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AN INTRODUCTION TO CONTINUUM MECHANICS

This textbook on continuum mechanics reflects the modern view that
scientists and engineers should be trained to think and work in multi-
disciplinary environments. A course on continuum mechanics intro-
duces the basic principles of mechanics and prepares students for ad-
vanced courses in traditional and emerging fields such as biomechanics
and nanomechanics. This text introduces the main concepts of con-
tinuum mechanics simply with rich supporting examples but does not
compromise mathematically in providing the invariant form as well
as component form of the basic equations and their applications to
problems in elasticity, fluid mechanics, and heat transfer. The book
is ideal for advanced undergraduate and beginning graduate students.
The book features: derivations of the basic equations of mechanics in
invariant (vector and tensor) form and specializations of the governing
equations to various coordinate systems; numerous illustrative exam-
ples; chapter-end summaries; and exercise problems to test and extend
the understanding of concepts presented.
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of the Oscar S. Wyatt Endowed Chair in the Department of Mechan-
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‘Tis the good reader that makes the good book; in every book he
finds passages which seem confidences or asides hidden from all
else and unmistakenly meant for his ear; the profit of books is ac-
cording to the sensibility of the reader; the profoundest thought or
passion sleeps as in a mine, until it is discovered by an equal mind
and heart.

Ralph Waldo Emerson

You cannot teach a man anything, you can only help him find it
within himself.

Galileo Galilei
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Preface

If I have been able to see further, it was only because I stood on the shoulders of
giants.

Isaac Newton

Many of the mathematical models of natural phenomena are based on fundamental sci-
entific laws of physics or otherwise are extracted from centuries of research on the behav-
ior of physical systems under the action of natural forces. Today this subject is referred
to simply as mechanics – a phrase that encompasses broad fields of science concerned
with the behavior of fluids, solids, and complex materials. Mechanics is vitally important
to virtually every area of technology and remains an intellectually rich subject taught
in all major universities. It is also the focus of research in departments of aerospace,
chemical, civil, and mechanical engineering, in engineering science and mechanics, and
in applied mathematics and physics. The past several decades have witnessed a great
deal of research in continuum mechanics and its application to a variety of problems.
As most modern technologies are no longer discipline-specific but involve multidisci-
plinary approaches, scientists and engineers should be trained to think and work in such
environments. Therefore, it is necessary to introduce the subject of mechanics to senior
undergraduate and beginning graduate students so that they have a strong background
in the basic principles common to all major engineering fields. A first course on contin-
uum mechanics or elasticity is the one that provides the basic principles of mechanics and
prepares engineers and scientists for advanced courses in traditional as well as emerging
fields such as biomechanics and nanomechanics.

There are many books on mechanics of continua. These books fall into two major
categories: those that present the subject as highly mathematical and abstract and those
that are too elementary to be of use for those who will pursue further work in fluid
dynamics, elasticity, plates and shells, viscoelasticity, plasticity, and interdisciplinary ar-
eas such as geomechanics, biomechanics, mechanobiology, and nanoscience. As is the
case with all other books written (solely) by the author, the objective is to facilitate
an easy understanding of the topics covered. While the author is fully aware that he
is not an authority on the subject of this book, he feels that he understands the con-
cepts well and feels confident that he can explain them to others. It is hoped that the
book, which is simple in presenting the main concepts, will be mathematically rigorous
enough in providing the invariant form as well as component form of the governing equa-
tions for analysis of practical problems of engineering. In particular, the book contains

xiii



P1: JZP

CUFX197-FM CUFX197-Reddy 978 0 521 87044 3 October 3, 2007 14:8

xiv Preface

formulations and applications to specific problems from heat transfer, fluid mechanics,
and solid mechanics.

The motivation and encouragement that led to the writing of this book came from
the experience of teaching a course on continuum mechanics at Virginia Polytechnic
Institute and State University and Texas A&M University. A course on continuum me-
chanics takes different forms – abstract to very applied – when taught by different peo-
ple. The primary objective of the course taught by the author is two-fold: (1) formulation
of equations that describe the motion and thermomechanical response of materials and
(2) solution of these equations for specific problems from elasticity, fluid flows, and heat
transfer. This book is a formal presentation of the author’s notes developed for such a
course over past two-and-a-half decades.

After a brief discussion of the concept of a continuum in Chapter 1, a review of
vectors and tensors is presented in Chapter 2. Since the language of mechanics is math-
ematics, it is necessary for all readers to familiarize themselves with the notation and
operations of vectors and tensors. The subject of kinematics is discussed in Chapter 3.
Various measures of strain are introduced here. In this chapter the deformation gra-
dient, Cauchy–Green deformation, Green–Lagrange strain, Cauchy and Euler strain,
rate of deformation, and vorticity tensors are introduced, and the polar decomposi-
tion theorem is discussed. In Chapter 4, various measures of stress – Cauchy stress and
Piola–Kirchhoff stress measures – are introduced, and stress equilibrium equations are
presented.

Chapter 5 is dedicated to the derivation of the field equations of continuum me-
chanics, which forms the heart of the book. The field equations are derived using the
principles of conservation of mass, momenta, and energy. Constitutive relations that
connect the kinematic variables (e.g., density, temperature, deformation) to the kinetic
variables (e.g., internal energy, heat flux, and stresses) are discussed in Chapter 6 for
elastic materials, viscous and viscoelastic fluids, and heat transfer.

Chapters 7 and 8 are devoted to the application of both the field equations derived in
Chapter 5 and the constitutive models of Chapter 6 to problems of linearized elasticity,
and fluid mechanics and heat transfer, respectively. Simple boundary-value problems,
mostly linear, are formulated and their solutions are discussed. The material presented
in these chapters illustrates how physical problems are analytically formulated with the
aid of continuum equations. Chapter 9 deals with linear viscoelastic constitutive models
and their application to simple problems of solid mechanics. Since a continuum mechan-
ics course is mostly offered by solid mechanics programs, the coverage in this book is
slightly more favorable, in terms of the amount and type of material covered, to solid
and structural mechanics.

The book is written keeping the undergraduate seniors and first-year graduate stu-
dents of engineering in mind. Therefore, it is most suitable as a textbook for adoption
for a first course on continuum mechanics or elasticity. The book also serves as an excel-
lent precursor to courses on viscoelasticity, plasticity, nonlinear elasticity, and nonlinear
continuum mechanics.

The book contains so many mathematical equations that it is hardly possible not to
have typographical and other kinds of errors. I wish to thank in advance those readers
who are willing to draw the author’s attention to typos and errors, using the following
e-mail address: jnreddy@tamu.edu.

J. N. Reddy
College Station, Texas
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1 Introduction

I can live with doubt and uncertainty and not knowing. I think it is much more
interesting to live not knowing than to have answers that might be wrong.

Richard Feynmann

What we need is not the will to believe but the will to find out.
Bertrand Russell

1.1 Continuum Mechanics

The subject of mechanics deals with the study of motion and forces in solids, liquids,
and gases and the deformation or flow of these materials. In such a study, we make
the simplifying assumption, for analysis purposes, that the matter is distributed con-
tinuously, without gaps or empty spaces (i.e., we disregard the molecular structure of
matter). Such a hypothetical continuous matter is termed a continuum. In essence,
in a continuum all quantities such as the density, displacements, velocities, stresses,
and so on vary continuously so that their spatial derivatives exist and are continu-
ous. The continuum assumption allows us to shrink an arbitrary volume of material
to a point, in much the same way as we take the limit in defining a derivative, so
that we can define quantities of interest at a point. For example, density (mass per
unit volume) of a material at a point is defined as the ratio of the mass �m of the
material to a small volume �V surrounding the point in the limit that �V becomes
a value ε3, where ε is small compared with the mean distance between molecules

ρ = lim
�V→ε3

�m
�V

. (1.1.1)

In fact, we take the limit ε → 0. A mathematical study of mechanics of such an
idealized continuum is called continuum mechanics.

The primary objectives of this book are (1) to study the conservation princi-
ples in mechanics of continua and formulate the equations that describe the motion
and mechanical behavior of materials and (2) to present the applications of these
equations to simple problems associated with flows of fluids, conduction of heat,
and deformation of solid bodies. While the first of these objectives is an important

1
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2 Introduction

topic, the reason for the formulation of the equations is to gain a quantitative under-
standing of the behavior of an engineering system. This quantitative understanding
is useful in the design and manufacture of better products. Typical examples of engi-
neering problems, which are sufficiently simple to cover in this book, are described
below. At this stage of discussion, it is sufficient to rely on the reader’s intuitive
understanding of concepts or background from basic courses in fluid mechanics,
heat transfer, and mechanics of materials about the meaning of the stress and strain
and what constitutes viscosity, conductivity, modulus, and so on used in the exam-
ple problems below. More precise definitions of these terms will be apparent in the
chapters that follow.

PROBLEM 1 (SOLID MECHANICS)

We wish to design a diving board of given length L (which must enable the swimmer
to gain enough momentum for the swimming exercise), fixed at one end and free at
the other end (see Figure 1.1.1). The board is initially straight and horizontal and
of uniform cross section. The design process consists of selecting the material (with
Young’s modulus E) and cross-sectional dimensions b and h such that the board car-
ries the (moving) weight W of the swimmer. The design criteria are that the stresses
developed do not exceed the allowable stress values and the deflection of the free
end does not exceed a prespecified value δ. A preliminary design of such systems
is often based on mechanics of materials equations. The final design involves the
use of more sophisticated equations, such as the three-dimensional (3D) elasticity
equations. The equations of elementary beam theory may be used to find a relation
between the deflection δ of the free end in terms of the length L, cross-sectional
dimensions b and h, Young’s modulus E, and weight W [see Eq. (7.6.10)]:

δ = 4WL3

Ebh3
. (1.1.2)

Given δ (allowable deflection) and load W (maximum possible weight of a swim-
mer), one can select the material (Young’s modulus, E) and dimensions L, b, and
h (which must be restricted to the standard sizes fabricated by a manufacturer).
In addition to the deflection criterion, one must also check if the board devel-
ops stresses that exceed the allowable stresses of the material selected. Analysis
of pertinent equations provide the designer with alternatives to select the material
and dimensions of the board so as to have a cost-effective but functionally reliable
structure.

PROBLEM 2 (FLUID MECHANICS)

We wish to measure the viscosity µ of a lubricating oil used in rotating machinery to
prevent the damage of the parts in contact. Viscosity, like Young’s modulus of solid
materials, is a material property that is useful in the calculation of shear stresses
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h

b

L

Figure 1.1.1. A diving board fixed at left end and free at right end.

developed between a fluid and solid body. A capillary tube is used to determine the
viscosity of a fluid via the formula

µ = πd4

128L
P1 − P2

Q
, (1.1.3)

where d is the internal diameter and L is the length of the capillary tube, P1 and P2

are the pressures at the two ends of the tube (oil flows from one end to the other, as
shown in Figure 1.1.2), and Q is the volume rate of flow at which the oil is discharged
from the tube. Equation (1.1.3) is derived, as we shall see later in this book [see
Eq. (8.2.25)], using the principles of continuum mechanics.

PROBLEM 3 (HEAT TRANSFER)

We wish to determine the heat loss through the wall of a furnace. The wall typically
consists of layers of brick, cement mortar, and cinder block (see Figure 1.1.3). Each
of these materials provides varying degree of thermal resistance. The Fourier heat
conduction law (see Section 8.3.1)

q = −k
dT
dx

(1.1.4)

provides a relation between the heat flux q (heat flow per unit area) and gradient
of temperature T. Here k denotes thermal conductivity (1/k is the thermal resis-
tance) of the material. The negative sign in Eq. (1.1.4) indicates that heat flows from

Internal diameter, d

1P 2P

L

x

r

(r)vx

Figure 1.1.2. Measurement of viscosity of a fluid using capillary tube.
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Furnace

Cross section
of the wall

x

Figure 1.1.3. Heat transfer through a composite
wall of a furnace.

high temperature region to low temperature region. Using the continuum mechan-
ics equations, one can determine the heat loss when the temperatures inside and
outside of the building are known. A building designer can select the materials as
well as thicknesses of various components of the wall to reduce the heat loss (while
ensuring necessary structural strength – a structural analysis aspect).

The previous examples provide some indication of the need for studying the me-
chanical response of materials under the influence of external loads. The response
of a material is consistent with the laws of physics and the constitutive behavior of
the material. This book has the objective of describing the physical principles and
deriving the equations governing the stress and deformation of continuous materi-
als and then solving some simple problems from various branches of engineering to
illustrate the applications of the principles discussed and equations derived.

1.2 A Look Forward

The primary objective of this book is twofold: (1) use the physical principles to de-
rive the equations that govern the motion and thermomechanical response of mate-
rials and (2) apply these equations for the solution of specific problems of linearized
elasticity, heat transfer, and fluid mechanics. The governing equations for the study
of deformation and stress of a continuous material are nothing but an analytical rep-
resentation of the global laws of conservation of mass, momenta, and energy and the
constitutive response of the continuum. They are applicable to all materials that are
treated as a continuum. Tailoring these equations to particular problems and solving
them constitutes the bulk of engineering analysis and design.

The study of motion and deformation of a continuum (or a “body” consisting
of continuously distributed material) can be broadly classified into four basic cate-
gories:

(1) Kinematics (strain-displacement equations)
(2) Kinetics (conservation of momenta)
(3) Thermodynamics (first and second laws of thermodynamics)
(4) Constitutive equations (stress-strain relations)

Kinematics is a study of the geometric changes or deformation in a continuum, with-
out the consideration of forces causing the deformation. Kinetics is the study of
the static or dynamic equilibrium of forces and moments acting on a continuum,
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Table 1.2.1. The major four topics of study, physical principles and axioms used, resulting
governing equations, and variables involved

Topic of study Physical principle Resulting equations Variables involved

1. Kinematics None – based on Strain–displacement Displacements
geometric changes relations and strains

Strain rate–velocity Velocities
relations and strain rates

2. Kinetics Conservation of Equations of Stresses, velocities,
linear momentum motion and body forces

Conservation of Symmetry of Stresses
angular momentum stress tensor

3. Thermodynamics First law Energy equation Temperature, heat
flux, stresses,
heat generation,
and velocities

Second law Clausius–Duhem Temperature, heat
inequality flux, and entropy

4. Constitutive Constitutive Hooke’s law Stresses, strains,
equations axioms heat flux and
(not all relations temperature
are listed) Newtonian fluids Stresses, pressure,

velocities
Fourier’s law Heat flux and

temperature
Equations of state Density, pressure,

temperature

using the principles of conservation of momenta. This study leads to equations of
motion as well as the symmetry of stress tensor in the absence of body couples.
Thermodynamic principles are concerned with the conservation of energy and rela-
tions among heat, mechanical work, and thermodynamic properties of the contin-
uum. Constitutive equations describe thermomechanical behavior of the material of
the continuum, and they relate the dependent variables introduced in the kinetic
description to those introduced in the kinematic and thermodynamic descriptions.
Table 1.2.1 provides a brief summary of the relationship between physical principles
and governing equations, and physical entities involved in the equations.

1.3 Summary

In this chapter, the concept of a continuous medium is discussed, and the major
objectives of the present study, namely, to use the physical principles to derive
the equations governing a continuous medium and to present application of the
equations in the solution of specific problems of linearized elasticity, heat transfer,
and fluid mechanics, are presented. The study of physical principles is broadly di-
vided into four topics, as outlined in Table 1.2.1. These four topics form the subject
of Chapters 3 through 6, respectively. Mathematical formulation of the governing
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6 Introduction

equations of a continuous medium necessarily requires the use of vectors and ten-
sors, objects that facilitate invariant analytical formulation of the natural laws.
Therefore, it is useful to study certain operational properties of vectors and tensors
first. Chapter 2 is dedicated for this purpose.

While the present book is self-contained for an introduction to continuum me-
chanics, there are other books that may provide an advanced treatment of the sub-
ject. Interested readers may consult the titles listed in the reference list at the end of
the book.

PROBLEMS

1.1 Newton’s second law can be expressed as

F = ma, (1)

where F is the net force acting on the body, m mass of the body, and a the accel-
eration of the body in the direction of the net force. Use Eq. (1) to determine the
governing equation of a free-falling body. Consider only the forces due to gravity
and the air resistance, which is assumed to be linearly proportional to the velocity
of the falling body.

1.2 Consider steady-state heat transfer through a cylindrical bar of nonuniform
cross section. The bar is subject to a known temperature T0 (◦C) at the left end and
exposed, both on the surface and at the right end, to a medium (such as cooling fluid
or air) at temperature T∞. Assume that temperature is uniform at any section of
the bar, T = T(x). Use the principle of conservation of energy (which requires that
the rate of change (increase) of internal energy is equal to the sum of heat gained
by conduction, convection, and internal heat generation) to a typical element of the
bar (see Figure P1.2) to derive the governing equations of the problem.

g(x), internal heat generation Convection from lateral
surface

L
x

Exposed to ambient
temperature, T∞

Maintained at
temperature, T0

∆x

∆x

heat flow out,
(Aq)x+∆x

g(x)

heat flow in ,
(Aq)x

Figure P1.2.

1.3 The Euler–Bernoulli hypothesis concerning the kinematics of bending defor-
mation of a beam assumes that straight lines perpendicular to the beam axis before
deformation remain (1) straight, (2) perpendicular to the tangent line to the beam
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axis, and (3) inextensible during deformation. These assumptions lead to the follow-
ing displacement field:

u1 = −z
dw

dx
, u2 = 0, u3 = w(x), (1)

where (u1, u2, u3) are the displacements of a point (x, y, z) along the x, y, and z
coordinates, respectively, and w is the vertical displacement of the beam at point
(x, 0, 0). Suppose that the beam is subjected to distributed transverse load q(x). De-
termine the governing equation by summing the forces and moments on an element
of the beam (see Figure P1.3). Note that the sign convention for the moment and
shear force are based on the definitions

V =
∫

A
σxz dA, M =

∫
A

zσxx dA,

and it may not agree with the sign convention used in some mechanics of materials
books.

x

q(x)

 L 

z, w

•
•

z

y

Beam
cross section

x +

q(x)

M dM+M
V V dV+

dx

z

+

q(x)

dx

xxσ xx xxdσ σ+

xz xzdσ σ+

xzσ

,xx xz

A A

M z dA V dAσ σ∫ ∫•

Figure P1.3.

1.4 A cylindrical storage tank of diameter D contains a liquid column of height
h(x, t). Liquid is supplied to the tank at a rate of qi (m3/day) and drained at a rate
of q0 (m3/day). Use the principle of conservation of mass to obtain the equation
governing the flow problem.
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2 Vectors and Tensors

A mathematical theory is not to be considered complete until you have made it so
clear that you can explain it to the first man whom you meet on the street.

David Hilbert

2.1 Background and Overview

In the mathematical description of equations governing a continuous medium, we
derive relations between various quantities that characterize the stress and defor-
mation of the continuum by means of the laws of nature (such as Newton’s laws,
conservation of energy, and so on). As a means of expressing a natural law, a coor-
dinate system in a chosen frame of reference is often introduced. The mathematical
form of the law thus depends on the chosen coordinate system and may appear dif-
ferent in another type of coordinate system. The laws of nature, however, should be
independent of the choice of a coordinate system, and we may seek to represent the
law in a manner independent of a particular coordinate system. A way of doing this
is provided by vector and tensor analysis. When vector notation is used, a particular
coordinate system need not be introduced. Consequently, the use of vector notation
in formulating natural laws leaves them invariant to coordinate transformations. A
study of physical phenomena by means of vector equations often leads to a deeper
understanding of the problem in addition to bringing simplicity and versatility into
the analysis.

In basic engineering courses, the term vector is used often to imply a physical
vector that has ‘magnitude and direction and satisfy the parallelogram law of addi-
tion.’ In mathematics, vectors are more abstract objects than physical vectors. Like
physical vectors, tensors are more general objects that are endowed with a magni-
tude and multiple direction(s) and satisfy rules of tensor addition and scalar mul-
tiplication. In fact, physical vectors are often termed the first-order tensors. As will
be shown shortly, the specification of a stress component (i.e., force per unit area)
requires a magnitude and two directions – one normal to the plane on which the
stress component is measured and the other is its direction – to specify it uniquely.

8
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This chapter is dedicated to a review of algebra and calculus of physical vectors
and tensors. Those who are familiar with the material covered in any of the sections
may skip them and go to the next section or Chapter 3.

2.2 Vector Algebra

In this section, we present a review of the formal definition of a geometric (or phys-
ical) vector, discuss various products of vectors and physically interpret them, in-
troduce index notation to simplify representations of vectors in terms of their com-
ponents as well as vector operations, and develop transformation equations among
the components of a vector expressed in two different coordinate systems. Many of
these concepts, with the exception of the index notation, may be familiar to most
students of engineering, physics, and mathematics and may be skipped.

2.2.1 Definition of a Vector

The quantities encountered in analytical description of physical phenomena may
be classified into two groups according to the information needed to specify them
completely: scalars and nonscalars. The scalars are given by a single number. Non-
scalars have not only a magnitude specified but also additional information, such
as direction. Nonscalars that obey certain rules (such as the parallelogram law of
addition) are called vectors. Not all nonscalar quantities are vectors (e.g., a finite
rotation is not a vector).

A physical vector is often shown as a directed line segment with an arrow head
at the end of the line. The length of the line represents the magnitude of the vector
and the arrow indicates the direction. In written or typed material, it is customary
to place an arrow over the letter denoting the vector, such as �A. In printed material,
the vector letter is commonly denoted by a boldface letter A, such as used in this
book. The magnitude of the vector A is denoted by |A|, ‖A‖, or A. Magnitude of a
vector is a scalar.

A vector of unit length is called a unit vector. The unit vector along A may be
defined as follows:

êA = A
A

. (2.2.1)

We may now write

A = A êA. (2.2.2)

Thus any vector may be represented as a product of its magnitude and a unit vector
along the vector. A unit vector is used to designate direction. It does not have any
physical dimensions. We denote a unit vector by a “hat” (caret) above the boldface
letter, ê. A vector of zero magnitude is called a zero vector or a null vector. All null
vectors are considered equal to each other without consideration as to direction.
Note that a light face zero, 0, is a scalar and boldface zero, 0, is the zero vector.
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2.2.1.1 Vector Addition
Let A, B, and C be any vectors. Then there exists a vector A + B, called sum of A
and B, such that

(1) A + B = B + A (commutative).
(2) (A + B) + C = A + (B + C) (associative).
(3) there exists a unique vector, 0, independent of A such that

A + 0 = A (existence of zero vector).
(4) to every vector A there exists a unique vector −A

(that depends on A) such that
A + (−A) = 0 (existence of negative vector).

(2.2.3)

The negative vector −A has the same magnitude as A but has the opposite sense.
Subtraction of vectors is carried out along the same lines. To form the difference
A − B, we write A + (−B) and subtraction reduces to the operation of addition.

2.2.1.2 Multiplication of Vector by Scalar
Let A and B be vectors and α and β be real numbers (scalars). To every vector A
and every real number α, there corresponds a unique vector αA such that

(1) α(βA) = (αβ)A (associative).
(2) (α + β)A = αA + βA (distributive scalar addition).
(3) α(A + B) = αA + αB (distributive vector addition).
(4) 1 · A = A · 1 = A, 0 · A = 0.

(2.2.4)

Equations (2.2.3) and (2.2.4) clearly show that the laws that govern addition, sub-
traction, and scalar multiplication of vectors are identical with those governing the
operations of scalar algebra.

Two vectors A and B are equal if their magnitudes are equal, |A| = |B|, and if
their directions are equal. Consequently, a vector is not changed if it is moved paral-
lel to itself. This means that the position of a vector in space, that is, the point from
which the line segment is drawn (or the end without arrowhead), may be chosen
arbitrarily. In certain applications, however, the actual point of location of a vector
may be important, for instance, a moment or a force acting on a body. A vector as-
sociated with a given point is known as a localized or bound vector. A finite rotation
of a rigid body is not a vector although infinitesimal rotations are. That vectors can
be represented graphically is an incidental rather than a fundamental feature of the
vector concept.

2.2.1.3 Linear Independence of Vectors
The concepts of collinear and coplanar vectors can be stated in algebraic terms. A
set of n vectors is said to be linearly dependent if a set of n numbers β1, β2, . . . , βn

can be found such that

β1A1 + β2A2 + · · · + βnAn = 0, (2.2.5)
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θ

F

d

Projection of vector F
on to vector dFigure 2.2.1. Representation of work.

where β1, β2, . . . , βn cannot all be zero. If this expression cannot be satisfied, the vec-
tors are said to be linearly independent. If two vectors are linearly dependent, then
they are collinear. If three vectors are linearly dependent, then they are coplanar.
Four or more vectors in three-dimensional space are always linearly dependent.

2.2.2 Scalar and Vector Products

Besides addition and subtraction of vectors, and multiplication of a vector by a
scalar, we also encounter product of two vectors. There are several ways the product
of two vectors can be defined. We consider first the so-called scalar product.

2.2.2.1 Scalar Product
When a force F acts on a mass point and moves through a displacement vector d,
the work done by the force vector is defined by the projection of the force in the
direction of the displacement, as shown in Figure 2.2.1, times the magnitude of the
displacement. Such an operation may be defined for any two vectors. Since the result
of the product is a scalar, it is called the scalar product. We denote this product as
F · d ≡ (F, d) and it is defined as follows:

F · d ≡ (F, d) = Fd cos θ, 0 ≤ θ ≤ π. (2.2.6)

The scalar product is also known as the dot product or inner product.
A few simple results follow from the definition in Eq. (2.2.6):

1. Since A · B = B · A, the scalar product is commutative.
2. If the vectors A and B are perpendicular to each other, then A · B =

ABcos(π/2) = 0. Conversely, if A · B = 0, then either A or B is zero or A is
perpendicular, or orthogonal, to B.

3. If two vectors A and B are parallel and in the same direction, then A · B =
ABcos 0 = AB, since cos 0 = 1. Thus the scalar product of a vector with itself
is equal to the square of its magnitude:

A · A = AA = A2. (2.2.7)

4. The orthogonal projection of a vector A in any direction ê is given by A · ê.
5. The scalar product follows the distributive law also:

A·(B + C) = (A · B) + (A · C). (2.2.8)
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P

θ

F

O
r

(a)

O r

F

(b)

θ




Figure 2.2.2. (a) Representation of a mo-
ment. (b) Direction of rotation.

2.2.2.2 Vector Product
To see the need for the vector product, consider the concept of the moment due to
a force. Let us describe the moment about a point O of a force F acting at a point
P, such as shown in Figure 2.2.2(a). By definition, the magnitude of the moment is
given by

M = F
, F = |F|, (2.2.9)

where 
 is the perpendicular distance from the point O to the force F (called lever
arm). If r denotes the vector OP and θ the angle between r and F as shown in Fig-
ure 2.2.2(a) such that 0 ≤ θ ≤ π , we have 
 = r sin θ and thus

M = Fr sin θ. (2.2.10)

A direction can now be assigned to the moment. Drawing the vectors F and r
from the common origin O, we note that the rotation due to F tends to bring r into
F, as can be seen from Figure 2.2.2(b). We now set up an axis of rotation perpendic-
ular to the plane formed by F and r. Along this axis of rotation we set up a preferred
direction as that in which a right-handed screw would advance when turned in the
direction of rotation due to the moment, as can be seen from Figure 2.2.3(a). Along
this axis of rotation, we draw a unit vector êM and agree that it represents the direc-
tion of the moment M. Thus we have

M = Fr sin θ êM = r × F. (2.2.11)

According to this expression, M may be looked upon as resulting from a special
operation between the two vectors F and r. It is thus the basis for defining a product
between any two vectors. Since the result of such a product is a vector, it may be
called the vector product.

The product of two vectors A and B is a vector C whose magnitude is equal to
the product of the magnitude of A and B times the sine of the angle measured from

r

F
êMM

θ

A

B
ê

θ

(a) (b)

Figure 2.2.3. (a) Axis of rotation. (b) Representation of the vector product.
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ê

Figure 2.2.4. (a) Velocity at a point in a rotating rigid body. (b) Angular velocity as a
vector.

A to B such that 0 ≤ θ ≤ π , and whose direction is specified by the condition that C
be perpendicular to the plane of the vectors A and B and points in the direction in
which a right-handed screw advances when turned so as to bring A into B, as shown
in Figure 2.2.3(b). The vector product is usually denoted by

C = A × B = AB sin(A, B) ê = AB sin θ ê, (2.2.12)

where sin(A, B) denotes the sine of the angle between vectors A and B. This prod-
uct is called the cross product, skew product, and also outer product, as well as the
vector product. When A = a êA and B = b êB are the vectors representing the sides
of a parallelogram, with a and b denoting the lengths of the sides, then the vector
product A × B represents the area of the parallelogram, AB sin θ . The unit vector
ê = êA × êB denotes the normal to the plane area. Thus, an area can be represented
as a vector (see Section 2.2.3 for additional discussion).

The description of the velocity of a point of a rotating rigid body is an important
example of geometrical and physical applications of vectors. Suppose a rigid body
is rotating with an angular velocity ω about an axis, and we wish to describe the
velocity of some point P of the body, as shown in Figure 2.2.4(a). Let v denote the
velocity at the point. Each point of the body describes a circle that lies in a plane
perpendicular to the axis with its center on the axis. The radius of the circle, a, is
the perpendicular distance from the axis to the point of interest. The magnitude of
the velocity is equal to ωa. The direction of v is perpendicular to a and to the axis of
rotation. We denote the direction of the velocity by the unit vector ê. Thus we can
write

v = ω a ê. (2.2.13)

Let O be a reference point on the axis of revolution, and let OP = r. We then
have a = rsinθ , so that

v = ω r sin θ ê. (2.2.14)

The angular velocity is a vector since it has an assigned direction, magnitude, and
obeys the parallelogram law of addition. We denote it by ω and represent its
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B

A
C

Figure 2.2.5. Scalar triple product as the volume of a paral-
lelepiped.

direction in the sense of a right-handed screw, as shown in Figure 2.2.4(b). If we
further let êr be a unit vector in the direction of r, we see that

êω × êr = ê sin θ. (2.2.15)

With these relations, we have

v = ω × r. (2.2.16)

Thus the velocity of a point of a rigid body rotating about an axis is given by the
vector product of ω and a position vector r drawn from any reference point on the
axis of revolution.

From the definition of vector (cross) product, a few simple results follow:

1. The products A × B and B × A are not equal. In fact, we have

A × B ≡ −B × A. (2.2.17)

Thus the vector product does not commute. We must therefore preserve the
order of the vectors when vector products are involved.

2. If two vectors A and B are parallel to each other, then θ = π , 0 and sin θ = 0.
Thus

A × B = 0.

Conversely, if A × B = 0, then either A or B is zero, or they are parallel vec-
tors. It follows that the vector product of a vector with itself is zero; that is,
A × A = 0.

3. The distributive law still holds, but the order of the factors must be maintained:

(A + B) × C = (A × C) + (B × C). (2.2.18)

2.2.2.3 Triple Products of Vectors
Now consider the various products of three vectors:

A(B · C), A · (B × C), A × (B × C). (2.2.19)

The product A(B · C) is merely a multiplication of the vector A by the scalar B · C.
The product A · (B × C) is a scalar and it is termed the scalar triple product. It can
be seen that the product A · (B × C), except for the algebraic sign, is the volume of
the parallelepiped formed by the vectors A, B, and C, as shown in Figure 2.2.5.
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B
, perpendicular to both A and B × C

n1C

m1B

A

Figure 2.2.6. The vector triple product.

We also note the following properties:

1. The dot and cross can be interchanged without changing the value:

A · B × C = A × B · C ≡ [ABC]. (2.2.20)

2. A cyclical permutation of the order of the vectors leaves the result unchanged:

A · B × C = C · A × B = B · C × A ≡ [ABC]. (2.2.21)

3. If the cyclic order is changed, the sign changes:

A · B × C = −A · C × B = −C · B × A = −B · A × C. (2.2.22)

4. A necessary and sufficient condition for any three vectors, A, B, C to be copla-
nar is that A · (B × C) = 0. Note also that the scalar triple product is zero when
any two vectors are the same.

The vector triple product A × (B × C) is a vector normal to the plane formed by
A and (B × C). The vector (B × C), however, is perpendicular to the plane formed
by B and C. This means that A × (B × C) lies in the plane formed by B and C and
is perpendicular to A, as shown in Figure 2.2.6. Thus A × (B × C) can be expressed
as a linear combination of B and C:

A × (B × C) = m1B + n1C. (2.2.23)

Likewise, we would find that

(A × B) × C = m2A + n2B. (2.2.24)

Thus, the parentheses cannot be interchanged or removed. It can be shown that

m1 = A · C, n1 = −A · B,

and hence that

A × (B × C) = (A · C)B − (A · B)C. (2.2.25)

The example below illustrates the use of the vector triple product.

EXAMPLE 2.2.1: Let A and B be any two vectors in space. Express vector A in
terms of its components along (i.e., parallel) and perpendicular to vector B.

SOLUTION: The component of A along B is given by (A · êB), where êB = B/B
is the unit vector in the direction of B. The component of A perpendicular to B
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C = A × B

A

B
ê

(a)

θ S

nS ˆS=

n̂

(b)

Figure 2.2.7. (a) Plane area as a vector. (b) Unit normal vector and sense of travel.

and in the plane of A and B is given by the vector triple product êB × (A × êB).
Thus,

A = (A · êB)êB + êB × (A × êB). (2.2.26)

Alternatively, using Eq. (2.2.25) with A = C = êB and B = A, we obtain

êB × (A × êB) = A − (A · êB)êB

or

A = (A · êB)êB + êB × (A × êB).

2.2.3 Plane Area as a Vector

The magnitude of the vector C = A × B is equal to the area of the parallelogram
formed by the vectors A and B, as shown in Figure 2.2.7(a). In fact, the vector C
may be considered to represent both the magnitude and the direction of the product
A and B. Thus, a plane area may be looked upon as possessing a direction in addi-
tion to a magnitude, the directional character arising out of the need to specify an
orientation of the plane in space.

It is customary to denote the direction of a plane area by means of a unit vector
drawn normal to that plane. To fix the direction of the normal, we assign a sense of
travel along the contour of the boundary of the plane area in question. The direction
of the normal is taken by convention as that in which a right-handed screw advances
as it is rotated according to the sense of travel along the boundary curve or contour,
as shown in Figure 2.2.7(b). Let the unit normal vector be given by n̂. Then the area
can be denoted by S = Sn̂.

Representation of a plane as a vector has many uses. The vector can be used to
determine the area of an inclined plane in terms of its projected area, as illustrated
in the next example.

EXAMPLE 2.2.2:

(1) Determine the plane area of the surface obtained by cutting a cylinder of
cross-sectional area S0 with an inclined plane whose normal is n̂, as shown
in Fig 2.2.8(a).

(2) Consider a cube (or a prism) cut by an inclined plane whose normal is n̂,
as shown in Figure 2.2.8(b). Express the areas of the sides of the resulting
tetrahedron in terms of the area S of the inclined surface.
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Figure 2.2.8. Vector representation of an inclined plane area.

SOLUTION:

(1) Let the plane area of the inclined surface be S, as shown in Fig 2.2.8(a).
First, we express the areas as vectors

S0 = S0 n̂0 and S = S n̂. (2.2.27)

Since S0 is the projection of S along n̂0 (if the angle between n̂ and n̂0 is
acute; otherwise the negative of it),

S0 = S · n̂0 = Sn̂ · n̂0. (2.2.28)

The scalar product n̂ · n̂0 is the cosine of the angle between the two unit
normal vectors.

(2) For reference purposes we label the sides of the cube by 1, 2, and 3 and
the normals and surface areas by (n̂1, S1), (n̂2, S2), and (n̂3, S3), respectively
(i.e., Si is the surface area of the plane perpendicular to the ith line or n̂i

vector), as shown in Figure 2.2.8(b). Then we have

S1 = S n̂ · n̂1, S2 = S n̂ · n̂2, S3 = S n̂ · n̂3· (2.2.29)

2.2.4 Components of a Vector

So far we have considered a geometrical description of a vector. We now embark
on an analytical description based on the notion of its components of a vector. In
following discussion, we shall consider a three-dimensional space, and the exten-
sions to n dimensions will be evident. In a three-dimensional space, a set of no more
than three linearly independent vectors can be found. Let us choose any set and de-
note it as e1, e2, e3. This set is called a basis. We can represent any vector in three-
dimensional space as a linear combination of the basis vectors

A = A1e1 + A2e2 + A3e3. (2.2.30)
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Figure 2.2.9. Components of a vector.

The vectors A1e1, A2e2, and A3e3 are called the vector components of A, and A1,
A2, and A3 are called scalar components of A associated with the basis (e1, e2, e3),
as indicated in Figure 2.2.9.

2.2.5 Summation Convention

The equations governing a continuous medium contains, especially in three dimen-
sions, long expressions with many additive terms. Often these terms have similar
structure because they represent components of a tensor. For example, consider the
component form of vector A:

A = A1e1 + A2e2 + A3e3, (2.2.31)

which can be abbreviated as

A =
3∑

i=1

Ai ei , or A =
3∑

j=1

A j e j . (2.2.32)

The summation index i or j is arbitrary as long as the same index is used for both A
and ê. The expression can be further shortened by omitting the summation sign and
having the understanding that a repeated index means summation over all values
of that index. Thus, the three-term expression A1e1 + A2e2 + A3e3 can be simply
written as

A = Ai ei . (2.2.33)

This notation is called the summation convention.

2.2.5.1 Dummy Index
The repeated index is called a dummy index because it can be replaced by any other
symbol that has not already been used in that expression. Thus, the expression in Eq.
(2.2.33) can also be written as

A = Ai ei = A j e j = Amem, (2.2.34)

and so on. As a rule, no index must appear more than twice in an expression. For
example, Ai Bi Ci is not a valid expression because the index i appears more than
twice. Other examples of dummy indices are

Fi = Ai Bj Cj , Gk = Hk(2 − 3Ai Bi ) + Pj Qj Fk. (2.2.35)
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The first equation above expresses three equations when the range of i and j is
1 to 3. We have

F1 = A1(B1C1 + B2C2 + B3C3),

F2 = A2(B1C1 + B2C2 + B3C3),

F3 = A3(B1C1 + B2C2 + B3C3).

This amply illustrates the usefulness of the summation convention in shortening long
and multiple expressions into a single expression.

2.2.5.2 Free Index
A free index is one that appears in every expression of an equation, except for ex-
pressions that contain real numbers (scalars) only. Index i in the equation Fi =
Ai Bj Cj and k in the equation Gk = Hk(2 − 3Ai Bi ) + Pj Qj Fk above are free in-
dices. Another example is

Ai = 2 + Bi + Ci + Di + (Fj Gj − Hj Pj )Ei .

The above expression contains three equations (i = 1, 2, 3). The expressions Ai =
Bj Ck , Ai = Bj , and Fk = Ai Bj Ck do not make sense and should not arise because
the indices on the two sides of the equal sign do not match.

2.2.5.3 Physical Components
For an orthonormal basis, the vectors A and B can be written as

A = A1ê1 + A2ê2 + A3ê3 = Ai êi ,

B = B1ê1 + B2ê2 + B3ê3 = Bi êi ,

where (ê1, ê2, ê3) is the orthonormal basis and Ai and Bi are the corresponding
physical components of the vector A; that is, the components have the same physical
dimensions or units as the vector.

2.2.5.4 Kronecker Delta and Permutation Symbols
It is convenient to introduce the Kronecker delta δi j and alternating symbol ei jk

because they allow simple representation of the dot product (or scalar product) and
cross product, respectively, of orthonormal vectors in a right-handed basis system.
We define the dot product êi · ê j as

êi · ê j = δi j , (2.2.36)

where

δi j =
{

1, if i = j
0, if i 	= j.

(2.2.37)

The Kronecker delta δi j modifies (or contracts) the subscripts in the coefficients of
an expression in which it appears:

Aiδi j = A j , Ai Bjδi j = Ai Bi = A j Bj , δi jδik = δ jk.
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As we shall see shortly, δi j denote the components of a second-order unit tensor,
I = δi j êi ê j = êi êi .

We define the cross product êi × ê j as

êi × ê j ≡ ei jk êk, (2.2.38)

where

ei jk =




1, if i, j, k are in cyclic order
and not repeated (i 	= j 	= k),

−1, if i, j, k are not in cyclic order
and not repeated (i 	= j 	= k),

0, if any of i, j, k are repeated.

(2.2.39)

The symbol ei jk is called the alternating symbol or permutation symbol. By defini-
tion, the subscripts of the permutation symbol can be permuted without changing its
value; an interchange of any two subscripts will change the sign (hence, interchange
of two subscripts twice keeps the value unchanged):

ei jk = eki j = e jki , ei jk = −e jik = e jki = −ekji .

In an orthonormal basis, the scalar and vector products can be expressed in the
index form using the Kronecker delta and the alternating symbols:

A · B = (Ai êi ) · (Bj ê j ) = Ai Bjδi j = Ai Bi ,

A × B = (Ai êi ) × (Bj ê j ) = Ai Bj ei jk êk.
(2.2.40)

Note that the components of a vector in an orthonormal coordinate system can be
expressed as

Ai = A · êi , (2.2.41)

and therefore we can express vector A as

A = Ai êi = (A · êi )êi . (2.2.42)

Further, the Kronecker delta and the permutation symbol are related by the iden-
tity, known as the e-δ identity [see Problem 2.5(d)],

ei jkeimn = δ jmδkn − δ jnδkm. (2.2.43)

The permutation symbol and the Kronecker delta prove to be very useful in
proving vector identities. Since a vector form of any identity is invariant (i.e., valid
in any coordinate system), it suffices to prove it in one coordinate system. In partic-
ular, an orthonormal system is very convenient because we can use the index nota-
tion, permutation symbol, and the Kronecker delta. The following examples contain
several cases of incorrect and correct use of index notation and illustrate some of the
uses of δi j and ei jk .

EXAMPLE 2.2.3: Discuss the validity of the following expressions:
1. ambs = cm(dr − fr ).
2. ambs = cm(ds − fs).
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3. ai = bj ci di .
4. xi xi = r2.
5. ai bj c j = 3.

SOLUTION:

1. Not a valid expression because the free indices r and s do not match.
2. Valid; both m and s are free indices. There are nine equations (m, s = 1, 2, 3).
3. Not a valid expression because the free index j is not matched on both sides

of the equality, and index i is a dummy index in one expression and a free
index in the other; i cannot be used both as a free and dummy index in the
same equation. The equation would have been valid if i on the left side of the
equation is replaced with j ; then there will be three equations.

4. A valid expression, containing one equation: x2
1 + x2

2 + x2
3 = r2.

5. A valid expression; it contains three equations (i = 1, 2, 3): a1b1c1 +
a1b2c2 + a1b3c3 = 3, a2b1c1 + a2b2c2 + a2b3c3 = 3, and a3b1c1 + a3b2c2+
a3b3c3 = 3.

EXAMPLE 2.2.4: Simplify the following expressions:
1. δi jδ jkδkpδpi .
2. εmjkεnjk .
3. (A × B) · (C × D).

SOLUTION:

1. Successive contraction of subscripts yield the result:

δi jδ jkδkpδpi = δi jδ jkδki = δi jδ j i = δi i = 3.

2. Expand using the e-δ identity

εmjkεnjk = δmnδ j j − δmjδnj = 3δmn − δmn = 2δmn.

In particular, the expression εi jkεi jk is equal to 2δi i = 6.
3. Expanding the expression using the index notation, we obtain

(A × B) · (C × D) = (Ai Bj ei jk êk) · (Cm Dnemnpêp)

= Ai Bj Cm Dnei jkemnpδkp

= Ai Bj Cm Dnei jkemnk

= Ai Bj Cm Dn(δimδ jn − δinδ jm)

= Ai Bj Cm Dnδimδ jn − Ai Bj Cm Dnδinδ jm

= Ai Bj Ci Dj − Ai Bj Cj Di = Ai Ci Bj Dj − Ai Di Bj Cj

= (A · C)(B · D) − (A · D)(B · C),

where we have used the e-δ identity (2.2.43).
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Figure 2.2.10. Rectangular Cartesian coordinates.

Although the above vector identity is established in an orthonormal coordinate
system, it holds in a general coordinate system. That is, the above vector identity is
invariant.

EXAMPLE 2.2.5: Rewrite the expression emni Ai Bj Cm Dnê j in vector form.

SOLUTION: We note that Bj ê j = B. Examining the indices in the permutation
symbol and the remaining coefficients, it is clear that vectors C and D must have
a cross product between them and the resulting vector must have a dot product
with vector A. Thus we have

emni Ai Bj Cm Dnê j = [(C × D) · A]B = (C × D · A) B.

2.2.6 Transformation Law for Different Bases

When the basis vectors are constant, that is, with fixed lengths (with the same units)
and directions, the basis is called Cartesian. The general Cartesian system is oblique.
When the basis vectors are unit and orthogonal (orthonormal), the basis system is
called rectangular Cartesian or simply Cartesian. In much of our study, we shall deal
with Cartesian bases.

Let us denote an orthonormal Cartesian basis by

{êx, êy, êz} or {ê1, ê2, ê3}.
The Cartesian coordinates are denoted by (x, y, z) or (x1, x2, x3). The familiar rect-
angular Cartesian coordinate system is shown in Figure 2.2.10. We shall always use
right-handed coordinate systems.

A position vector to an arbitrary point (x, y, z) or (x1, x2, x3), measured from
the origin, is given by

r = xêx + yêy + zêz

= x1ê1 + x2ê2 + x3ê3, (2.2.44)

or, in summation notation, by

r = xj ê j , r · r = r2 = xi xi . (2.2.45)
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We shall also use the symbol x for the position vector r = x. The length of a line
element dr = dx is given by

dr · dr = (ds)2 = dxj dxj = (dx)2 + (dy)2 + (dz)2. (2.2.46)

Here we discuss the relationship between the components of two different or-
thonormal coordinate systems. Consider the first coordinate basis

{ê1, ê2, ê3}

and the second coordinate basis

{ ˆ̄e1, ˆ̄e2, ˆ̄e3}.

Now we can express the same vector in the coordinate system without bars (referred
as “unbarred”) and also in the coordinate system with bars (referred as “barred”):

A = Ai êi = (A · êi )êi

= Ā j ˆ̄e j = (A · ˆ̄ei ) ˆ̄ei .
(2.2.47)

From Eq. (2.2.42), we have

Ā j = A · ˆ̄e j = Ai (êi · ˆ̄e j ) ≡ 
 j i Ai , (2.2.48)

where


i j = ˆ̄ei · ê j . (2.2.49)

Equation (2.2.48) gives the relationship between the components (Ā1, Ā2, Ā3) and
(A1, A2, A3), and it is called the transformation rule between the barred and un-
barred components in the two coordinate systems. The coefficients 
i j can be inter-
preted as the direction cosines of the barred coordinate system with respect to the
unbarred coordinate system:


i j = cosine of the angle between ˆ̄ei and ê j . (2.2.50)

Note that the first subscript of 
i j comes from the barred coordinate system and the
second subscript from the unbarred system. Obviously, 
i j is not symmetric (i.e.,

i j 	= 
 j i ). The rectangular array of these components is called a matrix, which is the
topic of the next section. The next example illustrates the computation of direction
cosines.

EXAMPLE 2.2.6: Let êi (i = 1, 2, 3) be a set of orthonormal base vectors, and
define a new right-handed coordinate basis by (note that ˆ̄e1. ˆ̄e2 = 0)

ˆ̄e1 = 1
3

(2ê1 + 2ê2 + ê3) , ˆ̄e2 = 1√
2

(ê1 − ê2) ,

ˆ̄e3 = ˆ̄e1 × ˆ̄e2 = 1

3
√

2
(ê1 + ê2 − 4ê3) .
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1ê

2ê

3ê

1ê

2ê

3ê

Figure 2.2.11. The original and transformed coordi-
nate systems defined in Example 2.2.6.

The original and new coordinate systems are depicted in Figure 2.2.11. Deter-
mine the direction cosines 
i j of the transformation and display them in a rect-
angular array.

SOLUTION: From Eq. (2.2.49) we have


11 = ˆ̄e1 · ê1 = 2
3
, 
12 = ˆ̄e1 · ê2 = 2

3
, 
13 = ˆ̄e1 · ê3 = 1

3
,


21 = ˆ̄e2 · ê1 = 1√
2
, 
22 = ˆ̄e2 · ê2 = − 1√

2
, 
23 = ˆ̄e2 · ê3 = 0,


31 = ˆ̄e3 · ê1 = 1

3
√

2
, 
32 = ˆ̄e3 · ê2 = 1

3
√

2
, 
33 = ˆ̄e3 · ê3 = − 4

3
√

2
.

The rectangular array of these components is denoted by L and has the form

L = 1

3
√

2


 2

√
2 2

√
2

√
2

3 −3 0
1 1 −4


 .

2.3 Theory of Matrices

2.3.1 Definition

In the preceding sections, we studied the algebra of ordinary vectors and the trans-
formation of vector components from one coordinate system to another. For ex-
ample, the transformation equation (2.2.48) relates the components of a vector in
the barred coordinate system to unbarred coordinate system. Writing Eq. (2.2.48)
in expanded form,

Ā1 = 
11 A1 + 
12 A2 + 
13 A3,

Ā2 = 
21 A1 + 
22 A2 + 
23 A3,

Ā3 = 
31 A1 + 
32 A2 + 
33 A3,

(2.3.1)
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we see that there are nine coefficients relating the components Ai to Āi . The form
of these linear equations suggests writing down the scalars of 
i j ( jth components in
the ith equation) in the rectangular array

L =

 
11 
12 
13


21 
22 
23


31 
32 
33


 .

This rectangular array L of scalars 
i j is called a matrix, and the quantities 
i j are
called the elements of L.1

If a matrix has m rows and n columns, we will say that it is an m by n (m × n)
matrix, the number of rows always being listed first. The element in the ith row
and jth column of a matrix A is generally denoted by ai j , and we will sometimes
designate a matrix by A = [A] = [ai j ]. A square matrix is one that has the same
number of rows as columns. An n × n matrix is said to be of order n. The elements
of a square matrix for which the row number and the column number are the same
(i.e., ai j for i = j) are called diagonal elements or simply the diagonal. A square
matrix is said to be a diagonal matrix if all of the off-diagonal elements are zero. An
identity matrix, denoted by I = [I], is a diagonal matrix whose elements are all 1’s.
Examples of a diagonal and an identity matrix are given below:


5 0 0 0
0 −2 0 0
0 0 1 0
0 0 0 3


 , I =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 .

The sum of the diagonal elements is called the trace of the matrix.
If the matrix has only one row or one column, we will normally use only a single

subscript to designate its elements. For example,

X =



x1

x2

x3


 , Y = {y1 y2 y3}

denote a column matrix and a row matrix, respectively. Row and column matrices
can be used to denote the components of a vector.

2.3.2 Matrix Addition and Multiplication of a Matrix by a Scalar

The sum of two matrices of the same size is defined to be a matrix of the same size
obtained by simply adding the corresponding elements. If A is an m × n matrix and
B is an m × n matrix, their sum is an m × n matrix, C, with

ci j = ai j + bi j for all i, j. (2.3.2)

1 The word “matrix” was first used in 1850 by James Sylvester (1814–1897), an English algebraist.
However, Arthur Caley (1821–1895), professor of mathematics at Cambridge, was the first to ex-
plore properties of matrices. Significant contributions in the early years were made by Charles
Hermite, Georg Frobenius, and Camille Jordan, among others.
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A constant multiple of a matrix is equal to the matrix obtained by multiplying
all of the elements by the constant. That is, the multiple of a matrix A by a scalar α,
αA, is the matrix obtained by multiplying each of its elements with α:

A =




a11 a12 . . . a1n

a21 a22 . . . a2n
...

... . . .
...

am1 am2 . . . amn


 , αA =




αa11 αa12 . . . αa1n

αa21 αa22 . . . αa2n

· · · · · · · · · · · ·
αam1 αam2 . . . αamn


 .

Matrix addition has the following properties:

1. Addition is commutative: A + B = B + A.
2. Addition is associative: A + (B + C) = (A + B) + C.
3. There exists a unique matrix 0, such that A + 0 = 0 + A = A. The matrix 0 is

called zero matrix; all elements of it are zeros.
4. For each matrix A, there exists a unique matrix −A such that A + (−A) = 0.
5. Addition is distributive with respect to scalar multiplication: α(A + B) = αA +

αB.
6. Addition is distributive with respect to matrix multiplication, which will be dis-

cussed shortly (note the order):

(A + B)C = AC + BC.

2.3.3 Matrix Transpose and Symmetric Matrix

If A is an m × n matrix, then the n × m matrix obtained by interchanging its rows
and columns is called the transpose of A and is denoted by AT. For example, con-
sider the matrices

A =




5 −2 1
8 7 6
2 4 3

−1 9 0


 , B =


 3 −1 2 4

−6 3 5 7
9 6 −2 1


 . (2.3.3)

The transposes of A and B are

AT =

 5 8 2 −1

−2 7 4 9
1 6 3 0


 , BT =




3 −6 9
−1 3 6

2 5 −2
4 7 1


 .

The following basic properties of a transpose should be noted:

1. (AT)T = A.

2. (A + B)T = AT + BT.

A square matrix A of real numbers is said to be symmetric if AT = A. It is said
to be skew symmetric if AT = −A. In terms of the elements of A, these definitions
imply that A is symmetric if and only if ai j = a ji , and it is skew symmetric if and
only if ai j = −a ji . Note that the diagonal elements of a skew symmetric matrix are
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always zero since ai j = −ai j implies ai j = 0 for i = j . Examples of symmetric and
skew symmetric matrices, respectively, are




5 −2 12 21
−2 2 16 −3
12 16 13 8
21 −3 8 19


 ,




0 −11 32 4
11 0 25 7

−32 −25 0 15
−4 −7 −15 0


 .

2.3.4 Matrix Multiplication

Consider a vector A = a1ê1 + a2ê2 + a3ê3 in a Cartesian system. We can represent
A as a product of a row matrix with a column matrix,

A = {a1 a2 a3}



ê1

ê2

ê3


 .

The vector A is obtained by multiplying the ith element in the row matrix with the
ith element in the column matrix and adding them. This gives us a strong motivation
for defining the product of two matrices.

Let x and y be the vectors (matrices with one column)

x =




x1

x2
...

xm




, y =




y1

y2
...

ym




.

We define the product xTy to be the scalar

xTy = {x1, x2, . . . , xm}




y1

y2
...

ym




= x1 y1 + x2 y2 + · · · + xmym =
m∑

i=1

xi yi . (2.3.4)

It follows from Eq. (2.3.4) that xTy = yTx. More generally, let A = [ai j ] be m × n
and B = [bi j ] be n × p matrices. The product AB is defined to be the m × p matrix
C = [ci j ] with

ci j = {i th row of [A]}



jth col.
of
B


 = {ai1, ai2, . . . , ain}




b1 j

b2 j
...

bnj




= ai1b1 j + ai2b2 j + · · · + ainbnj =
n∑

k=1

aikbkj . (2.3.5)
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The next example illustrates the computation of the product of a square matrix with
a column matrix.

The following comments are in order on the matrix multiplication, wherein A
denotes an m × n matrix and B denotes a p × q matrix:

1. The product AB is defined only if the number of columns n in A is equal
to the number of rows p in B. Similarly, the product BA is defined only
if q = m.

2. If AB is defined, BA may or may not be defined. If both AB and BA are defined,
it is not necessary that they be of the same size.

3. The products AB and BA are of the same size if and only if both A and B are
square matrices of the same size.

4. The products AB and BA are, in general, not equal AB 	= BA (even if they are
of equal size); that is, the matrix multiplication is not commutative.

5. For any real square matrix A, A is said to be normal if AAT = ATA; A is said
to be orthogonal if AAT = ATA = I.

6. If A is a square matrix, the powers of A are defined by A2 = AA, A3 = AA2 =
A2A, and so on.

7. Matrix multiplication is associative: (AB)C = A(BC).
8. The product of any square matrix with the identity matrix is the matrix itself.
9. The transpose of the product is (AB)T = BTAT (note the order).

The next example illustrates computation of the product of two matrices and verifies
Property 9.

EXAMPLE 2.3.1: Verify Property 3 using the matrices [A] and [B] in Eq. (2.3.3).
The product of matrix A and B is

AB =




5 −2 1
8 7 6
2 4 3

−1 9 0




 3 −1 2 4

−6 3 5 7
9 6 −2 1




=




36 −5 −2 7
36 49 39 87

9 28 18 39
−57 28 43 59


 ,

and

(AB)T =




36 36 9 −57
−5 49 28 28
−2 39 18 43

7 87 39 59


 .
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Now compute the product

BTAT =




3 −6 9
−1 3 6

2 5 −2
4 7 1




 5 8 2 −1

−2 7 4 9
1 6 3 0




=




36 36 9 −57
−5 49 28 28
−2 39 18 43

7 87 39 59


 .

Thus, (AB)T = BTAT is verified.

2.3.5 Inverse and Determinant of a Matrix

If A is an n × n matrix and B is any n × n matrix such that AB = BA = I, then B is
called an inverse of A. If it exists, the inverse of a matrix is unique (a consequence
of the associative law). If both B and C are inverses for A, then by definition,

AB = BA = AC = CA = I.

Since matrix multiplication is associative, we have

BAC = (BA)C = IC = C

= B(AC) = BI = B.

This shows that B = C, and the inverse is unique. The inverse of A is denoted by
A−1. A matrix is said to be singular if it does not have an inverse. If A is nonsingular,
then the transpose of the inverse is equal to the inverse of the transpose: (A−1)

T =
(AT)−1

.

Let A = [ai j ] be an n × n matrix. We wish to associate with A a scalar that in
some sense measures the “size” of A and indicates whether A is nonsingular. The
determinant of the matrix A = [ai j ] is defined to be the scalar det A = |A| computed
according to the rule

detA = |ai j | =
n∑

i=1

(−1)i+1ai1|Ai1|, (2.3.6)

where |Ai j | is the determinant of the (n − 1) × (n − 1) matrix that remains on delet-
ing out the ith row and the first column of A. For convenience, we define the deter-
minant of a zeroth-order matrix to be unity. For 1 × 1 matrices, the determinant is
defined according to |a11| = a11. For a 2 × 2 matrix A, the determinant is defined by

A =
[

a11 a12

a21 a22

]
, |A| =

∣∣∣∣ a11 a12

a21 a22

∣∣∣∣ = a11a22 − a12a21.

In the previous definition, special attention is given to the first column of the matrix
A. We call it the expansion of |A| according to the first column of A. One can expand
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|A| according to any column or row:

|A| =
n∑

i=1

(−1)i+ j ai j |Ai j |, (2.3.7)

where |Ai j | is the determinant of the matrix obtained by deleting the ith row and
jth column of matrix A. A numerical example of the calculation of determinant is
presented next.

EXAMPLE 2.3.2: Compute the determinant of the matrix

A =

 2 5 −1

1 4 3
2 −3 5


 .

SOLUTION: Using the definition (2.3.7) and expanding by the first column, we
have

|A| =
3∑

i=1

(−1)i+1ai1|Ai1|

= (−1)2a11

∣∣∣∣ 4 3
−3 5

∣∣∣∣+ (−1)3a21

∣∣∣∣ 5 −1
−3 5

∣∣∣∣+ (−1)4a31

∣∣∣∣ 5 −1
4 3

∣∣∣∣
= 2

[
(4)(5) − (3)(−3)

]
+ (−1)

[
(5)(5) − (−1)(−3)

]
+ 2

[
(5)(3) − (−1)(4)

]
= 2(20 + 9) − (25 − 3) + 2(15 + 4) = 74.

The cross product of two vectors A and B can be expressed as the value of the
determinant

A × B ≡
∣∣∣∣∣∣

ê1 ê2 ê3

Â1 Â2 Â3

B̂1 B̂2 B̂3

∣∣∣∣∣∣ , (2.3.8)

and the scalar triple product can be expressed as the value of a determinant

A · (B × C) ≡
∣∣∣∣∣∣

Â1 Â2 Â3

B̂1 B̂2 B̂3

Ĉ1 Ĉ2 Ĉ3

∣∣∣∣∣∣ . (2.3.9)

In general, the determinant of a 3 × 3 matrix A can be expressed in the form

|A| = ei jka1i a2 j a3k, (2.3.10)

where ai j is the element occupying the ith row and the jth column of the matrix.
The verification of these results is left as an exercise for the reader (Problem 2.6 is
designed to prove some of them).

We note the following properties of determinants:

1. det(AB) = detA · detB.

2. detAT = detA.
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3. det(α A) = αn detA, where α is a scalar and n is the order of A.
4. If A′ is a matrix obtained from A by multiplying a row (or column) of A by a

scalar α, then det A′ = α detA.
5. If A′ is the matrix obtained from A by interchanging any two rows (or columns)

of A, then detA′ = −detA.
6. If A has two rows (or columns) one of which is a scalar multiple of another (i.e.,

linearly dependent), detA = 0.
7. If A′ is the matrix obtained from A by adding a multiple of one row (or column)

to another, then detA′ = detA.

We define (in fact, the definition given earlier is an indirect definition) singular
matrices in terms of their determinants. A matrix is said to be singular if and only if
its determinant is zero. By Property 6 mentioned earlier the determinant of a matrix
is zero if it has linearly dependent rows (or columns).

For an n × n matrix A, the determinant of the (n − 1) × (n − 1) sub-matrix, of
A obtained by deleting row i and column j of A is called minor of ai j and is denoted
by Mi j (A). The quantity cofi j (A) ≡ (−1)i+ j Mi j (A) is called the cofactor of ai j . The
determinant of A can be cast in terms of the minor and cofactor of ai j

detA =
n∑

i=1

ai j cofi j (A) (2.3.11)

for any value of j .
The adjunct (also called adjoint) of a matrix A is the transpose of the matrix

obtained from A by replacing each element by its cofactor. The adjunct of A is
denoted by AdjA.

Now we have the essential tools to compute the inverse of a matrix. If A is
nonsingular (i.e., det A 	= 0), the inverse A−1 of A can be computed according to

A−1 = 1
detA

AdjA. (2.3.12)

The next example illustrates the computation of an inverse of a matrix.

EXAMPLE 2.3.3: Determine the inverse of the matrix [A] of Example 2.3.2.

SOLUTION: The determinant is given by (expanding by the first row)

|A| = (2)(29) + (−)(5)(−1) + (−1)(−11) = 74.

The we compute Mi j

M11(A) =
∣∣∣∣ 4 3
−3 5

∣∣∣∣ , M12(A) =
∣∣∣∣ 1 3
2 5

∣∣∣∣ , M13(A) =
∣∣∣∣ 1 4
2 −3

∣∣∣∣
cof11(A) = (−1)2 M11(A) = 4 × 5 − (−3)3 = 29

cof12(A) = (−1)3 M12(A) = −(1 × 5 − 3 × 2) = 1

cof13(A) = (−1)4 M13(A) = 1 × (−3) − 2 × 4 = −11.
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The Adj(A) is given by

Adj(A) =

 cof11(A) cof12(A) cof13(A)

cof21(A) cof22(A) cof23(A)
cof31(A) cof32(A) cof33(A)




T

=

 29 −22 19

1 12 −7
−11 16 3


 .

The inverse of A can be now computed using Eq. (2.3.12),

A−1 = 1
74


 29 −22 19

1 12 −7
−11 16 3


 .

It can be easily verified that AA−1 = I.

2.4 Vector Calculus

2.4.1 Derivative of a Scalar Function of a Vector

The basic notions of vector and scalar calculus, especially with regard to physical
applications, are closely related to the rate of change of a scalar field (such as the
velocity potential or temperature) with distance. Let us denote a scalar field by φ =
φ(x), x being the position vector, as shown in Figure 2.4.1.

In general coordinates, we can write φ = φ(q1, q2, q3). The coordinate system
(q1, q2, q3) is referred to as the unitary system. We now define the unitary basis
(e1, e2, e3) as follows:

e1 ≡ ∂x
∂q1

, e2 ≡ ∂x
∂q2

, e3 ≡ ∂x
∂q3

. (2.4.1)

•

1qx

P

x
e1 1q

∂=
∂

1x

2x
3x

x
e 2 2q

∂=
∂ 2q3q

• •
x

x xd+

xd

1x

2x
3x

x( )φ

Curve s

x
ê

s

∂=
∂

Figure 2.4.1. Directional derivative of a scalar function.
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Note that (e1, e2, e3) is not necessarily an orthogonal or unit basis. Hence, an arbi-
trary vector A is expressed as

A = A1e1 + A2e2 + A3e3 = Ai ei , (2.4.2)

and a differential distance is denoted by

dx = dq1e1 + dq2e2 + dq3e3 = dqi ei . (2.4.3)

Observe that the A’s and dq’s have superscripts, whereas the unitary basis
(e1, e2, e3) has subscripts. The dqi are referred to as the contravariant components
of the differential vector dx, and Ai are the contravariant components of vector
A. The unitary basis can be described in terms of the rectangular Cartesian basis
(êx, êy, êz) = (ê1, ê2, ê3) as follows:

e1 = ∂x
∂q1

= ∂x
∂q1

êx + ∂y
∂q1

êy + ∂z
∂q1

êz,

e2 = ∂x
∂q2

= ∂x
∂q2

êx + ∂y
∂q2

êy + ∂z
∂q2

êz,

e3 = ∂x
∂q3

= ∂x
∂q3

êx + ∂y
∂q3

êy + ∂z
∂q3

êz.

(2.4.4)

In the summation convection, we have

ei ≡ ∂x
∂qi

= ∂x j

∂qi
ê j , i = 1, 2, 3. (2.4.5)

Associated with any arbitrary basis is another basis that can be derived from it.
We can construct this basis in the following way: Taking the scalar product of the
vector A in Eq. (2.4.2) with the cross product e1 × e2 and noting that since e1 × e2 is
perpendicular to both e1 and e2, we obtain

A · (e1 × e2) = A3e3 · (e1 × e2).

Of course, in the evaluation of the cross products, we shall always use the right-hand
rule. Solving for A3 gives

A3 = A · e1 × e2

e3 · (e1 × e2)
= A · e1 × e2

[e1e2e3]
. (2.4.6)

In similar fashion, we can obtain the following expressions for

A1 = A · e2 × e3

[e1e2e3]
, A2 = A · e3 × e1

[e1e2e3]
. (2.4.7)

Thus, we observe that we can obtain the components A1, A2, andA3 by taking the
scalar product of the vector A with special vectors, which we denote as follows:

e1 = e2 × e3

[e1e2e3]
, e2 = e3 × e1

[e1e2e3]
, e3 = e1 × e2

[e1e2e3]
. (2.4.8)
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The set of vectors (e1, e2, e3) is called the dual basis or reciprocal basis. Notice from
the basic definitions that we have the following relations:

ei · e j = δi
j =

{
1, i = j
0, i 	= j

. (2.4.9)

It is possible, since the dual basis is linearly independent (the reader should verify
this), to express a vector A in terms of the dual basis [cf. Eq. (2.4.2)]:

A = A1e1 + A2e2 + A3e3 = Ai ei . (2.4.10)

Notice now that the components associated with the dual basis have subscripts, and
Ai are the covariant components of A.

By an analogous process as that just described, we can show that the original
basis can be expressed in terms of the dual basis in the following way:

e1 = e2 × e3

[e1e2e3]
, e2 = e3 × e1

[e1e2e3]
, e3 = e1 × e2

[e1e2e3]
. (2.4.11)

It follows from Eqs. (2.4.2) and (2.4.10), in view of the orthogonality property in Eq.
(2.4.9), that

Ai = A · ei , Ai = A · ei ,

Ai = gi j e j , Ai = gi j e j ,

gi j = ei · e j , gi j = ei · e j .

(2.4.12)

Returning to the scalar field φ, the differential change is given by

dφ = ∂φ

∂q1
dq1 + ∂φ

∂q2
dq2 + ∂φ

∂q3
dq3. (2.4.13)

The differentials dq1, dq2, dq3 are components of dx [see Eq. (2.4.3)]. We would
now like to write dφ in such a way that we elucidate the direction as well as the
magnitude of dx. Since e1 · e1 = 1, e2 · e2 = 1, and e3 · e3 = 1, we can write

dφ = e1 ∂φ

∂q1
· e1 dq1 + e2 ∂φ

∂q2
· e2 dq2 + e3 ∂φ

∂q3
· e3 dq3

= (dq1e1 + dq2e2 + dq3e3) ·
(

e1 ∂φ

∂q1
+ e2 ∂φ

∂q2
+ e3 ∂φ

∂q3

)

= dx ·
(

e1 ∂φ

∂q1
+ e2 ∂φ

∂q2
+ e3 ∂φ

∂q3

)
. (2.4.14)

Let us now denote the magnitude of dx by ds ≡ |dx|. Then ê = dx/ds is a unit vector
in the direction of dx, and we have(

dφ

ds

)
ê

= ê ·
(

e1 ∂φ

∂q1
+ e2 ∂φ

∂q2
+ e3 ∂φ

∂q3

)
. (2.4.15)
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z

y

x

grad φ 
φ(r) = c2

φ(r) = c1

Figure 2.4.2. Level surfaces.

The derivative (dφ/ds)ê is called the directional derivative of φ. We see that it is the
rate of change of φ with respect to distance and that it depends on the direction ê in
which the distance is taken.

The vector in Eq. (2.4.15) that is scalar multiplied by ê can be obtained imme-
diately whenever the scalar field φ is given. Because the magnitude of this vector
is equal to the maximum value of the directional derivative, it is called the gradient
vector and is denoted by grad φ:

grad φ ≡ e1 ∂φ

∂q1
+ e2 ∂φ

∂q2
+ e3 ∂φ

∂q3
. (2.4.16)

From this representation, it can be seen that

∂φ

∂q1
,

∂φ

∂q2
,

∂φ

∂q3

are the covariant components of the gradient vector.
When the scalar function φ(x) is set equal to a constant, φ(x) = constant, a fam-

ily of surfaces is generated. A different surface is designated by different values of
the constant, and each surface is called a level surface, as shown in Figure 2.4.2.
The unit vector ê is tangent to a level surface. If the direction in which the direc-
tional derivative is taken lies within a level surface, then dφ/ds is zero, since φ is a
constant on a level surface. It follows, therefore, that if dφ/ds is zero, then grad φ

must be perpendicular to ê and, hence, perpendicular to a level surface. Thus, if any
surface is defined by φ(x) = constant, the unit normal to the surface is determined
from

n̂ = ± grad φ

|grad φ| . (2.4.17)

In general, the normal vector is a function of position x; n̂ is independent of x only
when φ is a plane (i.e., linear function of x). The plus or minus sign appears in Eq.
(2.4.17) because the direction of n̂ may point in either direction away from the sur-
face. If the surface is closed, the usual convention is to take n̂ pointing outward from
the surface.
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2.4.2 The del Operator

It is convenient to write the gradient vector as

grad φ ≡
(

e1 ∂

∂q1
+ e2 ∂

∂q2
+ e3 ∂

∂q3

)
φ (2.4.18)

and interpret grad φ as some operator operating on φ, that is, grad φ ≡ ∇φ. This
operator is denoted by

∇ ≡ e1 ∂

∂q1
+ e2 ∂

∂q2
+ e3 ∂

∂q3
(2.4.19)

and is called the del operator. The del operator is a vector differential operator, and
the “components” ∂/∂q1, ∂/∂q2, and ∂/q3 appear as covariant components.

Whereas the del operator has some of the properties of a vector, it does not
have them all because it is an operator. For instance ∇ · A is a scalar (called the di-
vergence of A), whereas A · ∇ is a scalar differential operator. Thus the del operator
does not commute in this sense.

In Cartesian systems, we have the simple form

∇ ≡ êx
∂

∂x
+ êy

∂

∂y
+ êz

∂

∂z
, (2.4.20)

or, in the summation convection, we have

∇ ≡ êi
∂

∂xi
. (2.4.21)

2.4.3 Divergence and Curl of a Vector

The dot product of a del operator with a vector is called the divergence of a vector
and denoted by

∇ · A ≡ divA. (2.4.22)

If we take the divergence of the gradient vector, we have

div(grad φ) ≡ ∇ · ∇φ = (∇ · ∇)φ = ∇2φ. (2.4.23)

The notation ∇2 = ∇ · ∇ is called the Laplacian operator. In Cartesian systems, this
reduces to the simple form

∇2φ = ∂2φ

∂x2
+ ∂2φ

∂y2
+ ∂2φ

∂z2
= ∂2φ

∂xi∂xi
. (2.4.24)

The Laplacian of a scalar appears frequently in the partial differential equations
governing physical phenomena (see Section 8.3.3).

The curl of a vector is defined as the del operator operating on a vector by means
of the cross product:

curl A = ∇ × A = ei jk êi
∂ Ak

∂xj
. (2.4.25)
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The quantity n̂ · grad φ of a function φ is called the normal derivative of φ, and
it is denoted by

∂φ

∂n
≡ n̂ · grad φ = n̂ · ∇φ. (2.4.26)

In a Cartesian system, this becomes

∂φ

∂n
= ∂φ

∂x
nx + ∂φ

∂y
ny + ∂φ

∂z
nz, (2.4.27)

where nx, ny, and nz are the direction cosines of the unit normal

n̂ = nxêx + nyêy + nzêz. (2.4.28)

Next, we present several examples to illustrate the use of index notation to
prove certain identities involving vector calculus.

EXAMPLE 2.4.1: Establish the following identities using the index notation:
1. ∇(r) = r

r .

2. ∇(rn) = nrn−2r.
3. ∇ × (∇F) = 0.
4. ∇ · (∇F × ∇G) = 0.

5. ∇ × (∇ × v) = ∇(∇ · v) − ∇2v.

6. div (A × B) = ∇ × A · B − ∇ × B · A.

SOLUTION:

1. Consider

∇(r) = êi
∂r
∂xi

= êi
∂

∂xi
(xj xj )

1
2

= êi
1
2

(xj xj )
1
2 −1 2xi = êi xi (xj xj )

− 1
2 = r

r
= x

r
, (a)

from which we note the identity

∂r
∂xi

= xi

r
. (b)

2. Similar to 1, we have

∇(rn) = êi
∂

∂xi
(rn) = nrn−1êi

∂r
∂xi

= nrn−2xi êi = nrn−2r.

3. Consider the expression

∇ × (∇F) =
(

êi
∂

∂xi

)
×
(

ê j
∂ F
∂xj

)
= ei jk êk

∂2 F
∂xi∂xj

.
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Note that ∂2 F
∂xi ∂xj

is symmetric in i and j . Consider the kth component of the
above vector

ei jk
∂2 F

∂xi∂xj
= −e jik

∂2 F
∂xi∂xj

(interchanged i and j)

= −ei jk
∂2 F

∂xj∂xi
(renamed i as j and j as i)

= −ei jk
∂2 F

∂xi∂xj
(used the symmetry of ∂2 F

∂xi ∂xj
).

Thus, the expression is equal to its own negative. Obviously, the only param-
eter that is equal to its own negative is zero. Hence, we have ∇ × (∇F) = 0.
It also follows that ei jk Fi j = 0 whenever Fi j = Fji , that is, Fi j is symmetric.

4. We have

∇ · (∇F × ∇G) =
(

êi
∂

∂xi

)
·
(

ê j
∂ F
∂xj

× êk
∂G
∂xk

)

= e jk
(êi · ê
)
(

∂2 F
∂xi∂xj

∂G
∂xk

+ ∂ F
∂xj

∂2G
∂xi∂xk

)

= ei jk

(
∂2 F

∂xi∂xj

∂G
∂xk

+ ∂ F
∂xj

∂2G
∂xi∂xk

)
= 0,

where we have used the result from 3.
5. Observe that

∇ × (∇ × v) = êi
∂

∂xi
×
(

ê j
∂

∂xj
× vk êk

)

= êi
∂

∂xi
×
(

e jk


∂vk

∂xj
ê


)
= ei
m e jk


∂2vk

∂xi∂xj
êm.

Using the e-δ identity, we obtain

∇ × (∇ × v) ≡ (δmjδik − δmkδi j )
∂2vk

∂xi∂xj
êm = ∂2vi

∂xi∂xj
ê j − ∂2vk

∂xi∂xi
êk

= ê j
∂

∂xj

(
∂vi

∂xi

)
− ∂2

∂xi∂xi
(vk êk) = ∇ (∇ · v) − ∇2v.

This result is sometimes used as the definition of the Laplacian of a vector;
that is,

∇2v = grad(div v) − curl curl v.

6. Expanding the vector expression

div (A × B) = êi · ∂

∂xi
(e jk
 A j Bk ê
) = ei jk

(
∂ A j

∂xi
Bk + A j

∂ Bk

∂xi

)

= ∇ × A · B − ∇ × B · A.
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Table 2.4.1. Vector expressions and their Cartesian component
forms (A, B, and C) are vector functions, and U is a scalar function;
(ê1, ê2, ê3) are the Cartesian unit vectors

No. Vector form Component form

1. A Ai êi

2. A · B Ai Bi

3. A × B ei jk Ai Bj êk

4. A · (B × C) ei jk Ai Bj Ck

5. A × (B × C) = B(A · C) − C(A · B) ei jkeklm A j BlCmêi

6. ∇U ∂U
∂xi

êi

7. ∇A ∂ A j

∂xi
êi ê j

8. ∇ · A ∂ Ai
∂xi

9. ∇ × A ei jk
∂ A j

∂xi
êk

10. ∇ · (A × B) = B · (∇ × A) − A · (∇ × B) ei jk
∂

∂xi
(A j Bk)

11. ∇ · (UA) = U∇ · A + ∇U · A ∂
∂xi

(U Ai )

12. ∇ × (UA) = ∇U × A + U∇ × A ei jk
∂

∂xj
(U Ak)êi

13. ∇(UA) = ∇UA + U∇A ê j
∂

∂xj
(U Ak êk)

14. ∇ × (A × B) = A(∇ · B) − B(∇ · A) ei jkemkl
∂

∂xm
(Ai Bj )êl

+ B · ∇A − A · ∇B

15. (∇ × A) × B = B · [∇A − (∇A)T] ei jkeklm Bl
∂ A j

∂xi
êm

16. ∇ · (∇U) = ∇2U ∂2U
∂xi ∂xi

17. ∇ · (∇A) = ∇2A ∂2 A j

∂xi ∂xi
ê j

18. ∇ × ∇ × A = ∇(∇ · A) − (∇ · ∇)A emil e jkl
∂2 Ak
∂xi ∂xj

êm

19. (A · ∇)B A j
∂ Bi
∂xj

êi

20. A(∇ · B) Ai êi
∂ Bj

∂xj

The examples presented illustrate the convenience of index notation in estab-
lishing vector identities and simplifying vector expressions. The difficult step in these
proofs is recognizing vector operations from index notation. A list of vector oper-
ations in both vector notation and in Cartesian component form is presented in
Table 2.4.1.

2.4.4 Cylindrical and Spherical Coordinate Systems

Two commonly used orthogonal curvilinear coordinate systems are cylindrical co-
ordinate system [see Figure 2.4.3(a)] and spherical coordinate system [see Fig-
ure 2.4.3(b)]. Table 2.4.2 contains a summary of the basic information for the two
coordinate systems. It is clear from Table 2.4.2 that the matrix of direction cosines
between the orthogonal rectangular Cartesian system (x, y, z) and the orthogonal
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Figure 2.4.3. (a) Cylindrical coordinate system. (b) Spherical coordinate system.

curvilinear systems (r, θ, z) and (R, φ, θ), respectively, are as given in Eqs. (2.4.29)–
(2.4.32)

Cylindrical coordinates


êr

êθ

êz


 =


 cos θ sin θ 0

− sin θ cos θ 0
0 0 1






êx

êy

êx


 , (2.4.29)




êx

êy

êz


 =


 cos θ − sin θ 0

sin θ cos θ 0
0 0 1






êr

êθ

êz


 . (2.4.30)

Spherical coordinates


êR

êφ

êθ


 =


 sin φ cos θ sin φ sin θ cos φ

cos φ cos θ cos φ sin θ − sin φ

− sin θ cos θ 0






êx

êy

êx


 , (2.4.31)




êx

êy

êz


 =


 sin φ cos θ cos φ cos θ − sin θ

sin φ sin θ cos φ sin θ cos θ

cos φ − sin φ 0






êR

êφ

êθ


 . (2.4.32)

2.4.5 Gradient, Divergence, and Curl Theorems

Integral identities involving the gradient of a vector, divergence of a vector, and curl
of a vector can be established from integral relations between volume integrals and
surface integrals. These identities will be useful in later chapters when we derive the
equations of a continuous medium.

Let � denote a region in 
3 bounded by the closed surface �. Let ds be a differ-
ential element of surface and n̂ the unit outward normal, and let dx be a differential



P1: JzG

Chapter02 CUFX197-Reddy 978 0 521 87044 3 October 3, 2007 10:34

2.4 Vector Calculus 41

Table 2.4.2. Base vectors and del and Laplace operators in
cylindrical and spherical coordinate systems

Cylindrical coordinate system (r, θ, z)

x = r cos θ , y = r sin θ , z = z, r = r êr + zêz

A = Ar êr + Aθ êθ + Azêz (typical vector)

êr = cos θ êx + sin θ êy, êθ = − sin θ êx + cos θ êy, êz = êz

∂ êr
∂θ

= − sin θ êx + cos θ êy = êθ , ∂ êθ

∂θ
= − cos θ êx − sin θ êy = −êr

All other derivatives of the base vectors are zero.

∇ = êr
∂
∂r + 1

r êθ
∂
∂θ

+ êz
∂
∂z ,

∇2 = 1
r

[
∂
∂r

(
r ∂

∂r

)
+ 1

r
∂2

∂θ2 + r ∂2

∂z2

]
∇ · A = 1

r

[
∂(r Ar )

∂r + ∂ Aθ

∂θ
+ r ∂ Az

∂z

]
∇ × A = ( 1

r
∂ Az
∂θ

− ∂ Aθ

∂z

)
êr + (

∂ Ar
∂z − ∂ Az

∂r

)
êθ + 1

r

[
∂(r Aθ )

∂r − ∂ Ar
∂θ

]
êz

Spherical coordinate system (R, φ, θ)

x = Rsin φ cos θ , y = Rsin φ sin θ , z = Rcos φ, r = RêR

A = ARêR + Aφ êφ + Aθ êθ (typical vector)

êR = sin φ cos θ êx + sin φ sin θ êy + cos φ êz

êφ = cos φ cos θ êx + cos φ sin θ êy − sin φ êz

êθ = − sin θ êx + cos θ êy

êx = sin φ cos θ êR + cos φ cos θ êφ − sin θ êθ

êy = sin φ sin θ êR + cos φ sin θ êφ + cos θ êθ

êz = cos φ êR − sin φ êφ

∂ êR
∂φ

= êφ , ∂ êR
∂θ

= sin φ êθ , ∂ êφ

∂φ
= −êR

∂ êφ

∂θ
= cos φ êθ , ∂ êθ

∂θ
= − sin φ êR − cos φ êφ

All other derivatives of the base vectors are zero.

∇ = êR
∂

∂ R + 1
R êφ

∂
∂φ

+ 1
Rsin φ

êθ
∂
∂θ

,

∇2 = 1
R2

∂
∂ R

(
R2 ∂

∂ R

)
+ 1

R2 sin φ
∂
∂φ

(
sin φ ∂

∂φ

)
+ 1

R2 sin2 φ

∂2

∂θ2

∇ · A = 2 AR
R + ∂ AR

∂ R + 1
Rsin φ

∂(Aφ sin φ)
∂φ

+ 1
Rsin φ

∂ Aθ

∂θ

∇ × A = 1
Rsin φ

[
∂(sin φ Aθ )

∂φ
− ∂ Aφ

∂θ

]
êR +

[
1

Rsin φ
∂ AR
∂θ

− 1
R

∂(RAθ )
∂ R

]
êφ

+ 1
R

[
∂(RAφ )

∂ R − ∂ AR
∂φ

]
êθ
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volume element in �. The following relations, known from advanced calculus, hold:∫
�

∇φ dx =
∮

�

n̂φ ds (Gradient theorem). (2.4.33)

∫
�

∇ · A dx =
∮

�

n̂ · A ds (Divergence theorem). (2.4.34)

∫
�

∇ × A dx =
∮

�

n̂ × A ds (Curl theorem). (2.4.35)

These forms are known as the invariant forms since they do not depend in any way
upon defined coordinate systems.

The combination n̂ · A ds is called the outflow of A through the differential sur-
face ds. The integral is called the total or net outflow through the surrounding sur-
face �s. This is easiest to see if one imagines that A is a velocity vector and the
outflow is an amount of fluid flow. In the limit as the region shrinks to a point, the
net outflow per unit volume is associated therefore with the divergence of the vector
field.

2.5 Tensors

2.5.1 Dyads and Polyads

As stated earlier, the surface force acting on a small element of area in a continuous
medium depends not only on the magnitude of the area but also on the orientation
of the area. The stress, which is force per unit area, not only depends on the magni-
tude of the force and orientation of the plane but also on the direction of the force.
Thus, specification of stress at a point requires two vectors, one perpendicular to the
plane on which the force is acting and the other in the direction of the force. Such
an object is known as a dyad, or what we shall call a second-order tensor. Because
of its utilization in physical applications, a dyad is defined as two vectors standing
side by side and acting as a unit. A linear combination of dyads is called a dyadic.
Let A1, A2, . . . , An and B1, B2, . . . , Bn be arbitrary vectors. Then we can represent
a dyadic as

� = A1B1 + A2B2 + · · · + AnBn. (2.5.1)

The transpose of a dyadic is defined as the result obtained by the interchange of
the two vectors in each of the dyads. For example, the transpose of the dyadic in
Eq. (2.5.1) is

�T = B1A1 + B2A2 + · · · + BnAn.

One of the properties of a dyadic is defined by the dot product with a vector,
say V:

� · V = A1(B1 · V) + A2(B2 · V) + · · · + An(Bn · V),

V · � = (V · A1)B1 + (V · A2)B2 + · · · + (V · An)Bn.
(2.5.2)
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The dot operation with a vector produces another vector. In the first case, the dyad
acts as a prefactor and in the second case as a postfactor. The two operations in
general produce different vectors. The expressions in Eq. (2.5.2) can also be written
in alternative form using the definition of the transpose of a dyad as

V · � = �T · V, � · V = V · �T. (2.5.3)

In general, one can show (see Problem 2.25) that the transpose of the product of
tensors (of any order) follows the rule

(� · �)T = �T · �T, (� · � · V)T = VT · �T · �T. (2.5.4)

The dot product of a dyadic with itself is a dyadic, and it is denoted by

� · � = �2. (2.5.5)

In general, we have

�n = �n−1 · �. (2.5.6)

2.5.2 Nonion Form of a Dyadic

Let each of the vectors in the dyadic (2.5.1) be represented in a given basis system.
In Cartesian system, we have

Ai = Ai j e j , Bi = Bikek.

