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PREFACE TO THE SECOND EDITION

Since the first edition was published 7 years ago, my coauthor Leo Beranek has sadly
passed away. Thankfully though, he lived long enough to not only contribute new mate-
rial to the first edition but also to see its publication. His original 1954 book ‘Acoustics’,
which still forms a substantial part of this edition, made an invaluable contribution to the
field of electroacoustics and inspired many subsequent authors, including the current one.
For example, it was the first book to show the electrical, mechanical and acoustic
radiation impedances of a transducer on the same analogous circuit.

In this second edition, I have endeavored to stay faithful to his vision. For instance, he
expressed surprise that I had not written anything about electrostatic loudspeakers, so this
edition includes a new Chapter 15 devoted entirely to the subject. Preceding that is a
new Chapter 14, which covers vibro-acoustics, including membranes, plates, and shells.
Hence the new book title: ‘Acoustics: Sound Fields, Transducers, and Vibration.’ This
replaces the old Chapter 14 on state variable analysis which, according to data from digital
libraries, was the least viewed and so it has been removed to make space for the new one
without the book becoming too unwieldy.

There are revisions throughout, many of which have been suggested to me by
diligent readers whom I have listed in the acknowledgments section. There are too
many changes to list here, but the following are particularly pertinent:

Chapter 3: This contains a new section on analogous circuits for 2-port networks.
Chapter 4: The mass and resistance end corrections for a perforated sheet have been

updated according to a recent paper by Xianhui Li.
Chapter 7: The field inside a closed-box or bass-reflex loudspeaker enclosure is now

described with circular apertures instead of square/rectangular ones, which simplifies the
equations and is truer to most real-world applications.

Chapter 13: Equations for the radiation characteristics of a rigid disk in a circular baffle
or free space and the resilient disk or rectangular piston in an infinite baffle are simplified
as a result of recently published work. The mutual radiation impedance between pistons
in an infinite baffle now allows for pistons of different radii.

I hope that, through this edition, Leo’s legacy continues to be relevant to readers into
the 21st century.

Tim Mellow 2019
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PREFACE TO THE FIRST EDITION

Acoustics is a most fascinating subject. Music reproduction, sound systems, telephone
systems, measuring equipment, cell phones, underwater sound, hearing aids, and medical
ultrasound all seek from acoustics answers pertinent to their fields. The annual meetings
of the audio and acoustical societies are veritable five-ring shows, with papers and
symposia on subjects in all the aforementioned fields.

This text is planned as a textbook for students of acoustics in engineering departments.
It assumes knowledge of electrical circuit theory. It should be of particular value to
experimenters, to acoustical consultants, and to those who anticipate being engineering
designers of audio equipment. To practicing acoustical engineers, this is a basic reference
book.

This text begins with the basics of sound fields in free space and simple enclosures.
The particular vocabulary of acoustics is treated early. Next follows the very basis for

the subject, the laws governing sound generation, radiation, and propagation, which are
expressed both mathematically and graphically. Then follow chapters dealing with
microphones, loudspeakers, earphones, and horns. Following next is the performance
of loudspeakers either in baffles or attached to waveguides. Directed toward the design
of miniature systems, i-pods, and cell phones, for example, the next sections deal with
squeezing the most sound out of tiny radiating surfaces. Then comes sound in enclosures
of all sizes, including such spaces as school rooms, offices, auditoriums, and living rooms.
Throughout the text, numerical examples and summary charts are given to facilitate
application of the material to audio designer.

Fortunately, the behavior of most transducers can be analyzed with the aid of
electromechanoacoustical circuits that are analogous to the circuits used in electronics.
These analogous circuits, which were first introduced in the 1954 version of this book
Acoustics, were cited by a large number of the leading writers on loudspeaker system
design, including Villchur, Thiele, Small, Ashley, Broadhurst, Morita, Kyouno,
Karminsky, Merhaut, Allison, Berkovitz, and others. Knowledge of these principles
has led to the high quality of audio reproduction that we enjoy today.

