(in the limit of infinite refinement) at all interior points of all edges unless one
excludes such contributions by hand. However, even if one did that, the resulting
operator would no longer be free of anomalies.

1 In order to avoid confusion, in [427] one uses Y j
E = Xj

e/2 and κ′ = κ/2 so that (�′
P )2 =

�2P /2. In terms of these quantities there is no factor 1/8 in �3P /8.
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13.4 Properties of the volume operator

This section is subdivided into three parts. First we prove that the family of
operators derived in (13.3.19) defines a linear unbounded operator on H. Next
we show that the operator is symmetric, positive semidefinite and admits self-
adjoint extensions (actually it is essentially self-adjoint) and finally we show that
its spectrum is discrete and that the operator so defined is anomaly-free.

13.4.1 Cylindrical consistency

What we have obtained in (13.3.19) is a family of operators (V̂ (R)γ , Dγ)γ∈Γ.
That is not enough to show that this family of cylindrical projections ‘comes
from’ a linear operator on H. As for the area operator, for this to be the case we
need to check that whenever γ ⊂ γ′ then

1. p∗γγ′Dγ ⊂ Dγ′ where pγγ′ is the restriction from γ′ to γ. This condition makes
sure that the operator defined on bigger graphs can be applied to functions
defined on smaller graphs.

2. (V̂ (R)γ′)|γ = V̂ (R)γ , this is the condition of cylindrical consistency and says
that the operator on bigger graphs equals the operator on smaller graphs
when restricted to functions thereon.

A graph γ ⊂ γ′ can be obtained from a bigger graph γ′ by a finite series of steps
consisting of the following basic ones:

(i) remove an edge from γ′;
(ii) join two edges e′, e′′, such that e′ ∩ e′′ is a point of analyticity, to a new

edge e = e′ ◦ (e′′)−1;
(iii) reverse the orientation of an edge.

Clearly, a dense domain for V̂ (R)γ is given by Dγ := Cyl3γ(A/G). This choice
trivially satisfies requirement (1) since functions which just do not depend on
some arguments or only on special combinations he = he′he′′ , he′ = h−1

e are still
thrice continuously differentiable if the original function was (here we have used
the fact that SU(2) is a Lie group, that is, group multiplication and taking
inverses is an analytic map).

Next, let us check cylindrical consistency. Consider first the case (i) that γ

does not depend on an edge e on which γ′ does. Then clearly Xi
efγ = 0 for any

function cylindrical with respect to γ and so in the sum over triples over vertices
in (13.3.19) the terms involving e drop out.

Next consider the case (ii). If e = e′ ◦ (e′′)−1 is an edge of γ and e′, e′′ are
edges of γ′ where v := e′ ∩ e′′ is a point of analyticity for γ while for γ′ it is
not, then while v is a vertex for γ′ it is only a pseudo-vertex for γ and so
in V̂ (D)γ there is no term corresponding to v. On the other hand, since the
vertex v is a pseudo-vertex for γ it is in particular only two-valent and so the
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corresponding term in V̂ (D)γ′ drops out. Likewise, if v is a vertex for γ at which
the outgoing edge e is incident, then from right invariance of the vector field we
have Xe = Xe′◦(e′′)−1 = Xe′ and so at vertices that belong to both γ and γ′ the
corresponding vertex operators coincide.

Finally, case (iii) is actually excluded by our unambiguous choice of orientation.
We conclude that there exists an operator (V̂ (R), D) on H which is densely

defined on D = Cyl3(A/G).

13.4.2 Symmetry, positivity and self-adjointness

Notice that the vector field iXe is symmetric on Hγ , the completion of Cyl1γ(A/G)
with respect to μ0,γ , e an edge of γ, because the Haar measure is right-invariant.
It follows from the explicit expression (13.3.19) in terms of the iXe that all
the projections V̂ (R)γ are symmetric. In this special case (namely, the volume
operator leaves the space Dγ-invariant) this is enough to show that V̂ (R) is
symmetric on D.

Furthermore, all V̂ (R)γ are positive semidefinite by inspection so that V̂ (R), D
is a densely defined, positive semidefinite and symmetric operator. It follows
that it has self-adjoint extensions, for instance its Friedrich extension. That this
extension is actually the unique one follows from essential self-adjointness, which
can be shown by the same method as applied to flux and area operators and which
we leave to the reader.

13.4.3 Discreteness and anomaly-freeness

The operator V̂ (R) has the important property that it leaves the dense subset
Cyl∞γ (A/G) ⊂ H invariant, separately for each γ ∈ Γ. Spin-network functions
Tγ,�j,�I are particular smooth functions of that sort. Notice that given γ,�j there

are only a finite number of linearly independent �I compatible with γ,�j. Now it
is obvious that the operator V̂ (R) leaves the finite-dimensional vector space Uγ,�j

spanned by spin-network states compatible with γ,�j invariant. The matrix

(V (R)γ�j)�I,�I′ :=< Tγ,�j,�I |V̂ (R)|Tγ,�j,�I′ > (13.4.1)

is therefore finite-dimensional, positive semidefinite and symmetric. The task of
computing its eigenvalues therefore becomes a problem in linear algebra!

Next, since from (13.3.19)

V̂ (R)γ = �3p
∑

v∈V (γ)∩R

V̂v,γ (13.4.2)

and since V̂v,γ involves only those e ∈ E(γ) with v ∈ e, we find that V̂v,γ can
only change the entry Iv in �I. In other words, [V̂v,γ , V̂v′,γ ] = 0 and each V̂v,γ can
be diagonalised separately.

Finally, since the spins je only take discrete values it follows that Hγ has a
countable basis and the spectrum that V̂ (R) attains on Dγ is therefore pure
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point. Let us check whether this is the complete spectrum. Assume it were not
and let P̂ be the spectral projection on the rest of the spectrum (the existence of
the spectral projections relies on the fact that V̂ (R) is self-adjoint and not only
symmetric). It follows that u = P̂ v is orthogonal to Dγ where v is any vector
in Hγ . But Dγ is dense in Hγ and so we find for every ε > 0 a φ ∈ Dγ with
||u− φ|| < ε. Now we have from orthogonality ε2 > ||u− φ||2 = ||u||2 + ||φ||2 >

||u||2 and so u = 0. This shows that the complete spectrum is already attained
on Dγ . It is purely discrete as well in the physical sense that it is attained on
a countable basis so that the eigenvalues only comprise a countable set. In a
mathematical sense one would need to check that there are no accumulation
points and no eigenvalues of infinite multiplicity for a given graph. This is one
possible future application of the explicit matrix element formulae which we
derive in the next subsection.

Last, we wish to show that the volume operators are anomaly-free (given the
fact that we have largely adapted our regularisation to a graph, this statement
is far from trivial). By this we mean the following: given any two open sets
R1, R2 ⊂ Σ we have vanishing Poisson brackets {V (R1), V (R2)} = 0 because the
functionals V (R) depend on the momentum variable Ea

i (x) only. Now, given a
function f cylindrical with respect to a graph γ, it is not at all obvious any
more that [V̂ (R1), V̂ (R2)]f = 0 for any such f . Fortunately, given the above
characterisation of the spectrum, the commutator can easily be proved to vanish
on cylindrical functions. To see this, note that the above results imply that if
we choose any region R(γ) such that γ ⊂ R(γ) then there exists an eigenbasis
of Hγ of V̂ (R(γ)). Now consider any region R. Since all regions are open by
construction, all regions fall into equivalence classes with respect to γ: R,R′

are equivalent if they contain the same vertices of γ (any vertex either has a
neighbourhood which lies completely inside R or it lies outside). Therefore any
two V̂ (R), V̂ (R′) differ at most by some of the V̂v,γ , all of which are contained in
the expression for V̂ (R(γ)). Since the V̂v,γ commute, the eigenbasis of V̂ (R(γ))
is a simultaneous eigenbasis of all V̂v,γ for all v ∈ V (γ) and so this eigenbasis is
a simultaneous eigenbasis of all V̂ (R)γ . Since all Hγ are orthogonal, we have a
simultaneous eigenbasis for all V̂ (R).

While it is in general not enough to verify that two self-adjoint, unbounded
operators commute on a dense domain (rather, by definition, we have to check
that the associated spectral projections commute) in our case we are done
because the spectral projections are the projections on the various Dγ because
the point spectrum is already the complete spectrum. Thus we have verified that
the commutator algebra mirrors the classical Poisson algebra.

13.4.4 Matrix elements

In contrast to the area operator, the volume operator cannot be diagonalised
in closed form. The reason for this is that the operator Qv,γ , related to
the volume operator by V fγ =

∑
v∈V (γ)

√
|Qv,γ |fγ where fγ is a function
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cylindrical over γ and v ∈ V (γ), is a homogeneous polynomial of third order
in the nv right-invariant vector fields Xj

e where nv is the valence of the ver-
tex. While we can easily calculate matrix elements of Qv,γ in the spin-network
basis using the quantum mechanics of nv angular momentum operators by the
technique displayed in Chapter 32 and which results in a finite-dimensional, anti-
symmetric and Hermitian matrix for each fixed choice of the spins je (because
Qv,γ leaves the �j invariant, it just changes the intertwiners �I of the spin-network
functions Tγ,�j,�I), that matrix has no obvious special symmetries and hence its
eigenvalues, for generic configurations of the je, cannot be calculated analyt-
ically any more by quadratures beyond rank nine. Hence, what needs to be
done in order to compute matrix elements of the volume operator is to develop
approximation methods which relate the matrix elements of V to the analyti-
cally available matrix elements of Q2 = V 4. One such method is to use coher-
ent states which we have discussed in Chapter 11. Essentially, coherent states
are diagonal, within the limits of the Heisenberg uncertainty obstruction, for
all operators, hence to zeroth order in h̄ the expectation value of the volume
operator can be replaced by its classical value at that point in phase space at
which the coherent state is peaked. In order to compute the higher-order cor-
rections we consider the Taylor expansion around the coherent state expectation
value < Q >

V =
√
|Q| = 4

√
(< Q > + [Q− < Q >])2

=
√
| < Q > |

{

1 +
1
4

[(
Q− < Q >

< Q >

)2

− 2
Q− < Q >

< Q >
− 3

8

(
Q− < Q >

< Q >

)2

+O

((
Q− < Q >

< Q >

)3
)]}

Since the operator Q is unbounded while the radius of convergence of the Taylor
expansion is bounded, the validity of this expansion must be established by
independent means which is possible2 by using properties of coherent states and
semiclassical perturbation theory developed in [591]. The expectation values can
then be computed with sufficient accuracy in h̄ because expectation values of
powers of Q can be computed analytically.

We see that we are left with computing matrix elements of Q with respect
to spin-network states (coherent states are coherent superpositions of those).
Furthermore, the matrix elements of Q are linear combinations of the matrix

2 Basically, given a self-adjoint operator A and a function f : R → R one finds polynomial
functions f± such that f− ≤ f ≤ f+. Then by positivity and the spectral theorem

< f̂ >∈ [< f̂− >,< f̂+ >], where, for example, f̂ = f(A), for the expectation values with
respect to any states. For coherent states the range of the interval is indeed given by the
fluctuations (to first order in h̄) of the right-hand side of (13.4.3). All h̄ corrections can be
computed by this method using polynomials of sufficiently high degree.
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elements of the operators (see Chapter 32 for the notation)

QIJK = −iεijkX
i
IX

j
JX

k
K = 8εijkY i

I Y
j
J Y

k
K = −8iY i

I Y
j
J

[
Y i
K , Y j

K

]

= −8i
[
Y i
I Y

i
K , Y j

J Y
j
K

]

where I < J < K. The idea of computing the matrix elements of QIJK is to
expand the spin-network states defined in Chapter 32 which are written in
terms of the standard recoupling scheme (j1...k−1, jk) → j1...k, k = 2, . . . , nv

in terms of another basis of spin-network states which are adapted to
the two operators Y i

I Y
i
K , Y i

JY
i
K . Namely we define for I < J the (I, J)

recoupling scheme by (jI , jJ) → jIJ , (jIJ1...k−1, jk) → jIJ1...k for k = 1
, . . . , I − 1, (jIJ1...I−1I+1...l−1, jl) → jIJ1...I−1I+1...l for l = I + 1, . . . , J − 1,
(jIJ1...I−1I+1...J − 1J + 1...m−1, jm) → jIJ1...I − 1I + 1...J − 1J + 1...m for m = J + 1,
. . . , nv. The purpose of doing this is of course that the operators
(Y i

I + Y i
J)2, (Y i

I + Y i
J + Y i

1 + · · · + Y i
k )2, (Y i

I + Y i
J + Y i

1 + · · · + Y i
I−1 +

Y i
I+1 + · · · + Y i

l )2, (Y i
I + Y i

J + Y i
1 + · · · + Y i

I−1 + Y i
I+1 + · · · + Y i

J−1 + Y i
J+1 +

· · · + Y i
m)2 respectively are diagonal in this basis with eigenvalues given by the

recoupling angular momenta j∗(j∗ + 1). In particular, (Y i
IJ)2, Y i

IJ = Y i
I + Y i

J

has eigenvalues jIJ(jIJ + 1). Hence we compute

<(1, 2)|QIJK |(1, 2)′ >

=
∑

(I,K),(J,K)

[<(1, 2)|(I,K)><(I,K)
∣∣(Y i

IK

)2(
Y i
JK

)2∣∣(J,K)><(J,K)|(1, 2)′ >

− < (1, 2)|(J,K) >< (J,K)|
(
Y i
JK

)2(
Y i
IK

)2|(I,K) >< (I,K)|(1, 2)′ >]

=
∑

(I,K),(J,K)

jIK(jIK + 1) jJK(jJK + 1) < (I,K)|(J,K) >

× [<(1, 2)|(I,K)><(J,K)|(1, 2)′ >−<(1, 2)|(J,K)><(I,K)|(1, 2)′ >]

where we are summing over all intermediate states of the adapted recou-
pling scheme. Here we have exploited that the coefficients < (I, J)|(K,L) > are
real-valued so that < (I, J)|(K,L) >=< (K,L)|(I, J) >. This follows from the
fact that up to the unitary transformation W of Chapter 32 the coefficients
< (I, J)|(K,L) > are polynomials of Clebsch–Gordan coefficients, more precisely
they are known as 3(n− 1) − j symbols for n degrees of freedom (n-valent ver-
tex).

Most of the work in computing < (1, 2)|QIJK |(1, 2)′ > is devoted to computing
< (1, 2)|(I, J) > for which a closed but tedious expression was derived in [559].
That expression is a complicated polynomial of 6j symbols which are the coeffi-
cients of the unitary matrix, which for fixed j1, j2, j3 mediates between the recou-
pling schemes (j1, j2) → j12, (j12, j3) → j123 and (j1, j3) → j13, (j13, j2) → j123.
For the 6j symbols themselves a closed expression is available, the so-called
Racah formula. However, that formula is again a complicated sum of frac-
tions of large factorials which therefore even for numerical evaluations quickly
becomes a challenge even for moderately large values of j1, j2, j3. A tremendous
simplification was achieved in [665] where by means of the Elliot–Biedenharn
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identity among 6j symbols the polynomials of 6j symbols could be eliminated.
The end result is the quite simple expression which holds for I > 1, J > I + 1
(the remaining cases require a tedious case-by-case analysis and can be found
in [665]):

< 	a|QIJK |	a′ >

=
1

4
(−1)jK+jI+aI−1+aK (−1)aI−a′

I (−1)
∑J−1

n=I+1 jn (−1)
−∑K−1

p=J+1 jpX(jI , jJ )
1
2 X(jJ , jK)

1
2

×
√

(2aI + 1)(2a′
I + 1)

√
(2aJ + 1)(2a′

J + 1)

×
{

aI−1 jI aI

1 a′
I jI

}⎡

⎣
J−1∏

n=I+1

√
(2a′

n + 1)(2an + 1)(−1)a
′
n−1+an−1+1

{
jn a′

n−1 a′
n

1 an an−1

}⎤

⎦

×

⎡

⎣
K−1∏

n=J+1

√
(2a′

n + 1)(2an + 1)(−1)a
′
n−1+an−1+1

{
jn a′

n−1 a′
n

1 an an−1

}⎤

⎦

{
aK jK aK−1

1 a′
K−1 jK

}

×
[

(−1)a
′
J+a′

J−1

{
aJ jJ a′

J−1

1 aJ−1 jJ

}{
a′
J−1 jJ a′

J

1 aJ jJ

}

× −(−1)aJ+aJ−1

{
a′
J jJ a′

J−1

1 aJ−1 jJ

}{
aJ−1 jJ a′

J

1 aJ jJ

}]

×
I−1∏

n=2

δana′
n

N∏

n=K

δana′
n

(13.4.3)

with X(j1, j2) = 2j1(2j1 + 1)(2j1 + 2)2j2(2j2 + 1)(2j2 + 2) and we have abbrevi-
ated ak := j1...k. The result is written directly in the abstract angular momentum
Hilbert space (the image of the map W displayed in Chapter 32) and we used
QIJK := [J2

IJ , J
2
JK ]. Notice that all still appearing 6j symbols are just abbrevi-

ations for the following simple expressions in which no summations or products
(factorials) need to be carried out any longer, for example (using s = a + b + c):

{
a b c

1 c b

}

= (−1)s+1 2[b(b + 1)c(c + 1) − a(a + 1)]

[2b(2b + 1)(2b + 2)2c(2c + 1)(2c + 2)]
1
2

(13.4.4)

{
a b c

1 c− 1 b

}

= (−1)s

[
2(s + 1)(s− 2a)(s− 2b)(s− 2c + 1)

2b(2b + 1)(2b + 2)(2c− 1)2c(2c + 1)

] 1
2

(13.4.5)

{
a b c

1 c− 1 b− 1

}

= (−1)s

[
s(s + 1)(s− 2a− 1)(s− 2a)

(2b− 1)2b(2b + 1)(2c− 1)2c(2c + 1)

] 1
2

(13.4.6)

{
a b c

1 c− 1 b + 1

}

= (−1)s

[
(s− 2b− 1)(s− 2b)(s− 2c + 1)(s− 2c + 2)

(2b + 1)(2b + 2)(2b + 3)(2c− 1)2c(2c + 1)

] 1
2

(13.4.7)

We will not derive the final formula (13.4.3) here, the detailed proof can be found
in [665]. For the case of a gauge-invariant four-vertex this result had been derived
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previously in [669] by graphical techniques. For this case we have j123 = j12 in
order that J = j1234 = 0 is possible so that the intertwiners are parametrised
by j12 only. Furthermore, also due to gauge invariance we have Xj

4 = −(Xj
1 +

Xj
2 + Xj

3) so that all QIJK , I < J < K coincide with ±Q123 on gauge-invariant
states. The non-vanishing matrix elements are then

< j12|Q123|j12 − 1 >

=
1

√
(2j12 − 1)(2j12 + 1)

[(j1 + j2 + j12 + 1)(−j1 + j2 + j12)(j1 − j2 + j12)

× (j1 + j2 − j12 + 1)(j3 + j4 + j12 + 1)(−j3 + j4 + j12)(j3 − j4 + j12)

× (j3 + j4 − j12 + 1)]
1
2

= −< j12 − 1|q̂123|j12 > (13.4.8)

Formula (13.4.3) holds for arbitrary valence and also for non-gauge-invariant
states which is important in applications, for instance the Hamiltonian constraint
or the length operator where non-gauge-invariant states appear in intermediate
steps of the calculation since one writes triad operators, which are themselves
not gauge-invariant but out of which gauge-invariant operators are composed, as
commutators between non-gauge-invariant holonomies and the volume operator.

13.5 Uniqueness of the volume operator, consistency with the flux
operator and pseudo-two-forms

The regularisation of the volume operator displayed in the previous section
is quite involved and it is far from manifest that a different regularisation
would have resulted in the same expression. Indeed, as we have said already,
there exists an alternative regularisation due to Rovelli and Smolin [425] which
does result in a qualitatively different operator while the operator derived here
by a point-splitting regularisation agrees with the one derived by Ashtekar
and Lewandowski by yet another (averaging) technique [427]. In terms of the
operators QIJK = εijkX

i
IX

j
JX

k
K , defined for a given vertex v of a given graph

γ, the difference between these two operators is roughly as follows

8VRS,γ,v/�
3
P = cRS

∑

I<J<K

√
|QIJK |

8VAL,γ,v/�
3
P = cAL

√√√
√
∣∣∣∣∣

∑

I<J<K

σIJK QIJK

∣∣∣∣∣

Apart from the overall factor cRS, cAL which could depend on the details of
the regularisation, we see two differences. First, the sum over ordered triples
is outside the square root for RS and inside for AL. Second, the orientation
factor σIJK = sgn(det(ėI(0)),det(ėJ(0)),det(ėK(0))), eI(0) = v is absent for the
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RS operator. Hence, the operator due to AL vanishes identically on vertices all
of whose adjacent edges have co-planar tangents while the volume operator due
to RS does not. In particular, the AL operator therefore depends on the differ-
ential structure of σ while the RS operator does not. One may like the latter
property because when using diffeomorphisms which are only piecewise analytic
homeomorphisms then the ‘diffeomorphism-invariant’ Hilbert space would be
separable [557,558]. Notice, however, that homeomorphisms are not symmetries
of the classical action and that the semianalytic (i.e., at least C(1)) structure is
indispensable in order to derive the uniqueness result on the kinematical repre-
sentation of Loop Quantum Gravity. Also, piecewise analytic homeomorphisms
are not known to form a group, which would be desirable in order to solve
the diffeomorphism constraint by group averaging techniques. Furthermore, the
quantum dynamics acts by adding or removing trivalent vertices which do not
contain diffeomorphism-invariant information (θ moduli) and hence preserves
each θ sector. Hence, if the Dirac observables share the same property, then all
θ sectors are superselected and thus contain the same physical information. In
other words, by just choosing one of these sectors we also arrive at a separa-
ble diffeomorphism-invariant Hilbert space even when only using semianalytic
diffeomorphisms.

It is easy to see that both VRS, VAL are cylindrically consistent and
diffeomorphism-covariant and therefore a priori seem to be equally valid
quantum volume operators. In [573,574] a consistency check on Loop Quantum
Gravity was performed which could discriminate between VRS, VAL and fix the
regularisation constant. The idea is quite simple: as we have shown, the volume
operator is derived from the known quantisation of the flux operator. Now we
may in turn write the classical flux in terms of triads by using

Ea
j =

√
det(q)eaj =

1
2
sgn(det(e))εabcεjklekb e

l
c

and the Poisson bracket identity {V (R), Aj
a(x)} ∝ eja(x) for x ∈ R. At

this point it is worthwhile mentioning that there is a classical canon-
ical transformation E �→ E′ = SE, A = Γ + βK �→ A′ = Γ + βSK where
S = sgn(det(e)) = sgn(det(E)) (this is a canonical transformation because
S = ±1 = const. classically). However, if one worked with E′, A′ rather than
E,A then det(E′) = det(e)2 ≥ 0 cannot take both signs. Thus, E′ could not be
represented as a self-adjoint (functional) derivative operator for the same reason
that id/dx does not represent a classical momentum p on R subject to the
anholonomic constraint p ≥ 0 (this would be a contangent bundle over R+ as
has been pointed out, e.g., in [670] and must be quantised differently). As a side
result, the check performed in [573,574] could rule out that the Hilbert space rep-
resentation of Loop Quantum Gravity is based on the classical variables E′, A′,
hence Ea

j must be a true vector density rather than a pseudo-vector density
(equivalently, (∗Ej)ab = εabcE

c
j is a pseudo-two-form rather than a two-form).
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In order to quantise
∫

S

∗E ∝
∫

S

S {A, V } ∧ {A, V }

written in terms of Poisson brackets with the volume functional, one partitions
the surface S into plaquettes, replaces connections by holonomies along the
boundaries of the plaquettes, the volume functional by the volume operator and
Poisson brackets by commutators divided by īh. Finally, one has to take the con-
tinuum limit of refining the partition. Notice that due to the appearance of the
signum function S in that expression one had to quantise S as well in [573,574].

The result is very simple: Ŝ(x) = sgn(Q̂(x)) where V̂AL(x) =
√
|Q̂(x)|. As dis-

played, it turns out that in order to define Ŝ one necessarily has to use the
regularisation of the volume operator due to Ashtekar and Lewandowski. Hence,
already at this stage it would be strange to use the volume operator due to Rov-
elli and Smolin within the commutators because both V,S come from the same
classical quantity det(E) and hence both should be regularised in the same fash-
ion. However, even when doing this artificially, it turns out that the RS volume
is inconsistent with the flux operator while the AL operator is fully consistent if
and only if cAL = 1/48. This is even the case when taking factor ordering ambi-
guities into account. Notice that the flux is not a gauge-invariant operator and
therefore in this calculation for the first time the non-trivial map W derived in
Chapter 32 between the spin-network and abstract angular momentum Hilbert
space was discovered. Interestingly, the very first, pioneering paper on the vol-
ume operator [660] contains a regularisation leading to a heuristic formula which,
when made rigorous, would lead to [427] rather than [425].

One should not view this consistency check as a criticism of [425]. Rather,
the fact that within Loop Quantum Gravity one can discriminate between the
equally reasonable candidates by using mathematical consistency arguments is
a strength of the theory.

13.6 Spatially diffeomorphism-invariant volume operator

We now sketch how to make the geometrical operators at least a weak observable
with respect to spatial diffeomorphisms. This is easiest for the volume functional.

Let R be a coordinate region, that is, a D-dimensional submanifold of σ, then
the volume functional is defined by

Vol[R] :=
∫

R

dDx
√

det(q) =
∫

σ

dDxχR

√
det(q) (13.6.1)

where χR denotes the characteristic function of the set R. Suppose now that
we couple gravity to matter (which is possible, see Chapter 12) and that ρ is a
positive definite scalar density of any weight of the matter (and gravitational)
degrees of freedom. Here by positive definite we mean that ρ(x) = 0 if and only
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if the matter field vanishes at x. For instance, if we have an electromagnetic field
we could use the electromagnetic field energy density

ρ =
qab

2
√

det(q)
[EaEb + BaBb]

Consider now the intrinsically defined region

Rρ := {x ∈ σ; ρ(x) > 0} (13.6.2)

Then

Vol[Rρ] =
∫

σ

dDxθ̃(ρ)
√

det(q) (13.6.3)

where θ̃ is the modified step function with θ̃(x) = 1 if x > 0 and θ̃(x) = 0 other-
wise. We claim that (13.6.3) is in fact diffeomorphism-invariant. To see this, it
is sufficient to show that Fρ(x) := θ̃(ρ(x)) is a scalar of density weight zero. Let
ρ be of density weight n, then under a diffeomorphism

Fρ(x) �→ θ̃(|det(∂ϕ(x)/∂x)|nρ(ϕ(x))) = θ̃(ρ(ϕ(x))) = (ϕ∗Fρ)(x)

since θ̃(cx) = θ̃(x) for any c > 0.
The use of matter is not really essential, we could also have used a gravitational

degree of freedom, say ρ =
√

det(q)R2 where R is the curvature scalar. The point
is now that for scalar densities we can actually define ρ̂ as an operator-valued
distribution (see Chapter 10) if and only if ρ has density weight one. Let U be a
partion of σ. If it is fine enough and ρ(x) > 0 then also ρ[U ] :=

∫
U
dDxρ(x) > 0

for x ∈ U ∈ U , therefore (13.6.3) is approximated by

VolU [Rρ] =
∑

U∈U
θ̃(ρ[U ])Vol[U ] (13.6.4)

Now ρ[U ] can be turned into a densely defined positive definite operator and thus
θ̃(ρ̂[U ]) can be defined by the spectral theorem. Moreover, since θ̃(x)2 = θ̃(x) we
can order (13.6.4) symmetrically and define

V̂olU [ρ] =
∑

U∈U
θ̃(ρ[Û ])V̂ol[U ]θ̃(ρ[Û ]) (13.6.5)

One now has to refine the partition and show that the final operator V̂ol[ρ],
if it exists, is consistently defined. Since the spectrum of θ̃(ρ[Û ]) is given by
{0, 1}, the spectra of that final operator and the coordinate volume operator
should coincide and in that sense the discreteness of the spectrum is carried
over to the diffeomorphism-invariant context. Of course there remain technical
issues, for instance V̂ol[U ], θ̃(ρ[Û ]) do not commute and cannot be diagonalised
simultaneously, the existence of the limit is unclear, etc. The details will appear
elsewhere [227].



13.6 Spatially diffeomorphism-invariant volume operator 457

What this sketch shows are three points:

1. Kinematical operators have a chance of becoming full Dirac observables by
defining their coordinate regions invariantly through matter (for invariance
under the Hamiltonian evolution, this requires them to be smeared over time
intervals as well, see Section 2.2). Actually, this is physically the way that one
defines regions!

2. The discreteness of the spectrum then has a chance of being an invariant
property of the physical observables (depending on the choice of clock variable
that one chooses with respect to the Hamiltonian constraint [227]).

3. If discreteness holds true also for the complete (Dirac) observables, then some-
thing amazing has happened: we started out with a semianalytic manifold σ

and smooth area functions. Yet, their spectra are entirely discrete, hinting at a
discrete Planck scale physics, quantum geometry is distributional rather than
smooth. Hopefully, the semianalytic structure that we needed at the classical
level everywhere can be lifted to a purely combinatorial structure in the final
picture of the theory, as happened for 2 + 1 gravity, see [355]. See also the
Algebraic Quantum Gravity programme of Section 10.6.5 and [589].
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Spin foam models

Spin foam models are an attempt at a fully covariant formulation of Loop Quan-
tum Gravity. The subject took off when the Hamiltonian constraint of Chapter
10 was developed and one tried to use it in order to define a path integral for-
mulation of its ‘transition amplitudes’. The field has grown quite a bit since its
incarnation and it almost deserves a book of its own. We will devote relatively
little space to it because we focus on the most important aspect, namely its
relation with the canonical formalism and the interpretation of spin foam mod-
els. For an introduction to spin foam models we recommend the really beautiful
articles by Baez [671, 672] which contain an almost complete and up-to-date
guide to the literature and the historical development of the subject. See also
the articles by Barrett [673, 674] for the closely related subject of state sum
models and the most updated review article by Perez [675] and the thesis by
Oriti [676].

What follows is a structural overview of spin foam models which focuses on
mediating the main ideas and the open problems in constructing spin foam
models.

14.1 Heuristic motivation from the canonical framework

The prototype of spin foam models are state sum models that had been stud-
ied extensively [677–681] within the context of topological quantum field theo-
ries [682–691] long before spin foam models arose within quantum gravity. The
concrete connection of state sum models with canonical quantum gravity was
made by Reisenberger and Rovelli in their seminal paper [453], where they used
the (Euclidean version of the) Hamiltonian constraint described in Chapter 10
in order to write down a path integral formulation of the theory.

A heuristic method of solving the Hamiltonian constraint is to take any kine-
matical state ψ and map it to δ(Ĥ†)ψ where δ(Ĥ†) =

∏
x∈σ δ(Ĥ

†(x)). Here one
hopes to define δ(Ĥ†(x)) :=

∫
R
dt exp(itĤ†(x))/(2π) formally by the functional

calculus, see Chapter 29. It is clear that this proposal is not only mathematically
formal due to the infinite product of δ-distributions but strictly speaking also ill-
defined: the Ĥ†(x) are operator-valued distributions rather than operators and
even when smearing them with test functions they are not normal, that is, they
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do not commute with their adjoint so that the spectral theorem cannot be used
in order to define the exponential.

Notice also that we really must use ψ ∈ Hkin rather than Hdiff because the
Hamiltonian constraint does not preserve Hdiff . However, then not even formally
does the infinite product define a projector because on Hkin the δ(Ĥ†(x)) do
not commute, hence Ĥ†(y)

∏
x δ(Ĥ

†(x)) �= 0. If we introduce some kind of lexi-
cographic ordering among the points x then formally we have
[

Ĥ†(y),
∏

x

δ(Ĥ†(x))

]

=
∑

z<y

[
∏

x<z

δ(Ĥ†(x))

]

[Ĥ†(y), δ(Ĥ†(z))]

[
∏

z<x

δ(Ĥ†(x))

]

(14.1.1)

and one may hope that the infinite sum of commutators is proportional to a dif-
feomorphism constraint. However, even if that were the case, the diffeomorphism
constraint again does not commute with the Hamiltonian constraints but rather
the commutator is another Hamiltonian constraint so that (14.1.1) is not even
annihilated by diffeomorphism-invariant states.

Proceeding formally anyway, we may use a path integral formulation of the
δ-distribution. Neglecting an (infinite) constant as usual we obtain the functional
integral

δ(Ĥ ′) =
∫

[dN ]ei
∫
σ
d3xN(x)Ĥ′(x) (14.1.2)

Interestingly, (14.1.2) is formally spatially diffeomorphism-invariant because
under a diffeomorphism Ĥ ′(N) �→ Ĥ ′(N ◦ ϕ−1) and since ϕ is just a bijection on
the set of points σ we have [dN ] =

∏
x dN(x) =

∏
x dN(ϕ−1(x)) =

∏
ϕ(x) dN(x).

Therefore (14.1.2) may be applied to spatially diffeomorphism-invariant states
and this is why we have used the dual operator. However, even when neglect-
ing the mathematical issues mentioned, the point raised above remains: (14.1.2)
applied to a spatially diffeomorphism-invariant state is not annihilated by the
Ĥ ′(N) because, while [Ĥ ′(N), Ĥ ′(N ′)]ψ = 0 (as an element of D∗) for ψ ∈ Hdiff

it is not true that [[Ĥ ′(N), Ĥ ′(N ′)], Ĥ ′(N ′′)]ψ = 0. To see this we simply com-
pute for f ∈ Dkin

([[Ĥ ′(N), Ĥ ′(N ′)], Ĥ ′(N ′′)]ψ)[f ] = (Ĥ ′(N ′′)ψ)[[Ĥ†(N ′), Ĥ†(N)]f ] (14.1.3)

Since Ĥ ′(N ′′)ψ �∈ D∗
diff the result does not vanish. Unfortunately, such multiple

commutators appear in the calculations of the kind (14.1.1).
Proceeding formally anyway, (14.1.2) looks like a group averaging operation

and we may try to define a physical inner product between physical states
ψphys := δ(Ĥ ′)ψ as

< ψphys, ψ
′
phys >phys:=< ψ, δ(Ĥ ′)ψ′ >diff=

∫

N
[dN ] < ψ, ei

∫
σ
d3xN(x)Ĥ′(x)ψ′ >diff

(14.1.4)
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where N is the set of all lapse functions on σ and the inner product in the last
line is only formally defined because the exponential at fixed N is not spatially
diffeomorphism-invariant.

In order to get time-dependent lapse functions N̄(x, t) consider the set of lapse
functions NN on M with

∫ T

−T
dtN̄(x, t) = N(x) for some T > 0. Let also N be

the set of lapse functions over M . Then
∫

N
[dN̄ ] < ψ, ei

∫
M

d4xN̄(x,t)Ĥ′(x)ψ′ >diff

= lim
T→∞

∫

N
[dN̄ ] < ψ, ei

∫ T
−T

dt
∫
σ
d3xN̄(x,t)Ĥ′(x)ψ′ >diff

= lim
T→∞

∫

N
[dN ] < ψ, ei

∫
σ
d3xN(x)Ĥ(x)ψ′ >diff

×
[∫

N
[dN̄ ]

∏

x

δ

(∫ T

−T

dtN̄(x, t), N(x)

)]

(14.1.5)

where we used the fact that the operator Ĥ ′(x) is not explicitly time-dependent.
Consider the integral

ITN :=
∫

N
[dN̄ ]

∏

x

δ

(∫ T

−T

dtN̄(x, t), N(x)

)

(14.1.6)

appearing in the square bracket in the last line of (14.1.5). We claim that it is
actually independent of N(x). This can be verified by introducing the constant
shift N̄(x, t) �→ N̄(x, t) + N ′(x)−N(x)

2T so that ITN = ITN ′ = const. We conclude
that (14.1.5) and (14.1.4) are proportional to each other (by an infinite constant
limT→∞ ITN ). The formula (14.1.5) is then the starting point for formulating a
path integral through the usual skeletonisation process.

In any case we can now formally expand the exponent in (14.1.4) and arrive at
the following picture: given two spatially diffeomorphism-invariant spin-network
functions T[s], T[s′] we have

< T[s],phys, T
′
[s′],phys >phys:=

∞∑

n=0

in

n!

∫

N
[dN ] < T[s], Ĥ

′(N)nT[s′] >diff (14.1.7)

If we pretend that Ĥ(N) is spatially diffeomorphism-invariant then we may define
the last inner product by

< T[s], Ĥ
′(N)nT[s′] >diff := T[s′]([Ĥ†(N)]nTs)

which is well-defined.
Since Ĥ†(N) is closed and densely defined on spin-network functions, the

matrix elements of powers of the Hamiltonian constraint can be computed and
since we integrate over all possible lapse functions the result is manifestly spa-
tially diffeomorphism-invariant. Of course, the result is badly divergent, but
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Σt+dt

Σt

e1

e1

e3

e3

e2

e2

Figure 14.1 The action of the Euclidean piece of the Hamiltonian constraint
can be interpreted as a discrete unphysical time evolution which builds a spin
foam defined as the collection of branched surfaces defined by the dotted lines.
The surfaces carry the same spin as the bounding edges.

cutting off the integral over N somehow the following picture emerges: the power
of [Ĥ†(N)]n corresponds to a discrete n time step evolution of an initial spin net
s′ to a final one s. At each step Ĥ†(N) changes the graph of the spin net s′

according to the rules of Chapter 10. Let us associate a hypersurface with each
time step and let the respective spin nets be embedded inside them. Connect
the vertices of the spin nets in subsequent hypersurfaces by dotted lines. Since
Ĥ(N) adds edges to a graph, one of these dotted lines branches up at some
intermediate point into two additional dotted lines which connect with the two
newly created vertices. We thus see that the quantum time evolution of edges
become two-surfaces (bounded by one or two edges and two dotted lines), that
is, a spin foam (see Figure 14.1). Such kind of ‘transition amplitudes’ are exactly
of the form considered earlier by Reisenberger [692,693].

Thus, the canonical theory seems to suggest a bubble evolution not unlike
the worldsheet formulation of string theory, although spin foams define a
background-independent string theory in which the worldsheet is not a smooth
two-dimensional manifold but has necessarily (conical) singularities due to the
fact that the Hamiltonian constraint acts non-trivially only at vertices in each
time step.

Unfortunately, the concrete (Euclidean) Hamiltonian constraint constructed
in Chapter 10 only generates what is known as a 0–3 move: as transpires from
Figure 14.1, a vertex (which is one-dimensional) is transformed into a tetrahe-
dron (in the figure one boundary triangle of that tetrahedron, composed of the
beginning segments of edges adjacent to the vertex and the corresponding arcs,
is displayed). However, if we think of a generic spin foam model which is defined
in terms of a triangulation of M by four simplices as we will see, a triangulation
by four simplices is such that they must be glued in all possible ways between
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two time slices. Then a p–(3 − p) move with p = 0, 1, 2, 3 is a situation in which
the four-simplex intersects the initial slice in a p-simplex and the final slice in
a (3−p)-simplex (the missing dimension is used up by the time evolution) and
all these moves occur generically. However, the (Euclidean) Hamiltonian con-
straint does not have this property (not even after symmetric ordering, which
also produces the 3–0 move) known as crossing symmetry. It is related to slicing
independence because evidently we can transform the various moves among each
other by changing the slicing of M . It is by no means clear that the Hamiltonian
constraint should have this property because the evolution described above is an
unphysical time evolution. However, at least without it, this evolution does not
fit into the general formulation of spin foam models as described below.

To summarise: In order to give mathematical meaning to these amplitudes
one obviously has to look for a better definition of the path integral. One way to
proceed is by stripping off all the particulars of the specific theory that describes
quantum gravity and considering very general spin foam models and searching for
criteria when they converge and when they do not. Then, in a second step, one has
to select among the converging ones the theory which describes quantum gravity
(if any). This way one may discover an alternative route to the Hamiltonian
constraint.

14.2 Spin foam models from BF theory

In this section we will explain the basic strategy employed in the construction
of spin foam models. The descriptive discussion presented here will be comple-
mented by a precise construction in the next section.

It turns out that a systematic starting point are the so-called BF topological
field theories [682–691]. In D + 1 dimensions these are described by an action
(D ≥ 2)

SBF =
∫

M

Tr(B ∧ F ) (14.2.1)

where B is a Lie(G)-valued (D − 1)-form in a vector bundle associated with a
principal G bundle P under the adjoint representation and F is the curvature of
a connection A over P . The trace operation is with respect to the non-degenerate
Cartan–Killing metric on Lie(G) (assuming G to be semi-simple), that is, basi-
cally the Kronecker symbol (up to normalisation). The equations of motion are
given by F = DB = 0 where D is the covariant differential determined by A (see
Chapter 21). Thus A is constrained to be flat. The action has a huge symme-
try, namely it is gauge-invariant and invariant under A �→ A, B �→ B + Df for
any (D − 2)-form f . Counting physical degrees of freedom it is easy to see that
almost nothing is left, the theory has only a finite number of degrees of freedom,
it is topological.
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The connection with gravity is made through the Palatini (first-order) action
(in this chapter we set κ = 1)

SP =
∫

M

Tr((∗[e ∧ e]) ∧ F ) (14.2.2)

Here e = (ejμ) denotes the co-(D + 1)-bein and ∗ denotes the Hodge dual with
respect to the internal metric ηij , which is just the Minkowski (Euclidean) met-
ric for Lorentzian (Euclidean) General Relativity with gauge group SO(D, 1)
(SO(D + 1)). More specifically

(∗[e ∧ e])ij :=
1

(D − 1)!
εijk1...kD−1e

k1 ∧ . . . ∧ ekD−1 (14.2.3)

and plugging this into (14.2.2) one easily sees that (14.2.2) equals the Einstein–
Hilbert action for orientable M when A is the spin-connection of e (which is one of
the equations of motion that one derives from (14.2.2)). Thus we see that gravity
is a BF theory modulo the constraint that B is in this case not an arbitrary
(D − 1)-form but rather has to satisfy the so-called simplicity constraint

B = ∗[e ∧ e] (14.2.4)

The idea for writing a path integral for General Relativity is then the following:
a lot is known about the path integral quantisation of BF theory in three and four
dimensions [677–681]. Thus, it seems advisable to consider General Relativity as
a BF theory in which the sum over histories is constrained by (14.2.4). One
might wonder how it can happen that a TQFT like BF theory with only a finite
number of degrees of freedom plus additional constraints can give rise to a field
theory like General Relativity with an infinite number of degrees of freedom.
The answer is that (14.2.4) breaks a lot of the gauge invariance of BF theory,
so that gauge degrees of freedom become physical degrees of freedom. In order
to sum over histories of B’s and A’s with the constraint (14.2.4) we must first
write it in a form in which only B’s appear. The algebraic condition on B such
that there exists e with (14.2.4) satisfied (up to a sign) has been systematically
analysed by Freidel, Krasnov and Puzio in [694]. It can be written for D ≥ 3 as

εijklm1...mD−3Bμν
ij Bρσ

kl = εμνρσλ1...λD−3c
m1...mD−3
λ1...λD−3

(14.2.5)

where c is any totally skew (in both sets of indices) tensor density and

Bμν
ij =

1
(D − 1)!

εμνρ1...ρD−1ηikηjlB
kl
ρ1...ρD−1

(14.2.6)

Actually for D = 3 there is another solution to (14.2.5) besides (14.2.4) given by

B = ±e ∧ e (14.2.7)
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but this solution gives rise again to a topological theory. The constraint (14.2.5)
is enforced by adding to the BF action a term of the form (for D = 3)

1
2

∫

M

d4xΦμνρσε
ijkl

(
δαμδ

β
ν δ

γ
ρ δ

δ
σ − 1

4!
εμνρσε

αβγδ

)
Bαβ

ij Bγδ
kl

=:
1
2

∫

M

tr(B ∧ Φ(B)) =:
∫

M

Φ · C (14.2.8)

where the Lagrange multiplier Φμνρσ has the symmetries Φμνρσ = −Φνμρσ =
−Φμνσρ = Φρσμν and we have denoted the simplicity constraint by C. To see that
this captures the right number of degrees of freedom in D = 3, notice that Bμν

ij

has 62 = 36 degrees of freedom while eiμ has only 42 = 16. Now Φ has 6 · 7/2 =
21 independent components, however, the totally skew part is projected out in
(14.2.8) which leads us to precisely the 20 independent constraints needed.

Now the ‘partition function’ for BF theory is given by

ZBF =
∫

[dA dB]ei
∫
M

tr(B∧F ) ∝
∫

[dA]δ(F ) (14.2.9)

where for either signature the factor of i in front of the action has to be there in
order to enforce the flatness constraint δ(F ). That this defines the correct path
integral (up to proper regularisation) has been verified by independent methods,
see [677–691] and references therein. Since, from the point of view of BF theory,
General Relativity is a ‘perturbation’ (with the role of the ‘free’ theory being
played by BF theory) with interaction term (14.2.8), the partition function for
General Relativity should be given by

ZP =
∫

[dA dB dΦ]ei
∫
M

tr(B∧[F+ 1
2Φ(B)]) ∝

∫
[dA dB]δ(C)ei

∫
M

tr(B∧F )

(14.2.10)

where the additional integral over the Lagrange multiplier enforces the simplic-
ity constraint. Path integrals of the type (14.2.10) were studied by Freidel and
Krasnov [695] in terms of a generating functional

Z[J ] :=
∫

[dA dB]ei
∫
M

tr(B∧[F+J]) (14.2.11)

where J is a two-form current. It is easy to see that formally, by a trick familiar
from ordinary quantum field theory,

ZP =
∫

[dΦ]
{
ei

1
2

∫
M

tr ( δ
iδJ Φ( δ

iδJ )])Z[J ]
}
J=0

(14.2.12)

which could then be the starting point for perturbative expansions. Unfortu-
nately, a truly systematic derivation of spin foam models for General Relativ-
ity starting directly from (14.2.12) is still missing, see below for the currently
adopted substitute.

We see that in order to define the partition function for General Relativity
we must first define the one for BF theory. Let us first consider the case that G
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is compact (Euclidean signature). Then the δ-distribution δ(F ) in (14.2.9) can
be interpreted as the condition that the holonomy of every contractible loop is
trivial. Furthermore, in order to regularise the functional integral, we triangulate
M , using some triangulation T and interpret the measure [dA] as the uniform
measure on A restricted to T . The triangulation is considered as a topological
triangulation, that is, the corresponding graph is an embedded graph modulo
Diff(M). It is therefore often claimed that even at the triangulated level spin
foam models already take care of four-dimensional diffeomorphism invariance.
This has been demonstrated to be false already for D = 2 in [696, 697] and is
expected to be false in D = 3 as well. There are still diffeomorphism symmetries
in a given triangulation and these have to be gauge fixed when one sums over
triangulations, see below.

The condition F = 0 amounts to saying that hα = 1G where α is any con-
tractible loop within T . Let π′

1(T ) be a set of generators of the contractible
subgroup of the fundamental group of T . Hence the regulated BF partition func-
tion becomes

ZBF(T ) =
∫

AT

dμ0T (A)
∏

α∈π′
1(T )

δ(A(α), 1G) (14.2.13)

and we can use the Peter and Weyl theorem in order to write the δ-distribution
as

δ(h, 1G) =
∑

π∈Π

dπχπ(h) (14.2.14)

Now magically the integral (14.2.13) is independent of the choice of triangu-
lation which can be traced back to the fact that BF is a topological the-
ory. The theory defined by (14.2.13) is known as the Turarev–Viro state sum
model for D = 2, G = SU(2) and as the Turarev–Ooguri–Crane–Yetter model in
D = 3, G = SO(4). Actually (14.2.13) is still divergent when one expands out the
products of δ-distributions, but this can be taken care of by using a quantum
group regularisation at a root of unity which cuts off the sum over representations
at those of bounded dimension (see, e.g., [684]).

Let us now turn to Euclidean gravity for D = 3. We somehow must invoke
the simplicity constraint into (14.2.13). The idea is to look at a canonical quan-
tisation of BF theory with the additional simplicity constraint imposed. This
analysis has been started by Barbieri [698, 699], leading to the consideration of
quantum tetrahedra and was completed by Baez and Barrett [700]. The result
is as follows: recall that SO(4) is homomorphic with SU(2) × SU(2), therefore
its irreducible representations can be labelled by two spin quantum numbers
(j, j′) (‘left-handed and right-handed’). This holds for both the representations
on the links of spin-network states (the time evolution of which are faces) as well
as the intertwiner representations of the vertices (the time evolution of which
are edges). The simplicity constraint now amounts to the constraint j = j′ for
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both types of representations, explaining the word ‘simplicity’. This motivates
us to define, roughly speaking, the partition function for General Relativity by
restricting the sum in

δ(h, 1SO(4)) =
∑

j,j′

dπj,j′χπj,j′ (h) (14.2.15)

to

δ′(h, 1SO(4)) =
∑

j

dπj,j
χπj,j

(h) (14.2.16)

resulting in

ZP(T ) =
∫

AT

dμ0T (A)
∏

α∈π′
1(T )

δ′(A(α), 1G) (14.2.17)

(Some version of) (14.2.17) is referred to as the Barrett–Crane model [454]. The
model has been improved in its degree of uniqueness by Reisenberger [701] and
also by Yetter, Barrett, Barrett and Williams [702–704].

14.3 The Barrett–Crane model

In this section we will make the discussion of the previous section mathemati-
cally precise. The result is the most studied spin foam model to date in D = 4. It
serves as a prototype for other spin foam models and we will learn about the var-
ious approximations that enter the derivation of the model from a path integral
formulation. For pedagogical reasons we will restrict ourselves to the Euclidean
case.

14.3.1 Plebanski action and simplicity constraints

The Plebanski action can be implicitly defined by

SPl :=
∫

M

BIJ ∧ FIJ + λIJKLB
IJ ∧BKL (14.3.1)

where λ is a Lagrange multiplier with the symmetries λIJKL = −λJIKL =
−λIJLL = λKLIJ and λIJKLε

IJKL = 0. Extremisation of (14.3.1) with respect
to it imposes the simplicity constraints

BIJ ∧BKL = εIJKL 1
4!
εMNPQB

MN ∧BPQ (14.3.2)

The first result we need is the following not entirely trivial fact.

Theorem 14.3.1. Suppose that (14.3.2) holds and that

B :=
1
4!
εMNPQB

MN ∧BPQ (14.3.3)
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is non-vanishing. Then there exists a co-tetrad eI such that either BIJ = ±eI ∧
eJ or BIJ = ± 1

2εIJKLe
K ∧ eL.

Proof
Step I

The proof simplifies dramatically by making use of self-dual fields. Let T IJ be
an antisymmetric tensor. Its dual is defined by (∗T )IJ := 1

2δ
IKδJLεKLMNTMN .

The operator ∗ is called the Hodge operator with respect to the Euclidean metric
δIJ . In what follows we will suppress it and no longer care about index positions.
It is easy to see that ∗∗ = id. The (anti-)self-dual part of T is defined by T± =
1
2 [T ± ∗T ], which has the property that ∗T± = ±T∗. Defining T j

∗ := T 0j
± it follows

that T jk
± = ±εjklT

l
±. Here we take I, J,K, . . . = 0, 1, 2, 3 and j, k, l, . . . = 1, 2, 3.

The antisymmetric tensors, considered as matrices, form the Lie algebra
so(4) (the commutator of two antisymmetric matrices is again antisymmet-
ric). Let A,B be two antisymmetric tensors, then it is an elementary exer-
cise to show that [A, ∗ ∗B] = [∗A,B] = ∗([A,B]). From this it immediately
follows that [A+, B−] = 0 and [A±, B±] = (A,B)±. Hence the (anti-)self-dual
tensors form an ideal in so(4). These ideals are easily seen to be commuting
copies of so(3), for instance by considering the basis of antisymmetric matri-
ces PIJ , 0 ≤ I < J ≤ 0 with PIJ = [EIJ − EJI ]/2, (EIJ)KL := δIJδKL. Notice
that ∗PIJ = 1

2εIJKLPKL. We then discover that [P j
±, P

k
±] = ± 1

2εjklP
l
±. Hence

so(4) ∼= so(3) ⊕ so(3). Thus locally SO(4) ∼= SO(3) × SO(3). Globally it turns out
that SO(4)/Z2

∼= SO(3) × SO(3) and SU(2) × SU(2)/Z2
∼= SO(4) where the cen-

tral and normal subgroup Z2 is given by Z2 = {14,−14}. Hence SU(2) × SU(2)
is the universal covering1 group of SO(4). Now take (I, J) = (K,L) in (14.3.2).
Then either (I, J) = (0, j) or (I, J) = (j, k) with j < k. These six conditions are
then equivalent to

(
Bj

+ ±Bj
−
)
∧
(
Bj

+ ±Bj
−
)

= 0 (14.3.4)
(no summation over j). Next we take I = K but I, J, L mutually different. Then
either (I, J) = (0, j), (K,L) = (0, k) with j �= k or (I, J) = (j, k), (K,L) = (j, l)
with j, k, l mutually different. This results in the 12 conditions

(
Bj

+ ±Bj
−
)
∧
(
Bk

+ ±Bk
−
)

= 0 (14.3.5)

for j �= k. Finally we take the case that all indices are mutually different. The
only independent equations result by taking, say, (I, J) = (0, j), (K,L) = (k, l)
and results in

(
Bj

+ + Bj
−
)
∧
(
Bk

+ −Bk
−
)

= δjkB =
δjk
3

∑

l

(
Bl

+ ∧Bl
+ −Bl

− ∧Bl
−
)

(14.3.6)

1 We also have SU(2) × SU(2)/Z′
2
∼= SO(3) × SU(2), SU(2) × SU(2)/Z′′

2
∼= SU(2) × SO(3) and

SU(2)× SU(2)/Z4
∼= SO(3) × SO(3) where Z′

2 = {14, 12 ⊕ (−12)}, Z′′
2 = {14, (−12) ⊕ 12}

and Z′
2 = {14,−14, 12 ⊕ (−12), (−12) ⊕ 12} where 14 = 12 ⊕ 12.
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Let us rewrite (14.3.4), (14.3.5), (14.3.6). Adding and subtracting the ‘+’ part of
(14.3.5) and (14.3.6) for j �= k gives (Bj

+ + Bj
−) ∧Bk

± = 0. Adding and subtract-
ing the ‘−’ part of (14.3.5) and (14.3.6) for j �= k gives (Bj

+ −Bj
−) ∧Bk

± = 0. It
follows that

Bj
ε ∧Bk

δ = 0 (14.3.7)

for all j �= k, ε, δ = ±. Subtracting the ‘+’ and ‘−’ parts of (14.3.4) from each
other we find

Bj
+ ∧Bj

− = 0 (14.3.8)

for all j. Adding the ‘+’ and ‘−’ parts of (14.3.4) and adding and subtracting
from the resulting expression (14.3.6) for j = k we find

Bj
+ ∧Bj

+ = −Bj
− ∧Bj

− =
B

2
(14.3.9)

for all j. Now we can combine (14.3.7), (14.3.8), (14.3.9) into

0 = Bj
± ∧Bk

± − 1
3

∑

l

Bl
± ∧Bl

±

0 = Bj
+ ∧Bk

−

0 =
∑

l

(
Bl

+ ∧Bl
+ + Bl

− ∧Bl
−
)

(14.3.10)

for all j, k. Notice that the first set of equations in (14.3.10), which are symmetric
in j, k, are only 10 conditions because taking the sum over j = k results in
two identities. The second set are nine conditions. Thus altogether we have 20
conditions as desired.

Step II

Suppose that Bj are three two-forms such that B :=
∑

l B
l ∧Bl �= 0 and such

that Bj ∧Bk = 1
3

∑
l B

l ∧Bl. Then we will show that there are four independent
one-forms eI , I = 0, 1, 2, 3 and numbers ε, δ taking the values ±1 such that Bj =
ε
2 (ω0 ∧ ej + δ

2εjkle
k ∧ el).

To see this, take any vector field v �= 0 and define the one-forms ωj by ωj
μ :=

vνBj
νμ. These are linearly independent for suppose they were not then there

would be non-trivial real numbers zj such that
∑

j zjω
j = 0. It follows that the

antisymmetric tensor field Aμν :=
∑

j zjB
j
μν has a zero eigenvector v. Since A is

antisymmetric, it therefore can have at most rank two and is thus of the form
A = α ∧ β for some one-forms α, β. Thus A ∧A = [

∑
j z

2
j ]B = 0 hence zj = 0.

Now fix any-one form ω0 such that ω0
μv

μ = 1. Then the ωI constitute a basis of
one-forms and we can therefore expand

Bj = αjkω0 ∧ ωk + βjklω
k ∧ ωl (14.3.11)
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where βjkl is skew in k, l. Since ωj
μv

μ = 0 we find αjk = 2δjk. Now

Bj ∧Bk = 4ω0 ∧ ω1 ∧ ω2 ∧ ω3εmn(jβk)mn =
δjk
3

B (14.3.12)

We conclude

εmn(jβk)mn = aδjk + blεjkl (14.3.13)

for certain numbers a �= 0, bj . It then follows from βj(kl) = 0 that

βjkl =
1
2
εiklε

imnβjmn =
1
2
[
aεjkl + δj[lbk]

]
(14.3.14)

Inserting (14.3.14) into (14.3.11) we obtain

Bj = 2a
[
1
2

2ω0 − bkω
k

a
∧ ωj +

1
4
εjklω

k ∧ ωl

]
(14.3.15)

Let us set δ = sgn(a), e0 := ε sgn(a)
√

2|a|(2ω0 − bkω
k)/a where ε = ±1 is arbi-

trary and ej =
√

2|a|ωj , then (14.3.15) takes the anticipated form.

Step III

Combining the first set of relations of (14.3.10) with the conclusions of step II
we see that there are two bases of one-forms eI± such that

Bj
± = s±

(
1
2
e0
± ∧ ej± ± 1

4
εjkle

k
± ∧ el±

)
= s±

[
P j
±
]
IJ
eI± ∧ eJ± (14.3.16)

for some s± ∈ {+1,−1} and P j
± was defined above. Since they are bases there

exists G ∈ GL(4,R) such that eI− = GI
Je

J
+. Now from the last equation in

(14.3.10) we obtain

0 =
∑

l

(
Bl

+ ∧Bl
+ + Bl

− ∧Bl
−
)

=
3
2
[
e0
+ ∧ e1

+ ∧ e2
+ ∧ e3

+ − e0
− ∧ e1

− ∧ e2
− ∧ e3

−
]

=
3
2
[
e0
+ ∧ e1

+ ∧ e2
+ ∧ e3

+

]
[1 − det (G)] (14.3.17)

hence G ∈ SL(4,R).
Consider now the second set of conditions in (14.3.10)

0 = Bj
+ ∧Bk

− = ±
[
P j

+

]
IJ

[
P k
−
]
KL

eI+ ∧ eJ+ ∧ eK− ∧ eL−

= ±
([
P j

+

]
IJ

[
P k
−
]
KL

GK
MGL

N εIJMN
)
e0
+ ∧ e1

+ ∧ e2
+ ∧ e3

+

= 2 ±
([
P j

+

]
MN

[
P k
−
]
KL

GK
MGL

N

)
e0
+ ∧ e1

+ ∧ e2
+ ∧ e3

+ (14.3.18)

where self-duality was exploited. Equation (14.3.18) can be rewritten as

Tr
(
GP j

+GTP k
−
)

= 0 (14.3.19)

Now recall that any non-degenerate matrix G can be written as G = ODO′

where D is positive definite and diagonal while O,O′ ∈ O(4). Since G is unimod-
ular we must have OO′ ∈ SO(4) and since D is diagonal we may assume that
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O,O′ ∈ SO(4). Moreover, since SO(4)/Z2
∼= SO(3) × SO(3) we find O±, O′

± ∈
SO(3) such that O = O+O− = O−O+ and O′ = O′

+O
′
− = O′

−O
′
+ (up to a pos-

sible sign which drops out in the square of (14.3.16)). The two copies of SO(3)
that we are considering here have the algebra generated by the P j

+ and P j
−

respectively as their Lie algebra. Therefore [O±, P
j
∓] = [O′

±, P
j
∓] = 0. Moreover,

O±P
j
±[O±]T = [AdO± ]jkP k

± defines the adjoint representation of SO(3) on its Lie
algebra (remember OT = O−1 for orthogonal matrices).

With these tools prepared we can now simplify (14.3.19) to

0 = Tr
(
GP j

+GTP k
−
)

= Tr(O+O−DO′
+O

′
−P

j
+[O′

+]T [O′
−]TD[O+]T [O−]TP k

−)

= Tr(O−DO′
+P

j
+[O′

+]TD[O−]TP k
−)

=
[
AdO′

+

]
jm

[
Ad(O−)1

]
kn

Tr
(
DPm

+ DPn
−
)

(14.3.20)

for all j, k. Since the representation matrices of the adjoint representation are
non-singular, (14.3.20) is equivalent to

Tr
(
DP j

+DP k
−
)

= 2D0Djδjk −
∑

m,n

εjmnεkmnDmDn = 0 (14.3.21)

for all j, k. Here we have denoted the diagonal matrix elements of D by DIJ =:
δIJDI . Equation (14.3.21) is an identity for j �= k. For j = k we obtain

D0Dj = DmDn (14.3.22)

where j,m, n are mutually distinct, that is, we obtain the three equations

D0 =
D1D2

D3
=

D2D3

D1
=

D3D1

D2
(14.3.23)

Together with unimodularity D0D1D2D3 = 1 from (14.3.17) and DI > 0 the
unique solution is DI = 1, that is, G ∈ SO(4).

Let us write G = U+U− with U± = O±O′
± as before then

s−B
j
− = [P j

−]IJeI− ∧ eJ−

= [P j
−]IJ [U+U−]IK [U+U−]JLeK+ ∧ eL+

= [P j
−U+]IN [U+U−]IK [U−]NLe

K
+ ∧ eL+

= [U+]IM [P j
−]MN [U+]IP [U−]PK [U−]NLe

K
+ ∧ eL+

= [P j
−]MN [U−]MK [U−]NLe

K
+ ∧ eL+ (14.3.24)

while

s+B
j
+ = [P j

+]IJeI+ ∧ eJ+

= [P j
+]IJ [U−]MI [U−]MK [U−]NJ [U−]NLe

K
+ ∧ eL+

= [U−P
j
+]MJ [U−]MK [U−]NJ [U−]NLe

K
+ ∧ eL+

= [P j
+]MP [U−]PJ [U−]MK [U−]NJ [U−]NLe

K
+ ∧ eL+

= [P j
+]MN [U−]MK [U−]NLe

K
+ ∧ eL+ (14.3.25)
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Thus, if we define eI := [U−]IJeJ+ = [U−1
+ ]IJeJ− then

Bj
± = s±

[
P j
±
]
IJ
eI ∧ ej (14.3.26)

where all four sign combinations of s+, s− are possible. In case that s+ = s− =
s ∈ {+1,−1} we easily find

BIJ = seI ∧ eJ (14.3.27)

while for s+ = −s− = s we find

BIJ = s ∗ (eI ∧ eJ) := s
1
2
εIJKLe

K ∧ eL (14.3.28)

�

In the degenerate sector we have not only 20 conditions but in fact 21, given
by Bj

ε ∧Bk
σ = 0 for all j, k and all ε, σ = ±1. The degenerate sector does not have

an interpretation as a theory of gravity and is described in more detail in [693].
Let us summarise our findings.

Corollary 14.3.2. The simplicity constraints (14.3.2) allow for five different
solution sectors

B++ = e ∧ e, B+− = −e ∧ e, B−+ = ∗(e ∧ e), B−− = − ∗ (e ∧ e),

B0 = degenerate (14.3.29)

Only the ++ sector alone reduces the Plebanski action to the Palatini action.

The fact that only one sector really corresponds to the Plebanski action must
be taken care of in the path integral in order that one really quantises gravity
and not a mixture of phases which altogether do not reduce to General Relativity
in the semiclassical limit.

Before we close this section we notice that there is an equivalent formulation
of (14.3.2) at least in the non-degenerate sector. Consider the quantity

Σμν
IJ =

1
4e

εμνρσ εIJKLB
KL
ρσ , e :=

1
4!
εIJKLε

μνρσBIJ
μνB

KL
ρσ (14.3.30)

Then (14.3.2) is equivalent to

Σμν
IJB

KL
μν = δI[KδJL] (14.3.31)

which says that Σ is a bi-vector inverse to the bi-co-vector B. Thus also

Σμν
IJB

IJ
ρσ = δμ[ρδ

ν
σ] (14.3.32)

which in turn is equivalent to

εIJKLB
IJ
μνB

KL
ρσ = eεμνρσ (14.3.33)

We will use this form of the simplicity constraint in what follows.
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14.3.2 Discretisation theory

As outlined in the previous section, the idea of the spin foam approach is to start
from BF theory. Since we must regularise the theory by means of a discretisation
and as BF theory is a topological theory, we want to use a discretisation which
is compatible with the topological invariance of the theory. In order to do that
we have to look for discrete analogues of the various operations that one can
perform on p-forms such as the exterior product, exterior derivative and Hodge
dual. This is what we will describe in the present subsection. The presentation
is based on [705] and references therein.

Definition 14.3.3. A p-simplex σ(p) = [v0, . . . , vp] in RD is given by the convex
hull of p + 1 vectors, that is,

σ(p) :=

{
p∑

k=0

tkvk; tk ≥ 0,
p∑

k=0

tk = 1

}

(14.3.34)

which span a p-dimensional vector space.

Remarks

1. By solving the constraint
∑p

k=0 tk = 1 for 0 ≤ t0 = 1 −∑p
k=1 tk we can also

describe a p-simplex as the convex hull of the p vectors v′k = vk − v0, k =
1, . . . , p which are linearly independent by assumption. However, we will not
make use of this notation here.

2. Notice that p-simplices are oriented by the order in which the vertices vk
appear in the list [v0, . . . , vk]. We say that for a permutation π ∈ Sp+1 the
simplices [v0, . . . , vp] and [vπ(1), . . . , vπ(p+1)] are equally oriented if π is an
even permutation, otherwise they are oppositely oriented.

3. The boundary ∂σ(p) is defined as the set of points for which tk =
0, k = 0, . . . , p. These define p + 1 different (p− 1)-simplices σ

(p−1)
k =

[v0, . . . , v̂k, . . . , vp]. Here the hat over a vertex denotes omission of that vertex.
These are oriented equally relative to [v1, . . . , vp] if k is even and otherwise
oppositely. This defines the induced orientation of these so-called faces of σ(p).
It follows that (as sets, i.e., modulo orientation) ∂σ(p) = ∪kσ

(p−1)
k . By repeat-

ing this process we obtain all subsimplices of σ(p). It follows that a p-simplex
has as many different k-simplices as subsimplices as there are possibilities (up
to orientation) to omit p− k from p + 1 points, that is,

(
p+1
k+1

)
for k = 0, . . . , p.

Definition 14.3.4. The barycentre of a p-simplex σ(p) = [v0, . . . , vp] is defined
as the point

σ̂(p) :=
∑p

k=0 vk
p + 1

(14.3.35)

This is precisely the same formula known from mechanics for the barycentre of
p + 1 points vk with equal masses mk = m.
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Definition 14.3.5. A simplicial complex K is a collection of simplices σ(p)
i ; p =

0, . . . , D; i = 1, . . . , Np with the following properties:

(i) All the subsimplices of each σ
(p)
i also belong to K.

(ii) Two simplices σ
(p)
i , σ

(q)
j intersect at most in a common subsimplex, which

has opposite orientation in both.

One can show that all differential manifolds M admit a simplicial complex
(under the respective coordinate charts) as a partition, which is then called a
triangulation. Of course, a triangulation need not be simplicial, that is, it can
consist of more general (polyhedral) cells. This is generically the case for the
so-called dual cell complex.

Definition 14.3.6. Let K = {σ(p)
i ; p = 0, . . . , D; i = 1, . . . , Np} by a simplicial

complex. Pick any σ
(p)
j0

∈ K and consider all possible (D − p)-tuples of simplices

σ
(p+k)
jk

∈ K with k = 1, . . . , D − p and 1 ≤ jk ≤ Np+k subject to the following
condition:

For all l = 0, . . . , D − p− 1 the simplex σ
(p+l)
jl

is a face of σ
(p+l+1)
jl+1

with the
induced orientation.

For each such (D − p)-tuple of simplices construct the (D − p)-simplex
[σ̂(p)

j0
, σ̂

(p+1)
j1

, . . . , σ̂
(D)
jD−p

] where we have used the barycentres of those simplices

as defined in (14.3.35). The cell dual to σ
(p)
j0

is then defined by

∗K
[
σ

(p)
j0

]
:= ∪

σ
(p+l)
jl

⊂∂σ
(p+l+1)
jp+l+1

; l=0,...,D−p−1

[
σ̂

(p)
j0

, σ̂
(p+1)
j1

, . . . , σ̂
(D)
jD−p

]
(14.3.36)

The cell complex K∗ dual to K is obtained by gluing dual cells along common
subcells.

As is obvious from the construction, the p-simplices in K are in one-to-one
correspondence with the (D−p)-cells in K∗. We can therefore define an operation
∗K∗ on the p-cells of K∗ by the inverse of ∗K (times (−1)p(D−p), see below).

Definition 14.3.7. Let K = {σ(p)
I ; p = 0, . . . , D; i = 0, . . . , Np} be a simplicial

complex

(i) The vector space Cp(K) of p-chains is defined as the formal real linear
combination of the σ

(p)
p .

(ii) We turn Cp(K) into a Hilbert space by defining the non-degenerate inner
product

< σ
(p)
i , σ

(p)
j >K := δij (14.3.37)

for all i, j = 1, . . . , Np, that is, the p-simplices of K provide an orthonormal
basis. By means of this scalar product we can identify the dual space of
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Cp(K) (the space Cp(K) of linear forms on Cp(K) called the space of p-
cochains) with Cp(K) itself.

(iii) The boundary operator ∂K : Cp(K) → Cp−1(K) is defined by

∂Kσ
(p)
i :=

∑

k=0

(−1)k[v0, . . . , v̂k, . . . , vp] (14.3.38)

for v(p)i = [vi0, . . . , v
I
p]. One easily verifies that (∂K)2 = 0. The coboundary

operator dK : Cp(K) → Cp+1(K) is defined as the adjoint of ∂K under the
scalar product (14.3.37).

The operations ∗K , ∂K , dK defined on p-chains in K as defined above are the
analogues of the operations ∗, d, ∗d∗ on the vector space Λp(M) of p-forms as
we will see in a moment. Here ∗ is the Hodge dual

(∗ω)μ1...μD−p
:=

1
p!

√
|det(g)|εμ1...μD−pν1...νp

gν1ρ1 . . . gνpρpωρ1...ρp
(14.3.39)

which needs a metric g. The normalisation here is such that ∗∗ = s(−1)p(D−p)id
on p-forms where s is the signature of the metric used. The analogue of the scalar
product on chains is given by < ω, ω′ >:=

∫
M

ω ∧ ∗ω′.
In order to discretise actions on simplicial and dual complexes we must relate

p-forms and p-chains. This will also serve to add the missing analogue of a wedge
product. Consider the space Λp(K) of p-forms restricted to the p-chains of K.

Definition 14.3.8. Let K be a simplicial complex.

(i) The Whitney map is defined by

WK :Cp(K) → Λp(K);σ(p) = [v0, . . . , vp] �→ p!
p∑

k=0

(−1)ktkdt0 ∧ . . . ∧ d̂tk ∧ . . . dtp

(14.3.40)
(ii) The de Rham map is defined by

RK : Λp(K) �→ Cp(K); < RK(ω), σ(p) >K :=
∫

σ(p)
ω (14.3.41)

(iii) The wedge product on chains is defined by

∧K : Cp(K) × Cq(K)→Cp+q(K); σ(p) ∧K σ(q) := RK

(
WK

(
σ(p)
)
∧WK

(
σ(q)
))

(14.3.42)

The Whitney map is of course understood in the sense that the tk with∑p
k=0 tk = 1 are local coordinates for σ(p). We will state without proof the fol-

lowing properties of the discrete wedge product, see [706] for more details.
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Theorem 14.3.9. The above operations obey the following relations

σ(p) ∧K σ(q) = (−1)pqσ(q) ∧K σ(p)

dK
(
σ(p) ∧K σ(q)

)
=
(
dKσ(p)

)
∧K σ(q) + (−1)pσ(p) ∧K

(
dKσ(q)

)

RK ◦WK = id

d ◦Wk = WK ◦ dK
dK ◦Rk = RK ◦ d∫

σ(p)
WK

(
σ(p)′) = < σ(p), σ(p)′ >K (14.3.43)

While the discrete wedge product is skew symmetric and obeys the Leibniz
rule, it is not associative.

Notice that in the language introduced the map ∗K : Cp(K) → CD−p(K∗)
cannot be iterated because K �= K∗, in fact, K∗ is no longer simplicial. To repair
this we need the following.

Definition 14.3.10. The barycentric subdivision of a p-simplex σ(p) =
[v0, . . . , vp] consists of (p + 1)! different p-simplices σ

(p)
π , one for each element

π ∈ Sp+1 of the symmetric group, obtained as follows:
Let for each k = 0, . . . , p

σ̂(k)π :=
∑k

l=0 vπ(l)

k + 1
(14.3.44)

be the barycentre of the k-subsimplex [vπ(1), . . . , vπ(k)] and set σ
(p)
π :=

[σ̂(0)
π , . . . , σ̂

(p)
π ]. The collection of these (p + 1)! subdivisions for each p-simplex

of K and for all p = 0, . . . , D defines the barycentric refinement B(K) of K.

By construction, the p-cells of K∗ are unions of the p-simplices of B(K), hence
we now have K, K∗ ⊂ B(K). Notice that B(K) is simplicial again so that we
can extend all operations from K to B(K) as necessary. In particular we can
extend all operations to K∗ because Cp(K∗) is a subspace of Cp(B(K)). Then
the following crucial result holds [707].

Theorem 14.3.11. Let x ∈ Cp(K), y ∈ CD−p(K∗).

(i) < ∗K(x), y >K∗ =
(D + 1)!

p! (D − p)!

∫

M

WB(K)(E(x)) ∧WB(K)(E(y))

< ∗K∗(y), x >K =
(D + 1)!

p! (D − p)!

∫

M

WB(K)(E(y)) ∧WB(K)(E(x))

(14.3.45)

where E(x) is the linear combination (obeying compatibility of orientation)
of x ∈ Cp(K) in terms of elements of Cp(B(K)) and similarly for E(y). The
inner product < ., . >K∗ on CD−p(K∗) is defined as < ., . >K on Cp(K) by
declaring dual cells as orthonormal.
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(ii) ∂K = (−1)p(D−p) ∗K∗ ◦dK∗ ◦ ∗K , ∂K∗ = (−1)p(D−p) ∗K ◦dK ◦ ∗K∗

(14.3.46)

We will use this theorem in the next subsection in order to arrive at a discreti-
sation of BF theory which is maximally topologically invariant.

14.3.3 Discretisation and quantisation of BF theory

The BF action is defined by

S[B,F ] :=
∫

M

Tr(B ∧ F ) (14.3.47)

where B,F ∈ C2(M) and the trace is with respect to the metric δI[KδJL] on bi-co-
vectors. Introduce a triangulation K of M . Using the relation WB(K) ◦RB(K) =
id between the Whitney and de Rham maps respectively we find

S[B,F ] =
∫

M

Tr
(
WB(K)

(
RB(K)(B) ∧WB(K)

(
RB(K)(F )

)))

= Tr
(
< ∗K∗

(
RB(K)(F )

)
, RB(K)(B) >K

)
(14.3.48)

where we have used the second relation in (14.3.45) and the skew symmetry of
the exterior product. Using the orthonormal basis σ(2) of C2(K) we can write
(14.3.48) as

S[B,F ] =
∑

σ(2)∈C2(K)

Tr
(
< ∗K∗

(
RB(K)(F )

)
, σ(2) >K < σ(2), RB(K)(B) >K

)

=
∑

σ(2)∈C2(K)

Tr
(
< ∗K∗

(
RB(K)(F )

)
, σ(2) >K

[∫

σ(2)
B

])

=
∑

σ(2)∈C2(K)

Tr
([∫

M

WB(K)

(
RB(K)(F )

)
∧WB(K)

(
E
(
σ(2)
))
][∫

σ(2)
B

])

=
∑

σ(2)∈C2(K)

Tr

([∫

∗K(σ(2))

F

] [∫

σ(2)
B

])

(14.3.49)

where we used the last relation in (14.3.43) and WB(K) ◦DB(K) = id in the
second step, in the third step we used the second relation of (14.3.45) again,
in the fourth we used skew symmetry of the wedge product as well as the first
relation in (14.3.45) and finally in the last step we used the last relation of
(14.3.43) and WB(K) ◦DB(K) = id.

The result (14.3.49) is quite remarkable because it is exact, it is in partic-
ular independent of the chosen triangulation K. This expresses the toplogical
nature of BF theory. In order to make further progress one now takes a further
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discretisation step which is no longer exact: let us sum over two cells f ∈ C2(K∗),
called faces in what follows, and let t(f) ∈ C2(K) be the unique triangle to which
it corresponds. Consider

SBF(K∗) :=
∑

f∈C2(K∗)

Tr(BfU(∂f)) (14.3.50)

where Bf :=
∫
t(f)

B and U(∂f) is the holonomy of the SO(4) connection along
the loop ∂f . Then, since SO(4) is unimodular, the 14 term in the expansion
U(∂f) = 14 + F (f) + . . . , F (f) =

∫
f
F drops out of the trace in (14.3.50) so that

(14.3.50) approximates (14.3.49). The partion function for BF theory is now
defined, given K∗, by

ZBF(K∗) :=
∫ ∏

e∈C1(K∗)

dμH(ge)
∏

f∈C2(K∗)

d6Bf exp(iSBF(K∗)) (14.3.51)

where we have used the product Haar measure, one for each edge e of the dual
complex.

The integral over the B field results in a product of δ-distributions on the real
axis (up to a power of 2π)

ZBF(K∗) =
∫ ∏

e∈C1(K∗)

dμH(ge)
∏

f∈C2(K∗)

∏

I<J

δR(Tr(PIJU(∂f))) (14.3.52)

where PIJ denote the generators of so(4) as in Section 14.3.1 and Bf =∑
I<J BIJ

f PIJ . Since [PIJ ]KL = δK[I δ
L
J], the support of the integrand on those

elements g of SO(4) which satisfy g = gT , that is g2 = 14. There are several
solutions g ∈ SO(4), for instance g = ±14 or any other diagonal matrix with two
entries ±1 each.

What one now does is, strictly speaking, an ad hoc manipulation which does
not derive from first principles: we exclude by hand all solutions g �= 14. This
is on the one hand well motivated physically because classically we know that
the solutions of the equations of motion of BF theory are flat connections which
therefore have trivial holonomy. On the other hand, the path integral is usually
not concentrated precisely on the classical histories but contains non-classical
paths. Hence it may not be entirely justified to cancel these configurations by
hand. In any case, one now substitutes (14.3.52) by

ZBF(K∗) =
∫ ∏

e∈C1(K∗)

dμH(ge)
∏

f∈C2(K∗)

δSO(4)(U(∂f)) (14.3.53)

where we have now replaced the product of six δ-distributions on the real axis
by the δ-distribution on SO(4). We see now the advantage of having discretised
the classical action by integrating the B field over triangles and the curvature
over dual faces: there is precisely one triangle for each face, thus we get as many
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flatness conditions as there are holonomies. Had we discretised the classical action
by integrating both F and B over triangles in K, then for each four-simplex Δ
we would have obtained a contribution to the action, for instance of the form

εijklTr(B(tij(Δ))F (tkl(Δ))) (14.3.54)

where i, j, k, l ∈ {1, 2, 3, 4} and for each Δ we have singled out a vertex which is a
common vertex of the six triangles tij(Δ) which are sub-two-simplices of Δ (one
should probably average over all five vertices of Δ in order to use all 10 triangles
of Δ). While this has the correct continuum limit, the corresponding model is
not obviously equivalent to (14.3.53) because one and the same B(t) appears
in several four-simplices and thus gives rise to more complicated conditions on
the holonomies than (14.3.53). This was the whole point of going through the
previous section.

It remains to evaluate (14.3.53). In order to do so one uses the Peter and Weyl
theorem proved in Section 31.2 in order to expand the δ-distributions in terms
of characters on the group. Thus we obtain

ZBF(K∗) =
∫ ∏

e∈C1(K∗)

dμH(ge)
∑

{ρf}

∏

f∈C2(K∗)

df Tr(ρf (U(∂f))) (14.3.55)

where df is the dimension of the irreducible representation ρf assigned to each
dual face f . In order to carry out the integral over the edge holonomies we
must collect all characters in which a given edge occurs. This is a book-keeping
problem which can be handled by studying the relation between K and K∗ in a
bit more detail.

First of all we claim that each e ∈ C1(K∗) occurs in precisely four f ∈ C2(K∗).
To see this notice that the dual of a four-simplex σ(4) ∈ C4(K) is its barycentre.
Furthermore, given a tetrahedron σ(3) ∈ C3(K) in ∂Kσ(4) ∩ ∂Kσ(4)′ (recall that
two four-simplices are glued together precisely in one three-simplex by the defi-
nition of a simplicial complex) we have e := ∗K(σ(3)) = [σ̂(3), σ̂(4)] ∪ [σ̂(3), σ̂(4)′].
Hence the dual edge e connects the barycentres of two neighbouring four-
simplices through the barycentre of their common boundary tetrahedron. Since
each four-simplex has five boundary tetrahedra, it follows that there are five dual
edges starting in its barycentre.

Next we come to the dual faces. Consider a triangle σ(2) ∈ C2(K) which is
shared by two tetrahedra σ(3), σ(3)′ in the boundary of a common four-simplex
σ(4). For definiteness, let σ(4) = [v0, v1, v2, v3, v4], σ(3) = [v1, v2, v3, v4], σ(3)′ =
[v0, v2, v3, v4] and σ(2) = [v2, v3, v4]. The face dual to σ(2) is given by

f := ∗K
(
σ(2)
)

=
(
∪σ(3)∈∂Kσ(4)′

[
σ̂(2), σ̂(3), σ̂(4)′]) ∪

(
∪σ(3)′∈∂Kσ(4)′

[
σ̂(2), σ̂(3)′, σ̂(4)′])

(14.3.56)
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Since σ(3), σ(3)′ are common tetrahedra of our given σ(4) it follows that σ(4)′ =
σ(4) is a possible choice in both terms in (14.3.55). It follows that f = ∗K(σ(2))
has the two edges that connect the barycentre of σ(4) through the barycentres of
σ(3), σ(3)′ respectively with the barycentres of other four-simplices in its bound-
ary, and these are the only two edges in the boundary of f that meet in the
barycentre of σ(4).

What all of this means is that the dual faces f can be labelled the barycentre
v of a four-simplex of K with which it shares a corner and a pair of two distinct
dual edges which are incident at v. Hence there are five dual edges and (5

2) = 10
dual faces incident at v. In particular, a given dual edge is in the boundary
of as many dual faces f as there are possible pairs of edges of which e is a
member, that is, four. For convenience, we will choose the orientation of the
faces f in the following way: suppose that e = f1 ∩ f2 ∩ f3 ∩ f4. Then the induced
orientation on the boundary of two of these four faces coincides with that of e
and for the other two it is opposite. This can be done consistently throughout
K∗.

Given f ∈ C2(K∗) consider Ef := {e ∈ C1(K∗); e ⊂ ∂K∗f} and define for e ∈
Ef the orientation factors σ(f, e) = +1 if e, ∂f are aligned and σ(f, e) = −1
otherwise. We also define σ(f, e) = 0 if e is not part of ∂f . We write for ∂f =
eσ1
1 ◦ . . . ◦ eσn

n with σk = ±1

Tr(ρf (Uf )) =
∑

{Mf
e ,Nf

e }e∈Ef

δNf
en ,Mf

e1
δNf

e1 ,M
f
e2
. . . δNf

en−1 ,M
f
en

×
[
ρf
(
gσ1
e1

)]
Mf

e1 ,N
f
e1
. . .
[
ρf
(
gσn
en

)]
Mf

en ,Nf
en

=:
∑

{Mf
e ,Nf

e }e∈Ef

Cρf

({
Mf

e , N
f
e

}
e∈Ef

) ∏

e∈Ef

[
ρf
(
gσ(f,e)
e

)]
Mf

e ,Nf
e

(14.3.57)

where the superscript f in Mf
e , N

f
e is necessary because each e appears in pre-

cisely four of the f . Now (14.3.54) can be written as

ZBF(K∗) =
∑

{ρf}

∑

{Mf
e ,Nf

e }

⎡

⎣
∏

f∈C2(K∗)

df Cρf

({
Mf

e , N
f
e

}
e∈Ef

)
⎤

⎦

×
∏

e∈C1(K∗)

∫
dμH(ge)

∏

e∈Ef

[
ρf
(
gσ(f,e)
e

)]
Mf

e ,Nf
e

(14.3.58)

What is left to do is compute the integral over four representation matri-
ces in (14.3.58). This can be done explicitly as follows: using that fact that
SO(4) ∼= SU(2) × SU(2)/Z2 we know that the irreducible representations of
SO(4) are given by tensor products of two irreducible (fundamental) represen-
tations of SU(2), that is, ρ = πj+ ⊗ πj− where only integral spins j± appear
and the dimension of this representation is dρ = (2j+ + 1)(2j− + 1). The Haar
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measure on SO(4) is likewise the product Haar measure on two copies of SU(2)
or SO(3) (up to a factor of two). It follows that the basic integral to be computed
is of the form

∫

SO(4)

dμH(g)

[
4∏

k=1

[
ρk
(
gσk
)]

MkNk

]

=
∏

ε=±

[∫

SO(3)

dμH(g)
4∏

k=1

[
πjεk

(
gσk
ε

)]
mε

kn
ε
k

]

(14.3.59)

where ρk = (j+
k , j−k ), Mk = (m+

k ,m
−
k ), Nk = (n+

k , n
−
k ). It is clear that (14.3.59)

projects out the gauge-invariant piece of the decomposition into irreducibles of
the tensor product of four representations in (14.3.59). To do this explicitly we
must decide on a recoupling scheme. Let us assume that σ1 = σ2 = −σ3 = −σ4 =
1. We will choose to couple j±1 , j±2 to j±12, then j±3 , j±4 to j±34 and finally j±12, j

±
34 to

j±1234. Now since only j±1234 = 0 contributes to (14.3.59) we must necessarily have
j±12 = j±34 =: J±. It is possible to explicitly calculate the coefficients of the term
corresponding to J± ∈ {|j±1 − j±2 |, . . . , j±1 + j±2 } ∩ {|j±3 − j±4 |, . . . , j±3 + j±4 } by
using formula (32.3.4).

Define

Cm1,m2,m3,m4
j1,j2,j3,j4;J

:=
1√

2J + 1
< Jm1 + m2|j1m1, j2m2 >< Jm3 + m4|j3m3, j4m4>

(14.3.60)
and

CM1,M2,M3,M4
ρ1,ρ2,ρ3,ρ4;ρ :=

∏

ε=±
C

mε
1,m

ε
2,m

ε
3,m

ε
4

jε1,j
ε
2,j

ε
3,j

ε
4;Jε (14.3.61)

where ρ = (J+, J−) and similarly with (mk,MK) replaced by (nk, Nk). Then it
is easy to see that (14.3.60) turns into

∫

SO(4)

dμH(g)
4∏

k=1

[
ρk
(
gσk
)]

MkNk

=
∑

ρ

CM1,M2,M3,M4
ρ1,ρ2,ρ3,ρ4;ρ CN1,N2,N3,N4

ρ1,ρ2,ρ3,ρ4;ρ δM1+M2,N3+N4 δM3+M4,N1+N2 (14.3.62)

where, for example, M1 + M2 = (m+
1 + m+

2 ,m
−
1 + m−

2 ), etc. We can now evalu-
ate (14.3.58). Notice that at each dual vertex v ∈ C0(K∗) there are precisely five
incident dual edges e. These edges are either ingoing (v = t(e) is the terminal
point of e) or outgoing (v = b(e) is the beginning point of e) at v. For the out-

going edges we attribute the factors C
{Mf

e }e∈Ef

{ρf}e∈Ef
;ρe

to v and for the ingoing ones

we assign the factor C
{Nf

e }e∈Ef

{ρf}e∈Ef
;ρe

to v. Since there are altogether 10 such factors

(because each of the five integrals of the form (14.3.62) produces two of them),
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to each vertex we can attribute five such factors. The final formula is therefore
given by

ZBF(K∗) =
∑

{ρf}f∈C2(K∗)

∑

{ρe}e∈C1(K∗)

∑

{Mf
e ,Nf

e }e∈C1(K∗); σ(f,e)�=0

×
∏

f∈C2(K∗)

df Cρf

({
Mf

e , N
f
e

}
e∈Ef

)

×
∏

e∈C1(K∗)

δ∑
σ(f,e)=1 Mf

e ,
∑

σ(f,e)=−1 Nf
e
δ∑

σ(f,e)=1 Nf
e ,
∑

σ(f,e)=−1 Mf
e

×
∏

v∈C0(K∗)

⎡

⎣
∏

b(e)=v

C
{Mf

e }e∈Ef

{ρf}e∈Ef
;ρe

⎤

⎦

⎡

⎣
∏

t(e)=v

C
{Nf

e }e∈Ef

{ρf}e∈Ef
;ρe

⎤

⎦

=:
∑

{ρf}

∑

{ρe}

⎡

⎣
∏

f∈C2(K∗)

Af ({ρf})

⎤

⎦

⎡

⎣
∏

e∈C1(K∗)

Ae({ρe})

⎤

⎦

×

⎡

⎣
∏

v∈C0(K∗)

Av({ρf}, {ρe})

⎤

⎦ (14.3.63)

Here the last line is a symbolic notation for the precise formula in which the
summation over the magnetic quantum numbers m±f

e , n±f
e has been suppressed.

The factors (rather: tensors) Af , Ae, Av respectively are called face, edge and
vertex amplitudes respectively. It turns out that a symbolic notation of this
form is generic for all spin foam models: one assigns intertwiners ρe to edges,
representations ρf to faces and sums over them with specific weights which are
products of face, edge and vertex amplitudes depending on those representations
and intertwiners.

In the literature quoted one does not find formula (14.3.63) but rather a graph-
ical notation for the vertex amplitude which goes by the name pentagon diagram:
for a given vertex v, list the intertwiner quantum numbers ρe associated with
the edges e incident at v by ρ0, . . . , ρ4. Each of the edges ei, i = 0, . . . , 4 is
shared by four faces fij , j �= i whose associated loop ∂fij contributes the repre-
sentation ρij . If we now draw five points in a plane representing the edges and
connect these points with each other in all possible ways we obtain a pentagon
where the lines connecting points i, j are labelled by ρij and the points them-
selves by ρi (see Figure 14.2 for an illustration). Notice that the 10 faces only
intersect in the edges, giving rise to a three-dimensional projection of the four-
dimensional situation which we draw here in two dimensions by suppressing one
dimension. Quite remarkably, formula (14.3.63) is still invariant under change of
the triangulation K, even when regularising the sums over representions by using
quantum groups, that is, the model is topologically invariant at the quantum
level.
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Figure 14.2 The pentagon diagram: the corners represent the five dual edges
ei; i = 0, . . . , 4 incident at a dual vertex v and they are labelled by intertwiner
representations ρi. The lines represent the 10 dual faces fij incident at v which
contain the edges ei, ej ; 0 ≤ i < j ≤ 4 in its boundary and they are labelled
by representations ρij .

14.3.4 Imposing the simplicity constraints

The discretisation strategy for pure BF theory does not work for the Plebanski
action because it would be awkward to have variables B labelled by both tri-
angles t of K and dual faces f of K∗ respectively: this would somehow mean
doubling the number of degrees of freedom and one would not be able to write an
expression that is bilinear in just B(t) or just B(f). Since gravity is not topolog-
ical, there is fortunately no need to use a discretisation scheme which preserves
topological invariance.

One way to discretise the simplicity part of the Plebanski action would be to
just use K. For each four-simplex Δ consider its set of vertices V (Δ) and for
each v ∈ V (Δ) consider the four edges evi (Δ) outgoing from v. Consider the six
triangles tvij(Δ), 1 ≤ i < j ≤ 4 incident at v whose boundary loop starts from v

along evi (Δ) and ends at v along evj (Δ)−1. We take tvij(Δ) = −tvji(Δ). Now it is
easy to see that

∑

Δ∈C4(K∗)

∑

v∈V (Δ)

λIJKL(v)
5

εijklBIJ
(
tvij(Δ)

)
BKL

(
tvkl(Δ)

)
(14.3.64)
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converges to

∫

M

λIJKL BIJ ∧BKL (14.3.65)

as we refine the Riemann sum (14.3.64) in the limit K → M (up to a global
factor). This is what one should do and integrate out the Lagrange multiplier
field in the regularised path integral.

However, this approach has so far not been followed in the literature, there is
no completely systematic construction of the partition function for the Plebanski
theory starting from (14.3.65) yet available. Rather, what one does is to use the
simplicity constraints in the form (14.3.33) which are now interpreted as follows
in the discretised form:

εIJKLB
IJ
(
tvij(Δ)

)
BKL

(
tvkl(Δ)

)
= εijkl

1
4!
εIJKLε

pqrsBIJ
(
tvpq(Δ)

)
BKL

(
tvrs(Δ)

)

(14.3.66)

for all Δ, v ∈ V (Δ), i, j, k, l ∈ {1, 2, 3, 4} where we have used the same nota-
tion for the triangles as in (14.3.64). To see that this reproduces the correct
constraints in the continuum, use the parametrisation (t1, . . . , t4) �→ v + t1e1 +
· · · + t4e4, t1 + · · · + t4 ≤ ε, tk ≥ 0 of Δ in a coordinate chart. Then tvij(Δ) is
parametrised by (ti, tj) �→ v + tiei + tjej , ti + tj ≤ ε, ti, tj ≥ 0. Now the lowest
order in the ε expansion of (14.3.66) precisely reproduces the condition (14.3.33).

We can translate (14.3.66) more compactly into the condition that

εIJKLB
IJ(t)BKL(t′) = 0 if t = t′ or t ∩ t′ = e (14.3.67)

that is, the triangles are equal (intersect in a face of K) or intersect in an edge
of K while

εIJKLB
IJ(t12)BKL(t34) = εIJKLB

IJ(t13)BKL(t42) = εIJKLB
IJ(t14)BKL(t23)

(14.3.68)

when six triangles tij = −tji only share a common vertex of a four-simplex with
the orientation described above.

Let us denote the full set of simplicity constraints (14.3.66) by
Cα({Bf}f∈C2(K∗)) where α runs through some set of labels and we have again
made use of the one-to-one correspondence C2(K∗) � f �→ t(f) ∈ C2(K) between
dual faces and triangles and denoted Bf := B(t(f)). Then the idea is to intro-
duce a δ-distribution for each α into the partition function of BF theory which
one would obtain after integrating over a suitable set of Lagrange multipliers.
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Hence one considers the candidate Plebanski partition function

Z ′
P(K∗) :=

∫
⎡

⎣
∏

e∈C1(K∗)

dμH(ge)

⎤

⎦

⎡

⎣
∏

f∈C2(K∗)

d6Bf

⎤

⎦
[
∏

α

δ(Cα({Bf}))
]

× exp

⎛

⎝i
∑

f

Tr(BfU(∂f))

⎞

⎠ (14.3.69)

We say candidate because the actual partition function ZP(K∗) should arise
from imposing the constraints that follow from (14.3.64). We indicated this by
a first prime in (14.3.69). More approximations and modifications will come in
what follows, which will be marked with an increasing number of primes.

Let XIJ
f := Tr([P IJUf ]T∂/∂Uf ) be the right-invariant vector field on the copy

of SO(4) defined by Uf := U(∂f). Let Cα({Xf}) be the same as Cα({Bf}) just
that Bf was replaced by Xf . Let S =

∑
f Tr(BfUf ) then

[
∏

α

δ(Cα({Xf}))
]

eiS = eiS
∏

α

[e−iSδ(Cα({Xf})) eiS ]

= eiS
∏

α

[δ(e−iS Cα({Xf}) eiS)] (14.3.70)

where in the last step we made use of the representation δ(C) =∫
dt/(2π) exp(iC). Next we have

e−iS εIJKLX
IJ
f XKL

f ′ eiS = εIJKL

[
e−iS XIJ

f eiS
] [

e−iS XKL
f ′ eiS

]

= εIJKL

(
XIJ

f + i
[
XIJ

f , S
]) (

XKL
f ′ + i

[
XKL

f ′ , S
])

(14.3.71)

But
[
XIJ

f , S
]

= [XIJ ,Tr(BfUf )] = Tr([P IJUf ]TBf ) (14.3.72)

Now if we assume that the measure in (14.3.69) is concentrated, also before
integrating over the Bf , on flat connections then we can approximate Uf ≈ 14

and can use Bf =
∑

I<J P IJBIJ
f as well as Tr(P IJPKL) = −δI[KδJL] to conclude

[XIJ
f , S] ≈ BIJ

f . Of course, this assumption is not really justified since the flatness
condition only arises after integrating over the B field. Only if one makes this
assumption, however, can we deduce that

[
∏

α

δ(Cα({Xf}))
]

eiS ≈
[
∏

α

δ(Cα({Bf}))
]

eiS (14.3.73)

In particular we must really set Uf = 14 immediately after evaluation of [XIJ
f , S]

in (14.3.72) as otherwise an infinite number of higher derivatives will act when
working out the exponentials that are involved in

∏
α

∫
dt exp(iCα) (notice that

the same Xf appears in more than one Cα). Thus, the assumption made is really
non-trivial and no real justification exists.
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One has to pay a price for (14.3.73): the commuting constraints Cα({Bf})
were replaced by the non-commuting constraints Cα({Xf}). We will shortly see
that they do not form a closed algebra, hence they are anomalous, and thus
overconstrain the partition function. The advantage of the Cα({Xf}) is that we
can now integrate over Bf in (14.3.69). Hence we start from a, strictly speaking,
modified partition function

Z ′′
P(K∗) :=

∫
⎡

⎣
∏

e∈C1(K∗)

dμH(ge)

⎤

⎦

⎡

⎣
∏

f∈C2(K∗)

d6Bf

⎤

⎦
[
∏

α

δ(Cα({Xf}))
]

× exp

⎛

⎝i
∑

f

Tr(BfUf )

⎞

⎠

=
∫
⎡

⎣
∏

e∈C1(K∗)

dμH(ge)

⎤

⎦

[
∏

α

δ(Cα({Xf}))
] ⎡

⎣
∏

f∈C2(K∗)

δ(Uf )

⎤

⎦

(14.3.74)

where we dropped a constant and made the same assumption about the support
of the δ-distribution of Uf as for the BF partition function.

However, this is still not quite what one does. Rather than imposing (14.3.66)
with respect to all triangles of K at once one imposes only a subset of those
constraints, namely those that involve the triangles of a given four-simplex sepa-
rately. One does not impose the constraints that involve triangles within different
four-simplices, that is one neglects interactions between four-simplices. One does
this in order to organise the products appearing in (14.3.74) in a form which
resembles more BF theory, where one had a neat product of face, edge and
vertex amplitudes. However, this clearly does not justify what follows.

One proceeds as follows: we have seen that edges e of K∗ connect the baryonic
centres v = σ̂(4), v′ = σ̂(4)′ (i.e., dual vertices) of neighbouring four-simplices
σ(4), σ(4)′ of K through the baryonic centre ṽ = σ̂(3) of the tetrahedron σ(3) =
σ(4) ∩ σ(3)′ that they share. Let us split the edges into two halves at ṽ, that is,
e = [v, v′] = [v, ṽ] ◦ [v′, ṽ]−1 =: ev ◦ (ev

′
)−1. The point of doing this is that the

half-edges ev, ev
′

can now be attributed to the vertex at which they start. We
can label the half-edges attached to v by evi , i = 0, . . . , 4.

For the description of the geometrical situation, suppose that v =
σ̂(4)(v) with σ(4)(v) = [v0, . . . , v4]. Consider the boundary tetrahedra σ

(3)
i (v) =

[v0, . . . , v̂i, . . . , v4] with barycentre bi = σ̂
(3)
i (v). Then evi = [v, bi]. Suppose

that i < j and consider the boundary triangle σ
(2)
ij (v) = σ

(3)
i (v) ∩ σ

(3)
j (v) =

[v0, . . . , v̂i, . . . , v̂j , . . . , v4] with barycentre bij := σ̂
(2)
ij (v). The wedge wv

ij(v) is a
two-dimensional polyhedron bounded by the loop [v, bi] ◦ [bi, bij ] ◦ [bij , vj ] ◦ [bj , v]
and composed out of the triangles [v, bi, bij ] ∪ [v, bij , bj ] which belong to the
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baryonic refinement B(K) of K. The collection of wedges wij(v), i < j based at
v is sometimes called a fundamental atom in the literature.

Now by definition, the face f dual to the triangle σ
(2)
ij (v) = [v0, . . . , v̂i, . . . ,

v̂j , . . . , v4] is the union of all triangles of the form [bij , σ̂(3), σ̂(4)] where σ
(2)
ij (v) ⊂

∂σ(3), σ(3) ⊂ ∂σ(4). Obviously, the possibilities are σ(3) =[v0, . . . , v̂iv
′
i, . . . ,

v̂j , . . . , v4] or σ(3) = [v0, . . . , v̂i, . . . , v̂jv
′
j , . . . , v4] for some v′i, v

′
j ∈ C0(K) and

σ(4) = [v0, . . . , v̂iv
′
i, . . . , v̂jv

′′
j , . . . , v4] or σ(4) = [v0, . . . , v̂iv

′′
i , . . . , v̂jv

′
j , . . . , v4] for

some v′′i , v
′′
j ∈ C0(K). The point is that all those triangles are of the form

[bij , b′i, v
′′] again where b′i is the barycentre of a tetrahedron in the boundary

of a four-simplex with barycentre v′′. Hence, all dual faces are composed out of
wedges, in particular, the face f dual to σ

(2)
ij (v) is composed out of wedges which

all have the point bij = σ̂
(2)
ij (v) in common.

Suppose that we are given a face f ∈ C2(K∗). Denote the barycentre of its dual
triangle t ∈ C2(K) by bf . Suppose that ∂f = e1 ◦ . . . ◦ en is composed out of n
dual edges ek = [vk, vk+1], k = 1, . . . , n with vn+1 = v1. Let bk be the barycentre
of the tetrahedron which is shared by the four-simplices dual to vk, vk+1 respec-
tively. We consider the wedge wk as the two-polyhedron bounded by the loop
[bf , bk] ◦ [bk, vk] ◦ [vk, bk−1] ◦ [bk−1, bf ] for k = 1, . . . , n with b0 = bn. Obviously
∂wn ◦ ∂wn−1 ◦ . . . ◦ ∂w1 = ∂f .

The purpose of introducing the wedges is that they allow for a useful reor-
ganisation of the product of δ-distributions associated with the Uf . We compute
with the abbreviations pk = [bf , bk], e1

k = [vk, bk], e2
k = [bk, vk+1]

∫ [ n∏

k=1

dμH(U(pk))

] [
n∏

k=1

δ(U(∂wk))

]

=
∫ [ n∏

k=1

dμH(U(pk))

] [
n∏

k=2

δ(U(∂wk)

]

δ(U(∂wn) . . . U(∂w1))

= δ(U(∂f))
∫ [ n∏

k=1

dμH(U(pk))

] [
n∏

k=2

δ(U(pk)U
(
e1
k

)−1
U
(
e2
k−1

)−1
U(pk−1)−1)

]

(14.3.75)

The integration variable U(p1) appears only once in the last line in (14.3.75).
Using translation invariance, we can drop the δ-distribution involving U(p1)
from the integral as well as the integral over U(p1). After this the integrand only
involves U(p2) once. Iterating we obtain finally an integral over U(pn) with no
δ-distribution any more. That last integral equals unity due to the normalisation
of the Haar measure.

Abstracting from the example, for e ∈ Ef we introduce, as before, the begin-
ning point b(e), terminal point t(e) and interior point i(e). For the above example
we have b(ek) = vk, t(ek) = vk+1 and i(ek) = bk. We also consider the paths
pfe = [bf , i(e)], which in the above example would be pfek = [bf , bk], and the
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wedges wf
e , which in the above example would be wf

ek
= wk. Then we obtain

the result

δ(U(∂f)) =
∫
⎡

⎣
∏

e∈Ef

dμH

(
U
(
pfe
))
⎤

⎦

⎡

⎣
∏

e∈Ef

δ
(
U
(
∂wf

e

))
⎤

⎦ (14.3.76)

Next, what we can do is write for the partition function of BF theory

ZBF(K∗) =
∫
⎡

⎣
∏

e∈C1(K∗)

dμH(ge)

⎤

⎦

⎡

⎣
∏

f∈C2(K∗)

δ(Uf )

⎤

⎦

=
∫
⎡

⎣
∏

v∈C0(K∗)

4∏

i=0

dμH

(
gvi
)
⎤

⎦

⎡

⎣
∏

f∈C2(K∗)

δ(Uf )

⎤

⎦ (14.3.77)

where we have denoted gvi = U(evi ). This holds because the integrand only
depends on the combinations [b(e), i(e)] ◦ [i(e), t(e)] of the half-edges, hence a
change of variables from the evi to the e and, say, the beginning segments of the
e together with the normalisation and translation invariance of the Haar measure
reveals the identity.

Now notice that each wedge can be attributed to precisely one dual face f

or to precisely one dual vertex (by construction the wedges are adjacent to the
baryonic centre of exactly one four-simplex of K). Thus, combining (14.3.76)
and (14.3.77) and regrouping terms reveals

ZBF(K∗) =
∫
⎡

⎣
∏

f∈C2(K∗)

∏

e∈Ef

dμH

(
U
(
pfe
))
⎤

⎦

×
∏

v∈C0(K∗)

{∫ 4∏

i=0

dμH

(
gvi
)
[
∏

v∈w

δ(Uw)

]}

(14.3.78)

where the last product is over the wedges adjacent to v. In the literature one
refers to the U(pfe ) as the boundary data of the fundamental atom. The curly
bracket in expression (14.3.78) already takes the form of a vertex amplitude.

We can think of the product of δ-distributions appearing in the curly bracket
of (14.3.78) as arising from the integral (up to a factor)

∏

v∈w

δ(Uw) =
∫ ∏

v∈w

d6Bw eiTr(BwUw) (14.3.79)

Here the Bw should arise from the triangulation of the four-simplex correspond-
ing to v. Indeed we could have first decomposed the classical integral as

∫

M

Tr(B ∧ F ) =
∑

v∈C0(K∗)

∫

σ(4)(v)

Tr(B ∧ F ) (14.3.80)
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and then we could triangulate each σ(4)(v) separately. Using the triangulation
identities of the previous section we arrive precisely at
∫

σ(4)(v)

Tr(B ∧ F ) =
∑

σ(2)(v)∈C2(σ(4)(v))

Tr
(
B
(
σ(2)(v)

)
F
(
∗σ(4)(v)

(
σ(2)(v)

)))

(14.3.81)

But the σ(2)(v) are precisely the triangles σ
(2)
ij (v) and the wedges are precisely

their duals within σ(4)(v). To see the latter notice that the dual of σ(2)
ij (v) is the

union of triangles [bij , σ̂(3), σ̂(4)] where bij is the barycentre of the triangle as
before and σ(3) ⊂ σ(4)(v) must contain the triangle in its boundary and σ(4) ⊂
σ(4)(v) must contain σ(3) in its boundary. The only possibilities are, using the
previous notation, σ(3) = σ

(3)
i (v), σ(3)

j (v) and σ(4) = σ(4)(v) hence (neglecting

orientation) ∗σ(4)(v)(σ
(2)
ij (v)) = [bij , bi, v] ∪ [bij , bj , v] = wij(v) as claimed.

The idea is now to impose the simplicity constraint only on the triangles of a
given four-simplex individually. This is of course by no means justified because
in principle one should also care about the relations among the Bt, Bt′ where
the triangles t, t′ belong to different four-simplices, that is, we should also care
about the interaction between four-simplices which will not be the case in the
analysis that now follows. In any case, one now replaces (14.3.79) by

∫ ∏

v∈w

d6Bw

∏

αv

δ(Cαv
({Bw})) eiTr(BwUw)

≈
∫ ∏

v∈w

d6Bw

∏

αv

δ(Cαv ({Xw})) eiTr(BwUw)

=
∏

αv

δ(Cαv ({Xw}))
∏

v∈w

δ(Uw)) (14.3.82)

where XIJ
w = XIJ(Uw) is the right-invariant vector field associated with Uw

and we have made the same (unjustified) assumption about setting Uw = 14

(assuming that the measure is concentrated on Uw = 14 before integrating over
Bw) in the derivation of (14.3.82) as before. Here αv is a label which runs through
all the simplicity constraints that one imposes on the triangles contained in the
four-simplex dual to v.

Notice that the δ-distribution is invariant under cyclic permutation, that is,
δ(g1g2) = δ(g2g1) because it involves only characters. Hence, if we define cij(v) =
[vi(v), bij(v)] ◦ [bij(v), vj(v)] with vi(v) = t(evi ) then

δ(U(∂wij(v))) = δ
(
U([bij(v), vj(v)])

(
gvj
)−1

gvi U([bij(v), vi(v)])−1
)

= δ
(
U([vi(v), bij(v)] ◦ [bij(v), vj(v)])

(
gvj
)−1

gvi
)

= δ
(
U(cij(v))

(
gvj
)−1

gvi
)

(14.3.83)
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Thus when using Uw = U(cij(v))(gvj )−1gvi we can replace XIJ(Uw) by XIJ(Uc)
in (14.3.82).