The summations on j and k are implied by the repeated indices.
We can display all of the components of a dyadic � by letting the k index run to

the right and the j index run downward:

� = φ11ê1ê1 + φ12ê1ê2 + φ13ê1ê3

+ φ21ê2ê1 + φ22ê2ê2 + φ23ê2ê3

+ φ31ê3ê1 + φ32ê3ê2 + φ33ê3ê3. (2.5.7)

This form is called the nonion form of a dyadic. Equation (2.5.7) illustrates that a
dyad in three-dimensional space has nine independent components in general, each
component associated with a certain dyad pair. The components are thus said to be
ordered. When the ordering is understood, such as suggested by the nonion form
(2.5.7), the explicit writing of the dyads can be suppressed and the dyadic written as
an array:

[�] =

φ11 φ12 φ13

φ21 φ22 φ23

φ31 φ32 φ33


 and � =




ê1

ê2

ê3




T

[�]




ê1

ê2

ê3


 . (2.5.8)

This representation is simpler than Eq. (2.5.7), but it is taken to mean the same.
The unit dyad is defined as

I = êi êi . (2.5.9)
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It is clear that the unit second-order tensor is symmetric. With the help of the Kro-
necker delta symbol δi j , the unit dyadic in an orthogonal Cartesian coordinate sys-
tem can be written alternatively as

I = δi j êi ê j , I =



ê1

ê2

ê3




T

[I]




ê1

ê2

ê3


 , [I] =


 1 0 0

0 1 0
0 0 1


 . (2.5.10)

The permutation symbol ei jk can be viewed as the Cartesian components of a third-
order tensor of a special kind.

The “double-dot product” between two dyads is useful in the sequel. The
double-dot product between a dyad (AB) and another dyad (CD) is defined as the
scalar

(AB) : (CD) ≡ (B · C)(A · D). (2.5.11)

The double-dot product, by this definition, is commutative. The double-dot product
between two dyads in a rectangular Cartesian system is given by

� : � = (φi j êi ê j ) : (ψmnêmên)

= φi jψmn(êi · ên)(ê j · êm)

= φi jψmnδinδ jm

= φi jψ j i . (2.5.12)

The trace of a dyad is defined to be the double-dot product of the dyad with the
unit dyad

tr � = � : I. (2.5.13)

The trace of a tensor is invariant, called the first principal invariant, and it is denoted
by I1; that is, it is invariant under coordinate transformations (φi i = φ̄i i ). The first,
second, and third principal invariants of a dyadic are defined to be

I1 = tr �, I2 = 1
2

[
(tr �)2 − tr

(
�2)] , I3 = det �. (2.5.14)

In terms of the rectangular Cartesian components, the three invariants have the
form

I1 = φi i , I2 = 1
2

(φi iφ j j − φi jφ j i ) , I3 = |φ|. (2.5.15)

In the general scheme that is developed, scalars are the zeroth-order tensors,
vectors are first-order tensors, and dyads are second-order tensors. The third-order
tensors can be viewed as those derived from triads, or three vectors standing side by
side.
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2.5.3 Transformation of Components of a Dyadic

A second-order Cartesian tensor � may be represented in barred and unbarred
coordinate systems as

� = φi j êi ê j

= φ̄kl ˆ̄ek ˆ̄el .

The unit base vectors in the barred and unbarred systems are related by

êi = ∂ x̄ j

∂xi

ˆ̄e j ≡ 
 j i ˆ̄e j or 
i j = ˆ̄ei · ê j , (2.5.16)

where 
i j denote the direction cosines between barred and unbarred systems [see
Eqs. (2.2.48)–(2.2.50)]. Thus the components of a second-order tensor transform
according to

φ̄k
 = 
ki

jφi j or �̄ = L � LT. (2.5.17)

In some books, a second-order tensor is defined to be one whose components trans-
form according to Eq. (2.5.17). In orthogonal coordinate systems, the determinant
of the matrix of direction cosines is unity and its inverse is equal to the transpose:

L−1 = LT or LLT = I. (2.5.18)

Tensors L that satisfy the property (2.5.18) are called orthogonal tensors.
Tensors of various orders, especially the zeroth-, first-, and second-order appear

in the study of a continuous medium. As we shall see in Chapter 6, the tensor that
characterizes the material constitution is a fourth-order tensor. Tensors whose com-
ponents are the same in all coordinate systems, that is, the components are invariant
under coordinate transformations, are known as isotropic tensors. By definition, all
zeroth- order tensors (i.e., scalars) are isotropic and the only isotropic tensor of or-
der 1 is the zero vector 0. Every isotropic tensor T of order 2 can be written as
T = λI, and the components Ci jk
 of every fourth-order tensor C can be expressed
as

Ci jk
 = λδi jδk
 + µ(δikδ j
 + δi
δ jk) + κ(δikδ j
 − δi
δ jk), (2.5.19)

where λ, µ, and κ are scalars. The proof of the above statements are left as exercises
to the reader.

2.5.4 Tensor Calculus

We note that the gradient of a vector is a second-order tensor

∇A = êi
∂

∂xi
(A j ê j ) = ∂ A j

∂xi
êi ê j .

Note that the order of the base vectors is kept intact (i.e., not switched from the
order in which they appear). It can be expressed as the sum of symmetric and
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antisymmetric parts by adding and subtracting (1/2)(∂ Ai/∂xj ) :

∇A = 1
2

(
∂ A j

∂xi
+ ∂ Ai

∂xj

)
êi ê j + 1

2

(
∂ A j

∂xi
− ∂ Ai

∂xj

)
êi ê j . (2.5.20)

Analogously to the divergence of a vector, the divergence of a second-order
Cartesian tensor is defined as

div � = ∇ · � = êi
∂

∂xi
· (φmnêmên)

= ∂φmn

∂xi
(êi · êm)ên = ∂φin

∂xi
ên. (2.5.21)

Thus, the divergence of a second-order tensor is a vector. The integral theorems
of vectors presented in Section 2.4.5 are also valid for tensors (second order and
higher), but it is important that the order of the operations be observed.

The gradient and divergence of a tensor can be expressed in cylindrical and
spherical coordinate systems by writing the del operator and the tensor in compo-
nent form (see Table 2.4.2). For example, the gradient of a vector u in the cylindrical
coordinate system can be obtained by writing

u = ur êr + uθ êθ + uzêz, (2.5.22)

∇ = êr
∂

∂r
+ 1

r
êθ

∂

∂θ
+ êz

∂

∂z
. (2.5.23)

Then we have

∇u =
(

êr
∂

∂r
+ êθ

1
r

∂

∂θ
+ êz

∂

∂z

)
(ur êr + uθ êθ + uzêz)

= êr êr
∂ur

∂r
+ êr êθ

∂uθ

∂r
+ êr êz

∂uz

∂r
+ 1

r
êθ êr

∂ur

∂θ

+ ur

r
êθ

∂ êr

∂θ
+ 1

r
êθ êθ

∂uθ

∂θ
+ uθ

r
êθ

∂ êθ

∂θ
+ 1

r
êθ êz

∂uz

∂θ

+ êzêr
∂ur

∂z
+ êzêθ

∂uθ

∂z
+ êzêz

∂uz

∂z

= êr êr
∂ur

∂r
+ êr êθ

∂uθ

∂r
+ êθ êr

1
r

(
∂ur

∂θ
− uθ

)

+ êr êz
∂uz

∂r
+ êzêr

∂ur

∂z
+ êθ êθ

1
r

(
ur + ∂uθ

∂θ

)

+ 1
r

êθ êz
∂uz

∂θ
+ êzêθ

∂uθ

∂z
+ êzêz

∂uz

∂z
, (2.5.24)

where the following derivatives of the base vectors are used:

∂ êr

∂θ
= êθ ,

∂ êθ

∂θ
= −êr . (2.5.25)

Similarly, one can compute the curl and divergence of a tensor. The following ex-
ample illustrates the procedure (also see Problems 2.26–2.28).
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EXAMPLE 2.5.1: Suppose that the second-order tensor E is of the form (i.e., other
components are zero)

E = Err (r, z)êr êr + Eθθ (r, z)êθ êθ

in the cylindrical coordinate system. Determine the curl and divergence of the
tensor E.

SOLUTION: We note that ∂(·)/∂θ = 0 because Err and Eθθ are not functions of
θ . Using the del operator in Eq. (2.5.23), we can write ∇ × E as

∇ × E =
(

êr
∂

∂r
+ êθ

r
∂

∂θ
+ êz

∂

∂z

)
× (Err êr êr + Eθθ êθ êθ )

= êr × ∂

∂r
(Err êr êr + Eθθ êθ êθ ) + 1

r
êθ × ∂

∂θ
(Err êr êr + Eθθ êθ êθ )

+ êz × ∂

∂z
(Err êr êr + Eθθ êθ êθ )

= êr ×
(

∂ Eθθ

∂r
êθ êθ

)
+ 1

r
êθ ×

(
Err êr

∂ êr

∂θ
+ Eθθ

∂ êθ

∂θ
êθ

)

+ êz ×
(

∂ Err

∂z
êr êr + ∂ Eθθ

∂z
êθ êθ

)

= ∂ Eθθ

∂r
(êr × êθ ) êθ + 1

r
Err (êθ × êr )

∂ êr

∂θ

+ 1
r

Eθθ

(
êθ × ∂ êθ

∂θ

)
êθ + ∂ Err

∂z
(êz × êr ) êr + ∂ Eθθ

∂z
(êz × êθ ) êθ

= ∂ Eθθ

∂r
êzêθ − Err

r
êzêθ + 1

r
Eθθ êzêθ + ∂ Err

∂z
êθ êr − ∂ Eθθ

∂z
êr êθ .(2.5.26)

Similarly, we compute the divergence of E as

∇ · E =
(

êr
∂

∂r
+ êθ

r
∂

∂θ
+ êz

∂

∂z

)
· (Err êr êr + Eθθ êθ êθ )

= êr · ∂

∂r
(Err êr êr + Eθθ êθ êθ ) + 1

r
êθ · ∂

∂θ
(Err êr êr + Eθθ êθ êθ )

+ êz · ∂

∂z
(Err êr êr + Eθθ êθ êθ )

= êr ·
(

∂ Err

∂r
êr êr

)
+ 1

r
êθ ·

(
Err

∂ êr

∂θ
êr + Eθθ êθ

∂ êθ

∂θ

)

= ∂ Err

∂r
êr + 1

r
(Err − Eθθ ) êr . (2.5.27)
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2.5.5 Eigenvalues and Eigenvectors of Tensors

It is conceptually useful to regard a tensor as an operator that changes a vector
into another vector (by means of the dot product). In this regard, it is of interest to
inquire whether there are certain vectors that have only their lengths, and not their
orientation, changed when operated upon by a given tensor (i.e., seek vectors that
are transformed into multiples of themselves). If such vectors exist, they must satisfy
the equation

A · x = λx. (2.5.28)

Such vectors x are called characteristic vectors, principal planes, or eigenvectors as-
sociated with A. The parameter λ is called an characteristic value, principal value, or
eigenvalue, and it characterizes the change in length of the eigenvector x after it has
been operated upon by A.

Since x can be expressed as x = I · x, Eq. (2.5.28) can also be written as

(A − λI) · x = 0. (2.5.29)

Because this is a homogeneous set of equations for x, a nontrivial solution (i.e., vec-
tor with at least one component of x is nonzero) will not exist unless the determinant
of the matrix [A − λI] vanishes:

det(A − λI) = 0. (2.5.30)

The vanishing of this determinant yields an algebraic equation of degree n, called
the characteristic equation, for λ when A is a n × n matrix.

For a second-order tensor �, which is of interest in the present study, the char-
acteristic equation yields three eigenvalues λ1, λ2, and λ3. The character of these
eigenvalues depends on the character of the dyadic �. At least one of the eigen-
values must be real. The other two may be real and distinct, real and repeated,
or complex conjugates. The vanishing of the determinant assures that three eigen-
vectors are not unique to within a multiplicative constant, however, and an infinite
number of solutions exist having at least 3 different orientations. Since only orienta-
tion is important, it is, therefore, useful to represent the three eigenvectors by three
unit eigenvectors ê∗

1, ê∗
2, ê∗

3, denoting three different orientations, each associated
with a particular eigenvalue.

In a Cartesian system, the characteristic equation associated with a second-
order tensor can be expressed in the form

λ3 − I1λ
2 + I2λ − I3 = 0, (2.5.31)

where I1, I2, and I3 are the invariants of � as defined in Eq. (2.5.15). The invariants
can also be expressed in terms of the eigenvalues,

I1 = λ1 + λ2 + λ3, I2 = (λ1λ2 + λ2λ3 + λ3λ1), I3 = λ1λ2λ3. (2.5.32)
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Finding the roots of the cubic Eq. (2.5.31) is not always easy. However, when
the matrix under consideration is either a 2 × 2 matrix or 3 × 3 matrix but of the
special form 

φ11 0 0
0 φ22 φ23

0 φ32 φ33


 ,

one of the roots is λ1 = φ11, and the remaining two roots can be found from the
quadratic equation∣∣∣∣φ22 − λ φ23

φ32 φ33 − λ

∣∣∣∣ = (φ22 − λ)(φ33 − λ) − φ23φ32 = 0.

That is,

λ2,3 = φ22 + φ33

2
± 1

2

√
(φ22 + φ33)2 − 4(φ22φ33 − φ23φ32). (2.5.33)

A computational example of finding eigenvalues and eigenvectors is presented
next.

EXAMPLE 2.5.2: Determine the eigenvalues and eigenvectors of the following
matrix:

[A] =
[

5 −1
3 1

]
.

SOLUTION: The eigenvalue problem associated with the matrix A is

Ax = λx →
[

5 − λ −1
3 1 − λ

]{
x1

x2

}
=
{

0
0

}
(a)

or

det(A − λI) =
∣∣∣∣ 5 − λ −1

3 1 − λ

∣∣∣∣ = (5 − λ)(1 − λ) + 3 = 0.

The two roots of the resulting quadratic equation, λ2 − 6λ + 8 = 0, are the
eigenvalues λ1 = 2 and λ2 = 4.

To find the eigenvectors, we return to Eq. (a) and substitute for λ each
of the eigenvalues and solve the resulting algebraic equations for (x1, x2). For
λ = 2, we have [

5 − 2 −1
3 1 − 2

]{
x(1)

1

x(1)
2

}
=
{

0
0

}
. (b)

Each row of the above matrix equation yields the same condition 3x(1)
1 − x(1)

2 =
0 or x(1)

2 = 3x(1)
1 . The eigenvector x(1) is given by

x(1) =
{

1
3

}
x(1)

1 , x(1)
1 	= 0, arbitrary.
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Usually, we take x(1)
1 = 1, as we are interested in the direction of the vector x(1)

rather than in its magnitude. One may also normalize the eigenvector by using
the condition

(x(1)
1 )2 + (x(1)

2 )2 = 1. (c)

Then we obtain the following normalized eigenvector:

x(1)
n = ± 1√

10

{
1
3

}
. (d)

The second eigenvector is found using the same procedure. Substituting for λ =
4 into Eq. (a) [

5 − 4 −1
3 1 − 4

]{
x(2)

1

x(2)
2

}
=
{

0
0

}
(e)

we obtain the condition x(2)
1 − x(2)

2 = 0 or x(2)
2 = x(2)

1 . The eigenvector x(2) is

x(2) =
{

1
1

}
or x(2)

n = ± 1√
2

{
1
1

}
. (f)

When the matrix [A] is a full 3 × 3 matrix, we use a method that facilitates the
computation of eigenvalues. In the alternative method, we seek the eigenvalues of
the so-called deviatoric tensor associated with the tensor A:

a′
i j ≡ ai j − 1

3
akkδi j . (2.5.34)

Note that

a′
i i = aii − akk = 0. (2.5.35)

That is, the first invariant I ′
1 of the deviatoric tensor is zero. As a result, the charac-

teristic equation associated with the deviatoric tensor is of the form

(λ′)3 + I ′
2λ

′ − I ′
3 = 0, (2.5.36)

where λ′ is the eigenvalue of the deviatoric tensor. The eigenvalues associated with
ai j itself can be computed from

λ = λ′ + 1
3

akk. (2.5.37)

The cubic equation in Eq. (2.5.36) is of a special form that allows a direct com-
putation of its roots. Equation (2.5.36) can be solved explicitly by introducing the
transformation

λ′ = 2
(

−1
3

I ′
2

)1/2

cos α, (2.5.38)

which transforms Eq. (2.5.36) into

2
(

−1
3

I ′
2

)3/2

[4 cos3 α − 3 cos α] = I ′
3. (2.5.39)
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The expression in square brackets is equal to cos 3α. Hence

cos 3α = I ′
3

2

(
− 3

I ′
2

)3/2

. (2.5.40)

If α1 is the angle satisfying 0 ≤ 3α1 ≤ π whose cosine is given by Eq. (2.5.40), then
3α1, 3α1 + 2π, and 3α1 − 2π all have the same cosine and furnish three independent
roots of Eq. (2.5.36),

λ′
i = 2

(
−1

3
I ′
2

)1/2

cos αi , i = 1, 2, 3, (2.5.41)

where

α1 = 1
3

{
cos−1

[
I ′
3

2

(
− 3

I ′
2

)3/2
]}

, α2 = α1 + 2π

3
, α3 = α1 − 2π

3
. (2.5.42)

Finally, we can compute λi from Eq. (2.5.37).
An example of application of the previous procedures is presented next.

EXAMPLE 2.5.3: Determine the eigenvalues and eigenvectors of the following
matrix:

A =

 2 1 0

1 4 1
0 1 2


 .

SOLUTION: The characteristic equation is obtained by setting det (A − λI) = 0:∣∣∣∣∣∣
2 − λ 1 0

1 4 − λ 1
0 1 2 − λ

∣∣∣∣∣∣ = (2 − λ)[(4 − λ)(2 − λ) − 1] − 1 · (2 − λ) = 0,

or

(2 − λ)[(4 − λ)(2 − λ) − 2] = 0.

Hence

λ1 = 3 +
√

3 = 4.7321, λ2 = 3 −
√

3 = 1.2679, λ3 = 2.

Alternatively, using Eqs. (2.5.34)–(2.5.42), we have

A′ =

 2 − 8

3 1 0
1 4 − 8

3 1
0 1 2 − 8

3




I ′
2 = 1

2

(
a′

i i a
′
j j − a′

i j a
′
i j

) = −1
2

a′
i j a

′
i j

= −1
2

[(
−2

3

)2

+
(

−2
3

)2

+
(

4
3

)2

+ 2 + 2

]
= −10

3

I ′
3 = det(a′

i j ) = 52
27

.
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From Eq. (2.5.42),

α1 = 1
3

{
cos−1

[
52
54

(
9
10

)3/2
]}

= 11.565◦, α2 = 131.565◦, α3 = −108.435◦,

and from Eq. (2.5.41),

λ′
1 = 2.065384, λ′

2 = −1.3987, λ′
3 = −0.66667.

Finally, using Eq. (2.5.37), we obtain the eigenvalues

λ1 = 4.7321, λ2 = 1.2679, λ3 = 2.00.

The eigenvector corresponding to λ3 = 2, for example, is calculated as follows.
From (ai j − λ3δi j )xj = 0, we have

 2 − 2 1 0
1 4 − 2 1
0 1 2 − 2






x1

x2

x3


 =




0
0
0


 .

This gives x2 = 0 and x1 = −x3, and the eigenvector associated with λ3 = 2 is

x(3) =



1
0

−1


 or x(3)

n = ± 1√
2




1
0

−1


 .

Similarly, the normalized eigenvectors corresponding to λ1, 2 = 3 ± √
3 are

given by

x(1)
n = ± (3 − √

3)
12




 1

1 + √
3

1




 , x(2)

n = ± (3 + √
3)

12




 1

(1 − √
3)

1




 .

When A in Eq. (2.5.28) is an nth order tensor, Eq. (2.5.29) is a polynomial of de-
gree n in λ, and therefore, there are n eigenvalues λ1, λ2, . . . , λn, some of which may
be repeated. In general, if an eigenvalue appears m times as a root of Eq. (2.5.29),
then that eigenvalue is said to have algebraic multiplicity m. An eigenvalue of alge-
braic multiplicity m may have r linearly independent eigenvectors. The number r is
called the geometric multiplicity of the eigenvalue, and r lies (not shown here) in the
range 1 ≤ r ≤ m. Thus, a matrix A of order n may have fewer than n linearly inde-
pendent eigenvectors. The example below illustrates the calculation of eigenvectors
of a matrix when it has repeated eigenvalues.

EXAMPLE 2.5.4: Determine the eigenvalues and eigenvectors of the following
matrix:

A =

 0 1 1

1 0 1
1 1 0


 .
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SOLUTION: The condition det(A − λx) = 0 gives∣∣∣∣∣∣
−λ 1 1
1 −λ 1
1 1 −λ

∣∣∣∣∣∣ = −λ3 + 3λ + 2 = 0.

The three roots are

λ1 = 2, λ2 = −1, λ3 = −1.

Thus, λ = −1 is an eigenvalue with algebraic multiplicity of 2.
The eigenvector associated with λ = 2 is obtained from

−2 1 1
1 −2 1
1 1 −2






x1

x2

x3


 =




0
0
0




from which we have

−2x1 + x2 + x3 = 0, x1 − 2x2 + x3 = 0, x1 + x2 − 2x3 = 0.

Eliminating x3 from the first two (or the last two) equations, we obtain x2 =
x1. Then the last equation gives x3 = x2. Thus the eigenvector associated with
λ1 = 2 is the vector

x(1) =



1
1
1


 x1 or x(1)

n = ± 1√
3




1
1
1


 .

The eigenvector associated with λ = −1 is obtained from
 1 1 1

1 1 1
1 1 1






x1

x2

x3


 =




0
0
0


 .

All three equations yield the same equation x1 + x2 + x3 = 0. Thus, values of
two of the three components (x1, x2, x3) can be chosen arbitrarily. For the choice
of x3 = 1 and x2 = 0, we obtain the vector (or any nonzero multiples of it)

x(2) =



−1
0
1


 x1 or x(2)

n = ∓ 1√
2




1
0

−1


 .

A second independent vector can be found by choosing x3 = 0 and x2 = 1. We
obtain

x(3) =



−1
1
0


 x1 or x(3)

n = ∓ 1√
2




1
−1

0


 .

Thus, in the present case, there exist two linearly independent eigenvectors as-
sociated with the double eigenvalue.
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A real symmetric matrix A of order n has some desirable consequences as for
the eigenvalues and eigenvectors are concerned. These are

1. All eigenvalues of A are real.
2. A always has n linearly independent eigenvectors, regardless of the algebraic

multiplicities of the eigenvalues.
3. Eigenvectors x(1) and x(2) associated with two distinct eigenvalues λ1 and λ2

are orthogonal: x(1) · x(2) = 0. If all eigenvalues are distinct, then the associated
eigenvectors are all orthogonal to each other.

4. For an eigenvalue of algebraic multiplicity m, it is possible to choose m eigen-
vectors that are mutually orthogonal. Hence, the set of n vectors can always be
chosen to be linearly independent.

We note that the matrix A considered in Example 2.5.4 is symmetric. Clearly,
Properties 1 through 3 listed above are satisfied. However, Property 4 was not il-
lustrated there. It is possible to choose the values of the two of the three compo-
nents (x1, x2, x3) to have a set of linearly independent eigenvectors that are orthog-
onal. The second vector associated with λ = −1 could have been chosen by setting
x1 = x3 = 1. We obtain

x(3) =



1
−2

1


 x1 or x(3)

n = ± 1√
6




1
−2

1


 .

Next, we prove Properties 1 and 2 of a symmetric matrix. The vanishing of the
determinant |A − λI| = 0 assures that n eigenvectors exist, x(1), x(2), . . . , x(n), each
corresponding to an eigenvalue. The eigenvectors are not unique to within a multi-
plicative constant, however, and an infinite number of solutions exist having at least
n different orientations. Since only orientation is important, it is thus useful to rep-
resent the n eigenvectors by n unit eigenvectors ê∗

1, ê∗
2, . . . , ê∗

n, denoting n different
orientations, each associated with a particular eigenvalue λ∗.

Suppose now that λ1 and λ2 are two distinct eigenvalues and x(1) and x(2) are
their corresponding eigenvectors:

A · x(1) = λ1x(1), A · x(2) = λ2x(2). (2.5.43)

Scalar product of the first equation by x(2) and the second by x(1), and then subtrac-
tion, yields

x(2) · A · x(1) − x(1) · A · x(2) = (λ1 − λ2) x(1) · x(2). (2.5.44)

Since A is symmetric, one can establish that the left-hand side of this equation van-
ishes. Thus

0 = (λ1 − λ2) x(1) · x(2). (2.5.45)

Now suppose that λ1 and λ2 are complex conjugates such that λ1 − λ2 = 2iλ1I , where
i = √−1 and λ1I is the imaginary part of λ1. Then x(1) · x(2) is always positive since
x(1) and x(2) are complex conjugate vectors associated with λ1 and λ2. It then follows
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from Eq. (2.5.45) that λ1I = 0 and hence that the n eigenvalues associated with a
symmetric matrix are all real.

Next, assume that λ1 and λ2 are real and distinct such that λ1 − λ2 is not zero.
It then follows from Eq. (2.5.45) that x(1) · x(2) = 0. Thus the eigenvectors associated
with distinct eigenvalues of a symmetric dyadic are orthogonal. If the three eigenval-
ues are all distinct, then the three eigenvectors are mutually orthogonal.

If an eigenvalue is repeated, say λ3 = λ2, then x(3) must also be perpendicular
to x(i), i 	= 2 as deducted by an argument similar to that for x(2) stemming from Eq.
(2.5.45). Neither x(2) nor x(3) is preferred, and they are both arbitrary, except insofar
as they are both perpendicular to x(1). It is useful, however, to select x(3) such that
it is perpendicular to both x(1) and x(2). We do this by choosing x(3) = x(1) × x(2) and
thus establishing a mutually orthogonal set of eigenvectors.

Cayley–Hamilton Theorem
Consider a square matrix A of order n. The characteristic equation φ(λ) = 0 is ob-
tained by setting φ(λ) ≡ det|A − λI| = 0. Then the Cayley–Hamilton theorem states
that

φ(A) = (A − λ1I)(A − λ2I) · · · (A − λnI) = 0. (2.5.49)

The proof of the theorem can be found in any book on matrix theory; see, for ex-
ample, Gantmacher (1959).

2.6 Summary

In this chapter, mathematical preliminaries for this course are reviewed. In partic-
ular, the notion of geometric vector, vector algebra, vector calculus, theory of ma-
trices, and tensors and tensor calculus are thoroughly reviewed, and a number of
examples are presented to review the ideas introduced. Readers familiar with these
topics may skip this chapter.

PROBLEMS

2.1 Find the equation of a line (or a set of lines) passing through the terminal point
of a vector A and in the direction of vector B.

2.2 Find the equation of a plane connecting the terminal points of vectors A, B, and
C. Assume that all three vectors are referred to a common origin.

2.3 Prove the following vector identity without the use of a coordinate system

A × (B × C) = (A · C)B − (A · B)C.

2.4 If ê is any unit vector and A an arbitrary vector, show that

A = (A · ê)ê + ê × (A × ê).

This identity shows that a vector can resolved into a component parallel to and one
perpendicular to an arbitrary direction ê.
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2.5 Establish the following identities for a second-order tensor A:

(a) |A| = ei jk A1i A2 j A3k. (b) |A| = 1
6

Air A js Akt erst ei jk.

(c) elmn|A| = ei jk Ail A jm Akn. (d) ei jkemnk = δimδ jn − δinδ jm.

(e) ei jk =
∣∣∣∣∣∣
δi1 δi2 δi3

δ j1 δ j2 δ j3

δk1 δk2 δk3

∣∣∣∣∣∣ . (f) ei jkepqr =
∣∣∣∣∣∣
δip δiq δir

δ jp δ jq δ jr

δkp δkq δkr

∣∣∣∣∣∣ .
2.6 Given the following components

A =



2
−1

4


 , S =


−1 0 5

3 7 4
9 8 6


 , T =


 8 −1 6

5 4 9
−7 8 −2


 ,

determine

(a) tr(S). (b) S : S. (c) S : ST.

(d) A · S. (e) S · A. (f) S · T · A.

2.7 Using the index notation prove the identities

(a) (A × B) · (B × C) × (C × A) = (A · (B × C))2.

(b) (A × B) × (C × D) = [A · (C × D)]B − [B · (C × D]A.

2.8 Determine whether the following set of vectors is linearly independent:

A = 2ê1 − ê2 + ê3, B = −ê2 − ê3, C = −ê1 + ê2.

Here êi are orthonormal unit base vectors in 
3.

2.9 Consider two rectangular Cartesian coordinate systems that are translated and
rotated with respect to each other. The transformation between the two coordinate
systems is given by

x̄ = c + Lx,

where c is a constant vector and L = [
i j ] is the matrix of direction cosines


i j ≡ ˆ̄ei · ê j .

Deduce that the following orthogonality conditions hold:

L · LT = I.

That is, L is an orthogonal matrix.

2.10 Determine the transformation matrix relating the orthonormal basis vectors
(ê1, ê2, ê3) and (ê′

1, ê′
2, ê′

3), when ê′
i are given by

(a) ê′
1 is along the vector ê1 − ê2 + ê3 and ê′

2 is perpendicular to the plane 2x1 +
3x2 + x3 − 5 = 0.

(b) ê′
1 is along the line segment connecting point (1,−1, 3) to (2,−2, 4) and

ê′
3 = (−ê1 + ê2 + 2ê3)/

√
6.
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2.11 The angles between the barred and unbarred coordinate lines are given by

ê1 ê2 ê3

ˆ̄e1 60◦ 30◦ 90◦

ˆ̄e2 150◦ 60◦ 90◦

ˆ̄e3 90◦ 90◦ 0◦

Determine the direction cosines of the transformation.

2.12 The angles between the barred and unbarred coordinate lines are given by

x1 x2 x3

x̄1 45◦ 90◦ 45◦

x̄2 60◦ 45◦ 120◦

x̄3 120◦ 45◦ 60◦

Determine the transformation matrix.

2.13 Show that the following expressions for the components of an arbitrary second-
order tensor S = [si j ] are invariant:
(a) sii , (b) si j si j , and (c) si j s jkski .

2.14 Let r denote a position vector r = xi êi (r2 = xi xi ) and A an arbitrary constant
vector. Show that:

(a) ∇2(rn) = n(n + 1)rn−2. (b) grad (r · A) = A.

(c) div (r × A) = 0. (d) curl(r × A) = −2A.

(e) div (rA) = 1
r

(r · A). (f) curl (rA) = 1
r

(r × A).

2.15 Let A and B be continuous vector functions of the position vector x with con-
tinuous first derivatives, and let F and G be continuous scalar functions of position
x with continuous first and second derivatives. Show that:

(a) div(curl A) = 0.

(b) div(grad F× grad G) = 0.

(c) grad(A · x) = A + grad A · x.

(d) div(FA) = A· gradF + FdivA.

(e) curl(FA) = F curlA - A× grad F .

(f) grad(A · B) = A · grad B + B · gradA + A × curl B + B × curl A.

(g) div (A × B) = curl A · B − curl B · A.

(h) curl (A × B) = B · ∇A − A · ∇B + A divB − B divA.

(i) (∇ × A) × A = A · ∇A − ∇A · A.

(j) ∇2(FG) = F ∇2G + 2∇F · ∇G + G ∇2 F .

(k) ∇2(Fx) = 2∇F + x ∇2 F .

(l) A · grad A = grad
( 1

2 A · A
)− A × curl A.



P1: JzG

Chapter02 CUFX197-Reddy 978 0 521 87044 3 October 3, 2007 10:34

58 Vectors and Tensors

2.16 Show that the vector area of a closed surface is zero, that is,∮
s

n̂ ds = 0.

2.17 Show that the volume of the region � enclosed by a boundary surface � is

volume = 1
6

∮
�

grad(r2) · n̂ ds = 1
3

∮
�

r · n̂ ds.

2.18 Let φ(r) be a scalar field. Show that∫
�

∇2φ dx =
∮

�

∂φ

∂n
ds.

2.19 In the divergence theorem (2.4.34), set A = φ gradψ and A = ψ gradφ succes-
sively and obtain the integral forms

(a)
∫

�

[
φ∇2ψ + ∇φ · ∇ψ

]
dx =

∮
�

φ
∂ψ

∂n
ds,

(b)
∫

�

[
φ∇2ψ − ψ∇2φ

]
dx =

∮
�

[
φ

∂ψ

∂n
− ψ

∂φ

∂n

]
ds,

(c)
∫

�

[
φ∇4ψ − ∇2φ∇2ψ

]
dx =

∮
�

[
φ

∂

∂n
(∇2ψ) − ∇2ψ

∂φ

∂n

]
ds,

where � denotes a (two-dimensional or three-dimensional) region with bounding
surface �. The first two identities are sometimes called Green’s first and second the-
orems.

2.20 Determine the rotation transformation matrix such that the new base vector ˆ̄e1

is along ê1 − ê2 + ê3, and ˆ̄e2 is along the normal to the plane 2x1 + 3x2 + x3 = 5. If S
is the dyadic whose components in the unbarred system are given by s11 = 1, s12 =
s21 = 0, s13 = s31 = −1, s22 = 3, s23 = s32 = −2, and s33 = 0, find the components
in the barred coordinates.

2.21 Suppose that the new axes x̄i are obtained by rotating xi through a 60◦ about
the x2-axis. Determine the components Āi of a vector A whose components with
respect to the xi coordinates are (2, 1, 3).

2.22 If A and B are arbitrary vectors and S and T are arbitrary dyads, verify that

(a) (A · S) · B = A · (S · B). (b) (S · T) · A = S · (T · A).

(c) A · (S · T) = (A · S) · T. (d) (S · A) · (T · B) = A · (ST · T) · B.

2.23 If A is an arbitrary vector and � and � are arbitrary dyads, verify that

(a) (I × A) · � = A × �. (b) (A × I) · � = A × �.

(c) (� × A)T = −A × �T. (d) (� · �)T = �T · �T.

2.24 The determinant of a dyadic is also defined by the expression

|S| = [(S · A) × (S · B)] · (S · C)
A × B · C

,
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where A, B, and C are arbitrary vectors. Verify the definition in an orthonormal
basis {êi }.
2.25 For an arbitrary second-order tensor S, show that ∇ · S in the cylindrical coor-
dinate system is given by

∇ · S =
[
∂Srr

∂r
+ 1

r
∂Sθr

∂θ
+ ∂Szr

∂z
+ 1

r
(Srr − Sθθ )

]
êr

+
[
∂Srθ

∂r
+ 1

r
∂Sθθ

∂θ
+ ∂Szθ

∂z
+ 1

r
(Srθ + Sθr )

]
êθ

+
[
∂Srz

∂r
+ 1

r
∂Sθz

∂θ
+ ∂Szz

∂z
+ 1

r
Srz

]
êz.

2.26 For an arbitrary second-order tensor S, show that ∇ × S in the cylindrical co-
ordinate system is given by

∇ × S = êr êr

(
1
r

∂Szr

∂θ
− ∂Sθr

∂z
− 1

r
Szθ

)
+ êθ êθ

(
∂Srθ

∂z
− ∂Szθ

∂r

)

+ êzêz

(
1
r

Sθz − 1
r

∂Srz

∂θ
+ ∂Sθz

∂r

)
+ êr êθ

(
1
r

∂Szθ

∂θ
− ∂Sθθ

∂z
+ 1

r
Szr

)

+ êθ êr

(
∂Srr

∂z
− ∂Szr

∂r

)
+ êr êz

(
1
r

∂Szz

∂θ
− ∂Sθz

∂z

)

+ êzêr

(
∂Sθr

∂r
− 1

r
∂Srr

∂θ
+ 1

r
Srθ + 1

r
Sθr

)
+ êθ êz

(
∂Srz

∂z
− ∂Szz

∂r

)

+ êzêθ

(
∂Sθθ

∂r
+ 1

r
Sθθ − 1

r
Srr − 1

r
∂Srθ

∂θ

)
.

2.27 For an arbitrary second-order tensor S, show that ∇ · S in the spherical coor-
dinate system is given by

∇ · S =
{

∂SRR

∂ R
+ 1

R
∂SφR

∂φ
+ 1

Rsin φ

∂Sθ R

∂θ

+ 1
R

[2SRR − Sφφ − Sθθ + SφR cot φ]

}
êR

+
{

∂SRφ

∂ R
+ 1

R
∂Sφφ

∂φ
+ 1

Rsin φ

∂Sθφ

∂θ

+ 1
R

[(Sφφ − Sθθ ) cot φ + SφR + 2SRφ]

}
êφ

+
{

∂SRθ

∂ R
+ 1

R
∂Sφθ

∂φ
+ 1

Rsin φ

∂Sθθ

∂θ

+ 1
R

[(Sφθ + Sθφ) cot φ + 2SRθ + Sθ R]

}
êθ .
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2.28 Show that ∇u in the spherical coordinate system is given by

∇u = ∂uR

∂ R
êR êR + ∂uφ

∂ R
êR êφ + ∂uθ

∂ R
êR êθ

+ 1
R

(
∂uR

∂φ
− uφ

)
êφ êR + 1

R

(
∂uφ

∂φ
+ uR

)
êφ êφ + 1

R
∂uθ

∂φ
êφ êθ

+ 1
Rsin φ

[(
∂uR

∂θ
− uθ sin φ

)
êθ êR +

(
∂uφ

∂θ
− uθ cos φ

)
êθ êφ

+
(

∂uθ

∂θ
+ uR sin φ + uφ cos φ

)
êθ êθ

]
.

2.29 Show that the characteristic equation for a symmetric second-order tensor �

can be expressed as

λ3 − I1λ
2 + I2λ − I3 = 0,

where

I1 = φkk, I2 = 1
2

(φi iφ j j − φi jφ j i ),

I3 = 1
6

(2φi jφ jkφki − 3φi jφ j iφkk + φi iφ j jφkk) = det (φi j ),

are the three invariants of �.

2.30 Find the eigenvalues and eigenvectors of the following matrices:

(a)


 4 −4 0

−4 0 0
0 0 3


 . (b)


 2 −√

3 0
−√

3 4 0
0 0 4


 .

(c)


 1 0 0

0 3 −1
0 −1 3


 . (d)


 2 −1 1

−1 0 1
1 1 2


 .

(e)


 3 5 8

5 1 0
8 0 2


 . (f)


 1 −1 0

−1 2 −1
0 −1 2


 .

2.31 Consider the matrix in Example 2.5.3

A =

 2 1 0

1 4 1
0 1 2


 .

Verify the Cayley–Hamilton theorem and use it to compute the inverse of [A].
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3 Kinematics of Continua

The man who cannot occasionally imagine events and conditions of existence that
are contrary to the causal principle as he knows it will never enrich his science by
the addition of a new idea.

Max Planck

It is through science that we prove, but through intuition that we discover.
H. Poincaré

3.1 Introduction

Material or matter is composed of discrete molecules, which in turn are made up of
atoms. An atom consists of negatively charged electrons, positively charged protons,
and neutrons. Electrons form chemical bonds. The study of matter at molecular or
atomistic levels is very useful for understanding a variety of phenomena, but stud-
ies at these scales are not useful to solve common engineering problems. Continuum
mechanics is concerned with a study of various forms of matter at macroscopic level.
Central to this study is the assumption that the discrete nature of matter can be over-
looked, provided the length scales of interest are large compared with the length
scales of discrete molecular structure. Thus, matter at sufficiently large length scales
can be treated as a continuum in which all physical quantities of interest, including
density, are continuously differentiable.

Engineers and scientists undertake the study of continuous systems to under-
stand their behavior under “working conditions,” so that the systems can be de-
signed to function properly and produced economically. For example, if we were to
repair or replace a damaged artery in human body, we must understand the func-
tion of the original artery and the conditions that lead to its damage. An artery car-
ries blood from the heart to different parts of the body. Conditions like high blood
pressure and increase in cholesterol content in the blood may lead to deposition
of particles in the arterial wall, as shown in Figure 3.1.1. With time, accumulation
of these particles in the arterial wall hardens and constricts the passage, leading to
cardiovascular diseases. A possible remedy for such diseases is to repair or replace
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Figure 3.1.1. Progressive damage of
artery due to the deposition of particles
in the arterial wall.

the damaged portion of the artery. This in turn requires an understanding of the
deformation and stresses caused in the arterial wall by the flow of blood. The un-
derstanding is then used to design the vascular prosthesis (i.e., artificial artery).

The present chapter is devoted to the study of geometric changes in a contin-
uous medium (such as the artery) that is in static or dynamic equilibrium. In the
subsequent chapters, we will study stresses and physical principles that govern the
mechanical response of a continuous medium. The study of geometric changes in a
continuum without regard to the forces causing the changes is known as kinematics.

3.2 Descriptions of Motion

3.2.1 Configurations of a Continuous Medium

Consider a body B of known geometry, constitution, and loading in a three-
dimensional Euclidean space 
3; B may be viewed as a set of particles, each parti-
cle representing a large collection of molecules, having a continuous distribution of
matter in space and time. Examples of the body B are provided by the diving board.
For a given geometry and loading, the body B will undergo macroscopic geometric
changes within the body, which are termed deformation. The geometric changes are
accompanied by stresses that are induced in the body. If the applied loads are time
dependent, the deformation of the body will be a function of time, that is, the geom-
etry of the body B will change continuously with time. If the loads are applied slowly
so that the deformation is only dependent on the loads, the body will occupy a con-
tinuous sequence of geometrical regions. The region occupied by the continuum at
a given time t is termed a configuration and denoted by κ . Thus, the simultaneous
positions occupied in space 
3 by all material points of the continuum B at different
instants of time are called configurations.

Suppose that the continuum initially occupies a configuration κ0, in which a
particle X occupies the position X, referred to a rectangular Cartesian system
(X1, X2, X3). Note that X (lightface letter) is the name of the particle that occupies
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X

x

u

    κ0

(reference 
configuration)

x3 ,  X3

x2 ,  X2

x1 , X1

Particle X
(occupying 
position X)

Particle X 
(occupying
position x)

    κ
(deformed 
configuration)

( )χχχχχχχ X, t

Figure 3.2.1. Reference and deformed configurations of a body.

the location X (boldface letter) in configuration κ0, and therefore (X1, X2, X3) are
called the material coordinates. After the application of the loads, the continuum
changes its geometric shape and thus assumes a new configuration κ , called the cur-
rent or deformed configuration. The particle X now occupies the position x in the
deformed configuration κ , as shown in Figure 3.2.1. The mapping χ : Bκ0 → Bκ is
called the deformation mapping of the body B from κ0 to κ . The deformation map-
ping χ(X) takes the position vector X from the reference configuration and places
the same point in the deformed configuration as x = χ(X).

A frame of reference is chosen, explicitly or implicitly, to describe the defor-
mation. We shall use the same reference frame for reference and current configu-
rations. The components Xi and xi of vectors X = Xi Êi and x = xi êi are along the
coordinates used. We assume that the origins of the basis vectors Êi and êi coincide.

The mathematical description of the deformation of a continuous body follows
one of the two approaches: (1) the material description and (2) spatial description.
The material description is also known as the Lagrangian description, and the spatial
description is known as the Eulerian description. These descriptions are discussed
next.

3.2.2 Material Description

In the material description, the motion of the body is referred to a reference con-
figuration κR, which is often chosen to be the undeformed configuration, κR = κ0.
Thus, in the Lagrangian description, the current coordinates (x ∈ κ) are expressed
in terms of the reference coordinates (X ∈ κ0):

x = χ(X, t), χ(X, 0) = X, (3.2.1)

and the variation of a typical variable φ over the body is described with respect to
the material coordinates X and time t :

φ = φ(X, t). (3.2.2)
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Reference 
configuration

Deformed 
configuration

Particle X, 
occupying 
position x at 
time

Deformed 
configuration

Particle X, 
occupying 
position x at 
time

3 3,x X

0Rκ κ=

1κ

2κ

2 2,x X

1 1,x X

( ,0)χx X=
1 1: ( , )χ  x Xt t=

2 2: ( , )χ  x Xt t=

Figure 3.2.2. Reference configuration and deformed configurations at two different times in
material description.

For a fixed value of X ∈ κ0, φ(X, t) gives the value of φ at time t associated with the
fixed material point X whose position in the reference configuration is X, as shown
in Figure 3.2.2. Thus, a change in time t implies that the same material particle X,
occupying position X in κ0, has a different value φ. Thus the attention is focused on
the material particles X of the continuum.

3.2.3 Spatial Description

In the spatial description, the motion is referred to the current configuration κ oc-
cupied by the body B, and φ is described with respect to the current position (x ∈ κ)
in space, currently occupied by material particle X:

φ = φ(x, t), X = X(x, t). (3.2.3)

The coordinates (x) are termed the spatial coordinates. For a fixed value of x ∈ κ ,
φ(x, t) gives the value of φ associated with a fixed point x in space, which will be
the value of φ associated with different material points at different times, because
different material points occupy the position x ∈ κ at different times, as shown in
Figure 3.2.3. Thus, a change in time t implies that a different value φ is observed
at the same spatial location x ∈ κ , now probably occupied by a different material
particle X. Hence, attention is focused on a spatial position x ∈ κ .

When φ is known in the material description, φ = φ(X, t), its time derivative is
simply the partial derivative with respect to time because the material coordinates
X do not change with time:

d
dt

[φ(X, t)] = ∂

∂t
[φ(X, t)]

∣∣∣∣∣∣
X fixed

= ∂φ

∂t
. (3.2.4)
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3 3,x X

2 2,x X

1 1,x X

x(X, )x = t

Particle X occupying
position x at time t
in the spatial domain
of interest

Particle X after leaving 
the domain of interest

Particle X before
entering the 
domain of interest

Figure 3.2.3. Material points within and outside the spatial domain of interest in spatial
description.

However, when φ is known in the spatial description, φ = φ(x, t), its time derivative,
known as the material derivative,1 is

d
dt

[φ(x, t)] = ∂

∂t
[φ(x, t)] + ∂

∂xi
[φ(x, t)]

dxi

dt

= ∂φ

∂t
+ vi

∂φ

∂xi
= ∂φ

∂t
+ v · ∇φ, (3.2.5)

where v is the velocity v = dx/dt = ẋ. For example, the acceleration of a particle is
given by

a = dv
dt

= ∂v
∂t

+ v · ∇v,

(
ai = ∂vi

∂t
+ v j

∂vi

∂xj

)
. (3.2.6)

The next example illustrates the determination of the inverse of a given mapping
and computation of the material time derivative of a given function.

EXAMPLE 3.2.1: Suppose that the motion of a continuous medium B is described
by the mapping χ : κ0 → κ :

χ(X, t) = (X1 + At X2)ê1 + (X2 − At X1)ê2 + X3 ê3,

and that the temperature θ in the continuum in the spatial description is given
by

θ(x, t) = x1 + t x2.

1 Stokes’s notation for material derivative is D/Dt .
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1.0

1.0

At At

At

At

( )X

Figure 3.2.4. A sketch of the mapping as ap-
plied to a unit square.

Determine (a) inverse of the mapping, (b) the velocity components, and (c) the
time derivatives of θ in the two descriptions.

SOLUTION: The mapping implies that a unit square is mapped into a rectangle
that is rotated in clockwise direction, as shown in Figure 3.2.4.

(a) The inverse mapping is given by χ−1 : κ → κ0:

χ−1(x, t) =
(

x1 − Atx2

1 + A2t2

)
Ê1 +

(
x2 + Atx1

1 + A2t2

)
Ê2 + x3 Ê3.

(b) The velocity vector is given by v = v1Ê1 + v2Ê2, with

v1 = dx1

dt
= AX2, v2 = dx2

dt
= −AX1.

(c) The time rate of change of temperature of a material particle in B is simply

d
dt

[θ(X, t)] = ∂

∂t
[θ(X, t)]

∣∣∣∣∣∣
X fixed

= −2At X1 + (1 + A)X2.

On the other hand, the time rate of change of temperature at point x, which is
now occupied by particle X, is

d
dt

[θ(x, t)] = ∂θ

∂t
+ vi

∂θ

∂xi
= x2 + v1 · 1 + v2 · t

= −2At X1 + (1 + A)X2.

In the study of solid bodies, the Eulerian description is less useful since the
configuration κ is unknown. On the other hand, it is the preferred description for
the study of motion of fluids because the configuration is known and remains un-
changed, and we wish to determine the changes in the fluid velocities, pressure,
density and so on. Thus, in the Eulerian description, attention is focused on a given
region of space instead of a given body of matter.
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XQ

Q

P Q
_

_
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xP
P
_

xQ

uQ

uP

3x X3

dx

dX

2x X2

1x X1

(time t = 0)

(time t) 

(   )X

_

Figure 3.2.5. Points P and Q separated by a dis-
tance dX in the undeformed configuration κ0

take up positions P̄ and Q̄, respectively, in the
deformed configuration κ , where they are sepa-
rated by distance dx.

3.2.4 Displacement Field

The phrase deformation of a continuum refers to relative displacements and changes
in the geometry experienced by the continuum B under the influence of a force
system. The displacement of the particle X is given, as can be seen from Figure 3.2.5,
by

u = x − X. (3.2.7)

In the Lagrangian description, the displacements are expressed in terms of the ma-
terial coordinates Xi

u(X, t) = x(X, t) − X. (3.2.8)

If the displacement of every particle in the body B is known, we can construct
the current configuration κ from the reference configuration κ0, χ(X) = X + u(X).
However, in the Eulerian description the displacements are expressed in terms of
the spatial coordinates xi

u(x, t) = x − X(x, t). (3.2.9)

A rigid-body motion is one in which all material particles of the continuum
B undergo the same linear and angular displacements. However, a deformable
body is one in which the material particles can move relative to each other.
Then the deformation of a continuum can be determined only by considering the
change of distance between any two arbitrary but infinitesimally close points of the
continuum.

To illustrate the difference between the two descriptions further, consider the
one-dimensional mapping x = X(1 + 0.5t) defining the motion of a rod of initial
length two units. The rod experiences a temperature distribution T given by the
material description T = 2Xt2 or by the spatial description T = xt2/(1 + 0.5t), as
shown in Figure 3.2.6 [see Bonet and Wood (1997)].
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0 1 2 3 5 64 X , x

t

0 • • •

1
(X = 1, T = 2) (X = 2, T = 4)

2
(X = 1, T = 8) (X = 2, T = 16)

3
(X = 1, T = 18) (X = 2, T = 36)

4
(X = 1, T = 32) (X = 2, T = 64)

Same material particle
at different x positions

Figure 3.2.6. Material and spatial descriptions of motion.

From Figure 3.2.6, we see that the particle’s material coordinate (label) X
remains associated with the particle while its spatial position x changes. The
temperature at a given time can be found in one of the two ways: for example,
at time t = 3, the temperature of the particle labeled X = 2 is T = 2 × 2(3)2 = 36;
alternatively, the temperature of the same particle which at t = 3 is at a spatial po-
sition x = 2(1 + 0.5 × 3) = 5 is T = 2 × 5(3)2/(1 + 0.5 × 3) = 36. The displacement
of a material point occupying position X in κ0 is

u(X, t) = x − X = X(1 + 0.5t) − X = 0.5Xt.

3.3 Analysis of Deformation

3.3.1 Deformation Gradient Tensor

One of the key quantities in deformation analysis is the deformation gradient of κ

relative to the reference configuration κ0, denoted Fκ , which gives the relationship of
a material line dX before deformation to the line dx (consisting of the same material
as dX) after deformation. It is defined as (in the interest of brevity, the subscript κ

on F is dropped)

dx = F · dX = dX · FT, (3.3.1)

F =
(

∂χ

∂X

)T

=
(

∂x
∂X

)T

≡ (∇0x)T
, (3.3.2)

and ∇0 is the gradient operator with respect to X. By definition, F is a second-order
tensor. The inverse relations are given by

dX = F−1 · dx = dx · F−T, where F−T = ∂X
∂x

≡ ∇X, (3.3.3)
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and ∇ is the gradient operator with respect to x. In indicial notation, Eqs. (3.3.2)
and (3.3.3) can be written as

F = Fi J êi ÊJ , Fi J = ∂xi

∂ XJ
,

F−1 = F−1
J i ÊJ êi , F−1

J i = ∂ XJ

∂xi
.

(3.3.4)

More explicitly, we have

[F] =




∂x1
∂ X1

∂x1
∂ X2

∂x1
∂ X3

∂x2
∂ X1

∂x2
∂ X2

∂x2
∂ X3

∂x3
∂ X1

∂x3
∂ X2

∂x3
∂ X3


 , [F]−1 =




∂ X1
∂x1

∂ X1
∂x2

∂ X1
∂x3

∂ X2
∂x1

∂ X2
∂x2

∂ X2
∂x3

∂ X3
∂x1

∂ X3
∂x2

∂ X3
∂x3


 . (3.3.5)

In Eqs. (3.3.3) and (3.3.4), the lowercase indices refer to the current (spatial) Carte-
sian coordinates, whereas uppercase indices refer to the reference (material) Carte-
sian coordinates. The determinant of F is called the Jacobian of the motion, and it
is denoted by J = det F. The equation F · dX = 0 for dX 	= 0 implies that a mate-
rial line in the reference configuration is reduced to zero by the deformation. Since
this is physically not realistic, we conclude that F · dX 	= 0 for dX 	= 0. That is, F is
a nonsingular tensor, J 	= 0. Hence, F has an inverse F−1. The deformation gradient
can be expressed in terms of the displacement vector as

F = (∇0x)T = (∇0u + I)T or F−1 = (∇X)T = (I − ∇u)T
. (3.3.6)

Example 3.3.1 illustrates the computation of the components of the deforma-
tion gradient tensor from known mapping of motion.

EXAMPLE 3.3.1: Consider the uniform deformation of a square block of side two
units and initially centered at X = (0, 0). The deformation is defined by the
mapping

χ(X) = (3.5 + X1 + 0.5X2) ê1 + (4 + X2) ê2 + X3 ê3.

Determine deformation gradient tensor F, sketch the deformation, and com-
pute the displacements.

SOLUTION: From the given mapping, we have

x1 = 3.5 + X1 + 0.5X2, x2 = 4 + X2, x3 = X3.

The above relations can be inverted to obtain

X1 = −1.5 + x1 − 0.5x2, X2 = −4 + x2, X3 = x3.

Hence, the inverse mapping is given by

χ−1(x) = (−1.5 + x1 − 0.5x2) Ê1 + (−4 + x2) Ê2 + x3 Ê3,
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(1, 1)

X1, x1

X2, x2

(2, 3)

(3, 5)

(4, 3)

(5, 5)

e1
∧

e2
∧

E1

∧

E2

∧

F  (E2)
∧

F  1(e2)
∧

Figure 3.3.1. Uniform deformation of a
square.

which produces the deformed shape shown in Figure 3.3.1. This type of defor-
mation is known as simple shear, in which there exist a set of line elements (in
the present case, lines parallel to the X1-axis) whose orientation is such that they
are unchanged in length and orientation by the deformation. The components
of the deformation gradient tensor and its inverse can be expressed in matrix
form as

[F] =




∂x1
∂ X1

∂x1
∂ X2

∂x1
∂ X3

∂x2
∂ X1

∂x2
∂ X2

∂x2
∂ X3

∂x3
∂ X1

∂x3
∂ X2

∂x3
∂ X3


 =


 1.0 0.5 0.0

0.0 1.0 0.0
0.0 0.0 1.0


 ,

[F]−1 =




∂ X1
∂x1

∂ X1
∂x2

∂ X1
∂x3

∂ X2
∂x1

∂ X2
∂x2

∂ X2
∂x3

∂ X3
∂x1

∂ X3
∂x2

∂ X3
∂x3


 =


 1.0 −0.5 0.0

0.0 1.0 0.0
0.0 0.0 1.0


 .

The displacement vector is given by

u = (3.5 + 0.5X2)ê1 + 4 ê2.

The unit vectors Ê1 and Ê2 in the initial configuration deform to the vectors


 1.0 0.5 0.0

0.0 1.0 0.0
0.0 0.0 1.0






1
0
0


 =




1
0
0


 ,


 1.0 0.5 0.0

0.0 1.0 0.0
0.0 0.0 1.0






0
1
0


 =




0.5
1.0
0.0


 .

The unit vectors ê1 and ê2 in the current configuration are deformed from the
vectors
 1.0 −0.5 0.0

0.0 1.0 0.0
0.0 0.0 1.0






1
0
0


 =




1
0
0


 ,


 1.0 −0.5 0.0

0.0 1.0 0.0
0.0 0.0 1.0






0
1
0


 =




−0.5
1.0
0.0


 .
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3.3.2 Isochoric, Homogeneous, and Inhomogeneous Deformations

3.3.2.1 Isochoric Deformation
If the Jacobian is unity J = 1, then the deformation is a rigid rotation or the current
and reference configurations coincide. If volume does not change locally (i.e., vol-
ume preserving) during the deformation, the deformation is said to be isochoric at
X. If J = 1 everywhere in the body B, then the deformation of the body is isochoric.

3.3.2.2 Homogeneous Deformation
In general, the deformation gradient F is a function of X. If F = I everywhere in
the body, then the body is not rotated and is undeformed. If F has the same value
at every material point in a body (i.e., F is independent of X), then the mapping
x = x(X, t) is said to be a homogeneous motion of the body and the deformation is
said to be homogeneous. In general, at any given time t > 0, a mapping x = x(X, t)
is said to be a homogeneous motion if and only if it can be expressed as (so that F is
a constant)

x = A · X + c, (3.3.7)

where the second-order tensor A and vector c are constants; c represents a rigid-
body translation. For a homogeneous motion, we have F = A. Clearly, the motion
described by the mapping of Example 3.3.1 is homogeneous and isochoric. Next, we
consider several simple forms of homogeneous deformations.

PURE DILATATION. If a cube of material has edges of length L and 
 in the reference
and current configurations, respectively, then the deformation mapping has the form

χ(X) = λX1 ê1 + λX2 ê2 + λX3 ê3, λ = L



, (3.3.8)

and F has the matrix representation

[F] =

 λ 0 0

0 λ 0
0 0 λ


 . (3.3.9)

This deformation is known as pure dilatation, or pure stretch, and it is isochoric if
and only if λ = 1 (λ is called the principal stretch), as shown in Fig. 3.3.2.

SIMPLE EXTENSION. An example of homogeneous extension in the X1-direction is
shown in Fig. 3.3.3. The deformation mapping for this case is given by

χ(X) = (1 + α)X1 ê1 + X2 e2 + X3 ê3. (3.3.10)

The components of the deformation gradient are given by

[F] =

 1 + α 0 0

0 1 0
0 0 1


 . (3.3.11)
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( )X

1X

3X

2x

1x

3x

2X

Figure 3.3.2. A deformation mapping of pure dilatation.

For example, a line X2 = a + bX1 in the undeformed configuration transforms under
the mapping to [because x1 = (1 + α)X1, x2 = X2, and x3 = X3]

x2 = a + b
1 + α

x1 .

SIMPLE SHEAR. This deformation, as discussed in Example 3.3.1, is defined to
be one in which there exists a set of line elements whose lengths and orienta-
tions are unchanged, as shown in Fig. 3.3.4. The deformation mapping in this
case is

χ(X) = (X1 + γ X2)ê1 + X2 e2 + X3 ê3. (3.3.12)

The matrix representation of the deformation gradient is given by

[F] =

 1 γ 0

0 1 0
0 0 1


 , (3.3.13)

where γ denotes the amount of shear.

3.3.2.3 Nonhomogeneous Deformation
A nonhomogeneous deformation is one in which the deformation gradient F is a
function of X. An example of nonhomogeneous deformation mapping is provided,

X

( )Xχ

1X

2X

1x

2x

h h

h (1 )h α+

hα

( )Xχ

2 1X a bX= +
h

2 11

b
x a x

α
= +

+
• •

Figure 3.3.3. A deformation mapping of simple extension.
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X

( )Xχ

1X

2X

1x

2x

h

h

γ
h

h

( )Xχ
• •

Figure 3.3.4. A deformation mapping of
simple shear.

as shown in Fig. 3.3.5, by

χ(X) = X1(1 + γ1 X2)ê1 + X2(1 + γ2 X1)e2 + X3 ê3. (3.3.14)

The matrix representation of the deformation gradient is

[F] =

 1 + γ1 X2 γ1 X1 0

γ2 X2 1 + γ2 X1 0
0 0 1


 . (3.3.15)

It is rather difficult to invert the mapping even for this simple nonhomogeneous
deformation.

3.3.3 Change of Volume and Surface

Here we study how deformation mapping affects surface areas and volumes of a
continuum. The motivation for this study comes from the need to write global equi-
librium statements that involve integrals over areas and volumes.

3.3.3.1 Volume Change
We can define volume and surface elements in the reference and deformed configu-
rations. Consider three non-coplanar line elements dX(1), dX(2), and dX(3) forming
the edges of a parallelepiped at point P with position vector X in the reference body
B, as shown in Figure 3.3.6, so that

dx(i) = F · dX(i), i = 1, 2, 3. (3.3.16)

The vectors dx(i) are not necessarily parallel to or have the same length as the
vectors dX(i) because of shearing and stretching of the parallelepiped. We assume
that the triad (dX(1), dX(2), dX(3)) is positively oriented in the sense that the triple

X

( )Xχ

1X

2X

h

h

1γ

2γ

2x

1x

( )Xχ

h

h

•
•

Figure 3.3.5. A deformation mapping of
combined shearing and extension.
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( )X

•

1x

2x

3x x X( )=

P

F(1)dx dX(1)= ⋅

x(3) Fd dX(3)= ⋅

x F(2)d dX(2)= ⋅

•

1X

2X

3X X

P

X N(1) (1)
1

ˆd dX=

X N(2) (2)
2

ˆd dX=

X N(3) (3)
3

ˆd dX=

Figure 3.3.6. Transformation of a volume element under a deformation mapping.

scalar product dX(1) · dX(2) × dX(3) > 0. We denote the volume of the paral-
lelepiped as

dV = dX(1) · dX(2) × dX(3) =
(

N̂1 · N̂2 × N̂3

)
dX (1)dX (2)dX (3)

= dX (1)dX (2)dX (3), (3.3.17)

where N̂i denote the unit vector along dX(i). The corresponding volume in the de-
formed configuration is given by

dv = dx(1) · dx(2) × dx(3)

=
(

F · N̂1

)
·
(

F · N̂2

)
×
(

F · N̂3

)
dX (1)dX (2)dX (3)

= det F dX (1)dX (2)dX (3) = J dV. (3.3.18)

We assume that the volume elements are positive so that the relative orientation
of the line elements is preserved under the deformation, that is, J > 0. Thus, J has
the physical meaning of being the local ratio of current to reference volume of a
material volume element.

3.3.3.2 Surface Change
Next, consider an infinitesimal vector element of material surface dA in a neighbor-
hood of the point X in the undeformed configuration, as shown in Figure 3.3.7. The
surface vector can be expressed as dA = dA N̂, where N̂ is the positive unit normal
to the surface in the reference configuration. Suppose that dA becomes da in the
deformed body, where da = da n̂, n̂ being the positive unit normal to the surface in
the deformed configuration. The unit normals in the deformed and deformed con-
figurations can be expressed as (N̂i = n̂i ):

N̂ = N̂1 × N̂2

|N̂1 × N̂2|
, n̂ = F · n̂1 × F · n̂2

|F · n̂1 × F · n̂2| . (3.3.19)
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( )X

•

Figure 3.3.7. Transformation of a surface element under a deformation mapping.

The areas of the parallelograms in the undeformed and deformed configurations are

dA ≡ |N̂1 × N̂2| dX1 dX2, da ≡ |F · n̂1 × F · n̂2| dx1 dx2. (3.3.20)

The area vectors are

dA = N̂ dA = N̂1 × N̂2

|N̂1 × N̂2|
|N̂1 × N̂2| dX1 dX2

=
(

N̂1 × N̂2

)
dX1 dX2 =

(
n̂1 × n̂2

)
dX1 dX2, (3.3.21)

da = n̂ da = F · n̂1 × F · n̂2

|F · n̂1 × F · n̂2| |F · n̂1 × F · n̂2| dx1 dx2

=
(

F · n̂1 × F · n̂2

)
dx1 dx2. (3.3.22)

Then it can be shown that (see the result of Problem 3.10)

da = JF−T · dA or n̂ da = JF−T · N̂ dA. (3.3.23)

Next we consider an example of area change under simple shear deformation
[see Hjelmsted (2005) for additional examples].

EXAMPLE 3.3.2: Consider a square block with a circular hole at the center, as
shown in Figure 3.3.8(a). Suppose that block is of of thickness h and plane di-
mensions 2b × 2b, and the radius of the hole is b. Determine the change in the
area of the circle and the edge of the block when it is subjected to simple shear
deformation mapping of Eq. (3.3.12).
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( )Xχ

1X

2X
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4b
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ˆ ˆ= 1N e
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ˆ ˆ ˆ(cos sin ) θ  θ =− + N e e

θ

n̂

 n

(a) (b)

Figure 3.3.8. (a) Original geometry of the
undeformed square block. (b) Deformed
(simple shear) geometry of the block.

SOLUTION: The components of the deformation gradient tensor and its inverse
are

[F] =

 1 γ 0

0 1 0
0 0 1


 , [F]−1 =


 1 −γ 0

0 1 0
0 0 1


 .

The determinant of F is det F = 1, implying that there is no change in the vol-
ume of the block. Consider the edge with normal N̂ = Ê1 = ê1 in the unde-
formed configuration. By Eq. (3.3.23), we have

n̂ da1 = (ê1 − γ ê2) dX2 dX3.

Thus, da1 is

da1 =
√

(1 + γ 2) dX2 dX3.

The total area of the deformed edge, as shown in Fig. 3.3.8(b), is

∫ h

0

∫ 2b

−2b
da1 = 4bh

√
1 + γ 2 .

The result is obvious from the deformed geometry of the edge.
Next, we determine the deformed area of the cylindrical surface of the hole.

In this case, the unit vector normal to the surface is in the radial direction and it
is given by

N̂ = −(cos θ ê1 + sin θ ê2).

Hence, the components of the vector F−T · N̂ are given by
 1 0 0

−γ 1 0
0 0 1






− cos θ

− sin θ

0


 =




− cos θ

γ cos θ − sin θ

0


 .

Using Eq. (3.3.23), we obtain

n̂ dan = [− cos θ ê1 + (γ cos θ − sin θ) e2] b dθ dX3.
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Hence, the deformed surface area of the hole is

b
∫ h

0

∫ 2π

0

√
cos2 θ + (γ cos θ − sin θ)2 dθ dX3.

The integral can be evaluated for any given value of γ . In particular, we have

γ = 0 : an = 2πbh (no deformation),

γ = 1 : an = bh
∫ 2π

0

√
1.5 + 0.5 cos 2θ − sin 2θ dθ ≈ 2.35πbh.

For other values of γ , the integral may be evaluated numerically.

3.4 Strain Measures

3.4.1 Cauchy–Green Deformation Tensors

The geometric changes that a continuous medium experiences can be measured in a
number of ways. Here, we discuss a general measure of deformation of a continuous
medium, independent of both translation and rotation.

Consider two material particles P and Q in the neighborhood of each other,
separated by dX in the reference configuration, as shown in Figure 3.4.1. In the
current (deformed) configuration, the material points P and Q occupy positions
P̄ and Q̄, and they are separated by dx. We wish to determine the change in the
distance dX between the material points P and Q as the body deforms and the
material points move to the new locations P̄ and Q̄.

The distances between points P and Q and points P̄ and Q̄ are given, respec-
tively, by

(dS)2 = dX · dX, (3.4.1)

(ds)2 = dx · dx = dX · (FT · F) · dX ≡ dX · C · dX, (3.4.2)

where C is called the right Cauchy–Green deformation tensor

C = FT · F. (3.4.3)

XQ

Q

P Q
_

_

XP

xP
P
_

xQ

uQ

uP

3x X3

dx

dX

2x X2

1x X1

(time t = 0)

(time t) 

(   )X

_

Figure 3.4.1. Points P and Q separated by a dis-
tance dX in the undeformed configuration κ0

take up positions P̄ and Q̄, respectively, in the
deformed configuration κ , where they are sepa-
rated by distance dx.
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By definition, C is a symmetric second-order tensor. The transpose of C is denoted
by B and it is called the left Cauchy–Green deformation tensor, or Finger tensor

B = F · FT. (3.4.4)

Recall from Eq. (2.4.15) that the directional (or tangential) derivative of a field
φ(X) is given by

dφ

dS
= N̂ · ∇0φ, N̂ = dX

|dX| = dX
dS

, (3.4.5)

where N̂ is the unit vector in the direction of the tangent vector at point X. There-
fore, a parameterized curve in the deformed configuration is determined by the de-
formation mapping x(S) = χ(x(S)), and we have (F = Fi J êÊJ and N̂ = NKÊK)

dx
dS

= dX
dS

· ∇0χ(X) = F · dX
dS

= F · N̂ = Fi J NJ êi . (3.4.6)

Clearly, dx/dS = Fi J NJ êi is a vector defined in the deformed configuration.
The stretch of a curve at a point in the deformed configuration is defined to be

the ratio of the deformed length of the curve to its original length. Let us consider
an infinitesimal length dS of curve in the neighborhood of the material point X.
Then the stretch λ of the curve is simply the length of the tangent vector F · N̂ in the
deformed configuration

λ2(S) = (F · N̂) · (F · N̂) (3.4.7)

= N̂ · (FT · F) · N̂

= N̂ · C · N̂ (3.4.8)

Equation (3.4.8) holds for any arbitrary curve with dX = dS N̂ and thus allows
us to compute the stretch in any direction at a given point. In particular, the square
of the stretch in the direction of the unit base vector ÊI is given by

λ2(ÊI) = ÊI · C · ÊI = CI I . (3.4.9)

That is, the diagonal terms of the left Cauchy–Green deformation tensor C repre-
sent the squares of the stretches in the direction of the coordinate axes (X1, X2, X3).
The off-diagonal elements of C give a measure of the angle of shearing between
two base vectors ÊI and ÊJ , 	= J , under the deformation mapping χ . Further, the
squares of the principal stretches at a point are equal to the eigenvalue of C. We
shall return to this aspect in Section 3.7 on polar decomposition theorem.

3.4.2 Green Strain Tensor

The change in the squared lengths that occurs as a body deforms from the reference
to the current configuration can be expressed relative to the original length as

(ds)2 − (dS)2 = 2 dX · E · dX, (3.4.10)
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where E is called the Green–St. Venant (Lagrangian) strain tensor or simply the
Green strain tensor.2 The Green strain tensor can be expressed, in view of Eqs.
(3.4.1)–(3.4.3), as

E = 1
2

(
FT · F − I

) = 1
2

(C − I)

= 1
2

[
(I + ∇0u) · (I + ∇0u)T − I

]
= 1

2

[∇0u + (∇0u)T + (∇0u) · (∇0u)T] . (3.4.11)

By definition, the Green strain tensor is a symmetric second-order tensor. Also, the
change in the squared lengths is zero if and only if E = 0.

The vector form of the Green strain tensor in Eq. (3.4.11) allows us to express
it in terms of its components in any coordinate system. In particular, in rectangular
Cartesian coordinate system (X1, X2, X3), the components of E are given by

Ei j = 1
2

(
∂ui

∂ Xj
+ ∂u j

∂ Xi
+ ∂uk

∂ Xi

∂uk

∂ Xj

)
. (3.4.12)

In expanded notation, they are given by

E11 = ∂u1

∂ X1
+ 1

2

[(
∂u1

∂ X1

)2

+
(

∂u2

∂ X1

)2

+
(

∂u3

∂ X1

)2
]

,

E22 = ∂u2

∂ X2
+ 1

2

[(
∂u1

∂ X2

)2

+
(

∂u2

∂ X2

)2

+
(

∂u3

∂ X2

)2
]

,

E33 = ∂u3

∂ X3
+ 1

2

[(
∂u1

∂ X3

)2

+
(

∂u2

∂ X3

)2

+
(

∂u3

∂ X3

)2
]

, (3.4.13)

E12 = 1
2

(
∂u1

∂ X2
+ ∂u2

∂ X1
+ ∂u1

∂ X1

∂u1

∂ X2
+ ∂u2

∂ X1

∂u2

∂ X2
+ ∂u3

∂ X1

∂u3

∂ X2

)
,

E13 = 1
2

(
∂u1

∂ X3
+ ∂u3

∂ X1
+ ∂u1

∂ X1

∂u1

∂ X3
+ ∂u2

∂ X1

∂u2

∂ X3
+ ∂u3

∂ X1

∂u3

∂ X3

)
,

E23 = 1
2

(
∂u2

∂ X3
+ ∂u3

∂ X2
+ ∂u1

∂ X2

∂u1

∂ X3
+ ∂u2

∂ X2

∂u2

∂ X3
+ ∂u3

∂ X2

∂u3

∂ X3

)
.

The components E11, E22, and E33 are called normal strains and E12, E23, and E13

are called shear strains. The Green–Lagrange strain components in the cylindrical
coordinate system are given in Problem 3.18.

2 The reader should not confuse the symbol E used for the Lagrangian strain tensor and Ei used
for the basis vectors in the reference configuration. One should always pay attention to different
typeface and subscripts used.
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Figure 3.4.2. Physical interpretation of normal
strain component E11.

3.4.3 Physical Interpretation of Green Strain Components

To see the physical meaning of the normal strain component E11, consider a line el-
ement initially parallel to the X1-axis, that is, dX = dX1Ê1 in the undeformed body,
as shown in Figure 3.4.2. Then

(ds)2 − (dS)2 = 2Ei j dXi dXj = 2E11 dX1 dX1 = 2E11 (dS)2.

Solving for E11, we obtain

E11 = 1
2

(ds)2 − (dS)2

(dS)2
= 1

2


( ds

dS

)2

− 1


 = 1

2

(
λ2 − 1

)
, (3.4.14)

where λ is the stretch

λ = ds
dS

=
√

1 + 2E11 = 1 + E11 − 1
2

E2
11 + . . . . (3.4.15)

In terms of the unit extension �1 = λ − 1, we have (including up to the quadratic
term)

E11 = �1 + 1
2
�2

1. (3.4.16)

When the unit extension is small compared with unity, the quadratic term in the last
expression can be neglected in comparison with the linear term, and the strain E11

is approximately equal to the unit extension �1. Thus, E11 is the ratio of the change
in its length to the original length.

The shear strain components Ei j , i 	= j , can be interpreted as a measure of
the change in the angle between line elements that were perpendicular to each
other in the undeformed configuration. To see this, consider line elements dX(1) =
dX1Ê1 and dX(2) = dX2Ê2 in the undeformed body, which are perpendicular to
each other, as shown in Figure 3.4.3. The material line elements dX(1) and dX(2)

occupy positions dx(1) and dx(2), respectively, in the deformed body. Then the
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Figure 3.4.3. Physical interpretation of
shear strain component E12.

cosine of the angle between the line elements ŌQ̄ and ŌP̄ in the deformed
body is given by [see Eq. (3.3.1)]

cos θ12 = n̂1 · n̂2 = dx(1) · dx(2)

|dx(1)| |dx(2)|

= [dX(1) · FT] · [F · dX(2)]√
dX(1) · C · dX(1)

√
dX(2) · C · dX(2)

. (3.4.17)

Since

C = FT · F, N̂1 = Ê1, N̂2 = Ê2, (3.4.18)

we have

cos θ12 = N̂1 · C · N2√
N̂1 · C · N1

√
N̂2 · C · N2

= C12√
C11

√
C22

or

θ12 = C12

λ1λ2
= 2E12√

(1 + 2E11)
√

(1 + 2E22)
. (3.4.19)

Thus, 2E12 is equal to cosine of the angle between the line elements, θ12, multiplied
by the product of extension ratios γ1 and γ2. Clearly, the finite strain E12 not only
depends on the angle θ12 but also on the stretches of elements involved. When the
unit extensions and the angle changes are small compared with unity, we have

π

2
− θ12 ≈ sin

(π

2
− θ12

)
= cos θ12 ≈ 2E12. (3.4.20)

3.4.4 Cauchy and Euler Strain Tensors

Returning to the strain measures, the change in the squared lengths that occurs
as the body deforms from the initial to the current configuration can be expressed
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relative to the current length. First, we express dS in terms of dx as

(dS)2 = dX · dX = dx · (F−T · F−1) · dx ≡ dx · B̃ · dx, (3.4.21)

where B̃ is called the Cauchy strain tensor

B̃ = F−T · F−1, B̃
−1 ≡ B = F · FT. (3.4.22)

The tensor B is called the left Cauchy–Green tensor, or Finger tensor. We can write

(ds)2 − (dS)2 = 2 dx · e · dx. (3.4.23)

where e, called the Almansi–Hamel (Eulerian) strain tensor or simply the Euler
strain tensor, is defined as

e = 1
2

(
I − F−T · F−1) = 1

2

(
I − B̃

)
(3.4.24)

= 1
2

[
I − (I − ∇u) · (I − ∇u)T]

= 1
2

[∇u + (∇u)T − (∇u) · (∇u)T] . (3.4.25)

The rectangular Cartesian components of C, B̃, and e are given by

CI J = ∂xk

∂ XI

∂xk

∂ XJ
, B̃i j = ∂ XK

∂xi

∂ XK

∂xj
, (3.4.26)

ei j = 1
2

(
δi j − ∂ XK

∂xi

∂ XK

∂xj

)

= 1
2

(
∂ui

∂xj
+ ∂u j

∂xi
− ∂uk

∂xi

∂uk

∂xj

)
. (3.4.27)

The next two examples illustrate the calculation of various measures of strain.

EXAMPLE 3.4.1: For the deformation given in Example 3.3.1, determine the right
Cauchy–Green deformation tensor, the Cauchy strain tensor, and the compo-
nents of Green and Almansi strain tensors.

SOLUTION: The right Cauchy–Green deformation tensor and the Cauchy strain
tensor are, respectively,

[C] =

 1.0 0.0 0.0

0.5 1.0 0.0
0.0 0.0 1.0




 1.0 0.5 0.0

0.0 1.0 0.0
0.0 0.0 1.0


 =


 1.0 0.5 0.0

0.5 1.25 0.0
0.0 0.0 1.0


 ,

[B̃] =

 1.0 0.0 0.0

−0.5 1.0 0.0
0.0 0.0 1.0




 1.0 −0.5 0.0

0.0 1.0 0.0
0.0 0.0 1.0


 =


 1.0 −0.5 0.0

−0.5 1.25 0.0
0.0 0.0 1.0


 .

The Green and Almansi strain tensor components in matrix form are given by

[E] = 1
2


 0.0 0.5 0.0

0.5 0.25 0.0
0.0 0.0 0.0


 ; [e] = 1

2


 0.0 0.5 0.0

0.5 −0.25 0.0
0.0 0.0 0.0


 .
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ˆ

ˆ
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ˆ
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Figure 3.4.4. Undeformed (κ0) and deformed (κ) configurations of a rectangular block, B.

EXAMPLE 3.4.2: Consider the uniform deformation of a square block B of side
length 2 units, initially centered at X = (0, 0), as shown in Figure 3.4.4. The
deformation is defined by the mapping

χ(X) = 1
4

(18 + 4X1 + 6X2)ê1 + 1
4

(14 + 6X2)ê2 + X3ê3.

(a) Sketch the deformed configuration κ of the body B.
(b) Compute the components of the deformation gradient tensor F and its in-

verse (display them in matrix form).
(c) Compute the components of the right Cauchy–Green deformation tensor C

and Cauchy strain tensor B̃ (display them in matrix form).
(d) Compute Green’s and Almansi’s strain tensor components (EI J and ei j )

(display them in matrix form).

SOLUTION:

(a) Sketch of the deformed configuration of the body B is shown in Figure 3.4.3.
(b) Note that the inverse transformation is given by (X3 = x3)

{
X1

X2

}
= 4

[
4 6
0 6

]−1 ({ x1

x2

}
− 1

4

{
18
14

})
= −1

6

{
9
7

}
+ 1

3

[
3 −3
0 2

]{
x1

x2

}

or

χ−1(x) = (−1.5 + x1 − x2)Ê1 + 1
6

(
7 + 4x2

)
Ê2 + x3 Ê3.

The matrix form of the deformation gradient tensor and its inverse are

[F] =
[ ∂x1

∂ X1

∂x1
∂ X2

∂x2
∂ X1

∂x2
∂ X2

]
= 1

2

[
2 3
0 3

]
; [F]−1 =

[ ∂ X1
∂x1

∂ X1
∂x2

∂ X2
∂x1

∂ X2
∂x2

]
= 1

3

[
3 −3
0 2

]
.
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(c) The right Cauchy–Green deformation tensor and Cauchy strain tensor are,
respectively,

[C] = [F]T[F] = 1
2

[
2 3
3 9

]
, [B] = [F][F]T = 1

4

[
13 9

9 9

]
.

(d) The Green and Almansi strain tensor components in matrix form are, re-
spectively,

[E] = 1
2

(
[F]T[F] − [I]

) = 1
2

[
0 3
3 7

]
,

[e] = 1
2

(
[I] − [F]−T[F]−1) = 1

18

[
0 9
9 −4

]
.

3.4.5 Principal Strains

The tensors E and e can be expressed in any coordinate system much like any dyadic.
For example, in a rectangular Cartesian system, we have

E = EI J ÊIÊJ , e = ei j êi ê j . (3.4.28)

Further, the components of E and e transform according to Eq. (2.5.17):

Ēi j = 
ik 
 j
 Ek
, ēi j = 
ik 
 j
 ek
, (3.4.29)

where 
i j denotes the direction cosines between the barred and unbarred coordinate
systems [see Eq. (2.2.49)].

The principal invariants of the Green–Lagrange strain tensor E are [see Eq.
(2.5.14)]

J1 = tr E, J2 = 1
2

[
(trE)2 − tr(E2)

]
, J3 = det E, (3.4.30)

where the trace of E, trE, is defined to be the double-dot product of E with the unit
dyad [see Eq. (2.5.13)]

tr E = E : I. (3.4.31)

Invariant J1 is also known as the dilatation.
The eigenvalue problem discussed in Section 2.5.5 for a tensor is applicable

here for the strain tensors. The eigenvalues of a strain tensor are called the prin-
cipal strains, and the corresponding eigenvectors are called the principal directions
of strain.

EXAMPLE 3.4.3: Consider a rectangular block (B) ABCD of dimensions a ×
b × h, where h is thickness and it is very small compared with a and b. Sup-
pose that the block B is deformed into the diamond shape ĀB̄C̄D̄ shown in
Figure 3.4.5(a). Determine the deformation, displacements, and strains in the
body.
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κ
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1x θ
κ

κ0
1 1,x X

2 2,x

2x

X

Figure 3.4.5. Undeformed (κ0) and deformed (κ) configurations of a rectangular block, B.

SOLUTION: By inspection, the geometry of the deformed body can be described
as follows: let (X1, X2, X3) denote the coordinates of a material point in the
undeformed configuration, κ0. The X3-axis is taken out of the plane of the page
and not shown in the figure. The deformation of B is defined by the mapping
χ(x) = x1 ê1 + x2 ê2 + x3 ê3, where

x1 = A0 + A1 X1 + A2 X2 + A12 X1 X2,

x2 = B0 + B1 X1 + B2 X2 + B12 X1 X2,

x3 = X3.

and Ai and Bi are constants, which can be determined using the deformed con-
figuration κ . We have

(X1, X2) = (0, 0), (x1, x2) = (0, 0) → A0 = 0, B0 = 0,

(X1, X2) = (a, 0), (x1, x2) = (a, e2) → A1 = 1, B1 = e2

a
,

(X1, X2) = (0, b), (x1, x2) = (e1, b) → A2 = e1

b
, B2 = 1,

(X1, X2) = (a, b), (x1, x2) = (a + e1, b + e2) → A12 = 0, B12 = 0.

Thus, the deformation is defined by the transformation

χ(x) = (X1 + k1 X2)ê1 + (X2 + k2 X1)ê2 + X3 ê3,

where k1 = e1/b and k2 = e2/a. The inverse mapping is given by

χ−1(X) = 1
1 − k1k2

(x1 − k1x2) Ê1 + 1
1 − k1k2

(−k2x1 + x2) Ê2 + x3 Ê3.

Thus, the displacement vector of a material point in the Lagrangian description
is

u = k1 X2 ê1 + k2 X1 ê2.

The only nonzero Green strain tensor components are given by

E11 = 1
2

k2
2, 2E12 = k1 + k2, E22 = 1

2
k2

1 .
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The deformation gradient tensor components are

[F] =

 1 k1 0

k2 1 0
0 0 1


 .

The case in which k2 = 0 is known as the simple shear. The Green’s deformation
tensor C is

C = FT · F → [C] = [F]T[F] =

 1 + k2

1 k1 + k2 0
k1 + k2 1 + k2

2 0
0 0 1


 ,

and 2E = C − I yields the results given above.
The displacements in the spatial description are

u1 = x1 − X1 = k1 X2 = k1

1 − k1k2
(−k2x1 + x2) ,

u2 = x2 − X2 = k2 X1 = k2

1 − k1k2
(x1 − k1x2) ,

u3 = x3 − X3 = 0.

The Almansi strain tensor components are

e11 = − k1k2

1 − k1k2
− 1

2

[(
k1k2

1 − k1k2

)2

+
(

k2

1 − k1k2

)2
]

,

2e12 = k1 + k2

1 − k1k2
+ k1k2(k1 + k2)

(1 − k1k2)2 ,

e22 = − k1k2

1 − k1k2
− 1

2

[(
k1k2

1 − k1k2

)2

+
(

k1

1 − k1k2

)2
]

.

Alternatively, the same results can be obtained using the elementary me-
chanics of materials approach, where the strains are defined to be the ratio of
the difference between the final length and original length to the original length.
A line element AB in the undeformed configuration κ0 of the body B moves to
position ĀB̄. Then the Green strain in the line AB is given by

E11 = EAB = ĀB̄ − AB
AB

= 1
a

√
a2 + e2

2 − 1 =
√

1 +
(e2

a

)2
− 1

=
[

1 + 1
2

(e2

a

)2
+ · · ·

]
− 1 ≈ 1

2

(e2

a

)2
= 1

2
k2

2 .

Similarly,

E22 =
[

1 + 1
2

(e1

b

)2
+ · · ·

]
− 1 ≈ 1

2

(e1

b

)2
= 1

2
k2

1 .

The shear strain 2E12 is equal to the change in the angle between two line ele-
ments that were originally at 90◦, that is, change in the angle DAB. The change
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is clearly equal to, as can be seen from Fig. 3.4.5(b),

2E12 = 	 DAB − 	 D̄ĀB̄ = e1

b
+ e2

a
= k1 + k2.

