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Preface

This RATS handbook accompanies the second edition of Introductory Econo-

metrics for Finance (Cambridge University Press, ISBN: 9780521694681). The

first edition of Introductory Econometrics for Finance incorporated a discus-

sion of the use of the RATS software into the text, but the inclusion of

additional material in the second edition has necessitated the switch to

a separate RATS handbook to ensure that the text remains at a manage-

able length. It is not intended as a stand-alone textbook and it will not

repeat all of the theory, background and case studies from Introductory

Econometrics for Finance. Rather, it is intended to illustrate, using numer-

ous examples with real data taken from that book, how RATS can be used

to solve many problems of interest in empirical finance. The focus is on

replicating the examples and not on demonstrating the full functionality

of the software. Thus this handbook should be of benefit to anyone who

wishes to learn how to use RATS, and it assumes no prior exposure to

the software. While the illustrations here focus on topics in finance, most

of the methodology is generic and hence it may be usefully employed in

other areas of application such as economics, business or real estate.

As for the first edition of the main textbook, output from the RATS

package is included in Courier 9-point font in a box, while instructions

for readers to type, or actions that they must follow, are written in bold

type. All of the sets of instructions developed in this book together with

the data are available on the Cambridge University Press web site at

www.cup.cam.ac.uk/brooks

I am grateful to Tom Doan and Tom Maycock at Estima for their support

and for their assistance with my programs, and to Tom Doan for many

useful comments on an earlier draft manuscript. Naturally, I alone bear

responsibility for any remaining errors.

xi



xii Preface

About Introductory Econometrics for Finance

Now thoroughly revised and updated including two new chapters in its

second edition, this best-seller was the first textbook to teach introductory

econometrics to finance students. The text is based primarily on intuition

rather than formulae, giving students the skills and confidence to estimate

and interpret models, while having an intuitive grasp of the underlying

theoretical concepts.

The approach, based on the successful courses I have taught at the

ICMA Centre, one of the UK’s leading finance schools, and the Cass Busi-

ness School, London, ensures that the text focuses squarely on the needs

of finance students. The book assumes no prior knowledge of economet-

rics, and covers important modern topics such as time-series forecasting,

volatility modelling, switching models, limited dependent variable and

panel approaches, and simulations methods. It includes detailed exam-

ples and case studies from the finance literature. Sample instructions and

output from EViews are presented as an integral part of the text. Advice

on planning and executing a project in empirical finance is also given.

About the author

Chris Brooks is Professor of Finance at the ICMA Centre, University of

Reading, UK, where he also obtained his PhD. He has published over 60

articles in leading academic and practitioner journals including the Jour-

nal of Business, Journal of Banking and Finance, Journal of Empirical Finance,

Review of Economics and Statistics, and the Economic Journal. He is author of

three Cambridge books in addition to this one and is an associate editor

of a number of journals including the International Journal of Forecasting

and the Journal of Business Finance and Accounting. He has also acted as con-

sultant for various banks and professional bodies in the fields of finance,

econometrics and real estate.



1
Introduction

1.1 Description

‘RATS’ stands for Regression Analysis of Time-Series. Although, as the title

suggests, the program was initially developed for the estimation of time-

series econometric models, recent versions of the software have a wide

range of features which would be of use in the analysis of cross-sectional

or panel data.

RATS is an econometric modelling package that enables the researcher

to transform, analyse and estimate models for actual data, and also to

conduct simulations using artificial data created in almost any way he

chooses. The advantage of RATS over more traditional programming lan-

guages is that you do not have to ‘re-invent the wheel’ since most of the

tasks that are of interest will be available by issuing just a couple of

commands. Thus, RATS provides a useful bridge between simple but in-

flexible packages which are entirely menu driven, and full programming

languages (such as FORTRAN or C/C++), which would require you to code

up even OLS regressions yourself. The advantage of instruction-based pro-

grams such as this is that they make it quick and easy to replicate a set of

results or to repeat the same analysis using a large number of different

series; both would be more troublesome and time-consuming with pure

menu-driven packages.

Recent versions of RATS have made the software even more powerful

and yet simpler for novices to get to grips with via the use of ‘Wizards’,

which will be described in detail below. Over the past 12 years, I have

used RATS for much of my empirical research, and have co-authored two

software reviews that feature RATS and focus on the estimation of models

for volatility -- Brooks et al. (2001, 2003).1

1 See Chapter 8 of this handbook for a discussion of how to estimate such models.

1
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While this book has made use of version 7 of RATS throughout, most

of the procedures are also available in older versions of the software. The

discussion below assumes that the reader has obtained a licensed version

of the package and has loaded it onto a computer. While there are broadly

four platforms for RATS (Windows, Mac, UNIX and a command prompt

from a PC), this guide assumes throughout that WinRATS, the Windows

version, is used. In all three cases, the researcher is required to write a

set of instructions and to run them. The interfaces are also similar.

1.2 RATSDATA

RATSDATA is a simple-to-use, menu-based program for handling data. It

can be used to import data into files which have a special RATS format

with a ‘.RAT’ suffix, and also to export data from RATS to another for-

mat or to print or plot variables in the dataset. A principal advantage

that previously existed in converting data files to RATS format was the

increase in speed of reading and writing the data; now that computers

are faster, this hardly matters and many of the features of RATSDATA are

incorporated into RATS itself. Hence this book will not use RATSDATA or

discuss it further.

1.3 Accomplishing simple tasks in RATS

There are essentially two ways to run programs in RATS: interactively or

in batch mode. To use interactive mode, you write the instructions in the

RATS Editor and RATS will execute each line after you have typed it and

hit <ENTER>. Using batch mode involves writing all of the commands

together and then running them in a single go. Any text editor could be

used to write the instructions, including the RATS Editor, and there are

also various ways to run them. These will be discussed in detail below.

1.4 Further reading

Readers who wish to learn more about the functionality of the software

should consult the RATS User Guide, which is a highly detailed but sur-

prisingly readable description of the features and working of RATS, in-

cluding numerous examples and technical details. Enders’ (2003) RATS

Programming Manual is also useful for those already familiar with the soft-

ware and who want to enhance their knowledge of how to write RATS

programs. Finally, the RATS Reference Manual provides an alphabetical list-

ing of all of the instructions and functions available in RATS. All three of
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these are distributed electronically with the software and hence should

be freely available to all readers.

1.5 Other sources of information and programs

The Estima web site (www.estima.com) provides links to a long list of RATS

procedures, which make the implementation of many complex tasks very

easy. Some of these procedures will be described in subsequent chapters

of this book.

Estima’s site also includes a link to the RATS web-based discussion forum

(www.estima.com/forum), where users can post or respond to questions

about aspects of the software or programs, and there is also an e-mail-

based discussion group, to which users can subscribe and make postings.

1.6 Opening the software

To load RATS from Windows, choose Start, All Programs, WinRATS 7.0 and

again WinRATS 7.0. An empty window called ‘NONAME00.TXT{io}’ will be

opened. {io} denotes ‘input-output’, i.e. this file is both an input file (for

writing instructions and telling RATS what to do) and an output file (for

RATS to write the results in). The screen will appear like the one below.

Screenshot 1.1

However, it is often desirable to have two separate files open on the

screen at the same time -- an input file where the program will be written

and an output file where the results will be displayed. To achieve this,
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click on the File menu and choose New. A second file will be displayed

on the screen called ‘NONAME01.TXT’. Go into the Window menu and

choose ‘Use for Output’ -- you will notice that the name has changed to

‘NONAME01.TXT{o}’ as shown on the left-hand side of the file tab. This

will be the output file that the results will be placed in. If you look at the

first file, the name has now changed to ‘NONAME01.TXT{i}’ -- this is the

program file where the commands will be written.

It is a good idea to save the files frequently. With RATS, you must save

the input and output files separately (unless of course you do not want

to save the output). The way to do this is to go into the File menu and

choose ‘Save As’. Note that RATS will then be saving in a file the display

window that is on the top, which is the output window. Assuming that

you want to save the input file instead, click Cancel and select the tab of

the input window underneath. Click ‘File’ and ‘Save As’ again and save

the open file ‘NONAME00.PRG{io}’ as XX.prg. Replace ‘XX’ with any file

name you consider appropriate. It is usually best to keep file names to a

maximum of eight characters.

Finally, to have a nice window display so that you can see both the

input and output files at the same time, click on the | I
o button. This is

equivalent to going to the Window menu and choosing ‘Tile Horizontal’

rather than ‘Tile Vertical’. The former will put the input window above

the output window, while the latter will put the input window on the

left and the output window on the right. The screen should now appear

as shown below.

Screenshot 1.2
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The 12 icons (buttons) that appear near the top of the window by default

have the following functions (which are also available by clicking on the

appropriate menu item):

Open file

Save file

Print the contents of the active window (the window on top)

Function look-up, which opens up the functions wizard

Use this window for input

Use this window for output

Tile windows horizontally (one below another)

Tile windows vertically (side by side)

Edit -- select all

(RUNNING PERSON) Runs the selected instructions, or the

instruction on the cursor line, if any (equivalent to hitting

<ENTER>). Disabled if the active window is not the input

window.

Ready/Local (R/L) -- this is a toggle switch. Clicking on this

icon switches RATS from Ready to Local (L/R) mode and

clicking again would switch RATS back to (R/L). Instructions

are keyed in when RATS is in local mode, and clicking on

the L/R button will then enable the program to be run by

clicking on the RUNNING PERSON. The RUNNING PERSON

button is unavailable when RATS is in local mode. The R/L

button is disabled if the active window is not the input

window.

Clear program -- this clears the memory.

1.7 Types of RATS files

The convention is to name program files (that is, files containing RATS

instructions) with the extension ‘.PRG’ or, less commonly, ‘.RTS’ and the

output files with the extension ‘.OUT’. It is usually best to follow this

convention so that the file type is obvious from the extension. In the RATS

directory, there are also files with the extension ‘.SRC’. These are special

pre-programmed sets of instructions, known as RATS procedures, which can
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be called from within a program file to do certain tasks (e.g. testing for a

unit root), rather like sub-routines in a programming language. Note that

both input and output files are always saved as raw text (i.e. ASCII format),

whatever they are called.

1.8 Reading (loading) data in RATS

Before performing any formal analysis, the data must be loaded into the

software. Suppose that the data consist of monthly observations on Voda-

fone’s Share Price (Vodafone) and the FTSE All Share Price Index (FTALL)

from November 1984 to February 2007. Suppose also that the data file

is in ASCII (i.e. raw text) format, has two columns of length 268 ob-

servations and is called THEDATA.DAT (initially saved in the WinRATS

Directory).

The CALENDAR instruction will be the one that will read in the data.

In previous versions of RATS, it was necessary to type these instructions

manually in an editor, but now the Data Entry Wizard can be employed

to do the job. The following example will show how to achieve that but

first, various usages of CALENDAR are highlighted. The basic structure is

CALENDAR(frequency) start date e.g.

CALENDAR(M) 1998:4

would be used for monthly data starting in April 1998;

CALENDAR(Q) 1980:1

would be used for quarterly data starting in quarter 1, 1980;

CALENDAR(7) 2002:8:16

would be used for daily data with 7 days per week starting on 16 August

2002;

CALENDAR(A) 1985:1

would be used for annual data starting in 1985. With annual data, the

number after the colon must always be 1.

Note that this command, like most others in RATS, can be abbreviated

to its first three letters, CAL, or the whole command can be used.
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The ALLOCATE command works with CALENDAR and tells RATS when

the sample period finishes. For example,

ALLOCATE 1999:10

would be used for data finishing in October 1999;

ALLOCATE 2007:10:30

would be used for data finishing on 30 October 2007.

Note that it is also possible to use numbers rather than dates with

the ALLOCATE command. For example, if the series in the data file each

contained 180 observations, it would be possible to use

ALLOCATE 180

Now that the arrays to store the data have been established with the

CALENDAR and ALLOCATE instructions, the OPEN command can be used

to open a new or existing file. For example

OPEN DATA C:\WINRATS\THEDATA.DAT
DATA(FORMAT=FREE,ORG=OBS) / VODAFONE FTALL

In this case, RATS opens the data file THEDATA.DAT that has been saved

in the WINRATS directory on the C drive. Note that if the data file is saved

elsewhere, you would have to specify the correct path, e.g. for data on a

pen drive attached to a USB port that was named E:\

OPEN DATA E:\THEDATA.DAT

DATA reads data series from an external file into the working memory.

The general ‘syntax’ (form of the command) is

DATA(options) start end list of series

where ‘ start end’ is the range of entries to read and ‘ list of series’ is the list

of series names for RATS to read from the file. The following options are

available on how the data are arranged in the file:

ORG=[VAR]/OBS: this tells whether the data are blocked horizontally by

series -- i.e. in rows (ORG=VAR) -- or by observations -- i.e. in columns

(ORG=OBS). Note that the term appearing in square brackets is

always the default.
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Organised by Observation implies that the series appear in separate

columns:

X1 X2

100.0 405.0

105.3 905.2

103.9 630.1

206.7 890.2

200.1 332.2

Organised by Variable implies that the series occur one at a time in

blocks:

X1 100.0 105.3 103.9 206.7 200.1

X2 405.0 905.2 630.1 890.2 332.2

FORMAT=[FREE]/PRN/WKS/DBF/RATS/XLS ‘(FORTRAN Format)’

This tells RATS which format to use for your data set. For instance, if

your data are in an ASCII (text) file, then you would use FREE and if

your data are in a Lotus worksheet, use WKS, Microsoft Excel (XLS),

etc. For text-based files, RATS assumes that there are no series labels

(e.g. X1 or X2), so that the data file contains only data and no strings

of row or column headers.

Putting this all together, the four lines of code below will load the data

and assign the name VODAFONE to the first column of observations and

FTALL to the second for monthly data starting in November 1984 and

finishing in February 2007.

CALENDAR(M) 1984:11
ALLOCATE 2007:02
OPEN DATA C:\WINRATS\THEDATA.DAT
DATA(FORMAT=FREE,ORG=OBS) / VODAFONE FTALL

1.9 Reading in data on UK house prices

Open RATS version 7 and click File, New. Then click on the ‘I’ icon ( ) to

use this as the input window, so that the other window will become that

to receive the output. Next, tile the windows horizontally by clicking the

‘I|O’ icon. It is probably easier to be able to write several lines of code and

then to run them in a batch rather than allowing RATS to run each line

after we hit <ENTER>. Your screen should probably look like the one in

Screenshot 1.3.
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Screenshot 1.3

Note in particular that the ‘R/L’ button has R first and the running man

icon is in darkened blue typeface on the screen. This means that RATS is

in ‘ready’ or ‘run’ mode and will run instructions line by line. To switch

this off, click the ‘R/L’ button. This will switch RATS to ‘local’ mode, where

R/L will become L/R and the running man will be in grey, denoting that

this button is now not operational. The top left part of the screen will

now appear as

Screenshot 1.4

RATS is now in a position to be able to write a set of instructions

together and then they will be run in a batch.

The first task is to read in (import) a series of UK average house prices

from a Microsoft Excel spreadsheet called ‘UKHPR.XLS’. There are 197

monthly observations running from January 1991 to May 2007. From in-

side RATS, click on Data and then Data (Other Formats). You will then be

asked to find the directory that the file has been placed in and the name

of the file. Make sure you change the file type from ‘Text Files (∗.∗)’ to

‘Excel Files(*.XLS)’. Once you have done this, click Open and the ‘Import

Format’ Screenshot 1.5 will be observed.



10 RATS Handbook to Accompany Introductory Econometrics for Finance

Screenshot 1.5

RATS has peeked inside the file and determined how the data are or-

ganised. Usually, it will do this correctly, but just to check: the data are

indeed organised in columns and there are two columns of data to pro-

cess (including the dates column). There are no header lines before the

series labels and no footer lines, so click OK. Then the ‘New Series Date’

window will appear.

Screenshot 1.6

RATS has again peeked inside the file and correctly identified that

we have monthly time-series data, so verify again that the window is
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completed correctly and click OK. RATS will then write and run the fol-

lowing lines of code:

OPEN DATA ‘C:\Chris\book\RATS handbook\UKHPR.xls’
CALENDAR(M) 1991
ALL 2007:05
DATA(FORMAT=XLS,ORG=COLUMNS) 1991:01 2007:05 price

Note that RATS has listed only one variable, ‘price’, since it is not necessary

to import the dates column because RATS can date the observations itself.

There are no missing data points in this series, but if there were, RATS

would code them as %NA. Note also that the column headers (variable

names) in the spreadsheet must not contain any spaces, so ‘HOUSEPRICE’

is acceptable but ‘HOUSE PRICE’ is not.

1.10 Mixing and matching frequencies and printing

RATS permits the integration of various types of data (daily, weekly,

monthly, quarterly, annual, etc.). It is also possible to convert the fre-

quency of the data, for example, monthly to quarterly, quarterly to weekly

and so on. This is achieved using the COMPACT (for switching to lower

frequency) or DISTRIB and INTERPOL (for switching to higher frequency)

procedures -- see the RATS 7 User Guide, p. 77.

To look at the data within RATS, it would be possible to use the PRINT

command. Type the following command after the four lines loading the

data above:

PRINT / PRICE

This will display all the data entries of the house price series together

with their dates. It is important when using any software package in an

application that involves reading in data, to print at least a sub-sample

of the observations to ensure that they have been read correctly by the

program. Obviously, if they have not, any results obtained thereafter will

be utterly meaningless. Another easy way to see whether the data as a

whole look plausible is to use the TABLE instruction (simply type TABLE

on its own). The name, number of observations, mean, standard error,

minimum and maximum will be displayed for all series in RATS’ memory.

1.11 Transformations

Variables of interest can be created in RATS by typing in the formulae

using the ‘SET’ command. Suppose, for example, that a time-series called
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Z has been read into the software. It can be used in the following ways so

as to create new variables A, B, C, etc.:

SET A = Z/2 Dividing

SET B = Z*2 Multiplication

SET C = Z**2 Squaring

SET D = LOG(Z) Taking the logarithms

SET E = EXP(Z) Taking the exponential

SET F = Z{1} Lagging the data

SET G = LOG(Z/Z{1}) Creating the log-returns

Note that it is also possible to create a series D, which is the log of Z, as

LOG Z / D

Other functions that can be used in the formulae include: abs, sin, cos, sum,

etc. Some of these additional functions will be described subsequently.

Note the spaces that must be placed on either side of the equals signs

in the SET command. These are necessary for the program to work. The

SET command modifies or transforms the whole series at the same time.

Modifying a single observation on a variable is accomplished using the

COMPUTE command (or COM for short). For example, the line

COMPUTE lxx = LOG(x)

would take the log of a single number x and call it lxx.

For the house price series above, we might be interested in obtaining

the simple percentage returns. To get these, type the following line into

the input window after the print command:

SET DHP = 100*(price-price{1})/price{1}
If, in the transformation, the new series is given the same name as the

old series, then the old series will be overwritten.

1.12 Computing summary statistics

To get the summary statistics of a series, just type in a command such as

STATISTICS PRICE
STATISTICS DHP

This will give the number of observations, the sample mean, variance,

skewness, kurtosis and their respective significances for the raw house

price series and the percentage changes. We can also use the option

‘FRACTILES’ by typing

STATISTICS(FRACTILES) PRICE
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which will show the main fractiles of the distribution of a series (the 1st,

5th, 10th, 90th, 95th, etc. percentiles and the median).

We should now have a set of instructions to read in the data, print

the price series, construct a percentage returns series, and compute sum-

mary statistics for both the raw prices and the returns. To run this pro-

gram and get the output, ensure that the input window is active, then

click the L/R button to toggle switch RATS back to run mode. The run-

ning man icon will now be blue again. Then click the ‘select ALL’ icon

to highlight the entire set of instructions and click on the running man

icon.

Now in the output window (Box 1.1) we would first see the printed

series followed by the summary statistics for the house price series and

their simple returns as described above (with vertical dots added by me

to denote that not all entries are shown to save some space).

Box 1.1

ENTRY PRICE

1991:01 53051.7211063

1991:02 53496.7987463
...

...

2007:04 180314.1673158

2007:05 181584.4999830

Statistics on Series PRICE

Monthly Data From 1991:01 To 2007:05

Observations 197

Sample Mean 88614.841417 Variance 1787641787.70088

Standard Error 42280.513096 of Sample Mean 3012.361830

t-Statistic (Mean = 0) 29.417064 Signif Level 0.000000

Skewness 0.837734 Signif Level (Sk=0) 0.000002

Kurtosis (excess) -0.833278 Signif Level (Ku = 0) 0.019021

Jarque-Bera 28.741849 Signif Level (JB = 0) 0.000001

Statistics on Series DHP

Monthly Data From 1991:02 To 2007:05

Observations 196

Sample Mean 0.636252 Variance 1.313976

Standard Error 1.146288 of Sample Mean 0.081878

t-Statistic (Mean = 0) 7.770755 Signif Level 0.000000

Skewness 0.036939 Signif Level (Sk = 0) 0.834052

Kurtosis (excess) 0.173202 Signif Level (Ku = 0) 0.626851

Jarque-Bera 0.289564 Signif Level (JB = 0) 0.865211
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We can verify that indeed RATS has correctly read the raw price series.

The interpretation of each of the terms in the summary statistics output

is discussed in Introductory Econometrics for Finance, Chapter 4. It makes little

sense to try to interpret the descriptive statistics for the raw price series

because it is trending (non-stationary). Note that the number of observa-

tions for the returns series is one fewer because the first observation (Jan-

uary 1991) has been lost when constructing the lagged value. The mean

monthly return is 0.636%, with a variance of 1.31%. The series is positively

skewed and leptokurtic, but in neither case significantly so. Therefore, the

Jarque--Bera test statistic for normality does not exceed the critical value.

1.13 Plots

RATS has two instructions for graphics:

● GRAPH produces time-series plots

● SCATTER produces scatter (x versus y) plots.

The syntax for producing the plots is

GRAPH(options) number hfield vfield
# series start end symbol choice

number : number of series to graph (maximum being 20).

hfield vfield : in conjunction with the HFIELDS and VFIELDS options

of SPGRAPH), these parameters allow you to put multi-

ple graphs on a single page.

series : the series to be graphed.

start end : the range to graph.

symbol choice : selects the line type, pattern or colour that RATS uses

for series.

options : include, for example, Dates (label entries with dates),

Style (style of graph, Grid (grid series), Height (graph

height), Key (location of key), Max = (value of upper

boundary), Header (header string for graph), etc.

SCATTER(options) number of pairs hfield vfield
# x-series y-series start end symbol choice

pairs : number of pairs of series to plot against each other

(RATS can graph up to 20 pairs with a single instruc-

tion).

x-series : the series on the horizontal axis.

y-series : the series on the vertical axis.
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Customised graphs can easily be incorporated into other Windows appli-

cations using copy-and-paste, or by exporting as Windows metafiles.

There now follow some sample instructions for producing plots using

RATS.

1 To produce a graph (time-series plot)

GRAPH(header= Plot of VODAFONE and FTALL SHARE Prices ,hlabel=

Sample Period ,vlabel= Share Price ,key=upleft) 2

# VODAFONE

# FT

Note that while the GRAPH command spills over onto a second line

here, it must appear on a single line in the RATS program, as will be

discussed in the following paragraph.

2 To produce a scatter diagram

SCATTER(Style=symbol,Header= BTvs.FT ,Hlabel= FT ,Vlabel= BT ) 1

# VODAFONE FT

There is also a Wizard for constructing graphs. Click Data, Graph and the

following window will appear.

Screenshot 1.7
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The variable(s) to be plotted is(are) selected from the series list by click-

ing ‘<< Add <<’. Note that it is also possible to construct a two-scale

graph, where one line is overlaid with another. In the ‘Style’ box, we can

choose the type of graph we would like, and by choosing the appropriate

options we can set the x- and y-axis labels, and whether a key and/or title

are used. Suppose that we wished to generate a plot of the UK house price

series from before. Clicking OK with the boxes completed as above would

generate the following code:

GRAPH(STYLE=LINE, $
HEADER= Time-series Line Graph of Average House Prices , $
VLABEL= Price, GBP ,HLABEL= Month , KEY=UPLEFT) 1
# PRICE

I have added the dollar signs ($) at the end of the first and second lines.

A dollar sign is used by RATS to denote an instruction that spills over

onto the following line, and hence the first three lines in the code sample

above are all part of a single instruction. If we did not use the dollar sign,

RATS would think that the word ‘VLABEL’ is a command like ‘STATISTICS’

or ‘GRAPH’ and so it would cause an error message.

To do the converse in RATS, i.e. to include more than one instruction on

a single line, requires the separation of the commands with semicolons,

e.g.

STATISTICS ABC; SET X = Y

Suppose that we also wished to construct a scatter plot of the price series

against the returns.2 There is no Wizard for this in RATS version 7.0,

although there will be one in version 7.10. Type the following lines into

the input window with the other instructions to produce the scatter plot:

scatter(Style=symbol,Header= House prices against house price returns , $
Hlabel= Price ,Vlabel= DHP ) 1
# PRICE DHP

Executing these two sets of instructions by running the program would

generate Figures 1.1 and 1.2. By making the window containing the

graph active (i.e. by clicking on it), there are a number of options. First,

the graphs can be saved as encapsulated postscript files or as Windows

metafiles by clicking on the disk icon. Second, the graphs can also be

printed by clicking the print icon, or by selecting Edit and Copy, the

2 This probably makes little sense to do but we have only two series as examples so far

and hence nothing else to plot!
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Figure 1.1

Time-series line

graph of average

house prices

Figure 1.2

House prices

against house price

returns

graphs can (separately) be copied to the Windows clipboard for pasting

into another package such as Microsoft Word.

There is also an instruction, SPGRAPH, for constructing a panel con-

taining several graphs together. For example, for plotting six graphs with

three on the left and three on the right, the syntax would be

SPGRAPH(HFI=2,VFI=3)

[insert usual instructions to generate each of the six individual component

graphs]

SPGRAPH(DONE)

1.14 Comment lines

When writing a complex set of instructions, it is often useful to be able

to add comments to explain which sections do what in the code. This is

useful not only for anyone else who might want to examine and possibly

modify code that you have written but also if you want to come back to

your own code after some time has elapsed! In RATS, comment lines (that

will be skipped over and not executed) start with an asterisk, *, e.g.

* This line will not be executed
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It is also possible to include a number of lines within a single comment

statement using /* to open the comment block and */ to close it, e.g.

/*
This is
a comment
block */

1.15 Printing results

Both the Input and Output files (stored as text) can be printed by going

into the ‘File’ menu and choosing ‘Print’. These files can also be opened

in a word processor and printed from the latter.

1.16 Saving the instructions and results

When exiting the program, you will be prompted with ‘Save Changes

Before Close?’, in which case you choose ‘Yes’. This will save changes to

both the instructions file and the results. It is a good idea to periodically

re-save the input window file to ensure that any changes or additions that

you have made are retained in the event of a crash.

1.17 Econometric tools available in RATS

There now follows a list of some of the most important and useful features

of RATS, taken from Estima’s web site, and with techniques covered in this

text highlighted in italics -- see the User Guide version 7.0 for further details.

● Graphics

● High-quality time-series graphics

● High-resolution X--Y scatter plots

● Dual-scale graphs

● Contour graphs

● Copy-and-paste graphs into other applications

● Export graphs to many formats, including PostScript and WMF

● Data Entry and Output

● Menu-driven ‘Data Wizard’ for reading in data

● Reads and writes Excel XLS, WKS, ASCII, DIF, PRN, DBF, and other data files

● On-screen data editor

● Can handle virtually any data frequency, including daily, weekly, intra-day and

panel data
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● RATS data file format is fast and easy, supports all frequencies and

allows you to store series of different frequencies on the same file

● Easy to convert data to different frequencies

● Data transformations

● Flexible transformations with algebraic formulas

● Easy to create trend series, seasonal and time-period dummies

● Specialised differencing and filtering operations

● Multiple regressions including stepwise

● Regression with autoregressive errors

● Heteroscedasticity/serial-correlation correction, including Newey-West

● Non-linear least squares

● Two-stage least squares for linear, non-linear and autocorrelated models

● ARCH and GARCH estimation (univariate and multivariate)

● Seemingly unrelated regressions and three-stage least squares

● Non-linear systems estimation

● Generalised Method of Moments

● Maximum likelihood estimation

● Constrained optimisation

● Built-in hypothesis testing

● Logit and probit models

● Censored/truncated data

● Fixed/random effects estimators

● Non-parametric regressions

● Kernel density estimation

● Robust estimation

● Recursive least squares

● State-space models

● Neural network models

● Linear and quadratic programming

● ARIMA models

● Transfer function/intervention models

● Vector autoregressions, including structural VARs

● Impulse responses, variance decompositions

● Error-correction models

● Kalman filter

● Spectral analysis

● Forecasting

● Exponential smoothing

● Simultaneous equation models (unlimited number of equations)

● Simulations with random or user-supplied shocks

● Forecast performance statistics
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1.18 Outline of the remainder of this book

The outline of this book tracks the same format as the chapters with

empirical material in the second edition of Introductory Econometrics for

Finance (specifically Chapters 2--12). Each chapter contains detailed exam-

ples of implementation in RATS.

● Chapter 2 introduces the classical linear regression model (CLRM) and

develops a hypothesis-testing framework.

● Chapter 3 continues and develops the material of Chapter 2 by generalis-

ing the bivariate model to multiple regression -- i.e. models with many

variables. The framework for testing multiple hypotheses is outlined,

and measures of how well the model fits the data are described.

● Chapter 4 examines the important but often neglected topic of diagnos-

tic testing. Testing for violations of the CLRM assumptions is described

along with plausible remedial steps.

● Chapter 5 presents an introduction to time-series models, commencing

by showing how the appropriate model can be chosen for a set of actual

data, how the model is estimated and how model adequacy checks are

performed. The generation of forecasts from such models is discussed,

as are the criteria by which these forecasts can be evaluated.

● Chapter 6 extends the analysis from univariate to multivariate models.

Estimation techniques for simultaneous equations models are outlined.

Vector autoregressive (VAR) models, which have become extremely pop-

ular in the empirical finance literature, are also covered. The interpre-

tation of VARs is explained by way of joint tests of restrictions, causality

tests, impulse responses and variance decompositions.

● The first section of Chapter 7 discusses unit root processes and presents

tests for non-stationarity in time-series. The concept of and tests for

cointegration, and the formulation of error-correction models, are then

discussed in the context of both the single equation framework of

Engle--Granger, and the multivariate framework of Johansen.

● Chapter 8 covers the important topic of volatility and correlation mod-

elling and forecasting. The class of ARCH (autoregressive conditionally

heteroscedastic) models is then discussed. Other models are also pre-

sented, including extensions of the basic model such as GARCH, GARCH-

M, EGARCH and GJR formulations. Multivariate GARCH models are de-

scribed.

● Chapter 9 discusses testing for and modelling regime shifts or

switches of behaviour in financial series. This chapter introduces the

Markov switching approach to dealing with regime shifts. Threshold
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autoregression is also discussed, along with issues relating to the esti-

mation of such models.

● Chapter 10 focuses on how to deal appropriately with longitudinal

data -- that is, data having both time-series and cross-sectional di-

mensions. Fixed and random effects models are elucidated and distin-

guished.

● Chapter 11 describes logit and probit models that are appropriate for

situations where the dependent variable is not continuous. Readers will

learn how to construct, estimate and interpret such models.

● Finally, Chapter 12 presents an introduction to the use of simulations

and bootstrapping in econometrics and finance. The reader is shown

how to set up a simulation, and examples are given in options pricing

and financial risk management to demonstrate the usefulness of these

techniques.



2
The classical linear regression model

In very general terms, regression is concerned with describing and eval-

uating the relationship between a given variable and one or more other

variables. More specifically, regression is an attempt to explain movements

in a variable by reference to movements in one or more other variables.

To make this more concrete, denote the variable whose movements the re-

gression seeks to explain by y and the variables which are used to explain

those variations by x1, x2, . . . , xk . Hence, in this relatively simple set-up, it

would be said that variations in k variables (the xs) cause changes in some

other variable, y. The case where a single explanatory variable x seeks to

explain changes in a variable y is known as the bivariate regression model

and would be written:

yt = α + βxt + ut (2.1)

where ut denotes a random disturbance term and the subscript t(= 1,

2, 3, . . .) denotes the observation number. This chapter demonstrates how

to conduct bivariate regressions and simple hypotheses in RATS.

2.1 Hedge ratio estimation using OLS

This section shows how to run a bivariate regression using RATS. The

example considers the situation where an investor wishes to hedge a long

position in the S&P500 (or its constituent stocks) using a short position

in futures contracts. Many academic studies assume that the objective of

hedging is to minimise the variance of the hedged portfolio returns. If

this is the case, then the appropriate hedge ratio (the number of units

of the futures asset to sell per unit of the spot asset held) will be the

slope estimate (i.e. β̂) in a regression where the dependent variable is a

time-series of spot returns and the independent variable is a time-series

of futures returns.

22
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This regression will be run using the file ‘SandPhedge.xls’, which con-

tains monthly returns for the S&P500 index (in column 2) and S&P500

futures (in column 3). As described in Chapter 1, the first step is to import

the data into RATS. To do this using the data Wizard, open RATS and

create an additional window, so that there is one for each of the input

and the output, then click the button to tile these windows horizontally.

Next, click Data and Data (Other Formats), then find the directory

where the Excel file is stored (also, don’t forget to change the ‘Files of

type’ box to ‘Excel Files(∗.XLS)’) and click Open. RATS will correctly identify

that there are 67 monthly data points and 3 columns, so there is no need

to change anything in the ‘Import Format’ dialog box -- just click OK.

When the ‘New Series Date’ dialog box appears, as before, RATS will have

correctly completed the required information so click OK again to choose

monthly data with 12 periods per year starting in February 2002. The

instructions to import the data will then be created automatically as

OPEN DATA ‘C:\Chris\book\RATS handbook\SandPhedger.xls’
CALENDAR(M) 2002:2
ALL 2007:07
DATA(FORMAT=XLS,ORG=COLUMNS) 2002:02 2007:07 Spot Futures

Verify that the data have been imported correctly by printing the two se-

ries and checking a couple of entries at random against the original Excel

file. The next step is to transform the levels of the two series into per-

centage returns. It is common in academic research to use continuously

compounded returns rather than simple returns. To achieve this (i.e. to

produce continuously compounded returns), type the lines

SET DSPOT = 100*LOG(SPOT/SPOT{1})
SET DFUTURES = 100*LOG(FUTURES/FUTURES{1})

Save the input file as ‘sandphedge.prg’ and don’t forget to continue to

save it at regular intervals to ensure that no work is lost! Before proceeding

to estimate the regression, now that we have imported more than one

series we can examine a number of descriptive statistics together and

measures of association between them. We could obtain the summary

statistics as described in Chapter 1, but in addition we can compute the

cross-correlations between the spot and futures returns series. To do this

using a Wizard, click Statistics and then Cross Correlations. Note that

for this Wizard to work properly, we need to have already run the initial

lines that read in the data, so that the series are in RATS memory and

appear in the list to choose from. Then complete the dialog box as in

screenshot 2.1.
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Screenshot 2.1

This will not only compute the correlation between the spot and futures

returns measured at the same time but also the correlation between rspott

with rfuturest−3 through to rfuturest+3 (the choice of ±3 lags is entirely

arbitrary). The instruction line that this Wizard would create is

CROSS(FROM=-3,TO=3) DSPOT DFUTURES

and running this yields the output in Box 2.1.

Box 2.1

Cross Correlations of Series DSPOT and DFUTURES

Monthly Data From 2002:03 To 2007:07

-3 -2 -1 0 1 2 3

0.07069 0.03735 0.93292 0.11585 0.18133 0.08728 -0.24367

Interestingly, the correlation is highest when the futures returns lead

the spot returns by one period (i.e. between dspott and dfuturest−1). This was

a useful exercise for it illustrates either that information is incorporated

into the futures market a whole month more quickly than it is in the spot

market or, perhaps more likely, that the data have not been measured

correctly. This issue is not pursued further here since the example is used

only to illustrate how to run the regression in RATS.

Now proceeding to actually estimate the regression equation, this can

be achieved either by writing the lines of code manually or by using a

Wizard. The core command for running a linear regression is of the form

LINREG(OPTIONS) DEPVAR / RESIDS
# INDEPVARS
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This will estimate a linear regression with dependent variable ‘depvar’

and a list of independent variables ‘indepvars’ (including a constant in

the list if appropriate) following the hash (#) symbol. There is a variety

of options that can be placed in parentheses after the linreg command,

some of which are discussed below. ‘/ resids’ will save the residuals in a

series called resids.

We want to run a regression of the spot returns on an intercept and the

futures returns, saving the residuals as a series called resids. To do this

using the Wizard, having run the program already to read in the data etc.,

click Statistics and then Regressions. The ‘Univariate Regressions’ Wizard

will then appear.

Screenshot 2.2

Complete the boxes as in the screen capture here for the dependent

variable and the explanatory variables by selecting them from the appro-

priate lists and then typing ‘RESIDS’ in the ‘Residuals To’ box. Finally, click

OK. It is possible to set a sample range so that only a sub-set of the avail-

able observations is used (for example, starting the estimation in January

2003), or we can use robust standard errors -- these will be discussed in

Chapter 4. RATS will create the additional lines of code

LINREG DSPOT / RESIDS
# Constant DFUTURES

And the standard linear regression output will be as in Box 2.2.
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Box 2.2

Linear Regression − Estimation by Least Squares

Dependent Variable DSPOT

Monthly Data From 2002:03 To 2007:07

Usable Observations 65 Degrees of Freedom 63

Centered R**2 0.013422 R Bar **2 -0.002238

Uncentered R**2 0.027383 T X R**2 1.780

Mean of Dependent Variable 0.4212026598

Std Error of Dependent Variable 3.5429920081

Standard Error of Estimate 3.5469548972

Sum of Squared Residuals 792.59600968

Regression F(1,63) 0.8571

Significance Level of F 0.35809281

Log Likelihood -173.51111

Durbin-Watson Statistic 2.116689

Variable Coeff Std Error T-Stat Signif

***************************************************************************

1. Constant 0.3633022795 0.4443688425 0.81757 0.41668454

2. DFUTURES 0.1238600322 0.1337898152 0.92578 0.35809281

The parameter estimates for the intercept (α̂) and slope (β̂) are 0.36 and

0.12 respectively. The coefficient estimate of 0.12 for β is interpreted as

saying that, ‘if x increases by 1 unit, y will be expected, everything else

being equal, to increase by 0.12 units’. Of course, if β̂ had been negative,

a rise in x would on average cause a fall in y. α̂, the intercept coefficient

estimate, is interpreted as the value that would be taken by the dependent

variable y if the independent variable x took a value of zero. ‘Units’ here

refer to the units of measurement of xt and yt . Since x and y are both

measured as percentage returns, the slope would imply that a change in

the futures return of one percentage point would lead to a 0.12 percentage

point increase in the spot return.

A large number of other statistics are also presented in the regression

output -- the purpose and interpretation of these will be discussed later

in this and subsequent chapters.

If we assume that the objective is to minimise the variance of the

hedged portfolio returns, we can now work out how effective the hedge

has been by comparing the variance of the spot returns with the vari-

ance of the residuals from the OLS regression that estimates the optimal

hedge ratio. To do this, type the following additional lines of code:
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STATS(NOPRINT) DSPOT
COM DSPOTVAR = %VARIANCE
STATS(NOPRINT) RESIDS
COM RESIDSVAR = %VARIANCE
COM FALL = 100*(DSPOTVAR-RESIDSVAR)/DSPOTVAR
DIS SPOT RETURN VARIANCE= DSPOTVAR $
, HEDGED PORTFOLIO VARIANCE= RESIDSVAR $
% FALL IN VARIANCE= FALL

The STATS (the short form and equivalent to the instruction STATISTICS)

commands will construct summary statistics (for the spot returns and

residual series respectively). The NOPRINT option that is used in parenthe-

ses will mean that these statistics are calculated but not printed to the

output file. When a command is run, such as STATS or LINREG, RATS will

automatically calculate a number of quantities and these will be stored

as scalars with names starting in ‘%’. So %MEAN will store the mean of a

series, %VARIANCE will store the variance, %NOBS will store the number

of observations, %NDF will be the number of degrees of freedom, %NREG

is the number of regressors, %RSQUARED is the R2, and so on.

COM DSPOTVAR = %VARIANCE will construct a new scalar, DSPOTVAR,

that takes the variance of the DSPOT series that was created using the

STATS command preceding it. COM is short for COMPUTE and is used

for the calculation of scalar quantities and not for series (where the SET

command would be used). The next line, ‘COM FALL = . . . ’ calculates the

percentage change in the variance when we move from the unhedged

spot position to the hedged portfolio. Finally, the DIS command (short for

DISPLAY) will print the listed quantities to the output file, with all of the

text enclosed inside being displayed in the output window exactly as it

is written. The output from this set of instructions is as shown in Box 2.3.

The variance of the hedged portfolio returns is 12.38, compared with

12.55 for the unhedged spot position, a fall of only 1.34%. Thus, at least

on this measure, the hedge has performed poorly.

Now estimate a regression for the levels of the series rather than

the returns (i.e. run a regression of spot on a constant and futures) and

examine the parameter estimates. The return regression slope parame-

ter estimated above measures the optimal hedge ratio and also measures

the short-run relationship between the two series. By contrast, the slope

Box 2.3

SPOT RETURN VARIANCE= 12.55279 , HEDGED PORTFOLIO VARIANCE= 12.38431

% FALL IN VARIANCE= 1.34217
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parameter in a regression using the raw spot and futures indices (or the

log of the spot series and the log of the futures series) can be interpreted

as measuring the long-run relationship between them. Type the two lines

(or use the Wizard again) to estimate a new equation that regresses the

spot prices on a constant and the futures prices, not saving the residuals

this time.

The intercept estimate (α̂) in this regression is 21.11 and the slope esti-

mate (β̂) is 0.98. The intercept can be considered to approximate the cost

of carry, while as expected the long-term relationship between spot and

futures prices is almost 1:1 -- see Chapter 7 for further discussion of the

estimation and interpretation of this long-term relationship. Finally, Click

File and Save as to save the input file as ‘Sandphedge.prg’.

2.2 Standard errors and hypothesis testing

Any set of regression estimates α̂ and β̂ are specific to the sample used in

their estimation. In other words, if a different sample of data was selected

from within the population, the data points (the xt and yt ) would be

different, leading to different values of the OLS estimates. The standard

errors give us an idea of how ‘good’ these estimates of α and β are in

the sense of having some measure of the reliability or precision of the

estimators (α̂ and β̂). They give an indication of whether the estimates are

likely to vary much from one sample to another sample within the given

population. In other words, they show the likely sampling variability and

hence the precision of the estimates.

Often, financial theory will suggest that certain coefficients should take

on particular values, or values within a given range. It is thus of interest

to determine whether the relationships expected from financial theory

are upheld by the data or not. Estimates of α and β have been obtained

from the sample, and inferences are made concerning the likely popula-

tion values from the regression parameters that have been estimated from

the sample data. In doing this, the aim is to determine whether the dif-

ferences between the coefficient estimates that are actually obtained and

expectations arising from financial theory are a long way from one an-

other in a statistical sense. This chapter now continues to examine some

hypothesis tests using the test of significance approach.

First, re-examine the regression output above for the spot and futures

returns regression. The third column (taking the variable numbers as

the first column) presents the coefficient standard errors, and the fourth

presents the t -ratios, which are the statistics for testing the null hypothesis
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that the true values of these parameters are zero against a two-sided al-

ternative -- i.e. these statistics test H0: α = 0 versus H1: α �= 0 in the first

row of numbers and H0: β = 0 versus H1: β �= 0 in the second. The fact

that these test statistics are both very small is indicative that neither of

these null hypotheses is likely to be rejected. This conclusion is confirmed

by the p-values given in the final column. Both p-values are considerably

larger than 0.1, indicating that the corresponding test statistics are not

even significant at the 10% level.

