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Probability and Statistics by Example: I

Probability and statistics are as much about intuition and problem solving, as
they are about theorem proving. Because of this, students can find it very
difficult to make a successful transition from lectures to examinations to practice,
since the problems involved can vary so much in nature. Since the subject is
critical in many modern applications such as mathematical finance, quantitative
management, telecommunications, signal processing, bioinformatics, as well as
traditional ones such as insurance, social science and engineering, the authors
have rectified deficiencies in traditional lecture-based methods by collecting
together a wealth of exercises for which they’ve supplied complete solutions.
These solutions are adapted to the needs and skills of students. To make it of
broad value, the authors supply basic mathematical facts as and when they are
needed, and have sprinkled some historical information throughout the text.
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Preface

The original motivation for writing this book was rather personal. The first author, in the
course of his teaching career in the Department of Pure Mathematics and Mathematical
Statistics (DPMMS), University of Cambridge, and St John’s College, Cambridge, had
many painful experiences when good (or even brilliant) students, who were interested
in the subject of mathematics and its applications and who performed well during their
first academic year, stumbled or nearly failed in the exams. This led to great frustration,
which was very hard to overcome in subsequent undergraduate years. A conscientious
tutor is always sympathetic to such misfortunes, but even pointing out a student’s obvious
weaknesses (if any) does not always help. For the second author, such experiences were
as a parent of a Cambridge University student rather than as a teacher.

We therefore felt that a monograph focusing on Cambridge University mathematics
examination questions would be beneficial for a number of students. Given our own
research and teaching backgrounds, it was natural for us to select probability and statistics
as the overall topic. The obvious starting point was the first-year course in probability
and the second-year course in statistics. In order to cover other courses, several further
volumes will be needed; for better or worse, we have decided to embark on such a project.

Thus our essential aim is to present the Cambridge University probability and statis-
tics courses by means of examination (and examination-related) questions that have been
set over a number of past years. Following the decision of the Board of the Faculty of
Mathematics, University of Cambridge, we restricted our exposition to the Mathematical
Tripos questions from the years 1992–1999. (The questions from 2000–2004 are available
online at http://www.maths.cam.ac.uk/ppa/.) Next, we included some IA Probability reg-
ular example sheet questions from the years 1992–2003 (particularly those considered as
difficult by students). Further, we included the problems from Specimen Papers issued in
1992 and used for mock examinations (mainly in the beginning of the 1990s) and selected
examples from the 1992 list of so-called sample questions. A number of problems came
from example sheets and examination papers from the University of Wales-Swansea.

Of course, Cambridge University examinations have never been easy. On the basis of
examination results, candidates are divided into classes: first, second (divided into two
categories: 2.1 and 2.2) and third; a small number of candidates fail. (In fact, a more
detailed list ranking all the candidates in order is produced, but not publicly disclosed.)
The examinations are officially called the ‘Mathematical Tripos’, after the three-legged
stools on which candidates and examiners used to sit (sometimes for hours) during oral

vii



viii Preface

examinations in ancient times. Nowadays all examinations are written. The first-year of
the three-year undergraduate course is called Part IA, the second Part IB and the third
Part II.

For example, in May–June of 2003 the first-year mathematics students sat four exam-
ination papers; each lasted three hours and included 12 questions from two subjects.
The following courses were examined: algebra and geometry, numbers and sets, analysis,
probability, differential equations, vector calculus, and dynamics. All questions on a given
course were put in a single paper, except for algebra and geometry, which appears in two
papers. In each paper, four questions were classified as short (two from each of the two
courses selected for the paper) and eight as long (four from each selected course). A can-
didate might attempt all four short questions and at most five long questions, no more than
three on each course; a long question carries twice the credit of a short one. A calculation
shows that if a student attempts all nine allowed questions (which is often the case), and
the time is distributed evenly, a short question must be completed in 12–13 minutes and
a long one in 24–25 minutes. This is not easy and usually requires special practice; one
of the goals of this book is to assist with such a training programme.

The pattern of the second-year examinations has similarities but also differences. In
June 2003, there were four IB Maths Tripos papers, each three hours long and containing
nine or ten short and nine or ten long questions in as many subjects selected for a given
paper. In particular, IB statistics was set in Papers 1, 2 and 4, giving a total of six
questions. Of course, preparing for Part IB examinations is different from preparing for
Part IA; we comment on some particular points in the corresponding chapters.

For a typical Cambridge University student, specific preparation for the examinations
begins in earnest during the Easter (or Summer) Term (beginning in mid-April). Ideally,
the work might start during the preceding five-week vacation. (Some of the examination
work for Parts IB and II, the computational projects, is done mainly during the summer
vacation period.) As the examinations approach, the atmosphere in Cambridge can become
rather tense and nervous, although many efforts are made to diffuse the tension. Many
candidates expend a great deal of effort in trying to calculate exactly how much work
to put into each given subject, depending on how much examination credit it carries and
how strong or weak they feel in it, in order to optimise their overall performance. One
can agree or disagree with this attitude, but one thing seemed clear to us: if the students
receive (and are able to digest) enough information about and insight into the level and
style of the Tripos questions, they will have a much better chance of performing to the
best of their abilities. At present, owing to great pressures on time and energy, most
of them are not in a position to do so, and much is left to chance. We will be glad
if this book helps to change this situation by alleviating pre-examination nerves and by
stripping Tripos examinations of some of their mystery, at least in respect of the subjects
treated here.

Thus, the first reason for this book was a desire to make life easier for the students.
However, in the course of working on the text, a second motivation emerged, which we
feel is of considerable professional interest to anyone teaching courses in probability and
statistics. In 1991–2 there was a major change in Cambridge University to the whole
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approach to probabilistic and statistical courses. The most notable aspect of the new
approach was that the IA Probability course and the IB Statistics course were redesigned
to appeal to a wide audience (200 first-year students in the case of IA Probability and
nearly the same number of the second-year students in the case of IB Statistics). For a large
number of students, these are the only courses from the whole of probability and statistics
which they attend during their undergraduate years. Since more and more graduates in
the modern world have to deal with theoretical and (especially) applied problems of a
probabilistic or statistical nature, it is important that these courses generate and maintain a
strong and wide appeal. The main goal shifted, moving from an academic introduction to
the subject towards a more methodological approach which equips students with the tools
needed to solve reasonable practical and theoretical questions in a ‘real life’ situation.

Consequently, the emphasis in IA Probability moved further away from sigma-algebras,
Lebesgue and Stiltjies integration and characteristic functions to a direct analysis of various
models, both discrete and continuous, with the aim of preparing students both for future
problems and for future courses (in particular, Part IB Statistics and Part IB/II Markov
chains). In turn, in IB Statistics the focus shifted towards the most popular practical
applications of estimators, hypothesis testing and regression. The principal determination
of examination performance in both IA Probability and IB Statistics became students’
ability to choose and analyse the right model and accurately perform a reasonable amount
of calculation rather than their ability to solve theoretical problems.

Certainly such changes (and parallel developments in other courses) were not always
unanimously popular among the Cambridge University Faculty of Mathematics, and
provoked considerable debate at times. However, the student community was in general
very much in favour of the new approach, and the ‘redesigned’ courses gained increased
popularity both in terms of attendance and in terms of attempts at examination questions
(which has become increasingly important in the life of the Faculty of Mathematics). In
addition, with the ever-growing prevalence of computers, students have shown a strong
preference for an ‘algorithmic’ style of lectures and examination questions (at least in the
authors’ experience).

In this respect, the following experience by the first author may be of some interest.
For some time I have questioned former St John’s mathematics graduates, who now have
careers in a wide variety of different areas, about what parts of the Cambridge University
course they now consider as most important for their present work. It turned out that the
strongest impact on the majority of respondents is not related to particular facts, theorems,
or proofs (although jokes by lecturers are well remembered long afterwards). Rather
they appreciate the ability to construct a mathematical model which represents a real-life
situation, and to solve it analytically or (more often) numerically. It must therefore be
acknowledged that the new approach was rather timely. As a consequence of all this, the
level and style of Maths Tripos questions underwent changes. It is strongly suggested
(although perhaps it was not always achieved) that the questions should have a clear
structure where candidates are led from one part to another.

The second reason described above gives us hope that the book will be interesting
for an audience outside Cambridge. In this regard, there is a natural question: what is
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the book’s place in the (long) list of textbooks on probability and statistics. Many of the
references in the bibliography are books published in English after 1991, containing the
terms ‘probability’ or ‘statistics’ in their titles and available at the Cambridge University
Main and Departmental Libraries (we are sure that our list is not complete and apologise
for any omission).

As far as basic probability is concerned, we would like to compare this book with
three popular series of texts and problem books, one by S. Ross [Ros1–Ros6], another
by D. Stirzaker [St1–St4], and the third by G. Grimmett and D. Stirzaker [GriS1–GriS3].
The books by Ross and Stirzaker are commonly considered as a good introduction to the
basics of the subject. In fact, the style and level of exposition followed by Ross has been
adopted in many American universities. On the other hand, Grimmett and Stirzaker’s
approach is at a much higher level and might be described as ‘professional’. The level of
our book is intended to be somewhere in-between. In our view, it is closer to that of Ross
or Stirzaker, but quite far away from them in several important aspects. It is our feeling
that the level adopted by Ross or Stirzaker is not sufficient to get through Cambridge
University Mathematical Tripos examinations with Class 2.1 or above. Grimmett and
Stirzaker’s books are of course more than enough – but in using them to prepare for
an examination the main problem would be to select the right examples from among a
thousand on offer.

On the other hand, the above monographs, as well as many of the books from the
bibliography, may be considered as good complementary reading for those who want to
take further steps in a particular direction. We mention here just a few of them: [Chu],
[Dur1], [G], [Go], [JP], [Sc] and [ChaY]. In any case, the (nostalgic) time when everyone
learning probability had to read assiduously through the (excellent) two-volume Feller
monograph [Fe] had long passed (though in our view, Feller has not so far been surpassed).

In statistics, the picture is more complex. Even the definition of the subject of statistics
is still somewhat controversial (see Section 3.1). The style of lecturing and examining
the basic statistics course (and other statistics-related courses) at Cambridge University
was always rather special. This style resisted a trend of making the exposition ‘fully
rigorous’, despite the fact that the course is taught to mathematics students. A minority
of students found it difficult to follow, but for most of them this was never an issue.
On the other hand, the level of rigour in the course is quite high and requires substantial
mathematical knowledge. Among modern books, the closest to the Cambridge University
style is perhaps [CaB]. As an example of a very different approach, we can point to [Wil]
(whose style we personally admire very much but would not consider as appropriate for
first reading or for preparing for Cambridge examinations).

A particular feature of this book is that it contains repetitions: certain topics and
questions appear more than once, often in slightly different form, which makes it difficult
to refer to previous occurrences. This is of course a pattern of the examination process
which becomes apparent when one considers it over a decade or so. Our personal attitudes
here followed a proverb ‘Repetition is the mother of learning’, popular (in various forms)
in several languages. However, we apologise to those readers who may find some (and
possibly many) of these repetitions excessive.
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This book is organised as follows. In the first two chapters we present the material
of the IA Probability course (which consists of 24 one-hour lectures). In this part the
Tripos questions are placed within or immediately following the corresponding parts of
the expository text. In Chapters 3 and 4 we present the material from the 16-lecture IB
Statistics course. Here, the Tripos questions tend to embrace a wider range of single topics,
and we decided to keep them separate from the course material. However, the various
pieces of theory are always presented with a view to the rôle they play in examination
questions.

Displayed equations, problems and examples are numbered by chapter: for instance, in
Chapter 2 equation numbers run from (2.1) to (2.102), and there are Problems 2.1–2.55.

Symbol � marks the end of a solution of a given problem. Symbol � marks the end
of an example.

A special word should be said about solutions in this book. In part, we use students’
solutions or our own solutions (in a few cases solutions are reduced to short answers
or hints). However, a number of the so-called examiners’ model solutions have also
been used; these were originally set by the corresponding examiners and often altered by
relevant lecturers and co-examiners. (A curious observation by many examiners is that,
regardless of how perfect their model solutions are, it is rare that any of the candidates
follow them.) Here, we aimed to present all solutions in a unified style; we also tried
to correct mistakes occurring in these solutions. We should pay the highest credit to all
past and present members of the DPMMS who contributed to the painstaking process of
supplying model solutions to Tripos problems in IA Probability and IB Statistics: in our
view their efforts definitely deserve the deepest appreciation, and this book should be
considered as a tribute to their individual and collective work.

On the other hand, our experience shows that, curiously, students very rarely follow
the ideas of model solutions proposed by lecturers, supervisors and examiners, however
impeccable and elegant these solutions may be. Furthermore, students understand each
other much more quickly than they understand their mentors. For that reason we tried to
preserve whenever possible the style of students’ solutions throughout the whole book.

Informal digressions scattered across the text have been borrowed from [Do], [Go],
[Ha], the St Andrew’s University website www-history.mcs.st-andrews.ac.uk/history/ and
the University of Massachusetts website www.umass.edu/wsp/statistics/tales/. Conver-
sations with H. Daniels, D.G. Kendall and C.R. Rao also provided a few subjects.
However, a number of stories are just part of folklore (most of them are accessible
through the Internet); any mistakes are our own responsibility. Photographs and por-
traits of many of the characters mentioned in this book are available on the University
of York website www.york.ac.uk/depts/maths/histstat/people/ and (with biographies) on
http://members.aol.com/jayKplanr/images.htm.

The advent of the World Wide Web also had another visible impact: a proliferation
of humour. We confess that much of the time we enjoyed browsing (quite numerous)
websites advertising jokes and amusing quotations; consequently we decided to use some
of them in this book. We apologise to the authors of these jokes for not quoting them
(and sometimes changing the sense of sentences).
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Throughout the process of working on this book we have felt both the support and the
criticism (sometimes quite sharp) of numerous members of the Faculty of Mathematics
and colleagues from outside Cambridge who read some or all of the text or learned
about its existence. We would like to thank all these individuals and bodies, regardless
of whether they supported or rejected this project. We thank personally Charles Goldie,
Oliver Johnson, James Martin, Richard Samworth and Amanda Turner, for stimulating
discussions and remarks. We are particularly grateful to Alan Hawkes for the limitless
patience with which he went through the preliminary version of the manuscript. As
stated above, we made wide use of lecture notes, example sheets and other related texts
prepared by present and former members of the Statistical Laboratory, Department of
Pure Mathematics and Mathematical Statistics, University of Cambridge, and Mathematics
Department and Statistics Group, EBMS, University of Wales-Swansea. In particular,
a large number of problems were collected by David Kendall and put to great use in
Example Sheets by Frank Kelly. We benefitted from reading excellent lecture notes
produced by Richard Weber and Susan Pitts. Damon Wischik kindly provided various
tables of probability distributions. Statistical tables are courtesy of R. Weber.

Finally, special thanks go to Sarah Shea-Simonds and Maureen Storey for carefully
reading through parts of the book and correcting a great number of stylistic errors.
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1 Discrete outcomes

1.1 A uniform distribution

Lest men suspect your tale untrue,
Keep probability in view.

J. Gay (1685–1732), English poet

In this section we use the simplest (and historically the earliest) probabilistic model where
there are a finite number m of possibilities (often called outcomes) and each of them has
the same probability 1/m. A collection A of k outcomes with k≤m is called an event
and its probability ��A� is calculated as k/m:

��A�= the number of outcomes inA
the total number of outcomes

� (1.1)

An empty collection has probability zero and the whole collection one. This scheme looks
deceptively simple: in reality, calculating the number of outcomes in a given event (or
indeed, the total number of outcomes) may be tricky.

Problem 1.1 You and I play a coin-tossing game: if the coin falls heads I score one,
if tails you score one. In the beginning, the score is zero. (i) What is the probability that
after 2n throws our scores are equal? (ii) What is the probability that after 2n+ 1 throws
my score is three more than yours?

Solution The outcomes in (i) are all sequences HHH� � � H�THH� � � H� � � � � TTT� � � T
formed by 2n subsequent letters H or T (or, 0 and 1). The total number of outcomes is
m=22n, each carries probability 1/22n. We are looking for outcomes where the number of
Hs equals that of T s. The number k of such outcomes is �2n�!/n!n! (the number of ways
to choose positions for n Hs among 2n places available in the sequence). The probability

in question is
�2n�!
n!n! × 1

22n
.

In (ii), the outcomes are the sequences of length 2n+ 1, 22n+1 in total. The probability
equals

�2n+ 1�!
�n+ 2�!�n− 1�! ×

1
22n+1

� �

3



4 Discrete outcomes

Problem 1.2 A tennis tournament is organised for 2n players on a knock-out basis,
with n rounds, the last round being the final. Two players are chosen at random. Calculate
the probability that they meet (i) in the first or second round, (ii) in the final or semi-final,
and (iii) the probability they do not meet.

Solution The sentence ‘Two players are chosen at random’ is crucial. For instance,
one may think that the choice has been made after the tournament when all results are
known. Then there are 2n−1 pairs of players meeting in the first round, 2n−2 in the second
round, two in the semi-final, one in the final and 2n−1 + 2n−2 + · · ·+ 2+ 1= 2n− 1 in all
rounds.

The total number of player pairs is
(
2n

2

)
= 2n−1�2n − 1�. Hence the answers:

�i�
2n−1 + 2n−2

2n−1�2n − 1�
= 3

2�2n − 1�
� �ii�

3
2n−1�2n − 1�

�

and

�iii�
2n−1�2n − 1�− �2n − 1�

2n−1�2n − 1�
= 1− 1

2n−1
� �

Problem 1.3 There are n people gathered in a room.

(i) What is the probability that two (at least) have the same birthday? Calculate the
probability for n= 22 and 23.

(ii) What is the probability that at least one has the same birthday as you? What
value of n makes it close to 1/2?

Solution The total number of outcomes is 365n. In (i), the number of outcomes not
in the event is 365× 364× · · · × �365− n+ 1�. So, the probability that all birthdays are
distinct is

(
365× 364× · · ·× �365− n+ 1�

)/
365n and that two or more people have the

same birthday

1− 365× 364× · · ·× �365− n+ 1�
365n

�

For n= 22:

1− 365
365

× 364
365

× · · ·× 344
365

= 0�4927�

and for n= 23:

1− 365
365

× 364
365

× · · ·× 343
365

= 0�5243�

In (ii), the number of outcomes not in the event is 364n and the probability in question
1− �364/365�n. We want it to be near 1/2, so(

364
365

)n
≈ 1

2
� i.e. n≈− 1

log2�364/365�
≈ 252�61� �
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Problem 1.4 Mary tosses n+ 1 coins and John tosses n coins. What is the probability
that Mary gets more heads than John?

Solution 1 We must assume that all coins are unbiased (as it was not specified other-
wise). Mary has 2n+1 outcomes (all possible sequences of heads and tails) and John 2n;
jointly 22n+1 outcomes that are equally likely. Let HM and TM be the number of Mary’s
heads and tails and HJ and TJ John’s, then HM + TM = n+ 1 and HJ + TJ = n. The
events �HM>HJ� and �TM>TJ� have the same number of outcomes, thus ��HM>HJ�=
��TM>TJ�.

On the other hand, HM>HJ if and only if n−HM<n−HJ, i.e. TM −1<TJ or TM≤TJ.
So event HM>HJ is the same as TM ≤TJ, and ��TM ≤TJ�=��HM>HJ�.

But for any (joint) outcome, either TM>TJ or TM ≤TJ, i.e. the number of outcomes in
�TM>TJ� equals 2

2n+1 minus that in �TM ≤TJ�. Therefore, ��TM>TJ�= 1−��TM ≤TJ�.
To summarise:

��HM>HJ�=��TM>TJ�= 1−��TM ≤TJ�= 1−��HM>HJ��

whence ��HM>HJ�= 1/2.

Solution 2 (Fallacious, but popular with some students.) Again assume that all coins
are unbiased. Consider pair �HM�HJ�, as an outcome; there are �n+ 2��n+ 1� such
possible pairs, and they all are equally likely (wrong: you have to have biased coins for
this!). Now count the number of pairs with HM>HJ. If HM=n+1, HJ can take any value
0�1� � � � � n. In general, ∀l≤ n+ 1, if HM = l, HJ will take values 0� � � � � l− 1. That is,
the number of outcomes where HM>HJ equals 1+ 2+ · · · + �n+ 1�= 1

2 �n+ 1��n+ 2�.
Hence, ��HM>HJ�= 1/2. �

Problem 1.5 You throw 6n dice at random. Show that the probability that each number
appears exactly n times is

�6n�!
�n!�6

(
1
6

)6n

�

Solution There are 66n outcomes in total (six for each die), each has probability 1/66n.
We want n dice to show one dot, n two, and so forth. The number of such outcomes is
counted by fixing first which dice show one: �6n�!/	n!�5n�!
. Given n dice showing one,
we fix which remaining dice show two: �5n�!/	n!�4n�!], etc. The total number of desired
outcomes is the product that equals �6n�!�n!�6. This gives the answer. �

In many problems, it is crucial to be able to spot recursive equations relating the
cardinality of various events. For example, for the number fn of ways of tossing a coin n
times so that successive tails never appear: fn= fn−1 + fn−2, n≥3 (a Fibonacci equation).



6 Discrete outcomes

Problem 1.6 (i) Determine the number gn of ways of tossing a coin n times so that
the combination HT never appears. (ii) Show that fn = fn−1 + fn−2 + fn−3, n≥ 3, is the
equation for the number of ways of tossing a coin n times so that three successive heads
never appear.

Solution (i) gn=1+n; 1 for the sequenceHH� � � H , n for the sequences T� � � TH� � � H
(which includes T� � � T ).

(ii) The outcomes are 2n sequences �y1� � � � � yn� of H and T . Let An be the event
{no three successive heads appeared after n tosses}, then fn is the cardinality #An. Split:
An =B�1�n ∪B�2�n ∪B�3�n , where B�1�n is the event {no three successive heads appeared after
n tosses, and the last toss was a tail}, B�2�n = {no three successive heads appeared after n
tosses, and the last two tosses were TH} and B�3�n ={no three successive heads appeared
after n tosses, and the last three tosses were THH}.

Clearly, B�i�n ∩B�j�n =∅, 1≤ i �= j≤ 3, and so fn = #B�1�n + #B�2�n + #B�3�n .
Now drop the last digit yn: �y1� � � � yn� ∈ B�1�n iff yn = T , �y1� � � � yn−1� ∈ An−1, i.e.

#B�1�n−1 = fn−1. Also, �y1� � � � yn�∈B�2�n iff yn−1 =T , yn=H , and �y1� � � � yn−2�∈An−2. This
allows us to drop the two last digits, yielding #B�2�n = fn−2. Similarly, #B�3�n = fn−3. The
equation then follows. �

1.2 Conditional Probabilities. The Bayes Theorem. Independent trials

Probability theory is nothing but common sense
reduced to calculation.

P.-S. Laplace (1749–1827), French mathematician

Clockwork Omega
(From the series ‘Movies that never made it to the Big Screen’.)

From now on we adopt a more general setting: our outcomes do not necessarily have
equal probabilities p1� � � � � pm, with pi > 0 and p1 + · · ·+pm = 1.

As before, an event A is a collection of outcomes (possibly empty); the probability
��A� of event A is now given by

��A�= ∑
outcome i∈A

pi =
∑

outcome i

piI�i∈A�� (1.2)

(��A�= 0 for A=∅.) Here and below, I stands for the indicator function, viz.:

I�i∈A�=
{
1� if i∈A�
0� otherwise�

The probability of the total set of outcomes is 1. The total set of outcomes is also
called the whole, or full, event and is often denoted by �, so ����= 1. An outcome is
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often denoted by �, and if p��� is its probability, then

��A�=∑
�∈A

p���=∑
�∈�

p���I��∈A�� (1.3)

As follows from this definition, the probability of the union

��A1 ∪A2�=��A1�+��A2� (1.4)

for any pair of disjoint events A1, A2 (with A1 ∩A2 =∅). More generally,

��A1 ∪ · · · ∪An�=��A1�+ · · ·+��An� (1.5)

for any collection of pair-wise disjoint events (with Aj ∩Aj′ = ∅ ∀j �= j′). Consequently,
(i) the probability ��Ac� of the complement Ac =�\A is 1− ��A�, (ii) if B⊆A, then
��B�≤ ��A� and ��A�− ��B�= ��A\B�, and (iii) for a general pair of events A�B:
��A\B�=�

(
A\�A∩B�)=��A�−��A∩B�.

Furthermore, for a general (not necessarily disjoint) union:

��A1 ∪ · · · ∪An�≤
n∑
i=1

��Ai�


a more detailed analysis of the probability ��∪Ai� is provided by the exclusion–inclusion
formula (1.12); see below.

Given two events A and B with ��B� > 0, the conditional probability ��A�B� of A
given B is defined as the ratio

��A�B�= ��A∩B�
��B�

� (1.6)

At this stage, the conditional probabilities are important for us because of two formulas.
One is the formula of complete probability: if B1� � � � �Bn are pair-wise disjoint events
partitioning the whole event �, i.e. have Bi ∩Bj =∅ for 1≤ i < j≤n and B1 ∪B2 ∪ · · · ∪
Bn =�, and in addition ��Bi�> 0 for 1≤ i≤ n, then

��A�=��A�B1���B1�+��A�B2���B2�+ · · ·+��A�Bn���Bn�� (1.7)

The proof is straightforward:

��A�= ∑
1≤i≤n

��A∩Bi�=
∑

1≤i≤n

��A∩Bi�
��Bi�

��Bi�=
∑

1≤i≤n
��A�Bi���Bi��

The point is that often it is conditional probabilities that are given, and we are required to
find unconditional ones; also, the formula of complete probability is useful to clarify the
nature of (unconditional) probability ��A�. Despite its simple character, this formula is
an extremely powerful tool in literally all areas dealing with probabilities. In particular, a
large portion of the theory of Markov chains is based on its skilful application.

Representing ��A� in the form of the right-hand side (RHS) of (1.7) is called condi-
tioning (on the collection of events B1� � � � �Bn).
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Another formula is the Bayes formula (or the Bayes Theorem) named after T. Bayes
(1702–1761), an English mathematician and cleric. It states that under the same assump-
tions as above, if in addition ��A� > 0, then the conditional probability ��Bi�A� can
be expressed in terms of probabilities ��B1�� � � � ���Bn� and conditional probabilities
��A�B1�� � � � ���A�Bn� as

��Bi�A�=
��A�Bi���Bi�∑

1≤j≤n
��A�Bj���Bj�

� (1.8)

The proof is the direct application of the definition and the formula of complete probability:

��Bi�A�=
��A∩Bi�
��A�

� ��A∩Bi�=��A�Bi���Bi�

and

��A�=∑
j

��A�Bj���Bj��

A standard interpretation of equation (1.8) is that it relates the posterior probability
��Bi�A� (conditional on A) with prior probabilities ���Bj�� (valid before one knew that
event A occurred).

In his lifetime, Bayes finished only two papers: one in theology and one called ‘Essay
towards solving a problem in the doctrine of chances’; the latter contained the Bayes
Theorem and was published two years after his death. Nevertheless he was elected a
Fellow of The Royal Society. Bayes’ theory (of which the above theorem is an important
part) was for a long time subject to controversy. His views were fully accepted (after
considerable theoretical clarifications) only at the end of the nineteenth century.

Problem 1.7 Four mice are chosen (without replacement) from a litter containing two
white mice. The probability that both white mice are chosen is twice the probability that
neither is chosen. How many mice are there in the litter?

Solution Let the number of mice in the litter be n. We use the notation ��2� =
��two white chosen� and ��0�=��no white chosen�. Then

��2�=
(
n− 2
2

)/(
n

4

)
�

Otherwise, ��2� could be computed as:

2
n

1
n− 1

+ 2
n

n− 2
n− 1

1
n− 2

+ 2
n

n− 2
n− 1

n− 3
n− 2

1
n− 3

+ n− 2
n

2
n− 1

1
n− 2

+ n− 2
n

n− 3
n− 1

2
n− 2

1
n− 3

+ n− 2
n

2
n− 1

n− 3
n− 2

1
n− 3

= 12
n�n− 1�

�
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On the other hand,

��0�=
(
n− 2
4

)/(
n

4

)
�

Otherwise, ��0� could be computed as follows:

��0�= n− 2
n

n− 3
n− 1

n− 4
n− 2

n− 5
n− 3

= �n− 4��n− 5�
n�n− 1�

�

Solving the equation

12
n�n− 1�

= 2
�n− 4��n− 5�
n�n− 1�

�

we get n= �9± 5�
/
2; n= 2 is discarded as n≥ 6 (otherwise the second probability is 0).

Hence, n= 7. �

Problem 1.8 Lord Vile drinks his whisky randomly, and the probability that, on a
given day, he has n glasses equals e−1

/
n!, n= 0�1� � � � Yesterday his wife Lady Vile,

his son Liddell and his butler decided to murder him. If he had no whisky that day, Lady
Vile was to kill him; if he had exactly one glass, the task would fall to Liddell, otherwise
the butler would do it. Lady Vile is twice as likely to poison as to strangle, the butler
twice as likely to strangle as to poison, and Liddell just as likely to use either method.
Despite their efforts, Lord Vile is not guaranteed to die from any of their attempts, though
he is three times as likely to succumb to strangulation as to poisoning.

Today Lord Vile is dead. What is the probability that the butler did it?

Solution Write ��dead�strangle�= 3r� ��dead�poison�= r , and

��drinks no whisky�=��drinks one glass�= 1
e
�

��drinks two glasses or more�= 1− 2
e
�

Next:

��strangle�Lady V�= 1
3
� ��poison�Lady V�= 2

3
�

��strangle�butler�= 2
3
� ��poison�butler�= 1

3
�

and

��strangle�Liddell�=��poison�Liddell�= 1
2
�
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Then the conditional probability ��butler�dead� is
��d�b���b�

��d�b���b�+��d�LV���LV�+��d�Lddl���Lddl�

=

(
1− 2

e

)(
3r × 2

3
+ r

3

)
(
1− 2

e

)(
3r × 2

3
+ r

3

)
+ 1

e

(
3r
3

+ r × 2
3

)
+ 1

e

(
3r
2

+ r

2

)
= e− 2

e− 3/7
≈ 0�3137� �

Problem 1.9 At the station there are three payphones which accept 20p pieces. One
never works, another always works, while the third works with probability 1

/
2. On my

way to the metropolis for the day, I wish to identify the reliable phone, so that I can use
it on my return. The station is empty and I have just three 20p pieces. I try one phone
and it does not work. I try another twice in succession and it works both times. What is
the probability that this second phone is the reliable one?

Solution Let A be the event in the question: the first phone tried did not work and
second worked twice. Clearly:

��A�1st reliable�= 0�

��A�2nd reliable�= ��1st never works�2nd reliable�

+1
2
×��1st works half-time�2nd reliable�

= 1
2
+ 1

2
× 1

2
= 3

4
�

and the probability ��A�3rd reliable� equals

1
2
× 1

2
×��2nd works half-time�3rd reliable�= 1

8
�

The required probability ��2nd reliable� is then

1/3× 3/4
1/3× �0+ 3/4+ 1/8�

= 6
7
� �

Problem 1.10 Parliament contains a proportion p of Labour Party members, incapable
of changing their opinions about anything, and 1− p of Tory Party members changing
their minds at random, with probability r, between subsequent votes on the same issue.
A randomly chosen parliamentarian is noticed to have voted twice in succession in the
same way. Find the probability that he or she will vote in the same way next time.
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Solution Set

A1 = �Labour chosen�� A2 = �Tory chosen��

B= �the member chosen voted twice in the same way��

We have ��A1�=p, ��A2�= 1−p, ��B�A1�= 1, ��B�A2�= 1− r. We want to calculate

��A1�B�=
��A1 ∩B�

��B�
= ��A1���B�A1�

��B�

and ��A2�B�= 1−��A1�B�. Write

��B�=��A1���B�A1�+��A2���B�A2�=p · 1+ �1−p��1− r��

Then

��A1�B�=
p

p+ �1− r��1−p�
� ��A2�B�=

�1− r��1−p�

p+ �1− r��1−p�
�

and the answer is given by

�
(
the member will vote in the same way

∣∣B)= p+ �1− r�2�1−p�

p+ �1− r��1−p�
� �

Problem 1.11 The Polya urn model is as follows. We start with an urn which contains
one white ball and one black ball. At each second we choose a ball at random from the urn
and replace it together with one more ball of the same colour. Calculate the probability
that when n balls are in the urn, i of them are white.

Solution Denote by �n the conditional probability given that there are n balls in the
urn. For n= 2 and 3

�n�one white ball�=
{
1� n= 2
1
2 � n= 3�

and

�n�two white balls�= 1
2 � n= 3�

Make the induction hypothesis

�k�i white balls�= 1
k− 1

�

∀ k= 2� � � � � n− 1 and i= 1� � � � � k− 1. Then, after n− 1 trials (when the number of
balls is n),

�n�i white balls�

=�n−1�i− 1 white balls�× i− 1
n− 1

+�n−1�i white balls�× n− 1− i

n− 1
= 1
n− 1

� i= 1� � � � � n− 1�
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Hence,

�n�i white balls�= 1
n− 1

� i= 1� � � � � n− 1� �

Problem 1.12 You have n urns, the rth of which contains r − 1 red balls and n− r

blue balls, r=1� � � � � n. You pick an urn at random and remove two balls from it without
replacement. Find the probability that the two balls are of different colours. Find the same
probability when you put back a removed ball.

Solution The totals of blue and red balls in all urns are equal. Hence, the first ball is
equally likely to be any ball. So

�
(
1st blue

)= 1
2
=��1st red��

Now,

�
(
1st red, 2nd blue

)= n∑
k=1

�
(
1st red, 2nd blue

∣∣urn k chosen
)× 1

n

= 1
n

∑
k

�k− 1��n− k�

�n− 1��n− 2�

= 1
n�n− 1��n− 2�

[
n

n∑
k=1

�k− 1�−
n∑
k=1

k�k− 1�

]

= 1
n�n− 1��n− 2�

[
n�n− 1�n

2
− �n+ 1�n�n− 1�

3

]
= n�n− 1�
n�n− 1��n− 2�

(
n

2
− n+ 1

3

)
= 1

6
�

We used here the following well-known identity:

n∑
i=1

i�i− 1�= 1
3
�n+ 1�n�n− 1��

By symmetry:

��different colours�= 2× 1
6
= 1

3
�

If you return a removed ball, the probability that the two ball are of different colours
becomes 1/2. �

Problem 1.13 You are on a game show and given a choice of three doors. Behind one
is a car; behind the two others are a goat and a pig. You pick door 1, and the host opens
door 3, with a pig. The host asks if you want to pick door 2 instead. Should you switch?
What if instead of a goat and a pig there were two goats?
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Solution A popular solution of this problem always assumes that the host knows behind
which door the car is, and takes care not to open this door rather than doing so by chance.
(It is assumed that the host never opens the door picked by you.) In fact, it is instructive
to consider two cases, depending on whether the host does or does not know the door
with the car. If he doesn’t, your chances are unaffected, otherwise you should switch.
Indeed, consider the events

Yi =
{
you pick door i

}
� Ci =

{
the car is behind door i

}
�

Hi =
{
the host opens door i

}
� Gi/Pi =

{
a goat/pig is behind door i

}
�

with ��Yi�=��Ci�=��Gi�=��Pi�=1/3� i=1�2�3. Obviously, event Yi is independent
of any of the events Cj� Gj and Pj� i� j= 1�2�3.

You want to calculate

��C1�Y1 ∩H3 ∩P3�=
��C1 ∩ Y1 ∩H3 ∩P3�

��Y1 ∩H3 ∩P3�
�

In the numerator:

��C1 ∩ Y1 ∩H3 ∩P3�

=��C1���Y1�C1���P3�C1 ∩ Y1���H3�C1 ∩ Y1 ∩P3�

= 1
3
× 1

3
× 1

2
× 1

2
= 1

36
�

If the host doesn’t know where the car is, then

��Y1 ∩H3 ∩P3�

=��Y1���P3�Y1���H3�Y1 ∩P3�

= 1
3
× 1

3
× 1

2
= 1

18
�

and ��C1�Y1 ∩H3 ∩P3�= 1
/
2. But if he does then

��Y1 ∩H3 ∩P3�

=��Y1 ∩C1 ∩H3 ∩P3�+��Y1 ∩C2 ∩H3 ∩P3�

= 1
3
× 1

3
× 1

2
× 1

2
× 1

3
× 1

3
× 1

2
× 1= 1

12
�

and ��C1�Y1 ∩H3 ∩P3�= 1/3.
The answer remains the same if there were two goats instead of a goat and a pig.

Another useful exercise is to consider the case where the host has some ‘preference’
choosing a door with the goat with probability pg and that with the pig with probability
pp = 1−pg. �

We continue our study by introducing the definition of independent events. The concept
of independence was an important invention in probability theory. It shaped the theory
at an early stage and is considered one of the main features specifying the place of
probability theory within more general measure theory.
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We say that events A and B are independent if

��A∩B�=��A���B�� (1.9)

A convenient criterion of independence is: events A and B, where say ��B� > 0 are
independent iff ��A�B�= ��A�, i.e. knowledge that B occurred does not change the
probability of A.

Trivial examples are the empty event ∅ and the whole set �: they are independent of
any event. The next example we consider is when each of the four outcomes 00�01�10,
and 11 have probability 1/4. Here the events

A= �1st digit is 1� and B= �2nd digit is 0�

are independent:

��A�=p10 +p11 =
1
2
=p10 +p00 =��B�� ��A∩B�=p10 =

1
4
= 1

2
× 1

2
�

Also, the events

�1st digit is 0� and �both digits are the same�

are independent, while the events

�1st digit is 0� and �the sum of digits is > 0�

are dependent.
These examples can be easily re-formulated in terms of two unbiased coin-tossings.

An important fact is that if A� B are independent then Ac and B are independent:

��Ac ∩B�= ��B\�A∩B��=��B�−��A∩B�
= ��B�−��A���B� �by independence�

= 	1−��A�
��B�=��Ac���B��

Next, if (i) A1 and B are independent, (ii) A2 and B are independent, and (iii) A1 and A2

are disjoint, then A1 ∪A2 and B are independent. If (i) and (ii) hold and A1 ⊂A2 then B
and A2\A1 are also independent.

Intuitively, independence is often associated with an ‘absence of any connection’
between events. There is a famous joke about A.N. Kolmogorov (1903–1987), the
renowned Russian mathematician considered the father of the modern probability theory.
His monograph [Ko], which originally appeared in German in 1933, was revolutionary
in understanding the basics of probability theory and its rôle in mathematics and its
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applications. When in the 1930s this monograph was translated into Russian, the Soviet
government enquired about the nature of the concept of independent events. A senior
minister asked if this concept was consistent with materialistic determinism, the core of
Marxist–Leninist philosophy, and about examples of such events. Kolmogorov had to
answer on the spot, and he had to be cautious as subsequent events showed, such as
the infamous condemnation by the authorities of genetics as a ‘reactionary bourgeois
pseudo-science’. The legend is that he did not hesitate for a second, and said: ‘Look,
imagine a remote village where there has been a long drought. One day, local peasants in
desperation go to the church, and the priest says a prayer for rain. And the next day the
rain arrives! These are independent events.’

In reality, the situation is more complex. A helpful view is that independence is a
geometric property. In the above example, the four probabilities

p00� p01� p10 and p11

can be assigned to the vertices

�0
0�� �0
1�� �1
1�� and �1
0�

of a unit square. See Figure 1.1. Each of these four points has a projection onto the
horizontal and the vertical line. The projections are points 0 and 1 on each of these
lines, and a vertex is uniquely determined by its projections. If the projection points have
probability mass 1/2 on each line then each vertex has

pij =
1
2
× 1

2
= 1

4
� i� j= 0�1�

In this situation one says that the four-point probability distribution{
1
4
�
1
4
�
1
4
�
1
4

}
is a product of two two-point distributions{

1
2
�
1
2

}
�

1/4

1/41/4

1/4

1/2 1/2

1/2

1/2

(2)
pij = pi pj

(1)

Figure 1.1
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It is easy to imagine a similar picture where there are m points along the horizontal
and n along the vertical line: we would then have mn pairs �i� j� (lattice sites) where
i= 0� � � � �m− 1� j = 0� � � � � n− 1 and each pair will receive probability mass 1/mn.
Moreover, the equidistribution can be replaced by a more general law:

pij =p
�1�
i p

�2�
j �

where

p
�1�
i � i= 0� � � � �m− 1� and p�2�j � j= 0� � � � � n− 1�

are probability distributions for the two projections. Then any event that is expressed in
terms of the horizontal projection (e.g., �digit i is divisible by 3�) is independent of any
event expressed in terms of the vertical projection (e.g., �digit j is≤n/2�). This is a basic
(and in a sense the only) example of independence.

More generally, we say that events A1� � � � �An are mutually independent (shortly,
independent) if ∀ subcollections Ai1

� � � � �Ail
,

��Ai1
∩ · · · ∩Ail

�=��Ai1
�� � � ��Ail

�� (1.10)

This includes the whole collection A1� � � � �An. It is important to distinguish this situation
from the one where (1.10) holds only for some subcollections; say pairs Ai� Aj� 1≤ i <

j≤ n, or only for the whole collection A1� � � � � An. See Problems 1.20 and 1.21.
This gives rise to an important model: a sequence of independent trials, each with

two or more outcomes. Such a model is behind many problems, and it is essential to
familiarize yourself with it.

So far, we assumed that the total number of outcomes � is finite, but the material in
this section can be extended to the case where � is a countable set, consisting of points
x1� x2� � � � , say, with assigned probabilities pi = ���xi��� i= 1� 2� � � � Of course, the
labelling of the outcomes can be different, for instance, by i∈�, the set of integers. The
requirements are as before: each pi ≥ 0 and

∑
i pi = 1.

We can also work with infinite sequences of events. For example, equations (1.7)
and (1.8) do not change form:

��A�= ∑
1≤j<�

��A�Bj���Bj�� ��Bi�A�=
��A�Bi���Bi�∑

1≤j<�
��A�Bj���Bj�

� (1.11)

Problem 1.14 A coin shows heads with probability p on each toss. Let �n be the
probability that the number of heads after n tosses is even. By showing that �n+1 =
�1−p��n+p�1−�n�� n≥ 1, or otherwise, find �n. (The number 0 is considered even.)

Solution 1 As always in the coin-tossing models, we assume that outcomes of
different throws are independent. Set An = �nth toss is a head�, with ��An� = p and
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Bn = �even number of heads after n tosses�, with �n = ��Bn�. Then, by conditioning on
An+1 and A

c
n+1:

��Bn+1�= ��Bn+1 ∩An+1�+��Bn+1 ∩Ac
n+1�

= ��Bn+1�An+1���An+1�+��Bn+1�Ac
n+1���A

c
n+1��

Next, Bn+1 ∩An+1 =Bc
n ∩An+1 and Bn+1 ∩Ac

n+1 =Bn ∩Ac
n+1. In view of independence,

��Bc
n ∩An+1�=��Bc

n���An+1�� and��Bn ∩Ac
n+1�=��Bn���A

c
n+1��

which implies

��Bn+1�=��Bc
n���An+1�+��Bn���A

c
n+1�= �1−��Bn��p+��Bn��1−p��

with ��B0�= 1. That is,

�n+1 = �1−p��n +p�1−�n�= �1− 2p��n +p�

Substituting �n=a�1−2p�n+b gives that b=1/2, and the condition �0=1 that a=1/2.
Then �n = 	�1− 2p�n + 1
 /2.

A shorter way to derive the recursion is by conditioning on Bn and B
c
n:

�n+1 = ��Bn+1�=��Bn+1 ∩Bn�+��Bn+1 ∩Bc
n�

= ��Ac
n+1�Bn���Bn�+��An+1�Bc

n���B
c
n�

= �1−p��n +p�1−�n��

Writing recursive equations like the one in the statement of the current problem is a
convenient instrument used in a great many situations.

Solution 2 (Look at this solution after reading Section 1.5.) Let Xi = 0 or 1 be the
outcome of the ith trial, and Yn =X1 + · · ·+Xn the total number of successes in n trials.
Then the probability generating function of Yn

��s�= 	ps+ �1−p�
n�

Then the probability that n trials result in an even number of successes is

1
2
	��1�+��−1�
= 1

2

[
1+ �1− 2p�n

]
� �

Problem 1.15 My Aunt Agatha has given me a clockwork orange for my birthday.
I place it in the middle of my dining table which happens to be exactly 2 metres long. One
minute after I place it on the table it makes a loud whirring sound, emits a puff of green
smoke and moves 10 cm towards the left-hand end of the table with probability 3/5, or
10 cm towards the right with probability 2/5. It continues in this manner (the direction
of each move being independent of what has gone before) at one minute intervals until it
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reaches the edge of the table where it promptly falls off. If it falls off the left-hand end it
will break my Ming vase (also a present from Aunt Agatha). If it falls off the right-hand
end it will land safely in a bucket of water. What is the probability that the Ming vase
will survive?

Solution Set p� to be

��falls at RH end�was at distance �× 10 cm from the LH end��

then 1−p� equals

��falls at LH end�was at distance �× 10 cm from LH end��

We have p0 = 0� p20 = 1 and p� = 3
5p�−1 + 2

5p�+1 or

p�+1 =
5
2
p� −

3
2
p�−1�

In other words, vector �p��p�+1�= �p�−1� p��A with

A=
(

0 − 3
2

1 5
2

)
�

This yields

�p��p�+1�= �p0� p1�A
� = �0� p1�A

��

i.e. p� should be a linear combination of the �th powers of the eigenvalues of A. The
eigenvalues are �1 = 3

2 and �2 = 1 and so:

p� = b1

(
3
2

)�
+ b2�

We have the equations

b1 + b2 = 0� 1= b1

(
3
2

)20

+ b2�

whence

b1 =−b2 =
[(

3
2

)20

− 1

]−1

and

p10 =
(
3
2

)10 1

�3/2�20 − 1
− 1

�3/2�20 − 1
= 1

�3/2�10 + 1
� �

Problem 1.16 Dubrovsky sits down to a night of gambling with his fellow officers.
Each time he stakes u roubles there is a probability r that he will win and receive back
2u roubles (including his stake). At the beginning of the night he has 8000 roubles. If ever
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he has 256000 roubles he will marry the beautiful Natasha and retire to his estate in the
country. Otherwise, he will commit suicide. He decides to follow one of two courses of
action:

(i) to stake 1000 roubles each time until the issue is decided;
(ii) to stake everything each time until the issue is decided.

Advise him (a) if r = 1/4 and (b) if r = 3/4. What are the chances of a happy ending
in each case if he follows your advice?

Solution Let p� be the probability that Dubrovsky wins 256 000 with the starting capital
� thousands while following strategy (i). Reasoning as in Problem 1.15 yields that

p� = b1�
�
1 + b2�

�
2

where �1 = �1− r�/r and �2 = 1 are the eigenvalues of the matrix

A=
(

0 �1− r�/r

1 1/r

)
�

The boundary conditions p0 = 0 and p256 = 1 yield

b1 =−b2 =
[(

1− r

r

)256

− 1

]−1

�

For r = 1/4, �1− r�/r = 3. Then he should choose (ii) as

p8 =
38 − 1
3256 − 1

�

which is tiny compared with �1/4�5, the chance to win 256 000 in five successful rounds
by gambling on everything he obtains.

For r = 3/4, �1− r�/r = 1/3. Then

p8 =
1− �1/3�8

1− �1/3�256

which is much larger than �3/4�5. Therefore, he should choose (i). �

Remark In both Problems 1.15 and 1.16 one of the eigenvalues of the recursion matrix
A equals one. This is not accidental and is due to the fact that in equation (1.7) (which
gives rise to the recursive equations under consideration) the sum

∑
j ��Bj�= 1.

Problem 1.17 I play the dice game ‘craps’ against ‘Lucky’ Pete Jay as follows. On
each throw I throw two dice. If my first throw is 7 or 11, then I win and if it is 2, 3 or 12,
then I lose. If my first throw is none of these, I throw repeatedly until I score the same
as my first throw, in which case I win, or I throw a 7, in which case I lose. What is the
probability that I win?
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Solution Write

��I win�=��I win at the 1st throw�+��I win, but not at the 1st throw��

The probability ��I win at the 1st throw� is straightforward and equals

6∑
i�j=1

1
36
I�i+ j= 7�+

6∑
i�j=1

1
36
I�i+ j= 11�= 6

36
+ 2

36
= 2

9
�

Here

I�i+ j= 7�=
{
1� if i+ j= 7�
0� otherwise�

For the second probability we have

��I win, but not at the 1st throw�= ∑
i=4�5�6�8�9�10

piqi�

Here

pi =��the 1st score is i�

and

qi = ��get i before 7 in the course of repeated throws�the 1st score is i�

= ��get i before 7 in the course of repeated throws��

Then for qi, by conditioning on the result of the first throw:

qi =pi + �1−pi −p7�qi� i.e. qi =
pi

pi +p7

�

Equivalently,

qi =pi + �1−pi −p7�pi + �1−pi −p7�
2pi + · · · �

with the same result.
Now

q4 =
3/36

3/36+ 6/36
= 3

3+ 6
= 1

3
� q5 =

4/36
4/36+ 6/36

= 4
4+ 6

= 2
5
�

and likewise,

q6 =
5/36

5/36+ 6/36
= 5

5+ 6
= 5

11
� q8 =

5
11
� q9 =

2
5
� q10 =

1
3
�

giving for ��I win, but not at the 1st throw� the value

1
12

× 1
3
+ 1

9
× 2

5
+ 5

36
× 5

11
+ 5

36
× 5

11
+ 1

9
× 1

5
+ 1

12
× 1

3
= 134

495
�
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Then

��I win�= 2
9
+ 134

495
= 244

495
� �

Problem 1.18 Two darts players throw alternately at a board and the first to score a
bull wins. On each of their throws player A has probability pA and player B pB of success;
the results of different throws are independent. If A starts, calculate the probability that
he/she wins.

Solution Consider the diagram below.

1−pA 1−pB 1−pA 1−pB

•−→ •−→ •−→ •−→ � � �

pA ↘ pB ↘ pA ↘ pB ↘ � � �

A wins B wins A wins B wins

If q=��Awins�, then

q = pA + �1−pA��1−pB�pA + �1−pA�
2�1−pB�

2pA + · · ·
= pA

1− �1−pA��1−pB�
= pA

pA +pB −pApB

�

Equivalently, by conditioning on the first and the second throw, one gets the equation

��A wins�=pA + �1−pA��1−pB���A wins��

which is immediately solved to give the required result. �

Remark In Problems 1.17 and 1.18 we used an equation for the probabilities q and
qi that was equivalent to their representation as series. This is another useful idea; for
example, it allowed us to avoid the use of infinite outcome spaces. However, we will not
be able to avoid it much longer.

Problem 1.19 A fair coin is tossed until either the sequence HHH occurs in which
case I win or the sequence THH occurs, when you win. What is the probability that
you win?

Solution In principle, the results of the game could be I win, you win and the game
lasts forever. Observe that I win only if HHH occurs at the beginning: the probability
is
(
1/2
)3 = 1/8. Indeed, if HHH occurs but not at the beginning then THH should have

occurred before then you will have already won. But HHH will appear sooner or later,
with probability 1. In fact, ∀ N , the event

A= �HHH never occurs�
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is contained in the event

AN = �HHH does not occur among the first N subsequent triples�

(we partition first 3N trials into N subsequent triples). So ��A�≤��AN�. But the proba-
bility ��AN�= �1− 1/8�N → 0 as N →�. Hence, ��A�=0. Therefore, the game cannot
continue forever, and the probability that you win is 1− 1/8= 7/8. �

Problem 1.20 (i) Give examples of the following phenomena:
(a) three events A� B� C that are pair-wise independent but not independent;
(b) three events that are not independent, but such that the probability of the intersection

of all three is equal to the product of the probabilities.
(ii) Three coins each show heads with probability 3/5 and tails otherwise. The first

counts 10 points for a head and 2 for a tail, the second counts 4 points for a head and
tail, and the third counts 3 points for a head and 20 for a tail.

You and your opponent each choose a coin; you cannot choose the same coin. Each of
you tosses your coin once and the person with the larger score wins 1010 points. Would
you prefer to be the first or the second to choose a coin?

Solution (i) (a) Toss two unbiased coins, with

A= �1st toss shows H�� B= �2nd toss shows H��

and

C= �both tosses show the same side��

Then

��A∩B�=pHH = 1
4
=��A���B�� ��A∩C�=pHH = 1

4
=��A���C��

��B∩C�=pHH = 1
4
=��B���C��

and

��A∩B∩C�=pHH = 1
4
�=��A���B���C��

Or throw three dice, with

A= �dice one shows an odd score�� B= �dice two shows an odd score��

C= �overall score odd�

and ��A�=��B�=��C�= 1/2. Then

��A∩B�=��A∩C�=��B∩C�= 1
4
� but ��A∩B∩C�= 0�
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(b) Toss three coins, with

A= �1st toss shows H�� B= �3rd toss shows H��

C= �HHH�HHT�HTT�TTT�= �no subsequent TH��

Then ��A�=��B�=��C�= 1/2,

A∩B∩C= �HHH�� and ��A∩B∩C�= 1
8
=
(
1
2

)3

�

But

A∩C= �HHH�HHT�HTT�� and ��A∩C�= 3
8
�

while

B∩C= �HHH�� and ��B∩C�= 1
8
�

Or (as the majority of students’ attempts did so far), take A=∅, and any dependent
pair B� C (say, B=C with 0<��B�< 1). Then A∩B∩C=∅ and

��A∩B∩C�= 0=��A���B���C�� but ��B∩C� �=��B���C��

(ii) Suppose I choose coin 1 and you coin 2, then ��you win�=2/5. But if you choose
3 then

��you win�= 2
5
+ 3

5
× 2

5
= 16

25
>

1
2
�

Similarly, if I choose 2 and you choose 1, ��you win�= 3/5> 1/2. Finally, if I choose
3 and you choose 2 then ��you win�= 3/5> 1/2. Thus, it’s always better to be the
second. �

Problem 1.21 Let A1� � � � �An be independent events, with ��Ai�<1. Prove that there
exists an event B with ��B�> 0 such that B∩Ai =∅, for 1≤ i≤ n.

Give an example of three events A1� A2� A3 which are not independent, but are such
that for each i �= j the pair Ai�Aj is independent.

Solution If Ac denotes the complement of event A, then

� �A1 ∪ · · · ∪An�= 1−�

(
n⋂
i=1

Ac
i

)
= 1−

n∏
i=1

� �Ac
i � < 1�

as � �Ac
i � > 0 ∀ i. So, if B= �

⋃
Ai�

c, then ��B�> 0 and B∩Ai =∅ ∀ i.
Next, take events

A1 = �1�4�� A1 = �2�4�� A3 = �3�4��
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where the probability assigned to each outcome k= 1�2�3�4 equals 1/4. Then ��Ai�=
1/2� i= 1�2�3, and

��Ai ∩Aj�=��4�=
(
1
2

)2

=��Ai���Aj�� 1≤ i < j≤ 3�

However, the intersection A1 ∩A2 ∩A3 consists of a single outcome 4. Hence

��A1 ∩A2 ∩A3�=
1
4
�=
(
1
2

)3

=��A1���A2���A3�� �

Problem 1.22 n balls are placed at random into n cells. Find the probability pn that
exactly two cells remain empty.

Solution ‘At random’ means here that each ball is put in a cell with probability 1/n,
independently of other balls. First, consider the cases n= 3 and n= 4. If n= 3 we have
one cell with three balls and two empty cells. Hence,

p3 =
(
n

2

)
× 1
nn

= 1
9
�

If n= 4 we either have two cells with two balls each (probability p′
4) or one cell with one

ball and one cell with three balls (probability p′′
4 ). Hence,

p4 =p′
4 +p′′

4 =
(
n

2

)
× �n− 2�

nn
×
[
4+ n�n− 1�

4

]
= 21

64
�

Here 4 stands for a number of ways to select three balls that will go to one cell, and
n�n− 1�/4 stands for the number of ways to select two pairs of balls that will go to two
prescribed cells.

For n≥5� to have exactly two empty cells means that either there are exactly two cells
with two balls in them and n− 4 with a single ball, or there is one cell with three balls
and n− 3 with a single ball. Denote probabilities in question by p′

n and p
′′
n, respectively.

Then pn =p′
n +p′′

n. Further,

p′
n =

(
n

2

)
× 1

2

(
n

2

)(
n− 2
2

)
× n− 2

n

n− 3
n

· · · 1
n
×
(
1
n

)2

= 1
4
n!
nn

(
n

2

)(
n− 2
2

)
�

Here the first factor,
(
n

2

)
, is responsible for the number of ways of choosing two empty

cells among n. The second factor,

1
2

(
n

2

)(
n− 2
2

)
�
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accounts for choosing which balls ‘decide’ to fall in cells that will contain two balls and
also which cells will contain two balls. Finally, the third factor,

n− 2
n

n− 3
n

� � �
1
n
�

gives the probability that n− 2 balls fall in n− 2 cells, one in each, and the last �1/n�2

that two pairs of balls go into the cells marked for two-ball occupancy. Next,

p′′
n =
(
n

2

)
× �n− 2�×

(
n

3

)
�n− 3�!
nn

�

Here the first factor
(
n

2

)
is responsible for the number of ways of choosing two empty

cells among n, the second �n− 2� is responsible for the number of ways of choosing the
cell with three balls, the third

(
n

3

)
is responsible for the number of ways of choosing three

balls to go into this cell, and the last factor
�n− 3�!
nn

describes the distribution of all balls
into the respective cells. �

Problem 1.23 You play a match against an opponent in which at each point either you
or he/she serves. If you serve you win the point with probability p1� but if your opponent
serves you win the point with probability p2. There are two possible conventions for
serving:

(i) alternate serves;
(ii) the player serving continues until he/she loses a point.
You serve first and the first player to reach n points wins the match. Show that your

probability of winning the match does not depend on the serving convention adopted.

Solution Both systems give you equal probabilities of winning. In fact, suppose we
extend the match beyond the result achieved, until you have served n and your opponent
n− 1 times. (Under rule (i) you just continue the alternating services and under (ii) the
loser is given the remaining number of serves.) Then, under either rule, if you win the
actual game, you also win the extended one, and vice versa (as your opponent won’t have
enough points to catch up with you). So it suffices to check the extended matches.

An outcome of an extended match is �= ��1� � � � ��2n−1�, a sequence of 2n− 1
subsequent values, say zero (you lose a point) and one (you gain one). You may think
that �1� � � � ��n represent the results of your serves and �n+1� � � � ��2n−1 those of your
opponent. Define events

Ai = �you win your ith service�� and Bj = �you win his jth service��

Their respective indicator functions are

I��∈Ai�=
{
1� �∈Ai

0� � �∈Ai� 1≤ i≤ n�



26 Discrete outcomes

and

I��∈Bj�=
{
1� �∈Bj
0� � �∈Bj� 1≤ j≤ n− 1�

Under both rules, the event that you win the extended match is{
�= ��1� � � � ��2n−1� �

∑
1≤i≤2n−1

�i ≥ n

}
�

and the probability of outcome � is

p
∑
i IAi ���

1 �1−p1�
n−∑i IAi ���p

∑
j IBj ���

2 �1−p2�
n−∑j IBj ����

Because they do not depend on the choice of the rule, the probabilities are the same. �

Remark The �-notation was quite handy in this solution. We will use it repeatedly in
future problems.

Problem 1.24 The departmental photocopier has three parts A� B and C which can go
wrong. The probability that A will fail during a copying session is 10−5. The probability
that B will fail is 10−1 if A fails and 10−5 otherwise. The probability that C will fail is
10−1 if B fails and 10−5 otherwise. The ‘Call Engineer’ sign lights up if two or three parts
fail. If only two parts have failed I can repair the machine myself but if all three parts
have failed my attempts will only make matters worse. If the ‘Call Engineer’ sign lights
up and I am willing to run a risk of no greater than 1 per cent of making matters worse,
should I try to repair the machine, and why?

Solution The final outcomes are

A fB fC f, probability 10−5 × 10−1 × 10−1 = 10−7�

A fBwC f, probability 10−5 × 9 · 10−1 × 10−5 = 9 · 10−11�

A fB fC w, probability 10−5 × 10−1 × 9 · 10−1 = 9 · 10−7�

AwB fC f, probability �1− 10−5�× 10−5 × 10−1 = �1− 10−5� · 10−6�

So,

�
(
3 parts fail

∣∣2 or 3 fail)= � �3 fail�

� �2 or 3 fail�

= ��A�B�C f�
��A�B fC w�+��A�C fBw�+��B�C fAw�+��A�B�C f�

= 10−7

9 · 10−7 + 9× 10−11 + �1− 10−5� · 10−6 + 10−7

≈ 10−7

9 · 10−7 + 10−6 + 10−7
= 1

20
>

1
100

�

Thus, you should not attempt to mend the photocopier: the chances of making things
worse are 1/20. �
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1.3 The exclusion–inclusion formula. The ballot problem

Natural selection is a mechanism
for generating an exceedingly high degree of improbability.

R.A. Fisher (1890–1962), British statistician

The exclusion–inclusion formula helps to calculate the probability ��A�, where A =
A1 ∪A2 ∪ · · · ∪An is the union of a given collection of events A1� � � � �An. We know (see
Section 1.2) that if events are pair-wise disjoint,

��A�= ∑
1≤i≤n

��Ai��

In general, the formula is more complicated:

��A�= ��A1�+ · · ·+��An�

−��A1 ∩A2�−��A1 ∩A3�− · · ·−��An−1 ∩An�

+��A1 ∩A2 ∩A3�+ · · ·+��An−2 ∩An−1 ∩An�

+· · ·+ �−1�n+1��A1 ∩ · · · ∩An�

=
n∑
k=1

�−1�k−1
∑

1≤i1<···<ik≤n
�
(
∩k

1Aij

)
� (1.12)

The proof is reduced to a counting argument: on the left-hand side (LHS) we count each
outcome from

⋃
1≤i≤n Ai once. But if we take the sum

∑
1≤i≤n ��Ai� then those outcomes

that enter more than one event among A1� � � � � An will be counted more than once. Now
if we subtract the sum

∑
1≤i<j≤n ��Ai∩Aj� we will count precisely once the outcomes that

enter exactly two events A1� � � � � An, but will be in trouble with the outcomes that enter
three or more events. Therefore we have to add

∑
1≤i<j<k≤n ��Ai ∩Aj ∩Ak�, and so on.

A formal proof can be carried by induction in n. It is convenient to begin the induction
with n= 2 (for n= 1 the formula is trivial). For two events A and B, A∪B coincides
with �A \ �A∩B��∪ �B \ �A∩B��∪ �A∩B�, the union of non-intersecting events. Hence,
��A∪B� can be written as

��A \ �A∩B��+��B \ �A∩B��+��A∩B�
=��A�−��A∩B�+��B�−��A∩B�+��A∩B�
=��A�+��B�−��A∩B��

The induction hypothesis is that the formula holds for any collection of n or less events.
Then for any collection A1� � � � �An+1 of n+ 1 events, the probability �

(∪n+1
1 Ai

)
equals:

�
((⋃n

1
Ai

)
∪An+1

)
=�

(⋃n

1
Ai

)
+� �An+1�−�

((⋃n

1
Ai

)
∩An+1

)
=

n∑
k=1

�−1�k−1
∑

1≤i1<� � � <ik≤n
�
(⋂k

1
Aij

)
+� �An+1�−�

(⋃n

1
�Ai ∩An+1�

)
�
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For the last term we have, again by the induction hypothesis:

−�
(⋃n

1
�Ai ∩An+1�

)
=

n∑
k=1

�−1�k
∑

1≤i1<� � � <ik≤n
�
(⋂k

1

(
Aij

∩An+1

))
=

n∑
k=1

�−1�k
∑

1≤i1<� � � <ik≤n
�
((⋂k

1
Aij

)
∩An+1

)
�

We see that the whole sum in the expansion for �
(⋃n+1

1 Ai

)
includes all possible terms

identified on the RHS of formula (1.12) for n+ 1, with correct signs. This completes the
induction.

An alternative proof (which is instructive as it shows relations between various concepts
of probability theory) will be given in the next section, after we introduce random variables
and expectations.

The exclusion–inclusion formula is particularly efficient under assumptions of inde-
pendence and symmetry. It also provides an interesting asymptotical insight into various
probabilities.

Example 1.1 An example of using the exclusion–inclusion formula is the following
matching problem. An absent-minded person (some authors prefer talking about a secre-
tary) has to put n personal letters in n addressed envelopes, and he does it at random.
What is the probability pm�n that exactly m letters will be put correctly in their envelopes?
Verify the limit

lim
n→� pm�n =

1
em! �

The solution is as follows. The set of outcomes consists of n! possible matchings of
the letters to envelopes. Let Ak = �letter k in correct envelope�.
Then

��Ai1
∩Ai2

∩ · · · ∩Air
�= �n− r�!

n! �

and so ∑
i1<i2<···<ir

��Ai1
∩Ai2

∩ · · · ∩Air
�=
(
n

r

)
�n− r�!
n! = 1

r! �

Thus,

��at least one letter in the correct envelope�

=�
(⋃n

i=1
Ai

)
= 1− 1

2! +
1
3! − · · · + �−1�n−1 1

n! �
and

��no letter in the correct envelope�

= 1−�
(⋃n

i=1
Ai

)
= 1− 1+ 1

2! +
1
3! + · · · + �−1�n

1
n!
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which tends to e−1 as n→�. The number of outcomes in the event {no letter put in the
correct envelope} equals= n!p0�n

, and so

Pm�n =
(
n

m

)
�n−m�!p�0� n−m�

n! �

Therefore,

pm�n =
1
m!p�0� n−m�= 1

m!
[
1− 1

1! + · · · + �−1�n−m
1

�n−m�!
]

which approaches e−1/m! as n→�. �

Problem 1.25 A total of n male psychologists remembered to attend a meeting about
absentmindness. After the meeting, none could recognise his own hat so they took hats at
random. Furthermore, each was liable, with probability p and independently of the others,
to lose the hat on the way home. Assuming, optimistically, that all arrived home, find
the probability that none had his own hat with him, and deduce that it is approximately
e−�1−p�.

Solution Set Aj ={psychologist j had his own hat}, then the event A={none had his
own hat} is the complement of

⋃
1≤j≤n Aj . By the exclusion–inclusion formula and the

symmetry:

��A�= 1− n��A1�+
n�n− 1�

2
��A1 ∩A2�− · · ·+ �−1�n��A1 ∩ · · · ∩An��

Next,

��A1�= �1−p�
�n− 1�!
n! �

��A1 ∩A2�= �1−p�2
�n− 2�!
n! �

� � �

��A1 ∩ · · · ∩An�= �1−p�n
1
n! �

Then

��A�= 1− �1−p�+ �1−p�2

2! − · · · + �−1�n
�1−p�n

n! �

which is the partial sum of e−�1−p�. �

Problem 1.26 It is certain that at least one, but no more than two of the events
A1� � � � �An occur. Given that ��A1�=p1 for all i, and ��Ai ∩Aj�=p2 for all i� j �i �= j�,
show that

1= np1 −
n�n− 1�

2
p2�

Deduce that p1 ≥ 1/n and p2 ≤ 2/n.
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Solution As ��Ai1
∩ · · · ∩ Aik

�= 0 for k > 2, the exclusion–inclusion formula gives
1= np1 − n�n− 1�p2/2. Rearranging:

p1 =
1
n
+ n− 1

2
p2 ≥

1
n
�

as p2 ≥ 0. Finally,

p2 =
2

n− 1

(
p1 −

1
n

)
≤ 2
n− 1

(
1− 1

n

)
= 2
n
� �

Problem 1.27 State the exclusion–inclusion formula for � �
⋃n

i=1Ai�.
A large and cheerful crowd of n junior wizards leave their staff in the Porter’s Lodge

on the way to a long night in the Mended Drum. On returning, each collects a staff at
random from a pile, return to his room and attempts to cast a spell against hangovers. If
a junior wizard attempts this spell with his own staff, there is a probability p that he will
turn into a bullfrog. If he attempts it with someone else’s staff, he is certain to turn into
a bullfrog. Show that the probability that in the morning we will find n very surprised
bullfrogs is approximately ep−1.

Solution Set Ai�=Ai�n��= �wizard i gets his own stuff�. Then ∀r= 1� � � � � n and 1≤
i1< � � � < ir ≤ n:

��Ai1
∩Ai2

∩ · · · ∩Air
�= �n− r�!

n! �

as there are �n− r�!ways of distributing the remaining stuff. So, by the exclusion–inclusion
formula, the probability � �

⋃n
i=1Ai� is equal to

n∑
r=1

(
n

r

)
�−1�r−1 �n− r�!

n! =
n∑
r=1

�−1�r−1 1
r! = 1−

n∑
r=0

�−1�r
1
r!

which tends to 1− e−1 as n→�. We can also consider similar events Ai�k� defined for
a given subset of k wizards, 1≤ k≤ n.

Further, if Pr�k�=��precisely r out of given k get their own staff � then

Pr�k�=
(
k

r

)
�k− r�!
k! P0�k− r�= 1

r!P0�k− r�� 0≤ r ≤ k�

Also:

P0�k− r�= 1−��∪k−r
i=1Ai�k− r��=

k−r∑
i=1

�−1�i
1
i! → e−1

as k→�. So, Pr�k�≈ e−1/r! for k sufficiently large. Finally

��all turn into bullfrogs�=
n∑
r=0

Pr�n�p
r ≈

n∑
r=0

e−1p
r

r! = e−1ep = ep−1

for n large enough. �
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Remark To formally prove the convergence
∑n

r=0 Pr�n�p
r → ep−1 one needs an asser-

tion guaranteeing that the term-wise convergence (in our case Pr�n�p
r → e−1pr/r! ∀ r)

implies the convergence of the sum of the series. For example, the following theorem
will do:

If an�m�→an∀ n as m→� and �an�m�� ≤ bn, where
∑

n bn <�, then the sum
S�m�=∑n an�m�→ S=∑n an.

In fact, Pr�n�p
r =P0�n− r�pr/r! ≤ pr/r! �= br�, and the series

∑
r≥0 p

r/r! converges to
ep for all p (i.e.

∑
r br <�).

The remaining part of this section addresses the so-called ballot problem. Its original
formulation is: a community of voters contains m conservatives and n anarchists voting
for their respective candidates, where m≥ n. What is the probability that in the process
of counting the secret ballot papers the conservative candidate will never be behind the
anarchist? This question has emerged in many situations (but, strangely, not in Cambridge
University IA Mathematical Tripos papers so far). However, at the University of Wales-
Swansea it has been actively discussed, in the slightly modified form presented below.

We start with a particular case m=n. A series of 2n drinks is on offer, n of them are
gin and n tonic. In a popular local game, a blindfolded participant drinks all 2n glasses,
one at a time, selected in a random order. The participant is declared a winner if the
volume of gin drunk is always not more than that of tonic. We will check that this occurs
with probability 1/�n+ 1�.

Consider a random walk on the set �−n�−n+ 1� � � � � n� where a particle moves one
step up if a glass of tonic was selected and one down if it was gin. The walk begins at
the origin (no drink consumed) and after 2n steps always comes back to it (the number
of gins = the number of tonics). On Figure 1.2 that includes time, every path X�t� of the
walk begins at �0�0� and ends at �2n�0� and each time jumps up and to the right or down
and to the right. We look for the probability that the path remains above the line X=−1.

x

(1,1)

(2n,0) t

+1

–1

(1,–3)

Figure 1.2
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The total number of paths from �0�0� to �2n�0� is �2n�!/n!n!. The number of paths
staying above the line is the same as the total number of paths from �1�1� to �2n�0�
less the total number of paths from �1�−3� to �2n�0�. In fact, the first step from �0�0�
must be up. Next, if a path �0�0� to �2n�0� touches or crosses line X=−1, then we can
reflect its initial bit and obtain a path from �1�−3� to �2n�0�. This is sometimes called
the reflection principle.

Hence, the probability of winning is[
�2n− 1�!
n!�n− 1�! −

�2n− 1�!
�n+ 1�!�n− 2�!

]/
�2n�!
n!n! = 1

2n

[
n− n�n− 1�

n+ 1

]
= 1
n+ 1

�

Now assume that the number m of tonics is > n, the number of gins. As before,
winning the game means that at each time the number of consumed tonics is not less
than that of gins. Then the total number of paths from �0�0� to �m+ n�m− n� equals
�m+ n�!/m!n!. Again, the first step of a winning path is always up. The total number of
paths from �1�1� to �m+ n�m− n� equals �m+ n− 1�!/�m− 1�!n!. Using the reflection
principle, we see that the number of losing paths equals the total number of paths from
�1�−3� to �m+ n�m− n�, which is �m+ n− 1�!/�m+ 1�!�n− 2�!. Finally, the winning
probability is[

�m+ n− 1�!
�m− 1�!n! − �m+ n− 1�!

�m+ 1�!�n− 2�!
]/

�m+ n�!
m!n! = m− n+ 1

m+ 1
�

We apply these results to the following.

Problem 1.28 n married couples have to cross from the left to the right bank of a
river via a narrow bridge, one by one. They decided that at any time on the left bank the
number of men should be no less than that of women; apart from this the order can be
arbitrary. Find the probability that every man will cross the river after his own wife.

Solution Set

A= �every man crosses after his own wife��

B= �at all times, the # of men on the left bank ≥ that of women��

Then

P�A�B�=P�A∩B�/P�B�=P�A�/P�B�= n+ 1
2n

� �

We conclude this section with another story about Kolmogorov. He began his academic
studies as a historian, and at the age of 19 finished a work focused on the principles of
distribution and taxation of arable land in fifteenth and sixteenth century Novgorod, an
ancient Russian state (a principality and a republic at different periods of its existence,
fully or partially independent, until it was annexed by Moscow in 1478). In this work, he
used mathematical arguments to answer the following question: was it (i) a village that
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was taxed in the first place, and then the tax was divided between households, or (ii) the
other way around, where it was a household that was originally taxed, and then the sum
represented the total to be paid by the village? The sources were ancient cadastres and
other official manuscripts of the period. Because the totals received from the villages
were always an integer number of (changing) monetary units, Kolmogorov proved that it
was rule (ii) that was adopted.

Kolmogorov reported his findings at a history seminar at Moscow University in 1922.
However, the head of the seminar, a well-known professor (a street in Moscow was
later named after him) commented that the conclusions of his young colleague could not
be considered final, because ‘in history, every statement must be supported by several
proofs’. Kolmogorov then decided to move to a discipline where ‘a single proof would
be sufficient for a statement to be considered correct’, i.e. mathematics.

1.4 Random variables. Expectation and conditional expectation.
Joint distributions

He who has heard the same thing told by 12 000 eye-witnesses has only 12 000
probabilities, which are equal to one strong probability, which is far from certain.

F.M.A. Voltaire (1694–1778), French philosopher

This section is considerably larger than the previous ones: the wealth of problems gener-
ated here is such that getting through it allows a student to secure in principle at least the
first third of the Cambridge University IA Probability course.

The definition of a random variable (RV) is that it is a function X on the total set
of outcomes �, usually with real, sometimes with complex values, X���� �∈� (in the
complex case we may consider a pair formed by the real and imaginary parts of X).
A simple (and important) example of an RV is the indicator function of an event:

�∈� �→ I��∈A�=
{
1� if �∈A�
0� if � �∈A� (1.13)

It is obvious that the product I��∈A1�I��∈A2� equals 1 iff �∈A1 ∩A2, i.e.

I��∈A1�I��∈A2�= I��∈A1 ∩A2��

On the other hand,

I��∈A1 ∪A2�= I��∈A1�+ I��∈A2�− I��∈A1�I��∈A2��

In the case of finitely many outcomes, every RV is a finite linear combination of indicator
functions; if there are countably many outcomes, then infinite combinations will be needed.

The expected value (or the expectation, or the mean value, or simply the mean) of a
RV X taking values x1� � � � � xm with probabilities p1� � � � � pm is defined as the sum

�X= ∑
1≤i≤m

pixi =
∑

1≤i≤m
xi��X= xi�
 (1.14)
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in the �-notation:

�X=∑
�∈�

p���X���� (1.15)

If X≡ b is a constant RV, then �X= b.
This definition is meaningful also for RVs taking countably many values x1, x2� � � �

with probabilities p1, p2� � � � :

�X=∑
i

pixi�

provided that the series converges absolutely:
∑

i pi�xi�<�. If
∑

i pi�xi� =�, one says
that X does not have a finite expected value.

In many applications, it is helpful to treat the expected value �X as the position of the
centre of mass for the system of massive points x1, x2� � � � with masses p1, p2� � � � .

The first (and a very useful) observation is that the expected value of the indicator
IA���= I��∈A� of an event equals the probability:

�IA =∑
�∈�

p���I��∈A�=∑
�∈A

p���=��A�� (1.16)

Furthermore, if RVs X, Y have X≤ Y , then �X≤�Y .
Next, the expectation of a linear combination of RVs equals the linear combination of

expectations. The shortest proof is in the �-notation:

��c1X1 + c2X2�=
∑
�

p���
[
c1X1���+ c2X2���

]
= c1

∑
�

p���X1���+ c2
∑
�

p���X2���= c1�X1 + c2�X2�

This fact (called the linearity of the expectation) can be easily extended to n summands:

�

( ∑
1≤k≤n

ckXk

)
= ∑

1≤k≤n
ck�Xk


in particular if �Xk=� for every k, then �
∑

1≤k≤n Xk=�n. A similar property also holds
for an infinite sequence of RVs X1, X2� � � � :

�

(∑
k

ckXk

)
=∑

k

ck�Xk� (1.17)

provided that the series on the RHS converges absolutely:
∑

k �ck�Xk�<�. (The precise
statement is that if

∑
k �ck�Xk�<�, then the series

∑
k≥1 ckXk defines an RV with a finite

mean equal to the sum
∑

k≥1 ck�Xk.)
Also, for a given function g ��→�

�g�X�=∑
�∈�

p���g�X����=∑
i

pig�xi�� (1.18)
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provided that the sum
∑

i pi�g�xi��<�. In fact, writing Y = g�X� and denoting the values
of Y by y1, y2� � � � , we have

�Y =∑
j

yjP�g�X�= yj�=
∑
j

yj
∑
i

I�g�xi�= yj���X= xi�

which is simply
∑

i pig�xi� under the condition that
∑

i pi�g�xi��<�, as we then can do
summation by grouping terms.

Remark Formula (1.18) is a discrete version of what is known as the Law of the
Unconscious Statistician. See equation (2.69).

Given two RVs, X and Y , with values X��� and Y���, we can consider events
�� � X���= xi� Y���= yj� (shortly, �X= xi� Y = yj�) for any pair of their values xi, yj .
The probabilities ��X = xi� Y = yj� will specify the joint distribution of the pair X, Y .
The ‘marginal’ probabilities ��X=xi� and ��Y = yj� are obtained by summation over all
possible values of the complementary RV:

��X= xi�=
∑
yj

��X= xi� Y = yj��

��Y = yj�=
∑
xi

��X= xi� Y = yj��
(1.19)

We can also consider the conditional probabilities

��X= xi�Y = yj�=
��X= xi� Y = yj�

��Y = yj�
� (1.20)

Similar concepts are applicable in the case of several RVs X1� � � � , Xn.
For example, for the sum X+ Y of RVs X and Y with joint probabilities ��X= xi�

Y = yj�:

��X+ Y = u�= ∑
xi�yj � xi+yj=u

��X= xi� Y = yj�

=∑
x

��X= x�Y = u− x�

=∑
y

��X= u− y�Y = y�� (1.21)

Similarly, for the product XY :

��XY = u�= ∑
xi�yj � xiyj=u

��X= xi� Y = yj�

=∑
x

��X= x�Y = u/x�

=∑
y

��X= u/y�Y = y�� (1.22)
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A powerful tool is the formula of conditional expectation: if X and N are two RVs then

�X=�	��X�N�
� (1.23)

Here, on the RHS, the external expectation is relative to the probabilities ��N =nj� with
which RV N takes its values nj:

� 	��X�N�
=∑
j

��N = nj���X�N = nj��

The internal expectation is relative to the conditional probabilities ��X= xi�N = nj� of
values xi of RV X, given that N = nj:

��X�N = nj�=
∑
i

xi��X= xi�N = nj��

To prove formula (1.23), we simply substitute and use the definition of the conditional
probability:

� 	��X�N�
=∑
j

��N = nj�
∑
i

xi��X= xi�N = nj�

= ∑
xi�nj

xi�
(
X= xi�N = nj

)=∑
xi

xi��X= xi�=�X�

We see that formula (1.23) is merely a paraphrase of (2.6). We will say again that it is
the result of conditioning by RV N .

A handy formula is that for N with non-negative integer values

�N =∑
n≥1

��N ≥ n�� (1.24)

In fact, ∑
n≥1

��N ≥ n�=∑
n≥1

∑
k≥n

��N = k�=∑
k≥1

��N = k�
∑

1≤n≤k
1

=∑
k≥1

��N = k�k=�N�

Of course, in formula (1.23) the rôles of X and N can be swapped. For example, in
Problem 1.17, the expected duration of the game is

�N =� 	� �N �X�
=
12∑
i=2

pi� �N �X= i��

where X is the combined outcome of the first throw, and pi =��X= i�. We have:

� �N �X= i�= 1� i+ 2�3�7�11�12�

� �N �X= i�= 1+ 1
pi +p7

� i= 4�5�6�8�9�10�

Substituting the values of pi we get �N = 557/165 ≈ 3�38.
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Further, we say that RVs X and Y with values xi and yj are independent if for any pair
of values

��X= xi� Y = yj�=��X= xi���Y = yj�� (1.25)

For a triple of variables X, Y , Z, we require that for any triple of values ��X= xi� Y =
yj�Z= zk�=��X=xi���Y = yj���Z= zk�. This definition is extended to the case of any
number of RVs X1� � � � , Xn: ∀ x1� � � � , xn:

��X1 = x1�X2 = x2� � � � �Xn = xn�=
n∏
i=1

��Xi = xi�� (1.26)

Furthermore, an infinite sequence of RVs X1� X2� � � � is called independent if ∀n the
variables X1� � � � �Xn are independent.

One may ask here why it suffices to consider in equation (1.26) the ‘full’ product∏n
i=1 while in the definition of independent events it was carefully stated that �

(∩Aik

)=∏
��Aik

� for any subcollection (see equation (1.10)). The answer is: because we require
it for any collection of values x1� � � � , xn of our RVs X1� � � � �Xn. In fact, when some of
the RVs are omitted, we should take the summation over their values, viz.

��X2 = x2� � � � �Xn = xn�=
∑
x1

��X1 = x1�X2 = x2� � � � �Xn = xn��

as the events �X1 = x1� � � � �Xn−1 = xn−1�Xn= xn� are pair-wise disjoint for different x1s,
and partition the event �X2 = x2� � � � �Xn = xn�. So, if

��X1 = x1� � � � �Xn = xn�=
n∏
i=1

��Xi = xi��

then

��X2 = x2� � � � �Xn = xn�=
∑
x1

��X1 = x1���X2 = x2�� � � ��Xn = xn�

= ��X2 = x2�� � � ��Xn = xn��

i.e. the subcollection X2� � � � �Xn is automatically independent.
However, the inverse is not true. For instance, if each of �X�Y �, �X�Z� and �Y�Z�

is a pair of independent RVs, it does not necessarily mean that the triple X�Y�Z is
independent. An example is produced from Problem 1.21: you simply take IA1

, IA2
and

IA3
from the solution.
An important concept that now emerges and will be employed throughout the rest of

this volume is a sequence of independent, identically distributed (IID) RVs X1, X2� � � �.
Here, in addition to the independence, it is assumed that the probability ��Xi = x� is the
same for each i= 1�2� � � � . A good model here is coin-tossing: Xn may be a function of
the result of the nth tossing, viz.

Xn = I�nth toss a head�=
{
1� if the nth toss produces a head�
0� if the nth toss produces a tail�
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More generally, you could divide trials into disjoint ‘blocks’ of some given length l and
think of Xn as a function of the outcomes in the nth block.

An immediate consequence of the definition is that for independent RVs X, Y , the
expected value of the product equals the product of the expected values:

��XY �=∑
xi�yj

xiyj��X= xi� Y = yj�

=∑
xi�yj

xiyj��X= xi���Y = yj�

=
[∑

xi

xi��X= xi�

][∑
yj

yj��Y = yj�

]
=�X�Y� (1.27)

However, the inverse assertion is not true: there are RVs with ��XY �=�X�Y which
are not independent. A simple example is the following.

Example 1.2

X=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
−1� probability

1
3
,

0� probability
1
3
,

1� probability
1
3
,

Y =−2
3
+X2�

Here,

�X= 0� �Y = 0� ��XY �=−2
3
�X+�X3 = 0�

But, obviously, X and Y are dependent.
On the other hand, it is impossible to construct an example of dependent RVs X and

Y taking two values each such that ��XY �=�X�Y . In fact, let X�Y = 0�1, with

��X= Y = 0�=w� P�X= 1� Y = 0�= x�

��X= 0� Y = 1�= y� P�X= Y = 1�= z�

Here

��X= 0�=w+ y� ��Y = 0�=w+ x�

��X= 1�= x+ z� P�Y = 1�= y+ z�

and independence occurs iff z= �x+ z��y+ z�. Next,

��XY �= z� �X�Y = �x+ z��y+ z��

and ��XY �=�X�Y iff z= �x+ z��y+ z�. �
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The variance of RV X with real values and mean �X=� is defined as

VarX=��X−��2
 (1.28)

by expanding the square and using linearity of expectation and the fact that the expected
value of a constant equals this constant we have

VarX =��X2 − 2X�+�2�=�X2 − 2��X+�2

=�X2 − 2�2 +�2 =�X2 − ��X�2� (1.29)

In particular, if X is a constant RV: X≡ b then Var X= b2 − b2 = 0.
The variance is considered as a measure of ‘deviation’ of RV X from its mean. (The

square root
√
VarX is called the standard deviation.)

