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Preface

Nearly a hundred years have passed since Viggo Brun invented his fa-
mous sieve, and yet the use of sieve methods is still evolving. At one
time it seemed that, as analytic tools improved, the use of sieves would
decline, and only their role as an auxiliary device would survive. How-
ever, as probability and combinatorics have penetrated the fabric of
mathematical activity, so have sieve methods become more versatile and
sophisticated, especially in conjunction with other theories and meth-
ods, until, in recent years, they have played a part in some spectacular
achievements that herald new directions in mathematical discovery.

An account of all the exciting and diverse applications of sieve ideas,
past and present, has yet to be written. In this monograph our aim
is modest and narrowly focused: we construct (in Chapter 9) a hybrid
of the Selberg [Sel47] and Rosser-Iwaniec [Iwa80] sieve methods to deal
with problems of sieve dimension (or density) that are integers or half
integers. This theory achieves somewhat sharper estimates than either of
its ancestors, the former as given by Ankeny and Onishi [AO65]. The sort
of application we have in mind is to show that a given polynomial with
integer coefficients (some obvious cases excluded) assumes at integers or
at primes infinitely many almost-prime values, that is, values that have
few prime factors relative to the degree of the polynomial. To describe
our procedure a little more precisely, we extend the pioneering method
of Jurkat and Richert [JR65] for dimension 1 (that combined the Selberg
sieve method with infinitely many iterations of the Buchstab identity)
to higher dimensions by means of the Rosser-Iwaniec approach; in the
process we give an alternative account of that approach.

The restriction we make to integer and half integer dimensions sim-
plifies the analytic component of our method; an account avoiding this
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constraint exists [DHR88]-[DHR96], but is much more complicated. A
justification for our restriction is that most sieve applications of the
above kind occur in this context. We include an account of the case of
dimension 1 because it serves as a model for what is to come and involves
little extra work. While our treatment of that special case is not quite
as sharp as in the classical exposition of Iwaniec [Iwa80] or that given
more recently by Greaves [GrvOl], it is somewhat simpler.

It should be said that our results for higher dimensions, unlike the
case of dimension 1, are almost certainly not best possible, not even in a
single instance; and that our approach might not be the right one there.
Nevertheless, our method does have good applications, is simple to use,
and, despite some complications of detail, rests solely on elementary
combinatorial inequalities and relatively simple analysis. The combina-
torics we have developed may in due course find other applications.

The first comprehensive account of sieve methods, by the second
author and H.-E. Richert [HR74], appeared in 1974 and has been long
out of print. Although it is also out of date in some important respects,
we have tended to follow its overall design, and we have drawn on it for
examples and applications.

We are happy to express our thanks to the many who have contributed
to this work: the aforementioned authors, on whose ideas we have built;
H.-E. Richert, who shared in our discoveries; our former students Ferrell
S. Wheeler and David M. Bradley for their extensive computational as-
sistance; our patrons, the University of Illinois and the National Science
Foundation, who supported our research; our colleague A. J. Hildebrand
for IMpjX and mathematical advice; Sidney Graham and Craig Franze
for help in rooting out errors; and Cherri Davison, who skillfully and
cheerfully converted our manuscript into Î TJTJX. Also, we thank our
wives for their support during the preparation of this book.

The Mathematica® < package of sieve-related functions described in
Appendix 1, as well as a list of comments and corrigenda, will be main-
tained at http://www.math.uiuc.edu/SieveTheoryBook. Finally, we
request that readers advise us of any errors or obscurities they find. Our
e-mail address is sievetheorybookSmath.uiuc.edu.

| Mathematica is a registered trademark of Wolfram Research, Inc.



Notation

Standard terminology

[a;] denotes the largest integer not exceeding x.

a | b means a divides b evenly, i.e., 6 = 0 mod a.

(a, b) denotes the greatest common divisor of the integers a and b
(when no confusion with notation for an open interval is possible) and
{a, b} their least common multiple (see p. 14).

The symbols for the classical arithmetic functions have their usual
meaning: /x(-) is the Moebius function, r(-) the divisor function, </>(•)
Euler's totient function, TT(X) the number of primes not exceeding x,
and TV(X, k, (.) the number of primes not exceeding x and congruent to £
modulo k.

We use !/(•) for the number of distinct prime divisors and f2(-) for the
number of prime divisors counted according to multiplicity. Throughout
Part I of this manuscript, p(-) and p+(-) are the least and largest prime
factors respectively of an integer (see p. 19).

The constants IT and e have their usual meanings, and 7 is always
Euler's constant.

O(-) and o(-) have their usual meanings relating to the size of a func-
tion, and Oz{) indicates dependence of the implied constant upon z.

A,B,C,... denote integer sequences or sets, and |.A|, \B\, \C\,... their
cardinalities; Ad denotes the sequence of multiples of d in A. That is,
Ad •— {a £ A : d \ a} — {a s A : a = 0 mod d}.

V is always a set of primes, the variable p denotes a prime throughout
Part I of this book, and Vc is the set of primes not in V•

N is the sequence of natural numbers, Q the set of rationals.



xviii Notation

Sieve notation

The following lists indicate where sieve functions and sieve terminology
are introduced and defined:

The notions of a function being divisor closed and/or combinatorial
are defined on p. 27.

Pr denotes an integer having at most r prime factors, counted accord-
ing to multiplicity; thus n is a Pr if Q(n) < r (see p. 141).

Multiplicative functions

UJ p. 5

w* p. 49

9 p. 15

g* p. 44

P pp. 37, 39, 64, 125

Remainder terms

rA(d) p. 5

R p. 14 (2.5)

RA{Y,z) p. 109 (9.27)

Summatory functions

G, Ge(P) p. 15 (2.10)

G(£, z), G(0 pp. 30 (4.2), §5.1, 61 (5.44)

G*(£,z) p. 44 (5.7), §5.2

G*(£) pp. 45, 52 (5.22), 54 (5.25)

D(wi,w) p. 139

£{x,d) p. 97



Notation xix

Integrals (and associated expressions)

T(Z,z)
U{£,z)
(G,G)K

UK(u,v), EK(u,v)

n(u),3(u)
U(u),E(u)

P

V(V)
P(z)
V(z)
V*(z)

p. 53
p. 56 (5.28)

p. 58

pp. 158, 178, 234 (A1.3)

p. 160 (12.24), (12.25)

p. 161

p. 161

Products

p. 3

p. 5

p. 26

p. 26

p. 56

Sifting functions

S(A,V)
S(A,V,i

Si(x), S:

E(-r

D{-y{x,

w(A,r,
W0{A,V
W(A,V,

nix), * = i,

w,z0)

z,y)

,z,y)

z,y,X)

p-

pp

2 p.

PP

P-

P-

P-

P-

P-

P-

P-

4

. 7, 26

70, (6.9) (6.10)

. 89, 110 (9.38)

89 (7.14)

106 (9.16)

109 (9.26)

110

135 (11.1)

135

137 (11.6)

(6.11)

, 116 (9.50)



XX

e(w)
*«(•)
U)

FK{u), fK(u)

$i(y), S2{y)

m
PK(u), QK{u)

pK(u)

QK(u)

Ein(i)

rK(u)

ip(u)

Notation

Transcendental functions

p. 50 (5.19)

pp. 56, 68 (6.7) (6.8)

pp. 56 (5.29) (5.30), 250

p. 57 (5.32)

pp. 67 Theorem 6.1, 235

p. 84

pp. 106 (9.19), 108 (9.23)

p. 139

p. 155 (12.1)

pp. 157 (12.11), 193 §15.1, 242 §A1.7

pp. 157 (12.16), 195 §15.2, 242 §A1.7

pp. 157 (12.12) (12.13), 241

p. 177 (14.21)

p. 183

p. 184

Weight functions

w(a), wo(a) p. 135

Constants/parameters

A p. 7

K, A p. 8 Definition 1.3

a K , /3K p. 67 Theorem 6.1

uK p. 173 Lemma 14.4

Mo p. 136 (11.4)

r p. 136 (11.3)

Ar p. 142 (11.16) Corollary 11.2

N(U,V;K,UO,T) pp. 142, 255

PK p. 196 §15.3
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Basic conditions

n{n) p. 8, §1.4

O*(K) p. 44

Qo, -Ro, M"o p. 136 (11.2) (11.3) (11.4)

"Modifying" functions

X(") P- 13

X(-) P- 19 (3.1)

X±(-).'?±(-) (« = 1) p. 71 §6.3 (6.15)-(6.18)

xH-),vH-) ( K > 1 ) p. 74 §6.4 (6.20)-(6.22)

For cases re > 1, see also

X±(-), r?±(-) pp. 103-104 (9.5)-(9.7)

^F(d) p. 104 (9.8)
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Sieves





1

Introduction

1.1 The sieve problem

Let V be a finite set of primes {p} (the symbol p denotes a prime through-
out Part I of this book) and let

P:=l[p.
per

(Later, starting in Chapter 3, we shall let V denote an infinite set of
primes and use Vz to denote the finite set Pn[2, z), i.e., V truncated at
z.) The indicator function of the set of all integers n coprime with P,
that is, having no divisors in V, is expressed in terms of the Moebius \i
function by

We call V a sieve and say that V sifts out an integer n if (n, P) > 1.

Let 4̂ be a finite integer sequence, taking account of possible repeti-
tions. An example of such a sequence is

A= {n2 + 1: -9<n< 11}.

When we apply the sieve V to A.—we might say alternatively, when we
put, or filter, A through V, or sift A by V—the elements of A that
remain unsifted are those that are coprime with P, and their number
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S(A, V) is given by

E
aeA d\{a,P)

aeA d\a d\P aeA
d\P d\a

Writing Ad '•= {« € A : d \ a}, we have the Eratosthenes-Legendre
formula

(1.2) J2
d\P

Example 1.1. Take A — {n G N: n < x} and take V to be the set of
all primes p not exceeding x1^2. Then \Ad\ — [x/d] and, by the famous
observation of Eratosthenes, the identity for S(A, V) yields the prime
counting formula

d\P

We can think of two natural ways to write the sum: either as

K
pKx1/2 d\P

or as

d\P d\P
d<x d<x

In the first way, the leading term does suggest the correct order of mag-
nitude of n(x), but it turns out that the sum of the "remainders" has the
same order of magnitude. The second way appears to be more promis-
ing, but it turns out that here we do not know how to handle either
sum!

1.2 Some basic hypotheses

In the above example we know, of course, how the sequence A is dis-
tributed in the residue classes 0 mod d, d\ P; in fact, the corresponding
information is available for many integer sequences A occurring in the
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literature and takes the form, which henceforward we assume, that there
exists a convenient approximation X to \A\ and a non-negative multi-
plicative arithmetic function UJ(-) such that

(1.3) 0<uj(p)<p (peV), LO(P) = 0 (p^V),

and such that the remainder terms

(1.4) rA(d) := \Ad\ - ^ X (d | P)

are suitably small, at least on average, over some restricted range of
values of d. (In a naive sense, the number ui(p)/p is the probability that
the prime p of V is a divisor of elements in A.) With this assumption,
we obtain

. ,r^\
S{A,V) = .

d\P P d\P

per r d\p

Again, unless V is very sparse, we expect the remainder sum to be
too large to derive asymptotics for S(A, V), but we have the impression
nevertheless that S(A, V) should be measured in terms of the magnitude
of the "leading" term

per

say. The aim of a sieve method is to modify the Moebius function in the
indicator function (1.1) in a way that allows us to approximate S(A,V)
from above, and sometimes from below, with some accuracy, and to ob-
tain asymptotics for S(A,V) when V is sparse.

It is instructive to see why we assume that cu(p) < p holds for all
p £ V. Otherwise—that is, if there existed a prime p* £ V for which
uj(p*)/p* equals (or is very near to) 1—we would have

and the last quantity is small by hypothesis, as is X — \A\ as well. It
follows that \A\ — \AP' | is small, i.e., most members of A are multiples
of p*. After these elements are sifted out, little would be left in A—or
for us to say.
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Appeal to probabilistic thinking is often helpful in arithmetic investi-
gations but tends to fall short when it comes to supplying proofs. The
usual reason is that such thinking is based upon a probabilistic model
involving a sequence of independent events, whereas the actual arith-
metical "events" being modeled—in our case, "divisibility of elements
of A by primes p from V"—have a poor independence relation for sets
of primes whose products have a size comparable to X. If these events
were independent, then indeed we should expect XV(V) to be a true
measure of S(A, V); instead, we have seen in the classical case of sifting
the interval [l,x] by the primes not exceeding x1/2, that there

p) log x1/2 log a; as x —>• oo,

by the well-known Mertens' product formula ([HW79], Theorem 429)
and 2e r = 1.122918..., whereas by the Prime Number Theorem

n(x) ~ as x —> oo.
logo;

In contrast, suppose we sift [l,a;] by a "thin" infinite sequence of primes
V: pi < pi < ... such that

> — < oo.

In this case the density of integers divisible by none of the primes of V
is indeed

1.3 Prime (/-tuples

Before we begin our account in earnest, we consider another example
more relevant to our main objective. The inspiration for this example is
the famous twin prime conjecture, which asserts that there are infinitely
many pairs of positive integers (n, n+2), which are both prime numbers.
The sieve method of Brun broke new ground by producing an upper
bound for the number of pairs of twin primes in any interval [1, x], but
the original conjecture remains unproved.
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Except for the example (2, 3), there is no other pair of primes of the
form (n, n + a) for a an odd number, since one member of the pair is then
even. Similar reasoning shows that (3, 5, 7) is the only triple of primes of
the form (n, n + 2, n + 4). There are analogues of the twin prime conjec-
ture for pairs or triples of primes that are not ruled out by congruential
reasoning, such as (n, n + 4) or (n, n + 2, n + 6). More generally, the
prime g-tuples conjecture asserts that, absent any congruential obstruc-
tion, there exist infinitely many prime (/-tuples (n, n + a\,...,n + ag-i)
(with fixed integers a\,..., afl_i).

As a first attempt at detecting twin primes, take

A= {n(n + 2): 1 < n < X}

and V as the set of all primes. The number of twin primes (p,p + 2)
with y/X + 2 < p < X is provided by

S{A,P,VXT2),

where S(A, V, z) denotes the number of elements in A coprime with the
primes of V that are less than z. Here, as in Example 1.1, we are not
able to approximate the S expression effectively. However, it provides a
framework for our investigations.

Example 1.2. Let
g

L(n) :— Y\(ai?i + &,),

w h e r e t h e coefficients a r e in t ege r s sa t i s fy ing (ai,bj) = 1 (i = l,...,g)
a n d t h e d i s c r i m i n a n t

g

A = I I Obi I I [ar0i, — a so, .
1 1 * 1 1 \ r s s rj
?—1 l<r<s<g

is non-zero. The non-vanishing of A ensures that the linear factors of L
are not constant and that none is a linear multiple of another. Now let
V be the set of all primes less than z and

A = {L{n): x — y < n < x}, 1 < y < x.

Here X = y, ui(d) is the number of incongruent solutions modulo d of
the congruence L(n) = 0 mod d, and r_/i(d)| < u)(d). From elementary
number theory, ui(p) < g for all primes p, with equality when p \ A.
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When p | A, u>(p) may take on any integer value in [0, g). Let v{d) denote
the number of distinct prime divisors of d. Then, for squarefree d,

w(d) < gv{d)

with equality when (d, A) = 1. We shall come back to this example,
basic to the "prime g-tuples" conjecture, and estimate S(A, V) in several
applications later. It would be a great triumph for sieve theory to show
that L(n) = Pg+i infinitely often for some positive integer £ < g; for
that would imply that one of the factors a^n + bi is a prime!

1.4 The £l(n) condition

We introduce at this point a weak average condition on OJ(-) that is to
hold throughout.

Definition 1.3. We say that a sieve problem satisfies the J7(K;) condi-
tion provided there exist constants K, > 1, A > 1 such that

2 < Mi < w.

W1<P<W - - — l°ZWl

The parameter K is clearly not unique—if J7(K) holds for some number
K, then it holds for any K' > K. Nevertheless, in most sieve problems the
minimal K is known and we refer to it as the dimension, or sifting density,
of the problem. Problems of dimension 1 are especially important and
we refer to them as linear. Note that £1(K) implies that

n (i-^r's n
2<p<w

We pause here to check that J7(K) holds in Example 1.2 with K = g.
By adjusting the bound A if necessary, we may assume that w\ > g + 1.
Then, since u){p) < g, we have

n
1
p ^ ^ r\p

w\<p<w r—2
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Thus

1 — < exp <g > - + -g2 > — }
\ p / I ^ ^ p 2 ^ ^ »(o — q) I

<

(\0gW\9 f / 1 \ - |

= h exp^O H,
Vlogwi/ L Vlogwi/J

which implies Q(g); at the next to last stage we used Mertens' sum
formula ([HW79], Theorems 427, 428) that

(1.6) E — l o g ^ + 0 ( ^ - 1 2<W1<W.
^-^ p logwi V log Wi/

w\<p<w

Note that the preceding argument shows incidentally that J7(K) holds
with K = AQ whenever w(p) < AQ holds for all primes p G P .

(1.7

As an immediate consequence of fl(n), on taking logarithms, we have

A
2<P

Several useful variants of the last inequality follow by partial summation,
and we note them here for later use.

Lemma 1.4. Assume Q(n), and let f be a continuous nonnegative
monotone function on an interval [wi,w], wi>2. If f is increasing on
[wi, w], then

i(i.8)

/ / / is decreasing on [wi, w], then

Proof. We have

p V log s / log s
s<p<t
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For / increasing,

f(t)\L(t,w) - K\og(-^-) - — \\
I V logt / logt J Ui

< A f(w)/\ogw.

For / decreasing,

^ l o g P < . l o g + A ( l + l o g , ,

o g w l o g

(1.12) V

l01

<Af(Wl) i \ogWl. n

Corollary 1.5. Assume fl(n) and 2 < w\ < w. Then

(1.10) E

W1<p<w
plogp l os w i l o g u ; i l o g w

Proof. The first and third inequalities follow at once from the lemma.
We show that the second inequality holds uniformly for e > 0. The
first term on the right side of (1.8) is bounded above by Au;e/logu>; it
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remains to estimate the integral, which is in this case

l e -
log 2

/

elogw; v i {•£ log w v i
dv + Ae / ^—dv =: X\ + Xi, say.

v </elog2 w

We estimate the integrals explicitly, for possible numerical applica-
tions.

X\ = K-
V

e log w fe loS
• K

0
• dv

o

elogw

The last integral equals

^ (elogw)r

/•eiogI ,r—l- 1 - elogw) felosw ^ vr

+ Ky dv.

^ (r + 2)!

3K(UJ£ — 1 — elogw)

(e logw) 2

Thus
/t(u>e — 1) 3K(WC — 1 — elogw)

I i < —i 1 r-j ^ •
elogw (elogw)z

In the same manner,

X2 <Ae

<Ae

(ev - 1 - elogw f e I v

2Ae / s dv0 ./elog2

(we — 1 — elogw) 2.
(e logw) 2 Iog

A(we — 1 — elogw) 6^4(we — 1 — elogw)

e log2 w (log 2) e2 log2 w

(the last by using the integral estimate fromZi). The error term of (1.11)
covers the cases of both small and large values of elogw. •

1.5 Notes on Chapter 1

With minor exceptions, we use the notation introduced in [HR74].

Overviews of sieve methods, useful examples, and many problems are
given in the books [HR74], [BaD04], and [MV06].
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We shall treat the case K — 1 in Chapter 7. However, our main thrust
is to deal with integer or half integer dimensions that exceed 1, and we
analyze that case in Chapter 9.

Bateman and Horn [BH62] conjectured that

\{n < x: n(L(n)) = g}\ ~ Cx(logXy9, x -> oo,

with an explicit constant C depending on the coefficients a, and bj. This
conjecture has not been confirmed for any g > 2. Approximations take
the form

\{n < x: Q(L(n)) < rg}\ > a;(logx)-9,

where rg ~ g\ogg ([HR74], Theorem 10.5). Better values for rg for small
g are given in Table 11.1 below.

In connection with the remarks following Example 1.2 on prime g-
tuples, there are the recent spectacular results of Goldston et al. ([GPY,
GPY06, GGPY]) about gaps between primes and many related results,
some conditional. These results will be the subject of a forthcoming
book by those authors.

The condition il(n) could be weakened slightly by replacing the factor
1 + A/logwi with exp(j4/logit)i), as some authors have done. We retain
the original formulation of Iwaniec.
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Selberg's sieve method

2.1 Improving the Eratosthenes—Legendre sieve

To circumvent shortcomings of the Eratosthenes-Legendre formula (1.2),
one searches for approximations

(2.1)
d\(n,P)

to the indicator function (1.1), where the arithmetic functions %(•) are
real, satisfy x(l) = 1, and otherwise are constructed to modify the
behavior of the Moebius function in ways that lead to good bounds for
S(A, V) when (2.1) is substituted for (1.1). This approach was pioneered
by V. Brun almost a century ago, and his earliest idea will be described
in the next chapter.

In this chapter we set out instead the enormously successful and versa-
tile upper bound method of A. Selberg, which is based on the observation
that for any such function \,

(2-2) E
d\(n,P) d\(n,P)

Indeed, the left side of the formula is 0 in all cases except when n is
relatively prime to P, in which case each side equals 1, and the right
side is always nonnegative. It follows at once from (2.2) and (1.4) that

(2.3) S(AV) < 5 ] ^MdiMdxHdaMda)!^,^}! <
di\Pd2\P

13
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where {di,d2} denotes the least common multiple of d\ and

(2.4) £ :=

and

1 til , UO

di\Pd,2\P
 l ' J

(2.5) ^ := E E \x(di)x(d2)rA({di,d2})\
dt\P d2\P

E
d|P {di,d2}=d

We point out that the squared expression on the right of (2.2) actually
has the same form as (2.1), for it is equal to

d|(n,P)

where, since fj,(di)fi(d2) = /i({di,d2})/x((di,d2)),

(2.6) x*(d) := 2 J M((di,d2))xi(di)x2(d2).
{di,d2}=d

2.2 A new parameter

Ideally, one would like to find a function \ to minimize the right side
of (2.3), but no one knows how to do that. Instead, one limits the size
of R by introducing a new parameter £ > 2 and stipulating that

X(d) = 0 for d > £,

so that we can further restrict the sum in R extending over d \ P with
the new condition d < £2; and then finding \ to minimize X. For the
moment we leave R aside and focus on S. Finally, we restrict the sum
in S to numbers di,d2 | P for which w({di,d2}) 7̂  0, since the other
terms make no contribution. Here, since UJ is multiplicative and di,d2

are squarefree,

w({di,d2}) oj(di) uj(d2) (di,d2) u(di) ui(d2) -p-r p
d2 w((di,d2)) di d2

n
w(p) di d2 f^

p|di d|di
p\d2 d\d2
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where g is the multiplicative function given at prime numbers by

(2-7) 0(p):=w(p)/(p-u;(p)).

Note by (1.3) that p — UJ(P) > 0 for all p and g(p) = 0 when p is not in
V. On substituting in S we see at once that

2
w h e r e Xd : =

d\P ^ -* d|m|P

and the star indicates that the sum is restricted to numbers d with
ui(d) ^ 0. At the same time we observe that

(2.8) ^/x(d)xd=^Mm)X(m)^5>(d) = l
d\P m\P d\m

and that Xd = 0 when d > £. Thus S is a positive quadratic form in
the Xd, and in light of (2.8) we rewrite S in the form

(2.9) E = ^ * - L { x d - fi(d)g(d)C}2 + 2
5^ d\P d<£,

d\P d\P

= E * -ji;{xd-n(d)g(d)C}2 + 2C-C2J29(d).
d<i 9^ > d<i
d\P d\P

On choosing C — l/G, where

(2-10) G = Gf(P):= J2 9(d),
d<£, d\P

we conclude that £ = l/G provided that the values to be taken by \
can be chosen so that

Xd — n{d)g(d)/G when d < £ and <i | P.

But such a choice can be achieved with the Moebius inversion formulas

u(d) = ^ w ( m ) if and only if v(d) = ^ fi(t)u(dt).
m\P t\(P/d)
d\m

We take

m | P
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and then, by inversion, since u(d) — Xd — 0 when d > £,

t\(p/d)

E
t\(P/d) i|P,(t,d) = l

Thus we obtain the Selberg choice

(2.11) J*
t|P, (t,d) = l

We see that Xs(l) = 1) and also xs(d) — 0 when d > £, since then the
sum on the right is empty.

We may now conclude that

(2-12) S(A, V) < — + R,

where G is given by (2.10) and R by (2.5).

One final comment about the modifying factors \s'- we show that

(2.13) 0 < xs(d) < 1, d\P.

Indeed, the left-hand inequality is obvious from (2.11), and the right-
hand estimate is true trivially if g(d) = 0, also by (2.11); otherwise it
holds since, for any positive integer d,

G = E E 9{n) = YJ9{5) E 9(t)
S\d n<£,n\P S\d t<£/6,t\P

(n,d)=S (t,d/S) = (t,S) = l

= E^) E 9d)> E
S\d t<£/S S\d t<i/d

t\P, (t,d)=l t\P, (t,d)=l

and when d P

p\d

By (2.11) this completes the proof of (2.13).
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It remains to estimate R as given by (2.5). We simply apply (2.13)
in (2.5) and use the estimate

{dltd2}=d

To see this, note that there are just three possibilities for a prime p to
divide {di,d2} : p divides exactly one of d\, d^ or p divides both.

This leads us, by (2.12), to

Theorem 2.1. (SELBERG) Let £ be an arbitrary positive parameter.
Suppose A and V are as described in Section 1.1 (see (1.3) and (1-4)J,
and that G is given by (2.10) and (2.7). Then

d\P

where X and rj^{d) are as in (1.4).

In applications, £ is to be chosen so that the remainder sum on the
right is of smaller order, or no larger than, the other term. In particular,
we will nearly always take £ < X1!"2.

2.3 Notes on Chapter 2

See [Sel47] for the original account of A. Selberg's sieve method, also
[Sel91]. Here we have followed the presentation in [HR74], including
introduction of the parameter £. There are, of course, other accounts
of this famous method in the literature; for one such approach see the
proof of Theorem 12.9 in [BaD04].

Selberg used the notation X4 = /j,(d)x{d) in (2.2), and his method is
often referred to as the A2-method. Simple and elegant as his approach
is, the estimation of the sum G presents, as we shall see, some technical
problems when studied on the basis of O,(K).

Selberg developed also a weighted form of the A2 method (described
in [Sel91]), and this has since been generalized, refined, and extended
in [H-B97, HoTs06], and notably, in [GPY].
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Combinatorial foundations

3.1 The fundamental sieve identity

We return to (2.1) and derive a very useful expression for the difference

d\(n,P) d\(n,P)

that helps to suggest good choices for x- Given an integer d > 1, we
write p(d) for the smallest prime factor of d and p+(d) for the largest
prime factor. Also, we set p(l) := oo and p + ( l ) = 1. We associate with
X the complementary function x given by

(3.1) X(1):=O, W) ••= X(d/p(d)) - X(d) (d > 1).

Then x a n d X a r e connected by the following relation.

Lemma 3.1. ( T H E FUNDAMENTAL SIEVE IDENTITY) Suppose x(l) — 1
and that x(d) is arbitrary for d > 1; also let x(-) be as in (3.1). Then,
for any arithmetic function h and any squarefree natural number n,

(3.2) y fj,(jt)h(jt)
d\n

In particular, when

(3.3) y2/i(d)h(d) -
d\n

and hence, when h

(3.4) £><
d\n

d\n

h is multiplicative

/ j i* V / ^v V / V /

d\n

— 1 identically,

,d) = / , lJ'(d)x(d)
d\n

d\n

we have

d\n

+ 2_^ MQ

d\n
p(d)—p(n)

d) E K
t\n

)h{d) n (
p\n

p<p(d)

19
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Before proving the identity we illustrate its uses with two important
applications. First, let

I 0 otherwise,

where k is a non-negative integer. Then x^{d) — 1 if and only if
v(d) — k + 1 and is otherwise 0; and therefore

d|ra d|ra d|n, v(d)=k+l
u(d)<k p{d)=p(n)

In particular, take n = (a, P) and let k be any even integer, and £ any
odd integer. Then

d\(a,P) d\(a,P)
v(d)<k

inequalities that are the foundations of Brun's first and simplest sieve
method.

The second application is really the case k = 0 of the first: we have

/ j r~\ / / J

d\(a,P) p\(a,P)
p((a,P))=p

and hence

(3.5)
p€P

where Vp denotes the set of primes in V that are less than p. This is a
form of Buchstab's famous identity [Buc37]. Clearly, applying an upper
bound estimate to each term in the sum on the right leads to a lower
bound for S(A, V). This remark is the basis of the Ankeny-Onishi lower
bound sieve estimate [AO65].

Proof of the Fundamental Sieve Identity. Write a typical divisor d of n
in the form

' P r , P l > P 2 > ••• > P r ,

so that p+(d) = pi and p{d) = pr. Then
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where \{Pi'' 'Pj-i) a t 3' — 1 is interpreted as x(l) = 1. We restate the
preceding identity as

1 - X(d) = E
t\d

p+(d/t)<P(t)

so that

d\n d\n t\d
p+(d/t)<p(t)

Since d is squarefree, upon writing d = tS we have fi(d) = )i(t)fi(5) and,
after inversion of order,

t\n S\(n/t) t\n 5\n
p+(S)<p(t) p+(S)<p(t)

since S \ n and p+(S) < p(t) imply S \ (n/t). This proves the identity,
apart from a change of notation, and the two particular cases are then
immediate consequences. •

As one more illustration of the Fundamental Sieve Identity, we apply
it to the Selberg sieve method and show that

(3.6)
d\(n,P) d\(n,P) d\(n,P)

p(d)=p{{n,P))

=: I2 - II2,

say; here, we recall, %(1) = 1 and for d > 1, the real numbers
are initially arbitrary. Of course, (2.2) follows at once from (3.6). In
Section 3.2 we derive an expression for / / in terms of G and g. Together,
these formulas provide a measure of the efficacy of the Selberg sieve.

By (2.6) and by the Fundamental Sieve Identity,

E:=En:= ~ ~ ~
d\(n,P) d\(n,P) d\(n,P)

p(d)=p((n,P))

where

r(d)=X*(d/p(d))-X*(d)
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Hence

E=- Y,
d\(n,P)

and, by (2.6),

also, writing q — p((n, P)),

{t1,t2}=d/q

Now when d \ (n, P), p(d) = q and {^1,^2} = d, the pairs d\, d2 may be
written

d\ — qti, d2 — t2; d\ — t\, d2 — qt2; or di — qt\, d2 — qt2

with {ii,^2} = d/q in each case. It follows that

E=- V V
d|(n,P) {ti,t2}=d

-E E
d\(n,P) {tl7t2}=d/q

and this proves (3.6)

d|(n,P) d\(n,P)
d)=q P(d)=q

3.2 Efficacy of the Selberg sieve

We can provide a measure of the amount by which the Selberg estimate
overshoots the truth. To do this, we show first that

(3.7) x(«Q = X?(d) = ̂  I I ( I " — ) " E
p\(d/q) P t|P,(t,d) = l
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where xs{d) is the complementary Selberg modifying function, g and G
are defined in (2.7) and (2.10) respectively, and q — p(d).

Proof of (3.7). The Selberg function is defined in (2.11) and its comple-
ment in (3.1). We have

Xs{d) = xs{d/q) - Xs(d)
d/q g(d/q) ^"^

u(d/q) G ^ a w u(d) G ^
K I H > t\P,(t,d/q) = l y ' t\P,{t,d) = l

_ /

Now g(p) = uj(p)/(p — u)(p)), whence

dg{d) _ qg{q) d/qg(d/q) qg(q)
u(d) u)(q) u(d/q) ' u(q)

and so

/t\P,(t,d/q) = l t\P,{t,d) = l
t<(t/d)q t<i/d

Consider the first sum. Setting d/q = s, q < p(s), it becomes

E s(t) = ( £ ' + E"
t\P,(t,s) = l V t | (P /g) , ( t , s ) = l t\P,(t,s) = l

t<i/s t<i/s

t\P,{t,d) = l m\P,(m,d) = l
t<(i/d)q

on writing t = qm in S", so that (TO, q) = 1 and (TO, S) = 1. Since

q

the bracketed expression on the right of (3.8) is

E
t\P,(t,d) = l * m\P,(m,d) = l t\P,(t,d) = l
t<(i/d)q

} ^
t|P, (t,d)=l t|P, (t,d)=l t|P, (t,d)=l
t<d/d)q t<i/d t/d<t<(t/d)q

Inserting the last expression in (3.8), we obtain (3.7). •
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Now, to measure the "overshoot" in our Selberg estimate, consider the
second sum, / / , in (3.6). Taking q — p((n, P)), and then applying (3.7),
we get

d\(n,P)
p(d)=q

V^ (j\ IT (i W ( P ) \ " 1 ^ V^ /+\
= > ii(d) I 1 — > g(t).

d\n,d\P p\(d/q) F t\P,(t,d) = l
p(d)=q

Let s = d/q, so p(s) > q. Then

S\(n/q) p\s F t\{P/q),(t,s) = l
s\(P/q) i/

or, on writing m = st, so that both of s,t divide P/q, (t,s) = 1, and
s | (n/q),

s\m p\s

m\(P/q) s\(n,P)/q

Now, by the definition of g,

pV p J w ( p )

and therefore, summing over s, remembering that m \ (P/q), we obtain

(3.10) 2 ^ M « ) l l w ( ) - 1 1TT (
w ( ) - 1 1 1̂ ^p))- g((m,n/q))-

s\(m,n/q) p\s W> p\(m,n/q) W> W U ' ' *>>

Finally, incorporating (3.10) into (3.9) and then taking absolute val-
ues, we obtain

m\(P/q)

where the upper bound of 1 follows from the definition of G (equa-
tion (2.10)). Using this bound in (3.6) provides our measure of the
amount by which the Selberg estimate overshoots the truth.
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3.3 Multiplicative structure of modifying functions

Sums of type (2.1) that are upper bounds for (1.1) have an interesting
algebraic structure: if U is the set of all such sums, then U is closed
with respect to multiplication. Indeed, if

d\(n,P) d\(n,P)

then, since the left side is 1 when (n, P) — 1 and is 0 otherwise, the
product

(3.11) 2__; fJ'(d)xi(d) • 2_^ fI(d)X2(d)
d\{n,P) d\(n,P)

= E E V(di)xi(di)fi(d2)x2(d2)
d\(n,P) {dud2}=d

- E
d\(n,P)

where

X*(d) := Yl
also lies in hi. Writing

X \d) = S
[0, otherwise,

the sum

Y V(d)x(°\d) (=1)
d\(n,P)

is the multiplicative identity of U.

On the other hand, if Xi(0 — X {') determines a sum of type (2.1)
that is a lower bound for (1.1) and X2(-) = X+(0 gives an upper bound
for (1.1), then clearly the product on the left side of (3.11) is less than
or equal to 0 whenever (n,P) > 2, and hence x*(") is a n e w modifying
function of x~ type, that is,

d\(n,P) d\(n,P)

This relation is interesting, because it provides, in principle, a way of
generating new lower bounds for (1.1). For example, if x (•) is some
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lower modifying function and %(•) is any real arithmetic function satis-
fying x(l) = 1, then

y u(d)y (d)) ( y
d\(n,P) d\(n,P)

determines another lower modifying function.

3.4 Notation: V, S(A,V,z), and V

To continue, we make a change of notation that we shall adhere to for
the remainder of this monograph: from now on, V is an infinite set of
primes and as a (finite) sieve we take Vz, the set V truncated at z; to
be precise, Vz = {p £ V: p < z}, and we write

P{z) = [ ] p, P(z0, z) = P(z)/P(z0) = H p (2 < zo < z),
pev pev
P<z zo<p<z

S{A,V,z) := S(A,VZ) = \{a e A: (a, P(z)) = 1}|,

For any choice of ZQ satisfying 2 < ZQ < z, we have, on writing P(^) =
P(zo)P(zo,z),

(3.12) S(AP,2)= ^ M n ) I X I =

= E Md) E
d\P(zo,z) t\P(z0)

= Y. Kd)S(Ad,V,z0)
d\P(zo,z)

by (1.2); when now we apply the Fundamental Identity (Lemma 3.1)
with n = P(z) and

u(j\ iS(Ad,V7z0), (d,P(zo)) = l,
hid) — <

\0, (d,P(zo))>l

to the sum on the right, we obtain
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(3.13) S(A,P,z)= J2
d\P(zo,z)

d\P{zo,z)

Only the second sum on the right needs a word of explanation; by the
Identity it is

d\P{zo,z) t\P(zo,p(d))

and the inner sum is equal to (cf. (3.12)) S(Ad,V,p(d)).

However \ is chosen later, we require from now on that it is divisor
closed in the sense that whenever x{d) = 1 and t \ d, then %(i) = 1
too. Next, we call % combinatorial if it takes only the values 0 or 1.
If x is divisor closed and combinatorial, then it is easy to see that \
is combinatorial too and that x(d) = 0 whenever x{d) — 1- Thus one
may view x a n d X a s the indicator functions of two disjoint subsets of
divisors of P(zo, z).

A word of explanation is in order for the parameter ZQ\ its role is
two-fold. First, we shall choose ZQ small enough so that, apart from
remainder sums that occur, S(A,V,z) is asymptotic to

pev
p<z

for 2 < z < ZQ, as naive probability suggests. Also, as we shall see,
there is some technical advantage in a preliminary sifting by the primes
of V that are smaller than ZQ. We shall return to this development in
Chapter 6.

3.5 Notes on Chapter 3

A form of Lemma 3.1 first appeared in [HR74], Chapter 2 (1.6), but
Iwaniec was the first to make effective use of it. The result was given
the name "Fundamental Sieve Identity" in [DHR88], Lemma 2.1. Brun's
"pure" sieve, the simplest sieve method devised by Brun, is our first
application of Lemma 3.1; otherwise we do not discuss Brun's method,
but instead refer the reader to the Brun-Hooley method [Hoo94, FHOO],
a simple but effective extension of it.
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Balog [Bal85] refers to Lemma 3.1 as Richert's Fundamental Identity
and derives from it, as does Harman [Hrm96], diophantine inequalities
for primes that improve on results given by the better-known Vaughan
identity. (Details are given in [Bal85].) Thus Lemma 3.1 joins a group
of simple identities that have played an important part in modern prime
number theory. The Buchstab identity, the second application of the
lemma, is another such relation.

The linear (K = 1) sieve method of Jurkat and Richert [JR65], may
be said to rest on infinitely many iterations of Buchstab's identity (3.5)
and Selberg's sieve method.
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The Fundamental Lemma

4.1 A start: an asymptotic formula for S(A.q,T
>, z)

The aim of this chapter is to prove Theorem 4.1 below, which gives,
under quite general conditions, an asymptotic formula for S[Aq,V,z)
provided that z is small enough relative to X. This theorem serves
as a springboard for the principal results of this monograph; it has also
many applications in the literature. Separate arguments are given for the
upper and the lower estimates. Along the way we establish Lemma 4.4,
a simple and useful O-bound for S{A, V, z).

Theorem 4.1. (FUNDAMENTAL LEMMA) Assume (1.3) and condition
£1(K) hold and recall that r^ is defined by (1.4). Further, suppose that
z > 2, v > 1, and q is any natural number whose prime factors lie in
V \ "Pz. Then we have

S(Aq,V,z) = ^XV(z){l + O(exp ( - ulogu -

<
n\P{z)

where V(z) was defined in Section 3-4, \0\ < 1, and the O-constant may
depend on K and A.

Proof. We start by establishing the upper bound, using Selberg's esti-
mate from Chapter 2 with Vz in place of V and quote from there: for £
a positive parameter,

(4.1) S(A,P,z) < —^- + £ Z"W \rA(d)\,
^ > d\P(z)

29
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where

(4.2) G(£,z):=

d\P(z)

Note that if £ < z, the summation condition d \ P(z) on the right is
superfluous and can be omitted. In that case

Writing

p<z p<z

we have

G{i,z)= Y 9{d)< Y
d<{ d\P{z) P<z

d\P(z)

but for our purpose (see (4.1)) we need a lower estimate for G(£, z)V(z).
We obtain a first such estimate on the basis of condition 17(K;) when
z < £, actually when z is very much smaller than £.

We begin our argument by deploying a device known in the literature
as Rankin's method. Since <?(•) > 0, we have

1/V(z)-G(£,z)= J2 9(d)-G(Z,z)= Y, 9(d)< £
d\P(z) d>( d>C

d\P{z) d\P(z)

for any s satisfying s < 1, whence

d\P{z) P<z

1 1 I

v ' p<z

and therefore

< exP{ - (l-8)log£ + £ — (P1-* - l)}

*C PYT1 < I 1 e ) 1 r\(f y —I— I ur I (j { 1 Q
1 (1 — s)log,zV V(l —s) log^
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by (1.11). Now set

v :=log£/logz, A := (1 - s)logz.

The last inequality can be restated as

(4.3) 1 - V(z)G(£,z) < exp { - At; + (eA/A) (« + o ( ^ + {))}•

If v > z, we have

log£ > zlogz > \ J l o g p > logP(z),

so that £ > P(z) and here

d\P(z)

Now suppose that v < z but that v is large. Choose

A = log v + log log v.