Suppose now that we wanted to test the null hypothesis H0: β = 1 rather

than H0: β = 0. We could test this, or any other hypothesis about the

coefficients, by hand using the information we already have. But it is

easier to let RATS do the work by using the TEST or RESTRICT or EXCLUDE

commands.

For example, to test the restriction that parameters 1 and 2 (the inter-

cept and slope) are both zero, use the command

TEST(ZEROS)
# 1 2

or to test the restriction that parameters 1 and 2 are both one, use the

command

TEST
# 1 2
# 1 1

The TEST instruction is less cumbersome than RESTRICT but it does an

identical job and could be used in any situation where we want to test

linear hypotheses about the parameters. However, RESTRICT is more flex-

ible and so it will be used throughout this book. Thus the relevant line

of code to be inserted would be

RESTRICT 1
# 2
# 1 1

This command is interpreted as stating that there is one restriction

(RESTRICT 1) on the second coefficient (# 2), which is that one times the

value of that coefficient equals one (# 1 1). The output would be as in

Box 2.4.

Box 2.4

t(63)= 6.548630 or F(1,63)= 42.884552 with Significance Level 0.00000001
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Note that by using this command, it is possible to test multiple hy-

potheses, which will be discussed in Chapter 3. The test is performed

in two different ways with identical conclusions by construction because

the t -distribution is a special case of the F -distribution. Therefore, this

nicely illustrates that if we take a t -distributed random variable with 63

degrees of freedom, the square of this random variable will follow an F -

distribution with (1,63) degrees of freedom. Hence 6.5486302 = 42.884552.

The results suggest that the null hypothesis should clearly be rejected as

the p-value for the test is zero to four decimal places.

There is also a Wizard available for testing restrictions that will write

the commands for you. This Wizard can be found by clicking ‘Statistics’

and then ‘Regression Tests’ after you have run a regression.

As an exercise, now go back to the regression in levels (i.e. with the raw

prices rather than the returns) and test the null hypothesis that β = 1 in

this regression. You should find in this case that the null hypothesis is

not rejected since the parameter estimate (β̂) is very close to the value

under the null hypothesis (β∗). The results for the test in this case would

be as in Box 2.5.

Box 2.5

t(64)= 0.751863 or F(1,64)= 0.565298 with Significance Level 0.45488966

2.3 Estimation and hypothesis testing with the CAPM

This exercise will estimate and test some hypotheses about the capital

asset pricing model (CAPM) beta for several US stocks. First, use the

Data Wizard to set up a program to accommodate monthly data com-

mencing in January 2002 and ending in April 2007 to import the Ex-

cel file ‘capm.xls’. The file is organised by observation and contains six

columns of numbers plus the dates in the first column. The data com-

prise the monthly stock prices of four companies (Ford, General Motors,

Microsoft and Sun), along with index values for the S&P500 (‘sandp’) and

three-month US-Treasury bills (‘ustb3m’). Save the file of instructions as

capm.prg. Verify a few observations for each series by printing them and

comparing them with the corresponding observations in the Excel file.

In order to estimate a CAPM equation for the Ford stock as an example,

we need to first transform the price series into returns and then calculate

the excess returns over the risk-free rate. To transform the series, we need

to use the SET command and to type the following into the input window:
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SET RSANDP = 100*LOG(SANDP/SANDP{1})

This will create a new series named RSANDP that will contain the percent-

age returns of the S&P500. Recall that the operator {1} is used to instruct

RATS to use the one-period lagged observation of the series. To estimate

the continuously compounded percentage returns on the Ford stock, type

SET RFORD = 100*LOG(FORD/FORD{1})

This will yield a new series named RFORD which will contain the returns

of the Ford stock.

When we transform the returns into excess returns, we need to be

slightly careful because the stock returns are monthly but the Treasury

bill yields are annualised. We could run the whole analysis using monthly

data or using annualised data and it should not matter which we use, but

the two series must be measured consistently. So, to turn the T-bill yields

into monthly figures and to write over the original series, type

SET USTB3M = USTB3M/12

Now, to compute the excess returns, type

SET ERSANDP = RSANDP-USTB3M

where ERSANDP will be used to denote the excess returns on the S&P500,

so that the original (not excess) returns series will remain as RSANDP.

Similarly transform the Ford returns into a set of excess returns.

Now that the excess returns have been obtained for the two series,

before running the regression, plot the data in a scatter diagram and in a

time-series graph to examine visually whether the series appear to move

together. To do this, the Wizard can be used for the time-series plot but

not the scatter, as before. For the time-series plot, because the Ford stock

returns are considerably more volatile, it is perhaps more informative to

use a two-scale plot. The required code is

SCATTER(STYLE=SYMBOL,HEADER=‘Scatter Plot of S&P versus Ford Excess Returns’, $

VLABEL=‘Ford’, HLABEL=‘S&P’,KEY=NONE) 1

# ERSANDP ERFORD

GRAPH(STYLE=LINE, HEADER=‘Monthly Time-series Plot of S&P and Ford Excess Returns’, $

VLABEL=‘Return (%) ‘, OVERLAY=LINE, HLABEL=‘Month’,KEY=UPLEFT) 2

# ERSANDP

# ERFORD

The plots would be those shown in Figures 2.1 and 2.2.
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It seems fairly evident that there is a positive relationship between

the S&P500 and Ford returns, although the latter are considerably more

volatile. The time-series plot suggests that the S&P (left-scale) and Ford

(right-scale) do indeed move together. Since the data have already been

transformed to obtain the excess returns, to estimate the CAPM regression

equation using OLS, just type the following in the equation window:

LINREG ERFORD
# CONSTANT ERSANDP

Make sure that you save the input file again to include the transformation

commands and regression equation. The estimation output is shown in

Box 2.6.

Take a couple of minutes to examine the results of the regression. What

is the slope coefficient estimate and what does it signify? Is this coefficient

statistically significant? The beta coefficient (the slope coefficient) estimate

is 0.3597. The p-value of the t -ratio is 0.6523, signifying that the excess

return on the market proxy has no significant explanatory power for the

variability of the excess returns of Ford stock. What is the interpretation

of the intercept estimate? Is it statistically significant?

How could the hypothesis that the value of the population beta is equal

to one be tested? The answer is to use the RESTRICT command and type
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Box 2.6

Linear Regression - Estimation by Least Squares

Dependent Variable ERFORD

Monthly Data From 2002:02 To 2007:04

Usable Observations 63 Degrees of Freedom 61

Centered R**2 0.003350 R Bar **2 -0.012989

Uncentered R**2 0.012429 T X R**2 0.783

Mean of Dependent Variable 2.097444893

Std Error of Dependent Variable 22.051291229

Standard Error of Estimate 22.194037228

Sum of Squared Residuals 30047.092598

Regression F(1,61) 0.2050

Significance Level of F 0.65229704

Log Likelihood -283.66580

Durbin-Watson Statistic 1.785699

Variable Coeff Std Error T-Stat Signif

****************************************************************************

1. Constant 2.0202193712 2.8013822756 0.72115 0.47357163

2. ERSANDP 0.3597261387 0.7944429336 0.45280 0.65229704

Box 2.7

t(61)= 0.805941 or F(1,61)= 0.649540 with Significance Level 0.42340784

RESTRICT 1
# 2
# 1 1

and the results are shown in Box 2.7.

The conclusion here is that the null hypothesis that the CAPM beta of

Ford stock is 1 cannot be rejected and hence the estimated beta of 0.359

is not significantly different from 1.3

3 Although the value 0.359 may seem a long way from 1, considered purely from an

econometric perspective, the sample size is quite small and this has led to a large

parameter standard error, which explains the failure to reject both H0: β = 0 and

H0: β = 1.



3
Further development and analysis of the
classical linear regression model

3.1 Conducting multiple hypothesis tests

It is very easy to generalise the simple model to one with multiple regres-

sors (independent variables). Equation (2.1) becomes

yt = β1 + β2x2t + β3x3t + · · · + βk xkt + ut , t = 1, 2, . . . , T (3.1)

So the variables x2t , x3t , . . . , xkt are a set of k−1 explanatory variables

which are thought to influence y, and β1, β2, . . . , βk are the parameters

which quantify the effect of each of these explanatory variables on y. The

coefficient interpretations are slightly altered in the multiple regression

context. Each coefficient is now known as a partial regression coefficient,

interpreted as representing the partial effect of the given explanatory vari-

able on the explained variable, after holding constant, or eliminating the

effect of, all other explanatory variables. For example, β̂2 measures the ef-

fect of x2 on y after eliminating the effects of x3, x4, . . . , xk . Stating this in

other words, each coefficient measures the average change in the depen-

dent variable per unit change in a given independent variable, holding

all other independent variables constant at their average values.

Hypothesis tests involving more than one parameter can be conducted

using an F -test. The residual sums of squares from each regression are

determined, and the two residual sums of squares are ‘compared’ in the

test statistic. The F -test statistic for testing multiple hypotheses about the

coefficient estimates is given by

test statistic = RRSS − URSS

URSS
× T − k

m
(3.2)

where the following notation applies:

URSS = residual sum of squares from unrestricted regression

RRSS = residual sum of squares from restricted regression

m = number of restrictions

34
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Box 3.1

Linear Regression - Estimation by Least Squares

Dependent Variable ERFORD

Monthly Data From 2002:02 To 2007:04

Usable Observations 63 Degrees of Freedom 61

Centered R**2 0.003350 R Bar **2 -0.012989

Uncentered R**2 0.012429 T X R**2 0.783

Mean of Dependent Variable 2.097444893

Std Error of Dependent Variable 22.051291229

Standard Error of Estimate 22.194037228

Sum of Squared Residuals 30047.092598

Regression F(1,61) 0.2050

Significance Level of F 0.65229704

Log Likelihood -283.66580

Durbin-Watson Statistic 1.785699

Variable Coeff Std Error T-Stat Signif

*******************************************************************************

1. Constant 2.0202193712 2.8013822756 0.72115 0.47357163

2. ERSANDP 0.3597261387 0.7944429336 0.45280 0.65229704

T = number of observations

k = number of regressors in unrestricted regression

We will now reconsider the CAPM example constructed in the previous

chapter. As a reminder, the results are included again in Box 3.1.

If we examine the regression F -test, this also shows that the regression

slope coefficient is not significantly different from zero, which in this case

is exactly the same result as the t -test for the beta coefficient (since there

is only one slope coefficient). Thus, in this instance, the F -test statistic is

equal to the square of the slope t -ratio.

Now suppose that we wish to conduct a joint test that both the intercept

and slope parameters are one. We would perform this test exactly as for

a test involving only one coefficient. Type the code

RESTRICT 2
# 1
# 1 1
# 2
# 1 1

The command RESTRICT 2 is used here since we wish to test two restric-

tions! Then the two sets of ‘supplementary cards’ (the items that follow

the # symbol) state first that we wish to test a hypothesis concerning
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Box 3.2

F(2,61) = 0.37460 with Significance Level 0.68913177

parameter 1 (the intercept) that 1 × parameter 1 = 1 and second that

we wish to test a hypothesis concerning parameter 2 (the slope) that 1 ×
parameter 2 = 1. RATS uses a Wald form of the test (an F -test). The output

is shown in Box 3.2.

The test statistic follows an F -distribution with (m, T −k) degrees of free-

dom, where m = 2, k = 2 and T = 63 in this case. The conclusion is that

the joint null hypothesis, H0: β1 = 1 and β2 = 1, is not rejected since the

test statistic is lower than the critical value and the p-value is considerably

larger than 0.05.

3.2 Multiple regression using an APT-style model

In the spirit of arbitrage pricing theory (APT), the following example will

examine regressions that seek to determine whether the monthly returns

on Microsoft stock can be explained by reference to unexpected changes

in a set of macroeconomic and financial variables. First, set up a new

RATS program that reads in the data. There are 254 monthly observa-

tions in the file ‘macror.xls’ starting in March 1986 and ending in April

2007. There are 13 series plus a column of dates. The series in the Excel file

are the Microsoft stock price, the S&P500 index value, the consumer price

index, an industrial production index, Treasury bill yields for the follow-

ing maturities: three months, six months, one year, three years, five years

and ten years, a measure of ‘narrow’ money supply, a consumer credit

series and a ‘credit spread’ series. The latter is defined as the difference in

annualised average yields between a portfolio of bonds rated AAA and a

portfolio of bonds rated BAA. Save the resulting input file as ‘MACRO.PRG’.

The first stage is to generate a set of changes or differences for each of the

variables, since the APT posits that the stock returns can be explained by

reference to the unexpected changes in the macroeconomic variables rather

than their levels. The unexpected value of a variable can be defined as the

difference between the actual (realised) value of the variable and its ex-

pected value. The question then arises about how we believe that investors

might have formed their expectations, and while there are many ways to

construct measures of expectations, the easiest is to assume that investors

have naive expectations that the next period value of the variable is equal

to the current value. This being the case, the entire change in the variable
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from one period to the next is the unexpected change (because investors

are assumed to expect no change).4

Transforming the variables can be done as described in Chapter 2 by

typing the following lines of code into the input window:

SET DSPREAD = SPREAD - SPREAD{1}
SET DCREDIT = CONSUMERCREDIT - CONSUMERCREDIT{1}
SET DPROD = INDPROD - INDPROD{1}
SET RMSOFT = 100*LOG(MICROSOFT/MICROSOFT{1})
SET RSANDP = 100*LOG(SANDP/SANDP{1})
SET DMONEY = M1MONEY - M1MONEY{1}
SET INFLATION = 100*LOG(CPI/CPI{1})
SET TERM = USTB10Y - USTB3M

We also need to apply further transformations to some of the transformed

series, so add the following commands:

SET DINFLATION = INFLATION - INFLATION{1}
SET MUSTB3M = USTB3M/12
SET RTERM = TERM - TERM{1}
SET ERMSOFT = RMSOFT - MUSTB3M
SET ERSANDP = RSANDP - MUSTB3M

The final two of these calculate excess returns for the stock and for the

index respectively.

We can now run the regression. Type the following:

LINREG ERMSOFT
# CONSTANT ERSANDP DPROD DCREDIT DINFLATION $
DMONEY DSPREAD RTERM

to use Least Squares over the whole sample period. Run this input file and

the table of results will appear as in Box 3.3.

Take a few minutes to examine the main regression results. Which of

the variables has a statistically significant impact on the Microsoft excess

returns? Using your knowledge of the effects of the financial and macro-

economic environment on stock returns, examine whether the coefficients

have their expected signs and whether the sizes of the parameters are

plausible.

The regression F -statistic takes a value 8.908. Remember that this is

a special F -test that examines the null hypothesis that all of the slope

4 It is an interesting question as to whether the differences should be taken on the levels

of the variables or their logarithms. If the former, we have absolute changes in the

variables, whereas the latter would lead to proportionate changes. The choice between

the two is essentially an empirical one, and this example assumes that the former is

chosen, apart from for the stock price series themselves and the consumer price series.

In these latter cases, convention is followed in using percentage changes.



38 RATS Handbook to Accompany Introductory Econometrics for Finance

Box 3.3

Linear Regression − Estimation by Least Squares

Dependent Variable ERMSOFT

Monthly Data From 1986:05 To 2007:04

Usable Observations 252 Degrees of Freedom 244

Centered R**2 0.203545 R Bar **2 0.180696

Uncentered R**2 0.204141 T X R**2 51.443

Mean of Dependent Variable -0.42080264

Std Error of Dependent Variable 15.41135106

Standard Error of Estimate 13.94964949

Sum of Squared Residuals 47480.623879

Regression F(7,244) 8.9082

Significance Level of F 0.00000000

Log Likelihood -1017.64215

Durbin-Watson Statistic 2.156221

Variable Coeff Std Error T-Stat Signif

*******************************************************************************

1. Constant -0.58760337 1.45789822 -0.40305 0.68726564

2. ERSANDP 1.48943369 0.20327634 7.32714 0.00000000

3. DPROD 0.28932249 0.50091896 0.57758 0.56407798

4. DCREDIT -0.00005584 0.00016049 -0.34792 0.72819661

5. DINFLATION 4.24780859 2.97734151 1.42671 0.15494127

6. DMONEY -1.16152636 0.71397392 -1.62685 0.10506027

7. DSPREAD 12.15775447 13.55096915 0.89719 0.37050347

8. RTERM 6.06760945 3.32136337 1.82684 0.06894503

parameters are jointly zero. The p-value of zero attached to the test statis-

tic shows that this null hypothesis should be rejected. However, there are

a number of parameter estimates that are not significantly different from

zero -- specifically those on the DPROD, DCREDIT and DSPREAD variables.

Let us test the null hypothesis that the parameters on these three vari-

ables are jointly zero using an F -test. To test this, we use the RESTRICT

command with three restrictions. Given the order that the variables are

listed, these are numbers 3, 4 and 7. We could conduct this test with either

the TEST command or with RESTRICT; the latter is used here.

RESTRICT 3
# 3
# 1 0
# 4
# 1 0
# 7
# 1 0
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Box 3.4

F(3,244) = 0.40163 with Significance Level 0.75195457

The resulting F -test statistic follows an F (3, 244) distribution as there are

3 restrictions, 252 usable observations and 8 parameters to estimate in

the unrestricted regression. The output is shown in Box 3.4.

The F -statistic value is 0.402 with p-value 0.752, suggesting that the

null hypothesis cannot be rejected. The parameters on DINFLATION and

DMONEY are almost significant at the 10% level and so the associated

parameters are not included in this F -test and the variables are retained.

3.3 Stepwise regression

There is a procedure known as a stepwise regression that is available

in RATS. Stepwise regression is an automatic variable selection procedure

which chooses the jointly most ‘important’ (variously defined) explanatory

variables from a set of candidate variables. There are a number of different

stepwise regression approaches, but the simplest is the forwards method.

This starts with no variables in the regression (or only those variables that

are always required by the researcher to be in the regression) and then it

selects first from the list of candidate variables the one with the lowest p-

value (largest t -ratio) if it were included, then the variable with the second

lowest p-value conditional upon the first variable already being included,

and so on. The procedure continues until the next lowest p-value relative

to those of the variables already included is larger than some specified

threshold value, at which point the selection stops, with no more variables

being incorporated into the model.

To conduct a stepwise regression which will automatically select from

among these variables the most important ones for explaining the varia-

tions in Microsoft stock returns, we would use the STWISE command

STWISE ERMSOFT
# CONSTANT ERSANDP DPROD DCREDIT DINFLATION $

DMONEY DSPREAD RTERM

An alternative stepwise procedure is to start with all the variables included

and then to sequentially delete the least significant variable until only

those variables with p-values lower than the threshold remain -- this is

known as backwards stepwise. Finally, it is possible to conduct a full stepwise

procedure that combines the forwards and backwards approaches so that

the procedure starts with no variables but at each stage after variables
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have been added, the backwards approach is then used to delete variables

that now have higher p-values than the threshold.

There are various options that can be used with the STWISE instruc-

tion, including ‘FORCE=x’, where x is a number. This will force the first

x listed variables to be in the regression irrespective of their significance;

method=[stepwise]/forwards/backwards will use the full stepwise (the de-

fault), the forwards or the backwards version of the procedure respectively.

The default criterion is to include variables in the forwards procedure if

the p-value is less than 0.2 and to delete variables in the backwards proce-

dure if their p-value is greater than 0.2. These can be changed using the

options slenter=y and slstay=z where y and z are numbers between 0 and

1 with z required to be no smaller than y. It is a good idea to ensure that

the constant is always in the regression, even if the parameter attached

to it is not statistically significant, so use the FORCE=1 option and ensure

that CONSTANT is the first listed explanatory variable. The output we see

on running this command is shown in Box 3.5.

Box 3.5

Stepping In with P = 0.000000 Variable ERSANDP

Stepping In with P = 0.115338 Variable RTERM

Stepping In with P = 0.099449 Variable DMONEY

Stepping In with P = 0.164257 Variable DINFLATION

Stepwise Regression

Dependent Variable ERMSOFT

Monthly Data From 1986:05 To 2007:04

Usable Observations 252 Degrees of Freedom 247

Centered R**2 0.199612 R Bar **2 0.186650

Uncentered R**2 0.200211 T X R**2 50.453

Mean of Dependent Variable -0.42080264

Std Error of Dependent Variable 15.41135106

Standard Error of Estimate 13.89886631

Sum of Squared Residuals 47715.085734

Regression F(4,247) 15.4001

Significance Level of F 0.00000000

Log Likelihood -1018.26281

Durbin-Watson Statistic 2.150604

Variable Coeff Std Error T-Stat Signif

*******************************************************************************

1. Constant -0.947197550 0.878699808 -1.07795 0.28210611

2. ERSANDP 1.471399746 0.201458819 7.30372 0.00000000

3. DINFLATION 4.013511671 2.876986089 1.39504 0.16425681

4. DMONEY -1.171272592 0.702522559 -1.66724 0.09673438

5. RTERM 6.121657473 3.292863158 1.85907 0.06420669
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As can be seen, the excess market return, the term structure, money

supply and unexpected inflation variables have all been included while

the default spread and credit variables have been omitted.

Stepwise procedures have been strongly criticised by statistical purists.

At the most basic level, they are sometimes argued to be no better than

automated procedures for data mining, especially if the list of potential

candidate variables is long and results from a ‘fishing trip’ rather than

a strong prior financial theory. More subtly, the iterative nature of the

variable selection process implies that the size of the tests on parameters

attached to variables in the final model will not be the nominal values (e.g.

5%) that would have applied had this model been the only one estimated.

Thus the p-values for tests involving parameters in the final regression

should really be modified to take into account that the model results

from a sequential procedure, although they are usually not in statistical

packages such as RATS.

3.4 Constructing reports

It is often the case that the final output from a piece of empirical re-

search will be a written report of some sort that includes the regression

results. It is poor form to copy the entire output from a standard com-

puter package, but re-typing the results is also to be avoided as it wastes

time and is likely to introduce errors. Fortunately, RATS has a REPORT

instruction that can be used to prepare regression parameter estimates

and their standard errors in a useful format for pasting directly into a

report in, for example, Microsoft Word. If we want to put the output from

the Microsoft regression containing all of the variables and of the step-

wise procedure in two columns in a table, we could use the following

instructions:

REPORT(ACTION=DEFINE)
LINREG ERMSOFT / RESIDS
# CONSTANT ERSANDP DPROD DCREDIT DINFLATION $

DMONEY DSPREAD RTERM
REPORT(REGRESSION)
STWISE(FORCE=1) ERMSOFT
# CONSTANT ERSANDP DPROD DCREDIT DINFLATION $

DMONEY DSPREAD RTERM
REPORT(REGRESSION)
REPORT(ACTION=SHOW)

The basic engine for producing formatted output is the REPORT instruc-

tion. ‘REPORT(ACTION=DEFINE)’ will set up a report. We then run any
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desired regression and add the command ‘REPORT(REGRESSION)’ after-

wards -- and this will append the parameter and standard error output

from the most recent regression to the report. We can run as many regres-

sions as we want, adding ‘REPORT(REGRESSION)’ after each one. Finally,

when we are done, we add the line ‘REPORT(ACTION=SHOW)’, which will

print the report to the output window. A number of options are also avail-

able, for example, to restrict the number of decimal places displayed, or

to add column headers -- see the RATS 7 User Guide, pp. 169--73 for more

details.

The results from these instructions will appear in two columns (Box 3.6),

with the blank spaces indicating variables that were not selected in the

final model by the stepwise procedure.

Box 3.6

Constant -0.587603 -0.947198

(1.457898) (0.878700)

ERSANDP 1.489434 1.471400

(0.203276) (0.201459)

DPROD 0.289322

(0.500919)

DCREDIT -0.000056

(0.000160)

DINFLATION 4.247809 4.013512

(2.977342) (2.876986)

DMONEY -1.161526 -1.171273

(0.713974) (0.702523)

DSPREAD 12.157754

(13.550969)

RTERM 6.067609 6.121657

(3.321363) (3.292863)



4
Diagnostic testing

Recall that five assumptions are made relating to the classical linear re-

gression model. These are required to show that the estimation technique,

ordinary least squares, has a number of desirable properties, and also so

that hypothesis tests regarding the coefficient estimates can validly be

conducted. Specifically, it is assumed that

1. E(ut ) = 0

2. Var(ut ) = σ 2 < ∞
3. Cov(ui , u j ) = 0

4. Cov(ut , xt ) = 0

5. ut ∼ N (0, σ 2)

This chapter will now examine the main diagnostic procedures that are

used to test these assumptions in the context of the classical linear regres-

sion model. A pragmatic approach to ‘solving’ problems associated with

the use of models where one or more of the assumptions is not supported

by the data will then be adopted.

The text below discusses various regression diagnostic (mis-specification)

tests that are based on the calculation of a test statistic. These tests can

be constructed in several ways and the precise approach to constructing

the test statistic will determine the distribution that the test statistic is

assumed to follow. Two particular approaches are in common usage and

their results are given by the statistical packages: the Lagrange Multiplier

(LM) test and the Wald test. Further details concerning these procedures

are given in Chapter 8 of Introductory Econometrics for Finance. For now, all

that readers need to know is that LM test statistics in the context of the

diagnostic tests presented here follow a χ2 distribution with degrees of

freedom equal to the number of restrictions placed on the model, de-

noted m. The Wald version of the test follows an F distribution with

(m, T − k) degrees of freedom. Asymptotically, these two tests are equiva-

lent, although their results will differ somewhat in small samples. They

43
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are equivalent as the sample size increases towards infinity since there is a

direct relationship between the χ2 and F distributions. Taking a χ2-variate

and dividing by its degrees of freedom asymptotically gives an F -variate:

F(m, T − k) → χ2 (m)

m
as T → ∞.

Computer packages typically present results using both approaches, al-

though only one of the two will be illustrated for each test below. They

will usually give the same conclusion, although if they do not, the F
version is usually considered preferable for finite samples, since it is sen-

sitive to sample size (one of its degrees of freedom parameters depends

on sample size) in a way that the χ2 version is not.

4.1 Testing for heteroscedasticity

Re-open the Microsoft regression instructions file that was examined in

the previous chapter and that included all the macroeconomic explana-

tory variables. First, plot the residuals by re-running the regression and

using the option to create a residual series. If the residuals of the regres-

sion have systematically changing variability over the sample, that is a

sign of heteroscedasticity. The resulting plot is shown in Figure 4.1.

In this case, it is hard to see any clear pattern, so we need to run a formal

statistical test. We can calculate the statistics for a large number of het-

eroscedasticity tests using RATS, including the Breusch-Pagan, Goldfeld-

Quandt, ARCH and White tests. We will consider the Goldfeld-Quandt

(hereafter GQ) and White tests here and the ARCH test in Chapter 8.

One of the simplest methods for testing for heteroscedasticity is the

Goldfeld-Quandt (1965) formulation. Their approach is based on splitting

Figure 4.1

Plot of residuals

over time
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the total sample of length T into two sub-samples of length T1 and T2.

The regression model is estimated on each sub-sample and the two resid-

ual variances are calculated as s2
1 = û′

1û1/(T1 − k) and s2
2 = û′

2û2/(T2 − k)

respectively. The null hypothesis is that the variances of the disturbances

are equal, which can be written H0: σ 2
1 = σ 2

2 , against a two-sided alterna-

tive. The test statistic, denoted GQ, is simply the ratio of the two residual

variances where the larger of the two variances must be placed in the nu-

merator (i.e. s2
1 is the higher sample variance for the sample with length

T1, even if it comes from the second sub-sample)

G Q = s2
1

s2
2

(4.1)

The test statistic is distributed as an F(T1 − k, T2 − k) under the null hy-

pothesis, and the null of a constant variance is rejected if the test statistic

exceeds the critical value.

To use the GQ test requires us to make a particular assumption con-

cerning the method to order the series and also where to split them into

sub-parts. I assume here that the time ordering is retained and that the

sample is split at January 1997, roughly half way through the period. Type

the following lines in the input file:

SMPL 1986:3 1996:12
LINREG(NOPRINT) ERMSOFT

# CONSTANT ERSANDP DPROD DCREDIT DINFLATION DMONEY $
DSPREAD RTERM

COMPUTE RSS1=%RSS, NDF1 = %NDF
SMPL 1997:1 2007:04
LINREG(NOPRINT) ERMSOFT
# CONSTANT ERSANDP DPROD DCREDIT DINFLATION DMONEY $

DSPREAD RTERM
COMPUTE RSS2=%RSS, NDF2 = %NDF
CDF(TITLE=‘Goldfeld-Quandt Test’) FTEST $
(RSS2/NDF2)/(RSS1/NDF1) NDF2 NDF1
SMPL 1986:3 2007:04

The SMPL instructions set the samples for the two regressions so that the

first runs from the start of the whole sample until December 1996 and

the second runs from January 1997 until the end of the whole sample.

After setting the sample, we run the two sub-sample regressions, taking

the residual sums of squares and calling them RSS1 and RSS2 respectively.

Then we take the numbers of degrees of freedom and call them NDF1 and

NDF2. The CDF command computes the p-value for a given test statistic,
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Box 4.1

Goldfeld-Quandt Test

F(120,116)= 1.19700 with Significance Level 0.16545607

a given distribution and given degrees of freedom. The form for the com-

mand is

CDF DISTRIBUTION STATISTIC DOF1 DOF2

where distribution is either FTEST, TTEST, CHISQUARED or NORMAL;

STATISTIC is the test statistic, which can be calculated within the in-

struction as it is here; DOF1 and DOF2 are the degrees of freedom for

the numerator and denominator in the FTEST but only the first would be

used for the t and χ2 while neither are used for the normal. Note that in

this case, because RSS2 is bigger, we have to place this in the numerator

rather than RSS1. The final SMPL instruction resets the sample back to the

entire available period so that all subsequent instructions in this input

file will use all the observations. The results are given in Box 4.1.

It is apparent that according to the Goldfeld-Quandt test with this or-

dering and this break date, there is no evidence of heteroscedasticity. Put

another way, there is no evidence of a difference in the regression stan-

dard errors before and after January 1997.

Now, turning to White’s (1980) test, it is particularly useful because it

makes few assumptions about the likely form of the heteroscedasticity

and is carried out as follows.

1. Assume that the regression model estimated is of the standard linear

form, e.g.

yt = β1 + β2x2t + β3x3t + ut (4.2)

To test Var(ut ) = σ 2, estimate the model above, obtaining the residuals,

ût .

2. Then run the auxiliary regression

û2
t = α1 + α2x2t + α3x3t + α4x2

2t + α5x2
3t + α6x2t x3t + vt (4.3)

where vt is a normally distributed disturbance term independent of

ut . This regression is of the squared residuals on a constant, the origi-

nal explanatory variables, the squares of the explanatory variables and

their cross-products.
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The reason that the auxiliary regression takes this form is that it is

desirable to investigate whether the variance of the residuals (embodied

in û2
t ) changes systematically with any known variables relevant to the

model. Relevant variables will include the original explanatory vari-

ables, their squared values and their cross-products. Note also that this

regression should include a constant term, even if the original regres-

sion did not. This is as a result of the fact that û2
t will always have a

non-zero mean, even if ût has a zero mean.

3. Given the auxiliary regression, the test can be conducted using two

different approaches. First, it is possible to use the F -test framework

described in Chapter 3. This would involve estimating (4.3) as the unre-

stricted regression and then running a restricted regression of û2
t on a

constant only. The RSS from each specification would then be used as

inputs to the standard F -test formula.

With many diagnostic tests, an alternative approach can be adopted

that does not require the estimation of a second (restricted) regression.

This approach is known as a Lagrange Multiplier (LM) test, which cen-

tres on the value of R2 for the auxiliary regression. If one or more

coefficients in (4.3) is statistically significant, the value of R2 for that

equation will be relatively high, while if none of the variables is sig-

nificant, R2 will be relatively low. The LM test would thus operate by

obtaining R2 from the auxiliary regression and multiplying it by the

number of observations, T . It can be shown that

TR2 ∼ χ2 (m)

where m is the number of regressors in the auxiliary regression (ex-

cluding the constant term), equivalent to the number of restrictions

that would have to be placed under the F -test approach.

4. The test is one of the joint null hypothesis that α2 = 0, α3 = 0, α4 = 0,

α5 = 0, and α6 = 0. For the LM test, if the χ2 test statistic from step 3

is greater than the corresponding value from the statistical table then

reject the null hypothesis that the errors are homoscedastic.

In order to estimate White’s test in RATS, we could either use the proce-

dure REGWHITETEST or compute the test statistic manually by re-running

the entire period regression and then adding several lines of code to cal-

culate the required elements for the auxiliary regression.

RATS procedures are the equivalents of sub-routines in a programming

language and they have the suffix ‘.SRC’. There are many of these proce-

dure files, which are pre-written sets of instructions that are distributed
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with the RATS software and are used for conducting a particular task. The

command to call the White’s test procedure would be

SOURCE REGWHITETEST.SRC

The ‘SOURCE’ command does not actually do the estimation; rather, it just

puts the relevant commands into memory. As a word of caution, when you

first run this command after opening RATS, you may see the following

window, entitled ‘File for SOURCE(1)’.

Screenshot 4.1

What has happened in this case is that RATS cannot find automati-

cally where the REGWHITETEST.SRC file is located. So you have three

choices:

1. Press cancel and copy the REGWHITETEST.SRC file to your working di-

rectory (the one where the .PRG files are being run from).

2. Show RATS where the SOURCE file is. The file will be located where

the RATS executable file is located; on my computer, the directory is

‘C:\Program Files\Estima\WinRATS 7’, but yours may have a different

name depending on what was specified when RATS was installed.5

5 If you choose option two of the three above, you will need to show RATS where it is

every time you shut down and re-open the software.
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3. The best solution is to click on File and Preferences . . . and then click

on the Directories tab. You will see the following screen.

Screenshot 4.2

The ‘Default Directory’ will be the one that you save your work in,

whereas the other fields are likely to be blank initially. If you find out

where your source (.SRC) files are located, then type this into the ‘Proce-

dure Directory’ box; similarly, in Chapter 7, a particular sub-routine for

analysing cointegrated systems called CATS2 (CATS version 2) will be used,

and so it is also worth finding where this is located6 and specifying this

directory as well. Then click OK and respond ‘Yes’ to the question ‘Make

Permanent?’.

To run the automated procedure for White’s test after the SOURCE line,

write

@REGWHITETEST(TYPE=NOCROSSTERMS)

The TYPE=NOCROSSTERMS option means that the cross-product terms

are not used in the auxiliary regression (the default is that they are

included).

6 (if you have purchased CATS, which must be bought in addition to RATS).
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To see what the test is doing and how it works, we could code it up

manually. Given the relatively large number of variables in this regres-

sion, I do not include the cross-product terms in the auxiliary regression,

only the squares of the original explanatory variables. It is possible to

use either an F -test or a χ2 version of the test, and we produce both

here. The F -statistic for White’s heteroscedasticity test will simply be the

regression F -statistic from the auxiliary regression, and this is automati-

cally calculated as part of the standard output; the χ2 version is calculated

as TR2 from the auxiliary regression, and this will follow a χ2 distribution

with degrees of freedom equal to the number of variables being used in

the auxiliary regression, not including the constant (14 in this case). The

resulting instructions would be

LINREG(NOPRINT) ERMSOFT / RESIDS
# CONSTANT ERSANDP DPROD DCREDIT DINFLATION DMONEY $

DSPREAD RTERM
SET RESIDSSQ = RESIDS∗∗2
SET ERSANDPSQ = ERSANDP∗∗2
SET DPRODSQ = DPROD∗∗2
SET DCREDITSQ = DCREDIT∗∗2
SET DINFLATIONSQ = DINFLATION∗∗2
SET DMONEYSQ = DMONEY∗∗2
SET DSPREADSQ = DSPREAD∗∗2
SET RTERMSQ = RTERM∗∗2
LINREG RESIDSSQ
# CONSTANT ERSANDP DPROD DCREDIT DINFLATION DMONEY $

DSPREAD RTERM ERSANDPSQ DPRODSQ DCREDITSQ $
DINFLATIONSQ DMONEYSQ DSPREADSQ RTERMSQ
CDF CHISQR %NOBS*%RSQUARED 14

The output is shown in Box 4.2.

Both the F - and χ2 (‘LM’) versions of the test statistic give the same

conclusion that there is no evidence for the presence of heteroscedasticity,

since the p-values are considerably in excess of 0.05. In fact, examining

the individual explanatory variables in the auxiliary regression, there is

no evidence that any of them are significantly related to the variance of

the residuals.7 The value of the test statistic is identical to that obtained

from the REGWHITETEST procedure.

7 It is also worth noting that RATS presents two versions of R2 -- a centred and an

uncentred one. The former contains the total sum of squares about its mean value and

constitutes the normal measure that is in common use. TR2 as reported automatically

by RATS is based on the uncentred R2 and so it should be interpreted carefully.
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Box 4.2

Linear Regression - Estimation by Least Squares

Dependent Variable RESIDSSQ

Monthly Data From 1986:03 To 2007:04

Usable Observations 252 Degrees of Freedom 237

Total Observations 254 Skipped/Missing 2

Centered R**2 0.029426 R Bar **2 -0.027908

Uncentered R**2 0.113545 T X R**2 28.613

Mean of Dependent Variable 188.41517412

Std Error of Dependent Variable 612.85584641

Standard Error of Estimate 621.34876334

Sum of Squared Residuals 91499605.712

Regression F(14,237) 0.5132

Significance Level of F 0.92437922

Log Likelihood -1970.67694

Durbin-Watson Statistic 2.069685

Variable Coeff Std Error T-Stat Signif

*******************************************************************************

1. Constant 250.477230 87.974784 2.84715 0.00479825

2. ERSANDP -2.319256 10.055780 -0.23064 0.81779414

3. DPROD 16.167627 22.650950 0.71377 0.47607013

4. DCREDIT -0.002092 0.018245 -0.11468 0.90879336

5. DINFLATION -20.650617 133.390241 -0.15481 0.87710007

6. DMONEY 32.760569 34.486665 0.94995 0.34310591

7. DSPREAD -541.681162 646.832591 -0.83744 0.40319099

8. RTERM 42.099763 161.287560 0.26102 0.79430144

9. ERSANDPSQ -0.259966 0.912839 -0.28479 0.77605470

10. DPRODSQ -7.283578 7.764219 -0.93810 0.34915040

11. DCREDITSQ -0.000000 0.000001 -0.02924 0.97669388

12. DINFLATIONSQ -103.711814 230.896763 -0.44917 0.65371975

13. DMONEYSQ 16.985813 14.693347 1.15602 0.24883671

14. DSPREADSQ 382.275437 3381.902184 0.11304 0.91009800

15. RTERMSQ -508.016054 433.852586 -1.17094 0.24279820

Chi-Squared(14)= 7.415250 with Significance Level 0.91751743

4.2 A digression on SMPL

The SMPL instruction provides an extremely useful method for dropping

observations from a sample or for selecting a sub-sample. The simplest

use of this instruction, for picking a sub-sample through time, was pre-

sented above, but there are also many others. For example, if you precede a

LINREG instruction with SMPL(SERIES=FEMALE), RATS will conduct all
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subsequent commands (until told otherwise) on only observations for

which the variable FEMALE is non-zero. So if FEMALE had been constructed

as a dummy for which observations on male subjects were denoted by a

zero, the regression would be conducted for women only. We could also

use SMPL(SERIES=.NOT.FEMALE) to run the instructions only on the male

sub-sample.

An alternative to using SMPL as a separate instruction is to use it as an

option with the LINREG instruction in a single step. For example

LINREG(SMPL=FEMALE) Y
# CONSTANT X2 X3

Finally, we can also use the SMPL option to remove outliers from a re-

gression sample. For example, suppose that in the context of the CAPM

regression for Microsoft, we were worried about the possible undue influ-

ence of outliers on the parameters and we decided to remove any outlying

observations where the corresponding residual from the estimated model

was more than three standard errors from its mean. We would use the

code

LINREG(NOPRINT) ERMSOFT / RESIDS
# CONSTANT ERSANDP
COM CUTOFF = 3∗SQRT(%SEESQ)
LINREG(SMPL=(ABS(RESIDS)<CUTOFF) ERMSOFT
# CONSTANT ERSANDP

The first LINREG instruction is estimated purely to get the residuals. The

COM instruction specifies the cut-off or threshold as three times the

square root of the residual standard error squared, then the second

LINREG command estimates the CAPM but using only the sample of ob-

servations where the residuals from the first stage fell within ±3 standard

errors of their mean.

4.3 Using White’s modified standard error estimates

If the form (i.e. the cause) of the heteroscedasticity is known, then an

alternative estimation method which takes this into account can be used,

such as generalised least squares (GLS). However, in reality, researchers are

typically unsure of the exact cause of the heteroscedasticity and hence this

technique is usually infeasible in practice. Other possible ‘solutions’ for

heteroscedasticity include the following.

1. Transforming the variables into logs or reducing by some other mea-

sure of ‘size’. This has the effect of re-scaling the data to ‘pull in’
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extreme observations. The regression would then be conducted upon

the natural logarithms or the transformed data. Taking logarithms also

has the effect of making a previously multiplicative model, such as the

exponential regression model (with a multiplicative error term), into

an additive one. However, logarithms of a variable cannot be taken in

situations where the variable can take on zero or negative values, for

the log will not be defined in such cases.

2. Using heteroscedasticity-consistent standard error estimates. Most stan-

dard econometrics software packages have an option (usually called

something like ‘robust’) that allows the user to employ standard error

estimates that have been modified to account for the heteroscedastic-

ity following White (1980). In RATS, heteroscedasticity-robust standard

error estimates can be obtained easily by using the robust option with

the LINREG statement

LINREG(ROBUST) ERMSOFT / RESIDS
# CONSTANT ERSANDP DPROD DCREDIT DINFLATION DMONEY $

DSPREAD RTERM

While White’s correction does not require any user input, the Newey--West

(1987) procedure requires the specification of a truncation lag length to

determine the number of lagged residuals used to evaluate the autocorre-

lation. In RATS, the Newey--West standard errors can be invoked automat-

ically when the user specifies the number of lags to use with the ‘LAGS=’

option of the LINREG command

LINREG(ROBUST, LAGS=5) ERMSOFT / RESIDS

etc.

The Newey--West procedure in fact produces ‘HAC’ (Heteroscedastic-

ity and Autocorrelation Consistent) standard errors that correct for

both autocorrelation and heteroscedasticity that may be present in the

residuals.

4.4 Autocorrelation and dynamic models

The third assumption that is made of the classical linear regression

model’s disturbance terms is that the covariance between the error terms

over time (or cross-sectionally, for that type of data) is zero. In other words,

it is assumed that the errors are uncorrelated with one another. If the

errors are not uncorrelated with one another, it would be stated that

they are ‘autocorrelated’ or ‘serially correlated’.
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The simplest test for autocorrelation is due to Durbin and Watson (1951).

Durbin--Watson (DW ) is a test for first-order autocorrelation -- i.e. it tests

only for a relationship between an error and its immediately previous

value. One way to motivate the test and to interpret the test statistic

would be in the context of a regression of the time t error on its previous

value

ut = ρut−1 + vt (4.4)

where vt ∼ N (0, σ 2
v ). The DW test statistic has as its null and alternative

hypotheses

H0 : ρ = 0 and H1 : ρ �= 0.