The axial strain in line element AC is (Ā = A)

EAC = ĀC̄ − AC
AC

= 1√
a2 + b2

√
(a + e1)2 + (b + e2)2 − 1

= 1√
a2 + b2

√
a2 + b2 + e2

1 + e2
2 + 2ae1 + 2be2 − 1

=
[

1 + e2
1 + e2

2 + 2ae1 + 2be2

a2 + b2

] 1
2

− 1 ≈ 1
2

e2
1 + e2

2 + 2ae1 + 2be2

a2 + b2

= 1
2(a2 + b2)

[
a2k2

2 + 2ab(k1 + k2) + b2k2
1

]
.

The axial strain EAC can also be computed using the strain transformation
equations (3.4.29). The line AC is oriented at θ = tan−1(b/a). Hence, we have

β11 = cos θ = a√
a2 + b2

, β12 = sin θ = b√
a2 + b2

,

β21 = − sin θ = − b√
a2 + b2

, β22 = cos θ = a√
a2 + b2

,

and

EAC ≡ Ē11 = β1iβ1 j Ei j = β11β11 E11 + 2β11β12 E12 + β12β12 E22

= 1
2(a2 + b2)

[
a2k2

2 + 2ab(k1 + k2) + b2k2
1

]
,

which is the same as that computed above.

The next example is concerned with the computation of principal strains and
their directions.

EXAMPLE 3.4.4: The state of strain at a point in an elastic body is given by
(10−3 in./in.)

[E] =

 4 −4 0

−4 0 0
0 0 3


 .

Determine the principal strains and principal directions of the strain.

SOLUTION: Setting |[E] − λ[I]| = 0, we obtain

(4 − λ)[(−λ)(3 − λ) − 0] + 4[−4(3 − λ)] = 0 → [(4 − λ)λ + 16](3 − λ) = 0.
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We see that λ1 = 3 is an eigenvalue of the matrix. The remaining two eigen-
values are obtained from λ2 − 4λ − 16 = 0. Thus the principal strains are (10−3

in./in.)

λ1 = 3, λ2 = 2(1 +
√

5), λ3 = 2(1 −
√

5).

The eigenvector components xi associated with ε1 = λ1 = 3 are calculated
from 

 4 − 3 −4 0
−4 0 − 3 0
0 0 3 − 3






x1

x2

x3


 =




0
0
0


 ,

which gives x1 − 4x2 = 0 and −4x1 − 3x2 = 0, or x1 = x2 = 0. Using the normal-
ization x2

1 + x2
2 + x2

3 = 1, we obtain x3 = 1. Thus, the principal direction associ-
ated with the principal strain ε1 = 3 is x̂(1) = ±(0, 0, 1).

The eigenvector components associated with principal strain ε2 = λ2 =
2(1 + √

5) are calculated from
 4 − λ2 −4 0

−4 0 − λ2 0
0 0 3 − λ2






x1

x2

x3


 =




0
0
0


 ,

which gives

x1 = −2 + 2
√

5
4

x2 = −1.618x2, x3 = 0, → x̂(2) = ±(−0.851, 0.526, 0).

Similarly, the eigenvector components associated with principal strain ε3 = λ3 =
2(1 − √

5) are obtained as

x1 = 2 + 2
√

5
4

x2 = 1.618x2, x3 = 0, → x̂(3) = ±(0.526, 0.851, 0).

The principal planes of strain are shown in Figure 3.4.6.

Plane 1

n̂  . E

λ1ê3

x3

x2

Plane 2

x1

Figure 3.4.6. Principal planes 1 and 2 of strain.
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3.5 Infinitesimal Strain Tensor and Rotation Tensor

3.5.1 Infinitesimal Strain Tensor

When all displacements gradients are small (or infinitesimal), that is, |∇u| << 1, we
can neglect the nonlinear terms in the definition of the Green strain tensor defined
in Eq. (3.4.11). In the case of infinitesimal strains, no distinction is made between the
material coordinates X and the spatial coordinates x. Therefore, the linear Green–
Lagrange strain tensor and the linear Eulerian strain tensor become the same. The
infinitesimal strain tensor is denoted by ε, and it is given by

ε = 1
2

[∇u + (∇u)T] . (3.5.1)

The rectangular Cartesian components of the infinitesimal strain tensor are
given by

εi j = 1
2

(ui, j + u j,i ) , (3.5.2)

or, in expanded form,

ε11 = ∂u1

∂ X1
; ε22 = ∂u2

∂ X2
;

ε33 = ∂u3

∂ X3
; ε12 = 1

2

(
∂u1

∂ X2
+ ∂u2

∂ X1

)
; (3.5.3)

ε13 = 1
2

(
∂u1

∂ X3
+ ∂u3

∂ X1

)
; ε23 = 1

2

(
∂u2

∂ X3
+ ∂u3

∂ X2

)
.

The strain components ε11, ε22, and ε33 are the infinitesimal normal strains and ε12,
ε13, and ε23 are the infinitesimal shear strains. The shear strains γ12 = 2ε12, γ13 =
2ε13, and γ23 = 2ε23 are called the engineering shear strains.

3.5.2 Physical Interpretation of Infinitesimal Strain Tensor Components

To gain insight into the physical meaning of the infinitesimal strain components, we
write Eq. (3.4.10) in the form

(ds)2 − (dS)2 = 2dX · ε · dX = 2εi j dXi dXj

and dividing throughout by (dS2), we obtain

(ds)2 − (dS)2

dS2
= 2εi j

dXi

dS
dXj

dS
.

Let dX/dS = N̂, the unit vector in the direction of dX. For small deformations, we
have ds + dS = ds + dS ≈ 2dS, and therefore we have

ds − dS
dS

= N̂ · ε · N̂ = εi j Ni Nj . (3.5.4)
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X2, x2 X2, x2
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dS = dX1

ds

(a) (b)

dX(2)
dx(2)

dx(1)

dX(1)

γ2

γ1

θ
Figure 3.5.1. Physical interpretation of
infinitesimal strain components.

The left side of Eq. (3.5.4) is the ratio of change in length per unit original length for
a line element in the direction of N̂. For example, consider N̂ along the X1-direction.
Then we have from Figure 3.5.1(a) (also see Figure 3.4.2)

ds − dS
dS

= ε11.

Thus, the normal strain ε11 is the ratio of change in length of a line element that was
parallel to the x1-axis in the undeformed body to its original length. Similarly, for a
line element along X2 direction, (ds − dS)/ds is the normal strain ε22, and for a line
element along X3 direction, (ds − dS)/ds denotes the normal strain ε33.

To understand the meaning of shear components of infinitesimal strain tensor,
consider line elements dX(1) and dX(2) at a point in the body, which deform into line
elements dx(1) and dx(2), respectively, as shown in Figure 3.5.1(b). Then we have
[see Eqs. (3.3.1), (3.4.3), and (3.4.11)]

dx(1) · dx(2) = dX(1) · FT · F · dX(2) = dX(1) · C · dX(2)

= dX(1) · (I + 2E) · dX(2)

= dX(1) · dX(2) + 2dX(1) · E · dX(2). (3.5.5)

Now suppose that the line elements dX(1) and dX(2) are orthogonal to each other.
Then

dx(1) · dx(2) = 2dX(1) · E · dX(2),

or

2dX(1) · E · dX(2) = dx(1)dx(2) cos θ = dx(1)dx(2) cos
(π

2
− γ1 − γ2

)
= dx(1)dx(2) sin(γ1 + γ2) = dx(1)dx(2) sin γ, (3.5.6)

where θ is the angle between the deformed line elements dx(1) and dx(2) and γ =
γ1 + γ2 is the change in the angle from 90◦, as shown in Figure 3.5.1(b) (also see
Figure 3.4.2). For small deformations, we take sin γ ≈ γ , and obtain

γ = 2
dX(1)

dx(1)
· E · dX(2)

dx(2)
= 2N̂(1) · ε · N̂(2), (3.5.7)

where N̂(1) = dX(1)/dx(1) and N̂(2) = dX(2)/dx(2) are the unit vectors along the line
elements dX(1) and dX(2), respectively. If the line elements dX(1) and dX(2) are taken
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along the X1 and X2 coordinates, respectively, then we have 2ε12 = γ . Thus, the en-
gineering shear strain γ12 = 2ε12 represents the change in angle between line ele-
ments that were perpendicular to each other in the undeformed body.

3.5.3 Infinitesimal Rotation Tensor

The displacement gradient tensor ∇u (note that F is the deformation gradient ten-
sor) can be expressed as the sum of a symmetric tensor and antisymmetric tensor

∇u = 1
2

[∇u + (∇u)T]+ 1
2

[∇u − (∇u)T] ≡ ε + �, (3.5.8)

where the symmetric part is clearly the infinitesimal strain tensor, and the antisym-
metric part is known as the infinitesimal rotation tensor

� = 1
2

[∇u − (∇u)T] . (3.5.9)

From the definition, it follows that � is antisymmetric (or skew-symmetric), that is,
�T = −�. In Cartesian component form,

�i j = (ui, j − u j,i ) , �i j = −� j i . (3.5.10)

Thus, there are only three independent components of �:

[�] = 1
2


 0 −�12 −�13

�12 0 −�23

�13 �23 0


 . (3.5.11)

While there is no restriction placed on the magnitude of ∇u in writing (3.5.1), ε and
� do not have the meaning of infinitesimal strain and infinitesimal rotation tensors
unless the deformation is infinitesimal (i.e., |∇u| is small, |∇u| << 1).

Since � has only three independent components, the three components can be
used to define the components of a vector ω

� = −E · ω or ω = −1
2

E : �,

�i j = −ei jk ωk or ωi = −1
2

ei jk � jk,

(3.5.12)

where E is the permutation (alternating) tensor, E = ei jk êi ê j êk. In view of Eqs.
(3.5.9) and (3.5.12), it follows that

ωi = 1
2

ei jk uk, j or ω = 1
2

curl u = 1
2

∇ × u. (3.5.13)

In essence, infinitesimal displacements of the form u = � · x, where � is indepen-
dent of the position x, are rotations because

ui = �i j x j = −ei jkωkxj = −(x × ω)i = (ω × x)i or u = ω × x,

which represents the velocity of a point x in a rigid material in uniform rotation
about the origin.
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Certain motions do not produce infinitesimal strains but they may produce finite
strains. For example, consider the following deformation mapping:

χ(X) = (b1 + X1 + c2 X3 − c3 X2) ê1 + (b2 + X2 + c3 X1 − c1 X3) ê2

+ (b3 + X3 + c1 X2 − c2 X1) ê3, (3.5.14)

where bi and ci (i = 1, 2, 3) are arbitrary constants. The displacement vector is

u(X) = (b1 + c2 X3 − c3 X2) ê1 + (b2 + c3 X1 − c1 X3) ê2

+ (b3 + c1 X2 − c2 X1) ê3. (3.5.15)

Since

∂u1

∂ X1
= 0,

∂u1

∂ X2
= −c3,

∂u1

∂ X3
= c2,

∂u2

∂ X1
= c3,

∂u2

∂ X2
= 0,

∂u2

∂ X3
= −c1,

∂u3

∂ X1
= −c2,

∂u3

∂ X2
= c1,

∂u1

∂ X3
= 0,

(3.5.16)

the infinitesimal (i.e., linearized) strains are all zero.
The components of the deformation gradient tensor F and left Cauchy–Green

deformation tensor C associated with the mapping are

[F] =

 1 −c3 c2

c3 1 −c1

−c2 c1 1


 , [C] =


 1 + c2

2 + c2
3 −c1c2 −c1c3

−c1c2 1 + c2
1 + c2

3 −c2c3

−c1c3 −c2c3 1 + c2
1 + c2

2


 .

(3.5.17)

It is clear that for nonzero values of the constants ci , the mapping produces nonzero
finite strains. When all of the constants ci are either zero or negligibly small (so that
their products and squares are very small compared to unity), then [F] = [C] = [I],
implying that the mapping represents a rigid body rotation. Figure 3.5.2 depicts the
deformation for the two-dimensional case, with b1 = 2, b2 = 3, and c3 = 1. Thus, the
finite Green strain tensor and deformation gradient tensor give true measures of








 −
=

++=

−+=

11
11

][

3

2

122

211

F

XXx

XXx
2X

1X 1x

2x

( )X

Figure 3.5.2. A mapping that produces
zero infinitesimal strains but nonzero
finite strains.
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2X

1X 1x

2x

( )X

1u

2u

Figure 3.5.3. A mapping that produces
nonzero infinitesimal strains but zero fi-
nite strains.

the deformation. The question of smallness of ci in a given engineering application
must be carefully examined before using a linearized strains.

Next, consider the mapping

χ(X) = (u1 + X1 cos θ − X2 sin θ) ê1 + (u2 + X1 sin θ + X2 cos θ) ê2

+ X3 ê3, (3.5.18)

where u1 and u2 denote the horizontal and vertical displacements of the point
(0, 0, 0), as shown in Figure 3.5.3.

The components of the deformation gradient tensor F and left Cauchy–Green
deformation tensor C are

[F] =

 cos θ − sin θ 0

sin θ cos θ 0
0 0 1


 , [C] =


 1 0 0

0 1 0
0 0 1


 . (3.5.19)

Since C = I, we have E = 0, indicating that the body does not experience stretching
or shearing. The mapping is a rigid-body motion (both rigid-body translation and
rigid-body rotation).

If we linearize the deformation mapping by making the approximations cos θ ≈
1 and sin θ ≈ 0, we obtain

[F] =

 1 −θ 0

θ 1 0
0 0 1


 , [C] =


 1 + θ2 0 0

0 1 + θ2 0
0 0 1


 . (3.5.20)

Thus, the Green strain tensor components are no longer zero. The principal
stretches λ1 = λ2 = 1 + θ2 are not equal to 1, as required by the definition of rigid-
body motion. Owing to the artificial stretch induced by the linearization of the map-
ping, the stretches get larger and larger as the block rotates.

3.5.4 Infinitesimal Strains in Cylindrical and Spherical Coordinate Systems

The strains defined by Eq. (3.5.1) are valid in any coordinate system. Hence, they
can be expressed in component form in any given coordinate system by expanding



P1: IBE

Chapter03 CUFX197-Reddy 978 0 521 87044 3 October 3, 2007 10:36

94 Kinematics of Continua

the strain tensors in the dyadic form and the operator ∇ in that coordinate system,
as given in Table 2.4.2 (also see Figure 2.4.2).

3.5.4.1 Cylindrical coordinate system
In the cylindrical coordinate system we have

u = ur êr + uθ êθ + uzêz, (3.5.16)

∇0 = êr
∂

∂r
+ 1

r
êθ

∂

∂θ
+ êz

∂

∂z
, (3.5.17)

∂ êr

∂θ
= êθ ,

∂ êθ

∂θ
= −êr . (3.5.18)

Using Eqs. (3.5.16)–(3.5.18), we obtain [see Eq. (2.5.27)]

∇0u = êr êr
∂ur

∂r
+ êr êθ

∂uθ

∂r
+ 1

r
êθ êr

(
∂ur

∂θ
− uθ

)

+ êr êz
∂uz

∂r
+ êzêr

∂ur

∂z
+ 1

r

(
ur + ∂uθ

∂θ

)
êθ êθ

+ 1
r

êθ êz
∂uz

∂θ
+ êzêθ

∂uθ

∂z
+ êzêz

∂uz

∂z
, (3.5.19)

(∇0u)T = êr êr
∂ur

∂r
+ êθ êr

∂uθ

∂r
+ 1

r
êr êθ

(
∂ur

∂θ
− uθ

)

+ êzêr
∂uz

∂r
+ êr êz

∂ur

∂z
+ 1

r
êθ êθ

(
ur + ∂uθ

∂θ

)

+ 1
r

êzêθ

∂uz

∂θ
+ êθ êz

∂uθ

∂z
+ êzêz

∂uz

∂z
. (3.5.20)

Substituting the above expressions into Eq. (3.5.1) and collecting the coefficients of
various dyadics (i.e., coefficients of êr êr , êr êθ , and so on) we obtain the infinitesimal
strain tensor components

εrr = ∂ur

∂r
, εrθ = 1

2

(
1
r

∂ur

∂θ
+ ∂uθ

∂r
− uθ

r

)
,

εrz = 1
2

(
∂ur

∂z
+ ∂uz

∂r

)
, εθθ = ur

r
+ 1

r
∂uθ

∂θ
,

εzθ = 1
2

(
∂uθ

∂z
+ 1

r
∂uz

∂θ

)
, εzz = ∂uz

∂z
.

(3.5.21)

3.5.4.2 Spherical coordinate system
In the spherical coordinate system, we have

u = uR êR + uφ êφ + uθ êθ , (3.5.22)

∇0 = êR
∂

∂ R
+ 1

R
êφ

∂

∂φ
+ 1

Rsin φ
êθ

∂

∂θ
, (3.5.23)
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∂ êR

∂φ
= êφ,

∂ êR

∂θ
= sin φ êθ ,

∂ êφ

∂φ
= −êR,

∂ êφ

∂θ
= cos φ êθ ,

∂ êθ

∂θ
= − sin φ êR − cos φ êφ . (3.5.24)

Using Eqs. (3.5.22)–(3.5.24), we obtain (answer to Problem 2.28)

∇0u = ∂uR

∂ R
êR êR + ∂uφ

∂ R
êR êφ + ∂uθ

∂ R
êR êθ

+ 1
R

(
∂uR

∂φ
− uφ

)
êφ êR + 1

R

(
∂uφ

∂φ
+ uR

)
êφ êφ + 1

R
∂uθ

∂φ
êφ êθ

+ 1
Rsin φ

(
∂uR

∂θ
− uθ sin φ

)
êθ êR + 1

Rsin φ

(
∂uφ

∂θ
− uθ cos φ

)
êθ êφ

+ 1
Rsin φ

(
∂uθ

∂θ
+ uR sin φ + uφ cos φ

)
êθ êθ , (3.5.25)

(∇0u)T = ∂uR

∂ R
êR êR + ∂uφ

∂ R
êφ êR + ∂uθ

∂ R
êθ êR

+ 1
R

(
∂uR

∂φ
− uφ

)
êR êφ + 1

R

(
∂uφ

∂φ
+ uR

)
êφ êφ + 1

R
∂uθ

∂φ
êθ êφ

+ 1
Rsin φ

(
∂uR

∂θ
− uθ sin φ

)
êR êθ + 1

Rsin φ

(
∂uφ

∂θ
− uθ cos φ

)
êφ êθ

+ 1
Rsin φ

(
∂uθ

∂θ
+ uR sin φ + uφ cos φ

)
êθ êθ . (3.5.26)

Substituting the above expressions into Eq. (3.5.1) and collecting the coefficients of
various dyadics, we obtain the following infinitesimal strain tensor components in
the spherical coordinate system:

εRR = ∂uR

∂ R
, εφφ = 1

R

(
∂uφ

∂φ
+ uR

)
,

εRφ = 1
2

(
1
R

∂uR

∂φ
+ ∂uφ

∂ R
− uφ

R

)
,

εRθ = 1
2

(
1

Rsin φ

∂uR

∂θ
+ ∂uθ

∂ R
− uθ

R

)
,

εφθ = 1
2R

(
1

sin φ

∂uφ

∂θ
+ ∂uθ

∂φ
− uθ cot φ

)
,

εθθ = 1
Rsin φ

(
∂uθ

∂θ
+ uR sin φ + uφ cos φ

)
. (3.5.27)
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3.6 Rate of Deformation and Vorticity Tensors

3.6.1 Definitions

In fluid mechanics, velocity vector v(x, t) is the variable of interest as opposed to
the displacement vector u in solid mechanics. Similar to the displacement gradient
tensor [see Eq. (3.5.8)], we can write the velocity gradient tensor L ≡ ∇v as the sum
of symmetric and antisymmetric (or skew-symmetric) tensors

L = ∇v = 1
2

[
(∇v)T + ∇v

]+ 1
2

[∇v − (∇v)T] ≡ D − W, (3.6.1)

where D is called the rate of deformation tensor and W is called the vorticity tensor
or spin tensor

D = 1
2

[
(∇v)T + ∇v

]
, W = −1

2

[∇v − (∇v)T] . (3.6.2)

It follows that

D = 1
2

(
LT + L

)
, W = −1

2

(
L − LT) . (3.6.3)

Since W is skew-symmetric (i.e., WT = −W), it has only three independent
scalar components, which can be used to define the scalar components of a vector
w, called the axial vector of W, as follows:

Wi j = −ei jkwk, [W] =

 0 −w3 w2

w3 0 −w1

−w2 w1 0


 . (3.6.4)

The scalar components of w can be expressed in terms of the scalar components of
W as

wi = −1
2

ei jkWjk = 1
2

ei jk
∂vk

∂xj
or w = 1

2
∇ × v. (3.6.5)

Note that div w = 0 by virtue of the vector identity (i.e., divergence of the curl of
a vector is zero). Thus, the axial vector is divergence free. As discussed in Sec-
tion 3.5.3, if a velocity vector v is of the form v = W · x for some antisymmetric
tensor W that is independent of the position x, then the motion is a uniform rigid
body rotation about the origin with angular velocity w.

3.6.2 Relationship between D and Ė

The rate of deformation tensor D is not the same as the time rate of change of the
infinitesimal strain tensor ε, that is, the strain rate ε̇, where superposed dot signi-
fies the material time derivative. The time rate of change of Green–Lagrange strain
tensor can be related to D, as discussed next.

Taking the material time derivative of (3.4.10), we obtain

d
dt

[(ds)2] = 2dX · dE
dt

· dX = 2dX · Ė · dX, (3.6.6)
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where we used the fact that dX and dS are constants. However, from Eq. (3.4.2),
we have (ds)2 = dx · dx, and the instantaneous rate of change of the squared length
(ds)2 is

d
dt

[(ds)2] = 2dx · dx
dt

. (3.6.7)

From Eq. (3.3.1), we have (dx = F · dX)

d
dt

(dx) =
[

d
dt

F
]

· dX + F · d(dX)
dt

= Ḟ · dX, (3.6.8)

where the time derivative of dX is zero because it does not change with time. Note
that

Ḟ = d
dt

(∇0x)T =
[
∇0

(
dx
dt

)]T

= (∇0v)T
. (3.6.9)

Note that ∇0v is the gradient of the velocity vector v with respect to the material
coordinates X, and it is not the same as L = ∇v (or L · dx = dv). From Eqs. (3.6.8)
and (3.6.9), we have

dv = (∇0v)T · dX. (3.6.10)

Thus

(∇0v)T · dX = L · dx, (3.6.11)

and from Eqs. (3.6.7) and (3.6.11), we obtain (see Problem 3.25)

d
dt

[(ds)2] = 2dx · L · dx = 2dx · (D + W) · dx = 2dx · D · dx. (3.6.12)

The second term is zero because of the skew symmetry of W. Now comparing
Eqs. (3.6.6) with (3.6.12) and using Eq. (3.4.4)

dX · dE
dt

· dX = dx · D · dx

= dX · FT · D · F · dX,

we arrive at the result

dE
dt

= FT · D · F. (3.6.13)

We can also relate the velocity gradient tensor L to the time rate of deformation
gradient tensor F. From Eqs. (3.6.7) and (3.6.9), we have

Ḟ = L · F or L = Ḟ · F−1. (3.6.14)

3.7 Polar Decomposition Theorem

Recall that the deformation gradient tensor F transforms a material vector dX at X
into the corresponding spatial vector dx, and it characterizes all of the deformation,
stretch as well as rotation, at X. Therefore, it forms an essential part of the definition
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Figure 3.7.1. The roles of U and R in transforming an ellipsoidal volume of material in the
neighborhood of X.

of any strain measure. Another role of F in connection with the strain measures is
discussed here with the help of the polar decomposition theorem of Cauchy. The
polar decomposition theorem enables one to decompose F into the product of an
orthogonal tensor and a symmetric tensor and thereby decomposes the general de-
formation into pure stretch and rotation.

Suppose that F is nonsingular so that each line element dX from the reference
configuration is transformed into a unique line element dx in the current configu-
ration and conversely. Then the polar decomposition theorem states that F has a
unique right and left decompositions of the form

F = R · U = V · R (3.7.1)

so that

dx = F · dX = (R · U) · dX = (V · R) · dX, (3.7.2)

where U the symmetric right Cauchy stretch tensor (stretch is the ratio of the final
length to the original length), V the symmetric left Cauchy stretch tensor, and R is
the orthogonal rotation tensor, which satisfies the identity

RT · R = I or RT = R−1. (3.7.3)

In Eq. (3.7.2), U · dX describes a pure stretch deformation in which there
are three mutually perpendicular directions along which the material element dX
stretches (i.e., elongates or compresses) but does not rotate. The three directions
are provided by the eigenvectors of U. The role of R in R · U · dX is to rotate the
stretched element. These ideas are illustrated in Figure 3.7.1, which shows the mate-
rial occupying the spherical volume of radius |dX| in the undeformed configuration
being mapped by the operator U into an ellipsoid in the deformed configuration at
x. The role of R is then to rotate the ellipsoid through a rigid body rotation.

From Eqs. (3.7.1) and (3.7.3), it follows that

U = R−1 · F = RT · F, V = F · R−1 = F · RT (3.7.4)
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and

U2 = U · U = UT · U = FT · (R · R−1) · F = FT · F = C,

V2 = V · V = V · VT = F · (R−1 · R) · FT = F · FT = B.
(3.7.5)

We also note that

F = R · U = (R · U) · (RT · R) = (R · U · RT) · R = V · R

= V · R = (R · RT) · (V · R) = R · (RT · V · R) = R · U, (3.7.6)

which show that

U = RT · V · R, V = R · U · RT. (3.7.7)

It can be shown that detU = detV = detF. Since FT · F is real and symmetric,
there exists an orthogonal matrix A that transforms FT · F into a diagonal matrix

U2 = FT · F = C = A


 λ2

1 0 0
0 λ2

2 0
0 0 λ2

3


AT, (3.7.8)

where λ2
i are the eigenvalues of U2 = FT · F, and A is the matrix of eigenvectors N̂i .

The eigenvalues λi are called the principal stretches and the corresponding mutually
orthogonal eigenvectors are called the principal directions. The tensors U and V
have the same eigenvalues and their eigenvectors differ only by the rotation R; see
Problem 3.31 for a proof. Thus

U = A


 λ1 0 0

0 λ2 0
0 0 λ3


AT =

3∑
i=1

λi N̂i N̂i . (3.7.9)

In view of Eq. (3.7.8), the eigenvalues of U and V are identical. Once the stretch
tensor U is known, the rotation tensor R can be obtained from Eq. (3.7.1) as

R = F · U−1. (3.7.10)

More details on rotation and stretch tensors can be found in the books by
Malvern (1969) and Truesdell and Noll (1965). An example of the use of the po-
lar decomposition theorem is presented next.

EXAMPLE 3.7.1: Consider the deformation given by the mapping

x1 = 1
4

[4X1 + (9 − 3X1 − 5X2 − X1 X2) t] , x2 = 1
4

[4X2 + (16 + 8X1) t] .

(a) For X = (0, 0) and t = 1, determine the deformation gradient tensor F and
right Cauchy–Green strain tensor C.

(b) Find the eigenvalues (stretches) λ1 and λ2 and the associated eigenvectors
N̂1 and N̂2.

(c) Use the polar decomposition to determine the symmetric stretch tensor U
and rotation tensor R.



P1: IBE

Chapter03 CUFX197-Reddy 978 0 521 87044 3 October 3, 2007 10:36

100 Kinematics of Continua

SOLUTION:

(a) For X = (0, 0) and time t = 1, the components of the deformation gradient
tensor F and right Cauchy–Green strain tensor C are

[F] = 1
4

[
1 −5
8 4

]
, [C] = 1

16

[
65 27
27 41

]
.

(b) The eigenvalues λ2
1 and λ2

2 of matrix [C] are determined by setting

|[C] − λ2[I]| = 0 → λ2
1 = 5.1593, λ2

2 = 1.4658

so that λ1 = 2.2714 and λ2 = 1.2107. The eigenvectors are (in vector com-
ponent form)

{N(1)} =
{

0.8385
0.5449

}
, {N(2)} =

{−0.5449
0.8385

}
.

(c) Hence, the stretch tensor can be written as

U = λ1N̂(1)N̂(1) + λ2N̂(2)N̂(2)

= λ1

(
N(1)

1 ê1 + N(1)
2 ê2

) (
N(1)

1 ê1 + N(1)
2 ê2

)
+ λ2

(
N(2)

1 ê1 + N(2)
2 ê2

) (
N(2)

1 ê1 + N(2)
2 ê2

)
=
(
λ1[N(1)

1 ]2 + λ2[N(2)
1 ]2

)
ê1ê1 +

(
λ1[N(1)

2 ]2 + λ2[N(2)
2 ]2

)
ê2ê2

+
(
λ1 N(1)

1 N(1)
2 + λ2 N(2)

1 N(2)
2

)
(ê1ê2 + ê2ê1)

or in matrix form

[U] =
[

1.9564 0.4846
0.4846 1.5257

]
.

Then the rotation tensor [R] in matrix form is given by

[R] = [F][U]−1 =
[

0.3590 −0.9333
0.9333 0.3590

]
.

3.8 Compatibility Equations

The task of computing strains (infinitesimal or finite) from a given displacement field
is a straightforward exercise. However, sometimes we face the problem of finding
the displacements from a given strain field. This is not as straightforward because
there are six independent partial differential equations (i.e., strain-displacement re-
lations) for only three unknown displacements, which would in general overdeter-
mine the solution. We will find some conditions, known as St. Venant’s compatibil-
ity equations, that will ensure the computation of unique displacement field from
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a given strain field. The derivation is presented for infinitesimal strains. For finite
strains, the same steps may be followed, but the process is so difficult that it is never
attempted (although some general compatibility conditions may be stated to ensure
integrability of the six nonlinear partial differential equations).

To understand the meaning of strain compatibility, imagine that a material body
is cut up into pieces before it is strained, and then each piece is given a certain strain.
The strained pieces cannot be fitted back into a single continuous body without fur-
ther deformation. However, if the strain in each piece is related to or compatible
with the strains in the neighboring pieces, then they can be fitted together to form
a continuous body. Mathematically, the six relations that connect six strain com-
ponents to the three displacement components should be consistent. To make this
point clear, consider the two-dimensional case. We have three strain-displacement
relations in two displacements:

∂u1

∂x1
= ε11, (3.8.1)

∂u2

∂x2
= ε22, (3.8.2)

∂u1

∂x2
+ ∂u2

∂x1
= 2ε12. (3.8.3)

If the given data (ε11, ε22, ε12) is compatible (or consistent), any two of the three
equations should yield the same displacement components. The compatibility of the
data can be established as follows. Differentiate the first equation with respect to x2

twice, the second equation with respect to x1 twice, and the third equation with
respect to x1 and x2 each to obtain

∂3u1

∂x1∂x2
2

= ∂2ε11

∂x2
2

, (3.8.1′)

∂3u2

∂x2∂x2
1

= ∂2ε22

∂x2
1

, (3.8.2′)

∂3u1

∂x2
2∂x1

+ ∂3u2

∂x2
1∂x2

= 2
∂2ε12

∂x1∂x2
. (3.8.3′)

Using Eqs. (3.8.1′) and (3.8.2′) in (3.8.3′), we arrive at the following relation between
the three strains:

∂2ε11

∂x2
2

+ ∂2ε22

∂x2
1

= 2
∂2ε12

∂x1∂x2
. (3.8.4)

Equation (3.8.4) is called the strain compatibility condition among the three strains
for a two-dimensional case.
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Similar procedure can be followed to obtain the strain compatibility equations
for the three-dimensional case. In addition to Eq. (3.8.4) five more such conditions
can be derived:

∂2ε11

∂x2
3

+ ∂2ε33

∂x2
1

= 2
∂2ε13

∂x1∂x3
, (3.8.5)

∂2ε22

∂x2
3

+ ∂2ε33

∂x2
2

= 2
∂2ε23

∂x2∂x3
, (3.8.6)

∂2ε11

∂x2∂x3
+ ∂2ε23

∂x2
1

= ∂2ε13

∂x1∂x2
+ ∂2ε12

∂x1∂x3
, (3.8.7)

∂2ε22

∂x1∂x3
+ ∂2ε13

∂x2
2

= ∂2ε23

∂x1∂x2
+ ∂2ε12

∂x2∂x3
, (3.8.8)

∂2ε33

∂x1∂x2
+ ∂2ε12

∂x2
3

= ∂2ε13

∂x2∂x3
+ ∂2ε23

∂x1∂x3
. (3.8.9)

The six equations in Eqs. (3.8.4)–(3.8.9) can be written as a single relation using the
index notation

∂2εmn

∂xi∂xj
+ ∂2εi j

∂xm∂xn
= ∂2εim

∂xj∂xn
+ ∂2ε jn

∂xi∂xm
. (3.8.10)

These conditions are both necessary and sufficient to determine a single-valued dis-
placement field. Similar compatibility conditions hold for the rate of deformation
tensor D.

Equation (3.8.10) can be derived in vector form as follows. We begin with the
curl of ε:

∇ × ε = ei jk
∂ε jr

∂xi
êk êr = 1

2
ei jk

(
∂2u j

∂xi∂xr
+ ∂2ur

∂xi∂xj

)
êk êr

= 1
2

(
ei jk

∂2u j

∂xi∂xr
+ 0

)
êk êr . (3.8.11)

Using Eq. (3.5.13), we have

∇ × ε = 1
2

ei jk
∂2u j

∂xi∂xr
êk êr = ∂

∂xr

(
1
2

ei jk
∂u j

∂xi
êk

)
êr = ∂ωk

∂xr
êk êr

or

(∇ × ε)T = êr
∂ωk

∂xr
êk = êr

∂

∂xr
(ωk êk) = ∇ω.
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Since the curl (∇×) of the gradient (∇) of a vector (or tensor) is zero, we take curl of
the above equation and arrive at the compatibility equation in vector/tensor form:

∇ × (∇ × ε)T = 0 or eikr e jls εi j,kl = 0. (3.8.12)

The next example illustrates how to determine if a given strain field is compatible.

EXAMPLE 3.8.1: Given the following two-dimensional, infinitesimal strain field:

ε11 = c1x1
(
x2

1 + x2
2

)
, ε22 = 1

3
c2x3

1 , ε12 = c3x2
1 x2,

where c1, c2, and c3 are constants, determine whether the strain field is compat-
ible.

SOLUTION: Using Eq. (3.8.4), we obtain

∂2ε11

∂x2
2

+ ∂2ε22

∂x2
1

− 2
∂2ε12

∂x1∂x2
= 2c1x1 + 2c2x1 − 4c3x1.

Thus the strain field is not compatible, unless c1 + c2 − 2c3 = 0.

The next example illustrates how to determine the displacement field from a
given compatible strain field.

EXAMPLE 3.8.2: Consider the problem of the isotropic cantilever beam bent by
a load P at the free end, as shown in Figure 3.8.1. From the elementary beam
theory, we have the following strains:

ε11 = − Px1x2

EI
, ε22 = −νε11 = ν

Px1x2

EI
, ε12 = − (1 + ν)P

2EI
(h2 − x2

2 ), (3.8.13)

where I is the second moment of area about the x3-axis, ν is the Poisson ratio,
E is Young’s modulus, and 2h is the height of the beam. (a) Determine whether
the strains are compatible, and if it is, (b) find the displacement field using the
linearized strain-displacement relations, and (c) determine the constants of in-
tegration using suitable boundary conditions.

L

x2

x1
x3

b

x2

2h

P
P

M3

V

x1

11σ

Figure 3.8.1. Cantilever beam bent by a point load, P.
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SOLUTION

(a) Substituting εi j into the single compatibility Eq. (3.8.4), we obtain 0 + 0 = 0.

Thus the strains satisfy the compatibility equation in two dimensions. Al-
though the two-dimensional strains are compatible, the three-dimensional
strains are not compatible. For example, using the additional strains,
ε33 = −νε11, ε13 = ε23 = 0, one can show that all of the equations except
the one in Eq. (3.8.9) are satisfied.

(b) Using the strain-displacement equations and integrating the strains

∂u1

∂x1
= ε11 = − Px1x2

EI
or u1 = − Px2

1 x2

2EI
+ f (x2), (3.8.14)

∂u2

∂x2
= ε22 = ν Px1x2

EI
or u2 = ν Px1x2

2

2EI
+ g(x1), (3.8.15)

where f (x2) and g(x1) are functions of integration. Substituting u1 and u2

into the definition of 2ε12, we obtain

2ε12 = ∂u1

∂x2
+ ∂u2

∂x1
= − Px2

1

2EI
+ df

dx2
+ ν Px2

2

2EI
+ dg

dx1
. (3.8.16)

But this must be equal to the strain value given in Eq. (3.8.13):

− Px2
1

2EI
+ df

dx2
+ ν Px2

2

2EI
+ dg

dx1
= − (1 + ν)

EI
P(h2 − x2

2 ).

Separating the x1 and x2 terms, we obtain

− dg
dx1

+ Px2
1

2EI
− (1 + ν)Ph2

EI
= df

dx2
− (2 + ν)Px2

2

2EI
.

Since the left side depends only on x1 and the right side depends only on x2,
and yet the equality must hold, it follows that both sides should be equal to
a constant c0:

df
dx2

− (2 + ν)Px2
2

2EI
= c0, − dg

dx1
+ Px2

1

2EI
− (1 + ν)Ph2

EI
= c0.

Integrating the expressions for f and g, we obtain

f (x2) = (2 + ν)Px3
2

6EI
+ c0x2 + c1

g(x1) = Px3
1

6EI
− (1 + ν)Ph2x1

EI
− c0x1 + c2,

(3.8.17)

where c1 and c2 are constants of integration that are to be determined. The
most general form of displacement field (u1, u2) corresponding to the strains
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in Eq. (3.8.13) is given by

u1(x1, x2) = − Px2
1 x2

2EI
+ (2 + ν)Px3

2

6EI
+ c0x2 + c1,

u2(x1, x2) = − (1 + ν)Ph2x1

EI
+ ν Px1x2

2

2EI
+ Px3

1

6EI
− c0x1 + c2.

(3.8.18)

(c) The three constants c0, c1, and c2 are determined using boundary condi-
tions necessary to prevent the beam from moving as a rigid body. From
Figure 3.8.1, we have the following boundary conditions:

u1(L, 0) = 0, u2(L, 0) = 0. (3.8.19)

This prevents rigid body translations in the x1- and x2-directions. Substitut-
ing the expressions for u1 and u2 into the boundary conditions (3.8.19), we
obtain

u1(L, 0) = 0 → c1 = 0,

u2(L, 0) = 0 → c0L− c2 = − (1 + ν)Ph2L
EI

+ PL3

6EI
.

(3.8.20)

To remove rigid body rotation, we assume that the rotation of the vertical
edge at the point (x1, x2) = (L, 0) is zero:(

∂u2

∂x1

)
x1=L,x2=0

= 0 → c0 = PL2

2EI
− (1 + ν)Ph2

EI
, c2 = PL3

3EI
. (3.8.21)

The displacement field is

u1(x1, x2) = PL2x2

6EI

[
3

(
1 − x2

1

L2

)
+ (2 + ν)

x2
2

L2
− 6(1 + ν)

h2

L2

]
,

u2(x1, x2) = PL3

6EI

[
2 − 3

x1

L

(
1 − ν

x2
2

L2

)
+ x3

1

L3

]
.

(3.8.22)

3.9 Change of Observer: Material Frame Indifference

In the analytical description of physical events, the following two requirements must
be followed:

1. Invariance of the equations with respect to stationary coordinate frames of ref-
erence.

2. Invariance of the equations with respect to frames of reference that move in
arbitrary relative motion.

The first requirement is readily met by expressing the equations in vector/tensor
form, which is invariant. The assertion that an equation is in “invariant form” refers
to the vector form that is independent of the choice of a coordinate system. The
coordinate systems used in the present study were assumed to be relatively at rest.
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The second requirement is that the invariance property holds for reference frames
(or observers) moving arbitrarily with respect to each other. This requirement is
dictated by the need for forces to be the same as measured by all observers irre-
spective of their relative motions. The concept of frames of reference should not be
confused with that of coordinate systems, as they are not the same at all. A given
observer is free to choose any coordinate system as may be convenient to observe
or analyze the system response. Invariance with respect to changes of observer is
termed material frame indifference or material objectivity.

A detailed discussion of frame indifference is outside the scope of the present
study, and only a brief discussion is presented here. Functions and fields whose val-
ues are scalars, vectors, or tensors are called frame indifferent or objective if both
the dependent and independent vector and tensor variables transform according to
the following equations:

1. Events, x, t : x∗ = c(t) + Q(t) · x
2. Vectors, v: v∗ = Q(t) · v
3. General second-order tensors, S: S∗ = Q(t) · S · QT(t)
4. Deformation gradient tensor, F: F∗ = Q(t) · F

Here quantities without an asterisk refer to a frame of reference (or observer) F
with origin O, and those with an asterisk (*) refer to another frame of reference F∗

with origin O∗; c(t) is a constant vector from O to O∗, and Q(t) is the orthogonal ro-
tation tensor that rotates frame F∗ into frame F . For example, x and x∗ refer to the
same motion, but mathematically x∗ is the motion obtained from x by superposition
of a rigid rotation and translation. One can show that the velocity and acceleration
vectors are not objective.

To see the effect on the deformation gradient of a change of observer, consider
the most general mapping between observer O and observer O∗

x∗ = c(t) + Q(t) · x, (3.9.1)

where c is an arbitrary vector and Q is a second-order orthogonal tensor (i.e.,
Q · Q = I), both of which depend on time t . The mapping in Eq. (3.9.1) may be
interpreted as one that takes (x, t) to (x∗, t∗) as a change of observer from O to O∗,
so that the event which is observed at place x at time t by observer O is the same
event as that observed at x∗ at time t∗ by observer O∗, where t∗ = t − a, and a is a
constant. Thus, a change of observer merely changes the description of an event.

The motion of body B as seen by observer O can be written as

x = χ(X, t), (3.9.2)

whereas observer O∗ describes the same motion as

x∗ = χ∗(X, t∗), (3.9.3)

where χ∗(X, t∗) is defined through the observer mapping by

χ∗(X, t∗) = c(t) + Q(t) · χ(X, t), t∗ = t − a. (3.9.4)
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The velocity and acceleration of the particle X as observed by O are

∂χ

∂t
,

∂2χ

∂t2
, (3.9.5)

respectively. The velocity and acceleration observed by O∗ are

∂χ∗

∂t∗ = ∂c
∂t

+ ∂Q
∂t

· χ(X, t) + Q(t) · ∂χ

∂t
,

∂2χ∗

∂t∗2
= ∂2c

∂t2
+ 2

∂Q
∂t

· ∂χ

∂t
+ Q(t) · ∂2χ

∂t2
+ ∂2Q

∂t2
· χ(X, t),

(3.9.6)

respectively. We note that the two observers’ view of the velocity and acceleration
of a given motion are different, even though the rate of change at fixed X is the same
in each case.

If the reference configuration is independent of the observer, the deformation
gradients in the two frames of reference are F and F∗, respectively, where

F∗ = Q(t) · F(X, t). (3.9.7)

The respective Jacobians are given by

J = det F, J ∗ = det F∗ = det F = J, (3.9.8)

where the fact that the determinant of Q is unity is used. Thus the volume change
is unaffected by an observer transformation, which makes sense as the local volume
ratio should be independent of the (kinematic) description of motion.

To see how the Green–Lagrange strain tensor changes under the observer trans-
formation, consider

C∗ = (F∗)T · F∗ =
(

FT · QT
)

·
(

Q · F
)

= FT · F = C, (3.9.9)

where Eq. (3.9.7) and the the property QT · Q = I of an orthogonal matrix Q is
used. Hence, by definition [see Eqs. (3.4.3) and (3.4.5)], the Green strain tensor as
measured by the two different observers is the same:

E = E∗. (3.9.10)

3.10 Summary

In this chapter, the two descriptions of motion, namely, the spatial (Eulerian) and
material (Lagrange), are discussed, and the deformation gradient tensor, Cauchy–
Green deformation tensors, several forms of homogeneous deformations, and var-
ious measures of strain are introduced. The strain tensors discussed include the
Green–Lagrange strain tensor, Cauchy strain tensor, and the Euler strain tensor.
Physical interpretation of the normal and shear strain tensor components is also
discussed. Compatibility conditions on strains to ensure a unique determination of
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displacements from a given strain field are presented. The polar decomposition the-
orem is also presented and its utility in determining the principal stretches was il-
lustrated. Numerous examples are presented to illustrate the concepts introduced.
Finally, the concept of frame indifference is briefly discussed.

PROBLEMS

3.1 Given the motion

x = (1 + t)X,

determine the velocity and acceleration fields of the motion.

3.2 Show that the acceleration components in cylindrical coordinates are

ar = ∂vr

∂t
+ vr

∂vr

∂r
+ vθ

r
∂vr

∂θ
+ vz

∂vr

∂z
− v2

θ

r
,

aθ = ∂vθ

∂t
+ vr

∂vθ

∂r
+ vθ

r
∂vθ

∂θ
+ vz

∂vθ

∂z
+ vrvθ

r
,

az = ∂vz

∂t
+ vr

∂vz

∂r
+ vθ

r
∂vz

∂θ
+ vz

∂vz

∂z
.

3.3 The motion of a body is described by the mapping

χ(X) = (X1 + t2 X2) ê1 + (X2 + t2 X1) ê2 + X3 e3,

where t denotes time. Determine

(a) the components of the deformation gradient tensor F,

(b) the components of the displacement, velocity, and acceleration vectors, and

(c) the position (X1, X2, X3) of the particle in undeformed configuration that
occupies the position (x1, x2, x3) = (9, 6, 1) at time t = 2 s in the deformed
configuration.

3.4 Homogeneous stretch. Consider a body with deformation mapping of the form

χ(X) = k1 X1 ê1 + k2 X2 ê2 + k3 X3 ê3,

where ki are constants. Determine the components of

(a) the deformation gradient tensor F, and

(b) the left and right Cauchy–Green tensors C and B.

3.5 Homogeneous stretch followed by simple shear. Consider a body with deforma-
tion mapping of the form

χ(X) = (k1 X1 + e0k2 X2) ê1 + k2 X2 ê2 + k3 X3 ê3,

where ki and e0 are constants. Determine the components of

(a) the deformation gradient tensor F, and

(b) the left and right Cauchy–Green tensors C and B.
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3.6 Suppose that the motion of a continuous medium is given by

x1 = X1 cos At + X2 sin At,

x2 = −X1 sin At + X2 cos At,

x3 = (1 + Bt)X3,

where A and B are constants. Determine the components of

(a) the displacement vector in the material description,

(b) the displacement vector in the spatial description, and

(c) the Green–Lagrange and Eulerian strain tensors.

3.7 If the deformation mapping of a body is given by

χ(X) = (X1 + AX2) ê1 + (X2 + BX1) ê2 + X3 ê3,

where A and B are constants, determine

(a) the displacement components in the material description,

(b) the displacement components in the spatial description, and

(c) the components of the Green–Lagrange and Eulerian strain tensors.

3.8 For the deformation field is given in Problem 3.5, determine the positions
(x1, x2, x3) of a circle of material particles X2

1 + X2
2 = a2.

3.9 The motion of a continuous medium is given by

x1 = 1
2

(X1 + X2)et + 1
2

(X1 − X2)e−t ,

x2 = 1
2

(X1 + X2)et − 1
2

(X1 − X2)e−t ,

x3 = X3.

Determine

(a) the velocity components in the material description,

(b) the velocity components in the spatial description, and

(c) the components of the rate of deformation and vorticity tensors.

3.10 Nanson’s formula. Let the differential area in the reference configuration be
dA. Then

N̂dA = dX(1) × dX(2) or NI dA = eI J K dX(1)
J dX(2)

K ,

where dX(1) and dX(2) are two nonparallel differential vectors in the reference
configuration. The mapping from the undeformed configuration to the deformed
configuration maps dX(1) and dX(2) into dx(1) and dx(2), respectively. Then n̂da =
dx(1) × dx(2). Show that

n̂ da = JF−T · N̂ dA.
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3.11 Consider a rectangular block of material of thickness h and sides 3b and 4b and
having a triangular hole as shown in Figure P3.11. If the material is subjected to the
deformation mapping given in Eq. (3.3.12),

χ(X) = (X1 + γ X2)ê1 + X2 e2 + X3 ê3,

determine (a) the equation of the line BC in the undeformed and deformed con-
figurations, (b) the angle ABC in the undeformed and deformed configurations,
and (c) the area of the triangle ABC in the undeformed and deformed configura-
tions.

( )X

1X

2X

3b

4b

1x

2x
4

A B

C C

A B

3b

4b

Figure P3.11.

3.12 Consider a square block of material of thickness h, as shown in Figure P3.12.
If the material is subjected to the deformation mapping given in Eq. (3.3.14) with
γ1 = 1 and γ2 = 3,

χ(X) = X1(1 + X2)ê1 + X2(1 + 3X1)e2 + X3 ê3,

(a) compute the components of the Cauchy–Green deformation tensor C and
Green–Lagrange strain tensor E at the point X = (1, 1, 0), and

(b) the principal strains and directions at X = (1, 1, 0).

( )X

1X

2X

1
3

2x

1x
1

0

1

10 0
0

Figure P3.12.

3.13 Determine the displacements and Green–Lagrange strain tensor components
for the deformed configuration shown in Figure P3.13. The undeformed configura-
tion is shown in dashed lines.

3.14 Determine the displacements and Green–Lagrange strain components for the
deformed configuration shown in Figure P3.14. The undeformed configuration is
shown in dashed lines.
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e0

a

b

A B

D
C

e0

x1, X1
A B

CD

x2, X2

e0

a

b

A B

D C
e0

x1, X1

x2, X2

A B
x1=k X2

2

D
CD

Figure P3.13. Figure P3.14.

3.15 Determine the displacements and Green-Lagrange strains in the (x1, x2, x3)
system for the deformed configuration shown in Figure P3.15. The undeformed con-
figuration is shown in dashed lines.

A B

1e

2e

1 1,x X

2 2,x X

D

C

C

b

a

Figure P3.15.

3.16 Determine the displacements and Green–Lagrange strains for the deformed
configuration shown in Figure P3.16. The undeformed configuration is shown in
dashed lines.

A B

1

1 1,x X

2 2,x X

D
C

A
B

1 2 1 2

1 2 1 2

1 2 1 2

1 2 1 2

A : ( , ) (0,0); A : ( , ) (0,0);

B : ( , ) (1,0); B : ( , ) (0.8,0.2);

C : ( , ) (1,1); C : ( , ) (1.3,1.2);

D : ( , ) (0,1); D : ( , ) (0.5,0.9)

X X x x

X X x x

X X x x

X X x x

= =

= =

= =

= =

C

0κ

0κ

κ

κ
B

D

1

Figure P3.16.

Discussion. Discuss the validity of the following comments by a reviewer of
Problems 3.13–3.16: “. . . in these (problems) the student is asked to construct the
deformation in the interior of the body from the boundary data alone. This is really
quite absurd, for the answer is not kinematically determined in general. It depends
on the details of material constitution, material homogeneity, whether the body is
in equilibrium or not, etc.”

3.17 Given the following displacement vector in a material description using a cylin-
drical coordinate system

u = Ar êr + Brzêθ + C sin θ êz,

where A, B, and C are constants, determine the infinitesimal strains.
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3.18 Show that the components of the Green–Lagrange strain tensor in cylindrical
coordinate system are given by

Err = ∂ur

∂r
+ 1

2

[(
∂ur

∂r

)2

+
(

∂uθ

∂r

)2

+
(

∂uz

∂r

)2
]

,

Erθ = 1
2


1

r
∂ur

∂θ
+ ∂uθ

∂r
− uθ

r
+ 1

r
∂ur

∂r
∂ur

∂θ
+ 1

r
∂uθ

∂r
∂uθ

∂θ

+ 1
r

∂uz

∂r
∂uz

∂θ
+ ur

r
∂uθ

∂r
− uθ

r
∂ur

∂r


,

Erz = 1
2

(
∂ur

∂z
+ ∂uz

∂r
+ ∂ur

∂r
∂ur

∂z
+ ∂uθ

∂r
∂uθ

∂z
+ ∂uz

∂r
∂uz

∂z

)
,

Eθθ = ur

r
+ 1

r
∂uθ

∂θ
+ 1

2


(1

r
∂ur

∂θ

)2

+
(

1
r

∂uθ

∂θ

)2

+
(

1
r

∂uz

∂θ

)2

− 2
r2

uθ

∂ur

∂θ
+ 2

r2
ur

∂uθ

∂θ
+
(uθ

r

)2
+
(ur

r

)2


,

Eθz = 1
2


∂uθ

∂z
+ 1

r
∂uz

∂θ
+ 1

r
∂ur

∂θ

∂ur

∂z
+ 1

r
∂uθ

∂θ

∂uθ

∂z

+ 1
r

∂uz

∂θ

∂uz

∂z
− uθ

r
∂ur

∂z
+ ur

r
∂uθ

∂z


,

Ezz = ∂uz

∂z
+ 1

2

[(
∂ur

∂z

)2

+
(

∂uθ

∂z

)2

+
(

∂uz

∂z

)2
]

.

3.19 The two-dimensional displacement field in a body is given by

u1 = X1

[
X2

1 X2 + c1

(
2c3

2 + 3c2
2 X2 − X3

2

)]
,

u2 = −X2

(
2c3

2 + 3
2

c2
2 X2 − 1

4
X3

2 + 3
2

c1 X2
1 X2

)
,

where c1 and c2 are constants. Find the linear and nonlinear Green–Lagrange
strains.

3.20 Determine whether the following strain fields are possible in a continuous
body:

(a) [ε] =
[

(X2
1 + X2

2 ) X1 X2

X1 X2 X2
2

]
, (b) [ε] =


 X3(X2

1 + X2
2 ) 2X1 X2 X3 X3

2X1 X2 X3 X2
2 X1

X3 X1 X2
3


 .



P1: IBE

Chapter03 CUFX197-Reddy 978 0 521 87044 3 October 3, 2007 10:36

Problems 3.18–3.29 113

3.21 Find the axial strain in the diagonal element of Problem 3.13, using (a) the
basic definition of normal strain and (b) the strain transformation equations.

3.22 The biaxial state of strain at a point is given by ε11 = 800 × 10−6 in./in., ε22 =
200 × 10−6 in./in., ε12 = 400 × 10−6 in./in. Find the principal strains and their direc-
tions.

3.23 Consider the following infinitesimal strain field:

ε11 = c1 X2
2, ε22 = c1 X2

1, 2ε12 = c2 X1 X2,

ε31 = ε32 = ε33 = 0,

where c1 and c2 are constants. Determine

(a) c1 and c2 such that there exists a continuous, single-valued displacement
field that corresponds to this strain field,

(b) the most general form of the corresponding displacement field using c1 and
c2 obtained in Part (a), and

(c) the constants of integration introduced in Part (b) for the boundary condi-
tions u = 0 and � = 0 at X = 0.

3.24 Show that the invariants J1, J2, and J3 of the Green–Lagrange strain tensor E
can be expressed in terms of the principal values λi of E as

J1 = λ1 + λ2 + λ3, J2 = λ1λ2 + λ2λ3 + λ3λ1, J3 = λ1λ2λ3.

Of course, the above result holds for any second-order tensor.

3.25 Show that

d
dt

[
(ds)2] = 2dx · D · dx.

3.26 Show that the spin tensor W can be written as

W = Ṙ · RT,

where R is the rotation tensor.

3.27 Verify that

v̇ = ∂v
∂t

+ 1
2

grad (v · v) + 2W · v

= ∂v
∂t

+ 1
2

grad (v · v) + 2w × v,

where W is the spin tensor and w is the vorticity vector [see Eq. (3.6.5)].

3.28 Evaluate the compatibility conditions ∇0 × (∇0 × E)T = 0 in cylindrical coor-
dinates.

3.29 Given the strain components

ε11 = f (X2, X3), ε22 = ε33 = −ν f (X2, X3), ε12 = ε13 = ε23 = 0,

determine the form of f (X2, X3) in order that the strain field is compatible.
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3.30 Given the strain tensor E = Err êr êr + Eθθ êθ êθ in an axisymmetric body (i.e.,
Err and Eθθ are functions of r and z only), determine the compatibility conditions
on Err and Eθθ .

3.31 Show that the components of the spin tensor W in cylindrical coordinate sys-
tem are

Wθr = 1
2

(
1
r

∂vr

∂θ
− vθ

r
− ∂vθ

∂r

)
= −Wrθ ,

Wzr = 1
2

(
∂vr

∂z
− ∂vz

∂r

)
= −Wrz,

Wθz = 1
2

(
1
r

∂vz

∂θ
− ∂vθ

∂z

)
= −Wzθ .

3.32 Establish the uniqueness of the decomposition F = R · U = V · R. For exam-
ple, if F = R1 · U1 = R2 · U2, then show that R1 = R2 and U1 = U2.

3.33 Show that the eigenvalues of the left and right Cauchy stretch tensors U and
V are the same and that the eigenvector of V is given by R · n, where n is the eigen-
vector of U.

3.34 Calculate the left and right Cauchy stretch tensors U and V associated with F
of Problem 3.5.

3.35 Given that

[F] = 1
5

[
2 −5

11 2

]
,

determine the right and left stretch tensors.

3.36 Calculate the left and right Cauchy stretch tensors U and V associated with F
of Problem 3.7 for the choice of A = 2 and B = 0.
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4 Stress Measures

Most of the fundamental ideas of science are essentially simple, and may, as a rule,
be expressed in a language comprehensible to everyone.

Albert Einstein

4.1 Introduction

In the beginning of Chapter 3, we have briefly discussed the need to study defor-
mation and stresses in material systems that we may design for engineering applica-
tions. All materials have certain threshold to withstand forces, beyond which they
“fail” to perform their intended function. The force per unit area, called stress, is a
measure of the capacity of the material to carry loads, and all designs are based on
the criterion that the materials used have the capacity to carry the working loads of
the system. Thus, it is necessary to determine the state of stress in a material.

In the present chapter, we study the concept of stress and its various measures.
For instance, stress can be measured per unit deformed area or undeformed area.
As we shall see shortly, stress at a point in a three-dimensional continuum can be
measured in terms of nine quantities, three per plane, on three mutually perpendic-
ular planes at the point. These nine quantities may be viewed as the components of a
second-order tensor, called stress tensor. Coordinate transformations and principal
values associated with the stress tensor and stress equilibrium equations will also be
discussed.

4.2 Cauchy Stress Tensor and Cauchy’s Formula

First we introduce the true stress, that is, stress in the deformed configuration κ

that is measured per unit area of the deformed configuration κ . The surface force
acting on a small element of area in a continuous medium depends not only on the
magnitude of the area but also upon the orientation of the area. It is customary to
denote the direction of a plane area by means of a unit vector drawn normal to
that plane, as discussed in Section 2.2.3. The direction of the normal is taken by
convention as that in which a right-handed screw advances as it is rotated according

115
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n̂
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f

Figure 4.2.1. A material body supported at various points on the surface and subjected to
a number forces. Cuts through a point by planes of different orientation. Stress vector on a
plane normal to n̂.

to the sense of travel along the boundary curve or contour. Let the unit normal
vector be denoted by n̂. Then the area is expressed as A = An̂.

If we denote by df(n̂) the force on a small area n̂da located at the position x, the
stress vector can be defined, shown graphically in Figure 4.2.1, as

t(n̂) = lim
�a→0

�f(n̂)
�a

. (4.2.1)

We see that the stress vector is a point function of the unit normal n̂ which denotes
the orientation of the surface �a. The component of t that is in the direction of
n̂ is called the normal stress. The component of t that is normal to n̂ is called the
shear stress. Because of Newton’s third law for action and reaction, we see that
t(−n̂) = −t(n̂).

At a fixed point x for each given unit vector n̂, there is a stress vector t(n̂) acting
on the plane normal to n̂. Note that t(n̂) is, in general, not in the direction of n̂. It is
fruitful to establish a relationship between t and n̂.

To establish the relationship between t and n̂, we now set up an infinitesimal
tetrahedron in Cartesian coordinates, as shown in Figure 4.2.2. If −t1,−t2,−t3, and
t denote the stress vectors in the outward directions on the faces of the infinitesi-
mal tetrahedron whose areas are �a1, �a2, �a3, and �a, respectively, we have by
Newton’s second law for the mass inside the tetrahedron,

t�a − t1�a1 − t2�a2 − t3�a3 + ρ�vf = ρ�va, (4.2.2)

where �v is the volume of the tetrahedron, ρ the density, f the body force per unit
mass, and a the acceleration. Since the total vector area of a closed surface is zero
(use the gradient theorem), we have

�a n̂ − �a1ê1 − �a2ê2 − �a3ê3 = 0. (4.2.3)
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Figure 4.2.2. Tetrahedral element in Cartesian coordinates.

It follows that

�a1 = (n̂ · ê1)�a, �a2 = (n̂ · ê2)�a, �a3 = (n̂ · ê3)�a. (4.2.4)

The volume of the element �v can be expressed as

�v = �h
3

�a, (4.2.5)

where �h is the perpendicular distance from the origin to the slant face.
Substitution of Eqs. (4.2.3) and (4.2.4) into Eq. (4.2.2) and dividing throughout

by �a, yields

t = (n̂ · ê1)t1 + (n̂ · ê2)t2 + (n̂ · ê3)t3 + ρ
�h
3

(a − f). (4.2.6)

In the limit when the tetrahedron shrinks to a point, �h → 0, we are left with

t = (n̂ · ê1)t1 + (n̂ · ê2)t2 + (n̂ · ê3)t3

= (n̂ · êi )ti , (4.2.7)

where the summation convention is used. It is now convenient to display the above
equation as

t = n̂ · (ê1t1 + ê2t2 + ê3t3) . (4.2.8)

The terms in the parenthesis are to be treated as a dyadic, called stress dyadic or
stress tensor σ:

σ ≡ ê1t1 + ê2t2 + ê3t3. (4.2.9)

The stress tensor is a property of the medium that is independent of the n̂. Thus,
from Eqs. (4.2.8) and (4.2.9), we have

t(n̂) = n̂ · σ = σT · n̂, (4.2.10)

and the dependence of t on n̂ has been explicitly displayed.
The stress vector t represents the vectorial stress on a plane whose normal is n̂.

Equation (4.2.10) is known as the Cauchy stress formula, and σ is termed the Cauchy
stress tensor. Thus, the Cauchy stress tensor σ is defined to be the current force per
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Figure 4.2.3. Display of stress components in Cartesian rectangular coordinates.

unit deformed area, df = tda = σ · da, where Cauchy’s formula, t = n̂ · σ = σT · n̂,
is used.

In Cartesian component form, the Cauchy formula in (4.2.10) can be written as
ti = njσ j i . The matrix form of the Cauchy’s formula (for computing purposes) in
rectangular Cartesian system is given by


t1
t2
t3


 =


 σ11 σ21 σ31

σ12 σ22 σ32

σ13 σ23 σ33






n1

n2

n3


 . (4.2.11)

It is useful to resolve the stress vectors t1, t2, and t3 into their orthogonal com-
ponents in a rectangular Cartesian system

ti = σi1ê1 + σi2ê2 + σi3ê3 = σi j ê j (4.2.12)

for i = 1, 2, 3. Hence, the stress tensor can be expressed in the Cartesian component
form as

σ = êi ti = σi j êi ê j . (4.2.13)

The component σi j represents the stress (force per unit area) on a plane per-
pendicular to the xi coordinate and in the xj coordinate direction, as shown in
Figure 4.2.3.

In cylindrical coordinate system, for example, the dyadic form of the stress ten-
sor is given by

σ = σrr êr êr + σrθ (êr êθ + êθ êr ) + σrz (êr êz + êzêr )

+ σθθ êθ êθ + σθz (êθ êz + êzêθ ) + σzzêzêz. (4.2.14)

By Example 2.2.1, the stress vector t can be represented as the sum of vectors
along and perpendicular to the unit normal vector n̂

t = (t · n̂)n̂ + n̂ × (t × n̂). (4.2.15)
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The magnitudes of the component of the stress vector t normal to the plane is given
by

tnn = t · n̂ = ti ni = njσ j i ni , (4.2.16)

and the component of t perpendicular to n̂, as depicted in Figure 4.2.2, is

tns =
√

|t|2 − t2
nn . (4.2.17)

The tangential component lies in the n̂-t plane but perpendicular to n̂. The next
example illustrates the ideas presented here.

EXAMPLE 4.2.1: With reference to a rectangular Cartesian system (x1, x2, x3),
the components of the stress dyadic at a certain point of a continuous medium
B are given by

[σ] =

 200 400 300

400 0 0
300 0 −100


 psi.

Determine the stress vector t and its normal and tangential components at the
point on the plane, φ(x1, x2) ≡ x1 + 2x2 + 2x3 = constant, passing through the
point.

SOLUTION: First, we should find the unit normal to the plane on which we are
required to find the stress vector. The unit normal to the plane defined by
φ(x1, x2, x3) = constant is given by

n̂ = ∇φ

|∇φ| = 1
3

(ê1 + 2ê2 + 2ê3).

The components of the stress vector are


t1
t2
t3


 =


 200 400 300

400 0 0
300 0 −100


 1

3




1
2
2


 = 1

3




1600
400
100


 psi,

or

t(n̂) = 1
3

(1600ê1 + 400ê2 + 100ê3) psi.

The normal component tnn of the stress vector t on the plane is given by

tnn = t(n̂) · n̂ = 2600
9

psi,

and the tangential component is given by (the Pythagorean theorem)

tns =
√

|t|2 − t2
nn = 102

9

√
(256 + 16 + 1)9 − 26 × 26 psi = 468.9 psi.
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Figure 4.2.4. Stress vector and its normal and shear components.

4.3 Transformations of Stress Components and Principal Stresses

4.3.1 Transformation of Stress Components

Since the Cauchy stress is a second-order tensor, we can define its invariants, trans-
formation laws, and eigenvalues and eigenvectors. The invariants of stress tensor σ

are defined by [see Eq. (2.5.14)]

I1 = tr σ, I2 = 1
2

[
(tr σ)2 − tr (σ2)

]
, I3 = det σ. (4.3.1)

Further, the components of a stress tensor σ in one rectangular Cartesian coordi-
nate system are related to the components in another rectangular Cartesian system
according to the transformation law in Eq. (2.5.17):

σ̄i j = 
ik 
 j
 σk
 or [σ̄] = [L][σ][L]T, (4.3.2)

where 
i j are the direction cosines


i j = ˆ̄ei · ê j . (4.3.3)

The principal stresses (eigenvalues of a stress tensor) and principal directions will
be discussed in the next section.

The next two examples show how the stress transformation equations in
Eq. (4.3.2) can be derived for a specific problem and used in the calculation of
stresses in the new coordinate system.
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EXAMPLE 4.3.1: Consider the unidirectional fiber-reinforced composite layer
shown in Figure 4.3.1. If the rectangular coordinates (x, y, z) are taken such that
the z-coordinate is normal to the plane of the layer and the x- and y-coordinates
are in the plane of the layer, as shown in Figure 4.3.1. Now suppose we define
another rectangular coordinate system (x1, x2, x3) such that the x3-coordinate
coincides with the z-coordinate, but the x1- and x2-coordinates are oriented at
an angle of θ to the x- and y-coordinates, respectively, so that the x1-axis is
along the fiber direction. Determine the transformation relationships between
the stress components σxx, σyy, σxy, · · · referred to the (x, y, z) system and σ11,
σ22, σ12, · · · referred to the coordinates system (x1, x2, x3).
SOLUTION: First, we note that the x1x2-plane and the xy-plane are parallel, but
rotated by an angle θ counterclockwise (when looking down on the lamina)
from the x-axis about the z- or x3-axis. The coordinates of a material point in
the two coordinate systems are related as follows (z = x3):




x1

x2

x3


 =


 cos θ sin θ 0

− sin θ cos θ 0
0 0 1






x
y
z


 = [L]




x
y
z


 . (4.3.4)

The inverse of Eq. (4.3.4) is




x
y
z


 =


 cos θ − sin θ 0

sin θ cos θ 0
0 0 1






x1

x2

x3


 = [L]T




x1

x2

x3


 . (4.3.5)

The inverse of [L] is equal to its transpose: [L]−1 = [L]T. That is, L is an orthog-
onal tensor.

Next, we establish the relationship between the components of stress in the
(x, y, z) and (x1, x2, x3) coordinate systems. Let σ̄i j be the components of the
stress tensor σ in the coordinates (x, y, z), that is, σxx = σ̄11, σxy = σ̄12, and so
on, and 
i j are the direction cosines defined by


i j = ˆ̄ei · ê j ,

3xz=

yx

1x

2xFigure 4.3.1. Stress components in a fiber-
reinforced layer referred to different rectangu-
lar Cartesian coordinate systems: (x, y, z) are
parallel to the sides of the rectangular lam-
ina, while (x1, x2, x3) are taken along and trans-
verse to the fiber.
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where ˆ̄ei and êi are the orthonormal basis vectors in coordinate systems
(x = x̄1, y = x̄2, z = x̄3) and (x1, x2, x3), respectively. Then using Eq. (4.3.2),
we can write

[σ̄] = [L][σ][L]T , [σ] = [L]T[σ̄][L], (4.3.6)

where [L] is the 3 × 3 matrix of direction cosines defined in (4.3.4). Carrying out
the indicated matrix multiplications in Eq. (4.3.6) and rearranging the equations
in terms of the column vectors of stress components, we obtain



σxx

σyy

σzz

σyz

σxz

σxy




=




cos2 θ sin2 θ 0 0 0 − sin 2θ

sin2 θ cos2 θ 0 0 0 sin 2θ

0 0 1 0 0 0
0 0 0 cos θ sin θ 0
0 0 0 − sin θ cos θ 0

1
2 sin 2θ − 1

2 sin 2θ 0 0 0 cos 2θ







σ11

σ22

σ33

σ23

σ13

σ12




,

(4.3.7)

and


σ11

σ22

σ33

σ23

σ13

σ12




=




cos2 θ sin2 θ 0 0 0 sin 2θ

sin2 θ cos2 θ 0 0 0 − sin 2θ

0 0 1 0 0 0
0 0 0 cos θ − sin θ 0
0 0 0 sin θ cos θ 0

− 1
2 sin 2θ 1

2 sin 2θ 0 0 0 cos 2θ







σxx

σyy

σzz

σyz

σxz

σxy




.

(4.3.8)

The result in Eq. (4.3.8) can also be obtained from Eq. (4.3.7) by replacing θ

with −θ . The stress transformation relations can also be derived using equilib-
rium of forces. (Problem 4.7 illustrates this.)

EXAMPLE 4.3.2: Consider a thin, closed, filament-wound cylindrical pressure
vessel shown in Figure 4.3.2. The vessel is of 63.5 cm (25 in.) internal diam-
eter, and it is pressurized to 1.379 MPa (200 psi). If the filament winding an-
gle is θ = 53.125◦ from the longitudinal axis of the pressure vessel, determine
the shear and normal forces per unit length of filament winding. Assume that
the material used is graphite epoxy with the following material properties [see
Reddy (2004)]:

E1 = 140 MPa (20.3 Msi), E2 = 10 MPa (1.45 Msi),

G12 = 7 MPa (1.02 Msi), ν12 = 0.3,
(4.3.9)

where MPa denotes mega (106) Pascal (Pa) and Pa = N/m2 (1 psi = 6,894.76
Pa). The material properties are not needed to answer the question.



P1: JzG

Chapter04 CUFX197-Reddy 978 0 521 87044 3 October 3, 2007 10:39

4.3 Transformations of Stress Components and Principal Stresses 123

y

x

z

θ

x

y
x1

x2

θ =  53.125 °

Figure 4.3.2. A filament-wound cylindrical
pressure vessel.

SOLUTION: First, we compute the stresses in the pressure vessel using the for-
mulas from a course on elementary mechanics of materials. The longitudinal
(σxx) and circumferential (σyy) stresses are given by

σxx = pDi

4h
, σyy = pDi

2h
, (4.3.10)

where p is internal pressure, Di is internal diameter, and h is thickness of the
pressure vessel. The stresses are independent of the material properties and
only depend on the geometry and load (pressure). Using the values of various
parameters, we calculate the stresses as

σxx = 1.379 × 0.635
4h

= 0.2189
h

MPa , σyy = 1.379 × 0.635
2h

= 0.4378
h

MPa.

The shear stress σxy is zero.
Next, we determine the shear stress σ12 along the fiber and the normal stress

σ11 in the fiber using the transformation equations (4.3.8)

σ11 = 0.2189
h

(0.6)2 + 0.4378
h

(0.8)2 = 0.3590
h

MPa,

σ22 = 0.2189
h

(0.8)2 + 0.4378
h

(0.6)2 = 0.2977
h

MPa,

σ12 =
(

0.4378
h

− 0.2189
h

)
× 0.6 × 0.8 = 0.1051

h
MPa.

Thus, the normal and shear forces per unit length along the fiber-matrix in-
terface are F22 = 0.2977 MN and F12 = 0.1051 MN, whereas the force per unit
length in the fiber direction is F11 = 0.359 MN.
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4.3.2 Principal Stresses and Principal Planes

For a given state of stress, the determination of maximum normal stresses and shear
stresses at a point is of considerable interest in the design of structures because fail-
ures occur when the the magnitudes of stresses exceed the allowable (normal or
shear) stress values, called strengths, of the material. In this regard, it is of inter-
est to determine the values and the planes on which the stresses are the maximum.
Thus, we must determine the eigenvalues and eigenvectors associated with the stress
tensor (see Section 2.5.5 for more detailed discussion of the eigenvalues and eigen-
vectors of a tensor).

It is clear from Figures 4.2.2 and 4.2.3 that the normal component of a stress
vector is the largest when t is parallel to the normal n̂. If we denote the value of
the normal stress by λ, then we can write t = λn̂. However, by Cauchy’s formula,
t = n̂ · σ = σ · n̂ (due to the symmetry of the stress tensor). Thus, we have

t = σ · n̂ = λn̂ or (σ − λI) · n̂ = 0. (4.3.11)

Because this is a homogeneous set of equations for the components of vector n̂,
a nontrivial solution will not exist unless the determinant of the matrix for σ − λI
vanishes. The vanishing of this determinant yields a cubic equation for λ, called the
characteristic equation, the solution of which yields three values of λ. The eigenval-
ues λ of σ are called the principal stresses and the associated eigenvectors are called
the principal planes. That is, for a given state of stress at a given point in the body B,
there exists a set of planes n̂ on which the stress vector is normal to the planes (i.e.,
there is no shear component on the planes).

The computation of the eigenvalues of the stress tensor is made easy by seeking
the eigenvalues of the deviatoric stress tensor [see Eq. (2.5.34)]. Let σm denote the
mean normal stress

σm = 1
3

tr σ = 1
3

I1

(
σm = 1

3
σkk

)
. (4.3.12)

Then the stress tensor can be expressed as the sum of spherical or hydrostatic stress
tensor and deviatoric stress tensor

σ = σI + σ
′
. (4.3.13)

Thus, the deviatoric stress tensor is defined by

σ
′ = σ − 1

3
I1I

(
σ

′
i j = σi j − 1

3
δi jσkk

)
. (4.3.14)

The invariants I
′
1, I

′
2, and I

′
3 of the deviatoric stress tensor are

I
′
1 = 0, I

′
2 = 1

2
σ

′
i jσ

′
i j , I

′
3 = 1

3
σ

′
i jσ

′
jkσ

′
ki . (4.3.15)

The deviatoric stress invariants are particularly important in the determination of
the principal stresses as discussed in Section 2.5.5. The next example illustrates the
computation of principal stresses and principal planes.



P1: JzG

Chapter04 CUFX197-Reddy 978 0 521 87044 3 October 3, 2007 10:39

4.3 Transformations of Stress Components and Principal Stresses 125

EXAMPLE 4.3.3: The components of a stress dyadic at a point, referred to the
(x1, x2, x3) system, are

[σ] =

 12 9 0

9 −12 0
0 0 6


MPa.

Find the principal stresses and the principal plane associated with the maximum
stress.

SOLUTION: Setting |σ − λI| = 0, we obtain

(6 − λ)[(12 − λ)(−12 − λ) − 81] = 0 → [−(144 − λ2) − 81](6 − λ) = 0.

Clearly, λ2 = 6 is an eigenvalue of the matrix. The remaining two eigenvalues
are obtained from λ2 − 225 = 0 → λ1 = 15 and λ3 = −15; thus the principal
stresses are

σ1 = λ1 = 15 MPa, σ2 = λ2 = 6 MPa, σ3 = λ3 = −15 MPa.

The plane associated with the maximum principal stress λ1 = 15 MPa can
be calculated from


 12 − 15 9 0

9 −12 − 15 0
0 0 6 − 15






n1

n2

n3


 =




0
0
0


 ,

which gives

−3n1 + 9n2 = 0, 9n1 − 27n2 = 0, −9n3 = 0 → n3 = 0, n1 = 3n2

or

n(1) = 3ê1 + ê2 or n̂(1) = 1√
10

(3ê1 + ê2).

The eigenvector associated with λ2 = 6 MPa is n(2) = ê3. Finally, the eigenvector
associated with λ3 = −15 MPa is

n(3) = ±(ê1 − 3ê2) or n̂(3) = ± 1√
10

(ê1 − 3ê2).

The principal plane 1 is depicted in Figure 4.3.3.
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Figure 4.3.3. Stresses on a point cube at the point of interest and orientation of the first prin-
cipal plane.

4.3.3 Maximum Shear Stress

In the previous section, we studied the procedure to determine the maximum nor-
mal stresses at a point. The eigenvalues of the stress tensor at the point are the
maximum normal stresses on three perpendicular planes (whose normals are the
eigenvectors), and the largest of these three stresses is the true maximum normal
stress. Recall that the shear stresses are zero on the principal planes. In this section,
we wish to determine the maximum shear stresses and their planes.

Let λ1, λ2, and λ3 denote the principal (normal) stresses and n̂ be an arbitrary
unit normal vector. Then the stress vector is t = λ1n1ê1 + λ2n2ê2 + λ3n3ê3 and tnn =
ti ni = λ1n2

1 + λ2n2
2 + λ3n2

3. The square of the magnitude of the shear stress on the
plane with unit normal n̂ is given by Eq. (4.2.16)

t2
ns(n̂) = |t|2 − t2

nn = λ2
1n2

1 + λ2
2n2

2 + λ2
3n2

3 − (
λ1n2

1 + λ2n2
2 + λ3n2

3

)2
. (4.3.16)

We wish to determine the plane n̂ on which tns is the maximum. Thus, we seek the
maximum of the function F(n1, n2, n3) = t2

ns(n1, n2, n3) subject to the constraint

n2
1 + n2

2 + n2
3 − 1 = 0. (4.3.17)

One way to determine the extremum of a function subjected to a constraint is to
use the Lagrange multiplier method, in which we seek the stationary value of the
modified function

FL(n1, n2, n3) = t2
ns(n1, n2, n3) + λ

(
n2

1 + n2
2 + n2

3 − 1
)
, (4.3.18)

where λ is the Lagrange multiplier, which is to be determined along with n1, n2, and
n3. The necessary condition for the stationarity of FL is

0 = dFL = ∂ FL

∂n1
dn1 + ∂ FL

∂n2
dn2 + ∂ FL

∂n3
dn3 + ∂ FL

∂λ
dλ,
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or, because the increments dn1, dn2, dn3, and dλ are linearly independent of each
other, we have

∂ FL

∂n1
= 0,

∂ FL

∂n2
= 0,

∂ FL

∂n3
= 0,

∂ FL

∂λ
= 0. (4.3.19)

The last of the four relations in Eq. (4.3.19) is the same as that in Eq. (4.3.17). The
remaining three equations in Eq. (4.3.19) yield the following two sets of solutions
(not derived here)

(n1, n2, n3) = (1, 0, 0), (0, 1, 0), (0, 0, 1), (4.3.20)

(n1, n2, n3) =
(

1√
2
,± 1√

2
, 0

)
,

(
1√
2
, 0,± 1√

2

)
,

(
0,

1√
2
,± 1√

2

)
. (4.3.21)

The first set of solutions corresponds to the principal planes, on which the shear
stresses are the minimum, namely, zero. The second set of solutions corresponds to
the maximum shear stress planes. The maximum shear stresses on the planes are
given by

t2
ns = 1

4
(λ1 − λ2)2 for n̂ = 1√

2
(ê1 ± ê2),

t2
ns = 1

4
(λ1 − λ3)2 for n̂ = 1√

2
(ê1 ± ê3),

t2
ns = 1

4
(λ2 − λ3)2 for n̂ = 1√

2
(ê2 ± ê3).

(4.3.22)

The largest shear stress is given by the largest of the three values given in
Eq. (4.3.22). Thus, we have

(tns)max = 1
2

(λmax − λmin), (4.3.23)

where λmax and λmin are the maximum and minimum principal values of stress, re-
spectively. Clearly, the plane of the maximum shear stress lies between the planes of
the maximum and minimum principal stresses (i.e., oriented at ±45◦ to both planes).

EXAMPLE 4.3.4: For the state of stress given in Example 4.3.3, determine the
maximum shear stress.

SOLUTION: From Example 4.3.3, the principal stresses are (ordered from the
minimum to the maximum):

λ1 = −15 MPa, λ2 = 6 MPa, λ3 = 15 MPa.

Hence, the maximum shear stress is given by

(tns)max = 1
2

(λ3 − λ1) = 1
2

[15 − (−15)] = 15 MPa.
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Figure 4.3.4. Stresses on a point cube at the point of interest and orientation of the maximum
shear stress plane.

The planes of the maximum principal stress (λ1 = 15 MPa) and the minimum
principal stress (λ3 = −15 MPa) are given by their normal vectors (not unit vec-
tors):

n(1) = 3ê1 + ê2, n(3) = ê1 − 3ê2.

Then the plane of the maximum shear stress is given by the vector

ns =
(

n(1) − n(3)
)

= 2ê1 + 4ê2 or n̂s = 1√
5

(ê1 − 2ê2).

4.4 Other Stress Measures

4.4.1 Preliminary Comments

The Cauchy stress tensor is the most natural and physical measure of the state of
stress at a point in the deformed configuration and measured per unit area of the de-
formed configuration. It is the quantity most commonly used in spatial description
of problems in fluid mechanics. The equations of motion or equilibrium of a material
body in the Lagrange description must be derived for the deformed configuration
of the body at time t . However, since the geometry of the deformed configuration
is not known, the equations must be written in terms of the known reference con-
figuration. In doing so, we introduce various measures of stress. They emerge in a
natural way as we transform volumes and areas from the deformed configuration to
undeformed (or reference) configuration. These measures are purely mathematical
but facilitate analysis. These are discussed next.

4.4.2 First Piola–Kirchhoff Stress Tensor

Consider a continuum B subjected to a deformation mapping χ that results in the
deformed configuration κ , as shown in Figure 4.4.1. Let the force vector on an
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n̂

da

N̂

dA

f t n̂d da da= = ⋅f T P N̂d dA dA= = ⋅

X( )

Figure 4.4.1. Definition of the first Piola–
Kirchhoff stress tensor.

elemental area da with normal n̂ in the deformed configuration be df. Suppose that
the area element in the undeformed configuration that corresponds to da is dA. The
force df can be expressed in terms of a stress vector t times the deformed area da as

df = t(n) da.

We define a stress vector T(N) over the area element dA with normal N in the unde-
formed configuration such that it results in the same total force

df = t(n) da = T(N)dA. (4.4.1)

Clearly, both stress vectors have the same direction but different magnitudes owing
to the different areas. The stress vector T(N) is measured per unit undeformed area,
while the stress vector t(n) is measured per unit deformed area.

From Cauchy’s formula, we have t(n) = σ · n̂, where σ is the Cauchy stress
tensor. In a similar fashion, we introduce a stress tensor P, called the first Piola–
Kirchhoff stress tensor, such that T(N) = P · N̂. Then using Eq. (4.4.1) we can write

σ · n̂ da = P · N̂ dA or σ · da = P · dA, (4.4.2)

where

da = da n̂, dA = dA N̂. (4.4.3)

The first Piola–Kirchhoff stress tensor, also referred to as the nominal stress tensor,
or Lagrangian stress tensor, gives the current force per unit undeformed area.

The stress vector T(N) is known as the psuedo stress vector associated with the
first Piola–Kirchhoff stress tensor. The tensor Cartesian component representation
of P is given by

P = Pi I êi ÊI . (4.4.4)

Clearly, the first Piola–Kirchhoff stress tensor is a mixed tensor.
To derive the relation between first Piola–Kirchhoff stress tensor and the

Cauchy stress tensor, we recall from Nanson’s formula in Eq. (3.3.23) the relation
between the area elements in the deformed and undeformed configurations. From
Eqs. (4.4.2) and (3.3.23), we obtain

P · dA = σ · da

= Jσ · F−T · dA, (4.4.5)
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where J is the Jacobian. Finally, we arrive at the relation

P = Jσ · F−T. (4.4.6)

In general, the first Piola–Kirchhoff stress tensor P is unsymmetric even when the
Cauchy stress tensor σ is symmetric.

4.4.3 Second Piola–Kirchhoff Stress Tensor

The second Piola–Kirchhoff stress tensor S, which is used in the study of large de-
formation analysis, is introduced as the stress tensor associated with the force dF
in the undeformed elemental area dA that corresponds to the the force df on the
deformed elemental area da

dF = S · dA. (4.4.8)

Thus, the second Piola–Kirchhoff stress tensor gives the transformed current force
per unit undeformed area.

Similar to the relationship between dx and dX, dX = F−1 · dx, the force df on
the deformed elemental area da is related to the force dF on the undeformed ele-
mental area dA

dF = F−1 · df

= F−1 · (P · dA)

= S · dA. (4.4.9)

Hence, the second Piola–Kirchhoff stress tensor is related to the first Piola–
Kirchhoff stress tensor and Cauchy stress tensor according to the equations

S = F−1 · P = JF−1 · σ · F−T. (4.4.10)

Clearly, S is symmetric whenever σ is symmetric. Cartesian component representa-
tion of S is

S = SI J ÊIÊJ . (4.4.11)

We can introduce the psuedo stress vector T̃ associated with the second Piola–
Kirchhoff stress tensor by

dF = T̃ dA = S · N̂ dA = S · dA. (4.4.12)

The next two examples illustrate the meaning of the first and second Piola–
Kirchhoff stress tensors and the computation of first and second Piola–Kirchhoff
stress tensor components from the Cauchy stress tensor components.

EXAMPLE 4.4.1: Consider a bar of cross-sectional area A and length L. The ini-
tial configuration of the bar is such that its longitudinal axis is along the X1 axis.
If the bar is subjected to uniaxial tensile stress and deformation that stretches
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Figure 4.4.2. The undeformed and deformed bar of Example 4.4.1.

the bar by an amount λ and rotates it, without bending, by an angle θ , as shown
in Figure 4.2.2 [see Hjelmstad (2005)], the deformation mapping χ is given by

χ(X) = (λX1 cos θ − µX2 sin θ) ê1 + (λX1 sin θ + µX2 cos θ) ê2 + X3 ê3,

where λ and µ are constants; λ denotes the stretch of the bar and µλ denotes
the volume change from undeformed configuration to deformed configuration.
Determine the components of the first and second Piola–Kirchhoff stress ten-
sors.