When Acoustics was first published, the subject was already in the process of
diversification, a trend that has continued unabated to this day. There are now over
300 subcategories of acoustics under the Physics and Astronomy Classification Scheme
(PACS). Hence, it is no longer possible to produce such an all-encompassing book in
any useful depth, so the current text has been limited to the subject of electroacoustics
and can be considered as an updated and extended version of the first half of Acoustics.
Chapter 11, part 24, through Chapter 13 of the original book have been largely
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superseded by Concert Halls and Opera Houses: Music, Acoustics, and Architecture (Beranek,
Springer 2004), Noise and Vibration Control Engineering (Ver and Beranek, John Wiley &
Sons. Inc. 2006), and Handbook of Noise and Vibration Control (Crocker, John Wiley &
Sons, 2007). Therefore, these sections have been omitted so that the remaining part of
the book can be expanded to include more recent developments in the theory of electro-
mechanoacoustic transducers and sound radiation and hence the new title.

In 1954, there were only a handful of electronic computers in the world, so it would
not have made sense to include formulas for everything. Hence,Acoustics relied on graph-
ical information for some of the more complicated concepts such as sound radiation from
a loudspeaker diaphragm in free space. In this new text, we have provided formulas for
everything so that interested readers can recreate the graphical results and use them in
their simulations.

Leo L. Beranek and Tim J. Mellow 2012

xvi Preface to the first edition



ACKNOWLEDGMENTS

The authors wish to thank all those who contributed to the betterment of the 1954
edition of this book.

We are greatly indebted to those who have rendered assistance for this edition, in
particular to Leo K€arkk€ainen whose help has been especially pertinent, Noel Lobo for his
invaluable guidance in numerical matters, Enrico Pascucci for his many helpful sugges-
tions regarding Chapter 8 and for performing anechoic measurements, Philip Trevelyan
for his support and assistance in acoustical measurements, and Rory Stoney for providing
impedance tube measurements on absorbent materials in a very short time. We also stand
indebted to our wives, Anne Mellow and Gabriella Beranek for their support and
enduring patience.

Many improvements and corrections included in the second edition were kindly
suggested by: Stephen Bolser, Huiqun Deng, Mads Dyrholm, Alan Feinerman, James
Heddle, Mattias Johansson, Bjørn Kolbrek, Joe Ladish, Siegfried Linkwitz, Sidsel Marie
Nørholm, Mark Thompson, Paolo La Torraca, Luigi Vigone, and Wojciech Rdzanek.

xviij



CHAPTER ONE

Introduction and terminology

PART I: INTRODUCTION

1.1 A LITTLE HISTORY

Acoustics has entered a new agedthe era of precision engineering. In the 19th

century, acoustics was an art. The primary measuring instruments used by engineers in

the field were their ears. The only controlled noise sources available were whistles, gongs,

sirens, and gunshots. Microphones consisted of either a diaphragm connected to a

mechanical scratcher that recorded the shape of the wave on the smoked surface of a

rotating drum or a flame whose height varied with the sound pressure. About that time

the great names of Rayleigh, Stokes, Thomson, Lamb, Helmholtz, König, Tyndall,

Kundt, and others appeared on important published papers. Their contributions to the

physics of sound were followed by the publication of Lord Rayleigh’s two-volume

treatise Theory of Sound in 1877/1878 (revised in 1894/1896). In the late 19th

century, Alexander Graham Bell invented the magnetic microphone and with it the

telephone. Thomas Edison created the carbon microphone, which was the transmitter

used in standard telephone handsets for almost 100 years. The next big advance was

Edison’s phonograph, which made it possible for the human voice and other sounds to be

preserved for posterity.

In a series of papers published between 1900 and 1915, W. C. Sabine advanced

architectural acoustics to the status of a science. He measured the duration of rever-

beration in rooms using organ pipes as the source of sound and a chronograph for the

precision measurement of time. He showed that reverberation could be predicted for

auditoria from knowledge of room volume, audience size, and the characteristics of the

sound-reflecting surfacesdsidewalls and ceiling.

Although the contributions of these earlier workers were substantial, the greatest

acceleration of research in acoustics followed the invention of the triode vacuum tube

(1907) and the advent of radio broadcasting (1920). When vacuum tube amplifiers and

loudspeakers became available, loud sounds of any desired frequency could be produced.

With the invention of moving coil and condenser microphones, the intensity of very

faint sounds could be measured. Above all, it became feasible to build acoustical

measuring instruments that were compact, rugged, and insensitive to air drafts, tem-

perature, and humidity.