Thus, under the null hypothesis, the errors at time t − 1 and t are indepen-

dent of one another, and if this null were rejected it would be concluded

that there was evidence of a relationship between successive residuals. In

fact, it is not necessary to run the regression given by (4.4) since the test

statistic can be calculated using quantities that are already available after

the first regression has been run

DW =

T∑
t=2

(ût − ût−1)2

T∑
t=1

û2
t

(4.5)

The Durbin--Watson test statistic is approximately equal to 2(1 − ρ̂). Since

ρ̂ is a correlation, it implies that −1 ≤ ρ̂ ≤ 1, i.e. ρ̂ is bounded to lie

between −1 and +1. Substituting in these limits for ρ̂ to calculate DW

would give the corresponding limits for Durbin--Watson as 0 ≤ DW ≤ 4.

A DW statistic close to 0 corresponds to strong positive first-order auto-

correlation, a statistic close to 4 corresponds to strong negative first-order

autocorrelation, while a value close to 2 corresponds to there being very

little first-order autocorrelation.

The Durbin--Watson test does not follow a standard statistical distribu-

tion such as a t , F , or χ2. DW has two critical values -- an upper crit-

ical value (du ) and a lower critical value (dL ) -- and there is also an in-

termediate region where the null hypothesis of no autocorrelation can

be neither rejected nor not rejected! The null hypothesis is rejected and

the existence of positive autocorrelation presumed if DW is less than the

lower critical value; the null hypothesis is rejected and the existence of

negative autocorrelation presumed if DW is greater than 4 minus the

lower critical value; the null hypothesis is not rejected and no significant
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Box 4.3

Durbin-Watson Statistic 2.156221

residual autocorrelation is presumed if DW is between the upper and 4-

upper limits.

The Durbin--Watson statistic is calculated automatically and is presented

in the standard regression output. For the model above containing the

macroeconomic variables (that is, the original regression rather than the

auxiliary regression of the test for heteroscedasticity!), recall that the value

was as shown in Box 4.3.

For that example, T = 252, k ′ = 7 so T − k ′ = 245. The 1% critical values

are not available in Durbin and Watson’s original study since the number

of degrees of freedom we have here is too large, but this figure of 2.16

would be safely within the non-rejection region, indicating that there is no

evidence for the presence of first-order serial correlation in the residuals

from this regression.

DW is a test only of whether consecutive errors are related to one an-

other so there will also be many forms of residual autocorrelation that DW

cannot detect. For example, if Corr(ût , ût−1) = 0, but Corr(ût , ût−2) �= 0, DW

as defined above will not find any autocorrelation. The Breusch--Godfrey

test is a more general test for autocorrelation up to rth order. The model

for the errors under this test is

ut = ρ1ut−1 + ρ2ut−2 + ρ3ut−3 + · · · + ρr ut−r + vt , vt ∼ N
(
0, σ 2

v

)
(4.6)

The null and alternative hypotheses are:

H0 : ρ1 = 0 and ρ2 = 0 and . . . and ρr = 0

H1 : ρ1 �= 0 or ρ2 �= 0 or . . . or ρr �= 0

So, under the null hypothesis, the current error is not related to any of

its r previous values. The test is carried out in the following steps.

1. Estimate the linear regression using OLS and obtain the residuals, ût .

2. Regress ût on all of the regressors from stage 1 (the xs) plus

ût−1, ût−2, . . . , ût−r . The regression will thus be

ût = γ1 + γ2x2t + γ3x3t + γ4x4t + ρ1ût−1 + ρ2ût−2 + ρ3ût−3

+ · · · + ρr ût−r + vt , vt ∼ N
(
0, σ 2

v

)
(4.7)

Obtain R2 from this auxiliary regression.
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3. Letting T denote the number of observations, the test statistic is given

by

(T − r )R2 ∼ χ2
r

Note that (T − r ) pre-multiplies R2 in the test for autocorrelation rather

than T (as was the case for the heteroscedasticity test). This arises be-

cause the first r observations will effectively have been lost from the

sample in order to obtain the r lags used in the test regression, leaving

(T − r ) observations from which to estimate the auxiliary regression. If

the test statistic exceeds the critical value from the χ2 statistical tables,

reject the null hypothesis of no autocorrelation.

The Breusch--Godfrey test for higher-order autocorrelation would be con-

ducted in RATS by running the regression of the residuals on a constant

and a number of lags of the residuals. The RESTRICT (or TEST) commands

would then be used to test the restriction that the coefficients on all of the

lagged residuals are jointly zero. Suppose, for example, that we wanted to

test for autocorrelation of order up to 4. Recall that the auxiliary regres-

sion must also include the original explanatory variables (but which do

not form part of the restriction):

LINREG RESIDS
# CONSTANT RESIDS{1 to 4} ERSANDP $
DPROD DCREDIT DINFLATION DMONEY DSPREAD RTERM
RESTRICT 4
# 2
# 1 0
# 3
# 1 0
# 4
# 1 0
# 5
# 1 0
CDF CHISQR %NOBS∗%RSQUARED 4

The RESTRICT instruction tells RATS that there will be four elements in

the restriction, involving coefficients 2 through 5, and that one times each

of them should be set to zero. Note that the expression ‘{1 to 4}’ can be

used as shorthand in RATS to denote that all of lags 1 to 4 are included

instead of writing ‘RESIDS{1} RESIDS{2} . . . ’ Running this code segment

will give the F and χ2 versions of the test statistic respectively as those

in Box 4.4.
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Box 4.4

F(4,236)= 0.81340 with Significance Level 0.51769028

Chi-Squared(4)= 3.535014 with Significance Level 0.47257447

Clearly there is no evidence of autocorrelation of any order up to 4 in

the residuals of this regression according to either version of the test.

4.5 Testing for non-normality

One of the most commonly applied tests for normality is the Bera--Jarque

(1981, hereafter BJ) test. BJ uses the property of a normally distributed

random variable that the entire distribution is characterised by the first

two moments -- the mean and the variance. The (standardised) third and

fourth moments of a distribution are known as its skewness and kurtosis.

Skewness measures the extent to which a distribution is not symmetric

about its mean value and kurtosis measures how fat the tails of the dis-

tribution are. A normal distribution is not skewed and is defined to have

a coefficient of kurtosis of 3. It is possible to define a coefficient of excess

kurtosis, equal to the coefficient of kurtosis minus three; a normal dis-

tribution will thus have a coefficient of excess kurtosis of zero. A normal

distribution is symmetric and said to be mesokurtic.

Bera and Jarque formalise these ideas by testing whether the coefficient

of skewness and the coefficient of excess kurtosis are jointly zero. Denot-

ing the errors by u and their variance by σ 2, it can be shown that the

coefficients of skewness and kurtosis can be expressed respectively as

b1 = E[u3](
σ 2

)3/2
and b2 = E[u4](

σ 2
)2

(4.8)

The kurtosis of the normal distribution is 3 so its excess kurtosis (b2 − 3)

is zero. The Bera--Jarque test statistic is given by

W = T

[
b2

1

6
+ (b2 − 3)2

24

]
(4.9)

where T is the sample size. The test statistic asymptotically follows a χ2(2)

under the null hypothesis that the distribution of the series is symmetric

and mesokurtic. b1 and b2 can be estimated using the residuals from the

OLS regression, û. The null hypothesis is of normality and this would be

rejected if the residuals from the model were either significantly skewed

or leptokurtic/platykurtic (or both).
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Box 4.5

Statistics on Series RESIDS

Monthly Data From 1986:03 To 2007:04

Observations 252 Skipped/Missing 2

Sample Mean 0.000000 Variance 189.165832

Standard Error 13.753757 of Sample Mean 0.866405

t-Statistic (Mean=0) 0.000000 Signif Level 1.000000

Skewness −2.400256 Signif Level (Sk=0) 0.000000

Kurtosis (excess) 8.734048 Signif Level (Ku=0) 0.000000

Jarque-Bera 1042.949339 Signif Level (JB=0) 0.000000

The normality test statistic is computed automatically in RATS when

the STATS command is run on the residuals

LINREG ERMSOFT / RESIDS
# CONSTANT ERSANDP DPROD DCREDIT DINFLATION DMONEY $
DSPREAD RTERM
STATS RESIDS

The first three lines of this code ensure that the test is conducted using

the residuals from the Microsoft regression rather than on the residuals

of one of the auxiliary regressions for the diagnostic tests that we ran

most recently. The output in this case would be given by Box 4.5.

What is the appropriate conclusion? Note that, like Microsoft Excel,

RATS reports excess kurtosis as ‘kurtosis’. Are the residuals skewed? Are

they mesokurtic, leptokurtic or platykurtic?

In this case, the null hypothesis of error normality is rejected, imply-

ing that the inferences we make about the coefficient estimates could

be wrong, although the sample is probably sufficiently large for the non-

normality to give little cause for concern.

4.6 Dummy variable construction and use

What should be done if evidence of non-normality is found? It is, of course,

possible to employ an estimation method that does not assume normality,

but such a method may be difficult to implement and one can be less sure

of its properties. It is thus desirable to stick with OLS if possible, since

its behaviour in a variety of circumstances has been well researched. For

sample sizes that are sufficiently large, violation of the normality assump-

tion is virtually inconsequential. Appealing to a central limit theorem, the
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test statistics will asymptotically follow the appropriate distributions even

in the absence of error normality.

In economic or financial modelling, it is quite often the case that one

or two very extreme residuals cause a rejection of the normality assump-

tion. Such observations would appear in the tails of the distribution and

would therefore lead u4, which enters into the definition of kurtosis, to

be very large. Such observations that do not fit in with the pattern of

the remainder of the data are known as outliers. If this is the case, one

way to improve the chances of error normality is to use dummy variables

or some other method to effectively remove those observations. This type

of dummy variable that takes the value one for only a single observation

has an effect exactly equivalent to knocking out that observation from the

sample altogether, by forcing the residual for that observation to zero. The

estimated coefficient on the dummy variable will be equal to the residual

that the dummied observation would have taken if the dummy variable

had not been included in the model.

In RATS, the residuals can be plotted or printed using commands dis-

cussed previously to get an idea of whether there are specific outliers that

may be usefully removed from the sample. To plot the actual and fitted

values and the residuals, use the commands

SET FITTED = ERMSOFT – RESIDS
GRAPH(SCALE=BOTH) 3
# ERMSOFT
# FITTED
# RESIDS

From the graph (not shown), it can be seen that there are several large

(negative) outliers, but the largest of all occur in early 1998 and early

2003. All of the large outliers correspond to months where the actual re-

turn was much smaller (i.e. more negative) than the model would have

predicted. Interestingly, the residual in October 1987 is not quite so promi-

nent because even though the stock price fell, the market index value fell

as well, so that the stock price fall was at least in part predicted by the

model (this can be seen by comparing the actual and fitted values during

that month).

In order to specify the precise dates of the largest outliers, this would be

best achieved by printing the RESIDS series and looking at the numbers

by eye. Rather than printing the entire series if it were a very long one,

we could use a command like

PRINT(SMPL=ABS(RESIDS)>20) / RESIDS
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This would print the values of any residuals greater than 20 in absolute

value.

If we did this, it would be evident that the two most extreme residu-

als (with values to the nearest integer) were in February 1998 (−68) and

February 2003 (−67). One way to remove these big outliers from the data

would be to delete them from the sample, but a much better way would

be to use dummy variables. It would be tempting but incorrect to con-

struct one dummy variable that takes the value one for both Feb 98 and

Feb 03 (and zero elsewhere), but this would not have the desired effect of

setting both residuals to zero. Instead, to remove two outliers requires us

to construct two separate dummy variables. In order to create the Feb 98

dummy, we generate a series called FEB98DUM very simply in RATS using

the SET command. The syntax is

SMPL 1986:03 2007:04
SET FEB98DUM = T == 98:2

RATS will always use the same observations as set previously. For example,

if the sample has been set to consist only of the first 100 observations,

RATS will continue to use this sample until told otherwise. Hence the

SMPL instruction ensures that RATS returns to using the entire sample of

observations, in case any sub-samples have been selected during a previous

step. An alternative method of constructing the same dummy variable for

February 98 would be to use the %IF command -- for example

SET FEB98DUM = %IF(T<98:02.or.T>98:02,0,1)

The dummy is set up to say that if the time index is before February 1998

or after February 1998, the variable will take the value 0, otherwise 1.

Hence only the observation for February 1998 will be given a value of 1. If

we similarly construct a dummy for February 2003 and run the regression

including the two dummy variables, we need to add the following code

segment:

SET FEB03DUM = T == 2003:2
LINREG ERMSOFT / RESIDS
# CONSTANT ERSANDP DPROD DCREDIT DINFLATION DMONEY $
DSPREAD RTERM FEB98DUM FEB03DUM

We need to be careful when we use year identifiers for times after 1999

since these need to use the full four digits (e.g. ‘2003’ and not ‘03’). The

regression results would be those shown in Box 4.6.
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Box 4.6

Linear Regression - Estimation by Least Squares

Dependent Variable ERMSOFT

Monthly Data From 1986:03 To 2007:04

Usable Observations 252 Degrees of Freedom 242

Total Observations 254 Skipped/Missing 2

Centered R**2 0.358962 R Bar **2 0.335122

Uncentered R**2 0.359441 T X R**2 90.579

Mean of Dependent Variable -0.42080264

Std Error of Dependent Variable 15.41135106

Standard Error of Estimate 12.56642604

Sum of Squared Residuals 38215.445332

Regression F(9,242) 15.0570

Significance Level of F 0.00000000

Log Likelihood -990.28982

Durbin-Watson Statistic 2.142031

Variable Coeff Std Error T-Stat Signif

*******************************************************************************

1. Constant -0.08660581 1.31519419 -0.06585 0.94755145

2. ERSANDP 1.54797081 0.18394457 8.41542 0.00000000

3. DPROD 0.45501487 0.45187523 1.00695 0.31496551

4. DCREDIT -0.00005917 0.00014465 -0.40907 0.68285371

5. DINFLATION 4.91329662 2.68565861 1.82946 0.06856156

6. DMONEY -1.43060800 0.64460124 -2.21937 0.02738942

7. DSPREAD 8.62489524 12.22705150 0.70539 0.48124316

8. RTERM 6.89375431 2.99398166 2.30254 0.02215420

9. FEB98DUM -69.14177418 12.68402016 -5.45109 0.00000012

10. FEB03DUM -68.24391252 12.65390053 -5.39311 0.00000016

Note that the dummy variable parameters are both highly significant

and take approximately the values that the corresponding residuals would

have taken if the dummy variables had not been included in the model.8

By comparing the results with those of the regression above that excluded

the dummy variables, it can be seen that the coefficient estimates on the

remaining variables change quite a bit in this instance and the signifi-

cance levels improve considerably. The term structure and money supply

8 Note that the correspondence between the values of the residuals and the values of the

dummy variable parameters is not perfect because two dummies are being used

together; had we included only one dummy, the value of the dummy variable

coefficient and that which the residual would have taken without the inclusion of the

dummy in the model would be identical.
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parameters are now both significant at the 5% level, and the unexpected

inflation parameter is now significant at the 10% level. The R2 value has

risen from 0.20 to 0.36 because of the perfect fit of the dummy variables

to those two extreme outlying observations.

Finally, if we re-examine the normality test results by re-running the

appropriate code segment on the residuals from the equation that in-

cludes the dummies, we will see that while the skewness and kurtosis

are both slightly closer to the values that they would take under nor-

mality, the Bera--Jarque test statistic still takes a value of 861 (compared

with over 1,000 previously). We would thus conclude that the residuals

are still a long way from following a normal distribution. While it would

be possible to continue to generate dummy variables, there is a limit to

the extent to which it would be desirable to do so. With this particular

regression, we are unlikely to be able to achieve a residual distribution

that is close to normality without using an excessive number of dummy

variables. As a rule of thumb, in a monthly sample with 252 observations,

it is reasonable to include, perhaps, two or three dummy variables but

more would probably be excessive. In this instance, we would therefore

probably not include further dummies and should resign ourselves to the

inherent non-normality of these residuals.

4.7 Testing for multicollinearity

An implicit assumption when using the OLS estimation method is that

the explanatory variables are not correlated with one another. If there

was no relationship between the explanatory variables, they would be

said to be orthogonal to one another. If the explanatory variables were

orthogonal, adding or removing a variable from a regression equation

would not cause the values of the coefficients on the other variables to

change.

In any practical context, the correlation between explanatory variables

will be non-zero, although this will generally be relatively benign in the

sense that a small degree of association will not cause too much loss

of precision. However, a problem occurs when the explanatory variables

are very highly correlated with each other and this problem is known as

multicollinearity. A simple way to test for ‘near’ multicollinearity would

be to examine the pair-wise correlations between all combinations of two

of the explanatory variables.

In RATS, a correlation matrix for the independent variables would be

constructed using the CMOMENT instruction
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Box 4.7

1.0000

-0.0962 1.0000

-0.0129 -2.7414e-03 1.0000

-0.0130 0.1680 0.0713 1.0000

-0.0336 0.1217 0.0353 6.7016e-03 1.0000

-0.0380 -0.0738 0.0253 -0.1694 -0.0751 1.0000

0.0138 -0.0425 -0.0624 -6.5182e-03 0.1704 0.0185 1.0000

CMOMENT(CORR,PRINT)
# ERSANDP DPROD DCREDIT DINFLATION DMONEY DSPREAD $
RTERM
WRITE %CMOM

The CMOMENT(CORR) instruction tells RATS to construct a vari-

ance/covariance matrix for the variables using the list of variables in the

list of supplementary cards (after the # symbol) and then to transform it

into a correlation matrix. The WRITE command simply displays the esti-

mated correlation matrix. The output from this command would be as in

Box 4.7.

Do the results indicate any significant correlations between the inde-

pendent variables? (Note that the correlations between the variables will

be listed in the same order as they were in the supplementary cards,

i.e. starting with ERSANDP and finishing with RTERM.) In this particular

case, the largest observed correlation is 0.17 between the money supply

and term structure variables and this is sufficiently small that it can rea-

sonably be ignored.

4.8 The RESET test for functional form

A further implicit assumption of the classical linear regression model is

that the appropriate ‘functional form’ is linear. This means that the ap-

propriate model is assumed to be linear in the parameters, so that in

the bivariate case, the relationship between y and x could be represented

by a straight line. However, this assumption may not always be upheld.

Whether the model should be linear can be formally tested using Ram-

sey’s (1969) RESET test, which is a general test for mis-specification of func-

tional form. Essentially, the method works by using higher-order terms of

the fitted values (e.g. ŷ2
t , ŷ3

t etc.) in an auxiliary regression. The auxiliary
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regression is thus one where y, the dependent variable from the original

regression, is regressed on powers of the fitted values

yt = β1 + β2 ŷ2
t + β3 ŷ3

t + · · · + βp ŷ p
t + original regressors + vt (4.10)

Higher-order powers of the fitted values of y can capture a variety of non-

linear relationships, since they embody higher-order powers and cross-

products of the original explanatory variables, e.g.

ŷ2
t = (γ̂1 + γ̂2x2t + γ̂3x3t + · · · + γ̂k xkt )

2 (4.11)

The value of R2 is obtained from the regression (4.10) and the test statis-

tic, given by TR2, is distributed asymptotically as χ2(p − 1). Note that the

degrees of freedom for this test will be (p − 1) and not p. This arises be-

cause p is the highest-order term in the fitted values used in the auxiliary

regression and thus the test will involve p − 1 terms, one for the square of

the fitted value, one for the cube, . . . , one for the pth power. If the value

of the test statistic is greater than the χ2 critical value, reject the null

hypothesis that the functional form is correct.

The Ramsey RESET test would be constructed in RATS manually follow-

ing the regression. The variable FITTED has already been specified in a

previous instruction above, but we also need to construct a series that is

the square of the fitted value:

SET FITTEDSQ = FITTED∗∗2
LINREG(NOPRINT) ERMSOFT
# CONSTANT ERSANDP DPROD DCREDIT DINFLATION DMONEY $
DSPREAD RTERM FITTEDSQ
RESTRICT 1
# 9
# 1 0

The regression is conducted of the Microsoft excess returns on the original

variables plus the square of the fitted values. The RESTRICT command

computes the F -version of the test statistic. Think about how you would

instruct RATS to compute the LM version. The RATS RESET output is given

for the F -version (and an exactly equivalent t -test) by Box 4.8.

The Ramsey RESET test for this regression is in effect determining

whether the relationship between the Microsoft stock excess returns and

Box 4.8

t(243)= -0.958963 or F(1,243)= 0.919609 with Significance Level 0.33853070
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the explanatory variables is linear or not. It can be seen that there is no

apparent non-linearity in the regression equation and so overall it would

be concluded that the linear model in the returns is appropriate.

RATS also has a built-in procedure for running the RESET test, which

should be placed immediately after the main regression (not the auxiliary

regression, which is now redundant anyway). The form of the command

to call the sub-routine would be

SOURCE REGRESET

And then to run the RESET procedure, write

@REGRESET(h=2)

to include the squared fitted value term in the test regression only (use

h = 3 to also include the cubic term and so on).

4.9 Parameter stability tests

So far, the regressions estimated have embodied the implicit assumption

that the parameters (β1, β2 and β3) are constant for the entire sample, both

for the data period used to estimate the model and for any subsequent

period used in the construction of forecasts. This implicit assumption can

be tested using parameter stability tests. The idea is essentially to split the

data into sub-periods and then to estimate up to three models for each of

the sub-parts and for all the data and then to ‘compare’ the RSS of each

of the models. There are two types of test that will be considered, namely

the Chow (analysis of variance) test and predictive failure tests.

4.9.1 The Chow test

The steps involved in conducting a Chow test are as follows:

1. Split the data into two sub-periods. Estimate the regression over the

whole period and then for the two sub-periods separately (three regres-

sions). Obtain the RSS for each regression.

2. The restricted regression is now the regression for the whole period

while the ‘unrestricted regression’ comes in two parts: one for each of

the sub-samples. It is thus possible to form an F -test, which is based

on the difference between the RSSs. The statistic is

Test statistic = RSS − (RSS1 + RSS2)

RSS1 + RSS2

× T − 2k

k
(4.12)
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where:

RSS = residual sum of squares for whole sample

RSS1 = residual sum of squares for sub-sample 1

RSS2 = residual sum of squares for sub-sample 2

T = number of observations

2k = number of regressors in the ‘unrestricted’ regression (since it

comes in two parts)

k = number of regressors in (each) ‘unrestricted’ regression.

The unrestricted regression is the one where the restriction has not

been imposed on the model. Since the restriction is that the coeffi-

cients are equal across the sub-samples, the restricted regression will

be the single regression for the whole sample. Thus, the test is one of

how much the residual sum of squares for the whole sample (RSS) is

bigger than the sum of the residual sums of squares for the two sub-

samples (RSS1 + RSS2). If the coefficients do not change much between

the samples, the residual sum of squares will not rise much upon im-

posing the restriction.

Thus the test statistic in (4.12) can be considered a straightforward

application of the standard F -test formula discussed in Chapter 3. The

restricted residual sum of squares in (4.12) is RSS, while the unrestricted

residual sum of squares is (RSS1 + RSS2). The number of restrictions is

equal to the number of coefficients that are estimated for each of the

regressions, i.e. k. The number of regressors in the unrestricted regres-

sion (including the constants) is 2k, since the unrestricted regression

comes in two parts, each with k regressors.

3. Perform the test. If the value of the test statistic is greater than the

critical value from the F -distribution, which is an F(k, T − 2k), then

reject the null hypothesis that the parameters are stable over time.

Note that it is also possible to use a dummy variables approach to calcu-

lating both Chow and predictive failure tests. In the case of the Chow test,

the unrestricted regression would contain dummy variables for the inter-

cept and for all of the slope coefficients (see also Chapter 9). For example,

suppose that the regression is of the form

yt = β1 + β2x2t + β3x3t + ut (4.13)

If the split of the total of T observations is made so that the sub-samples

contain T1 and T2 observations (where T1 + T2 = T ), the unrestricted re-

gression would be given by

yt = β1 + β2x2t + β3x3t + β4 Dt + β5 Dt x2t + β6 Dt x3t + vt (4.14)
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where Dt = 1 for t ∈ T1 and zero otherwise. In other words, Dt takes the

value one for observations in the first sub-sample and zero for observations

in the second sub-sample. The Chow test viewed in this way would then be

a standard F -test of the joint restriction H0: β4 = 0 and β5 = 0 and β6 = 0,

with (4.14) and (4.13) being the unrestricted and restricted regressions

respectively.

4.9.2 The predictive failure test

The predictive failure test works by estimating the regression over a ‘long’

sub-period (i.e. most of the data) and then using those coefficient estimates

for predicting values of y for the other period. These predictions for y
are then implicitly compared with the actual values. Although it can be

expressed in several different ways, the null hypothesis for this test is that

the prediction errors for all of the forecasted observations are zero.

To calculate the test:

● Run the regression for the whole period (the restricted regression) and

obtain the RSS.

● Run the regression for the ‘large’ sub-period and obtain the RSS (called

RSS1). Note that in this book, the number of observations for the long

estimation sub-period will be denoted by T1 (even though it may come

second). The test statistic is given by

Test statistic = RSS − RSS1

RSS1

× T1 − k

T2

(4.15)

where T2 = number of observations that the model is attempting to

‘predict’. The test statistic will follow an F(T2, T1 − k).

For an intuitive interpretation of the predictive failure test statistic for-

mulation, consider an alternative way to test for predictive failure us-

ing a regression containing dummy variables. A separate dummy vari-

able would be used for each observation that was in the prediction sam-

ple. The unrestricted regression would then be the one that includes the

dummy variables, which will be estimated using all T observations and

will have (k + T2) regressors (the k original explanatory variables and a

dummy variable for each prediction observation, i.e. a total of T2 dummy

variables). Thus the numerator of the last part of (4.15) would be the to-

tal number of observations (T ) minus the number of regressors in the

unrestricted regression (k + T2). Noting also that T − (k + T2) = (T1 − k),

since T1 + T2 = T , this gives the numerator of the last term in (4.15). The

restricted regression would then be the original regression containing

the explanatory variables but none of the dummy variables. Thus the
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number of restrictions would be the number of observations in the pre-

diction period, which would be equivalent to the number of dummy vari-

ables included in the unrestricted regression, T2.

The Chow test and the predictive failure test must be computed man-

ually using RATS. For the break at 1996M10, the regressions for the

whole sample and each of the sub-samples would be conducted and

then the test statistics calculated for the F -version of the tests using the

commands

* WHOLE SAMPLE
LINREG(NOPRINT) ERMSOFT
# CONSTANT ERSANDP DPROD DCREDIT DINFLATION DMONEY $
DSPREAD RTERM
COM RSST = %RSS
COM NOBST = %NOBS
COM DF1 = NOBST – 16
COM DF2 = 8
* FIRST SUB-SAMPLE
SMPL 1986:03 1996:01
LINREG(NOPRINT) ERMSOFT
# CONSTANT ERSANDP DPROD DCREDIT DINFLATION DMONEY $
DSPREAD RTERM
COM RSS1 = %RSS
* SECOND SUB-SAMPLE
SMPL 1996:02 2007:04
LINREG(NOPRINT) ERMSOFT
# CONSTANT ERSANDP DPROD DCREDIT DINFLATION DMONEY $
DSPREAD RTERM
COM RSS2 = %RSS
COM FCHOW = ((RSST – (RSS1+RSS2))/(RSS1+RSS2))*DF1/DF2
CDF FTEST FCHOW DF2 DF1

There are no new commands here, but perhaps a few comments are in or-

der. ‘COM RSST = %RSS’ defines the residual sum of squares for the whole

sample regression (the restricted regression) as RSST; ‘COM NOBST =
%NOBS’ similarly sets up the number of observations for the whole sample

as NOBST; ‘COM DF1 = NOBST -- 16’ sets the number of degrees of free-

dom in the numerator (T − 2k in the formula), while the denominator

degrees of freedom is the number of restrictions, which is the number

of parameters to be estimated, k, is 8 in this case. Similar definitions

are then made for the second sub-sample, and then the ‘COM FCHOW =
. . . ’ puts these ingredients together to calculate the test statistic. The final

‘CDF. . . ’ command finds the critical value and p-value for this test statistic,
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Box 4.9

F(8,236)= 0.53806 with Significance Level 0.82719294

Box 4.10

F(4,240)= 0.05658 with Significance Level 0.99401923

which has DF2 and DF1 degrees of freedom. The output is shown in

Box 4.9.

It is clear here that there is no evidence for parameter instability

across the two sub-sample periods according to the Chow test. To run the

predictive failure test to determine whether the model can adequately

forecast the last four observations (January--April 2007), we have already

estimated the restricted regression (for the whole sample), which has resid-

ual sum of squares RSST and number of observations NOBST, so we need

the following additional code:

* LONG SUB-SAMPLE (UNRESTRICTED REGRESSION)
SMPL 1986:03 2006:12
LINREG(NOPRINT) ERMSOFT
# CONSTANT ERSANDP DPROD DCREDIT DINFLATION DMONEY $
DSPREAD RTERM
COM RSS1 = %RSS
COM NOBS1 = %NOBS
COM NOBS2 = NOBST – NOBS1
COM FFORC = ((RSST – RSS1)/RSS1)*(NOBS1-8)/NOBS2
COM DF = NOBS1 - 8
CDF FTEST FFORC NOBS2 DF

The result is shown in Box 4.10.

This indicates that the model can indeed adequately predict the 2007

observations. Thus the conclusion from both forms of the test is that

there is no evidence of parameter instability. However, the conclusion

should really be that the parameters are stable with respect to these particular

break dates. It is important to be aware that for the model to be deemed

adequate, it needs to be stable with respect to any break dates that we

may choose.

Note that it is not possible to conduct a Chow test or a parameter

stability test when there are outlier dummy variables in the regression.

This occurs because when the sample is split into two parts, the dummy

variable for one of the parts will have values of zero for all observations,
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which would thus cause perfect multicollinearity with the column of

ones that is used for the constant term. So ensure that the Chow test is

performed using the regression containing all of the explanatory variables

except the outlier dummies. It would also be possible, of course, to remove

the outlying observations from the sample altogether before running the

parameter stability test.



5
Formulating and estimating ARMA models

Univariate time-series models are a class of specifications where one at-

tempts to model and to predict financial variables using only information

contained in their own past values and current and possibly past values

of an error term. This practice can be contrasted with structural models,

which are multivariate in nature and attempt to explain changes in a vari-

able by reference to the movements in the current or past values of other

(explanatory) variables. Time-series models are usually a-theoretical, im-

plying that their construction and use is not based upon any underlying

theoretical model of the behaviour of a variable. Instead, time-series mod-

els are an attempt to capture empirically relevant features of the observed

data that may have arisen from a variety of different (but unspecified)

structural models.

An important class of time-series models is the family of AutoRegressive

Moving Average (ARMA) models, usually associated with Box and Jenkins

(1976). Time-series models may be useful when a structural model is in-

appropriate. For example, suppose that there is some variable yt whose

movements a researcher wishes to explain. It may be that the variables

thought to drive movements of yt are not observable or not measurable,

or that these forcing variables are measured at a lower frequency of ob-

servation than yt . Additionally, as will be examined later in this chapter,

structural models are often not useful for out-of-sample forecasting. These

observations motivate the consideration of pure time-series models, which

are the focus of this chapter.

ARMA(p, q) models state that the current value of some series y depends

linearly on its own previous values plus a combination of the current

and previous values of a white noise error term. The model could be

written

φ(L)yt = µ + θ (L)ut (5.1)
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where φ(L) = 1 − φ1L − φ2L2 − · · · − φp L p and θ(L) = 1 + θ1L + θ2L2 +
. . . θq Lq

or

yt = µ + φ1 yt−1 + φ2 yt−2 + · · · + φp yt−p + θ1ut−1

+ θ2ut−2 + · · · + θqut−q + ut (5.2)

with E(ut ) = 0; E(u2
t ) = σ2 ; E(ut us) = 0, t �= s.

The characteristics of an ARMA process will be a combination of those

from the autoregressive and moving average parts. Note that the par-

tial autocorrelation function (pacf) is particularly useful in this con-

text. The autocorrelation function (acf) alone can distinguish between

a pure autoregressive and a pure moving average process. However, an

ARMA process will have a geometrically declining acf, as will a pure

AR process. So, the pacf is useful for distinguishing between an AR(p)

process and an ARMA(p, q) process -- the former will have a geometri-

cally declining autocorrelation function, but a partial autocorrelation

function which cuts off to zero after p lags, while the latter will have

both autocorrelation and partial autocorrelation functions which decline

geometrically.

5.1 Getting started

This example uses the monthly UK house price series which was already

employed in the file HPR.PRG used in Chapter 1. There were a total of

196 monthly observations running from February 1991 (recall that the

January observation was ‘lost’ in constructing the lagged value) to May

2007 for the percentage change in house price series.

The objective of this exercise is to build an ARMA model for the house

price changes. There are three stages involved in constructing such a

model according to Box and Jenkins (1976): identification, estimation and

diagnostic checking.

● Step 1: involves determining the order of the model required to capture

the dynamic features of the data. Graphical procedures are used (plot-

ting the data over time and plotting the acf and pacf) to determine the

most appropriate specification.

● Step 2: involves estimation of the parameters of the model specified

in step 1. This can be done using least squares or another technique,

known as maximum likelihood, depending on the model.
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● Step 3: involves model checking -- i.e. determining whether the model

specified and estimated is adequate. Box and Jenkins suggest two

methods: overfitting and residual diagnostics. Overfitting involves de-

liberately fitting a larger model than that required to capture the

dynamics of the data as identified in step 1. If the model specified

at step 1 is adequate, any extra terms added to the ARMA model

would be insignificant. Residual diagnostics imply checking the resid-

uals for evidence of linear dependence, which if present would sug-

gest that the model originally specified was inadequate to capture

the features of the data. The acf, pacf or Ljung--Box tests could be

used.

It is worth noting that ‘diagnostic testing’ in the Box--Jenkins world essen-

tially involves only autocorrelation tests rather than the whole barrage

of tests outlined in the previous chapter. Also, such approaches to de-

termining the adequacy of the model could only reveal a model that is

under-parameterised (‘too small’) and would not reveal a model that is

over-parameterised (‘too big’).

The first of these stages is carried out by looking at the autocorrela-

tion and partial autocorrelation coefficients to identify any structure in

the data. Estimating the autocorrelation coefficients in RATS would be

achieved using the CORRELATE command, or by using the BJIDENT proce-

dure. The following instructions will estimate the first 12 autocorrelation

and partial autocorrelation coefficients, and will calculate the Ljung--Box

test statistic for all 12 lags. The resulting autocorrelation coefficients for

the raw house price series (PRICE) and the returns (DHP) are stored in ar-

rays called CORRPRICE and CORRDHP respectively, while the correspond-

ing partial autocorrelation coefficients will be stored in PCORRPRICE and

PCORRDHP. The acf and the pacf are also plotted for each series using the

GRAPH instruction:

CORRELATE(NUMBER=12,QSTATS,PARTIAL=PCORRPRICE) PRICE / CORRPRICE
GRAPH(STYLE=BARGRAPH,NUMBER=0,HEADER= ACF for House prices )
# CORRPRICE
GRAPH(STYLE=BARGRAPH,NUMBER=0,HEADER= PACF for House prices )
# PCORRPRICE
CORRELATE(NUMBER=12,QSTATS,PARTIAL=PCORRDHP) DHP / CORRDHP
GRAPH(STYLE=BARGRAPH,NUMBER=0,HEADER= ACF for Changes in house prices )
# CORRDHP
GRAPH(STYLE=BARGRAPH,NUMBER=0,HEADER= PACF for Changes in house prices )
# PCORRDHP
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Box 5.1

Correlations of Series PRICE

Monthly Data From 1991:01 To 2007:05

Autocorrelations
1 2 3 4 5 6 7

0.999549 0.998575 0.997056 0.995077 0.992695 0.989950 0.986885

8 9 10 11 12

0.983499 0.979746 0.975547 0.970998 0.965950

Partial Autocorrelations
1 2 3 4 5 6 7

0.999549 -0.579044 -0.406717 -0.122825 -0.013181 -0.022742 -0.011484

8 9 10 11 12

-0.083959 -0.191077 -0.291994 0.085478 -0.241597

Ljung-Box Q-Statistics
Lags Statistic Signif Lvl

12 2402.391 0.000000

Box 5.2

Correlations of Series DHP

Monthly Data From 1991:02 To 2007:05

Autocorrelations
1 2 3 4 5 6 7

0.254161 0.373062 0.169310 0.121754 0.095566 0.088003 0.064804

8 9 10 11 12

0.112205 0.217159 0.146580 0.300724 0.325522

Partial Autocorrelations
1 2 3 4 5 6 7

0.254161 0.329767 0.026324 -0.040401 0.019797 0.045781 0.010557

8 9 10 11 12

0.067493 0.192390 0.031511 0.164233 0.225022

Ljung-Box Q-Statistics
Lags Statistic Signif Lvl

12 111.945 0.000000

The RATS autocorrelation and partial autocorrelation output for the house

prices will be that shown in Box 5.1 and for the changes in house prices

see Box 5.2.

The plots for the autocorrelation and partial autocorrelations for the

house price levels are shown in Figures 5.1 and 5.2 and for the house price

percentage changes in Figures 5.3 and 5.4.
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The extreme levels of persistence (slow decay) in the autocorrelations

of the house price levels series are clearly evident from the autocorre-

lation function plot, and in fact this series is non-stationary (see Chap-

ter 7) and so it is not appropriate to consider the time-series properties

further.
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Moving on to consider the house price changes, this is also a fairly per-

sistent series. The Ljung-Box test statistic of 111.9 is significant at the 1%

level (p-value = 0.0000). The autocorrelation coefficients decline slowly

from a peak of 0.37 at the second lag to 0.06 at lag 7, before rising again

slightly. Remember that as a rule of thumb, a given autocorrelation co-

efficient is classed as significant if it is outside a ±1.96 × (1/T 1/2) band,

where T is the number of observations. In this case, it would imply that a

correlation coefficient is classed as significant if it is bigger than approxi-

mately 0.14 or smaller than −0.14. The band is of course wider when the

sampling frequency is monthly as it is here rather than daily where there

would be more observations. It can be deduced that the first three autocor-

relation coefficients and the first two partial autocorrelation coefficients

are significant under this rule (plus some coefficients at lags 9 to 12). It

could be concluded that a mixed ARMA process may be appropriate, al-

though it is hard to precisely determine the appropriate order given these

results, since both the acf and pacf seem to decay fairly slowly. In order to

investigate this issue further, the information criteria are now employed.

These can be constructed simply in RATS using a loop over the possible

lag lengths for the autoregressive and moving average components9

DO I=0,5
DO J=0,5

BOXJENK(CONSTANT,AR=I,MA=J,NOPRINT) DHP
COM AIC = (2.0*(I+J+1)/%NOBS)+LOG(%SEESQ)
COM SBIC = (LOG(%NOBS)*(I+J+1)/%NOBS)+LOG(%SEESQ)
DISPLAY ‘P=’ I ‘Q=’ J ‘AIC=’ AIC ‘SBIC=’ SBIC
END DO J

END DO I

The two nested DO loops tell RATS to cycle over the AR lag length (I) and

MA lag length (J). The BOXJENK command estimates the ARMA model for

the returns (with the NOPRINT option again ensuring that no unwanted

output is produced). Note that in order to include an intercept in the fitted

ARMA models (which one would almost always want to do as the series

are unlikely to have a zero mean), the CONSTANT option must be used

since the default is to force the regression through the origin. The next

two lines code the formulae for constructing the information criteria, and

finally the DISPLAY command tells RATS what output to display. Computer

program loops always operate so that the inner loop finishes first -- so, in

9 There is a procedure for determining the optimal ARMA model length, BJAUTOFIT,

which is much easier to use than writing the nested loop instructions, but the latter

demonstrate some structures that will be useful later in the book.
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the example above, RATS will set I = 0 and then cycle around the loop for

J, setting J = 1, then 2, 3, 4, 5, before changing I to 1, and running J = 1,

2, 3, 4, 5 etc. %NOBS and %SEESQ are the number of observations used in

the Box--Jenkins model estimation and the residual variance respectively.

These items are automatically created and defined in this way every time

RATS runs any kind of regression.

The output from this set of commands would be as shown in Box 5.3.

Box 5.3

P= 0 Q= 0 AIC= 0.28326 SBIC= 0.29999

P= 0 Q= 1 AIC= 0.25878 SBIC= 0.29223

P= 0 Q= 2 AIC= 0.15489 SBIC= 0.20506

P= 0 Q= 3 AIC= 0.16070 SBIC= 0.22760

P= 0 Q= 4 AIC= 0.16928 SBIC= 0.25291

P= 0 Q= 5 AIC= 0.17390 SBIC= 0.27425

P= 1 Q= 0 AIC= 0.23694 SBIC= 0.27051

P= 1 Q= 1 AIC= 0.17613 SBIC= 0.22648

P= 1 Q= 2 AIC= 0.15772 SBIC= 0.22485

P= 1 Q= 3 AIC= 0.15059 SBIC= 0.23451

P= 1 Q= 4 AIC= 0.16561 SBIC= 0.26632

P= 1 Q= 5 AIC= 0.19432 SBIC= 0.31181

P= 2 Q= 0 AIC= 0.12867 SBIC= 0.17921

P= 2 Q= 1 AIC= 0.14423 SBIC= 0.21161

P= 2 Q= 2 AIC= 0.15730 SBIC= 0.24152

P= 2 Q= 3 AIC= 0.02866 SBIC= 0.12973

P= 2 Q= 4 AIC= 0.00174 SBIC= 0.11965

P= 2 Q= 5 AIC= 0.01325 SBIC= 0.14801

P= 3 Q= 0 AIC= 0.14343 SBIC= 0.21105

P= 3 Q= 1 AIC= 0.15703 SBIC= 0.24156

P= 3 Q= 2 AIC= 0.16534 SBIC= 0.26678

P= 3 Q= 3 AIC= 0.17927 SBIC= 0.29761

P= 3 Q= 4 AIC= 0.17680 SBIC= 0.31204

P= 3 Q= 5 AIC= 0.19298 SBIC= 0.34512

P= 4 Q= 0 AIC= 0.15718 SBIC= 0.24201

P= 4 Q= 1 AIC= 0.17293 SBIC= 0.27472

P= 4 Q= 2 AIC= -0.05299 SBIC= 0.06577

P= 4 Q= 3 AIC= 0.03058 SBIC= 0.16631

P= 4 Q= 4 AIC= -0.02568 SBIC= 0.12701

P= 4 Q= 5 AIC= 0.07854 SBIC= 0.24820

P= 5 Q= 0 AIC= 0.17768 SBIC= 0.27985

P= 5 Q= 1 AIC= 0.09912 SBIC= 0.21832

P= 5 Q= 2 AIC= -0.03802 SBIC= 0.09820

P= 5 Q= 3 AIC= 0.11018 SBIC= 0.26343

P= 5 Q= 4 AIC= 0.13377 SBIC= 0.30404

P= 5 Q= 5 AIC= 0.10933 SBIC= 0.29664
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In this application, Akaike’s and Schwarz’s criteria both select an

ARMA(4,2). To run this model and examine the output, we re-use the com-

mand at the core of the previous loop, but without the NOPRINT option.

BOXJENK(CONSTANT,AR=4,MA=2) DHP

If we try to estimate the (4,2) model, we see that the optimisation routine

does not converge on an optimum, and the parameter values proposed

are rather implausible with coefficients larger than one in absolute value,

indicating instability in the estimated model. Unfortunately, this occurs

frequently in practice when a non-linear, iterative procedure is used to es-

timate the parameters rather than an analytical formula as would be the

case with ordinary least squares. It would be possible to modify some of

the options concerning the optimisation method used to conduct the es-

timation (e.g. by changing the starting values, changing the convergence

criterion, or switching optimisation method entirely). This issue is investi-

gated in detail in Chapter 8, but given the modest sample size used here,

it is arguably preferable to leave the model chosen by the criteria on the

shelf and to estimate a simpler one. So suppose that we choose to estimate

an ARMA(1,1) using the same command as above but with AR=1, MA=1. We

would obtain the output shown in Box 5.4.