This allows us to write the yet once more modified definition of the partition
function for the Plebanski theory in the form

Z ′′′
P (K∗) =

∫
⎡

⎣
∏

f∈C2(K∗)

∏

e∈Ef

dμH

(
U
(
pfe
))
⎤

⎦
∏

v∈C0(K∗)

[
∏

αv

δ(Cαv ({Xc}))
]

×

⎧
⎨

⎩

∫ 4∏

i=0

dμH

(
gvi
) ∏

0≤j≤k≤4

δ
(
hv
jk

(
gvk
)−1

gvi
)
⎫
⎬

⎭
(14.3.84)

where we wrote hv
ij = U(cij(v)) for simplicity.

We now perform the five integrals appearing in the curly bracket of (14.3.84).
Dropping the label v we have

∫ 4∏

i=0

dμH(gvi )
∏

0≤j≤k≤4

δ
(
hv
jk(g

v
k)−1gvi

)

=
∑

{ρij}

∑

{Lij},{Mij},{Nij}

⎡

⎣
∏

i<j

dρij [ρij(hij)]MijNij

⎤

⎦

×
∫ ∏

k

dμH(gk)
∏

i<j

[ρij(gi)]LijMij
[ρij(gj)]LijNij

=
∑

{ρij}

∑

{Lij},{Mij},{Nij}

⎡

⎣
∏

i<j

dρij
[ρij(hij)]MijNij

⎤

⎦

×
∏

i

∫
dμH(g)

⎡

⎣
∏

j<i

[ρji(g)]LjiMji

⎤

⎦

⎡

⎣
∏

i<j

[ρij(g)]LijNij

⎤

⎦

=
∑

{ρij}

∑

{Lij},{Mij},{Nij}

⎡

⎣
∏

i<j

dρij [ρij(hij)]MijNij

⎤

⎦

×
∑

{ρi}

∏

i

C
{Lji}j<i,{Lij}i<j

{ρji}j<i,{ρij}i<j ;ρi
C

{Nji}j<i,{Mij}i<j

{ρji}j<i,{ρij}i<j ;ρi

× δ∑
j<i Lji+

∑
i<j Lij ,0 δ∑

j<i Nji+
∑

i<j Mij ,0 (14.3.85)

where we have used the notation of (14.3.60), (14.3.61), (14.3.62), (14.3.63).
We can now impose the simplicity constraints for each four-simplex, which

take the explicit form (again we drop the label v and write XIJ
ij := XIJ(hij); no

summation over repeated indices i, j):
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1. 10 triangle constraints

εIJKLX
IJ
ij XKL

ij = 0 ∀ 0 ≤ i ≤ j ≤ 4 (14.3.86)

2. 30 tetrahedron constraints

εIJKLX
IJ
ij XKL

ik = 0 ∀ 0 ≤ i ≤ j ≤ 4, k �= i, j (14.3.87)

3. 10 four-simplex constraints

εIJKLX
IJ
ij XKL

kl = εIJKLX
IJ
ik XKL

lj = εIJKLX
IJ
il XKL

jk ∀ 0 ≤ i < j < k < l ≤ 4

(14.3.88)

Some of these constraints turn out to be redundant as we will see.
It is not difficult to show that for any pairs of indices i < j, k < l we have

εIJKLX
IJ
ij XKL

kl = 8
[
Xm+

ij Xm+
kl −Xm−

ij Xm−
kl

]
(14.3.89)

where we have expanded X = X+ + X− in terms of (anti-)self-dual right-
invariant vector fields.

Triangle constraints
The triangle constraints now require that the self-dual and anti-self-dual Casimirs
are equal for all i < j. Since ρij = πj+ij

⊗ πj−ij
and [Xm±

ij ]2πj±ij
= −j±ij (j

±
ij + 1)πj±ij

it follows that j+
ij = j−ij =: jij for all i < j. This means that ρij = (jij , jij) must

be a simple representation.

Tetrahedron constraints
The tetrahedron constraints can be written as

εIJKLX
IJ
ij XKL

ik = 8
[(
Xm+

ij + Xm+
ik

)2 −
(
Xm−

ij + Xm−
ik

)2] = 0 (14.3.90)

where we have exploited that the triangle constraints are already solved. To
see what this means define jij = jji and consider a particular index i. Then
there are three possible recoupling schemes in order to couple the simple spins
ji1 := jii+1, . . . , j

i
4 := jii+4 with jij = jij−5 to zero, namely the ones based on

coupling ji1, j
i
2 or ji1, j

i
3 or ji1, j

i
4 first (the other three possibilities are equivalent

because it does not matter whether we first couple say ji1, j
i
2 then ji3, j

i
4 or vice

versa, which is why only get 5 × 3 = 15 rather than 5 × 6 = 30 independent
tetrahedron constraints). Suppose we choose the 1, 2 scheme. Then (14.3.90)
says that the spins ji1, j

i
2 for the self-dual part of the representation must couple

to the same intertwining spin J+
i = Ji as for the anti-self-dual copy, J−

i = Ji.
Thus the intertwiner representation ρi = (J+

i , J−
i ) = (Ji, Ji) must be simple in

the 1, 2 scheme. However, (14.3.90) asks that the intertwiner representation is
simple in all three recoupling schemes.

To see what this amounts to we notice that since XIJ
ii+1 + · · · + XIJ

ii+4 = 0
due to gauge invariance of the intertwiner we also have Xm±

ii+1 + · · · + Xm±
ii+4 = 0.
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Therefore we have for the 1, 4 recoupling scheme (let us abbreviate J
(i)m±
j =

Xm±
ii+j and set J

(i)±
jk := J

(i)m±
j J

(i)m±
k )

J
(i)+
14 − J

(i)−
14 = −

(
J

(i)+
11 − J

(i)−
11

)
−
(
J

(i)+
12 − J

(i)−
12

)
−
(
J

(i)+
13 − J

(i)−
13

)

(14.3.91)

The first term on the right-hand side of (14.3.91) vanishes due to the triangle
constraints. Thus the intertwiner simplicity in the 1, 4 scheme holds automati-
cally if it holds in both the 1, 2 and 1, 3 schemes. Therefore there are actually
only 10 independent tetrahedron constraints.

However, these 10 tetrahedron constraints are inconsistent with each other,
because we have the non-trivial ‘integrability condition’ that

[
J

(i)+
12 − J

(i)−
12 , J

(i)+
13 − J

(i)−
13

]
=
(
J

(i)+
123 − J

(i)−
123

)
(14.3.92)

should vanish when the triangle and tetrahedron constraints hold. Here J
(i)±
123 =

εjklJ
(i)j±
1 J

(i)k±
2 J

(i)l±
3 and we used [J (i)mε

j , J
(i)nε
k ] = (ε + ε′)δjkεmnlJ

(i)lε
j /2. The

constraint (14.3.92) is a new independent constraint which arises for all i =
0, . . . , 4. These new ‘secondary’ constraints could now lead to ‘tertiary’ con-
straints. We compute

[
J

(i)+
12 − J

(i)−
12 , J

(i)+
123 − J

(i)−
123

]

=
[
J

(i)+
12 , J

(i)+
123

]
+
[
J

(i)−
12 , J

(i)−
123

]

=
[
J

(i)+
11 J

(i)+
23 − J

(i)+
13 J

(i)+
12 + J

(i)+
12 J

(i)+
23 − J

(i)+
13 J

(i)+
22

]

−
[
J

(i)−
11 J

(i)−
23 − J

(i)−
13 J

(i)−
12 + J

(i)−
12 J

(i)−
23 − J

(i)−
13 J

(i)−
22

]

=
[
J

(i)+
11 + J

(i)+
12

]
J

(i)+
23 −

[
J

(i)−
11 + J

(i)−
12

]
J

(i)−
23 (14.3.93)

where we used constraints already satisfied. Using the identity

J
(i)±
23 = −J

(i)±
12 − J

(i)±
13 +

1
2
[
J

(i)±
44 − J

(i)±
11 − J

(i)±
22 − J

(i)±
33

]
(14.3.94)

where gauge invariance was used we see that (14.3.93) vanishes when the triangle,
tetrahedron and secondary constraints hold. A similar calculation with the 1, 3
constraint shows that there are no tertiary constraints.

The question is whether there are intertwiners which are simple in all recou-
pling schemes. Let us try to understand the integrability conditions (14.3.94): the
recoupled states depending on the hij(v) are mathematically equivalent to gauge-
invariant spin-network states for SO(4) with a four-valent vertex. The (anti-)self-
dual volume operator is the modulus of the square root of a linear combination of
the J

(i)±
123 , J

(i)±
234 , J

(i)±
134 , J

(i)±
124 which can be reduced, using gauge invariance, to the

modulus of the square root of J (i)±
123 . In order that the integrability conditions are

met, each term in the sum over simple Ji must be an eigenstate of both volume
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operators with the same eigenvalue because the intertwiners are linearly indepen-
dent. However, the recoupling basis of spin-network states is not diagonal for the
volume operator as we explicitly saw, in particular for the four-vertex, in Section
13.4.4 whenever the space of possible gauge-invariant intertwiners is more than
one-dimensional. Hence the space of gauge-invariant intertwiners must be one-
dimensional. However, due to the antisymmetry of J (i)±

123 , in the one-dimensional
case the intertwiner state is automatically a zero-volume eigenstate.

Notice that the requirement that the space of gauge-invariant and simple
interwiners is one-dimensional is independent of the recoupling scheme because
a change of recoupling scheme corresponds to a unitary transformation which
preserves dimensionalities. The requirement on the one-dimensionality imposes
restrictions on the system of 10 spins jij , i < j: in order that there is a solution to
the simplicity constraint in the 1, 2 scheme the set {|j(i)

1 − j
(i)
2 |, . . . , j(i)

1 + j
(i)
2 } ∩

{|j(i)
3 − j

(i)
4 |, . . . , j(i)

3 + j
(i)
4 } must be non-empty and in order that it consists of

one element only we must have

max
(∣∣j(i)

1 − j
(i)
2

∣
∣,
∣
∣j(i)

3 − j
(i)
4

∣
∣) = min

(
j
(i)
1 + j

(i)
2 , j

(i)
3 + j

(i)
4

)
(14.3.95)

for all i = 0, . . . , 4. Thus the sum over simple ρij is further constrained by
(14.3.95). It admits non-trivial solutions. For instance the following:

j04 = j01 + j02 + j03

j14 = j01 + j12 + j13

j24 = j02 + j12 + j23

j34 = j03 + j13 + j23

j04 = j14 + j24 + j34

⇒ j12 = j13 = j23 = 0 (14.3.96)

while j01, j02, j03 are unconstrained.
We conclude that the only solution to the tetrahedron constraints are those

for which the self-dual and anti-self-dual volume spanned by the triangles
tii+j(v), j = 1, 2, 3 equals zero. In other words, the simplicity constraints com-
pletely over-constrain the system so that it only allows for degenerate three-
geometries. This means that the presented strategy to quantise the Plebanski
action does not quantise General Relativity [733].

One can evade this conclusion by an ad hoc modification of the intertwiner and
this results in the Barrett–Crane model: the intertwiner was given by (14.3.85),
which we display again as

∑

{ρi}

∏

i

C
{Lji}j<i,{Lij}i<j

{ρji}j<i,{ρij}i<j ;ρi
C

{Nji}j<i,{Mij}i<j

{ρji}j<i,{ρij}i<j ;ρi

δ∑
j<i Lji+

∑
i<j Lij ,0 δ∑

j<i Nji+
∑

i<j Mij ,0 (14.3.97)
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In terms of SO(3) representations or Clebsch–Gordan coefficients this becomes
explicitly, using the simplicity in the various 1, 2 schemes

∏

i

⎡

⎣
∑

J(12)i

∏

ε=±
< {jij}j �=i, {mε

ij}j �=i|J (12)
i > < {jij}j �=i, {nε

ij}j �=i|J (12)
i >

⎤

⎦

(14.3.98)

where we use the product of three CGCs

< {jij}j �=i, {mij}j �=i|J (12)
i >: = < ji+1mi+1, ji+2mi+2|J (12)

i mi+1 + mi+2 >

× < ji+3mi+3, ji+4mi+4|J (12)
i mi+3 + mi+4 >

× < J
(12)
i mi+1 + mi+2, J

(12)
i mi+3 + mi+4|00 >

and we have split Lij ,Mij , NIJ in the form (k+, k−) and denoted the entries by
m±

ij , n
±
ij . The superscript (12) in J

(12)
i is to make it explicit that we have used

the 1, 2 scheme as before. The coefficients (14.3.99) are the expansion coefficients
of the zero-momentum eigenstate |J (12)

i > with respect to the recoupling state
1, 2 in the tensor product basis. To verify this formula, just iterate (32.3.4).

Now consider the following objects corresponding to a 1, 3 scheme

< {jij}j �=i, {mij}j �=i|J (13)
i >: = < ji+1mi+1, ji+3mi+3|J (12)

i mi+1 + mi+3 >

× < ji+3mi+2, ji+4mi+4|J (12)
i mi+2 + mi+4 >

× < J
(12)
i mi+1 + mi+3, J

(12)
i mi+2 + mi+4|00 >

Since the states |J (12)
i >, J

(13)
i > form an orthonormal basis in the space of

gauge-invariant states we can expand (14.3.98) in terms of the states of the 1, 3
scheme

∏

i

⎡

⎢
⎣

∑

J
(13)±
i ,J

(13)±′
i

∏

ε=±
< {jij}j �=i, {mε

ij}j �=i|J (13)ε
i > < {jij}j �=i, {nε

ij}j �=i|J (13)ε′
i >

⎤

⎥
⎦

×

⎡

⎣
∑

J(12)i

< J
(13)+
i |J (12)

i > < J
(13)−
i |J (12)

i > < J
(13)+′
i |J (12)

i > < J
(13)−′
i |J (12)

i >

⎤

⎦

(14.3.99)

We see what prevents (14.3.99) from reducing to a sum over a single label J (13):
there are four factors in the last line of (14.3.99) involved. If there were only
two then we could use the completeness relation

∑
J

(12)
i

|J (12)
i >< J

(12)
i | = 1 in

order to achieve the goal. This motivates us to replace (14.3.98) by

∏

i

⎡

⎢
⎣

∑

J
(12)
i ,J

(12)′
i

∏

ε=±
< {jij}j �=i, {mε

ij}j �=i|J (12)
i > < {jij}j �=i, {nε

ij}j �=i|J (12)′
i >

⎤

⎥
⎦

(14.3.100)
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or by

∏

i

⎡

⎢
⎣

∑

J
(12)+
i ,J

(12)−
i

∏

ε=±
< {jij}j �=i, {mε

ij}j �=i|J (12)ε
i > < {jij}j �=i, {nε

ij}j �=i|J (12)ε
i >

⎤

⎥
⎦

(14.3.101)

In both cases there are now two independent sums over J (12) recoupling spins
so that the form of (14.3.100) or (14.3.101) is restored after introducing the 1, 3
scheme. That these two substitutions are the only possible ones has been shown
in [701], and one calls (14.3.100) or (14.3.101) a simple intertwiner. They lead
to what is known as the Barrett–Crane A or B model respectively.

Four-simplex constraints
Neither the (more honest) degenerate model nor the Barrett–Crane substitu-
tion take the four-simplex constraints into account. They are not implied by the
triangle and tetrahedron constraints because they involve new quadratic invari-
ants of the XIJ

ij with no repeated indices. In fact, it is a miracle that there is a
solution to the triangle and tetrahedron constraints at all because including the
secondary (consistency) conditions they themselves already comprise 25 rather
than the wanted 20 conditions. The additional four-simplex conditions would
add another 10 conditions, which are again mutually inconsistent and presum-
ably would have no solutions.

14.3.5 Summary of the status of the Barrett–Crane model

As we have seen, at the moment there is no clear-cut derivation of the Barrett–
Crane model from the Palatini or Plebanski action. The issues are summarised
below, which we list here in order to make it explicit where improvements have
to be made in the future.

(A) To begin with, the Palatini or Plebanski action are actions which give rise
to second-class constraints in their canonical formulation. This implies that
there is to be included into the measure a Jacobean associated with the
corresponding Dirac bracket as is well known [263] and as will be explained
in more detail below.

(B) The Plebanski action is not equivalent to the Palatini action. When solving
the simplicity constraints one obtains five different sectors corresponding to
plus or minus the Plebanski action, plus or minus a topological term or a
theory which has no metrical interpretation at all. All of these terms could
contribute with equal probability in the path integral. If that was the case,
even if the path integral is dominated by classical configurations, its value
would not be the exponential of the Palatini action.
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(C) One does not really integrate over the Lagrange multiplier corresponding to
the simplicity constraints as they appear in Plebanski’s action. Rather, one
implements the dual form of the constraints by hand.

(D) One substitutes the B field in those constraints by vector fields on the group.
This can be justified at best when the path integral is dominated by flat
connections. However, one does that obviously before integrating over the B

field while the flatness property, as in BF theory, only arises after integrating
over the B field. This is not justified.

(E) After integrating over the B field one obtains δ-distributions which are sup-
ported also on configurations for which the connection is not flat. These
configurations are neglected by hand.

(F) One imposes the simplicity constraints only for triangles within every four-
simplex, that is, for each four-simplex separately. Thus one neglects the
constraints that arise from triangles belonging to different four-simplices.
This means that one neglects interaction terms, the constraints are only
imposed locally. The resulting constraints for a given four-vertex are
then of three types: 10 triangle, 30 tetrahedron and 10 four-simplex
constraints.

(G) Taken seriously, those constraints are inconsistent for every four-simplex.
The theory is over-constrained even when only taking into account trian-
gle and tetrahedron constraints, which give rise to 20 plus an additional
5 integrability constraints. The result is a model which describes degener-
ate three-geometries. More precisely, the triangle constraints impose sim-
ple representations on the dual wedges (faces), the tetrahedron constraints
impose simple representations (intertwiners) on the dual edges. The inte-
grability conditions impose a vanishing three-volume spanned by any three
wedges.

(H) The remaining four-simplex constraints are not taken into account at all. If
one did, the theory would presumably have a trivial partition function.

(I) One can modify the degenerate theory of item G by changing the definition
of the simple intertwiner. The result is the Barrett–Crane model.

Despite these present shortcomings, the Barrett–Crane model has proved to be
an important step in the development of spin foam models, with the aid of
which many ideas have been tested. It is certainly not a candidate for quantum
gravity, but rather a platform from which improved models can be constructed
by modifying it.

14.4 Triangulation dependence and group field theory

Proceeding with our general description, in contrast to (14.2.13) the integral
(14.2.17) is expectedly no longer independent of the triangulation T so that one
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has to sum over all triangulations in order to obtain triangulation independence.
This amounts to defining

ZP =
∑

T

w(T )ZP(T ) (14.4.1)

Of course, the immediate question is how the weight factors w(T ) should be
chosen.

A clue for how to do that comes from the matrix model approach to two-
dimensional quantum gravity (see, e.g., [708] and references therein). Boulatov
and Ooguri [463, 464] respectively have shown that a Feynman-like expansion
of a certain field theory over a group manifold (rather than a space-time) gives
rise to all possible triangulations of the Ponzano–Regge (or the Turarev–Viro)
model in three dimensions with G = SU(2) and the Crane–Yetter model in four
dimensions respectively [677–681] with G = SO(4). For a recent review of group
field theory and its relation to spin foam models, see [709]. In [465] de Pietri,
Freidel, Krasnov and Rovelli applied these ideas in order to recover the Barrett–
Crane model from a field theory formulation. To see how this works, consider
first the case of the BF theory in D = 3. Here one considers a real scalar field over
SO(4)4 which is right-invariant, that is, φ(h1, h2, h3, h4) = φ(h1g, h2g, h3g, h4g)
for any g ∈ SO(4). One can always obtain such a φ from a non-invariant
field φ′ by φ =

∫
SU(2)

dμH(g)R∗
gφ

′. The Boulatov–Ooguri action is then
given by

S′
BO =

∫

SO(4)4
dμH(h1)dμH(h2)dμH(h3)dμH(h4)φ2(h1, h2, h3, h4)

+
λ

5!

∫

SO(4)10
dμH(h1)dμH(h2)dμH(h3)dμH(h4)dμH(h5)

× dμH(h6)dμH(h7)dμH(h8)dμH(h9)dμH(h10)

×φ(h1, h2, h3, h4)φ(h5, h6, h7, h8)φ(h7, h3, h8, h9)

×φ(h9, h6, h2, h10)φ(h10, h8, h5, h1) (14.4.2)

which looks almost like a λφ5 theory. One can now develop the usual Feyn-
man rules for this field theory, giving rise to propagators and vertex functions,
and construct the perturbation theory as an expansion in powers of λ (see
Figures 14.3 and 14.4). The result is

∫
[dφ]e−SBO(φ) =

∑

T

w(T )ZBF(T ) (14.4.3)

with specific weight factors w(T ) = λN(T )/S(T ) where N(T ) is the number of
Feynman graph vertices and S(T ) the usual combinatoric factor of Feynman
graphs. Notice that the sum over triangulations is redundant for BF theory but
not for General Relativity.
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f f

h1

h2

h3

h4

Figure 14.3 Kinetic term of the action of group field theory. The two field
insertions each depend on the same quadruple of group variables.

The way in which Feynman diagrams produce triangulations is as follows: as
in ordinary Euclidean QFT one defines n-point functions heuristically by

S(h1, . . . , hn) :=
1
Z

∫
. . . [dφ] . . . e−S(φ) φ(h1) . . . φ(hn) (14.4.4)

which are the analogues of Schwinger functions. Here hj = (h1
j , . . . , h

4
j ) is a

quadruple of group elements. The two-point function is related to the propa-
gator, while the five-point function is related to the vertex in the usual way.
Due to the various translation invariances of the action S, the propagator only
depends non-trivially on four group elements while the vertex only depends non-
trivially on 10 group elements. This is like momentum conservation in ordinary
QFT. Notice that as in usual QFT these facts are easiest to prove in Fourier
space, that is, by summing over representations rather than integrating over the
group. Hence a propagator can be pictured by a strand of four parallel lines, each
line representing a group element or a representation while a vertex can be pic-
tured by 10 lines or representations, where the ends of four of them bundle in a
corner. In those corners a propagator can connect to the vertex (see Figures 14.5
and 14.6). The Feynman rules of the group field theory are now such that each
of the lines in a strand can connect to the four lines in the corner of a vertex in
several possible ways. Let us follow such a line as it runs through various propa-
gators and vertices. When it reconnects to itself, we call such a line a cycle. We
now define a map between the objects of the Feynman graph and the objects
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Figure 14.4 Potential term in the action of the group field theory. The five
field insertions depend democratically on 10 group variables.

of a cell complex: each vertex of the Feynman graph corresponds to a vertex of
the complex, each propagator of the Feynman graph to an edge of the complex
and each cycle of the Feynman graph to a face of the complex. Notice that not
all such abstract complexes obtained via Feynman graphs can be realised as a
triangulation, hence the sum (14.4.3) also contains extra terms without such an
interpretation. See [466] for a general analysis of when the ‘fat Feynman graphs’
that arise from this general type of tensor matrix model give rise to a triangula-
tion of a manifold. The various projections in the models discussed below reduce
the sums over representations to simple ones.

Given the fact that the Barrett–Crane model basically reduces the SO(4) ∼=
SU(2)L × SU(2)R/Z2 of the BF theory to SU(2) it was natural to try to reduce
the Crane–Yetter model to the Barrett–Crane model by requiring separate right
invariance under SU(2), that is, φ(g1, g2, g3, g4) = φ(g1h1, g2h2, g3h3, g4h4) for
any h1, . . . , h4 ∈ SU(2). Notice that such a field effectively only lives on SU(2)4

precisely as wanted (more precisely, its Peter and Weyl expansion reduces to
simple representations). This can be achieved by means of a projection

(Pφ)(g1, . . . , g4)

=
∫

SU(2)4
dμH(h1)dμH(h2)dμH(h3)dμH(h4)φ(g1h1, g2h2, g3h3, g4h4)

(14.4.5)

where we have chosen some internal direction in four-dimensional Euclidean
space in order to write SO(4) in terms of two copies of SU(2) (to choose a
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Figure 14.5 The propagator of the group field theory is represented by a strand
composed of four lines. Each line is oriented and carries a representation label.
The whole strand of lines corresponds to an edge in the simplicial complex
interpretation of the group field theory Feynman diagram.

SU(2) subgroup of SO(4)). The field Pφ is independent of that direction since
it is invariant under simultaneous right action by SO(4) as well. The theory
considered in [465] is given by (14.4.2) just that φ is replaced by Pφ, that is,

S′
BC =

∫

SO(4)4
dμH(h1)dμH(h2)dμH(h3)dμH(h4)(Pφ)2(h1, h2, h3, h4)

+
λ

5!

∫

SO(4)10
dμH(h1)dμH(h2)dμH(h3)dμH(h4)dμH(h5)

× dμH(h6)dμH(h7)dμH(h8)dμH(h9)dμH(h10)

× (Pφ)(h1, h2, h3, h4)(Pφ)(h5, h6, h7, h8)(Pφ)(h7, h3, h8, h9)

× (Pφ)(h9, h6, h2, h10)(Pφ)(h10, h8, h5, h1) (14.4.6)

It was shown that the resulting Feynman expansion indeed gives rise to a sum
over triangulations of the Barrett–Crane model.

The individual terms of the resulting series, however, are still divergent. In
[461] Perez and Rovelli suggested a slight modification of (14.4.6) by removing
the projection in the quadratic term, that is,

S′
PR =

∫

SO(4)4
dμH(h1)dμH(h2)dμH(h3)dμH(h4)φ2(h1, h2, h3, h4)

+
λ

5!

∫

SO(4)10
dμH(h1)dμH(h2)dμH(h3)dμH(h4)dμH(h5)

× dμH(h6)dμH(h7)dμH(h8)dμH(h9)dμH(h10)

× (Pφ)(h1, h2, h3, h4)(Pφ)(h5, h6, h7, h8)(Pφ)(h7, h3, h8, h9)

× (Pφ)(h9, h6, h2, h10)(Pφ)(h10, h8, h5, h1) (14.4.7)
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Figure 14.6 The vertex of the group field theory is represented by a collection
composed of 10 lines. Four of their ends terminate in five corners and this is
where the strand of a propagator can connect. The orientation of the lines
matches with the one on the lines within the propagators that connect. The
representations on the lines are determined by the one on the cycles. The
whole collection of lines corresponds to a vertex in the simplicial complex
interpretation of the group field theory Feynman diagram.

which is free of certain bubble divergences in its Feynman expansion. In [462]
Perez proved that the resulting model, which is only a slight variation of the
Barrett–Crane model and which effectively only depends on simple representa-
tions, is actually finite order by order in perturbation theory (triangulation refine-
ment). Of course, this does not show that the series converges but it is anyway
a remarkable result that no renormalisation is necessary. Besides, in [710,711] it
was demonstrated that any Euclidean spin foam model can be written as a field
theory over a compact group manifold. In a sense, group field theories are dual
to spin foam models in the sense that the vertex amplitude of a spin foam model
is in one-to-one correspondence to the interaction term of the group field theory
(the kinetic term is universal).

Another virtue of the group field theory formulation is that it leads to a pro-
posal for the physical inner product [709]: consider two spin-network functions
Tγi , Tγf

cylindrical over initial and final graphs γi, γf respectively which are
four-valent. Now consider the set of all triangulations T appearing in (14.4.1)
subject to two conditions: (1) the graphs γf , γi define the boundary of the dual
∗T ; (2) T is a tree diagram in the sense of the group field theory (no closed
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Feynman loops). It is not difficult to see that the set of these T is finite, hence
(14.4.1) converges when restricting the sum to those.2 Then the restricted par-
tition function (14.4.1) with the spin-network states inserted is the definition of
the physical inner product < η(Tγf

), η(Tγi) >phys with a certain rigging map η.
If one can show that this sesquilinear form is positive definite but does have a
non-trivial kernel, a necessary requirement for a rigging map (different kinemat-
ical states get mapped to the same physical state), then it serves as a candidate
for a physical inner product. At this stage this is just a proposal. It would
be crucial to see in which sense if any the image of η satisfies (some version
of the) Hamiltonian constraints. The positivity has been established for a cer-
tain class of vertex amplitudes including those of the Euclidean Barrett–Crane
model in [735]. The positivity is based on the fact that Spin(4) ∼= SU(2) × SU(2),
which means that for simple representations the intertwiner always involves
squares of higher j symbols which is non-negative. This idea of proof does not
extend to the Lorentzian case in an obvious way, however, work on this is in
progress.

So far we have only discussed the Euclidean theory. Can one also deal with
the Lorentzian case? In [455] Barrett and Crane modified their Euclidean model
to the Lorentzian case. One obstacle is that one now has to deal with the non-
compact gauge group SO(1, 3) for which all non-trivial unitary representations
are infinite-dimensional. The unitary representations of the universal covering
group SL(2,C) are labelled by a pair (n, ρ) ∈ R+

0 × N+
0 , quite similar to the case

of the universal covering group SU(2) × SU(2) of SO(4) which are labelled by
a pair (j, j′) ∈ N0/2 × N0/2. For an exhaustive treatment see [712]. Following
an analogous procedure that has led to the constraint j = j′ in the Euclidean
case we now find that the simplicity constraint leads to nρ = 0, that is, either
n = 0 or ρ = 0. These representations pick an SL(2,R) or SU(2) subgroup within
SL(2,C) for n = 0 or ρ = 0 respectively. To see where this comes from, one
notices that the B field of the BF theory essentially becomes, upon canonical
quantisation, an angular momentum operator and the Casimir operators are
given by C1 = LijL

ij , C2 = Lij(∗L)ij , the simplicity constraint becomes C2 = 0.
In the Euclidean case the spectra are C1 = j(j + 1) + j′(j′ + 1), C2 = j(j + 1) −
j′(j′ + 1) while in the Lorentzian case the spectra are C1 = [n2 − ρ2 − 4]/4, C2 =
nρ/4. We see that in the Euclidean case the simple representations are ‘spacelike’
representations C1 ≥ 0 while the simple representations with n = 0, ρ = 0 for the
Lorentzian theory are timelike and spacelike respectively. The definition of the
δ-distribution now becomes more complicated because there is no Peter and
Weyl basis any longer. Rather, one has direct integrals and sums respectively for

2 Since no loops in the Feynman diagrams are allowed, these diagrams only contain
triangulations whose only faces are those dual to the triangles in the boundary
spin-network graph. It is not clear whether this restriction captures enough dynamical
information about the amplitude.
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the simple continuous and discrete series of representations respectively and in
order to evaluate the state sum amplitudes one must now perform complicated
integrals also, rather than just discrete sums. In [713] Baez and Barrett proved
that nevertheless a large class of these amplitudes are ‘integrable’.

In [714] Perez and Rovelli managed to show that also (a variant of) the
Lorentzian Barrett–Crane model can be defined as a field theory on a group man-
ifold including the sum over triangulations again. Basically, what one does is to
replace in (14.4.7) the group SO(4) by SL(2,C) while the projection P can now be
performed with respect to any of the two subgroups SL(2,R) and SU(2) respec-
tively while the field φ is now simultaneously SL(2,C) right-invariant. In [714] the
choice SU(2) was made in order to define P , which is therefore given by (14.4.5)
with gI ∈ SO(4) replaced by gI ∈ SL(2,C), I = 1, 2, 3, 4. Finally, in [715, 716]
Crane, Perez and Rovelli succeeded in proving, using the results of [713], that
the Lorentzian field theory [714] is finite order by order in perturbation theory
at least on what they call ‘regular’ triangulations.

14.5 Discussion

(i) Spin foams and canonical theory
What is missing is an interpretation of these spin foam models. The inter-
pretation of spin foam models must go through the canonical theory. In
fact, spin foam models for GR are supposed to be path integral-like expres-
sions for the physical inner product, which in turn is defined by the Hamil-
tonian constraint. This was precisely the starting point of Reisenberger
and Rovelli as sketched at the beginning of this chapter. However, as we
have seen, using the Hamiltonian constraint one presently cannot give any
mathematical meaning to the associated model, moreover, due to the non-
commutativity of the Hamiltonian constraint it is unlikely that it really
defines a (generalised) projector. On the other hand, the current spin foam
models start from a heuristic path integral Ansatz, the exponential of the
Palatini action, but it is a priori unclear whether they have anything to do
with the canonical theory. The reason for that is manifold:
– From experience with field theory on Minkowski space one is used to

the folklore knowledge that the transition amplitude with respect to a
Hamiltonian is given, heuristically, by a path integral over configuration
space histories weighted by the exponential of i times the Lagrangian
action. This, however, implicitly assumes that the Hamiltonian is at
most quadratic in the momenta. If that is not the case, then one can
still write a path integral over histories in phase space weighted by i

times the exponential of the Hamiltonian action, however, one cannot
do the Gaußian integral over momentum space any longer so that the
Lagrangian remains in its Hamiltonian, not manifestly covariant D + 1
split form. Hence for such more general theories, in particular highly
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non-polynomial ones such as GR, it is in general not possible to arrive
at the Lagrangian, and hence four-dimensionally covariant form of the
action.

– The path integral for GR is not a transition amplitude between initial and
final states at all. It simply does not have this interpretation. What one
does is (1) to take kinematical states ψ,ψ′ which are not solutions to the
Wheeler–DeWitt constraint, (2) to compute3 the transition amplitude
< ψ, exp(iĤ†(N))ψ >kin for all the infinite number of ‘Hamiltonians’
Ĥ†(N) and (3) to functionally integrate over all lapse functions N with
some measure [dN ]. There is no Hamiltonian here, therefore one should
never use the words ‘transition amplitude’. The correct interpretation
is only that of a physical inner product between the formal solutions∫

[dN ] exp(iĤ ′(N))ψ.
– One might think that this still has a chance of giving rise to the Palatini

action or the Einstein–Hilbert action. Hence, given some states in the
kinematical Hilbert space, in order to get simultaneous solutions to all
constraints one formally hopes to get by the usual manipulations
∫

[dN ] [d �N ] [dΛ] < ψ, exp(i[Ĥ†(N) + �̂H
†
( �N) + Ĝ†(Λ)])ψ′ >kin

=
∫

[dN ] [d �N ] [dΛ] [dE] [dA] ψ(A0)ψ′(A1)

× exp
(
i

∫ 1

0

dt

∫
d3x{Ȧj

aE
a
j − [−ΛjGj + NaHa + NH]}

)
(14.5.1)

where A0, A1 respectively are the field configurations of the spatial con-
nection at t = 0, t = 1 respectively.

This is to be compared with the Palatini path integral Ansatz for the
partition function

∫
[de] [dω] exp

(
i

∫

M

Tr(F (ω) ∧ ∗(e ∧ e))
)

(14.5.2)

with appropriate boundary conditions at ∂M = σ1 ∪ σ0 imposed and
then integrated against ψ(A1)ψ′(A0). Apart from the fact that one
must show that this results in a positive semidefinite sesquilinear form,
even after dividing by the corresponding null space there is a striking
difference between (14.5.1) and (14.5.2): in (14.5.1) we integrate over
1 + 3 + 3 + 3 × 3 + 3 × 3 = 25 fields while in (14.5.2) we integrate over
4 × 4 + 4 × 6 = 40 fields. Indeed, in order to arrive at the canonical form
of the Palatini action which is the exponent of (14.5.6) one must write the
tetrad in the form e0

t = N, ejt = ejaN
a, e0

a = 0 where eja is the triad. The
arbitrary choice e0

a = 0 is called the time gauge. The detailed canonical

3 If it was possible, see however the discussion at the beginning of this chapter.
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analysis of Chapter 24 reveals that this leads to 12 second-class con-
straints in addition to the seven first-class ones that appear in (14.5.6).
Therefore, to match (14.5.1) and (14.5.2) one must take these second-
class constraints into account, as has been pointed out in [736]. Imple-
menting these second-class constraints reduces (14.5.2) to (14.5.1), how-
ever, it contains a non-trivial Jacobean from the determinant of the
matrix of the Dirac brackets between the second-class constraints. This
was demonstrated for the Plebanski action in [717]. This Jacobean makes
it clear that there is a genuine difference between (14.5.1) and (14.5.2)
even after taking the second-class constraints into account, whose signif-
icance is not very well understood.

– On general grounds it is almost clear that there cannot be an exact
match between a covariant path integral and the physical inner product
of the canonical theory. The reason is that the covariant path integral is
invariant under the group Diff(M) while the canonical theory is invari-
ant under the dynamical Bergmann–Komar group BK(M) introduced in
Section 1.4. Thus, the two approaches a priori define different theories
and what is important is that their respective semiclassical sectors agree
with each other. This is not hopeless because precisely when the theory
is on-shell, that is, when the equations of motion hold, then BK(M) and
Diff(M) coincide.

Work towards establishing a link between the two Ansätze has been started
in [718]. See also [456] where a sesquilinear form (but not a measure) is given
for SL(2,C) rather than SU(2) and a connection is made with the canonical
form of the Palatini action. The relation with the spin foam models so far
constructed is, however, still veiled in 4D.

Recently, progress has been made in 3D: one can establish a precise
relation between the canonical and spin foam approaches including Dirac
observables, physical inner product and scattering amplitudes (when cou-
pling to point particles) [719–729].

(ii) Spin foam models from the Master Constraint
The discussion above leads to the natural question whether one can develop
a spin foam model with an exact match with the canonical theory. The nat-
ural starting point would seem to be the work of Reisenberger and Rovelli,
but we have seen the many formal steps that go into their derivation. How-
ever, there is a possible alternative: we may use the Master Constraint. The
Master Constraint is defined on the Hilbert space Hdiff , hence we would
define physical states by4

η : Ddiff → Dphys; ψ �→
∫

R

dt

2π
< eit M̂ψ, . >diff (14.5.3)

4 This is a heuristic generalised projector. The mathematically precise projector is defined in
Section 30.2.
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where Ddiff is the dense subspace of Hdiff consisting of the finite linear
span of the T[s] and Dphys is the image of η which is dense in its completion
Hphys. The physical inner product is

< η(ψ), η(ψ′) >phys:= (η(ψ′))[ψ] =
∫

R

dt

2π
< ψ′, e−it M̂ψ >diff (14.5.4)

Expression (14.5.4) looks like a transition amplitude if we formally interpret
M̂ as a Hamiltonian (rather than a constraint) except for the integral over t.
Notice the conceptual simplicity as compared with the Reisenberger–Rovelli
proposal due to the fact that M̂ is a spatially diffeomorphism-invariant
operator. But things get even better: we know that already in quantum
mechanics the Feynman path integral formula for the transition amplitude
< ψ, e−itĤψ′ > is ill-defined. What is well-defined is to consider that path
integral formula for < ψ, e−tĤψ′ > for positive t assuming that Ĥ is bounded
from below and then to analytically continue the result from t to it. The rela-
tion between the ‘heat kernel’ < ψ, e−tĤψ′ > and the associated path inte-
gral is known as the Feynman–Kac formula [282]. Now since M̂ is bounded
from below (by zero), we may hope to give rigorous meaning to a path inte-
gral expression for the transition amplitude for the associated strongly con-
tinuous contraction semigroup t �→ exp(−t M̂), || exp(−t M̂)|| ≤ 1. More-
over, the resulting expression automatically involves a sum over triangula-
tions. To see this, notice that by the usual skeletonisation procedure

< ψ, e−t M̂ψ′ >diff = lim
n→∞

∑

[s1],...,[sn]

< ψ, e−t M̂ /nT[s1] >diff

×< T[s1], e
−t M̂ /nT[s2] >diff . . . < T[sn], e

−t M̂ /nψ′ >diff

(14.5.5)

so that at each intermediate time step we can have any possible (diffeo-
morphism invariance class of) graph. In fact the expansion in terms of
diffeomorphism equivalence classes of spin-network states is not the most
convenient one, as has been pointed out by Klauder [643]. It is more prac-
tical to use diffeomorphism-invariant coherent states (yet to be developed)
for which there is an associated resolution of unity. Notice that (14.5.5)
automatically involves the sum over arbitrary triangulations.

(iii) Semiclassical analysis
The Perez–Rovelli variant of the Barrett–Crane model seems to be pre-
ferred at the moment but it is unclear whether the modification they
performed changes the physics significantly or not. Moreover, as we have
explained above, there is a chain of steps which are not fully justified in
passing from the BF theory to General Relativity, in other words, while it
is extremely convincing that one should pass to simple representations it
would be nicer to start from the constrained BF theory partition function
(14.2.10) and arrive at the Barrett–Crane model by integrating over the
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Freidel–Krasnov–Puzio Lagrange multiplicator. Of course even then one
has to make some guesses, like the choice of the measure [dA dB dΦ]. So
what one would like to have are some independent arguments that the
models proposed have the correct classical limit, for instance by showing
that they are a well-defined version of the Reisenberger–Rovelli projec-
tor (14.1.7). That this is actually the case without further modification is
doubtful given the recent results [730–735] which indicate that the sum over
spin configurations is largely dominated by zero or very low spins, which
seems not to lead to a nice classical limit. The reason for this is presum-
ably an inappropriate choice of the measure [736] or, in other words, of the
precise coefficients in the sum over representation labels. It is also possible
that this is related to the fact that classically the simplicity constraint has
four solutions B = ±e ∧ e, ± ∗ e ∧ e which could all contribute to the path
integral while only one of them gives the Palatini action.

More intuition concerning the semiclassical limit may come from coupling
matter within the spin foam approach, see [719–729].

(iv) Sum over triangulations
While we seem to have finiteness proofs for the field theory formulation
order by order (‘triangulation by triangulation’), it would certainly be even
better if one could establish that the sum over triangulations converges.
However, that is not really necessary. The reason is that what we would
really like to show is that

< O >:=
∫

[dφ]e−S[φ]O(φ)
Z

(14.5.6)

converges for a sufficiently large set of observables (how to express observ-
ables of General Relativity in terms of the field theory on the group manifold
is another open question). This object should be regulated by cutting off the
sum over triangulations and then one takes the regulator away. The objects
(14.5.6) possibly define the finite moments of a rigorously defined measure
on some field space on which the field φ lives. This is exactly how one usu-
ally performs constructive quantum field theory, see [99,394,399,417]: even
in free scalar quantum field theory none of the objects [dφ], e−S[φ], Z makes
sense separately, it is only the combination [dφ]e−S[φ]

Z which can be given
a rigorous meaning. The most recent result is that the sum over topolo-
gies in three-dimensional Euclidean gravity seems to be uniquely Borel
summable5 [696,697].

5 Given a series f(t) =
∑∞

n=0
ant−n its Borel transform (Bf)(s) =

∑∞
n=0

ansn−1/(n− 1)!

is defined as the series formed from the term-by-term inverse Laplace transforms of the
terms of the original series. If Bf has a non-zero radius of convergence, can be continued to
the positive real line and grows at most exponentially along the positive real line then the
Laplace transform of Bf exists and is called the Borel sum of f . Many divergent series have
a convergent Borel sum which approximates the first few terms in the original series. This
fact is used to define the divergent perturbation theory of QFT as an asymptotic series.
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(v) McDowell–Mansouri action
A very interesting recent development, initiated by Starodubtsev [737–739],
is a new type of spin foam model based on the McDowell–Mansouri action
(so far in the Euclidean signature only). In this approach one takes a 4D
BF theory based on the compact group SO(5) and adds to it a term which
explicitly breaks the symmetry down to SO(4), specifically

S =
∫

M

(
BIJ ∧ FIJ +

vM

2
εIJKLMBIJ ∧BKL

)
(14.5.7)

where v is some fixed internal vector (we take B to have dimension cm−2 for
simplicity so that (14.5.7) is dimension-free). Remarkably this action repro-
duces GR as follows: fix vI = α

2 δ
I
5 for some dimension-free constant α and

decompose all the fields, similar to a Kaluza–Klein approach, into SO(4)
tensors such as ωij = Aij , i, j, . . . = 1, . . . , 4 and additional fields such as
Ai5 where A is the connection underlying F . We identify ei := lAi5 with the
tetrad where l is some length scale. The equation of motion for Bi5 imposes
de + ω ∧ e = 0, hence it requires ω to be the spin connection derived from
e. The equation of motion for Bij can be solved for Bij and leads to

S =
1
4α

∫

M

F ij ∧ F klεijkl (14.5.8)

when reinserted into the action.6 Decomposing F ij = Rij(ω) + ei ∧ ej/l2

where R is the curvature of ω one finds

S =
1
2α

∫

M

(
F ij ∧ ek ∧ el/l2 +

1
2
ei ∧ ej ∧ ek ∧ el/l4

)
εijkl

+
1
4α

∫

M

Rij ∧Rklεijkl (14.5.9)

The second term has vanishing variation due to the Bianchi identity for
ω, R; it is the Euler topological invariant. The first term is Palatini’s
action plus a positive cosmological constant term divided by h̄ (recall
that the action is dimension-free), provided we make the identification
2l2α = h̄κ, 4l4α = h̄κ/Λ, hence 2l2Λ = 1, α = h̄κΛ.

This has the following interesting consequence: suppose we take the
action (14.5.7) as the starting point of a spin foam model, that is, we use
a path integral based on exp(iS). The first difference compared with the
treatment in this chapter is that S is a deformed BF action, however, it
is unconstrained. Next, interpreting the term proportional to α as a per-
turbation, the zeroth-order term is just a BF action in 4D for the gauge
group SO(5). If we believe in the usual saddle point approximation, then

6 Recall that the extrema of an action S(x, y) with respect to both x, y can be found by
determining the extremum x(y) for x at fixed y and then determining the extremum of
S′(y) = S(x(y), y).
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the classical limit of the path integral at α = 0 should be proportional to
exp(iSextr) where Sextr is the value of the action on-shell. The equations
of motion of the BF action require the SO(5) curvature to vanish, in par-
ticular, F ij(A) = Rij(ω) + 2Λei ∧ ej = 0. The unique solution is de Sitter
space, which is in agreement with present observations. Furthermore, at
the presently measured value of Λ, we find α ≈ 10−120 which means that
a perturbation expansion of the path integral around α = 0 is extremely
rapidly converging. It is a bit surprising that an unconstrained, topologi-
cal BF theory with a symmetry-breaking term gives rise to an action for
GR, however, the intuitive reason is that in each order of the perturbation
expansion the symmetry-breaking term introduces more and more degrees
of freedom as it breaks the symmetry more and more, thus transforming
more and more gauge degrees of freedom into propagating ones. The full
expansion is then entirely non-topological. More details about this can be
found in [737,738].

Clearly, this is a very interesting model and a complete analysis, which
has just been started, is likely to yield valuable insights. Specifically, the fact
that there is a rapidly converging expansion around the correct ‘vacuum’
is a feature that one would like to see incorporated, in some sense, also in
the canonical approach. This could happen, for instance, in the sense of a
semiclassical approximation by using excitations of a coherent state peaked
on (the initial data of) de Sitter space.

(vi) Other aspects of spin foam models
In dealing with Lorentzian spin foams it is a valid question in which sense
the corresponding quantum evolution is causal in any sense. These questions
were first addressed in [740–745] by Markopoulou and Smolin. The idea is
then to restrict the class of spin foams to be considered by allowing only
those which are causal. See also [746–748].

A different question related to the issue of the classical limit is whether
there is some notion of a renormalisation group within spin foam mod-
els, which then would answer the question in which sense they depend on
the class of triangulations that we sum over or whether we are allowed to
perform small changes in the ‘initial field theory action’ without chang-
ing the effective low-energy (semiclassical) theory, in other words whether
there is a natural notion of universality classes and the like. A first pio-
neering work has recently been published by Markopoulou [749, 750] in
which the Hopf algebra structure underlying renormalisation in ordinary
field theory discovered by Connes and Kreimer [751–753] was applied to
coarsening processes of the triangulations that underly spin foams. Related
to this is recent work by Oeckl [754]. The idea here is that while GR is
background-independent and thus the usual scaling transformations which
lead to the renormalisation group are not available (because there is no
background-independent notion of scale), one can still use Wilson’s notion
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of the renormalisation group and effective fields theory arising by integrat-
ing out microscopic degrees of freedom (block spin transformations). The
background-independent version of that should be to coarsen graphs or spin
foams because this obviously leads to a reduction of the number of degrees
of freedom. This will lead to modifications of the microscopic Hamiltonian
constraint which (when using the equations of motion) can be rewritten as
higher derivative terms at the effective field theory level. The usual run-
ning of the couplings and masses is also present in LQG. However, all the
expressions are presumably finite while the physical screening effects, etc.
that one observes in experiments are certainly there, it is just that one has
to define things operationally (relationally: what is the coupling of field A
at an energy level determined by some particle B).

The relation of spin foams with lattice gauge theory and state sum models
was further analysed in [755–758]. The consequences of Diff(M)-invariance
for spin foam models and its number of physical degrees of freedom were
elaborated in [759,760], which is also a nice collection of facts about smooth
and piecewise linear structures on manifolds in various dimensions. The con-
nection between spin foams, (2-)category theory and higher gauge theory
was studied in [761,762]. Matter coupled to spin foam models was investi-
gated in [763–765]. Finally, various interesting aspects of spin foam models
without particular category can be found in [766–770].

(vii) Graviton propagator
In order to make the connection with Minkowski spacetime, the general
boundary formalism for spin foams was proposed in [771,772]. This formal-
ism was applied more recently in [773, 774] in order to define the graviton
propagator from spin foam models: by definition, the spin foam partition
function Z(Ai, Af ) with fixed boundary connections Ai, Af at an initial
and final hypersurface σi, σf respectively, integrated against final and ini-
tial kinematical states ψf (Af ), ψi(Ai) ∈ H0 respectively, is supposed to be
the physical inner product

< η(ψf ), η(ψi)>phys = η(ψi)[ψf ]

=
∫

A
dμ0(Af )

[∫

A
dμ0(Ai) ψi(Ai)Z(Ai, Af )

]
ψf (Af )

from which we read off the rigging map

η(ψi) =
∫

A
dμ0(Ai) Z(Ai, .) ψi(Ai)

The idea is now to choose ψi, ψf to be coherent states which are peaked
on initial data mi

0,m
f
0 such that mf

0 is the gauge transform of mi
0 as

described by the Einstein equations with respect to some choice of lapse
and shift. The corresponding solution to Einstein’s equations describes a
spacetime background metric g0 with pull-back to σi, σf given by qi0, q

f
0 .
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Next we consider the kinematical states ψ′
i := [q̂ab(xi) − qiab,0(xi)]ψi, ψ

′
f :=

[q̂ab(xf ) − qiab,0(xf )]ψf (which should be properly smeared). When inserted
into the physical inner product formula, one obtains an expression which
depends on g0 and the spatial points xi, xf . What is shown in [773, 774]
is that the resulting expression, derived from some version of the group
field theory definition of the Euclidean Barrett–Crane model, under var-
ious assumptions, becomes the correct graviton propagator of the lin-
earisation of gravity around the background g0! Notice that while the
states used are background-dependent, they are still elements of the
background-independent Hilbert space H0. This is because we can use
background-dependent complex coefficients of background-dependent spin-
network states in order to build a coherent state. The fact that Z is domi-
nated by degenerate metrics therefore seems to be circumvented by choosing
appropriate initial and final states. This is a curious result which deserves
further exploration. For instance, one would like to understand how to
define graviton annihilation and creation operators as Dirac observables
and how this compares with the just-sketched heuristic calculation.



15

Quantum black hole physics

Any theory that claims to be a quantum theory of the gravitational field must
give a microscopic explanation for the Bekenstein–Hawking entropy of a black
hole [775–777] given by

SBH =
Ar(H)

4�2p

where Ar(H) denotes the area of the event horizon H as measured by the metric
that describes the corresponding black hole spacetime and in this chapter we set
�2p = h̄GNewton instead of h̄κ = 16πh̄GNewton.

Heuristically, the above formula arises as follows: Penrose and Hawking proved
the famous area law theorems for black holes [207, 208] according to which
there is no classical process that can decrease the area of a black hole. While
mathematically not entirely trivial to prove, these theorems are physically not
very surprising because by definition a black hole curves spacetime in such a way
that not even light can escape. Even Newtonian physics tells us that compact
massive bodies of mass m can have such a property, namely at best a photon
can propagate on a circular orbit around the mass whose radius r is given by
the formula c2/r = Gm/r2, provided of course that the body is so compact that
its radius is smaller than r = Gm/c2. General Relativity corrects the so-called
Schwarzschild radius by a factor of two, that is, rS = 2Gm/c2. What happens
is that the lightcones from the event horizon, defined by r = rS , onwards are
pointing into the interior of the black hole. Thus, no causal physics can prevent
a body from falling inside once it has crossed r = rS , which is why the mass of a
black hole should only increase. Since the area of a black hole is thus proportional
to m2 it follows that the area can never decrease. This statement sounds familiar
from thermodynamics, it reminds us of the second law according to which the
entropy of a system in equilibrium can never decrease. This suggests we assume
that the entropy of a black hole is proportional to the area of its event horizon.
Since the entropy is a dimensionless quantity, from the only constants of nature
available one would already guess that SBH ∝ A/�2p, which is precisely what
Bekenstein did.

In order to obtain the constant of proportionality and a better physical expla-
nation beyond dimensional analysis one has to go beyond classical physics. Let
us consider an observer at rest somewhere in a Schwarzschild spacetime. By the
equivalence principle, such an observer is in a situation not unlike a constantly
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accelerating observer in a Minkowski spacetime because both observers are not
in geodesic motion. An accelerating observer in Minkowski space observes instan-
taneous rest frames which are changing with time. Effectively, the Hamiltonian
associated with such an observer becomes time-dependent. In each rest frame
one can define an instantaneous vacuum state (no particles) but the definition
of vacuum or annihilation and creation operators changes with time and thus
an initial vacuum state is no longer void of particles at a later time. This is the
so-called Unruh effect [23, 24]. Its transcription to the curved spacetime case is
called the Hawking effect.1

It predicts that black holes radiate, and the precise mathematics of QFT
on curved spacetimes shows that the spectrum of this radiation is the Planck
spectrum of a black body. More precisely, one forms a density matrix by taking
the partial trace with respect to the degrees of freedom describing the interior
of the black hole (the total Hilbert space is a tensor product of two Hilbert
spaces describing the exterior and interior respectively) and that density matrix
takes precisely the Gibbs–Planck form. The corresponding temperature is, not
surprisingly, related to the peak of the spectrum at a wavelength λS ≈ rS , there
is no other physical scale in the problem. It follows that the temperature of the
black hole is given by Planck’s relation h̄ωS ≈ kTS , ωS ≈ c/λS where k is the
Boltzmann constant. The energy of the black hole is given by its mass E = mc2,
thus its entropy is

S ≈ E/(kTS) ≈ mc2/(̄hc/rS) = r2
S/(̄hG/c3) (15.0.1)

which is almost (15) except for the factor 1/4 which only the precise calculation
can provide.

Formula (15) gives rise to many puzzles:

1. Microscopical explanation
Thermodynamics defines entropy as a measure for missing information. How-
ever, QFT on curved spacetimes cannot deliver this explanation because the
framework breaks down in situations of extreme (diverging) curvature. Hawk-
ing’s derivation was for a macroscopic, static Schwarzschild black hole and it
is based on the construction of a density matrix which one obtains from a
pure state in the total Hilbert space H = Hout ×Hin where out (in) denote
degrees of freedoms associated with the outside or inside of the black hole by
tracing over the degrees of freedom in Hin. The derivation neglects backreac-
tion effects and that one does not actually know how to describe the interior
of the black hole quantum mechanically.

1 Notice that both effects have absolutely nothing to do with the presence of matter and
antimatter. We just mention this here because one often hears that the Hawking effect is
due to matter–antimatter pair production in the vicinity of the event horizon, whereby
magically the antimatter (negative energy) falls into the hole while matter (positive energy)
escapes to infinity. The effect exists also for neutral matter and is simply due to the
breakdown of the particle concept for accelerated observers.
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2. Information paradox
The entropy of the density matrix just described is somehow artificial because
as long as the black hole has not completely evaporated due to Hawking
radiation, the total system evolves unitarily and if the initial state is pure it
remains so until the final stage of the radiation process. However, once the
black hole has completely evaporated, the interior of the hole and thus Hin

is gone. The system has evolved from a pure state (zero entropy) to a mixed
state (non-zero entropy) and thus indicates a breakdown of unitarity.

3. Redshift problem
Another detail that Hawking’s derivation does not tell is who actually observes
the black body spectrum. It is natural to assume that this is an observer
located far away from the hole, perfectly at spatial infinity where the grav-
itational pull is negligible. However, then the immediate question is where
the modes of frequency ω that reach spatial infinity have been created. It
would be natural to assume that they were created close to the even horizon
but then their frequency there could have been arbitrarily large due to the
redshift effect that radiation encounters when climbing out of a gravitational
well. However, modes of such large (trans-Planckian) energy must surely be
properly described by quantum gravity.

So far, LQG can at best deliver the beginning of an answer to (1). This is what
we will describe in detail in what follows.

In [467] Krasnov performed a bold computation: given any surface S with
spherical topology, given some area A and an interval [A− ΔA,A + ΔA], let us
compute the number N of spin-network states Ts such that < Ts, Âr(S)Ts >∈
[A− ΔA,A + ΔA]. Of course, N is infinite. But now let us mod out by the gauge
motions generated by the constraints: most of the divergence of N stems from
the fact that for a given number of punctures S ∩ γ(s) and fixed representations
�π(s), there are uncountably many different spin-network states with the same
area expectation value because different positions of the punctures give differ-
ent spin-network states. This is no longer the case after modding out by spatial
diffeomorphisms. There is, however, still a source of divergence because what
matters for the area eigenvalue is more or less only the number of punctures and
the spins of the edges that intersect the surfaces S, what happens outside or
inside the surface is irrelevant and certainly even after modding by spatial dif-
feomorphisms one still has N = ∞. Therefore Krasnov had to assume that this
divergence would be taken care of after modding out the action of the Hamilto-
nian constraint. Hence, ignoring this final divergence his result for Δ ≈ �2p was
proportional to Ar(S)/(4�2p). A similar computation by Rovelli [468] confirmed
this value.

Of course, more work was necessary in order to make the derivation water-
tight: for instance, nothing in [467] could prevent one from performing the com-
putation for any surface, not necessarily a black hole event horizon so that it was
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conceptually unclear what the computation showed. Somehow one had to invoke
the information that H is an event horizon into the computation to get rid of the
divergences that were just mentioned. Also, given the local nature of the area
eigenvalue counting, it was desirable to localise the notion of an event horizon
which can be determined only when one knows the entire spacetime (recall that
an event horizon [207, 208] is the internal boundary of the portion of space-
time that does not lie in the past of null future infinity), which is completely
unphysical from an operational point of view because one would never know if a
horizon is really an event horizon since the object under study could collide with
a burnt out star in the late period of the universe when all life has deceased.
Whether or not H is a horizon, one should be able to determine by performing
local measurements in spacetime.

The physical requirement to have a more local notion of black hole horizons
leads to the notion of trapping horizons [778–781], a special version of which are
isolated horizons [782–785]. The subject deserves a volume of its own but we have
here only space to summarise the main ingredients of the framework and to focus
on the quantum aspects. Moreover, it is only for spherically symmetric isolated
horizons for which a full quantum treatment is currently available, whence we
will mostly treat this particular case.

A summary of the classical and quantum aspects of isolated horizons, that
are used in black hole entropy calculations within LQG, can be found in [782].
For recent reviews and a comparison between dynamical, isolated and trapping
horizons see [786,787]. The pivotal papers that describe the details of the classical
and quantum formulation respectively are [788–791] and [469] respectively.

15.1 Classical preparations

In order to motivate the notion of an isolated horizon we must recall some mate-
rial from classical General Relativity.

15.1.1 Null geodesic congruences

A congruence through a region R of a spacetime (M, g) is a family of mutually
non-intersecting curves, one through every point of R. The congruence is called
null if the tangent vectors along all those curves are null. A null geodesic congru-
ence is a null congruence consisting of geodesics. These are important notions
and much of the classical singularity theorems and black hole area theorems
of mathematical General Relativity employ techniques associated with them, in
particular Raychaudhuri’s equation. In the presence of curvature, the congruence
has typically only a finite extension R because the curves tend to intersect each
other as we will see.

We will denote by l the tangent vector field defined by the congruence.
The fact that l is geodesic means that ∇ll = λl where λ is a function and
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∇g = 0 is the covariant derivative compatible with g. The quantity λ will be
called the acceleration of the congruence, in applications to black hole hori-
zons also called the surface gravity. It is always possible to choose λ = 0 by
means of a reparametrisation: consider the integral curves of l, that is, solve
the system of ODEs ċlp(t) = l(clp(t)), c

l
p(0) = p. Then the geodesic equation

reads D2c/dt2 = (λ ◦ c)ċ. Defining c̃(t) := (c ◦ f)(t) and requiring D2c̃/dt2 = 0
leads to the ODE λ(f(t))ḟ(t)2 + d2f(t)/dt2 = 0 which can be integrated by
quadratures: integrating F ′(s) := λ(s) gives F (f(t)) + ln(ḟ(t)) = const. Inte-
grating G′(s) = exp(F (s)) gives G(f(t)) = const., which can be inverted for f .
Hence, if needed, we may always assume w.l.g. that ∇ll = 0 in a so-called affine
parametrisation. This is convenient for timelike geodesic congruences because the
norm l2 is constant along an affinely parametrised geodesic. For null geodesics
this is of course immaterial.

Abusing slightly the standard notation in General Relativity we will consider
the following distributions (in the sense of Definition 19.3.3) of subspaces Ṽp :=
{u ∈ Tp(M); g(u, l) = 0} and Ṽ ∗

p := {ω ∈ T ∗
p (M); ω(l) = 0} for p ∈ R. We also

define the equivalence classes [u] := {u + rl; r ∈ R}, [ω] := {ω + rg(l, .); r ∈ R}
and the corresponding spaces V̂p, V̂

∗
p . A tensor T ∈ (T a

b )p(M), considered
as a multilinear functional on [⊗aT ∗

p (M)] ⊗ [⊗bTp(M)], can be restricted to
[⊗aṼ ∗

p (M)] ⊗ [⊗bṼp(M)] and is then denoted by T̃ . If and only if it vanishes
when filling any of its entries with l or g(l, .) and the remaining ones with gen-
eral elements of Ṽp, Ṽ

∗
p can we define the tensor T̂ on [⊗aV̂ ∗

p (M)] ⊗ [⊗bV̂p(M)]
by T̂ ([u1], . . . , [ua]; [ω1], . . . , [ωb]) := T̃ (u1, . . . , ua;ω1, . . . , ωb). It is easy to show
that T̂ = [T ] = {T + S} where S is of the form

Sμ1...μa
ν1...νb

=
a∑

k=1

lμkSμ1...μ̂k...μa

k ν1...νb
+

b∑

l=1

lνl
Sμ1...μa

k+l ν1...ν̂l...νb

and the tensors Sk are otherwise arbitrary.
An example for such a projectable tensor is the metric tensor gμν and its

inverse ĝμν . Another is the tensor field Bμν := ∇μlν since for any u ∈ Ṽp we
have

uμlνBμν =
1
2
uμ∇μl

2 = 0 and uν lμBμν = uν∇llν = λuν lν = 0 (15.1.1)

where in the first equation we used that l2 = 0 = const. along the congruence,
hence ∇l2 is orthogonal (= tangential) to it while in the last equation we used
the geodesic equation. In other words lνBμν = λ′lμ0 and lμBμν = λlν . One now
constructs B̂μν and decomposes it into twist, shear and expansion

ω̂μν := B̂[μν], σ̂μν := B̂(μν) −
1
2
θĝμν , θ := ĝμνB̂μν (15.1.2)

These notions come from an analogy with fluid dynamics by comparing the
flow lines of the vector field l with the flow lines of a (generally relativistic)
fluid. Notice that the restriction g̃p of gp to Ṽp is a degenerate 3D metric and
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that ĝμν is a two-metric. We can display this more explicitly as follows: let eIμ
be a co-tetrad for gμν , that is, gμν = ηIJe

I
μe

J
ν where η = diag(−1, 1, 1, 1) is the

Minkowski metric. We may form the complex null co-tetrad

lμ :=
e0
μ − e3

μ√
2

, kμ :=
e0
μ + e3

μ√
2

, mμ :=
e1
μ + ie2

μ√
2

, m̄μ :=
e1
μ − ie2

μ√
2

(15.1.3)

in which the metric takes the form

gμν = −2l(μkν) + 2m(μm̄ν) (15.1.4)

that is, l2 = k2 = m2 = m̄2 = l ·m = l · m̄ = k ·m = k · m̄ = 0 and −l · k = m ·
m̄ = 1. Conversely, given a null vector field l we may always complete it to a null
tetrad with these normalisations. It then follows that g̃μν = hμν := 2m(μm̄ν) is
a degenerate 3D metric with l as zero eigenvalue vector while ĝμν = [hμν ] is a
2D metric of Euclidean signature.

We can now compute, using the definition of the Riemann tensor

∇lBμν = lρ([∇ρ,∇μ] + ∇μ∇ρ)lν
= lρRρμν

σlσ + ∇μ∇llν −Bμ
ρBρν (15.1.5)

where the term in the middle would vanish in an affine parametrisation. The
tensor field ∇lBμν is projectable because for any u with u · l = 0 we have

uμlν∇lBμν = −uμ(∇ll
ν)Bμν = −λuμlνBμν = 0

uν lμ∇lBμν = −uν(∇ll
μ)Bμν + uν∇lλlν = −λuν lμBμν + λ2uν lν = 0 (15.1.6)

Likewise, all three terms on the right-hand side of (15.1.5) are separately pro-
jectable, which one can see from the symmetries of the Riemann tensor, the
properties of B and the geodesic equation ∇ll = λl.

We now derive Raychaudhuri’s equation. On the one hand we have

hμν∇lBμν = ∇lθ −Bμν∇l(lμkν + lνkμ)

= ∇lθ −Bμν(λlμkν + lμ∇lk
ν + λlνkμ + lν∇lk

μ)

= ∇lθ − λlν(λkν + ∇lk
ν)

= ∇lθ − λ(−λ + ∇lk · l − nν∇llν)

= ∇lθ (15.1.7)

where in the last step we used that k · l = −1 is constant along the congruence.
On the other hand we have, using the definition of the Ricci tensor and hμν =
gμν + 2l(μkν)

hμν∇lBμν = −Rμν l
μlν − hμνBμρB

σνgρσ + hμν(lν∇μλ + λBμν)

= −Rμν l
μlν − hμνhρσBμρB

σν + hμν(lρnσ + lσnρ)BμρB
σν + λθ

= −Rμν l
μlν − hμνhρσBμρB

σν + hμνλnρBμρlν + λθ

= −Rμν l
μlν − hμνhρσBμρB

σν + λθ (15.1.8)
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Combining (15.1.7), (15.1.8) and using the decomposition (15.1.2) we find
Raychaudhuri’s equation

∇lθ = −Rμν l
μlν + ω̂μν ω̂

μν − σ̂μν σ̂
μν − 1

2
θ2 + λθ (15.1.9)

where we used antisymmetry of the twist tensor. The last term vanishes in an
affine parametrisation and it is that special case which is usually displayed in
textbooks. Notice that the indices in the squared twist or shear terms are raised
by h and thus we could replace ω, σ by ω̂, σ̂.

The usefulness of (15.1.9) comes about when combining it with energy condi-
tions on the energy momentum tensor Tμν given by Einstein’s equations, includ-
ing a cosmological constant term

Rμν − 1
2
Rgμν + Λgμν = 8πGTμν (15.1.10)

Definition 15.1.1. We say that T satisfies the (i) weak, (ii) strong and (iii)
dominant energy condition respectively provided that

(i) Tμνu
μuν ≥ 0 for all timelike u.

(ii) Tμνu
μuν ≥ −gμνTμν for all unit timelike u.

(iii) −Tμ
ν u

ν is a causal (i.e., future directed and non-spacelike) vector for all
future directed timelike u.

Suppose then that the weak energy condition holds. By continuity, Rμν l
μlν ≥ 0

also for null l. Suppose furthermore that the distribution of the Ṽp is integrable,
that is, they are tangent to null surfaces. (A null surface, by definition, has a
null normal. It is defined up to multiplication by a scalar function). One says
that l is null surface orthogonal. By Frobenius’ theorem, Theorem 19.3.4, this
is equivalent to ωμν := ∇[μlν] = α[μlν] for some one-form α. Then the squared
twist term in (15.1.9) vanishes and we find, in an affine parametrisation

∇lθ +
1
2
θ2 = −Rμν l

μlν − σ̂μν σ̂
μν ≤ 0 (15.1.11)

because, writing σμν = σIJe
I
μe

J
ν in the tetrad basis we find σ̂μν σ̂μν =

σI,J=1,2σijσji = Tr(σTσ) ≥ 0. It follows that ∇lθ
−1 ≥ 1/2 or with l = ∂/∂t that

θ(t)−1 ≥ θ(0)−1 + t/2. Hence, if θ(0) < 0 then θ diverges in finite time. This indi-
cates the breakdown of the congruence, that is, the emergence of caustics.

15.1.2 Event horizons, trapped surfaces and apparent horizons

We recall some important definitions from black hole physics. We will assume
that (M, g) is asymptotically flat throughout this chapter.

Definition 15.1.2. Given a globally hyperbolic spacetime (M, g) consider its
Penrose diagram with future/past null infinity Υ±. Given any set S we denote
by J±(S) its causal future/past (i.e., all points in M that can be connected to
points in S by causal (=everywhere timelike or null) curves).
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(i) B := M − J−(Υ+) is called the black hole region and H := B ∩ J−(Υ+) is
called the event horizon.

(ii) Given a spacelike hypersurface Σ we call T := B ∩ Σ the black hole at time
Σ.

(iii) Let Σ be a spacelike hypersurface and S ⊂ Σ be a compact, without boundary,
2D, smooth, spacelike submanifold S of M . Let s be the unit spacelike,
outgoing normal of S within Σ. At each point p of S, there are two linearly
independent, future oriented null vectors l, k orthogonal to S where, say,
l · s > 0 and k · s < 0. Construct the two congruences of future directed null
geodesics orthogonal to S and tangential to l, k respectively. We call them
outgoing and ingoing respectively.

We call S a (1) trapped, (2) outer marginally trapped, (3) inner
marginally trapped, or (4) marginally trapped surface if (1) θl < 0, θk < 0,
(2) θl ≤ 0, θk < 0, (3) θl < 0, θk ≤ 0, or (4) θl ≤ 0, θk ≤ 0.

(iv) Let Σ be an asymptotically flat Cauchy surface which is spacelike at spatial
infinity. A closed subset C ⊂ Σ which is a 3D manifold with boundary and
such that S = ∂C is outer marginally trapped is called a trapped region
within Σ.

(v) The closure of the union of all trapped regions within Σ is called the total
trapped region T . Its boundary A := ∂T within Σ is called an apparent hori-
zon.

Notice that an apparent horizon is an instantaneous (local in time) concept
while an event horizon is a global concept and requires the knowledge of the
entire spacetime. To avoid confusion, notice also that a trapped region need
not be connected or compact and that a trapped surface is not necessarily the
boundary of a trapped region. The usefulness of these definitions and the relation
between apparent and event horizons is given by the following theorem.

Theorem 15.1.3. Suppose that (M, g) is globally hyperbolic and that the weak
energy condition holds.2 Then:

(i) Any trapped surface is within the black hole region.
(ii) Any trapped region within an asymptotically flat Cauchy surface is contained

in the black hole region. That is, C ⊂ Σ ∩B, in particular the total trapped
region T ⊂ Σ ∩B. It follows that A = ∂T ⊂ Σ ∩ ∂B = Σ ∩H, hence the
apparent horizon lies within the event horizon at any time.

2 Global hyperbolicity, together with reasonable additional assumptions, implies that cosmic
censorship conjecture holds in the sense that gravitational collapse always results in black
holes rather than naked singularities, apart from initial singularities such as the big bang
singularity. A singularity occurs when inextendible causal geodesics stop after finite
parameter time. A singularity is called hidden if no causal curve starting at it can reach
future null infinity Υ+, that is, if it lies in the black hole region. Otherwise it is called
naked. Thus, in the absence of naked singularities, observers outside of the black hole
region cannot see the singularity.
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(iii) If the totally trapped region T within Σ is a 3D manifold with boundary then
the apparent horizon is an outer marginally trapped surface.

15.1.3 Trapping, dynamical, non-expanding and (weakly)

isolated horizons

We would like to give an analytical criterion for the trapping condition which,
as seen in the last section, plays a crucial role. Consider a surface S within a
spacelike hypersurface Σ. The unit spacelike normal of S within Σ is denoted by
s while the future oriented unit timelike normal of Σ within M is denoted by n.
Let us normalise the outer and inner null normals to S such that l · k = −1, that
is l = (n + s)/

√
2, k = (n− s)/

√
2 with l · s > 0, k · s < 0 using s2 = −n2 = 1.

Then the metric intrinsic to Σ is given by qμν = gμν + nμnν while the metric
intrinsic to S can be expressed as

hμν = gμν + 2l(μkν) = gμν + nμnν − sμsν = qμν − sμsν (15.1.12)

We conclude (notice that h is spatial, that is hμν = qρμq
σ
ν hρσ and hμνs

ν = 0,
s2 = 1)

√
2θl = hμν∇μ(nν + sν) = (qμν − sμsν)Kμν + qμν∇μsν

= K − sμsνKμν + qμνDμsν = sμsν(Kqμν −Kμν) + qμνDμsν

= −sμsν
Pμν√
det(q)

+ Dμs
μ

√
2θk = −sμsν

Pμν√
det(q)

−Dμs
μ (15.1.13)

where we have used the definition of the extrinsic curvature K of Σ, the momen-
tum P conjugate to q and the torsion-free covariant differential D compatible
with q. Equation (15.1.13) accomplishes the task of expressing the marginally
outer trapping condition θl = 0, θk < 0 in terms of the ADM phase space vari-
ables.

We can now define:

Definition 15.1.4

(i) A smooth 3D submanifold H of M is called a future, outer trapping horizon
(FOTH), provided it can be foliated by closed 2D manifolds S such that (1)
θl = 0, (2) θk < 0, (3) ∇kθl < 0 where l, k are any two linearly independent
future directed null normals to the leaves S.

(ii) A smooth 3D, spacelike submanifold H of M , possibly with boundary, is
called a dynamical horizon (DH), provided it can be foliated by closed 2D
manifolds S such that (1) θl = 0, (2) θk < 0 where the roles of l, n are as
above.
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Notice that future directed null normals to a 2D surface are unique only up
to l → fl, k → gl where f, g are positive functions, however, the expansions θl =
hμν∇μlν and θk = hμν∇μkν are independent of that scale freedom. Notice that
in both definitions it is not required that H is a null surface, that is, l need not
be tangential to H. In fact, for DHs this is excluded since H is supposed to be
spacelike. The conditions (1) and (2) mean that FOTHs and DHs are foliated by
outer marginally trapped surfaces. In addition, the condition ∇kθl < 0 imposed
for FOTH means that the surface becomes trapped when we move along the
inward normal k. However, in contrast to the trapped surfaces of Definition
15.1.2 , the surfaces S do not refer to spacelike hypersurfaces or Cauchy surfaces
Σ of M , which makes these notions much more local. The condition that H be
spacelike for dynamical horizons seems strange at first, but it is actually not
for the following reason: let t be tangential to H and orthogonal to the surfaces
S. Then t is a linear combination of l, k, hence we find a function f such that
t = l − fk. We may choose the normalisation of k, l such that k · l = −1. Thus
t2 = f . Since by definition θl is constant along t we have ∇tθl = 0, that is, by
Raychaudhuri’s equation

∇lθl = f∇kθl = −σ̂μν σ̂
μν −Rμν l

μlν (15.1.14)

where we have made use of the fact that the distribution of subspaces Dp =
{u ∈ Tp; u · l = u · k = 0} integrates to the surfaces S, hence by Frobenius’ the-
orem, Theorem 19.3.4 dl = α ∧ l + β ∧ k, dk = α′ ∧ l + β′ ∧ k for appropriate
one-forms α, β, α′, β′ so that the twists of both k, l vanish. If we use the weak
energy condition and the physically motivated condition that typically ∇kθl < 0
then we conclude that f ≥ 0, that is, t is spacelike or null. It becomes null if
and only if the shear of l vanishes, which means that the horizon becomes iso-
lated, see below (i.e., non-dynamical). Hence, in truly dynamical situations, H
should be spacelike. This should happen when there is energy flux across the
horizon. When these processes stop and the horizon settles down to an equilib-
rium state, it becomes isolated. This is precisely the case we will be interested in
when addressing the entropy of a black hole while the dynamical case would be
of interest when addressing the issue of Hawking radiation, which is not worked
out yet.

We will turn now to the notion of non-expanding and isolated horizons.

Definition 15.1.5. A submanifold H of a spacetime (M, g) is said to be a non-
expanding horizon (NEH) provided that

1. H is topologically R × S2 and null.
2. Any null normal l of H has vanishing expansion θl.
3. All equations of motion hold at H and −Tμ

ν l
ν is a future directed causal vector

for any future directed null normal l.
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M

H

i+

i0

γ+Σ2

Σ1

Σ

S

Figure 15.1 The portion of M in this Penrose diagram bounded by the isolated
horizon H and the Cauchy surfaces Σ1,Σ2 describes a black hole in equilibrium.
The intersection S of H with an intermediate Cauchy surface has spherical
topology.

Two null normals to a NEH are said to be in the same equivalence class [l] = [l′]
provided that l′ = cl for some positive constant c > 0.

Let us motivate these conditions and then draw some conclusions from them
which will be of importance when we turn to the quantum theory. See also
Figure 15.1 for a sketch of the situation. The last condition follows from the
much stronger dominant energy condition and is thus not a restriction. The first
condition is imposed for definiteness, it holds for all event horizons of physical
interest. The key condition is the second one and means that the surfaces S ∼= S2

are marginally trapped. To see the implications of these conditions, first of all
the twist of l vanishes when restricted to vectors tangent to H, that is, due
to ∇[μlν] = ωl

[μlν] for some one-form ω by Frobenius’ theorem (H is integral
manifold of l), we have uμvν∇[μlν] = 0 for all u, v such that u · l = v · l = 0. In
particular we have

2lμ∇[μlν] = ∇llν − 1
2
∇ν l

2 = ∇llν − ρlν = (ωμl
μ)lν (15.1.15)

where we used the fact that l2 = 0 is constant along the integral curves of l so
that its differential is orthogonal (i.e., tangential), that is, ∇l2 = 2ρl for some
function ρ. It follows that l is geodesic with acceleration λl := ρ + ωl

μl
μ. The



522 Quantum black hole physics

acceleration parameter changes under the rescaling freedom l → l′ := fl, f > 0
as λl′ = fλl + ∇lf .

Next, since θl vanishes on H, ∇lθl = 0 so by Raychaudhuri’s equation σ̂μν σ̂ +
Rμν l

μlν = 0. By the Einstein equations

Rμν l
μlν =

(
Rμν +

(
Λ − 1

2
R

)
gμν

)
lμlν = −8πG

[
− Tμ

ν l
ν
]
lμ (15.1.16)

Since vμ := −Tμ
ν l

ν is future-oriented and causal we have in tetrad compo-
nents −(t0)2 +

∑3
j=1(t

j)2 ≤ 0, t0 > 0. Choosing a Lorentz frame in which l =
l0(1, 0, 0,±1) with l0 > 0 we get l · v = l0(−v0 ± v3) ≤ 0, thus Rμν l

μlν ≥ 0.
Together with Raychaudhuri’s equation we conclude Rμν l

μlν = 0 and σ̂μν = 0.
Thus, altogether, l is twist-free, expansion-free and shear-free. Hence

∇μlν = ωl
μlν + ω′

ν lμ + flμlν (15.1.17)

for certain ωl
μ, ω

′
μ, f with ωl = ω + ω′.

Next, from Rμν l
μlν = 0 it follows that Tμν l

μlν = 0. Since −Tμ
ν l

ν is future ori-
ented and causal we conclude that Rμν l

ν is proportional to lμ and so Rμν l
νuμ = 0

for all u such that u · l = 0.
Furthermore, for any u, v such that u · l = v · l = 0 (notice that Lluμ is tan-

gential if u is because u · l is constant on H so that lμLluμ = −uμLll
μ = 0)

∇l(u · v) = (Llg̃μν)uμvν + [(Llu
μ)vν + (Llv

ν)uμ]g̃μν
= (Llg̃μν)uμvν + [(Llu

μ)vν + (Llv
ν)uμ]gμν

= (Llg̃μν)uμvν + [(∇lu
μ −∇ul

μ)vν + (∇lv
ν −∇vl

ν)uμ]gμν
= (Llg̃μν)uμvν∇l(u · v) (15.1.18)

because uμvν∇μlν = uμvνBμν = 0 (remember that l is twist-, shear- and
expansion-free). It follows for the restriction g̃ of g to H that it is Lie dragged
along l, that is,

Llg̃μν = 0 (15.1.19)

it is ‘constant’ along H or l is a Killing field of g̃. It follows that in particular
the area of the spheres S of the foliation is constant. To see this, consider an
embedding Y : S2 → S, then the pull-back of g̃ to S2 is given by

hαβ = Y μ
,αY

ν
,βhμν = 2m(αm̄β) (15.1.20)

where mα = Y μ
,αmμ and the coordinates on S2 are denoted by yα, α = 1, 2. Hence

det(Y ∗g̃) =
1
2
εαβεγδhαγhβδ = −[εαβmαm̄β ]2 (15.1.21)

so that

Ar(S) =
∫

S2
d2y
√

det(Y ∗g̃) = i

∫

S2
d2y εαβmαm̄β = i

∫

S

m ∧ m̄ (15.1.22)



15.1 Classical preparations 523

Here the area two-form

η := im ∧ m̄ (15.1.23)

has appeared naturally.
To show that this quantity is constant along the integral curves of l it is

sufficient to show that

uμvνLlm[μm̄ν] = 0 (15.1.24)

for all u, v with u · l = v · l = 0. Now

uμLlmμ = uμ∇lmμ + (∇ul
μ)mμ = uμ∇lmμ = uμlν(∇νmμ −∇μmν) (15.1.25)

for any u tangential to H because uμlν∇μmν = −uμmν∇μl
ν = 0. Now for any

u, v tangential to H we have the general Ansatz (all terms proportional to l

vanish)

uμvν∇[μmν] = iuμvν
[
(ām̄[μ + bn[μ)mν] + cm̄[μnν]

]
(15.1.26)

We want to show that c = 0 and that b is imaginary. We have

−ic = 2mμlν∇[μmν] = lν∇mmν − 1
2
∇lm

2 = −mμ∇mlμ = 0 (15.1.27)

Hence, by a similar calculation

uμvν
(
∇[μmν] − iW[μmν]

)
= uμvν

(
∇[μm̄ν] + iW̄[μm̄ν]

)
= 0 (15.1.28)

for a certain one-form Wμ and for all u, v tangential to H. Inserting this into
(15.1.25) we find

uμLlmμ = −i(u ·m)(l ·W ) (15.1.29)

and therefore from (15.1.19)

uμvνLlhμν = i[(u ·m)(v · m̄) + (u · m̄)(v ·m)](l · [W − W̄ ]) = 0 (15.1.30)

Choosing u = m, v = m̄ proves that b is real. Moreover, in (15.1.26) we may
always add the term am to ām̄. We thus conclude

dm = iW ∧m, dm̄ = −iW ∧ m̄, W = am + ām̄ + bn (15.1.31)

when restricted to H and where b is real so that W is a real-valued one-form.
Now finally

uμvνLlm[μm̄ν] = i[(u ·m)(v · m̄) − (u · m̄)(v ·m)](l · [W − W̄ ]) = 0 (15.1.32)

which proves that Ar(S) is constant along l.
Just as in the case of spacelike hypersurfaces we want to define a covariant

differential D on H which is torsion-free and compatible with g̃. It should map
tangential tensors to tangential tensors and should be induced by ∇. Let u, v be
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tangential to H, then we set

Duv
μ := ∇uv

μ (15.1.33)

This is tangential because lμDuv
μ = −vμ∇ulμ = 0. This defines D on tangent

vectors. To define it on tangential one-forms ω(l) = 0 we set

vμDuωμ := ∇u(ω(v)) − ωμDuv
μ (15.1.34)

It follows that

([Du, Dv] − [u, v])f = ([∇u,∇v] − [u, v])f = 0

Dug̃(v, w) = ∇ug̃(v, w) = ∇ug(v, w) = g(∇uv, w) + g(v,∇uw)

= g̃(∇uv, w) + g̃(v,∇uw) (15.1.35)

where we used metric compatibility of ∇. Hence D is torsion-free and g̃ compat-
ible.

By definition of the Riemann tensor and due to Dul
μ = ∇ul

μ = ωl(u)lμ for
any u, v tangential to H

(
[∇u,∇v] −∇[u,v]

)
lρ = ∇u(ωl(v)lμ) −∇v(ωl(u)lμ) − ωl([u, v])lρ

=
[(
∇uω

l
ν

)
vν −

(
∇vω

l
μ

)
uμ
]
lρ = 2uμvν lρD[μω

l
ν]

= Rμν
ρ

σ lσ (15.1.36)

Using the definition of the Weyl tensor

Cμνρσ = Rμνρσ −
(
gμ[ρRσ]ν − gν[ρRσ]μ

)
− 1

3
Rgμ[ρgσ]ν (15.1.37)

we find

2uμvν lρD[μω
l
ν] = uμvνCμνρσ lσ (15.1.38)

This implies

Cμνρσ uμvνwρlσ = 0 (15.1.39)

for all tangential u, v, w. Specialising to m, m̄, l we find in particular that

Ψ0 := Cμνρσ lμmν lρmσ = 0, Ψ1 := Cμνρσ lμmν lρnσ = 0 (15.1.40)

where for the second coefficient we had to use g = −l ⊗ n− n⊗ l + m⊗ m̄ +
m̄⊗m. Ψ0,Ψ1 are so-called Newman–Penrose coefficients of the Weyl tensor,
about which more will be said later. The result (15.1.40) implies that there is no
flux of gravitational radiation across H and that the Weyl tensor is algebraically
special of Petrov type II [207].

Contracting (15.1.38) with nρ we obtain

2uμvνD[μω
l
ν] = uμvνCμνρσ lρnσ (15.1.41)
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Using the null tetrad expansion for tangential u

uμ = −(u · n)lμ + (u ·m)m̄μ + (u · m̄)mμ (15.1.42)

we obtain, using the fact that Ψ1 = 0 and that the Weyl tensor has the same
symmetries as the Riemann tensor (in particular Cμ[νρσ] = 0)

2uμvνD[μω
l
ν] = Cμνρσ mμm̄ν lρnσ[(u · m̄)(v ·m) − (v · m̄)(u ·m)]

= [Cρμνσ − Cρνμσ] mμm̄ν lρnσ [(u · m̄)(v ·m) − (v · m̄)(u ·m)]

= 4i�(Ψ2)m[μm̄ν]u
μvν (15.1.43)

where we have defined the Newman–Penrose coefficient

Ψ2 := Cρμνσ mμm̄ν lρnσ (15.1.44)

We may write equation (15.1.41) in the compact form

dωl = �(Ψ2)η (15.1.45)

which is to be understood in the sense of being true when restricted to H.
We now specialise non-expanding horizons further: for non-expanding horizons

we have seen that the induced (degenerate) three-metric g̃ on H is Lie dragged,
Llg̃ = 0. One would, in analogy to the initial value formulation, expect that for
an equilibrium system the extrinsic curvature is also Lie dragged. However, the
definition of the extrinsic curvature Kμν = qρμq

σ
ν∇ρnσ for spacelike hypersurfaces

Σ, where n is the unit normal and q the induced metric, does not extend to null
surfaces with n replaced by l because g̃ is degenerate on H (in contrast to q).
However, notice that uμKν

μ = ∇un
ν for tangential u in the case of spacelike Σ.

This suggests defining

uμKν
μ := Dul

ν (15.1.46)

The quantity Kν
μ is called the Weingarten map. We will thus impose the condition

uμLlK
ν
μ = 0 ⇔ LlDul

μ −D[l,u]l
μ = 0 (15.1.47)

for all tangential u. However, due to Dul = ωl(u)l this is equivalent to

(Llω
l)(u) = 0 (15.1.48)

for all tangential u. Notice that (15.1.47) can also be written

uμ(LlDμ −DμLl)lν = 0 (15.1.49)

for all tangential u. Hence (15.1.49) captures only restrictions on part of the
connection D. In order to capture restrictions on the full connection one would
impose

uμ(LlDμ −DμLl)vν = 0 (15.1.50)

for all u, v tangential to H. These considerations motivate the following:
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Definition 15.1.6

(i) A weakly isolated horizon H (WIH) is a NEH such that (Llω
l)(u) = 0 for

all u tangential to H and where the restriction to H of ωl is determined by
∇ul =: ωl(u)l for all u tangential to H.

(ii) An isolated horizon (IH) is a NEH such that (LlDu −DuLl −D[l,u])v = 0
for all u, v tangential to H.

(iii) A non-rotating horizon is a NEH such that �(Ψ2) = 0.

Recall that a Killing horizon is a null surface with a null normal which is also
a Killing vector field of g. Since l2 is constant along H we must have that ∇μl

2

is normal to H, hence ∇μl
2 =: −2λllμ. One can show that due to the Killing

equation ∇(μlν) = 0 the null normal is automatically geodesic along H with
∇ll = λll and that the surface gravity λl is constant along H. The latter result
is known as the zeroth law of black hole thermodynamics. We will now establish
a similar result for WIHs for the acceleration λl := ωl(l) of a WIH. We have by
definition

0 = [Llω
l](u) = uμ

[
∇lω

l
μ + ∇μ

(
lνωl

ν

)
− lν∇μω

l
ν

]

= −2uμlνD[μω
l
ν] + ∇uλ

l

= −2uμlν�(Ψ2)ημν + ∇uλ
l

= ∇uλ
l (15.1.51)

Hence λl is constant on H for any WIH. In fact, obviously a NEH is a WIH if
and only if λl = const. on H.

We now show that we can use the gauge freedom l → fl, f > 0 for a NEH to
always arrange that it becomes a WIH. Under such a gauge transformation we
have λl → fλl + ∇lf and we want to arrange that fλl + ∇lf = k. Introducing
the parameter v along the integral curves of l we obtain the linear ODE fλl +
∂f/∂v = k which one can solve by the method of variation of constant. It is
easy to show that for two different constants k, k′ there is still gauge freedom
left, because if l, l′ led to k, k′ respectively, then any f > 0 of the form f =
g exp(−kv) + k′/k, ∂g/∂v = 0 mediates between the two, that is l′ = fl. Hence
the condition λl = const. does not fix the equivalence class [l] of a NEH. On the
other hand, the condition for an IH is much stronger in the sense that not every
NEH admits a gauge in which it is isolated. Finally, one can show that every
Killing horizon is a WIH, however, notice that a WIH does not necessarily admit
any Killing field of H and in this sense is much more general.

15.1.4 Spherically symmetric isolated horizons

The condition of non-rotation in Definition 15.1.6 comes from intuition of the
Newman–Penrose formalism where �(Ψ2) indeed encodes angular momentum.
We will now turn to the definition of a subclass of IHs, namely the spherically
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symmetric ones. These are precisely those for which a quantum framework has
been developed so far. It turns out that these are automatically non-rotating. It
is most convenient to define a spherically symmetric isolated horizon (SSIH) in
spinorial language, to which we will give a brief introduction below.

Recall that the group SL(2,C) has two fundamental representations. The cor-
responding representation spaces are two-dimensional and complex conjugates
of each other. The elements of these spaces are often denoted by Weyl spinors
and their complex conjugates. It is common to denote the components of these
spinors by ψA, ψ̄A′

where A,A′ = 1, 2; we will also call the corresponding spaces
the spaces of (un)primed spinors. The components of the corresponding dual
spaces are denoted by ψA, ψ̄A′ respectively. We define the entries of the spinor
metric εAB , εA′B′ to be the completely skew tensor in two dimensions, that
is, ε12 = −ε21 = 1. The same holds for εAB , εA

′B′
. Notice that −εAB is the

inverse of εAB , that is, εACεCB = −δAB . It allows us to identify, as usual, the
dual spaces via ψA := εABψB , ψA = εBAψ

B . Obviously ψAψA = 0. The ‘inner
product’ ψAξBεAB is SL(2,C)-invariant, which is why the spinor metric is nat-
ural. The complex conjugate of a spinor is denoted as ψ̄A′

:= [ψA]A=A′ .
By a spinor dyad we mean a pair (ι, o) normalised such that oAι

A = 1. It
is easy to show that εAB = 2o[AιB]. Given a complex null tetrad (l, k,m, m̄)
subject to −l · k = m · m̄ = 1, all other inner products vanishing, we may define
the soldering form

σμ
AA′ := −i[lμιAῑA′ + kμoAōA′ −mμιAōA′ − m̄μoAῑA′ ] (15.1.52)

We verify that

σμ
AA′σ

AA′

ν = gμν , σμ
AA′σ

BB′

μ = δABδ
A′

B′ (15.1.53)

where indices are pulled with g, ε. The soldering forms are anti-Hermitian, that
is, σμ

AA′ = −σμ
A′A. Their purpose is to transform real vectors into anti-Hermitian

spinors and vice versa via vAA′ = vμσ
μ
AA′ , vμ = vAA′σAA′

μ . This also defines ‘flat’
soldering forms using a tetrad eIμ via σI

AA′ := eIμσ
μ
AA′ , while the σμ

AA′ are referred
to as ‘curved’. It is not difficult to check that the σI

AA′ can be chosen, up to
numerical constants, to be −i times the unit matrix for I = 0 and −i times the
Pauli matrix for I = 1, 2, 3. We note that

lAA′ = ioAōA′ , kAA′ = iιAῑA′ , mAA′ = ioAῑA′ , m̄AA′ = iιAōA′ (15.1.54)

and

lμ = iσμ
AA′o

AōA
′
, nμ = iσμ

AA′ι
AῑA

′
, mμ = iσμ

AA′o
AῑA

′
, m̄μ = iσμ

AA′ι
AōA

′

(15.1.55)

Notice that the factors of i were introduced compared with other treatments in
order to maintain the signature (−,+,+,+).
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We turn to antisymmetric tensors Tμν = −T νμ whose spinorial equivalent is
given by TAA′BB′

= TμνσAA′
μ σBB′

ν . We have TAA′BB′
= T (AA′B)B′

+ T [AA′B]B′

and

T (AA′B)B′
= T (BA′A)B′

= −T (AB′B)A′
= T (A[A′B)B′],

T [AA′B]B′
= −T [BA′A]B′

= T [AB′B]A′
= T [A(A′B]B′) (15.1.56)

hence

T (AA′B)B′
= εA

′B′
[
1
2
εC′D′TAC′BD′

]
=: εA

′B′
TAB ,

T [AA′B]B′
= εAB

[
1
2
εCDTA′CB′D

]
=: εABT̄A′B′

(15.1.57)

Using hermiticity TAA′BB′ = TA′AB′B we conclude TAB = T̄AB , T̄A′B′ =
TA′B′

. The symmetric spinors TAB
+ := TAB , TA′B′

− := T̄A′B′
are called the self-

dual and anti-self-dual parts of the spinor TAA′BB′
respectively. In terms of

flat tensorial indices one defines T IJ
± := (T IJ ∓ iεIJ KLT

KL)/2 where all indices
are pulled with the Minkowski metric ηIJ and ε0123 = 1. One can then verify
explicitly that (15.1.57) is indeed the spinorial equivalent of T IJ

± .
The covariant differential ∇ is extended to spinors by

∇ψA =: dψA + ΓA
Bψ

B , ∇ψ̄A′
=: dψ̄A′

+ Γ̄A′
B′ ψ̄B′

(15.1.58)

The Leibniz rule reveals that on mixed spinors the connection is given by

∇(ψAξ̄A
′
) − d(ψAξ̄A

′
) =
[
ΓA

Bδ
A′

B′ + Γ̄A′
B′δAB′

]
(ψBψB′

) (15.1.59)

so that ΓAB , Γ̄A′B′
are respectively the self- or anti-self-dual parts of the connec-

tion ΓAA′BB′
acting on mixed spinors. Specialising to the anti-Hermitian spinor

iψAψ̄A′
so that kμ = iψAψ̄A′

σμ
AA′ is a real null vector and requiring that, in

analogy to the tetrad, the soldering form is covariantly constant, ∇σAA′
μ = 0,

we find that ΓAA′BB′
is the spinorial expression for the Lorentz spin connec-

tion ΓIJ = −ΓIJ on all internal null vectors and thus on all vectors by linearity.
Notice that due to the symmetry of the self-dual connection ∇εAB = 0.

We can now define a spherically symmetric isolated horizon. We first give it
in tensorial form and then translate its key conditions into spinorial language,
from which conclusions are easier to draw.

Definition 15.1.7. A spherically symmetric isolated horizon (SSIH) is a sub-
manifold H of (M, g) subject to the following conditions:

1. H is foliated by two spheres, that is, it is topologically R × S2.
2. H is a null surface. If l is a future oriented null normal of H (which is

tangential to H but normal to the two-sphere cross-sections) and k is the
other future oriented null vector field normal to the two-sphere cross-sections
and transversal to H then we require that the pull-back to H of k is closed. We



15.1 Classical preparations 529

extend k uniquely to M at points of H by requiring that it is null. Furthermore,
we fix the relative normalisation by requiring that l · k = −1.

3. (a) l is expansion-free.
(b) k is shear-free with nowhere vanishing spherically symmetric expansion

and vanishing Newman–Penrose coefficient lμm̄ν∇μkν on H.
4. All field equations hold at H.
5. −Tμ

ν l
ν is a causal vector and Tμν l

μkν is spherically symmetric at H.

By ‘spherically symmetric’ is meant the following: since k is closed on H and
R × S2 is simply connected it follows that k = −dv on H for some function v on
H. Obviously then the null geodesic congruence generated by k is twist-free at
H. Since k is orthogonal to the two-sphere cross-sections it follows that each leaf
S ∼= S2 of the foliation is characterised by v = const. The condition l · k = −1
now implies that l = ∂/∂v coincides with the foliation vector field of H. This
also fixes the scaling freedom of the null pair (l, k) → (fl, Fk) with f, F > 0 by
f = F−1 and dF ∧ dv = 0, that is, F = F (v) only depends on v. This is what
we mean by spherically symmetric.

We may draw some general conclusions about the form of the curvature
already: since the definition of a SSIH implies that it is also a NEH we con-
clude as before that Rμν l

μlν = 0 = Tμν l
μlν = 0. Expanding tμ = −Tμ

ν l
ν into the

null tetrad basis reveals that it can have no k component and thus is tangen-
tial, that is, it is of the form t = el + am + ām̄ so that t2 = 2|a|2 ≥ 0. Since it
is supposed to be causal, we must have tμ = flμ and we find Tμ

ν l
ν = −elμ with

positive, spherically symmetric e. As for NEH we find Φ00 = Φ01 = 0. Contract-
ing the field equations Gμν + Λgμν = 8πGTμν with (lμnν + mμm̄ν) and using
Φ11 := Rμν(lμnν + mμm̄ν)/4 we conclude that

Φ11 +
R

8
= Λ + 2πGe (15.1.60)

is spherically symmetric.
Choose a spinor dyad and complete l, k to a complex null tetrad where we

consider the soldering form as variable while the spinor is fixed and constant
along H. Consider now the set of equations imposed at points of H

oA∇uoA = 0, ιA∇uιA = g(m̄ · u) (15.1.61)

for all u tangential to H and where g is spherically symmetric, nowhere vanishing
and real.

We want to translate (15.1.61) into tensorial language. Using the decomposi-
tion ∇uoA = aoA + bιA, ∇uιA = coA + dιA we find b = 0 and c = g(m̄ · u). This
implies

∇ulAA′ = i∇u(oAōA′) = (a + ā)lAA′ (15.1.62)
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which is the spinorial equivalent of the equation ∇ul = ωl(u)l. Contracting this
equation with any tangential v we see that l is geodesic, twist-free, expansion-free
and shear-free. Furthermore,

∇ukAA′ = i∇u(ιAιA′) = i([coA + dιA]ῑA′ + ιA[c̄ōA′ + d̄ῑA′ ])

= (d + d̄)kAA′ + cmAA′ + cmAA′ (15.1.63)

Hence ∇un = fn + g[(u · m̄)m + (u ·m)m̄]. Since lμ∇ukμ = −f = −kμ∇ul
μ =

ωl(u) we conclude that

uμ
(
∇μkν −

[
− ωl

μkν + ghμν

])
= 0 (15.1.64)

for all u tangential to H. Thus θk := hμν∇μkν = 2g is the expansion of k. Since
the twist of k vanishes by definition, we conclude that ωl

μ = fkμ for some f .
From the definitions ∇ul = ωl(u)l and ∇ll = λll we infer λl = ωl(l) = −f . Hence
ωl = −λlk. It follows that ∇μkν = ∇νkμ. Hence for any u, v tangential to the
two-sphere cross-sections uμvν(∇(μkν) − θk/2hμν) = 0, that is, k is shear-free.
In summary we have

∇ul = ωl(u)l, ∇uk = −ωl(u)k +
1
2
θkh(u, .), ωl = −λlk (15.1.65)

with θk �= 0 spherically symmetric and with a + ā = ωl(u) = −(d + d̄), c =
θk(m̄ · u)/2. In particular, the Newman–Penrose coefficient m̄μ∇lkμ = 0 van-
ishes. Notice that a = ιA∇uoA = −oA∇uι

A = oA∇uιA = −d.
Next

∇um̄AA′ = i∇u(oAῑA′) = i(aoAιA′ + oA[c̄ōA′ + d̄ῑA′ ]) = (a− ā)m̄AA′ + c̄lAA′

(15.1.66)

In particular

uμvν∇[μmν] = iW[μmν] (15.1.67)

for some real-valued one-form W with −iW (u) = a− ā which we derived in
(15.1.31) for NEHs already. Thus a = (ωl(u) − iW (u))/2.

Having verified that (15.1.51) implies the conditions of Definition 15.1.7 we
turn to the conditions imposed on the connection. Using the completeness rela-
tion and do = dι = 0

δBA = εACε
BC = εBC(oAιC − oCιA) = oAι

B − oBιA (15.1.68)

we find

∇uoA = Γu A
BoB = aoA, ∇uιA = Γu A

BιB = (coA − aιA) (15.1.69)

hence

Γu A
B = Γu

C
A(oCιB − ιCo

B) = aoAι
B − (coA − aιA)oB

= a(oAιB + ιAo
B) − coAo

B (15.1.70)
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or

ΓAB
u = (ωl(u) − iW (u))o(AιB) − 1

2
θkm̄(u)oAoB (15.1.71)

With this result we may now compute the curvature using

Fuv A
B = Fuv A

C(oCιB − oBιC)

= ([[∇u,∇v] −∇[u,v]]oA)ιB − ([[∇u,∇v] −∇[u,v]]ιA)oB (15.1.72)

and

([∇u,∇v] −∇[u,v])ψA = uμvν
(
2∂[μΓAB

ν] + ΓAC
μ Γν C

B − ΓAC
ν Γμ C

B
)
ψB

(15.1.73)

Combining (15.1.71), (15.1.72) and (15.1.73) yields

FAB = −[dλl ∧ k + idW ]o(AιB) − 1
2
[∇lθk + λlθk]k ∧ m̄oAoB (15.1.74)

to be understood to be true when contracted with vectors tangential to H. Here
we have used ωl = −λlk, dθk = −k∇lθk.

Next we use the fact that the self-dual part of the curvature of the Lorentz
connection

FAA′BB′
= dΓAA′BB′

+ ΓAA′CC′ ∧ ΓCC′ BB′
(15.1.75)

equals the curvature of the self-dual part of the connection

FAB :=
1
2
FAA′BB′

εBB′ = dΓAB +
1
2
εBB′(ΓACεA

′C′
+ Γ̄A′C′

εAC)

∧
(
ΓB
Cε

B′

C′ + Γ̄B′

C′εBC
)

= dΓAB + ΓC
A ∧ ΓB

C (15.1.76)

Since the (Palatini) equations of motion hold at H we know that the curvature
of the spin connection F is related to the curvature of g by

FμνIJ = Rμνρσe
ρ
Ie

σ
J (15.1.77)

This can also be derived from the covariant constance of the tetrad: if we denote
by ∇′ the covariant differential acting on tensor indices only and by ∇ the
one which acts on Lorentz and spinor indices as well then ∇μe

I
ν = 0 = ∇′

μe
I
μ +

Γμ
I
Je

J
ν = 0. Thus

[∇′
μ,∇′

ν ]e
I
ρ = Rμνρ

σeIσ

= −∇′
μ

(
Γν

I
Je

J
ρ

)
+ ∇′

ν

(
Γμ

I
Je

J
ρ

)

= −2
(
∇′

[μΓν]
I
J + Γ[μ

I
KΓν]

K
J

)
eJρ

= −Fμν
I
Je

J
ρ (15.1.78)

The spinorial equivalent of (15.1.77) is given by

Fμν
AA′BB′

=Fμν
IJσAA′

I σBB′

J =Rμν
ρσσAA′

ρ σBB′

σ =RCC′DD′AA′BB′
σμCC′σνDD′

(15.1.79)
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Using the algebraic symmetries of the Riemann tensor one can show (see,
e.g., [207]) that the spinorial Riemann tensor allows for the following
decomposition

RAA′BB′CC′DD′
= εA′B′εCDΦABC′D′ + εA′B′εCD

×
[
ΨABCD − R

12
ε(A(CεD)B)

]
+ c.c. (15.1.80)

where Φ corresponds to the trace-free piece of the Ricci tensor Rμν −Rgμν/4 and
Ψ to the Weyl tensor. The spinors ΦABC′D′ , ΨABCD are totally symmetric in
all indices of equal type and ΦABA′B′ = ΦA′B′AB . Notice that for the spacetime
metric we have gAA′BB′ = εABεA′B′ . Next one defines

Ψm1+m2+m3+m4 := ΨABCDξAm1
ξBm2

ξCm3
ξDm4

Φm1+m2,m3+m4 := ΦABA′B′ξAm1
ξBm2

ξ̄A
′

m3
ξ̄B

′

m4
(15.1.81)

where mk = 0, 1, ξ0 := o, ξ1 := ι. Notice that Φmn = Φnm. It is tedious but
straightforward to show that the spinorial definition (15.1.81) is consistent with
various tensorial definitions of Newman–Penrose coefficients that we have made
before.

Let us denote the spinor equivalent of eI ∧ eJ by

ΣAA′BB′

μν := σAA′

[μ σBB′

ν] (15.1.82)

Its (anti-)self-dual part is given by

ΣAB
μν =

1
2
εA′B′σAA′

[μ σBB′

ν] , ΣA′B′

μν =
1
2
εABσ

AA′

[μ σBB′

ν] (15.1.83)

Using ΣAB = ΣCD(oCιA − oAιC)(oDιB − oBιD) it is not difficult to show that

ΣAB = k ∧ m̄ oAoB − (m ∧ m̄− l ∧ k) o(AιB) − l ∧m ιAιB (15.1.84)

Writing FAA′BB′ = RAA′BB′CC′DD′ΣCC′DD′
and employing (15.1.80) one finds

when contracting with εA
′B′

/2

FAB = ΦABC′D′ΣC′D′
+
[
ΨABCD − R

12
ε(A(CεD)B)

]
ΣCD (15.1.85)
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Again using FAB = FCD(oCιA − oAι
C)(oDιB − oBι

D) and using the definitions
(15.1.81) one arrives, after tedious but straightforward calculations, at

FAB =
[
(Ψ3 + Φ21)l ∧ k − Ψ4l ∧m− Φ22l ∧ m̄ + Φ20k ∧m

+
(

Ψ2 +
R

12

)
k ∧ m̄− (Ψ3 − Φ21)m ∧ m̄

]
oAoB

+ 2
[(

Ψ2 + Φ11 −
R

24

)
l ∧ k − Ψ3l ∧m− Φ12l ∧ m̄

+ Φ10k ∧m + Ψ1k ∧ m̄−
(

Ψ2 − Φ11 −
R

24

)
m ∧ m̄

]
o(AιB)

+
[
(Ψ1 + Φ01)l ∧ k −

(
Ψ2 +

R

12

)
l ∧m− Φ02l ∧ m̄

+ Φ00k ∧m + Ψ0k ∧ m̄− (Ψ1 − Φ01)m ∧ m̄

]
ιAιB (15.1.86)

Hence when restricted to vectors tangent to H

FAB =
[
Φ20k ∧m +

(
Ψ2 +

R

12

)
k ∧ m̄− (Ψ3 − Φ21)m ∧ m̄

]
oAoB

+ 2
[
Φ10k ∧m + Ψ1k ∧ m̄−

(
Ψ2 − Φ11 −

R

24

)
m ∧ m̄

]
o(AιB)

+ [Φ00n ∧m + Ψ0n ∧ m̄− (Ψ1 − Φ01)m ∧ m̄]ιAιB (15.1.87)

We are now able to compare coefficients in (15.1.87) with (15.1.74): first of all,
since (15.1.74) has no ιAιB term it follows that

Φ00 = Ψ0 = 0, Ψ1 = Φ01 = 0 (15.1.88)

where Φ01 = 0 holds for NEHs already. Next equating the o(AιB) terms we find
that

(
Ψ2 − Φ11 −

R

24

)
m ∧ m̄ = dλl ∧ k + idW (15.1.89)

which means that λl is spherically symmetric and idW = (Ψ2 − Φ11 − R
24 )m ∧ m̄.