Then, in (4.3),

A 1 log v 1 , eA

"•" " 1 and — < -y,logz A logz logv A

and we obtain

1 - V(z)G(Z, z) < exp {-u(log v + log log v) + O(v)} ,

or

i < KW
G(t;,z) ~ 1 — exp{—ulogu — w log log u + O(v)}

= V(z)(l + exp{—ulogu — v log log v + O(v)}).

(The higher-order power series terms of the series

1 / ( 1 - e ) = 1 + e + e 2 + •••

have been absorbed in the exp O(v) error term.)

It follows that for all sufficiently large values of v,

(4.4) — ^ - < V(z) {1 + 0 (exp{-«log« - 2v})} .
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For small values of v := log £/ log z, v > 1, we can assert that

(4.5) 1

(For large values of v, this relation follows from (4.4).) To show (4.5),
choose a number v' sufficiently large that, by (4.4),

for z' = zxlv> and £' = z. Then

G(£,z)>G(z,z)>G(z,z').

Also, by condition fl(n),

z'<p<z

It follows that

, z)V(z) > G(z, z')V(z') • V{z)/V(z') > G(z, z')V(z') > 1.

Thus we have shown that if z < £ and condition £1(K) holds, then (4.1)
implies that

(4.6) { ( ) }
d\P(z)

d<e

We restate (4.6) in a more general form that we shall need at the next
stage.

Lemma 4.2. Suppose that condition SI(K) (Definition 1.3) holds, that
the parameter £ of (4.6) satisfies £ > z, and that q is a natural number
such that (q,P(z)) = 1. Then, writing v = (logf)/logz (so that v > 1),

q d\P(z)
d<z2"

The preceding argument is unchanged; we have only to observe that

. , . Lu(qd) , u)(d) fuj(q)
\Aqd\ = - ^ - x + TA(qd) = -j1 ( - ^

for d | P(z) and (q,P(z)) = 1, so that tu(q)X/q replaces X and rA(qd)
appears in place of rA(d). Lemma 4.2 yields an upper bound estimate
implicit in Theorem 4.1; because of its frequent application, we have
stated it explicitly.
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4.2 A lower bound for S(Aq,T, z)

Returning to the proof of Theorem 4.1, it remains to establish the lower
bound for S(Aq, V, z). We start with Buchstab's identity (3.5) with V
replaced by Vz (that is, V truncated at z) and Aq in place of A for
(q,P(z)) = 1. The altered formula reads

s(Aq,r,z) = \Ag\ - Y, s(Aqp,r,P).
p<z

v
We combine this relation with the identity

p<z P

We establish the last formula as we did (3.5): take h(d) = cj(d)/d in (3.3)
so that the sum on the left side of (3.3) is V(z), and on the right take
x(d) = 1 when d = 1 and 0 otherwise, so that x(d) = 1 when d is
prime, and is 0 otherwise. Alternatively, (4.7) is equivalent to the simple
identity

Together, the Buchstab formula and (4.7) yield

= \A
1 p<

We shall be led to a lower bound for S(Aq, V, z) by applying Lemma 4.2
to each term in the sum on the right with £,p~1/2 in place of £ (in order
to take care of the accumulation of error terms in this sum), p in place
of z, and v replaced by

v . = g ( e y ) = g£ .
p l l 2 v

logp logp 2 logz 2 2
The condition "£ > z" in the lemma translates into £,p~x/2 > p or vp > 1
and holds when v — 1/2 > 1, that is, when

v > 3/2 or, equivalently, when z <
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Subject to this assumption, we obtain

(4.8) S(Aq,V,z)-^XV(z)>

p<z

E H d ) } - \rA(q)\.

On the right, the remainder terms contribute

d\P(p) n\P(z)

Let So denote the remaining sum on the right side of (4.8). Then

E0 « ^XV(z) E ^ ^ exP(-,p log «p - 2vp)
^ p<z P ^Z'

p<z '

exp \— vvlogvv - 2vv + (K + 1) log }
I logpJ

e x p j - vplogvp -2VP + (K+ l ) l o g - 1,

the last by (1.10).

The expression in the exponent, when regarded as a function of p, has
partial derivative with respect to p equal to

if (remember that vp > v — | )

v> (1/3)(K + 4) (>5 /3>3 /2 ) .

Hence this expression can be estimated from above by replacing p with
z and replacing vp by v — \. It follows that
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By the mean value theorem,

vlogv- (v - - ) log (v - - ) < - (1 + logv) <v/2, v> 1/2.

At the end we used the inequality 1 +1 < e*. We conclude that

--v) if V>-(K + 4).^0^XV(z)exp(vlogvv) if V>

In summary, by (4.8) and provided that v > (K + 4)/3,

S(Aq,V,z) > ̂ I ^ ) { 1 + O(exp (-

On the other hand, if 1 < v < (K, + 4)/3, the inequality holds trivially
in the form S(Aq,V,z) > 0 provided that the constant implied by the
O-notation is large enough, depending on K and A from condition J7(K;).

While the lower bound in the Fundamental Lemma is formally valid even
for small values of v, it is of interest only when v is large enough for the
expression on the right to be positive.

When combined with the upper bound of Lemma 4.2, the last inequal-
ity concludes the proof of the Fundamental Lemma. •

A sum involving the remainder term r^\ occurs in both Theorem 2.1
and the Fundamental Lemma. In many applications 7\A(-)| is of size at
most co(-), which yields a simple estimate for the remainder sum.

Lemma 4.3. Suppose that £1(K) holds and

(4.9) \rA(d)\ < uj{d) whenever d \ P(z).

Let K be a fixed positive integer. Then for any z > 2,

E:= Y. K^\rA(d)\<z2V(z)-K.
d\P(z)
d<z2

Proof. We estimate E using another application of Rankin's method:
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recalling the hypothesis on |r^(<i)|, we have

d\P(z) " d\P(z) P<z
d<z2

K=z2V(z)-K. D
p<z ^ p<z

Applying the preceding result, we have a useful special case of the
upper bound estimate of the Fundamental Lemma.

Lemma 4.4. Suppose that Q(K) holds and also that \r^(d)\ < oj(d)
whenever d \ P(z). Then for any positive constant A± < 1/2,

S(A,V,z)<ZLXV(z) if z<XAl

and

S(A, V, z) < XV(X) if z > XAl,

where the constants implied by the ^-notation may depend on K and A\.

Proof. Take q = 1 in Lemma 4.2 and also v = 1, so that £ = z. Then
the first term in the formula of that lemma is <C XV(z). We estimate
the second term by the last lemma with K = 3.

If z<XAl, then

E < X2AlV(z)-3 < XV{z),

as claimed, since V(z)~x is at most a logarithmic power of X.

Now suppose that z > XAl. Trivially, S(A,V, z) < S(A,V,XAl)
and therefore (with XAl in place of z in the preceding estimate)

~3S(A,V,XAl) <^XV(XAl) +X2AlV(XAl)
•€.XV(XAl) «

The last relation is a consequence of £l(n):

XAi<p<X

This establishes the second bound for S(A, V,z). D

Here is an application of Lemma 4.4.
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Corollary 4.5. Let A be the integer sequence described in Example 1.2,
and let p(p) denote the number of incongruent solutions of L{n) = 0
mod p. Let V be a (thin) set of primes such that

(4.10) y j - > 8\og\ogy — Ao

p<y
pev

for some constants 5 £ (0, 1) and AQ > 0. Then

p\A

where the constant implied by the ^-notation depends only on g and Ag
(but not on the coefficients of L(n)).

Proof. In Example 1.2,

jP{p) if PeV,

|0 if p / P ,

and we may assume that

pip) < V f° r aU V ̂  V,

since otherwise the expression on the left side of our result is zero and the
inequality holds trivially. Also, ft(g) holds (with A = A(g)) because,
from above, co(p) < g. Hence the quantity being estimated is at most

\{n: x-y<n< x, {L{n),P{y)) = 1}| =: S{A,P,y) « y JJ ( l -
p<y

v

where the -C-constant depends only on g.

A small calculation shows the product in the last formula to be at
most

p<y p<y p<y
pev

The first product on the right does not exceed

exp ( -
eA°9

p<ypj ~ (logy)59

pev
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by hypothesis, whereas the second product is, by the discussion in
Example 1.2, equal to

1\P(P)-9 -r-r / 1\P(P)-9n (i - r - <- n (' - )
We remark that the last product is finite since A ^ O . D

We state, without proofs, several special cases of Corollary 4.5.

Example 4.6. Suppose that 1 < y < x and V is a set of primes satis-
fying (4.10) for some positive constants S and AQ. Then

\{n:x-y < n < x,(n,V) = 1}\ <C — ^ - ,
log 2/

where the <C-constant depends on J4O only.

A special case of this example arises when V consists of all primes lying
in one or more distinct residue classes with respect to some modulus k.
If r is the number of these residue classes, £i mod k (i = 1, . . . , r), and
(£i, k) = 1 for each i, then 6 = r/ip(k) and Ao = Ofe(l).

An instance of this last case occurs in representations of numbers as
sums of two squares. It is known that a number n is representable as
a sum of two squares if and only if all prime factors p of n with p = 3
mod 4 occur with even multiplicity. So, for example, 45 is a sum of two
squares, while 47 is not. The main contribution to an estimate of

\{n G (x — y, x]: n = a2 + b2, some a, b £ N}|

arises by sieving (x—y, x] by the collection V of primes in the progression
3 mod 4. Here k — 4, ip(k) — 2 and r — 1, so

\{n: x-y < n < x, (n,V) = 1}| < V

yiogy

which is the correct order of magnitude for the preceding counting func-
tion. There are many other specific examples of Corollary 4.5 in which
L(n) is a particular product of linear polynomials and V is the set of
primes lying in the union of distinct arithmetic progressions.

A Fundamental Lemma is especially useful for determining precise
information about the cardinality of a sequence whose elements have
no very small prime factors. As a first illustration, let u and x be real
numbers such that u > 1 and xxlu > 2, and let q = q(x,u) > 1 denote
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a number having no prime factors less than xxlu and satisfying log q <C
log x; such a number q is sometimes referred to as a quasi-prime (relative
to x and u). If we take u — u(x) to be a function of x tending arbitrarily
slowly to infinity with x and suppose that 1 <C (logX)/ log a: <C 1, then,
by Theorem 4.1 (with (7 = 1 in the statement of the theorem) and
A — {n: 1 < n < X}, we have

\{q: q < X}\ ~ (ue-t^^-)*^) as X ->• 00.

To see this, take z = xl/w and v = u/4, say, in Theorem 4.1; we obtain
in fact a good quality "quasi-prime number theorem," which shows that
the quasi-primes up to X are hardly more dense than the primes.

The following is a more elaborate application of Theorem 4.1 (again
with q — 1) to quasi-primes.

Example 4.7. Let hi(n),..., hg(n) be distinct irreducible polynomials
with integer coefficients and write H(n) = h\{n) • • • hg(n). Let p(d)
denote the number of solutions of the congruence H(n) = 0 mod d
that are incongruent mod d, and assume that p(p) < p for all primes p.
With u and x as described above, we have

\{n: 1 < n < x, hi(n) = qt (i = l,...,g)}\

where qi,..., qg are all quasi-primes relative to x and u. Moreover, the
expression on the right is

^ { 1 + ^
log" x L

+ OH {X1/2 log39 x),

where all the Off-constants depend at most on the coefficients and
degrees of hi,..., hg.

Proof. Let A — {H(n) : 1 < n < x} and take V to be the set of
all primes. We may assume that all the polynomials hi have positive
degree; for if any one had zero degree, then the condition that p(p) < p
for all p would imply that the polynomial was identically 1, and the
expression on the left in the statement of the example would then be 0
and the result trivial.
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We have

\Ad\ •= \{n: 1 < n < x, H(n) = 0 mod d}\ = p{d) (x/d + 9), \6\ < 1,

so that X = x, co(d) = p(d), and

rA(d) = \Ad\ - (p(d)/d)x, \rA(d)\ <

By the Chinese Remainder Theorem ([HW79], Theorem 121), p is a
multiplicative function. Further, by Lagrange's theorem, p(p) is at most
the degree of H for every prime p; of course, by hypothesis, p(p) < p
always. Also, by the formula (10.1) of Landau, we have the Mertens-type
relation

p<y P

This result is proved in Chapter 10.

From the last formula we can show that £l(g) holds and therefore we
can take here K — g. Indeed (cf. Definition 1.3 and the subsequent proof
that n(n) holds for the sequence generated by L),

and we have to evaluate the two sums on the right. By Landau's formula
and summation by parts,

(4.11) £
p

Then, taking w\ = p and letting w —> p + 0, we obtain

p(p)/p <.H 1/logp.

Next, for w > w\ > 2, we have

) y y(
p J pi ^ ^ m\ p

w <p<w m—2

2 V p ) 1 - p{p)/p

•^H 2_^ ( ) ^H /
W\ <p<UJ
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the last from (4.11), by another summation by parts. Hence

w\ <p<w

which implies il(g).

Now taking z = x1'u and v = u/4 (as before) and using the fact that
r_4(n)| < ui{n) = p{n), Theorem 4.1 and Lemma 4.4 give

(A 1 "K\ '?(' A V T

pKx1/'

+ 0 (x1'2 log39
x .

Equation (4.12) suggests a connection between the last product and
Mertens' product formula with a remainder,

(4.14) \ \
p<x

By Mertens' formula,

-'•-'• V pJ \loswiJ I Vlogwi/I'
w±<p<w

and this and (4.14) together imply that the product

p>t

converges and equals 1 + 0 ^ ( 1 / log t). It follows that the product on
the right side of (4.13) is

1\»
n ( i - ) '• n

p / \ p

y p
For large x, the error term in the last formula is <c; exp(—(M/4) logu),
so we drop it when inserting the formula into (4.13). Finally, we change
the form of the product slightly by writing

p / \ p / p — 1

and the proof of Example 4.7 is complete. •
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4.3 Notes on Chapter 4

Theorem 4.1 was given the name "Fundamental Lemma" by Kubilius
in [Kub64]. There are other versions of this result, arising from differ-
ent sieve approaches, of which that of [FI78] is particularly sharp and
attractive.

There are forms of the Fundamental Lemma in which all constants
are explicit. For one version and an interesting application, see [HalOO].

The bound on E given in Lemma 4.3 can be regarded as a quantitative
"quasi-independence" result for A.

Examples 4.6 and 4.7 come from [HR74]. There is a discussion of
quasi-primes in Chapter 1.5 of [Lin63].
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Selberg's sieve method (continued)

5.1 A lower bound for G(£, z)

This is a long chapter. Its goal is to establish Theorem 5.6, in Section 5.3,
the version of Selberg's sieve that is the starting point for our work in
the pivotal Chapter 9. We extend Theorem 2.1 by giving a (sharp) lower
bound for

G(£,z):= J2
d\P(z)

where g is the multiplicative function whose value on the primes is

(g and G(£,z) occurred earlier in (2.10) and (4.2).) Since the Funda-
mental Lemma, Theorem 4.1, is effective only when v —> oo, that is,
when log z is small compared with log£, a more precise lower bound for
G(£, z) is needed for smaller values of v.

The main results encountered along the way are the inequalities (5.8)
and (5.44). The biggest task is to establish the first of these, which
connects G(£, z) with a related sum. The combinatorial device used
here, Lemma 5.1, is of some independent interest. The second inequality
is the desired lower bound for G(£,z), from which the theorem follows
readily. The important functions j (or their equivalent a expressions)
make their first appearance in this chapter.

Since

- l

43
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condition fl(n) can be restated in the form

Letting w\ = p and w —> p + 0, we obtain

A w(p)
(5.3) g(p) < and <

logp p
Hence

o-
p plogp

and therefore, by (1.7),

(5.4) 0< y^ \9(P) ) logp < A
w±<p<_w

log w A2

< AK log— 1 , 2 < wi < w.
logio logw

By (5.2) and (4.14) (Mertens' product approximation with a remain-
der), we obtain the estimate

W!<p<W

where A\ can depend on A and K.

We derive a refined lower bound for G(£, z) by means of

Lemma 5.1. ( T H E T O P P I N G - U P LEMMA) With g(-) as defined in (5.1)
above, there exists a function g*(•) defined on the primes such that

g*(p) >g(p)

for all primes p and

(5.6)
u<p<v

holds for all pairs of numbers u, v satisfying 2 < u < v.

We call (5.6) the J7*(K;) condition.

Corollary 5.2. Let G*(£,z) be the summatory function given by

(5.7) G*(£,z):= J2 9*(d),

d\P(z)
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where g*(d) := Yl 9*{P) when d \ P(z). Then, for all positive £ and z,
P\d

(5.8) G(£,z) [ ] (1 + s(p))-1 > G*(£, z) [ ] (1 + ^(p))"1.
p<z p<z

In particular, for £ < z, we have G*(£, z) =: G*(£), G(£, z) =: G(f)

It follows from the corollary that if we can find asymptotics for the
function on the right side of (5.8), we shall have determined a lower
bound for the function on the left.

Proof of the Corollary. The argument is very simple. We first prove the
inequality for the case g*(p) = g(p) for all primes p < z except one, po
say, where g*(po) > g(po)- We have

G(£,z)= J2 9(d)+g(Po) J2 9(d)=:Sl+g(Po)S2,
d<£ t/P

d\P(z)/po d\P(z)/p0

say, where obviously S\ > 5*2, and similarly G*(f, z) = S\ + g*{po)S2-
Hence

S1+g(Po)S2 5 1 +g*( P o )5 2

o)=

l+3(Po) 1+5* (Po) l + s ( P(Si-S2)(g*(po)-g(po))

By iterating this procedure as often as is necessary, we complete the
proof. •

Proof of Lemma 5.1. Let

bp := log(l + g(p)) + K log (1 - p-1)

for all primes p. Then, by (5.5)

(5.9) V bp < -——, 2 < Wl < w.
^-^ log w\

w\ <p<w

Our aim is to construct a sequence {bp} such that 6* > bp for all primes
p and

- , 2 < u < v.< y b;<
logu ~ *-^ p ~ logu

u<p<v
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Then we define g*(p) by

(5.11) b*p =: log (1 + g*(p)) + Klog (l - p ' 1 ) .

Since this construction is not simple, here is an outline of our argu-
ment: we identify on the real line a sequence of non-overlapping intervals
/ = [C, D] and associate with them blocks Bj = {&* : p G / } of terms
from the sequence {bP} of two kinds according to whether D < C2 or
D > C2. In the first case we construct a "short block" Bj such that
(among other things) Spg/ &* = 0. In the remaining case we construct
a "long block" Bi in the form \b*p: q < p < qr2} with 6* = bp. In each
case we give upper and lower estimates of sums of 6*.

Now for the details. As is implicit in these remarks, the numbers bp

are not necessarily all positive. Indeed, from the definition of bp, (5.1),
and (5.3) we have

. . K
bP < g{p) - - <

p

K co(p) — K (
< ^ + h< + h

p p Vlogp
Condition tt(n) implies that UJ(P) < n on average, and bp < 0 can occur.
If bp < 0 for all p, take bp = 0 for all p. In this case, by (5.11),

n (i+5*(p))(i-p-T=i

u<p<v

for 2 < u < v < oo. Also, g*(p) > g(p) for all p, and the lemma holds
trivially.

Next, let q be the least prime such that bq > 0. In case q > 2, define
bp = 0, p < q. Let Q be the minimal prime exceeding q for which

(5.12) Y, bp<0,
q<p<Q

or let Q = oo in case (5.12) holds for no finite number Q. We have

(5.13) Y, bP>0> Q<r<Q'
q<p<r

and in case Q is finite, 6Q < 0. We break the argument into two cases.

Case I. Q < q2. Here define

b*p = bp, q<p<Q, and b*Q = - Y V
q<p<Q
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By (5.12), b*Q > bQ. Suppose [u,v] C [q,Q]. When v < Q,

> &„ = > op <
r^S r ^ log"

by (5.9), and when v = Q,

E * x—̂  * i0o = > 0p + 0 o < ,

since 6Q < 0.

To bound the sum from below, note that

A

E
q<.p<.v

so tha t

—̂̂

qKpKu—1

, v
w<p<t

since u < v < Q < q2.

So far we have defined a block Bi — {6*: q < p < Q} of terms whose
sum is 0 and which satisfies

b'p > bp for q < p < Q,

where Q < q2 and such that

M i < E K < A
u<p<v

whenever [u,v] C [q, Q\. We shall call such a Bj a s/iori Woc£

Case II . Q > q2 (possibly Q — oo). We define b^ = bp, q < p < q2,
and refer to {&*: q < p < g2} as a /ongr 6/ocA;. The sum of the elements
in a long block is not 0, but we know by our construction and (5.9) that

o<

Suppose that [u,v] C [q,q2]. Again, we have

u<p<v
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and, arguing as in Case I,

\—^ * x—^ —-^-l —^

/ o > — y bp > ~̂
u<p<V — - ^ ~ " l 0 g M '

since u < v < q2. Thus, for a long block £?/ = {&*: q < p < q2}, we
have 6* = &„ and

logw j—1 p logu

whenever [u,v] C [q,q2]-

We have now constructed the first block—which may be short or
long—and we proceed inductively: If all elements bp beyond the first
block are non-positive, we replace them each with &* = 0 as before; if
bqi is the first element beyond the first block that is positive, then take
bp — 0 for all primes beyond the first block but smaller than q'. We form
a second block, starting with q', and proceed as before.

We are now ready to complete the proof. Consider the sum

(5.14) 2_j frpj u < v;
u<p<v

remember that the elements &* that do not lie in a block are 0 and that
otherwise the elements 6* lie in nonoverlapping blocks. We suppose,
without loss of generality, that u and v are primes and that 6* lies in
the block {6* : r < p < r '} and 6* lies in a later block {&* : s < p < s '} .
Since the sum of 6* over a complete block is nonnegative, as is any
partial sum starting at the beginning of the block, we have, as before,

E K > ̂ ' V K > o.

Thus

Also, the sum in (5.14) is at most

log u ^—^ log q log s'

where ^ extends over intervening blocks (if any). In fact, we need
consider only intervening long blocks, since the sum over any (complete)
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short block is 0 by construction. If there exist no intervening long blocks,
then since u < s, the sum is at most

Ax

log u log s log u

On the other hand, if there are intervening long blocks, then q > u, and
if b*qi, 6*2 are initial terms in successive blocks with qi < q2 (possibly
q2 = s), then q2 > q\ and

1 1

log g2 21oggi '

Thus the sum in (5.14) is at most

A\ Ax / , 1 1
log u log u V 2 4 7 log u

This proves the lemma, since by (5.11), g*(p) > g(p) > 0 follows from
b*p > V •

Formula (5.10) with u = v = p yields 6* <C 1/logp. From (5.11),

-)) exp
p77

)) p ( ) (
Vp77 Vlogp7 \logp

whence

(5.15) 5*(p) -Cl/ logp.

It is natural to introduce here the analogue of OJ(-) by defining

*/ N pg*(p)

so that 0 <LU*(p)/p< 1,

and

CD M + ^

by (5.15). We may restate ft* (n) in the form

(5.i7) n ( I + 5 - ( P ) ) = n
it)i <~p<w w\ <p<Cw

, 2
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or as

<p<w
r in . ^ \

, 2 < w\ < w.

It follows that

; E 9*(P), 2<w1<w,
^ p logwi logwi

w\<p<w w±<p<w

and, by (5.16),

estimating the last term by the argument leading to (1.9), we obtain

(5.18) E S*(p) = K l o g - ^ + O ( - ^ — ) , 2<Wl<w.

^ iog«> v i o g ^ y

From here, a straightforward partial summation argument (cf. the proof
of (1.8)) yields

+ o { l ( ^ ^ ) + } , 2<Wl<w;+ o { l o g ( e ) +
W\ L V log Mi / log Mi

w\<p<w

in particular, if we take W\ = 2 and write

(5.19) £(w) := log(elog(ew)) > 1, w > 1,

we have

(5.20) E 3 * ( P ) 1 O S P =

We note in passing the similarity of (5.18) to Mertens' formula (1.6),

' J 7") InO" 7/!i

Lemma 5.3. T/ie infinite product
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converges uniformly for 1 < s < 2. Moreover

Proof. Using Cauchy's criterion for uniform convergence, it is enough to
consider the finite product

y-1

with 2 < w < wi and 1 < s < 2. By (5.15), g*(p) < (logp)~\ and
therefore

by £1*(K) and a summation by parts of the kind used in Lemma 1.4.
Hence

Next, by (5.18) and Mertens' formula (1.6), we have

and then, uniformly in 1 < s < 2,

logu;
- l ) / t^c

Jw
•w1 * <

log w log ID

The second assertion of the lemma follows at once. •
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5.2 Asymptotics for G?*(£, z)

We now proceed to determine asymptotics for G*(£, z), denned in (5.7),
on the basis of (5.20). This is a long argument, culminating in for-
mula (5.40). We start with the Chebyshev-type identity

G* (£, z) log £ = V g* (d) (log | + log d)

d<<f p\d
d\P(z)

When we write d = mp in the sum on the right, we obtain

1? dt ^ «-^
G*(t,z)—= V g*(m) V

m\P(z) p\m,p\P(z)

It is convenient to analyze the simpler expression

AG*(£,z):=G*(Z,z)logZ-J G*(t,z)j

m<£ p<min(£/m,Z)
m\P(z)

By (5.15) and (5.18) (with Wl = 2), we get

(5.21) AG%£,z) = - V g*(£)g*(p)2logp<. '

p<min(v
/?,z)

When 1 < £ < z, the condition <i | P(z) in the definition of G*(£,z)
is superfluous and in its place we are left with

(5.22) G*(£) :=Y,V2(d)g*(d) < l[(l +g*(p)) « (log^)"
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by (5.17); moreover, in this case, f(min(y/^, z)) — t(y/£,) < ^(0- Hence

(5.23) G*(£)log£- ( G*(t)j

We are now in a position to improve (5.22) to an asymptotic.

Proposition 5.4. Suppose that g* is a multiplicative function satisfy-
ing (5.20). Then

where

CK := — — JJ(1 + 5*(p)) f 1 ] (r denotes Euler's function).
\K ) p P

Proof. By (5.23) and (5.20),

where

and

(5.24) e(e)

If we pretend for a moment that G* is differentiable and that

then we would obtain, on differentiating with respect to £, that

or, after integration, that G*(£) = C(logf)K for some constant C.
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To develop a valid procedure along this line we proceed as follows: for
sufficiently large £, for £ > £o say, we can assert by (5.24) (and (5.19))
that |e(£)| < 1/2, so that

Then, writing

we obtain, after differentiating with respect to t and simplifying,

d 1 + K e{t)

^ ( t ) < <

Hence the integral

converges absolutely and

f°° d
E0-E(Q = J Jt

Writing C = expEo, we have, for £ > £0,

= Cexp {- ^ ^E(t) dt

whence

no^aogo-fi + o^)}, £>&,
and therefore

(5.25) G*(£)

It remains to determine the constant C, and this we shall do by means
of an Abelian argument. If s > 1 we have

n f1+y
/•OO

= (s - 1) J {C(logt)K +
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by (5.25). We make the substitution t — exp(x/(s — 1)) in the integral
on the right and obtain

/>OO

= CV(K + 1) + O((s - 1) / xK-1£(exp{x/(s - l)})e-xdx).
Jo

By (5.19),

= 1 + log + log(s -1 + x)
s — 1

so that the error term on the right is, when 1 < s < 2,

1
+ log

s

hence the expression on the right side of (5.26) tends to CT(K + 1) as
s —>• 1 + 0. On the left side of (5.26) we use the observation that

and Lemma 5.3 to deduce that

s -
p p

- - ) as s ^ l + O. •

We assume from now on that £ > z and write

logz

Returning to (5.21), we observe that now the double sum on the left is

E 9* {"m) ^2 g*{p) hgp+ ^2 9*(m) E 9*{P)^°EP-

m\P(z) m\P(z)
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By (5.20), this sum is

-̂—' z-—' ' i . m \ \m

m\P(z) m\P(z)

Y" *( ^ X" *( \i ^z

m\P{z) m\P(z)

= K [* G*(t, z)^-K fZ G*(t, z)^ + O{G*{i, z)l(z)).
Ji t Ji £

On substituting in (5.21), we arrive at

where

(5.28) T^,z):=J G*(t,z)j.

Since G*(£, z) < F] (l + g*(p)), the order of magnitude of the error term
p<z

on the right side of (5.27) is

£(z)l[(l+g*(p))=:l(z)V*(z),
p<z

say. By (5.17), (logz)K « V*(z) < (log*)*.

5.3 The ji and cr functions

To proceed, it is convenient to introduce a function that will have an
important role here and throughout this monograph. Let K > 1 and
take j() := jK(-) to be the continuous solution of the differential delay
equation

(5.29) uj'K(u) = KJK(u)-KJK(u-l), u > 1,

that is defined for other real values of u by

(5.30)

where 7 is Euler's constant and F Euler's function. In Chapters 6 and 14
and afterward we shall have occasion to use the related function crK(-)
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given by <rK(u) — jK(u/2), in terms of which some of our sieve formulas
appear slightly more tidy.

For 1 < £ < z, we can restate Proposition 5.4 in terms of j . We have

with

cKr(K + i) =

by Mertens' formula and Lemma 5.3. Hence, for u := log £/ log z < 1,

log;

since n > 1.

To estimate G*(£, z) for ̂  > z, we introduce

o

so that, as we see from properties of j ,

= O, u<0,

(5.32) { ̂ {u) = e-^uK+1/r(K + 2), 0 < u < 1,

K+ljjt^iu) - Kjj~1](u - 1),

and, in particular, that

p<r.

We remark that the function jK(u) is, for u > 0, a positive, strictly
increasing function that converges exponentially to 1 as u —> oo. All this
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will be proved later on, in Chapter 14. We shall determine asymptotics
linking T(£,z) and ji~1} (u)V* (z) log z (with u := (log£)/logz), in the
following manner: by (5.27)

d

and when we integrate this relation (written with y in place of £) with
respect to y from 77 to £, we obtain the approximate integral equation

(5.34)

Define
(5.35)

and substitute in (5.34) to obtain, with the aid of (5.33),

1

for z < 77 < £. This is an approximate integral equation which we shall
use to derive an order of magnitude estimate of £/(£, z).

For £ < z, i.e., for « < 1, we have upon integrating (5.31)

^

logzJJ' " - ^

It follows from (5.35) that

(5.37) \U{£,z)\<DuK, u<l,

where D is a sufficiently large constant, to be specified. For u > 1 we
estimate U by an inductive argument.
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Lemma 5.5. Let U(£,z) be as given in (5.35) and let u — (log£)/logz.
Let D be sufficiently large to satisfy (5.37) and D > (4/3)1?, where B is
the O-constant in (5.36). Then

(5.38) \U{£,z)\ <2DU2K+1, U>1.

Proof. Suppose first that z < £ < z2, i.e., 1 < u < 2. We employ (5.36)
with 7] = z, so U(r], z) = U(z, z) and in the integral, y/z < £/z < z.
Thus the bound (5.37) applies in this range and we obtain

dy/y B/D
\ \ogz ) {\ogyY+2 {log

D (7 K ^ . . . n 2D

i.e.,

\U(£,z)\ <2DuK+1, z<i<z2.

To continue, we proceed inductively. It is convenient to establish a
slightly stronger result. We show for zv < £ < zu+1 that

(5.39) \U(£,z)\ <2DuK+1vK,

which implies (5.38). This inequality was just established for v — 1, and
we assume that |[/(£, z)\ < 2DuK+1{v - l)K holds for zv~x < £ < zv for
some v > 2. When we apply the induction hypothesis to each term on
the right side of (5.36) (with r\ — zv\ we obtain

The integral on the right (with t — log z/ log y) is equal to

Ji/{vi/{v+1) t

Hence

>i < 2D
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and

2n(v-iy-1 2K 3/8
+ 1 +1 K+l

for K > 1 and v > 2. Thus

i.e., (5.39) holds. D

When we substitute (5.38) from Lemma 5.5 in (5.35), we arrive at

We apply this formula in (5.27) with u > 1 to obtain

or, by (5.32), since logf = it log z,

(5.40) G*(£j z) = V*(z)\ jR(u) + O[U2K—— ) >, u > 1.
L V log 2; / J

When we apply the Topping-Up Corollary 5.2, we conclude that

(5.41) G(£, z)V(z) = G(£, z) J | ( 1 + g(p))"1

p<z

u > 1.
log z / '

It is possible to refine this argument for u > 1 so as to eliminate the
factor U2K (see [SngOl, SngO2]), and even the £ factor ([TenOl]), but for
our purposes these improvements are not necessary.

Since jR(u) increases with u (Chapter 14), jR(u) > jR(l) ^$> 1 and we
may rewrite (5.41) as

(5.42)
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By (4.4) and (4.5), we know that

Thus we may assume that z is sufficiently large relative to £ so that

(logz)/£(z)>Bu2K,

where B is a constant large enough to permit us to restate (5.42) as

(5.43)

We complement (5.43) with a similar result when u < 1. By the
Topping-Up Corollary 5.2, we have

G(£z)V(z)-G((W(£) VW>G*® V{z)

V*(z)

using (5.17) and fl(K) (Definition 1.3) at the last step. Hence, by (5.31),

It follows that when u < 1,

We are now in a position to state and establish the main result of
this chapter: a Selberg theorem in a form that we shall require later.
Inserting the last inequality into (4.1), we obtain

Theorem 5.6. Subject only to the conditions ft(n) and (q,P(z)) = 1,
and with an arbitrary parameter u > 0, we have

n\P(z)

Here £{z) := log{elog(ez)} and the O-constant may depend on n and A.
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From our point of view, Theorem 5.6 will have its most important
application in Chapter 9, where we shall combine it with a refinement of
the Rosser-Iwaniec method to derive sharper upper and lower bounds
for S(A,V,z) when K > 1 in Theorem 9.1.

Of course, Theorem 5.6 itself leads rapidly to a first lower bound
(better than the Fundamental Lemma) for S(A, V, z) by use of the Fun-
damental Lemma (Theorem 4.1) and a form of Buchstab's identity (3.5):
we have

,z) = S ( A , P , z 1 ) - J 2 S{Ap,P,p), 2 < Z l < z ,
zi<p<z

and we take z\ small enough so that Theorem 4.1 applies to the first
term on the right. Then, by applying Theorem 5.6 to each term in the
sum on the right, we arrive after some computation at a lower bound for
S(A,V,z). Given the simplicity of this argument, the result is remark-
ably good (especially for small K). We end this chapter with a simple
consequence of Theorem 5.6 and some illustrations of its use.

Corollary 5.7. Assume ft(n) and that \r^(d)\ < cj(d) for d \ P(z),
i.e., that (4.9) holds. Then, for 2 < z < X1'2, we have

Proof. Take q = 1 and u = 1 in Theorem 5.6 so that £ = z, to obtain
by (5.30)

n<z2

n\P(z)

where £(•) is defined in Theorem 5.6. By Lemma 4.3 with K = 3, the
remainder sum is at most z2V(z)~3 ; also V(z)~1 <C logK z by £1(K).

Thus

If we have

z

then the last O-term is smaller than the preceding one and

(5.45) S{A,P,z) <e^T{n
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The gap between ZQ and X1/2 is easy to bridge, for if ZQ < z < X1/2,
then

S(A,P,z)<S(A,V,z0)

and

log 2:0 log z I log 2:0 J log z l V log z > i '

and hence by another application of H(/t),

Thus (5.45) holds in all cases.

Finally, we elucidate V(z). By (4.14),

p<z

For any t > z we have

p<z

Now

uniformly for f > z by ri(ft) and the Mertens' product estimate (4.14).
While the last estimate does not provide a Cauchy condition, it does
preclude oscillation of

p<z y

between distinct values as z —> CXD; the product must either converge to
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a positive number or to +00. In any case, we have

As an application of Corollary 5.7, we give an example that generalizes
Example 1.2 (with H(n) in place of L{n)).

5.4 Prime values of polynomials

Example 5.8. Let h\(n),..., hg(n) be distinct irreducible polynomials
each with integer coefficients and positive leading coefficient, and write

H{n) := h\(ji) • • • hg(n).

Let G denote the degree of H, and let p(p) denote the number of incon-
gruent solutions of H(n) = 0 mod p. Suppose that

(5.46) p(p) < p for all p,

so that H{n) has no fixed prime divisors. Let y and x be real numbers
satisfying 1 < y < x. Then

(5.47) |{n: x — y < n <x: hi(n) prime for i = 1 , . . . , g}\

where

-3+1

The O-constant is, of course, independent of x and y, but may depend
on g and on the coefficients (as well as the degrees) of the constituent
polynomials hi (i — 1,..., g).

Remark 5.9. If some polynomial hi had zero degree, then (5.46) would
imply that it is identically equal to 1; in that case the expression on the
left side of (5.47) would be 0 and the result trivial. Thus we may as well
assume that all the polynomials hi have positive degree.

Proof. Let

A := {H(n): x -y <n < x}

and take V to be the set of all primes. The setup here is much like



5.4 Prime values of polynomials 65

that of Example 4.7. The function p is multiplicative, so that, if d is
squarefree, p(d) — YlP\dP(p)> moreover, p(p) (which is always less than
p by hypothesis) satisfies p(p) < G. For d squarefree, we have

\Ad\:= \{n:x-y<n<x, H(n) = 0 mod d}\ = p(d) (y/d + 9), \6\ < 1,

so that X = y, uj(d) = p(d), and

rA(d) = \Ad\ - (p(d)/d) y, \rA(d)\ < p{d).

Also we have

Y^— logp = glogx + OH(1),
p<x

and therefore A satisfies ft(g). Now Corollary 5.7 applies with n = g
and z = y1/2, and so the desired inequality holds for S(A, V, y1^2)-

Finally, suppose that n is counted on the left side of (5.47) but not
in S(A,V,y1/2}. Since all the hi(n) counted on the left side of (5.47)
are primes, at least one, hi(n), say, must be less than y1^2. This means
that any such argument n satisfies n <C y1^2, whence

\{n: x — y < n < x, hi(n)prime for i = 1 , . . . ,g}\

^ ^ + OHiy1/2). a

Example 5.10. Prime values of polynomials at prime argu-
ments. To extend the last example to treat prime arguments, we add
two further requirements:

(i) none of the polynomials hi(n) is equal to n,

(ii) p(p)<p-l]fp\H{0).

If we then apply the result of Example 5.8 to the polynomial nH(n),
with g + 1 in place of g, we can readily show that

\{n: x — y < p <x: hi(p) prime for i = 1 , . . . , g}\

(log y)9+1 I V logy

where

n
P>2 yF I 2<p\H(0)
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Only the apparently complicated form of C'(H) needs comment. Let
p'(p) denote the number of incongruent solutions of nH(n) = 0 mod p,
so that the product to be interpreted here (remember that g + 1 stands
in place of g) is

But we have

\p(p) if p\H(0),

and from this the result follows at once.

A final remark: condition (ii) serves only to exclude a trivial case. We
have p(p) < p — 1 for all p, and if there were a prime po that did not
divide H(0) such that p(po) — Po — 1) then H(n) = 0 mod po would hold
for all n ^ 0 mod po and so we would have po \ H(p) for all p ^ po-

5.5 Notes on Chapter 5

Lemma 5.1 and Corollary 5.2 were suggested by W. B. Jurkat in lectures
given at the University of Illinois in Spring, 1973. Proofs of these results
appear also in [Raw80], [Raw82], and [DHR88].

For a different treatment of G(£, z), see [GrvOl]. There is also an ac-
count of this sum in [HR74], but on the basis of a two-sided condition in
place of $~1(K) , which served as a model for the evaluation of G* (£, z) (see
Proposition 5.4). The one-sided condition Q(K) first occurs in [Iwa80].

For details on how to derive a first lower bound from Corollary 5.7,
see [AO65] or [HR74], Chapter 6.5. The latter includes many applica-
tions.
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Combinatorial foundations (continued)

6.1 Statement of the main analytic theorem

In the last chapter we saw that the solution <r(-) of a differential delay
equation provides a smooth analogue of V-G , where V is the usual prod-
uct factor and G arises in Selberg's upper sieve estimate. In the Rosser-
Iwaniec method and our extension of it there arise related boundary
value problems that similarly reflect the combinatorial structure. We
state the problem that models our situation and its solution as Theorem
6.1 below. The proof of this result is complicated and is deferred to
Part II, but it is convenient to have the statement available here to help
clarify several steps in our combinatorial arguments.

In the remainder of this chapter we set out the combinatorial formulas
we use in our development of the Rosser-Iwaniec method and discuss
the ideas underlying these formulas and their remarkable interplay with
the functions of Theorem 6.1.

Theorem 6.1. (MAIN ANALYTIC THEOREM) For each number K > 1
for which 2K 6 N there exist numbers a = aK and j3 = f3K satisfying

Oil = Pi — 2 and aK > PK > 2 for K > 1,

such that the system consisting of initial conditions

(6.1) F(u) = 1/<T«(M), 0 < u < a,

(6.2) f(u) = 0 , 0 < u < P,

the simultaneous difference differential equations

(6.3) (uKF(u))' = rf"1/^ - 1), a < u,
(6.4) (uKf(u))' = KUK-1F(u-l), p<u,

67
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and boundary conditions

(6.5) F(u) = l + O(e-U), f{u) = l + O{e-u)

has continuous solutions F = FK, f = fK with the properties that F(u)
decreases monotonically and f(u) increases monotonically on (0, oo).