Box 5.4

Box-Jenkins - Estimation by LSGauss-Newton

Convergence in 24 Iterations. Final criterion was 0.0000080 <= 0.0000100

Dependent Variable DHP

Monthly Data From 1991:03 To 2007:05
Usable Observations 195 Degrees of Freedom 192

Centered R**2 0.133283 R Bar **2 0.124254

Uncentered R**2 0.336930 T x R**2 65.701

Mean of Dependent Variable 0.6352120917

Std Error of Dependent Variable 1.1491458064

Standard Error of Estimate 1.0753853943

Sum of Squared Residuals 222.03911929

Log Likelihood -289.35378

Durbin-Watson Statistic 2.064236

Q(36-2) 87.815571

Significance Level of Q 0.00000120

Variable Coeff Std Error T-Stat Signif

*******************************************************************************

1. CONSTANT 0.651899748 0.198432681 3.28524 0.00121118

2. AR{1} 0.877168930 0.072768960 12.05416 0.00000000

3. MA{1} -0.686523384 0.109779962 -6.25363 0.00000000
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We can see that now convergence has been achieved, with the AR part

of the model being stationary and the MA part invertible. The fact that the

AR and MA coefficients are almost equal and opposite is again evidence of

some instability in the estimated model, but both parameters are highly

statistically significant.

It would be useful to check whether this model has been able to cap-

ture all of the dynamic structure in the house price changes or whether

some remains in the residuals. So re-run the estimation, this time, adding

‘/ RESIDS’ and then estimating the acf/pacf on those residuals

BOXJENK(NOPRINT,AR=1,MA=1) DHP / RESIDS
CORRELATE(NUMBER=12,QSTATS,PARTIAL=PACFR) RESIDS

The LB-Q(12) statistic takes a value 31.820, with p-value = 0.001, so the

conclusion would be that this model is not sufficient and that a ‘larger’

model allowing for more structure should be specified.

5.2 Forecasting using ARMA models

Once a specific model order has been chosen and the model estimated for

a particular set of data, it may be of interest to use the model to forecast

future values of the series. Forecasting using ARMA models is a fairly

simple exercise in calculating conditional expectations. Let ft,s denote a

forecast made using an ARMA(p,q) model at time t for s steps into the

future for some series y. The forecasts are generated by what is known as

a forecast function, typically of the form

ft,s =
p∑

i=1

ai ft,s−i +
q∑

j=1

b j ut+s− j (5.3)

where ft,s = yt+s, k ≤ 0; ut+s = 0, s > 0

= ut+s, s ≤ 0

and ai and b j are the autoregressive and moving average coefficients re-

spectively.

Suppose that an ARMA(1,1) model for the house price percentage

changes series were estimated using observations February 1991 -- Decem-

ber 2004, leaving 29 observations remaining to construct forecasts and to

test forecast accuracy (for the period January 2005 -- May 2007). The model

would be estimated and the multi-step ahead forecast production would

be achieved using the following code segment:
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SMPL 1991:03 2004:12
BOXJENK(CONSTANT,DEFINE=BJEQ,AR=1,MA=1) DHP / RESIDS
FORECAST 1 29 2005:01
# BJEQ DHPFOR
PRINT 2005:01 2007:05 DHP DHPFOR
SMPL 2005:01 2007:05
GRAPH(STYLE=LINE) 2
# DHP
# DHPFOR
SET MSE1 = (DHP-DHPFOR)**2
STATS(NOPRINT) MSE1
COM RMSEBJ = %MEAN**0.5
DIS RMSE-MULTI-STEP AHEAD = RHSEBJ

The model is again estimated using the BOXJENK command, with the op-

tion DEFINE=BJEQ used to give the estimated equation a name that can

be called when forecasting. Note that a vector of residuals must be saved

at this stage (called RESIDS in this example) in order for RATS to be able

to produce the forecasts. Prediction is achieved using the FORECAST com-

mand, with the numbers 1 29 2005:01 telling RATS to produce forecasts

from one equation (the ARMA model is a single-equation set-up -- see the

following chapter for a multi-equation framework) up to 29 steps ahead,

with the first forecast being produced for the January 2005 observation.

The supplementary cards in the next line tell RATS to use the model

BJEQ defined above and to put the forecasts in an array called DHPFOR.

The PRINT line will then display the house price changes and the fore-

casts; they can then be plotted using the GRAPH command. Note that

the SMPL 2005:01 2007:05 instruction is necessary in order to ensure that

RATS plots only the forecast sample rather than the entire sample includ-

ing the observations 1991:02 2004:12 used for model estimation.

There is also a single-equation forecasting Wizard on the Data menu,

which is simpler to use than writing the code manually but which offers

less flexibility.

The block of code beginning ‘SET MSE1. . . ’ will open up a new array

called MSE1, each element of which will be the square of the forecasted

minus the actual value for each forecast observation. The mean squared

error will just be the average of the observations in this series. Other

forecast error measures can be constructed in a similar way. For exam-

ple, the absolute forecast errors could be calculated using ‘SET MAE1 =

ABS(DHP-DHPFOR)’, and so on.

The above code will produce a set of multi-step ahead forecasts with

horizon from 1 to 29 observations. This means that the starting point in

each case will be the same. Alternatively, we could produce a series of
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rolling one-step ahead forecasts, where the horizon is always one obser-

vation and so the starting point moves forward by one observation as we

produce each forecast.

We could do this by estimating only one model and using the most

recently available observations to construct the forecast, but this would

imply that as we rolled through the sample, not all of the available infor-

mation would be used to estimate the model parameters. This would make

sense only if the time required to estimate the parameters were extremely

large so that the computational time saved by estimating the model only

once would be worth the potential loss of accuracy from using out-dated

parameters in producing the forecasts. However, this is unlikely to be a

relevant scenario, so the model should be re-estimated within the loop so

that the parameters are updated when more data become available as the

horizon increases. We can achieve this using the following loop:

DO J=1,29
SMPL 1991:03 2004:11+J
BOXJENK(CONSTANT,DEFINE=BJEQ,AR=1,MA=1,NOPRINT) $
DHP / RESIDS
FORECAST 1 1 2004:12+J
# BJEQ DHPFOR
END DO J
SMPL 2005:01 2007:05
GRAPH(STYLE=LINE, $
HEADER= DHP RECURSIVE 1-STEP AHEAD FORECASTS ) 2
# DHP
# DHPFOR
SET MSE1 = (DHP-DHPFOR)**2
STATS(NOPRINT) MSE1
COM RMSEBJ = %MEAN**0.5
DIS RMSE - RECURSIVE 1-STEP AHEAD = RMSEBJ

The loop over J from 1 to 29 is used to roll through the sample one

observation at a time. The first cycle of the loop will start with J = 1

and therefore the sample starts by using observations from March 1991

to ‘November 2004 + 1’ (i.e. December 2004), then a forecast is made for

one step ahead for observation ‘December 2004 + 1’ (i.e. January 2005),

which is placed in the January 2005 element of the RTFOR series. The

value of J is then increased by 1, the model re-estimated, another one-step

ahead forecast produced and so on until 29 such predictions have been

made. Finally, the ‘SET MSE. . . ’ block will again calculate the mean of the

squared forecast errors over the out-of-sample period, and ‘COM MSEBJ. . . ’

will give the MSE.
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Figure 5.5

DHP multi-step

ahead forecasts

Figure 5.6

DHP recursive

one-step ahead

forecasts

Note that the above code produces a set of one-step ahead forecasts recur-

sively -- i.e. with a fixed starting point and an increasing window length as

we move through the sample. If, instead, we wanted to estimate the model

with a rolling window of fixed length, how would we modify the above code?

Try it and see whether the forecasts produced are more accurate.

The graphs will appear as in Figures 5.5 and 5.6 for the multi-step and

rolling one-step horizons respectively, with the actual series as the solid

line and the forecasts as the dotted line (not forgetting to click on the

‘Use black & white (patterns)’ button to switch from a two-colour figure

to one that uses symbols instead).

As we would expect, the multi-step ahead predictions are smoother than

the one-step ahead ones, and the former converge upon the long-term av-

erage change in house prices (since the AR part of the model is stationary)
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Box 5.5

RMSE - MULTI-STEP AHEAD = 0.67402

RMSE - RECURSIVE 1-STEP AHEAD = 0.69328

over the in-sample period as the forecast horizon increases. But which set

of forecasts is the more accurate, in terms of having the lowest root mean

squared error (RMSE)? The results are shown in Box 5.5.

So in this particular exercise, the one-step ahead forecasts have a

marginally lower RMSE and so would be classified as the more accurate.

While the out-of-sample period was small at only 29 monthly observations,

this is probably the result that we would have expected. In general, pre-

dictions usually become less accurate the longer the forecast horizon. A

robust forecasting exercise would of course employ a longer out-of-sample

period than the two years or so used here, and would perhaps employ sev-

eral competing models in parallel. A good framework would also compare

the accuracy of the predictions by examining several other error measures

such as the mean absolute error (MAE) or Theil’s U-statistic.

RATS provides a procedure for automatically analysing forecast errors.

The syntax is

SOURCE UFOREERRORS
@UFOREERRORS actual forecast start end

where actual and forecast are the names of the series containing the actual

and forecast series respectively and start/end are optional specifications for

the sample range to be used in the calculation of the error measures. The

mean forecast error (ME), MAE, RMSE, mean percentage error (MPE), mean

absolute percentage error (MAPE) and RMSPE can all be calculated by the

procedure (not all of these measures are presented by default).

There is also a THEIL instruction that computes a number of forecast

error measures, although it is slightly more complicated to use -- see the

RATS Reference Manual entry for details.

5.3 Exponential smoothing models

Exponential smoothing is another modelling technique (not based on the

ARMA approach) that uses only a linear combination of the previous val-

ues of a series for modelling it and for generating forecasts of its future

values. Given that only previous values of the series of interest are used,

the remaining question is how much weight should be attached to each
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of the previous observations. Recent observations would be expected to

have the most power in helping to forecast future values of a series. If this

is accepted, a model that places more weight on recent observations than

those further in the past would be desirable. However, observations a long

way in the past may still contain some information useful for forecasting

future values of a series, which would not be the case under a centred

moving average. An exponential smoothing model will achieve this by im-

posing a geometrically declining weighting scheme on the lagged values

of a series. The equation for the model is

St = αyt + (1 − α)St−1 (5.4)

where α is the smoothing constant with 0 ≤ α ≤ 1, yt is the current re-

alised value, and St is the current smoothed value.

Since α + (1 − α) = 1, St is modelled as a weighted average of the current

observation yt and the previous smoothed value. The forecasts from an

exponential smoothing model are simply set to the current smoothed

value, for any number of steps ahead, s

ft+s = St , s = 1, 2, 3, . . . (5.5)

In RATS, exponential smoothing is conducted using the ESMOOTH com-

mand. To produce a smoothed series called DHPS (the smoothed series)

from a data series DHP, with observations 1991:03 to 2004:12 used for

in-sample estimation and 29 (multi-step ahead) forecasts produced and

placed in the series DHPFORS, the command would be

ESMOOTH(ESTIMATE,SMOOTHED=DHPS,FORECAST=DHPFORS, STEPS=29) $
DHP 1991:03 2004:12

with output as in Box 5.6.

There is also a Wizard that can conduct a number of filters and

smoothers. The estimated smoothing coefficient of 0.106 is quite small.

The forecasts or the in-sample smoothed values could then be printed or

summary accuracy measures computed as desired. The RATS ESMOOTH

instruction also has options to incorporate a trend or seasonal compo-

nents -- see the on-line help or user manual for details. If we wished to

Box 5.6

Exponential Smoothing for Series DHP

Model with TREND=None, SEASONAL=None

Alpha (level) 0.105888
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Box 5.7

ENTRY DHPFORS DHP

2005:01 0.854498397707 -0.567119992410

2005:02 0.648427330528 0.739184250621

2005:03 0.662800230007 0.652298726732
...

...
...

2007:04 0.714032304948 1.824919006203

2007:05 0.845416249937 0.704510735997

Forecast Analysis for DHP

From 2005:01 to 2007:05
Mean Error 0.00815655

Mean Absolute Error 0.54769622

Root Mean Square Error 0.72142363

Mean Square Error 0.520452

Theil’s U 0.813486

produce a series of recursive one-step ahead forecasts from the smoothed

values, we would need to nest a slightly modified version of the ESMOOTH

instruction in a loop:

DO J=1,29
SMPL 1991:03 2004:11+J
ESMOOTH(ESTIMATE,SMOOTHED=DHPS,NOPRINT,FORECAST=DHPFORS,STEPS=1) $
DHP 1991:03 2004:11+J
END DO J
PRINT 2005:01 2007:05 DHPFORS DHP
SOURCE UFOREERRORS
@UFOREERRORS DHP DHPFORS 2005:01 2007:05

We would then obtain the output in Box 5.7, with the dots indicating the

omission of some rows.

Interpreting the forecast error analysis is difficult in the absence of a

similar analysis of the forecasts from a benchmark model and so is not

attempted here.



6
Multivariate models

One of the assumptions of the classical linear regression model is that

the explanatory variables are non-stochastic, or fixed in repeated samples.

There are various ways of stating this condition, some of which are slightly

more or less strict, but all of which have the same broad implication. It

could also be stated that all of the variables contained in the X matrix

are assumed to be exogenous or that the model is ‘conditioned on’ the

variables in X . However, this assumption will be violated when there is

feedback from the explained variable to the explanatory variable(s) -- in

other words, if there is a simultaneous relationship between them. This

chapter first considers how to model simultaneous equations using an

example on the relationship between inflation and stock returns.

6.1 Setting up a system

What is the relationship between inflation and stock returns? Holding

stocks is often thought to provide a good hedge against inflation, since

the payments to equity holders are not fixed in nominal terms and

represent a claim on real assets (unlike the coupons on bonds, for ex-

ample). However, the majority of empirical studies that have investigated

the sign of this relationship have found it to be negative. Various explana-

tions of this puzzling empirical phenomenon have been proposed, includ-

ing a link through real activity, so that real activity is negatively related

to inflation but positively related to stock returns so that stock returns

and inflation vary negatively. Clearly, inflation and stock returns ought to

be simultaneously related given that the rate of inflation will affect the

discount rate applied to cashflows and therefore the value of equities, but

the performance of the stock market may also affect consumer demand

86
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and therefore inflation through its impact on householder wealth (per-

ceived or actual).10

This simple example uses the same macroeconomic data as used previ-

ously to estimate this relationship simultaneously. Suppose (without jus-

tification) that we wish to estimate the following model, which does not

allow for dynamic effects or partial adjustments and does not distinguish

between expected and unexpected inflation:

inflationt = α0 + α1 returnst + α2 dcreditt + α3 dprodt + α4 dmoneyt + u1t

(6.1)
returnst = β0 + β1 dprodt + β2 dspreadt + β3 inflationt + β4 rtermt + u2t

(6.2)

where ‘returns’ are stock returns and all of the other variables are de-

fined as in a previous example in Chapter 3. It is evident that there is

feedback between the two equations since the inflation variable appears

in the returns equation and vice versa.

Are the equations (6.1) and (6.2) identified? Broadly, the answer to this

question depends upon how many and which variables are present in

each structural equation. Two conditions could be examined to deter-

mine whether a given equation from a system is identified -- the order

condition and the rank condition. There are a number of ways of stating

the order condition; that employed here is an intuitive one (taken from

Ramanathan, 1995, p. 666, and slightly modified):

Let G denote the number of structural equations. An equation is just identified if
the number of variables excluded from an equation is G–1, where ‘excluded’
means the number of all endogenous and exogenous variables that are not present
in this particular equation. If more than G–1 are absent, it is over-identified. If less
than G–1 are absent, it is not identified.

Since there are two equations, each will be identified if one variable is

missing from that equation. Equation (6.1), the inflation equation, omits

two variables. It does not contain the default spread or the term spread

and so is over-identified. Equation (6.2), the stock returns equation, omits

two variables as well -- the consumer credit and money supply variables --

10 Crucially, good econometric models are based on solid financial theory. This model is

clearly not, but represents a simple way to illustrate the estimation and interpretation

of simultaneous equations models using RATS with freely available data!
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and so it over-identified too. Two-stage least squares (2SLS) is therefore the

appropriate technique to use.

In RATS, the 2SLS estimation can be done all in one go by specifying an

instruments list of exogenous variables and then using the ‘INST’ option

with the LINREG command.

INSTRUMENTS CONSTANT DSPREAD DCREDIT DMONEY $
DPROD RTERM

LINREG(ROBUST,INST,FRML=INFLEQ) INFLATION
# CONSTANT RSANDP DCREDIT DPROD DMONEY
LINREG(ROBUST,INST,FRML=RETEQ) RSANDP
# CONSTANT DPROD DSPREAD INFLATION RTERM

The output for the returns equation is shown in Box 6.1 and for the

inflation equation in Box 6.2.

The results overall are not very enlightening. None of the parameters

is even close to statistical significance in either equation, although inter-

estingly, the fitted relationship between the stock returns and inflation

series is positive (albeit not significantly so).

Box 6.1

Linear Regression - Estimation by Instrumental Variables

With Heteroscedasticity/Misspecification Adjusted Standard Errors

Dependent Variable RSANDP

Monthly Data From 1986:03 To 2006:12

Usable Observations 249 Degrees of Freedom 244

Total Observations 250 Skipped/Missing 1

Mean of Dependent Variable 0.7153289944

Std Error of Dependent Variable 4.3803216103

Standard Error of Estimate 4.4110060716

Sum of Squared Residuals 4747.5017936

J-Specification(1) 0.137710

Significance Level of J 0.71056805

Durbin-Watson Statistic 2.013944

Variable Coeff Std Error T-Stat Signif

****************************************************************************

1. Constant 0.62953277 3.47174224 0.18133 0.85610816

2. DPROD -0.23342570 0.25568617 -0.91294 0.36127499

3. DSPREAD -2.40710960 10.44817678 -0.23039 0.81779214

4. INFLATION 0.51818652 14.15997915 0.03660 0.97080781

5. RTERM 0.11623999 1.40907152 0.08249 0.93425386
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Box 6.2

Linear Regression - Estimation by Instrumental Variables

With Heteroscedasticity/Misspecification Adjusted Standard Errors

Dependent Variable INFLATION

Monthly Data From 1986:03 To 2006:12

Usable Observations 249 Degrees of Freedom 244

Total Observations 250 Skipped/Missing 1

Mean of Dependent Variable 0.2480987042

Std Error of Dependent Variable 0.2663603881

Standard Error of Estimate 1.1479452577

Sum of Squared Residuals 321.53790877

J-Specification(1) 0.000011

Significance Level of J 0.99732485

Durbin-Watson Statistic 1.928535

Variable Coeff Std Error T-Stat Signif

****************************************************************************

1. Constant 0.0573731323 0.3479002620 0.16491 0.86901278

2. RSANDP 0.2479339432 0.3755872977 0.66012 0.50917468

3. DCREDIT 0.0000001101 0.0000140221 0.00785 0.99373648

4. DPROD 0.0682047885 0.0902135151 0.75604 0.44962679

5. DMONEY 0.0280912552 0.0737764201 0.38076 0.70337988

6.2 A Hausman test

How can a researcher tell whether variables really need to be treated as

endogenous or not? In other words, financial theory might suggest that

there should be a two-way relationship between two or more variables,

but how can it be tested whether a simultaneous equations model is nec-

essary in practice? This would be done using a Hausman test and the steps

involved are as follows:

1. Obtain the reduced form equations corresponding to each of the struc-

tural equations. Estimate these reduced form equations using OLS and

obtain the fitted values.

2. Run the regression corresponding to the structural form equations, at

this stage ignoring any possible simultaneity.

3. Run the structural form regressions again, but now also including the

fitted values from the reduced form equations as additional regressors.

4. Use an F -test to examine the joint restriction that the parameters

on the reduced form fitted values are zero. If the null hypothesis is
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rejected, the variable(s) should be treated as endogenous because there

is extra important information from the reduced form equations for

modelling the dependent variable. However, if the null is not rejected,

the variable(s) can be treated as exogenous for that dependent variable.

It is of interest to conduct a Hausman specification test for the endo-

geneity of the returns and inflation variables. There are two ways to do

this in RATS -- either using the REGWUTEST procedure or writing the in-

structions manually. The REGWUTEST approach involves only adding the

lines

SOURCE REGWUTEST.SRC
@REGWUTEST

just after each of the supplementary cards of the LINREG instruction.

If we opted to conduct the test manually, sample RATS code to achieve

this would be as follows:

* REDUCED FORM ESTIMATION
LINREG(ROBUST,NOPRINT) RSANDP / U
# CONSTANT DSPREAD DCREDIT DMONEY DPROD RTERM
SET SANDPF = RSANDP - U
LINREG(ROBUST,NOPRINT) INFLATION / V
# CONSTANT DSPREAD DCREDIT DMONEY DPROD RTERM
SET INFLATIONF = INFLATION - V
* HAUSMAN TEST FOR RSANDP
LINREG(ROBUST) RSANDP
# CONSTANT DSPREAD DPROD RTERM INFLATION INFLATIONF
* HAUSMAN TEST FOR INFLATION
LINREG(ROBUST) INFLATION
# CONSTANT DCREDIT DPROD DMONEY RSANDP RSANDPF

To do the Hausman test manually requires the reduced form equations to

be estimated. U and V will be the residuals for the RSANDP and INFLATION

reduced form regressions respectively, while RSANDPF and INFLATIONF

will be the fitted values for the RSANDP and INFLATION reduced form re-

gressions respectively. The Hausman regressions now involve adding the

fitted values from the reduced form estimations to the relevant structural

equation. The test then becomes one of the significance of the coeffi-

cients on the fitted values. The results from RATS estimation are shown

in Box 6.3.

The conclusion is that the inflation fitted value term is not significant

in the stock return equation and so inflation can be considered exogenous

for stock returns. Thus it would be valid to simply estimate this equation

(minus the fitted value term) on its own using OLS.
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Box 6.3

Linear Regression - Estimation by Least Squares

With Heteroscedasticity-Consistent (Eicker-White) Standard Errors

Dependent Variable RSANDP

Monthly Data From 1986:03 To 2006:12

Usable Observations 249 Degrees of Freedom 243

Total Observations 250 Skipped/Missing 1

Centered R**2 0.022495 R Bar **2 0.002382

Uncentered R**2 0.047986 T x R**2 11.949

Mean of Dependent Variable 0.7153289944

Std Error of Dependent Variable 4.3803216103

Standard Error of Estimate 4.3751024489

Sum of Squared Residuals 4651.3897096

Log Likelihood -717.78551

Durbin-Watson Statistic 2.049035

Variable Coeff Std Error T-Stat Signif

**********************************************************************

1. Constant 0.62953277 3.45795027 0.18205 0.85554055

2. DSPREAD -2.40710960 10.32283935 -0.23318 0.81561939

3. DPROD -0.23342570 0.25713326 -0.90780 0.36398364

4. RTERM 0.11623999 1.40195057 0.08291 0.93392068

5. INFLATION -1.88517898 0.97169753 -1.94009 0.05236896

6. INFLATIONF 2.40336550 14.13950430 0.16998 0.86502962

Linear Regression - Estimation by Least Squares

With Heteroscedasticity-Consistent (Eicker-White) Standard Errors

Dependent Variable INFLATION

Monthly Data From 1986:03 To 2006:12

Usable Observations 249 Degrees of Freedom 243

Total Observations 250 Skipped/Missing 1

Centered R**2 0.066193 R Bar **2 0.046979

Uncentered R**2 0.500926 T x R**2 124.731

Mean of Dependent Variable 0.2480987042

Std Error of Dependent Variable 0.2663603881

Standard Error of Estimate 0.2600284599

Sum of Squared Residuals 16.430396390

Log Likelihood -14.88487

Durbin-Watson Statistic 1.389761

Variable Coeff Std Error T-Stat Signif

******************************************************************

1. Constant 0.0574 0.0769 0.74577 0.45580493

2. DCREDIT 1.1008e-07 3.0268e-06 0.03637 0.97098942

3. DPROD 0.0682 0.0193 3.52938 0.00041654

4. DMONEY 0.0281 0.0130 2.15955 0.03080748

5. RSANDP -6.6642e-03 3.8066e-03 -1.75068 0.08000077

6. RSANDPF 0.2546 0.0813 3.12989 0.00174872
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But the fitted stock return term is significant in the inflation equation,

suggesting that stock returns are endogenous. We could thus estimate

a triangular system, where inflation is a function of stock returns but

not the other way around. The REGWUTEST procedure gives qualitatively

identical conclusions.

6.3 VAR estimation

Vector autoregressive models (VARs) were popularised in econometrics by

Sims (1980) as a natural generalisation of the univariate autoregressive

models discussed in the previous chapter. A VAR is a systems regression

model (i.e. there is more than one dependent variable) that can be con-

sidered a kind of hybrid between the univariate time-series models con-

sidered in Chapter 5 and the simultaneous equations models described

previously in this chapter. VARs have often been advocated as an alterna-

tive to large-scale simultaneous equations structural models.

The simplest case that can be entertained is a bivariate VAR, where there

are only two variables, y1t and y2t , each of whose current values depends

on different combinations of the previous k values of both variables, and

error terms

y1t = β10 + β11 y1t−1 + · · · + β1k y1t−k + α11 y2t−1 + · · · + α1k y2t−k + u1t

(6.3)

y2t = β20 + β21 y2t−1 + · · · + β2k y2t−k + α21 y1t−1 + · · · + α2k y1t−k + u2t

(6.4)

where uit is a white noise disturbance term with E(uit ) = 0, (i = 1,2),

E(u1t u2t ) = 0. Provided that the VAR does not contain any contempora-

neous terms on the right-hand side, it can be estimated using OLS.

By way of illustration, a VAR is estimated in order to examine whether

there are lead-lag relationships for the returns to three exchange rates

against the US dollar -- the euro, the British pound and the Japanese yen.

So we will be able to answer the question, do any of these three series

react to news more quickly than the others? The data are daily and run

from 7 July 2002 to 7 July 2007, giving a total of 1,827 observations. The

data are contained in the Excel file ‘currenciesr.xls’ and in this case there

is no column of dates. So we need to construct a new RATS instruction

file (call it FX.PRG) that will read in the data; use the Wizard again to do

this, noting that the data are observed seven days per week (rather than

the usual five). The following instructions will be created:
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OPEN DATA ‘C:\Chris\book\RATS handbook\currenciesr.xls’
CALENDAR(7) 2002:7:7
ALL 2007:07:07
DATA(FORMAT=XLS,ORG=COLUMNS) 2002:07:07 2007:07:07 EUR GBP JPY

We then need to construct continuously compounded percentage re-

turns, using the following lines:

SET REUR = 100*LOG(EUR/EUR{1})
SET RGBP = 100*LOG(GBP/GBP{1})
SET RJPY = 100*LOG(JPY/JPY{1})

Fortunately, there is also a Wizard for constructing VAR models. To use

this, click on the Statistics menu and then select VAR (set-up/Estimate)

and the following window will appear.

Screenshot 6.1

Complete the window as above. The endogenous variables in this case

would be all three series of returns, and the only deterministic/exogenous

variable would be the intercept. Suppose that we want to estimate a

VAR(2) -- that is, a VAR with two lags of each of the variables. We want

to both define and estimate the VAR and to use OLS with the whole sam-

ple, so there is no need to change any of these default settings. (Hint:

remember that to run a Wizard like this, you need to have already run

the code to read in the data and construct the returns, so that RATS will

recognise REUR and the other variables.) The code RATS creates would

be
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SYSTEM(MODEL=FXVAR)
VARIABLES REUR RGBP RJPY
LAGS 1 TO 2
DET CONSTANT
END(SYSTEM)
ESTIMATE

These instructions are fairly self-explanatory and so no comments are

offered. The output in Box 6.4 will be seen when you click OK:

Box 6.4

VAR/System - Estimation by Least Squares

Dependent Variable REUR

Daily(7) Data From 2002:07:10 To 2007:07:07

Usable Observations 1824 Degrees of Freedom 1817

Mean of Dependent Variable -0.017388537

Std Error of Dependent Variable 0.468678580

Standard Error of Estimate 0.468652261

Sum of Squared Residuals 399.07668973

Durbin-Watson Statistic 2.002212

Variable Coeff Std Error T-Stat Signif

********************************************************************

1. REUR{1} 0.031459843 0.036807837 0.85471 0.39282715

2. REUR{2} 0.011376649 0.036613231 0.31073 0.75604528

3. RGBP{1} -0.070258627 0.040505953 -1.73453 0.08299439

4. RGBP{2} 0.026718893 0.040432484 0.66083 0.50880679

5. RJPY{1} -0.020697854 0.029999474 -0.68994 0.49031967

6. RJPY{2} -0.014816511 0.029995174 -0.49396 0.62139190

7. Constant -0.017229278 0.011001490 -1.56609 0.11750264

F-Tests, Dependent Variable REUR

Variable F-Statistic Signif

REUR 0.4158 0.6598727

RGBP 1.6331 0.1956010

RJPY 0.3697 0.6910150

Dependent Variable RGBP

Daily(7) Data From 2002:07:10 To 2007:07:07

Usable Observations 1824 Degrees of Freedom 1817

Mean of Dependent Variable -0.014450099

Std Error of Dependent Variable 0.411917771

Standard Error of Estimate 0.411763013

Sum of Squared Residuals 308.07013108

Durbin-Watson Statistic 2.003730
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Variable Coeff Std Error T-Stat Signif

*******************************************************************

1. REUR{1} 0.016776416 0.032339769 0.51875 0.60399480

2. REUR{2} 0.045542497 0.032168786 1.41574 0.15702430

3. RGBP{1} 0.040547409 0.035588975 1.13933 0.25471780

4. RGBP{2} -0.015074012 0.035524423 -0.42433 0.67137676

5. RJPY{1} -0.029766428 0.026357867 -1.12932 0.25891255

6. RJPY{2} -0.000392427 0.026354089 -0.01489 0.98812113

7. Constant -0.012877997 0.009666029 -1.33229 0.18293053

F-Tests, Dependent Variable RGBP

Variable F-Statistic Signif

REUR 1.1430 0.3190970

RGBP 0.7014 0.4960182

RJPY 0.6387 0.5280769

Dependent Variable RJPY

Daily(7) Data From 2002:07:10 To 2007:07:07

Usable Observations 1824 Degrees of Freedom 1817

Mean of Dependent Variable 0.0021613882

Std Error of Dependent Variable 0.4386756314

Standard Error of Estimate 0.4385643628

Sum of Squared Residuals 349.47941851

Durbin-Watson Statistic 2.004680

Variable Coeff Std Error T-Stat Signif

********************************************************************

1. REUR{1} 0.040970046 0.034444741 1.18944 0.23442090

2. REUR{2} 0.030551031 0.034262629 0.89167 0.37268676

3. RGBP{1} -0.060907457 0.037905435 -1.60683 0.10826618

4. RGBP{2} -0.019407408 0.037836682 -0.51293 0.60806562

5. RJPY{1} 0.011808562 0.028073481 0.42063 0.67407467

6. RJPY{2} 0.035523995 0.028069457 1.26557 0.20582764

7. Constant 0.002186587 0.010295184 0.21239 0.83182719

F-Tests, Dependent Variable RJPY

Variable F-Statistic Signif

REUR 1.1139 0.3284854

RGBP 1.5083 0.2215579

RJPY 0.9046 0.4048690
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RATS presents the output for all three equations in the VAR model, and

also a test of whether both lags of each variable are jointly significant

in that equation. For example, the first equation is for the euro--dollar

returns as the dependent variable, and under ‘F-Tests, Dependent Variable

REUR’, the first entry, ‘RGBP 1.6331 0.1956010’, shows a test of whether

both lags of the pound--dollar returns have a significant impact on the

current value of the euro--dollar returns. Since the F -test statistic takes a

value of only 1.6, with p-value 0.196, the conclusion would be that they do

not have a significant impact. In fact, none of the joint tests on the lags

of any of the variables shows significant results in any of the equations.

So, rather boringly, none of the exchange rate returns is related to either

of the others in a lead-lag sense!

Even if we look at the individual lags in each equation, only one of the

total of 18 is significant at the 10% level, and none is significant at 5%.

The one-period lag of the pound--dollar has a p-value of 0.08 in the euro--

dollar equation. However, we need to remember that if we employ a 10%

significance level, even if all three series were pure random variables, we

would expect a couple of parameters that are significant by chance alone.

Note also that these results can be interpreted as Granger causality

tests, since if variable y1 causes y2, lags of y1 should be significant in

the equation for y2. If this were the case, we would say that y1 ‘Granger-

causes’ y2, and so on. Since none of these tests shows statistically signifi-

cant results, it could therefore be concluded that all of the variables are

weakly exogenous with respect to the others and hence there is no Granger

causality.

6.4 Selecting the optimal lag length for a VAR

The example above assumed that the lag length was known. But usually

the first step in the specification of any VAR model, once the variables

that will enter the VAR have been decided, would be to determine the

appropriate lag length. This can be achieved in a variety of ways, but one

of the easiest is to employ a multivariate information criterion.

Information criteria are not based on the construction of a test statistic

that is compared with the critical value from a statistical distribution.

Instead, the criteria trade off a fall in the RSS of each equation as more

lags are added, against an increase in the value of the penalty term. The

univariate criteria could be applied separately to each equation, but again,

it is usually deemed preferable to require the number of lags to be the

same for each equation. This requires the use of multivariate versions of
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the information criteria, which can be defined as

MAIC = T log
∣∣�̂∣∣ + 2k ′ (6.5)

MSBIC = T log
∣∣�̂∣∣ + k ′ log(T ) (6.6)

MHQIC = T log
∣∣�̂∣∣ + 2k ′ log(log(T )) (6.7)

where �̂ is the variance-covariance matrix of residuals, T is the number

of observations and k ′ is the total number of regressors in all equations,

which will be equal to p2k + p for p equations in the VAR system, each

with k lags of the p variables, plus a constant term in each equation. As

previously, the values of the information criteria are constructed for 0,

1, . . . , k̄ lags (up to some pre-specified maximum k̄), and the chosen num-

ber of lags is that number minimising the value of the given information

criterion.11

Returning to the example, suppose that lag orders from 1 to 10 are con-

sidered. We could take the code that the Wizard constructed for us above

and we can nest it in a loop that estimates each candidate model over

a fixed estimation range, calculating the values of AIC and SBIC in each

case. However, a much easier way is to use the VARLAGSELECT procedure.

The code would be

SOURCE VARLAGSELECT.SRC
@VARLAGSELECT(LAGS=10,CRIT=AIC)
# REUR RGBP RJPY
@VARLAGSELECT(LAGS=10,CRIT=SBC)
# REUR RGBP RJPY

CRIT=HQ can also be used to choose the lag length using the Hannan--

Quinn criterion. The results would appear as in Box 6.5.

It is clear that both AIC and SBIC choose very small models, with AIC

preferring a VAR(1) and SBIC being minimised when no lags of each vari-

able are used, although this result is hardly surprising given that there

was nothing that was significant in the VAR(2).

Often, it will be the case that we will want to choose between two dif-

ferent lag orders. For example, suppose that one researcher thought that

a VAR(4) was optimal, while another deemed that a VAR(1) was prefer-

able. Then, it might be of interest to test whether lags 2 through 4 for all

three equations could be restricted to zero using a likelihood ratio test.

This requires estimation of both the unrestricted model (i.e. the VAR(4))

and the restricted model (the VAR(1)). The logs of the determinants of the

11 Note that there are several ways of writing the information criteria, as for their

univariate counterparts.
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Box 6.5

Lags AICC

0 4390.79516

1 4375.89082*

2 4383.94592

3 4395.86353

4 4395.29804

5 4399.99767

6 4405.49141

7 4416.46819

8 4415.50715

9 4414.30798

10 4428.75550

Lags SBC/BIC

0 4407.30393*

1 4441.88611

2 4499.36785

3 4560.65191

4 4609.39239

5 4663.33719

6 4718.01501

7 4778.11447

8 4826.21441

9 4874.01418

10 4937.39831

variance-covariance matrices of residuals for the two models are then

‘compared’. Denote the variance-covariance matrix of residuals (given by

ûû′) as �̂ and then the likelihood ratio test for this joint hypothesis is

given by

L R = T
⌊

log
∣∣�̂r

∣∣ − log
∣∣�̂u

∣∣⌋ (6.8)

where
∣∣�̂r

∣∣ is the determinant of the variance-covariance matrix of the

residuals for the restricted model,
∣∣�̂u

∣∣ is the determinant of the variance-

covariance matrix of residuals for the unrestricted VAR, and T is the sam-

ple size. The test statistic is asymptotically distributed as a χ2 variate with

degrees of freedom equal to the total number of restrictions. In the gen-

eral case of a VAR with g equations, to impose the restriction that the last

q lags have zero coefficients, there would be g2q restrictions altogether.

Intuitively, the test is a multivariate equivalent to examining the extent

to which the RSS rises when a restriction is imposed. If
∣∣�̂r

∣∣ and
∣∣�̂u

∣∣ are

‘close together’, the restriction is supported by the data.
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The relevant block of RATS instructions is

SYSTEM 1 TO 3
VARIABLES REUR RGBP RJPY
LAGS 1 TO 4
DET CONSTANT
END(SYSTEM)
ESTIMATE(NOPRINT,OUTSIGMA=V)
COM SIGMAU = %LOGDET
COM NOBS = %NOBS
COM PARAMS = 39
SYSTEM 1 TO 3
VARIABLES REUR RGBP RJPY
LAGS 1 TO 1
DET CONSTANT
END(SYSTEM)
ESTIMATE(NOPRINT,OUTSIGMA=V)
COM SIGMAR = %LOGDET
COM LRSTAT = (NOBS-PARAMS)*(SIGMAR-SIGMAU)
CDF CHISQR LRSTAT 27

The equations are estimated as above with four lags and then one lag. The

‘COM SIGMAU = %LOGDET’, ‘COM NOBS = %NOBS’ and ‘COM PARAMS =

39’ commands define the log of the determinant of the residual variance-

covariance matrix, the number of observations used for the regression,

and the total number of parameters used in the unrestricted regression

(three equations each with a constant and four lags of the three variables,

so 13 parameters × 3 equations) respectively. Similarly, ‘COM SIGMAR =

%LOGDET’ defines the log determinant of the residual variance-covariance

matrix for the restricted model.

The final two lines define the likelihood ratio test. The penultimate line

constructs the test statistic, while the last line states that the test statistic,

‘LRSTAT’, follows a Chi-squared distribution with 27 degrees of freedom

(the number of restrictions placed on the model altogether, which will be

the difference between the number of parameters in the unrestricted (39)

and restricted (12) models). The result is shown in Box 6.6.

Surprisingly (given that the profligate criterion AIC chose a modest

VAR(1)), the restriction is rejected by the likelihood ratio test, at least at

the 5% level, suggesting that a VAR(4) should be employed in preference

to a VAR(1).

Box 6.6

Chi-Squared(27)= 45.483985 with Significance Level 0.01444889
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An alternative to computing the likelihood ratio test statistic by hand

would be to use the RATIO instruction. To run this, we would have to

save the residuals for each equation from the restricted and unrestricted

models. For further details, see the RATS 7 Reference Manual entry.

6.5 Impulse responses and variance decompositions

Block F -tests and an examination of causality in a VAR will suggest which

of the variables in the model have statistically significant impacts on the

future values of each of the variables in the system. But F -test results will

not, by construction, be able to explain the sign of the relationship or

how long these effects require to take place. That is, F -test results will

not reveal whether changes in the value of a given variable have positive

or negative effects on other variables in the system, or how long it would

take for the effect of that variable to work through the system. Such

information will, however, be available from an examination of the VAR’s

impulse responses and variance decompositions.

Impulse responses trace out the responsiveness of the dependent vari-

ables in the VAR to shocks to each of the variables. So a unit shock is

applied to the error from each equation separately, and the effects upon

the VAR system over time are noted. Thus, if there are g variables in a

system, a total of g2 impulse responses could be generated. The way that

this is achieved in practice is by expressing the VAR model as a VMA -- that

is, the vector autoregressive model is written as a vector moving average.

Provided that the system is stable, the shock should gradually die away.

Variance decompositions offer a slightly different method for examin-

ing VAR system dynamics. They give the proportion of the movements in

the dependent variables that is due to their ‘own’ shocks versus shocks

to the other variables. A shock to the i th variable will of course directly

affect that variable, but it will also be transmitted to all of the other

variables in the system through the dynamic structure of the VAR. Vari-

ance decompositions determine how much of the s-step ahead forecast

error variance of a given variable is explained by innovations to each ex-

planatory variable for s = 1, 2, . . . . In practice, it is usually observed that

own-series shocks explain most of the (forecast) error variance of the series

in a VAR. To some extent, impulse responses and variance decompositions

offer very similar information.

For calculating impulse responses and variance decompositions, the or-

dering of the variables is important. To see why this is the case, recall

that the impulse responses refer to a unit shock to the errors of one VAR
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equation alone. This implies that the error terms of all other equations

in the VAR system are held constant. However, this is not realistic since

the error terms are likely to be correlated across equations to some ex-

tent. Thus, assuming that they are completely independent would lead

to a mis-representation of the system dynamics. In practice, the errors

will have a common component that cannot be associated with a single

variable alone.

The usual approach to this difficulty is to generate orthogonalised im-

pulse responses. In the context of a bivariate VAR, the whole of the com-

mon component of the errors is attributed somewhat arbitrarily to the

first variable in the VAR. In the general case where there are more than

two variables in the VAR, the calculations are more complex but the in-

terpretation is the same. Such a restriction in effect implies an ‘ordering’

of variables, so that the equation for y1t would be estimated first and then

that of y2t , a bit like a recursive or triangular system.

It is necessary to assume a particular ordering in order to compute the

impulse responses and variance decompositions, although the restriction

underlying the ordering used may not be supported by the data. Again,

ideally, financial theory should suggest an ordering (in other words, that

movements in some variables are likely to follow, rather than precede,

others). Failing this, the sensitivity of the results to changes in the order-

ing can be observed by assuming one ordering and then exactly reversing

it and re-computing the impulse responses and variance decompositions.

It is also worth noting that the more highly correlated are the residuals

from an estimated equation, the more the variable ordering will be im-

portant. But when the residuals are almost uncorrelated, the ordering of

the variables will make little difference (see Lütkepohl, 1991, Chapter 2

for further details).

Impulse responses and variance decompositions can be constructed in

RATS using the IMPULSE and ERRORS commands respectively. Addition-

ally, the latter has an IMPULSES option, so that the ERRORS command can

be used to compute both impulse responses and variance decompositions.

The instruction to estimate impulse responses for the above model would

be

IMPULSE(MODEL=FXVAR,RESULT=IMPS,STEPS=10)

Obviously, this line needs to be placed after the VAR model estimation

instructions. The output is shown in Box 6.7.