SOLUTION: The components of the deformation gradient tensor and its inverse
are

[F] =

 λ cos θ −µ sin θ 0

λ sin θ µ cos θ 0
0 0 1


 , [F]−1 = 1

J


 µ cos θ µ sin θ 0

−λ sin θ λ cos θ 0
0 0 λµ


 ,

and the Jacobian is equal to J = λµ. Clearly, µ denotes the ratio of deformed
to undeformed cross-sectional area.

The unit vector normal to the undeformed cross-sectional area is N̂ = Ê1,
and the unit vector normal to the cross-sectional area of the deformed configu-
ration is

n̂ = cos θ ê1 + sin θ ê2.

The Cauchy stress tensor is σ = σ0 n̂n̂ and associated stress vector is t = σ0 n̂.
The components of the Cauchy stress tensor are

[σ] = σ0




cos θ

sin θ

0


{

cos θ sin θ 0
} = σ0


 cos2 θ cos θ sin θ 0

cos θ sin θ cos2 θ 0
0 0 0


 .
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The components of the first Piola–Kirchhoff stress tensor are given by
Eq. (4.4.6)

[P] = J [σ][F]−T = σ0


 cos2 θ cos θ sin θ 0

cos θ sin θ cos2 θ 0
0 0 0




µ cos θ −λ sin θ 0

µ sin θ λ cos θ 0
0 0 λµ




= µσ0


 cos θ 0 0

sin θ 0 0
0 0 0


 .

The first Piola–Kirchhoff stress tensor and the associated stress vector are

P = µσ0(cos θ ê1 + sin θ ê2) Ê1, T = P · N̂ = µσ0(cos θ ê1 + sin θ ê2).

Clearly, the matrix representing P is not symmetric.
While the stress vector t satisfies both balance of linear momentum and

angular momentum in the deformed configuration, the stress vector T satisfies
only the balance of linear momentum but not the balance of angular momentum
in the undeformed body (it does satisfy the balance of angular momentum in
the deformed body: P · FT = F · PT). On the other hand, there is no reason to
expect the forces occurring in the deformed configuration but measured in the
undeformed configuration to satisfy the balance of momenta in the undeformed
configuration.

The second Piola–Kirchhoff stress tensor is given by Eq. (4.4.10). Thus, we
have

[S] = µσ0

λ


 µ cos θ µ sin θ 0

−λ sin θ λ cos θ 0
0 0 λµ




 cos θ 0 0

sin θ 0 0
0 0 0


 = µσ0

λ


 1 0 0

0 0 0
0 0 0


 .

The second Piola–Kirchhoff stress tensor and the associated pseudo stress vec-
tor are

S = µσ0

λ
Ê1Ê1, T̃ = µσ0

λ
Ê1.

The second Piola–Kirchhoff stress tensor does satisfy the balance equations in
the undeformed body.

EXAMPLE 4.4.2: The equilibrium configuration of a deformed body is described
by the mapping

χ(X) = AX1 ê1 − BX3 ê2 + CX2 ê3,



P1: JzG

Chapter04 CUFX197-Reddy 978 0 521 87044 3 October 3, 2007 10:39

4.4 Other Stress Measures 133

where A, B, and C are constants. If the Cauchy stress tensor for this body is

[σ] =

 0 0 0

0 0 0
0 0 σ0


 ,

where σ0 is a constant, determine the pseudo stress vectors associated with the
first and second Piola–Kirchhoff stress tensors on the ê3-plane in the deformed
configuration.

SOLUTION: The deformation gradient tensor and its inverse are

[F] =

 A 0 0

0 0 −B
0 C 0


 , [F]−1 =




1
A 0 0
0 0 1

C
0 − 1

B 0


 , J = ABC.

The components of the first Piola–Kirchhoff stress tensor are

[P] = J [σ][F]−T = ABC


 0 0 0

0 0 0
0 0 σ0






1
A 0 0
0 0 − 1

B
0 1

C 0




= ABσ0


 0 0 0

0 0 0
0 1 0


 .

The components of the second Piola–Kirchhoff stress tensor are

[S] = [F]−1[P] = ABσ0




1
A 0 0
0 0 1

C
0 − 1

B 0




 0 0 0

0 0 0
0 1 0




= AB
C

σ0


 0 0 0

0 1 0
0 0 0


 .

Consider a unit area in the deformed state in the ê3-direction. The corre-
sponding undeformed area dA N̂ is given by [see Eq. (4.4.3)]

dA N̂ = 1
J

FT · n̂ da = C
J

Ê2.

Thus, dA = C/J and N̂ = Ê2. The pseudo stress vector T associated with the
first Piola–Kirchhoff stress tensor is given by Eq. (4.4.1)

T = P · N̂ = ABσ0Ê3.

The pseudo stress vector T̃ associated with the second Piola–Kirchhoff stress
tensor is given by Eq. (4.4.12)

T̃ = S · N̂ = AB
C

σ0Ê2.
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4.5 Equations of Equilibrium

The principle of conservation of linear momentum, which is commonly known as
Newton’s second law of motion, will be discussed along with other principles of me-
chanics in Chapter 5. To make the present chapter on stresses complete, we derive
the equations of equilibrium of a continuous medium undergoing small deforma-
tions using Newton’s second law of motion to a volume element of the medium, as
shown in Figure 4.5.1.

Consider the stresses and body forces on an infinitesimal parallelepiped ele-
ment of a material body. The stresses acting on various faces of the infinitesimal
parallelepiped with dimensions dx1, dx2, and dx3 along coordinate lines (x1, x2, x3)
are shown in Figure 4.5.1. By Newton’s second law of motion, the sum of the forces
in the x1-direction be zero if the body is in equilibrium. The sum of all forces in the
x1-direction is given by

0 =
(

σ11 + ∂σ11

∂x1
dx1

)
dx2dx3 − σ11dx2dx3 +

(
σ21 + ∂σ21

∂x2
dx2

)
dx1dx3

− σ21dx1dx3 +
(

σ31 + ∂σ31

∂x3
dx3

)
dx1dx2 − σ31dx1dx2 + ρ f1dx1dx2dx3

=
(

∂σ11

∂x1
+ ∂σ21

∂x2
+ ∂σ31

∂x3
+ ρ f1

)
dx1dx2dx3. (4.5.1)

Upon dividing throughout by dx1dx2dx3, we obtain

∂σ11

∂x1
+ ∂σ21

∂x2
+ ∂σ31

∂x3
+ ρ f1 = 0 . (4.5.2)

2x
1x

3x

2dx

dx

1dx

33

13

12

1122

2313

23

21

+11
∂x1

∂ 11
1dx
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∂ 13
1dx

+12
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∂ 12
1dx
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∂ 22
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+23
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∂ 23
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3

Figure 4.5.1. Stresses on a parallelepiped element.
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Similarly, the application of Newton’s second law in the x2- and x3-directions gives,
respectively,

∂σ12

∂x1
+ ∂σ22

∂x2
+ ∂σ32

∂x3
+ ρ f2 = 0, (4.5.3)

∂σ13

∂x1
+ ∂σ23

∂x2
+ ∂σ33

∂x3
+ ρ f3 = 0. (4.5.4)

In index notation, the Eq. (4.5.2)–(4.5.4) can be expressed as

∂σ j i

∂xj
+ ρ fi = 0. (4.5.5)

The invariant form of the above equation is given by

∇ · σ + ρf = 0. (4.5.6)

The symmetry of the stress tensor can be established using Newton’s second
law for moments. Consider the moment of all forces acting on the parallelepiped
about the x3-axis (see Figure 4.5.1). Using the right-handed screw rule for positive
moment, we obtain[(

σ12 + ∂σ12

∂x1
dx1

)
dx2dx3

]
dx1

2
+ (σ12dx2dx3)

dx1

2

−
[(

σ21 + ∂σ21

∂x2
dx2

)
dx1dx3

]
dx2

2
− (σ21dx1dx3)

dx2

2
= 0.

Dividing throughout by 1
2 dx1dx2dx3 and taking the limit dx1 → 0 and dx2 → 0, we

obtain

σ12 − σ21 = 0. (4.5.7)

Similar considerations of moments about the x1-axis and x2-axis give, respectively,
the relations

σ23 − σ32 = 0, σ13 − σ31 = 0. (4.5.8)

Equations (4.5.7) and (4.5.8) can be expressed in a single equation using the index
notation as

eki jσi j = 0 or σi j − σ j i = 0. (4.5.9)

In Section 4.3.2, we have discussed the principal stresses and principal direc-
tions of a stress tensor. The symmetry of stress tensor with real components has
the desirable properties listed in Section 2.5.5. In particular, the stress tensor has
real principal values and the principal directions associated with distinct principal
stresses are orthogonal.

Next, we consider couple of examples of application of the stress equilibrium
equations.
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EXAMPLE 4.5.1: Given the following state of stress (σi j = σ j i ) in a kinematically
infinitesimal deformation,

σ11 = −2x2
1 , σ12 = −7 + 4x1x2 + x3, σ13 = 1 + x1 − 3x2,

σ22 = 3x2
1 − 2x2

2 + 5x3, σ23 = 0, σ33 = −5 + x1 + 3x2 + 3x3,

determine the body force components for which the stress field describes a state
of static equilibrium.

SOLUTION: The body force components are

ρ f1 = −
(

∂σ11

∂x1
+ ∂σ12

∂x2
+ ∂σ13

∂x3

)
= −[(−4x1) + (4x1) + 0] = 0,

ρ f2 = −
(

∂σ12

∂x1
+ ∂σ22

∂x2
+ ∂σ23

∂x3

)
= −[(4x2) + (−4x2) + 0] = 0,

ρ f3 = −
(

∂σ13

∂x1
+ ∂σ23

∂x2
+ ∂σ33

∂x3

)
= −[1 + 0 + 3] = −4.

Thus, the body is in static equilibrium for the body force components ρ f1 =
0, ρ f2 = 0, and ρ f3 = −4.

EXAMPLE 4.5.2: Determine whether the following stress field in a kinematically
infinitesimal deformation satisfies the equations of equilibrium:

σ11 = x2
2 + k

(
x2

1 − x2
2

)
, σ12 = −2kx1x2, σ13 = 0,

σ22 = x2
1 + k

(
x2

2 − x2
1

)
, σ23 = 0, σ33 = k

(
x2

1 + x2
2

)
.

SOLUTION: We have

∂σ11

∂x1
+ ∂σ12

∂x2
+ ∂σ13

∂x3
= (2kx1) + (−2kx1) + 0 = 0,

∂σ12

∂x1
+ ∂σ22

∂x2
+ ∂σ23

∂x3
= (−2kx2) + (2kx2) + 0 = 0,

∂σ13

∂x1
+ ∂σ23

∂x2
+ ∂σ33

∂x3
= 0 + 0 + 0 = 0.

Thus the given stress field is in equilibrium in the absence of any body forces.

4.6 Summary

In this chapter, various measures of stress, namely, the Cauchy stress and Piola–
Kirchhoff stress tensors, are introduced and the Cauchy formula that relates the
stress tensor to the stress vector at a point on the boundary is derived. The trans-
formation relations among stress components from two different rectangular coor-
dinate systems are derived, the principal values and principal directions of a stress
tensor are discussed, and equations of stress equilibrium are derived.
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PROBLEMS

4.1 Suppose that tn̂1 and tn̂2 are stress vectors acting on planes with unit normals n̂1

and n̂2, respectively, and passing through a point with the stress state σ. Show that
the component of tn̂1 along n̂2 is equal to the component of tn̂2 along the normal tn̂1 .

4.2 Write the stress vectors on each boundary surface in terms of the given values
and base vectors î and ĵ for the system shown in Figure P4.2.

5 kN/m2

3 kN/m2

2.5 kN/m2

A

2 kN/m2

B

CD
EF

GH

Figure P4.2.

4.3 The components of a stress dyad at a point, referred to the (x1, x2, x3) system,
are (in ksi = 1000 psi):

(i)


 12 9 0

9 −12 0
0 0 6


 , (ii)


 9 0 12

0 −25 0
12 0 16


 , (iii)


 1 −3

√
2

−3 1 −√
2√

2 −√
2 4


 .

Find the following:

(a) The stress vector acting on a plane perpendicular to the vector 2ê1 − 2ê2 +
ê3.

(b) The magnitude of the stress vector and the angle between the stress vector
and the normal to the plane.

(c) The magnitudes of the normal and tangential components of the stress
vector.

4.4 Consider a kinematically infinitesimal stress field whose matrix of scalar com-
ponents in the vector basis {êi } is

 1 0 2X2

0 1 4X1

2X2 4X1 1


× 103 (psi),

where the Cartesian coordinate variables Xi are in inches (in.) and the units of stress
are pounds per square inch (psi).

(a) Determine the traction vector acting at point X = ê1 + 2ê2 + 3ê3 on the
plane X1 + X2 + X3 = 6.
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(b) Determine the normal and projected shear tractions acting at this point on
this plane.

(c) Determine the principal stresses and principal directions of stress at this
point.

(d) Determine the maximum shear stress at the point.

4.5 The three-dimensional state of stress at a point (1, 1,−2) within a body relative
to the coordinate system (x1, x2, x3) is


 2.0 3.5 2.5

3.5 0.0 −1.5
2.5 −1.5 1.0


× 106 (Pa).

Determine the normal and shear stresses at the point and on the surface of an inter-
nal sphere whose equation is x2

1 + (x2 − 2)2 + x2
3 = 6.

4.6 For the state of stress given in Problem 4.5, determine the normal and shear
stresses on a plane intersecting the point where the plane is defined by the points
(0, 0, 0), (2,−1, 3), and (−2, 0, 1).

4.7 Use equilibrium of forces to derive the relations between the normal and
shear stresses σn and σs on a plane whose normal is n̂ = cos θ ê1 + sin θ ê2 to the
stress components σ11, σ22, and σ12 = σ21 on the ê1 and ê2 planes, as shown in
Figure P4.7:

σn = σ11 cos2 θ + σ22 sin2 θ + σ12 sin 2θ,

σs = −1
2

(σ11 − σ22) sin 2θ + σ12(cos2 θ − sin2 θ).
(1)

Note that θ is the angle measured from the positive x1-axis to the normal to the
inclined plane. Then show that

(a) the principal stresses at a point in a body with two-dimensional state of
stress are given by

σp1 = σmax = σ11 + σ22

2
+
√(

σ11 − σ22

2

)2

+ σ 2
12 ,

σp2 = σmin = σ11 + σ22

2
−
√(

σ11 − σ22

2

)2

+ σ 2
12 ,

(2)

and that the orientation of the principal planes is given by

θp = ±1
2

tan−1
[

2σ12

σ11 − σ22

]
, (3)
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x2

11

12 x1

22
12

nss t=
nnn t=

n̂

1ê

2ê

)ˆ(nt

Figure P4.7.

(b) the maximum shear stress is given by

(σs)max = ±σp1 − σp2

2
. (4)

Also, determine the plane on which the maximum shear stress occurs.

4.8 Determine the normal and shear stress components on the plane indicated in
Figure P4.8.

θ

10 MPa

50 MPaθ = 30°

θ

20 MPa

10 MPa
10 MPa

θ =60°

Figure P4.8. Figure P4.9.

4.9 Determine the normal and shear stress components on the plane indicated in
Figure P4.9.

4.10 Determine the normal and shear stress components on the plane indicated in
Figure P4.10.

θ = 45°

600 kPa 

300 kPa 

500 kPa 

θ
40 MPa 

100 MPa 

θ = 60°

Figure P4.10. Figure P4.11.
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4.11 Determine the normal and shear stress components on the plane indicated in
Figure P4.11.

4.12 Find the values of σs and σ22 for the state of stress shown in Figure P4.12.

θ = 45°

30 MPa 

20 MPa 

40 MPa

σ22

σs Figure P4.12.

4.13 Find the maximum and minimum normal stresses and the orientations of the
principal planes for the state of stress shown in Figure P4.10. What is the maximum
shear stress at the point?

4.14 Find the maximum and minimum normal stresses and the orientations of the
principal planes for the state of stress shown in Figure P4.11. What is the maximum
shear stress at the point?

4.15 Find the maximum principal stress, maximum shear stress and their orienta-
tions for the state of stress (units are 106 psi)

[σ] =

 3 5 8

5 1 0
8 0 2


 .

4.16 (Spherical and deviatoric stress tensors) The the stress tensor can be expressed
as the sum of spherical or hydrostatic stress tensor σ̃ and deviatoric stress tensor σ

′

σ = σ̃I + σ
′
, σ̃ = 1

3
tr σ = 1

3
I1, σ

′ = σ − 1
3

I1I.

For the state of stress given in Problem 4.15, compute the spherical and deviatoric
components of the stress tensor.

4.17 Determine the invariants I
′
i and the principal deviator stresses for the following

state of stress (units are msi = 106 psi)

[σ] =

 2 −1 1

−1 0 1
1 1 2


 .

4.18 Given the following state of stress (σi j = σ j i ),

σ11 = −2x2
1 , σ12 = −7 + 4x1x2 + x3, σ13 = 1 + x1 − 3x2,

σ22 = 3x2
1 − 2x2

2 + 5x3, σ23 = 0, σ33 = −5 + x1 + 3x2 + 3x3,
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determine (a) the stress vector at point (x1, x2, x3) on the plane x1 + x2 + x3 = con-
stant, (b) the normal and shearing components of the stress vector at point (1, 1, 3),
and (c) the principal stresses and their orientation at point (1, 2, 1).

4.19 The components of a stress dyad at a point, referred to the (x1, x2, x3) system,
are


 25 0 0

0 −30 −60
0 −60 5


 MPa.

Determine (a) the stress vector acting on a plane perpendicular to the vector
2ê1 + ê2 + 2ê3, and (b) the magnitude of the normal and tangential components of
the stress vector.

4.20 The components of a stress dyad at a point P, referred to the (x1, x2, x3) system,
are


 57 0 24

0 50 0
24 0 43


MPa.

Determine the principal stresses and principal directions at point P. What is the
maximum shear stress at the point?

4.21 Derive the stress equilibrium equations incylindrical coordinates by consider-
ing the equilibrium of a typical volume element shown in Figure P4.21.

dθ

êθ

êz

êr

rr
rr dr

r
σ

σ
∂

+
∂

r
r dr

r
θ

θ
σ

σ
∂

+
∂

rz
rz dr

r
σ

σ
∂

+
∂

r
r dθ

θ
σ

σ θ
θ

∂
+

∂

dθθ
θθ

σ
σ θ

θ

∂
+

∂

z
z dθ

θ
σ

σ θ
θ

∂
+

∂
zz

zz dz
z

σ
σ

∂
+

∂

zr
zr dz

z
σ

σ
∂

+
∂

z
zθ dz

z
θσ

σ
∂

+
∂

zrσ

zzσzθσ

rrσ

rθσ

rzσ
rθσ

θθσ

zθσdr

r

dz

Figure P4.21.
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4.22 Given the following stress field in a body in equilibrium and referred to cylin-
drical coordinate system:

σrr = 2A
(

r + B
r3

− C
r

)
sin θ,

σθθ = 2A
(

3r − B
r3

− C
r

)
sin θ,

σrθ = −2A
(

r + B
r3

− C
r

)
cos θ,

where A, B, and C are constants, determine whether the stress field satisfies the
equilibrium equations when the body forces and all other stresses are zero.

4.23 Given the following stress field in a body in equilibrium and referred to spher-
ical coordinate system:

σrr = −
(

A + B
r3

)
, σθθ = σφφ = −

(
A + C

r3

)
,

where A, B, and C are constants, determine if the stress field satisfies the equilib-
rium equations when the body forces are zero and all other stresses are zero.
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Although to penetrate into the intimate mysteries of nature and thence to learn the
true causes of phenomena is not allowed to us, nevertheless it can happen that a
certain fictive hypothesis may suffice for explaining many phenomena.

Leonard Euler

Nothing is too wonderful to be true if it be consistent with the laws of nature.
Michael Faraday

5.1 Introduction

Virtually every phenomenon in nature, whether mechanical, biological, chemical,
geological, or geophysical, can be described in terms of mathematical relations
among various quantities of interest. Most mathematical models of physical phe-
nomena are based on fundamental scientific laws of physics that are extracted from
centuries of research on the behavior of mechanical systems subjected to the ac-
tion of natural forces. What is most exciting is that the laws of physics, which are
also termed principles of mechanics, govern biological systems as well (because
of mass and energy transports). However, biological systems may require addi-
tional laws, yet to be discovered, from biology and chemistry to complete their
description.

This chapter is devoted to the study of fundamental laws of physics as applied
to mechanical systems. The laws of physics are expressed in analytical form with
the aid of the concepts and quantities introduced in previous chapters. The laws or
principles of physics that we study here are (1) the principle of conservation of mass,
(2) the principle of conservation of linear momentum, (3) the principle of conserva-
tion of angular momentum, and (4) the principle of conservation of energy. These
laws allow us to write mathematical relationships – algebraic, differential, or integral
type – of physical quantities such as displacements, velocities, temperature, stresses,
and strains in mechanical systems. The solution of these equations represents the
response of the system, which aids the design and manufacturing of the system. The
equations developed here will be used not only in the later chapters of this book,

143
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but they are also useful in other courses. Thus, the present chapter is the heart and
soul of a course on continuum mechanics.

5.2 Conservation of Mass

5.2.1 Preliminary Discussion

It is a common knowledge that mass of a given system cannot be created or de-
stroyed. For example, the mass flow of the blood entering a section of an artery is
equal to the mass flow leaving the artery, provided that no blood is added or lost
through the artery walls. Thus, mass of the blood is conserved even when the artery
cross section changes along the length.

The principle of conservation of mass states that the total mass of any part ∂B of
the body B does not change in any motion. The mathematical form of this principle
is different in different descriptions of motion. Before we derive the mathematical
forms of the principle, certain other identities need to be established.

5.2.2 Material Time Derivative

As discussed in Chapter 3 [see Eqs. (3.2.4) and (3.2.5)], the partial time derivative
with the material coordinates X held constant should be distinguished from the par-
tial time derivative with spatial coordinates x held constant due to the difference
in the descriptions of motion. The material time derivative, denoted here by D/Dt ,
is the time derivative with the material coordinates held constant. The time deriva-
tive of a function φ in material description [i.e., φ = φ(X, t)] with X held constant is
nothing but the partial derivative with respect to time [see Eq. (3.2.5)]:

Dφ

Dt
≡
(

∂φ

∂t

)
X=const

= ∂φ

∂t
. (5.2.1)

In particular, we have

Dx
Dt

=
(

∂x
∂t

)
X=const

=
(

∂x
∂t

)
≡ v, (5.2.2)

where v is the velocity vector. Similarly, the acceleration is

Dv
Dt

=
(

∂v
∂t

)
X=const

=
(

∂v
∂t

)
≡ a, (5.2.3)

where a is the acceleration vector.
In spatial description, we have φ = φ(x, t) and the partial time derivative(

∂φ

∂t

)
X=const

is different from
(

∂φ

∂t

)
x=const

.

The time derivative ( ∂φ

∂t )X=const denotes the local rate of change of φ. If φ = v, then
it is the rate of change of v read by a velocity meter located at the fixed spatial
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location x, which is not the same as the acceleration of the particle just passing the
place x.

To calculate the material time derivative of a function of spatial coordinates,
φ = φ(x, t), we assume that there exists differentiable mapping x = x(X, t) so that
we can write φ(x, t) = φ[x(X, t), t] and compute the derivative using chain rule of
differentiation:

Dφ

Dt
≡
(

∂φ

∂t

)
X=const

=
(

∂φ

∂t

)
x=const

+
(

∂xi

∂t

)
X=const

∂φ

∂xi

=
(

∂φ

∂t

)
x=const

+ vi
∂φ

∂xi

=
(

∂φ

∂t

)
x=const

+ v · ∇φ,

where Eq. (5.2.2) is used in the second line. Thus, the material derivative operator
is given by

D
Dt

=
(

∂

∂t

)
x=const

+ v · ∇. (5.2.4)

The next example illustrates the calculation of material time derivative based on
material and spatial descriptions.

EXAMPLE 5.2.1: Suppose that the motion is described by the mapping, x = (1+
t)X. Determine (a) the velocities and accelerations in the spatial and material
descriptions and (b) the time derivative of a function φ(X, t) = Xt2 in the ma-
terial description.

SOLUTION: The velocity v ≡ dx/dt can be expressed in the material and spatial
coordinates as

v(X, t) = Dx
Dt

= ∂x
∂t

= X, v(x, t) = x
1 + t

.

The acceleration a ≡ Dv
Dt in the two descriptions is

a ≡ Dv(X, t)
Dt

= ∂v

∂t
= 0,

a ≡ Dv(x, t)
Dt

= ∂v

∂t
+ v

∂v

∂x
= − x

(1 + t)2
+
(

x
1 + t

)(
1

1 + t

)
= 0.

The material time derivative of φ in the material description is simply

Dφ(X, t)
Dt

= ∂φ(X, t)
∂t

= 2Xt.

The material time derivative of φ(x, t) = xt2/(1 + t) in the spatial description is

Dφ

Dt
= ∂φ

∂t
+ v

∂φ

∂x
= 2xt

1 + t
− xt2

(1 + t)2
+
(

x
1 + t

)(
t2

1 + t

)
= 2xt

1 + t
,

which is the same as that calculated before, except that it is expressed in terms
of the current coordinate, x.
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In the later chapters of the book, we will make use of the gradient and diver-
gence theorems [see Eqs. (2.4.33) and (2.4.34)]. For a ready reference, they are
recorded here. The following relations hold for a closed region � bounded by sur-
face �: ∮

�

n̂� ds =
∫

�

∇� dx (Gradient theorem), (5.2.5)

∮
�

n̂ · � ds =
∫

�

∇ · � dx (Divergence theorem), (5.2.6)

where n̂ denotes unit outward normal to the surface �.

5.2.3 Continuity Equation in Spatial Description

Let an arbitrary region in a continuous medium B be denoted by �, and the bound-
ing closed surface of this region be continuous and denoted by �. Let each point
on the bounding surface move with the velocity vs . It can be shown that the time
derivative of the volume integral over some continuous function φ(x, t) is given by

d
dt

∫
�

φ(x, t) dx ≡ ∂

∂t

∫
�

φ dx +
∮

�

φvs · n̂ ds,

=
∫

�

∂φ

∂t
dx +

∮
�

φvs · n̂ ds. (5.2.7)

This expression for the differentiation of a volume integral with variable limits is
sometimes known as the three-dimensional Leibnitz rule.

Let each element of mass in the medium move with the velocity v(x, t) and
consider a special region � such that the bounding surface � is attached to a fixed set
of material elements. Then each point of this surface moves itself with the material
velocity, that is, vs = v, and the region � thus contains a fixed total amount of mass
since no mass crosses the boundary surface �. To distinguish the time rate of change
of an integral over this material region, we replace d/dt by D/Dt and write

D
Dt

∫
�

φ(x, t) dx ≡
∫

�

∂φ

∂t
dx +

∮
�

φv · n̂ ds, (5.2.8)

which holds for a material region, that is, a region of fixed total mass. Then the rela-
tion between the time derivative following an arbitrary region and the time deriva-
tive following a material region (fixed total mass) is

d
dt

∫
�

φ(x, t) dx ≡ D
Dt

∫
�

φ(x, t) dx +
∮

�

φ(vs − v) · n̂ ds. (5.2.9)

The velocity difference v − vs is the velocity of the material measured relative to the
velocity of the surface. The surface integral∮

�

φ(vs − v) · n̂ ds

thus measures the total outflow of the property φ from the region �.
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Let ρ(x, t) denote the mass density of a continuous region. Then the principle
of conservation of mass for a material region requires that

D
Dt

∫
�

ρ dx = 0.

Then from Eq. (5.2.9) it follows that for a fixed region (vs = 0) the principle of con-
servation of mass can also be stated as

d
dt

∫
�

ρ dx = −
∮

�

ρv · n̂ ds. (5.2.10)

Equation (5.2.10) is known as the control volume formulation of the conservation of
mass principle. In Eq. (5.2.10), � denotes the control volume (cv) and � the control
surface (cs) enclosing �.

Using Eq. (5.2.7) with φ = ρ, Eq. (5.2.10) can be expressed as∫
�

∂ρ

∂t
dx = −

∮
�

ρv · n̂ ds.

Converting the surface integral to a volume integral by means of the divergence
theorem (5.2.6), we obtain ∫

�

[
∂ρ

∂t
+ div(ρv)

]
dx = 0. (5.2.11)

Equation (5.2.11) also follows directly from Eq. (5.2.8). Since this integral vanishes,
for a continuous medium, for any arbitrary region �, we deduce that this can be true
only if the integrand itself vanishes identically, giving the following local form:

∂ρ

∂t
+ div(ρv) = 0. (5.2.12)

This equation, called the continuity equation, expresses local conservation of mass
at any point in a continuous medium.

An alternative derivation of Eq. (5.2.12) is presented next. Consider an arbi-
trary control volume � in space where flow occurs into and out of the space. Con-
servation of mass in this case means that the time rate of change of mass in � is
equal to the mass inflow through the control surface. Consider an elemental area ds
with unit normal n̂ around a point P on the control surface, as shown in Figure 5.2.1.
Let v and ρ be the velocity and density, respectively, at point P. The mass outflow
(slug/s or kg/s) through the elemental surface is ρv · ds, where ds = n̂ ds. The total
mass inflow through the entire surface of the control volume is∮

�

(−ρvn) ds = −
∮

�

ρv · n̂ ds = −
∫

�

∇ · (ρv) dx, (5.2.13)

where the divergence theorem (5.2.6) is used in arriving at the last line. If a contin-
uous medium of density ρ fills the region � at time t , the total mass in � is

M =
∫

�

ρ(x, t) dx.
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X2, x2

X1, x1

X3, x3

n̂

v

ds
Figure 5.2.1. A control volume for the derivation of
the continuity equation.

The rate of increase of mass in � is

∂ M
∂t

=
∫

�

∂ρ

∂t
dx. (5.2.14)

Equating Eqs. (5.2.13) and (5.2.14), we obtain

∫
�

[
∂ρ

∂t
+ ∇ · (ρv)

]
dx = 0,

which is the same as Eq. (5.2.11), and hence, we obtain the continuity equation in
Eq. (5.2.12).

Equation (5.2.12) can be written in an alternative form as follows:

0 = ∂ρ

∂t
+ ∇ · (ρv) = ∂ρ

∂t
+ v · ∇ρ + ρ∇ · v = Dρ

Dt
+ ρ∇ · v, (5.2.15)

where the definition of material time derivative, Eq. (5.2.4), is used in arriving at the
final result.

The one-dimensional version of the local form of the continuity equa-
tion (5.2.12) can be obtained by considering flow along the x-axis (see Figure 5.2.2).
The amount of mass entering (i.e., mass flow) per unit time at the left section of the
elemental volume is: density × cross-sectional area × velocity of the flow = (ρ Avx)x.
The mass leaving at the right section of the elemental volume is (ρ Avx)x+�x, where
vx is the velocity along x-direction. The subscript of (·) denotes the distance at which
the enclosed quantity is evaluated. It is assumed that the cross-sectional area A is

x ( )( )

x

elemental volume, A=

inlet outlet Figure 5.2.2. Derivation of the local form of
the continuity equation in one dimension.
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a function of position x but not of time t . The net mass inflow into the elemental
volume is

(Aρvx)x − (Aρvx)x+�x.

The time rate of increase of the total mass inside the elemental volume is

Ā�x
(ρ̄)t+�t − (ρ̄)t

�t
,

where ρ̄ and Ā are the average values of the density and cross-sectional area, re-
spectively, inside the elemental volume.

If no mass is created or destroyed inside the elemental volume, the rate of in-
crease of mass should be equal to the mass inflow:

Ā�x
(ρ̄)t+�t − (ρ̄)t

�t
= (Aρvx)x − (Aρvx)x+�x.

Dividing throughout by �x and taking the limits �t → 0 and �x → 0, we obtain

lim
�t, �x→0

Ā
(ρ)t+�t − (ρ)t

�t
+ (Aρvx)x+�x − (Aρvx)x

�x
= 0

or (ρ̄ → ρ and Ā → A as �x → 0)

A
∂ρ

∂t
+ ∂(Aρvx)

∂x
= 0. (5.2.16)

Equation (5.2.16) is the same as Eq. (5.2.12) when v is replaced with v = vxêx

and A is a constant. Note that for the steady-state case, Eq. (5.2.16) reduces to

∂(Aρvx)
∂x

= 0 → Aρvx = constant ⇒ (Aρvx)1 = (Aρvx)2 = · · · = (Aρvx)i ,

(5.2.17)
where the subscript i in (·)i refers to ith section along the direction of the (one-
dimensional) flow. The quantity Q = Avx is called the flow, whereas ρ Avx is called
the mass flow.

The continuity equation (5.2.12) can also be expressed in orthogonal curvilinear
coordinate systems as (Problems 5.4 and 5.5 are designed to obtain these results)

Cylindrical coordinate system (r, θ, z)

0 = ∂ρ

∂t
+ 1

r

[
∂(rρvr )

∂r
+ ∂(ρvθ )

∂θ
+ r

∂(ρvz)
∂z

]
. (5.2.18)

Spherical coordinate system (R, φ, θ)

0 = ∂ρ

∂t
+ 1

R2

∂(ρR2vR)
∂ R

+ 1
Rsin φ

∂(ρvφ sin φ)
∂θ

+ 1
Rsin φ

∂(ρvθ )
∂θ

. (5.2.19)

See Table 2.4.2 for expressions of divergence of a vector in the cylindrical and
spherical coordinate systems. For steady-state, we set the time derivative terms in
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Eqs. (5.2.12), (5.2.18), and (5.2.19) to zero. The invariant form of continuity equa-
tion for steady-state flows is

∇ · (ρv) = 0, (5.2.20)

and for materials with constant density, we set Dρ/Dt = 0 and obtain

ρ∇ · v = 0 or ∇ · v = 0. (5.2.21)

Next, we consider two examples of application of the principle of conservation
of mass in spatial description.

EXAMPLE 5.2.2: Consider a water hose with conical-shaped nozzle at its end, as
shown in Figure 5.2.3(a). (a) Determine the pumping capacity required in order
the velocity of the water (assuming incompressible for the present case) exiting
the nozzle be 25 m/s. (b) If the hose is connected to a rotating sprinkler through
its base, as shown in Figure 5.2.3(b), determine the average speed of the water
leaving the sprinkler nozzle.

SOLUTION:

(a) The principle of conservation of mass for steady one-dimensional flow re-
quires

ρ1 A1v1 = ρ2 A2v2.

If the exit of the nozzle is taken as the section 2, we can calculate the flow
at section 1 as (for an incompressible fluid, ρ1 = ρ2)

Q1 = A1v1 = A2v2 = π(20 × 10−3)2

4
25 = 0.0025π m3/s.

nozzle exit
(20 mm dia.)

(a)

 12.5 mm dia. 

(b)

Figure 5.2.3. (a) Water hose with a conical
head. (b) Water hose connected to a sprin-
kler.
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(b) The average speed of the water leaving the sprinkler nozzle can be calcu-
lated using the principle of conservation of mass for steady one-dimensional
flow. We obtain

Q1 = 2A2v2 → v2 = 2Q1

πd2
= 0.005

(12.5 × 10−3)2
= 32 m/s.

EXAMPLE 5.2.3: A syringe used to inoculate large animals has a cylinder, plunger,
and needle combination, as shown in Figure 5.2.4. Let the internal diameter of
the cylinder be d and plunger face area be Ap. If the liquid in the syringe is to
be injected at a steady rate of Q0, determine the speed of the plunger. Assume
that the leakage rate past the plunger is 10% of the volume flow rate out of the
needle.

SOLUTION: In this problem, the control volume (shown in dotted lines in Fig-
ure 5.2.4) is not constant. Even though there is a leakage, the plunger surface
area can be taken as equal to the open cross-sectional area of the cylinder,
Ap = πd2/4. Let us consider Section 1 to be the plunger face and Section 2
to be the needle exit to apply the continuity of mass equation.

Assuming that the flow through the needle and leakage are steady, appli-
cation of the global form of the continuity equation, Eq. (5.2.10), to the control
volume gives

0 = d
dt

∫
�

ρ dx +
∮

�

ρv · n̂ ds

= d
dt

∫
�

ρ dx + ρQ0 + ρQleak. (a)

The integral in the above equation can be evaluated as follows:

d
dt

∫
�

ρ dx = d
dt

(
ρx Ap + ρVn

)
= ρ Ap

dx
dt

= −ρ Apvp, (b)

where x is the distance between the plunger face and the end of the cylinder,
Vn is the volume of the needle opening, and vp = −dx/dt is the speed of the
plunger that we are after. Noting that Qleak = 0.1Q0, we can write the continuity
equation (a) as

−ρ Apvp + 1.1ρQ0 = 0,

from which we obtain

vp = 1.1
Q0

Ap
= 4.4Q0

πd2
. (c)

Control volume

Plunger 1
2Section

vp

d, dia.

Q2 = Q0

Section

Figure 5.2.4. The syringe discussed in Ex-
ample 5.2.3.
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For Q0 = 250 cm3/min and d = 25 mm, we obtain

vp = 4.4 × (250 × 103)
π(25 × 25)

= 560 mm/min.

5.2.4 Continuity Equation in Material Description

Under the assumption that the mass is neither created nor destroyed during the
motion, we require that the total mass of any material volume be the same at any
instant during the motion. To express this in analytical terms, we consider a material
body B that occupies configuration κ0 with density ρ0 and volume �0 at time t = 0.
The same material body occupies the configuration κ with volume � at time t > 0,
and it has a density ρ. As per the principle of conservation of mass, we have∫

�0

ρ0 dX =
∫

�

ρ dx. (5.2.22)

Using the relation between dX and dx, dx = J dX, where J is the determinant of
the deformation gradient tensor F, we arrive at∫

�0

(ρ0 − Jρ) dX = 0. (5.2.23)

This is the global form of the continuity equation. Since the material volume �0 we
selected is arbitrarily small, as we shrink the volume to a point, we obtain the local
form of the continuity equation

ρ0 = Jρ. (5.2.24)

The next example illustrates the use of the material time derivative in computing
velocities and use of the continuity equation to compute the density in the current
configuration.

EXAMPLE 5.2.4: Consider the motion of a body B described by the mapping

x1 = X1

1 + t X1
, x2 = X2, x3 = X3.

Determine the material density as a function of position x and time t .

SOLUTION: First, we compute the velocity components

v = Dx
Dt

=
(

∂x
∂t

)
X=fixed

; vi = Dxi

Dt
=
(

∂xi

∂t

)
X=fixed

. (5.2.25)

Therefore, we have

v1 = − X2
1

(1 + t X1)2
= −x2

1 , v2 = 0, v3 = 0.

Next, we compute Dρ/Dt from the continuity equation (5.2.15):

Dρ

Dt
= −ρ div v = 2ρx1 = 2ρ

X1

1 + t X1
.
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Integrating the above equation, we obtain∫
1
ρ

Dρ = 2
∫

X1

1 + t X1
Dt ⇒ ln ρ = 2 ln(1 + t X1) + ln c,

where c is the constant of integration. If ρ = ρ0 at time t = 0, we have ln c =
ln ρ0. Thus, the material density in the current configuration is

ρ = ρ0

(
1 + t X1

)2
= ρ0

(1 − t x1)2
.

It can be verified that1

Dρ

Dt
= ∂ρ

∂t
+ v1

∂ρ

∂x1
= 2ρ0x1

(1 − t x1)2
= 2ρx1.

The material density in the current configuration can also be computed us-
ing the continuity equation in the material description, ρ0 = ρ J. Noting that

dx1 = 1
(1 + t X1)2

dX1, J = dx1

dX1
= 1

(1 + t X1)2
,

we obtain

ρ = 1
J

ρ0 = ρ0(1 + t X1)2 .

5.2.5 Reynolds Transport Theorem

The material derivative operator D/Dt corresponds to changes with respect to a
fixed mass, that is, ρ dx is constant with respect to this operator. Therefore, from
Eq. (5.2.8) it follows that, for φ = ρQ(x, t), the result

D
Dt

∫
�

ρQ(x, t) dx = ∂

∂t

∫
�

ρQdx +
∮

�

ρQ v · n̂ ds, (5.2.26)

or

D
Dt

∫
�

ρQ(x, t) dx =
∫

�

[
ρ

∂ Q
∂t

+ Q
∂ρ

∂t
+ div (ρQ v)

]
dx

=
∫

�

[
ρ

(
∂ Q
∂t

+ v · ∇Q
)

+ Q
(

∂ρ

∂t
+ div(ρv)

)]
dx, (5.2.27)

and using the continuity equation (5.2.12) and the definition of the material time
derivative, we arrive at the result

D
Dt

∫
�

ρQdx =
∫

�

ρ
DQ
Dt

dx. (5.2.28)

Equation (5.2.28) is known as the Reynolds transport theorem.

1 Note that ρ = ρ(x1, t), and (1 + t X1) = (1 − t x1)−1.
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5.3 Conservation of Momenta

5.3.1 Principle of Conservation of Linear Momentum

The principle of conservation of linear momentum, or Newton’s second law of mo-
tion, applied to a set of particles (or rigid body) can be stated as the time rate of
change of (linear) momentum of a collection of particles equals the net force exerted
on the collection. Written in vector form, the principle implies

d
dt

(mv) = F, (5.3.1)

where m is the total mass, v the velocity, and F the resultant force on the collection
of particles. For constant mass, Eq. (5.3.1) becomes

F = m
dv
dt

= ma, (5.3.2)

which is the familiar form of Newton’s second law. Newton’s second law for a con-
trol volume � can be expressed as

F = ∂

∂t

∫
�

ρv dx +
∫

�

ρvv·ds, (5.3.3)

where F is the resultant force and ds denotes the vector representing an area ele-
ment of the outflow. Several simple examples that illustrate the use of Eq. (5.3.3)
are presented next.

EXAMPLE 5.3.1: Suppose that a jet of fluid with area of cross-section A and mass
density ρ issues from a nozzle with a velocity v and impinges against a smooth
inclined flat plate, as shown in Figure 5.3.1. Assuming that there is no frictional
resistance between the jet and plate, determine the distribution of the flow and
the force required to keep the plate in position.

SOLUTION: Since there is no change in pressure or elevation before and after
impact, the velocity of the fluid remains the same before and after impact. Let
the amounts of flow to the left be QL and to the right be QR. Then the total flow
Q = vA of the jet is equal to the sum (by continuity equation)

Q = QL + QR.

Next, we use the principle of conservation of linear momentum to relate QL

and QR. Applying Eq. (5.3.3) to the tangential direction to the plate and noting
that the resultant force is zero and the first term on the right-hand side is zero
by virtue of the steady-state condition, we obtain

0 =
∫

�

ρvt v · ds = ρv(vAL) + ρ(−v)(vAR) + ρv cos θ(−vA),

which, with QL = ALv, QR = ARv, and Q = Av, yields

QL − QR = Qcos θ.
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n̂

t
AL

AR

v

v

v

A

F

cv

cs

Figure 5.3.1. Jet of fluid impinging on an inclined plate.

Solving the two equations for QL and QR, we obtain

QL = 1
2

(1 + cos θ) Q, QR = 1
2

(1 − cos θ) Q.

Thus, the total flow Q is divided into the left flow of QL and right flow of QR as
given above.

The force exerted on the plate is normal to the plate. By applying the con-
servation of linear momentum in the normal direction, we obtain

−Fn =
∫

�

ρvnv · ds = ρ(v sin θ)(−vA) → Fn = ρQv sin θ.

EXAMPLE 5.3.2: When a free jet of fluid impinges on a smooth (frictionless)
curved vane with a velocity v, the jet is deflected in a tangential direction as
shown in Figure 5.3.2, changing the momentum and exerting a force on the vane.
Assuming that the velocity is uniform throughout the jet and there is no change
in the pressure, determine the force exerted on a fixed vane.

SOLUTION: Applying Eq. (5.3.3), we obtain

F ≡ −Fx êx + Fy êy =
∫

cv
ρv(v· ds)

= ρv (cos θ êx + sin θ êy) vA + ρv (−vA êx)

or

Fx = ρv2 A (1 − cos θ) , Fy = ρv2 A sin θ.

When a jet of water (ρ = 103 kg/m3) discharging 80 L/s at a velocity of 60 m/s is
deflected through an angle of θ = 60◦, we obtain (Q = vA)

Fx = 103 × 0.08 × 60 (1 − cos 60◦) = 2.4 kN,

Fy = 103 × 0.08 × 60 sin 60◦ = 4.157 kN.
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F

v

v

A

 

θ

y

x Figure 5.3.2. Jet of fluid deflected by a curved
vane.

When the vane moves with a horizontal velocity of v0 < v, Eq. (5.3.3) be-
comes

F ≡ −Fx êx + Fy êy =
∫

cv
ρv(v· ds)

= ρ(v − v0) (cos θ êx + sin θ êy) (v − v0)A

+ ρ(v − v0) [−(v − v0)A êx] ,

from which we obtain

Fx = ρ(v − v0)2 A (1 − cos θ) , Fy = ρ(v − v0)2 A sin θ.

EXAMPLE 5.3.3: A chain of total length L and mass ρ per unit length slides down
from the edge of a smooth table with an initial overhang x0 to initiate motion,
as shown in Figure 5.3.3. Assuming that the chain is rigid, find the equation of
motion governing the chain and the tension in the chain.

SOLUTION: Let x be the amount of chain sliding down the table at any instant t .
By considering the entire chain as the control volume, the linear momentum of
the chain is

ρ(L− x) · ẋ êx − ρx · ẋ êy.

The resultant force in the chain is −ρxg êy.

The principle of linear momentum gives

−ρxg êy = d
dt

[ρ(L− x)ẋêx − ρxẋ êy] ,

xL −

x
gρ

cvx

Figure 5.3.3. Chain sliding down a table.
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or

(L− x)ẍ − ẋ2 = 0, xẍ + ẋ2 = gx.

Eliminating ẋ2 from the two equations, we arrive at the equation of motion

ẍ − g
L

x = 0.

The solution of the second-order differential equation is

x(t) = A cosh λt + B sinh λt, where λ =
√

g
L

.

The constants of integration A and B are determined from the initial conditions

x(0) = x0, ẋ(0) = 0,

where x0 denotes the initial overhang of the chain. We obtain

A = x0, B = 0,

and the solution becomes

x(t) = x0 cosh λt, λ =
√

g
L

.

The tension in the chain can be computed by using the principle of linear
momentum applied to the control volume of the chain on the table:

T = d
dt

[ρ(L− x)ẋ] + ρ ẋẋ = ρ(L− x)ẍ = ρg
L

(L− x)x,

where the term ρ ẋẋ denotes the momentum flux.

EXAMPLE 5.3.4: Consider a chain of length L and mass density ρ per unit length
which is piled on a stationary table, as shown in Figure 5.3.4. Determine the
force F required to lift the chain with a constant velocity v.

SOLUTION: Let x be the height of the chain lifted off the table. Taking the con-
trol volume to be that enclosing the lifted chain and using Eq. (5.3.3), we obtain

F − ρgx = ∂

∂t
(ρv) + ρvv = 0 + ρv2 → F = ρ

(
gx + v2) .

The same result can be obtained using Newton’s second law of motion:

F − ρgx = d
dt

(mv) = mv̇ + ṁv = 0 + ṁv,

where the rate of increase of mass m is ṁ = ρv.

To derive the equation of motion applied to an arbitrarily fixed region in space
through which material flows (i.e., control volume), we must identify the forces act-
ing on it. Forces acting on a volume element can be classified as internal and external.
The internal forces resist the tendency of one part of the region/body to be sepa-
rated from another part. The internal force per unit area is termed stress, as defined
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x

F

Figure 5.3.4. Lifting of a chain piled on a table.

in Eq. (4.2.1). The external forces are those transmitted by the body. The external
forces can be further classified as body (or volume) forces and surface forces.

Body forces act on the distribution of mass inside the body. Examples of body
forces are provided by the gravitational and electromagnetic forces. Body forces are
usually measured per unit mass or unit volume of the body. Let f denote the body
force per unit mass. Consider an elemental volume dx inside �. The body force of
the elemental volume is equal to ρ dx f. Hence, the total body force of the control
volume is ∫

�

ρ f dx. (5.3.4)

Surface forces are contact forces acting on the boundary surface of the body.
Examples of surface forces are provided by applied forces on the surface of the
body. Surface forces are reckoned per unit area. Let t denote the surface force per
unit area (or surface stress vector). The surface force on an elemental surface ds of
the volume is t ds. The total surface force acting on the closed surface of the region
� is ∮

�

t ds. (5.3.5)

Since the stress vector t on the surface is related to the (internal) stress tensor σ by
Cauchy’s formula [see Eq. (4.2.10)]

t = n̂ · σ, (5.3.6)

where n̂ denotes the unit normal to the surface, we can express the surface force as∮
�

n̂ · σ ds.

Using the divergence theorem, we can write∮
�

n̂ · σ ds =
∫

�

∇ · σ dx. (5.3.7)
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The principle of conservation of linear momentum applied to a given mass of
a medium B, instantaneously occupying a region � with bounding surface �, and
acted upon by external surface force t per unit area and body force f per unit mass,
requires ∫

�

(∇ · σ + ρf) dx = D
Dt

∫
�

ρv dx, (5.3.8)

where v is the velocity vector. Using the Reynolds transport theorem, Eq. (5.2.28),
we arrive at

0 =
∫

�

[
∇ · σ + ρf − ρ

Dv
Dt

]
dx, (5.3.9)

which is the global form of the equation of motion. The local form is given by

∇ · σ + ρf = ρ
Dv
Dt

(5.3.10)

or

∇ · σ + ρf = ρ

(
∂v
∂t

+ v · ∇v
)

. (5.3.11)

In Cartesian rectangular system, we have

∂σ j i

∂xj
+ ρ fi = ρ

(
∂vi

∂t
+ v j

∂vi

∂xj

)
. (5.3.12)

In the case of steady-state conditions, Eq. (5.3.11) reduces to

∇ · σ + ρf = ρ v · ∇v or
∂σ j i

∂xj
+ ρ fi = ρ v j

∂vi

∂xj
. (5.3.13)

For kinematically infinitesimal deformation (i.e., when S ∼ σ) of solid bodies in
static equilibrium, Eq. (5.3.10) reduces to the equations of equilibrium

∇ · σ + ρf = 0 or
∂σ j i

∂xj
+ ρ fi = 0. (5.3.14)

When the state of stress in the medium is of the form σ = −pI (i.e., hydrostatic state
of stress), the equations of motion (5.3.10) reduce to

−∇ p + ρf = ρ
Dv
Dt

. (5.3.15)

Application of the stress equilibrium equations, Eq. (5.3.14), can be found in
Examples 4.5.1 and 4.5.2.

5.3.2 Equations of Motion in Cylindrical and Spherical Coordinates

5.3.2.1 Cylindrical coordinates
To obtain the equations of motion in a cylindrical coordinate system, the operator
∇, velocity vector v, body force vector f, and stress tensor σ are written in cylindrical



P1: IBE

Chapter05 CUFX197-Reddy 978 0 521 87044 3 October 3, 2007 10:42

160 Conservation of Mass, Momenta, and Energy

coordinates (r, θ, z) as

∇ = êr
∂

∂r
+ 1

r
êθ

∂

∂θ
+ êz

∂

∂z
,

v = êrvr + êθ vθ + êzvz,

f = êr fr + êθ fθ + êz fz,

σ = σrr êr êr + σrθ êr êθ + σrz êr êz

+ σθr êθ êr + σθθ êθ êθ + σθz êθ êz

+ σzr êzêr + σzθ êzêθ + σzz êzêz.

(5.3.16)

Substituting these expressions into Eq. (5.3.11), we arrive at the following equations
of motion in the cylindrical coordinate system:

∂σrr

∂r
+ 1

r
∂σθr

∂θ
+ ∂σzr

∂z
+ 1

r
(σrr − σθθ ) + ρ fr

= ρ

(
∂vr

∂t
+ vr

∂vr

∂r
+ vθ

r
∂vr

∂θ
+ vz

∂vr

∂z
− v2

θ

r

)
,

∂σrθ

∂r
+ 1

r
∂σθθ

∂θ
+ ∂σzθ

∂z
+ σrθ + σθr

r
+ ρ fθ

= ρ

(
∂vθ

∂t
+ vr

∂vθ

∂r
+ vθvr

r
+ vθ

r
∂vθ

∂θ
+ vz

∂vθ

∂z

)
,

∂σrz

∂r
+ 1

r
∂σθz

∂θ
+ ∂σzz

∂z
+ σrz

r
+ ρ fz

= ρ

(
∂vz

∂t
+ vr

∂vz

∂r
+ vθ

r
∂vz

∂θ
+ vz

∂vz

∂z

)
. (5.3.17)

5.3.2.2 Spherical coordinates
In the spherical coordinate system (R, φ, θ), we write

∇ = êR
∂

∂ R
+ 1

R
êφ

∂

∂φ
+ 1

Rsin φ
êθ

∂

∂θ
,

v = êRvR + êφvφ + êθ vθ ,

f = êR fR + êφ fφ + êθ fθ ,

σ = σRR êRêR + σRφ êRêφ + σRθ êRêθ

+ σφR êφ êR + σφφ êφ êφ + σφθ êφ êθ

+ σθ R êφ êθ + σθφ êθ êφ + σθθ êθ êθ .

(5.3.18)
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Substituting these expressions into Eq. (5.3.11), we arrive at the following equations
of motion in the spherical coordinate system (see Problem 5.11):

∂σRR

∂ R
+ 1

R
∂σφR

∂φ
+ 1

sin φ

∂σθ R

∂θ
+ 1

R
(2σRR − σφφ − σθθ + σφR cot φ) + ρ fR

= ρ

(
∂vR

∂t
+ vR

∂uR

∂ R
+ vφ

∂uφ

∂ R
+ vθ

∂vθ

∂ R

)
,

∂σRφ

∂ R
+ 1

R
∂σφφ

∂φ
+ 1

Rsin φ

∂σθφ

∂θ
+ 1

R
[(σφφ − σθθ ) cot φ + SφR + 2σRφ] + ρ fφ

= ρ

R

[
R

∂vφ

∂t
+ vR

(
∂vR

∂φ
− vφ

)
+ vφ

(
∂uφ

∂φ
+ uR

)
+ vθ

∂uθ

∂φ

]
,

∂σRθ

∂ R
+ 1

R
∂σφθ

∂φ
+ 1

Rsin φ

∂σθθ

∂θ
+ 1

R
[(σθφ + σφθ ) cot φ + σθ R] + ρ fθ

= ρ

Rsin φ


Rsin φ

∂vθ

∂t
+ vR

(
∂vR

∂θ
− uθ sin φ

)

+ vφ

(
∂vφ

∂θ
− uθ cos φ

)
+ vθ

(
∂uθ

∂θ
+ vR sin φ + uφ cos φ

). (5.3.19)

5.3.3 Principle of Conservation of Angular Momentum

The principle of conservation of angular momentum states that the time rate of
change of the total moment of momentum for a continuum is equal to vector sum
of the moments of external forces acting on the continuum. The principle as applied
to a control volume � with a control surface � can be expressed as

r × F = ∂

∂t

∫
�

ρr × v dx +
∫

�

ρr × v (v · ds). (5.3.20)

An application of the principle is presented next.

EXAMPLE 5.3.5: Consider the top view of a sprinkler as shown in Figure 5.3.5.
The sprinkler discharges water outward in a horizontal plane (which is in the
plane of the paper). The sprinkler exits are oriented at an angle of θ from the
tangent line to the circle formed by rotating the sprinkler about its vertical cen-
terline. The sprinkler has a constant cross-sectional flow area of A0 and dis-
charges a flow rate of Q when ω = 0 at time t = 0. Hence, the radial velocity is
equal to vr = Q/2A0. Determine ω (counterclockwise) as a function of time.

SOLUTION: Suppose that the moment of inertia of the empty sprinkler head is
Iz and the resisting torque due to friction (from bearings and seals) is T (clock-
wise), we take the control volume to be the cylinder of unit height, formed by
the rotating sprinkler head. The inflow, being along the axis, has no moment.
Thus the time rate of moment of momentum of the sprinkler head plus the net
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θ

R Fluid velocity,vr

Discharge, (m3/s)Q

A

ω

cs

T

êr

êθ

θ Figure 5.3.5. A rotating sprinkler system.

efflux of the moment of momentum from the control surface is equal to the
torque T:

−Têz =
[

2
d
dt

∫ R

0
A0ρωr2 dr + Iz

dω

dt
+ 2R

(
ρ

Q
2

)
(ωR − vr cos θ)

]
êz,

where the first term represents the time rate of change of the moment of mo-
mentum [moment arm times mass of a differential length dr times the velocity:
r × (ρ A0 dr)(ωr)], the second term is the time rate of change of angular mo-
mentum, and the last term represents the efflux of the moment of momentum
at the control surface (i.e., exit of the sprinkler nozzles). Simplifying the equa-
tion, we arrive at(

Iz + 2
3
ρ A0 R3

)
dω

dt
+ ρQR2ω = ρQRvr cos θ − T.

The above equation indicates that for rotation to start ρQRvr cos θ − T > 0.
The final value of ω is obtained when the sprinkler motion reaches the steady
state, i.e., dω/dt = 0. Thus, at steady state, we have

ω f = vr

R
cos θ − T

ρQR2
.

In the absence of body couples (i.e., volume-dependent couples M)

lim
�A→0

�M
�A

= 0, (5.3.21)

the mathematical statement of the angular momentum principle as applied to a con-
tinuum is ∮

�

(x × t)ds +
∫

v

(x × ρf)dv = D
Dt

∫
v

(x × ρv)dv. (5.3.22)

In index notation (kth component), Eq. (5.3.22) takes the form∮
�

ei jkxi t j ds +
∫

v

ρei jkxi f j dv = D
Dt

∫
v

ρei jkxiv j dv. (5.3.23)

We use several steps to simplify the expression. First replace t j with t j = npσpj . Then
transform the surface integral to a volume integral and use the Reynold’s transport
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theorem for the material time derivative of a volume integral to obtain∫
v

ei jk (xiσpj ),p dv +
∫

v

ρei jkxi f j dv =
∫

v

ρei jk
D
Dt

(xiv j ) dv.

Carrying out the indicated differentiations and noting Dxi/Dt = vi , we obtain∫
v

ei jk (xiσpj,p + δipσpj + ρxi f j ) dv =
∫

v

ρei jk

(
viv j + xi

Dv j

Dt

)
dv,

∫
v

ei jk

[
xi

(
σpj,p + ρ f j − ρ

Dv j

Dt

)
+ σi j

]
dv = 0,

or

ei jk σi j = 0. (5.3.24)

Equation (5.3.24) necessarily implies that σi j = σ j i . To see this, expand the above
expression for all values of the free index k:

k = 1 : σ23 − σ32 = 0,

k = 2 : σ31 − σ13 = 0,

k = 3 : σ21 − σ12 = 0.

(5.3.25)

These statements clearly show that σi j = σ j i or σ = σT. Thus, there are only six
stress components that are independent, discussed in Section 4.4.

5.4 Thermodynamic Principles

5.4.1 Introduction

The first law of thermodynamics is commonly known as the principle of conservation
of energy, and it can be regarded as a statement of the interconvertibility of heat and
work. The law does not place any restrictions on the direction of the process. For
instance, in the study of mechanics of particles and rigid bodies, the kinetic energy
and potential energy can be fully transformed from one to the other in the absence
of friction and other dissipative mechanisms. From our experience, we know that
mechanical energy that is converted into heat cannot all be converted back into me-
chanical energy. For example, the motion (i.e., kinetic energy) of a flywheel can all
be converted into heat (i.e., internal energy) by means of a friction brake; if the
whole system is insulated, the internal energy causes the temperature of the system
to rise. Although the first law does not restrict the reversal process, namely, the con-
version of heat to internal energy and internal energy to motion (the flywheel), such
a reversal cannot occur because the frictional dissipation is an irreversible process.
The second law of thermodynamics provides the restriction on the interconvertibil-
ity of energies.
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5.4.2 The First Law of Thermodynamics: Energy Equation

The first law of thermodynamics states that the time-rate of change of the total energy
is equal to the sum of the rate of work done by the external forces and the change of
heat content per unit time. The total energy is the sum of the kinetic energy and the
internal energy. The principle of conservation of energy can be expressed as

D
Dt

(K + U) = W + H. (5.4.1)

Here, K denotes the kinetic energy, U is the internal energy, W is the power input,
and H is the heat input to the system.

The kinetic energy of the system is given by

K = 1
2

∫
�

ρv · v dx, (5.4.2)

where v is the velocity vector. If e is the energy per unit mass (or specific internal
energy), the total internal energy of the system is given by

U =
∫

�

ρe dx. (5.4.3)

The kinetic energy (K) of a system is the energy associated with the macroscopi-
cally observable velocity of the continuum. The kinetic energy associated with the
(microscopic) motions of molecules of the continuum is a part of the internal en-
ergy; the elastic strain energy and other forms of energy are also parts of internal
energy, U.

The power input, in the nonpolar case (i.e., without body couples), consists of
the rate of work done by external surface tractions t per unit area and body forces f
per unit volume of the region � bounded by �:

W =
∮

�

t · v ds +
∫

�

ρf · v dx

=
∮

�

(n̂ · σ) · v ds +
∫

�

ρf · v dx

=
∫

�

[∇ · (σ · v) + ρf · v] dx

=
∫

�

[(∇ · σ + ρf) · v + σ : ∇v] dx

=
∫

�

(
ρ

Dv
Dt

· v + σ : ∇v
)

dx, (5.4.4)

where “:” denotes the double-dot product � : � = �i j� j i . The Cauchy formula,
symmetry of the stress tensor, and the equation of motion (5.3.9) are used in arriving
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at the last line. Using the symmetry of σ, we can write σ : ∇v = σ : D. Hence, we
can write

W = 1
2

∫
�

ρ
D
Dt

(v · v) dx +
∫

�

σ: D dx

= 1
2

D
Dt

∫
�

ρ v · v dx +
∫

�

σ: D dx, (5.4.5)

where D is the rate of deformation tensor [see Eq. (3.6.2)]

D = 1
2

[∇v + (∇v)T] ,
and the Reynolds transport theorem (5.2.28) used to write the final expression.

The rate of heat input consists of conduction through the surface � and heat
generation inside the region � (possibly from a radiation field or transmission of
electric current). Let q be the heat flux vector and E be the internal heat generation
per unit mass. Then the heat inflow across the surface element ds is −q · n̂ ds, and
internal heat generation in volume element dx is ρEdx. Hence, the total heat input
is

H = −
∮

�

q · n̂ ds +
∫

�

ρE dx =
∫

�

(−∇ · q + ρE) dx. (5.4.6)

Substituting expressions for K, U, W, and H from Eqs. (5.4.2), (5.4.3), (5.4.5),
and (5.4.6) into Eq. (5.4.1), we obtain

D
Dt

∫
�

ρ

(
1
2

v · v + e
)

dx = 1
2

D
Dt

∫
�

ρ v · v dx +
∫

�

(σ: D − ∇ · q + ρE) dx

or

0 =
∫

�

(
ρ

De
Dt

− σ: D + ∇ · q − ρE
)

dx, (5.4.7)

which is the global form of the energy equation. The local form of the energy equa-
tion is given by

ρ
De
Dt

= σ: D − ∇ · q + ρE, (5.4.8)

which is known as the thermodynamic form of the energy equation for a continuum.
The term σ: D is known as the stress power, which can be regarded as the internal
production of energy. Special forms of this equation in various field problems will
be discussed next.

5.4.3 Special Cases of Energy Equation

In the case of viscous fluids, the total stress tensor σ is decomposed into a viscous
part and a pressure part:

σ = τ − p I, (5.4.9)
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where p is the hydrostatic pressure and τ is the viscous stress tensor. Then Eq.
(5.4.8) can be written as (note that I : D = ∇ · v)

ρ
De
Dt

= � − p∇ · v − ∇ · q + ρE, (5.4.10)

where � is called the viscous dissipation function,

� = τ : D. (5.4.11)

For incompressible materials (i.e., div v = 0), Eq. (5.4.10) reduces to

ρ
De
Dt

= � − ∇ · q + ρE . (5.4.12)

For heat transfer in a medium, the internal energy e is expressed as

e = h − P
ρ

= h − Pv, (5.4.13)

where h is the specific enthalpy, P is the thermodynamic pressure, and v = 1/ρ is
the specific volume. Then we have

Dh
Dt

= De
Dt

+ 1
ρ

DP
Dt

− P
ρ2

Dρ

Dt
. (5.4.14)

Substituting for De/Dt from Eq. (5.4.14) into Eq. (5.4.10), we arrive at the expres-
sion

ρ
Dh
Dt

= � − ∇ · q + ρE + DP
Dt

− P
ρ

(
Dρ

Dt
+ ρ div v

)
, (5.4.15)

or, using the continuity of mass equation (5.3.14)

ρ
Dh
Dt

= � − ∇ · q + ρE + DP
Dt

. (5.4.16)

In general, the change in specific enthalpy, specific entropy and internal energy
are expressed by the canonical relations

dh = θdη + vdP, (5.4.17)

de = θdη − Pdv, (5.4.18)

where η is the specific entropy and θ is the absolute temperature. The Gibb’s energy
is defined to be

G = h − θη, (5.4.19)

which relates the enthalpy and entropy.
The concept of entropy is a difficult one to explain in simple terms; it has its

roots in statistical physics and thermodynamics and is generally considered as a
measure of the tendency of the atoms toward a disorder. For example, carbon has a
lower entropy in the form of diamond, a hard crystal with atoms closely bound in a
highly ordered array. Entropy is also considered as a variable conjugate to temper-
ature θ (i.e., θ = ∂e/∂η).



P1: IBE

Chapter05 CUFX197-Reddy 978 0 521 87044 3 October 3, 2007 10:42

5.4 Thermodynamic Principles 167

5.4.3.1 Ideal Gas
An ideal fluid is inviscid (i.e., nonviscous) and incompressible. For an ideal gas, the
specific internal energy, specific enthalpy, and specific entropy are given by

de = cv dθ, dh = cP dθ, dη = cP
dθ

θ
, (5.4.20)

where cv and cP are specific heats at constant volume and constant pressure, respec-
tively,

cP =
(

∂h
∂θ

)
P

, cv =
(

∂e
∂θ

)
v

. (5.4.21)

For this case, the energy equation (5.4.10) takes the form

ρcP
Dθ

Dt
= −∇ · q + ρE + DP

Dt
. (5.4.22)

5.4.3.2 Incompressible Liquid
For an incompressible liquid, the specific internal energy, specific enthalpy, and spe-
cific entropy are given by

de = c dθ, dh = c dθ + v dP, dη = c
dθ

θ
, (5.4.23)

where c is the specific heat. The energy equation takes the form

ρc
Dθ

Dt
= � − ∇ · q + ρE . (5.4.24)

5.4.3.3 Pure Substance
In general, the specific internal energy, specific enthalpy, and specific entropy are
given by

de = cv dθ +
[
θ

(
∂ P
∂θ

)
v

− P
]

dv, dh = c dθ +
[
−θ

(
∂v

∂θ

)
P

+ v

]
dP,

dη = cP
dθ

θ
−
(

∂v

∂θ

)
P

dP = cv

dθ

θ
+
(

∂ P
∂θ

)
v

dv. (5.4.25)

The energy equation takes the form

ρcP
Dθ

Dt
= � − ∇ · q + ρE + βT

DP
Dt

, (5.4.26)

where β is the thermal coefficient of thermal expansion

β = − 1
ρ

(
∂ρ

∂θ

)
P

. (5.4.27)

5.4.4 Energy Equation for One-Dimensional Flows

Various forms of energy equation derived in the preceding sections are valid for
any continuum. For simple, one-dimensional flow problems (i.e., problems with one
stream of fluid particles), the equations derived are too complicated to be of use.
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In this section, a simple form of the energy equation is derived for use with one-
dimensional fluid flow problems.

The first law of thermodynamics for a system occupying the domain (control
volume) � can be written as

D
Dt

∫
�

ρε dV = Wnet + Hnet, (5.4.28)

where ε is the total energy stored per unit mass, Wnet is the net rate of work trans-
ferred into the system, and Hnet is the net rate of heat transfer into the system. The
total stored energy per unit mass ε consists of the internal energy per unit mass e,
the kinetic energy per unit mass v2/2, and the potential energy per unit mass gz (g is
the gravitational acceleration and z is the vertical distance above a reference value)

ε = e + v2

2
+ gz. (5.4.29)

The rate of work done in the absence of body forces is given by (σ = τ − PI)

Wnet = Wshaft −
∮

�

P v · n̂ ds, (5.4.30)

where P is the pressure (normal stress) and Wshaft is the rate of work done by the
tangential force (due to shear stress, in rotary devices such as fans, propellers, and
turbines).

Using the Reynolds transport theorem (5.2.26) and Eqs. (5.4.29) and (5.4.30),
we can write (5.4.28) as

∂

∂t

∫
�

ρε dV +
∮

�

(
e + P

ρ
+ v2

2
+ gz

)
ρv · n̂ ds = Wshaft + Hnet. (5.4.31)

If only one stream of fluid (compressible or incompressible) enters the control vol-
ume, the integral over the control surface in Eq. (5.4.31) can be written as(

e + P
ρ

+ v2

2
+ gz

)
out

(ρQ)out −
(

e + P
ρ

+ v2

2
+ gz

)
in

(ρQ)in, (5.4.32)

where ρQ denotes the mass flow rate. Finally, if the flow is steady, Eq. (5.4.31) can
be written as(

e + P
ρ

+ v2

2
+ gz

)
out

(ρQ)out −
(

e + P
ρ

+ v2

2
+ gz

)
in

(ρQ)in = Wshaft + Hnet.

(5.4.33)
In writing the above equation, it is assumed that the flow is one-dimensional and

the velocity field is uniform. If the velocity profile at sections crossing the control
surface is not uniform, correction must be made to Eq. (5.4.33). In particular, when
the velocity profile is not uniform, the integral∮

�

v2

2
ρv · n̂ ds
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1Section 
2Section 

,d1 P1 ,d2 P2

0Q

e = e2 −

Pump

Control volume

e1

Figure 5.4.1. The pump considered in Ex-
ample 5.4.1.

cannot be replaced with (v2/2)(ρQ) = ρ Av3/2, where A is the cross-section area of
the flow because integral of v3 is different when v is uniform or varies across the
section. If we define the ratio, called the kinetic energy coefficient

α =
∮
�

v2

2 ρv · n̂ ds

(ρQv2/2)
, (5.4.34)

Eq. (5.4.33) can be expressed as(
e + P

ρ
+ αv2

2
+ gz

)
out

(ρQ)out −
(

e + P
ρ

+ αv2

2
+ gz

)
in

(ρQ)in = Wshaft + Hnet.

(5.4.35)
An example of the application of energy equation (5.4.35) is presented next.

EXAMPLE 5.4.1: A pump delivers water at a steady rate of Q0 (gal/min), as
shown in Figure 5.4.1. If the left-side pipe is of diameter d1 (in.) and the
right-side pipe is of diameter d2 (in.), and the pressures in the two pipes are
p1 and p2 (psi), respectively, determine the horsepower (hp) required by the
pump if the rise in the internal energy across the pump is e. Assume that
there is no change of elevation in water level across the pump, and the pump-
ing process is adiabatic (i.e., the heat transfer rate is zero). Use the following
data (α = 1):

ρ = 1.94 slugs/ft3, d1 = 4 in., d2 = 1 in.,

P1 = 20 psi, P2 = 50 psi, Q0 = 350 gal/min, e = 3300 lb-ft/slug.

SOLUTION: We take the control volume between the entrance and exit sections
of the pump, as shown in dotted lines in Figure 5.4.1. The mass flow rate entering
and exiting the pump is the same (conservation of mass) and equal to

ρQ0 = 1.94 × 350
7.48 × 60

= 1.513 slugs/s.

The velocities at Sections 1 and 2 are (converting all quantities to proper units)
are

v1 = Q0

A1
= 350

7.48 × 60
4 × 144

16π
= 8.94 ft/s,

v2 = Q0

A2
= 350

7.48 × 60
4 × 144

π
= 143 ft/s.
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For adiabatic flow Hnet = 0, the potential energy term is zero on account of no
elevation difference between the entrance and exits, and e = e2 − e1 = 3300 ft-
lb/slug. Thus, we have

Wshaft = ρQ0

[(
e + P

ρ
+ v2

2

)
2

−
(

e + P
ρ

+ v2

2

)
1

]

= (1.513)

[
3300 + (50 − 20) × 144

1.94
+ (143)2 − (8.94)2

2

]
1

550
= 43.22 hp.

5.4.5 The Second Law of Thermodynamics

For the sake of completeness, we briefly review the second law of thermodynamics.
The second law of thermodynamics for a reversible process states that there exists a
function η = η(ε, θ), called the specific entropy (or entropy per unit mass), such that

dη =
[
ρE − ∇ · q

ρθ

]
dt (5.4.35)

is a perfect differential. Here θ denotes the temperature. The product −θη is the
irreversible heat energy due to entropy as related to temperature. Equation (5.4.35)
is called the entropy equation of state. Using the energy equation (5.4.8), Eq. (5.4.35)
can be expressed as

ρ
De
Dt

= σ: D + ρθη̇, (5.4.36)

where the superposed dot indicates the time derivative.
For an irreversible process, the second law of thermodynamics requires that

the sum of viscous and thermal dissipation rates (i.e., entropy production) must be
positive. The entropy production is ∫

�

ρη dx, (5.4.37)

where η is the entropy per unit mass. The entropy input rate is∫
�

(
ρE
θ

)
dx −

∮
�

(q
θ

)
· n̂ ds. (5.4.38)

The second law of thermodynamics places the restriction that the rate of entropy
increase must be greater than the entropy input rate

D
Dt

∫
�

ρη dx ≥
∫

�

[(
ρE
θ

)
− ∇ ·

(q
θ

)
−
]

dx. (5.4.39)

The local form of the second law of thermodynamics, known as the Clausius–Duhem
inequality, or entropy inequality, is

Dη

Dt
≥ E

θ
− 1

ρ
∇ ·

(q
θ

)
. (5.4.40)

The quantity q/θ is known as the entropy flux and E/θ as the entropy supply density.
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The sum of internal energy (e) and irreversible heat energy (−θη) is known as
Helmhotz free energy

� = e − θη. (5.4.41)

Substituting Eq. (5.4.41) into Eq. (5.4.8), we obtain

ρ
D�

Dt
= σ: D − ρ

Dθ

Dt
η − D, (5.4.42)

where D is the internal dissipation

D = ρθ
Dη

Dt
+ ∇ · q − ρE . (5.4.43)

In view of Eq. (5.4.40), we can write

D − 1
θ

q · ∇θ ≥ 0. (5.4.44)

We have D > 0 for an irreversible process, and D = 0 for a reversible process be-
cause it is always true that

−1
θ

q · ∇θ ≥ 0. (5.4.45)

5.5 Summary

This chapter was devoted to the derivation of the field equations governing a con-
tinuous medium using the principles of conservation of mass, momenta, and energy
and therefore constitutes the heart of the book. The equations are derived in in-
variant (i.e., vector and tensor) form so that they can be expressed in any chosen
coordinate system (e.g., rectangular, cylindrical, spherical, or even a curvilinear sys-
tem). The principle of conservation of mass results in the continuity equation; the
principle of conservation of linear momentum, which is equivalent to Newton’s sec-
ond law of motion, leads to the equations of motion in terms of the Cauchy stress
tensor; the principle of conservation of angular momentum yields, in the absence of
body couples, in the symmetry of Cauchy stress tensor; and the principles of ther-
modynamics – the first and second laws of thermodynamics – give rise to the energy
equation and Clausius–Duhem inequality. Examples to illustrate the conservation
principles are also presented.

In closing this chapter, we summarize the invariant form of the equations result-
ing from the application of conservation principles to a continuum. The variables
appearing in the equations were already defined and will not be repeated here.

Conservation of mass

∂ρ

∂t
+ div(ρv) = 0. (5.5.1)

Conservation of linear momentum

∇ · σ + ρf = ρ

(
∂v
∂t

+ v · ∇v
)

. (5.5.2)
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Conservation of angular momentum

σT = σ. (5.5.3)

Conservation of energy

ρ
De
Dt

= σ: D − ∇ · q + ρE . (5.5.5)

Entropy inequality

ρθ
Dη

Dt
− ρ E + ∇ · q − 1

θ
q · ∇θ ≥ 0. (5.5.6)

The subject of continuum mechanics is primarily concerned with the determi-
nation of the behavior (e.g., ρ, v, θ) of a body under externally applied causes (e.g.,
f, E). After introducing suitable constitutive relations for σ, e, and q (to be discussed
in the next chapter), this task involves solving initial-boundary-value problem de-
scribed by partial differential equations (5.5.1)–(5.5.5) under specified initial and
boundary conditions. The role of the entropy inequality in this exercise is to make
sure that the behavior of a body is consistent with the inequality (5.5.6). Often, the
constitutive relations developed are required to be consistent with the second law
of thermodynamics (i.e., satisfy the entropy inequality). The entropy principle states
that constitutive relations be such that the entropy inequality is satisfied identically
for any thermodynamic process.

To complete the mathematical description of the behavior of a continuous
medium, the conservation equations derived in this chapter must be supplemented
with the constitutive equations that relate σ, e, and q to v, ρ, and θ . Chapter 6 is
dedicated to the discussion of the constitutive relations. Applications of the govern-
ing equations of a continuum to linearized elasticity problems, and fluid mechanics
and heat transfer problems will be discussed in Chapters 7 and 8, respectively.

PROBLEMS

5.1 The acceleration of a material element in a continuum is described by

Dv
Dt

≡ ∂v
∂t

+ v · grad v, (a)

where v is the velocity vector. Show by means of vector identities that the accelera-
tion can also be written as

Dv
Dt

≡ ∂v
∂t

+ grad

(
v2

2

)
− v × curlv. (b)

This form displays the role of the vorticity vector, ω = curl v.

5.2 Show that the local form of the principle of conservation of mass, Eq. (5.2.10),
can be expressed as

D
Dt

(ρ J ) = 0.
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5.3 Derive the continuity equation in the cylindrical coordinate system by consid-
ering a differential volume element shown in Figure P5.3.

θ

x1

x2

x3

êz

ê 

êθ

∆θ

( )zρvz

( )
z z

ρvz ∆+

( )vθ θ θ
ρ

∆+

( )
θ

ρvθ

( )
r

ρvr

( )r r + ∆r
ρv

r∆

r

∆r

z∆

r Figure P5.3.

5.4 Express the continuity equation (5.2.12) in the cylindrical coordinate sys-
tem (see Table 2.4.2 for various operators). The result should match the one in
Eq. (5.2.18).

5.5 Express the continuity equation (5.2.12) in the spherical coordinate system (see
Table 2.4.2 for various operators). The result should match the one in Eq. (5.2.19).

5.6 Determine whether the following velocity fields for an incompressible flow sat-
isfies the continuity equation:

(a) v2(x1, x2) = − x1
r2 , v2(x1, x2) = − x2

r2 , where r2 = x2
1 + x2

2 .

(b) vr = 0, vθ = 0, vz = c
(

1 − r2

R2

)
, where c and R are constants.

5.7 The velocity distribution between two parallel plates separated by distance b is

vx(y) = y
b
v0 − c

y
b

(
1 − y

b

)
, vy = 0, vz = 0, 0 < y < b,

where y is measured from and normal to the bottom plate, x is taken along the
plates, vx is the velocity component parallel to the plates, v0 is the velocity of the
top plate in the x direction, and c is a constant. Determine whether the velocity field
satisfies the continuity equation and find the volume rate of flow and the average
velocity.
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5.8 A jet of air (ρ = 1.206 kg/m3) impinges on a smooth vane with a velocity v = 50
m/s at the rate of Q = 0.4 m3/s. Determine the force required to hold the plate in
position for the two different vane configurations shown in Figure P5.8. Assume
that the vane splits the jet into two equal streams, and neglect any energy loss in the
streams.

Figure P5.8.

5.9 In Part 1 of Example 5.3.3, determine (a) the velocity and accelerations as func-
tions of x and (b) the velocity as the chain leaves the table.

5.10 Using the definition of ∇, vector forms of the velocity vector, body force vec-
tor, and the dyadic form of σ [see Eq. (5.3.16)], express the equations of motion
(5.3.11) in the cylindrical coordinate system as given in Eq. (5.3.17).

5.11 Using the definition of ∇, vectors forms of the velocity vector, body force vec-
tor, and the dyadic form of σ [see Eq. (5.2.18)], express the equations of motion
(5.3.11) in the spherical coordinate system as given in Eq. (5.3.19).

5.12 Use the continuity (i.e., conservation of mass) equation and the equation of
motion to obtain the so-called conservation form of the momentum equation

∂

∂t
(ρv) + div (ρvv − σ) = ρf.

5.13 Show that

ρ
D
Dt

(
v2

2

)
= v · div σ + ρv · f (v = |v|).

5.14 Deduce that

curl
(

Dv
Dt

)
≡ Dω

Dt
+ ω div v − ω · ∇v, (a)

where ω ≡ curl v is the vorticity vector. Hint: Use the result of Problem 5.1 and the
identity (you need to prove it)

∇ × (A × B) = B · ∇A − A · ∇B + A∇ · B − B∇ · A.

5.15 Derive the following vorticity equation for a fluid of constant density and vis-
cosity

∂ω

∂t
+ (v · ∇)ω = (ω · ∇)v + ν∇2ω,

where ω = ∇ × v and ν = µ/ρ.
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5.16 Bernoulli’s Equations. Consider a flow with hydrostatic pressure σ = −PI and
conservative body force f = −grad φ.

(a) For steady flow, show that

v · grad
(

v2

2
+ φ

)
+ 1

ρ
v · grad P = 0.

(b) For steady and irrotational (i.e., curl v = 0) flow, show that

grad
(

v2

2
+ φ

)
+ 1

ρ
grad P = 0.

5.17 Use the Bernoulli’s equation (which is valid for steady, frictionless, incompress-
ible flow) derived in Problem 5.16 to determine the velocity and discharge of the
fluid at the exit of the nozzle in the wall of the reservoir shown in Fig. P5.17.

5 mh =
d = 50 mm dia

Figure P5.17.

5.18 If the stress field in a body has the following components in a rectangular
Cartesian coordinate system

[σ] = a


 x2

1 x2 (b2 − x2
2 )x1 0

(b2 − x2
2 )x1

1
3 (x2

2 − 3b2)x2 0
0 0 2bx2

3


 ,

where a and b are constants, determine the body force components necessary for
the body to be in equilibrium.

5.19 A two-dimensional state of stress exists in a body with no body forces. The
following components of stress are given:

σ11 = c1x3
2 + c2x2

1 x2 − c3x1, σ22 = c4x3
2 − c5, σ12 = c6x1x2

2 + c7x2
1 x2 − c8,

where ci are constants. Determine the conditions on the constants so that the stress
field is in equilibrium.

5.20 For a cantilevered beam bent by a point load at the free end, the bending
moment M3 about the x3-axis is given by M3 = −Px1 (see Figure 3.8.1). The bending
stress σ11 is given by

σ11 = M3x2

I3
= − Px1x2

I3
,

where I3 is the moment of inertia of the cross section about the x3-axis. Starting with
this equation, use the two-dimensional equilibrium equations to determine stresses
σ22 and σ12 as functions of x1 and x2.
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5.21 A sprinkler with four nozzles, each nozzle having an exit area of A = 0.25
cm2, rotates at a constant angular velocity of ω = 20 rad/s and distributes water
(ρ = 103 kg/m3) at the rate of Q = 0.5 L/s (see Figure P5.21). Determine (a) the
torque T required on the shaft of the sprinkler to maintain the given motion and
(b) the angular velocity ω0 at which the sprinkler rotates when no external torque is
applied.

Figure P5.21.

5.22 Consider an unsymmetric sprinkler head shown in Figure P5.22. If the dis-
charge is Q = 0.5 L/s through each nozzle, determine the angular velocity of the
sprinkler. Assume that no external torque is exerted on the system.

Nozzle exit area, A

Discharge, 0.5 ( L /s)Q

A1

2
1 0.25 mr

2 0.35 mr

ω

=

=

Figure P5.22.

5.23 Establish the following alternative form of the energy equation

ρ
D
Dt

(
e + v2

2

)
= div (σ · v) + ρf · v + ρE − ∇ · q.

5.24 The fan shown in Figure P5.24 moves air (ρ = 1.23 kg/m3) at a mass flow rate
of 0.1 kg/min. The upstream side of the fan is connected to a pipe of diameter
d1 = 50 mm, the flow is laminar, the velocity distribution is parabolic, and the ki-
netic energy coefficient is α = 2. The downstream of the fan is connected to a pipe of
diameter d2 = 25 mm, the flow is turbulent, the velocity profile is uniform, and the
kinetic energy coefficient is α = 1. If the rise in static pressure between upstream
and downstream is 100 Pa and the fan motor draws 0.15 W, determine the loss
(−Hnet).
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= 50 mmd1

ρQ0

− =2 1 0e e

Fan

= 25 mmd2

− =1 100 PaP2 P Laminar flow

Turbulent flow

Figure P5.24.

5.25 The rate of internal work done (power) in a continuous medium in the current
configuration can be expressed as

W = 1
2

∫
v

σ : D dv, (1)

where σ is the Cauchy stress tensor and D is the rate of deformation tensor (i.e.,
symmetric part of the velocity gradient tensor)

D = 1
2

[
(∇v)T + ∇v

]
, v = dx

dt
. (2)

The pair (σ, D) is said to be energetically conjugate since it produces the (strain)
energy stored in a deformable medium. Show that (a) the first Piola–Kirchhoff stress
tensor P is energetically conjugate to the rate of deformation gradient tensor Ḟ and
(b) the second Piola–Kirchhoff stress tensor S is energetically conjugate to the rate
of Green strain tensor Ė. Hints: Note the following identities:

dx = J dX, L ≡ ∇v = Ḟ · F−1, P = JF−1 · σ, σ = 1
J

F · S · FT.
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What we need is imagination. We have to find a new view of the world.
Richard Feynman

The farther the experiment is from theory, the closer it is to the Nobel Prize.
Joliet-Curie

6.1 Introduction

The kinematic relations developed in Chapter 3, and the principles of conservation
of mass and momenta and thermodynamic principles discussed in Chapter 5, are
applicable to any continuum irrespective of its physical constitution. The kinematic
variables such as the strains and temperature gradient, and kinetic variables such
as the stresses and heat flux were introduced independently of each other. Consti-
tutive equations are those relations that connect the primary field variables (e.g., ρ,
T, x, and u or v) to the secondary field variables (e.g., e, q, and σ). Constitutive
equations are not derived from any physical principles, although they are subject to
obeying certain rules and the entropy inequality. In essence, constitutive equations
are mathematical models of the behavior of materials that are validated against
experimental results. The differences between theoretical predictions and experi-
mental findings are often attributed to inaccurate representation of the constitutive
behavior.