The function crKi{u) in (6.1) is given by o~K{u) — jK(u/2), where jK

was defined in (5.29) and (5.30).

In particular, when K = 1, the system (6.1)-(6.5) with a,\ = f3\ = 2
has solutions F = F\, f = f\ of the kind described; indeed, here

Fx{u) = l/at(u) = 2e'y/u, 0 < u < 3,

/ i ( u ) = 0 , 0 < u < 2 ,

(«Fi(u))' = / i ( u - l ) , u>0,

(«/i(U))' = f i ( « - l ) , u>2,

and

fu 2e7

ufi(u) = / -—-dt =
Ji t - i

(6.6) ufi(u) — I dt — 2e7log(u — 1), 2 < u < 4.
J2 ^ ~ 1

For the sake of completeness, we record here that a = aK is the con-
tinuous solution of the system

(6.7) u-Ka(u) = (2e7)"K/r(K + l), 0 < u < 2,

(6.8) (M-KCT(U))' = - K U - B - 1 O - ( M - 2 ) , M > 2 .

The last formula is equivalent to

(6.8')
fu

ua'(u) = K((T(U)-(T(U-2)) = K a'(t)dt, u > 2,
Ju-2

and this relation remains true for all real u once we define o~(u) = 0 for
u < 0. Moreover, c(w) is positive and strictly increasing in u for all
u > 0. In Part II, we shall prove the preceding claims and such facts as
cr(u) —> 1 at a faster than exponential rate as u —> oo.

The functions FK and fK of the theorem will occur in the next chapter
and subsequently in upper and lower bounds respectively of S(A, V, z).

We add here two easy consequences of Theorem 6.1 that describe
further the functions FK and fK.

Lemma 6.2. Let n > 1 and suppose that 1 < U\ <Ui- Then

Mi crK(l)
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and

Proof. By the mean value theorem,

FK(m) - FK(u2) = {u2 - ui)(-F'K(u*)) for some u * e ( u i , u 2 ) ,

fK(u2) ~ fK(ui) = (u2 - Ui)f'K(u) for some u G (ui,u2),

provided that F and / each has a derivative throughout (ui,u2). If
Mi > aK, by (6.3),

If 1 < ui < u-i < aK, then FK(u) — l/aK(u) and therefore

-F'K(u)=v'M/oK(u)\

It follows from (6.8) that

ua'K{u) = K((TR(U) - aK(u - 2)) < KCTK(U)

and hence that

UicrK(l)

By combining the two estimates (if necessary), we obtain the first in-
equality of the Lemma. As for the second inequality, if (3K < u\ < u2,
then, since (by Theorem 6.1) u > (3K > 2, we have, by (6.4),

f'Ju) = ~(FK(u - 1) - Uu)) < ~FK(u - 1) < -FK(1) = -^—
U U U\ Wi<TK(l)

If 1 < Mi < U2 < /3K, then f'K{u) — 0, and again combining the estimates
(if necessary), we get the claimed inequality. •

Lemma 6.3. Let K > 1. We have F"(u) > 0 for all u > aK and
fZ(u) <0forallu>f3K.

Proof. By the Theorem,

uF'(u) + KF(U) = nf{u - 1).

Upon differentiating,

uF"(u) = nf(u - 1) - (K + l)F'(u) > 0,

since / is increasing and F is decreasing. An analogous argument shows
/ to be concave. •



70 Combinatorial foundations (continued)

6.2 The S(x) functions

The combinatorial formulas we develop will take one of two forms,
according to the size of K. Our starting point in each case is equa-
tion (3.13), which we restate as

where, for given z > ZQ > 2, we set

(6.9) 5i(x):= Y,
d\P(zo,z)

and

(6.10) 52(X):= J2
d\P(zo,z)

The functions x w e shall choose are clearly combinatorial, and we
show below, in Lemma 6.4, that they are divisor closed. (These notions
were defined near the end of Chapter 3.)

With ZQ small enough, we have the Fundamental Lemma, Theorem 4.1,
available to estimate the terms S(Ad, V, ZQ) in Si(x) and expect to lose
little by doing so. This leaves us with S2 (%)• Write

(6.11) S2(X) = \ E " E }x(d)S(Ad,V,p(d))
^ d\P(zo,z) d\P(zo,z))

=: S2i(x) - -5*22(x),

say, and note that each of these sums is non-negative, since S(A, V, z) is
a counting function and, as a combinatorial function, x is non-negative.
Thus we have

(6.12) Sift") - S22{x~) < S(A,V,z) < S!(x+) + S21(X
+).

We seek functions x+ a n d X~ so that we can estimate S22 (x~) a n d
S2i(x

+) well. Because (6.12) provides valid upper and lower estimates
for S(A,V,z), we do not have to treat S2i(x) o r S22{x+) further.
However, we are going to analyze S2\(x) and S22(x

+) to help explain
how x+ a n d x~ were chosen and also to show that, with these choices,
we cannot get anything better than trivial estimates of these sums.
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6.3 The "linear" case K — 1

Here we begin with the bold choices of x + and \~ f°r which

(a) S2i(x
+) = 0 = S22(x~) termwise,

and

(b) there is little to gain from keeping S22(x+) a nd £21 (x~)-

To secure (a), we shall make choices such that

(6.13) X+{d) = 0 when (i(d) = 1 and x^(d) = 0 when fi(d) = - 1 .

To explain how one brings about b) is more complicated, and to provide
a rationale requires some hindsight.

Study of Brun's and Selberg's original methods and, particularly, the
method of Ankeny-Onishi (which combines the latter with Buchstab's
identity) leads one to expect that an accurate sifting procedure should
lead to an upper bound for S(A.,V, z) with leading term of the form
XV(z)F(v), where F(v) is a function that tends monotonically from
above to 1 as v —)• oo, and a lower bound with leading term XV(z)f(y),
where f{v) tends monotonically to 1 from below as v —> oo.

Moreover, as we noted in the proof of the lower bound in Theorem 4.1,
we expect to have only the trivial lower bound S(A,V,z) > 0 if the
parameter v is too small. Thus we expect that f(v) > 0, with equality
holding when v is at or below a certain threshold (3, called the sieving
limit—in other words, the lower estimate is worthless if v < /3, i.e., if the
parameter £ < z'3. We shall show that the function /i(-) of Theorem 6.1
provides the expected lower bound function here and that f3 = f3\ =2 .

As for the linkage between F and / , the Buchstab identity hints at
the interplay between them, and the high quality of the Ankeny—Onishi
method demonstrates the efficacy of combining even a single applica-
tion of Buchstab's identity with Selberg's upper bound. An insightful
iteration of the identity carried out by Jurkat and Richert (see [JR65],
and also [HR74]) actually leads to an optimal result when K — 1 (Theo-
rem 7.1). The more elegant procedure of Rosser-Iwaniec that we follow
in Chapter 7 achieves the same result and, by avoiding use of Selberg's
method, arrives at a flexible form of the remainder term that has proved
important in several major applications (see [Iwa80]). For K > 1, we have
refined the Rosser-Iwaniec approach with the help of Selberg's method;
the outcome of this is Theorem 9.1 below. The interested reader may
wish to study a rather different refinement due to Briidern and Fouvry
(see [BrF96]).
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We resume the argument dealing with the case of K — 1 and exploit an
earlier observation to construct x ± having property (b). If, rather than
abandon — S22(x+)) w e s o ught to estimate it, we would have to estimate
S(Ad, V,p(d)) from below. To do this, we return to Theorem 4.1, writing
£ there in place of zv, and proceed as in the proof of the lower bound.
In the present application, we take £/d in place of £ and p(d) (the least
prime divisor of d) in place of z and get

S{Ad,V,p(d)) > ̂ XV(p(d))f(^^) Error terms.

If, for n(d) = —1, we take x+ s ° that x+{d) — 1 o n ly f° r

v = vd:=
 l-^l§ < 2, i.e., p{dfd > £,

then, because /(2) = /i(2) = 0, we would get nothing better than the
trivial bound

(6.14) S(Ad,V,p(d))>0.

In other words, this choice for x+{d) yields an upper estimate for
—S22{x+) whose main term is 0. Arguing in the same way for 5l2i(x~)j
we see that discarding it would be in order if p(d)2d > £ when n(d) — 1
and X~(d) = 1-

We are now in a position to define the functions x + and x~ • Of course,
we have noted already that X+(l) — 1 — X~(l)- For d > 1, write

d = PlP2 •••Pr (Pi > P2 > • • • > Pr = p(d), V > 1)

and take each x to have a quasi-multiplicative structure of type

X{d) = 7y(

where the arithmetical functions ry(-) take only the values 0 and 1. We
choose

{1 when n(d) — 1,

1 when n(d) = - 1 and p{d)2d < Y,

0 otherwise

(the parameter Y appears where we expected £; Y will be taken a little
smaller than £ for technical reasons), so that

(6.16) X+(d) = r]+(pi) 77+{p ip 2 ) ••• V + { P i P 2 - - - P r ) -
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From this formula and the definition of x given in Chapter 3, we have

X+(l) = 0 (by convention) and

d>\.

Now rj+(d) = 1 when fi(d) = 1, d > 1, and so x+(d) = 0 for all d. Thus

S 2 l (X + )=0 .

Also, when /i(d) — — 1 and x+(^) = 1) then necessarily r]+(d) — 0 and

therefore p(d)2d > Y. It follows that

p(d)2d>Y

and for each summand S(Ad,'P,p(d)), we have only the trivial lower

bound 0, as given in (6.14). With this choice of x+, we may as well omit

5*22 (x+) from an upper estimate of S(A, V, z).

A similar argument leads us to

(6.17) x~(d) = V~'(Pi) V~(P1P2) ••• V~(PiP2---Pr),

where

{1 when fi(d) = — 1,

1 when fj,(d) = 1 and p(d)2d < Y,

0 otherwise.

It is straightforward to verify that X~{d) — 0 when /j,(d) — — 1, whence

S22(X~) = 0;

and that when /j,(d) — 1 and X~(d) — 1, then p(d)2d > Y. We have

available only a trivial lower bound estimate for the terms of <Sr2i(x~))

so we may as well omit this sum from a lower estimate of S(A, V, z).

These choices ensure the validity of (a) and (b), and thus, by (6.12),

(6.19) S1(X-)<S(A,r,z)<S1(x
+)-

6.4 The cases K > 1

We shall suppress most K -subscripts in this section to ease the notation,

particularly where aK and f5R appear in exponents.
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The original Rosser-Iwaniec method, as shown in the case K — 1, ex-
tends to all K > 1 on the basis of (6.19) along with a form of Theorem 6.1,
without condition (6.1) and with different sieving limits. However, the
resulting upper and lower bounds for S(A, V, z) are disappointing—they
are not as good even as those of the much more easily derived Ankeny-
Onishi estimates. In particular, the sieving limits are relatively large.

We can do somewhat better, at least in the matter of achieving smaller
sieving limits /3; we return to (6.12), deal with the sums Si(x±) by the
Fundamental Lemma as before (except, of course, that we shall be work-
ing with different choices of x ± ) , but drop the constraints (a). Instead of
omitting the terms in <S2i(x+) and in S22 (x~)> we shall estimate them
using Selberg's upper bound, Theorem 2.1. The parameters a and (3
from Theorem 6.1 play a crucial role: the numbers (3 turn out to be the
sieving limits, and the numbers a will limit the extent to which Theo-
rem 2.1 will be used in estimating S2i(x+) and 5<22(x~) from above. In
view of the earlier discussion, we can be a little more specific—we shall
apply Theorem 2.1 to the terms in these sums only when the associated
parameters satisfy

u = ud := (log(y/d))/logp(d) < a,

i.e., so long as

p(d)ad > Y.

We are now ready to specify x • With

d = P1P2 •• -Pr (pi > Pi > • • • > Pr = p{d))

we define
r

(6.20) X±(d):=Y[V
±(p1...Pj),

where

{1 when n(d) = 1 and p(d)ad < Y,

1 when fj,(d) = - 1 and p{dfd < Y,

0 otherwise;

and

{1 when /i(d) — 1 and p(d)l3d < Y,

1 when fi(d) = - 1 and p(d)ad < Y,

0 otherwise.
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More explicitly, we note that x+ {d) = 1 if and only if the inequalities

(6.23)
P2+1P1

<Y

<Y

P%+1PiPi <Y

all hold, and x+{d) = 0 otherwise; also x (d) — 1 if and only if

(6.24)

<Y

<Y

PVPIPI <Y

all hold and x (d) = 0 otherwise. The last lines in these inequalities
imply that

(6.25) d < Y whenever X±(<i) = 1.

At the beginning of Section 6.2 we asserted that the functions x to be
formed would be divisor closed, i.e., if x(d) = 1 and t \ d, then x(i) = 1.
Now we show this.

Lemma 6.4. Letx±(d) be defined by (6.20) with^id) defined by (6.15)
and (6.18) for K = 1 and by (6.21) and (6.22) for K > 1. Then x±{d)
is divisor closed.

Proof. There are eight cases to consider, according to whether K = 1 or
K > 1; whether the sign is + or —; and whether v(d) is odd or even.
The cases are analogous, and here we treat only the one in which x+(d)
occurs with v(d) even and K > 1.

We show that if x+(d) = 1 and p \ d, then X+{d/p) = 1- Arguing
inductively (and using the corresponding result for the case when u(d)
is odd), we can then conclude that x+{d/t) = 1 for any t \ d. Write, as
usual,

d = Pi Pi • •• Pr with pi > P2 > • • • > pr =: p(d).



76 Combinatorial foundations (continued)

If x+{d) — 1, we have upon rewriting (6.23) in reverse order:

(i) Pr+1Pr-lPr-2 ' ' ' Pl <Y

(ii) P^-{pr-2---Pi <Y

(r) p{+1 < K

We begin with the special case p = p(d). Let dr := d/pr. Then by
lines (ii), . . . , (r), we see that x(d r) = 1. Now suppose that 1 < j < r — 1
and consider <2,- := d/pj. (For ease of exposition, we treat just the cases
2 < j < r — 2.) By comparing corresponding factors, we have

(ii') p % + 1 p r - i ••• p j + i p j - i ••• p i < p ^ l p r - 2 ••• P i < Y

(iii ') pf±l pr-2 • • • Pj + l Pj-l ••• Pl < p"-2 Pr-3 ' ' ' Pi <Y

( r - j + i ' ) p"Xi Pj-i •• • Pi < p " + 1 Pj-i •• • Pi <Y (j even)

( r - j + i ' ) p?XiPj-i ••• Pi < P j + 1 P j - i ••• Pi <Y (j o d d ) .

All subsequent lines are just those after line (r-j+i) in the preceding
group. Thus x(dj) = I- •

The arrays (6.23) and (6.24) bring to light an important feature of this
construction: the inequalities in each are independent of one another
only if a < /3 + 1; if a > (3 + 1, then the truth of any a-line in (6.23)
implies the truth of the succeeding /3-line, and the same is true in (6.24).
Indeed, suppose that

p"+1 pr-i • • • pi < Y.

Since p" > p@+1 > p{:+i > w e necessarily have

PrtlPrPr-l • • • Pl < Y.

Consequently, when a > /3 + 1, we may modify the array (6.23) if we
wish, by omitting every /3-line except the first; and in the array (6.24),
we may omit every /3-line. In other words, when a > /3 + 1, we have
X+(d) = 1 if and only if
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(6.23')

all hold and X+{d) = 0 otherwise; also \ (d) = 1 if and only if

(6.24') <Y
<Y

all hold and \ (d) = 0 otherwise.

The distinction in the relative size of aK and f3K emerges in the proof
of Theorem 6.1 as well. There, aK < @K + 1 only for (integer and half
integer) dimension K = 1 and K = 3/2, whereas aK > @K + 1 holds for
all such dimensions K > 2 (see Chapter 16). When ol/ real K > 1 are in
play, there is a unique number KQ = 1.8344... such that aK < f3K + 1
when K < K0 and aK > f3K + 1 when K > K0 [ILR80, DHR96].

We check the effect of our choice of x ± on 5'2i(x±) and <S*22(x±)-
Remember that

(6.26) X^(d)=X±(d/p(d))(l-v±(d))

holds in these sums. We first consider x+ • I n <S2i(x+) w e n a v e ^(d) = 1
in each term and, by the preceding formula, X+(d) = 1 if and only if
X+(d/p(d)) = 1 and rj+(d) = 0. The latter implies that p{d)ad > Y
by (6.21), so that ud := {\og(Y/d))/logp(d) < a. Applying the Selberg
upper bound estimate to each term S(Ad,V,p(d)) in S*2i(x+) accords
with the procedure we described earlier.

We now turn to £22 (x+)- We remind the reader that this sum is non-
negative and has been omitted from (6.12); the purpose of looking at
this quantity here is to understand how x+ has been chosen and to show
that with this choice we cannot get a better estimate of 6*22 (x+)- Here
each term of the sum has /i(d) = —1. Suppose first that a < /3 + 1. In
this case, if x+(d) = 1, then by (6.26), rj+(d) = 0, that is, by (6.21),
p(d)l3d > Y or Ud < /3. Here only the trivial bound (6.14) is available
to estimate S(Ad,T,p(d)) in each term, and we may as well discard the
sum 5*22 ( X + ) J a s w a s done in (6.12).
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When a > /3 + 1, we note that x+(p) = 1 - rj+(p) = 1 when p / 3 + 1 > F
by (6.21) or the first line of (6.23), and so wp < /3; by the preceding
discussion this term may be discarded. No other terms occur in S22 (x+)
in this case: when v{d) > 1, we show that x+((i) = 0. By (6.26), if
X+(d/p(d)) = 0, then ^+(cf) = 0. On the other hand, if X+(d/p(d)) = 1,
then r]+(d/p(d)) — 1. By the carryover of inequalities from each a-line
inequality in (6.23) to the succeeding /3-line, we have rj+(d) — 1 and
hence x+(cf) = 0 in this case too.

Next, we consider \~. In 522 (x~) w e have fj,(d) = —1 in each term
and, by (6.26), )C(d) = 1 if and only if X~(d/p(d)) = 1 and rf (d) = 0.
The latter implies that p(d)ad > Y by (6.22), so that, as in the case of
S<2i(x+)i we have uj := (\og(Y/d))/logp(d) < a, and once again we can
apply the Selberg upper bound estimate to each term S(Ad,V,p(d)) in

Finally, we consider S<2i(x )• The reasons for discussing this sum are
the same as those for S<22(x+)- We show that if a < j3 + 1, with our
choice of x~ •> w e cannot make any essential improvement in the left-
hand inequality in (6.12), and if a > j3 + 1, then, interestingly, we have
equality in the first relation in (6.12).

We have /i(d) = 1 in each term of £21 (x )• Suppose first that a <
P + 1. If x^(d) = 1, then by (6.26), 77-(d) = 0, that is, by (6.22),
p(d)/3d > Y or Ud < (3- Here only the trivial bound (6.14) is available
to estimate S(Ad,'P,p(d)) in each term, and we may as well discard
52i (x~), as is done in (6.12). When a > /3 + 1, we show that

Indeed, x~(^) = 0 f° r d = 1 by convention, and when v(d) > 1, we
consider two cases: by (6.26), ]£x~(d/p{d)) = 0, then x~(^) = 0- O n the
other hand, if x~{d/p{d)) = 1, then r)~(d/p(d)) = 1. By the carryover
of inequalities from each a-line inequality in (6.24) to the succeeding
/3-line, we have 77̂  (d) = 1 and hence x~ (d) = 0 in this case too.

To sum up, we have shown that with our choices of x^i when K > 1
we can set out to estimate S(A,V,z) via (6.12) in the manner we
proposed—to apply the Fundamental Lemma (Theorem 4.1) to the terms
of 5 i (x ± ) , and Selberg's upper estimate (Theorem 2.1) to the terms of
621 (x+) a n d 5*22(x)- Also, again with these choices of %± and regard-
less of the relative size of a and /3 + 1, we cannot make any essential
improvements in (6.12). For possible future reference, we place on record
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that when aK > (3K + 1, that is, for all K > 2,

X+(d) = 0 when /i(d) = - 1 and i/(

X~(c() = 0 when /i(<i) = 1.

> 1,
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6.5 Notes on Chapter 6

The combinatorial method for K > 1 follows from [DH85] and [DHR88],
and it has been referred to in several subsequent publications by these
authors as the DHR sieve method. On reflection, it seems to us now
more accurate to describe it as an extension of the Rosser-Iwaniec sieve
method. The distinction between the ranges aK < /3K + 1 and aR > (3K + l
that occurs here appears in a seemingly quite different, analytic, context
in [ILR80], [Raw80], and also in Part II of this monograph.

The upper function FK(u) coincides with l/aK(u), the Ankeny-Onishi
function when 0 < u < aK, and FK(u) < l/aK{u) for u > aK. However,
as Figure 6.1(b) shows for K = 2, the difference of the function values is
not large (here < 0.08) and it tends rapidly to 0 as u —> oo. The lower
function fK(u) > 0 for u > (3K {p2~ 4.266), the so-called sieving limit.
Below this point fK(u) = 0, and Theorem 9.1 yields only the trivial
lower bound S(A., V', z) > 0. Our sieving limit of 4.266 is smaller than
that of the Ankeny-Onishi sieve (about 4.42 for K = 2) or the Rosser-
Iwaniec sieve (about 4.834 for K = 2), so we can treat some lower bound
problems to which the other sieves do not apply.

(a) F2(u) and f2(u) (b) F2{u) and l/a2{u)

Fig. 6.1. F2(u), f2, and l/a2(u)
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The case n = 1: the linear sieve

7.1 The theorem and first steps

The Fundamental Lemma, Theorem 4.1, provides asymptotic estimates
for S(A, V, z) in terms of a parameter v when z = z(X) is small relative
to X in the sense that log zj log X —» 0 as X —» oo. In this chapter we
give upper and lower bounds for S(A, V, z) that are useful in the larger
range where log zj log X < 9 for some constant 6 < 1. Theorem 7.1
is especially noteworthy because Selberg [Sel91] has shown the leading
terms in both bounds to be best possible (see the Notes to this chapter).
We obtain these sharper bounds by using the x^ technology of the last
chapter.

Our main result is

Theorem 7.1. Suppose condition Q(l) holds andy,z are any numbers
satisfying X > y > z > 2. Then

and

m\p(z)
m<y

where the O-constants depend at most on A (coming from $7(1)) and
the functions F\, f\ are those specified in Theorem 6.1.

We note that here (and also for n > 1) the parameter y plays a role
analogous to that of z2v in Theorem 4.1. Large values of y improve

81
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the quality of the main term by bringing Fi and / i each closer to 1;
on the other hand the sum denning the error term increases with y.
In applications, y is chosen (if possible) so the error term is small in
comparison with the main term; in particular, we always take y < X.
It can happen, though, that no choice of y yields a positive lower bound
iov S{A,V,z).

The remainder sums lack the flexible form of those in the original
Rosser-Iwaniec method because we have used Selberg's version of a
Fundamental Lemma from Chapter 4 instead of the superior version
from [FI78]. We have included the linear sieve for the sake of complete-
ness and because the proof we are about to give is a useful preparation for
our principal objective, treatment of integer and half integer dimensions
K exceeding 1. Nevertheless, it should be said that the above theorem
leads to many interesting applications.

The remainder of this chapter is devoted to the proof of Theorem 7.1.
We begin by turning to the Fundamental Lemma, Theorem 4.1, and
taking q = 1 there. Then

v log v + 3v/2 > v log v + v > 2v

if v > e. The Lemma now reads (remember that K — 1 here)

(7.1) S(A,V,z) = XV(z){l + O(e-2v)} + e

n\P(z)

where \6\ < 1.

Now let y, the parameter in the statement of Theorem 7.1, be large
enough so that log logy > 2e. We distinguish two cases; we suppose first
that

(7.2) z<exp(- i?p
V log logy

Formula (7.1) with v := (logy)/(21ogz) asserts that

n<y
n\P(z)

and since, by (7.2),

| ^ | > log log y,

each of Fi ({logy)/ log z), / i ((logy)/ log z) is equal to 1 + O(l/logy)
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(by (6.5)); hence the theorem is proved under the assumption of (7.2),
even as an asymptotic equality. Henceforth, we assume that (7.2) does
not hold.

With the inequalities (6.19) in mind, we turn to the sums Si(x±)
defined by (6.9), (6.16), and (6.17). We apply the Fundamental Lemma,
Theorem 4.1, to each of the terms S(Ad,V, z0) in (6.9), this time with
q = d (so that (d, P{zo)) = 1), z = z0 and v = L/2, where L is any
number at least as large as 2e. For any d \ P(ZQ,Z) we obtain

n\P(z0)

We choose L = log log y (recall that L > 2e by the assumption that y is
sufficiently large) and take

(log log

so that

4 = exp{((log2/)loglog2/)3/4}.

Then, by (6.9), bearing in mind that d < Y when x±(d) = 1,

(7.4)
d\P(zo,z)

d\P(zo,z) n<z£ m<Yz^
d<Y n\P(z0) m\P(z)

the last inequality follows from the formula

v ^ ( ) = r(m)^ m s q u a r e f r e e .

n\m

We remarked following equation (6.15) that Y would be taken less than
£, and now, with y taking the place of £, we can be specific. We take
Y 4 = y, i.e.,

(7.5) r:=2/exP{-((log2/)loglog2/)3/4}.

We estimate the contribution arising from the O(l/logy) error term
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in (7.4) by using condition Q(l):

^—\ uj(d) -p-r / uj(p)\ -i—r

/ —r~ — H <
^ — ' ( i -'•-'• V p J ~ -'--'•

^ V(z)= n p / F(z0) Vlogz0/ F(z0)

/logy \ 2 F(z) _ , ,1/2 V(z)
~ \logzoJ V(zo) *• -* F(zo)'

so that
^ ) <<: /logloggxl/2

We conclude that, by (7.5)

(7.6)

4 * " ' - " " »

and our remaining task is to deal with the sums

d\P(zo,z)

The classical approach here is to apply the Fundamental Sieve Identity
to these sums, but we shall expedite matters by use of the following
remark: writing

( _ r f ^ . ) , r even,

\ / i ( - ) , r o d d ,

we have, by Theorem 6.1,

Hence

(7.7)
d\P(zo,z)
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and

(7.8) J2
d\P(zo,z)

>£-:= J2
d\P(zo,z)

7.2 Bounds for V S ± : the set-up

We shall prove that, up to error terms that occur, V(ZQ)T,+ is at most
V(z)F((\ogY)/\ogz) and V(zo)T,- is at least V(z)f((logY)/logz). A
certain amount of technical preparation is necessary, some of which will
be used also later and is formulated therefore for all K > 1. We begin
with the remark that, by (4.7) and subtraction

(7.9) V(zo)-V(w)= Y
zo<p<w

Lemma 7.2. Suppose that n(n) holds, that ZQ < w, and that B{t) is a
non-negative, continuous, and increasing function on [ZQ,W\. Then

'-^ p
zo<p<w

Proof. By (7.9) and H(K), we have

p V(i
ZQ<p<W ^ V

y ^ C0(p) V(P)
^ p V(w)
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Thus

u(jp) V{p)
—^Y77Z^B(P)

< n(logw)K

Jz0

W B^) dt i AB{w){\ogwY u

We now apply the preceding lemma to

(7.11)

with ^ = 0 and 1 in turn, as we may do since, by Theorem 6.1, each of

/log a; \ / logx \
1 - /K 1 7 - ! a n d

 ^K (1 7 - 1 - 1
V log t / V log i /

is non-negative, continuous and non-decreasing in t. Thus we obtain

Proposition 7.3. Suppose that n > 1 and ZQ < w. Also, recall from
Theorem 6.1 that a± = /3i = 2 and a > f3 > 2 w/ien K > 1. Then, if
x > w^K,

(7.12)
p

A V() + (
gw/ crK(l) i.ogz0 \logz0

and if x > WUK for K > 1 (resp. x > w when K = 1), we have

_ v{w)Fj}?£E.) _ ̂ _ YM. ( } ? _ y
K\logwJ <rK(l) logz0 Vlogzo^

Proof. Despite its length, the argument below amounts simply to a com-
bination of the preceding lemma and the properties of FK and fK set out
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in Theorem 6.1. Thus, with B(t) now given by (7.11) with v — 0 or 1,
the integral on the right side of (7.10) is

and on substituting t = x1^ this becomes

-(log a:)/log z0

by (6.3) and (6.4); when v — 0 we have invoked (6.3), as we may do,
since £ > (logx)jlogw > aK (resp. > 1 when K = 1), and when v — 1
we have applied (6.4) because here C, > (logx)/ log w > /3re.

Hence, by (7.9) and the preceding lemma, subject to the specified
constraints on (log x)j log w,

zo<p<w

A

j / V V lop

After rearrangement this becomes

/ / /

y ^

log

- l^ ) l ) + r f l ^ ( f
log z0 ' ' log ^o ^ V log w;
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The last formula can be restated as

vlog^o/
A

log^o V V log-u?

log z0 ^ log 2:0 / !• Vlog^o^ Vlogu;

the last since

in both cases, because FK is decreasing and

! — 1 ^ 1 J- ^— PK. J--

log Zo log U> log ID

Finally, since 0K - 1 > 1, ^ ( ^ - 1) < i ^ ( l ) = l /a K ( l ) by (6.1). D

The two inequalities of Proposition 7.3 constitute the principal tech-
nical tools in the proofs of Theorem 7.1 and of Theorem 9.1. We shall
demonstrate their use next in the case of K — 1, in the course of prov-
ing Proposition 7.4. Theorem 9.1, which deals with all integer and half
integer dimensions K > 1, will be established by an argument similar to
that used in Proposition 7.4; while the details will be more complicated,
the ideas are the same.

7.3 Bounds for VS1*1: conclusion

We now revert to the case n = 1 (where ct\ = /3i = 2) and are ready to
estimate V(ZQ)Y,+ , defined in (7.7), from above, and V(z$)Y,~, defined
in (7.8), from below.
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We shall prove

Proposition 7.4. Suppose that fl(l) holds and that v — 0 or 1. Then,
for2<z0<z< F 1 / ^ + 1 ) , we have

) ^

Proof. With z/ = 0 or 1 and r = 1,2,3 . . . , introduce the expressions

d\P(zo,z)

The expression on the left side of the inequality of the Proposition is

:= lim
r—>oo

This limit exists, since for each pair {zo, z}, E^r is in fact constant for all
sufficiently large values of r. (We hope the reader will not find confusing
our use of v(d) as the counter of distinct prime factors of d and v = 0
or 1 as a parity index.) Observe that

(7.14) E£> =Ef> +

While the expressions Er look unwieldy, differences of consecutive
Es, when suitably arranged, can be estimated readily by one or more
applications of Proposition 7.3 in conjunction with the properties of the
functions x^" •

Consider E\~' first. The first sum for this quantity has only one
term, corresponding to d = 1, and the second sum extends over primes
only. Thus

zo<P<z " V [°ZP



90 The case n — 1: the linear sieve

When v = 0,

ogp / V logp =0 if l o g (r/p)<2io g P ,

i.e., if p3 > Y; thus we may assume that the last sum is further restricted
to primes p < Y1/3. For such primes, x^"(p) = X+(p) = V+(P) = 1
(see (6.15), (6.16)). When v = 1, we have x{~T(p) = X~(p) = 1 for all
p by (6.17) and (6.18). Hence, whether v = 0 or 1, the term %(~) (p) in
the sum may be replaced by 1. Now Proposition 7.3, with z in place of
w and Y in place of x, tells us (remember that K = 1 here) that

(7.15) £?{"> <-4-J^V(,) , ^"<y.

Next consider

d\P(zo,z)
v(d)=r

+ E <
d|P(^o,^)
i/(d)=r+l

i/(d)=r

Here it is natural to write d in the second sum as d — pt, p — p(d), so
that p(t) > p, x{v\d) = XW(*) V^Kpt)) and then replace i by d so that
all three sums extend over d \ P(zo, z) and v{d) — r. We obtain

d\P(zo,z)
u(d)=r

It is necessary now to elucidate the role of rp' (dp) in the inner sum

over p. Take v = 0 first, so tha t rf~^ (dp) = rj+(dp) = 1 always when

v(d) = r is odd. When r is even, rj+(dp) = 1 if p3d < Y. But if p3d > Y,
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that is, if log{Y/(pd)} < 21ogp, and r is even,

(7.16) ^ ->^ + V l 0 g
1

( r / ^ ) ) = fl (l^M) = 0
V logp / V logp /

so that the sum over p is unchanged when rf~^ (dp) is replaced by 1.

Next, suppose that v = 1, so that r](~^(dp) = rf~ (dp) = 1 always
when v(d) = r is even. When r is odd, r\~ (dp) = 1 if p3d < Y and is 0
otherwise. Now the argument goes as before: r + v + 1 is odd and (7.16)
applies, and once again the factor rj~(dp) in the inner sum over p may
be replaced by 1. Thus

d\P(zo,z)
u{d)=r

_ y
p

Proposition 7.3 applies to the last sum on the right, this time with p(d)
in place of w and Y/d in place of x, provided that p(d)2 < Y/d when
r + v is odd and p(d) < Y/d when r + v is even. We find under these
conditions that

CTl(l) log Z0

We turn to the factor x^"(d), subject to v(d) = r, to check these
conditions. Suppose that v = 0. Then, by (6.16), x+(d) = 1 implies
that r/+(d) = 1 when r is odd and r/+(d/p(d)) = 1 when r is even. But
"i]+(d) = 1 with v(d) — r odd" is precisely the statement (see (6.15))
that p(d)2d < Y\ when v(d) = r is even and we have

d = P1P2 • • -pr (pi > • • • > Pr = p(d)),

then rj+(d/p(d)) = 1 implies that p^-iPi—2 • • -Pi < ^j a nd consequently
that p(d)d < Y, since p^._1 > p(d)prpr-i. A parallel argument deals
with v = 1. By (6.17), x~(cQ = 1 implies that r]~(d) = 1 when r is even
and that rj~(d/p(d)) = 1 when r is odd; and then, by (6.18), p(d)2d < Y
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when r is even and p(d)d < Y when r is odd. Hence

and, by (7.14), (7.15), the last relation and condition

oo

- ) " _ 7?(-)"N\

r = l

A

|

A \ ^ /

•

7.4 Completion of the proof of Theorem 7.1

By (6.19), (7.6), and (7.7), and then by the case v = 0 of Proposition 7.3,
we get

S(A,T,z) < *l(x
+)

m\P(z)
m<y

logz

m\P(z)
m<y

ior2<z0<z<Y.



7.4 Completion of the proof of Theorem 7.1 93

Similarly, by (6.19), (7.6), (7.8), and the case v — 1 of Proposition 7.3,

s(A,r,z) > $!(*-)

m\P{z)

0 g 3
Z o logy

m\P(z)
m<y

The choice (7.3) of z0 leads to

(7.17,

|, 2<zo<z<Y,
m<y

m\P{z)

and

(7.18)

\, 2<zo<z<Y1?2.
m<y

m\P(z)

In (7.5), we set logy = logy — ((logy) log logy)3/4. With this choice,

Fj^-FJp^) and fJ*™.) - fJ1***
V log z I V log z I V log z ) V log z

are each non-negative and small. The non-negativity follows from the
monotonicity of F\ and / i ; and by Lemma 6.2 with n — 1 each of these
differences is

l o g y - log Y (log)3/4(loglogy)3/4
 = (loglogy)3/4

l FlogF logy (lo

Thus we may replace F\ (log Yj log z) by F\ (log y/ log z) on the right
side of (7.17) and /i(logY/logz) by f\(logy/logz) on the right side
of (7.18).

We are now very close to finishing the proof of Theorem 7.1. The
upper bound for S(A,T,z) differs from the altered version of (7.17)



94 The case n — 1: the linear sieve

only in that it is asserted to hold for the range z < y in place of z < Y.
But if Y < z < y,

E •
m\P(Y)

m<y

by (7.17). Since Y < z, the inequality remains all the more true when
m | P(Y) is replaced by m | P(z). Next, by J2(l) and (7.3)

Finally, since Fi is decreasing,

fl(^)<fl(^),V log YI V log z )

and this completes the first part of the theorem.

As for the lower bound of Theorem 7.1, it is true but worthless when
logy/logz < 2, for here / i — 0. Now suppose that Y1/2 < z < y1/2. By
Lemma 6.2,

/ 1 ( 2 ) < ^ 2 <
logz

= ( logy-logF) (loglogy)3/4

logy ^ (logy)1/* '

It follows that for suitable constants B,B',

S(A,V,z) > 0 > XV{z){h{2)
m<y

m\P(z)

m<y
m\P(z)

This concludes the proof of Theorem 7.1.
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7.5 Notes on Chapter 7

Theorem 7.1 was first proved by Jurkat and Richert ([JR65]; see also
[HR74], Chapter 8). Their proof used Selberg's upper sieve method
(cf. Theorem 5.6), as we shall do in Chapter 9; but then it was combined
with many skillfully chosen iterations of Buchstab's identity.

The method of proof here derives from the Rosser-Iwaniec approach
in [Iwa80], a seminal memoir in sieve theory. We follow a somewhat
different path, however, via the inequalities (7.7) and (7.8). While this
costs some precision in the remainder terms it has the merit of bringing
the functions F\ and /i into play from the start. (The remainder term
in the Rosser-Iwaniec method for K = 1 can be given in a highly flexible
form to which deeper methods can be applied—character sum estimates,
for example.)

Rosser had discovered his sieve method in the late 1930s but published
no details; the only evidence in print is to be found in two research
announcements, in volumes 43 (p. 173) and 47 (p. 383) of the AMS
Bulletin (the latter jointly with W. J. Harrington) and in an article of
W. J. LeVeque [Lev49], where a version of the Fundamental Lemma is
presented. Iwaniec's work paralleled but was developed independently
of Rosser's earlier studies. There is a comprehensive account of the
Rosser-Iwaniec linear sieve method in [GrvOl].

The upper and lower bounds of Theorem 7.1 are optimal, as shown
by the following example of Selberg [Sel91]: for

A = Bv = {n:l<n<x, Q(n) = v mod 2}, i/ = 1, 2,

the upper bound of the theorem holds with equality when v = 1 and
the lower bound holds with equality when v = 2. Apropos of this
example, he remarked famously that the sieve method (as enshrined
in Theorem 7.1) "cannot distinguish between numbers with an odd or
an even number of prime factors." Circumventing this parity "problem"
by combining a sieve method with other information is a feature of most
recent advances in the application of sieve ideas ([Sel91], p. 204, [GrvOl],
p. 171.)

We could not prove Lemma 7.2 by appealing to Lemma 1.4, because
V(-)B(-) need not be monotonic.
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An application of the linear sieve

8.1 Toward the twin prime conjecture

Before considering the sieve method for K > 1 we pause to demonstrate—
and test—the quality of Theorem 7.1. Specifically, we ask: How close
can it bring us to the famous twin prime conjecture? We show, as an
approximation to the conjecture, that there are an infinite number of
pairs (p, p-\- 2), where p is prime and p-\- 2 has only a few prime factors.

Let A = {p + 2: p < x} and take V to be the set of odd primes. For
d a positive integer and a an integer, set

ir(x,d,a) :— \{p < x: p = a mod d}\.

When d is odd and squarefree, we have

ll "T
\Ad\ = n{x, d, -2 ) = ——• + rA(d),

ip(d)

so that X = \ix and uj(p) = p/(p — 1) for p \ d. If we write

\ix
£(x, d) := max n(x,d,m) —

l<m<d
(m,d) = :

<p(d)

then the Bombieri-Vinogradov theorem ([Bom65]; [DavOO], Chapter 28)
applies, and states: given an arbitrary constant A > 0 there exists a
number B — B(A) > 0 (it is known that B — A + 5 is a valid choice)
such that

(8-1) T, ^d)«—^—r.
loga:)

We want the following variant upon this estimate:

97
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Lemma 8.1. With £, A, and B as above and for any positive constant
K, we have

d<x1/2(logx)-B

Proof. It is easy to see that £(x, d) <C x/d. Hence the sum in question,
by an application of Cauchy's inequality, is at most of order

d<x1/2(logx)-B

E E

n (1+?
n fi+M «x(ioga;)-^-^)/2. •

(log:c)A/2

When we choose K = 4, A = 36, and B = B(36) in the lemma and
note that | ^ (d ) | = \n(x,d, — 2) — lix/<p(d)\ < £(x,d), we obtain

(logx)10 '
d<x1/2(logx)-B V '

Now we apply the lower bound estimate of Theorem 7.1 with

y ™l/(4+<S) (n ^ x ^ i \

-o — dj I U \ U \ J. >, U —

and we obtain

[p + 2,P(x )) = l} | =
-f

>nx n
°V(loga;)10i;

noting that we have used Lemma 6.2 to show that

0 < /i(2 + 5/2) - h((logy)/logz) « (loglogx)/logx.
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But

where

p>2

Also, since 2 + 5/2 < 3, it follows from (6.4) and (6.1) that

2 + 6/2

and therefore

The last inequality holds for 0 < 5 < 1, since

J o H 1 + 2 ; > 2 " 2 l 2 ; = 2 l 1 - 4 J > 4 l 1 + '
Hence

^(1 + I ) > S 2 - 1 2 ( 2 )
 = ^ - - ) > T U + T ) .