Since m ∧ m̄ is imaginary and Φ11 is real, it follows that �(Ψ2) = 0. Hence SSIHs
are non-rotating. Finally, equating the oAoB terms reveals that

Φ20 = Ψ3 − Φ21 = 0, −1
2
[∇lθk + λlθk] = Ψ2 +

R

12
(15.1.90)

hence Ψ2 + R/12 is spherically symmetric.
On the other hand, combining (15.1.84) and (15.1.85) one finds

FAB =
[(

Ψ2 − Φ11 −
R

24

)
δCAδ

D
B −
(

3
2
Ψ3 − Φ11

)
oAoBι

CιD
]

ΣCD

(15.1.91)
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again to be understood in the sense of being true when restricted to vectors
tangent to H. In particular

mμm̄νFμνAB =
(

Ψ2 − Φ11 −
R

24

)
ΣμνABm

μm̄ν =
(

Ψ2 − Φ11 −
R

24

)
o(AιB)

= −i∂[μWν]m
μm̄νo(AιB) (15.1.92)

where the last equality follows from (15.1.74). Hence

∂[μWν]m
μm̄ν = i

(
Ψ2 − Φ11 −

R

24

)
(15.1.93)

The pull-back of dW to the two spheres is proportional to m ∧ m̄, thus it is given
by

dW = −i

(
Ψ2 − Φ11 −

R

24

)
m ∧ m̄ = −

(
Ψ2 − Φ11 −

R

24

)
η (15.1.94)

We have already derived that Ψ2 + R/12, Φ11 + R/8 are separately spherically
symmetric. Hence Ψ2 − Φ11 −R/24 = (Ψ2 + R/12) − (Φ11 + R/8) is also spher-
ically symmetric. Thus, integrating (15.1.94) over a two-sphere cross-section we
can pull this factor out of the integral and obtain
∫

S

dW = −
(

Ψ2 − Φ11 −
R

24

)∫

S

η = −
(

Ψ2 − Φ11 −
R

24

)
Ar(S) (15.1.95)

Let us now interpret the one-form W : from (15.1.31) we have dm = iW ∧m

when restricted to H. Now recall that m = (e1 + ie2)/
√

2 in terms of tetrads. We
may consider e1, e2 as a Zweibein on S and can define the spin connection of the
associated SO(2) bundle via the torsion-free equation

deI + (Γ(S))I J ∧ eJ = 0 (15.1.96)

If we set (Γ(S))IJ = Γ(S)εIJ we obtain

de1 + Γ(S) ∧ e2 = 0 = de2 − Γ(S) ∧ e1 ⇔ dm = iΓ(S) ∧m (15.1.97)

Since (15.1.96) defines Γ(S) uniquely it follows that W|S = Γ(S) is the spin con-
nection of the SO(2) bundle. By the Gauß–Bonnet theorem [234]

∫

S

√
det(h)R2 = 2

∫

S

dΓ(S) = −2πχ(S) (15.1.98)

where χ(S) = 2(1 − g(S)) is the Euler characteristic of the compact Riemann
surface S and g(S) its genus. The first equality follows by a short computation,
which relates the 2D Palatini action to the 2D Einstein–Hilbert action. Equiva-
lently, [Da, Db]vi = Rabijvj = 2∂[aΓ

ij
b]vj . For a sphere S we have g(S) = 0, hence

combining (15.1.95) and (15.1.98) we conclude that

−c := Ψ2 − Φ11 −
R

24
=

2π
Ar(S)

(15.1.99)
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One can also check by a direct computation that R(2)(h) = Rμνρσ(g)hμρhνσ ∝
Ψ2 − Φ11 − R

24 and immediately consult the Gauß–Bonnet theorem. Formula
(15.1.99) will play a crucial role for what follows.

We leave it to the reader to verify explicitly that the formulae derived imply,
in particular, that a SSIH is a NEH.

15.1.5 Boundary symplectic structure for SSIHs

In Sections 4.2.1, 4.2.2 we derived the canonical transformation from the ADM
phase space to the phase space of connections and electric fields. This was done by
adding an exact one-form to the canonical action, which is thus closed and there-
fore does not change the symplectic structure. However, there we have assumed
that there is only a boundary at spatial infinity, not an interior boundary such
as in the case of a NEH. As we will see now, the form added in Section 4.2.2 is
no longer exact in the presence of an interior boundary and needs to be altered.

We begin with the variation of the functional F =
∫
σ
d3xEa

j Γj
a which would be

the correct one if there were no boundaries at all. We assume that the timelike
deformation vector field T = ∂/∂t becomes null at H and coincides with l =
∂/∂v at H. Then the internal boundary contribution to the variation of F is
given by

δ|SF =
1
2

∫

S

(δej) ∧ ejsgn(det(e)) (15.1.100)

where the change of sign relative to (4.2.27) results from the fact that the two-
sphere cross-sections at H are inner boundaries. Let us relate the eja appearing
in (15.1.100) to the tetrad. Comparing coefficients in the identity gμν = ηIJe

I
μe

J
ν

and pulling back by the embeddings X(t, x) reveals that

−N2 + qabN
aN b = −

(
e0
t

)2 + ejte
j
t , qabN

b

= −e0
t e

0
a + ejte

j
a, qab = −e0

ae
0
b + ejae

j
b (15.1.101)

hence, if qab = ejae
j
b, we find e0

a = 0, ejt = Naeja, e
0
t = N where we used N > 0

and that e0 is future oriented. Now

Xμ
,t = eμI e

I
νX

μ
,t = eμ0e

0
t + eμj e

j
t = Neμ0 + Naejae

μ
j = Nnμ + NaXμ

,a (15.1.102)

so that nμ = eμ0 , e
j
ae

μ
j = Xμ

,a. We conclude

ma =
(
e1
μ + ie2

μ

)
Xμ

,a

/√
2 =
(
e1
a + ie2

a

)/√
2, mt =

(
e1
μ + ie2

μ

)
Xμ

,t

/√
2 = Nama

(15.1.103)

and using gtt = −1/N2, gta = Na/N2, gab = qab −NaN b/N2 we find

mt = gtμmμ = 0, ma = gaμmμ = qabmb (15.1.104)
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The intersection of the embedded hypersurface Σt with the horizon is a two-
sphere St. Since Σt = Xt(σ) we obtain with an embedding Y : S2 → σ the
two-sphere St = Xt(Y (S2)) =: Yt(S2). Now the tangents Yt,α = Xt,aY

a
′α, α =

1, 2 lie in the linear span of mμ, m̄μ and thus
∫

St

(δej) ∧ ej =
∫

S2
d2yδ
(
Y μ
t,αe

j
μ

)(
Y ν
t,βe

j
ν

)
εαβ =

∑

j=1,2

∫

S2
d2yδ
(
Y a
,αe

j
a

)(
Y b
,βe

j
b

)
εαβ

=:
∑

I=1,2

∫

S2
d2yδ
(
eIα
)(
eIβ
)
εαβ (15.1.105)

where we could restrict the sum in the third step due to the tangential properties
of Y,α and in the fourth we have denoted the pull-back to S2 of eja by ejα. Now
we express eIα in terms of mα, m̄α and find, assuming that sgn(det(e)) = 1

δ|SF =
1
2

∫

S2
δm ∧ m̄ +

1
2

∫

S2
δm̄ ∧m =

∫

S2
δm ∧ m̄− δ

1
2

∫

S2
m ∧ m̄

=
∫

S2
δm ∧ m̄ + iδ

1
2
Ar(St) (15.1.106)

We have derived already that Ar(St) is actually t-independent. We will now
make the additional assumption that the single number Ar(S) is moreover fixed
(as a phase space degree of freedom, i.e., it is not only a constant of motion
but furthermore takes only a single value). Then we see that the variation of F
acquires the first term in (15.1.106) as a boundary term. We will compensate this
term by adding a closed one-form (in field space), thereby obtaining a different
boundary term which has the advantage of having a more familiar geometrical
interpretation.

To do this, let us recall which boundary variations are allowed. By the
boundary conditions we have for the pull-backs to S of the one-forms m,W

that dm = iW ∧m and dW = icm ∧ m̄ where c = −2π/Ar(S). The allowed
variations of m,W that preserve these conditions are δm = −iλm + Lξm and
δW = −dλ + LξW where ξ is any vector field tangential to S (use δc = 0). These
are precisely U(1) (or SO(2)) gauge transformations and diffeomorphisms of S2.
As one can check, these are precisely the gauge transformations that follow from
m as a complex null dyad at S and from W as the associated spin connection.
Let

δ =
∫

S2
d2y

[
δWα(y)

δ

δWα(y)
+ δmα(y)

δ

δmα(y)
+ δm̄α(y)

δ

δm̄α(y)

]
(15.1.107)

be a general vector field on the space of fields W,m, m̄ where δW, δm, δm̄ are
restricted to be of the form displayed above.3 Notice that before the variation
the fields m, m̄,W must be varied independently, only after the variation may
the boundary conditions be used.

3 These are considered to be the components of the vector field δ in the ‘coordinate basis’
Wα(y), mα(y), m̄α(y).
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Lemma 15.1.8. The symplectic potential

ΘS(δ) :=
∫

S

δm ∧ m̄ +
1
2c

∫

S

δW ∧W (15.1.108)

is closed.4

Proof: We have

iδiδ′dΘS = δ′[ΘS(δ)] − δ[ΘS(δ′)] − ΘS([δ′, δ])

=
∫

S

(δm ∧ δ′m̄− δ′m ∧ δm̄) +
1
c

∫

S

δW ∧ δ′W (15.1.109)

where dΘS denotes the exterior differential on field space. Inserting the explicit
expressions for δ, δ′ parametrised by λ, ξ and λ′, ξ′ respectively, the identities,
dLξ = Lξd, Lξ = diξ + iξd, the fact that S2 is closed, Stokes’ theorem (in par-
ticular, the Lie derivative of any two-form in 2D is exact) and the boundary
condition dW = icm ∧ m̄ one finds

1
c

∫

S

δW ∧ δ′W =
∫

S

{
i(λLξ′ − λ′Lξ)(m ∧ m̄) +

1
2c
(
L[ξ,ξ′]W

)
∧W

}

(15.1.110)

Similarly, by just inserting the definitions of δ, δ′
∫

S

(δm ∧ δ′m̄− δ′m ∧ δm̄) = −
∫

S

{i(λLξ′ − λ′Lξ)(m ∧ m̄) −
(
L[ξ,ξ′]m

)
∧ m̄}

(15.1.111)

The first two terms in (15.1.110), (15.1.111) cancel each other in (15.1.109).
Set u = [ξ, ξ′]. Then, using repeatedly the boundary conditions dW = icm ∧
m̄, dm = iW ∧m, dm̄ = −iW ∧ m̄
∫

(LuW ) ∧W =
∫

(iciu(m ∧ m̄) ∧W − (iuW )dW )

= ic

∫
(−[ium]W ∧ m̄ + [ium̄]W ∧m− [iuW ]m ∧ m̄)

= ic

∫
(−i[ium]dm̄− i[ium̄]dm− [iu(W ∧m)] ∧ m̄− [ium]W ∧ m̄)

= ic

∫
(−2i[ium]dm̄− i[ium̄]dm + i[iudm] ∧ m̄)

= −c

∫
(2[dium] ∧ m̄ + [dium̄] ∧m + [iudm] ∧ m̄)

= −c

∫
([Lum] ∧ m̄ + [dium] ∧ m̄−m ∧ [dium̄]) (15.1.112)

4 Let φI(y) be some space Φ of fields on some D-dimensional manifold σ with coordinates y.

A vector field on Φ takes the general form v =
∫
σ

dDy vI(y) δ/δφI(y) and a one-form on Φ

takes the general form ω =
∫
σ

dDy ωI(y) DφI(y). Here the field theoretic analogue of the

finite-dimensional coordinate basis relations dxa[∂/∂xb] = ∂xa/∂xb = δab is given by the

functional derivative DφI(y)[δ/δφJ (y′)] = δφI(y)/δφJ (y′) = δJI δ(y, y
′) so that

ω[v] =
∫
σ
ddy ωI(y) vI(y).
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Now
∫

([dium] ∧ m̄−m ∧ [dium̄])

= −
∫

([ium]dm̄ + [ium̄]dm)

= −
∫

(m ∧ iudm̄ + m̄ ∧ iudm) =
∫

(iudm ∧ m̄−m ∧ iudm̄)

=
1
2

∫
([Lum] ∧ m̄−m ∧ [Lum̄]) =

∫
[Lum] ∧ m̄ (15.1.113)

Thus
∫

[LuW ] ∧W = −2c
∫

[Lum] ∧ m̄ (15.1.114)

and the second term in (15.1.110) cancels the second one in (15.1.111) when
inserted into (15.1.109). �

Our strategy will be to add to the symplectic potential of the canonical action,
given in Sections 4.2.1, 4.2.2 in terms of the canonically conjugate fields Kj

a, E
a
j ,

a closed one-form as follows (we will keep track of the Immirzi parameter β and
drop the boundary term at spatial infinity for convenience)
2
κ

(
−
∫

σ

d3x δKj
aδE

a
j − 1

β
δ

∫

σ

d3x Γj
a Ea

j +
1
β

∫

S

δej ∧ ej +
1
cβ

∫

S

δW ∧W

)

= − 2
κ

∫

σ

d3x (β)Aj
aδ

(β)Ea
j +

2
cβκ

∫

S

δW ∧W (15.1.115)

Up to another exact one-form on field space, the first term is the symplectic
potential used before and the second term reads explicitly

− 2
8πGβ

Ar(S)
4π

∫

S

δW ∧W (15.1.116)

This is the Chern–Simons contribution to the symplectic structure. That internal
boundaries in spacetime naturally lead to Chern–Simons theory has been pointed
out for the first time in [792].

Remarks
1. It might be confusing that the internal gauge freedom at H has been
reduced from SL(2,C) to U(1), however, this is explained by the boundary con-
ditions: we have fixed l, k up to spherically symmetric and mutually inverse
scaling. It is equivalent, as far as SL(2,C) transformations are concerned, to
think of the soldering form as fixed and the spinor dyad as variable instead of
the other way around as we did before. Since lAA′ ∝ oAōA′ , kAA′ ∝ ιAῑA′ this
fixes the transformation freedom to o �→ exp(θ + iϕ)o, ι �→ exp(−(θ + iϕ))ι in
order to preserve the normalisation condition oAι

A = 1. Here θ must be spher-
ically symmetric while ϕ may be a general function on H. This means that
mAA′ ∝ ιAōA′ , mAA′ ∝ ιAōA′ really are reduced to U(1) transformations. It is
easy to see that θk → θke

2θ, λl → e−2θ(λl − 2∇lθk) stay spherically symmetric
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but are not invariant. In order to fix θ and therefore to meaningfully speak of
the acceleration of SSIHs one now proceeds as follows: in spherically symmetric
Reissner–Nordstrøm solutions θk = −2/rS , Ar(S) =: 4πr2

S irrespective of elec-
tric or magnetic charges. Thus requiring θk to have this value also for SSIHs
(i) agrees with the Reissner–Nordstrøm case, (ii) completely exhausts the θ free-
dom and (iii) is a gauge which is always attainable.

2. Consider the U(1) Chern–Simons action

SCS :=
∫

H

dW ∧W (15.1.117)

which can be thought of as the generating functional of the curvature dW of the
U(1) connection W . Its 2 + 1 split is (recall that we identify the foliation vector
fields of H and M at H and set v = t)

SCS =
∫

R

dt

∫

S

d2x εαβ(ẆαWβ + 2Wt∂αWβ) (15.1.118)

and we see that its symplectic potential is precisely the term that we have encoun-
tered above. Notice, however, that we are not adding Chern–Simons degrees of
freedom to the classical phase space, in particular we do not require that W

is closed. Rather, due to the boundary conditions that tie the bulk degrees of
freedom m, m̄ to the Chern–Simons surface degrees of freedom W , we have to
change the symplectic potential. It is only in the quantum theory that we pro-
mote these surface degrees of freedom to additional dynamical degrees of freedom
and remove them by imposing the boundary conditions as quantum conditions.

3. The Gauß constraint at H deserves special attention: in the bulk on Σ =
X(σ) it is given by Cj = ∂aE

a
j + εjklA

k
aE

a
l . The bulk Gauß constraint is smeared

with test functions vanishing at H and hence it is identically satisfied at H. As we
move to S = Σ ∩H, the gauge group is reduced to U(1) as we just saw and thus
we impose the U(1) Gauß constraint on the surface degrees of freedom m, m̄.

4. Incidentally we notice that the boundary condition dW = icm ∧ m̄, c =
−2π/Ar(S) can be expressed in the following way in terms of the canonical
coordinates adapted to the 3 + 1 decomposition: if Y : S2 �→ W is the embedding
defined before then we really have Y ∗dW = icY ∗m ∧ m̄. On the other hand, we
had Y ∗FAB = −iY ∗dWo(AιB), Y

∗ΣAB = m ∧ m̄o(AιB) which means that

Y ∗[FAB − cΣAB ] = 0 (15.1.119)

Translating the expression for FAB into Lorentz indices we get

Y ∗F+
IJ = ΩσAA′

I σBB′

J o(AιB)εA′B′ = −Ω
(
l[IkJ] − m̄[ImJ]

)
(15.1.120)

where Ω = Y ∗(−idW ). Hence

Y ∗F+
ij = Y ∗(dW )δ1

[iδ
2
j] (15.1.121)

Comparing with the general expression for F+
ij as the curvature of the self-

dual connection A+
ij = (Γij − iKlεjkl)/2 (recall that (β=−i)A = 2A+ is twice the
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pull-back to σ of the self-dual part of the spin connection of the tetrad) and
pulling it back to S2 we see that Y ∗Kj = 0 because (15.1.121) has no imaginary
part. Therefore also Y ∗((β)Aij) = Y ∗(Γij + βKlεijl) = Y ∗Γij and in particular
Y ∗((β)Aj) = −Y ∗(((β)Akl)εjkl/2) = (Y ∗W )δ3

j . Therefore our boundary condi-
tion can be formulated in terms of the canonical variables ((β)A, (β)E) as

−Y ∗((β)F j) = Y ∗(dW )δj3 = icY ∗(m ∧ m̄)δj3 = cY ∗(e1 ∧ e2)δj3
=

c

2
Y ∗(ek ∧ el)εjklδ

j
3 = cY ∗(∗E)jδ

j
3 (15.1.122)

where we have defined the two-form (∗Ej)ab = εabcE
c
j = εjklekae

l
b and no sum-

mation over j is assumed. Notice that by definition ∗Ej = 1
2 (∗Ej)abdxa ∧ dxb =

εjkle
k ∧ el/2 includes the factor 1/2 involved in (15.1.122). Equation (15.1.122)

is equivalent to

Y ∗((β)
F j
)
δ3
j = Y ∗dW = βcY ∗( ∗ (β)E

)
j
δj3 (15.1.123)

where summation over j is now assumed and c = −2π/Ar(S) as before. Instead
of the internal unit vector δ3

j we could have assumed any other bijection S2 → S2

and U(1) would be the subgroup of SU(2) which preserves that internal vector.
Indeed, we have reduced the SL(2,C) gauge freedom to rotations in the m, m̄

plane.
Equation (15.1.123) is the desired boundary equation that we want to impose

in the quantum theory.

15.2 Quantisation of the surface degrees of freedom

In order to quantise (15.1.123) we must first quantise the phase space associated
with the Chern–Simons degrees of freedom. See [793] for an exhaustive treatment
of Chern–Simons theory quantisation. Basically, the idea is that this equation
connects surface degrees of freedom with bulk degrees of freedom. We will start
from a kinematical Hilbert space of the form H0 = H0

B ⊗H0
S where the first

factor describes the kinematical bulk sector and H0
S the kinematical surface

sector. In the quantum theory, bulk degrees of freedom will be represented by
kinematical states which can be thought of as finite linear combinations of spin-
network states, each of whose underlying graphs intersects S or S2 in a set P of
points which we will call punctures. Let D ⊂ S2 be a subset then the quantum
boundary condition becomes, heuristically speaking,

ψB ⊗
[∫

D

Y ∗d̂W

]
ψS = βcÊ3(D)ψB ⊗ ψS (15.2.1)

where E3(D) is the flux operator as defined in previous chapters and the operator
Ŵ will have to be specified in more detail later. Here we see already an essential
feature: if the graph underlying the state ψB does not intersect D, that is, if
P ∩D = ∅ then the right-hand side vanishes and so must the left-hand side.
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Since D can be arbitrarily small, it follows that the quantum curvature d̂W

is flat except at the punctures. Thus, while in the classical theory the flatness
condition familiar from Chern–Simons theory did not follow from the analysis,
in the quantum theory we are forced to consider the quantisation of a Chern–
Simons theory with punctures. Now the bulk states associated with different sets
P are mutually orthogonal (since the underlying graphs are necessarily different)
and therefore we may perform the split

H0 = ⊕PH0
B,P ⊗H0

S,P (15.2.2)

where the sum runs over all finite subsets of points of S2 and H0
B,P corresponds

to the closed linear span of bulk spin-network states which intersect S precisely in
P while H0

S,P denotes a kinematical Chern–Simons Hilbert space with punctures
P, which we will now construct.

15.2.1 Quantum U(1) Chern–Simons theory with punctures

The kinetic term of our U(1) Chern–Simons theory is
2

βκc

∫

S

εαβẆαWβ = 2
2

βκc

∫

S

Ẇ1W2 −
d

dt

1
βκc

∫

S

W1W2 (15.2.3)

The second term is a total differential and does not contribute to the symplectic
structure, hence

{Wα(y),Wβ(y′)} = −κ′εαβδ
(2)
S2 (y, y′) (15.2.4)

where 2κ′ = −βκc/2 = πβκ/Ar(S), hence similar to the situation with fermions,
Chern–Simons connections contain configuration and momentum degrees of free-
dom. As just mentioned, the quantum theory constrains the connection W to
be flat everywhere except at P ⊂ S2. Let AP be the space of (generalised) U(1)
connections which are flat except at P, the group GP of local U(1) gauge transfor-
mations which reduce to the identity at P and the set DiffP(S2) of semianalytic
diffeomorphisms which fix the points of P. We will remove the restrictions of
these transformations to be trivial at P later on.

Our first task is to coordinatise the phase space AP by suitable functions
of W . To that end, notice that holonomies along arbitrary paths in S2 sepa-
rate the points of the space of all (classical) connections. Next, the GP -invariant
holonomies are those along closed loops in S2 and any open paths connect-
ing points of P. However, since each W ∈ AP is flat except at P, holonomies
along closed loops not containing points of P are trivial. More generally, we
are only interested in the homotopy type of paths because paths between the
same endpoints such that the corresponding loop is contractable will have trivial
holonomy (use W (α) = exp(i

∫
Dα

dW ) = 1 where Dα ⊂ S2 is the domain such
that ∂Dα = α to see that). Notice that the group DiffP(S2) does not change the
homotopy type of paths because it preserves P, hence one cannot detach an open
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a1

b1

Figure 15.2 The surface structure of arcs and loops defined by the punctures
of the boundary Chern–Simons theory.

path from a point of P and one cannot drag a loop across a point of P. It follows
that it is sufficient to fix N − 1 mutually disjoint loops αI and N − 1 open paths
βI where αI encircles the puncture pI and βI connects the puncture pI with the
puncture p0. Here N is the number of punctures of P = {p0, p1, . . . , pN−1}. The
paths βI are also mutually disjoint except for p0 where we arrange by a homotopy
that they intersect there in a C∞ fashion (see Figure 15.2). One might think that
we should also have a loop α0 encircling p0, however, let cI , I = 1, . . . , N − 1 be
any paths connecting a boundary point of αI−1 with a boundary point of αI

and otherwise not intersecting any of the αJ . Thereby each loop is split into two
segments αI = sI ◦ s′I . Then the path

α0 ◦ . . . ◦ αN−1

= s0 ◦ c1 ◦ s1 ◦ c2 ◦ . . . ◦ cN−1 ◦ sN−1 ◦ s′N−1 ◦ c−1
N−1 ◦ . . . ◦ c−1

1 ◦ s′0 (15.2.5)

is contractible to a point ‘over the back of the sphere’ because it encircles all
punctures and thus has trivial holonomy. Hence holonomies of flat connections
along α0 can be expressed in terms of the αI , I = 1, . . . , N − 1.

To summarise, the phase space

AP/(GP
� DiffP(S2)) (15.2.6)

that we are considering is topologically U(1)N−1 × U(1)N−1 since each of the
holonomies W (αI), W (βI), I = 1, . . . , N − 1 takes values in U(1). This phase
space is compact and far from being a cotangent bundle. Therefore we will apply
geometric quantisation because it can deal with topologically non-trivial phase
spaces. Before we do that we must compute the induced symplectic structure
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among the W (αI), W (βI). First of all we have for any two curves c, c′

{W (c),W (c′)} = −W (c)W (c′)
{∫

c

W,

∫

c′
W

}

= −κ′W (c)W (c′)
∫ 1

0

dt

∫ 1

0

dt′ ċα(t)ċ′β(t′)εβαδ(c(t), c′(t′))

= κ′W (c)W (c′)
∑

p∈c∩c′

sgn(det(ċ(t), ċ′(t′)))c(t)=c′(t′)=p (15.2.7)

if all intersections are interior points of both paths (there is an additional factor
1/2 or 1/4 if p is an endpoint of one or both paths respectively, which we do not
display). It follows that

{W (αI),W (αJ)} = {W (βI),W (βJ)} = 0, {W (βI),W (αJ)}
= κ′δIJW (βI)W (αJ) (15.2.8)

The first two equalities follow from the fact that the sets αI , αJ are mutually
disjoint as are the sets βI , βJ (at p0 the signed intersection number in (15.2.7)
vanishes due to the intersection properties of the βI). The third equality follows
from the fact that only αI , βI intersect and they do so in precisely one point.

We will now describe the phase space (15.2.7) in an equivalent but mathe-
matically more convenient way. Consider the phase space R2(N−1) with canon-
ical brackets {yI , xJ} = δIJκ

′, {xI , xJ} = {yI , yJ} = 0. In order to obtain the
torus U(1)2(N−1) we divide R2(N−1) by the action of the discrete translation
group or lattice ΛN = (2πZ)2(N−1), that is, we identify points xI , yI up to
translations by integer multiples of 2π. We can then make the identifications
W (αI) = exp(iyI), W (βI) = exp(iyI). The symplectic structure on this phase
space which leads to these brackets is given by

Ω =
1
κ′

N−1∑

I=1

dyI ∧ dxI (15.2.9)

As we want to quantise by means of geometric quantisation (see Chapter 23),
in the prequantisation step we must ensure that Weil’s integrality criterion is
satisfied, see Theorem 23.1.4 or Corollary 23.1.5. The closed two-surfaces on
the torus T 2(N−1) are tori T 2

IJ wrapping around the xI , yJ directions and the
non-trivial restriction arises from choosing I = J :

∫

T 2
II

Ω
2πh̄

=
(2π)2

2πh̄κ′ = 2
Ar(S)
8πGh̄β

=: K (15.2.10)

Hence the number K, called the level of the Chern–Simons theory, must be
integral.

Assuming this to be the case, the prequantisation condition is satisfied and we
may proceed to choose a polarisation. We have

Ω =
h̄K

2π
dyI ∧ dxI (15.2.11)
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Let us set zI := xI + iyI which defines the usual positive Kähler polarisation on
R2(N−1), which restricts to the torus T 2(N−1). We will first define the quantum
theory for R2(N−1) and then pass to the torus. The one-form Θ := −ih̄K2π zIdxI is
a symplectic potential for Ω. Then d ln(ρ) := −2�(Θ)/̄h = d(x2K/(2π)) defines
the fibre metric of the associated complex line bundle. The Hamiltonian vector
fields are χxI = − 2π

h̄K ∂/∂yI , χyI = 2π
h̄K ∂/∂xI with our conventions for symplectic

geometry iχf
Ω + df = 0, {f, g} = iχf

dg, see Section 19.3. Hence the prequantum
operators become

x̂I = īhχxI − Θ(χxI ) + xI = −i
2π
K

∂/∂yI + xI

ŷI = īhχyI − Θ(χyI ) + yI = i
2π
K

∂/∂yI + ixI (15.2.12)

Moreover

∇∂/∂z̄I = ∂/∂z̄I − 1
īh

Θ(∂/∂z̄I) = ∂/∂z̄I +
K

4π
zI (15.2.13)

Therefore polarised states are of the form
[
∇∂/∂z̄IΨ

]
(z, z̄) = 0 ⇔ Ψ(z, z̄) = e−Kz̄IzI/(4π)ψ(z) (15.2.14)

We compute

x̂IΨ = e−Kz̄IzI/(4π)

(
−2πi

K
∂/∂yI + zI

)
=: e−Kz̄IzI/(4π)x̂′

Iψ

ŷIΨ = e−Kz̄IzI/(4π) 2πi
K

∂/∂xIψ =: e−Kz̄IzI/(4π)ŷ′Iψ (15.2.15)

We therefore find

< Ψ, x̂IΨ′ > =
∫

R2(N−1)
d(N−1)x d(N−1)y e

K
2π (xI)2

(
e−Kz̄IzI/(4π)

)2
ψ̄x̂′

Iψ
′

=
∫

R2(N−1)
d(N−1)x d(N−1)y e−

K
2π (yI)2 ψ̄x̂′

Iψ
′ =:< ψ, x̂′

Iψ
′ >

< Ψ, ŷIΨ′ > = < ψ, ŷ′Iψ
′ > (15.2.16)

which is a representation of x, y by x̂′, ŷ′ on holomorphic functions of CN−1

respectively.
We must now deal with the fact that we actually want to quantise the torus.

Hence one would naively ask that the wave functions are periodic. However, such
functions do not exist, because otherwise the value of that function at arbitrarily
large |zI | would be determined by its value in the compact set {x + iy, 0 ≤ x, y ≤
2π} and hence would be bounded, which is only possible for the constant function
by Liouville’s theorem. The way to proceed is to require that there is a unitary
representation of the translation group defined by the lattice (2πZ)2(N−1) and
to define physical states to be translation-invariant. To that end we define for
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aI , bI ∈ 2πZ the unitary Weyl operators

V (b) := exp
(
i
K

2π
x̂′
IbI

)
, U(a) := exp

(
i
K

2π
ŷ′IaI

)
(15.2.17)

We compute, using the well-known formula exp(A + B) = exp(A) exp(B)×
exp(−[A,B]/2) applicable when [A,B] = const.

(V (b)ψ)(z) = exp
(
K

2π
[ib · z − ||b||2/2]

)
ψ(z + ib), (U(a)ψ)(z) = ψ(z + a)

(15.2.18)
Setting c = a + ib, W (c) := U(a)V (b) we find

W (c)W (c′) = exp
(
−i

K

2π
b · a′
)
W (c + c′) = W (c + c′) (15.2.19)

because K is integral and b · a′ is an integer multiple of (2π)2.
The transformations (15.2.18) are only translations up to a factor, however,

this still defines a unitary representation of the translation group of the lattice
on holomorphic functions. It is precisely due to this prefactor that the admissible
state condition

W (c)ψ = ψ ∀ c ∈ (2πZ)2(N−1) (15.2.20)

will have non-trivial solutions. We can actually compute them here by elementary
methods: since U(a) generates actual translations into the real directions, the
functions are real periodic and thus of the form

ψ(z) =
∑

l∈ZN−1

ψl e
il·z (15.2.21)

Applying V (b) to ψ(z) and exp(il · z), using the definition (15.2.18) and com-
paring coefficients leads to the recursion relation

ψl = ψl−Kb/(2π) e
−l·b e

1
2

K
2π b·b (15.2.22)

for all b ∈ (2πZ)N−1. Setting bI = δIJ for arbitrary J = 1, . . . , N − 1 reveals that
ψl is determined already by those ψl with lI = 1, . . . ,K for all I. Let us call this
the domain DK . Hence the Hilbert space is at most KN−1-dimensional. It is also
easy to solve the recursion, with the result

ψl+nK = ψl e
−2πl·n e−2πK

2 n·n (15.2.23)

for all l ∈ DK , n ∈ (2πZ)N−1. Hence the general solution is

ψ(z) =
∑

l∈DK

ψlϑ
K,P
l (z), ϑK,P

l (z)

=
∑

n∈ZN−1

e−2πl·n e−2πK
2 n·n exp

(
i

(
l + n

K

2π

)
· z
)

(15.2.24)
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The functions ϑK,P
l (z), l ∈ DK are linearly independent by inspection and are

related to the standard Riemann ϑ function in one variable

ϑ(z, τ) :=
∑

n∈Z

exp(iτn2 + 2πinz) (15.2.25)

with �(τ) > 0 by the following formula (here reduced to N = 2, otherwise we
get a product of ϑ functions)

K∑

l=1

e−πl2/KϑK,P
l (2πz) = ϑ(z, τ = i/K) (15.2.26)

For more information on ϑ functions see [794].
To complete the quantisation we must restrict the integration domain in

(15.2.16) with respect to the xI variables to the interval [0, 2π] as otherwise
the integral would diverge due to the exact periodicity in the real directions.
It is easy to check that in this inner product the functions ϑK,P

l are mutually
orthogonal for l ∈ DK .

15.3 Implementing the quantum boundary condition

Now we are in a position to precisely state and solve the quantum boundary
condition (15.1.123). For the Hilbert space labelled by P consider p ∈ P. From
the bulk an arbitrary but finite number of edges may intersect S in p transver-
sally. The transversality restriction is here due to the fact that the edges are
associated with bulk degrees of freedom and thus must extend into the bulk,
that is, they cannot lie within S. Hence all the bulk edges are of type ‘up’
or ‘down’ with respect to S. For definiteness, let them be of type ‘up’. Notice
that since H is actually a boundary of M , these edges actually stop at S while
it would be physically more reasonable to let them extend into the interior of
the black hole. If that was the case, the eigenvalues of fluxes and areas of por-
tions of S would be twice what they would be if we had edges only on one side
of S, see the explicit formulae.5 In order to capture at least an aspect of this
more physical situation we will take Ê3(Dp) as the limit of a one-parameter
family Ê3(Dε

p) where limε→0 D
ε
p = Dp but Dε

p ∩ S = ∅ for ε > 0, that is, Dε
p

lies in the bulk for ε > 0. This will produce the wanted factor of two. We will
choose a spin-network basis and so may assume that at each p the spins of
the edges of the bulk states adjacent to p couple to some definite total angu-
lar momentum Jp. Consider a disk Dp containing p but no other element of
P. Then for such a spin-network state Ts we get for the corresponding flux

5 This is a subtle point: if the surface cuts the edge in an interior point then Ê3(Dε
p) is

actually not diagonal, it is only in the limit ε = 0.
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operator

Ê3(Dp)Ts = 2
i

8
h̄κβ

⎡

⎣
∑

e∈E(γ(s)), f(e)=p

ε(e, S)Re
3

⎤

⎦Ts

= −2
1
4
h̄κβ

⎡

⎣
∑

e∈E(γ(s)), f(e)=p

me

⎤

⎦Ts = −h̄κ

2
βMpTs (15.3.1)

where we have used that −iRe
3/2 is diagonal with eigenvalue given by the mag-

netic quantum number me and their sum is the total magnetic quantum number
Mp. The factor of two in the first equality is due to the limiting procedure per-
formed. Let us label spin- network states in H0

B,P corresponding to total spin
quantum numbers (Jp,Mp) at the punctures p by TP

{J},{M},α where α are other
quantum numbers that are necessary to label that basis.

In order to determine the operator Y ∗d̂W corresponding to (15.1.123) we use
that classically W (∂Dp) = exp(i

∫
Dp

dW ), so classically, according to (15.1.123)

W (∂Dp) = exp(iβcE3(Dp)) (15.3.2)

Now quantum mechanically W (∂Dp) = W (αI) for some I which we identified
with exp(iŷ′I) on the Chern–Simons Hilbert space of holomorphic functions with
ŷ′I = 2πi

K ∂/∂xI . Its action on the functions ϑK
l is given by

Ŵ (αI)ϑ
K,P
l (z) =

∑

n∈ZN−1

e−2πl·n e−2πK
2 n·n exp

(
i

(
l + n

K

2π

)
ϑl(z)

)

=
∑

n∈ZN−1

e−2πl·n e−2πK
2 n·n exp

((
i

(
l + n

K

2π

)
· z
)
· z
)

× exp
(
−i

2π
K

(
lI + nI

K

2π

))

= e−i
2πlI
K ϑK,P

l (z) (15.3.3)

and hence is diagonal in the basis ϑK
l . This is fortunate because a basis of

H0
P = H0

B,P ⊗H0
S,P is given by the states ϑK,P

l ⊗ TP
{J},{M},α and the quantum

boundary condition becomes the following restriction on the quantum numbers
lp, Mp, p ∈ P

e−i
2πlp
K = e−i(βc)(̄hκMp/2) = ei

2π(2Mp)
K (15.3.4)

that is

lp + 2Mp = 0 mod K (15.3.5)

At this point we should recall that the loop α0 could be expressed as the inverse
of the composition of the other N − 1 loops. Hence we automatically get the
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constraint
∑

p

lp = 0 mod K ⇒ 2
∑

p

Mp = 0 mod K (15.3.6)

which will be implicitly understood in what follows.
The effect of the boundary condition is thus to reduce the Hilbert space

associated with P to the closed linear span of the mutually orthogonal states
TP
J,M,α ⊗ ϑK,P

l where M is constrained by l + 2M ≡ 0 (K), J should be compat-
ible with M in the sense that |Mp| ≤ Jp and finally α should be compatible with
these data. We will loosely write

H0 = ⊕P,l,M : 2M+l≡ (K) H0
P,M ⊗H0

P,l (15.3.7)

15.4 Implementation of the quantum constraints

In the bulk we have to impose the SU(2) Gauß constraint, the spatial diffeo-
morphism constraint and the Hamiltonian constraint. In order to preserve the
surface structure, obviously the SU(2) gauge transformations must reduce to
U(1) gauge transformations, the group Diffω(σ) must reduce to Diffω(S) (where
the two groups match semianalytically). Thus, together, these two reduced
groups comprise exactly the symmetry group of the boundary theory, that is,
the Chern–Simons theory. As far as the Hamiltonian constraint is concerned, if
the lapse did not vanish at S as far as gauge transformations generated by it
are concerned,6 then the surface structure would not be preserved under Pois-
son brackets. Thus, there is no gauge transformation at S corresponding to the
Hamiltonian constraint at S. Since on H0

P we have already solved U(1) gauge
invariance and Diff(S) invariance at S away from P, it remains to impose both
at P in order to reduce by the full symmetry of the surface theory, that is,
the Chern–Simons theory. Yet, the bulk Hamiltonian constraint does have an
effect on the surface quantum degrees of freedom. Namely, suppose that TB

J,M,α

is a solution to all bulk constraints where α is now a reduced label (includ-
ing spins on edges and intertwiners on vertices) corresponding to the fact that
the bulk constraints have been imposed and taking into account compatibility
with the surface data J,M given below. Such a compatibility might arise as
follows: the Hamiltonian constraint acts non-trivially at vertices v away from S

and imposes restrictions on the corresponding intertwiners and the spins of the
edges outgoing from v. Some of those edges, say n, may intersect S in p ∈ P
and may have only restricted range of spins j1, . . . , jn depending on α, whence
also the coupling data J,M may not be freely choosable. Thus, although the
Hamiltonian constraint does not act at P, it still leaves its footprint on the
data J,M . The same applies to the bulk SU(2) constraint. (This is not the case

6 Recall the important distinction between symmetries and gauge from Section 1.5.
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for the bulk diffeomorphism constraint which has a geometrical action on the
graphs of the associated spin-network states and does not impose restrictions on
spins and intertwiners.) We will come back to this issue when we compute the
entropy.

15.4.1 Remaining U(1) gauge transformations

We begin with the U(1) Gauß constraint at S. As for the bulk degrees of freedom,
recall from Chapter 9 that the self-adjoint generator Ĝj(p) of local gauge trans-
formations at a vertex such as a puncture p ∈ P is proportional to

∑
f(e)=p R

e
j

when, as in our case, all edges are incoming to p. At S, the SU(2) gauge transfor-
mations reduce to U(1) generated by Ĝ3(p). Thus we see that Ĉ3(p) acts precisely
as the operator Ê3(Dp) where Dp was introduced above. The operator Ĉ3(p) is
thus diagonal with eigenvalues proportional to 2Mp. Next we turn to the gener-
ator of gauge transformations for the surface degrees of freedom. Classically we
have

{∫

S

λdW,Wα(x)
}

= −
{∫

S

dλ ∧W,Wα(x)
}

= κ′λ,α(x) (15.4.1)

hence dW is essentially the generator of infinitesimal gauge transformations on
the Chern–Simons degrees of freedom. It follows that in order to construct states
which are invariant under U(1) gauge transformations at the points p ∈ P as well,
we must compensate gauge transformations at each p with respect to the surface
degrees of freedom by those of the bulk degrees of freedom. Therefore we must
quantise an equation of the form dW = f(∗E3) for some constant f . In order to
be compatible with the boundary conditions (15.1.123) the constants must agree,
that is, f = βc. Therefore we would like to impose

∫
S
λ dW = βc

∫
S
λ ∗ E3 for

arbitrary smearing functions λ.
However, this is not possible because the operator dW does not exist, only

holonomy operators exist in our chosen representation of the surface degrees of
freedom. Therefore, we have to use the gauge-invariance condition in exponenti-
ated form and in order to express the exponential as a holonomy, it follows that
we cannot use arbitrary smearing functions λ but in fact only those which are
integer-valued and constant on their support. However, then the invariance con-
dition under U(1) gauge transformations at P becomes totally equivalent to the
quantum boundary conditions and thus is already solved. It follows, in particu-
lar, that the gauge group at each puncture has been effectively reduced to the
roots of unity determined by K, that is, all complex numbers z solving zK = 1.
This quantisation of the gauge group is a common theme in all Chern–Simons
theories and corresponds to the substitution of the classical group U(1) by a
quantum group UK(1).
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15.4.2 Remaining surface diffeomorphism transformations

The surface diffeomorphism group Diff(S2) is semianalytically matched at S to
bulk diffeomorphisms. Hence this group evidently maps the structure labelled
by the distinguished loops αI , βI to any diffeomorphic image and carries along
with it the bulk edges in the vicinity of S. Therefore, what matters for the
description of the physical Hilbert space is not the location P of the punctures
p but only their sequence. In other words, by a diffeomorphism it is possible to
move the punctures around on S2 but it is not possible to interchange the role of
pI , pJ because one would have to cross the lines βI , βJ , which is not something
a diffeomorphism can do. In other words, the space H0

P becomes Hphys
n labelled

only by the number n of punctures but where the punctures themselves are in
fact distinguishable, one cannot permute them.

15.4.3 Final physical Hilbert space

The physical Hilbert space is easiest described by selecting for each n a represen-
tative P together with the surface structure αI , βI and denoting the associated
states by Tn,{J},{M},α ⊗ ϑK,n

l ; 2M ≡ l(K) and where we keep the dependence of
J,M on α and the conditions

∑
p lp ≡ 0 (K), |Mp| ≤ Jp in mind. We will denote

it by

Hphys = ⊕n,l,2M≡l (K),J Hphys
S,n,l ⊗Hphys

B,J,M (15.4.2)

Notice that Hphys
S,n,l is the one-dimensional span of the vector ϑK,n

l .

15.5 Entropy counting

The idea in entropy counting is to count surface states. This will then be the
origin of a density matrix for the surface Hilbert space because we will form a
partial trace over the bulk Hilbert space. That is, given a value of Ar(S) and
thus a value of K we want to count the number of states ϑK,n

l with variable
n, l such that the corresponding area eigenvalue lies in the interval [Ar(S) −
�2P ,Ar(S) + �2P ] where for the purpose of this chapter we set �2P := h̄G. Notice
that the area of S is a Dirac observable: it is left-invariant by the bulk symmetries,
it is manifestly SU(2)-invariant and invariant under the diffeomorphisms of S.
From Chapter 13 and Figure 15.3 we may read off the eigenvalues of Âr(S) on
the states Tn,{J},{M},α to be

λ(n, {J}) =
h̄κβ

4

n∑

p=1

√
2Ju

p

(
Ju
p + 1

)
+ 2Jd

p

(
Jd
p + 1

)
− Jud

p

(
Jud
p + 1

)
(15.5.1)

where the superscript stands for total up, down or intertwining spin at p respec-
tively. Similar to the flux, for physical reasons we define the eigenvalue as the
limit of those of Âr(Sε) where limε→0 = S and S ∩ Sε = ∅ for ε > 0, that is, Sε lies
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j1

j2

jn
P0

P1

Pn−1

Figure 15.3 Entropy counting: how many surface states exist such that the
corresponding bulk states are compatible with a given area eigenvalue?

in the bulk for ε > 0. This will again produce a factor of two7 compared with the
situation of just using Âr(S) because at ε > 0 we have Ju

p = Jd
p = Jp, J

ud
p = 0

while at ε = 0 we would have Jd
p = Jud

p = Jp, J
u
p = 0. Hence

λ(n, {J}) =
h̄κβ

2

n∑

p=1

√
Jp(Jp + 1) (15.5.2)

We now count surface configurations n, l such that the associated bulk configu-
rations (n, {J}, {M}, α) subject to 2M + l ≡ 0 (K), |Mp| ≤ Jp and 2

∑
p Mp ≡

0 (K) satisfy λ(n, {J}, {M}) ∈ [Ar(S) − �2P ,Ar(S) + �2P ]. We will denote this
number by N(l, n). It is crucial that we only count the surface configurations
l, n. If we counted the bulk configurations (n, {J}, {M}, α) compatible with
λ(n, {J}, {M}) ∈ [Ar(S) − �2P ,Ar(S) + �2P ] then this number would probably be
just infinite. The reason is that for given Jp there is probably an infinite number
of α such that the value Jp can be attained. Namely, we could have an arbitrary
number, say m, of edges intersecting S in p carrying the spins j1, . . . , jm and the
only requirement is that they couple to total spin Jp. The number of ways to

7 This point is again subtle: the spins Jp are intertwining spins on vertices and not spins on
edges. Now if we assume that at p say N spins j1, . . . , jN couple to Jp, then if we move S
slightly into the bulk into Sε the number of punctures and the total spins jump. Hence in
order to make the argument here we must assume that for Sε also the state changes in that
there are still those N edges at the moved puncture pε which continue through the
puncture and end at S. As ε → 0 the old situation is restored.
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do this by varying the j1, . . . , jm is infinite even for fixed m. If the Hamiltonian
constraint does not restrict this freedom to a finite number, which is presumably
not the case, then the label α will include this freedom and therefore counting
the bulk configurations would result in an infinity.

The physical reason for only counting the horizon configurations is of course
that it is only those which describe the horizon while the bulk degrees of freedom
do not. The entropy of a black hole should arise from the microscopical descrip-
tion of the black hole degrees of freedom and not of all. The spins j1, . . . , jm are
associated with the edges, they extend into the bulk and are thus bulk degrees of
freedom. The same is true for the interwining spins Jp which are largely deter-
mined by the j1, . . . , jm. On the other hand, the magnetic quantum numbers Mp

are largely determined by the lp which are associated with the punctures on the
surface. Thus these couple to the surface degrees of freedom and hence should
be counted as such. Thus we are led to construct a corresponding density matrix
which accomplishes a trace over the bulk degrees of freedom. We will construct
a microcanonical ensemble corresponding to the fact that we keep the area of
the black hole horizon fixed.

A general, physical pure state is of the form

Ψ =
∞∑

n=0

K∑

l1,...,ln=1

∑

M∈S(n,l)

∑

J∈S(n,M)

∑

α∈S(n,J)

c(n, l,M, J, α) T phys
n,{J},{M},α ⊗ ϑn,K

l

(15.5.3)

where S(n, l) = {M : 2M + l ≡ 0 (K),
∑n

p=1 Mp ≡ 0 (K)}, S(n,M) = {J :
|Mp| ≤ Jp, p = 1, . . . , n}, and S(n, J) is the set of α compatible with n, J . The
expectation value of the area operator of the horizon is

< Ψ, Âr(S)Ψ >=
∑

n,l,M∈S(n,l),J∈S(n,M),α∈S(n,J)

|c(n, l,M, J, α)|2 λ(n, J)

(15.5.4)
Let us introduce the set S(n, λ) = {J : λ(n, J) = λ}, then (15.5.3) can be written
as

< Ψ, Âr(S)Ψ >

=
∑

λ∈σ(Âr(S))

λ
∑

n,l

∑

M∈S(n,l),J∈S(n,M)∩S(n,λ),α∈S(n,J)

|c(n, l,M, J, α)|2

=:
∑

λ∈σ(Âr(S))

λ
∑

n,l

w(n, l, λ) (15.5.5)

where w(n, l, λ) is the probability of finding an eigenstate of the horizon area
operator in the state Ψ with eigenvalue λ and with surface configuration (n, l).
We may write (15.5.6) as

< Ψ, Âr(S)Ψ >= Tr(ρ̂BHÂr
′
(S)), ρ̂BH =

∑

λ∈σ(Âr(S))

∑

n,l

w(λ, n, l)P̂ϑn,K
l

(15.5.6)
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where Âr
′
(S) is a fiducial operator in Hphys

S which is diagonal, with eigenvalue λ,
on the linear span of those ϑn,K

l compatible with that eigenvalue in the sense that
there exists α ∈ S(n, J) for some J ∈ S(n,M) ∩ S(n, λ) for some M ∈ S(n, l).
P̂ψ denotes the projection onto the span of the state ψ. Hence the trace is taken
in the surface Hilbert space and we have constructed a corresponding density
matrix by taking the partial trace over the bulk degrees of freedom.

If we want to construct a state that describes a black hole with horizon area
approximately equal to the expectation value of some classical given value A0

determining K then w(n, l, λ) = 0 for λ �∈ [A0 − 2δ,A0]. Let S(A0, δ) be the set
(n, l) compatible with eigenvalues λ in that interval and let N(A0, δ) be its
cardinality. Then, as is well known, the entropy SBH := −Tr(ρ̂BH ln(ρBH)) of
that state is extremised if the probabilities w(λ, n, l) for all (n, l) ∈ S(A0, δ) are
equal to each other and thus must equal w(λ, n, l) = N(A0, δ)−1, whence

SBH = ln(N(A0, δ)) (15.5.7)

To determine N(A0, δ) we must make the following assumption: for each (n, l)
such that there exist λ ∈ σ(Âr(S)) ∩ [A0 − 2δ,A0] and J ∈ S(n, λ) ∩ S(n,M) for
some M ∈ S(n, l) there exists at least one α ∈ S(n, J). This condition has not
been verified to be true for the current version of the Hamiltonian constraint,
however, it is likely to hold and if not would at most reduce N(A0, δ). In that
situation we are now able to estimate N(A0, δ) from above and below as fol-
lows: we will count the number Ñ(A0) of surface states which are compatible
with areas below the area determined by the classical K. From this we can
then determine N(A0, δ) = Ñ(A0) − Ñ(A0 − 2δ). Given then M ∈ S(n, l), J ∈
S(n,M) ∩ S(n, λ), λ ≤ A0 we have

A0 ≥ 8πGh̄β
n∑

p=1

√
Jp(Jp + 1) ≥ 8πGh̄β

n∑

p=1

√
|M |p(|M |p + 1)

> 8πGh̄β
n∑

p=1

|M |p ≥ 8πGh̄β
n∑

p=1

Mp

= 4πGh̄β

(

2
n∑

p=1

Mp

)

= A0

2
∑n

p=1 Mp

K
(15.5.8)

Since M ∈ S(n, l) we have 2
∑n

p=1 Mp = mK for some integer m and thus by
(15.5.8) we must have

∑n
p=1 Mp = 0 exactly. Next we also get from (15.5.8) that

for each p necessarily 2|Mp| < K and since lp + 2Mp = 0 modulo K we actually
must have 2Mp = −lp exactly. It follows that it is actually equivalent to count the
Mp rather than the lp and all we need to do is to ensure that

∑n
p=1 Mp = 0. As

follows from (15.5.8), given M , to make sure that there exists J with λ(n, J) ≤
A0 and |Mp| ≤ Jp it is necessary that

∑
p

√
|Mp|(|Mp| + 1) ≤ K/2. Conversely,

given M with
∑

p

√
|Mp|(|Mp| + 1) ≤ K/2 there exists Jp := |Mp| satisfying this

requirement. Notice that the number of possible J accomplishing this is not of
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interest to us because, according to our philosophy, to count surface degrees of
freedom we count the l or M and not the J .

Hence our counting problem is reduced to considering all lists
(M1, . . . ,Mn), n = 0, 1, 2, . . . (where n = 0 corresponds to the empty
list) of non-zero half-integers subject to (1)

∑
P Mp = 0 and (2)∑

p

√
|Mp|(|Mp| + 1) ≤ K/2. The reason for requiring Mp �= 0 for all p

and for n > 0 is that Mp = 0 implies lp = 0, which we excluded by our choice
of basis of ϑn,K

l , lp = 1, . . . , DK . If we had instead allowed lp = 0, 1, . . . ,K − 1
the lists with countably infinitely many zero entries and finitely many non-zero
entries would contribute and the entropy would be infinite.

Let LK be the set of those lists and Ñ(K) be the number of its elements. For
M ∈ LK we certainly have

∑n
p=1 |Mp| ≤ K/2 so that the set

L+
K := ∅ ∪

{

(M1, . . . ,Mn) : Mp �= 0, n = 1, 2, . . . ;
n∑

p=1

|Mp| ≤ K/2

}

(15.5.9)

certainly includes LK because we have also removed the first condition∑N
p=1 Mp = 0. Denote the number of elements of L+

K by Ñ+
K .

Now notice that

LK = ∅ ∪
{

(M1, . . . ,Mn) : n = 1, 2, . . . ; M1, . . . ,Mn, �= 0,

n∑

p=1

Mp = 0,
n∑

p=1

√
|Mp|(|Mp| + 1) ≤ K/2

}

= ∅ ∪
{

(M1, . . . ,Mn) : n = 2, 3, . . . ; M1, . . . ,Mn �= 0,

n∑

p=1

Mp = 0,
n∑

p=1

√
|Mp|(|Mp| + 1) ≤ K/2

}

= ∅ ∪
{

(M1,M2, . . . ,Mn) : n = 2, 3, . . . ; M2, . . . ,Mn �= 0,

n∑

p=1

Mp = 0,
n∑

p=1

√
|Mp|(|Mp| + 1) ≤ K/2

}

−
{

(0,M2, . . . ,Mn) : n = 2, 3, . . . ; M2, . . . ,Mn �= 0,

n∑

p=2

Mp = 0,
n∑

p=2

√
|Mp|(|Mp| + 1) ≤ K/2

}

=: ∅ ∪ L′
K − L′′

K (15.5.10)
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where in the step before the last one we have given up the restriction M1 �= 0 in
L′
K and corrected this by subtracting the additional lists collected in L′′

K . The
point is now that |L′′

K | = |LK | − 1 so that ÑK = |LK | = |L′
K |/2 + 1. To estimate

|L′
K | we write more explicitly

L′
K =

{

(M1,M2, . . . ,Mn) : n = 2, 3, . . . ; M2, . . . ,Mn �= 0,

n∑

p=1

Mp = 0,
n∑

p=1

√
|Mp|(|Mp| + 1) ≤ K/2

}

=

⎧
⎨

⎩

(

−
n∑

p=2

Mp,M2, . . . ,Mn

)

: n = 2, 3, . . . ; M2, . . . ,Mn �= 0,

n∑

p=2

√
|Mp|(|Mp| + 1) +

√√
√
√
∣
∣
∣
∣
∣

n∑

p=2

Mp

∣
∣
∣
∣
∣

(∣∣
∣
∣
∣

n∑

p=2

Mp

∣
∣
∣
∣
∣
+ 1

)

≤ K/2

⎫
⎬

⎭
(15.5.11)

where we could eliminate M1 since the restriction M1 �= 0 was deleted. Obviously,
|L′

K | = |L̃K | where

L̃K =

⎧
⎨

⎩
(M1, . . . ,Mn) : n = 1, 2, . . . ; M1, . . . ,Mn �= 0,

n∑

p=1

√
|Mp|(|Mp| + 1) +

√√√√
∣∣∣∣∣

n∑

p=1

Mp

∣∣∣∣∣

(∣∣∣∣∣

n∑

p=1

Mp

∣∣∣∣∣
+ 1

)

≤ K/2

⎫
⎬

⎭
(15.5.12)

The advantage of L̃K is that the condition
∑

p Mp = 0 is deleted. We have

n∑

p=1

√
|Mp|(|Mp| + 1) +

√√
√√
∣∣
∣∣∣

n∑

p=1

Mp

∣∣
∣∣∣

(∣∣∣∣∣

n∑

p=1

Mp

∣∣
∣∣∣
+ 1

)

≤
n∑

p=1

(
|Mp| +

1
2

)
+

(∣∣∣∣∣

n∑

p=1

Mp

∣∣∣∣∣
+

1
2

)

≤ n + 1
2

+ 2
n∑

p=2

|Mp| (15.5.13)

Hence the set

L̃−
K := ∅ ∪

{

(M1, . . . ,Mn) : n = 1, 2, . . . ; Mp �= 0,

n + 1
2

+ 2
n∑

p=1

√
|Mp|(|Mp| + 1) ≤ K/2

}

(15.5.14)

is certainly included in L̃K except for the empty list so that |L̃−
K | − 1 ≤ |L̃K | =

|L′
K | = 2ÑK − 2. Let |L−

K | =: Ñ−
K . Then we certainly have (1 + Ñ−

K)/2 ≤ ÑK ≤
Ñ+

K .
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We will now derive and solve recursion relations for Ñ±
K . Notice that

(M1, . . . ,Mn) = (M ′
1, . . . ,M

′
n′) if and only if n = n′ and Mp = M ′

p for p =
1, . . . , n since the punctures are distinguishable. Suppose that (M1, . . . ,Mn) ∈
L+
K , then l := 2|M1| = 1, 2, . . . ,K and (M2, . . . ,Mn) ∈ L+

K−l. Moreover, any ele-
ment of L+

K can be obtained from all the elements of L+
K−l by adjoining to the

lists in L+
K−l (including the empty one) another first entry M1 = ±l/2, except

for the empty list. We thus obtain the recursion relation

Ñ+
K = 1 + 2

K∑

l=1

Ñ+
K−l = 1 +

K−1∑

l=0

Ñ+
l ; N+

0 = 1 (15.5.15)

It follows that

Ñ+
K − Ñ+

K−1 = 2N+
K−1 ⇒ Ñ+

K = 3K (15.5.16)

Next, if (M1, . . . ,Mm) ∈ L−
K then the largest value that M1 can take is obtained

for n = 1 so that 2|M1| ≤ (K − 2)/2. Hence, l = 2|M1| = 1, . . . , (K − 2)/2. Now
for M1 = ±l/2 and (M1, . . . ,Mn) ∈ L−

K we have

n + 1
2

+ l + 2
n∑

p=2

|Mp| ≤ K/2 ⇔ n

2
+ 2

n∑

p=2

|Mp| ≤ (K − 1 − 2l)/2 (15.5.17)

so that (M2, . . . ,Mn) ∈ L−
K−1−2l. Thus, by the same reasoning as above we

obtain the recursion relation

Ñ−
K = 1 + 2

[(K−2)/2]∑

l=1

Ñ−
K−1−2l (15.5.18)

where [.] denotes the Gauß bracket. It follows that

ÑK = 1 + 2

{∑K−3
l=1, l odd N

−
l K even

∑K−3
l=2, l even N

−
l K odd

(15.5.19)

whence

Ñ−
K − Ñ−

K−2 = 2Ñ−
K−3 (15.5.20)

This is a linear three-step recursion with constant coefficients which is solved by
Ñ−

K =
∑3

I=0 cIq
K
I where cI are constants and qI are the three roots of the cubic

equation

q3 − q = 2 (15.5.21)

These can be found by the formulae due to Cardano and one finds

qI =
e−iϕI

3r
+ reiϕI , r =

3

√

1 +

√

1 − 1
27

, ϕI = 2Iπ/3, I = 0, 1, 2 (15.5.22)
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The square of the modulus of the real root is the larger by 1/3 than that of
the complex ones. The coefficient c0 can be determined from Ñ−

0,1,2 and is non-
vanishing. Hence

Ñ−
K ∝

(
r +

1
3r

)K

, r =
3

√

1 +

√

1 − 1
27

(15.5.23)

Hence, we get an estimate of the form c1q
K
1 ≤ ÑK ≤ c2q

K
2 , thus by varying

K according to δK = 2δ/(4πβ�2P ) also c2q
K
1 ≤ NK ≤ c2q

K
2 . The entropy of the

black hole is therefore up to a constant estimated by

K ln
(
r +

1
3r

)
≤ SBH ≤ K ln(3) (15.5.24)

This estimate shows already that the dominant contribution is indeed propor-
tional to the area. Notice that even the lower bound is higher than the upper
bound ln(2)/

√
3K reported in [469], which is due to an error made in that paper.

The correct and exact value can be obtained using a more elaborate technique
and one finds (remember �2P = h̄G in this chapter) [795,796]

SBH =
β0

β

A0

4�2P
− 1

2
ln
(

A0

4�2P

)
+ O(1) (15.5.25)

plus subleading terms where β0 is the solution to the equation8

1 = 2
∞∑

k=1

e−πβ0

√
k(k+1) , β0 = 0.23753295796592 . . . . (15.5.26)

This number had been obtained before quite independently from holographic
considerations in [802].

15.6 Discussion

In order to match the result (15.5.25) to the Hawking–Bekenstein value we must
fix the Immirzi parameter to equal β = β0. This strategy would be worthless if
it was not the same value that one had to match for various kinds of black holes,
not only the vacuum black holes that we have treated so far. However, as one can
show [470–472] even for dilatonic and Yang–Mills hair black holes the same value
works. This relies on the following facts: (a) the presence of this bosonic matter
does not change the isolated horizon boundary conditions, (b) the matter fields
are determined through W at S and therefore (c) matter has no independent

8 This constant changes slightly if one re-attributes bulk and surface degrees of freedom. For
instance one could argue that the total area spin quantum numbers Jp at the punctures
should be counted as surface degrees of freedom [797–800], which is not unreasonable.
See [801] for a discussion. We prefer the attribution as displayed here because there is a
clear mathematical distinction between the quantum surface and bulk degrees of freedom
respectively.
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surface degrees of freedom. It should be pointed out that all of this works for
astrophysically realistic (Schwarzschild), four-dimensional, non-supersymmetric
black holes, which should be contrasted with the situation in string theory
[56].

A couple of remarks are in order:

(i) Non-triviality
The derivation of this result is highly non-trivial: it involves an extensive list
of physical arguments and one could not have expected from the outset that
there would be a harmonic interplay between classical General Relativity
(isolated horizon boundary conditions), quantum gravity (discrete eigen-
values of the area operator) and quantum Chern–Simons theory (horizon
degrees of freedom).

Next, recall that there has been established a precise dictionary between
the four laws of usual thermodynamics and black hole thermodynamics for
event horizons. It turns out that one can write another dictionary for isolated
horizons [790,791]. Also, cosmological horizons can be described by isolated
horizon methods.

(ii) Emission spectrum
The eigenvalues Ar(n,�j) are, luckily, not evenly spaced. In particular, one
can show [816] that the number of eigenvalues in the interval [A0 − �2p,A0 +
�2p] grows as e

√
A0/�p , which would not be the case for even spacing as

seems to be favoured by the authors of [804]. Even spacing would have
huge observational consequences: the peak of the black body Hawking spec-
trum from the black hole is at frequencies ω0 ≈ 1/r0 where r0 ≈ GM is the
Schwarzschild radius of the black hole (we neglect numerical constants and
set c = 1). Now A0 = 4πr2

0 and since energy emission of the black hole is due
to ‘area transitions’ we obtain spectral lines at h̄ω ≈ (ΔM) ≈ Δ(

√
A/G) ≈

(ΔA)/(Gr0) ≈ ω0ΔA/G. We see that if the spectrum was evenly spaced at
ΔA ≈ h̄G then ω ≈ nω0, so we would not get a black body spectrum at all,
every line would be at a multiple of the peak line.

Yet, there seems to be a surprising reappearence [805] of the ad hoc
quantisation condition proposed in [804]: if one plots ln(N(A0, δ)) as a
function of A0 at fixed, generic value of δ one finds that this number dis-
plays oscillations with a fixed period given empirically by Δ = 8β�2P ln(3),
which depends on the Immirzi parameter but not on δ. Even more inter-
esting, if one sets 2δ = Δ then the oscillations of ln(N(A0, δ)) disappear
and the graph of that function becomes a staircase with step size given
empirically by ΔS = 2β0 ln(3) where β0 is the value displayed in (15.5.26).
Thus, while the area spectrum is quasicontinuous for large spin quantum
numbers, at that particular value of δ the range of the entropy is discrete,
that is, entropy is quantised with even spacing but not area. Hence, while
entropy is proportional to area, the proportionality is not exact but takes
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the form S = [Ar(s)/4�2P ] where [.] is the Gauß bracket. This very interesting
behaviour asks for a physically more intuitive explanation.

(iii) Quasinormal modes
An interesting and puzzling issue which has ignited a lively debate is the
following: the classical perturbation theory of a Schwarzschild spacetime
(linearisation of the field equations around an exact Schwarzschild met-
ric) reveals that the frequencies of the corresponding Fourier modes are
complex-valued, which means that the perturbations get damped by the
energy loss due to the corresponding gravitational radiation. The spec-
trum of these ringing or quasinormal modes (see, e.g., [806] for a beautiful
introduction) was determined first numerically in [807] to be GMωn/c

3 =
0.04371235 + i

4 (n + 1/2) for the large damping limit. Interestingly, the real
part asymptotes to a constant which equals with eight digits precision the
number ln(3)/(8π) as observed first in [808]. This was later confirmed ana-
lytically in [809, 810]. The origin of the logarithm is awkward and suggests
a connection with the Bekenstein–Hawking entropy as proposed by Dreyer
in [811].

According to the LQG picture, the horizon area is quantised and given
by Ar(n,�j) = 8πβ�2P

∑n
p=1

√
jp(jp + 1) with �2P = h̄G/c3. If the black hole

loses mass due to Hawking radiation then by the Schwarzschild radius
area relation AS = 4πr2

S = 16πG2M2/c4 we have δAs = 32πG2MδM/c4,
hence if c2δM is a spectral line h̄ω of the Hawking radiation then
GMω/c3 = δAS/(32π�2p). Let us write δAS = 8πβ�2P δλ then GMω/c3 =
βδλ/4. Consider a transition due to disappearance of a puncture, that
is, δλ =

√
jm(jm + 1) where jm is the minimal spin allowed to disap-

pear in such a process. Assume also that most of the entropy comes
from such jm punctures by some selection principle which somehow is a
trace from the non-trivial dynamics in the bulk not yet reflected in the
current black hole calculations. It is easy to see that then the analy-
sis made above changes in that the entropy would be S = ln(2jm + 1)N
where N = A0/(8πβ

√
jm(jm + 1)�2p). In order that this be A0/(4�2P ) we

must have β = ln(2jm + 1)/(2π
√
jm(jm + 1). Putting things together we

find GMω/c3 = ln(2jm + 1)/(8π). If we now conjecture that the Hawking
radiation spectrum has something to do with the quasinormal mode spec-
trum, then we find that jm = 1.

This can be interpreted in many ways. First of all it could be that the
conjecture is totally wrong, hence the whole analysis would be a pure coin-
cidence. This viewpoint is supported by the fact that for charged black
holes the real part of the quasinormal mode spectrum does not asymptote
but rather oscillates wildly for large n and the amplitude of the oscilla-
tions does not decay in the limit of small charges. Hence the uncharged case
is a rather special case hinting at a mere coincidence. Another argument
in favour of this viewpoint is that the conjecture itself is very unnatural



560 Quantum black hole physics

in that it is not clear what a microscopic quantum transition should have
to do with a macroscopic, collective phenomenon. Another interpretation
is that although the analysis only applies to the Schwarzschild family it still
teaches us something about the dynamics,9 for example, that only punc-
tures with jm ≥ 1 are allowed due to some trace of the bulk dynamics on
the horizon. This might be the case because, as mentioned, our calculation
is based on the assumption that for each admissible entry in our list L(K)
there is a compatible bulk solution to the Hamiltonian constraint for which
there is no argument at present.

No matter which viewpoint one takes, the subject is interesting and under-
lines once more that we need to understand much better the quantum
dynamics of LQG. Notice, however, that if indeed all spins contribute to the
entropy as was assumed in the main text and are not dynamically forbidden,
then the entropy is not accounted for by ‘Boolean degrees of freedom’ [67].

(iv) Open problems
The case that we have treated above was for a static (spherically symmetric)
isolated horizon. Rotating isolated horizons can be treated classically [812].
An effective way to describe them is in terms of classical multipole moments
defined in [813]. It turns out that the corresponding multipole operators are
simple functions of the area operator. Hence, if we construct a microcanon-
ical ensemble corresponding to fixed area eigenvalues as in the spherically
symmetric case, then this automatically fixes the multipole moment eigen-
values as well. The entropy counting therefore proceeds exactly as in the
spherically symmetric case and gives the Bekenstein–Hawking result for the
same value of the Immirzi parameter [814].

A different question is whether one can also treat Hawking radiation with
the present framework and a pioneering Ansatz was made in [815]. Also, it
has been conjectured that the Bekenstein–Hawking entropy is an inevitable,
universal property of any kind of quantum gravity theory and a proof of that
conjecture was begun in [817–819]. However, this calculation was shown not
to apply in the present context [820]. A recent modification of that calcula-
tion, however, seems to fix the problem [821]. Finally, a better understand-
ing of the role of the Immirzi parameter and whether or not it should be
fixed as displayed here would be desirable. For instance, one could argue
that renormalisation (quantum field theoretical screening effects of matter)
affects Newton’s constant, which then could be reabsorbed into the Immirzi
parameter. The value of the Immirzi parameter could also be changed dras-
tically if it turned out that due to the specific structure of the Hamiltonian
constraint not all the states that we counted above are allowed, thus reduc-
ing the entropy and the Immirzi parameter (as long as the dominant term is

9 Some speculate that jm = 1 means that only integral values of j are allowed so that the
gauge group is SO(3) rather than SU(2). This is impossible if we want to couple fermions.
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linear in the area). This is due to the fact that the Hamiltonian constraint,
while vanishing at S since the lapse vanishes there, does not vanish in the
bulk and there does have an impact on the set of spins of the edges that
puncture S because these edges must intersect in bulk vertices at which the
Hamiltonian constraint restricts the space of possible intertwiners.

(v) First principle calculation
The isolated horizon description is an effective one (not from first principles)
because the presence of an isolated horizon was put in at the classical level.
It would be far more desirable to begin with the full quantum theory and
to have quantum criteria at one’s disposal for when a given state represents
a quantum black hole. At this point the semiclassical analysis discussed in
Section 11.2 could be of some help. For pioneering steps in that direction, in
particular the resolution of the big bang singularity within the Schwarzschild
minisuperspace model, see [822–824]. For more advanced results see [501,
825–828] where one quantises the condition for the formation of a trapping
horizon in a spherically symmetric context using the more traditional ADM
variables and also finds a resolution of the black hole singularity (see also
the next chapter). This is also the reason why we have dealt with trapping
and dynamical horizons in this book, because it seems to be the natural
classical platform from which one can fully define quantum black holes.

For results within the full theory see [829–831]. For a conceptual frame-
work concerning singularity avoidance see [828, 832, 834, 835].
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Applications to particle physics and
quantum cosmology

16.1 Quantum gauge fixing

Applications of Loop Quantum Gravity to Particle Physics (see A. [637, 638] in
the canonical framework where scalar, electromagnetic and fermionic-free matter
propagation on fluctuating quantum spacetimes is studied, B. [773,774,836–839]
in the 4D spin foam framework where graviton propagators are studied and
C. [724, 840, 841] in the 3D spin foam framework where the relation with
Feynman diagrams is studied) and Quantum Cosmology (see [834, 835] for the
full theory where the homogeneous sector has been studied; for homogeneous
minisuperspace models see the next section) have just begun. This important
research area is so far little explored because ideally one would need to have
sufficient control over the physical Hilbert space. Since this is not yet the case,
one must think about approximation schemes in order to make progress. As a
possible starting point or approximation scheme one could use the kinematical,
semiclassical framework developed in Chapter 11: namely, if we use states which
are peaked on points in the phase space that solve the constraints, then the
expectation value of the constraints in these states is either exactly or close to
zero and the fluctuations are small in a suitable sense. Hence, while the states
are not physical states, even the norm of the constraints on those states is small.
They are therefore approximately physical states.

Notice that kinematical semiclassical states are labelled by a point on the
constraint surface contained in some gauge orbit but not by the gauge orbit
itself. In other words, we must choose a classical gauge fixing, that is, a section
of the bundle whose total space is the constraint surface, whose fibres are the
gauge orbits and whose base space is the reduced phase space. By definition,
the constraints are exactly satisfied in this classical gauge fixing. However, the
semiclassical states can fluctuate around the constraint surface: in contrast to
reduced phase space quantisation or gauge fixing quantisation, we have not
switched off the unphysical degrees of freedom (neither those in the orbits nor
off the constraint surface), all degrees of freedom are still quantised. Hence, what
the semiclassical framework provides is a quantum gauge fixing as advertised for
the first time in [479, 485, 486, 488–490]. See [842, 843] for first tests of this idea
in simple toy models.

Next, ideally one would try to analyse Dirac observables which, as we
have seen, are hard to compute classically and even more so in the quantum
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theory. However, since by construction the semiclassical states are approximately
annihilated by the Master Constraint operator M̂, the expectation value of any
kinematical operator Ô and of its gauge transform exp(it M̂)Ô exp(−it M̂) are
approximately identical, which can be interpreted as saying that we describe
Ô in the gauge as chosen by the semiclassical state upon which it becomes,
by definition, an observable. Indeed, the commutator of its expectation value
is approximately zero, while about its fluctuation nothing general can be said.
To improve on this, one can try to construct evolving constants as described in
Chapter 12 on points of the phase space close to the gauge cut, so that the series
involved can be terminated after a few terms because the series is an expansion
around the points of the gauge cut.

Finally notice that quantum gauge fixing solves another mathematical prob-
lem with complete observables: complete observables for sufficiently complicated
systems tend to be only locally defined on phase space. This is no problem in the
classical theory, but we only know how to do quantum mechanics with densely
defined operators. How should one implement into an operator the information
that it is defined only on states with respect to which it has expectation values
close to the classically allowed range? Quantum gauge fixing avoids these com-
plications because we are working with kinematical but gobally defined quantum
objects while the states are peaked on the classically allowed region only.

Thus, the semiclassical framework together with the partial observable frame-
work provides a promising tool in order to circumvent solving the theory exactly
and to develop suitable approximation methods. At the moment, little can be
said about how close those approximations are in comparison to the exact theory,
however, the subject is under close investigation.

More details about this approach can be found in [834, 835]. In what follows
we will describe another development which is an approximation of a different
kind: one studies a restricted class of spacetimes in the classical theory, so-called
symmetry reduced mini-or midisuperspace models, which have fewer physical
degrees of freedom than the full theory. The advantage is that these models
are mathematically more tractable, however, they are also unreliable concerning
their predictive power, because physical degrees of freedom, which in full theory
are allowed to fluctuate and thus potentially destroy the imposed symmetry, are
switched off by hand. In other words, it is presently not clear whether such models
are stable under the mentioned fluctuations and whether they really capture all
the essential information about the full theory.

16.2 Loop Quantum Cosmology

Loop Quantum Cosmology (LQC), to be precise, is not the cosmological sec-
tor of LQG. It is a toy model, namely Bianchi type models of full GR, quan-
tised by using some of the methods of LQG. There are only a finite number
of degrees of freedom involved. This is why these models, even as quantum
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theories, can be solved exactly. However, LQC is also not the usual quantisa-
tion of these minisuperspace models, which we refer to as Ordinary Quantum
Cosmology (OQC). In both LQC and OQC one starts from the same classi-
cal model, the homogeneous (possibly isotropic) Bianchi type symmetry reduc-
tion of full classical GR. However, in OQC these models are quantised in the
usual Schrödinger representation. In this representation the Weyl operators cor-
responding to the remaining degrees of freedom are weakly continuous. The idea,
due to Bojowald [497–499,597–599,844–864], behind LQC is that this representa-
tion is not a good model for the representation used in full LQG, which is weakly
continuous with respect to the fluxes but not with respect to the holonomies.
Thus, to model this crucial aspect of LQG one uses a weakly discontinuous rep-
resentation of the type described in Chapter 8 just after formula (8.1.1).

In this short chapter we will focus only on the qualitative aspects of LQC,
for the details we refer the reader to the literature: the general reduction frame-
work is developed in [497, 844]. Isotropic and flat models are studied in detail
in [849–851] while general isotropic models are considered in [852–854]. Some
homogeneous but non-isotropic models are analysed in [855], most importantly
the classically chaotic Bianchi IX model in [861,862]. In all these models the big
bang singularity is quantum mechanically absent in two different senses. First,
there is no curvature singularity as zero-volume eigenstates are simultaneously
eigenstates for the inverse scale factor operator (or generalised co-triad opera-
tor with finite eigenvalue). This property is inherited from the full theory and
thus can be viewed as a success of the techniqes of Chapter 10. Second, one can
extend the ‘time’ evolution to negative times. That is, in all these models the
Hamiltonian constraint equation can be interpreted as a discrete time evolution
equation, that is, a difference equation with respect to a partial clock observable
(e.g., a component of a co-triad operator) and this equation can be uniquely
continued through the classical singularity. This property is a particular feature
of the simplified analytical appearence of the model and is not necessarily shared
by the full theory. In any case, both properties together could be taken to mean
that, within the model, there is no initial singularity. While there is this radical
departure from OQC, consistency with the usual Wheeler–DeWitt differential
equation at large volume is verified in [846], which also leads to initial conditions
that are dynamically prescribed rather than by hand if one imposes semiclassical
behaviour at late times (large volume). Furthermore, in the model, as in the full
theory, quantisation ambiguities arise which can influence the length of a possible
inflationary phase [860]. Finally, recent reviews are available in [863,864].

To be specific and in order to simplify the discussion, let us consider the
simplest case, the spatially homogeneous and isotropic Friedman–Robertson–
Walker (FRW) models which correspond to the line element

ds2 = −dt2 + a(t)2
[

dr2

1 − kr2
+ r2(dθ2 + sin(θ)2dϕ2)

]
(16.2.1)
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Here k = 1, 0,−1 corresponds to a spatially closed, flat and open universe respec-
tively and the only dynamical degree of freedom is the scale factor a(t) ≥ 0.

We will consider only the flat case k = 0 for simplicity, in which case σ =
R3. Evidently the intrinsic metric is given by qab = a2q0

ab where q0
ab = δab is

not dynamical. Upon choosing a non-dynamical triad e0j
a compatible with q0

ab

we may define the physical triad by eja = ae0j
a . Then Ea

j =
√

det(q)eaj /β =
a2E0a

j /β. Next, since the spin connection is a scale-invariant functional we have
Γ(e) = Γ(e0) and we may choose the SU(2) gauge e0j

a = δja so that Γ(e) = 0.
Then Aj

a = Γj
a + βKabe

b
j = βKabe

b
j modulo the Gauß constraint. Since Kab =

(q̇ab + 2D(aNb))/(2N) = ȧδab/(2N) due to spatial homogeneity we know that
Kab = acδab for some c. Thus Aj

a = β(ca−1)δab(a−1e0a
j ) = βce0j

a . Finally with
Ea

j = pE0a
j /β we conclude Ȧj

aE
a
j = 3βċp where a =

√
|p|. In what follows we fix

β = 1 for simplicity.
When we insert this Ansatz into the Einstein–Hilbert action the result diverges

because all the fields are spatially constant and so the whole action is multiplied
by V0 =

∫
R3 d3x. As usual, one can get a sensible result after dividing by that

factor. Then evidently the symplectic structure becomes {p, c} = 3
2κ, all others

vanishing. Since the Gauß constraint has been solved already and the diffeomor-
phism constraint has been fixed by imposing spatial homogeneity and isotropy,
the only constraint left is the Hamiltonian constraint. Due to spatial homogene-
ity the spatial curvature scalar of q vanishes and hence the constraint must be
proportional to Tr([Aa, Ab][Ea, Eb])/

√
det(q) ∝ c2p2/a3 = c2

√
|p|.

Now we consider the associated holonomies and electric fields. We do not
need to consider all A(e), En(S), only a sufficient number which are enough to
separate the points in the symmetry reduced phase space. Let n be constant and
S any surface, then En(S) = p

∫
S
dSan

a, hence we may fix any S = S0 and any
n = n0 such that

∫
S0

dSan
a
0 = 1 and just consider En0(S0) = p. Likewise, take

any curve k0,r which admits a parametrisation ka0,l(t) = t2rka0 with ka0k
b
0δab = 1

then A(k0,r) = cos(cr) + sin(cr)kj0τj . Hence c = −2 liml→0 Tr(A(k0,r)k
j
0τj)/(2r)

so these holonomies clearly separate the points.
The algebra of cylindrical functions Cyl is therefore equivalent to the finite

linear span of the functions eilc where l ∈ R. This is the algebra of almost or
quasiperiodic functions also studied in Chapter 28 as an application of Gel’fand
spectrum techniques. However, notice [657] that this algebra is vastly overcom-
plete: in fact, take any two real numbers r1, r2 �= 0 which are not rationally
dependent, that is, r1/r2 �∈ Q. Then the map R → T 2; c �→ (eir1c, eir2c) is a bijec-
tion between R and its image which is dense on the torus. Thus, for example,
r1 = 1, r2 =

√
2 already suffices to separate the points. We will come back to

this in a moment.
Proceeding as in the full theory we consider the C∗-algebra Cyl and its spec-

trum R. We then construct the analogue of the Hilbert space H0 = L2(A, dμ0).
The result is constructed explicitly in Chapter 28 and is given by the Bohr
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compactification of the real line with associated uniform (translation-invariant)
measure. In this Hilbert space the functions Tr(c) = eirc form an orthonormal
system and hence the Hilbert space is not separable. The operator ĉ therefore
does not exist since the Weyl operators Wr corresponding to exp(irc) are rep-
resented weakly discontinuously as WrTr′ = Tl+l′ . The operator p̂ on the other
hand is the self-adjoint generator of the weakly continuous family Wt correspond-
ing to exp(−itp) defined densely by WtTr = exp(irt	2p)Tl, hence p̂Tr = −r	2pTl.
The functions Tr are analogous to the spin-network functions Ts of the full the-
ory, the difference being that s = (γ,�j, �m,�n) is a mixture of continuous and
discrete labels while r is a single continuous label. To make the analogy closer,
as explained in Chapter 28, a graph can now be thought of as a finite collection
of rationally independent numbers γ = (r1, . . . , rN ) and spin quantum numbers
are simply integers (n1, . . . , nN ) which label the ‘edges’ rk. They then generate
the ‘lattice’ of real numbers n1r1 + · · · + nNrN in R.

We must now implement the Hamiltonian constraint H = c2
√
|p| + Hmatter

where for cosmological applications, especially the very early universe, a spatially
homogeneous inflaton scalar field φ with conjugate momentum π is of interest.
Its contribution to the Hamiltonian constraint in the full theory is of the form
(see Chapter 12)

Hmatter =
1
2

∫
d3x

[
π2

√
det(q)

+
√

det(q)(qabφ,aφ,b + V (φ))

]

(16.2.2)

with some self-interaction potential V . In a spatially homogeneous situation the
derivative terms drop out and after dividing by the infinite coordinate volume
as above one ends up with Hmatter = 1

2 [π2/a3 + a3V (φ)]. Using a =
√

|p| this

can also be written Hmatter = 1
2 [π2/

√
|p|3 +

√
|p|3V (φ)]. We see that while the

geometry contribution Hgeometry = c2
√
|p| together with the potential energy

contribution is completely regular at the classical singularity a = p = 0, the
kinetic energy term of the scalar field diverges there.

Now we want to quantise these expressions in close analogy to the full theory
developed in Chapter 10. Thus, in particular we must use the volume and write
co-triads as Poisson brackets with holonomies. The volume is evidently given
by V =

√
|p|3 (after dividing by the infinite volume factor), thus the triad is

{V, c} ∝ sgn(p)
√
|p|. In the classical theory sgn(p) = 1 = const., thus we may

multiply the classical Hamiltonian constraint with that factor. Alternatively
we may declare the co-triad to be multiplied with the sign of p because for
non-degenerate metrics q ∝ e2 is independent of that factor. It is also possible
to keep the sign and quantise it the same way as it is possible in the full
theory [573,574]. Hence e := sgn(p)

√
|p| ∝ Wr{W−1

r , V }/(irκ). Now we use the
same technique as for the quantisation of the matter Hamiltonian constraints
of Chapter 12 in order to construct an expression for π2/

√
|p|3 which will
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be densely defined.1 We have 2Wr{W−1
r , V 1/3}/(irκ) = sgn(p)

√
|p|−1

= e−1,

which is the triad. Therefore sgn(p)
√
|p|−3 ∝ e−3. Hence the geometry factor

in the scalar kinetic energy term can be made well-defined this way. The triad
operator is given the symmetric ordering of the classical expression with Poisson
brackets replaced by commutators divided by īh, that is

ê−1 =
(
Wr

[
W−1

r , V̂ 1/3
]
−W−1

r [Wr, V̂
1/3]

)/
((irκ)(īh))

=
(
WrV̂

1/3W−1
r −W−1

r V̂ 1/3Wr

)/(
r	2p

)
(16.2.3)

Its eigenvalue on Tr′ is thus up to a numerical factor equal to

[
√
|r′ + r| −

√
|r′ − r|]

/
(r	p) =

1
r	p

|r′ + r| − |r′ − r|
√
|r′ + r| +

√
|r′ − r|

(16.2.4)

For large r′ this becomes (sgn(r′)
√
r′	p)−1 which is precisely the inverse of the

eigenvalue of the co-triad sgn(p)
√
|p| as it should be. At the classical singularity

r′ = 0 the eigenvalue is actually zero! Its maximum is taken at r′ = r and is
given by

√
2/r	−1

p , which is the maximal value of the inverse scale factor. Hence
the operator corresponding to the inverse scale factor is bounded from above in
this model as long as the arbitrary number r is kept finite. Moreover, the
spectrum deviates from the effective one only for |r′| ≤ r. Here we encounter the
first aspect of the full theory not modelled by LQC: the inverse scale factor, or
rather the geometry factor of the operator corresponding to

∫
d3xπ2/

√
det(q)

which was explicitly constructed in Chapter 12, is not bounded from above by
inspection of the results of Chapter 12. Now what is important for the absence of
the curvature singularity is that 1̂/a has finite eigenvalue when the eigenvalue of
â vanishes. However, in the full theory [834,835] the volume spectrum is also not
bounded at points of the volume spectrum where the volume vanishes, even when
restricted to states which are homogeneous and isotropic on macroscopic scales.
The reason for this is that the spectrum of the volume operator of the full theory
contains many flat directions. In other words, the full spectrum contains valleys
of zero eigenvalues even if the spins j of the corresponding edges adjacent to
the given vertex are arbitrarily large. The walls of these valleys become steeper
the larger j. Now (16.2.4) is essentially a discrete derivative of eigenvalues
of the third root of the volume operator. Thus in the full theory this discrete
derivative is finite but unbounded even on states of zero volume. See [665] for
the state of the art concerning the properties of the volume operator.

The number r can be interpreted as a regulator which in the model cannot be
removed. Namely, in the expression for the gravitational Hamiltonian constraint
we must replace the function c2 by a holonomy, say [(Wr −W−1

r )/(2ir)]2 (the
actual function that is chosen differs from this one slightly and can be motivated

1 Since the spectrum of p̂ is discrete and contains the point zero, inverse powers of p̂ are not
densely defined.
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by using the full theory). In the full theory the regulator had to do with the
‘size’ of the loop αγ,v,e,e′ to be attached to a given graph and the representation
j of SU(2) used for the corresponding holonomy, which we pointed out in
Section 10.3. The regulator could be removed in the full theory with respect to
the loop size using spatial diffeomorphism-invariance while the representation j

remains as a diffeomorphism invariant remnant after the regulator is removed.
Thus there is a discrete ambiguity. In the model the regulator cannot be
removed because spatial diffeomorphism invariance is fixed by imposing spatial
homogeneity and thus there remains a continuous ambiguity. This is the second
aspect of LQG not modelled by LQC.

The geometry part of the Hamiltonian constraint is therefore given by an
expression of the form

Ĥ†
geometry ∝

[(
Wr −W−1

r

)/
(2ir)

]2 [
WrV̂ W−1

r −W−1
r V̂ Wr

]/(
r	2p

)
(16.2.5)

where we have used the ordering that is dictated in the full theory by asking
that the operator be densely defined. We immediately see a third aspect of LQC
which does not model the behaviour of full LQG: since the value r is arbitrary
but fixed once and for all, the kinematical Hilbert space can be written as

H0 = ⊕0≤r′<rH0,r′ (16.2.6)

where H0,r′ is the separable Hilbert space defined by the closed linear span of
the Tr′+nr, n ∈ Z. It is easy to see that H0,r is an invariant subspace for (16.2.5).
This means that in the model the Hamiltonian constraint is not graph-changing.
This is a radical departure from the full theory if indeed the graph-changing
Hamiltonian or Master Constraint is the correct one to use. As we have seen, the
current semiclassical framework is only well-developed for non-graph-changing
operators and therefore it is not surprising that one can use it in order to show
that (16.2.6) has a good semiclassical behaviour for coherent states defined in
any of the sectors H0,r′ . However, this does not prove anything about the full
theory where the graph-changing aspect could be crucial and actually might be
the decisive feature that makes LQG a continuum theory rather than a lattice
theory.

So far we have only focused on one aspect of the classical singularity, namely
that the classical evolution equations become ill-defined at a = 0. In the quan-
tum theory the evolution equation is replaced by the Wheeler–DeWitt equation
l[Ĥ†f ] = 0 for all f ∈ D where D is the finite linear span of the Tr′ . The solutions
are distributions and one can solve the equation over every sector separately. One
can interpret them as difference equations with respect to the ‘clock’ variable p̂

so that the unphysical time becomes discrete with time steps of size r	2p in each
sector.2 This is exactly the same thing that happens in the full theory if we

2 In the full theory that is also possible by using the flux operator instead: given a surface S
and a path p of type ‘up’ with respect to S one can construct right- and left-invariant



16.2 Loop Quantum Cosmology 569

use the total volume as a clock variable. We have displayed the corresponding
difference equations explicitly in Section 10.5. Now that given in the quantum
theory the point a = 0 does not pose any mathematical problems, one can pose
the more sophisticated question whether the quantum evolution equation can be
solved ‘through the classical singularity’. In other words, are all the coefficients in
the Ansatz l =

∑
n cn(φ) < Tr′+nr, . > completely determined if we specify, say,

cn0(φ)? Here cn(φ) is a coefficient depending on the matter degrees of freedom.
The answer turns out to be affirmative: the quantum evolution does not break
down at n = 0 even in the sector r′ = 0. This happens because the matter part
of the full Hamiltonian actually vanishes at n = 0, r′ = 0 as we have seen above.
Of course, since triads are not bounded at zero volume in the full theory, this
must be revisited in the full theory, see below.

Hence, in LQC one can explicitly construct the space of physical states. Unfor-
tunately, this space is still not equipped with a physical inner product. One could
use the spectral analysis of the Master Constraint Programme to construct it
and to represent the corresponding Dirac observables, which is mathematically
not trivial even in this model.3 However, even without it, it was possible to show
that the ambiguity in the choice of the initial conditions of the universe is almost
completely removed if one asks that the solution behaves semiclassically at large
volume (scale factor). Further insight is presumably gained after we have derived
the physical inner product.

Let us come back to the issue raised above [657]: if we use the algebra of opera-
tors generated by p̂,W1,W√

2 which, regarded as classical functions, separate the
points of the classical phase space then the Hilbert space H0 is hugely reducible.
It decomposes into irreducible, separable subspaces. Thus, from the point of view
of that minimal algebra, one should therefore just focus on one of its irreducible
sectors. This is one more feature of LQC which is not shared by LQG and has
to do with its high symmetry. It just expresses the fact that the model cannot

vector fields R3
p, L

3
p and a Laplacian (Rj

p)2 = (Lj
p)2 with eigenvalues ∝ (mp, np, jp(jp + 1))

on spin-network states ∝ [πjp (A(p))]mpnp [488,489]. Since the spectrum of the flux is
unbounded from below and above one can use these operators to define a discrete time with
range in a subset of the entire real line. This encodes also the spectrum of the sign operator
constructed in [573,574] whose eigenvalues change sign as we pass through the zero-volume
eigenstates of the full theory.

3 In [865] this was done for the pure gravity sector of LQC using coherent state techniques
with the surprising result that the physical Hilbert space is non-separable even though the
classical reduced phase space is zero-dimensional. Technically this is due to the fact that
the finite constant r had to be introduced. Namely, it leads to a split of the kinematical
Hilbert space into an uncountably infinite direct sum H = ⊕δ∈[0,r)Hr of separable
subspaces Hδ which are invariant under the Master Constraint corresponding to LQC and,
not surprisingly, direct integral decomposition leads to a physical Hilbert space of the form
Hphys = ⊕δ∈[0,r)C. If each of the uncountably infinite copies of C was superselected (no

Dirac observables switch between them) then this would be okay. However, in this model
the physical Hilbert space turns out to be irreducible for the (weak) Dirac observables. We
interpret this as an artefact of the model because the constant r is absent in LQG where
diffeomorphism invariance removes the potential r dependence.
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capture all the aspects of the full theory and therefore should not be considered
as a bad feature.

Further results within LQC are:

1. Using the ambiguity parameter r and further ordering choices it is possible to
tune the duration of the inflationary phase which might lead to observational
signatures in the WMAP measurement of the anisotropies in the cosmological
background radiation [500,856–860].

2. According to the BKL scenario (see, e.g., [866] and references therein) the
singularity structure of a given spacetime can be very well analysed assuming
spatial homogeneity. This leads to the Bianchi IX model which is believed
to behave chaotically (ergodically) [867]. In LQC this chaotic behaviour has
been shown to be quantum mechanically absent [861,862].

To summarise, while there are some features of LQG which are not very well
modelled by LQC as we pointed out so that there can certainly be no claim that
LQC is a reliable test of LQG which makes robust predictions, these results are
very promising and hopefully extend to LQG, likely by a technically different
incarnation. However, at least one aspect is common to both theories: the dis-
creteness of the spectrum of volume and (co-)triad-like operators and the way to
define them densely on the Hilbert space. Since these operators are not graph-
changing in both theories, they can be analysed by similar coherent states. The
fact that these operators have very good semiclassical behaviour in LQC there-
fore could be argued to be a strong piece of evidence for a similar behaviour of
the (analogue of) the inverse scale factor in LQG.

A detailed corresponding comparison between LQG and LQC has been started
in [834,835]. The outcome is that, as already mentioned, in LQG the (analogue
of) the inverse scale factor is not bounded from above, not even on zero-volume
states and not even on any states of any kind of symmetry (such as homogeneous,
spherically symmetric or axisymmetric, etc.). This is a robust result for any
kind of reduced model and shows, in a drastic way, how much model and full
theory can differ from each other in the details. On the other hand, it could
be shown that the expectation value of the inverse scale factor with respect
to semiclassical, kinematical states which are peaked on a classically singular
trajectory (as we evolve the initial data backwards in unphysical time towards
the big bang) remains bounded. This holds for the isotropic as well as more
general homogeneous models (e.g., Kasner). For details see [834,835].

What this means is the following: in isotropic LQC the inverse scale factor is a
bounded operator (in anisotropic LQC models at least on zero-volume eigen-
states). This implies that its expectation value with respect to any state is
bounded as well. Now suppose that we take a state which is semiclassical at large
volume and evolve it with respect to some physical Hamiltonian operator towards
the classical singularity. Since time evolution is unitary (i.e., states remain nor-
malisable), the expectation value remains bounded all the time. Hence, without
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specifying a physical Hamiltonian, we get boundedness. This is no longer true if,
as in LQG, the inverse scale factor is not bounded on zero-volume eigenstates.
Then it really matters what the states are which describe a collapsing universe.
A candidate for such states are the semiclassical states peaked on the classical
trajectory that we just described. The boundedness result just quoted in LQG
is therefore by a completely different mechanism than in LQC.

However, these results are just preliminary because all that was shown so far
is that boundedness is achieved when we peak the semiclassical state along the
classical trajectory. The real question is what happens under the quantum time
evolution of a physical Hamiltonian. In [868–870] this question could be analysed
analytically and numerically in LQC for a scalar field coupled to the isotropic and
homogeneous k = 0 model. For this model one could carry out the programme
spelt out for the first time in [834], that is, compute physical observables, the
physical Hilbert space and a physical Hamiltonian. The physical evolution is
indeed deterministic and before and after the would-be big bang the universe
behaves semiclassically. These are promising indications that something similar
might happen in full LQG.

These and related questions will be investigated in detail in the future. Of
particular importance is the computation of possibly observable effects of the
inhomogeneities of full LQG in the WMAP and PLANCK spectrum [502] and
the repetition of the beautiful analysis of [871].
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Loop Quantum Gravity phenomenology

Beyond merely checking whether we have a quantum theory of the correct clas-
sical theory, namely General Relativity coupled to all known matter, quantum
gravity has certainly a huge impact on the whole structure of physics. For
instance, if the picture drawn in Chapter 12 is correct, then one must do quan-
tum field theory on one-dimensional polymer-like structures rather than in a
higher-dimensional manifold, presumably the ultraviolet divergences disappear
and while there are still bare and renormalised charges, masses, etc., the bare
charges will presumably be finite while the renormalised charges should better be
called effective charges because they simply take into account physical screening
effects.

Quantum gravity effects are notoriously difficult to measure because the
Planck length is so incredibly tiny. It may therefore come as a surprise that
recently physicists have started to seriously discuss the possibility of measuring
quantum gravity effects, mostly from astrophysical data and gravitational wave
detectors [503–506]. See also the discussion in the extremely beautiful review
by Carlip [9] and references therein. Those who laugh at these ideas are rec-
ommended to have a look at the historical remarks in [872], which draws an
analogy with the situation at the end of the nineteenth century when it was
widely believed that it would never be possible to detect atomic effects. Einstein
showed that the atomic structure of matter was not directly, but indirectly, vis-
ible through collective effects, in this case Brownian motion, and what we are
about to describe goes in the same direction.

The challenge is of course to compute quantum gravity effects within Quantum
General Relativity or more specifically LQG. First pioneering steps towards the
computation of the so-called γ-ray burst effect have been made, to date mostly at
a phenomenological level, in [508,509] for photons and [510,511] for neutrinos. A
more detailed analysis based on the coherent states proposed in [485,486,488,489]
is given in [637,638].

Due to reasons of space we cannot give a full-fledged account of these devel-
opments so we will restrict ourselves to presenting the main ideas for the γ-ray
burst effect and otherwise point out further directions.

A γ-ray burst is a light signal of extremely high energetic photons (up to
1 TeV!) that travelled over cosmological distances (say 109 years). What is
interesting about them is that the signal is like a flash, that is, the intensity
decays on time scales as short as 10−3 s. The astrophysical origin of these bursts
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is still under debate (see the references in [510, 511]) and we will have noth-
ing to add on this debate here. What is important though is that these pho-
tons probe the discrete (polymer) structure of spacetime more, the more energy
they have, which should lead to an energy-dependent velocity of light (disper-
sion) very similar to the propagation of light in crystals. More specifically, if
one plots the time signal of events as measured by an atmospheric Cerenkov
light detector [873] within two disjoint energy channels [E1 − ΔE,E1 + ΔE] and
[E2 − ΔE,E2 + ΔE] then one expects a time difference in the peak of these sig-
nals given by t2 − t1 = ξ L

c(0) [(E2/EP )α − (E1/EP )α] where L is the difference
from the source (measured by the red shift of the galaxy), c(0) is the vacuum
speed of light, EP is the effective Planck scale energy of the order of mP c

2 and
α, ξ are theory-dependent constants of order unity. If α = ξ = 1, EP = mP c

2 and
E2 − E1 = 1 TeV then for L = 109 lightyears we get travel time differences of the
order of 102 s which is much larger than the duration of the peak. At present, the
sensitivity of available detectors is way below such a resolution mainly because
no detectors have been built for this specific purpose, but the construction of
better detectors such as GLAST is on its way [510,511].

One may object that (1) quantum field theory effects from other interactions
should be much stronger than quantum gravity effects so that this effect would
not test so much quantum gravity but rather quantum field theory on Minkowski
space, (2) there are many possible astrophysical disturbances that can cause
dispersion such as interstellar dust and (3) it is not clear that the photons of
different energies have been emitted simultaneously.

The answer to these objections is as follows: (1) is excluded by definition of
quantum field theory on Minkowski space. Such a theory is Poincaré invariant
by construction while an energy-dependent dispersion breaks Lorentz invariance.
We see that the effect is non-perturbative because in any perturbative approach
to quantum gravity one treats gravity like the other interactions as a quantum
field theory on a Minkowski background. (2) is excluded by the fact that the
effect gets stronger with higher energy while diffraction at dust gets weaker. The
scale of dust or gas molecules is transparent for such highly energetic photons.
(3) is apparently excluded by model computations in astrophysics [873] for the
known scenarios that lead to the γ-ray burst effect.

How would one then compute the effect within LQG? Basically, one would look
at quantum Einstein–Maxwell theory and consider states of the form ψE ⊗ ψM

where ψE is a fixed coherent state for the gravitational degrees of freedom, peaked
at Minkowski initial data and ψM is a quantum state for the Maxwell field. Given
the Einstein–Maxwell Hamiltonian

HEM =
1

2e2

∫
d3x

qab√
det(q)

[EaEb + BaBb]
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one would quantise it as described in Chapter 12 and then define an effective
Maxwell Hamiltonian by

< ψM, Ĥeff
M ψ′

M >HM :=< ψE ⊗ ψM, ĤEMψE ⊗ ψM >HE⊗HM

At the moment we can do this computation only at the kinematical level but as
outlined in Section 11.2 this should approximate the full dynamical computation
and at least gives an idea for the size of the effect.

Whatever technique is finally being used to carry out this computation, the
effect, if it exists, is specific to background-independent approaches to quantum
gravity. In fact, the technical reason for existence of the effect would be a corollary
from the Heisenberg uncertainty relation: the quantum metric operators form a
non-commuting set of operators (they depend both on magnetic and electric
degrees of freedom) so that it is not possible to diagonalise them simultaneously.
The best one can do is to construct an approximate eigenstate for all of them
(namely a coherent state), but that state can then not be exactly Poincaré-
invariant, only approximately.

A somewhat different research direction within Quantum Gravity Phenomenol-
ogy is Doubly Special Relativity (DSR) discovered in [513]. See [874] for a recent
review and references therein. Here one postulates that some fundamental quan-
tum theory of gravity exists which gives rise to two invariant scales: the speed
of light and the Planck energy. Mathematically, DSR is related to a so-called
κ-deformation of the Poincaré Lie algebra [875,876], to a Hopf algebra (or quan-
tum group) or equivalently to a non-commutative version of Minkowski space
defined in [513] as shown in [877]. The physical interpretation and the rule for
addition of momenta in this theory is somewhat unclear at the moment, how-
ever, a possible DSR interpretation of 2 + 1 gravity coupled to point particles
has been proposed in [878]. For phenomenological consequences of DSR theo-
ries and a general review of Quantum Gravity Phenomenology based on some
kind of modification of Lorentz invariance see [512, 879, 880]. For possible con-
nections between DSR theories, spin foams and non-commutative geometry
see [881–884].



IV

Mathematical tools and their

connection to physics



In this last part of the book we collect some mathematical background material
which is heavily used in the physics part of the book. There are several reasons
for doing this: First of all, it makes the book almost self-contained. Secondly,
some of this material is not covered by the obligatory courses in mathematics for
physicists. Thirdly, while the material is covered in some mathematics courses, it
is often presented in such a way that a physicist does not recognise it any more
or it is not given sufficient attention. Clearly we can mostly give definitions and
state theorems, proofs are often omitted for reasons of space. However, we try
to motivate the mathematical theory from a physicists’ point of view, explain
how the various theorems fit together and indicate their various applications. We
thus hope that the ambitious reader feels encouraged to study the mathematical
theory in appropriate depth, going through the proofs by himself.

The material is presented in logical order, not in the order as it is applied in
the physics part of the book. For instance, topology is needed before one speaks
about differential geometry, measure theory and (functional) analysis.
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Tools from general topology

We collect and prove here some important results from general topology needed
in the main text. For more details, see, for example [533].

18.1 Generalities

Definition 18.1.1

I. (i) Let X be a set and U a collection of subsets of X. We call X a topological
space provided that
1. ∅, X ∈ U .
2. U is closed under finite intersections: U1, . . . , UN ∈ U , N ∈ N ⇒⋂N

k=1 Uk ∈ U .
3. U is closed under arbitrary (possibly uncountably infinite) unions: Uα ∈

U , α ∈ A ⇒ ⋃
α∈A Uα ∈ U .

The sets U ∈ U are called open, their complements X − U closed in X.
A base B for U is such that any O ∈ U is an arbitrary union of elements
B ∈ B. A subset N ⊂ X is called a neighbourhood of x ∈ X if there is an
open set O with x ∈ O ⊂ N . A neighbourhood base at x is a family N
of neighbourhoods of x such that for any neighbourhood M of x we find
N ∈ N with N ⊂ M . For example, if B is a base then {N ∈ B; x ∈ N}
is a neighbourhood base at x. A topology U is called stronger (finer) than
a topology U ′, which is then weaker (coarser) if U ′ ⊂ U .

(ii) Let (X,U), (Y,V) be topological spaces such that Y ⊂ X. The relative
or subspace topology UY induced on Y is given by defining the sets
U ∩ Y ; U ∈ U to be open. We say that we have a topological inclusion,
denoted Y ↪→ X, provided that the intrinsic topology is stronger than the
relative one, that is, UY ⊂ V.

II. (i) A function f : X → Y between topological spaces X,Y is said to be con-
tinuous provided that the pre-image f−1(V ) of any set V ⊂ Y that is
open in Y is open in X. (The pre-image is defined by f−1(V ) = {x ∈
X; f(x) ∈ V } and despite the notation does not require f to be either an
injection or a surjection.) One easily shows that f is continuous if it is
continuous at each point x ∈ X. Here f is continuous at x ∈ X if for any
open neighbourhood V of y = f(x) there exists an open neighbourhood U

of x such that f(x′) ∈ V for all x′ ∈ U (i.e., f(U) ⊂ V ).
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(ii) If f is a continuous bijection and also f−1 is continuous then f is called
a homeomorphism or a topological isomorphism.

We see that a topology on a set X is simply defined by saying which sets
are open, or equivalently, which functions are continuous. The importance of
homeomorphisms f for topology is that not only can the spaces X,Y be identified
set theoretically but also topologically, that is, open sets can be identified with
each other.

In order to get more topological spaces with more structure one must add
separation, and compactness, properties. The one we need here is the following.

Definition 18.1.2

1. A topological space (X,U) is called
(i) T1 iff for all x, y ∈ X; x �= y there exists O ∈ U with x �∈ O, y ∈ O.

Equivalently, T1 spaces are such that all one-point sets {x} are closed.
(ii) Hausdorff (or T2) iff for any two of its points x �= y there exist open

neighbourhoods U, V of x, y respectively which are disjoint.
(iii) Regular (or T3) iff it is T1 and if for all closed C and all points x �∈ C

there exist open sets O1, O2 such that x ∈ O1, C ⊂ O2, O1 ∩O2 = ∅.
Equivalently, T3 spaces are such that the closed sets form a neighbourhood
base.

(iv) Normal (or T4) iff it is T1 and if for any closed C1, C2, C1 ∩ C2 = ∅ we
find open O1, O2 with C1 ⊂ O1, C2 ⊂ O2 such that O1 ∩O2 = ∅.

One can show that T4 ⇒ T2 ⇒ T3 ⇒ T1.
2. A topological space is called

(i) Separable iff it contains a countable set S of points which are dense in
X (every neighbourhood of any point contains an element of S).

(ii) First countable iff every point has a countable neighbourhood base.
(iii) Second countable if X has a countable base.
We remark that metric spaces (those for which the open balls Bε(x) = {y ∈
X; d(x, y) < ε} for ε ∈ R+ form a neighbourhood base) are (1) always first
countable, (2) second countable if separable. Moreover, every second countable
topological space is separable.

3. A topological space X is called compact if every open cover V of X (a collection
of open sets of X whose union is all of X) has a finite subcover.

We remark that a topological space is called disconnected if it is the disjoint
union of at least two non-empty closed sets.

Definition 18.1.3

(i) A net (xα) in a topological space X is a map α → xα from a partially ordered
and directed1 index set A (relation ≥) to X.

1 For the definition of partially ordered and directed see Definition 6.2.11(i), (ii).
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(ii) A net (xα) converges to x, denoted limα xα = x if for every open neigh-
bourhood U ⊂ X of x there exists α(U) ∈ A such that xα ∈ U for every
α ≥ α(U) (one says that (xα) is eventually in U).

(iii) A subnet (xα(β)) of a net (xα) is defined through a map B → A; β 
→ α(β)
between partially ordered and directed index sets such that for any α0 ∈ A

there exists β(α0) ∈ B with α(β) ≥ α0 for any β ≥ β(α0) (one says that B
is co-final for A).

(iv) A net (xα) in a topological space X is called universal if for any subset
Y ⊂ X the net (xα) is eventually either only in Y or only in X − Y .

Notice that for a subnet there is no relation between the index sets A,B except
that α(B) ⊂ A so that in particular the subnet of a sequence (A = N) may not be
a sequence any longer. The notions of closedness, continuity and compactness can
be formulated in terms of nets. The fact that one uses nets instead of sequences
is that Lemma 18.1.4 is no longer true when A = N unless we are dealing with
metric spaces.

Lemma 18.1.4

(i) A subset Y of a toplogical space X is closed if for every convergent net (xα)
in X with xα ∈ Y ∀α the limit actually lies in Y .

(ii) A function f : X → Y between topological spaces is continuous if for every
convergent net (xα) in X, the net (f(xα)) is convergent in Y .

(iii) A topological space X is compact if every net has a convergent subnet
(Bolzano–Weierstrass theorem). The limit point of the convergent subnet
is called a cluster (accumulation) point of the original net.

The proof is standard and will be omitted. One easily sees that if a net con-
verges (a function is continuous) in a certain topology, then it does so in any
weaker (stronger) topology. We warn the reader that in infinite-dimensional met-
ric spaces such as Banach spaces the Heine–Borel theorem (compactness is equiv-
alent to closure and boundedness) is false.

In our applications direct products of topological spaces are of fundamental
importance.