First, we review certain terminologies that were already introduced in begin-
ning courses on mechanics of materials. A material body is said to be homogeneous
if the material properties are the same throughout the body (i.e., independent of
position). In a heterogeneous body, the material properties are a function of posi-
tion. An anisotropic body is one that has different values of a material property in
different directions at a point, i.e., material properties are direction dependent. An
isotropic material is one for which every material property is the same in all direc-
tions at a point. An isotropic or anisotropic material can be nonhomogeneous or
homogeneous.

178
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Materials for which the constitutive behavior is only a function of the current
state of deformation are known as elastic. If the constitutive behavior is only a
function of the current state of rate of deformation, such materials are termed vis-
cous. In this study, we shall be concerned with (a) elastic materials for which the
stresses are functions of the current deformation and temperature and (b) viscous
fluids for which the stresses are functions of density, temperature, and rate of de-
formation. Special cases of these materials are the Hookean solids and Newtonian
fluids. A study of these “theoretical” materials is important because these materi-
als provide good mathematical models for the behavior of “real” materials. There
exist other materials, for example, polymers and elastomers, whose constitutive re-
lations cannot be adequately described by those of a Hookean solid or Newtonian
fluid.

Constitutive equations are often postulated directly from experimental observa-
tions. While experiments are necessary in the determination of various parameters
(e.g., elastic constants, thermal conductivity, thermal coefficient of expansion, and
coefficients of viscosity) appearing in the constitutive equations, the formulation of
the constitutive equations for a given material is guided by certain rules. The ap-
proach typically involves assuming the form of the constitutive equation and then
restricting the form to a specific one by appealing to certain physical requirements,
including invariance of the equations and material frame indifference discussed in
Section 3.9 (see Problem 6.8 for the axioms of constitutive theory).

This chapter is primarily focused on Hookean solids and Newtonian fluids. The
constitutive equations presented in Section 6.2 for elastic solids are based on small
strain assumption. Thus, we make no distinction between the material coordinates
X and spatial coordinates x and between the Cauchy stress tensor σ and second
Piola–Kirchhoff stress tensor S. A brief discussion of some well-known nonlinear
constitutive models (e.g., Mooney–Rivlin solids and non-Newtonian fluids) will be
presented in Sections 6.2.11 and 6.3.4.

6.2 Elastic Solids

6.2.1 Introduction

A material is said to be (ideally or simple) elastic or Cauchy elastic when, under
isothermal conditions, the body recovers its original form completely upon removal
of the forces causing deformation, and there is a one-to-one relationship between
the state of stress and the state of strain in the current configuration. The work done
by the stress is, in general, dependent on the deformation path. For Cauchy elastic
materials, the Cauchy stress σ does not depend on the path of deformation, and
the state of stress in the current configuration is determined solely by the state of
deformation

σ = σ(F), (6.2.1)
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where F is the deformation gradient tensor with respect to an arbitrary choice of ref-
erence configuration κ0. For Cauchy elastic material, in contrast to the Green elastic
material (see below), the stress is not derivable from a scalar potential function.

The constitutive equations to be developed here for stress tensor σ do not in-
clude creep at constant stress and stress relaxation at constant strain. Thus, the
material coefficients that specify the constitutive relationship between the stress
and strain components are assumed to be constant during the deformation. This
does not automatically imply that we neglect temperature effects on deformation.
We account for the thermal expansion of the material, which can produce strains or
stresses as large as those produced by the applied mechanical forces.

A material is said to be hyperelastic or Green elastic if there exists a strain energy
density function U0(ε) such that

σ = ∂U0

∂ε
,

(
σi j = ∂U0

∂εi j

)
. (6.2.2)

For an incompressible elastic material (i.e., material for which the volume is pre-
served and hence J = 1 or div u = 0), the above relation is written as

σ = −pI + ∂U0

∂ε
,

(
σi j = −pδi j + ∂U0

∂εi j

)
, (6.2.3)

where p is the hydrostatic pressure. In developing a mathematical model of the
constitutive behavior of an hyperelastic material, U0 is expanded in Taylor’s series
about ε = 0:

U0 = C0 + Ci jεi j + 1
2!

Ĉi jk
εi jεk
 + 1
3!

Ĉi jk
mnεi jεk
εmn + . . . , (6.2.4)

where C0, Ci j , Ĉ, and so on are material stiffnesses. For nonlinear elastic materials,
U0 is a cubic and higher-order function of the strains. For linear elastic materials, U0

is a quadratic function of strains.
In Sections 6.2.2–6.2.10 we discuss the constitutive equations of Hookean solids

(i.e., relations between stress and strain are linear) for the case of infinitesimal defor-
mation (i.e., |∇u| << 1). Hence, we will not distinguish between various measures
of stress and strain, and use S ≈ σ for the stress tensor and E ≈ ε for strain tensor in
the material description used in solid mechanics. The linear constitutive model for
infinitesimal deformations is referred to as the generalized Hooke’s law.

6.2.2 Generalized Hooke’s Law

To derive the stress–strain relations for a linear elastic solid, begin with the quad-
ratic form of U0

U0 = C0 + Ci jεi j + 1
2!

Ĉi jk
εi jεk
, (6.2.5)
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where C0 is a reference value of U0 from which the strain energy density function is
measured. From Eq. (6.2.2), we have

σmn = ∂U0

∂εmn
= Ci jδmiδnj + 1

2
Ĉi jk
 (εk
δimδ jn + εi jδkmδ
n)

= Cmn + 1
2

Ĉmnk
εk
 + 1
2

Ĉi jmnεi j

= Cmn + 1
2

(
Ĉmni j + Ĉi jmn

)
εi j

= Cmn + Cmni jεi j , (6.2.6)

where

Cmni j = 1
2

(
Ĉmni j + Ĉi jmn

) = ∂2U0

∂εi j∂εmn
= ∂2U0

∂εmn∂εi j
= Ci jmn. (6.2.7)

Clearly, Cmn have the same units as σmn, and they represent the residual stress com-
ponents of a solid. We shall assume, without loss of generality, that the body is free
of stress prior to the load application so that we may write

σi j = Ci jk
εk
. (6.2.8)

The coefficients Ci jk
 are called elastic stiffness coefficients. In general, there are
81(= 34) scalar components of the fourth-order tensor C. However, the components
Ci jk
 satisfy the following symmetry conditions by virtue of definition (6.2.7) and the
symmetry of stress and strain tensor components:

Ci jk
 = Ck
i j , Ci jk
 = Cjik
, Ci jk
 = Cji
k. (6.2.9)

Thus, the number of independent coefficients in Ci jmn is reduced to 21:


C1111 C1122 C1133 C1123 C1113 C1112

C2222 C2233 C2223 C2213 C2212

C3333 C3323 C3313 C3312

C2323 C2313 C2312

C1313 C1312

C1212




. (6.2.10)

We express Eq. (6.2.8) in an alternate form using single subscript notation for
stresses and strains and two subscript notation for the material stiffness coefficients:

σ1 = σ11, σ2 = σ22, σ3 = σ33, σ4 = σ23 , σ5 = σ13, σ6 = σ12,

ε1 = ε11, ε2 = ε22, ε3 = ε33, ε4 = 2ε23, ε5 = 2ε13, ε6 = 2ε12.
(6.2.11)

11 → 1 22 → 2 33 → 3 23 → 4 13 → 5 12 → 6. (6.2.12)

It should be cautioned that the single subscript notation used for stresses and strains
and the two-subscript components Ci j render them nontensor components (i.e., σi ,
εi , and Ci j do not transform like the components of a tensor). The single subscript
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notation for stresses and strains is called the engineering notation or the Voigt-Kelvin
notation. Equation (6.2.8) now takes the form

σi = Ci jε j , (6.2.13)

where summation on repeated subscripts is implied (now from 1 to 6). The coeffi-
cients Ci j are symmetric (Ci j = Cji ), and we have 21(= 6 + 5 + 4 + 3 + 2 + 1) inde-
pendent stiffness coefficients for the most general elastic material. In matrix nota-
tion Eq. (6.2.13) can be written as



σ1

σ2

σ3

σ4

σ5

σ6




=




C11 C12 C13 C14 C15 C16

C21 C22 C23 C24 C25 C26

C31 C32 C33 C34 C35 C36

C41 C42 C43 C44 C45 C46

C51 C52 C53 C54 C55 C56

C61 C62 C63 C64 C65 C66







ε1

ε2

ε3

ε4

ε5

ε6




. (6.2.14)

We assume that the stress–strain relations (6.2.14) are invertible. Thus, the com-
ponents of strain are related to the components of stress by

εi = Si jσ j , (6.2.15)

where Si j are the material compliance coefficients with [S] = [C]−1 (i.e., the com-
pliance tensor is the inverse of the stiffness tensor: S = C−1). In matrix notation,
Eq. (6.2.15) has the form



ε1

ε2

ε3

ε4

ε5

ε6




=




S11 S12 S13 S14 S15 S16

S21 S22 S23 S24 S25 S26

S31 S32 S33 S34 S35 S36

S41 S42 S43 S44 S45 S46

S51 S52 S53 S54 S55 S56

S61 S62 S63 S64 S65 S66







σ1

σ2

σ3

σ4

σ5

σ6




. (6.2.16)

6.2.3 Material Symmetry

Further reduction in the number of independent stiffness (or compliance) param-
eters comes from the so-called material symmetry. Suppose that (x1, x2, x3) de-
note the coordinate system with respect to which Eqs. (6.2.5)–(6.2.16) are defined.
We shall call it a material coordinate system. The coordinate system (x, y, z) used
to write the equations of motion and strain-displacement equations will be called
the problem coordinates to distinguish them from the material coordinate system.
The phrase “material coordinates” used in connection with the material description
should not be confused with the present term. In the remaining discussion, we will
use the material description for everything, but we may use one material coordinate
system, say (x, y, z), to describe the kinematics as well as stress state in the body
and another material coordinate system (x1, x2, x3) to describe the stress–strain be-
havior. Both are fixed in the body, and the two systems are oriented with respect
to each other. When elastic material parameters at a point have the same values for
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every pair of coordinate systems that are mirror images of each other in a certain
plane, that plane is called a material plane of symmetry (e.g., symmetry of internal
structure due to crystallographic form, regular arrangement of fibers or molecules).
We note that the symmetry under discussion is a directional property and not a po-
sitional property. Thus, a material may have certain elastic symmetry at every point
of a material body and the properties may vary from point to point. Positional de-
pendence of material properties is what we called the inhomogeneity of the material.

In the following, we discuss various planes of symmetry and forms of associated
stress–strain relations. Use of the tensor components of stress and strain is necessary
because the transformations are valid only for the tensor components. The second-
order tensor components σi j and εi j and the fourth-order tensor components Ci jkl

transform according to the formulae

σ̄i j = 
ip 
 jq σpq, ε̄i j = 
ip 
 jq εpq, C̄i jkl = 
ip 
 jq 
kr 
ls Cpqrs, (6.2.17)

where 
i j are the direction cosines associated with the coordinate systems (x̄1, x̄2, x̄3)
and (x1, x2, x3), and C̄i jkl and Cpqrs are the components of the fourth-order tensor
C in the barred and unbarred coordinates systems, respectively. A trivial symmetry
transformation is one in which the barred coordinate system is obtained from the un-
barred coordinate system by simply reversing their directions: x̄1 = −x1, x̄2 = −x2,
and x̄3 = −x3. This transformation is satisfied by all materials, and they are called
triclinic materials. The associated transformation matrix is given by

[L] =

−1 0 0

0 −1 0
0 0 −1


 . (6.2.18)

For this transformation, one can show that Eq. (6.2.17) gives the trivial result
C̄i jkl = Ci jkl . Next, we consider some commonly known nontrivial symmetry trans-
formations.

6.2.4 Monoclinic Materials

When the elastic coefficients at a point have the same value for every pair of coordi-
nate systems which are the mirror images of each other with respect to a plane, the
material is called a monoclinic material. For example, let (x1, x2, x3) and (x̄1, x̄2, x̄3)
be two coordinates systems, with the x1, x2-plane parallel to the plane of symmetry.
Choosing the x̄3-axis such that x̄3 = −x3 (never mind about the left-handed coor-
dinate system as it does not affect the discussion) so that one system is the mirror
image of the other. This symmetry transformation can be expressed by the transfor-
mation matrix (x̄1 = x1, x̄2 = x2, x̄3 = −x3).

[L] =

 1 0 0

0 1 0
0 0 −1


 . (6.2.19)
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The requirement that C̄i jkl be the same as Ci jkl under the transformation (6.2.19)
yields (because σ̄23 = −σ23, σ̄31 = −σ31, ε̄23 = −ε23, ε̄31 = −ε31 under the same trans-
formation):

C1113 = C̄1113 = −C1113, C1123 = C̄1123 = −C1123,

C1213 = C̄1213 = −C1213, C2213 = C̄2213 = −C2213,

C2223 = C̄2223 = −C2223, C2333 = C̄2333 = −C2333,

C3323 = C̄3323 = −C3323, C3313 = C̄3313 = −C3313.

Thus, all Cs with an odd number of index “3” are zero.
Alternatively, if we use Eq. (6.2.13) and σ̄4 = −σ4, σ̄5 = −σ5, ε̄4 = −ε4, ε̄5 =

−ε5, we obtain

σ̄1 = C11ε̄1 + C12ε̄2 + C13ε̄3 + C14ε̄4 + C15ε̄5 + C16ε̄6,

σ1 = C11ε1 + C12ε2 + C13ε3 − C14ε4 − C15ε5 + C16ε6.

But we also have

σ1 = C11ε1 + C12ε2 + C13ε3 + C14ε4 + C15ε5 + C16ε6.

The elastic parameters Ci j are the same for the two coordinate systems because they
are the mirror images in the plane of symmetry. From the above two equations we
arrive at

C14ε4 + C15ε5 = 0 for all values of ε4 and ε5.

The above equation holds only if C14 = 0 and C15 = 0. Similar discussion with the
two alternative expressions of the remaining stress components yield C24 = 0 and
C25 = 0; C34 = 0 and C35 = 0; and C46 = 0 and C56 = 0. Thus, of 21 material param-
eters, we have only 21 − 8 = 13 independent parameters, as indicated below

[C] =




C11 C12 C13 0 0 C16

C12 C22 C23 0 0 C26

C13 C23 C33 0 0 C36

0 0 0 C44 C45 0
0 0 0 C45 C55 0

C16 C26 C36 0 0 C66




. (6.2.20)

Monoclinic materials exhibit shear-extensional coupling, that is, a shear strain can
produce a normal stress.

6.2.5 Orthotropic Materials

When three mutually orthogonal planes of material symmetry exist, the number
of elastic coefficients is reduced to 9 using arguments similar to those given for
single material symmetry plane, and such materials are called orthotropic. The



P1: JzG

Chapter06 CUFX197-Reddy 978 0 521 87044 3 October 3, 2007 10:44

6.2 Elastic Solids 185

transformation matrices associated with the planes of symmetry are

[L(1)] =

 1 0 0

0 1 0
0 0 −1


 , [L(2)] =


−1 0 0

0 1 0
0 0 1


 , [L(3)] =


 1 0 0

0 −1 0
0 0 1


 . (6.2.21)

Under these transformations, we obtain C1112 = C16 = 0, C2212 = C26 = 0, C3312 =
C36 = 0, and C2313 = C45 = 0. The stress–strain relations for an orthotropic material
take the form




σ1

σ2

σ3

σ4

σ5

σ6




=




C11 C12 C13 0 0 0
C12 C22 C23 0 0 0
C13 C23 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C55 0
0 0 0 0 0 C66







ε1

ε2

ε3

ε4

ε5

ε6




. (6.2.22)

Most simple characterization tests are performed with a known load or stress.
Hence, it is convenient to write the inverse of relations in Eq. (6.2.22)




ε1

ε2

ε3

ε4

ε5

ε6




=




S11 S12 S13 0 0 0
S12 S22 S23 0 0 0
S13 S23 S33 0 0 0
0 0 0 S44 0 0
0 0 0 0 S55 0
0 0 0 0 0 S66







σ1

σ2

σ3

σ4

σ5

σ6




, (6.2.23)

where [S] is the matrix of compliance coefficients Si j , and [S] = [C]−1.
Most often, the material properties are determined in a laboratory in terms

of the engineering constants such as Young’s modulus, shear modulus, and so on.
These constants are measured using simple tests like uniaxial tension test or pure
shear test. Because of their direct and obvious physical meaning, engineering con-
stants are used in place of the more abstract stiffness coefficients Ci j and compliance
coefficients Si j . Next we discuss how to obtain the strain–stress relations (6.2.23) and
relate Si j to the engineering constants.

One of the consequences of linearity (both kinematic and material lineariza-
tions) is that the principle of superposition applies. That is, if the applied loads and
geometric constraints are independent of deformation, the sum of the displacements
(and hence strains) produced by two sets of loads is equal to the displacements (and
strains) produced by the sum of the two sets of loads. In particular, the strains of the
same type produced by the application of individual stress components can be super-
posed. For example, the extensional strain ε

(1)
11 in the material coordinate direction

x1 due to the stress σ11 in the same direction is σ11/E1, where E1 denotes Young’s
modulus of the material in the x1 direction, as shown in Figure 6.2.1. The extensional
strain ε

(2)
11 due to the stress σ22 applied in the x2-direction is (a result of the Poisson
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Figure 6.2.1. Strains produced by stresses in a cube of material.

effect) −ν21 (σ22/E2), where ν21 is Poisson’s ratio (note that the first subscript in
νi j , i 	= j , corresponds to the load direction and the second subscript refers to the
directions of the strain)

ν21 = −ε11

ε22

and E2 is Young’s modulus of the material in the x2-direction. Similarly, σ33 pro-
duces a strain ε

(3)
11 equal to −ν31(σ33/E3). Hence, the total strain ε11 due to the simul-

taneous application of all three normal stress components is

ε11 = ε
(1)
11 + ε

(2)
11 + ε

(3)
11 = σ11

E1
− ν21

σ22

E2
− ν31

σ33

E3
, (6.2.24)

where the direction of loading is denoted by the superscript. Similarly, we can write

ε22 = −ν12
σ11

E1
+ σ22

E2
− ν32

σ33

E3
,

ε33 = −ν13
σ11

E1
− ν23

σ22

E2
+ σ33

E3
.

(6.2.25)

The simple shear tests with an orthotropic material give the results

2ε12 = σ12

G12
, 2ε13 = σ13

G13
, 2ε23 = σ23

G23
. (6.2.26)

Recall from Section 3.5.2 that 2εi j (i 	= j) is the change in the right angle between
two lines parallel to the x1- and x2-directions at a point, σi j (i 	= j) denotes the cor-
responding shear stress in the xi -xj plane, and Gi j (i 	= j) are the shear moduli in
the xi -xj plane.
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Writing Eqs. (6.2.24)–(6.2.26) in matrix form, we obtain


ε1

ε2

ε3

ε4

ε5

ε6




=




1
E1

− ν21
E2

− ν31
E3

0 0 0

− ν12
E1

1
E2

− ν32
E3

0 0 0

− ν13
E1

− ν23
E2

1
E3

0 0 0

0 0 0 1
G23

0 0

0 0 0 0 1
G13

0

0 0 0 0 0 1
G12







σ1

σ2

σ3

σ4

σ5

σ6




, (6.2.27)

where E1, E2, E3 are Young’s moduli in 1, 2, and 3 material directions, respectively,
νi j is Poisson’s ratio, defined as the ratio of transverse strain in the jth direction to
the axial strain in the ith direction when stressed in the i-direction, and G23, G13, G12

are shear moduli in the 2-3, 1-3, and 1-2 planes, respectively. Since [S] is the inverse
of [C] and the [C] is symmetric, then [S] is also a symmetric matrix. This in turn
implies that the following reciprocal relations hold [i.e., compare the off-diagonal
terms in Eq. (6.2.27)]:

ν21

E2
= ν12

E1
;

ν31

E3
= ν13

E1
;

ν32

E3
= ν23

E2
→ νi j

Ei
= ν j i

Ej
(6.2.28)

for i, j = 1, 2, 3. The nine independent material coefficients for an orthotropic ma-
terial are

E1, E2, E3, G23, G13, G12, ν12, ν13, ν23.

6.2.6 Isotropic Materials

Isotropic materials are those for which the material properties are independent of
the direction, and we have

E1 = E2 = E3 = E, G12 = G13 = G23 = G, ν12 = ν23 = ν13 = ν.

The stress–strain relations take the form

σi j = E
1 + ν

εi j + νE
(1 + ν)(1 − 2ν)

εkkδi j , (6.2.29)

where summation on repeated indices is implied. The inverse relations are (G =
E/[2(1 + ν)])

εi j = 1 + ν

E
σi j − ν

E
σkkδi j , (6.2.30)

Application of a normal stress to a rectangular block of isotropic or orthotropic
material leads to only extension in the direction of the applied stress and contraction
perpendicular to it, whereas an anisotropic material experiences extension in the
direction of the applied normal stress, contraction perpendicular to it, and shearing
strain, as shown in Figure 6.2.2. Conversely, the application of a shearing stress to an
anisotropic material causes shearing strain as well as normal strains. Normal stress
applied to an orthotropic material at an angle to its principal material directions
causes it to behave like an anisotropic material.
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Normal Stress Shear Stress

Isotropic
      and
Orthotropic

Anisotropic

Figure 6.2.2. Deformation of orthotropic and aniso-
tropic rectangular block under uniaxial tension.

6.2.7 Transformation of Stress and Strain Components

The constitutive relations (6.2.22) and (6.2.23) for an orthotropic material were writ-
ten in terms of the stress and strain components that are referred to the material
coordinate system. The coordinate system used in the problem formulation, in gen-
eral, does not coincide with the material coordinate system. Thus, there is a need to
express the constitutive equations of an orthotropic material in terms of the stress
and strain components referred to the problem coordinate system. We can use the
transformation equations (6.2.17) of a second-order tensor to write the stress and
strain components (σi , εi ) referred to the material coordinate system in terms of
those referred to the problem coordinates.

Let (x, y, z) denote the coordinate system used to write the governing equations
of a problem, and let (x1, x2, x3) be the principal material coordinates such that x3-
axis is parallel to the z-axis (i.e., the x1x2-plane and the xy-plane are parallel) and
the x1-axis is oriented at an angle of +θ counterclockwise (when looking down) from
the x-axis, as shown in Figure 6.2.3. The coordinates of a material point in the two
coordinate systems are related as follows (z = x3):


x1

x2

x3


 =


 cos θ sin θ 0

− sin θ cos θ 0
0 0 1






x
y
z


 = [L]




x
y
z


 . (6.2.31)

The inverse of Eq. (6.2.31) is


x
y
z


 =


 cos θ − sin θ 0

sin θ cos θ 0
0 0 1






x1

x2

x3


 = [L]T




x1

x2

x3


 . (6.2.32)

The inverse of [L] is equal to its transpose: [L]−1 = [L]T.
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Figure 6.2.3. A material with material and problem coordinate systems.

6.2.7.1 Transformation of Stress Components
Let σ denote the stress tensor, which has components σ11, σ12, . . . , σ33 in the ma-
terial (m) coordinates (x1, x2, x3) and components σxx, σxy, . . . , σzz in the problem
(p) coordinates (x, y, z). Since stress tensor is a second-order tensor, it transforms
according to the formula

(σkq)m = 
ki
qj (σi j )p or [σ ]m = [L][σ ]p[L]T,

(σkq)p = 
ik
 jq(σi j )m or [σ ]p = [L]T[σ ]m[L].
(6.2.33)

where (σi j )m are the components of the stress tensor σ in the material coordinates
(x1, x2, x3), whereas (σi j )p are the components of the same stress tensor σ in the
problem coordinates (x, y, z),

[σ ]p =

 σxx σxy σxz

σxy σyy σyz

σxz σyz σzz


 , [σ ]m =


 σ11 σ12 σ13

σ12 σ22 σ23

σ13 σ23 σ33


 , (6.2.34)

and 
i j are the direction cosines defined by


i j = (êi )m · (ê j )p, (6.2.35)

(êi )m and (êi )p being the orthonormal basis vectors in the material and problem
coordinate systems, respectively.

Carrying out the matrix multiplications in Eq. (6.2.33), with [L] defined by Eq.
(6.2.31), and rearranging the equations in terms of the single-subscript stress com-
ponents in (x, y, z) and (x1, x2, x3) coordinate systems, we obtain


σxx

σyy

σzz

σyz

σxz

σxy




=




cos2 θ sin2 θ 0 0 0 − sin 2θ

sin2 θ cos2 θ 0 0 0 sin 2θ

0 0 1 0 0 0
0 0 0 cos θ sin θ 0
0 0 0 − sin θ cos θ 0

1
2 sin 2θ − 1

2 sin 2θ 0 0 0 cos 2θ







σ1

σ2

σ3

σ4

σ5

σ6




. (6.2.36)
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The inverse relationship between {σ }m and {σ }p is given by


σ1

σ2

σ3

σ4

σ5

σ6




=




cos2 θ sin2 θ 0 0 0 sin 2θ

sin2 θ cos2 θ 0 0 0 − sin 2θ

0 0 1 0 0 0
0 0 0 cos θ − sin θ 0
0 0 0 sin θ cos θ 0

− 1
2 sin 2θ 1

2 sin 2θ 0 0 0 cos 2θ







σxx

σyy

σzz

σyz

σxz

σxy




. (6.2.37)

6.2.7.2 Transformation of Strain Components
Transformation equations derived for stresses are also valid for tensor components
of strains

[ε]m = [L][ε]p[L]T; [ε]p = [L]T[ε]m[L]. (6.2.38)

However, the single-column formats in Eqs. (6.2.36) and (6.2.37) for stresses are not
valid for single-column formats of strains because of the definition:

2ε12 = ε6, 2ε13 = ε5, 2ε23 = ε4.

Slight modification of the results in Eqs. (6.2.36) and (6.2.37) will yield the proper
relations for the engineering components of strains. We have



εxx

εyy

εzz

2εyz

2εxz

2εxy




=




cos2 θ sin2 θ 0 0 0 − sin θ cos θ

sin2 θ cos2 θ 0 0 0 sin θ cos θ

0 0 1 0 0 0
0 0 0 cos θ sin θ 0
0 0 0 − sin θ cos θ 0

sin 2θ − sin 2θ 0 0 0 cos2 θ − sin2 θ







ε1

ε2

ε3

ε4

ε5

ε6




.

(6.2.39)

The inverse relation is given by


ε1

ε2

ε3

ε4

ε5

ε6




=




cos2 θ sin2 θ 0 0 0 sin θ cos θ

sin2 θ cos2 θ 0 0 0 − sin θ cos θ

0 0 1 0 0 0
0 0 0 cos θ − sin θ 0
0 0 0 sin θ cos θ 0

− sin 2θ sin 2θ 0 0 0 cos2 θ − sin2 θ







εxx

εyy

εzz

2εyz

2εxz

2εxy




.

(6.2.40)

Although not discussed here [see Reddy (2004)], the elasticity tensor C must also be
transformed from the material coordinate system to the problem coordinates.
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Figure 6.2.4. A filament-wound cylindrical
pressure vessel.

Next, we consider an example of application of the transformation equations
(see Reddy, 2004; also, see Example 4.3.2).

EXAMPLE 6.2.1: Consider a thin, filament-wound, closed cylindrical pressure ves-
sel shown in Figure 6.2.4. The vessel is of 63.5 cm (25 in.) internal diameter,
2 cm thickness (0.7874 in.), and pressurized to 1.379 MPa (200 psi); Note that
MPa means mega (106) Pascal (Pa), Pa = N/m2, and 1 psi = 6,894.76 Pa. A giga
Pascal (GPa) is 1,000 MPa. Determine

(a) stresses σxx, σyy, and σxy in the vessel,
(b) stresses σ11, σ22, and σ12 in the material coordinates (x1, x2, x3) with x1 being

along the filament direction,
(c) strains ε11, ε22, and 2ε12 in the material coordinates, and
(d) strains εxx, εyy, and γxy in the vessel. Assume a filament winding angle

of θ = 53.125◦ from the longitudinal axis of the pressure vessel, and use
the following material properties, typical of graphite-epoxy material: E1 =
140 GPa (20.3 Msi), E2 = 10 GPa (1.45 Msi), G12 = 7 GPa (1.02 Msi), and
ν12 = 0.3.

SOLUTION:

(a) The equations of equilibrium of forces in a structure do not depend on the
material properties. Hence, equations derived for the longitudinal (σxx) and
circumferential (σyy) stresses in a thin-walled cylindrical pressure vessel are
valid here:

σxx = pDi

4h
, σyy = pDi

2h
,
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where p is internal pressure, Di is internal diameter, and h is thickness of
the pressure vessel. We obtain (the shear stress σxy is zero)

σxx = 1.379 × 0.635
4h

= 0.2189
h

MPa, σyy = 1.379 × 0.635
2h

= 0.4378
h

MPa.

(b) Next, we determine the shear stress along the fiber and the normal stress in
the fiber using the transformation equations

σ11 = σxx cos2 θ + σyy sin2 θ + 2σxy cos θ sin θ,

σ22 = σxx sin2 θ + σyy cos2 θ − 2σxy cos θ sin θ,

σ12 = −σxx sin θ cos θ + σyy cos θ sin θ + σxy(cos2 θ − sin2 θ).

We obtain

σ11 = 0.2189
h

(0.6)2 + 0.4378
h

(0.8)2 = 0.3590
h

MPa,

σ22 = 0.2189
h

(0.8)2 + 0.4378
h

(0.6)2 = 0.2977
h

MPa,

σ12 =
(

0.4378
h

− 0.2189
h

)
× 0.6 × 0.8 = 0.1051

h
MPa.

Thus, the normal and shear forces per unit length along the fiber-matrix
interface are F22 = 0.2977 MN and F12 = 0.1051 MN, whereas the force per
unit length in the fiber direction is F11 = 0.359 MN. For h = 2 cm, the stress
field in the material coordinates becomes

σ11 = 17.95 MPa, σ22 = 14.885 MPa, σ12 = 5.255 MPa.

(c) The strains in the material coordinates can be calculated using the strain–
stress relations (6.2.27). We have (ν21/E2 = ν12/E1, σ33 = 0)

ε11 = σ11

E1
− σ22ν12

E1
= 17.95

140 × 103
− 14.885 × 0.3

140 × 103
= 0.0963 × 10−3 m/m,

ε22 = −σ11ν12

E1
+ σ22

E2
= −17.95 × 0.3

140 × 103
+ 14.885

10 × 103
= 1.45 × 10−3 m/m,

ε12 = σ12

2G12
= 5.255

2 × 7
= 0.3757 × 10−3.

(d) The strains in the (x, y) coordinates can be computed using

εxx = ε11 cos2 θ + ε22 sin2 θ − 2ε12 cos θ sin θ,

εyy = ε11 sin2 θ + ε22 cos2 θ + 2ε12 cos θ sin θ,

εxy = (ε11 − ε22) cos θ sin θ + ε12(cos2 θ − sin2 θ),
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or

εxx = 10−3[0.0963 × (0.6)2 + 1.45 × (0.8)2 − 0.3757 × 0.6 × 0.8]

= 0.782 × 10−3 m/m,

εyy = 10−3[0.0963 × (0.8)2 + 1.45 × (0.6)2 + 0.3757 × 0.6 × 0.8]

= 0.764 × 10−3 m/m,

εxy = 10−3{2(0.0963 − 1.45) × (0.6) × 0.8 + 0.3757[(0.6)2 − (0.8)2]
}

= −1.405 × 10−3.

6.2.8 Nonlinear Elastic Constitutive Relations

Most materials exhibit nonlinear elastic behavior for certain strain threshold, that
is, the stress-strain relation is no longer linear but recovers all its deformation upon
the removal of the loads, and Hooke’s law is no longer valid. Past certain nonlinear
elastic range, permanent deformation ensues, and the material is said be inelastic or
plastic, as shown in Figure 6.2.5. Here, we briefly review constitutive relations for
two well-known nonlinear elastic materials, namely, the Mooney–Rivlin and neo-
Hookean materials. More discussion can be found in Truesdell and Noll (1965) and
Liu (2002).

Recall from Eq. (6.2.1) that for elastic materials under isothermal conditions
the constitutive equation can be expressed as σ = σ(F), where F is deformation
gradient tensor with respect to some reference configuration κ0 (for which det F =
J > 0). For a hyperelastic material, there exists a free energy function ψ = ψ(F)
such that

σ(F) = ρ
∂ψ

∂F
· FT (6.2.41)

for compressible elastic materials, where ρ is the material density.
Some materials (e.g., rubber-like materials) undergo large deformations with-

out appreciable change in volume (i.e., J ≈ 1). Such materials are called incom-
pressible materials. For incompressible elastic materials, the stress tensor is not

Stress,
σ = P/A

Strain, ε = ∆l/l 

Linear elastic

Nonlinearly elastic

Yield point

Proportionality limit

P

P

l

Elastic limit

Unloading

Permanent strain

Figure 6.2.5. A typical stress–strain curve.
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completely determined by deformation. The hydrostatic pressure affects the stress.
For incompressible elastic materials, Eq. (6.2.41) takes the form

σ(F) = −pI + ρ
∂ψ

∂F
· FT, (6.2.42)

where p is the thermodynamic pressure.
For an hyperelastic elastic material, Eq. (6.2.41) can also be expressed as

σ(B) = 2ρ
∂ψ

∂B
· B, (6.2.43)

where the free-energy function ψ is written as ψ = ψ(B) and B is the left Cauchy–
Green tensor B = F · FT [see Eq. (3.4.22)]. Equations (6.2.41)–(6.2.43), in general,
are nonlinear. The free energy function ψ takes different forms for different ma-
terials. It is often expressed as a linear combination of unknown parameters and
principal invariants of Green strain tensor E, deformation gradient tensor F, or left
Cauchy–Green strain tensor B. The parameters characterize the material and they
are determined through suitable experiments.

For incompressible materials, the free energy function ψ is taken as a linear
function of the principal invariants of B

ψ = C1(IB − 3) + C2(I IB − 3), (6.2.44)

where C1 and C2 are constants and IB and I IB are the two principal invariants of B
(the third invariant I I IB is equal to unity for incompressible materials). Materials
for which the strain energy functional is given by Eq. (6.2.44) are known as the
Mooney–Rivlin materials. The stress tensor in this case has the form

σ = −pI + αB + βB−1, (6.2.45)

where α and β are given by

α = 2ρ
∂ψ

∂ IB
= 2ρC1, β = −2ρ

∂ψ

∂ I IB
= −2ρC2. (6.2.46)

The Mooney–Rivlin incompressible material model is most commonly used to rep-
resent the stress-strain behavior of rubber-like solid materials.

If the free energy function is of the form ψ = C1(IB − 3), that is, C2 = 0, the
constitutive equation in Eq. (6.2.45) takes the form

σ = −pI + 2ρC1B. (6.2.47)

Materials whose constitutive behavior is described by Eq. (6.2.47) are called the
neo-Hookean materials. The neo-Hookean model provides a reasonable prediction
of the constitutive behavior of natural rubber for moderate strains.
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6.3 Constitutive Equations for Fluids

6.3.1 Introduction

All bulk matter in nature exists in one of two forms: solid or fluid. A solid body is
characterized by relative immobility of its molecules, whereas a fluid state is charac-
terized by their relative mobility. Fluids can exist either as gases or liquids.

The stress in a fluid is proportional to the time rate of strain (i.e., time rate
of deformation). The proportionality parameter is known as the viscosity. It is a
measure of the intermolecular forces exerted as layers of fluid attempt to slide past
one another. The viscosity of a fluid, in general, is a function of the thermodynamic
state of the fluid and in some cases the strain rate. A Newtonian fluid is one for which
the stresses are linearly proportional to the velocity gradients. If the constitutive
equation for stress tensor is nonlinear, the fluid is said to non-Newtonian. A non-
Newtonian constitutive relation can be of algebraic (e.g., power-law), differential,
or integral type. A number of non-Newtonian models are presented in Section 6.3.4.

6.3.2 Ideal Fluids

A fluid is said to be incompressible if the volume change is zero:

∇ · v = 0, (6.3.1)

where v is the velocity vector. A fluid is termed inviscid if the viscosity is zero, µ = 0.
An ideal fluid is one that has zero viscosity and is incompressible.

The simplest constitutive equations are those for an ideal fluid. The most gen-
eral constitutive equations for an ideal fluid are of the form

σ = −p(ρ, θ)I, (6.3.2)

where p is the pressure and θ is the absolute temperature. The dependence of p on
ρ and θ has been experimentally verified many times during several centuries. The
thermomechanical properties of an ideal fluid are the same in all directions, that is,
the material is isotropic. It can be verified that Eq. (6.3.2) satisfies the frame indiffer-
ence requirement (see Section 3.9) because σ∗ = Q · σ · QT = −pQ · I · QT = −pI.

An explicit functional form of p(ρ, θ) valid for gases over a wide range of tem-
perature and density is

p = Rρθ/m, (6.3.3)

where R is the universal gas constant, m is the mean molecular weight of the gas,
and θ is the absolute temperature. Equation (6.3.3) is known to define a “perfect”
gas. When p is only a function of the density, the fluid is said to be “barotropic,”
and the barotropic constitutive model is applicable under isothermal conditions. If
p is independent of both ρ and θ (ρ = ρ0 = constant), p is determined from the
equations of motion.
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6.3.3 Viscous Incompressible Fluids

The constitutive equation for stress tensor in a fluid motion is assumed to be of the
general form1

σ = F(D) − p I, (6.3.4)

where F is a tensor-valued function of the rate of deformation D and p is the ther-
modynamic pressure. The viscous stress τ is equal to the total stress σ minus the
equilibrium stress −pI

σ = τ − p I, τ = F(D). (6.3.5)

For a Newtonian fluid, F is assumed to be a linear function of D,

τ = C : D or τi j = Ci jkl Dkl, (6.3.6)

where C is the fourth-order tensor of viscosities of the fluid. For an isotropic viscous
fluid, Eq. (6.3.6) reduces to [analogous to Eq. (6.2.29) for a Hookean solid]

τ = 2µD + λ(tr D)I or τi j = 2µDi j + λDkkδi j , (6.3.7)

where µ and λ are the Lamé constants. Equation (6.3.5) takes the form

σ = 2µD + λ(tr D)I − p I, σi j = 2µDi j + (λDkk − p) δi j . (6.3.8)

In terms of the deviatoric components of stress and rate of deformation tensors,

σ′ = σ − σ̃I, D′ = D − 1
3

(tr D) I, σ̃ = 1
3

tr σ, (6.3.9)

the Newtonian constitutive equation (6.3.8) takes the form

σ′ = 2µD′ +
(

2
3
µ + λ

)
(tr D) I − (σ̃ + p) I,

σ ′
i j = 2µD′

i j +
(

2
3
µ + λ

)
Dkkδi j − (σ̃ + p) δi j .

(6.3.10)

Since

σ ′
i i = 2µD′

i i + (2µ + 3λ) Dkk − 3 (σ̃ + p) = 0, (6.3.11)

the last two terms in Eq. (6.3.10) vanish, and we obtain

σ′ = 2µD′, σ ′
i j = 2µD′

i j . (6.3.12)

The mean stress σ̃ is equal to the thermodynamic pressure −p if and only if one
of the following two conditions are satisfied:

Fluid is incompressible: ∇ · D = 0, (6.3.13)

Stokes condition: K = 2
3
µ + λ = 0. (6.3.14)

1 The dependence of F on the rotation tensor ω is eliminated to satisfy the frame indifference re-
quirement.
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In general, the Stokes condition does not hold. For Newtonian fluids, incom-
pressibility does not necessarily imply that σ̃ = −p.

Thus, the constitutive equation for a viscous, isotropic, incompressible fluid re-
duces to

σ = −p I + 2µD, (σi j = −p δi j + 2µDi j ). (6.3.15)

For inviscid fluids, the constitutive equation for the stress tensor has the form

σ = −p I (σi j = −p δi j ), (6.3.16)

and p in this case represents the mean normal stress or hydrostatic pressure.

6.3.4 Non-Newtonian Fluids

Non-Newtonian fluids are those for which the constitutive behavior is nonlinear.
Non-Newtonian fluids include motor oils; high molecular weight liquids such as
polymers, slurries, pastes; and other complex mixtures. The processing and trans-
port of such fluids are central problems in the chemical, food, plastics, petroleum,
and polymer industries. The non-Newtonian constitutive models presented in this
section for viscous fluids are only a few of the many available in literature [see
Reddy and Gartling (2001)].

Most non-Newtonian fluids exhibit a shear rate dependent viscosity, with “shear
thinning” characteristic (i.e., decreasing viscosity with increasing shear rate). Other
characteristics associated with non-Newtonian fluids are elasticity, memory effects,
the Weissenberg effect, and the curvature of the free surface in an open-channel
flow. A discussion of these and other non-Newtonian effects is presented in the
book by Bird et al. (1971).

Non-Newtonian fluids can be classified into two groups: (1) inelastic fluids or
fluids without memory and (2) viscoelastic fluids, in which memory effects are sig-
nificant. For inelastic fluids, the viscosity depends on the rate of deformation of the
fluid, much like nonlinear elastic solids. Viscoelastic fluids exhibit time-dependent
“memory”; that is, the motion of a material point depends not only on the present
stress state but also on the deformation history of the material element. This history
dependence leads to very complex constitutive equations.

The constitutive equation for the stress tensor for a non-Newtonian fluid can be
expressed as

σ = −p I + τ (σi j = −p δi j + τi j ), (6.3.17)

where τ is known as the viscous or extra stress tensor.

6.3.4.1 Inelastic Fluids
The viscosity for inelastic fluids is found to depend on the rate of deformation tensor
D. Often the viscosity is expressed as a function of the principal invariants of the
deformation tensor D

µ = µ (I1, I2, I3) , (6.3.18)
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where the I1, I2, and I3 are the principal invariants of D,

I1 = tr(D) = Dii ,

I2 = 1
2

tr(D2) = 1
2

Di j Dji ,

I3 = 1
3

tr(D3) = 1
3

Di j Djk Dki ,

(6.3.19)

where tr denotes the trace.
For an incompressible fluid, I1 = ∇ · v = 0. Also, there is no theoretical or ex-

perimental evidence to suggest that the viscosity depends on I3; thus, the depen-
dence on the third invariant is eliminated. Equation (6.3.18) reduces to

µ = µ(I2). (6.3.20)

The viscosity can also depend on the thermodynamic state of the fluid, which for in-
compressible fluids usually implies a dependence only on the temperature. Equation
(6.3.20) gives the general functional form for the viscosity function, and experimen-
tal observations and a limited theoretical base are used to provide specific forms of
Eq. (6.3.20) for non-Newtonian viscosities. A variety of inelastic models have been
proposed and correlated with experimental data, as discussed by Bird et al. (1971).
Several of the most useful and popular models are presented next [see Reddy and
Gartling (2001)].

POWER-LAW MODEL. The simplest and most familiar non-Newtonian viscosity model
is the power-law model, which has the form

µ = KI(n−1)/2
2 , (6.3.21)

where n and K are parameters, which are, in general, functions of temperature; n is
termed the power-law index and K is called consistency. Fluids, with an index n < 1,
are termed shear thinning or pseudoplastic. A few materials are shear thickening
or dilatant and have an index n > 1. The Newtonian viscosity is obtained with n =
1. The admissible range of the index n is bounded below by zero due to stability
considerations.

When considering nonisothermal flows, the following empirical relations for n
and K are used:

n = n0 + B
(

T − T0

T0

)
, (6.3.22)

K = K0exp (−A[T − T0]/T0) . (6.3.23)

where subscript ‘0’ indicates a reference value and A and B are material constants.

CARREAU MODEL. A major deficiency in the power-law model is that it fails to pre-
dict upper and lower limiting viscosities for extreme values of the deformation rate.
This problem is alleviated in the Carreau model

µ = µ∞ + (µ0 − µ∞) (1 + [λ I2]2)
(n−1)/2

, (6.3.24)
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wherein µ0 and µ∞ are the initial and infinite shear rate viscosities, respectively, and
λ is a time constant.

BINGHAM MODEL. The Bingham fluid differs from most other fluids in that it can
sustain an applied stress without fluid motion occurring. The fluid possesses a yield
stress, τ0, such that when the applied stresses are below τ0 no motion occurs; when
the applied stresses exceed τ0 the material flows, with the viscous stresses being pro-
portional to the excess of the stress over the yield condition. Typically, the constitu-
tive equation after yield is taken to be Newtonian (Bingham model), though other
forms such as a power-law equation are possible. In a general form, the Bingham
model can be expressed as

τ =
(

τ0√
I2

+ 2µ

)
D when

1
2

tr(τ 2) ≥ τ 2
0 , (6.3.25)

τ = 0 when
1
2

tr(τ2) < τ 2
0 . (6.3.26)

From Eq. (6.3.25) the apparent viscosity of the material beyond the yield point is(
τ0/

√
I2 + 2µ

)
. For a Herschel–Buckley fluid, the µ in Eq. (6.3.25) is given by Eq.

(6.3.21). The inequalities in Eqs. (6.3.25) and (6.3.26) describe a von Mises yield
criterion.

6.3.4.2 Viscoelastic Constitutive Models
For a viscoelastic fluid, the choice of the constitutive equation for the extra-stress τ

in Eq. (6.3.17) is time-dependent. Such a relationship is often expressed in abstract
form where the current extra-stress is related to the history of deformation in the
fluid as

τ = F [G(s), 0 < s < ∞], (6.3.27)

where F is a tensor-valued functional, G is a finite deformation tensor (related to
the Cauchy–Green tensor) and s = t − t ′ is the time lapse from time t ′ to the present
time, t . Fluids that obey constitutive equation of the form in Eq. (6.3.27) are called
simple fluids. The functional form in Eq. (6.3.27) is not useful for general flow prob-
lems, and therefore numerous approximations of (6.3.27) have been proposed in
several different forms. Several of them are reviewed here.

The two major categories of approximate constitutive relations include the inte-
gral and differential models. The integral model represents the extra-stress in terms
of an integral over past time of the fluid deformation history. For a differential
model the extra-stress is determined from a differential equation that relates the
stress and stress rate to the flow kinematics. In general, the specific choice is dic-
tated by the ability of a given model to predict the non-Newtonian effects expected
in a particular application.

DIFFERENTIAL MODELS. The well-known differential constitutive equations are gen-
erally associated with the names of Oldroyd, Maxwell, and Jeffrey. First, we define
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various types of material time derivatives used in these models. For an Eulerian
reference frame, the material time derivative of a symmetric second-order tensor
can be defined in several ways, all of which are frame invariant. Let S denote a
second-order tensor. Then, the upper-convected (or co deformational) derivative is
defined by

∇
S = ∂S

∂t
+ v · ∇S − L · S − (L · S)T, (6.3.28)

and the lower-convected derivative is defined as

�

S = ∂S
∂t

+ v · ∇S + LT · S + ST · L, (6.3.29)

where v is the velocity vector and L is the velocity gradient tensor

L = ∇v
(

Li j = ∂v j

∂xi

)
. (6.3.30)

Since both Eqs. (6.3.28) and (6.3.29) are admissible convected derivatives, their lin-
ear combination is also admissible:

◦
S = (1 − α)

∇
S + α

�

S. (6.3.31)

Equation (6.3.31) is a general convected derivative, which reduces to (6.3.28) for α =
0 and (6.3.29) for α = 1. When α = 0.5 [average of Eqs. (6.3.28) and (6.3.29)], the
convected derivative in Eq. (6.3.31) is termed a corotational or Jaumann derivative.
All of these derivatives have been used in various differential constitutive equations.
The selection of one type of derivative over other is usually based on the physical
plausibility of the resulting constitutive equation and the matching of experimental
data to the model for simple (viscometric) flows.

The simplest differential constitutive models are the upper- and lower-
convected Maxwell fluids, which are defined by the following equations:

Upper-convected Maxwell fluid: τ + λ
∇
τ = 2µp D (6.3.32)

Lower-convected Maxwell fluid: τ + λ
�
τ = 2µp D, (6.3.33)

where λ is a relaxation time for the fluid, µp is a viscosity, and D are the compo-
nents of the rate of deformation tensor. The upper-convected Maxwell model in
Eq. (6.3.32) has been used extensively in testing numerical algorithms; the lower-
convected and corotational forms of the Maxwell fluid predict physically unrealistic
behavior and are not generally used.

JOHNSON–SEGALMAN MODEL. By employing the general convected derivative
(6.3.31) in a Maxwell-like model the Johnson–Segalman model is produced

τ + λ
◦
τ = 2µp D. (6.3.34)
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PHAN THIEN–TANNER MODEL. By slightly modifying Eq. (6.3.34) to include a variable
coefficient for τ, the Phan Thien–Tanner model is obtained.

Y(τ)τ + λ
◦
τ = 2µp D, (6.3.35)

where

Y(τ) = 1 + ελ

µp
tr(τ) (6.3.36)

and ε is a constant. This equation is somewhat better than Eq. (6.3.34) in represent-
ing actual material behavior.

OLDROYD MODEL. The Johnson–Segalman and Phan Thien–Tanner models suffer
from a common defect. For a monotonically increasing shear rate, there is a re-
gion where the shear stress decreases, which is a physically unrealistic behavior. To
correct this anomaly, the constitutive equations are altered using the following pro-
cedure. First, the extra-stress is decomposed into two partial stresses, τs and τp such
that

τ = τs + τp, (6.3.37)

where τs is a purely viscous and τp is a viscoelastic stress component. Then, τs and
τp are expressed in terms of the deformation gradient tensor D, using the Johnson–
Segalman fluid as an example, as

τs = 2µs D, τp + λ
◦
τp = 2µp D. (6.3.38)

Finally, the partial stresses in Eqs. (6.3.37) and (6.3.38) are eliminated to produce a
new constitutive relation

τ + λ
◦
τ = 2µ̄(D + λ′ ◦

D), (6.3.39)

where µ̄ = (µs + µp) and λ′ = λµs/µ̄; and λ′ is a retardation time. The constitutive
equation in (6.3.39) is known as a type of Oldroyd fluid. For particular choices of
the convected derivative in Eq. (6.3.39), specific models can be generated. When
α = 0 (

◦
τ becomes

∇
τ), then Eq. (6.3.39) becomes the Oldroyd B fluid; the case α = 1

(
◦
τ becomes

∇
τ) produces the Oldroyd A fluid. In order to ensure a monotonically

increasing shear stress, the inequality µs ≥ µp/8 must be satisfied. The stress de-
composition employed above can also be used with the Phan Thien–Tanner model
to produce a correct shear stress behavior.

WHITE–METZNER MODEL. In all of the constitutive equations the material parame-
ters, λ and µp, were assumed to be constants. For some constitutive equations, the
constancy of these parameters leads to material (or viscometric) functions that do
not accurately represent the behavior of real elastic fluids. For example, the shear
viscosity predicted by a Maxwell fluid is a constant, when infact viscoelastic fluids
normally exhibit a shear thinning behavior. This situation can be remedied to some
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degree by allowing the parameters λ and µp to be functions of the invariants of
the rate of deformation tensor D. Using the upper-convected Maxwell fluid as an
example, then

τ + λ(I2)
∇
τ = 2µp(I2)D, (6.3.40)

where I2 is the second invariant of the deformation tensor D, I2 = 1/2(D : D). The
constitutive equation in Eq. (6.3.40) is termed a White–Metzner model. White–
Metzner forms of other differential models, such as the Oldroyd fluids, have also
been developed and used in various situations.

INTEGRAL MODELS. An approximate integral model for a viscoelastic fluid repre-
sents the extra-stress in terms of an integral over the past history of the fluid defor-
mation. A general form for a single integral model can be expressed as

τ =
∫ t

−∞
2m(t − t ′)H(t, t ′)dt ′, (6.3.41)

where t is the current time, m is a scalar memory function (or relaxation kernel), and
H is a nonlinear deformation measure (tensor) between the past time t ′ and current
time t .

There are many possible forms for both the memory function m and the defor-
mation measure H. Normally the memory function is a decreasing function of the
time lapse s = t − t ′. Typical of such a function is the exponential given by

m(t − t ′) = m(s) = µ0

λ2
e−s/λ, (6.3.42)

where the parameters µ0, λ, and s were defined previously. Like the choice of a
convected derivative in a differential model, the selection of a deformation measure
for use in Eq. (6.3.41) is somewhat arbitrary. One particular form that has received
some attention is given by

H = φ1(IB, Ĩ B)B + φ2(IB, Ĩ B)B̃. (6.3.43)

In Eq. (6.3.43), B̃ is the Cauchy–Green deformation tensor, B is its inverse, called
the Finger tensor [see Eq. (3.4.14)], and the φ1 and φ2 are scalar functions of the
invariants of the deformation tensors, IB = tr(B) and Ĩ B = tr(B̃). The form of the
deformation measure in Eq. (6.3.43) is still quite general, though specific choices
for the functions φi and the memory function m lead to several well-known con-
stitutive models. Among these are the Kaye–BKZ fluid and the Lodge rubber-like
liquid.

As a specific example of an integral model, we consider the Maxwell fluid. Set-
ting φ1 = 1 and φ2 = 0 in Eq. (6.3.43) and using the memory function of Eq. (6.3.42),
we obtain a constitutive equation of the form

τ = µ0

λ2

∫ t

−∞
exp [−(t − t ′)/λ] [B(t ′) − I] dt ′. (6.3.44)
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The constitutive equation, Eq. (6.3.44), is an integral equivalent to the upper-
convected Maxwell model shown in differential form in Eq. (6.3.32). In this case, the
extra-stress is given in an explicit form, though its evaluation requires that the strain
history be known for each fluid particle. Although the Maxwell fluid has both differ-
ential and integral form, this is not generally true for other constitutive equations.

6.4 Heat Transfer

6.4.1 General Introduction

Heat transfer is a branch of engineering that deals with the transfer of thermal en-
ergy within a medium or from one medium to another due to a temperature differ-
ence. Heat transfer may take place in one or more of the three basic forms: con-
duction, convection, and radiation (see Reddy and Gartling, 2001). The transfer of
heat within a medium due to diffusion process is called conduction heat transfer.
Fourier’s law states that the heat flow is proportional to the temperature gradient.
The constant of proportionality depends, among other things, on a material parame-
ter known as the thermal conductivity of the material. For heat conduction to occur,
there must be temperature differences between neighboring points.

Convection heat transfer is the energy transport effected by the motion of a
fluid. The convection heat transfer between two dissimilar media is governed by
Newton’s law of cooling. It states that the heat flow is proportional to the difference
of the temperatures of the two media. The proportionality constant is called the
convection heat transfer coefficient or film conductance. For heat convection to occur,
there must be a fluid that is free to move and transport energy with it.

Radiation is a mechanism that is different from the three transport processes we
discussed so far: (1) momentum transport in Newtonian fluids that is proportional
to the velocity gradient, (2) energy transport by conduction that is proportional to
the negative of the temperature gradient, and (3) energy transport by convection
that is proportional to the difference in temperatures of the body and the moving
fluid in contact with the body. Thermal radiation is an electromagnetic mechanism,
which allows energy transport with the speed of light through regions of space that
are devoid of any matter. Radiant energy exchange between surfaces or between a
region and its surroundings is described by the Stefan–Boltzmann law, which states
that the radiant energy transmitted is proportional to the difference of the fourth
power of the temperatures of the surfaces. The proportionality parameter is known
as the Stefan–Boltzmann constant.

6.4.2 Fourier’s Heat Conduction Law

The Fourier heat conduction law states that the heat flow q is related to the temper-
ature gradient by

q = −k · ∇θ, (6.4.1)



P1: JzG

Chapter06 CUFX197-Reddy 978 0 521 87044 3 October 3, 2007 10:44

204 Constitutive Equations

where k is the thermal conductivity tensor of order two. The negative sign in
Eq. (6.4.1) indicates that heat flows downhill on the temperature scale. The balance
of energy [Eq. (5.4.12)] requires that

ρc
Dθ

Dt
= � − ∇ · q + ρE, � = τ: D, (6.4.2)

which, in view of Eq. (6.4.1), becomes

ρc
Dθ

Dt
= � + ∇ · (k · ∇θ) + ρE, (6.4.3)

where ρE is the heat energy generated per unit volume, ρ is the density, and c is the
specific heat of the material.

For heat transfer in a solid medium, Eq. (6.4.3) reduces to

ρc
∂θ

∂t
= ∇ · (k · ∇θ) + ρE, (6.4.4)

which forms the subject of the field of conduction heat transfer. For a fluid medium,
Eq. (6.4.3) becomes

ρc
(

∂θ

∂t
+ v · ∇θ

)
= � + ∇ · (k · ∇θ) + ρE, (6.4.5)

where v is the velocity field and � is the viscous dissipation function.

6.4.3 Newton’s Law of Cooling

At a solid–fluid interface the heat flux is related to the difference between the tem-
perature at the interface and that in the fluid

qn ≡ n̂ · q = h (θ − θfluid) , (6.4.6)

where n̂ is the unit normal to the surface of the body and h is known as the heat
transfer coefficient or film conductance. This relation is known as Newton’s law of
cooling, which also defines h. Clearly, Eq. (6.4.6) defines a boundary condition on
the bounding surface of a conducting medium.

6.4.4 Stefan–Boltzmann Law

The heat flow from surface 1 to surface 2 by radiation is governed by the Stefan–
Boltzmann law

qn = σ
(
θ4

1 − θ4
2

)
, (6.4.7)
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where θ1 and θ2 are the temperatures of surfaces 1 and 2, respectively, and σ is the
Stefan–Boltzmann constant. Again, Eq. (6.4.7) defines a boundary condition on the
surface 1 of a body.

6.5 Electromagnetics

6.5.1 Introduction

Problems involving the coupling of electromagnetic fields with fluid and thermal
transport have a broad spectrum of applications ranging from astrophysics to man-
ufacturing and to electromechanical devices and sensors. A good introduction to
coupled fluid-electromagnetic problems is available in Hughes and Young (1966);
general electromagnetic field theory is available in such texts as Jackson (1975).
Here, we present a brief discussion of pertinent equations for the sake of com-
pleteness. No attempt is made in this book to make use of these constitutive
equations.

6.5.2 Maxwell’s Equations

The appropriate mathematical description of electromagnetic phenomena in a con-
ducting material region, �C, is given by the following Maxwell’s equations [see
Reddy and Gartling (2001), Hughes and Young (1966), and Jackson (1975); cau-
tion: the notation used here for various fields is standard in the literature; unfor-
tunately, some of the symbols used here were already used previously for other
variables]:

∇ × E = −∂B
∂t

, (6.5.1)

∇ × H = J + ∂D
∂t

, (6.5.2)

∇ · B = 0, (6.5.3)

∇ · D = ρ, (6.5.4)

where E is the electric field intensity, H the magnetic field intensity, B the magnetic
flux density, D the electric flux (displacement) density, J the conduction current
density, and ρ is the source charge density. Equation (6.5.1) is referred to as Fara-
day’s law, Eq. (6.5.2) as Ampere’s law (as modified by Maxwell), and Eq. (6.5.4) as
Gauss’ law. A continuity condition on the current density is also defined by

∇ · J = ∂ρ

∂t
. (6.5.5)

Only three of the previous five equations are independent; either Eqs. (6.5.1),
(6.5.2), and (6.5.4) or Eqs. (6.5.1), (6.5.2), and (6.5.5) form valid sets of equations
for the fields.
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6.5.3 Constitutive Relations

To complete the formulation, the constitutive relations for the material are required.
The fluxes are functionally related to the field variables by

D = fD(E, B), (6.5.6)

H = fH(E, B), (6.5.7)

J = fJ (E, B), (6.5.8)

where the functions ( fD, fH, fJ ) may also depend on external variables such as tem-
perature or mechanical stress. The form of the material response to applied E or B
fields can vary strongly depending on the state of the material, its microstructure
and the strength, and time-dependent behavior of the applied field.

6.5.3.1 Conductive and Dielectric Materials
For conducting materials, the standard fJ relation is Ohm’s law, which relates the
current density J to the electric field intensity E

J = kσ · E, (6.5.9)

where kσ is the conductivity tensor. For isotropic materials, we have kσ = kσ I,
where kσ is a scalar. In general, the conductivity may be a function of E or an ex-
ternal variable such as temperature. This form of Ohm’s law applies to stationary
conductors. If the conductive material is moving in a magnetic field, then Eq. (6.5.9)
is modified to read

J = kσ · E + kσ · (v × B), (6.5.10)

where v is the velocity vector describing the motion of the conductor and B is the
magnetic flux vector.

For dielectric materials, the standard fD function relates the electric flux density
D to the electric field E and polarization vector P:

D = ε0 · E + P, (6.5.11)

where ε0 is the permittivity of free space. The polarization is generally related to the
electric field through

P = ε0Se · E + P0, (6.5.12)

where Se is the electric susceptibility tensor that accounts for the different types
of polarization and P0 is the remnant polarization that may be present in some
materials.
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6.5.3.2 Magnetic Materials
For magnetic materials, the standard fH function relates the magnetic field intensity
H to the magnetic flux B

H = 1
µ0

B − M, (6.5.13)

where µ0 is the permeability of free space and M is the magnetization vector. The
magnetization vector M can be related to either the magnetic flux B or magnetic
field intensity H by

M = 1
µ0

Sm

(I + Sm)
· B + M0, (6.5.14)

M = Sm · H + (I + Sm) · M0, (6.5.15)

where Sm is the magnetic susceptibility for the material and M0 is the remnant mag-
netization. If the susceptibility is negative, the material is diamagnetic; while a pos-
itive susceptibility defines a paramagnetic material. Generally, these susceptibilities
are quite small and are often neglected. Ferromagnetic materials have large positive
susceptibilities and produce a nonlinear (hysteretic) relationship between B and H.
These materials may also exhibit spontaneous and remnant magnetization.

6.5.3.3 Electromagnetic Forces and Volume Heating
The coupling of electromagnetic fields with a fluid or thermal problem occurs
through the dependence of material properties on electromagnetic field quantities
and the production of electromagnetic-induced body forces and volumetric energy
production. The Lorentz body force in a conductor due to the presence of electric
currents and magnetic fields is given by

FB = ρE + J × B, (6.5.16)

where, in the general case, the current is defined by Eq. (6.5.10). The first term on the
right-hand side of Eq. (6.5.16) is the electric field contribution to the Lorentz force;
the magnetic term J × B is usually of more interest in applied mechanics problems.
The energy generation or Joule heating in a conductor is described by

QJ = J · E, (6.5.17)

which takes on a more familiar form if the simplified (v = 0) form of Eq. (6.5.10) is
used to produce

QJ = σ−1(J · J). (6.5.18)

The above forces and heat source occur in the fluid momentum and energy equa-
tions, respectively.
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6.6 Summary

This chapter was dedicated to a discussion of the constitutive equations, that is,
relations between the primary variables such as the displacements, velocities, and
temperature to the secondary variables such as the stresses, pressure, and heat flux
of continua. Although there are no physical principles to derive these mathematical
relations, there are rules or guidelines that help to develop mathematical models
of the constitutive behavior which must be, ultimately, validated against actual re-
sponse characteristics observed in physical experiments. The constitutive relations,
in general, can be algebraic, differential, or integral relations, depending on the na-
ture of the material behavior being modeled.

In this chapter, the generalized Hooke’s law governs linear elastic solids, New-
tonian relations for viscous fluids, and the Fourier heat conduction equation for heat
transfer in solids are presented. These equations are used in Chapters 7 and 8 to
analyze problems of solid mechanics, fluid mechanics, and heat transfer. Constitu-
tive relations of nonlinear elastic solids, non-Newtonian fluids, and electromagnetics
are also presented for the sake of completeness. Constitutive relations of linear vis-
coelastic materials are discussed in Chapter 9.

PROBLEMS

6.1 Establish the following relations between the Lamé constants µ and λ and en-
gineering constants E, ν, and K:

λ = νE
(1 + ν)(1 − 2ν)

, µ = G = E
2(1 + ν)

, K = E
3(1 − 2ν)

.

6.2 Determine the stress tensor components at a point in 7075-T6 aluminum alloy
body (E = 72 GPa and G = 27 GPa) if the strain tensor at the point has the follow-
ing components with respect to the Cartesian basis vectors êi :

[ε] =

 200 100 0

100 300 400
0 400 0


× 10−6.

6.3 For the state of stress and strain given in Problem 6.2, determine the stress and
strain invariants.

6.4 If the components of strain at a point in a body made of structural steel are

[ε] =

 36 12 30

12 40 0
30 0 25


× 10−6.

Assuming that the Lamé constants for the structural steel are λ = 207 GPa (30 × 106

psi) and µ = 79.6 GPa (11.54 × 106 psi), determine the stress invariants.
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6.5 If the components of stress at a point in a body are

[σ] =

 42 12 30

12 15 0
30 0 −5


 MPa.

Assuming that the Lamé constants for are λ = 207 GPa (30 × 106 psi) and µ = 79.6
GPa (11.54 × 106 psi), determine the strain invariants.

6.6 Given the following motion of an isotropic continuum,

χ(X) = (
X1 + kt2 X 2

2

)
ê1 + (X2 + kt X2) ê2 + X3 ê3,

determine the components of the viscous stress tensor as a function of position and
time.

6.7 Express the upper and lower convective derivatives of Eqs. (6.3.28) and (6.3.29)
in Cartesian component form.

6.8 Most advanced books on continuum mechanics discuss the general axioms of
constitutive theory. This exercise has the objective of making the reader to get fa-
miliar with the axioms of the constitutive theory. List the axioms of the constitutive
theory and explain briefly what the axioms mean.
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You cannot depend on your eyes when your imagination is out of focus.
Mark Twain

Research is to see what everybody else has seen, and to think what nobody else has
thought.

Albert Szent-Gyoergi

7.1 Introduction

This chapter is dedicated to the study of deformation and stress in solid bodies un-
der a prescribed set of forces and kinematic constraints. We assume that stresses and
strains are small so that linear strain–displacement relations and Hooke’s law are
valid, and we use appropriate governing equations, called field equations, derived
in the previous chapters. Mathematically, we seek solutions to coupled partial differ-
ential equations over an elastic domain occupied by the reference (or undeformed)
configuration of the body, subject to specified boundary conditions on displacements
and forces. Such problems are called boundary value problems of elasticity.

Most practical problems of even linearized elasticity involve geometries that are
complicated and analytical solutions to such problems cannot be obtained. There-
fore, the objective here is to familiarize the reader with the certain solution methods
as applied to simple boundary value problems. Problems discussed in most elasticity
books are about the same and they illustrate the methodologies used in the analyti-
cal solution of problems of elasticity. Since this is a book on continuum mechanics,
the coverage is some what limited. Most problems discussed here can be found in
elasticity books, for example, by Timoshenko and Goodier (1970) and Slaughter
(2002). While the methods discussed here may not be useful in solving practical
engineering problems, the discussion provides certain insights into the formulation
of boundary value problems. These insights are useful irrespective of the specific
methods of solution.

210
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7.2 Governing Equations

It is useful to summarize the equations of linearized elasticity for use in the remain-
der of the chapter. For the moment, we consider isothermal elasticity and study only
equilibrium (i.e., static) problems. The governing equations of a three-dimensional
elastic body involve: (1) six strain-displacement relations among nine variables, six
strain components, and three displacements; (2) three equilibrium equations among
six components of stress, assuming symmetry of the stress tensor; and (3) six stress-
strain equations among the six stress and six strain components that are already
counted. Thus, there are a total of 15 coupled equations among 15 scalar fields.
These equations are listed here in vector and Cartesian component forms for an
isotropic body occupying a domain � with closed boundary � in the reference con-
figuration.

Strain–displacement equations

ε = 1
2

[∇u + (∇u)T] , εi j = 1
2

(ui, j + u j,i ). (7.2.1)

Equilibrium equations

∇ · σ + f = 0 (σT = σ), σ j i, j + fi = 0, (σ j i = σi j ), (7.2.2)

where f is the body force measured per unit volume.

Constitutive equations

σ = 2µε + λ (tr ε) I, σi j = 2µεi j + λεkkδi j . (7.2.3)

These equations are valid for all problems of linearized elasticity; different problems
differ from each other only in (a) geometry of the domain, (b) boundary conditions,
and (c) material constitution. The general form of the boundary condition is given
below.

Boundary conditions

t ≡ n̂ · σ = t̂, ti ≡ njσ j i = t̂i on �σ (7.2.4)

and

u = û, ui = ûi on �u, (7.2.5)

where �σ and �u are disjoint portions (except for a point) of the boundary whose
union is equal to the total boundary �. Only one element of the pair (ti , ui ), for any
i = 1, 2, 3, may be specified at a point on the boundary.

In addition to the 15 equations listed in (7.2.1)–(7.2.3), there are 6 compatibility
conditions among 6 components of strain:

∇ × (∇ × ε)T = 0, eikr e j
sεi j,k
 = 0. (7.2.6)

Recall that the compatibility equations are necessary and sufficient conditions
on the strain field to ensure the existence of a corresponding displacement field.
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Associated with each displacement field, there is a unique strain field as given by
Eq. (7.2.1), and there is no need to use the compatibility conditions. The
compatibility conditions are required only when the strain field is given and dis-
placement field is to be determined.

In most formulations of boundary value problems of elasticity, one does not use
the 15 equations in 15 unknowns. Most often, the 15 equations are reduced to either
3 equations in terms of displacement field or 6 equations in terms of stress field. The
two sets of equations are presented next.

7.3 The Navier Equations

The 15 equations can be combined into 3 equations by substituting strain–
displacement equations into the stress–strain relations and the result into the equa-
tions of equilibrium. We shall carry out this process using the Cartesian compo-
nent form and then express the final result in vector as well as Cartesian component
forms.

From Eqs. (7.2.1) and (7.2.3), we obtain

σi j = µ (ui, j + u j,i ) + λuk,kδi j . (7.3.1)

Substituting into Eq. (7.2.2), we arrive at the equations

0 = σ j i, j + fi

= µ (ui, j j + u j,i j ) + λuk,ki + fi

= µui, j j + (µ + λ)u j, j i + fi . (7.3.2)

Thus, we have

µ∇2u + (µ + λ)∇ (∇ · u) + f = 0,

µui, j j + (µ + λ)u j, j i + fi = 0.
(7.3.3)

These are called Lamé–Navier equations of elasticity, and they represent the equi-
librium equations expressed in terms of the displacement field. The boundary con-
ditions (7.2.4) and (7.2.5) can be expressed in terms of the displacement field as

[njµ (ui, j + u j,i ) + niλuk,k] = t̂i on �σ , ui = ûi on �u. (7.3.4)

Equations (7.3.3) and (7.3.4) together describe the boundary value problem of lin-
earized elasticity.

7.4 The Beltrami–Michell Equations

Alternative to the formulation of Section 7.3, the 12 equations from (7.2.2) and
(7.2.3) and 6 equations from (7.2.6) can be combined into 6 equations in terms of
the stress field. Substitution of the constitutive (strain–stress) equations

εi j = 1
E

[(1 + ν)σi j − νσmmδi j ] (7.4.1)
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into the compatibility equations (7.2.6) yields

0 = eikr e j
s εi j,k


= eikr e j
s [(1 + ν)σi j,k
 − νσmm,k
δi j ]

= (1 + ν)eikr e j
sσi j,k
 − νeikr ei
sσmm,k


= (1 + ν)eikr e j
sσi j,k
 − ν (δk
δrs − δksδ
r ) σmm,k


= (1 + ν)eikr e j
sσi j,k
 − ν (δrsσmm,kk − σmm,rs) . (7.4.2)

Since [see Problem 2.5(f)]

eikr e j
s =
∣∣∣∣∣∣
δi j δi
 δis

δkj δk
 δks

δr j δr
 δrs

∣∣∣∣∣∣
= δi jδk
δrs − δi jδksδr
 − δkjδi
δrs + δkjδr
δis + δr jδi
δks − δr jδk
δis,

(7.4.3)

Eq. (7.4.2) simplifies to

δrsσi i, j j − σi i,rs − (1 + ν) (δrsσi j,i j + σrs,i i − σis,ir − σir,is) = 0. (7.4.4)

Contracting the indices r and s (s → r) gives

2σi i, j j − (1 + ν) (σi j,i j + σ j j,i i ) = 0.

Simplifying the above result, we obtain

σi i, j j = (1 + ν)
(1 − ν)

σi j,i j . (7.4.5)

Substituting this result back into Eq. (7.4.4) leads to

σi j,kk + 1
1 + ν

σkk,i j = ν

1 − ν
σrs,rsδi j + σkj,ki + σki,kj . (7.4.6)

Next, we use the equilibrium equations to compute the second derivative of the
stress components, σrs,rk = − fs,k . We have

σi j,kk + 1
1 + ν

σkk,i j = − ν

1 − ν
fk,kδi j − ( f j,i + fi, j ) . (7.4.7)

or in vector form

∇2σ + 1
1 + ν

∇[∇ (tr σ)] = − ν

1 − ν
(∇ · f) I − [∇f + (∇f)T] . (7.4.8)

The six equations in (7.4.7) or (7.4.8), called Michell’s equations, provide the neces-
sary and sufficient conditions for an equilibrated stress field to be compatible with
the displacement field in the body. The traction boundary conditions in Eq. (7.3.4)
are valid for this formulation.
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When the body force is uniform, we have ∇ · f = 0 and ∇f = 0, and Michell’s
equations (7.4.8) reduce to Beltrami’s equations

∇2σ + 1
1 + ν

∇[∇ (tr σ)] = 0, σi j,kk + 1
1 + ν

σkk,i j = 0. (7.4.9)

7.5 Type of Boundary Value Problems and Superposition Principle

The boundary value problems of elasticity can be classified into three types on the
basis of the nature of specified boundary conditions. They are discussed next.

TYPE I. Boundary value problems in which if all specified boundary conditions are
of the displacement type

u = û on � (7.5.1)

are called boundary value problems of Type I or displacement boundary value prob-
lems.

TYPE II. Boundary value problems in which if all specified boundary conditions are
of the traction type

t = t̂ on � (7.5.2)

are called boundary value problems of Type II or stress boundary value problems.

TYPE III. Boundary value problems in which if all specified boundary conditions are
of the mixed type,

u = û on �u and t = t̂ on �σ , (7.5.3)

are called boundary value problems of Type III or mixed boundary value problems.
Most practical problems fall into the category of boundary value problems of

Type III.
While existence of solutions is a difficult question to answer, uniqueness of so-

lutions is rather easy to prove for linear boundary value problems of elasticity. An-
other advantage of linear boundary value problems is that the principle of super-
position holds. The principle of superposition is said to hold for a solid body if the
displacements obtained under two sets of boundary conditions and forces is equal
to the sum of the displacements that would be obtained by applying each set of
boundary conditions and forces separately.

To be more specific, consider the following two sets of boundary conditions and
forces

Set1 : u = u(1) on �u; t = t(1) on �σ ; f = f(1) in � (7.5.4)

Set2 : u = u(2) on �u; t = t(2) on �σ ; f = f(2) in � (7.5.5)
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Figure 7.5.1. Representation of an indeterminate beam as a superposition of two determinate
beams.

where the specified data (u(1), t(1), f (1)) and (u(2), t(2), f (2)) is independent of the
deformation. Suppose that the solution to the two problems be u(x)(1) and u(x)(2),
respectively. The superposition of the two sets of boundary conditions is

u = u(1) + u(2) on �u; t = t(1) + t(1) on �σ ; f = f (1) + f (2) in �. (7.5.6)

Because of the linearity of the elasticity equations, the solution of the boundary
value problem with the superposed data is u(x) = u(1)(x) + u(2)(x) in �. This is
known as the superposition principle.

The principle of superposition can be used to represent a linear problem with
complicated boundary conditions or loads as a combination of linear problems that
are equivalent to the original problem. The next example illustrates this point (see
Reddy, 2002).

EXAMPLE 7.5.1: Consider the indeterminate beam shown in Figure 7.5.1. Deter-
mine the deflection of point A using the principle of superposition.

SOLUTION: The problem can be viewed as one equivalent to the two beam prob-
lems shown there. The sum of the deflections from each problem is the solution
of the original problem. Within the restrictions of the linear Euler–Bernoulli
beam theory, the deflections are linear functions of the loads. Therefore, the
principle of superposition is valid. In particular, the deflection wA at point A is
equal to the sum of w

q
A and ws

A due to the distributed load q0 and spring force
Fs , respectively, at point A:

wA = w
q
A + ws

A = q0 L4

8EI
− Fs L3

3EI
.
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Because the spring force Fs is equal to kwA, we can calculate wA from

wA = q0L4

8EI
(

1 + kL3

3EI

) .

7.6 Clapeyron’s Theorem and Reciprocity Relations

7.6.1 Clapeyron’s Theorem

The principle of superposition is not valid for energies because they are quadratic
functions of displacements and forces. In other words, when a linear elastic body B
is subjected to more than one external force, the total work done due to external
forces is not equal to the sum of the works that are obtained by applying the single
forces separately. However, there exist theorems that relate the work done by two
different forces applied in different orders. We will consider them in this section.

Recall from Chapter 6 that the strain energy density due to linear elastic defor-
mation is given by

U0 = 1
2

σ : ε = 1
2

σi jεi j . (7.6.1)

The total strain energy stored in the body B occupying the region � with surface �

is equal to

U =
∫

�

U0 dx = 1
2

∫
�

σ : ε dx = 1
2

∫
�

σi jεi j dx, (7.6.2)

where dx denotes the line element dx1, the area element dx1 dx2, or the volume
element dx1 dx2 dx3, depending on the dimension of the domain �. The work done
by externally applied body force f and surface tractions t in moving through the
displacement vector u is given by

WE =
∫

�

f · u dx +
∮

�

t · u ds. (7.6.3)

Because of the symmetry of the stress tensor, σi j = σ j i , we can write σi jεi j =
σi j ui, j . Consequently, the strain energy U can be expressed as

U = 1
2

∫
�

σi j ui, j dx

= 1
2

[
−
∫

�

σi j, j ui dx +
∮

�

njσi j ui ds
]

= 1
2

[∫
�

fi ui dx +
∮

�

ti ui ds
]

= 1
2

[∫
�

f · u dx +
∮

�

t · u ds
]

,

where, in arriving at the last line, we have used the equilibrium equation σ j i, j + fi =
0, the Cauchy’s formula ti = njσ j i , and the divergence theorem (2.4.34). Thus, the
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Figure 7.6.1. Strain energy stored in a linear elastic spring.

total strain energy in a body undergoing linear elastic deformation is

U = 1
2

[∫
�

f · u dx +
∮

�

t · u ds
]

. (7.6.4)

The first term in the square brackets on the right-hand side represents the work
done by body force f in moving through the displacement u while the second term
represents the work done by surface forces t in moving through the displacements
u during linear elastic deformation. Equation (7.6.4) is a statement of Clapeyron’s
theorem, which states that the total strain energy stored in a body during linear
elastic deformation is equal to the half of the work done by external forces acting
on the body.

EXAMPLE 7.6.1:

1. Consider a linear elastic spring with spring constant k. Let F be the external
force applied on the spring to elongate it and u be the resulting elongation of
the spring (see Figure 7.6.1). Verify Clapeyron’s theorem.

SOLUTION: The internal force developed in the spring is Fs = ku. The work
done by Fs in moving through an increment of displacement du is Fs · du.
The total strain energy stored in the spring is

U =
∫ u

0
Fs du =

∫ u

0
ku du = 1

2
ku2. (7.6.5)

The work done by external force F is equal to F u. But by equilibrium, F =
Fs = ku. Hence,

U = 1
2

ku2 = 1
2

F u,

which proves Clapeyron’s theorem.
2. Consider a uniform elastic bar of length L, cross-sectional area A, and mod-

ulus of elasticity E. The bar is fixed at x = 0 and subjected to a tensile force
of P at x = L, as shown in Figure 7.6.2. Determine the deflection w(L) using
Clapeyron’s theorem.
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Figure 7.6.2. A bar subjected to an end load.

SOLUTION: If the axial displacement in the bar is equal to u(x), then the work
done by external point force P is equal to W = Pu(L). The strain energy in
the bar is given by

U = 1
2

∫
A

∫ L

0
σxxεxx dx dA = EA

2

∫ L

0
ε2

xx dx = EA
2

∫ L

0

(
du
dx

)2

dx.

(7.6.6)
Hence, by Clapeyron’s theorem, we have

Pu(L)
2

= EA
2

∫ L

0

(
du
dx

)2

dx.

To make use of the above equation to determine u(x), let us assume that
u(x) = u(L)x/L, which certainly satisfies the geometric boundary condition,
u(0) = 0. Then we have

u(L) = EA
P

∫ L

0

(
du
dx

)2

dx = EA
PL

[u(L)]2,

or u(L) = PL/AE and the solution is u(x) = Px/AE, which happens to co-
incide with the exact solution to the problem.

3. Consider a cantilever beam of length L and flexural rigidity EI and bent
by a point load F at the free end (see Figure 7.6.3). Determine w(0) using
Clapeyron’s theorem.

SOLUTION: By Clapeyron’s theorem we have

1
2

Fw(0) = 1
2

∫
A

∫ L

0
σxxεxx dxdA.

But according to the Euler–Bernoulli beam theory the strain in the beam is
given by

εxx = −z
d2w

dx2
, (7.6.7)

where w is the transverse deflection. Then we have

1
2

Fw(0) = 1
2

∫
A

∫ L

0
Eε2

xx dxdA = 1
2

∫
A

∫ L

0
Ez2

(
d2w

dx2

)2

dA dx

= 1
2

∫ L

0
EI

(
d2w

dx2

)2

dx = 1
2

∫ L

0

M2

EI
dx, (7.6.8)
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Figure 7.6.3. A beam subjected to an end load.

where M(x) is the bending moment at x

M(x) =
∫

A
zσxx dA = −E

∫
A

z2 d2w

dx2
dA = −EI

d2w

dx2
. (7.6.9)

Equation (7.6.8) can be used to determine the deflection w(0). The bending
moment at any point x is M(x) = −Fx. Hence, we have

Fw(0) = 1
EI

∫ L

0
F2x2 dx = F2L3

3EI
or w(0) = F L3

3EI
. (7.6.10)

7.6.2 Betti’s Reciprocity Relations

Consider the equilibrium state of a linear elastic solid under the action of two dif-
ferent external forces, F1 and F2, as shown in Figure 7.6.4 [see Reddy, (2002)]. Since
the order of application of the forces is arbitrary for linearized elasticity, we sup-
pose that force F1 is applied first. Let W1 be the work produced by F1. Then, we
apply force F2, which produces work W2. This work is the same as that produced
by force F2, if it alone were acting on the body. When force F2 is applied, force F1

(which is already acting on the body) does additional work because its point of ap-
plication is displaced due to the deformation caused by force F2. Let us denote this
work by W12. Thus the total work done by the application of forces F1 and F2, F1

first and F2 next, is

W = W1 + W2 + W12. (7.6.11)

Work W12, which can be positive or negative, is zero if and only if the displacement
of the point of application of force F1 produced by force F2 is zero or perpendicular
to the direction of F1.

Figure 7.6.4. Configurations of an elastic body due to the application
of loads F1 and F2. —- Undeformed configuration.
- - - - Deformed configuration after the application of F1.
. . . . . . Deformed configuration after the application of F2.
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Now suppose that we change the order of application. Then the total work done
is equal to

W = W1 + W2 + W21, (7.6.12)

where W21 is the work done by force F2 due to the application of force F1. The work
done in both cases should be the same because at the end elastic body is loaded by
the same pair of external forces. Thus, we have W = W, or

W12 = W21. (7.6.13)

Equation (7.6.13) is a mathematical statement of Betti’s (1823–1892) reciprocity
theorem: if a linear elastic body is subjected to two different sets of forces, the work
done by the first system of forces in moving through the displacements produced by
the second system of forces is equal to the work done by the second system of forces in
moving through the displacements produced by the first system of forces. Applied to
a three-dimensional elastic body � with closed surface s, Eq. (7.6.13) takes the form∫

�

f (1) · u(2) dx +
∮

s
t(1) · u(2) ds =

∫
�

f (2) · u(1) dx +
∮

s
t(2) · u(1) ds, (7.6.14)

where u(i) are the displacements produced by body forces f(i) and surface forces t(i).
The proof of Betti’s reciprocity theorem is straightforward. Let W12 denote the

work done by forces (f(1), t(1)) acting through the displacement u(2). Then

W12 =
∫

�

f (1) · u(2) dx +
∮

s
t(1) · u(2) ds

=
∫

�

f (1)
i u(2)

i dx +
∮

s
t (1)
i u(2)

i ds

=
∫

�

f (1)
i u(2)

i dx +
∮

s
n jσ

(1)
j i u(2)

i ds

=
∫

�

f (1)
i u(2)

i dx +
∫

�

(
σ

(1)
j i u(2)

i

)
, j

dx

=
∫

�

(
σ

(1)
i j, j + f (1)

i

)
u(2)

i dx +
∫

�

σ
(1)
i j u(2)

i, j dx

=
∫

�

σ
(1)
i j u(2)

i, j dx =
∫

�

σ
(1)
i j ε

(2)
i j dx. (7.6.15)

Since σ
(1)
i j = Ci jk
ε

(1)
k
 , we obtain

W12 =
∫

�

Ci jk
 ε
(1)
k
 ε

(2)
i j dx. (7.6.16)

Since Ci jk
 = Ck
i j , it follows that

W12 =
∫

�

Ci jk
 ε
(1)
k
 ε

(2)
i j dx

=
∫

�

Ck
i j ε
(2)
i j ε

(1)
k
 dx = W21. (7.6.17)

Thus, we have established the equality in Eq. (7.6.14).
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Figure 7.6.5. A cantilever beam subjected to two different types of loads.

From Eq. (7.6.17), we also have

∫
�

σ
(1)
i j ε

(2)
i j dx =

∫
�

σ
(2)
i j ε

(1)
i j dx,

∫
�

σ(1) : ε(2) dx =
∫

�

σ(2) : ε(1) dx.

(7.6.18)

EXAMPLE 7.6.2: Consider a cantilever beam of length L subjected to two differ-
ent types of loads: a concentrated load F at the free end and to a uniformly
distributed load of intensity q (see Figure 7.6.5). Verify that the work done by
the point load F in moving through the displacement wq produced by q is equal
to the work done by the distributed force q in moving through the displacement
wF produced by the point load F , W12 = W21.

SOLUTION: The deflection wF (x) due to the concentrated load alone is

wF (x) = F
6EI

(x3 − 3L2x + 2L3),

and the deflection equation due to the distributed load alone is

wq(x) = q
24EI

(x4 − 4L3x + 3L4).