(log a;)2

-> AW X v •> ™

log a;

This means that any number p + 2 counted on the left is the product of
at most four prime factors; for a product of five or more primes, each
at least as large as x1/(4+<5\ would exceed or equal £5/(4+*) > x, by our
choice of S. Writing Pr for any positive integer that is the product of at
most r primes, we have proved that

(8.3) there are at least SHx(\ogx)~2 primes p < x with p + 2 a P4.

The reader may well find the preceding result rather disappointing;
given the effort expended in proving Theorem 7.1, one might have ex-
pected a better approximation to the twin prime problem to emerge
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from it. We note here how we could do better if (8.1), the Bombieri-
Vinogradov theorem, is valid over a longer range of d, say over d < xT

for some r > 1/2.

For example, assume (8.1) holds with r = 1/2+e for some e G (0, 1/6),
and we wish to use this estimate to improve upon (8.3). From the
preceding argument, we see that a reasonable choice of parameters is

( ^ (0,1)), y = xT.

With S = 1 - 6e G (0, 1), we have (3 + S)T = 2 + Se, and by (6.6)

the last because

for 0 < t < 1/2 (say). This estimate implies that (8.3) holds with P3 in
place of P4.

There is, however, an ingenious argument that leads to the same con-
clusion without appealing to an unproved conjecture: we shall prove that
the number of primes p counted in (8.3) which are such that p + 2 =
P1P2P3P4 (with pj > xx^i+s\ 1 < j < 4), is relatively negligible com-
pared with the estimate of (8.3), and hence there are infinitely many ps
such that p + 2 — P3. We begin with the observation that we may as well
assume that the four primes Pi,P2,P3,P4 are distinct, for the number of
integers < x that are divisible by the square of a prime of size at least
x1/5 is at most

E f S 1 V > 1 V T 1 4 /r

— \<x V -^<x V — <a;4 /5 .
Ln2J ~ ^—' p2 ~ *—' n2

pyx1/5 pyx1/5 n>^1/B

We may assume therefore that we need to count the number of primes
p < x such that

p + 2 = p!p2p3P4 (pi >P2>Ps>P4> x1/(4+s)).

First note that

x + 2>p + 2> a;3/(4+l5)pi

so that

Pl < 2x1-3^4+s1 = 2 x ^ 1 ^ < x<1+<5)/4 (x > x0).
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Next, let

Q •= {<? = P2P3P4 <{x + 2)x-1^4+^ : x 1 ' ^ < p4 <Ps <p 2 <

and, writing p in place of p\, estimate the quantity

(8.4) Y,\{P:X1/(4+S) <P< {x + 2)/q,qp-2^p', a prime} |
Q

from above. We apply the upper bound of Theorem 7.1 to each term of
this sum, namely to the set

B(q) := {qp-2:x1/i4+s) <p< (x + 2)/qj, q G Q,

with X = li((a; + 2)/g), uj{p) = p/(p-l) as before, y =
(so that the remainder sum can be estimated by (8.2)), V(z) -C 1/logz,
and z — a;1/100 say. We obtain

where the implied constant is absolute. Hence

x
3.5)

But

E - < ( y^ - ) <(log
qeQ

so that the sum in (8.4), and also in (8.5), is at most of order

a quantity that is plainly dwarfed by the lower bound (8.3) if S is suffi-
ciently small. We conclude that p + 2 is infinitely often a P3.

There is a more complicated but not dissimilar procedure by which
the P3 in this result can be replaced by a P2, the famous theorem of
J. R. Chen [Chn73], the closest approach that has been achieved to
date to the twin prime conjecture. We remark that Chen's result would
follow in a more straightforward way, using Corollary 11.2 below, if the
Bombieri-Vinogradov estimate (8.1) holds for a sum over a range d < xT

for T = 0.5453.
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8.2 Notes on Chapter 8

The deduction from Theorem 7.1 that p + 2 = P3 infinitely often was
shown to one of us a long time ago by R. C. Vaughan. His argument
is a suggestive preliminary to Chen's famous theorem [Chn73]. Other
accounts of Chen's result are given in [HR74], Chapter 11, and in [Ros75].
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A sieve method for n > 1

9.1 The main theorem and start of the proof

Now we turn to the central result of this monograph. We shall prove
Theorem 9.1, the analogue for integer and half integer dimensions K > 1
of Theorem 7.1. We have prepared the ground in Chapter 6 for the
method to be presented here, and we resume the discussion by recalling
from (6.12), (6.9), (6.11), and (6.20) that, with 2 < z0 < z,

(9.1) Sl(x~) - S22(X-) < S(A,V,z) < Sl(X
+) + S2i(x

+),

where

(9.2) S1{X
±) = J2 ±

d\P(zo,z)

(9.3) 521(x+)= E
d\P(zo,z)

(9.4) S22(X-)= Y,
d\P(zo,z)

and

r

( 9 . 5 ) X±(d) = Y [ r ]
± ( P l - - - P j ) , d = Pl---Pr ( P l > - - - > P r ) .

The functions ?7±(-) were defined in (6.21) and (6.22), but we restate

103
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these definitions here for convenience of reference. We have

{1 when n(d) = 1 and p(d)a"d < Y,

1 when fi(d) = - 1 and p{df-d < Y,

0 otherwise,

{1 when fj,(d) = 1 and p(d)^Kd < Y,

1 when fi(d) = - 1 and p(d)a*d < Y,

0 otherwise,

and we have to remember that x ± ( l ) = 0 and

(9.8) x±(d) = x

We shall estimate Si(x±) by applying Theorem 4.1 (the Fundamen-
tal Lemma) to the functions S(Ad, V, zo), just as we did in Chap-
ter 7 when dealing with the linear sieve, and we shall estimate each
°f <5<2i(x+)i 'Sl22(x~) by applying Theorem 5.6 (Selberg's upper bound
sieve method) to the functions S(Ad,'P,p(d)).

Our objective is to prove

Theorem 9.1. Suppose that K > 1 and that 2K is an integer. If SI(K)
holds and y is a parameter such that 2 < z < y, then we have

m\P{z)
m<y

and

-2 J2 4"(m)|MMI.
m\P(z)
m<y

where FK and fK are the functions in Theorem 6.1, and the constants
implied by the O-notation depend at most on K and A.

Proof. The case n = 1 has been dealt with in Theorem 7.1. The result
given there has slightly better error terms. We henceforth assume K > 1.
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Next, we point out, as we did in Chapter 7, that the theorem follows
from Theorem 4.1 (with z2v replaced by y) when logz is very small
compared with logy. Specifically (see (7.1)), if log logy > 2e and

logy \
z < exp —

V l

then

z < exp ,
V log log yJ

l, \0\ < 1.

Since (logy)/log z > log logy, it follows from (6.5) that

V log z) V log y I V log z / '

so that the theorem reduces to Theorem 4.1.

Henceforth we take

(9.11) I o g z 0 : = ( ^ - V-\
V loglogy /

and assume (until near the end of the argument) that

(9.12) z0 < z < Y,

where, with L := loglogy > 2e, we now choose

(9.13) Y := yz0
L = y exp ( - {(logy) loglogy}(2K

We follow as closely as possible the procedure in the case of n = 1,
especially when dealing with the sums Si(x±), our first task. We apply
Theorem 4.1 to each S(Ad,V, ZQ) on the right side of (9.2), this time
with q = d, ZQ as in (9.11), and z2v replaced by z$ , and obtain

•m\P(z)
m<y

The contribution arising from the O-term in the sum on the left is at
most of order

X v(\ ST W ^ X v(
logw ^-^ d logw

5 i / d|P(zo2)

TT
-LJ-
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Now

A sieve method for K > 1

<^(*) (flog 2/)(log log j/))

by tt(n), (9.11), and because z < Y < y; hence

(9.14) - XV(z0) E

We are not finished with Si(x )i w e write

(9.15) </>+(«) :=FK(w) and </>-(u) :=/«(«),

where FK and /K are the functions defined in Theorem 6.1 and note,
since fK(u) < 1 < FK(u), that when d is squarefree

0.

On writing

(9.16) E[-r :-.

for v = 0,1, we derive from (9.14)

(9.17) S i ( x + ) <

and

(9.18) Si Or) > XV(z0)^ - O(XV(z)S1(y)) -

where we have set

(9.19) <Ji(i/) := (loglogy)(logj

|()
m<y

m\P(z)
m<y
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9.2 The S2i and S22 sums

So far we have followed the development in Chapter 7, but now we turn
to the sums S2i(x+) from (9.3) and $22 (x~) fr°m (9-4), which have no
counterpart in that chapter. We need to estimate each of these sums
from above, and to this end we apply Theorem 5.6 to the expressions
S{Ad,V,p{d)) that appear in both. In that theorem we replace q by d,
z by p(d), z2u by Y/d, and u by

(9-20) « 2 log

so that jK{ud) — crK(2ud). In S2i(x+) we have n(d) = 1 in each term.
Also x+{d) = 1 if and only if x+(d/p{d)) = 1 and rj+{d) = 0, by (9.8)
and (9.6). We claim that

(9.21) 1 < ft, - 1 < 2ud :=

The right-hand inequality is the familiar consequence of r)+(d) — 0.
For the middle inequality, X+(d/p{d)) — 1 implies that r]+(d/p(d)) = 1;
writing

d=PlP2 ••• Pr w i t h pi > p2 > • • • > Pr

and r even, it follows that d/p(d) — P1P2 • • • Pr-i with r — 1 odd. Thus
r]+(d/p(d)) — 1 implies that

(9.22) p f + 1 • • • P l < Y

and consequently

pP^frrPr-l •••Pl)<Y,

i.e., p(<i)/3~1 d < Y, which is equivalent to the middle inequality in (9.21).
The left-hand inequality in (9.21) is a consequence of the first assertion
of Theorem 6.1.

Since Ud is bounded from above and below, we have ud
K + ud~

K~1 <C 1
and, by (9.3),

E <
n\P(p(d))
n<Y/d
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The remainder sums on the right add up to at most

m\P(z)
m<Y

and the O-terms to an expression of order

„ logpM V(z) d

after two applications of il(n) and by (9.11), using the simple argument
that preceded (9.14) (recall £(w) := log{elog(eu>)}). Thus, if we write

/Q 9o^ A / x (loglogy)2

we obtain

(9.24) S21(X+)<X £
d\P(zo,z)

m|P(z)

with 2wd := log(y/d)/logp(d), as given in (9.20).

We turn to S22(x~), defined in (9.4), and proceed in much the same
way on the basis of Theorem 5.6. In all the terms, (i(d) = —1. Now

provided that x"(d/p(d)) = 1 and rj-(d) = 0. By (9.7), r)~{d) = 0
precisely when p(d)aKd > Y, i.e., when 2ud < aK. For a lower estimate
on Ud we distinguish the cases v(d) > 1 and u(d) = 1. For v{d) = r > 1,
write as usual d = P1P2 • • -pr with pi > p2 > • • • > Pr = p(< )̂- The
condition x~(d/p(d)) = 1 implies that rj~(d/pr) = 1 and hence, by (9.7)
again, that p\.1i{d/pr) < Y. It follows that p@K~1d < Y, i.e., that
2-Ud > f3K — 1. For z/(d) = 1, i.e., d = p, the condition x~(d/p(d)) = 1
becomes X~(l) = 1) which provides no information.

Note, however, the occurrence of $22 (x~) m the lower estimate for
S(A,V,z). To obtain a non-trivial lower bound for the latter quantity,
it is necessary to have /K(logy/log2) > 0 (see (6.2)), so we henceforth
assume that logy/logz > (3K. Thus we have, uniformly for ZQ < p < z,

logy logF logy-o(logy)
"1 1 > "1 1 = i
logp log z log 2:

logy logF logy-o(logy)
2wp = "1 1 > "1 1 = i 1 > PK - o(l) - 1 > 1

logp log z log 2:
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since (3K > 2. It follows that

uniformly for d \ P(ZQ, Z) if x~{d) = 1 and fi(d) = —1.

We are now in a position to apply Theorem 5.6 to each term in the
sum 5'22(x~) in the same way we did in S2i(\

+), an(^ w e obtain the
inequality

(9.25) S22(X-)<X J2 ^(d)^
d\P(zo,Z) a

ni\P(z)
m<Y

Using the notation

(9.26) E ^ " := Y X^~)ll(d) —
d\P(zo,z)^

and

(9.27) RA(Y,z):= ^ 4 ^
m\P(z)
m<Y

we may restate (9.24) and (9.25) in the form

(9.28) S21(X
+) < XS+ + O(XV(z)52(y)) + RA(Y7 z)

and

(9.29) S22{X-) < 1S2" + O(XV(z)S2(y)) + RA(Y, z).

This is a good point at which to summarize progress. Writing

/q on\ y + . T/(' ^y+ _i_ y*+ ~y~ . \[{7 \SP~ 'SP~

we combine (9.1), (9.17), (9.18), (9.28) and (9.29) to yield

(9.31) S{A, V, z) < XE+ + O(XV(z)S2(y)) + 2RA(Y, z)

and

(9.32) S(A, V, z) > XE~ - O(XV(z)52(y)) - 2RA(Y, z),

the latter under the assumption z < y1^". Here we have used (9.19)
and (9.23) to infer that 8i(y) < 82{y).
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9.3 Bounds on £±

The chief task in proving (9.31) and (9.32) is to bound S + from above
and E~ from below (the latter subject to logy/logz > /?«, that is, to
z < y1' ) , and we shall accomplish this in Proposition 9.2 below. The
argument will proceed along the same lines used in Chapter 7, but the
details are more complicated.

We recall here the notation introduced in (9.15),

* ( 0 * ( 0 (
[/„(•), r odd,

where (—)r = 1 when r is even and —1 when r is odd, and we take

f
V

Also, we should recall that Proposition 7.3 asserts in (7.13) that

A V(w) / loe
(9.33) D - ( X W Z o ) < - ! U . l r e

o-(l) logz0 Vlogzo^

provided x > u;'3", and in (7.15), provided x > waK, that
(9.34) D+(x,w,z0) < -DUX,W,z0)<^^

a (I) log

Proposition 9.2. Given y, let Y(< y) be defined by (9.13). We have

(9.35) v+<V(Z){FK(^P^) +O(52(y))}, z0 < z <

and

(9.36) ^->V(

Our application of this proposition in Theorem 9.1 will need an esti-
mate of the type (9.35) valid for ZQ < z < y; we shall deal with the gap
yi/«« < z <y later.

Proof. We make a start with £+, given by (9.30), (9.16), and (9.26) (the
last two with v — 0). Keeping in mind the restriction

(9.37) Y>za\

we introduce the expressions
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(9.38) E+:=V(Z0) £
d\P(za,z)

, r = 1,2,3,...

Our aim is to deal with S + by means of the representation

(9.39) £+ = V(z)I

We observe at the outset that linv^oo _B+ exists for each fixed pair zo, z.
For r sufficiently large, each of the first two sums in (9.38) is constant,
the third is empty, and the last term in (9.38) is independent of r.

We estimate E^ and the differences E£s+1 — -B^s_1 (s = 1, . . . , k) by
repeated appeals to (9.33) and (9.34) and the properties of x+, as we did
in Chapter 7; however, the "new" terms from the sum J ^ (see (9.28)
and (9.26) with v = 0) introduce an extra degree of complication. The
trick is to express E^ and each of the k differences, perhaps after some
rearrangement, in terms of the expressions D^r(-, -, ZQ) in such a way
that (9.33) or (9.34) applies. Each time it turns out that the properties
of x+ make such applications possible.

We turn to E± first; note that the second sum on the right side
of (9.38) is empty when r = 1. Thus

, ,40 , £ -

Z0<p<Z

We have E^ = D+(Y,z,zo) when x+(p) = ?7+(p) = 1) that is, when
p < yi/(/3«+i) by (9.6). To apply (9.34) with x = Y and w = z, we
require that Y > za", which we have assumed in (9.37); and when
afi > (3K + 1, then, indeed, Y > z^K+1. Of course, we may apply (9.34)
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even when aK < j3K + 1 provided that z < Y1^l3"+1'); in either case

1 a(l) logz0 Vlogzo/

It remains to deal with the case when aK < (3K + 1 and

Here the sum in

o g p

extends only over the primes p G [zo, y1/( /3»+1)), since x+(p) = 0 for
p > y i / ( ^ + i ) by (9.6). It follows by a small calculation that

(9.42) E+ = ^

The contribution of the first two terms on the right side is, by fi(«),

Since here aK < (log F ) / log z < f3K + 1, the expression in the last
set of curly brackets is 0 by (6.3) and (6.2). In the last expression on
the right, logF > (j3K + l) logz0 for large y by (9.11) and (9.13), and
therefore that expression is at most

We can estimate the last term of (9.42) by using (9.34) with x = Y
and w = yV(/3«+i)) because Y > ( y V t A + i ) ) ^ , Then, making another
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application of Q(n), we obtain

D+(Y y i / ^ + D Zo) < _A_

A (i |<

Combining these estimates in (9.42), we find that

when aK < /3K + 1 and y1/(/3'«+1) < z < Y1/"-". In these circumstances

FK(J3K + 1) < FK{aK) < FK{1) = 1 K ( 1 )

by Theorem 6.1, so that in this case

1 ~ aK(l) \ogz0 \logz0)

This estimate and (9.41) along with the assumption that A > 1 in H(/t)
lets us conclude that in any case

(9.43) Et^^Lm
a{l) log^

Recalling that equation (9.38) defines E+, we consider next, for any
integer s > 1, the difference

d|P(zo,z)

d=P(«o,«)
v(d)=2s-l

—: Hi — H2 + H2, — H4 -{•
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Our principal tools in the sequel are formulas (9.33) and (9.34), and
to be in a position to apply them we introduce the sum

(9.45) H6:=
d\P(zo,z)
v(d)=2s

We must remember, here and below, that 2nd = (\og(Y/d))/log p(d).

With the aid of HQ we rewrite (9.44) in the form

(9.46) E+s+1 - £ + _ ! = (# i - H6 - H4)
+ {H5-H2+H6+H3).

Then

TT TT TT

£11 — flQ — H4

x—^ i UJ\ C

= J2 x ^ d
d\P(zo,z)

zo<p<p(d)

- E d
d\P(zo,z)

provided that x+(d) = 1 in each term, and also when rj+(dp) = 1 in
the inner sum. We can assume that these conditions hold. Indeed, since
fj,(dp) = —1, rj+(dp) = 1 when p@K+1d < Y and is otherwise 0, by (9.6);
but when pP*+1d > Y, it follows that u := (log(F/dp))/logp < /3K and
then that fK(u) — 0, by equation (6.2). Thus we may take rj+(dp) — 1
throughout the inner sum. Also, since x+{d) — 1 and /j,(d) — 1 together
imply that Y/d > p(d)aK, (9.34) with x — Y/d and w — p(d) applies in
each term, and we arrive at

(9.47, H l - H . - H i < *

v{d)=2s
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Similarly, after applying (9.8) to H3,

d\P{zo,z)
v(d)=2s-l

log

zo<p<p(d)

p aK(log(Y/dp)/\ogp)

In this awkward-looking sum we may assume that x+(d) = 1
fj,(d) — —1 in each term, and these imply by (9.6) that Y/d > p(d)^K, an
inequality that puts at our disposal (9.33) with x — Y/d and w — p(d).
This is precisely what we need, for, despite appearances, the expression
within parentheses is in fact D~(Y/d, p(d), ZQ). This relation is clear
when 7]+{pd) — 1; when rj+{pd) — 0, since n{dp) — 1, Y/(dp) < pa*
by (9.6) and

u = (\og(Y/dp)/ logp < aK

tells us that, by (6.1), (l/aK)(u) = FK(u). Hence

(TK{1)

By the combination of (9.44), (9.47), and (9.48), we arrive at

p + _ p + <_A_ ^ uJ(d)V(p(d))(logp(d)Y
2S+1 " £ 7 a - 1 -MD t d l0^° l j

and hence, on summing over s,

or, by (9.43),

+ <_3^_VX£)./jog£_\''f1 V a;(d)y(p(d))/logp(d)\"-j
2a+1-«7(S(l)log2!oVlogZo>' I + J-s d V(z) \ logz ) /«7(S(l)log2!oVlogZo>' I + J-s d V(z) \ logz )

d\F(zo,z)
0<v(d)<2s
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for Y > z°K. By FI(K), the last sum is at most

^-^ d V log p(d)J V log ZQ/ J - 1 V p
d\P(zO,z) ° V ^ ° 2 0 < P < 2

n
,o<P<, P 7 ' [OgZ°' U O g Z °

after a second application of 17(K;). Hence

lim Et.i < —7z
logz0 /

and therefore, by (9.39), since z < y,

log z ' V log y V log

by (9.11). This proves the first inequality in Proposition 9.2.

We turn to proving the second part of the proposition and accordingly
assume

(9.49) ZQKZ^Y1/^, (3K>2.

We introduce (cf. (9.38)), for r > 1,

(9.50) E~ := V(z)fK(y?-

d aK

v(d)<r

d\P(zo,z)
v(d)=r

with Ud as defined by (9.20). By (9.50), with £~ as specified above,

(9.51) E-=n*)/«(^

where the limit exists by the same reasoning as was applied to E+
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We require an upper bound for E~. Our procedure follows closely the
argument dealing with £+, and a dedicated reader might try to carry
it out without looking at the details, which are given below for the sake
of completeness.

It is convenient to extend the definition of {E~} to include EQ , in
order to express

fe-i

E2k = E \E2s+2 - E2s) + E0 •

To this end, we recall that p(l) = oo so that u\ = 0. Several of the
terms of E~, given by (9.50), vanish when r = 0 because of empty sums
or by the convention that F(oo) = 0, and we get

We begin by examining the E~ differences. For s > 0 we have
by (9.50) (again using (9.15))

E2s+2-E2s-V(z0) X. * ( d ) ^ -
d\P(zo,z)

v(d)=2s+l

d\P(zo,z)
v{d)=2s

( 2 }

d\P(zo,z)

d\P(zo,z)
u(d)=2s

Let us look at some of the sums that are on the right side of the last
equation. By convention, the last sum is 0 for s = 0. In the third sum,
X~{d) = 1 only if 7]~(d) = 0 (by (9.8)) and, since v(d) is odd here,
by (9.7), p(d)^d>Y, i.e.,

2ud = (logY/d)/logp(d) <aK-
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it follows that l/aK(2ud) — FK(2ud) in that sum. Still in the third sum,
write

by (9.8), and that sum then becomes

d\P(zo,z)
u(d)=2s+l

d\P(zo,z)

With this change, we can prepare the expression £-2s+2 ~~ -^2s' which
now comprises six sums (for s > 1), for a two-fold application of Propo-
sition 7.3.

We have

d\P(zo,z)
v(d)=2s+l

zo<p<p(d)

d\P(zo,z) k zo<p<p{d)
v(d)=2s

=: -B2s+i + B2s, say.

Take B2S+i first. We may suppose that X~{d) — 1, /Lt(d) = —1 in
each term, so that, by (9.7), Y/d > p{d)a"; this means that (9.34) with
x — Y/d, w — p(d) is available, and indeed r]~(dp) = 1 in each term
of the inner sum when aK > @K + 1, since Y/d > p(d)aK implies each
time that Y/(pd) > p^n, which is precisely the condition for r]~(dp) to
be equal to 1. So in this case

V ^^ D
d\P(zo,z)
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This statement is true also when aK < (3K + 1. To see this, note that
v-{dp) = 0 if Y/(pd) < p?" by (9.7), and then

U{logY/(pd)}/\ogp) < fK(/3K) = 0

by equation (6.2). It follows from (9.34) applied in each term that

< A V{z) slogzy ^ uj(d)V(p(d)) slogp(d)
2s+1 ~ aK(l)logzo\logz0) ^ ^ d V(z) \ logz

v(d)=2s+l

< A / | A
V-K(l) V logz0 / logz0

Next turn to B2S, first with s > 1. In each term x~(A) = 1, /x(<i) = 1
imply, by (9.7), that Y/d > p{dY\ and therefore, for s > 1,

ycrK(l)V Iogz0/log^o Vlog^o^ ,,^7 .

takes the simpler form

Applying (9.33) with x = Y and w = z, as we may do by (9.49), we
obtain

Combining the estimates, we find that

7T- / A / , A \ / l o g z \ K

zo,z)
0<^(d)<fc-l
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Using n(n), we can bound the sum on the right by

L^ d ~ 11 V ' p J
d\P(zo,z) zo<p<z

Hence
At A \2t \ogz \K Viz)

lim E2k < -—- 1 + —5— — ^ ^
fe^oo ^R crK(l) V logz0^ Vlogzo^ logz0

and, since z < y, we obtain by (9.51)

^ ) (
log y / V log z0

By (9.11) and (9.23), the O-term on the right is O(S2{y)). •

9.4 Completion of the proof of Theorem 9.1

To derive Theorem 9.1 from Proposition 9.2 is now a simple matter.
By (9.31), (9.23), and (9.37),

for z0 < z < Y1^". When Y1/"" < z < Y, we have

and therefore, by (6.1),

I K (log Y/ log z) = FK (logy/ log z).

Hence Theorem 5.6 applies with u — | ( logF) / logz , q — 1 and £2 = Y;
also, the range 2 < z < ZQ was handled at the outset of the proof, and
so we arrive at the inequality

(9.53) S(A,V,z)<XV(z){FK(logY/logz)+O(52(y))}

for 2 < z < Y.

We are now very close to a proof of (9.9); it remains to show that,
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in (9.53), each Y can be replaced by a y. First, by Lemma 6.2 with
m = (logY)/logz and u2 = (logy)/logz,

(9.54) F K ( ^ ) - *•„(*!
V log z ) V log z

by (9.13). Next, suppose that Y < z < y. Then, trivially, we have
S(A,V,z) < S(A,V,Y), and by (9.53) and (9.27),

S(A, V, Y) < XV(Y){FK(1) + O(62(y))} + 2RA(y, z).

Finally, since FK(u) is decreasing in u,

by (9.54), and

by (9.13). It follows from these computations that the proof of (9.9),
the upper bound part of Theorem 9.1, is now complete.

As for the second part of Theorem 9.1, it follows from Lemma 6.2 that
in the inequality for ^2~ from Proposition 9.2 that /K(( logy)/ logz) on
the right may be replaced by fK((logy)/logz) at no greater cost. To
deduce (9.36), it remains to deal with the range YXI^K < z < yx^n.
However, in this narrow range

PK < -. < PK~, T7 = PK[ H : TT~ I = PK + O(d2{y))
logz \ogY \ logY )

by (9.13). Since fK(/3K) = 0, we deduce from Lemma 6.2 that on this
range of values of z, / re((logy)/logz) = 0(^(2/))- This proves (9.36) of
Proposition 9.2 and hence also (9.32), since the range 2 < z < ZQ was
handled at the outset. The proof of Theorem 9.1 is now complete. •

Later, in Chapter 11, when dealing with weighted sieves, we shall need
upper bounds for the functions S(AP, V, z) when these are summed over
a range of primes p; accordingly, we state here an extended version
of (9.9). We made a similar change in Chapter 4 in passing from the
Fundamental Lemma to Lemma 4.2.
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Lemma 9.3. Suppose that K > 1, that 2K is an integer, and Q(K)
holds. Let q be a natural number such that (q,P(z)) — 1, and also that
2 < z < q < y. Then

m\P(z)
m<y/q

where FK is the function in Theorem 6.1, and the constants implied by
the O-notation depend at most on K, and A.

Inequality (9.10) can be modified for Aq in the same way, but we shall
have no need for this in the sequel.

9.5 Notes on Chapter 9

Our proof of the main result, Theorem 9.1, uses the methodology of
Theorem 7.1, but insofar as it rests also on Selberg's Theorem 5.6, it
may be said to be the natural extension of [JR65].

We must stress that the validity of the theorem rests crucially on
the existence of the functions FK, fK, and that its applicability relies on
knowledge of the parameters aK, fiK and of values taken by FK(u), fK(u)
at specific values of K and u (see Chapters 17 and 18). The chief burden
of the series of DHR papers was to show that FK and fK exist for all
real K > 1.

Briidern and Fouvry [BrF94], [BrF96] have devised what they refer
to as the "vector sieve," which aims to reduce an integer K > 1 problem
to applications of the linear sieve. The details are complicated and the
results only a little better than those coming from Theorem 9.1 (see
the next two chapters), but the idea goes back to Brun's "pure" sieve
(see [FH00], §5): with the notation of Example 1.2 and with P the
product of all primes up to z,

E M(d)=n E Mrf)<n E M<o x+(<o
d\(L(n),P) 3 = 1 d\(ajn+bj,P) j=l d^ajn+b^P)

on the one hand, where x+(cf) characterizes the Rosser-Iwaniec linear
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upper bound method; and on the other,

E vw^ n E
d\{L(n),P) j = l d\(ajn+bj,P)

- E E x+(d) n E
f=l V d|(a<n+6<,P) / 3 = 1 d\ (ajn+b

p(d)=p((ain+bl,P)) j+t
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Some applications of Theorem 9.1

10.1 A Mertens-type approximation

The aims of this short chapter are, first, to establish an analogue for
algebraic numbers of Mertens' prime number formula and, second, to
illustrate the use of Theorem 9.1 by means of a few straightforward
applications. In the next chapter we shall describe a more elaborate use
of the theorem in the construction of "weighted sieve methods" which
lead, in an important respect, to better results.

With the prime g-tuples conjecture described in Example 1.2 in mind,
we begin with a more general configuration of which that example is a
special case. Let H(-) be a monic polynomial of degree G in a single
variable with integer coefficients and let 1 < y < x. Consider

A = {H(n): x - y < n < x}

as a sequence to be sifted by the set V of all primes. Let p(d) denote
the number of solutions of the congruence

H(n) = 0 mod d

that are incongruent modulo d. We have

\Ad\ = \{n:x-y < n < x, H(n) = 0 mod d}\ = p(d) (- + •&), Itfl < 1,
\d )

so that, in our notation, X = y and co(d) = p(d), also (see (1.7))

, \rA{d)\ < p{d).

By the Chinese Remainder Theorem (see [HW79], Theorem 121), p is
multiplicative. Further, p(p) = p or p(p) < G by Lagrange's theorem
on the number of solutions of a polynomial congruence (see [HW79],

125
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Theorem 107). We stipulate that there are no fixed prime divisors of
{H(n): n £ N} by requiring that p(p) < p for all primes p .

The average behavior of p(p) is given (implicitly) by the Prime Ideal
Theorem

where g is the number of irreducible components of H over Z. It is easier
to establish

Proposition 10.1. The function p(p) satisfies

(10.1) J2—lo^P^^ogx + OH(l),
p<x

where the notation OH indicates that the implicit constant may depend
on the polynomial.

Remark 10.2. The preceding two formulas, which were given first by
Landau [LanO3] in 1903, tell us that p(p) is, on average, equal to g. These
relations are analogues of the Prime Number Theorem and of Mertens'
formula for J^(logp)/p respectively. We make a short digression here to
sketch a proof of the second one, which we need for many examples.

Proof of Proposition 10.1. We denote our polynomial by

H(z) =zG + Cl z
G~l + ... + cG = f[ ht{z),

i=l

where the hi are monic irreducible polynomials over Z. If p does not
divide the discriminant of H, then no two of the ft^s have a common
root, and so

g

pip) = PH(P) = ^PhAp);

thus we may as well focus on the case of irreducible H, that is, g = 1.

Let 9 be an algebraic integer that is a root of H(z) = 0, K = Q(9) the
extension field of Q by 9, and OK the integral domain of K. For p not
dividing the discriminant of H, there is a striking correspondence due
to Dedekind-Kummer ([Mrc77], Chapter 3) between the factorization of
H(z) into distinct irreducible polynomials modulo p:

H(z)=e1{z)ei---ev(z)e" modp,
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and the unique factorization of (p) into of prime ideals:

where pi = (£i(8),p). Furthermore, writing fc, for the degree of £i, we
have Npi = pki. One refers to fc, as the "degree" of p,. Thus

G = eifei + . . . + ê &v > i/.

Note in particular that every prime factors into at most G prime ideals.

From this correspondence we see that the roots of the congruence
H(n) = 0 mod p derive from the polynomials U that are linear or, equiv-
alently, from the prime ideals pi that have degree 1; in other words,

This identification of p(p) suggests that we transfer attention from the
sum occurring in (10.1) to

M[x) := Y
^ Np

Letting ^ denote a sum restricted to ideals p for which TVp has no
common factors with the discriminant of H, we exclude at most a finite
number of primes, and we have first

Np<x

Thus

fe=l p * < x
 P k=l

Np=pk

where

k
PP(p) := \{i: l<i<v, NPi = pk}\, p$(p)

Next, the sum over indices k > 2 is dominated by the convergent series

felogpoo

V

p k-2

and thus we have the desired formula

Np<x V p<x
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It remains to evaluate M(x), and this Landau accomplished by imi-
tating Mertens' well-known treatment of ^2p~x logp via the prime de-
composition of [a;]!. Let I(n) denote the number of (integral) ideals n
with norm equal to n, and introduce the ideal counting function

C(x):= E 1 = EJH-
Nn<x n<x

By a famous theorem of Weber from 1896 ([Mrc77], Chapter 6),

where a is a positive constant of the field K. We can regard C(-) as an
analogue of the integer counting function [ • ].

Also define

T(x):=log Y[ Nn=
Nn<x Nn<x n<x

an analogue of log [a:]!. Using summation by parts and Weber's approx-
imation, we obtain

(10.3) T(x) =
nKx

= C(x) log a; + O{x) = ax\ogx + O(x).

The prime ideal decomposition

n Nn= n u^f{x/Npt)
Nn<x Np<x £>1

yields the analogue of Chebyshev's classical identity (called by Landau
the Poincare Identity)

(10-4) n*)= E
Np<x

If we recall that the norm is a completely multiplicative function and
estimate the sum over the higher prime powers by

Np<xl>2 y ' Np<x

we obtain

T(x) = E (

Np<x
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Inserting Weber's estimate for C into the last sum, we find that

(10.5) T(x)= E ^1°SiVP+ E °{J^) logNp + O(x).
Np<x " Np<x "

We have noted earlier that each rational prime p is associated with at
most G prime ideals pi and that p < Npi. Thus

E {x/Npy-^iogNp« E(^/p)^1/Giogp-
Np<x p<x

To estimate the last sum, we set

and recall Chebyshev's classical bound •d(x) <^i x. We find by summation
by parts and simple estimates that

p<x

It follows from (10.5) and the preceding estimates that

V logiVp

Np<x F

Combining this formula for T{x) with (10.3) and using (10.2) to convert
to XX1°§P)/P>

 w e fi11^ that Landau's formula (10.1) holds. •

10.2 The sieve setup and examples

Now we show that A satisfies fl(g). Indeed, (10.1) implies an asymptotic
formula for the product on the left side of fl(g) by the classical method
used to derive Mertens' product formula (4.14), so that the "topping
up" procedure described in Chapter 5 is not needed here. Also, it is
worth noting that, from above,
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Hence, by Lemma 4.3,

m\P(z) m\P(z) m\P(z)

By using (10.1), we can obtain even the sharper estimate £(log£)4s if
this is desired. Also

p<z F p<z

p<z V p<z V

again, by (10.1) or the asymptotic form of tt(z), actually

Thus, in any case,

E ^(m)\rA{m)\ « S,V{z){\ogzfG = o(yV(z))
m\P(z)

on choosing f = y(\ogy)~hG~l.

We are ready to apply Theorem 9.1 (with £ here playing the role of
"j/" there). The problem of estimating S(A, V, z) is of dimension g. Let
So be a small positive constant so that fg(/3g + So) > 0. Choosing

formula (9.10) of Theorem 9.1 tells us that

(10.6) S(A,V, z) > {fg(/3g + 60) + o(l)}yV{z).

For large enough y, the expression in curly brackets is strictly positive.
Thus there are

(10.7) »yV(y)

integers n in the interval (x — y, x] for which all the prime divisors of
H(n) are at least as large as z.

Example 10.3. Suppose H is the product of g polynomial factors hi
each irreducible over Z and of degree h (so that G = hg). Thus each
hi (n) (n < x) is at most as large as cxh for some suitable constant c. For



10.2 The sieve setup and examples 131

any n counted in (10.7) for which the factor hi(n) has k prime divisors
of size at least z, we have zk <C xh or

k<h((3g + 2S0).

In other words, each polynomial hi(n) has at most [h/3g] prime factors
for infinitely many n. When g = 1, so that H(-) = h\{-) and f3\ = 2,
we obtain H(n) = Pih infinitely often. In Chapter 11 we shall obtain a
much better result. Take H(n) to be the product L(n) of Example 1.2,
so that G = g and h = 1. Then there are very many n < x for which
each of the linear factors of L(n) has at most j3g + 2SQ prime factors.
From Table 17.1 of values of (3K we see that when g = 2, k < 4; when
g = 3, k < 6; when 5 = 4, fe < 9; etc. In general, we may say that,
whenever [/3g] < fig (which is usually the case), there are (as x —> 00)
infinitely many n such that each linear factor of L(n) is a P[p ].

Next, consider the same polynomial H(-), but with prime arguments.
We take A = {H(p): p < x} and V as the set of all primes.

Example 10.4. Suppose H(-) is a polynomial with integer coefficients,
of degree G and the product of g irreducible components, having no
fixed prime divisors. Then

(10.8) \{p: p<x, {H{p), P(z)) = 1}| > (liaO^(z), z =

for any So > 0 and all sufficiently large x.

In particular, when H = L, so that G = g and the irreducible factors
are linear, with the coefficients satisfying the conditions of Example 1.2,
there are infinitely many primes p for which the linear factors aip +
bi, 1 < i < g, are simultaneously P[2s]'s.

To show this, we take

|̂ 4.rf| = \{p: p < x, H(p) = 0 mod d}\
d

\{p: p < x, p = mmodd}\,

H(m)=0 mod d

and we note that the sum contains p(d) terms. If (m,d) > 1, the arith-
metical progression m mod d contains at most one prime. Hence

ir(x,d,m)+'&p(d),
7n=l, (m,d) — l
H(m)=0 mod d
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The number of terms in the sum is pi{d), the number of solutions of

H(m) = 0 mod d, 1 < m < d, (m, d) = 1,

which is also a multiplicative function of d. Now p(p) is the number of
solutions of H(m) = 0 mod p, 0 < m < p, and m = 0 is a solution if and
only if p divides H(0). Hence

M = U P ) , P\H(O),
W ) l , P\H(O).

In either case, pi(p) < p(p) < G and pi{d) < Gu^ when /x(d) ^ 0. We
suppose again, as we did earlier, that p(p) < p for every prime p, so
that H(•) has no fixed prime divisors, and that H is the product of g
irreducible components.

Let
ll T

Six. d) := max -K(x,d,m)
V ' l<m<d y

Writing

4>(d) " " '

we have

\rA{d)\ <p(d)£(x,d)+p{d),

so that

in our estimate of S(A, V, z). Note that ui(p)/p = Pi{p)/{p — 1)- Before
we can apply (9.10), we need an upper bound for

(10.9) YJ ^{

d\P(z) d\P(z) d\P(z)
d<y d<y d<y

The last sum is at most of order y(\ogz)4G, by Lemma 4.3. We
estimate the first sum on the right side of (10.9) using Lemma 8.1.
Choose y — x1^2(\ogx)~B for a suitably large value of B and A — B + 5
(from [DavOO], Chapter 28). Then

\-(A-16G2)/2

d\P(z)
d<y
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Recalling that z < x, we see that the last estimate is of greater order
than y(\ogz)4G, i.e., one estimate in (10.9) dominates the other. Thus

d\P(z)
d<x1/2(\ogx)

Since

p<z ^ p<z ^ p<z

we conclude that

d\P(z)
d<x1/2(logx)-B

on choosing

A = 16G2 + 2G + 3.

Finally, we take SQ to be a small positive constant and

7

Then fg(/3g + So) > 0. Since

7 _ l/(2/3g+3S0)

|*o (2& + 3 6 0 ) c ^ > pg + 602 log a;

for all large enough x, we deduce (10.8) from (9.10).

In the next chapter we shall augment Theorem 9.1 by some combina-
torial devices to improve significantly the results of this chapter.
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A weighted sieve method

11.1 Introduction and additional conditions

We showed in Examples 10.3 and 10.4 (among other things) that, when
g — 2, the product L(n) of two linear forms is infinitely often a P% and
L(p) is infinitely often a PIQ. We shall describe now a different and quite
general approach that leads to improved results of this kind for a broad
range of problems. Let A again denote a finite integer sequence of about
X elements and V a set of primes having the properties (1.3), (1.4),
and fl(K). The goal of this chapter is to establish Theorem 11.1 (see
Section 11.3), which determines a number r for A such that many ele-
ments of A have at most r prime divisors. Also, we give an estimate of
r in terms of the sieving limit j3K that involves no numerical integration.

In place of S(A,V,z), we consider a new type of sifting function, a
"weighted" sum

(11.1) W{A,P,z,y):= Y, w(ffl)'

where the "weight" w(a) is to be constructed in such a way that w(a) > 0
only when a has very few prime divisors lying between z — Xx/V and a
number y = Xx/U > z. For example,

wQ(a) := 1 -
z<p<y

peV,p\a

is the simplest weight of this kind [Kuh54]: if WQ(O) > 0, then a (which
will be taken to have no prime divisors from V that are less than z)
has at most b prime factors coming from the "interval" [z, y) H V. If
the largest element of A is at most a power of X, e.g., A is the set

135
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of values assumed by a polynomial on an interval, then an element a
cannot have too many prime factors exceeding y. To show that there
are many elements a in A for which wo(a) > 0, we need to prove that

W0(A,V,z,y):= £ ^
aEA z<p<y

(a,P(z)) = l

is large and positive; and, to accomplish this, (9.10) and Lemma 9.3 are
at our disposal.