Unfortunately, RATS does not provide standard errors by default

(although these can be produced using the MONTEVAR procedure), but

even without confidence bands it is easy to see from these values that
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Box 6.7

Responses to Shock in REUR
Entry REUR RGBP RJPY

1 0.4677521 0.3064024 0.2343483
2 -0.0117099 0.0129357 0.0030877
3 0.0101915 0.0172257 0.0149743
4 0.0010266 0.0082176 0.0036517
5 -0.0227336 -0.0099657 0.0043512
6 -0.0001450 -0.0011704 -0.0005090
7 -0.0017216 -0.0015016 -0.0007587
8 -0.0001590 -0.0008278 0.0002559
9 0.0003139 0.0002396 -0.0013408
10 0.0000443 0.0000547 0.0000188

Responses to Shock in RGBP
Entry REUR RGBP RJPY

1 0.0000000 0.2738899 0.0575433
2 -0.0211676 0.0088131 -0.0175180
3 0.0070390 -0.0033410 -0.0050676
4 -0.0018337 -0.0073634 -0.0014769
5 -0.0100396 -0.0045326 -0.0028037
6 0.0004311 0.0003116 0.0000987
7 0.0000817 -0.0002665 0.0003617
8 0.0002890 -0.0001298 -0.0000029
9 0.0003396 0.0001845 -0.0002014

10 -0.0000037 0.0000317 0.0000428

Responses to Shock in RJPY
Entry REUR RGBP RJPY

1 0.0000000 0.0000000 0.3651989
2 -0.0074279 -0.0110346 0.0042735
3 -0.0039180 -0.0007069 0.0136505
4 0.0075594 -0.0033444 0.0163452
5 -0.0146041 -0.0028765 -0.0253819
6 0.0005365 0.0007489 0.0000661
7 -0.0000237 -0.0003937 -0.0017688
8 -0.0011217 -0.0003565 -0.0019189
9 0.0012723 0.0003563 0.0011249

10 -0.0000699 -0.0000383 -0.0001013

the responses to shocks are very small indeed, except for the first-step

response of a variable to its own shock. This result confirms that of the

Granger causality statistics in showing a lack of any connectivity between

the three series.

To estimate the variance decompositions, use the command

ERRORS(MODEL=FXVAR,RESULT=ERRS,STEPS=10)

and they appear as in Box 6.8.
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Box 6.8

Decomposition of Variance for Series REUR
Step Std Error REUR RGBP RJPY

1 0.46775212 100.000 0.000 0.000

2 0.46843613 99.771 0.204 0.025

3 0.46861623 99.741 0.227 0.032

4 0.46868191 99.714 0.228 0.058

5 0.46956749 99.572 0.273 0.155

6 0.46956801 99.572 0.273 0.155

7 0.46957118 99.572 0.273 0.155

8 0.46957263 99.572 0.273 0.155

9 0.46957459 99.571 0.273 0.156

10 0.46957459 99.571 0.273 0.156

Decomposition of Variance for Series RGBP
Step Std Error REUR RGBP RJPY

1 0.41097214 55.585 44.415 0.000

2 0.41141812 55.564 44.364 0.072

3 0.41179273 55.638 44.290 0.072

4 0.41195411 55.634 44.288 0.079

5 0.41210960 55.650 44.266 0.083

6 0.41211206 55.650 44.266 0.084

7 0.41211507 55.651 44.265 0.084

8 0.41211608 55.651 44.265 0.084

9 0.41211634 55.651 44.265 0.084

10 0.41211635 55.651 44.265 0.084

Decomposition of Variance for Series RJPY
Step Std Error REUR RGBP RJPY

1 0.43772201 28.663 1.728 69.608

2 0.43810414 28.618 1.885 69.497

3 0.43860173 28.670 1.894 69.436

4 0.43892387 28.635 1.892 69.473

5 0.43968761 28.545 1.890 69.565

6 0.43968793 28.545 1.890 69.565

7 0.43969229 28.545 1.890 69.565

8 0.43969655 28.545 1.890 69.565

9 0.43970008 28.545 1.890 69.565

10 0.43970009 28.545 1.890 69.565

The first column of RATS output (after the number of steps ahead) is the

standard error of the forecast of the variable in this model. The remaining

columns provide the decomposition. By construction, the percentage of

the error variance attributable to own shocks for the first variable in the

first step is 100%. The behaviour immediately settles down to a steady
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state. Over 99% of the error variance in the euro series is attributable to

own shocks, while the other two series between them explain less than 1%

of its variation. It would be tempting to suggest that the results are more

interesting for the decompositions of the pound and yen series, since the

euro appears able to explain 55% of the variation of the former and 28%

of the latter.

But it is important to remember that the ordering of the variables has

an impact on the impulse responses and variance decompositions. When,

as in this case, financial theory does not suggest an obvious ordering of

the series, some sensitivity analysis should be undertaken. The order of

the three variables can be reversed by simply re-running the instructions

for the VAR but replacing the instruction ‘VARIABLES REUR RGBP RJPY’

with ‘VARIABLES RJPY RGBP REUR’. We then obtain the following decom-

positions for the reverse order (Box 6.9).

It is evident that changing the ordering has had an overwhelming ef-

fect on the proportion of the error variance explained by each series. In

Box 6.9

Step Std Error RJPY RGBP REUR

1 0.43670752 100.000 0.000 0.000

2 0.43708904 99.830 0.080 0.090

3 0.43758479 99.786 0.081 0.133

4 0.43790563 99.763 0.103 0.134

5 0.43866645 99.607 0.181 0.212

6 0.43866676 99.607 0.181 0.212

7 0.43867111 99.607 0.181 0.212

8 0.43867535 99.606 0.182 0.212

9 0.43867887 99.605 0.183 0.213

10 0.43867888 99.605 0.183 0.213

Decomposition of Variance for Series RGBP
Step Std Error RJPY RGBP REUR

1 0.41083902 23.851 76.149 0.000

2 0.41128343 23.800 76.184 0.016

3 0.41165621 23.796 76.080 0.124

4 0.41181671 23.778 76.021 0.201

5 0.41197199 23.801 75.995 0.204

6 0.41197444 23.801 75.995 0.205

7 0.41197744 23.801 75.994 0.205

8 0.41197844 23.801 75.994 0.205

9 0.41197870 23.801 75.994 0.205

10 0.41197871 23.801 75.994 0.205



Multivariate models 105

Decomposition of Variance for Series REUR
Step Std Error RJPY RGBP REUR

1 0.46674727 28.746 30.784 40.470

2 0.46743267 28.769 30.836 40.395

3 0.46761277 28.751 30.881 40.367

4 0.46767815 28.763 30.881 40.356

5 0.46856361 28.954 30.838 40.208

6 0.46856413 28.954 30.838 40.208

7 0.46856729 28.954 30.838 40.208

8 0.46856874 28.954 30.838 40.208

9 0.46857068 28.955 30.838 40.207

10 0.46857069 28.955 30.838 40.207

the previous instance, where the euro was ordered first, it explained 69%

of the variation in the yen returns, but in the second case where the

yen is ordered first, the euro is not even able to explain 1% of the yen’s

variation. Taken in sum, it would be concluded that there is little evi-

dence of useful lead-lag relationships between the three currency return

series investigated. Further RATS code is available for automatically plot-

ting the impulse responses and also for constructing confidence intervals

for them using simulated standard errors (see the RATS User Guide and

sample programs on the Estima web site).



7
Modelling long-run relationships

7.1 Testing for unit roots

The early and pioneering work on testing for a unit root in time-series

was done by Dickey and Fuller (Dickey and Fuller 1979, Fuller 1976).

The basic objective of the test is to examine the null hypothesis that

φ = 1 in

yt = φyt−1 + ut (7.1)

against the one-sided alternative that φ < 1. Thus the hypotheses of inter-

est are

H0: series contains a unit root
vs. H1: series is stationary.

In practice, the following regression is employed, rather than (7.1), for ease

of computation and interpretation:

�yt = ψyt−1 + ut (7.2)

so that a test of φ = 1 is equivalent to a test of ψ = 0 (since φ − 1 = ψ ).

The test statistic for the Dickey--Fuller (DF) test is defined as

test statistic =
∧
ψ∧

SE(
∧
ψ)

(7.3)

Such test statistics do not follow the usual t -distribution under the null

hypothesis, since the null is one of non-stationarity, but rather they follow

non-standard distribution. Critical values are derived from simulations ex-

periments in, for example, Fuller (1976). A discussion and example of how

such critical values are derived using simulations methods are presented

in Chapter 12.

106
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Dickey--Fuller-type unit root tests can be accomplished in RATS by call-

ing the DFUNIT sub-routine. The command syntax to call it is

SOURCE DFUNIT.SRC

This example uses the same data on UK house prices as employed in Chap-

ters 1 and 5. Assuming that the data have been loaded and the variables

are defined as before, the Dickey--Fuller test is run by using the following

commands:

@DFUNIT(TTEST) PRICE
@DFUNIT(TTEST) DHP
@DFUNIT(TTEST,LAGS=5) PRICE
@DFUNIT(TTEST,LAGS=5) DHP

The first two lines will run a Dickey--Fuller test on the raw house price

series and then on the house price percentage changes using the standard

t -test approach. The last two lines will run an Augmented Dickey--Fuller

(ADF) test on the two series with five lags of the dependent variable in

each of the test regressions.

By default, RATS includes a constant in the test regression, but

not a trend. If it is deemed appropriate to include a trend as

well, the option DET=TREND should be used with the command, e.g.

‘@DFUNIT(TTEST,DET=TREND) PRICE’, or the option DET=NONE would be

used if the regression were to employ neither a constant nor a trend:

‘@DFUNIT(TTEST,DET=NONE) PRICE’ etc. Running these four unit root tests

would give output of the form in Box 7.1 respectively.

We can see that the conclusions are very strong and accord with what

we would have expected; the house price levels series is non-stationary (the

null hypothesis of a unit root cannot be rejected even at the 10% level),

whether a plain Dickey--Fuller or the ADF test is used. And the percentage

changes in house prices is clearly a stationary series since the test statistic

is more negative than the critical value, even at the 1% level, indicating

that the null hypothesis of a unit root can be rejected. The DF and ADF

test regressions could also, of course, have been conducted by hand using

the ‘LINREG’ command, although there would be little point in doing so.

The number of lags in the ADF test has been arbitrarily set to 5 here, so

as an exercise, try to design a set of instructions that will choose the lag

length optimally using an information criterion and determine whether

the conclusion from the ADF test with that number of lags remains the

same.

There is also a Phillips--Perron unit root test procedure available

in RATS, PPUNIT.SRC. It operates in exactly the same way as the
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Box 7.1

Dickey-Fuller Unit Root Test, Series PRICE

Regression Run From 1991:02 to 2007:05

Observations 197

With intercept with 0 lags on the differences

T-test statistic 6.21910

Critical values: 1%= -3.465 5%= -2.876 10%= -2.575

Dickey-Fuller Unit Root Test, Series DHP

Regression Run From 1991:03 to 2007:05

Observations 196

With intercept with 0 lags on the differences

T-test statistic -10.71437

Critical values: 1%= -3.465 5%= -2.876 10%= -2.575

Dickey-Fuller Unit Root Test, Series PRICE

Regression Run From 1991:07 to 2007:05

Observations 192

With intercept with 5 lags on the differences

T-test statistic 2.79236

Critical values: 1%= -3.466 5%= -2.877 10%= -2.575

Dickey-Fuller Unit Root Test, Series DHP

Regression Run From 1991:08 to 2007:05

Observations 191

With intercept with 5 lags on the differences

T-test statistic -4.21602

Critical values: 1%= -3.466 5%= -2.877 10%= -2.575

Dickey--Fuller test and we could apply it to the house price series by using

the commands

SOURCE(NOECHO) PPUNIT.SRC
@PPUNIT(TTEST) PRICE

The options available are identical to those of the DFUNIT procedure,

although the LAGS option will have a different meaning.

7.2 Testing for cointegration and modelling cointegrated variables

If we believe that a set of I(1) variables may be cointegrated, we could

test this by estimating a regression containing all of the variables and
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testing the residuals for a unit root. For example, suppose that we have

the following model:

yt = β1 + β2x2t + β3x3t + · · · + βnxnt + ut (7.4)

ut should be I(0) if the variables yt , x2t , . . . xkt are cointegrated, but ut will

still be non-stationary if they are not. Thus it is necessary to test the resid-

uals of equation (7.4) to see whether they are non-stationary or stationary.

The DF or ADF test can be used on ût , using a regression of the form

�ût = ψ ût−1 + vt (7.5)

with vt an iid error term.

However, since this is a test on residuals of a model, ût , then the critical

values are changed compared with a DF or an ADF test on a series of raw

data. Engle and Granger (1987) have tabulated a new set of critical values

for this application and hence the test is known as the Engle--Granger test.

The residuals have been constructed from a particular set of coefficient

estimates, and the sampling estimation error in those coefficients will

change the distribution of the test statistic. Engle and Yoo (1987) tabulate

a new set of critical values that is each larger in absolute value (i.e. more

negative) than the corresponding DF critical values. The critical values

also become more negative as the number of variables in the potentially

cointegrating regression increases.

What are the null and alternative hypotheses for any unit root test

applied to the residuals of a potentially cointegrating regression?

H0: ût ∼ I(1)
H1: ût ∼ I(0).

Thus, under the null hypothesis, there is a unit root in the potentially

cointegrating regression residuals, while under the alternative, the residu-

als are stationary. Under the null hypothesis, therefore, a stationary linear

combination of the non-stationary variables has not been found. Hence,

if this null hypothesis is not rejected, there is no cointegration. The ap-

propriate strategy for econometric modelling in this case would be to

employ specifications in first differences only. Such models would have

no long-run equilibrium solution, but this would not matter since no

cointegration implies that there is no long-run relationship anyway.

However, if the null of a unit root in the potentially cointegrating regres-

sion’s residuals is rejected, it would be concluded that a stationary linear

combination of the non-stationary variables had been found. Therefore,

the variables would be classed as cointegrated. The appropriate strategy

for econometric modelling in this case would be to form and estimate an

error-correction model, using a method described below.
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Box 7.2

Linear Regression - Estimation by Least Squares

Dependent Variable LSPOT

Monthly Data From 2002:02 To 2007:07
Usable Observations 66 Degrees of Freedom 64

Centered R**2 0.959158 R Bar **2 0.958519

Uncentered R**2 0.999980 T x R**2 65.999

Mean of Dependent Variable 7.0435686902

Std Error of Dependent Variable 0.1567267588

Standard Error of Estimate 0.0319202000

Sum of Squared Residuals 0.0652095469

Regression F(1,64) 1502.9980

Significance Level of F 0.00000000

Log Likelihood 134.70359

Durbin-Watson Statistic 2.012684

Variable Coeff Std Error T-Stat Signif

****************************************************************************

1. Constant 0.1144110511 0.1787747375 0.63997 0.52447449

2. LFUTURES 0.9838087892 0.0253764865 38.76852 0.00000000

The S&P500 spot and futures series that were discussed in Chapter 2 will

now be examined for cointegration. If the two series are cointegrated,

this means that the spot and futures prices have a long-term relation-

ship, which prevents them from wandering apart without bound. To test

for cointegration using the Engle--Granger approach, the residuals of a

regression of the log of the spot price on the log of the futures price

are examined.12 So we need to re-open the SANDPHEDGE.PRG set of in-

structions that we saved previously. Now, create two new variables for

the log spot series and the log futures series, and call them LSPOT and

LFUTURES respectively. Then run the regression of LSPOT on a CONSTANT

and LFUTURES, saving the residual series as RESIDS. The regression re-

sults are shown in Box 7.2.

The slope parameter in this regression measures the long-run relation-

ship between the two series and this is almost 1:1. It would be tempting

to jump in and conduct a test of the hypothesis that the true value of

the slope parameter is 1, but remember that it is not valid to exam-

ine anything other than the coefficient values in this regression, since

12 Note that it is common to run a regression of the log of the spot price on the log of

the futures rather than a regression in levels; the main reason for using logarithms is

that the differences of the logs are returns, whereas this is not true for the levels.



Modelling long-run relationships 111

the residuals will be non-stationary if the series are not cointegrated.

And even if the series are cointegrated, because they are in log-levels

form, the residuals from this regression are likely to be highly autocorre-

lated, making the standard errors and therefore any inferences potentially

unreliable.

Now, we should run a Dickey--Fuller test on the RESIDS series, which are

the residuals from this regression, and for comparison we also run the

test on the log-spot and log-futures prices. All of the commands needed

so far in this section are

LINREG LSPOT / RESIDS
# CONSTANT LFUTURES
SOURCE DFUNIT.SRC
@DFUNIT(TTEST) LSPOT
@DFUNIT(TTEST) LFUTURES
@DFUNIT(TTEST) RESIDS

The results are shown in Box 7.3.

The contrast between the raw logged series and the residuals is clear:

the former are non-stationary while the latter are stationary. This sug-

gests that we have found a linear combination of the two non-stationary

Box 7.3

Dickey-Fuller Unit Root Test, Series LSPOT

Regression Run From 2002:03 to 2007:07

Observations 66

With intercept with 0 lags on the differences

T-test statistic -0.26381

Critical values: 1%= -3.531 5%= -2.906 10%= -2.590

Dickey-Fuller Unit Root Test, Series LFUTURES

Regression Run From 2002:03 to 2007:07

Observations 66

With intercept with 0 lags on the differences

T-test statistic 0.18865

Critical values: 1%= -3.531 5%= -2.906 10%= -2.590

Dickey-Fuller Unit Root Test, Series RESIDS

Regression Run From 2002:03 to 2007:07

Observations 66

With intercept with 0 lags on the differences

T-test statistic -8.05054

Critical values: 1%= -3.531 5%= -2.906 10%= -2.590
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series that is stationary and therefore that the two series are cointe-

grated. The next stage in the analysis would be to form an error-correction

model. We would do this by running a regression of the spot returns on a

constant, the futures returns, and the one-period lagged error-correction

term, which will be the lagged residual from the cointegrating regression

above:

LINREG DSPOT
# CONSTANT DFUTURES RESIDS{1}

Running this gives us the results in Box 7.4.

The futures returns and error-correction terms have the correct signs

but are of implausible magnitudes. The former suggests that spot returns

move in the same direction as futures returns, but to a greater extent.

The parameter value of −180 on the error-correction term means that

whatever the disequilibrium at any particular time t , the spot returns will

adjust to correct this by 180% − in other words, it will over-compensate or

overshoot by 1.8 times the required amount to restore equilibrium. These

slightly odd parameter values may result from the fairly short sample

period that has been used in this example.

Box 7.4

Linear Regression - Estimation by Least Squares

Dependent Variable DSPOT

Monthly Data From 2002:03 To 2007:07
Usable Observations 65 Degrees of Freedom 62

Centered R**2 0.240775 R Bar **2 0.216284

Uncentered R**2 0.251519 T x R**2 16.349

Mean of Dependent Variable 0.4212026598

Std Error of Dependent Variable 3.5429920081

Standard Error of Estimate 3.1365312100

Sum of Squared Residuals 609.94533796

Regression F(2,62) 9.8311

Significance Level of F 0.00019565

Log Likelihood -164.99792

Durbin-Watson Statistic 2.015851

Variable Coeff Std Error T-Stat Signif

*************************************************************************

1. Constant -0.2676014 0.4193434 -0.63814 0.52573007

2. DFUTURES 1.7503217 0.3955766 4.42474 0.00003980

3. RESIDS{1} -180.0435641 41.7846317 -4.30885 0.00005967
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7.3 Using the systems-based approach to testing for cointegration

In order to use the Johansen’s (1988) test, the testing framework involves

the estimation of a vector error-correction model (VECM) of the form

�yt = �yt−k + �1�yt−1 + �2�yt−2 + · · · + �k−1�yt−(k−1) + ut (7.6)

where � =
( k∑

j=1

βi

)
− Ig and �i =

( i∑
j=1

β j

)
− Ig .

This VAR contains g variables in first-differenced form on the LHS and k − 1

lags of the dependent variables (differences) on the RHS, each with a �

coefficient matrix attached to it. In fact, the Johansen test can be affected

by the lag length employed in the VECM, so it is useful to attempt to

select the lag length optimally, as outlined in the previous chapter. The

Johansen test centres around an examination of the � matrix. � can

be interpreted as a long-run coefficient matrix, since in equilibrium all

the �yt−i will be zero, and setting the error terms, ut , to their expected

value of zero will leave �yt−k = 0. Notice the parallel between this set

of equations and the testing equation for an ADF test, which has a first-

differenced term as the dependent variable, together with a lagged-levels

term and lagged differences on the right-hand side.

The test for cointegration between the ys is calculated by looking at the

rank of the � matrix via its eigenvalues.13 The rank of a matrix is equal

to the number of its characteristic roots (eigenvalues) that are different

from zero. The eigenvalues, denoted λi , are put in ascending order

λ1 ≥ λ2 ≥ · · · ≥ λg

If the λs are roots, in this context they must be less than one in absolute

value and positive, and λ1 will be the largest (i.e. the closest to one), while

λg will be the smallest (i.e. the closest to zero). If the variables are not

cointegrated, the rank of � will not be significantly different from zero,

so λi ≈ 0 ∀ i . The test statistics actually incorporate ln(1 − λi ), rather than

the λi themselves, but still, when λi = 0, ln(1 − λi ) = 0.

Suppose now that rank (�) = 1, then ln(1 − λ1) will be negative and

ln(1 − λi ) = 0 ∀ i > 1. If the eigenvalue i is non-zero, then ln(1 − λi ) <

0 ∀ i > 1. That is, for � to have a rank of one, the largest eigenvalue must

be significantly non-zero, while others will not be significantly different

from zero.

13 Strictly, these are not eigenvalues of the � matrix, but this slight inaccuracy vastly

simplifies the exposition.



114 RATS Handbook to Accompany Introductory Econometrics for Finance

There are two test statistics for cointegration under the Johansen ap-

proach, which are formulated as

λtrace(r ) = −T
g∑

i=r+1

ln(1 − λ̂i ) (7.7)

and

λmax(r, r + 1) = −T ln(1 − λ̂r+1) (7.8)

where r is the number of cointegrating vectors under the null hypothesis

and λ̂i is the estimated value for the ith ordered eigenvalue from the �

matrix. Intuitively, the larger is λ̂i , the more large and negative will be

ln(1 − λ̂i ) and hence the larger will be the test statistic. Each eigenvalue

will have associated with it a different cointegrating vector. A significantly

non-zero eigenvalue indicates a significant cointegrating vector.

λtrace is a joint test where the null is that the number of cointegrat-

ing vectors is less than or equal to r against an unspecified or general

alternative that there are more than r . It starts with p eigenvalues and

then successively the largest is removed. λtrace = 0 when all the λi = 0, for

i = 1, . . . , g.

λmax conducts separate tests on each eigenvalue and has as its null hy-

pothesis that the number of cointegrating vectors is r against an alterna-

tive of r + 1.

Johansen and Juselius (1990) provide critical values for the two statistics.

The distribution of the test statistics is non-standard and the critical values

depend on the value of g − r , the number of non-stationary components

and whether constants are included in each of the equations. Intercepts

can be included either in the cointegrating vectors themselves or as addi-

tional terms in the VAR. The latter is equivalent to including a trend in

the data-generating processes for the levels of the series. Osterwald-Lenum

(1992) provides a fairly complete set of critical values for the Johansen test.

If the test statistic is greater than the critical value, reject the null hy-

pothesis that there are r cointegrating vectors in favour of the alternative

that there are r + 1 (for λtrace) or more than r (for λmax). The testing is

conducted in a sequence and under the null, r = 0, 1, . . . , g − 1 so that

the hypotheses for λtrace are

H0: r = 0 vs H1: 0 < r ≤ g
H0: r = 1 vs H1: 1 < r ≤ g
H0: r = 2 vs H1: 2 < r ≤ g

...
...

...
H0: r = p − 1 vs H1: r = g
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The first test involves a null hypothesis of no cointegrating vectors (corre-

sponding to � having zero rank). If this null is not rejected, it would be

concluded that there are no cointegrating vectors and the testing would

be completed. However, if H0: r = 0 is rejected, the null that there is one

cointegrating vector (i.e. H0: r = 1) would be tested and so on. Thus the

value of r is continually increased until the null is no longer rejected.

But how does this correspond to a test of the rank of the � matrix? r is

the rank of �. � cannot be of full rank (g) since this would correspond to

the original yt being stationary. If � has zero rank, then by analogy to the

univariate case, �yt depends only on �yt− j and not on yt−1, so that there

is no long-run relationship between the elements of yt−1. Hence there is

no cointegration. For 1 < rank (�) < g, there are r cointegrating vectors.

� is then defined as the product of two matrices, α and β ′, of dimension

(g × r ) and (r × g) respectively, i.e.

� = αβ ′ (7.9)

The matrix β gives the cointegrating vectors, while α gives the amount

of each cointegrating vector entering each equation of the VECM, also

known as the ‘adjustment parameters’.

For example, suppose that g = 4, so that the system contains four vari-

ables. The elements of the � matrix would be written

� =




π11 π12 π13 π14

π21 π22 π23 π24

π31 π32 π33 π34

π41 π42 π43 π44


 (7.10)

If r = 1, so that there is one cointegrating vector, then α and β will be

(4 × 1):

� = αβ ′ =




α11

α12

α13

α14


(

β11 β12 β13 β14

)
. (7.11)

If r = 2, so that there are two cointegrating vectors, then α and β will be

(4 × 2):

� = αβ ′ =




α11 α21

α12 α22

α13 α23

α14 α24




(
β11 β12 β13 β14

β21 β22 β23 β24

)
(7.12)

and so on for r = 3, . . . .
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Suppose now that g = 4 and r = 1, as in equation (7.11) above, so that

there are four variables in the system, y1, y2, y3 and y4, that exhibit one

cointegrating vector. Then �yt−k will be given by

� =




α11

α12

α13

α14




(
β11 β12 β13 β14

)



y1

y2

y3

y4




t−k

(7.13)

Equation (7.13) can also be written

� =




α11

α12

α13

α14


(

β11 y1 β12 y2 β13 y3 β14 y4

)
t−k

(7.14)

Given (7.14), it is possible to write out the separate equations for each

variable �yt . It is also common to ‘normalise’ on a particular variable,

so that the coefficient on that variable in the cointegrating vector is one.

For example, normalising on y1 would make the cointegrating term in the

equation for �y1 be α11

β11
(y1 + β12

β11
y2 + β13

β11
y3 + β14 y4)t−k , etc. Finally, it must

be noted that the above description is not exactly how the Johansen pro-

cedure works, but is an intuitive approximation to it.

The application we will examine centres on whether the yields on

Treasury bills of different maturities are cointegrated. Re-open the

MACRO.PRG instruction file that was created in Chapter 3. There are six

interest rate series corresponding to maturities of three and six months,

and one, three, five, and ten years. Each series has a name in the file start-

ing with the letters ‘USTB’. The first step in any cointegration analysis is

to ensure that the variables are all non-stationary in their levels forms, so

confirm that this is the case for each of the six series by running a unit

root test on each one.

In RATS, the Johansen test is most easily accomplished using the ‘CATS

in RATS’ add-in software developed by Dennis, Hansen, Johansen and

Juselius. This is packaged as a ‘.SRC’ file, which can be called in the usual

fashion as a sub-routine. If you have CATS2, the easiest way to run it is

to use the Wizard, by clicking Statistics and then CATS Cointegration.14

Screenshot 7.1 will appear.

Enter the following list of variables in the ‘Endogenous Variables’ box:

USTB3M USTB6M USTB1Y USTB3Y USTB5Y USTB10Y

14 Readers who are particularly interested in running cointegrating applications within a

VAR framework using CATS version 2 are advised to consult the book by Juselius (2006).
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Screenshot 7.1

Also choose whether you require any deterministic components in the

VAR (these are the options for including either a constant or a trend in

the cointegrating vector of the VAR or both), then click OK. Note that, for

now, the number of lags of each variable to use in the VAR has been set

arbitrarily at 2. The code segment that using this Wizard will create is

SOURCE ‘C:\CATS2\CATS.SRC’
@CATS(LAGS=2,DETTREND=CIMEAN)
# USTB3M USTB6M USTB1Y USTB3Y USTB5Y USTB10Y

DETTREND=CIMEAN implies that a constant is included in the cointegrat-

ing vector, which implies a deterministic trend in the changes of the

variables. The LAGS=2 option tells CATS to use two lags in the VAR, while

the supplementary cards after the @CATS command give the variables

used for the test. The results of such an estimation would be as shown in

Box 7.5.

By default, CATS does not present the results of a Johansen test for coin-

tegration. It only produces estimates of the cointegrating combinations of

variables (not normalised) in BETA transposed, the amounts of each coin-

tegrating relationship that appear in each equation in the VAR (ALPHA,

also known as the adjustment coefficients), and the coefficient matrix on

the levels terms of the VAR (i.e. PI or �).

When you run the code including the @CATS command, you will notice

that a whole new set of additional menus is shown at the top of the RATS

window, which now appears as in Screenshot 7.2.

Screenshot 7.2
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Box 7.5

CATS for RATS version 2 - 12/02/2007 14:26

MODEL SUMMARY
Sample: 1986:03 to 2006:12 (250 observations)

Effective Sample: 1986:05 to 2006:12 (248 observations)

Obs. - No. of variables: 235

System variables: USTB3M USTB6M USTB1Y USTB3Y USTB5Y USTB10Y

Constant/Trend: Restricted Constant

Lags in VAR: 2

I(2) analysis not available for the specified model.

The unrestricted estimates:

BETA(transposed)
USTB3M USTB6M USTB1Y USTB3Y USTB5Y USTB10Y CONSTANT

Beta(1) 10.050 -11.778 1.255 1.220 -1.039 0.523 -0.193

Beta(2) 3.431 -11.518 12.524 -15.409 18.836 -7.758 0.626

Beta(3) 5.576 -9.745 -0.744 15.273 -13.006 2.215 2.285

Beta(4) 2.149 -9.235 11.258 -1.870 -7.336 5.069 0.133

Beta(5) 0.658 1.161 -2.737 4.323 -3.184 -0.132 0.286

Beta(6) -0.106 0.365 -0.458 -0.660 2.470 -2.179 3.289

ALPHA

Alpha(1) Alpha(2) Alpha(3) Alpha(4) Alpha(5) Alpha(6)

DUSTB3 -0.082 -0.021 0.022 0.025 -0.007 0.006

(-6.666) (-1.727) (1.792) (1.993) (-0.529) (0.472)

DUSTB6 -0.053 -0.024 0.037 0.034 -0.012 0.008

(-3.869) (-1.745) (2.680) (2.462) (-0.893) (0.587)

DUSTB1 -0.037 -0.045 0.031 0.034 -0.015 0.012

(-2.313) (-2.844) (1.962) (2.168) (-0.924) (0.751)

DUSTB3 -0.008 -0.048 0.012 0.057 -0.009 0.017

(-0.411) (-2.503) (0.657) (2.992) (-0.448) (0.895)

DUSTB5 0.002 -0.049 0.014 0.057 0.000 0.017

(0.115) (-2.618) (0.760) (3.045) (0.014) (0.890)

DUSTB1 0.008 -0.033 0.015 0.043 0.006 0.018

(0.471) (-1.913) (0.893) (2.490) (0.371) (1.059)

PI

USTB3M USTB6M USTB1Y USTB3Y USTB5Y USTB10Y CONSTANT

DUSTB3 -0.727 0.764 -0.094 0.487 -0.747 0.283 0.073

(-4.838) (2.917) (-0.447) (1.777) (-2.488) (2.352) (1.466)

DUSTB6 -0.346 0.219 0.016 0.742 -1.059 0.393 0.106

(-2.072) (0.751) (0.070) (2.438) (-3.176) (2.938) (1.912)

DUSTB1 -0.286 0.317 -0.212 0.987 -1.388 0.548 0.089

(-1.483) (0.943) (-0.782) (2.806) (-3.599) (3.542) (1.386)
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DUSTB3 -0.057 -0.011 0.041 0.760 -1.399 0.645 0.061

(-0.247) (-0.026) (0.126) (1.797) (-3.016) (3.466) (0.793)

DUSTB5 0.054 -0.119 0.012 0.859 -1.488 0.665 0.064

(0.235) (-0.300) (0.037) (2.062) (-3.259) (3.631) (0.838)

DUSTB1 0.149 -0.249 0.043 0.692 -1.125 0.473 0.081

(0.707) (-0.676) (0.146) (1.795) (-2.663) (2.792) (1.148)

Log-Likelihood = 3733.478

Box 7.6

I(1)-ANALYSIS
p-r r Eig.Value Trace Trace* Frac95 P-Value P-Value*

6 0 0.261 174.202 168.136 103.679 0.000 0.000

5 1 0.130 99.359 94.183 76.813 0.000 0.001

4 2 0.119 64.893 61.692 53.945 0.003 0.008

3 3 0.093 33.603 31.872 35.070 0.072 0.109

2 4 0.030 9.326 8.609 20.164 0.708 0.772

1 5 0.007 1.821 1.682 9.142 0.807 0.831

To run the cointegration test, click on the I(1) menu and choose Rank

Test Statistics. The λtrace statistics will automatically be calculated and

appear as in Box 7.6.

Comparing the trace statistic (174.202) with the corresponding critical

value (Frac95 = 103.679), we can see that the null hypothesis of no cointe-

grating vectors (r = 0) is convincingly rejected, as is the null of 1, and of 2

cointegrating vectors, until we reach r = 3, where the statistic is slightly

lower than the critical value (with p-value 0.07) and therefore the null is

not rejected and we conclude that there are three linearly independent

combinations of these interest rate series that are stationary. Note that

the non-rejection at r = 3 is a very marginal result and hence it would

be possible to argue for a fourth cointegrating vector. CATS also enables

the user to test hypotheses about the estimated beta or alpha vectors, to

produce a variety of plots and to run a host of diagnostic procedures. Un-

fortunately, however, there is no on-line help for CATS instructions and

so one must resort to the more traditional paper form.



8
Modelling volatility and correlation

All of the examples in this chapter will revert to the daily exchange rate

data used in Chapter 6. So this material assumes that the file FX.PRG (or

the name that you gave the file) has been re-opened and the data re-read

into RATS’ memory. Recall that there are three exchange rate series -- the

British pound, the euro and the Japanese yen -- all crossed with the US

dollar. There are a total of 1,827 observations (although the first of these

is ‘lost’ when we construct the returns), running from 7 July 2002 to 7 July

2007.

8.1 Estimating EWMA models

The exponentially weighted moving average (EWMA) model is essentially

a simple extension of the historical average volatility measure, which al-

lows more recent observations to have a stronger impact on the forecast

of volatility than older data points. Under an EWMA specification, the

latest observation carries the largest weight, and weights associated with

previous observations decline exponentially over time. The exponentially

weighted moving average model can be expressed in several ways, e.g.

σ 2
t = (1 − λ)

∞∑
j=1

λ j (rt− j − r̄ )2 (8.1)

where σ 2
t is the estimate of the variance for period t , which also becomes

the forecast of future volatility for all periods, r̄ is the average return esti-

mated over the observations and λ is the ‘decay factor’, which determines

how much weight is given to recent versus older observations. The decay

factor could be estimated, but in many studies is set at 0.94 as recom-

mended by RiskMetrics, producers of popular risk-measurement software.

Note also that RiskMetrics and many academic papers assume that the

average return, r̄ , is zero. For data that is of daily frequency or higher,

120
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this is not an unreasonable assumption and is likely to lead to negligible

loss of accuracy since the actual value of r̄ will typically be very small.

The following RATS code can be used to compute an exponentially

weighted moving average estimate, which then becomes the forecast, for

the pound--dollar returns data. There are, unsurprisingly, several meth-

ods that could be used to compute the EWMA, but the crucial element in

each case is to remember that when the infinite sum in equation (8.1) is

replaced with a finite sum of observable data, the weights from the given

expression will now sum to less than one.

In the case of small samples, this could make a large difference to the

computed EWMA. However, in the present case, there are so many lags

that the weights that would have appeared on lags further into the past

if the data had been available would have been extremely small. Thus, for

large samples, a correction is not necessary. The commands are

STATS(NOPRINT) RGBP
SET USQ = (RGBP -%MEAN)**2
ESMOOTH(ALPHA=0.06,SMOOTHED=EWMAS) USQ
PRINT / EWMAS

The first stage is to compute the summary statistics of the returns series

so that we obtain (without printing) the mean. Then, since a EWMA model

for volatility is essentially an exponential smoothing of the squared se-

ries, we set up the squared de-meaned returns series and then estimate a

EWMA model on that with the desired parameter fixed at 0.06 and with

the smoothed series being stored in EWMAS. The final PRINT command

will display the entries of the EWMAS series, although only the last entry,

which will give the EWMA estimate for all information up to and includ-

ing observation 1827, is of interest. The estimate obtained is around 0.03,

which would also constitute the forecasts for any observations retained as

an out-of-sample period. Note that this compares with an unconditional

variance for this series of about 0.17, indicating that the series was below

its ‘typical’ level of volatility towards the end of this sample period in July

2007.

8.2 Testing for ARCH-effects

A particular non-linear model in widespread usage in finance is known

as an ‘ARCH’ model, which stands for the autoregressive conditionally

heteroscedastic formulation due to Engle (1982). An important feature

of many series of financial asset returns that provides a motivation for

the ARCH class of models is known as ‘volatility clustering’ or ‘volatility
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pooling’. Volatility clustering describes the tendency of large changes in

asset prices (of either sign) to follow large changes and small changes

(of either sign) to follow small changes. In other words, the current level

of volatility tends to be positively correlated with its level during the

immediately preceding periods.

A test for determining whether ‘ARCH-effects’ are present in the resid-

uals of an estimated model may be conducted using the following steps.

1. Run any postulated linear regression of the form given in the equation

above, e.g.

yt = β1 + β2x2t + β3x3t + β4x4t + ut (8.2)

saving the residuals, ût .

2. Square the residuals and regress them on q own lags to test for ARCH

of order q, i.e. run the regression

û2
t = γ0 + γ1û2

t−1 + γ2û2
t−2 + · · · + γq û2

t−q + vt (8.3)

where vt is an error term.

Obtain R2 from this regression.

3. The test statistic is defined as TR2 (the number of observations multi-

plied by the coefficient of multiple correlation) from the last regression

and is distributed as a χ2(q).

4. The null and alternative hypotheses are

H0 : γ1 = 0 and γ2 = 0 and γ3 = 0 and . . . and γq = 0
H1 : γ1 �= 0 or γ2 �= 0 or γ3 �= 0 or . . . or γq �= 0.

Thus, the test is one of a joint null hypothesis that all q lags of the squared

residuals have coefficient values that are not significantly different from

zero. If the value of the test statistic is greater than the critical value from

the χ2 distribution, then reject the null hypothesis. The test can also be

thought of as a test for autocorrelation in the squared residuals. As well

as testing the residuals of an estimated model, the ARCH test is frequently

applied to raw returns data.

To run the test for ARCH using RATS on the pound--dollar returns, we

could use the ARCHTEST procedure, or we could compute the test statistic

manually. To do the latter, regress the series on a constant and save the

residuals (U)

LINREG(NOPRINT) RGBP / U
# CONSTANT

Now create a new variable that is the square of the residuals and call it

USQ
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Box 8.1

Chi-Squared(5)= 30.412343 with Significance Level 0.00001223

SET USQ = U**2

Now regress USQ on a constant and five lags

LINREG(NOPRINT) USQ
# CONSTANT USQ{1 TO 5}

The next step is to compute TR2 and its level of significance. Following re-

gression estimation, RATS will define a number of quantities relating to

the results. Recall that these saved quantities start with ‘%. . . ’. For exam-

ple, ‘%NOBS’ is the number of observations being used in the estimation

procedure and ‘%RSQUARED’ is the R2. The following lines construct the

test statistic and calculate the significance level of TR2:

COMPUTE CHISTAT = %NOBS*%RSQUARED
CDF CHISQ CHISTAT 5

The result for the Engle test calculated on the RGBP file using these in-

structions is shown in Box 8.1.

The test statistic is highly significant, suggesting that the pound--dollar

returns show evidence of ARCH-effects.

8.3 GARCH model estimation

The GARCH model was developed independently by Bollerslev (1986) and

Taylor (1986). The GARCH model allows the conditional variance to be

dependent upon its own lags, so that the conditional variance equation

in the simplest case is now

σ 2
t = α0 + α1u2

t−1 + βσ 2
t−1 (8.4)

This is a GARCH(1,1) model. σ 2
t is known as the conditional variance since

it is a one-period ahead estimate for the variance calculated based on any

past information thought relevant. Using the GARCH model it is possi-

ble to interpret the current fitted variance, σ 2
t , as a weighted function of

a long-term average value (dependent on α0), information about volatil-

ity during the previous period (α1u2
t−1), and the fitted variance from the

model during the previous period (βσ 2
t−1). This model can be extended to

a GARCH(p,q), where there are p lags of the conditional variance and q
lags of the squared error, in the obvious way.
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Since the model is no longer of the usual linear form, OLS cannot

be used for GARCH model estimation. There is a variety of reasons for

this, but the simplest and most fundamental is that OLS minimises the

residual sum of squares. The RSS depends only on the parameters in

the conditional mean equation, not the conditional variance, and hence

RSS minimisation is no longer an appropriate objective. In order to esti-

mate models from the GARCH family, another technique known as max-

imum likelihood is employed. Essentially, the method works by finding

the most likely values of the parameters given the actual data. More

specifically, a log-likelihood function is formed and the values of the pa-

rameters that maximise it are sought. Maximum likelihood estimation

can be employed to find parameter values for both linear and non-linear

models.

The steps involved in actually estimating an ARCH or GARCH model are

as follows.

1. Specify the appropriate equations for the mean and the variance -- e.g.

an AR(1)-GARCH(1,1) model

yt = µ + φyt−1 + ut , ut ∼ N
(
0, σ 2

t

)
(8.5)

σ 2
t = α0 + α1u2

t−1 + βσ 2
t−1 (8.6)

2. Specify the log-likelihood function (LLF) to maximise under a normality

assumption for the disturbances

L = −T

2
log(2π ) − 1

2

T∑
t=1

log
(
σ 2

t

)−1

2

T∑
t=1

(yt − µ − φyt−1)2/σ 2
t (8.7)

3. The computer will maximise the function and generate parameter val-

ues that maximise the LLF and will construct their standard errors.

There is now a RATS Wizard that can be used to estimate a variety

of GARCH-type models. To estimate a ‘plain vanilla’ GARCH(1,1) model,

click Statistics, then ARCH/GARCH. The window in Screenshot 8.1 will

appear.

By default, RATS will estimate a GARCH model with one lag of the

squared error (‘Lagged u**2 Terms’) and one lag of the conditional variance

(‘Lagged Variance Terms’), but this number can be increased to estimate

any model of order (p,q). You specify the dependent variable (RJPY say)

and then click OK. The code that this will create is the compact

GARCH(P=1,Q=1) / RJPY

and the output will be as in Box 8.2.
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Screenshot 8.1

Box 8.2

GARCH Model - Estimation by BFGS

NO CONVERGENCE IN 18 ITERATIONS

LAST CRITERION WAS 0.0000031

ESTIMATION POSSIBLY HAS STALLED OR MACHINE ROUNDOFF IS MAKING FURTHER PROGRESS

DIFFICULT.

TRY HIGHER SUBITERATIONS LIMIT, TIGHTER CVCRIT, DIFFERENT SETTING FOR EXACTLINE

OR ALPHA ON NLPAR.