Definition 18.1.5. The Tychonov topology on the direct product X∞ =∏
l∈L Xl of topological spaces Xl, L any index set, is the weakest topology such

that all the projections

pl : X∞ → Xl; (xl′)l′∈L 
→ xl (18.1.1)

are continuous, that is, a net xα = (xα
l )l∈L converges to x = (xl)l∈L iff xα

l →
xl for every l ∈ L pointwise (not necessarily uniformly) in L. Equivalently, the
sets p−1

l (Ul) = [
∏

l′ �=l Xl′ ] × Ul are defined to be open and form a base for the
topology of X∞ (any open set can be obtained from those by finite intersections
and arbitrary unions).
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The definition of this topology is motivated by the following theorem.

Theorem 18.1.6 (Tychonov). Let L be an index set of arbitrary cardinality
and suppose that for each l ∈ L a compact topological space Xl is given. Then
the direct product space X∞ =

∏
l∈L Xl is a compact topological space in the

Tychonov topology.

We will give an elegant proof of the Tychonov theorem using the notion of a
universal net.

Lemma 18.1.7

(i) A universal net has at most one cluster point to which it then converges.
(ii) For any map f : X → Y between topological spaces the net f(xα) in Y is

universal whenever (xα) is universal in x with no restrictions on f .
(iii) Any net has a universal subnet.

Proof

(i) Suppose that x is a cluster point of a universal net (xα) and that the subnet
xα(β) converges to it. Thus for any neighbourhood U of x the subnet is
eventually in U , that is, there exists β(U) such that xα(β) ∈ U for any
β ≥ β(U). Since (xα) is universal it must eventually be in either U or X − U .
Suppose there was α0 such that xα ∈ X − U for any α ≥ α0. By definition
of a subnet we find β(α0) such that α(β) ≥ α0 for any β ≥ β(α0). Without
loss of generality we may choose β(α0) ≥ β(U). But then we know already
that the xα(β), β ≥ β(α0) are in U , which is a contradiction. Thus xα is
eventually in U . Since U was an arbitrary neighbourhood of x, it follows
that (xα) actually converges to x.

(ii) Obviously f(xα) is eventually in f(X) so we must show that for any V ⊂
f(X) we have f(xα) eventually in V or f(X) − V . Let U = f−1(V ) be the
pre-image of V , then f(X − U) = f(X) − V . Since (xα) is eventually in U

or X − U , the claim follows.
(iii) The proof can be found in exercise 2J(d) together with theorem 2.5 in [885].

�

Corollary 18.1.8. A topological space X is compact iff every universal net
converges.

Proof
⇒: Take any universal net (xα). Since X is compact it has a cluster point to
which it actually converges by Lemma 18.1.4 (i).
⇐: Take any net (xα). Then by Lemma 18.1.4(iii) it has a universal subnet xα(β)

which converges by assumption. Thus, X is compact. �

Proof of Theorem 18.1.6. Let (xα) = (xα
l )l∈L be any universal net in X∞ =∏

l∈L Xl. By Lemma 18.1.4 (ii) the net pl((xα)) = (xα
l ) is universal in Xl.
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Since Xl is compact, it converges to some xl. Define x := (xl)l∈L. By defini-
tion of the Tychonov topology, xα → x iff xα

l → xl for any l ∈ L, whence (xα)
converges. �

This proof of the Tychonov theorem is shorter than the usual one in terms of
the (in)finite intersection property, and technically clearer.

Definition 18.1.9. Let Y be a subset of a topological space X. The subset
topology induced by X on Y is defined through the collection of open sets
V := {U ∩ Y ; U ∈ U} where U defines the topology of X.

Lemma 18.1.10. A closed subset Y of a compact topological space X is compact
in the subspace topology.

Proof: Let V be any open cover for Y . Since Y is closed in X, X − Y is open
in X, whence U = V ∪ {X − Y } is an open cover for X. Since X is compact,
it has a finite open subcover {Uk}Nk=1 ∪ {X − Y } for some N < ∞ where Uk is
open in X. By definition of the subspace topology, Uk ∩ Y is open in Y so that
{Uk ∩ Y }Nk=1 is a finite open subcover of V. �

We collect a number of rather important results which connect the notions of
separability and compactness.

Theorem 18.1.11

(i) Any compact Hausdorff space X is normal.
(ii) Let C0, C1 be closed disjoint sets in a normal space X. Then there exists a

continuous function f : X → [0, 1] with f|C0 = 0, f|C1 = 1. This is known
as Urysohn’s lemma.

(iii) Denote by CR(X), C(X) respectively the Banach algebras of real-valued and
complex-valued functions on a compact Hausdorff space, complete in the
sup-norm ||f || := supx∈X |f(x)|. We say that a collection B of functions
on X separates the points of X if for each pair of points x �= y we find
f ∈ B such that f(x) �= f(y).

If either (a) B ⊂ CR(X) is a closed subalgebra or (b) B ⊂ C(X) is a closed
subalgebra also closed under complex conjugation and B separates the points of X
then either B = CR(X) or B = C(X) respectively (e.g., if 1 ∈ B) or there exists
x0 ∈ X such that B = {f ∈ CR(X); f(x0) = 0} or B = {f ∈ C(X); f(x0) = 0}
respectively. This is known as the real (respectively complex) Stone–Weierstrass
theorem.

18.2 Specific results

In our discussion of the gauge orbit of connections we will deal with the quo-
tient of connections by the set of gauge transformations, which is a topological
space again. The resulting quotient space carries a natural topology, the quotient
topology.
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Definition 18.2.1

(i) Let X,Y be topological spaces and p : X → Y a surjection. The map p is
said to be a quotient map provided that V ⊂ Y is open in Y if and only if
p−1(V ) is open in X.

(ii) If X is a topological space, Y a set and p : X → Y a surjection then there
exists a unique topology on Y with respect to which p is a quotient map.

(iii) Let X be a topological space and let [X] be a partition of X (i.e., a collection
of mutually disjoint subsets of X whose union is X). Denote by [x], x ∈ X

the subset of X in that partition of X which contains x. Equip [X] with the
quotient topology induced by the map [] : X → [X]; x 
→ [x]. Then [X] is
called the quotient space of X.

Notice that the requirement for p to be a quotient map is stronger than that
it be continuous, which would only require that p−1(V ) is open in X whenever
V is open in Y (but not vice versa). Clearly in (ii) we define the topology on
the set Y to be those subsets V for which the pre-image p−1(V ) is open in X

and it is an elementary exercise in the theory of mappings of sets to verify that
the collection of subsets of Y so defined satisfies the axioms of a topology of
Definition 18.1.1.

Quotient spaces arise naturally if we have a group action λ : G ×X →
X; (g, x) → λg(x) := λ(g, x) on a topological space X and define [x] :=
{λg(x); g ∈ G} to be the orbit of x. The orbits clearly define a partition of
X.

Lemma 18.2.2. Let X be a compact topological space, Y a set and p : X → Y

a surjection. Then Y is compact in the quotient topology.

Proof: First of all, consider any subsets V1, V2 of Y . On the one hand, suppose
x ∈ p−1(V1) ∩ p−1(V2). Then there exist y1 ∈ V1, y2 ∈ V2 such that y1 = p(x) =
y2, that is, y1 = y2 ∈ V1 ∩ V2 so that actually x ∈ p−1(V1 ∩ V2). We conclude
p−1(V1) ∩ p−1(V2) ⊂ p−1(V1 ∩ V2).

On the other hand, let x ∈ p−1(V1 ∩ V2), then there exists y ∈ V1 ∩ V2 such
that x ∈ p−1(y). Since y ∈ V1 ∩ V2 we have p−1(y) ∈ p−1(V1) and p−1(y) ∈
p−1(V2), thus x ∈ p−1(V1) ∩ p−1(V2). We conclude p−1(V1 ∩ V2) ⊂ p−1(V1) ∩
p−1(V2).

Thus, altogether p−1(V1) ∩ p−1(V2) = p−1(V1 ∩ V2) and p−1(V1) ∪ p−1(V2) =
p−1(V1 ∪ V2) by taking complements.

Next, let V be an open cover of Y . Then, by definition of the quotient topology,
p−1(V ) is open in X and U := {p−1(V ); V ∈ V} covers X because

⋃
U∈U U =⋃

V ∈V p−1(V ) = p−1(
⋃

V ∈V V ) = p−1(Y ) = X since p is a surjection and V covers
Y . We conclude that U is an open cover of X.

Since X is compact, we find a finite, open subcover {p−1(Vk)}Nk=1 of X so
that X =

⋃N
k=1 p

−1(Vk) = p−1(
⋃N

k=1 Vk) = p−1(Y ), whence Y =
⋃N

k=1 Vk, that is,
{Vk}Nk=1 is a finite open subcover of V and Y is compact. �
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Lemma 18.2.3. Let X be a Hausdorff space and λ : G ×X → X a continuous
group action on X (i.e., λg defined by λg(x) := λ(g, x) is continuous for any
g ∈ G). Then the quotient space X/G := {[x]; x ∈ X} defined by the orbits [x] =
{λg(x); g ∈ G} is Hausdorff in the quotient topology.

Proof: Let [x] �= [x′], then certainly x �= x′ since orbits are disjoint. Since X is
Hausdorff we find disjoint open neighbourhoods U,U ′ of x, x′ respectively. We
want to show that U,U ′ can be chosen in such a way that

[U ] := {[y]; y ∈ U}, [U ′] := {[y′]; y′ ∈ U ′} (18.2.1)

are disjoint. First of all we notice that (p the projection map)

p−1([U ]) =
⋃

y∈U

p−1([y]) = {λ(g, y); y ∈ U, g ∈ G} =
⋃

g∈G

λg(U) =
⋃

g∈G

λg−1(U)

=
⋃

g∈G

(λg)−1(U) (18.2.2)

where we have made use of λg−1 = (λg)−1. Since U is open in X and λg is
continuous by assumption, we have that λ−1

g (U) is open in X. Since arbitrary
unions of open sets are open it follows that p−1([U ]) is open in X, thus by the
definition of the quotient topology we have [U ], [U ′] open in X/G. Next, obviously
[x] ∈ [U ], [x′] ∈ [U ′] whence [U ], [U ′] are open neighbourhoods of [x], [x′] in X/G
respectively.

Let us now choose V, V ′ to be open, disjoint neighbourhoods of the orbits
p−1([x]) = λG(x), p−1([x′]) respectively. (This is certainly possible as otherwise
there exists g ∈ G such that λg(x), x′ have no disjoint neighbourhoods, which
is impossible because λg(x) �= x′ (otherwise [x] = [x′]) and X is Hausdorff.) We
claim that we can choose U,U ′ in such a way that p−1[U ] :=

⋃
g∈G λg(U) ⊂ V

and p−1[U ′] :=
⋃

g∈G λg(U ′) ⊂ V ′.
Suppose that were not the case. Then for any neighbourhood U of x we find

z ∈ U and g0 ∈ G such that λg0(z) �∈ V . Since by construction of V we have that
V is a common open neighbourhood of any λg(x), g ∈ G we have in particular
y := λg0(x) ∈ V . It follows that we have found an open neighbourhood V of
y = λg0(x) such that for any open neighbourhood U of x there exists z ∈ U with
λg0(z) �∈ V . This means that the map λg0 is not continuous at x, in contradiction
to our assumption that λg is everywhere continuous for any g ∈ G.

Therefore p−1([U ]) ∩ p−1([U ′]) = p−1([U ] ∩ [U ′]) = ∅, whence [U ] ∩ [U ′] = ∅,
thus X/G is Hausdorff. �

Theorem 18.2.4. Let X,Y be topological spaces and let G be a group acting
(not necessarily continuously) on them via λ, λ′ respectively. If f : X → Y is
a homeomorphism with respect to which the actions λ, λ′ are equivariant then f

extends as a homeomorphism to the quotient spaces X/G, Y/G in their respective
quotient topologies.
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Proof: Equivariance means that f ◦ λg = λ′
g ◦ f for all g ∈ G and since f is

a bijection, equivariance implies also λg ◦ f−1 = f−1 ◦ λ′
g. Consider the corre-

sponding quotient maps

p : X → X/G; x 
→ [x]λ = {λg(x); g ∈ G} and p′ : Y → Y/G; y 
→ [y]λ′

= {λ′
g(y); g ∈ G} (18.2.3)

Then due to equivariance

f([x]λ) = {f(λg(x)); g ∈ G} = {λ′
g(f(x)); g ∈ G} = [f(x)]λ′ (18.2.4)

and similarly f−1([y]λ′) = [f−1(y)]λ so that f extends to a bijection between the
corresponding equivalence classes.

Next we notice that p−1([x]λ) = {λg(x); g ∈ G} whence by (18.2.4) we have
f(p−1([x]λ)) = (p′)−1([f(x)]λ′) for all [x]λ ∈ X/G. This shows that equivariance
also implies

f ◦ p−1 = (p′)−1 ◦ f ⇒ f−1 ◦ (p′)−1 = p−1 ◦ f−1 (18.2.5)

Let then B be open in Y/G, thus (p′)−1(B) is open in Y by definition of the
quotient topology in Y/G, thus (f−1 ◦ (p′)−1)(B) = (p−1 ◦ f−1)(B) is open in X

since f is continuous, thus f−1(B) is open in X/G by definition of the quotient
topology in X/G. Likewise we see that A open in X/G implies f(A) open in Y/G
since f−1 is continuous. It follows that f, f−1 are continuous as maps between
X/G, Y/G. �
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Differential, Riemannian, symplectic and
complex geometry

In this chapter we collect the basic notions from differential geometry and its
application to Riemannian, symplectic and complex manifolds. We restrict our-
selves to finite-dimensional manifolds, the generalisation to infinite-dimensional
manifolds is briefly sketched in Chapter 33 and can be found, for example,
in [220, 900]. There are many excellent textbooks on differential geometry, for
example, [234,337,887].

19.1 Differential geometry

Even without a Riemannian or symplectic structure the notion of a manifold
enables us to generalise differential and integral calculus familiar from Rm.

19.1.1 Manifolds

Definition 19.1.1

(i) A topological space M is called an m-dimensional Ck manifold pro-
vided there is a family of pairs (UI , xI)I∈I consisting of an open cover
of M , that is, M = ∪I∈I UI and homeomorphisms xI : UI → xI(UI) ⊂
Rm; p �→ xI(p) such that for all I, J ∈ I with UI ∩ UJ �= ∅ the map ϕIJ :=
xJ ∩ x−1

I : xI(UI ∩ UJ) → xJ(UI ∩ UJ) is a Ck map between open subsets
of Rm.

(ii) The sets UI are called charts, the functions xI coordinates and the family
of charts and coordinates comprises an atlas. The number m is called the
dimension of M . Two atlases (UI , xI)I∈I , (VI , xJ)J∈J for a topological
space M are said to be compatible if their union is again an atlas. Com-
patibility of atlases is an equivalence relation and an equivalence class is
called a differentiable Ck structure.

(iii) A topological space M is said to be a manifold with a boundary ∂M pro-
vided each of the UI is homeomorphic to an open subset of the negative
half-space H− = {x ∈ Rm; x1 ≤ 0}. The smoothness condition on the coor-
dinate functions is now applied as before, just that one asks that the ϕIJ are
Ck on open subsets of Rm containing xI(UI ∩ UJ). The boundary points
have coordinates x1 = 0, that is, they lie in ∂H− = {x ∈ Rm; x1 = 0}.

(iv) A map ψ : M → N between Ck manifolds M,N is called Ck if for all pairs
of charts UI , VJ of atlases for M,N respectively such that ψ(UI) ∩ VJ �= ∅
the maps (where defined) ψIJ := xJ ◦ ψ ◦ x−1

I : xI(UI) → xJ(VJ) are Ck
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maps between open subsets of Rm,Rn respectively. If all the ψIJ are invert-
ible and also the inverses are Ck then ψ is called a Ck diffeomorphism.

The diffeomorphisms of a manifold form a group which is denoted
Diff(M).

(v) An atlas (UI , xI) is said to be locally finite provided that every p ∈ M has
an open neighbourhood in M intersecting only a finite number of the charts.
A manifold M is called paracompact if each atlas (UI , xI) admits a locally
finite refinement (VJ , yJ) where each VJ is contained in some UI .

(vi) Let N be a subset of an m-dimensional manifold M . We can equip N

with the structure of a manifold provided the following condition holds:
N naturally carries the induced (subspace) topology of M (i.e., the open
sets are given by N ∩ U where U is open in M). Next we try to define an
induced (subspace) differentiable structure, given an atlas (UI , xI) for M ,
by the atlas (VI = N ∩ UI , yI = (xI)|VI

) for N . This defines a differentiable
structure only if the maps ϕIJ = yJ ◦ y−1

I for VI ∩ VJ �= ∅ have constant
rank n.

Conversely, suppose that N is an n-dimensional manifold and that ψ :
N → M is a Ck map. ψ is said to be a local immersion if each q ∈ N has
an open neighbourhood V such that V → ψ(V ) is an injection. If ψ is a
global immersion, that is, N → ψ(N) is an injection (the image of N in
M does not intersect itself), then ψ is called an embedding. If moreover for
each V open in N the set ψ(V ) is open in the subset topology induced from
M , that is, it is of the form U ∩ ψ(V ) for some open subset of M then ψ is
called a regular embedding (the image of N does not come arbitrarily close
to itself in M without ever self-intersecting). In the latter case we will say
that N is an embedded submanifold of M .

An embedded submanifold of dimension n = m− 1 is called a hypersur-
face.

(vii) A manifold M is said to be orientable if it admits an atlas such that
det(∂xJ(p)/∂xI(p)) > 0 for all p ∈ UI ∩ UJ . If M has a boundary then M

induces an orientation on ∂M as follows: ∂M is a submanifold of M with
atlas (VI = UI ∩ ∂M, yI = (xI)|VI

). By definition, if UI ∩ ∂M �= ∅ then
xI(UI) ⊂ H−, yI(VI) ⊂ ∂H−. Now VI ∩ VJ �= ∅ requires UI ∩ UJ �= ∅. By
assumption the sign of x1

J(xI) equals that of x1
I , hence [∂x1

J/∂x
μ
I ](x1

I =
0, x2

I , . . . , x
m
I ) = cδ1

μ with c > 0 due to continuity. Since det(∂xJ/∂xI) > 0
in UI , taking x1

I → 0 shows that the coordinates yI = (x2
I , . . . , x

m
I ) provide

an orientation of ∂M .
(viii) A manifold is called smooth if it is C∞. A manifold is called real analytic

or Cω if the maps ϕIJ are real analytic, that is, they have a convergent
Taylor expansion in a neighbourhood of each point. A manifold of real
dimension 2m is called complex analytic or a holomorphic manifold of
complex dimension m provided that the maps ϕIJ = zJ ◦ z−1

I : Cm → Cm

satisfy the Cauchy–Riemann equations and (xI , yI) → zI = xI + iyI is the
standard isomorphism between R2m and Cm.
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Notice that if M,N are diffeomorphic then automatically m := dim(M) =
dim(N) =: n. We will identify Ck manifolds whose differentiable structures
are diffeomorphic. Hence diffeomorphisms classify differentiable manifolds into
classes. Notice that the Möbius strip, defined as the topological space derived
from the two-dimensional plane by identifying the points (x, y) and (x + 2π,−y),
does not admit an orientable atlas.

It is not easy to construct homeomorphisms of a topological space which are
not simultaneously smooth diffeomorphisms as well. One can show that for m < 4
all homeomorphisms are also diffeomorphisms. For m ≥ 4 things become more
interesting. It has only relatively recently been shown that S7 admits precisely 28
distinct differentiable structures and that R4 has an infinite number of distinct
differentiable structures. On the other hand, one can show that any smooth,
paracompact manifold admits an analytic structure which, however, is unique
only up to smooth diffeomorphisms [525].

One can show that a connected, finite-dimensional, Hausdorff manifold is para-
compact if and only if it has a countable base, that is, there is a countable family
of open subsets of M such that any other open set can be written as the union
of members of this family. (Recall that a topological space is called disconnected
if and only if it is the union of at least two disjoint closed sets, otherwise it is
called connected.) Unless otherwise stated, in what follows we will assume that
M is a connected, Hausdorff, paracompact C∞ manifold without boundary.

The importance of the concept of paracompactness is that it allows a practi-
cally useful theory of integration on manifolds. An important tool for this will
be the concept of a partition of unity: let (UI , xI)I∈I be a locally finite atlas of a
paracompact Ck, k ≤ ∞ manifold. Then one can always find [887] a system of
Ck functions eI , I ∈ I on M (f is said to be Cl, l ≤ k if f ◦ x−1

I is Cl on xI(UI)
for all I) such that

1. 0 ≤ eI ≤ 1 on M .
2. The closure of the support supp(eI) := {p ∈ M ; eI(p) �= 0} of eI is contained

in UI .
3.

∑
I∈I eI = 1.

19.1.2 Passive and active diffeomorphisms

In physics one often talks about active and passive diffeomorphisms. An active
diffeomorphism is simply a diffeomorphism as just defined which is different from
the identity map. Hence it maps a point p ∈ M in general to a different point
ψ(p) = q ∈ M . On the other hand, if one and the same point p lies in the domain
of two distinct charts UI , UJ of the same atlas then its coordinates xI(p), xJ(p)
will in general be distinct. However, by definition there is a diffeomorphism ϕIJ

of Rm which maps between these two points. By a passive diffeomorphism of M
one simply understands the diffeomorphisms of Rm between the various domains
of parametrisations (coordinate systems) of the points of M . In physics, when
we say that, for example, an action is diffeomorphism-invariant we really mean
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passive diffeomorphisms, that is, reparametrisations, because the action is an
integral over x(M) using specific coordinates. Diffeomorphism invariance hence
means that smooth changes of coordinates do not affect the value of the action
functional.

The notions of active and passive diffeomorphisms are connected as follows:
given an active diffeomorphism ψ and an atlas (UI , xI) we can construct a new
atlas (VI = ψ−1(UI), yI = xI ◦ ψ). The compatibility criterion that ϕψ

IJ := yJ ◦
x−1
I = xJ ◦ ψ ◦ x−1

I be differentiable on xI(UI ∩ VJ) coincides with the definition
of differentiability of ψ, hence active diffeomorphisms simply produce compatible
atlases and do not change the differentiable structure. On the other hand, they
induce the passive diffeomorphisms ϕψ

IJ . It follows that a reparametrisation-
invariant functional is also invariant under active diffeomorphisms in this sense.

The notion of active and passive diffeomorphisms sometimes produces much
confusion for the beginner for the following reason: as we have just seen, we can
always trade an active diffeomorphism for a passive one, thus both are to be
seen as gauge transformations in diffeomorphism-invariant physical theories. On
the other hand, the real world is diffeomorphism-invariant and still objects at
different spacetime locations are physically distinct, they should therefore not
be gauge-equivalent. The way out of the apparent contradiction is the physical
meaning that we associate with the points p ∈ M : so far we have used M as a
purely mathematical object, the points p ∈ M have no a priori physical mean-
ing. In order to give meaning to them we have to label them, not only with a
coordinate system but also with a physical measurement. To see the difference
between the two, consider the example of the spatial volume

VR[q] =
∫

x(R)

d3x
√

det(q)

of a submanifold R of M = R3 where we have used a specific global coordinate
system x to parametrise it once and for all and q is a Riemannian metric on M .
This is a functional of the field q and the question is whether it is invariant if
we replace q by its diffeomorphic image. We will see later that under a change
of coordinates (passive diffeomorphism) the metric tensor maps to the pull-back
q �→ ϕ∗q. Hence VR[q] �→ VR[ϕ∗q] = VRϕ

[q] where x(Rϕ) := ϕ(x(R)). Thus VR[q]
is not diffeomorphism-invariant. We see that the reason for this non-invariance
is that the region R is a coordinate region, it is not attached to any physical
process. Now we do something else: let ρ be some scalar built from the metric
and/or some matter field, say ρ = R where R is the Ricci scalar of q or maybe
the electromagnetic field energy (divided by det(q)). Let us now construct the
volume of the region where ρ is not vanishing. This is mathematically described
by the functional

V (3)
ρ [q] :=

∫

x(M)

d3x[1 − θ(−|ρ|)]
√

det(q)



19.1 Differential geometry 589

where θ is the Heavyside step function. Notice that the region where ρ �= 0 is
now dynamically determined and not abstractly prescribed in terms of coordi-
nates. Under a passive diffeomorphism ρ �→ ϕ∗ρ, hence the region where ρ �= 0
also gets transformed and thus the functional remains altogether invariant since
ϕ(x(M)) = x(M). The value of Vρ[g] is thus invariant under a passive diffeo-
morphism because it acts on both q, ρ in the same way. This corresponds to our
everyday experience that we do not need to use a coordinate system in order
to observe physical objects and what we have just constructed is an example
of an invariant which uses the relational point of view as discussed in detail in
Section 2.2.

The next confusion that arises is when it comes to dynamics: what we have just
described are spatially diffeomorphism-invariant objects. The Einstein–Hilbert
action, however, is spacetime diffeomorphism-invariant. Hence, the intuition
would be that one should construct spacetime diffeomorphism-invariant objects.
An example would be

V (4)
ρ [g; a, b] :=

∫

x(M)

d4xχ[a−b,a+b](ρ)
√
|det(g)|

where now we have chosen M = R4, χ[a,b] denotes the characteristic function
of the interval [a, b] and ρ, g are spacetime tensors. This functional is spacetime
diffeomorphism-invariant. However, now we are confronted with the following
problem: in physics we are used to the fact that the dynamics is induced by
time translations. Time translations are coordinate transformations, hence the
above functional is time translation invariant. Hence it seems that in spacetime
diffeomorphism-invariant theories the observables do not evolve, in clear contra-
diction to what we observe. The resolution of this contradiction is, among other
things, the subject of Section 1.1.7, however, to sketch1 what happens notice that
the above functional depends on the two additional parameters a, b. Now roughly
speaking one has to distinguish between the unphysical time reparametrisations
of the coordinate x0 under which V

(4)
ρ [g, a, b] is truly invariant and physical time

reparametrisations. By these we mean the selection of certain objects, in this
case ρ, as clocks. Clocks are themselves not diffeomorphism-invariant but they
are dynamical fields (i.e., not externally prescribed). The physical meaning of
V

(4)
ρ [g, a, b] is the spacetime volume of the spacetime region where the clock

assumes values in [a− b, a + b]. If we fix b then V
(4)
ρ [g, a, b] does evolve as we

vary a because it describes different, diffeomorphism-invariant objects. This is
now a physical time evolution because it is associated with the dynamical field ρ.
Of course, one should show that it is generated by a spacetime diffeomorphism-
invariant Hamiltonian. This is indeed the case if we follow the more complete
construction of Chapter 2.

1 The actual resolution is technically somewhat more complicated because of the mixture of
gauge and dynamics in General Relativity.
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19.1.3 Differential calculus

(i) Functions
A smooth function on M is a map f : M → C such that f ◦ x−1

I is smooth
on xI(UI) ⊂ Rm. The set of smooth functions C∞(M) forms an Abelian
∗-algebra where operations are defined pointwise and the involution is given
by complex conjugation.

(ii) Vector fields
A smooth vector field on M is a derivation on C∞(M). That is, it is a
linear map

v : C∞(M) → C∞(M); f �→ v[f ] (19.1.1)

which obeys the Leibniz rule v[fg] = v[f ] · g + f · v[g] and annihilates con-
stants, that is, v[c] = 0 if c is a constant function on M . If f ∈ C∞(M) then
fv is the vector field defined by (fv)[f ′] = f · v[f ′]. Given an atlas (UI , xI)
we may define special vector fields ∂I

μ on UI defined by the condition
(
∂I
μ

[
xν
I

])
(p) = δνμ (19.1.2)

for p ∈ UI where x(p) = (x1(p), . . . , xm(p)) ∈ Rm denote the components
of x(p). Given a vector field v, define vμI (xI(p)) := (v[xμ

I ])(p). We claim that
v(p) = vμI (xI(p))∂I

μ(p) and that this way of expanding v is independent of
the chart in use. To see the first statement, one verifies that the formula
reproduces v on polynomials of the xμ

I (p) and that any continuous func-
tion can be approximated on a compact neighbourhood of p to arbitrary
precision by the Weierstrass theorem (we assume here that every point
has an open neighbourhood with compact closure, i.e., that M is locally
compact. This is actually always the case for finite-dimensional M that we
consider here). To see the second statement, notice that the Leibniz rule
implies the chain rule to verify that

vμI (xI(p))∂I
μ(p) = vμJ (xJ(p))∂J

μ (p) (19.1.3)

if p ∈ UI ∩ UJ , xJ(p) = ϕIJ (xI(p)). It is now clear that

v[f ] = vμI (xI(p))[∂fI(x)/∂xμ]x=xI(p) (19.1.4)

where fI = f ◦ x−1
I . It follows from the definitions that

∂I
μ(p) =

[
∂ϕν

IJ (xI(p))/∂x
μ
I (p)

]
∂J
ν (p) (19.1.5)

for p ∈ UI ∩ UJ , which explains the notation ∂I
μ.

The space of smooth vector fields on M will be denoted by T 1(M). It
forms a Lie algebra where the Lie bracket is defined as

[., .] : T 1(M) × T 1(M) → T 1(M); ([u, v])[f ] := u[v[f ]] − v[u[f ]] (19.1.6)

The antisymmetry and the Jacobi identity for (19.1.6) are easily verified.
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(iii) One-forms
A smooth one-form is a linear map

ω : T 1(M) → C∞(M) (19.1.7)

that is, for any f, f ′ ∈ C∞(M) and v, v′ ∈ T 1(M) we have ω[fv + f ′v′] =
fω[v] + f ′ω[v′]. Given f ∈ C∞(M) we may define an associated one-form
df by the rule df [v] := v[f ]. Applied to the coordinate functions xI we
find (dxμ

I [∂I
ν ])(p) = δμν , that is, the dxμ

I (p), μ = 1, . . . ,m; p ∈ UI form a
local, dual coordinate basis. If follows that ω can be written as ω(p) =
ωI
μ(xI(p))dx

μ
I (p) where ωI

μ(xI(p)) = (ω[∂I
μ])(p) and this way of writing ω

is coordinate-independent again. In particular we find

(df)(p) = (∂fI(x)/∂xμ)x=xI(p) dx
μ
I (p) (19.1.8)

It follows from the definitions that

dxμ
J(p) =

[
∂ϕμ

IJ (xI(p))/∂xν
I (p)

]
dxν

I (p) (19.1.9)

for p ∈ UI ∩ UJ , explaining the notation d.
The space of smooth one-forms will be denoted by T1(M).

(iv) Tensor fields
A smooth tensor field of type (a, b) (called a-times contravariant and
b-times covariant) is a multilinear functional (i.e., linear in each entry
separately)

t :
[
×a

r=1 T1(M)
]
×

[
×b

s=1 T
1(M)

]
→ C∞(M) (19.1.10)

It is clear that each such t is completely determined in terms of the com-
ponent functions (which are smooth by definition)

(tI)μ1...μa
ν1...νb

(xI(p)) =
(
t
[
dxμ1

I , . . . , dxμa

I ; ∂I
ν1
, . . . , ∂I

νb

])
(p) (19.1.11)

and one writes t as the tensor product

t(p) = (tI)μ1...μa
ν1...νb

(xI(p)) ∂I
μ1

(p) ⊗ . . .⊗ ∂I
μa

(p) ⊗ dxν1
I (p) . . .⊗ dxνb

I (p)

(19.1.12)

which is independent of the choice of chart.
The vector space of tensor fields of type (a, b) is denoted by T a

b (M). We
use the notations T 1(M) = T 1

0 (M), T1(M) = T 0
1 (M), C∞(M) = T 0

0 (M).
It is invariant under multiplication by elements of C∞(M). We can also
define the tensor product of t ∈ T a

b (M), t′ ∈ T a′
b′ (M) as the element of

T a+b
b+b′(M) defined by

(t⊗ t′)[ω1, . . . , ωa+a′ ; v1, . . . , vb+b′ ] = t[ω1, . . . , ωa; v1, . . . , vb]

× t′[ωa+1, . . . , ωa+a′ ; vb+1, . . . , vb+b′ ]

(19.1.13)
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We may then form the direct sum of tensor fields

T (M) = ⊕∞
a,b=0 T a

b (M) (19.1.14)

of formal sums (t) = ⊕∞
a,b=0 tab , t

a
b ∈ T a

b (M) with tab �= 0 for at most finitely
many (a, b). With respect to the tensor product this is an algebra over
C∞(M), called the algebra of tensor fields with the operations

f · (t) + f ′ · (t′) = ⊕∞
a,b=0

[
ftab + f ′t′ab

]

(t) ⊗ (t′) = ⊕∞
a,b=0

[
a∑

a′=0

b∑

b′=0

ta
′

b′ ⊗ ta−a′

b−b′

]

(19.1.15)

Given a tensor field t ∈ T a
b (M), a vector field v ∈ T 1(M) and a one-form ω

we define contractions ikv · t ∈ T a−1
b (M) for 1 ≤ k ≤ a and ikω · t ∈ T a

b−1(M)
for 1 ≤ k ≤ b by
(
ikv · t

)
[ω1, . . . , ωa; v1, . . . , vb−1] = t[ω1, . . . , ωa; v1, . . . , vk−1, v, vk, . . . , vb−1]

(
ikω · t

)
[ω1, . . . , ωa−1; v1, . . . , vb] = t[ω1, . . . , ωk−1, ω, ωk, . . . , ωa−1; v1, . . . , vb]

(19.1.16)

(v) Tangent spaces and tensor bundles
We can form a vector bundle Ea

b (M) with base manifold M , typical fibre
T a
b = R(a+b)m and structure group GL(R,m)a+b as follows (refer to the

next chapter for the bundle-theoretic terminology): form the product mani-
fold Ẽa

b (M) := ∪I∈I UI × T a
b and consider the equivalence relation bet-

ween (p, tI) ∈ UI × T a
b and (p′, tJ) ∈ UJ × T a

b defined by (p, f) ∼ (p′, f ′)
iff p = p′ and

(tJ )μ1...μa
ν1...νb

=

[
a∏

k=1

(
∂ϕ

μk
IJ (x)

/
∂xμ′

k
)
x=xI (p)

] [
b∏

k=1

(
∂ϕ

ν′
k

JI(x)
/
∂xνk

)
x=xJ (p)

]

(tI)
μ′
1...μ

′
a

ν′
1...ν

′
b

(19.1.17)

We will write the shorthand tJ = hIJ (p) · tI for (19.1.17) with hIJ (p) ∈
GL(R,m)a+b. Let Ea

b (M) = Ẽa
b (M)/ ∼ be the set of equivalence classes

with local trivialisations φI(p, t) := [(p, t)] for p ∈ UI where [(p, t)] is the
class of (p, t) and canonical projection π([p, t]) = p.

The spaces (T a
b )p(M) := π−1(p) are called the tangent spaces over p

and they are all isomorphic to T a
b because for each p ∈ M there are only a

finite number of structure functions hIJ (p) if M is paracompact. A tensor
field t ∈ T a

b (M) is then a cross-section in Ea
b (M), that is, a global, smooth

map t : M → Ea
b (M); p �→ t(p) as follows: for any p ∈ M choose an index

I(p) ∈ I such that p ∈ UI(p). Then define t(p) := [(p, tI(p)(p)] where tI(p)
denotes the collection of component functions (19.1.11) of t in the chart UI .
To see that this is well-defined, that is, independent of the choice p �→ I(p)
and hence really smooth, we notice that for p ∈ UI ∩ UJ we have tJ(p) =
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hIJ (p) · tI(p) so that different choices are identified under the equivalence
relation just defined.

Notice that although the (T a
b )p(M) are all isomorphic to T a

b there is no
natural way to compare these tangent spaces defined over different points
simply because they are not subspaces of one and the same space. This
is best illustrated by the sphere M = S2 embedded in R3. The tangent
spaces spanned by the vector fields ∂θ, ∂ϕ where θ, ϕ are polar coordinates
can be expanded in terms of the Cartesian basis ∂μ of R3 and one sees
that the tangent spaces are simply the planes in R3 tangent to the points
of S2. Evidently, these spaces are all different 2-dimensional subspaces in
R3, all of which are isomorphic to R2. This is to be contrasted with the
situation for M = R2 where all the tangent spaces coincide, namely they
can be identified with M itself.

(vi) Abstract index notation
It is tedious to work with the symbols t and having to always state sepa-
rately on which components certain operations have to be performed. We
thus will frequently use the notation tμ1...μa

ν1...νb
(p) for t ∈ T a

b (M). This is, just
as t, a globally defined object, in fact it is the same as t, just that we
display the index structure that t would acquire in any given coordinate
basis. To distinguish this globally defined object from the locally defined
component functions (tI)μ1...μa

ν1...νb
(xI(p)) we will drop the index I.

(vii) n-forms
An n-form is simply a tensor field in T 0

n(M) whose component functions
are totally skew (this is a coordinate-independent statement). It amounts
to the statement that

ω[v1, . . . , vn] = sgn(π)ω[vπ(1), . . . , vπ(n)] (19.1.18)

where π ∈ Sn is a permutation and sgn(π) its sign. It follows that n ≤ m.
At this point it is convenient to introduce the total (anti)symmetriser on
n symbols, for example,

ω
(
v[1, . . . , vn]

)
:=

1
n!

∑

π∈Sn

sgn(π) ω
(
vπ(1), . . . , vπ(n)

)

t(μ1...μn) :=
1
n!

∑

π∈Sn

tμπ(1)...μπ(n) (19.1.19)

Clearly ω[v1, . . . , vn] = ω[v[1, . . . , vn]].
The vector space of n-forms is denoted as Λn(M). Three natural opera-

tions are defined on n-forms. The first is the exterior product (also called
the wedge product)

∧ : Λk(M) × Λl(M) → Λk+l(M)

(ω ∧ σ)[v1, . . . , vk+l] :=
1

k! l!

∑

π∈Sk+l

sgn(π)ω
[
vπ(1), . . . , vπ(k)

]
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×σ
[
vπ(k+1), . . . , vπ(k+l)

]

=
(
k + l

k

)
ω[v[1, . . . , vk] σ[vk+1, . . . , vk+l]] (19.1.20)

It is non-commutative ω ∧ σ = (−1)klσ ∧ ω but associative ω ∧ (σ ∧ λ) =
(ω ∧ σ) ∧ λ. Use [[μ1 . . . μk]μk+1 . . . μk+l] = [μ1 . . . μk+l] to see that. We
may then form the finite-dimensional Grassmann algebra of forms as

Λ(M) = ⊕m
n=0 Λn(M) (19.1.21)

with Λ0(M) = C∞(M), Λ1(M) = T1(M).
The second operation is exterior derivation

d : Λn(M) → Λn+1(M)

dω(v0, . . . , vn) =
n∑

k=0

(−1)k vk[ω[v0, . . . , v̂k, . . . , vn]]

+
∑

0≤k<l≤n

(−1)k+lω[[vk, vl], v0, . . . , v̂k, . . . , v̂l, . . . , vn]

(19.1.22)

where the hat means omission of the argument. It is easy to see that
d(ω ∧ σ) = dω ∧ σ + (−1)kω ∧ dσ, dΛn(M) = 0 and d2 = 0.

Finally, we define the interior product of a k-form with a vector field
as

iv : Λn(M) → Λn−1(M)

(ivω)[v1, . . . , vn−1] = ω[v, v1, . . . , vn−1] (19.1.23)

with ivf := 0 for f ∈ C∞(M). Notice the relations i2v = 0 and ivdf = v[f ].
Using the abstract index calculus one can rewrite these formulae much

more compactly as follows. Consider the special n-forms corresponding to
the n-fold wedge product of the coordinate one-forms

dxμ1 ∧ . . . ∧ dxμn :=
∑

π∈Sn

dxμπ(1) ⊗ . . .⊗ dxμπ(n) (19.1.24)

Then, since the component functions of an n-form are totally skew we have

ω := ωμ1...μn
dxμ1 ⊗ . . .⊗ dxμn =

1
n!
ωμ1...μn

dxμ1 ∧ . . . ∧ dxμn (19.1.25)

Thus

ω ∧ σ =
1

k! l!
ωμ1...μk

σμk+1...μk+l
dxμ1 ∧ . . . ∧ dxμk+l

dω =
1
n!
∂[μ0ωμ1...μn] dx

μ0 ∧ . . . ∧ dxμn

iv[ω] =
1

(n− 1)!
vμ1ωμ1...μn

dxμ2 ∧ . . . ∧ dxμn (19.1.26)
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(viii) Tensor transformation laws
Passive diffeomorphisms: we had already seen that the expression

t(p) = (tI)μ1...μa
ν1...νb

(xI(p))∂I
μ1

(p) ⊗ . . .⊗ ∂I
μa

(p) ⊗ dxν1
I (p) ⊗ . . . dxνb

I (p)

(19.1.27)

depends only on the point p but not on the coordinate system. Comparing
components in two different coordinate systems xI , xJ = ϕIJ ◦ xI gives

(tI)
μ1...μa
ν1...νb (xI(p)) = (tJ)

μ′
1...μ

′
a

ν′
1...ν

′
b

(xJ(p))

[
a∏

k=1

∂x
μk
I (p)

∂x
μ′
k

J (p)

] [
b∏

l=1

∂x
ν′
l

J

∂x
νl
I (p)

]

= (tJ)
μ′
1...μ

′
a

ν′
1...ν

′
b

(ϕIJ (x))x=xI (p)

[
a∏

k=1

∂
(
ϕ−1

IJ

)μk (x)

∂xμ′
k

]

x=ϕIJ (xI (p))

×
[

b∏

l=1

∂ϕ
ν′
l

IJ (x)

∂xνl

]

x=xI (p)

=: (ϕ∗
IJ tJ)μ1...μa

ν1...νb (xI(p)) (19.1.28)

Abstracting from the coordinate systems xI , xJ of the atlas under consid-
eration and using a general passive diffeomorphism we call

(ϕ∗t)μ1...μa
ν1...νb

(x) := t
μ′

1...μ
′
a

ν′
1...ν

′
b
(ϕ(x))

[
a∏

k=1

∂(ϕ−1)μk(y)
∂yμ

′
k

]

y=ϕ(x)

[
b∏

l=1

∂ϕν′
l (x)

∂xνl

]

(19.1.29)

the (components of) the pull-back tensor. Inverting (19.1.28) for tJ in
terms of tI one arrives likewise at the (components of) the push-forward
tensor

(ϕ∗t)μ1...μa
ν1...νb

(ϕ(x)) := t
μ′

1...μ
′
a

ν′
1...ν

′
b
(x)

[
a∏

k=1

∂ϕμk(x)
∂xμ′

k

] [
b∏

l=1

∂(ϕ−1)ν
′
l (y)

∂yνl

]

y=ϕ(x)

(19.1.30)

Active diffeomorphisms: given an active diffeomorphism ψ : M → M and
f ∈ C∞(M) we can define the pull-back function

(ψ∗f)(p) := (f ◦ ψ)(p) = f(ψ(p)) (19.1.31)

Given a vector field v on M we can define its push-forward by

((ψ∗v)[f ])(ψ(p)) := (v[ψ∗f ])(p) (19.1.32)

for all f ∈ C∞(M). Given a one-form ω on M we define its pull-back as

((ψ∗ω)[v])(p) := (ω[ψ∗v])(ψ(p)) (19.1.33)

for all v ∈ T 1(M).
In these transformations we never need the inverse of ψ and thus the

maps ψ∗, ψ∗ respectively can be defined for all tensor fields of the type
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T 0
b (M), T a

0 (M) by duality, that is, (ψ∗t)[v1, . . . , vb] := t[ψ∗v1, . . . , ψ∗vb]
and (ψ∗t)[ω1, . . . , ωa] := t[ψ∗ω1, . . . , ψ

∗ωa] respectively. However, in order
to define these maps for general tensor fields of type T a

b (M) we must use
invertible smooth maps, that is, diffeomorphisms. We define pull-backs and
push-forwards respectively by

((ψ∗t)[ω1, . . . , ωa, v1, . . . , vb])(p)

:= (t[(ψ−1)∗ω1, . . . , (ψ−1)∗ωa, ψ∗v1, . . . , ψ∗vb])(ψ(p))

((ψ∗t)[ω1, . . . , ωa, v1, . . . , vb])(ψ(p))

:= (t[ψ∗ω1, . . . , ψ
∗ωa, (ψ−1)∗v1, . . . , (ψ−1)∗vb])(p) (19.1.34)

This makes sense because (ψ−1)∗ pulls back one-forms from ψ(p) to p and
(ψ−1)∗ pushes forward vector fields from ψ(p) to p. It follows that

((ψ∗ψ
∗t)[ω1, . . . , ωa, v1, . . . , vb])(ψ(p))

= ((ψ∗t)[ψ∗ω1, . . . , ψ
∗ωa, (ψ−1)∗v1, . . . , (ψ−1)∗vb])(p)

= (t[(ψ−1)∗ψ∗ω1, . . . , (ψ−1)∗ψ∗ωa, ψ∗(ψ−1)∗v1, . . . , ψ∗(ψ−1)∗vb])(ψ(p))

= (t[ω1, . . . , ωa, v1, . . . , vb])(ψ(p)) (19.1.35)

where we have used the fact that ψ∗ ◦ (ψ′)∗ = (ψ′ ◦ ψ)∗ and ψ∗ ◦ (ψ′)∗ =
(ψ ◦ ψ′)∗. It follows that ψ∗ = (ψ∗)−1 = (ψ−1)∗ so it is sufficient to consider
pull-backs only. Notice the relation

ψ∗(t1 ⊗ t2) = (ψ∗t1) ⊗ (ψ∗t2) (19.1.36)

We can of course display (19.1.34) also in coordinates: given an atlas
(UI , xI), pick p ∈ M and choose neighbourhoods UI , UJ respectively con-
taining p, ψ(p) respectively. Consider the neighbourhood VJ := ψ−1(UJ)
containing p with coordinates yJ := xJ ◦ ψ. Consider the passive diffeo-
morphism ψIJ := yJ ◦ x−1

I defined on xI(UI) ∩ yJ(VJ). Then by definition

(ψ∗f)(p) = (ψ∗f)I(xI(p)) = f(ψ(p)) = fJ(yJ(p)) = fJ(ϕIJ (xI(p))

⇒ (ψ∗f)I(x) = fJ(ψIJ (x))

(ψ∗v)[f ](ψ(p)) = (ψ∗v)
μ
J(yJ(p))

(
∂J
μfJ

)
(yJ(p))

= (v[ψ∗f ])(p) = vνI (xI(p))(∂I
ν(ψ∗f))I(xI(p))

= vνI (xI(p))
(
∂ψμ

IJ (x)
∂xν

)

x=xI(p)

(
∂J
μfJ

)
I
(yJ(p))

⇒ (ψ∗v)
μ
J(ψIJ (x)) = vνI (x)

∂ψμ
IJ (x)
∂xν

(ψ∗ω)[v](p) = (ψ∗ω)Iμ(xI(p))v
μ
I (xI(p))

= ωJ
ν (ψIJ (xI(p)))(ϕ∗v)νJ(ψIJ (xI(p)))

⇒ (ψ∗ω)Iμ(x) = ωJ
ν (ψIJ (x))

∂ψν
IJ (x)
∂xμ

(19.1.37)
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From this and (19.1.34) one deduces the coordinate expressions for
ψ∗t, ψ∗t which reproduce precisely (19.1.29) and (19.1.30) except that
ϕIJ → ψIJ . Hence, as we said before, there is no difference between pas-
sive and active diffeomorphisms from the analytical point of view, although
they are philosophically very different.

(ix) Lie derivative
A smooth curve in M is a C∞ map t �→ c(t) from an interval of R into M ,
that is, the coordinate maps t �→ xI(c(t)) are smooth maps from R into
Rm. To each curve we may assign a tangent vector field Tc along c by the
rule

(Tc[f ])(c(t)) :=
d

dt
f(c(t)) =

dxμ
I (t)
dt

(
∂I
μ[fI ]

)
(xI(c(t)) (19.1.38)

where in the last equality we have assumed that c(t) ∈ UI .
Conversely, given a vector field v in M and a point p ∈ M an integral

curve of v through p is a maximal curve t �→ cvp(t) in M starting in p whose
tangential vector field at each point of the curve coincides with v at each
of those points. Mathematically this is described by the condition

cvp(0) = p,
(
Tcvp

− v
)(
cvp(t)

)
= 0 (19.1.39)

If p ∈ UI then also a segment of cp(t) lies in UI and for that segment
(19.1.32) can be written as

xI

(
cvp(0)

)
= xI(p),

d

dt
xμ
I

(
cvp(t)

)
= vμI

(
xI

(
cvp(t)

))
(19.1.40)

Notice that (19.1.33) is covariant under change of the coordinate system.
This is a system of m first-order ordinary differential equations which,
by well-known existence and uniqueness theorems has a unique maximal
solution, hence maximal integral curves through any point always exist and
are unique. The collection of integral curves generated by a vector field v

is called the flow of v.
We can now turn the logic around and assign to each vector field v a

one-parameter group of active diffeomorphisms by

ψv
t (p) := cvp(t) (19.1.41)

Notice that ψv
t ◦ ψv

s = ψv
s+t as follows directly from the definition of an

integral curve.
With the help of the flow of a vector field we may define the Lie derivative

of any tensor field t ∈ T (M) along v by

(Lvt)(p) :=
(

d

ds

)

s=0

((
ψv
s

)∗
t
)
(p) (19.1.42)

Using coordinates and the coordinate representation of the diffeomorphism
ψI(x) := ψII(x) = xI ◦ ψ ◦ x−1

I in a chart UI we deduce for t ∈ T a
b (M)
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that

((Lvt)I)μ1...μa
ν1...νb

(x)=vρI (x)
(
∂I
ρ(tI)μ1...μa

ν1...νb

)
(x)+

b∑

l=1

(
∂I
νl
vρI

)
(x)(tI)

μ1...μa

ν1...ν̂lρ...νb
(x)

−
a∑

k=1

(
∂I
ρv

μk

I

)
(x)(tI)μ1...μ̂kρ...μa

ν1...νb
(x) (19.1.43)

A tensor field is said to be symmetric under a diffeomorphism if ψ∗t = t.
A tensor field is symmetric under the flow of v if and only if Lvt = 0.

The Lie derivative is a derivation on T (M), that is, it satisfies the Leibniz
rule

Lv(t1 ⊗ t2) =
(

d

ds

)

s=0

(
ψv
s

)∗(t1 ⊗ t2) =
(

d

ds

)

s=0

[(
ψv
s

)∗
t1

]
⊗

[(
ψv
s

)∗
t2

]

= (Lvt1) ⊗ t2 + t1 ⊗ (Lvt2) (19.1.44)

(x) Derivations on the Grassmann algebra
There is an interesting interplay between the objects Lv, d, iv defined on
the subset Λ(M).

Theorem 19.1.2. The following relations among d, iv,Lv hold on n-
forms

Lv = iv ◦ d + d ◦ iv
[Lv, iw] = i[v,w]

[Lv,Lw] = L[v,w] (19.1.45)

To prove this theorem we notice the relation

d ◦ ψ∗ = ψ∗ ◦ d (19.1.46)

on Λ(M). To see (19.1.46) we compute

(ψ∗df)[v] = df [ψ∗v] = (ψ∗v)[f ] = v[ψ∗f ] = (dψ∗f)[v] (19.1.47)

so (19.1.46) holds on zero forms. Now any k-form is a linear combination
of k-forms of the form f0df1 ∧ . . . ∧ dfk. It follows

d[ϕ∗f0df1 ∧ . . . ∧ dfk)]

= d[(ϕ∗f0)d(ϕ∗f1) ∧ . . . ∧ d(ϕ∗fk)]

= d(ϕ∗f0)d(ϕ∗f1) ∧ . . . ∧ d(ϕ∗fk)

= ϕ∗[df0df1 ∧ . . . ∧ dfk] = ϕ∗d[f0df1 ∧ . . . ∧ dfk] (19.1.48)

where we have made use of d2 = 0. To establish (19.1.45) we use the fol-
lowing lemma:
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Definition 19.1.3

(i) A linear operator D : Λ(M) → Λ(M), D(z1ω1 + z2ω2) = z1Dω1 +
z2Dω2; z1, z2 ∈ C is said to be of degree d ∈ Z if D : Λn(M) →
Λn+d(M).

(ii) D is said to be an (anti-)derivation if its degree is even (odd) and
obeys the (anti-)Leibniz rule

D(ω ∧ σ) = (Dω) ∧ σ + (−1)dkω ∧Dσ (19.1.49)

where k is the degree of D.
(iii) D is said to be local if (Dω)|U depends only on ω|U for any open set U .

It is clear that d, iv are local anti-derivations of degree +1,−1
respectively.

Lemma 19.1.4

(i) If Dj , Aj ; j = 1, 2 are derivations and antiderivations respectively
then [D1, D2] = D1D2 −D2D1 and {A1, A2} = A1A2 + A2A1 are
derivations and [Dj , Ak] is an antiderivation.

(ii) Two (anti-)derivations are equal if they coincide on 0-forms and
1-forms.

(iii) If D is a local (anti-)derivation which commutes with d then it is fully
determined by its action on 0-forms.

Proof

(i) is an elementary algebraic computation.
(ii) follows from the Leibniz rule and the fact that any k-form can be

written as linear combinations of the form ω1 ∧ . . . ∧ ωk.
(iii) follows from (ii) and from the fact that any 1-form can be written as

g · df for fg ∈ C∞(M), hence

D(g · df) = Dg ∧ df + gDdf = Dg ∧ df + gdDf (19.1.50)

�

Proof of Theorem 19.1.2
Since dψ∗ = ψ∗d it follows that [Lv, d] = 0. Hence by the lemma it is suffi-
cient to establish the first relation in (19.1.45) on functions. Since ivf = 0
we have

((div + ivd)f)(p) = (ivdf)(p) = (df [v])(p) = (v[f ])(p)

=
(

d

ds

)

s=0

((
ψv
s

)a
stf

)
(p)

=
(

d

ds

)

s=0

f
(
cvp(s)

)
= (Lvf)(p) (19.1.51)

as claimed.
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The second relation in (19.1.45) merely has to be checked on 0-forms
and 1-forms:

[Lv, iw]f = 0 = i[v,w]f = 0 (19.1.52)

since iuf = 0 and

[Lv, iw]g df = Lv(gw[f ]) − iw(div + ivd)gdf

= v[gw[f ]] − iw(d(gv[f ]) + ivdg ∧ df)

= v[g]w[f ] + gv[w[f ]] − iw(v[f ]dg + gdv[f ]

+v[g]df − dgv[f ])

= v[g]w[f ] + gv[w[f ]] − gw[v[f ]] − v[g]w[f ]

= v[g]w[f ] + gv[w[f ]] − gw[v[f ]] − v[g]w[f ]

= g([v, w])[f ] = i[v,w](g df) (19.1.53)

Finally the third relation only has to be confirmed on 0-forms since Lv and
hence [Lv,Lw] commute with d

[Lv,Lw]f = Lvw[f ] − Lwv[f ] = ([v, w])[f ] = L[v,w]f (19.1.54)

�

(xi) Integration of forms, Stokes’ theorem, Poincaré lemma and de Rham
cohomology
A subset S of M is said to be of measure zero if all the sets xI(UI ∩ S) have
Lebesgue measure zero. Notice that an m-form has only one independent
component. An m-form is said to be measurable if its component under all
coordinate charts is Lebesgue measurable. See Chapter 25 for more details
on measure theory.

Let ω be an m-form on M . Since M is supposed to be paracompact
we may choose a partition of unity eI subordinate to M and define the
m-forms eIω which have compact support in UI . Then we have, for ω of
compact support so that we may interchange summation and integration,

∫

M

ω =
∫

M

[
∑

I

eIω

]

=
∑

I

∫

M

eIω =
∑

I

∫

UI

eIω

=
1
m!

∑

I

∫

xI(UI)

(eI)I(x)(ωI(x))μ1...μm
dxμ1 ∧ . . . ∧ dxμm

=
∑

I

∫

xI(UI)

(eI)I(x)(ωI(x))1...mdx1 ∧ . . . ∧ dxm

:=
∑

I

∫

xI(UI)

dmx(eI)I(x)(ωI(x))1...m (19.1.55)
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where the last integral is an ordinary integral over VI ⊂ Rm. Notice that the
Lebesgue measure dmx is independent of the sequence of integrations. This
is taken into account in (19.1.55) by the fact that the sign from the wedge
product under permutation of coordinates is absorbed by a corresponding
minus sign in the totally skew components of ω. The m-form

dx1 ∧ . . . ∧ dxm =
1
m!

εμ1...μm
dxμ1 ∧ . . . ∧ dxμm (19.1.56)

where εμ1...μm is the totally skew symbol of m elements with ε1...m = 1,
has the property (dx1 ∧ . . . ∧ dxm)[v1, . . . , vm](p) = det(v1, . . . , vm)(p) and
hence measures what one would intuitively call the ‘volume’ spanned by the
tangent vectors v1(p), . . . , vm(p), hence one effectively replaces (19.1.56) by
the Lebesgue measure dmx.

In order that this definition makes sense we must show that it is inde-
pendent of the partition of unity and of the choice of coordinate system.
To that end, consider any other atlas (VJ , yJ) and partition of unity fI
subordinate to it. Then (19.1.55) would be replaced by

∫

M

ω =
∑

J

∫

yJ (VJ )

dmy(fJ)J(y)(ωJ(y))1...m (19.1.57)

Exploiting the fact that
∑

I eI(p) =
∑

J fJ(p) = 1, that eI(p) =
(eI)J(yJ(p)) for p ∈ VJ , that eI has support in UI implies that (eI)J has
support in yJ(UI) and that yJ(UI) ∩ yJ(VJ) = yJ(UI ∩ VJ), equality of
(19.1.55) and (19.1.57) requires that

∑

I,J

∫

xI(UI∩VJ )

dmx (eI)I(x) (fJ)I(x)(ωI(x))1...m

=
∑

I,J

∫

yJ (UI∩VJ )

dmy (eI)J(y) (fJ)J(y)(ωJ(y))1...m (19.1.58)

Introducing ϕIJ = yJ ◦ x−1
I : xI(UI ∩ VJ) → yJ(UI ∩ VJ) we have by the

transformation law of the Lebesgue measure on Rm that

dmy(ωJ(y))1...m =
∣
∣∣∣det

(
∂ϕIJ (x)

∂x

)∣∣∣∣ d
mxωJ(ϕIJ (x))1...m

= sgn
(

det
(
∂ϕIJ (x)

∂x

))
dmx ωI(x)1...m (19.1.59)

where we have used the transformation law of m-forms. Moreover
(eI)J(ϕIJ (x)) = (eI)I(x) and (fJ)J(ϕIJ (x)) = (fJ)I(x). Hence (19.1.58)
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becomes

∑

I,J

∫

xI(UI∩VJ )

dmx (eI)I(x) (fJ)I(x)(ωI(x))1...m

=
∑

I,J

∫

ϕIJ (xI(UI∩VJ ))

dmy (eI)J(y) (fJ)J(y)(ωJ(y))1...m

=
∑

I,J

∫

xI(UI∩VJ )

dmx (eI)I(x) (fJ)I(x)(ωI(x))1...msgn
(

det
(
∂ϕIJ (x)

∂x

))

(19.1.60)

It is at this point that we must assume that M is orientable: without
the assumption that M admits an atlas for which all the det(∂ϕIJ (x)

∂x ) are
everywhere positive, the first and the last line in (19.1.60) may differ locally
by a sign and the definition of the integral of n-forms becomes atlas- and
partition-dependent.

It is possible to extend the definition of the integral of m-forms to non-
orientable manifolds by using scalar densities of weight one rather than
m-forms, which we postpone until later. Hence in what follows we assume
that M is orientable and that ∂M is given the induced orientation with
respect to an oriented atlas.

Notice that by the same calculation the integral of m-forms is invariant
under active (orientation-preserving) diffeomorphisms

∫

M

ω =
∫

ψM

ψ∗ω =
∫

M

ψ∗ω (19.1.61)

if ψ(M) = M , that is, ψ ∈ Diff(M).
Of fundamental importance is the following theorem which is the gener-

alisation to forms of the fundamental theorem of calculus.

Theorem 19.1.5 (Stokes’ theorem). Let ω be an (m− 1)-form of
compact support. Then

∫

M

dω =
∫

∂M

ω (19.1.62)

Warning: It is an assumption of the theorem that ω is everywhere smooth
on M . If that is not the case, the theorem fails to hold as is demon-
strated by the example ωμ = −εμνdx

ν [(x1)2 + (x2)2]−1 on R2 − {0}. We
have dω = 0 except at x = 0 where it is not only not differentiable but also
not defined. Integrating ω over the circle and falsely applying Stokes’ the-
orem gives the contradiction 2π = 0. To give meaning to dω one declares it
as a distribution and smears it against test functions f of compact support.
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Then

∫

R2
f dω = lim

R→0

∫

DR

f dω := lim
R→0

[∫

CR

fω −
∫

DR

df ∧ ω

]

= lim
R→0

[∫ 2π

0

dϕ

[

f(R,ϕ) −
∫ R

0

dr∂rf(r, ϕ)

]]

= 2πf(0)

(19.1.63)

where we have used the fact that dω = 0 except at the origin so that
integration could be reduced to the disk DR with r ≤ R and boundary
CR. This shows that dω(x) = 2πδ(x)dx1 ∧ dx2.

Proof: We will only sketch the proof. One first realises that M can be
written as M = ∪�� where the � are mutually disjoint, up to common
faces, embedded cubes. This is called a triangulation and we will assume
that it is fine enough so that each � lies in the domain of a chart U�. We
can find coordinates x� such that x�(�) = [−1, 1]m. Then

∫

M

dω =
∑

�

dω =
1

(m− 1)!

∑

�

∫

[−1,1]m
∂μ1(ω�)μ2...μm

(x)dxμ1 ∧ . . . ∧ dxμm

=
1

(m− 1)!

∑

�

∫

[−1,1]m
dmxεμ1...μm∂μ1(ω�)μ2...μm(x)

=
1

(m− 1)!

∑

�

m∑

μ=1

∫

[−1,1]m−1
dm−1xεμμ2...μm

×{[(ω�)μ2...μm ]xμ=1 − [(ω�)μ2...μm ]xμ=−1}(x)

=
∑

�

m∑

μ=1

∫

[−1,1]m−1
dm−1x(−1)μ−1{[(ω�)1...μ̂...m]xμ=1

−[(ω�)1...μ̂...m]xμ=−1}(x)

=
∑

�

m∑

μ=1

∫

[−1,1]m−1
dm−1x

{[(
ωμ

�
)
2...m

]
x1=1

−
[(
ωμ

�
)
2...m

]
x1=−1

}
(x)

(19.1.64)

where in the last step we have relabelled 1 ↔ μ and [ωμ
� ]2...m(x) = [ω�]2...m

(xμ, x2, . . . , x̂μ, x1, . . . , xm). The sets H− = {x ∈ Rm; x1 ≤ 1}, H+ =
{x ∈ Rm;−x1 ≤ 1} respectively are such that the coordinates (x1, . . . , xm)
and (−x1,−x2, x3, . . . , xm) respectively are positively oriented. The
induced orientation on ∂H∓ is therefore such that (±x2, x3, . . . , xm) is pos-
itively oriented. Defining [ωμ±

� ]2...m(x) = ∓[ωμ
� ]2...m(∓x1,∓x2, x3, . . . xm)
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we may thus write (19.1.64) as
∫

M

dω = =
∑

�

m∑

μ=1

∫

[−1,1]m−1
dm−1x

{[
ωμ−

�
]
2...m

+
[
ωμ+

�
]
2...m

}
(x)x1=1

=
∑

�

∫

∂�
ω

=
∫

∂M

ω (19.1.65)

where in the last step we realised that all the contributions from the faces
of the � in the interior of M cancel each other, leaving only those on ∂M

with outward orientation. �

Stokes’ theorem generalises from M to any n-dimensional embedded
submanifold N . Let ψ : N → M be the associated embedding, then we
have for any (n− 1)-form on M

∫

ψ(N)

dω =
∫

N

ψ∗dω =
∫

N

dψ∗ω =
∫

∂N

ψ∗ω

=
∫

ψ(∂N)

ω =
∫

∂ψ(N)

ω (19.1.66)

where we have used Stokes’ theorem applied to N in an intermediate step.
One can also generalise the theorem to forms without compact support
but with appropriate fall-off properties.

Definition 19.1.6

(i) An n-form is called a cocycle if it is closed, that is, dω = 0. It is called a
coboundary if it is exact, that is, if there is an (n− 1)-form σ such that
ω = dσ. The vector spaces of closed (exact) n-forms are called Zn(M)
and Bn(M) respectively. The de Rham cohomology group (under addi-
tion) is given by Hn(M) := Zn(M)/Bn(M).

(ii) Let Λn(M) be the formal real vector space of n-dimensional ori-
ented submanifolds of M (actually slightly more general: one allows
embedded n-simplices, that is, sets of the form {(t1, . . . , tn); 0 ≤ tj ≤
1; t1 + · · · + tn ≤ 1}). The elements of Λn(M) are called chains. A
chain C is called a cycle provided that ∂C = ∅ and a boundary if there
is an (n + 1)-chain C ′ such that C = ∂C ′. Notice that ∂ : Λn(M) →
Λn−1(M) and that ∂2 = 0. The vector spaces of cycles and bound-
aries respectively are denoted by Zn(M) and Bn(M) respectively and
Hn(M) := Zn(M)/Bn(M) is called the homology group.

Obviously every exact form is also closed but not vice versa. Similarly, every
boundary is a cycle but not vice versa. Stokes’ theorem now establishes
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a precise duality between Hn(M) and Hn(M) via the so-called period
integral

< C, dω >:=
∫

C

ω (19.1.67)

Thus Stokes’ theorem takes the compact form

< ∂C, ω >=< C, dω > (19.1.68)

Let [C], [ω] denote the classes of C,ω respectively, then it follows immedi-
ately that the bilinear form on Hn(M) ×Hn(M) defined by

< [C], [ω] >:=< C,ω > (19.1.69)

is well-defined, that is, independent of the representative.

Theorem 19.1.7 (de Rham). If M is compact, then (19.1.69) is non-
degenerate and Hn(M), Hn(M) are finite-dimensional. Their common
dimension bn(M) = bn(M) is called the nth Betti number of M .

The Betti numbers are connected with a well-known topological invariant,
displaying a beautiful connection between topology and analysis.

Theorem 19.1.8 (Euler–Poincaré)

(i) Let S be any simplicial decomposition of a compact manifold M (i.e., a
partition into embedded m-simplices with (m− 1)-simplices as bound-
aries, whose boundaries are (m− 2)-simplices, etc.). Let N(S, n) be the
number of n-simplices in S. Then the Euler characteristic is defined
as

χ(M) =
m∑

n=0

(−1)n N(S, n) (19.1.70)

and is independent of S, that is, a topological invariant (under home-
omorphisms).

(ii) The topological invariant χ(M) is related to the diffeomorphism invari-
ants bn(M) by

χ(M) =
m∑

n=0

(−1)n bn(M) (19.1.71)

In order that a form be exact it has to be closed, this is a necessary
integrability criterion which underlies also the theory of exterior differential
systems and Frobenius’ theorem. A sufficient criterion for exactness is given
by the following.

Theorem 19.1.9 (Poincaré’s lemma). An m-dimensional submani-
fold U of M is said to be contractible to a point p0 ∈ U if there is a smooth
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map F : U × [0, 1] → U such that F (p, 1) = p, F (p, 0) = p0. In this case,
any closed n-form on U is also exact.

Proof (sketch). We assume n ≥ 1 since for n = 0 there is nothing to prove.
We may assume that U lies in the domain of a chart, otherwise subdivide
U . We may choose coordinates such that x(p0) = 0 and use F (x, t) := tx.
We claim that

σ(p) :=
∫ 1

0

dt
tn−1

(n− 1)!
xνωνμ2...μn(tx(p)) dxμ2(p) ∧ . . . ∧ dxμn(p)

(19.1.72)

satisfies dσ = ω. We compute

dσ(p) =
∫ 1

0

dt
tn−1

(n− 1)!
[ωμ1...μn(tx(p)) + txν(p)(∂μ1ωνμ2...μn)(tx(p))]

× dxμ1(p) ∧ . . . ∧ dxμn(p) (19.1.73)

Using ∂[νωμ1...μn] = 0 we see that

[n∂μ1ωνμ2...μn − ∂νωμ1...μn ] dxμ1(p) ∧ . . . ∧ dxμn(p) = 0 (19.1.74)

Hence (19.1.72) simplifies to

dσ(p) =
∫ 1

0

dt
1
n!

[ntn−1ωμ1...μn
(tx(p)) + tnxν(p)(∂νωμ1...μn

)(tx(p))]

× dxμ1(p) ∧ . . . ∧ dxμn(p)

=
[∫ 1

0

dt
1
n!

d

dt
[tnωμ1...μn

(tx(p))]
]
dxμ1(p) ∧ . . . ∧ dxμn(p)

= ω(p) (19.1.75)

�

The theorem shows that every closed form is locally exact, hence the coho-
mology captures global properties about M . For instance, if M is not sim-
ply connected (not all loops can be contracted to a point, as for instance
on the circle or the torus) then the cohomology will be non-trivial.

19.2 Riemannian geometry

As we have seen, in a general manifold there is no natural way to relate elements
of tangent spaces at different points. In order to do that what is needed is a
notion of transport of tensors from one point to another along curves connecting
these points. One would think that this is accomplished by the pull-back of
tensors under active diffeomorphisms generated by the flow of a vector field v.
However, as one sees explicitly from the expression for the Lie derivative, the Lie-
transported tensor not only depends on the points of the curve cv generated by a
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vector field but also on the derivatives of v, which requires additional information.
This is the point where we need a structure additional to differential geometry.

(i) Covariant derivative

Definition 19.2.1. An affine connection or covariant differential is an
operator ∇ : T a

b (M) → T a
b+1(M) satisfying the following axioms:

1. Linearity: ∇(z1t1 + z2t2) = z1∇t1 + z2∇t2 for all z1, z2 ∈ C.
2. Leibniz rule: ∇ t1 ⊗ t2 = (∇t1) ⊗ t2 + t1 ⊗ (∇t2).
3. Commutes with contractions:

∇u(t[. . . , ω, . . . , v, . . .]) = (∇ut)[. . . , ω, . . . , v, . . .] + t[. . . ,∇uω, . . . , v, . . .]

+ t[. . . , ω, . . . ,∇uv, . . .] (19.2.1)

where ∇u = iu ◦ ∇ : T a
b (M) → T a

b (M) is called the covariant derivative
with respect to ∇ in direction of the vector field u.

4. ∇f = df for f ∈ C∞(M).

Notice that by definition ∇f1v1+f2v2 = f1∇v1 + f2∇v2 for f1, f2 ∈ C∞(M),
so ∇v depends only on v and not on its derivatives, in contrast to the Lie
derivative.

(ii) Parallel transport and geodesics
Let us abbreviate ∇μ := ∇∂μ

in abstract index notation. Then we define
the connection components as

∇μ∂ν =: Γρ
μν∂ρ (19.2.2)

From the axioms we derive due to ∇∂μ[xν ] = ∇dxν [∂μ] = 0

∇μdx
ν = −Γν

μρdx
ρ (19.2.3)

From (19.2.2) and (19.2.3) we derive the covariant derivative of tensors of
arbitrary type in abstract index notation

∇μt
μ1...μa
ν1...νb

:= (∇μt)μ1...μa
ν1...νb

= ∂μ
[
tμ1...μa
ν1...νb

]
+

a∑

k=1

Γμk
μρ tμ1...μ̂kρ...μa

ν1...νb
−

b∑

l=1

Γρ
μνl

tμ1...μa

ν1...ν̂lρ...νb

(19.2.4)

The geometrical meaning of (∇vt)(p) is as follows: consider a curve along
v starting in p. To first order in the curve parameter s this is given by
ps = p + sv(p). Now take the components of t(p) and transport them with-
out change of the argument p of t......(p) to ps, however, since the bases
∂μ, dx

μ are different we must express the t......(p) in the new basis. This
infinitesimal change of basis is precisely captured in (19.2.2), (19.2.3) and
is what defines ∇: a covariant differential is simply a rule for how bases
change when we change points along curves. Denote the so-transported
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tensor at ps by t̃(ps). Then (∇vt)(p) := lims→0[t− t̃](ps)/s. A tensor is
said to be parallel transported along v provided its transport from p to
ps is proportional to the tensor defined there, that is, t̃(ps) ∝ t(ps). Tak-
ing s → 0 gives the parallel transport equation ∇vt ∝ t. Taking v = ∂s to
be the tangential vector field along some given curve we get a first-order
ordinary differential equation which always has a maximal solution. A par-
ticular case is obtained if we take t = v, that is, we consider the parallel
transport of the tangential vector along a curve (to be determined) and ask
that the tangential vector stays parallel to itself. This leads to the geodesic
equation

(∇vv)(cv(s)) = γ(s)v(cv(s)) (19.2.5)

with ċv(s) = v(cv(s)) and γ(s) is any function of s. One can show that
upon choosing a so-called affine parameter s̃(s) we can always choose γ = 0.
From its definition, a geodesic is a curve which is ‘as straight as possible’.
(19.2.5) is a second-order ordinary differential equation which always has
a unique and maximal solution again. Given initial data p, v(p) we denote
the solution by exps(v). This exponential map is defined for all p, v but
the allowed range of s may vary. If it coincides with R for all Tp(M) then
M is said to be geodesically complete.

(iii) Torsion and curvature
Two tensor fields can be naturally associated with a covariant differential.
The first is the torsion tensor field T ∈ T 1

2 (M)

T [.;u, v] := ∇uv −∇vu− [u, v] (19.2.6)

with components

T ρ
μν = T [dxρ; ∂μ, ∂ν ] = 2Γρ

[μν] (19.2.7)

If ∇ is torsion-free then in the expressions for the Lie derivative of ten-
sors and the exterior derivative for forms we may replace the partial
derivatives ∂μ by covariant derivatives ∇μ. The geometric meaning of tor-
sion is as follows: take u, v ∈ T 1(M) and p ∈ M and consider the points
cup(r), cvp(s) of their integral curves through p corresponding to the param-
eter values r, s. Now parallel transport u(p), v(p) respectively along cvp, c

u
p

respectively to obtain ũ(cvp(s)), ṽ(c
u
p(r)). Finally, construct the integral

curves of these new vector fields through cvp(s), c
u
p(r) respectively, that

is, cũcvp(s)(r), c
ṽ
cup (r)(s). The torsion now is directly proportional to the coef-

ficient of rs of x(cũcvp(s)(r)) − x(cṽcup (r)(s)) and measures the deviation from
the corresponding parallelism to close.

The second natural tensor field is the curvature tensor field R ∈ T 1
3 (M)

R[.;w, u, v] :=
(
[∇u,∇v] −∇[u,v]

)
w (19.2.8)
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For both T,R it is crucial to notice that (19.2.6), (19.2.8) evaluated at p

depend only on the values of u, v, w at p, otherwise T,R would not define
tensors of the indicated type. The components of R are

Rρ
σμν =T [dxρ; ∂σ, ∂μ, ∂ν ]=∂μΓρ

νσ − ∂νΓρ
μσ + Γρ

μλΓλ
νσ − Γρ

νλΓλ
μσ (19.2.9)

It is straightforward to verify that the curvature tensor enjoys the following
symmetries

Rρ
σ(μν) = 0, Rρ

[σμν] = 0, Rρ
σ[μν; λ] = 0 (19.2.10)

where (.); λ := ∇λ(.). The last identity in (19.2.10) is called Bianchi’s iden-
tity. Finally we construct the Ricci tensor field Ric∈ T 0

2 (M) as

Ric[u, v] := R[dxμ;u, ∂μ, v]; Rμν = Ricμν = Rρ
μρν (19.2.11)

The geometric interpretation of curvature is as follows: consider two
vector fields u, v and a point p ∈ M . Construct the integral curves
cup , c

v
p, c

u
cvp(s), c

v
cup (r). To order rs we have q = cucvp(s)(r) = cvcup (r)(s). Now take

a third vector field w and construct its parallel transport from p to q (1)
along the curve cup(r) ◦ cvcup (r)(s) resulting in w̃1(q) and (2) along the curve
cvp(s) ◦ cucvp(s)(r) resulting in w̃2(q). One can verify that the coefficient of
rs of w̃1(q) − w̃2(q) is precisely R[.;w, u, v]. Hence the vanishing of the
curvature tensor is the integrability condition for the parallel transport of
vectors along closed curves (loops) to coincide with the original vector,
in other words, that the holonomy of the connection be trivial. If that
is the case, we say that the connection ∇ is flat. See Chapter 21 for the
bundle-theoretic language.

(iv) Metric tensor field and Levi–Civita connection

Definition 19.2.2. A metric tensor field g ∈ T 0
2 (M) is a symmetric, non-

degenerate two-times covariant tensor field of second rank. Due to conti-
nuity and non-degeneracy its signature (n,m− n), given by the number of
negative and positive eigenvalues of its component matrix, is constant on
M . If n = 0, 1 respectively, g is said to be of Euclidean or Lorentzian sig-
nature respectively. The pair (M, g) consisting of a manifold and a metric
is called a spacetime or (pseudo-)Riemannian space.

One can show that every paracompact manifold admits Euclidean metrics
while Lorentzian metrics can only be defined for non-compact, paracom-
pact manifolds.

Lemma 19.2.3. Given a spacetime (M, g), there is a unique torsion-free,
metric-compatible covariant derivative ∇, that is, ∇g = 0. The associated
connection is called the Levi–Civita connection and its components are
called Christoffel symbols.
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Proof: Write out the three conditions ∇μgνρ = ∇νgρμ = ∇ρgμν = 0 in
terms of the Γρ

μν . Using Γρ
[μν] = 0, solve this system of linear equations

for Γρ
μν . One finds

Γρ
μν =

1
2
gρσ[gσμ,ν + gσν,μ − gμν,σ] (19.2.12)

where gμν are the components of the inverse metric tensor. �

The Levi–Civita connection is therefore such that the ‘scalar products’
g[u, v] of parallel transported vectors u, v remain constant.

The curvature tensor defined by a metric through the Levi–Civita con-
nection is called the Riemann tensor. It has the additional symmetry

Rμνρσ = Rρσμν , Rμνρσ = gμλ Rλ
νρσ (19.2.13)

The associated Ricci tensor is then symmetric and we can define the cur-
vature scalar as R = gμνRμν .

(v) Weyl tensor field
Taking into account all the algebraic (non-differential) symmetries of the
Riemann tensor we find that the pairs (μν) and (ρσ) can take only N =
m(m− 1)/2 values due to antisymmetry. Moreover, the Riemann tensor
is symmetric under exchange of these pairs, leaving us with N(N + 1)/2
independent components. Finally we have to take into account the third
condition in (19.2.10) which, using the other symmetries, can be written
in the form

Rμ[νρσ] = R[νρσ]μ = −Rν[μρσ] = −R[μνρ]σ = 0 (19.2.14)

Thus, since μ �= ν we get one non-trivial condition for one four-tuple of
pairwise different indices, that is, we get

(
m
4

)
additional conditions reducing

the number of independent components to

N(N + 1) −
(
m

4

)
=

m2(m2 − 1)
12

(19.2.15)

For m = 1 there can be no curvature, for m = 2 the curvature tensor is
already determined by the curvature scalar, for m = 3 the curvature scalar
is already determined by the Ricci tensor. It is only for m ≥ 4 that the
curvature tensor has more than the m(m + 1)/2 components of the Ricci
tensor. These can be extracted by removing the trace from the curvature
tensor and results in Weyl’s conformal tensor

Cμνρσ = Rμνρσ +
2

m− 2
(
gμ[σRρ]ν − gν[σRρ]μ

)
+

2
(m− 1)(m− 2)

Rgμ[ρgσ]ν

(19.2.16)

Another characterisation of C is that it is the unique linear combina-
tion of curvature tensor, Ricci tensor and curvature scalar such that
Cμ

νρσ[Ω2g] = Cμ
νρσ[g], that is, the Weyl tensor is invariant under the
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Weyl rescalings g �→ Ω2g for any everywhere non-vanishing function Ω ∈
C∞(M).

(vi) Killing vector fields
Let t �→ ψv

t be the one-parameter family of diffeomorphisms generated by
v ∈ T 1(M). v is called a Killing vector field or an isometry provided that
(ϕv

t )
∗g = g. Equivalently, Lvg = 0 by definition of the Lie derivative. v is

called a conformal isometry if (ϕv
t )

∗g = (Ωv
t )

2g for some nowhere vanish-
ing function Ωv

t ∈ C∞(M) or equivalently Lvg = fg for some f ∈ C∞(M).
Most metrics have no (conformal) isometries. They play a crucial role in
quantum field theory on curved background spacetimes.

(vii) Densities and volume forms
In the previous section we have defined the integral of n-forms for ori-
entable (sub-)manifolds. In the presence of a metric tensor field g we can
now define such integrals for non-orientable submanifolds. Let ψ : N → M

be an embedded n-dimensional submanifold and define the induced metric
on N by q := ψ∗g. Let f ∈ C∞(M). Then we define the integral of f over
N by

∫

N

ψ∗f :=
∑

I

∫

xI(VI)

dny eI
√
|det(qI)|(ψ∗f)I (19.2.17)

where we have used a partition of unity and the induced atlas (VI =
ψ−1(UI ∩ ψ(N)), yI = xI ◦ ψ) again. It is easy to see that (19.2.17) is inde-
pendent of the choice of coordinates and the partition of unity even when
N is not orientable. The reason for this is that the quantity

dnyI
√
|det(qI(yI))| (19.2.18)

is an invariant measure on Rn rather than an n-form. Indeed if yJ = ϕIJ ◦
yI then

dnyJ
√

det(qJ(yJ)) = dnyI |det(∂ϕIJ (yI)/∂yI)|
√
|det(qJ(ϕIJ (yI)))|

= dnyI
√
|[det(∂ϕIJ (yI)/∂yI)]2 det(qJ(ϕIJ (yI)))|

= dnyI

√
|det((ϕ∗

IJ qJ)(yI))| = dnyI
√
|det(qI(yI))|

(19.2.19)

We may define an associated volume n-form as follows. The totally skew,
metric-independent Levi–Civita symbol in n dimensions is defined as

εa1...an := (n!)δ1
[a1

. . . δnan], εa1...an := (n!)δ[a1
1 . . . δan]

n (19.2.20)
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where δ is the Kronecker symbol and ak takes a range in {1, . . . , n}. We
define the pseudo2 skew tensor

ηa1...an
=

√
|det(q)|εa1...an

(19.2.21)

Notice that δab = qacqcb is an invariant tensor field and hence εa1...an
is as

well. It follows that (19.2.21) indeed transforms as a pseudo n-form on
N , that is, as an ordinary n-form provided N is orientable and under
orientation-preserving passive diffeomorphisms. As shown, the function√
|det(q)| is not a scalar but a so-called scalar density of weight one. An ele-

ment t ∈ T a
b (N) is then also called a tensor field of density weight zero while

a tensor field with the same transformation behaviour as (
√

|det(q)|)wt
would be called a tensor of type T a

b (N) of density weight w ∈ R. In partic-
ular, εa1...an

, εa1...an are pseudo tensor fields of type T 0
n(N), Tn

0 (N) respec-
tively of weight −1,+1 respectively. Notice that

ηa1...an := qa1b1 . . . qan...bnηb1...bn

= det(q)−1εa1...an/
√
|det(q)| = s

√
det(q)

−1
εa1...an (19.2.22)

where s is the signature of q.
If M = N and ∇ is the g-compatible covariant differential we must define

the action of ∇ on tensor densities. Since ημ1...μn
is an ordinary tensor and

since ημ1...μmημ1...μm
= s(m!) we derive with ∇g−1 = 0 (which follows from

∇μδ
ρ
ν = 0) that

ημ1...μn∇μημ1...μn = 0 (19.2.23)

Since ∇μημ1...μn = fμημ1...μn (there is only one totally skew tensor field
of rank m in m dimensions up to multiplication with a scalar function)
we conclude ∇μημ1...μm = 0. Since εμ1...μm is a linear combination of ten-
sor products of components of gμν we conclude ∇

√
|det(g)| = 0. We can

therefore extend the definition of ∇ to tensor densities of weight w by

∇t̃ := (
√
|det(g)|)w ∇ t̃

(
√
|det(g)|)w

(19.2.24)

where on the left-hand side the covariant differential now acts on an ordi-
nary tensor field of weight zero in the usual way.

(viii) Connection with fibre bundle theory and orthonormal frames
As we will see in the next chapter, a connection in a fibre bundle can
be defined as an assignment of a horizontal subspace in the fibre above
each point of M . Equivalently, it is defined via a connection one-form in a

2 A pseudo tensor field of certain index structure transforms in the same way as a tensor
with the same index structure up to a sign difference under orientation-reversing
diffeomorphisms.
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principal fibre bundle over M . We want to make the connection between
that definition and the definition of ∇ presented here.

The relevant principal fibre bundle turns out to be the bundle L(M)
of linear frames with structure group G = GL(m,R). It is obtained as
the equivalence class of smooth assignments of linearly independent bases
(eα)mα=1 modulo coordinate transformations in the fibre above each point.
Given a standard frame any other frame is related to it by a local GL(m,R)
transformation, hence we can think of L(M) as a principal GL(m,R)-
bundle. A connection one-form in that bundle is given by the general for-
mula ω = Adh−1

I
π∗AI + h−1

I dhI where φI(p, hI) = u are the local triviali-
sations of points u ∈ π−1(p), hI ∈ GL(m,R). The horizontal vector fields
are annihilated by ω and hence are spanned by the vector fields

∂/∂xμ
I −

(
AI

μ

)γ
α
(hI)βγ∂

/
∂β
α (19.2.25)

where AI = s∗Iω is the pull-back to M of ω by the local section sI(p) =
φI(p, 1G). In particular, the horizontal lift of a curve p(s) is given by p̃(s) =
φI(p(s), hI(s)) where hI(s) is chosen such that ω[ ˙̃p(s)] = 0. This gives the
holonomy equation

(ḣI(s))βα = ẋμ
I (s)

(
AI

μ(xI(s))
)γ
α
(hI)βγ (s) (19.2.26)

and it is easy to see that ∂/∂s = ẋμ
I ∂/∂x

μ
I + (ḣI)βα∂/∂(hI)βα is horizontal.

The bundles Ea
b (M) are now associated with L(M) via the corresponding

tensor product representations of GL(m,R). Namely, let (eα) be a frame on
which GL(m,R) acts as eα �→ hα

βeβ . Let eα be a dual frame of one-forms,
that is, eα[eβ ] = δαβ from which we infer that eα �→ (h−1)β αeβ . Let t ∈
Ea

b (M) and express it in terms of these bases, that is

t = tα1...αa

β1...βb
eα1 ⊗ . . .⊗ eαa ⊗ eβ1 ⊗ . . .⊗ eβb (19.2.27)

It follows that t transforms in the representation τ where

tα1...αa

β1...βb
�→ (τ(h))α1...αa

γ1...γa

δ1...δb
β1...βb

tγ1...γa

δ1...δb

(τ(h))α1...αa
γ1...γa

δ1...δb
β1...βb

=
a∏

k=1

hγk

αk

b∏

l=1

(h−1)βk

δk (19.2.28)

By definition the covariant derivative in the associated bundle is given by

∇μt
α1...αa

β1...βb
= ∂μt

α1...αa

β1...βb
+ (Aμ)α β

∂(τ(h))α1...αa
γ1...γa

δ1...δb
β1...βb

∂hα
β

tγ1...γa

δ1...δb

= ∂μt
α1...αa

β1...βb
+

a∑

k=1

(Aμ)αk
γ tα1...α̂kγ...αa

β1...βb
−

b∑

l=1

(Aμ)γβl
tα1...αa

β1...β̂lγ...βb

(19.2.29)
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In (19.2.29) the covariant derivative acts on the GL(m,R) indices α, β, . . .

while before it was acting on the tangent space indices μ, ν, . . .. Comparing
(19.2.29) with (19.2.4) and using

tα1...αa

β1...βb
=

a∏

k=1

eαk
μk

a∏

l=1

eνl

βl
(19.2.30)

we infer from the Leibniz rule the compatibility condition

∇μe
α
ν = ∂μe

α
ν − Γρ

μνe
α
ρ + (Aμ)β αeβν

∇μe
ν
α = ∂μe

α
ν + Γν

μρe
ρ
α − (Aμ)α βeνβ (19.2.31)

From this we derive the horizontal subspaces in the associated bundle
Ea

b (M) to be spanned by the vector fields given in local coordinates by

∂

∂xμ
−

[
a∑

k=1

Γμk
μρt

μ1...μ̂kρ...μa
ν1...νl

−
b∑

l=1

Γρ
μνl

tμ1...μa

ν1...ν̂lρ...νb

]
∂

∂tμ1...μa
ν1...νb

(19.2.32)

Suppose now that we reduce the structure group from GL(m,R) to
O(n,m− p,R) and that the frames eα are orthonormal, that is, g[eα, eβ ] =
ηαβ where η is the diagonal metric with n entries of −1 and m− n entries
of +1. In this case the eα are called m-Beine and the eα co-m-Beine. Then
from (19.2.29) we obtain, due to the definition hα

γ hβ
δηγδ = ηαβ , that

∇μηαβ = 0 = (Aμ)αβ + (Aμ)βα (19.2.33)

where (Aμ)αβ = ηβγ(Aμ)α γ . It follows that Aμ is an o(n,m− n,R)-valued
one-form for a O(n,m− n,R) gauge theory.

So far Aμ and the Levi–Civita connection have nothing to do with each
other. However, the relations gμν = ηαβe

α
μe

β
ν , ηαβ = gμνe

μ
αe

ν
β together with

the covariant constancy of g, η motivate us to impose the restriction

∇μe
ρ
ν = 0 (19.2.34)

These equations are sufficient in order to express Aμ in terms of eμα and
its first derivatives and Aμ determined that way is called spin connection.

19.3 Symplectic manifolds

19.3.1 Symplectic geometry

Definition 19.3.1. A symplectic structure for a differential manifold M is
a non-degenerate, closed two-form ω. The pair (M,ω) is called a symplectic
manifold.

It follows that 2m = dim(M) is even. By Poincaré’s lemma, locally we can
always find a symplectic potential, that is, a one-form θ such that ω = dθ.
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Theorem 19.3.2 (Darboux). Let (M,ω) be a symplectic manifold. Then for
a neighbourhood Z of each point p one can choose so-called canonical coordinates
(xμ)2mμ=1 = (qa, pa)ma=1 such that ω = dpa ∧ dqa. The coordinates q, p are called
configuration and momentum variables respectively.

Proof: The coordinate components ωμν(x) in a chart U form an antisymmetric
2m× 2m matrix and thus can be brought into the standard form ω0 = 1

2ε⊗ 1m
with εIJ = −εJI , ε12 = 1 by a non-degenerate matrix S(x), that is, ωμν(x) =
ω0
ρσS

ρ
μ(x)Sσ

ν (x). Choose p in U with coordinate x0, let ϕμ
0 (x) := Sμ

ν (x0)xν and set
σ := ϕ∗

0ω0. Clearly σ(x0) = ω(x0) and d(σ − ω) = 0 since both ω, ω0 are closed.
By Poincaré’s lemma we find an open neighbourhood V ⊂ U of x0 such that
σ − ω = dα for some one-form α. Without loss of generality we may assume
α(x0) = 0 (subtract df for some f if necessary).

Now consider on [0, 1] × V the two-form

Ω := dt ∧ α + ωt, ωt = ω + t(σ − ω) (19.3.1)

ωt interpolates between ω, σ. We have dΩ = dt ∧ [σ − ω − dα] = 0 and ωt(x0) =
ω(x0) is non-degenerate at x0, hence it is non-degenerate also in a neighbourhood
W ⊂ V of x0 by continuity.

Ω is a two-form in 2m + 1 dimensions and thus its antisymmetric component
matrix is degenerate. It follows that the equation iY Ω = 0 has a non-trivial solu-
tion Y ∈ T 1(W ). Since ωt is non-degenerate in W , Y has the form Y = ∂/∂t +
vμ(x, t)∂μ up to multiplication by a scalar function. We have explicitly iY Ω =
ivωt + α− [ivα]dt = 0, from which we infer in particular that ivα = 0. Let
CY

x (s) be the integral curve of Y through (0, x) in [0, 1] ×W with s = t ∈ [0, 1]
as curve parameter. Hence CY

x (t) = (s, cvx(t)) with ċvx(t) = v(t, x), cvx(0) = x.
Since α(x0) = 0 we have (iY Ω)(t, x0) = (ivωt)(t, x0) = 0. Since ωt(x0) is non-
degenerate this means that v(t, x0) = 0. This means that cvx0

(t) = x0. We may
now consider the one-parameter family of diffeomorphisms t �→ ψv

t (x) := cvx(t)
and since ψv

t (x0) = x0 is a fixed point, it follows from continuity that ψv
t has

range in W for some open neighbourhood Z of x0.
Let ΨY

t be the corresponding one-parameter family of diffeomorphisms defined
on [0, 1] × Z, then (ΨY

t )∗Ω = Ω for all t ∈ [0, 1] because LY Ω = [d iY + iY d]Ω =
0. Defining ψ = ψv

1 we conclude
((

ΨY
1

)∗Ω
)
(0, x) =

((
ψv

1

)∗[ωt + dt ∧ α]t=1

)
(x) = ψ∗σ

= Ω(0, x) = ([ωt + dt ∧ α]t=0)(x) = ω(x) (19.3.2)

hence ω = (ϕ0 ◦ ψ)∗ω0. �

We notice that every symplectic manifold is automatically orientable because
the Liouville form

Ω :=
(−1)m(m−1)

m!
ω ∧ . . . ∧ ω (19.3.3)
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given by the m-fold exterior product of ω is nowhere vanishing. It is easy to see
that

∫
M

fΩ =
∫
M

fdmp dmq in local canonical coordinates.
Given f ∈ C∞(M) one defines a unique Hamiltonian vector field χf ∈ T 1(M)

by the equation

iχf
ω + df = 0 (19.3.4)

A diffeomorphism ψ ∈ Diff (M) is said to be a symplectic isometry or canonical
transformation iff

ψ∗ω = ω (19.3.5)

The diffeomorphisms generated by the flow of χf are symplectic isometries
because Lχf

ω = [iχf
d + d iχf

]ω = −d df = 0. Conversely, if Lvω = d ivω = 0
then by Poincaré’s lemma we find locally fv with ivω = −dfv. Hence every
generator of a symplectic isometry is locally a Hamiltonian vector field. The
locally Hamiltonian vector fields form a sub-Lie algebra of T 1(M) since L[u,v]ω =
[Lu,Lv]ω = 0. In particular,

i[u,v]ω = iLuvω = Lu(ivω) − iv(Luω) = [iu d + d iu]ivω

= iu[d iv + iv d] + d(iuivω) = −d(iviuω) (19.3.6)

hence [u, v] = χiviuω so the Hamiltonian vector fields form a Lie ideal in the
space of locally Hamiltonian vector fields.

The Poisson bracket is defined by

{f, f ′} := −iχf
iχf′ω = χf [f ′] (19.3.7)

It is antisymmetric by inspection and from (19.3.6) we see that [χf , χf ′ ] =
χ{f,f ′}. Next

0 = iχf
iχg

iχh
dω

= iχf
iχg

[Lχh
− d iχh

]ω = −iχf
iχg

d (iχh
]ω)

= −χf [iχg iχh
]ω] + χg[iχf

iχh
]ω] + i[χf ,χg](iχh

ω)

= −χf [{h, g}] + χg[{h, f}] + iχ{f,g}(iχh
ω)

= {f, {g, h}} + {g, {h, f}} + {h, {{f, g}} (19.3.8)

Hence the Poisson bracket satisfies the Jacobi identity as a consequence of dω =
0. Conversely one can show that the Jacobi identity implies dω = 0 if ω is non-
degenerate. Notice that ψ is a symplectic isometry if and only if ψ∗{f, f ′} =
{ψ∗, ψ∗f ′} for all f, f ′ ∈ C∞(M).

19.3.2 Symplectic reduction

Definition 19.3.3

(i) Let M be a smooth manifold. A distribution D : M �→ E1
0(M) is an assign-

ment of a subspace Dp(M) ⊂ Tp(M) of the tangent space for each point
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p ∈ M such that (1) dim(Dp(M)) = n = const. and (2) for each p ∈ M

there is a neighbourhood U of p and n vector fields vk ∈ T 1(M), k = 1, . . . , n
such that Dq(M) is spanned by them for each q ∈ U .

(ii) A submanifold L ⊂ M is called an integral manifold of the distribution D

provided that Tp(L) = Dp(M) for all p ∈ L. The distribution D is said to
be integrable provided that the subspace T 1(M,D) of vector fields which
are everywhere tangential to D is a subalgebra of T 1(M). An integrable
distribution is called a foliation. By Frobenius’ theorem, integral manifolds
exist if and only if D is integrable. Maximal integral manifolds of a foliation
are called leaves.

(iii) A foliation is called reducible provided that the space of leaves M/D =
{[p]; p ∈ M}, [p] = {p′ ∈ M ; p, p′ lie in the same leaf} is a Hausdorff man-
ifold with smooth projection π : M → M/D.

Notice that an integrable distribution is not necessarily reducible.

Theorem 19.3.4 (Frobenius). A distribution of n-dimensional tangent
spaces can be equivalently described by the specification of n vector fields vk
which are everywhere tangent to D or by m− n one-forms θα which satisfy
(θα[v])(p) = 0 for all v tangent to D. A necessary and sufficient condition for a
distribution D to be integrable is one of the following two equivalent criteria:

1. The vk form a subalgebra of T 1(M), that is, [vj , vk] = fkl
lvl for some func-

tions fjk
l.

2. The θα form a closed Pfaff system, that is, dθα = ωα
β ∧ θβ for some one-forms

ωα
β .

Proof: We first show that the two criteria are equivalent. We have

ivj ivk
(dθα) = vj [θα[vk]] − vk[θα[vj ]] − θα[[vj , vk]] = −θα[[vj , vk]] (19.3.9)

since θα[vk] = 0 by definition. Now criterion (1) implies ivj ivk
(dθα) = 0 which

means that the two-form has the form dθα = ωα
β ∧ θβ that is (2). Conversely, if

(2) is satisfied then θα[[vj , vk]] = 0 which means that the commutator has the
form [vj , vk] = fkl

lvl. Hence it suffices to demonstrate (2).
If the distribution is integrable then there are local coordinates

(xμ) = (yj , zα), μ = 1, . . . ,m, j = 1, . . . , n, α = 1, . . . ,m− n such that θα(x) =
θαβ (x)dzβ or equivalently vj(x) = vkj (x)∂/∂yk where both θαβ , v

k
j are invertible

matrices. The y are then coordinates for the leaves while the z parametrise the
space of leaves. If the θα or vj take this form then clearly the Frobenius criterion
is satisfied. We now show the converse.

We will prove by induction over m for fixed rank r = m− n of the Pfaff system.
For m = r there is nothing to show. For m > r let us write θα = θ̃α + fαdxm
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where θ̃α(x) =
∑m−1

μ=1 θαμ(x)dxμ and fα(x) is some function on M . Then

dθα =

⎡

⎣
∑

μ,ν≤m−1

(
∂μθ̃

α
ν

)
dxμ ∧ dxν

⎤

⎦ +

[
m−1∑

μ=1

(
− ∂mθ̃αμ + ∂μf

α
)
dxμ

]

∧ dxm

=: d̃θ̃α + ξ ∧ dxm

= ωα
β ∧ θβ =

[
ωα
β ∧ θ̃β

]
+ ωα

β f
β ∧ dxm (19.3.10)

We conclude d̃θ̃α = ωα
β ∧ θ̃β where d̃ is the restriction of d to the first m− 1 coor-

dinates. By induction assumption we conclude that θ̃α(x) = θ̃αβ (x)dz̃β with θ̃αβ (x)
invertible and z̃α independent of xm since this is a Pfaff system in the manifold
with local coordinates x1, . . . xm−1. We can now construct the equivalent Pfaff
system

θα′ := (θ̃−1)αβθ
β = dz̃α + (θ̃−1)αβf

βdxm =: dz̃α + fα′dxm (19.3.11)

This is not yet of the required form because we must write θα′ as θα′β dzβ′. To
achieve this, notice that (19.3.11) is still closed

dθα′ =
[
d(θ̃−1)αγ + (θ̃−1)αδ ω

δ
γ

]
θ̃γβ ∧ θβ′ =: ωα′

β ∧ θβ′ (19.3.12)

Thus

dθα′ = dfα′ ∧ dxm = ωα′
β ∧ [dz̃β + fβ′dxm] (19.3.13)

If we note coordinates as xμ = (y1, . . . , ym−r−1, z̃1, . . . , z̃r, xm) and compare
coefficients in (19.3.12) then we find ∂fα′/∂yj = 0, j = 1, . . . ,m− r − 1, thus
θα′(x) = dz̃α + fα′(z̃, xm)dxm. Define the ‘time’ xm-dependent ‘Hamiltonian’

H
(
{z̃β , pβ}rβ=1;x

m
)

:= −fα′({z̃β}, xm)pα (19.3.14)

and solve the associated Hamilton–Jacobi equation

∂S

∂xm
(z̃, xm) + H

({
z̃β , pβ =

∂S

∂z̃β

}
(z̃, xm);xm

)
= 0 (19.3.15)

Since, as is well known, the Hamilton–Jacobi equation is equivalent to the sys-
tem of Hamilton’s 2r ordinary differential equations, a maximal solution, called
the complete integral, always exists and depends on r + 1 free parameters C, cα,
S(z̃, xm;C, c). The general integral is obtained from the complete integral as fol-
lows: prescribe an arbitrary function C = F (cα) and solve the system of algebraic
equations

∂S

∂cα
+

(
∂S

∂C

)

C=F (c)

∂C

∂cα
= 0 (19.3.16)

for cα = fα
C(z̃, xm), which is always possible locally by the implicit function the-

orem. Specialise to the case that F = cα =: Fα(c) and define

zα′(z̃, xm) = S(z̃, xm;C = Fα(c(z̃, xm)), c = fFα(z̃, xm)) (19.3.17)
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It is easy to check that (19.3.17) still solves the Hamilton–Jacobi equation and
that these r solutions are algebraically independent. Hence

dzα′ =
∂zα′

∂z̃β
(z̃, xm)θβ′ (19.3.18)

accomplishes our task since ∂z′/∂z̃ is invertible. �

Definition 19.3.5. Let N be a submanifold of (M,ω). Given a closed two-form
σ on N we call (N,σ) a presymplectic (or Poisson) submanifold. If σ is degen-
erate we call K : N → T (N); Kp(N) = {v ∈ Tp(N); ivσ = 0} the characteristic
distribution of (N,σ). N is then said to be reducible if K is reducible.

Lemma 19.3.6. Every presymplectic manifold is integrable. If N is reducible
then N/K carries a natural symplectic structure.

Proof: Let θ1, . . . , θr be the one-forms which determine the characteristic distri-
bution. Then obviously σ = σαβθ

α ∧ θβ and since σ is closed we conclude

dσαβ ∧ θα ∧ θβ + 2σαβdθ
α ∧ θβ = 0 (19.3.19)

hence dθα = ωα
β ∧ θβ so integrability follows from Frobenius’ theorem.

Next let ρ ∈ Λk(N). We claim that there exists τ ∈ Λk(N/K) with ρ = π∗τ, π :
N → N/K if and only if ivρ = ivdρ = 0 for all v tangential to K. To see this,
denote local coordinates of N by (xμ) = (ya, zα) and vector fields in N tangential
to K by v = va(y, z)∂/∂ya. The projection is given by π(x) = z. We have in gen-
eral ρ(x) = ρμ1...μk

(x)dxμ1 ∧ . . . ∧ dxμk and dρ(x) = (∂μ0ρμ1...μk
)(x)dxμ0 ∧ . . . ∧

dxμk . Now ivρ = 0 means that ρμ1...μk
= 0 whenever at least one of the μ1, . . . , μk

takes the value a. It follows then from ivdρ = 0 that ∂aρα1...αk
= 0. Hence

ρ(x) = ρα1...αk
(z)dzα1 ∧ . . . ∧ dzαk

= ρα1...αk
(π(x))dπα1(x) ∧ . . . ∧ dπαk(x) = (π∗τ)(x) (19.3.20)

with τα1...αk
(z) = ρα1...αk

((0, z)) as claimed.
Applied to σ we have ivσ = 0 by definition and ivdσ = 0 because σ is closed,

thus σ = π∗τ for some two-form τ on N/K. Clearly dσ = π∗dτ = 0 so τ is closed.
For v ∈ T 1(N/K) we find V ∈ T 1(N) such that π∗V = v on N/K simply by
choosing V α((0, z)) = vα(z). Then ivτ = iπ∗V τ = iV π

∗τ = iV σ = 0 implies that
V is tangential to K, hence v = π∗V = 0. Hence τ is non-degenerate. �

Definition 19.3.7

(i) Let (V, ω) be a symplectic vector space (i.e., M = V is a vector space) and
let F be a subspace of V . Then F⊥ := {u ∈ V ; ω[u, v] = 0 ∀ v ∈ V } is called
the annihilator of F .

(ii) F is called (a) isotropic if F ⊂ F⊥, (b) co-isotropic if F⊥ ⊂ F , (c)
Lagrangian if F = F⊥ and (d) symplectic if F ∩ F⊥ = {0}.

(iii) A submanifold N of a symplectic manifold (M,ω) is called (a)–(d) if Tp(N)
is (a)–(d) at each point p ∈ N .
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We verify immediately that if F,G are subspaces of V then (1) F ⊂ G implies
G⊥ ⊂ F⊥, (2) (F⊥)⊥ = F , (3) (F + G)⊥ = F⊥ ∩G⊥ and (4) (F ∩G)⊥ = F⊥ +
G⊥. Furthermore, if dim(V ) = 2m, dim(F ) = k, that is, dim(F⊥) = 2m− k

then (a) isotropic, (b) co-isotropic, (c) Lagrangian and (d) symplectic respec-
tively implies (a) k ≤ m, (b) k ≥ m, (c) k = m, (d) k = 2n is even. Notice that
every symplectic vector space has subspaces of either category but that the cat-
egories (a)–(d) are not exhaustive, for example, F ∩ F⊥ �= {0} is possible while
neither F ⊂ F⊥ nor F⊥ ⊂ F .

The connection of this terminology with Dirac’s formalism for constraints (see
Chapter 24) is as follows: if (M,ω) is a given unconstrained phase space with a
system of constraints CI , I = 1, . . . , r then we define the constraint submanifold
as N = {p ∈ M ; CI(p) = 0} with projection ρ : M → N which is obtained by
using the CI as local coordinates (owing to the implicit function theorem) and
defining ρ to be the map that sets CI = 0. N is then identified with the manifold
whose local coordinates are the remaining ones and we have an injection j :
N → M . The presymplectic structure on N is then defined as σ = j∗ω which is
automatically closed. If K is the characteristic distribution of (N,σ) then N/K

with its symplectic structure τ is called the reduced phase space. For any v

tangential to N we have on N

v[CI ] = dCI [v] = −iviχCI
ω = 0 (19.3.21)

hence χCI
∈ (Tp(N))⊥ for all p ∈ N where χCI

denotes the Hamiltonian con-
straint vector fields with respect to ω. By definition the characteristic distribu-
tion is given by

Kp = {u ∈ Tp(N); σ[u, v] = 0 ∀ v ∈ Tp(N)}
= {u ∈ Tp(N); ω[j∗u, j∗v] = 0 ∀ v ∈ Tp(N)}
= {u ∈ Tp(N); ω[u, v] = 0 ∀ v ∈ Tp(N)} = ρ∗(Tp(N)⊥) (19.3.22)

since we identify Tp(N) and j∗(Tp(N)).
The classification of the constraints is now as follows:

(a) isotropic Tp(N) ⊂ (Tp(N))⊥

Then Tp(N) = ρ∗(Tp(N))⊥ = Kp, hence N/K is a single point. This includes
the Lagrangian case.

(b) co-isotropic (Tp(N))⊥ ⊂ Tp(N)
Then (Tp(N))⊥ = ρ∗(Tp(N))⊥ = Kp. Since we can always find a basis of
Tp(M) consisting of Hamiltonian vector fields because ω is non-degenerate
we can always find a basis of Kp consisting of Hamiltonian vector fields
χf . Now iχf

ivσ = iχf
ivω = v[df ] = 0 for all v ∈ Tp(N) holds precisely when

f|N = 0, hence f is a linear combination of constraints, hence the χCI
span

Kp. It follows that dim(N/K) = 2(m− r) and by the Frobenius theorem the
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χCI
are in involution on N , hence

[χCI
, χCJ

] = fIJ
KχCK

= χfIJ
KCK

− χfIJ
KCK

= χfIJ
KCK

= χ{CI ,CJ}

(19.3.23)

on N . Thus in Dirac’s terminology, the constraints are first class, the Hamil-
tonian constraint vector fields are tangential to the constraint surface and
belong to the characteristic distribution.

(c) symplectic Tp(N) ∩ (Tp(N))⊥ = {0}
Hence Kp = ρ∗(Tp(N))⊥ = {0}. Hence N/K = N is already symplectic with
non-degenerate symplectic two-form σ = j∗ω defining the Dirac bracket.

19.3.3 Symplectic group actions

What follows plays a crucial role in geometric quantisation [218] and group the-
oretical quantisation [281].

Definition 19.3.8

(i) A Lie group G is said to have a smooth right action on a manifold M pro-
vided that there is a smooth map ρ : G ×M → M ; (g, p) �→ ρg(p) such that
ρg ∈ Diff(M) for all g ∈ G and ρg ◦ ρg′ = ρg′g, ρ1G = idM . The group action
is said to be (a) transitive, (b) effective or (c) free respectively provided that
(a) For all p, p′ ∈ M there exists g ∈ G such that ρg(p) = p′.
(b) ρg = idM implies g = 1G.
(c) ρg(p) = p for all g ∈ G has no solution in M (no fixed points).

(ii) A Lie group G is said to be a canonical group for a symplectic manifold
(M,ω) provided ρG is a subgroup of the isometry group of ω.