We shall use a smoother, more efficient weight ([AO65], [Ric69]), but
the underlying idea is the same. There is scope for the design of superior
weight functions, as we indicate in Section 11.7 below.

Before we begin, we introduce several new conditions on A and V (in
addition to (1.3), (1.4), and H(K) (Definition 1.3)): the first requires all
elements of A to be divisible only by primes of V. (We could allow for a
small number of exceptions which could be estimated by an error term.)
Next, we require the number of elements of A that are divisible by the
square of a prime i n P n (z, y] to be relatively small: we postulate that

(11.2) Qo: Y. IA
z<p<y

In most cases of interest this condition is satisfied without much trouble.

With applications of Theorem 9.1 in mind, we formulate also a general
remainder sum condition that serves as a quantitative measure of "quasi-
independence": for some constants r 6 (0,1], Ai > 1 and A^ > 2,

(11.3) Ro- £ ^(d)4^\rA(d)\ < A X

^

Finally—and this is something that we have not had to take into
account before—we require a measure of the largest element of A: let
/io be a positive constant such that

(11.4) Mo: max|a| <XTli0,
aEA

where r is the constant from (11.3).

We shall repeatedly need the following consequence of fl(n):

(11.5)
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11.2 A set of weights

We are now ready to make a start. Introduce the weighted sum

E(11..) W{A,V,>,,A>: £ {* E
peV,p\a

(a,P(z)) = l z<p<y

where the positive parameter A plays a role similar to b +1 in the earlier
discussion. It is clear from (11.6) that

(11.7) W(A,V,z,y,X) = XS(A,P,z)- ^
z<p<y

v
We write

(11.8) z = X1/v, y = X1/u wi th l / r<M<w and pK < rv,

and change notation from W(A,V,z,y,X) to W(A,V,v,u,X). Thus
equation (11.7) now reads

(11.9) W(A, V, v, u, A) =A S(A, V,

- E
x1/»<p<

PET

We apply (9.10) of Theorem 9.1 to the first expression on the right
with z = Xxlv and y = XT(\ogX)~Al, the latter condition taken in
order to use (11.3). The argument of /«(•) is

^ } _ log log X
TW lW l X '

and by Lemma 6.2, for w a bounded number,

If we now apply (11.3) and recall (11.5), we obtain

(11.10) S ^ P . I 1 / " ) > XV{Xx'v){fK{rv) - O(loglogX/logX)}.

This is a non-trivial inequality, since TV > f3K by (11.8).

Next, apply Lemma 9.3 (with z = Xxlv and y = XT(\ogXyAl) to
each ^-function in the sum on the right side of (11.9); we obtain for this
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sum the upper bound

Now X r / p > XT-XIW and by (11.8), T - 1/u > 0, whence by another
application of Lemma 6.2, this time to FK, the upper bound is at most

o / v ^ (̂f>) (log log X)2

2 (l0gX)V(2«+2)/

We now apply (1.7) in the O-term to note that

tu(p) v AvE Kl0g + < l
P u \ogX

and recall that V{Xllv) > (logX)"K by (11.5). Hence, by (11.3) and
these last remarks, the sum in (11.9) is at most

(11.11) XV(X1/v)x

E
with S(X) = (loglogX)2/(logX)1/(2K+2) and d a suitable positive
constant. Our next step is to convert the sum on the right to an
integral; before we do that we summarize progress so far by combin-
ing (11.9), (11.10), and (11.11) to form the inequality

(11.12) W{A,V,v,u,X)

fK(rv) - C25(X)

u\ogp\co(p)^ / / log

Xl/v<p<Xl/v. ^
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Proceeding, we set

D(W1,W):= £ ^ ( l - | ^ ) , 2<Wl<W.
•'—' p V \oswJ

Since (1 — (log t)/ log w) is positive, continuous, and decreasing in t for
wi < t < w, we deduce from (1.9) of Lemma 1.4 that

(11.13)

D(wi,w) <
log u; / yu,1 V log u; /f log t

r / log u; \ log -wi -i / 1 1 \
= /d log - 1 + \ +A[- .

I Vlogu>i/ logw i Vlogwi YogwJ

Next, let

and note that <£(£) is an increasing function in t on [z,y), since FK(s) is
decreasing in s. By the argument leading to the first part of Lemma 1.4
(with D in place of L and $ in place of / ) and by (11.13), we have

y/ p W 7, W l Vtlogt tlogyJ Hog

log* logj/^ Vlogt logj/

< 0.

When we apply this calculation to the sum over p on the right side
of (11.12), we obtain in its place the upper bound

on substituting Xxl8 for i in the integral and noting for the error term
that FK(V(T — 1/u)) <c; 1, since T — 1/u is a positive number. Hence,
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by (11.12),

(11.14) W(A,V,v,u,X)>XV(X1/v)x

Remember that A is a positive number at our disposal, r is the parameter
in the remainder condition (11.3), and u,v are the numbers in (11.8).

11.3 Arithmetic interpretation

It is time to take steps towards the arithmetic interpretation of (11.14).
First, the numbers A,r, u, v will be chosen so that

u\ ds

Having ensured that the right side of (11.14) is positive (for sufficiently
large X), we turn to supplying a useful upper bound for W(«4, V, v, u, A).
Recall that any a counted in W has no prime divisors from V that are
less than Xxlv. (For X so large that X > 2", any element 0 in A is not
counted by W—for if 0 lies in A, then g.c.d. (0,P(X1 /")) > 2 > 1.)

Next, by (11.2) (the QQ condition), the number of elements of A that
are divisible by p2 for some p in [X1^,X1/U) n V is negligible, since

per

by (11.5) and the condition u > 1 from (11.8). Henceforth we consider

A' = A\ |J Ap*
X1/»<p<X1/"

pev

and absorb the discarded elements of A into our error estimates.
Let a' denote a generic element of A' with (a ' ,P(X1 /")) = 1 and

recall that (a!,VC) = 1, where Vc denotes the primes not in V. If
a' contains a repeated prime factor p, say, then p > Xx'u, that is,
1 - w(logp)/logX < 0. It follows that

-, ulogp\ -^* / wlogp\ , ulog

p B pyx1/-
, p\a' peV,p\a'
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where S* denotes summation with appropriate multiplicity. Thus

W(A',V,V,u,X)< £
a'eA'

")) = l

(A - n(a') +

by (11.4). Let r be a natural number such that r +1 > T/J,QU and choose

(11.15) A := r + 1 - Tfiou.

Now

W(̂ ',P,«,u,A)< J ] {r+l-fi(a')}.
a'eA'

If fi(a') > r + 1, then the weight for a' in the last sum is negative. Thus

W(A',V,v,u,X)<
a'€A', n(a')<r a'eA', O(o')

With Pr denoting (as usual) a number having at most r prime factors,
it follows that

|{PrG.A}| > \{Pr eA':p(Pr) >

= S^ l > -

(a',P(X1^)) = l

>
r + 1

Hence, by (11.14),

for large values of X, provided that

K ( ( ( \\\ ( u\ds
A > y ^ ^ / F J ( ) ) ( 1 )

f) J V V ) ) V / S
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Thus we have proved

Theorem 11.1. Given a sieve problem of dimension K > 1 concerning
a finite integer sequence A and a set V of primes, suppose that A and
V possess the properties fl(n), QQ, RQ, MQ and also are such that
no prime from Vc divides an element of A. Let r be a natural number
satisfying

r > N(u,v,K,fio,T),

where

(11.16) N(K,IIO,T;U,V)

1\\ / u\ ds
- - ) ) ( 1 - - ) — ,

sJJ V SJ s

with u and v satisfying TV > (3K and 1/r < u < v. Then

\{Pr:Pr eA}\ » 1 V ( I 1 / 8 ) .

In particular, A contains many integers having at most r prime divisors.

When K — 1, Theorem 11.1 takes an especially simple and elegant
form (Theorem 9.3 of [Ric69]), with many applications to diverse linear
sieve problems:

Corollary 11.2. Suppose that A and V are as in Theorem 11.1 with
K = 1. Let

Ar := r + 1 - Iog{4/(1 + 3" r)}/ log 3, r e N,

and let S be a real number satisfying 0 < S < 2/3. Also, let r be the
least positive integer satisfying

(11.17) no<Ar-6.

Then A contains many Prs, and the smallest prime factor of each such
Pr is at least as large as XT/i.

Proof. We choose

v = 4/T and u = (1 + 3" r)/r.

Then, by Theorem 6.1,

fi(rv) = /i(4) = (l/2)eT log3 = 0.97835 . . . ,
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which is already quite close to the limiting value 1. On the other hand,
the argument of Fi in the integral occurring in (11.16) is

V(T-1/S) =4-4/(rs) < 3,

and so

FX{V(T - I/s)) = rers/{2TS - 2),

again by Theorem 6.1.

We have

N(U,V;K,(J.0,T)

3g3 J(l+Z-r)/T TS- 1 Vlog3y ( 1 + 3-r ) / r TS- IV TS
4 -i

l_|_3-r ft

1 + 3 - r V S S 1 /

= (1 + 3" r)(r + l-S)-l-{r+ l ) 3 " r

but we cannot claim more, since 6(1 + 3~r) < 8/9 < 1 for r > 1. •

Note that

A r = r - X - 4 / 3 •
log 3 ° l + 3 - '

thus Ai = 1, and for r > 2,

r - 0.26186 < Ar < r - 0.16595,

and thus r is the least integer exceeding Ar — 5. We see from (11.17) that
the magnitude of /zo alone leads to a host of results for sieve problems
satisfying the conditions of Corollary 11.2. For example, the reader will
easily check that if h is an irreducible polynomial of degree g (> 2) with
integer coefficients and without any fixed prime factors, then h(n) is
infinitely often a Pg+\; and that if h also satisfies p(p) < p — 1 when
both conditions p j h(0) and p < g + 1 hold, then h(p) is infinitely often
a P2g+i- For the details of proofs of these and many related results,
see [Ric69] or Chapter 9 of [HR74].
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Comparing (11.16) with Example 10.3, with H(n) — L(n), we should
have fj,o — g, T — 1; the choice u — v > j3g would then lead to the
condition r > g(3g — 1, the same as the result of the example. Here we
can do better by choosing u smaller than (3g.

For the best applications of Theorem 11.1, we have to find choices
of the parameters u < (3K/T and v > (3K/T for which N(U,V;K,/J,O,T)

is as small as possible. There is no straightforward way to accomplish
this, although in Section Al.lO we outline a computational method for
finding good approximations to the optimal u and v.

11.4 A simple estimate

The following "bare hands" estimation of N{U,V;K,HO,T) for K > 1
yields results which when checked against those given for K = 1, above,
are surprisingly good, and which indicate where improvements may be
possible with more information and more delicate procedures. Moreover,
for large K, procedures that are delicate are also less reliable; for example,
in studying a 50-dimensional problem, it is likely that a ball-park value of
r is all that we can hope for. Here the approximate method given below
needs only a value, or estimate, of the sieving limit f3^o (cf. (11.25)), and
that we can find: we have shown in [DH97b] that j3K is smaller than the
corresponding Ankeny-Onishi sieve lower bound, and that quantity is
asymptotic to CK, with c = 2.445 . . . .

Let

and make the substitution t— 1 = V(T — 1/s), so that s = V/(TV + 1—t).
Then

TV + 1-V/U

u CTV t - £
K F ( t l ) *

CTV t - £
K FK(t-l) *

J^ TV + 1
= -K FK(t-l) * dt

V J^ TV + 1 - t

on writing

(11.19) £ = TV + 1 - v/u = (TU - l)v/u + 1 > 1,

with the last inequality coming from (11.8). Also note that f < TV since
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v > u. Integrating / by parts, we obtain

0 log(™ + 1 - t)

f t - 1))' log(™ + 1 - t)dt}

= - « fTV{FK{t - 1) + (t - £)F'K(t - 1)} log(™ + 1 - t)dt

u fTV

<-K FK(t - 1) l0g(TW + 1 - t)dt,

since F'K(t — l) < 0 for all t > 1. If £ is not too close to 1, one may hope
that not too much has been lost here, because (t — £) log(rw + 1 — t)
vanishes at both limits of integration, and F'K(t — 1) is very small when
t exceeds /3K (see Figure Al.l(b)).

Prompted by this last remark, we shall require

(11.20) £ > 0K.

Recall from (6.4) that KtK-1FR(t - 1) = (tKfK(t))' when t > fiK. Thus

~ f tKfK(t)((l - K)t~K \0g(TV + 1 - t) ~ ^ - " (

\ )dt--ZMQl\ )dtZMQlog
TV + 1 — tJ V U

- ^ /«(0 log { ,

since fK(t) increases strictly with t when t > f3K. The integral on the
right is elementary and, after multiplication by u/v, equals

MA, V ( U\
K + -n log - - K i - - .

V / U V V)
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Hence, by (11.18),

(11.21)

u ds

^ ) g ( V ^ # Y gv u v v' JK{TV) v u

The temptation is to choose £ = /3K = v/u, and we do not resist it.
On substituting in (11.21), we obtain the upper bound

and the result of Theorem 11.1 becomes

(11.22) r > Tfio(v/PK) - 1 + (K + 1) log/3K - K(1 -

By (11.19), with our choices, TV = 2(3K — 1 and hence (TV)//3K = 2 — l//3K.
The inequality for r now reads

r > ^(2 - l/pK) - 1 + (K + 1) log/3K - K(1 - 1//3K)

= /i0 - 1 + (Mo - K)(1 - 1/PK) + (K + l)log/3K.

Let us test the quality of this inequality in the case of L(n), the
product of g linear forms, when g = 2 and 3. In either case r = 1, K = g
and condition Aio in (H-4) allows us to take /xo = g\ also we shall need
the values of (3g from Table 17.1. We obtain when g = 2,

r > l + 31og4.2665 = 5.352...,

so that r = 6 is a valid choice; and when g = 3,

r > 2 + 41og6.641 = 9.573.. . ,

so that r — 10 is admissible. For the product of g linear forms we have

Since, as g —>• oo, we have j3g < vg ([DH97b], Theorem 2) and vg ~ eg
with c pa 2.445 [AO65], we may conclude that

is an admissible choice for large g.
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The simple inequality (11.22) yields fairly satisfactory results in a wide
range of applications (see [HR74], Chapter 10.3, for consequences of an
inequality inferior to (11.22) only in having a very slightly larger number
in place of (3K); but the second inequality in (11.21), where £ > (3K, is
sharper and sometimes gives better results than (11.22). It asserts that

but we transform it to a more readily applicable form by introducing a
new parameter £ via the relation 1 < v/u = £/£. Since £ = TV + 1 — V/U,
we have

whence

(11.23)

For applications we need a value £ > (3K such that /K(£) is not much
smaller than 1, while /K(£ + £/£ — 1) is essentially equal to 1.

11.5 Products of irreducible polynomials

Suppose A = {H(n): 1 < n < x}, where H is a polynomial with integer
coefficients of degree G that is the product of g irreducible factors, and V
is the set of all primes. Here K — g and r = 1, and since H(n) — C>H(nG),
we may take /xo to be any constant larger than G if x is sufficiently large.
Taking ( — g/G, (11.23) becomes in this class of problems
(11.24)

If all the polynomial factors of H have equal degree h, so that G =
gh, (11.24) becomes

(11.25) r > ^ - l - ^ |

and if all the factors are linear, so that h = 1, (11.25) becomes

(11.26) r > g - l
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Example 11.3. With (11.26) (and £ > j3) we are back to the original
Example 1.2, and when g — 2 or 3 we can do a little better. When
j = 2 w e use /2(7) = 0.9797..., so that /2(13) w 1. Then (11.26)
gives r > 4 .93 . . . , so that we can take r — 5. When g — 3 we use
/3(10) = 0.9804 . . . , so that /3(19) is indeed very nearly 1, r > 8.95 . . .
and we can take r — 9.

When we have recourse to numerical integration, we find for g = 2
that we narrowly miss r = 4 and so cannot do better than r = 5; but
when g = 3 we are able in this way to reach r = 8 and indeed we obtain
the admissible values for r shown in Table 11.1.

Table 11.1. r values for small g

9 •

r :

3

8

4

12

5

16

6

20

7

25

8

29

9

34

10

39

Inequality (11.25) generally yields sharper estimates when we take
£ > (3K, but here is an instance when it does no better: let H be the
product of two irreducible polynomials each of degree 5, so g = K = 2
and h = 5. Then (11.25) with £ = 6 and /2(6) = 0.8844... leads to an
admissible value r = 16, while (11.25) with £ = /32 = 4.26645... leads
to the same r value. Numerical integration gives even r = 14. Indeed,
when H is the product of g irreducible polynomials each of the same
degree k, numerical integration yields the admissible values of r given
in Table 11.2.

Table 11.2. r values for small g and h

g\h

2
3
4
5
6
7

2

7
12
17
23
29
35

3

9
16
22
29
36
44

4

11
19
27
35
43
52

5

14
22
31
40
50
60

6

16
25
35
46
57
68

7

18
28
40
51
63
75

Also, when g = 2 and the degree G of H ranges from 3 through
10, numerical integration leads to the admissible values for r given in
Table 11.3:
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Table 11.3. r values for small G

G:

r :

3
6

4

7
5
8

6
9

7
10

8
11

9
12

10
14

11.6 Polynomials at prime arguments

Turning to the existence of almost-primes in sequences generated by
polynomials with prime arguments, H is again the product of g > 1
irreducible nonconstant polynomials; but now we require not only that
p(p) < P hold for all primes p, but also that

p(p) <p-l ifp\H(0).

We have A = {H(p) : p < x}, V is again the set of all primes, X = lia;,
and

w0)

where pi(p) gives the number of solutions of H(m) = 0 mod d with
(TO, d) = 1, i.e.,

UP), P\H(0),
\p(p) - 1, p | H(0).

Condition Ro holds with T = 1/2 by Bombieri's Theorem, and Mo with
r = 1/2 and /xo > 2G, supposing a; to be large. Apply Theorem 11.1,
with x large, u = U/T = 2U, v = V/T = 2V, to obtain

for any natural number r satisfying

i-V/U

r >

with 1 < U < V and fig < V. With the aid of numerical integration we
illustrate the result with two sets of data, giving admissible values of r
in each case:

Example 11.4. Let all the g irreducible factors of H have the same
degree k, so that G = gk. For g = 2, 3, 4 and 2 < k < 7, Table 11.4
gives admissible values of r:
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Table 11.4. r values for small g and k and prime arguments

g\k

2
3
4

2

11
19
27

3

16
25
35

4

20
32
44

5

24
38
52

6

28
44
61

7

32
50
69

Finally, consider the cases g = 2 , 3 < G < 8 . Here admissible values

of r are given in Table 11.5.

Table 11.5. r values for small G and prime arguments

G:
r :

3

9

4

11

5

14

6

16

7

18

8

20

11.7 Other weights

There are other weighting procedures in the literature, and there is scope
for further development in this area. We mention here two variations:

(i) A refinement of the method of this chapter.

There may well be negative terms present in our VF-expressions that
diminish their effectiveness. There is a method described in [HR85] that
avoids this problem for K — 1, i.e., for linear sieve problems. It would
be desirable to extend the procedure to larger values of K.

(ii) The Selberg method and its refinements.

In [Sel91], (45, Lectures on Sieves, §23), Selberg gave what he described
as an early approach to the twin prime problem: it is in effect a weighted
form of his A2 method. The aim is to find A ŝ that make the ratio

n V WM + r(n -
O^ '~ V̂  fV \ "\2

^ 2^x<n<2x \2^d\n(n+2) Ad)
as small as possible, but this is apparently intractable. Selberg did,
however, find A ŝ that minimize just Qi and for which Q2/Q1 < 14 + e
for any fixed e > 0. This implies the existence of infinitely many n such
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that r{n) + T(TI + 2) < 14, i.e., of infinitely many pairs n, n + 2 of which
one is a Pi and the other a P3.

Heath-Brown [H-B97] generalized this approach to apply to the prime
g-tuple problem by considering

n<x i=l d\L(n)

where t is a constant and L(-) is as in Example 1.2. He too focused on
achieving a good upper bound only for his Q2 and chose

l-i
, d<y,

logy

= 0, d > y.

Although the Â s here have a simple structure, this is close to Selberg's
optimal choice (when 5 = 2).

Ho and Tsang [HoTs06] have recently refined Heath-Brown's ap-
proach by introducing convex combinations, taking

i d<y,^ ) V (i s) ( ^
logy ) '\ logy

with a free parameter <5 G [0, 1]; or even

with Ad = 0 when d > y. In this way they have obtained results as good
as or slightly better than those of Table 11.1 by giving explicit formulas
for the numbers 5V.

A variant of the Selberg approach features also in the recent work of
Goldston et al. [GPY] on small gaps between consecutive primes and on
a whole range of other important problems in that area.

All these methods deploy deeper analytic devices than those present
in this monograph.

11.8 Notes on Chapter 11

Selberg's weighted sieve dates from about 1950.

Iwaniec, by using Linnik's dispersion method, has shown even that
n2 + 1 = P2 infinitely often [Iwa78].
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There are many other applications given in Chapter 9 of [HR74] that
could serve as exercises, and there are useful references and historical
comments in the Notes of that chapter.

The tables of this chapter were created using Theorem 11.1, software
developed by Wheeler and Bradley to perform numerical integration,
and a hand search for suitable values of u and v. These tables were first
published in [DH97a]; they have subsequently been confirmed by an
independent calculation using the methods described in Section Al.lO.

Theorem 11.1 was used also in [DH97a] to show that there are in-
finitely many primitive Pythagorean triples (pairwise relatively prime
integer solutions of x2 + y2 — z2 = 0) for which xyz has at most 17
prime factors. This theme has been broadly generalized by Liu and Sar-
nak [LS] to indefinite quadratic forms in three variables. Also, Maras-
ingha [MrsO6] has shown that certain products of two binary irreducible
quadratic forms have at most five prime factors for infinitely many values
of the arguments.

As we noted at the end of Chapter 8, if (11-3) holds with r =
0.5453, then, by Corollary 11.2, we would have p + 2 = Pi infinitely
often, even in a quantitative form. Further, as Goldston et al. [GPY]
have shown (see the survey of Soundararajan [SndO7]), a proof of the
Bombieri-Vinogradov theorem with exponent 1 — e in place of 1/2—
the so-called Elliott-Halberstam conjecture—would have some spectac-
ular consequences. As another example, Table 11.6 shows how larger
admissible values of r would improve upon r = 16 for g = 2, k = 3 in
Table 11.4. In the table, Nmin(K, fio,r) denotes the minimal value of
N(u, v; K, /lo, T) when u and v are free to vary subject to the conditions
imposed by Theorem 11.1.

Table 11.6. Values of TT for which r ss Nm-m(g,gk/rr,Tr)

r

15
14
13
12
11
10
9

0.503682
0.548199
0.601098
0.664916
0.743295
0.841628
0.968205
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Proof of the Main Analytic Theorem
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Dramatis personae and preliminaries

12.1 P and Q and their adjoints

Our sieve theory has two components: a combinatorial part, presented
in Part I, and an analytical part, which we take up here. The central
result still to be established is our Main Analytic Theorem, Theorem 6.1,
which asserts the solvability of a certain coupled system of difference
differential equations satisfying given boundary conditions. We show
that the system has a solution pair FK and fK for each K > 1 with
2K 6 N. These solutions provide the upper and lower bound functions
used to estimate S(A, V,z) in Chapters 7 and 9. Also, we establish
properties of these functions and intervening auxiliary functions.

Theorem 6.1 was established laboriously in stages over several years
in a series of rather technical papers, [DHR88]-[DHR96], written with
H.-E. Richert. Our chief obstacle was to prove this result for each real
value of K > 1. To our surprise, it was the small values of /t, particularly
those lying a little below 2, that gave by far the most trouble. The aim
of Part II is to prove the theorem for integer and half integer values of
K > 1, the ones most interesting for applications and for which many of
the technical problems arising with other n values are avoided.

In this chapter we introduce the several functions that will be used
in our argument. We begin by restating Theorem 6.1 in terms of the
functions

(12.1) P(u):=F(u) + f(u), Q{u):=F{u)-f{u).

The boundary value problem translates into

(12.2) P(u) = Q(u) = 1/<T(U), 0<u<f3,

155
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(12.3) uKP(u) = ^— + K f * dt, f3<u<a,

(12.4) uKQ{u) = J £ - - K /" *" dt, (3 < u < a,
aW Jp <r(t - 1)

(12.5) (uKP(u))'= KUK-1P(U-1), u>a,

(12.6) (uKQ(u))'= -KUK-1Q(U-1), u>a,

and

(12.7) P(u) = 2 + 0(e-u), Q{u) = O{e-u).

The a function is what is known, and what is sought are a, (3, P, and
Q; all of these, of course, depend on K. TO determine P and Q (or equiv-
alently F = (P + Q)/2 and f = (P - Q)/2), we proceed step-by-step,
solving (12.5) and (12.6); but it is evident that we cannot even begin
this procedure until aK and /3K have been found. Our chief remaining
task will be to determine the parameters aK and /3K, which is actually
an assignment of some independent interest. We take this up next in
Chapter 13.

The monotonicities of F and / asserted in the Theorem will be seen
to follow from the inequality

(12.8) Q(u) > 0, u > 0,

which will be established in Chapter 18.

We turn our attention to solving the system of difference differential
equations (12.5) and (12.6). To do this we follow the method of Iwaniec
[Iwa80] and introduce "adjoint" functions. These will be combined with
P and Q via the so-called Iwaniec "inner products," which are described
near the end of this section.

For n > 0, the adjoint functions are determined by the equations

(12.9) (up(u))' = np(u) - np(u +1), u > 0,

and

(12.10) (uq(u))'= Kq(u) + Kq(u+l), u > 0.

Whereas we cannot solve (12.5) or (12.6) in closed form, we do have
explicit solutions p = pK(u) and q = qR(u) for (12.9) and (12.10). We
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remark that these solutions are unique up to a multiplicative constant if
we assume that each has the behavior of a rational function at infinity
([BrD97], [DHR93b]), and we shall choose for each a suitable normaliza-
tion.

The Laplace transform representation

(12.11) p(u) = pK(u) := e-ut-KEin(t) dt^ U>Q^
Jo

satisfies (12.9), as we soon show; here

(12.12) Ein(t) := /" ( l - e " 5 ) — = V ( - l ) " " 1 ^ - , * G C,

Jo s t~i nln

an entire function of t. For t bounded away from the origin, we have the
useful formula (see [AS94], Ch. 5, footnote 3; [Olv97], (3.05))

(12.13) Ein(i)=logi + 7 + /
Jt

argt|

(with logi denoting the principal value for complex t).

To see that the integral (12.11) satisfies (12.9), first integrate it by
parts, next multiply by u, and then differentiate with respect to u. It is
clear from the integral representation that p(u) is positive and strictly
decreasing in u for u > 0. Also, since 0 < Ein(i) < t for all t > 0,

(12.14) 1/(U + K) <p(u) <l/u, u>0.

We deduce that up{u) —>• 1 as u —> oo, and hence, on integrating (12.9)
from u to oo, that

(12.15) up(u) + K p(t+l)dt = l, u > 0.
Ju-l

Next, one can check (just as was done for p) that

(12.16) q(u) = qK(u) :=

satisfies (12.10); here C is the path from —oo back to —oo which en-
velopes the negative real axis in the positive sense. For 2K a positive
integer, Z~2K has a pole at the origin and we can close the path C and
apply Cauchy's Theorem. We find that q(u), as given by (12.16), is a
monic polynomial of degree 2K — 1.
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When (12.10) is integrated from u to u + 1, we obtain

pu+2

(12.17) (u + l)q(u + 1) - uq(u) = K q(t) dt.
Ju

Several other properties of the functions p and q that we need are given
in Chapter 15.

We verify by differentiation that each of the so-called Iwaniec "inner
products"

(P,p)_K = (P,p)-K(u) := up(u)P(u) + K f P(t)p(t+l)dt
Ju-l

and

(Q, <l)K = {Q, «}«(«) == uq(u)Q(u) -K f Q(t)q(t + l)dt
Ju-l

is constant for u > a. The conditions on P, Q, p, and q as u —>• oo show
these two constants to be 2 and 0 respectively, so that we have

(12.

and

(12.

18)

19)

up(u)P{u)

uq(u)Q(u)

+ K

— K

r
/ P(t)p{t +l)dt = 2, u>a,

Ju-l

r
/ Q(t)q{t + 1) dt = 0, M > a.

Ju-l
These two equations play a crucial role in our quest for a pair of numbers
a, P and functions P, Q that satisfy (12.2)-(12.8). For further discussion
of this inner product see the Notes to this chapter and Section Al . l .

12.2 Rapidly vanishing functions

As a warm-up, we show, in the converse direction, that if there exist
functions P and Q for which (12.18) and (12.19) hold, then the esti-
mates of (12.7) follow directly. A stronger form of this assertion is a
consequence of the following extension of a method used by de Bruijn
and by Hua.

Lemma 12.1. Suppose that <j) is a piecewise continuous function on an
interval [6, oo); with 5 > 0, and that (f> £ L1 locally and satisfies the
inequality

(12.20) \ 4 > { u ) \ < - [ \<j){x)\dx, u > S + l .
u u - l



12.2 Rapidly vanishing functions 159

Then

(12.21) <j){u) « K 7 r ( « + l ) .

Proof. (f> is locally bounded, as we see from (12.20) and the fact that
4> £ L1 locally. Next, (f> is bounded on [5 + 1, oo), for otherwise there
would exist a sequence un —> oo on which |0(«n)| > \4>(u)\ for all u < un.
But for un > K, we then would have

f
un-1

which is impossible.

Now set s(u) := sup{|̂ >(a;)| : x > u}. This function is finite and
decreasing on [6 + 1, oo) and satisfies (12.20) there. Indeed, we have

(u)\ < — / s(x) dx < —s(u — 1),
u Ju-i u

and, since the right side of this inequality is decreasing in u, we deduce
that

whence

s(u) < -s(u- 1) , u>6 + 2,
u

KL

s(u) < -s(u - 1) < . . . < — -s(u - L),
v ' - u y ' - - u{u- l)...(u-L+l) v ;

for any positive integer L < u — S — 2. We conclude that

s(u) < KU/F(U+1), u>5 + 2,

and thus (12.21) holds. •

Remark 12.2. Further analysis, based on the inequality

yields an estimate s(u) = O(KU/T(U + 1)).

If we combine (12.18) with formula (12.15), we obtain

up{u)(P{u) -2) = -K (P(t) - 2)p(t + 1) dt
Ju-l

and hence, since p is positive and decreasing,

r
u-l
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Now the first estimate of (12.7) follows from the lemma.

As for Q, we note that

max q(t + l)/q(u) —>• 1, u —>• oo,
u—l<t<u

since q is a polynomial. It follows from (12.19) that, for any X > K

\Q()\<
u-1

holds for all sufficiently large values of u, and hence the second estimate
of (12.7) also follows from the lemma.

For later use, we note that (12.5) can be rewritten in the form

fu

(12.22) uP'(u) = -K(P{U) - P{u - 1)) = -K P'(t) dt, u > a,
Ju-l

so that

\P'(u)\ <- [ \P'{t)\dt, u>a;

and, by a third application of the lemma, we deduce that

(12.23) P'{u) < KU/V(U + 1) -C exp(-u).

12.3 The II and 3 functions

Relations (12.18) and (12.19) taken at u — aK determine pairs of equa-
tions which aK and /3K need to satisfy if Theorem 6.1 is to be true.
Solving these equations (for aK, f3K) will be our chief task. It will be
more convenient to work with a related pair of expressions that we now
introduce and discuss. Set

(12.24) UK(u,v):=^ +

/•« p(t)a(t-2)
+ K JTT^ dt

and

Jv-1

q{t)a{t _ 2)
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each defined for u > 0, v > 1; in each case, the second representa-
tion derives from the first by integration by parts. Indeed, in the case
of (12.24), if we rewrite (12.9) as

(12.26) ( i t 1 - * ^ ) ) ' = -KU~RP(U + 1),

then

v_1

and the second result in (12.24) follows from (6.8), rewritten in the form

(12.27)

A similar argument, based on the last equation and (12.10) in the form

(12.28) (u1-Kq{u))' = KU-Kq(u + l ) ,

leads from the first representation of EK(u,v) in (12.25) to the second.

The following instances of II and S will be very useful in later chapters:

U(u) — ILK(u) := IIK(u,u), E(u) = EK(u) := SK(u,u) (u > 1),

n(u) = nK(«) := nK(u, u - 1), H(u) = HK(u) := HK(u, u - 1) (u > 2).

12.4 Notes on Chapter 12

For K = 1, the functions P and Q assume an especially simple form:

- l)/u, u > 1,

where a; is Buchstab's function (no relation to any of our previously
introduced omegas!), defined by

UUJ(U) = 1, 1 < u < 2, (uu(u))' = w(u — 1), u > 2,

and p is Dickman's function (see [TenOl], Section III.5), defined by

p(u) = 1, 0 < u < 1, up'(u) = —p(u — 1), u > 1.

(This p is not related to pK, the largest zero of qK(-)\)
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The Iwaniec inner product was introduced in [Iwa80] and arises in the
following way. Consider the difference differential equation

uG'{u) — —aG(u) — bG(u — 1), u > uo,

with a retarded argument and parameters a, b. (The functions PK and
QK discussed at the beginning of this chapter are both of this type as
is j K , but pK and qK defined in (12.9) and (12.10) are not of this type.)
Associated with G is an "adjoint function" satisfying the differential
equation

(ug(u))' = ag(u) + bg(u+ 1), u > u0,

with an advanced argument (pK and qK are functions of this type) so
that

r
G(t)g(t + 1) dt — Constant, u > u0-

Ju-l

(G,g)b:=uG(u)g(u)-b

Note that the sign between the terms in (G, g)b depends upon the sign of
b. The G functions can be wild (ours are not too bad), but g is analytic
in a half plane and g{u)/ua+b~l has a limit as u —> oo.

The functions ILK(u,v), EK(u,v) were introduced in [ILR80]. The
functions HK(u) and EK(u) played a key role in [DHR90a] in showing
that aK > (3K holds for all n > 1, a result that we do not need here.
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Strategy and a necessary condition

13.1 Two different sieve situations

Originally, we had attempted to prove Theorem 6.1 using hints provided
by the theorem of [ILR80] (see Lemma 13.1 below), the Ph.D. thesis of
Rawsthorne [Raw80], and the article [DHR88], by distinguishing be-
tween the two cases (3K < aK < (3K + 1 and /3K + 1 < aK. (This dis-
tinction appeared naturally in the generalized system of Rosser-Iwaniec
inequalities—cf. the remarks on page 76. Also, we shall see how these
cases affect the differential equations occurring in Lemma 13.1.)

What we needed to do was to identify the ranges of values of K
corresponding to each of these cases (the possibility aK < /3R having
been ruled out in [DHR90a]); but we had no success with this ap-
proach, even though we "knew" on the basis of numerical evidence that
1 < K < «o (= 1.8344...) belonged to the first case and K > K0 to
the second. It took two separate perceptions to put us on the right
path: first, that an analysis of the families of II and S functions would
be central to any successful approach and, second, that classification of
the values of K would come from the relative magnitude, not of aK and
/3K + 1 , but, instead, of the zeros of IIK — 2 and EK (with equality holding
at K = Ko).

To better understand the main issue in the proof of Theorem 6.1, we
consider the role of the numbers aK and f3K that occur there. For any
two numbers a and (3 satisfying 2 < /3 < a, we can determine some
functions F and / by starting with formulas (6.1) and (6.2) of the theo-
rem and driving the functions forward by successively integrating (6.3)
and (6.4). For arbitrary numbers a and /3 there is no reason for func-
tions that were so constructed to satisfy the boundary conditions given
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in (6.5). However, we shall show, for given K, that there is a pair aK, ftK

(which is probably unique) for which these boundary conditions hold.
(See Figure Al . l in Section A1.2 of the Appendix, where a choice of "ar-
bitrary values" and the "correct values" are illustrated.) Thus, the main
step in determining functions FK and fK that satisfy the conditions of
the theorem is to determine suitable values for aK and ftK. A description
of the computation of aK and ftK is given in Section A1.9.

13.2 A necessary condition

As a start, we show that numbers aK and ftK that occur in Theorem 6.1
must satisfy certain equations involving IIK and EK. Later, we shall solve
these equations to find aK and ftK. To simplify notation, we generally
omit the subscript K.

Lemma 13.1 ([ILR80]). Suppose that a, ft is a pair of numbers for
which Theorem 6.1 is valid. If ft <a < ft + 1, then

(13.1) n(a,/3) = 2 and E(a,ft) = 0.

Ifft+l<a, then

Here f — fK is the lower bound sieve function, specifically

pa—I .re—1r
(13.3 {a-Iff [a-I) = K I

h(Note that (13.1) and (13.2) coincide when a = ft + 1.)

Proof, (i) By definition, f(t) = 0 for t < ft and F(t) = l/a(t) for t < a,
so if a = ft, then P(t) = l/a(t) for t < a. Now U(a,ft) = 2 follows
immediately from (12.18) and E(a,ft) = 0 from (12.19). This case
occurs for K = 1, where a± = ft\ = 2, cf. Chapter 17. We henceforth
suppose that ft < a.

(ii) Suppose next that ft < a < ft + 1. In view of (12.2), we may
write (12.18) at u = a as

fp pit + 1) fa

(13.4) ap(a)P(a) + K PK J. ' dt + K / P(t)p(t + l)dt = 2,
Ja-i cr(*J JB
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and, if we substitute from (12.3), we obtain I\ + I-i + I3 — 2, where

h := ap{a)\——

Ja-l

+ naT /
(a) Jp a(t- 1)

-dt
a(t)

ft <IK

By (12.26), p satisfies

so that the double integral in I3 equals

a(s-l
f*Ot ft—1

— —ds + K

Substituting in I\+ I2 + h and recalling (12.24), we find that

ap{a) , fa p{t + 1) ^
l l ( a , p ) := —-.—r—\- K I —— dt = I.

Using a similar procedure, with (12.2), (12.4), and (12.28), we see by
(12.25) that (12.19) with u = a may be rewritten as H(a,/3) = 0.

(iii) Finally, suppose that /3 + 1 < a. This time, let us deal in detail
with (12.19) at u = a, namely

ra

aq(a)Q(a) - K / Q(t)q(t + l)dt = 0.
Ja-l

Since a — 1 > (3, only (12.4) is relevant. Substituting from there yields

(13.5)

Cr(s-l)
ds \q(t+l)dt = O.
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We integrate by parts the double integral using (12.28):

K - 1 ra sK~1

dsK {t1-^)}' —. T-dsdt = Ka1-Kq(a)
Ja-l Jp a\s ~ J-J Jp

" ^L*;
the last two terms on the right side can be expressed as

la-2 U\L)

using (13.3) and a change of variable respectively. Now substituting
back into (13.5) gives the H formula in (13.2):

M ~ R 11-2 ^w^dt ~{a~i)q{a ~i)/(a ~i)=°-
The formula for II is established in an analogous way. •

Returning to our strategy, the main task to establish Theorem 6.1
is to determine suitable numbers a and f3. This we shall do using the
pairs of equations (13.1) and (13.2) of the preceding lemma. How do
we determine which of the preceding pairs of simultaneous differential
equations is the appropriate one to use for a given integer or half integer
value of K? Let Z^(K) denote the root of U.K(u) — 2 = 0 and Z=.(K) denote
the root of EK (u) = 0; the answer will be given in terms of the relative
size of 2JJ(K) and Z~(K).

After finding a and ft, we next determine F and / and then show that
these functions have the expected properties.

13.3 A program for determining F and /

Our steps and where they occur below are as follows:

(i) First show that

(a) Z~(K) < ZJJ(K) for n = 1 or K = 1.5 (Proposition 16.2),
(b) Z^(K) < Z 5(K) for K = 2, 2.5, 3, . . . (Proposition 16.3).

(ii) Next show that

(a) when z=.{n) < Z^(K), the equations (13.1) have a common
solution pair a, /3 with /3 < a < /3 + 1 (Theorem 17.1),

(b) when Z$(K) > ZJ}(K), the equations (13.2) have a common
solution pair a, (3 with a > (3 + 1 (Theorem 17.2).
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(iii) Finally (in Chapter 18), we show, in each of cases (a) and (b),
that the functions FK and fK defined in an initial range by (6.1)
and (6.2) and continued forward by the equations (6.3) and (6.4)
satisfy the required monotonicity and limiting conditions of the
theorem.

To carry out this program, we must of course use various properties
of aK, pK, and qK. The next two chapters are devoted to studying these
functions.





14
Estimates of aK(u) = jK(u/2)

14.1 Lower bounds on a

We shall need reasonably accurate and computationally effective lower
bounds on aK(u) for u > 2K in order to compare the zeros of HK(u) — 2
and SK(u) in Chapter 16. Here we shall establish several properties of
a. We begin by stating a useful lower bound for a; we shall revisit this
topic in Proposition 14.18.