RESTARTING ESTIMATION FROM LAST ESTIMATES OR DIFFERENT INITIAL GUESSES MIGHT

ALSO WORK

Daily(7) Data From 2002:07:08 To 2007:07:07

Usable Observations 1826

Log Likelihood -1074.91271850

Variable Coeff Std Error T-Stat Signif

******************************************************************************

1. Mean 0.0016240542 0.0104922725 0.15479 0.87699023

2. C 0.0743918245 0.0073774130 10.08373 0.00000000

3. A 0.0879770177 0.0239330914 3.67596 0.00023696

4. B 0.5337287200 0.0627984118 8.49908 0.00000000
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In this particular case, the estimation routine has failed to converge

upon an optimum15 and so the parameter estimates and their standard

errors may be unreliable. Unfortunately, this is a common occurrence

with relatively complex non-linear models such as this one where the es-

timation requires the use of a non-linear iterative procedure rather than

an analytical formula as would be used in the case of, for example, ordi-

nary least squares. If this happens, fixing the problem is more of an art

than a science, but would involve choosing a different opimisation rou-

tine, running the SIMPLEX algorithm to obtain better starting values for

the final estimation approach, choosing initial guesses for the parameters,

changing the convergence criterion, etc.

The optimisation methods employed by RATS are based on the deter-

mination of the first and second derivatives of the log-likelihood function

with respect to the parameter values at each iteration, known as the gra-

dient and Hessian (the matrix of second derivatives of the log-likelihood

function with respect to the parameters) respectively. An algorithm for

optimisation due to Berndt, Hall, Hall and Hausman (1974), known as

BHHH, is available in RATS. BHHH employs only first derivatives (calcu-

lated numerically rather than analytically) and approximations to the

second derivatives. Not calculating the actual Hessian at each iteration

at each time step increases computational speed, but the approximation

may be poor when the log-likelihood function (LLF) is a long way from its

maximum value, requiring more iterations to reach the optimum. How-

ever, another optimisation method is available (and is used by default if

the user does not specify otherwise), due to Broyden, Fletcher, Goldfarb,

Shanno, known as BFGS (see Broyden 1965, 1967; Fletcher and Powell,

1963). BFGS calculates the gradient in the same way as described above

for BHHH, but it differs in its construction of the Hessian matrix of second

derivatives. The two methods are asymptotically equivalent, but they may

lead to quite different estimates of the standard errors for small samples.

All of these optimisation methods are described in detail in Press et al.

(1992). So arguably the simplest trick to try to get convergent optimisation

is to use the METHOD=BHHH option instead of the BFGS default, so the

command is

GARCH(P=1,Q=1, METHOD=BHHH) / RJPY

The output is shown in Box 8.3.

15 However, this problem no longer arises and convergence is achieved in RATS

version 7.10.
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Box 8.3

GARCH Model - Estimation by BHHH

Convergence in 16 Iterations. Final criterion was 0.0000065 <= 0.0000100

Daily(7) Data From 2002:07:08 To 2007:07:07

Usable Observations 1826

Log Likelihood -1039.27742054

Variable Coeff Std Error T-Stat Signif

******************************************************************************

1. Mean 0.0055649900 0.0092875486 0.59919 0.54904736

2. C 0.0012552361 0.0005457840 2.29988 0.02145520

3. A 0.0294564864 0.0042235837 6.97429 0.00000000

4. B 0.9640150834 0.0058120416 165.86514 0.00000000

Note that convergence has now occurred and the results are more plau-

sible than previously. The coefficients on both the lagged squared residual

and lagged conditional variance terms in the conditional variance equa-

tion are highly statistically significant. Also, as is typical of GARCH model

estimates for financial asset returns data, the sum of the coefficients on

the lagged squared error and lagged conditional variance is very close

to unity (approximately 0.99). This implies that shocks to the conditional

variance will be highly persistent, as can be seen by considering the equa-

tions for forecasting future values of the conditional variance using a

GARCH model given in a subsequent section. A large sum of these co-

efficients will imply that a large positive or a large negative return will

lead future forecasts of the variance to be high for a protracted period.

‘Mean’ is the estimate of the intercept parameter in the conditional mean

equation, which is very small as we would expect for the average daily per-

centage change. The individual conditional variance coefficients are also

as one would expect. The variance intercept term ‘C’ is very small, and the

lagged squared error parameter (‘A’) is around 0.03, while the coefficient

on the lagged conditional variance (‘B’) is larger at 0.96. All three of the

conditional variance parameters are highly statistically significant.

GARCH model options

It is possible to estimate heteroscedasticity consistent standard errors (by

checking the ‘Robust (HAC) Standard Errors’ box) or heteroscedasticity and

autocorrelation consistent (HAC) standard errors and then choosing a non-

zero number of lags. Also, by default, RATS will estimate a symmetric

model, where positive or negative shocks will have the same impact on the

next-period conditional variance. But by checking the ‘Asymmetric Effects’
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box, a GJR-type model can be estimated. It is also possible to choose an al-

ternative distributional assumption -- either the Student’s t or Generalised

Exponential Distribution (GED) rather than the Normal distribution (de-

fault). Finally, under ‘Model Type’, you can choose an exponential GARCH

(EGARCH)-type model either with or without the asymmetric terms.

We will examine a number of these other models below, but for now,

let us consider the difference when a GARCH model with Student’s t dis-

tributed errors is employed. In such a case, the model should be better

able to capture the fat tails of the distributions that often characterise

financial time-series. While GARCH models with Gaussian (normally dis-

tributed) innovations can generate series which are unconditionally lep-

tokurtic, these fitted distributions are often not sufficiently fat tailed to

describe the actual distributions of asset price returns, which motivates

the use of the t -distribution that can account for fat tails via the degrees

of freedom parameter. The required command simply adds the DISTRIB=T

option:

GARCH(P=1,Q=1, DISTRIB=T) / RJPY

If we estimate this model, one of the resulting parameters is negative,

which would therefore represent an inadmissible model. To fix this we

could try one of the range of suggestions listed above.

Specifying and estimating GARCH models – The old-fashioned
brute-force way

Being able to set up and run a GARCH model in just one line of code is

a much easier way to do things than specifying the model, the log like-

lihood, the estimation routine and the sample in detail and writing the

code manually. But this is exactly what was required in versions of RATS

before 6.0. The range of GARCH models that can be estimated using the

GARCH instruction is wide, but there may be situations where additional

flexibility is required and where the user will need to be able to work with

the detailed code. Since such situations are now likely to be uncommon,

interested readers are directed towards Section 12.1.8 in the RATS 7.0 User

Guide and no annotated code is presented here.

8.4 Estimating GJR and EGARCH models

One of the primary restrictions of GARCH models is that they enforce

a symmetric response of volatility to positive and negative shocks. This

arises since the conditional variance in equations such as (8.4) is a function
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of the magnitudes of the lagged residuals and not their signs (in other

words, by squaring the lagged error in (8.4), the sign is lost). However, it has

been argued that a negative shock to financial time-series is likely to cause

volatility to rise by more than a positive shock of the same magnitude.

In the case of equity returns, such asymmetries are typically attributed

to leverage effects, whereby a fall in the value of a firm’s stock causes the

firm’s debt-to-equity ratio to rise. This leads shareholders, who bear the

residual risk of the firm, to perceive their future cashflow stream as being

relatively more risky.

An alternative view is provided by the ‘volatility-feedback’ hypothesis.

Assuming constant dividends, if expected returns increase when stock

price volatility increases, then stock prices should fall when volatility rises.

Although asymmetries in returns series other than equities cannot be

attributed to changing leverage, there is equally no reason to suppose

that such asymmetries exist only in equity returns.

Two popular asymmetric formulations are explained below: the GJR

model, named after the authors Glosten, Jagannathan and Runkle (1993),

and the exponential GARCH (EGARCH) model proposed by Nelson (1991).

The GJR model is a simple extension of GARCH with an additional term

added to account for possible asymmetries. The conditional variance is

now given by

σ 2
t = α0 + α1u2

t−1 + βσ 2
t−1 + γ u2

t−1 It−1 (8.8)

where It−1 = 1 if ut−1 < 0

= 0 otherwise

For a leverage effect, we would see γ > 0.

There are various ways to express the conditional variance equation for

the EGARCH model, but one possible specification is given by

log
(
σ 2

t

) = ω + β log
(
σ 2

t−1

) + γ
ut−1√
σ 2

t−1

+ α


 |ut−1 |√

σ 2
t−1

−
√

2

π


 (8.9)

The model has several advantages over the pure GARCH specification.

First, since log(σ 2
t ) is modelled, then even if the parameters are nega-

tive, σ 2
t will be positive. There is thus no need to artificially impose non-

negativity constraints on the model parameters. Second, asymmetries are

allowed for under the EGARCH formulation, since if the relationship be-

tween volatility and returns is negative, γ will be negative. Note that

given the way that Nelson specified the model, this implies that for a
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leverage effect, the sign on gamma will be the opposite of that in the GJR

model.16

Note also that in the original formulation, Nelson assumed a Gener-

alised Exponential Distribution structure for the errors. GED is a very

broad family of distributions that can be used for many types of series.

However, due to its computational ease and intuitive interpretation, al-

most all applications of EGARCH employ conditionally normal errors as

discussed previously rather than using GED.

As stated above, these asymmetric models can be estimated easily in

RATS by clicking the appropriate button in the GARCH Wizard or by

adding the appropriate option in parentheses to the GARCH instruction.

The relevant commands to estimate a GJR and an (asymmetric) EGARCH

model would be respectively

GARCH(P=1,Q=1, METHOD=BHHH, ASYMMETRIC) / RJPY
GARCH(P=1,Q=1, METHOD=BHHH, EXPONENTIAL, ASYMMETRIC) / RJPY

Since the BHHH algorithm worked well for this series, let us stick with it

for these more general models. Note that for the EGARCH model, the de-

fault is to estimate a symmetric model with an exponential formulation,

so to allow for asymmetries, the ASYMMETRC option would also need to

be used here. The output would be as in Box 8.4.

For both specifications, the asymmetry terms (which RATS has labelled

D) are not statistically significant (although it is almost significant in

the case of the EGARCH model). Also in both cases, the coefficient esti-

mates are negative, suggesting that positive shocks imply a higher next-

period conditional variance than negative shocks of the same sign. This

is the opposite to what would have been expected in the case of the

application of a GARCH model to a set of stock returns. But arguably

neither the leverage effect nor the volatility feedback explanations for asym-

metries in the context of stocks applies here since we are modelling ex-

change rate returns. For a positive return shock, this implies more yen per

dollar and therefore a strengthening dollar and a weakening yen. Thus

the results suggest that a strengthening dollar (weakening yen) leads to

higher next-period volatility than when the yen strengthens by the same

amount.

The negative parameter estimates C and D in the context of an EGARCH

model present no problems because of the exponential formulation of

16 RATS does not include the mean correction on the absolute value of the exponential,

so this becomes incorporated into the intercept in the conditional variance equation.
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Box 8.4

GARCH Model - Estimation by BHHH

Convergence in 15 Iterations. Final criterion was 0.0000081 <= 0.0000100

Daily(7) Data From 2002:07:08 To 2007:07:07

Usable Observations 1826

Log Likelihood -1039.27594682

Variable Coeff Std Error T-Stat Signif

******************************************************************************

1. Mean 0.005634523 0.009574762 0.58848 0.55621247

2. C 0.001262758 0.000560605 2.25249 0.02429117

3. A 0.029745260 0.005493998 5.41414 0.00000006

4. B 0.963941961 0.005913903 162.99590 0.00000000

5. D -0.000493282 0.006202172 -0.07953 0.93660811

E-GARCH Model - Estimation by BHHH

Convergence in 34 Iterations. Final criterion was 0.0000085 <= 0.0000100

Daily(7) Data From 2002:07:08 To 2007:07:07

Usable Observations 1826

Log Likelihood -1075.47705439

Variable Coeff Std Error T-Stat Signif

******************************************************************************

1. Mean 0.003670899 0.010022379 0.36627 0.71416344

2. C -1.356016988 0.205306374 -6.60485 0.00000000

3. A 0.217916530 0.035211270 6.18883 0.00000000

4. B 0.274286673 0.119419117 2.29684 0.02162787

5. D -0.046279728 0.025172351 -1.83851 0.06598665

the variance equation, which implies that even when the parameters are

negative, the conditional variance is guaranteed to remain positive. How-

ever, is the negative value for the parameter D in the GJR model a po-

tential issue? The answer is in fact no. While we would have cause for

concern if A, B or C were negative, the non-negativity condition is slightly

weaker for D because D is also a parameter on the lagged squared error

(as is A). When the lagged error is positive, the parameter on the lagged

squared error will be A, while when the lagged error is negative, the pa-

rameter on the lagged squared error will be (A + D) combined. The non-

negativity condition for D is that A + D/2 ≥ 0, under the assumption that

E(It ) = 0.5, or that the disturbances are negative half of the time. Clearly,

for this GJR model, the condition is satisfied and hence the model is

admissible.
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8.5 Tests for sign and size bias

Engle and Ng (1993) have proposed a set of tests for asymmetry in volatility,

known as sign and size bias tests. The Engle and Ng tests should thus be

used to determine whether an asymmetric model is required for a given

series, or whether the symmetric GARCH model can be deemed adequate.

In practice, the Engle--Ng tests are usually applied to the residuals of a

GARCH fit to the returns data. Define S−
t−1 as an indicator dummy that

takes the value one if ût−1 < 0 and zero otherwise. The test for sign bias

is based on the significance or otherwise of φ1 in

û2
t = φ0 + φ1S−

t−1 + υt (8.10)

where υt is an IID error term. If positive and negative shocks to ût−1 impact

differently upon the conditional variance, then φ1 will be statistically

significant.

It could also be the case that the magnitude or size of the shock will

affect whether the response of volatility to shocks is symmetric or not.

In this case, a negative size bias test would be conducted, based on a

regression where S−
t−1 is now used as a slope dummy variable. Negative

size bias is argued to be present if φ1 is statistically significant in the

regression

û2
t = φ0 + φ1S−

t−1ut−1 + υt (8.11)

Finally, defining S+
t−1 = 1 − S−

t−1, so that S+
t−1 picks out the observations

with positive innovations, Engle and Ng propose a joint test for sign and

size bias based on the regression

û2
t = φ0 + φ1S−

t−1 + φ2S−
t−1ut−1 + φ3S+

t−1ut−1 + υt (8.12)

Significance of φ1 indicates the presence of sign bias, where positive and

negative shocks have differing impacts upon future volatility, compared

with the symmetric response required by the standard GARCH formula-

tion. However, the significance of φ2 or φ3 would suggest the presence

of size bias, where not only the sign but the magnitude of the shock is

important. A joint test statistic is formulated in the standard fashion by

calculating TR2 from regression (8.12), which will asymptotically follow a

χ2 distribution with 3 degrees of freedom under the null hypothesis of

no asymmetric effects.

The Engle--Ng test for asymmetry in volatility can be computed in RATS

using the following commands, which would enter the program immedi-

ately after the GARCH instruction, but we need an additional option in



Modelling volatility and correlation 133

that instruction to save the conditional variance series (call it H) and the

residuals (call them U):

GARCH(P=1,Q=1, METHOD=BHHH, HSERIES=H,RESIDS=U) / RJPY
SET U1 = U(T)/SQRT(H(T))
SET U2 = (U(T)*U(T))/H(T)
SET SMINUS = U1<0.0
SET SPLUS = 1 - SMINUS
SET USMINUS = U1*SMINUS
SET USPLUS = U1*SPLUS
LINREG U2
# CONSTANT SMINUS{1}
LINREG U2
# CONSTANT USMINUS{1}
LINREG U2
# CONSTANT USPLUS{1}
LINREG U2
# CONSTANT SMINUS{1} USMINUS{1} USPLUS{1}
COMPUTE CHISTAT = %NOBS*%RSQUARED
CDF CHISQ CHISTAT 3

No annotation is offered for these instructions since they do not involve

anything new or complex. The output from these commands would appear

as in Box 8.5.

Box 8.5

Linear Regression - Estimation by Least Squares

Dependent Variable U2

Daily(7) Data From 2002:07:09 To 2007:07:07

Usable Observations 1825 Degrees of Freedom 1823

Centered R**2 0.000584 R Bar **2 0.000035

Uncentered R**2 0.187058 T x R**2 341.382

Mean of Dependent Variable 1.0079068585

Std Error of Dependent Variable 2.1050334150

Standard Error of Estimate 2.1049962433

Sum of Squared Residuals 8077.7297432

Regression F(1,1823) 1.0644

Significance Level of F 0.30234614

Log Likelihood -3946.93475

Durbin-Watson Statistic 1.931716

Variable Coeff Std Error T-Stat Signif

******************************************************************************

1. Constant 0.9551683919 0.0709997611 13.45312 0.00000000

2. SMINUS{1} 0.1017417564 0.0986149488 1.03171 0.30234614
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Linear Regression - Estimation by Least Squares

Dependent Variable U2

Daily(7) Data From 2002:07:09 To 2007:07:07

Usable Observations 1825 Degrees of Freedom 1823

Centered R**2 0.003510 R Bar **2 0.0.002963

Uncentered R**2 0.189439 T x R**2 345.726

Mean of Dependent Variable 1.0079068585

Std Error of Dependent Variable 2.1050334150

Standard Error of Estimate 2.1019121130

Sum of Squared Residuals 8054.0769493

Regression F(1,1823) 6.4212

Significance Level of F 0.01135947

Log Likelihood -3944.25889

Durbin-Watson Statistic 1.999066

Variable Coeff Std Error T-Stat Signif

*****************************************************************************

1. Constant 0.937625960 0.056480707 16.60082 0.00000000

2. USMINUS{1} -0.197190500 0.077817385 -2.53402 0.01135947

Linear Regression - Estimation by Least Squares

Dependent Variable U2

Daily(7) Data From 2002:07:09 To 2007:07:07

Usable Observations 1825 Degrees of Freedom 1823

Centered R**2 0.000104 R Bar **2 -0.000445

Uncentered R**2 0.186668 T x R**2 340.669

Mean of Dependent Variable 1.0079068585

Std Error of Dependent Variable 2.1050334150

Standard Error of Estimate 2.1055017118

Sum of Squared Residuals 8081.6095866

Regression F(1,1823) 0.1887

Significance Level of F 0.66403759

Log Likelihood -3947.37293

Durbin-Watson Statistic 1.921184

Variable Coeff Std Error T-Stat Signif

*****************************************************************************

1. Constant 1.020274354 0.056917601 17.92546 0.00000000

2. USPLUS{1} -0.035678330 0.082129359 -0.43442 0.66403759

Linear Regression - Estimation by Least Squares

Dependent Variable U2

Daily(7) Data From 2002:07:09 To 2007:07:07

Usable Observations 1825 Degrees of Freedom 1821

Centered R**2 0.003630 R Bar **2 0.001989

Uncentered R**2 0.189537 T x R**2 345.905
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Mean of Dependent Variable 1.0079068585

Std Error of Dependent Variable 2.1050334150

Standard Error of Estimate 2.1029389130

Sum of Squared Residuals 8053.1031230

Regression F(3,1821) 2.2117

Significance Level of F 0.08486357

Log Likelihood -3944.14855

Durbin-Watson Statistic 2.012001

Variable Coeff Std Error T-Stat Signif

*****************************************************************************

1. Constant 0.938228473 0.102319092 9.16963 0.00000000

2. SMINUS{1} -0.031080438 0.138600776 -0.22424 0.82259235

3. USMINUS{1} -0.217810551 0.092740763 -2.34860 0.01895077

4. USPLUS{1} 0.023537486 0.102464051 0.22971 0.81833936

Chi-Squared(3)= 6.625607 with Significance Level 0.08483835

The individual regression results show that the residuals of the symmet-

ric GARCH model do not suffer from sign bias and/or positive size bias,

but they do exhibit negative size bias. In addition, the χ2(3) joint test

statistic has a p-value of 0.08, demonstrating a very marginal rejection of

the null of no asymmetries. The results overall would thus suggest only

limited motivation for estimating an asymmetric volatility model for this

particular series.

8.6 The GARCH(1,1)-M model

Most models used in finance suppose that investors should be rewarded

for taking additional risk by obtaining a higher expected return. One way

to operationalise this concept is to let the return of a security be partly de-

termined by its risk. Engle, Lilien and Robins (1987) suggested an ARCH-M

specification, where the conditional variance of asset returns enters into

the conditional mean equation. Since GARCH models are now consider-

ably more popular than ARCH, it is more common to estimate a GARCH-M

model. An example of a GARCH-M model is given by the specification

yt = µ + δσt + ut , ut ∼ N
(
0, σ 2

t

)
(8.13)

σ 2
t = α0 + α1u2

t−1 + βσ 2
t−1 (8.14)

If δ is positive and statistically significant, then increased risk, given

by an increase in the conditional standard deviation, leads to a rise in

the mean return. Thus δ can be interpreted as a risk premium. In some
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Box 8.6

GARCH Model - Estimation by BHHH

Convergence in 18 Iterations. Final criterion was 0.0000081 <= 0.0000100

Daily(7) Data From 2002:07:08 To 2007:07:07

Usable Observations 1826

Log Likelihood -1039.16718372

Variable Coeff Std Error T-Stat Signif

*****************************************************************************

1. Constant 0.016966744 0.027483824 0.61734 0.53701337

2. GARCH-V -0.067488378 0.151385476 -0.44580 0.65573823

3. C 0.001285256 0.000549853 2.33745 0.01941573

4. A 0.029857891 0.004260469 7.00812 0.00000000

5. B 0.963472200 0.005859910 164.41757 0.00000000

empirical applications, the conditional variance term, σ 2
t , appears directly

in the conditional mean equation (and this is what will be produced

by default using the RATS command below) rather than in square root

form, σ t . Also, in some applications the term is lagged, σ 2
t−1 rather than

contemporaneous.

Estimating a GARCH-in-mean model again requires only a simple mod-

ification to the GARCH instruction. First, we need to add the option

REGRESSORS to the list in parentheses and this tells RATS to expect

one or more variables will be added to the mean. These variables are

then added as supplementary cards following the # symbol in the usual

way:

GARCH(P=1,Q=1, METHOD=BHHH, REGRESSORS) / RJPY
# CONSTANT %GARCHV

In this case, the estimated parameter on the mean equation has a negative

sign but is not statistically significant (see Box 8.6). If we were estimating

a model for stock return volatilities, the variance in mean term could

be interpreted as a kind of risk premium; but for currency returns, we

would have to rationalise any feedback we found from the conditional

variance to the conditional mean in a different way. Here, however, we

would conclude that there is no feedback.

Note that we could add any exogenous variable we wished to the con-

ditional mean equation simply by including it on this list, or we could

use the lagged conditional variance rather than the current value. We

could also specify a model that includes exogenous variables in the con-

ditional variance equation as well as or instead of the mean. So, suppose
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that we wished to estimate a model that contains only an intercept in the

conditional mean but a January dummy variable that we had created in

the conditional variance. We would use the XREG option in parentheses:

GARCH(P=1,Q=1, METHOD=BHHH, XREG) / RJPY
# JANUARY

Note that we do not require the REGRESSORS option because RATS will

include an intercept in the conditional mean by default, and of course

we do not need to specify any of the GARCH variables or the conditional

variance intercept in this list.

8.7 Forecasting from GARCH models

GARCH-type models can be used to forecast volatility. GARCH is a model

to describe movements in the conditional variance of an error term, ut ,

which may not appear particularly useful. But it is possible to show that

Var (yt | yt−1, yt−2, . . .) = Var(ut | ut−1, ut−2, . . .) (8.15)

So the conditional variance of y, given its previous values, is the same as

the conditional variance of u, given its previous values. Hence, modelling

σ 2
t will give models and forecasts for the variance of yt as well. Thus, if the

dependent variable in a regression, yt , is an asset return series, forecasts

of σ 2
t will be forecasts of the future variance of yt . So one primary usage of

GARCH-type models is in forecasting volatility. Producing forecasts from

models of the GARCH class is relatively simple and the algebra involved is

very similar to that required to obtain forecasts from ARMA models. s-step

ahead forecasts would be produced by

h f
s,T = α0

s−1∑
i=1

(α1 + β)i−1 + (α1 + β)s−1h f
1,T (8.16)

for any value of s ≥ 2.

Forecasts from GARCH models using RATS can be produced in the

following way. We first estimate the desired model (which can be any

from the ARCH or GARCH family, but not EGARCH). Then, either the

GARCHFORE procedure is used, or several additional lines are required

after the GARCH instruction. For example, in the context of a standard

GARCH(1,1) model, using the procedure would involve writing

GARCH(P=1,Q=1,METHOD=BHHH,HSERIES=H,RESIDS=U) $
2002:07:09 2006:07:07 RJPY

SOURCE GARCHFORE.SRC
@GARCHFORE(STEPS=365) H U
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To compute the forecasts manually, the required code would be

GARCH(P=1,Q=1,METHOD=BHHH,HSERIES=H,RESIDS=U) 2002:07:09 $
2006:07:07 RJPY

SET UU = U**2
COM VC=%BETA(2), VB=%BETA(4), VA=%BETA(3)
FRML HEQ H = VC + VB*H{1} + VA*UU{1}
FRML UEQ UU = H
GROUP GARCHMOD HEQ>>H UEQ>>UU
FORECAST(MODEL=GARCHMOD, FROM=2006:07:08, TO=2007:07:07)
PRINT 2006:07:08 2007:07:07 H

While these commands are essentially redundant given the availability of

the pre-written GARCHFORE procedure, the general principles may be ap-

plied when forecasting from any system of equations and hence the code

is now discussed. The first line estimates the GARCH(1,1) model over the

period 9 July 2002 to 7 July 2006, which allows a year of hold-out data for

out-of-sample forecasting. The second line constructs a series of squared

residuals from the residuals to use in the recursive formulae for calculat-

ing the forecasts. The third line copies the parameters out of the %BETA

vector so that they can be used easily in the formula. Line 4 sets up a for-

mula for the conditional variance equation and calls it HEQ, while line 5

sets up a formula for computing the out-of-sample squared innovations.

Given these two equations (and the order is important for some models),

RATS can recursively compute the forecasts. The GROUP line will construct

a group of equations, called GARCHMOD, which are linked together. The

results of the HEQ formula are placed in the H series by the HEQ>>H part,

and so on. Finally, the FORECAST command actually computes the multi-

step ahead forecasts for the GARCHMOD group of equations for the last

year in the sample as specified, and the PRINT command will print them

out. The conditional variance predictions are as in Box 8.7 (for the first

and last few entries only rather than all 365 of them!).

We can see that very quickly these multi-step ahead forecasts converge

upon the long-term unconditional volatility of the currency returns.

Suppose now that we were interested in estimating a set of rolling one-

step ahead forecasts rather than a set of multi-step ahead forecasts. We

would do that by nesting the entire set of instructions inside a loop that

indexed over the observations, adding one each time to the in-sample

estimation period and then producing a single out-of-sample, one-step

ahead forecast each time:

DO J=1,365
GARCH(P=1,Q=1, METHOD=BHHH, HSERIES=H2,RESIDS=U2,NOPRINT) $
2002:07:09 2006:07:06+J RJPY
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Box 8.7

ENTRY H

2006:07:08 0.208104700806

2006:07:09 0.215838129955

2006:07:10 0.218270285339

2006:07:11 0.219035195665

2006:07:12 0.219275759163
...

...

2007:07:04 0.219386126564

2007:07:05 0.219386126564

2007:07:06 0.219386126564

2007:07:07 0.219386126564

Box 8.8

ENTRY H2

2006:07:08 0.171312414094

2006:07:09 0.177977617752

2006:07:10 0.182789880392

2006:07:11 0.177451088918

2006:07:12 0.173030928349
...

...

2007:07:04 0.079287120841

2007:07:05 0.080470665642

2007:07:06 0.078949626681

2007:07:07 0.078293320547

SET UU2 = U2**2
COM VC=%BETA(2), VB=%BETA(4), VA=%BETA(3)
FRML HEQ H2 = VC + VB*H2{1} + VA*UU2{1}
FRML UEQ UU2 = H2
GROUP GARCHMOD2 HEQ>>H2 UEQ>>UU2
FORECAST(MODEL=GARCHMOD2, FROM=2006:07:07+J, TO=2006:07:07+J)
END DO J

PRINT 2006:07:08 2007:07:07 H2

The resulting series of forecasts, H2, is then printed at the end (Box 8.8).

These forecasts obviously do not converge upon a long-term mean since

they are only produced for one-step ahead each time. It is worth noting

as well that in this instance, the parameters will have been estimated

every time that a forecast is made using information up to and includ-

ing that observation. An alternative strategy, which would have been

computationally quicker, would have been to estimate the model only
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once (for the first in-sample period) and then to assume that the parameter

values were constant. As the one-step ahead forecasts are rolled through

the sample, this would have become increasingly inappropriate. For the

last forecast, the parameters would have been based on information up to

observation 7 July 2006, but observations through to 6 July 2007 are now

available. So it is clearly preferable to re-estimate the parameters at every

time-step as we did. The importance of this will depend on how stable the

parameter estimates are over time and on the length of the out-of-sample

period.

8.8 Multivariate GARCH models

Multivariate GARCH models are in spirit very similar to their univari-

ate counterparts, except that the former also specify equations for how

the covariances move over time. Several different multivariate GARCH for-

mulations have been proposed in the literature, including the VECH, the

diagonal VECH and the BEKK models. Each of these is discussed in turn

below; for a more detailed discussion, see Kroner and Ng (1998). In each

case, it is assumed for simplicity here that there are two assets whose

return variances and covariances are to be modelled.

A common specification of the VECH model, initially due to Bollerslev,

Engle and Wooldridge (1988), is

VECH (Ht ) = C + A VECH(�t−1�
′
t−1) + B VECH (Ht−1) (8.17)

�t |ψt−1 ∼ N (0, Ht ) ,

where Ht is a 2 × 2 conditional variance-covariance matrix, �t is a 2 × 1 in-

novation (disturbance) vector, ψt−1 represents the information set at time

t − 1, C is a 3 × 1 parameter vector, A and B are 3 × 3 parameter matrices

and V EC H (·) denotes the column-stacking operator applied to the upper

portion of the symmetric matrix. The model requires the estimation of 21

parameters (C has three elements, A and B each have nine elements). In

order to gain a better understanding of how the VECH model works, the

elements are written out below. Define

Ht =
[

h11t h12t

h21t h22t

]
, C =


 c11

c21

c31


, A =


 a11 a12 a13

a21 a22 a23

a31 a32 a33


,

B =

 b11 b12 b13

b21 b22 b23

b31 b32 b33


, �t =

[
u1t

u2t

]
.
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The VECH operator takes the ‘upper triangular’ portion of a matrix and

stacks each element into a vector with a single column. For example, in

the case of VECH(Ht ), this becomes

VECH(Ht ) =

 h11t

h12t

h22t




where hiit represent the conditional variances at time t of the two asset

return series (i = 1, 2) used in the model and hi jt (i �= j) represent the con-

ditional covariances between the asset returns. In the case of VECH(�t�
′
t ),

this can be expressed as

VECH(�t�
′
t ) = VECH

([
u1t

u2t

]
[ u1t u2t ]

)

= VECH

(
u2

11t u1t u2t

u2t u1t u2
22t

)
=


 u2

1t
u2

2t
u1t u2t




The VECH model in full is given by

h11t = c11 + a11u2
1t−1 + a12u2

2t−1 + a13u1t u2t−1 + b11h11t−1

+ b12h22t−1 + b13h12t−1 (8.18)

h12t = c31 + a31u2
1t−1 + a32u2

2t−1 + a33u1t u2t−1 + b31h11t−1

+ b32h22t−1 + b33h12t−1 (8.19)

h22t = c21 + a21u2
1t−1 + a22u2

2t−1 + a23u1t u2t−1 + b21h11t−1

+ b22h22t−1 + b23h12t−1 (8.20)

Thus, it is clear that the conditional variances and conditional covari-

ances depend on the lagged values of all of the conditional variances of

and conditional covariances between, all of the asset returns in the se-

ries, as well as the lagged squared errors and the error cross-products.

Estimation of such a model would be quite a formidable task, even in

the two-asset case considered here. As the number of assets employed in

the model increases, the estimation of the VECH model can quickly be-

come infeasible. Hence the VECH model’s conditional variance-covariance

matrix has been restricted to the form developed by Bollerslev, Engle and

Wooldridge (1988), in which A and B are assumed to be diagonal. This

reduces the number of parameters to be estimated and the model, known

as a diagonal VECH, is now characterised by

hi j,t = ωi j + αi j ui,t−1u j,t−1 + βi j hi j,t−1 for i, j = 1, 2, (8.21)

where ωi j , αi j and βi j are parameters.
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A disadvantage of the VECH model (in either form) is that there is no

guarantee of a positive semi-definite covariance matrix. The BEKK model

(Engle and Kroner, 1995) addresses the difficulty with VECH of ensuring

that the H matrix is always positive definite. It is represented by

Ht = W ′W + A′ Ht−1 A + B ′�t−1�
′
t−1 B (8.22)

where A and B are 3 × 3 matrices of parameters and W is an upper tri-

angular 3 × 3 matrix. The positive definiteness of the covariance matrix

is ensured due to the quadratic nature of the terms on the equation’s

right-hand side.

Estimating a multivariate GARCH model using RATS requires no new in-

structions and is made very simple by the GARCH instruction. Unrestricted

VECH, diagonal VECH, BEKK, constant conditional correlation (CCC) and

dynamic conditional correlation (DCC) forms of the model can all be es-

timated. The diagonal VECH is the default specification. Suppose that we

wished to estimate such a model for the three exchange rate return series.

The command would be

GARCH(P=1,Q=1, METHOD=BHHH) / RJPY REUR RGBP

The high degree of connectivity and large number of parameters make

multivariate GARCH models inherently more difficult to estimate than

their univariate counterparts and this particular example also entails

some problems. As well as switching to an alternative optimisation

method, it is often useful to employ the SIMPLEX method for a number

of iterations before switching to the standard BFGS or BHHH approach.

SIMPLEX is a derivative-free method which cannot be used to calculate

standard errors but is often useful for improving the starting values prior

to employing BFGS/BHHH to finish the job. Running SIMPLEX with 100 it-

erations first (using the PMETHOD=SIMPLEX option in parentheses) leads

to convergence with plausible parameter estimates in this case

GARCH(P=1,Q=1,METHOD=BHHH,PMETHOD=SIMPLEX,PITERS=100) $
/ RJPY REUR RGBP

The results are shown in Box 8.9.

All of the options for estimation in the context of univariate models,

such as the possibility of incorporating asymmetries or the use of Stu-

dent’s t or GED innovations, still apply here. To estimate a different type

of MGARCH model (e.g. the BEKK), use the option MV=. . . in parentheses,

where . . . can be BEKK or DIAGONAL or CC or DCC or VECH or EWMA. The

latter option will estimate a multivariate EWMA model à la JP Morgan,

for both the variances and the covariance, and these can be thought of as



Modelling volatility and correlation 143

Box 8.9

GARCH Model - Estimation by BHHH

Convergence in 31 Iterations. Final criterion was 0.0000001 <= 0.0000100

Daily(7) Data From 2002:07:08 To 2007:07:07

Usable Observations 1826

Log Likelihood -1929.50433115

Variable Coeff Std Error T-Stat Signif

***************************************************************************

1. Mean(1) 0.008043040 0.009414849 0.85429 0.39294264

2. Mean(2) -0.020385546 0.009100559 -2.24003 0.02508882

3. Mean(3) -0.012353027 0.008904641 -1.38726 0.16536340

4. C(1,1) 0.006251986 0.001291464 4.84101 0.00000129

5. C(2,1) 0.005078605 0.001184160 4.28878 0.00001797

6. C(2,2) 0.005144203 0.000547684 9.39264 0.00000000

7. C(3,1) 0.026851023 0.003999730 6.71321 0.00000000

8. C(3,2) 0.033231148 0.005776307 5.75301 0.00000001

9. C(3,3) 0.132136813 0.008391927 15.74571 0.00000000

10. A(1,1) 0.035190090 0.005126514 6.86433 0.00000000

11. A(2,1) 0.025326958 0.004491086 5.63938 0.00000002

12. A(2,2) 0.025802417 0.002593075 9.95051 0.00000000

13. A(3,1) 0.056384958 0.007623281 7.39642 0.00000000

14. A(3,2) 0.032771428 0.004552096 7.19919 0.00000000

15. A(3,3) 0.103151644 0.012676588 8.13718 0.00000000

16. B(1,1) 0.932056982 0.010445827 89.22769 0.00000000

17. B(2,1) 0.928423408 0.014106740 65.81417 0.00000000

18. B(2,2) 0.949499311 0.004268247 222.45652 0.00000000

19. B(3,1) 0.625169217 0.049577467 12.60995 0.00000000

20. B(3,2) 0.727377196 0.043750614 16.62553 0.00000000

21. B(3,3) 0.117883153 0.042539981 2.77111 0.00558648

Box 8.10

GARCH Model - Estimation by BHHH

Convergence in 19 Iterations. Final criterion was 0.0000089 <= 0.0000100

Daily(7) Data From 2002:07:08 To 2007:07:07

Usable Observations 1826

Log Likelihood -1872.53363133

Variable Coeff Std Error T-Stat Signif

****************************************************************************

1. Mean(1) 0.004018805 0.008570630 0.46890 0.63913809

2. Mean(2) -0.019058468 0.008838356 -2.15634 0.03105742

3. Mean(3) -0.016507158 0.008262648 -1.99780 0.04573783

4. Alpha 0.014888006 0.000800539 18.59748 0.00000000
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a restricted form of IGARCH model. Such a model will estimate a single

decay parameter that is assumed to apply to all variance and covariance

series. The code and results for the multivariate EWMA model are

GARCH(P=1,Q=1, METHOD=BHHH, MV=EWMA) / RJPY REUR RGBP

See Box 8.10.

The estimated alpha parameter is very small, indicating a very high degree

of persistence in the variance and covariance series, with little variation

from one period to the next in the fitted values.



9
Switching models

9.1 Dummy variables for seasonality

In the context of financial markets, and especially in the case of equities,

a number of ‘seasonal effects’ have been noted. Such effects are usually

known as ‘calendar anomalies’ or ‘calendar effects’ and result in system-

atically different behaviour in one or more seasons compared with the

others. Examples include open- and close-of-market effects, the ‘January

effect’, weekend effects and bank holiday effects.

One very simple method for coping with this and examining the degree

to which seasonality is present is the inclusion of dummy variables in

regression equations. The number of dummy variables that could sensibly

be constructed to model the seasonality would depend on the frequency

of the data. For example, four dummy variables would be created for

quarterly data, twelve for monthly data, five for daily data and so on. In

the case of quarterly data, the four dummy variables would be defined as

follows:

D1t = 1 in quarter 1 and zero otherwise

D2t = 1 in quarter 2 and zero otherwise

D3t = 1 in quarter 3 and zero otherwise

D4t = 1 in quarter 4 and zero otherwise

It is important to remember that if an intercept term is used in the re-

gression, the number of dummies that could also be included would be

one less than the ‘seasonality’ of the data. So for quarterly data, we could

either use four dummy variables and no intercept or three dummies and

an intercept to avoid falling into the ‘dummy variable trap’.

The dummies operate by changing the intercept, so that the average

value of the dependent variable, given all of the explanatory variables, is

permitted to change across the seasons. Consider the following regression:

yt = β1 + γ1 D1t + γ2 D2t + γ3 D3t + β2x2t + · · · + ut (9.1)

145
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During each period, the intercept will be changed. The intercept will be

● β̂1 + γ̂1 in the first quarter, since D1 = 1 and D2 = D3 = D4 = 0 for all

quarter 1 observations.

● β̂1 + γ̂2 in the second quarter, since D2 = 1 and D1 = D3 = D4 = 0 for

all quarter 2 observations.

● β̂1 + γ̂3 in the third quarter, since D3 = 1 and D1 = D2 = D4 = 0 for

all quarter 3 observations.

● β̂1 in the fourth quarter, since D1 = D2 = D3 = D4 = 0 for all quarter

4 observations.

As well as, or instead of, intercept dummies, slope dummy variables can be

used. These operate by changing the slope of the regression line, leaving

the intercept unchanged. For example, if the data were quarterly, the

following set-up could be used, with D1t . . . D3t representing quarters 1

to 3.

yt = α + βxt + γ1 D1t xt + γ2 D2t xt + γ3 D3t xt + ut (9.2)

In this case, since there is also a term in xt with no dummy attached,

the interpretation of the coefficients on the dummies (γ1, etc.) is that

they represent the deviation of the slope for that quarter from the aver-

age slope over all quarters. Meanwhile, if the four-slope dummy variables

were included (and not βxt ), the coefficients on the dummies would be

interpreted as the average relationship between y and x during each quar-

ter.

There are several ways to generate seasonal dummies in RATS. The first,

for monthly or quarterly data, is to use the SEASONAL command. Let us

return to the monthly data that we examined previously for Microsoft

stock and the S&P500 index (MACRO.PRG). For example, if we run the

following command at any point after the data has been read into RATS’

memory

SEASONAL SEASONS

this will create one 0--1 dummy variable for the last month in the year

(December). Instead of creating further dummy variables for the other

months of the year, a regression containing all of the dummy variables

could be conducted using the ‘leads’ of SEASONS, e.g.

LINREG RSANDP
# SEASONS{-11 TO 0}

The output would be that shown in Box 9.1.
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Box 9.1

Linear Regression - Estimation by Least Squares

Dependent Variable RSANDP

Monthly Data From 1986:04 To 2007:04
Usable Observations 253 Degrees of Freedom 241

Centered R**2 0.041723 R Bar **2 -0.002015

Uncentered R**2 0.067418 T X R**2 17.057

Mean of Dependent Variable 0.7214831553

Std Error of Dependent Variable 4.3552197934

Standard Error of Estimate 4.3596061048

Sum of Squared Residuals 4580.4858587

Regression F(11,241) 0.9539

Significance Level of F 0.48942157

Log Likelihood -725.35706

Durbin-Watson Statistic 2.048506

Variable Coeff Std Error T-Stat Signif

******************************************************************************

1. SEASONS{-11} 0.675778817 0.951344046 0.71034 0.47817941

2. SEASONS{-10} 1.078319085 0.929471145 1.16014 0.24713874

3. SEASONS{-9} 1.708633656 0.951344046 1.79602 0.07374370

4. SEASONS{-8} 0.490168459 0.951344046 0.51524 0.60685910

5. SEASONS{-7} 0.458490410 0.951344046 0.48194 0.63028619

6. SEASONS{-6} -0.625629471 0.951344046 -0.65763 0.51140549

7. SEASONS{-5} -1.115743183 0.951344046 -1.17281 0.24203103

8. SEASONS{-4} 0.738013851 0.951344046 0.77576 0.43865179

9. SEASONS{-3} 1.383781933 0.951344046 1.45455 0.14709374

10. SEASONS{-2} 1.927077049 0.951344046 2.02564 0.04390417

11. SEASONS{-1} 1.691402130 0.951344046 1.77791 0.07667986

12. SEASONS 0.230512941 0.951344046 0.24230 0.80875193

So SEASONS{-11} would be the January dummy, SEASONS{-10} would be

the February dummy, . . . , and SEASONS would be the December dummy.

The results we find here for the S&P are not particularly exciting, but

show marginally significant and positive March, October and November

effects.

An alternative method for generating a January dummy variable would

be to use the command

SET JANDUMMY = %MONTH(T) == 1

For daily data, the corresponding command to create a Friday dummy

variable would be

SET FRIDUMMY = %DAY(T) == 5
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Box 9.2

Linear Regression - Estimation by Least Squares

Dependent Variable RMSOFT

Monthly Data From 1986:04 To 2007:04
Usable Observations 253 Degrees of Freedom 250

Centered R**2 0.188772 R Bar **2 0.182283

Uncentered R**2 0.188776 T X R**2 47.760

Mean of Dependent Variable 0.033600543

Std Error of Dependent Variable 15.420559877

Standard Error of Estimate 13.944462700

Sum of Squared Residuals 48612.010000

Regression F(2,250) 29.0874

Significance Level of F 0.00000000

Log Likelihood -1024.15835

Durbin-Watson Statistic 2.145128

Variable Coeff Std Error T-Stat Signif

******************************************************************************

1. Constant -1.149368837 0.890398184 -1.29085 0.19794877

2. RSANDP 1.355290000 0.210425919 6.44070 0.00000000

3. SLOPEJAN 1.461257923 0.702569552 2.07988 0.03855588

(where Monday is numbered 1 in the %DAY instruction, Tuesday is num-

bered 2, etc., and ‘==’ denotes that two equals signs are used one after

the other).