From the first definition we see that Var X ≥ 0, i.e. ��X�2 ≤�X2. This is a particular
case of the so-called Cauchy–Schwarz (CS) inequality

���XY ��2 ≤��X�2��Y �2� (1.30)

valid for any pair of real or complex RVs X and Y , with Y standing for the complex
conjugation. (This inequality implies that if �X�2 and �Y �2 have finite expected values then
XY also has a finite expected value.) The CS inequality is named after two famous math-
ematicians: the Frenchman A.-L. Cauchy (1789–1857) who is credited with its discovery
in the discrete case and the German H.A. Schwarz (1843–1921) who proposed it in the
continuous case.

The proof of the CS inequality provides an elegant algebraic exercise (and digression);
for simplicity, we will conduct it for real RVs. Observe that ∀�∈�, the RV �X+�Y �2

is ≥ 0 and hence has ��X+�Y �2 ≥ 0. As a function of � it gives an expression

��X+�Y �2 =�X2 + 2��XY +�2�Y 2�

which is a quadratic polynomial. To be ≥ 0 for ∀� ∈�, it must have a non-positive
discriminant, i.e.

4
(
�XY

)2 ≤ 4�X2�Y 2�

A concept closely related to the variance is the covariance of two RVs X� Y defined as

Cov �X�Y �=��X−�X��Y −�Y �=��XY �−�X�Y� (1.31)

By the CS inequality, �Cov �X�Y ��2 ≤ (VarX)(Var Y ).
For independent variables, Cov �X�Y �= 0. Again, the inverse assertion does not hold:

there are non-independent variables X� Y for which Cov �X�Y �= 0. See Example 1.2.
However, as we checked before, if X and Y take two values (or one) and Cov �X�Y �=0,
they will be independent.

RVs with Cov �X� Y �= 0 are called uncorrelated.
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For the variance Var �X+Y � of the sum X+ Y we have the following representation:

Var �X+ Y �=VarX +Var Y + 2Cov �X�Y �� (1.32)

In fact, Var �X+ Y � equals

�
(
�X−�X�+ �Y −�Y �

)2
=�

(
X−�X

)2 + 2�
(
X−�X

)(
Y −�Y

)+�
(
Y −�Y

)2
�

which is the RHS of equation (1.32).
An important corollary is that the variance of the sum of independent variables equals

the sum of the variances:

Var �X+Y�=Var X+Var Y�

This fact is easily extended to any number of independent summands:

Var �X1 + · · ·+Xn�=Var X1 + · · ·+VarXn� (1.33)

In the case of IID RVs, Var Xi does not depend on i, and if Var Xi = �2 (a standard
probabilistic notation) then Var

(∑
1≤j≤n Xj

)= n�2.
On the other hand, if c is a real constant then Var �cX�= ��cX�2 − ���cX��2 =

c2��X2 − ��X�2�= c2Var X. Hence, Var nX=n2Var X. That is summing identical RVs
produces a quadratic growth in the variance, whereas summing IID RVs produces only a
linear one. At the level of mean values both options give the same (linear) growth.

A constant RV taking a single value (X ≡ b) is independent of any other RV (and
group of RVs). Therefore, Var �X+ b�=VarX+Var b=VarX.

Summarising, for independent RVs X1� X2� � � � and real coefficients c1� c2� � � � ,

Var
∑
i

ciXi =
∑
i

c2iVarXi�

provided that the series in the RHS converges absolutely. More precisely, if
∑

i c
2
iVarXi<

�, then the series
∑

i ciXi defines an RV with finite variance
∑

i c
2
iVarXi.

Finally, formulas (1.21), (1.22) in the case of independent RVs become

��X+ Y = u�=∑
y

��X= u− y���Y = y�

=∑
y

��X= x���Y = u− x� (1.34)

and

��XY = u�=∑
y

��X= u/y���Y = y�

=∑
x

��X= x���Y = u/x�� (1.35)

Equation (1.34) is often referred to as the convolution formula.
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Remark There is variation in the notation: many authors write �	X
, Var 	X
 and/or
Var �X�. As we usually follow the style of the Tripos questions, such notation will also
occasionally appear in our text.

Concluding this section, we give an alternative proof of the exclusion–inclusion for-
mula (1.12) for probability ��A� of a union A=⋃1≤i≤n Ai. By using the indicators IAi of
events Ai, the formula becomes

�IA = ∑
1≤k≤n

�−1�k+1
∑

1≤i1<� � � <ik≤n
�
(
IAi1

� � � IAik

)
�

Given an outcome �∈⋃1≤i≤n Ai, let Aj1
� � � � �Ajs

be the list of events containing � � �∈
Aj1

∩ · · · ∩Ajs
and � �∈Aj ∀ Aj not in the list. Without loss of generality, assume that

�j1� � � � � js�= �1� � � � � s�; otherwise relabel events accordingly. Then for this � the RHS
must contain terms ��IAi1

� � � IAik
� with 1≤ k≤ s and 1≤ i1 < � � � < ik ≤ s only. More

precisely we want to check that

1= I∪1≤i≤nAi ���=
∑

1≤k≤s
�−1�k+1

∑
1≤i1<� � � <ik≤s

IAi1
���� � � IAik

����

But the RHS is∑
1≤k≤s

�−1�k+1

(
s

k

)
= 1−

(
1+ ∑

1≤k≤s
�−1�k

(
s

k

))
= 1− �1− 1�s = 1�

Taking the expectation yields the result.

Problem 1.29 I arrive home from a feast and attempt to open my front door with one
of the three keys in my pocket. (You may assume that exactly one key will open the door
and that if I use it I will be successful.) Find the expected number a of tries that I will
need if I take the keys at random from my pocket but drop any key that fails onto the
ground. Find the expected number b of tries that I will need if I take the keys at random
from my pocket and immediately put back into my pocket any key that fails. Find a and
b and check that b− a= 1.

Solution Label the keys 1, 2 and 3 and assume that keys 2 and 3 are wrong. Consider
the following cases (i) the first chosen key is right, (ii) the second key is right, and (iii) the
third key is right. Then for a we have

a=
(
1
3
× 1
)
+
(
2× 1

3
× 1

2
× 2
)
+
(
2× 1

3
× 1

2
× 3
)
= 2�

For b, use conditioning by the result of the first attempt:

b= 1
3
× 1+ 2

3
× �1+ b�� whence b= 3�

Here factor �1+ b� reflects the fact that when the first attempt fails, we spend one try,
and the problem starts again, by independence. �
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Remark The equation for b is similar to earlier equations for probabilities q and qi;
see Problems 1.17 and 1.18.

Problem 1.30 Let N be a non-negative integer-valued RV with mean �1 and variance
�2
1 , and X1�X2� � � � be identically distributed RVs with mean �2 and variance �2

2 
 fur-
thermore, assume that N�X1�X2� � � � are independent. Calculate the mean and variance
of the RV SN =X1 +X2 + · · ·+XN .

Solution 1 By conditioning,

�SN =�
[
��SN �N�

]= N∑
n=0

��N = n��

(
n∑
i=1

Xi

)

=
N∑
n=0

��N = n�n�2 =�1�2�

Next,

�S2
N =�

[
�
(
S2
N �N

)]= N∑
n=0

��N = n��

(
n∑
i=1

Xi

)2

=
N∑
n=0

��N = n�

⎡⎣Var ( n∑
i=1

Xi

)
+
(
�

n∑
i=1

Xi

)2
⎤⎦

=
N∑
n=0

��N = n�	n�2
2 + �n�2�

2


=�1�
2
2 +�2

2�N
2 =�1�

2
2 +�2

2��
2
1 +�2

1 ��

Therefore,

Var �SN �=�S2
N − ��SN �

2 =�1�
2
2 +�2

2�
2
1 �

Solution 2 (Look at this solution after you have learnt about probability generating
functions in Section 1.5.) Write

��s�=�sSn = g�h�s���

where h�s�=�sX1� g�s�=�sN . Differentiating yields �′�s�= g′�h�s��h′�s�, and so

��SN �=�′�1�= g′�h�1��h′�1�= g′�1�h′�1�=�1�2�

Further, �′′�s�= g′′�h�s��h′�s�2 + g′�h�s��h′′�1�� and so

��SN �SN − 1��=�′′�1�= g′′�1�h′�1�2 + g′�1�h′′�1�

and

Var �SN �=�′′�1�+�′�1�− ��′�1��2 =�1�
2
2 +�2

2�
2
1 � �
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Problem 1.31 Define the variance Var X of a random variable X and the covariance
Cov �X�Y � of the pair X� Y .

Let X1�X2� � � � �Xn be random variables. Show that

Var �X1 +X2 + · · ·+Xn�=
n∑

i�j=1

Cov �Xi�Xj��

Ten people sit in a circle, and each tosses a fair coin. Let N be the number of people
whose coin shows the same side as both of the coins tossed by the two neighbouring
people. Find ��N = 9� and ��N = 10�. By representing N as a sum of random variables,
or otherwise, find the mean and variance of N .

Solution Let Yi =Xi −�Xi. Then

Var

(
n∑
i=1

Xi

)
=�

(
n∑
i=1

Yi

)2

=�

(
n∑

i�j=1

YiYj

)
=

n∑
i�j=1

��YiYj� �

But ��YiYj�=Cov �Xi�Xj�, hence the result. Next observe that ��N =9�=0. Indeed, you
can’t have nine people out of ten in agreement with their neighbours and just one person
in disagreement, as his neighbours must quote him. Further, ��N = 10�= 2× �1/2�10:
there are two ways to fix the side, and �1/2�10 is the probability that all ten coins show
this particular side.

Finally, write N = IA1
+ · · ·+ IAn , where IAi is the indicator of the event

Ai = �ith person has two neighbours with the same side showing��

By symmetry,

�N = 10��A1�= 10× 1
4
= 2�5�

Further, RVs IAi � IAj are pair-wise independent if i is not next to j. In fact, when i and j do
not have a common neighbour, this is obvious, as each RV depends on disjoint collection
of independent trials. Next, assume that i and j have a (single) common neighbour. Then

��IAi = 1� IAj = 1�= 1
32

+ 1
32

= 1
16
�

At the same time,

��IAi = 1�=��IAj = 1�= 1
4
�

Thus,

Var �N�= 10 Var �IA1
�+ 20 Cov �IA1

� IA2
�

= 10

[
1
4
−
(
1
4

)2
]
+ 20

[
��IA1

IA2
�− 1

16

]
�
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Further,

��IA1
IA2
�=��IA1

= 1�IA2
= 1���IA2

= 1�= 1
2
× 1

4
= 1

8
�

Thus,

Var N = 10× 3
16

+ 20
(
1
8
− 1

16

)
= 3�125� �

Problem 1.32 X1� � � � �Xn are independent, identically distributed RVs with mean �
and variance �2. Find the mean of

S=
n∑
i=1

�Xi −X�2� whereX= 1
n

n∑
1

Xi�

Solution First, consider the mean value and the variance of X:

�X= 1
n
�

n∑
i=1

Xi =
1
n

n∑
i=1

�Xi =
1
n
· n�=��

and

VarX= 1
n2

n∑
i=1

VarXi =
�2

n
�

Next,

�S =�

(
n∑
i=1

X2
i − 2X

n∑
i=1

Xi + nX
2

)
=�

(
n∑
i=1

X2
i − 2nX

2 + nX
2

)

=�

(
n∑
i=1

x2i − nX
2

)
=

n∑
i=1

�X2
i − n�X

2

= n��2 +�2�− n	��X�2 +VarX


= n��2 +�2�− n��2 + �2

n
�=�2�n− 1�� �

Problem 1.33 �Xk� is a sequence of independent identically distributed positive RVs,
where ��Xk�= a and �X−1

k = b exist. Let Sn =
∑n

i=1Xk. Show that ��Sm/Sn�=m/n if
m≤ n, and ��Sm/Sn�= 1+ �m− n�a� �S−1

n � if m>n.

Solution For m≤ n write

�

(
Sm
Sn

)
=�

X1 + · · ·+Xm

Sn
=

m∑
i=1

�

(
Xi

Sn

)
=m�

(
X1

Sn

)
�

But for m= n:

1= n�

(
X1

Sn

)
�

Hence ��Sm
/
Sn�=m

/
n.
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For m>n,

�

(
Sm
Sn

)
=�

(
Sn
Sn

)
+�

n∑
j=m+1

Xj

Sn
= 1+

m∑
j=n+1

�Xj�

(
1
Sn

)

= 1+ �m− n�a�

(
1
Sn

)
�

The mean value ��1/Sn� is finite (and is ≤ b) since 1/Sn ≤ 1/X1.
It is important to stress that Sn and Sm are not independent. �

Problem 1.34 Suppose that X and Y are independent real random variables with
�X�� �Y � ≤K for some constant K. If Z=XY show that the variance of Z is given by

VarZ=VarXVar Y +Var Y��X�2 +VarX��Y �2�

stating the properties of expectation that you use.

Solution Write Var �XY �=��XY �2 − ���XY ��2 =�X2�Y 2 − ��X�2��Y �2 and con-
tinue

= 	VarX+ ��X�2
	Var Y + ��Y �2
− ��X�2��Y �2

=VarXVar Y + ��X�2Var Y + ��Y �2VarX�

The facts used are: linearity of expectation, the equations �Z = �X�Y and �Z2 =
�X2�Y 2 that hold due to independence, and finiteness of all mean values because of the
boundedness of random variables X and Y . �

Problem 1.35 Let a1� a2� � � � � an be yearly rainfalls in Cambridge over the past n
years: assume a1� a2� � � � � an are IID RVs. Say that k is a record year if ak > ai for all
i < k (thus the first-year is always a record year). Let Yi = 1 if i is a record year and
0 otherwise. Find the distribution of Yi and show that Y1� Y2� � � � � Yn are independent.
Calculate the mean and variance of the number of record years in the next n years.

Set N = j if j is the first record year after year 1� 1≤ j<n, and N =n if a1 or an are
maximal among a1� � � � � an (i.e. the first or the last year produced the absolute record).
Show that �N →� as n→�.

Solution Ranking the ais in a non-increasing order generates a random permutation of
1� 2� � � � � n; by symmetry, all such permutations will be equiprobable. Ranking the first
i rainfalls yields a random permutation of 1�2� � � � � i. Hence,

��Yi = 1�= 1
i
� ��Yi = 0�= i− 1

i
� �Yi =

1
i
� Var Yi =

1
i
− 1
i2
�

Observe that RVs Y1� � � � � Yn are independent. In fact, set

Xi = the ranking of year i among 1� � � � � i�



46 Discrete outcomes

with

��Xi = l�= 1
i
� 1≤ l≤ i�

Then Yi is a function of Xi only. So, it is enough to check that the Xi are independent. In
fact, for any collection of pair-wise distinct values li� i= 1� � � � � n, with li ≤ i, the event
�Xi = li� 1≤ i≤ n� is realised for a unique permutation out of n!. Thus,

1
n! =��Xi = xi�1≤ i≤ n�= ∏

1≤i≤n
��Xi = xi��

Next,

�
n∑
1

Yi =
n∑
1

1
i
�

and

Var

(
n∑
1

Yi

)
=

n∑
i=1

Var Yi =
n∑
1

(
1
i
− 1
i2

)
�

Finally, for m= 2� � � � � n, the probability ��N ≥m� equals

��2� � � � �m− 1 are not records�= 1× 1
2
× 2

3
· · · × m− 2

m− 1
= 1
m− 1

�

Hence, �N ≥∑n
m=2 1/�m− 1� which tends to � as n→�. Observe, however, that with

probability 1 there will be infinitely many record years if observations are continued
indefinitely. �

Problem 1.36 An expedition is sent to the Himalayas with the objective of catching
a pair of wild yaks for breeding. Assume yaks are loners and roam about the Himalayas
at random. The probability p∈ �0�1� that a given trapped yak is male is independent of
prior outcomes. Let N be the number of yaks that must be caught until a pair is obtained.

(i) Show that the expected value of N is 1+p/q+ q/p, where q= 1−p.
(ii) Find the variance of N .

Solution (i) Clearly, ��N = n�=pn−1q+ qn−1p for n≥ 2. Then �N equals

q
�∑
n=2

npn−1 +p
�∑
n=2

nqn−1 =pq

[
1

1−p
+ 1

1− q
+ 1
�1−p�2

+ 1
�1− q�2

]
�

which gives 1+ �p
/
q�+ �q

/
p�.

(ii) Further,

VarN =�N�N − 1�+�N − ��N�2
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and

�N�N − 1�= pq
∑�

n=2
n�n− 1�pn−2 +pq

∑�
n=2
n�n− 1�qn−2

= 2pq
�1−p�3

+ 2pq
�1− q�3

= 2p
q2

+ 2q
p2
�

So, the variance of N equals

2p
q2

+ 2q
p2

+ p

q
+ q

p
+ 1−

(
p

q
+ q

p
+ 1
)2

= 1
q2

+ 1
p2

− p

q
− q

p
− 4� �

Problem 1.37 Liam’s bowl of spaghetti contains n strands. He selects two ends at
random and joins them together. He does this until there are no ends left. What is the
expected number of spaghetti hoops in the bowl?

Solution Setting

Xi =
{
1� if the ith join makes a loop,

0� otherwise,

find

��Xi = 1�= 1
2n− 2i+ 1

�

(By the ith join you have 2n−2�i−1� ends untied; for an end chosen there are 2n−2i+1
possibilities to choose the second end, and only one of them leads to a hoop.) Thus

�
n∑
i=1

Xi =
n∑
i=1

�Xi =
n∑
i=1

��Xi = 1�=
n∑
i=1

1
2n− 2i+ 1

=
n−1∑
i=0

1
2i+ 1

� �

Problem 1.38 Sarah collects figures from cornflakes packets. Each packet contains
one figure, and n distinct figures make a complete set. Show that the expected number of
packets Sarah needs to collect a complete set is

n
n∑
i=1

1
i
�

Solution The number of packets needed is

N = 1+ Y1 + · · ·+ Yn−1�

Here Y1 represents the number of packets needed for collecting the second figure, Y3 the
third figure, and so on. Each Yj has a geometric distribution:

��Yj = s�=
(
j

n

)s−1
n− j

n
�
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Hence, �Yj = n
/
�n− j�. Then

�N = n
n−1∑
j=0

1
n− j

= n
n∑
1

1
j
≈ n lnn� �

Problem 1.39 The RV N takes values in the non-negative integers. Show that N has
mean satisfying

��N�=
�∑
k=0

��N>k��

whenever this series converges.
Each packet of the breakfast cereal Soggies contains exactly one token, and tokens

are available in each of the three colours blue, white and red. You may assume that each
token obtained is equally likely to be of the three available colours, and that the (random)
colours of different tokens are independent. Find the probability that, having searched the
contents of k packets of Soggies, you have not yet obtained tokens of every colour.

Let N be the number of packets required until you have obtained tokens of every
colour. Show that ��N�= 11/2.

Solution Write
�∑
n=1

��N = n�
n∑
r=1

1=
�∑
n=1

�∑
r=n

��N = r�=
�∑
n=1

��N ≥ n�=
�∑
k=0

��N>k��

Further, the probability ��N>k� equals

��not yet obtained after k trials�=��all red or blue after k trials�
+��all red or white after k trials�+��all blue or white after k trials�
−��all red�−��all blue�−��all white�= 3

[
�2
/
3�k − �1

/
3�k
]
�

Then the expected value of N equals

3+ 3

[ �∑
k=3

(
2
3

)k
−

�∑
k=3

(
1
3

)k]
= 3+ 3

[
3
(
2
3

)3

− 3
2

(
1
3

)3
]
= 11

2
� �

Example 1.3 A useful exercise is to prove formulas for the mean values of R =
min 	X� Y
 and S=max 	X� Y
, where X and Y are independent RVs with non-negative
integer values and finite means. Here

�R=∑
n≥1

��min 	X�Y
≥ n�=∑
n≥1

��X≥ n���X≥ n��

Next, as R+ S=X+ Y , the mean value �S=�X+�Y −�R, which is equal to∑
n≥1

	��X≥ n�+��Y ≥ n�−��X≥ n���Y ≥ n�
� �
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Remark Independence plays an important rôle in the analysis of gambling and betting
(which was a strong motivation for developing probabilistic concepts in the sixteenth–
nineteenth centuries). For example, the following strategy is related to a concept of a
martingale. (This term will appear many times in the future volumes.) A gambler bets
on a sequence of independent events each of probability 1/2. First, he bets $1 on the first
event. If he wins he quits, if he loses, he bets $2 on the next event. Again, if he wins he
quits, otherwise he bets $4 and then quits anyway. In principle, one could stick to the same
strategy for any given number of rounds, or even wait for the success however long it
took. The point here is that success will eventually occur with probability 1 (as an infinite
series of subsequent failures has probability 0). In this case the gain of $1 is guaranteed:
if success occurs at trial k, the profit is 2k and the total loss 1+ 2+ · · ·+ 2k−1 = 2k − 1.

In general, the gambler could also bet different amounts S1� S2� � � � on different rounds.
It is easy to see that the expected gain �Xn will be zero after any given number of rounds
n. For instance, after three betting rounds the expected gain is

S1
2

+ S2 − S1
4

+ S3 − S2 − S1
8

− S1 + S2 + S3
8

= 0�

In general, this fact is checked by induction in n. It seems that it contradicts with the
previous argument that amount $1 could be obtained with probability 1. However, that
will occur at a random trial! And although the expected number of trials until the first
success is 2, the expected capital the gambler will need with doubled bets Si = 2i is

�∑
k=1

(
1
2

)k
2k−1 =

�∑
k=1

1
2
=��

(This is known as St Petersburg’s gambling paradox: it caused consternation in the
Russian high society in the early nineteenth century.)

It would be natural for the gambler to try to minimize the variance Var Xn of his loss
after n rounds. Again, a straightforward calculation shows that for n= 3:

Var X3 =
S2
1

2
+ �S2 − S1�

2

4
+ �S3 − S2 − S1�

2

8
+ �S1 + S2 + S3�

2

8

= S2
1 +

S2
2

2
+ S2

3

4
�

This is minimized when the bets are placed in increasing order, i.e. S1 ≤ S2 ≤ S3. The
same is true for any n.

Problem 1.40 Hamlet, Rosencrantz and Guildenstern are flipping coins. The odd man
wins the coins of the others; if all coins appear alike, no coins change hands. Find the
expected number of throws required to force one man out of the game provided Hamlet
has 14 coins to start with and Rosencrantz and Guildenstern have 6 coins each.

Hint: Look for the expectation in the form Klmn, where l�m and n are the numbers of
coins they start with and K depends only on l+m+ n� the total number of coins.
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Solution The conditions of the game are that the total number of coins is con-
stant. Hence, if H denotes the number of Hamlet’s coins, R of Rosencrantz’s and G

Guildenstern’s, then

H +R+G= 26� (1.36)

The game corresponds to a random walk on integer points of a three-dimensional lattice
satisfying equation (1.36), with H ≥ 0� R≥ 0 and G≥ 0. The game ends when at least
one of the inequalities becomes equality. The jump probabilities are

�H�R�G�→ �H + 2�R− 1�G− 1�� probability
1

4
�

�H�R�G�→ �H − 1�R+ 2�G− 1�� probability
1
4
�

�H�R�G�→ �H − 1�R− 1�G+ 2�� probability
1
4
�

�H�R�G�→ �H�R�G� probability
1
4
�

The walk starts at H = 14, R=G= 6.
Let EH�R�G be the expected number of throws to reach the end if the starting amounts

are H� R� G. Then, by the formula of conditional expectation,

EH�R�G = 1
4
�1+EH�R�G�+

1
4
�1+�H+2�R−1�G−1�

+ 1
4
�1+EH−1�R−1�G+2�+

1
4
�1+EH−1�R+2�G−1��

where we condition on the first throw. That is

3
4
EH�R�G − 1= 1

4
�EH+2�R−1�G−1 +EH−1�R+2�G−1 +EH−1�R−1�G+2��

with the boundary conditions E0�R�G =EH�0�G =EH�R�0 = 0.
The conjectured form is EH�R�G =K�H +G+R�HGR whence

K= 4
3�H +G+R− 2�

and

E14�6�6 =
4× 14× 6× 6
3× �26− 2�

= 336
12

= 28� �

Remark A suggestive guess is as follows: EH�R�G is a symmetric function of H�R�G.
Hence, it must be a function of symmetric polynomials in H�R�G, viz.

H +R+G� HG+HR+GR� HRG�

etc. The boundary condition yields that HRG should appear as a factor.

Problem 1.41 We play the following coin-tossing game. Each of us tosses one (unbi-
ased) coin; if they match, I get both coins; if they differ you get both. Initially, I have m
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coins and you n. Let ��m�n� be the expected length of play until one of us has no coins
left. Write down a linear relation between ��m�n�� ��m−1� n+1� and E�m+1� n−1�.
Expressing this as a function of m+ n= k and n, deduce that ��m�n� is a quadratic
function of m and n, and hence, using appropriate initial conditions, deduce that

��m�n�=mn�

Solution Proceed as above, getting

��m�n�= 1
2
��m− 1� n+ 1�+ 1

2
E�m+ 1� n− 1�+ 1�

The answer is ��m�n�=mn. �

Problem 1.42 In the Aunt Agatha problem (see Problem 1.15), what is the expected
time until the clockwork orange falls off the table?

Solution Continuing the solution of Problem 1.15, let E� be the (conditional) expected
time while starting at distance 10× � cm from the left end. Then E0 =E20 = 0 and

E� =
3
5
E�−1 +

2
5
E�+1 + 1�

or E�+1 = �5/2�E� − �3/2�E�−1 − 5/2. For vectors u� = �E��E�+1� and v= �0�−5/2� we
have u� =u�−1A+ v. Here A is as before:

A=
(

0 −3/2
1 5/2

)
�

with the eigenvalues �1 = 3/2 and �2 = 1 and eigenvectors e1 = �1�3/2� and e2 = �1�1�.
Note that v= 5�e2 − e1�.

Iterating yields

u� =u0A
l + v

∑
1≤j≤l−1

Aj

and if vector u0 = a1e1 + a2e2, then

ul =
(
a1�

l
1 + a2 − 5

(
��1 − 1
�1 − 1

− �

)
�
3
2
a1�

�
1 + a2 − 5

(
3
2
��1 − 1
�1 − 1

− �

))
�

Now, substituting into the first component E0 = 0 (for �= 0) yields

a1 + a2 = 0�

and into the second component E20 = 0 (for �= 19):

a1

(
3
2

)20

+ a2 = 5
(
�3/2�20 − 3/2

1/2
− 19

)
= 5

(
�3/2�20 − 1

1/2
− 20

)
�
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Thus,

a1 =−a2 =
10
(
�3/2�20 − 1

)− 100

�3/2�20 − 1
= 10− 100

�3/2�20 − 1
�

and

E10 =
[
10− 100

�3/2�20 − 1

][(
3
2

)10

− 1

]
+ 50− 10

[(
3
2

)10

− 1

]

= 50+ 10

[(
3
2

)10

− 1

]
− 10

[(
3
2

)10

− 1

]
− 100
�3/2�10 + 1

= 50− 100
�3/2�10 + 1

�

A rough estimate yields E10 ≥ 48.

Remark A much shorter solution (sometimes adopted by students who feel it is correct
but cannot justify it) is as follows. Let � denote the time of the fall-off. As was found in
the solution of Problem 1.15, the position S� at time � is

S� =

⎧⎪⎨⎪⎩
20� with probability

1
�3/2�10 + 1

�

0� with probability 1− 1
�3/2�10 + 1

�

After n jumps, the position is the sum of independent RVs

Sn = S0 +X1 + · · ·+Xn�

where S0 is the initial position (in our case, equal to 10) and Xi the increment at the
jth jump:

Xi =

⎧⎪⎨⎪⎩
+1� with probability

2
5
�

−1� with probability
3
5
�

Writing

Un = S0 + �X1 −�X1�+ · · ·+ �Xn −�Xn�= Sn − n�X1

yields �Un =�S0. The fact (requiring use of the martingale theory) is that the same is
true for the random time �: �U� =�S0. Then

10= 20
1

�3/2�10 + 1
−��

(
2

5
− 3

5

)
�

whence

�� = 50− 100
�3/2�10 + 1

=E10�

as before. �
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Problem 1.43 Define the covariance Cov �X�Y � of two random variables X and Y .
Show that

Var �X+ Y �=VarX+VarY + 2Cov �X�Y ��

A fair die has two green faces, two red faces and two blue faces, and the die is thrown once.
Let

X=
{
1 if a green face is uppermost
0 otherwise,

Y =
{
1 if a blue face is uppermost
0 otherwise.

Find Cov �X�Y �.

Solution Set: �X =�X, �Y =�Y , with ��X+ Y �=�X+�Y . Then

Cov �X�Y �=� �X−�X� �Y −�Y � �

and

Var �X+ Y �=��X+ Y −�X −�Y �
2

=��X−�X�
2 +��Y −�Y �

2 + 2� �X−�X� �Y −�Y �

=VarX+Var Y + 2Cov �X�Y ��

Now

��green�=��blue�= 1
3
�

so

�X =��green�= 1
3

 similarly,�Y =

1
3
�

Finally,

Cov �X�Y �=�XY −�X�Y −�X�Y +�X�Y =�XY −�X�Y �

But XY = 0 with probability 1, thus �XY = 0. Hence, Cov �X�Y �=−1/9. �

Problem 1.44 Let X be an integer-valued RV with distribution

��X= n�= n−s

��s�
�

where s> 1, and

��s�=∑
n≥1

n−s�



54 Discrete outcomes

Let 1<p1 <p2 <p3 < · · · be the primes and let Ak be the event �X is divisible by pk�.
Find ��Ak� and show that the events A1� A2� � � � are independent. Deduce that

�∏
k=1

�1−p−s
k �=

1
��s�

�

Solution Write

��Ak�=
∑

n� divisible by pk

n−s

��s�
= ∑

n� n=pkl

n−s

��s�
=p−s

k

∑
l≥1

l−s

��s�
=p−s

k �

Similarly, ∀ collection Ak1
� � � � � Aki

�1≤ k1< · · ·<kl�:

�
(
Ak1

∩ · · · ∩Aki

)=p−s
k1
� � � p−s

ki
=

i∏
l=1

�
(
Akl

)
�

i.e. the events A1� A2� � � � are independent.
Finally, 1− p−s

k is the probability that X is not divisible by pk. Then
∏�

k=1�1−p−s
k �

gives the probability that X is not divisible by any prime, i.e. X= 1. The last probability
equals 1/��s�. �

Remark ��s� is the famous Riemann zeta-function that is the subject of the Riemann
hypothesis, one of the few problems posed in the nineteenth century which remain
unsolved. The above problem gives a representation of the zeta-function as an infinite
product over the prime numbers.

The name of G.F.B. Riemann (1826–1866), the remarkable German mathematician,
is also related to Geometry (Riemannian manifolds, Riemannian metric). In the context
of this book, we speak of Riemann integration, as opposed to a more general Lebesgue
integration; see below.

1.5 The binomial, Poisson and geometric distributions. Probability
generating, moment generating and characteristic functions

Life is good for only two things,
discovering mathematics and teaching mathematics.

S.-D. Poisson (1781–1840), French mathematician

The binomial distribution appears naturally in the coin-toss setting. Consider the random
variable X equal to the number of heads shown in the course of n trials with the same
type of coin. A convenient representation is

X= Y1 + · · ·+ Yn

where RVs Y1� � � � � Yn are independent and identically distributed

Yj =
{
1� if the jth trial shows head�
0� if the jth trial shows tail�
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Assuming that ��Yj = 1�, the probability of a head, equals p and ��Yj = 0�, that of a tail,
q= 1−p, we have

��X= k�=
(
n

k

)
pkqn−k� 0≤ k≤ n� (1.37)

This probability distribution (and the RV itself) is called binomial (or �n�p�-binomial)
because it is related to the binomial expansion∑

0≤k≤n

(
n

k

)
pkqn−k = �p+ q�n = 1�

Values of binomial probabilities are shown in Figure 1.3.
Because of the above representation X=Y1 +· · ·+Yn, the sum X+X′ of independent

�n�p�- and �n′� p�-binomial RVs X and X′ is ��n+ n′��p�-binomial. This representation
also yields that

�X= n�Y1 = np� VarX= nVarY1 = npq� (1.38)

We write X∼Bi�n�p� for a binomial RV X.
Other well-known expansions also give rise to useful probability distributions. For

example, if we toss a coin until the first head, the outcomes are numbers 0� 1� � � �
(indicating the number of tails before the first head was shown). Let X denote the number
of tails before the first head. The probability of outcome k is

��X= k�=pqk� k= 0�1�2� � � � � (1.39)

and equals the probability of sequence TT� � � TH where first k digits are T and the
�k+ 1�th one H . The sum of all probabilities (proportional to the sum of a geometric
progression) is p/�1− q�= 1. The ‘tail’ probability ��X≥ k�= qk� k≥ 0.
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Figure 1.3 The binomial PMFs.
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Figure 1.4 The geometric PMF.

Not surprisingly, the RV X giving the number of trials before the first head is said
to have a geometric distribution (or being geometric), with parameter q. The diagram of
values of geometric probabilities is shown in Figure 1.4.

The expectation and the variance of a geometric distribution are calculated below:

�X=∑
k≥1

�1− q�kqk =∑
k≥1

qk = q

p
� (1.40)

and

VarX =�X2 − ��X�2 =∑
k≥1

k2pqk − q2

p2

= pq2
∑
k≥2

k�k− 1�qk−2 +pq
∑
k≥1

kqk−1 − q2

p2

= pq2
d2

dq2
1
p
+ q

p
− q2

p2
=pq2

2
p3

+ q

p
− q2

p2
= q2

p2
+ q

p
= q

p2
� (1.41)

Note a special property of a geometric RV: ∀ m<n:
��X≥ n�X≥m�=��X≥ n−m�
 (1.42)

this is called the memoryless property. Another property of geometric distributions is that
the minimum min 	X�X′
 of two independent geometric RVs X and X′ with parameters
q and q′ is geometric, with parameter qq′:

��min 	X�X′
≥ k�= �qq′�k� k= 0�1� � � �

Sometimes, the geometric distribution is defined by probabilities pk = pqk−1, for k=
1�2� � � � which counts the number of trials up to (and including) the first head. This leads
to a different value of the mean value 1/p; the variance remains the same. We write
X∼Geom �q� for a geometric RV X (in either definition).
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The geometric distribution often arises in various situations. For example, the number
of hops made by a bird before flying fits the geometric distribution.

A generalisation of the geometric distribution is a negative binomial distribution. Here,
the corresponding RV X gives the number of tails before the rth head. In other words,
X=X1 + · · ·+Xr , where Xi ∼Geom �q�, independently. A direct calculation shows that

��X= k�=
(
k+ r − 1

k

)
prqk� k= 0�1�2� � � � (1.43)

In fact, X= k means that there were altogether k+ r trials, with k tails and r heads, and
the last toss was a head.

We write X∼NegBin �q� r� for the negative binomial distribution.
Another example is the Poisson distribution, with parameter �≥ 0; it emerges from

the expansion e� =∑k≥0 �
k/k! and named after S.-D. Poisson (1781–1840), a prominent

French mathematician and mathematical physicist. Here we again assign probabilities to
non-negative integers, and the probability assigned to k equals �ke−�/k!. An RV X with

��X= k�= �k

k! e
−�� k= 0�1�2� � � � � (1.44)

is called Poisson. These probabilities arise from the binomial probabilities in the limit
n→�, with p=�/n→ 0:

n!
�n− k�!k!

(
�

n

)k(
1− �

n

)n−k
= n�n− 1� · · · �n− k+ 1�

nk
× �k

k! ×
�1−�/n�n

�1−�/n�k

which approaches �ke−�
/
k!.

The last observation explains the fact that the sum X+X′ of two independent Poisson
RVs X and X′, with parameters � and �′, is Poisson, with parameter �+�′. This fact can
also be established directly.

The graphs of values of Poisson probabilities are in Figure 1.5.
The expectation �X and the variance Var X of a Poisson RV equal �:

∑
k≥0

�k

k! e
−�k=��

∑
k≥0

�k

k! e
−�k2 −�2 =�� (1.45)

We write X∼ Po ��� for a Poisson RV X.
The Poisson distribution is widely used in various situations. A famous (albeit chilling)

example (with which both authors of this book began their studies in Probability) is the
number of Prussian cavalrymen killed by a horse kick in each of the 16 corps in each
of the years 1875–1894. This can be perfectly fitted by the Poisson distribution! It is
amazing that this example found its way into most textbooks until the end of the twentieth
century, without diminishing the enthusiasm of several generations of students.
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Figure 1.5 The Poisson PMFs.

The probability generating function (PGF) ��s� (=�X�s�) of an RV X taking finitely
or countably many non-negative integer values n with probabilities pn is defined as

�X�s�=�sX =∑
n

pns
n =∑

�∈�
p���sX��� =�sX
 (1.46)

it is usually considered for −1≤ s≤ 1 to guarantee convergence. A list of PGFs can be
found in Appendix 1, Table A1.1; here we give a few often used examples. If X takes
values 1 and 0 with probabilities p and 1−p, then

�X�s�=ps+ 1−p 
 (1.47)

if X∼Bin�n� p�, then

�X�s�=
n∑
k=1

(
n

k

)
pkqn−ksk = 	ps+ �1−p�
n 
 (1.48)

if X∼Geom �p�, then

�X�s�=
∑
k≥0

p�1−p�ksk = p

1− s�1−p�

 (1.49)

and if X∼Po ���, then

�X�s�=
∑
k≥0

�k

k! e
−�sk = e��s−1�� (1.50)

An important fact is that the PGF �X�s� determines the distribution of RV X uniquely:
if �X�s�=�Y �s� ∀ 0<s< 1, then ��X=n�=��Y =n� ∀ n. In this case we write X∼Y .
For X and Y taking finitely many values the uniqueness is obvious as �X�s� and �Y �s�

are linear combinations of monomials sn (i.e. polynomials); if two polynomials coincide,
their coefficients also coincide. This is also true for RVs taking countably many values,
but here one has to deal with power series (i.e. the Taylor decomposition).
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Also,

�X= d
ds
�X�s�

∣∣∣∣
s=1

and �X�X− 1�= d2

ds2
�X�s�

∣∣∣∣
s=1

� (1.51)

implying that

VarX =�X�X− 1�+�X− ��X�2

=
(

d2

ds2
�X�s�+

d
ds
�X�s�−

[
d
ds
�X�s�

]2)∣∣∣∣∣
s=1

� (1.52)

Another useful observation is that RVs X and Y are independent iff

�X+Y �s�=�X�s��Y �s�� (1.53)

In fact, let X� Y be independent. Then by convolution formula (1.14), �X+Y �s� equals∑
n

��X+ Y = n�sn =∑
n

∑
k

��X= k�sk��Y = n− k�sn−k�

and by changing n− k �→ l is equal to[∑
k

��X= k�sk

] [∑
k

��N = l�sl

]
=�X�s��Y �s��

The converse fact is proved by referring to the uniqueness of the coefficients of a power
series. A short proof is achieved by observing that if X and Y are independent then sX

and sY are independent, and hence by virtue of formula (1.27):

�sX+Y =�sXsY =�sX�sY �

The use of PGFs is illustrated in the following example.

Example 1.4 There is a random number N of birds on a rock; each bird is a seagull
with probability p and a puffin with probability 1−p. If S is the number of seagulls then
the PGFs �N�s� and �S�s� are related by

�S�s�=�N�ps+ 1−p��

In fact, according to the definition, �S�s�=�s
S =∑n≥0 s

nPS�n�, with
PS�n�=��S= n�, and similarly for �N�s�. Then

�S�s�=
∑
n

sn
∑
m≥n

PN �m�

(
m

n

)
pn�1−p�m−n

=∑
m

PN�m�
m∑
n=0

(
m

n

)
�sp�n�1−p�m−n

=∑
m

PN�m�
(
ps+ �1−p�

)m =�N

(
ps+ �1−p�

)
�
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In short-hand notation:

�S�s�=�
[
�
(
sS�N )]=∑

m

PN�m��
(
sS�N =m

)
=∑

m

PN�m�
(
ps+ �1−p�

)m =�N

[
ps+ �1−p�

]
�

Similarly, for the number of puffins,

�N−S�s�=�N 	�1−p�s+p
 �

Now, suppose N has the Poisson distribution with parameter �. Then

�N�s�= e��s−1�� and �S�s�= e��ps+1−p−1� = e�p�s−1��

By the uniqueness of the probability distribution with a given PGF, S∼Po ��p�.
Similarly,

�N−S�s�= e��1−p��s−1�� i�e� N − S∼Po	��1−p�
�

Also,

�N�s�=�S�s��N−S�s��

i.e. S and N − S are independent.
Of course, one could proceed directly to prove that S∼Po �p���N −S∼Po 	�1−p��


and S and N − S are independent. First,

��S= k�=∑
n≥k

��S= k�N = n���N = n�

=∑
n≥k

n!
k!�n− k�!p

k�1−p�n−k
�ne−�

n!

= �p��ke−p�

k!
∑

n−k≥0

e−��1−p�	��1−p�
n−k

�n− k�! = �p��ke−p�

k! �

and similarly ��N − S= k�= 	�1−p��
ke−�1−p��
/
k!. Next,

��S= k�N − S= l�= ��S= k�N = k+ l���N = k+ l�

=
(
k+ l

k

)
pk�1−p�l

�k+le−�

�k+ l�!

= �p��ke−p�

k! × ��1−p���le−��1−p�

l!
= ��S= k���N − S= l��

i.e. S and N − S are independent.
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An elegant representation for S and N − S is:

S=
N∑
n=1

Xi� N − S=
N∑
n−1

�1−Xi��

where X1� X2� � � � are IID RVs taking values 1 and 0 with probabilities p and (1−P),
respectively. It is instructive to repeat the above proof that S∼ Po �p�� and �N − S�∼
Po 	�1−p��
 by using this representation (and assuming of course that N ∼ Po ���).

An interesting fact is that a converse assertion also holds: here the use of PGFs will
be very efficient. Let N be an arbitrary RV, let p= 1/2 and suppose that RVs S and
N −S are independent, without assuming that either of them is Poisson. By independence,
symmetry and the equation �S�s�=�N �ps+ �1−p��:

�N�s�=�S�s��N−S�s�=
[
�N

(
1
2
s+ 1− 1

2

)]2
�

Then the function ��s�=�N�1− s� satisfies

��s�=
[
�
( s
2

)]2 = · · ·=
[
�
( s
2n

)]2n
�

Thus, if s is small, the Taylor expansion yields

��s�=�N �1− s�=�N�1�−�′
N �1�s+ o�s2�= 1−�s+O�s2��

where �=�N . Hence, as n→�

��s�=
[
1− �s

2n
+ o

(
s2

4n

)]2n
→ e−�s�

Thus, �N�1− s�= e��s−1�, i.e. N ∼ Po ���. Then, by the above argument, S and N − S

will be Poisson of parameter �/2. �

Function

MX���=�X�e
��=�e�X (1.54)

is called the moment generating function (MGF). It is considered for real values of the
argument �, but may not exist for some of them. If X takes non-negative values only,
MX��� exists ∀ �≤ 0 and possibly for some �> 0. Then one can also use the function

LX���=�X�e
−��=�e−�X� (1.55)

which is called the Laplace transform. The name ‘moment generating function’ comes
from the representation MX���=

∑�
n=0

(
�Xn

)
�n
/
n! as the expected value �Xn is called

the nth moment of RV X.
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On the other hand, the characteristic function (CHF) ��t� (=�X�t�) can be correctly
defined for all real t:

��t�=�eitX =∑
j

pje
itxj =∑

�∈�
p���eitX���� (1.56)

though it takes complex values, of modulus ≤ 1. The usefulness of these two functions
can be seen from the following properties.

(i) The MGFs and CHFs can be effectively used for RVs taking real values, not
necessary non-negative integers. For many important RVs the MGFs and CHFs
are written in a convenient and transparent form. The CHFs are particularly
important when one analyses the convergence of RVs. Of course, ��t�=MX�it�

and MX���=�X�e
��.

(ii) The MGFs and CHFs multiply when we add independent RVs: if X and Y are
independent then, by equation (1.27),

MX+Y ���=MX���MY ���� �X+Y ���=�X�t��Y �t�� (1.57)

In fact, if X and Y are independent then e�X and e�Y are independent, and

MX+Y ���=�e��X+Y � =�e�Xe�Y =�e�X�e�Y =MX���MY ����

and similarly for the characteristic functions.
(iii) The expected value �X and the variances Var X (and in fact other moments

�Xj) are expressed in terms of their derivatives at t= 0, viz.

�X = d
d�
MX���

∣∣∣∣
�=0

= 1
i
d
dt
�X�t�

∣∣∣∣
t=0

� (1.58)

VarX =
(

d2

d�2
MX���−

[
d
d�
MX���

]2)∣∣∣∣∣
�=0

=
(
− d2

dt2
�X�t�+

[
d
dt
�X�t�

]2)∣∣∣∣∣
t=0

� (1.59)

(iv) Each ofMX��� and �X�t� uniquely defines the distribution of the RV: ifMX���=
MY��� or �X�t�=�Y �t� in the entire domain of existence then variables X and
Y take the same collection of values and with the same probabilities. In this
case we write, as before, X∼ Y . This property also ensures that if MX+Y ���=
MX���MY ��� or �X+Y =�X�t��Y �t� then RVs X and Y are independent.

Property (iv) is helpful for identifying various probability distributions; its full proof
is beyond the limits of this course.

Problem 1.45 Let N be a discrete random variable with

��N = k�= �1−p�k−1p� k= 1�2�3� � � � �

where 0<p< 1. Show that �N = 1/p.
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Solution A direct calculation:

�N =
�∑
k=1

k�1−p�k−1p=−p d
dp

(
1

1− �1−p�

)
= 1
p
�

Alternatively: �N = 1×p+ �1−p�× �1+�N�, implying that �N = 1/p. �

Problem 1.46 (i) Suppose that the RV X is geometrically distributed, so that ��X=
n�=pqn� n= 0�1� � � � � where q= 1−p and 0<p< 1. Show that

�

(
1

�X+ 1�

)
=−p

q
lnp�

(ii) Two dice are repeatedly thrown until neither of them shows the number 6. Find the
probability that at the final throw at least one of the dice shows the number 5.

Suppose that your gain is the total Y shown by the two dice at the last throw, and that
the time taken to achieve it is the total number N of throws.

(a) Find your expected gain �Y .
(b) Find your expected rate of return ��Y/N�� using the approximation ln �36/25�≈

11/30.

Solution (i) Observe that N =X+ 1 with probability of success p= 25/36. Then

�

(
1
N

)
=∑

n≥1

1
n
qn−1p= p

q

∑
n≥1

1
n
qn

= p

q

∑
n≥1

∫ q

0
xn−1dx= p

q

∫ q

0

1
1− x

dx

= p

q

∫ 1

p

1
u
du= p

q
ln

1
p
�

(ii) By symmetry,

��at least one 5 at the last throw�

= ��at least one 5 and no 6 at the last throw�
��no 6 at the last throw�

= 9
25
�

Next, Y = Y1 + Y2, where Yi is the number shown by die i. Hence, (a)

�Y = 2�Y1� �Y1 = �1+ 2+ 3+ 4+ 5�/5= 3� �Y = 6�

Now, N ∼ Geom �q�, with parameter q= 11/36. Furthermore, Y and N are independent:

��Y = y�N = n�= qn−1p��total y by the nth throw�no 6�

= ��Y = y���N = n��
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So, (b)

�

(
Y

N

)
=�Y�

(
1
N

)
= 6× 25

11
ln
(
36
25

)
≈ 5� �

Problem 1.47 (i) Suppose that X and Y are discrete random variables with finite mean
and variance. Establish the following results:

(a) ��X+ Y �=�X+�Y .
(b) Var �X+ Y �=VarX+Var Y + 2Cov �X�Y �.
(c) X and Y independent implies that Cov �X�Y �= 0.

(ii) A coin shows heads with probability p> 0 and tails with probability q= 1− p. Let
Xn be the number of tosses needed to obtain n heads. Find the PGF for X1 and compute
its mean and variance. What is the mean and variance of Xn?

Solution (i) (a) Write

�X=∑
a

a��X= a�� �Y =∑
b

b��Y = b�

and observe that

�� � X= a�=∪b�� � X= a�Y = b�

where the union is pair-wise disjoint. Then

�X+�Y =∑
a�b

a��X= a� Y = b�+ b��X= a� Y = b�

=∑
c

c
∑

a+b=c
��X= a�Y = b�

=∑
c

c��X+ Y = c�=��X+ Y ��

(b) By definition, Var �X�=���X−�X�2�=�X2 − ��X�2. Then

Var �X+ Y �=��X+ Y − ��X+�Y ��2

=��X−�X�2 +��Y −�Y �2

+2��X−�X��Y −�Y �

=VarX+Var Y + 2Cov �X�Y ��

(c) If X�Y are independent,

�XY =∑
c

c��XY = c�=∑
c

c
∑
ab=c

��X= a� Y = b�

=∑
a�b

ab��X= a���Y = b�
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=
[∑

a

a��X= a�

][∑
b

b��Y = b�

]
=�X�Y�

Now if X� Y are independent then so are X−�X, Y −�Y , and so

Cov �X�Y �=��X−�X��Y −�Y �= 0�

(ii) We have ��X1 = k�= pqk−1, and so the PGF ��s�=�X1
�s�= ps/�1− qs� and the

derivative �′�s�=p/�1− qs�2. Hence,

�X1 =�′�1�= 1
p
� �X2

1 =�′′�1�+�′�1�= 1+ q

p2
� andVarX1 =

q

p2
�

So �Xn = n/p, Var Xn = np/q2. �

Problem 1.48 Each of the random variables U and V takes the values ±1. Their joint
distribution is given by

��U = 1�= ��U =−1�= 1
2
�

��V = 1�U = 1�= ��V =−1�U =−1�= 1
3
�

��V =−1�U = 1�= ��V = 1�U =−1�= 2
3
�

(i) Find the probability that x2 +Ux+V = 0 has at least one real root.
(ii) Find the expected value of the larger root of x2 +Ux+V = 0 given that there is at

least one real root.
(iii) Find the probability that x2 + �U +V�x+U +V = 0 has at least one real root.

Solution Write

��U = 1�V = 1�= 1
6
� ��U =−1�V = 1�= 1

3
�

��U = 1�V =−1�= 1
3
� ��U =−1�V =−1�= 1

6
�

(i) x2 + Ux+ V has a real root iff U 2 − 4V ≥ 0 which means V =−1. Clearly, if
V =−1, then U 2 − 4V = 5. So the probability of a real root is 1/2.

(ii) The expected value of the larger root is

�−1+√
5�

2
��U = 1�V =−1�+ �1+√

5�
2

��U =−1�V =−1�

= 1
��V =−1�

(
�−1+√

5�
2

1
3
+ �1+√

5�
2

1
6

)
=

√
5
2

− 1
6
�
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(iii) x2 +Wx+W has a real root if W 2 − 4W ≥ 0. If W = U + V , W takes values
2�0�−2 and the equation has a real root if W = 0 or −2. Then ��W = 0�= 2/3 and
��W = 0 or − 2�= 5/6. �

Problem 1.49 In a sequence of independent trials, X is the number of trials up to and
including the ath success. Show that

��X= r�=
(
r − 1
a− 1

)
paqr−a� r = a�a+ 1� � � �

Verify that the PGF for this distribution is pasa�1− qs�−a. Show that �X = a/p and
VarX = aq/p2. Show how X can be represented as the sum of a independent random
variables, all with the same distribution. Use this representation to derive again the mean
and variance of X.

Solution Probability ��X= r� is represented as

���a− 1 successes occurred in r − 1 trials�∩ �success on the rth trial��

=
(
r − 1
a− 1

)
pa−1qr−1−a+1p=

(
r − 1
a− 1

)
paqr−a� r ≥ a�

The PGF for this distribution is

��s�=pasa
∑
r≥a

(
r − 1
a− 1

)
�qs�r−a =pasa

∑
k≥0

(
k+ a− 1
a− 1

)
�qs�k�

Observe that(
k+ a− 1
a− 1

)
coincides with the number of ways to represent k as a sum of a non-negative integers

k= k1 + · · ·+ ka�

This fact may be geometrically interpreted as follows. You take k ‘stars’ and you inter-
sperse them with a− 1 ‘bits’:

� ∗ · · · ∗ � ∗ � ∗ ��� ∗ · · · ∗ � ∗ �

The number of stars between the (j− 1)th and jth bits give you the value kj; k1 is the
number of stars to the left of the first bit and ka is the number of stars to the right of the
�a− 1�th bit. But the number of different diagrams is(

k+ a− 1
a− 1

)
�
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Now use the multinomial expansion formula(∑
k

bk

)a
=∑

k

∑
k1� � � � �ka� k1+···+ka=k

∏
j

bkj

and obtain

∑
k≥0

(
k+ a− 1
a− 1

)
�qs�k =

(∑
k≥0

�qs�k

)a
= �1− qs�−a

and ��s�=pasa�1− qs�−a. Further,

�X = �pasa�1− qs�−a�′�s=1 =
a

p
�

��X�X− 1��= �pasa�1− qs�−a�′′�s=1

= a�a− 1�+ 2a2�1−p�

p
+ a�a+ 1��1−p�2

p2
�

Hence,

VarX =�X�X− 1�+�X− ��X�2 =�′′�1�+�′�1�− ��′�1��2

= a�a− 1�p2 + 2a2p�1−p�+ a�a+ 1��1−p�2

p2
+ a

p
− a2

p2
= aq

p2
�

As ��s�= ���s��a, where ��s�=ps�1−qs�−1, you conclude that X may be represented
as a sum

∑a
j=1 Yj , where Y1� � � � � Ya are IID RVs with the PGF ��s�. In fact, Yj is the

number of trials between the jth and �j+1�th successes including the trial of the �j+1�th
success. So,

�X= a�Yj� VarX= aVar Yj�

As Yj ∼Geom �q�� �Yj = 1/p and Var �Yj�= q/p2. �

Problem 1.50 What is a Poisson distribution? Suppose that X and Y are independent
Poisson variables with parameters � and � respectively. Show that X + Y is Poisson
with parameter �+�. Are X and X+Y independent? What is the conditional probability
��X= r�X+ Y = n�?

Solution A Poisson distribution assigns probabilities

pr = e−�
�r

r!
to non-negative integers r= 0�1� � � � Here �> 0 is the parameter of the distribution. The
PGF of a Poisson distribution is

�X�s�=�sX =
�∑
r=0

e−�sr
�r

r! = e��s−1��
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By independence,

�X+Y �s�=�X�s��Y �s�= e��+���s−1��

and by the uniqueness theorem, X+ Y ∼ Po ��+��. A similar conclusion follows from
a direct calculation:

��X+ Y = r�= ∑
i�j� i+j=r

��X= i� Y = j�

= ∑
i�j� i+j=r

��X= i���Y = j�

= ∑
i�j� i+j=r

e−��i

i!
e−��j

j!

= e−��+��

r!
∑

i�j� i+j=r

(
r

i

)
�i�j = e−��+��

r! ��+��r�

However, X and X + Y are not independent, as ��X + Y = 2�X = 4�= 0. In fact,
∀ r = 0�1� � � � � n:

��X= r�X+ Y = n�= ��X= r� Y = n− r�

��X+ Y = n�

= ��X= r���Y = n− r�

��X+ Y = n�

= e−��re−��n−rn!
e−��+����+��nr!�n− r�!

=
(
n

r

)(
�

�+�

)r (
�

�+�

)n−r
�

i.e. �X�X+ Y = n�∼Bin �n��/�+��. �

Problem 1.51 Let X be a positive integer-valued RV. Define its PGF �X . Show that
if X and Y are independent positive integer-valued random variables, then

�X+Y =�X�Y �

A non-standard pair of dice is a pair of six-sided unbiased dice whose faces are num-
bered with strictly positive integers in a non-standard way (for example, �2�2�2�3�5�7�
and �1�1�5�6�7�8�). Show that there exists a non-standard pair of dice A and B such
that when thrown

�
(
total shown by A and B is n

)
=�

(
total shown by pair of ordinary dice is n

)
for all 2≤ n≤ 12.

Hint: x+ x2 + x3 + x4 + x5 + x6 = x�x+ 1��1+ x2 + x4�= x�1+ x+ x2��1+ x3�.
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Solution Use the PGF : for an RV V with finitely or countably many values v: �V�x�=
�xV =∑s x

v��V = v�. The PGF determines the distribution uniquely: if �U�x�≡�V�x�,
then U ∼ V in the sense that ��U = v�≡ ��V = v�. Also, if V = V1 +V2, where V1 and
V2 are independent then �V�x�=�V1

�x��V2
�x�.

Now let S2 be the total score shown by a pair of standard dice, then

�S2
�x�=�2

S�x�=
1
36

(
6∑

k=1

xk

)2

= 1
36
x�1+x��1+x2 +x4�x�1+x+x2��1+x3��

where S is the score shown by a single die.
Therefore, if we arrange a pair of dice A and B such that the score TA for die A has

the PGF

�A�x�=
1
6
x�1+ x2 + x4��1+ x3�= 1

6
�x+ x3 + x4 + x5 + x6 + x8�

and the score TB for die B the PGF

�B�x�=
1
6
x�1+ x+ x2��1+ x�= 1

6
�x+ 2x2 + 2x3 + x4�

then the total score TA +TB will have the same PGF as S2. Hence, the die A with faces 1,
3, 4, 5, 6 and 8 and die B with faces 1, 2, 2, 3, 3 and 4 will satisfy the requirement. �

Problem 1.52 A biased coin has probability p, 0<p<1, of showing heads on a single
throw. Show that the PGF of the number of heads in n throws is

��s�= �ps+ 1−p�n�

Suppose the coin is thrown N times, where N is a random variable with expectation �N

and variance �2
N , and let Y be the number of heads obtained. Show that the PGF �Y �s�

of Y satisfies

�Y �s�=�N�ps+ 1−p��

where �N�s� is the PGF of N . Hence, or otherwise, find �Y and Var Y .
Suppose ��N =k�= e−��k/k!� k=0�1�2� � � � Show that Y has a Poisson distribution

with parameter �p.

Solution Denote by X the number of heads after n throws. Then X∼Bin �n�p�:

��X= k�=
(
n

k

)
pk�1−p�n−k� k= 0�1� � � � � n�

and

�X�s�=�sX =
n∑
k=0

(
n

k

)
�sp�k�1−p�n−k = �ps+ 1−p�n�
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Next,

�Y �s�=�sY =�
[
��sY

∣∣N �]=��ps+ 1−p�N =�N�ps+ 1−p��

where �N�s�=�sN . Then

�′
Y �s�=p�′

N �ps+ 1−p�� so�′
Y �1�=p�′

N �1�� i.e. �Y =p�N �

Further,

�′′
Y �s�=p2�′′

N �ps+ 1−p�

and

Var Y =p2�′′
N �1�+p�′

N �1�−p2�2
N =p2�2

N +�Np�1−p��

Thus, if N ∼Po ���, with

�N�s�=
�∑
k=0

ske−�
�k

k! = exp
[
��s− 1�

]
�

then

�Y �s�= exp
[
��ps+ 1−p− 1�

]= exp 	�p�s− 1�
�

and Y ∼Po ��p�. �

Problem 1.53 If X and Y are independent Poisson RVs with parameters � and �,
show that X+ Y is Poisson with parameter �+�.

The proofs of my treatise upon the Binomial Theorem which I hope will have a
European vogue have come back from the printers. To my horror I discover that the
printers have introduced misprints in such a way that the number of misprints on each
page is a Poisson RV with parameter �. If I proofread the book once, then the probability
that I will detect any particular misprint is p independent of anything else. Show that
after I have proofread the book once the number of remaining misprints on each page is
a Poisson random variable and give its parameter.

My book has 256 pages, the number of misprints on each page is independent of the
numbers on other pages, the average number of misprints on each page is 2 and p= 3/4.
How many times must I proofread the book to ensure that the probability that no misprint
remains in the book is greater than 1/2?

Solution You can use the PGFs:

�X�t�=�tX =∑
k≥0

e−��t��k

k! = e��t−1��

and similarly �Y �t�= e��t−1�, with �X+Y �t�=�X�t��Y �t�= e��+���t−1� owing to the inde-
pendence. Then, by the uniqueness, X+ Y ∼Po ��+��.
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Another way is by direct calculation: by the convolution formula,

��X+ Y = r�=
r∑

k=0

��X= k���Y = r − k�

=
r∑

k=0

e−��k

k! × e−��r−k

�r − k�!

= e−�−�

r!
r∑

k=0

r!
k!�r − k�!�

k�r−k

= e−�−���+��r

r! �

If X is the number of original and Z of remaining misprints then Z∼Po �p��. In fact, the
PGF �Z�t�=�tZ can be written as �

[
��tZ�X�] and equals

∑
k≥0

e−��k

k! ��tZ�X= k�=∑
k≥0

e−��k

k!
k∑
r=0

tr
k!

r!�k− r�!p
r�1−p�k−r

=∑
k≥0

e−��k

k! �tp+ 1−p�k

= e��−1+tp−p+1� = e�p�t−1��

This implies that Z∼Po �p��. A direct calculation also works:

��Z= r�=∑
k≥r

��Z= r�X= k���X= k�

=∑
k≥r

e−��k

k!
k!

r!�k− r�!p
r�1−p�k−r

= e−p��p��r

r!
∑
k−r≥0

e−�1−p��	��1−p�
k−r

�k− r�! = e−p��p��r

r! �

Finally, after n proofreadings, each Zi ∼ Po �pn��� 1≤ i≤ 256, with p= 3/4 and �= 2.
If R=∑256

i=1Zi, then R∼Po
(
256× 2× �3/4�n

)
, and

��R= 0�= e−512·�3/4�n should be ≥ 1
2
�

Hence, we must have 512 �3/4�n ≤ ln 2, i.e. �3/4�n ≤ �ln 2�/28 or

n≥ 8 ln 2− ln ln 2
ln �4/3�

≈ 20�54939� �
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Problem 1.54 State the precise relation between the binomial and Poisson distributions.
The lottery in Gambland sells on average 107 tickets. To win the first prize one must
guess 7 numbers out of 50. Assume that individual bets are independent and random
(this is a rather unrealistic assumption). For a given integer n≥ 0, write a formula for the
Poisson approximation of the probability that there are at least n first prize winners in
this week’s draw. Give a rough estimate of this value for n= 5�10. The Stirling formula
n! ≈√

2�nnne−n can be used without proof.

Solution The limit

lim
n→�

(
n

k

)(
�

n

)k(
1− �

n

)n−k
= e−�

�k

k!
means that if Xn ∼ Bin�n��/n� then Xn ⇒ Y ∼ Po ��� as n→�. This fact is used to
approximate various binomial probabilities.

In the example

n= 107� p= 1
/(

50
7

)
� and �= 107

/(
50
7

)
�

Further, (
50
7

)
≈ 108� �≈ 0�1� e−� ≈ 0�9�

Then

��≥ nwinners�= e−�
�∑
k=n

�k

k! ≈ e−�
�n

n!
yields:

for n= 5� ≈ 0�9× 10−5

120
≈ 7�5× 10−8�

for n= 10� ≈ 0�9× 10−10

3 · 106 ≈ 3× 10−17� �

J. Stirling (1692–1770) was a Scottish mathematician and engineer. Apart from his
numerous mathematical achievements (and the Stirling formula is one of them), he was
interested in such applied problems as the form of the Earth, in which his results were
highly praised by his contemporaries. His life was not easy as he was an active Jacobite, a
supporter of James, the prominent pretender to the English throne. He had to flee abroad
and spent some years in Venice where he continued his academic work.

We conclude this section with a more challenging problem.

Problem 1.55 (i) Let Sn =X1 + · · ·+Xn�S0 = 0, and X1� � � � � Xn be IID with

Xi =
{
1� probability p�

−1� probability �1−p��
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where p≥1/2. Set �b=min 	n �Sn=b
� b>0, and �1=�. Prove that the Laplace transform
L���� (cf. (1.55)) has the form

L����=�e−�� = 1
2�1−p�

[
e� −√e2� − 4p�1−p�

]
�

Verify equations for the mean and the variance:

��b =
b

2p− 1
� Var ��b�=

4p�1−p�b

�2p− 1�3
�

(ii) Now assume that p< 1/2. Check that

���<��= p

1−p
�

Prove the following formulas:

� 	e−��I��<��
= 1
2�1−p�

(
e� −√e2� − 4p�1−p�

)
�

and

� 	�I��<��
= p

�1−p��1− 2p�
�

Here and below,

I��<��=
{
1� if �<��
0� if � =��

(iii) Compute Var 	�I��<��
.

Solution (i) We have that �i =
∑i

j=1 Tj where Tj ∼ �1, independently.
Then

��b = b��� Var ��b�= bVar ����

Next,

L����=pe−� + �1−p�� 	e−��1+�
′+� ′′�
�

where � ′ and � ′′ are independent with the same distribution as �. Hence, � 	e−��� ′+� ′′�
=
��e−���2 and x=L���� satisfies the quadratic equation:

x=pe−� + �1−p�e−�x2�

Thus,

LT���=
1

2�1−p�
	e� −√e2� − 4p�1−p�
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the minus sign is chosen since LT���→ 0 when �→�. Moreover, omitting subscript �,

L′���= 1
2�1−p�

[
e� − e2�√

e2� − 4p�1−p�

]
�

implying that

L′�0�=− 1
2p− 1

�

Alternatively, one can derive an equation L′�0�=p+ �1−p��1+2L′�0�� that implies the
same result.

Using the formula Var ���=L′′�0�− �L′�0��2 we get

Var ���= 1
2�1−p�

[
1− 2

�2p− 1�
+ 1

2�2p− 1�3

]
− 1
�2p− 1�2

= 8p3 − 20p2 + 14p− 2+ 4p2 − 6p+ 2
2�1−p��2p− 1�3

= 4p�1−p�

�2p− 1�3
�

Alternatively, we can derive an equation for y=Var ���=��� −���2:

y=p�1−���2 + �1−p���1+ � ′ + � ′′ −���2�

where � ′ and � ′′ are independent RVs with the same distribution as �. This implies

y= p�1−���2 + �1−p��	1+�� + �� ′ + � ′′ − 2���
2

= p�1−���2 + �1−p�	Var �� ′ + � ′′�+ �1+���2
�

since ��� ′ + � ′′�= 2��. Finally, observe that Var �� ′ + � ′′�= 2Var��� to get

y=p

(
1− 1

2p− 1

)2

+ �1−p�

[
2y+

(
1

2p− 1

)2
]
� i�e� y= 4p�1−p�

�2p− 1�3
�

(ii) Observe that z=� ��<�� is the minimal solution of the equation z=p+ �1−p�z2.
The equation for x=�	e−��I��<��
 takes the same form as in (i):

x=pe−� + �1−p�e−�x2�

However, the form of the solution is different:

�	�I�<�
=−
{

1
2�1−p�

[
1− 1√

�1− 2q�2

]}
= p

�1−p��1− 2p�
�

as the square root is written differently.
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(iii) Differentiating �	e−��I��<��
 twice with respect to � we get that Var 	�I�� <
��
 equals

1
2�1−p��1− 2p�3

	�1− 2p�3 − 2�1− 2p�2 + 1


−
[

p

�1−p��1− 2p�

]2
= p�1− 4p2 + 4p3�

�1−p�2�1− 2p�3
� �

1.6 Chebyshev’s and Markov’s inequalities. Jensen’s inequality.
The Law of Large Numbers and the De Moivre–Laplace Theorem

Probabilists do it with large numbers.
(From the series ‘How they do it’.)

Chebyshev’s inequality is perhaps the most famous in the whole probability theory
(and probably the most famous achievement of the prominent Russian mathematician
P.L. Chebyshev (1821–1894)). It states that if X is a random variable with finite expec-
tation and variance then ∀�> 0:

���X−�X� ≥ ��≤ 1
�2
VarX� (1.60)

Chebyshev’s inequality gave rise to a number of generalisations. One is Markov’s inequal-
ity (after Chebyshev’s pupil A.A. Markov (1856–1922), another prominent Russian mathe-
matician). Markov’s inequality is that for any non-negative RV Y with a finite expectation,
∀�> 0:

��Y ≥ ��≤ 1
�
�Y� (1.61)

Chebyshev’s inequality is obtained fromMarkov’s by setting Y =�X−�X�2 and observing
that the events ��X−�X� ≥ �� and ��X−�X�2 ≥ �2� are the same.

The names of Chebyshev and Markov are associated with the rise of the Russian
(more precisely, St Petersburg) school of probability theory. Neither of them could be
described as having an ordinary personality. Chebyshev had wide interests in various
branches of contemporary science (and also in the political, economical and social life of
the period). This included the study of ballistics in response to demands by his brother
who was a distinguished artillery general in the Russian Imperial Army. Markov was a
well-known liberal opposed to the tsarist regime: in 1913, when Russia celebrated the
300th anniversary of the Imperial House of Romanov, he and some of his colleagues
defiantly organised a celebration of the 200th anniversary of the Law of Large Numbers
(LLN). See below.

We will now prove Markov’s inequality. This is quite straightforward: if the values
are x1� x2� � � � and taken with probabilities p1� pj� � � � � then

�X=∑
j

xjpj ≥
∑
j� xj≥�

xjpj ≥ �
∑
j� xj≥�

pj = ���X≥ ���
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This can be made shorter using indicator I�X≥ ��:

�X≥� 	XI�X≥ ��
≥ ��I�X≥ ��= ���X≥ ��� (1.62)

Here we also see how the argument develops: first, the inequality X ≥XI�X ≥ �� holds
because X ≥ 0 (and of course 1 ≥ I�X≥ ��). This implies that �X ≥ � 	XI�X≥ ��
.
Similarly, the inequality XI�X≥ ��≥ �I�X≥ �� implies that � 	XI�X≥ ��
≥��I�X≥ ��.
The latter is equal to ��I�X≥ �� and finally, to ���X≥ ��.

It has to be noted that in Chebyshev’s and Markov’s inequalities �> 0 does not have
to be small or large: the inequality holds for any positive value.

In general, if g: �→� is a monotone non-decreasing function and X a real-valued
RV then, ∀x∈� with g�x�> 0 and a finite mean �g�X�

��X≥ x�≤ 1
g�x�

�g�X�
 (1.63)

a popular case is where g�x�= eax with a> 0:

��X≥ x�≤ 1
eax

�eaX (1.64)

(Chernoff’s inequality).
The domain of applications of these inequalities is huge (and not restricted to probability

theory); we will discuss one of them here: the LLN.
Another example of a powerful inequality used in more than one area of mathematics

is Jensen’s inequality. It is named after J.L. Jensen (1859–1925), a Danish analyst who
used it in his 1906 paper. Actually, the inequality was discovered in 1889 by O. Hölder, a
German analyst, but for some reason is not named after him (maybe because there already
was a Hölder inequality proved to be extremely important in analysis and differential
equations). Let X be an RV with values in an (open, half-open or closed) interval J ⊆�
(possibly unbounded, i.e., coinciding with a half-line or the whole line), with a finite
expectation �X, and g � J →� a convex (concave) real-valued function such that the
expectation �g�X� is finite. Jensen’s inequality asserts that

�g�X�≥ g��X� respectively, �g�X�≤ g��X�� (1.65)

In other words, ∀ x1� � � � � xn � �a� b� and probabilities p1� � � � � pn (with p1� � � � � pn ≥ 0
and p1 + · · ·+pn = 1):

g

(
n∑
j=1

pjxj

)
≤

n∑
j=1

pjg�xj� respectively� g

(
n∑
j=1

pjxj

)
≥

n∑
j=1

pjg�xj�� (1.66)

Here we adopt the following definition: a function g on 	a� b
 is convex if ∀x� y∈ 	a� b

and �∈ �0�1�,

g��x+ �1−��y�≤�g�x�+ �1−��g�y�� (1.67)
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or, in other words, for a convex function g � J→� defined on an interval J⊆� ∀ x1� x2 ∈
J and p1� p2 ∈ 	0�1
 with p1 +p2 = 1,

g�p1x1 +p2x2�≤p1g�x1�+p2g�x2�� (1.68)

See Figure 1.6.
To prove inequality (1.66), it is natural to use induction in n. For n= 2 bound (1.66)

is merely bound (1.68). The induction step from n to n+ 1 is as follows. Write

g

(
n+1∑
i=1

pixi

)
≤pn+1g �xn+1�+ �1−pn+1� g

(
n∑
i=1

pi
1−pn+1

xi

)

and use the induction hypothesis for probabilities pi/�1−pn+1��1≤ i≤n. This yields the
bound

pn+1g�xn+1�+ �1−pn+1�g

(
n∑
i=1

pi
1−pn+1

xi

)

≤pn+1g�xn+1�+
n∑
i=1

pig�xi�=
n+1∑
i=1

pig�xi��

If X takes infinitely many values, then a further analytic argument is required which we
will not perform here. (One would need to use the fact that a convex/concave function g
is always continuous in interval J , where it has been defined; g may be not differentiable,
but only at an at most countable set of points x ∈ J , and at each point x ∈ J , where g is

twice-differentiable, −g′′�x�≤≥0.)

Jensen’s inequality can be strengthened, by characterising the cases of equality. Call a
convex (concave) function g strictly convex (concave) if equality in (1.66) is achieved iff
either x1 = · · ·= xn or all pj except for one are equal to zero (and the remaining to one).
For such function g, equality in (1.65) is achieved iff RV X is constant.

An immediate corollary of Jensen’s inequality, with g�x�= xs� x ∈ 	0���, is that
∀ s ≥ 1 � ��X�s ≤�Xs�∀ RV X ≥ 0 with finite expected value �Xs. For 0< s< 1, the

y = g(x)

x

y

Figure 1.6
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inequality is reversed: ��X�s ≥ �Xs. Another corollary, with g�x�= ln x� x ∈ �0���,
is that

∑
j xjpj ≥

∏
j x

pj
j for any positive x1� � � � � xn and probabilities p1� � � � � pn. For

p1 = · · ·=pn, this becomes the famous arithmetic–geometric mean inequality:

1
n
�x1 + · · ·+ xn�≥ �x1 · · ·xn�1/n� (1.69)

We now turn to the LLN. In its weak form the statement (and its proof) is simple.

Let X1� � � � �Xn be IID RVs with the (finite) mean value �Xj =� and variance
Var X=�2. Set

Sn =X1 + · · ·+Xn�

Then, ∀�> 0,

�

(∣∣∣∣1nSn −�

∣∣∣∣≥ �

)
→ 0 as n→�� (1.70)

Verbally, the averaged sum Sn/n of IID RVs X1� � � � �Xn with mean �Xj =�

and Var Xj =�2 converges in probability to �.

The proof uses Chebyshev’s inequality:

�

(∣∣∣∣1nSn −�

∣∣∣∣≥ �

)
= �

(∣∣∣∣∣1n n∑
i=1

�Xi −��

∣∣∣∣∣≥ �

)

≤ 1
�2

× 1
n2

Var

(
n∑
i=1

Xi

)

= 1
�2n2

n∑
i=1

VarXi =
1

�2n2
n�2 = �2

n�2

which vanishes as n→�.
It is instructive to observe that the proof goes through when we simply assume that

X1� X2� � � � are such that Var �
∑n

i=1Xi�= o�n2�. For indicator IID RVs Xi with

Xi =
{
1� probability p

0� probability 1−p
�heads and tails in a biased coin-tossing�

and �Xi=p, the LLN says that after a large number n trials, the proportion of heads will
be close to p, the probability of a head at a single toss.

The LLN for IID variables Xi taking values 0 and 1 was known to seventeenth and
eighteenth century mathematicians, notably J. Bernoulli (1654–1705). He was a member
of the extraordinary Bernoulli family of mathematicians and natural scientists of Flemish
origin. Several generations of this family resided in Prussia, Russia, Switzerland and other
countries and dominated the scientific development on the European continent.

It turns out that the assumption that the variance �2 is finite is not necessary in the LLN.
There are also several forms of convergence which emerge in connection with the LLN;
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some of them will be discussed in forthcoming chapters. Here we only mention the strong
form of the LLN:

For IID RVs X1� X2� � � � with finite mean �:

�

(
lim
n→�

Sn
n

=�

)
= 1�

The next step in studying the sum (1.69) is the Central limit Theorem (CLT). Consider
IID RVs X1� X2� � � � , with finite mean �Xj = a and variance Var Xj =�2 and a finite
higher moment ��Xj −�Xj�2+� = �, for some fixed �> 0. The integral CLT asserts that
the following convergence holds: ∀ x∈�,

lim
n→��

(
Sn − na

�
√
n

<x

)
= 1√

2�

x∫
−�

e−y
2/2dy� (1.71)

The map

� � x∈� �→ 1√
2�

x∫
−�

e−y
2/2dy (1.72)

defines the so-called standard normal, or N�0�1�, cumulative distribution function ��x�,
an object of paramount importance in probability theory and statistics. It is also called a
Gaussian distribution function, named after K.-F. Gauss (1777–1855), the famous German
mathematician, astronomer and physicist, who made a profound impact on a number of
areas of mathematics. He identified the distribution while working on the theory of errors
in astronomical observations. Gaussian distribution fitted the pattern of errors much better
than ‘double-exponential’ distribution previously used by Laplace.

The values of ��x� �or �̄�x�= 1−��x�� have been calculated with a great accuracy
for a narrow mesh of values of x and constitute a major part of the probabilistic and
statistical tables. See Table 1.1.

This table specifies 1−��x� for 0≤ x< 3 with step 0�05.
At the present stage it is useful to memorise four facts.

(i)

lim
x→−���x�= 0� lim

x→���x�=
1√
2�

∫ �

−�
e−y

2/2dy= 1

(these are standard properties of a distribution function; see below).
(ii) ��x�= 1−��−x� ∀x∈�, implying that

��0�= 1√
2�

∫ 0

−�
e−y

2/2dy= 1
2

(which means that the median of the standard Gaussian distribution is 0 (see
below)). This follows from the previous property and the fact that the integrand
e−y2/2 is an even function.
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Table 1.1. Values of 1−��x�

x +0.00 +0.05 x +0.00 +0.05

0�0 0�5000 0�4801 1�5 0�0668 0�0606
0�1 0�4602 0�4404 1�6 0�0548 0�0495
0�2 0�4207 0�4013 1�7 0�0446 0�0401
0�3 0�3821 0�3632 1�8 0�0359 0�0322
0�4 0�3446 0�3264 1�9 0�0288 0�0256
0�5 0�3085 0�2912 2�0 0�0228 0�0202
0�6 0�2743 0�2578 2�1 0�0179 0�0158
0�7 0�2420 0�2266 2�2 0�0129 0�0122
0�8 0�2119 0�1977 2�3 0�0107 0�0094
0�9 0�1841 0�1711 2�4 0�0082 0�0071
1�0 0�1587 0�1469 2�5 0�0062 0�0054
1�1 0�1357 0�1251 2�6 0�0047 0�0040
1�2 0�1151 0�1056 2�7 0�0035 0�0030
1�3 0�0968 0�0885 2�8 0�0026 0�0022
1�4 0�0808 0�0735 2�9 0�0019 0�0016

(iii)

1√
2�

∫ �

−�
ye−y

2/2dy= 0

(which means that the mean value of the standard Gaussian distribution is 0).
This follows from the above observation as ye−y2/2 is an odd function.

(iv)

1√
2�

∫ �

−�
y2e−y

2/2dy= 1

(which means that the variance of the standard Gaussian distribution is 1). This
again can be deduced by integration by parts; again see below.

(v) Function x �→��x� is strictly increasing with x and continuous in x. Hence, the
inverse function �−1 is correctly defined, taking � ∈ �0�1� to x ∈� such that
��x�=�. The inverse function plays an important rôle in statistics.

The proof of the claim, in (i), that ����= 1, i.e.∫ �

−�
e−x

2/2dx=√
2�

is quite elegant. For brevity, write
∫
� for the integral

∫ �
−� over the whole line �. If∫

�e
−x2/2dx=G, then

G2 =
∫
�
e−x

2/2dx
∫
�
e−y

2/2dy=
∫
�2
e−�x

2+y2�/2dydx
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which in polar co-ordinates equals∫ �

0
re−r

2/2
∫ 2�

0
d�dr = 2�

∫ �

0
re−r

2/2dr = 2�
∫ �

0
e−udu= 2��

Hence, G=√
2�. Furthermore, in (iv):∫

�
y2e−y

2/2dy=
(
−ye−y2/2

)∣∣∣�
−�

+
∫
�
e−y

2/2dy=√
2��

There also exists a local CLT that deals with a detailed analysis of probabilities

�

(
Sn − na

�
√
n

= xn

)
=��Sn = na+ xn�

√
n�

for a suitable range of values xn ∈�. The aim here is to produce asymptotical expressions
for these probabilities of the form e−x2n/2

/√
2�n� which takes into account only the mean

value a and the variance �2.
The modern method of proving the CLT is based on the fact that the convergence

in (1.71) is equivalent to the convergence of the characteristic functions ��Sn−na�/��
√
n��t�

to the characteristic function of the Gaussian distribution. The basics of this method will
be discussed later.

In the rest of this section we will focus on the CLT for the above example of coin-
tossing where

Xi =
{
1� probability p

0� probability 1−p
� independently�

Again, for this example, the CLT goes back to the eighteenth century and is often called
De Moivre–Laplace Theorem (DMLT), after two French mathematicians. One of them,
A. De Moivre (1667–1754), fled to England after the Revocation of the Edict of Nantes,
and had a notable career in teaching and research. The other, P.-S. Laplace (1749–1827),
made significant contributions in several areas of mathematics. He also served (briefly
and not very successfully) as the Interior Minister under Napoleon (Laplace examined
the young Napoleon in mathematics in the French Royal Artillery Corps and gave the
promising officer the highest mark). Despite his association with Napoleon, Laplace was
the first to vote to oust Napoleon from power in 1814 in the French Senate; the returning
Bourbons promoted him from the title of Count to Marquis.

An initial form of the theorem was produced by De Moivre in 1733. He was also the
first to identify the normal distribution (which was named after Gauss almost a hundred
years later).

Informally, DMLT asserts that if X1� X2� � � � is an IID sequence, with ��Xj = 1�=
p� ��Xj = 0� = 1 − p and hence �Xj = p, Var Xj = p�1 − p�, then the RV �Sn −
np�/

√
np�1−p� has, approximately, the standard N�0�1� distribution. At the formal
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level, one again distinguishes a local and an integral DMLT. For a given positive integer
m≤ n, write

��S=m�=�

(
Sn − np√
np�1−p�

= zn�m�

)
� where zn�m�=

m− np√
np�1−p�

�

The formal statement of the local DMLT is:

As n�m→�, the ratio

��Sn =m�

/{
1√

2�np�1−p�
exp
[
−1
2
zn�m�

2

]}
→ 1 (1.73)

as long as m−np= o�n2/3�. More precisely, (1.73) holds uniformly in n� m for
which the expression �m−np�n−2/3 is confined to a bounded interval and tends
to 0.

Recall, ��Sn =m� is the probability that an event of probability p occurs m times in n
independent trials.

As before, the integral DMLT deals with cumulative probabilities and states that
∀ x∈�:

lim
n→��

(
Sn − np√
np�1−p�

<x

)
= 1√

2�

∫ x

−�
e−y

2/2dy� (1.74)

Equivalently, ∀ −�≤ a<b≤�:

lim
n→��

(
a<

Sn − np√
np�1−p�

<b

)
= 1√

2�

∫ b

a
e−x

2/2dx� (1.75)

Although the integral DMLT looks more amenable, its proof is longer than that of
the local DMLT (and uses it as a part). None of these theorems is formally proved in
Cambridge IA Probability, although they are widely employed in subsequent courses
(particularly, IB Statistics). The proof below is given here for completeness. It is not used
in the problems from this volume but gives a useful insight into how the normal distribution
arises as an asymptotical distribution for (properly normalised) sums of independent RVs.

The local DMLT can be proved by a direct argument. The main step is the fact that
for any sequence of positive integers �mn� such that mn ≤ n and mn� n−mn →�,

��Sn =mn�

/{[
2�n

mn

n

(
1− mn

n

)]−1/2
exp
[
−nh

(mn

n
�p
)]}

→ 1� (1.76)

Here,

h
(mn

n
�p
)
= mn

n
ln
mn

np
+ n−mn

n
ln

n−mn

n�1−p�
� (1.77)

which is a particular case of a more general definition: for p∗ ∈ �0�1�:

h�p∗� p�=p∗ ln
p∗

p
+ �1−p∗� ln

1−p∗

1−p
� (1.78)
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Convergence (1.73) then follows for mn − np= o�n2/3� as for p∗ close to p, the Taylor
expansion yields:

h�p∗� p�= 1
2

(
1
p
+ 1

1−p

)
�p∗ −p�2 +O��p∗ −p�3�� (1.79)

as

h�p∗� p�
∣∣∣
p∗=p

=
(

d
dp∗ h�p

∗� p�
)∣∣∣

p∗=p
= 0�

Remark Equation (1.76) (and the particular form −nh�p∗� p� of the exponent, with
p∗ =mn/n and h�p

∗� p� given by formula (1.79), is important for the asymptotical analysis
of various probabilities related to sums of independent RVs. In particular, formulas (1.77)–
(1.79) play a significant rôle in information theory and the theory of large deviations.
Function h�p∗� p� is called the relative entropy of the probability distribution �p∗�1−p∗�
with respect to probability distribution �p�1−p�.