Theorem 14.1. Let K > 1. For u > 2K, we have

(14.1) ( 7 K ( M ) > I _

(14.2) > 1 - - ,
u

and for every positive integer n

(14.3) aK(2n + 2K)

1 - ) ( l + 1 W M W2)"+1

2 /V 2n + 2 + K/ \2J T(n + 1 + K/2)

(K/2)n+1

> 1 --T(-)-
2 \2J

We defer our proof of Theorem 14.1 to the end of Section 14.4.

Many sieve formulas have nicer expressions when written in terms of
aK rather than jK (introduced in Chapter 5). But it is more convenient
to study the function itself in the form j(u) = jR(u) := crK(2u). We
have, by (5.29) and (5.30),

(14.4) ,(-)

169
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and j is continued forward as the continuous solution of

(14.5) uj'(u) = Kj(u) - Kj(u -1) = K f j'{t)dt, u > 1;
Ju—l

in fact, (14.5) holds for all u > 0.

We begin studying j with some observations about the continuity of
its derivatives. If u > 0 and K > 1, then j'(u) is continuous for u > 0
by the preceding equation and the continuity of j , and, more generally,
by differentiating (14.5), we see that j« (w) is continuous for u > 0 for
all positive integers n < K. If K is a positive integer, then j ^ (w) has a
jump discontinuity at u = 0, and j ^ " (u) has jump discontinuities at
u = 1, . . . , n. If K > 1 is not an integer, then j([Kl+") has infinite jump
discontinuities from the right at u = 0, 1, . . . , n — 1 for each positive
integer n. In each of the preceding cases, the function is continuous at
all other values of u > 0.

We show next for each K > 1 that jK (u) is a positive strictly increasing
function for u > 0. By (14.4), j'(u) > 0 when 0 < u < 1, and by (14.5),
it remains positive for some distance to the right side of 1. Suppose
there were a point UQ > 1 with J'{UQ) < 0. By the continuity of j ' ,
we may assume that UQ is the first such point, i.e., that J'(UQ) — 0 and
j'(t) > 0 for 0 < t < Mo- Upon evaluating the integral form of (14.5) at
u = UQ, we obtain a contradiction, since the left side is 0 and the right
side is the integral of a positive function. Hence

(14.6) j\u) > 0, u > 0;

and we deduce immediately that

(14.7) j(u) > 0, u > 0.

The integral form of (14.5) and Lemma 12.1 imply that

(14.8) 0 <j'(u) </tM/r(i4+l) -Ce-",

so that

0 <j{u2) - j{ui) = / j ' \ t ) d t -C e ~ U l , 0 < W I < M 2 ,

and therefore

lim j(w) exists.

We shall evaluate this limit in two ways. The first method is based
on the asymptotic behavior at 0 of j(s), the Laplace transform of j .
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Lemma 14.2. Let K > 0 and set
/»OO

5suj(u]du 5Rs ̂ > 0.j(s) := /
Jo

Then

(14.9) 3(s) = -exp{-KEin(s)}

and

(14.10) J'(s) = exp{-KEin(s)},

where Ein zs defined in (12.12).

Proof. Since j is a bounded, continuous function on [0, oo), its Laplace
transform exists for Sfts > 0. By integration by parts,

e-suj'{u)du, »s > 0.
o

Thus f(s) = s](s). Also, by (14.5),

(sj(s))' = — I e~usuj'(u)du = —n / e~us{j(u) — j(u — l)}du
Jo Jo

/>oo

Jo
so that

The right side of the last formula has a primitive

e~* —

with b a constant, and thus, for 3?s > 0,

^ / f r7f\ ftp
(14.11) j(s) = bs-1-Kexpl-n e~l — \ = — exp{-KEin(s)}

by (12.13).

On the other hand, by (14.4) with BK := eKT(«; + 1), we have

f1 fc

/ e-suuKdu +
Jo Ji

e-HKdt+ I e-suj(u)du,
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and letting s —> oo, the last integral tends to 0 exponentially fast, so
that

](s) ~ e-^s-"-1, s ^ oo.

By (14.11), we obtain

j(s) ~ bs~K~1, s —> oo,

since fs e~tdt/t —> 0 as s —» oo. Comparing the two expressions for
j , we conclude that b = e fK. Hence, by (14.11) again, (14.9) and
therefore (14.10) hold. •

Now we evaluate the limit oij(u) at infinity. This asymptotic formula
"justifies" the normalization constant e~KJ/T(K+ 1) —: B^1 chosen for
3K in (14.4).

Lemma 14.3. For each n> 1,

(14.12) lim jK(u) = 1,
u—7-oo

and jK(u) < 1 for each positive number u.

Proof. We observed earlier in the chapter that j(u) has a limit at infinity.
If we let £ denote this limit, we have on the one hand

^ 1 f°° I
j(s) = - e~tj(t/s)dt ~ - as s -> 0+,

« Jo s

and on the other hand

j(s) = (1/s) exp{—KEin(s)} ~ 1/s a s s 4 0+,

since lim Ein(s) = 0 by (12.12). Hence 1=1.
s—>0

Also, by (14.6), j t; thus j(u) < 1 for each positive number u. •

The last lemma and the estimate (14.8) for j ' together imply that
1 — j(u) vanishes at infinity at a faster-than-exponential rate. Indeed,

dt KU

We shall revisit this inequality below, establishing it in several explicit
forms of various degrees of precision. Also, we shall obtain another proof
of Lemma 14.3 from the identity (14.26) below.
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14.2 Differential relations

The higher derivatives of j(u) satisfy difference differential equations

similar to (14.5). Upon differentiating (14.5), and then once again, we

obtain

(14.13) uj"(u) = (K - l)j'(u) - KJ'{U - 1)

and

(14.14) uj'"(u) = (« - 2)j"(u) - nj"{u - 1).

In (14.5) itself, if we integrate by parts on the right, we obtain

u ru

uj'(u) = n(t-K+l)j'(t) -K (t-K + 1):
«- ! Ju-i

or

(u — K){(K — l)j '(u) — Kj'(u — 1)} = K (t — K + l)j"
Ju-1

hence, by (14.13), valid for K > 1 and u > 0,

(14.15) u(u- K)J"(U) = K / (t - K + l)j"(t)dt.
Ju-l

Lemma 14.4. Suppose K > 1. Then there exists a unique number,

call it uK, between K — 1 and K, such that j"(u) > 0 for 0 < u < uK

and j"(u) < 0 for all u > uK. For K = 1, we have j"(u) = 0 for all

u < ui = K = 1 and j"(u) < 0 for all u > 1.

Proof. For K = 1 we have by (14.13) that uj"(u) = —j'(u — 1), an

expression that is 0 for u < 1 and is negative (by (14.6)) for u > 1.

Now suppose K > 1. On taking u — K in (14.15), we find that

K - l

Since t — K + 1 > 0 on (K — 1, K), it follows that j"(t) changes sign in

this interval. By (14.4), j"(u) > 0 on (0,1], and it follows from (14.13)

and the continuity of f that j " is continuous on [0, oo). Thus there

exists some number uK, the smallest value of u > 1 at which j"(u) = 0.

By (14.14) at u = uK,

uKj'"(uK) = -nj"(uK - 1) < 0

since j"(u) > 0 for 0 < u < uR; whence uK is a simple zero of j " .
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Suppose if possible that j " has other zeros beyond uK, and let v be
the least of these. We claim that

v < uK + 1;

for if, on the contrary, v > uK + 1, then j"(v) = 0 and j"(u) < 0 when
uK < u < v. But then, by (14.13) at u = v,

so that

for some w strictly between v — 1(> uK) and v, a contradiction.

Next suppose that uK < v < uK + 1. We know that j"(u) is non-
decreasing at u — v, so that j'"(v) > 0; yet, by (14.14),

VJ'"(V) = -KJ"(V-1)<O

since v — 1 < uK: also an impossibility. Hence v does not exist, and j "
has just the one zero uK, which is simple and lies in (K — 1, K). D

Lemma 14.5. Let n > 1. Then

< 0, M > 0.

Proof. We may assume u > 1, since {(f /j)(u)}' = —K/U2 for 0 < u < 1.
By (14.5) and (14.13),

(14.16) u^jiu)^

f= - — (u) + K — -̂  — (u) r(u - 1)

j ' , , jju - 1)

and the integral expression on the right is valid because j'(t)/j(t) has a
continuous derivative for 0 < t < oo.

If the lemma were false, there would exist a least number, call it v,
such that v > 1, (j'/j)'(v) = 0 and (j'/j)'(u) < 0 on 0 < u < v. But if
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we take u — v in (14.16), we get 0 on the left and a negative quantity
on the right, which is impossible. Thus the logarithmic derivative of j
is strictly decreasing. •

Corollary 14.6. If K > 1 and u>0, then (l/j(u))" > 0.

Proof. We have

= -(TT • £
The last term is clearly positive, and by the preceding lemma, the first
term is as well. •

Corollary 14.7. Let K > 1 andu > 1. Then j(u—l)/j(u) is increasing.

Proof. It suffices to show that log{j(u — l)/j(u)} is increasing. The
derivative of this function is

i(.-i)-L(.),

which is positive by Lemma 14.5. •

The last corollary and the identity

U—(u) = K - K
3 3W

together imply that

(14.17) (w-(w)j < 0 if u > 1 andK> 1.

A similar monotonicity relation holds for j"/j'. The following result
will be the basis of our later analysis of j ' , 1 — j , and their quotient.

Lemma 14.8. Let 2K e N, K > 3/2. Then

{ — {u)) < 0, u > 0 (u + 1 for K = 3/2, 2).

Proof. On the interval (0,1) we have

- 1 \ ' K - 1 „

For K > 2, each of the functions j , j ' , j " , and j ' " is continuous on (0, oo),
so (j"/j')' < 0 holds on an open interval that contains the point 1.

For K = 3/2, 2, each of j , j ' , and j " is continuous on (0, oo), but
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{j" I j1)1 does not exist at u — 1. A small calculation shows that j ' " < 0
immediately to the right of u — 1, while j'(u) > 0 for all u > 0. Thus

on some interval 1 < it < 1 + e.

We proceed to give two formulas involving derivatives of j , which
will be combined to yield our main identity. We start with the basic
differential equation (14.5) for j'(u), divide it by KJ'(U — 1), and make
a small manipulation:
(14.18)

u j'{u) r 1 j \ u - i + t)1 r1
 ( tt+u-x j " . , , \ ,

- .,/ l ' = / J - \ —^dt = exp / J—(s) ds) dt.

KJ'(U-1) Jo j ' ( w - l ) A yJu-i J '

Next, we have by (14.13)

uj"(u) = (K-l)j'(u)-nj'(u-l).

Dividing by j'{u) and doing a little algebra yields

K j'(u -1) I v u y

If we equate the last expression with (14.18), we get

We differentiate each side of this equation with respect to u to obtain a
formula for (j"/j')'{u).

The derivative of the left side is

^ ( ) } M where D = ^± - Qu) > 0,

and the derivative of the right side is

Jr1JJ (y
Equating the last two expressions and solving for (j"/j')', we obtain

) ( ) L ( L 7{')d'
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If the lemma were false, there would be a smallest point u > 1 such
that (j"/j')'{t) < 0 for 0 < t < u but (j"/j')'{u) = 0. Since u - 1 <
u — 1 + t < u iov 0 < t < 1, the j " / i ' difference on the second line
of (14.19) is negative, and so the entire right side of (14.19) is negative.
Thus there can exist no such point u. D

14.3 The adjoint function of j

We introduce an adjoint function as an aid in studying j (cf. the occur-
rence of p and q in (12.9) and (12.10)). This is a function r(u) = rK(u)
denned for K > 0 by

(14.20) (ur(u))' = Kr(u + 1) - KX(U), U > 0,

with the normalization

lim ur(u) = 1.
u—>oo

Formally, rK(u) = p-K(u), but pK has been defined only for positive n.

A normalized solution of (14.20) is provided by the Laplace transform
/>O

(14.21) rK(u)= /
Jo

(cf. (12.11)), where Ein was defined in (12.12). To see that this integral
satisfies (14.20), first integrate it by parts, next multiply by u, and then
differentiate with respect to u. The behavior of r(u) as u —> oo is no
harder to derive: by an earlier remark based on (12.12), 0 < Ein(i) < t
when t > 0, whence

/

OO />OO

exp(—ui)dt < r(u) < / exp(—ut + Kt)dt,
Jo

and it follows at once that
u~x < rK(u) (u > 0) and rK(u) < (u — K ) " 1 (U > K).

The integral representation of r(u) shows that (—l)vr^ (u) > 0 for u > 0
and v = 0,1, 2 , . . . , and, in particular, that r'(u) < 0 and r"(u) > 0.

Since r(u) is decreasing in u, (14.20) implies that {ur(u)Y < 0, and
hence that ur(u) > (u + l)r(u + 1) or

(14.22) r(u + l)/r(u) <u/(u + l), u > 0.

Moreover, again by (14.20),

(14.23) {(u - n)r{u)}' = n{r(u + 1) - r(u) - r'(u)} > 0
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by Taylor's theorem, since r" > 0 on (0, oo), whence

r(u + l)/r(u) > (u — K)/(U — n + 1), u > K.

The Iwaniec "inner product" (introduced in Chapter 12)

r
(j, r)K := uj(u)r(u) - K / j{t)r(t + l)dt, u > 0,

Ju-l

is constant, as one can verify by differentiating it and using the defining

equations of r and j . To evaluate this constant let u —> 0+; we have

by (14.21) and (12.13)

O(l)dt+ / exp{-«£ + Klog£ + 7K + o(l)}d£

Ji
- e7K / exp(-ut) tK dt = e7fT(K + l)u"K"1, u -+ 0 + .

Jo
Hence, by (14.4), uj{u)r(u) -4- 1 as « —> 0 and so

(14.24) uj(u)r{u) -K j{t)r(t + l)dt = 1 , w > 0.

In the same vein, (l,r)K(u) is constant by (14.20), and, since ur(u) —> 1
as u —> CXD, we see that

(14.25) (l,r)K = ur(u) - K r(t + l)dt = l, u > 0.
J«-i

14.4 Inequalities for 1 — j

We showed above that 1 — j(u) vanishes rapidly at infinity. Here we give
explicit estimates that will be used to prove Theorem 14.1. We begin
by establishing a convexity relation involving j and r.

Lemma 14.9. Suppose K > 1 and u > K. Then

J(t):=JK(t):={l-j(t)}r(t+l)

is convex in t on the interval u — 1 < t < u.

Proof. We have by (14.21),

J"(t) = -r(t + l)j"(t) + 2{-j'(t))r'(t + 1) + (1 - mVit + 1)

x exp{—(t + l)u + K Ein(w)} du.
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By (14.13), the expression in curly brackets is equal to

1
-((K-l)j'(t)-Kj'(t-l)) + 2uj'(t)

= 2 u -

,2

t

The second and third terms here are positive, and the coefficient of j'(t)
is at least

2u - > 2-u - 1 > 0
u — 1

since u > K. Hence J" > 0. D

If we subtract equations (14.24) and (14.25), we obtain the formula

P
(14.26) ur(u){l-j{u)} = K {1 - j(t)}r(t + 1) dt, u > 0.

Ju-l

This relation is the springboard to reach the estimate (14.3). We briefly
reprove two earlier results here, to show the strength of this formula.

First, j(u) < 1 for all u > 0: recall that

1 - j{u) > 1 - e"7K/r(/t + 1) > 0

in the initial interval, j(u) is continuous for u > 0, and also r(u) > 0 for
u > 0; hence there cannot be a first point u* > 1 at which 1 —j(u*) < 0.

Next, 1 — j(u) converges to 0 rapidly at infinity: since r(u) decreases,
we have from (14.26)

fu

u{l-j(u)}<K {l-j(t)}dt, u>0.
Ju-l

It now follows from Lemma 12.1 that 1 — j(u) <C KU/T(U + 1).

Returning to our main project, we change (14.26) to remove the inte-
gral, producing a form that is more convenient for explicit inequalities.
A trapezoidal estimate, using the preceding convexity lemma, yields

ur(u){l - j(u)} < f {(1 " j(u))r(u + 1) + (1 - j(u - l))r(u)}, u > K.

This inequality may be rewritten in two different ways:

(i) In iterative form

(1 — j(u)){2ur(u) — KT(U + 1)} < K{1 — j(u — l)}r(u), u > n.
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The last inequality and (14.22) imply that

or

(14.27) l-j(u)<- — — {1 - j(u- 1)},

an inequality that we shall later use iteratively for u > n + 1.

(ii) As a differential inequality

2ur(u){l—j(u)} < K{l—j(u)}{r(u + l) + r(u)}-\-K,{j(u)—j(u—l)}r(u)

for u > K. Another application of (14.22) yields

If we replace the last term, using (14.5), we obtain

{2u — K — KU/(U + 1)}{1 — j(u)} < uj'(u),

i.e.,

(14.28) {1 - j(u)}'+ h - — V l - j ( u ) } < 0 , u > K.

Multiplying by the integrating factor exp{2« — nlogu — «log(u + 1)}
and integrating from n to u, we find that

{1 - j(u)}e2u{u(u + 1)}~K < {1 — j(n)}e2Kl{K(K + 1)}^K , u > K,

i.e.,

Here is another property of jK(u) that is complementary to Theo-
rem 14.11 and follows readily from the last inequality.

Corollary 14.10. [GrR88] If c > 1 is a constant, then JK(CK) ->• 1 from
below as K —> oo.

Proof. Let 5 = c — l > 0 , a constant, and u = (1 + 5)K. Since we have
(u + 1 ) / ( K + 1) < U/K and 1 - j(u) < 1 for u > 0,

as n —> 00. D
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Now we give a striking uniform lower bound for j K , which we shall
combine with the preceding work to obtain explicit upper bounds for

Theorem 14.11. [GrR88] If K > 1 then JK(K) > \.

Proof. From (14.9) it follows that

.-sun _• /..^^ J.. _ X ~ exp(-KEin(s))

valid for 5Rs > 0, since 1 — j(u) vanishes rapidly at infinity. By Fourier
inversion (Laplace inversion on the imaginary axis), we have for any
u > 0

l-jK{u)= lim -!- f
T^OO 2n J_T

Since j is real valued, we have at u — K

' — oo

/>OO1 r • dy » / x

71" Jo V ^2-Kl
e

— oo

The first expression on the right is known to be equal to 1/2. In the
second expression,

^. .. . . fv 1-cosi , . fv smt-t ,
k,xn(iy) — ly — I at + i I dt

Jo t J o t
= C(y)+iS(y),

say, where C(y) is an even function of y and S(y) an odd function. Hence

(14.30) jK{n) - ! = ! / " e"BC^ sm(-KS{y))^-.

^ "Jo y
We complete the proof by showing that the integral on the right is
positive.

Since
/-./• / sinw — y \ - 1 d

sm{-K,S(y)) = K — cos(-
V y J dy

the integral equals, after integrating by parts,

y-smy
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The integrated term vanishes at infinity, since C(y) ~ logy as y —> oo,
and it vanishes also at 0, since

i asŷ O
2P y*" 648

whereas
1 „

y - smy ~ - y as y ->• 0.

As for the integral, we observe that each of e reC>(y) and (y — siny) 1 is
positive and decreasing as y increases, so that

(
dy Vy-siny

Since 1 — cos(KS(y)) > 0, this completes the proof that the integral on
the right side of (14.30) is positive. •

We can now provide our promised proof of Theorem 14.1:

Proof of Theorem 14-1. The O-bounds we have given for 1 — j{u) do
not provide numerical estimates. Here we shall combine the preceding
theorem with the inequalities (14.29) and (14.27) to obtain the explicit
inequalities given in Theorem 14.1.

Starting with (14.29), we recall the inequality (u + 1) / (K + 1) < U/K,
valid for u > K, and the inequality 1 — JK(K) < 1/2 from Theorem 14.11.
We find that

l - j K ( u ) < - ( - J exp(2/s-2u), u > K.

Changing back to the a function, we obtain (14.1). Surprisingly, this
inequality shows only an exponential rate of decay of l—j(u) as u —> 00,
but its simplicity is appealing. We revisit this matter at the end of the
chapter.

To see that (14.2) holds, set x := U/(2K) > 1 and note that

x x x 2x
e ^ 1 - l + (x-l) + (x- l)2/2 ~ x + (x - l)2 /2 ~ 1 + x2 - '

Thus
x 2x 2

— x l — I | 2 y

and so, for u > 2K,

r , u , -, 2K
{ 2 ( l ) }



14-5 Relations between cr' and 1 — cr 183

Finally, we establish (14.3), which, since j(u) < 1 for all real u, shows
the decay of 1 — j or 1 — a at oo to be faster than exponential. We
substitute (14.27) into itself n — 1 times, starting with u — K + 1 and
use Theorem 14.11 to estimate 1 — JK(K). We find

lK + n + 1 ( K / 2 ) "

which is, after simplification, equivalent to the first inequality of (14.3).
The second inequality follows immediately from the first one and

K

+ „ ^—

which is valid for all positive values of K, and n. D

14.5 Relations between cr' and 1 — cr

We develop here better upper and lower estimates of (1 — a)j&'. This
work was motivated by the unfavorable comparison of (14.1) with (14.3):
the latter shows that the function 1 — a(u) converges to 0 as u —> oo
about as fast as 1/F(u), while the first formula implies only exponential
decay. These inequalities follow from the differential inequality (14.29)
and the recurrence (14.27) respectively. Here we develop an improved
differential relation to show the faster decay. As usual, we carry out the
argument for j and convert to a at the end.

As a starter, we show the quotient of j1 and 1 — j to be monotonic.

Lemma 14.12. Suppose that K > 3/2. Then

Proof. We have

1 1 - j(u) _ i J v • -,dt

Now

Jo j'(u)

since j"/j' \. on (0, oo) by Lemma 14.8. •

The key step in our program to analyze j1 and 1 — j is to establish
the following two-sided bounds on exp(—j"/j'). This, in turn, will lead
to inequalities for j"/f itself and then to new inequalities for 1 — j .
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Lemma 14.13. Suppose K > 3/2 and u > 1. Then

exp (-( u exp (-(

(If either of (j" /j')(u — 1), {j"/j'){u) is 0, the corresponding quotient
above is interpreted as 1.)

Proof. Starting from the basic equation (14.5) for j ' , we have

« Ju-ij'(u) Ju-i >- i'(w)J yu_i i-it i ' J

By Lemma 14.8, —j"/f t) a n d the result follows at once. •

14.6 The | function

- 2

-4

1 0

Fig. 14.1. The function £(t)

Each side of (14.31) involves a composition of j"/j' with the function

X : x (ex —

Since we are interested in estimating j"/j' itself, we should consider the
inverse of the function X. For t > 0, define £(£) to be the solution ft
of the equation X(h) = t (see Figure 14.1). This is a near-logarithmic
function that is familiar, e.g., in Dickman's theory. It is easy to see that
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Table 14.1. Values oft,, 21ogi, h, and

t

1.1
3.0
10.0
30.0
100.0
300.0
1000.0

Z(t)
0.18769
1.90381
3.61495
5.02155
6.47460
7.75219
9.11813

2 log*

0.19062
2.19722
4.60517
6.80239
9.21034
11.4075
13.8155

h(t)
0.18635
1.83989
3.49729
4.88307
6.32886
7.60645
8.97560

e*(t)
0.20360
1.93946
3.62783
5.02679
6.48100
7.76360
9.13662

X is positive and strictly increasing. Thus £ is well defined on (0, oo)
and increasing there. Also, its power series

oo „

X(x) = Y] 7 T̂TT

shows that X(-) is convex on (0, oo), and so £ is concave on (1, oo).
There is a geometric interpretation of £(£) as the unique number h for
which the line joining the points (0,1) and (h,eh) has slope t.

The last lemma and the monotonicity of £ yield inequalities for —j"/j':

Corollary 14.14. Suppose K > 3/2 and u > 1. Then

It is not hard to approximate £. We have, for all i > 1,

(14.32) £(*)<21ogt,

(14.33) iit) > e^t) := logt + log(l + logt),

(14.34) £(i) <£2{t):=\ogt + log{l + 1.2logt).

(These relationships are illustrated in Table 14.1 and Figure 14.2.)

To see (14.32), for example, it suffices by monotonicity to show that

exp(21ogf)-l
21og*

holds for all t > 1, an exercise in calculus. Similar reasoning estab-
lishes (14.33) and also the asymptotic formula

log t

A more precise expansion of this function is given in [HlTn93].
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0 . 0 2 5

- 0 . 0 2 5

- 0 . 05

- 0 . 0 7 5

- 0 . 1

- 0 . 1 2 5

- 0 . 15

Fig. 14.2. The differences I2(t) - £(t) (upper curve) and hit) - £(i) (lower
curve), where t = ee.

The proof of (14.34) is more elaborate, and we give the details here.

Lemma 14.15. £(f) < £2(t) for all t > 1.

Proof. Using the monotonicity of £ again, it suffices to show that

exp{logf + log(l + 1.21ogt)}-l
logt + log(l + 1.21ogt)

After simplification, the last inequality is equivalent to

(14.35) g(t) :=t + 0.2tlogt-l - tlog(l + 1.21ogi) > 0, £ > 1.

We have g(l) = 0 and

g'(t) = 1.2 + 0.21ogi - log(l + 1.21ogt) -

we shall show that g' > 0 on (1, oo). It is convenient to express g'(t) in
terms of the variable v:= 1 + 1.2 log i. For i > 1, we have w > 1 and

Clearly g'(l) = h(l) = 0; we shall show that h > 0 on (1, oo).

We have

6v2ti{v) = v2 -6w

a quadratic expression that has zeros at v = 3 ± 3/\/5- Thus h'(v) > 0
except on the interval 3 —3/-\/5 < w < 3 + 3/-\/5. It follows that h(v) > 0
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for 1 < v < 3 — 3/\/5, and the minimal value of h(v) on (3 — 3/-\/5, oo)
occurs at the point v — 3 + 3/y/E. Since

/i(3 + 3/-s/5) = — + -*F= - log(3 + 3/\/5) = 0.01229... > 0,
30 V5

h(v) = g'(t) > 0 on (1, oo). Thus (14.35) holds, and this in turn estab-
lishes (14.34). •

Another estimate that we shall need is one for £'/£. Implicit differ-
entiation of the defining relation for £ gives £'(£) = £(£)/(I + ££(£)—£);
note that the last denominator is positive for t > 1, since £(£) and £'(£)
are each positive. By (14.33) and a small calculation, we obtain

(14-36) i ^ i ^ b
Next, we establish two-sided inequalities for •0(u) := j ' ( u ) / ( l ~~ j(u))-

Lemma 14.16. Assume that u > K > 3/2. Then

a-) < v(u < e — ) + - T ( — •

Proof. Starting as in the proof of Lemma 14.12, we have

^ d t = exp / 3-{8)ds)dt.
j'{u) Jo \JU f )Jo

Since j"/f I, by Lemma 14.8, it follows that

•«+* AHAH / •«+* AH AH
tJ—(u + t)< J—(s)ds<tJ—(u), t,u>0.

3 Ju 3 3

Then, estimating j " / j ' by Corollary 14.14, we get

Now,

rp(u)

which gives the first inequality of the lemma. (Note that the last integral
is convergent, because £(U/K) > 0 for u > K.)
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For the other inequality, recall that £ is concave on (0, oo), so by
Taylor's formula,

where

Thus

— - > / e x p ( - f ( - )t)dt > / expf- At-Bt2)dt.
ip(u) Jo V V K ) > Jo V )

Changing the variable, we find that

(14.37) l/V'H > L(A/VB)/VB,

where

(14.38) L(s):= / e-st e^' dt
Jo

is the Laplace transform of the Gaussian function. This integral can be
evaluated numerically in terms of the error function

/
e-t

2dt=
72

A simple lower bound for L(s) for positive values of s is

(14.39) L(s) >s/{s2 + 2), s > 0 .

To show this inequality, we first establish a differential equation for L.
Differentiating (14.38) and then integrating by parts, we obtain

e t e d t + L{s).

If we differentiate the last expression and then substitute for L1', we get

This is positive, since

Thus (14.39) holds. Incidentally, a small calculation shows that L"(s) <C
1/s3 a s s -> 00, so the two sides of (14.39) differ by a term of order s~5.
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Finally, if we combine (14.37) and (14.39), we obtain the claimed
upper bound for -0. •

The following corollary plays an important role in the proof of Propo-
sition 17.3; in particular in establishing 17.21.

Corollary 14.17. Suppose u/2 > K > 3/2. Then

a'(u) f 1.12, 2/« < u < 4.6K - 2,

l -cr (u) [0.64 + 0.57 \og{(u + 2)/(2K)}, u > 4.6K - 2.

Proof. Recall that a(u) = j(u/2). Thus

Applying the upper estimate for tp from the preceding lemma and then
estimating £ and £'/£ by (14-34) and (14.36), we find that

where
u/2 + 1 . M + 2

= log = log — — > 0.
K 2K

Suppose first that u is in the initial range. We showed in Lemma 14.12
that tp(t) t for all t > 0. It follows from (14.40) that

a'(u) CT'(4.6K - 2)

1 - a(u) ~ 1 - < T ( 4 . 6 K - 2 ) < ' K<U< . K- .

For the later range, we find a simple upper bound for the last two
terms of (14.40). Let

h(v):=0.07v + 0M- \ \ log(l + 1.2w) + ^ j ) , w > log 2.3.

We have /i(log2.3) > 0.00385 > 0. Also,

from which we see that h'(v) > .5 > 0 for v near log 2.3 and h'(v) > 0
for v > 265/42 sa 6.30952. A Mathematica calculation shows that h has
roots v\ « 1.60724 and «2 ~ 6.28625, so h is increasing on [log2.3, vi),
decreasing on (v±, V2), and increasing again on (^2, 00). It follows that
h has one interior minimum, at V2, and direct evaluation shows that
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h{v2) > 0.00725 > 0. Thus h > 0 throughout its range, so the right side
of (14.40) is less than 0.5i> + 0.07v + 0.64 for u > 4.6K - 2. •

14.7 An improved upper bound for 1 — j

We conclude this chapter by giving a sharper, though more complicated,
upper bound for 1 — jK than that of Theorem 14.1 (which is expressed
in terms of aK).

Proposition 14.18. For u > K > 3/2 we have

I ru/K

K(u) < - e x p { - K {log
1 J\
1 f (u eu\ K ,

= - exp {— ulog I — log — J + u — K -\ (li(eu/K) — lie) j .

-3K

2 l
 \K K / e

Proof. By the preceding estimates,

- l o g ( l

Integrating and changing the variable, we obtain

1 ' { \ pU • / / J.\ Jj. Pit / K

~ 3\u) I ~3 (t) at I ' ,
log —r ~ I -TT" < — K I {logW -

3 v ̂  / J K 3 \ ) J l

U . M U _ . U . /_ , M\ / ' M ' K ( i f ~1\ fu/K

- / —
J J1 1

g g g / \.
U K K K V KJ J1 1+logfJ

The last integral equals

u/K dv 1 Ceu/K dw 1
i = " / ~, = -{Heu K) - h(e)}.
logeu e Je logw e

Putting together the calculations and estimating 1 — J(K) by the result
of Theorem 14.11, we get the claimed inequality. •

14.8 Notes on Chapter 14

The function e7j((u) = p(u), the Dickman function, appears in esti-
mates of the number of positive integers having only small prime factors
(see [TenOl], Section III.5).

Estimates of the type given in Theorem 14.1 are useful also in the
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Ankeny-Onishi sieve method [AO65] and are shown there (rather more
simply) for u > 2 K + 2.

For all K > 3/2, it is known that uK, the zero of j " , lies in the interval
(K — 1/2, K) [GrR88] and even in (K — 1/2, K — 1/4) (unpublished notes).
Moreover, we have (again from [GrR88]),

u) = j'K(uK) ~ —=, K - > O O ,
fKK

and (from [Whe88])

(14.41) j ( s(«)

The proof of Theorem 14.11 given here first appears in [Whe88].

Our first attempt at proving Lemma 14.8 was to mimic the proof of
Lemma 14.5. Indeed, we have for u > 0

This identity yields the desired monotonicity for u < uK, but it is not
clear how to use this formula for larger u, where —j"/j' > 0. Following
a suggestion of A. J. Hildebrand, we have based our argument on one he
used in proving Lemma 1 of [Hil86], which treats an analogous problem
for the Dickman function.
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The pK and qK functions

15.1 The p functions

The p and q functions, which were introduced in Chapter 12, will play
an important role in approximating the zeros of IIK(u) — 2 and SK(ti).
Here we present further properties, and some quite sharp estimates, of
these functions.

We start with the pK functions, which were defined for n > 0 by
/>OO

P{u) = pK{u) := / e-«*
JO

Ein is given by

Ein(i) := / (1 - e-s) — = > ( - l ) " " 1 ^ , t G
S „=!0 » —: n! n

These functions satisfy the family of difference differential equations

(up(u))' — Kp{u) — Kp(u +1), U > 0,

and the normalization p(u) ~ 1/u as u —> oo. Note that p is clearly
decreasing by (12.11), and hence, by the last equation, up{u) increases
with u. Equations equivalent to (12.9) are

(15.1)

and

(15.2)

We saw

{u^p(u

earlier that

l/(u -\

Kp(u)}' = -K

)}' = -«„-'«

- K) < p(u) <

u Kp{

{p(u)

l/u,

u+1)

+ p(u +

u>0.

!)}•

193
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We improve this in

Lemma 15.1. For all u > 0, n > 0, we have

\u + K.(u+K)\0g(l+-. -)\ <pK(u) < \u + Kul0g(l+-)\ .
I \ (U + K) / J I V 11/ J

Proof. First the upper bound. As noted above, up(u) increases with u.
Now it follows from (12.15) that

fu+1 dt ( fu+1 dt-\
1 = Up(u) + K tp(t)— > Up(u)< 1 + K / — >

Ju t ^ Ju ^ •>
= Up(u){\ + Klog (l + -)).

Before proving the lower bound, we show that (u + K,)pK(u) is de-
creasing as a function of u for each fixed K > 0. Indeed, we have first
by differentiating (12.11) two times, that —p' is decreasing. Then, us-
ing (12.9),

{{u + K)P(U)}' = K / {p'{u) - p'(t)}dt < 0.

Now we start with (12.15), use the inequality

~l dt fu+1 dt
p{t)(t + K) < Kp(u)(U + i

t + K
and proceed as we did for the upper bound. •

We can deduce from the last lemma a simpler upper bound for pK that
is sharper than (12.14).

Corollary 15.2. For K > 0 and all u > K, we have

pK{u) < 1/(U + K - 1 / 2 ) .

Proof. Combine the bound l/pK(u) > u+Kulog(l + l/u) with the simple
inequality log(l+x) > x—x2/2, which is valid for all positive x, to obtain

1 n
(15.3) — — - > U + K >U + K-1/2. D

pK(u) 2u

As an indication of the quality of these bounds, we have, in rounded
figures, p2(5) = 0.14567, while by the lemma, 0.14557 < p2(5) < 0.14656.
From the simpler estimates (12.14), we obtain 0.1428 < p2(5) < 0.2000.
The corollary gives the upper bound 0.15385. The condition u > K



15.2 The q functions 195

was arbitrary (it is chosen for an application in Chapter 17); a further
restriction would yield a somewhat sharper estimate.

We shall need one specific value of p:

(15.4) Pl(l) = e-\

Indeed, by (12.12) and (12.13) (the definition of Ein and its asymptotic
formula), we have

For further information and still sharper bounds for pK, see [DHR90b,
DHR93b].

15.2 The q functions

Recall that the family of qK functions is defined for K > 0 by the contour
integral

q(u) = qK(u) :=

where C is the path that goes from — oo back to — oo traveling around
the negative axis once in the positive sense. As we noted earlier, q
satisfies the difference differential equation (12.10). Equivalent forms of
this equation that we shall employ in the sequel are

(15.5) uq'(u) — (K - l)q(u) + nq(u+ 1),

(15.6) {u1-Kq{u)}' = KU-Kq(u + 1),

(15.7) { u 1 " 2 " ? ^ ) } ' = KU-2K{q(u + 1) - q{u)}.

Higher derivatives of q satisfy

(15.8) UqM(u) = {K-V)q£-1\u) + Kq£-1\u+l), v>\.

When 2K £ N the contour integral for qK can be evaluated by Cauchy's
residue theorem, and we find that qK is a real monic polynomial of degree
2 K — 1. It is given by the formula

2 K - 1 , „ _

(15.9) qK(u)=Yl(-l)
n(
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Table 15.1. The first few q functions

gi (M) = M - 1

q3/2(u) = u
2 - 3 M + 3/2

q2(u) = u
3 - 6M2 + 9M -8/3

q5/2(u) = u
4 - 10M3 + 30M2 - 85M/3 + 55/12

q3(u) = u
5 - 15M4 + 75M3 - 145M2 + 90M - 18/5

with

cn(K) = I e )
V / x=0

In particular, we have

co(re) = 1, ci(re) = re, C2(K) = (n - l/2)re,

and in general cn(re) is given by the recurrence relation

>0.\Cn-v —r, n

0 W v + 1

This structure increases in complexity with the growth of re, and we
limit ourselves to recording in Table 15.1 the first few q functions.

15.3 Zeros of the q functions

We have

(15.10) qK{u) ~ u2"'1, u^oo,

and thus qK(u) is ultimately positive for each re > 1. These functions
do have positive zeros, however. Since q\{u) = u — 1, we see that
gi(l) — 0 and q\{u) is positive and increasing for u > 1. For K > 1.5,
relation (12.10) at u = 0 yields

from which we infer that qK(u) has at least one positive zero. Let pK

denote the largest positive zero of qK (u). Using q formulas and computer
algebra, we find the values of pR given in Table 15.2. In subsequent
sections, we shall obtain lower and upper bounds on pK.
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Table 15.2. Values of pK

K

1
2
3
4
5
6
7

PK

1.0000
3.8340
6.9191
10.1137
13.3727
16.6751
20.0089

K

1.5
2.5
3.5
4.5
5.5
6.5
7.5

PK

2.3660
5.3581
8.5064
11.7368
15.0194
18.3386
21.6852

15.4 Monotonicity and convexity relations

It is immediate from the definition of pR that, for each K > 1, we have
qK(u) > 0 on pK < u < oo and thus, by (15.5), q'K(u) > 0 for u > pK,
i.e., qK is strictly increasing on [pK, oo). Now consider second derivatives.
By inspection, q'{(u) = 0 and q'L2(u) = 2 for all u. For K > 2 we have

(15.11) uq'^u)^(K-2)q'K(u) + Kq/
K(u+l)>0, u > p,

i.e., qK(u) is strictly convex for u > p and K > 2.

Also, for all n > 2,

(15.12) ( £ » > 0, u > pK.

Indeed, by inspection, ^'(u) = 6 > 0 and q'^iu) = 24u - 60 > 0 for
u > P2.5 = 5.358.... For K > 3, by (15.11) we have

uq'^u) = (K - 3)^'(«) + nq'^u + 1) > 0, « > p.

We apply (15.12) to obtain a useful lower bound for q"/q'. Let K > 2
and u > pK. Then

(15.13) <Z«(«)M(«) > (2K -

(We are assuming here that pK > K, holds for all K > 2, which will
be shown shortly by an argument independent of (15.13).) We have
by (15.8) and Taylor's formula

uq"(u) = (K - 2)q'(u) + nql(u + 1)

= (K - 2)g'(u) + K{g'(w) + q"{u) + q'"(u + •d)/2}

for some $ s (0, 1). As we have just seen, q'" > 0 on [p, oo), so

(u-K)q"(u) > (2n-2)q'(u),

which yields the claimed result.
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Next we establish a convexity relation for the function occurring on
the right side of (15.6).

L e m m a 15 .3 . Suppose K>2 and 2K € N. Then u~Kq(u+ 1) is convex

on {u: u > p — 1}.

Proof. By direct calculation,

{u-2q2(u + 1)}" = 8M"4 > 0, u > 0,

and, for it > 1,

4u9/2{u-5/2q5/2{u + 1)}" = 3«4 + 6M3 + 18u2 + 85u - 385/4 > 0.

Henceforth we suppose that K > 3. We know already that q(i), q'(t)
and q"{t) are positive for t > p, and from

it follows that the same is true of q'"(t).

By (12.10) and (15.11), we have

uK+2{U-Kq{u + 1)}" = K2q{u + 3) - inq{u + 2) - 3Kq'{u + 2)

+ 2q(u + 1) + Aq'{u + 1) + q"(u + 1);

since the last three terms on the right are positive, it is enough to show
that

K,q(u + 3) > 3q(u + 2) + 3q'(u + 2).

But by Taylor's theorem, using the fact that q"(i) > 0 for t > p, we
have

nq(u + 3) > 3q(u + 3) > 3q(u + 2) + 3q'(u + 2),

and thus the claimed convexity holds. D

To end this section, we show that logq is concave on (p, oo), a result
which has several useful consequences.

Lemma 15.4. Let K > 1. Then {loggrK}" < 0 on (p, oo).

Proof. We begin with the remark that q^ (u) - {u2^1}^ holds for v =
1, 2, . . . as u —> oo. This follows from the asymptotic relation (15.10)
and the differential equation (15.5).
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Next we show that {logg(u)}" = {q'/q}'(u) < 0 for u —> oo. Indeed,

{\ogq(u)}" = {q{u)q"{u) - q'(u)2}q(u)-2

~ {it2*'1 • (2K - 1)(2K - 2)u2K"3 - (2K - 1) V K - 4 } U " 4 K + 2

= -(2K-1)U~2, U -> oo.