Suppose that we wanted to use this form of command to determine

whether the CAPM beta for Microsoft stock is different in January com-

pared with other months of the year. We would want to use a slope dummy

variable that allowed for this, so we could use the code segment

SET JANDUMMY = %MONTH(T) == 1
SET SLOPEJAN = JANDUMMY*RSANDP
LINREG RMSOFT
# CONSTANT RSANDP SLOPEJAN

The results would be as shown in Box 9.2.

The coefficient on RSANDP will represent the beta for all months except

January, whereas the beta in January will be the sum of the coefficients on

SLOPEJAN and RSANDP. Another way to think about this would be to say

that SLOPEJAN represents the difference in beta between January and the

rest of the year, or alternatively, the slope estimate is significantly higher

in January than in other months. This parameter needs to be interpreted

with some caution, however, since even in a sample of 20 years’ length,
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there will be only 20 January data points and so the January slope dummy

is effectively estimated using a small sample and could be influenced by

one or two extreme outliers.

Creating (deterministic) time trends can also be achieved easily using

the SET instruction. So

SET TREND = T
SET TRENDSQ = T**2

would construct two new series, TREND and TRENDSQ, that would contain

linear and quadratic trends respectively.

Finally, we can also create dummy variables to draw out particular ob-

servations. For example

SET RLARGE = RMSOFT > 3
SET RSMALL = RMSOFT < −3

will create two new dummy variables, RLARGE and RSMALL. RLARGE will

contain the value 1 for all observations where the Microsoft return is

greater than 3 and zero elsewhere; RSMALL will contain 1 for all RMSOFT

observations less than −3 and zero elsewhere.

9.2 Markov switching models

The Markov regime switching model as it is used in economics and finance

is primarily associated with Hamilton (1989, 1990). Under the Markov

switching approach, the universe of possible occurrences is split into m
states of the world, corresponding to m regimes. In other words, it is as-

sumed that yt switches regime according to some unobserved variable, st ,

that takes on integer values. In the remainder of this chapter, it will be

assumed that m = 2. Movements of the state variable between regimes are

governed by a Markov process. This Markov property can be expressed as

P[a < yt ≤ b|y1, y2, . . . , yt−1] = P[a < yt ≤ b|yt−1] (9.3)

This equation states that the probability distribution of the state at any

time t depends only on the state at time t − 1 and not on the states that

were passed through at times t − 2, t − 3, . . . . The model’s strength lies in

its flexibility, being capable of capturing changes in the variance between

state processes as well as changes in the mean.

The most basic form of Hamilton’s model, also known as ‘Hamilton’s

filter’ (see Hamilton, 1989), comprises an unobserved state variable, de-

noted zt , which is postulated to evaluate according to a first-order Markov
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process:

Prob[zt = 1 | zt−1 = 1] = p11 (9.4)

Prob[zt = 2 | zt−1 = 1] = 1 − p11 (9.5)

Prob[zt = 2 | zt−1 = 2] = p22 (9.6)

Prob[zt = 1 | zt−1 = 2] = 1 − p22 (9.7)

where p11 and p22 denote the probability of being in regime one, given

that the system was in regime one during the previous period, and the

probability of being in regime two, given that the system was in regime

two during the previous period respectively. Thus 1 − p11 defines the prob-

ability that yt will change from state 1 in period t − 1 to state 2 in period

t , and 1 − p22 defines the probability of a shift from state 2 to state 1

between times t − 1 and t . It can be shown that under this specification,

zt evolves as an AR(1) process:

zt = (1 − p11) + ρzt−1 + ηt (9.8)

where ρ = p11 + p22 − 1. Loosely speaking, zt can be viewed as a generali-

sation of a dummy variables approach for one-off shifts in a series. Under

the Markov switching approach, there can be multiple shifts from one set

of behaviour to another.

In this framework, the observed returns series evolves as given by (9.9):

yt = µ1 + µ2zt + (
σ 2

1 + φzt
)1/2

ut (9.9)

where ut ∼ N(0, 1). The expected values and variances of the series are µ1

and σ 2
1 respectively in state 1 and (µ1 + µ2) and σ 2

1 + φ in state 2 respec-

tively. The variance in state 2 is also defined as σ 2
2 = σ 2

1 + φ. The unknown

parameters of the model (µ1, µ2, σ
2
1 , σ 2

2 , p11, p22) are estimated using max-

imum likelihood. Details are beyond the scope of this book, but are most

comprehensively given in Engel and Hamilton (1990).

If a variable follows a Markov process, all that is required to forecast

the probability that it will be in a given regime during the next period is

the current period’s probability and a set of transition probabilities, given

for the case of two regimes by equations (9.4)--(9.7). In the general case

where there are m states, the transition probabilities are best expressed

in a matrix as

P =




P11 P12 · · · P1m

P21 P22 · · · P2m

· · · · · · · · · · · ·
Pm1 Pm2 · · · Pmm


 (9.10)
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where Pi j is the probability of moving from regime i to regime j . Since,

at any given time, the variable must be in one of the m states, it must be

true that
m∑

j=1

Pi j = 1 ∀ i (9.11)

A vector of current state probabilities is then defined as

πt = [π1 π2 · · · πm] (9.12)

where πi is the probability that the variable y is currently in state i . Given

πt and P , the probability that the variable y will be in a given regime next

period can be forecast using

πt+1 = πt P (9.13)

The probabilities for S steps into the future will be given by

πt+s = πt Ps (9.14)

The RATS newsletter (‘RATSletter’) of December 1998 presented sample

code for estimating various specifications of the Markov switching model.

The code required to compute the statistics for a two-regime model with

unknown regime and separate means and variances for each model is

shown on the following page.

It is assumed that the series to be examined is called Y, and A01 and A02

denote the means for states 1 and 2 respectively, with all other notation

explained below. The number of lines of code required to estimate this

model is fairly large, and many of them will not be familiar, but the

approach used here is the way that all GARCH models had to be estimated

before the GARCH instruction came along!

The example considered here focuses on modelling the time-series be-

haviour of the gilt-equity yield ratio (GEYR), defined as the ratio of the

income yield on long-term government bonds (termed ‘gilts’ in the UK)

to the dividend yield on equities. It has been suggested that the current

value of the GEYR might be a useful tool for investment managers or mar-

ket analysts in determining whether to invest in equities or whether to

invest in gilts. The GEYR is assumed to have a long-run equilibrium level,

deviations from which are taken to signal that equity prices are at an un-

sustainable level. If the GEYR becomes high relative to its long-run level,

equities are viewed as being expensive relative to bonds. The expectation,

then, is that for given levels of bond yields, equity yields must rise which

will occur via a fall in equity prices, and vice versa.

The paper by Brooks and Persand (2001) discusses the usefulness of

the Markov switching approach in this context and considers whether
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profitable trading rules can be developed on the basis of forecasts derived

from the model. Brooks and Persand employ monthly stock index dividend

yields and income yields on government bonds covering the period Jan-

uary 1975 to August 1997 (272 observations) for three countries -- the UK,

the US and Germany, although only the UK series is employed here. The

series used are the dividend yield and index values of the FTSE 100, while

the bond indices and redemption yields are based on the clean prices of

UK government consols (irredeemable bonds).

OPEN DATA ‘C:\CHRIS\BOOK\RATS HANDBOOK\GEYRR.XLS’
CALENDAR(M) 1975
ALL 1997:08
DATA(FORMAT=XLS,ORG=COLUMNS) 1975:01 1997:08 GEYR
SET Y = GEYR
NONLIN P12 P21 A01 A02 SIGMA1 SIGMA2
FRML REG1 = Y-A01
FRML REG2 = Y-A02
*
COMPUTE P12=0.7
COMPUTE P21=0.3
LINREG(NOPRINT) Y
# CONSTANT
COMPUTE A01=%BETA(1)+0.5
COMPUTE A02=%BETA(1)
COMPUTE SIGMA1=SQRT(%SEESQ)
COMPUTE SIGMA2=SQRT(%SEESQ)
*
SET PSTAR 1 272 = 0.5
FRML MARKOV = $

F1=%DENSITY(REG1{0}/SIGMA1)/SIGMA1 , $
F2=%DENSITY(REG2{0}/SIGMA2)/SIGMA2 , $
RP1=F1*(P21*(1-PSTAR{1})+(1-P12)*PSTAR{1}) , $
RP2=F2*((1-P21)*(1-PSTAR{1})+P12*PSTAR{1}) , $
PSTAR=RP1/(RP1+RP2) , $
LOG(RP1+RP2)

MAXIMIZE(ROBUST) MARKOV 2 272
PRINT 1 272 PSTAR

Given that most of these instructions are new, some annotation will now

follow. The first four lines obviously just read in the data from an Excel

file, and the following one defines the dependent variable used in the

program (Y). The next line tells RATS that a non-linear estimation will

be conducted and the parameters to be estimated are listed: P12 P21 etc.

FRML then defines the formulae for the residuals for each regime, then

some initial starting value guesses are offered for the probabilities. The

linear regression and the four COMPUTE instructions that follow it also

generate initial guesses, but for the means and variances in each regime.
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Box 9.3

MAXIMIZE - Estimation by BFGS

Convergence in 15 Iterations. Final criterion was 0.0000088 <= 0.0000100

With Heteroscedasticity/Misspecification Adjusted Standard Errors

Monthly Data From 1975:02 To 1997:08

Usable Observations 271

Function Value 52.59207092

Variable Coeff Std Error T-Stat Signif

****************************************************************************

1. P12 0.0604684471 0.0371214652 1.62893 0.10332682

2. P21 0.0124004131 0.0074475580 1.66503 0.09590662

3. A01 2.6694842266 0.0625870338 42.65235 0.00000000

4. A02 2.1223427585 0.0152292509 139.35963 0.00000000

5. SIGMA1 0.2292422194 0.0296724035 7.72577 0.00000000

6. SIGMA2 0.1736851588 0.0100295265 17.31738 0.00000000

The vector PSTAR will contain the probabilities of being in state 1 at each

point in time for the sample and this must be initialised. The next FRML

constructs a formula, called MARKOV, that defines the log-likelihood as a

function of the parameters, and finally the MAXIMIZE command does the

estimation.

A crucial point in the analysis above is that different starting values are

used for some of the parameters in each state. Without that, the model

is not globally identified in the sense that the two states could be flipped

without affecting the results. The log-likelihood function, called MARKOV,

is maximised using the BFGS procedure. Note that in this application, the

maximisation must start at observation 2. The results obtained using the

above code for the UK GEYR series are shown in Box 9.3.

Comparing the results to those from the Brooks and Persand (2001)

paper, which used code written by James Hamilton, the probabilities of

a switch from one regime to another are comparable (the corresponding

figures from the paper are 0.045 and 0.028), while the means for each

state and the variances are slightly different. The model can be easily

extended to allow the variable to follow an autoregressive process within

each regime (see Hamilton, 1994, or the RATSletter discussed above).

9.3 Threshold autoregressive models

Threshold autoregressive (TAR) models are one class of non-linear autore-

gressive models. Such models are a relatively simple relaxation of standard
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linear autoregressive models that allow for a locally linear approximation

over a number of states. According to Tong (1990, p. 99), the threshold

principle ‘allows the analysis of a complex stochastic system by decom-

posing it into a set of smaller sub-systems’. The key difference between

TAR and Markov switching models is that under the former, the state

variable is assumed known and observable, while it is latent under the

latter. A very simple example of a threshold autoregressive model is given

by equation (9.15). The model contains a first-order autoregressive process

in each of two regimes, and there is only one threshold. Of course, the

number of thresholds will always be the number of regimes minus one.

Thus, the dependent variable yt is purported to follow an autoregressive

process with intercept coefficient µ1 and autoregressive coefficient φ1 if

the value of the state-determining variable lagged k periods, denoted st−k ,

is lower than some threshold value r . If the value of the state-determining

variable lagged k periods, is equal to or greater than that threshold value

r , yt is specified to follow a different autoregressive process, with inter-

cept coefficient µ2 and autoregressive coefficient φ2. The model would be

written

yt =
{
µ1 + φ1 yt−1 + u1t if st−k < r
µ2 + φ2 yt−1 + u2t if st−k ≥ r

(9.15)

But what is st−k , the state-determining variable? It can be any variable

that is thought to make yt shift from one set of behaviour to another.

Obviously, financial or economic theory should have an important role

to play in making this decision. If k = 0, it is the current value of the

state-determining variable that influences the regime that y is in at time

t , but in many applications k is set to 1, so that the immediately preceding

value of s is the one that determines the current value of y.

The simplest case arises when the state-determining variable is the vari-

able under study, i.e. st−k = yt−k . This situation is known as a self-exciting

TAR, or a SETAR, since it is the lag of the variable y itself that determines

the regime that y is currently in. The model would now be written

yt =
{
µ1 + φ1 yt−1 + u1t if yt−k < r
µ2 + φ2 yt−1 + u2t if yt−k ≥ r

(9.16)

The models of (9.15) or (9.16) can of course be extended in several direc-

tions. The number of lags of the dependent variable used in each regime

may be higher than one, and the number of lags need not be the same for

both regimes. The number of states can also be increased to more than

two. A general threshold autoregressive model that notationally permits
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the existence of more than two regimes and more than one lag may be

written

yt =
J∑

j=1

I ( j)
t

(
φ

( j)
0 +

p j∑
i=1

φ
( j)
i yt−i + u( j)

t

)
, r j−1 ≤ zt−d ≤ r j (9.17)

where I ( j)
t is an indicator function for the j th regime taking the value

one if the underlying variable is in state j and zero otherwise. zt−d is

an observed variable determining the switching point and u( j)
t is a zero-

mean independently and identically distributed error process. Again, if

the regime changes are driven by own lags of the underlying variable, yt

(i.e. zt−d = yt−d ), then the model is a SETAR.

As alluded to previously, the estimation of threshold models is consid-

erably more complex than is the case for other models described in this

book. Part of the reason for this is that determination of the lag length

for each regime, the regime switching variable, the value of the thresh-

old, and the coefficients all need to be estimated, and the estimates of

each will depend on the estimates of the others. To fully address these

issues requires algebra and techniques that are well beyond the scope of

this text, but instead a simple and imperfect example to illustrate the

technique will be employed.

In the early 1990s, the requirement that currencies in the European

Monetary Union zone (prior to the formation of the euro) remain within a

certain band around their central parity forced central banks to intervene

in the markets to bring about either an appreciation or a depreciation in

their currency. A study by Chappell et al. (1996) considered the effect that

such interventions might have on the dynamics and time-series proper-

ties of the French franc--German mark (hereafter FRF--DEM) exchange rate.

‘Core currency pairs’ such as the FRF--DEM were allowed to move up to

±2.25% either side of their central parity within the exchange rate mech-

anism (ERM). The study used daily data from 1 May 1990 until 30 March

1992. The first 450 observations were used for model estimation, with the

remaining 50 being retained for out-of-sample forecasting.

A SETAR model was employed to allow for different types of behaviour

according to whether the exchange rate was close to the ERM boundary.

The argument was that, close to the boundary, the respective central banks

would be required to intervene in the opposite direction in order to drive

the exchange rate back towards its central parity. Such intervention might

be expected to affect the usual market dynamics that ensured fast reaction

to news and the absence of arbitrage opportunities.

Let Et denote the log of the FRF--DEM exchange rate at time t . Chappell

et al. estimated two models: one with two thresholds and one with one
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threshold. The former was anticipated to be most appropriate for the data

at hand since exchange rate behaviour was likely to be affected by inter-

vention if the exchange rate came close to either the ceiling or the floor of

the band. However, over the sample period employed, the mark was never

a weak currency and therefore the FRF--DEM exchange rate was either at

the top of the band or in the centre, never close to the bottom. There-

fore, a model with one threshold was more appropriate since any second

estimated threshold was deemed likely to be spurious. The Chappell et al.

(1996) coefficient estimates for a SETAR with one threshold whose value

had been estimated was

Êt = 0.0222 + 0.9962Et−1 For (9.18)

(0.0458) (0.0079) Et−1 < 5.8306

Êt = 0.3486 + 0.4394Et−1 + 0.3057Et−2 + 0.1951Et−3 For (9.19)

(0.2391) (0.0889) (0.1098) (0.0866) Et−1 ≥ 5.8306

It is possible to replicate their results, given the number of regimes, the

value of the threshold and the number of lags in each state, using the

following RATS code:

OPEN DATA ‘C:\CHRIS\BOOK\RATS HANDBOOK\FFDMR.XLS’
CALENDAR(D) 1990:5:1
ALL 1992:03:30
DATA(FORMAT=XLS,ORG=COLUMNS) 1990:05:01 1992:03:30 FFDM
SET Y = FFDM
COMPUTE R=5.8306
NONLIN A0 A1 B0 B1 B2 B3
FRML SETAR Y = %IF(Y{1}<R, A0+A1*Y{1}, $
B0+B1*Y{1}+B2*Y{2}+B3*Y{3})
LINREG(NOPRINT) Y
# CONSTANT Y{1}
COMPUTE A0=%BETA(1)
COMPUTE A1=%BETA(2)
LINREG(NOPRINT) Y
# CONSTANT Y{1} Y{2} Y{3}
COMPUTE B0=%BETA(1)
COMPUTE B1=%BETA(2)
COMPUTE B2=%BETA(3)
COMPUTE B3=%BETA(4)
NLLS(FRML=SETAR,ITERATIONS=100,ROBUSTERRORS) Y 1990:5:4 $

1992:03:30

The first four lines of code read in the data from the Excel file and then

define Y as the variable to be modelled. The threshold value is specified
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as 5.8306, followed by the NONLIN instruction that, as for GARCH-type

models, specifies the parameters to be estimated. The FRML instruction

defines the SETAR model. It states that if the one-period lagged value of Y

is less than R, then set the term in brackets (Y{1}<R,1,0) to 1, else set the

term to zero. The %IF statement will pick out any observations for lagged

Y where it is greater than or equal to the specified value of the threshold.

Thus, if the lagged value of Y is less than the threshold, the current

value of Y will be modelled as (A0+A1∗Y(T−1)), while if the lagged value

of Y is greater than or equal to the threshold, the current value of Y

will be modelled as (B0+B1∗Y(T−1)+B2∗Y(T−2)+B3∗Y(T−3)). The two

sets of LINREG instructions together with their corresponding COMPUTE

statements set up starting values for the parameters for the AR(1) and

AR(3) regimes as the estimates obtained from a linear regression of that

form. Finally, the NLLS instruction estimates the SETAR model using

Non-linear Least Squares, with heteroscedasticity-robust standard errors

for observations from 4 May 1990 to 30 March 1992 (observation numbers

4 to 500). The results that would be obtained are shown in Box 9.4.

Box 9.4

Nonlinear Least Squares - Estimation by Gauss-Newton

Convergence in 2 Iterations. Final criterion was 0.0000004 <= 0.0000100

With Heteroscedasticity-Consistent (Eicker-White) Standard Errors

Dependent Variable Y

Daily(5) Data From 1990:05:04 To 1992:03:30

Usable Observations 497 Degrees of Freedom 491

Centered R**2 0.986799 R Bar **2 0.986664

Uncentered R**2 1.000000 T X R**2 497.000

Mean of Dependent Variable 5.8248665836

Std Error of Dependent Variable 0.0065341741

Standard Error of Estimate 0.0007545681

Sum of Squared Residuals 0.0002795621

Log Likelihood 2870.92022

Durbin-Watson Statistic 1.914210

Variable Coeff Std Error T-Stat Signif

**************************************************************************

1. A0 0.0358256962 0.0337796593 1.06057 0.28888532

2. A1 0.9938559273 0.0058017751 171.30204 0.00000000

3. B0 0.0891014437 0.2144240445 0.41554 0.67774774

4. B1 0.5095427582 0.1164738018 4.37474 0.00001216

5. B2 0.2388951159 0.1251466123 1.90892 0.05627216

6. B3 0.2362801742 0.1088076544 2.17154 0.02989038
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As can be seen, these parameter estimates are fairly close to those ob-

tained by Chappell et al., although they use only the first 450 data points

for estimation rather than the full 500 used here, and the sources of data

may also be different. The standard error estimates in both cases should

be interpreted with extreme caution, however, since the residuals of the

model are likely to be highly autocorrelated even if we accept the Chappell

et al. argument that the exchange rate was stationary over this period.

It would be possible and relatively easy to generalise this procedure to

incorporate more than one threshold, or to allow for different numbers

of lags in each regime. It would also be valid, given the threshold value,

to use an information criterion to guide the choice of how many lags to

include. However, estimation of the threshold value itself would be con-

siderably more difficult. One approach, for a given number of lags in each

state, would be to estimate the model over a whole range of values of R

and to choose the model that minimised the residual sum of squares. This

would be known as a grid-search procedure and could be accomplished

in RATS using the DOFOR instruction. For example, in the context of the

FRF--DEM example, all of the sample data lies in the range (5.812,5.835). It

is undesirable to allow the threshold to occur right at one end of the range

or another, since this would imply that the parameters of one regime

were to be estimated using a very small number of observations. Instead,

suppose that it were determined to constrain the value of the thresh-

old to lie within the central 80% of the distribution of the data points

(i.e. the threshold is not permitted to lie within the lowest 10% or the

highest 10% of the data). The relevant range would then be (5.814,5.833).

Then the threshold value could be chosen using the following grid-search

approach:

DOFOR R = 5.814 5.815 5.816 5.817 5.818 5.819 5.820 5.821 5.822 $
5.823 5.824 5.825 5.826 5.827 5.828 5.829 5.830 5.831 5.832 5.833
NONLIN A0 A1 B0 B1 B2 B3
FRML SETAR Y = (%IF(Y{1}<R,1,0))*(A0+A1*Y(T-1)) + $
%IF(Y{1}>=R,1,0)*(B0+B1*Y(T-1)+B2*Y(T-2)+B3*Y(T-3))
LINREG(NOPRINT) Y
# CONSTANT Y{1}
COMPUTE A0=%BETA(1)
COMPUTE A1=%BETA(2)
LINREG(NOPRINT) Y
# CONSTANT Y{1} Y{2} Y{3}
COMPUTE B0=%BETA(1)
COMPUTE B1=%BETA(2)
COMPUTE B2=%BETA(3)
COMPUTE B3=%BETA(4)



Switching models 159

NLLS(FRML=SETAR,ITERATIONS=100,ROBUSTERRORS,NOPRINT) $
Y 1990:5:4 1992:03:30

DIS R %RSS
END DOFOR R

This will print the value of the residual sum of squares for each value

of R. Clearly, it does not use a very fine grid with only 20 points, and

therefore the optimal threshold value is not likely to be calculated with

much accuracy. But the procedure could be generalised to measure R to

more decimal places (assuming that sufficient accuracy is available in the

original data) and to search over a finer grid.

The DOFOR instruction above could have been simplified to

DOFOR R = %SEQA(5.814,0.001,20)

It is an extremely useful instruction since it can be used to loop over series

as well as numbers. For example, suppose that we wanted to estimate an

AR(1) model for three series: X, Y and Z. We could use the commands

DOFOR A = X Y Z
LINREG A
# CONSTANT A{1}
END DOFOR

Although it would have been easy to just run these three regressions

separately, imagine if we had wanted to apply a long and complex set

of instructions to 30 or 300 series. In situations like this, DOFOR can be

invaluable.



10
Panel data

The situation often arises in financial modelling where we have data com-

prising both time-series and cross-sectional elements, and such a dataset

would be known as a panel of data or longitudinal data. A panel of data

will embody information across both time and space. Importantly, a panel

keeps the same individuals or objects (henceforth we will call these ‘en-

tities’) and measures some quantity about them over time. This chapter

will present and discuss the important features of panel analysis and will

describe the techniques used to model such data.

Econometrically, the set-up we may have is as described in the following

equation:

yit = α + βxit + uit (10.1)

where yit is the dependent variable, α is the intercept term, β is a k × 1

vector of parameters to be estimated on the explanatory variables, and xit

is a 1 × k vector of observations on the explanatory variables, t = 1, . . . , T ;

i = 1, . . . , N .17

10.1 Setting up the panel

The estimation of panel models with either fixed or random effects is very

easy with RATS; the harder part is organising the data so that the software

can recognise that you have a panel of data and can apply the techniques

accordingly. RATS requires the data file to have a particular structure.

Each variable must have a single list of values for each individual (so that

both the time-series and cross-sectional observations on a given variable

are stacked up in a single column). The data can be grouped by individual

17 Note that k is defined slightly differently in this chapter compared with others in the

book. Here, k represents the number of slope parameters to be estimated (rather than

the total number of parameters as it is elsewhere), which is equal to the number of

explanatory variables in the regression model.

160
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Table 10.1 Data grouped by individual and by time

Grouped by individual Grouped by time

Individual 1, 1997 Individual 1, 1997

Individual 1, 1998 Individual 2, 1997

Individual 1, 1999 Individual 1, 1998

Individual 2, 1997 Individual 2, 1998

Individual 2, 1998 Individual 1, 1999

Individual 2, 1999 Individual 2, 1999

or grouped by time. Examples of each (taken from the RATS 7 User Guide,

p. 542) are shown in Table 10.1.

Use of the technique is probably best explained with the aid of an

example. The application to be considered here is that of a variant on an

early test of the capital asset pricing model due to Fama and MacBeth

(1973). Their test involves a two-step estimation procedure: first, the betas

are estimated in separate time-series regressions for each firm, and second,

for each separate point in time, a cross-sectional regression of the excess

returns on the betas is conducted

Rit − Rft = λ0 + λmβPi + ui (10.2)

where the dependent variable, Rit − R f t , is the excess return of the stock

i at time t and the independent variable is the estimated beta for the

portfolio (P) that the stock has been allocated to. The betas of the firms

themselves are not used on the RHS, but rather, the betas of portfolios

formed on the basis of firm size. If the CAPM holds, then λ0 should not

be significantly different from zero and λm should approximate the (time

average) equity market risk premium, Rm − R f . Fama and MacBeth pro-

posed estimating this second-stage (cross-sectional) regression separately

for each time period and then taking the average of the parameter es-

timates to conduct hypothesis tests. However, one could also achieve a

similar objective using a panel approach. We will use an example in the

spirit of Fama--MacBeth comprising the annual returns and ‘second pass

betas’ for 11 years on 2,500 UK firms.18

The data are contained in four columns in the Excel file PANELEXR.XLS.

The first column is a firm identifier (simply a number associated with each

firm, although this column is not strictly necessary with RATS and will

18 Source: computation by Keith Anderson and the author. There would be some severe

limitations of this analysis if it purported to be a piece of original research, but the

range of freely available panel datasets is severely limited and so hopefully it will

suffice as an example of how to estimate panel models with RATS. No doubt readers

with access to a wider range of data will be able to think of much better applications!
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not be used). The second and third columns contain the actual data to

be used in the estimation: the excess returns on each stock and the betas

of each stock. The final column contains the years that each observation

corresponds to. The first and fourth columns are superfluous, but are

useful for readers to be able to see how the data is organised inside the

spreadsheet; it should be evident that the structure corresponds exactly

to the second (‘grouped by time’) type of data listed above.

Having this organisational structure makes life much easier because

RATS can work directly with it, and there is a function on the data-import

Wizard for dealing with panel data. We will look at how to use this next,

but for now, suppose that the data had been organised in some way other

than that described above. For example, suppose that the data on each

individual were not in the same order over the years, but rather the indi-

viduals were identified by some variable in another column. Or alterna-

tively, suppose that each variable and year of data are listed in separate

columns rather than all the years being stacked up in a single column.

How would we proceed? The answer is that the data must be re-organised

to conform to one of the two types listed above. This could be done either

in a spreadsheet or within RATS by using the PFORM instruction (see the

RATS User Guide for details).

Returning to the case we have here, to read in the data, click Data

and then choose the Data (Other Formats) option from the menu. Then

change ‘Files of type’ to Excel and choose the file PANELEXR.XLS and

click Open. RATS will then examine the file and will conclude that it has

27501 Rows and 4 Columns. Click OK, then we need to explain how the

data are organised. The data are Annual, with 1 Period per Year, and the

Structure is a Panel with 11 observations per individual. Complete the

boxes in the New Series Date window accordingly and it should appear as

in screenshot 10.1.

Screenshot 10.1
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Then click OK and the Wizard will create the following lines of code:

OPEN DATA “C:\Chris\book\RATS handbook\panelexr.xls”
CALENDAR(PANELOBS=11,A) 1996
ALL 2500//2006:01
DATA(FORMAT=XLS,ORG=COLUMNS) 1//1996:01 2500//2006:01 $

firm ident return beta year

10.2 Estimating fixed or random effects panel models

To see how the fixed effects model works, we can take equation (10.1) above

and decompose the disturbance term, uit , into an individual specific effect,

µi , and the ‘remainder disturbance’, vi t , that varies over time and entities

(capturing everything that is left unexplained about yit )

uit = µi + vi t (10.3)

So we could rewrite equation (10.1) by substituting in for uit from (10.3)

to obtain

yit = α + βxit + µi + vi t (10.4)

We can think of µi as encapsulating all of the variables that affect yit

cross-sectionally but do not vary over time -- for example, the sector that

a firm operates in, a person’s gender, or the country where a bank has

its headquarters, etc. This model could be estimated using dummy vari-

ables, which would be termed the least squares dummy variable (LSDV)

approach.

We can also test for whether the panel approach is really necessary

at all. This test would be a slightly modified version of the Chow test

described in Chapter 4 and would involve incorporating the restriction

that all of the intercept dummy variables have the same parameter (i.e.

H0:µ1 = µ2 = . . . = µN ). If this null hypothesis is not rejected, the data

can simply be pooled together and OLS employed. If this null is rejected,

however, then it is not valid to impose the restriction that the intercepts

are the same over the cross-sectional units and a panel approach must be

employed.

It is also possible to have a time-fixed effects model rather than an

entity-fixed effects model. We would use such a model where we thought

that the average value of yit changes over time but not cross-sectionally.

Hence with time-fixed effects, the intercepts would be allowed to vary over

time but would be assumed to be the same across entities at each given
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point in time. We could write a time-fixed effects model as

yit = α + βxit + λt + vi t (10.5)

where λt is a time-varying intercept that captures all of the variables that

affect yit and that vary over time but are constant cross-sectionally. An

example would be where the regulatory environment or tax rate changes

part-way through a sample period. In such circumstances, this change of

environment may well influence y, but in the same way for all firms,

which could be assumed to all be affected equally by the change.

An alternative to the fixed effects model described above is the random

effects model, which is sometimes also known as the error components

model. As with fixed effects, the random effects approach proposes differ-

ent intercept terms for each entity and again these intercepts are constant

over time, with the relationships between the explanatory and explained

variables assumed to be the same both cross-sectionally and temporally.

However, the difference is that under the random effects model, the in-

tercepts for each cross-sectional unit are assumed to arise from a common

intercept α (which is the same for all cross-sectional units and over time),

plus a random variable εi that varies cross-sectionally but is constant over

time. εi measures the random deviation of each entity’s intercept term

from the ‘global’ intercept term α. We can write the random effects panel

model as

yit = α + βxit + ωi t , ωi t = εi + vi t (10.6)

where xit is still a 1 × k vector of explanatory variables, but unlike the

fixed effects model, there are no dummy variables to capture the hetero-

geneity (variation) in the cross-sectional dimension. Instead, this occurs

via the εi terms. Note that this framework requires the assumptions that

the new cross-sectional error term, εi , has zero mean, is independent of

the individual observation error term (vi t ), has constant variance σ 2
ε and

is independent of the explanatory variables (xit ).

Returning to RATS, when the data have been imported we are ready to

run the panel regressions. The main command for doing this is PREGRESS,

with options METHOD=FIXED and METHOD=RANDOM for fixed and ran-

dom effects models respectively. So the instructions would be

PREGRESS(METHOD=FIXED) RETURN
# CONSTANT BETA
PREGRESS(METHOD=RANDOM) RETURN
# CONSTANT BETA

And the two sets of results are shown in Box 10.1. and Box 10.2.
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Box 10.1

Panel Regression - Estimation by Fixed Effects

Dependent Variable RETURN

Panel(11) of Annual Data From 1//1996:01 To 2500//2006:01

Usable Observations 8856 Degrees of Freedom 6647

Total Observations 27500 Skipped/Missing 18644

Centered R**2 0.313653 R Bar **2 0.085662

Uncentered R**2 0.315031 T x R**2 2789.915

Mean of Dependent Variable 0.0023449901

Std Error of Dependent Variable 0.0522821933

Standard Error of Estimate 0.0499927616

Sum of Squared Residuals 16.612688993

Regression F(2208,6647) 1.3757

Significance Level of F 0.00000000

Log Likelihood 15235.89166

Variable Coeff Std Error T-Stat Signif

*****************************************************************

1. Constant 0.0000000000 0.0000000000 0.00000 0.00000000

2. BETA 0.0015258234 0.0030609629 0.49848 0.61816350

Box 10.2

Panel Regression - Estimation by Random Effects

Dependent Variable RETURN

Panel(11) of Annual Data From 1//1996:01 To 2500//2006:01

Usable Observations 8856 Degrees of Freedom 8854

Total Observations 27500 Skipped/Missing 18644

Mean of Dependent Variable 0.0023449901

Std Error of Dependent Variable 0.0522821933

Standard Error of Estimate 0.0485226977

Sum of Squared Residuals 20.846319740

Log Likelihood 13608.59359

Hausman Test(1) 0.484883

Significance Level 0.48621903

Variable Coeff Std Error T-Stat Signif

*****************************************************************

1. Constant 0.0021206693 0.0030680609 0.69121 0.48943462

2. BETA 0.0005410075 0.0027143846 0.19931 0.84201925
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Although the slope coefficients are not significant for either specifi-

cation, the estimates are quite different, suggesting that the fixed and

random effects models represent rather different characterisations of the

data. RATS ignores the intercept in the fixed effects model because it has

used dummy variables for each of the individual units. The fixed effects

model is exactly equivalent to the LSDV approach and so can be estimated

by OLS, but the random effects model must be estimated using GLS. When

the random effects model is used, RATS automatically conducts a Haus-

man test for the validity of random effects approach. In this case, the

p-value of 0.486 is indicative that it would be permissible and arguably

more efficient to use a random effects specification.

The returns in this regression are in proportion terms rather than per-

centages, so the slope estimate of 0.0015 corresponds to a risk premium

of 0.15% per month, or around 1.8% per year, which seems plausible al-

though lower than the actual difference between the average returns on

stocks and Treasuries over the sample period. By contrast, if we were to

simply run an OLS regression on these variables (with no fixed or random

effects), we would observe a slope estimate of 0.000454, corresponding to

a risk premium of 0.0454% per month, or around 0.5% per year.

By default, METHOD=FIXED results in the estimation of a model with

entity-specific fixed effects. But we could instead estimate a model with

time-fixed effects or both individual and time-fixed effects. The command

for a time-fixed effects model would be

PREGRESS(METHOD=FIXED,EFFECTS=TIME) RETURN
# CONSTANT BETA

Notice that while the individual fixed effects model will use some 2,500

dummy variables, the time-fixed effect model will use only 11 (one for each

year). Consequently, the slope parameter estimate for the time-fixed effects

specification is only slightly different from that of the pooled regression

model. It is also possible to estimate models based on the within trans-

formation (METHOD=FD), the between estimator (METHOD=BETWEEN) or

using a seemingly unrelated regression (SUR).

Finally, we can run a test for redundant fixed effects, where these could

be time-fixed effects, cross-sectional fixed effects, or both; here we opt for

the cross-sectional version only since we saw above that only this type

of heterogeneity is important. We would achieve this using the PSTATS

command after the regression estimation

LINREG(NOPRINT) RETURN / RESIDS
# CONSTANT BETA
PSTATS(TESTS,EFFECT=INDIVIDUAL) RESIDS
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The output is shown in Box 10.3.

Box 10.3

Analysis of Variance for Series RESIDS

Source Sum of Squares Degrees Mean Square F-Statistic Signif Level

INDIV 7.591431891518 2207 0.003439706340 1.3765 0.0000000

ERROR 16.612995210168 6648 0.002498946331

TOTAL 24.204427101686 8855

The F -test statistic is significant even at the 1% level, suggesting that

it is important to allow for the individual fixed effects and that simply

running a pooled regression ignoring them would not be valid.



11
Limited dependent variable models

There are many situations in financial research where it is the explained

variable rather than one or more of the explanatory variables that is

qualitative. The qualitative information would then be coded as a dummy

variable and the situation would be referred to as a limited dependent vari-

able and needs to be treated differently. The term refers to any problem

where the values that the dependent variables may take are limited to

certain integers (e.g. 0, 1, 2, 3, 4) or even where it is a binary number

(only 0 or 1).

The linear probability model (LPM) is by far the simplest way of deal-

ing with binary dependent variables, and it is based on an assumption

that the probability of an event occurring is linearly related to a set of

explanatory variables. The actual probabilities cannot be observed, so we

would estimate a model where the outcomes, yi (the series of zeros and

ones), would be the dependent variable. This is then a linear regression

model and would be estimated by OLS. The set of explanatory variables

could include either quantitative variables or dummies or both. The fitted

values from this regression are the estimated probabilities that yi = 1 for

each observation i .

The linear probability model has many important flaws and conse-

quently the logit and probit approaches are used instead. Both models

are able to overcome the limitation of the LPM that it can produce esti-

mated probabilities that are negative or greater than one. They do this by

using a function that effectively transforms the regression model so that

the fitted values are bounded within the (0,1) interval. Visually, the fitted

regression model will appear as an S-shape rather than a straight line. The

logit model is so called because the function F is in fact the cumulative

logistic distribution. With the logistic model, 0 and 1 are asymptotes to

the function and thus the probabilities will never actually fall to exactly

zero or rise to one, although they may come infinitesimally close. Clearly,
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this model is not linear (and cannot be made linear by a transformation)

and thus is not estimable using OLS. Thus maximum likelihood is usually

used.

Instead of using the cumulative logistic function to transform the

model, the cumulative normal distribution is sometimes employed. This

gives rise to the probit model. This function is the cumulative distribu-

tion function for a standard normal random variable. As for the logistic

approach, this function provides a transformation to ensure that the fitted

probabilities will lie between zero and one.

11.1 Reading in the data

The example that will be considered here concerns whether it is possible

to determine the factors that affect the likelihood that a student will fail

his/her MSc. The data comprise an anonymised sample from the student

record files for five years of MSc students in finance at the ICMA Centre,

University of Reading, contained in the spreadsheet ‘MSC RECORDR.XLS’.

Only a sample of 100 students are included for each of five years who

completed (or not as the case may be!) their degrees in the years 2003 to

2007 inclusive. Therefore, the data cannot be used to infer actual failure

rates on these programmes. The idea for this example is taken from a

study by Heslop and Varotto (2007), which seeks to propose an approach

to preventing systematic biases in admissions decisions.19

The objective here is to analyse the factors that affect the probability

of failure of the MSc. The dependent variable (‘fail’) is binary and takes

the value 1 if that particular candidate failed at first attempt in terms

of his/her overall grade, and zero elsewhere. Therefore, a model that is

suitable for limited dependent variables is required, such as a logit or

probit.

The other information in the spreadsheet that will be used includes

the age of the student, a dummy variable taking the value 1 if the stu-

dent is female, a dummy variable taking the value 1 if the student has

work experience, a dummy variable taking the value 1 if the student’s

first language is English, a country code variable that takes values from

19 Note that since this book uses only a sub-set of their sample and variables in the

analysis, the results presented below may differ from theirs. When constructing the

sample, I systematically endeavoured to retain all of the ones (i.e. the fails) since the

proportion of these is quite small. Hence the unconditional probability of failure here

will be biased upwards relative to the true value.
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1 to 10,20 a dummy variable that takes the value 1 if the student already

has a postgraduate degree, a dummy variable that takes the value 1 if

the student achieved an A-grade at the undergraduate level (i.e. a first-

class honours degree or equivalent) and a dummy variable that takes the

value 1 if the undergraduate grade was less than a B-grade (i.e. the stu-

dent received the equivalent of a lower second-class degree). The B-grade

(or upper second-class degree) is the omitted dummy variable and this

will then become the reference point against which the other grades are

compared. The reason why these variables ought to be useful predictors

of the probability of failure should be fairly obvious and is therefore not

discussed. To allow for differences in examination rules and in average

student quality across the five-year period, year dummies for 2004, 2005,

2006 and 2007 are created and thus the year 2003 dummy will be omitted

from the regression model.

First, use the data entry Wizard to read in the 500 undated observations

organised into 13 columns. Note that with cross-sectional (undated) data, it

is not necessary to use the CALENDAR instruction, only ALLOCATE. Next,

estimate a linear probability model as a basis for comparison with the

more appropriate methods that will be discussed shortly. Recall that the

LPM is simply a linear regression estimated using OLS with a 0--1 binary

dependent variable:

LINREG FAIL
# CONSTANT AGE ENGLISH FEMALE WORKEXP AGRADE $
BELOWBGRADE PGDEGREE YEAR2004 YEAR2005 $
YEAR2006 YEAR2007

The results are shown in Box 11.1 and are discussed below in parallel with

those from the other models.

11.2 The logit and probit models

Next, estimate a logit model and a probit model using the same depen-

dent and independent variables as above. This is achieved using the DDV

(discrete dependent variable) instruction with the option DISTRIBUTION =

20 The exact identities of the countries involved are not revealed in order to avoid any

embarrassment for students from countries with high relative failure rates, except that

Country 8 is the UK!
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Box 11.1

Linear Regression - Estimation by Least Squares

Dependent Variable FAIL
Usable Observations 500 Degrees of Freedom 488

Centered R**2 0.066252 R Bar **2 0.045204

Uncentered R**2 0.191374 T x R**2 95.687

Mean of Dependent Variable 0.1340000000

Std Error of Dependent Variable 0.3409934796

Standard Error of Estimate 0.3331972039

Sum of Squared Residuals 54.177943821

Regression F(11,488) 3.1477

Significance Level of F 0.00039621

Log Likelihood -153.88571

Durbin-Watson Statistic 2.032368

Variable Coeff Std Error T-Stat Signif

***************************************************************************

1. Constant 0.103880547 0.120527948 0.86188 0.38917724

2. AGE 0.001321917 0.004335995 0.30487 0.76059484

3. ENGLISH -0.020073137 0.031527607 -0.63668 0.52462894

4. FEMALE -0.029380428 0.035053334 -0.83816 0.40234918

5. WORKEXP -0.062028081 0.031436064 -1.97315 0.04904228

6. AGRADE -0.080700412 0.037720079 -2.13945 0.03289429

7. BELOWBGRADE 0.092616301 0.050226362 1.84398 0.06579237

8. PGDEGREE 0.028661454 0.047410145 0.60454 0.54576390

9. YEAR2004 0.056909819 0.047751378 1.19179 0.23392118

10. YEAR2005 -0.011101256 0.048367449 -0.22952 0.81856159

11. YEAR2006 0.141580585 0.048033538 2.94754 0.00335659

12. YEAR2007 0.085150326 0.049727466 1.71234 0.08746931

LOGIT or DISTRIBUTION = PROBIT respectively; the latter is the default if

no distribution is specified.