The proof of equation (1.79) is straightforward and uses the Stirling formula:

n! ≈ √
2�nnne−n� (1.80)

Note that this formula admits a more precise form:

n! =√
2�nnne−n+��n�� where

1
12n+ 1

<��n�<
1

12n
� (1.81)

However, for our purposes formula (1.80) is enough.
Omitting subscript n in mn, the probability ��Sn =m� equals(

n

m

)
pm�1−p�n−m ≈

[
n

2�m�n−m�

]1/2
nn

mm�n−m�n−m
pm�1−p�n−m

=
[
2�n

m

n

(
1− m

n

)]−1/2

× exp
[
−m ln

m

n
− �n−m� ln

n−m

n
+m ln p+ �n−m� ln �1−p�

]
�

But the RHS of the last equation coincides with the denominator in formula (1.76).
To derive the integral DMLT, we take the sum∑

m

��Sn =m�I �a< zn�m�<b�

and interpret it as the area between the x-axis and the piece-wise horizontal line repre-
senting the graph of the function

�n � x∈� �→√
np�1−p���Sn =m�� for zn�m�≤ x< zn�m+ 1��
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on the interval zn�m�≤ x ≤ zn�m� where m and m are uniquely determined from the
condition that

a≤ zn�m�<a+ 1√
np�1−p�

� b≤ zn�m�<b+
1√

np�1−p�
�

Of course, this area equals the integral∫ zn�m�

zn�m�
�n�x�dx�

There are two things here that make the calculation tricky. First, the integrand �n,
and, second, the limits of integration zn�m� and zn�m� vary with n. To start with, one
considers first the case where a and b are both finite reals. Then, because zn�m�→a and
zn�m�→ b, the above integral differs from∫ b

a
�n�x�dx

negligibly. Next, in the interval �a� b� we can use the local DMLT which asserts that

�n�x�→
1√
2�

e−x
2/2�

With a bit of analytical work one deduces from this that∫ b

a
�n�x�dx→

∫ b

a

1√
2�

e−x
2/2dx�

To finish the proof, we must cover the case where a and/or b are infinite. This is done
by exploiting the fact that the convergence in the local DMLT is uniform when zn�mn�

is confined to a finite interval, and the limiting function x �→ e−x2/2
/√

2� is monotone
decreasing with �x� and integrable. The details are omitted.

One important aspect of the CLT is that it provides a (fairly accurate) normal approx-
imation to other distributions.

Problem 1.56 A cubic die is thrown n times, and Yn is the total number of spots
shown. Show that �Yn = 7n

/
2 and Var Yn = 35n

/
12. State Chebyshev’s inequality and

find an n such that

�

(∣∣∣∣Ynn − 3�5

∣∣∣∣> 0�1
)
≤ 0�1�

Solution Let Yn =∑n
i=1Xi, where Xi is the number of spots on the ith throw.

RVs X1� � � � �Xn are independent and identically distributed, with ��Xi = r�= 1
6 � r =

1�2� � � � �6. Hence,

�Xi =
3
2
� Var �Xi�=

11
6
� �Yn =

7n
2
� Var �Yn�=

35n
12

�

Chebyshev’s inequality is � ��X−�X� ≥ ��≤ �1
/
�2�VarX and is valid ∀ RV X with

a finite mean and variance.
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By Chebyshev’s inequality, and independence,

�

(∣∣∣∣Ynn − 3�5

∣∣∣∣> 0�1
)
= � ��Yn −�Yn�> 0�1n�

≤ Var Yn
n20�12

= 35n/12
0�01n2

= 1750
6n

�

We want 1750/�6n�≤ 0�1, so n≥ 2920. �

Problem 1.57 A coin shows heads with probability p> 0 and tails with probability
q= 1−p. Let Xn be the number of tosses needed to obtain n heads. Find the PGF for X1

and compute its mean and variance. What is the mean and variance of Xn?
Now suppose that p=1

/
2. What bound does Chebyshev’s inequality give for ��X100>

400�?

Solution We have ��X1=k�=pqk−1, and so PGF �X1
�s�=ps/�1−qs�. Then �′

X1
�s�=

p
/
�1− qs�2, and so

�X1 =�′
X1
�1�= 1

p
�Var �X1�=

q

p2
�

We conclude that �Xn = n/p, VarX = nq/p2. Now set p = q = 1/2� �X100 = 200,
Var �X100�= 200, and write

��X100 ≥ 400�≤���X100 − 200�> 200�≤ 200
2002

= 1
200

� �

Remark Xn ∼NegBin �n� q�.

Problem 1.58 In this problem, and in a number of problems below, we use the term
‘sample’ as a substitute for ‘outcome’. This terminology is particularly useful in statistics;
see Chapters 3 and 4.

(i) How large a random sample should be taken from a distribution in order for the
probability to be at least 0�99 that the sample mean will be within two standard deviations
of the mean of the distribution? Use Chebyshev’s inequality to determine a sample size
that will be sufficient, whatever the distribution.

(ii) How large a random sample should be taken from a normal distribution in order
for the probability to be at least 0�99 that the sample mean will be within one standard
deviation of the mean of the distribution?

Hint: ��2�58�= 0�995

Solution (i) The sample meanX has mean� and variance �2/n. Hence, by Chebyshev’s
inequality

���X−�� ≥ 2��≤ �2

n�2��2
= 1

4n
�
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Thus n= 25 is sufficient. If more is known about the distribution of Xi, then a smaller
sample size may suffice: the case of normally distributed Xi is considered in (ii).

(ii) If Xi∼ N����2�, then X−�∼N�0��2/n�, and probability ���X−��≥�� equals

�

(
�X−��

/(
�2

n

)1/2

≥�

/(
�2

n

)1/2
)
=���Z� ≥ n1/2�

where Z∼ N�0�1�. But ���Z� ≥ 2�58�= 0�99, and so we require that n1/2 ≥ 2�58, i.e.
n≥7. As we see, knowledge that the distribution is normal allows a much smaller sample
size, even to meet a tighter condition. �

Problem 1.59 What does it mean to say that a function g � �0���→� is convex? If
f � �0���→� is such that −f is convex, show that∫ n+1

n
f�x�dx≥ f�n�+ f�n+ 1�

2
�

and deduce that∫ N

1
f�x�dx≥ 1

2
f�1�+ f�2�+ · · ·+ f�N − 1�+ 1

2
f�N ��

for all integers N ≥ 2. By choosing an appropriate f , show that

NN+1/2e−�N−1� ≥N !
for all integers N ≥ 2.

Solution g : �0���→� is convex if ∀ x� y ∈ �0��� and p∈ �0�1�: g�px+ �1− p�y�

≤ pg�x�+ �1− p�g�y�. When g is twice differentiable, the convexity follows from the
bound g′�x�> 0, x> 0.

If −f is convex, then

−f�pn+ �1−p��n+ 1��≤−pf�n�− �1−p�f�n+ 1��

That is for x=pn+ �1−p��n+ 1�= n+ 1−p

f�x�≥pf�n�+ �1−p�f�n+ 1��

implying that∫ n+1

n
f�x�dx≥

∫ n+1

n
	pf�n�+ �1−p�f�n+ 1�
dx�

As dx=−dp= d�1−p�,∫ n+1

n
f�x�dx≥

∫ 1

0
	�1−p�f�n�+pf�n+ 1�
dp= 1

2
f�n�+ 1

2
f�n+ 1��

Finally, summing these inequalities from n= 1 to n=N − 1 gives the first inequality.
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Now choose f�x�= ln x: here, f ′′�x�= 1/x� f ′�x�=−1/x2. Hence, −f is convex. By
the above:∫ N

1
ln xdx≥ ln 2+ · · ·+ ln �N − 1�+ ln �N 1/2��

i.e.

1
2
ln N +

∫ N

1
ln xdx= 1

2
ln N + (x ln x− x

)∣∣N
1

=
(
N + 1

2

)
ln N − �N − 1�≥ ln �N !�

which is the same as N ! ≤NN+1/2e−�N−1�. �

Problem 1.60 A random sample is taken in order to find the proportion of Labour
voters in a population. Find a sample size that the probability of a sample error less than
0.04 will be 0.99 or greater.

Solution 0�04
√
n≥ 2�58

√
pq where pq≤ 1/4� So� n≈ 1040� �

Problem 1.61 State and prove Chebyshev’s inequality.
Show that if X1�X2� � � � are independent identically distributed RVs with finite mean

� and variance �2, then

�

(∣∣∣∣∣n−1
n∑
i=1

Xi −�

∣∣∣∣∣≥ �

)
→ 0

as n→� for all �> 0.
Suppose that Y1� Y2� � � � are independent identically distributed random variables such

that ��Yj = 4r �= 2−r for all integers r ≥ 1. Show that

��at least one of Y1� Y2� � � � � Y2n takes value 4n�→ 1− e−1

as n→�, and deduce that, whatever the value of K,

�

(
2−n

2n∑
i=1

Yi >K

)
�→ 0�

Solution Chebychev’s inequality:

� ��X−�X� ≥ b�≤ 1
b2

VarX� ∀ b> 0�

follows from the argument below.

VarX =� �X−�X�2 ≥�
(
�X−�X�2 I

(
�X−�X�2 ≥ b2

))
≥ b2�I

(
�X−�X�2 ≥ b2

)
= b2�

(
�X−�X�2 ≥ b2

)
= b2� ��X−�X� ≥ b� �
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We apply it to n−1∑n
i=1Xi, obtaining

�

(
n−1

∣∣∣∣∣ n∑
i=1

�Xi −��

∣∣∣∣∣>�
)

≤ 1
n2�2

Var

(
n∑
i=1

�Xi −��

)

= 1
n2�2

nVar �X1�→ 0

as n→�. For RVs Y1� Y2� � � � specified in the question:

qn �= ��at least one of Y1� Y2� � � � � Y2n takes value 4n�

= 1−
2n∏
i=1

��Yi �= 4n�= 1− 	��Y1 �= 4n�
2
n

= 1− �1−��Y1 = 4n��2
n

= 1− �1− 2−n�2
n → 1− e−1�

Thus, if 2n >K�

�

(
2−n

2n∑
i=1

Yi >K

)
≥ qn → 1− e−1> 0�

We see that if the Yi have no finite mean, the averaged sum does not exhibit convergence
to a finite value. �

Problem 1.62 (i) Suppose that X and Y are discrete random variables taking finitely
many values. Show that ��X+ Y �=�X+�Y .

(ii) On a dry road I cycle at 20 mph; when the road is wet at 10 mph. The distance
from home to the lecture building is three miles, and the 9.00 am lecture course is 24
lectures. The probability that on a given morning the road is dry is 1/2, but there is no
reason to believe that dry and wet mornings follow independently. Find the expected time
to cycle to a single lecture and the expected time for the whole course.

A student friend (not a mathematician) proposes a straightforward answer:

average cycling time for the whole course= 3× 24
1
210+ 1

220
= 4 h 48min.

Explain why his answer gives a shorter time.

Solution (i) For RVs X�Y , with finitely many values x and y,

��X+ Y �=∑
x�y

�x+ y���X= x�Y = y�

=∑
x

x
∑
y

��X= x�Y = y�+∑
y

y
∑
x

��X= x�Y = y��
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The internal sums
∑

y ��X=x�Y =y� and
∑

x ��X=x�Y =y� equal, respectively, ��X=
x� and ��Y = y�. Thus,

��X+ Y �=∑
x

x��X= x�+∑
y

y��Y = y�=�X+�Y�

(ii) If T is the expected time to a single lecture, then

��time to lectures�= 3�
(

1
speed

)
= 3

(
1
2
× 1

10
+ 1

2
× 1

20

)
= 13�5min.

The total time = 24× 13�5= 5 h 24 min; the assumption of independence is not needed,
as �

∑
i Ti=

∑
i�Ti holds in any case. The ‘straightforward’ answer gives a shorter time:

3× 24
�1/2�× 10+ �1/2�× 20

<
1
2
× 3× 24

10
+ 1

2
× 3× 24

20
�

However, the average speed �= �1/2�× 10+ �1/2�× 20= 15. This is a particular case of
Jensen’s inequality with a strictly convex function

g�x�= 3× 24
x

� x∈ �0���� �

Problem 1.63 What is a convex function? State and prove Jensen’s inequality for a
convex function of an RV which takes finitely many values.

Deduce that, if X is a non-negative random variable taking finitely many values, then

�	X
≤ ��	X2
�1/2 ≤ ��	X3
�1/3 ≤ · · ·

Solution (The second part only) Consider g�x�=xn+1/n, a (strictly) convex function on
J = 	0���. By Jensen’s inequality:

��X�n+1/n ≤�Xn+1/n�

Finally, let Y n =X to obtain

��Y n�1/n ≤ ��Y n+1�1/n+1� �

Problem 1.64 (i) If X is a bounded random variable show that

��X≥��≤ e−���eX��

(ii) By looking at power series expansions, or otherwise, check that

cosh t≤ et
2/2�

If Y is a random variable with ��Y = a�=��Y =−a�= 1/2 show that

��e�Y �≤ ea
2�2/2�
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If Y1� Y2� � � � � Yn are independent random variables with ��Yk=ak�=��Yk=−ak�=1/2
and Z= Y1 + Y2 + · · ·+ Yn� show, explaining your reasoning carefully, that

��e�Z�≤ eA
2�2/2�

where A2 is to be given explicitly in terms of the ak.
By using (i), or otherwise, show that, if �> 0,

��Z≥��≤ e�A
2�2−2���/2

for all �> 0. Find the � that minimises e�A
2�2−2���/2 and show that

��Z≥��≤ e−�
2/�2A2��

Explain why

���Z� ≥��≤ 2e−�
2/�2A2��

(iii) If a1 = a2 = · · ·= an = 1 in (ii), show that

���Y1 + Y2 + · · ·+ Yn� ≥ �2n ln �−1�1/2�≤ 2�

whenever �> 0.

Solution (i) Chernoff’s inequality: ��X≥��≤ e−��
[
eXI�X≥��

] ≤ e−��eX .
(ii) We have

cosh t=
�∑
n=0

t2n

�2n�! and et
2/2 =

�∑
n=0

�t2/2�n

�n�! =
�∑
n=0

t2n

2nn! �

Now, �2n��2n− 1� · · · �n+ 1�> 2n for n≥ 2. So,

cosh t≤ et
2/2 and ��e�Y �= cosh ��a�≤ ea

2�2/2�

Similarly,

��e�Y �=��e�X1+···+�Xn�=
n∏
k=1

cosh ��ak�≤
n∏
k=1

ea
2
k�

2/2 = eA
2�2/2�

with A2 =∑n
k=1 a

2
k. This implies

��Z≥��≤ e−����e�Z�≤ e�A
2�2−2���/2

for all �> 0.
The function f = e�A

2�2−2���/2 achieves its minimum for �=�/A2. Thus,

��Z≥��≤ e−�
2/2A2

�
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Now consider −Z=−�Y1 +· · ·+Yn�=Y ′
1 +· · ·+Y ′

n, where Y
′
k=−Yk� k= 1� � � � � n, has

the same distribution as Yk� k= 1� � � � � n; then

��−Z≥��≤ e−�
2/2A2

�

Thus

���Z� ≥��≤ 2e−�
22A2

�

If a1 = a2 = · · ·= an = 1, then A2 = n, and

���Y1 + Y2 + · · ·+ Yn� ≥ �2n ln �−1�1/2�≤ 2 exp
(
−2n ln �−1

2n

)
= 2�� �

Problem 1.65 Let �Xk� be a sequence of independent identically distributed random
variables with mean � and variance �2. Show that

n∑
k=1

�Xk −X�2 =
n∑
k=1

�Xk −��2 − n�X−��2�

where X= 1
n

∑n
k=1Xk. Prove that, if ��X1 −��4<�, then for every �> 0

�

(∣∣∣∣∣1n n∑
k=1

�Xk −X�2 −�2

∣∣∣∣∣>�
)
→ 0

as n→�.
Hint: By Chebyshev’s inequality

�

(∣∣∣∣∣1n n∑
k=1

�Xk −��2 −�2

∣∣∣∣∣>�/2
)
→ 0�

Problem 1.66 Let x1� x2� � � � � xn be positive real numbers. Then geometric mean (GM)
lies between the harmonic mean (HM) and arithmetic mean (AM):(

1
n

n∑
i=1

1
xi

)−1

≤
(

n∏
i=1

xi

)1/n

≤ 1
n

n∑
i=1

xi�

The second inequality is the AM–GM inequality; establish the first inequality (called the
HM–GM inequality).

Solution An AM–GM inequality: induction in n. For n= 2 the inequality is equivalent
to 4x1x2 ≤ �x1 + x2�

2.
The inductive passage: AM–GM inequality is equivalent to

1
n

n∑
i=1

ln xi ≤ ln
n∑
i=1

xi�
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Function ln y is (strictly) concave on 	0��� (which means that ln′ y< 0). Therefore, for
any �∈ 	0�1
 and any y1� y2> 0

ln��y1 + �1−��y2�≥� ln y1 + �1−�� ln y2�

Take �= 1/n� y1 = x1� y2 =
∑n

j=2 xj/�n− 1� to obtain

ln

(
1
n

n∑
i=1

xi

)
≥ 1
n
ln x1 +

n− 1
n

ln

(
1

n− 1

n∑
i=2

xi

)
�

Finally, according to the induction hypothesis

ln

(
1

n− 1

n∑
i=2

xi

)
≥ 1
n− 1

n∑
i=2

ln xi�

To prove the HM–GM inequality, apply the AM–GM inequality to 1/x1� � � � � 1/xn:

1
n

n∑
i=1

1
xi

≥
n∏
i=1

(
1
xi

)1/n

�

Hence, (
1
n

n∑
i=1

1
xi

)−1

≤
(

n∏
i=1

(
1
xi

)1/n
)−1

=
(

n∏
i=1

xi

)1/n

� �

Problem 1.67 Let X be a positive random variable taking only finitely many values.
Show that

�
1
X

≥ 1
�X

�

and that the inequality is strict unless ��X=�X�= 1.

Solution Let X take values x1� x2� � � � � xn>0 with probabilities pi. Then this inequality
is equivalent to �X≥ 	�1/X
−1, i.e.

n∑
i=1

pixi ≥
(

n∑
i=1

pi
1
xi

)−1

� (1.82)

We shall deduce inequality (1.82) from a bound which is a generalisation of the above
AM–GM inequality:

n∏
i=1

x
pi
i ≤

n∑
i=1

pixi� (1.83)

In fact, applying inequality (1.83) to the values 1/xi yields(
n∑
i=1

pi
1
xi

)−1

≤
n∏
i=1

x
pi
i �

Then equation (1.82) follows, again by (1.83).
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To prove bound (1.83), assume that all xj are pair-wise distinct, and proceed by
induction in n. For n= 1, bound (1.82) becomes an equality. Assume inequality (1.82)
holds for n− 1 and prove that

n∑
i=1

pi ln xi ≤ ln

(
n∑
i=1

pixi

)
�

We again use the strict concavity of ln:

ln 	�y1 + �1−��y2
≥� ln y1 + �1−�� ln y2�

Take �=p1, y1 = x1, y2 =
∑n

j=2 pjxj/�1−p1� to obtain

ln
n∑
i=1

pixi = ln

(
p1x1 + �1−p1�

n∑
i=2

p′
ixi

)

≥ p1 ln x1 + �1−p1� ln

(
n∑
i=2

p′
ixi

)

where p′
i =pi/�1−p1�, i= 2� � � � � n. We can now use the induction hypothesis

ln

(
n∑
i=2

p′
ixi

)
≥

n∑
i=2

p′
i ln xi

to get the required result. The equality holds iff either pi�1− pi�= 0 or x1 =
∑n

i=2 p
′
ixi.

Scanning the situation for x2� � � � � xn, we conclude that the equality occurs iff either
pi�1−pi�=0 for some (and hence for all) i or x1 =· · ·=xn. According to our agreement,
this means that n= 1, i.e.

��X=�X�= 1� �

Problem 1.68 Let b1� b2� � � � � bn be a rearrangement of the positive real numbers
a1� a2� � � � � an. Prove that

n∑
i=1

ai
bi

≥ n�

Hint:
∏n

i=1�ai
/
bi�= 1�

Problem 1.69 Let X be an RV for which �X=� and ��X−��4 = 4. Prove that

���X−�� ≥ t�≤  4

t4
�

Hint: Use Markov’s inequality for �X−��4.
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Problem 1.70 What is a convex function? State and prove Jensen’s inequality for
convex functions. Use it to prove the arithmetic–geometric mean inequality which states
that if a1� a2� � � � � an > 0, then

a1 + a2 + · · ·+ an
n

≥ �a1a2 · · ·an�1/n �
(You may assume that a function with positive second derivative is convex.)

Solution A function f : �a� b�→� is convex if ∀x� x′ ∈ �a� b� and p∈ �0�1�:
f�px+ �1−p�x′�≤pf�x�+ �1−p�f�x′��

Jensen’s inequality for RVs with finitely many values x1� � � � � xn is that ∀ f as above,

f

(
n∑
i=1

pixi

)
≤

n∑
i=1

pif�xi�

∀ x1� � � � � xn ∈ �a� b� and p1� � � � � pn ∈ �0�1� with p1 + · · ·+pn = 1.
For the proof, use induction in n. For n=1, the inequality is trivially true. (For n=2, it

is equivalent to the definition of a convex function.) Suppose it is true for some n. Then,
for n+ 1, let x1� � � � � xn+1 ∈ �a� b� and p1� � � � � pn+1 ∈ �0�1� with p1 + · · · + pn+1 = 1.
Setting p′

i =pi/�1−pn+1�, we have that p′
1� � � � � p

′
n ∈ �0�1� and p′

1 + · · ·+p′
n = 1. Then,

by the definition of convexity and induction hypothesis,

f

(
n+1∑
i=1

pixi

)
= f

(
�1−pn+1�

n∑
i=1

p′
ixi +pn+1xn+1

)

≤ �1−pn+1�f

(
n∑
i=1

p′
ixi

)
+pn+1f�xn+1�

≤ �1−pn+1�
n∑
i=1

p′
if�xi�+pn+1f �xn+1�=

n+1∑
i=1

pif�xi��

So, the inequality holds for n+ 1. Hence, it is true for all n.
For f � �0���→� with f�x�=− ln x: f ′�x�=−1/x and f ′�x�= 1/x2> 0. So, f is

convex. By Jensen’s inequality, with pi = 1/n� i= 1� � � � � n:

f

(
1
n

∑
i

ai

)
≤ 1
n

∑
i

f�ai��

i.e.

− ln

(
1
n

∑
i

ai

)
≤−1

n

∑
i

ln ai� i.e. ln

(
1
n

∑
i

ai

)
≥ ln

(∏
i

ai

)1/n

�

Thus,

1
n

∑
i

ai ≥
(∏

i

ai

)1/n

� �
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Problem 1.71 A box contains N plastic chips labelled by the numbers 1� � � � �N . An
experiment consists of drawing n of these chips from the box, where n≤N . We assume
that each chip is equally likely to be selected and that the drawing is without replacement.
Let X1� � � � �Xn be random variables, where Xi is the number on the ith chip drawn from
the box, i= 1� � � � � n. Set Y =X1 +X2 + · · ·+Xn.

(i) Check that Var �Xi�= �N + 1��N − 1�/12.
Hint:

∑N
i=1 i

2 =N�N + 1��N + 2�/6.
(ii) Check that Cov �Xi�Xj�=−�N + 1�/12, i �= j.
(iii) Using the formula

Var �Y �=
N∑
i=1

Var �Xi�+
∑
i �=j

Cov �Xi�Xj��

or otherwise, prove that

Var �Y �= n�N + 1��N − n�

12
�

Solution (i) Clearly, �Xi = �N + 1�/2. Then

Var �Xi�=
N∑
k=1

k2

N
−
(
N + 1
2

)2

= 1
N

N�N + 1��2N + 1�
6

−
(
N + 1
2

)2

= �N + 1��N − 1�
12

�

(ii) As Xi and Xj cannot be equal to each other,

1
N�N − 1�

∑
k �=s

(
k− N + 1

2

)(
s− �N − 1�

2

)

= 1
N�N − 1�

N∑
k=1

(
k− N + 1

2

) N∑
s=1

(
s− N + 1

2

)

− 1
N − 1

N∑
k=1

(
k− N + 1

2

)2 1
N
�

The first sum equals zero, and the second equals − �VarXi�
/
�N − 1�. Hence, Cov

�Xi�Xj�=−�N + 1�/12.
(iii)

Var �Y �= n
�N + 1��N − 1�

12
− n�n− 1�

�N + 1�
12

= n�N + 1��N − n�

12
� �
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1.7 Branching processes

Life is a school of probability.
W. Bagehot (1826–1877), British economist

Branching processes are a fine chapter of probability theory. Historically, the concept
of a branching process was conceived to calculate the survival probabilities of noble
families. The name of W.R. Hamilton (1805–1865), the famous Irish mathematician,
should be mentioned here, as well as F. Galton (1822–1911), the English scientist and
explorer, and H.W. Watson (1827–1903), the English mathematician. Since the 1940s
branching processes have been used extensively in natural sciences, in particular to
calculate products of nuclear fission (physics) and the size of populations (biology). Later
they found powerful applications in computer science (algorithms on logical trees) and
other disciplines.

The model giving rise to a branching process is simple and elegant. Initially, we have
an item (a particle or a biological organism) that produces a random number of ‘offspring’
each of which produces a random number of offspring and so on. This generates a ‘tree-
like’ structure where a descendant has a link to the parent and a number of links to its
own offspring. See Figure 1.7.

Each site of the emerging (random) tree has a path that joins it with the ultimate
ancestor (called the origin, or the root of the tree). The length of the path, which is equal
to the number of links in it, measures the number of generations behind the given site
(and the item it represents). Each site gives rise to a subtree that grows from it (for some
sites there may be no continuation, when the number of offspring is zero).

The main assumption is that the process carries on with maximum independence and
homogeneity: the number of offspring produced from a given parent is independent of the

Figure 1.7
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numbers related to other sites. More precisely, we consider RVs X0�X1�X2� � � � , where
Xn gives the size of the population in the nth generation. That is

X0 = 1�
X1 = the number of offspring after the 1st fission�
X2 = the number of offspring after the 2nd fission�
etc.

RVs Xn and Xn+1 are related by the following recursion:

Xn+1 =
Xn∑
i=1

Y
�n�
i � (1.84)

where Y �n�
i is the number of descendants produced by the ith member of the nth generation.

RVs Y �n�
i are supposed to be IID, and their common distribution determines the branching

process.
The first important exercise is to calculate the mean value �Xn, i.e. the expected size

of the nth generation. By using the conditional expectation,

�Xn =�
[
�
(
Xn

∣∣Xn−1

)]=∑
m

��Xn−1 =m��
(
Xn

∣∣Xn−1 =m
)

=∑
m

��Xn−1 =m��
m∑
i=1

Y
�n−1�
i =∑

m

��Xn−1 =m�m�Y �n−1�
i

=�Y �n−1�
1

∑
m

��Xn−1 =m�m=�Y �n−1�
1 �Xn−1� (1.85)

Value �Y �k�
i does not depend on k and i, and we denote it by �Y for short. Then,

recurrently,

�X1 =�Y� �X2 = ��Y �2� � � � � �Xn = ��Y �n� � � � (1.86)

We see that if �Y< 1, �Xn → 0 with n, i.e. the process eventually dies out. This case is
often referred to as subcritical. On the contrary, if �Y> 1 (a supercritical process), then
�Xn →�. The borderline case �Y = 1 is called critical.

Remark In formula (1.86) we did not use the independence assumption.
A convenient characteristic is the common PGF ��s�=�sY of RVs Y �n�

i (again it does
not depend on n and i). Here, an important fact is that if �n�s�=�sXn is the PGF of the
size of the nth generation, then �1�s�=��s� and, recursively,

�n+1�s�=�n ���s�� � n≥ 1� (1.87)

See Problems 1.72 and 1.80. In other words,

�n�s�=�
(
�
(
� � � ��s�� � �

))=� � · · · ���s� n times� (1.88)

where � � · · · �� stands for the iteration of the map s �→��s�. In particular, �n+1�s�=
���n�s��.
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This construction leads to an interesting analysis of extinction probabilities

�n �=��Xn = 0�=�n�0�=��n�0�� (1.89)

As �n+1 =���n�, intuitively we would expect the limit � = lim
n→��n to be a fixed point

of map s �→��s�, i.e. a solution to z=��z�. One such point is 1 (as ��1�= 1), but there
may be another solution lying between 0 and 1. An important fact here is that function
� is convex, and the value of ��0� is between 0 and 1. Then if �′�1� > 1, there will be
a root of equation z=��z� in �0�1�. Otherwise, z= 1 will be the smallest positive root.
See Figure 1.8.

In fact, it is not difficult to check that the limiting extinction probability q exists and

�= the least non-negative solution to z=��z�� (1.90)

Indeed, if there exists z∈ �0�1� with z=��z�, then it is unique, and also 0<�′�z�<1 and
0<��0�=��Y = 0�< z (as � is convex and ��1�= 1). Then ��0�<����0��< · · ·<z
because � is monotone (and ��z�= z). The sequence ��n�0� must then have a limit
which, by continuity, coincides with z.

If the least non-negative fixed point is z= 1, then the above analysis can be repeated
without changes, yielding that � = 1. We conclude that if ��Y = 0� > 0, then � > 0
(actually, �>��Y =0�). On the other hand, if ��0�=0 (i.e. ��Y =0�=0), then, trivially,
� = 0. This establishes equation (1.90). We see that even in the supercritical case (with
�′�1�> 1) the limiting extinction probability � can be arbitrarily close to 1.

A slight modification of the above construction arises when we initially have several
items (possibly a random number X0).

Problem 1.72 In a branching process every individual has probability pk of producing
exactly k offspring, k=0�1� � � � , and the individuals of each generation produce offspring
independently of each other and of individuals in preceding generations. Let Xn represent
the size of the nth generation. Assume that X0 = 1 and p0> 0 and let �n�s� be the PGF
of Xn. Thus

�1�s�=�sX1 =
n∑
k=0

pks
k�

z

y
y = z

1

1

y = φ(z)

z

y
y = z

z = φ(z)

1

1

Figure 1.8
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(i) Prove that

�n+1�s�=�n��1�s���

(ii) Prove that for n<m

�	sXn �Xm = 0
= �n�s�n−m�0��
�m�0�

�

Solution (i) By definition,

�n+1�s�=�sXn+1 =
�∑
k=0

��Xn+1 = k�sk�

where Xn denotes the size of the nth generation. We write

�sXn+1 =∑
l

p
�n�
l ��sXn+1 �Xn = l��

Here p�n�l =��Xn = l�, and the conditional expectation is

��sXn+1 �Xn = l�=
�∑
k=l

��Xn+1 = k�Xn = l�sk�

Now observe that

��sXn+1 �Xn = l�= ��sX1�l = ��1�s��
l

because (a) under the condition that Xn = l,

Xn+1 =
l∑

j=1

X̃j

where X̃j is the number of offspring produced by the jth individual of the nth generation,
(b) all the X̃j are IID and ��sX̃j �Xn = l�=�sX1 =�1�s�. This relation yields

�sXn+1 =∑
l

p
�n�
l ��1�s��

l =�n��1�s���

(ii) Denote by I�m�0 the indicator I�Xm = 1�. Then ��I�m�0 = 1�=�I�m�0 = ��Xm = 0�=
�m�0�. Furthermore,

�	sXn �Xm = 0
=�
(
sXnI

�m�
0

)
/�m�0��

Hence, it suffices to check that

�
(
sXnI

�m�
0

)=�n�s�n−m�0���
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Indeed,

�
(
sXnI

�m�
0

)=∑
k

sk��Xn = k�Xm = 0�

=∑
k

sk��Xn = k���Xm = 0�Xn = k��

Now, since ��Xm = 0�Xn = k�=�m−n�0�k,

�
(
sXnI

�m�
0

)=�n�s�n−m�0��� �

Problem 1.73 A laboratory keeps a population of aphids. The probability of an aphid
passing a day uneventfully is q<1. Given that a day is not uneventful, there is a probability
r that the aphid will have one offspring, a probability s that it will have two offspring,
and a probability t that it will die of exhaustion, where r + s+ t= 1. Offspring are ready
to reproduce the next day. The fates of different aphids are independent, as are the events
of different days. The laboratory starts out with one aphid.

Let Xn be the number of aphids at the end of n days. Show how to obtain an expression
for the PGF �n�z� of Xn. What is the expected value of Xn?

Show that the probability of extinction does not depend on q and that if 2r + 3s≤ 1,
the aphids will certainly die out. Find the probability of extinction if r= 1/5, s= 2/5 and
t= 2/5.

Solution Denote by �X1
�z� the PGF of X1, i.e. the number of aphids generated, at the

end of a single day, by a single aphid (including the initial aphid). Then

�X1
�z�= �1− q�t+ qz+ �1− q�rz2 + �1− q�sz3� z> 0�

Write �Xn = ��X1�
n with �X1 =�′

X1
�1�= q+ 2�1− q�r + 3�1− q�s. Indeed, �Xn

�z�=
�Xn−1

��X1
�z�� implies �Xn=�Xn−1�X1 or �Xn= ��X1�

n. The probability of extinction
at the end of n days is �Xn

�0�. It is non-decreasing with n and tends to a limit as n→�
giving the probability of (eventual) extinction �. As we already know �< 1 iff �X1> 1.
The extinction probability � is the minimal positive root of

�1− q�t+ qz+ �1− q�rz2 + �1− q�sz3 = z

or, after division by �1− q� (since q< 1):

t− z+ rz2 + sz3 = 0�

The last equation does not depend on q, hence � also does not depend on q. Condition
�X1 ≤ 1 is equivalent to 2r + 3s≤ 1. In the case r = 1/5� s= 2/5� t= 2/5, the equation
takes the form 2z3 + z2 − 5z+ 2= 0. Dividing by �z− 1� (as z= 1 is a root) one gets
a quadratic equation 2z2 + 3z− 2= 0, with roots z± = �−3± 5� /4. The positive root is
1/2, and it gives the extinction probability. �
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Problem 1.74 Let ��s�= 1− p�1− s� , where 0<p< 1 and 0< < 1. Prove that
��s� is a PGF and that its iterates are

�n�s�= 1−p1+ +···+ n−1
�1− s� 

n

� n= 1�2� � � �

Find the mean m of the associated distribution and the extinction probability � =
limn→��n�0� for a branching process with offspring distribution determined by �.

Solution The coefficients in Taylor’s expansion of ��s� are

ak =
dk�
dsk

�s��s=0 =p � − 1� · · · � − k+ 1��−1�k−1 ≥ 0�

k= 1�2� � � � � a0 = 1−p�

and ��1�=∑k≥0 ak/k! = 1. Thus, ��s� is the PGF for the probabilities pk = ak

/
k!.

The second iterate, �2�s�=����s�� is of the form

����s��= 1−p	1−��s�
 = 1−pp �1− s� 
2
�

Assume inductively that �k�s�= 1−p1+ +···+ k−1
�1− s� 

k
, k≤ n− 1. Then

�n�s�= 1−p	1−�n−1�s�

 = 1−p

[
p1+ +···+ n−2

�1− s� 
n−1
] 

= 1−p1+ +···+ n−1
�1− s� 

n

�

as required.
Finally, the mean value is �′�1�= lims→1−�′�s�=+� and the extinction probability,

�= lim
n→��n�0�= 1−p1/�1− �� �

Problem 1.75 At time 0, a blood culture starts with one red cell. At the end of 1 min,
the red cell dies and is replaced by one of the following combinations with probabilities
as indicated

two red cells:
1
4

 one red, one white:

2
3

 two white cells:

1
12
�

Each red cell lives for 1 min and gives birth to offspring in the same way as the parent
cell. Each white cell lives for 1 min and dies without reproducing. Assume that individual
cells behave independently.

(i) At time n+ 1
2 min after the culture began, what is the probability that no white cells

have yet appeared?
(ii) What is the probability that the entire culture dies out eventually?

Solution (i) The event

�by time n+ 1
2
no white cells have yet appeared�
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implies that the total number of cells equals the total number of red cells and equals 2n.
Then, denoting the probability of this event by pn, we find that

p0 = 1� p1 =
1
4
� and pn+1 =pn

(
1
4

)2n

� n≥ 1�

whence

pn =
(
1
4

)2n−1 (
1
4

)2n−2

� � �

(
1
4

)20

=
(
1
4

)2n−1

� n≥ 1�

(ii) The extinction probability � obeys

�= 1
4
�2 + 2

3
�+ 1

12
or

1
4
�2 − 1

3
�+ 1

12
= 0�

whence

�= 2
3
± 1

3
�

We must take �= 1/3, the smaller root. �

Problem 1.76 Let �Xn� be a branching process such that X0 = 1, �X1 =�. If Yn =
X0 + · · ·+Xn, and for 0≤ s≤ 1

�n�s�≡�sYn�

prove that

�n+1�s�= s���n�s���

where ��s�≡�sX1 . Deduce that, if Y =∑n≥0Xn, then ��s�≡�sY satisfies

��s�= s����s���0≤ s≤ 1�

If �< 1, prove that �Y = �1−��−1.

Solution Write Yn+1 = 1+ Y 1
n + · · · + YX1

n , where Y j
n is the total number of offspring

produced by individual j from the first generation. Then the RVs Y j
n are IID and have the

PGF �n�s�. Hence

�n+1�s�=�sYn+1 = s
∑
j

��X1 = j�
j∏
l=1

�n�s�

= s
∑
j

��X1 = j���n�s��
j = s���n�s���

The infinite series Y =∑n≥0Xn has the PGF ��s�= limn→��n�s�. Hence, it obeys

��s�= s����s���



1.7 Branching processes 103

By induction, �Yn= 1+�+· · ·+�n. In fact, Y1 = 1+X1 and �Y1 = 1+�. Assume that
the formula holds for n≤ k− 1. Then

�Yk = ��k�1��
′ =���k−1�1��+�′��k−1�1���

′
k−1�1�

= 1+��1+�+ · · ·+�k−1�= 1+�+�2 + · · ·+�k�

which completes the induction. Therefore, �Y = �1−��−1. �

Problem 1.77 Green’s disease turns your hair pink and your toenails blue but has
no other symptoms. A sufferer from Green’s disease has a probability pn of infecting n
further uninfected individuals (n=0�1�2�3) but will not infect more than 3. (The standard
assumptions of elementary branching processes apply.) Write down an expression for e,
the expected number of individuals infected by a single sufferer.

Starting from the first principles, find the probability � that the disease will die out if,
initially, there is only one case.

Let eA and �A be the values of e and � when p0 = 2/5, p1 =p2 = 0 and p3 = 3/5. Let
eB and �B be the values of e and � when p0 =p1 = 1/10, p2 = 4/5 and p3 = 0. Show that
eA > eB but �A >�B.

Solution The expression for e is e=p1+2p2+3p3. Let Xj be the number of individuals
in the jth generation of the disease and X0 = 1. Assume that each sufferer dies once
passing the disease on to n≤ 3 others. Call � the probability that the disease dies out:

�=∑
k

��X1 = k��k =p0 +p1�+p2�
2 +p3�

3�

Direct calculation shows that eA= 9/5, eB= 17/10. Value �A is identified as the smallest
positive root of the equation

0=p0 + �p1 − 1��+p2�
2 +p3�

3 = ��− 1�
(
3
5
�2 + 3

5
�− 2

5

)
�

Hence

�A = −3+√
33

6
≈ 0�46�

Similarly, �B is the smallest positive root of the equation

0= ��− 1�
(
4
5
�− 1

10

)
�

and �B = 1/8. So, eA > eB and �A >�B. �

Problem 1.78 Suppose that �Xr� r ≥ 0� is a branching process with X0 = 1 and that
the PGF for X1 is ��s�. Establish an iterative formula for the PGF �r�s� for Xr . State a
result in terms of ��s� about the probability of eventual extinction.
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(i) Suppose the probability that an individual leaves k descendants in the next generation
is pk = 1/2k+1, for k≥ 0. Show from the result you state that extinction is certain. Prove
further that

�r�s�=
r − �r − 1�s
�r + 1�− rs

� r ≥ 1�

and deduce the probability that the rth generation is empty.
(ii) Suppose that every individual leaves at most three descendants in the next genera-

tion, and that the probability of leaving k descendants in the next generation is

pk =
(
3
k

)
1
23
� k= 0� 1� 2� 3�

What is the probability of extinction?

Solution (i) Let Y n
i be the number of offspring of individual i in generation n. Then

Xn+1 = Y n
1 + · · ·+ Y n

Xn
�

and

��sXn+1�=�
[
��sXn+1 �Xn�

]= �∑
k=0

��Xn = k���sY
n
1 +···+Y nk �

=
�∑
k=0

��Xn = k���sY
n
1 �k =

�∑
k=0

��Xn = k���s�k =�n���s���

and so �n+1�s�=�n���s��. The probability of extinction is the least s ∈ �0�1
 such that
s=��s�. Further,

��s�= 1
2
+ 1

22
s+ · · ·= 1

2− s
�

Solving s= 1/�2− s� yields �s− 1�2 = 0, i.e. s= 1. Hence the extinction is certain.
The formula for �r�s� is established by induction:

�r+1�s�=
r − �r − 1�/�2− s�

r + 1− r/�2− s�
= �r + 1�− rs

�r + 2�− �r + 1�s
�

Hence, the probability that the rth generation is empty is

�r�0�=
r

r + 1
�

(ii) ��s�= 1
23 �1+ s�3 whence solving 23s= �1+ s�3 or �s− 1��s2 + 4s− 1�= 0 we get

solutions s= 1, s=±√
5− 2, and the extinction probability is

√
5− 2≈ 0�24. �

Problem 1.79 Consider a Galton–Watson process (i.e. the branching process where the
number of offspring is random and independent for each division), with ��X1 = 0�= 2/5
and ��X1 =2�=3/5. Compute the distribution of the random variable X2. For generation
3 find all probabilities ��X3 = 2k�, k= 0�1�2�3�4. Find the extinction probability for
this model.
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Solution The extinction probability �= 2/3 and the PGF for X2

�X2
�s�= 2

5
+ 12

125
+ 36

125
s2 +

(
3
5

)3

s4�

The PGF �X3
�s�=�X2

�2/5+ 3s2/5�. Then

��X2 = 0�= 2
5
+ 12

125
���X2 = 2�= 36

125
� ��X2 = 4�=

(
3
5

)3




��X3 = 0�= 2
5
+ 12

125
+ 36

125

(
2
5

)2

+
(
3
5

)3(2
5

)4

= 0�54761


��X3 = 2�= 24 × 33

55
+ 25 × 34

57
= 0�17142


��X3 = 4�= 4× 34

55
+ 42 × 35

57
+ 8× 35

57
= 0�17833


��X3 = 6�= 36 × 23

57
= 0�07465


��X3 = 8�=
(
3
5

)7

= 0�02799� �

Problem 1.80 By developing the theory of extinction probabilities, or otherwise, solve
the following problem.

No-one in their right mind would wish to be a guest at the Virtual Reality Hotel.
The rooms are numbered 0 to �3N − 3�/2, where N is a very large integer. If 0≤ i≤
�3N−1 − 3�/2 and j = 1�2�3 there is a door between Room i and Room 3i+ j through
which (if it is unlocked) guests may pass in both directions. In addition, any room with
a number higher than �3N−1 − 3�/2 has an open window through which guests can (and
should) escape into the street. So far as the guests are concerned, there are no other doors
or windows. Figure 1.9 shows part of the floor plan of the hotel.

3

1

0

6
7

5

4

8

9
10

11

12

2

Figure 1.9
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Each door in the hotel is locked with probability 1/3 independently of the others. An
arriving guest is placed in Room 0 and can then wander freely (insofar as the locked
doors allow). Show that the guest’s chance of escape is about �9−√

27�/4.

Solution Denote by Xr the number of rooms available at level r from 0. Writing
�r�t�=�tXr , with �1 =�:

�r+1�t�=�tXr+1 =∑
i

��Xr = i��
(
tXr+1

∣∣Xr = i
)

=∑
i

��Xr = i�
(
�tX1

)i
=∑

i

��Xr = i� ���t��i =�r

(
��t�

)
�

Then �r+1�t�=����� � � ��t�� � � ��=���r�t��, and

� �can’t reach level r�=���r�0�� �

Now PGF ��t� equals(
1
3

)3

+ 3
2
3

(
1
3

)2

t+ 3
(
2
3

)2 1
3
t2 +

(
2
3

)3

t3 = 1
27

(
1+ 6t+ 12t2 + 8t3

)
�

Hence, the equation ��t�= t becomes

27t= 1+ 6t+ 12t2 + 8t3� i.e. 1− 21t+ 12t2 + 8t3 = 0�

By factorising 1− 21t+ 12t2 + 8t3 = �t− 1��8t2 + 20t− 1�, we find that the roots are

t= 1�
−5±√

27
4

�

The root between 0 and 1 is
(√

27− 5
)/

4. The sequence �n�0� is monotone increasing
and bounded above. Hence, it converges as N →�:

�
(
no escape

)→ √
27− 5
4

�

Then

�
(
escape

)→ 1−
√
27− 5
4

= 9−√
27

4
≈ 0�950962� �

Problem 1.81 (i) A mature individual produces offspring according to the PGF ��s�.
Suppose we start with a population of k immature individuals, each of which grows to
maturity with probability p and then reproduces, independently of the other individuals.
Find the PGF of the number of (immature) individuals in the next generation.
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(ii) Find the PGF of the number of mature individuals in the next generation, given
that there are k mature individuals in the parent generation.

Hint: (i) Let R be the number of immature descendants of an immature individual.
If X�n� is the number of immature individuals in generation n, then, given that X�n� = k,

X�n+1� =R1 + · · ·+Rk�

where Ri ∼R, independently. The conditional PGF is

�
(
sX�n+1��X�n� = k

)= �g	��s�
�k�

where g�x�= 1−p+px.
(ii) Let U be the number of mature descendants of a mature individual, and Z�n� be the

number of mature individuals in generation n. Then, as before, conditional on Z�n� = k,

Z�n+1� =U1 + · · ·+Uk�

where Ui ∼U , independently. The conditional PGF is

�
(
sZ�n+1�

∣∣Z�n� = k
)= ��	g�s�
�k �

Problem 1.82 Show that the distributions in parts (i) and (ii) of Problem 1.81 have
the same mean, but not necessarily the same variance.

Hint:

d2

ds2
�
(
sX

n+1 �X�n� = 1
)
=p�′′�1��

d2

ds2
�
(
sZ�n+1��Z�n� = 1

)=p2�′′�1��
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2.1 Uniform distribution. Probability density functions.
Random variables. Independence

Probabilists do it continuously but discreetly.
(From the series ‘How they do it’.)

Bye, Bi, Variate
(From the series ‘Movies that never made it to the Big Screen’.)

After developing a background in probabilistic models with discrete outcomes we can
now progress further and do exercises where uncountably many outcomes are explicitly
involved. Here, the events are associated with subsets of a continuous space (a real line �,
an interval �a� b�, a plane �2, a square, etc.). The simplest case is where the outcome
space� is represented by a ‘nice’ bounded set and the probability distribution corresponds
to a unit mass uniformly spread over it. Then an event (i.e. a subset) A⊆� acquires the
probability

��A�= v�A�

v���
� (2.1)

where v�A� is the standard Euclidean volume (or area or length) of A and v��� that of �.
The term ‘uniformly spread’ is the key here; an example below shows that one has to

be careful about what exactly it means in the given context.

Example 2.1 This is known as Bertrand’s paradox. A chord has been chosen at random
in a circle of radius r . What is the probability that it is longer than the side of the equilateral
triangle inscribed in the circle? The answer is different in the following three cases:

(i) the middle point of the chord is distributed uniformly inside the circle;
(ii) one endpoint is fixed and the second is uniformly distributed over the circum-

ference;
(iii) the distance between the middle point of the chord and the centre of the circle

is uniformly distributed over the interval 	0� r
.

108
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In fact, in case (i), the middle point of the chord must lie inside the circle inscribed in
the triangle. Hence,

��chord longer�= area of the inscribed circle
area of the original circle

= �r2/4
�r2

= 1
4
�

In case (ii), the second endpoint must then lie on the opposite third of the circumfer-
ence. Hence,

��chord longer�= 1
3
�

Finally, in case (iii), the middle point of the chord must be at distance ≤ r/2 from the
centre. Hence,

��chord longer�= 1
2
� �

A useful observation is that we can think in terms of a uniform probability density
function assigning to a point x∈� the value

f uni
� �x�= 1

v���
I��x�� (2.2)

with the probability of event A⊆� calculated as the integral

��A�=
∫
A
f uni
� �x�dx= 1

v���

∫
A
dx (2.3)

giving of course the same answer as formula (2.1). Because f uni
� ≥0 and

∫
�
f uni
� �x�dx=1,

the probability of event A⊆� is always between 0 and 1. Note that the mass assigned to
a single outcome � represented by a point of � is zero. Hence the mass assigned to any
finite or countable set of outcomes is zero (as it is the sum of the masses assigned to each
outcome); to get a positive mass (and thus a positive probability), an event A must be
uncountable.

Problem 2.1 Alice and Bob agree to meet in the Copper Kettle after their Saturday
lectures. They arrive at times that are independent and uniformly distributed between
12:00 and 13:00. Each is prepared to wait s minutes before leaving. Find a minimal s
such that the probability that they meet is at least 1/2.

Solution The set � is the unit square � with co-ordinates 0≤ x� y≤ 1 (measuring the
time in fractions of an hour between 12:00 and 13:00). Each �= �x� y� ∈� specifies
Alice’s arrival time x and Bob’s y. Then the event: ‘they arrive within s minutes of each
other’ is a strip around the diagonal x= y:

A=
{
�x� y�∈� � �x− y� ≤ s

60

}
�
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1– s/60

s/60

s/60

1– s/60

Figure 2.1

Its complement is formed by two triangles, of area �1/2� �1− s/60�2 each. So, the area
v�A� is

1−
(
1− s

60

)2
and we want it to be ≥ 1/2. See Figure 2.1.

This gives s≥ 60�1−√
2/2�≈ 18 minutes. �

Problem 2.2 A stick is broken into two at random; then the longer half is broken
again into two pieces at random. What is the probability that the three pieces will make
a triangle?

Solution Let the stick length be �. If x is the place of the first break, then 0≤ x≤ �

and x is uniform on �0� ��. If x≥ �/2, then the second break point y is uniformly chosen
on the interval �0� x�. See Figure 2.2. Otherwise y is uniformly chosen on �x� ��.
Thus

�= ��x� y� � 0≤ x� y≤ �
 y≤ x for x≥ �/2 and x≤ y≤ � for x≤ �/2��

and the area v���= 3�2/4. See Figure 2.3.
To make a triangle �x� y� must lie in A, where

A=
{
maxx� y
>

�

2
� min 	x� y
<

�

2
� �x− y�< �

2

}
�

which yields the area �2/4. The answer then is 1/3.

0 lxy

Figure 2.2
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A

Ω

Figure 2.3

It is also possible to reduce � to a ‘half’ of the above set just assuming that x is always
the length of the longer stick:

�= ��x� y� � �/2≤ x≤ �
 y≤ x�


the probability will still be 1/3. �

Problem 2.3 A stick is broken in two places chosen beforehand, completely at random
along its length. What is the probability that the three pieces will make a triangle?

Answer : 1/4. The loss in probability occurs as we include into the outcomes the
possibility that a shorter stick is broken again while in the previous example it was
excluded.

Problem 2.4 The ecu coin is a disc of diameter 4/5 units. In the traditional game of
drop the ecu, an ecu coin is dropped at random onto a grid of squares formed by lines
one unit apart. If the coin covers part of a line you lose your ecu. If not, you still lose
your ecu but the band plays the national anthem of your choice. What is the probability
that you get to choose your national anthem?

Solution Without loss of generality, assume that the centre of the coin lies in the unit
square with corners �0
0�� �0
1�� �1
0�� �1
1�. You will hear an anthem when the
centre lies in the inside square � described by

2
5
≤ x≤ 3

5
�
2
5
≤ y≤ 3

5
�

Hence,

� �anthem�= area of S= 1
25
� �

There are several serious questions arising here which we will address later. One is
the so-called measurability: there exist weird sets A⊂� (even when � is a unit interval
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(0,1)) which do not have a correctly defined volume (or length). In general, how does one
measure the volume of a set A in a continuous space? Such sets may not be particularly
difficult to describe (for instance, Cantor’s continuum � has a correctly defined length),
but calculating their volume, area or length goes beyond standard Riemann integration,
let alone elementary formulas. (As a matter of fact, the correct length of � is zero.) To
develop a complete theory, we would need the so-called Lebesgue integration, which is
called after H.L. Lebesgue (1875–1941), the famous French mathematician. Lebesgue was
of a very humble origin, but became a top mathematician. He was renowned for flawless
and elegant presentations and written works. In turn, the Lebesgue integration requires
the concept of a sigma-algebra and an additive measure which leads to a far-reaching
generalisation of the concept of length, area and volume encapsulated in a concept of a
measure. We will discuss these issues in later volumes.

An issue to discuss now is: what if the distribution of the mass is not uniform?
This question is not only of a purely theoretical interest. In many practical models � is
represented by an unbounded subset of a Euclidean space�d whose volume is infinite (e.g.
by �d itself or by �+ = 	0���, for d= 1). Then the denominator v��� in equation (2.1)
becomes infinite. Here, the recipe is: consider a function f ≥0 with

∫
�
f�x�dx=1 and set

��A�=
∫
A
f�x�dx� A⊆�

(cf. equation (2.3)). Such a function f is interpreted as a (general) probability density
function (PDF). The following natural (and important) examples appear in problems
below:

A uniform distribution on an interval �a� b�� a<b: here �= �a� b� and

f�x�= 1
b− a

I�a<x<b�� (2.4)

A Gaussian, or normal, distribution, with �=� and

f�x�= 1√
2��

exp
(
− 1
2�2

�x−��2
)
� x∈�� (2.5)

Here �∈�� �> 0 are parameters specifying the distribution.
The graphs of normal PDFs on an interval around the origin and away from it are

plotted in Figures 2.4 and 2.5.
This is the famous curve about which the great French mathematician J.-H. Poincaré

(1854–1912) said ‘Experimentalists think that it is a mathematical theorem while the
mathematicians believe it to be an experimental fact.’

An exponential distribution: here �=�+ and

f�x�=�e−�xI�x≥ 0�� x∈�� (2.6)

Here �> 0 is a parameter specifying the distribution.
The graphs of the exponential PDFs are shown in Figure 2.6.
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Figure 2.4 The normal PDFs, I.
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Figure 2.6 The exponential PDFs.
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A generalisation of formula (2.6) is the Gamma distribution. Here again �=�+ and
the PDF is

f�x�= ��

! ���
x�−1e−�xI�x≥ 0�� (2.7)

with parameters �� �>0. Here ! ���= ∫ �
0 x�−1e−xdx (the value of the Gamma function)

is the normalising constant. Recall, for a positive integer argument, ! �n�= �n− 1�!; in
general, for �> 1 � ! ���= ��− 1�! ��− 1�.

The Gamma distribution plays a prominent rôle in statistics and will repeatedly appear
in later chapters. The graphs of the Gamma PDFs are sketched in Figure 2.7.

Another example is a Cauchy distribution, with �=� and

f�x�= 1
�

�

�2 + �x−��2
� x∈�� (2.8)

with parameters � ∈ � and � > 0. There is a story that the Cauchy distribution was
discovered by Poisson in 1824 when he proposed a counterexample to the CLT. See
below. The graphs of the Cauchy PDFs are sketched in Figure 2.8.

Cauchy was a staunch royalist and a devoted Catholic and, unlike many other prominent
French scientists of the period, he had difficult relations with the Republican regime. In
1830, during one of the nineteenth century French revolutions, he went into voluntary
exile to Turin and Prague where he gave private mathematics lessons to the children of
the Bourbon Royal family. His admission to the French Academy occurred only in 1838,
after he had returned to Paris.

The Gaussian distribution will be discussed in detail below. At this stage we only
indicate a generalisation to the multidimensional case where �=�d and

f�x�= 1

�
√
2��d�det"�1/2

exp
[
−1
2

〈
x−��"−1�x−��

〉]
� (2.9)
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Figure 2.7 The Gamma PDFs.
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Figure 2.8 The Cauchy PDFs.

Here, x and � are real d-dimensional vectors:

x=
⎛⎜⎝x1���
xd

⎞⎟⎠ � �=
⎛⎜⎝�1
���

�d

⎞⎟⎠ ∈�d�

and " is an invertible positive-definite d×d real matrix, with the determinant det "> 0
and the inverse matrix "−1 = �"−1

ij �. Matrix " is called positive-definite if it can be
represented as the product "=AA∗ and strictly positive-definite if in this representation
matrix A is invertible, i.e. the inverse A−1 exists (in which case the inverse matrix
"−1 =A∗−1A−1 also exists). It is easy to see that a positive-definite matrix " is always
symmetric (or Hermitian), i.e. obeys "∗ = ". Hence, a positive-definite matrix has an
orthonormal basis of eigenvectors, and its eigenvalues are non-negative (positive if it is
strictly positive-definite). Further, � � � stands for the Euclidean scalar product in �d:

〈
x−��"−1�x−��

〉= d∑
i�j=1

�xi −�i�"
−1
ij �xj −�j��

A PDF of this form is called a multivariate normal, or Gaussian, distribution.

Remark We already have seen a number of probability distributions bearing personal
names (Gauss, Poisson, Cauchy; more will appear in Chapters 3 and 4). Another example
(though not as frequent) is the Simpson distribution. Here we take X� Y ∼ U�0�1�,
independently. Then X+ Y has a ‘triangular’ PDF known as Simpson’s PDF:

fX+Y �u�=

⎧⎪⎪⎨⎪⎪⎩
u� 0≤ u≤ 1�

2− u� 1≤ u≤ 2�

0� � 	0�2
�



116 Continuous outcomes

T. Simpson (1700–1761), an English scientist, left a notable mark in interpolation and
numerical methods of integration. He was the most distinguished of the group of itinerant
lecturers who taught in fashionable London coffee-houses (a popular way of spreading
scientific information in eighteenth-century England).

As before, we face a question: what type of function f can serve as PDFs? (The
example with f�x�= I�x∈ �0�1� \��, where � ⊂ �0�1� is Cantor’s set, is typical. Here
f ≥ 0 by definition but how

∫ 1
0 f�x�dx should be defined?) And again, the answer lies in

the theory of Lebesgue integration. Fortunately, in ‘realistic’ models, these matters arise
rarely and are overshadowed by far more practical issues.

So, from now until the end of this chapter our basic model will be where outcomes
� run over an ‘allowed’ subset of � (such subsets are called measurable and will be
introduced later). Quite often � will be �d. The probability ��A� will be calculated for
every such set A (called an event in �) as

��A�=
∫
A
f�x�dx� (2.10)

Here f is a given PDF f ≥ 0 with
∫
�
f�x�dx= 1.

As in the discrete case, we have an intuitively plausible property of additivity: if
A1� A2� � � � is a (finite or countable) sequence of pair-wise disjoint events then

�
(⋃

j
Aj

)
=∑

j

��Aj�� (2.11)

while, in a general case, �
(⋃

j Aj

)≤∑j ��Aj�. As ����= 1, we obtain that for the
complement Ac =� \ A, ��Ac�= 1− ��A�, and for the set-theoretical difference A \
B� ��A \B�= ��A�− ��A∩B�. Of course, more advanced facts that we learned in the
discrete space case remain true, such as the inclusion–exclusion formula.

In this setting, the concept of a random variable develops, unsurprisingly, from its
discrete-outcome analogue: a RV is a function

X � �∈� �→X����

with real or complex values X��� (in the complex case we again consider a pair of
real RVs representing the real and imaginary parts). Formally, a real RV must have the
property that ∀ x∈�, the set ��∈��X���<x� is an event in � to which the probability
��X< y� can be assigned. Then with each real-valued RV we associate its cumulative
distribution function (CDF)

y ∈� �→FX�x�=��X<x� (2.12)

varying monotonically from 0 to 1 as y increases from −� to �. See Figure 2.9.
The quantity

FX�x�= 1−FX�x�=��X≥ x� (2.13)

describing tail probabilities is also often used.
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1 F(x)

x

.

Figure 2.9

Observe that definition (2.12) leads to CDF FX�x� that is left-continuous (in Figure 2.9
it is presented by black dots). It means that FX�xn�↗ FX�x� whenever xn ↗ x. On the
other hand, ∀ x, the right-hand limit limxn↘x FX�xn� also exists and is ≥ FX�x�, but the
equality is not guaranteed (in the figure this is represented by circles). Of course the tail
probability FX�x� is again left-continuous.

However, if we adopt the definition that FX�x�=��X≤ x� (which is the case in some
textbooks) then FX will become right-continuous (as well as FX�x�).

Example 2.2 If X≡ b is a (real) constant, the CDF FX is the Heaviside-type function:

FX�y�= I�y> b�� (2.14)

If X= IA, the indicator function of an event A, then ��X<y� equals 0 for y≤0� 1−��A�
for 0<y≤ 1 and 1 for y> 1. More generally, if X admits a discrete set of (real) values
(i.e. finitely or countably many, without accumulation points on �), say yj ∈�, with
yj < yj+1, then FX�y� is constant on each interval yj <x≤ yj+1 and has jumps at points yj
of size ��X= yj�.

Observe that all previously discussed discrete-outcome examples of RVs may be fitted
into this framework. For instance, if X∼ Bin �n�p�, then

FX�y�=
∑

0≤m<y�m≤n

(
n

m

)
pm�1−p�n−mI�y> 0�� (2.15)

If X∼ Po ���,

FX�y�= e−�
∑

0≤n<y

�n

n! I�y> 0�
 (2.16)

Figure 2.10 shows the graphs of FX ∼Po ���.
If X∼ Geom �q�,

FX�y�= I�y> 0��1− q�
∑

0≤n<y
qn� (2.17)

The graph of the CDF of RV X∼Geom �q� is plotted in Figure 2.11, together with that
of a Poisson RV with �= 1 (both RVs have the same mean value 1).
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Figure 2.10 The Poisson CDFs.
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Figure 2.11 The geometric and Poisson CDFs.

We say that an RV X has a uniform, Gaussian, exponential, Gamma or Cauchy distribu-
tion (with the corresponding parameters) if CDF FX�y� is prescribed by the corresponding
PDF, i.e. ��X<y�= ∫ f�x�I�x< y�dx. For example: for a uniform RV

FX�y�=

⎧⎪⎪⎨⎪⎪⎩
0� y≤ a�

�y− a�/�b− a��a< y<b�

1� y≥ b


(2.18)

for a Gaussian

FX�y�=
1√
2��

∫ y

−�
exp
[
− 1
2�2

�x−��2
]
dx=�

(y−�

�

)
� y ∈�
 (2.19)
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for an exponential RV

FX�y�=
{
0� y≤ 0�

1− e−�y� y> 0

(2.20)

for a Gamma RV

FX�y�=
��

! ���

∫ y

0
x�−1e−�xdxI�y> 0�
 (2.21)

and for a Cauchy RV

FX�y�=
1
�

[
tan−1

(y−�

�

)
+ �

2

]
� y ∈�� (2.22)

Correspondingly, we write X ∼U�a� b�, X ∼N����2�, X ∼ Exp ���, X ∼ Gam �����

and X ∼ Ca��� ��.
In Figures 2.12–2.15 we show some graphics for these CDFs.
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Figure 2.12 The normal CDFs.
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Figure 2.13 The exponential CDFs.
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Figure 2.14 The Gamma CDFs.
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Figure 2.15 The Cauchy CDFs.

In general, we say that X has a PDF f (and write X∼ f ) if ∀ y ∈�,

��X<y�=
∫ y

−�
f�x�dx� (2.23)

Then, ∀ a�b∈� with a<b:

��a<X<b�=
∫ b

a
f�x�dx� (2.24)

and in general, ∀ measurable set A⊂� � ��X ∈A�= ∫
A
f�x�dx.

Note that, in all calculations involving PDFs, the sets C with
∫
C
dx = 0 (sets of

measure 0) can be disregarded. Therefore, probabilities ��a≤X≤ b� and ��a<X<b�

coincide. (This is, of course, not true for discrete RVs.)
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The median m�X� of RV X gives the value that ‘divides’ the range of X into two
pieces of equal mass. In terms of the CDF and PDF:

m�X�=max
[
y � FX�y�≥

1
2

]
=max

[
y �
∫ �

y
fX�x�dx≥

1
2

]
� (2.25)

If FX is strictly monotone and continuous, then, obviously, m�X� equals the unique value
y for which FX�y�= 1/2. In other words, m�X� is the unique y for which∫ y

−�
fX�x�dx=

∫ �

y
fX�x�dx�

The mode of an RV X with a bounded PDF fX is the value x where fX attains its
maximum; sometimes one refers to local maxima as local modes.

Problem 2.5 My Mum and I plan to take part in a televised National IQ Test where
we will answer a large number of questions, together with selected groups of mathematics
professors, fashion hairdressers, brass band players and others, representing various sec-
tions of society (not forgetting celebrities of the day of course). The IQ index, we were
told, is calculated differently for different ages. For me, it is equal to

−80 ln �1− x��

where x is the fraction of my correct answers, which can be anything between 0 and 1.
In Mum’s case, the IQ index is given by a different formula

−70 ln
3/4− y

3/4
=−70 ln �3/4− y�+ 70 ln 3/4�

where y is her fraction of correct answers. (In her age group one does not expect it to
exceed 3/4 (sorry, Mum!).)

We each aim to obtain at least 110. What is the probability that we will do this? What
is the probability that my IQ will be better than hers?

Solution Again, we employ the uniform distribution assumption. The outcome
�= �x1� x2� is uniformly spread in the set �, which is the rectangle �0�1�× �0�3/4�, of
area 3/4. We have a pair of RVs:

X���=−80 ln �1− x1�� for my IQ,

Y���=−70 ln
3/4− x2

3/4
� for Mum’s IQ,

and ∀ y> 0:

��X<y�= 1
3/4

1∫
0

3/4∫
0

I

[
− ln �1− x1�<

1
80
y

]
dx2dx1

=
1−e−y/80∫
0

dx1 = 1− e−y/80� i.e. X ∼ Exp �1/80��



122 Continuous outcomes

��Y< y�= 1
3/4

1∫
0

3/4∫
0

I

(
− ln

3/4− x2
3/4

<
1
70
y

)
dx2dx1

= 1
3/4

3�1−e−y/70�/4∫
0

dx2 = 1− e−y/70� i.e. Y ∼ Exp �1/70��

Next, ��min 	X�Y
< y�= 1−��min 	X�Y
≥ y�, and

��min 	X�Y
≥ y�= 1
3/4

1∫
0

3/4∫
0

I

(
− ln �1− x1�≥

y

80
�− ln

3/4− x2
3/4

≥ y

70

)
dx2dx1

= e−y/80e−y/70 = e−3y/112� i.e. min 	X�Y
 ∼ Exp �3/112��

Therefore,

��both reach 110�= e−3×110/112 ≈ e−3

(pretty small). To increase the probability, we have to work hard to change the underlying
uniform distribution by something more biased towards higher values of x1 and x2, the
fractions of correct answers.

To calculate ��X> Y �, it is advisable to use the Jacobian #�x1� x2�/#�u1� u2� of the
‘inverse’ change of variables x1 = 1− e−u1/80� x2 = 3�1− e−u2/70�/4 (the ‘direct’ change
is u1 =−80 ln �1− x1�� u2 =−70 ln 	�3/4−X2�/�3/4�
. Indeed,

#�x1� x2�

#�u1� u2�
= 3

4
1
80

e−u1/80
1
70

e−u2/70� u1� u2> 0�

and

��X>Y �= 1
3/4

1∫
0

3/4∫
0

I

(
−80 ln �1− x1�>−70 ln

3/4− x2
3/4

)
dx2dx1

= 1
3/4

�∫
0

�∫
0

3
4
1
80

e−u1/80
1
70

e−u2/70I�u1>u2�du2du1

=
�∫

0

1
70

e−u2/70
�∫

u2

1
80

e−u1/80du1du2 =
8
15
� �

In the above examples, the CDF F either had the form

F�y�=
∫ y

−�
f�x�dx� y ∈��

or was locally constant, with positive jumps at the points of a discrete set �⊂�. In the
first case one says that the corresponding RV has an absolutely continuous distribution
(with a PDF f ), and in the second one says it has a discrete distribution concentrated
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on �. It is not hard to check that absolute continuity implies that F is continuous (but not
vice versa), and for the discrete distributions, the CDF is locally constant, i.e. manifestly
discontinuous. However, a combination of these two types is also possible.

Furthermore, there are CDFs that do not belong to any of these cases but we will not
discuss them here in any detail (a basic example is Cantor’s staircase function, which is
continuous but grows from 0 to 1 on the set � which has length zero). See Figure 2.16.

Returning to RVs, it has to be said that for many purposes, the detailed information
about what exactly the outcome space � is where X��� is defined is actually irrelevant.
For example, normal RVs arise in a great variety of models in statistics, but what matters
is that they are jointly or individually Gaussian, i.e. have a prescribed PDF. Also, an
exponential RV arises in many models and may be associated with a lifetime of an item
or a time between subsequent changes of a state in a system, or in a purely geometric
context. It is essential to be able to think of such RVs without referring to a particular �.

On the other hand, a standard way to represent a real RV X with a prescribed PDF
f�x�� x ∈ �, is as follows. You choose � to be the support of PDF f , i.e. the set
�x∈� � f�x�> 0�, define the probability ��A� as

∫
A
f�x�dx (see equation (2.10)) and set

X���=� (or, if you like, X�x�=x� x∈�). In fact, then, trivially, the event �X<y� will
coincide with the set �x∈� � f�x�> 0� x< y� and its probability will be

��X<y�=
∫
f�x�I�x< y�dx=

∫ y

−�
f�x�dx�

In the final part of the solution to Problem 2.5 we did exactly this: the change of
variables u1 =−80 ln �1− x1�� u2 =−70 ln 	�3/4− x2�/�3/4�
 with the inverse Jacobian

3
4

1
80

e−u1/80
1
70

e−u2/70

has put us on the half-lines u1> 0 and u2> 0, with the PDFs e−u1/80
/
80 and e−u1/70

/
70

and the factor I�u1>u2� indicating the event.
So, to visualise a uniform RV on interval �a� b�, we take the model with �= �a� b�

and define f by equation (2.4); for an exponential or Gamma distribution, �=�+, the
positive half-line, and f is defined by equation (2.6) or (2.7), and for a Gaussian or
Cauchy distribution, �=�, the whole line, and f is defined by equation (2.5) or (2.8).

0

1

1

Figure 2.16
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In all cases, the standard equation X�x�= x defines an RV X with the corresponding
distribution.

Such a representation of an RV X with a given PDF/CDF will be particularly helpful
when we have to deal with a function Y = g�X�. See below.

So far we have encountered two types of RVs: either (i) with a discrete set of values
(finite or countable) or (ii) with a PDF (on a subset of � or �). These types do not exhaust
all occurring situations. In particular, a number of applications require consideration of
an RV X that represents a ‘mixture’ of the two above types where a positive portion of a
probability mass is sitting at a point (or points) and another portion is spread out with a
PDF over an interval in �. Then the corresponding CDF FX has jumps at the points xj
where probability ��X = xj� > 0, of a size equal to ��X = xj� > 0, and is absolutely
continuous outside these points. A typical example is the CDF FW of the waiting time W
in a queue with random arrival and service times (a popular setting is a hairdresser’s shop,
where the customer waits until the hairdressers finish with the previous customers). You
may be lucky in entering the shop when the queue is empty: then your waiting time is 0
(the probability of such event, however small, is > 0). Otherwise you will wait for some
positive time; under the simplest assumptions about the arrival and service times:

FW�y�=��W<y�=
⎧⎨⎩0� y≤ 0�

1− �

�
e−��−��y� y> 0�

(2.26)

Here ���> 0 are the rates of two exponential RVs: � is the rate of the interarrival time
and � that of the service time. Formula (2.26) makes sense when �<�, i.e. the service
rate exceeds the arrival rate which guarantees that the queue does not become overflowed
with time. The probability ��W = 0� that you wait zero time is then equal to 1−�/�> 0
and the probability that you wait a time >y equals �e−��−��y/�.

In this example we can say that the distribution of RV W has a discrete compo-
nent (concentrated at point 0) and an absolutely continuous component (concentrated on
�0���).

Very often we want to find the PDF or CDF of a random variable Y that is a function
g�X� of another random variable X, with a given PDF (CDF).

Problem 2.6 The area of a circle is exponentially distributed with parameter �. Find
the PDF of the radius of the circle.

Answer : fR�y�= 2��ye−��y2I�y> 0�.

Problem 2.7 The radius of a circle is exponentially distributed with parameter �. Find
the PDF of the area of the circle.

Answer : farea�s�=�e−�
√
s/�/

√
4�s.

In these two problems we have dealt with two mutually inverse maps given by the
square and the square root. For a general function g, the answer is the result of a
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straightforward calculation involving the inverse Jacobian. More precisely, if Y = g�X�,
then the direct change of variables is y= g�x�, and

fY �y�= I
(
y ∈Range �g�

) ∑
x� g�x�=y

fX�x�
1

�g′�x�� � (2.27)

Here, Range �g� stands for the set �y � y= g�x� for some x ∈��, and we have assumed
that the inverse image of y is a discrete set which allows us to write the summation.

Equation (2.27) holds whenever the RHS is a correctly defined PDF (which allows
that g′�x�= 0 on a ‘thin’ set of points y).

Example 2.3 If b� c∈� are constants, c �= 0, then

fX+b�y�= fX�y− b�� and fcX�y�=
1
�c�fX�y/c��

Combining these two formulas, it is easy to see that the normal and Cauchy distributions
have the following scaling properties:

if X∼N����2�� then
1
�
�X−��∼ N�0�1��

and

if X∼Ca��� ��� then
1
�
�X−��∼ Ca�1�0��

Also,

if X∼N����2� then cX+ b∼N�c�+ b� c2�2��

and

if X∼Ca��� �� then cX+ b∼Ca�c�+ b� c��� �

A formula emerging from Problem 2.6 is

f√X�y�= 2
√
yfX�y

2�I�y> 0�

(assuming that RV X takes non-negative values). Similarly, in Problem 2.7,

fX2�y�= 1
2
√
y
�fX �

√
y�+ fX �−√

y�� I�y> 0�

(which is equal to 1
/
�2

√
y�fX

(√
y
)
I�y> 0� if X is non-negative).

Assuming that g is one-to-one, at least on the range of RV X, formula (2.27) is
simplified as the summation is reduced to a single inverse image x�y�= g−1�y�:

fY �y�= fX �x�y��
1

�g′�x�y��� I�y ∈Range�g��

= fX 	x�y�
 �x′�y�� I�y ∈Range�g��� (2.28)
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Example 2.4 Let X∼U�0�1�. Given a�b� c�d> 0, with d≤ c, consider RV

Y = a+ bX

c−dX
�

Using formula (2.28) one immediately obtains the PDF of Y :

fY �y�=
bc+ ad

�b+dy�2
� y ∈

(
a

c
�
a+ b

c−d

)
� �

Dealing with a pair X� Y or a general collection of RVs X1� � � � � Xn, it is convenient
to use the concept of the joint PDF and joint CDF (just as we used joint probabilities in
the discrete case). Formally, we set, for real RVs X1� � � � � Xn:

FX�y1� � � � yn�=��X1<y1� � � � � Xn < y1� (2.29)

and we say that they have a joint PDF f if, ∀ y1� � � � � yn ∈�,

FX�y1� � � � � yn�=
∫ y1

−�
· · ·
∫ yn

−�
f�x�dx� (2.30)

Here X is a random vector formed by RVs X1� � � � � Xn, and x is a point in �n, with
entries x1� � � � � xn:

X=
⎛⎜⎝X1
���

Xn

⎞⎟⎠ � x=
⎛⎜⎝x1���
xn

⎞⎟⎠
Next, dx= dx1 × · · · × dxn the Euclidean volume element. Then, given a collection of
intervals 	aj� bj�� j= 1� � � � � n:

� �a1<X1<b1� � � � � an <Xn <bn�=
∫ b1

a1

· · ·
∫ bn

an

f�x�dx�

and, in fact, ��X∈A�= ∫
A
f�x�dx for ∀ measurable subsets A∈�n.

In Chapters 3 and 4 of this book (dealing with IB statistics) we will repeatedly use the
notation fX for the joint PDF of RVs X1� � � � � Xn constituting vector X; in the case of
two random variables X� Y we will write fX�Y �x� y� for the joint PDF and FX�Y �x� y� for
the joint CDF, x� y ∈�. A convenient formula for fX�Y is

fX�Y �x� y�=
d2

dxdy
FX�Y �x� y�� (2.31)

As before, joint PDF f�x� y� has only to be non-negative and have the integral∫
�2 f�x� y�dydx = 1; it may be unbounded and discontinuous. The same is true about
fX�x�. We will write �X�Y �∼ f if f = fX�Y .
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In Problem 2.5, the joint CDF of the two IQs is

FX�Y �x� y� = v

({
�x1� x2� � 0≤ x1� x2 ≤ 1�

−80 ln�1− x1�< x� −70 ln
3/4− x2

3/4
<y

})
I�x� y> 0�

= (1− e−x/80
) (
1− e−y/70

)
I�x� y> 0�=FX�x�FY �y��

Naturally, the joint PDF is also the product:

fX�Y �x� y�=
1
80

e−x/80I�x> 0�
1
70

e−y/70I�y> 0��

If we know the joint PDF fX�Y of two RVs X and Y , then their marginal PDFs fX and
fY can be found by integration in the complementary variable:

fX�x�=
∫
�
fX�Y �x� y�dy� fY �y�=

∫
�
fX�Y �x� y�dx� (2.32)

This equation is intuitively clear: we apply a continuous analogue of the formula of
complete probability, by integrating over all values of Y and thereby ‘removing’ RV Y

from consideration. Formally, ∀ y ∈R,
FX�y�= ��X<y�=��X<y�−�<Y<��

=
∫ y

−�

∫ �

−�
fX�Y �x� x

′�dx′dx=
∫ y

−�
gX�x�dx� (2.33)

where

gX�x�=
∫ �

−�
fX�Y �x� x

′�dx′�

On the other hand, again ∀ y ∈R,
FX�y�=

∫ y

−�
fX�x�dx� (2.34)

Comparing the RHSs of equations (2.33) and (2.34), one deduces that fX=gX , as required.

Example 2.5 Consider a bivariate normal pair of RVs X� Y . Their joint PDF is of the
form (2.9) with d= 2. Here, positive-definite matrices " and "−1 can be written as

"=
(

�2
1 �1�2r

�1�2r �2
2

)
� "−1 = 1

1− r2

(
1/�2

1 −r/��1�2�

−r/��1�2� 1/�2
2

)
�

where �1� �2 are non-zero real numbers (with �2
1 ��

2
2 > 0) and r is real, with �r�< 1.

Equation (2.9) then takes the form

fX�Y �x� y�=
1

2��1�2

√
1− r2

exp
{ −1
2�1− r2�

×
[
�x−�1�

2

�2
1

− 2r
�x−�1��y−�2�

�1�2

+ �y−�2�
2

�2
2

]}
� (2.35)
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We want to check that marginally, X∼ N��1��
2
1 � and Y ∼ N��2��

2
2 �, i.e. to calculate

the marginal PDFs. For simplicity we omit, whenever possible, limits of integration;
integral

∫
below means

∫ �
−�, or

∫
�, an integral over the whole line. Write

fX�x� =
1

2��1�2

√
1− r2

∫
exp
{
− 1
2�1− r2�

×
[
�x−�1�

2

�2
1

− 2r
�x−�1��y−�2�

�1�2

+ �y−�2�
2

�2
2

]}
dy

= 1

2��1�2

√
1− r2

∫
exp
{
− 1
2�1− r2�

×
[
�1− r2��x−�1�

2

�2
1

+
(
y−�2

�2

− r
x−�1

�1

)2
]}

dy

= e−�x−�1�
2/2�2

1√
2��1

×
{

1√
2��2

√
1− r2

∫
exp
[
− �y1 − $1�

2

2�2
2 �1− r2�

]
dy1

}
�

Here

y1 = y−�2� $1 = r
�2

�1

�x−�1��

The last factor in the braces equals 1, and we obtain that

fX�x�=
1√
2��1

e−�x−�1�
2/2�2

1 �

i.e. X ∼ N��1��
2
1 �. Similarly, Y ∼ N��2��

2
2 �. �

The above ‘standard representation’ principle where a real-valued RV X ∼ f was
identified as X�x�= x for x ∈� with the probability ��A� given by formula (2.12) also
works for joint distributions. The recipe is similar: if you have a pair �X�Y � ∼ f , then
take �= �x� y�∈�=�2, set

��A�=
∫
A
f�x� y�dydx for A⊂�2

and define

X���= x�Y���= y�

A similar recipe works in the case of general collections X1� � � � � Xn.
A number of problems below are related to transformations of a pair �X�Y � to

�U�V �, with

U = g1�X�Y �� V = g2�X�Y ��
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Then, to calculate the joint PDF fU�V from fX�Y , one uses a formula similar to for-
mula (2.27). Namely, if the change of variables �x� y� �→ �u� v�, with u = g1�x� y�,
v= g2�x� y�, is one-to-one on the range of RVs X and Y , then

fU�V �u� v�= I
(
�u� v�∈Range �g1� g2�

)
fX�Y

(
x�u� v�� y�u� v�

) ∣∣∣∣ #�x� y�#�u� v�

∣∣∣∣ � (2.36)

Here,

#�x� y�

#�u� v�
= det

(
#x/#u #x/#v

#y/#u #y/#v

)
is the Jacobian of the inverse change �u� v� �→ �x� y�:

det
(
#x/#u #x/#v

#y/#u #y/#v

)
= det

(
#u/#x #u/#y

#v/#x #v/#y

)−1

�

The presence of the absolute value �#�x� y�/#�u� v�� guarantees that fU�V �u� v�≥ 0.
In particular, the PDFs of the sum X+ Y and the product XY are calculated as

fX+Y �u�=
∫
fX�Y �x�u− x�dx=

∫
fX�Y �u− y� y�dy (2.37)

and

fXY �u�=
∫
fX�Y �x�u/x�

1
�x�dx=

∫
fX�Y �u/y� y�

1
�y�dy
 (2.38)

cf. equations (1.21) and (1.22). For the ratio X/Y :

fX/Y �u�=
∫

�y�fX�Y �yu� y�dy� (2.39)

The derivation of formula (2.37) is as follows. If U =X+ Y , then the corresponding
change of variables is u= x+ y and, say v= y, with the inverse x= u− v, y= v. The
Jacobian

#�u� v�

#�x� y�
= 1= #�x� y�

#�u� v�
�

hence

fX+Y�Y �u� v�= fX�Y �u− v� v��

Integrating in dv yields

fX+Y �u�=
∫
fX�Y �u− v� v�dv�

which is the last integral on the RHS of (2.37). The middle integral is obtained by using
the change of variables u = x+ y, v = x (or simply by observing that X and Y are
interchangeable).
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The derivation of formulas (2.38) and (2.39) is similar, with 1/�x�, 1/�y� and �y�
emerging as the absolute values of the corresponding (inverse) Jacobians.