Acoustics: Sound Fields, Transducers and Vibration � 2019 Elsevier Inc.
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The progress of communication acoustics was hastened through the efforts of the Bell

Telephone Laboratories (1920ff ), which were devoted to perfection of the telephone

system in the United States. During the First World War, the biggest advances were in

underwater sound. In the next two decades (1936ff ) architectural acoustics strode for-

ward through research at Harvard, the Massachusetts Institute of Technology, the

University of California at Los Angeles, and several research centers in England and

Europe, especially Germany. Sound decay in rectangular rooms was explained in detail,

the impedance method of specifying acoustical materials was investigated, and the

computation of sound attenuation in ducts was put on a precise basis. The advantages of

skewed walls and use of acoustical materials in patches rather than on entire walls were

demonstrated. Functional absorbers were introduced to the field, and a wider variety of

acoustical materials came on the market. Morse, Stenzel, Mast, Rdzanek, and many

others have helped to develop the mathematical theory of sound radiation and diffrac-

tion, not to mention the “Dutch school” of Zernike, Bouwkamp, Streng, Aarts, and

Janssen, contributions from all of whom are found in the latter part of this book.

The science of psychoacoustics was rapidly developing. At the Bell Telephone

Laboratories, under the leadership of Harvey Fletcher, the concepts of loudness and

masking were quantified, and many of the factors governing successful speech

communication were determined (1920e40). Acoustics, through the medium of

ultrasonics, entered the fields of medicine and chemistry. For example, ultrasonic

diathermy was being tried, and acoustically accelerated chemical reactions were

reported.

Then came the Second World War with its demand for the successful detection of

submerged submarines and for highly reliable speech communication in noisy

environments such as in armored vehicles and high-flying nonpressurized aircraft.

Government financing of improvements in these areas led to the formation of great

laboratories in England, Germany, and France, as well as in the United States at

Columbia University, Harvard, and the University of California. During this period,

research in acoustics reached proportions undreamed of a few years before and has

continued unabated since.

In the last 50 years, the greatest revolution has undoubtedly been the vast increase in

computing power accompanied by a rapid rate of miniaturization, which has lead to a

previously unimaginable plethora of hand portable products, including cell phones,

palmtop computers, and measuring devices. Size has presented new challenges for the

acoustical designer as the pressure to reduce dimensions is ever increasing. Contrary to

popular expectations, electroacoustic transducers do not obey Moore’s law [1], so it

cannot be assumed that a reduction in size can be achieved without sacrificing perfor-

mance, although new materials such as polysilicon membranes for microphones and

neodymiummagnets for loudspeakers have helped preserve performance to some extent.

Reducing the size of loudspeakers usually compromises their maximum sound power
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output, particularly at low frequencies, and in the case of microphones, the signal-to-

noise ratio in their output deteriorates. Therefore, the ability of the acoustical engineer

to optimize the design of transducers and electronics has never been more important.

In addition to the changes in products in which electroacoustic transducers are

employed, computers have revolutionized the way in which the transducers themselves

are modeled [2]. The first wave of tools came in the 1960s and early 1970s for simulating

electrical circuits. Acoustical engineers were quick to adapt these for modeling loud-

speakers and microphones using lumped mechanical and acoustical circuit elements

analogous to electrical ones, as given in Acoustics. However, simulation by this method

was largely a virtual form of trial-and-error experimentation, albeit much faster than

actual prototyping, until Thiele and Small applied filter theory to the transfer function so

that the designer could choose a target frequency response shape for a loudspeaker and

engineer the electromechanoacoustic system accordingly. Finite element modeling

(FEM) and boundary element modeling (BEM) both followed quickly. Unlike lumped

element simulation, the range was no longer limited to that where the acoustical

wavelength is much greater than the largest dimension of the device. With the wide

availability of modern tools for acoustical simulation, it is perhaps tempting to neglect

more traditional analytical methods, which are a focus of this text, especially in Chapters.

12 and 13. However, analytical (mathematical) methods can offer some distinct benefits:

• According to Richard Hamming [3], “The purpose of computation is insight not just

numbers.” By examining the mathematical relationships, we can gain a better

understanding of the physical mechanisms than when the calculations are all

“hidden” in a computer. This helps us to create improved systems, especially when

we can manipulate the equations to arrive at formulas that enable us to design

everything correctly first time such as those given in Chapter 7 for loudspeaker

systems. By contrast, a simulation tool can only simulate the design we load into it. It

cannot tell us directly how to design it, although it may be possible to tweak

parameters randomly in a Monte Carlo optimization or “evolve” a design using a

Darwinian genetic algorithm. Even then, a global optimum is not necessarily

guaranteed.