DDV(DISTRIBUTION = LOGIT) FAIL
# CONSTANT AGE ENGLISH FEMALE WORKEXP AGRADE $
BELOWBGRADE PGDEGREE YEAR2004 YEAR2005 $

YEAR2006 YEAR2007
DDV(DISTRIBUTION = PROBIT) FAIL
# CONSTANT AGE ENGLISH FEMALE WORKEXP AGRADE $
BELOWBGRADE PGDEGREE YEAR2004 YEAR2005 $
YEAR2006 YEAR2007

The logit output is shown in Box 11.2 and the probit output in Box 11.3.
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Box 11.2

Binary Logit - Estimation by Newton-Raphson

Convergence in 6 Iterations. Final criterion was 0.0000044 <= 0.0000100
Dependent Variable FAIL
Usable Observations 500 Degrees of Freedom 488

Log Likelihood -179.716670

Average Likelihood 0.6980718

Pseudo-R**2 0.0696385

Log Likelihood(Base) -196.960207

LR Test of Coefficients(11) 34.4871

Significance Level of LR 0.0003010

Variable Coeff Std Error T-Stat Signif

***************************************************************************

1. Constant -2.256368303 1.073015229 -2.10283 0.03548066

2. AGE 0.011011487 0.038131109 0.28878 0.77275004

3. ENGLISH -0.165117711 0.282959024 -0.58354 0.55953031

4. FEMALE -0.333894010 0.349236210 -0.95607 0.33903724

5. WORKEXP -0.568768665 0.288479948 -1.97161 0.04865465

6. AGRADE -1.085030590 0.491177262 -2.20904 0.02717181

7. BELOWBGRADE 0.562350929 0.373507660 1.50559 0.13217140

8. PGDEGREE 0.212084195 0.419910116 0.50507 0.61350935

9. YEAR2004 0.653206481 0.500927157 1.30399 0.19223531

10. YEAR2005 -0.183824429 0.587960384 -0.31265 0.75454838

11. YEAR2006 1.246576153 0.473666318 2.63176 0.00849438

12. YEAR2007 0.850421962 0.497067207 1.71088 0.08710341

As can be seen, the pseudo-R2 values are quite small at around 7% for

both specifications, although this is often the case for limited dependent

variable models. Only the work experience and A-grade variables and two

of the year dummies have parameters that are statistically significant,

and the Below B-grade dummy is almost significant at the 10% level in

the probit specification (although slightly less so in the logit).

It is important to note that we cannot interpret the parameter estimates

from a logit or probit model in the usual way. In order to be able to do

this, we need to calculate the marginal effects, which is fortunately very

easy in RATS. This can be achieved using the PRJ command immediately

after the estimation of a logit or probit model. In the former case, the

syntax is

PRJ(ATMEAN,DIST=LOGIT)
DISPLAY %PRJDENSITY*%BETA
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Box 11.3

Binary Probit - Estimation by Newton-Raphson

Convergence in 6 Iterations. Final criterion was 0.0000000 <= 0.0000100
Dependent Variable FAIL
Usable Observations 500 Degrees of Freedom 488

Log Likelihood -179.456344

Average Likelihood 0.6984353

Pseudo-R**2 0.0707004

Log Likelihood(Base) -196.960207

LR Test of Coefficients(11) 35.0077

Significance Level of LR 0.0002471

Variable Coeff Std Error T-Stat Signif

***************************************************************************

1. Constant -1.287209587 0.569222596 -2.26135 0.02373780

2. AGE 0.005677023 0.020149189 0.28175 0.77813564

3. ENGLISH -0.093792251 0.153659330 -0.61039 0.54160292

4. FEMALE -0.194107266 0.184433861 -1.05245 0.29259351

5. WORKEXP -0.318246532 0.156663226 -2.03141 0.04221388

6. AGRADE -0.538814071 0.235294017 -2.28996 0.02202359

7. BELOWBGRADE 0.341802603 0.214268424 1.59521 0.11066584

8. PGDEGREE 0.132957086 0.230258998 0.57742 0.56365302

9. YEAR2004 0.349663153 0.257969253 1.35545 0.17527580

10. YEAR2005 -0.108329878 0.292863348 -0.36990 0.71145770

11. YEAR2006 0.673611722 0.246326928 2.73462 0.00624514

12. YEAR2007 0.433785277 0.259286644 1.67300 0.09432827

While the marginal effects will be printed in a single row, for ease of

comparison, Table 11.1 shows the coefficient estimates for the linear prob-

ability model (which can be interpreted as marginal effects since there is

no transformation under the LPM) and the marginal effects evaluated at

the mean of the variables for the logit and probit models together.

This table presents us with values that can be intuitively interpreted in

terms of how the variables affect the probability of failure. For example,

an age parameter value of 0.0012 would imply that an increase in the age

of the student by one year would increase the probability of failure by

0.12%, holding everything else equal, while a female student is around

3--3.7% (depending on the model) less likely than a male student with

otherwise identical characteristics to fail. Having an A-grade (first-class) in

the bachelors degree makes a candidate either 10.4% or 10.2% (depending

on the model) less likely to fail than an otherwise identical student with a

B-grade (upper second-class degree). Since the year 2003 dummy has been

omitted from the equations, this becomes the reference point. So students
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Table 11.1 Marginal effects

Variable LPM Logit Probit

Constant 0.10388 −0.21704 −0.24372

AGE 0.00132 0.00106 0.00107

ENGLISH −0.02007 −0.01588 −0.01776

FEMALE −0.02938 −0.03212 −0.03675

WORKEXP −0.06203 −0.05471 −0.06026

AGRADE −0.08070 −0.10437 −0.10202

BELOWBGRADE 0.09262 0.05409 0.06472

PGDEGREE 0.02866 0.02040 0.02517

YEAR2004 0.05691 0.06283 0.06621

YEAR2005 −0.01110 −0.01768 −0.02051

YEAR2006 0.14158 0.11991 0.12754

YEAR2007 0.08515 0.08180 0.08213

were more likely in 2004, 2006 and 2007, but less likely in 2005, to fail

the MSc than in 2003. A final interesting note is that despite its severe

limitations in theory, the LPM yields marginal effects that are mostly very

similar indeed to those from the logit or probit approaches.

RATS can estimate many other types of limited dependent variable mod-

els by using the TYPE=. . . instruction, where . . . can be BINARY (the de-

fault), ORDERED (for estimating ordered probit or logit models), MULTINO-

MIAL (for multinomial logit) or COUNT. The Newton--Raphson algorithm

is used with maximum likelihood for parameter estimation. Finally, RATS

can also estimate censored and truncated dependent variable models. In-

stead of DDV, the instruction is LDV (limited dependent variable) with

the option TRUNCATE or CENSORED -- see the RATS User Guide for further

details.
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Simulation methods

Simulation studies are often used in econometrics when the properties

of a particular estimation method are not known. For example, it may

be known from asymptotic theory how a particular test behaves with an

infinite sample size, but how will the test behave if only 50 observations

are available? Will the test still have the desirable properties of being cor-

rectly sized and having high power? In other words, if the null hypothesis

is correct, will the test lead to rejection of the null 5% of the time if a 5%

rejection region is used? And if the null is incorrect, will it be rejected a

high proportion of the time?

The way that such a study would be conducted (with additional steps

and modifications where necessary) is as follows.

1. Generate the data according to the desired data-generating process

(DGP), with the errors being drawn from some given distribution.

2. Run the regression and calculate the test statistic.

3. Save the test statistic or whatever parameter is of interest.

4. Go back to stage 1 and repeat N times.

A brief explanation of each of these steps is in order. The first stage involves

specifying the model that will be used to generate the data. This may be

a pure time-series or a structural model. Pure time-series models are usu-

ally simpler to implement, as a full structural model would require the

researcher to specify a data-generating process for the explanatory vari-

ables as well. Assuming that a time-series model is deemed appropriate,

the next choice to be made is of the probability distribution specified for

the errors. Usually, standard normal draws are used, although any other

empirically plausible distribution (such as a Student’s t) could also be

used.

The second stage involves estimation of the parameter of interest in the

study. The parameter of interest might be, for example, the value of a

coefficient in a regression, or the value of an option at its expiry date. It
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could instead be the value of a portfolio under a particular set of scenarios

governing the way that the prices of the component assets move over time.

The quantity N is known as the number of replications and this should

be as large as is feasible. The central idea behind Monte Carlo is that of

random sampling from a given distribution. Therefore, if the number of

replications is set too small, the results will be sensitive to ‘odd’ combi-

nations of random number draws. It is also worth noting that asymptotic

arguments apply in Monte Carlo studies as well as in other areas of econo-

metrics. That is, the results of a simulation study will be equal to their

analytical counterparts (assuming that the latter exist) asymptotically.

12.1 Simulating Dickey–Fuller critical values

Recall that the equation for a Dickey--Fuller test applied to a series yt is

the regression

yt = φyt−1 + ut (12.1)

so that the test is one of H0: φ = 1 against H1 : φ < 1. The relevant test

statistic is given by

τ = φ̂ − 1

SE(φ̂)
(12.2)

Under the null hypothesis of a unit root, the test statistic does not follow

a standard distribution and therefore a simulation would be required to

obtain the relevant critical values. Obviously, these critical values are well

documented, but it is of interest to see how one could generate them. A

very similar approach could then potentially be adopted for situations

where there has been less research and where the results are relatively

less well known.

The simulation would be conducted in the following steps.

1. Construct the data-generating process under the null hypothesis -- that

is, obtain a series for y that follows a unit root process. This would be

done as follows:

a. Draw a series of length T , the required number of observations,

from a normal distribution. This will be the error series, so that

ut ∼ N (0, 1).

b. Assume a first value for y, i.e. a value for y at time t = 1.

c. Construct the series for y recursively, starting with y2, y3, and so on

y2 = y1 + u2

y3 = y2 + u3 (12.3)

. . .

yT = yT −1 + uT
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2. Calculate the test statistic, τ .

3. Repeat steps 1 and 2 N times to obtain N replications of the experiment.

A distribution of values for τ will be obtained across the replications.

4. Order the set of N values of τ from the lowest to the highest. The

relevant 5% critical value will be the 5th percentile of this distribution.

Some RATS code for conducting such a simulation is given below. The

objective is to develop a set of critical values for Dickey--Fuller test re-

gressions. The simulation framework considers sample sizes of 1,000, 500

and 100 observations. For each of these sample sizes, regressions with

no constant or trend, a constant but no trend, and a constant and trend

are conducted. In each case 50,000 replications are used and the critical

values for a one-sided test at the 1%, 5% and 10% levels are determined.

ALL 50000
SEED 12345
COM NREPS=50000
COM NOBS =1000
COM NBURN=200
SET TREND = T
CLEAR T1 T2 T3
DOFOR NOBS = 1000 500 100

DO REPC = 1,NREPS
CLEAR Y1 U
SET U 1 NOBS+NBURN = %RAN(1.0)
SET(FIRST=U) Y1 1 NOBS+NBURN = Y1{1}+U
SET DY1 = Y1 - Y1{1}
SMPL NBURN+1 NBURN+NOBS
LINREG(NOPRINT) DY1
# Y1{1}
COM T1(REPC) = %TSTATS(1)
LINREG(NOPRINT) DY1
# CONSTANT Y1{1}
COM T2(REPC) = %TSTATS(2)
LINREG(NOPRINT) DY1
# CONSTANT TREND Y1{1}
COM T3(REPC) = %TSTATS(3)

END DO REPC
DISP DICKEY-FULLER STATISTICS FOR NOBS OBSERVATIONS
SMPL 1 50000
ORDER T1
DIS T1(500) T1(2500) T1(5000)
ORDER T2
DIS T2(500) T2(2500) T2(5000)
ORDER T3
DIS T3(500) T3(2500) T3(5000)

END DOFOR NOBS
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Some detailed notation is in order concerning the commands in the above

program since this is a fairly extensive simulation. The SEED instruction

sets the seed for the artificial random number generation at some arbi-

trary value. This is always useful to include in simulations programs since

it means that the results can be exactly replicated later on if so desired.

If this instruction is not used, the seed will be set according to the com-

puter’s clock time, which will of course be different if the simulation is

re-run at a different time, resulting in different random number draws

and possibly different results.

NREPS and NOBS define the number of replications to be used for each

experiment and the number of observations generated for each replica-

tion for the first experiment. Notice that an additional 200 observations

(NBURN) are constructed in each experiment, and the subsequent ‘SMPL

NBURN+1 NBURN+NOBS’ line ensures that these start-up observations are

discarded.

The DOFOR loop repeats all the instructions for sample sizes of 1,000,

500 and 100 observations. The ‘DO REPC . . . ’ line begins the main body of

the program.

‘SET U 1 NOBS+NBURN = %RAN(1.0)’ will draw a set of normally

distributed random variates with mean zero and unit standard deviation,

and will place them in the column vector U. Note that, by default, the

length of U would have been the length of the arrays specified in the

‘ALL(OCATE)’ statement. The next SET command, with the FIRST=U option,

constructs the data under the null hypothesis -- which is a unit root pro-

cess. The subsequent steps involve computing the vector of first differences

to be used as the dependent variable (DY1) and then running the test

regressions.

‘COM T1(REPC) . . . ’, ‘COM T2(REPC) . . . ’, ‘COM T3(REPC) . . . ’ will place the

t -ratio on the lagged value of Y from the test regression into the T1, T2 or

T3 vector, at row REPC. In RATS, %TSTATS(1) will contain the t -ratio for the

first ordered parameter and so on. The ‘ORDER T1’ command will arrange

the observations on the series T1 in ascending order, so that the relevant

percentile from the distribution of statistics across the replications can

be obtained.

The results will be given separately for 1,000, 500 and 100 observations

respectively, and the results together and placed in a table are shown in

Table 12.1. (The entries within a column refer to a no constant or trend,

then a constant, and then a constant and trend.)

If we compare these critical values with those from Fuller’s (1976) book,

they are only slightly different. This is to be expected, for the use of 50,000

replications should ensure that an approximation to the asymptotic be-

haviour is obtained. For example, the 5% critical value for a test regression
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Table 12.1 Observations results

1% 5% 10%

Panel A: 1,000 observations

−2.56141 −1.93146 −1.61252

−3.46071 −2.86760 −2.57511

−3.97570 −3.41631 −3.12826

Panel B: 500 observations

−2.55553 −1.95352 −1.62420

−3.42019 −2.85956 −2.55720

−3.96312 −3.41207 −3.12844

Panel C: 100 observations

−2.62491 −1.94439 −1.60828

−3.49000 −2.89178 −2.58480

−4.04632 −3.45635 −3.14910

with no constant or trend and 500 observations is −1.954 in this simula-

tion and −1.95 in Fuller.

Monte Carlo simulations are, by their very nature, often much slower

than other types of analysis due to the requirement to use many replica-

tions. So when running them, it is useful to know how far the simulation

has got -- in other words, how many replications are completed and how

many are left. This can be achieved using the INFOBOX instruction. Enders

(2003, p. 146) presents a nice example. Suppose that we were conducting

a Monte Carlo experiment with 10,000 replications. Just before the DO

REPC=1,NREPS instruction, add the command

INFOBOX(ACTION=DEFINE,PROGRESS,LOWER=1,UPPER=10000) $
‘REPS COMPLETED’

Then, right after the DO instruction, add

INFOBOX(CURRENT=REPC)

Finally, right after the END DO REPC command, add

INFOBOX(ACTION=REMOVE)

12.2 Pricing Asian options

A simple example of how to use a Monte Carlo study for obtaining

a price for a financial option is shown below. Although the option

used for illustration in the following steps is just a plain vanilla Euro-

pean call option which could be valued analytically using the standard
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Black--Scholes (1973) formula, again the method is sufficiently general that

only relatively minor modifications would be required to value more com-

plex options. Boyle (1977) gives an excellent and highly readable introduc-

tion to the pricing of financial options using Monte Carlo.

The steps involved are as follows.

1. Specify a data-generating process for the underlying asset. A random

walk with drift model is usually assumed. Specify also the size of the

drift component and the size of the volatility parameter. Specify also a

strike price K and a time to maturity, T .

2. Draw a series of length T , the required number of observations for the

life of the option, from a normal distribution. This will be the error

series, so that εt ∼ N(0,1).

3. Form a series of observations of length T on the underlying asset.

4. Observe the price of the underlying asset at maturity observation T .

For a call option, if the value of the underlying asset on maturity date

PT ≤ K , the option expires worthless for this replication. If the value

of the underlying asset on maturity date PT > K , the option expires in

the money and has value on that date equal to PT − K , which should

be discounted back to the present day using the risk-free rate. Use of

the risk-free rate relies upon risk-neutrality arguments.

5. Repeat steps 1 to 4 a total of N times and take the average value of

the option over the N replications. This average will be the price of the

option.

An Asian option is one whose payoff depends upon the average value of

the underlying asset over the averaging horizon specified in the contract.

Most Asian options contracts specify that arithmetic rather than geomet-

ric averaging should be employed. Unfortunately, the arithmetic average

of a unit root process with a drift is not well defined. Additionally, even

if the asset prices are assumed to be log-normally distributed, the arith-

metic average of them will not be. Consequently, a closed-form analytical

expression for the value of an Asian option has yet to be developed. Thus,

the pricing of Asian options represents a natural application for simula-

tions methods. Determining the value of an Asian option is achieved in

almost exactly the same way as for a vanilla call or put. The simulation is

conducted identically and the only difference occurs in the very last step

where the value of the payoff at the date of expiry is determined.

A sample of RATS code for determining the value of an Asian option is

given below. The example is in the context of an arithmetic Asian option

on the FTSE 100, and two simulations will be undertaken with different

strike prices (one that is out of the money forward and one that is in
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the money forward). In each case, the life of the option is six months,

with daily averaging commencing immediately, and the option value is

given for both calls and puts in terms of index points. The parameters are

given as follows, with the dividend yield and risk-free rate expressed as

percentages:

Simulation 1: strike = 6500, risk-free = 6.24, dividend yield = 2.42, ‘today’s’ FTSE =
6289.70, forward price = 6405.35, implied volatility = 26.52.

Simulation 2: strike = 5500, risk-free = 6.24, dividend yield = 2.42, ‘today’s’ FTSE =
6289.70, forward price = 6405.35, implied volatility = 34.33.

Since no actual estimation is performed, differences between packages are

likely to be negligible. All experiments are based on 25,000 replications

and their antithetic variates (total: 50,000 sets of draws) to reduce Monte

Carlo sampling error. Sample code for the Gaussian draw case is given

below.

ALL 0 50000
*** SET PARAMETERS: SEED ENSURES THAT THE SAME SET
*** OF RANDOM DRAWS IS USED FOR EACH PARAMETER COMBINATION
*** N = NUMBER OF DAYS; TTM = TIME TO MATURITY IN YEARS
*** NREPS = NUMBER OF REPLICATIONS, IV = VOLATILITY USED TO
*** GENERATE THE PRICE SERIES, EXPRESSED AS A
*** DECIMAL; RF AND DY ARE RISK-FREE AND DIVIDEND YIELD RATES,
*** RESPECTIVELY, K IS THE STRIKE AND S0 IS THE INITIAL FTSE VALUE.
SEED 54321
COM N=125
COM TTM=0.5
COM NREPS=50000
COM IV=0.3433
COM RF=0.0624
COM DY=0.0242
COM DT=TTM/N
COM DRIFT=(RF-DY-(IV**2/2.0))*DT
COM VSQRDT =IV*(DT**0.5)
COM K=5500
COM S0=6289.7
CLEAR APVAL ACVAL SPOT

DO REPC=1,NREPS,2
* MAKES GAUSSIAN DRAWS WITH STD DEV 1.
SET U = %RAN(1)
* GENERATES THE DATA
COM SPOT(1)=S0*EXP(DRIFT+VSQRDT*U(1))
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DO I=2,N
COM SPOT(I)=SPOT(I-1)*EXP(DRIFT+VSQRDT*U(I))
END DO I
SMPL 1 N
STATS(NOPRINT) SPOT

* COMPUTES THE DAILY AVERAGE
COM AV=%MEAN
COM ACPAY=%IF(AV-K.GT.0,AV-K,0)
COM APPAY=%IF(AV-K.LT.0,-AV+K,0)
COM ACVAL(REPC)=ACPAY*EXP(-RF*TTM)
COM APVAL(REPC)=APPAY*EXP(-RF*TTM)

* REPEATS ALL OF THE ABOVE FOR THE ANTITHETIC VARIATES
SET U = -U
COM SPOT(1)=S0*EXP(DRIFT+VSQRDT*U(1))
DO I=2,N
COM SPOT(I)=SPOT(I-1)*EXP(DRIFT+VSQRDT*U(I))
END DO I
STATS(NOPRINT) SPOT
COM AV=%MEAN
COM ACPAY=%IF(AV-K.GT.0,AV-K,0)
COM APPAY=%IF(AV-K.LT.0,-AV+K,0)
COM ACVAL(REPC+1)=ACPAY*EXP(-RF*TTM)
COM APVAL(REPC+1)=APPAY*EXP(-RF*TTM)

END DO REPC

SMPL 1 NREPS
* THE FOLLOWING AVERAGES WILL BE THE CALL AND PUT PRICES
STATS(NOPRINT) ACVAL
DIS %MEAN
STATS(NOPRINT) APVAL
DIS %MEAN

Considering the code listed above, ‘COM DT=TTM/N’ splits the time to

maturity (0.5 years) into N discrete time periods. Since daily averaging is

required, it is easiest to set N = 125 (the approximate number of trading

days in half a year), so that each time period DT represents one day.

The model assumes that the log of the underlying asset price follows a

geometric Brownian motion, which could be given by

S + d S = S exp

[(
r f − dy − 1

2
σ 2

)
dt + σdz

]
(12.4)

where dz is a standard Wiener process. Further details of this continuous

time representation of the movement of the underlying asset overtime are
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beyond the scope of this book. A treatment of this and many other useful

option-pricing formulae and computer code are given in Haug (1998). The

discrete time approximation to this can be written

St = St−1 exp

[(
r f − dy − 1

2
σ 2

)
dt + σ

√
dtut

]
(12.5)

The CLEAR instruction sets up the arrays for the underlying spot price

(called SPOT) and for the discounted values of the put (APVAL) and call

(ACVAL). The command also sets all entries in these arrays to %NA to be

overwritten later. Note that by default, arrays of the length given by the

allocate statement (50,000) will be created.

The command ‘DO REPC=1,NREPS,2’ starts the main do loop for the

simulation, looping up to the number of replications, in steps of two.

The loop ends at ‘END DO REPC’. Steps of two are used because antithetic

variates are also employed for each replication, which will create another

simulated path for the underlying asset prices and option value.

The random N(0,1) draws are made, which are then constructed into

a series of future prices of the underlying asset for the next 125 days.

‘STATS(NOPRINT) SPOT’ will compute but not display the summary statis-

tics for the underlying asset prices. From this, %MEAN will calculate the

average price of the underlying over the lifetime of the option (125 days).

The following two COM statements construct the terminal payoffs for the

call and the put options respectively. For the call, ACPAY is set to the av-

erage underlying price less the strike price if the average is greater than

the strike (i.e. if the option expires in the money) and zero otherwise. Vice

versa for the put. The payoff at expiry is discounted back to the present

using the risk-free rate and placed in the REPC row of the ACVAL or APVAL

array for the calls and puts respectively.

The process then repeats using the antithetic variates, constructed using

‘SET U = −U’. The call and put present values for these paths are put in

the even rows of ACVAL and APVAL.

This completes one cycle of the REPC loop, which starts again with

REPC = 3, then 5, 7, 9, . . . , 49999. The result will be two arrays, ACVAL and

APVAL, which will contain 50,000 rows comprising the present value of

the call and put option for each simulated path. The option prices would

then simply be given by the averages over the 50,000 replications.

12.3 Simulating the price of an option using a fat-tailed process

A fairly limiting and unrealistic assumption in the above methodology

for pricing options is that the underlying asset returns are normally
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distributed, whereas in practice it is well known that asset returns are

fat-tailed. There are several ways to remove this assumption. First, one

could employ draws from a fat-tailed distribution, such as a Student’s t ,
in step 2 above. Another method, which would generate a distribution of

returns with fat tails, would be to assume that the errors and therefore

the returns follow a GARCH process. To generate draws from a GARCH

process, do the following.

1. Draw a series of length T , the required number of observations for the

life of the option, from a normal distribution. This will be the error

series, so that εt ∼ N(0,1).

2. Recall that one way of expressing a GARCH model is:

rt = µ + ut ut = εtσt εt ∼ N(0,1) (12.6)

σ 2
t = α0 + α1u2

t−1 + βσ 2
t−1, (12.7)

A series of εt , has been constructed and it is necessary to specify ini-

tialising values y1 and σ 2
1 and plausible parameter values for α0, α1, β.

Assume that y1 and σ 2
1 are set to 0 and 1 respectively. The equations

above can then be used to generate the model for rt as described above.

For the GARCH model case, ut is no longer iid(0,1), but is now (0, σ 2
t ). The

GARCH data are constructed using the model of (12.6) and (12.7). Investiga-

tion revealed that the price of the option was very sensitive to the choice of

parameter values. For the purpose of this study, the parameter values were

determined by estimating a GARCH model using approximately the last

four years of actual FTSE data. The parameter values employed were (0.008,

0.046, 0.95) for (α0, α1, β1). RATS code is presented below for the GARCH

Monte Carlo. Apart from the innovation process, denoted U in the pro-

gram, that now follows a GARCH structure, all of the instructions are

identical to those above for the Gaussian U case and so are not annotated.

ALL 50000
*** SET PARAMETERS
SEED 54321
COM N=125
COM TTM=0.5
COM NREPS=50000
COM IV=0.2652
COM RF=0.0624
COM DY=0.0242
COM DT=TTM/N
COM DRIFT=(RF-DY-(IV**2/2.0))*DT
COM VSQRDT =IV*(DT**0.5)
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COM K=6500
COM S0=6289.7
CLEAR APVAL ACVAL SPOT H Y
DO REPC=1,NREPS,2

SET U = %RAN(1)
* THE FOLLOWING SETS UP A SERIES, Y, THAT FOLLOWS A
* GACRH PROCESS. THEN THE OPTION PRICES ARE CONSTRUCTED
* AS ABOVE.
COM H(1)=1
COM Y(1)=0
DO I=2,N
COM H(I)=0.008+0.046*(Y(I-1)**2)+0.95*H(I-1)
COM Y(I)=U(I)*(H(I)**0.5)
END DO I
SET U = Y
COM SPOT(1)=S0*EXP(DRIFT+VSQRDT*U(1))
DO I=2,N
COM SPOT(I)=SPOT(I-1)*EXP(DRIFT+VSQRDT*U(I))
END DO I
SMPL 1 N
STATS(NOPRINT) SPOT
COM AV=%MEAN
COM ACPAY=%IF(AV-K.GT.0,AV-K,0)
COM APPAY=%IF(AV-K.LT.0,-AV+K,0)
COM ACVAL(REPC)=ACPAY*EXP(-RF*TTM)
COM APVAL(REPC)=APPAY*EXP(-RF*TTM)
SET U = -U

COM SPOT(1)=S0*EXP(DRIFT+VSQRDT*U(1))
DO I=2,N
COM SPOT(I)=SPOT(I-1)*EXP(DRIFT+VSQRDT*U(I))
END DO I
STATS(NOPRINT) SPOT
COM AV=%MEAN
COM ACPAY=%IF(AV-K.GT.0,AV-K,0)
COM APPAY=%IF(AV-K.LT.0,-AV+K,0)
COM ACVAL(REPC+1)=ACPAY*EXP(-RF*TTM)
COM APVAL(REPC+1)=APPAY*EXP(-RF*TTM)

END DO REPC
SMPL 1 NREPS
STATS(NOPRINT) ACVAL
DIS %MEAN
STATS(NOPRINT) APVAL
DIS %MEAN
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Table 12.2 Simulated Asian option price values

Strike = 6500, IV = 26.52 Strike = 5500, IV = 34.33

CALL Price CALL Price

Analytical approximation 203.45 Analytical approximation 888.55

Monte Carlo normal 205.23 Monte Carlo normal 886.72

Monte Carlo GARCH 210.19 Monte Carlo GARCH 896.91

PUT Price PUT Price

Analytical approximation 348.70 Analytical approximation 64.52

Monte Carlo normal 350.09 Monte Carlo normal 62.34

Monte Carlo GARCH 350.20 Monte Carlo GARCH 64.07

Note that both the call and put values can be calculated easily from a

given simulation, since the most computationally expensive step is in

deriving the path of simulated prices for the underlying asset. The results

are given in Table 12.2, along with the values derived from an analytical

approximation to the option price, derived by Levy and estimated using

VBA code in Haug (1998, pp. 97--100).

In all cases and as expected, the GARCH simulated prices are higher

than those from the simulation using the Normal draws, especially for the

second example (right-hand panel of the above table) where the implied

volatility is higher. This phenomenon results from the GARCH leading to a

fatter-tailed distribution of returns, meaning larger price movements and

therefore options for some replications that will be deeper in the money.

In both cases, the simulated options prices are quite close to the analytical

approximations, although the Monte Carlo seems to overvalue the out-of-

the-money call and to undervalue the out-of-the-money put. Some of the

errors in the simulated prices relative to the analytical approximation

may result from the use of a discrete-time averaging process using only

125 points.

12.4 VAR estimation using bootstrapping

Bootstrapping is related to simulation, but with one crucial difference.

With simulation, the data are constructed completely artificially. Boot-

strapping, meanwhile, is used to obtain a description of the properties of

empirical estimators by using the sample data points themselves, and it
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involves sampling repeatedly with replacement from the actual data -- see

Davison and Hinkley (1997) for details.

Suppose a sample of data, y = y1, y2, . . . , yT is available and it is desired

to estimate some parameter θ . An approximation to the statistical prop-

erties of θ̂T can be obtained by studying a sample of bootstrap estimators.

This is done by taking N samples of size m with replacement from y and

re-calculating θ̂ with each new sample. Effectively, this involves sampling

from the sample, i.e. treating the sample as a population from which

samples can be drawn. Call the test statistics calculated from the new

samples θ̂ *. The samples are likely to be quite different from each other

and from the original θ̂ value, since some observations may be sampled

several times and others not at all. Thus a distribution of values of θ̂ * is

obtained, from which standard errors or some other statistics of interest

can be calculated.

The advantage of bootstrapping over the use of analytical results is

that it allows the researcher to make inferences without making strong

distributional assumptions, since the distribution employed will be that

of the actual data. Instead of imposing a shape on the sampling distri-

bution of the θ̂ value, bootstrapping involves empirically estimating the

sampling distribution by looking at the variation of the statistic within

sample.

We now employ the Hsieh (1993) and Brooks, Clare and Persand (2000)

approaches to calculating minimum capital risk requirements (MCRRs) by

way of illustration of how to use a bootstrap in RATS. The first issue is

which model to use in order to capture the time-series properties of the

data. Hsieh concludes that both the EGARCH and autoregressive volatility

(ARV) models present reasonable descriptions of the futures returns series,

which are then employed in conjunction with the bootstrap to estimate

the value-at-risk estimates. This is achieved by simulating the future val-

ues of the futures price series, using the parameter estimates from the

two models, and using disturbances obtained by sampling with replace-

ment from the standardised residuals for the EGARCH (η̂t/ĥ1/2
t ) and the

ARV models. In this way, 10,000 possible future paths of the series are sim-

ulated (i.e. 10,000 replications are used), and in each case the maximum

drawdown (loss) can be calculated over a given holding period by

Q = (P0 − P1) × number of contracts (12.8)

where P0 is the initial value of the position and P1 is the lowest simulated

price (for a long position) or highest simulated price (for a short position)

over the holding period. The maximum loss is calculated assuming hold-

ing periods of 1, 5, 10, 15, 20, 25, 30, 60, 90 and 180 days. It is assumed that
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the futures position is opened on the final day of the sample used to

estimate the models, 9 March 1990.

The 90th percentile of these 10,000 maximum losses can be taken to

obtain a figure for the amount of capital required to cover losses on

90% of days. It is important for firms to consider the maximum daily

losses arising from their futures positions, since firms will be required

to post additional funds to their margin accounts to cover such losses. If

funds are not made available to the margin account, the firm is likely

to have to liquidate its futures position, thus destroying any hedging

effects that the firm required from the futures contracts in the first

place.

However, Hsieh uses a slightly different approach to the final stage,

which is as follows. Assume (without loss of generality) that the number

of contracts held is one and that prices are lognormally distributed, i.e.

that the logs of the ratios of the prices, ln(P1/P0), are normally distributed.

This being the case, an alternative estimate of the 5th percentile of the

distribution of returns can be obtained by taking the relevant critical

value from the normal statistical tables, multiplying it by the standard

deviation and adding it to the mean of the distribution.

The following RATS code can be used to calculate the MCRR for a ten-

day holding period using daily S&P500 data. Assume that the data have

been read into the program and that the S&P500 index values and cor-

responding log-returns are defined as P and RT respectively. The code is

presented, followed by a further copy of the code, annotated one line at

a time, with comments added.

ALL 10000
OPEN DATA “C:\CHRIS\BOOK\RATS HANDBOOK\SP500.TXT”
DATA(FORMAT=FREE,ORG=OBS) 1 2610 P
CLEAR RT
SET RT = LOG(P/P{1})
DECLARE SERIES U ;* RESIDUALS
DECLARE SERIES H ;* VARIANCES
CLEAR MIN
CLEAR MAX
SET P 2611 2620 = %NA
SET RT 2611 2620 = %NA
NONLIN B1 VA VB VC
FRML RESID U = RT - B1
FRML HF H = VB + VA*U{1}**2 + VC*H{1}
FRML LOGL = (H(T)=HF(T)),(U(T)=RESID(T)),%LOGDENSITY(H,U)
LINREG(NOPRINT) RT / U
# CONSTANT
COMPUTE B1 = %BETA(1)
COMPUTE VB=%SEESQ,VA=0.2,VC=0.7
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SET H = %SEESQ
NLPAR(CRITERION=VALUE,CVCRIT=0.00001,SUBITERS=50)
MAXIMIZE(PMETHOD=SIMPLEX,PITERS=5,METHOD=BHHH, ITERS=100,ROBUST) $
LOGL 10 2610
SET SRES = (RT-B1)/H**0.5
FRML YEQ RT = B1
GROUP GARCH HF>>H RESID>>U YEQ>>RT
FORECAST(MODEL=GARCH,FROM=2611,TO=2620)
SMPL 2611 2620
DO Z=1,10000

BOOT ENTRIES / 10 2610
SET PATH1 = SRES(ENTRIES(T))
DO J=2611,2620

COM RT(J) = B1 + ((H(J))**0.5)*PATH1(J)
COM P(J) = P(J-1) * EXP(RT(J))

END DO J
STATS(FRACTILE,NOPRINT) P
COM MIN(Z) = %MINIMUM
COM MAX(Z) = %MAXIMUM

END DO Z
SMPL 1 10000
SET L1 = LOG(MIN/1138.73)
STATS(NOPRINT) L1
COM MCRR = 1 - (EXP((-1.645*(%VARIANCE**0.5)) + %MEAN))
DISPLAY ‘MCRR=’ MCRR

SET S1 = LOG(MAX/1138.73)
STATS(NOPRINT) S1
COM MCRR = (EXP((1.645*(%VARIANCE**0.5)) + %MEAN)) - 1
DISPLAY ‘MCRR=’ MCRR

Now for the code segments again with annotations. Lines 2 and 3 read in

the data, which are stored in a single column, raw text file, and the follow-

ing two lines generate a series of continuously compounded proportion

returns.

DECLARE SERIES U ;* RESIDUALS
DECLARE SERIES H ;* VARIANCES
CLEAR MIN
CLEAR MAX

The first two lines above declare the series for the residuals and the condi-

tional variances for the GARCH estimation. The CLEAR command not only

sets up the space for the arrays but also fills those arrays with missing

values (%NA in the RATS notation). These arrays will be used to store the
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minimum and maximum prices observed in the out-of-sample holding

period for each replication.

SET P 2611 2620 = %NA
SET RT 2611 2620 = %NA

The two lines above are used to extend the lengths of the arrays for P

and RT to allow them to hold the simulated values for the returns and

prices in the out-of-sample holding period. The following lines are used

to estimate a standard GARCH(1,1) model on the S&P500 returns data.

NONLIN B1 VA VB VC

FRML RESID = RT - B1

FRML HF = VB + VA*U{1}**2 + VC*H{1}
FRML LOGL = (H(T)=HF(T)),(U(T)=RESID(T)),%LOGDENSITY(H,U)

LINREG(NOPRINT) RT / U

# CONSTANT

COMPUTE B1 = %BETA(1)

COMPUTE VB=%SEESQ,VA=0.2,VC=0.7

SET H = %SEESQ

NLPAR(CRITERION=VALUE,CVCRIT=0.00001,SUBITERS=50)

MAXIMIZE(PMETHOD=SIMPLEX,PITERS=5,METHOD=BHHH,ITERS=100,ROBUST) $

LOGL 10 2610

The next line below generates a series of standardised residuals from the

model: that is, the residuals at each point in time divided by the square

root of the corresponding conditional variance estimate.

SET SRES = (RT- B1)/H**0.5

The following five lines produce the forecasts of the conditional variance

for the ten days immediately following the in-sample estimation period

(see Chapter 8).

FRML HEQ H = VB + VA*U{1}**2 + VC*H{1}
FRML REQ U = RT - B1
FRML YEQ RT = B1
GROUP GARCH HEQ>>H REQ>>U YEQ>>RT
FORECAST(MODEL=GARCH,FROM=2611,TO=2620)

Z gives the main loop, and there are 10,000 bootstrap replications used in

the simulations study.

SMPL l 2611 2620
DO Z=1,10000

The following command is the main bootstrapping engine, and the

command will draw observation numbers (integers) randomly with
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replacement from numbers 10 to 2610, placing the resultant observation

numbers in the array ENTRIES. The ‘SET PATH1 . . . ’ command creates a

new series of standardised residuals that is constructed from the original

series using the observation number series generated by the boot com-

mand.

BOOT ENTRIES / 10 2610
SET PATH1 = SRES(ENTRIES(T))

The following J loop is the inner loop that will construct a series of returns

for the ten-day holding sample that starts the day after the in-sample esti-

mation period. The ‘COM RT . . . ’ line constructs the return for observation

J, while the next line constructs the price observation given the log-return

and the previous price.

DO J=2611,2620
COM RT(J) = B1 + ((H(J))**0.5)*PATH1(J)
COM P(J) = P(J-1) * EXP(RT(J))
END DO J

The next four lines collectively calculate the minimum and maximum

price over the ten-day hold-out sample that will subsequently be used to

compute the maximum draw down (i.e. the maximum loss) for a long

and short position respectively. These will form the basis of the capital

risk requirement. The SMPL instruction is necessary so that RATS picks

only the maximum and minimum from the ten-day hold-out sample and

not from the whole sample of price observations. The FRACTILES option

on the STATS command generates the fractiles for the distribution of P

(i.e. the maximum, the 95th percentile, the 90th percentile, . . . , the 1st

percentile and the minimum). The minimum and the maximum follow-

ing the STATS command will be stored in %MINIMUM and %MAXIMUM

respectively. These quantities are calculated for each replication Z, so they

are placed in arrays called MIN and MAX and they are collected together

after the replications loop is completed.

STATS(FRACTILE,NOPRINT) P
COM MIN(Z) = %MINIMUM
COM MAX(Z) = %MAXIMUM

The next line ends the replication loop

END DO Z

The following SMPL instruction is necessary to reset the sample period

used to cover all observation numbers from 1 to 10,000 (i.e. to incorporate

all of the 10,000 bootstrap replications). By default, if this statement were
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not included, RATS would have continued to use the most recent sample

statement, conducting analysis using only observations 2611 to 2620.

SMPL 1 10000

The following block of four commands generates the MCRR for the long

position. The first stage is to construct the log returns for the maximum

loss over the ten-day holding period. Notice that the SET command will

automatically do this calculation for every element of the MIN array --

i.e. for all 10,000 replications. The STATS command is then used to con-

struct summary statistics for the distribution of maximum losses across

the replications. The 5th percentile from this distribution could be taken

as the MCRR, which would be stored as %FRACT05. However, in order

to use information from all of the replications, and under the assump-

tion that the L1 statistic is normally distributed across the replications,

the MCRR can also be calculated using the command given. This works

as follows. Assuming that ln(P1/P0) is normally distributed with some

mean m and standard deviation sd, a standard normal variable can be

constructed by subtracting the mean and dividing by the standard devi-

ation: [(ln(P1/P0) − m)/ sd] ∼ N (0,1). The 5% lower-tail critical value for a

standard normal is −1.645, so to find the 5th percentile

Ln

(
P1

P0

)
− m

sd
= −1.645 (12.9)

Rearranging (12.9),

P1

P0

= exp[−1.645sd + m] (12.10)

From equation (12.8), equation (12.10) can also be written

Q

P0

= 1 − exp[−1.645sd + m] (12.11)

which will give the maximum loss or draw down on a long position over

the simulated ten days. The maximum draw down for a short position

will be given by

Q

P0

= exp[−1.645sd + m] − 1 (12.12)

Finally, the MCRRs calculated in this way are displayed using the DISPLAY

command.

SET L1 = LOG(MIN/1138.73)
STATS(NOPRINT) L1
COM MCRR = 1 − (EXP((−1.645*(%VARIANCE**0.5)) + %MEAN))
DISPLAY ‘MCRR=’ MCRR
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The following four lines repeat the above procedure, but replacing the

MIN array with MAX to calculate the MCRR for a short position.

SET S1 = LOG(MAX/1138.73)
STATS(NOPRINT) S1
COM MCRR = (EXP((1.645*(%VARIANCE**0.5)) + %MEAN)) – 1
DISPLAY ‘MCRR=’ MCRR

The results generated by running the above program are

MCRR= 0.04019
MCRR= 0.04891

Since no seed has been set for this simulation, unlike the previous ones,

the results will differ slightly from one run to another. We could set a

seed to ensure that the results always remained the same, or we could

increase the number of replications from 10,000 to 100,000 (so that every

occurrence of the number 10,000 in the code above would have to be

replaced) and this would reduce the Monte Carlo sampling variability and

so reduce the variation from one run to another.

These figures represent the minimum capital risk requirement for a

long position and a short position respectively as a percentage of the

initial value of the position for 95% coverage over a ten-day horizon. This

means that, for example, approximately 4% of the value of a long position

held as liquid capital will be sufficient to cover losses on 95% of days if

the position is held for ten days. The required capital to cover 95% of

losses over a ten-day holding period for a short position in the S&P500

Index would be around 4.8%. This is as one would expect since the Index

had a positive drift over the sample period. Therefore the index returns

are not symmetric about zero as positive returns are slightly more likely

than negative returns. Higher capital requirements are thus necessary for

a short position since a loss is more likely than for a long position of the

same magnitude.



Appendix: sources of data in this book

I am grateful to the following organisations, which all kindly agreed to allow

their data to be used as examples in this book and for it to be copied onto the

book’s web site: Bureau of Labor Statistics, Federal Reserve Board, Federal Reserve

Bank of St Louis, Nationwide, Oanda, and Yahoo! Finance. The following table

gives details of the data used and of the provider’s web site.

Provider Data Web site

Bureau of Labor Statistics CPI www.bls.gov

Federal Reserve Board US T-bill yields, money supply,

industrial production, consumer

credit

www.federalreserve.gov

Federal Reserve Bank of

St Louis

average AAA and BAA corporate

bond yields

research.stlouisfed.org/fred2

Nationwide UK average house prices www.nationwide.co.uk

Oanda euro--dollar, pound--dollar and

yen--dollar exchange rates

www.oanda.com/convert/fxhistory

Yahoo! Finance S&P500 and various US stock and

futures prices

finance.yahoo.com
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