For completeness, we produce a general formula, assuming that a map u1 = g1�x�,…,
un = gn�x� is one-to-one on the range of RVs X1� � � � � Xn. Here, for the random vectors

X=
⎛⎜⎝X1
���

Xn

⎞⎟⎠ and U=
⎛⎜⎝U1
���

Un

⎞⎟⎠ �′
with Ui = gi�X�:

fU�u1� � � � � un�=
∣∣∣∣ #�x1� � � � � xn�#�u1� � � � � un�

∣∣∣∣fX�x1�u�� � � � � xn�u��
× I �u∈Range�g1� � � � � gn�� � (2.40)

Example 2.6 Given a bivariate normal pair X�Y , consider the PDF of X+ Y . From
equations (2.35), (2.37):

fX+Y �u� =
1

2��1�2

√
1− r2

∫
exp
{ −1
2�1− r2�

[
�x−�1�

2

�2
1

−2r
�x−�1��u− x−�2�

�1�2

+ �u− x−�2�
2

�2
2

]}
dx

= 1

2��1�2

√
1− r2

∫
exp
{ −1
2�1− r2�

×
[
x21
�2
1

− 2r
x1�u1 − x1�

�1�2

+ �u1 − x1�
2

�2
2

]}
dx1�

where x1 = x−�1, u1 = u−�1 −�2.
Extracting the complete square yields

x21
�2
1

− 2r
x1�u1 − x1�

�1�2

+ �u1 − x1�
2

�2
2

=
(
x1

√
�2
1 + 2r�1�2 +�2

2

�1�2

− u1
�2

�1 + r�2√
�2
1 + 2r�1�2 +�2

2

)2

+ u21�1− r2�

�2
1 + 2r�1�2 +�2

2

�

We then obtain that

fX+Y �u�=
exp

[
− u21
2
(
�2
1 + 2r�1�2 +�2

2

)]
2�
√
�2
1 + 2r�1�2 +�2

2

∫
e−v

2/2dv

=
exp
[
− �u−�1 −�2�

2

2��2
1 + 2r�1�2 +�2

2 �

]
√
2�
(
�2
1 + 2r�1�2 +�2

2

) � (2.41)
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Here, the integration variable is

v= 1√
1− r2

(
x1

√
�2
1 + 2r�1�2 +�2

2

�1�2

− u1
�2

�1 + r�2√
�2
1 + 2r�1�2 +�2

2

)
�

We see that

X+ Y ∼ N
(
�1 +�2��

2
1 + 2r�1�2 +�2

2

)
�

with the mean value �1 +�2 and variance �2
1 + 2r�1�2 +�2

2 . �

Another useful example is

Example 2.7 Assume that RVs X1 and X2 are independent, and each has an exponential
distribution with parameter �. We want to find the joint PDF of

Y1 =X1 +X2� and Y2 =X1/X2�

and check if Y1 and Y2 are independent.
Consider the map

T � �x1� x2� �→ �y1� y2�� where y1 = x1 + x2� y2 =
x1
x2
�

where x1� x2� y1� y2 ≥ 0. The inverse map T−1 acts by

T−1 � �y1� y2� �→ �x1� x2�� where x1 =
y1y2
1+ y2

� x2 =
y1

1+ y2
�

and has the Jacobian

J�y1� y2�= det
(
y2/�1+ y2� y1/�1+ y2�− y1y2/�1+ y2�

2

1/�1+ y2� −y1/�1+ y2�
2

)
=− y1y2

�1+ y2�
3
− y1
�1+ y2�

3
=− y1

�1+ y2�
2
�

Then the joint PDF

fY1�Y2�y1� y2�= fX1�X2

(
y1y2
1+ y2

�
y1

1+ y2

)∣∣∣∣− y1
�1+ y2�

2

∣∣∣∣ �
Substituting fX1�X2

�x1� x2�=�e−�x1�e−�x2 , x1� x2 ≥ 0, yields

fY1�Y2�y1� y2�=
(
�2y1e

−�y1
) [ 1

�1+ y2�
2

]
� y1� y2 ≥ 0�

The marginal PDFs are

fY1�y1�=
∫ �

0
fY1�Y2�y1� y2�dy2 =�2y1e

−�y1� y1 ≥ 0�
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and

fY2�y2�=
∫ �

0
fY1�Y2�y1� y2�dy1 =

1
�1+ y2�

2
� y2 ≥ 0�

As fY1�Y2�y1� y2�= fY1�y1�fY2�y2�, RVs Y1 and Y2 are independent. �

The definition of the conditional probability ��A�B� does not differ from the discrete
case: ��A�B�=��A∩B�/��B�. For example, if X is an exponential RV, then, ∀ y�w>0

��X≥ y+w�X≥w�= ��X≥ y+w�

��X≥w�
=
∫ �
y+w�e

−�udu∫ �
w
�e−�vdv

= e−��y+w�

e−�w
= e−�y =��X≥ y�� (2.42)

This is called the memoryless property of an exponential distribution which is similar
to that of the geometric distribution (see equation (1.42)). It is not surprising that the
exponential distribution arises as a limit of geometrics as p= e−�/n↗1 (n→�). Namely,
if X∼Exp ��� and X�n� ∼Geom �e−�/n� then, ∀ y> 0,(

1− e−�y
)=��X<y�= lim

n→���X�n� < ny�� (2.43)

Speaking of conditional probabilities (in a discrete or continuous setting), it is instruc-
tive to think of a conditional probability distribution. Consequently, in the continuous
setting, we can speak of a conditional PDF. See below.

Of course, the formula of complete probability and Bayes’ Theorem still hold true
(not only for finite, but also for countable collections of pair-wise disjoint events Bj with
��Bj�> 0).

Other remarkable facts are two Borel–Cantelli (BC) Lemmas, named after E. Borel
(1871–1956), the famous French mathematician (and for 15 years the minister for the
Navy), and F.P. Cantelli (1875–1966), an Italian mathematician (the founder of the Italian
Institute of Actuaries). The first lemma is that if B1, B2� � � � is a sequence of (not
necessarily disjoint) events with

∑
j ��Bj� <�, then the probability ��A�= 0, where A

is the intersection
⋂

n≥1

⋃
j≥n Bj . The proof is straightforward if you are well versed in

basic manipulations with probabilities: if An =
⋃

j≥n Bj then An+1 ⊆An and A=⋂n An.
Then A⊆An and hence ��A�≤��An� ∀ n. But ��An�≤

∑
j≥n ��Bj� which tends to 0 as

n→� because
∑

j ��Bj�<�. So, ��A�= 0.
The first BC Lemma has a rather striking interpretation: if

∑
j ��Bj� <�, then with

probability 1 only finitely many of events Bj can occur at the same time. This is because
the above intersection A has the meaning that ‘infinitely many of events Bj occurred’.
Formally, if outcome �∈A, then �∈Bj for infinitely many j.

The second BC Lemma says that if events B1, B2� � � � , are independent and
∑

j ��Bj�=
�, then ��A�=1. The proof is again straightforward: ��Ac�=��

⋃
n≥1A

c
n�≤

∑
n≥1 ��A

c
n�.

Next, one argues that ��Ac
n�= �

(⋂
j≥n Bc

j

)=∏j≥n ��Bc
j �= exp

{∑
j≥n ln 	1−��Bj�


}≤
exp
[−∑j≥n ��Bj�

]
, as ln �1− x�≤−x for x≥ 0. As

∑
j≥n ��Bj�=�, ��Ac

n�= 0 ∀ n.
Then ��Ac�= 0 and ��A�= 1.
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Thus, if B1�B2� � � � are independent events and
∑

j ��Bj�=�, then ‘with probability 1
there occur infinitely many of them’.

For example, in Problem 1.35 the events {year k is a record} are independent and have
probabilities 1/k. By the second BC Lemma, with probability 1 there will be infinitely
many record years if observations are continued indefinitely.

In the continuous case we can also work with conditional probabilities of the type
��A�X = x�, under the condition that an RV X with PDF fX takes value x. We know
that such a condition has probability 0, and yet all calculations, while being performed
correctly, yield right answers. The trick is that we consider not a single value x but all of
them, within the range of RV X. Formally speaking, we work with a continuous analogue
of the formula of complete probability:

��A�=
∫

��A�X= x�fX�x�dx� (2.44)

This formula holds provided that ��A�X = x� is defined in a ‘sensible’ way which is
usually possible in all naturally occurring situations. For example, if fX�Y �x� y� is the joint
PDF of RVs X and Y and A is the event �a<Y<b�, then

��A�X= x�=
∫ b

a
fX�Y �x� y�dy

/∫
fX�Y �x� y�dy�

The next step is then to introduce the conditional PDF fY �X�y�x� of RV Y , conditional
on �X= x�:

fY �X�y�x�=
fX�Y �x� y�

fX�x�
� (2.45)

and write natural analogues of the formula of complete probability and the Bayes formula:

fY �y�=
∫
fY �X�y�x�fX�x�dx� fY �X�y�x�= fX�Y

/∫
fX�Y �x�z�fY �z�dz � (2.46)

As in the discrete case, two events, A and B are called independent if

��A∩B�=��A���B�
 (2.47)

for a general finite collection A1� � � � �An�n > 2, we require that ∀ k= 2� � � � � n and
1≤ i1< � � � < ik ≤ n:

�
(
∩1≤j≤kAij

)
= ∏

1≤j≤k
�
(
Aij

)
� (2.48)

Similarly, RVs X and Y , on the same outcome space �, are called independent if

��X<x�Y< y�=��X<x���Y< y� ∀ x� y ∈�� (2.49)

In other words, the joint CDF FX�Y �x� y� decomposes into the product FX�x�FY �y�.
Finally, a collection of RVs X1� � � � �Xn (again on the same space �), n> 2, is called
independent if ∀ k= 2� � � � � n and 1≤ i1< · · ·< ik ≤ n:

��Xi1
<y1� � � � �Xik

< yk�=
∏

1≤j≤k
��Xij

< yj�� y1� � � � � yk ∈�� (2.50)
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Remark We can require equation (2.50) for the whole collection X1� � � � �Xn only, but
allowing yi to take value +�:

��X1<y1� � � � �Xn < yn�=
∏

1≤j≤n
��Xj < yj�� y1� � � � � yn ∈�=�∪ ���� (2.51)

Indeed, if some values yi in equation (2.51) is equal to �, it means that the corresponding
condition yi <� is trivially fulfilled and can be omitted.

If RVs under consideration have a joint PDF fX�Y or fX, then equations (2.50) and
(2.51) are equivalent to its product-decomposition:

fX�Y �x� y�= fX�x�fY �y�� fX�x�= fX1
�x1�� � � fXn�xn�� (2.52)

The formal proof of this fact is as follows. The decomposition FX�Y �y1� y2�=FX�y1�FY �y2�

means that ∀ y1� y2 ∈�:∫ y1

−�

∫ y2

−�
fX�Y �x� y�dydx=

∫ y1

−�

∫ y2

−�
fX�x�fY �y�dydx�

One deduces then that the integrands must coincide, i.e. fX�Y �x� y�= fX�x�fY �y�. The
inverse implication is straightforward. The argument for a general collection X1, � � � , Xn

is analogous.
For independent RVs X, Y , equations (2.37)–(2.39) become

fX+Y �u�=
∫
fX�x�fY �u− x�dx=

∫
fX�u− y�fY �y�dy� (2.53)

fXY �u�=
∫
fX�x�fY �u/x�

1
�x�dx=

∫
fX�u/y�fY �y�

1
�y�dy� (2.54)

and

fX/Y �u�=
∫

�y�fX�yu�fY �y�dy� (2.55)

Cf. Problem 2.13. As in the discrete case, equation (2.53) is called the convolution formula
(for densities).

The concept of IID RVs employed in the previous chapter will continue to play a
prominent rôle, particularly in Section 2.3.

Problem 2.8 Random variables X and Y are independent and exponentially distributed
with parameters � and �. Set

U =max 	X�Y
� V =min 	X�Y
�

Are U and V independent? Is RV U independent of the event �X> Y� (i.e. of the RV
I�X>Y �)?

Hint: Check that ��V > y1� U < y2� �= ��V > y1���U < y2� and ��X > Y�U < y� �=
��X>Y �P�U<y�.
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Problem 2.9 Random variables X and Y are independent and exponentially distributed,
each with parameter �. Show that the random variables X + Y and X/�X + Y � are
independent and find their distributions.

Hint: Check that

fU�V �u� v�=�2ue−�u I�u> 0�I�0<v< 1�= fU �u�fV �v��

Problem 2.10 A shot is fired at a circular target. The vertical and horizontal co-
ordinates of the point of impact (taking the centre of the target as origin) are independent
random variables, each distributed N(0, 1).

Show that the distance of the point of impact from the centre has the PDF re−r2/2 for
r> 0. Find the median of this distribution.

Solution In fact, X∼N�0�1�, Y ∼N�0�1�, and fX�Y �x� y�= �1/2��e−�x2+y2�/2, x� y∈�.
Set R=√

X2 + Y 2 and %= tan−1�Y/X�. The range of the map(
x

y

)
�→
(
r

�

)
is �r> 0� �∈ �−����� and the Jacobian

#�r� ��

#�x� y�
= det

(
#r/#x #r/#y

#�/#x #�/#y

)
equals

det

⎛⎜⎜⎝
x

r

y

r

−y/x2
1+ �y/x�2

1/x
1+ �y/x�2

⎞⎟⎟⎠= 1
r
� x� y ∈�� r> 0� �∈ �−���� �

Then the inverse map(
r

�

)
�→
(
x

y

)
has the Jacobian #�x� y�/#�r� ��= r . Hence,

fR�%�r� ��= re−r
2/2I�r> 0�

1
2�

I �−���� �
Integrating in d� yields

fR�r�= re−r
2/2I�r> 0��

as required. To find the median m�R�, consider the equation∫ y

0
re−r

2/2dr =
∫ �

y
re−r

2/2dr�

giving e−y2/2 = 1/2. So, m�R�=√
ln 4. �
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We conclude this section’s theoretical considerations with the following remark. Let
X be an RV with CDF F and 0<y< 1 be a value taken by F , with F�x∗�= y at the left
point x∗ = inf	x∈� � F�x�≥ y
. Then

��F�X�< y�= y� (2.56)

In fact, in this case the event �F�X�< y�= �X< x∗�, implying ��F�X�< y�= F�x∗�. In
general, if g � �→� is another function and there is a unique point a ∈� such that
F�a�= g�a�, F�x�< g�x� for x<a and F�x�≥ g�x� for x≥ a, then

��F�X�< g�X��= g�a�� (2.57)

Problem 2.11 A random sample X1� � � � �X2n+1 is taken from a distribution with PDF
f . Let Y1� � � � � Y2n+1 be values of X1� � � � �X2n+1 arranged in increasing order. Find the
distribution of each of Yk� k= 1� � � � �2n+ 1.

Solution If Xj ∼ f , then

PYk�y�=P�Yk < y�=
2n+1∑
j=k

(2n+ 1
j

)
F�y�j	1−F�y�
2n+1−j� y ∈R�

The PDF fYk� k= 1� � � � �2n+ 1, can be obtained as follows. Yk takes value x, iff k− 1
values among X1� � � � �X2n+1 are less than x, 2n+ 1− k are greater than x, and the
remaining one is equal to x. Hence

fYk�x�=
�2n+ 1�!

�k− 1�!�2n+ 1− k�! 	F�x�

k−1	1−F�x�
2n+1−kf�x��

In particular, if Xi ∼U	0�1
, the PDF of the the sample median Yn+1 is

fYn+1
�x�= �2n+ 1�!

n!n! 	x�1− x�
n� �

Problem 2.12 (i) X and Y are independent RVs, with continuous symmetric distribu-
tions, with PDFs fX and fY respectively. Show that the PDF of Z=X/Y is

h�a�= 2
∫ �

0
yfX�ay�fY �y�dy�

(ii) X and Y are independent normal random variables distributed N�0��2� and
N�0� �2�. Show that Z=X/Y has PDF h�a�= d/	��d2 + a2�
, where d=�/� (the PDF
of the Cauchy distribution).

Hint:

FZ�a�= 2
∫ �

0

∫ ay

−�
fX�x�fY �y�dxdy�
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Problem 2.13 Let X and Y be independent RVs with respective PDFs fX and fY .
Show that Z= Y/X has the PDF

h�z�=
∫
fX�x�fY �zx��x�dx�

Deduce that T = tan−1�Y/X� is uniformly distributed on �−�/2��/2� if and only if∫
fX�x�fY �xz��x�dx=

1
��1+ z2�

for z∈�. Verify that this holds if X and Y both have the normal distribution with mean
0 and non-zero variance �2.

Solution The distribution function of RV Z is

FZ�u�= ��Z<u�=��Y/X<u�X> 0�+��Y/X<u�X< 0�

=
�∫

0

fX�x�

ux∫
−�

fY �y�dydx+
0∫

−�
fX�x�

�∫
ux

fY �y�dydx�

Then the PDF

fZ�u�=
d
du
FZ�u�=

�∫
0

fX�x�fY �ux�xdx−
0∫

−�
fX�x�fY �ux�xdx

=
∫
fX�x�fY �ux��x�dx�

which agrees with the formula obtained via the Jacobian.
If T is uniformly distributed, then

FZ�u�=��tan−1Z≤ tan−1 u�= tan−1 u+�/2
�

�

fZ�u�=
d
du
FZ�u�=

1
��u2 + 1�

�

Conversely,

fZ�u�=
1

��1+ u2�
implying FZ�u�=

1
�
tan−1 u+ 1

2
�

We deduce that

��T ≤ u�= 1
�
u+ 1

2

or fT �u�= 1/� on �−�/2��/2�.
Finally, take

fX�x�=
1√
2��

e−x
2/2�2

� fY �y�=
1√
2��

e−y
2/2�2

�
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Then ∫
fX�x�fY �ux��x�dx= 1

��2

�∫
0

e−x
2/�2�2�−x2u2/�2�2�xdx

= 1
��2

( −�2

u2 + 1
e−x

2�1+u2�/2�2

)∣∣∣∣�
0

= 1
��1+ u2�

� �

Problem 2.14 Let X1�X2� � � � be independent Cauchy random variables, each
with PDF

f�x�= d

��d2 + x2�
�

Show that An = �X1 +X2 + · · ·+Xn�/n has the same distribution as X1.

Solution For d= 1 and n= 2� f�x�= 1/	��1+ x2�
. Then A2 = �X1 +X2�/2 has the
CDF FA2

�x�=��X1 +X2< 2x�, with the PDF

g�x�= 2̃g�2x�� where g̃�y�= 1
�2

∫ 1
1+ u2

du
1+ �y− u�2

�

Now we use the identity

m
∫ 1
�1+ y2��m2 + �x− y�2�

dy= ��m+ 1�
�m+ 1�2 + x2

�

which is a simple but tedious exercise (it becomes straightforward if you use complex
integration). This yields

g̃�y�= 2
�

1
4+ y2

which implies

g�x�= 2̃g�2x�= 1
�

1
1+ x2

= f�x��

In general, if Y = qX1 + �1− q�X2, then its PDF is

d
dx

∫
f�u�

∫ �x−qu�/�1−q�

−�
f�y�dydu= 1

1− q

∫
�1
f

(
x− qu

1− q

)
f�u�du�

which, by the same identity (with m= �1− q�/q), is

= 1
q

1
�

(
1− q

q
+ 1
)

1
1/q2 + x2/q2

= f�x��
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Now, for d = 1 and a general n we can write Sn = 	�n− 1�Sn + Xn
/n. Make the
induction hypothesis: Sn−1 ∼ f�x�. Then by the above argument (with two summands,
Sn−1 and Xn), Sn ∼ f�x�.

Finally, for a general d, we set X̃i =Xi/d. Then S̃n ∼ f̃ �x�= 1/	��1+ x2�
. Hence,
for the original variables, Sn ∼ f�x�=d/	��d2 + x2�
. �

Remark A shorter solution uses characteristic functions, see equation (2.91). For the
proof, see Problem 2.52.

Problem 2.15 If X�Y and Z are independent RVs each uniformly distributed on �0�1��
show that �XY�Z is also uniformly distributed on 	0�1
.

Solution Take

ln	�XY �Z
=Z�lnX+ lnY ��

To prove that �XY �Z is uniformly distributed on 	0�1
 is the same as to prove that
−Z�lnX + lnY � is exponentially distributed on 	0���. Now W = − lnX − lnY has
the PDF

fW�y�=
{
ye−y�0<y<��
0� y≤ 0�

The joint PDF fZ�W �x� y� is of the form

fZ�W �x� y�=
{
ye−y� if 0<x< 1� 0<y<��
0� otherwise�

We are interested in the product ZW . It is convenient to pass from x� y to variables
u= xy� v= y/x with the inverse Jacobian 1/�2v�. In the new variables the joint PDF fU�V
of RVs U =ZW and V =W/Z reads

fU�V �u� v�=
{

1
2v �uv�

1/2e−�uv�1/2� u� v> 0�0<u/v< 1�

0�otherwise�

The PDF of U then is

fU �u�=
∫
fU�V �u� v�dv=

∫ �

u

1
2v
�uv�1/2e−�uv�

1/2
dv

=−
∫ �

u
d
(
e−�uv�

1/2
)
=−

[
e−�uv�

1/2
]�
u
= e−u� u> 0�

with fU �u�= 0 for u< 0. �
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Problem 2.16 Let RVs X1� � � � �Xn be independent and exponentially distributed, with
the same parameter �. By using induction on n or otherwise, show that the RVs

max 	X1� � � � �Xn
 and X1 +
1
2
X2 + · · ·+ 1

n
Xn

have the same distribution.

Solution Write

Yn =max	X1� � � � �Xn
� Zn =X1 +
1
2
X2 + · · ·+ 1

n
Xn�

Now write

��Yn < y�= ���X1<y��
n = �1− e−�y�n�

For n= 1� Y1 =Z1. Now use induction in n:

��Zn < y�=�

(
Zn−1 +

1
n
Xn < y

)
�

As Xn/n∼ Exp �n��, the last probability equals
y∫

0

�1− e−�z�n−1n�e−n��y−z�dz

= n�e−n�y
y∫

0

e�z�1− e−�z�n−1e�n−1��zdz= ne−n�y
e�y∫
1

�u− 1�n−1du

= ne−n�y
e�y−1∫
0

vn−1dv= e−n�y�e�y − 1�n = �1− e−�y�n� �

Problem 2.17 Suppose �≥ 1 and X� is a positive real-valued RV with PDF

f��t�=A�t
�−1 exp �−t��

for t > 0, where A� is a constant. Find A� and show that, if �> 1 and s� t> 0,

��X� ≥ s+ t�X� ≥ t�<��X� ≥ s��

What is the corresponding relation for �= 1?

Solution We must have
∫ �
0 f��t�dt= 1, so

A−1
� =

�∫
0

t�−1 exp �−t��dt

= �−1

�∫
0

exp �−t��d�t��=�−1
[
e−t

�]�
0
=�−1�
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and A� =�. If �> 1, then, ∀ s� t> 0,

��X� ≥ s+ t�X� ≥ t�= ��X� ≥ s+ t�

��X� ≥ t�
=
∫ �
s+t exp �−u��d�u��∫ �
t
exp �−u��d�u��

= exp �−�s+ t���

exp �−t�� = exp �t� − �s+ t���

= exp �−s� + negative terms�

< exp �−s��=� �X� ≥ s� �

If �=1� t�− �s+ t��=−s, and the above inequality becomes an equality as � �X� ≥ t�=
exp �−t�. (This is the memoryless property of the exponential distribution.) �

Remark If you interpret X� as the lifetime of a certain device (e.g. a bulb), then the
inequality ��X� ≥ s+ t�X� ≥ t� < ��X� ≥ s� emphasises an ‘aging’ phenomenon, where
an old device that had been in use for time t is less likely to serve for duration s than a
new one. There are examples where the inequality is reversed: the quality of a device (or
an individual) improves in the course of service.

Problem 2.18 Let a point in the plane have Cartesian co-ordinates �X�Y � and polar
co-ordinates �R�%�. If X and Y are independent identically distributed RVs each having
a normal distribution with mean zero, show that R2 has an exponential distribution and is
independent of %.

Solution The joint PDF fX�Y is �1/2��2�e−�x2+y2�/2�2
, and R and % are defined by

R2 =T =X2 + Y 2� %= tan−1 Y

X
�

Then

fR2�%�t� ��= fX�Y
(
x�t� ��� y�t� ��

)
I�t> 0�I�0<�< 2��

∣∣∣∣#�x� y�#�t� ��

∣∣∣∣ �
where the inverse Jacobian

#�x� y�

#�t� ��
=
(
#�t� ��

#�x� y�

)−1

= det
[(

2x 2y
−y/�x2 + y2� x/�x2 + y2�

)]−1

=
(
2x2 + 2y2

x2 + y2

)−1

= 1
2
�

Hence,

fR2�%�t� ��=
1

4��2
e−t/2�

2
I�t> 0�I�0<�< 2��= fR2�t�f%����

with

fR2�t�= 1
2�2

e−t/2�
2
I�t> 0�� f%���=

1
2�

I�0<�< 2���

Thus, R2 ∼ Exp
(
1/2�2

)
, %∼U�0�2�� and R2 and % are independent. �
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2.2 Expectation, conditional expectation, variance, generating
function, characteristic function

Tales of the Expected Value
(From the series ‘Movies that never made it to the Big Screen’.)

They usually have difficult or threatening names such as
Bernoulli, De Moivre–Laplace, Chebyshev, Poisson.
Where are the probabilists with names such as Smith,
Brown, or Johnson?

(From the series ‘Why they are misunderstood’.)

The mean and the variance of an RV X with PDF fX are calculated similarly to the
discrete-value case. Namely,

�X=
∫
xfX�x�dx and VarX=

∫
�x−�X�2fX�x�dx� (2.58)

Clearly,

VarX =
∫
�x2 − 2x�X+ ��X�2�fX�x�dx

=
∫
x2fX�x�dx− 2�X

∫
xfX�x�dx+ ��X�2

∫
fX�x�dx

=�X2 − 2��X�2 + ��X�2 =�X2 − (�X)2� (2.59)

Of course, these formulas make sense when the integrals exist; in the case of the expec-
tation we require that∫

�x�fX�x�dx<��

Otherwise, i.e. if
∫ �x�fX�x�dx = �, it is said that X does not have a finite expectation

(or �X does not exist). Similarly, with Var X.

Remark Sometimes one allows a further classification, regarding the contributions to
integral

∫
xfX�x�dx from

∫ �
0 and

∫ 0
−�. Indeed,

∫ �
0 xfX�x�dx corresponds to �X+ while∫ 0

−��−x�fX�x�dx to �X−, where X+ =max 	0�X
 and X− =−min 	0�X
. Dealing with
integrals

∫ �
0 and

∫ 0
−� is simpler as value x keeps its sign on each of the intervals �0���

and �−��0�. Then one says that �X=� if
∫ �
0 xfX�x�dx=� and

∫ 0
−��−x�fX�x�dx<�.

Similarly, �X=−� if
∫ �
0 xfX�x�dx<� but

∫ 0
−��−x�fX�x�dx=�.

Formulas (2.58) and (2.59) are in agreement with the standard representation of RVs,
where X�x�=x (or X���=�). Indeed, we can say that in �X we integrate values X�x� and
in Var X values �X�x�−�X�2 against the PDF fX�x�, which makes strong analogies with
the discrete case formulas �X=∑� X���pX��� and Var X=∑��X���−�X�2p���.
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Example 2.8 For X∼U�a� b�, the mean and the variance are

�X= b+ a

2
� VarX= �b− a�2

12
� (2.60)

In fact,

�X= 1
b− a

∫ b

a
xdx= 1

b− a

(
x2

2

)∣∣∣∣b
a

= 1
2
b2 − a2

b− a
= b+ a

2
�

the middle point of �a� b�. Further,

1
b− a

∫ b

a
x2dx= b3 − a3

3�b− a�
= 1

3
�b2 + ab+ a2��

Hence, VarX= 1
3 �b

2 + ab+ a2�− 1
4 �b+ a�2 = 1

12 �b− a�2. �

Example 2.9 For X∼ N����2�:

�X=�� VarX=�2� (2.61)

In fact,

�X = 1√
2��

∫
x exp

[
− �x−��2

2�2

]
dx

= 1√
2��

∫
�x−�+�� exp

[
− �x−��2

2�2

]
dx

= 1√
2��

[∫
x exp

(
− x2

2�2

)
dx+�

∫
exp
(
− x2

2�2

)
dx
]

= 0+ �√
2��

∫
exp
(
−x

2

2

)
dx=��

and

VarX = 1√
2��

∫
�x−��2 exp

[
− �x−��2

2�2

]
dx

= 1√
2��

∫
x2 exp

(
− x2

2�2

)
dx

= �2 1√
2�

∫
x2 exp

(
−x

2

2

)
dx=�2� �

Example 2.10 For X ∼ Exp ���,

�X= 1
�
� VarX= 1

�2
� (2.62)

In fact,

�X=�
∫ �

0
xe−�xdx= 1

�

∫ �

0
xe−xdx= 1

�
�
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and

�
∫ �

0
x2e−�xdx= 1

�2

∫ �

0
x2e−xdx= 2

�2
�

implying that VarX= 2/�2 − 1/�2 = 1/�2. �

Example 2.11 For X∼ Gam�����,

�X= �

�
� VarX= �

�2
� (2.63)

In fact,

�X = ��

! ���

�∫
0

xx�−1e−�xdx= 1
�! ���

�∫
0

x�e−xdx

= ! ��+ 1�
�! ���

= �

�
�

Next,

��

! ���

�∫
0

x2x�−1e−�xdx= 1
�2! ���

�∫
0

x�+1e−xdx

= ! ��+ 2�
�2! ���

= ��+ 1��
�2

�

This gives VarX= ��+ 1��/�2 −�2/�2 =�/�2. �

Example 2.12 Finally, for X∼ Ca��� ��, the integral∫ ��x�
�2 + �x−��2

dx=�� (2.64)

which means that �X does not exist (let alone Var X). �

A table of several probability distributions is given in Appendix 1.
In a general situation where the distribution of X has a discrete and an absolutely

continuous component, formulas (2.58), (2.59) have to be modified. For example, for the
RV W from equation (2.26):

�W = 	0 ·��W = 0�
+ �

�

∫ �

0
xe−��−��xdx= �

���−��2
�

An important property of expectation is additivity:

��X+ Y �=�X+�Y� (2.65)
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To check this fact, we use the joint PDF fX�Y :

�X+�Y =
∫
xfX�x�dx+

∫
yfY �y�dy

=
∫
x
∫
fX�Y �x� y�dydx+

∫
y
∫
fX�Y �x� y�dxdy

=
∫ ∫

�x+ y�fX�Y �x� y�dydx=��X+ Y��

As in the discrete-value case, we want to stress that formula (2.65) is a completely
general property that holds for any RVs X, Y . It has been derived here when X and Y
have a joint PDF (and in Section 1.4 for discrete RVs), but the additivity holds in the
general situation, regardless of whether X and Y are discrete or have marginal or joint
PDFs. The proof in its full generality requires Lebesgue integration and will be addressed
in a later chapter.

Another property is that if c is a constant then

��cX�= c�X� (2.66)

Again, in the case of an RV with a PDF, the proof is easy: for c �= 0:

��cX�=
∫
xfcX�x�dx=

∫
x
1
c
fX�x/c�dx= c

∫
xfX�x�dx


when c > 0 the last equality is straightforward and when c < 0 one has to change the
limits of integration which leads to the result. Combining equations (2.65) and (2.66), we
obtain the linearity of expectation:

��c1X+ c2Y �= c1�X+ c2�Y� (2.67)

It also holds for any finite or countable collection of RVs:

�

(∑
i

ciXi

)
=∑

i

ci�Xi� (2.68)

provided that each mean value �Xi exists and the series
∑

i ci�Xi is absolutely convergent.
In particular, for RVs X1� X2� � � � with �Xi =�, � �

∑n
i=1Xi�= n�.

A convenient (and often used) formula is the Law of the Unconscious Statistician:

�g�X�=
∫
g�x�fX�x�dx� (2.69)

relating the mean value of Y = g�X�, a function of an RV X, with the PDF of X. It holds
whenever the integral on the RHS exists, i.e.

∫ �g�x��fX�x�dx<�.
The full proof of formula (2.69) again requires the use of Lebesgue’s integration, but

its basics are straightforward. To start with, assume that function g is differentiable and
g′>0 (so g is monotone increasing and hence invertible: ∀ y in the range of g there exists
a unique x= x�y��= g−1�y��∈� with g�x�= y). Owing to equation (2.28),

�g�X�=
∫
yfg�X��y�dy=

∫
Range �g�

yfX�x�y��
1

g′�x�y��
dy�
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The change of variables y= g�x�, with x�g�x��=x, yields that the last integral is equal to∫
g′�x�g�x�fX�x�

1
g′�x�

dx=
∫
g�x�fX�x�dx�

i.e. the RHS of formula (2.69). A similar idea works when g′ < 0: the minus sign is
compensated by the inversion of the integration limits −� and �.

The spirit of this argument is preserved in the case where g is continuously differentiable
and the derivative g′ has a discrete set of zeroes (i.e. finite or countable, but without
accumulation points on �). This condition includes, for example, all polynomials. Then
we can divide the line � into intervals where g′ has the same sign and repeat the
argument locally, on each such interval. Summing over these intervals would again give
formula (2.68).

Another instructive (and simple) observation is that formula (2.69) holds for any locally
constant function g, taking finitely or countably many values yj: here

�g�X�=∑
j

yj��g�X�= yj�

=∑
j

yj

∫
fX�x�I�x � g�x�= yj�dx=

∫
g�x�fX�x�dx�

By using linearity, it is possible to extend formula (2.69) to the class of functions g
continuously differentiable on each of (finitely or countably many) intervals partitioning

�, viz. g�x�=
{
0� x≤ 0�

x� x≥ 0�
This class will cover all applications considered in this volume.

Examples of using formula (2.69) are the equations

�I�a<X<b�=
∫ b

a
fX�x�dx=��a<X<b�

and

�XI�a<X<b�=
∫ b

a
xfX�x�dx�

A similar formula holds for the expectation �g�X�Y �, expressing it in terms of a
two-dimensional integral against joint PDF fX�Y :

�g�X�Y �=
∫
�2
g�x� y�fX�Y �x� y�dxdy� (2.70)

Here, important examples of function g are: (i) the sum x+ y, with

��X+ Y �=
∫ ∫

�x+ y�fX�Y �x� y�dxdy

=
∫
xfX�x�dx+

∫
yfY �y�dy=�X+�Y

(cf. equation (2.65)), and (ii) the product g�x� y�= xy, where

��XY �=
∫ ∫

xyfX�Y �x� y�dxdy� (2.71)
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Note that the CS inequality (1.30) holds:

���XY �� ≤ (�X2�Y 2
)1/2

�

as its proof in Section 1.4 uses only linearity of the expectation.
The covariance Cov �X�Y � of RVs X and Y is defined by

Cov �X�Y �=
∫ ∫

�x−�X��y−�Y �fX�Y �x� y�dxdy

=��X−�X��Y −�Y � (2.72)

and coincides with∫ ∫
fX�Y �x� y��xy−�X�Y �dydx=��XY �−�X�Y� (2.73)

By the CS inequality, �Cov �X�Y �� ≤ (VarX)1/2(Var Y )1/2, with equality iff X and Y are
proportional, i.e. X= cY where c is a (real) scalar.

As in the discrete case,

Var �X+ Y �=VarX+Var Y + 2Cov �X�Y � (2.74)

and

Var �cX�= c2VarX� (2.75)

If RVs X and Y are independent and with finite mean values, then

��XY �=�X�Y� (2.76)

The proof here resembles that given for RVs with discrete values: by formula (2.69),

��XY �=
∫ ∫

yxfX�x�fY �y�dxdy

=
∫
xfX�x�dx

∫
yfY �y�dy=�X�Y�

An immediate consequence is that for independent RVs

Cov �X�Y �= 0� (2.77)

and hence

Var �X+ Y �=VarX+Var Y� (2.78)

However, as before, neither equation (2.76) nor equation (2.77) implies independence. An
instructive example is as follows.

Example 2.13 Consider a random point inside a unit circle: let X and Y be its co-
ordinates. Assume that the point is distributed so that the probability that it falls within a
subset A is proportional to the area of A. In the polar representation:

X=R cos%�Y =R sin%�
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where R ∈ �0�1� is the distance between the point and the centre of the circle and
%∈ 	0�2�� is the angle formed by the radius through the random point and the horizontal
line. The area in the polar co-ordinates �� � is

1
�
�1�0≤�≤ 1�1�0≤ �≤ 2��d�d�= fR���d�f%���d��

whence R and % are independent, and

fR���= 2�1�0≤�≤ 1�� f%���=
1
2�

1�0≤ �≤ 2���

Then

�XY =��R2 cos% sin%�=��R2��

(
1
2
sin�2%�

)
= 0�

as

� sin�2%�= 1
2�

∫ 2�

0
sin�2��d�= 0�

Similarly, �X=�R� cos%= 0, and �Y =�R� sin%= 0. So, Cov �X�Y �= 0. But X
and Y are not independent:

�

(
X>

√
2
2
� Y>

√
2
2

)
= 0� but �

(
X>

√
2
2

)
=�

(
Y>

√
2
2

)
> 0� �

Generalising formula (2.78), for any finite or countable collection of independent RVs
and real numbers

Var

(∑
i

ciXi

)
=∑

i

c2iVarXi� (2.79)

provided that each variance Var Xi exists and
∑

i c
2
i Var Xi <�. In particular, for IID

RVs X1� X2� � � � with Var Xi =�2, Var �
∑n

i=1Xi�= n�2.
The correlation coefficient of two RVs X, Y is defined by

Corr �X�Y �= Cov �X�Y �√
VarX

√
Var Y

� (2.80)

As �Cov �X�Y ��≤(VarX)1/2(Var Y )1/2,−1≤Corr�X�Y �≤1. Furthermore, Corr �X�Y �=
0 if X and Y are independent (but not only if), Corr �X�Y �= 1 iff X= cY with c > 0,
and −1 iff X= cY with c< 0.

Example 2.14 For a bivariate normal pair X, Y , with the joint PDF fX�Y of the form
(2.35), parameter r ∈ 	−1�1
 can be identified with the correlation coefficient Corr �X�Y �.
More precisely,

VarX=�2
1 � Var Y =�2

2 � and Cov �X�Y �= r�1�2� (2.81)
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In fact, the claim about the variances is straightforward as X ∼ N��1��
2
1 � and Y ∼

N��2��
2
2 �.

Next, the covariance is

Cov �X�Y �= 1

2��1�2

√
1− r2

∫ ∫
�x−�1��y−�2�

× exp
{
− 1
2�1− r2�

[
�x−�1�

2

�2
1

− 2r
�x−�1��y−�2�

�1�2

+ �y−�2�
2

�2
2

]}
dydx

= 1

2��1�2

√
1− r2

∫ ∫
xy exp

{
− 1
2�1− r2�

[
x2

�2
1

− 2r
xy

�1�2

+ y2

�2
2

]}
dydx

= 1

2��1�2

√
1− r2

∫
x
∫
y exp

{
− 1
2�1− r2�

[
x2�1− r2�

�2
1

+ y21
�2
2

]}
dydx�

where now

y1 = y− rx
�2

�1

�

Therefore,

Cov �X�Y �= 1

2��1�2

√
1− r2

∫
xe−x

2/2�2
1

∫ (
y1 + rx

�2

�1

)
× exp

[
− y21
2�2

2 �1− r2�

]
dy1dx

= r�2√
2��2

1

∫
x2e−x

2/2�2
1 dx= r�1�2√

2�

∫
x2e−x

2/2dx= r�1�2�

In other words, the off-diagonal entries of the matrices " and "−1 have been identified
with the covariance. Hence,

Corr�X�Y �= r�

A simplified version of the above calculation, where �1 =�2 = 0 and �2
1 =�2

2 = 1 is
repeated in Problem 2.23.

We see that if X and Y are independent, then r = 0 and both " and "−1 are diagonal
matrices. The joint PDF becomes the product of the marginal PDFs:

fX�Y �x� y�=
1

2��1�2

exp
[
− �x−�1�

2

2�2
1

− �y−�2�
2

2�2
2

]
= e−�x−�1�

2/2�2
1√

2��1

e−�y−�2�
2/2�2

2√
2��2

�

An important observation is that the inverse is also true: if r = 0, then " and "−1

are diagonal and fX�Y �x� y� factorises into a product. Hence, for jointly normal RVs,
Cov �X�Y �= 0 iff X, Y are independent. �
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The notion of the PGF (and MGF) also emerges in the continuous case:

�X�s�=�sX =
∫
sxfX�x�dx� s> 0�

MX���=�e�X =
∫

e�xfX�x�dx=�X�e
��� �∈�� (2.82)

The PGFs and MGFs are used for non-negative RVs. But even then �X�s� and MX���

may not exist for some positive s or �. For instance, for X∼ Exp ���:

�X�s�=�
∫ �

0
sxe−�xdx= �

�− ln s
� MX���=

�

�− �

Here, �X exists only when ln s<�, i.e. s< e�, and MX��� when �<�. For X∼ Ca��� ��,
the MGF does not exist: �e�X ≡�, �∈�.

In some applications (especially when the RV takes non-negative values), one uses the
argument e−� instead of e�; the function

LX���=�e−�X =MX�−��=
∫

e−�xfX�x�dx� �∈�� (2.83)

which as in the discrete case, is called the Laplace transform (LTF) of PDF fX . Cf.
equation (1.55).

On the other hand, the characteristic function (CHF) �X�t� defined by

�X�t�=�eitX =
∫

eitxfX�x�dx� t ∈�� (2.84)

exists ∀ t ∈� and PDF fX . Cf. (1.56). Moreover: �X�0�=�1= 1 and

��X�t�� ≤
∫ ∣∣eitx∣∣fX�x�dx= ∫ fX�x�dx= 1�

Furthermore, as a function of t, �X is (uniformly) continuous on the whole line. In fact:

��X�t+ ��−�X�t�� ≤
∫ ∣∣ei�t+��x − eitx

∣∣fX�x�dx
=
∫ ∣∣eitx∣∣ ∣∣ei�x − 1

∣∣fX�x�dx
=
∫ ∣∣ei�x − 1

∣∣fX�x�dx�
The RHS does not depend on the choice of t ∈� (uniformity) and goes to 0 as �→ 0.

The last fact holds because
∣∣ei�x − 1

∣∣→ 0, and the whole integrand
∣∣ei�x − 1

∣∣fX�x� is
≤2fX�x�, an integrable function. A formal argument is as follows: given �>0, take A>0
so large that

2
∫ −A

−�
fX�x�dx+ 2

∫ �

A
fX�x�dx< �/2�

Next, take � so small that∣∣ei�x − 1
∣∣<�/4A� ∀ −A<x<A
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we can do this because ei�x → 1 as �→ 0 uniformly on �−A�A�. Then split the entire
integral and estimate each summand separately:

∫ ∣∣ei�x − 1
∣∣fX�x�dx=

⎛⎝ −A∫
−�

+
A∫

−A
+

�∫
A

⎞⎠∣∣ei�x − 1
∣∣fX�x�dx

≤ 2

⎛⎝ −A∫
−�

+
�∫
A

⎞⎠fX�x�dx+ A∫
−A

∣∣ei�x − 1
∣∣fX�x�dx≤ �

2
+ 2A�

4A
= ��

We want to emphasise a few facts that follow from the definition:

(1) If Y = cX+ b, then �Y �t�= eitb�X�ct�.
(2) As in the discrete case, the mean �X, the variance Var X and higher moments

�Xk are expressed in terms of derivatives of �X at t= 0:

�X= 1
i
d
dt
�X�t�

∣∣∣∣
t=0

� (2.85)

VarX=
{
− d2

dt2
�X�t�+

[
d
dt
�X�t�

]2}∣∣∣∣∣
t=0

� (2.86)

(3) CHF �X�t� uniquely defines PDF fX�x�: if �X�t�≡�Y �t�, then fX�x�≡ fY �x�.
(Formally, the last equality should be understood to mean that fX and fY can
differ on a set of measure 0.)

(4) For independent RVs X and Y : �X+Y �t�= �X�t��Y �t�. The proof is similar to
that in the discrete case.

Example 2.15 In this example we calculate the CHF for: (i) uniform, (ii) normal, (iii)
exponential, (iv) Gamma and (v) Cauchy. (i) If X∼ U�a� b�, then

�X�t�=
1

b− a

∫ b

a
eitxdx= eitb − eita

it�b− a�
� (2.87)

(ii) If X∼ N����2�, then

�X�t�= exp
(
it�− 1

2
t2�2

)
� (2.88)

To prove this fact, set �= 0, �2 = 1 and take the derivative in t and integrate by parts:

d
dt
�X�t�=

d
dt

(
1√
2�

∫
eitxe−x

2/2dx
)
= 1√

2�

∫
�ix�eitxe−x

2/2dx

= 1√
2�

(
−ie−x

2/2eitx
)∣∣∣�

−�
− 1√

2�

∫
teitxe−x

2/2dx=−t�X�t��



152 Continuous outcomes

That is

�ln �X�t��
′ =−t� whence ln �X�t�=− t

2

2
+ c� i.e.�X�t�= e−t

2/2�

As �X�0�= 1, c= 0. The case of general � and �2 is recovered from the above property
(1) as �X−��/� ∼ N�0�1�.

The MGF can also be calculated in the same fashion:

�e�X = exp
(
��+ 1

2
�2�2

)
�

Now, by the uniqueness of the RV with a given CHF or MGF, we can confirm the
previously established fact that if X ∼ N��1��

2
1 � and Y ∼ N��2��

2
2 �, independently,

then X+ Y ∼ N��1 +�2��
2
1 +�2

2 �.
(iii) If X∼ Exp ���, then

�X�t�=�
∫ �

0
eitxe−�xdx= �

�− it
� (2.89)

(iv) If X∼ Gam�����, then

�X�t�=
(
1− it

�

)−�
� (2.90)

To prove this fact, we again differentiate with respect to t and integrate by parts:

d
dt
�X�t�=

d
dt

��

! ���

�∫
0

eitxx�−1e−�xdx= ��

! ���

∫ �

0
ix�e�it−��xdx

= ��

! ���

i�
�− it

�∫
0

x�−1e�it−��xdx= i�
�− it

�X�t��

That is

�ln �X�t��
′ = �−� ln ��− it��′� whence�X�t�= c��− it�−��

As �X�0�= 1, c=��. This yields the result.
Again by using the uniqueness of the RV with a given CHF, we can see that if

X ∼ Gam����� and Y ∼ Gam��′���, independently, then X + Y ∼ Gam��+ �′���.
Also, if X1, …, Xn are IID RVs, with Xi ∼ Exp ���, then X1 + · · ·+Xn ∼ Gam�n���.

(v) To find the CHF of a Cauchy distribution, we make a digression. In analysis, the
function

t ∈� �→
∫

eitxf�x�dx� t ∈��

is called the Fourier transform of function f and denoted by f̂ . The inverse Fourier
transform is the function

x∈� �→ 1
2�

∫
e−itxf̂ �t�dt� x∈��
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If fX is a PDF, with fX ≥ 0 and
∫
fX�x�dx= 1, and its Fourier transform f̂ = �X has∫ ∣∣∣̂f�t�∣∣∣dt <�, then the inverse Fourier transform of �X coincides with fX:

fX�x�=
1
2�

∫
e−itx�X�t�dt�

Furthermore, if we know that a PDF fX is the inverse Fourier transform of some func-
tion ��t�:

fX�x�=
1
2�

∫
e−itx��t�dx�

then ��t�≡ �X�t�. (The last fact is merely a re-phrasing of the uniqueness of the PDF
with a given CHF.)

The Fourier transform is named after J.B.J. Fourier (1768–1830), a prolific scientist
who also played an active and prominent rôle in French political life and administration.
He was the Prefect of several French Departements, notably Grenoble where he was
extremely popular and is remembered to the present day. In 1798, Fourier went with
Napoleon’s expedition to Egypt, where he took an active part in the scientific identification
of numerous ancient treasures. He was unfortunate enough to be captured by the British
forces and spent some time as a prisoner of war. Until the end of his life he was a staunch
Bonapartist. However, when Napoleon crossed the Grenoble area on his way to Paris
from the Isle of Elba in 1814, Fourier launched an active campaign against the Emperor
as he was convinced that France needed peace, not another military adventure.

In mathematics, Fourier created what is now called the Fourier analysis, by studying
problems of heat transfer. Fourier analysis is extremely important and is used in literally
every theoretical and applied domain. Fourier is also recognised as the scientific creator
of modern social statistics.

Now consider the PDF

f�x�= 1
2
e−�x�� x∈��

Its CHF equals the half-sum of the CHFs of the ‘positive’ and ‘negative’ exponential RVs
with parameter �= 1:

1
2

∫
eitxe−�x�dx= 1

2

(
1

1− it
+ 1

1+ it

)
= 1

1+ t2
�

which is, up to a scalar factor, the PDF of the Cauchy distribution Ca �0�1�. Hence, the
inverse Fourier transform of function e−�t�

1
2�

∫
e−itxe−�t�dt= 1

�

1
1+ x2

�

Then, by the above observation, for X∼Ca �1�0�, �X�t�= e−�t�. For X∼Ca ��� ��:

�X�t�= ei�t−��t�� (2.91)

as �X−��/� ∼ Ca�0�1�.
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Note that �X�t� for X∼Ca ��� �� has no derivative at t= 0. This reflects the fact that
X has no finite expectation. On the other hand, if X ∼Ca ��1� �1� and Y ∼Ca ��2� �2�,
independently, then X+ Y ∼Ca ��1 +�2� �1 + �2�. �

Problem 2.19 A radioactive source emits particles in a random direction (with all
directions being equally likely). The source is held at a distance d from a photographic
plate which is an infinite vertical plane.

(i) Show that, given the particle hits the plate, the horizontal coordinate of the point
of impact (with the point nearest the source as origin) has PDF d/��d2 + x2�.

(ii) Can you compute the mean of this distribution?

Hint: (i) Use spherical co-ordinates r , �, �. The particle hits the photographic plate
if the ray along the direction of emission crosses the half-sphere touching the plate; the
probability of this equals 1/2. The conditional distribution of the direction of emission
is uniform on this half-sphere. Consequently, the angle � such that x/d = tan� and
x/r= sin� is uniformly distributed over �0��� and � uniformly distributed over �0�2��.
See Figure 2.17.

In fact, the Cauchy distribution emerges as the ratio of jointly normal RVs. Namely,
let the joint PDF fX�Y be of the form (2.35). Then, by equation (2.39), the PDF fX/Y �u�
equals

1

2��1�2

√
1− r2

∫
�y� exp

[ −y2
2�2

1�
2
2 �1− r2�

(
�2
2u

2 − 2r�1�2u+�2
1

)]
dy

= 1

��1�2

√
1− r2

∫ �

0
y exp

[
−y2

2�1− r2�

(
�2
2u

2 − 2r�1�2u+�2
1

)
�2
1�

2
2

]
dy

= �1�2

√
1− r2

���2
2u

2 − 2r�1�2u+�2
1 �

∫ �

0
e−y1dy1�

where

y1 =
y2

2�1− r2�

�2
2u

2 − 2ru�1�2 +�2
1

�2
1�

2
2

�

We see that

fX/Y �u�=
√
1− r2�1/�2

���u− r�1/�2�
2 + �1− r2��2

1/�
2
2 �
� (2.92)

x

r

d

ψ

Figure 2.17
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i.e. X/Y ∼Ca
(
r�1/�2�

√
1− r2�1/�2

)
. For independent RVs,

fX/Y �u�=
�1/�2

��u2 +�2
1/�

2
2 �
� (2.93)

i.e. X/Y ∼Ca �0��1/�2�. Cf. Problem 2.13.

Problem 2.20 Suppose that n items are being tested simultaneously and that the items
have independent lifetimes, each exponentially distributed with parameter �. Determine
the mean and variance of the length of time until r items have failed.

Answer :

�Tr =
r∑
i=1

1
�n− i+ 1��

� Var �Tr�=
r∑
i=1

1
�n− i+ 1�2�2

�

Problem 2.21 Let U1�U2� � � � �Un be IID random variables. The ordered statistic is an
arrangement of their values in the increasing order: U�1� ≤ · · · ≤U�n�.

(i) Let Z1�Z2� � � � �Zn be IID exponential random variables with PDF f�x�= e−x,
x≥ 0. Show that the distribution of Z�1� is exponential and identify its mean.

(ii) Let X1� � � � �Xn be IID random variables uniformly distributed on the inter-
val 	0�1
, with PDF f�x� = 1, 0 ≤ x ≤ 1. Check that the joint PDF of
X�1��X�2�� � � � �X�n� has the form

fX�1��X�2������X�n� �x1� � � � � xn�= n!I�0≤ x1 ≤ · · · ≤ xn ≤ 1��

(iii) For random variables Z1�Z2� � � � �Zn and X1�X2� � � � �Xn as above, prove that
the joint distribution of X�1��X�2�� � � � �X�n� is the same as that of

S1
Sn+1

� � � � �
Sn
Sn+1

�

Here, for 1≤ i≤ n, Si is the sum
∑i

j=1Zj , and Sn+1 = Sn +Zn+1, where Zn+1 ∼
Exp (1), independently of Z1� � � � �Zn.

(iv) Prove that the joint distribution of the above random variablesX�1��X�2�� � � � �X�n�

is the same as the joint conditional distribution of S1� S2� � � � � Sn given that
Sn+1 = 1.

Solution (i) ��Z�1� > x�= ��Z1 > x� � � � �Zn > x�= e−nx. Hence, Z�1� is exponential,
with mean 1/n.

(ii) By the definition, we need to take the values of X1� � � � �Xn and order them.
A fixed collection of non-decreasing values x1� � � � � xn can be produced from n! unordered
samples. Hence, the joint PDF fX�1��X�2�� � � � �X�n� �x1� � � � � xn� equals

n!f�x1� � � � f�xn�I�0≤ x1 ≤ · · · ≤ xn ≤ 1�= n!I�0≤ x1 ≤ · · · ≤ xn ≤ 1�

in the case of a uniform distribution.
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(iii) The joint PDF fS1/Sn+1� � � � �Sn/Sn+1�Sn+1
of random variables S1/Sn+1� � � � � Sn/Sn+1 and

Sn+1 is calculated as follows:

fS1/Sn+1�����Sn/Sn+1�Sn+1
�x1� x2� � � � � xn� t�

= fSn+1
�t�

#n

#x1 � � � #xn
�

(
S1
Sn+1

<x1� � � � �
Sn
Sn+1

<xn

∣∣∣∣Sn+1 = t

)
= fSn+1

�t�
#n

#x1 � � � #xn
� �S1<x1t� � � � � Sn < xnt�Sn+1 = t�

= tnfSn+1
�t�fS1� � � � �Sn

(
x1t� � � � � xnt

∣∣Sn+1 = t
)

= tnfS1�����Sn�Sn+1
�tx1� � � � � txn� t�

= tne−tx1e−t�x2−x1� � � � e−t�1−xn�I�0≤ x1 ≤ · · · ≤ xn ≤ 1�

= tne−tI�0≤ x1 ≤ · · · ≤ xn ≤ 1��

Hence,

fS1/Sn+1�����Sn/Sn+1
�x1� x2� � � � � xn�=

∫ �

0
tne−tdt I�0≤ x1 ≤ · · · ≤ xn ≤ 1��

This equals n!I�0≤x1≤· · ·≤xn≤1�, which is the joint PDF of X�1�, X�2�, …, X�n�, by (ii).
(iv) The joint PDF fS1� � � � �Sn+1

�x1� � � � � xn+1� equals

fZ1�����Zn+1
�x1� x2 − x1� � � � � xn+1 − xn�I�0≤ x1 ≤ · · · ≤ xn ≤ xn+1�

= e−x1e−�x2−x1� · · · e−�xn+1−xn�I�0≤ x1 ≤ · · · ≤ xn ≤ xn+1�

= e−�xn+1�I�0≤ x1 ≤ · · · ≤ xn ≤ xn+1��

The sum Sn+1 has PDF fSn+1
�x�= �1/n!�xne−xI�x≥ 0�. Hence, the conditional PDF could

be expressed as the ratio

fS1� � � � �Sn+1
�x1� � � � � xn�1�

fSn+1
�1�

= n!I�0≤ x1 ≤ · · · ≤ xn ≤ 1�� �

Problem 2.22 Let X1�X2� � � � be independent RVs each of which is uniformly dis-
tributed on [0, 1]. Let

Un = max
1≤j≤n

Xj�Vn = min
1≤j≤n

Xj�

By considering

��v≤X1 ≤ v+ �v� v≤X2�X3� � � � �Xn−1 ≤ u�u≤Xn ≤ u+ �u�

with 0<v<u< 1, or otherwise, show that �Un�Vn� has a joint PDF given by

f�u� v�=
{
n�n− 1��u− v�n−2� if 0≤ v≤ u≤ 1�

0� otherwise.

Find the PDFs fUn and fVn . Show that ��1− 1/n≤Un ≤ 1� tends to a non-zero limit as
n→� and find it. What can you say about ��0≤Vn ≤ 1/n�?
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Find the correlation coefficient �n of Un and Vn. Show that �n → 0 as n→�. Why
should you expect this?

Solution The joint CDF of Un and Vn is given by

��Un <u�Vn < v�= ��Un <u�−��Un <u�Vn ≥ v�

= ��Un <u�−��v≤X1<u� � � � � v≤Xn <u�

= �F�u��n − �F�u�−F�v��n�

Hence, the joint PDF

fUn�Vn�u� v�=
#2

#u#v

[
�F�u��n − �F�u�−F�v��n

]
=
{
n�n− 1��u− v�n−2� if 0≤ v≤ u≤ 1

0� otherwise.

The marginal PDFs are

fUn�u�=
∫ u

0
n�n− 1��u− v�n−2dv= nun−1

and

fVn�v�=
∫ 1

v
n�n− 1��u− v�n−2du= n�1− v�n−1�

Then the probability ��1− 1/n≤Un ≤ 1� equals∫ 1

1−1/n
fUn�u�du= n

∫ 1

1−1/n
un−1du= 1−

(
1− 1

n

)n
→ 1− e−1 as n→��

Similarly, ��0≤Vn ≤ 1/n�→ 1− e−1.
Next,

�Un =
n

n+ 1
� �Vn =

1
n+ 1

�

and

VarUn =Var Vn =
n

�n+ 1�2�n+ 2�
�

Furthermore, the covariance Cov �Un� Vn� is calculated as the integral

1∫
0

u∫
0

f�u� v�

(
u− n

n+ 1

)(
v− 1

n+ 1

)
dvdu

=
1∫

0

u∫
0

n�n− 1��u− v�n−2

(
u− n

n+ 1

)(
v− 1

n+ 1

)
dvdu
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= n�n− 1�

1∫
0

(
u− n

n+ 1

)
du

u∫
0

�u− v�n−2

(
v− 1

n+ 1

)
dv

= n�n− 1�

1∫
0

(
u− n

n+ 1

)[
un

n�n− 1�
− un−1

�n− 1��n+ 1�

]
du

=
[
un+2

�n+ 2�
− 2

nun+1

�n+ 1�2
+ nun

�n+ 1�2

]∣∣∣∣1
0

= 1
�n+ 1�2�n+ 2�

�

Hence,

�n =Corr �Un�Vn�=
Cov �Un�Vn�√
VarUn

√
VarVn

= 1
n
→ 0

as n→�. �

Problem 2.23 Two real-valued RVs, X and Y , have joint PDF

p�x1� x2�=
1

2�
√
1− r2

exp
[
− 1
2�1− r2�

�x21 − 2rx1x2 + x22�

]
�

where −1< r< 1. Prove that each of X and Y is normally distributed with mean 0 and
variance 1.

Prove that the number r is the correlation coefficient of X and Y .

Solution The CDF of X is given by

��X< t�=
∫ t

−�

∫
p�x1� x2�dx2dx1�

The internal integral
∫
p�x1� x2�dx2 is equal to

1

2�
√
1− r2

∫
exp
{
− 1
2�1− r2�

[(
x2 − rx1

)2 + �1− r2�x21

]}
dx2

= e−x21/2

2�

∫
exp
(
−y

2

2

)
dy�

(
with y= x2 − rx1√

1− r2

)
= 1√

2�
e−x

2
1/2�

which specifies the distribution of X:

��X< t�=
∫ t

−�
1√
2�

e−x
2
1/2dx1�

i.e. X∼ N�0�1�. Similarly, Y ∼ N �0�1�.
Hence,

Corr �X�Y �=Cov �X�Y �=��XY �=
∫ ∫

x1x2p�x1� x2�dx2dx1�
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Now ∫
x2p�x1� x2�dx2

= 1

2�
√
1− r2

∫
x2 exp

{
− 1
2�1− r2�

[(
x2 − rx1

)2 + �1− r2�x21

]}
dx2

= rx1e
−x21/2√
2�

�

Then

��XY �= r√
2�

∫ �

−�
x21 exp

(
−x

2
1

2

)
dx1 = r�

Hence, Corr �X�Y �= r, as required. �

Problem 2.24 Let X�Y be independent random variables with values in 	0��� and
the same PDF 2e−x2/

√
�. Let U =X2 + Y 2, V = Y/X. Compute the joint PDF fU�V and

prove that U�V are independent.

Solution The joint PDF of X and Y is

fX�Y �x� y�=
4
�
e−�x

2+y2��

The change of variables u= x2 + y2, v= y/x produces the Jacobian

#�u� v�

#�x� y�
= det

(
2x 2y

−y/x2 1/x
)
= 2+ 2

y2

x2
= 2�1+ v2��

with the inverse Jacobian

#�x� y�

#�u� v�
= 1

2�1+ v2�
�

Hence, the joint PDF

fU�V �u� v�= fX�Y �x�u� v�� y�u� v��
#�x� y�

#�u� v�
= e−u

2
��1+ v2�

� u> 0� v> 0�

It means that U and V are independent, U ∼ Exp �1� and V ∼ Ca �0�1� restricted to
�0���. �

Problem 2.25 (i) Continuous RVs X and Y have a joint PDF

f�x� y�= �m+ n+ 2�!
m!n! �1− x�myn�

for 0<y≤ x< 1, where m�n are given positive integers. Check that f is a proper PDF
(i.e. its integral equals 1). Find the marginal distributions of X and Y . Hence calculate

�

(
Y ≤ 1

3

∣∣∣∣X= 2
3

)
�
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(ii) Let X and Y be random variables. Check that

Cov �X�Y �=�	1−X
×�Y −�	�1−X�Y
�

(iii) Let X�Y be as in (i). Use the form of f�x� y� to express the expectations ��1−X�,
�Y and �	�1− X�Y
 in terms of factorials. Using (ii), or otherwise, show that the
covariance Cov �X�Y � equals

�m+ 1��n+ 1�
�m+ n+ 3�2�m+ n+ 4�

�

Solution (i) Using the notation B�m�n�= ! �m�! �n�
/
! �m+ n�,

�m+ n+ 2�!
m!n!

1∫
0

�1− x�mdx

x∫
0

yndy= �m+ n+ 2�!
m!n!

1∫
0

�1− x�m
xn+1

n+ 1
dx

= �m+ n+ 2�!
m!n!

1
n+ 1

B�m+ 1� n+ 2�

= �m+ n+ 2�!
m!n!

1
n+ 1

m!�n+ 1�!
�m+ n+ 2�! = 1�

Hence,

�

(
Y ≤ 1

3

∣∣∣∣X= 2
3

)
=
(
1
3

)m 1/3∫
0

yndy

/(
1
3

)m 2/3∫
0

yndy=
(
1
2

)n+1

�

(ii) Straightforward rearrangement shows that

��1−X��Y −�	�1−X�Y
=��XY �−�X�Y�

(iii) By the definition of Beta function (see Example 3.5),

��1−X�= �m+ n+ 2�!
m!n!

1
n+ 1

B�m+ 1� n+ 2�= m+ 1
m+ n+ 3

�

�Y = �m+ n+ 2�!
m!n!

1
n+ 2

B�m+ 1� n+ 3�= n+ 1
m+ n+ 3

and

�	�1−X�Y
= �m+ n+ 2�!
m!n!

1
n+ 2

B�m+ 2� n+ 3�

= �m+ 1��n+ 1�
�m+ n+ 3��m+ n+ 4�

�

Hence,

Cov �X�Y �= �m+ 1��n+ 1�
�m+ n+ 3�2

− �m+ 1��n+ 1�
�m+ n+ 3��m+ n+ 4�

= �m+ 1��n+ 1�
�m+ n+ 3�2�m+ n+ 4�

� �
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In Problem 2.26 a mode (of a PDF f ) is the point of maximum; correspondingly, one
speaks of unimodal, bimodal or multimodal PDFs.

Problem 2.26 A shot is fired at a circular target. The vertical and horizontal co-
ordinates of the point of impact (taking the centre of the target as origin) are independent
random variables, each distributed normally N(0, 1).

(i) Show that the distance of the point of impact from the centre has PDF re−r2/2

for r> 0.
(ii) Show that the mean of this distance is

√
�/2, the median is

√
ln 4, and the

mode is 1.

Hint: For part (i), see Problem 2.10. For part (ii): recall, for the median x̂∫ x̂

0
re−r

2/2dr =
∫ �

x̂
re−r

2/2dr�

Problem 2.27 Assume X1, X2� � � � form a sequence of independent RVs, each uni-
formly distributed on (0, 1). Let

N =min�n � X1 +X2 + · · ·+Xn ≥ 1��

Show that �N = e.

Solution Clearly, N takes the values 2�3� � � � Then

�N =∑
l≥2

l��N = l�= 1+∑
l≥2

��N ≥ l��

Now ��N ≥ l�=��X1 +X2 + · · ·+Xl−1< 1�. Finally, setting

��X1 +X2 + · · ·+Xl < y�= ql�y��0<y< 1�

write q1�y�= y, and

ql�y�=
∫ y

0
pXl�u�ql−1�y− u�du=

∫ y

0
ql−1�y− u�du�

yielding q2�y�=y2/2!, q3�y�=y3/3!� � � �. The induction hypothesis ql−1�y�=yl−1/�l−1�!
now gives

ql�y�=
∫ y

0

ul−1

�l− 1�!du=
yl

l!
and we get that

�N =∑
l≥1

ql�1�= 1+ 1
2! +

1
3! + · · · = e�
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Alternatively, let N�x�=min�n � X1 +X2 + · · ·+Xn ≥ x� and m�x�=�N�x�. Then

m�x�= 1+
x∫

0

m�u�du� whence m′�x�=m�x��

Integrating this ordinary differential equation with initial condition m�0�= 1 one gets
m�1�= e. �

Problem 2.28 The RV X has a log-normal distribution if Y = lnX is normally dis-
tributed. If Y ∼N����2�, calculate the mean and variance of X. The log-normal distri-
bution is sometimes used to represent the size of small particles after a crushing process,
or as a model for future commodity prices. When a particle splits, a daughter might be
some proportion of the size of the parent particle; when a price moves, it may move by
a percentage.

Hint: ��Xr�=MY�r�= exp �r�+ r2�2/2�. For r = 1�2 we immediately get �X and
�X2.

Problem 2.29 What does it mean to say that the real-valued RVs X and Y are inde-
pendent, and how, in terms of the joint PDF fX�Y could you recognise whether X and Y
are independent? The non-negative RVs X and Y have the joint PDF

fX�Y �x� y�=
1
2
�x+ y�e−�x+y�I�x� y> 0�� x� y ∈��

Find the PDF fX and hence deduce that X and Y are not independent. Find the joint PDF
of �tX� tY �, where t is a positive real number. Suppose now that T is an RV independent
of X and Y with PDF

p�t�=
{
2t� if 0< t< 1

0� otherwise.

Prove that TX and TY are independent.

Solution Clearly,

fX�x�=
∫ �

0
fX�Y �x� y�dy=

1
2
�1+ x�e−x� x> 0�

Similarly, fY �y�= �1+ y�e−y/2, y> 0. Hence, fX�Y �= fXfY , and X and Y are dependent.
Next, for t� x� y ∈�,

fT�X�Y �t� x� y�= t�x+ y�e−�x+y�I�0< t< 1�I�x� y> 0��

To find the joint PDF of the RVs TX and TY we must pass to the variables t, u and v,
where u= tx� v= ty. The Jacobian

#�t� u� v�

#�t� x� y�
= det

⎛⎝1 x y

0 t 0
0 0 t

⎞⎠= t2�
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Hence,

fTX�TY �u� v�=
1∫

0

t−2fT�X�Y �t� u/t� v/t�dt

=
1∫

0

t−2t
�u+ v�

t
exp
(
−u+ v

t

)
dt�

Changing the variable t→ � = t−1 yields

fTX�TY �u� v�=
∫ �

1
d��u+ v� exp �−��u+ v��= e−�u+v�� u� v> 0�

Hence, TX and TY are independent (and exponentially distributed with mean 1). �

Problem 2.30 A pharmaceutical company produces a drug based on a chemical
Amethanol. The strength of a unit of a drug is taken to be − ln �1− x� where 0<x< 1
is the portion of Amethanol in the unit and 1− x that of an added placebo substance.
You test a sample of three units taken from a large container filled with the Amethanol
powder and the added substance in an unknown proportion. The container is thoroughly
shaken up before each sampling.

Find the CDF of the strength of each unit and the CDF of the minimal strength.

Solution It is convenient to set �= �x� y� z�, where 0≤x� y� z≤1 represent the portions
of Amethanol in the units. Then � is the unit cube ��= �x� y� z�: 0≤ x� y� z≤ 1�. If X1,
X2, X3 are the strengths of the units, then

X1���=− ln �1− x�� X2���=− ln �1− y�� X3���=− ln �1− z��

We assume that the probability mass is spread on � uniformly, i.e. the portions x, y, z
are uniformly distributed on �0�1�. Then ∀ j = 1�2�3, the CDF FXj �x�= ��Xj < y� is
calculated as∫ 1

0
I�− ln �1− x�< y�dx=

∫ 1−e−y

0
dxI�y> 0�= �1− e−y�I�y> 0��

i.e. Xj ∼ Exp �1�. Further, ��minj Xj < y�= 1−��minj Xj ≥ y� and

��min
j
Xj ≥ y�=��X1 ≥ y�X2 ≥ y�X3 ≥ y�=∏

j

��Xj ≥ y�= e−3y�

That is minj Xj ∼ Exp �3�.
In this problem, the joint CDF FX1�X2�X3

�y1� y2� y3� of the three units of drug equals the
volume of the set{

�x� y� z� � 0≤ x� y� z≤ 1�
− ln �1− x�< y1� − ln �1− y�< y2� − ln �1− z�< y3

}
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and coincides with the product

�1− e−y1� �1− e−y2� �1− e−y3� �

i.e. with FX1
�y1�FX2

�y2�FX3
�y3�. The joint PDF is also the product:

fX1�X2�X3
�x1� x2� x3�= e−x1e−x2e−x3 � �

Problem 2.31 Let X1, X2,… be a sequence of independent identically distributed
RVs having common MGF M���, and let N be an RV taking non-negative integer
values with PGF ��s�; assume that N is independent of the sequence �Xi�. Show that
Z=X1 +X2 + · · ·+Xn has MGF ��M����.

The sizes of claims made against an insurance company form an independent identically
distributed sequence having common PDF f�x�= e−x, x≥0. The number of claims during
a given year had the Poisson distribution with parameter �. Show that the MGF of the
total amount T of claims during the year is

����= exp ���/�1− ��� for �< 1�

Deduce that T has mean � and variance 2�.

Solution The MGF

MZ���=�e�Z =�
[
�
(
e��X1+···+Xn�∣∣N = n

)]
=

�∑
n=0

��N = n�
(
MX1

���
)n =�

(
MX1

���
)
�

as required.
Similarly, for T :

T =X1 + · · ·+XN�

where X1� � � � � Xn represent the sizes of the claims, with the PDF fXi�x�= e−xI�x> 0�,
independently, and N stands for the number of claims, with ��N = n�=�ne−�/n!.

Now, the PGF of N is ��s�= e��s−1�, and the MGF of Xi is MXi
���= 1/�1− ��. Then

the MGF of T is

����= exp
[
�

(
1

1− �
− 1
)]

= exp
[
��

1− �

]
�

as required. Finally,

�′�0�=�T =�� �′′�0�=�T 2 = 2�+�2�

and Var T = 2�. �
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Problem 2.32 Let X be an exponentially distributed random variable with PDF

f�x�= 1
�
e−x/�� x> 0�

where �> 0. Show that �X=� and Var X=�2.
In an experiment, n independent observations X1, …, Xn are generated from an expo-

nential distribution with expectation �, and an estimate X=∑n
i=1Xi/n of � is obtained.

A second independent experiment yields m independent observations Y1� � � � � Ym from
the same exponential distribution as in the first experiment, and the second estimate
Y =∑m

j=1 Yj/m of � is obtained. The two estimates are combined into

Tp =pX+ �1−p�Y �

where 0<p< 1.
Find �Tp and Var Tp and show that, for all �> 0,

�
(�Tp −��>�)→ 0 as m�n→��

Find the value p̃ of p that minimises Var Tp and interpret Tp̃. Show that the ratio of
the inverses of the variances of X and Y is p̃

/
�1− p̃�.

Solution Integrating by parts:

�X= 1
�

∫ �

0
xe−x/�dx= (−xe−x/�)∣∣�

0
+
∫ �

0
e−x/�dx=�

and

�X2 =
∫ �

0
x2

1
�
e−x/�dx= (−x2e−x/�)∣∣�

0
+ 2��X= 2�2�

which yields

VarX= 2�2 −�2 =�2�

Now,

�X= 1
n

n∑
i=1

�Xi =�� �Y = 1
m

m∑
j=1

�Yj =��

and

�Tp =p�X+ �1−p��Y =��

Similarly,

VarX= 1
n2

n∑
i=1

VarXi =
�2

n
� Var Y = 1

m2

m∑
j=1

Var Yj =
�2

m
�
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and

VarTp =p2VarX+ �1−p�2Var Y =�2

[
p2

n
+ �1−p�2

m

]
�

Chebyshev’s inequality ���Z� ≥ ��≤ �1/�2��Z2 gives

���Tp −��>��≤ 1
�2
��Tp −��2 = 1

�2
VarTp

= �2

�2

[
p2

n
+ �1−p�2

m

]
→ 0 as n�m→��

To minimise, take

d
dp

VarTp = 2�2

(
p

n
− 1−p

m

)
= 0� with p̃= n

n+m
�

As

d2

dp2
VarTp

∣∣∣∣
p=p̃

= 2�2

(
1
n
+ 1
m

)
> 0�

p̃ is the (global) minimum. Then

Tp̃ =
nX+mY

n+m

is the average of the total of n+m observations. Finally,

p̃

1− p̃
= n

m
� and

1/VarX

1/Var Y
= �2/m

�2/n
= n

m
� �

Problem 2.33 Let X1, X2� � � � be independent, identically distributed RVs with PDF

f�x�=
{ �

x�+1
� x≥ 1�

0� x< 1�

where �> 0.
There is an exceedance of u by �Xi� at j if Xj >u. Let L�u�=min �i≥1 � Xi >u�, where

u>1, be the time of the first exceedance of u by �Xi�. Find �
(
L�u�=k

)
for k=1�2� � � �

in terms of � and u. Hence find the expected time �L�u� to the first exceedance. Show
that �L�u�→� as u→�.

Find the limit as u→� of the probability that there is an exceedance of u before time
�L�u�.

Solution Observe that

��Xi >u�=
∫ �

u
�x−�−1dx= �−x−����u = 1

u�
�
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Then

��L�u�= k�=
(
1− 1

u�

)k−1 1
u�
� k= 1�2� � � � �

i.e. L�u�∼ Geom �1− 1/u��, and �L�u�= u�, which tends to � as u→�.
Now, with 	 · 
 standing for the integer part:

� �L�u�<�L�u��= �
(
L�u�≤ [u�])= 1−�

(
L�u�>

[
u�
])

= 1− ∑
k≥	u�
+1

(
1− 1

u�

)k−1 1
u�

= 1− 1
u�

(
1− 1

u�

)	u�
 1
1− �1− 1/u��

= 1−
(
1− 1

u�

)	u�

→ 1− e−1� as u→�� �

Problem 2.34 Let A and B be independent RVs each having the uniform distribution
on [0, 1]. Let U =min �A�B� and V =max �A�B�. Find the mean values of U and hence
find the covariance of U and V .

Solution The tail probability, for 0≤ x≤ 1:

1−FU�x�=��U ≥ x�=��A≥ x� B≥ x�= �1− x�2�

Hence, still for 0≤ x≤ 1: FU�x�= 2x− x2, and

fU �x�=F ′
U �x�I�0<x< 1�= �2− 2x�I�0<x< 1��

Therefore,

�U =
∫ 1

0
x�2− 2x�dx=

(
x2 − 2

3
x3
)∣∣∣∣1

0

= 1
3
�

As U +V =A+B and ��A+B�=�A+�B= 1/2+ 1/2= 1,

�V = 1− 1/3= 2/3�

Next, as UV =AB, Cov �U�V �=��UV �−�U�V which in turn equals

��AB�− 2
9
=�A�B− 2

9
= 1

4
− 2

9
= 1

36
� �



168 Continuous outcomes

2.3 Normal distributions. Convergence of random variables and
distributions. The Central Limit Theorem

Probabilists do it. After all, it’s only normal.
(From the series ‘How they do it’.)

We have already learned a number of properties of a normal distribution. Its impor-
tance was realised at an early stage by, among others, Laplace, Poisson and of course
Gauss. However, progress in understanding the special nature of normal distributions was
steady and required facts and methods from other fields of mathematics, including analysis
and mathematical physics (notably, complex analysis and partial differential equations).
Nowadays, the emphasis is on multivariate (multidimensional) normal distributions which
play a fundamental rôle wherever probabilistic concepts are in use. Despite an emerging
variety of other exciting examples, they remain a firm basis from which further develop-
ment takes off. In particular, normal distributions form the basis of statistics and financial
mathematics.

Recall the properties of Gaussian distributions which we have established so far:

(i) The PDF of an N����2� RV X is

1√
2��

exp
(
− 1
2�2

�x−��2
)
� x∈�� (2.94)

with the mean and variance

�X=�� VarX=�2 (2.95)

and the MGF and CHF

�e�X = e��+
1
2 �

2�2
� �eitX = eit�−

1
2 t

2�2
� �� t ∈�� (2.96)

If X ∼ N����2�, then �X−��/�∼ N�0�1� and ∀ b� c∈�: cX+ b∼ N�c�+
b� c2�2�.

(ii) Two jointly normal RVs X and Y are independent iff Cov �X�Y � =
Corr �X�Y �= 0.

(iii) The sum X+ Y of two jointly normal RVs X∼ N��1��
2
1 � and Y ∼ N��2��

2
2 �

with Corr �X�Y �= r is normal, with mean �1 +�2 and variance �2
1 + 2r�1�2 +

�2
2 . See equation (2.41). In particular, if X, Y are independent, X + Y ∼

N��1 +�2��
2
1 +�2

2 �. In general, for independent RVs X1, X2� � � � , where Xi ∼
N��i��

2
i �, the linear combination

∑
i ciXi ∼ N

(∑
i ci�i�

∑
i c

2
i �

2
i

)
.

Problem 2.35 How large a random sample should be taken from a normal distribution
in order for the probability to be at least 0.99 that the sample mean will be within one
standard deviation of the mean of the distribution?

Hint: ��2�58�= 0�995.
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Remark (cf. Problem 1.58). Observe that knowing that the distribution is normal allows
a much smaller sample size.

As has been already said, the main fact justifying our interest in Gaussian distributions is
that they appear in the celebrated Central Limit Theorem (CLT). The early version of this,
the De Moivre–Laplace Theorem (DMLT), was established in Section 1.6. The statement
of the DMLT can be extended to a general case of independent and identically distributed
RVs. The following theorem was proved in 1900–1901 by a Russian mathematician
A.M. Lyapunov (1857–1918).

Suppose X1� X2� � � � are IID RVs, with finite mean �Xj = a and variance
Var Xj =�2. If Sn=X1 + · · ·+Xn, with �Sn=na, VarSn = n�2, then ∀ y ∈�:

lim
n→��

(
Sn −�Sn√
Var Sn

< y

)
=��y�� (2.97)

In fact, the convergence in equation (2.97) is uniform in y:

lim
n→� supy∈�

∣∣∣∣∣�
(
Sn −�Sn√
Var Sn

< y

)
−��y�

∣∣∣∣∣= 0�

Lyapunov and Markov were contemporaries and close friends. Lyapunov considered
himself as Markov’s follower (although he was only a year younger). He made his name
through Lyapunov’s functions, a concept that proved to be very useful in analysis of
convergence to equilibrium in various random and deterministic systems. Lyapunov died
tragically, committing suicide after the death of his beloved wife, amidst deprivation and
terror during the civil war in Russia.

As in Section1.6, limiting relation (2.97) is commonly called the integral CLT and
often written as �Sn −�Sn�/

√
Var Sn ∼N�0�1�. Here, the CLT was stated for IID RVs,

but modern methods can extend it to a much wider situation and provide an accurate
bound on the speed of convergence.

The proof of the integral CLT for general IID RVs requires special techniques. A pop-
ular method is based on characteristic functions and uses the following result that we will
give here without proof. (The proof will be supplied in Volume 3.)

Let Y� Y1� Y2� � � � be a sequence of RVs with distribution functions
FY �FY1�FY2� � � � and characteristic functions �Y ��Y1��Y2� � � �. Suppose that, as
n→�, CHF �Yn�t�→�Y �t�∀t ∈�. Then FYn�y�→ FY �y� at every point y ∈�
where CDF FY is continuous.

In our case, Y ∼ N�0�1�, with FY =� which is continuous everywhere on �. Setting

Yn =
Sn − an√

n�
�
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we will have to check that the CHF �Yn�t�→ e−t2/2∀t ∈�. This follows from a direct
calculation which we perform below. Write

Sn − an

�
= ∑

1≤j≤n

Xj − a

�

and note that the RV �Xj − a�/� is IID. Then

��Sn−an�/�
√
n���t�=

[
��Xj−a�/�

(
t√
n

)]n
�

RV �Xj −a�/� has mean 0 and variance 1. Hence its CHF admits the following Taylor
expansion near 0:

��u�=��0�+ u�′�0�+ u2

2
�′�0�+ o�u2�= 1− u2

2
+ o�u2�

(Here and below we omit the subscript �Xj − a�/� .) This yields

�

(
t√
n

)
= 1− t2

2n
+ o

(
t2

n

)
�

But then [
�

(
t√
n

)]n
=
[
1− t2

2n
+ o

(
t2

n

)]n
→ e−t

2/2� (2.98)

A short proof of equation (2.98) is to set

A�=An�= 1− t2

2n
+ o

(
t2

n

)
� B�=Bn�= 1− t2

2n
�

and observe that, clearly, Bn → e−t2/2. Next,

An −Bn =An−1�A−B�+An−2�A−B�B+ · · ·+ �A−B�Bn−1�

whence

�An −Bn� ≤ �max 	1�A�B
�n−1 �A−B�
which goes to 0 as n→�.

Problem 2.36 Every year, a major university assigns Class A to ∼16 per cent of its
mathematics graduates, Class B and Class C each to ∼34 per cent and Class D or failure
to the remaining 16 per cent. The figures are repeated regardless of the variation in the
actual performance in a given year.

A graduating student tries to make sense of such a practice. She assumes that the
individual candidate’s scores X1� � � � �Xn are independent variables that differ only in
mean values �Xj , so that ‘centred’ scores Xj −�Xj have the same distribution. Next,
she considers the average sample total score distribution as approximately N����2�. Her
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guess is that the above practice is related to a standard partition of students’ total score
values into four categories. Class A is awarded when the score exceeds a certain limit,
say a, Class B when it is between b and a, Class C when between c and b and Class D
or failure when it is lower that c. Obviously, the thresholds c� b and a may depend on �
and � .

After a while (and using tables), she convinces herself that it is indeed the case and
manages to find simple formulas giving reasonable approximations for a�b and c. Can
you reproduce her answer?

Solution Let Xj be the score of candidate j. Set

Sn =
∑

1≤j≤n
Xj (the total score)�

Sn −�Sn =
∑

1≤j≤n
�Xj −�Xj� (the ‘centred’ total score).

Assume that Xj −�Xj are IID RVs (which, in particular, means that Var Xj =�2 does
not depend on j and Var Sn = n�2). Then, owing to the CLT, for n large,

Sn −�Sn√
n�

∼ N�0�1��

Thus total average score Sn/n must obey, for large n:

Sn
n

∼N
(
��

�2

n

)
∼ �√

n
Y +��

where Y ∼ N�0�1� and

�= 1
n
�Sn =

1
n

∑
1≤j≤n

�Xj�

We look for the value � such that ��Y>��=1−����≈ 0�16 which gives �=1. Clearly,
��Y>1�=�

(
Sn/n>�/

√
n + �

)
. Similarly, the equation �� <Y<1�=��1�−�� �≈

0�34 yields  = 0. A natural conjecture is that a=�+��b=� and c=�−� .
To give a justification for this guess, write Xj ∼�Xj +�Y . This implies

Sn
n

∼ 1√
n
�Xj −�Xj�+�

and

�

(
1√
n
�Xj −�Xj�+�>

�√
n
+�

)
=��Xj >�Xj +��= 0�16�

We do not know � or �2 and use their estimates:

�̂= Sn
n

and �̂2 = 1
n− 1

∑
1≤j≤n

(
Xj −

Sn

n

)2
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(see Problem 1.32). Then the categories are defined in the following way: Class A is given

when candidate’s score exceeds �̂+
√
�̂2, Class B when it is between �̂ and �̂+

√
�̂2,

Class C when it is between �̂−
√
�̂2 and �̂ and Class D or failure when it is less than

�̂−
√
�̂2. �

Problem 2.37 (continuation of Problem 2.36) Now suppose one wants to assess how
accurate is the approximation of the average expected score � by Sn/n. Assuming that � ,
the standard deviation of the individual score Xj , is ≤ 10 mark units, how large should n
be to guarantee that the probability of deviation of Sn/n from � is at most 5 marks does
not exceed 0.1?

Solution We want

�

(∣∣∣∣Snn − �Sn
n

∣∣∣∣≥ 5
)
≤ 0�1�

Letting, as before, Y ∼ N�0�1�, the CLT yields that the last probability is

≈�

(
�Y � ≥ 5

√
n

�

)
�

Thus, we want

5

√
n

�
≥�−1�0�995�� i.e. n≥�2

[
�−1�0�995�

5

]2
�

with �2 ≤ 100. Here, and below, �−1 stands for the inverse of �. As �−1�0�995�= 2�58,
we have, in the worst case, that

n= 100
25

[
�−1�0�995�

]2 = 26�63

will suffice. �

In the calculations below it will be convenient to use an alternative notation for the
scalar product:

�x−��T"−1�x−��= 〈x−��"−1�x−��
〉= n∑

i�j=1

�xi −�i�"
−1
ij �xj −�j��

Problem 2.38 Suppose X1� � � � �Xn are independent RVs, Xj ∼ N��j��
2�, with the

same variance. Consider variables Y1� � � � � Yn given by

Yj =
n∑
i=1

aijXi� j= 1� � � � � n�

where A= �aij� is an n×n real orthogonal matrix. Prove that Y1� � � � � Yn are independent
and determine their distributions.