If the lemma were false, there would exist a maximal number w > p
with {g'/g}'(w) > 0. Then we would have q(w)q"(w) - q'(w)2 > 0,
i.e., by (15.8),

0 < q(w){(n - 2)q'(w) + nq'(w + 1)} - q'(W){(K - l)q(w) + nq(w + 1)}

= -q(w)q'(w) + nq(w)q(w + 1)1 —(w + 1) - — (w)\,

or

^ \ ( + ) ( )
nq(w + 1) ~ q v ; q v ;

It would follow by the mean value theorem that {q'/q}'(w + 6) > 0 for
some 6 > 0, which is impossible. •

Corollary 15.5. When p < u < oo, each of

is decreasing in u.

15.5 Some lower bounds for pK

By (12.17) at u — p, we have
p+2

q{t)dt;

also, the integrand is convex for K > 2, as we noted above. Thus, by a
familiar integral estimate,

l), K>2,

that is,

(15.14) PK>2K-1, K > 1 , 2 / t e I

(This result holds by inspection for n = 1, 3/2.)
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L e m m a 15.6 . Suppose K>2 and 2K e N. Let R = 2.84305 ...be the

positive solution of the exponential equation exlR — R/2. Then

pK> RK- 1.87.

In particular, pK > 3.8 for K > 2, and also

( 1 5 . 1 5 ) pK > 2 . 7 K - 1 , K> 3 . 5 .

Proof. W e i n t e g r a t e (15 .6 ) f r o m u = ptou = p + 2to o b t a i n

pp+2

{p + 2)1-Kq(p + 2) = K / u-Kq{u + l)du > 2K{p + iyKq{p + 2)
JP

by the convexity of the integrand, established in Lemma 15.3. Hence

>2K6XP 0^372)-
Writing XQ = n/(p + 3/2), the preceding inequality takes the form

-i

(15.16) x0e
Xo < - + j - .

If XQ < 1/R, then we have p > RK — 1.5, a better lower bound than is
claimed in the statement of the lemma. We may suppose therefore that

(15.17) x0 > 1/R.

Let £(z) = xex, so that £,{1/R) = \. We have £,'{x) = (1 + x)ex and
£,"{x) = (2 + x)ex, so that both £,'(x) and £"(x) are positive for x > 0
and £'(x) is increasing in x > 0. Hence, by (15.16) and (15.17),

so that

Since

we obtain

4K 7 2R '
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Table 15.3. pK + 1 compared with 2.7K

K

3.5
4.0
4.5
5.0
5.5
6.0

PK + 1

9.5064
11.1137
12.7368
14.3727
16.0194
17.6751

2.7K

9.45
10.80
12.15
13.50
14.85
16.20

or
p + 3/2 = K/X0 > RK- R/{2R + 2).

Hence

p > RK - 2 + — = RK- 1 .86989 . . . .
2(R + 1)

To establish (15.15), we made explicit calculations in the initial range
3.5 < K < 6.5, with the results shown in Table 15.3. For all K > 6.5, we
apply the inequalities

pK > 2.843K - 1.87 > 2.7K - 1;

the first of these was just established for all K > 2, and the second one
holds for all K > 6.5. •

The first estimate of the lemma is fairly accurate for smaller values
of K: it gives pi > 3.816, P2.5 > 5.237, and p% > 6.659, as compared
respectively with p2 = 3.833.. . , p2.5 = 5.358..., and p3 = 6.919... .
We need nothing better for our purposes, but sharper estimates of this
type are known (see [Gru8

15.6 An upper bound for pK

It is known that (see [Iwa80], [Tsa89])

lim pK/n = 3.591121... .

Here we establish an upper estimate of this type.

Proposition 15.7. Let K > 1. Then

pR < rcK - 2 r c / ( l + r c) ,
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where rc — 3.591121... is defined by rc log(rc /e) = 1. In particular, we
have pK < 3.6K — 1.56 for all K > 1.

Proof. By Corollary 15.5, (q'/q)(u) decreases on (p, oo) from oo at p + 0
to 0 as u —>• oo. Thus there exists a number UQ > p with (<//q)(uo) =
logrc. Now

u(q'/q)(u) — K -

= K - 1 ' - ' ' q (t)dt\ < K - 1 + Kexp— (u),
Q

using again the fact that q1jq decreases (beyond p). Therefore, at u = UQ,
we have UQ logrc < K — 1 + nrc or, since logrc = (1 + rc)/rc,

rc{n{l + rc) - 1} rc
"0 < r- = ĉK - — .

Next, we apply one step of Newton's method to approximate the root
p of the equation q(u) = 0, starting at uo. Since q is convex on (p, oo),
by (15.11), the first Newton step satisfies

u1=uQ- q(uo)/q(uo) > p,

and thus rcn — 2r c / ( l + rc) > p. D

Further information and sharper differential estimates for qK are given
in [DHR90b], [DHR93b], and [DH99].

15.7 The in tegrands of n and S

Here we establish the positivity, monotonicity, and convexity of the in-
tegrands of IIK and of Sre. In Sections 16.2 and 16.3 we use these prop-
erties to give quite accurate one-sided bounds on I±re and SK while using
a modest number of function evaluations.

Lemma 15.8. Let n > 1. Then p(t + l)/cr(t) is positive, decreasing,
and convex on 0 < t < oo.

Proof. We have

{-l)vp{u\u) > 0, u > 0, y = 0, 1, 2, . . . ,

by (12.11) and that

(-l) l y(l/(r(i)) (^ ) > 0, t > 0,

for v = 0, by (14.7); for v = 1, by (14.6); and for z/ = 2, by Lemma 14.6.
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It is immediate that pit + l)/a{t) is positive and decreasing. To see
that the function is convex, write

and note that each product on the right is positive. •

Since the integrand in

is convex, the preceding lemma ensures that a trapezoidal (resp. mid-
point) approximation provides an upper (resp. lower) bound on the last
integral.

We now show that similar reasoning applies to the function

uq(u) f g(*+l) ,.

Lemma 15.9. Le< K > 2 be an integer or half integer. For t > pK — 1
i/ie quotient qK(t + l)/aK(t) is positive, increasing, and convex.

Proof. The positivity is immediate since a(t) > 0 for all positive t and
q(t + 1) > 0 for t + 1 > p.

To establish monotonicity, we show that, on this ray,

l o g ^ lt + 1) ( ( ) > 0 .
at <r(t) 9 a-

We have

(t + l)^(t + 1) = K - 1 + K ^ T I > 2K - 1

by the differential equation (12.10) and the consequent result that q(u)
is increasing for u > p. Also,

(15.18) t— {t) = K-na(yt~^ <K

by the differential equation (6.8') and (14.7), the positivity of a{u) > 0
for u > 0. By Lemma 15.6, pK > 3.8, and thus t > 2.8 here. Now

q' , a' . 2K - 1 K nt-t-K (K-l)(t-l)-l

7(t + 1 ) - ^ > 7 T T " = -^Tir= *(* + i) > 0 '
since (K—l)(t—1) > 1.8 > 1, which establishes the claimed monotonicity.
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For convexity, we show that

f q(t +1 ) i "
I <r(i) I

= f g(* + 1) 1 " *" g f g ( f + 1 ) V f *" V g ( * + ! ) f *" I "
I tK J a(t) I iK J l c r ( i ) / i « \a(J

By Lemma 15.3, A > 0 for all K > 2 and u > pK — 1.

In B, first note that, by the differential equation (15.18) for crK and a
small calculation, we have

Next,

{r*g(i + 1)}' = -nrK-lq{t + 1) + ^ - ( t + 1) </(£ + 1)

- T T T ^ 2 ^ 9 ( f + 1 } for K -

Thus

On the other hand, for K = 2,

£-2g2(£ + 1) = i"2(i3 - 3t2 + 4/3) = t - 3 + (4/3)t"2,

and so

3 ) .
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In C we have

KtK-2

a(t)

KtK~2

{(n-l)Y(t)+tY'(t)-t-(t)Y{t)}

ty(t) -K

since y(t) and Y'(t) > 0, the latter by Corollary 14.7 (restated for a).
Thus

Now we combine B and C. For K > 5/2,

since 2i - 6 > 0 for t > p5/2 - 1 > 4.358. For K = 2,

^ | | {2i3 - 1 6 / 3 - (i3 - 3 i 2 + 4 / 3 ) } > 0,

since t3 + 3t2 - 20/3 > 0 for t > p2 - 1 = 2.833. . . .

In both cases, A + B + C > 0 and hence q(t + l)/a(t) is convex for all
K > 2 and t > pK - 1. •





16

The zeros of II — 2 and H

16.1 Properties of the II and S functions

In this chapter we carry out Step 1 of the program described at the end
of Chapter 13. Let TLK and EK be the functions introduced in Chapter 12.
We shall show that there exist unique zeros 2fj(/s) and z~ (K) of TLK — 2
and EK respectively, and that

(i) Z$(K) < Zf}(/s) for /t = 1 or K = 1.5 (Proposition 16.2),

(ii) 2JJ(K) < Z^{K) f°r
 K — 2, 2.5, 3, . . . (Proposition 16.3).

We shall study at the same time the related functions II(u) := H(u, u)
and E(u) := E(u,u), which also play a role in our theory.

We begin by establishing the monotonicity of several functions, which
will be used to show the solvability of equations and make estimates.
From (12.24) we see, for u > 0, v > 1, that

c> , p(u)a(u-2) 9 p(v)
-U(u,v) = n ' . . and —IL[U,V) = —K-ou aA(u) ov a{v - 1)

For t > 0, we have p(t) > 0 by (12.11) and a(t) > 0 by (14.7). Thus

(16.1) —IL(u,v)>0 («>2) and — U(u,v)<0 (v > 1).

Similarly, we deduce from (12.25), for u > 0, v > 1, that

d q(u)a(u-2) A 9 q(v)
cr(w - 1 )

In the last chapter we found that each polynomial qK(u) = q(u) pos-
sesses positive zeros; that the largest of these, which we call pK = p,

207
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exceeds 2 for all values of K > 1.5; and that q(u) —> oo as u —>• oo. Thus
q(u) > 0 when u > p. Hence we have, for K > 1.5,

(16.2) —- E(u, v)>0 (u>p) and —E(u,v)>0 (v > p).
ou ov

For K = 1, q\(u) = u — 1 and p\ = 1; the preceding differential inequal-
ities hold in this case for u > 2 and v > 1 respectively.

First, recall from Chapter 12 the definitions

1JT)( 1J ] I 2 9 1 ^ ~l~ 1 )

(16.3) n(u):=n /c(u):=nK(u,u) = - ^ f + K / ^rr1^
cr(u) Ju_x a(t)

and

(16.4) 3(U) := HK(«) := SK(U)U) = ^ - « f ^ i l ^ t

for u > 1. We have the formulas

ro^2) ^ l < 0
W l a2(w) « r f u - l ) J '; - l ) .

since p(u) > 0 and cr(u) exceeds each of a(u — 1) and a(u — 2) by (14.7)
and (14.6) (restated for a). Thus

n(«) is strictly decreasing in u > 1.

Similarly, by (16.3),

V — U

<T(U - 2) 1
V ; ' l ^ n , u > p ,a{u — 1) .

since q(u) > 0 when u > p and p = pK > 1 for K > 1. Hence

E(u) is strictly increasing in u > p.

Next, recalling the definitions

U(u) = IIK(u) :=UK(u,u- 1), E(u)=EK(u) :=EK(u,u-l), u > 2,

we have, from above,

Mu-2)^ P(u-D\<o u > 2 ;
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here we have used the information that, for u > 0 (and fixed K > 1),
cr(u) increases by (14.6) and p(u) decreases by (12.11). Also, we have

u>P

Thus IT (it) is strictly decreasing in u > 2 and S(u) is strictly increasing
in u > p + 1.

16.2 Solution of some II and 3 equations

At several points in the sequel we shall need a statement that functions
defined by a class of integrals involving the a function are unbounded.
It is convenient to express this simple result once as a lemma.

Lemma 16.1. Let K > 1, B > 0, and <j){x) a positive valued continuous
function on [0, B\. Then

I{x) := / —V4 dt^oo as x ->• 0 + .

Proof. For 0 < t < b := min(2, B), the integrand of I is at least as large
as C/tK for some positive constant C (depending on (f> and K). Thus

,b

Ct~Kdt,

which diverges to infinity as x —> 0+. •

We see from the formula (16.3) for II(u) that this function is con-
tinuous. Also, we have shown that it is strictly decreasing in u > 1.
Moreover, since p(t + 1) is bounded away from 0 near t = 1 (by its
integral representation (12.11)), the last lemma yields

lim II(-u) = +oo.

Moreover, II(u) —> 1 as u —> oo, since up(u) ~ 1 (by (12.14)) and
cr(u) —> 1 as u —> oo (by Lemma 14.3). Hence the equation Tl(u) = 2
possesses a unique root, call it ZU{K), which exceeds 1.

We have shown that S(u) is strictly increasing for u > p. By inspec-
tion of formula (16.4), we see that this function is continuous, S(/o) < 0,
and

S ( w ) ~ U K —> +CXD, U —> OO.
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Thus the equation S(w) = 0 possesses a root, call it ZS(K), exceeding pK,
that is unique on (pK, oo).

Next, (12.24), the positivity of p on (0, oo), and the last lemma yield

u_2
a{t)

Just as for II(u), we have II(u) —> 1 as u —> oo. Also, II is continuous
and decreasing on (2, oo). It follows that, for each re > 1, the equation
n(u) — 2 = 0 possesses a unique root exceeding 2, to be denoted by Z^(K).

Similarly, by the formulas in (12.25),

~ (u -2)q{u 2)
y ' a(u-2)

for u > p + 2, whereas

K

since the expression in brackets vanishes by (12.17), upon using the
definition of p. Hence, for each re > 1, the equation Sre(u) = 0 possesses
a unique root exceeding pK + 1, to be denoted by -zs(re). Indeed, by the
preceding argument, we have

(16.7) pK + 1< ZS{K) < pK + 2.

Now we come to the main results of this chapter.

Proposition 16.2. Let Z~(K), -Zfj(re) be as above. Then, for re = 1 and
for re = 1.5,

Proof. For re = 1, we can avoid computation. Recall that pi = 1, and
hence zg(l) < 3 by (16.7). We shall show that 3 < z^(l). Since fi(u) |
for u > 2 (by (16.5)), h suffices to show that fl(3) - 2 > 0. Applying
the second formula for II in (12.24) at u = 3, we get
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since the integral is positive. From the definition of a in its initial region,
CTI(1) = e " 7 / 2 . Also, by (15.4), Pl(l) = e"7 . It follows that II i (3)-2 > 0
and hence 2:5(1) < 3 < Zfj(l), a s claimed. (In fact, 2:5(1) = 2.89803...
andz f i ( l ) = 3.07424....)

For K = 1.5, recall that the integrand p(t + l)/cr(t) in the formula

f , ^ " P 1 . 5 ( M ) , I K

Ii.5(w) := r — + 1.5 /

is convex (Lemma 15.8). Thus we can obtain a lower bound on the
integral via a midpoint approximation (with two intervals) using three
computer evaluations of pi.5 and CT1.5. We find that IIi.5(4.1) > 2.01 > 2.
It follows that Zjj(1.5) > 4 - L

We make a similar calculation for

~ uqi.5(u) r gl.5(t + i)
O-l.s(w) Ju-2 O"l.5(<)

using the fact that the integrand q(t+l)/(r(t) is a convex function of t for
t > p i (Lemma 15.9). This time we apply a trapezoidal approximation,
obtaining Si.5(4.1) > 0.68 > 0, so that 2:5(1.5) < 4.1. Hence

(In fact, 2:g(1.5) = 4.04009 . . . and ^(1 .5) = 4.15694....) D

For all other K under consideration we have

Proposition 16.3. Let z~(n), % ( K ) be as above. Then, for K = 2, 2.5,
3 , . . . ,

Proof. Our proof runs through the end of Section 16.3 and includes the
statements and proofs of two lemmas. The argument is based on a simple
set of inequalities. Recall that II(u) J, for u > 2; if II(u*) - 2 < 0 for
some u* > 2, then z^ < u*. Also, E(u) t for u > p+ 1, and if S(-u*) < 0
for some u* > p + 1, then z~ > u*.

To give upper bounds on

(16.8) n ( u ) : = ^ + K r £(* + ! ) * , u>2,

we again use the fact that p(t + l)/a(t) is convex. This time we bound



212 The zeros of U-2

the integral from above by the trapezoidal method. We start with four
intervals:

( 1 6 . 9 ) u { u ) < ^ L + litVLLJ± + 2p(u+|)
a(U-|)

Using Lemma 15.1, we approximate pK(u) from above by

(16.10) ( u + u r e l o g ^ - U =:p*K(u) =:p*(u).

This bound is valid for all n > 0 and u > 0.

We turn now to the case K = 2. Here (16.9), (16.10), and computer
evaluations of <72(5-28 — n/2) for n = 0, 1, 2, 3, 4 yield

f[2(5.28) < 1.9960 < 2,

whence zfi(2) < 5.28. (Computation: zfi(2) = 5.2405 . . . . )

For H, we have

(16.11) S s ( U ) : = S ( U ) : ^ - « r ^ 7 ^ * - « > 2-

By Lemma 15.9, the last integrand is a convex function of t for £ > p— 1.
Thus a midpoint approximation yields a lower bound on the integral
(for u > p + 1) and in turn an upper bound on H(u). For K = 2, we
have 2̂ (M) = u3 — 6w2 + 9u — 8/3, a polynomial whose largest real
zero occurs at p2 = 3.83398.... We find that H2(5.28) < -0.02 < 0.
(Computation: zg(2) = 5.3192....) It follows that z%(2) > 5.28 >
2fj(2). This establishes the proposition for n = 2.

For all integer or half integer values of K > 2.5, we shall show that

(16.12) zii(K)<pK + l,

and since pK + 1 < Z~(K) (by (16.7)), we obtain our claimed result
without having to evaluate SK(u) again. It is most convenient to estab-
lish (16.12) for K = 2.5, 3, 3.5, 4, 4.5 by making specific calculations.
For all K > 5 we use just one calculation, at re = 5, and a monotonicity
relation.

For 2.5 < K < 4.5 with 2K G N, we first find the polynomial qK using
equation (15.9). We then calculate pK by computer algebra and take
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Table 16.1. Bounds on T\.K(vK)

2.5 6.35813.. . 6.358 1.9968
3.0 7.91907.. . 7.919 1.7895
3.5 9.50637.. . 9.506 1.6538
4.0 11.11367... 11.113 1.5590
4.5 12.73677... 12.736 1.4898

vK to be a convenient lower approximation for pK + 1. We show that
nK(w,j) < 2 using the upper bound from (16.9) as we did for Ii2(5.28).

Table 16.1 summarizes our results, with II(u) denoting the right side
of (16.9). Since in each case U.R{vK) < 2 and IlK(u) is decreasing in u,
we conclude that Z^{K) < vK < p + 1 holds for K = 2.5, 3, 3.5, 4, 4.5.

We complete the proof for the cases K > 5 with the aid of the inequality
pK + l > 2.7K established in Lemma 15.6. We have ffK(p+l) < nft(2.7/t);
thus it suffices to show the last expression to be less than 2 for all K > 5.
We estimate Ilre(2.7K) from above by a cruder version of (16.9) using
two intervals for the trapezoidal estimate and upper bounds for p and
I/a. We show the resulting expression to be a decreasing function of K,
and hence it suffices to show that 115(2.7 • 5) < 2. We begin by studying
the upper estimate for p given in (16.10).

Lemma 16.4. Let a > 0, b > 0 and an — b > 0. Then

Kp*K(an — b) — K< an — b + K(OK — b) log (1 H j >
v \ QiK 0 / J

is a decreasing function of K.

Proof. Consider the reciprocal expression

a — b/n + {an — b) log{l + l/{an — b)}.

Clearly, — b/n is increasing and, with an — b =: x > 0, we have

> 0. •

This lemma does not apply to the expression p*K{2.7n + 1), which
occurs in our estimate of ±IK(2.7K). Here we have the simple bound

(16.13) «p* (2.7K + 1) < 1/3.7, K > 0 .
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Indeed, by (16.10) and the inequality log(l + l/:r) > l/(x+ | ) for x > 0,
we have

{KP*K(2.7K + I )}" 1 > K~1{2.7K + 1 + K(2.7K + 1)/(2.7K + 3/2)}

For u > 2K set

Recall from Theorem 14.1 that crK(u) > cr*(u) for all u > 2K. Here we
establish a monotonicity for a*.

Lemma 16.5. / / (a — 2)K > \b\, then (T*K(CLK — b) increases with K.

Proof. It suffices to show that

is decreasing in K. Indeed,

/ ' (K) = 2{log(aK - b) - log(2K)} + — ^ - + 2-a
an — b

, , . f 1 1 1 (an — b — 2n)a
<(aK-b-2K)' ' [ y 'aK — b 2K J an — b

(using the trapezoidal estimate for log (aK — b) — log (2K)). Thus

, {(a-2)n-b}{(a-2)K + b}
~ 2K(<2K — b)

Un. - 9,~)K\2 - h2

< 0. •2 K ( O K — b)

16.3 Estimation of 11(2.7K)

Since the integrand occurring in IiK{u) is convex, we have (cf. (16.9))

upK(u)
UJu) <

aJu)
K fpK{u+l) 2pK(u) pK{u- 1) \
2 I o-K{u) aK(u-l) aK(u-2)j'

If we estimate p and a by p* and a* respectively, set u — 2.7K and
suppress K subscripts, we obtain

~ 2.7KP* (2.7K) KP*{2.7K + 1) KP*(2.7K) KP*(2.7K - 1)
[ ' K> a*{27n) 2a*{27n) a*(27nl)a*{2.7n) 2a*{2.7n) a*(2.7n-l) 2a*(2.7n-2)'
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We have up* (2.7K + 1) < 1/3.7 (by (16.13)) and use monotonicity of
the other p*'s and <r*'s from the preceding lemmas. For K > 5 we obtain

V 3 - 7 , 5Ps(13-5) 5pg(12.5)ft (2 7K) < 13-5Ps(13-5) +
K{ ' j <Tg(13.5) 2cr5*(13.5) o-J(12.5) 2^(11.5)

< 1.957 < 2.

Thus ^JJ(K) < 2.7K < pK + 1 for all K > 5, and so (16.12) holds in this
case also.

In (16.7) we showed that pK + l < Z~(K), and combining this inequality
with the preceding one completes the proof of Proposition 16.3. •
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The parameters a.K and /3K

17.1 The cases K = 1, 1.5

When we introduced Lemma 13.1, we said that we would use the formu-
las of that result to find aK and (3K; the time has come to do so. This is
the second step of the program laid out at the end of Chapter 13.

We begin by studying the cases K — 1, 1.5, where we showed in Propo-
sition 16.2 that 25(K) < ZJJ(K) holds, and solve the first pair of equations
from Lemma 13.1.

Theorem 17.1. For K = 1 the simultaneous equations

(17.1) ILK(y,x) = 2, EK(y,x) = 0

possess a solution y = ct\ = 2, x = fi\ = 2 that is unique among all
solutions with y > x > 2.

For K — 1.5 the equations (17.1) possess a solution

(17.2) y = ai .5 =3 .91148. . . , x = /3i.5 = 3.11582 . . .

that is unique among all solutions with

zn(l.5) < x < zs(1.5).

In each case, the solutions satisfy the conditions f5R < aK < /3K + 1.

Proof. We begin by restating (17.1) in terms of ZU{K) and ZS(K). Recall
that we have defined, for each value of K > 1,

UK(u) — U(u) :— ILK(u, u), EK(u) = E(u) :— EK(u, u)

and showed in the last chapter that the equations II(u) = 2, E(u) = 0
have unique solutions, which we have called ZU(K) and ZS(K) respectively.

217



218 The parameters aK and f3K

Rewrite the equation H(y, x) — 2 in the equivalent form (cf. (12.24))

CVp{t)a{t-2) ^ o (x
a(x-l)

= 2 - n (z n ) - « / ^ - ^ di

(since II(zn) = 2), i.e., we have

(17.3) r ^ ) ^ - 2 ) j _ r p(t)
IZU " \"J

Also, rewrite S(y, x) = 0 in the equivalent form (cf. (12.25))

- 2 ) j f = (x-l)q(x - 1) _ /-"3 q(t)a(t - 2)

• / : ; " o"(*)

lit) ^

i .e.,

We now proceed to the case n = 1. Here

1 ( ) 1 ( , ) ^ r \

by (12.24), (15.4), and (14.4); and by (12.25),

since q\{u) = u — 1. Thus zn(l) = 2 and zn(l) = 2 and a.\ = 2 = /3i
are solutions of the equation (17.1) at K = 1 and obviously satisfy /3i =
a\ < Pi + 1. To see the uniqueness of the solution (2,2), note that if
either of x, y > 2, then by (17.3) the other one satisfies this inequality
as well, and this, in turn, violates (17.4).
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We comment that the left side of each of (17.3) and (17.4) is 0 if
y < 2, so each pair (2, y) with y < 2 also provides a solution of (17.1);
such solutions are not interesting for our purposes, since it is known
(see [DHR90a]) that the relation aK > (3K necessarily holds for our sieve.

Next, we show that (17.1) has a solution for K = 1.5. We have here
(by a computer calculation)

zn(1.5) = 2.98685... and z3(l. 5) = 3.30788....

Consider (17.3) for zn(l-5) < x < zs(1.5). The integral on the left is 0
at y = zn, increasing in y, and divergent as y —> oo, since the integrand
is positive, p(t) ~ 1/t and a(t) ~ 1 as t —> oo. Also, the integral on
the right is positive valued here. Hence, for any given x £ [zn,zs]) the
equation has a unique solution y = a(x), and a{x) is continuous and
strictly increasing on this interval. Clearly,

a(zn) = zn, a(z3) > zn;

indeed, the latter statement can be sharpened, for

a{t-2)/a2{t) < l/a(t-l)

and therefore

Jzn
and this means that

a(x) > x, zn < x < z3,

and, in particular, a(z3) > z3.

Now consider equation (17.4) in the semi-infinite strip zu < x < z3,
zs < y- Again, the value of the integral on the left is 0 at y = zn
and increasing to +oo as y —> oo, and the value of the integral on the
right is nonnegative, since x > zu > P1.5 = 2.3660.... Hence, for each
x £ [zn, zs], there exists a unique solution y = a*(x), again a continuous
function of x; but now a(x) is strictly decreasing in x on the interval,
with

a*(zu) > z3 and a*(z3) = z3.

We conclude that the curves y = a{x), y = a*(x) have a unique point
of intersection in the range zn < x < z3, call it (/3, a), and that
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We find by computation the values of 0:1.5 and /Si.5 given in (17.2);
then, by inspection, /Si.5 < ai.5 < ySi.5 + 1. •

17.2 The cases K — 2, 2.5, 3 , . . .

Now consider the cases K = 2, 2.5, 3, . . . , where we showed in Proposi-
tion 16.3 that

('17 Z.\ 7~(K\ <• 7~(K\

holds. We shall solve the second pair of equations of Lemma 13.1 for
such K. For y > 2 and x > 1, define fK(y — l,x) by

(y-irfK(y-l,x):=K

In this section we prove

Theorem 17.2. for each integer or half integer K > 2, </ie simultaneous
equations

(17 6) ( ? K ( ? / ) + (?/ " 1)PK(?/ " 1 ) / K ( 2 / " 1; ̂  = 2

\ H « ( I / ) - (I/ - l)g«(j/ - l ) /«( l / - l,ar) = 0

have a solution y = aK, x = f3K that satisfies

(17.7) aK > max(/3K + 1, ZZ(K)).

Elimination of / between the two equations (17.6) yields

(17.8) l(y) = lK(y) := q(y - l)(fi(j/) - 2) + p(y - l)E(y) = 0

for y (as usual, we have omitted subscripts n, since no confusion is
possible here). The proof of Theorem 17.2 depends on

Proposition 17.3. For each integer or half integer n > 2, the equation
IK(V) = 0 has a solution y £ (pK + 1, 3.75K).

Let us assume Proposition 17.3 for the moment and proceed to the
proof of Theorem 17.2. If l(y) — 0 has more than one solution y > p + 1,
let a be the least such solution. We show that a satisfies the sharper
inequality

(17.9) aK > ZS(K).
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We showed in (16.7) and (16.12) that

ZJJ(K) < pK + 1 < ZS(K) K = 2.5, 3, 3 . 5 , . . . .

We deal with this case first. By the Proposition and the last inequality,
a > Zfj, and hence ILK(a) < 2 (by (16.5)). Also, q(a — 1) > 0 because
a — 1 > p. Since l(a) = 0, it now follows that p(a — l)H(a) > 0
or E(a) > 0. This proves (17.9) for K = 2.5, 3, 3 .5 , . . . , since S t
(by (16.6)). There remains the case K — 2, where

zfi(2) = 5.2405 . . . > p2 + 1 = 4.83398....

If a > 2fj(2), then the preceding argument applies; we conclude the proof
of (17.9) by showing that, in fact, it is impossible to have 0:2 < •zn(2)-

Lemma 17.4. Let lK be as defined above. The equation h(y) = 0 has
no solutions y s [p2 + 1, zjj(2)].

Proo/. By (17.5) and (16.6), we have l(z^) = p(z^ - l)S(zfi) < 0. Let

so that also L(z^) < 0. To show that L < 0 throughout the interval, it
suffices to show that

(17.10) L'(y) >0 for p + 1 <y <Zfi.

Now, by the differential equations (15.1) and (15.6) for p and q (with

- 2) - 2(2/ -

so that, by (16.5) and (16.6),

^(y-l)2Ll(y) = q(y)(U(y)-2)-

°"2(y)

Since y > p + 1, both q(y — 1) and q(y) are nonnegative, and since
y < zfi < zig by (17.5) and the condition in (17.10), n(y) - 2 > 0 and
S(y) < 0. Hence L'(y) > 0 for p + 1 < y < z^, and so I2(y) < 0
throughout the interval. •
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We have now proved (17.9), whence S(a) > 0. Using Lemma 16.1, we
see that the equation in x,

)1-K I(17.11) S(a) - ( a - iy~Kq(a-l)K / — -eft = 0

has a unique solution x = (3 satisfying

(17.12) K/3<a-l.

This inequality and (17.9) together establish (17.7). Finally, l(a) = 0
and (17.11) combine to give

and the proof of Theorem 17.2 is now complete, apart from establishing
Proposition 17.3.

17.3 Proof of Proposition 17.3

Since l(p + 1) = p(p) E(p + 1) < 0, it suffices to prove that l(u) > 0 for
some u > p + 1. Actually, we shall prove that, for all K > 2,

(17.13) l(u) > 0 at u = 3.75K,

which is greater than p + 1 by Proposition 15.7.

From the definition (17.8) of l(u), after some simple rearrangement,

Ju
,q(t

_2\<5r(M-l) p(u- 1)/ \a(t) a(u),

- / p(t + l)dt
P(U ~ 1) Ju-2 J

up{u) uq{u) \ 2uq{u) \
( u - l ) / p(u(M-l) g ( u - l ) / p(u - 1)

We apply (12.17) in the second expression on the right and also

r
K p(t+l)dt = 2-(u-l)p(u-l)-up(u),

Ju-2
which comes from two applications of (12.17), to obtain

(17.14) 1P- =^—( 1 -l)-I(u), u>p
p(u — ±)q(u — l) p(u— l)\cr(u) J
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where

By (17.14), (17.13) is equivalent to proving that

(17.16) I(u) < ———rf-^r-l) for u = 3.75K.
p(u — 1) \a(u) /

Since a(t) is strictly increasing in t, we see from (17.15) that

I(u) < / 7 V

Write

a[u - a{t) = / a'(s)ds, u - 2 < t < u.
Jt

By Lemma 14.4, cr'(s) is strictly decreasing in s for s >2K and therefore
the average

— / a'(s)ds
u - i Jt

decreases as t increases from u — 2 to u, provided that

(17.17) W > 2 K + 2.

Hence

o~(u) — a(u — 2) ucr'(u)1 fu 1 fu

/ o-'(s)ds < - o-'(s)ds =
u-t Jt 2 Ju_2 2 2K

for 2K < u — 2 < t < u (the last formula is (6.8')), and therefore

ua'{u) r ,q(t+l) _ p(t+lU _

for u > max(2K + 2, p + 1). We write this inequality in the form

(17.18) I(u) < — , U ° , , Jh(K ' y ' 2o-(u - 2) a(u)V U

where

and



224 The parameters aK and f3K

The integral I2{u) is rather easy to estimate with adequate precision.
Since up(u) increases with u, as we noted in Section 15.1,

( u - l ) p ( u - l ) < (t+l)p{t + l), u-2<t,

and therefore

U - l

To estimate I\ (u), we begin with the remark that

Since (q'/q)(s) is decreasing in s > p (Lemma 15.4), we have at once
that

(17.19) ^7 { < exp{(£ + 2 - u) — (u- 1)), t>u-2.
q{u-l) q

Actually, even s(q'/q)(s) is decreasing in s > p, by Corollary 15.5; there-
fore, since s(q'/q)(s) —> +oo as s —>• p + 0, it follows that (q'/q)(s) is
strictly decreasing to 0 as s —> oo and assumes every positive value ex-
actly once in (p, oo). In particular, there exists a unique number SQ > p
such that (q'/q)(so) = 1 and

q'
q

But, by (15.5),

s — (s) — n — 1 + K, — K — I + K exp / —(t)dt
q q(s) Js q

< n — 1 + n exp —(s),

whence SQ < K — 1 + ne, and hence

- ( s ) < 1 if s > ( e + l ) K - l .

It follows from (17.19) that

q(t + l) u, t>u-2,
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provided that

(17.20) u-l > ( e + l ) r c - l .

Then, from the definition of I\, we have

nu r2

h(u)< {et+2-u - l){u - t)dt = (ex - 1)(2 - x)dx
Ju-2 JO

= e 2 -5<2 .390 , u > « ( e + l ) .

Now we take

u:=u* = 3.75 K > (e + 1) K,

which satisfies (17.20). Further, from the estimate pK < 3.6K — 1.56
(Proposition 15.7), we get

3.75 K > max(2K + 2, p + 1) for all K > 2;

thus the concavity condition (17.17) and the hypothesis of the proposi-
tion are satisfied for u > u*.

Combining the estimates of I\ and I2 with (17.18), we find that

2.390 +
2cr(u - 2) a(u)

and hence, from (17.16), that (17.13) follows if we can prove that

(17.21) ^ - 1 1 - ^ (2.390 + ^ - ) - J — < 1
4 1 - cr(u) V U - 1 / O - ( M - 2 )

for u = u*.

With this choice of u and K > 2, we have by Corollary 15.2,

u 3.75K
up(u — 1) <

u - l + K-1/2 4.75K -1 .5

" 5 ? ^ 0.938.
4.75 - 1.5/K ~ 4.75 - .75

Our second factor is

'M 3 7 5 ; + 2 < 1.134
l-a{u) ~ b 2K

by Corollary 14.17. (Note that we have treated here the case 3.75 K >
4.6K — 2, which applies for K = 2; the estimate 1.12, which holds for all
K > 2.5, is even smaller.)
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For the third factor, we have

2.390+ ^ < 2.390+ ^ - T < 2.596.

For the last factor, we need to handle the cases K = 2, 2.5 by evaluat-
ing <7K (3.75K — 2) directly. Using the package described in the Appendix,
we find that

cr2(5.5) > 0.7865, cr2.5(7.375) > 0.8543.

For K > 3, we use the first form of Proposition 14.18:

1 - CTK(3.75K - 2) = 1 - jK(1.875rc - 1)
-• / .1.875-1/K

< — exp { — K I (logw + log(l + logw)) dv}.
* Ji

For K > 3,

1.875 - 1/K > 1.875 - 1/3 > 1.541,

and thus (with the help of numerical integration)

/

1.541
(logw + log(l + log v)) dv}/2

< exp{-0.23534/2 < 0.247,

giving the bound

crK(3.75K - 2) > 1 - 0.247 = 0.753.

Thus, in all cases, aK(3.75K - 2) > 0.753.

Combining the preceding estimates, we see that the left side of (17.21)
is less than 0.917 < 1, and hence (17.13) is true for K > 2.

With Proposition 17.3 established, we have proved Theorem 17.2 un-
conditionally. Note that the restriction to K > 2 arises only indirectly
via (17.5). •

Once aK has been determined, the sieving limit (3K is given implicitly
by (17.6): we have

so that

dt = — z.K(aK).
a q ( a l )

dt =
aK(t-l) aKq(aK-l)
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Table

K

1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
6.5
7.0
7.5
8.0
8.5
9.0
9.5

10.0

17.1. Values

aK
2.000000
3.911481
5.357727
6.839998
8.371931
9.938884
11.531799
13.144726
14.773560
16.415350
18.067899
19.729536
21.398952
23.075103
24.757152
26.444401
28.136280
29.832306
31.532074

ofaK, /3K.

P.
2.000000
3.115821
4.266450
5.444068
6.640859
7.851463
9.072248
10.300628
11.534709
12.773074
14.014644
15.258588
16.504258
17.751146
18.998853
20.247056
21.495510
22.744013
23.992408

, and pK + 1

P. + l
2.000000
3.366025
4.833987
6.358138
7.919077
9.506376
11.113677
12.736774
14.372723
16.019369
17.675086
19.338609
21.008934
22.685249
24.366886
26.053290
27.743992
29.438593
31.136752

Table 17.1 lists values of aK and /3K, along with pK + l values added for
purposes of comparison, for re < 10. For re < 7, the aK and (3K values were
computed using a software package developed by Wheeler. Compared
with ones produced using the package described in Appendix 1, they
were found to differ by at most 1 in the last displayed decimal place.

17.4 Notes on Chapter 17

Early in Chapter 13 we spoke of aK and (3K as being "probably unique."
Now once aK is known, /3K is indeed uniquely determined; but all that
we have proved here about aK, the least positive zero of the transcen-
dental equation lR(y) = 0, is that it lies in (pK + 1, 3.75K). (Recall from
Section 15.6 that p + 1 ~ rcn as K —> oo, with rc « 3.591121.) Since
aK marks the point at which our upper sieve estimate starts to improve
on that of Ankeny-Onishi, it is clear that we want aK to be as small
as possible, which attaches an element of uniqueness to this parameter.
However, we believe that the equation lK(y) = 0 has in fact only the one
positive root. In [DH97b], Theorem 1, we have proved that

pK + 1 < aK < pK + 2.5, K > 200,
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and for all smaller values of K (1 < K < 10) that have been computed,
aK satisfies these inequalities too.

We proved in [DHR93a], Proposition 7.3, that (3K > 3 for K > 2 and
PK > 2K for K > 4.6; that (3K > Z^(K) - 1 when K > 200 in [DH01],
Corollary 4.2; and in [DH97b] we showed that /3K is always less than
the Ankeny-Onishi sieving limit (which is referred to there as vK). It is
shown in [AO65] that vK ~ en, with c ~ 2.445, as K —> oo.

In [GrvOl], §7.3.2, a description is given of Selberg's argument (see
also [Sel91], Chapter 45, Section 14) that the "right" sieving limit should
be asymptotic to 2K as K —> oo. For this he set out from a type of lower
bound x~ a s described at the end of Section 3.3.

Table 17.1 suggests that it is likely that /3K/n f, and perhaps to the
same limit, 2.445 . . . , as the Ankeny-Onishi sieving limit.
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Properties of FK and fK

18.1 FK and fK —5- 1 at oo

In the preceding two chapters we determined numbers aK and j3K which
satisfy the equations occurring in Lemma 13.1. Equipped with these pa-
rameters, we can at last define FK and fK on (0, oo): we define FK and fK

by (6.1) and (6.2) for the initial intervals (0, aK] and [0, (3K] respectively,
and we continue the functions forward by recursively applying formulas
(6.3) and (6.4). Details of our computer calculation are described in
Section A1.5 in the Appendix.

It remains to carry out the last steps in the program described in
Chapter 13: to show that this choice satisfies condition (6.5), that F > / ,
and to establish the monotonicity of F and / as asserted in Theorem 6.1.
(The K-subscripts are again generally suppressed.) We can use P — F+f
and Q — F — / in place of F and / , since the conditions (6.1)-(6.4) are
equivalent to (12.1)-(12.6).

Upon setting a = aK and f3 = (3K, the functions P and Q satisfy
the Iwaniec inner product formulas (12.18) and (12.19). The results of
Section 12.2 apply, and they yield

P(u) - 2 < e~u, Q{u) < e~u.

Thus F and / converge to 1 at infinity at the rate claimed in (6.5).

18.2 QK(u) > 0 for u > 0

We asserted in (12.8) that Q is positive on (0, oo). This property is
crucial for our theory, since Q is the difference of purported upper and
lower bound functions. We now prove this result.

229
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By (12.2), Q(u) = l/cr(u) > 0 for 0 < u < /3. When /3 < u < a, (12.4)
implies that

a(u-

a2(u) a(u —

(by formula (6.8) and the monotonicity of a). Thus uKQ(u) is strictly
decreasing for (3 < u < a, and so Q(u) > 0 for (3 < u < a if Q{a) > 0.