Given an element of the Lie algebra A ∈ Lie(G) we have a one-parameter group
of diffeomorphisms t �→ ρexp(tA) where exp : Lie(G) → G is the exponential map.
These define vector fields vA via

vA[f ] :=
(

d

dt

)

t=0

ρ∗exp(tA)f (19.3.24)

The map v : Lie(G) → T 1(M); A �→ vA is a homomorphism of Lie algebras, that
is, [vA, vB ] = v[A,B] as one can check immediately by using the Baker–Campbell–
Hausdorff formula. Now, if H1(M) = {0} we have seen that vA = χfA for some
fA ∈ C∞(M), which is uniquely determined up to a constant fA → fA + c(A).
This is because the map χ : C∞(M) → T 1(M); f �→ χf is only a homomor-
phism of Lie algebras, χ{f,g} = [χf , χg], since Ker(χ) = R, that is, χ has the
constant functions as kernel. We have for z ∈ R

vA+zB = χfA+zB
= vA + zvB = χfA + zχfB = χfA+zfB (19.3.25)

[vA, vB ] = v[A,B] = χf[A,B] = [χfA , χfB ] = χ{fA,fB} (19.3.26)

hence we conclude that fA+zB = fA + zfB , f[A,B] = {fA, fB} up to a constant.
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Definition 19.3.9

(i) A linear map f : Lie(G) → C∞(M); A �→ fA is said to be Hamiltonian pro-
vided that it is a homomorphism of Lie algebras, that is, f[A,B] = {fA, fB}.
The dual map μ : M → Lie(G)∗; μ(p)[A] := fA(p) where Lie(G)∗ is the
space of linear forms on Lie(G) is called a momentum map.

(ii) An n-cochain on Lie(G) is a completely skew and multilinear map
c : Lie(G)n → R. The coboundary operator maps n-cochains to (n + 1)-
cochains defined by [δc](A0, . . . An) := c(A[0, A1, . . . , An]). Clearly δ2 = 0.
An n-cochain is called a cocycle or coboundary respectively iff δc = 0 or
c = δc′ for some (n− 1)-cochain c′ respectively. The cocycles modulo the
coboundaries determine the cohomology on n-cochains.

(iii) A central extension of a Lie algebra Lie(G) is a Lie algebra E together with
a homomorphism π : E → Lie(G) such that Ker(π) ⊂ Z(E) where Z(E) =
{A ∈ E; [A,B] = 0 ∀ B ∈ E} is the centre of E.

We may always choose a linear map A �→ fA simply by defining fτI and then
frIτI := rIfτI where τI , I = 1, . . . ,dim (G) is a basis of Lie(G). Define the anti-
symmetric bilinear form

c : Lie(G)2 → R; (A,B) �→ {fA, fB} − f[A,B] (19.3.27)

One verifies immediately from the Jacobi identity for C∞(M) and Lie(G) that

c([A,B], C) + c([B,C], A) + c([C,A], B) = 0 (19.3.28)

Hence c defines a 2-cocycle, δc = 0, on the dual of Lie(G). If c is a coboundary
c(A,B) = c′([A,B]) define

A �→ f̃A = fA + c′(A) (19.3.29)

Then

{f̃A, f̃B} − f̃[A,B] = {fA, fB} − f[A,B] − c′([A,B]) = c(A,B) − c′([A,B]) = 0

(19.3.30)

so f̃ is a Hamiltonian map. Conversely, if f is Hamiltonian then c = 0. Thus the
group action (G, ρ) has a moment on (M,ω) if and only if the cohomology of the
obstruction cocycle c is trivial. That cohomology does not depend on the initial
choice of f because for any other choice f ′ we have

c′(A,B) − c(A,B) = f[A,B] − f ′
[A,B] =: d([A,B]) = (δd)(A,B) (19.3.31)

so c, c′ lie in the same cohomology class.
If the class of the obstruction cocycle does not vanish we proceed as follows:

construct a central extension E of Lie(G) with basis (τ̂I)
dim (G)
I=0 and Lie algebra
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(I, J,K = 1, . . . ,dim (G))

[τ̂0, τ̂I ] = 0, [τ̂I , τ̂J ] = fIJ
K τ̂K + c(τI , τJ)τ̂0 (19.3.32)

where [τI , τJ ] = fIJ
KτK are the structure constants of Lie(G). The required

homomorphism is given by π(τ̂0) = 0, π(τ̂I) = τI . We define a group action of Ĝ
generated by E by ρ̂exp(Â) := ρexp(π(Â)). Finally we define a map f̂Â := fπ(Â) +

z(Â) where z(Â) = A0 if Â =
∑dim (G)

I=0 AI τ̂I . We immediately verify that v̂Â =
vπ(Â). Hence v̂Â = χfπ(Â)

= χf̂Â
. Now with the abbreviation A = π(Â)

f̂[Â,B̂] = fπ([Â,B̂]) + z([Â, B̂]) = f[A,B] + ([Â, B̂])0

= {fA, fB} − c(A,B) + c(π(Â), π(B̂)) = {f̂Â, f̂B̂} (19.3.33)

hence (Ĝ, ρ̂) has a trivial obstruction cocycle.

19.4 Complex, Hermitian and Kähler manifolds

Recall that a map f : Cm → Cn is called holomorphic if the Cauchy–Riemann
equations hold for all component functions, that is

fν(z) = uν(x, y) + ivν(x, y), zμ = xμ + iyμ

⇒ ∂uν

∂xμ
− ∂vν

∂yμ
=

∂vν

∂xμ
+

∂uν

∂yμ
= 0, ν = 1, . . . n, μ = 1, . . . ,m (19.4.1)

Definition 19.4.1. A complex manifold is a topological space together with an
atlas (UI , zI) consisting of an open cover of M with sets UI and local charts
zI : UI → Cm which are homeomorphisms and are subject to the following condi-
tion: if UI ∩ UJ �= ∅ then ϕIJ = zJ ◦ z−1

I : zI(UI ∩ UJ) → zJ(UI ∩ UJ) is a holo-
morphic map.

The number m is called the complex dimension of M . Each complex manifold is
also a smooth real manifold of real dimension 2m. However, a complex structure
(holomorphicity) is much stronger than a differentiable structure (smoothness).

A complex manifold with local complex coordinates zμI = xμ
I + iyμI over UI has

the local coordinate vector fields ∂/∂xμ
I , ∂/∂y

μ
I and local coordinate one-forms

dxμ
I , dy

μ
I as local real basis and co-basis respectively. Since we are allowed to take

complex linear combinations in a complex manifold we may alternatively use the
complex basis and co-basis

∂/∂zμI =
1
2
[
∂/∂xμ

I − i∂/∂yμI
]
, ∂/∂z̄μI =

1
2
[
∂/∂xμ

I + i∂/∂yμI
]

dzμI = dxμ
I + idyμI , dz̄μI = dxμ

I − idyμI (19.4.2)

where z̄ = x− iy. Notice that M considered as a real manifold would not admit
the (co)basis (19.4.2) since one would only be allowed to take real linear com-
binations. In order to distinguish tensor fields on M when M is considered as
a real (2m)-dimensional real manifold from those when M is considered as a
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complex m-dimensional complex manifold we introduce the notation T a
b (M) to

mean, as before, tensor fields spanned by tensor products of the ∂x, ∂y, dx, dy

with real-valued component functions while T a
b (M)C to mean tensor fields with

complex-valued component functions. Only for T a
b (M)C we may also use tensor

products of the ∂z, ∂z̄, dz, dz̄ as tensor basis elements.
We define a tensor field J0 ∈ T 1

1 (M) : T 1(M) → T 1(M) locally by
(
JI

[
∂/∂xμ

I

])
(xI(p)) = ∂/∂yμI ,

(
JI

[
∂/∂yμI

])
(xI(p)) = −∂/∂xμ

I (19.4.3)

We notice immediately J2
I (p) = −idT 1

p (M). We claim that J is actually globally
defined. To see this, assume that UI ∩ UK �= ∅ and denote zK = ϕIK(zI). Then,
dropping tensor indices

JK [∂/∂xI ] =
∂xK

∂xI
JK [∂/∂xK ] +

∂yK
∂xI

JK [∂/∂yK ]

=
∂xK

∂xI
∂/∂yK − ∂yK

∂xI
∂/∂xK

=
∂yK
∂yI

∂/∂yK − ∂xK

∂yI
∂/∂xK

= ∂/∂yI = JI [∂/∂xI ] (19.4.4)

and similarly for JK [∂/∂yK ] where in the third step we have used the Cauchy–
Riemann equations. It follows that J0 := JI is a smooth, globally defined tensor
field with constant component matrix ε⊗ 1m where ε12 = 1, ε(AB) = 0 in the
chosen coordinates.

Conversely, if M is a real (2m)-dimensional manifold which admits the globally
defined tensor field J0 then the diffeomorphisms between overlapping charts obey
the Cauchy–Riemann equations. Thus the existence of J0 is equivalent to the
existence of a complex structure. We thus arrive at the equivalent definition:

Definition 19.4.2

(i) A (2m)-dimensional real manifold M admits a complex structure if and only
if it admits a smooth tensor field J0 ∈ T 1

1 (M) with J2
0 (p) = −idTp(M) which

in suitable coordinates has canonical component matrix ε⊗ 1m. We then call
M a complex m-dimensional manifold with complex structure J0.

(ii) An m-dimensional real manifold M with smooth tensor field J ∈ T 1
1 (M)

such that J2(p) = −idTp(M) is called an almost complex manifold with almost
complex structure J .

Notice that det(J2(p)) = (−1)m = [det(J(p))]2 > 0, hence almost complex
manifolds have even-dimension. Not every even dimensional manifold admits
an almost complex structure (e.g., S4) and not every almost complex man-
ifold (e.g., S6) admits a complex structure (no coordinates exist such that
J = J0).
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Theorem 19.4.3 (Newlander and Nirenberg). Let the Nijenhuis tensor
field N ∈ T 1

2 (M) on an almost complex manifold M be defined by

N [u, v] := [u, v] + J [[J [u], v]] + J [[u, J [v]]] − [J [u], J [v]] (19.4.5)

Then M admits a complex structure if and only if N = 0.

We omit the proof of this deep theorem.
Remark: If (M,J) is a complex manifold then the complex structure realises on

M , viewed as a real manifold, multiplication by the imaginary unit on M , viewed
as a complex manifold, as follows: every vector field u ∈ T 1(M) can be uniquely
written as ux ⊕ uy := (ux, uy) where ux, uy is spanned by ∂x, ∂y respectively. Let
us define the bijection I : T 1(M) → T 1(M)C by I(u) := u1 + iu2. Then with
z = a + ib we have

zI(u) = (au1 − bu2) + i(au2 + bu1) = I((au1 − bu2) ⊕ (au2 + bu1))

= I((a id + bJ)[u1 ⊕ u2]) = I((a id + bJ)[u]) (19.4.6)

hence

a + ib = I ◦ (a id + bJ) ◦ I−1 (19.4.7)

Definition 19.4.4

(i) Let (M,J) be a complex manifold of complex dimension m which at the same
time is a Riemannian (2m)-dimensional real manifold with Riemannian
structure g. Then (M,J, g) is called a Hermitian manifold provided that

g[J [u], J [v]] = g[u, v] ∀ u, v ∈ T 1(M) (19.4.8)

Then g is called a Hermitian structure and is said to be J-compatible.
(ii) Let (M,J, g) be a Hermitian manifold. The so-called Kähler two-form is

defined by

ω[u, v] := g[J [u], v] ∀ u, v ∈ T 1(M) (19.4.9)

Notice that ω[u, v] = −ω[v, u] due to J2(p) = −idTp(M) and that ω[J [u],
J [v]] = ω[u, v] so that ω is also J-compatible.

(iii) A Kähler manifold is a Hermitian manifold (M,J, g) such that the cor-
responding Kähler two-form is closed. Equivalently, a Kähler manifold
(M,J, ω) is a complex manifold which also carries a J-compatible symplectic
structure ω.

Hence a Kähler manifold connects the notions of complex and symplectic
manifolds.

The Kähler two-form turns out to be of rather special type. In local coordinates
we have with the notation zμ̄ = z̄μ and similarly for dzμ̄, ∂μ̄

ω = ωμνdz
μ ∧ dzν + ωμ̄νdz̄

μ ∧ dzν + ωμν̄dz
μ ∧ dz̄ν + ωμ̄ν̄dz̄

μ ∧ dz̄ν (19.4.10)
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We have J [∂μ] = i∂μ, J [∂μ̄] = −i∂μ̄ and 2ωαβ = i∂β
i∂αω for α, β ∈ {μ, ν, μ̄, ν̄}.

From the compatibility criterion we infer ωμν = ωμ̄ν̄ = 0. Hence (19.4.6) simpli-
fies to

ω = [ωμν̄ − ων̄μ] dzμ ∧ dz̄ν =: Ωμν̄ dzμ ∧ dz̄ν (19.4.11)

Clearly Ων̄μ = −Ωμν̄ . Reality ω = ω implies

Ωμν̄ = −Ωνμ̄ (19.4.12)

Closure ∂[αωβγ] = 0 implies

∂[μΩν]ρ̄ = ∂[μ̄Ων̄]ρ = 0 (19.4.13)

By Poincaré’s lemma this implies locally Ωμν̄ = ∂μfν̄ = −∂ν̄gμ for some fν̄ , gμ.
Applying closure again and using holomorphicity ∂μz

ν̄ = ∂ν̄z
μ = 0 we infer again

from Poincaré’s lemma that

Ωμν̄(z, z̄) = i∂μ∂ν̄K(z, z̄) ⇒ ω = id ∧ d̄K (19.4.14)

where K is called the local Kähler potential for ω. From reality we infer that
K is a real-valued function which is uniquely determined by ω up to K(z, z̄) →
K(z, z̄) + f(z) + g(z̄) where f, g are holomorphic and antiholomorphic functions
respectively.

Notice that by definition

gμν̄ = ω[∂μ, J [∂ν̄ ]] = ∂μ∂ν̄K (19.4.15)

are the components of the Kähler metric. It satisfies gμν̄ = gμ̄ν = gνμ̄. We can
now compute the curvature tensor of g and its associated Ricci tensor whose
non-vanishing components turn out to be

Rμν̄ = −∂μ∂ν̄ ln(det(g)) = Rν̄μ (19.4.16)

(this is independent of the branch of the logarithm chosen due to the derivatives).
The associated real Ricci form is defined by ρ = id ∧ d̄ ln(det(g)). It is closed by
inspection but not exact because det(g) is not a scalar. In fact, ρ ∈ H2(M) has
non-trivial cohomology class in general, called the first Chern class. A compact
Kähler manifold (M,J, ω) whose first Chern class vanishes is called a Calabi–Yau
manifold. These manifolds play a crucial role in string theory compactifications
and we cite one of the most important results needed for those.

Theorem 19.4.5 (Calabi and Yau). A Kähler manifold (M,J, ω) which
admits a Ricci flat metric h has vanishing first Chern class (of g). If M is
compact and the first Chern class (of g) vanishes then M admits a Ricci flat
metric h.
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Semianalytic category

In this chapter we define semianalytic structures and draw conclusions from
those which are important for the uniqueness of the kinematical representa-
tion of LQG. Semianalytic structures are intuitively the same thing as piecewise
analytic structures, that is, objects such as paths or surfaces are analytic on
generic subsets but analyticity may be violated on lower-dimensional subsets.
On those subsets there is again a notion of semianalyticity. This enables one to
take advantage of analyticity while making the constructions local: for instance,
strictly analytical paths are determined everywhere on their analytic extension
once they are known on an open set, thus making them very non-local. If we
make it semianalytic then these data only determine the path up to the next
point where analyticity is reduced to Cn, n > 0. This is important because we
need to make sure that certain local constructions do not have an impact on
regions far away from the region of interest. We will see this explicitly in the
uniqueness proof.

We will now develop elements of semianalytic differential geometry in analogy
to Chapter 19. We begin with Rn with its canonical analytic structure. For
general manifolds M we will assume that they are differential manifolds with
given smooth structure and that a compatible analytic structure has been fixed.
An introduction to semianalytical notions can be found in [888].

20.1 Semianalytic structures on Rn

Definition 20.1.1. Let U ⊂ Rn be open and h := {h1, . . . , hN} be a finite sys-
tem of real-valued analytic functions hk defined on a neighbourhood of U . Fur-
thermore, let σ = {σ1, . . . , σN} be a corresponding tuple of relators taking values
in σk ∈ {=, >,<}. We will denote the set of those 3N possible tuples by Σ(h).
Define

Uh,σ := {x ∈ U : hk(x)σk0; k = 1, . . . , N} (20.1.1)

The semianalytic partition of U subordinate to h, denoted by P (U, h), is the
collection of all the subsets Uh,σ ⊂ U as σ ranges through Σ(h). We will often
write h(x)σ0 to mean hk(x)σk0 for all k and σk := σ|hk

when considered as a
map σ : h → {=, >,<}.

Notice that precisely one of hk(x) = 0, hk(x) > 0, hk(x) < 0 always holds,
hence U = ∪σ∈Σ(h)Uh,σ and Uh,σ ∩ Uh,σ′ = ∅ for σ �= σ′. Hence we really have
defined a partition. Notice also that some of the Uh,σ may be empty.
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Definition 20.1.2

(i) A function f : U ⊂ Rn → Rm (U open) is said to be semianalytic (s.a.)
provided that for each x ∈ U there exists an open neighbourhood V equipped
with some semianalytic partition P (V, h) and for each σ ∈ Σ(h) such that
Vh,σ �= ∅ there exists an analytic function fσ : V → Rm such that fσ = f on
Vh,σ.

(ii) If f is s.a. and x ∈ dom(f) then a corresponding s.a. partition P (V, h); x ∈
V is called compatible with f at x.

It is instructive to show that a real-valued function on the real axis which is
analytic on a partition of R by closed intervals In = [n, n + 1]; n ∈ Z is s.a.

Lemma 20.1.3. Suppose that f1 : U → R, f2 : U → Rm are s.a. on open U ⊂
Rn. Then f1 · f2 : U → Rm and f1 × f2 : U → Rm+1 are s.a.

Proof: Let P (V j , hj) be s.a. partitions compatible with fj at x ∈ U , j = 1, 2.
Set V := V1 ∩ V2 and h := h1 ∪ h2. Then obviously Vh,σ = V ∩ V 1

h1,σ1 ∩ V 2
h2,σ2

for any σ = (σ1, σ2). Hence for x ∈ Vh,σ we have (f1 · f2)(x) = f1,σ1(x)f2,σ2(x),
and (f1 · f2)σ := f1,σ1 · f2,σ2 (and similar for f1 × f2) does the job. �

It follows that if f �= 0 on U and f is s.a. then 1/f is also s.a. on U with
(1/f)σ = 1/fσ.

Theorem 20.1.4. Let U ⊂ Rn, U ′ ⊂ Rn′
be open and f ′ : U ′ → Rm, ϕ : U →

U ′ s.a. Then f := f ′ ◦ ϕ : U → Rm is s.a.

Proof: By assumption, for any x ∈ U we find an open neighbourhood V and s.a.
partition P (V, h) and analytic functions ϕσ on V such that ϕσ = ϕ on Vh,σ for
all σ ∈ Σ(h). Likewise, for any x′ ∈ U ′ we find an open neighbourhood V ′ and
s.a. partition P (V ′, h′) and analytic functions ϕσ′ on V ′ such that fσ′ = f ′ on
V ′
h′,σ′ for all σ′ ∈ Σ(h′).
Choosing y := ϕ(x), due to analyticity we may choose V so small that

ϕσ(V ) ⊂ V ′ for all σ ∈ Σ(h). To be explicit, suppose that h = {h1, . . . , hN}, h′ =
{h′

1, . . . , h
′
N ′}. We define h̃kσ := h′

k ◦ ϕσ, k = 1, . . . , N ′, σ ∈ Σ(h) on V and
h̃k := hk, k = 1, . . . , N on V . Let h̃ := {Hk,σ} ∪ {Hk}. An element σ̃ ∈ Σ(h̃) is
then of the form σ̃ = (σ∗(σ̃), σ(σ̃)) where

σ∗(σ̃) = {σ̃k,σ1}k=1,...,N ′; σ1∈Σ(h), σ(σ̃) = {σ̃k}k=1,...,N (20.1.2)

We also set

σ′(σ̃)k := σ̃k,σ(σ̃) (20.1.3)

Then

Vh̃,σ̃ = {x ∈ V : {h̃kσ1(x)σ∗(σ̃)k,σ10}, {h̃k(x)σ(σ̃)k0}}
⊂ {x ∈ V : {h̃k(x)σ(σ̃)k0}} = {x ∈ V : {hk(x)σ(σ̃)k0}}
= Vh,σ(σ̃) (20.1.4)
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Next, using the fact that ϕσ(V ) ⊂ V ′ for all σ ∈ Σ(h), in particular for σ(σ̃)

ϕσ(σ̃)(Vh̃,σ̃) = {ϕσ(σ̃)(x) ∈ V ′ : {h̃kσ1(x)σ∗(σ̃)k,σ10}, {h̃k(x)σ(σ̃)k0}}
⊂ {ϕσ(σ̃)(x) ∈ V ′ : h̃kσ1(x)σ∗(σ̃)k,σ10 ∀k = 1, . . . , N ′; σ1 ∈ Σ(h)}
⊂ {ϕσ(σ̃)(x) ∈ V ′ : h̃kσ(σ̃)(x)σ∗(σ̃)k,σ(σ̃)0 ∀k = 1, . . . , N ′}
= {ϕσ(σ̃)(x) ∈ V ′ : h′

k(ϕσ(σ̃)(x))σ′(σ̃)k0 ∀k = 1, . . . , N ′}
⊂ {y ∈ V ′ : h′

k(y)σ
′(σ̃)k0 ∀k = 1, . . . , N ′} = V ′

h′,σ′(σ̃) (20.1.5)

where in the third step we reduced the number of restrictions from all σ1 ∈ Σ(h)
to only one, namely σ1 := σ(σ̃) and in the last step we used again that ϕσ(V ) ⊂
V ′. We conclude that

ϕ−1(V ′
h′,σ′(σ̃)) = {x ∈ U : ϕ(x) ∈ V ′

h′,σ′(σ̃)}
⊃ {x ∈ U : ϕ(x) ∈ ϕσ(σ̃)(Vh̃,σ̃)}
= {x ∈ U : ϕ(x) ∈ ϕ(Vh̃,σ̃)} = Vh̃,σ̃ (20.1.6)

where in the second step we used the inclusion (20.1.5) while in the third we
used the inclusion (20.1.4) and the fact that ϕσ(σ̃) = ϕ on Vh,σ(σ̃).

We now want to show that the s.a. partition P (V, h̃) is compatible with f at
x. We set

fσ̃ := f ′
σ′(σ̃) ◦ ϕσ((̃σ)) (20.1.7)

on V . This is analytic as a composition of analytic maps and makes sense due
to ϕσ(V ) ⊂ V ′. Then for x ∈ Vh̃,σ̃

fσ̃(x) = f ′
σ′(σ̃)(ϕσ̃(x)) = f ′

σ′(σ̃)(ϕ(x)) = f ′((ϕ(x)) = f(x) (20.1.8)

where we used the inclusion (20.1.4) in the second step (i.e., also x ∈ Vh,σ(σ̃))
and in the third we used the inclusion (20.1.7) (i.e., also ϕ(x) ∈ V ′

h′,σ′(σ̃)). �

Theorem 20.1.5. Suppose that ϕ : U → U ′ with U,U ′ ⊂ Rn is a s.a. bijection
and that for all x ∈ U there is a s.a. partition P (V, h) compatible with ϕ at
x subject to the condition that the functions ϕσ on V are analytic injections
ϕσ : V → U ′ with analytic inverse ϕ−1

σ : ϕσ(V ) → V . Then ϕ−1 is s.a.

Proof: Suppose y = ϕ(x) and P (V, h) is a s.a. partition compatible with ϕ at
x according to the assumptions. Set V ′ := ∩σ∈Σ(h)ϕσ(V ), then all the ϕ−1

σ are
well-defined on V ′. Let us partition V ′ by the sets ϕ(Vh,σ) ∩ V ′, σ ∈ Σ(h). Then
ϕ(Vh,σ) ∩ V ′ ⊂ ϕ(Vh,σ) = ϕσ(Vh,σ) ⊂ ϕσ(V ) and thus by assumption ϕ−1 = ϕ−1

σ

on ϕ(Vh,σ) ∩ V ′.
It remains to show that the ϕ(Vh,σ) ∩ V ′ define (or can be refined to be) a s.a.

partition. To that end consider the functions h′
k,σ := hk ◦ ϕ−1

σ : V ′ → V ; σ ∈
Σ(h) and h = {h1, . . . , hN}. The functions h′

k,σ are s.a. by assumption and

ϕ(Vh,σ) ∩ V ′ = {ϕ(x) ∈ V ′;hk(x)σk0; k = 1, . . . , N}
⊂ {ϕσ(x) ∈ V ′;h′

kσ(ϕσ(x))σk0; k = 1, . . . , N} = V ′
h◦ϕ−1

σ ,σ
(20.1.9)
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where in the second step we used V ′ ⊂ ϕσ(V ) for all σ ∈ Σ(h). Now consider
the s.a. partition P (V ′, h′). Then (20.1.9) reveals that ϕ(Vh,σ) ∩ V ′ is a union of
the V ′

h′,σ′ and we have ϕ−1 = (ϕ−1)σ′ on V ′
h′,σ′ where (ϕ−1)σ′ := ϕ−1

σ whenever
V ′
h′,σ′ ⊂ ϕ(Vh,σ) ∩ V ′. �

Corollary 20.1.6. If ϕ : U → U ′ is a s.a. Cm, m > 0 diffeomorphism between
U,U ′ ⊂ Rn then ϕ−1 is s.a.

Proof: Since ϕ is an injection we know that its differential Dϕ is nowhere degen-
erate on U . Given a s.a. partition P (V, h) compatible with ϕ at x, Dϕ is nowhere
degenerate on V and thus on every Vh,σ. Since ϕσ is analytic on V and coincides
with ϕ on Vh,σ we see that Dϕσ is nowhere degenerate at least on Vh,σ (and
thus a neighbourhood thereof) and therefore is injective and has an analytic
inverse there by the inverse function theorem. However, the Vh,σ do not neces-
sarily coincide with V and some of the Vh,σ may not even contain the point x.
Hence we cannot apply Theorem 20.1.5 , which requires that all the Dϕσ are
non-degenerate on all of V .

Consider all those σ such that the closure of V (H,σ) contains x. For those σ

let Sσ be the set of points such that Dϕσ is non-degenerate and let V ′ be the
intersection of these S. Then V ′ contains x and for the chosen σ we have that
Dϕσ is non-degenerate. Moreover, the sets V ′

h,σ′ = Vh,σ′ ∩ V ′ are empty when σ′

does not belong to those σ chosen and on V ′
h,σ we still have ϕ = ϕσ otherwise.

We may now apply Theorem 20.1.5. �

Definition 20.1.7. A semi-semianalytic (s.s.a.) partition P (U, h) of an open
set U is analogous to a s.a. partition, just that the functions h are not required
to be analytic, they just have to be s.a.

Of course, in order to define a s.s.a. partition, one needs s.a. partitions in order
to define the s.a. functions h entering P (U, h). Recall that a partition is called
finer than another one if every element of the coarser partition is a finite union
of elements of the finer partition.

Lemma 20.1.8. Let a s.s.a. partition P (U, h) of open U ⊂ Rn be given. Then
each x ∈ U has a neighbourhood V admitting a s.a. partition which is finer than
the restriction P (V, h) of P (U, h).

Proof: Let h = {h1, . . . , hN}. Since hk is s.a. we find, for each x ∈ U , a s.a.
partition P (Vk, H

(k)) compatible with hk at x. We set V := ∩KVk, H := ∪kh
(k).

Then P (V,H) is a s.a. partition compatible with all the hk at x. In particular,
for σ = (σ1, . . . , σn) ∈ Σ(H) with σk ∈ Σ(H(k)) we find VH,σ = ∩kVH(k),σk

, hence
(hk)σ = (hk)σk

= hk on VH,σ.
Let

h′ := H ∪σ∈Σ(H) hσ, hσ := {(hk)σ, k = 1, . . . , N} (20.1.10)
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Given σ′ ∈ Σ(h′) set σ(σ′) := σ′
|H ∈ Σ(H) and σ∗

σ1
= σ′

|hσ1
∈ Σ(hσ1) for σ1 ∈

Σ(H). Furthermore, we define σ̃(σ′) := σ∗(σ(σ′)) ∈ Σ(h). Then

Vh′,σ′ = {x ∈ V : H(x)σ(σ′)0, hσ1(x)σ∗
σ1

0 ∀σ1 ∈ Σ(H)}
= VH,σ(σ′) ∩ {x ∈ V : hσ1(x)σ∗

σ1
0 ∀σ1 ∈ Σ(H)}

⊂ VH,σ(σ′) ∩ {x ∈ V : hσ(σ′)(x)σ∗
σ(σ′)0}

= VH,σ(σ′) ∩ {x ∈ V : h(x)σ∗
σ(σ′)0}

⊂ {x ∈ V : h(x)σ̃(σ′)0} = Vh,σ̃(σ′) (20.1.11)

where in the third step we dropped the conditions involving all σ1 other than
σ1 = σ(σ′), in the fourth we used the fact that hσ = h on VH,σ and in the fifth
the definition of σ̃(σ′). It follows that every element of P (V, h′) is contained in
an element of P (V, h). �

Definition 20.1.9. A s.a. partition is called an analytic partition provided that
every element of the partition is a connected, analytic submanifold.

We now state without proof a deeper result about s.a. partitions which will
be crucial for the subsequent considerations. See, for example, proposition 2.10
in [889] for a proof.

Theorem 20.1.10. For every s.a. partition P (U, h) of an open U ⊂ Rn and
every x ∈ U there exists an open neighbourhood V of x which admits an analytic
partition finer than P (V, h).

20.2 Semianalytic manifolds and submanifolds

Let there be given a differential manifold M of class Cm, m > 0 and fix a com-
patible analytic structure. Recall that an atlas of M consists of a system (UI , xI)
of charts where the UI define a locally finite, open cover of M and xI : UI → Rm

is a homeomorphism.

Definition 20.2.1

(i) An atlas (UI , xI) is called s.a. provided that xJ ◦ x−1
I : xI(UI ∩ UJ) ⊂

Rn → xJ(UI ∩ UJ) ⊂ Rn is s.a. in the sense of the previous section for all
I, J with UI ∩ UJ �= ∅.

(ii) Two s.a. atlases are called compatible if their union is again s.a. A s.a.
structure on M is an equivalence class of compatible s.a. atlases. A s.a.
manifold is a differential manifold of class Cm, m > 0 with a s.a. structure.

(iii) A map f : M → M ′ between s.a. manifolds is called s.a. if x′
I′ ◦ f ◦ x−1

I

is s.a. for all pairs of indices I, I ′ for which the composition is defined. In
particular, if M ′ = Rn′

with its natural s.a. structure then we say that f is
a s.a. function on M .
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(iv) An n′-dimensional s.a. submanifold of M , possibly with boundary, is a sub-
set S such that for all x ∈ S there exists a s.a. chart (UI , xI) of M with
x ∈ UI such that

xI(S ∩ UI) = {(x1, . . . , xn) ∈ Rn : x1 = . . . = xn−n′

= 0; 0σ1x
n−n′+1 < 1, . . . , 0σn′xn < 1} (20.2.1)

where σk ∈ {<} if S has no boundary and σk ∈ {<,≤} if it does have a
boundary.

All of these definitions and results were to prepare for the following key result,
which will be crucial in our applications.

Theorem 20.2.2. Let S1, S2 be two s.a. submanifolds of a s.a. manifold M .
Then, for every p ∈ S1 ∩ S2, there exists an open neighbourhood V of x in M

such that V ∩ S1 ∩ S2 is a finite, disjoint union of connected s.a. submanifolds.

Proof: Let p ∈ S1 ∩ S2. Since S1, S2 are s.a. submanifolds of M we find charts
(Uj , xj), j = 1, 2 of M with p ∈ Uj such that xj(Sj ∩ Uj) has the form (20.2.1).
Notice that the set xj(Sj ∩ Uj) has precisely the form Vhj ,σj

for some open subset
of Rn containing the cube [0, 1]n, for certain collections hj of analytic functions
which are just the xk, k = 1, . . . , n and certain σj ∈ Σ(hj) displayed in (20.2.1).
Let U = U1 ∩ U2 then

x2(S1 ∩ S2 ∩ U) = x2((S1 ∩ U1) ∩ (S2 ∩ U2)) = x2((S1 ∩ U1)) ∩ x2(S2 ∩ U2)

=
[
x2 ◦ x−1

1

]
(x1(S1 ∩ U1)) ∩ x2(S2 ∩ U2) (20.2.2)

where in the first step we used the fact that x2(A ∩B) = x2(A) ∩ x2(B) since
x2 is a bijection.

Since M is s.a. the map ϕ := x2 ◦ x−1
1 is a s.a. map Rn → Rn and so is its

inverse by definition of a s.a. manifold. Thus x2(S1 ∩ S2 ∩ U) is of the form

ϕ(Vh1,σ1) ∩ Vh2,σ2 = V ′
h1◦ϕ−1,σ1

∩ V ′
h2,σ2

= V ′
(h1◦ϕ−1,h2),(σ1,σ2)

=: V ′
h,σ (20.2.3)

where V ′ is any open set containing both V, ϕ(V ).
Since ϕ is only s.a., the functions h defined in (20.2.3) are only s.a. and thus

only define a s.s.a. partition P (V ′, h) of V ′. However, due to Lemma 20.1.8 , for
each x ∈ V ′ we find a neighbourhood Ṽx of x in Rn which admits a s.a. partition
finer than P (Ṽx, h). Choosing x = x2(p) and replacing V ′ by Ṽx we see that V ′

admits a s.a. partition P (V ′, h′) for certain analytic functions h′. Next, due to
Theorem 20.1.10 , for every x ∈ V ′ we find a neighbourhood V ′

x which is a finite
partition of V ′

x by connected, analytic submanifolds of Rn and which is finer than
P (V ′

x, h
′). Restricting V ′ to V ′

x where x = x2(p) it follows that all of V ′ admits
a finite partition by analytic, connected submanifolds of Rn, that is, they are
of the form (20.2.1) again. The inverse image of the final V ′ by x2 then shows
that S1 ∩ S2 ∩W, W := x−1

2 (V ′) admits a finite partition by connected and s.a.
submanifolds of M . �
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Notice that if S1 and S2 are contained in a compact subset of M then so is
S1 ∩ S2. Thus, using an open covering of S1 ∩ S2 by the sets S1 ∩ S2 ∩W there
must be a finite subcover and the result of the theorem applies to all of S1 ∩ S2.

Two particular cases of s.a. submanifolds play a special role.

Definition 20.2.3

(i) An edge e is a connected, oriented, one-dimensional s.a. submanifold of M
with a two-point boundary.

(ii) A face S is a connected s.a. submanifold of M of co-dimension one without
boundary whose normal bundle is equipped with an orientation.

The normal bundle of a submanifold N of M is the bundle with base N

and fibres above p ∈ N given by the quotient spaces Tp(M)/Tp(N). The latter
condition just means that at each p ∈ S the one-dimensional quotient space
Tp(M)/Tp(S) can be equipped with a smooth (i.e., constant) assignment of a
direction (‘up’ or ‘down’). Theorem 20.2.2 applied to edges and faces contained
in compact sets shows that the intersection of edges is a finite collection of edges
and isolated points, the intersection of edges and faces is a finite collection of
edges and isolated points and the intersection of faces is a finite collection of
faces, s.a. submanifolds of co-dimension two, . . . , edges and isolated points. This
is what is crucial for our applications.

Theorem 20.2.4. Let K ⊂ M be a compact subset of a s.a. manifold M . By
compactness there exists a finite open cover U1, . . . , UN of K. For every such
cover there are s.a. functions eI : M → R with supp(eI) ⊂ UI and such that∑N

I=1 eI = 1 on K. In other words, every finite open cover has a subordinate
s.a. partition of unity.

The proof follows almost that for the case of a Cm manifold: using charts, one
employs smooth functions of the form exp(−/||x||2) where ||x|| is the Euclidean
norm on Rn. These functions are actually analytic except at the point x = 0
where they are C∞. The rest is standard (see, e.g., [234]) and will be omitted.
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Elements of fibre bundle theory

This chapter recalls the most important structural elements of the theory of
connections and holonomies on principal fibre bundles and follows closely the
excellent exposition in [337] to which the reader is referred for more details. We
will abuse slightly the notation in this chapter compared with Chapter 19 in
that x will denote a point in the base manifold σ and not its coordinates, while
p denotes a point in the total space P of the fibre bundle.

21.1 General fibre bundles and principal fibre bundles

Definition 21.1.1. A fibre bundle over a differential manifold σ with atlas
{UI , ϕI} is a quintuple (P, σ, π, F,G) consisting of a differentiable manifold
P (called the total space), a differentiable manifold σ (called the base space),
a differentiable surjection π : P → σ, a differentiable manifold F (called the
typical fibre) which is diffeomorphic to every fibre π−1(x), x ∈ σ and a Lie
group G (called the structure group) which acts on F on the left, λ : G × F →
F ; (h, f) �→ λ(h, f) =: λh(f), λh ◦ λh′ = λhh′ , λh−1 = (λh)−1. Furthermore, for
every UI there exist diffeomorphisms φI : UI × F → π−1(UI), called local trivial-
isations, such that φIx : F → Fx := π−1(x); f �→ φIx(f) := φI(x, f) is a diffeo-
morphism for every x ∈ UI . Finally, we require that there exist maps hIJ : UI ∩
UJ �= ∅ → G, called transition functions, such that for every x ∈ UI ∩ UJ �= ∅ we
have φJx = φIx ◦ λhIJ (x).

Conversely, given σ, F,G and the structure functions hIJ(x) with given left
action λ on F we can reconstruct P, π, φI as follows: define P ′ = ∪IUI × F

and introduce an equivalence relation ∼ by saying that (x, f) ∈ UI × F and
(x′, f ′) ∈ UJ × F for UI ∩ UJ �= ∅ are equivalent iff x′ = x and f ′ = λhIJ (x)(f).
Then P = P ′/ ∼ is the set of equivalence classes [(x, f)] with respect to this
equivalence relation with bundle projection π([(x, f)]) := x and local trivialisa-
tions φI(x, f) := [(x, f)].

Definition 21.1.2. Two bundles defined by the collections of tuples {(UI , φI)}I
and {(U ′

J , φ
′
J)}J respectively are said to be equivalent if the combined collection

of tuples {(UI , φI), (U ′
J , φ

′
J)}I,J defines a bundle again. A bundle automorphism

is a diffeomorphism of P that maps whole fibres to whole fibres. Equivalently
then, two bundles are equivalent if there exists a bundle automorphism which
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reduces to the identity on the base space. A bundle is really an equivalence class
of bundles.

Notice that the transition functions satisfy the cocycle condition hIJhJKhKI =
1G over UI ∩ UJ ∩ UK and hIJ = h−1

JI over UI ∩ UJ . It is crucial to realise that
in general hIJ is not a coboundary, that is, there are in general no maps hI :
UI → G such that hIJ(x) = hI(x)−1hJ(x).

Definition 21.1.3. A fibre bundle is called trivial if its transition function cocy-
cle is a coboundary.

The reason for this notation is that trivial bundles are equivalent to direct
product bundles σ × F : given transition functions φI , it may be checked that
the transition functions φ′

I(x, f) := φI(x, λhI(x)−1(f)) are actually independent
of the label I and thus there is only one of them. Therefore the bundle is diffeo-
morphic with σ × F .

Definition 21.1.4. A local section of P is a smooth map sI : UI → P such that
π ◦ sI = idUI

. A cross-section is a global section, that is, defined everywhere on
σ.

Definition 21.1.5. A principal G bundle is a fibre bundle where typical fibre
and structure group coincide with G. On a principal fibre bundle we may define
a right action ρ : G × P → P ; ρh(p) := φI(π(p), hI(p)h) for p ∈ π−1(UI) where
hI : P → G is uniquely defined by (π(p) = xI(p), hI(p)) := φ−1

I (p). Since G acts
transitively on itself from the right, this right action is obviously transitive in
every fibre and fibre-preserving. sφI (x) := φI(x, 1G) is called the canonical local
section. Conversely, given a system of local sections sI one can construct local
trivialisations φs

I(x, h) := ρh(sI(x)), called canonical local trivialisations.

The right action on a principal bundle is globally defined since
φI(π(p), hI(p)h) = φJ(π(p), hJ(p)h) for any π(p) ∈ UI ∩ UJ . Notice the iden-
tity p = ρhI(p)(s

φ
I (π(p))) = φI(π(p), hI(p)) = φIπ(p)(hI(p)) for any p ∈ π−1(UI).

If UI ∩ UJ �= ∅ and p ∈ π−1(UI ∩ UJ) this leads to ρhI(p)(s
φ
I (π(p))) =

ρφhJ (p)(s
φ
J(π(p))). Using the fact that ρ is a right action we conclude sφJ(π(p)) =

ρhI(p)hJ (p)−1(sφI (π(p))). Since the left-hand side does not depend any longer on
the point p in the fibre above x = π(p) we conclude that we have a G-valued
function hIJ : UI ∩ UJ → G, x �→ [hJ(p)−1hI(p)]p∈π−1(x) where the right-hand
side is independent of the point in the fibre. The functions hIJ are actually the
structure functions of P : by definition we have φIx(hI(p)) = φJx(hJ(p)), thus
hI(p) = (φ−1

Ix ◦ φJx)(hJ(p))λhIJ (x)(hJ(p)) = hIJ(x)hJ(p), which also shows that
the left action in P reduces to left translation in the fibre coordinate.

It is central to all of fibre bundle theory that the transition functions
hIJ(x) can in general not be written as a cocycle hJ(x)−1hI(x) for functions
hI : UI → G unless the bundle is trivial, while it is true that there exist func-
tions hI : P → G, which we denote by the same label for simplicity, such that
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hIJ(x) = [hJ(p)−1hI(p)]p∈π−1(x) is independent of the point p ∈ π−1(x) in the
fibre above x. One might think that one could just define hI(x) := hI(sI(x))
using a local section. However, this would lead with p = sI(x) ∈ π−1(x) to
hIJ(x) = hJ(sI(x))−1hI(sI(x)) �= hJ(sJ(x))−1hI(sI(x)), which is not of the
required form.

In a principal G-bundle it is easy to see, using transitivity of the right action of
G, that triviality is equivalent with the existence of a global section. This is not
the case for vector bundles which always have the global section sI(x) = φI(x, 0)
but may have non-trivial transition functions.

Definition 21.1.6. A vector bundle E is a fibre bundle whose typical fibre F is a
vector space. The vector bundle associated with a principal G-bundle P (where
G is the structure group of E) under the left representation τ of G on F ,
denoted E = P ×τ F , is given by the set of equivalence classes [(p, f)] =
{(ρh(p), τ(h−1)f); h ∈ G} for (p, f) ∈ P × F . The projection is given by
πE([(p, f)]) := π(p) and local trivialisations are given by ψI(x, f) = [(sI(x), f)]
since [(ρh(sI(x)), f)] = [(sI(x), τ(h)f)] = [(sI(x), f ′)]. Transition functions
result from u = [sJ(π(u)), fJ(u)] = [ρhIJ (π(u))(sI(π(u)), fJ(u))] = [(sI(π(u)),
τ(hIJ(π(u)))fJ(u))] = [(sI(π(u)), fI(u))] and are thus given by τ(ρIJ(x)).

Conversely, given any vector bundle E we can construct a principal G-bundle
P such that E is associated with it by going through the above-mentioned recon-
struction process and by using the same structure group (with τ as the defining
representation) acting on the fibre G by left translations and the same transition
functions. A vector bundle is then called trivial if its associated principal fibre
bundle is trivial. Notice that the equivalence classes in Definition 21.1.6 are
with respect to the whole group G over each point x ∈ σ while the transition
functions used in the reconstruction process generically comprise only a discrete
subset of G over each point in σ, namely at most as many as there are pairs I, J
such that x ∈ UI ∩ UJ .

21.2 Connections on principal fibre bundles

Every principal fibre bundle P is naturally equipped with a vertical distribution,
that is, an assignment of a subspace Vp(P ) of the tangent space Tp(P ) at each
point p of P that is tangent to the fibre above π(p). (Notice that distributions
are not necessarily integrable, i.e., they do not form the tangent spaces of a
submanifold of P .) These vertical distributions are generated by the fundamental
vector fields vY associated with an element Y ∈ Lie(G) of the Lie algebra of G,
which are defined through their action on functions f ∈ C∞(P ):

(vY [f ])(p) :=
(

d

dt

)

=0

f(ρexp(tY )(p)) (21.2.1)
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where exp : Lie(G) → G denotes the exponential map. The map v : Lie(G) →
Vp(P ); Y → vY is a Lie agebra homomorphism by construction.

The complement Hp(P ) of Vp(P ) in Tp(P ) is called the horizontal distribution
and is one way to define a connection on P . More precisely

Definition 21.2.1. A connection on a principal G-bundle P is a distribution of
horizontal subspaces Hp(P ) of Tp(P ) such that

(a) Hp(P ) ⊕ Vp(P ) = Tp(P ) (i.e., Hp(P ) ∩ Vp(P ) = {0}, Hp(P ) ∪ Vp(P ) =
Tp(P )).

(b) If v(p) = vH(p) + vV (p) denotes the unique split of a smooth vector field into
its horizontal and vertical components respectively, then the components are
smooth vector fields again.

(c) Hρh(p)(P ) = (ρh)∗Hp(P ).

Condition (c) tells us how horizontal subspaces in the same fibre are related.
Here ((ρh)∗v)[f ] = v[(ρh)∗f ] denotes the push-forward of a vector field and
(ρh)∗f = f ◦ ρh the pull-back of a function.

An equivalent, less geometrical definition of a connection consistent with Def-
inition 21.2.1 is as follows:

Definition 21.2.2. A connection on a principal G-bundle P is a Lie algebra-
valued one-form ω on P which projects Tp(P ) into Vp(P ), that is

(a) ω(vY ) = Y

(b) (ρh)∗ω = Adh−1(ω)
(c) Hp(P ) = {v ∈ Tp(P ); ivω = 0}.

Here Ad : G × Lie(G) → Lie(G); (x, Y ) �→ hY h−1 denotes the adjoint action
(or adjoint representation) of G on its own Lie algebra and iv denotes the con-
traction of vector fields with forms. To see that both definitions are equivalent
we notice that

((ρh)∗ω)p(vp) = (ω)ρh(p)((ρh)∗vp) = (Adh−1ω)p(vp) = h−1ωp(vp)h (21.2.2)

so that vp ∈ Hp(P ) implies (ρh)∗vp ∈ Hρh(p)(P ) indeed, demonstrating that con-
ditions (b), (c) of Definition 21.2.2 imply condition (c) of Definition 21.2.1 . Con-
dition (a) is an additional requirement fixing an otherwise free constant factor
in ω.

For practical applications it is important to have a coordinate expression for
ω. To that end, let us express ω in a local trivialisation p = φI(x, h). Introducing
matrix element indices A,B,C, . . . for group elements h = (hAB) we have

vμY (p) =
(
∂φμ

I (x, h)
∂hAB

(hY )AB

)

φI(x,h)=p

(21.2.3)

where pμ denotes the coordinates of p. Recalling the definition (xI(p) =
π(p), hI(p)) := φ−1

I (p) we claim that

(ωI(p))AB = AdhI(p)−1(π∗AI)(p)AB +
(
hI(p)−1

)
AC

dhI(p)CB (21.2.4)
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where AI(x) is a Lie(G)-valued one-form on UI . Let us check that properties (a),
(b) and (c) are satisfied.

(a) We have (π∗AI)(vY )p = AI(π∗vY )π(p) but (π∗vY )μ(x) = [∂πμ(φI(x, h))/
∂hAB ](hY )AB = 0 since π(φI(x, h)) = x is independent of the fibre coordinate
h. On the other hand

(hI(p)−1dhI [vY ]p)AB

= hI(p)−1
AC [∂hI(p)CB/∂p

μ][∂φμ(x, h)/∂hDE(hY )DE ]p=φI(x,h)

= hI(p)−1
AD(hI(p)Y )DB = YAB (21.2.5)

where the hAB , A,B = 1, . . . ,dim (G) could be treated as independent coordi-
nates (although, depending on the group, this may not be the case) because of
the chain rule. More precisely,

hI(p)−1dhI [vY ]p = hI(p)−1
[
∂hI(p)/∂pμ

]
[(

d

dt

)

t=0

φμ
(
x, hetY

)
]

=φI(x,h)

= hI(p)−1

(
d

dt

)

t=0

hI(p)etY = Y (21.2.6)

(b) We have ρh(p) = φI(π(p), hI(p)h) = φI(π(p), hI(ρh(p))) since ρ is fibre-
preserving, whence hI(ρh(p)) = hI(p)h. Since (π∗AI) depends only on π(p) we
have (π∗AI)(ρh(p)) = (π∗AI)(p). Finally, since ρ∗d = dρ∗ we easily find

(ρ∗hω)(p) = AdhI(p)h(π∗AI)(p) + (hI(p)h)−1dhI(p)h = ω(ρh(p)) = Adh−1(ω(p))
(21.2.7)

as claimed.
(c) Was already checked above.

Remark: It is easy to check from the above formulae that in local coordinates a
horizontal vector field has the form

((φI)∗vH)(x, h) = va(x)
[

∂

∂xa
− [AaI(x)h]AB

∂

∂hAB

]

where v is a vector field on σ. This gives rise to the notion of parallel transport,
see below.

Consider the pull-back of ω to σ by the canonical local section sφI (x) =
φI(x, 1G). Obviously hI(sφ(x)) = 1G whence ((sφI )∗dhI)(x) = d1G = 0 and
((sφI )∗π∗AI)(x) = ((π ◦ sφI )∗AI)(x) = AI(x) since π ◦ sI = idσ for any section.
We conclude

Definition 21.2.3. The so-called connection potentials

AI =
(
sφI

)∗
ω (21.2.8)

are nothing else than the pull-back of the connection by local sections.

By its very defintion, the connection ω is globally defined, therefore the above
coordinate formula must be independent of the trivialisation. This implies the
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following identity between the potentials AI(x)

π∗AI = π∗[AdhIJ
AJ − dhIJh

−1
IJ

]
(21.2.9)

as one can easily verify using (π∗h)IJ(p) = hI(p)hJ(p)−1. We can also pull this
identity back to σ and obtain

AI = AdhIJ
(AJ) − dhIJh

−1
IJ (21.2.10)

which is called the transformation behaviour of the connection potentials under
a change of section (or trivialisation or gauge). Since the bundle P can be recon-
structed from G, σ and the transition functions hIJ(x), we conclude that a con-
nection can be defined uniquely by a system of pairs consisting of connection
potentials and local sections (AI , sI) respectively, subject to the above transfor-
mation behaviour.

Definition 21.2.4. Given a principal G-bundle P over σ and a curve c in σ we
define a curve c̃ to be the horizontal lift of c provided that

(i) π(c̃) = c.
(ii) dc̃(t)/dt ∈ Hc̃(t)(P ) for any t in the domain [0, 1] of the parametrisation of

c.

We now show that the lift is actually unique: we know that c̃(t) =
φI(c(t), hcI(t)−1) = ρhcI(t)−1(sφI (c(t))) for some function hcI(t) (to be solved for)
when c(t) lies in the chart UI . It follows that

dc̃(t)/dt = [∂φI/∂x
aċa(t) + ∂φI/∂hAB(ḣcI(t)−1)AB ](φI(x, h)) = c(t̃) (21.2.11)

That this vector is horizontal along c̃(t) means that ω[ ˙̃c]c̃(t) = 0. Using ω =
AdhI

−1(π∗AI) + h−1
I dhI we find

ω[ ˙̃c]c̃(t) = hcI(t)
[
AIa(c(t))hcI(t)−1ċa(t) +

d

dt

(
hcI(t)−1

)]
(21.2.12)

implying the so-called parallel transport equation (dropping the index I)

ḣcI(t) = hcI(t)AIa(c(t))ċa(t) (21.2.13)

which is an ordinary differential equation of first order and therefore has a unique
solution by the usual existence and uniqueness theorems if we provide an ini-
tial datum c̃(0). The point c̃(1) is called the parallel transport of c̃(0). Since
the point c(1) in the base is already known, the essential information is con-
tained in the group element hcI = hcI(1), which we will also refer to as the
holonomy of AI along c. It should be noted, however, that while c̃(1) is glob-
ally defined, hcI depends on the choice of the local trivialisation. In fact, under
a change of trivialisation AI(x) �→ AJ(x) = −dhJI(x)h−1

JI (x) + AdhJI(x)(AI(x))
we obtain hcJ = hJI(c(0))hcIhJI(c(1))−1 which may be checked by inserting
these formulae into the parallel transport equation with x, c(1) replaced by c(t)
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and relying on the uniqueness property for solutions of ordinary differential equa-
tions. It is easy to check that if c is within the domain of a chart, then an analytic
formula for hc(A) is given by

hc(A) = Pe
∫
c
A = 1 +

∞∑

n=1

∫ 1

0

dtn

∫ tn

0

dtn−1 . . .

∫ t2

0

dt1A(t1) . . . A(tn)

(21.2.14)

where A(t) = Aj
a(c(t))ċ

a(t)τj/2, τj/2 is a Lie algebra basis and P denotes the
path ordering symbol (the smallest path parameter to the left).

Definition 21.2.5. Let V be a vector space and ψ ∈ ∧n(P ) ⊗ V be a vector-
valued n-form on P . The covariant derivative ∇ψ of ψ is the element of∧n+1(P ) ⊗ V defined uniquely by

(∇ψ)p[v1, . . . , vn+1] := dψp

[
vH1 , . . . , vHn+1

]
(21.2.15)

where vk ∈ Tp(P ), vHk is its horizontal component and d is the ordinary exterior
derivative.

This definition can be applied to the connection one-form where the vector
space is given by V = Lie(G).

Definition 21.2.6. The covariant derivative of the connection one-form ω ∈∧1(P ) ⊗ Lie(P ) is called the curvature two-form Ω = ∇ω of ω.

The curvature inherits from ω the property

ρ∗hΩ = Adh−1(Ω) (21.2.16)

To see this, notice that the property (ρh)∗Hp(P ) = Hρh(p)(P ) of the horizontal
subspaces means that (ρh)∗vHp ∈ Hρh(p)(P ) for any v ∈ Tp(P ). Since every
element of Hρh(p)(P ) can be obtained this way and (ρh)∗ is a bijection we
conclude [(ρh)∗vp]H = (ρh)∗vHp . Thus

(ρ∗hΩ)p(up, vp) = Ωρh(p)((ρh)∗up, (ρh)∗vp) = dωρh(p)([(ρh)∗up]H , [(ρh)∗vp]H)

= dωρh(p)

(
(ρh)∗uH

p , (ρh)∗vHp
)

= (dρ∗hω)p
(
uH
p , vHp

)

= Adh−1(dωp)
(
uH
p , vHp

)
= Adh−1(Ωp)(up, vp) (21.2.17)

Definition 21.2.7. An element ψ ∈ ∧n(P ) ⊗ F is said to be of type (τ, F ) (or
equivariant under ρ) for some representation τ of G on F iff ρ∗hψ = τ(h)ψ.

It follows that the curvature Ω is of type (Ad,Lie(G)).

Definition 21.2.8. Let ψ ∈ ∧m(P ) ⊗ Lie(G), ξ ∈ ∧n(P ) ⊗ Lie(G) then

[ψ, ξ] := ψ ∧ ξ − (−1)mnξ ∧ ψ = ψj ∧ ξk[τj , τk] ∈
m+n∧

(P ) ⊗ Lie(G) (21.2.18)

where τj is some basis of the Lie algebra of G.
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Theorem 21.2.9 (Cartan structure equation)

Ω = dω + ω ∧ ω (21.2.19)

Proof: Using the split u = uH + uV it is clear that ω ∧ ω(u, v) = ω ∧ ω(uV , vV )
because ωp annihilates Hp(P ). Notice that [ω, ω] = 2ω ∧ ω.

Likewise we write

dω(u, v) = dω(uH , vH) + dω(uH , vV ) + dω(uV , vH) + dω(uV , vV ) (21.2.20)

and use the differential geometric identity dω(u, v) = u[ivω] − v[iuω] − i[u,v]ω

with (iuψ)(v1, . . . , vn−1) :=
∑n

k=1(−1)k+1ψ(v1, . . . , vk−1, u, vk+1, . . . , vn) for the
contraction of an n-form with a vector field.

To evaluate these four terms in (21.2.20) we need two preliminary results:

1. We can always find X,Y ∈ Lie(G) such that uV = vX , vV = vY are displayed
as fundamental vector fields. It is easy to verify that [uV , vV ] = [vX , vY ] =
v[X,Y ] ∈ Vp(P ) is a Lie algebra homomorphism. We will exploit that ω(uV ) =
X, etc. is a constant.

2. By definition of the Lie bracket of vector fields [uV , vH ] =
(d/dt)t=0[ρhuV (t)]∗v

V ∈ Hp(P ) since the push-forward by the right action

preserves horizontal vector fields (huV

(t) denotes the integral curve of uV ).
We will exploit that ω(wH) = 0 for any horizontal vector field wH .

Using these two properties it is immediate that dω(uH , vV ) = dω(uV , vH) = 0
and that dω(uV , vV ) = −ω([vX , vY ]) = −[X,Y ]. On the other hand

ω ∧ ω(uV , vV ) = ivV iuV ω ∧ ωivV [ω(uv)ω − ωω(uv)] = [ω(vX), ω(vY )] = +[X,Y ]

Therefore we are left with

[dω + ω ∧ ω](u, v) = dω(uH , vH) = Ω(u, v) (21.2.21)

�

Corollary 21.2.10 (Bianchi identity)

∇Ω = 0 (21.2.22)

To prove this, use the Cartan structure equation to infer dΩ = dω ∧ ω − ω ∧ dω =
Ω ∧ ω − ω ∧ Ω and use ω(uH) = 0 again.

Definition 21.2.11. The local field strength FI := 2s∗IΩ = 2[dAI + AI ∧AI ] is
twice the pull-back by local sections of the curvature two-form.

Using the transformation behaviour of the connection potential under a
change of trivialisation it is easy to verify the corresponding change of the field
strength is given by

FJ(x) = AdhJI(x)(FI(x)) (21.2.23)
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whence traces of polynomials in the field strength, used in classical action
principles of gauge field theories, are globally defined (gauge-invariant).

Definition 21.2.12. Let E = P ×τ F be a vector bundle associated with P ,
c a curve in σ and c̃ its horizontal lift which we display as above as c̃(t) =
ρhcI(t)−1(sφI (c(t))). A local section of E is then given by SI(x) = [(sφI (x), fI(x))]
where fI(x) is called the fibre section, whence

SI(c(t)) =
[(
sφI (c(t)), fI(c(t))

)]
=

[
ρhcI(t)−1

(
sφI (c(t)), τ(hcI(t))fI(c(t))

)]

= [c̃(t), τ(hcI(t))fI(c(t))] (21.2.24)

The covariant differential of SI along v := ċ(0) at x = c(0) is defined by

(∇vSI)x :=
[
c̃(0),

(
d

dt

)

t=0

τ(hcI(t))fI(c(t))
]

(21.2.25)

It is easy to see, using the equivalence relation in the definition of E and
the definition of the horizontal lift, that (21.2.25) is actually independent
of the initial datum for c̃ or, equivalently, the group element h0 in c̃(0) =
ρh0(sI(x), 1G). Notice that multiplication of sections by scalar functions is
defined by f(x)SI(x) = [(sφI (x), f(x)fI(x))] so that the covariant differential ∇
satisfies the usual axioms for a covariant differential (Leibniz rule).

As usual, one is interested for practical calculations in coordinate expressions.
To that end, consider a constant basis eα in F and consider the special sections
SIα(x) := [(sφI (x), eα)]. From the differential equation for the holonomy (21.2.13)
with initial condition hcI(0) = 1G we conclude

(∇vSIα)(x) =

[(

sφI (x),
(
∂τ(h)
∂hAB

)

h=1G

(AIa(x))ABv
aeα

)]

= vaAj
Ia(x)

[(
sφI (x),

(
dτ(exp(tτj))

dt

)

t=0

eα

)]
= vaAj

Ia(x)τ τj SIα(x)

(21.2.26)

where we have abbreviated by τ τj = (dτ(exp(tτj))
dt )t=0 a basis of Lie(G) in the rep-

resentation τ and have expanded AI = Aj
Iτj correspondingly. Using the Leibniz

rule and the fact that a general section may be written as SI(x) = fα
I (x)SIα(x)

we find

∇vSI = iv
[
dfα

I SIα + fα
I A

j
Iτ

τ
j SIα

]
(21.2.27)

This expression becomes especially familiar if we use the standard basis (eα)β =
δβα whence fα

I (Meα) = Mβ
αf

α
I eβ = (MfI)αeα for any matrix M so that

∇vSI = iv
[
dfI + Aj

Iτ
τ
j fI

]α
SIα =:

[
iv(∇fI)α

]
SIα (21.2.28)

We now require that SI = S is actually globally defined, which will require a
certain transformation behaviour of fI(x) under a change of section. We have
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p = ρhI(p)(s
φ
I (x)) = ρhJ (p)(s

φ
J(x)) so that sφJ(x) = ρhIJ (x)(s

φ
I (x)), thus SJ(x) =

[(sφI (x), τ(hIJ(x))fJ(x))] = SI(x) requires that the fibre section transforms as

fJ(x) = τ(hJI(x))fI(x) (21.2.29)

This leads to the following covariant transformation property of its covariant
derivative (c(0) = x, ċ(0) = v):

(∇vfJ)(x) = iv(dfJ)x +
(

d

dt

)

t=0

τ(hcJ(t))fJ(x)

= τ(hJI(x))[iv(dfI)x + τ(hJI(x))−1[ivdτ(hJI)](x)fI(x)

+ τ(hJI(x))−1

(
d

dt

)

t=0

τ(hJI(x)hcI(t)hJI(c(t))−1)τ(hJI(x))fI(x)]

= τ(hJI(x))[iv(dfI)x + τ(hJI(x))−1[ivdτ(hJI)](x)fI(x)

+
(

d

dt

)

t=0

τ(hcI(t)hJI(c(t))−1)fI(x)

+
(

d

dt

)

t=0

τ(hJI(c(t))−1)τ(hJI(x))fI(x)]

= τ(hJI(x))[(∇vfI)(x) + {τ(hJI(x))−1[ivdτ(hJI)](x)fI(x)

+ [ivdτ(hJI)−1](x)τ(hJI(x))}fI(x)]

= τ(hJI(x))(∇vfI)(x) (21.2.30)

which implies that the cross-section S has a globally defined covariant differential.

Definition 21.2.13. A cross-section S in E = P ×τ F is said to be parallel
transported along a curve c in σ iff (∇ċ(t)S)(c(t)) = 0 for all t ∈ [0, 1].

Notice that we may consider the covariant differential as a map ∇ : S(E) →
S(E) ⊗ ∧1(σ) where S(E) denotes the space of sections of E. We extend this
definition to ∇ : S(E) ⊗ ∧n(σ) → S(E) ⊗ ∧n+1(σ) through the ‘Leibniz rule’

∇(S ⊗ ψ) := (∇S) ∧ ψ + S ⊗ dψ (21.2.31)

In this way we can rediscover the field strength through the square of the covari-
ant differential:

∇2S = ∇2Sα ⊗ fα = ∇[∇Sα ⊗ fα + Sα ⊗ dfα]

= ∇Sα ⊗
[
dfα + Aα

βf
β
]

= Sα ⊗
{
Aα

γ ∧
[
dfγ + Aγ

βf
β
]
+ d

(
Aα

βf
β
)}

= Sα ⊗
[
dAα

β + Aα
γ ∧Aγ

β

]
fβ =

1
2
Sα ⊗ Fα

β f
β (21.2.32)
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Holonomies on non-trivial fibre bundles

The formula for the holonomy element given in Chapter 21 is correct only if the
bundle is trivial or if the curve c is contained in the domain of a chart. Only
the horizontal lift is globally defined in any bundle however, in non-trivial bun-
dles the horizontal lifts are not naturally identified with elements of G. Since,
however, the definition and the topology on A depend crucially on such an iden-
tification, we must generalise the definition of A = Hom(P,G) to non-trivial
bundles and provide such an identification of horizontal lifts with elements of G.
In what follows we will describe two complementary ways for doing this.

22.1 The groupoid of equivariant maps

We will describe here a possibility that avoids the local connection potentials,
following the elegant description in [482,483]. Let ω be a connection in a principal
G-bundle P over σ. For any path c ∈ P we can construct the horizontal lift
c̃ωu : [0, 1] → P with initial condition c̃ωu(0) = u as in Chapter 21. We thus obtain
a map

Fω
c : Pb(c) → Pf(c); u �→ c̃ωu(1) (22.1.1)

where b(c) = c(0), f(c) = c(1) denote the beginning and final point of c. We
claim that the map (22.1.1) is equivariant with respect to the right action ρ in
P , that is,

ρg ◦ Fω
c = Fω

c ◦ ρg (22.1.2)

for all g ∈ G. To see this, we will show that actually ρg(c̃ωu(t)) = c̃ωρg(u)(t) for all
t ∈ [0, 1], from which (22.1.2) follows for t = 1. Clearly both curves start at ρg(u)
and both are lifts of the base curve c since π ◦ ρg = π is fibre-preserving. Thus,
we just have to check that ρg(c̃ωu) is horizontal. This follows from the simple
calculation

ω

[
d

dt
ρg

(
c̃ωu(t)

)]
= ω

[
(ρg)∗

d

dt
c̃ωu(t)

]
= (ρg)∗ω

[
d

dt
c̃ωu(t)

]

= Adg−1

[
ω

[
d

dt
c̃ωu(t)

]]
= 0 (22.1.3)

where in the last step we have used property (b) of Definition 21.2.2 and that
c̃ωu is horizontal. Since the horizontal lift is unique, the claim follows.
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Definition 22.1.1. By Eq(x, y) we denote the set of ρ-equivariant maps F :
π−1(x) → π−1(y).

Let us now choose a reference set of points R = {u0
x}x∈σ where u0

x ∈ π−1(x).
Using this reference set, we set up a bijection between Eq(x, y) and G as follows:

1. Given F ∈ Eq(x, y) and ux ∈ π−1(x) we find unique elements g(ux), gF ∈ G
such that ux = ρg(ux)(u0

x) and F (u0
x) = ρg−1

F
(u0

y). Then, since F is equivariant

F (ux) = ρg(ux)

(
F

(
u0
x

))
= ρg−1

F g(ux)

(
u0
y

)
(22.1.4)

so that F is completely characterised by gF ∈ G (the map ux → g(ux) is the
same for any F ).

2. Conversely, given g ∈ G we define Fg ∈ Eq(x, y) by Fg(ux) := ρg−1g(ux)(u0
y).

To see that Fg is equivariant we notice that by definition ρg(ρh(ux))(u0
x) =

ρh(ux), hence ρg(ρh(ux))h−1(u0
x) = ux = ρg(ux)(u0

x) so that g(ρh(ux)) =
g(ux)h. Therefore

Fg(ρh(ux)) = ρg−1g(ρh(ux))

(
u0
y

)
= ρg−1g(ux)h

(
u0
y

)

= ρh
(
ρg−1g(ux)

(
u0
y

))
= ρh(Fg(ux)) (22.1.5)

As an immediate consequence of this bijection we see that equivariant maps are
invertible (since all elements of G are). Thus, the reference set R enables us to
identify Eq(x, y) with G. If we import the topology from G to Eq(x, y) then
Eq(x, y) is a compact Hausdorff space and we get a homeomorphism

φR : Eq(x, y) → G; F �→ gF (22.1.6)

Notice that for F = Fh ∈ Eq(x, y), F ′ = Fh′ ∈ Eq(y, z) we have (notice that
g(u0

x) = 1 and g(ρh(ux)) = g(ux)h)

Fh′ ◦ Fh(ux) = ρ(h′)−1g(F ′
h(ux))

(
u0
z

)
= ρ(h′)−1g(ρh−1g(ux)(u

0
y))

(
u0
z

)

= ρ(h′)−1g(u0
y)h−1g(ux)

(
u0
z

)
= ρ(hh′)−1g(ux)

(
u0
z

)
= Fhh′(ux) (22.1.7)

Next, if F is equivariant so is F−1, since inversion of F ◦ ρh = ρh ◦ F gives
F−1 ◦ ρh−1 = ρh−1 ◦ F−1 for all h ∈ G. Thus F−1

h may be written in the form
Fh′ for some h′. To compute h′ we use the definition F−1

h (uy) = Fh′(uy) =
ρ(h′)−1g(uy)(u0

x) and evaluate it at uy = Fh(ux). Noticing that g(Fh(ux)) =
h−1g(ux) we find

ux = ρg(ux)

(
u0
x

)
= ρ(h′)−1h−1g(ux)

(
u0
x

)
(22.1.8)

whence h′ = h−1. Summarising

F−1
h = Fh−1 and Fh′ ◦ Fh = Fhh′ (22.1.9)

so inversion and composition of equivariant maps corresponds to inversion and
composition of the corresponding group elements. This is precisely the generali-
sation of the algebraic characterisation of holonomies.
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Let us study the effect of a change of the reference set on this identification:
consider a different reference set R̂ = {û0

x}x∈σ. There is a unique collection of
group elements {gx}x∈σ such that ρg−1

x
(u0

x) = û0
x. Then for any F ∈ Eq(x, y) we

have

F
(
û0
x

)
= ρg−1

x

(
F

(
u0
x

))
= ρg−1

F g−1
x

(
u0
y

)
= ρg−1

F g−1
x

(
ρgy

(
û0
y

))

= ρgyg−1
F g−1

x

(
û0
y

)
=: ρĝ−1

F

(
û0
y

)
(22.1.10)

from which we infer ĝF = gxgFg
−1
y . In other words, φR̂ = gxφRg−1

y , however,
this is a homeomorphism and does not change the topology of Eq(x, y). Relation
(22.1.10) corresponds precisely to a gauge transformation induced by a change
of reference set R.

It is important to notice that the set Eq(x, y) no longer depends on P but
just on G because any fibre π−1(x) is naturally identified with G by means of
the reference point u0

x. This is also easy to see from the fact that the transition
functions of P do not play any role in the definition of Eq(x, y).

Definition 22.1.2. We define the disjoint union

Eq(σ) := ∪x,y∈σEq(x, y) (22.1.11)

The quantity Eq(σ) carries naturally the structure of a groupoid: the objects of
this category are the fibres π−1(x), x ∈ σ and its morphisms are the elements of
hom(π−1(x), π−1(y)) := Eq(x, y). Composition of morphisms is just defined by
composition of equivariant maps F ∈ Eq(x, y), F ′ ∈ Eq(y, z), which gives indeed
an element F ′ ◦ F ∈ Eq(x, z) since F ′ ◦ F ◦ ρg = F ′ ◦ ρg ◦ F = ρg ◦ F ′ ◦ F . Asso-
ciativity follows from associativity of composition of maps. Every morphism is
invertible since every element of G is, that is, we just use the correspondence
F ↔ gF , g

−1
F ↔ F−1. Finally identities idπ−1(x) ∈ Eq(x, x) are provided by the

identical maps in the fibres.
The crucial observation is now that every connection ω in any principal

G-bundle P defines a groupoid homomorphism Fω ∈ Hom(P,Eq(σ)) through
(22.1.1), that is,

Fω(c) := Fω
c ∈ Eq(b(c), f(c)) (22.1.12)

This is clear from

[Fω(c ◦ c′)](ub(c)) = c̃ ◦ c′
ω

ub(c)
(1) = c̃′

ω

c̃ωub(c)
(1)(1) = Fω

c′
(
Fω
c

(
ub(c)

))

= [Fω(c′)◦Fω(c)](ub(c))

[Fω(c−1)]
(
ub(c−1)

)
= c̃−1

ω

ub(c−1)
(1) = [Fω(c)]−1

(
ub(c−1)

)
(22.1.13)

since ub(c−1) = Fω
c (c̃−1

ω

ub(c−1)
(1)). We may then define the holonomy group ele-

ment by Fω(c) = Fω
c =: Fhc(ω) which then from (22.1.9) evidently satisfies

hc(ω)hc′(ω) = hc◦c′(ω), hc−1(ω) = hc(ω)−1 (22.1.14)
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Thus, the space of connections from any bundle P is contained in the universal
set

A := Hom(P,Eq(σ)) (22.1.15)

which is a closed subset of the compact Hausdorff space (in the Tychonov topol-
ogy)

∏
c∈P Eq(b(c), f(c)). From here on the constructions of Section 8.2 proceed

in exactly the way depicted there, just that G is replaced by Eq(σ). Alternatively,
observation (22.1.14) provides a canonical way to identify Eq(σ) with G.

22.2 Holonomies and transition functions

The description of the holonomy group elements in Section 22.1 does not use
local connection potentials, which makes it more elegant. However, in order to
use the definition of the Poisson bracket on the space of connections A we must
know how to express the holonomy as a function of the connection potentials.
This can easily be done if we take the transition functions of the bundle P into
account.

We start again from the definition of the horizontal lift: suppose the path c

is not contained in the domain of a single chart. Then we find N < ∞ labels
I1, . . . , IN and a breaking of c into segments c = c1 ◦ . . . ◦ cN such that ck ⊂
UIk , k = 1, . . . , N . Then, using the local trivialisations φIk , we may write the
horizontal lift of c with initial condition u ∈ π−1(b(c)) over UIk in the form

c̃ωu(t) = φIk

(
c(t), H−1

Ik,u,c
(t)

)
(22.2.1)

where w.l.g. we assume that c : [0, N ] → σ, ck : [k − 1, k] → σ. Now the break-
point c(k) = f(ck) = b(ck+1), k = 1, . . . , N − 1 lies in UIk ∪ UIk+1 and using
sφI (x) := φI(x, 1), φI(x, h) = ρh(sφI (x)) we conclude

φIk

(
c(k), H−1

Ik,u,c
(k)

)
= ρH−1

Ik,u,c(k)

(
sφIk(c(k)

)
= φIk+1

(
c(k), H−1

Ik+1,u,c
(k)

)

= ρH−1
Ik+1,u,c(k)

(
sφIk+1

(c(k)
)

(22.2.2)

Now the transition functions of P over UI ∪ UJ were defined by

u = φI(π(u), gI(u)) = ρgI(u)

(
sφI (π(u))

)
= φJ(π(u), gJ(u)) = ρgJ (u)

(
sφJ(π(u))

)

⇒ sφJ(π(u)) = ρgI(u)gJ (u)−1

(
sφI (π(u))

)
=: ρgIJ (π(u))

(
sφI (π(u))

)
(22.2.3)

We conclude the important relation

gIkIk+1(c(k)) = H−1
Ik,u,c

(k)H−1
Ik+1,u,c

(k) (22.2.4)

Now the HIk,u,c(t) satisfy the ordinary differential equation

d

dt
HIk,u,c(t) = HIk,u,c(t)AIka(c(t))ċ

a(t) (22.2.5)
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where AI = (sφI )∗ω is the pull-back of ω by the local sections and the initial value
HIk,u,c(k) is defined by c̃ωu(k) = φIk(c(k), HIk,u,c(k)). Thus we write the solution
to (22.2.5) in the form

HIk,u,c(t) = HIk,u,c(k)hIk,c(t) (22.2.6)

where hIk,c(t) = P exp(
∫ t

k
dsAIka(c(t))ċ

a(t)). We can now define the holonomy
of the connection ω along the whole curve c as the group element

h{I}
c (ω) := HI1,u,c(0)−1HIN ,u,c(N) (22.2.7)

where the superscript {I} is to denote the dependence of this group element on
the chosen trivialisation. Notice that by construction (22.2.7) no longer depends
on u ∈ π−1(b(c)). Using the relations (22.2.4) and (22.2.6) we can write the
holonomy in terms of the local holonomies hck(AIk) := hIk,c(1) and the transition
functions

h{I}
c (ω) = HI1,u,c(0)

−1HIN ,u,c(N − 1)hcN (AIN )

= HI1,u,c(0)
−1HIN−1,u,c(N − 1)[H−1

IN−1,u,c
(N − 1)HIN ,u,c(N − 1)]hcN (AIN )

= HI1,u,c(0)
−1HIN−1,u,c(N − 1)gIN−1,IN (c(N − 1))hcN (AIN )

= HI1,u,c(0)
−1HIN−1,u,c(N − 2)hcN−1(AIN−1)gIN−1,IN (c(N − 1))hcN (AIN )

= hc1(AI1)gI1I2(f(c1))hc2(AI2)gI2I3(f(c2)) . . . gIN−1IN (f(cN−1))hcN (AIN )

(22.2.8)

We should check that (22.2.9) is invariant, up to gauge transformations, under
a change of breaking the curve into segments according to a different choice
of charts. Thus, consider the same curve broken up into N ′ segments c′l, l =
1, . . . , N ′, that is, c = c′1 ◦ . . . ◦ c′N ′ where c′l ⊂ UI′

l
. Then

h{I′}
c (ω) = hc′1

(
AI′1

)
gI′1I′2

(
f
(
c′1

))
hc′2

(
AI′2

)
gI′2I′3

(
f
(
c′2

))
. . . gI′

N−1I
′
N

(
f
(
c′N−1

))
hc′

N
(AIN )

(22.2.9)

In order to compare (22.2.8), (22.2.9) we introduce the common split of c into
c = c̃1 ◦ . . . ◦ c̃Ñ , Ñ ≥ max(N,N ′) where for each k = 1, . . . , N and l = 1, . . . , N ′

we have unique compositions ck = c̃nk−1+1 ◦ . . . ◦ c̃nk
and c′l = c̃n′

l−1+1 ◦ . . . ◦ c̃n′
l

with n0 = n′
0 = 0 and nN = n′

N ′ = Ñ . Notice that each of the c̃j is contained in
a set of the form UIk ∩ UI′

l
. Let us first of all write both (22.2.8) and (22.2.9) in

terms of the hc̃j (AIk) and hc̃j (AI′
l
) respectively, namely

h{I}
c (ω) =

[
hc̃1

(
AI1

)
. . . hc̃n1

(
AI1

)]
gI1I2

(
f
(
c̃n1

))
. . . gIN−1IN

(
f
(
c̃nN−1

))

×
[
hc̃nN−1+1

(
AIN

)
. . . hc̃nN

(
AIN

)]

h{I′}
c (ω) =

[
hc̃1

(
AI′

1

)
. . . hc̃n′

1

(
AI′

1

)]
gI′

1I
′
2

(
f
(
c̃n′

1

))
. . . gI′

N−1I
′
N

(
f
(
c̃n′

N−1

))

×
[
hc̃n′

N−1
+1

(
AI′

N′

)
. . . hc̃n′

N′

(
AI′

N′

)]
(22.2.10)
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Now we exploit the gauge transformation behaviour hc̃(AI′) = gI′I(b(c̃))hc̃(AI)
gI′I(f(c̃)−1) for c̃ ⊂ UI ∩ UI′ and the cocycle conditions gIJ(x)gJK(x)gKI(x) =
1, x ∈ UI ∩ UJ ∩ UK ; gIJ(x)gJI(x) = 1, x ∈ UI ∩ UJ in order to replace the AI′

by the AI . The general case requires a tedious case-by-case analysis but
the typical situation is already captured by the following simple exam-
ple: N = N ′ = 2, c1 = c̃1, c2 = c̃2 ◦ c̃3, c′1 = c̃1 ◦ c̃2, c′2 = c̃3. Thus c̃1 ⊂ UI1 ∩ UI′

1
,

c̃2 ⊂ UI2 ∩ UI′
1
, c̃3 ⊂ UI2 ∩ UI′

2
. Then

h
{I′}
c (ω) = hc′1

(
AI′1

)
gI′1I

′
2

(
f
(
c′1

))
hc′2

(
AI′2

)

= hc̃1

(
AI′1

)
hc̃2

(
AI′1

)
gI′1I

′
2
(f(c̃2))hc̃3

(
AI′2

)

=
[
gI′1I1

(b(c̃1))hc̃1

(
AI1

)
gI′1I1

(f(c̃1))−1
][
gI′1I2

(b(c̃2))hc̃2

(
AI2

)
gI′1I2

(f(c̃2))−1
]

× gI′1I
′
2
(f(c̃2))

[
gI′2I2

(b(c̃3))hc̃3

(
AI2

)
gI′2I2

(f(c̃3))−1
]

= gI′1I1
(b(c))hc̃1

(
AI1

)[
gI′1I1

(f(c̃1))−1gI′1I2
(b(c̃2))

]
hc̃2

(
AI2

)

×
[
gI′1I2

(f(c̃2))−1gI′1I
′
2
(f(c̃2))gI′2I2

(b(c̃3))
]
hc̃3

(
AI2

)
gI′2I2

(f(c))−1

= gI′1I1
(b(c))hc̃1

(
AI1

)[
gI1I′1

(f(c̃1))gI′1I2
(f(c̃1))gI2I1 (f(c̃1))

]
gI1I2 (f(c̃1))hc̃2

(
AI2

)

×
[
gI2I′1

(f(c̃2))gI′1I
′
2
(f(c̃2))gI′2I2

(f(c̃2))
]
hc̃3

(
AI2

)
gI′2I2

(f(c))−1

= gI′1I1
(b(c))hc̃1

(
AI1

)
gI1I2 (f(c̃1))hc̃2

(
AI2

)
hc̃3

(
AI2

)
gI′2I2

(f(c))−1

= gI′1I1
(b(c))hc1

(
AI1

)
gI1I2 (f(c̃1))hc2

(
AI2

)
gI′2I2

(f(c))−1

= gI′1I1
(b(c))h

{I}
c (ω)gI′2I2

(f(c))−1 (22.2.11)

Thus, indeed the holonomy as defined in (22.2.7) on a non-trivial bundle trans-
forms under a change of trivialisation by a gauge transformation at the endpoints
of the path. These local gauge transformations, moreover, depend only on the
charts in which the endpoints lie, so that h

{I}
c (ω) does not depend on all of the

φI but only on the particular φI which have been chosen to trivialise over regions
containing the endpoints of the path.

In order to remove this dependence of the gauge transformations on the chosen
charts of an atlas in which the endpoints of the curve lie, one can proceed as
follows: if I denotes the set of indices I which label the charts of the atlas we use
the axiom of choice1 in order to choose a map I : σ → I; x �→ I(x). Now one
proceeds as above, just that one subdivides the curve into the segments ck for
which I(x) = const. for all x ∈ ck. In fact, one can partition σ by sets VI defined
by the condition I(x) = I ∀ x ∈ VI .

One way of providing such a choice function is as follows. For a given atlas U
of open sets covering σ we choose a partition of σ subordinate to U as follows:
choose some I and define VI to be the closure of UI . Redefine σ by σ − VI , for

1 The axiom of choice states that given any collection of sets SI �= ∅, I ∈ I where I is an
index set of arbitrary cardinality, then there exists a choice function c : I → ∏

I∈I SI ,

that is, it is possible to choose an element c(I) from each SI . The axiom of choice is
equivalent to Zorn’s lemma.
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J �= I redefine UJ by UJ − VI and redefine U by the collection of the redefined
UJ . Then iterate (notice that the closure of the redefined UJ in the redefined σ

cannot contain points of VI any more). The end result is now a partition V of σ
by sets VI which have the property that they have empty intersection and such
that VI equals a certain closure in σ of a subset of a non-empty UI . Thus for
each x ∈ σ there is a unique index I = I(x) such that x ∈ VI . Then each curve
can be broken uniquely into the segments c ∩ VI . Formula (22.2.8) can then be
applied with the corresponding choice of I. This being understood, we can now
drop the superscript {I} from h

{I}
c (ω).

Let us check the algebraic properties of (22.2.7). We have

hc−1(ω) = hc−1
N

(
AIN

)
gININ−1

(
f
(
c−1
N

))
. . . gI2I1

(
f
(
c−1
2

))
hc−1

1

(
AI1

)

= hcN

(
AIN

)−1
gIN−1IN (f(cN−1))−1 . . . gI1I2(f(c1))hc1

(
AI1

)−1

= (hc(ω))−1 (22.2.12)

Next, let c = c1 ◦ c2. Then x = f(c1) = b(c2) lies in a unique VI . There are three
cases to consider: (1) x is an interior point of VI , (2) x is a boundary point of
VI and c2 ∩ VI = {x} and (3) x is a boundary point of VI and c1 ∩ VI = {x}.

Let c̃1 = c1 ∩ VI , c̃2 = c2 ∩ VI , c̃ = c ∩ VI = c̃1 ◦ c̃2. We have in general
hc1(ω) = h′

c1(ω)gI1I(b(c̃1))hc̃1(AI), hc2(ω) = hc̃2(AI)gII2(f(c̃2))h′
c2(ω) where the

pieces h′
c1(ω), h′

c1(ω) do not involve transition functions or holonomies that
depend on I.

1. hc1(ω)hc2(ω) = h′
c1(ω)gI1I(b(c̃1))[hc̃1(AI)hc̃2(AI)]gII2(f(c̃2))h′

c2(ω)

= h′
c1(ω)gI1I(b(c̃1))hc̃(AI)gII2(f(c̃2))h′

c2(ω)

= hc(ω) (22.2.13)

2. hc1(ω)hc2(ω) = h′
c1(ω)gI1I(b(c̃1))[hc̃1(AI)]gII2(f(c̃2))h′

c2(ω)

= h′
c1(ω)gI1I(b(c̃1))hc̃(AI)gII2(f(c̃2))h′

c2(ω)

= hc(ω) (22.2.14)

since h{x}(AI) = 1 and c̃ = c̃1.

3. hc1(ω)hc2(ω) = h′
c1(ω)gI1I(b(c̃1))[hc̃2(AI)]gII2(f(c̃2))h′

c2(ω)

= h′
c1(ω)gI1I(b(c̃1))hc̃(AI)gII2(f(c̃2))h′

c2(ω)

= hc(ω) (22.2.15)

since c̃ = c̃2.

We conclude that the algebraic properties of the holonomy as defined in
(22.2.7) equal those of the case of a trivial bundle.

Finally, consider the case of a change of choice function x �→ I(x). Let the
corresponding partitions be denoted by VI and V ′

J respectively. Then each x ∈ σ

lies in a unique VI(x) and in a unique V ′
J(x). It follows that the transition functions

appearing in (22.2.11) can be denoted as g(x) := gI(x),J(x)(x) for x = b(c), f(c)
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and now depend only on x. Thus, as we vary the choice functions, we vary the
g(x).

The relation between the holonomy group elements defined in this section and
Section 22.1 should be clear: a choice function x �→ I(x) is equivalent to a choice
R of basepoints u0

x of the previous section via u0
x := φI(x)(x, 1). We claim that

then the holonomies hc(ω) that we defined in both sections coincide (any other
relation between the choice map x �→ I(x) and the map x �→ u0

x results in an
identification of the holonomy group elements up to a gauge transformation): in
order to see this, consider a curve c with b(c) = x, f(c) = y. On the one hand,
by the definition of the horizontal lift according to the previous section

c̃ωux
(1) = Fω

c (ux) = ρhc(ω)−1g(ux)

(
u0
y

)
= φI(y)(y, hc(ω)−1g(ux)) (22.2.16)

where we have used u0
y = φI(y)(y, 1) and hc(ω) is the group element defined by

the equivariant map Fω
c . Now by definition

ux = ρg(ux)

(
u0
x

)
= φI(x)(x, g(ux)) (22.2.17)

Comparing with (22.2.7) we notice that I(x) = I1, I(y) = IN , c(0) = x, c(N) = y,

ux = u so that g(ux) = HI1,u,c(0) in that formula. Thus hc(ω) defined in (22.2.7)
coincides with that defined in (22.2.16).
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Geometric quantisation

As an application of the concepts of Chapters 19, 21 and in order to see their
interplay in a concrete physical application, we sketch the main ideas of geometric
quantisation. This will also provide the necessary background material for the
treatment of quantum black holes in LQG.

Geometric quantisation concerns the quantisation of an arbitrary symplectic
manifold (M,ω) using only natural symplectic structures during the quantisation
process. It consists of three steps: (1) prequantisation, (2) polarisation and (3)
quantisation. In the first step one is able to quantise every function on phase
space in a natural representation, provided that a certain topological condition,
Weil’s integrality criterion, is satisfied. The famous Groenwald–van Hove theorem
is evaded because that representation is highly reducible. In order to obtain an
irreducible representation one has to invoke the polarisation step which selects a
subspace of the Hilbert space. The final step then consists of finding the induced
subrepresentation of the operators.

The strength of geometric quantisation is that it applies to the case when M

is not a cotangent bundle, for example, when M is compact. Its weakness is that
only a limited number of functions on phase space survive the final quantisa-
tion step because they are supposed to preserve the subrepresentation. This is in
particular a problem for Hamiltonians and/or constraints which are polynomials
of high degree in the momenta, which is why one can usually apply geometric
quantisation in its strict form (i.e., without introducing factor ordering ambigu-
ities) only on the reduced phase space constructed in Section 19.3. While there
are proposals to remove these limitations in a fourth step called metaplectic cor-
rection, the associated theory becomes quite complicated and has not yet been
generalised to an infinite number of degrees of freedom.

23.1 Prequantisation

As we have seen, every symplectic manifold (M,ω) is orientable and carries a
natural measure, the Liouville form Ω = ω ∧ . . . ∧ ω/̄hm, which we have made
dimensionless with the help of Planck’s constant. Thus it is very natural to
define a so-called prequantum Hilbert space as

HP := L2(M,Ω) (23.1.1)

consisting of Ω-square integrable functions which are scalars on M . A dense
subspace will be the functions C∞

0 (M) of compact support and we wish to
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define symmetric operators f̂ corresponding to arbitrary real-valued functions
f ∈ C∞(M) on that subspace as dense domain. By definition, if χf denotes the
Hamiltonian vector field of f then Lχf

ω = 0, hence Lχf
Ω = 0 and therefore the

following definition indeed defines a symmetric operator on HP

f̂ ′ψ := īhLχf
ψ = īhχf [ψ] (23.1.2)

From the properties of the Lie derivative [Lu,Lv] = L[u,v] and from [χf , χf ′ ] =
χ{f,f ′} we easily verify that the map f �→ f̂ ′ defines a homomorphism between
the entire Poisson algebra and the algebra L(HP) of linear operators on HP, that
is,

[f̂ ′
1, f̂

′
2] = īh ̂

{
f1, f2

}′
(23.1.3)

However, this homomorphism is unsatisfactory because the map f �→ χf has the
constant functions as kernel and hence position and momentum would become
commuting operators on (M = R2, ω = dp ∧ dq), violating the uncertainty
relation.

Thus we must look for a generalisation of (23.1.2). The most general Ansatz
which produces a linear (in f) and symmetric operator without introducing extra
structure beyond symplectic geometry is given by (23.1.2) supplemented by a
real-valued multiplication operator

f̂ψ := [īhLχf
+ aθ[χf ] + bf ]ψ (23.1.4)

where a, b are real parameters to be determined and θ is a symplectic potential
for ω, ω = dθ, which always exists locally by Poincaré’s lemma and which is
unique up to θ �→ θ + dλ, λ ∈ C∞(M). The requirements [f̂1, f̂2] = īh ̂{f1, f2},
ĉ = c for c = const. uniquely fixes b = −a = 1 as one can verify by using iuivdθ =
iu(Lvθ − divθ) = v[θ[u]] − u[θ[v]] − i[v,u]θ. Hence (23.1.4) becomes

f̂ = īhiχf
◦

[
d− θ

īh

]
+ f =: īhiχf

∇ + f (23.1.5)

The problem is, of course, that θ is neither necessarily globally defined nor
unique. Here we can use our knowledge of fibre bundle theory in order to solve
the problem: the operator ∇ looks like a covariant differential in a U(1) gauge
theory. Hence the idea would be to interpret the local one-form θI as the pull-
back under local sections of a globally defined connection A in a U(1) principal
fibre bundle B over M . The states ψI would then be local sections in an, under
the defining representation of U(1), associated vector bundle, called a complex
line bundle, because the fibres, being isomorphic to C, are one-dimensional. If UI

dentoes the local charts of M with local trivialisations φI : M × U(1) → P and
gIJ(p) : π−1

I (p) → π−1
J (p) for UI ∩ UJ 	= ∅ are the local gauge transformations

which act as θJ/(īh) = θI/(īh) − dgIJg
−1
IJ (since U(1) is Abelian) and ψJ = gIJψI

then ∇JψJ = gIJ∇IψI is gauge-covariant and hence in a scalar product the
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combination ψI∇Iψ
′
I is independent of the local trivialisation because the phase

gIJ drops out.
This elegant solution removes both the non-uniqueness of θ, which is reab-

sorbed in a gauge transformation, and makes the whole construction globally
defined. We may actually slightly generalise the construction further, as follows:
as we know from the construction of coherent states or Fock states, it is often
convenient to deal with complex coordinates for M . In such a situation neither
the symplectic potential θ nor the non-unique exact differential dλ which we can
always add will be real. The effect of the latter is that the gauge transformations
now become complex-valued, hence the gauge group is now shifted from U(1)
to C − {0}. The effect of the former is that the operators (23.1.5) are no longer
symmetric with respect to the measure Ω. To compensate this we introduce the
measure μ = ρΩ with positive ρ and impose symmetry of f̂ for real-valued f . We
find

< f̂ψ, ψ′ > − < ψ, f̂ψ′ >

=
∫

M

ρω [(−īhχf [ψ] − θ[χf ]ψ)ψ′ − ψ(īhχf [ψ′] − θ[χf ]ψ′)]

=
∫

M

ω (īhχf [ρ] − ρ(θ − θ)[χf ])ψ ψ′

= īh

∫

M

ρ ω

(
iχf

[
d ln(ρ) +

2
h̄
�(θ)

])
ψ ψ′ (23.1.6)

for all ψ,ψ′, f hence

d ln(ρ) = −2
h̄
�(θ) (23.1.7)

is uniquely determined by θ if the bundle P exists. Notice that since ω is real
we have ω = dθ = d�(θ), hence d�(θ) = 0, so �(θ) is closed while by (23.1.7) ρ

only exists if �(θ) is exact.
We notice that under a C-gauge transformation g = es+iλ with real-valued

functions s, λ we have −θ/(īh) �→ −θ/(īh) − dgg−1 = −θ/(īh) − ds− idλ hence
�(θ)/̄h �→ �(θ)/̄h + ds and so ρ �→ ρe−2s. Since on the other hand ψ �→ gψ, it
follows that the combination ρψ∇ψ′ remains invariant under gauge transforma-
tions as does the curvature ω of θ and hence the measure Ω. This motivates us
to call ρ a (one-dimensional) fibre metric which defines the fibre inner product
between sections

ρ[ψ,ψ′] = ρψψ′ (23.1.8)

By (23.1.7) the fibre metric is covariantly constant with respect to the covariant
differential ∇

ρ[∇uψ,ψ
′] + ρ[∇uψ,ψ

′] = u[ρ[ψ,ψ′]] (23.1.9)
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and the inner product between states is given by

< ψ,ψ′ >=
∫

M

Ω ρ[ψ,ψ′] (23.1.10)

In summary, in order to make this work, given a symplectic manifold (M,ω) we
need a prequantum bundle, that is:

1. A principal (C − {0}) bundle B over M with globally defined connection A

whose local sections θ have ω = dθ as globally defined curvature.
2. A vector bundle E over M , associated with P under the defining representa-

tion of C − {0} with typical fibre C and local sections ψ.
3. A ∇-compatible fibre metric ρ.

We will now state a necessary and sufficient criterion for the existence of these
structures. First we need some preparations.

Definition 23.1.1. Let M be a manifold with open cover U = (UI)I∈I subordi-
nate to an atlas of M .

(i) An n-cochain {g} ∈ Cn(U) is a system of functions gI1...In+1 : UI1 ∩ . . . ∩
UIn+1 → C − {0} of a definitive type (e.g., smooth, locally constant, . . . .),
precisely one for any I1, . . . , In+1 with UI1 ∩ . . . ∩ UIn+1 	= ∅ such that for
any π ∈ Sn+1

gIπ(1)...Iπ(n+1)) =
(
gI1...In+1

)sgn(π) (23.1.11)

The n-cochains form a group under pointwise multiplication for each multi-
index.

(ii) The coboundary operator δ : Cn(U) → Cn+1(U) is defined by

(δg)I1...In+2 =
n+2∏

k=1

(gI1...Îk...In+2
)(−1)k−1

(23.1.12)

One shows that δ2{g} = {1} where {1} is the constant cochain taking the
unit value for all index combinations.

(iii) We call a cochain {g} ∈ Cn(U) closed (a cocycle) or exact (a cobound-
ary) respectively if δ{g} = {1} or {g} = {δh} for some {h} ∈ Cn−1(U)
respectively and write {g} ∈ Zn(U) or {g} ∈ Bn(U) respectively. The group
Hn(U) := Zn(U)/Bn(U) is called the n-th Čech cohomology group.

(iv) Instead of a multiplicative notation we can use an additive one by writing

gI1...In+1 = exp(fI1...In+1), fIπ(1)...Iπ(n+1) = sgn(π)fI1...In+1 ,

(δf)I1...In+2 = (n + 2)χ[I1fI2...In+2] (23.1.13)

where χI = χUI
is the characteristic function of UI . We use {f} instead of

{g} but otherwise use the notation Cn, Zn, Bn for the corresponding vector
spaces.
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The Čech cohomology seems to depend explicitly on the atlas U . This depen-
dence can be removed by taking an infinite refinement limit. In the cases of
interest (M paracompact so that we can choose a locally finite, contractible
cover) we have automatically a so-called Leray cover [218] for which the coho-
mology is already independent of the cover. We use the notation Hn(U) only in
order to distinguish it from the de Rham cohomology Hn(M) of forms.

Čech cohomology appears naturally in principal fibre bundle theory for
Abelian gauge groups G: the transition functions gIJ : UI ∩ UJ → G satisfy
gIJgJI = 1, gIJgJKgKI = (δg)IJK = 1 and so define a cocycle. In what fol-
lows we will only consider the Čech cohomology defined by locally constant
functions.

Definition 23.1.2. Let M be paracompact and U a locally finite, contractible
open cover (any p ∈ M is only in finitely many UI and every UI is contractible
to a point). Let (eI), 0 ≤ eI ≤ 1 be a partition of unity subordinate to (UI) with
compact support supp(eI) ⊂ UI in UI , that is,

∑
I eI = 1. Let {f} ∈ Cn(U) be

a locally constant n-cochain (i.e., each fI1...In+1 takes a constant value on each
connected component of UI1 ∩ . . . ∩ UIn , possibly a different one on each compo-
nent). We define

α : Cn(U) → Cn(M); {f} �→ α{f}(p)

:= fII1...In(p) eI(p) deI1(p) ∧ . . . ∧ deIn(p)

:=
∑

I,I1,...,In∈I
fII1...In(p) eI(p) deI1(p) ∧ . . . ∧ deIn(p) (23.1.14)

where the summation convention is applied.

The n-form α{f} is everywhere defined because even though the fI1...In+1 are
only defined on UI1 ∩ . . . ∩ UIn+1 , the n-form eI1 deI2 ∧ . . . ∧ deIn+1 vanishes out-
side that region anyway. Furthermore, the sum in (23.1.14) is finite for every
p ∈ M due to local finiteness of the cover.

Theorem 23.1.3 (de Rham isomorphism). We have dα{f} = α{δf} and α

defines an isomorphism Hn(U) → Hn(M).

Proof: Notice that dfI1...In+1 = 0 in the compact support of eI1 deI2 ∧ . . . ∧
deIn+1 due to local constancy. While dfI1...In+1 	= 0 on ∂UI1 ∩ . . . ∩ UIn this sur-
face is not in the support of eI1 deI2 ∧ . . . ∧ deIn+1 . Hence

dα{f} = fI1...In+1 deI1 ∧ . . . ∧ eIn+1 (23.1.15)

Next notice the relation χIeI =
∑

I eI = 1 because supp(eI) ⊂ UI . Hence 0 =
deIχI + eIdχI = deIχI where we have used the fact that dχI is non-vanishing
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on ∂UI only, which however is outside the support of eI . Hence

αδ{f} = (n + 2)χ[IfI1...In+1] eI deI1 ∧ . . . ∧ deIn+1

= [χIeI ]fI1...In+1deI1 ∧ . . . ∧ deIn+1

+

n+1∑

k=1

(−1)k χIk fI1...ÎkI...In+1
eI deI1 ∧ . . . ∧ deIn+1

= dα{f} −
n+1∑

k=1

χIk fII1...Îk...In+1
eI deI1 ∧ . . . ∧ deIn+1

= dα{f} +

n+1∑

k=1

(−1)kχIk fII1...Îk...In+1
eI deIk ∧ deI1 ∧ . . . ∧ dêIk ∧ . . . ∧ deIn+1

= dα{f} +

[
n+1∑

k=1

(−1)k
]

[χJdeJ ] ∧ α{f} = dα{f} (23.1.16)

where in the last step we have relabelled (Ik, Ik+1, . . . , In+1) ↔ (J, Ik, . . . , In).
Hence α maps coboundaries to closed forms. We now define α : Hn(U) →

Hn(M) by α[{f}] := [α{f}] where the brackets denote the respective cohomology
classes. This is well-defined, that is, independent of the representative, because
for {f ′} = {f} + {δf̃} we obtain [α{f}] = [α{f ′}] due to (23.1.15). For the same
reason the map is injective. To see that it is surjective assume that α ∈ Zn(M)
is given. We show this only for n = 2, the general case is similar. Since UI

is contractible, by Poincaré’s lemma we find βI ∈ C1(UI) such that α = dβI

on UI . If UI ∩ UJ 	= ∅ we have d(βI − βJ) = 0 on UI ∩ UJ . Since UI ∩ UJ is
contractible we find γIJ = −γJI ∈ C0(UI ∩ UJ) such that βI − βJ = dγIJ on
UI ∩ UJ . If UI ∩ UJ ∩ UK 	= ∅ then d(γIJ + γJK + γKI) = 0 on UI ∩ UJ ∩ UK ,
hence fIJK := γIJ + γJK + γKI = (δγ)IJK is locally constant.

Notice that fIJK is locally constant but not necessarily the γIJ , hence f is
not exact in the sense of Čech cohomology. However, since purely algebraically
δ2 = 0 we have that {f} is closed and on UI ∩ UJ ∩ UK ∩ UL

(δf)IJKL = fJKL − fIKL + fIJL − fIJK = 0 (23.1.17)

Contracting (23.1.17) with eI deJ ∧ deK we find the relation

α{f} = fIJKdeJ ∧ deK = d(fIJKeJ ∧ deK) =: dωI (23.1.18)

on the interior of UI . Contracting (23.1.17) with eJ deK we find

ωI − ωJ = fIJKdeK = d(fIJKeK) =: dσIJ (23.1.19)

on the interior of UI ∩ UJ . Noticing that

σIJ = fIJ + fJKeK + fKIeK (23.1.20)

and defining on the interior of UI

λI = βI − ωI − d(fIJeJ) (23.1.21)
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we have on the interior of UI ∩ UJ

λI − λJ = γIJ − ωI + ωJ − d(fIKeK − fJKeK)

= −ωI + ωJ + d(fIJ + fJKeK + fKIeK)

= −ωI + ωJ + dσIJ = 0 (23.1.22)

hence λ = λI is globally defined. Hence on UI

dλ = dβI − dωI = α− α{f} (23.1.23)

so that [α] = [α{f}] and α is a surjection. �

After these preparations we can now state the main result of this section.

Theorem 23.1.4 (Weil’s integrality criterion). A prequantisation of
(M,ω), that is, a principal C − {0} bundle B with global connection ∇ and
∇-compatible fibre metric ρ on an associated complex line bundle exists if
and only if the Čech cohomology class of α−1(ω/(2πh̄)) is integral, that is,
[α−1(ω/(2πh̄))] ∈ Z where α : H2(U) → H2(M) is the de Rham isomorphism.

Moreover, the inequivalent choices of (P,∇, ρ) are parametrised by H1(U) with
values in U(1).

Proof
⇐:
Suppose first that Weil’s criterion is satisfied and let [ω] = [α{f}]. From the
proof of Theorem 23.1.3 we know that fIJK = γIJ + γJK + γKI = (δγ)IJK on
UI ∩ UJ ∩ UK is locally constant with smooth functions γIJ = −γJI on UI ∩ UJ .
Moreover, by assumption fIJK = 2πh̄nIJK where nIJK takes locally constant
integer values on UI ∩ UJ ∩ UK . Define gIJ = exp(iγIJ /̄h), then gIJgJI = 1 on
UI ∩ UJ and gIJgJKgKI = 1 on UI ∩ UJ ∩ UK because nIJK is integral, hence
gIJ is a cocycle with values in C − {0} and therefore qualifies as the transition
function of a principal (C − {0}) bundle. Moreover, if θI are the local potentials
of ω then by definition dγIJ = −īhdgIJg

−1
IJ = θI − θJ or with AI = iθI /̄h we find

AJ = AI − dgIJg
−1
IJ . Hence the AI qualify as the pull-backs by local sections of

a globally defined C − {0} connection ∇. Finally, since ω is real we may choose
the θI to be real and hence ρ = 1 is a ∇-compatible fibre metric.

⇒: Suppose that (P,∇, ρ) exist and let gIJ be the transition functions of the
bundle P with values in C − {0}. We define

fIJK
2πh̄

:=
1

2πi
[ln(gIJ) + ln(gJK) + ln(gKL)] (23.1.24)

where we choose the fundamental branch of the logarithm over each UI ∩ UJ

with cut at ϕ = π so that ln(gIJ) = − ln(gJI). Hence (23.1.24) is completely
skew and we have gIJ = exp(ln(gIJ + 2πinIJ)) for some nIJ ∈ Z. Since the gIJ
satisfy the cocycle condition, the right-hand side of (23.1.24) is integral nIJK ∈ Z
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and obviously δ{f} = 0. Since AJ = AI − dgIJg
−1
IJ , AI = iθI /̄h, ω = dθI we

conclude [ω/(2πh̄)] = [α{f}/(2πh̄)], hence Weil’s criterion is satisfied.
Finally, if Weil’s criterion is satisfied then [{f}] is determined by γIJ only up to

a coboundary δ{x} with real-valued, locally constant functions xIJ over UI ∩ UJ

such that (δx)IJK = 2πh̄mIJK with mIJK integral. That xIJ is locally constant
follows from d(γIJ + xIJ) = θI − θJ = dγIJ . Defining hIJ = exp(ixIJ /̄h) we get
new transition functions g′IJ = gIJhIJ and the hIJ satisfy the cocycle condition.
Hence they define an element of H1(U) with values in U(1). �

Recall that two bundles P, P ′ are equivalent if for their transition func-
tions it holds that g′IJ(p)g−1

IJ (p) = hI(p)hJ(p)−1, hence hIJ(p) = hI(p)hJ(p)−1

is a coboundary because then we have a bundle diffeomorphism (automor-
phism) φ′

I(p, g) = φI(p, hI(p)g) for their local trivialisations. Now if M is sim-
ply connected then H1(M) = {0}, hence by the de Rham isomorphism also
H1(U) = {0}. Thus in this case the prequantum bundle is unique once it
exists.

Weil’s criterion is not stated in the most practical form. The following criterion
is equivalent.

Corollary 23.1.5. Weil’s criterion is equivalent with the requirement that for
any closed two-surface S in phase space

∫

S

ω

2πh̄
= integer (23.1.25)

Proof (Sketch). Suppose first that Weil’s criterion holds. We will assume for
simplicity that the contractible open cover U is such that the sets DI := S ∩
UI are open discs covering S such that no point of S lies in more than three
different MI (see Figure 23.1). In the more general case one has to introduce
more notation, but the idea of the proof is the same. We partition S into sets
Sn, n = 1, 2, 3 consisting of points which are contained in precisely n of the DI .
We obviously have

S1 = ∪IMI , MI := DI − ∪J �=I(DI ∩DJ)

S2 = ∪I<JMIJ , MIJ := DI ∩DJ − ∪K �=I,J(DI ∩DJ ∩DK)

S3 = ∪I<J<KMIJK , MIJK := DI ∩DJ ∩DK (23.1.26)

Of course we may restrict the sum to those I such that S ∩DI 	= ∅. Here we
have used the fact that the MIJK are mutually disjoint by assumption and
that MIJ = MJI ,MIJK = MIKJ = MJKI = MJIK = MKIJ = MKJI . It is con-
venient to split MI further into

MI = DI − ∪J �=IMIJ − ∪J<K; J,K �=IMIJK (23.1.27)
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Figure 23.1 An open cover for a part of the two-surface in phase space for
which no point is contained in more than three neighbourhoods.

Then with Ω := ω/(2πh̄)
∫

S

Ω =
∑

I

∫

MI

Ω +
∑

I<J

∫

MIJ

Ω +
∑

I<J<K

∫

MIJK

Ω

=
∑

I

∫

DI

Ω −
∑

J �=I

∫

MIJ

Ω −
∑

J<K, J,K �=I

∫

MIJK

Ω +
∑

I<J

∫

MIJ

Ω +
∑

I<J<K

∫

MIJK

Ω

=
∑

I

∫

DI

Ω −
∑

I>J

∫

MIJ

Ω −
∑

J<K, J,K �=I

∫

MIJK

Ω +
∑

I<J<K

∫

MIJK

Ω

=
∑

I

∫

DI

Ω −
∑

I>J

∫

DI∩DJ

Ω −
∑

I>J, K �=I,J

∫

MIJK

Ω

−
∑

J<K, J,K �=I

∫

MIJK

Ω +
∑

I<J<K

∫

MIJK

Ω

=
∑

I

∫

DI

Ω −
∑

I>J

∫

DI∩DJ

Ω +
∑

I>J>K

∫

DI∩DJ∩DK

Ω

=
∑

I

∫

∂DI

σI −
∑

I>J

∫

∂(DI∩DJ )

σJ +
∑

I>J>K

∫

∂(DI∩DJ∩DK)

σK (23.1.28)
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where in the third step we used
∑

J �=I =
∑

I<J +
∑

I>J , in the fourth we used
the definition of MIJ , in the fifth we used

∑
J<K, J,K �=I =

∑
I<J<K +

∑
J<I<K +∑

J<K<I and
∑

J<I, K �=I,J =
∑

K<J<I +
∑

J<K<I +
∑

J<I<K and finally in the
sixth step we employed Ω = dσI on (any subset of) DI .