The work done by the load F in moving through the displacement due to the
application of the uniformly distributed load q is

W12 = Fwq(0) = FqL4

8EI
,

The work done by the uniformly distributed q in moving through the displace-
ment field due to the application of point load F is

W21 =
∫ L

0

F
6EI

(x3 − 3L2x + 2L3)q dx = FqL4

8EI
,

which is in agreement with W12.
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Figure 7.6.6. Configurations of the body dis-
cussed in Maxwell’s theorem.

7.6.3 Maxwell’s Reciprocity Relation

An important special case of Betti’s reciprocity theorem is given by Maxwell’s
(1831–1879) reciprocity theorem. Maxwell’s theorem was given in 1864, whereas
Betti’s theorem was given in 1872. Therefore, it may be considered that Betti gener-
alized the work of Maxwell. We derive Maxwell’s reciprocity theorem from Betti’s
reciprocity theorem.

Consider a linear elastic solid subjected to force F1 of unit magnitude acting at
point A, and force F2 of unit magnitude acting at a different point B of the body.
Let uAB be the displacement of point A in the direction of force F1 produced by
unit force F2, and uBA by the displacement of point B in the direction of force F2

produced by unit force F1 (see Figure 7.6.6). From Betti’s theorem, it follows that

F1 · uAB = F2 · uBA or uAB = uBA. (7.6.19)

Equation (7.6.19) is a statement of Maxwell’s theorem. If ê1 and ê2 denote the
unit vectors along forces F1 and F2, respectively, Maxwell’s theorem states that the
displacement of point A in the ê1 direction produced by unit force acting at point
B in the ê2 direction is equal to the displacement of point B in the ê2-direction
produced by unit force acting at point A in the ê1 direction.

We close this section with the following example that illustrates the usefulness
of Maxwell’s theorem.

EXAMPLE 7.6.3:

1. Consider a cantilever beam (E = 24 × 106 psi, I = 120 in4) of length 12 ft
subjected to a point load 4,000 lb at the free end. Find the deflection at a
point 3 ft from the free end (see Figure 7.6.7) using Maxwell’s theorem.

SOLUTION: By Maxwell’s theorem, the displacement wBC at point B (x = 3
ft) produced by the 4,000-lb load at point C (x = 0) is equal to the deflection
wCB at point C produced by applying the 4,000 lb load at point B. Let wB

and θB denote the deflection and slope, respectively, at point B owing to load
F = 4,000 lb applied at point B. Then, the deflection at point B (x = 3 ft)



P1: IBE

Contbk07 CUFX197-Reddy 978 0 521 87044 3 October 3, 2007 10:46

7.6 Clapeyron’s Theorem and Reciprocity Relations 223

C

F0= 4,000 lb 

A B

9ft 3ft

C

4,000 lb

wBCA B

wC

C

4,000 lb

A B

wCB
wB

θB

(a)

(b) (c)

Figure 7.6.7. The cantilever beam of Example 7.6.3.

caused by load F0 = 4,000 lb at point C (x = 0) is (wB = F L3/3EI and θB =
F L2/2EI)

wBC = wCB = wB + (3 × 12)θB

= 4000(9 × 12)3

3EI
+ (3 × 12)4000(9 × 12)2

2EI

= 243 × 6000 × (12)3

24 × 106 × 120
= 0.8748 in.

2. Consider a circular plate of radius a with an axisymmetric boundary condi-
tion and subjected to an asymmetric loading of the type (see Figure 7.6.8)

q(r, θ) = q0 + q1
r
a

cos θ, (7.6.20)

where q0 represents the uniform part of the load for which the solution can
be determined for various axisymmetric boundary conditions [see Reddy
(2007)]. In particular, the deflection of a clamped circular plate under a point
load Q0 at the center is given by

w(r) = Q0a2

16π D

[
1 − r2

a2
+ 2

r2

a2
log

( r
a

)]
. (7.6.21)

Use the Betti–Maxwell’s reciprocity theorem to determine the center deflec-
tion of a clamped plate under asymmetric distributed load.

SOLUTION: By Maxwell’s theorem, the work done by a point load (Q0 = 1)
at the center of the plate due to the deflection (at the center) wc caused by
the distributed load q(r, θ) is equal to the work done by the distributed load
q(r, θ) in moving through the displacement w0(r) caused by the point load
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Figure 7.6.8. A circular plate subjected to
an asymmetric loading.

at the center. Hence, the center deflection of a clamped circular plate under
asymmetric load (7.6.20) is

wc = a2

16π D

∫ 2π

0

∫ a

0
q(r, θ)

[
1 − r2

a2

(
1 − 2 log

r
a

)]
rdrdθ = q0a4

64D
. (7.6.22)

7.7 Solution Methods

7.7.1 Types of Solution Methods

Analytical solution of a problem is one that satisfies the governing differential equa-
tion at every point of the domain as well as the boundary conditions exactly. In
general, finding analytical solutions of elasticity problems is not simple due to com-
plicated geometries and boundary conditions. Approximate solution is one that sat-
isfies governing differential equations as well as the boundary conditions approxi-
mately. Numerical solutions are approximate solutions that are developed using a
numerical method, such as finite difference methods, the finite element method, the
boundary element method, and so on. Often one seeks approximate solutions of
practical problems using numerical methods. In this section, we discuss methods for
finding solutions, exact as well approximate.

The solutions of elasticity problems are developed using one of the following
methods (see Slaughter, 2002):

1. The inverse method is one in which one finds the solution for displacement,
strain, and stress fields that satisfy the governing equations of elasticity and then
tries to find a problem with boundary conditions to which the fields correspond.
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Figure 7.7.1. Rotating cylindrical pressure vessel.

2. The semi-inverse method is one in which the solution form in terms of unknown
functions is arrived with the help of a qualitative understanding of the problem
characteristics, and then the unknown functions are determined to satisfy the
governing equations.

3. The method of potentials is one in which some of the governing equations are
trivially satisfied by the choice of potential functions from which stresses or dis-
placements are derived. The potential functions are determined by finding so-
lutions to remaining equations.

4. The variational methods are those which make use of extremum (i.e., minimum
or maximum) and stationary principles. The principles are often cast in terms of
energies of the system.

In the remainder of this chapter, we consider mostly the semi-inverse method
and the method of potentials to formulate and solve certain problems of elasticity.

7.7.2 An Example: Rotating Thick-Walled Cylinder

Consider an isotropic, hollow circular cylinder of internal radius a and outside radius
b. The cylinder is pressurized at r = a and/or at r = b, and rotating with a uniform
speed of ω about its axis (z-axis). Under these applied loads, stresses are devel-
oped in the cylinder. Define a cylindrical coordinate system (r, θ, z), as shown in
Figure 7.7.1. We assume that body force vector is f = ρω2r êr .

For this problem, we have only stress boundary conditions (BVP Type II). We
have

At r = a : n̂ = −êr , t = pa êr or σrr = −pa, σrθ = 0 (7.7.1)

At r = b : n̂ = êr , t = −pb êr or σrr = −pb, σrθ = 0. (7.7.2)

We wish to determine the displacements, strains, and stresses in the cylinder using
the semi-inverse method.

Because of the symmetry about the z-axis, we assume that the displacement
field is of the form

ur = U(r), uθ = uz = 0, (7.7.3)
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where U(r) is an unknown function to be determined such that the equations of
elasticity and boundary conditions are satisfied. If we cannot find U(r) that satisfies
the governing equations, then we must abandon the assumption (7.7.3).

The strains associated with the displacement field (7.7.3) are [see Eq. (3.5.21)]

εrr = dU
dr

, εθθ = U
r

, εzz = 0,

εrθ = 0, εzθ = 0, εrz = 0.

(7.7.4)

The stresses are given by

σrr = 2µεrr + λ (εrr + εθθ ) = (2µ + λ)
dU
dr

+ λ
U
r

,

σθθ = 2µεθθ + λ (εrr + εθθ ) = (2µ + λ)
U
r

+ λ
dU
dr

,

σzz = 2µεzz + λ (εrr + εθθ ) = λ

(
dU
dr

+ U
r

)
,

σrθ = 0, σrz = 0, σθz = 0.

(7.7.5)

Substituting the stresses from Eq. (7.7.5) into the equations of equilibrium
(5.3.17), we note that the last two equations are trivially satisfied, and the first equa-
tion reduces to

dσrr

dr
+ 1

r
(σrr − σθθ ) = −ρω2r,

(2µ + λ)
d2U
dr2

+ λ
d
dr

(
U
r

)
+ 2µ

r

(
dU
dr

− U
r

)
= −ρω2r.

(7.7.6)

Simplifying the expression, we obtain

r2 d2U
dr2

+ r
dU
dr

− U = −αr3, α = ρω2

2µ + λ
. (7.7.7)

The linear ordinary differential equation (7.7.7) can be transformed to one with
constant coefficients by a change of independent variable, r = eξ (or ξ = ln r). Using
the chain rule of differentiation, we obtain

dU
dr

= dU
dξ

dξ

dr
= 1

r
dU
dξ

,
d2U
dr2

= d
dr

(
1
r

dU
dξ

)
= 1

r2

(
−dU

dr
+ d2U

dξ 2

)
. (7.7.8)

Substituting the above expressions into (7.7.7), we obtain

d2U
dξ 2

− U = −αe3ξ . (7.7.9)

Seeking solution in the form U(ξ) = emξ , we obtain the following general solution
to the problem:

Uh(ξ) = c1eξ + c2e−ξ − α

8
e3ξ . (7.7.10)
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Changing back to the original independent variable r , we have

U(r) = c1r + c2

r
− α

8
r3. (7.7.11)

The stress σrr is given by

σrr = (2µ + λ)
(

c1 − c2

r2
− 3α

8
r2
)

+ λ
(

c1 + c2

r2
− α

8
r2
)

= 2(µ + λ)c1 − 2µ
c2

r2
− (3µ + 2λ)α

4
r2. (7.7.12)

Applying the stress boundary conditions in Eqs. (7.7.1) and (7.7.2), we obtain

2(µ + λ)c1 − 2µ
c2

a2
− (3µ + 2λ)α

4
a2 = −pa,

2(µ + λ)c1 − 2µ
c2

b2
− (3µ + 2λ)α

4
b2 = −pb.

(7.7.13)

Solving for the constants c1 and c2,

c1 = 1
2(µ + λ)

[(
paa2 − pbb2

b2 − a2

)
+ (b2 + a2)

(3µ + 2λ)
(2µ + λ)

ρω2

4

]
,

c2 = a2b2

2µ

[(
pa − pb

b2 − a2

)
+ (3µ + 2λ)

(2µ + λ)
ρω2

4

]
.

(7.7.14)

Finally, the displacement ur and stress σrr in the cylinder are given by

ur = 1
2(µ + λ)

[(
paa2 − pbb2

b2 − a2

)
+ (b2 + a2)

(3µ + 2λ)
(2µ + λ)

ρω2

4

]
r

+ a2b2

2µ

[(
pa − pb

b2 − a2

)
+ (3µ + 2λ)

(2µ + λ)
ρω2

4

]
1
r

− ρω2

8(2µ + λ)
r3, (7.7.15)

σrr =
[(

paa2 − pbb2

b2 − a2

)
+ (b2 + a2)

(3µ + 2λ)
(2µ + λ)

ρω2

4

]

− a2b2

r2

[(
pa − pb

b2 − a2

)
+ (3µ + 2λ)

(2µ + λ)
ρω2

4

]
− (3µ + 2λ)α

4
r2. (7.7.16)

7.7.3 Two-Dimensional Problems

A class of problems in elasticity, due to geometry, boundary conditions, and external
applied loads, have their solutions (i.e., displacements and stresses) not dependent
on one of the coordinates. Such problems are called plane elasticity problems. The
plane elasticity problems considered here are grouped into plane strain and plane
stress problems. Both classes of problems are described by a set of two coupled
partial differential equations expressed in terms of two dependent variables that
represent the two components of the displacement vector. The governing equations
of plane strain problems differ from those of the plane stress problems only in the
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Figure 7.7.2. Examples of plane strain problems.

coefficients of the differential equations. The discussion here is limited to isotropic
materials.

7.7.3.1 Plane Strain Problems
Plane strain problems are characterized by the displacement field

ux = ux(x, y), uy = uy(x, y), uz = 0, (7.7.17)

where (ux, uy, uz) denote the components of the displacement vector u in the
(x, y, z) coordinate system. An example of a plane strain problem is provided by the
long cylindrical member under external loads that are independent of z, as shown
in Figure 7.7.2. For cross sections sufficiently far from the ends, it is clear that the
displacement uz is zero and that ux and uy are independent of z, that is, a state of
plane strain exists.

The displacement field (7.7.17) results in the following strain field:

εxz = εyz = εzz = 0,

εxx = ∂ux

∂x
, 2εxy = ∂ux

∂y
+ ∂uy

∂x
, εyy = ∂uy

∂y
.

(7.7.18)

Clearly, the body is in a state of plane strain.
For an isotropic material, the stress components are given by [see Eq. (6.2.29)]

σxz = σyz = 0, σzz = ν (σxx + σyy) , (7.7.19)


σxx

σyy

σxy


 = E

(1 + ν)(1 − 2ν)


 1 − ν ν 0

ν 1 − ν 0
0 0 (1−2ν)

2






εxx

εyy

2εxy


 . (7.7.20)
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The equations of equilibrium of three-dimensional linear elasticity, with the
body-force components

f3 = fz = 0, f1 = fx = fx(x, y), f2 = fy = fy(x, y), (7.7.21)

reduce to the following two plane-strain equations

∂σxx

∂x
+ ∂σxy

∂y
+ fx = 0, (7.7.22)

∂σxy

∂x
+ ∂σyy

∂y
+ fy = 0. (7.7.23)

The boundary conditions are either the stress type

tx ≡ σxxnx + σxyny = t̂x

ty ≡ σxynx + σyyny = t̂y

}
on �σ , (7.7.24)

or the displacement type

ux = ûx, uy = ûy on �u. (7.7.25)

Here (nx, ny) denote the components (or direction cosines) of the unit normal vector
on the boundary �, �σ , and �u are disjoint portions of the boundary �, t̂x, and t̂y are
the components of the specified traction vector, and ûx and ûy are the components
of specified displacement vector. Only one element of each pair, (ux, tx) and (uy, ty),
may be specified at a boundary point.

7.7.3.2 Plane Stress Problems
A state of plane stress is defined as one in which the following stress field exists:

σxz =σyz = σzz = 0,

σxx = σxx(x, y), σxy = σxy(x, y), σyy = σyy(x, y).
(7.7.26)

An example of a plane stress problem is provided by a thin plate under external
loads applied in the xy plane (or parallel to it) that are independent of z, as shown
in Figure 7.7.3. The top and bottom surfaces of the plate are assumed to be traction-
free, and the specified boundary forces are in the xy-plane so that fz = 0 and uz = 0.

x

z
y

h

t

1F

2F

Figure 7.7.3. A thin plate in a state of plane stress.
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The stress-strain relations of a plane stress state are


σxx

σyy

σxy


 = E

1 − ν2


 1 ν 0

ν 1 0
0 0 (1+ν)

2






εxx

εyy

2εxy


 . (7.7.27)

The equations of equilibrium as well as boundary conditions of a plane stress
problem are the same as those listed in Eqs. (7.7.22)–(7.7.25). The equilibrium equa-
tions (7.7.22) and (7.7.23) can be written in index notation as

σβα,β + fα = 0, (7.7.28)

where α and β take the values of 1 and 2. The governing equations of plane stress
and plane strain differ from each other only on account of the difference in the
constitutive equations for the two cases. To unify the formulation for plane strain
and plane stress, we introduce the parameter s

s =
{ 1

1−ν
, for plane strain,

1 + ν, for plane stress.
(7.7.29)

Then the constitutive equations of plane stress as well as plane strain can be ex-
pressed as

σαβ = 2µ

[
εαβ +

(
s − 1
2 − s

)
εγγ δαβ

]
, (7.7.30)

εαβ = 1
2µ

[
σαβ −

(
s − 1

s

)
σγγ δαβ

]
, (7.7.31)

where α, β, and γ take values of 1 and 2. The compatibility equations (7.4.9) for
plane stress and plane strain now take the form

∇2σαα = −s fα,α. (7.7.32)

7.7.4 Airy Stress Function

Airy stress function is a potential function introduced to identically satisfy the equa-
tions of equilibrium, Eqs. (7.7.22) and (7.7.23). First, we assume that the body force
vector f is derivable from a scalar potential Vf such that

f = −∇Vf or fx = −∂Vf

∂x
, fy = −∂Vf

∂y
. (7.7.33)

This amounts to assuming that body forces are conservative. Next, we introduce the
Airy stress function �(x, y) such that

σxx = ∂2�

∂y2
+ Vf , σyy = ∂2�

∂x2
+ Vf , σxy = − ∂2�

∂x∂y
. (7.7.34)

This definition of �(x, y) automatically satisfies the equations of equilibrium
(7.7.22) and (7.7.23).
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The stresses derived from (7.7.34) are subject to the compatibility conditions
(7.7.32). Substituting for σαβ in terms of � from Eq. (7.7.34) into Eq. (7.7.32), we
obtain

∇4� + (2 − s)∇2Vf = 0, (7.7.35)

where ∇4 = ∇2∇2 is the biharmonic operator, which, in two dimensions, has the
form

∇4 = ∂4

∂x4
+ 2

∂4

∂x2∂y2
+ ∂4

∂y4
. (7.7.36)

If the body forces are zero, we have Vf = 0 and Eq. (7.7.35) reduces to the bihar-
monic equation

∇4� = 0. (7.7.37)

In cylindrical coordinate system, Eqs. (7.7.33) and (7.7.34) take the form

fr = −∂Vf

∂r
, fθ = −1

r
∂Vf

∂θ
, (7.7.38)

σrr = 1
r

∂�

∂r
+ 1

r2

∂2�

∂θ2
+ Vf ,

σθθ = ∂2�

∂r2
+ Vf ,

σrθ = − ∂

∂r

(
1
r

∂�

∂θ

)
.

(7.7.39)

The biharmonic operator ∇4 = ∇2∇2 can be expressed using the definition of ∇2 in
a cylindrical coordinate system

∇2 = ∂2

∂r2
+ 1

r
∂

∂r
+ 1

r2

∂2

∂θ2
. (7.7.40)

In summary, solution to a plane elastic problem using the Airy stress function in-
volves finding the solution to Eq. (7.7.35) and satisfying the boundary conditions of
the problem. The most difficult part is finding solution to the fourth-order equation
(7.7.35) over a given domain. Often the form of the Airy stress function is obtained
by either the inverse method or semi-inverse method. Next, we consider some exam-
ples of the Airy function approach [see Timoshenko and Goodier (1970), Slaughter
(2002), and Mase and Mase (1999) for additional examples].

EXAMPLE 7.7.1:

1. Suppose that the Airy stress function is a second-order polynomial (which is
the lowest order that gives a nonzero stress field) of the form

�(x, y) = c1xy + c2x2 + c3 y2. (7.7.41)

Determine constants c1, c2, and c3 such that � satisfies the biharmonic equa-
tion ∇4� = 0 (body force field is zero, Vf = 0) and corresponds to a possible
state of stress for some boundary value problem (inverse method).
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Figure 7.7.4. A problem with uniform stress field.

SOLUTION: Clearly, the biharmonic equation is satisfied by � in Eq. (7.7.41).
The corresponding stress field is

σxx = ∂2�

∂y2
= 2c3, σyy = ∂2�

∂x2
= 2c2, σxy = − ∂2�

∂x∂y
= −c1. (7.7.42)

Thus, the state of stress is uniform (i.e., constant) throughout the body, and it
is independent of the geometry. Thus, there are infinite number of problems
for which the stress field is a solution. In particular, the rectangular domain
shown in Figure 7.7.4 is one such problem.

2. Take the Airy stress function to be a third-order polynomial of the form

�(x, y) = c1xy + c2x2 + c3 y2 + c4x2 y + c5xy2 + c6x3 + c7 y3. (7.7.43)

Determine the stress field and identify various possible boundary-value prob-
lems.

SOLUTION: We note that ∇4� = 0 for any ci (body force field is zero). The
corresponding stress field is

σxx = 2c3 + 2c5x + 6c7 y, σyy = 2c2 + 2c4 y + 6c6 y, σxy = −c1 − 2c4x − 2c5 y.

(7.7.44)
Again, there are infinite number of problems for which the stress field is a
solution. In particular, for c1 = c2 = c3 = c4 = c5 = c6 = 0, the solution cor-
responds to a thin beam in pure bending (see Figure 7.7.5).

3. Last, take the Airy stress function to be a fourth-order polynomial of the
form (omit terms that were already considered in the last two cases)

�(x, y) = c8x2 y2 + c9x3 y + c10xy3 + c11x4 + c12 y4. (7.7.45)

Determine the stress field and associated boundary-value problems.

y

2

Figure 7.7.5. A thin beam in pure bending.
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SOLUTION: Computing ∇4� and equating it to zero (body-force field is zero)
we find that

c8 + 3(c11 + c12) = 0.

Thus out of five constants only four of them are independent. The corre-
sponding stress field is

σxx = 2c8x2 + 6c10xy + 12c12 y2 = −6c11x2 + 6c10xy + 6c12(2y2 − x2),

σyy = 2c8 y2 + 6c9xy + 12c11x2 = 6c9xy + 2c11(2x2 − y2) − 6c12 y2,

σxy = −4c8xy − 3c9x2 − 3c10 y2 = 12c11xy + 12c12xy − 3c9x2 − 3c10 y2.

(7.7.46)
By suitable adjustment of the constants, we can obtain various loads on rect-
angular plates. For instance, taking all coefficients except c10 equal to zero,
we obtain (see Problem 7.17).

σxx = 6c10xy, σyy = 0, σxy = −3c10 y2.

7.7.5 End Effects: Saint–Venant’s Principle

A boundary-value problem of elasticity requires the boundary conditions to be
known in the form of displacements or stresses [see Eqs. (7.7.24) and (7.7.25)] at
every point of the boundary. As shown in Example 7.7.1, the boundary forces are
distributed as a function of the distance along the boundary. If the boundary forces
(and moments) are distributed in any other form (than per unit surface area), the
boundary conditions cannot be expressed as point-wise quantities.

For example, consider the cantilevered beam with an end load, as shown in
Figure 7.7.6. At x = 0, we are required to specify σxx and σxy (because ux and uy are
clearly not zero there). There is no problem in stating that σxx(0, z) = 0; but we only
know that the integral of σxz over the beam cross section must be equal to P:∫

A
σxz(0, z) dA = P,

which is not equal to specifying σxz point-wise. If we state that σxy(0, z) = P/A,
where A is the cross-sectional area of the beam, then we have a stress singularity at
points (x, z) = (0,±h), because σxz is zero at z = ±h [we also have a different type
of singularity at points (x, z) = (L,±h)].

Analytical solutions for such problems, when exist, show that a change in the
distribution of the load on the end, without change of the resultant, alters the stress
significantly only near the end. Saint–Venant’s principle says that the effect of the
change in the boundary condition to a statically equivalent condition is local; that is,
the solutions obtained with the two sets of boundary conditions are approximately
the same at points sufficiently far from the points where the elasticity boundary
conditions are replaced with statically equivalent boundary conditions. Of course,
“sufficiently far” is rather ambiguous and problem dependent. It is often taken to
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y xx

Figure 7.7.6. A cantilevered beam under an end load.

be equal to or greater than the length scale of the portion of the boundary where
the boundary conditions are replaced. In the case of the beam shown in Figure 7.7.6,
the distance is 2h (height of the beam).

EXAMPLE 7.7.2: Here, we consider the problem of a cantilevered beam with an
end load, as shown in Figure 7.7.6. The problem can be treated as a plane stress
if the beam is of small thickness b compared to the height, b � h (of course,
h << L to call it a beam). If the beam is a portion of a very long slab, in the
thickness direction, it can be treated as a plane strain problem. Write the bound-
ary conditions and determine the Airy stress function, stresses, and displace-
ments of the problem.

SOLUTION: The boundary conditions are of mixed type (see Figure 7.7.6): the
tractions are specified on the boundaries x = 0 and z = ±h, while the displace-
ments are specified on the boundary x = L. However, boundary conditions of
plane elasticity can be written only on x = L and z = ±h. On x = 0, we only
know the total force in the z-direction and not the associated stress. Hence, it
must be written as an integral condition on stress σxz(0, z). Thus, we have

σxx(0, z) = 0, σxz(x,−h) = 0, σzz(x,−h) = 0,

σxz(x, h) = 0, σzz(x, h) = 0,
(7.7.47)

ux(L, z) = 0, uz(L, z) = 0, (7.7.48)

∫ h

−h
σxz(0, z) dz = P

b
. (7.7.49)

Because of the boundary condition in Eq. (7.7.49), the resulting boundary-value
problem is not an exact elasticity problem in the sense that boundary values are
not specified point-wise. If P is replaced with a shear stress condition σxz(0, z) =
τ0, it is a proper elasticity boundary condition, but this creates another problem
as discussed next.

This problem is discussed in most elasticity and continuum mechanics
books, despite the fact that it is not a well-posed problem due to point singu-
larities at the corners of the domain. For example, at points (x, z) = (L,±h) we
have both traction and displacement boundary condition, which is not allowed.
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Similarly, at points (x, z) = (0,±h) we have σxz = τ0 from one side and σxz = 0
from the other sides, which violates symmetry of stress tensor. Therefore, the
solution being sought is an approximate solution, which is a reasonable one, by
Saint–Venant’s principle, away from the isolated points of singularity.

The semi-inverse method allows us to identify the form of the Airy stress
function. The knowledge of the stress distributions from the elementary theory
of beams provides the needed clue to identify the terms in the Airy stress func-
tion. Recall the following stress field from the Euler–Bernoulli beam theory:

σxx = M(x)z
EI

, σzz = 0, σxz = V(x)Q(z)
Ib

, (7.7.50)

where M is the bending moment and V is the shear force,

M =
∫

A
zσxx dA, V =

∫
A

σxz dA, (7.7.51)

I is the second moment of area about the axis (y) of bending, and Q is the first
moment of area

I =
∫

A
z2 dA, Q(z) =

∫
Ā

z dA. (7.7.52)

Here Ā denotes the cross-sectional area between line z and the top of the beam.
Clearly, Q is a quadratic function of z. We also note that M(x) is a linear func-
tion of x while V is a constant for the problem at hand. Using this qualitative
information and definitions (7.7.34), in the absence of body forces (Vf = 0), we
take the Airy stress function to be

�(x, z) = x(c1z + c2z2 + c3z3). (7.7.53)

Only the first and third terms are dictated by the stress field in a beam. The sec-
ond term is added to make it complete quadratic polynomial in z. The nonzero
stresses are

σxx = 6c3xz, σxz = −(c1 + 2c2z + 3c3z2). (7.7.54)

The choice in (7.7.53) satisfies the biharmonic equation for any values of
c1, c2, and c3. We determine their values using the stress boundary conditions
in Eqs. (7.7.47) and (7.7.49). The stress boundary conditions σxx(0, z) = 0 and
σzz(x,±h) = 0 are trivially satisfied. From the remaining stress boundary condi-
tions, we obtain

σxz(x,±h) = 0 → c1 − 2c2h + 3c3h2 = 0 and c1 + 2c2h + 3c3h2 = 0,

which yield c2 = 0, c1 = −3h2c3, (7.7.55)

∫ h

−h
σxz(0, z) dz = P

b
→ −2h(c1 + h2c3) = P

b
. (7.7.56)
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We have c3 = P/4bh3 and c1 = −3P/4bh. Hence, the stress field becomes

σxx = 6Pxz
4bh3

= Pxz
I

,

σxz =
(

3P
4bh

− 3Pz2

4bh3

)
= P

2I

(
h2 − z2) ,

(7.7.57)

where I = 2bh3/3. The Airy stress function is

�(x, z) = Pxz
6I

(
z2 − 3h2) . (7.7.58)

The computed stresses are exactly those predicted by the classical (i.e.,
Euler–Bernoulli) beam theory, where M(x) = Px and V = P. This is not sur-
prising because our choice of terms in the Airy stress function was dictated by
the form of the stress field in the classical beam theory. This also indicates that
we cannot obtain any better stress field than the elementary beam theory for the
boundary conditions (7.7.47)–(7.7.49). This stress field can be used to determine
the displacements in the beam.

The strain field associated with the stress field (7.7.57) is

εxx = Pxz
EI

,

εzz = −νεxx = −ν
Pxz
EI

,

εxz = (1 + ν)P
2EI

(h2 − z2),

(7.7.59)

where ν is the Poisson ratio and E is Young’s modulus. We wish to determine
the two-dimensional displacement field (ux, uz) in the beam.

Using the strain-displacement relations and integrating the strains in Eq.
(7.7.59), we obtain (see Example 3.8.2 and note the change in the coordinate
system used)

εxx = ∂ux

∂x
= Pxz

EI
or ux = Px2z

2EI
+ f1(z),

εzz = ∂uz

∂z
= −ν Pxz

EI
or uz = −ν Pxz2

2EI
+ f2(x),

(7.7.60)

where ( f1, f2) are functions of integration. Substituting ux and uz into the defi-
nition of the shear strain 2εxz, we obtain

2εxz = ∂ux

∂z
+ ∂uz

∂x
= Px2

2EI
+ df1

dz
− ν Pz2

2EI
+ df2

dx
.

But this must be equal to the strain value given in Eq. (7.7.59):

Px2

2EI
+ df1

dz
− ν Pz2

2EI
+ df2

dx
= (1 + ν)

EI
P(h2 − z2).
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Separating the x and z terms, we obtain

−df2

dx
− Px2

2EI
+ (1 + ν)Ph2

EI
= df1

dz
+ (2 + ν)Pz2

2EI
.

Since the left side depends only on x and the right side depends only on z, and
yet the equality must hold, it follows that both sides should be equal to a con-
stant, say c0:

df1

dz
+ (2 + ν)Pz2

2EI
= c0, −df2

dx
− Px2

2EI
+ (1 + ν)Ph2

EI
= c0.

Integrating the expressions for f1 and f2, we obtain

f1(z) = − (2 + ν)Pz3

6EI
+ c0z + c1,

f2(x) = − Px3

6EI
+ (1 + ν)Ph2x

EI
− c0x + c2,

where c1 and c2 are constants of integration that are to be determined. The
displacements (ux, uz) are now given by

ux(x, z) = Px2z
2EI

− (2 + ν)Pz3

6EI
+ c0z + c1, (7.7.61)

uz(x, z) = (1 + ν)Ph2x
EI

− ν Pxz2

2EI
− Px3

6EI
− c0x + c2. (7.7.62)

The constants c0, c1, and c2 can be evaluated using the boundary conditions
on the displacements. The displacement boundary conditions ux(L, z) = 0 and
uz(L, z) = 0 cannot be satisfied (why?) by the displacement field in Eqs. (7.7.61)
and (7.7.62). Therefore, we impose alternate boundary conditions that admit a
meaningful solution. We set ux, uz, and rotation θ3 to zero at (x, z) = (L, 0):

ux(L, 0) = 0, uz(L, 0) = 0,

(
∂ux

∂z
− ∂uz

∂x

)∣∣∣∣∣∣
(L,0)

= 0. (7.7.63)

Substituting the expressions for ux and uz into the boundary conditions (7.7.63),
we obtain [note that the rotation condition used here is different from that used
in Eq. (3.8.21)].

ux(L, 0) = 0 → c1 = 0,

uz(L, 0) = 0 → c0L− c2 = (1 + ν)Ph2 L
EI

− PL3

6EI
,

(
∂ux

∂z
− ∂uz

∂x

)∣∣∣∣∣∣
(L,0)

= 0 → 2c0 = (1 + ν)Ph2

EI
− PL2

EI
.

Thus, the constants of integration are

c0 = − PL2

2EI
+ (1 + ν)Ph2

2EI
, c1 = 0, c2 = − PL3

3EI
− (1 + ν)Ph2L

2EI
. (7.7.64)
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Finally, the displacement field of two-dimensional elasticity theory becomes

ux(x, z) = PL2z
6EI

[
−3

(
1 − x2

L2

)
− (2 + ν)

z2

L2
+ 3(1 + ν)

h2

L2

]
, (7.7.65)

uz(x, z) = − PL3

6EI

[
2 − 3

x
L

(
1 − ν

z2

L2

)
+ x3

L3
+ 3(1 + ν)

h2

L2

(
1 − x

L

)]
.

(7.7.66)

The displacement field in the beam according to the Euler–Bernoulli beam
theory is given by

ux(x, z) = − PL2z
2EI

(
1 − x2

L2

)
, (7.7.67)

uz(x, z) = PL3

6EI

(
2 − 3

x
L

+ x3

L3

)
, (7.7.68)

and, according to the Timoshenko beam theory, it is [see Reddy (2007, 2002)]

ux(x, z) = PL2z
2EI

(
1 − x2

L2

)
, (7.7.69)

uz(x, z) = PL3

6EI

(
2 − 3

x
L

+ x3

L3

)
+ 1.6

(1 + ν)Ph2L
EI

(
1 − x

L

)
, (7.7.70)

where a shear correction factor of 5/6 is used in the Timoshhenko beam solution.
Clearly, the Timoshenko beam solution is closer to the elasticity solution than
the Euler–Bernoulli beam solution. Also, the elasticity solution indicates that
plane sections perpendicular to the x-axis before deformation do not remain
plane after deformation, as suggested by the quadratic and cubic terms in z.

EXAMPLE 7.7.3: Consider a thin rectangular plate of length 2a, width 2b, and
thickness h, and has a circular hole of radius R at the center of the plate. A
uniform traction of magnitude σ0 is applied to the ends of the plate, as shown in
Figure 7.7.7. Determine the stress field in the plate under the assumption that
R << b.

SOLUTION: The boundary conditions of the problem are

σxx(±a, y) = σ0, σxy(±a, y) = 0, σyy(x,±b) = 0, σxy(x,±b) = 0, (7.7.71)

σrr (R, θ) = 0, σrθ (R, θ) = 0. (7.7.72)

Since the hole is assumed to be very small compared with the height of the
plate, we can solve the problem for stress field inside a circular region of radius
c > R, as shown in Figure 7.7.7. The stresses at the radius c are essentially the
same as in the plate without the hole (a consequence of Saint–Venant’s princi-
ple). We now set up the cylindrical coordinate system and solve the problem in
that system.
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x
θ

c
σ0σ0

aa

b

b

y

R

Figure 7.7.7. A thin rectangular plate with a central hole.

Using the transformation equations in Eq. (6.2.37), we can write the bound-
ary conditions at r = c for any θ as

σrr (c, θ) = σ0 cos2 θ = σ0

2

(
1 + cos 2θ

)
,

σθθ (c, θ) = σ0 sin2 θ = σ0

2

(
1 − cos 2θ

)
,

σrθ (c, θ) = −σ0

2
cos 2θ.

(7.7.73)

Using the definition of the Airy stress function for a cylindrical coordinate sys-
tem and the conditions in Eq. (7.7.73), we see that �(r, θ) must be of the form

�(r, θ) = G(r) − F(r) cos 2θ, (7.7.74)

with G(r) and F(r) satisfying(
d2

dr2
+ 1

r
d
dr

)2

G(r) = 0,

(
d2

dr2
+ 1

r
d
dr

− 4
r2

)2

F(r) = 0. (7.7.75)

The general solutions to the equations in (7.7.75) are of the form

F(r) = c1

r2
+ c2 + c3r2 + c4r4, G(r) = c5 + c6 ln r + c7r2 + c8r2 ln r. (7.7.76)

Substituting the expressions from Eq. (7.7.76) into Eq. (7.7.74) and using the
definition of the stress components, we obtain

σrr = 1
r

∂�

∂r
+ 1

r2

∂2�

∂θ2
= c6

r2
+ 2c7 + c8(1 + 2 ln r) −

(
6c1

r4
+ 4c2

r2
+ 2c3

)
cos 2θ,

σθθ = ∂2�

∂r2
= −c6

r2
+ 2c7 + c8(3 + 2 ln r) −

(
6c1

r4
+ 2c3 + 12c4r2

)
cos 2θ,

σrθ = − ∂

∂r

(
1
r

∂�

∂θ

)
=
(

−6c1

r4
− 2c2

r2
+ 2c3 + 6c4r2

)
sin 2θ.

(7.7.77)
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Note that c5 does not enter the calculation of stresses. The boundary condi-
tions in Eqs. (7.7.72) and (7.7.73) are used to determine the remaining con-
stants. As r → ∞, the expressions for stresses in (7.7.77) must approach those
in Eq. (7.7.73). For this to happen, c4 and c8 must be zero. The conditions in
Eq. (7.7.72) and (7.7.73) yield the following relations among the remaining con-
stants:

c7 = σ0

4
, c3 = −σ0

4
,

c6

R2
+ 2c7 = 0,

6c1

R4
+ 4c2

R2
+ 2c3 = 0, −6c1

R4
+ 2c2

R2
+ 2c3 = 0.

(7.7.78)

The solution of these equations yield the values

c1 = −σ0 R4

4
c2 = σ0 R2

2
c3 = −σ0

4
c6 = −σ0 R2

2
c7 = σ0

4
. (7.7.79)

Substituting these values into Eqs. (7.7.77), we obtain

σrr = σ0

2

[(
1 − R2

r2

)
+
(

1 + 3R4

r4
− 4R2

r2

)
cos 2θ

]
,

σθθ = σ0

2

[(
1 + R2

r2

)
−
(

1 + 3R4

r4

)
cos 2θ

]
,

σrθ = −σ0

2

(
1 − 3R4

r4
+ 2R2

r2

)
sin 2θ.

(7.7.80)

The maximum stress occurs at r = R and θ = ±90◦

σmax = σθθ (R,±90) = 3σ0. (7.7.81)

7.7.6 Torsion of Noncircular Cylinders

The stress function approach used to study a number of plane elasticity problems
in Section 7.7.5 is also useful in studying torsion of noncircular members (see Fig-
ure 7.7.8). However, we cannot use the Airy stress function here because the present
problem does not quite fall into the category of plane elasticity problems. The gov-
erning equations for this problem must be developed from basic principles. The
problem was first studied by Saint–Venant using the semi-inverse method.

Consider a cylindrical member of noncircular cross section and length L sub-
jected to an end torque T = Tê3, as shown in Figure 7.7.8. The lateral surface of the
cylinder is free of tractions. We assume that the magnitude of the applied torque is
small so that (a) all cross sections rotate about a single axis in proportion to their
distance from the end of the cylinder and (b) the out-of-plane distortion of each
cross section is the same. Therefore, attention is focused on a typical cross section,
denoted �. There are two different formulations to study the problem. One is based
on the warping function and the other on Prandtl stress function. Here we consider
the latter approach.
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Figure 7.7.8. Torsion of a cylindrical member.

First, we note that the following stresses are identically zero for the problem:

σ11 = σ22 = σ33 = σ12 = 0. (7.7.82)

Therefore, only stress equilibrium equation left to be satisfied is

∂σ31

∂x1
+ ∂σ32

∂x2
= 0. (7.7.83)

Since σ33 = 0, it follows that σ31 and σ32 are independent of x3. By introducing a
stress function �(x1, x2), called the Prandtl stress function,

σ31 = ∂�

∂x2
, σ32 = − ∂�

∂x1
, (7.7.84)

we trivially satisfy the equilibrium equation in (7.7.83). Now � is to be determined
such that it satisfies the compatibility conditions (σ3α, ββ = 0, for α, β = 1, 2)

∂2σ31

∂x2
1

+ ∂2σ31

∂x2
2

= 0 ⇒ ∂

∂x2

(
∂2�

∂x2
1

+ ∂2�

∂x2
2

)
= 0,

∂2σ32

∂x2
1

+ ∂2σ32

∂x2
2

= 0 ⇒ ∂

∂x1

(
∂2�

∂x2
1

+ ∂2�

∂x2
2

)
= 0.

(7.7.85)

From these two equations, it follows that � is governed by the equation

∇2� = C, (7.7.86)

where C is a constant. Equation (7.7.86) must be solved subject to the traction-free
boundary condition on the lateral surface

σ31n1 + σ32n2 = 0, (7.7.87)

where the components n1 and n2 of the unit outward normal to the lateral surface n̂
can be expressed as

n̂ = dx2

ds
ê1 − dx1

ds
ê2. (7.7.88)
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Then the boundary condition (7.7.87) takes the form

∂�

∂x2

dx2

ds
+ ∂�

∂x1

dx1

ds
≡ d�

ds
= 0 on �, (7.7.89)

with � being the boundary of �. In other words, � is a constant on �. For multi-
ply connected cross sections, the constants on different boundaries are, in general,
have different values. For simply connected cross sections, we can arbitrarily set the
constant to zero. In summary, the Prandtl stress function is determined from

∇2� = C in �, � = 0 on �. (7.7.90)

Although not discussed in detail here, the so-called warping function �(x1, x2)
is related to the Prandtl stress function by

∂�

∂x1
= 1

µθ

∂�

∂x2
+ x2,

∂�

∂x2
= − 1

µθ

∂�

∂x1
− x1, (7.7.91)

where θ is the twist per unit length (assumed to be small) and µ is the Lamé constant
(same as the shear modulus, G). Equations in (7.7.91) can be combined (by differ-
entiating the first one with respect to x2 and the second one with respect to x1 and
eliminating �) to obtain

−∇2� = 2Gθ in �, � = 0 on �. (7.7.92)

Once � is known, the displacements (u1, u2, u3) are calculated from the equation
(see Figure 7.7.8)

u1 = −θx2x3, u2 = θx1x3, u3 = θ�(x1, x2), (7.7.93)

and the stresses are calculated form Eq. (7.7.84).
Exact solutions of the torsion problem (7.7.92) are possible for few cases. Typ-

ically, one assumes � to be in the form � = Af (x1, x2), where A is a constant and
f is a sufficiently differentiable (i.e., ∇2 f 	= 0) function that is identically zero on
the boundary. If −∇2 f is a non-zero constant c (so that Ac can be equated to 2µθ),
then we solve for A and obtain the complete solution. If ∇2 f is not a constant, ex-
act solution is not possible, although an approximate solution can be obtained, for
example, using the Galerkin method. Here, we consider an example.

EXAMPLE 7.7.4: Consider a cylindrical shaft of elliptical cross section, �. The
boundary � is the ellipse with semiaxes a and b:

� =
{

(x1, x2) :
x2

1

a2
+ x2

2

b2
= 1

}
. (7.7.94)

Determine the Prandtl stress function and the shear stresses.
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SOLUTION: We select � to be

�(x1, x2) = A

(
x2

1

a2
+ x2

2

b2
− 1

)
, (7.7.95)

where A is a constant to be determined such that Eq. (7.7.92) is satisfied.
Since the boundary condition � = 0 on � is satisfied, we substitute � from
Eq. (7.7.95) into −∇2� = 2Gθ and obtain

−2A
(

1
a2

+ 1
b2

)
= 2µθ ⇒ A = −µθa2b2

a2 + b2
. (7.7.96)

The Prandtl stress function is then given by

�(x1, x2) = −µθa2b2

a2 + b2

(
x2

1

a2
+ x2

2

b2
− 1

)
. (7.7.97)

For solid cylinders, the twist per unit length θ can be related to the applied
torque T by

T = 2
∫

�

�(x1, x2) dx1 dx2. (7.7.98)

For the problem at hand we obtain

θ = (a2 + b2)T
µπa3b3

. (7.7.99)

The stresses σ31 and σ32 are calculated using Eq. (7.7.84) to be

σ31 = − 2a2

a2 + b2
µθx2, σ32 = − 2b2

a2 + b2
µθx1. (7.7.100)

7.8 Principle of Minimum Total Potential Energy

7.8.1 Introduction

In Chapter 5 of this book, laws of physics (or conservation principles) and vector
mechanics are used to derive the equations governing continua. These equations, as
applied to solid bodies, can also be formulated by means of variational principles.
Variational principles have played an important role in solid mechanics. The princi-
ple of minimum total potential energy, for example, can be regarded as a substitute
to the equations of equilibrium of elastic bodies. Similarly, Hamilton’s principle can
be used in lieu of the equations governing dynamical systems, and the variational
forms presented by Biot replace certain equations in linear continuum thermody-
namics.

The use of variational principles makes it possible to concentrate in a single
functional all of the intrinsic features of the problem at hand: the governing equa-
tions, the boundary conditions, initial conditions, constraint conditions, even jump
conditions. Variational principles can serve not only to derive the governing equa-
tions but they also suggest new theories. Finally, and perhaps most importantly,
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variational principle provide a natural means for seeking approximate solutions;
they are at the heart of the most powerful approximate methods in use in mechan-
ics (e.g., traditional Ritz, Galerkin, least-squares, weighted-residual, and the finite
element method). In many cases, they can also be used to establish upper and lower
bounds on approximate solutions.

This section is devoted to the study of the principle of minimum total potential
energy and its applications. To keep the scope of the chapter within reasonable
limits, only key elements of the principle are presented here. Additional information
can be found in the books by the author [see, for example, Reddy (2002)].

7.8.2 Total Potential Energy Principle

Recall from Sections 6.2 and 7.6 that for elastic bodies (in the absence of tem-
perature variations) there exists a strain energy density function U0 such that [see
Eq. (6.2.2)]

σi j = ∂U0

∂εi j
. (7.8.1)

The strain energy density U0 is a function of strains at a point and is assumed to
be positive definite. For linear elastic bodies (i.e., obeying the generalized Hooke’s
law), the strain energy density is given by [see Eq. (7.6.1)],

U0 = 1
2
σ : ε = 1

2
σi jεi j = 1

2
ci jklεi jεkl . (7.8.2)

Hence, the total strain energy of the body B occupying the volume � is given by [see
Eq. (7.6.2)]

U =
∫

�

U0(εi j ) dx = 1
2

∫
�

σ : ε dx = 1
2

∫
�

σi j εi j dx. (7.8.3)

The total work done by applied body force f and surface force t is given by [see Eq.
(7.6.3)]

V = −
[∫

�

f · u dx +
∮

�

t · u ds
]

, (7.8.4)

the minus sign in V indicates that the work is expended, whereas U is the available
energy stored in the body B. The total potential energy (functional) of the body B
is the sum of the strain energy stored in the body and the work done by external
forces

� = U + V = 1
2

∫
�

σ : ε dx −
[∫

�

f · u dx +
∮

�

t · u ds
]

= 1
2

∫
�

σi j εi j dx −
[∫

�

fi ui dx +
∮

�

ti ui ds
]

. (7.8.5)
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The principle of minimum total potential energy states that if a body is in equilib-
rium, of all admissible displacement fields u, the one u0 that makes the total potential
energy a minimum corresponds to the equilibrium solution:

�(u0) ≤ �(u). (7.8.6)

An admissible displacement is the one that satisfies the geometric constraints (or
boundary conditions) of the problem. The statement in Eq. (7.8.6) can be expressed
(based on the conditions of calculus of variations for the minimum of a functional)
as

δI = 0 (necessary condition), (7.8.7)

δ2 I > 0 (sufficient condition), (7.8.8)

where δ is the variational operator.
The variational operator δ is much like a total differential operator d, except

that it operates with respect to the dependent variable u rather than the independent
variable x. Indeed, the laws of variation of sums, products, ratios, and powers of
functions of a dependent variable u are completely analogous to the corresponding
laws of differentiation; that is, the variational calculus resembles the differential
calculus. For example, if F1 = F1(u) and F2 = F2(u), we have

(1) δ(F1 ± F2) = δF1 ± δF2.

(2) δ(F1 F2) = δF1 F2 + F1δF2.

(3) δ
( F1

F2

)
= δF1 F2 − F1 δF2

F2
2

.

(4) δ(F1)n = n(F1)n−1δF1.

(7.8.9)

If G = G(u, v, w) is a function of several dependent variables u, v, and w, and pos-
sibly their derivatives, the total variation is the sum of partial variations:

δG = δuG + δvG + δwG, (7.8.10)

where, for example, δu denotes the partial variation with respect to u. The varia-
tional operator can be interchanged with differential and integral operators:

(1) δ(∇u) = ∇(δu). (7.8.11)

(2) δ

(∫
�

u dx

)
=
∫

�

δu dx. (7.8.12)

All of the above relations are valid in multidimensions and for functions that depend
on more than one dependent variable.

The necessary condition (7.8.7) yields the governing equations of the prob-
lem, which are equivalent to those derived from the principle of linear momentum.
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However, Eq. (7.8.7) also gives the boundary conditions on the forces of the prob-
lem. The equations obtained in � from the necessary condition (7.8.7) are known
as the Euler equations and those obtained on � (or on a portion of �) are known as
the natural boundary conditions.

7.8.3 Derivation of Navier’s Equations

Here, we illustrate how the Navier equations of elasticity (7.3.3) and (7.3.4) can be
derived using the principle of minimum total potential energy. Consider a linear
elastic body B occupying volume � with boundary � and subjected to body force f
(measured per unit volume) and surface traction t̂ on portion �σ of the surface. We
assume that the displacement vector u is specified to be û on the remaining portion,
�u, of the boundary (� = �u ∪ �σ ). Therefore, δu = 0 on �u.

The total potential energy functional is given by (summation on repeated in-
dices is implied throughout this discussion)

�(u) =
∫

�

(
1
2
σi jεi j − fi ui

)
dx −

∫
�σ

t̂i ui ds. (7.8.13)

The first term under the volume integral represents the strain energy density of the
elastic body, the second term represents the work done by the body force f, and the
third term represents the work done by the specified traction t̂.

The strain-displacement relations and stress–strain relations for an isotropic
elastic body are given by Eqs. (7.2.1) and (7.2.3), respectively. Substituting Eqs.
(7.2.1) and (7.2.3) into Eq. (7.8.13), we obtain

�(u) =
∫

�

[
µ

4
(ui, j + u j,i ) (ui, j + u j,i ) + λ

2
ui,i uk,k − fi ui

]
dx −

∫
�σ

t̂i ui ds.

(7.8.14)

Setting the first variation of � to zero (i.e., using the principle of minimum total
potential energy), we obtain

0 =
∫

�

[µ

2
(δui, j + δu j,i ) (ui, j + u j,i ) + λδui,i uk,k − fiδui

]
dx −

∫
�σ

t̂iδui ds,

(7.8.15)

wherein the product rule of variation is used and similar terms are combined. Next,
we use the component form of the gradient theorem to relieve δui of any derivative
so that we can use the fundamental lemma of variational calculus to the coefficients
of δui to zero in � and on the portion of � where δui is arbitrary. Using the gradient
theorem, we can write∫

�

δui, j (ui, j + u j,i ) dx = −
∫

�

δui (ui, j + u j,i ), j dx +
∮

�

δui (ui, j + u j,i ) nj ds,
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where nj denotes the jth direction cosine of the unit normal vector to the surface n̂.
Using this result in Eq. (7.8.15), we arrive at

0 =
∫

�

[
−µ

2
(ui, j + u j,i ), j δui − µ

2
(ui, j + u j,i ),i δu j − λuk,kiδui − fiδui

]
dx

+
∮

�

[
µ

2
(ui, j + u j,i ) (njδui + niδu j ) + λuk,kniδui

]
ds −

∫
�σ

δui t̂i ds

=
∫

�

[−µ (ui, j + u j,i ), j − λuk,ki − fi ]δui dx

+
∮

�

[µ (ui, j + u j,i ) + λuk,kδi j ]njδui ds −
∫

�σ

δui t̂i ds. (7.8.16)

In arriving at the last step, change of dummy indices is made to combine terms.
Recognizing that the expression inside the square brackets of the closed surface

integral is nothing but σi j and σi j n j = ti by Cauchy’s formula, we can write∮
�

[µ (ui, j + u j,i ) + λuk,kδi j ]njδui ds =
∮

�

tiδui ds.

This boundary expression resulting from the “integration-by-parts” to relieve δu
of any derivatives is used to classify the variables of the problem. The coefficient
of δui is called the secondary variable, and the varied quantity itself (without the
variational symbol) is called the primary variable. Thus, ui is the primary variable
and ti is the corresponding secondary variable. They always appear in pairs, and
only one element of the pair may be specified at any boundary point. Specification
of a primary variable is called essential boundary condition and specification of a
secondary variable is termed natural boundary condition. They are also known as
the geometric and force boundary conditions, respectively. In applied mathematics
field, they are known as the Dirichlet boundary condition and Neumann boundary
condition, respectively.

Returning to the boundary integral, it can be expressed as the sum of integrals
on �u and �σ : ∮

�

tiδui ds =
∫

�u

tiδui ds +
∫

�σ

tiδui ds =
∫

�σ

tiδui ds.

The integral over �u is set to zero because of the fact that u is specified there, i.e.,
δu = 0. Hence, Eq. (7.8.16) becomes

0 =
∫

�

[−µ (ui, j + u j,i ), j − λuk,ki − fi ]δui dx +
∫

�σ

δui (ti − t̂i ) ds. (7.8.17)

Using the fundamental lemma of calculus of variations we set the coefficients of δui

in � and δui on �σ from Eq. (7.8.17) to zero separately and obtain

µ(ui, j j + u j,i j ) + λuk,ki + fi = 0 in �, (7.8.18)

ti − t̂i = 0 on �σ , (7.8.19)
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for i = 1, 2, 3. Equation (7.8.18) represents the Navier’s equations of elasticity
(7.3.3), and the natural boundary conditions (7.8.19) are the same as those listed
in Eq. (7.3.4).

To show that the total potential energy of a linear elasticity body is the indeed
the minimum at its equilibrium configuration, we consider the total potential energy
functional [more general than the one considered in Eq. (7.8.14); see Reddy (2002)]:

�(u) =
∫

�

(
1
2

Ci jk 
εk
 εi j − fi ui

)
dx −

∫
�σ

t̂i ui ds, (7.8.20)

where Ci jk
 are the components of the fourth-order elasticity tensor.
Let u be the true displacement field and ū be an arbitrary but admissible dis-

placement field. Then ū is of the form

ū = u + αv,

where α is a real number and v is a sufficiently differentiable function that satisfies
the homogeneous form of the essential boundary condition v = 0 on �u. Then �(ū)
is given by

�(u + αv) =
∫

�

[
1
2

Ci jk
 (εk
 + αgk
)(εi j + αgi j ) − fi (ui + αvi )
]

dx

−
∫

�σ

t̂i (ui + αvi )ds,

where

gi j = 1
2

(vi, j + v j,i ).

Collecting the terms, we obtain (because Ci jk
 = Ck
i j )

�(ū) = �(u) + α

[∫
�

(
− fivi + Ci jk
εk
gi j + α

2
Ci jk
gi j gk


)
dx −

∫
�σ

t̂ivi ds

]
.

(7.8.21)

Using the equilibrium equations (7.2.2) and the generalized Hooke’s law σi j =
Ci jk
εk
, we can write

−
∫

�

fivi dx =
∫

�

σi j, jvi dx =
∫

�

Ci jk
 εk
, j vi dx

= −
∫

�

Ci jk
εk
vi, j dx +
∫

�σ

Ci jk
 εk
 vi n j ds

= −
∫

�

Ci jk
 εk
 gi j dx +
∫

�σ

t̂ivi ds, (7.8.22)

where the condition vi = 0 on �u is used in arriving at the last step. Substituting
Eq. (7.8.22) into Eq. (7.8.21), we arrive at

�(ū) = �(u) + α2

2

∫
�

Ci jk
 gi j gk
 dx. (7.8.23)



P1: IBE

Contbk07 CUFX197-Reddy 978 0 521 87044 3 October 3, 2007 10:46

7.8 Principle of Minimum Total Potential Energy 249

Figure 7.8.1. A beam with applied loads.

In view of the nonnegative nature of the second term on the right-hand side of Eq.
(7.8.23), it follows that

�(ū) ≥ �(u), (7.8.24)

and �(ū) = �(u) only if the quadratic expression 1
2 Ci jk
gi j gk
 is zero. Because of

the positive definiteness of the strain energy density, the quadratic expression is
zero only if vi = 0, which in turn implies ūi = ui . Thus, Eq. (7.8.24) implies that, of
all admissible displacement fields the body can assume, the true one is that which
makes the total potential energy a minimum.

In the following, we consider an example to illustrate the use of the principle of
minimum total potential energy for the bending of beams [see Reddy (2002)].

EXAMPLE 7.8.1: Consider the bending of a beam according to the Euler–
Bernoulli beam theory (see Part 3 of Example 7.6.1). We wish to construct the
total potential energy functional and then determine the governing equation
and boundary conditions of the problem.

From Part 3 of Example 7.6.1 the total potential energy of a cantilevered
beam bent by distributed transverse force q(x) and point load Q0 (see Figure
7.8.1), under the assumption of small strains and displacements for the linear
elastic case (i.e., obeys Hooke’s law), is given by [see the right-hand side of
Eq. (7.6.8)]

�(w) = 1
2

∫ L

0

[
EI

(
d2w

dx2

)2
]

dx −
[∫ L

0
q(x)w(x) dx + Q0w(L)

]
, (7.8.25)

where L is the length, A is the cross-sectional area, I is the second moment of
area about the axis (y) of bending, and E is the Young’s modulus of the beam.
The first term represents the strain energy U, the second term represents the
work done by the applied distributed load q(x) in moving through the deflection
w(x), and the last expression represents the work done by the point load Q0 in
moving through the displacement w(L).

Applying the principle of minimum total potential energy, δ� = 0, we ob-
tain

0 = δ� =
∫ L

0
EI

d2w

dx2

d2δw

dx2
dx −

[∫ L

0
qδw dx + Q0δw(L)

]
. (7.8.26)
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Next, we carry out integration-by-parts on the first term to relieve δw of any
derivative so that we can use the fundamental lemma of variational calculus to
obtain the Euler equation. We obtain

0 =
∫ L

0

d2

dx2

(
EI

d2w

dx2

)
δw dx +

[
EI

d2w

dx2

dδw

dx
− d

dx

(
EI

d2w

dx2

)
δw

]L

0

−
[∫ L

0
qδw dx + Q0δw(L)

]
. (7.8.27)

The boundary terms resulting from integration-by-parts allows us to classify the
boundary conditions of the problem. The expressions that are coefficients of δw

and δ(dw/dx) are the secondary variables:

δw :
d

dx

(
EI

d2w

dx2

)
; δ

(
dw

dx

)
: EI

d2w

dx2
. (7.8.28)

It is clear that the secondary variables are nothing but the shear force V(x) =
dM/dx and bending moment M(x) [see Eq. (7.6.9)]

V(x) = − d
dx

(
EI

d2w

dx2

)
; M(x) = −EI

d2w

dx2
. (7.8.29)

The respective primary variables are the varied quantities appearing in the
boundary terms (just remove the variational operator from the varied quan-
tities):

δw ⇒ w ; δ

(
dw

dx

)
⇒ dw

dx
. (7.8.30)

Thus, the deflection w and slope (or rotation) dw/dx are the primary variables
of the problem. Only one element of each of the pairs (w, V) and (dw/dx, M)
may be specified at a point. Note that the definitions of the primary and sec-
ondary variables is unique and there should be no confusion in identifying them.

Returning to the expression in Eq. (7.8.27), first we collect the coefficients
of δw in (0, L) together and set them to zero, because δw is arbitrary in (0, L),

d2

dx2

(
EI

d2w

dx2

)
− q(x) = 0, 0 < x < L. (7.8.31)

Equation (7.8.31) is the Euler equation, which can also be derived from vector
mechanics by considering an element of the beam and summing the forces and
moments, and then relating the bending moment M to the deflection w, as given
in Eq. (7.6.9). The summation of forces in the z-direction and moments about
the y-axis give (the reader should verify these equations)

dV
dx

+ q(x) = 0,
dM
dx

− V(x) = 0. (7.8.32)

Combining Eqs. (7.6.9) and (7.8.32), we arrive at the equation in (7.8.31).
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Now consider all boundary terms in Eq. (7.8.27), we conclude that[
d

dx

(
EI

d2w

dx2

)]
x=0

δw(0) = 0,

[
− d

dx

(
EI

d2w

dx2

)
− Q0

]
x=L

δw(L) = 0,

(
EI

d2w

dx2

)
x=0

(
dδw

dx

)
x=0

= 0,

(
EI

d2w

dx2

)
x=L

(
dδw

dx

)
x=L

= 0.

(7.8.33)

If either of the quantities δw and dδw/dx are zero at x = 0 or x = L, because of
specified geometric boundary conditions there, the corresponding expressions
vanish because a specified quantity cannot be varied; the vanishing of the coef-
ficients of δw and dδw/dx at points where the geometric boundary conditions
are not specified provides the natural boundary conditions. For example, sup-
pose that the beam is clamped at x = 0 and free at x = L. Then, δw(0) = 0 and
dδw(0)/dx = 0, and the specified natural boundary conditions of a cantilevered
beam with an end load become[

− d
dx

(
EI

d2w

dx2

)
− Q0

]
x=L

= 0,

(
EI

d2w

dx2

)
x=L

= 0. (7.8.34)

7.8.4 Castigliano’s Theorem I

Suppose that the displacement field of a solid body can be expressed in terms of the
displacements of a finite number of points xi (i = 1, 2, . . . N) as

u(x) =
N∑

i=1

uiφi (x), (7.8.35)

where ui are unknown displacement parameters, called generalized displacements,
and φi are known functions of position, called interpolation functions with the
property that φi is unity at the ith point (i.e., x = xi ) and zero at all other points
(x j , j 	= i). Then it is possible to represent the strain energy U and potential en-
ergy V due to applied loads in terms of the generalized displacements ui . Then the
principle of minimum total potential energy can be written as

δ� = δU + δV = 0 ⇒ δU = −δV or
∂U
∂ui

· δui = − ∂V
∂ui

· δui , (7.8.36)

where sum on repeated indices is implied. Since

∂V
∂ui

= −Fi ,

it follows, since δui are arbitrary, that(
∂U
∂ui

− Fi

)
· δui = 0 or

∂U
∂ui

= Fi . (7.8.37)

Equation (7.8.37) is known as Castigliano’s Theorem I.



P1: IBE

Contbk07 CUFX197-Reddy 978 0 521 87044 3 October 3, 2007 10:46

252 Linearized Elasticity Problems

2

3

1
1
1u

1
2u

2
1u

2
2u3

1u

3
2u

(b)(a)
x1 , u1

x2, u2

Γ

Ω

Figure 7.8.2. (a) A plane elastic triangular domain. (b) Domain with vertex displacement
components.

When applied to a structure with point loads Fi (or moment Mi ) moving through
displacements ui (or rotation θi ), both having the same sense, Castigliano’s Theorem
I states that

∂U
∂ui

= Fi , or
∂U
∂θi

= Mi . (7.8.38)

It is clear from the derivation that Castigliano’s Theorem I is a special case of the
principle of minimum total potential energy.

Application of Castigliano’s Theorem I to structural members (trusses and
frames) can be found in many books [see Example 7.8.2 below and the book by
Reddy (2002) and references therein]. In the following paragraphs, application to a
plane elastic problem is illustrated.

Consider an arbitrary triangular, plane elastic domain � of thickness h and
made of orthotropic material, as shown in Figure 7.8.2(a). Suppose that the body
is free of body forces but subjected to tractions on its sides.

The strain energy and potential energy due to applied loads are

U = h
2

∫
�

σi jεi j dx, V = −
∮

�

t̂i ui ds, (7.8.39)

where � represents the collection of line segments enclosing the domain � and t̂i (s)
are the components of the boundary stresses. It is convenient to express the expres-
sions for U and V in matrix form. The strain–displacement relations and constitutive
equations can be written in matrix form as


ε11

ε22

2ε12


 =


 ∂/∂x1 0

0 ∂/∂x2

∂/∂x2 ∂/∂x1


{u1

u2

}
or {ε} = [D]{u}, (7.8.40)




σ11

σ22

σ12


 =


 c11 c12 0

c12 c22 0
0 0 c66






ε11

ε22

2ε12


 or {σ } = [C]{ε}. (7.8.41)

Now suppose that the displacements (u1, u2) in the body � can be expressed
(often, it is an approximation) as a linear combination of unknown values of the
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displacement vector at the vertices of the triangle and known functions of position
ψ j (x1, x2){

u1(x1, x2)
u2(x1, x2)

}
=
{∑3

j=1 u j
1 ψ j (x1, x2)∑3

j=1 u j
2 ψ j (x1, x2)

}
or {u} = [�]{�}, (7.8.42)

where u j
i denotes the value displacement component ui at the jth vertex of the

domain [see Figure 7.8.2(b)], and

[�] =
[

ψ1 0 ψ2 0 ψ3 0
0 ψ1 0 ψ2 0 ψ3

]
(2 × 6),

{�} = {
u1

1 u1
2 u2

1 u2
2 u3

1 u3
2

}T (6 × 1).

(7.8.43)

Substituting (7.8.42) for {u} into Eqs. (7.8.40) and (7.8.41), we obtain

{ε} = [D]{u} ⇒ {ε} = [B]{�}; {σ } = [C]{ε} ⇒ {σ } = [C][B]{�}, (7.8.44)

where

[B] = [D][�] =



∂ψ1
∂x1

0 ∂ψ2
∂x1

0 ∂ψ3
∂x1

0

0 ∂ψ1
∂x2

0 ∂ψ2
∂x2

0 ∂ψ3
∂x2

∂ψ1
∂x2

∂ψ1
∂x1

∂ψ2
∂x2

∂ψ2
∂x1

∂ψ3
∂x2

∂ψ3
∂x1


 (3 × 6). (7.8.45)

Substituting these expressions into Eq. (7.8.39), we obtain

U = h
2

∫
�

{�}T[B]T[C][B]{�} dx, V = −
∮

�

{�}T[�]{t̂} ds. (7.8.46)

Now applying Castigliano’s Theorem II, we obtain

∂U
∂{�} = − ∂V

∂{�} ⇒ [K]{�} = {F}, (7.8.47)

where

[K] = h
∫

�

[B]T[C][B] dx (6 × 6), {F} =
∮

�

[�]T{t̂} ds (6 × 1). (7.8.48)

Equation (7.8.47) provides the necessary algebraic equations to solve for the
unknown displacement components. However, the matrix [K], known as the stiff-
ness matrix, is singular to begin with. After imposing the necessary boundary condi-
tions to eliminate the rigid body translations and the rotation, the condensed matrix
becomes nonsingular. Equation (7.8.47) is not exact unless the representation in
Eq. (7.8.42) is exact, which is most often not the case. The procedure described in
Eqs. (7.8.42)–(7.8.48) is nothing but the finite element development for a typical do-
main �. This particular triangular element is known as the constant strain triangle,
because the functions ψi are linear in x1 and x2 for a triangle with three vertex points
where the displacement degrees of freedom are identified. Consequently, the strains
are constant within the domain �. For more details, the reader may consult a finite
element book [e.g., see Reddy (2006)].
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(a) (b)

1Q

Q2

Q3

Q4L

x

L

∆1

x
∆2 ∆4

∆3

Figure 7.8.3. (a) Beam with end forces and moments (or generalized forces). (b) Generalized
displacements.

EXAMPLE 7.8.2: To further illustrate the use of Castigliano’s Theorem I, consider
a straight beam of length L and constant bending stiffness EI (modulus E and
second moment of area I about bending axis y) and subjected to point loads and
moments, as shown in Figure 7.8.3(a). The equilibrium equation of the beam
according to the Euler–Bernoulli beam theory (see Example 7.8.1) is

EI
d4w

dx4
= 0. (7.8.49)

The exact solution to this fourth-order equation is

w0(x) = c1 + c2x + c3x2 + c4x3, (7.8.50)

where ci (i = 1, 2, 3, 4) are constants of integration, which we express in terms
of the deflections and rotations at the two ends of the beam. Let

�1 ≡ w(0) = c1,

�2 ≡
(

−dw

dx

)
x=0

= −c2,

�3 ≡ w(L) = c1 + c2 L+ c3L2 + c4L3,

�4 ≡
(

−dw

dx

)
x=L

= −c2 − 2c3 L− 3c4 L2.

(7.8.51)

Clearly, �1 and �3 are the values of the transverse deflection w at x = 0 and x =
L, respectively, and �2 and �4 are the rotations −dw/dx, measured positive
clockwise, at x = 0 and x = L, respectively [see Figure 7.8.3(b)].

The reason for picking two deflection values and two rotations, as opposed
four deflections at four points of the beam needs to be understood. From Ex-
ample 7.8.1, it is clear that both w and dw/dx are the primary (kinematic) vari-
ables, which must be continuous at every point of the beam. If we were to join
two such beams (possibly made of different bending stiffness EI), the kinematic
variables can be made continuous by equating the like degrees of freedom at the
common node.

The four equations in Eq. (7.8.51) can be solved for ci in terms of �i , called
generalized displacements, which will serve as the generalized coordinates for
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the application of Castigliano’s Theorem I. Then substituting the result into Eq.
(7.8.50) yields

w(x) = φ1(x)�1 + φ2(x)�2 + φ3(x)�3 + φ4(x)�4 =
4∑

i=1

φi (x)�i , (7.8.52)

where φi (x) are the Hermite cubic polynomials

φ1(x) = 1 − 3
( x

L

)2
+ 2

( x
L

)3
,

φ2(x) = −x
[

1 − 2
( x

L

)
+
( x

L

)2
]

,

φ3(x) =
( x

L

)2 (
3 − 2

x
L

)
,

φ4(x) = x
x
L

(
1 − x

L

)
.

(7.8.53)

Equation (7.8.52) is analogous to Eq. (7.8.35) used (but not derived; the deriva-
tion can be found in any book on finite element analysis) in the plane elasticity
problem discussed before.

The strain energy of the beam [see Eq. (7.8.25)] now can be expressed in
terms of the generalized coordinates �i (i = 1, 2, 3, 4) as

U = EI
2

∫ L

0

(
d2w

dx2

)2

dx = EI
2

∫ L

0

(
4∑

i=1

�i
d2φi

dx2

) 4∑
j=1

� j
d2φ j

dx2


 dx

= 1
2

4∑
i=1

4∑
j=1

Ki j�i� j , (7.8.54)

where

Ki j = EI
∫ L

0

d2φi

dx2

d2φ j

dx2
dx. (7.8.55)

The stiffness coefficients Ki j are symmetric (Ki j = Kji ). By carrying out the
indicated integration, Ki j can be evaluated [see Eq. (7.8.59)].

The work done by applied forces (q is taken as acting downward) is given
by

V = −
[
−
∫ L

0
q(x)w(x)dx +

4∑
i=1

Qi ui

]

= −
4∑

i=1

(qi ui + Qi ui ) , (7.8.56)

where

qi = −
∫ L

0
q(x)φi (x) dx, (7.8.57)

and Qi are the generalized forces associated with the generalized displacements
�i . Thus, Q1 and Q3 are the transverse forces at x = 0 and x = L, respectively,
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and Q2 and Q4 are the bending moments at x = 0 and x = L, respectively, as
shown in Figure 7.8.3(a). The transverse forces q1 and q3 and bending moments
q2 and q4 together are statically equivalent (i.e., satisfy the force and moment
equilibrium conditions of the beam) to the distributed load q(x) on the beam.
Using the Castigliano’s Theorem I, we obtain

∂U
∂�i

= − ∂V
∂�i

⇒
4∑

j=1

Ki j� j = Qi + qi (7.8.58)

or, in explicit matrix form,

2EI
L3




6 −3L −6 −3L
−3L 2L2 3L L2

−6 3L 6 3L
−3L L2 3L 2L2






�1

�2

�3

�4


 =




q1

q2

q3

q4


+




Q1

Q2

Q3

Q4


 . (7.8.59)

It can be verified that the stiffness matrix [K] is singular. For uniformly dis-
tributed load acting downward, q(x) = q0, the load vector {q} is given by




q1

q2

q3

q4


 = −q0 L

12




6
−L
6
L


 . (7.8.60)

As a specific example, consider a beam fixed at x = 0, supported at x = L
by a linear elastic spring with spring constant k, subjected to uniformly dis-
tributed load of intensity q0, and clockwise bending moment M0 at x = L (see
Figure 7.8.4). We wish to determine the compression in the spring, that is, de-
termine w(L).

The geometric boundary conditions at x = 0 require �1 = �2 = 0. These
conditions remove the rigid body modes of vertical translation and rotation
about the y-axis. The force boundary conditions at x = L require Q3 = −Fs =
−kw(L) = −k�3 and Q4 = M0. Thus, we have

2EI
L3




6 −3L −6 −3L
−3L 2L2 3L L2

−6 3L 6 3L
−3L L2 3L 2L2






0
0
u3

u4


 = −q0L

12




6
−L
6
L


+




Q1

Q2

−k�3

M0


 .

(7.8.61)

Thus, there are four equations in four unknowns, (Q1, Q2,�3,�4). Since the
last two equations have only the displacement unknowns �3 and �4, we can
write [ 12EI

L3 + k 6EI
L2

6EI
L2

4EI
L

]{
�3

�4

}
= −q0L

12

{
6
L

}
+
{

0
M0

}
. (7.8.62)
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Figure 7.8.4. A beam fixed at x = 0 and sup-
ported by a spring at x = L.

Solving for �3 = w(L) and �4 = −(dw/dx)(L) by Cramer’s rule, we obtain

�3 = − (
q0 L2 + 4M0

) 3L2

8 (3EI + kL3)
,

�4 = q0L3

48EI

(
24EI − kL3

)
(3EI + kL3)

+ M0L
4EI

(
12EI + kL3

)
(3EI + kL3)

.

(7.8.63)

The solution obtained is exact because the representation in Eq. (7.8.52) is
exact when EI is a constant.

7.9 Hamilton’s Principle

7.9.1 Introduction

The principle of total potential energy discussed in the previous section can be gen-
eralized to dynamics of solid bodies, and it is known as Hamilton’s principle. In
Hamilton’s principle, the system under consideration is assumed to be characterized
by two energy functions: a kinetic energy K and a potential energy �. For discrete
systems (i.e., systems with a finite number of degrees of freedom), these energies
can be described in terms of a finite number of generalized coordinates and their
derivatives with respect to time t. For continuous systems (i.e., systems that cannot
be described by a finite number of generalized coordinates), the energies can be
expressed in terms of the dependent variables of the problem that are functions of
position and time.

7.9.2 Hamilton’s Principle for a Rigid Body

To gain a simple understanding of Hamilton’s principle, consider a single particle or
a rigid body (which is a collection of particles, distance between which is unaltered
at all times) of mass m moving under the influence of a force F = F(r) [see Reddy
(2002)]. The path r(t) followed by the particle is related to the force F and mass m
by the principle of conservation of linear momentum (i.e., Newton’s second law of
motion)

F(r) = m
d2r
dt2

. (7.9.1)
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A path that differs from the actual path is expressed as r + δr, where δr is the varia-
tion of the path for any fixed time t. We suppose that the actual path r and the varied
path differ except at two distinct times t1 and t2, that is, δr(t1) = δr(t2) = 0. Taking
the scalar product of Eq. (7.9.1) with the variation δr, and integrating with respect
to time between t1 and t2, we obtain∫ t2

t1

[
m

d2r
dt2

− F(r)

]
· δr dt = 0. (7.9.2)

Integration-by-parts of the first term in Eq. (7.9.2) yields

−
∫ t2

t1

(
m

dr
dt

· dδr
dt

+ F(r) · δr

)
dt +

(
m

dr
dt

· δr

)∣∣∣∣∣
t2

t1

= 0. (7.9.3)

The last term in Eq. (7.9.3) vanishes because δr(t1) = δr(t2) = 0. Also, note that

m
dr
dt

· dδr
dt

= δ

[
m
2

dr
dt

· dr
dt

]
≡ δK, (7.9.4)

where K is the kinetic energy of the particle or rigid body

K = 1
2

m
dr
dt

· dr
dt

= 1
2

mv · v, (7.9.5)

and δK is called the virtual kinetic energy. The expression F(r) · δr is called the vir-
tual work done by external forces and denoted by

δWE = −F(r) · δr. (7.9.6)

The minus sign indicates that the work is done by external force F on the body in
moving through the displacement δr. Equation (7.9.3) now takes the form∫ t2

t1
(δK − δWE)dt = 0, (7.9.7)

which is known as the general form of Hamilton’s principle for a single particle or
rigid body. Note that a particle or a rigid body has no strain energy � because the
distance between the particles is unaltered.

Suppose that the force F is conservative (that is, the sum of the potential and ki-
netic energies is conserved) such that it can be replaced by the gradient of a potential

F = −grad V, (7.9.8)

where V = V(r) is the potential energy due to the loads on the body. Then Eq. (7.9.7)
can be expressed in the form

δ

∫ t2

t1
(K − V) dt = 0, (7.9.9)

because (r = xi êi )

grad V · δr = ∂V
∂xi

δxi = δV(x).
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The difference between the kinetic and potential energies is called the Lagrangian
function

L ≡ K − V. (7.9.10)

Equation (7.9.9) is known as Hamilton’s principle for the conservative motion
of a particle (or a rigid body). The principle can be stated as: the motion of a particle
acted on by conservative forces between two arbitrary instants of time t1 and t2 is
such that the line integral over the Lagrangian function is an extremum for the path
motion. Stated in other words, of all possible paths that the particle could travel
from its position at time t1 to its position at time t2, its actual path will be one for
which the integral

I ≡
∫ t2

t1
L dt (7.9.11)

is an extremum (i.e., a minimum, maximum, or an inflection).
If the path r can be expressed in terms of the generalized coordinates

qi (i = 1, 2, 3), the Lagrangian function can be written in terms of qi and their time
derivatives

L = L(q1, q2, q3, q̇1, q̇2, q̇3). (7.9.12)

Then the condition for the extremum of I in Eq. (7.9.11) results in the equation
(δqi = 0 at t1 and t2)

δI = δ

∫ t2

t1
L(q1, q2, q3, q̇1, q̇2, q̇3)dt = 0

=
∫ t2

t1

3∑
i=1

[
∂L
∂qi

− d
dt

(
∂L
∂q̇i

)]
δqi dt. (7.9.13)

When all qi are linearly independent (i.e., no constraints among qi ), the variations
δqi are independent for all t, except δqi = 0 at t1 and t2. Therefore, the coefficients
of δq1, δq2, and δq3 vanish separately:

∂L
∂qi

− d
dt

(
∂L
∂q̇i

)
= 0, i = 1, 2, 3. (7.9.14)

These equations are called the Lagrange equations of motion. Recall that in Section
7.8 (for a static case) these equations were also called the Euler equations. For the
dynamic case, these equations will be called the Euler–Lagrange equations.

When the forces are not conservative, we must deal with the general form of
Hamilton’s principle in Eq. (7.9.7). In this case, there exists no functional I that must
be an extremum. If the virtual work can be expressed in terms of the generalized
coordinates qi by

δWE = − (F1δq1 + F2δq2 + F3δq3) , (7.9.15)
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where Fi are the generalized forces, then we can write Eq. (7.9.13) as

∫ t2

t1

3∑
i=1

[
∂K
∂qi

− d
dt

(
∂K
∂q̇i

)
+ Fi

]
δqi dt = 0, (7.9.16)

and the Euler–Lagrange equations for the nonconservative forces are given by

δqi :
∂K
∂qi

− d
dt

(
∂K
∂q̇i

)
+ Fi = 0, i = 1, 2, 3. (7.9.17)

EXAMPLE 7.9.1: Consider the planar motion of a pendulum that consists of a
mass m attached at the end of a rigid massless rod of length L that pivots about
a fixed point O, as shown in Figure 7.9.1. Determine the equation of motion.

SOLUTION: The position of the mass can be expressed in terms of the general-
ized coordinates q1 = l and q2 = θ , measured from the vertical position. Since
l is a constant, we have q̇1 = 0 and θ is the only independent generalized coor-
dinate. The force F acting on the mass m is the component of the gravitational
force,

F = mg (cos θ êr − sin θ êθ ) ≡ Fr êr + Fθ êθ . (7.9.18)

The component along êr does no work because q1 = l is a constant. The second
component, Fθ , is derivable from the potential (∇V = −Fθ êθ )

V = − [−mgl(1 − cos θ)] = mgl(1 − cos θ), (7.9.19)

where V represents the potential energy of the mass m at any instant of time
with respect to the static equilibrium position θ = 0, and ∇ is the gradient oper-
ator in the polar coordinate system

∇ = êr
∂

∂r
+ êθ

r
∂

∂θ
. (7.9.20)

Thus, the kinetic energy and the potential energy due to external load are given
by

K = m
2

(
θ̇)2, V = mgl(1 − cos θ),

δK = ml2θ̇ δθ̇ , δV = mgl sin θδθ = −Fθ (lδθ).
(7.9.21)

Therefore, the Lagrangian function L is a function of θ and θ̇ . The Euler–
Lagrange equation is given by

δq2 = δθ :
∂L
∂θ

− d
dt

(
∂L

∂θ̇

)
= 0,

which yields

−mgl sin θ − d
dt

(ml2θ̇) = 0 or θ̈ + g
l

sin θ = 0 (Fθ = ml θ̈). (7.9.22)
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o

Figure 7.9.1. Planar motion of a pendulum.

Equation (7.9.22) represents a second-order nonlinear differential equation
governing θ . For small angular motions, Eq. (7.9.22) can be linearized by re-
placing sin θ ≈ θ :

θ̈ + g


θ = 0. (7.9.23)

Now suppose that the mass experiences a resistance force F∗ proportional to
its speed (e.g., the mass m is suspended in a medium with viscosity µ). According
to Stoke’s law,

F∗ = −6πµal θ̇ êθ , (7.9.24)

where µ is the viscosity of the surrounding medium, a is the radius of the bob,
and êθ is the unit vector tangential to the circular path. The resistance of the
massless rod supporting the bob is neglected. The force F∗ is not derivable
from a potential function (i.e., nonconservative). Thus, we have one part of the
force (i.e., gravitational force) conservative and the other (i.e., viscous force)
nonconservative. Hence, we use Hamilton’s principle expressed by Eq. (7.9.14)
or Eq. (7.9.17) with

δWE = δV − F∗ · (lδθ êθ ) = (
mgl sin θ + 6πµal2θ̇

)
δθ ≡ −Fθ lδθ.

Then the equation of motion is given by [K = K(θ̇)]

− d
dt

(
∂K

∂θ̇

)
+ Fθ l = 0 or θ̈ + g

l
sin θ + 6πaµ

m
θ̇ = 0. (7.9.25)

The coefficient c = 6πaµ/m is called the damping coefficient.

7.9.3 Hamilton’s Principle for a Continuum

Hamilton’s principle for a continuous body B occupying configuration κ with vol-
ume � with boundary � can be derived following essentially the same ideas as dis-
cussed for a particle or a rigid body. In contrast to a rigid body, a continuum is char-
acterized by the kinetic energy K as well the strain (or internal) energy U. Newton’s
second law of motion for a continuous body can be written in general terms as

F − ma = 0, (7.9.26)
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where m is the mass, a the acceleration vector, and F is the resultant of all forces
acting on the body B. The actual path u = u(x, t) followed by a material particle
in position x in the body is varied, consistent with kinematic (essential) boundary
conditions on �, to u + δu, where δu is the admissible variation (or virtual displace-
ment) of the path. We assume that the varied path differs from the actual path ex-
cept at initial and final times, t1 and t2, respectively. Thus, an admissible variation
δu satisfies the conditions,

δu = 0 on �u for all t,

δu(x, t1) = δu(x, t2) = 0 for all x,
(7.9.27)

where �u denotes the portion of the boundary � of the body where the displacement
vector u is specified.

The work done on the body B at time t by the resultant force F, which consists
of body force f and specified surface traction t̂ in moving through respective virtual
displacements δu is given by∫

�

f · δu dx +
∫

�σ

t̂ · δu ds −
∫

�

σ : δε dx, (7.9.28)

where σ and ε are the stress and strain tensors, and �σ is the portion of the boundary
� on which tractions are specified (� = �u ∪ �σ ). The last term in Eq. (7.9.28) is
known as the virtual work stored in the body B due to deformation. The strains δε

are assumed to be compatible in the sense that the strain-displacement relations
(7.2.1) are satisfied. The work done by the inertia force ma in moving through the
virtual displacement δu is given by∫

�

ρ
∂2u
∂t2

· δu dx, (7.9.29)

where ρ is the mass density of the medium. We have, analogous to Eq. (7.9.2) for a
rigid body, the result

∫ t2

t1



∫

�

ρ
∂2u
∂t2

· δu dx −
[∫

�

(f · δu − σ : δε) dx +
∫

�σ

t̂ · δu ds
]
dt = 0

or

−
∫ t2

t1

[∫
�

ρ
∂u
∂t

· ∂δu
∂t

dx +
∫

�

(f · δu − σ : δε) dx +
∫

�σ

t̂ · δu ds
]

dt = 0. (7.9.30)

In arriving at the expression in Eq. (7.9.30), integration-by-parts is used on the first
term; the integrated terms vanish because of the initial and final conditions in Eq.
(7.9.27). Equation (7.9.30) is known as the general form of Hamilton’s principle for
a continuous medium – conservative or not and elastic or not.

For an ideal elastic body, we recall from the previous sections that the forces f
and t are conservative,

δV = −
(∫

�

f · δu dx +
∫

�σ

t̂ · δu ds
)

, (7.9.31)
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and that there exists a strain energy density function U0 = U0(ε) such that

σ = ∂U0

∂ε
. (7.9.32)

Substituting Eqs. (7.9.31) and (7.9.32) into Eq. (7.9.30), we obtain

δ

∫ t2

t1
[K − (V + U)]dt = 0, (7.9.33)

where K and U are the kinetic and strain energies:

K =
∫

�

ρ

2
∂u
∂t

· ∂u
∂t

dx, U =
∫

�

U0 dx. (7.9.34)

Equation (7.9.33) represents Hamilton’s principle for an elastic body. Recall
that the sum of the strain energy and potential energy of external forces, U + V, is
called the total potential energy, �, of the body. For bodies involving no motion (i.e.,
forces are applied sufficiently slowly such that the motion is independent of time
and the inertia forces are negligible), Hamilton’s principle (7.9.33) reduces to the
principle of virtual displacements. Equation (7.9.33) may be viewed as the dynamics
version of the principle of virtual displacements.

The Euler–Lagrange equations associated with the Lagrangian, L = K − �,

can be obtained from Eq. (7.9.33):

0 = δ

∫ t2

t1
L(u,∇u, u̇) dt

=
∫ t2

t1


∫

�

(
ρ

∂2u
∂t2

− div σ − f

)
· δu dx +

∫
�σ

(t − t̂) · δu ds


dt, (7.9.35)

where integration-by-parts, gradient theorems, and Eqs. (7.9.27) were used in arriv-
ing at Eq. (7.9.35) from Eq. (7.9.33). Because δu is arbitrary for t , t1 < t < t2, and
for x in � and also on �σ , it follows that

ρ
∂2u
∂t2

− div σ − f = 0 in �,

t − t̂ = 0 on �σ .

(7.9.36)

Equations (7.9.36) are the Euler–Lagrange equations for an elastic body.