Indeed, the truth of the last inequality implies also that Q{u) > 0 for
all u > a. For suppose on the contrary that Q{u) changes sign beyond
a and that v > a is the least zero of Q(u). By (12.19),

0 = / Q(t)q(t + l)dt;
Jv-l

but this is impossible, since Q(t) > 0 for v — 1 < t < v and q(t + 1) is
positive because t + l>v>a>p. To see the last inequality, note that
a i = 2, px = 1; a 3 / 2 = 3.91148..., p 3 / 2 = 2.36602...; and for larger
values of K we have aK > Z~(K) > pK + 1 by Theorem 17.2 and (16.7).
It follows that Q(u) > 0 for all u > 0 if Q(a) > 0.

Lemma 18.1. QK(aK) > 0, K > 1.

Proof, (i) The case K = 1 is trivial, for a± = f3± = 2, and it follows that
Qi(2) = Fi(2) - /i(2) = l / ^ ( 2 ) = e^ > 0.

For the remaining cases, we apply (12.19) at u = a,

(18.1) aq{a)Q{a) = n[ Q{t)q{t + l)dt.

Ja-l
We have just noted that a > p + 1 for all K > 3/2, so that q(a) > 0 and
q(t + 1) > 0 for a - 1 < t < a.

(ii) K = 3/2. Here /3 < a < p + 1 and, since t3/2Q(t) is decreasing in
[P,a], we have, by (18.1),

aq(a)Q(a) = "- / ^^-dt + "- / i^Q{t)t-^q{t + 1)dt

r
(a) ,

i/3
a-l
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the last by (15.7). Hence

\f "-H^dt > 0.
2 Ja-l

Now /33 / 2 > 3.115 > 2.367 > p 3 / 2 , so q{0) > 0 and Q(a) > 0 follows.

(iii) K = 2, 2.5, 3 , . . . . Here a - 1 > /? and a - l > Z 5 - l > / ? b y
Theorem 17.2 and (16.7). The argument is similar to that of (ii) but
simpler. This time, since [a — 1, a] C [/3, a], tKQ(t) is strictly decreasing
in [a — 1, a] and therefore, by (12.18),

ra

aq(a)Q(a) > aKQ(a) / KrKq(t + l)dt
Ja-l

= aKQ(a){a1-Kq(a) -(a- l)1-Kq(a - 1 ) } .

Hence aK(a - l)1"Kg(a - l)Q(a) > 0, and therefore, Q(a) > 0. D

Summarizing progress to this point, we have now proved that the
boundary value problem specified by (12.2)-(12.7) is solvable in aR, (3K,
P, and Q; and that QK(u) > 0 for all u > 0 and all K > 1. We conclude
the proof of Theorem 6.1 by showing that F(u) decreases monotonically
for u > 0 and f(u) increases monotonically for u > (3.

Lemma 18.2. If K > 1, then

(18.2) f'K(u) > 0, u > /3K,

(18.3) F'K(u) < 0, u > 0.

Proof. Since Q > 0, we have

(18.4) F(u) > f(u), u>0.

We now restate formulas (6.3) and (6.4) in the form

(18.5) -F'(u) = f(u-1)-F(u), u>a,

(18.6) -f'{u)=F(u-l)-f(u), u>p.
KK

If /3 < u < a, by (18.6) and the condition that F{u) = l/cr(u), we have

-f'(u) = —-1-p- - f(u) > - L - /(«) = F(«) - /(«) > 0
K <J{U — 1 ) a(u)

by (18.4), so that (18.2) holds for (3 < u < a, and by continuity of F
and / , for some distance to the right of a.
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We now turn to F. Again, F(u) — l/a(u) if 0 < u < a, and therefore

F'(u) = -<T'(U)/<T2(U) < 0, 0 < u < a-;

since F'(u) need not be continuous at u — a, we give a separate argu-
ment to show F'(a+) < 0. By (18.5),

aF'(a+)/n = /(a - 1) - l/a(a).

If K = 1, 1.5, then a < j3 + 1 and f(a - 1) = 0, so

F'(a+) = -K/{aa{a)} < 0.

For the cases K = 2, 2.5, 3, . . . , we have a > f3 + 1, and so (18.5) and
Theorem 17.2 (with f(a -1,(3) = f(a - 1)) yield

K (a — l)q{a — 1) a(a)

By the fact tha t a > p + 1 (which ensures tha t q(t+l) > 0 for t>a — 2),

the strict monotonicity of a, and (12.17), we get

~ q(a) fa q(t + 1
s(a) = a-H- - K / -^——

a (a) Ja_2 a {t)
a - l ) g ( a - l )

It follows that F'(o;-|-) < 0 in these cases too. Since F' is continuous
on (a, oo), F'(u) < 0 for some u interval beyond a.

Suppose now that (18.2) or (18.3) is false. The first failure has to
occur at a value u = v, where v > a. Suppose that (18.2) fails first.
Then f'(v) = 0 and F'(u) < 0 for 0 < u < v. By (18.6), f(v) = F(v -1)
and therefore

Q{v) = F(v) - f{v) = F(v) -F(v-1)= f F'{t)dt < 0,
Jv-l

contradicting (18.4). Hence, if there is a failure at v, it must be (18.3)
that fails there. Now we have F'(v) = 0, whereas f'{u) > 0, ft < u < v.
Hence, by (18.5), F(v) = f(v - 1) and

Q(v) = F(v) - f(v) = f(v - 1) - f(v) = - T f(t)dt < 0,
Jv-l

since v > (3, again contradicting (18.4). It follows that (18.2) and (18.3)
both hold.

Thus FK and fK have all the properties claimed in Theorem 6.1. •



Appendix 1

Procedures for computing sieve functions

In this appendix we explain some of the techniques used in a Mathe-
matica® 5.2T package developed for computing many of the functions
described in previous chapters. All of the figures and many of the tables
in this book were generated using this software. Although the results of
this book were proved only for K > 1, 2n £ Z, we support computation
for K > 0, K £ R whenever it is convenient to do so.

Other systems developed for computing sieve functions include those
of te Riele [teR80], Bradley [Brd96], and Wheeler [Whe88]. Ferrell
Wheeler provided some advice on the implementation described here.

Some of the software developed by others was designed to guarantee
results of a given accuracy. However, our package was written with
an eye towards generality and convenience of design, and we do not
guarantee the accuracy of our results. Also, the computational methods
described here differ from some of the methods described in the main
body of this book.

As mentioned in the preface, we will maintain a copy of our package at
www.math.uiuc.edu/SieveTheoryBook, kept current as it goes through
further revision. At that site interested readers also can find fuller and
more current documentation on its implementation.

We begin by outlining our approach to computing FR(u) and fK(u),
following much the same plan as was used in Part II to prove The-
orem 6.1. While summarizing our approach we will introduce new
terminology—some of which is not standard.

f Mathematica is a registered trademark of Wolfram Research, Inc.
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Al.l DDEs and the Iwaniec inner product

Given fixed real numbers a, b, and UQ, suppose a function G{u) satisfies
the difference differential equation (or "DDE")

(Al.l) u-^G(u) = -aG(u)-bG(u-l), u > u0.

We call equation (Al.l) a delay differential equation of type (a,b) and
say that G(u) is of type (a, b) to mean that G(u) satisfies equation (Al.l)
for some UQ € K. For example, recalling from equation (14.5) that

UJ'K(u) = KJK(u) ~KJK(U- 1), U > 1,

we see that jK(u) is of type (—K, K). Equation (Al.l) is equivalent to
(and is often stated as)

^(uG(u)) =-bua-1G{u-l), u>u0.du\ J

We call a function g{u) an adjoint (of type (a, b)) to G(u) provided
{u) satisfies the advanced argument differential equation

— (ug(u)}=ag(u) + bg(u+l), u>u0.

We introduce adjoints because, as noted in Section 12.4, they have
better analytic properties than their associated "original" functions, and
they can be used to analyze the original functions via the Iwaniec inner
product. This inner product depends on the quantity b, and, for arbitrary
piecewise continuous G(u) and g(u), is denned as the function

(A1.3) (G, g)h(u) := uG{u)g(u) - b [ G(t)g(t + 1) dt.

Note that {G,g)b is not an inner product over a vector space. For
example, it does not yield a "scalar" (an element of R), but rather a
function (which may or may not be constant). Also, although (G,g)b

is bilinear in G and g it is not symmetric: we do not generally have
(G,g)b = (g,G)b.

As noted earlier in some specific cases, differentiation of (A1.3) gives

- bG(u)g(u +l) + bG(u-
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Furthermore, if G(u) is of type (a, b) and g{u) is adjoint to G(u) then
by equations (Al.l) and (A1.2), we find that for u> UQ this is

= -aG{u)g(u) - bG(u - l)g(u) + aG{u)g(u)

+ bG(u)g{u + 1) - bG(u)g{u + 1) + bG(u -

= 0.

Thus, given G(u) of type (a, b) with adjoint g(u), we have

(A1.4) (G,g)b(u) = C, u>u0,

for some constant C.

A1.2 The upper and lower bound sieve functions

With this notation established, we now restate the defining equations
for FK(u) and fK(u) (equations (6.1)-(6.4)), making the roles of the
parameters a and f3 more explicit. Recall that aK(u) was first defined
in Section 5.3. Given K > 1 and 2 < /3K < aK, let

(A1.5) FK(u; a, /3) = l/aK(u), 0 < u < a,

(A1.6) fK{u;a,0) = O, 0 <«</?,

(A1.7) ^(uKFK{u-a,p))=KUK-lfK{u-l;a,p), a < u,

(A1.8) ^(uKfK{u-a,p))=KUK-lFK{u-l;a,p), 0 < u.

Theorem 6.1 states that there exist a = aK and j3 = f3K such that

(A1.9) FK(u;aK,pK) = l + O(e-u) as u -)• oo,

0) fK(u;aK,f3K) = l + O(e-u) as « ^ oo.

In contrast to an arbitrary choice of a, /3, we think of a pair aK, fiK

satisfying (A1.9) and (A1.10) as being "correct values." For any such
pair aK, f3K we write

FK(u):=FK(u;aK,PK),

fK(u) := fK{u;aK,/3K).

(Note how the monotonicities of FK(u; a, (3) and fK(u; a, (3), which hold
by Theorem 6.1 when a = aK and /3 = /3K, fail to hold in Figure Al.l(a).)

Figure A1.2 shows some computed values of aK and f3K. (These values
are tabulated more precisely in Table 17.1.)



236 Procedures for computing sieve functions

10 12 14 10 12 14

(a) a = 9, /? = 4 ("arbitrary values") (b) a = are PS 8.372, /3 = /3K m 6.641
("correct values")

Fig. Al.l. FK(u;a,/3) and fK(u;a,f3) for two choices of a and /3, K = 3
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Fig. A1.2. aK (upper curve) and /3K (lower curve)

A1.3 Using the Iwaniec inner product

The criteria given by (A1.9) and (Al.lO) are not computationally effec-
tive, since they would require computing the limiting values of FK(u; a, 0)
and fK(u; a, f3) as u —> oo. However, as detailed below, the Iwaniec inner
product gives a computationally effective method for determining that
limiting behavior.

The coupled delay differential equations that define FK(u) and fK(u)
are not of the form (Al.l), but recall that

(Al.ll) PK(u;a,0) := FK(u;a,0) + fK(u;a,0),

QK{u;a,0) := FK(u;a,0) - fK(u;a,0),
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and tha t PK(u;a,(3) is of type (K,—K) and QK(u;a,f3) is of type (K, K):

— (u K Q«(u ;a , / 3 ) ) = -nuK 1QK(u - 1; a,/3),
cm V /

u > a,

u > a.

10 12 14

(a) a = 9, /3 = 4 ("arbitrary values") (b) a = aK f» 8.372, @ = fiK & 6.641
("correct values")

Fig. A1.3. PK(u;a,f3) (thin line) and QK(u;a,f3) (thick line) for two choices
of a and /3, n = 3

Recasting the criteria (A1.9) and (Al.lO) in terms of PK(u;a,(3) and
QK(u;a,/3) gives the equivalent conditions

(A1.13) PK(u;a,P) = 2 + O(e~") a s u ^ o o ,

(A1.14) QK(u;a,P) = O(e~u) as u ->• oo.

Note in Figure A1.3(a) how condition (A1.13) is violated—as is the
property that QK(u;a,/3) > 0.

Recall from Section 12.1 that pK{u) is adjoint to PK{u; a,/3) and qK(u)
is adjoint to QK(u; a,/3):

— \upK(u)) = npK(u) - npK(u+ 1),
du V /
d
iu

— [uqK{u)\ = nqK(u) + nqK(u + 1),
du\ J

u > 0,

u > 0,

and they satisfy pK(u) ^ u 1, qK(u) ~ U2K ' as M -)• OO. (See Fig-
ures A1.4 and A1.5.) These two functions are independent of the pa-
rameters a and f3.

From the definition of (G,g)b(u) and using equation (A1.4), we find
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(a) K = 3/2 (b) K = 3

Fig. A1.4. pK(u) for two values of K

(a) K = 3/2 (b) K = 3

Fig. A1.5. 9K(W) for two values of /t

that for some constants Cp and CQ we have, for u > a,

(P,p)_K(u) = uPK(u;a, f3)pK(u) + K / PK(t; a,/3)pK(t + 1) dt = CP,
Ju-l

r
(Q,q)R(u) =uQK{u;a,P)qR(u)-K / QK(t; a, /3)qK{t + 1) dt = CQ.

Ju-l
Figure A1.6 shows the behavior of {Q, q)K(u) for two choices of a, f3.

First letting u —> CXD, and then setting u = a in these last equations,
we find that if a = aK and (3 = f3K then
(A1.15)

(A1.16)

(P,p)_K(a) = 2, and

(Q,q)K(a)=0.

Furthermore, the discussion following Lemma 12.1 demonstrates that
equations (A1.15) and (A1.16) hold only if (A1.9) and (A1.10) hold.
For a given K, these results give a computationally effective method for
approximating aK and f3K, viz., we find solutions for a and /3 that, within
an acceptable error tolerance, satisfy (A1.15) and (A1.16). (Note that
/3 is implicitly a parameter in these equations, since it affects the values
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{Q,q)K

-1250

-1500

(a) a = 9, j3 = 4 (b) a = aK RS 8.372, /3 = pK tv 6.641

Fig. A1.6. (Q, g)K for two choices of a and /3, K = 3

of the functions P and Q.) After a short interlude (Section A1.4), we
will detail how we go about approximating those solutions to (A1.15)
and (A1.16).

A careful reader will note that we do not re-express equations (A1.15)
and (A1.16) in terms of the functions HK(u,v) and Sre(ti,v) (defined
in Section 12.3)—as was done in Lemma 13.1. The reason is that for
our computational purposes it suffices to work directly with (A1.15)
and (A1.16), although HK(u,v) and Sre(u, v) are better suited for the
analysis in Part II of this book.

A1.4 Some features of Mathematica

Our package, available at www.math.uiuc.edu/SieveTheoryBook, takes
advantage of some design features of Mathematica, which we summarize
here. Detailed information on Mathematica can be found in the docu-
mentation included with that system, or online at www.wolfram.com.

Arithmetic: Arithmetic can be performed on integers and rationals of
arbitrary size or precision and is exact. For arithmetic on arbitrary
real numbers we use the default floating-point representation, accurate
to about 16 decimal-places of relative precision.

Contour plots: We used the ContourPlot command to create many
of our figures. These plots illustrate a function of two variables, say
x and y. Most of our contour plots, such as Figure A1.7(a), illustrate
a real-valued function of z — x + iy. The contour lines are lines of
constant height, and the shading indicates the approximate magnitude
of the function, with darker shades indicating smaller values.

Re-using results: Mathematica provides a mechanism for saving the
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result of a computation for later re-use. (This technique is often called
caching or dynamic programming.) Caching can save a great deal of
time when the result of a long computation is used multiple times,
although at the cost of using some additional storage.

Interpolating-functions: The InterpolatingFunction construct is
defined by a set of data points, say T> := {(xk,yk)} m the interval
XQ < Xk < xn. An InterpolatingFunction acts like any other func-
tion in Mathematica—it returns y^ when applied to xk £ T> and oth-
erwise, as the name suggests, it computes the returned value using an
interpolating polynomial of low degree. When applied to an argument
outside the interval [:ro, xn] it issues a warning message and returns the
value extrapolated by the interpolating polynomial.

Differential equations: We use the NDSolve operator to find numer-
ical solutions of differential equations. The solution is returned as an
InterpolatingFunction, which we always save to avoid later recom-
putation.

Numerical integration: The Nlntegrate operator implements nu-
merical integration, with

n rzk

Nlntegrate [G(z), {z, z0,..., zn} ] » ^ / G(z) dz.
k=1Jzk-i

When Zk £ C the integral is evaluated along a piecewise linear "poly-
line" path connecting the points. Whether or not Zk £ C, each Zk is
flagged as a potential singularity and Nlntegrate adjusts its quadra-
ture algorithm to use exceptional care near those points.

Those functions in this book which are defined by delay differen-
tial equations have bad differentiability properties at some points. For
example: jK(u) when u £ Z (as was demonstrated in Section 14.1), and
FK(u;a,f3) and fK(u;a,f3) when u £ ZU (a + Z) U (/3 + Z). When such a
function appears in an integrand we take care to flag potentially "bad"
points for Nlntegrate. Similarly, when using NDSolve to compute such
a function over an interval, we "chop up" the interval into sections, so
that no "bad" points lie within a section.

A1.5 Computing FK(u) and fK(u)

Referring to equations (A1.5) and (A1.6), we see that for 0 < u < /3 the
computation of fK(u; a, /3) is trivial, while for 0 < u < a the computation
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of FK(u;a,(3) reduces to the computation of jK(u) — aK(2u). We de-
scribe methods for computing jK(u) in Section A1.8.

To calculate FK(u;a,f3) and fK(u;a,(3) beyond their initial ranges of
definition, we use the NDSolve operator to approximate the solutions to
equations (A1.7) and (A1.8), i.e., the delay differential equations satis-
fied by FK(u; a, /3) for u > a and by fK(u; a, j3) for u > f3. We find

PK(u;a,0):=FK(u;a,l3) + fK(u;a,l3), and

QK(u; a, p) := FK{u; a, /3) - fK{u; a, (3),

directly from the values of FK(u; a, j3) and fK(u; a, j3).

A1.6 The function Ein(z)

Several of the functions in our package are computed by integrating some
function in which a factor of the form e±KEln(±z) appears, where

Ein(*):= f\l-e-s)-.
Jo s

(The Ein function was first introduced in Section 12.1. A thorough
survey of its properties may be found in [AS94, Chapter 5].)

Recall that Ein(z) is entire, with the power series expansion

n=l

However, for our purposes a more useful expression is

(A1.17) Ein(z) =-y +log z + E^z), arg(z) < TT,

where

/•oo s

(A1.18) EAz) := / ds.
Jz S

(If the branch cuts for \ogz and Ei(z) are chosen consistently in (A1.17)
then the restriction that arg(z) < TT is unnecessary.) Since E\(z) is
included in the standard repertoire of functions of Mathematica 5, while
Ein(z) is not, we use equation (A1.17) to implement Ein(z).

Equation (A1.17) and a well-known asymptotic expansion for E\{z)
[AS94, Entry 5.1.51] give

(A1.19) Ein(z) = 7 + logz+^— (1 + O( l /z ) ) , \z\ -+ oo, arg(z) < TT.
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It follows from this expansion that eK E m M is on the rough order of
when ?R(z) is sufficiently positive, while, for K(z) sufficiently negative, it
behaves in a "violently" oscillatory way as $s(z) varies. For example, as
K(z) —> — oo, with ^s(z) — 2-irm for some m £ Z, we see that | e

K E m W
is on the rough order of exp(Ke'^'/|z|); while with $s(z) — 2irm + 1,
|eKEm(^)| j g o n ^n e r o u gh order of exp(—Ke'z'/|,z|).

A1.7 Computing the adjoint functions

As we will see below, the computation oipK(u) is straightforward, while
the computation of qK(u) is simple when 2K s N and more complicated
otherwise.

Recall from equation (12.11) that pK(u) can be written as the Laplace
transform

fc

(A1.20) pK(u) =
Jo

We approximate pK(u) by applying Mathematical NIntegrate opera-
tor to equation (A1.20), letting NIntegrate determine the appropriate
truncation point for the upper limit of the integral.

Although some of the functions in our package can be evaluated only
for K > 1, our implementation of pK(u) is an exception, for which we
allow K > 0. However, by the remarks which follow equation (A1.19), we
see that the integral of equation (A1.20) converges for all u > 0 provided
K, > 1, while it converges only for u > 0 when K, < 1. In our Mathematica
implementation, the approximation of the integral becomes problematic
as u —> 0+ even when K is slightly larger than 1, and we simply trust
the user to avoid attempting computations in the "problematic range."

Turning to the computation of qK(u), recall that when 2K £ N then
qK(u) is a polynomial in u of degree 2K — 1:

' 2 K - 1

n=0 ^ n

\cn\K)a ,

where the coefficients cn(«;) are polynomials in K satisfying

(A1.22) CO(K) = 1,

(A1.23) cn+1(K) = K V ^ - ^ - )cn-m{K)
z—' m + 1 \ml
m—0 v '
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For a given value of K with 2K 6 N, upon the first computation of qK (u)
we use (A1.22) and (A1.23) to compute, and store for later use, a table
of cn{n), 0 < n < 2K — 1. (Table 15.1 lists the first few polynomials.)

When 2K ^ N we approximate qK(u) using its contour integral repre-
sentation, valid for u > 0:

(A1.24)
2m

where the path of integration traverses a "keyhole" shape, traveling from
—oo, wrapping about the negative real axis (and the origin) in the posi-
tive sense and returning to — oo. We will spend quite some time explain-
ing how we approximate this contour integral, although computation of
qK(u) when 2K ^ N is outside the general scope of this book. However,
we use the same general ideas to compute jK(u) as well as qK(u), and
this section serves to introduce the necessary concepts.

We approximate the right side of equation (A1.24) by deforming and
truncating the original keyhole path into a polyline path designed to be
well suited for numerical quadrature. Our choice of path is based on the
saddle point method (or "method of steepest descent").

Before explaining this adaptation of the saddle point method, we note
that if G(z) denotes the integrand of equation (A1.24) then G{z) is
symmetric under complex conjugation, i.e., G(~z) = G(z). For any such
integrand and a path C that is symmetric about the real axis we have

(A1.25) [ G(z)dz = 2($i [ G(z)dz),

where C+ denotes the restriction of C to the upper half of the com-
plex plane. We expect numerical quadrature of the right side of equa-
tion (A1.25) to take roughly half as much computation as would be
needed to approximate the left side, and we recast all such contour in-
tegrals into the form of the right side before computing them.

The saddle point method is usually used to find asymptotic expansions
of special functions (see [dBr81, Chapter 5] or [Hen91, §11.8]). The same
ideas can be used to choose the path of a contour integral so that the
integral is well-suited for numerical quadrature [Tem77]. We begin with
an informal discussion of the method—skipping over some complicating
issues which we will return to later.
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Suppose we wish to evaluate an integral of the form

(A1.26) f G(z)dz,
Jc

where the path C passes through a point zs (a saddle point) in a neigh-
borhood of which we have

(A1.27) logGOz) = Y, a™(z ~ ^ ) m -
m>0

with a\ — 0 and a-i ^ 0. Saddle points are solutions of G'(z)/G(z) = 0,
although at a solution it may be that a,2 = 0.

If C can be parametrized near zs as z — zs + §t + O(t2), then we say
that the path travels in the direction •&/ \ § | at zs. If •& satisfies

(A1.28) a2tf
2 = - 1 ,

then along this path we have

(A1.29) G{z) = exp (a0 - t2) (l + O(t2)).

In the region where the error term in equation (A1.29) is small, the in-
tegrand is well-suited to numerical quadrature. This remains true when
the path passes near zs and travels only roughly in the optimal direction.
When C passes through a well-chosen subset of the saddle points of G(z)
then it is likely that the vast bulk of the integrand is concentrated near
those points, and we can truncate C to a relatively short range over which
numerical quadrature yields an accurate approximation to (A1.26).

Returning to the specific problem of computing qK(u), in Figure A1.7
we illustrate this method from two points of view. Figure A1.7(a) shows
the magnitude of the integrand and the truncated path of integration
used to approximate qK(u) when K = 1.5, u — 7. The two saddle points
of the integrand are marked as white "x" s and the heavy dots show the
sample points chosen by Mathematical NIntegrate operator.

For our second point of view, we parametrize z = z(s) G C by arc-
length <;, let

(A1.30) H(z) := z-2«e«*+«Ein(-*)i?i
ids

and rewrite equation (A1.24) as

(A1.31) qK(u) = ^ ^ f ° £#(*(?)) <k.
71" JO
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- 1 0 1 2 3

(a) log10 \G(z + iy)\, where G(z) is the integrand of equation (A1.24)
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(b) UH(z{<;)), where H(z) is defined by equation (A1.30), and <j mea-
sures distance along the path of Figure A1.7(a)

Fig. A1.7. Two views of the integrand used to find qK(u), K = 3, u = 14

Figure A1.7(b) shows the integrand of equation (A1.31). (The discon-
tinuity in the integrand arises from the corresponding discontinuity in
the direction followed by the path shown in Figure A1.7(a).)

To locate the saddle points of G(z), with

(-r{z) .— z e ',

we look for solutions to

(A1.32)
G'

0=-(,)=U-

To solve (A1.32), we let r := U/K and instead solve

(A1.33) 0 = l + ez -rz=:K(r,z).
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Focusing on real-valued solutions, equation (A1.33) is satisfied where a
line of slope r intersects the curve l + ez. There is a "critical" value of r,
say rc, for which the line is tangent to the curve, meeting it at a single
point zc. Thus 0 = 1 + ez° — rczc and rc = ez°, giving

rc = rclog(rc) - 1 « 3.59112, and

(A1.34) zc = log rc « 1.27846.

Note that the constant rc is the one occurring in Proposition 15.7.

To determine the saddle point z =: zs satisfying equation (A1.33)
we start with a rough approximation to zs and then, usually, refine it
using Newton's method. Let K'(r,z) := (d/dz)K(r,z). Provided z is a
sufficiently accurate initial approximation to zs, Newton's method sends
z to a very accurate approximation by iterating the map

K(r,z) (z — l)ez — 1
(A1.35)

K'(r, z) ez — r

We use one of three initial rough approximations to zs, with the choice
of approximation depending on the relationship between r and rc. Note
that equation (A1.33) has two complex conjugate roots when r < rc, a
single real root when r = rc, and two real roots when r > rc.

The first rough approximation applies when r < rc is sufficiently small.
Without quantifying the error, we find that as r —> 0

2

zs » Z0(r) := % 2 + TT(1 - r + r2)i,

where zs denotes the complex root of (A1.33) with positive real part.

Our second rough approximation is applicable for r in an "interme-
diate range" where r — rc\ is sufficiently small. In this case we expand
K(r, z) about r = rc, z — zc to find that

K ( r , z) = - z c ( r - r c ) - (r - r c ) ( z - z c ) + ^ ( z - z c ) 2 + ••• .

Ignoring the higher-order terms and solving for the zeros of the resulting
quadratic equation, we find that

(A1.36) zs « Zl{r) := zc + r ~ rc ± V(r - rc)*+ 2zcrc(r ~

Our third rough approximation is applicable for r sufficiently large.
Letting zs denote the smaller of the two real roots of (A1.33), we find
that as r —> oo we have

r2-



A1.7 Computing the adjoint functions 247

Our choice of transition points between these three approximations
was determined experimentally. To summarize: writing z for our initial
rough approximation to zs, we use

' Za{r), r < 0.517,

(A1.37) z={z1{r), 0 .517<r<5.3,

Z2{r), 5.3 < r.

Starting with z given by (A1.37) we find that 4 iterations of (A1.35)
suffice to approximate zs with an error-bound on the order of 10~5. This
is sufficient for our purposes since, as observed above, our path need only
pass near the saddle point to be effective. Recalling that rc = eZc, note
that when r = rc, z — zc the Newton iteration (A1.35) is ill-defined.
For this reason, and since the approximation (A1.36) is very accurate as
r —> rc, we do not apply Newton's method when r — rc < 10~12.

The value of zs determines our path of integration—which is a polyline
running consecutively through {ZQ, Z\, Z2}; where ZQ lies on the real axis,
zs lies on the segment connecting z$ and z\, and z2 is chosen to bound
the truncation error arising from using a finite path. Figures A1.7(a)
and A1.8(a)-A1.8(c) show some of the resulting paths.

When zs s R we set ZQ — zs and z\ — (1 + I)ZQ, otherwise we choose
ZQ and z\ so that zs lies midway between them and so that the path
travels in the direction determined by equation (A1.28).

Given an allowable truncation error of s, we choose z2 to satisfy

/

Z2-OO

G(z) dz

Letting C := 7 + e"1 and assuming that 3?Z2 < — 1 we can show that

G(z) dz < exp (KC + u%lz2)/u.

Thus, to ensure that the bound (A1.38) holds, we set

•» • ( 1 ia

Kz2 = mm - 1 , Uz

When zs £ R we set ^sz2 = Szi. However, when zs 0 R it is possible
for Szi to be arbitrarily small, and setting Qz2 = Szi could cause our
path to pass uncomfortably close to the singularity at the origin. (See
Figure A1.8(b).) For this reason, when zs ^ R we set ^z2 = max(l,
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y

- 3 - 2 - 1 0 1 2 3

(a) K = 3, u = rcre RJ 10.7734

- 4

- 6 - 4 - 2 0 2 4

(c) K = 3, M = 4.5

Fig. A1.8. log10 \G(x + iy)\, where G(z) is the integrand of equation (A1.24),
for three values of U/K, contour interval is 1
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As an aside, note that when U/K — rc the Taylor series expansion
of logG(z) about zc (equation (A1.27) with zs — zc) has a^ — 0 while
03 = —u/zs, and so the integrand does not have a "proper" saddle point
but rather a three-lobed saddle point, indicated by the 6-pointed star
in Figure A1.8(a). Since a-i — 0, equation (A1.28) is not applicable for
determining the direction in which the path should travel. Instead, the
optimal path would be one which entered zs in a direction 1?/ |i?| with $
being one of the three roots to

(A1.39) a3fi
3 = - 1 ,

and then exited zs along a path also satisfying (A1.39), but with a differ-
ent choice of root. The same reasoning suggests that such a path would
be better than our current choice if 02 is sufficiently near 0. However,
our less sophisticated path seems quite satisfactory in practice.

When 2 K £ N and u G Q we can measure the accuracy of our saddle-
point approximation of qK (u) by comparing it with the exact result given
by the polynomial expansion (A1.21). Letting <zre(

u) denote the ap-
proximation, we measure the relative precision of our approximation in
"digits" as defined by

(A1.40) d(K,u):=-log1 0

Table A1.7 illustrates the accuracy of our approximations to qK([aK]).

Table Al.l. Accuracy of approximations to qK(u), measured in "digits"
as given by d{n,u), defined in equation (A1.40)

K

1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0

10.0

d(n,[aK])

10.4
11.4
13.3
13.0
11.3
14.2
14.1
10.8
14.1
13.4

K

1.5
2.5
3.5
4.5
5.5
6.5
7.5
8.5
9.5

d(K, [aK])

10.6
11.6
13.5
13.9
13.9
11.1
14.0
14.1
10.6



250 Procedures for computing sieve functions

A1.8 Computing jK(u)

In this section we will describe several methods for computing jK(u),
illustrated in Figure A1.9. We start by applying our saddle point method
to two of its contour integral representations. At the end of this section
we will explain how we choose which of these methods to use.

Fig. A1.9. jK{u), K =

As was shown in Lemma 14.2, the Laplace transform of jK(u) is

1
e-uzjK(u)du = -

z

Taking the inverse Laplace transform of jK (z) gives, for all u G

=-[
2iri Jx

(A1.41)

(A1.42)

1 —ioo
1+ioo

27" J !_ i o o Z

-1 p-l+ioo i
— I | / e i i z - K E i n ( z ) ^ l

•^''^ 7—1 —ioo

where the identity (A1.42) follows from shifting the path of integration
used in (A1.41) to the left, picking up a residue of 1 arising from the
pole of the integrand at the origin.

As we did for qK(u) in Section A1.7, we recast the original integral into
the form of the right side of equation (A1.25), and deform and truncate
the path of integration into a suitable polyline path to be passed to
Mathematical NIntegrate operator.

Our integrand is now

G(z) := _ e ^
z
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- 4 - 3 - 2 - 1

Fig. A1.10. log10 \G(x + iy)\, where G(z) is the integrand appearing in equa-
tion (A1.42), contour interval is 0.5, n = 3/2, u = 4

with saddle points at the solutions to

(A1.43) 0 = (z) = u —(1 — e~z)
(jr Z Z

or equivalently,

(A1.44) 0 = uz - (1 + K) + ne~z.

As can be seen in Figures A1.10 and Al. l l , the saddle points of G(z)
have a more complicated structure than those analyzed in Section A1.7.
Fortunately, the task of locating them is much easier in this section.

From this point on, we assume that u > 0. The design of our path
is simpler for the integral in (A1.42), where the path lies to the left of
the singularity at the origin, than it is for the integral in (A1.41), so we
analyze (A1.42) first. (See Figure A1.10).



252 Procedures for computing sieve functions

Equation (A1.44) has a family of solutions zm, m £ Z , satisfying

(A1.45) zm = 2nim + log(«) - log(l + K - uzm), 5Rzm < 0.

Note that Szo = 0. We can show that Szm = 2irm + O(l), with an
absolute, and small, O-constant, and that 5Rzm = — log(|m|) + 0(1) for
m >̂ K/U. For each m, zm is readily approximated by starting with the
initial approximation z = — log(l + 1/K), and then iterating the map

z H> 2irim + log(«) — log(l + K — uz)

until z fails to change by more than our desired error tolerance.

We evaluate the integral of (A1.42) along the path {zo, • • •, zM}, where
the terminal saddle point, zM, is chosen to bound the truncation error
arising from using a finite path. We do not ensure that the path passes
through these saddle points in the "optimal" direction as given by equa-
tion (A1.28). This casual approach is justified by the remarks following
equation (A1.45), which suggest that the saddle points lie along a nearly
vertical path; so in going straight from one saddle point to the next the
direction followed is not too far off the mark.

Before discussing the choice of zM, we turn to evaluation of the integral
in equation (A1.41), where the path lies to the right of the singularity at
the origin (see Figure Al. l l ) . This proceeds almost precisely as when
evaluating (A1.42), but with a different choice for the first few points
defining the path.

In addition to the saddle points zm, G(z) also has a saddle point at
z = z+, where z+ denotes the positive real solution of equation (A1.44).
We can easily show that 1/u < z+ < (K + l)/u, and we compute z+

by applying Mathematical FindRoot operator to equation (A1.44) with
the initial approximation of z = (K + l)/u. Letting z0+ := max(10, z+),
we use the three points

Zf;+ •— e z 0 + , u ^ « ^ / ,

as the first points along the path used when evaluating (A1.41). (We
arbitrarily bound z0+ by 10 to prevent the path from lying too far to
the right when u is very near 0.) Letting MQ := [zo+l /(2TT), we use
{zMo,..., zM} as the remaining points along our path. To summarize,
we use the path {z0+, z1+, z2+, ZMQ, ..., zM} when evaluating (A1.41).

To find our terminal point zM, without any rigorous error analysis we
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1 0

- 2

Fig. A l . l l . log10 \G(x + iy)\, where G(z) is the integrand appearing in equa-
tion (A1.41), contour interval is 0.5, n = 9/2, u = 2

observe that \G(zm)\ decreases nicely as m increases, and that

f>zm+ioo

G(z) di \G(zm)\\zm

On this basis, for a given truncation-error tolerance £ we simply choose
M to satisfy \G(zM)\ < e. (Note that M = 3 in Figure A1.10, while
M = 4 in Figure Al.ll.)

To choose between equations (A1.41) and (A1.42) as approximations
for jK(u), we recall that

(A1.46)

(A1.47)

jK(u) = +1), 0 < u < 1,

—jK(u) = njK(u)-KJK(u-l)
du

From equation (A1.46) we see that jK(u) is very small when u < 1
and K is large. In Chapter 14 we showed that jK(u) increases to 1 as
u —> oo, and equation (14.41) implies that jK(n) TH 1/2.
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It follows that when u is much smaller than K then jK (u) is small—very
small when K is large. In this case the two terms in equation (A1.42)
must nearly cancel, and we would need to evaluate the integral in (A1.42)
to very high accuracy to get an acceptable relative-error bound in our
approximation of jK (u).

On the other hand, when u is much larger than n then the integral
term in (A1.42) is near 0, and need only be found with modest accuracy
to estimate jK(u) accurately. For these reasons, we use equation (A1.41)
when K < u and equation (A1.42) when n > u. Since it is readily
computed, we always use equation (A1.46) to find jK(u) when u < 1,
except when, for testing purposes, we wish to compare the results from
our contour integral representations against (A1.46).

Instead of our contour integral formulas, when u > 1 we may use
NDSolve to solve equation (A1.47): the defining delay differential equa-
tion for jK(u). Since we save the InterpolatingFunction returned by
NDSolve, this approach has the advantage that, once jK{u\) has been
computed, given 1 < u < u\ we can find jK(u) more rapidly than by
evaluating a contour integral.

However, we find that the solution returned by NDSolve tends to drift
away from the correct value when u > K, particularly when K is large.
For this reason, to balance the goals of speed and accuracy, only when
u £ Z do we use a contour integral formula to find jK(u). Otherwise,
we apply NDSolve to compute jK(u) over the interval [u] < u < [u] + 1.
Note that we use the contour integral value for jK([u]), and this initial
condition for NDSolve reduces the potential for drift in our solution.

A1.9 Computing aK and j3K

To compute aK and (3K we use Mathematical FindRoot operator to solve
the system of equations

(P,p)_ (e(a)-2 = 0,

(A1.48) al-2K(Q,q)K(a) = 0,

where (P,p)_K(u) and (Q,q)R(u) are approximated by applying Mathe-
matical NIntegrate operator to their defining expressions as implied by
equation (A1.3). FindRoot requires initial approximations to aK and /3K,
which we interpolate (or extrapolate) from an InterpolatingFunction
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which was "bootstrapped" from a few values calculated using the soft-
ware developed by Ferrell Wheeler [Whe88].

Equation (A1.48) includes the scaling factor a1~2K since FindRoot
is not well suited to solving two equations in two unknowns when the
magnitude of acceptable error differs greatly between the two equations.
For example, with K = 10, we calculate that

(P,p)_BK) - 2 « 5.32463 • 1(T13,

a i - 2 K ( Q , < 4 K ) « 2.99870 -lO"15,

while the latter inner product when unsealed is computed as

(Q,q)K(aK)^ 8.97906 • 1013.

Al.10 Weighted-sieve computations

In Chapter 11 we used a weighted sieve to put lower bounds on r for
which almost-prime numbers, with at most r prime factors, occur fre-
quently in a sequence A. In Theorem 11.1 we introduced the function
N{u, v; K, /u.o, T) which serves as such a lower bound.

To implement this function, we change variables in the integral of
equation (11.16), which defines N(u,v; K,/IO,T). Letting s i—> 1/t gives

N(U,V;K,HO,T)

(A1-49) K r'u . , / u \ dt
1 + / FK{Tv-t)(l--t)—.

V v ) t
1 + / F K { T v t ) ( l t )

We use NIntegrate to approximate the right side of (A1.49), taking
care not to integrate across the points t where

TV - t e Z U (aK + Z) U {/3K + Z),

at which the integrand has bad differentiability properties. (See the
discussion at the end of Section A 1.4.)

Of course, to get the best possible lower bound in Theorem 11.1,
we want to approximate the minimal value achieved by N{u, v; K, fio, r)
when u and v are free to vary (subject to the conditions imposed by that
theorem). That is, we want to approximate

(A1.50) Nmin{K,fi0,T) := min N{u,v; K, /XO,T).

V>L/T
1/T<U<V
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Fig. A1.12. Region determined by the constraints of Theorem 11.1; truncated
at v = 40. K = 2, no = 6, T = 1/2

The constraints on u, v in equation (A1.50) define a triangular re-
gion, truncated to satisfy v > (3K/T and unbounded as v —>• oo. (See
Figure A1.12.) Since Mathematica is not well-suited to search non-
rectangular regions for a root or minimum, we reparametrize u in terms
of a variable v, setting

(A1.51) u = u{v) := —
T

so that v — log(« — 1/T) — log(« — 1/r). Figure A1.13 shows a contour
plot oiN{u{y),v\K,\iQ,T).

With this change of variable, we can restate equation (A1.50) as

(A1.52) Nmin(K,fi0,T) = min min N{U{V),V;K,^LO,T).
V>(3K/T 0<^<OO

To approximate the values of v and v that achieve the minimum in
equation (A1.52) we apply Mathematical FindMinimum operator, using
some simple estimates to bound the region searched and to find initial
estimates for the solutions. As of this writing, our implementation of
•Wmin is under development, so we refer the reader to the user's guide
that accompanies our package for further details on our procedure.
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35 -

15

Fig. A1.13. N(u(v),v; K,fj,o,r), where u{v) satisfies equation (A1.51). The
white dot indicates the approximate location where N(u(v),v; n, no,r) is min-
imal, K = 2, (to = 6, r = 1/2
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