• Although exact analytical formulas are generally limited to simple rectangular,

cylindrical, or spherical geometries, many electroacoustic transducers have, or can be

approximated by, these simple geometries. (Note this restriction does not apply to

lumped elements that can have almost any shape.) It may sometimes take time and

effort to derive a formula, but once it is done it can be used to generate as many plots

as you like simply by varying the parameters. Furthermore, the right formula will

give the fastest possible computation with the least amount of memory space. If a

picture paints a 1000 words, it could be said that an equation paints a 1000 pictures. In

the words of Albert Einstein, “Politics is for the moment, but an equation is for

eternity.”
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• Analytical solutions often yield simple asymptotic expressions for very low/high

frequencies or the far field, which can form the basis for elements in circuit simu-

lation programs.

• It is often useful to have an analytical benchmark against which to check FEM/BEM

simulation results. This can tell us much about the required element size and what

kind of meshing geometry to use. Of course, having two ways of solving a problem

gives us increased confidence in both methods.

• Analytical formulas are universal and not restricted to a particular simulation tool.

They can be written into a wide choice of programming languages.

Another area in which computers have contributed is that of symbolic computation. For

example, if we did not know that the integral of cos x was sin x, we would have to

integrate cos x numerically, which is a relatively slow and error-prone process compared

with evaluating sin x directly. Modern mathematical tools are capable of solving much

more complicated integrals than this symbolically, which has led to new analytical

solutions in sound radiation. For example, the previous formulas for radiation from a

circular disk in free space were too lengthy to include in the original Acoustics but a more

compact solution, with or without a circular baffle, is given in the new Chapter 13.

Not only have computers led to the advances mentioned above, but they have fallen

dramatically in price so much that many devices such as cell phones, hearing aids, and

sound level meters now contain a digital signal processor (DSP) as well as electro-

acoustical transducers. This enables an acoustical designer to design a complete system

including DSP equalization. Although DSP algorithms are beyond the scope of this

book, Chapter 14 has been written with the intention of aiding this part of the design

process. It describes state-variable circuit simulation theory, which can be used to obtain

a transfer function of the electroacoustical system. The inverse transfer function can then

be used as a basis for DSP equalization. However, any form of equalization should come

with a health warning because it cannot be used to compensate for a poor acoustical

design. On the other hand, a DSP can be used in real time to monitor changes in the

electromechanoacoustical parameters and to adjust the drive levels accordingly to extract

the maximum possible performance, while avoiding burnout.

In 1962, Sessler and West invented a new kind of capacitor microphone, which

contained a permanently stored charge on a metalized membrane as well as a pream-

plifier, which has become to be known as the foil electret microphone. This device has

been followed by microelectromechanical systems (MEMS), now incorporated into

microphones and vibration pickups (accelerometers) and gyroscopes, which have di-

mensions in the order of microns. One embodiment of MEMS is widely used in hearing

aids and cell phones, where the trend is to incorporate more microphones for noise

cancellation and beam forming. It consists of a freely vibrating diaphragm made

from polysilicon, which is spaced from a perforated backplate that is coated with
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vapor-deposited silicon nitride. When the device is moved, there is a change in

capacitance in the order of femtofarads. The combination of low cost, small size, reli-

ability, and near-studio quality has made the “crackly” carbon microphone obsolete.

Hence, the electret and MEMS models are also described in this text. Other new ad-

ditions include call loudspeakers for cell phones and an improved tube model for very

small diameters.

Today, acoustics is no longer a tool of the telephone industry, a few enlightened

architects, and the military. It is a concern in the daily life of nearly every person.

International movements legislate and provide quiet housing. Labor and office personnel

demand safe and comfortable acoustic environments in which to work. Architects in

rapidly increasing numbers are hiring the services of acoustical engineers as a routine part

of the design of buildings. Manufacturers are using acoustic instrumentation on their

production lines. In addition, there has been great progress in the abatement of noise

from jet engine propelled aircraft, in which efforts were instigated by the Port of New

York Authority and its consultant Bolt Beranek and Newman in the late 1950s and have

been carried on by succeeding developments in engine design. Acoustics is coming into

its own in the living room, where high-fidelity reproduction of music has found a wide

audience. Overall, we witness the rapid evolution of our understanding of electro-

acoustics, architectural acoustics, structural acoustics, underwater sound, physiological

and psychological acoustics, musical acoustics, and ultrasonics.