EXAMPLE 7.9.2: The displacement field for pure bending of the Euler–Bernoulli
beam theory is

u1 = −z
∂w

∂x
, u2 = 0, u3 = w(x, t). (7.9.37)
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The Lagrange function associated with the dynamics of the Euler–Bernoulli
beam is given by L = K − (U + V), where

K =
∫ L

0

∫
A

[
ρ

2

(
−z

∂2w

∂x∂t

)2

+ ρ

2

(
∂w

∂t

)2]
dAdx

=
∫ L

0


ρ I

2

(
∂2w

∂x∂t

)2

+ ρ A
2

(
∂w

∂t

)2

dx,

U =
∫ L

0

∫
A

E
2

(
−z

∂2w

∂x2

)2

dAdx (7.9.38)

=
∫ L

0

EI
2

(
∂2w

∂x2

)2

dx,

V = −
∫ L

0
q(x, t)w dx.

Here w denotes the transverse displacement, which is a function of x and t , and
q is the transverse distributed load. In arriving at the expressions for K and U,
we have used the fact that the x-axis coincides with the geometric centroidal
axis,

∫
A z dA = 0.

The Hamilton principle gives

0 =
∫ T

0
(δK − δU − δV) dt

=
∫ T

0

∫ L

0


ρ I

∂ẇ

∂x
∂δẇ

∂x
+ ρ Aẇδẇ − EI

∂2w

∂x2

∂2δw

∂x2
+ qδw


dxdt. (7.9.39)

The Euler–Lagrange equation obtained from the above statement is the equa-
tion of motion governing the Euler–Bernoulli beam theory

∂2

∂x∂t

(
ρ I

∂2w

∂x∂t

)
− ∂

∂t

(
ρ A

∂w

∂t

)
− ∂2

∂x2

(
EI

∂2w

∂x2

)
+ q = 0. (7.9.40)

The first term is known as the contribution due to rotary inertia.
Now suppose that the beam experiences two types of viscous (velocity-

dependent) damping: (1) viscous resistance to transverse displacement of the
beam and (2) a viscous resistance to straining of the beam material. If the re-
sistance to transverse velocity is denoted by c(x), the corresponding damping
force is given by qD(x, t) = c(x)ẇ0. If the resistance to strain velocity is cs , the
damping stress is σ D

xx = cs ε̇xx. We wish to derive the equations of motion of the
beam with both types of damping.
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We must add the following terms due to damping to the expression in
Eq. (7.9.39):

−
∫ T

0

[∫
�

σDδε dx +
∫ L

0
qDδw dx

]
dt

= −
∫ T

0

[∫ L

0

∫
A

cs

(
−z

∂3w

∂x2∂t

)(
−z

∂2δw

∂x2

)
dAdx +

∫ L

0
qDδw dx

]
dt

= −
∫ T

0

∫ L

0

(
Ics

∂3w

∂x2∂t
∂2δw

∂x2
+ c

∂w

∂t
δw

)
dxdt. (7.9.41)

The Euler–Lagrange equations of the statement

0 =
∫ T

0

∫ L

0


ρ I

∂ẇ

∂x
∂δẇ

∂x
+ ρ Aẇδẇ − EI

∂2w

∂x2

∂2δw

∂x2
+ qδw


dxdt

−
∫ T

0

∫ L

0

(
Ics

∂3w

∂x2∂t
∂2δw

∂x2
+ c

∂w

∂t
δw

)
dxdt (7.9.42)

are

∂2

∂x∂t

(
ρ I

∂2w

∂x∂t

)
− ∂

∂t

(
ρ A

∂w

∂t

)
− ∂2

∂x2

(
EI

∂2w

∂x2

)

− ∂2

∂x2

(
Ics

∂3w

∂x2∂t

)
− c

∂w

∂t
+ q = 0. (7.9.43)

7.10 Summary

This is a very comprehensive chapter on linearized elasticity. Beginning with a sum-
mary of the linearized elasticity equations that include the Navier equations and
the Beltrami–Michell equations of elasticity, types of boundary value problems and
principle of superposition were discussed. The Clapeyron theorem and Betti and
Maxwell reciprocity theorems and their applications were also presented. Analyti-
cal solutions of a number of examples of standard boundary-value problems of elas-
ticity using the Airy stress function are developed. Then, the principle of minimum
total potential energy and its derivative the Castigliano Theorem I are discussed.
Last, Hamilton’s principle for problems of dynamics is presented.

PROBLEMS

7.1 An isotropic body (E = 210 GPa and ν = 0.3) with two-dimensional state of
stress experiences the following displacement field (in mm)

u1 = 3x2
1 − x3

1 x2 + 2x3
2 , u2 = x3

1 + 2x1x2,

where xi are in meters. Determine the stresses and rotation of the body at point
(x1, x2) = (0.05, 0.02) m. Is the displacement field compatible (pulling your legs)?

7.2 A two-dimensional state of stress exists in a body with the following components
of stress:

σ11 = c1x3
2 + c2x2

1 x2 − c3x1, σ22 = c4x3
2 − c5, σ12 = c6x1x2

2 + c7x2
1 x2 − c8,
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where ci are constants. Assuming that the body forces are zero, determine the con-
ditions on the constants so that the stress field is in equilibrium and satisfies the
compatibility equations.

7.3 For the plane elasticity problems shown in Figs. P7.3(a)–(d), write the boundary
conditions and classify them into Type I, Type II, or Type III.

θ

x1

x2

τ

τ
τ

a

b

p

Spherical 
core

Spherical 
shell

,λ1µ1

, λ2µ2

Rigid core

Hollow  
cylindrical  
shaft λµ,

τ0
τ0

τ0 τ0

a

b

σ0

x1

x2

(a) (b)

(c) (d)

a

b

Figure P7.3.

7.4 Determine the deflection at the midspan of a cantilever beam subjected to uni-
formly distributed load q0 throughout the span and a point load F0 at the free end.
Use Maxwell’s theorem and superposition.

7.5 Consider a simply supported beam of length L subjected to a concentrated load
FB at the midspan and a bending moment MA at the left end, as shown in Fig-
ure P7.5. Verify that Betti’s theorem holds.

A
L  

w0z ,

x 

FB

MA
L/2L/2

B Figure P7.5.

7.6 A load P = 4,000 lb acting at a point A of a beam produces 0.25 in at point B
and 0.75 in at point C of the beam. Find the deflection of point A produced by loads
4,500 lb and 2,000 lb acting at points B and C, respectively.
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7.7 Use the reciprocity theorem to determine the deflection at the center of a simply
supported circular plate under asymmetric loading (see Figure 7.6.8)

q(r, θ) = q0 + q1
r
a

cos θ.

The deflection due to a point load Q0 at the center of a simply supported circular
plate is

w(r) = Q0a2

16π D

[(
3 + ν

1 + ν

)(
1 − r2

a2

)
+ 2

( r
a

)2
log

( r
a

)]
,

where D = Eh3/[12(1 − ν2)] and h is the plate thickness.

7.8 Use the reciprocity theorem to determine the center deflection of a sim-
ply supported circular plate under hydrostatic loading q(r) = q0(1 − r/a). See
Problem 7.7.

7.9 Use the reciprocity theorem to determine the center deflection of a clamped
circular plate under hydrostatic loading q(r) = q0(1 − r/a). The deflection due to a
point load Q0 at the center of a clamped circular plate is given in Eq. (7.6.21).

7.10 Determine the center deflection of a clamped circular plate subjected to a point
load Q0 at a distance b from the center (and for some θ) using the reciprocity theo-
rem.

7.11 The lateral surface of a homogeneous, isotropic, solid circular cylinder of
radius a, length L, and mass density ρ is bonded to a rigid surface. Assuming
that the ends of the cylinder at z = 0 and z = L are traction-free (see Figure
P7.11), determine the displacement and stress fields in the cylinder due to its own
weight.

ˆ zgeρ= −f L

r

z

r

θ

x2y =

x1x =
Figure P7.11.

7.12 A solid circular cylindrical body of radius a and height h is placed between
two rigid plates, as shown in Figure P7.12. The plate at B is held stationary and the
plate at A is subjected to a downward displacement of δ. Using a suitable coordinate
system, write the boundary conditions for the following two cases:

(a) When the cylindrical object is bonded to the plates at A and B.

(b) When the plates at A and B are frictionless.



P1: IBE

Contbk07 CUFX197-Reddy 978 0 521 87044 3 October 3, 2007 10:46

268 Linearized Elasticity Problems

r

z

θσrrzσ

rrσ

zzσ

zrσ
θσ z

B

A

h
a

Rigid plate

Cylinder

Lateral  surface

Rigid plate

Figure P7.12.

7.13 An external hydrostatic pressure of magnitude p is applied to the surface of a
spherical body of radius b with a concentric rigid spherical inclusion of radius a, as
shown in Figure P7.13. Determine the displacement and stress fields in the spherical
body.

a

b

p

Rigid inclusion

Elastic sphere

Figure P7.13.

7.14 Reconsider the concentric spheres of Problem 7.13. As opposed to the rigid
core in Problem 7.13, suppose that the core is elastic and the outer shell is subjected
to external pressure p (both are linearly elastic). Assuming Lamé constants of µ1

and λ1 for the core and µ2 and λ2 for the outer shell (see Figure P7.14), and that the
interface is perfectly bonded at r = a, determine the displacements of the core as
well as for the shell.

Figure P7.14. Figure P7.15.

7.15 Consider a long hollow circular shaft with a rigid internal core (a cross section
of the shaft is shown in Figure P7.15). Assuming that the inner surface of the shaft
at r = a is perfectly bonded to the rigid core and the outer boundary at r = b is
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subjected to a uniform shearing traction of magnitude τ0, find the displacement and
stress fields in the problem.

7.16 Interpret the stress field obtained with the Airy stress function in Eq. (7.7.43)
when all constants except c3 are zero. Use Figure 7.7.4 to sketch the stress field.

7.17 Interpret the following stress field obtained in Case 3 of Example 7.7.1 using
Figure 7.7.4:

σxx = 6c10xy, σyy = 0, σxy = −3c10 y2.

Assume that c10 is a positive constant.

7.18 Compute the stress field associated with the Airy stress function

�(x, y) = Ax5 + Bx4 y + Cx3 y2 + Dx2 y3 + Exy4 + Fy5.

Interpret the stress field for the case in which all constants except D are zero. Use
Figure 7.7.4 to sketch the stress field.

7.19 Investigate what problem is solved by the Airy stress function

� = 3A
4b

(
xy − xy3

3b2

)
+ B

4b
y2.

7.20 Show that the Airy stress function

�(x, y) = q0

8b3

[
x2 (y3 − 3b2 y + 2b3)− 1

5
y3 (y2 − 2b2)]

satisfies the compatibility condition. Determine the stress field and find what prob-
lem it corresponds to when applied to the region −b ≤ y ≤ b and x = 0, a (see
Figure P7.20).

y

x

b

b

L

Figure P7.20.

7.21 Determine the Airy stress function for the stress field of the domain shown in
Figure P7.21 and evaluate the stress field.

t
Figure P7.21.
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7.22 The thin cantilever beam shown in Figure P7.22 is subjected to a uniform
shearing traction of magnitude τ0 along its upper surface. Determine whether the
Airy stress function

�(x, y) = τ0

4

(
xy − xy2

b
− xy3

b2
+ ay2

b
+ ay3

b2

)

satisfies the compatibility condition and stress boundary conditions of the problem.

x
b

b
b

a

t

y

2

0τ

Figure P7.22.

7.23 The curved beam shown in Figure P7.23 is curved along a circular arc. The
beam is fixed at the upper end, and it is subjected at the lower end to a distribution
of tractions statically equivalent to a force per unit thickness P = −Pê1. Assume
that the beam is in a state of plane strain/stress. Show that an Airy stress function of
the form

�(r) =
(

Ar3 + B
r

+ C r log r
)

sin θ

provides an approximate solution to this problem and solve for the values of the
constants A, B, and C.

P

r

θ

a b

1xx =

2xy =

Figure P7.23.

7.24 Determine the stress field in a semi-infinite plate due to a normal load, f0

force/unit length, acting on its edge, as shown in Figure P7.24. Use the following
Airy stress function (that satisfies the compatibility condition ∇4� = 0)

�(r, θ) = Aθ + Br2θ + Crθ sin θ + Drθ cos θ,

where A, B, C, and D are constants [see Eq. (7.7.39) for the definition of stress
components in terms of the Airy stress function �]. Neglect the body forces
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(i.e., Vf = 0). Hint: Stresses must be single-valued. Determine the constants using
the boundary conditions of the problem.

y

z

x

r

θ

b

f0

Figure P7.24.

7.25 Consider a cylindrical member with the equilateral triangular cross section
shown in Figure P7.25. The equations of various sides of the triangle are

side 1: x1 −
√

3x2 + 2a = 0,

side 2: x1 +
√

3x2 + 2a = 0,

side 3: x1 − a = 0.

x1

3a

x2

x1 = −2a

x1 = a

side  1

side  2

side  3

T

Figure P7.25.

Show that the exact solution for the problem can be obtained and that the twist per
unit length θ and stresses σ31 and σ32 are given by

θ = 5
√

3T
27µa4

, σ31 = µθ

a
(x1 − a)x2, σ32 = µθ

2a
(x2

1 + 2ax1 − x2
2 ).

7.26 Consider torsion of a cylindrical member with the rectangular cross section
shown in Figure P7.26. Determine if a function of the form

� = A

(
x2

1

a2
− 1

)(
x2

2

b2
− 1

)
,

where A is a constant, can be used as a Prandtl stress function.
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aa

b

b

x1

2x 

T

Figure P7.26.

7.27 Use the principle of minimum total potential energy to derive the Euler equa-
tions associated with the Timoshenko beam theory, which is based on the displace-
ment field

u1(x, z) = zφ(x), u2(x, z) = w(x). (1)

Use the cantilevered beam in Figure 7.8.1. Hints: Follow Part 3 of Example 7.6.1
and Example 7.8.1 to develop the total potential energy functional in terms of the
dependent variables w and φ. Also the nonzero strains are

εxx = z
dφ

dx
, 2εxz = φ + dw

dx
. (2)

Assume the following one-dimensional constitutive equations:

σxx = Eεxx, σxz = 2Gεxz. (3)

7.28 The total potential energy functional for a membrane stretched over domain
� ∈ 
2 is given by

�(u) =
∫

�

{
T
2

[(
∂u
∂x1

)2

+
(

∂u
∂x2

)2
]

− f u

}
dx,

where u = u(x1, x2) denotes the transverse deflection of the membrane, T is the
tension in the membrane, and f = f (x1, x2) is the transversely distributed load on
the membrane. Determine the governing differential equation and the permissible
boundary conditions for the problem (i.e., identify the essential and natural bound-
ary conditions of the problem) using the principle of minimum total potential en-
ergy.

7.29 Use the results of Example 7.8.2 to obtain the deflection at the center of a
clamped-clamped beam (EI = constant) under uniform load of intensity q0 and sup-
ported at the center by a linear elastic spring (k).

7.30 Use the results of Example 7.8.2 to obtain the deflection w(L) and slopes
(−dw/dx)(L) and (−dw/dx)(2L) under a point load Q0 for the beam shown in Fig-
ure P7.30. It is sufficient to set up the three equations for the three unknowns.
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Figure P7.30. Figure P7.31.

7.31 Use the results of Example 7.8.2 to obtain the deflection w(2L) and slopes at
x = L and x = 2L for the beam shown in Figure P7.31. It is sufficient to set up the
three equations for the three unknowns.

7.32 Consider a pendulum of mass m1 with a flexible suspension, as shown in Figure
P7.32. The hinge of the pendulum is in a block of mass m2, which can move up and
down between the frictionless guides. The block is connected by a linear spring (of
spring constant k) to an immovable support. The coordinate x is measured from
the position of the block in which the system remains stationary. Derive the Euler–
Lagrange equations of motion for the system.

l

Unstretchedlength  
of the spring

x

θ

m2

m1

k

Figure P7.32.

7.33 A chain of total length L and mass m per unit length slides down from the
edge of smooth table. Assuming that the chain is rigid, find the equation of motion
governing the chain (see Example 5.2.2).

7.34 Consider a cantilever beam supporting a lumped mass M at its end (J is the
mass moment of inertia), as shown in Figure P7.34. Derive the equations of motion
and natural boundary conditions for the problem using the Euler–Bernoulli beam
theory.

x

L

M , J

Figure P7.34.

7.35 Derive the equations of motion of the system shown in Figure P7.35. Assume
that the mass moment of inertia of the link about its mass center is J = m�2, where
� is the radius of gyration.
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°

°

l
°

mg

θ

k

x0 x0 = unstretched 
       length

x

x

y

F

l

°

°

Figure P7.35.

7.36 Derive the equations of motion of the Timoshenko beam theory, starting with
the displacement field

u1(x, z, t) = u(x, t) + zφ(x, t), u2 = 0, u3 = w(x, t).

Assume that the beam is subjected to distributed axial load f (x, t) and transverse
load q(x, t) and that the x-axis coincides with the geometric centroidal axis.
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8 Fluid Mechanics and Heat Transfer Problems

The only solid piece of scientific truth about which I feel totally confident is that
we are profoundly ignorant about nature. It is this sudden confrontation with the
depth and scope of ignorance that represents the most significant contribution of
twentieth-century science to the human intellect.

Lewis Thomas

8.1 Governing Equations

8.1.1 Preliminary Comments

Matter exists only in two states: solid and fluid. The difference between the two is
that a solid can resist shear force in static deformation, whereas a fluid cannot. Shear
force acting on a fluid causes it to deform continuously. Thus, a fluid at rest can only
take hydrostatic pressure and no shear stress. Therefore, the stress vector at a point
in a fluid at rest can be expressed as

t(n̂) = n̂ · σ = −pn̂ or σ = −pI, (8.1.1)

where n̂ is unit vector normal to the surface and p is called the hydrostatic pressure.
It is clear from Eq. (8.1.1) that hydrostatic pressure is equal to the negative of the
mean stress

p = −1
3
σi i = −σ̃. (8.1.2)

In general, p is related to temperature θ and density ρ by equation of the form

F(p, ρ, θ) = 0. (8.1.3)

This equation is called the equation of state. Recall from Section 6.3.3, that the
hydrostatic pressure p is not equal, in general, to the thermodynamic pressure P
appearing in the constitutive equation of a fluid in motion [see Eqs. (6.3.15) and
(6.3.16)]

σ = F(D) − PI = τ − PI, (8.1.4)

275
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where τ is the viscous stress tensor, which is a function of the motion, namely, the
rate of deformation tensor D; τ vanishes when fluid is at rest.

Fluid mechanics is a branch of mechanics that deals with the effects of fluids at
rest (statics) or in motion (dynamics) on surfaces they come in contact. Fluids do
not have the so-called natural state to which they return upon removal of forces
causing deformation. Therefore, we use spatial (or Eulerian) description to write
the governing equations. Pertinent equations are summarized next for an isotropic,
Newtonian fluid. Heat transfer is a branch of engineering that deals with the transfer
of thermal energy within a medium or from one medium to another due to a temper-
ature difference. In this chapter, we study some typical problems of fluid mechanics
and heat transfer.

8.1.2 Summary of Equations

The basic equations of viscous fluids are listed here. The number of equations (Neq)
and number of new dependent variables (Nvar) for three-dimensional problems are
listed in parenthesis. (in the equations that follow, Q denotes internal heat genera-
tion per unit mass and T denotes temperature).

Continuity equation (Neq = 1, Nvar = 4)

∂ρ

∂t
+ div(ρv) = 0,

Dρ

Dt
+ ρ

∂vi

∂xi
= 0. (8.1.5)

Equations of motion (Neq = 3, Nvar = 6)

∇ · σ + ρf = ρ

(
∂v
∂t

+ v · ∇v
)

,
∂σ j i

∂xj
+ ρ fi = ρ

Dvi

Dt
. (8.1.6)

Energy equation (Neq = 1, Nvar = 4)

ρ
De
Dt

= σ: D − ∇ · q + ρQ, ρ
De
Dt

= σi j Di j − ∂qi

∂xi
+ ρQ. (8.1.7)

Constitutive equation (Neq = 6, Nvar = 7)

σ = 2µD + λ(tr D)I − PI, σi j = 2µDi j + λDkkδi j − Pδi j . (8.1.8)

Heat conduction equation (Neq = 3, Nvar = 1)

q = −k∇T, qi = −k
∂T
∂xi

. (8.1.9)

Kinetic equation of state (Neq = 1, Nvar = 0)

P = P(ρ, T). (8.1.10)

Caloric equation of state (Neq = 1, Nvar = 0)

e = e(ρ, T). (8.1.11)
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Rate of deformation-velocity equations (Neq = 6, Nvar = 0)

D = 1
2

[∇v + (∇v)T], Di j = 1
2

(
∂vi

∂xj
+ ∂v j

∂xi

)
. (8.1.12)

Material time derivative
D
Dt

≡ ∂

∂t
+ v · ∇,

D
Dt

≡ ∂

∂t
+ vi

∂

∂xi
. (8.1.13)

Thus, there are 22 equations and 22 variables.

8.1.3 Viscous Incompressible Fluids

Here, we summarize the governing equations of fluid flows for the isothermal case.
Like in elasticity, the number of equations of fluid flow can be combined to obtain
a smaller number of equations in as many unknowns. For instance, Eqs. (8.1.5),
(8.1.6), (8.1.8), and (8.1.12) can be combined to yield the following equations:

∂ρ

∂t
+ ∇ · (ρv) = 0,

∂ρ

∂t
+ ∂(ρvi )

∂xi
= 0. (8.1.14)

µ∇2v + (µ + λ)∇ (∇ · v) − ∇P + ρf = ρ

(
∂v
∂t

+ v · ∇v
)

,

µvi, j j + (µ + λ)v j, j i − ∂ P
∂xi

+ ρ fi = ρ

(
∂vi

∂t
+ v j

∂vi

∂xj

)
.

(8.1.15)

Equations (8.1.14) and (8.1.15) are known as the Navier–Stokes equations.
Equations (8.1.14) and (8.1.15) together contain four equations in five un-

knowns (v1, v2, v3, ρ, P). For compressible fluids, Eqs. (8.1.14) and (8.1.15) are ap-
pended with Eqs. (8.1.7) and (8.1.9)–(8.1.11). For the isothermal case, Eqs. (8.1.14)
and (8.1.15) are appended with Eq. (8.1.10), where P = P(I).

For incompressible fluids, ρ is constant and is a known variable, and thus we
have four equations in four unknowns,

∇ · v = 0,
∂vi

∂xi
= 0. (8.1.16)

µ∇2v − ∇P + ρf = ρ

(
∂v
∂t

+ v · ∇v
)

,

µvi, j j − ∂ P
∂xi

+ ρ fi = ρ

(
∂vi

∂t
+ v j

∂vi

∂xj

)
.

(8.1.17)

The expanded forms of these four equations in rectangular Cartesian system and
orthogonal curvilinear (i.e., cylindrical and spherical) coordinate systems are given
below.

Cartesian coordinate system: (x, y, z); v1 = vx, v2 = vy, and v3 = vz.

∂vx

∂x
+ ∂vy

∂y
+ ∂vz

∂z
= 0, (8.1.18)
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µ

(
∂2vx

∂x2
+ ∂2vx

∂y2
+ ∂2vx

∂z2

)
− ∂ P

∂x
+ ρ fx = ρ

(
∂vx

∂t
+ vx

∂vx

∂x
+ vy

∂vx

∂y
+ vz

∂vx

∂z

)
,

(8.1.19)

µ

(
∂2vy

∂x2
+ ∂2vy

∂y2
+ ∂2vy

∂z2

)
− ∂ P

∂y
+ ρ fy = ρ

(
∂vy

∂t
+ vx

∂vy

∂x
+ vy

∂vy

∂y
+ vz

∂vy

∂z

)
,

(8.1.20)

µ

(
∂2vz

∂x2
+ ∂2vz

∂y2
+ ∂2vz

∂z2

)
− ∂ P

∂z
+ ρ fz = ρ

(
∂vz

∂t
+ vx

∂vz

∂x
+ vy

∂vz

∂y
+ vz

∂vz

∂z

)
.

(8.1.21)

Cylindrical coordinate system: (r, θ, z); v1 = vr , v2 = vθ , and v3 = vz.

1
r

∂(rvr )
∂r

+ 1
r

∂vθ

∂θ
+ ∂vz

∂z
= 0, (8.1.22)

µ


 ∂

∂r

(
1
r

∂

∂r
(rvr )

)
+ 1

r2

(
∂2vr

∂θ2
− 2

∂vθ

∂θ

)
+ ∂2vr

∂z2


− ∂ P

∂r
+ ρ fr

= ρ

(
∂vr

∂t
+ vr

∂vr

∂r
+ vθ

r
∂vr

∂θ
− v2

θ

r
+ vz

∂vz

∂z

)
, (8.1.23)

µ


 ∂

∂r

(
1
r

∂

∂r
(rvθ )

)
+ 1

r2

(
∂2vθ

∂θ2
+ 2

∂vr

∂θ

)
+ ∂2vθ

∂z2


− ∂ P

∂θ
+ ρ fθ

= ρ

(
∂vθ

∂t
+ vr

∂vθ

∂r
+ vθ

r
∂vθ

∂θ
+ vrvθ

r
+ vz

∂vθ

∂z

)
, (8.1.24)

µ


1

r
∂

∂r

(
r
∂vz

∂r

)
+ 1

r2

∂2vz

∂θ2
+ ∂2vz

∂z2


− ∂ P

∂z
+ ρ fz

= ρ

(
∂vz

∂t
+ vr

∂vz

∂r
+ vθ

r
∂vz

∂θ
+ vz

∂vz

∂z

)
. (8.1.25)

Spherical coordinate system: (r, φ, θ); v1 = vr , v2 = vφ , and v3 = vθ .

2
vr

r
+ ∂vr

∂r
+ 1

r sin φ

∂(vφ sin φ)
∂φ

+ 1
r sin φ

∂vθ

∂θ
= 0, (8.1.26)

µ


 1

r2

∂2

∂r2
(r2vr ) + 1

r2 sin φ

∂

∂φ

(
sin φ

∂vr

∂φ

)
+ 1

r2 sin2 φ

∂2vr

∂θ2


− ∂ P

∂r
+ ρ fr

= ρ

[
∂vr

∂t
+ vr

∂vr

∂r
+ vφ

r
∂vr

∂φ
+ vθ

r sin φ

∂vr

∂θ
−
(

v2
φ + v2

θ

r

)]
, (8.1.27)
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µ


 1

r2

∂

∂r

(
r2 ∂vφ

∂r

)
+ 1

r2

∂

∂φ

(
1

sin φ

∂

∂φ
(vφ sin φ)

)
+ 1

r2 sin2 φ

∂2vφ

∂θ2

+ 2
r2

(
∂vr

∂φ
− cos φ

sin2 φ

∂vθ

∂θ

)− 1
r

∂ P
∂φ

+ ρ fφ

= ρ

(
∂vφ

∂t
+ vr

∂vφ

∂r
+ vφ

r
∂vφ

∂φ
+ vθ

r sin φ

∂vφ

∂θ
+ vrvφ

r
− v2

θ cot φ

r

)
, (8.1.28)

µ


 1

r2

∂

∂r

(
r2 ∂vθ

∂r

)
+ 1

r2

∂

∂φ

(
1

sin φ

∂

∂φ
(vθ sin φ)

)
+ 1

r2 sin2 φ

∂2vθ

∂θ2

+ 2
r2 sin φ

(
∂vr

∂θ
+ cot φ

∂vφ

∂θ

)− 1
r sin φ

∂ P
∂θ

+ ρ fθ

= ρ

(
∂vθ

∂t
+ vr

∂vθ

∂r
+ vφ

r
∂vθ

∂φ
+ vθ

r sin φ

∂vθ

∂θ
+ vθvr

r
+ vθvφ

r
cot φ

)
. (8.1.29)

In general, finding exact solutions of the Navier–Stokes equations is an impossi-
ble task. The principal reason is the nonlinearity of the equations, and consequently,
the principle of superposition is not valid. In the following sections, we shall find ex-
act solutions of Eqs. (8.1.16) and (8.1.17) for certain flow problems for which the
convective terms (i.e., v · ∇v) vanish and problems become linear. Of course, even
for linear problems, flow geometry must be simple to be able to determine the exact
solution. The books by Bird et al. (1960) and Schlichting (1979) contains a number
of such problems, and we discuss a few of them here (also, see Problems 8.1–8.5).
Like in linearized elasticity, often the semi-inverse method is used to obtain the
solutions.

For several classes of flows with constant density and viscosity, the differential
equations are expressed in terms of a potential function called stream function, ψ .
For two-dimensional planar problems (where vz = 0 and data as well as solution
does not depend on z), the stream function is defined by

vx = −∂ψ

∂y
, vy = ∂ψ

∂x
. (8.1.30)

This definition of ψ automatically satisfies the continuity equation (8.1.18):

∂vx

∂x
+ ∂vy

∂y
= − ∂2ψ

∂x∂y
+ ∂2ψ

∂x∂y
= 0.

Next, we determine the governing equation of ψ . Recall the definition of the
vorticity ω = ∇ × v. In two dimensions, the only nonzero component of the vortic-
ity vector is ζ (ω = ζ êz)

ω = ∇ × v, ζ = ∂vy

∂x
− ∂vx

∂y
. (8.1.31)
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Substituting the definition (8.1.30) into Eq. (8.1.31), we obtain

ω = ζ êz =
(

∂2ψ

∂x2
+ ∂2ψ

∂y2

)
êz = ∇2ψ êz. (8.1.32)

Next, recall the vorticity equation from Problem 5.15:

∂ω

∂t
+ (v · ∇)ω = (ω · ∇)v + ν∇2ω, ν = µ

ρ
. (8.1.33)

Since for two-dimensional flows the vorticity vector ω is perpendicular to the plane
of the flow, (ω·∇)v is zero. Then

∂ω

∂t
+ (v · ∇)ω = ν∇2ω. (8.1.34)

Substituting Eq. (8.1.32) into the vorticity equation (8.1.34), we obtain

∂∇2ψ

∂t
+ (v · ∇)(∇2ψ) = ν∇4ψ. (8.1.35)

In the rectangular Cartesian coordinate system, Eq. (8.1.35) has the form

∂∇2ψ

∂t
+
(

−∂ψ

∂y
∂∇2ψ

∂x
+ ∂ψ

∂x
∂∇2ψ

∂y

)
= ν∇4ψ. (8.1.36)

In the cylindrical coordinate system, the stress function is related to the veloci-
ties

vr = −1
r

∂ψ

∂θ
, vθ = ∂ψ

∂r
, (8.1.37)

and the governing equation (8.1.36) takes the form

∂∇2ψ

∂t
+ 1

r

(
−∂ψ

∂θ

∂∇2ψ

∂r
+ ∂ψ

∂r
∂∇2ψ

∂θ

)
= ν∇4ψ, (8.1.38)

where ∇2 is given in Table 2.4.2 for the cylindrical coordinate system.
In the spherical coordinate system, the stress function is defined by

vr = − 1
r2 sin φ

∂ψ

∂φ
, vφ = 1

r sin φ

∂ψ

∂r
, (8.1.39)

and Eq. (8.1.36) has the form

∂∇̃2ψ

∂t
+ 1

r2 sin φ

(
−∂ψ

∂φ

∂∇̃2ψ

∂r
+ ∂ψ

∂r
∂∇̃2ψ

∂φ

)
= ν∇̃4ψ,

∇̃2 = ∂2

∂r2
+ sin φ

r2

∂

∂φ

(
1

sin φ

∂

∂φ

)
.

(8.1.40)

8.1.4 Heat Transfer

Recall from Section 6.4 that the balance of energy is given by [see Eqs. (5.4.10) and
(6.4.3) with E replaced by Q and θ by T]

ρcP
DT
Dt

= � − P∇ · v + ∇ · (k∇T) + ρQ, (8.1.41)



P1: IBE

Contbk08 CUFX197-Reddy 978 0 521 87044 3 October 3, 2007 10:48

8.1 Governing Equations 281

where Q is the internal heat generation per unit mass. P is the pressure, T is the
temperature, and � is the dissipation function

� = τ: D. (8.1.42)

For an incompressible fluid, Eq. (8.1.41) takes the simpler form

ρcP
DT
Dt

= � + ∇ · (k∇T) + ρQ. (8.1.43)

The expanded form of Eq. (8.1.43) in rectangular Cartesian system and orthog-
onal curvilinear (i.e., cylindrical and spherical) coordinate systems are given below
for the case in which k and µ are constants. For heat transfer in a solid medium, all
of the velocity components should be set to zero.

Cartesian coordinate system (x, y, z):

ρcP

(
∂T
∂t

+ vx
∂T
∂x

+ vy
∂T
∂y

+ vz
∂T
∂z

)
= k

(
∂2T
∂x2

+ ∂2T
∂y2

+ ∂2T
∂z2

)

+ 2µ

[(
∂vx

∂x

)2

+
(

∂vy

∂y

)2

+
(

∂vz

∂z

)2
]

+ µ


(∂vx

∂y
+ ∂vy

∂x

)2

+
(

∂vx

∂z
+ ∂vz

∂x

)2

+
(

∂vy

∂z
+ ∂vz

∂y

)2

+ ρQ. (8.1.44)

Cylindrical coordinate system (r, θ, z):

ρcP

(
∂T
∂t

+ vr
∂T
∂r

+ vθ

r
∂T
∂θ

+ vz
∂T
∂z

)
= k

[
1
r

∂

∂r

(
r
∂T
∂r

)
+ 1

r2

∂2T
∂θ2

+ ∂2T
∂z2

)

+ 2µ



(

∂vr

∂r

)2

+
[

1
r

(
∂vθ

∂θ
+ vr

)]2

+
(

∂vz

∂z

)2



+ µ



(

∂vθ

∂z
+ 1

r
∂vz

∂θ

)2

+
(

∂vz

∂r
+ ∂vr

∂z

)2

+
[

1
r

∂vr

∂θ
+ r

∂

∂r

(vθ

r

)]2

+ ρQ.

(8.1.45)

Spherical coordinate system (r, φ, θ):

ρcP

(
∂T
∂t

+ vr
∂T
∂r

+ vφ

r
∂T
∂φ

+ vθ

r sin φ

∂T
∂θ

)
= k


 1

r2

∂

∂r

(
r2 ∂T

∂r

)

+ 1
r2 sin φ

∂

∂φ

(
sin φ

∂T
∂φ

)
+ 1

r2 sin2 φ

∂2T
∂θ2



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+ 2µ



(

∂vr

∂r

)2

+
(

1
r

∂vφ

∂φ
+ vr

r

)2

+
(

1
r sin φ

∂vθ

∂θ
+ vr

r
+ vφ cot φ

r

)2



+ µ



[

r
∂

∂r

(vφ

r

)
+ 1

r
∂vr

∂φ

]2

+
[

1
r sin φ

∂vr

∂θ
+ r

∂

∂r

(vθ

r

)]2



+
[

sin φ

r
∂

∂φ

(
vθ

sin φ

)
+ 1

r sin φ

∂vφ

∂θ

]2

+ ρQ. (8.1.46)

8.2 Fluid Mechanics Problems

8.2.1 Inviscid Fluid Statics

For inviscid fluids (i.e., fluids with zero viscosity), the constitutive equation for stress
is [see Eq. (6.3.16)]

σ = −PI (σi j = −Pδi j ),

where P is the hydrostatic pressure, the equations of motion (8.1.6) reduces to

− grad P + ρf = ρ
Dv
Dt

. (8.2.1)

The body force in hydrostatics problem often represents the gravitational force,
ρf = −ρg ê3, where the positive x3-axis is taken positive upward. Consequently, the
equations of motion reduce to

− ∂ P
∂x1

= ρa1, − ∂ P
∂x2

= ρa2, − ∂ P
∂x3

= ρg + ρa3, (8.2.2)

where ai = v̇i is the ith component of acceleration.
For steady flows with constant velocity field, equations in (8.2.2) simplify to

− ∂ P
∂x1

= 0, − ∂ P
∂x2

= 0, − ∂ P
∂x3

= ρg. (8.2.3)

The first two equations in (8.2.3) imply that P = P(x3). Integrating the third equa-
tion with respect to x3, we obtain

P(x3) = −ρgx3 + c1,

where c1 is the constant of integration, which can be evaluated using the pressure
boundary condition at x3 = H, where H is the height of the column of liquid [see
Fig. 8.2.1(a)]. On the free surface, we have P = P0, where P0 is the atmospheric
pressure. Then the constant of integration is c1 = P0 + ρgH, and we have

P(x3) = ρg(H − x3) + P0. (8.2.4)
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H
x3

x1

H

x3

x1

θ

(a) (b)

a1

Smooth
surfaceg

g

Figure 8.2.1. (a) Column of liquid of height H. (b) A container of fluid moving with a constant
acceleration, a = a1ê1.

For the unsteady case in which the fluid (i.e., a rectangular container with the
fluid) moves at a constant acceleration a1 in the x1-direction, the equations of motion
in Eq. (8.2.2) become

− ∂ P
∂x1

= ρa1, − ∂ P
∂x2

= 0, − ∂ P
∂x3

= ρg, (8.2.5)

From the second equation, it follows that P = P(x1, x3). Integrating the first equa-
tion with respect to x1, we obtain

P(x1, x3) = −ρa1x1 + f (x3),

where f (x3) is a function of x3 alone. Substituting the above equation for P into the
third equation in Eq. (8.2.5), and integrating with respect to x3, we arrive at

f (x3) = ρgx3 + c2, P(x1, x3) = −ρa1x1 + ρgx3 + c2,

where c2 is a constant of integration. If x3 = 0 is taken on the free surface of the fluid
in the container, then P = P0 at x1 = x3 = 0, giving c2 = P0. Thus,

P(x1, x3) = P0 − ρa1x1 + ρgx3. (8.2.6)

Equation (8.2.6) suggests that the free surface (which is a plane), where P = P0, is
given by the equation a1x1 = gx3. The orientation of the plane is given by the angle
θ as shown in Fig. 8.2.1(b), where

tan θ = dx3

dx1
= a1

g
. (8.2.7)

When the fluid is a perfect gas, the constitutive equation for pressure is the
equation of state

P = ρRT, (8.2.8)

where T is the absolute temperature (in degree Kelvin) and R is the gas constant
(m·N/kg·K). If the perfect gas is at rest at a constant temperature, then we have

P
P0

= ρ

ρ0
, (8.2.9)



P1: IBE

Contbk08 CUFX197-Reddy 978 0 521 87044 3 October 3, 2007 10:48

284 Fluid Mechanics and Heat Transfer Problems

Uy

b

x

b/2 η
Figure 8.2.2. Parallel flow through a
straight channel.

where ρ0 is the density at pressure P0. From the third equation in (8.2.3), we have

dx3 = − 1
ρg

dP = − P0

ρ0g
dP
P

.

Integrating from x3 = x0
3 to x3, we obtain

x3 − x0
3 = − P0

ρ0g
ln
(

P
P0

)
or P = P0 exp

(
− x3 − x0

3

P0/ρ0g

)
. (8.2.10)

8.2.2 Parallel Flow (Navier–Stokes Equations)

A flow is called parallel if only one velocity component is nonzero (i.e., all fluid
particles moving in the same direction). Suppose that v2 = v3 = 0 and that the body
forces are negligible. Then, from Eq. (8.1.16), it follows that

∂v1

∂x1
= 0 → v1 = v1(x2, x3, t). (8.2.11)

Thus, for a parallel flow, we have

v1 = v1(x2, x3, t), v2 = v3 = 0. (8.2.12)

Consequently, the three equations of motion in (8.1.17) simplify to the following
linear differential equations

− ∂ P
∂x1

+ µ

(
∂2v1

∂x2
2

+ ∂2v1

∂x2
3

)
= ρ

∂v1

∂t
,

∂ P
∂x2

= 0,
∂ P
∂x3

= 0. (8.2.13)

The last two equations in (8.2.13) imply that P is only a function of x1. Thus,
given the pressure gradient dP/dx1, the first equation in (8.2.13) can be used to
determine v1.

8.2.2.1 Steady Flow of Viscous Incompressible Fluid between Parallel Plates
Consider a steady flow (i.e., ∂v1/∂t = 0) in a channel with two parallel flat walls (see
Figure 8.2.2). Let the distance between the two walls be b. Using the alternative
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Figure 8.2.3. Velocity distributions for Poiseuille flow.

notation, v1 = vx, x1 = x, x2 = y, Eq. (8.2.13) can be reduced to the boundary value
problem:

µ
d2vx

dy2
= dP

dx
, 0 < y < b

vx(0) = 0, vx(b) = U.

(8.2.14)

When U 	= 0, the problem is known as the Couette flow. The solution of Eq. (8.2.14)
is given by

vx(y) = y
b

U − b2

2µ

dP
dx

y
b

(
1 − y

b

)
, 0 < y < b, (8.2.15)

v̄x(ȳ) = ȳ + f ȳ (1 − ȳ) , v̄x = vx

U
, ȳ = y

b
, f = − b2

2µU
dP
dx

. (8.2.16)

When U = 0, the flow is known as the Poiseuille flow. In this case, the solution
(8.2.16) reduces to

vx(y) = − b2

2µ

dP
dx

y
b

(
1 − y

b

)
, 0 < y < b, (8.2.17)

vx(η) = − 1
2µ

dP
dx

(
b2

4
− η2

)
, η = y − b

2
, −b

2
< η <

b
2
. (8.2.18)

Figures 8.2.3 and 8.2.4 show the velocity distributions for cases U = 0 and U 	= 0
(Couette flow).
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Figure 8.2.4. Velocity distributions for the
Couette flow.



P1: IBE

Contbk08 CUFX197-Reddy 978 0 521 87044 3 October 3, 2007 10:48

286 Fluid Mechanics and Heat Transfer Problems

8.2.2.2 Steady Flow of a Viscous Incompressible Fluid through a Pipe
The steady flow through a long, straight, horizontal circular pipe is another problem
that admits exact solution to the Navier–Stokes equations. We use the cylindrical
coordinate system with r being the radial coordinate and the z-coordinate is taken
along the axis of the pipe. The velocity components vr and vθ in the radial and tan-
gential directions, respectively, are zero. Then the continuity equation (8.1.22) cou-
pled with the axisymmetric flow situation (i.e., the flow field is independent of θ)
implies that the velocity component parallel to the axis of the pipe, vz, is only a
function of r .

Equations (8.1.23) and (8.1.24) yield (∂ P/∂r) = 0 and (∂ P/∂θ) = 0, implying
that P is only a function of z (or P is a constant in every cross section). Equa-
tion (8.1.25) simplifies to

µ

r
d
dr

(
r

dvz

dr

)
= dP

dz
, (8.2.19)

whose solution is given by

vz(r) = r2

4µ

dP
dz

+ Ar(log r − 1) + B, (8.2.20)

where the constants of integration, A and B, are determined using the boundary
conditions

rτrz ≡ rµ

(
∂vx

∂z
+ ∂vz

∂r

)
= 0 at r = 0; and vz = 0 at r = R, (8.2.21)

where R is the radius of the pipe. We find that

A = 0, B = − R2

4µ

dP
dz

, (8.2.22)

and the solution becomes

vz(r) = − 1
4µ

dP
dz

(R2 − r2). (8.2.23)

Thus, the velocity over the cross section of the pipe varies as a paraboloid of revo-
lution. The maximum velocity occurs along the axis of the pipe and it is equal to

(vz)max = vz(0) = − R2

4µ

dP
dz

, (8.2.24)

The volume rate of flow through the pipe is

Q =
∫ 2π

0

∫ R

0
vz(r) rdrdθ = π R4

8µ

(
−dP

dz

)
. (8.2.25)

The wall shear stress is

τw = −µ

(
dvz

dr

)
r=R

= R
2

dP
dz

. (8.2.26)
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8.2.2.3 Unsteady Flow of a Viscous Incompressible Fluid through a Pipe
Here, we consider unsteady flow of a viscous fluid of constant ρ and µ through a
long, horizontal circular pipe of length L and radius R. Assume that the fluid is
initially at rest. At t = 0, a pressure gradient dP/dz (assumed to be independent of
t) is applied to the system. We wish to determine the velocity profile as a function
of time for t > 0.

For this case, Eq. (8.1.25) takes the form

ρ
∂vz

∂t
= µ

r
∂

∂r

(
r
∂vz

∂r

)
− dP

dz
. (8.2.27)

The boundary conditions in Eq. (8.2.21) are still valid for this problem. The initial
condition is

vz(r, 0) = 0, 0 < r ≤ R. (8.2.28)

To solve the problem, we introduce the following dimensionless variables

v̄z = − 4µL
(dP/dx)R2

vz; ξ = r
R

; τ = µ

ρR2
t. (8.2.29)

Then Eqs. (8.2.27), (8.2.21), and (8.2.28) become, respectively,

∂v̄z

∂τ
= 1

ξ

∂

∂ξ

(
ξ
∂v̄z

∂ξ

)
+ 4,

B.C.: v̄z(1, τ ) = 0, v̄z(0, τ ) is finite; I.C.: v̄z(ξ, 0) = 0.

(8.2.30)

Next, we seek the solution v̄z(ξ, τ ) as the sum of steady-state solution v̄z(ξ, τ ) →
(v̄z)∞(ξ) as τ → ∞ and transient solution (v̄z)τ (ξ, τ ) such that

−4 = 1
ξ

d
dξ

(
ξ

d(v̄z)∞
dξ

)
, (8.2.31)

∂(v̄z)τ

∂τ
= 1

ξ

∂

∂ξ

(
ξ
∂(v̄z)τ

∂ξ

)
. (8.2.32)

Equation (8.2.31) is subjected to the conditions

(v̄z)∞(1) = 0, (v̄z)∞(0) is finite; (8.2.33)

Equation (8.2.32) is to be solved with the boundary and initial conditions

B.C.: (v̄z)τ (1, τ ) = 0, (v̄z)τ (0, τ ) is finite; I.C.: (v̄z)τ (ξ, 0) = −(v̄z)∞. (8.2.34)

The solution of Eqs. (8.2.31) and (8.2.33) is

(v̄z)∞(ξ) = 1 − ξ 2. (8.2.35)

The solution to Eqs. (8.2.32) and (8.2.34) can be obtained using the separation of
variables technique. We assume solution in the form

(v̄z)τ (ξ, τ ) = X(ξ)T(τ ) (8.2.36)
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and substitute into Eq. (8.2.32) to obtain

1
T

dT
dτ

= 1
X

1
ξ

d
dξ

(
ξ

dX
dξ

)
. (8.2.37)

Since the left side is a function of τ alone and the right side is a function of ξ alone,
it follows that both sides must be equal to a constant, which we choose to designate
as −α2 (because the solution must be a decay type in τ and periodic in ξ). Thus, we
have

dT
dτ

+ α2T = 0 → T(τ ) = Ae−α2τ , (8.2.38)

and

1
ξ

d
dξ

(
ξ

dX
dξ

)
+ α2 X = 0 → X(ξ) = C1 J0(αξ) + C2Y0(αξ), (8.2.39)

where J0 and Y0 are the zero order Bessel functions of the first and second kind, re-
spectively. The constants A, C1, and C2 must be determined such that the initial con-
ditions in Eq. (8.2.34) are satisfied. The condition that (v̄z)τ (0, τ ) be finite requires
X(0) to be finite. Since Y0(0) = −∞, it follows that C2 = 0. The boundary condition
(v̄z)τ (1, τ ) = 0 requires X(1) = J0(α) = 0. Since J0(α) is an oscillating function, it
has the following zeros (i.e., the roots of J0(α) are):

α1 = 2.4048, α1 = 5.5201, α3 = 8.6537, α4 = 11.7915, α5 = 14.9309, · · · .
Thus the total solution can be written as

(v̄z)τ (ξ, τ ) =
∞∑

n=1

Cne−α2
nτ J0(αnξ). (8.2.40)

The constants Cn = AC1n are determined using the initial condition in Eq. (8.2.34).
We have

(v̄z)τ (ξ, 0) = −(v̄z)∞ = −(1 − ξ 2) =
∞∑

n=1

Cn J0(αnξ). (8.2.41)

Using the orthogonality of J0(αn)∫ 1

0
J0(αnξ) J0(αmξ) ξ dξ =

{
0, m 	= n
βn, m = n

, (8.2.42)

where βn is given by

βn =
∫ 1

0
[J0(αnξ)]2

ξ dξ = 1
2

[J1(αm)]2,

∫ 1

0
J0(αnξ)(1 − ξ 2)ξ dξ = 4J1(αn)

α3
n

.

(8.2.43)

The above integrals are evaluated using some standard relations for the Bessel func-
tions. Thus, we obtain

Cn = − 8
α3

n J1(αn)
. (8.2.44)
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Figure 8.2.5. Creeping flow around a sphere.

The final expression for the velocity W(ξ) is

(v̄z)(ξ, τ ) = (1 − ξ 2) − 8
∞∑

n=1

J0(αnξ)
α3

n J1(αn)
e−α2

nτ . (8.2.45)

8.2.3 Problems with Negligible Convective Terms

The exact solution of the Navier–Stokes equations is made difficult by the presence
of the convective, nonlinear terms, v·∇v. When the motion is assumed to be very
slow, the convective terms are very small compared to the viscous terms µ∇2v and
can be neglected, resulting in linear equations of motion. Such flows are called creep-
ing flows and the Navier–Stokes equations without the convective terms are often
called the Stokes equations. For creeping flows, the governing equations reduce to

∇ · v = 0,
∂vi

∂xi
= 0, (8.2.46)

ρ
∂v
∂t

= µ∇2v−∇P + ρf, ρ
∂vi

∂t
= µui, j j − ∂ P

∂xi
+ ρ fi . (8.2.47)

Equations (8.1.19)–(8.1.21), (8.1.23)–(8.1.25), and (8.1.27)–(8.1.29) can be simplified
by omitting the convective terms.

8.2.3.1 Flow of a Viscous Incompressible Fluid around a Sphere
Here we consider the steady slow flow of a viscous fluid around a sphere of radius
R. The fluid approaches the sphere in the z direction at a velocity V∞, as shown in
Figure 8.2.5. Neglecting the convective terms in Eq. (8.1.40), the governing equation
(with no θ dependence and omitting vθ terms) in terms of the stream function is
∇̃4ψ = 0:

[
∂2

∂r2
+ sin φ

r2

∂

∂φ

(
1

sin φ

∂

∂φ

)]2

ψ = 0. (8.2.48)
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This equation must be solved subjected to the boundary conditions

vr (R, φ) = − 1
R2 sin φ

∂ψ

∂φ

∣∣∣∣
r=R

= 0,

vφ(R, φ) = 1
Rsin φ

∂ψ

∂r

∣∣∣∣
r=R

= 0,

ψ → −1
2

V∞ r2 sin2 φ as r → ∞.

(8.2.49)

The first two conditions reflect the attachment of the viscous fluid to the surface of
the sphere. The third condition implies that vr = V∞ far from the sphere,

r
lim→ ∞ vr (r, φ) = V∞. (8.2.50)

Assuming solution of the form

ψ(r, φ) = f (r) sin2 φ, (8.2.51)

and substituting into Eq. (8.2.48) gives(
d2

dr2
− 2

r2

)(
d2

dr2
− 2

r2

)
f (r) = 0, (8.2.52)

whose general solution is

f (r) = c1

r
+ c2r + c3r2 + c4r4. (8.2.53)

Satisfaction of the third boundary condition in Eq. (8.2.49) requires c4 = 0 and c3 to
be equal to −V∞/2. Hence, the solution is

ψ(r, φ) =
(

c1

r
+ c2r − V∞

2
r2
)

sin2 φ. (8.2.54)

The velocity components are

vr = − 1
r2 sin φ

∂ψ

∂φ
=
(

V∞ − 2
c1

r3
− 2

c2

r

)
cos φ,

vφ = 1
r sin φ

∂ψ

∂r
=
(
−V∞ − 2

c1

r3
+ c2

r

)
sin φ.

(8.2.55)

The boundary conditions in Eq. (8.2.49) gives c1 = −V∞ R3/4 and c2 = 3V∞ R/4 so
that the velocity distributions are

vr = V∞

[
1 − 3

2

(
R
r

)
+ 1

2

(
R
r

)3
]

cos φ,

vφ = −V∞

[
1 − 3

4

(
R
r

)
− 1

4

(
R
r

)3
]

sin φ.

(8.2.56)

See Problem 8.15 for the shear stress and pressure distributions on the sphere.
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Figure 8.2.6. Schematic of a slider bear-
ing.

8.2.3.2 Flow of a Viscous Incompressible Lubricant in a Bearing
A slider (or slipper) bearing consists of a short sliding pad moving at a velocity
vx = U0 relative to a stationary pad inclined at a small angle with respect to the
stationary pad, and the small gap between the two pads is filled with a lubricant, as
shown in Figure 8.2.6. Since the ends of the bearing are generally open, the pressure
there is atmospheric, say P = P0. When the upper pad is parallel to the base plate,
the pressure everywhere in the gap will be atmospheric, and the bearing cannot
support any transverse load. If the upper pad is inclined to the base pad, a pressure
distribution is set up in the gap. For large values of U0, the pressure generated can
be of sufficient magnitude to support heavy loads normal to the base pad.

When the width of the gap and the angle of inclination are small, one may as-
sume that vy = 0 and vz = 0 and the pressure is only a function of x. Assuming a
two-dimensional state of flow in the xy plane and a small angle of inclination, and
neglecting the normal stress gradient (in comparison with the shear stress gradient),
the equations governing the flow of the lubricant between the pads can be reduced
to [see Schlichting (1979) for details]

µ
∂2vx

∂y2
= dP

dx
,

dP
dx

= 6µU0

h2

(
1 − H

h

)
, 0 < x < L, (8.2.57)

where

h(x) = h1 + h2 − h1

L
x, H = 2h1h2

h1 + h2
. (8.2.58)

The solution of Eq. (8.2.57), subject to the boundary conditions vx(x, 0) = U0 and
vx(x, h) = 0 is

vx(x, y) =
(

U0 − h2

2µ

dP
dx

y
h

)(
1 − y

h

)
, (8.2.59)

P(x) = 6µU0L(h1 − h)(h − h2)

h2
(
h2

1 − h2
2

) , (8.2.60)

σxy(x, y) = µ
∂vx

∂y
= dP

dx

(
y − h

2

)
− µ

U0

h
. (8.2.61)
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Table 8.2.1. Comparison of finite element solutions velocities with the analytical
solutions for viscous fluid in a slider bearing

ȳ vx(0, y) ȳ vx(0.18, y) ȳ vx(0.36, y) x P̄(x, 0) −σxy(x, 0)

0.0 30.000 0.00 30.000 0.00 30.000 0.01 7.50 59.99
1.0 22.969 0.75 25.156 0.50 29.531 0.03 22.46 59.89
2.0 16.875 1.50 20.625 1.00 28.125 0.05 37.29 59.67
3.0 11.719 2.25 16.406 1.50 25.781 0.07 51.89 59.30
4.0 7.500 3.00 12.500 2.00 22.500 0.09 66.12 58.77
5.0 4.219 3.75 8.906 2.50 18.281 0.27 129.60 38.40
6.0 1.875 4.50 5.625 3.00 13.125 0.29 118.57 32.71
7.0 0.469 5.25 2.656 3.50 7.031 0.31 99.58 25.70
8.0 0.000 6.00 0.000 4.00 0.000 0.33 70.30 17.04

x̄ = 10x, ȳ = y × 104, P̄ = P × 10−2.
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Figure 8.2.7. Velocity distributions for the
slider bearing problem.
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Numerical results are obtained using the following parameters:

h1 = 2h2 = 8 × 10−4 ft, L = 0.36 ft, µ = 8 × 10−4 lb/ft2, U0 = 30 ft (8.2.62)

Table 8.2.1 contains numerical values of the velocity, pressure, and shear stress as a
function of position. Figure 8.2.7 contains plots of the horizontal velocity vx at x = 0
ft, x = 0.18 ft, and x = 0.36 ft, while Figure 8.2.8 contains plots of pressure and shear
stress as a function of x at y = 0.

8.3 Heat Transfer Problems

8.3.1 Heat Conduction in a Cooling Fin

Heat transfer from a surface to the surrounding fluid medium can be increased
by attaching thin strips, called fins, of conducting material to the surface (see
Figure 8.3.1). We assume that the fins are very long in the y-direction, and heat
conducts only along the x-direction and convects through the lateral surface, that
is, T = T(x, t). This assumption reduces the three-dimensional problem to a one-
dimensional problem. By setting the velocity components to zero in Eq. (8.1.44)
and noting that T = T(x, t), we obtain

ρcp
∂T
∂t

= k
∂2T
∂x2

+ ρQ. (8.3.1)

Equation (8.3.1) does not account for the cross-sectional area of the fin and convec-
tive heat transfer through the surface. Therefore, we derive the governing equation
from the first principles. We assume steady heat conduction.

Consider an element of length �x at a distance x in the fin. The balance of
energy in the element requires that

(qA)x − (qA)x+�x − hP�x(T − T∞) + ρQ
(

Ax + Ax+�x

2

)
�x = 0, (8.3.2)

where q is the heat flux, A is the area of cross section (which can be a function of x),
P is the perimeter, h is the film conductance, and Q is internal heat generation per
unit mass (which is zero in the case of fins). Dividing throughout by �x and taking
the limit �x → 0, we obtain

− d
dx

(qA) + Ph(T − T∞) + ρQA = 0. (8.3.3)

Using Fourier’s law, q = −k(dT/dx), where k is thermal conductivity of the fin, we
obtain

d
dx

(
k A

dT
dx

)
+ Ph(T − T∞) + ρQA = 0. (8.3.4)

Equation (8.3.4) must be solved subject to the boundary conditions

T(0) = T0,

[
k A

dT
dx

+ hA(T − T∞)
]

x=a
= 0. (8.3.5)
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Lateral surface and right end are
exposed to ambient temperature, T 
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L

xRectangular fins

x
yz
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L

a

∝

∞

Figure 8.3.1. Heat transfer in a cooling fin.

The second boundary condition is a statement of the balance of energy (conductive
and convective) at x = a.

We introduce the following nondimensional quantities for convenience of solv-
ing the problem (assume that k and A are constant):

θ = T − T∞
T0 − T∞

, ξ = x
a

, m2 = hPa2

k A
, N = ha

k
. (8.3.6)

Then Eqs. (8.3.4) and (8.3.5) take the form

d2θ

dξ 2
− m2θ = 0, θ(0) = 1,

[
dθ

dξ
+ Nθ

]
ξ=1

= 0. (8.3.7)

The general solution to the differential equation in (8.3.7) is

θ(ξ) = C1 cosh mξ + C2 sinh mξ, 0 < ξ < a,

where the constants C1 and C2 are determined using the boundary conditions. We
obtain

C1 = 1; C2 = −m sinh m + N cosh m
m cosh m + N sinh m

, (8.3.8)

and the solution becomes

θ(ξ) = cosh mξ (m cosh m + N sinh m) − (m sinh m + N cosh m) sinh mξ

m cosh m + N sinh m

= m cosh m(1 − ξ) + N sinh m(1 − ξ)
m cosh m + N sinh m

. (8.3.9)

The effectiveness of a fin is defined by (omitting the end effects)

E = Actual heat convected by the fin surface
Heat that would be convected if the fin surface were held at T0
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Figure 8.3.2. Heat conduction in a circular cylinder.

=
∫ L

0

∫ a
0 h(T − T∞)dxdy∫ L

0

∫ a
0 h(T0 − T∞)dxdy

=
∫ 1

0
θ(ξ) dξ

=
∫ 1

0

m cosh m(1 − ξ) + N sinh m(1 − ξ)
m cosh m + N sinh m

dξ

= 1
m

m sinh m + N(cosh m − 1)
m cosh m + N sinh m

. (8.3.10)

8.3.2 Axisymmetric Heat Conduction in a Circular Cylinder

Here we consider heat transfer in a long circular cylinder (see Figure 8.3.2). If the
boundary conditions and material of the cylinder are axisymmetric, that is, inde-
pendent of the circumferential coordinate θ , it is sufficient to consider a typical
rz-plane, where r is the radial coordinate and z is the axial coordinate. Further,
if the cylinder is very long, say 10 diameters length, then heat transfer along typ-
ical radial line is all we need to determine; thus, the problem is reduced to one
dimension.

The governing equation for this one-dimensional problem can be obtained from
Eq. (8.1.45) as

ρcP
∂T
∂t

= 1
r

∂

∂r

(
kr

∂T
∂r

)
+ ρQ(r), (8.3.11)

where ρQ is internal heat generation per unit volume. For example, in the case of
an electric wire of circular cross section and electrical conductivity ke (1/Ohm/m)
heat is produced at the rate of

ρQ = I2

ke
, (8.3.12)

where I is electric current density (amps/m2) passing through the wire.
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Equation (8.3.11) is to be solved subjected to appropriate initial condition and
boundary conditions at r = 0 and r = R, where R is the radius of the cylinder. Here,
we consider a steady heat transfer when there is an internal heat generation of ρQ =
g and the surface of the cylinder is subjected to a temperature T(R) = T0. Then the
problem becomes one of solving the equation

k
1
r

d
dr

(
r

dT
dr

)
+ g = 0, (rqr )r=0 =

[
−kr

dT
dr

]
r=0

= 0, T(R) = T0. (8.3.13)

The general solution is given by

T(r) = −gr2

4k
+ A log r + B. (8.3.14)

The constants A and B are determined using the boundary conditions:

(rqr )(0) = 0 → A = 0; T(R) = T0 → B = T0 + gR2

4k
.

The final solution is given by

T(r) = T0 + gR2

4k

[
1 −

( r
R

)2
]

, (8.3.15)

which is a parabolic function of the distance r . The heat flux is given by

q(r) = −k
dT
dr

= gr
2

, (8.3.16)

and the total heat flow at the surface is

Q = 2π RL q(R) = π R2L g.

The problem of solving Eq. (8.3.11) subjected to the initial condition and bound-
ary conditions

I.C.: T(r, 0) = 0

B.C.: T(R, t) = 0, (rqr )r=0 =
[
−kr

∂T
∂r

]
r=0

= 0. (8.3.17)

is equivalent to solving the problem described by Eqs. (8.2.27), (8.2.21), and (8.2.28).
In particular, we take

θ = 4kL
gR2

T; ξ = r
R

; τ = k
ρcP R2

t. (8.3.18)

Then the transient solution is given by

θ(ξ, τ ) = (1 − ξ 2) − 8
∞∑

n=1

J0(αnξ)
α3

n J1(αn)
e−α2

nτ . (8.3.19)
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8.3.3 Two-Dimensional Heat Transfer

Here, we consider steady heat conduction in a rectangular plate with sinusoidal tem-
perature distribution on one edge (see Figure 8.3.3). The governing equation is a
special case of Eq. (8.1.44). Taking T = T(x, y), and setting the time derivative term
and velocity components to zero, we obtain

k
(

∂2T
∂x2

+ ∂2T
∂y2

)
= 0. (8.3.20)

The boundary conditions are

T(x, 0) = 0, T(0, y) = 0, T(a, y) = 0, T(x, b) = T0 sin
πx
a

. (8.3.21)

Once the temperature T(x, y) is known, we can determine the components of heat
flux, qx and qy, from Fourier’s law

qx = −k
∂T
∂x

, qy = −k
∂T
∂y

. (8.3.22)

The classical approach to an analytical solution of the Laplace or Poisson
equation over a regular (i.e., rectangular or circular) domain is the separation-of-
variables technique. In this technique, we assume the temperature T(x, y) to be of
the form

T(x, y) = X(x)Y(y), (8.3.23)

where X is a function of x alone and Y is a function of y alone. Substituting
Eq. (8.3.23) into Eq. (8.3.20) and rearranging the terms, we obtain

1
X

d2 X
dx2

= − 1
Y

d2Y
dy2

. (8.3.24)

Since the left side is a function of x alone and the right side is a function of y alone,
it follows that both sides must be equal to a constant, which we choose to be −λ2

(because the solution must be periodic in x so as to satisfy the boundary condition
on the edge y = b). Thus, we have

d2 X
dx2

+ λ2 X = 0,
d2Y
dy2

− λ2Y = 0, (8.3.25)

a

b

x

y

0),0( =yT

a
x

TbxT
π

sin),( 0=

0)0,( =xT

0),( =yaT
Figure 8.3.3. Heat conduction in a rectangular
plate.
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whose general solutions are

X(x) = C1 cos λx + C2 sin λx, Y(y) = C3e−λy + C4eλy. (8.3.26)

The solution T(x, y) is given by

T(x, y) = (C1 cos λx + C2 sin λx)
(
C3e−λy + C4eλy) . (8.3.27)

The constants Ci (i = 1, 2, 3, 4) are determined using the boundary conditions in
Eq. (8.3.21). We obtain

T(x, 0) = 0 → (C1 cos λx + C2 sin λx) (C3 + C4) = 0 → C3 = −C4,

T(0, y) = 0 → C1
(
C3e−λy + C4eλy) = 0 → C1 = 0,

T(a, y) = 0 → C2 sin λa
(
C3e−λy + C4eλy) = 0 → sin λa = 0.

The last conclusion is reached because C2 = 0 will make the whole solution trivial.
We have

sin λa = 0 → λa = nπ or λn = nπ

a
. (8.3.28)

The solution in Eq. (8.3.27) now can be expressed as

T(x, y) =
∞∑

n=1

An sin
nπx

a
sinh

nπy
a

. (8.3.29)

The constants An, n = 1, 2, . . . , are determined using the remaining boundary con-
dition. We have

T(x, b) = T0 sin
πx
a

=
∞∑

n=1

An sin
nπx

a
sinh

nπb
a

.

Multiplying both sides with sin(mπx/a) and integrating from 0 to a and using the
orthogonality of the sine functions∫ a

0
sin

nπx
a

sin
mπx

a
dx =

{
0, m 	= n
a
2 , m = n

,

we obtain

A1 = T0

sinh nπb
a

, An = 0 for n 	= 1.

Hence, the final solution is

T(x, y) = T0
sinh πy

a

sinh πb
a

sin
(πx

a

)
. (8.3.30)

When the boundary condition at y = b is replaced with T(x, b) = f (x), then the
solution is given by

T(x, y) =
∞∑

n=1

An
sinh nπy

a

sinh nπb
a

sin
(nπx

a

)
, (8.3.31)
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with An given by

An = 2
a

∫ a

0
f (x) sin

nπx
a

dx. (8.3.32)

8.3.4 Coupled Fluid Flow and Heat Transfer

Next, we consider an example in which the fluid flow is coupled to heat transfer.
Consider the fully developed, incompressible, steady Couette flow between paral-
lel plates with zero pressure gradient (see Section 8.2). Suppose that the top plate
moving with a velocity U and maintained at a temperature T1 and the bottom plate
is stationary and maintained at temperature T0 (see Figure 8.3.4). Assuming fully
developed temperature profile and zero internal heat generation, we wish to deter-
mine the temperature field.

For fully developed temperature field, we can assume that T = T(y). Then the
energy equation (8.1.44) reduces to

k
d2T
dy2

+ µ

(
dvx

dy

)2

= 0 → d2T
dy2

= − µ

kb2
U2. (8.3.33)

The solution of this equation is

T(y) = −µU2

kb2

y2

2
+ Ay + B,

where the constants A and B are determined using the boundary conditions T(0) =
T0 and T(b) = T1. We obtain

T(0) = T0 : B = T0,

T(b) = T1 : A = T1 − T0

b
+ µU2

2kb
.

(8.3.34)

Thus the temperature field in the channel is given by

T(y) − T0

T1 − T0
= y

b
+ µU2

2k(T1 − T0)
y
b

(
1 − y

b

)
. (8.3.35)
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=
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−

Figure 8.3.4. Velocity and temperature distri-
butions for the Couette flow.
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8.4 Summary

In this chapter, applications of the equations of continuum mechanics to fluid me-
chanics and heat transfer are presented. First, a summary of the equations as ap-
plied to decoupled viscous incompressible fluids and heat transfer are presented in
Cartesian, cylindrical, and spherical coordinates systems. Then applications to some
simple problems of fluid mechanics and heat transfer are discussed. The classes of
problems of fluid mechanics that admit analytical solutions are rather limited.

PROBLEMS

8.1 Assume that the velocity components in an incompressible flow are indepen-
dent of the x coordinate and vz = 0 to simplify the continuity equation (8.1.18) and
the equations of motion (8.1.19)–(8.1.21).

8.2 An engineer is to design a sea lab 4 m high, 5 m width, and 10 m long to
withstand submersion to 120 m, measured from the surface of the sea to the top
of the sea lab. Determine the (a) pressure on the top and (b) pressure varia-
tion on the side of the cubic structure. Assume a density of salt water to be ρ =
1,020 kg/m3.

8.3 Compute the pressure and density at an elevation of 1,600 m for isothermal
conditions. Assume P0 = 102 kPa, ρ0 = 1.24 kg/m3 at sea level.

8.4 Derive the pressure-temperature and density-temperature relations for an ideal
gas when temperature varies according to θ(x3) = θ0 + mx3, where m is taken to be
m = −0.0065◦C/m up to the stratosphere, and x3 is measured upward from sea level.
Hint: Use Eq. (8.2.8) and the third equation in Eq. (8.2.3).

8.5 Consider the steady flow of a viscous incompressible Newtonian fluid down an
inclined surface of slope α under the action of gravity (see Figure P8.5). The thick-
ness of the fluid perpendicular to the plane is h and the pressure on the free surface
is p0, a constant. Use the semi-inverse method (i.e., assume the form of the velocity
field) to determine the pressure and velocity field.

Direction of gravity, ρg

x

y

α

h

xv

Figure P8.5.

8.6 Two immiscible fluids are flowing in the x-direction in a horizontal channel of
length L and width 2b under the influence of a fixed pressure gradient. The fluid
rates are adjusted such that the channel is half filled with Fluid I (denser phase) and
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half filled with Fluid II (less dense phase). Assuming that the gravity of the fluids
is negligible, determine the velocity field. Use the geometry and coordinate system
shown in Figure P8.6.

x

y µ2

µ1

Interface

Less dense and 
less viscous fluid

Denser and 
more viscous fluid

Fixed wall

Fixed wall

b

b

Assume steady flow

Figure P8.6.

8.7 Consider the steady flow of a viscous, incompressible fluid in the annular re-
gion between two coaxial circular cylinders of radii R and αR, α < 1, as shown in
Figure P8.7. Take P̄ = P + ρgz. Determine the velocity and shear stress distribu-
tions in the annulus.

αR
R

r

z

Velocity 

distribution

Figure P8.7.

8.8 Consider a steady, isothermal, incompressible fluid flowing between two verti-
cal concentric long circular cylinders with radii r1 and r2. If the outer one rotating
with an angular velocity �, show that the Navier–Stokes equations reduce to the fol-
lowing equations governing the circumferential velocity vθ = v(r) and pressure P:

ρ
v2

r
= ∂ P

∂r
, µ

d
dr

(
1
r

d
dr

(rv)
)

= 0, 0 = −∂ P
∂z

+ ρg.

Determine the velocity v and shear stress τrθ distributions.
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8.9 Consider an isothermal, incompressible fluid flowing radially between two con-
centric porous spherical shells. Assume steady flow with vr = v(r). Simplify the con-
tinuity and momentum equations for the problem.

8.10 A fluid of constant density and viscosity is in a cylindrical container of radius
R and the container is rotated about its axis with an angular velocity of �. Use the
cylindrical coordinate system with the z-coordinate along the cylinder axis. Let the
body force vector to be equal to ρf = −gêz. Assume that vr = 0 and vz = 0, and
vθ = v(r) and simplify the governing equations. Determine v(r) from the second
momentum equation subject to the boundary condition v(R) = �r . Then evaluate
P from remaining equations.

8.11 Consider the unsteady parallel flow on a flat plate (or plane wall). Assume
that the motion is started impulsively from rest. Take the x-coordinate along the
plate and the y-coordinate perpendicular to the wall. Assume that only nonzero
velocity component is vx = vx(y, t) and that the pressure P is a constant. Show that
the Navier–Stokes equations for this case are simplified to

ρ
∂vx

∂t
= µ

∂2vx

∂y2
, 0 < y < ∞. (1)

Solve the above equation for vx(y) using the following initial and boundary condi-
tions:

Initial condition vx(y, 0) = 0,

(2)
Boundary conditions vx(∞, t) = 0.

Hint: Introduce a new coordinate η by assuming η = y/(2
√

νt), where ν is the kine-
matic viscosity ν = µ/ρ, and seek solution in the form vx(η) = U0 f (η). The solution
is obtained in terms of the complementary error function

erfc η = 2√
π

∫ ∞

η

e−η2
dη = 1 − erf η = 1 − 2√

π

∫ η

0
e−η2

dη, (3)

where erf η is the error function.

8.12 Solve Eq. (1) of Problem 8.11 for the following boundary conditions (i.e., flow
near an oscillating flat plate)

Initial condition vx(y, 0) = 0,

(1)
Boundary conditions vx(0, t) = U0 cos nt, vx(∞, t) = 0.

In particular, obtain the solution

vx(y, t) = U0eλy cos(nt − λy), λ =
√

ρn
2µ

. (2)
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8.13 Show that the components of the viscous stress tensor τ [see Eq. (6.3.7)] for
an isotropic, viscous, Newtonian fluid in cylindrical coordinates are related to the
velocity gradients by

τrr = 2µ
∂vr

∂r
+ λ ∇·v, τθθ = 2µ

(
1
r

∂vθ

∂θ
+ vr

r

)
+ λ ∇·v,

τzz = 2µ
∂vz

∂z
+ λ ∇·v, τrθ = µ

[
r

∂

∂r

(vθ

r

)
+ 1

r
∂vr

∂θ

]
,

τzθ = µ

(
∂vθ

∂z
+ 1

r
∂vz

∂θ

)
, τzr = µ

(
∂vz

∂r
+ ∂vr

∂z

)
,

∇·v = 1
r

∂(rvr )
∂r

+ 1
r

∂vθ

∂θ
+ ∂vz

∂z
.

8.14 Show that the components of the viscous stress tensor τ [see Eq. (6.3.7)] for
an isotropic, viscous, Newtonian fluid in spherical coordinates are related to the
velocity gradients by

τrr = 2µ
∂vr

∂r
+ λ ∇·v, τφφ = 2µ

(
1
r

∂vθ

∂θ
+ vr

r

)
+ λ ∇·v,

τθθ = 2µ

(
1

r sin φ

∂vφ

∂φ
+ vr

r
+ vφ cot φ

r

)
+ λ ∇·v,

τrφ = µ

[
r

∂

∂r

(vφ

r

)
+ 1

r
∂vr

∂φ

]
, τrθ = µ

[
1

r sin φ

∂vr

∂θ
+ r

∂

∂r

(vθ

r

)]
,

τφθ = µ

[
sin φ

r
∂

∂φ

(
vθ

sin φ

)
+ 1

r sin φ

∂vφ

∂θ

]
,

∇·v = 1
r2

∂(r2vr )
∂r

+ 1
r sin φ

∂

∂φ
(vφ sin φ) + 1

r sin φ

∂vθ

∂θ
.

8.15 Use the velocity field in Eq. (8.2.56) to determine the shear stress component
τrφ and pressure P. Ans:

τrφ = 3µV∞
2R

(
R
r

)4

sin φ, P = P0 − ρgz − 3µV∞
2R

(
R
r

)2

cos φ,

where P0 is the pressure in the plane z = 0 far away from the sphere and −ρgz is the
contribution of the fluid weight (hydrostatic effect).

8.16 Consider a long electric wire of length L and radius R and electrical conductiv-
ity ke [1/(Ohm·m)]. An electric current with current density I (amps/m2) is passing
through the wire. The transmission of an electric current is an irreversible process
in which some electrical energy is converted into thermal energy (heat). The rate of
heat production per unit volume is given by

ρQe = I2

ke
.
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Assuming that the temperature rise in the cylinder is small enough not to affect the
thermal or electrical conductivities and heat transfer is one-dimensional along the
radius of the cylinder, derive the governing equation using balance of energy.

8.17 Solve the equation derived in Problem 8.16 using the boundary conditions

q(0) = finite, T(R) = T0.

8.18 A slab of length L is initially at temperature f (x). For times t > 0, the bound-
aries at x = 0 and x = L are kept at temperatures T0 and TL, respectively. Obtain
the temperature distribution in the slab as a function of position x and time t .

8.19 Obtain the steady-state temperature distribution T(x, y) in a rectangular re-
gion, 0 ≤ x ≤ a, 0 ≤ y ≤ b for the boundary conditions

qx(0, y) = 0, qy(x, b) = 0, qx(a, y) + hT(a, y) = 0, T(x, 0) = f (x).

8.20 Consider the steady flow through a long, straight, horizontal circular pipe. The
velocity field is given by [see Eq. (8.2.23)]

vr = 0, vθ = 0, vz(r) = − R2

4µ

dP
dz

(
1 − r2

R2

)
. (1)

If the pipe is maintained at a temperature T0 on the surface, determine the steady-
state temperature distribution in the fluid.

8.21 Consider the free convection problem of flow between two parallel plates of
different temperature. A fluid with density ρ and viscosity µ is placed between two
vertical plates a distance 2a apart, as shown in Figure P8.21. Suppose that the plate
at x = a is maintained at a temperature T1 and the plate at x = −a is maintained
at a temperature T2, with T2 > T1. Assuming that the plates are very long in the y-
direction and hence that the temperature and velocity fields are only a function of
x, determine the temperature T(x) and velocity vy(x). Assume that the volume rate
of flow in the upward moving stream is the same as that in the downward moving
stream and the pressure gradient is solely due to the weight of the fluid.

y

x

2 a

Cold plate
Hot plate

a

?

?

1T

2T

0TVelocity 
Distribution,  

( )vy x

Temperature
Distribution, 

( )T x

Figure P8.21.
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In questions of science, the authority of a thousand is not worth the humble reason-
ing of a single individual.

Galileo Galilei

All truths are easy to understand once they are discovered; the point is to discover
them.

Galileo Galilei

9.1 Introduction

9.1.1 Preliminary Comments

The class of materials that exhibit the characteristics of elastic as well as viscous
materials are known as viscoelastic materials. Metals at elevated temperatures, con-
crete, and polymers provide examples of materials with viscoelastic behavior. In this
section, we study mathematical models of linear viscoelastic behavior. The charac-
teristics of a viscoelastic material are that they (a) have time-dependent behavior
and (b) have permanent deformation (i.e., do not return to original geometry after
the removal of forces causing the deformation).

The viscoelastic response characteristics of a material are determined often us-
ing (1) creep tests, (2) stress relaxation tests, or (3) dynamic response to loads vary-
ing sinusoidally with time. Creep test involves determining the strain response under
constant stress, and it is done under uniaxial tensile stress due to its simplicity. Ap-
plication of a constant stress σ0 produces a strain, which, in general, contains three
components: an instantaneous, a plastic, and a delayed reversible component

ε(t) =
[

J∞ + t
η0

+ ψ(t)
]

σ0,

where J∞σ0 is the instantaneous component of strain, η0 is the Newtonian viscosity
coefficient, and ψ(t) the creep function such that ψ(0) = 0. Relaxation test involves

305
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determination of stress under constant strain. Application of a constant strain ε0

produces a stress that contains two components

σ(t) = [E0 + φ(t)] ε0,

where E0 is the static elastic modulus and φ(t) is the relaxation function such that
φ(0) = 0.

A qualitative understanding of viscoelastic behavior of materials can be gained
through spring-and-dashpot models. For linear responses, combinations of linear
elastic springs and linear viscous dashpots are used. Two simple spring-and-dashpot
models are the Maxwell model and Kelvin–Voigt model. The Maxwell model charac-
terizes a viscoelastic fluid while Kelvin–Voigt model represents a viscoelastic solid.
Other combinations of these models are also used. The mathematical models to be
discussed here provide some insight into the creep and relaxation characteristics of
viscoelastic responses, but they may not represent a satisfactory quantitative behav-
ior of any real material. A combination of the Maxwell and Kelvin–Voigt models
may represent the creep and relaxation responses of some materials.

9.1.2 Initial Value Problem, the Unit Impulse, and the Unit Step Function

The governing equations of the mathematical models involving springs and dash-
pots are ordinary differential equations in time, t . These equations relate stress σ to
strain ε and they have the general form

P(σ) = Q(ε), (9.1.1)

where P and Q are differential operators of order M and N, respectively,

P =
M∑

m=0

pm
dm

dtm
, Q =

N∑
n=0

qn
dn

dtn
. (9.1.2)

The coefficients pm and qn are known in terms of the spring constants ki and dashpot
constants ηi of the model. Equation (9.1.1) is solved either for ε(t) for a specified
σ(t) (creep response) or for σ(t) for a given ε(t) (relaxation response). Since Eq.
(9.1.1) is a Mth-order differential equation for the relaxation response (Nth-order
equation for the creep response), we must know M (N) initial values, that is, values
at time t = 0, of σ (ε):

σ(0) = σ0, σ̇(0) = σ̇0, . . . ,

(
dN−1σ

dt N−1

)
t=0

= σ
(N−1)
0 ,

or

ε(0) = ε0, ε̇(0) = ε̇0, . . . ,

(
dM−1ε

dt M−1

)
t=0

= ε
(M−1)
0 ,

(9.1.3)

where σ
(i)
0 , for example, denotes the value of the ith time derivative of σ(t) at time

t = 0. Equation (9.1.1) together with (9.1.3) defines an initial value problem.
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Figure 9.1.1. (a) The Dirac delta function. (b) Unit step function.

In the sequel, we will study the creep and relaxation responses of the discrete
viscoelastic models under applied inputs. The applied stress or strain can be in the
form of a unit impulse or unit step function. The unit impulse, also known as the
Dirac delta function, is defined as

δ(t − t0) = 0, for t 	= t0,∫ ∞

−∞
δ(t − t0)dt = 1.

(9.1.4)

The units of the Dirac delta function are 1/s = s−1. A plot of the Dirac delta function
is shown in Figure 9.1.1(a). The time interval in which the Dirac delta function is
nonzero is defined to be infinitely small, say ε. The Dirac delta function can be used
to represent an arbitrary point value F0 at t = t0 as a function of time:

f (t) = F0δ(t − t0);
∫ ∞

−∞
f (t) dt =

∫ ∞

−∞
F0δ(t − t0)dt = F0, (9.1.5)

where f (t) has the units of F0 per second.
The unit step function is defined as [see Figure 9.1.1(b)]

H(t − t0) =
{

0, for t < t0,
1, for t > t0.

(9.1.6)

Clearly, the function H(t) is discontinuous at t = t0, where its value jumps from
0 to 1. The unit step function is dimensionless. The unit step function H(t), when
multiplies an arbitrary function f (t), sets the portion of f (t) corresponding to t < 0
to zero while leaving the portion corresponding to t > 0 unchanged.

The Dirac delta function is viewed as the derivative of the unit step function;
conversely, the unit step function is the integral of the Dirac delta function

δ(t) = dH(t)
dt

; H(t) =
∫ t

−∞
δ(ξ)dξ. (9.1.7)

9.1.3 The Laplace Transform Method

The Laplace transform method is widely used to solve linear differential equa-
tions, especially those governing initial-value problems. The significant feature of
the method is that it allows in a natural way the use of singularity functions like the
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Dirac delta function and the unit step function in the data of the problem. Here we
review the method in the context of solving initial value problems.

The (one-sided) Laplace transformation of a function f (t), denoted f̄ (s), is de-
fined as

f̄ (s) ≡ L[ f (t)] =
∫ ∞

0
e−st f (t) dt, (9.1.8)

where s is, in general, a complex quantity referred as a subsidiary variable, and the
function e−st is known as the kernel of the transformation. The Laplace transforms
of some functions are given in Table 9.1.1. The table can also be used for inverse
transforms. The following two examples illustrate the use of the Laplace transform
method in the solution of differential equations.

EXAMPLE 9.1.1: Consider the first-order differential equation

b
du
dt

+ cu = f0, (9.1.9)

where b, c, and f0 are constants. Equation (9.1.9) is subjected to zero initial con-
dition, u(0) = 0. Determine the solution using the Laplace transform method.

SOLUTION: The Laplace transform of the equation gives

(bs + c)ū = f0

s
or ū(s) = f0

bs
(
s + c

b

) . (9.1.10)

To invert Eq. (9.1.10) to determine u(t), we rewrite the expression as (i.e., split
into partial fractions; see Problem 9.1 for an explanation of the method of partial
fractions)

ū(s) = f0

c

(
1
s

− 1
s + α

)
, α = c

b
.

The inverse transform is given by (see Table 9.1.1)

u(t) = f0

c

(
1 − e−αt) . (9.1.11)

When b and c are positive real numbers, u(t) approaches f0/c as t → ∞.

EXAMPLE 9.1.2: Consider the second-order differential equation

a
d2u
dt2

+ b
du
dt

+ cu = f0, (9.1.12)

where a, b, c, and f0 are constants. The equation is to be solved subjected to
zero initial conditions, u(0) = 0 and u̇(0) = 0. Determine the solution using the
Laplace transform method.

SOLUTION: The Laplace transform of the equation gives

(as2 + bs + c)ū = f0

s
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Table 9.1.1. The Laplace transforms of some standard functions

f (t) f̄ (s)

f (t)
∫∞

0 e−st f (t) dt

ḟ ≡ df
dt s f̄ (s) − f (0)

f̈ ≡ d2 f
dt2 s2 f̄ (s) − s f (0) − ḟ (0)

f (n)(t) ≡ dn f
dtn sn f̄ (s) − sn−1 f (0) − sn−2 ḟ (0)

− · · · − f (n−1)(0)∫ t
0 f (ξ) dξ 1

s f̄ (s)∫ t
0 f1(t) f2(t − ξ) dξ f̄ 1(s) f̄ 2(s)

H(t) 1
s

δ(t) = Ḣ(t) 1

δ̇(t) = Ḧ(t) s

δ(n)(t) sn

t 1
s2

tn n!
sn+1

t f (t) − f̄ ′(s)

tn f (t) (−1)n f̄ (n)(s)

eat f (t) f̄ (s − a) dt

eat 1
s−a

teat 1
(s−a)2

tneat n!
(s−a)n+1 , n = 0, 1, 2, · · ·

eat − ebt a−b
(s−a)(s−b)(

aeat − bebt
) s(a−b)

(s−a)(s−b)

sin at a
s2+a2

cos at s
s2+a2

sinh at a
s2−a2

cosh at s
s2−a2

t sin at 2as
(s2+a2)2

t cos at s2−a2

(s2+a2)2

ebt sin at a
(s−b)2+a2

ebt cos at s−b
(s−b)2+a2

1 − cos at a2s
s(s2+a2)

at − sin at a3

s2(s2+a2)

sin at − at cos at 2a3

(s2+a2)2

sin at + at cos at 2as2

(s2+a2)2

cos at − cos bt (b2−a2)s
(s2+a2)2(s2+b2) , b2 	= a2

sin at cosh at − cos at sinh at 4a3s
s4+4a4

sin at sinh at 2a2s
s4+4a4

sinh at − sin at 2a3

(s4−a4)

cosh at − cos at 2a2s
s4−a4√

t
√

π

2 s−3/2

1√
π t

1√
s

J0(at) 1√
s2+a2

ebt −eat

t log s−a
s−b

1
t (1 − cos at) 1

2 log s2+a2

s2

1
t (1 − cosh at) 1

2 log s2−a2

s2
1
t sin kt arctan k

s

J0(at) is the Bessel function of the first kind.