Comment on the case where variances �2
1 � � � � ��

2
n are different.

(An n× n real matrix A is called orthogonal if A= �A−1�T.)
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Solution In vector notation,

Y �=
⎛⎜⎝Y1���
Yn

⎞⎟⎠=ATX� where X=
⎛⎜⎝X1
���

Xn

⎞⎟⎠ �
We have AT =A−1, �AT�−1 =A. Moreover, the Jacobians of the mutually inverse lin-
ear maps

x=
⎛⎜⎝x1���
xn

⎞⎟⎠ �→ y=ATx� y=
⎛⎜⎝y1���
yn

⎞⎟⎠ �→ x=Ay� x�y∈�n�

are equal to ±1 (and equal each other). In fact:

#�y1� � � � � yn�

#�x1� � � � � xn�
= ∣∣detAT

∣∣ � #�x1� � � � � xn�
#�y1� � � � � yn�

= �detA� �

and det AT = det A=±1.
The PDF fY1� � � � �Yn �y� equals fX1� � � � �Xn

�Ay�, which in turn is equal to(
1

�2��1/2�

)n ∏
1≤j≤n

exp

⎡⎣− 1
2�2

( ∑
1≤i≤n

ajiyi −�j

)2
⎤⎦ �

Set

�=
⎛⎜⎝�1
���

�n

⎞⎟⎠ and �−2I=

⎛⎜⎜⎜⎝
�−2 0 � � � 0
0 �−2 � � � 0
���

��� · · · ���

0 0 � � � �−2

⎞⎟⎟⎟⎠ �

where I is the n×n unit matrix. Writing �Ay�j for the jth entry �ATy�j =
∑

1≤i≤n aijyi of
vector Ay, the above product of exponentials becomes

exp

{
− 1
2�2

∑
1≤j≤n

[
�Ay�j −�j

]2}= exp
[
−1
2
�Ay−��T��−2I��Ay−��

]

= exp
[
−1
2
�y−AT��TAT��−2I�A�y−AT��

]
�

The triple matrix product AT��−2I�A= �−2ATA= �−2I. Hence, the last expression is
equal to

exp
[
−1
2

(
y−AT�

)T
�−2I

(
y−AT�

)]

= exp

{
− 1
2�2

∑
1≤j≤n

[
yj −

(
AT�

)
j

]2}

= ∏
1≤j≤n

exp
{
− 1
2�2

[
yj −

(
AT�

)
j

]2}
�
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Here, as before,
(
AT�

)
j
=∑1≤i≤n aij�i stands for the jth entry of vector AT�. So,

Y1� � � � � Yn are independent, and Yj ∼ N��AT��j��
2�.

In the general case where variances �2
i are different, matrix �−2I must be replaced by

the diagonal matrix

"−1 =

⎛⎜⎜⎜⎝
�−2
1 0 � � � 0
0 �−2

2 � � � 0
���

��� · · · ���

0 0 � � � �−2
n

⎞⎟⎟⎟⎠ � (2.99)

Random variables Y1� � � � � Yn will be independent iff matrix

AT"−1A

is diagonal. For instance, if A commutes with "−1, i.e. "−1A=A"−1, then

AT"−1A=ATA"−1 ="−1�

in which case Yj ∼N��A��j��
2
j �, with the same variance. �

Problem 2.38 leads us to the general statement that multivariate normal variables
X1� � � � �Xn are independent iff Cov �Xi�Xj�=0 ∀ 1≤ i<j≤n. This is a part of properties
(IV) below. So far we have established the fact that bivariate normal variables X�Y are
independent iff Cov �X�Y�= 0 (see equation (2.35) and Example 2.5).

Recall (see equation (2.9)) that a general multivariate normal vector

X=
⎛⎜⎝X1
���

Xn

⎞⎟⎠
has the PDF fX�x� of the form

fX�x�=
1

�
√
2��n�det"�1/2

exp
(
−1
2

〈
x−��"−1�x−��

〉)
� (2.100)

where " is an invertible positive-definite (and hence symmetric) n× n real matrix, and

det"−1 = �det"�−1
�

For a multivariate normal vector X we will write X∼N���"�.
Following the properties (I)–(III) at the beginning of the current section, the next

properties of the Gaussian distribution we are going to establish are (IVa) and (IVb)

(IVa) If X∼ N���"�, with PDF fX as in formula (2.100),
(i) Then each Xi ∼N��i�"ii�� i= 1� � � � � n, with mean �i and variance "ii, the
diagonal element of matrix ".

(IVb) The off-diagonal element "ij equals the covariance Cov �Xi�Xj�� ∀ 1≤ i<j≤n.
So, the matrices " and "−1 are diagonal and therefore the PDF fX�x� decomposes
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into the product iff Cov �Xi�Xj�=0� 1≤ i<j≤n. In other words, jointly normal
RVs X1� � � � �Xn are independent iff Cov �Xi�Xj�= 0� 1≤ i < j≤ n.

Naturally, vector � is called the mean-value vector and matrix " the covariance matrix
of a multivariate random vector X.

The proof of assertions (IVa) and (IVb) uses directly the form (2.100) of the joint
multivariate normal PDF fX�x�. First, we discuss some algebraic preliminaries. (This
actually will provide us with more properties of a multivariate normal distribution.)

It was stated in Section 2.1 that as a positive-definite matrix, " has a diagonal form
(in the basis formed by its eigenvectors). That is ∃ an orthogonal matrix B= �bij�, with
B= �B−1�T such that BDB−1 =" and BD−1B−1 ="−1, where

D=
⎛⎝�2

1 0 0 � � � 0
0 �2

2 0 � � � 0
0 0 0 � � � �2

n

⎞⎠ � D−1 =
⎛⎝�−2

1 0 0 � � � 0
0 �−2

2 0 � � � 0
0 0 0 � � � �−2

n

⎞⎠ �
and �2

1� �2
2� � � � � �

2
n are (positive) eigenvalues of ". Note that det " =∏n

i=1 �
2
i and

�det"�1/2 =∏n
i=1 �i.

If we make the orthogonal change of variables x �→ y= BTx with the inverse map
y �→ x=By and the Jacobian #�x1� � � � � xn�/#�y1� � � � � yn�= detB=±1, the joint PDF of
the new RVs

Y=
⎛⎜⎝Y1���
Yn

⎞⎟⎠=BT

⎛⎜⎝X1
���

Xn

⎞⎟⎠
is fY�y�= fX

(
By
)
. More precisely,

fY�y�=
(

n∏
i=1

1√
2��i

)
exp
[
−1
2
�By−��T"−1�By−��

]

=
(

n∏
i=1

1√
2��i

)
exp
[
−1
2

(
y−BT�

)T
BTBD−1B−1B�y−BT��

]

=
(

n∏
i=1

1√
2��i

)
exp
[
−1
2

(
y−BT�

)T
D−1

(
y−BT�

)]

=
(

n∏
i=1

1√
2��i

)
exp
{
− 1

2�2
i

[
yi −

(
BT�

)
i

]2}
�

Here,
(
BT�

)
i
is the ith component of the vector BT�. We see that the RVs Y1� � � � � Yn

are independent, and Yi ∼N
((
BT�

)
i
� �2

i

)
. That is the covariance:

Cov�Yi� Yj�=�
[
Yi − �BT��i

] [
Yj − �BT��j

]={0� i �= j�

�2
j � i= j�
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Actually, variables Yi will help us to do calculations with RVs Xj . For example, for
the mean value of Xj:

�Xj =
∫
�n

xj

�2��n/2
√
det"

exp
[
−1
2
��x−���"−1�x−���

]
dx

=
∫
�n

�By�j
�2��n/2

√
det"

exp
[
−1
2
�(y−BT�

)
�D−1�y−BT���

]
dy

= ∑
1≤i≤n

∫
�n

yibji

�2��n/2
√
det"

exp
[
−1
2
��y−BT���D−1�y−BT���

]
dy

= ∑
1≤i≤n

bji

�2��1/2�i

∫
y exp

{
− 1

2�2
i

	y− �BT��i

2

}
dy

= ∑
1≤i≤n

�BT��ibji =�j�

Similarly, for the covariance Cov �Xi�Xj�:∫
�n

�xi −�i��xj −�j�

�2��n/2
√
det"

exp
[
−1
2
��x−���"−1�x−���

]
dx

=
∫
�n

[
B�y−BT��

]
i

[
B�y−BT��

]
j

�2��n/2
√
det"

× exp
[
−1
2
��y−BT���D−1�y−BT���

]
dy

= ∑
1≤l≤n

∑
1≤m≤n

Cov�Yl� Ym� bilbjm

= ∑
1≤m≤n

�2
mbimbjm = �BDB−1�ij ="ij�

This proves assertion (IVb). For i= j it gives the variance Var Xi.
In fact, an even more powerful tool is the joint CHF �X�t� defined by

�X�t�=�ei�t�X� =� exp

(
i
n∑
j=1

tjXj

)
� tT = �t1� � � � � tn�∈�n� (2.101)

The joint CHF has many features of a marginal CHF. In particular, it determines the joint
distribution of a random vector X uniquely. For multivariate normal vector X the joint
CHF can be calculated explicitly. Indeed,

�eit
TX =�eit

TBY =�ei�B
Tt�TY =

n∏
j=1

� exp
[
i
(
BTt
)
j
Yj

]
�

Here each factor is a marginal CHF:

� exp
[
i
(
BTt
)
j
Yj

]
= exp

[
i�BTt�j

(
B−1�

)
j
− �BTt�2j �

2
j /2
]
�
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As BDB−1 =", the whole product equals

exp
(
itTBB−1�− 1

2
tTBDB−1t

)
= exp

(
itT�− 1

2
tT"t

)
�

Hence,

�X�t�= eit
T�−tT"t/2� (2.102)

Note a distinctive difference in the matrices in the expressions for the multivariate normal
PDF and CHF: formula (2.102) has", the covariance matrix, and equation (2.100) has"−1.

Now, to obtain the marginal CHF �Xj �t�, we substitute vector t = �0� � � � �0�
t�0� � � � �0� (t in position j) into the RHS of equation (2.102):

�Xj �t�= exp �i�jt− t2"jj/2��

Owing to the uniqueness of a PDF with a given CHF, Xj ∼N��j�"jj�, as claimed in
assertion (IVa).

As a by-product of the above argument, we immediately establish that:

(IVc) If X∼N���"�, then any subcollection �Xjl
� is also jointly normal, with the

mean vector ��jl
� and covariance matrix �"jljl′ �.

For characteristic functions we obtained the following property:
(V) The joint CHF �X�t� of a random vector X∼N���"� is of the form

�Xj
�t�= exp

(
i �t���− 1

2
�t�"t�

)
�

Finally, the tools and concepts developed so far also allow us to check that
(VI) A linear combination

∑n
i=1 ciXi of jointly normal RVs, with X∼ N���"� is

normal, with mean �c���=∑1≤i≤n ci�i and variance �c�"c�=∑1≤i�j≤n ci"ijcj .
More generally, if Y is the random vector of the form Y = ATX obtained
from X by a linear change of variables with invertible matrix A, then Y ∼
N
(
AT��AT"A

)
. See Example 3.1. (The last fact can also be extended to the

case of a non-invertible A but we will leave this subject to later volumes.)

Problem 2.39 Derive the distribution of the sum of n independent random variables
each having the Poisson distribution with parameter �. Use the CLT to prove that

e−n
(
1+ n

1! +
n2

2! + · · · + nn

n!
)
→ 1

2

as n→�.

Solution Let X1� � � � �Xn be IID Po (1). The PGF

�Xi�s�=�sXi =∑
l≥0

sl
1
l!e

−1 = es−1� s ∈�1�
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In general, if Y ∼Po ���, then

�Y �s�=
∑
l≥0

sl�l

l! e−� = e��s−1��

Now if Sn =X1 + · · ·+Xn, then

�Sn�s�=�X1
�s� · · ·�Xn�s��

yielding that Sn ∼Po �n�, with �Sn =Var �Sn�= n. By the CLT,

Tn =
Sn − n√

n
∼ N�0�1� for n large�

But

e−n
(
1+ n

1! +
n2

2! + · · · + nn

n!
)
=��Sn ≤ n�=��Tn ≤ 0�

→ 1√
2�

0∫
−�

e−y
2/2dy= 1

2
as n→�� �

Problem 2.40 An algebraic question. If x1� � � � �xn ∈�n are linearly independent col-
umn vectors, show that the matrix n× n

n∑
i=1

xix
T
i

is invertible.

Solution It is sufficient to show that matrix
∑n

i=1 xix
T
i does not send any non-zero

vector to zero. Hence, assume that(
n∑
i=1

xix
T
i

)
c= 0� i�e�

n∑
k=1

n∑
i=1

xijxikck =
n∑
i=1

xij�xi� c�= 0� 1≤ j≤ n�

where

xi =
⎛⎜⎝xi1���
xin

⎞⎟⎠ � 1≤ i≤ n� and c=
⎛⎜⎝c1���
cn

⎞⎟⎠ �
The last equation means that the linear combination

n∑
i=1

xi�xi� c�= 0�

Since the xi are linearly independent, the coefficients �xi� c�=0, 1≤ i≤n. But this means
that c= 0. �

A couple of problems below have been borrowed from advanced statistical courses;
they may be omitted at the first reading, but are useful for those readers who aim to
achieve better understanding at this stage.
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Problem 2.41 Let X1� � � � �Xn be an IID sample from N��1��
2
1 � and Y1� � � � � Ym be an

IID sample from N��2��
2
2 � and assume the two samples are independent of each other.

What is the joint distribution of

the difference X− Y and the sum
1

�2
1

n∑
i=1

Xi +
1

�2
2

m∑
j=1

Yj?

Solution We have X∼ N��1��
2
1/n� and Y ∼ N��2��

2
2/n�. Further,

fX�Y �x� y�=
(

n

2��2
1

)1/2(
m

2��2
2

)1/2

exp
[
−n�x−��2

2�2
1

−m
�y−�2�

2

2�2
2

]
�

We see that both

U =X− Y and S= 1

�2
1

n∑
i=1

Xi +
1

�2
2

m∑
j=1

Yj =
n

�2
1

X+ m

�2
2

Y

are linear combinations of (independent) normal RVs and hence are normal. A straight-
forward calculation shows that

�U =�1 −�2� �S= n

�2
1

�1 +
m

�2
2

�2�

and

Var U = m�2
1 + n�2

2

mn
� Var S= n

�2
1

+ m

�2
2

�

So

fU �u�=
�mn�1/2

	2��m�2
1 + n�2

2 �

1/2

exp
{

	u− ��1 −�2�

2

2�m�2
1 + n�2

2 �/�mn�

}
� u∈��

and

fS�s� =
�1�2

	2��m�2
1 + n�2

2 �

1/2

× exp

{
−
[
s−
(
n

�2
1

�1 +
m

�2
2

�2

)]2/2�m�2
1 + n�2

2 �

�2
1�

2
2

}
� s ∈��

Finally, U and S are independent as they have Cov �U�S�= 0. Therefore, the joint
PDF fU�S�u� s�= fU �u�fS�s�. �

Remark The formulas for fU �u� and fS�s� imply that the pair �U�S� forms the so-called
‘sufficient statistic’ for the pair of unknown parameters ��1��2�; see Section 3.2.

Problem 2.42 Let X1� � � � �Xn be a random sample from the N����2� distribution, and
suppose that the prior distribution for � is the N��� �2� distribution, where �2, � and �2

are known. Determine the posterior distribution for �, given X1� � � � �Xn.
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Solution The prior PDF is Gaussian:

����= 1√
2��

e−��−��
2/�2�2��

and so is the (joint) PDF of X1� � � � �Xn for the given value of �:

fX1�����Xn
�x1� � � � � xn
 ��=

n∏
i=1

1√
2��

e−�xi−��
2/�2�2��

Thus

����fX1�����Xn
�x1� � � � � xn
 ��∝ exp

[
− ��−��2

2�2
−∑

i

�xi − ��2

2�2

]

= exp

[
− 1
2�2

��2 − 2��+�2�− 1
2�2

∑
i

(
x2i − 2�

∑
i

xj + �2

)]

= exp
{
−1
2

[
�2
(
1
�2

+ n

�2

)
− 2�

(
�

�2
+ nx̄

�2

)]}
�

leaving out terms not involving �. Here and below

x̄= 1
n

n∑
i=1

xi�

Then the posterior

����x1� � � � � xn�=
����fX1�����Xn

�x1� � � � � xn
 ��∫
���′�fX1�����Xn

�x1� � � � � xn
 �
′�d�′

= 1√
2��n

exp
[
− ��−�n�

2

2�2n

]
�

where

1
�2n

= 1
�2

+ n

�2
� �n =

�/�2 + nx̄/�2

1/�2 + n/�2
� �

Problem 2.43 Let %�X1�X2� � � � be RVs. Suppose that, conditional on % =
��X1�X2� � � � are independent and Xk is normally distributed with mean � and variance
�2
k . Suppose that the marginal PDF of % is

����= 1√
2�

e−
�2
2 � �∈��

Calculate the mean and variance of % conditional on X1 = x1� � � � �Xn = xn.

Solution A direct calculation shows that the conditional PDF f%�X1� � � � �Xn
��� =

f���x1� � � � � xn� is a multiple of

exp

[
−1
2

(
1+∑

i

1

�2
i

)(
�−

∑
i xi/�

2
i

1+∑i 1/�
2
i

)2
]
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with a coefficient depending on values x1� � � � � xn of X1� � � � �Xn. This implies that the
conditional mean

��%�X1� � � � �Xn�=
1

1+∑i 1/�
2
i

∑
i

Xi

�2
i

and the conditional variance

Var �%�X1� � � � �Xn�=
1

1+∑i 1/�
2
i

� independently of X1� � � � �Xn� �

Problem 2.44 Let X and Y be independent, identically distributed RVs with the stan-
dard normal PDF

f�x�= 1√
2�

e−x
2/2� x∈��

Find the joint PDF of U =X+ Y and V =X− Y . Show that U and V are independent
and write down the marginal distribution for U and V . Let

Z=
{
�Y �� if X> 0�

−�Y �� if X< 0�

By finding ��Z≤ z� for z< 0 and z> 0, show that Z has a standard normal distribution.
Explain briefly why the joint distribution of X and Z is not bivariate normal.

Solution Write �U�V �=T�X�Y �. Then for the PDF:

fU�V �u� v�= fX�Y �T
−1�u� v��

∣∣∣∣ #�x� y�#�u� v�

∣∣∣∣ �
The inverse map is

T−1�u� v�=
(
u+ v

2
�
u− v

2

)
� with

#�x� y�

#�u� v�
=−1

2
�

Hence,

fU�V �u� v�=
1
2�

e−
1
2 ��u+v�2/4+�u−v�2/4� 1

2
= 1

4�
e−

1
4 �u

2+v2��

i.e. U�V are independent. Next, if z≥ 0 then

��Z< z�= 1
2
�1+���Y �<z��=��Y< z��

and if z< 0, then

��Z< z�= 1
2
��−�Y �<z�=��Y> �z��=��Y< z��

So Z has the same standard normal distribution as Y . But the joint distribution of �X�Z�
gives zero mass to the second and fourth quadrants; hence Z is not independent of X. �



182 Continuous outcomes

Problem 2.45 Check that the standard normal PDF p�x�= e−x2/2/
√
2� satisfies the

equation ∫ �

y
xp�x�dx=p�y�� y> 0�

By using this equation and sinx=∫ x0 cosydy, or otherwise, prove that if X is an N�0�1�
random variable, then

�� cosX�2 ≤Var �sinX�≤��cosX�2�

Solution Write

1√
2�

∫ �

y
xe−x

2/2dx= 1√
2�

∫ �

y
e−x

2/2d
(
x2

2

)
= 1√

2�
e−y

2/2�

Now

� sinX= 1√
2�

∫
e−x

2/2 sin x dx= 0

as e−x2/2 sin x is an odd function. Thus,

Var
(
sinX

)=�
(
sinX

)2 = ∫ p�x�
(
sin x

)2
dx=

∫
p�x�

(∫ x

0
cosydy

)2

dx�

Owing to the CS inequality, the last integral is

≤
∫
p�x��x�

∫ x

0
�cosy�2dydx

=−
∫ 0

−�

(
cosy

)2 ∫ y

−�
xp�x�dxdy+

∫ �

0

(
cosy

)2 ∫ �

y
xp�x�dxdy

=
∫ 0

−�
p�y��cosy�2dy+

∫ �

0
p�y��cosy�2dy

=
∫
p�y�

(
cosy

)2
dy=�

(
cosX

)2
�

On the other hand, as �X2 = 1,

Var
(
sinX

)=�
(
sinX

)2 =�X2��sinX�2

≥ 	�
(
X sinX

)

2 =

[∫
xp�x�dx

∫ x

0
cosydy

]2
=
[
−
∫ 0

−�
cosy

∫ y

−�
xp�x�dxdy+

∫ �

0
cosy

∫ �

y
xp�x�dxdy

]2
=
(∫

p�y� cosy dy
)2

= (� cosX
)2
� �

Problem 2.46 In Problem 2.23, prove that X and Y are independent if and only if
r = 0.
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Solution In general, if X, Y are independent then r = �XY = �X�Y = 0. In the
Gaussian case, the inverse is also true: if r = 0, then the joint PDF

fX�Y �x� y�=
1
2�

e−�x
2+y2�/2 = 1√

2�
e−x

2/2 1√
2�

e−y
2/2 = fX�x�fY �y��

i.e. X and Y are independent. �

Problem 2.47 State the CLT for independent identically distributed real RVs with
mean � and variance �2.

Suppose that X1, X2� � � � are independent identically distributed random variables each
uniformly distributed over the interval 	0�1
. Calculate the mean and variance of lnX1.

Suppose that 0≤ a<b. Show that

�
(
�X1X2 � � �Xn�

n−1/2
en

1/2 ∈ 	a� b

)

tends to a limit and find an expression for it.

Solution Let X1, X2� � � � , be IID RVs with �Xi =� and Var Xi =�2. The CLT states
that ∀ −�≤ a<b≤�:

lim
n→��

(
a<

X1 + · · ·+Xn − n�√
n�

<b

)
= 1√

2�

∫ b

a
e−x

2/2dx�

Moreover, if X∼U	0�1
, then the mean value ��lnXi� equals∫ 1

0
ln xdx=−

∫ 0

�
y �de−y�= �−ye−y��0� +

∫ 0

�
e−ydy=−1�

Similarly, the mean value ��lnXi�
2 is equal to∫ 1

0

(
ln X

)2
dx=

∫ 0

�
y2d
(
e−y
)= (y2e−y)∣∣0� − 2

∫ 0

�
e−yydy= 2�

and

Var �ln Xi�= 2− �−1�2 = 1�

Finally,

�
(
�X1X2 � � �Xn�

n−1/2
en

1/2 ∈ 	a� b

)

=�

(
1√
n

n∑
i=1

ln Xi +
√
n∈ [ ln a� ln b])

=�

(
1√
n

(
n∑
i=1

ln Xi + n

)
∈ [ ln a� ln b])

→ 1√
2�

ln b∫
ln a

e−x
2/2dx� by the CLT, as n→�� �
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Problem 2.48 The RV Xi is normally distributed with mean �i and variance �2
i , for

i= 1�2, and X1 and X2 are independent. Find the distribution of Z=a1X1 +a2X2, where
a1� a2 ∈�.

(You may assume that �e�Xi = exp ���i + �2�2
i /2�.)

Solution The MGF

�a1X1+a2X2
���=�

(
e��a1X1+a2X2�

)=�
(
e�a1X1e�a2X2

)
=�

(
e�a1X1

)
�
(
e�a2X2

)=�X1
�a1���X2

�a2���

by independence. Next,

�X1
�a1���X2

�a2��= exp
(
a1��1 +

a21�
2�2

1

2
+ a2��2 +

a22�
2�2

2

2

)
= exp

[
��a1�1 + a2�1�+

�2�a21�
2
1 + a22�

2
2 �

2

]
=MZ����

where Z∼N
(
�a1�1 +a2�1�� �a

2
1�

2
1 +a22�

2
2 �
)
. In view of the uniqueness of a PDF with a

given MGF,(
a1X1 + a2X2

)∼N
(
�a1�1 + a2�1�� �a

2
1�

2
1 + a22�

2
2 �
)
� �

Problem 2.49 Let X be a normally distributed RV with mean 0 and variance 1.
Compute �Xr for r = 0�1�2�3�4. Let Y be a normally distributed RV with mean � and
variance �2. Compute �Y r for r = 0�1�2�3�4. State, without proof, what can be said
about the sum of two independent RVs.

The President of Statistica relaxes by fishing in the clear waters of Lake Tchebyshev.
The number of fish that she catches is a Poisson variable with parameter �. The weight
of each fish in Lake Tchebyshev is an independent normally distributed RV with mean
� and variance �2. (Since � is much larger than � , fish of negative weight are rare and
much prized by gourmets.) Let Z be the total weight of her catch. Compute �Z and �Z2.

Show, quoting any results you need, that the probability that the President’s catch
weighs less than ��/2 is less than 4��2 +�2��−1�−2.

Solution �X0 =�1= 1. �X1 =�X3 = 0, by symmetry. Next, �X2 and �X4 are found
by integration by parts:

1√
2�

∫
x2e−x

2/2dx= 1√
2�

[(
−xe−x2/2

)∣∣∣�
−�

+
∫

e−x
2/2dx

]
= 1�

1√
2�

∫
x4e−x

2/2dx= 1√
2�

[(
−x3e−x2/2

)∣∣∣�
−�

+ 3
∫
x2e−x

2/2dx
]
= 3�
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Further,

�Y 0 =�1= 1�
�Y 1 =���X+��=��X+��1=��

�Y 2 =�
(
�2X2 + 2��X+�2

)=�2 +�2�

EY 3 =�
(
�3X3 + 3��2X2 + 3�2�X+�3

)= 3��2 +�3

and

�Y 4 =�
(
�4X4 + 4��3X3 + 6�2�2X2 + 4�3�X+�4

)= 3�4 + 6�2�2 +�4�

Now, if X1, X2 are independent normal RVs of means �1, �2 and variances �2
1 , �

2
2 ,

then X1 +X2 is N
(
�1 +�2��

2
1 +�2

2

)
.

Thus, if Yr is the weight of r fish, then Yr ∼N�r�� r�2�.
Finally,

�Z=∑
r≥0

� �catch r��Yr =
∑
r≥0

�re−�

r! r�=���

and similarly

�Z2 =∑
r≥0

�re−�

r! �Y 2
r =∑

r≥0

�re−�

r! �r�2 + r2�2�

= ��2 +�2
∑
r>1

�re−�

r! r�r − 1�+�2
∑
r≥1

�re−�

r! r =���2 +�2�+�2�2�

This yields

VarZ=�Z2 − (�Z)2 =���2 +�2��

Then by Chebyshev’s inequality:

�

(
Z<

��

2

)
≤�

(
�Z−���> ��

2

)
≤ VarZ(

��/2
)2 = 4��2 +�2�

��2
� �

Problem 2.50 Let X and Y be independent and normally distributed RVs with the
same PDF

1√
2�

e−x
2/2�

Find the PDFs of:

(i) X+ Y ;
(ii) X2;
(iii) X2 + Y 2.

Solution (i) For the CDF, we have

FX+Y �t�=
1
2�

∫ ∫
e−�x

2+y2�/2I�x+ y≤ t�dydx�
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As PDF e−�x2+y2�/2/2� is symmetric relative to rotations, the last expression equals

1
2�

∫
e−�x

2+y2�/2I
(
x≤ t√

2

)
dydx= 1

2
√
�

∫ t

−�
e−u

2/4du�

whence the PDF

fX+Y �x�=
1

2
√
�
e−x

2/4�

(ii) Similarly, for t≥ 0:

FX2�t�= 1
2�

∫ ∫
e−�x

2+y2�/2I�x2 ≤ t�dydx

= 1√
2�

√
t∫

−√
t

e−x
2/2dx= 1√

2�

t∫
0

e−u/2
du√
u
�

which yields

fX2�x�= 1√
2�x

e−x/2I�x≥ 0��

(iii) Finally:

FX2+Y 2�t�= 1
2�

∫ ∫
e−�x

2+y2�/2I�x2 + y2 ≤ t�dydx

= 1
2�

�∫
0

2�∫
0

re−r
2/2I�r2 ≤ t�d�dr = 1

2

t∫
0

e−u/2du�

and the PDF

fX2+Y 2�x�= 1
2
e−x/2I�x≥ 0�� �

Problem 2.51 The PDF for the t distribution with q degrees of freedom is

f �x
q�= ! ��q+ 1�/2�
! �q/2�

√
�q

(
1+ x2

q

)−�q+1�/2

� −�< t<��

Cf. equation (3.6). Using properties of the exponential function, and the result that

!
(q
2
+ b
)
→√

2�
(q
2

)b+�q−1�/2
exp
(
−q
2

)
as q→�, prove that f �x
q� tends to the PDF of an N�0�1� RV in this limit.

Hint: Write(
1+ t2

q

)−�q+1�/2

=
[(

1+ t2

q

)q]−1/2−1/2q

�
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Derive the PDF of variable Y =Z2, where Z is N�0�1�. The PDF for the F-distribution
with �1� q� degrees of freedom is

g �x
q�= ! ��q+ 1�/2�
! �q/2�

√
�q

x−1/2

(
1+ x

q

)−�q+1�/2

� 0<x<��

Using the above limiting results, show that f �x
q� tends to the PDF of Y as q→�.

Solution (The second part only.) The PDF of Y equals I�x > 0�e−x/2/
√
2�x. The

analysis of the ratio of gamma functions shows that(
1+ v

q

)−�q+1�/2

→ exp
(
−v

2

)
�

Therefore, the PDF for the F-distribution tends to

√
q/2√
�q

x−1/2 exp
(
−x
2

)
= 1√

2�x
exp
(
−x
2

)
�

as required.
This result is natural. In fact, by Example 3.4, the F1�q-distribution is related to the ratio

X2
1

q∑
j=1
Y 2
j /q

�

where X1, Y1� � � � � Yq are IID N(0,1). The denominator
∑q

j=1 Y
2
j /q tends to 1 as q→�

by the LLN. �

Problem 2.52 Let X1�X2� � � � be independent Cauchy RVs, each with PDF

f�x�= d

��d2 + x2�
�

Show that �X1 +X2 + · · ·+Xn�
/
n has the same distribution as X1.

Does this contradict the weak LLN or the CLT?
Hint: The CHF of X1 is e

−�t�, and so is the CHF of �X1 +X2 +· · ·+Xn�
/
n. The result

follows by the uniqueness of the PDF with a given CHF.
The LLN and the CLT require the existence of the mean value and the variance.

Problem 2.53 Let X ∼ N����2� and suppose h�x� is a smooth bounded function,
x∈�. Prove Stein’s formula

�	�X−��h�X�
=�2�	h′�X�
�
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Solution Without loss of generality we assume �= 0. Then

�	Xh�X�
= 1√
2��2

∫
xh�x�e−x

2/2�2
dx

= 1√
2��2

∫
h�x�d

(
−�2e−x

2/2�2
)

= 1√
2��2

∫
h′�x��2e−x

2/2�2
dx�

which holds because the integrals converge absolutely. �

Problem 2.54 Let X∼ N����2� and let � be the CDF of N�0�1�. Suppose that h�x�
is a smooth bounded function, x ∈�. Prove for any real numbers ���� the following
equations hold:

�
[
e�Xh�X�

]= e��+�
2�2/2�	h�X+ ��2�


and

�	���X+ �
=�

(
��+ √
1+�2�2

)
�

Solution Again, assume without loss of generality that �= 0. Then

�
[
e�Xh�X�

]= 1√
2��2

∫
e�x−x

2/2�2
h�x�dx

= 1√
2��2

∫
e−�x−�

2��2/2�2
e�

2�2/2h�x�dx

= e�
2�2/2

√
2��2

∫
e−�x−�

2��2/�2�2�h�x�dx= e�
2�2/2�	h�X+ ��2�
�

All the integrals here are absolutely converging.
In the proof of the second formula we keep a general value of �. If Z ∼N���1�,

independently of X, then

�	���X+ �
= P�Z≤�X+ �=��Z−��X−��≤��+ �

= �

(
Z−��X−��√

1+�2�2
≤ ��+ √

1+�2�2

)
=�

(
��+ √
1+�2�2

)
� �

Problem 2.55 Suppose that �X�Y � has a jointly normal distribution, and h�x� is a
smooth bounded function. Prove the following relations:

�	�Y −�Y �X
= Cov 	X�Y

VarX

�X−�X�

and

Cov 	h�X��Y
=� 	h′�X�
 Cov 	X�Y
�
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Solution Again, assume that both X and Y have mean zero. The joint PDF fX�Y �x� y�
is

∝ exp
[
−1
2
�x� y�"−1

(
x

y

)]
where "= �"ij� is the 2× 2 covariance matrix. Then, conditional on X = x, the PDF
fY �y�x� is

∝ exp
{
−1
2

[(
"−1
)
22
y2 + 2xy

(
"−1
)
12

]}
�

Recall, "−1 is the inverse of the covariance matrix ". This indicates that the conditional
PDF fY �y�x� is a Gaussian whose mean is linear in x. That is

�
(
Y
∣∣X)=�X�

To find �, multiply by X and take the expectation. The LHS gives ��XY �=Cov 	X�Y

and the RHS � Var X. The second equality follows from this result by Stein’s formula

Cov 	h�X��Y
=� 	h�X�Y 
=�
[
h�X��

(
Y
∣∣X)]

= Cov 	X�Y

VarX

� 	Xh�X�
=� 	h′�X�
Cov 	X�Y
� �
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Basic statistics





3 Parameter estimation

3.1 Preliminaries. Some important probability distributions

All models are wrong but some are useful.
G.P.E. Box (1919–), American statistician

Model without a Cause
(From the series ‘Movies that never made it to the Big Screen’.)

In the second half of this volume we discuss the material from the second year (Part IB)
Statistics. This material will be treated as a natural continuation of the IA probability
course. Statistics, which is called an ‘applicable’ subject by the Faculty of Mathematics
of Cambridge University, occupies a place somewhere between ‘pure’ and ‘applied’
disciplines in the current Cambridge University course landscape. One modern definition
is that statistics is a collection of procedures and principles for gaining and processing
information in order to make decisions when faced with uncertainty. It is interesting
to compare this with earlier interpretations of the term ‘statistics’ and related terms.
Traditionally, the words ‘statistic’ and ‘statistics’ stem from ‘state’, meaning a political
form of government. In fact, the words ‘statist’ appears in Hamlet, Act 5, Scene 2:

Hamlet: Being thus benetted round with villainies,-
Ere I could make a prologue to my brains,
They had begun the play,- I sat me down,
Devis’d a new commision; wrote it fair:
I once did hold it, as our’s statists do,
A baseness to write fair, and labour’d much
How to forget that learning; but, sir, now
It did me yeoman’s service. Wilt thou know
Th’ effect of what I wrote?

and then in Cymbeline, Act 2, Scene 4:

Posthumus: I do believe,
Statist though I am none, nor like to be,
That this will prove a war; � � �
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The meaning of the word ‘statist’ seems to be a person performing a state function. (The
glossary to The Complete Works by William Shakespeare. The Alexander Text (London
and Glasgow: Collins, 1990) simply defines it as ‘statesman’.) In a similar sense, the
same word is used in Milton’s Paradise Regained, The Fourth Book, Line 355.

Many of the definitions of statistics that appeared before 1935 can be found in [Wil]; their
meaning is essentially ‘a description of the past or present political and financial situation
of a given realm’. Characteristically, Napoleon described statistics as ‘a budget of things’.

The definition of statistics remained a popular occupation well after 1935 [NiFY], with
a wide variety of opinions expressed by different authors (and sometimes by a single
author over an interval of time). Political and ideological factors added to the confusion:
Soviet-era authors concertedly attacked Western writers for portraying statistics as a
methodological, rather than a material, science. The limit of absurdity was to proclaim
the existence of ‘proletarian statistics’, as opposed to ‘bourgeois statistics’. The former
was helping in the ‘struggle of the working class against its exploitators’, while the latter
was ‘a servant of the monopolistic capital’.

A particularly divisive issue became the place and rôle of mathematical statistics. For
example, G.E.P. Box (1919–), a British-born American statistician who began his career
as a chemistry student and then served as a practising statistician in the British Army
during World War II, wrote that it was a “mistake to invent the term ‘mathematical
statistics’. This grave blunder has led to a great number of difficulties.”

It is interesting to compare this with two rather different sentences by J.W. Tukey
(1915–2000), one of the greatest figures of all time in statistics and many areas of applied
mathematics, credited, among many other things, with the invention of the terms ‘bit’
(short for binary digit) and ‘software.’ Tukey, who trained as a pure mathematician (his
Ph.D. was in topology), said that ‘Statistics is a part of a perplexed and confusing network
connecting mathematics, scientific philosophy and other branches of science, including
experimental sampling, with what one does in analysing and sometimes in collecting
data’. On the other hand, Tukey expressed the opinion: ‘Statistics is a part of applied
mathematics which deals with (although not exclusively) stochastic processes’. The latter
point of view was endorsed in a substantial number of universities (Cambridge included)
where many of the members of Statistics Departments or units (including holders of
Chairs of Mathematical Statistics) are in fact specialists in stochastic processes.

In the statistics part of this bookone learns variousways to process observeddata anddraw
inferences from it: point estimation, interval estimation, hypothesis testing and regression
modelling. Some of the methods are based on a clear logical foundation, but some appear ad
hoc and are adopted simply because they provide answers to (important) practical questions.

It may appear that, after decades of painstaking effort (especially in the 1940s–1970s),
attempts to provide a unified rigorous foundation for modern statistics have nowadays
been all but abandoned by the majority of the academic community. (This is perhaps
an overstatement, but it is how it often seems to non-specialists.) However, such an
authority as Rao (of the Rao–Blackwell Theorem and the Cramér–Rao inequality; see
below) stresses that ties between statistics and mathematics have only become stronger
and more diverse.
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On the other hand, during the last 30 years there has been a spectacular proliferation of
statistical methods in literally every area of scientific analysis, the main justification of their
usefulness being that these methods work and work successfully. The advent of modern
computational techniques (including the packages SPSS, MINITAB and SPLUS) has made
it possible to analyse huge arrays of data and display results in accessible forms. One can say
that computers have freed statisticians from the grip of mathematical tractability [We].

It has to be stressed that even (or perhaps especially) at the level of an initial statistics
course, accurate manual calculations are extremely important for successful examination
performance, and candidates are advised to pay serious attention to their numerical work.

The prerequisite for IB Statistics includes brushing up on knowledge of some key facts
from IA Probability. This includes basic concepts: probability distributions, PDFs, RVs,
expectation, variance, joint distributions, covariance, independence. It is convenient to
speak of a probability mass function (PMF) in the case of discrete random variables and a
PDF in the case of continuous ones. Traditionally, statistical courses begin with studying
some important families of PMFs/PDFs depending on a parameter (or several parameters
forming a vector). For instance, Poisson PMFs, Po���, are parametrised by �> 0, and so
are exponential PDFs, Exp ���. Normal PDFs are parametrised by pairs ����2�, where
�∈� is the mean and �2 > 0 the variance. The ‘true’ value of a parameter (or several
parameters) is considered unknown and we will have to develop the means to make a
judgement about what it is.

A significant part of the course is concerned with IID N�0�1� RVs X1, X2� � � � and
their functions. The simplest functions are linear combinations

∑n
i=1 aiXi.

Example 3.1 Linear combinations of independent normal RVs. We have already dis-
cussed linearity properties of normal RVs in Section 2.3; here we recall them with minor
modifications. Suppose that X1� � � � �Xn are independent, and Xi ∼N��i��

2
i �. Their joint

PDF is

fX�x�=
n∏
i=1

1√
2��i

exp
[
−1
2
�xi −�i�

2/�2
i

]
� x=

⎛⎜⎝x1���
xn

⎞⎟⎠ ∈�n� (3.1)

Then ∀ real a1� � � � � an,∑
i

aiXi ∼N

(∑
i

ai�i�
∑
i

a2i �
2
i

)
� (3.2)

In particular, if a1 = · · ·= an = 1/n, �1 = · · ·=�n =� and �1 = · · ·=�n =� , then

1
n

n∑
i=1

Xi ∼N
(
��

�2

n

)
� (3.3)

On the other hand,

n∑
i=1

�Xi −�i�

/(
n∑
i=1

�2
i

)1/2

∼ N�0�1��
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Next, suppose A= �Aij� is a real invertible n× n matrix, with det A �= 0, and the
inverse matrix A−1 = �A′

ij�. Write

X=
⎛⎜⎝X1
���

Xn

⎞⎟⎠ and Y=
⎛⎜⎝Y1���
Yn

⎞⎟⎠
and consider the mutually inverse linear transformations Y=ATX and X= (A−1

)T
Y, with

Yj =
(
ATX

)
j
=

n∑
i=1

XiAij� Xi =
((
A−1
)T
Y
)
i
=

n∑
j=1

YjA
′
ji�

Then the RVs Y1� � � � � Yn are jointly normal. More precisely, the joint PDF fY�y� is
calculated as

fY�y�=
1∣∣detA∣∣fX

[(
A−1
)T
y
]

= 1

�detA�
n∏
j=1

1√
2��j

exp

⎡⎣− 1

2�2
j

(
n∑
i=1

yiA
′
ij −�j

)2
⎤⎦

= 1
�2��n/2

1

	det �AT"A�

1/2

× exp
[
−1
2

〈(
y−AT�

)
�
(
AT"A

)−1 (
y−AT�

)〉]
�

Here, as before, �� � stands for the scalar product in �n, and

�=
⎛⎜⎝�1
���

�n

⎞⎟⎠ � y=
⎛⎜⎝y1���
yn

⎞⎟⎠ ∈�n and "=

⎛⎜⎜⎝
�2
1 0 � � � 0
0 �2

2 � � � 0
� � �

0 0 � � � �2
n

⎞⎟⎟⎠ �
Recall, � and " are the mean vector and the covariance matrix of X.

We recognise that the mean vector of Y is AT� and the covariance matrix is AT"A:

�Yj =
n∑
i=1

Aij�i� Cov �Yi� Yj�=
n∑
k=1

Aki�kkAkj�

Now suppose A is a real orthogonal n×n matrix, with
∑

k AkiAkj =�ij , i.e. A
TA equal

to the unit n×n matrix. Then det A=±1. Assume that the above RVs Xi have the same
variance: �2

1 = · · ·=�2
n =�2. Then

Cov �Yi� Yj�=Cov
[(
ATX

)
i
�
(
ATX

)
j

]
=

n∑
k�l=1

AkiAljCov �Xk�Xl�

= �2
∑
k�l

AkiAlj�k�l =�2
∑
k

AkiAkj =�2�i�j�
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That is, random vector XTA=YT has independent components Y1� � � � � Yn, with Yj ∼
N
[(
AT�

)
j
� �2
]
. �

Example 3.2 Sums of squares: the �2 distribution. Another example repeatedly used
in what follows is the sum of squares. Let X1, X2� � � � be IID N(0,1) RVs. The distribution
of the sum

n∑
i=1

X2
i

is called the chi-square, or �2 distribution, with n degrees of freedom, or shortly the �2
n

distribution. As we will check below, it has the PDF f�2n concentrated on the positive
half-axis �0���:

f�2n �x�∝ xn/2−1e−x/2I�x> 0��

with the constant of proportionality 1
/[
! �n/2�2n/2

]
. Here

! �n/2�=
∫ �

0

1
2n/2

xn/2−1e−x/2dx�

One can recognise the �2
n distribution as Gam����� with �= n/2, �= 1/2. On the

other hand, if X1� � � � , Xn are IID N����2�, then

n∑
i=1

�Xi −��2 ∼Gam
(
n

2
�

1
2�2

)
and

1
�2

n∑
i=1

�Xi −��2 ∼�2
n� (3.4)

The mean value of the �2
n distribution equals n and the variance 2n. All �2 PDFs are

unimodal. A sample of graphs of PDF f�2n is shown in Figure 3.1.
A useful property of the family of �2 distributions is that it is closed under independent

summation. That is if Z∼�2
n and Z

′ ∼�2
n′ , independently, then Z+Z′ ∼�2

n+n′ . Of course,
�2 distributions inherit this property from Gamma distributions.

A quick way to check that

f�2n �x�=
1

! �n/2�
1

2n/2
xn/2−1e−x/2I�x> 0� (3.5)

is to use the MGF or CHF. The MGF MX2
i
���=�e�X

2
i equals

1√
2�

∫
e�x

2
e−x

2/2dx= 1√
2�

∫
e−�1−2��x2/2dx

= 1√
1− 2�

1√
2�

∫
e−y

2/2dy= 1√
1− 2�

� �<
1
2
�

which is the MGF of Gam (1/2, 1/2). Next, the MGF MYn
�t� of Yn=

∑n
i=1X

2
i is the power(

MX2
i
���
)n = �1− 2��−n/2. This is the MGF of the Gam �n/2�1/2� distribution. Hence

fYn ∼ Gam �n/2�1/2�, as claimed. �
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Figure 3.1 The chi-square PDFs.

Example 3.3 The Student t distribution. If, as above, X1, X2� � � � are IID N(0,1) RVs,
then the distribution of the ratio

Xn+1(
n∑
i=1
X2
i /n

)1/2

is called the Student distribution, with n degrees of freedom, or the tn distribution for
short. It has the PDF ftn spread over the whole axis � and is symmetric (even) with
respect to the inversion x �→−x:

ftn �t�∝
(
1+ t2

n

)−�n+1�/2

�

with the proportionality constant

1√
�n

! ��n+ 1�/2�

! �n/2�
�

For n> 1 it has, obviously, the mean value 0. For n> 2, the variance is n/�n− 2�. All
Student PDFs are unimodal. A sample of graphs of PDF ftn is shown in Figure 3.2.
These PDFs resemble normal PDFs (and, as explained in Problem 2.51, ftn �t� approaches
e−t2/2/

√
2� as n→�). However, for finite n, the ‘tails’ of ftn are ‘thicker’ than those

of the normal PDF. In particular, the MGF of a t distribution does not exist (except at
�= 0): if X∼ tn, then �e�X =� ∀ �∈� \ �0�.

Note that for n= 1, the t1 distribution coincides with the Cauchy distribution.
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Figure 3.2 The Student PDFs.

To derive the formula for the PDF ftn of the tn distribution, observe that it coincides
with the PDF of the ratio T =X/

√
Y/n, where RVs X and Y are independent, and X∼

N(0,1), Y ∼�2
n . Then

fX�Y �x� y�=
1√
2�

2−n/2

! �n/2�
e−x

2/2yn/2−1e−y/2I�y> 0��

The Jacobian #�t� u�/#�x� y� of the change of variables

t= x√
y/n

� u= y

equals �n/y�1/2 and the inverse Jacobian #�x� y�/#�t� u�= �u/n�1/2. Then

ftn �t�= fT �t�=
�∫
0

fX�Y

(
t
(
u/n
)1/2

� u
)(u

n

)1/2
du

= 1√
2�

2−n/2

! �n/2�

�∫
0

e−t2u/2nun/2−1e−u/2
(u
n

)1/2
du

= 1√
2�

2−n/2

! �n/2�n1/2

�∫
0

e−�1+t2/n�u/2u�n+1�/2−1du�

The last integrand comes from the PDF of Gam
(
�n+ 1�/2�1/2+ t2/�2n�

)
. Hence,

ftn �t�=
1√
�n

! ��n+ 1�/2�

! �n/2�

(
1

1+ t2/n

)�n+1�/2

� (3.6)

which gives the above formula. �

Example 3.4 The Fisher F-distribution. Now let X1� � � � �Xm and Y1� � � � � Yn be IID
N(0,1) RVs. The ratio

m∑
i=1
X2
i /m

n∑
j=1
Y 2
j /n



200 Parameter estimation

has the distribution called the Fisher, or F distribution with parameters (degrees of free-
dom) m, n, or the Fm�n distribution for short. The corresponding PDF fFm�n is concentrated
on the positive half-axis:

fFm�n�x�∝ xm/2−1
(
1+ m

n
x
)−�m+n�/2

I�x> 0�� (3.7)

with the proportionality coefficient

! ��m+ n�/2�

! �m/2� ! �n/2�

(m
n

)m/2
�

The F distribution has the mean value n/�n− 2� (for n > 2, independently of m) and
variance

2n2�m+ n− 2�
m�n− 2�2�n− 4�

�for n> 4��

Observe that

if Z∼ tn� then Z2 ∼ F1�n� and if Z∼ Fm�n� then Z−1 ∼ Fn�m�

A sample of graphs of PDF fFm�n is plotted in Figure 3.3.
The Fisher distribution is often called the Snedecor–Fisher distribution. The above

formula for the PDF fFm�n can be verified similarly to that for ftn ; we omit the corresponding
calculation. �

Example 3.5 The Beta distribution. The Beta distribution is a probability distribution
on (0,1) with the PDF

f�x�∝ x�−1�1− x� −1I�0<x< 1�� (3.8)

where ��  > 0 are parameters. The proportionality constant equals

! ��+ �

! ���! � �
�= 1

B��� �
�
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Figure 3.3 The Fisher PDFs.
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Figure 3.4 The Beta PDFs.

where B��� � is the Beta function. We write X ∼ Bet��� � if RV X has the PDF as
above. A Beta distributed is used to describe various random fractions. It has

�X= �

�+ 
� VarX= � 

��+ ���+ + 1�
�

Beta PDF plots are shown in Figure 3.4.
It is interesting to note that

if X∼Fm�n then
�m/n�X

1+ �m/n�X
= mX

n+mX
∼Bet

(m
2
�
n

2

)
� �

For further examples we refer the reader to the tables of probability distributions in
Appendix 1.

It will be important to work with quantiles of these (and other) distributions. Given
� ∈ �0�1�, the upper �-quantile, or upper �-point, a+���, of a PMF/PDF f is determined
from the equation∑

x≥a+���
f�x�=�� or

∫ �

a+���
f�x�dx=��

Similarly, the lower �-quantile (lower �-point) a−��� is determined from the equation∑
x≤a−���

f�x�=�� or
∫ a−���

−�
f�x�dx=��

Of course in the case of a PDF

a−���= a+�1−��� 0<�< 1� (3.9)

In the case of a PMF, equation (3.9) should be modified, taking into account wheteher
the value a−��� is attained or not (i.e. whether f�a−����> 0 or f�a−����= 0).

If we measure � as a percentage, we speak of percentiles of a given distribution.
Quantiles and percentiles of a normal, of a �2, of a t- and of an F-distribution can be
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found in standard statistical tables. Modern packages allow one to calculate them with a
high accuracy for practically any given distribution.

Some basic lower percentiles are given in Tables 3.1–3.4 (courtesy of R. Weber). For
points of the normal distribution, see also Table 1.1 in Section 1.6.

These tables give values of x such that a certain percentage of the distribution lies less
than x. For example, if X∼ t3, then ��X≤5�84�=0�995, and ��−5�84≤X≤5�84�=0�99.
If X∼F8�5, then ��X≤ 4�82�= 0�95.

Table 3.1. Percentage points of tn

n 0�995 0�99 0�975 0�95

1 63�66 31�82 12�71 6�31
2 9�92 6�96 4�30 2�92
3 5�84 4�54 3�18 2�35
4 4�60 3�75 2�78 2�13
5 4�03 3�36 2�57 2�02
6 3�71 3�14 2�45 1�94
7 3�50 3�00 2�36 1�89
8 3�36 2�90 2�31 1�86
9 3�25 2�82 2�26 1�83

10 3�17 2�76 2�23 1�81
11 3�11 2�72 2�20 1�80
12 3�05 2�68 2�18 1�78
13 3�01 2�65 2�16 1�77
14 2�98 2�62 2�14 1�76
15 2�95 2�60 2�13 1�75
16 2�92 2�58 2�12 1�75
17 2�90 2�57 2�11 1�74
18 2�88 2�55 2�10 1�73
19 2�86 2�54 2�09 1�73
20 2�85 2�53 2�09 1�72
21 2�83 2�52 2�08 1�72
22 2�82 2�51 2�07 1�72
23 2�81 2�50 2�07 1�71
24 2�80 2�49 2�06 1�71
25 2�79 2�49 2�06 1�71
26 2�78 2�48 2�06 1�71
27 2�77 2�47 2�05 1�70
28 2�76 2�47 2�05 1�70
29 2�76 2�46 2�05 1�70
30 2�75 2�46 2�04 1�70
40 2�70 2�42 2�02 1�68
60 2�66 2�39 2�00 1�67

120 2�62 2�36 1�98 1�66
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Table 3.2. Percentage points of N(0,1)

0�995 0�99 0�975 0�95 0�90
2�58 2�33 1�96 1�645 1�282

Table 3.3. Percentage points of �2
n

n 0�99 0�975 0�95 0�9

1 6�63 5�02 3�84 2�71
2 9�21 7�38 5�99 4�61
3 11�34 9�35 7�81 6�25
4 13�28 11�14 9�49 7�78
5 15�09 12�83 11�07 9�24
6 16�81 14�45 12�59 10�64
7 18�48 16�01 14�07 12�02
8 20�09 17�53 15�51 13�36
9 21�67 19�02 16�92 14�68
10 23�21 20�48 18�31 15�99
11 24�73 21�92 19�68 17�28
12 26�22 23�34 21�03 18�55
13 27�69 24�74 22�36 19�81
14 29�14 26�12 23�68 21�06
15 30�58 27�49 25�00 22�31
16 32�00 28�85 26�30 23�54
17 33�41 30�19 27�59 24�77
18 34�81 31�53 28�87 25�99
19 36�19 32�85 30�14 27�20
20 37�57 34�17 31�41 28�41
30 50�89 46�98 43�77 40�26
40 63�69 59�34 55�76 51�81
50 76�15 71�42 67�50 63�17
60 88�38 83�30 79�08 74�40
70 100�4 95�02 90�53 85�53
80 112�3 106�6 101�8 96�58
90 124�1 118�1 113�1 107�5
100 135�8 129�5 124�3 118�5

Tables 3.1–3.4 can be used to conduct various hypothesis tests with sizes 0.01, 0.05
and 0.10. For the F distribution, only the 95% point is shown; this is what is needed to
conduct a one-sided test of size 0.05. Tables for other percentage points can be found
in any statistics book or can be calculated using computer software. (These tables were
constructed using functions available in Microsoft Excel.)

Note that the percentage points for tn tend to those for N(0,1) as n→�.
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Table 3.4. 95% points of Fm�n

n m

1 2 3 4 5 6 8 12 16 20 30 40 50

1 161�4 199�5 215�7 224�5 230�1 233�9 238�8 243�9 246�4 248�0 250�1 251�1 251�7
2 18�51 19�00 19�16 19�25 19�30 19�33 19�37 19�41 19�43 19�45 19�46 19�47 19�48
3 10�13 9�55 9�28 9�12 9�01 8�94 8�85 8�74 8�69 8�66 8�62 8�59 8�58
4 7�71 6�94 6�59 6�39 6�26 6�16 6�04 5�91 5�84 5�80 5�75 5�72 5�70
5 6�61 5�79 5�41 5�19 5�05 4�95 4�82 4�68 4�60 4�56 4�50 4�46 4�44
6 5�99 5�14 4�76 4�53 4�39 4�28 4�15 4�00 3�92 3�87 3�81 3�77 3�75
7 5�59 4�74 4�35 4�12 3�97 3�87 3�73 3�57 3�49 3�44 3�38 3�34 3�32
8 5�32 4�46 4�07 3�84 3�69 3�58 3�44 3�28 3�20 3�15 3�08 3�04 3�02
9 5�12 4�26 3�86 3�63 3�48 3�37 3�23 3�07 2�99 2�94 2�86 2�83 2�80

10 4�96 4�10 3�71 3�48 3�33 3�22 3�07 2�91 2�83 2�77 2�70 2�66 2�64
11 4�84 3�98 3�59 3�36 3�20 3�09 2�95 2�79 2�70 2�65 2�57 2�53 2�51
12 4�75 3�89 3�49 3�26 3�11 3�00 2�85 2�69 2�60 2�54 2�47 2�43 2�40
13 4�67 3�81 3�41 3�18 3�03 2�92 2�77 2�60 2�51 2�46 2�38 2�34 2�31
14 4�60 3�74 3�34 3�11 2�96 2�85 2�70 2�53 2�44 2�39 2�31 2�27 2�24
15 4�54 3�68 3�29 3�06 2�90 2�79 2�64 2�48 2�38 2�33 2�25 2�20 2�18
16 4�49 3�63 3�24 3�01 2�85 2�74 2�59 2�42 2�33 2�28 2�19 2�15 2�12
17 4�45 3�59 3�20 2�96 2�81 2�70 2�55 2�38 2�29 2�23 2�15 2�10 2�08
18 4�41 3�55 3�16 2�93 2�77 2�66 2�51 2�34 2�25 2�19 2�11 2�06 2�04
19 4�38 3�52 3�13 2�90 2�74 2�63 2�48 2�31 2�21 2�16 2�07 2�03 2�00
20 4�35 3�49 3�10 2�87 2�71 2�60 2�45 2�28 2�18 2�12 2�04 1�99 1�97
22 4�30 3�44 3�05 2�82 2�66 2�55 2�40 2�23 2�13 2�07 1�98 1�94 1�91
24 4�26 3�40 3�01 2�78 2�62 2�51 2�36 2�18 2�09 2�03 1�94 1�89 1�86
26 4�23 3�37 2�98 2�74 2�59 2�47 2�32 2�15 2�05 1�99 1�90 1�85 1�82
28 4�20 3�34 2�95 2�71 2�56 2�45 2�29 2�12 2�02 1�96 1�87 1�82 1�79
30 4�17 3�32 2�92 2�69 2�53 2�42 2�27 2�09 1�99 1�93 1�84 1�79 1�76
40 4�08 3�23 2�84 2�61 2�45 2�34 2�18 2�00 1�90 1�84 1�74 1�69 1�66
50 4�03 3�18 2�79 2�56 2�40 2�29 2�13 1�95 1�85 1�78 1�69 1�63 1�60
60 4�00 3�15 2�76 2�53 2�37 2�25 2�10 1�92 1�82 1�75 1�65 1�59 1�56
70 3�98 3�13 2�74 2�50 2�35 2�23 2�07 1�89 1�79 1�72 1�62 1�57 1�53
80 3�96 3�11 2�72 2�49 2�33 2�21 2�06 1�88 1�77 1�70 1�60 1�54 1�51
100 3�94 3�09 2�70 2�46 2�31 2�19 2�03 1�85 1�75 1�68 1�57 1�52 1�48

3.2 Estimators. Unbiasedness

License to Sample
You Only Estimate Twice
The Estimator

(From the series ‘Movies that never made it to the Big Screen’.)

We begin this section with the concepts of unbiasedness and sufficiency. The main model
in Chapters 3 and 4 is one in which we observe a sample of values of a given number n of
IID real RVs X1� � � � �Xn, with a common PMF/PDF f�x
 ��. The notation f�x
 �� aims
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to stress that the PMF/PDF under consideration depends on a parameter � varying within
a given range %. The joint PDF/PMF of the random vector X is denoted by fX�x
 �� or
f�x
 �� and is given by the product

fX�x
 ��= f�x1
 ��� � � f�xn
 ��� X=
⎛⎜⎝X1
���

Xn

⎞⎟⎠ � x=
⎛⎜⎝x1���
xn

⎞⎟⎠ � (3.10)

Here, and below vector x is a sample value of X. (It follows the tradition where capital
letters refer to RVs and small letters to their sample values.) The probability distribution
generated by fX� · 
 �� is denoted by �� and the expectation and variance relative to �� by
�� and Var�.

In a continuous model where we are dealing with a PDF, the argument x is allowed
to vary in �; more precisely, within a range where f�x
 �� > 0 for at least one � ∈%.
Similarly, x ∈�n is a vector from the set where fX�x
 �� > 0 for at least one value of
�∈%. In a discrete model where f�x
 �� is a PMF, x varies within a specified discrete set
	 ⊂� (say, �+ = �0�1�2� � � � �, the set of non-negative integers in the case of a Poisson
distribution). Then x∈	 n is a vector with components from 	 .

The subscript X in notation fX�x
 �� will often be omitted in the rest of the book.
The precise value of parameter � is unknown; our aim is to ‘estimate’ it from sample

x= �x1� � � � � xn�. This means that we want to determine a function �∗�x� depending on
sample x but not on � which we could take as a projected value of �. Such a function
will be called an estimator of �; its particular value is often called an estimate. (Some
authors use the term ‘an estimate’ instead of ‘an estimator’; others use ‘a point estimator’
or even ‘a point estimate’.) For example, in the simple case in which � admits just two
values, �0 and �1, an estimator would assign a value �0 or �1 to each observed sample x.
This would create a partition of the sample space (the set of outcomes) into two domains,
one where the estimator takes value �0 and another where it is equal to �1. In general, as
was said, we suppose that � ∈%, a given set of values. (For instance, values of � and �∗

may be vectors.)
For example, it is well known that the number of hops by a bird before it takes

off is described by a geometric distribution. Similarly, emission of alpha-particles by
radioactive material is described by a Poisson distribution (this follows immediately if one
assumes that the emission mechanism works independently as time progresses). However,
the parameter of the distribution may vary with the type of bird or the material used in
the emission experiment (and also other factors). It is important to assess the unknown
value of the parameter (q or �) from an observed sample x1� � � � � xn, where xi is the
number of emitted particles within the ith period of observation. In the 1930s when
the experimental techniques were very basic, one simply counted the emitted particles
visually. At Cambridge University, people still remember that E. Rutherford (1871–1937),
the famous physicist and Director of the Cavendish Laboratory, when recruiting a new
member of the staff, asked two straightforward questions: ‘Have you got a First?’ and ‘Can
you count?’ Answering ‘Yes’ to both questions was a necessary condition for being hired.
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In principle, any function of x can be considered as an estimator, but in practice we
want it to be ‘reasonable’. We therefore need to develop criteria for which estimator is
good and which bad. The domain of statistics that emerges is called parametric estimation.

Example 3.6 Let X1� � � � �Xn be IID and Xi ∼Po ���. An estimator of �=�Xi is the
sample mean X, where

X= 1
n

n∑
i=1

Xi� (3.11)

Observe that nX∼Po �n��. We immediately see that the sample mean has the following
useful properties:

(i) The random value X="n
i=1Xi/n is grouped around the true value of the param-

eter:

�X= 1
n

∑
i

�Xi =�X1 =�� (3.12)

This property is called unbiasedness and will be discussed below in detail.
(ii) X approaches the true value as n→�:

�
(
lim
n→�X=�

)
= 1 (the strong LLN). (3.13)

Property (ii) is called consistency.

An unbiased and consistent statistician?
This is the complement to an event of probability 1.

(From the series ‘Why they are misunderstood’.)

(iii) For large n,√
n

�
�X−��∼N�0�1� (the CLT)� (3.14)

This property is often called asymptotic normality.

Even when statisticians are normal,
in most cases they are only asymptotically normal.

(From the series ‘Why they are misunderstood’.)

We are also able to see that X has another important property:
(iv) X has the minimal mean square error in a wide class of estimators �∗:

��

(
X−�

)2 ≤����
∗�X�−��2� � (3.15)
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Example 3.7 Let X1� � � � �Xn be IID and Xi ∼Bin �k�p�. Recall, �Xi = kp, Var Xi =
kp�1−p�. Suppose that k is known but value p=�Xi/k∈ �0�1� is unknown. An estimator
of p is X/k, with nX ∼ Bin �kn�p�. Here, as before:

(i) �X/k=p (unbiasedness).
(ii) �

(
limn→�X/k=p

)= 1 (consistency).
(iii)

√
kn/	p�1−p�
 �X/k−p�∼N�0�1� for n large (asymptotic normality).

(iv) X/k has the minimal mean square error in a wide class of estimators.

Now what if we know p but value k= 1�2� � � � is unknown? In a similar fashion,
X/p can be considered as an estimator of k (never mind that it takes non-integer values!).
Again, one can check that properties (i) – (iii) hold. �

Example 3.8 A frequent example is where X1� � � � �Xn are IID and Xi ∼ N����2�.
When speaking of normal samples, one usually distinguishes three situations:

(I) the mean �∈� is unknown and variance �2 known (say, �2 = 1);
(II) � is known (say, equal to 0) and �2> 0 unknown;
(III) neither � nor � is known.

In cases (I) and (III), an estimator for � is the sample mean

X= 1
n

n∑
i=1

Xi� with �X= 1
n

∑
i

�Xi =�X1 =�� (3.16)

From Example 3.1 we know that X ∼ N
(
���2/n

)
; see equation (3.3). In case (II), an

estimator for �2 is "
2
/n, where

"
2 =∑

i

�Xi −��2� with �"
2 =∑

i

��Xi −��2 = nVarX1 = n�2� (3.17)

and �
(
"

2
/n
)=�2. From Example 3.2 we deduce that "

2
/�2 ∼�2

n .
With regard to an estimator of �2 in case (III), it was established that setting

SXX =
n∑
i=1

�Xi −X�2 (3.18)

yields

�

(
1

n− 1
SXX

)
= 1
n− 1

�SXX =�2� (3.19)

See Problem 1.32 where this fact was verified for IID RVs with an arbitrary distribution.
Hence, an estimator of �2 is provided by SXX/�n− 1�.

We are now able to specify the distribution of SXX/�
2 as �2

n−1; this is a part of the
Fisher Theorem (see below).

So, in case (III), the pair(
X�

SXX
n− 1

)
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can be taken as an estimator for vector ����2�, and we obtain an analogue of property
(i) ( joint unbiasedness):(

�X��
SXX
n− 1

)
= ����2��

Also, as n→�, both X and SXX/�n− 1� approach the estimated values � and �2:

�

(
lim
n→�X=�� lim

n→�
SXX
n− 1

=�2

)
= 1 (again the strong LLN).

This gives an analogue of property (ii) ( joint consistency). For X this property can be
deduced in a straightforward way from the fact that X∼N����2/n� and for SXX/�n− 1�
from the fact that SXX/�

2 ∼ �2
n−1. The latter remarks also help to check the analogue of

property (iii) (joint asymptotic normality): as n→�
√
n

�
�X−��∼N�0�1��

√
n− 1
�2

(
SXX
n− 1

−�2

)
∼N�0�2�� independently.

In other words, the pair(√
n

�
�X−���

√
n− 1
�2

(
SXX
n− 1

−�2

))

is asymptotically bivariate normal, with

mean vector
(
0
0

)
and the covariance matrix

(
1 0
0 2

)
�

When checking this fact, you should verify that the variance of SXX equals 2�n− 1��4.
An analogue of property (iv) also holds in this example, although we should be careful

about how we define minimal mean square error for a vector estimator. �

It is clear that the fact that Xi has a specific distribution plays an insignificant rôle
here: properties (i)–(iv) are expected to hold in a wide range of situations. In fact, each of
them develops into a recognised direction of statistical theory. Here and below, we first
of all focus on property (i) and call an estimator �∗ (=�∗�x�) of a parameter � unbiased if

���
∗�X�= �� ∀ �∈%� (3.20)

We will also discuss properties of mean square errors.
So, concluding this section, we summarise that for a vector X of IID real RVs

X1� � � � �Xn, (I) the sample mean

X= 1
n

n∑
i=1

Xi (3.21)
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is always an unbiased estimator of the mean �X1:

�X= 1
n

n∑
i=1

�Xi =�X1� (3.22)

(II) in the case of a known mean �X1,

1
n
"

2 = 1
n

n∑
i=1

�Xi −�Xi�
2 (3.23)

is an unbiased estimator of the variance Var X1:

�

(
1
n
"

2
)
= 1
n

n∑
i=1

��Xi −�X1�
2 =��X1 −�X1�

2 =VarX1� (3.24)

and (III) in the case of an unknown mean,

1
n− 1

SXX = 1
n− 1

n∑
i=1

�Xi −X�2 (3.25)

is an unbiased estimator of the variance Var X1:

�

(
1

n− 1
SXX

)
=VarX1� (3.26)

as was shown in Problem 1.32.
Estimators "

2
/n and SXX/�n− 1� are sometimes called the sample variances.

Statisticians stubbornly insist that the n justifies the means.
(From the series ‘Why they are misunderstood’.)

3.3 Sufficient statistics. The factorisation criterion

There are two kinds of statistics, the kind you look up,
and the kind you make up.

R.T. Stout (1886–1975), American detective-story writer

In general, a statistic (or a sample statistic) is an arbitrary function of sample vector x
or its random counterpart X. In the parametric setting that we have adopted, we call a
function T of x (possibly, with vector values) a sufficient statistic for parameter � ∈% if
the conditional distribution of random sample X given T�X� does not depend on �. That
is, ∀ D⊂�n

���X∈D�T�X��=��I�X∈D��T�X�� is the same ∀ �∈%� (3.27)

The significance of this concept is that the sufficient statistic encapsulates all knowledge
about sample x needed to produce a ‘good’ estimator for �.
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In Example 3.6, the sample mean X is a sufficient statistic for �. In fact, ∀ non-negative
integer-valued vector x= �x1� � � � � xn� ∈�n

+ with "ixi = nt, the conditional probability
���X= x�X= t� equals

���X= x�X= t�

���X= t�
= ���X= x�

���X= t�
=

e−n�
∏
i

��xi/xi!�
e−n��n��nt/�nt�! =

�nt�!
nnt

∏
i

1
xi!
�

which does not depend on �> 0. We used here the fact that the events

�X= x� X= t� and �X= x�

coincide (as the equation X= t holds trivially) and the fact that nX∼Po �n��.
So, in general we can write

���X= x�X= t�= �nt�!
nnt

∏
i

1
xi!
I

(
n∑
i=1

xi = nt

)
�

Of course, nx̄ =∑i xi is another sufficient statistic, and x̄ and nx̄ (or their random
counterparts X and nX) are, in a sense, equivalent (as one-to-one images of each other).

Similarly, in Example 3.7, x is sufficient for p with a known k. Here, ∀ x ∈�n with
entries xi=0�1� � � � � k and the sum "ixi=nt, the conditional probability �p�X=x�X= t�

equals

�p�X= x�

�p�X= t�
=
∏

i

k!
xi!�k− xi�!

pxi�1−p�k−xi

�nk�!
�nt�!�nk− nt�!p

nt�1−p�nk−nt
= �k!�n
�nk�!

�nt�!�nk− nt�!∏
i xi!�k− xi�!

which does not depend on p∈ �0�1�. As before, if "ixi �= nt, �p�X= x�X= t�= 0 which
again does not depend on p.

Consider now Example 3.8 where X1� � � � �Xn are IID and Xi ∼ N����2�. Here,

(I) with �2 known, the sufficient statistic for � is

X= 1
n

n∑
i=1

Xi�

(II) with � known, a sufficient statistic for �2 is

"
2 =∑

i

�Xi −��2�

(III) with both � and �2 unknown, a sufficient statistic for ����2� is(
X�

n∑
i=1

X2
i

)
�

The most efficient way to check these facts is to use the factorisation criterion.
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The factorisation criterion is a general statement about sufficient statistics. It says:

T is sufficient for � iff the PMF/PGF fX�x
 �� can be written as a product
g�T�x�� ��h�x� for some functions g and h.

The proof in the discrete case, with PMF fX�x
 ��=���X= x�, is straightforward. In
fact, for the ‘if’ part, assume that the above factorisation holds. Then for sample vector
x∈	 n with T�x�= t, the conditional probability ���X= x�T = t� equals

���X= x� T = t�

���T = t�
= ���X= x�

���T = t�
= g�T�x�� ��h�x�∑

x̃∈	 n� T� x̃ �=t
g�T� x̃ �� ��h� x̃ �

= g�t� ��h�x�
g�t� ��

∑
x̃∈	 n� T� x̃ �=t

h� x̃ �
= h�x�∑

x̃∈	 n� T� x̃ �=t
h� x̃ �

�

This does not depend on �.
If, on the other hand, the compatibility condition T�x�= t fails (i.e. T�x� �= t) then

���X= x�T = t�= 0 which again does not depend on �. A general formula is

���X= x�T = t�= h�x�∑
x̃∈	 n� T� x̃ �=t

h� x̃ �
I�T�x�= t��

As the RHS does not depend on �, T is sufficient.
For the ‘only if’ part of the criterion we assume that ���X= x�T = t� does not depend

on �. Then, again for x∈	 n with T�x�= t

fX�x�=���X= x�=���X= x�T = t����T = t��

The factor ���X= x�T = t� does not depend on �; we denote it by h�x�. The factor
���T = t� is then denoted by g�t� ��, and we obtain the factorisation.

In the continuous case the proof goes along similar lines (although to make it formally
impeccable one needs some elements of measure theory). Namely, we write the conditional
PDF fX�T �x�t� as the ratio

f�x
 ��
fT �t
 ��

I�T�x�= t�

and represent the PDF fT �t
 �� as the integral

fT �t
 ��=
∫
�̃x∈�n� T� x̃ �=t�

f� x̃
��d̃x

over the level surface �̃x∈�n � T� x̃ �= t�, against the area element d� x̃ �t� on this surface.
Then for the ‘if’ part we again use the representation f�x�= g�T�x�� ��h�x� and arrive at
the equation

fX�T �x�t�=
h�x�∫

�̃x∈�n� T�̃x�=t�
d̃xh�̃x�

I�T�x�= t��
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with the RHS independent of �. For the ‘only if’ part we simply re-write f�x
 �� as
fX�T �x�t�fT �t
 ��, where t=T�x�, and set, as before,

h�x�= fX�T �x�t� and g�T�x�� ��= fT �t 
 ���

The factorisation criterion means that T is a sufficient statistic when T�x�= T�x′�
implies that the ratio fx�x
 ��/fx�x

′
 �� is the same ∀ � ∈%. The next step is to consider
a minimal sufficient statistic for which T�x�=T�x′� is equivalent to the fact that the ratio
fx�x
 ��/fx�x

′
 �� is the same ∀ �∈%. This concept is convenient because any sufficient
statistic is a function of the minimal one. In other words, the minimal sufficient statistic
has the ‘largest’ level sets where it takes a constant value, which represents the least
amount of detail we should know about sample x. Any further suppression of information
about the sample would result in the loss of sufficiency.

In all examples below, sufficient statistics are minimal.
The statement and the proof of the factorisation criterion (in the discrete case) has been

extremely popular among the Cambridge University examination questions. See MT-IB
1999-112D (i), 1998-212E (ii), 1997-203G, 1994-403F (ii), 1993-403J (i), 1992-106D.
See also SP-IB 1992-103H (i). Here and below, we use the following convention: MT-IB
1997-203G stands for question 3G from the 1997 IB Math Tripos Paper 2, and SP-IB
1992-103H stands for question 3H from the 1992 IB Specimen Paper 1.

The idea behind the factorisation criterion goes back to a 1925 paper by R.A. Fisher
(1890–1962), the outstanding UK applied mathematician, statistician and genetist, whose
name will be often quoted in this part of the book. (Some authors trace the factorisation
criterion to his 1912 paper.) The concept was further developed in Fisher’s 1934 work.
An important rôle was also played by a 1935 paper by J. Neyman (1894–1981), a Polish–
American statistician (born in Moldova, educated in the Ukraine, worked in Poland and
the UK and later in the USA). Neyman’s name will also appear in this part of the book
on many occasions, mainly in connections with the Neyman–Pearson Lemma. See below.

Example 3.9 (i) Let Xi ∼U�0� �� where �> 0 is unknown. Then T�x�=maxxi, x=
�x1� � � � � xn� ∈�n

+, is a sufficient statistic for �.
(ii) Now consider Xi ∼U��� �+ 1�, �∈�. Here the sample PDF

fX�x
 ��=
∏
i

I��≤ xi ≤ �+ 1�

= I�min xi ≥ ��I�maxxi ≤ �+ 1�� x∈�n�

We see that the factorisation holds with T�x� being a two-vector �min xi�maxxi�, function
g��y1� y2�� ��= I�y1 ≥ ��I�y2 ≤ �+ 1� and h�x�≡ 1. Hence, the pair �min xi�maxxi� is
sufficient for �.

(iii) Let X1� � � � �Xn form a random sample from a Poisson distribution for which the
value of mean � is unknown. Find a one-dimensional sufficient statistic for �.

(Answer: T�X�=∑i Xi.)
(iv) Assume that Xi ∼N����2�, where both � ∈� and �2 > 0 are unknown. Then

T�x�= (∑i xi�
∑

i x
2
i

)
is a sufficient statistic for �= ����2�. �
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3.4 Maximum likelihood estimators

Robin Likelihood – Prince of Liars
(From the series ‘Movies that never made it to the Big Screen’.)

The concept of a maximum likelihood estimator (MLE) forms the basis of a powerful
(and beautiful) method of constructing good estimators which is now universally adopted
(and called the method of maximum likelihood). Here, we treat the PMF/PDF fx�x
 �� as
a function of �∈% depending on the observed sample x as a parameter. We then take the
value of � that maximises this function on set %:

�̂�= �̂�x��= arg max
[
f�x
 �� � �∈%]� (3.28)

In this context, f�x
 �� is often called the likelihood function (the likelihood for short)
for sample x. Instead of maximising f�x
 ��, one often prefers to maximise its logarithm
��x
 ��= ln f�x
 ��, which is called the log-likelihood function, or log-likelihood (LL) for
short. The MLE is then defined as

�̂= arg max
[
��x
 �� � �∈%]�

The idea of an MLE was conceived in 1921 by Fisher.
Often, the maximiser is unique (although it may lie on the boundary of allowed set %).

If ��x
 �� is a smooth function of � ∈%, one could consider stationary points, where the
first derivative vanishes

d
d�
��x
 ��= 0�

(
or

#

#�j
��x
 ��= 0� j= 1� � � � � d� if �= ��1� � � � � �d�

)
� (3.29)

Of course, one has to select from the roots of equation (3.29) the local maximisers (by
checking the signs of the second derivatives or otherwise) and establish which of these
maximisers is global. Luckily, in the examples that follow, the stationary point (when it
exists) is always unique. When parameter set % is unbounded (say a real line) then to
check that a (unique) stationary point gives a global maximiser, it is enough to verify that
�� · 
 ��→−� for large values of ���.

Finding the MLE (sometimes together with a sufficient statistic) is another hugely
popular examination topic. See MT-IB 1998-103E (ii), 1998-212E (iii), 1997-403G, 1996-
203G (i), 1995-203G (i), 1994-203F (ii,b), 1994-403F, 1992D-106 (i). See also SP-IB
1992-103H. Moreover, MLEs play an important rôle in (and appear in Tripos examples
related to) hypotheses testing and linear regression. See Chapter 4.

Example 3.10 In this example we identify MLEs for some concrete models. (i) The
MLE for � when Xi ∼ Po ���. Here, ∀ x= �x1� � � � � xn�∈�n

+ with non-negative integer
entries xi ∈�+, the LL

��x
��=−n�+∑
i

xi ln �−∑
i

ln �xi!�� �> 0�
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Differentiating with respect to � yields

#

#�
��x
��=−n+ 1

�

∑
i

xi = 0 and �̂= 1
n

∑
i

xi = x�

Furthermore,

#2

#�2
��x
��=− 1

�2

∑
i

xi < 0�

So, x gives the (global) maximum. We see that the MLE �̂ of � coincides with the sample
mean. In particular, it is unbiased.

(ii) Xi ∼U �0� ��� �> 0, then �̂�x�=maxxi, is the MLE for �.
(iii) Let Xi ∼U ��� �+ 1� (cf. Example 3.9 (ii)). To find the MLE for �, again look at

the likelihood:

f�x
 ��= I�maxxi − 1≤ �≤min xi�� �∈��

We see that if maxxi − 1<min xi (which is consistent with the assumption that sample
x is generated by IID U��� �+ 1� RVs), we can take any value between maxxi − 1 and
min xi as the MLE for �.

It is not hard to guess that the unbiased MLE estimator for � is the middle point

�̂= 1
2
�max xi − 1+min xi�=

1
2
�max xi +min xi�−

1
2
�

Indeed:

�̂�= 1
2
��maxXi +�minXi�−

1
2

= 1
2

⎡⎣ �+1∫
�

dxxpminXi
�x�+

∫ �+1

�
dxxpmaxXi

�x�

⎤⎦− 1
2
�

with

pminXi
�x�=− d

dx
��minXi >x�=− d

dx
���Xi > x��

n

=− d
dx

⎛⎝ �+1∫
x

dy

⎞⎠n

= n��+ 1− x�n−1� �<x<�+ 1�

and similarly,

pmaxXi
�x�= n�x− ��n−1� �<x<�+ 1�
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Then

�minXi = n

�+1∫
�

��+ 1− x�n−1xdx=−n
�+1∫
�

��+ 1− x�ndx

+ ��+ 1�n

�+1∫
�

��+ 1− x�n−1dx=−n
1∫

0

xndx

+ ��+ 1�n

1∫
0

xn−1dx=− n

n+ 1
+ �+ 1= �+ 1

n+ 1
� (3.30)

and similarly,

�maxXi =
n

n+ 1
+ �� (3.31)

giving that �̂�= �. �

The MLEs have a number of handy properties:

(i) If T is a sufficient statistic for �, then ��x
 ��= ln g�T�x�� ��+ ln h�x�. Max-
imising the likelihood in � is then reduced to maximising function g�T�x�� �� or
its logarithm. That is the MLE �̂ will be a function of T�x�.

(ii) Under mild conditions on the distribution of Xi, the MLEs are (or can be
chosen to be) asymptotically unbiased, as n→�. Furthermore, an MLE �̂ is
often asymptotically normal. In the scalar case, this means that

√
n�̂�− ��∼

N�0� v�, where the variance v is minimal amongst attainable variances of unbiased
estimators for �.

(iii) The invariance principle forMLEs: If �̂ is anMLE for� andwepass fromparameter
� to &= u���, where function u is one-to-one, then u�̂�� is anMLE for &.

3.5 Normal samples. The Fisher Theorem

Did you hear about the statistician who was put in jail? He now has zero
degrees of freedom.

(From the series ‘Why they are misunderstood’.)

Example 3.11 In this example we consider the MLE for the pair ����3� in IID normal
samples. Given Xi ∼N����2�, the LL is

��x
���2�=−n
2
ln �2��− n

2
ln
(
�2
)− 1

2�2

n∑
i=1

�xi −��2�

x=
⎛⎜⎝x1���
xn

⎞⎟⎠∈�n� �∈�� �2> 0�
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with

#

#�
��x
���2�= 1

�2

∑
i

�xi −���

#

#�2
��x
���2�=− n

2�2
+ 1

2�4

∑
i

�xi −��2�

The stationary point where #�/#�= #�/#�2 = 0 is unique:

�̂= x̄� �̂2 = 1
n
Sxx�

where, as in equation (3.18):

Sxx�= Sxx�x��=
∑
i

�xi − x̄�2� (3.32)

(In some texts, the notation S2
xx or even S

2

xx is used, instead of Sxx.) The point ��̂� �̂2�=
�x� Sxx/n� is the global maximiser. This can be seen, for example, because ��x
���2�

goes to −� when ��� →� and �2 →�, and also ��x
���2�→−� as �2 → 0 for
every �. Then �x� Sxx/n� cannot be a minimum (or a saddle point). Hence, it is the global
maximum. Here, X is unbiased, but SXX

/
n has a bias: SXX/n= �n− 1��2/n< �2. See

equation (3.17) and Problem 1.32. However, as n→�, the bias disappears: �SXX/n→�2.
(The unbiased estimator for �2 is of course SXX/�n− 1�.) �

An important fact is the following statement, often called the Fisher Theorem.

For IID normal samples, the MLE ��̂� �̂2�=(X�SXX/n) is formed by independent
RVs X and SXX/n, with

X∼N
(
��

�2

n

) (
i.e.

√
n�X−��∼N�0��2�

)
and

SXX
�2

∼�2
n−1

(
i.e.

SXX
�2

∼
n−1∑
i=1

Y 2
i where Yi ∼N�0�1�� independently

)
�

See (in a slightly different form) MT-IB 1994-203F. The question MT-IB 1998-
212E(iii) refers to the Fisher Theorem as a ‘standard distributional result’.

The Fisher Theorem implies that the RV
[
SXX − �n− 1��2

]
/��2

√
2n� is asymptotically

N(0,1). Then of course,

√
n

(
1
n
SXX −�2

)
∼N�0�2�4��

To prove the Fisher Theorem, first write

n∑
i=1

�Xi −��2 =
n∑
i=1

�Xi −X+X−��2 =
n∑
i=1

�Xi −X�2 + n�X−��2�
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since the sum
∑n

i=1�Xi−X��X−��= �X−��
∑n

i=1�Xi−X�=0. In other words,
∑

i�Xi−
��2 = SXX + n�X−��2.