We take all DI with orientation such that the loop ∂DI is counterclockwise
for definiteness. Notice the disjoint partitions (up to boundary points)

∂(DI ∩DJ )= [(∂DI) ∩DJ ] ∪ [DI ∩ (∂DJ )]

∂(DI ∩DJ ∩DJ )= [(∂DI) ∩DJ ∩DK ] ∪ [DI ∩ (∂DJ ) ∩DK ] ∪ [DI ∩DJ ∩ (∂DK)]

(23.1.29)

To convince oneself it is best to draw this on a sheet of paper. Notice also that

∂2(DI ∩DJ) = ∂[(∂DI) ∩DJ ] ∪ ∂[DI ∩ (∂DJ)] = ∅ (23.1.30)

hence set-theoretically both contributions in (23.1.30) are equal to each other
but as zero-dimensional manifolds we must pay attention to their orientation.

Since S is closed, the set ∂DI is completely covered by the DJ , J 	= I (other-
wise we would have to take boundary points into account), so that we have the
disjoint decomposition

∂DI = [∪J �=I(∂DI) ∩MIJ ] ∪ [∪J<K, J,K �=I(∂DI) ∩MIJK ] (23.1.31)

Now use ∂DI ∩DI = ∂DI , insert (23.1.31) into (23.1.28), utilise manipulations
such as those applied in (23.1.28) and those displayed in (23.1.29) and perform
some relabellings. A lengthy calculation shows

∫

S

Ω =
∑

I>J

∫

∂[(∂DI)∩DJ ]

γIJ

+
∑

I>J>K

{∫

∂[(∂DI)∩DJ∩DK ]

γKI +
∫

∂[DI∩(∂DJ )∩DK ]

γKJ

}

(23.1.32)

where σI − σJ = d(γIJ) on (any subset of) DI ∩DJ was used.
Now since S is closed, both endpoints of ∂[(∂DI) ∩DJ ] lie in precisely one of

the DK , K 	= I, J so that

∂[(∂DI) ∩DJ ] = ∪K �=I,J(∂[(∂DI) ∩DJ ]) ∩DK (23.1.33)

is a disjoint decomposition. Next one convinces oneself that

∂[(∂DI) ∩DJ ∩DK ] = (∂[(∂DI) ∩DJ ]) ∩DK ∪ (∂[(∂DI) ∩DK ]) ∩DJ

(23.1.34)

is a disjoint decomposition. Inserting (23.1.33) and (23.1.34) into (23.1.32) we
arrive, after a lengthy calculation using the now familiar manipulations as well



662 Geometric quantisation

as γIJ + γJI = 0, at
∫

S

Ω =
∑

I>J>K

∫

(∂[(∂DI)∩DJ ])∩DK

[γIJ + γJK + γKI ]

=
∑

I>J>K

nIJK ∈ Z (23.1.35)

where we used the fact that γIJ + γJK + γKI = nIJK is integral and constant
on (any subset of) DI ∩DJ ∩DK .

Conversely, fix some labels I0 > J0 > K0 with DI0 ∩DJ0 ∩DK0 	= ∅ and
choose a closed S contained in DI0 ∩DJ0 ∩DK0 . Then the exact same calcu-
lation as above reveals

∫
S

Ω = nI0J0K0 for some constant function with values in
R. Hence, if (23.1.25) holds then nI0J0K0 is integral. �

Let us summarise our findings.

Definition 23.1.6. A symplectic manifold (M,ω) is said to be prequantisable
iff Weil’s integrality criterion is satisfied. The associated structure (P,∇, ρ) is
called a prequantum bundle. The prequantum Hilbert space is H′ = L2(M,Ω) with
inner product between smooth sections of compact support of the associated line
bundle E given by

< ψ,ψ′ > =
∫

M

Ω ρ[ψ,ψ′], ρ[ψ,ψ′] = ρψψ′ (23.1.36)

where d ln(ρ) = 2
h̄�(θ) and symmetric operators associated with real-valued func-

tions f ∈ C∞(M) are densely defined on E by

f̂ = īh∇χf
+ f, ∇ = d +

1
īh
θ, ω = dθ (23.1.37)

23.2 Polarisation

The prequantum Hilbert space is of course much too large because it is highly
reducible. For instance, in ordinary quantum mechanics the famous Stone–von
Neumann theorem [538] tells us that every irreducible, weakly continuous repre-
sentation of the Weyl algebra generated by the operators W (a, b) = exp(i[aq̂ +
bp̂]) is unitarily equivalent to the Schrödinger representation on L2(R, dx)
with (W (a, 0)ψ)(x) = exp(iax)ψ(x), (W (0, b)ψ)(x) = ψ(x− b) and weak conti-
nuity means that the one-parameter unitary groups a �→ W (a, 0), b �→ W (0, b)
are weakly continuous. In that case M = T ∗(R) = T 1(R) and wave functions
depend only on position. The wave functions of the associated prequantum
Hilbert space would depend on momentum as well, which is why it must be highly
reducible. This is the reason why one can define a homomorphism f �→ f̂ for any
function on M, thus circumventing the Groenwald–van Hove theorem [538] which
states that no such homomorphism exists on L2(R, dx) for all functions. It is pos-
sible to define a homomorphism for polynomials in p, q of at most second degree
and for smooth functions at most linear in the momenta.
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Reducible representations are undesirable because the complete physics takes
place already on any of the irreducible subspaces (called superselection sectors
since no operators can map between these spaces). In other words, a reducible
representation indicates that the Hilbert space is too large or the algebra of
operators is too small.

In geometric quantisation one deals with this problem by the process of polar-
isation. In broad terms, polarisation consists of the selection of a Lagrangian
submanifold in M such as the configuration manifold of the q in the case of
the ordinary phase space T ∗(R) coordinatised by the (q, p) with the symplectic
structure ω = dp ∧ dq. However, not every symplectic manifold has the topol-
ogy of a cotangent bundle M = T 1(C) over some configuration manifold and
often it is of advantage to choose complex coordinates. Hence one is natu-
rally led to the question of which symplectic manifolds possess which complex
structures.

Definition 23.2.1

(i) Let V be a vector space over R. The complexification of VC of V is a vec-
tor space over C consisting of vectors of the form w = u + iv, u, v ∈ V .
The complex dimension of VC then coincides with the real dimension of
V because a basis for V continues to be a basis for VC, however, VC is
isomorphic to V ⊕ V which has twice the real dimension of V . The linear
operations on VC are defined as follows: w1 + w2 := (u1 + u2) + i(v1 + v2),
zw := (xu− yv) + i(xv + yu) for z = x + iy ∈ C and we define w̄ := u−
iv. Multilinear forms on tensor products of copies of V are extended in
the obvious way, that is, λ(. . . , w, . . .) := λ(. . . , u, . . .) + iλ(. . . , v, . . .). Since
multilinear forms also form a vector space their complexification is defined
analogously.

(ii) If M is a real manifold then we can define the complexification of the
tensor fields (T a

b (M))C to be the tensor fields of the form w(p) = t1(p) +
it2(p), t1, t2 ∈ T a

b (M) defined by pointwise operations. In particular we can
define multiplication with complex-valued functions. This can be done also
if M does not have a complex structure.

(iii) Let (V, ω, J) be a symplectic vector space with ω-compatible complex struc-
ture J . The subspace V ± of VC consisting of vectors of the form u± :=
1
2 (u∓ iJ [u]) is called the subspace of holomorphic (antiholomorphic) vec-
tors since J [u±] = ±iu±. We set PJ := V +.

Lemma 23.2.2. PJ is a Lagrangian subspace of VC with the additional property
that PJ ∩ PJ = {0}. Conversely, every Lagrangian subspace with this property
determines a complex structure on V .

Proof: Recall that a Lagrangian subspace F of a symplectic vector space V is
defined by the property F = F⊥ := {v ∈ V ; ω(u, v) = 0 ∀ u ∈ F}. We have for
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any u, v ∈ V

4ω[u+, v±] = (ω[u, v] ∓ ω[J [u], J [v]]) − i(ω[J [u], v] ± ω[u, J [v]])

= [ω[u, v] − iω[J [u], v]](1 ∓ 1) (23.2.1)

by compatibility. Hence PJ ⊂ (PJ)⊥ and PJ ∩ (PJ)⊥ = {0} because ω is not
degenerate. Since V + = PJ , V

− = PJ span VC and satisfy PJ ∩ PJ = {0} it fol-
lows that PJ = (PJ)⊥. Obviously dimC(PJ) = m if dimR(V ) = 2m.

Conversely, given a Lagrangian subspace P ⊂ VC with P ∩ P = {0} we know
that VC = P ⊕ P and can decompose any w ∈ VC uniquely as w = w+ + w−

with w+ ∈ P, w− ∈ P . Notice that since ω is real and P is Lagrangian, also P =
{w̄, w ∈ P} is Lagrangian since ω[w̄, w̄′] = ω[w,w′] = 0. We now define J [w] :=
i(w+ − w−) which determines J uniquely. Then

ω[J [w1], J [w2]] = ω[w+
1 , w

−
2 ] + ω[w−

1 , w+
2 ] = ω[w1, w2] (23.2.2)

where we have used the Lagrangian subspace property. Hence J is ω-
compatible. �

Hence, given a complex structure it is easy to construct Lagrangian subspaces
of VC with PJ ∩ PJ = {0}. The other extreme are Lagrangian subspaces P with
the property P ∩ P = P . These are complexifications of Lagrangian subspaces
of V . We now study systematically all the cases in between these two extremes,
utilising the following elementary results whose simple proof we leave to the
reader.

Lemma 23.2.3. Let F ⊂ V be a subspace of the real vector space V and let
G ⊂ VC be a subspace of its complexification. We define the real subspace of
G by GR := G ∩ V . The annihilator subspaces F⊥, G⊥ of V, VC respectively
are defined by F⊥ = {v ∈ V ; ω[u, v] = 0 ∀ u ∈ F} and G⊥ = {v ∈ VC; ω[u, v] =
0 ∀ u ∈ G} respectively. Then the following results hold:

(i) (F⊥)C = (FC)⊥.
(ii) If G = G then (G⊥)R = (GR)⊥.
(iii) If G = G then (GR)C = G.
(iv) Define F̃ = F/(F ∩ F⊥) = {(u); u ∈ F} where the rest classes are defined

by [u] = {u + v; v ∈ F ∩ F⊥}. Then ω̃[(u), (u′)] := ω[u, u′] is well-defined
and (F̃ , ω̃) is a symplectic vector space.

(v) if F is co-isotropic (F⊥ ⊂ F ), π : F → F̃ = F/F⊥ the canonical projec-
tion, P a Lagrangian subspace in V then P̃ := π(P ∩ F ) is a Lagrangian
subspace in (F̃ , ω̃).

The following theorem is the key to the classification of polarisations.

Theorem 23.2.4. Let P ⊂ V C be a Lagrangian subspace and

E := (P + P̄ )R, D := (P ∩ P̄ )R (23.2.3)
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Then

(i) D is an isotropic (D ⊂ D⊥) subspace of V .
(ii) E is a co-isotropic subspace of V and E⊥ = D.
(iii) EC = P + P̄ , DC = P ∩ P̄ .
(iv) Let F̃ = E/D. Then F̃C = EC/DC.
(v) If π : E → F̃ is the canonical projection then P̃ := π(EC ∩ P ) is

Lagrangian in (F̃C, ω).
(vi) P̃ ∩ P̃ = {0}.

We leave the simple proof (with the aid of Lemma 23.2.3, which is applicable
since obviously Ē = E, D̄ = D) to the reader.

The symplectic structure ω̃ defined by P via Theorem 23.2.4 determines a
ω̃-symplectic structure J̃ via Lemma 23.2.2 which is denoted JP . Let g̃ be
the Hermitian structure associated with (F̃ , ω̃, JP ), that is, g̃[u, v] := ω[u, JP [v]]
which defines a symmetric non-degenerate tensor since both ω̃, JP are. Let 2m̃
be the dimension of F̃ and let L be any Lagrangian subspace of (F̃ , ω̃) such that
g̃|L = g̃|JP [L] is also non-degenerate. Then L + JP [L] = F̃ because both L, JP [L]
are Lagrangian subspaces and L ∩ JP [L] = {0}. In fact, L, JP [L] are orthogonal
subspaces with respect to g̃. Since g̃|L defines a non-degenerate symmetric tensor
it will have r positive and s negative eigenvalues with m̃ = r + s ≤ m. This sig-
nature does not depend on the choice of L because any two such Lagrangian sub-
spaces give rise to different block diagonal matrices, which are related by a block
diagonal, even canonical, transformation which does not change the signature of
g̃|L by Sylvester’s theorem. Since E⊥ = D we have 2m = dim(E) + dim(D) and
since F̃ = E/D with D ⊂ E we have 2m̃ = dim(E) − dim(D). Hence dim(E) =
m + m̃, dim(D) = m− m̃.

Definition 23.2.5. The type of the Lagrangian subspace P ⊂ VC is the pair of
integers (r, s) just defined. Special types are:

(i) Kähler: m = r + s, that is dim(D) = 0 so P ∩ P̄ = {0}.
(ii) Positive: m = r, that is s = 0 and Kähler, hence ω = ω̃ and the associated

Kähler metric g[., .] = ω[., .] is positive definite.
(iii) Non-negative: s = 0, that is, the Kähler metric g̃ on F̃ is positive definite,

however, dim(D) > 0 is possible in which case P contains a real subspace.
(iv) Real: r = s = 0, that is, dim(E) = dim(D) = m, hence E = D and P = P̄ ,

so P = LC where L ⊂ V is Lagrangian.

Notice that canonical transformations of V which do not preserve E will change
the type of P . In fact, an ω-compatible complex structure on a symplectic vector
space is just an element of the symplectic group which squares to unity. Hence the
symplectic group acts on the set of compatible complex structures by conjugation
and every compatible complex structure can be obtained this way.
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The reader is urged to check that on (V = R2m, ω = dpa ∧ dqa) an example
for a Lagrangian subspace P of type (r, s) is given by

P = spanC

{

Yμ :=
(

∂

∂pμ

)m−r−s

μ=1

, Y +
μ :=

1
2

(
∂

∂pμ
+ i

∂

∂qμ

)m−s

μ=m−r−s+1

,

Y −
μ :=

1
2

(
∂

∂pμ
− i

∂

∂qμ

)m

μ=m−s+1

}

(23.2.4)

D is the real span of the Y μ, μ = 1, . . . ,m− m̃, E is the real span of the Y μ, μ =
1, . . . ,m− m̃ and the ∂/∂pμ, ∂/∂q

μ, μ = m− m̃ + 1, . . . ,m and F̃ is spanned
by the ∂/∂pμ, ∂/∂q

μ, μ = m− m̃ + 1, . . . ,m. With respect to L ⊂ F̃ spanned
by ∂/∂qμ, μ = m− m̃ + 1, . . . ,m we have g̃|L = diag(1r,−1s).

After this preparation we can now generalise from symplectic vector spaces to
symplectic manifolds.

Definition 23.2.6

(i) A complex distribution P on a real manifold M is an assignment of sub-
spaces p �→ Pp ⊂ (Tp(M))C whose complex dimension k is constant and
which are spanned by k complex vector fields in a neighbourhood of each
point p of M .

(ii) A complex polarisation of a symplectic manifold (M,ω) is a complex dis-
tribution P such that Pp is a Lagrangian subspace of (Tp(M))C and such
that the type of Pp is constant (equivalently, the real dimension of Dp =
(Pp ∩ P p) ∩ Tp(M) is constant).

(iii) A complex distribution is called integrable provided that in a neighbour-
hood U of each point p of M there are smooth complex-valued functions
fk+1, . . . , f2m with linearly independent differentials dfj , j = k + 1, . . . , 2m
such that u[fj ] for any vector field u tangential to P in U . It is said to
be strongly integrable if in addition the real distribution p �→ Ep = D⊥

p is
integrable.

(iv) A symplectic potential θ, dθ = ω is said to be P -adapted provided that iuθ =
0 for all u tangential to P . A polarisation is said to be admissible provided
that local P -adapted symplectic potentials exist everywhere.

(v) A complex-valued function ψ ∈ C∞(M) is said to be P -polarised provided
that ū[ψ] = 0 for all u tangential to P . We use the notation C∞

P (M) for
such functions.

The reason for using ū, u ∈ P rather than u itself is because we want to get
holomorphic functions as polarised functions rather than antiholomorphic ones.
A very important example is the case that the symplectic manifold (M,ω) is also
a Kähler manifold with ω-compatible complex structure. Then M carries two
natural polarisations spanned by the holomorphic ∂/∂zμ and antiholomorphic
∂/∂z̄μ vector fields selected by J [u] = ±iu respectively. We had seen that locally
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ω = id ∧ d̄K for a Kähler scalar K in Kähler manifolds. Hence θ = −idK is a
local adapted symplectic potential and hence P = spanC{∂μ} is admissible.

The importance of the notation of a strongly integrable polarisation is demon-
strated by the following theorem:

Theorem 23.2.7. Let P be a strongly integrable polarisation of a symplectic
manifold (M,ω) of dimension dim(M) = 2(m′ + m̃) = 2m. Then in the neigh-
bourhood of each point we find a system of coordinates {qa, pa, zα}m

′
a=1

m̃
α=1 with

q, p real and z complex such that P = spanC{∂/∂pa, ∂/∂zα} and there is a real-
valued function K(q, z, z̄) such that ω = dθ where

θ = padq
a − i

2
(∂αK)dzα +

i

2
(∂ᾱK)dzᾱ (23.2.5)

Proof: Since P is integrable we find m functions zμ such that ū[zμ] = dzμ[[ū]] =
−iūiχzμ

ω = 0 for all u tangential to P . Hence χzμ ∈ P̄⊥ = P̄ . Hence P̄ =
spanC{χzμ}. Since ω is non-degenerate and real we see that P = spanC{χz̄μ}.
By Frobenius’ theorem 19.3.2 both systems of vector fields are involutive because
the Pfaff system dzμ; μ = 1, . . . ,m is closed.

Since ω is real, Dp = (Pp ∩ P̄p) ∩ Tp(M) will be non-empty if and only if m′

of the zμ are actually real-valued. Let us therefore write (zμ) = (qa, zα), a =
1, . . . ,m′; α = 1, . . . , m̃. Then D is spanned by the χqa and has constant dimen-
sion m′ = m− m̃. By assumption p �→ Ep = (Pp ∪ P̄p) ∩ Tp(M) is an integrable
co-isotropic distribution of dimension m + m̃ = m′ + 2m̃, hence Dp = (Ep)⊥ ⊂
Ep. Since the statement of the theorem is local we may assume without loss of
generality that E is reducible. Hence we find m real-valued functions fa, a =
1, . . . ,m on M such that the leaves If of the foliation are labelled by the constant
values of the fa. By definition Ep = spanR{χqa ,

1
2 (χzα + χz̄α), −i

2 (χzα − χz̄α)}.
Since these vector fields are tangential to the leaves we must have χqa [f b] =
χzα [f b] = χz̄α [f b] = 0. Since P, P̄ are Lagrangian distributions we must have
iχzμ

iχzν
ω = iχz̄μ

iχz̄ν
ω = 0 for all μ, ν = 1, . . . ,m. Hence in particular χqa [qb] =

χzα [qb] = χz̄α [qb] = 0 and we see that we may choose f b = qb.
Consider the vector spaces F̃p = Ep/Dp spanned by the real linear combi-

nations of the χzα , χz̄α and denote by πp : Ep → Ep/Dp. Then it carries the
polarisation defined by P̃p = π((Ep)C ∩ Pp) = π(Pp) spanned by the χzα . Hence
within each leaf Iq the distribution F̃p integrates to an integral manifold F̃q

which carries a Kähler polarisation P ′ because P ′ ∩ P̄ ′ = {0}. As we have seen
above, it carries a symplectic structure ω̃q which, since F̃q is Kähler, takes the
local form

ω̃q = i∂α∂β̄Kq(z, z̄)dzα ∧ dzβ̄ (23.2.6)

for some local Kähler scalar Kq.
The leaves Iq have the structure of a fibre bundle over F̃q with typical fibre Dq

which are the integral manifolds of the distribution D. Consider a (2m−m′)-
dimensional manifold S which intersects all the leaves Iq and within each Iq
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it intersects every fibre Dq once. We define m′ functions pa, a = 1, . . . ,m′ by
the requirement χqa [pb] = δab, (pa)|S = 0. This defines pa in a neighbourhood
of S and thus in a region of m. It follows that the (qa, pa, zα, z̄α) are local
coordinates for M . By writing χq, χz, χz̄ in terms of ∂q, ∂p, ∂z, ∂z̄ and using that
χzμ [zν ] = χz̄μ [z̄ν ] = 0 from the fact that both P, P̄ are Lagrangian we find that
the χq and hence D is spanned by the ∂p, that the χz and hence P̄ is spanned
by the ∂p, ∂z̄ and that the χz̄ and hence P is spanned by the ∂p, ∂z. In fact
χqa = ∂pa .

The general form of ω is now given by

ω = dpa ∧ dqa + σabdq
a ∧ dqb + σaαdq

a ∧ dzα + σaαdq
a ∧ dz̄α

+ i(∂α∂βK)dzα ∧ dz̄β (23.2.7)

All functions displayed a priori depend on all coordinates except for K which
is independent of p. The Ansatz obeys reality of ω and takes into account that
ω[∂p, .] vanishes on P ∪ P̄ . We now compute dω = 0 and learn by comparing
coefficients that σab, σaα are independent of p. Next ∂[aσbc] = 0 implies locally
that σab = ∂[afb]. Replacing pa by pa + fa we may set fa = 0. With this choice we
get the further relations ∂[aσb]α = σa[α,β] = 0, which locally implies that σaα =
− 1

2∂
2g/∂qa∂zα where g is a function unique up to adding f(z, z̄). The final

implication is

∂3

∂qa∂zα∂z̄β

[
iK − 1

2
(g − ḡ)

]
= 0 (23.2.8)

which has the local solution

�(g) = K + h(q, z) + h(q̄, z) + f(z, z̄) (23.2.9)

Since K(q, z, z̄) := Kq(z, z̄) is only unique up to some h + h̄ where h is holomor-
phic and f can be absorbed into g we may choose �(g) = K. Reinserting into ω

and replacing pa by pa + 1
2∂�(g)/∂qa we arrive at the assertion. �

We remark that every strongly integrable polarisation is admissible because
upon replacing θ by θ − i

2dK there are no terms proportional dp, dz̄ and hence
θ is annihilated by the vector fields tangential to P̄ .

23.3 Quantisation

The idea of arriving at an irreducible representation is now by restricting wave
functions to half of the degrees of freedom.

Definition 23.3.1. Let P be a strongly integrable polarisation of a symplectic
manifold (M,ω) and (B,∇, ρ) a prequantum bundle over M . A smooth section
ψ : M → E of the associated vector bundle E is said to be polarised provided that
∇ūψ = 0 for all u tangential to P . The space of polarised sections is denoted by
SP .
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We remark that polarised sections always exist: by Theorem 23.2.7 P is
spanned by ∂pa

, ∂zα and θ depends only on dqa, dzα and is admissible. Hence
∇ū = ū and so a polarised section is of the form ψ(q, z). (In particular, in the
Kähler case P ∩ P̄ = {0} wave functions are simply holomorphic.) Using that

θ = padq
a − i(∂αK)dzα − i

2
(∂aK)dqa (23.3.1)

we find that �(θ) = −dK/2 is exact and so the ∇-compatible fibre metric deter-
mined by d ln(ρ) = − 2

h̄�(θ) is given by

ρ = ρ0 exp(K/̄h), K = K(q, z, z̄) (23.3.2)

and is determined directly by the Kähler scalar.
In the quantisation step one would now simply like to restrict the prequantum

Hilbert space H′ to (the completion of) SP , that is one would like to define the
Hilbert space by HP := H′ ∩ SP . This is problematic for the following reasons:

(A) Normalisation
For most polarisations it is not true that SP contains any square integrable
element. This is most evident in the case that P is not a Kähler polarisa-
tion because then neither the sections nor the Kähler scalar depend on the
pa, which when taking unbounded range will tend to make the p-integral
diverge. Even in the case that P is Kähler but not positive there is a prob-
lem even if M is compact because the Kähler potential K is not necessarily
bounded from above in this case. To see this, suppose, for example, that
∂/∂xα generate a real Lagrangian submanifold and that M is a complex
manifold, that is, J [∂/∂xα] = ∂/∂yα. It is then easy to see that

gαβ = g[∂α, ∂β ] = 2
∂2K

∂zα∂z̄β
(23.3.3)

with zα = xα + iyα. Suppose that z0 is a stationary point and make use of
the ambiguity K(z, z̄) �→ K(z, z̄) + h(z) + h(z) in order to achieve (∂z)2K =
(∂z̄)2K = 0 at z0 as well. Then (gαβ(z0)) is the Hessian and its signature
(r, s) shows that the integral converges at best when s = 0. Hence only for
positive Kähler polarisations is HP large enough.

(B) Operators
Of course the only admissible operators are those which preserve the polar-
isation. Hence we must have ∇ūf̂ψ = 0 for every polarised section ψ and
it is easy to check that this is the case if and only if ∇[ū,χf ]ψ = 0, hence
[ū, χf ] ∈ P̄ , so χf must preserve the polarisation. Hence not every function
can be realised as a prequantum operator on the Hilbert space HP. One can
sometimes deal with this difficulty by a procedure called ‘pairing’, the more
sophisticated version of which is the so-called ‘metaplectic correction’. For
the case of a positive Kähler polarisation such that HP ∈ H′ is a subspace it
boils down to the following: denote by πP : H′ → HP the orthogonal projec-
tion and define an operator f̂P := πPf̂πP on HP. While this is a symmetric
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operator, it is no longer necessarily true that [f̂P, f̂
′
P] = {̂f, f ′}

′
P for any two

functions f, f ′. Another avenue is to write f in terms of functions whose
operators do preserve the polarisation, but then of course ordering issues
arise.

This ends our sketch of geometric quantisation. One of the many interesting
issues which we did not discuss is how symplectic reduction and geometric quan-
tisation work together (see, e.g., [890–894]. One can of course quantise after the
reduction but of more practical use is quantisation before reduction. In that case
it is not hard to believe that a critical condition for direct quantisation is that
the Hamiltonian vector fields of the constraints should preserve the polarisation
as otherwise the projections πP could spoil the consistency of the constraint alge-
bra. If that condition is not satisfied one then faces the just-mentioned ordering
problems.

In summary, geometric quantisation provides a beautiful, geometric, general
framework for the quantisation of a given symplectic manifold which is not nec-
essarily of cotangent bundle type. However, while in the prequantisation step
we can quantise all functions without picking up ordering corrections, once one
chooses a polarisation and hence an irreducible representation, one is again faced
with ordering corrections.
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The Dirac algorithm for field theories
with constraints

It is a crime that the subsequent analysis is not a standard ingredient of every
course in theoretical mechanics. Every interaction that we know today underlies
a gauge theory, that is, a field theory with constraints. However, constraints
are generically at most mentioned in beginning theoretical mechanics courses.
This is the more astonishing as this really important topic can be taught at
a truly elementary level. Also quantum mechanics is not needed (at most for
motivational purposes), the theory can be formulated in purely classical terms.
We recommend the classic expositions by Dirac [219] and by Hanson et al. [895]
as introductory texts. More advanced are the textbooks [659] and [263]. For
geometrical quantisation with constraints see [890] and for a more mathematical
formulation see [891–894].

24.1 The Dirac algorithm

We will consider only a finite number of degrees of freedom. The more general
case can be treated straightforwardly, at least at a formal level. We will also
not consider the most general actions but only those which lead to phase spaces
with a cotangential bundle topology. For the more general cases see the cited
literature.

Definition 24.1.1. Consider a Lagrangian function L : T∗(C) → C; (qa, va) �→
L (q, v) on the tangential bundle over the configuration manifold C where v := q̇

(velocity) defines the corresponding action principle.

(i) The map

ρL : T∗(C) → T ∗(C); (q, v) �→
(
q, p(q, v) :=

∂L

∂v
(q, v)

)
(24.1.1)

is called a Legendre transformation.
(ii) A Lagrangian is called singular provided that ρL is not surjective, that is,

det

((
∂2L

∂va∂vb

)m

a,b=1

)

= 0 (24.1.2)

For singular Lagrangians it is not possible to solve the velocities in terms of
the momenta, the underlying reason being that the Lagrangian is invariant under
certain symmetries.
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Let m = dim(C) and suppose that the rank of the matrix in (24.1.2) is m− r

with 0 < r ≤ m. By the inverse function theorem we can solve (at least locally)
m− r velocities for m− r momenta and the remaining velocities, that is w.l.g.

pA =
∂L

∂vA
(q, v) ⇒ vA = uA(qa, pA, vi) (24.1.3)

where a, b, . . . = 1, . . .m; A,B, . . . = 1, . . . ,m− r; i, j, . . . = m− r + 1, . . . ,m. It
follows that inserting (24.1.3) into the remaining equations pi = ∂L/∂vi cannot
depend on the vi any more, as otherwise the rank would exceed m− r. We
therefore obtain r equations of the form

pi =
[
∂L

∂vi
(q, v)

]

vA=uA(qa,pA,vj)

=: πi(qa, pA) (24.1.4)

which show that the pa are not independent of each other.

Definition 24.1.2

(i) The functions

φi(qa, pa) := pi − πi(qa, pA) (24.1.5)

are called primary constraints.
(ii) The function

H ′(qa, pa, vi) := [pava − L(qa, pa)]va=ua(qa,pA,vi) (24.1.6)

is called the primary Hamiltonian corresponding to L.

Lemma 24.1.3. The primary Hamiltonian is linear in vi with coefficients φi.

Proof: Differentiating the expression

H ′(qa, pa, vi) = pAu
A(qa, pB , vj) + piv

i − L(qa, uA(qa, pB , vj), vi) (24.1.7)

with respect to vi we obtain

∂H ′(qa, pa, vj)
∂vi

=
[
pA−

(
∂L(qa, va)

∂vA

)

vA=uA

]
∂uA

∂vi
+

[
pi−

(
∂L(qa, va)

∂vi

)

vA=uA

]

= [pi − πi(qa, pA)] = φi(qa, pa) (24.1.8)

�

We conclude that we may write

H ′(qa, pa) = H̃(qa, pa) + viφi(qa, pa) (24.1.9)

where the new Hamiltonian H̃ is independent of the remaining velocities vi.

Theorem 24.1.4. The Hamiltonian equations

q̇a =
∂H ′

∂pa
, ṗa = −∂H ′

∂qa
, 0 =

∂H ′

∂vi
(24.1.10)
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are equivalent to the Euler–Lagrange equations

q̇a = va,
∂L

∂qa
=

[
d

dt

∂L

∂va

]

v=q̇

(24.1.11)

We leave the simple proof (just use the definitions carefully) to the reader.
The phase space M of the constrained system is thus coordinatised by the

qa, pa while the vi are Lagrange multipliers, they do not follow any prescribed
dynamical trajectory and are completely arbitrary. Our constrained phase space
is equipped with the standard symplectic structure

0 = {qa, qb} = {pa, pb} = {qa, vi} = {pa, vi}, {pa, qb} = δba (24.1.12)

and the Hamiltonian H ′.
The primary constraints force the system to the submanifold of the phase

space defined by φi = 0, i = 1, . . . , r for which we use the shorthand notation
φ = 0. This is consistent with the dynamics if and only if that submanifold is
left-invariant, that is,

φ̇i = {H ′, φi} = {H̃, φi} + vj{φj , φi} (24.1.13)

vanishes on the constraint surface M̄ := Mφ=0 of the phase space. Now those
primary constraints fall into the following three categories:

1. [φ̇i]φ=0 ≡ 0 for i = 1, . . . , α is identically satisfied for any vi.
2i. [φ̇i]φ=0 �= 0 and {φj , φi}φ=0 = 0 for all j = 1, . . . , r and i = α + 1, . . . , β.
2ii. [φ̇i]φ=0 �= 0 for generic vi but the matrix {φj , φi}φ=0 with j = 1, . . . , r; i =

β + 1, . . . , r has maximal rank r − β.

In case (2ii) we do not allow that the rank is smaller than r − β since then
we cannot find vi in order to set [φ̇i]φ=0 = 0 and the theory would become
inconsistent. Inconsistent theories have to be ruled out anyway.

Let us now extend the set of primary constraints by the φi := φ̇i−r+α with
i = r + 1, . . . , r + β − α and redefine r by r → r′ := r + β − α. Now iterate the
above case analysis (notice that H ′ always only contains the first r con-
straints while φ = 0 means φi = 0, i = 1, . . . , r′) until case (2i) no longer appears
(β = α). The iteration stops after at most 2m− r steps because in each step
the number of (automatically functionally independent) constraints increases by
at least one and 2m constraints constrain the phase space to a discrete set of
points.

Definition 24.1.5. The constraints φi, i = r′ − r are called secondary con-
straints. Here r′ is the value of the redefined r after the last iteration step.

It follows that at the end of the procedure we have [φ̇i]φ=0 ≡ 0 identically for
i = 1, . . . , α for any choice of vi and some 0 ≤ α ≤ r′ and the matrix {φj , φi}φ=0

with j = 1, . . . , r; i = α + 1, . . . , r′ with r′ ≥ r has maximal rank r′ − α ≤ r. Let
now vj = vj0 + λμvjμ where vj0(q

a, pa) is a special solution of the inhomogeneous
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linear equation

{H̃, φi}φ=0 + vj{φj , φi}φ=0 = 0 (24.1.14)

and vjμ(qa, pa), μ = 1, . . . , r − (r′ − α) is a basis for the general solution of the
homogeneous system. We define

H := H̃ + vj0φj , ϕμ := vjμφj (24.1.15)

24.2 First- and second-class constraints and the Dirac bracket

Definition 24.2.1. A function f ∈ C∞(M) is called of first class provided that
{φj , f}φ=0 = 0 for all j = 1, . . . , r′, otherwise of second class.

Lemma 24.2.2

(i) The functions ϕμ, H are of first class.
(ii) The first-class functions form a subalgebra of the Poisson algebra on M.

Proof

(i) is clear from the construction.
(ii) follows by realising that if f, f ′ are first class then there exist functions fij , f ′

ij

with i, j = 1, . . . , r′ such that {φi, f} = fijφj , {φi, f
′} = f ′

ijφj . A short cal-
culation then reveals that {φi, {f, f ′}}φ=0 = 0. �

Let now Hλ := H + λμϕμ. Since at φ = 0 the finite time evolution of a func-
tion f should be independent of the arbitrary parameters λμ, we require that
{Hλ1 , . . . , {HλN

, f}, . . .}φ=0 is independent of the λ1, . . . λN for any N = 1, 2, . . ..
It is easy to see from the above lemma that this is automatically the case if f
is of first class. However, since the multiple Poisson brackets contain only the
first-class constraints ϕμ it is actually sufficient that {f, ϕμ}φ=0 for all μ.

This motivates us to extend the set of first-class constraints ϕμ already found
to a maximal set Cμ, μ = 1, . . . , k with k ≥ r − (r′ − a) and to add them to
the Hamiltonian with additional Lagrange multipliers. Denote the subset of the
constraints φi functionally independent of the Cμ, that is, the second-class con-
straints, by φI , I = 1, . . . , r′ − k.

Definition 24.2.3

(i) The set Cμ is called the set of generators of gauge transformations.
(ii) A function f ∈ C∞(M) is called a weak Dirac observable provided that

{f, Cμ}φ=0 for all μ = 1, . . . , k. It is called a strong Dirac observable if this
equation holds without the restriction φ = 0, that is, everywhere on the phase
space.1

1 One does not require {f, φj} = 0 ∀j = 1, . . . , r′ because this is inconsistent in general: by
the Jacobi identity 0 = {φi, {φj , f}} − {φj , {φi, f}} = −{f, {φi, φj}}. But {φi, φj} is no
constraint in general, so f would be overconstrained.
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(iii) The extended Hamiltonian is defined by

Hλ = H + λμCμ (24.2.1)

The nomenclature stems from the fact that {Cμ, f} can be interpreted as
an infinitesimal motion generated by the flow of the Hamiltonian vector field
associated with Cμ and an observable is invariant under this flow at least on M̄.
That all first-class constraints Cμ should be considered as generators of gauge
transformations (so-called Dirac conjecture) and not only the ϕμ which appear
in H ′ is motivated by the fact that only the Cμ form a closed constraint algebra
(see below), however, it does not follow strictly from the formalism. That it is
physically correct to proceed that way has been confirmed in countless examples
though and can even be proved under some restrictions [263].

Lemma 24.2.4. We have that r′ − k = 2m′ is even and that ({φI , φJ}φ=0) is
an invertible matrix.

Proof: Suppose that ({φI , φJ}φ=0) is singular, then there exist numbers xJ ∈ C
such that {φI , C0}φ=0 = 0 for all I where C0 = xJφJ . Since {Cμ, C0}φ=0 = 0
anyway we find {φi, C0}φ=0 = 0 for all i so that C0 is a first-class constraint
independent of the Cμ. This is a contradiction to the assumed maximality. It
follows that r′ − k is even since ({φI , φJ}φ=0) is an antisymmetric matrix. �

Definition 24.2.5. Let cIJ := (({φK , φL})−1)IJ . The Dirac bracket is defined
by

{f, f ′}∗ := {f, f ′} + {φI , f}cIJ{φJ , f
′} (24.2.2)

Theorem 24.2.6. The Dirac bracket defines a degenerate two-form on M
with kernel spanned by χφI

where χf denotes the Hamiltonian vector field of
f ∈ C∞(M) with respect to the symplectic structure determined by {., .}. The
Dirac bracket satisfies the Jacobi identity but the corresponding two-form is not
necessarily gobally closed. It is possible to choose local canonical coordinates and
equivalent sets of second-class constraints such that it is locally closed.

Proof: Recall from Section 19.3 our conventions: iχf
Ω + df = 0 and {f, f ′} =

−iχf
iχf′ Ω = χf (f ′) = iχf

(df ′) defines the relation between a non-degenerate
symplectic structure Ω, Hamiltonian vector field χf and Poisson bracket {., .}.
Also for a p-form ω = ωα1...αpdx

α1 ∧ . . . ∧ dxαp we define exterior derivative,
contraction with vector fields v and Lie derivative by

dω = [∂α1ωα2...αp+1 ]dx
α1 ∧ . . . ∧ dxαp+1

ivω = p vαωαα1...αp−1dx
α1 ∧ . . . ∧ dxαp−1

Lvω = [iv · d + d · iv]ω (24.2.3)
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Let Ω = 1
2Ωαβdx

α ∧ dxβ (here α, β, . . . = 1, . . . , 2m). Define the inverse of Ωαβ

by ΩαγΩγβ = δαβ . Then it is easy to verify that χα
f = Ωαβ∂βf and therefore

Ωαβ = −{xα, xβ}.
We first of all verify that a non-degenerate two-form is closed if and only if

the associated Poisson bracket satisfies the Jacobi identity

{f[1, {f2, f3]}} = 0 (24.2.4)

To see this we just need to use the formula {f, f ′} = −Ωαβ(∂αf)(∂βf ′) and
the fact that δΩ−1 = −Ω−1(δΩ)Ω−1 to conclude that (24.2.4) is equivalent with
∂[αΩβγ] = 0.

Next we verify directly from the definition for the Dirac bracket and by similar
methods applied to cIJ that on all of M the Jacobi identity

{f[1, {f2, f3]}∗}∗ = 0 (24.2.5)

holds. Moreover

{f, φI}∗ = −{φI , f}∗ = 0 (24.2.6)

for any I = 1, . . . , 2m′ and f ∈ C∞(M).
It is easy to see that the Dirac bracket corresponds to the two-form

Ω∗ = Ω − cIJ dφI ∧ dφJ (24.2.7)

via {f, f ′}∗ =: −Ω∗
αβχ

α
fχ

β
f ′ . It follows from (24.2.6) that iχφI

Ω∗ = 0, hence Ω∗

is degenerate and therefore not necessarily closed. Taking the exterior deriva-
tive we see that this two-form is closed if and only if dcIJ ∧ dφI ∧ dφJ = 0,
which is not necessarily the case. However, by an appeal to Darboux’ theo-
rem [218] we can always replace the second-class constraints by equivalent ones
such that cIJ = const. [659]. In such coordinates then Ω∗ is locally closed. More-
over, we can find local Darboux coodinates xα = (xa, xI := φI) with respect to
Ω with a = 1, . . . , 2(m−m′), I = 1, . . . , 2m′ such that Ωab = Ωab

0 , Ωab = ΩaI
0 =

0, ΩIJ = ΩIJ
0 where Ω0 denotes the standard canonical form. It follows that then

locally Ω∗ = π∗Ω where π : M → M′ (xa, xI) �→ (xa, 0) is the projection to the
constraint manifold defined by second-class constraints. �

Notice that for the first-class constraints Cμ and the Hamiltonian Hλ we
have for any f ∈ C∞(M) that {Cμ, f}φ=0 = {Cμ, f}∗φ=0 and {Hλ, f}φ=0 =
{Hλ, f}∗φ=0 (more generally this holds for any first-class function). Thus, on the
constraint surface the Dirac bracket defines the same equations of motion as the
original bracket. Notice, however, that in general {f, f ′}φ=0 �= {f, f ′}∗φ=0 even if
f, f ′ are (weak) Dirac observables, unless at least one of f, f ′ is first class. Thus,
the Dirac bracket changes the symplectic structure among observables, thus pos-
sibly complicating quantisation. However, the Dirac bracket is easily seen to have
the important property

({f|M′ , f ′
|M′}∗)|M′ = ({f, f ′}∗)|M′ (24.2.8)
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where M′ is the constraint surface by setting the second-class constraints to zero.
Thus, with respect to a Dirac bracket we may set the second-class constraints
equal to zero before or after evaluating it. Thus, the virtue of the Dirac bracket
is that one can either work on the full phase space or one can explicitly solve the
second-class constraints without changing the symplectic structure.

Because of this and because the equations of motion and the gauge motions
generated by the first-class constraints on the constraint surface are unaltered
irrespective of whether we use the original Poisson bracket or the Dirac bracket,
we may just forget about the second-class constraints for the rest of the analysis
and work off the constraint surface defined by the second-class constraints while
using the Dirac bracket. Notice, however, that the Dirac bracket generically
alters the bracket between previously canonically conjugate quantities, which
complicates the quantisation of the Dirac bracket tremendously in general. Hence
one will try to avoid second-class constraints as much as possible.

The reason for treating the second-class constraints differently from the first-
class constraints is as follows: the cleanest way to treat a constrained Hamiltonian
system is to compute the full constraint surface M̄ = {m ∈ M; φi(m) = 0 ∀ i =
1, . . . , r′}. Since the Hamiltonian is a first-class function, its Hamiltonian flow
preserves the constraint surface. Since the Hamiltonian depends on arbitrary
parameters, and physical observables must be independent of those, we have
required that those observables must be independent of the Hamiltonian flow
generated by the first-class constraints, at least on the constraint surface. This
is, however, not possible to require for the second-class constraints because their
Hamiltonian flow does not preserve the constraint surface.

Thus, what one should do is compute the gauge orbits [m] with respect to
the first-class constraints of points m on the full constraint surface (defined by
both first- and second-class constraints). The manifold so obtained is called the
reduced phase space M̂ and observables (gauge-invariant functions) are naturally
functions on M̂. The reduced phase space is automatically equipped with a
symplectic structure that one obtains locally by looking for a suitable set of first-
class constraints and conjugate Darboux coordinates (together with a suitable
choice of second-class constraints as Darboux coordinates). See [218] for details
and Section 19.3.2 for basics of symplectic reduction. One would then quantise
the reduced system.

The reason for why that is not always done is that for non-linear systems it is
extremely difficult to compute M̄,M̂ even classically and the reduced symplectic
structure on the observables might be so complicated that it is very hard to find a
representation of the associated canonical commutation relations in the quantum
theory. Thus, in order to get started with the quantisation, Dirac has proposed
solving the constraints not before but after the quantisation. Roughly speaking,
we turn the constraints into operators and impose that physical states satisfy

Ĉμψ = 0 (24.2.9)
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(this equation must actually be read in a generalised sense, see Chapter 30).
Notice that we impose this only for the first-class constraints. To see why, notice
that the first-class constraints must satisfy a subalgebra of the Poisson algebra
(we know that {Cμ, Cν}φ = 0 therefore {Cμ, Cν} = fμν

ρCρ + fμν
IφI for some

structure functions fρ
μ�, f

I
μν and since the Poisson bracket is first class again we

know that f I
μν = 0). Therefore upon suitable operator ordering for a solution of

(24.2.9) we have that

0 = [Ĉμ, Ĉμ]ψ = f̂μν
ρĈρψ (24.2.10)

is a consistent equation. However, if we extend (24.2.9) to second-class con-
straints we get the contradiction

0 = [φ̂I , φ̂J ]ψ �= 0 (24.2.11)

since the commutator is proportional to a quantisation of cIJ , which in the worst
case is a constant (in general an operator which is not constrained to vanish).
Thus, one solves the second-class constraints simply by restricting the argument
of the wave function to the constraint surface M′ defined by the second-class
constraints (using the second-class constraints themselves as coordinates).

Two remarks are in order:

1. Notice that every second-class constraint classically removes one degree of
freedom while every first-class constraint removes two since not only do we
delete degrees of freedom, but we also compute gauge orbits. However, since
the number of second-class constraints is always even, the reduced phase space
has always again an even number of physical degrees of freedom (otherwise it
would not have a non-degenerate symplectic structure). One may then wonder
how it is possible that we just impose the constraint on the state and do not
compute its gauge orbit in addition. The answer is that the wave function
already depends only on half of the number of kinematical degrees of free-
dom (configuration space). The imposition of the constraint is actually the
condition that the state be gauge-invariant and simultaneously the constraint
operator is deleted.

2. One may also wonder why we do not simply remove the first-class constraints
as well. The procedure to do this is called gauge fixing. Thus, we impose addi-
tional conditions kμ = 0 which ideally pick from each gauge orbit a unique
representative and such that the matrix ({kμ, Cν}) is non-degenerate on
the constraint surface. One may then remove the constraints Cμ by consider-
ing the system kμ, Cμ as second-class constraints and by using the associated
Dirac bracket. The reason for not doing this is that it is actually very prob-
lematic: usually functions with the required properties simply do not exist,
for instance gauge orbits can be cut more than once, leading to the so-called
Gribov copies [263, 659]. Also, the geometric structure of the system is very
much veiled and different gauge conditions may lead to different physics.
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Finally, let us display a simple example: consider the phase space M = T ∗(R3)
with constraints φ1 = p1, φ2 = q2, φ3 = p2 where qa, pa, a = 1, 2, 3 are canoni-
cally conjugate configuration and momentum coordinates. It is easy to see that
C = φ1 is the only first-class constraint and that φ2, φ3 is a pair of second-class
constraints. For instance, functions which are independent of q1, q2, p2 are first
class but also the Hamiltonian H = −(q1)2 +

∑3
a=1[(q

a)2 + (pa)2] and any func-
tion which is independent of q1 is an observable but also the function f = p1q

1.
The gauge motions generated by C are translations in the q1 direction so that
the value of q1 is pure gauge. Obviously then the only second-class constraint
reduced phase space is M′ = T ∗(R2), while the fully reduced phase space is
M̂ = T ∗(R1).



25

Tools from measure theory

For an introduction to general measure theory see, for example, the beautiful
textbook [552]. For more advanced topics concerning the extension theory of
measures from self-consistent families of projections to σ-additive ones see, for
example, [532].

25.1 Generalities and the Riesz–Markov theorem

Recall the notion of a topology and of continuous functions from Chapter 18.

Definition 25.1.1

(i) Let X be a set. Then a collection of subsets U of X is called a σ-algebra
provided that
1. X ∈ U ,
2. U ∈ U implies X − U ∈ U and
3. U is closed under countable unions, that is, if Un ∈ U , n = 1, 2, . . . then

also ∪∞
n=1Un ∈ U .

The sets U ∈ U are called measurable and a space X equipped with a
σ-algebra a measurable space.

(ii) Let X be a measurable space and let Y be a topological space. A function
f : X → Y is said to be measurable provided that the pre-image f−1(V ) ⊂
X of any open set V ⊂ Y is a measurable subset in X.

(iii) Let X be a topological space. The smallest σ-algebra on X that contains
all open (and due to (2) therefore all closed) sets of X is called the Borel
σ-algebra of X. The elements of the Borel σ-algebra are called Borel sets.

Given a collection U of subsets of X which is not yet a topology (σ-algebra)
the weakest topology (smallest σ-algebra) containing U is obtained by adding
to the collection the sets X, ∅ as well as arbitrary unions plus finite intersec-
tions (countable unions and intersections). Notice the similarity between a col-
lection of sets U that qualify for a σ-algebra and a topology: in both cases the
sets X, ∅ belong to U but while open sets are closed under arbitrary unions
and finite intersections, measurable sets are closed under countable unions and
intersections. Note also that if X,Y are topological spaces and f : X → Y is
continuous then f is automatically measurable if X is equipped with the Borel
σ-algebra.
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Definition 25.1.2. A complex measure μ on a measurable space (X,U) is a
function μ : U → C − {∞}; U �→ μ(U) which is countably (or σ-)additive, that
is,

μ

( ∞⋃

n=1

Un

)

=
∞∑

n=1

μ(Un) (25.1.1)

for any mutually disjoint measurable sets Un. A positive measure is also a σ-
additive map μ : U → R+ ∪ {0,∞} which however is positive semidefinite and
may take the value ∞ with the convention 0 · ∞ = 0 (which makes [0,∞] a set in
which commutative, distributive and associative law hold). To avoid trivialities
we assume that μ(U) < ∞ for at least one measurable set U . A measure is called
a probability measure if μ(X) = 1. The triple (X,U , μ) is called a measure space.

In what follows we will always assume that μ is a positive measure. Sets B ∈ B
such that μ(B) = 0 are called of μ-measure zero. We say that a property holds μ-
a.e. (almost everywhere) on X if it holds strictly except on measure zero subsets.

A very powerful tool in measure theory are characteristic functions of subsets
of X.

Definition 25.1.3. A function s : X → C on a measurable space (X,U) is
called simple provided its range consists of finitely many points only. If zk ∈
C, k = 1, . . . , N are these values and Sk = s−1({zk}) then s =

∑N
k=1 zkχSk

,
where χS with χS(x) = 1 if x ∈ S and χS(x) = 0 otherwise, is called the charac-
teristic function of the subset S ⊂ X. Obviously, a simple function is measurable
if and only if the Sk are measurable.

The justification for this definition lies in the following lemma.

Lemma 25.1.4. Let f : X → [0,∞] be measurable. Then there exists a sequence
of measurable simple functions sn such that

(a) 0 ≤ s1 ≤ s2 ≤ . . . ≤ f

(b) limn→∞ sn(x) = f(x) pointwise in x ∈ X.

The proof can be found in [552], Theorem 1.17.

Definition 25.1.5

(i) For a simple measurable function s =
∑N

k=1 zkχSk
with zk > 0 on a measure

space (X,U , μ) with positive measure μ we define

μ(s) :=
∫

X

dμ(x)s(x) :=
N∑

k=1

zkμ(Sk) (25.1.2)

For a general measurable function f : X → [0,∞] we define

μ(f) := sup
0≤s≤f

μ(s) (25.1.3)
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where the supremum is taken over the simple, positive measurable functions
that are nowhere larger than f . The number μ(f) is called the Lebesgue
integral of f . For a general complex-valued, measurable function f one can
show that we have a unique split as f = u + iv, u = u+ − u−, v = v+ − v−
with non-negative measurable functions u±, v± and the integral is defined
as μ(f) = μ(u+) − μ(u−) + i[μ(u+) − μ(u−)]. Also |f | can be shown to be
measurable.

(ii) A measure μ is called positive definite if for every non-negative measurable
function f the condition μ(f) = 0 implies f = 0 almost everywhere (a.e.,
i.e., up to measure zero sets).

Of fundamental importance are conditions under which one is allowed to
exchange integration and taking limits or orders of integration.

Theorem 25.1.6. Let (X,U , μ) be a measure space with positive measure μ and
let (fn) be a sequence of measurable functions that converges pointwise on X to
the function f .

(i) Lebesgue monotone convergence theorem
Suppose that 0 ≤ fn(x) ≤ fn+1(x) for all x ∈ X. Then f is measurable and
limn→∞ μ(fn) = μ(f).

(ii) Lebesgue dominated convergence theorem
A function F is said to be in L1(X, dμ) if it is measurable and μ(|F |) < ∞.
Suppose now that there exists F ∈ L1(X, dμ) such that |fn(x)| ≤ |F (x)| for
all x ∈ X. Then f ∈ L1(X, dμ) and limn→∞ μ(|f − fn|) = 0.

(iii) Fubini’s theorem
Let (X,B, μ) and (Y, C, ν) be σ-finite measure spaces (see 25.1.10 ). Con-
sider the smallest σ-algebra B × C which contains all the ‘rectangles’ B ×
C,B ∈ B, C ∈ C. Let f : X × Y → C be a measurable function on B × C.
Then fx : Y → C; fx(y) := f(x, y) and fy : X → C; fy(x) := f(x, y) are
measurable functions on C and B respectively. For D ∈ B × C we set Dx :=
{y ∈ Y : (x, y) ∈ D}, Dy := {x ∈ X : (x, y) ∈ D} and define the prod-
uct measure μ× ν on (X × Y,B × C) by μ× ν(D) :=

∫
X

dμ(x) ν(Dx) =∫
Y

dν(y) ν(Dy) where equality of these two expressions can be shown. The
measure μ× ν is automatically σ-finite again.
1. If F ∗ ∈ L1(X, dμ) where F ∗(x) :=

∫
Y

dν|fx| then f ∈ L1(X × Y, dμ×
dν).

2. If f ∈ L1(X × Y, dμ× dν) then fx ∈ L1(Y, dν) for a.a. x ∈ X and fy ∈
L1(X, dμ) for a.a. y ∈ Y .

3. Let F (x) :=
∫
Y

dν(y)fx, G(y) :=
∫
X

dμ(x)fy. Then F ∈ L1(X, dμ),
G ∈ L1(Y, dν) and

∫
X

dμ F =
∫
Y

dν G =
∫
X×Y

d(μ× ν) f .

It is easy to see that limn→∞ μ(|f − fn|) = 0 implies limn→∞ μ(fn) = μ(f).
Notice that (iii1), (iii2) and (iii3) imply that the order of iterated integrals is
immaterial.

Another convenient observation is the following.
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Theorem 25.1.7. Let (X,U , μ) be a measure space. Let U ′ be the collection of
all S ⊂ X such that there exist U, V ∈ U with U ⊂ S ⊂ V and μ(V − U) = 0
(in particular U ⊂ U ′). Define μ′(S) = μ(U) in that case. Then (X,U ′, μ′) is a
measure space again, called the completion of (X,U , μ).

The theorem says that any measure can be completed. It means that if we have
a set which is not measurable but can be sandwiched between measurable sets
whose difference has zero measure, then we can add the set to the measurable
sets and its measure is given by that of the sandwiching sets.

Definition 25.1.8

(i) A set Y ⊂ X in a measure space (X,U , μ) is called thick or a support for μ

provided that for any measurable set U ∈ U the condition U ∩ Y = ∅ implies
μ(U) = 0. A support for μ will be denoted by supp(μ).

(ii) For two measures μ1, μ2 on the same measurable space we say that μ1

is regular (or absolutely continuous) with respect to μ2 iff μ2(U) = 0 for
U ∈ U implies μ1(U) = 0. They are called mutually singular iff supp(μ1) ∩
supp(μ2) = ∅.

If Y is a measurable support then X − Y is measurable and since Y ∩ (X −
Y ) = ∅ we have μ(X − Y ) = 0, explaining the word support. If Y is a support not
measurable with respect to μ one can define U ′ = [U ∩ Y ] ∪ Y, μ′(U ∩ Y ) = μ(U)
and get a measure space (Y,U ′, μ′) for which Y is measurable, called the trace. A
given support does not mean that there are not smaller sets which are still thick.

Theorem 25.1.9 (Radon–Nikodym). Let μ2 be a positive σ-finite (see
below) measure and μ1 a complex measure. Then there is a unique (so-called
Lebesgue) decomposition into complex measures μ1 = μa

1 + μs
1 such that μa

1 , μ
s
1

are respectively absolutely continuous and mutually singular with respect to μ2.
Moreover, there exists a unique function f ∈ L1(X, dμ2), called the Radon–
Nikodym derivative, such that dμa

1 = f dμ2. If μ2 is a positive, σ-finite measure,
then f is non-negative.

The following two definitions prepare to state the Riesz representation
(or Riesz–Markov) theorem which will be of fundamental importance for our
applications.

Definition 25.1.10

(i) A topological space is said to be locally compact if every point x ∈ X has an
open neighbourhood whose closure is compact.

(ii) A subset S ⊂ X of a topological space X is said to be σ-compact if it is a
countable union of compact sets.

(iii) A subset S ⊂ X in a measure space (X,U , μ) with positive measure μ is
said to be σ-finite if S is the countable union of measurable sets Un with
μ(Un) < ∞ for all n ∈ N. The measure μ is said to be σ-finite if X itself is
σ-finite.
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Definition 25.1.11. Let X be a locally compact Hausdorff space and let U be
its naturally defined Borel σ-algebra.

(i) A measure μ defined on the Borel σ-algebra is called a Borel measure.
(ii) A Borel set S is said to be outer regular with respect to a positive Borel

measure μ provided that

μ(S) = inf{μ(O); S ⊂ O; O ∈ U open} (25.1.4)

(iii) A Borel set S is said to be inner regular with respect to a positive Borel
measure μ provided that

μ(S) = sup{μ(K); S ⊃ K; K ∈ U compact} (25.1.5)

(iv) If μ is a positive Borel measure and every Borel set is both inner and outer
regular then μ is called regular.

Definition 25.1.12

(i) Let X be a topological space. The support supp(f) of a function f : X → C
is the closure of the set {x ∈ X; f(x) �= 0}. The vector space of continuous
functions of compact support is denoted by C0(X).

(ii) A linear functional Λ : F → C on the vector space of functions F over a set
X is called positive if Λ(f) ∈ [0,∞) for any f ∈ F such that f(x) ∈ [0,∞)
for all x ∈ X.

Theorem 25.1.13 (Riesz–Markov theorem)

(i) Let X be a locally compact Hausdorff space and let Λ : C0(X) → C be
a positive linear functional on the space of continuous, complex-valued
functions of compact support in X. Then there exists a σ-algebra U on X

which contains the Borel σ-algebra and a unique positive measure μ on U
such that Λ is represented by μ, that is,

Λ(f) =
∫

X

dμ(x)f(x) ∀ f ∈ C0(X) (25.1.6)

Moreover, μ has the following properties:
1. μ(K) < ∞ if K ⊂ X is compact.
2. For every S ∈ U property (25.1.4) holds.
3. For every open S ∈ U with μ(S) < ∞ property (25.1.5) holds.
4. If S′ ⊂ S ∈ U and μ(S) = 0 then S′ ∈ U .

(ii) If, in addition to (i), X is σ-compact then μ has the following additional
properties:
5. μ is regular.
6. For any S ∈ U and any ε > 0 there exists a closed set C and an open set

O such that C ⊂ S ⊂ O and μ(O − C) < ε.
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7. For any S ∈ U there exist sets C ′ and O′ which are respectively countable
unions and intersections of closed and open sets respectively such that
C ′ ⊂ S ⊂ O′ and μ(O′ − C ′) = 0.

A very instructive proof of this theorem can be found in [552]. It is also
worth pointing out the following theorem (see, e.g., [552]) which underlines the
prominent role that continuous functions play for Borel measures.

Theorem 25.1.14 (Lusin’s theorem). Let X be a locally compact Hausdorff
space X with σ-algebra U and measure μ satisfying the properties (1), (2), (3) and
(4) of Theorem 25.1.13 . Let f be a bounded measurable function with support in a
measurable set of finite measure. Then there exists a sequence (fn) of continuous
functions of compact support, each of which is bounded by the same bound, such
that f(x) = limn→∞ fn(x) almost everywhere with respect to μ (i.e., they coincide
pointwise up to sets of measure zero).

Let us also define the notion of faithfulness of measures:

Definition 25.1.15. Let X be a locally compact Hausdorff space and let U , μ
have the properties of Theorem 25.1.13 . Then μ is called faithful if and only if
the positive linear functional (25.1.6) determined by μ is positive definite, that
is, if f ∈ C0(X) takes only values in [0,∞) and Λ(f) = 0 then f = 0.

Notice that positive definiteness of a measure μ only allows us to conclude
that f = 0 μ-a.e. from μ(f) = 0 for positive measurable f . Faithfulness of the
special kind of measures that come from positive definite linear functionals
allows us to conclude f = 0 everywhere if f is continuous, non-negative and of
compact support. This means that every open set must have positive measure
for if a continuous function is positive at a point, it will be bounded away from
zero in a whole open neighbourhood of that point.

The application that we have in mind is that X is not only locally compact
but actually compact so that the set C0(X) coincides with C(X). Hence, C(X)
contains the constant functions and we may w.l.g. assume that Λ(1) = 1, which
is just a convenient choice of normalisation. (If X is compact, so is every closed
subset, hence X is locally compact.) It is then trivially σ-compact being its own
cover by compact sets. Therefore the stronger version (ii) of Theorem 25.1.13
applies and we see that by property (5) the measure μ is regular. Furthermore,
property (7) tells us that every measurable set can be sandwiched between sets
C ′ ⊂ O′ that belong to the Borel σ-subalgebra such that C ′ −O′ is of measure
zero. In other words, every measurable set is a Borel set up to a set of measure
zero: since O′ = S ∪ (O′ − S) we have from σ-additivity μ(S) = μ(O′) since 0 =
μ(O′ − C ′) ≥ μ(O′ − S) due to O′ − S ⊂ O′ − C ′. Thus effectively the measure
μ in (25.1.6) is a Borel measure and in that sense we have the following corollary.

Corollary 25.1.16. Let X be a compact Hausdorff space and let Λ : C(X) → C
be a positive linear functional on the space of continuous functions on X with
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Λ(1) = 1. Then there exists a unique, regular, Borel probability measure μ on the
natural Borel σ-algebra U of X such that μ represents Λ, that is,

Λ(f) =
∫

X

dμ(x)f(x) ∀ f ∈ C(X) (25.1.7)

Notice that regularity of μ on a compact Hausdorff space X reduces to the fact
that the measure of every measurable set can be approximated arbitrarily well
by open or compact (and hence closed, since in a Hausdorff space every com-
pact subset is closed, see [533]) sets respectively. Also, Lusin’s theorem simplifies
to the statement that every bounded measurable function can be approximated
arbitrarily well by continuous functions with the same bound up to sets of mea-
sure zero.

The notion of faithfulness actually comes from representation theory. Indeed,
the origin of positive linear functionals in physics are usually states, that is, pos-
itive linear functionals ω on a unital C∗-algebra A (see Chapter 27), which is not
necessarily Abelian like the C∗-algebra C(X) for a compact Hausdorff space X,
such that ω(1) = 1. Here a positive linear functional is a map ω : A → C; a �→
ω(a) which satisfies ω(a∗a) ≥ 0 for any a ∈ A. Elements a of A of the form b∗b are
called positive, denoted a ≥ 0 (equivalently, a ≥ 0 iff for its spectrum σ(a) ⊂ R+

holds). One writes a ≥ a′ if a− a′ ≥ 0, which equips A with a partial order. We
will see in Chapter 29 that positive linear functionals give rise to a representa-
tion π of the algebra on a Hilbert space via the GNS construction. If the unital
C∗-algebra is Abelian then we can always think of it as an algebra of continuous
functions on a compact Hausdorff space via the Gel’fand isomorphism and if the
associated measure is faithful, that is, the state is positive definite then the rep-
resentation is faithful (or non-degenerate), that is, π(f) = 0 if and only if f = 0.

Notice that every positive linear functional ω on a unital C∗-algebra A is
automatically bounded (continuous): if ||.|| denotes the norm on A and ∗ the
involution then for any self-adjoint element a = a∗ we have −||a|| · 1 ≤ a ≤ ||a|| ·
1 since ||a|| ≥ r(a) (spectral radius). Hence ω(||a|| · 1 ± a) = ||a||ω(1) ± ω(a) ≥ 0.
Since ω(1) ≥ 0 because 1 = 1∗1 is positive, it follows that in particular ω(a) ∈ R
for self-adjoint a so that |ω(a)|/||a|| ≤ ω(1). If a is arbitrary we can decompose
it uniquely into self-adjoint elements a = a+ + ia− with a± = a∗± and thus

4||a2
±||= ||(a∗)2 + a2 ± (a∗a + aa∗)|| ≤ ||(a∗)2||+||a2|| + ||a∗a|| + ||aa∗|| = 4||a||2

where we have made use twice of the C∗-algebra property ||a∗a|| = ||a||2. It
follows that

|ω(a)|2 = |ω(a+) + iω(a−)|2

= |ω(a+)|2 + |ω(a−)|2 ≤ ω(1)[||a+||2 + ||a−||2] ≤ 2ω(1)||a||2

so a bound is given by 2ω(1). One can actually show that a sharper bound is
given by ω(1) even for unital Banach algebras with involution.
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25.2 Measure theory and ergodicity

We now turn to another direction within measure theory.

Definition 25.2.1. Let (X,U , μ) be a measure space with a positive probability
measure μ on X. Let λ : G ×X → X; (g, x) �→ λg(x) be a measure-preserving
group action, that is, (λg)∗μ := μ ◦ λ−1

g = μ for all g ∈ G, in particular, λg pre-
serves U . The group action is called ergodic if the only invariant sets, that is,
sets S ∈ U with λg(S) = S for all g ∈ G, have measure zero or one.

The definition captures exactly the intuitive idea of an ergodic group action,
namely that it spreads any set all over X without changing its measure. It follows
from the definition that a measure-preserving group action induces a unitary
transformation on L2(X, dμ) by the pull-back, that is,

(Û(g)f)(x) := (λ∗
gf)(x) = f(λg(x)) (25.2.1)

Since the closed linear span of characteristic functions of measurable sets is all
of L2(X, dμ) as we have seen above, it follows that ergodicity is equivalent to
the condition that Û(g)f = f μ-a.e. for all g ∈ G implies that f = const. a.e.
[Proof: If λ is ergodic let f =

∑
k zkχUk

. We may assume w.l.g. that the Uk

are mutually disjoint since, e.g., aχU + χV = aχU−V + bχV−U + (a + b)χU∩V .
Then Û(g)f =

∑
k zkχλg−1 (Uk) = f a.e. for all g ∈ G implies that all Uk must be

invariant under λ, hence that all of them have measure zero or one. If Uk has
measure zero then χUk

= 0 a.e., if Uk has measure one then X − Uk has measure
zero so χUk

= χX = 1 a.e. The converse implication is similar.]

Theorem 25.2.2 (von Neumann mean ergodic theorem). Let R → G;
t �→ gt be a one-parameter group and Û : G → B(L2(X, dμ)) be a unitary
representation of G. Let P̂ be the projection on the closure of the set of a.e.
invariant vectors under Û(gt), t ∈ R. Then

(P̂ f)(x) = lim
T→∞

1
2T

∫ T

−T

dt(Û(gt)f)(x) μ-a.e. (25.2.2)

For a proof see for instance [282]. We conclude that λ restricted to t �→ gt is
ergodic if and only if

lim
T→∞

1
2T

∫ T

−T

dtf(λgt(x)) =
[∫

X

dμ(x′)f(x′)
]
· 1 μ-a.e. (25.2.3)

Namely, if t → λgt is ergodic, then the set of a.e. invariant vectors is given by
the constant functions whence P̂ f ∝ 1, that is,

P̂ f =< 1, P̂ f > ·1 =< P̂1, f > 1 =< 1, f > ·1 =
[∫

X

dμ(x)f(x)
]
· 1 (25.2.4)

since 1(x) = 1 and the definition of the inner product. Comparing with P̂ f from
(25.2.2) gives the claimed result (25.2.3). Conversely, if (25.2.3) holds then the
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right-hand side is constant almost everywhere and equals P̂ f , hence t → λgt is
ergodic by the above remark.

Criterion (25.2.3) is interesting for the following reason: suppose that μ1 �= μ2

are different measures on the same measurable space (X,U), and that t → λgt is
a measure-preserving, ergodic group action with respect to both of them. Then
[∫

X

dμ1(x
′)f(x′)

]
· 1 =μ1−a.e. lim

T→∞
1

2T

∫ T

−T

dtf(λgt(x)) =μ2−a.e.

[∫

X

dμ2(x
′)f(x′)

]
· 1

(25.2.5)

for any f ∈ L1(X, dμ1) ∩ L1(X, dμ2). Now the left- and right-hand sides in
(25.2.5) do not depend at all on the point x on which the middle term depends.
Thus, if we can find f ∈ L1(X, dμ1) ∩ L1(X, dμ2) �= ∅ such that the constants
[
∫
X
dμ1(x′)f(x′)] �= [

∫
X
dμ2(x′)f(x′)] are different from each other then the mid-

dle term must equal the left-hand side whenever x ∈ supp(μ1) and it must equal
the right hand side whenever x ∈ supp(μ2). This is no contradiction iff μ1, μ2 are
mutually singular with respect to each other. Hence ergodicity gives a simple tool
for investigating the singularity structure of measures with respect to each other
and one easily shows that Gaußian measures with different covariances (e.g.,
scalar fields with different masses) are built on mutually singular measures.

Definition 25.2.3. A one-parameter group of measure-preserving transforma-
tions t → λgt is called mixing provided that

lim
t→∞

< f, Û(gt)f ′ >=< f, 1 > < 1, f ′ > (25.2.6)

It is easy to see that mixing implies ergodicity: suppose that f ′ is invariant a.e.
under the one-parameter group. Then (25.2.6) reduces to < f, f ′ >=< f, 1 > <

1, f ′ > for any f . On the other hand, inserting the identity 1L2 = Q̂⊕ [1L2 − Q̂],
where Q̂ = |1 >< 1| denotes the projection onto span({1}), gives

< f, f ′ > = < f, 1 > < 1, f ′ > + < f, [1L2 − Q̂]f ′ >=< f, 1 > < 1, f ′ >

⇒ < f, [1L2 − Q̂]f ′ >= 0 ∀ f ∈ L2(X, dμ) (25.2.7)

hence [1L2 − P̂ ]f ′ = 0 so that f ′ = const. a.e., that is, ergodicity.
The notion of ergodicity or mixing is also fundamental for the Euclidean for-

mulation of ordinary QFT where it replaces the Wightman axiom that requires
the uniqueness of the vacuum. See, for example, [99].



26

Key results from functional analysis

Solid knowledge of functional analysis is mandatory in order to gain a proper
understanding of the structure of modern quantum field theory. Here we can
just give a tiny glimpse of this ‘king’s discipline’ of mathematics by stating,
without proof, the theorems more frequently used throughout the book. The
reader is urged to work in detail through the standard reference [282] geared to
mathematical physicists, especially volumes one and two.

26.1 Metric spaces and normed spaces

Depending on one’s axiomatic starting point in set theory Zorn’s lemma or,
equivalently, the axiom of choice is an axiom or is derived from set theoretical
axioms. This touches on the deep inconsistencies of mathematical logic and set
theory which goes beyond the scope of this book.

Theorem 26.1.1 (axiom of choice). Let I be an index set and {SI}I∈I be
a collection of non-empty sets indexed by I. Then there exists a choice function
f : I → ×I∈ISI , that is, an assignment of an element f(I) ∈ SI for all I ∈ I
irrespective of the cardinality of I.

Theorem 26.1.2 (Zorn’s lemma). Let X �= ∅ be a partially ordered set with
the property that every linearly ordered subset Y ⊂ X (i.e., y ≺ y′ or Y ′ ≺ y for
all y, y′ ∈ Y ) has an upper bound xY ∈ X (i.e., y ≺ xY for all y ∈ Y ). Then X

has a maximal element m ∈ X (i.e., m ≺ x for x ∈ X implies x = m) which is
a common upper bound for all linearly ordered subsets.

Of particular importance in functional analysis are topological spaces whose
topology derives from a metric or a norm. These are metric or normed spaces
respectively.

Definition 26.1.3

(i) A metric space (X, d) is a pair consisting of a set X and a function d : X ×
X → R+ called a metric which satisfies, for all x, y, z ∈ X: (1) d(x, y) = 0
iff x = y, (2) d(x, y) = d(y, x) and (3) d(x, z) ≤ d(x, y) + d(y, z).

(ii) A sequence (xn)n∈N in a metric space is said to converge to an element x iff
for all ε > 0 there exists n(ε) ∈ N such that n > n(ε) implies d(xn, x) < ε.
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(iii) A sequence is called a Cauchy sequence iff for all ε > 0 there exists n(ε) ∈ N
such that m,n > n(ε) implies d(xm, xn) < ε.

(iv) A metric space in which every Cauchy sequence converges is called complete.

Clearly every convergent sequence is Cauchy but not vice versa. Complete
metric spaces contain all their Cauchy sequences, and this is how one completes
an incomplete metric space.

Theorem 26.1.4. For every incomplete metric space (X, d) there exists a com-
plete metric space (X ′, d′) with X ⊂ X ′ such that d′|X = d and X is dense in
X ′.

Proof: In general we call a bijection b : X → X ′ between metric spaces
(X, d), (X ′, d′) an isometry iff d′(b(x), b(y)) = d(x, y). A subset Y ′ is said to be
dense in X ′ if for all ε > 0 and all x′ ∈ X ′ we find y′ ∈ Y ′ such that d′(x′, y′) < ε.

The theorem says that X can be isometrically and densely embedded into its
completion as a subset. To see this, define X ′ as the space of equivalence classes
of all Cauchy sequences of (X, d) where (xn) ∼ (yn) iff limn→∞ d(xn, yn) = 0.
Denoting the equivalence class of (xn) by [(xn)] we define d′([(xn)], [(yn)]) :=
limn→∞ d(xn, yn), which can be shown to converge and to be independent of the
representative. Finally, define b(x) = [(yn)] with yn = x for all n. �

The metric space (X ′, d′) constructed in the preceding proof is called the
Cauchy completion of (X, d).

The metric d on a metric space (X, d) defines a topology in the standard way
familiar from Rn.

Definition 26.1.5. Let (X, d) be a metric space and consider for each x ∈
X, ε > 0 the set Bε(x) := {y ∈ X; d(x, y) < ε} called the open ball of radius ε

about x.

(i) A set O ⊂ X is called open if for each x ∈ O there exists some Bε(x) ⊂ O.
(ii) x ∈ S ⊂ X is called a limit point of S if [S − {x}] ∩Bε(x) �= ∅ for all ε > 0.

S is called closed if it includes all its limit points. The union of a set S with
its limit points is called the closure S̄ of S.

By definition, a limit point x of S is the limit of a sequence (xn) with xn ∈ S

which converges in X to x but x may not lie in S. Since every convergent sequence
is Cauchy, it follows that the Cauchy completion of S coincides with the closure
of S.

An important special case of metric spaces are normed vector spaces.

Definition 26.1.6

(i) A normed vector space is a pair (X, ||.||) consisting of a vector space X

and a function ||.|| : X → R+ subject to the following conditions for all
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x, y ∈ X: (1) ||x|| = 0 iff x = 0, (2) ||λx|| = |λ| ||x|| for all λ ∈ C and (3)
||x + y|| ≤ ||x|| + ||y||.

(ii) A linear transformation T : X → Y between normed linear spaces (X, ||.||),
(Y, ||.||′) is called bounded iff ||Tx||′ ≤ K||x|| for some K > 0 independent
of x ∈ X.

(iii) The metric induced by the norm of a normed space (X, ||.||) is defined by
d(x, y) := ||x− y||. A normed space is complete when it is complete as a
metric space in this induced metric and is then called a Banach space.

It is clear that linear transformations are continuous iff they are bounded:
if it is bounded then ||T (y − x)||′ ≤ K||x− y|| so it is continuous. If it is con-
tinuous, suppose that T is not bounded. Then for each n ∈ N we find xn ∈ X

with ||Txn||′ ≥ n||xn||. Set yn = xn/(n||xn||). Then ||yn|| = 1/n so yn → 0 while
||Tyn||′ ≥ 1 for all n. This contradicts continuity of T at x = 0, hence T is
bounded.

Definition 26.1.7. The topological dual of a Banach space X is the space X ′

of continuous linear functionals l : X → C. The dual space is also a normed
linear space with norm ||l|| := supx∈X−{0} |l(x)|/||x|| and automatically com-
plete, that is, a Banach space. One can show that the map J : X → X ′′; x �→ Jx
where Jx(l) = l(x) is an isometric injection. If it is a surjection then X is called
reflexive.

Theorem 26.1.8 (BLT theorem). Suppose T : X1 → X2 is a bounded lin-
ear transformation (BLT) from the normed linear space (X1, ||.||1) to the com-
plete normed linear space (X2, ||.||2). Then T has a unique extension to the com-
pletion X̄1 of X1 as a bounded linear transformation T ′ with the same bound.

This theorem is convenient in that a bounded linear transformation between
complete normed spaces is already completely determined by a dense subset in
the domain of the map. It is clear that the completion of a dense subspace X of
a complete space Y recovers the space Y .

26.2 Hilbert spaces

Definition 26.2.1

(i) A positive definite, sesquilinear form or inner product on a complex lin-
ear space X is a map < ., . >: X ×X → C subject to: (1) < x, x >≥ 0,
< x, x >= 0 iff x = 0, (2) < x, y + z >=< x, y > + < x, z >, (3) < x, λy >

= λ < x, y > and (4) < x, y >= < y, x > for all x, y, z ∈ X, λ ∈ C. The pair
(X,< ., . >) is called a pre-Hilbert space.

(ii) A collection of vectors (xn) is said to be orthonormal iff < xm, xn >= δmn.

Let us denote ||x|| :=
√
< x, x > on a pre-Hilbert space (X,< ., . >).
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Lemma 26.2.2 (Bessel’s inequality). Let (xn) be an orthonormal set. Then
||x||2 ≥ ∑

n | < xn, x > |2 for all x ∈ X.

Proof: The vectors xn are orthogonal to the vector z := x− ∑
n < xn, x > xn.

Set y := x− z then z, y are orthogonal. Hence ||x||2 = ||y||2 + ||z||2 =
∑

n | <
xn, x > |2 + ||z||2. �

Corollary 26.2.3 (Schwarz inequality). | < x, y > | ≤ ||x|| ||y|| for all x,

y ∈ X and equality is reached iff x, y are co-linear.

Proof: For y = 0 there is nothing to show, so let us assume y �= 0. Bessel’s
inequality applied to the orthonormal system consisting of the single vector
x1 := y/||y|| reveals the inequality. In order to reach equality we must have
z = x− < x1, x > x1 = 0, that is, x, y are co-linear. �

Definition 26.2.4. It is not difficult to show that ||.|| defines a norm on X. The
completion of X with respect to this norm turns the pre-Hilbert space (X,< ., . >)
into a Hilbert space.

It is possible to recover the inner product of a complex Hilbert space from the
norm via the polarisation identity

< x, y >=
1
4

∑

ε4=1

ε̄ ||x + εy||2 (26.2.1)

Theorem 26.2.5 (Riesz lemma). Let T be a continuous linear functional on
a Hilbert space X, that is, a continuous linear map T : X → C. Then there
exists a unique element yT ∈ X such that T (.) =< yT , . >, moreover, ||T || =
supx�=0

|T (x)|
||x|| = ||yT ||.

The space of continuous linear functionals on a linear topological space X is
called the topological dual X ′ of X. The Riesz lemma says that Hilbert spaces
are reflexive, that is, X ′ = X.

Definition 26.2.6. An orthonormal system (xn) in a Hilbert space (X,< ., . >)
is called an orthonormal basis (ONB) if the span of the xn (i.e., finite complex
linear combinations) is dense. Using the axiom of choice one can show that every
Hilbert space admits an ONB. A Hilbert space is called separable if it admits a
countable ONB.

Definition 26.2.7. A map U between Hilbert spaces which preserves inner prod-
ucts and is surjective is called unitary. The two Hilbert spaces are then called
isomorphic.

Due to the equivalence of norm and inner product via the polarisation identity,
inner product-preserving means the same as norm-preserving, that is, isometric.
It follows that unitary operators are injective, thus bijective and norm-preserving.
It follows that all separable Hilbert spaces are isomorphic to the Hilbert space �2
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of sequences of complex numbers λn with norm ||(λn)||2 =
∑

n |λn|2 (just map
the orthonormal bases bijectively).

Definition 26.2.8. Given two Hilbert spaces (XI , < ., . >I) we can construct
the direct sum X1 ⊕X2 and direct (tensor) product X1 ⊗X2 respectively by
setting

< (x1, x2), (y1, y2) >X1⊕X2 := < x1, y1 >1 + < x2, y2 >2

< x1 ⊗ x2, y1 ⊗ y2 >X1⊗X2 := < x1, y1 >1 < x2, y2 >2 (26.2.2)

for xI , yI ∈ XI and completing the finite linear span of elements of the form
(x1, x2) and x1 ⊗ x2 respectively in those inner products. In particular, if (b(I)n ) is
a basis in XI then ((b(1)n , 0), (0, b(2)n )) is a basis for the direct sum and (b(1)m ⊗ b

(2)
n )

is a basis for the direct product.

26.3 Banach spaces

Recall that a Banach space is a complete, normed, linear space. Besides Hilbert
spaces, an important example is given by the set B(X,Y ) of bounded linear
transformations (operators) T : X → Y between normed linear spaces (X, ||.||)
and (Y, ||.||′). The operator norm is given by

||T ||XY := sup
x�=0

||Tx||′
||x|| (26.3.1)

The normed linear space B(X,Y ), ||.||XY is complete, that is, a Banach space, if
Y is a Banach space. An element T ∈ B(X,Y ) is called an isomorphism if it is a
bijection with bounded inverse. It is called an isometry if it is norm-preserving.

The most important theorem associated with Banach spaces is the following,
which we state simultaneously in its real and complex version.

Theorem 26.3.1 (Hahn–Banach). Let X be a real (complex) vector space
and p a real-valued function such that p(ax + by) ≤ |a|p(x) + |b|p(y) for all
x, y ∈ X and positive real (arbitrary complex) numbers a, b with |a| + |b| = 1.
Suppose that λ is a real (complex) linear functional on a subspace Y of X satis-
fying λ(y) ≤ p(y) (|λ(y)| ≤ p(y)) for all y ∈ Y . Then there exists a real (complex)
linear functional Λ on X such that Λ(x) ≤ p(x) (|Λ(x)| ≤ p(x)) for all x ∈ X and
Λ|Y = λ.

We will mostly need the theorem in its complex version. Notice that in the com-
plex version the function p must be positive, not only real-valued. An important
application is the case of a subspace Y of a normed linear space X and λ ∈ Y ′ a
continuous linear functional on Y . Choose p(x) := ||λ|| ||x||. Then the extension
Λ ∈ X ′ guaranteed by the Hahn–Banach theorem satisfies ||Λ|| = ||λ||.
Theorem 26.3.2 (Banach–Steinhaus; principle of uniform bounded-
ness). Let X be a Banach space and Y a normed linear space. Given a family
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F of elements of B(X,Y ) suppose that for each x ∈ X the set {||Tx||Y ; T ∈ F}
is a bounded set of positive real numbers. Then also the set of operator norms
{||T ||; T ∈ F} is bounded.

Theorem 26.3.3 (closed graph theorem). Let X,Y be Banach spaces and
T : X → Y linear. Then T is bounded if and only if the graph Γ(T ) :=
{(x, Tx); x ∈ X} ⊂ X × Y of T is closed in X × Y (in the norm ||(x, y)|| =
||x||X + ||y||Y ).

An application of this theorem is that an operator T on a Hilbert space X

which together with its adjoint is everywhere defined is automatically bounded
(Hellinger–Töplitz theorem). To see this suppose that (xn, Txn) ∈ Γ(T ) con-
verges to (x, y). We must show that the graph is closed, that is, y = Tx. But for
any z ∈ X < z, Txn >=< T †z, xn >→< T †z, x > = < z, Tx > hence T is con-
tinuous and thus bounded.

26.4 Topological spaces

The results needed on topological spaces are already covered by Chapter 18.

26.5 Locally convex spaces

Locally convex spaces play an important role in the theory of distributions which
typically arise as solutions of constraints.

Definition 26.5.1

(i) A seminorm on a vector space X is a map ρ : X → [0,∞) such that:
(1) ρ(x + y) ≤ ρ(x) + ρ(y) and (2) ρ(λx) = |λ|ρ(x) for all x, y ∈ X, λ ∈ C.
Thus a seminorm becomes a norm if it is also positive definite.

(ii) A family of seminorms (ρI)I∈I is said to separate the points of X if ρI(x) =
0 for all I ∈ I implies x = 0.

(iii) A locally convex space is a vector space X together with a family of semi-
norms (ρI)I∈I separating the points. Its natural topology is the weakest
topology in which all the ρI and the operation of addition is continuous.
This topology is automatically Hausdorff, as one can show.

(iv) A locally convex space X whose underlying family of seminorms is countable
can be equipped with the following metric

d(x, y) :=
∞∑

n=1

2−n ρn(x− y)
1 + ρn(x− y)

(26.5.1)

which generates the same topology as the family of seminorms. If it is com-
pleted in this metric, it is called a Fréchet space.

An important application of these concepts is as follows: consider the space
Rn with coordinates xk and let α = (α1, . . . , αn), αk = 0, 1, 2, . . . and |α| =
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∑n
k=1 αk. Set ∂α := ∂|α|/(∂xα1

1 . . . ∂xαn
n ) and xα = xα1

1 . . . xαn
n . The space of

smooth functions on Rn of rapid decrease S(Rn) consists of those smooth func-
tions f for which ρα,β(f) := supx |xα∂βf(x)| < ∞ for all α, β. They fall off
together with their derivatives faster than any polynomial at infinity. One can
show that this space with the countable family of seminorms ρα,β is a Fréchet
space. Its topological dual S ′(Rn) is called the space of tempered distributions.

26.6 Bounded operators

Definition 26.6.1. Let T ∈ B(X,Y ) be a bounded operator between Banach
spaces X,Y (we will mostly be interested in the case that X = Y is a Hilbert
space). A net (Tα) in B(X,Y ) is said to converge to T in the uniform, strong
or weak operator topology respectively iff

||Tα − T ||B(X,Y ) := sup
x∈X−{0}

||(Tα − T )x||Y
||x||X

→ 0

||(Tα − T )x||Y → 0 ∀ x ∈ X

l[(Tα − T )x] → 0 ∀ x ∈ X, l ∈ Y ′ (26.6.1)

where Y ′ is the topological dual of Y .

The weak topology is weaker than the strong topology which is weaker than
the uniform topology. For completeness we mention the weak ∗ topology with
respect to a Hilbert space Y = X: this is similar to the weak topology, however,
instead of X ′ = X we now take a subspace D of X equipped with a finer
topology and as D′ the topological dual of that topological space. Physical
applications are the topology in which the Hamiltonian constraint converges
and the refined algebraic quantisation programme (RAQ) of Section 30.1.

Definition 26.6.2

(i) Let T ∈ B(X,Y ). The adjoint T ′ ∈ B(Y ′, X ′) of T is defined by [T ′l](x) :=
l(Tx) for all x ∈ X, l ∈ Y ′.

(ii) In case that X is a Hilbert space we may identify X = Y = X ′ = Y ′ via the
Riesz lemma and write T † or T ∗ instead of T ′. We call a bounded operator
self-adjoint if T = T ∗.

(iii) A bounded operator T on a Hilbert space X is called positive if < x, Tx >≥ 0
for all x ∈ X. We denote this by T ≥ 0 and given T1, T2 with T1 − T2 ≥ 0
we write T1 ≥ T2. Given any T ∈ B(X,X) we define |T | :=

√
T ∗T via the

spectral theorem, see Section 29.2.
(iv) A bounded operator U is called a partial isometry if ||Ux|| = ||x|| for all

x ∈ [Ker(U)]⊥ where Ker(U) is the kernel of U , that is, the closure of the
linear span of x with Ux = 0 and for any closed subspace Y of a Hilbert space
X one defines the closed subspace Y ⊥ = {x ∈ X; < x, y >= 0 ∀ y ∈ Y }
called the orthogonal complement (it follows that X = Y ⊕ Y ⊥). A partial
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isometry is called an isometry if Ker(U) = {0}. The space [Ker(U)]⊥ is
called the initial subspace of U and Ran(U), the closure of the image of U ,
is called the final subspace.

Theorem 26.6.3 (polar decomposition). If T is a bounded operator on a
Hilbert space then there exists a partial isometry U with Ker(U) = Ker(T ) and
Ran(U) = Ran(T ) such that T = U |T |.

The theorem still holds for unbounded closed operators, see Definition 26.7.1.
The only changes are that now the operator is only densely defined on a set
D(T ) and one has D(|T |) = D(T ) where positive now means < x, Tx >≥ 0 for
all x ∈ D(T ).

Definition 26.6.4. An operator T ∈ B(X,Y ) is said to be compact if for every
bounded sequence (xn) in X the sequence Txn has a convergent subsequence.

Things become especially nice if X = Y is a separable Hilbert space. Notice
that compact operators are always bounded by definition.

Theorem 26.6.5 (canonical form of compact operators)

(i) Let T be a compact operator on a separable Hilbert space X. We denote
the space of compact operators by K(X). Then there exist orthonormal but
not necessarily complete orthonormal systems (xn) and (yn) as well as a
sequence of positive real numbers λn converging to zero, called the singular
values of T such that T (.) =

∑
n λn yn < xn, . >.

(ii) The spectrum (see Section 26.7 for a precise definition) of a compact oper-
ator is a discrete set in the complex plane without accumulation points,
except possibly at zero. Every non-zero eigenvalue has finite multiplicity
(Riesz–Schauder theorem).

(iii) A compact self-adjoint operator has a complete orthonormal basis of eigen-
vectors xn with real-valued eigenvalues λn which converge to zero (Hilbert–
Schmidt theorem). It follows that the canonical form in this case simplifies
to the |λn| ≥ 0 as the singular values and yn = sgn(λn)xn.

We see that compact operators are in a sense the closest analogue of finite-
dimensional matrices and in fact the finite rank operators form a dense subset
with respect to the uniform topology.

Theorem 26.6.6. Let X be a separable Hilbert space and T a bounded positive
operator. Let (bn) be any ONB. Then Tr(T ) :=

∑
n < bn, T bn > is independent

of the ONB and is called the trace of T . It satisfies the following properties: (1)
Tr(T1 + T2) = Tr(T1) + Tr(T2), (2) Tr(λT ) = λTr(T ), (3) Tr(UTU−1) = Tr(U)
for all unitary operators U and (4) T ≥ 0 implies Tr(T ) ≥ 0 for all positive TI

and λ ∈ C.

Two important subsets of compact operators based on the trace are the
following.
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Definition 26.6.7

(i) A bounded operator T on a separable Hilbert space X is called trace class
(Hilbert–Schmidt) iff Tr(|T |) < ∞ (Tr(T †T ) < ∞). We denote the family of
trace class (Hilbert–Schmidt) operators by B1(X) (B2(X)).

(ii) For any T ∈ B1(X) we extend the trace by Tr(T ) :=
∑

n < bn, T bn > which
is independent of the ONB (bn). The trace satisfies Tr(T †) = Tr(T ) and
Tr(AT ) = Tr(TA) for T ∈ B1(X) and A ∈ B(X).

These classes of operators play an important role in physics. For instance,
mixed states or density matrices are nothing else than positive trace class oper-
ators of unit trace. Hilbert–Schmidt operators naturally appear in Bogol’ubov
transformations (linear canonical transformations between different systems
of annihilation and creation operators on Fock spaces) which are unitarily
implementable if the corresponding linear transformation is Hilbert–Schmidt.

Theorem 26.6.8

(i) Both B1(X), B2(X) are subsets of the set of compact operators. A compact
operator T is in B1(X), B2(X) respectively iff

∑
n λn or

∑
n λ

2
n converges

where λn are the singular values of T . It follows that every trace class
operator is Hilbert–Schmidt, that is, B1(X) ⊂ B2(X) ⊂ K(X) ⊂ B(X) :=
B(X,X).

(ii) Both B1(X), B2(X) are two-sided ∗ ideals in B(X) := B(X), that is, given
T ∈ BI(X), A ∈ B(X) then AT, TA, T † ∈ BI(X).

(iii) B2(X) is a Hilbert space with inner product < T, T ′ > := Tr(T †T ′). B1(X)
is dense in B2(X) with respect to this inner product.

26.7 Unbounded operators

Unbounded operators are not everywhere defined on the Hilbert space by the
Hellinger–Töplitz theorem. The best one can achieve is that they can be defined
on a dense domain D. That D is dense is sufficient because it means that we can
define the operator on ‘almost’ every vector in the Hilbert space in the sense that
every vector can be approximated arbitrarily closely by vectors in D. In order to
distinguish from the bounded operators T on separable Hilbert spaces we allow
here for unbounded operators a on not necessarily separable Hilbert spaces H,

unless otherwise stated.
We will define in detail the spectrum of (un)bounded operators. The spectrum

allows for several different partitions which are useful in different contexts.

Definition 26.7.1

(i) Let a be a densely defined operator with domain D. Let D(a†) := {ψ ∈ H :
supf∈D−{0} | < ψ, af > |/||f || < ∞}. For ψ ∈ D(a†) we define the bounded
linear functional f �→< ψ, af > and by the Riesz lemma bounded linear
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functionals can be written in the form f �→< ψ′, f > for some ψ′ ∈ H. We
call ψ′ := a†ψ the adjoint of a.

(ii) Given a not necessarily densely defined operator a with domain D consider
the set Γ(a) := {(ψ, aψ) : ψ ∈ D} ⊂ H ×H, called the graph of a. The oper-
ator a is called closed if its graph is closed in the metric induced by the inner
product < (ψ1, ψ2), (ψ′

1, ψ
′
2) >:=< ψ1, ψ

′
1 > + < ψ2, ψ

′
2 >. If a has a closed

extension (i.e., an extension of its domain such that the associated graph is
closed and such that the extended operator coincides with the original one
on the original domain) it is called closable and the smallest such extension
a is called the closure ā of a. It is easy to see that if a is closable, then
Γ(ā) = Γ(a).

(iii) An operator a is called symmetric if D(a) ⊂ D(a†) and a†|D(a) = a. It is
called self-adjoint if it is symmetric and D(a) = D(a†). A symmetric oper-
ator is called essentially self-adjoint if its closure (which can be shown to
exist, see below) is self-adjoint.

(iv) The spectrum σ(a) of a self-adjoint operator a is defined as the complement
in C of the resolvent set ρ(a) = {z ∈ C : ρ− z1 has bounded inverse}. One
can show that σ(a) is a closed subset of C.

(v) Let a be a self-adjoint operator.
1. The pure point spectrum σpp(a) is the set of eigenvalues of a. It may not

be closed.
2. By the Lebesgue decomposition theorem mentioned in Section 30.2, the

Hilbert space decomposes as H = Hpp ⊕Hac ⊕Hcs. The closed spaces
Hpp, Hac, Hcs respectively are characterised as follows: if ψ ∈ Hpp then
the spectral measure μψ has support on a countable set of points. If
ψ ∈ Hac, Hcs then one-point sets are of measure zero with respect to
μψ. If ψ ∈ Hac then μψ is absolutely continuous with respect to Lebesgue
measure and if ψ ∈ Hcs then μψ is singular with respect to Lebesgue
measure.

Consider the restricted operator a∗ := a|H∗ , ∗ ∈ {pp, ac, cs} and the
spectrum of its restrictions σ∗ := σ(a∗). Then σc(a) := σac(a) ∪ σcs(a)
is called the continuous spectrum. Notice that the sets σ∗(a) need not be
disjoint, that σpp(a) = σpp(a) and σ(a) = σpp(a) ∪ σac(a) ∪ σcs(a).

3. The discrete and essential spectrum of a respectively is defined as the
subset σd(a) or σe(a) of σ(a) respectively consisting of those points x such
that E((x− ε, x + ε)) is a projection onto a finite- or infinite-dimensional
subspace respectively as ε → 0. Here E is the projection-valued measure
corresponding to a, see Theorem 29.2.3.

Intuitively, in applications the spaces Hpp, Hac, Hcs correspond to bound
states, scattering states and states without physical interpretation. In physics,
σcs(a) is mostly absent. It is not difficult to show that σd(a) consists of the
isolated eigenvalues of finite multiplicity and that σe(a) contains (1) σc(a), (2)
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the limit points of σpp(a) and the eigenvalues of infinite multiplicity. In particu-
lar σe(a) contains the embedded eigenvalues, that is, those which have an open
neighbourhood all of whose points belong to σ(a).

The following theorem gives basic equivalent criteria for when the conditions
of Definition 26.7.1 are met.

Theorem 26.7.2 (basic criterion for self-adjointness)

(i) A densely defined operator is closable iff its adjoint is densely defined. In
particular, every symmetric operator is closable.

(ii) A symmetric operator is self-adjoint (s.a.) iff [a± i1H]D(a) = H. Equiva-
lently, it is s.a. if a is closed and Ker(a† ± i1H) = {0}.

(iii) A symmetric operator is essentially self-adjoint (e.s.a.) iff [a± i1H]D(a) =
H. Equivalently, it is e.s.a. if Ker(a† ± i1H) = {0}.

In general, symmetric operators may or may not have self-adjoint exten-
sions. One can show that this is possible if and only if the deficiency indices
n± := dim(Ker([a† ± i1H])) are equal to each other and in this case the possible
extensions are labelled by the points of the unitary group U(n) (see, e.g., [649]).
It follows from the theorem that for e.s.a. operators such a freedom does not
exist: their self-adjoint extension is unique and given by their closure.

Theorem 26.7.3 (Stone). Let t �→ U(t) be a one-parameter, weakly continu-
ous group of unitary operators. That is, (1) U(t) is unitary, (2) U(s)U(t) =
U(s + t) and (3) limt→0 < ψ,U(t)ψ′ >=< ψ,ψ′ > for all s, t ∈ R and ψ,ψ′ ∈ H.
Then there exists a self-adjoint operator a such that U(t) = exp(ita), called
the infinitesimal generator of the group. On its domain, a can be obtained as
iaψ = (d/dt)t=0U(t)ψ.

Notice that for unitary operators weak continuity and strong continuity are
equivalent because ||[(U(t) − 1]ψ||2 = 2[||ψ||2 −�(< ψ,U(t)ψ >)].

Dealing with unbounded operators a, b is rather tricky because D(a) ∩D(b)
could fail to be dense so that a + b is not obviously densely defined. Also, bD(b)
may not lie in D(a) so that ab is ill-defined. This is especially bad in physical
applications where we want to compute commutators. This is why for the self-
adjoint operators that we are mostly interested in in physics it is convenient to
pass to the unitary one-parameter groups or to its bounded spectral projections,
to which we turn in Section 29.2.

26.8 Quadratic forms

In the construction of operators a in physics one often starts from its matrix
elements Qa(ψ,ψ′), which should equal < ψ, aψ′ >. However, this is not enough
to define an operator in infinite dimensions because given an ONB (bn) we must
have ||aψ|| =

∑
n |Qa(bn, ψ)|2 < ∞ in order that ψ ∈ D(a). Hence it may happen
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that the so-called quadratic form Qa(ψ,ψ′) exists for ψ,ψ′ in a dense subset of
H but D(a) = {0}. In what follows we give sufficient criteria for a quadratic form
to give rise to an operator.

Definition 26.8.1. A quadratic form Q on a Hilbert space H is a sesquilinear
form on D(Q) ×D(Q) where D(Q) is a dense form domain. A quadratic form
is called semibounded provided that Q(l, l) ≥ −c||l||2 for some c ≥ 0 and positive
if c = 0. A semibounded quadratic form Q is called closed provided that D(Q)
is complete in the norm ||l||+1 =

√
Q(l, l) + c||l||2. If Q is closed and D′(Q) ⊂

D(Q) is dense then D′(Q) is called a form core.

Theorem 26.8.2 (Friedrich extension)

(i) Let a be a symmetric operator (D(a) ⊂ D(a∗), a∗|D(a) = a). Then a is clos-
able, however, its closure may not be self-adjoint (D(ā) �= D(ā†)).

(ii) Let Q be a semibounded quadratic form. Then Q may not be closable, but
if it is and the closure is semibounded, then Q is the quadratic form of a
unique self-adjoint operator a according to Q(l, l′) =< l, al′ >=: Qa(l, l′).

(iii) Let a be a positive, symmetric operator. Then the corresponding positive
quadratic form Qa has a positive closure Qa. The unique positive operator
ã corresponding to that closure via Qã = Qa is called the Friedrich extension
of a. It may extend the closure ā of a and is the only self-adjoint extension
which contains D(Qa).
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Elementary introduction to Gel’fand theory for
Abelian C∗-algebras

There are many good mathematical textbooks on operator algebra and abstract
C∗-algebra theory, see, for example, [167,535–537]. The textbooks [649,650] are
more geared towards applications in mathematical physics. For a pedagogical
introduction with elegant proofs, the beautiful review [651] is recommended.

27.1 Banach algebras and their spectra

Definition 27.1.1

(i) An algebra A is a vector space (taken over C) together with a multipli-
cation map A × A → A; (a, a′) �→ aa′ which is associative, (ab)c = a(bc)
and distributive, b(za + z′a′) = zba + z′ba′, (za + z′a′)b = zab + z′a′b for
all a, a′, b ∈ A, z, z′ ∈ C.

(ii) An algebra A is called Abelian if all elements commute with each other and
unital if it has a (necessarily unique) unit element 1 satisfying1 1a = a1 =
a for all a ∈ A.

(iii) A vector subspace B of A is called a subalgebra if it is closed under mul-
tiplication. A subalgebra I is called a left (right) ideal if ab ∈ I (ba ∈ I)
for all a ∈ A, b ∈ I and a two-sided ideal (or simply ideal) if it is simulta-
neously a left and right ideal. An ideal of either kind is called maximal if
there is no other ideal containing it except for A itself.

(iv) An involution on an algebra A is a map ∗ : A → A; a �→ a∗ satisfying
1. (za + z′b)∗ = z̄a∗ + z̄′b∗ (conjugate linear),
2. (ab)∗ = b∗a∗ (reverses order) and
3. (a∗)∗ = a (squares to the identity)

for all a, b ∈ A, z, z′ ∈ C. An algebra with involution is called an
∗-algebra.

1 For completeness we mention that a unital algebra is sometimes referred to as a ring R. A
commutative ring such that 0 �= 1 and such that every element a �= 0 is invertible is called a
field F. A left R module is an Abelian group (G,+) together with a left action R× G → G;
(r, x) �→ r · x called scalar multiplication such that (r + r′) · x = r · x + r′ · x, r · (x + x′) =
r · x + r · x′, (rr′) · x = r · (r′ · x), 1 · x = x. A right R module is defined analogously in
terms of a right action. The most familiar example is the case that the ring is a field and
the group a vector space. In general, a module is the generalisation of a representation of
the ring.
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(v) A homomorphism (∗-homomorphism) is a linear map φ : A → B between
algebras (∗-algebras) that preserves the multiplicative (and involutive)
structure, that is, φ(ab) = φ(a)φ(b) (and φ(a∗) = (φ(a))∗).

(vi) A normed algebra A is equipped with a norm ||.|| : A → R+ (that is
||a + b|| ≤ ||a|| + ||b||, ||za|| = |z| ||a||, ||a|| = 0 ⇔ a = 0, if the last prop-
erty is dropped, then ||.|| is only a seminorm) whose compatibility with
the multiplicative structure is contained in the submultiplicativity require-
ment ||ab|| ≤ ||a|| ||b|| for all a, b ∈ A. If A has an involution we require
||a∗|| = ||a|| and A is called a normed ∗-algebra. If A is unital we require
||1|| = 1 (this is just a choice of normalisation).

(vii) A norm induces a metric d(a, b) = ||a− b|| and if the algebra A is complete
(every Cauchy sequence converges) then it is called a Banach algebra.

(viii) A C∗-algebra A is a Banach algebra with involution with the following
compatibility condition between the involutive and metrical structure

||a∗a|| = ||a||2 (27.1.1)

The innocent-looking condition (27.1.1) determines much of the structure of
C∗-algebras. If a C∗-algebra is not unital one can always embed it isometrically
into a larger unital C∗-algebra (see, e.g., [651]). While this does not remove all
problems with C∗-algebras without identity in our applications only unital C∗-
algebras will appear and this is what we will assume from now on. If I is a two-
sided ideal in an algebra A we can form the quotient algebra A/I which consists
of the equivalence classes [a] := {a + b; b ∈ I} for any a ∈ A in which the rules
for addition, multiplication and scalar multiplication are given by [a] + [a′] =
[a + a′], [a][a′] = [aa′], [za] = z[a] and it is easy to see that the condition that I is
an ideal is just sufficient for making these rules independent of the representative.
Finally, if we think of A as an algebra of operators on a Hilbert space and ||.||
is the uniform operator norm then we see that we are dealing with algebras of
bounded operators only, which trivialises domain questions.

Definition 27.1.2. The spectrum Δ(A) of a unital Banach algebra A is the set
of all non-zero ∗-homomorphisms χ : A → C; a �→ χ(a), called the characters.

Notice that C is itself a unital, Abelian C∗-algebra in the usual metric topology
of R2. Notice that χ(1) = 1 since χ(a) = χ(1a) = χ(1)χ(a) and if we choose a ∈ A

such that χ(a) �= 0 the claim follows. Similarly χ(a−1) = χ(a)−1 if a has an
inverse in A, that is an element a−1 with aa−1 = a−1a = 1. Finally χ(0) = 0
since 1 = χ(1) = χ(1 + 0) = χ(1) + χ(0) = 1 + χ(0).

Definition 27.1.3. For a character in a unital Banach algebra A define
ker(χ) := {a ∈ A; χ(a) = 0} to be its kernel.

Clearly, ker(χ) is a two-sided ideal in A since χ(ab) = χ(ba) = χ(a)χ(b) = 0 for
all a ∈ A, b ∈ ker(χ). Since χ is in particular a linear functional on A considered
as a vector space, it follows that ker(χ) is a vector subspace of A of co-dimension
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one. After taking its closure in A it is either still of co-dimension one or of co-
dimension zero, the latter being impossible since then χ would be identically
zero, which we excluded in the definition for a character. It follows that there
exist elements a ∈ A − ker(χ) and that A is the closure of the span of {a, ker(χ)}.
Thus, if there is an ideal I of A properly containing ker(χ) then we can take such
an a ∈ I − ker(χ), from which it follows that I = A. We conclude that the kernel
of a character determines a maximal ideal in A.

Definition 27.1.4. Let A be a normed, unital algebra. The spectrum σ(a) of a ∈
A is defined to be the complement C − ρ(a) where ρ(a) := {z ∈ C; (a− z · 1)−1 ∈
A} is called the resolvent set of a. For z ∈ ρ(a) one calls rz(a) := (a− z · 1)−1

the resolvent of a at z. The number

r(a) := sup({|z|; z ∈ σ(a)} (27.1.2)

is called the spectral radius of a ∈ A.

Notice that the condition a−1 ∈ A implies that ||a−1|| exists, that is, the
inverse has a norm (‘is bounded’). If we are dealing with an algebra of possi-
bly unbounded operators on a Hilbert space then Definition 27.1.4 must be
made more precise: if a is a densely defined, closable (the adjoint a∗ ≡ a† is
densely defined) linear operator on a Hilbert space H with dense domain D(a)
then z ∈ ρ(a) iff a− z · 1 is a bijection from D(a) onto H with bounded inverse.

Later we will need the following technical result.

Lemma 27.1.5. For the spectral radius the following identity holds

r(a) = lim
n→∞

||an||1/n (27.1.3)

Proof: First we show that the series of non-negative numbers xn = ||an||1/n actu-
ally converges. For this purpose let n ≥ m ≥ 1 be any natural numbers and split
n uniquely as n = km + r for natural numbers k, r with 0 ≤ r < m. By submul-
tiplicativity of the norm we have

||an||1/n ≤ ||akm||1/n ||ar||1/n ≤ ||am||k/n ||ar||1/n (27.1.4)

Fix m and take n → ∞ so that k = (n− r)/m → ∞ while r ∈ {0, . . . ,m− 1}
stays bounded. Thus the right-hand side of (27.1.4) converges to ||am||1/m. It
follows that the sequence (xn), xn = ||an||1/n is bounded and therefore must
have an accumulation point, each of which must be smaller than xm for any
m ≥ 1. Let limn sup(xn) be the largest accumulation point, then the inequality
limn sup(xn) ≤ xm holds. Now take the infimum on the right-hand side which is
also an accumulation point, then we get

lim
n

sup(xn) ≤ lim
m

inf(xm) (27.1.5)

which means that there is only one accumulation point, so the sequence con-
verges. Denote x := limn→∞ xn.
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Now consider the geometrical (von Neumann) series for z �= 0

rz(a) = (a− z · 1)−1 = −1
z

∞∑

n=0

(a

z

)n

(27.1.6)

which converges if there exists 0 ≤ q < 1 with ||(az )n||1/n = ||an||1/n/|z| < q for
all n > n(q). In other words, z ∈ ρ(a) provided that |z| > limn→∞ xn or equiva-
lently z ∈ σ(a) provided that

|z| ≤ x (27.1.7)

Taking the supremum in σ(a) on the left-hand side of (27.1.7) we thus find

r(a) ≤ x (27.1.8)

Suppose now that r(a) < x. Then there exists a real number R with r(a) < R <

x and since obviously R ∈ ρ(a) it is clear that the resolvent rR(a) of a at R

converges. Let φ be a continuous linear functional on A then

φ(rR(a)) = − 1
R

∞∑

n=0

φ
(( a

R

)n)
(27.1.9)

exists, which means that limn→∞ φ(( a
R )n) = 0. In other words, the function n �→

φ((az )n) is bounded for all continuous linear functionals φ.
Now the space A′ of continuous linear forms on A is itself a Banach space with

norm ||φ|| := sup0 �=a∈A |φ(a)|/||a||. Consider the family F := {an/Rn; n ∈ N},
then we have just shown that for each b ∈ F the set {|φ(b)|; φ ∈ A′} is bounded.
Let us consider each b ∈ F as a map b : A′ → C; φ �→ φ(b). We have ||b||′ :=
supφ∈A′ |φ(b)|/||φ|| = ||b|| where the norm in the last equality is the one in A. By
the principle of uniform boundedness [282] (or Banach–Steinhaus theorem) the
set {||b||′; b ∈ F} is bounded. Therefore we know that the set of norms ||an/Rn||
is bounded. But

||an/Rn|| =
( ||an||1/n

R

)n

=
(xn

R

)n

(27.1.10)

Since xn converges to x, for each ε > 0 we find n(ε) ∈ N such that |xn − x| < ε,
that is, −ε < xn − x < ε. Since xn, x > 0 we may choose x > ε and thus xn >

x− ε for all n > n(ε). Hence (27.1.10) turns into

||an/Rn|| >
(
x− ε

R

)n

(27.1.11)

for all n(ε) < n. Since by assumption r(a) < R < x we can choose sufficiently
small ε > 0 such that x− ε > R, say x− ε = Rq for some q > 1. Summarising,
we find x−Rq − ε = 0 for sufficiently small q > 1 such that qn is bounded for
all n > n(ε), which is a contradiction.