309



P1: IBE

Chapter09 CUFX197-Reddy 978 0 521 87044 3 October 3, 2007 10:50

310 Linear Viscoelasticity

or

ū(s) = f0

s(as2 + bs + c)
.

To invert the above equation to determine u(t), first we write as2 + bs + c as
a(s + α)(s + β), where α and β are the roots of the equation as2 + bs + c = 0:

α = 1
2a

(
b −

√
b2 − 4ac

)
, β = 1

2a

(
b +

√
b2 − 4ac

)
, (9.1.13)

so that

ū(s) = f0

as(s + α)(s + β)
. (9.1.14)

The actual nature of the solution u(t) depends on the nature of the roots
α and β in Eq. (9.1.13). Three possible cases depend on whether b2 − 4ac > 0,
b2 − 4ac = 0, or b2 − 4ac < 0. We discuss them under the assumption that a, b,
and c are positive real numbers.

CASE 1. When b2 − 4ac > 0, the roots are real, positive, and unequal. Then, we
can rewrite Eq. (9.1.14) as

ū = f0

a

[
A
s

+ B
s + α

+ C
s + β

]
,

so that we can use the inverse Laplace transform to obtain u(t). The constants
A, B, and C satisfy the relations

A + B + C = 0, (α + β)A + βB + αC = 0, αβ A = 1.

The solution of these equations is

A = 1
αβ

, B = 1
α(β − α)

, C = 1
β(β − α)

.

Thus, we have

ū(s) = f0

a

[
1

αβs
− 1

α(β − α)(s + α)
+ 1

β(β − α)(s + β)

]
. (9.1.15)

The inverse transform is

u(t) = f0

aαβ

[
1 − β

β − α
e−αt + α

β − α
e−βt

]

= f0

aαβ(β − α)

[
β
(
1 − e−αt)− α

(
1 − e−βt)] . (9.1.16)

Hence, u(t) approaches f0/aαβ as t → ∞.

CASE 2. When b2 − 4ac = 0, the roots are real, positive, and equal, α = β =
b/2a. Then Eq. (9.1.14) takes the form

ū(s) = f0

as(s + α)2
= f0

aα

[
1
α

(
1
s

− 1
s + α

)
− 1

(s + α)2

]
. (9.1.17)
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The inverse Laplace transform gives

u(t) = f0

aα2

[
1 − (1 + αt)e−αt] . (9.1.18)

Hence, u(t) approaches 4 f0a/b2 as t → ∞.

CASE 3. When b2 − 4ac < 0, the roots are complex, and they appear in complex
conjugate pairs:

α = α1 − iα2, β = α1 + iα2; α1 = b
2a

, α2 =
√

4ac − b2 . (9.1.19)

From Eq. (9.1.16), we obtain

u(t) = f0

aαβ(β − α)
e−α1t [β (1 − eiα2t)− α

(
1 − e−iα2t)]

= f0

a
(
α2

1 + α2
2

)e−α1t
(

1 − cos α2t − α1

α2
sin α2t

)
. (9.1.20)

Hence, u(t) approaches zero as t → ∞.

9.2 Spring and Dashpot Models

9.2.1 Creep Compliance and Relaxation Modulus

The equations relating stress σ and strain ε in spring-dashpot models are ordinary
differential equations, and they have the general form given in Eq. (9.1.1). The solu-
tion of Eq. (9.1.1) to determine σ (t) for a given ε(t) (relaxation response) or to de-
termine ε(t) for given σ (t) (creep response) is made easy by the Laplace transform
method. In this section, we shall study several standard spring-dashpot models for
their constitutive models and creep and relaxation responses. First, we note certain
features of the general constitutive equation (9.1.1). In general, the creep response
and relaxation response are of the form

ε(t) = J (t)σ0, (9.2.1)

σ (t) = Y(t)ε0, (9.2.2)

where J (t) is called the creep compliance and Y(t) the relaxation modulus associated
with (9.1.1). The function J (t) is the strain per unit of applied stress, and Y(t) is the
stress per unit of applied strain. By definition, both J (t) and Y(t) are zero for all
t < 0.

The Laplace transform of Eq. (9.1.1) for creep response and relaxation response
have the forms

Creep response Q̄s ε̄(s) = P̄s σ̄ (s) = 1
s

P̄sσ0, (9.2.3)

Relaxation response P̄s σ̄ (s) = Q̄s ε̄(s) = 1
s

Q̄sε0, (9.2.4)
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where

P̄s =
M∑

m=0

pmsm, Q̄s =
N∑

n=0

qnsn. (9.2.5)

The Laplace transforms of Eqs. (9.2.1) and (9.2.2) are

ε̄(s) = J̄ (s)σ0, (9.2.6)

σ̄ (s) = Ȳ(s)ε0 (9.2.7)

Comparing Eq. (9.2.3) with (9.2.6) and Eq. (9.2.4) with (9.2.7), we obtain

J̄ (s) = 1
s

P̄s

Q̄s
, Ȳ(s) = 1

s
Q̄s

P̄s
. (9.2.8)

It also follows that the Laplace transforms of the creep compliance and relaxation
modulus are related by

J̄ (s) Ȳ(s) = 1
s2

or t =
∫ t

0
Y(t − t ′) J (t ′) dt ′. (9.2.9)

Thus, once we know creep compliance J (t), we can determine the relaxation mod-
ulus Y(t) and vice versa

Y(t) = L−1
[

1
s2 J̄ (s)

]
, J (t) = L−1

[
1

s2Ȳ(s)

]
. (9.2.10)

Although creep and relaxation tests have the advantage of simplicity, there are
also shortcomings. The first shortcoming is that uniaxial creep and relaxation test
procedures assume the stress to be uniformly distributed through the specimen, with
the lateral surfaces being free to expand and contract. This condition cannot be
satisfied at the ends of a specimen that is attached to a test machine. The second
shortcoming involves the dynamic effects which are encountered in obtaining data at
short times. The relaxation and creep functions which are determined through Eqs.
(9.2.1) and (9.2.2) are based on the assumption that all transients excited through
the dynamic response of specimen and testing machine are neglected. Typically,
this effect limits relaxation and creep data to times no less than 0.1 seconds.

9.2.2 Maxwell Element

The Maxwell element of Figure 9.2.1 consists of a linear elastic spring element in
series with a dashpot element. The stress–strain relation for the model is developed
using the following stress–strain relationships of individual elements:

σ = kε, σ = ηε̇, (9.2.11)

where k is the spring elastic constant, η is the dashpot viscous constant, and the
superposed dot indicates time derivative. It is understood that the spring element
responds instantly to a stress, while the dashpot cannot respond instantly (because
its response is rate dependent). Let ε1 be the strain in the spring and ε2 be the strain
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Figure 9.2.1. The Maxwell element.

in the dashpot. When elements are connected in series, each element carries the
same amount of stress while the strains are different in each element. We have

ε̇ = ε̇1 + ε̇2 = σ̇

k
+ σ

η

or

σ + η

k
dσ

dt
= η

dε

dt
[P(σ ) = Q(ε)]. (9.2.12)

Thus, we have M = N = 1 [see Eqs. (9.1.1) and (9.1.2)] and p0 = 1, p1 = η/k, q0 = 0
and q1 = η.

9.2.2.1 Creep Response
Let σ = σ0 H(t). Then differential equation in (9.2.12) simplifies to

q1
dε

dt
= p1σ0δ(t) + p0σ0 H(t). (9.2.13)

The Laplace transform of Eq. (9.2.13) is

q1 [sε̄(s) − ε(0)] = σ0

(
p1 + p0

s

)
.

Assuming that ε(0) = 0, we obtain

ε̄(s) = σ0

(
p1

q1s
+ p0

q1s2

)
.

The inverse transform gives the creep response

ε(t) = σ0

q1
(p1 + p0t) = σ0

k

(
1 + t

τ

)
for t > 0, (9.2.14)

where τ is the retardation time or relaxation time,

τ = η

k
. (9.2.15)

Note that ε(0+) = σ0/k. The coefficient of σ0 in Eq. (9.2.14) is called the creep com-
pliance, denoted by J (t)

J (t) = 1
k

(
1 + t

τ

)
. (9.2.16)

The creep response of the Maxwell model is shown in Figure 9.2.2(a).
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Figure 9.2.2. (a) Creep response and (b) relaxation response of the Maxwell element.

9.2.2.2 Relaxation Response
Let ε = ε0 H(t). Then Eq. (9.2.12) reduces to

p1
dσ

dt
+ p0σ = q1ε0δ(t). (9.2.17)

The Laplace transform of the above equation is

p1 (sσ̄ − σ (0)) + p0σ̄ = q1ε0.

Using the initial condition σ(0) = 0, we write

σ̄ (s) = ε0

(
q1

p0 + p1s

)
= q1

p1
ε0

(
1

p0
p1

+ s

)
,

whose inverse transform is

σ (t) = q1

p1
ε0e−p0t/p1 = kε0e−t/τ , for t > 0. (9.2.18)

The coefficient of ε0 in Eq. (9.2.18) is called the relaxation modulus

Y(t) = ke−t/τ . (9.2.19)

The relaxation response of the Maxwell model is shown in Figure 9.2.2(b).
Note that the relaxation modulus Y(t) can also be obtained using Eq. (9.2.10).

We have

J̄ (s) = 1
ks2

(
s + 1

τ

)
,

and

Y(t) = L−1
[

1
s2 J̄ (s)

]
= L−1

[
k

(s + 1
τ

)

]
= ke−t/τ ,

which is the same as that in Eq. (9.2.19).
Figure 9.2.3 shows the creep and relaxation responses of the Maxwell model in

a standard test in which the stress and strain are monitored to see the creep and
relaxation during the same test.
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Figure 9.2.3. A standard test of a Maxwell fluid.

A generalized Maxwell model consists of N Maxwell elements in parallel and a
free spring (k0) in series. The relaxation response of the generalized Maxwell model
is of the form [see Eq. (9.2.18)]

σ (t) = ε0

[
k0 +

N∑
n=1

kn e− t
τn

]
, τn = ηn

kn
. (9.2.20)

The relaxation modulus of the generalized Maxwell model is

Y(t) = k0 +
N∑

n=1

kn e− t
τn . (9.2.21)

9.2.3 Kelvin–Voigt Element

The Kelvin–Voigt element of Figure 9.2.4 consists of a linear elastic spring element
in parallel with a dashpot element. The stress–strain relation for the model is derived
as follows. Let σ1 be the stress in the spring and σ2 be the stress in the dashpot. Each
element carries the same amount of strain. Then

σ = σ1 + σ2 = kε + η
dε

dt
. (9.2.22)

We have p0 = 1, q0 = k, and q1 = η.

k
•

• •

1

2

•
••Figure 9.2.4. The Kelvin–Voigt solid element.
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Figure 9.2.5. (a) Creep response and (b) relaxation response of the Kelvin–Voigt element.

9.2.3.1 Creep Response
Let σ = σ0 H(t). Then the differential equation in (9.2.22) becomes

q1
dε

dt
+ q0ε = p0σ0 H(t). (9.2.23)

The Laplace transform of the equation yields (with zero initial condition)

ε̄(s) = p0σ0

q1

1

s
(

s + q0
q1

) = p0σ0

q0


1

s
− 1(

s + q0
q1

)

 .

The inverse is

ε(t) = p0σ0

q0

(
1 − e− q0

q1
t
)

= σ0

k

(
1 − e− t

τ

)
. (9.2.24)

The creep response of the Kelvin–Voigt model is shown in Figure 9.2.5(a). Note that
in the limit t → ∞, the strain attains the value ε∞ = σ0/k. The creep compliance of
the Kelvin–Voigt model is

J (t) = 1
k

(
1 − e− t

τ

)
. (9.2.25)

9.2.3.2 Relaxation Response
Let ε(t) = ε0 H(t) in Eq. (9.2.22). We obtain

σ (t) = ε0 [q0 H(t) + q1δ(t)] = J (t)ε0, Y(t) = [kH(t) + ηδ(t)] . (9.2.26)

Alternatively, we have

s2 J̄ (s) = s
η

1
s + k/η

, Ȳ(s) = η + k
s
,

from which we obtain Y(t) as given in Eq. (9.2.26). The relaxation response of the
Kelvin–Voigt model is shown in Figure 9.2.5(b). The creep and relaxation responses
in the standard test of the Kelvin–Voigt model are shown in Figure 9.2.6.

A generalized Kelvin–Voigt model consists of N Kelvin–Voigt elements in
series along with the Maxwell element, and it can be used to fit creep data to a
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Figure 9.2.6. A standard test of a Kelvin–Voigt solid.

high degree. The creep compliance of the generalized Kelvin–Voigt model is [see
Eq. (9.2.25)]

J (t) = 1
k0

+ t
η0

+
N∑

n=1

1
kn

(
1 − e− t

τn

)
, τn = ηn

kn
. (9.2.27)

9.2.4 Three-Element Models

There are two three-element models, as shown in Figures 9.2.7(a) and 9.2.7(b). In
the first one, an extra spring element is added in series to the Kelvin–Voigt element,
and in the second one, a spring element is added in parallel to the Maxwell element.
The constitutive equations for the two models are derived as follows.

For the three-element model in Figure 9.2.7(a), we have

σ = σ1 + σ2, ε = ε1 + ε2, σ1 = k2ε2, σ2 = ηε̇2, ε1 = σ

k1
. (9.2.28)

Using the relations in (9.2.28) we obtain

η

k1

dσ

dt
+
(

1 + k2

k1

)
σ = k2ε + η

dε

dt
. (9.2.29)

Figure 9.2.7. Three-element models.
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Equation (9.2.29) is of the form P(σ ) = Q(ε)

p0σ + p1
dσ

dt
= q0ε + q1

dε

dt
,

p0 = 1 + k2

k1
, p1 = η

k1
, q0 = k2, q1 = η.

(9.2.30)

For the three-element model shown in Figure 9.2.7(b), we have

σ = σ1 + σ2, ε = ε1 + ε2, ε1 = σ2

k2
, ε̇2 = σ2

η
, ε = σ1

k1
. (9.2.31)

Combining the above relations, we arrive at

1
η
σ + 1

k2

dσ

dt
= k1

η
ε +

(
1 + k1

k2

)
dε

dt
,

or

p0σ + p1
dσ

dt
= q0ε + q1

dε

dt
,

p0 = 1
η
, p1 = 1

k2
, q0 = k1

η
, q1 = 1 + k1

k2
.

(9.2.32)

Apparently, the three-element models represent the constitutive behavior of an
ideal cross-linked polymer.

The creep and relaxation response of the three-element model shown in
Figure 9.2.7(a) are studied next. Substituting σ (t) = σ0 H(t) into Eq. (9.2.30), we
obtain

p0σ0 H(t) + p1σ0δ(t) = q0ε + q1
dε

dt
. (9.2.33)

The Laplace transform of the above equation yields

(q0 + q1s) ε̄(s) = σ0

( p0

s
+ p1

)
or ε̄(s) = σ0

(p0 + p1s)
s(q0 + q1s)

, (9.2.34)

where zero initial conditions are used. We rewrite the above expression in a form
suitable for inversion back to the time domain

ε̄(s) = σ0


 p0

q0

(
1
s

− 1
q0
q1

+ s

)
+ p1

q1

1(
q0
q1

+ s
)

 . (9.2.35)

Using the inverse Laplace transform, we obtain

ε(t) = σ0

[
p0

q0

(
1 − e− t

τ

)
+ p1

q1
e− t

τ

]
, τ = q1

q0

= σ0

[
k1 + k2

k1k2

(
1 − e− t

τ

)
+ 1

k1
e− t

τ

]
, τ = η

k2
.

(9.2.36)
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Thus, the creep compliance is given by

J (t) =
[

k1 + k2

k1k2

(
1 − e− t

τ

)
+ 1

k1
e− t

τ

]
= 1

k1
+ 1

k2

(
1 − e− t

τ

)
. (9.2.37)

For the relaxation response, let ε(t) = ε0 H(t) in Eq. (9.2.30) and obtain

p0σ + p1
dσ

dt
= q0ε0 H(t) + q1ε0δ(t). (9.2.38)

The Laplace transform of the equation is

(p0 + p1s) σ̄ (s) = ε0

(q0

s
+ q1

)
or σ̄ (s) = ε0

(q0 + q1s)
s(p0 + p1s)

, (9.2.39)

where zero initial conditions are used. We rewrite the above expression in the form

σ̄ (s) = ε0


 q0

p0

(
1
s

− 1
p0
p1

+ s

)
+ q1

p1

1(
p0
p1

+ s
)

 . (9.2.40)

Using the inverse Laplace transform, we obtain

σ (t) = ε0

[
q0

p0

(
1 − e− t

τ

)
+ q1

p1
e− t

τ

]
, τ = p1

p0

= ε0

[
k1k2

k1 + k2

(
1 − e− t

τ

)
+ k1e− t

τ

]
, τ = η

k1 + k2
.

(9.2.41)

Thus, the relaxation modulus is given by

Y(t) =
[

k1k2

k1 + k2

(
1 − e− t

τ

)
+ k1e− t

τ

]
, τ = η

k1 + k2
. (9.2.42)

Determination of the creep and relaxation responses of the three-element
model in Figure 9.2.7(b) will be considered in Example 9.2.3.

9.2.5 Four-Element Models

The four-element models, such as the ones shown in Figure 9.2.8, have constitutive
relations that involve second-order derivatives of stress and strain. Here we discuss
the creep response of such models in general terms. The relaxation response follows
along similar lines to what is discussed for creep response.

Consider the second-order differential equation

p0σ + p1σ̇ + p2σ̈ = q0ε + q1ε̇ + q2ε̈. (9.2.43)

Let σ (t) = σ0 H(t). We have

p0σ0 H(t) + p1σ0δ(t) + p2σ0δ̇(t) = q0ε + q1ε̇ + q2ε̈. (9.2.44)

Taking the Laplace transform and assuming homogeneous initial conditions, we ob-
tain

σ0

( p0

s
+ p1 + p2s

)
= (

q0 + q1s + q2s2) ε̄(s) (9.2.45)
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Figure 9.2.8. Four-element models.

or

ε̄(s) = σ0
p0 + p1s + p2s2

s(q0 + q1s + q2s2)
. (9.2.46)

To invert the above equation to determine ε(t), first we write q2s2 + q1s + q0 as
q2(s + α)(s + β), where α and β are the roots of the equation q2s2 + q1s + q0 = 0:

α = 1
2q2

(
q1 −

√
q2

1 − 4q2q0

)
, β = 1

2q2

(
q1 +

√
q2

1 − 4q2q0

)
(9.2.47)

so that

ε̄(s) = σ0
p0 + p1s + p2s2

q2s(s + α)(s + β)
. (9.2.48)

We write the solution in three parts for the case of real and unequal roots with
q0 	= 0, q1 	= 0, and q2 	= 0:

ε̄1(s) = σ0
p0

q2

[
1

αβs
− 1

α(β − α)(s + α)
+ 1

β(β − α)(s + β)

]
, (9.2.49)

ε̄2(s) = σ0
p1

q2

[
1

(β − α)(s + α)
− 1

(β − α)(s + β)

]
, (9.2.50)

ε̄3(s) = σ0
p2

q2

[
− α

(β − α)(s + α)
+ β

(β − α)(s + β)

]
. (9.2.51)

The solution is obtained by taking inverse Laplace transform

ε(t) = σ0

q2


p0

[
1

αβ
− e−αt

α(β − α)
+ e−βt

β(β − α)

]

+ p1

[
e−αt

(β − α)
− e−βt

(β − α)

]
+ p2

[
− αe−αt

(β − α)
+ βe−βt

(β − α)

]
. (9.2.52)
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When q2 = 0, q1 	= 0, and q0 	= 0, Eq. (9.2.46) takes the form (with α = q0/q1)

ε̄(s) = σ0

q1

[
p0

α

(
1
s

− 1
s + α

)
+ p1

s + α
+ p2

(
1 − α

s + α

)]
, (9.2.53)

and the solution is given by

ε(t) = σ0

q1

[ p0

α

(
1 − e−αt)+ p1e−αt + p2

(
δ(t) − αe−αt)] . (9.2.54)

The Dirac delta function indicates that the model lacks impact response. That is,
if a Dirac delta function appears in a relaxation function Y(t), a finite stress is not
sufficient to produce at once a finite strain, and an infinite one is needed.

When q0 = 0, q1 	= 0, and q2 	= 0, Eq. (9.2.46) takes the form (with α = q1/q2)

ε̄(s) = σ0

q2

[
p0

α2

(
α

s2
− 1

s
+ 1

s + α

)
+ p1

α

(
1
s

− 1
s + α

)
+ p2

s + α

]
, (9.2.55)

and the solution is given by

ε(t) = σ0

q2

[
p0t
α

+ 1
α

(
p1 − p0

α

) (
1 − e−αt)+ p2e−αt

]
. (9.2.56)

This completes the general discussion of the creep response of four-element
models. For the relaxation response the role of p’s and q’s is exchanged. Alterna-
tively, we can use Eq. (9.2.10) to determine Y(t).

EXAMPLE 9.2.3: Consider the differential equation in Eq. (9.2.32),

p0σ + p1σ̇ = q0ε + q1ε̇ (9.2.57)

with

p0 = 1
η
, p1 = 1

k2
, p2 = 0, q0 = k1

η
, q1 = k1 + k2

k2
, q2 = 0. (9.2.58)

Determine the creep and relaxation response.

SOLUTION: From Eq. (9.2.54), we have the creep response (α = q0/q1)

ε(t) = σ0
k2

k1 + k2

[
1
αη

(
1 − e−αt)+ 1

k2
e−αt

]

= σ0

[
1
k1

(
1 − e−αt)+ 1

k1 + k2
e−αt

]
, α = k1k2

η(k1 + k2)
. (9.2.59)

Thus, the creep compliance of the three-element model in Figure 9.2.7(b)

J (t) = 1
k1

(
1 − e−αt)+ 1

k1 + k2
e−αt . (9.2.60)

The relaxation response is σ(t) = Y(t)ε0 with Y(t) computed as follows. We
have

Ȳ(s) = 1
s2 J̄ (s)

, J̄ (s) = 1
k1

(
1
s

− 1
s + α

)
+ 1

k1 + k2

1
s + α
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and

s2 J̄ (s) =
s
(

s + k2
η

)
(k1 + k2)(s + α)

,
1

s2 J̄ (s)
= k2

s + k2
η

+ k1

s
. (9.2.61)

Thus, the relaxation modulus is

Y(t) = k1 + k2e−t/τ , τ = η

k2
. (9.2.62)

EXAMPLE 9.2.4: Consider the differential equation

ε̈ + k2

η2
ε̇ = 1

k1
σ̈ +

(
1
η1

+ 1
η2

+ k2

k1η2

)
σ̇ + k2

η1η2
σ. (9.2.63)

Thus, we have

q0 = 0, q1 = k2

η2
, q2 = 1, p0 = k2

η1η2
, p1 = 1

η1
+ 1

η2
+ k2

k1η2
, p2 = 1

k1
.

(9.2.64)

Determine the creep and relaxation response of the model.

SOLUTION: The creep response is given by Eq. (9.2.56)

ε(t) = σ0

q2

[
p0t
α

+ 1
α

(
p1 − p0

α

) (
1 − e−αt)+ p2e−αt

]

= σ0


 1

k1
+ t

η1
+ 1

k2

(
1 − e−t/τ )


, τ = 1

α
= η2

k2
. (9.2.65)

Thus, the creep compliance is

J (t) = 1
k1

+ t
η1

+ 1
k2

(1 − e−t/τ ). (9.2.66)

To determine the relaxation modulus, we compute

J̄ (s) = 1
k1s

+ 1
η1s2

+ 1
k2

(
1
s

− 1

s + 1
τ

)
,

s2 J̄ (s) = s
k1

+ 1
η1

+ 1
η2

(
s

s + 1
τ

)
= as2 + bs + c

d
(
s + 1

τ

) ,

(9.2.67)

where

a = η1η2, b = (k1 + k2)η1 + k1η2, c = k1k2, d = k1η1η2. (9.2.68)

Then

Ȳ(s) = 1
s2 J̄

= d
(
s + 1

τ

)
as2 + bs + c

= d
a

(
A

s + α
+ B

s + β

)
(9.2.69)
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where

α = b
2a

+ 1
2a

√
b2 − 4ac, β = b

2a
− 1

2a

√
b2 − 4ac,

A = − k2 − η2α

η2(α − β)
, B = k2 − η2β

η2(α − β)
.

(9.2.70)

It can be shown that b2 > 4ac and α > β > 0 for ki > 0 and ηi > 0. Hence, we
have

Y(t) = k1η1√
b2 − 4ac

[− (k2 − η2α) e−αt + (k2 − η2β) e−βt]

= k1η1√
b2 − 4ac

[
k2
(
e−βt − e−αt)+ η2

(
αe−αt − βe−βt)] . (9.2.71)

9.3 Integral Constitutive Equations

9.3.1 Hereditary Integrals

The spring-and-dashpot elements are discrete models and are governed by differen-
tial equations. At t = 0, a stress σ0 applied suddenly produces a strain ε(t) = J (t)σ0

(see Figure 9.3.1). If the stress σ0 is maintained unchanged, then ε(t) = J (t)σ0 de-
scribes the strain for all t > 0. If we treat the material as linear, we can use the
principle of linear superposition to calculate the strain produced in a given direction
by the action of several loads of different magnitudes. If, at t = t1, some more stress
�σ1 is applied, then additional strain is produced which is proportional to �σ1 and

( )tσ

t

1σ∆

1t 2t

( )tε

t

0σ

2σ∆

0

0 1t 2t

0( )J t σ

1 1( )J t t σ∆−
2 2( )J t t σ∆−

t

Figure 9.3.1. Strain response due to σ0 and �σi .
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σ

Figure 9.3.2. Linear superposition to derive hereditary integral.

depends on the same creep compliance. This additional strain is measured for t > t ′.
Hence, the total strain for t > t1 is the sum of the strain due to σ0 and that due to
�σ1:

ε(t) = J (t)σ0 + J (t − t1)�σ1. (9.3.1)

Similarly, if additional stress �σ2 is applied at time t = t2, then the total strain for
t > t2 is

ε(t) = J (t)σ0 + J (t − t1)�σ1 + J (t − t2)�σ2

= J (t)σ0 +
2∑

i=1

J (t − ti )�σi . (9.3.2)

If the stress applied is an arbitrary function of t , it can be divided into the first
part σ0 H(t) and a sequence of infinitesimal stress increments dσ (t ′)H(t − t ′) (see
Fig. 9.3.2). The corresponding strain at time t can be written (using the Boltzmann’s
superposition principle)

ε(t) = J (t)σ0 +
∫ t

0
J (t − t ′)dσ (t ′) = J (t)σ0 +

∫ t

0
J (t − t ′)

dσ (t ′)
dt ′ dt ′. (9.3.3)

Equation (9.3.3) indicates that the strain at any given time depends on all that has
happened before, that is, on the entire stress history σ (t ′) for t ′ < t .

This is in contrast to the elastic material whose strain only depends on the stress
acting at that time only. Equation (9.3.3) is called a hereditary integral.

Equation (9.3.3) can be written in alternate form

ε(t) = J (t)σ (0) + [J (t − t ′) σ (t ′)]t
0 −

∫ t

0

dJ (t − t ′)
dt ′ σ (t ′) dt ′

= J (0) σ (t) +
∫ t

0

dJ (t − t ′)
d(t − t ′)

σ (t ′) dt ′ (9.3.4)

= J (0) σ (t) +
∫ t

0

dJ (τ )
dτ

σ (t − τ ) dτ. (9.3.5)

Equation (9.3.3) separates the strain caused by initial stress σ (0) and that caused
by stress increments. On the other hand, Eq. (9.3.5) separates the strain into the part
that would occur if the total stress σ (t) were applied at time t and additional strain
produced due to creep.
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It is possible to include the initial part due to σ0 into the integral. For example,
Eq. (9.3.3) can be written as

ε(t) =
∫ t

−∞
J (t − t ′)

dσ (t ′)
dt ′ dt ′. (9.3.6)

The fact that J (t) = 0 for t < 0 is used in writing the above integral, which is known
as Stieljes integral.

Arguments similar to those presented for the creep compliance can be used to
derive the hereditary integrals for the relaxation modulus Y(t). If the strain history
is known as a function of time, ε(t), the stress is given by

σ (t) = Y(t)ε(0) +
∫ t

0
Y(t − t ′)

dε(t ′)
dt ′ dt ′ (9.3.7)

= Y(0) ε(t) +
∫ t

0

dY(t ′)
dt ′ ε(t − t ′) dt ′ (9.3.8)

=
∫ t

−∞
Y(t − t ′)

dε(t ′)
dt ′ dt ′. (9.3.9)

EXAMPLE 9.3.1: Consider the stress history shown in Figure 9.3.3. Write the
hereditary integral in Eq. (9.3.4) for the Maxwell model and Kelvin–Voigt
model.

SOLUTION: The creep compliance of the Maxwell model is given in Eq. (9.2.16)
as J (t) = (1/k + t/η) with J (0) = 1/k. Then the strain response according to
the hereditary integral in Eq. (9.3.4) is given by

For t < t1 : ε(t) = σ1
t
t1

1
k

+ σ1

t1

∫ t

0
t ′ 1

η
dt ′ = σ1t

ηt1

(
η

k
+ t

2

)
. (9.3.10)

For t > t1 : ε(t) = σ1
1
k

+ σ1

t1

∫ t1

0
t ′ 1

η
dt ′ + σ1

∫ t

t1
1 · 1

η
dt ′

= σ1

η

(
η

k
+ t1

2
+ t

)
. (9.3.11)

By setting t1 = 0, we obtain the same result as in Eq. (9.2.14).
The creep compliance of the Kelvin–Voigt model is given in Eq. (9.2.25).

Then the strain response according to the hereditary integral in Eq. (9.3.4) is
given by

For t < t1 : ε(t) = σ1
t
t1

· 0 + σ1

ηt1

∫ t

0
t ′e−(t−t ′)/τ dt ′

= σ1

kt1

[
t − η

k

(
1 − e−t/τ )] . (9.3.12)

For t > t1 : ε(t) = σ1

ηt1

∫ t1

0
t ′e−(t−t ′)/τ dt ′ + σ1

η

∫ t

t1
e−(t−t ′)/τ dt ′

= σ1

k

[
1 + η

kt1

(
1 − et1/τ

)
e−t/τ

]
. (9.3.13)
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t
0 1t

1σ

σ

Figure 9.3.3. Stress history

By setting t1 = 0 in Eq. (9.3.13), we obtain (use L’Hospital rule to deal with
zero divided by zero condition) the same strain response as in Eq. (9.2.25). For
t → ∞, the strain goes to ε = σ1/k, the same limit as if σ1 were applied suddenly
at t = 0 or t = t1. This implies that the stress history is wiped out if sufficient time
has elapsed. Thus, Kelvin–Voigt model represents the behavior of an elastic
solid.

9.3.2 Hereditary Integrals for Deviatoric Components

The one-dimensional linear viscoelastic stress–strain relations developed in the pre-
vious sections can be extended in a straightforward manner to those relating the
deviatoric stress components to the deviatoric strain components. Recall that the
deviatoric stress and strain tensors are defined as

deviatoric stress σ′ ≡ σ − σ̃I,
(

σ ′
i j = σi j − 1

3
σkkδi j

)
, (9.3.14)

deviatoric strain ε′ ≡ ε − 1
3

tr(ε),
(

ε′
i j = εi j − 1

3
εkkδi j

)
, (9.3.15)

where σ̃ is the mean stress and e is the dilatation

mean stress σ̃ ≡ 1
3
σi i , dilatation e ≡ εi i . (9.3.16)

The constitutive equations between the deviatoric components of a linear elastic
isotropic material are

σ̃ = Ke, σ′ = 2µε′ (σ ′
i j = 2µε′

i j ). (9.3.17)

Here K denotes the bulk modulus and µ is the Lamé constant (the same as
the shear modulus), which are related to Young’s modulus E and Poisson’s ratio
ν by

K = E
3(1 − 2ν)

, µ = G = E
2(1 + ν)

. (9.3.18)

The linear viscoelastic strain–stress and stress–strain relations for the deviatoric
components in Cartesian coordinates are

ε′
i j (t) =

∫ t

−∞
Js(t − t ′)

dσ ′
i j

dt ′ dt ′, (9.3.19)

εkk(t) =
∫ t

−∞
Jd(t − t ′)

dσkk

dt ′ dt ′, (9.3.20)
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σ ′
i j (t) = 2

∫ t

−∞
G(t − t ′)

dε′
i j

dt ′ dt ′, (9.3.21)

σkk(t) = 3
∫ t

−∞
K(t − t ′)

dεkk

dt ′ dt ′ (9.3.22)

where Js(t) is the creep compliance in shear and Jd is the creep compliance in dila-
tion. The general stress–strain relations may be written as

σi j (t) = 2
∫ t

−∞
G(t − t ′)

dεi j (t ′)
dt ′ dt ′

+ δi j

∫ t

−∞

[
K(t − t ′) − 2

3
G(t − t ′)

]
dεkk(t ′)

dt ′ dt ′, (9.3.23)

εi j (t) =
∫ t

−∞
Js(t − t ′)

dσi j (t ′)
dt ′ dt ′

+ 1
3
δi j

∫ t

−∞
[Jd(t − t ′) − Js(t − t ′)]

dσkk(t ′)
dt ′ dt ′. (9.3.24)

The Laplace transforms of Eqs. (9.3.19)–(9.3.22) are

ε̄′
i j (s) = s J̄ s(s) σ̄ ′

i j (s), σ̄ ′
i j (s) = 2s Ḡ(s) ε̄′

i j (s), (9.3.25)

ε̄kk(s) = s J̄ d(s) σ̄ kk(s), σ̄ kk(s) = 3s K̄(s) ε̄kk(s), (9.3.26)

from which it follows that

2Ḡ(s) = 1
s2 J̄ s(s)

, (9.3.27)

3K̄(s) = 1
s2 J̄ d(s)

. (9.3.28)

9.3.3 The Correspondence Principle

There exists certain correspondence between the elastic and viscoelastic solutions
of a boundary value problem. The correspondence allows us to obtain solutions of
a viscoelastic problem from that of the corresponding elastic problem.

Consider a one-dimensional elastic problem, such as a bar or beam, carrying
certain applied loads F0

i , i = 1, 2, · · · . Suppose that the stress induced is σ e. The
strain is

εe = σ e/E. (9.3.29)

Then consider the same structure but made of a viscoelastic material. Assume that
the same loads are applied at time t = 0 and then held constant

Fi (t) = F0
i H(t).
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The stress in the viscoelastic beam is σ (t) = σ e H(t). The strain in the viscoelastic
structure is

ε(t) = J (t)σ e. (9.3.30)

For any time t , the strain in the viscoelastic structure is like the strain in an elastic
beam of modulus E = 1/J (t). Thus, we have the following correspondence principle
(Part 1): If a viscoelastic structure is subjected to loads that are all applied simultane-
ously at t = 0 and then held constant, its stresses are the same as those in an elastic
structure under the same loads, and its time-dependent strains and displacements
are obtained from those of the elastic structure by replacing E by 1/J (t).

Next, consider an elastic structure in which the displacements are prescribed
and held constant. Suppose that the displacement in the structure is ue. The strain εe

can be computed from the displacement ue using an appropriate kinematic relation
and stress σ using the constitutive equation

σ = Eεe. (9.3.31)

Then consider the same structure but made of a viscoelastic material. If we pre-
scribe deflection u(t) = ue H(t), the strains produced are ε(t) = εe H(t). The strain
will produce a stress

σ (t) = Y(t)εe. (9.3.32)

For any time t , the stress in the viscoelastic structure is like the stress in an elastic
beam of modulus E = Y(t). Thus, we have the second part of the correspondence
principle: If a viscoelastic structure is subjected to displacements that are all imposed
at t = 0 and then held constant, its displacements and strains are the same as those in
the elastic structure under the same displacements, and its time-dependent stresses
are obtained from those of the elastic structure by replacing E by Y(t).

The ideas presented above for step loads or step displacements can be gener-
alized to loads and displacements that are arbitrary functions of time. Let we(x)
be the deflection of a structure made of elastic material and subjected to a load
f0(x). Then by the correspondence principle, the deflection of the same structure
but made of viscoelastic material with creep compliance J (t) and subjected to the
step load f (x, t) = f0(x)H(t) is

w(x, t) = J (t)we(x). (9.3.33)

If the load history is of general type, f (x, t) = f0(x)g(t), we can break the load his-
tory into a sequence of infinitesimal steps dg(t ′), as shown in Figure 9.3.4. Then we
can write the solution in the form of a hereditary integral

w(x, t) = we(x)
[

g(0)J (t) +
∫ t

0
J (t − t ′)

dg(t ′)
dt ′ dt ′

]
. (9.3.34)

Next we consider a number of examples to illustrate how to determine the vis-
coelastic response.
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t0 t

)(tg
gd

′′′

′

t
t

Figure 9.3.4. Load history as a sequence of infinitesimal
load steps.

EXAMPLE 9.3.2: Consider a simply supported beam, as shown in Figure 9.3.5. At
time t = 0, a point load P is placed at the center of the beam. Determine the
viscoelastic center deflections using Maxwell’s and Kelvin’s models.

SOLUTION: The deflection at the center of the elastic beam is

we
0 = PL3

48EI
. (9.3.35)

For a viscoelastic beam, we replace 1/E with creep compliance J (t) of a chosen
viscoelastic material (e.g., Maxwell model or Kelvin model)

wv
0(t) = J (t)

PL3

48I
. (9.3.36)

Using the Maxwell model, we can write [see Eq. (9.2.16)]

wv
0(t) = 1

k

(
1 + t

τ

)
PL3

48I
, τ = η

k
. (9.3.37)

For the Kelvin model, we obtain [see Eq. (9.2.25)]

wv
0(t) = 1

k

(
1 − e−t/τ ) PL3

48I
, τ = η

k
. (9.3.38)

Clearly, the response is quite different for the two materials.

EXAMPLE 9.3.3: Consider the simply supported beam of Figure 9.3.5 but with
specified deflection w0 at the center of the beam. Determine the viscoelastic
center deflection.

SOLUTION: The force required to deflect the elastic beam at the center by w0 is

Pe = 48EIw0

L3
. (9.3.39)

2
L

P

Figure 9.3.5. A simply supported beam with a central point load.
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To obtain the load for a viscoelastic beam, we replace E with relaxation modu-
lus Y(t) of the viscoelastic material used

Pe(t) = Y(t)
48Iw0

L3
. (9.3.40)

For the Maxwell model, we have the result [see Eq. (9.2.19)]

Pv
0 (t) = ke−t/τ 48Iw0

L3
, τ = η

k
, (9.3.41)

and for the Kelvin model, we obtain [see Eq. (9.2.26)]

Pv
0 (t) = k [H(t) + τ δ(t)]

48Iw0

L3
, τ = η

k
. (9.3.42)

EXAMPLE 9.3.4: Consider a simply supported beam with a uniformly distributed
load of intensity q0 as shown in Figure 9.3.6(a). Determine the viscoelastic de-
flection at the center.

SOLUTION: The elastic deflection of the beam is given by

we(x) = q0L4

24EI

[( x
L

)
− 2

( x
L

)3
+
( x

L

)4
]

. (9.3.43)

The midspan deflection is

we
0(L/2) = 5q0 L4

384EI
. (9.3.44)

For the load history shown in Figure 9.3.6(b), the midspan deflection of the
viscoelastic beam is

wv
0(L/2, t) = 5q0 L4

384I
1
t1

∫ t

0
J (t − t ′) dt ′, 0 < t < t1, (9.3.45)

wv
0(L/2, t) = 5q0 L4

384I
1
t1

∫ t1

0
J (t − t ′) dt ′, t > t1. (9.3.46)

For example, if we use the Kelvin–Voigt model, we obtain (τ = η/k):

wv
0(L/2, t) = 5q0 L4

384I
1

kt1

[
t − η

k

(
1 − e−t/τ )] , 0 < t < t1, (9.3.47)

wv
0(L/2, t) = 5q0 L4

384I
1
k

[
1 + η

kt1

(
1 − et1/τ

)
e−t/τ

]
, t > t1. (9.3.48)

t
0 1t

0q

(b)

)(tq

2
L

(a)

)(tq

Figure 9.3.6. A simply supported beam with a uniform load.
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Table 9.3.1. Field equations of elastic and viscoelastic bodies

Elasticity Viscoelasticity

Equations of motion
σi j, j + fi = ρüi σi j, j + fi = ρüi

Strain–displacement equations
εi j = 1

2 (ui, j + u j,i ) εi j = 1
2 (ui, j + u j,i )

Boundary conditions
ui = ûi on S1 ui = ûi on S1

ti ≡ nj σ j i = t̂i on S2 ti ≡ nj σ j i = t̂i on S2

Constitutive equations

σ ′
i j = 2Gε′

i j σ ′
i j = 2

∫ t
−∞ G(t − t ′)

dε′
i j

dt ′ dt ′

σkk = 3Kεkk σkk = 3
∫ t
−∞ K(t − t ′) dεkk

dt ′ dt ′

9.3.4 Elastic and Viscoelastic Analogies

In this section, we examine the analogies between the field equations of elastic and
viscoelastic bodies. These analogies help us to solve viscoelastic problems when so-
lutions to the corresponding elastic problem are known. The field equations are
summarized in Table 9.3.1 for the two cases. The Laplace transformed equations of
elastic and viscoelastic bodies are summarized in Table 9.3.2. The correspondence
is more apparent. A comparison of the Laplace transformed elastic and viscoelastic
equations reveal the following correspondence

σ e
i j (x) ∼ σ̄ v

i j (x, s), εe
i j (x) ∼ ε̄v

i j (x, s), (9.3.49)

Ge(x) ∼ Ḡ∗(x, s) = sḠ(x, s) Ke(x) ∼ K̄∗(x, s) = s K̄(x, s). (9.3.50)

This correspondence allows us to use the solution of an elastic boundary value prob-
lem to obtain the transformed solution of the associated viscoelastic boundary-value

Table 9.3.2. Field equations of elastic and Laplace transformed
viscoelastic bodies for the quasi-static case

Elasticity Viscoelasticity

Equations of motion
σi j, j + fi = 0 σ̄i j, j + f̄ i = 0

Strain-displacement equations
εi j = 1

2 (ui, j + u j,i ) ε̄i j = 1
2 (ūi, j + ū j,i )

Boundary conditions
ui = ûi on S1 ūi = ˆ̄ui on S1

ti ≡ nj σ j i = ˆ̄t i on S2 ˆ̄t i ≡ nj σ j i = ˆ̄t i on S2

Constitutive equations
σ ′

i j = 2Gε′
i j σ̄ ′

i j = sḠ(s)ε̄′
i j = G∗(s)ε̄′

i j

σkk = 3Kεkk σ̄kk = 3s K̄(s) ε̄kk = 3K∗(s) ε̄kk

G∗(s) = sḠ(s), K∗(s) = s K̄(s).



P1: IBE

Chapter09 CUFX197-Reddy 978 0 521 87044 3 October 3, 2007 10:50

332 Linear Viscoelasticity

problem by simply replacing the elastic material properties G and K with G∗ and K∗.
One needs only to invert the solution to obtain the time-dependent viscoelastic so-
lution. This analogy does not apply to problems for which the boundary conditions
are time dependent.

The analogy also holds for the dynamic case, but it is between the Laplace trans-
formed elastic variables and viscoelastic variables:

σ̄ e
i j (x, s) ∼ σ̄ v

i j (x, s), ε̄e
i j (x, s) ∼ ε̄v

i j (x, s), (9.3.51)

Ḡe(x, s) ∼ Ḡ∗(x, s) = sḠ(x, s) K̄e(x, s) ∼ K̄∗(x, s) = s K̄(x, s).

Next we consider an example of application of the elastic–viscoelastic analogy.

EXAMPLE 9.3.5: The structure shown in Figure 9.3.7 consists of a viscoelastic rod
and elastic rod connected in parallel to a rigid bar. The areas of cross sections
of the rods are the same. The modulus of the material of the rods are

Viscoelastic rod: E(t) = 2µH(t) + 2ηδ(t).
(9.3.52)

Elastic rod: E = Young’s modulus = constant.

If a load of P(t) = P0 H(t) acts on the rigid bar and the rigid bar is maintained
horizontal, determine the resulting displacement of the rigid bar.

SOLUTION: Let ue and uv(t) be the axial displacements in elastic and viscoelastic
rods, respectively. Then the axial strains in elastic and viscoelastic rods are given
by

εe = ue

L
, εv(t) = uv(t)

L
. (9.3.53)

The strain–stress relations for the two rods are

εe = σ e

Ee
, εv(t) =

∫ t

−∞
J (t − τ )

dσv

dτ
. (9.3.54)

v

Figure 9.3.7. Elastic–viscoelastic bar system.
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The axial stresses in elastic and viscoelastic rods are given by

σe = Fe

A
, σv(t) = Fv(t)

A
. (9.3.55)

From Eqs. (9.3.53)–(9.3.55) we have

ue = Fe L
Ee A

, uv(t) = L
A

∫ t

−∞
J (t − τ )

dFv

dτ
dτ, (9.3.56)

where Fe and Fv are the axial forces in the elastic and viscoelastic rods, respec-
tively. The geometric compatibility requires ue = uv , giving

Fe L
AEe

= L
A

∫ t

−∞
J (t − τ )

dFv

dτ
dτ

or

Fe = Ee
∫ t

−∞
J (t − τ )

dFv

dτ
dτ. (9.3.57)

The force equilibrium requires

P(t) = Fv + Fe = Fv + Ee
∫ t

−∞
J (t − τ )

dFv

dτ
dτ, (9.3.58)

which is an integro-differential equation for Fv(t).
Using the Laplace transform, we obtain

P0

s
= (

1 + Ees J̄
)

F̄v
. (9.3.59)

Since s J̄ = 1
s Ē

, we can write

J̄ (s) = 1
s2 Ē

= 1
s(2ηs + 2µ)

= 1
2µ

(
1
s

− 1
s + µ

η

)
, (9.3.60)

and the inverse transform gives

J (t) = 1
2µ

(
1 − e− µt

η

)
. (9.3.61)

Equation (9.3.59) takes the form

F̄v = P0

s

(
s + µ

η

s + α

)
, α = 2µ + Ee

2η
,

= P0

2µ + Ee

(
2µ

s
− Ee

s + α

)
. (9.3.62)

The inverse transform gives the force in the viscoelastic rod

Fv(t) = P0

2µ + Ee

(
2µ − Eee−αt) . (9.3.63)

Then from Eq. (9.3.56) we have

ūv(s) = L
A

s J̄ F̄v = P0 L
As(s + α)

= P0 L
A(2µ + Ee)

[
1
s

− 1
s + α

]
. (9.3.64)
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The inverse transform yields the displacement

uv(t) = P0L
A(2µ + Ee)

(
1 − e−αt) . (9.3.65)

9.4 Summary

This chapter is dedicated to an introduction to linearized viscoelasticity. Beginning
with simple spring-dashpot models of Maxwell and Kelvin–Voigt, three and four el-
ement models and integral constitutive models are discussed, and their creep and
relaxation responses are derived. The discussion is then generalized to derive inte-
gral constitutive relations of viscoelastic materials. Analogies between elastic and
viscoelastic solutions are discussed. Applications of the analogies to the solutions
of some typical problems from mechanics of materials are presented. This chapter
constitutes a good introduction to a course on theory of viscoelasticity.

PROBLEMS

9.1 Method of partial fractions. Suppose that we have a ratio of polynomials of the
type

F̄(s)
Ḡ(s)

,

where F̄(s) is a polynomial of degree m and Ḡ(s) is a polynomial of degree n, with
n > m. We wish to write in the form

F̄(s)
Ḡ(s)

= c1

s + α1
+ c2

s + α2
+ c3

s + α3
+ · · · + cn

s + αn
,

where ci and αi are constants to be determined using

ci = lim
s→−αi

(s + αi )F̄(s)
Ḡ(s)

, i = 1, 2, . . . , n.

It is understood that Ḡ(s) is equal to the product Ḡ(s) = (s + α1)(s + α2) . . . (s +
αn). If

F̄(s) = s2 − 6, Ḡ(s) = s3 + 4s2 + 3s,

determine ci .

9.2 Determine the creep and relaxation responses of the three-element model of
Figure 9.2.7(b).

9.3 Derive the governing differential equation for the spring-dashpot model shown
in Figure P9.3. Determine the creep compliance J (t) and relaxation modulus Y(t)
associated with the model.

ε
σ

1η

2η
2G

Figure P9.3.
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9.4 Determine the relaxation modulus Y(t) of the three-element model of Figure
9.2.7(a) using Eq. (9.2.10) and the creep compliance in Eq. (9.2.37) [i.e., verify the
result in Eq. (9.2.42)].

9.5 Derive the governing differential equation for the mathematical model ob-
tained by connecting the Maxwell element in series with the Kelvin–Voigt element
(see Figure P9.5).

Figure P9.5.

9.6 Determine the creep compliance J (t) and relaxation modulus Y(t) of the four-
element model of Problem 9.5.

9.7 Derive the governing differential equation for the mathematical model ob-
tained by connecting the Maxwell element in parallel with the Kelvin–Voigt element
(see Figure P9.7).

1η
•

•

1k

•

•
σ

2k

•
2η

••σ Figure P9.7.

9.8 Derive the governing differential equation of the four-parameter solid shown in
Figure P9.8. Show that it degenerates into the Kelvin–Voigt solid when its compo-
nents parts are made equal.

σ
1η

•

•

1k

•

•
••σ 2η
•

•

2k

•

•
••

Figure P9.8.

9.9 Determine the creep compliance J (t) and relaxation modulus Y(t) of the four-
element model of Problem 9.7.

9.10 If a strain of ε(t) = ε0t is applied to the four-element model of Problem 9.7,
determine the stress σ(t) using a suitable hereditary integral [use Y(t) from Problem
9.9].

9.11 For the three-element model of Figure 9.2.7(b), determine the stress σ(t) when
the applied strain is ε(t) = ε0 + ε1 t , where ε0 and ε1 are constants.

9.12 Determine expressions for the (Laplace) transformed modulus Ē(s) and Pois-
son’s ratio ν̄ in terms of the transformed bulk modulus K̄(s) and transformed shear
modulus Ḡ(s).



P1: IBE

Chapter09 CUFX197-Reddy 978 0 521 87044 3 October 3, 2007 10:50

336 Linear Viscoelasticity

9.13 Evaluate the hereditary integral in Eq. (9.3.4) for the three-element model of
Figure 9.2.7(a) and stress history shown in Figure 9.3.3.

9.14 Given that the shear creep compliance of a Kelvin–Voigt viscoelastic material
is

J (t) = 1
2G0

(1 − e−t/τ ),

where G0 and τ are material constants, determine the following properties for this
material:

(a) shear relaxation modulus, 2G(t),

(b) the differential operators P and Q of Eq. (9.1.1),

(c) integral form of the stress–strain relation, and

(d) integral form of the strain–stress relation.

9.15 The strain in a uniaxial viscoelastic bar with viscoelastic modulus E(t) =
E0/(1 + t/C) is ε(t) = At , where E0, C, and A are constants. Determine the stress
σ(t) in the bar.

9.16 Determine the free end deflection wv(t) of a cantilever beam of length L, mo-
ment of inertia I, and subjected to a point load P(t) at the free end, for the cases (a)
P(t) = P0 H(t) and (b) P(t) = P0e−αt . The material of the beam has the relaxation
modulus of E(t) = Y(t) = A + Be−αt .

9.17 A cantilever beam of length L is made of a viscoelastic material that can be
represented by the three-parameter solid shown in Fig. 9.2.7(a). The beam carries a
load of P(t) = P0 H(t) at its free end. Assuming that the second moment of area of
the beam is I, determine the tip deflection.

9.18 A simply supported beam of length L, second moment of area I is made from
the Kelvin–Voigt type viscoelastic material whose compliance constitutive response
is

J (t) = 1
E0

(1 − e−t/τ ),

where E0 and τ are material constants. The beam is loaded by a transverse dis-
tributed load

q(x, t) = q0

(
1 − x

L

)
t2 = f (x) g(t),

where q0 is the intensity of the distributed load at x = 0 and g(t) = t2. Determine
the deflection and stress in the viscoelastic beam using the Euler–Bernoulli beam
theory.

9.19 The pin-connected structure shown in Figure P9.19 is made from an incom-
pressible viscoelastic material whose shear response can be expressed as

P = 1 + η

µ

d
dt

, Q = η
d
dt

,
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where η and µ are material constants. The structure is subjected to a time-dependent
vertical force P(t), as shown in Figure P9.19. Determine the vertical load P(t) re-
quired to produce this deflection history. Assume that member AB has an area
of cross-section A1 = 9/16 in.2 and member BC has an area of cross-section A2 =
125/48 in.2.

Figure P9.19.

9.20 Consider a hallow thick-walled spherical pressure vessel composed of two dif-
ferent viscoelastic materials, as shown in Figure P9.20. Formulate (you need not
obtain complete solution to) the boundary value problem from which the stress and
displacement fields may be determined.

Figure P9.20.
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Chapter 1

1.1 The equation of motion is

dv

dt
+ αv = g, α = c

m
.

1.2 The energy balance gives

− d
dx

(Aq) + β P(T∞ − T) + Ag = 0.

1.4 The conservation of mass gives

d(Ah)
dt

= qi − q0,

where A is the area of cross section of the tank (A = π D2/4).

Chapter 2

2.1 The equation of (or any multiple of it) the required line is

C · [A − (A · êB) êB] = 0.

2.2 The equation for the required plane is

(A − B) × (B − C) · (A − C) = 0.

2.6 (a) Sii = 12. (b) Si j Sji = 240. (e) Si j A j = {18 15 34}T.

2.8 The vectors are linearly dependent.

2.10 (a) The transformation is defined by


ê′
1

ê′
2

ê′
3


 =




1√
3

−1√
3

1√
3

2√
14

3√
14

1√
14

−4√
42

1√
42

5√
42






ê1

ê2

ê3


 .
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2.12 Follows from the definition

[L] =




1√
2

0 1√
2

1
2

1√
2

− 1
2

− 1
2

1√
2

1
2


 .

2.17 Note that
(

∂r
∂xi

= xi/r
)

grad(r2) = 2r êi
∂r
∂xi

= 2êi xi = 2r.

Use of the divergence theorem gives the required result.

2.18 Use the divergence theorem to obtain the required result.

2.19 The integral relations are obvious.
(a) The identity is obtained by substituting A = φ ∇ψ for A into Eq. (2.4.34).

2.20 See Problem 2.10(a) for the basis vectors of the barred coordinate system in
terms of the unbarred system; the matrix of direction cosines [L] is given there.
Then the components of the dyad in the barred coordinate system are

[S̄] =




2 − 14√
42

0

− 14√
42

15
14 − 37

14
√

3

0 − 37
14

√
3

13
14


 .

2.24 Begin with

[(S · A) × (S · B)] · (S · C) = ei jk SipSjq Skr Ap BqCr

obtain

|S|epqr − ei jk SipSjq Skr = 0.

2.25 Use the del operator from Table 2.4.2 to compute the divergence of the
tensor S.

2.30 (a) λ1 = 3.0, λ2 = 2(1 + √
5) = 6.472, λ3 = 2(1 − √

5) = −2.472. The

eigenvector components Ai associated with λ3 are Â
(3) = ±(0.5257,

0.8507, 0).
(c) The eigenvalues are λ1 = 4, λ2 = 2, λ3 = 1.

(d) The eigenvalues are λ1 = 3, λ2 = 2, λ3 = −1. The eigenvector associ-

ated with λ1 is Â
(1) = ± 1√

2
(1, 0, 1).

(f) The eigenvalues are λ1 = 3.24698, λ2 = 1.55496, λ3 = 0.19806. The

eigenvectors are Â
(1) = ±(0.328,−0.737, 0.591); Â

(2) = ±(0.591,−0.328,

−0.737); Â
(3) = ±(0.737, 0.591, 0.328).

2.31 The inverse is

[A]−1 = 1
12


 7 −2 1

−2 4 −2
1 −2 7


 .
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Chapter 3

3.1 v = x
1+t , a = t

(1+t)2 v.

3.3 (c)




1
2
1


 .

3.4 (b) [C] =

k2

1 0 0
0 k2

2 0
0 0 k2

3


 .

3.5 (a) [F] =

 k1 e0k2 0

0 k2 0
0 0 k3


 .

3.6 (c) [F] =

 cos At sin At 0

− sin At cos At 0
0 0 1 + Bt


 .

3.7 (a) u1(X) = AX2, u2(X) = BX1, u3(X) = 0.

(c) 2[E] =

 B2 A + B 0

A + B A2 0
0 0 0


 .

3.9 (c) [F] =

 cosh t sinh t 0

sinh t cosh t 0
0 0 1


 .

3.11 (b) The angle ABC after deformation is 90 − β, where cos β = µ√
1+µ2

.

3.12 (a) [E] = 1
2 ([C] − [I]) =


 6 7 0

7 8 0
0 0 0


 .

3.13 u1 = e0
b X2, u2 = 0.

3.14 u1 = ( e0
b2

)
X 2

2 , u2 = 0.

3.15 E11 = e1
a

X2
b + 1

2 X 2
2

(
e2

1+e2
2

a2b2

)
, E22 = e2

b
X1
a + 1

2 X2
1

(
e2

1+e2
2

a2b2

)
, 2E12 = e1

b
X1
a + e2

a
X2
b +

X1 X2

(
e2

1+e2
2

a2b2

)
.

3.16 u1 = −0.2X1 + 0.5X2, u2 = 0.2X1 − 0.1X2 + 0.1X1 X2.

3.17 εrr = A, εrθ = 0, εrz = 0, εθθ = A, εzθ = 1
2

(
Br + C

r cos θ
)
, εzz = 0.

3.19 The linear components are given by ε11 = 3x2
1 x2 + c1

(
2c3

2 + 3c2
2x2 − x3

2

)
, ε22 =

−
(

2c3
2 + 3c2

2x2 − x3
2 + 3c1x2

1 x2

)
, 2ε12 = x1

[
x2

1 + c1

(
3c2

2 − 3x2
2

)]
− 3c1x1x2

2 .

3.20 (b) The strain field is not compatible.

3.21 (b) E′
11(= Enn) ≈ ae0

a2+b2 , E′
12(= Ens) ≈ e0

2b

(
a2−b2

a2+b2

)
.
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3.22 The principal strains are ε1 = 0 and ε = 10−3 in./in. The principal direction
associated with ε1 = 0 is A1 = ê1 − 2ê2 and that associated with ε = 10−3 is
A2 = 2ê1 + ê2.

3.23 (c) u1 = cX1 X2
2 , u2 = cX2

1 X2.

3.26 Use the definition (3.6.3) and Eqs. (3.6.14) and (3.7.1) as well as the symmetry
of U to establish the result.

3.29 The function f (X2, X3) is of the form f (X2, X3) = A + BX2 + CX3, where A,
B, and C are arbitrary constants.

3.35 [C] =
[

5.0 0.40
0.4 1.16

]
, [U] =

[
2.2313 0.1455
0.1455 1.0671

]
.

3.36 [U] =

 0.707 0.707 0

0.707 2.121 0
0 0 1.0


 , [V] =


 2.121 0.707 0

0.707 0.707 0
0 0 1.0


 .

Chapter 4

4.3 (i)(a) tn̂ = 2(ê1 + 7ê2 + ê3). (c) σn = −7.33 MPa, σs = 12.26 MPa.

4.4 (a) tn̂ = 1√
3
(5ê1 + 5ê2 + 9ê3)103 psi. (b) σn = 6, 333.33 psi, σs = 1, 885.62 psi.

(c) σp1 = 6, 656.85 psi, σp2 = 1, 000 psi, σp3 = −4, 656.85 psi.

4.5 σn = −2.833 MPa, σs = 8.67 MPa.

4.6 σn = 0.3478 MPa, σs = 4.2955 MPa.

4.9 σn = 3.84 MPa, σs = −17.99 MPa.

4.11 σn = −76.60 MPa, σs = 32.68 MPa.

4.12 σs = 90 MPa.

4.13 σp1 = 972.015 kPa, σp2 = −72.015 kPa.

4.14 σp1 = 121.98 MPa, σp2 = −81.98 MPa.

4.15 σ1 = 11.824 × 106 psi, n(1) = ±(1, 0.462, 0.814).

4.17 λ′
1 = 2

3 , λ′
2 = 5

3 , λ′
3 = − 7

3 ; n̂(1) = −0.577ê1 + 0.577ê2 + 0.577ê3.

4.18 λ1 = 6.856, Â(1) = ±(0.42, 0.0498,−0.906).

4.19 (b) tn = −16.67 MPa, ts = 52.7 MPa.

4.20 σ1 = 25 MPa, σ2 = 50 MPa, σ3 = 75 MPa;

n̂(1) = ± ( 3
5 ê1 − 4

5 ê3
)
, n̂(2) = ±ê2, n̂(3) = ± ( 4

5 ê1 + 3
5 ê3

)
.

Chapter 5

5.6 (a) Satisfies. (b) Satisfies.

5.7 Q = b
6 (3v0 − c) m3/(s.m).
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5.8 (a) F = 24.12N. (b) F = 12.06 N. (c) Fx = 45 N.

5.9 v(t) =
√

g
L(x2 − x2

0 ), a(t) = g
Lx(t);

v(t0) =
√

g
L(L2 − x2

0 ) ≈ √
gL when L >> x0.

5.14 The proof of this identity requires the following identities (here A is a vector
and φ is a scalar function):

∇ · (∇ × A) = 0. (1)

∇ × (∇φ) = 0. (2)

v · grad v = ∇
(

v2

2

)
− v × ∇ × v. (3)

∇ × (A × B) = B · ∇A − A · ∇B + A divB − B divA. (4)

5.17 v2 = 9.9 m/s, Q = 19.45 Liters/s.

5.18 ρ f1 = 0, ρ f2 = a
(
b2 + 2x1x2 − x2

2

)
, ρ f3 = −4abx3.

5.20 σ12 = − P
2I3

(
h2 − x2

2

)
, σ22 = 0

(
I3 = 2bh3

3

)
.

5.21 (a) T = 0.15 N-m. (b) When T = 0, ω0 = 477.5 rpm.

5.22 ω = 16.21 rad/s = 154.8 rpm.

5.24 v1 = 0.69 m/s, v2 = 2.76 m/s, loss = 5.3665 N · m/kg.

Chapter 6

6.2




σ11

σ22

σ23

σ13

σ12




= 106




37.8
43.2
27.0
21.6

0.0
5.4




Pa.

6.3 I1 = 108 MPa, I2 = 2, 507.76 MPa2, I3 = 25, 666.67 MPa3;
J1 = 500 × 10−6, J2 = 235 × 10−9, J3 = −32 × 10−12.

6.4 I1 = 78.8 MPa, I2 = 1, 062.89 MPa2, I3 = 17, 368.75 MPa3.

6.5 J1 = 66.65 × 10−6, J2 = 63, 883.2 × 10−12, J3 = 244, 236 × 10−18.

6.6 τ11 = 0, τ22 = 2µk
1+kt , τ12 = µ

(
4tk

(1+kt)2 x2

)
.

6.8 (1) Physical admissibility, (2) determinism, (3) equipresence, (4) local action,
(5) material frame indifference, (6) material symmetry, (7) dimensionality, (8)
memory, and (9) causality.
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Chapter 7

7.1 σ11 = 96.88 MPa, σ22 = 64.597 MPa, σ33 = 48.443 MPa, σ12 = 4.02 MPa,

σ13 = 0 MPa, σ23 = 0.

7.4 w0
( L

2

) = −
(

5F0 L3

48EI + 17q0 L4

384EI

)
.

7.6 wA = 0.656 in.

7.7 wc = q0a4

64D

( 5+ν
1+ν

)
.

7.8 wc = q0a4

(1+ν)D

( 5+ν
64 − 6+ν

150

)
.

7.9 wc = 43
4800

q0a4

D .

7.10 wcb = b2 Q0
16π D

(
2 log b

a + a2

b2 − 1
)

.

7.11 uz(r) = − ρga2

4µ

(
1 − r2

a2

)
, σθz = 0, σzr = ρg

2 r.

7.13 σrr = −
(

1 + 4µ

3K

)
p, σθθ = σφφ = −

(
1 − 2µ

3K

)
p .

7.15 uθ (r) = τ0b2

2µa

( r
a − a

r

)
, σrθ = b2τ0

r2 .

7.18 σxx = 2D
(
3x2 y − 2y3

)
, σyy = 2Dy3, σxy = −6Dxy2.

7.21

σxx = 3q0

10

(
y
b

+ 5a2

2b2

x2

a2

y
b

− 5
3

y3

b3

)
,

σyy = q0

4

(
−2 − 3

y
b

+ y3

b3

)
,

σxy = 3q0a
4b

x
a

(
1 − y2

b2

)
.

7.22

σxx = ∂2�

∂y2
= τ0

4

(
−2x

b
− 6xy

b2
+ 2a

b
+ 6ay

b2

)
, σyy = ∂2�

∂x2
= 0,

σxy = − ∂2�

∂x∂y
= −τ0

4

(
1 − 2y

b
− 3y2

b2

)
.

7.24 σrr = − 2 f0
πr sin θ, σθθ = 0, σrθ = 0.

7.25

σ31 = ∂�

∂x2
= µθ

a
x2(x1 − a)

σ32 = − ∂�

∂x1
= µθ

2a

(
x2

1 + 2ax1 − x2
2

)
.

The angle of twist is θ = 5
√

3T
27µa4 .



P1: JZP

Answers CUFX197-Reddy 978 0 521 87044 3 October 3, 2007 10:53

Answers to Selected Problems 347

7.27 The Euler equations are

δw : − d
dx

[
GA

(
φ + dw

dx

)]
− q = 0

δφ : − d
dx

(
EI

dφ

dx

)
+ GA

(
φ + dw

dx

)
= 0.

7.29 w(0) = u1 = − q0 L4

24EI+kL3 .

7.32

L = 1
2

m1
[
l2θ̇2 + ẋ2 − 2l ẋθ̇ sin θ

]+ 1
2

m2 ẋ2

+ m1g(x − l cos θ) + m2gx + 1
2

k(x + h)2

where h is the elongation in the spring due to the masses h = g
k (m1 + m2).

7.33 ρl ẍ − ρx or ẍ − g
l x = 0.

7.34

∂

∂t

(
ρ A

∂w

∂t

)
+ ∂2

∂x2

(
EI

∂2w

∂x2

)
− ∂2

∂x∂t

(
ρ I

∂2w

∂x∂t

)
= q.

7.35

m(ẍ + 
θ̈ cos θ − 
θ̇2 sin θ) + kx = F,

m
[

ẍ cos θ + (
2 + �2)θ̈

]+ mg
 sin θ = 2aF cos θ.

7.36

δu0 : − ∂ Nxx

∂x
− f + ∂

∂t

(
m0

∂u
∂t

)
= 0,

δw : − ∂ Qx

∂x
− q + ∂

∂t

(
m0

∂w

∂t

)
= 0,

δφ : − ∂ Mxx

∂x
+ Qx + ∂

∂t

(
m2

∂φ

∂t

)
= 0.

Chapter 8

8.2 (a) The pressure at the top of the sea lab is P = 1.2 MN/m2.

8.3 ρ = 1.02 kg/m3.

8.4 P = P0

(
1 + mx3

θ0

)−g/mR
, ρ = ρ0

(
1 + mx3

θ0

)−g/mR
.

8.5 P(y) = P0 + ρgh cos α
(
1 − y

h

)
, U(y) = ρgh2 sin α

2µ

(
2 y

h − y2

h2

)
.

8.7 The shear stress is given by

τrz = −
(

dP̄
dz

r
2

+ 1
r

c1

)
= −dP̄

dz
R
4

[
2
( r

R

)
+ (1 − α2)

1
log α

(
R
r

)]
,

where dP̄/dz = dP̄
dz + ρg



P1: JZP

Answers CUFX197-Reddy 978 0 521 87044 3 October 3, 2007 10:53

348 Answers to Selected Problems

8.8 The velocity field is

vθ (r) = �r2
1

r2
1 − r2

2

(
r − r2

2

r

)
.

If r1 = R and r2 = αR with 0 < α < 1, we have

vθ (r) = �R
1 − α2

(
r
R

− α2 R
r

)
.

The shear stress distribution is given by τrθ = −2µ� α2

1−α2

( R
r

)2
.

8.10 P = −ρgz + 1
2ρ�2r2 + c, where c = P0 + ρgz0.

8.12 vx(y, t) = U0e−η cos(nt − η).

8.15 τrφ = 3µV∞
2R

( R
r

)4
sin φ, P = P0 − ρgz − 3µV∞

2R

( R
r

)2
cos φ, where P0 is the pres-

sure in the plane z = 0 far away from the sphere and −ρgz is the contribution
of the fluid weight (hydrostatic effect).

8.16 − d
dr (rqr ) + rρQe = 0.

8.17 T(r) = T0 + ρQe R2

4k

[
1 − ( r

R

)2
]
.

8.18 θ(x, t) = ∑∞
n=1 Bn sin λnx e−αλ2

nt , Bn = 2
L

∫ L
0 f (x) sin λnx dx.

8.20 T(r) = T0 − µα2 R3
0

9k

[
1 −

(
r
R0

)3
]

.

8.21 vy(x) = ρr βr ga2(T2−T1)
12µ

[( x
a

)3 − ( x
a

)]
.

Chapter 9

9.1 −2H(t) + 2.5e−t + 0.5e−3t .

9.2 J (t) = 1
k1

− k2
k1(k1+k2) e−t/τ , Y(t) = k1 + k2e−t/τ .

9.3 J (t) =
[

t
η1+η2

+ 1
G2

(
η2

η1+η2

)2
(1 − e−α2t )

]
, Y(t) = η1δ(t) + G2e−t/τ2 , τ2 = η2

G2
,

α2 = G2
η1

+ G2
η2

.

9.4 Y(t) = k1k2
k1+k2

(
1 − e−λt

)+ k1e−λt , λ = k1+k2
η

.

9.5 q1ε̇ + q2ε̈ = p0σ + p1σ̇ + p2σ̈, where p0 = k1
µ1µ2

, p1 = k1
k2µ1

+ 1
µ1

+ 1
µ2

,

p2 = 1
k2

q1 = k1
µ1

q2 = 1.

9.6 Y(t) = k1k2µ2
λ1−λ2

[
(λ1 − α)e−λ1t − (λ2 − α)e−λ2t

]
.

9.7 q0ε + q1ε̇ + q2ε̈ = p0σ + p1σ̇, where p0 = 1
η2

, p1 = 1
k2

, q0 = k1
η2

,

q1 = 1 + k1
k2

+ η1
η2

, q2 = η1
k2

.

9.9 J (t) = 1
q2

{
p0

[
1

αβ
− e−αt

α(β − α)
+ e−βt

β(β − α)

]

+p1

[
e−αt

(β − α)
− e−βt

(β − α)

]
+ p2

[
− αe−αt

(β − α)
+ βe−βt

(β − α)

]}
.
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The relaxation response is Y(t) = k1 + k2e−αt + η1δ(t).

9.10 σ(t) = [k1 + k2e−αt + η1δ(t)] ε0 + [
tk1 + k2

α
(1 − e−αt ) + η1 H(t)

]
ε0.

9.11 Y(t) = k1 + k2e−t/τ , τ = η

k2
.

9.12 Ē(s) = 9K̄(s)Ḡ(s)
3K̄(s)+Ḡ(s) , sν̄(s) = 3K̄(s)−2Ḡ(s)

2[3K̄(s)+Ḡ(s)] .

9.13 ε(t) = σ1

(
t

k1
+ 1

k2
e−t/τ

)
, for t > t0.

9.14 (a) 2G(t) = 2G0[H(t) + τδ(t)].

(c) σ ′
i j (t) = 2G(t)ε′

i j (0) + 2
∫ t

0 G(t − t ′)
dε′

i j (t ′)
dt ′ dt ′.

9.15 σ(t) = ln(1 + t/C).

9.16 (a) wv(L, t) = P0 L3

3E0 I

[
− B

A e− Aα
E0

t + E0
A H(t)

]
. (b) wv(L, t) = P0 L3

3E0 I e− Aα
E0

t
.

9.17 wv(L, t) = P0 L3

3I

[
p0
q0

H(t) +
(

q0 p1−q0 p1
q1q0

)
e−(q1/p1)t

]
.

9.18 wv(x, t) = q0 L4

360I

(
1 − x

L

) [
7 − 10

(
1 − x

L

)2 + 3
(
1 − x

L

)4
]

h(t), where h(t) =
2τ 2

E0

(
1 − e−t/τ

)+ τ 2

E0

(
t
τ

)[(
t
τ

)
− 2

]
, σ(x, t) = −Ez∂2wv

∂x2 = q0 L2z
60I

(
1 − x

L

) x
L h(t).

9.19 P(t) = 1
2L

[
δ0 E(t) + (δ1 − δ0)E(t − t0)

]
.

9.20 The Laplace transformed viscoelastic solutions for the displacements and
stresses are obtained from

ūr (r, s) = Āi (s)r + B̄i (s)
r2

,

σrr (r, s) = (2µ + 3λ)Āi (s) − 4µ

r3
B̄i (s),

σθθ (r, s) = σφφ(r, s) = [2sµ̄(s) + 3sλ̄(s)]Āi (s) + 4sµ̄(s)
r3

B̄i (s),

where Āi (s) and B̄i (s) are the same as Ai and Bi with ν and E replaced by
sν̄(s) and s Ē(s), respectively.
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Index

Absolute Temperature, 195
Airy Stress Function, 230, 231, 236, 269
Algebraic Multiplicity, 52
Almansi-Hamel Strain Tensor, 82
Ampere Law, 205
Analytical Solution, 224, 292, 297
Angular Displacement, 67
Angular Momentum, 5, 162
Angular Velocity, 13, 96
Anisotropic, 178
Approximate Solution, 224, 242
Axial Vector, 96
Axisymmetric Boundary Condition, 223
Axisymmetric Flow, 286
Axisymmetric Body, 114
Axisymmetric Heat Conduction, 295

Balance Equations, 132
Barotropic, 195
Beam Theory, 2, 103, 218, 238
Beltrami-Michell Equations, 212
Beltrami Equations, 214
Bernoulli Equations, 175
Betti’s Reciprocity Relations, 219, 222
Biaxial State of Strain, 113
Biharmonic Equation, 231, 235
Biharmonic Operator, 231
Bingham Model, 199
Body Couple, 162

Caloric Equation of State, 276
Canonical Relations, 166
Cantilever Beam, 103
Carreau Model, 198
Cartesian, 22
Cartesian Basis, 22, 33
Cartesian Coordinate System, 22, 27, 56, 62, 277, 280
Castigliano’s Theorem, 251, 254
Cauchy Elastic, 179
Cauchy Strain Tensor, 82, 115, 117
Cauchy–Green Deformation, 77
Cauchy–Green Deformation Tensor, 202
Cauchy-Green Strain Tensor, 99, 194
Cauchy’s Formula, 115, 118, 216, 247
Cayley–Hamilton Theorem, 55, 60
Chain, 157
Characteristic Equation, 48, 55, 124
Characteristic Value, 48

Characteristic Vectors, 48
Clapeyron’s Theorem, 216
Classical Beam Theory, 236
Clausius–Duhem, 5
Clausius–Duhem Inequality, 170
Cofactor, 31
Collinear, 11
Compatibility Conditions, 101, 211
Compatibility Equations, 100, 103
Compliance, 182
Composite, 4
Conduction, 203
Configuration, 62
Conservation of Angular Momentum, 161
Conservation of Energy
Conservation of Linear Momentum
Conservation of Mass, 143
Consistency, 198,
Constant Strain Triangle, 253
Constitutive Equations, 4, 178, 211
Continuity Equation, 146, 147, 152
Continuum, 1
Continuum Mechanics, 1, 61
Contravariant Components, 33
Control Volume, 147
Convection, 203
Convection Heat Transfer Coefficient, 203
Cooling Fin, 293, 294
Coordinate Transformations, 8, 115
Coplanar, 11
Corotational Derivative, 200
Correspondence Principle, 327, 328
Couette Flow, 285
Couple Partial Differential Equations, 227
Covariant Components, 34
Creep Compliance, 311
Creep Response, 313
Creep Test, 305
Creeping Flows, 289
Cross-Linked Polymer, 318
Curl, 36, 40
Cylindrical Coordinates, 39, 94, 149, 159, 278

Damping Coefficient, 261
Deformation, 62
Deformation Gradient Tensor, 68, 83, 91, 97, 152,

180 193
Deformation Mapping, 63, 73

351
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Deformed Configuration, 63, 85
Del Operator, 36, 46
Density, 147
Deviatoric Components, 326
Deviatoric Components of Stress, 196
Deviatoric Stress, 124, 140
Deviatoric Tensor, 50
Diagonal Matrix, 25
Dielectric Materials, 206
Differential Models, 192
Differentials, 34
Dilatant, 198
Dilatation, 84
Dirac Delta Function, 307
Direction Cosines, 183
Directional Derivative, 35
Dirichlet Boundary Condition, 247
Displacement Field, 67
Dissipation Function, 281
Divergence, 36, 40
Dot Product, 11
Dual Basis, 34
Dummy Index, 18
Dyadics, 42

Eigenvalues, 48
Eigenvectors, 48, 99
Elastic, 179, 331
Elastic Stiffness Coefficients, 181
Elasticity Tensor, 190
Electric Field Intensity, 205
Electric Flux, 205
Electromagnetic, 205, 207
Elemental Surface, 158
Energetically Conjugate, 177
Energy Equation, 164
Engineering Constants, 185
Engineering Notation, 182
Engineering Shear Strains, 89
Entropy Equation of State, 170
Entropy Flux, 170
Entropy Supply Density, 170
Equation of State, 275
Equilibrium Equations, 211
Error Function, 302
Essential Boundary Condition, 247
Euclidean Space, 62
Euler–Bernoulli Beam Theory, 218, 235, 238, 249,

263
Euler Equations, 246
Euler Strain Tensor, 81, 82
Euler–Bernoulli Beam, 238
Euler–Bernoulli Hypothesis, 6
Eulerian Description, 63, 66
Euler–Lagrange Equations, 259, 263, 273
Exact solution, 218, 242, 254, 286

Faraday’s Law, 205
Fiber-Reinforced Composite, 121
Film Conductance, 203, 204
Finger Tensor, 82, 202
First Law of Thermodynamics, 164
First Piola-Kirchhoff Stress Tensor, 128
First-Order Tensor, 8, 44
Fixed Region, 147
Fluid, 2, 275,
Fourier’s Law, 2, 203, 203
Frame Indifference, 106, 195
Free Energy Function, 193
Free Index, 19

Generalized Displacements, 254
Generalized Forces, 254
Generalized Hooke’s Law, 180
Generalized Kelvin Voigt Model, 316, 324
Generalized Maxwell Model, 315
Geometric Multiplicity, 52
Gibb’s Energy, 166
Gradient, 40
Gradient Vector, 35
Gravitational Acceleration, 168
Green Elastic Material, 180
Green Strain Tensor, 71, 194
Green–Lagrange Strain, 79, 96
Green’s First Theorem, 58
Green’s Second Theorem, 58
Green–St. Venant Strain Tensor, 79

Hamilton’s Principle, 257, 261, 263
Heat Conduction, 293
Heat Transfer, 3, 203, 276
Heat Transfer Coefficient, 204
Helmhotz Free Energy, 171
Hereditary Integrals, 323
Hermite Cubic Polynomials, 255
Herschel–Buckley Fluid, 199
Heterogeneous, 178
Homogeneous, 178
Homogenous Deformation, 71
Homogenous Stretch, 108
Hookean Solids, 179, 180
Hooke’s Law, 5
Hydrostatic Pressure, 180, 194, 197
Hydrostatic Stress, 159, 124, 275
Hyperelastic, 180, 193

Ideal Elastic Body, 262
Ideal Fluid, 195
Ideal Gas, 167
Incompressible Fluid, 167, 286, 287
Incompressible Material, 166, 193, 281,
Inelastic Fluids, 197
Infinitesimal Rotation Tensor, 91
Infinitesimal Strain Tensor, 89
Infinitesimal Strain Tensor Components, 89
Inhomogeneity, 183
Inner Product, 11
Integral Constitutive Equations, 323
Integral Models, 202
Internal Dissipation, 171
Internal Energy, 166
Interpolation Functions
Invariant, 8, 44, 194
Invariant Form of Continuity Equation, 150
Invariants of Stress Tensor, 120
Inverse Methods, 224
Inviscid, 167, 195
Inviscid Fluids, 197, 282
Irreversible Process, 163, 170
Isochoric Deformation, 71
Isothermal, 193
Isotropic Body, 265
Isotropic Material, 178, 187
Isotropic Tensor, 45

Jacobian of a Matrix, 69
Jaumann Derivative, 200
Johnson–Segalman Model, 200

Kaye–Bkz Fluid, 202
Kelvin Voigt Model, 306, 315
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Kinematic, 178
Kinematically Infinitesimal, 136
Kinematics, 4, 61
Kinetic Energy, 257
Kinetics, 4
Kronecker Delta, 19, 44

Lagrange Equations of Motion, 259
Lagrangian Description, 63
Lagrangian Function, 259
Lagrangian Stress Tensor, 129
Lamé Constants, 196
Lamé–Navier Equations, 212
Laplace Transform, 307
Laplace Operator, 41
Laplacian Operator, 36
Left Cauchy Stretch Tensor, 98
Left Cauchy–Green Deformation Tensor, 78
Leibnitz Rule, 146
Linear Displacement, 67
Linear Momentum, 5, 154
Linearly Independent, 11, 127
Lorentz Body Force, 207
Lower-Convected Derivative, 200

Magnetic Field Intensity, 205
Magnetic Flux Density, 205
Mapping, 66
Material Coordinate, 63
Material Coordinate System, 182
Material Derivative, 65
Material Description, 63
Material Frame Indifference, 105
Material Homogeneity, 111
Material Objectivity, 106
Material Plane of Symmetry, 183
Material Symmetry, 182
Material Time Derivative, 144, 148
Matrices, 24
Matrix Addition, 25
Matrix Determinant, 29
Matrix Inverse, 29
Matrix Multiplication, 25
Maxwell Element, 312
Maxwell Fluid, 200
Maxwell Model, 306
Maxwell’s Equation, 205
Maxwell’s Reciprocity Theorem, 222
Mechanics, 11
Method of Partial Fractions, 334
Method of Potentials, 225
Michell’s Equations, 213
Minimum Total Potential Energy, 249
Minor, 31
Moment, 12
Monoclinic, 183
Mooney–Rivlin Material, 193, 194
Multiplicative of Vector, 10

Nanson’s Formula, 109, 129
Natural Boundary Conditions, 246
Navier–Stokes Equations, 277, 289
Neo-Hookean Material, 193, 194
Neumann Boundary Condition, 247
Newtonian Constitutive Equations, 196
Newtonian Fluids, 5, 179, 195, 196, 197
Newtonian Viscosity, 305
Newton’s Law of Cooling, 203
Newton’s Laws, 8
Nominal Stress Tensor, 129

Noncircular Cylinders, 240
Nonhomogeneous Deformation, 72
Nonion Form, 43
Nonisothermal, 198
Nonlinear Elastic, 193
Non-Newtonian, 195, 197, 198
Non-Viscous, 167
Normal Components, 120
Normal Derivative, 37
Normal Stress, 116
Null Vector, 9
Numerical Solutions, 224

Observer Transformation, 107
Oldroyd A Fluid, 201
Oldroyd B Fluid, 201
Oldroyd Model, 201
Orthogonal, 11
Orthogonal Matrix, 56
Orthogonal Rotation Tensor, 98
Orthogonal Tensor, 45, 121
Orthogonality Property, 34
Orthotropic Material, 184, 186
Outer Product, 13
Outflow, 146

Parallel Flow, 284
Pendulum, 273
Perfect Gas, 195
Permanent Deformation, 193
Permeability, 207
Permittivity, 206
Permutation Symbol, 20
Phan Thien–Tanner Model, 201
Plane Strain, 227
Plane Stress, 227, 229
Plunger, 151
Poiseuille Flow, 285
Poisson’s Ratio, 186, 187
Polar Decomposition Theorem, 97
Polyadics, 42
Postfactor, 43
Potential Energy, 244, 257
Power-Law Index, 198
Power-Law Model, 198
Prandtl Stress Function, 240, 242
Prefactor, 43
Pressure Vessel, 123
Primary Field Variables, 178
Primary Variable, 247
Principal Directions of Strain, 84
Principal Invariants, 198
Principal Planes, 124
Principal Strains, 84
Principal Stresses, 124
Principal Stretch, 71, 93
Principle of Minimum Total Potential Energy, 245
Principle of Superposition, 185
Problem Coordinates, 182, 189
Pseudo Stress Tensor, 129, 133
Pseudoplastic, 198
Pure Dilation, 71

Radiation, 203
Rate of Deformation, 96, 196
Rate of Deformation Tensor, 96, 196
Reciprocal Basis, 34
Relaxation Modulus, 311
Relaxation Response, 306, 311, 321, 334
Relaxation Test, 305
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Residual Stress, 181
Retardation Time, 201
Reynolds’s Transport Theorem, 153, 168
Right Cauchy Stretch Tensor, 98
Right Cauchy–Green Deformation Tensor, 77
Rigid-Body Motion, 67, 105
Rotation Tensor, 89, 233

Saint-Venant’s Principle, 233
Scalar Components, 18
Scalar Product, 11
Scalar Triple Product, 14
Second Law of Thermodynamics, 170
Second Piola–Kirchhoff Stress Tensor, 130
Secondary Field Variables, 178
Secondary Variable, 247
Second-Order Tensor, 44
Semi-Inverse Method, 225
Shear Components, 120
Shear Deformation, 75
Shear Extensional Coupling, 184
Shear Stress, 116, 126, 275
Shear Thickening, 198
Shear Thinning, 197, 198
Simple Fluids, 199
Simple Shear, 70, 86
Singular, 31
Skew Product, 13
Skew-Symmetric, 26, 91
Slider Bearing, 291
Small Deformation, 134
Solid, 275
Spatial Coordinates, 64
Spatial Description, 64
Specific Enthalpy, 166
Specific Entropy, 170
Specific Internal Energy, 164
Specific Volume, 166
Spherical Coordinate, 39, 94, 49, 160, 279
Spherical Stress Tensor, 140
Spin Tensor, 96
Spring-and-Dashpot Model, 306
St. Venant’s Compatibility, 100
Stefan–Boltzmann Law, 203, 204
Stieljes Integral, 324
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