Then use the general fact that if vector

X−�1=
⎛⎜⎝X1
���

Xn

⎞⎟⎠−�

⎛⎜⎝1���
1

⎞⎟⎠
has IID entries Xi −�∼N�0��2�, then for any real orthogonal n× n matrix A, vector⎛⎜⎝Y1���

Yn

⎞⎟⎠=AT�X−�1�

has again IID components Yi ∼N�0��2� (see Problem 2.38).
We take any orthogonal A with the first column⎛⎜⎝1/

√
n

���

1/
√
n

⎞⎟⎠ 

to construct such a matrix you simply complete this column to an orthonormal basis in
�n. For instance, the family e2� � � �� en will do, where column ek has its first k− 1 entries
1/
√
k�k− 1� followed by −�k− 1�/

√
k�k− 1� and n− k entries 0:

ek =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1/
√
k�k− 1�

⎫⎪⎪⎬⎪⎪⎭���
k− 1

1/
√
k�k− 1�

−�k− 1�/
√
k�k− 1�

0
���

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
� k= 2� � � � � n�

Then Y1 =
(
AT�X−�1�

)
1
=√

n�X−��, and Y2� � � � � Yn are independent of Y1.
Because the orthogonal matrix preserves the length of a vector, we have that

n∑
i=1

Y 2
i =

n∑
i=1

�Xi −��2 = n�X−��2 +
n∑
i=1

�Xi −X�2 = Y 2
1 + S2

XX�

i.e. SXX =∑n
i=2 Y

2
i . Then SXX/�

2 =∑n
i=2 Y

2
i /�

2 ∼�2
n−1, independently of Y1.

Remark Some authors call the statistic

sXX =
√

SXX
n− 1

(3.33)
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the sample standard deviation. The term the standard error is often used for sXX/
√
n

which is an estimator of �/
√
n. We will follow this tradition.

Statisticians do all the standard deviations.
Statisticians do all the standard errors.

(From the series ‘How they do it’.)

3.6 Mean square errors. The Rao–Blackwell Theorem.
The Cramér–Rao inequality

Statistics show that of those who contract
the habit of eating, very few survive.

W. Irwin (1876–1959), American editor and writer

When we assess the quality of an estimator �∗ of a parameter �, it is useful to consider
the mean square error (MSE) defined as

����
∗�X�− ��2
 (3.34)

for an unbiased estimator, this gives the variance Var��
∗�X�. In general,

����
∗�X�− ��2 =����

∗�X�−���
∗�X�+���

∗�X�− ��2

=����
∗�X�−���

∗�X��2 + ����
∗�X�− ��2

+2����
∗�X�− ������

∗�X�−���
∗�X��

=Var��
∗�X�+ �Bias��

∗�X��2 � (3.35)

where Bias��
∗ =���

∗ − �.
In general, there is a simple way to decrease the MSE of a given estimator. It is to use

the Rao–Blackwell (RB) Theorem:

If T is a sufficient statistic and �∗ an estimator for � then �̂∗ =���∗�T� has

��̂�∗ − ��2 ≤���∗ − ��2� �∈%� (3.36)

Moreover, if ���∗�2<� for some �∈%, then, for this �, the inequality is strict
unless �∗ is a function of T .

The proof is short: as �̂�∗ =�
[
�
(
�∗�T)]=��∗, both �∗ and �̂∗ have the same bias.

By the conditional variance formula

Var �∗ =� 	Var ��∗�T�
+Var
[
���∗�T�]=� 	Var ��∗�T�
+Var �̂∗�

Hence, Var �∗ ≥ Var �̂∗ and so ���∗ − ��2 ≥ ��̂�∗ − ��2. The equality is attained iff
Var ��∗�T�= 0.
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Remark (1) The quantity ���∗�T� depends on a value of �∗�x� but not on �. Thus �̂∗

is correctly defined.
(2) If �∗ is unbiased, then so is �̂∗.
(3) If �∗ is itself a function of T , then �̂∗ = �∗.

The RB theorem bears the names of two distinguished academics. D. Blackwell (1919–)
is a US mathematician, a leading proponent of a game theoretical approach in statistics
and other disciplines. Blackwell was one of the first African-American mathematicians
to be employed by a leading university in the USA. C.R. Rao (1920–) is an Indian
mathematician who studied in India and Britain (he took his Ph.D. at Cambridge University
and was Fisher’s only formal Ph.D. student in statistics), worked for a long time in India
and currently lives and works in the USA.

Example 3.12 (i) Let Xi∼U�0� ��. Then �∗ =2X=2
∑

i Xi/n is an unbiased estimator
for �, with

Var�2X�= 4
n
VarX1 =

�2

3n
�

We know that the sufficient statistic T has the form T�X�=maxi Xi, with the PDF

fT �x�= n
xn−1

�n
I�0<x<���

Hence,

�̂∗ =� ��∗�T�= 2
n

∑
i

� �Xi�T�= 2��X1�T�

= 2
(
maxXi ×

1
n
+ maxXi

2
× n− 1

n

)
= n+ 1

n
T

and �̂∗ should have an MSE less than or equal to that of �∗. Surprisingly, giving away
a lot of information about the sample leads to an improved MSE! In fact, the variance
Var �̂∗ = �n+ 1�2�VarT �/n2, where

VarT =
�∫

0

n
xn−1

�n
x2dx−

⎛⎝ �∫
0

n
xn−1

�n
xdx

⎞⎠2

= �2

[
n

n+ 2
−
(

n

n+ 1

)2
]
= �2

n

�n+ 1�2�n+ 2�
�

So Var �̂∗ = �2/	n�n+ 2�
 which is <�2/3n for n≥ 2 and goes faster to 0 as n→�.
(ii) Let Xi ∼ U��� �+ 1�. Then �̂=∑i Xi/n− 1

2 is an unbiased estimator for �; here

Var X= 1
n
Var X1 =

1
12n

�
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This form of the estimator emerges when we equate the value �̂+ 1/2 with sample mean∑n
i=1Xi/n. Such a trick forms the basis of the so-called method of moments in statistics.

The method of moments was popular in the past but presently has been superseded by
the method of maximum likelihood.

We know that the sufficient statistic T has the form �mini Xi�maxi Xi�. Hence,

�̂∗ =��̂��T�= 1
n

∑
i

��Xi�T�−
1
2

=��X1�T�−
1
2
= 1

2
�minXi +maxXi − 1��

The estimator �̂∗ is unbiased:

�̂�∗ = 1
2

(
n

n+ 1
+ �+ �+ 1

n+ 1
− 1
)
= ��

and it should have an MSE less than or equal to that of �∗. Again, giving away excessive

information about X leads to a lesser MSE. In fact, the variance Var �̂∗ = 1
4
Var �minXi+

maxXi� equals

1
4
� �minXi +maxXi�

2 − 1
4
��minXi +�maxXi�

2

= 1
4

�+1∫
�

�+1∫
x

fminXi�maxXi
�x� y��x+ y�2dydx− 1

4
�2�+ 1�2�

Cf. equations (3.30) and (3.31). Here,

fminXi�maxXi
�x� y�=− d2

dxdy
�y− x�n

= n�n− 1��y− x�n−2� �<x<y<�+ 1�

Writing

I =
∫ �+1

�

∫ �+1

x
�y− x�n−2�x+ y�2dydx�

we have

1
4
n�n− 1�I = �2 + �+ n2 + 3n+ 4

4�n+ 1��n+ 2�
�

This yields for n≥ 3

Var �̂∗ = n2 + 3n+ 4
4�n+ 1��n+ 2�

− 1
4
= 1

2�n+ 1��n+ 2�
<

1
12n

=VarX�
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Indeed, the above integral I equals

�+1∫
�

�+1∫
x

�y− x�n−2	�y− x�2 + 4x�y− x�+ 4x2�dydx

=
�+1∫
�

[
��+ 1− x�n+1

n+ 1
+ 4x��+ 1− x�n

n
+ 4x2��+ 1− x�n−1

n− 1

]
dx

= 1
�n− 1�n�n+ 1��n+ 2�

[
n�n− 1�+ 4��n− 1��n+ 2�

+ 4�n− 1�+ 4�2�n+ 1��n+ 2�+ 8��n+ 2�+ 8
]
�

Hence,

1
4
n�n− 1�I = �2 + �+ n2 + 3n+ 4

4�n+ 1��n+ 2�
�

as claimed. �

Example 3.13 Suppose that X1� � � � �Xn are independent RVs uniformly distributed
over ���2��. Find a two-dimensional sufficient statistic T�X� for �. Show that an unbiased
estimator of � is �̂= 2X1/3.

Find an unbiased estimator of � which is a function of T�X� and whose mean square
error is no more that of �̂.

Here, the likelihood function is

f�X
��=
n∏
i=1

1
�
I��<xi < 2��= 1

�n
I�min

i
xi > �� max

i
xi < 2���

and hence, by the factorisation criterion

T = �min
i
Xi�max

i
Xi�

is sufficient. Clearly, �X1 = 3�/2, so �∗ = 2X1/3 is an unbiased estimator. Define

�̂∗ =�

(
2
3
X1

∣∣∣min
i
Xi = a� max

i
Xi = b

)
= 2a

3n
+ 2b

3n
+ n− 2

n

2
3
a+ b

2
= a+ b

3
�

In fact, X1 equals a or b with probability 1/n each; otherwise (when X1 �=a�b which holds
with probability �n− 2�/n) the conditional expectation of X1 equals �a+ b�/2 because
of the symmetry.

Consequently, by the RB Theorem,

�̂∗ = 1
3

(
min
i

Xi +max
i

Xi

)
is the required estimator. �
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We would like of course to have an estimator with a minimal MSE (a minimum MSE
estimator). An effective tool to find such estimators is given by the Cramér–Rao (CR)
inequality, or CR bound.

Assume that a PDF/PMF f�·
 �� depends smoothly on parameter � and the
following condition holds: ∀�∈%∫ #

#�
f�x
 ��dx= 0 or

∑
x∈	

#

#�
f�x
 ��= 0� (3.37)

Consider IID observations X1� � � � �Xn, with joint PDF/PMF f�x
 �� =
f�x1
 ��� � � f�xn
 ��. Take an unbiased estimator �∗�X� of � satisfying the con-
dition: ∀ �∈%∫

�n
�∗�x�

#

#�
f�x
 ��dx= 1�or

∑
x∈	 n

�∗�x�
#

#�
f�x
 ��= 1� (3.38)

Then for any such estimator, the following bound holds:

VarT ≥ 1
nA���

� (3.39)

where

A���=
∫ (#f�x
 ��/#�)2

f�x
 ��
dx or

∑
x∈	

(
#f�x
 ��/#�

)2
f�x
 ��

� (3.40)

The quantity A��� is often called the Fisher information and features in many areas of
probability theory and statistics.

Remark In practice, condition (3.37) means that we can interchange the derivation
#
/
#� and the integration/summation in the (trivial) equality

#

#�

∫
f�x
 ��dx= 0 or

#

#�

∑
x∈	

f�x
 ��= 0�

The equality holds as∫
f�x
 ��dx= 1 or

∑
x∈	

f�x
 ��= 1�

A sufficient condition for such an interchange is that∫ ∣∣∣∣ ##�f�x
 ��
∣∣∣∣dx<� or

∑
x∈	

∣∣∣∣ ##�f�x
 ��
∣∣∣∣<��

which is often assumed by default. Similarly, equation (3.38) means that we can inter-
change the derivation #/#� and the integration/summation in the equality

1= #

#�
�= #

#�
��∗�X��
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as

��∗�X�=
∫
�n
�∗�x�f�x
 ��dx or

∑
x∈	 n

�∗�x�f�x
 ���

Observe that the derivative #f�x
 ��/#� can be written as

f�x
 ��
n∑
i=1

#f�xi
 ��/#�

f�xi
 ��
= f�x
 ��

n∑
i=1

# ln f�xi
 ��

#�
� (3.41)

We will prove bound (3.39) in the continuous case only (the proof in the discrete case
simply requires the integrals to be replaced by sums). Set

D�x���= #

#�
ln f�x
 ���

By condition (3.37),∫
f�x
 ��D�x� ��dx= 0�

and we have that ∀ �∈%∫
f�x
 ��

n∑
i=1

D�xi� ��dx= n
∫ #

#�
f�x
 ��dx= 0�

On the other hand, by virtue of (3.41) equation (3.38) has the form∫
�n
�∗�x�f�x
 ��

n∑
i=1

D�xi� ��dx= 1� �∈%�

The two last equations imply that∫
�n

(
�∗�x�− �

) n∑
i=1

D�xi� ��f�x
 ��dx= 1� �∈%�

In what follows we omit subscript �n in n-dimensional integrals in dx (integrals in dx
are of course one-dimensional). We interpret the last equality as �g1� g2�= 1, where

�g1� g2�=
∫
g1�x�g2�x�&�x�dx

is a scalar product, with

g1�x�= �∗�x�− �� g2�x�=
n∑
i=1

D�xi� �� and &�x�= f�x
 ��≥ 0

�&�x� is the weight function determining the scalar product).
Now we use the CS inequality

( �g1� g2� )2 ≤ �g1� g1� �g2� g2�. We obtain thus

1≤
[∫

��∗�x�− ��2f�x
 ��dx
]⎧⎨⎩∫

[
n∑
i=1

D�xi� ��

]2

f�x
 ��dx

⎫⎬⎭ �
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Here, the first factor gives Var �∗�X�. The second factor will give precisely nA���.
In fact: ∫ ( n∑

i=1

D�xi� ��

)2

f�x
 ��dx=
n∑
i=1

∫
D�xi� ��

2f�x
 ��dx

+2
∑

1≤i1<i2≤n

∫
D�xi1� ��D�xi2� ��f�x
 ��dx�

Each term in the first sum gives A���:∫
D�xi� ��

2f�x
 ��dx=
∫
D�x���2f�x
 ��dx�

while each term in the second sum gives zero, as
∫
D�x���f�x
 ��dx= 0:∫

D�xi1� ��D�xi1� ��f�x
 ��dx=
[∫

D�x���f�x
 ��dx
]2

= 0�

This completes the proof.
To conclude this section, we give a short account of Rao’s stay in Cambridge. Rao

arrived in Cambridge in 1945 to do work in the University Museum of Archaeology
and Anthropology on analysing objects (human skulls and bones) brought back by a
British expedition from a thousand-year old site in North Africa. He had to measure them
carefully and apply what is called the Mahalanobis distance to derive conclusions about
the anthropological characteristics of an ancient population. Rao was then 25 years old
and had 18 papers in statistics published or accepted for publication. His first paper, which
had just been published, contained both the RB Theorem and CR inequality. Soon after
his arrival in Cambridge he met Fisher and began also working in Fisher’s Laboratory
of Genetics on various characteristics of mice; he had to breed them, mate them in a
determined way and record genetic parameters of the litter produced (kinky tails, ruffled
hair and a disposition to keep shaking all the time). As is described in Rao’s biography
[Kr], his final duty in each experiment was to dispose of mice not needed in further work;
according to the customs of the time, young mice were put in ether and mature ones
had their heads hit against a table (a practice that would nowadays undoubtedly cause
an objection from Animal Rights activists). Rao was too sensitive to do this particular
job and had some friends who did it for him; otherwise he utterly enjoyed his work (and
the rest of his time) in Cambridge. Another of his friends was Abdus Salam, the future
Nobel Prize winner in physics and then a student at St John’s College. Salam had doubts
about his future in research and, seeing Rao’s determination, expressed keen interests in
statistics. However, it was Rao who persuaded him not to change his field � � �

The work in Fisher’s Laboratory formed the basis of Rao’s Ph.D. thesis which he
passed successfully in 1948, by which time he had 40 published papers. After receiving
his Ph.D. from such a prestigious university as Cambridge, it was supposed that back in
India he would receive offers of matrimonial alliances from many rich families. But a
month after returning home from Cambridge he became engaged to his future wife, who
was then 23 and had her own academic degrees. The marriage was arranged by Rao’s
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mother who was very progressive: she did not mind him marrying a highly educated
woman, although at that time such brides were generally not wanted in families with
eligible sons. Their marriage has been perfectly happy, which makes one wonder why the
(completely unarranged) marriages of other famous statisticians in Europe and America
(including ones repeatedly mentioned in this book) ended badly.

Rao’s contributions in statistics are now widely recognised. It was not so in the
beginning, particularly with the RB Theorem. Even in 1953, eight years after Rao’s
paper and five years after Blackwell’s, some statisticians were referring to the procedure
described in the theorem as ‘Blackwellisation’. When Rao pointed out that he was the first
to discover the result, a lecturer on this topic said that this term is easier on the tongue
than ‘Raoisation’. However, in a later paper the statistician in question proposed the term
‘Rao–Blackwellisation’ that is now used. On the issue of the CR inequality (the term
proposed by Neyman), Rao remembers a call from an airline employee at the Teheran
airport: ‘Good news, Mr Cramer Rao, we found your bag’, after a piece of his luggage
was lost on a flight.

Rao likes using humour in serious situations. In India, as in many countries, birth
control is an important issue, and providing women with reasons not to have too many
children is one of the perennial tasks of local and central administration. In one of his
articles on this topic, Rao points out that every fourth baby born in the world is Chinese
and then makes the following statement to his Indian audience: ‘Look before you leap
to your next baby, if you already have three. The fourth will be a Chinese!’ Hopefully,
some readers of this book will find this instructive in dealing with sample means� � �.

3.7 Exponential families

Sex, Lies and Exponential Families
(From the series ‘Movies that never made it to the Big Screen’.)

It is interesting to investigate when the equality in CR bound (3.39) is attained. Here
again, the CS inequality is crucial. We know that for equality we need functions g1 and
g2 to be linearly dependent: g1�x�=�g2�x�. Then∫

g1�x�g2�x�&�x�dx=�
∫
g2�x�

2&�x�dx�

In our case,
∫
g1�x�g2�x�&�x�dx= 1 and so

�=
[∫

g2�x�
2&�x�dx

]−1

= 1
nA���

�

Thus, we obtain the relation:

�∗�X�− �= 1
nA���

n∑
i=1

D�xi� ���
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or

�∗�X�= �+ 1
nA���

n∑
i=1

D�xi� ��=
1
n

n∑
i=1

[
�+ D�xi� ��

A���

]
�

The LHS of the last equation does not depend on �. Hence, each term �+D�xi� ��/A���

should be independent of �:

�+ D�x���

A���
=C�x��

In other words,

D�x���=A����C�x�− ��� �∈%� (3.42)

and the estimator �∗ has the summatory form:

�∗�x�= 1
n

n∑
i=1

C�xi�� (3.43)

Now solving equation (3.42):

#

#�
ln f�x
 ��=A��� 	C�x�− �
 �

where A���=B′′���, we obtain

ln f�x
 ��=B′���	C�x�− �
+B���+H�x��

Hence,

f�x
 ��= exp 	B′���	C�x�− �
+B���+H�x�
 � (3.44)

Such families (of PDFs or PMFs) are called exponential.
Therefore, the following statement holds:

Equality in the CR inequality is attained iff family �f�x
 ��� is exponential, i.e.
is given by equation (3.44), where B′′��� > 0. In this case the minimum MSE
estimator of � is given by (3.43) and its variance equals 1/�nB′′����. Thus the
Fisher information equals B′′���.

Example 3.14 Let Xi be IID N����2� with a given �2 and unknown �. Write c=
−	ln �2��2�
/2 (which is a constant as �2 is fixed). Then

ln f�x
��=− �x−��2

2�2
+ c= ��x−��

�2
+ �2

2�2
− x2

2�2
+ c�

We see that the family of PDFs f�
�� is exponential; in this case:

C�x�= x� B���= �2

2�2
� B′���= �

�2
�

A���= B′′���= 1
�2
� H�x�=− x2

2�2
+ c�

Note that here A��� does not depend on �.
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Hence, in the class of unbiased estimators �∗�x� such that

n∑
i=1

∫
�∗�x�

�xi −��

�2�2��2�n/2
exp

[
−∑

j

�xj −��2

2�2

]
dx= 1�

the minimum MSE estimator for � is

x= 1
n

∑
i

xi�

the sample mean, with Var X=�2/n. �

Example 3.15 If we now assume that Xi is IID N����2� with a given � and unknown
�2, then again the family of PDFs f�· 
�2� is exponential:

ln f�x
�2�=− 1
2�2

��x−��2 −�2�− 1
2
ln �2��2�− 1

2
�

with

C�x�= �x−��2� B��2�=−1
2
ln ��2�� B′��2�=− 1

2�2
�

A��2�=B′′��2�= 1
2

(
1
�2

)2

�

and H�x�=−	ln �2��+ 1
/2. We conclude that, in the class of unbiased estimators �∗�x�
such that

n∑
i=1

∫
�n
�∗�x�

�xi −��2 −�2

2�4�2��2�n/2
exp

[
−∑

j

�xj −��2

2�2

]
dx= 1�

the minimum MSE estimator for �2 is "2/n, where

"2 =∑
i

�xi −��2�

with Var �"2/n�= 2�4/n. �

Example 3.16 The Poisson family, with f��k�= e−��k/k!, is also exponential:

ln f��k�= k ln �− ln �k!�−�= �k−�� ln �+��ln �− 1�− ln �k!��
with

C�k�= k� B���=��ln �− 1�� B′���= ln �� A���=B′′���= 1
�
�

and H�k�=− ln �k!�. Thus the minimum MSE estimator is

�= 1
n

n∑
i=1

ki� with Var�= �

n
�

We leave it to the reader to determine in what class the minimum MSE is
guaranteed. �
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Example 3.17 The family where RVs Xi ∼Exp ��� is exponential, but relative to
�= 1/� (which is not surprising as �Xi = 1/�). In fact, here

f�x
 ��=
{
exp
[
−1
�
�x− ��− ln �− 1

]}
I�x> 0��

with

C�x�= x� B���=− ln �� B′���=−1
�
� A���=B′′���= 1

�2
� H�x�=−1�

Therefore, in the class of unbiased estimators �∗�x� of 1/�, with

n∑
i=1

∫
�n+
�∗�x���2xi −���n exp

(
−�∑

j

xj

)
dx= 1�

the sample mean x=∑i xi/n is the minimum MSE estimator, and it has Var X= �2/n=
1/�n�2�. �

An important property is that for exponential families the minimum MSE estimator
�∗�x� coincides with the MLE �̂�x�, i.e.

�̂�x�= 1
n

∑
i

C�xi�� (3.45)

More precisely, we write the stationarity equation as

#

#�
���
x�=

n∑
i=1

D�xi� ��f�x
 ��= 0�

which, under the condition that f�x
 ��> 0, becomes

n∑
i=1

D�xi� ��= 0� (3.46)

In the case of an exponential family, with

f�x
 ��= exp �B′���	C�x�− �
+B���+H�x�� �

we have

D�x���= #

#�
ln f�x
 ��=B′′����C�x�− ���

We see that if �∗ = �∗�x�=∑n
i=1C�xi�/n, then

D�xi� �
∗�=B′′��∗�	C�xi�− �∗
=B′′��∗�

[
C�xi�−

1
n

∑
j

C�xj�

]
�

and hence

n∑
i=1

D�xi� �
∗�=B′′��∗�

n∑
i=1

[
C�xi�−

1
n

∑
j

C�xj�

]
= 0�
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Thus minimum MSE estimator �∗ solves the stationarity equation. Therefore, if an expo-
nential family �f�x
 ��� is such that any solution to stationarity equation (3.29) gives a
global likelihood maximum, then �∗ is the MLE.

The CR inequality is named after C.H. Cramér (1893–1985), a prominent Swedish
analyst, number theorist, probabilist and statistician, and C.R. Rao. One story is that the
final form of the inequality was proved by Rao, then a young (and inexperienced) lecturer
at the Indian Statistical Institute, overnight in 1943 in response to a student enquiry about
some unclear places in his presentation.

3.8 Confidence intervals

Statisticians do it with 95% confidence.
(From the series ‘How they do it’.)

So far we developed ideas related to point estimation. Another useful idea is to consider
interval estimation. Here, one works with confidence intervals (CIs) (in the case of a
vector parameter � ∈�d, confidence sets like squares, cubes, circles or ellipses, balls,
etc.). Given � ∈ �0�1�, a 100�% CI for a scalar parameter � ∈% ⊆� is any pair of
functions a�x� and b�x� such that ∀ �∈% the probability

���a�X�≤ �≤ b�X��=�� (3.47)

We want to stress that: (i) the randomness here is related to endpoints a�x�<b�x�, not to
�, (ii) a and b should not depend on �. A CI may be chosen in different ways; naturally,
one is interested in ‘shortest’ intervals.

Confidence intervals regularly appear in the Tripos papers: MT-IB 1998-212E (this
problem requires further knowledge of the material and will be discussed later), 1995-
203G (i), 1993-203J, 1992-406D, and also SP-IB 1992-203H.

Example 3.18 The first standard example is a CI for the unknown mean of a normal
distribution with a known variance. Assume that Xi ∼ N����2�, where �2 is known and
�∈� has to be estimated. We want to find a 99% CI for �. We know that

√
n�X−��/� ∼

N�0�1�. Therefore, if we take z−<z+ such that��z+�−��z−�= 0�99, then the equation

�

(
z−<

√
n

�
�X−��< z+

)
= 0�99

can be re-written as

�

(
X− z+�√

n
<�<X− z−�√

n

)
= 0�99�

i.e. gives the interval(
X− z+�√

n
�X− z−�√

n

)
�

centred at X− �z− + z+��/�2
√
n� and of width �z+ − z−��/

√
n.
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We still have a choice of z− and z+; to obtain the shortest interval we would like to
choose z+ =−z− �= z, as the N(0,1) PDF is symmetric and has its peak at the origin.
Then the interval becomes(

X− z�√
n
�X+ z�√

n

)
�

and z will be the upper 0.005 point of the standard normal distribution, with ��a�=
1− 0�005= 0�995. From the normal percentage tables: z= 2�5758. Hence, the answer:(

X− 2�5758�√
n

�X+ 2�5758�√
n

)
� �

Example 3.19 The next example is to determine the CI for the unknown variance
of a normal distribution with a known mean. Assume that Xi ∼ N����2�, where �

is known and �2 > 0 has to be estimated. We want to find a 98% CI for �2. Then∑
i�Xi −��2/�2 ∼�2

n . Denote by F�2n the CDF ��X<x� of a RV X∼�2
n . Take h

−<h+

such that 
�2n �h
+�−
�2n �h

−�= 0�98. Then the condition

�

(
h−<

1
�2

(∑
i

�Xi −��2

)
<h+

)
= 0�98

can be re-written as

�

(∑
i�Xi −��2

h+ <�2<

∑
i�Xi −��2

h−

)
= 0�98�

This gives the interval(
1
h+
∑
i

�Xi −��2�
1
h−
∑
i

�Xi −��2

)
�

Again we have a choice of h− and h+; a symmetric, or equal-tailed, option is to
take F�2n �h

−�= 1− F�2n �h
+�= �1− 0�98�/2= 0�01. From the �2 percentage tables, for

n= 38� h− = 20�69� h+ = 61�16. See, for example, [LiS], pp. 40–41 (this is the standard
reference to statistical tables used in a number of examples and problems below). �

In Examples 3.18 and 3.19 we managed to find an RV Z= Z�T�X�� �� which is a
function of a sufficient statistic and the unknown parameter � (� in Example 3.18 and �2

in Example 3.19) and has a distribution not depending on this parameter. Namely,

Z=√
n�X−��/� ∼N�0�1� in Example 3.18

and

Z=∑
i

�Xi −��2/�2 ∼�2
n in Example 3.19�
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We then produced values y± such that ��y− <Z< y+�= � ��z±� in Example 3.18 and
h± in Example 3.19 and solved the equations Z�T���= y± to find roots

a�X�= a�T�X� y−�� and b�X�= b�T�X� y−���

The last step is not always straightforward, in which case various approximations may
be useful.

Example 3.20 In this (more challenging) example the above idea is, in a sense, pushed
to its limits. Suppose Xi∼Po ���, and we want to find a 100�% CI for �. Here we know
that nX∼Po �n��, which still depends on �. The CDF F =FX for X jumps at points k/n,
k= 0�1� � � � , and has the form

F �x
��= I�x≥ 0�
 nx"∑
r=0

e−n�
�n��r

r! � (3.48)

where, for y> 0,

 y"=
{
y− 1� y is an integer,
	 y 
� the integer part of y, if y is not integer.

It is differentiable and monotone decreasing in �:

#

#�
F�k/n���=−ne−n� �n��

k−1

�k− 1�! < 0�

Thus if we look for bounds a< �< b, it is equivalent to the functional inequalities
F�x�b� < F�x
�� < F�x
a�, ∀x> 0 of the form k/n, k= 1�2� � � � . We want a and b to
be functions of x, more precisely, of the sample mean x̄. The symmetric, or equal-tailed,
100�%-CI is with endpoints a�X� and b�X� such that

�
(
�≤ a�X�

)=�
(
�≥ b�X�

)= 1−�

2
�

Write

���>b�X��=��F�X
��<F�X
b�X��

and use the following fact (a modification of formula (2.57)):

If, for an RV X with CDF F and a function g ��→�, there exists a unique
point c ∈� such that F�c�= g�c�, F�y� < g�y� for y < c and F�y�≥ g�y� for
y≥ c, then

��F�X�< g�X��= g�c�� (3.49)

Next, by equation (3.48):

�
(
F
(
X
�

)
<F

(
X
b�X�

))=F

(
k

n

b

(
k

n

))
�
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provided that there exists k such that F�k/n
��=F�k/n
b�k/n��. In other words, if you
choose b= b�x̄� so that

 nx̄"∑
l=0

e−nb
�nb�l

l! = 1−�

2
� (3.50)

it will guarantee that ���>b�X��≤ �1−��/2.
Similarly, choosing a= a�x̄� so that

�∑
l=nx̄

e−na
�na�l

l! = 1−�

2
(3.51)

will guarantee that ��� < a�X��≤ �1− ��/2. Hence, �a�X�� b�X�� is the (equal-tailed)
100�% CI for �.

The distributions of a�X� and b�X� can be identified in terms of quantiles of the �2

distribution. In fact, ∀ k= 0�1� � � � ,

d
ds

∑
k≤l<�

e−s
sl

l! =
∑

k≤l<�

[
−e−s

sl

l! + e−s
sl−1

�l− 1�!
]
= e−s

sk−1

�k− 1�! = 2fY1�2s��

where Y1 ∼�2
2k. That is,

∑
k≤l<� e−ssl/l! =��Y1< 2s�. We see that

2na=h−
m− ��1−��/2� �

the lower �1−��/2-quantile of the �2-distribution with m− = 2nX degrees of freedom.
Similarly:

d
ds

∑
0≤l≤k

e−s
sl

l! =
∑

0≤l≤k

[
−e−s

sl

l! + e−s
sl−1

�l− 1�!
]
=−e−s

sk

k! =−2fY2�2s�

for Y2 ∼�2
2k+2. That is,

��Y2> 2s�= ∑
0≤l≤k

e−s
sl

l! �

It means that

2nb=h+
m+ ��1−��/2� �

the upper ��1+ ��/2�-quantile of the �2 distribution with m+ = 2nX + 2 degrees of
freedom.

These answers look cumbersome. However, for large n, we can think that

X∼N����/n�� i�e�
√
n/��X−��∼ N�0�1��

Then if we take �= 0�99 and, as before, −a− = a+ = 2�5758, we have that

�

(
a−<

√
n√
�
�X−��<a+

)
≈ 0�99�
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We can solve this equation for � (or rather
√
�). In fact, �X−��/

√
� decreases with �,

and from the equation

X−�√
�

= a±√
n

we find:

√
�∓ =

√
a2±
4n

+X− a±
2
√
n
� i.e.�∓ =

⎛⎝√a2±
4n

+X− a±
2
√
n

⎞⎠2

(the negative roots have to be discarded). Hence, we obtain that the probability

�

⎛⎝(√2�57582

4n
+X− 2�5758

2
√
n

)2

<�<

(√
2�57582

4n
+X+ 2�5758

2
√
n

)2
⎞⎠

is ≈ 0�99. Hence,⎛⎝(√2�57582

4n
+X− 2�5758

2
√
n

)2

�

(√
2�57582

4n
+X+ 2�5758

2
√
n

)2
⎞⎠

gives an approximate answer whose accuracy increases with n.
Confidence intervals for the mean of a Poisson distribution attracted particular attention

in many books, beginning with [P]. In this book, the term ‘confidence belt’ is used, to
stress that the data serve a range of values of both n and X. �

3.9 Bayesian estimation

Bayesian Instinct
Trading Priors

(From the series ‘Movies that never made it to the Big Screen’.)

A useful alternative to the above version of the estimation theory is where � is treated
as a random variable with values in % and some (given) prior PDF or PMF ����. After
observing a sample x, we can produce the posterior PDF or PMF ����x�. Owing to the
Bayes Theorem, ����x� is defined by

����x�∝����f�x
 ��� (3.52)

More precisely,

����x�= 1

f�x�
����f�x
 ��� (3.53)

where

f�x�=
∫
%
����f�x
 ��d� or

∑
�∈%

����f�x
 ���
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Pictorially speaking, (posterior) ∝ (prior) × (likelihood), where the constant of propor-
tionality is simply chosen to normalise the total mass to 1.

Remark Note that the likelihood f�x
 �� in equation (3.52) and (3.53) is considered as a
conditional PDF/PMF of X, given �. This is the Bayesian interpretation of the likelihood,
as opposed to the Fisherian interpretation where it is considered as a function of � for
fixed x.

In Examples 3.21–3.24 we calculate posterior distributions in some models.

Example 3.21 Let Xi ∼ Bin�m��� and the prior distribution for � is Bet �a� b� for
some known a�b:

����∝ �a−1�1− ��b−1I�0<�< 1�


see Example 3.5. Then the posterior is

����x�∝ �
∑
xi+a−1�1− ��nm−∑xi+b−1I�0<�< 1��

which is Bet �
∑

i xi + a�nm−∑i xi + b�= Bet �nx+ a�n�m− x�+ b�, with the propor-
tionality constant 1/B�nx+ a�n�m− x�+ b�. In other words, a Beta prior generates a
Beta posterior. One says that the Beta family is conjugate for binomial samples. �

The Unbelievable Conjugacy of Beta
(From the series ‘Movies that never made it to the Big Screen’.)

Example 3.22 The Beta family is also conjugate for negative binomial samples, where
Xi ∼NegBin �r� ��, with known r . In fact, here the posterior

����x�∝ �nr+a−1�1− ��nx+b−1�

i.e. is Bet �nr + a�nx+ b�. �

Example 3.23 Another popular example of a conjugate family is Gamma, for Poisson
or exponential samples. Indeed, if Xi∼ Po ��� and � ��� ∝ ��−1e−�/�, then the posterior

����x�∝�nx+�−1e−���n+1�/�

has the PDF Gam �� + nx� �n�+ 1�/��.
Similarly, if Xi ∼ Exp ��� and � ��� ∝ ��−1e−��, then the posterior

����x�∝�n+�−1e−��nx+��

again has the PDF Gam �� + n�nx+��. �
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Example 3.24 The normal distributions also emerge as a conjugate family. Namely,
assume that Xi ∼N����2� where �2 is known, and ����∝ exp

[−��− a�2/�2b2�
]
, for

some known a∈� and b> 0. Then, by using the solutions to Problems 2.42 and 2.43,
posterior � ���x� is

∝ exp
[
−1
2

(
n

�2
+ 1
b2

)
�2 +

(
a

b2
+ nx

�2

)
�

]
∝ exp

[
− 1

2b21
��− a1�

2

]
�

where

b21 =
(
1
b2

+ n

�2

)−1

and a1 = b21

(
a

b2
+ nx

�2

)
�

See MT-IB 1998-403E, 1997-212G. �

A further step is to introduce a loss function (LF) measuring the loss incurred in
estimating a given parameter �. This is a function L���a�, ��a∈%, where � is the true
and a is the guessed value. For instance, a quadratic LF is L���a�= ��−a�2, an absolute
error LF is L���a�= ��− a� etc.

We then consider the posterior expected loss

R�x� a�=
∫
%
����x�L���a�d� or ∑

�∈%
����x�L���a�� (3.54)

while guessing value a. We want to choose â= â�x� minimising R�x� a�:

â= arg min
a

R�x� a�� (3.55)

The minimiser, â, is called an optimal Bayes estimator, or optimal estimator for short.
(Some authors say ‘optimal point estimator’.) For the quadratic loss,

R�x� a�=
∫
%
����x���− a�2d��

By differentiation, R�x� a� is minimised at

â=
∫
%
�����x�d��

i.e. at the posterior mean ����x�. Furthermore, the minimal value of the posterior expected
loss is

min
a

R�x� a�=R�x� â�=
∫
	�−����x�
2����x�d��

i.e. equals �	��−����x��2�x
, the posterior variance. For the absolute error loss,

R�x� a�=
∫
%
����x���− a�d�=

∫ a

−�
����x��a− ��d�+

∫ �

a
����x���− a�d�
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which is minimised at the posterior median, i.e. the value â for which∫ a

−�
����x�d�=

∫ �

â
����x�d�= 1/2�

A straightforward but important remark is that, in general, â�x� also minimises the
unconditional expected loss among all estimators d � x→%. Here, it is instructive to
slightly change the terminology: an estimator is considered as a decision rule (you observe
x and decide that the value of the parameter is d�x�). Given a value � and a decision rule
d, the quantity

r���d�=��L���d�X��=
⎧⎨⎩
∑
x
L���d�x��f�x
 ���∫
L���d�x��f�x
 ��dx�

represents the risk under decision rule d when the parameter value is �. We want to
minimise the Bayes risk

rB�d�=
∫
%
r���d�����d� or

∑
%

r���d������ (3.56)

The remark is that

â= arg min
d
rB�d�� (3.57)

For that reason, the optimal Bayes estimator is also called the optimal rule.
Formally, in equation (3.55) you minimise for every given x while in (3.57) you

minimise the sum or the integral over all values of x. It is important to see that both
procedures lead to the same answer. The above remark asserts the minimiser in equa-
tion (3.55) yields the minimum of rB�d�. But what about the inverse statement that every
decision rule minimising rB�d� coincides with the optimal Bayes estimator? This is also
true: by changing the order of summation/integration over x and �, write

r���d�=
∫

������x��L���d�x��f�x�dx or
∑
x

�����x�L���d�x��f�x�� (3.58)

Here f�x� is the marginal PDF/PMF of X:

f�x�=∑
%

����f�x
 ��=
∫
%
����f�x
 ��d��

and ����x� is posterior PDF/PMF of � for given x.
Because f�x�≥0, the minimum in d of the sum/integral on the RHS of equation (3.58)

can only be achieved when summands or values of the integrand �����x�L���d�x�� attain
their minima in d. But this exactly means that the minimising decision rule equals â.

In Examples 3.25–3.27 we calculate Bayes’ estimators in some models.
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Example 3.25 A standard example is where Xi ∼ N����2�, �2 known and the prior
for � is N�0� �2�, with known �2> 0. For the posterior, we have

����x�∝����f�x
��∝ exp

[
− 1
2�2

∑
i

�xi −��2

]
× exp

[
− �2

2�2

]

∝ exp

⎡⎢⎣−1
2

(
n

�2
+ 1
�2

)⎛⎝�−
∑
i

xi/�
2

n/�2 + �−2

⎞⎠2
⎤⎥⎦ �

That is

����x�∼N
(

nx�2

n�2 +�2
�

�2�2

n�2 +�2

)
�

The mean of a normal distribution equals its median. Thus under both quadratic and
absolute error LFs, the optimal Bayes estimator for � is

nx�2

n�2 +�2
�

If the prior is N�$� �2� with a general mean $, then the Bayes estimater for � under
both the quadratic and absolute error loss is

$�2 + nx�2

n�2 +�2
� �

Example 3.26 Next, let Xi ∼ Po ���, where the prior for � is exponential, of known
rate �> 0. The posterior

����x�∝ e−n��nxe−��

is Gam �nx+ 1� n+ ��. Under the quadratic loss, the optimal Bayes estimator is

nx+ 1
n+ �

�

On the other hand, under the absolute error loss the optimal Bayes estimator equals the
value �̂ > 0 for which

�n+ ��nx+1

�nx�!
∫ �̂

0
�nxe−�n+���d�= 1

2
� �

Example 3.27 It is often assumed that the prior is uniform on a given interval. For
example, suppose X1� � � � �Xn are IID RVs from a distribution uniform on ��− 1� �+ 1�,
and that the prior for � is uniform on �a� b�. Then the posterior is

����x�∝ I�a<�<b�I�max xi − 1<�<min xi + 1�

= I�a∨ �max xi − 1�< �<b∧ �min xi + 1���
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where � ∨  =max 	�� 
� � ∧  =min 	�� 
. So, the posterior is uniform over this
interval. Then the quadratic and absolute error LFs give the same Bayes estimator:

�̂= 1
2
	a∨ �max xi − 1�+ b∧ �min xi + 1�
�

Another example is where � is uniform on (0,1) and X1� � � � �Xn take two values, 0
and 1, with probabilities � and 1− �. Here, the posterior is

����x�∝ �nx�1− ��n−nx�

i.e. the posterior is Bet �nx+ 1� n− nx+ 1�:

����x�∝����f�x
 ��= �nx�1− ��n−nx∫ 1
0 d̃� �̃nx�1− �̃�n−nx

�0<�< 1�

So, for the quadratic loss ����d�= ��−d�2, the optimal Bayes estimator is given by

d̂=
∫ 1
0 d��t+1�1− ��n−t∫ 1
0 d��t�1− ��n−t

= �t+ 1�!�n− t�!�n+ 1�!
�n+ 2�!t!�n− t�! = t+ 1

n+ 2
�

Here t �=∑i xi, and we used the identity∫ 1

0
xm−1�1− x�n−1dx= �m− 1�!�n− 1�!/�m+ n− 1�!

which is valid for all integers m and n. �

Calculations of Bayes’ estimators figure prominently in the Tripos questions. See MT-
IB 1999-112D (ii), 1998-403E, 1997-212G, 1996-203G (ii), 1995-103G (ii), 1993-403J
(needs further knowledge of the course).

Next, we remark on another type of LF, a 0�1-loss where L���a�= 1− ���a equals 0
when �=a and 1 otherwise. Such a function is natural when the set % of possible values
of � is finite. For example, assume that % consists of two values, say 0 and 1. Let the
prior probabilities be p0 and p1 and the corresponding PMF/PDF f0 and f1. The posterior
probabilities ���x� are

��0�x�= p0f0�x�
p0f0�x�+p1f1�x�

� ��1�x�= p1f1�x�
p0f0�x�+p1f1�x�

�

and the Bayes’ estimator â, with values 0 and 1, should minimise the expected posterior
loss R�x� a�=��1− a�x�� a= 0�1. That is

â�= â�x��=
{
0� if ��0�x�>��1�x��
1� if ��1�x�>��0�x�


in the case ��0�x�=��1�x� any choice will give the same expected posterior loss 1/2. In
other words,

â=
{
1
0

when
��1�x�
��0�x� =

p1f1�x�
p0f0�x�

>

<
1� i.e.

f1�x�
f0�x�

>

<
k= p0

p1

� (3.59)
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We see that the ‘likelihood ratio’ f1�x�/f0�x� is conspicuous here; we will encounter it
many times in the next chapter.

To conclude the theme of Bayesian estimation, consider the following model. Assume
RVs X1,…, Xn have Xi ∼Po ��i�:

f�x
 �i�=
�xi
x! e

−�i � x= 0�1� � � ��

Here, parameter �i is itself random, and has a CDF B (on �+ = �0���). We want to
estimate �i. A classical application is where Xi is the number of accidents involving driver
i in a given year.

First, if we know B, then the estimator Ti�X� of �i minimising the mean square error
��Ti − �i�

2 does not depend on Xj with j �= i:

Ti�X�=T�Xi��

Here,

T�x�=
∫
�f�x
 ��dB���/g�x�

and

g�x�=
∫
f�x
 ��dB����

Substituting the Poisson PMF for f�x
 �� yields

T�x�= �x+ 1�
g�x+ 1�
g�x�

� x= 0�1� � � ��

Hence,

Ti�X�= �Xi + 1�
g�Xi + 1�
g�Xi�

� (3.60)

But what if we do not know B and have to estimate it from sample �X�?
A natural guess is to replace B with its sample histogram

B̂���= 1
n
#�i � Xi < ��� �≥ 0�

jumping at integer point x by amount b̂�x�= nx/n, where

nx = #�i � Xi = x�� x= 0�1� � � �� (3.61)

Then substitute b̂�x� instead of g�x�. This yields the following estimator of �i:

T̂i�X�= �Xi + 1�
nXi+1

nXi
� (3.62)
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This idea (according to some sources, it goes back to British mathematician A. Turing
(1912–1954)) works surprisingly well. See [E2], [LS]. The surprise is that estimator T̂i
uses observations Xj , j �= i, that have nothing to do with Xi (apart from the fact that
they have Poisson PMF and the same prior CDF). This observation was a starting point
for the so-called empirical Bayes methodology developed by H. Robbins (1915–2001),
another outstanding American statistician who began his career in pure mathematics. Like
J.W. Tukey, Robbins did his Ph.D. in topology. In 1941 he and R. Courant published
their book [CouR], which has remained a must for anyone interested in mathematics until
the present day. Robbins is also credited with a number of aphorisms and jokes (one of
which is ‘Not a single good deed shall go unpunished.’).

Robbins used formula (3.62) to produce a reliable estimator of the number S0 of acci-
dents incurred in the next year by the n0 drivers who did not have accidents in the observed
year. It is clear that 0 is an underestimate for S0 (as it assumes that future is the same
as past). On the other hand, n0 =

∑
i∈�+ ini gives an overestimate, since X0 did not con-

tribute to the sum
∑

i ini. A good estimator of S0 is X1, the number of drivers who recorded
a single accident. In general, �i+ 1�ni+1 accurately estimates Si, the number of accidents
incurred in the future year by the ni drivers who recorded i accidents in the observed year.

Robbins introduced the term ‘the number of unseen, or missing, species’. For example,
one can count the number nx of words used exactly x times in Shakespeare’s known
literary canon, x= 1�2� � � � ; this gives Table 3.5 (see [ETh1]).

Table 3.5.

x nx

1 2 3 4 5 6 7 8 9 10

0+ 14376 4343 2292 1463 1043 837 638 519 430 364
10+ 305 259 242 223 187 181 179 130 127 128
20+ 104 105 99 112 93 74 83 76 72 63

So, 14 376 words appeared just once, 4343 twice, etc. In addition, 2387 words
appeared more than 30 times each. The total number of distinct words used in the canon
equals 31 534 (in this counting, words ‘tree’ and ‘trees’ count separately). The missing
species here are words that Shakespeare knew but did not use; let their number be n0.
Then the total number of words known to Shakespeare is, obviously, n= 31534+ n0.
The length of the canon (the number of words counted with their multiplicities) equals
N = 884 647.

Assume as before that Xi, the number of times word i appears in the canon, is
∼ Po��i�, where �i is random. Again, if CDF B of � is known, the posterior expected
value ���i�Xi= x� of �i gives the estimator minimising the mean square error and equals

�x+ 1�
g�x+ 1�
g�x�

� (3.63)
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where

g�x�=
∫ �x

x! e
−�dB���� x= 0�1� � � ��

If B is unknown, we substitute the (still unknown) histogram

B̂���= 1
n
#�i � �i < ��� �≥ 0�

The estimator of �i then becomes

�̂��i�Xi = x�= �x+ 1�
nx+1

nx
� (3.64)

For x= 1, it gives the following value for the expectation

Ê��i�Xi = 1�= 2× 4343
14374

= 0�604�

We immediately conclude that the single-time words are overrepresented, in the sense
that if somewhere there exists a new Shakespeare canon equal in volume to the present
one then the 14 378 words appearing once in the present canon will appear in the new
one only 0�604× 14376= 8683 times.

Next, set

r0 =
n∑
i=1

�i1�Xi = 0�

/
n∑
i=1

�i�

The numerator is estimated by

Ê��i�Xi = 0�n0 =
n1
n0
n0 = n1 = 14376

and the denominator by N = 884647. Then

r̂0 =
14376
884647

= 0�016�

So, with a stretch of imagination one deduces that, should a new Shakespearean text
appear, the probability that its first word will not be from the existing canon is 0�016;
the same conclusion holds for the second word, etc. In fact, in 1985 the Bodleian Library
in Oxford announced the discovery of a previously unknown poem that some experts
attributed to Shakespeare. The above analysis was applied in this case [ETh2] and gave
an interesting insight.



4 Hypothesis testing

4.1 Type I and type II error probabilities. Most powerful tests

Statisticians do it with only a 5% chance of being rejected.
(From the series ‘How they do it’).

Testing statistical hypothesis, or hypotheses testing, is another way to make a judgement
about the distribution (PDF or PMF) of an ‘observed’ random variable X or a sample

X=
⎛⎜⎝X1
���

Xn

⎞⎟⎠ �

Traditionally, one speaks here about null and alternative hypotheses. The simplest case is
where we have to choose between two possibilities: the PDF/PMF f of X is f0 or f1. We
say that f = f0 will represent a simple null hypothesis and f = f1 a simple alternative.
This introduces a certain imparity between f0 and f1, which will also be manifested in
further actions.

Suppose the observed value of X is x. A ‘scientific’ way to proceed is to partition the
set of values of X (let it be �) into two complementary domains, � and � =� \ � , and
reject H0 (i.e. accept H1) when x ∈ � while accepting H0 when x ∈ � . The test then is
identified with domain � (called a critical region). In other words, we want to employ a
two-valued decision function d (the indicator of set �) such that when d�x�= 1 we reject
and when d�x�= 0 we accept the null hypothesis.

Suppose we decide to worry mainly about rejecting H0 (i.e. accepting H1) when H0 is
correct: in our view this represents the principal danger. In this case we say that a type I
error had been committed, and we want errors of this type to be comfortably rare. A less
dangerous error would be of type II: to accept H0 when it is false (i.e. H1 takes place): we
want it to occur reasonably infrequently, after the main goal that type I error is certainly
rare has been guaranteed. Formally, we fix a threshold for type I error probability (TIEP),
�∈ �0�1�, and then try to minimise the type II error probability (TIIEP).

In this situation, one often says that H0 is a conservative hypothesis, not to be rejected
unless there is a clear evidence against it.

For example, if you are a doctor and see your patient’s histology data, you say the
hypothesis is that the patient has a tumour while the alternative is that he/she hasn’t. Under

242
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H1 (no tumour), the data should group around ‘regular’ average values whereas under H0

(tumour) they drift towards ‘abnormal’ ones. Given that the test is not 100% accurate,
the data should be considered as random. You want to develop a scientific method of
diagnosing the disease. And your main concern is not to miss a patient with a tumour
since this might have serious consequences. On the other hand, if you commit a type II
error (alarming the patient falsely), it might result in some relatively mild inconvenience
(repeated tests, possibly a brief hospitalisation).

The question then is how to choose the critical region � . Given � , the TIEP equals

�0���=
∫
f0�x�I�x∈��dx or

∑
x

f0�x�I�x∈��� (4.1)

and is called the size of the critical region � (also the size of the test). Demanding that
probability �0��� does not exceed a given � (called the significance level) does not
determine C uniquely: we can have plenty of such regions. Intuitively, C must contain
outcomes x with small values of f0�x�, regardless of where they are located. But we want
to be more precise. For instance, if PDF f0 in H0 is N��0��

2
0 �, could C contain points

near the mean-value �0 where PDF f0 is relatively high? Or should it be a half-infinite
interval ��0 + c��� or �−���0 − c� or perhaps the union of the two? For example, we
can choose c such that the integral

1√
2��0

∫ �

�0+c
e−�x−�0�

2/2�2
0 dx or

1√
2��0

∫ �0−c

−�
e−�x−�0�

2/2�2
0 dx

or their sum is ≤�. In fact, it is the alternative PDF/PMF, f1, that narrows the choice of
� (and makes it essentially unique), because we wish the TIIEP

�1���=
∫
f1�x�I�x �∈��dx or

∑
x

f1�x�I�x �∈�� (4.2)

to be minimised, for a given significance level. The complementary probability

�1���=
∫
f1�x�I�x∈��dx or

∑
x

f1�x�I�x∈�� (4.3)

is called the power of the test; it has to be maximised.
A test of the maximal power among tests of size ≤� is called a most powerful (MP) test

for a given significance level �. Colloquially, one calls it an MP test of size � (because
its size actually equals � as will be shown below).

4.2 Likelihood ratio tests. The Neyman–Pearson Lemma and beyond

Statisticians are in need of good inference
because at young age many of their hypotheses were rejected.

(From the series ‘Why they are misunderstood’.)
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A natural (and elegant) idea is to look at the likelihood ratio (LR):

'H1�H0
�x�= f1�x�

f0�x�
� (4.4)

If, for a given x, 'H1�H0
�x� is large, we are inclined to think that H0 is unlikely, i.e. to

reject H0; otherwise we do not reject H0. Then comes the idea that we should look at
regions of the form{

x � 'H1�H0
�x�> k

}
(4.5)

and choose k to adapt to size �. The single value x∈� can be replaced here by a vector
x= �x1� � � � � xn�∈�n, with f0�x�=

∏
f0�xi� and f1�x�=

∏
f1�xi�. Critical region � then

becomes a subset of �n.
This idea basically works well, as is shown in the famous Neyman–Pearson (NP)

Lemma below. This statement is called after J. Neyman and E.S. Pearson (1895–1980),
a prominent UK statistician. Pearson was the son of K. Pearson (1857–1936), who is
considered the creator of modern statistical thinking. Both father and son greatly influenced
the statistical literature of the period; their names will repeatedly appear in this part of
the book.

It is interesting to compare the lives of the authors of the NP Lemma. Pearson spent all
his active life at the University College London, where he followed his father. On the other
hand, Neyman lived through a period of civil unrest, revolution and war in parts of the
Russian Empire. See [Rei]. In 1920, as a Pole, he was jailed in the Ukraine and expected a
harsh sentence (there was war with Poland and he was suspected of being a spy). He was
saved after long negotiations between his wife and a Bolshevik official who in the past
had been a medical student under the supervision of Neyman’s father-in-law; eventually
the Neymans were allowed to escape to Poland. In 1925 Neyman came to London and
began working with E.S. Pearson. One of their joint results was the NP Lemma.

About his collaboration with Pearson, Neyman wrote: ‘The initiative for cooperative
studies was Pearson’s. Also, at least during the early stages, he was the leader. Our
cooperative work was conducted through voluminous correspondence and at sporadic get-
togethers, some in England, others in France and some others in Poland. This cooperation
continued over the decade 1928–38.’

The setting for the NP Lemma is as follows. Assume H0: f = f0 is to be tested against
H1: f = f1, where f1 and f0 are two distinct PDFs/PMFs. The NP Lemma states:

∀ k> 0, the test with the critical region � = �x � f1�x�>kf0�x�� has the highest
power �1��� among all tests (i.e. critical regions �

∗) of size �0��
∗�≤�=�0���.

In other words, the test with � = �f1�x� > kf0�x�� is MP among all tests of significance
level �=�0���. Here � appears as a function of k: �=��k�� k> 0.

Proof. Writing I� and I�∗ for the indicator functions of � and �∗, we have

0≤ [I��x�− I�∗�x�
][
f1�x�− kf0�x�

]
�
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as the two brackets never have opposite signs (for x∈� : f1�x�>kf0�x� and I��x�≥ I�∗�x�
while for x �∈� : f1�x�≤ kf0�x� and I��x�≤ I�∗�x�). Then

0≤
∫ [

I��x�− I�∗�x�
][
f1�x�− kf0�x�

]
dx�

or

0≤∑
x

[
I��x�− I�∗�x�

][
f1�x�− kf0�x�

]
�

But the RHS here equals

�1���−�1��
∗�− k	�0���−�0��

∗�
�

So

�1���−�1��
∗�≥ k	�0���−�0��

∗�
�

Thus, if �0��
∗�≤�0���, then �1��

∗�≤�1���. �

The test with � = �x � f1x� > kf0�x�� is often called the likelihood ratio (LR) test or
the NP test.

The NP Lemma (either with or without the proof) and its consequences are among the
most popular Tripos topics in Cambridge University IB Statistics. See MT-IB 1999-203D,
1999-212D, 1998-112E, 1996-403G (i), 1995-403G (i), 1993-103J (i, ii).

Remark (1) The statement of the NP Lemma remains valid if the inequality f1�x� >
kf0�x� is replaced by f1�x�≥ kf0�x�.

(2) In practice, we have to solve an ‘inverse’ problem: for a given �∈ �0�1� we want
to find an MP test of size ≤ �. That is we want to construct k as a function of �, not
the other way around. In all the (carefully selected) examples in this section, this is not a
problem as the function k �→��k� is one-to-one and admits a bona fide inversion k=k���.
Here, for a given � we can always find k>0 such that ����=� for � = �f1�x�>kf0�x��
(and finding such k is a part of the task).

However, in many examples (especially related to the discrete case), the NP test may
not exist for every value of size �. To circumvent this difficulty, we have to consider more
general randomised tests in which the decision function d may take not only values 0, 1,
but also intermediate values from �0�1�. Here, if the observed value is x, then we reject
H0 with probability d�x�. (As a matter of fact, the ‘randomised’ NP Lemma guarantees
that there will always be an MP test in which d takes at most three values: 0, 1 and
possibly one value between.)

To proceed formally, we want first to extend the concept of the TIEP and TIIEP. This
is a straightforward generalisation of equations (4.1) and (4.2):

�0�d�=
∫
d�x�f0�x�dx or

∑
x

d�x�f0�x� (4.6)
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and

�1�d�=
∫
	1−d�x�
f1�x�dx or

∑
x

	1−d�x�
f1�x�� (4.7)

The power of the test with a decision function d is

�1�d�=
∫
d�x�f1�x�dx or

∑
x

d�x�f1�x�� (4.8)

Then, as before, we fix �∈ �0�1� and consider all randomised tests d of size ≤�, looking
for the one amongst them which maximises �1�d�.

In the randomised version, the NP Lemma states:

For any pair of PDFs/PMFs f0 and f1 and �∈ �0�1�, there exist unique k> 0
and �∈ 	0�1
 such that the test of the form

dNP�x�=

⎧⎪⎪⎨⎪⎪⎩
1� f1�x�> kf0�x��

�� f1�x�= kf0�x��

0� f1�x�< kf0�x��

(4.9)

has �0�dNP�=�. This test maximises the power among all randomised tests of
size �:

�1�dNP�=max 	�1�d
∗� � �0�d

∗�≤�
 � (4.10)

That is dNP is the MP randomised test of size ≤� for H0: f = f0 against H1:
f = f1.

As before, the test dNP described in formula (4.9) is called the (randomised) NP test. We
want to stress once more that constant � may (and often does) coincide with 0 or 1, in
which case dNP becomes non-randomised.

The proof of the randomised NP Lemma is somewhat longer than in the non-randomised
case, but still quite elegant. Assume first that we are in the continuous case and work
with PDFs f0 and f1 such that ∀ k> 0∫

f0�x�I �f1�x�= kf0�x��dx= 0� (4.11)

In this case value � will be 0.
In fact, consider the function

G � k �→
∫
f0�x�I �f1�x�> kf0�x��dx�

Then G�k� is monotone non-increasing in k, as the integration domain shrinks with k.
Further, function G is right-continuous: limr↘k+G�r� =G�k� ∀ k > 0. In fact, when
r↘ k+,

I �f1�x�> rf0�x��↗ I �f1�x�> kf0�x�� �
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as every point x with f1�x� > kf0�x� is eventually included in the (expanding) domains
�f1�x�>rf0�x��. The convergence of the integrals is then a corollary of standard theorems
of analysis. Moreover, in a similar fashion one proves that G has left-side limits. That is

G�k−�= lim
l↗k−

G�l�

exists ∀ k> 0 and equals∫
f0�x�I �f1�x�≥ kf0�x��dx�

Under assumption (4.11), the difference

G�k−�−G�k�=
∫
f0�x�I �f1�x�= kf0�x��dx

vanishes, and G is continuous. Finally, we observe that

G�0+�= lim
k→0+

G�k�= 1� G���= lim
k→�

G�k�= 0� (4.12)

Hence G crosses every level � ∈ �0�1� at some point k= k��� (possibly not unique).
Then the (non-randomised) test with

dNP�x�=
{
1� f1�x�> kf0�x��
0� f1�x�≤ kf0�x�

has size �0�d�=G�k�=� and fits formula (4.9) with �= 0.
This is the MP test of significance level �. In fact, let d∗ be any other (possibly

randomised) test of size �0�d
∗�≤�. We again have that ∀ x

0≤ 	dNP�x�−d∗�x�
	f1�x�− kf0�x�
� (4.13)

since if dNP�x�=1, then both brackets are ≥0 and if dNP�x�=0, they are both ≤0. Hence,

0≤
∫
	dNP�x�−d∗�x�
	f1�x�− k���f0�x�
dx�

but the RHS again equals �1�d�−�1�d
∗�− k	�0�d�−�0�d

∗�
. This implies that

�1�d�−�1�d
∗�≥ k	�0�d�−�0�d

∗�
� i.e.�1�d�≥�1�d
∗�

if �0�d�≥�0�d
∗�.

We are now prepared to include the general case, without assumption (4.11). Again
consider the function

G � k �→
∫
f0�x�I �f1�x�> kf0�x��dx or

∑
x

f0�x�I �f1�x�> kf0�x�� � (4.14)

It is still monotone non-decreasing in k, right-continuous and with left-side limits. (There
exists a convenient French term ‘càdlàg’ (continue à droite, limits à gauche).) Also,
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equation (4.12) holds true. However, the difference G�k−�−G�k� may be positive, as it
equals the integral or the sum∫

f0�x�I �f1�x�= kf0�x��dx or
∑
x

f0�x�I �f1�x�= kf0�x��

that do not necessarily vanish. It means that, given �∈ �0�1�, we can only guarantee that
∃ k= k���> 0 such that

G�k−�≥�≥G�k��

If G�k−�=G�k� (i.e. G is continuous at k), the previous analysis is applicable. Other-
wise, set

�= �−G�k�

G�k−�−G�k�
� (4.15)

Then � ∈ 	0�1
, and we can define the test dNP by formula (4.9). (If �= 0 or 1, dNP is
non-randomised.) See Figure 4.1.

The size

�0�dNP�=
∫
f0�x�dNP�x�dx

equals ∫
f0�x�I

(
f1�x�> kf0�x�

)
dx+�

∫
f0�x�I

(
f1�x�= kf0�x�

)
dx

=G�k�+ �−G�k�

G�k−�−G�k�
�G�k−�−G�k��=��

It remains to check that dNP is the MP test of size ≤ �. This is done as before, as
inequality (4.13) still holds.

There is a useful corollary of the randomised NP Lemma:

If d�x� is an MP test of size �=�0�d�. Then its power  =�1�d� cannot be less
than �.

k

1

G(k)

α
G(k–)

Figure 4.1
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Proof. In fact, consider a (randomised) test with d∗�x�≡�. It has �0�d
∗�=�= �1�d

∗�.
As d is MP,  ≥�1�d

∗�=�. �

NP tests work for some problems with composite (i.e. not simple) null hypotheses and
alternatives. A typical example of composite hypotheses is where %=�� H0: �≤ �0 and
H1: �> �0 for some given �0. Quite often one of H0 and H1 is simple (e.g. H0: �= �0)
and the other composite (�>�0 or �<�0 or � �= �0).

A general pair of composite hypotheses is H0: �∈%0 against H1: �∈%1, where %0 and
%1 are disjoint parts of the parameter set %. To construct a test, we again design a critical
region � ⊂�n such that H0 is rejected when x∈ � . As in the case of simple hypotheses,
the probability

�����=���reject H0�� �∈%0� (4.16)

is treated as TIEP. Similarly, the probability

�����=���accept H0�� �∈%1� (4.17)

is treated as the TIIEP, while

�����=���reject H0�� �∈%1� (4.18)

is treated as the power of the test with critical region � . Here, they all are functions of
�, either on %0 or on %1. (In fact, equations (4.16) and (4.18) specify the same function
� �→����� considered on a pair of complementary sets %0 and %1.)

To state the problem, we adopt the same idea as before. Namely, we fix a significance
level �∈ �0�1� and look for a test (i.e. a critical region) such that: (i)

�����≤�� �∈%0� (4.19)

(ii) ∀ test with critical region �∗ satisfying condition (4.19),

�����≥����
∗�� �∈%1� (4.20)

Such a test is called uniformly most powerful (UMP) of level � (for testing H0: � ∈%0

against H1 � �∈%1).
An important related concept is a family of PDFs/PMFs f� · 
 ��� � ∈%⊆�, with a

monotone likelihood ratio (MLR). Here, we require that for any pair �1� �2 ∈% with
�1<�2,

'�2��1
�x�= f�x
 �2�

f�x
 �1�
= g�2��1�T�x��� (4.21)

where T is a real-valued statistic (i.e. a scalar function depending on x only) and g�2��1�y� is
a monotone non-decreasing function (g�2��1�y�≤ g�2��1�y

′� when y≤ y′). In this definition,
we can also require that g�2��1�y� is a monotone non-increasing function of y; what is
important is that the direction of monotonicity is the same for any �1<�2.
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Example 4.1 A hypergeometric distribution Hyp�N�D�n�. You have a stack of
N items and select n of them at random, n≤ N , for a check, without replacement. If
the stack contains D ≤ N defective items, the number of defects in the selected sam-
ple has the PMF

fD�x�=

(
D

x

)(
N −D

n− x

)
(
N

n

) � x=max	0� n+D−N
� � � � �min 	D�n
� (4.22)

Here, �=D. The ratio

fD+1�x�

fD�x�
= D+ 1
N −D

N −D− n+ x

D+ 1− x

is monotone increasing in x; hence we have an MLR family, with T�x�= x.
The hypergeometric distribution has a number of interesting properties and is used in

several areas of theoretical and applied probability and statistics. In this book it appears
only in this example. However, we give below a useful equation for the PGF �sX of an
RV X∼ Hyp(N, D, n):

�sX =
min	n�D
∑
k=0

�−D�k�−n�k
�−N�k

�1− s�k

k!
In this formula, 0≤max	n�D
≤N , and �a�k is the so-called Pochhammer symbol: �a�k=
a�a+1� · · · �a+k−1�. The series on the RHS can be written as 2F1�−D�−n
−N
1− s�,
or 2F1

(
−D�
−N


−n
1−s
)
, where 2F1 is the Gauss hypergeometric function. In [GriS2], a different

(and elegant) recipe is given for calculating the PGF of Hyp(N, D, n).
Amazingly, in many books the range of the hypergeometric distribution (i.e. the set of

values of x for which fD�x�> 0) is presented in a rather confusing (or perhaps, amusing)
fashion. In particular, the left hand end �n+D−N�+ =max	0� n+D−N
 is often not
even mentioned (or worse, replaced by 0). In other cases, the left and right hand ends
finally appear after an argument suggesting that these values have been learned only in
the course of writing (which is obviously the wrong impression). �

Example 4.2 A binomial distribution Bin �n� ��. Here, you put the checked item back
in the stack. Then

f�x
 ��=
(
n

x

)
�x�1− ��n−x� x= 0�1� � � � � n�

where �=D/N ∈ 	0�1
. This is an MLR family, again with T�x�= x. �

Example 4.3 In general, any family of PDFs/PMFs of the form

f�x
 ��=C���H�x� exp 	Q���R�x�
 �
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where Q is a strictly increasing or strictly decreasing function of �, has an MLR. Here,

f�x
 �2�
f�x
 �1�

= C��2�
n

C��1�
n
exp

[
�Q��2�−Q��1��

∑
i

R�xi�

]
�

which is monotone in T�x�=∑i R�xi�. In particular, the family of normal PDFs with a
fixed variance has an MLR (with respect to �=�∈�) as well as the family of normal
PDFs with a fixed mean (with respect to �=�2> 0). Another example is the family of
exponential PDFs f�x
 ��= �e−�xI�x≥ 0�� �> 0. �

Example 4.4 Let X be an RV and consider the null hypothesis H0 �X∼N�0�1� against
H1 � X ∼ f�x�= 1

4 e
−�x�/2 (double exponential). We are interested in the MP test of size

���< 0�3.
Here we have

f�x�H1�/f�x�H0�=C exp
[
1
2
�x2 − �x��

]
�

So f�x�H1�/f�x�H0�>K iff x2 − �x�>K′ iff �x�> t or �x�< 1− t, for some t > 1/2.
We want �=�H0

��X�> t�+�H0
��X�< 1− t� to be < 0�3. If t≤ 1,

�H0
��X�> t�≥�H0

��X�> 1�= 0�3174>��

So, we must have t > 1 to get

�=PH0
��X�> t�=��−t�+ 1−��t��

So, t=�−1�1−�/2�, and the test rejects H0 if �X�> t. The power is

�H1
��X�> t�= 1− 1

4

∫ t

−t
e−�x�/2dx= e−t/2� �

The following theorem extends the NP Lemma to the case of families with an MLR,
for the one-side null hypothesis H0 � �≤ �0 against the one-side alternative H1 � �> �0:

Let f�x
 ��� �∈�, be an MLR family of PDFs/PMFs. Fix �0 ∈� and k> 0 and
choose any �1>�0. Then the test of H0 against H1, with the critical region

� = �x � f�x
 �1�> kf�x
 �0��� (4.23)

is UMP of significance level �=��0���.

This statement looks rather surprising because the rôle of value �1 is not clear. In fact, as
we will see, �1 is needed only to specify the critical region (and consequently, size �).
More precisely, owing to the MLR, � will be written in the form

�f�x
 �′�> k��′�f�x
 �0��

∀ �′>�0, for a suitably chosen k��′�. This fact will be crucial for the proof.
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Proof. Without loss of generality, assume that all functions g�2��1 in the definition of the
MLR are monotone non-decreasing. First, owing to the NP Lemma, the test (4.23) is
NP of size ≤�= ��0��� for the simple null hypothesis f = f� · 
 �0� against the simple
alternative f = f� · 
 �1�. That is

��1���≥��1��
∗� ∀ �∗ with ��0 ��

∗�≤�� (4.24)

By using the MLR property, test (4.23) is equivalent to

� = �x � T�x�> c�

for some value c. But then, again by the MLR property, ∀ �′>�0, test (4.23) is equivalent to

� = �f�x
 �′�> k��′�f�x
 �0��� (4.25)

for some value k��′�. Now, again owing to the NP Lemma, test (4.23) (and hence test
(4.25)) is MP of size ≤��0���=� for the simple null hypothesis f = f� · 
 �0� against the
simple alternative f = f� · 
 �′�. That is

��′���≥��′��
∗� ∀ �∗ with ��0��

∗�≤��

In other words, we established that test (4.23) is UMP of significance level �, for the
simple null hypothesis f = f� · 
 �0� against the one-side alternative that f = f� · 
 �′� for
some �′>�0. Formally,

��′���≥��′��
∗� whenever �′>�0 and ��0��

∗�≤��

But then the same inequality will hold under the additional restriction (on �∗) that
����

∗�≤� ∀ � ≤ �0. The last fact means precisely that test (4.25) (and hence test (4.23))
gives a UMP test of significance level � for H0 � �≤ �0 versus H1 � �> �0. �

Analysing the proof, one can see that the same assertion holds when H0 is �<�0 and
H1 � �≥ �0. As in the case of simple hypotheses, the inverse problem (to find constants
k��′�� �′>�0, for a given �∈ �0�1�) requires randomisation of the test. The corresponding
assertion guarantees the existence of a randomised UMP test with at most three values of
the decision function.

UMPtest forMLRfamiliesoccasionally appears inTripospapers: seeMT-IB1999-212D.

4.3 Goodness of fit. Testing normal distributions, 1: homogeneous
samples

Fit, Man, Test, Woman.
(From the series ‘Movies that never made it to the Big Screen’.)

The NP Lemma and its modifications are rather exceptional examples in which the
problem of hypothesis testing can be efficiently solved. Another collection of (practically
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important) examples is where RVs are normally distributed. Here, the hypotheses testing
can be successfully done (albeit in a somewhat incomplete formulation). This is based on
the Fisher Theorem that if X1� � � � �Xn is a sample of IID RVs Xi ∼ N����2�, then

√
n

�
�X−��∼N�0�1� and

1
�2
SXX ∼�2

n−1� independently.

Here X=∑i Xi/n and SXX =∑i�Xi −X�2. See Section 3.5.
A sample

X=
⎛⎜⎝X1
���

Xn

⎞⎟⎠ � with Xi ∼ N����2��

is called homogeneous normal; a non-homogeneous normal sample is where Xi ∼
N��i��

2
i �, i.e. the parameters of the distribution of Xi varies with i. One also says that

this is a single sample (normal) case.

Testing a given mean, unknown variance Consider a homogeneous normal sample
X and the null hypothesis H0: �=�0 against H1: � �=�0. Here �0 is a given value. Our
test will be based on Student’s t-statistic

T�X�=
√
n�X−�0�/�√
SXX/�n− 1��2

=
√
n�X−�0�

sXX
� (4.26)

where sXX is the sample standard deviation (see equation (1.33)). According to the defi-
nition of the t distribution in Example 3.3 (see equation (3.6)), T�X�∼ tn−1 under H0. A
remarkable fact here is that calculating T�x� does not require knowledge of �2. Therefore,
the test will work regardless of whether or not we know �2.

Hence, a natural conclusion is that if under H0 the absolute value �T�x�� of t-statistic
T�x� is large, then H0 is to be rejected. More precisely, given � ∈ �0�1�, we will denote
by tn−1��� the upper � point (quantile) of the tn−1 distribution, defined as the value a
for which∫ �

a
ftn−1

�x�dx=�

(the lower � point is of course −tn−1���). Then we reject H0 when, with �=�0, we have
�T�x��> tn−1��/2�.

This routine is called the Student, or t-test (the t distribution is also often called
the Student distribution). It was proposed in 1908 by W.S. Gossett (1876–1937), a UK
statistician who worked in Ireland and England and wrote under the pen name ‘Student’.
Gossett’s job was with the Guinness Brewery, where he was in charge of experimental
brewing (he was educated as a chemist). In this capacity he spent an academic year in
K. Pearson’s Biometric Laboratory in London, where he learned Statistics. Gossett was
known as a meek and shy man; there was a joke that he was the only person who managed
to be friendly with both K. Pearson and Fisher at the same time. (Fisher was not only
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famous for his research results but also renowned as a very irascible personality. When he
was confronted (or even mildly asked) about inconsistencies or obscurities in his writings
and sayings he often got angry and left the audience. Once Tukey (who was himself
famous for his ‘brashness’) came to his office and began a discussion about points made
by Fisher. After five minutes the conversation became heated, and Fisher said: ‘All right.
You can leave my office now.’ Tukey said ‘No, I won’t do that as I respect you too
much.’ ‘In that case’, Fisher replied, ‘I’ll leave.’)

Returning to the t-test: one may ask what to do when �t�< tn−1��/2�. The answer is
rather diplomatic: you then don’t reject H0 at significance level � (as it is still treated as
a conservative hypothesis).

The t-statistic can also be used to construct a confidence interval (CI) for � (again
with or without knowing �2). In fact, in the equation

�

(
−tn−1��/2�<

√
n�X−��

sXX
< tn−1��/2�

)
= 1−�

the inequalities can be imposed on �:

�

(
X− 1√

n
sXXtn−1��/2�<�<X+ 1√

n
sXXtn−1��/2�

)
= 1−��

Here � stands for ����2 , the distribution of the IID sample with Xi ∼ N�0��2�. This
means that a 100�1−��% equal-tailed CI for � is(

X− 1√
n
sXXtn−1��/2�� X+ 1√

n
sXXtn−1��/2�

)
� (4.27)

The t-statistic and the t-test appeared frequently in the Tripos questions: see MT-IB
1998-212E, 1995-103G (i), 1994-203F (ii,d), 1993-203J (ii), 1992-406D.

Some statisticians don’t drink because they are t-test totallers.
(From the series ‘Why they are misunderstood’.)

Example 4.5 The durability is to be tested, of two materials a and b used for soles
of ladies’ shoes. A paired design is proposed, where each of 10 volunteers had one sole
made of a and one of b. The wear (in suitable units) is shown in Table 4.1.

Table 4.1.

Volunteer

1 2 3 4 5 6 7 8 9 10

a 14.7 9.7 11.3 14.9 11.9 7.2 9.6 11.7 9.7 14.0
b 14.4 9.2 10.8 14.6 12.1 6.1 9.7 11.4 9.1 13.2
Difference 0.3 0.5 0.5 0.3 −0�2 1.1 −0�1 0.3 0.6 0.8
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Assuming that differences X1� � � � �X10 are IID N����2�, with � and �2 unknown,
one tests H0: �= 0 against H1: � �= 0. Here x̄= 0�41, Sxx =

∑
i x

2
i − nx̄2 = 1�349 and the

t-statistic

t=√
10× 0�41

/√
1�349/9= 3�35�

In a size 0�05 test, H0 is rejected as t9�0�025�= 2�262< 3�35, and one concludes that
there is a difference between the mean wear of a and b. This is a paired samples t-test.
A 95% confidence interval for the mean difference is(

0�41−
√
1�349/9× 2�262√

10
�0�41+

√
1�349/9× 2�262√

10

)
= �0�133�0�687�� �

Historically, the invention of the t-test was an important point in the development of
the subject of statistics. As a matter of fact, testing a similar hypothesis about the variance
of the normal distribution is a simpler task, as we can use statistic SXX only.

Testing a given variance, unknown mean We again take a homogeneous normal
sample X and consider the null hypothesis H0: �

2 =�2
0 against H1: �

2 �=�2
0 , where �

2
0 is

a given value. As was said above, the test is based on the statistic

1

�2
0

SXX = 1

�2
0

∑
i

�Xi −X�2� (4.28)

which is∼�2
n−1 underH0. Hence, given �∈ �0�1�, we rejectH0 in an equal-tailed two-sided

test of level � when the value Sxx/�
2
0 is either less than h−

n−1��/2� (which would favour
�2 <�2

0 ) or greater than h
+
n−1��/2� (in which case �

2 is probably >�2
0 ). Here and in what

follows h+
m��� stands for the upper � point (quantile) of �2

m, i.e. the value of a such that∫ �

a
f�2m�x�dx=��

Similarly, h−
m��� is the lower � point (quantile), i.e. the value of a for which∫ a

0
f�2m�x�dx=�


as was noted before, h−
m���=h+

m�1−��� 0<�< 1. By f�2m�x� we denote here and below
the �2 PDF with m degrees of freedom.

This test is called the normal �2 test. It works without any reference to � which may
be known or unknown.

The normal �2 test allows us to construct a confidence interval for �2, regardless of
whether we know � or not. Namely, we re-write the equation

�

(
h−
n−1��/2�<

1
�2
SXX <h

+
n−1��/2�

)
= 1−�

as

�

(
SXX

h+
n−1��/2�

<�2<
SXX

h−
n−1��/2�

)
= 1−�
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(here � is ����2 , the sample distribution withXi∼ N����2�). Then, clearly, a 100�1−��%
equal-tailed CI for �2 is(

SXX
h+
n−1��/2�

�
SXX

h−
n−1��/2�

)
� (4.29)

Example 4.6 At a new call centre, the manager wishes to ensure that callers do not
wait too long for their calls to be answered. A sample of 30 calls at the busiest time of
the day gives a mean waiting time of 8 seconds ( judged acceptable). At the same time,
the sample value of Sxx/�n−1� is 16, which is considerably higher than 9, the value from
records of other call centres. The manager tests H0: �

2 = 9 against H1: �
2> 9, assuming

that call waiting times are IID N����2� (an idealised model).
We use a �2 test. The value Sxx/�

2 = 29× 16/9= 51�55. For �= 0�05 and n= 30, the
upper � point h+

n−1��� is 42.56. Hence, at the 5% level we reject H0 and conclude that
the variance at the new call centre is > 9.

The confidence interval for �2 is(
16× 29
45�72

�
16× 29
16�05

)
= �10�15�28�91��

as h+
29�0�025�= 45�72 and h+

29�0�975�= 16�05. �

Both the t test and normal �2 tests are examples of so-called goodness of fit tests.
Here, we have a null hypothesis H0 corresponding to a ‘thin’ subset %0 in the parameter
set %. In Examples 4.5 and 4.6 it was a half-line ��= �0� �

2 > 0 arbitrary� or a line
�� ∈�� �2 = �2

0 � embedded into the half-plane %= �� ∈�� �2 > 0�. The alternative
was specified by the complement %1 =% \%0. We have to find a test statistic (in the
examples, T or SXX), with a ‘standard’ distribution under H0. Then we reject H0 at a given
significance level � when the value of the statistic does not lie in the high-probability
domain specified for this �. See Figure 4.2. Such a domain was the interval

�−tn−1��/2�� tn−1��/2��

h– (α /2)n – 1 h+ (α /2)
n – 1

Figure 4.2



4.4 The Pearson �2 test 257

for the t-test and(
h−
n−1��/2��h

+
n−1��/2�

)
for the �2 test. In this case one says that the data are significant at level �. Otherwise,
the data at this level are declared insignificant, and H0 is not rejected.

Remark In this section we followed the tradition of disjoint null and alternative
hypotheses (%0 ∩%1 =∅). Beginning with the next section, the null hypothesis H0 in a
goodness of fit test will be specified by a ‘thin’ set of parameter values %0 while the alter-
native H1 will correspond to a ‘full’ set %⊃%0. This will not affect examples considered
below as the answers will be the same. Also a number of problems in Chapter 5 associate
the alternative with the complement % \%0 rather than with the whole set %; again the
answers are unaffected.

4.4 The Pearson �2 test. The Pearson Theorem

Statisticians do it with significance.
(From the series ‘How they do it’.)

Historically, the idea of the goodness of fit approach goes back to K. Pearson and dates to
1900. The idea was further developed in the 1920s within the framework of the so-called
Pearson chi-square, or Pearson, or �2, test based on the Pearson chi-square, or Pearson,
or �2, statistic. A feature of the Pearson test is that it is ‘universal’, in the sense that it can
be used to check the hypothesis that X is a random sample from any given PMF/PDF. The
hypothesis is rejected when the value of the Pearson statistic does not fall into the interval
of highly-probable values. The universality is manifested in the fact that the formula for
the Pearson statistic and its distribution do not depend on the form of the tested PMF/PDF.
However, the price paid is that the test is only asymptotically accurate, as n, the size of
the sample, tends to �.

Suppose we test the hypothesis that an IID random sample X= �X1� � � � �Xn� comes
from a PDF/PMF f 0. We partition �, the space of values for RVs Xi, into k disjoint sets
(say intervals) D1� � � � �Dk and calculate the probabilities

p0
l =
∫
Dl

f 0�x�dx or
∑
Dl

f 0�x�� (4.30)

The null hypothesis H0 is that ∀ �, the probability �
(
Xi ∈Dl

)
is equal to p0

�, the value
given in equation (4.30). The alternative is that they are unrestricted (apart from pl ≥ 0
and p1 + · · ·+pk = 1). The Pearson �2 statistic is

P�x�=
k∑
l=1

�nl − el�
2

el
� x=

⎛⎜⎝x1���
xn

⎞⎟⎠ � (4.31)
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where nl �= nl�x�� is the number of values xi falling in Dl, with n1 + · · · + nk = n, and
el = np0

l is the expected number under H0. Letter P here is used to stress Pearson’s
pioneering contribution. Then, given �∈ �0�1�, we reject the null hypothesis at signifi-
cance level � when the value p of P exceeds h+

k−1���, the upper � quantile of the �2
k−1

distribution.
This routine is based on the Pearson Theorem:

Suppose that X1� X2� � � � is a sequence of IID RVs. Let D1� � � � �Dk be a parti-
tion of � into pair-wise disjoint sets and set ql =��Xi ∈Dl�� l= 1� � � � � k, with
q1 + · · ·+ qk = 1. Next, ∀ l= 1� � � � � k and n≥ 1, define
Nl�n = the number of RVs Xi among X1� � � � �Xn such that Xi ∈ Dl, with
N1�n + · · ·+Nk�n = n, and

Pn =
k∑
l=1

�Nl�n − nql�
2

nql
� (4.32)

Then ∀ �> 0:

lim
n→���Pn >��=

∫ �

�
f�2k−1

�x�dx� (4.33)

Proof. We use the fact that relation (4.33) is equivalent to the convergence of the char-
acteristic functions �Pn�t�=�eitPn :

lim
n→��Pn�t�=

∫ �

0
f�2k−1

�x�eitxdx� t ∈�� (4.34)

Set

Yl�n =
Nl�n − nql√

nql
� so that Pn =

k∑
l=1

Y 2
l�n (4.35)

and

k∑
l=1

Yl�n
√
ql =

1√
n

∑
l

�Nl�n − nql�=
1√
n

(∑
l

Nl�n − n
∑
l

ql

)
= 0� (4.36)

Our aim is to determine the limiting distribution of the random vector

Yn =
⎛⎜⎝Y1�n���
Yk�n

⎞⎟⎠ �
Take the unit vector

(=
⎛⎜⎝
√
q1
���√
qk

⎞⎟⎠
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and consider a real orthogonal k× k matrix A with kth column (. Such a matrix always
exists: you simply complete vector ( to an orthonormal basis in �k and use this basis to
form the columns of A. Consider the random vector

Zn =
⎛⎜⎝Z1�n

���

Zk�n

⎞⎟⎠
defined by

Zn =ATYn�

Its last entry vanishes:

Zk�n =
k∑
l=1

Yl�nAl�k =
k∑
l=1

Yl�n
√
ql = 0�

At the same time, owing to the orthogonality of A:

Pn =
k∑
l=1

Z2
l�n =

k−1∑
l=1

Z2
l�n� (4.37)

Equation (4.36) gives insight into the structure of RV Pn. We see that to prove limiting
relation (4.33) it suffices to check that RVs Z1�n� � � � �Zk−1�n become asymptotically
independent N�0�1�. Again using the CHFs, it is enough to prove that the joint CHF
converges to the product:

lim
n→��eit1Z1�n+···+itk−1Zk−1�n =

k−1∏
l=1

e−t
2
l /2� (4.38)

To prove relation (4.38), we return to the RVs Nl�n. Write

�
(
N1�n = n1� � � � �Nk�n = nk

)= n!
n1!� � � nk!

q
n1
1 � � � q

nk
k �

∀ non-negative integers n1� � � � � nk with n1 + · · ·+ nk = n. Then the joint CHF

�ei
∑
l tlNl�n = ∑

n1� � � � �nk�
∑
l nl=n

n!
n1! · · ·nk!

q
n1
1 · · ·qnkk ei

∑
l tlnl =

(
k∑
l=1

qle
itl

)n
�

Passing to Y1�n� � � � � Yk�n gives

�ei
∑
l tlYl�n = e−i

√
n
∑
l tl

√
ql

(
k∑
l=1

qle
itl/

√
nql

)n
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and

ln �ei
∑
l tlYl�n = n ln

(
k∑
l=1

qle
itl/

√
nql

)
−i

√
n
∑
l

tl
√
ql

= n ln

[
1+ i√

n

k∑
l=1

tl
√
ql −

1
2n

k∑
l=1

t2l +O
(
n−3/2

)]−i
√
n
∑
l

tl
√
ql

=−1
2

k∑
l=1

t2l +
1
2

(
k∑
l=1

tl
√
ql

)2

+O
(
n−1/2

)
�

by the Taylor expansion.
As n→�, this converges to

−1
2
��t��2 + 1

2

(
ATt
)2
k
=−1

2
��ATt��2 + 1

2

(
ATt
)2
k

=−1
2

k−1∑
l=1

(
ATt
)2
l
� t=

⎛⎜⎝t1���
tk

⎞⎟⎠∈�n�

Here A is the above k×k orthogonal matrix, with AT=A−1, and �� ��2 stands for the square
of the norm (or length) of a vector from �k (so that ��t��2=∑l t

2
l and ��ATt��2=∑l

(
ATt
)2
l
).