Thus in fact r(a) = limn→∞ ||an||1/n. �
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We will now start establishing the relation between characters and maximal
ideals.

Lemma 27.1.6. If I is an ideal in a unital Banach algebra A then its closure
I is still an ideal in A. Every maximal ideal is automatically closed.

Proof: Recall that the closure of a subset Y in a topological space is Y together
with the limit points of convergent nets in Y . Let now I be an ideal in A and let
(aα) be a net in I converging to a ∈ I. Then for any b ∈ A we have baα ∈ I since I

is an ideal and limα baα = ba since ||b(aα − a)|| ≤ ||b|| ||aα − a|| → 0. Thus (baα)
is a net in I converging to ba ∈ A and since all limit points of converging nets in
I by definition lie in I we actually have ba ∈ I. Thus, I is an ideal.

Next we notice that every a ∈ A such that ||a− 1|| < 1 is invertible (use
a−1 = −(1 − (a− 1))−1 and the geometric series representation for the latter
with convergence radius 1). The set {a ∈ A; ||a− 1|| ≥ 1} is a closed subset of A

because if (aα) is a convergent net in it then the net of real numbers (||aα − 1||)
belongs to the set {x ∈ R; x ≥ 1} and since it converges to ||a− 1|| it follows
that ||a− 1|| ≥ 1 since {x ∈ R; x ≥ 1} is closed (that bα → b implies ||bα|| → ||b||
follows from the triangle inequality ||a|| ≤ ||a− b|| + ||b||, ||b|| ≤ ||a− b|| + ||a||).
We conclude that every non-trivial (those not containing invertible elements)
ideal I must be contained in the closed set {a ∈ A; ||a− 1|| ≥ 1} and so must
its closure I. Obviously 1 �∈ {a ∈ A; ||a− 1|| ≥ 1}, hence, closures of non-trivial
ideals are non-trivial.

Finally a maximal ideal must be closed as otherwise its closure would be a
non-trivial ideal containing it. �

Theorem 27.1.7 (Gel’fand). If A is an Abelian, unital Banach algebra and
I a two-sided, maximal ideal in A then the quotient algebra A/I is isomorphic
with C.

Proof: By Lemma 27.1.6 I is closed in A. We split the proof into three parts.

[i] If I is a maximal ideal in a unital Banach algebra A then A/I is a Banach
algebra.

The norm on A/I is given by

||[a]|| := inf
b∈[a]

||b|| (27.1.12)

To see that this indeed defines a norm we check

||[za]|| = ||z[a]|| = inf
b∈[a]

||zb|| = |z| ||[a]||

||[a + a′]|| = ||[a] + [a′]|| = inf
b∈[a]+[a′]

||b|| = inf
b∈[a],b′∈[a′]

||b + b′||

≤ inf
b∈[a],b′∈[a′]

(||b|| + ||b′||) = ||[a]|| + ||[a′]||

||[a]|| = inf
b∈[a]

||b|| = 0 ⇒ [a] = [0] (27.1.13)
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In the second line we exploited the fact that every representative of [a + a′] can
be written in the form b + b′ where b, b′ are representatives of [a], [a′] and that the
joint infimum is the same as the infimum. The conclusion in the last line means
that [a] contains elements of arbitrarily small norm. (Consider a net of elements
(a + bα) in [a] whose norm converges to zero. The net (bα) is a net in I and since
I is closed it follows that the limit point a + b lies in [a]. Since ||a + b|| = 0 and
||.|| is a norm it follows that a + b = 0, thus 0 ∈ [a] and so [a] = [0].)

Suppose that ([an]) is a Cauchy sequence in A/I. We may assume ||[an+1] −
[an]|| = ||[an+1 − an]|| < 2−n (pass to a subsequence if necessary). Since

||[an+1] − [an]|| = inf
bn+1∈[an+1],bn∈[an]

||bn+1 − bn|| < 2−n (27.1.14)

we certainly find representatives with ||cn+1 − cn|| < 2−n+1. Then for n > m

||cn − cm|| = ||
n−1∑

k=m+1

(ck+1 − ck)|| ≤
n−1∑

k=m+1

2−k+1 = 2−m
m−n−1∑

k=0

2k ≤ 2−m+1

(27.1.15)

which displays (cn) as a Cauchy sequence in A. Since A is complete this sequence
converges to some a ∈ A. But then

||[an] − [a]|| = inf
bn∈[an],b∈[a]

||bn − b|| ≤ ||cn − a|| (27.1.16)

so ([an]) converges to [a]. It follows that A/I is complete, that is, a Banach space
with unit [1].

[ii] For an Abelian, unital algebra A an ideal I is maximal in A iff A/I − [0]
consists of invertible elements only.

⇒:
Suppose we find [0] �= [a] ∈ A/I but that [a]−1 does not exist. This means that
a−1 does not exist since [a]−1 = [a−1] as follows from [a][a−1] = [1]. Consider now
the ideal A · a = {ba; b ∈ A} (this is a two-sided ideal because A is Abelian).
Since I ⊂ A we certainly have I · a ⊂ A · a and since I · a = I because I is in
particular a right ideal we have I ⊂ A · a. Now a ∈ A · a since 1 ∈ A and a �∈ I

because otherwise [a] = [0] which we excluded. It follows that I is a proper
subideal of A · a. Finally, since a−1 �∈ A, A · a cannot be all of A, for instance
1 �∈ A · a (an ideal that contains 1 or any invertible element is anyway the whole
algebra). It follows that I is not maximal.
⇐:
Suppose I is not a maximal ideal. Then we find a proper subideal J of A of which
I is a proper subideal. Since every non-zero element of A/I is invertible so is
every element [a] of J/I. But then J contains the invertible element a ∈ A and
thus J coincides with A, which is a contradiction.
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[iii] A unital Banach algebra B in which every non-zero element is invertible is
isomorphic with C.

Consider any b ∈ B, then we claim that σ(b) �= ∅. Suppose that were not the
case, then ρ(b) = C. Let φ be a continuous linear functional on A considered
as a vector space with metric. Using linearity of φ and the expansion of rz(b)
into an absolutely converging geometric series we see that z �→ φ(rz(b)) is an
entire analytic function. Since φ is linear and continuous, it is bounded with
bound ||φ||. Thus |φ(rz(b))| ≤ ||φ|| ||rz(b)||. Since limz→∞ ||rz(b)|| = 0 (use the
geometric series) and ||rz(a)|| is everywhere defined in C we conclude that z �→
φ(rz(b)) is an entire bounded function which therefore, by Liouville’s theorem, is
a constant ca = φ(rz(b)) = limz→∞ φ(rz(b)) = 0. Since φ was arbitrary it follows
that rz(a) = 0, implying that b− z · 1 does not exist, which cannot be the case.

Thus we find zb ∈ σ(b), that is, b− zb · 1 is not invertible. By assumption, only
zero elements are not invertible, hence b = zb · 1 for some zb ∈ C for any b ∈ B.
The map b �→ zb is then the searched for isomorphism B → C. Notice that b = 0
iff zb = 0.

Let then I be a maximal ideal in a unital, Abelian Banach algebra A. Then by
[i] B := A/I is a unital Banach algebra and by [ii] each of its non-zero elements
is invertible. Thus by [iii] it is isomorphic with C. �

Corollary 27.1.8. In an Abelian, unital Banach algebra A there is a one-to-one
correspondence between its spectrum Δ(A) and the set I(A) of maximal ideals in
A via

Δ(A) → I(A); χ �→ ker(χ) (27.1.17)

Proof: That each character gives rise to a maximal ideal in A through its kernel
was already shown after Definition 27.1.3 . Conversely, let I be a maximal ideal
in a commutative unital Banach algebra then we can apply Theorem 27.1.7 and
obtain a Banach algebra isomorphism χ : A/I → C; [a] → χ([a]). We can extend
this to a homomorphism χ : A → C by χ(a) := χ([a]). By construction χ(a) = 0
iff [a] = [0], that is, iff a ∈ I. In other words, the maximal ideal I is the kernel
of the character χ. �

The subsequent lemma explains the word ‘spectrum’.

Lemma 27.1.9. Let A be a unital, commutative Banach algebra and a ∈ A.
Then z ∈ σ(a) iff there exists χ ∈ Δ(A) such that χ(a) = z.

Proof: The requirement χ(a) = z is equivalent with χ(a− z · 1) = 0 so that a−
z · 1 ∈ ker(χ). Since ker(χ) is a maximal ideal in A it cannot contain invertible
elements, thus (a− z · 1)−1 does not exist, hence z ∈ σ(a). �

We now equip the spectrum with a topology. We begin by showing that the
characters are in particular continuous linear functionals on the topological vec-
tor space A.
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Definition 27.1.10. For a character χ in an Abelian, unital Banach algebra we
define its norm by

||χ|| := sup
0 �=a∈A

|χ(a)|
||a|| (27.1.18)

Lemma 27.1.11. The characters of an Abelian, unital Banach algebra form a
subset of the unit sphere in A′, the continuous linear functionals on A considered
as a topological vector space.

Proof: By Lemma 27.1.9 we showed that σ(a) = {χ(a); χ ∈ Δ(A)}. It follows
that

||χ|| = sup
a∈A

|χ(a)|
||a|| ≤ sup

a∈A

sup{|χ′(a)|; χ′ ∈ Δ(A)}
||a|| = sup

a∈A

r(a)
||a|| ≤ 1 (27.1.19)

since by Lemma 27.1.5 we have r(a) = limn→∞ ||an||1/n ≤ ||a||. On the other
hand χ(1) = 1, hence ||χ|| = 1 for every character χ. This shows that every char-
acter is a bounded linear functional on A, that is, Δ(A) ⊂ A′. �

Since we just showed that the characters are in particular bounded linear
functionals it is natural to equip the spectrum with the weak ∗-topology of
pointwise convergence induced from A′.

Definition 27.1.12

(i) The weak ∗-topology on the topological dual X ′ of a topological vector space X

(the set of continuous (bounded) linear functionals) is defined by pointwise
convergence (that is, a net (φα) in X ′ converges to φ iff for any x ∈ X

the net of complex numbers (φα(x)) converges to φ(x)). Equivalently, it is
the weakest topology such that all the functions x : X ′ → C;φ �→ φ(x) are
continuous.

(ii) The Gel’fand topology on the spectrum of a unital, Abelian Banach algebra
is the weak ∗-topology induced from A′ on its subset Δ(A).

We now show that in the Gel’fand topology the spectrum becomes a compact
Hausdorff space. We need a preparational lemma.

Lemma 27.1.13. Let X be a Banach space and X ′ its topological dual. Then
the unit ball in X ′ is closed and compact in the weak ∗-topology.

Proof: The unit ball B in X ′ is defined as the subset of elements φ with norm
smaller than or equal to unity, that is, ||φ|| := supx∈X |φ(x)|/||x|| ≤ 1. By Corol-
lary 18.1.8 we must show that every universal net in B converges. Let φα

be a universal net in B and consider for any given x ∈ X the net of com-
plex numbers (φα(x)) which are bounded by ||x||. Our x ∈ X defines a linear
form X ′ → C; φ → φ(x) whence by Lemma 18.1.7(ii) the net (φα(x)) is univer-
sal. It is contained in the set {z ∈ C; |z| ≤ ||x||} which is compact in C and
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therefore it converges. Define φ pointwise by the limit, that is, φ(x) :=
limα φα(x). Then

||φ|| = sup
x∈X

lim
α

|φα(x)|/||x|| ≤ lim
α

sup
x∈X

|φα(x)|/||x|| = lim
α

||φα|| ≤ 1 (27.1.20)

Thus φα converges pointwise to φ ∈ B. In particular we have shown that B is
closed. �

Theorem 27.1.14. In the Gel’fand topology, the spectrum Δ(A) of a unital,
Abelian Banach algebra is compact.

Proof: Since we have shown (1) in Lemma 27.1.11 that Δ(A) is a subset of the
unit ball B in A′, (2) in Lemma 27.1.13 that B is compact in the weak ∗-topology
and (3) in Lemma 18.1.10 that closed subspaces of compact spaces are compact
in the subspace topology it will be sufficient to show that Δ(A) is closed in B as
the Gel’fand topology is the subspace topology induced from B.

Let then (χα) be a net in Δ(A) converging to χ ∈ B. We have, for exam-
ple, χ(ab) = limα χα(ab) = limα χα(a)χα(b) = χ(a)χ(b) and similar for pointwise
addition, scalar multiplication and involution in A. It follows that χ is a charac-
ter, that is, χ ∈ Δ(A). �

The Hausdorff property will be established in the next section.

27.2 The Gel’fand transform and the Gel’fand isomorphism

Definition 27.2.1. The Gel’fand transform is defined by
∨

: A → Δ(A)′; a �→ ǎ where ǎ(χ) := χ(a) (27.2.1)

Here Δ(A)′ denotes the continuous linear functionals on Δ(A) considered as a
topological vector space.

It is clear that every ǎ, a ∈ A is a continuous linear functional on the spec-
trum since for any net (χα) in Δ(A) which converges to χ we have limα ǎ(χα) =
limα χα(a) = χ(a) = ǎ(χ) because convergence of (χα) means pointwise conver-
gence on A.

Theorem 27.2.2. The Gel’fand transform extends to a homomorphism
∨

: A → C(Δ(A)); a �→ ǎ (27.2.2)

with the following additional properties:

1. range(ǎ) = σ(a).
2. ||ǎ|| := supχ∈Δ(A) |ǎ(χ)| = r(a).
3. The image

∨
(A) separates the points of Δ(A).
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Proof
0. Morphism and continuity
We have for example

(ab)
∨

(χ) = χ(ab) = χ(a)χ(b) = ǎ(χ)b̌(χ) (27.2.3)

for any χ ∈ Δ(A) and similarly for (a + b)
∨

. Thus multiplication and addition of
functions are defined pointwise. That the functions ǎ are continuous follows after
Definition 27.2.1 from the fact that the weak ∗-topology on Δ(A) is defined
by asking that all the Gel’fand transforms ǎ be continuous and therefore is
tautologous.
1. We have

range(ǎ) = {ǎ(χ); χ ∈ Δ(A)} = {χ(a); χ ∈ Δ(A)} = σ(a) (27.2.4)

as follows from Lemma 27.1.9 .
2. We have

||ǎ|| = sup
χ∈Δ(A)

|ǎ(χ)| = sup
χ∈Δ(A)

|χ(a)| = sup({|χ(a)|; χ ∈ Δ(A)}) = r(a) (27.2.5)

by definition of the spectral radius. Notice that the sup-norm is a natural norm
on a space of continuous functions on a compact space.
3. Recall that a collection of functions C on a topological space X is said to
separate its points iff for any x1 �= x2 we find f ∈ C such that f(x1) �= f(x2).
Consider then any χ1, χ2 ∈ Δ(A) with χ1 �= χ2. By definition of Δ(A) there
exists then a ∈ A such that χ1(a) = ǎ(χ1) �= χ2(a) = ǎ(χ2). �

To see that then Δ(A) is a Hausdorff space recall the following lemma.

Lemma 27.2.3. Let X be a topological space and C ⊂ C(X) a collection of con-
tinuous functions on X which separate the points of X. Then the topology on X

is Hausdorff.

Proof: Let x1, x2 ∈ X with x1 �= x2 be any two distinct points. Since C separates
the points we find f ∈ C with f(x1) �= f(x2). Let d := |f(x2) − f(x1)|. Since f is
continuous at xI , for any ε > 0 we find a neighbourhood UI(ε) of xI , I = 1, 2 such
that |f(x) − f(xI)| < ε for any x ∈ UI(ε). Now d = |f(x2) − f(x1)| ≤ |f(x)−
f(x1)| + |f(x2) − f(x)| for any x ∈ X. Thus d− ε < |f(x2) − f(x)| for any
x ∈ U1(ε) and d− ε < |f(x1) − f(x)| for any x ∈ U2(ε). Choose ε < d/2. Then
U1(ε) ∩ U2(ε) = ∅. �

Corollary 27.2.4. The Gel’fand topology on the spectrum of a unital, Abelian
Banach algebra is Hausdorff.

Proof: The proof follows trivially from the fact that by Theorem 27.2.2 C :=
{ǎ; a ∈ A} is a system of continuous functions separating the points of Δ(A)
together with Lemma 27.2.3 . �
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So far everything worked for an Abelian, unital Banach algebra A. We now
invoke the further restriction that A be an Abelian, unital C∗-algebra which
makes the Gel’fand transform especially nice.

Theorem 27.2.5. Let A be a unital, commutative C∗-algebra (not only a
Banach algebra). Then the Gel’fand transform is an isometric isomorphism
between A and the space of continuous functions on its spectrum.

Proof: First of all, using the fact that in a commutative ∗-algebra every element
is normal (meaning that [a, a∗] = 0) we have, making frequent use of the C∗

property (27.1.1)

||a2n ||2 = ||a2n

(a2n

)∗|| = ||(aa∗)2n ||
= ||(aa∗)2n−1

((aa∗)2
n−1

)∗|| = ||(aa∗)2n−1 ||2

= ||aa∗||2n

= ||a||2n+1
(27.2.6)

where in the third equality we exploited that aa∗ is self-adjoint and in the fifth
equality we iterated the equality between the expressions at the end of the first
and second line. We conclude that for any natural number n

||a|| = ||a2n ||1/2n

(27.2.7)

In Lemma 27.1.5 we proved the formula r(a) = limn→∞ ||an||1/n meaning that
every subsequence of the sequence (||an||1/n) has the same limit r(a) including
the one displayed in (27.2.7). Thus we have shown that for Abelian C∗-algebras
indeed

r(a) = ||a|| (27.2.8)

and not only r(a) ≤ ||a||. By item (2) of Theorem 27.2.2 we have therefore

||ǎ|| = ||a|| (27.2.9)

that is, isometry.
Consider now the system of complex-valued functions on the spectrum given

by C := {ǎ; a ∈ A}. We claim that it has the following properties:

(i) C ⊂ C(Δ(A)).
(ii) C separates the points of Δ(A).
(iii) C is a closed (in the sup-norm topology) ∗-subalgebra of C(Δ(A)).
(iv) The constant functions belong to C.

Properties (i), (ii) are the assertions (0) and (3) of Theorem 27.2.2 while (iv)
follows from the fact that A is unital, that is, 1̌(χ) = χ(1) = 1 so 1̌ = 1. To show
that (iii) C is a closed ∗-algebra in C(Δ(A)) suppose that (ǎα) is a net in C con-
verging to some f ∈ C(Δ(A)). Thus, (ǎα) is in particular a Cauchy net, meaning
that ||ǎα − ǎβ || = ||aα − aβ || becomes arbitrarily small as α, β grow, where we
have used isometry. It follows that (aα) is a Cauchy net and therefore converges
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to some a ∈ A since A is in particular a Banach algebra and therefore complete.
Therefore f = ǎ ∈ C, whence C is closed. Clearly C is also a ∗-subalgebra because
A is an algebra and

∨
a homomorphism.

Now recall from Theorem 27.1.14 and Corollary 27.2.4 that Δ(A) is a
compact Hausdorff space. Then properties (i)–(iii) of C enable us to apply the
Stone–Weierstrass theorem, Theorem 18.1.11 (e.g., [282]) which tells us that
either C = C(Δ(A)) or that there exists χ0 ∈ Δ(A) such that ǎ(χ0) = 0 for all
ǎ ∈ C. By property (iv) the latter possibility is excluded, whence C =

∨
(A) is

all of C(Δ(A)). In other words, the Gel’fand transform is a surjection. Finally it
is an injection since ǎ = ǎ′ implies ||ǎ− ǎ′|| = ||a− a′|| = 0 by isometry, hence
a = a′. �

Corollary 27.2.6. Every compact Hausdorff space X arises as the spectrum of
an Abelian, unital C∗-algebra A, specifically A = C(X), Δ(A) = X.

Proof: Let X be a compact Hausdorff space and define A := C(X) equipped
with the sup-norm. Then X ⊂ Δ(C(X)) by the definition x(f) := f(x) =: f̌(x)
for any f ∈ A, so the Gel’fand transform is the identity map on C(X). Thus, if
Δ(C(X)) −X �= ∅ then f̌ extends f continuously to Δ(C(X)).

Next let (xα) be a net in X which converges in Δ(C(X)), then f̌(xα) converges
in C for any f̌ ∈ C(Δ(C(X))), that is, f(xα) converges in C for any f ∈ C(X).
It follows that (xα) converges in X, that is, X is closed in Δ(C(X)).

Suppose now that Δ(C(X)) −X �= ∅. Thus we find χ0 ∈ Δ(C(X)) −X. Now
in a Hausdorff space the one-point sets are closed [533]. Therefore the sets X, {χ0}
are disjoint closed sets in the compact Hausdorff space Δ(C(X)). Since com-
pact Hausdorff spaces are normal spaces [282] (i.e., one-point sets are closed
and any two disjoint closed sets are contained in open disjoint sets) we may
apply Urysohn’s lemma [282] to conclude that there is a continuous function F :
Δ(C(X)) → R with range in [0, 1] such that F|X = 0 and F |{χ0} = F (χ0) = 1.

Consider then any f ∈ C(X). Since C(Δ(C(X))) are all continuous func-
tions on Δ(C(X)), there exist different continuous extensions of f to Δ(C(X)),
for instance the functions f̌ , f̌ + F where F is of the form just constructed. How-
ever, this contradicts the fact that

∨
is an isomorphism since it would not be

surjective. �

Corollary 27.2.6 tells us that a compact Hausdorff space can be reconstructed
from its Abelian, unital C∗-algebra of continuous functions by constructing its
spectrum. This is the starting point for generalisations to non-commutative topo-
logical spaces by using non-Abelian C∗-algebras [167].
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Bohr compactification of the real line

In order to illustrate the notions of Abelian C∗-algebras, their spectra and cor-
responding measures thereon, we consider a simple example in which all these
structures arise already at an elementary level. For more information about
the Bohr compactification of topological groups and almost periodic functions,
see [896].

28.1 Definition and properties

Definition 28.1.1

(i) For any k ∈ R define the periodic functions of period 2π/k by

Tk : R → C; x �→ eikx (28.1.1)

The algebra C of almost periodic functions is the finite complex linear span
of the functions Tk, that is, functions of the form

f =
N∑

I=1

zI TkI
where N < ∞, kI ∈ R, zI ∈ C (28.1.2)

These are obviously bounded functions on R. They form a ∗-algebra because
Tk Tk′ = Tk+k′ , Tk = T−k.

(ii) Let C be the closure of C in the sup-norm on R. This is an Abelian C∗-algebra
with respect to pointwise operations and complex conjugation as involution.
The spectrum of this algebra R := Δ(C) is called the Bohr compactification
of R.

This definition of the Bohr compactification has a natural extension to any
topological group. Notice that the Bohr compactification is in general different
from the Stone−Čech compactification X̌ of a topological space X which is the
spectrum of the C∗-algebra obtained as the norm closure of continuous bounded
functions.

The notion of almost periodic functions results from the fact that Q is dense in
R, thus for any ε > 0, f =

∑N
I=1 zITkI

∈ C we find qI = mI/nI , 0 �= nI ,mI ∈ Z
relative prime such that |kI − qI | < ε and such that f behaves as if it was periodic
with period 2πn1 . . . nN for sufficiently small range of x. It is truly periodic only
if the kI are rationally dependent. In order to make the connection with the main
text, consider the numbers k ∈ R as replacements for the spin network labels,
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the set R as P, the periodic functions Tk as spin-network functions, the algebra
C as the algebra of cylindrical functions on the space A of smooth connections,
R as A and R as A.

Let us describe R in more detail. By definition its elements are arbitrary
homomorphisms χ : C → C without any continuity assumptions. It is easy to see
that any such character is determined once we know its values X(k) := χ(Tk),
which are constrained by

X(k) X(k′) = X(k + k′), X(k) = X(−k) (28.1.3)

from which |X(k)|2 = 1. Thus, X : R → U(1) is a group homomorphism which
does not need to be continuous. This characterisation of the spectrum R as the
set of algebraic homomorphisms Hom(R,U(1)) is precisely the analogue of the
description of A as Hom(P, G) with G replaced by U(1).

If X is at least once differentiable then from (28.1.3) we get X ′(k) = X ′(0)X(k)
and the solution is of the form X(k) = eikx for some x ∈ R. Thus, R ⊂ R via
χx(f) = f(x). However, R is much larger than R as the following consideration
reveals: our homomorphism X(k) is U(1)-valued and thus has the form X(k) =
exp(if(k)) where modulo 2π

f(k + k′) = f(k) + f(k′) and f(−k) = −f(k) (28.1.4)

We will consider the simpler case that f satisfies (28.1.4) exactly, not only modulo
2π. Then requirement (28.1.4) seems to imply that f(k) is simply a linear map,
but this is not the case since linearity also requires the scalar multiplication
law that f(λk) = λf(k) for all λ ∈ R so that actually f(k) = kf(1) is already
determined by the value f(1). It is precisely this missing ingredient that enables
us to construct maps f(k) which are everywhere discontinuous. Here is a simple
way of showing that.

Lemma 28.1.2. A system of N real numbers kI is called integrally (ILI) or
rationally (RLI) linearly independent respectively provided that

N∑

I=1

qIkI = 0 implies q1 = . . . = qN = 0 (28.1.5)

for qI ∈ Z or qI ∈ Q respectively (in particular, kI �= 0). Claim: rational and
integral linear independence are equivalent.

Proof: That RLI implies ILI is trivial since Z ⊂ Q. Conversely, if kI are ILI
suppose that we find numbers qI = mI/nI ∈ Q, 0 �= nI ,mI ∈ Z relative prime
such that (28.1.5) holds. Multiplying the whole equation by

∏N
I=1 nI �= 0 implies

N∑

I=1

⎡

⎣mI

∏

J �=I

nJ

⎤

⎦ kI = 0 (28.1.6)
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The numbers in the square brackets are now integral and due to ILI they must
vanish for each I. Since the nJ �= 0 we find mI = 0, thus qI = 0. �

With this lemma we can now construct everywhere discontinuous characters.
Step 1: Choose any k1 �= 0 and any value f1 ∈ R. Define the one-frequency lattice
S1 := {qk1; q ∈ Q} and f(qk1) := qf1 for any q ∈ Q. Requirement (28.1.4) is
clearly satisfied on S1 because Q is also an additive group

f(q1k1 + q2k1) = f([q1 + q2]k1) = [q1 + q2]f1 = f(q1k1) + f(q2k1) and

f(−qk1) = f([−q]k1) = [−q]f1 = −f(qk1) (28.1.7)

Step 2: Next take any k2 �∈ S1. Then k1, k2 are rationally independent. Choose
any f2 ∈ R and extend f to the two-frequency lattice S2 := {q1k1 + q2k2; q1, q2 ∈
Q} by f(q1k1 + q2k2) := q1f1 + q2f2 which again satisfies (28.1.4) on S2.

Step n: Given a set of rationally, linearly independent frequencies k1, . . . , kn and
a set of real numbers f1, . . . , fn define the n-frequency lattice and the restriction
of f to that lattice by

Sn :=

{
n∑

I=1

qIkI ; qI ∈ Q

}

, f

(
n∑

I=1

qIkI

)

:=
n∑

I=1

qIfI (28.1.8)

The construction is completed by using the axiom of choice in order to iterate
the procedure until all values of f have been defined.

Notice that all the sets Sn, n = 1, 2, . . . are dense in R, they have the same
cardinality as Q. To see that for appropriate choice of kI , fI we obtain arbitrarily
discontinuous maps, consider any ε > 0 and any q2 ∈ Q. Since S1 is dense in R
we find q1 ∈ Q such that |q2k2 − q1k1| < ε, that is

q2
k2

k1
− ε

k1
< q1 < q2

k2

k1
+

ε

k1
(28.1.9)

It follows that

q2k2

[
f2

k2
− f1

k1

]
− ε

f1

k1
< f(q2k2) − f(q1k1)

= q2f2 − q1f1 < q2k2

[
f2

k2
− f1

k1

]
+ ε

f1

k1
(28.1.10)

Taking ε → 0 for fixed q2 (and of course fixed fI , kI) we get |q2k2 − q1k1| → 0
while |f(q2k2) − f(q1k1)| → |q2k2[ f2

k2
− f1

k1
]|. Thus, if f1/k1 �= f2/k2, that is, if f

is not linear, then f is discontinuous at all values q2k2. Since the set of these
values is dense in R we conclude that f is discontinuous on a dense subset of R!

28.2 Analogy with loop quantum gravity

We conclude that R is an incredibly much larger set than R itself, typical ele-
ments will consist of everywhere discontinuous homomorphisms R → U(1) while
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the image of R in R consists of the smooth homomorphisms. The explicit con-
struction of these discontinuous homomorphisms hints at a projective descrip-
tion of the Bohr compactification: the label set L that we used for the projective
description of A consisted of subgroupoids of P generated by finite collections of
holonomically independent edges. For R we consider the label set L consisting
of subgroups of R (considered as an additive group) generated by a finite set of
rationally independent frequencies. Thus, any l ∈ L is determined by rationally
independent numbers k1, . . . , knl

, nl < ∞. The possible spin-network labels over
the ‘graph’ l are then given by {∑nl

I qIkI ; qI ∈ Z}. We partially order L as fol-
lows: say that l ≺ l′ if any kI generating l can be integrally expressed by the
k′J generating l′, that is, we find unique qIJ ∈ Z such that kI =

∑nl′
J qIJk

′
J for

any I = 1, . . . , nl. The set L is then also directed: for l, l′ simply consider the
subgroup of R generated by the kI and k′J together. That is, consider the integral
span of the combined set of frequencies and identify the smallest collection of
rationally independent frequencies, denoted as l ∪ l′, such that its integral span
contains the integral span under consideration. (For instance, suppose that l is
generated by k1 and l′ by k2 but that they are not rationally independent, that
is, k2n2 = k1n1 for some integers n1, n2 which are relative prime. Hence, define
k3 := k1/n2 = k2/n1 ≤ k1, k2 so the integral span of k1, k2 is contained in that
of k3. This procedure corresponds to subdividing edges of two original graphs by
the edges of their union.) Consider the resulting l′′. Then l, l′ ≺ l′′.

Given l ∈ L we define Xl := Hom(l,U(1)nl). We can identify Xl with U(1)nl

via the map ρl : Xl → U(1)nl ; xl �→ {xl(kI)}nl

I=1 because any homomorphism
is already defined by the xl(kI), whence xl(qIkI) = xl(kI)qI . Using this iden-
tification, Xl becomes a compact Hausdorff space. Now for l ≺ l′ we define
pll′ : Xl′ → Xl; xl′ �→ (xl′)|l (restriction map) which are certainly surjections
and satisfy the consistency conditions pl′l ◦ pl′′l′ = pl′′l for l ≺ l′ ≺ l′′. We may
then define the projective limit X as the closed subset of the direct product
X∞ =

∏
l∈L Xl defined in the usual way as

X = {x ∈ X∞; pl′l(pl′(x)) = pl(x) ∀ l ≺ l′} (28.2.1)

where x = (xl)l∈L and pl(x) = xl are the continuous projections (in the Tychonov
topology on X∞). Thus, X is a compact Hausdorff space.

To see that R and X are homeomorphic we proceed similarly as in the main
text: consider the map

Φ : R := Hom(R,U(1)) → X; χ �→ xχ where xχ
l := (χ)|l (28.2.2)

Certainly xχ ∈ X because as a homomorphism it satisfies the consistency con-
ditions encoded in (28.2.1). Φ is also an injection since Φ(χ) = Φ(χ′) implies
χ(k) = χ′(k) for all k, that is, χ = χ′. Conversely, given x ∈ X we define χx ∈ R
as follows: for each k ∈ R use the axiom of choice to find some lk ∈ L such that
k ∈ lk. Then define χx(k) := xlk(k). To see that this is well defined consider
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any other choice k → l′k. We must show that xlk(k) = xl′k
(k). We find lk, l

′
k ≺ l̃k.

Then

xlk(k) =
[
pl̃klk

(
xl̃k

)]
(k)[xl̃k

]|lk(k) = xl̃k
(k) =

[
pl̃kl′k

(
xl̃k

)]
(k) = xl′k

(k)

(28.2.3)

so Φ is a surjection provided we can show that χx is a homomorphism. But
this follows from x being a homomorphism on the various l. Concluding, Φ is a
bijection and we must show that it together with its inverse is continuous. The
proof of this fact follows the same reasoning as in the main text since that proof
is completely categorial and can thus be omitted.

The Bohr compactification, considered as the spectrum of the closure of the
algebra of almost periodic functions is equipped with the compact Hausdorff
topology defined by saying that a net χα converges pointwise on C (Gel’fand
transforms of f ∈ C are continuous). In particular, χα(Tk) =: Xα(k) → X(k) =:
χ(Tk) for any k ∈ R. Let us construct the analogue of the uniform measure on
R:

Since the Tk play the role of spin-network functions, we may define μ0 via the
Riesz representation theorem from the positive linear functional on C(R) via

Λ(Ťk) = δk,0 (28.2.4)

where the right-hand side is a Kronecker symbol and not a δ-distribution. Notice
that f̌(χ) = χ(f). It follows that the Ťk form an orthonormal basis in the Hilbert
space L2(R, dμ0) since

< Ťk, Ťk′ >:= Λ(ŤkŤk′) = Λ(Ťk′−k) = δk′−k,0 = δk,k′ (28.2.5)

so they form an orthonormal system and completeness follows from the fact
that they form a subalgebra of C(R) which contains the constants and separates
the points of R (indeed χ(Tk) = χ′(Tk) for all k ∈ R means χ(f) = χ′(f) for all
f ∈ C, i.e., χ = χ′) so that they are dense in C(R) by the Weierstrass theorem.

Cylindrical functions over the subgroups l are now defined as f = p∗l fl for
some fl : U(1)nl → C, that is, f(χ) = fl({χ(kI)}nl

I=1) with χ(kI) := χ(TkI
). The

push-forward of the measure to the spaces Xl = U(1)nl is easily checked to be

μ0(p∗l fl) = μ0,l(fl) =
∫

U(1)nl

nl∏

I=1

dμH(hI)fl(h1, . . . , hnl
) (28.2.6)

where μH is the Haar measure on U(1). To see this, it is enough to check that
(28.2.6) reproduces (28.2.5). Given subgroups l, l′ generated by the rationally
independent frequencies kI , I = 1, . . . , N and k′I , J = 1, . . . , N ′ respectively we
find l, l′ ≺ l′′ generated by rationally k′′L, L = 1, . . . , N ′′ and integers nIL, n

′
JL

such that kI =
∑N ′′

L=1 nILk
′′
L and k′J =

∑N ′′

L=1 n
′
JLk

′′
L. Now let k =

∑
I nIkI , k

′ =∑
J nJkJ be given so that Ťk ∈ C(Xl), Ťk′ ∈ C(Xl′). Then the inner product

according to (28.2.5) is given by δk,k′ , which due to the rational independence
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of the k′′J is equivalent to
N ′′
∏

L=1

δ∑
I nInIL,

∑
J n′

Jn
′
JL

(28.2.7)

But

[ŤkŤk′ ](χ) =
N ′′
∏

L=1

[χ(k′′L)]
∑

J n′
Jn

′
JL−∑

I nInIL (28.2.8)

so that (28.2.6) gives precisely (28.2.7).
The measure μ0 can also be considered as a Haar measure on R (that is,

normalised and translation-invariant): define for f ∈ C its average or mean

ν(f) := lim
R→∞

1
2R

∫ R

−R

dxf(x) (28.2.9)

We claim that ν(f) = μ0(f̌). To prove this it will be sufficient to check it for
f = Tk. The function Tk has period 2π/k so we have with Rk/(2π) − 1 < NR ≤
Rk/(2π) and any function with period 2π/k

∫ R

−R

dxf(x) = 2NR

∫ 2π/k

0

dxf(x) +
∫ −NR2π/k

−R

dxf(x) +
∫ R

NR2π/k

dxf(x)

=: 2NR

∫ 2π/k

o

dxf(x) + δR (28.2.10)

where the remainder δR is bounded uniformly in R. Since NR/R → k/(2π) as
R → ∞ we find

ν(f) :=
k

2π

∫ 2π/k

0

dxf(x) =
1
2π

∫ 2π

0

dxf(x/k) =
∫

U(1)

dμH(h)f̌(h) (28.2.11)

where f(x) = F (Tk(x)) so f(x/k) = F (T1(x)) =: F (h) and f̌(χ) = F (χ(Tk)).
This construction is interesting because it provides a normalised and

translation-invariant measure on a non-compact group (in this case R). Unfor-
tunately, non-Abelian (semisimple) non-compact groups are in general not
menable, the averaging works only for so-called amenable groups [585].
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Operator ∗-algebras and spectral theorem

As an application of Chapters 27 and 25 in addition to the general theory of the
main text we present an elegant proof of the spectral theorem and sketch the
GNS construction due to Gel’fand, Naimark and Segal. The GNS construction
in turn is pivotal for the representation theory of the holonomy flux algebra of
LQG.

29.1 Operator ∗-algebras, representations and GNS construction

We list the basic vocabulary of operator theory. See, for example, [535–537] for
further information.

I. Operator algebras
An algebra A is simply a vector space over C in which there is defined an
associative and distributive multiplication. It is unital if there is a unit 1
which satisfies a1 = 1a = a for all a ∈ A. It is a ∗-algebra if there is defined
an involution satisfying (ab)∗ = b∗a∗, (a∗)∗ = a which reduces to complex
conjugation on the scalars z ∈ C.

A Banach algebra is an algebra with norm a �→ ||a|| ∈ R+ which satisfies
the usual axioms ||a + b|| ≤ ||a|| + ||b||, ||ab|| ≤ ||a|| ||b||, ||za|| = |z| ||a||,
||a|| = 0 ⇔ a = 0 and with respect to which it is complete.

A C∗-algebra is a Banach ∗-algebra whose norm satisfies the C∗-property
||a∗a|| = ||a||2 for all a ∈ A. Physicists are most familiar with the C∗-algebra
B(H) of bounded operators on a Hilbert space H.

A von Neumann algebra is a weakly closed subalgebra of the C∗-algebra
of bounded operators on a Hilbert space.

II. Representations
A representation of a ∗-algebra A is a pair (H, π) consisting of a Hilbert
space H and a morphism π : A → L(H) into the algebra of linear (not nec-
essarily bounded) operators on H with common and invariant dense domain.
This means that π(za + z′a′) = zπ(a) + z′π(a′), π(ab) = π(a)π(b), π(a∗) =
[π(a)]† where † denotes the adjoint in H.

The representation is said to be faithful if Ker(π) = {0} and non-
degenerate if π(a)ψ = 0 for all a ∈ A implies ψ = 0.

A representation is said to be cyclic if there exists a normed vector Ω ∈ H
in the common domain of all the a ∈ A such that π(A)Ω is dense in H. Notice
that the existence of a cyclic vector implies that the states π(b)Ω, b ∈ A
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lie in the common dense and invariant domain for all π(a), a ∈ A. A rep-
resentation is said to be irreducible if every vector in a common dense and
invariant (for A) domain is cyclic.

Two representations πI ;A → L(HI); I = 1, 2 are called equivalent iff
there exists a Hilbert space isomorphism U : H1 → H2 such that π2(a) =
Uπ1(a)U−1 for all a ∈ A.

III. States
A state on a ∗-algebra is a linear functional ω : A → C which is positive,
that is, ω(a∗a) ≥ 0 for all a ∈ A. If A is unital we require that ω(1) = 1. The
states that physicists are most familiar with are vector states, that is, if we
are given a representation (H, π) and an element ψ in the common domain
of all the a ∈ A then a �→< ψ, π(a)ψ >H evidently defines a state. These are
examples of pure states, that is, those which cannot be written as convex
linear combinations of other states. However, the concept of states is much
more general and includes what physicists would call mixed (or temperature)
states, see, for example, the notion of a folium below.

IV. Automorphisms
An automorphism of a ∗-algebra is an isomorphism of A which is compatible
with the algebraic structure. If G is a group then G is said to be represented
on A by a group of automorphisms α : G → Aut(A); g �→ αg provided that
αg ◦ αg′ = αgg′ for all g, g′ ∈ G. A state ω on A is said to be invariant for
an automorphism α provided that ω ◦ α = ω. It is said to be invariant for G
if it is invariant for all αg, g ∈ G.

The following two structural theorems combine the notions introduced above
and are of fundamental importance for the construction and analysis of repre-
sentations.

Theorem 29.1.1 (GNS construction). Let ω be a state on a unital
∗-algebra A. Then there are GNS data (Hω, πω,Ωω) consisting of a Hilbert space
Hω, a cyclic representation πω of A on Hω and a normed, cyclic vector Ωω ∈ Hω

such that

ω(a) =< Ωω, πω(a)Ωω >Hω
(29.1.1)

Moreover, the GNS data are determined by (29.1.1) uniquely up to unitary equiv-
alence.

The name GNS stands for Gel’fand–Naimark–Segal. The idea is very simple.
The algebra A is in particular a vector space and we can equip it with a sesquilin-
ear form < a, b >:= ω(a∗b). (To see that it is sesquilinear, use the polarisation
identity

a∗b =
1
4

∑

ε4=1

ε[a + εb]∗[a + εb]
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and positivity, which implies ω(c∗c) = ω(c∗c) as well as a + εb = ε(b + ε̄a), to
conclude that ω(a∗b) = ω(b∗a).) This form is not necessarily positive definite.
However, by exploiting the Cauchy–Schwarz inequality |ω(a∗b)|2 ≤ ω(a∗a)ω(b∗b)
one convinces oneself that the set Iω consisting of the elements of A satisfying
ω(a∗a) = 0 defines a left ideal. We can thus pass to the equivalence classes [a] =
{a + b; b ∈ Iω} and define a positive definite scalar product by < [a], [b] >:=
ω(a∗b) for which one checks independence of the representative. Since Iω is a
left ideal one checks that [a] + [b] := [a + b], z[a] := [za], [a][b] := [ab] are well-
defined operations. Then Hω is simply the Cauchy completion of the vectors [a],
the representation is simply πω(a)[b] := [ab] and the cyclic vector is just given
by Ωω := [1]. Finally, if (H′

ω, π
′
ω,Ω

′
ω) are other GNS data then the operator

U : Hω → H′
ω defined densely by Uπω(a)Ωω := π′

ω(a)Ω′
ω is unitary.

Theorem 29.1.2. Let ω be a state over a unital ∗-algebra A which is invariant
for an element α ∈ Aut(A). Then there exists a uniquely determined unitary
operator Uω on the GNS Hilbert space Hω such that

Uω πω(a) Ωω = πω(α(a))Ωω (29.1.2)

The proof follows from the uniqueness part of Theorem 29.1.1 applied to the
alternative data (Hω, πω ◦ α,Ωω).

Corollary 29.1.3. Let ω be a G-invariant state on a unital ∗-algebra. Then
there is a unitary representation g �→ Uω(g) of G on the GNS Hilbert space Hω

defined by

Uω(g) πω(a) Ωω := πω(αg(a)) Ωω (29.1.3)

where g �→ αg is the corresponding automorphism group.

Notice that this means that the group G is represented without anomalies, that
is, there are, for example, no central extensions with non-vanishing obstruction
cocycle.

An important concept in connection with a state ω is its folium. This is defined
as the set of states ωρ on A defined by

ωρ(a) :=
TrHω

(ρπω(a))
TrHω

(ρ)
(29.1.4)

where ρ is a positive trace class operator (see, e.g., [282] and Definition 26.6.7)
on the GNS Hilbert space Hω.

If A is not only a unital ∗-algebra but in fact a C∗-algebra then there are many
more structural theorems available. For instance one can show, using the Hahn–
Banach theorem, Theorem 26.3.1 (see [282]), that representations always exist,
that every non-degenerate representation is a direct sum of cyclic representations,
that every state is continuous so that the GNS representations are always by
bounded operators and that for pure states the GNS representation is irreducible.



722 Operator ∗-algebras and spectral theorem

Of particular interest in the context of C∗-algebras is also the following universal
result.

Theorem 29.1.4 (Fell’s theorem). The folium of a faithful state of a C∗-
algebra is weakly dense in the set of all states.

In other words, given ε > 0, given any state ω, any faithful state ω0 (i.e.,
its GNS representation is faithful) and any finite number of algebra elements
a1, .., an we can find a state ω′ in the folium of ω0 such that |(ω − ω′)(ak)| < ε

for all k = 1, .., n. This defines a weak neighbourhood N(ε; a1, .., an) of ω in the
space of continuous linear functionals of A. Physically this means that we cannot
find out in which folium a state lies because in practice we can only perform a
finite number of measurements.

While the C∗-norm implies this huge amount of extra structure, a reason-
able C∗-norm on a ∗-algebra is usually very hard to guess unless one actually
constructs a representation by bounded operators. An exception is given by the
∗-algebra generated by the Weyl elements of, say, a free scalar field theory which
has a unique C∗-norm. This result is known as Slawny’s theorem [548], an instruc-
tive proof of which can be found in [536], Theorem 5.2.8. For more general alge-
bras, such as the one we are interested in here, uniqueness results are unknown.
We have thus chosen to keep with the more general concept of ∗-algebras. To see
that the algebra A := B(H) of bounded operators is a C∗-algebra with respect
to the operator norm ||a|| := supψ �=0 ||aψ||/||ψ|| we notice that by the Schwarz
inequality

||a||2 = sup
ψ

< ψ, a†aψ >

||ψ||2 ≤ ||a†a|| ≤ ||a|| ||a†||,

||a†||2 = sup
ψ

< ψ, aa†ψ >

||ψ||2 ≤ ||aa†|| ≤ ||a|| ||a†||

since ||ab|| ≤ ||a|| ||b||. It follows that ||a|| = ||a†|| and thus from the first inequal-
ity ||a||2 ≤ ||a†a|| ≤ ||a||2, hence ||a†a|| = ||a||2 which is the C∗-property.

In the rigorous algebraic approach to QFT [22] one uses the mathematical
framework of operator algebras, the basics of which we just sketched and com-
bines it with the physical concept of locality of nets of local algebras O �→ A(O).
That is, given a background spacetime (M,η) consisting of a differentiable D-
manifold and a background metric η, for each open region O one assigns a C∗-
algebra A(O). These are required to be mutually (anti)commuting for spacelike
separated (with respect to η) regions. This is the statement of the most impor-
tant one of the famous Haag–Kastler axioms. The framework is ideally suited
to formulate and prove all of the structural theorems of QFT on Minkowski
space and even to a large extent on curved spaces [27], at least perturbatively. In
AQFT one cleanly separates the two steps of quantising a field theory, namely
first to define a suitable algebra A and then to study its representations in a
second step. In LQG we follow the same logic.
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29.2 Spectral theorem, spectral measures, projection valued
measures, functional calculus

Let H be a Hilbert space and a a bounded, linear, normal operator on
H, that is ||a|| = supψ �=0 ||aψ||/||ψ|| < ∞ where ||ψ||2 =< ψ,ψ > denotes the
Hilbert space norm and [a, a†] = 0 where the bounded operator a† is defined by
< a†ψ,ψ′ >:=< ψ, aψ′ >. More precisely, consider the linear form on H defined
by

lψ : H → C;ψ′ →< ψ, aψ′ > (29.2.1)

This linear form is continuous since |lψ(ψ′)| ≤ ||ψ|| ||a|| ||ψ′|| by the Schwarz
inequality. Hence, by the Riesz lemma there exists ξψ ∈ H such that lψ =<

ξψ, . > and since lψ is conjugate linear in ψ it follows that ψ �→ ξψ := a†ψ actually
defines a linear operator. Finally, a† is bounded because

||a†ψ||2 = | < ψ, aa†ψ > | ≤ ||ψ|| ||aa†ψ|| ≤ ||ψ|| ||a|| ||a†ψ|| (29.2.2)

again by the Schwarz inequality.
Let A be the unital, Abelian C∗-algebra generated by 1, a, a†. It is Abelian

since a is normal and the C∗-property follows from the following observation:
let b ∈ A, then b is also normal and ||bψ||2 =< ψ, b†bψ >= ||b†ψ||2 so that ||b|| =
||b†|| for any b ∈ A. Now by the Schwarz inequality ||bψ||2 = | < ψ, b†bψ > | ≤
||ψ|| ||b†bψ|| implying that ||b||2 = ||b†||2 ≤ ||b†b||. On the other hand, ||b†b|| ≤
||b|| ||b†|| due to submultiplicativity.

Consider the spectrum Δ(A) = Hom(A,C) and the map z : Δ(A) → C; χ �→
χ(a) which is continuous by the definition of the Gel’fand topology on the spec-
trum. We have seen already that the range of this map coincides with σ(a).
Moreover, z is injective because χ(a) = χ′(a) implies that χ, χ′ coincide on all
polynomials of a, a† since they are homomorphisms, and thus on all of A by
continuity whence χ = χ′. Thus, z is a continuous bijection between the spectra
of A and a respectively. Since a is bounded, both spectra are compact Hausdorff
spaces. Now a continuous bijection between compact Hausdorff spaces is auto-
matically a homeomorphism. (Proof: Let f : X → Y be a continuous bijection
and let X be compact and Y Hausdorff. We must show that f(U) is open in Y

for every open subset U ⊂ X, or by taking complements, that images of closed
sets are closed. Now since X is compact, it follows that every closed set U is
also compact. Since f is continuous, it follows that f(U) is compact. Since Y

is Hausdorff it follows that f(U) is closed. See Theorems 5.3 and 5.5 of [533].)
We conclude that we can identify Δ(A) topologically with σ(a). We will denote
points in σ(a) ⊂ C by λ in order to distinguish them from the points χ ∈ Δ(A).

By definition the polynomials p in a, a† lie dense in A and we have for χ ∈ Δ(A)
that

χ(p(a, a†)) = p(χ(a), χ(a)) = p(z(χ), z(χ)) = [p ◦ (z, z̄)](χ) = p(a, a†)
∨

(χ)

(29.2.3)
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It follows that by combining the Gel’fand isometric isomorphism
∨

: A →
C(Δ(A)); b �→ b̌ with the map z−1 we obtain an isometric isomorphism ∼: A →
C(σ(a)); b �→ b̌ ◦ z−1, that is b̃(λ) := χ(b)z(χ)=λ.

Now consider any vector ψ ∈ H with ||ψ|| = 1. Then

ωψ : A → C; b �→< ψ, bψ > (29.2.4)

is obviously a state on A. Via the Gel’fand transform we obtain a positive linear
functional on C(Δ(A)) by

Λψ : C(Δ(A)) → C; b̌ �→ ωψ(b) (29.2.5)

and since Δ(A) is a compact Hausdorff space we can apply the Riesz representa-
tion theorem in order to find a unique, regular Borel measure μ′

ψ on Δ(A) such
that

ωψ(b) =
∫

Δ(A)

dμ′
ψ(χ)b̌(χ) (29.2.6)

Denoting dμψ(λ) := dμ′
ψ(z−1(λ)) we may change coordinates from χ to λ and

replace μ′
ψ by μψ as well as b̌ by b̃ in what follows so that (29.2.6) becomes

ωψ(b) =
∫

σ(a)

dμψ(λ)b̃(λ) (29.2.7)

The measure μψ is called a spectral measure.
In the language of the previous chapter, the C∗-algebra A generated by

a normal, bounded operator a ∈ B(H) on a given Hilbert space is repre-
sented as π(b) = b on H. Notice that if ψ was cyclic for A, then (29.2.7)
would show that H is unitarily equivalent to L2(σ(a), dμψ) and in that rep-
resentation is realised as a multiplication operator which is already one of
the versions of the spectral theorem. However, it may be impossible or dif-
ficult to find a cyclic vector. Therefore, in general more work is required, as
follows.

Notice that the chosen Hilbert space representation is non-degenerate because
A contains the identity operator. Hence we may apply the result that such rep-
resentations decompose directly into cyclic ones, see Lemma 8.1.1. We thus
find an index set A, vectors ψα and closed, mutually orthogonal subspaces
Hα := {bψα; b ∈ A} containing ψα such that H = ⊕α∈AHα. By construction,
the subspaces Hα are invariant for A. Then any vector ψ ∈ H is (in the closure
of vectors) of the form ψ =

∑
α∈A bαψα with bα ∈ A and we have

< ψ,ψ′ >=
∑

α∈A

< ψα, b
†
αb

′
αψα > (29.2.8)

Using the result (29.2.6) we may write this as

< ψ,ψ′ >=
∑

α∈A

∫

σ(a)

dμψα(λ)b̃α(λ)b̃′α(λ) (29.2.9)
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where we have used the fact that (b†b′)
∨

= b̌b̌′. This formula suggests introducing
the Hilbert spaces L2(σ(a), dμψα

) as well as the space σ :=
⋃

α∈A σ(a)α (disjoint
union of copies of σ(a)) and a measure μ on it defined by μ|σ(a)α := μψα . Notice
that measurable sets are of the form

⋃
α∈B⊂A Uα where Uα is measurable in

σ(a)α, B can be any subindex set and unions, intersections and differences of
measurable sets are performed componentwise. Let us now define the Hilbert
space L2(σ, dμ). An element ψ̃ of L2(σ, dμ) is a square integrable function on
σ with respect to the measure μ and may be defined in terms of an array of
functions ψ̃α ∈ L2(σ(a)α, dμψα

) which are its componentwise restriction, that is
ψ̃α := ψ̃|σ(a)α . Notice that indeed

< ψ̃, ψ̃′ >L2(σ,dμ) =
∫

σ

dμ(λ)ψ̃(λ)ψ̃′(λ)

=
∑

α∈A

∫

σ(a)α

dμ(λ)ψ̃(λ)ψ̃′(λ)

=
∑

α∈A

∫

σ(a)α

dμ|σ(a)α(λ)[ψ̃(λ)ψ̃′(λ)]|σ(a)α

=
∑

α∈A

∫

σ(a)

dμψα
(λ)ψ̃α(λ)ψ̃′

α(λ) (29.2.10)

explaining the requirement that ψ̃α ∈ L2(σ(a)α, dμψα). Here we have made use
of σ-additivity, that is, μ(

⋃
α Uα) =

∑
α μ(Uα) =

∑
α μψα

(Uα) for the mutually
disjoint sets Uα ⊂ U . Comparing (29.2.9) and (29.2.10) we see that we can iden-
tify L2(σ, dμ) with ⊕α∈AL2(σ(a)α, dμψα

) and obtain a unitary transformation

U : H → L2(σ, dμ); ψ =
∑

α∈A

bαψα �→ ψ̃ where ψ̃|σ(a)α := b̃α (29.2.11)

Moreover, we have

Ubψ = U
∑

α

bbαψα = ψ̃′ where ψ̃′
|σ(a)α

= b̃bα = b̃b̃α (29.2.12)

which means that on each subspace L2(σ(a)α, dμψα
) the operator b is represented

by multiplication by b̃(λ). In particular, if b = a or b = a† it is represented by
multiplication by λ or λ̄ since

ã(λ) = ǎ(z−1(λ)) = [z−1(λ)](a) = z([z−1(λ)]) = λ (29.2.13)

This simple corollary from Gel’fand spectral theory and the Riesz representation
theorem is the spectral theorem for bounded, normal operators which we just
proved in a few lines above.

Theorem 29.2.1 spectral theorem; multiplication operator form. Let
a be a bounded, normal operator on a Hilbert space H. Then there exists a unitary
operator U : H → L2(σ, dμ) where σ is a disjoint union of copies of the spectrum
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of a and μ is a direct sum of regular Borel measures on those copies such that
for each measurable function f on the spectrum of a the operator Uf(a, a†)U−1

becomes the multiplication operator f(λ, λ̄).

The extension from polynomials to measurable functions is because polyno-
mials on compact Hausdorff spaces are dense in the set of continuous functions
by the Weierstrass theorem and the continuous functions are dense in the mea-
surable functions by Lusin’s theorem for Borel measures.

Notice that the spectral theorem is valid also if the Hilbert space is not sepa-
rable. It obviously generalises to the case that we have a family (aI) of bounded
operators which together with their adjoints mutually commute with each other.
The only difference is that we now get a homeomorphism between Δ(A) and the
joint spectrum

∏
I σ(aI) via χ �→ (χ(aI))I . We can also strip off the concrete

Hilbert space context by considering an abstract unital C∗-algebra A where
instead of vector states ψα we use states ωα on A and apply the GNS construc-
tion. That for given a ∈ A there is always a state ω with ω(a∗a) > 0 follows
from the Hahn–Banach theorem applied to the vector space X := A and its one-
dimensional subspace Y := span(a∗a) with the bounding function required in the
Hahn–Banach theorem given by the norm on X and by defining ω(a∗a) := ||a||2.
The Hahn–Banach theorem guarantees that then ω can be extended as a positive
linear functional to all of A.

Theorem 29.2.2. Let (aI) be a self-adjoint collection (closed under involution)
of mutually commuting elements of a C∗-algebra C. Then there exists a represen-
tation π of the sub-C∗-algebra A generated by this collection on a Hilbert space
H such that the π(aI) become multiplication operators.

Let us mention the spectral resolution. Let a be a bounded self-adjoint opera-
tor then by the Riesz–Markov theorem we have < ψ, f(a)ψ >=

∫
σ(a)

dμψ(λ)f(λ)
for any measurable function f and μψ is the spectral measure of ψ as above.
Let B ⊂ R be measurable (i.e., a Borel set, B ∈ B) and consider the opera-
tors EB := χB(a) called the spectral projections where χB is the characteristic
function of B. Then < ψ,EBψ >=

∫
σ(a)

dμψ(λ)χB(λ). This defines the so-called
projection-valued measures (p.v.m.) E : B → B(H); B �→ EB which map Borel
sets into projection operators, that is, they are ‘measures’ with values in the set
of projection operators rather than the real numbers. Evidently EBEB′ = EB∩B′

and ER = 1H.
The p.v.m. allow for an elegant formulation of the spectral theorem as follows:

let E(λ) := χ(−∞,λ](a) for λ ∈ R then we see that

< ψ, dE(λ)ψ >:= d < ψ,E(λ)ψ >= dμψ(λ) (29.2.14)

whence

< ψ, f(a)ψ >=
∫

R

< ψ, dE(λ)ψ > f(λ) (29.2.15)
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for all ψ ∈ H or by the polarisation identity

f(a) =
∫

R

dE(λ) f(λ) (29.2.16)

which is called the spectral resolution of f(a). This works completely analogously
for unitary (or any other normal) operators whose spectrum is a subset of S1 ≡
[0, 2π) where 0 ≡ 2π are identified. So one just has to replace R by S1. To prove
this, apply the inverse Caley transform, which we will discuss in a moment, to
bounded self-adjoint operators.

The extension of the spectral theorem to unbounded self-adjoint operators on
a Hilbert space can be traced back to the bounded case by using the following
trick. (Recall that a densely defined operator a with domain D(a) is called self-
adjoint if a† = a and D(a†) = D(a) where

D(a†) := {ψ ∈ H; sup
0 �=ψ′∈D(a)

| < ψ, aψ′ > |/||ψ′|| < ∞}

and a† is uniquely defined on ψ ∈ D(a†) via < a†ψ,ψ′ >=< ψ, aψ′ > for all
ψ ∈ D(a) through the Riesz lemma): the spectrum of a will be an unbounded
subset of the real line. Let f be a bijection R∗ → K where K is a compact
one-dimensional subset of C and R∗ the one-point compactification of R. (The
one-point compactification X∗ = X ∪ {∞} of a topological space X has as open
sets (a) the open sets of X and (b) the sets U ⊂ X∗ containing {∞} such that
X − U is closed and compact in X. X∗ is then compact and also Hausdorff iff
X is locally compact and Hausdorff.) Suppose that f(a) is a bounded operator.
Then we can apply the spectral theorem for bounded normal operators to f(a),
which then becomes a multiplication operator and if f−1 is a measurable function
then also a itself is a multiplication operator on a suitable domain. A popular
tool is the Caley transform: consider the map f : R → C; x �→ x−i

x+i . The image
of f are all complex numbers z of modulus one except for z = 1 which would
be the image of the point x = ±∞. Parametrising z = eiθ, θ ∈ [0, 2π) the full
circle (with boundary points identified) we see that f is invertible with inverse
f−1(z) = i 1+z

1−z = −cotan(θ/2), which is well-defined on the full circle except for
the point θ = 0 ≡ 2π corresponding to z = 1 so that the image of f corresponds
to the open interval (0, 2π). Consider the unitary operator (the inverse of a + i

is well-defined because i is not in the spectrum of a, hence the inverse oper-
ator is bounded) u := f(a) = (a− i)(a + i)−1 (with inverse a = f−1(u) = i(1 +
u)(1 − u)−1) and let E be its projection-valued measure with spectral projections
E(θ), θ ∈ [0, 2π). Then, since f−1 is measurable we have by the spectral theorem

a =
∫ 2π

0

f−1(eiθ) dE(θ) = −
∫ 2π

0

cotan(θ/2) dE(θ) =
∫

R

x dE(2arcotan(−x))

where we changed coordinates in the last line. Hence the spectral projections
for a are given by E′(x) = E(2arcotan(−x)).
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Let us summarise our findings:

Theorem 29.2.3 (spectral theorem; functional calculus form). Let a

be a self-adjoint, possibly unbounded, operator on a, possibly non-separable,
Hilbert space H. Then there is a system of bounded operators R � λ �→ E(λ)
with the following properties:

1. E(−∞) = 0, E(∞) = 1H,
2. E(λ)E(λ′) = E(min(λ, λ′)),
3. s− limλ→λ0+ E(λ) = E(λ0) (strong limit).

Moreover, for every measurable function f on the spectrum σ(a) we have the
strong equality

f(a) =
∫

R

dE(λ) f(λ) (29.2.17)

on the dense set of vectors ψ on which
∫

d < ψ,E(λ)ψ > |f(λ)|2 converges.

Let us demonstrate how to do practical calculations with the functional calcu-
lus. Let f, f ′ be two measurable functions. We want to verify that f(a)f ′(a) =
(ff ′)(a) in the notation (29.2.17) on the set of vectors ψ on which the product
exists. We have

< ψ, f(a) f ′(a)ψ > =
∫

R

f(λ) dλ

[∫

R

f ′(λ′)dλ′ < ψ,E(min(λ, λ′))ψ >

]

=
∫

R

f(λ) dλ

[∫ λ

−∞
f ′(λ′)dλ′ < ψ,E(λ′)ψ >

]

=
∫

R

f(λ)f ′(λ)dλ < ψ,E(λ)ψ > (29.2.18)

as claimed. Here dλ denotes the differential with respect to λ and in the second
step we used dλ′E(min(λ, λ′)) = 0 for λ′ > λ.
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Refined algebraic quantisation (RAQ) and
direct integral decomposition (DID)

In this chapter we describe two methods for solving the quantum constraints.
They both make the original proposal by Dirac, to simply look for the common
kernel of the quantum constraints, mathematically precise.

30.1 RAQ

RAQ provides strong guidelines for how to solve a given family of quantum
constraints but unfortunately it is not an algorithm that one just has to apply in
order to arrive at a satisfactory end result. In particular, as presently formulated
it has its limitations since it does not cover the case that the constraints form
an open algebra with structure functions rather than structure constants as
would be the case for a Lie algebra. Unfortunately, quantum gravity belongs to
the open algebra category of constrained systems and one has to resort to the
second method, DID, presented in the next section. We mainly follow Giulini
and Marolf in [277,278].

Let Hkin be a Hilbert space, referred to as the kinematical Hilbert space
because it is supposed to implement the adjointness and canonical commuta-
tion relations of the elementary kinematical degrees of freedom. However, these
degrees of freedom are not observables (classically they do not have vanishing
Poisson brackets with the constraints on the constraint surface) and the Hilbert
space is not the physical one on which the constraint operators would equal the
zero operators. The role of Hkin is to give the constraint operators (ĈI)I∈I a
home, that is, there is a common dense domain Dkin ⊂ Hkin which is supposed
to be invariant under all the ĈI and we also require that the ĈI be closable
operators (i.e., their adjoint is densely defined as well). We do not require them
to be bounded operators. The label set I is rather arbitrary and usually a com-
bination of direct products of finite and infinite sets (e.g., tensor or gauge group
indices times indices taking values in a separable space of smearing functions).

We will further require that the constraints form a first-class system and that
they actually form a Lie algebra, that is, there exist complex-valued structure
constants fIJ

K such that

[ĈI , ĈJ ] = fIJ
KĈK (30.1.1)

where the summation over K performed here will involve an integral for generic
I. Notice that (30.1.1) makes sense due to our requirement on Dkin. The case of
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an open algebra would correspond to the fact that the structure constants become
operator-valued as well and then it becomes an issue how to choose the operator
ordering in (30.1.1), in particular, if constraint operators and structure constant
operators are chosen to be self-adjoint and anti-self-adjoint respectively (which
would be natural if their classical counterparts are classically real- and imaginary-
valued respectively) then one would have to order (30.1.1) symmetrically, which
would be a disaster for solving the constraints, see below, which is why in the
open case the constraints should not be chosen to be self-adjoint operators.
Notice that there is no contradiction because self-adjointness is usually required
to ensure that the spectrum (measurement values) of the operator lies in the real
line, however, for constraint operators this requirement is void since we are only
interested in their kernel and the only requirement is that the point zero belongs
to the spectrum at all.

In order to allow for non-self-adjoint constraints, in what follows we will assume
that the set C := {ĈI ; I ∈ I} is self-adjoint (i.e., contains with ĈI also Ĉ†

I = ĈJ

for some J), which means that the dense domain Dkin is also a dense domain for
the adjoints so that the constraints are explicitly closable operators. Let us now
consider the self-adjoint set of kinematical observables Okin, that is, all operators
on Hkin which have Dkin as common dense domain together with their adjoints.
Obviously, Okin contains C. Consider the commutant of C within Okin, that is,

C′ := {O ∈ Okin; [C,O] = 0 ∀ C ∈ C} (30.1.2)

It is clear that C′ is a ∗-subalgebra of Okin since [O†, C] = −([O, C])† = 0 and
[OO′, C] = O[O′, C] + [O, C]O′ = 0 for any O,O′ ∈ C′ since C† = C is a self-adjoint
set. Moreover, C might have a non-trivial centre

Z = C ∩ C′ (30.1.3)

which generates a two-sided ideal IZ in C′ corresponding to classical functions
that vanish on the constraint surface and is therefore physically uninteresting.
Hence we will define the algebra of physical observables to be the quotient algebra

Ophys := C′/Z (30.1.4)

Usually the space Dkin comes with its own topology τ , different from the sub-
space topology inherited from the Hilbert space topology ||.|| on Hkin, generically
a nuclear topology [280] so that Dkin becomes a Fréchet space.1 The intrinsic
topology τ is then finer than ||.|| since Dkin is complete but also dense in Hkin

(if it was coarser then a Cauchy sequence in Dkin with respect to the intrinsic
topology would also be one in the Hilbert space topology and since Dkin is dense

1 This is a space [282], see also Section 26.5, whose topology is generated by a countable
family of seminorms that separates the points of Dkin and such that Dkin is complete in the
associated norm; a general locally convex topological vector space is not necessarily
complete and the family of seminorms need not to be countable (it is then not metrisable).
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this completion would coincide with Hkin). It follows that the space of continuous
linear functionals D′

kin (with respect to the topology on Dkin) or topological dual
contains Hkin since a Hilbert space is reflexive, that is, H′

kin = Hkin by the Riesz
lemma so the elements of Hkin are in particular continuous linear functionals on
Dkin with respect to ||.|| so that they are also continuous with respect to τ (a
function stays continuous if one strengthens the topology on the domain space).
Let (lα) be a net in H′

kin converging to l then

||lα − l||D′
kin

= sup
f∈Dkin

| < lα − l, f > |
||f ||Dkin

= sup
f∈Dkin

||f ||Hkin

||f ||Dkin

| < lα − l, f > |
||f ||Hkin

≤ sup
f∈Dkin

| < lα − l, f > |
||f ||Hkin

≤ sup
f∈Hkin

| < lα − l, f > |
||f ||Hkin

= ||lα − l||H′
kin

(30.1.5)

where we used ||f ||Hkin/||f ||Dkin ≥ 1. Thus it converges in D′
kin as well, that is,

the topology on D′
kin is weaker than that of Hkin. We thus have topological

inclusions

Dkin ↪→ Hkin ↪→ D′
kin (30.1.6)

sometimes called a Gel’fand triple.
Unfortunately the definition of a Gel’fand triple requires a further input, the

nuclear topology intrinsic to Dkin which we want to avoid since there seems
no physical guiding principle (although then there are rather strong theorems
available concerning the completeness of generalised eigenvectors [280]). We thus
equip Dkin simply with the relative topology induced from Hkin. The requirement
that Dkin is dense is then no loss of generality since we may simply replace
Hkin by the completion of Dkin. Instead of the topological dual (which would
coincide with Hkin) we consider the algebraic dual D∗

kin of all linear functionals
on Dkin. This space is naturally equipped with the weak ∗-topology of pointwise
convergence, that is, a net (lα) converges to l iff the net of complex numbers
(lα(f)) converges to l(f) for any f ∈ Dkin (but not uniformly). Again we can
consider Hkin as a subspace of D∗

kin and since a net converging in norm certainly
converges pointwise we have again topological inclusions

Dkin ↪→ Hkin ↪→ D∗
kin (30.1.7)

which in abuse of notation we will still refer to as a Gel’fand triple. Thus, the
only input left is the choice of Dkin for which, however, there are no general
selection principles available at the moment (see, however, [277, 278] for further
discussion).

The reason for blowing up the structure beyond Hkin is that generically the
point zero does not lie in the discrete part of the spectrum of C, that is, if
we look for solutions to the constraints in the form ĈIψ = 0 for all I ∈ I for
ψ ∈ Hkin, then there are generically not enough solutions because ψ would be
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an eigenvector with eigenvalue zero but since zero does not lie in the discrete
spectrum the eigenvectors do not form the entire solution space. This is precisely
what happens with the diffeomorphism constraint for the case of quantum gravity
where the only eigenvectors are the constant functions. We therefore look for
generalised eigenvectors l ∈ D∗

kin in the algebraic dual, for which we require

[(ĈI)′l](f) := l(Ĉ†
If) = 0 ∀ I ∈ I, f ∈ Dkin (30.1.8)

where the dual action of an operator Ô ∈ Okin on l ∈ D∗
kin is defined by

[Ô′l](f) := l(Ô†f) ∀ f ∈ Dkin (30.1.9)

Notice that since we required C to be a self-adjoint set we can avoid taking
the adjoint in (30.1.8) by passing to self-adjoint representatives ĈI . Due to the
adjoint operation in (30.1.9) we have an antilinear representation of Okin on D∗

kin

which descends to an antilinear representation of Ophys on the space of solutions
D∗

phys ⊂ D∗
kin to (30.1.8). The reason for taking the adjoint is that if a solution

l was an element of the kinematical Hilbert space, l ∈ Hkin, then ĈI l = 0 would
be equvalent to [ĈI l](f) :=< ĈI l, f >=< l, Ĉ†

If >= l(Ĉ†
If) = 0 for all f ∈ Dkin,

hence (30.1.8) is the appropriate extension of this condition from Hkin to D∗
kin.

At this point, the space D∗
phys is just a subspace of D∗

kin. We would like to
equip a subspace Hphys of it with a Hilbert space topology. The reason for not
turning all of D∗

phys into Hphys is that then Ophys would be realised as an algebra
of bounded operators on Hphys since they would be defined everywhere on D∗

phys,
which would be unnatural if the corresponding classical functions are unbounded.
In particular, the topology on Hphys, as a complete norm topology, should be
finer than the relative topology induced from D∗

kin. The idea is then to consider
D∗

phys as the algebraic dual of a dense subspace Dphys ⊂ Hphys so that all of
Ophys is densely defined there. In other words we get a second Gel’fand triple

Dphys ↪→ Hphys ↪→ D∗
phys (30.1.10)

with an antilinear representation of Ophys on Hphys defined by (30.1.9).
The choice of the inner product on Hphys is guided by the requirement that

the adjoint in the physical inner product, denoted by �, represents the adjoint
in the kinematical one, that is,

< ψ, Ô′ψ′ >phys=< (Ô′)�ψ,ψ′ >phys=< (Ô†)′ψ,ψ′ >phys (30.1.11)

for all ψ,ψ′ ∈ Dphys. The canonical commutation relations among observables are
automatically implemented because by construction Hphys carries a representa-
tion of Ophys on which the correct algebraic relations were already implemented
as an abstract algebra.

A systematic construction of the physical inner product is available if we have
an antilinear (so-called) rigging map

η : Dkin → D∗
phys; f 	→ η(f) (30.1.12)
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at our disposal which must be such that

1. The following is a positive semidefinite sesquilinear form (linear in f , antilinear
in f ′)

< η(f), η(f ′) >phys:= [η(f ′)](f) ∀ f, f ′ ∈ Dkin (30.1.13)

2. For any Ô ∈ Ophys we have

Ô′η(f) = η(Ôf) ∀ f ∈ Dkin (30.1.14)

which makes sure that the dual action preserves the space of solutions since
Ĉ ′Ô′η(f) = 0. Notice that both the left- and the right-hand side in (30.1.14) are
antilinear in Ô.

We could then define Dphys := η(Dkin)/ker(η) (with the kernel being under-
stood with respect to ||.||phys) and complete it with respect to (30.1.13) to obtain
Hphys. Notice that (30.1.11) is satisfied because for ψ = η(f), ψ′ = η(f ′) we have

< ψ, Ô′ψ′ >phys = < η(f), η(Ôf ′) >phys= [η(Ôf ′)](f)

= [Ô′η(f ′)](f) = η(f ′)(Ô†f)

= < η(Ô†f), η(f ′) >phys=< (Ô†)′ψ,ψ′ >phys (30.1.15)

To see that Hphys is a subspace of D∗
phys with a finer topology, notice that

the map J : Hphys → D∗
phys defined by [J(ψ)](f) :=< ψ, η(f) >phys is an injec-

tion because J(ψ) vanishes iff ψ is orthogonal to all η(f) with respect to
< ., . >phys, which means that ψ = 0 because the image of η is dense. Hence
J is an embedding (injective inclusion) of linear spaces. Moreover, J is evidently
continuous: if ||ψα − ψ||phys → 0 then J(ψα) → J(ψ) in the weak ∗-topology iff
[J(ψα)](f) → [J(ψ)](f) for any f ∈ Dkin, which is clearly the case. So conver-
gence in Hphys implies convergence of J(Hphys), hence the Hilbert space topology
is stronger than the relative topology on J(Hphys).

Thus, the existence of a rigging map solves the problem of defining a suit-
able inner product. A heuristic idea of how to construct η is through the group
averaging proposal: since C is a self-adjoint set we may assume w.l.g. that the
ĈI are self-adjoint, and since they form a Lie algebra we may in principle expo-
nentiate this Lie algebra (using the spectral theorem) and obtain a group of
operators tI → exp(tIĈI) where (tI)I∈I ∈ T and T is some set depending on
the constraints (the exponential map should be a bijection with the connected
component of the associated group). Let then

η(f) :=
∫

T

dμ(t) exp(tIĈI)f (30.1.16)

with a bitranslation-invariant (Haar) measure μ on T . One easily sees that with

[η(f)](f ′) :=
∫

T

dμ(t) < exp(tIĈI)f, f ′ >kin (30.1.17)
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formally [η(f)](ĈIf
′) = 0. Of course, one must check case by case whether T, μ

exist and that η has the required properties. At present, the case of a finite-
dimensional, locally compact Lie group is under complete control (existence and
uniqueness) [278]. For the case of an infinite number of constraints, existence
or uniqueness proofs of μ, T are not available yet. This case, however, can be
treated by the method of DID, see the next section.

Let us make some short comments about the open algebra case: suppose that
the classical constraint functions CI and the structure functions fIJ

K are real-
and imaginary-valued respectively. As mentioned already, it is now excluded to
choose the corresponding operators to be (anti)-self-adjoint operators since this
would require the ordering

[ĈI , ĈJ ] =
i

2
(f̂IJ KĈK + ĈK f̂IJ

K) (30.1.18)

and could possibly lead to the following quantum anomaly: if we impose the
condition (30.1.8) then we would find for an element l ∈ D∗

phys that

((f̂IJ K)′Ĉ ′
K + Ĉ ′

K(f̂IJ K)′)l = [Ĉ ′
K , (f̂IJ K)′]l = 0 (30.1.19)

which means that l is not only annihilated by the dual constraint operators
but also by (30.1.19), which is not necessarily proportional to a dual constraint
operator any longer, implying that the physical Hilbert space will be too small.
If, on the other hand, we do not choose the ĈI to be self-adjoint, the anomaly
problem is potentially absent but now it is no longer true that [Ĉ ′

I l](f) = l(ĈIf),
in other words, the question arises whether it is Ĉ ′

I l = 0 or (Ĉ†
I )

′l = 0 that we
should impose? The answer is that this just corresponds to a choice of operator
ordering since the classical limit of both ĈI and Ĉ†

I is given by the real-valued
function CI and thus the answer is that the correct ordering is the one in which
the algebra is, besides being densely defined and closed, also free of anomalies.
Thus, in the open algebra case we may proceed just as above with the additional
requirement of anomaly freeness. Of course, group averaging does not work since
we cannot exponentiate the algebra any longer.

We conclude this chapter with an example in order to illustrate the proce-
dure: suppose Hkin = L2(R2, d2x) and Ĉ = p̂1 = −i∂/∂x1. Obviously the kine-
matical Hilbert space implements the adjointness and canonical commutation
relations among the basic variables x1, x2, p1, p2. A nuclear space choice would
be Dkin = S(R2) (test functions of rapid decrease). The functions l annihilated
by Ĉ are those that do not depend on x1 and are thus not normalisable. However,
we can define them as elements of D∗

kin by l(f) :=< l, f >kin=
∫
R2 d2xl(x)f(x)

which converges pointwise. Clearly l(Ĉf) = 0 if l,x1 = 0. The physical observ-
able algebra consists of operators not involving x̂1 and after taking the quotient
with respect to the constraint ideal they involve only p̂2, x̂2. Obviously they
leave the space D∗

phys invariant, consisting of those elements of D∗
kin that are

x1-independent. The physical Hilbert space that suggests itself (implementing
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the correct reality condition) is therefore Hphys = L2(R, dx2), which is a proper
subspace of D∗

phys and we have Dphys = S(R). Now an appropriate rigging map
is obtained indeed by

η(f)(x1, x2) :=
∫

R

dt exp(itp̂1)f(x1, x2) =
∫

R

dx1f(x1, x2) = 2πδ(Ĉ)f(x1, x2)

since p̂1 generates x1 translations, produces functions independent of x1 and dt

is an invariant measure on T = R. Notice that the integral converges because f

is of rapid decrease. Notice also that we could define the delta distribution of
the constraint, using the spectral theorem. We have

< η(f), η(f ′) >phys := η(f ′)[η(f)] =
∫

R

dt

∫

R2
d2xf ′(x1 + t, x2)f(x1, x2)

=
∫

R

dx2

[∫
dx′

1f
′(x′

1, x2)
] [∫

dx1f(x1, x2)
]

(30.1.20)

which is the same inner product as chosen above.
In the case of an Abelian self-adjoint constraint algebra a reasonable Ansatz

for a rigging map is always given by

η(f) =
∏

I∈I
δ(ĈI)f (30.1.21)

30.2 Master Constraint Programme (MCP) and DID

The following construction is to date the only one that leads to the physical inner
product when the constraints do not form a Lie algebra, that is, in the presence
of structure functions rather than structure constants. In particular, RAQ is not
possible in this case and therefore DID generalises RAQ.

Let there be given a phase space M with real-valued, first-class constraint func-
tions CI(x) : M → R; m 	→ [CI(x)](m) on M. Here we let I ∈ I take discrete
values while x ∈ X belongs to some continuous index set. To be more specific,
X is supposed to be a measurable space and we choose a measure ν on X. Then
we consider the fiducial Hilbert space h := L2(X, dν)|I| with inner product

< u, v >h=
∫

X

dν(x)
∑

I∈I
uI(x)vI(x) (30.2.1)

Finally we choose a positive operator-valued function M → L+(h); m 	→ K(m)
where L+(h) denotes the cone of positive linear operators on h.

Definition 30.2.1. The Master Constraint for the system of constraints m 	→
[CI(x)](m) corresponding to the choice μ of a measure on X and the operator-
valued function m 	→ K(m) is defined by

M(m) =
1
2
< C(m),K(m) · C(m) >h (30.2.2)
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Of course ν,K must be chosen in such a way that (30.2.2) converges and
defines a differentiable function on M, but apart from that the definition of a
Master Constraint allows a great deal of flexibility, which we will exploit in
the examples to be discussed. It is clear that the infinite number of constraint
equations CI(x) = 0 for a.a. x ∈ X and all I ∈ I is equivalent with the single
equation M = 0 so that classically all admissible choices of μ,K are equivalent.

Notice that we have explicitly allowed M to be infinite-dimensional. In case
that we have only a finite-dimensional phase space, simply drop the structures
x,X, ν from the construction. We compute for any function O ∈ C2(M) that

{{O,M}, O}M=0 = [< {O,C},K · {O,C} >h]M=0 (30.2.3)

hence the single equation {{O,M}, O}M=0 = 0 is equivalent to {O,CI(x)}M=0 =
0 for a.a. x ∈ X and I ∈ I.

Among the set of all weak Dirac observables satisfying (30.2.3) the strong
Dirac observables form a subset. These are the twice differentiable functions on
M satisfying {O,M} ≡ 0 identically on all of M. They can be found as follows:
let t 	→ αM

t be the one-parameter group of automorphisms of M defined by time
evolution with respect to M. Then the ergodic mean of O ∈ C∞(M)

[O] := lim
T→∞

1
2T

∫ T

−T

dt αM
t (O) (30.2.4)

has a good chance of being a strong Dirac observable if twice differentiable, as
one can see by formally commuting the integral with the Poisson bracket with
respect to M. In order that the limit in (30.2.4) is non-trivial, the integral must
actually diverge. Using l’Hospital’s theorem we therefore find that if (30.2.4)
converges and the integral diverges (the limit being an expression of the form
∞/∞) then it equals

[O] := lim
T→∞

1
2
[
αM
T (O) + αM

−T (O)
]

(30.2.5)

which is a great simplification because, while one can often compute the time
evolution αM

t for a bounded function O (for bounded functions the integral will
typically diverge linearly in T so that the limit exists), doing the integral is impos-
sible in most cases. Hence we see that the MCP even provides some insight into
the structure of the classical Dirac observables for the system under considera-
tion.

Now we come to the quantum theory. We assume that a judicious choice of ν,K
has resulted in a positive, self-adjoint operator M̂ on some kinematical Hilbert
space Hkin which we assume to be separable. Following (a slight modification of)
a proposal due to Klauder [87], if zero is not in the spectrum of M̂ then compute
the finite, positive number λ0 := inf(σ(M̂)) and redefine M̂ by M̂−λ0idHkin . Here
we assume that λ0 vanishes in the h̄ → 0 limit so that the modified operator still
qualifies as a quantisation of M. This is justified in all examples encountered so
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far where λ0 is usually related to some reordering of the operator. Hence in what
follows we assume w.l.g. that 0 ∈ σ(M̂).

Under these circumstances we can completely solve the Quantum Master

Constraint Equation M̂ = 0 and explicitly provide the physical Hilbert space
and its physical inner product. Namely, as we recall below, the Hilbert space
Hkin is unitarily equivalent to a direct integral

Hkin
∼=

∫ ⊕

R+
dμ(λ) H⊕

kin(λ) (30.2.6)

where μ is a so-called spectral measure and H⊕
kin(λ) is a separable Hilbert space

with inner product induced from Hkin. This simply follows from spectral theory.
The operator M̂ acts on H⊕

kin(λ) by multiplication by λ, hence the physical
Hilbert space is simply given by

Hphys = H⊕
kin(0) (30.2.7)

The Hilbert spaces H⊕
kin(λ) are unique up to sets of μ-measure zero and do not

depend on the choice of μ.
Strong quantum Dirac observables can be constructed in analogy to (30.2.4),

(30.2.5), namely for a given bounded operator on Hkin we define, if the uniform
limit exists

[̂O] := lim
T→∞

1
2
[U(T )ÔU(T )−1 + U(T )−1ÔU(T )] (30.2.8)

where

U(t) = eit M̂ (30.2.9)

is the unitary evolution operator corresponding to the self-adjoint M̂ via Stone’s
theorem. One must check whether the spectral projections of the bounded oper-
ator (30.2.8) commute with those of M̂ but if they do then [̂O] defines a strong
quantum Dirac observable.

This concludes our sketch of the general theory. We will now provide the
corresponding mathematical theory which also gives a concrete algorithm for
how to construct the physical Hilbert space from a given Master Constraint
Operator M̂.

Before we do this, let us check that the MCP gives sensible results in the
simplest case, namely a countable collection of, not necessarily self-adjoint but
closable (so that all ĈI , Ĉ

†
I are densely defined on a common dense domain D)

operators ĈI which do not necessarily form a (infinite-dimensional) Lie algebra
but which are such that {0} lies only in their common point spectrum. We
now show that the infinite number of equations (A) ĈIψ = 0 ∀ I (meaning
that ψ is a common, normalisable zero eigenvector) is equivalent to the single
equation (B) M̂ψ = 0 where M̂ =

∑
I kI Ĉ†

I ĈI and kI > 0 are certain constants
which converge sufficiently fast in order that M̂ is densely defined on D. The
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implication (A) ⇒ (B) is obvious. Conversely, M̂ψ = 0 implies < ψ, M̂ψ >=∑
I kI ||ĈI ψ||2 = 0 hence (A).
Moving on to the general case, we need a few preparations. See, for example,

[536] for more details on direct integrals and [282] for the multiplicity theory for
operators. The following theory is also summarised more precisely in the first
reference of [252], where we follow closely [897].

Definition 30.2.2. Let X be a locally compact space, μ a measure on X and x 	→
Hx an assignment of Hilbert spaces such that the function x 	→ mx, where mx is
the countable dimension of Hx, is measurable. It follows that the sets Xm = {x ∈
X; mx = m}, where m denotes any cardinality, are measurable. Since Hilbert
spaces whose dimensions have the same cardinality are unitarily equivalent we
may identify all the Hx, mx = m with a single Hm = Cm. We now consider
maps

ψ : X →
∏

x∈X

Hx; x 	→ (ψ(x))x∈X (30.2.10)

subject to the following two constraints:

1. The maps x 	→< ψ,ψ(x) >Hm
are measurable for all x ∈ Xm and all ψ ∈ Hm.

2. If

< ψ1, ψ2 >:=
∑

m

∫

Xm

dμ(x) < ψ1(x), ψ2(x) >Hm (30.2.11)

then < ψ,ψ >< ∞.

The completion of the space of maps (30.2.10) in the inner product (30.2.11)
is called the direct integral of the Hx with respect to μ and one writes

H⊕ =
∫ ⊕

X

dμ(x) Hx, < ψ1, ψ2 >=
∫

X

dμ(x) < ψ1(x), ψ2(x) >Hx (30.2.12)

Definition 30.2.3

(i) Two measures μ, ν are said to be equivalent if they have the same measure
zero sets. The corresponding measure classes are denoted by < μ >.

(ii) Two measure classes < μ >,< ν > are said to be disjoint if any two repre-
sentatives μ1 ∈ < μ >, ν1 ∈ < ν > are mutually singular.

In the terminology of Chapter 25 we see that equivalent measures are mutually
absolutely continuous. For disjoint measure classes any two representatives have
disjoint support.

Definition 30.2.4. A self-adjoint operator a is said to be of uniform multiplicity
m provided that there is a unitary operator U such that UaU−1 is represented
on some ⊕m

k=1 L2(R, dμ) as a multiplication operator by λ (every term has the
same measure).
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The following result shows that the multiplicity and the measure class is a
unitary invariant of representation theory.

Lemma 30.2.5. If a self-adjoint operator is unitarily equivalent to a mul-
tiplication operator on ⊕m

k=1 L2(R, dμ) and ⊕n
k=1 L2(R, dν) respectively then

m = n, < μ >=< ν >.

Theorem 30.2.6 (commutative multiplicity theorem). Let a be a self-
adjoint operator on a Hilbert space H. Then there exists a unitary operator U

such that UH = ⊕∞
m=1Hm and

1. Hm is an invariant subspace for UaU−1,
2. a|Hm

has uniform multiplicity m,
3. The measure classes < μm > underlying Hm = ⊕m

k=1 L2(R, dμm) are mutually
singular.

Moreover, the unitary equivalence classes of the subspaces Hm (some of which
might be empty) and the measure classes are uniquely determined by these three
properties.

We come now to the main result of this chapter.

Theorem 30.2.7 (Direct Integral Decomposition (DID)). Let a be a
self-adjoint operator on a separable Hilbert space H. Then there is a unitary
operator U such that UH = H⊕ =

∫ ⊕
R

dμ(λ) H⊕(λ) where μ is a probability mea-
sure and UaU−1 is represented on H⊕(λ) by multiplication by λ. Moreover, the
measure class < μ > and the Hilbert spaces H⊕(λ) are uniquely determined.

Proof: We use the spectral theorem to arrive at a constructive proof.
Let the projection-valued measure of a be denoted by E(λ). Consider

the bounded, weakly continuous unitary groups Wt = exp(ita) =
∫
R
eitλdE(λ).

Given ψ ∈ H and a smooth function of compact support f ∈ C∞
0 (R), let

ψf :=
∫

R

dt f(t)Wtψ (30.2.13)

It follows from Stone’s theorem that ψf is a C∞-vector for a, that is, it is in the
invariant domain of a. Specifically iaψf = −ψḟ . Moreover, the span of the ψf as
ψ, f vary is dense in H.

Choose any vector ψ1 and function f1 ∈ C∞
0 (R) and set Ω1 = ψ1,f1 . Denote

by H1 the closure of the finite linear span of the Wt, that is, elements of the
form p(W ) :=

∑N
k=1 zkWtk . If H1 �= H choose ψ2 ∈ H⊥

1 and f2 ∈ C∞
0 (R). Then

also Ω2 = ψ2,f2 ∈ H⊥
1 because WtΩ1 ∈ H1 by construction, hence < Ω2,Ω1 >=∫

dt f2(t) < ψ2,W−tΩ1 >= 0. Iterating, since H is separable we arrive at the
direct sum

H = ⊕∞
n=1 Hn (30.2.14)
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A dense set of vectors can be presented in the form (pn(W ) Ωn)∞n=1. We claim
that for each m,n the vectors amΩn are elements of Hn. To see this we just need
to show that they can be approximated arbitrarily well by a dense set of vectors
of Hn. However, this is clear from the construction of the Ωn. Hence the anΩm

belong to the closure Hm and by the same argument the amΩn are dense in Hn.
Thus, a dense set of vectors can be given in the form (pn(a)Ωn)n∈N where pn is
a polynomial in a and the Ωn are C∞-vectors for a.2

By the functional calculus of Chapter 29

< ψ,ψ′ >H=
∞∑

n=1

< Ωn, pn(a)†p′n(a)Ωn >=
∫

R

dμn(λ) pn(λ) p′n(λ) (30.2.15)

where μn(λ) =< Ωn, E(λ)Ωn > are the corresponding probability spectral mea-
sures.

Consider the probability Borel measure (all the μn are Borel measures)

μ(λ) :=
∞∑

n=1

cn μn(λ) (30.2.16)

where cn > 0 are any non-negative numbers such that
∑∞

n=1 cn = 1. A popular
choice is cn = 2−n. It is clear that for any measurable set S the condition μ(S) =
0 implies μn(S) = 0 for all n since cn > 0. Therefore μn is absolutely continuous
with respect to μ for all n. It is for this reason that we have restricted ourselves
to a separable Hilbert space: if H was not separable then it might happen that
the labels n take an uncountable range. But then

∑
n cn = 1 would imply that

cn = 0 except for countably many and the absolute continuity of μn with respect
to μ could not be concluded.

Since μn, μ are finite, positive measures, the unique Radon–Nikodym deriva-
tive ρn = dμn/dμ (a non-negative L1(R, dμ) function) exists, see Chapter 25.
The function values ρn(λ) are, of course, only defined up to sets of μ measure
zero. To reduce this ambiguity, one demands that the set of Ωn be minimal (this
is always possible and measure theoretically unique, see [253]) and for those
resulting ρn we demand that the algebra of (weak or strong) Dirac observables,
which as one can show preserve the fibres H⊕(λ), be represented irreducibly on
the physical Hilbert space H⊕(0). This tends to fix the values ρn(0) numerically,
not only up to measure zero, because one cannot arbitrarily change the ρn(λ) on
measure zero sets without destroying the algebra structure. See [253] where an
explicit action of the Dirac observables on the physical Hilbert space is derived.
Fortunately, in practice the following simpler rule leads to the correct result:
choose any representative which is everywhere non-negative and continuous at
λ = 0 from the right (provided it exists).3

2 One can avoid the C∞-vectors by working with the bounded spectral projections, see [253].
3 The choice of the representative is completely irrelevant for the direct integral

decomposition of H, however, it affects the size of the subspaces H⊕(λ) and hence of
Hphys = H⊕(0). This is why we specify a suitable class of representative here.
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Let Sn be the support of the so-determined ρn. We define the function m :
R → N by m(λ) = m provided that λ lies in precisely m of the Sn. The function
m is measurable because the natural numbers carry the discrete topology (every
subset is open) and the pre-images Xm := {λ ∈ R; m(λ) = m} of the one-point
sets {m} are given by ∪n1<...nm

∩m
k=1 Snk

which is measurable because the Sn

are and this is a countable union of measurable sets.
We now compute

||ψ||2 =
∞∑

n=1

∫

R

dμn(λ) pn(λ) p′n(λ)

=
∞∑

n=1

∫

R

dμ(λ)
[√

ρn(λ)pn(λ)
] [√

ρn(λ)p′n(λ)
]

=
∫

R

dμ(λ)
∞∑

n=1

[√
ρn(λ)pn(λ)

] [√
ρn(λ)p′n(λ)

]

=
∞∑

m=1

∫

Xm

dμ(λ)
∞∑

n=1

[√
ρn(λ)pn(λ)

] [√
ρn(λ)p′n(λ)

]
(30.2.17)

In the third step we have made use of the fact that the Hilbert spaces
L2(X, dμ; �M2 ) of square integrable vector-valued functions with values in the
Hilbert space �M2 = CM , M = 1, 2, . . . ,∞ of square summable sequences is uni-
tarily equivalent to the Hilbert spaces �M2 (L2(X, dμ)) of square summable
sequences of square integrable functions (see, e.g., [282], theorem II.10). This
follows for instance by showing that both spaces are isomorphic to the tensor
product Hilbert space L2(X, dμ) ⊗ �M2 , see Definition 26.2.8, or directly from
the Lebesgue dominated convergence theorem. In any case, this is why we were
allowed to interchange the integral with the sum. See also [253] for more details.

For λ ∈ Xm we may order the m indices n = nk(λ) for which ρn(λ) �= 0 accord-
ing to n1(λ) < . . . < nm(λ). For λ ∈ Xm let

ψ
(m)
k (λ) :=

√
ρnk(λ)(λ)pnk(λ) (30.2.18)

introduce an orthonormal basis e(m)
k , k = 1, . . . ,m of the Hilbert space H⊕

μ (λ) :=
Cm with standard inner product and set

ψμ(λ) :=
m∑

k=1

ψ
(m)
k (λ) e(m)

k (30.2.19)

Therefore

||ψμ(λ)||2H⊕
μ (λ)

=
m∑

k=1

∣∣ψ(m)
k (λ)

∣
∣2 =

∞∑

n=1

ρn(λ)|pn(λ)|2 (30.2.20)

and thus

||ψ||2 =
∑

m=1

∫

Xm

dμ(λ)||ψμ(λ)||2H⊕
μ (λ)

(30.2.21)
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Comparison with Definition 30.2.2 reveals that the unitary map U : ψ 	→
(ψ(λ))λ∈R displays H⊕ := UH precisely as a direct integral of Hilbert spaces

UH = H⊕
μ =

∫ ⊕

R

dμ(λ) H⊕
μ (λ) (30.2.22)

and that, by the spectral theorem, the operator UaU−1 acts in H⊕
μ (λ) by mul-

tiplication by λ.
Now let dμ(m) := χXm

dμ where χXm
denotes the characteristic function of

Xm. Consider the unitary map

V : H → ⊕∞
m=1H⊕

μ,m, H⊕
μ,m := ⊕m

k=1 L2

(
R, dμ(m)

)
; ψ 	→

(
ψ

(m)
k

)m
k=1

(30.2.23)

Then H⊕
μ,m is a subspace of VH which is (1) invariant under V aV −1, (2) on

which it acts by multiplication by λ and on which it has uniform multiplicity m

and (3) the measure classes of the μ(m) are mutually disjoint because the χXm

have disjoint support. We may therefore apply Theorem 30.2.6 and conclude that
the measure classes < μ(m) > and the Hilbert spaces H⊕

m are unique. In other
words, if we have a second direct integral H ∼=

∫ ⊕
dν H⊕

ν (λ) then we know that
< μ(m) >=< ν(m) > and that H⊕

μ,m, H⊕
μ,m are unitarily equivalent for all m. All

of this is reviewed in detail including proofs in [253].
It follows that if dμ(m) = fmdν(m) is the corresponding Radon–Nikodym

derivative then both of these measures must be supported on Xm and

dμ =
∑

m

dμ(m) =

[
∑

m

fmχXm

]

dν =: fdν (30.2.24)

so that f is strictly positive. Hence we obtain a corresponding unitary map

H⊕
μ (λ) → H⊕

ν (λ); ψν(λ) = f(λ)ψν(λ) (30.2.25)

so the inner product between the two Hilbert spaces differs by a positive constant
and both are isomorphic to Cm when λ ∈ Xm. �

One usually drops the dependence of the direct integral decomposition on the
choice of μ since different choices just give rise to unitarily equivalent presen-
tations. This implies, in particular, that measure theoretically nothing depends
on the choice of cn,Ωn. What is important is that for each point λ ∈ σ(a) the
dimensionality m of H⊕

μ (λ) and its inner product, given by the standard inner
product on Cm for λ ∈ Xm, are uniquely determined once the ρn(0) have been
fixed.

Whatever choice, the operator a acts by multiplication by λ and therefore
Hphys = H⊕

kin(0) for any choice. It is interesting to see that the support of the
measure μ is the union of the supports Sn of the μn =< Ωn, E(λ)Ωn >. Hence,
if zero does not belong to the spectrum of M̂, that is, if there exists ε > 0 such
that E(ε) = 0 then 0 �∈ Sn for all n and thus Hphys = ∅. In this case one will shift
M̂ by a quantum correction such that this does not happen.
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Let us again illustrate this procedure for a simple case: two commuting
constraints C1 = p1, C2 = p2 for a particle moving in the plane. We work
in the momentum representation, thus Hkin = L2(R2, d2k). Consider Ω0 =
exp(−r2/2)/

√
π where r2 = k2

1 + k2
2 and notice that the set of vectors kn1

1 kn2
2 Ω0

is dense in Hkin since they can be decomposed into Hermite polynomials.
Using polar coordinates we have k± = k1 ± ik2 = re±iφ and see that the set of
vectors k

n+
+ k

n−
− Ω0 = rn++n−ei(n+−n−)φΩ0 is dense. Since Hkin

∼= L2(R+, rdr) ⊗
L2(S1, dφ) we see that the vectors proportional to einφ, n ∈ Z are mutually
orthogonal. In order to generate such a vector with given n we must choose
n+ − n− = n, hence for ±n > 0 we may choose n∓ = 0 and so get mutu-
ally orthogonal Ωn = cnr

|n|einφ where cn is a normalisation. Moreover, the
vectors of the form r2mΩn ∝ M̂

m
Ωn are dense. The spectral projections are

E(λ) = θ(λ− r2/2) and the spectral measures are

μn(λ) =
|cn|2
π

∫

R+
r drr2|n|e−r2

θ(λ− r2/2) (2π) =
|cn|2
2|n|

∫ 2λ

0

dxx|n|e−x

(30.2.26)
which shows that |cn|2 = 2|n|/(|n|)!. Thus, since μn = μ−n we choose coefficients

μ(λ) =
1
2

∞∑

n=0

2−nμn(λ) =
1
2

∞∑

n=0

∫ 2λ

0

dx
(x/2)n

n!
e−x =

1
2

∫ 2λ

0

dxe−x/2 (30.2.27)

The Radon–Nikodym derivatives are

ρn(λ) = dμn(λ)/dμ(λ) =
2|n|+1

|n|! e−λλ|n| (30.2.28)

so that the supports are S0 = R+ and Sn = R+ − {0} for n �= 0 respectively.
We have m(λ) = ∞ for λ > 0 and m(0) = 1. Hence X1 = {0} and X∞ =
R+ − {0}. In particular, if ψ = (pn(M̂)Ωn) we have ψ(0) =

√
2p0(0)e(1)

0 and
ψ(λ) =

∑
n∈Z

√
ρn(λ)pn(λ)e(∞)

n . The physical Hilbert space therefore is one-
dimensional as it should be. In terms of the Hilbert space Hkin = L2(R2, d2k) we
see, by formally using the functional calculus for distributions, that the physi-
cal Hilbert space corresponds to the distributions δ(M̂)ψ for suitable ψ and the
inner product is < δ(M̂)ψ, δ(M̂)ψ′ >phys=< ψ, δ(M̂)ψ′ >kin.

Many more, less trivial examples have been worked out in [254–257]. In all
cases one gets exact agreement with independent approaches. There one also
sees that one has to refine the procedure in the following sense: recall [253] that
any Hilbert space can be uniquely split into the direct sum

H = Hpp ⊕Hac ⊕Hcs (30.2.29)

This decomposition relies on the Lebesgue decomposition theorem which says
that any Borel measure μ on the real line can be decomposed uniquely into
the following pieces: μ(B) = μpp(B) + μac(B) + μcs(B) for any Borel set B. The
measure μpp is characterised by the fact that it has support on a countable set of
points, it is called the pure point measure. The discrete sets are measure zero sets
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for the measures μac, μcs and one also calls μc = μac + μcs the continuous part
of μ. Finally, μac is absolutely continuous with respect to the Lebesgue measure
dx while μcs is continuous singular with respect to dx. Hence all measures are
mutually singular. In practice, μcs rarely appears. The decomposition (30.2.29)
is now characterised by the fact that all vectors ψ ∈ H∗ have spectral measure
μψ(B) :=< ψ,E(B)ψ > of type ∗ ∈ {pp, ac, cs}. The spaces H∗ are invariant
subspaces under the E ∗ λ.

The refinement of the DID programme now consists in the fact that
one first performs the split (30.2.29) and then performs the direct integral
decomposition. The reason for this is as follows: suppose that λ = 0 is an
embedded eigenvalue, that is, limε→0 E([−ε, ε]) �= 0 and limε→0(E([−δ, δ])−
E([−ε, ε])) �= 0 for any δ > 0. This means that the spectral measures
with respect to the Ωn will have non-trivial pure point and contin-
uous part. In the decomposition μ =

∑
n cnμn it is easy to see that

the corresponding Lebesgue decomposition leads to μ∗ =
∑

n cnμ
∗
n for

∗ =pp, ac (assuming for simplicity that there is no continuous singular
part). Now by definition ρn(0) = limB→{0} μn(B)/μ(B) = μpp

n ({0})/μpp({0})
while ρpp

n (0) = limB→{0} μ
pp
n (B)/μpp(B) = μpp

n ({0})/μpp({0}) and ρac
n (0) =

limB→{0} μ
ac
n (B)/μac(B) = σn(0)/σ(0) where dμac

n (x) = σn(x)dx, dμac(x) =
σ(x)dx. Hence we see that ρn obtained from DID without performing the split
(30.2.29) will only capture ρpp

n (0) while doing it after the split captures also
ρac
n (0). In general physical systems one needs both contributions, an example

being a constraint of the form C = p1p2 for a particle moving on a cylinder
with momenta p1, p2. The classical constraint forces the particle to move either
along the axis or along the circle. The spectrum of p1, p2 is continuous and
discrete respectively, hence zero is an embedded eigenvalue of C. If Ωj is the
(generalised) zero eigenvector of pj on H1 := L2(R, dx1) and H2 := L2(S1, dx2)
respectively then the (generalised) zero eigenvectors on the tensor product
H1 ⊗H2 are respectively Ω1 ⊗ ψ2, ψ1 ⊗ Ω2 with ψj ∈ Hj . The physical Hilbert
space is then the closed linear span of these vectors and thus isomorphic to the
direct sum of H2 and H1 respectively. Keeping only the pure point part would
mean that quantum mechanically the particle is only allowed to move along the
axis, which is physically wrong. See [253] for more details.

Finally, let us compare the RAQ and DID programmes:

1. Uniqueness
The RAQ programme depends on a choice Dkin of dense subspace of Hkin

and different choices can lead to different Hphys [277,278]. One can show [253]
that this introduces more ambiguities than the DID programme does, even
when employing the machinery of rigged Hilbert spaces.

2. Structure functions
Only DID is applicable in the presence of structure functions. Also, even if
there are only structure constants, DID seems to be more easily applicable in
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the case that the gauge group is non-compact or infinite-dimensional. While
there exist proposals to do RAQ in such situations, it is no longer clear that the
proposed physical inner product is positive, see [253] and references therein.

3. Non-separable Hilbert spaces
Only RAQ is applicable if Hkin is non-separable unless Hkin is a direct sum
of M̂-invariant separable subspaces or the function m(λ) is still measurable
even if it takes values in any Cantor aleph.

4. Mixed spectrum
Of course, one can apply RAQ to a given Master Constraint M̂ itself and
compare the results. This is the case of a single, Abelian constraint to which
RAQ certainly applies. Here the MCP supplies a prescription for how to choose
Dkin. Namely, we define the rigging map as

ηDID : Dkin → Hphys; ψ 	→ ψ(0) (30.2.30)

and Dkin is defined to be the domain of this map, that is, all those elements of
Hkin for which a square integrable representative ψ(0) of Hphys exists. Notice
that this cannot be all of Hkin because the ψ(λ) and hence their norms are
only defined μ-a.e. while we require that ||ψ(λ)||2H⊕(λ) is a finite number.

In order that this rigging map coincides with the heuristic RAQ programme
for which

ηRAQ(ψ) :=
∫

R

dρ(t) < eit M̂ψ, . >kin (30.2.31)

we must choose a measure dρ(t) such that
∫

R

dρ(t) < ψ, e−it M̂ψ′ >kin

=
∫

R+
dμ(λ) < ψ(λ), ψ′(λ) >H⊕(λ)

[∫

R

dρ(t) e−itλ

]

=< ψ(0), ψ′(0) >phys (30.2.32)

hence
∫

R

dρ(t) e−itλ = δμ(λ, 0) (30.2.33)

must be the δ-distribution with respect to μ. In the above example we have
dμ(λ) = e−λdλ hence it is appropriate to choose dρ(t) = dt/π (twice the δ-
distribution measure because the range of λ is positive).

However, one can show that the prescription (30.2.31) does not always lead
to the correct result compared with (30.2.30), especially not in the case of
embedded eigenvalues [253]. Even in more fortunate cases, detailed knowledge
of the spectrum of M̂ is necessary in order to guess the correct measure ρ.



31

Basics of harmonic analysis on compact
Lie groups

Due to the importance of spin-network functions for the general theory developed
in the main text, we recall here for the convenience of the reader some essential
ingredients of the representation theory of compact Lie groups. We follow the
exposition in [551].

31.1 Representations and Haar measures

Let us begin with some general notation.

Definition 31.1.1

(i) A representation of a group G is a map π : G → B(V ); g �→ π(g) where
B(V ) denotes the bounded linear operators on some Hilbert space V , called
the representation space, satisfying

π(g1g2) = π(g1)π(g2) ∀ g1, g2 ∈ G (31.1.1)

It follows that the operators π(g) have an inverse given by π(g−1) and that
π(1G) = 1V . In particular, π is a homomorphism between G and a group
of non-singular operators on V .

(ii) A representation π is called faithful if it is injective (equivalently: π(g) =
1V ⇒ g = 1G) and it is called trivial if π(g) = 1V for all g ∈ G. If
dim(V ) < ∞ then π is called finite-dimensional.

(iii) Two representations πI : G → B(VI), I = 1, 2 are called (unitarily) equiv-
alent iff there exists an invertible (unitary) operator U : V1 → V2 such that
π2(.) = Uπ1(.)U−1. By [π] we denote the equivalence class of the represen-
tation π.