Consequently, with �t�Yn�=
∑k

l=1 tlYl�n, we have

lim
n→��ei�t�Yn� =

k−1∏
l=1

e−�A
Tt�2l /2� (4.39)

Then, for RVs Zl�n, in a similar notation

�ei
∑
l tlZl�n =�ei�t�Zn� =�ei�t�A

TYn� =�ei�At�Yn�

which, by (4.38), should converge as n→� to

k−1∏
l=1

e−�A
TAt�2l /2 =

k−1∏
l=1

e−t
2
l /2�

This completes the proof.
We stress once again that the Pearson �2 test becomes accurate only in the limit n→�.

However, as the approximation is quite fast, one uses this test for moderate values of n,
quoting the Pearson Theorem as a ground.

It is interesting to note that K. Pearson was also a considerable scholar in philosophy.
His 1891 book ‘The Grammar of Science’ gave a lucid exposition of scientific philosophy
of the Vienna school of the late nineteenth century and was critically reviewed in the
works of Lenin (which both of the present authors had to learn during their university
years). However, Lenin made a clear distinction between Pearson and Mach, the main
representative of this philosophical direction (and a prominent physicist of the period)
and clearly considered Pearson superior to Mach.



4.5 Generalised likelihood ratio tests 261

Example 4.7 In his famous experiments Mendel crossed 556 smooth yellow male peas
with wrinkled green female peas. From this progeny, we define:

N1 = the number of smooth yellow peas�
N2 = the number of smooth green peas�
N3 = the number of wrinkled yellow peas�
N4 = the number of wrinkled green peas�

and we consider the null hypothesis for the proportions

H0 � �p1� p2� p3� p4�=
(

9
16
�
3
16
�
3
16
�
1
16

)
�

as predicted by Mendel’s theory. The alternative is that the pi are unrestricted (with pi≥0)
and

∑4
i=1 pi = 1.

It was observed that �n1� n2� n3� n4�= �301�121�102�32�, with

e= �312�75�104�25�104�25�34�75�� P= 3�39888�

and the upper 0�25 point = h+
3 �0�25�= 4�10834. We therefore have no reason to reject

Mendel’s predictions, even at the 25% level.
Note that the above null hypothesis that f =f 0 specifies probabilities p0

l completely. In
many cases, we have to follow a less precise null hypothesis that the p0

l belong to a given
family �p0

l ���� �∈%�. In this situation we apply the previous routine after estimating the
value of the parameter from the same sample. That is the �2 statistic is calculated as

P�x�=
k∑
l=1

�nl − êl�
2

êl
� (4.40)

where êl = np0
l �̂�� and �̂ �= �̂�x�� is an estimator of �.

Usually, �̂ is taken to be the MLE. Then the value �=∑k
i=1�nl − ê�2/̂e of statistic P

is compared not with h+
k−1��� but with h

+
k−1−�%����, where �%� is the dimension of set %.

That is at significance level �∈ �0�1� we reject H0: p
0
l belong to family �p0

l ���� � ∈%�
when �>h+

k−1−�%����. (Typically, the value h+
k1
��� is higher than h+

k2
��� when k1>k2.)

This is based on a modified Pearson Theorem similar to the one above. �

The Pearson �2 statistic and Pearson test for goodness of fit are the subject of MT-IB
1997-412G and 1994-103F(i). However, their infrequent appearance in Tripos questions
should not be taken as a sign that this topic is considered as non-important. Moreover,
it gives rise to the material discussed in the remaining sections which is very popular
among Tripos examples.

4.5 Generalised likelihood ratio tests. The Wilks Theorem

Silence of the Lambdas
(From the series ‘Movies that never made it to the Big Screen’.)

The idea of using the MLEs for calculating a test statistic is pushed further forward
when one discusses the so-called generalised likelihood ratio test. Here, one considers
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a null hypothesis H0 that � ∈%0, where %0 ⊂%, and the general alternative H1: � ∈%.
A particular example is the case of H0: f =f �0�, where probabilities p0

l =��Dl� have been
completely specified; in this case % is the set of all PMFs �p1� � � � � pk� and %0 reduced
to a single point �p�0�1 � � � � � p

�0�
k �. The case where p0

l depend on parameter � is a more
general example. Now we adopt a similar course of action: consider the maxima

max
[
f�x
 �� � �∈%0

]
and

max
[
f�x
 �� � �∈%]

and take their ratio (which is ≥ 1):

'H1
H0
�x�= max

[
f�x
 �� � �∈%]

max
[
f�x
 �� � �∈%0

] � (4.41)

'H1
H0
is called the generalised likelihood ratio (GLR) for H0 and H1; sometimes the

denominator is called the likelihood of H0 and the numerator the likelihood of H1.
In some cases, the GLR 'H1
H0

has a recognised distribution. In general, one takes

R= 2 ln 'H1
H0
�X�� (4.42)

Then if, for a given �∈ �0�1�, the value of R in formula (4.42) exceeds the upper point
hp���� H0 is rejected at level �. Here p, the number of degrees of freedom of the �2

distribution, equals �%� − �%0�, the difference of the dimensions of sets % and %0.
This routine is called the generalised likelihood ratio test (GLRT) and is based on

the Wilks Theorem, which is a generalisation of the Pearson Theorem on asymptotical
properties of the �2 statistic. Informally, this theorem is as follows.

Suppose that X is a random sample with IID components Xi and with PDF/PMF
f� · 
 �� depending on a parameter � ∈%, where % is an open domain in a
Euclidean space of dimension �%�. Suppose that the MLE �̂�X� is an asymptoti-
cally normal RV as n→�. Fix a subset %0 ⊂% such that %0 is an open domain
in a Euclidean space of a lesser dimension �%0�. State the null hypothesis H0 that
�∈%0. Then (as in the Pearson Theorem), under H0, the RV R in formula (4.42)
has asymptotically the �2

p distribution with p= �%� − �%0� degrees of freedom.
More precisely, ∀ �∈%0 and h> 0:

lim
n→����R>h�=

∫ �

h
f�2p �x�dx�

There is also a version of the Wilks Theorem for independent, but not IID RVs
X1�X2� � � � . The theorem was named after S.S. Wilks (1906–1964), an American statis-
tician who for a while worked with Fisher. We will not prove the Wilks Theorem but
illustrate its rôle in several examples.
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Example 4.8 A simple example is where Xi∼ N����2�, with �2 known or unknown.
Suppose first that �2 is known. As in the previous section, we fix a value �0 and test H0:
�=�0 against H1: �∈� unrestricted. Then, under H1� x is the MLE of �, and

max 	f�x
�� � �∈�
= 1

�
√
2���n

exp
(
− Sxx
2�2

)
�

where

Sxx =
∑
i

�xi − x�2�

whereas under H0,

f�x
�0�=
1

�
√
2���n

exp

(
−"2

�0

2�2

)
�

where

"2
�0

=∑
i

�xi −�0�
2�

Hence,

'H1
H0
= exp

(
1

2�2

(
"2
�0

− Sxx
)]
�

and

2 ln 'H1
H0
= 1
�2

(
"2
�0

− Sxx
)= n

�2
�x−��2 ∼�2

1 �

We see that in this example, 2 ln 'H1
H0
�X� has precisely a �2

1 distribution (i.e. the Wilks
Theorem is exact). According to the GLRT, we reject H0 at level � when 2 ln 'H1
H0

�x�
exceeds h+

1 ���, the upper � quantile of the �2
1 distribution. This is equivalent to rejecting

H0 when �x−��√n/� exceeds z+��/2�, the upper �/2 quantile of the N�0�1� distribution.
If �2 is unknown, then we have to use the MLE �̂2 equal to "2

�0

/
n under H0 and

SXX
/
n under H1. In this situation, �2 is considered as a nuisance parameter: it does not

enter the null hypothesis and yet is to be taken into account. Then

underH1 � max
[
f�x
���2� � �∈���2> 0

]= 1

�2�Sxx/n�
n/2 e

−n/2�

and

under H0 � max
[
f�x
�0��

2� � �2> 0
]= 1

�2�"2
�0
/n�n/2

e−n/2�

Hence,

'H1
H0
=
(
"2
�0

Sxx

)n/2
=
(
1+ n�x−�0�

2

Sxx

)n/2
�
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and we reject H0 when n�x−�0�
2/Sxx is large. But this is again precisely the t-test, and

we do not need the Wilks Theorem.
We see that the t-test can be considered as an (important) example of a GLRT. �

Example 4.9 Now let � be known and test H0: �
2 =�2

0 against �2 > 0 unrestricted.
The MLE of �2 is "2/n, where "2 ="i�xi −��2. Hence,

under H1 � max
[
f�x
���2� � �2> 0

]=( √
n√

2�"2

)n
e−n/2�

and

under H0 � f�x
���
2
0 �=

1

�2��2
0 �

n/2
exp
[
− 1

2�2
0

"2

]
�

with

'H1
H0
=
(
n�2

0

"2

)n/2
exp
[
−n
2
+ "2

2�2
0

]
�

and

2 ln 'H1
H0
= n ln

�2
0n

"2
− n+ "2

�2
0

=−n ln "2

n�2
0

+ "2 − n�2
0

�2
0

=−n ln
(
1+ "2 − n�2

0

n�2
0

)
+ "2 − n�2

0

�2
0

�

We know that under H0� "
2/�2 ∼�2

n . By the LLN, the ratio "2/n converges under H0 to

��X1 −��2 =Var X1 =�2
0 . Hence, for large n, the ratio �"2 − n�2

0 �
/
n�2

0 is close to 0.
Then we can use the Taylor expansion of the logarithm. Thus,

2 ln 'H1
H0
≈−n

[
"2 − n�2

0

n�2
0

− 1
2

(
"2 − n�2

0

n�2
0

)2
]
+ "2 − n�2

0

�2
0

= n

2

(
"2 − n�2

0

n�2
0

)2

=
(
"2 − n�2

0√
2n�4

0

)2

�

The next fact is that, by the CLT, as n→�,

"2 − n�2
0√

2n�4
0

∼ N�0�1��

This is because RV "2�X� is the sum of IID RVs �Xi −��2, with

��Xi −��2 =�2 and Var �Xi −��2 = 2�4
0 �

Hence, under H0, as n→�, the square(
"2 − n�2

0√
2n�4

0

)2

∼�2
1 � i�e� 2 ln 'H1
H0

∼�2
1 �

in agreement with the Wilks Theorem.
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We see that for n large, the GLRT test is to reject H0 at level � when

�"2 − n�2
0 �

2

2n�4
0

>h+
1 ����

Of course, in this situation there is the better way to proceed: we might use the fact that

"2

�2
0

∼�2
n�

So we reject H0 when "2/�2
0 > h+

n ��/2� or "2/�2
0 < h−

n ��/2�. Here we use the same
statistic as in the GLRT, but with a different critical region.

Alternatively, we can take

SXX
�2
0

∼�2
n−1�

where SXX =∑n
i=1�Xi −X�2. The normal �2 test:

reject H0 when
1

�2
0

Sxx >h
+
n−1��/2� or <h

−
n−1��/2�

is again more precise than the GLRT in this example.
In a similar way we treat the case where H0: �

2 =�2
0 , H1: �

2 �=�2
0 and � is unknown

(i.e. is a nuisance parameter). Here �̂= x� �̂2 = SXX/n, and

under H1 � max
[
f�x
���2� � �∈���2> 0

]= 1
�2�S2

xx/n�
n/2

e−n/2�

and

under H0 � max
[
f�x
���2

0 � � �∈�
]= 1

�2��2
0 �

n/2
exp
[
− 1

2�2
0

Sxx

]
�

with the GLR statistic

'H1
H0
= �ne�−n/2

(
�2
0

Sxx

)n/2
exp
(
1
2
Sxx
�2
0

)
�

We see that 'H1
H0
is large when Sxx/�

2
0 is large or close to 0. Hence, in the GLRT

paradigm, H0 is rejected when SXX/�
2
0 is either small or large. But SXX/�

2
0 ∼ �2

n−1. We
see that in this example the standard �2 test and the GLRT use the same table (but operate
with different critical regions). �

Another aspect of the GLRT is its connection with Pearson’s �2 test. Consider the
null hypothesis H0 � pi = pi����1≤ i≤ k, for some parameter � ∈%0, where set %0 has
dimension (the number of independent co-ordinates) �%0�=k0<k−1. The alternative H1

is that probabilities pi are unrestricted (with the proviso that pi ≥ 0 and
∑

i pi = 1).

Example 4.10 Suppose that RVs X1� � � � �Xm ∼ N��X��
2
X� and Y1� � � � � Yn ∼

N��Y � �
2
Y �, where �X� �

2
X� �Y and �2

Y are all unknown. Let H0 be that �
2
X =�2

Y and H1

that �2
X >�2

Y . Derive the form of the likelihood ratio test and specify the distribution of
the relevant statistic.
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Here

Lxy�H0�=max
[
fX�x
�X��

2�fY �y
�Y ��
2� � �X ∈�� �Y ∈�� �> 0

]
=max

[
1

�2��2��n+m�/2
exp
(
−Sxx + Syy

2�2

)
� �> 0

]
�

Note that for g�x�= xae−bx with a�b> 0:

max
x>0

g�x�= g
(a
b

)
=
(a
b

)a
e−a�

Hence,

Lxy�H0�=
1

�2��̂2
0 �

�m+n�/2 e
−�m+n�/2� �̂2

0 =
Sxx + Syy

m+ n
�

Similarly, under H1

Lxy�H1�=max
[
fX�x
�X��

2
X�fY �y
�Y ��

2
Y � � �X��Y ∈�� �X��Y > 0

]
= 1

�2��̂2
X�

m/2�2��̂2
Y �

n/2
e−�m+n�/2�

with �̂2
X = Sxx/m� �̂

2
Y = Syy/n �provided that �̂2

X > �̂
2
Y �. As a result,

if
Sxx
m

>
Syy

n
� then '=

(
Sxx + Syy

m+ n

)�m+n�/2(
Sxx
m

)−m/2(Syy
n

)−n/2
�

and

if
Sxx
m

≤ Syy

n
� then '= 1�

Further,

if
Sxx
Syy

>
m

n
then 2 ln'= c+ f

(
Sxx
Syy

)
�

Here

f�u�= �m+ n� ln �1+ z�−m ln u�

and c is a constant. Next,

f ′�u�= m+ n

1+ u
− m

u
= nu−m

u�1+ u�
�

i.e. f increases when u >m/n increases. As a result, we reject H0 if Sxx/Syy is large.
Under H0,

�2
X =�2

Y =�2� and
Sxx
�2

∼�2
m−1�

Syy

�2
∼�2

n−1� independently�

Therefore,

Sxx/�m− 1�
Syy/�n− 1�

∼Fm−1�n−1� �
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Example 4.11 There are k+ 1 probabilities p0� � � � � pk. A null hypothesis H0 is that
they are of the form

pi���=
(
k

i

)
�i�1− ��k−i� 0≤ i≤ k�

where � ∈ �0�1�. (Here �%0� = 1.) The alternative H1 is that these probabilities form a
k-dimensional variety.

The MLE under H0 maximises
∑k

i=0 ni log pi���, where n0� � � � � nk are occurrence
numbers of values 0� � � � � k. Let �̂ be the maximiser. An easy calculation shows that
under H0� �̂=

∑k
i=1 ini/�kn�. Under H1 the MLE is p̂i = ni/n, where n= n0 + · · · + nk.

Then the logarithm of the GLR yields

2 ln '= 2 ln
∏k

i=0 p̂
ni
i∏k

i=0

(
pi�̂��

)ni = 2
∑
i

ni ln
ni

npi�̂��
�

The number of degrees of freedom is k+ 1− 1− �%0� = k− 1. We reject H0 when
2 ln '>h+

k−1���.
Write npi�̂��= ei� �i = ni − ei� 0≤ i≤ k, with

∑
i �i = 0. A straightforward calcula-

tion is:

2 ln '= 2
∑
i

ni ln
ni
ei

= 2
∑
i

�ei + �i� ln
(
1+ �i

ei

)
≈ 2

∑
i

(
�i +

�2i
ei

− �2i
2ei

)
=∑

i

�2i
ei

=∑
i

�ni − ei�
2

ei
�

This is precisely Pearson’s �2 statistic. �

It has to be said that, generally speaking, the GLRT remains a universal and powerful
tool for testing goodness of fit. We discuss two examples where it is used for testing
homogeneity in non-homogeneous samples.

Example 4.12 Let X1� � � � � Xn be independent RVs, Xi∼ Po��i� with unknown mean
�i� i= 1� � � � � n. Find the form of the generalised likelihood ratio statistic for testing
H0 � �1 = � � � = �n, and show that it may be approximated by Z= ∑n

i=1�Xi −X�2
/
X,

where X = n−1∑n
i=1Xi. If, for n= 7, you find that the value of this statistic was 26.9,

would you accept H0?
For Xi ∼ Po��i�,

fX�x
��=
n∏
i=1

�
xi
i

xi!
e−�i �

Under H0, the MLE �̂ for � is x=∑i xi/n, and under H1� �̂i = xi. Then the GLR

'H1
H0
�x�= f�x
 �̂1� � � � � �̂n�

f�x
 �̂�
=
∏

i x
xi
i∏

i x
xi
�
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and

2 ln 'H1
H0
�x�= 2

∑
i

xi ln
xi
x

= 2
∑
i

	x+ �xi − x�
 ln
(
1+ xi − x

x

)
≈∑

i

�xi − x�2

x
�

as ln �1+ x�≈ x− x2/2.
Finally, we know that for Z∼ �2

6 � �Z= 6 and Var Z= 12. The value 26.9 appears
too large. So we would reject H0. �

Example 4.13 Suppose you are given a collection of np independent random variables
organised in n samples, each of length p:

X�1� = �X11� � � � �X1p�

X�2� = �X21� � � � �X2p�
���

���

X�n� = �Xn1� � � � �Xnp��

The RV Xij has a Poisson distribution with an unknown parameter �j�1≤ j≤p. You are
required to test the hypothesis that �1 =· · ·=�p against the alternative that values �j > 0
are unrestricted. Derive the form of the likelihood ratio test statistic. Show that it may be
approximated by

n

X

p∑
j=1

(
Xj −X

)2
with

Xj =
1
n

n∑
i=1

Xij� X= 1
np

n∑
i=1

p∑
j=1

Xij�

Explain how you would test the hypothesis for large n.
In this example, the likelihood

n∏
i=1

p∏
j=1

e−�j�
xij
j

xij!

is maximised under H0 at �̂= x, and has the maximal value proportional to e−npxxnpx.
Under H1� �̂j = xj and the maximal value is proportional to the product e−npx

∏p
j=1 x

nxj
j .

Hence,

'H1
H0
= 1

xnpx

p∏
j=1

x
nxj
j �
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We reject H0 when 2 ln 'H1
H0
, is large. Now, ln 'H1�H0

has the form(
p∑
j=1

nxj ln xj − npx ln x

)
= n

[∑
j

(
xj ln xj − xj ln x

)]

= n

[∑
j

(
x+ xj − x

)
ln
(
x+ xj − x

x

)]

= n

[∑
j

(
x+ xj − x

)
ln
(
1+ xj − x

x

)]
�

Under H0, nXj∼ Po �n�� and npX∼ Po �np��. By the LLN, both Xj and X converge
to the constant �, hence �Xj −X�/X converges to 0. This means that for n large enough,
we can take a first-order expansion as a good approximation for the logarithm. Hence,
for n large, 2 ln 'H1�H0

is

≈ 2n
p∑
j=1

�x+ xj − x�

[
xj − x

x
− 1

2

(
xj − x

x

)2
]
≈ n

p∑
i=1

�xj − x�2

x
�

Observe that the ratios Yl�n =
(
Xl −X

)/√
X resemble the ratios Yl�n from defini-

tion (4.35). In fact, it is possible to check that as n→�,

√
n
Xl −X√

X
∼N �0�1��

(This is the main part of the proof of Wilks Theorem.) We also have, as in equation (4.36),
that the Yl�n satisfy a linear relation

p∑
l=1

Yl�n

√
X=

p∑
l=1

�Xl −X�= 0�

Then as in the proof of the Pearson Theorem, as n→�,

2 ln 'H1�H0
∼�2

p−1� �

Concluding this section, we provide an example of a typical Cambridge-style Mathe-
matical Tripos question.

Example 4.14 What is meant by a generalised likelihood ratio test? Explain in detail
how to perform such a test.

The GLRT is designed to test H0: � ∈%0 against the general alternative H1: � ∈%,
where %0 ⊂%. Here we use the GLR

'H1
H0
�x�= max

[
f�x
 �� � �∈%]

max
[
f�x
 �� � �∈%0

] �where x=
⎛⎜⎝x1���
xn

⎞⎟⎠ �
The GLRT rejects H0 for large values of 'H1
H0

.
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If random sample X has IID components X1� � � � �Xn and n is large then, under
H0� 2 ln 'H1
H0

�X�∼ �2
p, where the number of degrees of freedom p= �%� − �%0� (the

Wilks Theorem). Therefore, given �∈ �0�1�, we reject H0 in a test of size � if

2 ln 'H1
H0
�x�>h+

p ���� �

It is interesting to note that the GLRT was proposed by Neyman and E. Pearson in
1928. The NP Lemma, however, was proved only in 1933.

The GLRT test is a subject of the following Tripos questions: MT-IB 1995-403G
(ii), 1992-206D.

4.6 Contingency tables

Statisticians do it by tables when it counts.
(From the series ‘How they do it’.)

A popular example of the GLRT is where you try to test independence of different
‘categories’ or ‘attributes’ assigned to several types of individuals or items.

Example 4.15 An IQ test was proposed to split people approximately into three equal
groups: excellent (A), good (B), moderate (C). The following table gives the numbers
of people who obtained grades A, B, C in three selected regions in Endland, Gales and
Grogland. The data are given in Table 4.2.

Table 4.2.

Region Grade Total ni+

A B C

Endland 3009 2832 3008 8849
Gales 3047 3051 2997 9095
Grogland 2974 3038 3018 9030
Total n+j 9030 8921 9023 26974

It is required to derive a GLRT of independence of this classification. Here,
eij = ni+n+j/n++ are

2962�35 2926�59 2960�06
3044�70 3007�95 3042�34
3022�94 2986�45 3020�60

�

The value of the Pearson statistic (defined in equation (4.45) below) is

4�56828+ 1�29357+ 1�68437= 7�54622�
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with the number of degrees of freedom �3−1�× �3−1�=4. At the 0.05 level h+
4 �0�05�=

9�488. Hence, there is no reason to reject the hypothesis that all groups are homogeneous
at this level (let alone the 0.01 level). �

In general, you have a contingency table with r rows and c columns. The independence
means that the probability pij that say a type i item falls into category, or receives attribute,
j is of the form �i j where

�i� j ≥ 0 and
r∑
i=1

�i =
c∑
j=1

 j = 1�

This will be our null hypothesis H0. The alternative H1 corresponds to a general constraint
pij ≥ 0 and

∑r
i=1

∑c
j=1 pij = 1. Here we set

pi+ =∑
j

pij� p+j =
∑
i

pij and p++ =∑
i

pi+ =∑
j

p+j = 1

(the notation comes from early literature).
The model behind Example 4.15 is that you have n items or individuals (26 974 in the

example), and nij of them fall in cell �i� j� of the table, so that
∑

i�j nij = n. (Comparing
with Example 4.1, we now have a model of selection with replacement which generalises
Example 4.2.) Set

ni+ =∑
j

nij� n+j =
∑
i

nij and n++ =∑
i

ni+ =∑
j

n+j = n�

The RVs Nij have jointly a multinomial distribution with parameters �n
 �pij��:

��Nij = nij ∀ i� j�= n!∏ 1
nij!

p
nij
ij (4.43)

(the pij are often called ‘cell probabilities’). It is not difficult to recognise the back-
ground for the GLRT, where you have �%1� = rc − 1 (as the sum p++ = 1) and
�%0� = r − 1+ c− 1, with

�%1� − �%0� = �r − 1��c− 1��

Under H1, the MLE for pij is p̂ij =nij/n. In fact, ∀ nij with n++ =n, the PMF (i.e. the
likelihood) is

f�Nij �
(
�nij�
 �pij�

)= n!∏
i�j

p
nij
ij

nij!
�

and the LL is

�
(
�nij�
 �pij�

)=∑
i�j

nij ln pij + ln �n!�−∑
i�j

ln �nij!��
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We want to maximise � in pij under the constraints

pij ≥ 0�
∑
i�j

pij = 1�

Omitting the term

ln �n!�−∑
i�j

ln �nij!��

write the Lagrangian

�=∑
i�j

nij ln pij −�

(∑
i�j

pij − 1

)
�

Its maximum is attained when ∀ i� j:
#

#pij
�= nij

pij
−�= 0�

i.e. when pij = nij/�. Adjusting the constraint p++ = 1 yields �= n.
Under H0, the MLE for �i is �̂i=ni+/n; for  j the MLE  ̂j =n+j/n. In fact, here the

likelihood is

f�Nij �
(
�nij�
 ��i�� � j�

)= n!∏
i�j

��i j�
nij

nij!
= n!∏

i

�
ni+
i

∏
j

 
n+j
j

/∏
i�j

nij!�

and the LL is

�
(
�nij�
 ��i�� � j�

)=∑
i

ni+ ln �i +
∑
j

n+j ln  j + ln �n!�−∑
i�j

ln �nij!��

This is to be maximised in �i and  j under the constraints

�i� j ≥ 0�
∑
i

�i =
∑
j

 j = 1�

The Lagrangian now is

�=∑
i

ni+ ln �i +
∑
j

n+j ln  j −�

(∑
i

�i − 1

)
−�

(∑
j

 j − 1

)

(with the term
[
ln �n!�−∑ ln �nij!�

]
again omitted). The stationarity condition

#

#�i
�= #

# j
�= 0� 1≤ i≤ r� 1≤ j≤ c�

yields that �̂i = ni+/� and  ̂j = n+j/�. Adjusting the constraints gives that �=�= n.
Then the GLR

'H1
H0
=∏

i�j

(nij
n

)nij/∏
i

(ni+
n

)ni+∏
j

(n+j
n

)n+j
�
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and the statistic 2 ln 'H1
H0
equals

2
∑
i�j

nij ln
nij

n
− 2

∑
i

ni+ ln
ni+
n

− 2
∑
j

n+j ln
n+j
n

= 2
∑
i�j

nij ln
nij

eij
� (4.44)

where eij =
(
ni+n+j

)/
n. Writing nij = eij + �ij and expanding the logarithm, the RHS is

2
∑
i�j

�eij + �ij� ln
(
1+ �ij

eij

)
= 2

∑
i�j

�eij + �ij�

(
�ij

eij
− 1

2

�2ij

e2ij
+ · · ·

)
�

which is

≈∑
i�j

��ij�
2

eij
=

r∑
i=1

c∑
j=1

�nij − eij�
2

eij
�

by the same approximation as before.
Therefore, we can repeat the general GLRT routine: form the statistic

2 ln '=
r∑
i=1

c∑
j=1

�nij − eij�
2

eij
� (4.45)

and reject H0 at level � when the value of the statistic exceeds h+
�r−1��c−1����, the upper

� point of �2
�r−1��c−1�.

Contingency tables also give rise to another model where you fix not only n++, the
total number of observations, but also some margins, for instance, all (or a part) of row
sums ni+. Then the random counts Nij in the ith row with fixed ni+ become distributed
multinomially with parameters �ni+
pi1� � � � � pic�, independently of the rest. The null
hypothesis here is that pij = pj does not depend on the row label i� ∀ j= 1� � � � � c. The
alternative is that pij are unrestricted but pi+ = 1� i= 1� � � � � r . This situation is referred
to as testing homogeneity.

Example 4.16 In an experiment 150 patients were allocated to three groups of 45� 45
and 60 patients each. Two groups were given a new drug at different dosage levels and
the third group received a placebo. The responses are in Table 4.3.

Table 4.3.

Improved No difference Worse

Placebo 16 20 9
Half dose 17 18 10
Full dose 26 20 14

We state H0 as

the probabilities pImproved� pNo difference and pWorse

are the same for all three patient groups,
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and H1 as

these probabilities may vary from one group to another.

Then under H1 the likelihood is

f�Nij �
(
�nij���pij�

)= r∏
i=1

ni+!
ni1!� � � nic!

p
ni1
i1 � � � p

nic
ic �

and the LL is

�
(
�nij�
 �pij�

)=∑
i�j

nij ln pij +
(
terms not depending onpij

)
�

Here, the MLE p̂ij of pij is nij/ni+. Similarly, under H0 the LL is:

�
(
�nij�
 �pij�

)=∑
j

n+j ln pj +
(
terms not depending onpj

)
�

and the MLE p̂j of pj equals n+j/n++. Then, as before, the GLR is

2 ln'H1
H0
= 2

∑
i�j

nij ln
p̂ij

p̂j
= 2

∑
i�j

nij ln
nij

eij
≈∑

i�j

�nij − eij�
2

eij
�

with eij = �ni+n+j�/n++. The number of degrees of freedom is equal to �r− 1��c− 1�, as
�%1� = r�c− 1� (c− 1 independent variables pij in each of r rows) and �%0� = c− 1 (the
variables are constant along the columns).

In the example under consideration: r=3� c=3� �r−1��c−1�=4� h+
4 �0�05�=9�488.

The array of data is shown in Table 4.4, which yields the array of expected values shown
in Table 4.5.

Table 4.4.

nij Improved No difference Worse

Placebo 16 20 9 45
Half dose 17 18 10 45
Full dose 26 20 14 60

59 58 33 150

Table 4.5.

eij Improved No difference Worse

Placebo 17.7 17.4 9.9
Half dose 17.7 17.4 9.9
Full dose 23.6 23.2 13.2
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Thus 'H1
H0
is calculated as

�2�4�2

23�6
+ �1�7�2

17�7
+ �0�7�2

17�7
+ �2�6�2

17�4
+ �0�6�2

17�4

+ �3�2�
2

23�2
+ �0�9�2

9�9
+ �0�1�2

9�9
+ �0�8�2

13�2
= 1�41692�

This value is < 9�488, hence insignificant at the 5% level. �

We finish this section with a short discussion of an often observed Simpson paradox. It
demonstrates that contingency tables are delicate structures and can be damaged when one
pools data. However, there is nothing mystic about it. Consider the following example.
A new complex treatment has been made available, to cure a potentially lethal illness. Not
surprisingly, doctors decided to use it primarily in more serious cases. Consequently, the
new data cover many more of these cases as opposed to the old data spread evenly across
a wider range of patients. This may lead to a deceptive picture (see, e.g., Table 4.6).

Table 4.6.

Didn’t recover Recovered Recovery %

Previous treatment 7500 5870 43�9
New treatment 12520 1450 10�38

You may think that the new treatment is four times worse than the old one. However,
the point is that the new treatment is applied considerably more often than the old one in
hospitals where serious cases are usually dealt with. On the other hand, in clinics where
cases are typically less serious the new treatment is rare. The corresponding data are
shown in Tables 4.7 and 4.8.

It is now evident that the new treatment is better in both categories.

Table 4.7. Hospitals

Didn’t recover Recovered Recovery %

Previous treatment 1100 70 5�98
New treatment 12500 1200 8�76

Table 4.8. Clinics

Didn’t recover Recovered Recovery %

Previous treatment 6400 5800 47�54
New treatment 20 250 92�60
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In general, the method of contingency tables is not free of logical difficulties. Suppose
you have the data in Table 4.9 coming from 100 two-child families.

Table 4.9.

1st Child

Boy Girl

2nd Child Boy 30 20 50
Girl 20 30 50

50 50 100

Consider two null hypotheses

H1
0 : The probability of a boy is 1/2 and the genders of the children are independent.

H2
0 : The genders of the children are independent.

Each of these hypotheses is tested against the alternative: the probabilities are unrestricted
(which means that pBB� pBG� pGB� pGG only obey p· · ≥0 and pBB +pBG +pGB +pGG =1;
this includes possible dependence). The value of the Pearson statistic equals

�30− 25�2

25
+ �20− 25�2

25
+ �20− 25�2

25
+ �30− 25�2

25
= 4�

The number of degrees of freedom, for H1
0 equals 3, with the 5%-quantile 7�815. For

H2
0 , the number of degrees of freedom is 1; the same percentile equals 3�841.
We see that at significance level 5%, there is no evidence to reject H1

0 but strong
evidence to reject H2

0 , although logically H1
0 implies H2

0 . We thank A. Hawkes for this
example (see [Haw]).

The contingency table GLRT appeared in MT-IB 1998-412E.

4.7 Testing normal distributions, 2: non-homogeneous samples

Variance is what any two statisticians are at.
(From the series ‘Why they are misunderstood’.)

A typical situation here is when we have several (in the simplest case, two) samples coming
from normal distributions with parameters that may vary from one sample to another.
The task then is to test that the value of a given parameter is the same for all groups.

Two-sample normal distribution tests Here we have two independent samples,

X=
⎛⎜⎝X1

���

Xm

⎞⎟⎠ and Y=
⎛⎜⎝Y1���
Yn

⎞⎟⎠
where the Xi are IID N��1��

2
1 � and the Yj are IID N��2��

2
2 �.
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(a) Testing equality of means, common known variance In this model one assumes that
�2
1 = �2

2 = �2 is known and test H0: �1 =�2 against H1: �1, �2 unrestricted. One uses
the GLRT (which works well). Under H1, the likelihood fX�x
�1��

2�fY�y
�2��
2� is

1(√
2��

)m+n exp

[
− 1
2�2

∑
i

�xi −�1�
2 − 1

2�2

∑
j

�yj −�2�
2

]

= 1(√
2��

)m+n exp
[
− 1
2�2

(
Sxx +m�x−�1�

2 + Syy + n�y−�2�
2
)]

and is maximised at

�̂1 = x and �̂2 = ywhere x= 1
m

∑
i

xi� y=
1
n

∑
j

yj�

Under H0, the likelihood fX�x
���
2�fY�y
���

2� equals

1(√
2��

)m+n exp
{
− 1
2�2

[
Sxx +m�x−��2 + Syy + n�y−��2

]}

and is maximised at

�̂= mx+ ny

m+ n
�

Then the GLR

'H1
H0
= exp

[
1

2�2

mn�x− y�2

m+ n

]
�

and we reject H0 when �x− y� is large.
Under H0,

X− Y ∼ N

(
0��2

(
1
m

+ 1
n

))
�

Hence, under H0 the statistic

Z= X− Y

�
√
1/m+ 1/n

∼N�0�1��

and we reject H0 at level � when the value of �Z� is >z+��/2�=�−1�1−�/2�. The test
is called the normal z-test. Note that Wilks Theorem is exact here.

In what follows z+��� denotes the upper � point (quantile) of the normal N(0,1)
distribution, i.e. the value for which

1√
2�

∫ �

z+���
e−x

2/2dx=��

As was noted, it is given by �−1�1−��� 0<�< 1.
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(b) Testing equality of means, common unknown variance Here the assumption is that
�2
1 =�2

2 =�2 is unknown: it gives a single nuisance parameter. Again, H0: �1 =�2 and
H1: �1, �2 unrestricted. As we will see, the result will be a t-test.

Under H1 we have to maximise

1(√
2��

)m+n exp
{
− 1
2�2

[
Sxx +m�x−�1�

2 + Syy + n�y−�2�
2
]}
�

in �1� �2 and �
2. As before, �̂1 = x� �̂2 = y. The MLE for �2 is

Sxx + Syy

m+ n
where Sxx =

∑
i

�xi − x�2� Syy =
∑
j

�yj − y�2�

(The corresponding calculation is similar to the one producing �̂2 = Sxx/n in the single-
sample case.) Hence, under H1,

max
[
f�x
�1��

2�f�y
�2��
2� � �1��2 ∈�� �2> 0

]
=
(
2�

Sxx + Syy

m+ n

)−�m+n�/2
e−�m+n�/2�

Under H0, the MLE for � is, as before,

�̂= mx+ ny

m+ n
�

and the MLE for �2 is

�̂2 = 1
m+ n

[∑
i

�xi − �̂�2 +∑
j

�yj − �̂�2

]

= 1
m+ n

[
Sxx + Syy +

mn

m+ n
�x− y�2

]
�

Hence, under H0,

max
[
f�x
���2�f�y
���2� � �∈�� �2> 0

]
=
{

2�
m+ n

[
Sxx + Syy +

mn

m+ n
�x− y�2

]}−�m+n�/2
e−�m+n�/2�

This yields the following expression for the GLR:

'H1
H0
=
(
�m+ n��Sxx + Syy�+mn�x− y�2

�m+ n��Sxx + Syy�

)�m+n�/2

=
(
1+ mn�x− y�2

�m+ n��Sxx + Syy�

)�m+n�/2
�
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Hence, in the GLRT, we reject H0 when

�x− y�√
�Sxx + Syy� �1/m+ 1/n�

is large. It is convenient to multiply the last expression by
√
n+m− 2. This produces

the following statistic:

T = X− Y√
SXX+SYY
m+n−2

(
1
m
+ 1

n

) ∼ tn+m−2�

In fact, under H0,

X− Y

�
√
1/m+ 1/n

∼N�0�1��
1
�2
SXX ∼�2

m−1 and
1
�2
SYY ∼�2

n−1�

independently. Thus

SXX + SYY
�2

∼�2
m+n−2�

The Wilks Theorem is of course valid in the limit m�n→�, but is not needed here.
The t-test for equality of means in two normal samples was set in MT-IB 1995-103G (i).

Example 4.17 Seeds of a particular variety of plant were randomly assigned to either
a nutritionally rich environment (the treatment) or standard conditions (the control). After
a predetermined period, all plants were harvested, dried and weighed, with weights in
grams shown in Table 4.10.

Table 4.10.

Control 4�17 5�58 5�18 6�11 4�50 4�61 5�17 4�53 5�33 5�14
Treatment 4�81 4�17 4�41 3�59 5�87 3�83 6�03 4�89 4�32 4�69

Here control observations X1� � � � �Xm are IID N��X��
2�, and treatment observations

Y1� � � � � Yn are IID N��Y ��
2�. One tests

H0 � �X =�Y againstH1 � �X� �Y unrestricted�

We have

m= n= 10� x= 5�032� Sxx = 3�060� y= 4�661� Syy = 5�669�

Then

�̂2 = Sxx + Syy

m+ n− 2
= 0�485

and

�t� = �x− y�√
�̂2 �1/m+ 1/n�

= 1�19�
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With t18�0�025�= 2�101, we do not reject H0 at level 95%, concluding that there is no
difference between the mean weights due to environmental conditions.

Now suppose that the value of the variance �2 is known to be 0�480 and is not
estimated from the sample. Calculating

z= �x− y�
/

�

√
1
m

+ 1
n

yields the value z= 1�974. Since ��z�= 0�97558, which is just over 0�975, we formally
have to reject H0 (although, admittedly, the data are not convincing). �

(c) Testing equality of variances, known means First, consider the case where �1 and
�2 are known (and not necessarily equal). The null hypothesis is H0: �

2
1 = �2

2 and the
alternative H1: �

2
1 , �

2
2 unrestricted. Under H0, the likelihood f�x
�1��

2�f�y
�2��
2� is

maximised at �̂2 = �"2
xx +"2

yy�/�m+ n� and attains the value[
2�
(
"2
xx +"2

yy

)
m+ n

]−�m+n�/2
e−�m+n�/2�

Here "2
xx =

∑
i�xi −�1�

2 and "2
yy =

∑
j�yj −�2�

2.
Under H1, the likelihood f�x
�1��

2�f�y
�2��
2� is maximised at �̂2

1 = "2
xx/m,

�̂2
2 ="2

yy/n and attains the value(
2�"2

xx

m

)−m/2(2�"2
yy

n

)−n/2
e−�m+n�/2�

Then the GLR

'H1
H0
= mm/2nn/2

�m+ n��m+n�/2

(
"2
xx +"2

yy

"2
xx

)m/2(
"2
xx +"2

yy

"2
yy

)n/2

∝
(
1+ "2

yy

"2
xx

)m/2(
1+ "2

xx

"2
yy

)n/2
�

The last expression is large when "2
yy/"

2
xx is large or small. But under H0,

1
�2
"2
XX ∼�2

m and
1
�2
"2
YY ∼�2

n� independently.

Thus, underH0, the ratio "
2
YY /"

2
XX∼Fn�m. Hence, we rejectH0 at level � when the value of

"2
yy/"

2
xx is either greater than )

+
n�m��/2� or less than )

−
n�m��/2�. Here, and below, )+

n�m���

denotes the upper and )−
n�m��� the lower � point (quantile) of the Fisher distribution Fn�m,

i.e. the value a for which∫ �

a
fFn�m�x�dx=� or

∫ a

0
fFn�m�x�dx=��

with )−
n�m���=)+

n�m�1−���0<�< 1.
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Again, the strict application of the GLRT leads to a slightly different critical region
(unequally tailed test).

(d) Testing equality of variances, unknown means Now assume that �1 and �2 are
unknown nuisance parameters and test H0: �

2
1 =�2

2 against H1: �
2
1 , �

2
2 unrestricted. Under

H0, the likelihood f�x
�1��
2�f�y
�2��

2� is maximised at

�̂1 = x� �̂2 = y� �̂2 = 1
m+ n

�Sxx + Syy��

where it attains the value(
2�

Sxx + Syy

m+ n

)−�m+n�/2
�

Under H1, the likelihood is f�x
�1��
2
1 �f�y
�2��

2
2 �. Its maximum value is attained at

�̂1 = x� �̂2 = y� �̂2
1 =

1
m
Sxx� �̂

2
2 =

1
n
Syy�

and equals(
1

2�Sxx/m

)m/2( 1
2�Syy/n

)n/2
e−�m+n�/2�

Then

'H1
H0
=
(
Sxx + Syy

Sxx

)m/2(Sxx + Syy

Syy

)n/2
mm/2nn/2

�m+ n��m+n�/2 �

and we reject H0 when(
1+ Sxx

Syy

)n/2(
1+ Syy

Sxx

)m/2
is large.

But, as follows from Example 3.4 (see equation (3.7)),

SXX/�m− 1�
SYY /�n− 1�

∼Fm−1�n−1�

So, at level � we reject H0 in the ‘upper tail’ test when

�n− 1�Sxx
�m− 1�Syy

>)+
m−1�n−1���

and in the ‘lower tail’ test when

�m− 1�Syy
�n− 1�Sxx

>)+
n−1�m−1����
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These tests are determined by the upper � points of the corresponding F-distributions.
We also can use a two-tailed test where H0 is rejected if, say,

�n− 1�Sxx
�m− 1�Syy

>)+
m−1�n−1��/2� or

�m− 1�Syy
�n− 1�Sxx

>)+
n−1�m−1��/2��

The particular choice of the critical region can be motivated by the form of the graph of
the PDF fFm�n for given values of m and n. See Figure 3.3.

The F-test for equality of variances was proposed by Fisher. The statistic
�n− 1�Sxx/

(
�m− 1�Syy

)
is called the F-statistic.

Remark We can repeat the routine for the situation where alternative H1, instead of
being �2

1 �= �2
2 , is �

2
1 ≥ �2

2 (in which case we speak of comparison of variances). Then
the GLR 'H1
H0

is taken to be⎧⎪⎨⎪⎩
(
Sxx+Syy
Sxx

)m/2 (
Sxx+Syy
Syy

)n/2 mm/2nn/2

�m+ n��m+n�/2 � if
1
m
Sxx >

1
n
Syy�

1� if
1
m
Sxx <

1
n
Syy�

and at level � we reject H0 when

�n− 1�Sxx
�m− 1�Syy

>)+
m−1�n−1����

A similar modification can be made in other cases considered above.

The F-test is useful when we have X from Exp ��� and Y from Exp ��� and test H0:
�=�. A relevant Tripos question is MT-IB 1997-112G.

In the context of a GLRT, the F-test also appears when we test H0: �1 = · · · =�n,
where Xi ∼ N��i��

2� with the same variance �2. See MT-IB 1999-403D, 1995-403G
(ii). See also 1994-203F (ii,d).

Example 4.18 To determine the concentration of nickel in solution, one can use an
alcohol method or an aqueous method. One wants to test whether the variability of
the alcohol method is greater than that of the aqueous method. The observed nickel
concentrations (in tenths of a per cent) are shown in Table 4.11.

Table 4.11.

Alcohol method 4�28 4�32 4�25 4�29 4�31 4�35 4�32 4�33
4�28 4�27 4�38 4�28

Aqueous method 4�27 4�32 4�29 4�30 4�31 4�30 4�30 4�32
4�28 4�32

The model is that the values X1� � � � �X12 obtained by the alcohol method and
Y1� � � � � Y10 obtained by the aqueous method are independent, and Xi ∼ N��X��

2
X��

Yj ∼ N ��Y ��
2
Y �. The null hypothesis is H0: �

2
X =�2

Y against the alternative H1: �
2
X ≥�2

Y .



4.7 Testing normal distributions, 2 283

Here

m= 12� x= 4�311� Sxx = 0�01189�

and

n= 10� y= 4�301� Syy = 0�00269�

This gives �Sxx/11�
/(
Syy/9

)= 3�617. From the �2 percentage tables, )+
11�9�0�05�= 3�10

and )+
11�9�0�01�= 5�18. Thus, we reject H0 at the 5% level but accept at the 1% level.

This provides some evidence that �2
X >�2

Y but further investigation is needed to reach a
higher degree of certainty. For instance, as )+

11�9�0�025�≈ 3�92� H0 should be accepted at
the 2�5% level. �

Non-homogeneous normal samples

Here X has Xi ∼N ��i��
2
i �, with parameters varying from one RV to another.

(a) Testing equality of means, known variances Assuming that �2
1 � � � � ��

2
n are known

(not necessarily equal), we want to test

H0 � �1 = · · ·=�n against H1 � �i ∈� are unrestricted.

Again use the GLRT. Under H1, the likelihood is

f�x
�1� � � � ��n
�
2
1 � � � � ��

2
n�=

(
1
2�

)n/2 1∏
i �i

exp

[
−1
2

∑
i

�xi −�i�
2/�2

i

]
�

maximised at �̂i = xi, with the maximal value �2��−n/2
/
�
∏

i �i�.
Under H0, the likelihood

f�x
���2
1 � � � � ��

2
n�=

(
1
2�

)n/2 1∏
i �i

exp

[
−1
2

∑
i

�xi −��2/�2
i

]
attains the maximal value(

1
2�

)n/2∏
i

1
�i

exp

[
−1
2

∑
i

�xi − �̂�2/�2
i

]
at the weighted mean

�̂= �̂�x�=∑
i

xi/�
2
i

/∑
i

1/�2
i �

Then the GLR

'H1
H0
= exp

[
1
2

∑
i

�xi − �̂�2/�2
i

]
�
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We reject H0 when the sum
∑

i�xi − �̂�2/�2
i is large. More precisely,

2 ln 'H1
H0
=∑

i

�Xi − �̂�X��2

�2
i

∼�2
n−1

(another case where the Wilks Theorem is exact). So, H0 is rejected at level � when∑
i�xi − �̂�x��2/�2

i exceeds h+
n−1���, the upper � point of �2

n−1.
(b) Testing equality of means, unknown variances Consider the same null hypothesis

H0: �1 = · · · =�n and alternative H1: �i unrestricted, in the case of unknown variances
(equal or not). Then, under H1, we have to maximise the likelihood in �2

i as well. That
is in addition to �̂i = xi, we have to set �̂i = 0, which is not feasible. This is an example
where the GLR routine is not applicable.

However, let us assume that normal sample X has been divided into groups so that at
least one of them contains more than a single RV, and it is known that within a given
group the means are the same. In addition, let the variance be the same for all RVs Xi.
Then one uses a routine called ANOVA (analysis of variance) to test the null hypothesis
that all means are the same. In a sense, this is a generalisation of the test in subsection (a)
above.

So, assume that we have k groups of ni observations in group i, with n=n1 +· · ·+nk.
Set

Xij =�i + �ij� j= 1� � � � � ni� i= 1� � � � � k�

We assume that �1� � � � ��k are fixed unknown constants and �ij ∼N�0��2�, indepen-
dently. The variance �2 is unknown. The null hypothesis is

H0� �1 = · · ·=�k =��

and the alternative H1 is that the �i are unrestricted.
Under H1, the likelihood

1
�2��2�n/2

exp

[
− 1
2�2

k∑
i=1

ni∑
j=1

�xij −�i�
2

]
attains its maximum at

�̂i = x̄i+� �̂
2 = 1

n

∑
i

∑
j

(
xij − x̄i+

)2
where x̄i+ = 1

ni

∑
j

xij �

The maximum value equals[
2�

1
n

∑
i

∑
j

�xij − x̄i+�
2

]−n/2
e−n/2�

It is convenient to denote

s1 =
∑
i

∑
j

�xij − x̄i+�
2
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this sum is called the within group sum of squares. If we assume that at least one among
numbers n1� � � � � nk, say ni, is > 1, then the corresponding term

∑
j�Xij −Xi+�2 is >0

with probability 1. Then the random value S1 =
∑

i�j

(
Xij −Xi+

)2
of the within group sum

of squares is also >0 with probability 1.
Under H0, the likelihood

1
�2��2�n/2

exp

[
− 1
2�2

k∑
i=1

ni∑
j=1

�xij −��2

]
is maximised at

�̂= x̄++� �̂
2 = 1

n

∑
i

∑
j

(
xij − x̄++

)2
and attains the value[

2�
1
n

∑
i

∑
j

�xij − x++�
2

]−n/2
e−n/2�

where

x̄++ = 1
n

∑
i�j

xij �

We write

s0 =
∑
i�j

�xij − x̄++�
2


this is the total sum of squares.
The GLR is

'H1
H0
=
(
s0
s1

)n/2
�

Write s0 in the form

k∑
i=1

ni∑
j=1

(
xij − x̄i+ + x̄i+ − x̄++

)2 =∑
i�j

�xij − x̄i+�
2 +∑

i

ni�x̄i+ − x̄++�
2

(the cross-term sum vanishes as
∑

j�xij − x̄i+�= 0 ∀ i= 1� � � � � k). Then write

s2 =
∑
i

ni�x̄i+ − x̄++�
2


this sum is called the between groups sum of squares.
Hence, s0 = s1 + s2, and

'H1
H0
=
(
1+ s2

s1

)n/2
�
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So, we reject H0 when s2/s1 is large, or equivalently,

s2/�k− 1�
s1/�n− k�

is large.
Now the analysis of the distributions of Xij�Xi+ and X++ is broken up into three steps.
First, ∀ i, under both H0 and H1:

1
�2

ni∑
j=1

(
Xij −Xi+

)2 ∼�2
ni−1�

according to the Fisher Theorem (see Section 3.5). Then, summing independent �2 dis-
tributed RVs:

S1
�2

= 1
�2

∑
i

∑
j

(
Xij −Xi+

)2 ∼�2
n−k�

Next, ∀ i, again under both H0 and H1,

ni∑
j=1

(
Xij −Xi+

)2
and Xi+

are independent; see again the Fisher Theorem. Then

S1 =
∑
i�j

(
Xij −Xi+

)2
and S2 =

∑
i

(
Xi+ −X++

)2
are independent.

Finally, under H0, the Xij are IID N����2�. Then

X++ ∼N
(
��

�2

n

)
and

n

�2
�X++ −��2 ∼�2

1 �

Also, the Xi+ are independent N
(
���2/ni

)
and ni

(
Xi+ −�

)2
/�2 ∼�2

1 . Hence,∑
i

ni
�2

(
Xi+ −�

)2 ∼�2
k �

Moreover, X++ and Xi+ − X++ are independent, as they are jointly normal and with
Cov

(
X++�Xi+ −X++

)= 0. Writing

∑
i

ni
�2

(
Xi+ −�

)2 = 1
�2

∑
i

ni
(
Xi+ −X++

)2 + n

�2

(
X++ −�

)2
�

we conclude that on the RHS,

1
�2

∑
i

ni
(
Xi+ −X++

)2 = S2
�2

∼�2
k−1 and

n

�2

(
X++ −�

)2 ∼�2
1 �
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independently. On the other hand, write S2 in the form

S2 =
∑
i

ni
[(
Xi+ −�i

)+ ��i − �̄�+ (�̄−X++
)]2

�

where �̄=∑i �ini
/
n. Then a straightforward calculation shows that

�S2 = �k− 1��2 +∑
i

ni��i − �̄�2�

We conclude that S2 under H1 tends to be inflated.
All in all, we see that the statistic

Q= S2/�k− 1�
S1/�n− k�

is ∼Fk−1�n−k under H0 and tends to be larger under H1. Therefore, we reject H0 at level
� when the value of Q is bigger than )+

k−1�n−k���, the upper � point of Fk−1�n−k. This is
summarised in Table 4.12.

Table 4.12.

Degrees of freedom Sum of squares Mean square

Between groups k− 1 s2 s2
/
�k− 1�

Within groups n− k s1 s1
/
�n− k�

Total n− 1 s0

Example 4.19 In a psychology study of school mathematics teaching methods,
45 pupils were divided at random into 5 groups of 9. Groups A and B were taught in
separate classes by the normal method, and groups C, D and E were taught together. Each
day, every pupil from group C was publicly praised, every pupil from group D publicly
reproved, and the members of group E ignored. At the end of the experiment, all the
pupils took a test, and their results, in percentage of full marks, are shown in Table 4.13.

Table 4.13.

A (control) 34 28 48 40 48 46 32 30 48
B (control) 42 46 26 38 26 38 40 42 32
C (praised) 56 60 58 48 54 60 56 56 46
D (reproved) 38 56 52 52 38 48 48 46 44
E (ignored) 42 28 26 38 30 30 20 36 40

Psychologists are interested in whether there are significant differences between
the groups. Values Xij are assumed independent, with Xij ∼ N��i��

2�� i= 1� � � � �5�
j= 1� � � � �9. The null hypothesis is H0: �i ≡�, the alternative H1: �i unrestricted.
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Table 4.14.

Total x
∑

j�xij − xi+�2

A 354 39�3 568�0
B 330 36�7 408�0
C 494 54�9 192�9
D 422 46�9 304�9
E 290 32�2 419�6

Table 4.15.

DF SS MS F-ratio

Between groups 4 2891�48 722�869 722.869/47.33=15.273
Within groups 40 1893�3 47�33

Total 44 4784�78

Form the results we draw up Tables 4.14 and 4.15. The observed value of statistic Q
is 15�3. As )+

4�40�0�001�=5�7, the value falls deep into the rejection region for �=0�001.
Hence, H0 is rejected, and the conclusion is that the way the children are psychologically
treated has a strong impact on their mathematics performance. �

The ANOVA test appeared in the question MT-IB 1995-403G.
Statisticians are fond of curvilinear shapes and often own as a pet a large
South American snake called ANOCOVA.

(From the series ‘Why they are misunderstood’.)

Nowadays in any Grand Slam you will be tested by an -Ova.
(A chat at a Wimbledon women’s final.)

(c) Testing equality of variances, known mean Now assume that �1 = · · ·=�n =� is
known. Let us try to test H0: �

2
1 =· · ·=�2

n against H1: �
2
i >0 are unrestricted. Under H1,

the likelihood is

f�x
���2
1 � � � � ��

2
n�=

(
1
2�

)n/2 1∏
i �i

exp

[
−1
2

∑
i

�xi −��2/�2
i

]
�

It attains the maximal value

1

�2��n/2 	
∏

i�xi −��2
1/2
e−n/2
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at �̂2
i = �xi −��2. Under H0, the likelihood is maximised at �̂2 =∑i�xi −��2

/
n and

attains the value

1

�2��n/2 	
∑

i�xi −��2/n
n/2
e−n/2�

This gives the GLR

'H1
H0
=
{ ∏

i�xi −��2

	
∑

i�xi −��2/n
n

}−1/2

�

The difficulty here is in finding the distribution of the GLR under H0. Consequently,
there is no effective test for the null hypothesis. However, the problem is very important
in a number of applications, in particular, in modern financial mathematics. In financial
mathematics, the variance acquired a lot of importance (and is considered as an essentially
negative factor).

The statistician’s attitude to variation
is like that of an evangelist to sin;
he sees it everywhere to a greater or lesser extent.

(From the series ‘Why they are misunderstood’.)

4.8 Linear regression. The least squares estimators

Ordinary Least Squares People
(From the series ‘Movies that never made it to the Big Screen’.)

The next topic to discuss is linear regression. The model here is that a random variable
of interest, Y , is known to be of the form Y = g�x�+ �, where: (i) � is an RV of zero
mean (for example, �∼N�0��2� with a known or unknown variance), (ii) g�x�= g�x� ��

is a function of a given type (e.g. a linear form � +  x or an exponential ke�x (made
linear after taking logs), where some or all components of parameter � are unknown),
and (iii) x is a given value (or sometimes a random variable). We will mainly deal with
a multidimensional version in which Y and � are replaced with random vectors

Y=
⎛⎜⎝Y1���
Yn

⎞⎟⎠ and �=
⎛⎜⎝�1���
�n

⎞⎟⎠ �

and function g�x� with a vector function g�x� of a vector argument x. The aim is to
specify g�x� or g�x�, i.e. to infer the values of the unknown parameters.

An interesting example of how to use linear regression is related to the Hubble
law of linear expansion in astronomy. In 1929, E.P. Hubble (1889–1953), an American
astronomer, published an important paper reporting that the Universe is expanding (i.e.
galaxies are moving away from Earth, and the more distant the galaxy the greater speed
with which it is receding). The constant of proportionality which arises in this linear
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dependence was named the Hubble constant, and its calculation became one of the central
challenges in astronomy: it would allow us to assess the age of the Universe.

To solve this problem, one uses linear regression, as data available are scarce; related
measurements on galaxies are long and determined. Since 1929, there have been sev-
eral rounds of meticulous calculations, and the Hubble constant has been subsequently
re-estimated. Every new round of calculation so far has produced a greater age for the
Universe; it will be interesting to see whether this trend continues.

We mainly focus on a simple linear regression in which each component Yi of Y is
determined by

Yi =�+ xi + �i� i= 1� � � � � n� (4.46)

and �1� � � � � �n are IID, with ��i = 0, Var �i = �2. Here � and  are unknown, while
x = �x1� � � � � xn� is a given vector. RVs �i are considered to represent a ‘noise’ and
are often called errors (of observation or measurement). Then, of course, Y1� � � � � Yn are
independent, with �Yi = � +  xi and Var � = �2. A convenient re-parametrisation of
equation (4.46) is

Yi =�+ �xi − x�+ �i� i= 1� � � � � n� (4.47)

with

x= 1
n

∑
i

xi� �=�+ x and
∑
i

�xi − x�= 0�

In this model, we receive data �x1� y1�� � � � � �xn� yn�, where the values xi are known and
the values yi are realisations of RVs Yi. Determining values of � and  (or equivalently,
� and  ) means drawing a regression line

y=�+ x (or y=�+ �x− x�)�

that is the best linear approximation for the data. In the case � = 0 one deals with
regression through the origin.

A natural idea is to consider the pair of the least squares estimators (LSEs) �̂ and  ̂
of � and  , i.e. the values minimising the sum∑

	yi −�− �xi − x�
2 �

This sum measures the deviation of data �x1� y1�� � � � � �xn� yn� from the attempted line
y= ��− x�+ x. By solving the stationarity equations

#

#�

∑
	yi −�− �xi − x�
2 = 0�

#

# 

∑
	yi −�− �xi − x�
2 = 0�

we find that the LSEs are given by

�̂= y�  ̂= Sxy

Sxx
� (4.48)
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Here

y= 1
n

∑
i

yi� Sxx =
∑
i

�xi − x�2�

Sxy =
∑
i

�xi − x�yi =
∑
i

�xi − x��yi − y��
(4.49)

with �̂= �̂−  ̂x= y− Sxyx/Sxx. We obviously have to assume that Sxx �= 0, i.e. not all xi
are the same. Note that

y= �̂+  ̂x�

i.e. �x� y� lies on the regression line. Furthermore, �̂ and  ̂ are linear functions of
y1� � � � � yn.

The last remark implies a number of straightforward properties of the LSEs, which are
listed in the following statements

(i) ��̂=�� � ̂= .
(ii) Var �̂=�2/n� Var  ̂=�2/Sxx.
(iii) Cov ��̂�  ̂�= 0.
(iv) The LSE ��̂�  ̂� gives the best linear unbiased estimator (BLUE) of ��� �, i.e.

the least variance unbiased estimator among those linear in Y1� � � � � Yn.

In fact, (i)

��̂= 1
n

∑[
�+ �xi − x�

]=�

and

� ̂= 1
Sxx

∑
i

�xi − x��Yi =
1
Sxx

∑
i

�xi − x�
[
�+ �xi − x�

]= �

Next, (ii)

Var �̂= 1
n2

∑
Var Yi =

�2

n

and

Var  ̂= 1
S2
xx

∑
i

�xi − x�2Var Yi =
�2

Sxx
�

Further, (iii)

Cov ��̂�  ̂�= 1
nSxx

∑
Cov �Yi� �xi − x�Yi�=

1
nSxx

�2
∑
i

�xi − x�= 0�

Finally, (iv) let Ã=∑i ciYi and B̃=∑i diYi be linear unbiased estimators of � and  ,
respectively, with∑

i

ci	�+ �xi − x�
≡�� and
∑
i

di	�+ �xi − x�
≡ �



292 Hypothesis testing

Then we must have∑
i

ci = 1�
∑
i

ci�xi − x�= 0�
∑
i

di = 0 and
∑
i

di�xi − x�= 1�

Minimising Var Ã=�2∑
i c

2
i and Var B̃=�2∑

i d
2
i under the above constraints is reduced

to minimising the Lagrangians

�1�c1� � � � � cn
 ��=�2
∑
i

c2i −�

(∑
i

ci − 1

)
−�

∑
i

ci�xi − x�

and

�2�d1� � � � � dn
  �=�2
∑
i

d2
i −�

∑
i

di −�

(∑
i

di�xi − x�− 1

)
�

The minimisers for both �1 and �2 are

ci =di =
1

2�2
	�+��xi − x�
�

Adjusting the corresponding constraints then yields

ci =
1
n
and di =

xi − x

Sxx
�

i.e. Ã= �̂ and B̃=  ̂.
The relevant Tripos question is MT-IB 1996-103G.

4.9 Linear regression for normal distributions

Statisticians must stay away from children’s toys
because they regress easily.

(From the series ‘Why they are misunderstood’.)

Note that so far we have not used any assumption about the form of the common
distribution of errors �1� � � � � �n. If, for instance, �i ∼N�0��2� then the LSE pair ��̂�  ̂�
coincides with the MLE. In fact, in this case

Yi ∼ N��+ �xi − x���2��

and minimising the sum∑
i

	yi −�− �xi − x�
2

is the same as maximising the log-likelihood

��x�y
���2�=−n
2
ln �2��2�− 1

2�2

∑
i

	yi −�− �xi − x�
2�

This fact explains analogies with earlier statements (like Fisher Theorem), which emerge
when we analyse the normal linear regression in more detail.
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Indeed, assume that �i∼ N�0��2�, independently. Consider the minimal value of sum∑
i	Yi −�− �xi − x�
2:

R=∑[
Yi − �̂−  ̂�xi − x�

]2
� (4.50)

R is called the residual sum of squares (RSS). The following theorem holds:

(i) �̂∼N
(
���2/n

)
.

(ii)  ̂∼N
(
 ��2/Sxx

)
.

(iii) R/�2 ∼�2
n−2.

(iv) �̂�  ̂ and R are independent.
(v) R/�n− 2� is an unbiased estimator of �2.

To prove (i) and (ii) observe that �̂ and  ̂ are linear combinations of independent
normal RVs Yi. To prove (iii) and (iv), we follow the same strategy as in the proof of the
Fisher and Pearson Theorems.

Let A be an n× n real orthogonal matrix whose first and second columns are⎛⎜⎝1/
√
n

���

1/
√
n

⎞⎟⎠ and

⎛⎜⎝ �x1 − x�
/√

Sxx
���

�xn − x�
/√

Sxx

⎞⎟⎠
and the remaining columns are arbitrary (chosen to maintain orthogonality). Such a matrix
always exists: the first two columns are orthonormal (owing to equation

∑
i�xi − x�= 0),

and we can always complete them with n− 2 vectors to form an orthonormal basis in �n.
Then consider the random vector Z=ATY, with first two entries

Z1 =
√
nY =√

n�̂∼N�
√
n���2�

and

Z2 =
1√
Sxx

∑
i

�xi − x�Yi =
√
Sxx  ̂∼N�

√
Sxx ��

2��

In fact, owing to orthogonality of A, we have that all entries Z1� � � � �Zn are independent
normal RVs with the same variance. Moreover,

n∑
i=1

Z2
i =

n∑
i=1

Y 2
i �

At the same time,
n∑
i=3

Z2
i =

n∑
i=1

Z2
i −Z2

1 −Z2
2 =

n∑
i=1

Y 2
i − n�̂2 − Sxx ̂

2

=
n∑
i=1

�Yi − Y �2 +  ̂2Sxx − 2 ̂SxY

=
n∑
i=1

(
Yi − �̂−  ̂�xi − x�

)2 =R�

Hence, �̂�  ̂ and R are independent.
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If matrix A= �Aij�, then (i) ∀ j≥ 2�
∑

i Aij = 0, as columns 2� � � � � n are orthogonal
to column 1, (ii) ∀ j ≥ 3�

∑
i Aij�xi − x�= 0, as columns 3� � � � � n are orthogonal to

column 2. Then ∀ j≥ 3

�Zj =
∑
i

�YiAij =
∑
i

��+ �xi − x��Aij

= �
∑
i

Aij + 
∑
i

�xi − x�Aij = 0

and

Var Zj =�2
∑
i

a2ij =�2�

Hence,

Z3� � � � � Zn ∼N�0��2� independently�

But then R/�2 ∼�2
n−2. Now (v) follows immediately, and �R= �n− 2��2.

It is useful to remember that

R=
n∑
i=1

Y 2
i − n�̂2 − Sxx ̂

2� (4.51)

Now we can test the null hypothesis H0:  = 0 against H1:  ∈� unrestricted. In fact,
we have that under H0,

 ̂∼N
(
 0�

�2

Sxx

)
and

1
�2
R∼�2

n−2� independently�

Then

T =  ̂− 0√
R
/√

�n− 2�Sxx
∼ tn−2� (4.52)

Hence, an � size test rejects H0 when the value t of �T � exceeds tn−2��/2�, the upper �/2
point of the tn−2-distribution. A frequently occurring case is  0 = 0 when we test whether
we need the term  �xi − x� at all.

Similarly, we can use the statistic

T = �̂−�0√
R/
√
�n− 2�n

∼ tn−2� (4.53)

to test H0: �=�0 against H1: �∈� unrestricted.
The above tests lead to the following 100�1−��% confidence intervals for � and  :(

�̂−
√
R√

�n− 2�n
tn−2��/2�� �̂+

√
R√

�n− 2�n
tn−2��/2�

)
� (4.54)

(
 ̂−

√
R√

�n− 2�Sxx
tn−2��/2��  ̂+

√
R√

�n− 2�Sxx
tn−2��/2�

)
� (4.55)
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A similar construction works for the sum �+ . Here we have

�̂+  ̂∼N
(
�+ ��2

(
1
n
+ 1
Sxx

))
� independently ofR�

Then

T = �̂+  ̂− ��+ �[(
1
n
+ 1
Sxx

)
R/�n− 2�

]1/2 ∼ tn−2�

Hence, {
�̂+  ̂− tn−2��/2�

[(
1
n
+ 1
Sxx

)
R/�n− 2�

]1/2
�

�̂+  ̂+ tn−2��/2�
[(

1
n
+ 1
Sxx

)
R/�n− 2�

]1/2} (4.56)

gives the 100�1−��% CI for �+ .
Next, we introduce a value x and construct the so-called prediction interval for

a random variable Y ∼N�� +  �x − x���2�, independent of Y1� � � � � Yn. Here, x =∑n
i=1 xi

/
n� x1� � � � � xn are the points where observations Y1� � � � � Yn have been made,

and x is considered as a new point (where no observation has so far been made). It is
natural to consider

Ŷ = �̂+  ̂�x− x�

as a value predicted for Y by our model, with

�Ŷ =�+ �x− x�=�Y � (4.57)

and

Var
(
Ŷ − Y

)=Var Ŷ +Var Y

=Var �̂+ �x− x�2Var  ̂+�2 (4.58)

= �2

[
1+ 1

n
+ �x− x�2

Sxx

]
�

Hence,

Ŷ − Y ∼N
(
0��2

[
1+ 1

n
+ �x− x�2

Sxx

])
�

and we find a 100�1−��% prediction interval for Y is centred at Ŷ and has length

2�̂

√
1+ 1

n
+ �x− x�2

Sxx
tn−2

(�
2

)
�
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Finally, we construct the CI for the linear combination �+ l . Here, by the similar
argument, we obtain that(

�̂+ l̂ −
√
R√

n− 2

√
1
n
+ l2

Sxx
tn−2��/2�� �̂+ l̂ +

√
R√

n− 2

√
1
n
+ l2

Sxx
tn−2��/2�

)
(4.59)

is a 100�1−��% CI for �+ l .
In particular, when we select l= x− x, we obtain a CI for the mean value �Y for a

given observation point x. That is

�+ �x− x�� x= 1
n

∑
i

xi�

A natural question is: how well does the estimated regression line fit the data? A bad
fit could occur because of a large value of �2, but �2 is unknown. To make a judgement,
one performs several observations Yi1� � � � � Yimi

at each value xi:

Yij =�+ �xi − x�+ �ij� j= 1� � � � �mi� i= 1� � � � � n� (4.60)

Then the null hypothesis H0 that the mean value �Y is linear in x is tested as follows.
The average

Y i+ = 1
mi

mi∑
j=1

Yij

equals

�+ �xi − x�+ �i+� where �i+ ∼N
(
0�
�2

mi

)
�

Under H0, we measure the ‘deviation from linearity’ by the RSS
∑

i mi�Y i+ − �̂−
 ̂�xi − x��2 which obeys

1
�2

∑
i

mi�Y i+ − �̂−  ̂�xi − x��2 ∼�2
n−2� (4.61)

Next, regardless of whether or not H0 is true, ∀ i= 1� � � � � n, the sum

1
�2

∑
j

�Yij − Y i+�
2 ∼�2

mi−1�

independently of Y 1+� � � � � Y n+. Hence

1
�2

∑
i�j

�Yij − Y i+�
2 ∼�2

m1+···+mn−n� (4.62)
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independently of Y 1+� � � � � Y n+. Under H0, the statistic∑
i mi

[
Y i+ − �̂−  ̂�xi − x�

]2
/�n− 2�∑

i�j�Yij − Y i+�2/ �
∑

i mi − n�
∼Fn−2�m1+···+mn−n� (4.63)

Then, given � ∈ �0�1�� H0 is rejected when the value of statistic (4.63) is
>)+

n−2�m1+···+mn−n���.
The linear regression for a normal distribution appears in the following Tripos

examples: MT-IB 1999-412D, 1998-203E, 1993-403J, 1992-406D. See also SP-IB 1992-
203H(i).



5 Cambridge University Mathematical
Tripos examination questions in
IB Statistics (1992–1999)

Statisticians will probably do it.
(From the series ‘How they do it’.)

The manipulation of statistical formulas
is no substitute for knowing what one is doing.

H.M. Blalock (1926–), American social scientist

The problems and solutions below are listed in inverse chronological order (but the order
within a given year is preserved).

Problem 5.1 (MT-IB 1999-103D short) Let X1� � � � � X6 be a sample from a uniform
distribution on 	0� �
, where � ∈ 	1�2
 is an unknown parameter. Find an unbiased
estimator for � of variance less than 1/10.

Solution Set

M =max 	X1� � � � �X6
�

Then M is a sufficient statistic for �, and we can use it to get an unbiased estimator for �.
We have

FM�y
 ��= ���M<y�=���X1<y� � � � �X6<y�

=
6∏
i=1

���Xi < y�= �FX�y
 ���
6� 0≤ y≤ ��

Then the PDF of M is

fM�y
 ��=
d
dy
FM�y
 ��=

6y5

�6
�0≤ y≤ ��

and the mean value equals

�M =
�∫

0

dyy
6y5

�6
= 6y7

7�6

∣∣∣∣�
0

= 6�
7
�

298
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So, an unbiased estimator for � is 7M/6. Next,

Var
7M
6

=�

(
7M
6

)2

−
(
�
7M
6

)2

=
�∫

0

72 × 6y7

62�6
dy− �2 = 72�2

8× 6
− �2 = �2

48
�

For �∈ 	1�2
,
�2

48
∈
[
1
48
�
1
12

]
�

i.e. �2/48< 1/10, as required. Hence the answer:

the required estimator= 7
6
×max	X1� � � � �X6
� �

Problem 5.2 (MT-IB 1999-112D long) Let X1� � � � � Xn be a sample from a uniform
distribution on 	0� �
, where �∈ �0��� is an unknown parameter.

(i) Find a one-dimensional sufficient statistic M for � and construct a 95% confidence
interval for � based on T .

(ii) Suppose now that � is an RV having prior density

����∝ I��≥ a��−k�

where a> 0 and k> 2. Compute the posterior density for � and find the optimal Bayes
estimator �̂ under the quadratic loss function ��− �̂�2.

Solution (i) Set

M =max 	X1� � � � � Xn
�

Then M is a sufficient statistic for �. In fact, the likelihood

f�x
 ��=
⎧⎨⎩

1
�n
� �>xmax�

0� otherwise.

So, if we have � and xmax, we can calculate f� · 
 �� which means that M is sufficient.
(Formally, it follows from the factorisation criterion.)

Now, ���� ≥M�= 1. So, we can construct the confidence interval with the lower
bound M and an upper bound b�M� such that ���≤ b�M��= 0�95. Write

���≤ b�M��= 1−��b�M�<��= 1−��M<b−1����= 1− 0�05


as the PDF is

fM�t
 ��= n
tn−1

�n
I�0<x<���

we obtain

�b−1����n

�n
= 0�05� whence b−1���= ��0�05�1/n�

Then M = ��0�05�1/n gives �=M/�0�05�1/n. Hence, the 95% CI for � is �T�T/�0�05�1/n�.
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(ii) The Bayes formula

����x�= f�x
 ������∫
f�x�������d�

yields for the posterior PDF:

����x�∝ f�x
 ������= 1
�n+k

I��≥ c��

where

c= c�x�=max 	a� xmax
 �

Thus,

����x�= �n+ k− 1�cn+k−1�−n−kI��≥ c��

Next, with the quadratic LF we have to minimise∫
����x���− �̂�2d��

This gives the posterior mean

�̂∗ = arg min
�̂

∫
����x���− �̂�2d�=

∫
�����x�d��

Now ∫ �

c
�−n−k+1d�= 1

−n− k+ 2
�−n−k+2

∣∣∣∣�
c

= 1
n+ k− 2

c2−n−k�

and after normalising, we obtain

�̂∗ = k+ n− 1
k+ n− 2

c= k+ n− 1
k+ n− 2

max	a� x1� � � � � xn
� �

Problem 5.3 (MT-IB 1999-203D short) Write a short account of the standard procedure
used by statisticians for hypothesis testing. Your account should explain, in particular,
why the null hypothesis is considered differently from the alternative and also say what
is meant by a likelihood ratio test.

Solution Suppose we have data

x=
⎛⎜⎝x1���
xn

⎞⎟⎠
from a PDF/PMF f . We make two mutually excluding hypotheses about f , H0 (a null
hypothesis) and H1 (an alternative).
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These hypotheses have different statuses. H0 is treated as a conservative hypothesis,
not to be rejected unless there is a clear evidence against it, for example:

(i) H0 � f = f0 against H1 � f = f1; both f0� f1 specified. (This case is covered by
the NP Lemma.)

(ii) H0 � f = f0 (a specified PDF/PMF) against H1: f unrestricted. (This includes the
Pearson Theorem leading to �2 tests.)

(iii) f = f�·
 �� is determined by the value of a parameter; H0 � � ∈ %0 against
H1� �∈%1, where %0 ∩%1 =∅ (e.g. families with a monotone likelihood ratio).

(iv) H0� �∈%0 against H1� �∈%, where %0⊂%, and % has more degrees of freedom
than %0.

A test is specified by a critical region � such that if x ∈ � , then H0 is rejected, while
if x �∈ �� H0 is not rejected (which highlights the conservative nature of H0). A type I
error occurs when H0 is rejected while being true. Further, the type I error probability
is defined as ���� under H0; we say that a test has size a (or ≤ a), if maxH0

����≤ a.
We choose a at our discretion (e.g. 0.1, 0.01, etc.) establishing an accepted chance of
rejecting H0 wrongly. Then we look for a test of a given size a which minimises the
type II error probability 1−����, i.e. maximises the power ���� under H1.

To define an appropriate critical region, one considers the likelihood ratio

max f�x�H1�

max f�x�H0�
�

where the suprema are taken over PDFs/PMFs representing H0 and H1, respectively. The
critical region is then defined as the set of data samples x, where the likelihood ratio is
large, depending on the given size a. �

Problem 5.4 (MT-IB 1999-212D long) State and prove the NP Lemma. Explain what
is meant by a uniformly most powerful test.

Let X1� � � � � Xn be a sample from the normal distribution of mean � and variance 1,
where �∈� is an unknown parameter. Find a UMP test of size 1/100 for

H0� �≤ 0� H1� �> 0�

expressing your answer in terms of an appropriate distribution function. Justify carefully
that your test is uniformly most powerful of size 1/100.

Solution The NP Lemma is applicable when both the null hypothesis and the alternative
are simple, i.e. H0 � f = f0, H1 � f = f1, where f1 and f0 are two PDFs/PMFs defined
on the same region. The NP Lemma states: ∀ k> 0, the test with critical region � = �x �
f1�x�>kf0�x�� has the highest power �1��� among all tests (i.e. critical regions) of size
����.

For the proof of the NP Lemma: see Section 4.2.
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The UMP test, of size a for H0: � ∈%0 against H1 � � ∈%1, has the critical region
� such that: (i) max	����� � � ∈%0
≤ a and (ii) ∀ �∗ with max	����

∗� � � ∈%0
≤ a:
�����≥����

∗� ∀ �∈%1.
In the example where Xi∼ N���1�� H0� �≤ 0 and H1� �> 0, we fix some �1> 0 and

consider the simple null hypothesis that �= 0 against the simple alternative that �= �1.
The log-likelihood

ln
f�x
 �1�
f�x
0�

= �1
∑
i

xi −
n

2
�21

is large when
∑

i xi is large. Choose k1> 0 so that

1
100

=�0

(∑
i

Xi > k1

)
=�0

(∑
i Xi√
n

>
k1√
n

)
= 1−�

(
k1√
n

)
�

i.e. k1/
√
n= z+�0�01�=�−1�0�99�. Then

��

(∑
i

Xi > k1

)
<

1
100

∀ �< 0. Thus, the test with the critical region

� =
{
x �
∑
i

Xi > k1

}
has size 0.01 for H0 � �≤ 0.

Now, ∀ �′> 0�� can be written as

� =
{
x �

f�x
 �′�
f�x
0�

> k′
}

with some k′ = k′��′�> 0. By the NP Lemma, ��′��
∗�≤��′����∀ �∗ with �0��

∗�≤ 0�01.
Similarly ∀ �′> 0

��′��
∗�≤��′��� ∀ �∗ such that ����

∗�≤ 1
100

∀ �≤ 0�

So, � = �x �
∑

i Xi > k1� is size 0.01 UMP for H0 against H1. �

Problem 5.5 (MT-IB 1999-403D short) Students of mathematics in a large university
are given a percentage mark in their annual examination. In a sample of nine students the
following marks were found:

28 32 34 39 41 42 42 46 56

Students of history also receive a percentage mark. A sample of five students reveals the
following marks:

53 58 60 61 68
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Do these data support the hypothesis that the marks for mathematics are more variable
than the marks for history? Quantify your conclusion. Comment on your modelling
assumptions.

distribution N�0�1� F9�5 F8�4 �2
14 �2

13 �2
12

95% percentile 1.65 4.78 6.04 23.7 22.4 21.0

Solution Take independent RVs

Xi�=XM
i �∼N��1��

2
1 �� i= 1� � � � � 9�

and

Yj�= Y H
j �∼ N��2��

2
2 �� j= 1� � � � � 5�

If �2
1 =�2

2 , then

F = 1
8

9∑
i=1

�Xi −X�2

/
1
4

5∑
i=1

�Yi − Y �2 ∼ F8�4�

where

X= 1
9

∑
i

Xi� Y = 1
5

∑
j

Yj�

We have X= 40 and the values shown in Table 5.1, with
∑

i�Xi −X�2 = 546.
Similarly, Y =60, and we have the values shown in Table 5.2, with

∑
j�Yj −Y �2=118.

Table 5.1.

Xi 28 32 34 39 41 42 42 46 56
Xi −X −12 −8 −6 −1 1 2 2 6 16
�Xi −X�2 144 64 36 1 1 4 4 36 256

Table 5.2.

Yj 53 58 60 61 68
Yj − Y −7 −2 0 1 8
�Yj − Y �2 49 4 0 1 64

Then

F = 1
8
546

/
1
4
118 = 273

118
≈ 2�31�

But )+
8�4�0�05�= 6�04. So, we have no evidence to reject H0 � �

2
1 =�2

2 at the 95% level,
i.e. we do not accept that �2

1 >�
2
2 . �
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Problem 5.6 (MT-IB 1999-412D long) Consider the linear regression model

Yi =�+ xi + �i� �i ∼ N�0��2�� i= 1� � � � � n�

where x1� � � � � xn are known, with
∑n

i=1 xi = 0, and where �� ∈� and �2 ∈ �0���
are unknown. Find the maximum likelihood estimators �̂�  ̂� �̂2 and write down their
distributions.

Consider the following data:

xi −3 −2 −1 0 1 2 3
Yi −5 0 3 4 3 0 −5

Fit the linear regression model and comment on its appropriateness.

Solution RV Yi has the PDF

fYi �y
�� ��
2�= �2��2�−1/2e−�y−�− xi�

2/2�2
�

with

ln fY�y
�� ��
2�=−n

2
ln �2 −∑

i

�yi −�− xi�
2/�2�2��

To find the MLEs �̂ and  ̂, consider the stationary points:

0= #

#�

∑
i

�yi −�− xi�
2 =−2n�y−��� whence �̂= Y �

0= #

# 

∑
i

�yi −�− xi�
2 =−2

∑
i

xi�yi −�− xi��whence  ̂= SxY
Sxx

�

where Y =∑i Yi/n�SxY =∑i xiYi and Sxx =
∑

i x
2
i . The fact that they give the global

maximum follows from the uniqueness of the stationary point and the fact that
fY�y
�� ��

2�→ 0 as any of �� and �2 →� or �2 → 0.
Set R=∑n

i=1�Yi − �̂−  ̂xi�
2, then at �̂2:

0= #

#�2

(
−n
2
ln �2 − R

2�2

)
=− n

�2
+ R

�4
� whence �̂2 = R

n
�

The distributions are

�̂∼ N
(
��
�2

n

)
�  ̂∼ N

(
 ��2

/∑
i

x2i

)
� and R/�2 ∼�2

n−2�

In the example, Y = 0 and SxY = 0, hence �̂=  ̂= 0. Further, R= 84, i.e. �̂2 = 14.
This model is not particularly good as the data for �xi� Yi� show a parabolic shape, not

linear. See Figure 5.1. �
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xi

yi

Figure 5.1

Problem 5.7 (MT-IB 1998-103E short) The independent observations X1�X2 are dis-
tributed as Poisson RVs, with means �1��2 respectively, where

ln �1 =��

ln �2 =�+ �

with � and  unknown parameters. Write down ���� �, the log-likelihood function, and
hence find the following:

(i)
#2�

#�2
�
#2�

#�# 
�
#2�

# 2
,

(ii)  ̂, the maximum likelihood estimator of  .

Solution We have, ∀ integer x1� x2 ≥ 0,

��x1� x2
�� �= ln
(
e−�1

�
x1
1

x1!
e−�2

�
x2
2

x2!
)

=−e� + x1�− e�+ + x2��+ �− ln �x1!x2!��
So, (i)

#2

#�2
�=−e��1+ e ��

#2

#�# 
�=−e�+ �

#2

# 2
�=−e�+ �

(ii) Consider the stationary point

#

#�
�= 0 ⇒ x1 + x2 = e�̂ + e�̂+ ̂�

#

# 
�= 0 ⇒ x2 = e�̂+ ̂�

Hence,

�̂= ln x1�  ̂= ln
x2
x1
�

The stationary point gives the global maximum, as it is unique and � → −� as
���� � �→�. �
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Problem 5.8 (MT-IB 1998-112E long) The lifetime of certain electronic components
may be assumed to follow the exponential PDF

f�t
 ��= 1
�
exp
(
− t

�

)
� for t≥ 0�

where t is the sample value of T .
Let t1� � � � � tn be a random sample from this PDF. Quoting carefully the NP Lemma,

find the form of the most powerful test of size 0.05 of

H0� �= �0 against H1� �= �1

where �0 and �1 are given, and �0<�1. Defining the function

Gn�u�=
∫ u

0
e−t

tn−1

�n− 1�!dt�

show that this test has power

1−Gn

[
�0
�1
G−1
n �1−��

]
�

where �= 0�05.
If for n=100 you observed

∑
i ti/n=3�1, would you accept the hypothesis H0� �0 =2?

Give reasons for your answer, using the large-sample distribution of �T1 + · · ·+Tn�/n.

Solution The likelihood function for a sample vector t ∈�n is

f�t
 ��= 1
�n

exp

(
−1
�

∑
i

ti

)
I�min ti > 0�� t=

⎛⎜⎝t1���
tn

⎞⎟⎠�
By the NP Lemma, the MP test of size � will be with the critical region

� =
{
t �
f�1�t�

f�0�t�
> k

}
�

such that∫
�
f�0�t�dt= 0�05�

As

f�1�t�

f�0�t�
=
(
�0
�1

)n
exp

[(
1
�0

− 1
�1

)∑
i

ti

]
and

1
�0
>

1
�1
�

� has the form{
t �
∑
i

ti > c

}
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for some c> 0. Under H0,

X= 1
�0

n∑
i=1

Ti ∼Gam �n�1�� with ��0�X<u�=Gn�u��

Hence, to obtain the MP test of size 0�05, we choose c so that

1−Gn

(
c

�0

)
= 0�05� i.e.

c

�0
=G−1

n �0�95��

Then the power of the test is∫
�
f�1�t�dt= 1−Gn

(
1
�1
c

)
�

which equals

1−Gn

[
�0
�1
G−1
n �0�95�

]
�

as required.
As �Ti = � and Var Ti = n�2, for n large:∑

i Ti − n�

�
√
n

∼N�0�1�

by the CLT. Under H0� �0 = 2,∑
i Ti − n�0
�0
√
n

= 5�5�

On the other hand, z+�0�05�= 1�645. As 5�5> 1�645, we reject H0. �

Problem 5.9 (MT-IB 1998-203E short) Consider the model

yi = 0 + 1xi + 2x
2
i + �i� for 1≤ i≤ n�

where x1� � � � � xn are given values, with
∑

i xi=0, and where �1� � � � � �n are independent
normal errors, each with zero mean and unknown variance �2.

(i) Obtain equations for � ̂0�  ̂1�  ̂2�, the MLE of � 0� 1� 2�. Do not attempt to
solve these equations.

(ii) Obtain an expression for  ̂∗
1, the MLE of  1 in the reduced model

H0� yi = 0 + 1xi + �i� 1≤ i≤ n�

with
∑

i xi = 0, and �1� � � � � �n distributed as above.
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Solution (i) As Yi ∼ N� 0 + 1xi + 2x
2
i � �

2�, independently, the likelihood

f�y� 0� 1� 2��
2�=

n∏
i=1

1
�2��2�1/2

exp
[
− 1
2�2

�yi − 0 − 1xi − 2x
2
i �

2

]

=
(

1
2��2

)n/2
exp

[
− 1
2�2

n∑
i=1

�yi − 0 − 1xi − 2x
2
i �

2

]
�

We then obtain the equations for the stationary points of the LL:

#

# 0

�= 1
�2

n∑
i=1

�yi − 0 − 1xi − 2x
2
i �= 0�

#

# 1

�= 1
�2

n∑
i=1

xi�yi − 0 − 1xi − 2x
2
i �= 0�

#

# 2

�= 1
�2

n∑
i=1

x2i �yi − 0 − 1xi − 2x
2
i �= 0�

In principle, �2 should also figure here as a parameter. The last system of equations
still contains �2, but luckily the equation #�/#�2 = 0 could be dropped.

(ii) The same is true for the reduced model. The answer

 ̂1 =
SxY
Sxx

with SxY =∑i xiYi� Sxx =
∑

i x
2
i is correct. Again, �2 will not appear in the expression

for  ̂1. �

Problem 5.10 (MT-IB 1998-212E long) Let �x1� � � � � xn� be a random sample from
the normal PDF with mean � and variance �2.

(i) Write down the log-likelihood function �����2�.
(ii) Find a pair of sufficient statistics, for the unknown parameters ����2�, carefully

quoting the relevant theorem.
(iii) Find ��̂� �̂2�, the MLEs of ����2�. Quoting carefully any standard distributional

results required, show how to construct a 95% confidence interval for �.

Solution (i) The LL is

��x
���2�=−n
2
ln �2��2�− 1

2�2

n∑
i=1

�xi −��2�

(ii) By the factorisation criterion, T�x� is sufficient for ����2� iff ��x
���2� =
ln g�T�x�����2�+ ln h�x� for some functions g and h. Now

��x
���2�=−n
2
ln �2��2�− 1

2�2

∑
i

	�xi − x�+ �x−��
2�
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The remaining calculations affect the sum
∑

i only:

− 1
2�2

n∑
i=1

	�xi − x�2 + 2�xi − x��x−��+ �x−��2


=− 1
2�2

[
n∑
i=1

�xi − x�2 + n�x−��2

]
�

as
∑n

i=1�xi − x�= 0.
Thus, with T�X�= �X�

∑
i�Xi−X�2�, we satisfy the factorisation criterion (with h≡1).

So, T�X�= �X�
∑

i�Xi −X�2� is sufficient for ����2�.
(iii) The MLEs for ����2� are found from

#

#�
�= #

#�2
�= 0

and are given by

�̂= x� �̂2 = Sxx
n
� where Sxx =

∑
i

�xi − x�2�

We know that

X∼ N
(
��

�2

n

)
and

1
�2
SXX ∼�2

n−1�

Then

X−�

�/
√
n

/
1
�

√
SXX
n− 1

∼ tn−1�

So, if tn−1�0�025� is the upper point of tn−1, then(
x− 1√

n
sxxtn−1�0�025�� x+

1√
n
sxxtn−1�0�025�

)
is the 95% CI for �. Here sxx =

√
Sxx/�n− 1�. �

Problem 5.11 (MT-IB 1998-403E short) Suppose that, given the real parameter �, the
observation X is normally distributed with mean � and variance v, where v is known. If
the prior density for � is

����∝ exp
[− ��−�0�

2/2v0
]
�

where �0 and v0 are given, show that the posterior density for � is ����x�, where
����x�∝ exp

[− ��−�1�
2/2v1

]
�

and �1 and v1 are given by

�1 =
�0/v0 + x/v

1/v0 + 1/v
�

1
v1

= 1
v0

+ 1
v
�

Sketch typical curves ���� and ����x�, with �0 and x marked on the �-axis.
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Solution We have

f�x
 ��∝ exp
[
− 1
2v
�x− ��2

]
� −�<x<��

Then

����x�∝ f�x
 ������∝ exp
[
− 1
2v
�x− ��2 − 1

2v0
��−�0�

2

]
�

Write

�x− ��2

v
+ ��−�0�

2

v0
=
(
1
v
+ 1
v0

)
�2 − 2�

(
x

v
+ �0

v0

)
+ �2

0

v0
+ x2

v

=
(
1
v
+ 1
v0

)(
�− x/v+�0/v0

1/v0 + 1/v

)2

−
(
x/v+�0/v0
1/v0 + 1/v

)2

+ �2
0

v0
+ x2

v

= 1
v1
��−�1�

2 + terms not containing ��

where �1� v1 are as required.
Thus

����x�∝ exp
[
− 1
2v1

��−�1�
2 − k

2

]
∝ exp

[
− 1
2v1

��−�1�
2

]
�

Both PDFs ���� and �� · �x� are normal; as Figure 5.2 shows, the variance of � is
larger than that of �� · �x�. �

Problem 5.12 (MT-IB 1998-412E long) Let �nij� be the observed frequencies for an
r × c contingency table, let n=∑r

i=1

∑c
j=1 nij and let

��nij�= npij� 1≤ i≤ r� 1≤ j≤ c�

thus
∑

i

∑
j pij = 1.

µ1µ 0

µ1 < µ 0

µ1 > µ 0

if x < µ 0

if x > µ 0

π(θ|x)
π(θ)

θ

Figure 5.2
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Under the usual assumption that �nij� is a multinomial sample, show that the likelihood
ratio statistic for testing

H0� pij =�i j�

for all �i� j� and for some vectors �= ��1� � � � � �r� and  = � 1� � � � � c�, is

D= 2
r∑
i=1

c∑
j=1

nij ln�nij/eij��

where you should define �eij�. Show further that for �nij − eij� small, the statistic D may
be approximated by

Z2 =
r∑
i=1

c∑
j=1

(
nij − eij

)2/
eij�

In 1843 William Guy collected the data shown in Table 5.3 on 1659 outpatients
at a particular hospital showing their physical exertion at work and whether they had
pulmonary consumption (TB) or some other disease. For these data, Z2 was found to be
9.84. What do you conclude?

Table 5.3.

Level of exertion at work Disease Type

Pulmonary consumption Other disease

Little 125 385
Varied 41 136
More 142 630
Great 33 167

(Note that this question can be answered without calculators or statistical tables.)

Solution With nij standing for counts in the contingency table, set

n=
r∑
i=1

c∑
j=1

nij� ��nij�= npij� 1≤ i≤ r� 1≤ j≤ c�

We have the constraint:
∑

i�j pij = 1. Further,

H0� pij =�i j

∑
i

�i =
∑
j

 j = 1
 H1� pij arbitrary,
∑
i�j

pij = 1�

Under H1, in the multinomial distribution, the probability of observing a sample �nij�
equals

∏
i�j p

nij
ij /nij!. The LL, as a function of arguments pij , is

�
(
pij
)=∑

i�j

nij ln pij +A�
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where A=−∑ij ln �nij!� does not depend on pij . Hence, under the constraint
∑

i�j pij = 1�
� is maximised at

p̂ij =
nij

n
�

Under H0, the LL equals

�
(
�i� j

)=∑
i

ni+ ln �i +
∑
j

n+j ln  j +B�

where B does not depend on �i� j , and

ni+ =∑
j

nij� n+j =
∑
i

nij �

Under the constraint
∑
�i =

∑
 j = 1� � is maximised at

�̂i =
ni+
n
�  ̂j =

n+j
n
�

Thus,

p̃ij =
eij

n
� where eij =

ni+n+j
n

�

Then the LR statistic

2 ln

max
[
�
(
pij
)
�
∑
i�j

pij = 1
]

max
[
�
(
�i� j

)
�
∑
�i =

∑
 j = 1

] = 2
∑
i�j

nij ln �nij/eij�

coincides with D, as required.
With nij − eij = �ij , then

D= 2
∑
i�j

�eij + �ij� ln
(
1+ �ij

eij

)
and, omitting the subscripts,

≈ 2
∑
�e+ ��

(
�

e
− 1

2
�2

e2
+ · · ·

)
= 2

∑
�+∑ �2

e
+ · · ·

As
∑
�= 0,

D≈∑ �2ij

eij
=Z2�

The data given yield Z2 = 9�84. With r = 4� c= 2, we use �2
3 . The value 9.84 is too

high for �2
3 , so we reject H0. The conclusion is that incidence of TB rather than other

diseases is reduced when the level of exertion increases. �
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Problem 5.13 (MT-IB 1997-103G short) In a large group of young couples, the stan-
dard deviation of the husbands’ ages is four years, and that of the wives’ ages is three
years. Let D denote the age difference within a couple.

Under what circumstances might you expect to find that the standard deviation of age
differences in the group is about 5 years?

Instead you find it to be 2 years. One possibility is that the discrepancy is the result of
random variability. Give another explanation.

Solution Writing D=H −W , we see that if the ages H and W are independent, then

VarD=VarH +VarW = 42 + 32 = 52�

and the standard deviation is 5. Otherwise we would expect Var D �= 5, so value 5 is
taken under independence.

An alternative explanation for the value 2 is thatH andW are correlated. IfH=�W +*

with W and * independent, then with Var H = 16 and Var W = 9

VarH = 16= �2VarW +Var *�

Var �H −W�= 4= ��− 1�2VarW +Var *�

Hence,

12= ��2 − ��− 1�2�VarW�

and �= 7/6. �

Problem 5.14 (MT-IB 1997-112G long) Suppose that X1� � � � �Xn and Y1� � � � � Ym
form two independent samples, the first from an exponential distribution with the param-
eter �, and the second from an exponential distribution with parameter �.

(i) Construct the likelihood ratio test of H0 � �=� against H1� � �=�.
(ii) Show that the test in part (i) can be based on the statistic

T =
∑n

i=1Xi∑n
i=1Xi +

∑m
j=1 Yj

�

(iii) Describe how the percentiles of the distribution of T underH0 may be determined
from the percentiles of an F-distribution.

Solution (i) For Xi ∼ Exp ���� Yj ∼ Exp ���,

f�x
��=
n∏
i=1

��e−�xi � I �min xi ≥ 0�
 maximised at �̂−1 = 1
n

n∑
i=1

xi�

with

max
[
f�x
�� � �> 0

]= �̂ne−n�
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and

f�y
��=
m∏
j=1

��e−�yj � I �min yj ≥ 0�
 maximised at �̂−1 = 1
m

m∑
j=1

yj�

with

max
[
f�y
�� � �> 0

]= �̂me−m�

Under H0, the likelihood is

f�x
 ��f�y
 ��
 maximised at �̂−1 = 1
n+m

(
n∑
i=1

xi +
m∑
j=1

yj

)
�

with

max
[
f�x
 ��f�y
 �� � �> 0

]= �̂n+me−�n+m��

Then the test is: reject H0 if the ratio

�̂n�̂m

�̂n+m
=
(∑

i xi +
∑

j yj

n+m

)n+m(
n∑
i xi

)n(
m∑
j yj

)m
is large.

(ii) The logarithm has the form

�n+m� ln

(∑
i

xi +
∑
j

yj

)
− n ln

∑
i

xi −m ln
∑
j

yj

plus terms not depending on x�y. The essential part is

−n ln
∑

i xi∑
i xi +

∑
j yj

−m ln

∑
j yj∑

i xi +
∑

j yj
=−n ln T −m ln �1−T��

Thus the test is indeed based on T . Furthermore, H0 is rejected when T is close to 0 or 1.
(iii) Under H0� �=�= �, and

2�
∑
i

Xi ∼�2
2n� 2�

∑
j

Yj ∼�2
2m�

Hence,

T−1 = 1+R
m

n
� R=

∑
j Yj/�2m�∑
i Xi/�2n�

∼F2m�2n�

Thus the (equal-tailed) critical region is the union

� =
(
0�
(
1+ m

n
)+
2m�2n��/2�

)−1
)

∪
((

1+ m

n
)−
2m�2n��/2�

)−1
�1
)
�

and it is determined by percentiles of F2m�2n. �
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Problem 5.15 (MT-IB 1997-203G short) Explain what is meant by a sufficient statistic.
Consider the independent RVs X1� X2� � � � � Xn, where Xi ∼ N��+ ci� �� for given

constants ci� i= 1�2� � � � � n, and unknown parameters �,  and �. Find three sample
quantities that together constitute a sufficient statistic.

Solution A statistic T =T�x� is sufficient for a parameter � if f�x
 ��= g�T� ��h�x�.
For a data vector x with entries x1� � � � � xn, we have

f�x
 ��=
n∏
i=1

fi���xi�=
n∏
i=1

1√
2��

exp
[
− 1
2�

(
xi −�− ci

)2]

= 1
�2���n/2

exp

{
− 1
2�

[∑
i

x2i − 2
∑
i

xi��+ ci�+
∑
i

��+ ci�
2

]}

= 1
�2���n/2

exp

[
− 1
2�

∑
i

x2i +
�

�

∑
i

xi +
 

�

∑
i

xici −
1
2�

∑
i

��+ ci�
2

]
�

Thus, the triple

T�x�=
(∑

i

x2i �
∑
i

xi�
∑
i

cixi

)
is a sufficient statistic. �

Problem 5.16 (MT-IB, 1997-212G long) Let X1� X2� � � � � Xn be a random sample
from the N����2�-distribution, and suppose that the prior distribution for � is the N����2�-
distribution, where �2�� and �2 are known. Determine the posterior distribution for �,
given X1� X2� � � � � Xn, and the optimal estimator of � under (i) quadratic loss, and
(ii) absolute error loss.

Solution For the first half, see Problems 2.42 and 2.43. For the second half: as was
shown in Problem 2.3.8, the posterior distribution is

����x�= ����f�x
 ��∫
���′�f�x
 �′�d�′ =

1√
2��n

exp
[
− ��−�n�

2

2�2n

]
�

where

1
�2n

= 1
�2

+ n

�2
� �n =

�/�2 + nx̄/�2

1/�2 + n/�2
�

As the normal distribution is symmetric about its mean, the best estimators in both cases
are ����x�=�n. �

Problem 5.17 (MT-IB 1997-403G short) X1� X2� � � � � Xn form a random sample from
a uniform distribution on the interval �−��2��, where the value of the positive parameter
� is unknown. Determine the maximum likelihood estimator of the parameter �.
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Solution The likelihood f�x
 �� is

1
�3��n

I�−�<x1� � � � � xn < 2��= 1
�3��n

I�−�<min xi�I�maxxi < 2���

Hence, the MLE is of the form

�̂=max
[
−min xi�

1
2
maxxi

]
� �

Problem 5.18 (MT-IB 1997-412G long) The �2-statistic is often used as a measure
of the discrepancy between observed frequencies and expected frequencies under a null
hypothesis. Describe the �2-statistic, and the �2 test for goodness of fit.

The number of directory enquiry calls arriving each day at a centre is counted over
a period of K weeks. It may be assumed that the number of such calls on any day
has a Poisson distribution, that the numbers of calls on different days are indepen-
dent, and that the expected number of calls depends only on the day of the week. Let
ni� i=1� 2� � � � �7, denote, respectively, the total number of calls received on a Monday,
Tuesday, � � � , Sunday.

Derive an approximate test of the hypothesis that calls are received at the same rate
on all days of the week except Sundays.

Find also a test of a second hypothesis, that the expected numbers of calls received
are equal for the three days from Tuesday to Thursday, and that the expected numbers of
calls received are equal on Monday and Friday.

Solution Suppose we have possible counts ni of occurrence of states i= 1� � � � � n, of
expected frequencies ei. The �

2-statistic is given by

P=
n∑
i=1

�ni − ei�
2

ei
�

The �2 test for goodness of fit is for H0 � pi = pi���� � ∈%, against H1 � pi unrestricted,
where pi is the probability of occurrence of state i.

In the example, we assume that the fraction of calls arriving during all days except
Sundays is fixed (and calculated from the data). Such an assumption is natural when
the data array is massive. However, the fractions of calls within a given day from
Monday to Saturday fluctuate, and we proceed as follows. Let e∗ = 1

6 �n1 +· · ·+n6�� e
∗
1 =

1
3 �n2 + n3 + n4�� e∗2 = 1

2 �n1 + n5�.
Under H0: on Monday–Saturday calls are received at the same rate, the statistic is

6∑
i=1

�ni − e∗�2

e∗

and has an approximately �2
5 distribution. (Here the number of degrees of freedom is five,

since one parameter is fitted.)
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In the second version, H0 is that on Tuesday, Wednesday and Thursday calls are
received at one rate and on Monday and Friday at another rate. Here, the statistic is

4∑
i=2

�ni − e∗1�
2

e∗1
+ ∑

j=1�5

�nj − e∗2�
2

e∗2

and has an approximately �2
3 distribution. �

Problem 5.19 (MT-IB 1996-103G long) (i) Aerial observations x1� x2� x3� x4 are made
of the interior angles �1� �2� �3� �4, of a quadrilateral on the ground. If these observa-
tions are subject to small independent errors with zero means and common variance �2,
determine the least squares estimator of �1� �2� �3� �4.

(ii) Obtain an unbiased estimator of �2 in the situation described in part (i).
Suppose now that the quadrilateral is known to be a parallelogram with �1 = �3 and

�2 = �4. What now are the least squares estimates of its angles? Obtain an unbiased
estimator of �2 in this case.

Solution (i) The LSEs should minimise
∑4

i=1��i − xi�
2, subject to

∑4
i=1 �i = 2�. The

Lagrangian

L=∑
i

��i − xi�
2 −�

(∑
i

�i − 2�

)
has

#

#�i
L= 0 when 2��i − xi�−�= 0� i.e. �̂i = xi +

�

2
�

Adjusting
∑
�̂i = 2� yields �= 1

2 �2�−∑i xi�, and

�̂i = xi +
1
4

(
2�−∑

i

xi

)
�

(ii) From the least squares theory, Xi� i= 1�2�3�4 has mean �i, variance �
2, and the Xi

are independent. Write

��Xi − �̂i�
2 =�

[
1
4

(
2�−∑

i

Xi

)]2

= 1
16

�

⎧⎨⎩
[∑

i

Xi −�

(∑
i

Xi

)]2
⎫⎬⎭

= 1
16

Var

(∑
i

Xi

)
= 1

16
× 4�2 = �2

4
�

Thus,

�

(∑
i

�Xi − �̂i�
2

)
=�2�

and
∑

i�xi − �̂i�
2 is an unbiased estimator of �2.
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If �1 = �3 and �2 = �4, the constraint becomes 2��1 + �2�= 2�, i.e. �1 + �2 =�. Then
the Lagrangian

L= ��1 − x1�
2 + ��2 − x2�

2 + ��1 − x3�
2 + ��2 − x4�

2 − 2���1 + �2 −��

has

#

#�1
L= 2��1 − x1�+ 2��1 − x3�− 2��

#

#�2
L= 2��2 − x2�+ 2��2 − x4�− 2��

and is minimised at

�̂1 =
1
2
�x1 + x3 +��� �̂2 =

1
2
�x2 + x4 +���

The constraint �̂1 + �̂2 =� then gives �= ��−∑i xi/2�, and

�̂1 =
1
2
�x1 + x3�+

1
4

(
2�−∑

i

xi

)
= 1

4
�x1 + x3 − x2 − x4�+

�

2
�

and similarly

�̂2 =
1
4
�x2 + x4 − x1 − x3�+

�

2
�

Now

�
(
X1 − �̂1

)2 =�

(
3X1

4
− X3

4
+ X2

4
+ X4

4
− �

2

)2

=Var
(
3X1

4
− X3

4
+ X2

4
+ X4

4

)
=
[(

3
4

)2

+
(
1
4

)2

+
(
1
4

)2

+
(
1
4

)2 ]
�2 = 3

4
�2�

The same holds for i= 2�3�4. Hence,
∑
�xi − �̂i�

2/3 is an unbiased estimator of �2. �

Problem 5.20 (MT-IB 1996-203G long) (i) X1� X2� � � � � Xn form a random sample
from a distribution whose PDF is

f�x
 ��=
{
2x/�2� 0≤ x≤ �

0� otherwise,

where the value of the positive parameter � is unknown. Determine the MLE of the
median of the distribution.

(ii) There is widespread agreement amongst the managers of the Reliable Motor
Company that the number x of faulty cars produced in a month has a binomial distribution

��x= s�=
(
n

s

)
ps�1−p�n−s �s= 0�1� � � � � n
 0≤p≤ 1��
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There is, however, some dispute about the parameter p. The general manager has a prior
distribution for p which is uniform (i.e. with the PDF fp�x�= I�0≤ x≤ 1�), while the
more pessimistic production manager has a prior distribution with density fp�x�=2xI�0≤
x≤ 1�. Both PDFs are concentrated on (0, 1).

In a particular month, s faulty cars are produced. Show that if the general manager’s
loss function is �̂p− p�2, where p̂ is her estimate and p is the true value, then her best
estimate of p is

p̂= s+ 1
n+ 2

�

The production manager has responsibilities different from those of the general man-
ager, and a different loss function given by �1−p��̂p−p�2. Find his best estimator of p
and show that it is greater than that of the general manager unless s≥ n/2.

You may assume that, for non-negative integers ��  ,∫ 1

0
p��1−p� dp= �! !

��+ + 1�! �

Solution (i) If m is the median, the equation∫ m

0

2x
�2

dx= x2

�2

∣∣∣∣m
0

= 1
2

gives m= �
/√

2. Then

f�x
m
√
2�= 2x

�
√
2m�2

= x

m2
� 0≤ x≤m

√
2�

is maximised in m by x
/√

2, and f�x
m
√
2�=∏f�xi
m√

2� by

m̂= 1√
2
maxxi�

(ii) As �p�X= s�∝ps�1−p�n−s, s= 0�1� � � � n, the posterior for the general manager
(GM) is

�GM�p�s�∝ps�1−p�n−sI�0<p< 1��

and for the production manager (PM)

�PM�p�s�∝pps�1−p�n−sI�0<p< 1��

Then the expected loss for the GM is minimised at the posterior mean:

p̂GM =
1∫

0

pps�1−p�n−sdp

/ 1∫
0

ps�1−p�n−sdp

= �s+ 1�!�n− s�!
�n− s+ s+ 2�!

�n− s+ s+ 1�!
s!�n− s�! = s+ 1

n+ 2
�
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For the PM, the expected loss∫ 1

0
�1−p��p− a�2�PM�p�s�dp

is minimised at

a=
∫ 1

0
p�1−p��PM�p�s�dp

/∫ 1

0
�1−p��PM�p�s�dp�

which yields

p̂PM =
1∫

0

p�1−p�pps�1−p�n−sdp

/ 1∫
0

p�1−p�pps�1−p�n−sdp

= �s+ 2�!�n− s+ 1�!
�n− s+ s+ 4�!

�n− s+ s+ 3�!
�s+ 1�!�n− s+ 1�! =

s+ 2
n+ 4

�

We see that �s+ 2�/�n+ 4�> �s+ 1�/�n+ 2� iff s<n/2. �

Problem 5.21 (MT-IB 1996-403G long) (i) What is a simple hypothesis? Define the
terms size and power for a test of one simple hypothesis against another.

State and prove the NP Lemma.
(ii) There is a single observation of an RV X which has a PDF f�x�. Construct the

best test of size 0.05 for the null hypothesis

H0 � f�x�=
1
2
�−1≤ x≤ 1�

against the alternative hypothesis

H1� f�x�=
3
4
�1− x2� �−1≤ x≤ 1��

Calculate the power of your test.

Solution (i) A simple hypothesis for a parameter � is H0 � �= �0. The size equals the
probability of rejecting H0 when it is true. The power equals the probability of rejecting
H0 when it is not true; for the simple alternative H1� �= �1 it is a number (in general, a
function of the parameter varying within H1).

The statement of the NP Lemma for H0 � f = f0 against H1� f = f1 is as follows.

Among all tests of size ≤ �, the test with maximum power is given by
� = �x � f1�x�> kf0�x��, for k such that ��x∈� �H0�=

∫
� f0�x�dx=�.

In other word, ∀ k> 0 the test:

reject H0 when f1�x�> kf0�x�

has the maximum power among the tests of size ≤� �=�0�f1�X�>kf0�X��.
The proof of the NP Lemma is given in Section 4.2.
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(ii) The LR f1�x�/f0�x�= 3�1− x2�/2; we reject H0 when it is ≥ k, i.e. �x� ≤ �1−
2k/3�1/2. We want

0�05=�

(
�x� ≤

(
1− 2k

3

)1/2

�H0

)
=
(
1− 2k

3

)1/2

�

That is the condition �x� ≤ �1− 2k/3�1/2 is the same as �x� ≤ 0�05. By the NP Lemma,
the test

reject H0 when �x� ≤ 0�05

is the most powerful of size 0.05.
The power is then

���x� ≤ 0�05�H1�=
3
4

∫ 0�05

−0�05
�1− x2�dx= 3

2

(
x− x3

3

)∣∣∣∣0�05
0

≈ 0�075� �

Problem 5.22 (MT-IB 1995-103G long) (i) Let X1� � � � � Xm and Y1� � � � � Yn be
independent random samples, respectively, from the N��1��

2�-and the N��2��
2�-

distributions. Here the parameters �1� �2 and �
2 are all unknown. Explain carefully how

you would test the hypothesis H0 � �1 =�2 against H1� �1 �=�2.
(ii) Let X1� � � � � Xn be a random sample from the distribution with the PDF

f�x
 ��= e−�x−��� for �<x<��
where � has a prior distribution the standard normal N�0�1�. Determine the posterior
distribution of �.

Suppose that � is to be estimated when the loss function is the absolute error loss,
L�a���= �a− ��. Determine the optimal Bayes estimator and express it in terms of the
function cn�x� defined by

2��cn�x�− n�=��x− n�� for −�<x<��
where

��x�= 1√
2�

∫ x

−�
e−y

2/2dy

is the standard normal distribution function.

Solution With

X= 1
m

∑
i

Xi ∼ N��1��
2/m� and Y = 1

n

∑
i

Yj ∼ N��2��
2/n��

we have that under H0

1
�
�X− Y �

(
1
m

+ 1
n

)−1/2

∼ N�0�1��
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Set

SXX =
m∑
i=1

�Xi −X�2 ∼�2�2
m−1� SYY =

n∑
j=1

�Yj − Y �2 ∼�2�2
n−1�

Then

1
�2

�SXX + SYY �∼�2
m+n−2�

and

t= �X− Y �

(
1
m

+ 1
n

)−1/2
/[(

SXX + SYY
)/
�m+ n− 2�

]1/2 ∼ tm+n−2�

The MP test of size � rejects H0 when �t� exceeds tm+n−2��/2�, the upper �/2 point of
the tm+n−2-distribution.

(ii) By the Bayes’ formula,

����x�∝����f�x
 ��∝ e−�
2/2+n�−∑i xi I��<min xi��

with the constant of proportionality(∫
e−�

2/2+n�−∑i xi I��<min xi�d�
)−1

= 1√
2�

exp
(−n2/2+∑i xi

)
�
(
min xi − n

) �

Under absolute error LF L�a���= �a− ��, the optimal Bayes estimator is the posterior
median. That is we want s, where∫ s

−�
d�e−��−n�

2/2 = 1
2

∫ min xi

−�
e−��−n�

2/2�

or, equivalently: 2��s− n�=��min xi − n�, and s= cn �min xi�, as required. �

Problem 5.23 (MT-IB 1995-203G long) (i) Let X1� � � � � Xn be a random sample from
the distribution with the PDF

f�x
 ��= 2x
�2
� for 0≤ x≤ ��

Determine the MLE M of � and show that
(
M�M/�1−��

1
2n

)
is a 100�% CI for �, where

0<�< 1.
(ii) Let X1� � � � � Xn be an independent random sample from the uniform distribution on

	0� �1
 and let Y1� � � � � Yn be an independent random sample from the uniform distribution
on 	0� �2
. Derive the form of the likelihood ratio test of the hypothesis H0� �1=�2 against
H1� �1 �= �2 and express this test in terms of the statistic

T = max
(
MX�MY

)
min

(
MX�MY

) �
where MX =max1≤i≤n Xi and MY =max1≤i≤n Yi.

By observing that under the hypothesis H0 the distribution of T is independent of
�= �1 = �2, or otherwise, determine exactly the critical region for the test of size �.
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Solution (i) The likelihood

f�x
 ��= 2n

�2n

(
n∏
i=1

xi

)
I�maxxi ≤ ��

is written as g�M�x� ���h�x�, where M�x�=maxxi. Hence, M =M�X�=maxXi is a
sufficient statistic. It is also the MLE, with

��M ≤ u�= ���X1 ≤ u��n =
(u
�

)2n
� 0≤ u≤ ��

Then

�

(
M ≤ �≤ M

�1−��1/�2n�

)
= �

(
��1−��1/�2n� ≤M ≤ �

)
= 1−�

(
M<��1−��1/�2n�

)
= 1−

(
��1−��1/�2n�

)2n
�2n

= 1− �1−��=��

Hence,
(
M�M

/
�1−��1/�2n�

)
is a 100�% CI for �.

(ii) Under H0,

fX�Y =
(
1
�

)2n

I�0≤ x1� � � � � xn� y1� � � � � yn ≤ ���

is maximised at the MLE �̂=max �MX�MY �. Under H1,

fX�Y =
(
1
�1

)n( 1
�2

)n
I�0≤ x1� � � � � xn ≤ �1�I�0≤ x1� � � � � xn ≤ �2��

is maximised at the MLE �̂�1� �̂2�= �MX�MY �.
Then the ratio 'H1
H0

(
x�y
)
is(

1
MX

)n( 1
MY

)n
[

1
max �MX�MY �

]2n = 	max �MX�MY �

2n

�MXMY �
n =

[
max�MX�MY �

min�MX�MY �

]n
=Tn�

So, we reject H0 if T�x�y�≥ k for some k≥ 1.
Now, under H0

��MX ≤ x�=
(x
�

)n
� i.e. fMX

�x�= n
1
�

(x
�

)n−1
�
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and similarly for MY . Then, for 0<�< 1 and k≥ 1, we want � to be equal to

��T ≥ k�H0�=
1
�2

�∫
0

�∫
0

n2
(x
�

)n−1 (y
�

)n−1
I

(
max	x� y

min	x� y


≥ k

)
dydx

= 2n2
1∫

0

x/k∫
0

xn−1yn−1dydx= 2n

1∫
0

xn−1 x
n

kn
dx= 1

kn
�

So, k=�−1/n, and the critical region for the size � test is

� = {x�y � T>�−1/n
}
� �

Problem 5.24 (MT-IB 1995-403G long) (i) State and prove the NP Lemma.
(ii) Let X1� � � � � Xn be a random sample from the N����2�-distribution. Prove that

the random variables X (the sample mean) and
∑n

i=1�Xi − X�2 ��n− 1�× the sample
variance) are independent and determine their distributions.

Suppose that

X11� · · · X1n�

X21� · · · X2n�
���

���

Xm1� · · · Xmn�

are independent RVs and that Xij has the N��i��
2�-distribution for 1≤ j ≤ n, where

�1� � � � � �m��
2 are unknown constants. With reference to your previous result, explain

carefully how you would test the hypothesis H0� �1 = · · ·=�m.

Solution (Part (ii) only.) We claim:

(a) X=∑i Xi/n∼ N
(
���2/n

)
;

(b) X and SXX =∑i�Xi −X�2 are independent;
(c) SXX =∑i�Xi −X�2/�2 ∼�2

n−1.

To prove (a) note that linear combinations of normal RVs are normal, so, owing to
independence, X∼ N

(
���2/n

)
. Also, �X−��2/�2 ∼�2

1 .
To prove (b) and (c) observe that∑

i

�Xi −��2 =∑
i

	�Xi −X�+ �X−��
2

=∑
i

	�Xi −X�2 + 2�Xi −X��X−��+ �X−��2


= SXX + n�X−��2�
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Given an orthogonal n× n matrix A, set

X=
⎛⎜⎝X1
���

Xn

⎞⎟⎠ � Y=
⎛⎜⎝Y1���
Yn

⎞⎟⎠ where Y=AT�X−�1��

We want to choose A so that the first entry Y1 =
√
n�X−��. That is A must be of the

form

A=

⎛⎜⎜⎜⎝
1/

√
n � � � � � � � � �

1/
√
n � � � � � � � � �

���
���

���
���

1/
√
n � � � � � � � � �

⎞⎟⎟⎟⎠ �
where the remaining columns are to be chosen so as to make the matrix orthogonal.

Then Y1=
√
n�X−��∼ N�0��2�, and Y1 is independent of Y2� � � � � Yn. Since

∑
i Y

2
i =∑

i�Xi −��2, we have

n∑
i=2

Y 2
i =

n∑
i=1

�Xi −��2 − n�X−��2 = SXX�

Hence SXX=
∑n

i=2 Y
2
i , where Y2� � � � � Yn are IID N�0��2� RVs. Therefore SXX

/
�2∼�2

n−1.
Now consider the RVs Xij as specified. To test H0 � �1 = · · · =�m =� against H1:

�1� � � � � �m unrestricted, we use analysis of variance (one-way ANOVA). Write N =mn

and Xij =�i + �ij� j= 1� � � � � n� i= 1� � � � � m, where �ij are IID N�0��2�.
Apply the GLRT: the LR 'H1
H0

��xij�� equals

max�1� � � � ��m��
2�2��2�−N/2 exp

[−∑ij�xij −�i�
2/�2�2�

]
max���2�2��2�−N/2 exp

[−∑ij�xij −��2/�2�2�
] =

(
S0
S1

)N/2
�

Here

S0 =
∑
ij

�xij − x++�
2� S1 =

∑
ij

�xij − xi+�
2�

and

xi+ =
n∑
j=1

xij

n
� the mean within group i (and the MLE of �i under H1)�

x++ =∑
ij

xij

N
=∑

i

nxi+
N

� the overall mean (and the MLE of � under H0)�

The test is of the form

reject H0 when
S0
S1

is large�
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Next,

S0 =
m∑
i=1

n∑
j=1

�xij − xi+ + xi+ − x++�
2

=
m∑
i=1

n∑
j=1

[
�xij − xi+�

2 + 2�xij − xi+��xi+ − x++�+ �xi+ − x++�
2
]

=∑
ij

�xij − xi+�
2 + n

∑
i

�xi+ − x++�
2 = S1 + S2�

where

S2 = n
∑
i

�xi+ − x++�
2�

Thus, S0/S1 is large when S2/S1 is large. S1 is called the within groups (or within
samples) and S2 the between groups (between samples) sum of squares.

Next, whether or not H0 is true,∑
i

�Xij −Xi+�
2 ∼�2�2

n−1 ∀ i�

since �Xij depends only on i. Hence,

S1 ∼�2�2
N−m

as samples for different i are independent. Also, ∀i,∑
j

�Xij −Xi+�
2 is independent of Xi+�

Therefore, S1 is independent of S2. If H0 is true,

S2 ∼�2�2
m−1�

Further, if H0 is not true, S2 has

�S2 = �m− 1��2 + n
m∑
i=1

��i −��2�

where �=∑i �i/m.
Moreover, under H1, the value of S2 tends to be inflated. So, if H0 is true, then

Q= S2/�m− 1�
S1/�N −m�

∼Fm−1�N−m�

while under H1 the value of Q is inflated. Thus, in a size � test we reject H0 when the
value of statistic Q is larger than �+

m−1�N−m���, the upper � quantile of Fm−1�N−m. �

The Private Life of C.A.S. Anova
(From the series ‘Movies that never made it to the Big Screen’.)
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Problem 5.25 (MT-IB 1994-103F long) (i) At a particular time three high street restau-
rants are observed to have 43, 41 and 30 customers, respectively. Detailing carefully the
underlying assumptions that you are making, explain how you would test the hypothesis
that all three restaurants are equally popular against the alternative that they are not.

(ii) Explain the following terms in the context of hypothesis testing:

(a) simple hypothesis;
(b) composite hypothesis;
(c) type I and type II error probabilities;
(d) size of a test;
(e) power of a test.

LetX1� � � � � Xn be a sample from the N���1�-distribution. Construct the most powerful
size � test of the hypothesis H0� �=�0 against H1� �=�1, where �1>�0.

Find the test that minimises the larger of the two error probabilities. Justify your answer
carefully.

Solution (i) In total, 114 customers have been counted. Assuming that each customer
chooses one of the three restaurants with probabilities p1� p2� p3, independently, we
should work with a multinomial distribution. The null hypothesis H0 � p1 =p2 =p3 = 1/3,
with the expected numbers 38. The value of the Pearson �2-statistic:

P=∑ �observed− expected�2

expected
= 25+ 9+ 64

38
= 98

38
= 2�579�

Given �∈ �0�1�, we compare P with h+
2 ���, the upper � quantile of �2

2 . The size � test
will reject H0 when P>h

+
2 ���.

(ii) (a) A simple hypothesis H0 is that the PDF/PMF f = f0, a completely specified
probability distribution that enables explicit numerical probabilities to be calculated.

(b) A composite hypothesis is f ∈ a set of PDFs/PMFs.
(c) The TIEP is ��rejectH0�H0 true� and the TIIEP is ��acceptH0�H0 not true�. For a

simple H0, the TIEP is a number, and for a composite H0 it is a function (of an argument
running over the parameter set corresponding to H0). The TIIEP has a similar nature.

(d) The size of a test is equal to the maximum of the TIEP taken over the parameter
set corresponding to H0. If H0 is simple, it is simply the TIEP.

(e) Similarly, the power is 1 minus the TIIEP. It should be considered as a function
on the set of parameters corresponding to H1.

To construct the MP test, we use the NP Lemma. The LR

f�x
�1�

f�x
�0�
= exp

(
−1
2

∑
i

[
�xi −�1�

2 − �xi −�0�
2
])

= exp
[
n��1 −�0�x+

n

2
��2

0 −�2
1�
]

is large when x is large. Thus the critical region for the MP test of size � is

� = �x � x > c�
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y = α

y = β(α)

α

y

1

α = β(α) 1

Figure 5.3

where

�=��0

(
X>c

)= 1−�
(√
n�c−�0�

)
�

i.e.

c=�0 +
1√
n
z+���� where

1√
2�

∫ �

z+���
e−x

2/2dx=��

The test minimising the larger of the error probabilities must again be NP; otherwise
there would be a better one. For size �, the TIIEP as a function of � is

 ���=��1

(
X<c

)=�
(
z+���+

√
n��0 −�1�

)
�

where z+��� is the upper � quantile of N�0�1�. Clearly, max 	�� ���
 is minimal when
�= ���. See Figure 5.3.

We know that when � increases, z+��� decreases. We choose � with

�=�
(
z+���+

√
n��0 −�1�

)
� i.e. z+���=−

√
n

2
��0 −�1��

This yields

c=�0 −
1
2
��0 −�1�=

�0 +�1

2
� �

Problem 5.26 (MT-IB 1994-203F long) (i) Let X1� � � � � Xm be a random sample
from the N��1��

2
1 �-distribution and let Y1� � � � � Yn be an independent sample from the

N��2��
2
2 �-distribution. Here the parameters �1� �2� �

2
1 and �2

2 are unknown. Explain
carefully how you would test the hypothesis H0� �

2
1 =�2

2 against H1� �
2
1 �=�2

2 .
(ii) Let Y1� � � � � Yn be independent RVs, where Yi has the N� xi��

2�-distribution,
i= 1� � � � � n. Here x1� � � � � xn are known but  and �2 are unknown.

(a) Determine the maximum-likelihood estimators � ̂� �̂2� of � ��2�.
(b) Find the distribution of  ̂.
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(c) By showing that Yi −  ̂xi and  ̂ are independent, or otherwise, determine the
joint distribution of  ̂ and �̂2.

(d) Explain carefully how you would test the hypothesis H0 �  =  0 against H1 �

 �= 0.

Solution (i) Set

Sxx =
m∑
i=1

�xi − x�2� with
1

�2
1

SXX ∼�2
m−1�

and

Syy =
n∑
j=1

�yj − y�2� with
1

�2
2

SYY ∼�2
n−1�

Moreover, SXX and SYY are independent.
Then under H0,

1
m− 1

SXX

/
1

n− 1
SYY ∼Fm−1�n−1�

and in a size � test we reject H0 when 	Sxx/�m − 1�
/	Syy/�n − 1�
 is either
<)−

m−1�n−1��/2� or >)
+
m−1�n−1��/2�, where )

±
m−1�n−1��/2� is the upper/lower quantile of

Fm−1�n−1.
(ii) The likelihood

f ��2�Y�=
(

1√
2��

)n
exp

[
− 1
2�2

∑
i

�Yi − xi�
2

]
�

(a) The MLE � ̂� �̂2� of � ��2� is found from

#

# 
ln f ��2�Y�= 1

�2

∑
i

xi�Yi − xi�= 0�

#

#�2
ln f ��2�Y�=− n

2�2
+ 1

2�4

∑
i

�Yi − xi�
2 = 0�

and is

 ̂=
∑

i xiYi∑
i x

2
i

� �̂2 = 1
n

∑
i

�Yi −  ̂xi�
2�

This gives the global minimum, as we minimise a convex quadratic function− ln f ��2�Y�.
(b) As a linear combination of independent normals,  ̂∼ N

(
 ��2/

∑
i x

2
i

)
.

(c) As  ̂ and Yi −  ̂xi are jointly normal, they are independent iff their covariance
vanishes. As ��Yi −  ̂xi�= 0,

Cov �Yi −  ̂xi�  ̂�=��Yi −  ̂xi� ̂=��Yi ̂�− xi�� ̂
2��
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which is zero since

��Yi ̂�=
∑

j �=i xj
�Yi�Yj∑

k x
2
k

+ xi
�Y 2

i∑
k x

2
k

=∑
j �=i

 2xix
2
j∑

k x
2
k

+ xi
�2 + 2x2i∑

k x
2
k

= xi

(
 2 + �2∑

k x
2
k

)
= xi

(
Var  ̂+ �� ̂�2

)
= xi�� ̂

2��

In a similar fashion we can check that Y1 −  ̂x1� � � � � Yn −  ̂xn�  ̂ are independent and
normal. Then �̂2 and  ̂ are independent.

Next, the sum
∑

i�Yi − xi�
2 equals

∑
i

[
Yi −  ̂xi + � ̂− �xi

]2 =∑
i

�Yi −  ̂xi�
2 +
(∑

i

x2i

)(
 ̂− 

)2
�

As

1
�2

∑
i

�Yi − xi�
2 ∼�2

n and
1
�2

(∑
i

x2i

)(
 ̂− 

)2 ∼�2
1 �

we conclude that �̂2n/�2 ∼�2
n−1.

(d) Under H0

T = � ̂− 0�
√∑

i x
2
i√

1
n−1

∑
i�Yi −  ̂xi�

2

∼ tn−1�

Hence, the test is
reject H0 if �T �> tn−1��/2�, the upper �/2 point of tn−1. �

Problem 5.27 (MT-IB 1994-403F long) (i) Let X be a random variable with the PDF

f�x
 ��= e−�x−��� �< x<��
where � has a prior distribution the exponential distribution with mean 1. Determine the
posterior distribution of �.

Find the optimal Bayes estimator of � based on X under quadratic loss.
(ii) Let X1� � � � � Xn be a sample from the PDF

f�x
����=

⎧⎪⎨⎪⎩
1

�+�
e−x/�� x≥ 0�

1
�+�

ex/�� x< 0�

where � > 0 and �> 0 are unknown parameters. Find (simple) sufficient statistics for
����� and determine the MLEs �̂�� �̂� of �����.

Now suppose that n= 1. Is �̂ an unbiased estimator of �? Justify your answer.
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Solution (i) For the posterior PDF, write

����x�∝ e−�e−�x−��I�x> �> 0�∝ I�0<�<x��

So, the posterior is U�0� x�.
Under quadratic loss, the optimal estimator is the posterior mean, i.e. x/2.
(ii)

f�x
�� ��= 1
��+��n

exp

[
−∑

i

xiI�xi ≥ 0�/�+∑
i

xiI�xi < 0�/�

]
�

Hence

T�x�= �S+� S−�� S+ =∑
i

xiI�xi ≥ 0�� S− =∑
j

xjI�xj < 0�

is a sufficient statistic.
To find the MLE �̂�� �̂�, differentiate ��x
����= ln f�x
����:

#

#�
��x
����=− n

�+�
+ S+

�2
= 0�

#

#�
��x
����=− n

�+�
− S−

�2
= 0�

whence

�̂= 1
n

(
S+ +√−S−S+

)
� �̂= 1

n

(
−S− +√−S−S+

)
�

which is the only solution. These values maximise �, i.e. give the MLE for ����� as
�→−� when either � or � tend to 0 or �.

This argument works when both S+�−S−> 0. If one of them is 0, the corresponding
parameter is estimated by 0. So, the above formula is valid ∀ samples x∈�n \ �0�.

For n= 1� �̂= xI�x≥ 0�. As

��̂= 1
�+�

∫ �

0
xe−x/�dx

obviously depends on �, it cannot give �. So, �̂ is biased.
An exception is � = 0. Then ��̂ = �, and it is unbiased. In general, �S+ =

n�2/��+��. So,

��̂= �2

�+�
+ 1
n
�
√−S−S+�

The second summand is ≥ 0 for n> 1 unless �= 0 and S− = 0. Thus, in the exceptional
case �= 0, ��̂=� ∀ n≥ 1. �
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Problem 5.28 (MT-IB 1993-103J long) (i) A sample x1� � � � � xn is taken from a
normal distribution with an unknown mean � and a known variance �2. Show how to
construct the most powerful test of a given size �∈ �0�1� for a null hypothesis H0��=�0

against an alternative H1� �=�1 (�0 �=�1).
What is the value of � for which the power of this test is 1/2?
(ii) State and prove the NP Lemma. For the case of simple null and alternative

hypotheses, what sort of test would you propose for minimising the sum of probabilities
of type I and type II errors? Justify your answer.

Solution (i) Since both hypotheses are simple, the MP test of size ≤� is the LR test
with the critical region

� =
{
x �

f�x�H1�

f�x�H0�
> k

}
where k is such that the TIEP � �� �H0�=�. We have

f�x�H0�=
n∏
i=1

1√
2��

e−�xi−�0�
2/�2�2�� f�x�H1�=

n∏
i=1

1√
2��

e−�xi−�1�
2/�2�2��

and

'H1
H0
�x�= ln

f�x�H1�

f�x�H0�
=− 1

2�2

∑
i

	�xi −�1�
2 − �xi −�0�

2


= n

2�2
	2x��1 −�0�− ��2

1 −�2
0�
�

Case 1: �1 > �0. Then we reject H0 when x > k, where �= ��X > k�H0�. Under
H0� X ∼ N��0��

2/n�, since Xi ∼ N��0��
2�, independently. Then

√
n�X −�0�/� ∼

N�0�1�. Thus we reject H0 when x>�0 +�z+���/
√
n where z+���=�−1�1−�� is the

upper � point of N(0, 1).
The power of the test is

1√
2�n�

∫ �

�
√
nz+���+n�0

dye−�y−n�1�
2/�2�2n� = 1√

2�

∫ �

z+���+
√
n��0−�1�/�

e−y
2/2dy�

It equals 1/2 when z+���= ��1 −�0�
√
n/� , i.e.

�= 1√
2�

∫ �
√
n��1−�0�/�

e−y
2/2dy�

Case 2: �1<�0. Then we reject H0 when x<�0 −�z+���/
√
n, by a similar argument.

The power equals 1/2 when

�= 1√
2�

∫ √
n��1−�0�/�

−�
e−y

2/2dy�

Hence, the power is 1/2 when

�= 1√
2�

∫ �
√
n��0−�1�/�

e−y
2/2dy�
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(ii) (Last part only) Assume the continuous case: f� · �H0� and f1� · �H1� are PDFs.
Take the test with the critical region � = {x � f�x�H1�>f�x�H0�

}
, with error probabilities

��� �H0� and 1− ��� �H1�. Then for any test with a critical region �∗, the sum of error
probabilities is

� ��∗�H0�+ 1−���∗�H1�= 1+
∫
�∗

	f�x�H0�− f�x�H1�
dx

= 1+
∫

�∗∩�
	f�x�H0�− f�x�H1�
dx+

∫
�∗\�

	f�x�H0�− f�x�H1�
dx

≥ 1+
∫

�∗∩�
	f�x�H0�− f�x�H1�
dx

as the integral over �∗ \� is ≥ 0.
Next,

1 +
∫

�∗∩�
	f�x�H0�− f�x�H1�
dx

= 1+
∫
�

	f�x�H0�− f�x�H1�
dx−
∫

�\�∗

	f�x�H0�− f�x�H1�
dx

≥ 1+
∫
�

	f�x�H0�− f�x�H1�
dx=��� �H0�+ 1−��� �H1��

as the integral over � \�∗ is < 0. �

It has to be said that the development of Statistics after the Neyman–Pearson Lemma
was marred by long-lasting controversies to which a great deal of personal animos-
ity was added. The most prominent (and serious in its consequences) was perhaps a
Fisher–Neyman dispute that opened in public in 1935 and continued even after Fisher’s
death in 1962 (one of Neyman’s articles was entitled ‘The Silver jubilee of my dispute
with Fisher’).

Two authoritative books on the history of Statistics, [FiB] and [Rei], give different
versions of how it all started and developed. According to [FiB], p. 263, it was Neyman
who in 1934–1935 ‘sniped at Fisher in his lectures and blew on the unquenched sparks
of misunderstanding between the (Fisher’s and K. Pearson’s) departments (at University
College London) with apparent, if undeliberate, genius for making mischief.’ On the other
hand, [Rei] clearly lays the blame on Fisher, supporting it with quotations attributed to a
number of people, such as J.R. Oppenheimer (the future head of the Los Alamos atomic
bomb project), who supposedly said of Fisher in 1936: ‘I took one look at him and
decided I did not want to meet him’ (see [Rei], p. 144). In this situation, it is plausible that
F.N. David (1909–1993), a prominent British statistician, who knew all parties involved
well, was right when she said: ‘They (Fisher, Neyman, K. Pearson, E. Pearson) were all
jealous of one another, afraid that somebody would get ahead.’ And on the particular issue
of the NP Lemma: ‘Gosset didn’t have a jealous bone in his body. He asked the question.
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Egon Pearson to a certain extent phrased the question which Gosset had asked in statistical
parlance. Neyman solved the problem mathematically’ ([Rei], p. 133). According to [FiB],
p. 451, the NP Lemma was ‘originally built in part on Fisher’s work,’ but soon ‘diverged
from it. It came to be very generally accepted and widely taught, especially in the United
States. It was not welcomed by Fisher � � � ’.

David was one of the great-nieces of Florence Nightingale. It is interesting to note that
David was the first woman Professor of Statistics in the UK, while Florence Nightingale
was the first woman Fellow of the Royal Statistical Society. At the end of her career David
moved toCalifornia but for decadesmaintainedher cottage andgarden in south-eastEngland.

It has to be said that the lengthy arguments about the NP Lemma and the theory (and
practice) that stemmed from it, which have been produced in the course of several decades,
reduced in essence to the following basic question. You observe a sample, �x1� � � � � xn�.
What can you (reasonably) say about a (supposedly) random mechanism that is behind
it? According to a persistent opinion, the Fisherian approach will be conspicuous in the
future development of statistical sciences (see, e.g. [E1]). But even recognised leaders
of modern statistics do not claim to have a clear view on this issue (see a discussion
following the main presentation in [E1]). However, it should not distract us too much
from our humble goal.

Problem 5.29 (MT-IB 1993-203J long) (i) Explain what is meant by constructing a
confidence interval for an unknown parameter � from a given sample x1� � � � � xn. Let a
family of PDFs f�x
 ���−�<�<�, be given by

f�x
 ��=
{
e−�x−��� x≥ ��

0� x< ��

Suppose that n = 4 and x1 = −1�0� x2 = 1�5� x3 = 0�5� x4 = 1�0. Construct a 95%
confidence interval for �.

(ii) Let f�x
���2� be a family of normal PDFs with an unknown mean � and an
unknown variance �2 > 0. Explain how to construct a 95% confidence interval for �
from a sample x1� � � � � xn. Justify the claims about the distributions you use in your
construction.

My Left Tail
(From the series ‘Movies that never made it to the Big Screen’.)

Solution (i) To construct a 100�1 − ��%CI, we need to find two estimators
a= a�x�� b= b�x� such that ��a�X�≤ �≤ b�X��≥ 1−�.

In the example,

f�x
 ��= e−
∑
i xi+n�I�xi ≥ � ∀ i��

So minXi is a sufficient statistic and minXi − �∼ Exp �n�. Then we can take a= b− �

and b=min xi, where∫ �

�
ne−nxdx= e−n� =��
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With �= 0�05� n= 4 and min xi =−1, we obtain the CI[
−1− ln 20

4
�−1

]
�

In a different solution, one considers

n∑
i=1

Xi − n�∼ Gam �n�1�� or 2
n∑
i=1

�Xi − ��∼�2
2n�

Hence we can take

a=
(∑

i

Xi −
1
2
h+
2n��/2�

)/
n� b=

(∑
i

Xi −
1
2
h−
2n��/2�

)/
n�

where h±
2n��/2� are the upper/lower �/2 quantiles of �2

2n. With � = 0�05� n= 4 and∑
i xi = 2, we obtain[

1
2
− h+

8 �0�025�
8

�
1
2
− h−

8 �0�025�
8

]
�

The precise value for the first interval is 	−1�749�−1
, and that for the second[
1
2
− 17�530

8
�
1
2
− 2�180

8

]
= 	−1�6912�0�2275
�

The endpoint 0.2275 is of course of no use since we know that �≤ x1 =−1�0. Replacing
0.2275 by −1 we obtain a shorter interval.

(ii) Define

�̂= 1
n

n∑
i=1

Xi� �̂
2 = 1

n− 1

n∑
i=1

�Xi −X�2�

Then (a)
√
n��̂−��/� ∼ N�0�1� and (b) �n− 1��̂2/�2 ∼ �2

n−1, independently, imply-
ing that

√
n
�̂−�

�̂
∼ tn−1�

Hence, an equal-tailed CI is[
�̂− �̂√

n
tn−1�0�025�� �̂+ �̂√

n
tn−1�0�025�

]
�

where tn−1��/2� is the �/2 point of tn−1� �= 0�05. The justification of claims (a), (b)
has been given above. �

Problem 5.30 (MT-IB 1993-403J long) (i) State and prove the factorisation criterion
for sufficient statistics, in the case of discrete random variables.

(ii) A linear function y=Ax+ B with unknown coefficients A and B is repeatedly
measured at distinct points x1� � � � � xk: first n1 times at x1, then n2 times at x2 and
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so on; and finally nk times at xk. The result of the ith measurement series is a sample
yi1� � � � � yini � i = 1� � � � � k. The errors of all measurements are independent normal
variables, with mean zero and variance 1. You are asked to estimate A and B from the
whole sample yij� 1≤ j≤ni� 1≤ i≤ k. Prove that the maximum likelihood and the least
squares estimators of �A�B� coincide and find these.

Denote by Â the maximum likelihood estimator of A and by B̂ the maximum likelihood
estimator of B. Find the distribution of

(
Â� B̂

)
.

Solution (Part (ii) only) Define

�n�=∑
i

ni� x=
∑

i xini
�n�

and

ui = xi − x� with �un�=∑
i

uini = 0� �u2n�=∑
i

u2i ni > 0�

Let �=A�  =B+Ax, then yij =�ui + + �ij and Yij ∼N��ui + �1�, i.e.

fYij �yij�=
1√
2�

exp
[
−1
2
�yij −�ui − �2

]
�

To find the MLE, we need to maximise
∏

i�j exp
[− 1

2 �yij −�ui − �2
]
. This is equivalent

to minimising the quadratic function
∑

i�j�yij −�ui− �2. The last problem gives precisely
the least squares estimators. Therefore the MLEs and the LSEs coincide.

To find the LSEs, we solve

#

# 

∑
ij

�Yij − −�ui�
2 = 0 ⇔  ̂= 1

�n�
∑
i�j

Yij�

#

#�

∑
ij

�Yij − −�ui�
2 = 0 ⇔ �̂= 1

�u2n�
∑
i�j

Yijui�

with

 ̂∼N
(
 �

1
�n�
)
� �̂∼N

(
��

1
�u2n�

)
�

That is

Â= 1
�u2n�

∑
i�j

Yijui ∼N
(
A�

1
�u2n�

)
�

B̂= 1
�n�

∑
i�j

Yij −
x

�u2n�
∑
i�j

Yijui ∼N
(
B�

1
�n� + x2

�u2n�
)
�

Observe that �Â� B̂� are jointly normal, with covariance

Cov �Â� B̂�=
∑

i nixi

�
∑

i nixi�
2 − �

∑
i ni�

(∑
i nix

2
i

) � �



Tripos examination questions in IB Statistics 337

Problem 5.31 (SP-IB 1992 103H long) (i) Let x1� � � � � xn be a random sample from
the PDF f�x
 ��. What is meant by saying that t�x1� � � � � xn� is sufficient for �?

Let

f�x
 ��=
{
e−�x−��� x> ��
0� x≤ ��

and suppose n= 3. Let y1 < y2 < y3 be ordered values of x1� x2� x3. Show that y1 is
sufficient for �.

(ii) Show that the distribution of Y1 − � is exponential of parameter 3. Your client
suggests the following possibilities as estimators of �:

�1 = x3 − 1�
�2 = y1�

�3 = 1
3 �x1 + x2 + x3�− 1�

How would you advise him?
Hint: General theorems used should be clearly stated, but need not be proved.

Solution (i) T�x� is sufficient for � iff the conditional distribution of X given T�X�
does not involve �. That is, ���X ∈ B�T = t� is independent of � ∀ domain B in the
sample space. The factorisation criterion states that T is sufficient iff the sample PDF
f�x
 ��= g�T�x�� ��h�x� for some functions g and h.

For f�x
 �� as specified, with n= 3�x= �x1� x2� x3��

f�x
 ��=
3∏
i=1

e−�xi−��I�xi > ��= e3�e−
∑
i xi I�min xi > ��� x=

⎛⎝x1x2
x3

⎞⎠ �
So, T =minXi �= Y1 is a sufficient statistic: here g�y� ��= e3�I�y> ��� h�x�= e−

∑
i xi .

(ii) ∀ y > 0: ���Y1 − � > y�= ���X1�X2�X3 > y + ��=∏3
i=1 ���Xi > y + ��= e−3y.

Hence, Y1 ∼ Exp �3�.
Now, ��X3 − 1�=��X3 − ��+ �− 1= �, Var X3 = 1.
Next, Y1 =minXi is the MLE maximising f�x
 �� in �; it is biased as

�Y1 =��Y1 − ��+ �= 1
3
+ ��

The variance Var �2 equals 1/9.
Finally,

�

(
1
3
�X1 +X2 +X3�− 1

)
= �� Var

(
1
3
�X1 +X2 +X3�− 1

)
= 1

3
�

We see that Y1 has the least variance of the three. We could advise the client to use �2
bearing in mind the bias. However, the better choice is �2 − 1/3. �
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Remark The RB Theorem suggests to use the estimator �̂=���1��2= t�=���3��2= t�.
A straightforward computation yields that �̂= t− 1/3. Hence, �̂�= � and Var �̂= 1/9.
That is, the RB procedure does not create the bias and reduces the variance to the
minimum.

Problem 5.32 (SP-IB 1992, 203H long) (i) Derive the form of the MLEs of ��  and
�2 in the linear model

Yi =�+ xi + �i�

1≤ i≤ n, where �∼ N�0��2� and
∑n

i=1 xi = 0.
(ii) What is the joint distribution of the maximum likelihood estimators �̂�  ̂ and �̂2?

Construct 95% confidence intervals for

(a) �2,
(b) �+ .

Solution (i) We have that Yi ∼ N��+ xi��
2�. Then

f�y
�� ��2�= 1

�
√
2��2�n

exp

[
− 1
2�2

∑
i

�yi −�− xi�
2

]
�

and

��y
�� ��2�= ln f�y
�� ��2�=−n
2
ln �2��2�− 1

2�2

∑
i

�yi −�− xi�
2�

The minimum is attained at

#

#�
��y
�� ��2�= #

# 
��y
�� ��2�= #

#�2
��y
�� ��2�= 0�

i.e. at

�̂= y�  ̂= xTY
�xTx�

� �̂2 = 1
n

∑
i

�̂2i � where �̂i = Yi − �̂−  ̂xi�

(ii) Then we have

�̂∼N
(
��
�2

n

)
�  ̂∼N

(
 �

�2

xTx

)
�
( n
�2

)
�̂2 ∼�2

n−2�

Also,

Cov ��̂�  ̂�=Cov

(
1
n

∑
i

Yi�
1
xTx

∑
i

xiYi

)

= 1
nxTx

∑
i

xiCov �Yi� Yi�=
�2

nxTx

∑
i

xi = 0�



Tripos examination questions in IB Statistics 339

Cov ��̂� �̂i�=Cov ��̂� Yi − �̂−  ̂xi�

= 1
n

n∑
j=1

(
�ij −

1
n

)
Cov �Yj� Yj�= 0�

and

Cov � ̂� �̂i�=Cov � ̂� Yi − �̂−  ̂xi�

= 1
xTx

n∑
j=1

xj

(
�ij −

1
xTx

xjxi

)
Cov �Yj�Yj�

= �2

xTx
�xi − xi�= 0�

So, �̂�  ̂ and �̂1� � � � � �̂n are independent. Hence, �̂�  ̂ and �̂2 are also independent.
Therefore, (a) the 95% CI for �2 is(

n�̂2

h+ �
n�̂2

h−

)
where h− is the lower and h+ the upper 0.025 point of �2

n−2.
Finally, (b)

�̂+  ̂∼ N
(
�+ ��2

(
1
n
+ 1

xTx

))
and is independent of �̂2. Then(

�̂+  ̂
)− ��+ �√
1
n
+ 1

xTx

/
�̂

√
n

n− 2
∼ tn−2�

Hence, the 95% CI for �+ is(
�̂+  ̂− t�̂

√
1
n
+ 1

xTx

√
n

n− 2
� �̂+  ̂+ t�̂

√
1
n
+ 1

xTx

√
n

n− 2

)
�

where t is the upper 0.025 quantile of tn−2. �

Problem 5.33 (SP-IB 403H 1992 long) (i) Describe briefly a procedure for obtaining
a Bayesian point estimator from a statistical experiment. Include in your description
definitions of the terms:

(a) prior;
(b) posterior.

(ii) Let X1� � � � � Xn be independent identically distributed random variables, each
having distribution Gam �k���. Suppose k is known, and, a priori, � is exponential of
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parameter �. Suppose a penalty of �a− ��2 is incurred on estimating � by a. Calculate
the posterior for � and find an optimal Bayes estimator for �.

Solution (i) We are given a sample PDF/PMF f�x
 �� and a prior PDF/PMF ���� for
the parameter. We then consider the posterior distribution

����x�∝����f�x
 ���

normalised to have the total mass 1. The Bayes’ estimator is defined as the minimiser of
the expected loss �����x�L�a� �� for a given function L�a��� specifying the loss incurred
when � is estimated by a.

(ii) For the quadratic loss, where L�a���= �a− ��2, the Bayes’ estimator is given by
the posterior mean. In the example given, the posterior is Gamma:

����x�∝ e−���kn
∏
i

e−�xi ∼Gam

(
kn+ 1��+∑

i

xi

)
�

Hence, the Bayes’ estimator is given by its mean �kn+ 1�
/
��+∑i xi� . �

Problem 5.34 (MT-IB 1992-106D long) Let X1�X2� � � � � Xn be an independent sam-
ple from a normal distribution with unknown mean � and variance �2. Show that the pair
�X�S

2
�, where

X= 1
n

n∑
i=1

Xi� S
2 = 1

n

n∑
i=1

�Xi −X�2�

is a sufficient statistic for ����2�.
Given �> 0, consider �S

2
as an estimator of �2. For what values of � is �S

2

(i) maximum likelihood,
(ii) unbiased?

Which value of � minimises the mean square error

���S
2 −�2�2?

Solution The likelihood

f�x
���2�=
(

1√
2��2

)n
exp

[
− 1
2�2

n∑
i=1

�xi −��2

]

=
(

1√
2��2

)n
exp

[
− 1
2�2

n∑
i=1

�xi − x+ x−��2

]

=
(

1√
2��2

)n
exp

[
− 1
2�2

n∑
i=1

�xi − x�2 − n

2�2
�x−��2

]
�

Hence, by the factorisation criterion, �X�S
2
� is a sufficient statistic.
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Maximising in � and �2 is equivalent to solving

#

#�
ln f�x
���2�= #

#�2
ln f�x
���2�= 0�

which yields �̂= x� �̂2 =∑i�xi − x�2/n. Hence, (i) �S
2
is MLE for �= 1.

For (ii)

�nS
2 =

n∑
i=1

��Xi −X�2 =
n∑
i=1

��Xi −��2 − n��X−��2

= nVarX− n

n2
nVarX= �n− 1��2�

Hence, �S
2
is unbiased for �= n/�n− 1�.

Finally, set ����=���S
2 −�2�2. The differentiating yields

�′���= 2���S
2 −�2�S

2
�

Next, nS
2 ∼ �Y 2

1 + · · ·+ Y 2
n−1�, where Yi ∼ N�0��2�, independently. Hence,

�
(
S
2)2 = n−2��Y 2

1 + · · ·+ Y 2
n−1�

2

= n−2
[
�n− 1��Y 4

1 + �n− 1��n− 2�
(
�Y 2

1

)2]
= n−2

[
3�n− 1��4 + �n− 1��n− 2��4

]= n−2�n2 − 1��4�

As �S
2 = �n− 1��2/n, equation �′���= 0 gives

�= �2�S
2

�
(
S
2)2 = n

n+ 1
�

which is clearly the minimiser. �

The Mystery of Mean Mu and Squared Stigma
(From the series ‘Movies that never made it to the Big Screen’.)

Problem 5.35 (MT-IB 1992-206D long) Suppose you are given a collection of np
independent random variables organised in n samples, each of length p:

X�1� = �X11� � � � �X1p�

X�2� = �X21� � � � �X2p�
���

���

X�n� = �Xn1� � � � �Xnp��

The RV Xij has a Poisson distribution with an unknown parameter �j�1≤ j≤p. You are
required to test the hypothesis that �1 = · · · = �p against the alternative that at least two
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of the values �j are distinct. Derive the form of the likelihood ratio test statistic. Show
that it may be approximated by

n

X

p∑
j=1

(
Xj −X

)2
with

Xj =
1
n

n∑
i=1

Xij� X= 1
np

n∑
i=1

p∑
j=1

Xij�

Explain how you would test the hypothesis for large n.

Solution See Example 4.13. �

Problem 5.36 (MT-IB 1992-306D long) Let X1� X2� � � � � Xn be an independent sam-
ple from a normal distribution with a known mean � and an unknown variance �2 taking
one of two values �2

1 and �2
2 . Explain carefully how to construct a most powerful test of

size � of the hypothesis � = �1 against the alternative � = �2. Does there exist an MP
test of size � with power strictly less than �? Justify your answer.

Solution By the NP Lemma, as both hypotheses are simple, the MP test of size ≤� is
the likelihood ratio test

reject H0� � =�1 in favour of H1� � =�2�

when

�2��2
2 �

−n/2 exp
[−∑i�xi −��2/�2�2

2 �
]

�2��2
1 �

−n/2 exp
[−∑i�xi −��2/�2�2

1 �
] >k�

where k> 0 is adjusted so that the TIEP equals �. Such test always exists because the
normal PDF f�x� is monotone in �x� and continuous.

By re-writing the LR as(
�1

�2

)n
exp
[
1
2

(
1

�2
1

− 1

�2
2

)∑
�xi −��2

]
�

we see that if �2>�1, we reject H0 in the critical region

�+ =
{∑

i

�xi −��2 ≥ k+
}

and if �1>�2, in the critical region

�− =
{∑

i

�xi −��2 ≤ k−
}
�
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Furthermore,

1

�2
1

∑
i

�Xi −��2 ∼�2
n under H0

and

1

�2
2

∑
i

�Xi −��2 ∼�2
n under H1�

The �2
n PDF is

f�2n �x�=
1

! �n/2�
1

2n/2
xn/2−1e−x/2I�x> 0��

Then if �2>�1, we choose k+ so that the size

���+�H0�=
∫ �

k+/�2
1

1
! �n/2�

1
2n/2

xn/2−1e−x/2dx=��

and if �1>�2� k
− so that

���−�H0�=
∫ k−/�2

1

0

1
! �n/2�

1
2n/2

xn/2−1e−x/2dx=��

The power for �2>�1 equals

 =���+�H1�=
∫ �

k+/�2
2

1
! �n/2�

1
2n/2

xn/2−1e−x/2dx

and for �1>�2,

 =���−�H1�=
∫ k−/�2

2

0

1
! �n/2�

1
2n/2

xn/2−1e−x/2dx�

We see that if �2 >�1, then k
+/�2

2 < k+/�2
1 , and  >�. Similarly, if �1 >�2, then

k−/�2
2 >k

−/�2
1 , and again  >�. Thus,  <� is impossible. �

Gamma and Her Sisters
(From the series ‘Movies that never made it to the Big Screen’.)

Problem 5.37 (MT-IB 1992-406D long) Let �1� �2� � � � � �n be independent random
variables each with the N(0, 1) distribution, and x1� x2� � � � � xn be fixed real numbers.
Let the random variables Y1� Y2� � � � � Yn be given by

Yi =�+ xi +��i� 1≤ i≤ n�

where �� ∈� and �2 ∈ �0��� are unknown parameters. Derive the form of the least
squares estimator (LSE) for the pair ��� � and establish the form of the distribution.
Explain how to test the hypothesis  = 0 against  �= 0 and how to construct a 95%
CI for  .

(General results used should be stated carefully, but need not be proved.)
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Solution Define

x= 1
n

n∑
i=1

xi� a=�+ x and ui = xi − x�

with ∑
i

ui = 0 and Yi = a+ ui +��i�

The LSE pair for ��� � minimises the quadratic sum R=∑n
i=1�Yi −�Yi�

2 =∑n
i=1�Yi −

a− ui�
2, i.e. solves

#

#�
R= #

# 
R= 0�

This yields

â= Y ∼N
(
�+ x�

�2

n

)
� �̂∼N

(
��
�2

n

)
�

and

 ̂= uTY
uTu

∼N
(
 �

�2

uTu

)
�

independently. Also,

R̂=∑
i

�Yi − �̂−  ̂xi�
2 =∑

i

Y 2
i − nY

2 −uTu ̂2 ∼�2�2
n−2�

since we have estimated two parameters. So, R/�n− 2� is an unbiased estimator for �2.
Now consider H0�  = 0 = 0� H1�  �= 0. Then

 ̂∼ N
(
0�

�2

uTu

)
� i�e�

 ̂
√
uTu
�

∼N�0�1� iff  = 0�

i.e. under H0. Thus

T =  ̂
√
uTu√

R̂/�n− 2�
∼ tn−2�

So, given �, we reject H0 when the value of �T � exceeds tn−2��/2�, the upper �/2 point
of tn−2.

Finally, to construct an (equal-tailed) 95% CI for  , we take tn−2�0�025�. Then from
the inequalities

−tn−2�0�025�<
� −  ̂�

√
uTu√

R̂/�n− 2�
< tn−2�0�025�
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we find that⎛⎝ ̂− tn−2�0�025�

√
R̂

�n− 2�uTu
�  ̂+ tn−2�0�025�

√
R̂

�n− 2�uTu

⎞⎠
is the required interval. �

Each of us has been doing statistics all his life,
in the sense that each of us has been busily reaching
conclusions based on empirical observations
ever since birth.

W. Kruskal (1919–), American statistician

We finish this volume with a story about F. Yates (1902–1994), a prominent UK
statistician and a close associate of Fisher (quoted from [Wi], pp. 204–205). During his
student years at St John’s College, Cambridge, Yates had been keen on a form of sport
which had a long local tradition. It consisted of climbing about the roofs and towers of
the college buildings at night. (The satisfaction arose partly from the difficulty of the
climbs and partly from the excitement of escaping the vigilance of the college porters.)
In particular, the chapel of St John’s College has a massive neo-Gothic tower adorned
with statues of saints, and to Yates it appeared obvious that it would be more decorous if
these saints were properly attired in surplices. One night he climbed up and did the job;
next morning the result was generally much admired. But the College authorities were
unappreciative and began to consider means of divesting the saints of their newly acquired
garments. This was not easy, since they were well out of reach of any ordinary ladder.
An attempt to lift the surplices off from above, using ropes with hooks attached, was
unsuccessful, since Yates, anticipating such a move, had secured the surplices with pieces
of wire looped around the saints’ necks. No progress was being made and eventually
Yates came forward and, without admitting that he had been responsible for putting the
surplices up, volunteered to climb up in the daylight and bring them down. This he did
to the admiration of the crowd that assembled.

The morale of this story is that maybe statisticians should pay more attention to
self-generated problems� � � . (An observant passer-by may notice that presently two of
the statues on the St John’s chapel tower have staffs painted in a pale green colour,
which obviously is not an originally intended decoration. Perhaps the next generation of
followers of Fisher’s school are practicing before shaping the development of twenty-first
century statistics.)



Appendix 1. Tables of random variables
and probability distributions

Table A1.1. Some useful discrete distributions

Family
notation
range PMF ��X= r� Mean Variance PGF �sX

Poisson
Po���

�re−�

r! � � e��s−1�

0�1� � � �

Geometric
Geom �p� p�1−p�r

1−p

p

1−p

p2
p

1− s�1−p�
1�2� � � �

Binomial

Bin �n�p�

(
n

r

)
pr�1−p�n−r np np�1−p� 	ps+ �1−p�
n

0� � � � n

Negative binomial
NegBin �p� k�

(
r + k− 1

r

)
pk�1−p�r

k�1−p�

p

k�1−p�

p2

[
p

1− s�1−p�

]k
0�1� � � �

Hypergeometric
Hyp �N�D�n�

(
D

r

)(
N −D

n− r

)
(
N

n

) nD

N

nD�N −D��N − n�

N 2�N − 1� 2F1

(
−D� −n
−N
 1− s

)
�n+D−N�+�
� � � �D∧ n

Uniform
U	1� n

1� � � � � n

1
n

n+ 1
2

n2 − 1
12

s�1− sn�

n�1− s�
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Appendix 2. Index of Cambridge University
Mathematical Tripos examination questions in
IA Probability (1992–1999)

The references to Mathematical Tripos IA examination questions and related examples
adopt the following pattern: 304H (short) and 310B stands for the short question 4H
and the long question 10B from Paper 3 from the corresponding year. For example,
Problem 1.14 is the short question 3H from Paper 3 of 1993.

IA sample questions 1992
1.8
1.16
1.40
1.72
1.73
2.29

IA specimen papers 1992
303B (short): 1.58
304B (short): 2.49
309B (long): 1.36
310B (long): 2.32
311B (long): 1.51
312B (long): 2.18

Mathematical Tripos IA 1992
303C (short): 1.24
304C (short): 2.4
309C (long): 2.50
310C (long): 1.70
311C (long): 1.17
312C (long): 1.80

Mathematical Tripos IA 1993
303H (short): 1.14
304H (short): 2.37
309H (long): 1.31
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310D (long): 1.39
311D (long): 2.13
312D (long): 2.31

Mathematical Tripos IA 1994
303B (short): 1.29
304B (short): 2.17
309B (long): 1.53
310B (long): 1.61
311B (long): 1.15, 1.42
312B (long): 2.47

Mathematical Tripos IA 1995
303A (short): 1.34
304A (short): 1.59
309A (long): 1.64
310A (long): 1.27
311A (long): 2.22
312A (long): 1.77

Mathematical Tripos IA 1996
203A (short): 2.50
204A (short): 1.48
209C (long): 1.54
210C (long): 2.24
211B (long): 1.41
212B (long): 1.20

Mathematical Tripos IA 1997
203G (short): 1.9
204G (short): 1.50
209G (long): 1.47, 1.57
210G (long): 1.78
211G (long): 2.23 2.46
212G (long): 1.63

Mathematical Tripos IA 1998
203C (short): 1.21
204C (short): 1.56
209C (long): 1.62
210C (long): 1.46
211C (long): 2.45
212C (long): 2.16
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Mathematical Tripos IA 1999
203C (short): 1.26
204C (short): 1.43
209C (long): 2.32
210C (long): 1.52
211C (long): 2.44
212C (long): 1.45, 2.33
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asymptotic normality, 206

ballot problem, 31
branching process 96

critical, 97
subcritical, 97
supercritical, 97

Cantor’s staircase, 123
characteristic function (CHF) 62

joint, 126
comparison of variances, 282
conjugate family (of PDFs/PMFs), 234
contingency tables, 271
correlation coefficient (of two RVs), 148
covariance (of two RVs), 39, 147
critical region (of a test) 242

size of, 243

decision rule 236
optimal Bayes, 236

distribution function, cumulative (CDF) 116
joint, 126

error (in hypotheses testing) 242
mean square (MSE), 218
standard, 218

estimator
best linear unbiased (BLUE), 291
least squares (LSE), 290
maximum likelihood (MLE), 213
minimum MSE, 222
optimal Bayes point, 235
unbiased, 208

estimation
interval, 229
parametric, 206
point, 229

exceedance, 166
expectation, or expected value (of an RV) 33

conditional, 36
exponential families, 226
extinction probabilities, 98

factorisation criterion, 211
Fisher information, 222
formula

Bayes, 8
convolution, 40
exclusion–inclusion, 27
Stirling, 72

Fourier transform, 152
function

Beta, 201
concave, 76
convex, 76
Gamma, 114

Galton–Watson process, 104

hypothesis
alternative, 242
composite, 249
conservative, 242
null, 242
one-side, 251
simple, 242

hypothesis testing, 242

independence, 13
independent events, 14
independent identically distributed random variables
(IID RVs), 37

independent observations, 165
independent random variables

continuous, 133
discrete, 37

inequality
AM–GM, 91
Cauchy–Schwarz (CS), 39
Chebyshev, 75
Chernoff, 76
Cramér–Rao (CR), 222
HM–GM, 91
Hölder, 76
Jensen, 76
Markov, 75
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interval
confidence, 229
prediction, 295

Jacobian, 122

Laplace transform, 61
Law of Large Numbers (LLN)

weak, 78
strong, 79

Lebesgue integration, 112
left-hand side (LHS), 27
Lemma

Borel–Cantelli (BC), First, 132
Borel–Cantelli (BC), Second, 132
Neyman–Pearson (NP), 244

likelihood function, 245
likelihood ratio (LR) 245

generalised (GLR), 262
monotone (MLR), 249

linear regression
simple, 249

log-likelihood function (LL), 213
loss

posterior expected, 235
loss function 235

quadratic, 235
absolute error, 235

matrix
inverse, 115
invertible, 115
orthogonal, 172
positive-definite, 115

mean, mean value (of an RV)
posterior, 235
sample, 85

measure, 112
median 121

posterior, 236
sample, 136

memoryless property, 56, 132
method

of moments, 220
of maximum likelihood, 213

mode, 121
moment (of an RV), 61
moment generating function (MGF), 61

nuisance parameter, 263

outcome, outcomes, 3, 108

paradox
Bertrand, 108
Simpson, 275

percentile, 201

point (of a distribution)
lower, 201
upper, 201

posterior PDF/PMF (in Bayesian estimation), 180,
236

prior PDF/PMF (in Bayesian estimation), 179
probability

conditional, 139
posterior, 233
prior, 233

probability density function (PDF) 112
Beta, Cauchy, chi-square, exponential, Gamma,
Gaussian or normal, Gaussian or normal
bivariate, Gaussian or normal multivariate,
jointly Gaussian or normal: see the list of
continuous, probability distributions, 347,
348

conditional, 132
joint, 126
support of, 123
unimodal, 161

probability distribution, conditional, 7, 132
probability distribution, continuous

Beta, 200
Cauchy, 114
chi-square, or �2, 197
exponential, 112
Fisher F-, 199
Gamma, 114
Gaussian, or normal, 112
Gaussian or normal, bivariate, 127
Gaussian or normal, multivariate, 115
log-normal, 162
Simpson, 115
Student t, 198
uniform, 112

probability distribution, discrete
binomial, 54
geometric, 56
hypergeometric, 250
multinomial, 271
negative binomial, 57
Poisson, 57
uniform, 3

probability generating function (PGF), 58
probability mass function (PMF)

binomial, geometric, multinomial, negative
geometric, Poisson, uniform: see the list of
discrete probability distributions, 346

quantile
lower, 201
upper, 201
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random variable (RV), 33, 116
records, 45
reflection principle, 32
regression line, 290
relative entropy, 83
Riemann integration, 54
Riemann zeta-function, 54
right-hand side (RHS), 7
risk 236

Bayes, 236

sample, 85
standard deviation 168

sample, 218
standard error, 218
statistic (or sample statistic)

Fisher F-, 282
ordered, 155
Pearson chi-square, or �2, 257
Student t-, 253
sufficient 209

minimal, 212
statistical tables, 212
sum of squares

between groups, 285
residual (RSS), 293
total, 285
within group, 285

tail probabilities, 116
test

analysis of variation (ANOVA), 284
critical region of, 242

Fisher F-, 282
most powerful (MP), 243
Pearson chi-square, or �2-, 257
power of, 243
randomised, 245
significance level of, 243
size of, 243
Student t, 253
uniformly most powerful (UMP), 249

Theorem
Bayes, 8
Central limit (CLT)

integral, 79
local, 81

De Moivre–Laplace (DMLT), 81
Fisher, 216
Rao–Blackwell (RB), 218
Pearson, 257
Wilks, 262

total set of outcomes, 6
type I

error probability (TIEP), 242
type II

error probability (TIIEP), 242

Unconscious Statistician, Law of the,
35, 145

uncorrelated random variables, 39

variance 39
sample, 209