(iv) Let V ′ be the space dual to V , that is, the space of continuous linear func-
tionals on V (since V is a Hilbert space, V ′ = V by the Riesz lemma).
Then the representation π′ dual (or contragredient) to π is defined by

[π′(g)f ](v) := f(π(g−1)v) (31.1.2)

In a Hilbert space V we have f(.) =< f, . > so that π′(g) = [π(g−1)]† where
† denotes the adjoint with respect to < ., . >.

(v) A representation π is called unitary if π(g) is a unitary operator on V for
all g ∈ G, that is, [π(g)]† = [π(g)]−1. It follows that π′(g) = [π(g−1)]−1 =
π(g), that is, unitary representations equal their dual representations.
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(vi) A closed subspace V1 ⊂ V is called invariant for a representation π iff
π(g)V1 ⊂ V1 for all g ∈ G. A representation is called irreducible if it has
no invariant subspaces except for the trivial invariant subspaces V, {0},
otherwise reducible. Then π1 := π|V1 : G → B(V1) is called the restriction
of π. The orthogonal complement V2 := V ⊥

1 does not need to be invariant
as well but if it is then π can be written as the direct sum of the restricted
representations π = π1 ⊕ π2 with V = V1 ⊕ V2.

(vii) A representation π is said to be completely reducible if it decomposes into
a direct sum of irreducible representations πI on the spaces VI , that is,

π = ⊕IπI (31.1.3)

where V = ⊕IVI and the set of indices I is countable (more generally
one has to consider direct integrals but we will not need that for compact
groups).

(viii) Let πI : G → B(VI), I = 1, 2 be representations. The tensor product π1 ⊗
π2 : G → B(V1 ⊗ V2) is defined by

[π1 ⊗ π2](g) · v1 ⊗ v2 := (π1(g) · v1) ⊗ (π2(g) · v2) (31.1.4)

(ix) Suppose that for all g ∈ G the operator π(g) is trace class.1 Then

χπ(g) := Tr(π(g)) (31.1.5)

is called the character of π. It actually depends only on [π] and the conju-
gacy class of g ∈ G.

The following lemma is needed for the proof of the Peter and Weyl theorem.

Lemma 31.1.2. Every finite-dimensional unitary representation is completely
reducible.

Proof: Let π be a unitary representation of G on the finite-dimensional Hilbert
space V . If π is not irreducible, choose a non-trivial invariant subspace V1 and any
v2 ∈ V2 := V ⊥

1 . Since π is unitary we have π†(g) = π−1(g) = π(g−1). Consider
any v1 ∈ V1. Since π(g−1)v1 ∈ V1 we have

0 =< π(g−1)v1, v2 >=< v1, π(g)v2 > ∀ v1 ∈ V1, g ∈ G (31.1.6)

1 A bounded operator A on a separable Hilbert space H is said to be trace class if

|A| =
√
A†A has finite trace, that is Tr(|A|) :=

∑
I
< bI , |A|bI > < ∞ where eI is any

orthonormal basis of H. Then Tr(A) is independent of the basis chosen. An operator A is
called Hilbert–Schmidt if A†A is trace class. Trace class operators are dense in a Hilbert
space with inner product < A,B >= Tr(A†B) and its completion are the Hilbert–Schmidt
operators. Hence, every trace class operator is Hilbert–Schmidt but not vice versa. Both are
compact operators, that is, they have a pure point spectrum with only eigenvalues of finite
multiplicity except, possibly, for the eigenvalue zero and they have finite trace. See
Definition 26.6.7 for details.
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hence π(g)v2 ∈ V2 for all g ∈ G. Since v2 was arbitrary we conclude that V2 is an
invariant subspace for π. Now iterate with V1 replaced by V2. The process must
come to an end since dim(V ) < ∞. �

Definition 31.1.3. Let G be a locally compact group. A left (right) Haar mea-
sure μl

H (μr
H) is a positive measure on G invariant under left (right) trans-

lations h �→ Lg(h) = gh (Rg(h) = hg) for all g ∈ G, that is, μl
H ◦ L−1

g = μl
H

(μr
H ◦R−1

g = μr
H) for all g ∈ G.

Theorem 31.1.4. Let G be a finite-dimensional Lie group. Then left and right
Haar measures exist which are unique up to positive constants. If G is compact
then both measures coincide and are unique if fixed to be probability measures.
In this case the resulting Haar measure μH is also invariant under inversions
h �→ I(h) := h−1.

Proof: Let G be any Lie group to begin with. If G is not connected, then it has
connected components Gn where n can be from any index set. The component
of the identity G0 is the image of the exponential map exp : Lie(G) → G0;A �→
exp(A) which is a group by itself. By definition of a connected component, if
G0 is the component of the identity in G then any element of Gn is of the form
gnh for some h ∈ G0 and for an arbitrary choice gn ∈ Gn. It follows that Gn is
invariant under right translations from G0.

Suppose that μl
H,0 is a left-invariant Borel measure on G0. Then any f ∈ C(G)

is measurable and we can define the integral

μl
H(f) :=

∫

G

dμl
H(g)f(g) :=

∑

n

∫

Gn

μl
H,n(g)f(g) :=

∑

n

∫

G0

dμl
H,0(h)f(gnh)

(31.1.7)

To see that (31.1.7) is independent of the choice of gn, consider any other choice
g′n ∈ Gn. Then f(g′nh) = f(gn[g−1

n g′n]h). But since Lgn , Lg′
n

map G0 onto Gn, it
follows that g−1

n g′n ∈ G0. Choice independence of (31.1.7) thus follows from left
invariance of μl

H,0.
We claim that the measure μl

H defined in (31.1.7) is left-invariant. Let g0 =
gmh0 ∈ Gm where h0 ∈ G0. Then by definition
[
(Lg0)∗μ

l
H

]
(f) = μl

H(L∗
g0
f) =

∫

G

dμl
H(g)f(g0g) =

∑

n

∫

G0

dμl
H,0(h)f(gmh0gnh)

=
∑

n

∫

G0

dμl
H,0(h)f

(
gm

[
h0gnh

−1
0

]
h
)

(31.1.8)

where in the last step we have used left invariance of μl
H,0. Let g′n = h0gnh

−1
0 .

Now the g′n belong to mutually different Gn′ for suppose that was not the
case then we find n1 �= n2 and some h1 ∈ G0 such that g′n2

= g′n1
h1, that is,

gn2h0 = gn1h
−1
0 h1 which is a contradiction because the left-hand side belongs to

Gn2 while the right-hand side belongs to Gn1 . By the same argument, also the
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g̃n′(m,n) := gmg′n belong to mutually different components. In other words, the
map n �→ n′(m,n) is a bijection. Hence

[
(Lg0)∗μ

l
H

]
(f) =

∑

n

∫

G0

dμl
H,0(h)f(g̃n′(m,n)h) =

∑

n

∫

G0

dμl
H,0(h)f(g̃nh)

=
∑

n

∫

G0

dμl
H,0(h)f(gnh) = μl

H(f) (31.1.9)

by choice independence. Conversely, suppose that μl
H is a left-invariant measure

on G then using the disjoint union G = ∪nGn we have by left invariance

μl
H(f) =

∑

n

∫

Gn

dμl
H(g)f(g) =

∑

n

∫

G0

dμl
H(h)f(gnh) (31.1.10)

so that a left-invariance measure on G is necessarily of the form (31.1.7).
These considerations reveal that a left-invariant measure is known once we

know its restriction to G0. Let us construct the latter. The component G0

is in bijection, via the exponential map, with some subset D of RN where
N = dim (G). Thus there exists an explicit parametrisation h(x) = exp(xjτj)
where x ∈ D and x = 0 corresponds to the identity 1G. Since G0 is a closed sub-
group of G it follows that there is a composition map c : D ×D → D; (x, y) �→
c(x, y) uniquely defined by h(x)h(y) = h(c(x, y)). Changing coordinates from
G0 = exp(D) to D we have

∫

G0

dμl
H,0(h)f(h) =

∫

D

dNyJ(y)f(h(y)) (31.1.11)

where the Jacobean J(y) = dμl
H(g(y))/dNy is just the Radon–Nikodym deriva-

tive. Let now h0 = h(x). The left invariance condition reads
∫

G0

dμl
H,0(h)f(h) =

∫

D

dNyJ(y)f(h(y)) =
∫

G0

dμl
H,0(h)f(h0h)

=
∫

D

dNyJ(y)f(h(c(x, y))) (31.1.12)

Relabelling y → y′ and introducing the new integration variable y defined by
(notice that c(x, .) is a bijection of D) y′(y) = c(x, y) for the left-hand side of
(31.1.12) we find

∫

D

dNyJ(y′(y))|det((∂y′(y)/∂y))|f(h(y′(y))) =
∫

D

dNyJ(y)f(h(y′(y)))

(31.1.13)
Since f is arbitrary this implies

J(y) = J(c(x, y))|det((∂c(x, y)/∂y))| (31.1.14)

for any x ∈ D. Evaluating (31.1.14) at y = 0 we find

J(x) =
K

|det((∂c(x, y)/∂y))|y=0
(31.1.15)



750 Basics of harmonic analysis on compact Lie groups

where K = J(0) is some positive constant. To see that (31.1.15) indeed solves
(31.1.14) for all y ∈ D we insert (31.1.15) into (31.1.14) and find the condition

|det((∂c(c(x, y), z)/∂z))|z=0 = |det((∂c(y, z)/∂z))|z=0|det((∂c(x, y)/∂y))|
(31.1.16)

Noticing that

|det((∂c(x, y)/∂y))| = [|det((∂c(x, u)/∂))|u=c(y,z)]z=0 (31.1.17)

(31.1.16) is an identity following from associativity of group multiplication
[h(x)h(y)]h(z) = h(x)[h(y)h(z)] which translates into c(c(x, y), z) = c(x, c(y, z))
and when differentiated at z = 0 gives precisely (31.1.16).

Concluding, we see that a left-invariant measure exists on every finite-
dimensional Lie group and that measure is unique up to a positive constant
factor. By the same reasoning we also see that every finite-dimensional Lie group
admits a right-invariant measure which is unique up to a positive constant.

We now show that the left- and right-invariant measures so constructed coin-
cide if G is compact and if we fix the constant K in (31.1.15) in such a way
that

∫
G
μl
H =

∫
G
μr
H = 1, which amounts to

∫
G0

dμl
H,0 =

∫
G0

dμr
H,0 = 1/Z where

Z < ∞ is the number of connected components (here we have used compactness
which in this case means closed, bounded and without boundary [left or right
translations are transitive, so there cannot be any boundary]). Consider for any
h0 ∈ G0 the measure μ on G0 defined by

∫

G0

dμ(h)f(h) :=
∫

G0

dμr
H(h)f

(
h0hh

−1
0

)
(31.1.18)

By right invariance of μr
H we have for any h1 ∈ G0

∫

G0

dμ(h)f(hh1) =
∫

G0

dμ(h)[Rh1f ](h) =
∫

G0

dμr
H(h)[Rh1f ]

(
h0hh

−1
0

)

=
∫

G0

dμr
H(h)f

(
h0hh

−1
0 h1

)
=

∫

G0

dμr
H(h)f(h0h)

=
∫

G0

dμr
H(h)f

(
h0hh

−1
0

)
=

∫

G0

dμ(h)f(h) (31.1.19)

for any h1. Thus, μ is a right-invariant whence μ = Kr(h0)μr
H,0 for some

Kr(h0) > 0 by the uniqueness statement shown above. We can in fact compute
the constant by using the fact that for compact groups the constants are inte-
grable: setting f = 1 we immediately find from (31.1.18) that Kr(h0)/Z = 1/Z
so that Kr(h0) = 1.

Inserting this result back into (31.1.18) we get
∫

G0

dμr
H,0(h)f(h) =

∫

G0

dμr
H(h)f

(
h0hh

−1
0

)
=

∫

G0

dμr
H(h)f(h0h) (31.1.20)

for any h0 ∈ G0 where we have used right invariance again. It follows that μr
H,0

is left-invariant whence μr
H,0 = Kμl

H,0 due to uniqueness again and since both
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measures are normalised to the same constant we get μr
H,0 = μl

H,0 = μH,0. The
fact that constants are integrable (compactness) was essential in this result and
equality of left- and right-invariant measures does not hold in general for non-
compact groups.

Finally, the measure ν on G0 defined by
∫

G0

dν(h)f(h) :=
∫

G0

dμH,0(h)f(h−1) (31.1.21)

is also bi-invariant and normalised, thus by uniqueness ν = μH,0 and μH,0 is also
inversion-invariant. �

We remark that given local coordinates xi on G (angles) and a parametrisation
D → G0; x �→ g(x) we have up to normalisation the following explicit formula
for the Haar measure

dμH(g(x)) =
√

det(q)(x) dNx, qij(x) := Tr
(
∂g(x)
∂xi

(g(x))−1 ∂g(x)
∂xj

(g(x))−1

)

(31.1.22)

This can be verified by calculating g0g = g(x0)g(x) = g(c(x0, x)) which defines
y(x) := c(x0, x). Then by changing coordinates

∫

G0

dμH(g) f(g0g) =
∫

D

dNy f(g(y)) |det(∂x(y)/∂y)|
√

det(q)(x(y))

=
∫

D

dNy f(g(y))
√

det(x∗q)(y) (31.1.23)

But g(y(x)) = g−1
0 g(y) and

(x∗q)ij(y) = Tr
(
∂g(x(y))

∂yi
(g(x(y)))−1 ∂g(x(y))

∂yj
(g(y))−1

)

= Tr
([

g−1
0

∂g(y)
∂yi

]
[
g−1
0 g(y)

]−1
[
g−1
0

∂g(y)
∂yj

]
[
g−1
0 g(y)

]−1
)

= qij(y) (31.1.24)

Corollary 31.1.5. If G is a compact, finite-dimensional Lie group and π : G →
B(V ) a continuous representation on some linear space V then V can always be
equipped with an inner product such that π is a unitary representation.

Proof: If < ., . > denotes the inner product on V and μH the unique Haar mea-
sure on G, consider the new inner product

< u, v >′:=
∫

G

dμH(g) < π(g)u, π(g)v > (31.1.25)

which is well-defined because G is compact (hence the integrand is uniformly
bounded due to its continuity in the topology of G). The statement now easily
follows from the left invariance of the measure. �
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By combining Lemma 31.1.2 and Corollary 31.1.5 we infer that the finite-
dimensional representations of compact Lie groups are completely reducible and
that one can consider them as unitary without loss of generality. In other words,
every irreducible representation of a compact Lie group can be considered as an
irreducible subgroup of some U(N ) with N sufficiently large.

31.2 The Peter and Weyl theorem

Definition 31.2.1. Let H ⊂ G be a subgroup and πH : H → B(VH) a represen-
tation of H. Consider the Hilbert space VG of functions f : G → VH satisfying
(πH(h)f)(g) = f(gh) for all h ∈ H which are normalisable with respect to the
scalar product

< f, f ′ >G:=
∫

G

dμl
H(g) < f(g), f ′(g) >H (31.2.1)

where μl
H is a left-invariant measure on G. Consider the representation πG :

G → B(VG) defined by

(πG(g)f)(g′) := f(g−1g′) (31.2.2)

Operation (31.2.2) maps normalisable functions to normalisable functions due
to left invariance of the measure and

[πG(g)f ](g′h) = f(g−1g′h) = [πH(h)f ](g−1g′) = [πG(g)πH(h)f ](g′)

= [πH(h)(πG(g)f)](g′) (31.2.3)

since left and right translations commute. Therefore πG is a representation of G
called the representation induced by the representation πH of H. In particular,
if H = {e} and πH is the trivial representation, then πG is called the left regular
representation.

One can show that the representation space of infinite-dimensional unitary
representations of compact Lie groups decomposes into a direct sum of finite-
dimensional invariant subspaces in which irreducible representations of G are
induced.

Lemma 31.2.2 (Schur). Suppose that πI : G → B(VI) are finite-dimensional
irreducible representations of G and that there exists an intertwiner A : V1 → V2

such that π2(.)A = Aπ1(.). Then either (1) A = 0 or (2) A is invertible and π1, π2

are equivalent. In case (2) the operator A is determined up to a multiplicative
factor.

Proof: Consider the subspaces Ker(A) ⊂ V1, Im(A) ⊂ V2. We have for x ∈
Ker(A), y = Ax ∈ Im(A)

Aπ1(g)x = π2(g)Ax = 0 and π2(g)y = π2(g)Ax = Aπ1(g)x ∈ Im(A) (31.2.4)
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whence Ker(A), Im(A) are invariant for π1, π2 respectively. Since π1, π2 are irre-
ducible, we must have Ker(A) = {0}, V1 and Im(A) = {0}, V2.

1. If Ker(A) = V1 then A = 0 which gives possibility (1).
2. If Ker(A) = {0} then Im(A) �= {0}, therefore Im(A) = V2 so that A is invert-

ible and π1, π2 are equivalent. This is possibility (2).

For case (2) consider any other intertwiner B. Then for z ∈ C also A− zB is an
intertwiner and we may choose z in such a way that A− zB = B[B−1A− z1V1 ]
is singular (simply choose z to be an eigenvalue of the operator B−1A). But then
A− zB = 0 by (1). In particular, if π1 = π2 we see that A = 0 or A = λ1V1 . �

We now come to the most important theorem in this subject.

Theorem 31.2.3 (Peter and Weyl). Fix once and for all a representative
πj from each equivalence class j ∈ J of finite-dimensional, unitary, irreducible
representations of a compact Lie group G on representation spaces Vj. Let dj be
the dimension of πj and

g �→ bjmn(g) :=
√
dj [πj(g)]mn; m,n = 1, . . . , dj (31.2.5)

multiples of the matrix element functions. Consider the Hilbert space H :=
L2(G, dμH) where μH is the unique Haar measure on G. Then the system of
functions bjmn is a complete orthonormal basis for H.

Proof

1. Orthonormal system
Let Ejj′

n0n′
0

be a dj × dj′ matrix with entries (Ejj′

n0n′
0
)nn′ = δnn0δn′n′

0
. Consider

the matrix

Ajj′

n0n′
0

:=
∫

G

dμH(g)bj(g) · Ejj′

n0n′
0
· bj′(g−1) (31.2.6)

Using the bi-invariance of the Haar measure it is easy to see that Ajj′ is an
intertwiner between representations πj , πj′ . If j �= j′ then the irreducible rep-
resentations are inequivalent and therefore Ajj′

n0m′
0

= 0 by Schur’s lemma. Since
the representations are unitary, the representation matrices are unitary matrices,
that is, πj(g−1) = [π(g)]−1 = [π(g)]† = [π(g)]T where (.)T denotes the transpose.
Hence for j �= j′

0 =
(
Ajj′

n0n′
0

)
m0m′

0
:=

∫

G

dμH(g)bjm0n0(g)bj′m′
0n

′
0
(g) =< bj′m′

0n
′
0
, bjmn >= 0

(31.2.7)

If j = j′ then again by Schur’s lemma, Ajj
n0n′

0
= λj

n0n′
0
1Vj

for some λj
n0n′

0
∈ C.

To compute λj
n0n′

0
we take the trace of (31.2.6) which reveals λj

n0n′
0

= δn0n′
0
.

Summarising

< bjmn, bjm′n′ >= δjj′δmm′δnn′ (31.2.8)
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2. Completeness
Consider the subalgebra B ⊂ C(G) of the Abelian C∗-algebra of continuous
functions on G (with sup-norm) defined by finite linear combinations of the
bjmn. To see that this is indeed an algebra we notice that the product of such
functions can be regarded as matrix elements of a tensor product of two repre-
sentations which is again finite-dimensional and therefore completely reducible
by Corollary 31.1.5. This function algebra contains the identity (through the
trivial representation) and it separates the points of G (already the fundamental
representation does). By the Stone–Weierstrass theorem therefore B is dense in
C(G) because G is a compact Hausdorff group. Now C(G) is dense in L2(G, dμH)
because L2(G, dμH) is the GNS Hilbert space generated from the positive linear
functional (state) on the C∗-algebra C(G) defined by ω(f) :=

∫
G
dμH(g)f(g).

To see this just choose πω(f) = f, Ωω = 1,Hω = H. It follows that B is dense in
L2(G, dμH).

(Alternatively: It is a general result that every Borel-measurable function on
locally compact Hausdorff spaces can be approximated a.e. by continuous func-
tions, see Lusin’s theorem in Chapter 25. But for a probability measure we
have L2 ⊂ L1 by the Schwarz inequality ||f ||2L1

= | < f > |2 = | < 1, f > |2 ≤<

1, 1 >< f, f >= ||f ||2L2
. Since C(G) is dense in L1(G) it follows that it is also

dense in L2(G).) �



32

Spin-network functions for SU(2)

The name spin-network function actually derives from the case G = SU(2). For
this case we can construct the intertwiners rather explicitly using simple angular
momentum quantum mechanics (see [288,289] for more details and derivations).

32.1 Basics of the representation theory of SU(2)

We denote the edges of a graph by e as usual. The irreducible representations of
SU(2) are labelled by half-integral spin quantum numbers je = 1

2 , 1,
3
2 , . . . . We

introduce magnetic quantum numbers me, ne ∈ {−je,−je + 1, . . . , je} and label
the matrix elements of the (2je + 1)-dimensional representation by [πje(h)]mene

.
These matrix elements can be expressed explicitly in terms of the fundamental
two-dimensional representation by

[πj(h)]mn = cjmcjnh(A1B1 . . . hA2j)B2j , cjm :=

√(
2j

j + m

)
(32.1.1)

where the round bracket denotes total symmetrisation corresponding to the fact
that the representation space of the spin j representation are the totally sym-
metric spinors of rank 2j and the labels Ak, Bk = ± 1

2 are arbitrary subject only
to the constraints A1 + · · · + A2j = m, B1 + · · · + B2j = n. To see this, notice
that a spinor ψA1...A2j of rank 2j transforms in the (2j)-fold tensor product of
the fundamental representation. Now we can write

ψA1...A2j = ψ(A1A2)A3...A2j + ψ[A1A2]A3...A2j

= ψ(A1A2)A3...A2j +
1
2
εA1A2ε

B1B2ψB1B2A3...A2j (32.1.2)

The totally antisymmetric 2-spinor εAB is SU(2)-invariant. Iterating (32.1.2) we
see that we can decompose any spinor of rank 2j into totally symmetric spinors
of rank equal to and lower than 2j times powers of invariant 2-spinors. The
2-spinors transform in the trivial representation as we just saw, hence we just
proved by elementary means that any tensor product of fundamental representa-
tions is completely reducible, the irreducible subspaces corresponding to totally
symmetric spinors (further hypothetical invariant subspaces would require addi-
tional antisymmetrisations which would vanish on totally symmetric spinors.
See, e.g., [898] for the required theory of Young tableaux). Now the components
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of a totally symmetric spinor ψA1...A2j = ψ(A1...A2j) of rank 2j are obviously
completely characterised by how many, say l, of the Ak take the value +1/2.
There are 2j + 1 possibilities and we have for the magnetic quantum num-
ber m := A1 + · · · + A2j = l/2 − (2j − l)/2 = l − j, l = 0, . . . , 2j or l = j + m.
Hence a symmetric spinor is also completely characterised by its magnetic quan-
tum number. The combinatorial factor cjm in (32.1.2) is to ensure the represen-
tation property

∑

k

[πj(h)]mk[πj(g)]kn

= cjmcjn

j∑

k=−j

c2jk [h(A1C1 . . . hA2j)C2j gC1(B1 . . . gC2jB2j)]|C1+...+C2j=k

= cjmcjn
∑

C1,...,C2j=±1/2

h(A1C1 . . . hA2j)C2j gC1(B1 . . . gC2jB2j)

= cjmcjn(hg)(A1B1 . . . (hg)A2j)B2j = [πj(hg)]mn (32.1.3)

where A1 + · · · + A2j = m, B1 + · · · + B2j = n.
In order to work out the expression for [πj(h)]mn in terms of the complex num-

bers a, b, c, d in h =
(a b
c d

)
with h1/2,1/2 = a we consider the special symmetric

spinor of rank 2j given by ψm := cjmuA1 . . . uA2j , A1 + · · · + A2j = m where u

is a spinor in the j = 1/2 representation. Then
∑

n

[πj(h)]mnψn

= cjm
∑

B1,...,B2j=±1/2

hA1B1 . . . hA2jB2juB1 . . . uB2j

= cjm(hu)A1 . . . (hu)A2j = cjm
[
(hu)1/2

]j+m[
(hu)−1/2

]j−m

= cjm
[
au1/2 + bu−1/2

]j+m[
cu1/2 + du−1/2

]j−m

= cjm

j+m∑

k=0

j−m∑

l=0

(
j + m

k

) (
j −m

l

)
akbj+m−kcldj−m−luk+l

1/2u
2j−(k+l)
−1/2

=
j∑

n=−j

ψn

∑

l

(
j + m

n + j − l

) (
j −m

l

)
cjm
cjn

an+j−lbm−n+lcldj−m−l

(32.1.4)

from which we read off

[πj(h)]mn=
∑

l

√
(j + m)! (j −m)! (j + n)! (j − n)!

(j + n− l)! (m− n + l)! (j −m− l)! l!
aj+n−l bm−n+l cl dj−m−l

(32.1.5)
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where the sum over l is over all non-negative integers such that all factorials
have non-negative arguments. Formula (32.1.5) is also valid for G = SL(2,C)
(recall that all the spinor fields transform in tensor products of the defining
representation and its complex conjugate).

32.2 Spin-network functions and recoupling theory

Let us now turn to spin-network functions. In order to make the analogy with
angular momentum quantum mechanics clearer, let us introduce the states

< h|jm >m′ :=
√

2j + 1[πj(h)]mm′ (32.2.1)

which provide an orthonormal basis in the Hilbert space L2(SU(2), dμH) as
shown explicitly in Chapter 31. On the other hand, consider the usual angu-
lar momentum eigenstates |jm >. In terms of the usual angular momen-
tum operators Jk subject to the algebra [Jk, Jl] = iεklmJm we have the
eigenstate relations

∑
k=1,2,3 J

2
k |jm >= j(j + 1)|jm >, J3|jm >= m|jm > and

the ladder operator equations J3J±|jm >= (m± 1)J±|jm > where J± = J1 ±
iJ2. From these relations one finds as usually the normalisation J±|jm >=√
j(j + 1) −m(m± 1)|j,m± 1 >. Now since we think of h as the holonomy

of a connection along some path e we find that under gauge transformations at
v = b(e) we have

< h|U(g)|jm >m′=
√

2j + 1[πj(g(v)h)]mm′ = [πj(g(v))]mn < h|jn >m′

(32.2.2)
The right-invariant vector fields are defined by

< h|Rk|jm >m′ :=
[
d

dt

]

t=0

< exp(tτk)h|jm >m′

⇒ Rk|jm >m′=
[
d

dt

]

t=0

U(exp(tτk)) (32.2.3)

where iτk = σk are the Pauli matrices. It is easy to check that in terms of Yk :=
−iRk/2 we have [Yk, Yl] = iεklmYm, hence these vector fields satisfy the same
algebra as the Jk so that for fixed m′ there must be a unitary transformation
between the Hilbert space Hj

m′ spanned by the |jm >m′ and the Hilbert space Hj

spanned by the |jm >. In order to determine this transformation we notice that
since the states |jm > are basis states while the ψm are components of spinor
states, the basis states transform in the transpose of (32.1.4), that is, with ψ =∑

m ψm|jm > we have ψ′ =
∑

m,n[πj(h)]mnψn|jm >=
∑

m,n[πj(h)]nmψm|jn >

so that we get

V (h)|jm >= [πj(h)]nm|jn > (32.2.4)
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v

v

e

v'

v'

se
1 se

2

Figure 32.1 Breaking an edge into two pieces for the purpose of constructing
the intertwiner.

which should be compared with (32.2.2). One can now explicitly verify that

Jk|jm >=
i

2

[
d

dt

]

t=0

V (exp(tτk))|jm > (32.2.5)

The unitary transformation W j
m′ : Hj → Hj

m′ which accomplishes WJkW
−1 =

Yk can be derived to be given by

W j
m′ |jm >:=

∑

n

[πj(ε)]mn |jn >m′ (32.2.6)

where ε = −τ2 (use εT = ε−1 = −ε, εgT ε−1 = g−1, valid for all g ∈ SL(2,C) to
see this as well as τ−1

K = −τk = τk
T ; notice that τk ∈ SL(2,C)).

The purpose of these derivations is that now we may use standard recoupling
theory for abstract spin systems with N degrees of freedom where N is the
valence of the vertex v in question. Recall that a vertex of a spin-network state
is an intersection of at least two edges. If the valence of the vertex is two, then it
is either a non-differentiable intersection or, if it is an at least C(1) intersection,
then the intertwiner must be non-trivial. Given a graph γ, let us denote by
V (γ) only two-valent non-differentiable vertices and higher-valent vertices. Let
E(γ) be the set of edges of γ. We split each edge e ∈ E(γ) into two halves e =
se1 ◦ (se2)

−1 where se1, s
e
2 are outgoing from b(e), f(e) respectively. The arbitrary

intersection point se1 ◦ se2, which is an interior point of e, is at least C(1) and the
segments se1, s

e
2 are ingoing here (see Figure 32.1). Denote the graph defined by

the collection of segments se1, s
e
2, e ∈ E(γ) by γ′. By E(γ′) we mean the collection

of these segments and by V (γ′) we mean the union of V (γ) with the set of the
interior points just introduced. We start from a gauge-variant spin-network state

Tγ′,�j,�m,�n(A) :=
∏

s∈E(γ′)

< A(s)|jsms >ns=
∏

v∈V (γ)

∏

s∈E(γ′);b(s)=v

< A(s)|jsms >ns

(32.2.7)
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jN

j2

j1

j3

j4

jN

j3

j4

j2

j1
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jN

j4

j3

j123

j2

j1

j12

j4

j3

j123

jN

j1234

j2

j1

j12

Figure 32.2 Graphical visualisation of a recoupling scheme: by virtually blow-
ing up a vertex to a neighbourhood one can think of a recoupling quantum
number as a virtual edge. The collection of these quantum numbers defines
the intertwiner.

where it is understood that jse1 = jse2 = je. Fix a vertex v and choose some
labelling sv1, . . . , s

v
Nv

of the edges adjacent to the Nv-valent vertex v. We intro-
duce the following recoupling scheme (see also Figure 32.2)

(j1, j2)→ j12, (j12, j3)→ j123, . . . (j12...k, jk+1)→ j12...k+1, . . . (j12...N−1, jN )→ J

(32.2.8)

where jk = jsvk , N = Nv. Here j12 ∈ {|j1 − j2|, |j1 − j2| + 1, . . . , j1 + j2}, etc.
take values in the possible irreducible representations into which the tensor prod-
uct j1 ⊗ j2 can be decomposed.1 The j12...k, J are called recoupling momenta and

1 This is known as the Clebsch–Gordan theorem. The proof is simple: take two completely
symmetric spinors of rank 2j1 and 2j2 respectively and apply the symmetrising and
antisymmetrising process to ψ1

A1...A2j1
ψ2
B1...B2j2

. It is easy to see that we get at least one

completely symmetric spinor of rank 2k where k = |j1 − j2|, . . . , j1 + j2. To see that we get
precisely one contribution for each such k, verify that the dimension (2j1 + 1)(2j2 + 1) of

the tensor product coincides with the dimension
∑j1+j2

k=|j1−j2|
(2k + 1) of the decomposition.
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they label the intertwiner at v. We now define successively

|j1j2; j12m12 >n1,n2

:=
∑

m1+m2=m12

< j1j2; j12m12|j1m1, j2m2 > |j1m1 >n1 ⊗|j2m2 >n2

|j1 . . . jk; j12 . . . j1...km1...k >n1,...,nk

:=
∑

m1...k−1+mk=m1...k

< j1...k−1jk; j1...km1...k|j1...k−1m1...k−1, jkmk >

× |j1 . . . jk−1; j12 . . . j1...k−1m1...k−1 >n1,...,nk−1 ⊗|jkmk >nk

|j1 . . . jN ; j12 . . . j1...N−1JM >n1,...,nN

:=
∑

m1...N−1+mN=M

< j1...N−1jN ; JM |j1...N−1m1...N−1, jNmN >

× |j1 . . . jN−1; j12 . . . j1...N−1m1...N−1 >n1,...,nN−1 ⊗|jNmN >nN
(32.2.9)

Here < j1j2;JM |j1m1, j2m2 > are the Clebsch–Gordan coefficients famil-
iar from quantum mechanics that relate the basis |j1m1 > ⊗|j2m2 > in
which (Jk

1 )2, (Jk
2 )2, J3

1 , J
3
2 are diagonal to the basis |j1, j2; JM > in which

(Jk
1 )2, (Jk

2 )2, (Jk
1 + Jk

2 )2, J3
1 + J3

2 are diagonal. We see that the intertwiner Iv

is explicitly labelled by jv12, . . . , j
v
1...N−1, J

v,Mv. We apply the above procedure
to every v ∈ V (γ) resulting in the state Tγ′,�j,�I,�n.

We claim that the state |j1 . . . jN ; j12 . . . j1...N−1JM >n1...nN
> transforms in

the representation corresponding to total angular momentum J at v. To see this
it is sufficient to calculate

U(g)|j1j2; j12m12 >n1n2

=
∑

m1,m2,m′1,m′2

< j1j2; j12m12|j1m1, j2m2 >

× [πj1(g)]m1m′
1
[πj2(g)]m2m′

2
|j1m′

1 >n1 ⊗|j2m′
2 >n2

=
∑

m′1,m′2

< j1j2; j12m12|V (g)|j1m′
1, j2m

′
2 > |j1m′

1 >n1 ⊗|j2m′
2 >n2

=
∑

m′1,m′2

(V (g−1)|j1j2; j12m12 >, |j1m′
1, j2m

′
2 >)|j1m′

1 >n1 ⊗|j2m′
2 >n2

=
∑

m′1,m′2,m′
12

[πj12(g−1)]m′
12m12 < j1j2; j12m′

12 >,

|j1m′
1, j2m

′
2 >| |j1m′

1 >n1 ⊗|j2m′
2 >n2

=
∑

m′
12

[πj12(g)]m12m′
12
|j1j2; j12m′

12 >n1n2 (32.2.10)

and to iterate. Here we have used unitarity twice.
In order to complete the definition of the spin-network state we must con-

tract the magnetic quantum numbers ns. We do this, for every e ∈ E(γ), by
multiplying by < jeje; 00|j1nse1

, jense2
> and summing over nse1

, nse2
∈ −je, . . . , je.
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Figure 32.3 The complete set of labels of a spin-network defining a spin-
network function and consisting of an oriented graph, a choice of spins for
its edges and a choice of intertwiners for its vertices. There is no upper bound
on the number of edges or the valence of a vertex.

Equivalently we construct

Tγ,�j,�I :=
∑

{ns}

⎡

⎣
∏

e∈E(γ)

< jeje; 00|j1nse1
, jense2

>

⎤

⎦Tγ′,�j,�I,�n (32.2.11)

Of course, < jeje; 00|j1nse1
, jense2

>= [πje(ε)]nse
1
nse

2
and gauge invariance at the

interior points is now obvious due to the SL(2,C) identity gT εg = ε. Notice that
the whole construction is independent of the breaking point of the edges e because
implicitly any other interior point of every edge is contracted with precisely
the same intertwiner. In fact, that intertwiner enables us to make it explicit
that the state (32.2.11) just depends on the A(e) and not on the A(s). The
orthonormality of the states Tγ,�j,�I follows from the fact that switching between
the tensor product basis and the recoupling basis is a unitary transformation.
Finally, if we want to introduce an at least C(1) bivalent vertex on one of the
edges, then instead of contracting with < jj; 00|j1n1, j2n2 > we contract with
< jj;JM |j1n1, j2n2 > with J > 0 for the breaking point, which is chosen to
be that bivalent and at least C(1) vertex. See Figure 32.3 for an example of a
spin-network.

In order to carry out concrete calculations it is convenient to make use of the
unitary transformation W and to translate everything from the spin-network
Hilbert space to the angular momentum Hilbert space of an abstract multispin
system. By exactly the same calculation as in (32.2.10) one verifies that for fixed
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m′
1, . . .m

′
N

W |j1jN ; j12 . . . JM >= [πJ(ε)]MM ′ |j1 . . . jN ; j12 . . . JM >m′
1...m

′
N

(32.2.12)

where |j1jN ; j12 . . . JM > is defined by (32.2.9) with the |jm >n replaced by
the |jm >. Notice that (32.2.12) is trivial if the state is gauge-invariant (J = 0).
Thus, given an operator O = O(Y ) on the spin-network Hilbert space expressed
in terms of the vector fields Y (say the volume operator) we can calculate its
matrix elements as

(|j1 . . . jN ; j12 . . . JM >n1...nN
, O(Y )|j′1 . . . j′N ′ ; j′12 . . . J

′M ′ >n′
1...n

′
N′ ) (32.2.13)

=[πJ(ε)]MM̃ [πJ′(ε)]M ′M̃ ′(|j1 . . . jN ; j12 . . . JM̃ >,O(J)|j′1 . . . j′N ′ ; j′12 . . . J
′M̃ ′>)

(32.2.14)

where O(J) is the same as O(Y ) with Y k
e replaced by Jk

e . Of course the right-hand
side of (32.2.13) still depends on the quantum numbers nk, n

′
k in the same way as

before, however, the vector fields Y k
e do not affect them, which is why we have not

displayed them. Notice that if O is gauge-invariant, then we have the selection
rule J = J ′,M = M ′ and moreover (32.2.13) is independent of M because O

commutes with V (g). Then (32.3.1) is δMM ′δJJ′ times the average 1
2J+1

∑
M <

. . .M |O(J)| . . .M > and thus by elementary properties of the ε matrix, the πJ(ε)
matrices disappear from (32.2.13). In this way, all matrix element calculations
are reduced to multispin system calculations.

32.3 Action of holonomy operators on spin-network functions

We need an additional formula in order to carry out calculations with spin-
network functions: if we apply to a spin-network function a holonomy operator
along an edge which does not overlap with the underlying graph, then we simply
get a (gauge-variant, up to normalisation) spin-network function on the bigger
graph consisting of the old graph and the additional edge where the spin on
that edge coincides with the one of the holonomy operator. If, however, the
edge does overlap with the graph, then in order to express the result in terms
of spin-network functions we must perform a Clebsch–Gordan decomposition.
By suitably subdividing the edges of the graph in question we may reduce the
analysis to the case that the edge of the holonomy operator coincides with an
edge of the graph. We consider first the case that the holonomy operator carries
spin 1/2, which is the most important one in the applications. The more general
case can be reduced to iterations of this case because higher-spin holonomies are
polynomials of spin 1/2 holonomies as we showed above. We also give a more
elegant derivation at the end of this section.

Our task is then to decompose the function h �→ hAB [πj(h)]mn into irreducible
representations. It is clear from Clebsch–Gordan theory that the occurring spins
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are j ± 1/2, however, we are interested in the precise coefficients. We have with
A1 + · · · + A2j = m, B1 + · · · + B2j = n that

hA0B0

[πj(h)]mn

cjmcjn
− hA0(B0 . . . hA2jB2j)

= hA0B0hA1(B1 . . . hA2jB2j) − hA0(B0 . . . hA2jB2j)

=
1

(2j + 1)!

⎡

⎣(2j + 1)hA0B0

∑

π∈S2j

hA1Bπ(1) . . . hA2jBπ(2j)

−
∑

π∈S2j+1

hA0Bπ(0) . . . hA2jBπ(2j)

⎤

⎦

=
1

(2j + 1)!

⎡

⎣(2j + 1)hA0B0

∑

π∈S2j

hA1Bπ(1) . . . hA2jBπ(2j)

−
∑

π∈S2j+1

hA0Bπ(0) . . . hA2jBπ(2j)

⎤

⎦

=
1

(2j + 1)!

2j∑

k=1

⎡

⎣
∑

π∈S2j

hA0B0hA1Bπ(1) . . . hA2jBπ(2j)

−
∑

π∈S2j+1|π(0)=k

hA0Bk
hA1Bπ(1) . . . hA2jBπ(2j)

⎤

⎦

=
1

(2j + 1)!

2j∑

k,l=1

⎡

⎣
∑

π∈S2j |π(l)=k

hA0B0hAlBk
hA1Bπ(1) . . .

̂hAlBπ(l) . . . hA2jBπ(2j)

−
∑

π∈S2j+1|π(0)=k,π(l)=0

hA0Bπ(k)hAlB0hA1Bπ(1) . . .
̂hAlBπ(l) . . . . . . hA2jBπ(2j)

⎤

⎦

=
1

(2j + 1)!

2j∑

k,l=1

εB0Bk
εA0Al

∑

π∈S2j |π(l)=k

hA0B0hAlBk
hA1Bπ(1) . . .

̂hAlBπ(l) . . . hA2jBπ(2j)

=
1

(2j + 1)(2j)

2j∑

k,l=1

εB0Bk
εA0Al

1
cj−1/2,m−Al

cj−1/2,n−Bk

[πj−1/2(h)]m−Al,n−Bl

=
1

(2j + 1)(2j)

2j∑

k,l=1

εB0Bk
εA0Al

1
cj−1/2,m−Al

cj−1/2,n−Bk

[πj−1/2(h)]m−Al,n−Bl
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=
(−1)1+A0+B0

(2j + 1)(2j)
1

cj−1/2m+A0cj−1/2n+B0

[πj−1/2(h)]m+A0,n+B0

×
[

2j∑

k=1

δB0+Bk,0

] [
2j∑

l=1

δA0+Al,0

]

=
(−1)1+A0+B0

(2j + 1)(2j)
(j − 2A0m)(j − 2B0n)
cj−1/2,m+A0cj−1/2,n+B0

[πj−1/2(h)]m+A0,n+B0 (32.3.1)

where in the fourth step we have used the fact that S2j+1 = ∪2j
k=0[S2j+1]π(0)=k,

in the fifth we have factored out the identical (2j − 1) monomials in the sums
over the two symmetric groups (the hat over h means omission of that fac-
tor), in the seventh we used the unimodularity of SU(2) and realised that
[S2j ]|π(l)=k = [S2j+1]π(0)=k,π(l)=0 so that in both (2j − 1) monomials of the h’s
no Al, Bk appears, in the eighth we have used the definition of πj in terms of sym-
metrised monomials again as well as

∑2j
k=1 Ak = m,

∑2j
k=1 Bk = n, in the ninth

step we employed the identity εAB = (−1)A−1/2δA+B,0 and finally in the last
step we used the fact that j − 2A0m is the number of Al subject to

∑
l Al = m

which satisfy Al = −A0.
Correspondingly

hA0B0 [πj(h)]mn =
cjmcjn

cj+1/2,m+A0cj+1/2,n+B0

[
πj+1/2(h)

]
m+A0,n+B0

+
(−1)A0+B0+1(j − 2A0m)(j − 2B0n)

2j(2j + 1)
cjmcjn

cj−1/2,m+A0cj−1/2,n+B0

×
[
πj−1/2(h)

]
m+A0,n+B0

=

√
(j + 2A0m + 1)(j + 2B0n + 1)

2j + 1
[
πj+1/2(h)

]
m+A0,n+B0

+ 4A0B0

√
(j − 2A0m)(j − 2B0n)

2j + 1
[
πj−1/2(h)

]
m+A0,n+B0

(32.3.2)

This is the end result which now can be cast into the language of spin-networks
again.

We now treat the general case. We consider an abstract two-spin system on
which we have a unitary representation of SU(2) defined by

U(h)|j1m1 > ⊗|j2m2 >= [πj1(h)]m1n1 [πj2(h)]m2n2 |j1n1 > ⊗|j2n2 > (32.3.3)

where h = exp(θjτj) and U(h) = exp(iθ[Jj
1 + Jj

2 ]) = U1(h) ⊗ U2(h) since the
individual angular momenta are mutually commuting. We now expand the tensor
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basis into the recoupling basis and find

[πj1(h)]m1n1 [πj2(h)]m2n2

= (< j1n1|⊗ < j2n2|, U(h)|j1m1 > ⊗|j2m2 >)

=

j1+j2∑

j12=|j1−j2|
< j12m1 + m2|j1m1; j2m2 > (< j1n1|⊗ < j2n2|, U(h)|j12m1 + m2 >)

=

j1+j2∑

j12=|j1−j2|
< j12m1 + m2|j1m1; j2m2 > [πj12(h)]m1+m2,n(< j1n1|⊗ < j2n2|j12n >)

=

j1+j2∑

j12=|j1−j2|
< j12m1 + m2|j1m1; j2m2 >< j1n1; j2n2|j12n1 + n2 > [πj12(h)]m1+m2,n

(32.3.4)

One can indeed verify that the coefficients displayed in (32.3.2) are the products
of CGCs given in (32.3.4).

32.4 Examples of coherent state calculations

As we have seen in Chapter 11, kinematical coherent states for the currently
most studied classes of complexifiers take the form ψγ,m = ⊗e∈E(γ)ψe,m where γ

is a graph and m is a point in the classical phase space. The states on the edges
take the form

ψm,e := ψte
ge(m), ψt

g(h) =
∑

π

dπ e−tλπ/2 χπ(gh−1) (32.4.1)

where the sum is over equivalence classes of irreducible representations π of the
compact gauge group G, −λπ ≤ 0 is the eigenvalue of the Laplacian (Rj/2)2

(right-invariant vector fields) in that representation, dπ, χπ are respectively its
dimension and character, t is the classicality parameter, g ∈ GC is an element of
the complexification of G and h ∈ G.

The physics is in the maps m �→ ge(m), e �→ te which depend on the com-
plexifier used, as explained in Chapter 11. Here we will focus on how to do
computations with (32.4.1). Our presentation will be brief, many more details
can be found in [488,489]. We will write (32.4.1) explicitly for U(1) and SU(2)

ψg(h) =

{∑
n∈Z e−tn2/2 (gh−1)n U(1)

∑∞
2j=0 (2j + 1) e−tj(j+1)/2 Tr(πj(gh−1)) SU(2)

(32.4.2)

In order to write the SU(2) character χj = Tr(πj) more explicitly we can
make use of (32.1.5) as follows: every element g ∈ SU(2)C = SL(2,C) can be
diagonalised by an element S ∈ GL(2,C), that is, g = SDS−1 where D is
diagonal. The entries of D = diag(λ1, λ2) can be determined by λ1λ2 = det(g) =
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1, λ1 + λ2 = Tr(g). The solution is

λ := λ1 =
1
2
Tr(g) +

√[
1
2
Tr(g)

]2

− 1, λ2 =
1
λ1

=
1
2
Tr(g) −

√[
1
2
Tr(g)

]2

− 1

(32.4.3)

or λ1 ↔ λ2. This sign ambiguity is a reflection of the Weyl group of SU(2).
Since the character is invariant under similarity transformations (conjugations),
we may take the sum over m,n ∈ {−j, . . . , j} in (32.1.5) with b = c = 0 and
d = 1/a, a = λ. This requires m = n, l = 0 and we find

χj(g) =
j∑

m=−j

λ2m =
sh([2j + 1]z)

sh(z)
(32.4.4)

Notice that (32.4.4) is manifestly invariant under λ ↔ λ−1. Here we have intro-
duced the complex number z through ch(z) := Tr(g)/2 so that λ = ez, which
helps to compute the geometric sum in (32.4.4).

Indispensable for practical calculations is the following.

Theorem 32.4.1 (Poisson resummation formula). Let f be an L1(R, dx)
function such that the series gs(x) :=

∑
n∈Z f(x + ns) converges absolutely and

uniformly for all x ∈ [0, s] for some s > 0. Then

∑

n∈Z

f(ns) =
1
s

∑

n∈Z

∫

R

dx e2πinx/sf(x) (32.4.5)

See [488,646] for the proof.
The significance of this theorem becomes evident when we ask, for instance,

for the maximum of probability amplitude

ptg(h) :=

∣
∣ψt

g(h)
∣∣2

∣
∣
∣
∣ψt

g

∣
∣
∣
∣2

(32.4.6)

or for the maximum of the overlap function

jtg1,g2
:=

∣
∣ < ψt

g1
, ψt

g2
>

∣
∣2

∣
∣
∣
∣ψt

g1

∣
∣
∣
∣2

∣
∣
∣
∣ψt

g2

∣
∣
∣
∣2

(32.4.7)

Here the norms occur because the ψt
g are not normalised and scalar products are

of course evaluated in the Hilbert space L2(G, dμH) using the Peter and Weyl
theorem. We will compute only (32.4.7) for our illustrative purposes, (32.4.6)
works similarly. Also we will restrict ourselves to the mathematically more
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difficult and physically more interesting case SU(2). We find with

< πjmn, πj′m′n′ >=
δjj′δmm′δnn′

2j + 1
(32.4.8)

that

jtg1,g2
=

∣
∣ ∑∞

2j=0 (2j + 1) e−tj(j+1) χj(g
†
1g2)

∣
∣2

∣
∣
∣
∣ψt

g1

∣
∣
∣
∣2

∣
∣
∣
∣ψt

g2

∣
∣
∣
∣2

(32.4.9)

where the norms squared are given by the square root of the numerator of (32.4.9)
for g1 = g2.

Now recall that t is a tiny number, therefore (32.4.9) is a fraction of two
numbers involving slowly converging series which are therefore difficult to deal
with in analytical investigations. The Poisson resummation formula now enables
us to transform those series into rapidly converging ones because it basically
interchanges s :=

√
t with 1/s as follows: in order to apply Theorem 32.4.1 we

must bring (32.4.9) into the form (32.4.5). For U(1) this would already be the
case. The dimension of πj is given by n = 2j + 1 ∈ N0 and this combination also
appears in χj(g). Now observe that j(j + 1) = [n2 − 1]/4. It follows that

< ψt
g1
, ψt

g2
> = et/4

∞∑

n=0

n e−tn2/4 sh(nz12)
sh(z12)

=
et/4

2sh(z12)

∑

n∈Z

n etn
2/4 enz12 (32.4.10)

where in the second step we decomposed sh(nz) = [enz − e−nz]/2, observed that
the second term at n is obtained from the first one by changing n into −n and
that the term at n = 0 vanishes anyway. Here ch(z12) = Tr(g†1g2)/2 and for the
norms of ψt

gj , j = 1, 2 exactly the same formula holds just with z12 replaced by
ch(zj) = Tr(g†jgj)/2.

Consider now for complex z the function fz(x) = x e−x2/4 exz. Then we see
that Theorem 32.4.1 can be applied because of the Gaußian damping factor and
we obtain with s =

√
t

jtg1,g2
=

sh(z1)sh(z2)
|sh(z12)|2

∣
∣ ∑

n∈Z

∫
R

dx e2πinx/s fz12/s(x)
∣
∣2

[∑
n∈Z

∫
R

dx e2πinx/s fz1/s(x)
] [∑

n∈Z

∫
R

dx e2πinx/s fz2/s(x)
]

(32.4.11)

The integrals that appear in (32.4.11) can be computed by standard Gaußian
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integral techniques
∑

n∈Z

∫

R

dx e2πinx/s fz/s(x)

= 4
∑

n∈Z

∫

R

dx x e2(2πin+z)x/se−x2

= 4
∑

n∈Z

e(2πin+z)2/t

∫

R

dx e−x2
[x + (2πin + z)/s]

= 4
√
π/t

∑

n∈Z

e(2πin+z)2/t [2πin + z]

= 4
√
π/t ez

2/t
∑

n∈Z

e−4π2n2/t e4πinz/t [2πin + z]

= 8
√
π/t ez

2/t

{

z

[

1 + 2
∞∑

n=1

e−4π2n2/t cos(4πnz/t)

]

−
[

4π
∞∑

n=1

e−4π2n2/t sin(4πnz/t)

]}

(32.4.12)

where in the second step we changed variables from x to 2x and in the third
we applied a contour argument. The point of performing this calculation is that
the two terms in the square brackets of the last line of (32.4.12) are rapidly
converging for t → 0, in fact it is not difficult to show that they approach zero
faster than any power of t. Thus, for purposes of � expansions these O(t∞) terms
can be neglected and (32.4.11) becomes

jtg1,g2
=

|z12|2sh(z1)sh(z2)
|sh(z12)|2z1z2

e[z
2
12+z̄2

12−z2
1−z2

2]/t (32.4.13)

up to O(t∞) corrections. Expression (32.4.13) is very easy to analyse and it is not
difficult to show, using convex function techniques and Riemannian geometry on
S3, that (32.4.13) is strongly peaked at g1 = g2 in a Gaußian fashion where the
peak of the Gaussian has width

√
t, see [488,489] for all details.

Most coherent state calculations can be reduced to the above manipula-
tions. Consider, for instance, the expectation value of an electric flux opera-
tor Êj(S) whose surface is transversal to one edge e only. Then the expec-
tation value < ψγ,m, Êj(S)ψγ,m > /||ψγ,m||2 becomes essentially (up to multi-
plicative constants) < ψt

g, Rjψ
t
g > /||ψt

g||2. Now it is not difficult to see that
Rjψ

t
g = [d/dr]r=0 ψt

exp(−rτj)g
and that ||ψt

exp(−rτjg
|| = ||ψt

g||. Thus, if we set
g1 = g, g2 = exp(−rτj)g then we find

< ψt
g, Rjψ

t
g >

∣
∣
∣
∣ψt

g

∣
∣
∣
∣2

= [d/dr]r=0 jtg1,g2
(32.4.14)

The computation of the expectation value of (matrix entries of) a holonomy
operator [Â(e)]mn reduces in a similar way to the computation of < ψt

g, ĥmnψ
t
g >

/||ψt
g||2. In order to evaluate this one can use, for instance, formula (32.3.4)
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which makes it possible to work out the appearing product of spin 1/2 and spin
j matrices as linear combination of spin j ± 1/2 matrices and then to use the
Poisson resummation formula again.

Similar manipulations can be applied to polynomials of those elementary oper-
ators which appear in the semiclassical analysis of the Master Constraint oper-
ator where it is understood that the fractional powers of the volume operator
that are involved are replaced by polynomials by the method described in Sec-
tion 13.4.4. See [488, 489, 591] for all details and [590, 637, 638, 835] for concrete
physical applications of these techniques.



33
+ Functional analytic description of classical

connection dynamics

This chapter is for the benefit of the reader who wants to get a glimpse of
the functional analytic questions that arise when properly defining the function
spaces of (gauge) fields on infinite-dimensional symplectic manifolds. It turns out
to be rather difficult to consistently restrict the space of classical fields on a given
differential manifold in such a way that the classical action remains functionally
differentiable, usually critically depending on the boundary conditions that one
imposes, while keeping ‘enough’ solutions of the field equations. Usually the
simplest solutions, those with a high degree of symmetry, are at the verge of
lying outside the space of fields that the variational principle was based on.
Fortunately, these issues will not be too important for us as the space of quantum
fields tends to be even much larger and generically is of a distributional kind
without leading to any problems. Those issues will, however, be of some interest
again when we discuss the classical limit. We can therefore be brief here and
will just sketch some of the main ideas. The interested reader is referred to the
exhaustive treatment in [886].

33.1 Infinite-dimensional (symplectic) manifolds

Let G be a compact gauge group, σ a D-dimensional manifold which admits
a principal G-bundle with connection over σ. Let us denote the pull-back to
σ of the connection by local sections by Ai

a where a, b, c, . . . = 1, . . . , D denote
tensorial indices and i, j, k, . . . = 1, . . . ,dim (G) denote indices for the Lie algebra
of G. We will denote the set of all smooth connections by A and endow it with
a globally defined metric topology of the Sobolev kind

dρ[A,A′] :=

√

− 1
N

∫

σ

dDx
√

det(ρ)(x)tr([Aa −A′
a](x)[Ab −A′

b](x))ρab(x)

(33.1.1)
where tr(τiτj) = −Nδij is our choice of normalisation for the generators of a Lie
algebra Lie(G) of rank N and our conventions are such that [τi, τj ] = 2fij kτk
define the structure constants of Lie(G). Here ρab is a fiducial metric on σ of
everywhere Euclidean signature. In what follows we assume that either D �= 2
(for D = 2, (33.1.1) depends only on the conformal structure of ρ and cannot
guarantee convergence for arbitrary fall-off conditions on the connections) or
that D = 2 and the fields A are Lebesgue integrable.
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Let F a
j be a Lie algebra-valued vector density test field of weight one and let

f j
a be a Lie algebra-valued co-vector test field. Let, as before, Aj

a be the pull-back
of a connection to σ and consider a vector bundle of electric fields, that is, of
Lie algebra-valued vector densities of weight one whose bundle projection to σ

we denote by Ea
i . We consider the smeared quantities

F (A) :=
∫

σ

dDxF a
i A

i
a and E(f) :=

∫

σ

dDxEa
i f

i
a (33.1.2)

While both are diffeomorphism-covariant it is only the latter which is gauge-
covariant, one reason to consider the singular smearing through holonomies dis-
cussed below. The choice of the space of pairs of test fields (F, f) ∈ S depends
on the boundary conditions on the space of connections and electric fields, which
in turn depends on the topology of σ and will not be specified in what follows.

We now want to select a subset M of the set of all pairs of smooth functions
(A,E) on σ such that (33.1.2) is well-defined (finite) for any (F, f) ∈ S and
endow it with a manifold structure and a symplectic structure, that is, we wish
to turn it into an infinite-dimensional symplectic manifold.

We define a topology on M through the metric:

dρ,σ[(A,E), (A′, E′)]

:=

√√√√− 1
N

∫

σ

dDx

[
√

det(ρ)ρabtr([Aa−A′
a][Ab−A′

b])+
σabtr([Ea−Ea′][Eb−Eb′])

√
det(σ)

]

(33.1.3)

where ρab, σab are again fiducial metrics on σ of everywhere Euclidean signature.
Their fall-off behaviour has to be suited to the boundary conditions of the fields
A,E at spatial infinity. Notice that the metric (33.1.3) is gauge-invariant (and
thus globally defined, i.e., is independent of the choice of local section) and
diffeomorphism-covariant and that dρ,σ[(A,E), (A′, E′)] = dρ[A,A′] + dσ[E,E′]
(recall (1.1.1)).

Now, while the space of electric fields in Yang–Mills theory is a vector space,
the space of connections is only an affine space. However, as we also have appli-
cations in General Relativity with asymptotically Minkowskian boundary con-
ditions in mind, the space of electric fields will in general not be a vector space.
Thus, in order to induce a norm from (33.1.3) we proceed as follows: consider
an atlas of M consisting only of M itself and choose a fiducial background con-
nection and electric field A(0), E(0) (for instance A(0) = 0). We define the global
chart

ϕ : M �→ E ; (A,E) �→
(
A−A(0), E − E(0)

)
(33.1.4)

of M onto the vector space of pairs (A−A(0), E − E(0)). Obviously, ϕ is a
bijection. We topologise E in the norm

∣
∣
∣
∣(A−A(0), E − E(0)

)∣∣
∣
∣
ρσ

:=
√
dρσ

[
(A,E),

(
A(0), E(0)

)]
(33.1.5)
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The norm (33.1.5) is of course no longer gauge- and diffeomorphism-covariant
since the fields A(0), E(0) do not transform, they are background fields. We need
it, however, only in order to encode the fall-off behaviour of the fields which are
independent of gauge and diffeomorphism covariance.

Notice that the metric induced by this norm coincides with (33.1.3). In the
terminology of weighted Sobolev spaces the completion of E in the norm (33.1.5)
is called the Sobolev space H2

0,ρ ×H2
0,σ−1 (see, e.g., [899]). We will call the com-

pleted space E again and its image under ϕ−1, M again (the dependence of ϕ
on (A(0), E(0)) will be suppressed). Thus, E is a normed, complete vector space,
that is, a Banach space, in fact it is even a Hilbert space. Moreover, we have
modelled M on the Banach space E , that is, M acquires the structure of a (so
far only topological) Banach manifold. However, since M can be covered by a
single chart and the identity map on E is certainly C∞, M is actually a smooth
manifold. The advantage of modelling M on a Banach manifold is that one can
take over almost all the pleasant properties from the finite-dimensional case to
the infinite-dimensional one (in particular, the inverse function theorem).

Next we study differential geometry on M with the standard techniques of
calculus on infinite-dimensional manifolds (see, e.g., [900]). We will not repeat
all the technicalities of the definitions involved, the interested reader is referred
to the literature quoted.

(i) A function f : M �→ C on M is said to be differentiable at m if g := f ◦
ϕ−1 : E �→ C is differentiable at u = ϕ(m), that is, there exist bounded linear
operators Dgu, Rgu : E �→ C such that

g(u + v) − g(u) = (Dgu) · v + (Rgu) · v where lim
||v||→0

|(Rgu) · v|
||v|| = 0 (33.1.6)

Dfm := Dgu is called the functional derivative of f at m (notice that we
identify, as usual, the tangent space of M at m with E). The definition
extends in an obvious way to the case where C is replaced by another Banach
manifold. The equivalence class of functions differentiable at m is called the
germ G(m) at m. Here two functions are said to be equivalent provided they
coincide in a neighbourhood containing m.

(ii) In general, a tangent vector vm at m ∈ M is an equivalence class of triples
(U,ϕ, vm) where (U,ϕ) is a chart of the atlas of M containing m and vm ∈ E .
Two triples are said to be equivalent provided that v′m = D(ϕ′ ◦ ϕ−1)ϕ(m) ·
vm. In our case we have only one chart and equivalence becomes trivial.
Tangent vectors at m can be considered as derivatives on the germ G(m)
by defining

vm(f) := (Dfm) · vm =
(
D(f ◦ ϕ−1)ϕ(m)

)
· vm (33.1.7)

Notice that the definition depends only on the equivalence class and not
on the representative. The set of vectors tangent at m defines the tangent
space Tm(M) of M at m.
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(iii) The cotangent space T ′
m(M) is the topological dual of Tm(M), that is, the

set of continuous linear functionals on Tm(M). It is obviously isomorphic
with E ′, the topological dual of E . Since our model space E is reflexive (it is
a Hilbert space) we can naturally identify tangent and cotangent spaces (by
the Riesz lemma), which also makes the definition of contravariant tensors
less ambiguous. We will, however, not need them for what follows. Simi-
larly, one defines the space of p-covariant tensors at m ∈ M as the space of
continuous p-linear forms on the p-fold tensor product of Tm(M).

(iv) So far the fact that E is a Banach manifold was not very crucial. But while
the tangent bundle T (M) = ∪m∈MTm(M) carries a natural manifold struc-
ture modelled on E × E for a general Fréchet space (or even locally convex
space) E, the cotangent bundle T ′(M) = ∪m∈MT ′

m(M) carries a manifold
structure only when E is a Banach space as one needs the inverse function
theorem to show that each chart is not only a differentiable bijection but
that also its inverse is differentiable. In our case again there is no problem.
We define differentiable vector fields and p-covariant tensor fields as cross
sections of the corresponding fibre bundles.

(v) A differential form of degree p on M or p-form is a cross-section of the
fibre bundle of completely skew continuous p-linear forms. Exterior product,
pull-back, exterior differential, interior product with vector fields and Lie
derivatives are defined as in the finite-dimensional case.

Definition 33.1.1. Let M be a differentiable manifold modelled on a Banach
space E. A weak, respectively strong, symplectic structure Ω on M is a closed
2-form such that for all m ∈ M the map

Ωm : Tm(M) → T ′
m(M); vm �→ Ω(vm, .) (33.1.8)

is an injection, respectively a bijection.

Strong symplectic structures are more useful because weak symplectic struc-
tures do not allow us to define Hamiltonian vector fields through the defini-
tion DL + iχL

Ω = 0 for differentiable L on M and Poisson brackets through
{f, g} := Ω(χf , χg) (see, e.g., [220] for details).

Thus we define finally a strong symplectic structure for our case by

Ω((f, F ), (f ′, F ′)) :=
∫

σ

dDx
[
F a
i f

′i
a − F ′a

i f i
a

]
(x) (33.1.9)

for any (f, F ), (f ′, F ′) ∈ E . To see that Ω is a strong symplectic structure we
observe first that the integral kernel of Ω is constant so that Ω is clearly exact,
so, in particular, closed. Next, let θ ∈ E ′ ≡ E . To show that Ω is a bijection it
suffices to show that it is a surjection (injectivity follows trivially from linearity).
We must find (f, F ) ∈ E so that θ(.) = Ω((f, F ), .) for any one-form θ. Now by
the Riesz lemma there exists (fθ, Fθ) ∈ E such that θ(.) =< (fθ, Fθ), . > where
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< ., . > is the inner product induced by (33.1.5). Comparing (33.1.3) and (33.1.9)
we see that we have achieved our goal provided that the functions

F a
i := ρab

√
det(ρ)f i

bθ, f
i
a := − σab√

det(ρ)
F b
iθ (33.1.10)

are elements of E . Inserting the definitions we see that this will be the case
provided that the functions ρcdσcaσdb/

√
det(ρ) and det(ρ)σcdρ

caρdb/
√

det(σ)
respectively fall off at least as σab/

√
det(σ) and ρab

√
det(ρ) respectively. In

physical applications these metrics are usually chosen to be of the form 1 +
O(1/r) where r is an asymptotic radius function so that these conditions are
certainly satisfied. Therefore, (f, F ) ∈ E .

Let us compute the Hamiltonian vector field of a function L on our M. By
definition, for all (f, F ) ∈ E we have at m = (A,E)

DLm · (f, F ) =
∫

σ

dDx
[
(DLm)ai f

i
a+(DLm)iaF

a
i

]

= −
∫

σ

dDx
[
(χLm)ai f

i
a−(χLm)iaF

a
i

]
(33.1.11)

thus (χL)ai = −(DL)ai and (χL)ia = (DL)ia. Obviously, this defines a bounded
operator on E in our case if the components of DL themselves define an element
of E ′ (by the Schwarz inequality). Finally, the Poisson bracket is given by

{L,L′}m = Ω(χL, χL′) =
∫

σ

dDx
[
(DLm)ia(DL′

m)ai − (DLm)ai (DL′
m)ia

]

(33.1.12)
It is easy to see that Ω has the symplectic potential Θ, a one-form on M, defined
by

Θm((f, F )) =
∫

σ

dDxF a
i f

i
a (33.1.13)

since

DΘm((f, F ), (f ′, F ′)) := (D(Θm) · (f, F )) · (f ′, F ′) − (D(Θm) · (f ′, F ′)) · (f, F )

and DEa
i (x)m · (f, F ) = F a

i (x) as follows from the definition.
Coming back to the choice of S, it will in general be a subspace of E so that

(33.1.9) still converges. We can now compute the Poisson brackets between the
functions F (A), E(f) on M and find

{E(f), E(f ′)} = {F (A), F ′(A)} = 0, {E(f), A(F )} = F (f) (33.1.14)

Remark: In physicists’ notation one often writes (DLm)ia(x) := δL
δAi

a(x) , called a
functional derivative, etc. and, abusing the notation, one writes the symplectic
structure as Ω =

∫
dDx DEa

i (x) ∧DAi
a(x).
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[650] H. Baumgärtel and M. Wollenberg. Causal Nets of Operator Algebras (Akademie

Verlag, Berlin, 1992).
[651] O. Landford III. Selected topics in functional analysis. In Proceedings of Les Houches

Summer School ‘Statistical Mechanics and Quantum Field Theory’, C. DeWitt and R.
Stora (eds) (Gordon and Breach Science Publishers, London, 1971).

[652] M. Varadarajan. The graviton vacuum as a distributional state in kinematic loop
quantum gravity. Class. Quant. Grav. 22 (2005) 1207–38. [gr-qc/0410120]

[653] F. Conrady. Free vacuum for loop quantum gravity. Class. Quant. Grav. 22 (2005)
3261–93. [gr-qc/0409036]

[654] A. Ashtekar and C. Isham. Inequivalent observable algebras: another ambiguity in field
quantisation. Phys. Lett. B274 (1992) 393–8.

[655] A. Ashtekar, C. Rovelli and L. Smolin. Gravitons and loops. Phys. Rev. D44 (1991)
1740–55. [hep-th/9202054]

[656] B. DeWitt. Supermanifolds (Cambridge University Press, Cambridge, 1992).
[657] J. Velhinho. Comments on the kinematical structure of loop quantum cosmology.

Class. Quant. Grav. 21 (2004) L109. [gr-qc/0406008]

[658] I. L. Buchbinder and S. L. Lyahovich. Class. Quant. Grav. 4 (1987) 1487.
[659] D. M. Gitman and I. V. Tyutin. Quantisation of Fields with Constraints

(Springer-Verlag, Berlin, 1990).
[660] L. Smolin. Recent developments in non-perturbative quantum gravity. [hep-th/9202022]
[661] R. Loll. Further results on geometric operators in quantum gravity. Class. Quant.

Grav. 14 (1997) 1725–41. [gr-qc/9612068]
[662] R. Loll. Simplifying the spectral analysis of the volume operator. Nucl. Phys. B500

(1997) 405–20. [gr-qc/9706038]
[663] R. Loll. The volume operator in discretised quantum gravity. Phys. Rev. Lett. 75

(1995) 3048–51. [gr-qc/9506014]
[664] R. De Pietri and C. Rovelli. Geometry eigenvalues and scalar product from recoupling

theory in loop quantum gravity. Phys. Rev. D54 (1996) 2664–90. [gr-qc/9602023]



800 References

[665] J. Brunnemann and T. Thiemann. Simplification of the spectral analysis of the volume
operator in loop quantum gravity. Class. Quant. Grav. 23 (2006) 1289–346.
[gr-qc/0405060]

[666] A. R. Edmonds. Angular Momentum in Quantum Mechanics (Princeton University
Press, Princeton, 1974).

[667] A. Alekseev, A. P. Polychronakos and M. Smedback. On area and entropy of a black
hole. Phys. Lett. B574 (2003) 296–300. [hep-th/0004036]

[668] A. Corichi. Comments on area spectra in loop quantum gravity. Rev. Mex. Fis. 50
(2005) 549–52. [gr-qc/0402064]

[669] R. De Pietri. Spin networks and recoupling in loop quantum gravity. Nucl. Phys. Proc.
Suppl. 57 (1997) 251–4. [gr-qc/9701041]

[670] R. Loll. Imposing det(E) > 0 in discrete quantum gravity. Phys. Lett. B399 (1997)
227–32. [gr-qc/9703033]

[671] J. C. Baez. An introduction to spin foam models of quantum gravity and BF theory.
Lect. Notes Phys. 543 (2000) 25–94. [gr-qc/9905087]

[672] J. C. Baez. Spin foam models. Class. Quant. Grav. 15 (1998) 1827–58. [gr-qc/9709052]
[673] J. W. Barrett. State sum models for quantum gravity. [gr-qc/0010050]
[674] J. W. Barrett. Quantum gravity as topological quantum field theory. J. Math. Phys.

36 (1995) 6161–79. [gr-qc/9506070]
[675] A. Perez. Spin foam models for quantum gravity. Class. Quant. Grav. 20 (2003) R43.

[gr-qc/0301113]
[676] D. Oriti. Spin foam models of quantum space-time, PhD thesis. [gr-qc/0311066]
[677] G. Ponzano and T. Regge. Semiclassical limit of Racah coefficients. In Spectroscopy

and Group Theoretical Methods in Physics, F. Bloch (ed.) (North-Holland, New York,
1968).

[678] V. Turarev and O. Viro. State sum invariants of 3-manifolds and quantum 6j symbols.
Topology 31 (1992) 865–902.

[679] H. Ooguri. Topological lattice models in four dimensions. Mod. Phys. Lett. A7 (1992)
2799–810.

[680] L. Crane and D. Yetter. A categorical construction of 4D TQFTs. In Quantum
Topology, pp. 120–30, L. Kauffman and R. Baadhio (eds) (World Scientific, Singapore,
1993).

[681] L. Crane, L. Kauffman and D. Yetter. State-sum invariants of 4-manifolds. J. Knot
Theory & Ram. 6 (1997) 177–234.

[682] M. F. Atiyah. Topological quantum field theories. Publ. Math. IHES. 68 (1989)
175–86.

[683] M. F. Atiyah. The Geometry of Physics and Knots (Cambridge University Press,
Cambridge, 1990).

[684] C. Kassel. Quantum Groups (Springer-Verlag, Berlin, 1995).
[685] L. Kauffman. Knots and Physics (World Scientific Press, Singapore, 1993).
[686] L. Kauffman and S. Lins. Temperley–Lieb Recoupling Theory and Invariants of

3-Manifolds (Princeton University Press, Princeton, 1994).
[687] V. Tuarev. Quantum Invariants of Knots and 3-Manifolds (de Gruyter, New York,

1994).
[688] E. Witten. Quantum field theory and the Jones polynomial. Commun. Math. Phys.

121 (1989) 351–99.
[689] N. Reshetikhin. Invariants of 3-manifolds via link polynomials and quantum groups.

Invent. Math. 103 (1991) 547–97.
[690] D. Birmingham, M. Blau, M. Rakowski and G. Thompson. Topological field theories.

Phys. Rep. 209 (1991) 129–40.
[691] R. Friedman and J. Morgan. Gauge Theory and the Topology of Four-Manifolds (AMS,

Providence, 1998).
[692] M. Reisenberger. World sheet formulations of gauge theories and gravity.

[gr-qc/9412035]
[693] M. P. Reisenberger. A lefthanded simplicial action for Euclidean general relativity.

Class. Quant. Grav. 14 (1997) 1753–70. [gr-qc/9609002]



References 801

[694] L. Freidel, K. Krasnov and R. Puzio. BF description of higher dimensional gravity
theories. Adv. Theor. Math. Phys. 3 (1999) 1289–324. [hep-th/9901069]

[695] L. Freidel and K. Krasnov. Spin foam models and the classical action principle. Adv.
Theor. Math. Phys. 2 (1999) 1183–247. [hep-th/9807092]

[696] L. Freidel and D. Louapre. Nonperturbative summation over 3-d discrete topologies.
Phys. Rev. D68 (2003) 104004. [hep-th/0211026]

[697] L. Freidel and D. Louapre. Diffeomorphisms and spin foam models. Nucl. Phys. B662
(2003) 279. [gr-qc/0212001]

[698] A. Barbieri. Space of vertices of relativistic spin networks. [gr-qc/9709076]
[699] A. Barbieri. Quantum tetrahedra and simplicial spin networks. Nucl. Phys. B518

(1998) 714–28. [gr-qc/9707010]
[700] J. C. Baez and J. W. Barrett. The quantum tetrahedron in three dimensions and four

dimensions. Adv. Theor. Math. Phys. 3 (1999) 815–50. [gr-qc/9903060]
[701] M. P. Reisenberger. On relativistic spin network vertices. J. Math. Phys. 40 (1999)

2046–54. [gr-qc/9809067]
[702] D. Yetter. Generalised Barrett–Crane vertices and invariants of embedded graphs.

[qa/9801131]
[703] J. W. Barrett. The classical evaluation of relativistic spin networks. Adv. Theor. Math.

Phys. 2 (1998) 593–600. [math.qa/9803063]
[704] J. W. Barrett and R. M. Williams. The asymptotics of an amplitude for the four

simplex. Adv. Theor. Math. Phys. 3 (1999) 209–15. [gr-qc/9809032]
[705] S. Sen, J. C. Sexton and D. H. Adams. A geometric discretisation scheme applied to

the Abelian Chern–Simons theory. [hep-th/0001030]
[706] H. Whitney. Geometric Integration Theory (Princeton University Press, Princeton,

1957).
[707] D. H. Adams. R-torsion and linking numbers from simplicial Abelian gauge theories.

[hep-th/9612009]
[708] J. Ambjorn, B. Durhuus and T. Jonnson. Quantum Geometry: A Statistical Field

Theory Approach (Cambridge University Press, Cambridge, 1997).
[709] L. Freidel. Group field theory: an overview. Int. J. Theor. Phys. 44 (2005) 1769–83.

[hep-th/0505016]
[710] M. Reisenberger and C. Rovelli. Spin foams as Feynman diagrams. [gr-qc/0002083]
[711] M. P. Reisenberger and C. Rovelli. Space time as a Feynman diagram: the connection

formulation. Class. Quant. Grav. 18 (2001) 121–40. [gr-qc/0002095]
[712] I. M. Gel’fand and M. A. Naimark. Unitary representations of the proper Lorentz

group. Izv. Akad. Nauk. SSSR. 11 (1947) 411.
[713] J. C. Baez and J. W. Barrett. Integrability of relativistic spin networks. Class. Quant.

Grav. 18 (2001) 4683–700. [gr-qc/0101107]
[714] A. Perez and C. Rovelli. Spin foam model for Lorentzian general relativity. Phys. Rev.

D63 (2001) 041501. [gr-qc/0009021]
[715] L. Crane, A. Perez and C. Rovelli. A finiteness proof for the Lorentzian state sum spin

foam model for quantum general relativity. [gr-qc/0104057]
[716] L. Crane, A. Perez and C. Rovelli. Perturbative finiteness in spin-foam quantum

gravity. Phys. Rev. Lett. 87 (2001) 181301.
[717] E. Buffenoir, M. Henneaux, K. Noui and Ph. Roche. Hamiltonian analysis of Plebanski

theory. Class. Quant. Grav. 21 (2004) 5203–20. [gr-qc/0404041]
[718] A. Perez and C. Rovelli. Observables in quantum gravity. [gr-qc/0104034]
[719] D. Oriti and H. Pfeiffer. A spin foam model for pure gauge theory coupled to quantum

gravity. Phys. Rev. D66 (2002) 124010. [gr-qc/0207041]
[720] D. Oriti. Boundary terms in the Barrett–Crane spin foam model and consistent gluing.

Phys. Lett. B532 (2002) 363–72. [gr-qc/0201077]

[721] H. Pfeiffer. Dual variables and a connection picture for the Euclidean Barrett–Crane
model. Class. Quant. Grav. 19 (2002) 1109–38. [gr-qc/0112002]

[722] L. Freidel and D. Louapre. Ponzano–Regge model revisited I: Gauge fixing, observables
and interacting spinning particles. Class. Quant. Grav. 21 (2004) 5685–726.
[hep-th/0401076]



802 References

[723] L. Freidel and D. Louapre. Ponzano–Regge model revisited II: Equivalence with
Chern–Simons. [gr-qc/0410141]

[724] L. Freidel and D. Louapre. Ponzano–Regge model revisited III: Feynman diagrams and
effective field theory. Class. Quant. Grav. 23 (2006) 2021–62. [hep-th/0502106]

[725] E. Livine and R. Oeckl. Three-dimensional quantum supergravity and supersymmetric
spin foam models. Adv. Theor. Math. Phys. 7 (2004) 951–1001. [hep-th/0307251]

[726] K. Noui and A. Perez. Observability and geometry in three-dimensional quantum
gravity. [gr-qc/0402113]

[727] K. Noui and A. Perez. Three dimensional loop quantum gravity: coupling to point
particles. Class. Quant. Grav. 22 (2005) 4489–514. [gr-qc/0402111]

[728] K. Noui and A. Perez. Dynamics of loop quantum gravity and spin foam models in
three dimensions. [gr-qc/0402112]

[729] K. Noui and A. Perez. Three dimensional loop quantum gravity: physical scalar
product and spin foam models. Class. Quant. Grav. 22 (2005) 1739–62.
[gr-qc/0402110]

[730] J. C. Baez, J. D. Christensen, T. R. Halford and D. C. Tsang. Spin foam models of
Riemannian quantum gravity. Class. Quant. Grav. 19 (2002) 4627–48. [gr-qc/0202017]

[731] J. C. Baez, J. D. Christensen and G. Egan. Asymptotics of 10j symbols. Class. Quant.
Grav. 19 (2002) 6489. [gr-qc/0208010]

[732] J. C. Baez and J. D. Christensen. Positivity of spin foam amplitudes. Class. Quant.
Grav. 19 (2002) 2291–306. [gr-qc/0110044]

[733] A. Perez. Spin foam quantisation of Plebanski’s action. Adv. Theor. Math. Phys. 5
(2002) 947–68. [gr-qc/0203058]

[734] L. Freidel and D. Louapre. Asymptotics of 6j and 10j symbols. Class. Quant. Grav. 20
(2003) 1267–94. [hep-th/0209134]

[735] H. Pfeiffer. Positivity of relativistic spin network evaluations. Adv. Theor. Math. Phys.
6 (2003) 827. [gr-qc/0211106]

[736] M. Bojowald and A. Perez. Spin foam quantisation and anomalies. [gr-qc/0303026]
[737] L. Smolin and A. Starodubtsev. General relativity with a topological phase: an action

principle. [hep-th/0311163]
[738] L. Freidel and A. Starodubtsev. Quantum gravity in terms of topological observables.

[hep-th/0501191]
[739] L. Freidel, J. Kowalski-Glikman and A. Starodubtsev. Particles as Wilson lines of

gravitational field. [gr-qc/0607014]
[740] F. Markopoulou and L. Smolin. Causal evolution of spin networks. Nucl. Phys. B508

(1997) 409–30. [gr-qc/9702025]
[741] F. Markopoulou. Dual formulation of spin network evolution. [gr-qc/9704013]
[742] F. Markopoulou and L. Smolin. Quantum geometry with intrinsic local causality. Phys.

Rev. D58 (1998) 084032. [gr-qc/9712067]
[743] F. Markopoulou. The internal description of a causal set: what the universe is like from

inside. Commun. Math. Phys. 211 (2000) 559–83. [gr-qc/9811053]
[744] F. Markopoulou. Quantum causal histories. Class. Quant. Grav. 17 (2000) 2059–72.

[hep-th/9904009]
[745] F. Markopoulou. An insider’s guide to quantum causal histories. Nucl. Phys. Proc.

Suppl. 88 (2000) 308–13. [hep-th/9912137]
[746] E. R. Livine and D. Oriti. Implementing causality in the spin foam quantum geometry.

Nucl. Phys. B663 (2003) 231–79. [gr-qc/0210064]
[747] E. R. Livine and D. Oriti. Causality in spin foam models for quantum gravity.

[gr-qc/0302018]
[748] H. Pfeiffer. On the causal Barrett–Crane model: measure, coupling constant,

Wick rotation, symmetries and observables. Phys. Rev. D67 (2003) 064022.
[gr-qc/0212049]

[749] F. Markopoulou. An algebraic approach to coarse graining. [hep-th/0006199]
[750] F. Markopoulou. Coarse graining in spin foam models. Class. Quant. Grav. 20 (2003)

777–800. [gr-qc/0203036]



References 803

[751] A. Connes and D. Kreimer. Renormalisation in quantum field theory and the
Riemann–Hilbert problem. JHEP 9909 (1999) 024. [hep-th/9909126]

[752] A. Connes and D. Kreimer. Renormalisation in quantum field theory and the
Riemann–Hilbert problem. 1. The Hopf algebra structure of graphs and the main
theorem. Commun. Math. Phys. 210 (2000) 249–73. [hep-th/9912092]

[753] A. Connes and D. Kreimer. Renormalisation in quantum field theory and the
Riemann–Hilbert problem. 2. The beta function, diffeomorphisms and the
renormalisation group. Commun. Math. Phys. 216 (2001) 215–41. [hep-th/0003188]

[754] R. Oeckl. Renormalisation of discrete models without background. Nucl. Phys. B657
(2003) 107–38. [gr-qc/0212047]

[755] H. Pfeiffer. Four-dimensional lattice gauge theory with ribbon categories and the
Crane–Yetter state sum. J. Math. Phys. 42 (2001) 5272–305. [hep-th/0106029]

[756] H. Pfeiffer and R. Oeckl. The dual of non Abelian lattice gauge theory. Nucl. Phys.
Proc. Suppl. 106 (2002) 1010–12. [hep-lat/0110034]

[757] H. Pfeiffer and R. Oeckl. The dual of pure non Abelian lattice gauge theory as a spin
foam model. Nucl. Phys. B598 (2001) 400–26. [hep-th/0008095]

[758] R. Oeckl. Generalised lattice gauge theory, spin foams and state sum invariants. J.
Geom. Phys. 46 (2003) 308. [hep-th/0110259]

[759] H. Pfeiffer. Quantum general relativity and the classification of smooth manifolds.
[gr-qc/0404088]

[760] H. Pfeiffer. Diffeomorphisms from finite triangulations and absence of ‘local’ degrees of
freedom. Phys. Lett. B591 (2004) 197–201. [gr-qc/0312060]

[761] F. Girelli and H. Pfeiffer. Higher gauge theory: differential versus integral formulation.
J. Math. Phys. 45 (2004) 3949–71. [hep-th/0309173]

[762] H. Pfeiffer. Higher gauge theory and a non-Abelian generalisation of 2-form
electrodynamics. Annal. Phys. 308 (2003) 447. [hep-th/0304074]

[763] A. Mikovic. Spin foam models of matter coupled to gravity. Class. Quant. Grav. 19
(2202) 2335–54. [hep-th/0108099]

[764] D. Oriti and J. Ryan. Group field theory formulation of 3-D quantum gravity coupled
to matter fields. [gr-qc/0602010]

[765] D. Oriti and T. Tlas. Causality and matter propagation in 3-D spin foam quantum
gravity. [gr-qc/0608116]

[766] K. Noui and P. Roche. Cosmological deformation of Lorentzian spin foam models.
Class. Quant. Grav. 20 (2003) 3175–214. [gr-qc/0211109]

[767] E. Buffenoir, K. Noui and P. Roche. Hamiltonian quantisation of Chern–Simons theory
with SL(2,C) group. Class. Quant. Grav. 19 (2002) 4953. [hep-th/0202121]

[768] D. Oriti, C. Rovelli and S. Speziale. Spinfoam 2D quantum gravity and discrete
bundles. Class. Quant. Grav. 22 (2005) 85–108. [gr-qc/0406063]

[769] E. Livine and D. Oriti. About Lorentz invariance in a discrete quantum setting. JHEP
0406 (2004) 050. [gr-qc/0405085]

[770] F. Girelli, R. Oeckl and A. Perez. Spin foam diagrammatics and topological invariance.
Class. Quant. Grav. 19 (2002) 1093–108. [gr-qc/0111022]

[771] R. Oeckl. A ‘general boundary’ formulation for quantum mechanics and quantum
gravity. Phys. Lett. B575 (2003) 318. [hep-th/0306025]

[772] F. Conrady, L. Doplicher, R. Oeckl and C. Rovelli. Minkowski vacuum in background
independent quantum gravity. Phys. Rev. D69 (2004) 064019. [gr-qc/0307118]

[773] C. Rovelli. Graviton propagator from background-independent quantum gravity.
[gr-qc/0508124]

[774] E. Bianchi, L. Modesto, C. Rovelli and S. Speziale. Graviton propagator in loop
quantum gravity. [gr-qc/0604044]

[775] J. D. Bekenstein. Black holes and entropy. Phys. Rev. D7 (1973) 2333–46.
[776] J. D. Bekenstein. Generalised second law for thermodynamics in black hole physics.

Phys. Rev. D9 (1974) 3292–300.
[777] S. W. Hawking. Particle creation by black holes. Commun. Math. Phys. 43 (1975)

199–220.



804 References

[778] S. Hayward. Marginal surfaces and apparent horizons. [gr-qc/9303006]
[779] S. Hayward. On the definition of averagely trapped surfaces. Class. Quant. Grav. 10

(1993) L137–40. [gr-qc/9304042]
[780] S. Hayward. General laws of black hole dynamics. Phys. Rev. D49 (1994) 6467–74.
[781] S. Hayward, S. Mukohyama and M. C. Ashworth. Dynamic black hole entropy. Phys.

Lett. A256 (1999) 347–50. [gr-qc/9810006]
[782] A. Ashtekar, C. Beetle, O. Dreyer, S. Fairhurst, B. Krishnan, J. Lewandowski and J.

Wisniewski. Isolated horizons and their applications. Phys. Rev. Lett. 85 (2000)
3564–7. [gr-qc/0006006]

[783] A. Ashtekar. Classical and quantum physics of isolated horizons: a brief overview. Lect.
Notes Phys. 541 (2000) 50–70.

[784] A. Ashtekar. Interface of general relativity, quantum physics and statistical mechanics:
some recent developments. Annal. Phys. 9 (2000) 178–98. [gr-qc/9910101]

[785] A. Ashtekar, C. Beetle and S. Fairhurst. Isolated horizons: a generalisation of black
hole mechanics. Class. Quant. Grav. 16 (1999) L1–7. [gr-qc/9812065]

[786] A. Ashtekar and B. Krishnan. Dynamical horizons and their properties. Phys. Rev.
D68 (2003) 104030. [gr-qc/0308033]

[787] A. Ashtekar and B. Krishnan. Isolated and dynamical horizons and their applications.
Living Rev. Rel. 7 (2004) 10. [gr-qc/0407042]

[788] A. Ashtekar and K. Krasnov. Quantum geometry and black holes. [gr-qc/9804039]
[789] A. Ashtekar, A. Corichi and K. Krasnov. Isolated horizons: the classical phase space.

Adv. Theor. Math. Phys. 3 (2000) 419–78. [gr-qc/9905089]
[790] A. Ashtekar, C. Beetle and S. Fairhurst. Mechanics of isolated horizons. Class. Quant.

Grav. 17 (2000) 253–98. [gr-qc/9907068]
[791] A. Ashtekar, S. Fairhurst and B. Krishnan. Isolated horizons: Hamiltonian evolution

and the first law. Phys. Rev. D62 (2000) 104025. [gr-qc/0005083]
[792] L. Smolin. Linking topological quantum field theory and non-perturbative quantum

gravity. J. Math. Phys. 36 (1995) 6417. [gr-qc/9505028]
[793] S. Axelrod, S. D. Pietra and E. Witten. Geometric quantisation of Chern–Simons

gauge theory. J. Diff. Geo. 33 (1991) 787–902.
[794] D. Mumford. Tata Lectures on Theta I (Birkäuser, Boston, 1983).
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ADM formulation 31
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Abelian 186, 701
of almost periodic functions 713
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of cylindrical functions 153
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Grassmann 594
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von Neumann 387, 719

algebraically special spacetime 524
algebraic quantum field theory 3
almost periodic function 713
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annihilator subspace 619
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antisymmetrisation 593
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operator 432

of black hole 550
Arnowitt–Deser–Misner (ADM) action 46,
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Ashtekar

connection, see new connection
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–Isham space, see distributional

connection

–Lewandowski measure, see uniform
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asymptotically
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Minkoswki 61

atlas 585
locally finite 585

automorphism
of ∗-algebra 160, 720
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axiom of choice 649, 689

background independence 9
Banach–Steinhaus theorem 694,
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Barrett–Crane model 466
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subdivision 475

Bekenstein–Hawking entropy 511
Bergmann–Komar group 56
Bessel’s inequality 691
BF theory 462
Bianchi identity 131, 641
bi-vector, bi-co-vector 471
black body spectrum 558
black hole 511
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thermodynamics

zeroth law 526
entropy 511, 550
quasinormal modes 559

Bogol’ubov transformation 214
Bohr compactification 184, 213, 566,
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Bolzano–Weierstrass theorem 394, 579
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measure, see measure
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Boulatov–Ooguri matrix model 496
boundary data of fundamental atom 487
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bounded linear functional (BLT) theorem
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Calabi–Yau space 12, 626
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commutation relations 110, 110,
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group 621
quantisation 108
transformation, see symplectomorphism

Cantor aleph 321, 386
Cartan structure equation 641
category 166
Cauchy sequence 689
causal set Ansatz 22
caustic 517
Čech cohomology 655
cell complex, see simplicial complex
central extension, see Lie algebra
chain 473, 604

boundary 604
cycle 604
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on Banach algebra 702
on compact group 747, 752

chart 585
Chern class 626
Chern–Simons

action 314
theory 541

level 543
Christoffel symbols 43, 609
C∞-vector 219
classical limit 345
Clebsch–Gordan

coefficient 759
theorem 759

closed graph theorem 694
closure

of densely defined operator
700, 697

of metric space 690
of quadratic form 700

coarse graining 103
coboundary operator 467
cochain 467
Codacci equation 44
co-final subset 230
cohomology group 604
compactification 12
complete metric space, see

space
complex

line bundle 544, 653
manifold 623
null tetrad 516
structure 358, 624

almost 624

complexification 663
complexifier 357
configuration

coordinate 48, 615
space 48, 615

conformal
field theory (CFT) 15
invariance 610
isometry 611

congruence of curves 514
connection

affine 607
Levi–Civita 609
new 128
potential 638
one-form 637
spin 126, 614

congruence
null 514
geodesic 514

expansion 515
shear 515
twist 515

constraint
first-class 674
Gauß 128, 264
Hamiltonian 48, 279

Euclidean 287
primary 672
secondary 673
second-class 674
spatial diffeomorphism 48,

269
contraction semigroup 505
coordinates 585
cosmic censorship 518
cosmological constant 7

problem 7
covariance

general, see background independence
of Gaußian measure, see Gaußian

measure
covariant

derivative 640
differential 607, 642
phase space approach 22

Crane–Yetter model 496
crossing symmetry 461
curvature 608

field strength of 641
scalar 610
two-form 640

curve 163
beginning point 164
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integral 597
range 164
smooth 597

cutoff state 348
cycle 497
cylindrical

function 153
projection 184
family of measures

220

Darboux
coordinates 358
theorem 615

dark
energy 1, 7
matter 1

d-Bein 123
decoherence 100

functional 103
deficiency index 699
density 283, 612
deparametrisation 79
de Rham

cohomology 605
isomorphism 656
map 474
theorem 605

derivation, see vector field
diffeomorphism 586

active 587
analytic 586
group 585
passive 587
semianalytic, see semianalytic

diffeomorphism
diffeomorphism constraint

classical
ADM form 48
new variable form 133

quantum 269
differential

form
coboundary 604
cocycle 604
integration of 600
one- 591
n- 593

structure 585
Dirac

algebra 50
bracket 675
observable, see observable
quantisation 677

direct integral
decomposition 735
method 114, 735
of Hilbert spaces 114, 737, 738

directed
set 141
system

of Hilbert spaces 230
of operators 230

Dirichlet–Voronoi construction 351
discretisation theory 472
distribution

complex 666
horizontal 637
of tangent spaces 616

characteristic 619
integrable 616
integral manifold of 616
reducible 619

tempered 693
vertical 637

distributional
connection 171

modulo distributional gauge
transformation 176

connections modulo gauge transformations
179

gauge transformation 175
divergence

ultraviolet avoidance 6, 11,
282

of vector field 228
domain questions 111
doubly special relativity 574
dual simplicial complex 473
dual space

algebraic 731
topological 691, 731

duality transformations 13
dynamical triangulation 19

edge 166, 633
amplitude 481
germ 207
independence 168

Ehrenfest property 354
Einstein

equation
classical 5
quantum 5

–Hilbert Lagrangian 39
Elliot–Biedenharn identity 452
embedding 163, 586

regular 586
electric field 405
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energy condition
dominant 517
strong 517
weak 517

entropy, see black hole entropy
enveloping algebra 110
Epstein and Glaser renormalisation 3
equivariant 584, 640, 644
ergodic

mean 81, 115, 736
group action 245, 687

Euler characteristic 534
Euler–Poincaré theorem 605
Everett interpretation 104
evolution equation 49, 50, 60
evolving constant 78
expansion 514
expectation value property 354
exponential map 608
exterior

derivation 594
product 593

face 472
amplitude 481
in dual of 4D simplicial complex 477
of flux 192, 633
of simplicial complex 472

factor of von Neumann algebra 388
factor ordering

ambiguity 112
singularity 112

Fell’s theorem 722
Feynman diagram 497
Feynman–Kac formula 505
fermion coupling 406, 422
fibre bundle

base space 634
complex line 544
local trivialisation 634
of linear frames 613
of orthonormal frames 614
principal 635
projection 634
section 635

cross- 635
structure group 634
total space 634
transition function 634
trivial 635
typical fibre 634
vector 636

fibre metric 544, 654
field 701
finiteness (UV), see divergence

fluctuation property 354
flux

classical 159
operator 219
vector fields 202

Fock space 2
foliation, see integral manifold of distribution

leaf of 616
reducible 616

folium, see state
four-simplex 477
fractal 380
Fréchet space 694, 730, 773
free tensor algebra 110
Friedmann–Robertson–Walker (FRW) model

564
Friedrich extension 114, 324, 700
Frobenius’ theorem 42, 517, 617
Fubini’s theorem 224, 261, 682
function

continuous 577
cylindrical 160, 153
smooth 590

functional calculus 728
functor 166
fundamental atom 486
fundamental form

first 42
second 42

γ-ray burst 1, 572
gauge fixing 678
gauge transformation 60, 639

generator of 674
Gauß constraint

classical 128, 133
quantum 264

Gauß equation 43
Gauß–Bonnet theorem 534
Gel’fand

isomorphism 186, 711
–Naimark–Segal construction, see GNS

construction
theorem 705
topology 708
transform 709
triple 731

generalised eigenvector 112, 732
geodesic completeness 608
geodesic equation 514, 608

affine parametrisation 514
GLAST detector 1
globally hyperbolic 40, 517
GNS construction 111, 720
graph 168
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of densely defined operator 700
of bounded operator 694

gravitational electric field, see new electric
field

gravitons 390
Gribov copies 678
Groenwald–van Hove theorem 662
group action 582, 621

effective 621
ergodic 687
free 621
measure preserving 687
transitive 621

group averaging 113, 733
group field theory (GFT) 495
groupoid 166
group theoretical quantisation 621

Haag’s theorem 178
Haag–Kastler axioms 722
Haar measure, see measure
Hahn–Banach theorem 693, 721
Hamiltonian constraint

classical
ADM form 48
new variable form 133

quantum 286
Hamiltonian equations of motion 50
Hamilton–Jacobi equation 618
Hartle–Hawking wave function, see path

integral
Hausdorff 170, 578
Hawking effect 512
Heine–Borel theorem 579
Hellinger–Töplitz theorem 694
Hermitian

manifold 625
structure 625

Higgs field 411, 425
Hilbert–Schmidt

operator 697, 747
theorem 696

history bracket formulation
20

Hodge operator 466, 474
holographic principle 15
holonomy 158, 168

–flux algebra 205
operator 219
point 415

homeomorphism 577
homology group 604
hoop 167

independence 172
tame 172

Hopf algebra 508, 574
horizon

apparent 517
dynamical 519
event 517
isolated 520

weakly 520
spherically symmetric 526

Killing 526
non-expanding 433
non-rotating 520
trapping 519

horizontal lift 639
hypersurface 585

deformation algebra 50

ideal 701
left 701
maximal 703
right 701

immersion 163, 586
Immirzi parameter 127
inductive limit

of Hilbert spaces 230
of operators 230

inflation 563
inflaton 563
initial singularity 563
inner product 691
interior product 594
intertwiner 237, 752, 757
involution 701
isometric monomorphism 230,

375
isometry

of Hilbert space 695
of spacetime metric 611

Jacobi identity 590
Jones polynomial 144

Kähler
form 625
manifold 625
metric 626
polarisation 358, 665
potential 626

Kaluza–Klein
modes 12
theory 12

Killing field 611
kinematical

Hilbert space 96
representation 111
state 96
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knot theory 144
Kodama state 314

Lagrangian
Einstein–Hilbert, see Einstein–Hilbert

Lagrangian
singular 671
type of subspace 665

Kähler 665
non-negative 665
positive 665
real 665

landscape 15
lapse function 41
lattice

gauge theory 329
quantum gravity 19

Lebesgue
decomposition theorem 743
integral 681

Legendre transform 671
Leibniz rule, see vector field
length operator 431, 453
Leray cover 656
Levi–Civita

connection 609
totally skew symbol 611

Lie
algebra 590

central extension of 622
coboundary 622
cochain 622
cocycle 622
cohomology 622
obstruction cocycle 622

bracket 590
derivative 597

Liouville
form 615
measure 354, 361

local quantum physics 4, 722
loop representation 237
LQG string 215
Lusin’s theorem 685

magnetic field 405, 419
manifold 585

complex analytic, see holomorphic, see
complex manifold

differentiable Ck sub- 585
dimension of 585
embedded sub- 585
holomorphic 585, 623
Kähler, see Kähler manifold
orientable 585

paracompact 585
Poisson, see symplectic manifold
real analytic 585
smooth 585
symplectic, see symplectic manifold
with boundary 585

mapping class group 272
master

constraint 80, 317, 735
algebra 319
extended 329
programme 80

equation 80
matrix model 496
m-(co)-bein 614
McDowell–Mansouri action 507
measurable

function 221, 680
set 680
space 680

measure
absolutely continuous 683
Borel 220, 684
class 738

disjoint 738
complex 680
consistent family of 220
equivalent 738
faithful 222, 685
Gaußian 392, 413

covariance of 392, 413
generating functional of 392
white noise covariance 413

Haar 223, 748
left 748
right 748

mutually singular 683
positive 680

definite 681
probability 220
pushforward of 220
regular 220, 684
σ-finite 683
space 680

completion of 683
spectral 728
support of 236, 683
uniform 223

metaplectic correction 669
metric

space 577, 689
tensor 609

microlocal analysis 3
minimal uncertainty relation 355
mixing 688
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modular theory 388
module 701
momentum coordinate 48, 615
momentum map 622
momentum operator 229
M-theory 13
multiplicity 738
multisymplectic Ansatz 20

neighbourhood 577
Nelson’s analytic vector theorem 337,

339
net 173, 578

convergence 578
of local algebras 722
subnet 578
universal 578

Newlander and Nirenberg theorem 625
Newman–Penrose coefficient 524, 532
new

connection 128
electric field 124
variables 123

Nijenhuis tensor 625
non-commutative geometry 22
non-observable 78
norm on normed space 690
normal bundle 633
nuclear

operator 747
topology 297, 418, 730

null
congruence 514
infinity 517
normal 517
surface 517
tetrad 516

observable
complete 78
Dirac

strong 674
weak 674

partial 78
operator

adjoint of 695, 697
algebra 719
bounded 695
closable 697
closure of 697
compact 696

singular values of 696
domain of 697
graph of 697
Hilbert–Schmidt 697, 747

nuclear = trace class 697, 747
positive 688
resolvent 697

set 697
self-adjoint 695, 697

essentially 697
spectrum of 697
symmetric 697
topology

strong 695
uniform 695
weak 695
weak∗ 695

trace class 697, 747
unbounded 697
unitary 692

orbit 582
orthonormal basis 692
Osterwalder–Schrader reconstruction 147
overcompleteness 355
overlap function 355, 766

pairing 669
parallel transport 607, 643

equation 639
partial isometry 695

final subspace 695
initial subspace 695
kernel 695
range 695

partial order 141
partial trace 100
partition 582

function 464
of unity 587

path 164
path integral

Euclidean 19
Hartle–Hawking proposal 19
non-Gaußian fixed point 19

peakedness property 355
pentagon diagram 482
perturbative quantum gravity 8
Peter and Weyl theorem 239, 753
Petrov type 524
Pfaff system 617
phase space 46, 614
phenomenology match of string theory 12
physical

Hamiltonian 90
inner product 96
state 96

Plancherel
formula 258
theorem 148
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Plebanski

action 466
constraints 466

Pohlmeyer string 23
Poincaré algebra 72
Poincaré’s lemma 605
Poisson resummation formula 383, 766
polar decomposition 696
polarisation 334, 543, 662

admissible 666
complex 666
Kähler, see Kähler polarisation

polarised 666
section 668

Ponzano–Regge model 496
positive linear functional 221, 684
pre-Hilbert space 691
prequantum

bundle 662
Hilbert space 662
operator 544, 662

problem of time 74
projection-valued measure 728
projective

family 141
limit 141

propagator 497
pseudo-tensor 612

quadratic form 700
quantisation

canonical 107
Dirac, see canonical
gauge fixed 562
geometric 652
group theoretical 621
map 110
reduced phase space 90
refined algebraic 729

quantum constraint equation 96
quantum group 549, 574
quantum spin dynamics (QSD) 286
quasinormal modes 559
quasiperiodic functions 565
quotient map 582

Racah formula 451
Radon–Nikodym

derivative 683
theorem 683

rapid decrease 693
reality conditions 110, 135, 206, 334
recoupling scheme 451, 758, 759
refined algebraic quantisation 264, 729

Regge calculus 19
relational Ansatz 74
representation

of ∗-algebra 111, 719
cyclic 719
equivalent 719
faithful 719
irreducible 719
non-degenerate 719

of group 746
character of 746
completely reducible 746
conjugacy class of 746
contragredient 746
dimension of 746
dual 746
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faithful 746
induced 752
invariant subspace of 746
irreducible 746
reducible 746
tensor product 746
unitary 746

of holonomy–flux algebra 219
resolvent 703

set 703
Ricci tensor 609
Riemannian space 609
Riemann tensor 610
Riemann Theta function 546
Riesz lemma 697, 692
Riesz–Markov theorem 222, 684
Riesz representation theorem, see

Riesz–Markov theorem
Riesz–Schauder theorem 696
rigged Hilbert space, see Gel’fand triple
rigging map 96, 114, 732
ring 701
root of unity 549
Rovelli–Smolin

Wilson loop functions, see spin-network
spin-networks, see spin-network

scale factor 564
Schur’s lemma 752
Schwarz inequality 692
Schwinger function 497
Segal–Bargmann

representation 358
transform 142, 146

self-adjointness 697
basic criterion of 697
essential 697

basic criterion of 697
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self-dual
connection 134
spinor 527
tensor

Euclidean signature 467
Lorentzian signature 528

semianalytic
atlas 631
bundle automorphism 210
diffeomorphism 210, 269, 630
function 628
manifold 631
map 631
partition 627

analytic 631
structure 163, 631
submanifold 631

semiclassical limit, see classical limit
seminorm 694
semi-semianalytic partition 630
separable

Hilbert space 692
topological space 578

separating the points 581, 694
set

Borel 684
inner regular 684
outer regular 684

closed 577
of measure zero 681
open 577
σ-compact 683
σ-finite 683
thick 683

shadow 153, 349, 380
shear 514
shift vector field 41
σ-algebra 170, 680

Borel 680
signature

Euclidean 609
Lorentzian 609

simple
intertwiner 494
representation 490

simplex 472
simplicial complex 472
simplicity constraint 463, 482
singularity 518

big bang 564
curvature 567
initial 518
naked 518
resolution 564

6j-symbol 451

skeletonisation 505
Smolin–Rovelli

Wilson loop functions, see spin-network
spin-networks, see spin-network

Sobolev topology 770, 772
soldering form 123, 527
space

Banach 690, 693
Hilbert 691
locally convex 694
metric 689

complete 689
normed 690
reflexive 691
topological 577

spatial diffeomorphism constraint, see
diffeomorphism constraint

spectral
measure 723
projection 728
radius 703
theorem 726

spectrum
of normal operator 723

continuous 697
discrete 697
essential 697
pure point 697

of normed, unital algebra element 703
of unital Banach algebra 702

spin foam model 458
spin-network 241

function 237, 755
spinor calculus 527
standard model 399
state on ∗-algebra 720

as positive linear functional
720

coherent 354
faithful 722
folium of 390, 721
invariant 720
mixed 720
normalised 720
polarised 544, 668
pure 720
regular 215
semiclassical 354
vector 720

state sum model 458
Stokes’ theorem 602
Stone–Čech compactification 713
Stone–von Neumann theorem 213
Stone–Weierstrass theorem 581
string field theory 14
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string theory 11
subgroupoid 166

tame 142
submanifold

co-isotropic 619
isotropic 619
Lagrangian 358, 619
symplectic 619

subsimplex 472
supergravity 8, 16
superstring theory, see string theory
supersymmetry 10
support

of function 587, 684
of measure, see thick set

surface gravity 514
symmetrisation 593
symmetry 65, 341
symplectic

group action 621
isometry, see symplectomorphism
manifold 614

presymplectic 619
potential 614
reduction 616
structure 614
submanifold 619

symplectomorphism 616

tangent space 592
tempered distribution 693
tensor

bundle 592
density, see density
field 591

contravariant 591
covariant 591

invariant 612
pull-back 595
push-forward 595
transformation law 595

tetrad, see m-(co)-bein
θ-moduli 149, 272, 326, 347
time

coordinate 74
parameter 74
physical 74
slice axiom 4
unphysical 74

topological
inclusion 577
isomorphism, see homeomorphism
quantum field theory 458
space 577

compact 578

disconnected 578
first countable 578
Hausdorff 578
locally compact 683
locally convex, see Fréchet space
normal 578
regular 578
second countable 578
separable 578

topology 577
base for 577
change 40, 384
coarser 577
finer 577
induced 577
quotient 582
relative 577
stronger 577
strong operator 297
subset 581
Tychonov 579
uniform 297
URST 298
weaker 577
weak operator 297
weak ∗ operator 297, 708

topos theory 22
Torre–Varadarajan obstruction 216
torsion 608
trace class operator 721, 747
trapped

region 517
total 517

surface 517
inner marginally 517
marginally 517
outer marginally 517

triad 123, see m-(co)-bein
triangulation 288, 465, 472

dual 473
independence 495

Turarev–Ooguri–Crane–Yetter model
465

Turarev–Viro model 496
twist 514
twistor theory 22
Tychonov topology 170, 173, 579

ultraviolet finiteness 282
uniqueness theorem

for LQG 214
existence 219
irreducibility 252
uniqueness 247

Stone–von Neumann 213
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Unruh effect 512
Urysohn’s lemma 581

vacuum degeneracy in string theory 12
Varadarajan map 394
vector field 590

contraction with respect to 592
flow of 597
Hamiltonian 616

vertex 168
amplitude 481
of Feynman diagram 497

volume operator 290, 438
consistency with flux operator 453

von Neumann
mean ergodic theorem 687
self-adjointness criterion 339

wave function of the universe, see
Hartle–Hawking proposal

weak continuity 213
weave 349

wedge of fundamental atom 486
wedge product, see exterior product
Weierstrass theorem, see Stone–Weierstrass

theorem
Weil integrality criterion 543, 658, 659
Weingarten map 525
Weyl element 110, 206
Weyl group 766
Weyl tensor 524, 610
Wheeler–DeWitt equation 17, 311
white noise covariance 413
Whitney map 474
Wick transform 287, 334
Wightman axioms 2
WMAP satellite 1

Yang–Mills field 419
Young tableaux 755

zeroth law of black hole thermodynamics
526

Zorn’s lemma 649, 689