It is difficult to predict the future with any certainty, although nanotechnologies look

as though they will play a steadily increasing role. One can truly say that although over

100 years have passed since the publication of Rayleigh’s Theory of Sound, there is still

plenty to explore.

This book covers first the basic aspects of acoustics: wave propagation in the air, the

theory of mechanical and acoustical circuits, the radiation of sound into free space, and

the properties of acoustic components. It is then followed by chapters dealing with

microphones, loudspeakers, enclosures for loudspeakers, and horns. The basic concepts

of sound in enclosures are treated next, and methods for solving problems related to the

radiation and scattering of sound are given. The final chapter describes a computer

method for analyzing circuits. Throughout the text we shall speak to youdthe student of

this modern and exciting field.

1.2 WHAT IS SOUND?

In reading the material that follows, your goal should be to form and to keep in

mind a picture of what transpires when the diaphragm on a loudspeaker, or any surface

for that matter, is vibrating in contact with the air.

A sound is said to exist if a disturbance propagated through an elastic material causes

an alteration in pressure or a displacement of the particles of the material which can be
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detected by a person or by an instrument. Because this text deals primarily with devices

for handling speech and music, the only types of elastic material with which we shall

concern ourselves are gases (more particularly air). Because the physical properties of

gases are relatively easy to express, it is not difficult to describe the way sound travels in

such media.

Imagine that we could cut a tiny cubic “box” out of air and hold it in our hands as we

would hold a block of wood. What physical properties would it exhibit? First, it would

have weight and, hence, mass. In fact, a cubic meter of air has a mass of a little over 1 kg.

If a force is applied to this box, it will accelerate according to Newton’s second law,

which states that force equals mass times acceleration.

If we exert forces that compress two opposing sides of the little cube, the four other

sides will bulge outward. The incremental pressure produced in the gas by this force will

be the same throughout this small volume. This happens because pressure in a gas is a

scalar, i.e., a nondirectional quantity.

Now imagine that the little box of air is held tightly between your hands. Move one

hand toward the other so as to distort the cube into a parallelepiped. You find that no

opposition to the distortion of the box is made by the air outside the two distorted sides.

This indicates that air does not support a shearing force [4].

Furthermore, if we constrain five sides of the cube and push on the sixth one, we find

that the gas is elastic; i.e., a force is required to compress the gas. The magnitude of the

force is in direct proportion to the displacement of this unconstrained side of the

container. A simple experiment proves this. Close off the hose of a bicycle tire pump so

that the air is confined in the cylinder. Push down on the plunger. You will find that the

confined air behaves like a simple spring.

What is air? The air that surrounds us consist of tiny molecules which are about

0.33 nm in diameter, but are 3.3 nm apart, so they only occupy 0.1% of the space! Even

so, at room temperature, a cubic meter weighs 1.18 kg. Although the mean free path

between collisions is 60 nm, air molecules travel at an average speed of 500 m/s at room

temperature so that each one experiences 8.3 � 109 collisions per second! It is the force

with which the molecules bombard the boundary of a confined space which explains the

elastic (and viscous) properties of air.

The spring constant of the gas varies, however, with the speed of the compression. A

displacement of the gas particles occurs when it is compressed. An incremental change in

the volume of our box will cause an incremental increase in the pressure that is directly

proportional to the displacement. If the compression takes place slowly, this relation

obeys the formula:

DP ¼ �K DV d slow process

where K is a constant.
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If, on the other hand, the incremental change in volume takes place rapidly, and if the

gas is air, oxygen, hydrogen, or nitrogen, the incremental pressure that results is equal to

1.4K times the incremental change in volume:

DP ¼ �gK DVdfast process; diatomic gas;

where g is the ratio of specific heats for a gas and is equal to 1.4 for air and other diatomic

gases. Note that a positive increment (increase) in pressure produces a negative increment

(decrease) in volume. Processes that take place at intermediate rates are more difficult to

describe, even approximately, and fortunately need not be considered here.

What is the reason for the difference between these two occurrences? For slow

variations in volume, the compressions are isothermal, which means that they take place at

constant temperature throughout the volume. There is time for the heat generated in the

gas during the compression to flow out through the walls of the container. Hence, the

temperature of the gas remains constant. For rapid alternations in the volume, however,

the temperature rises when the gas is compressed and falls when the gas is expanded. If

the alternations are rapid enough, there is not enough time during a cycle of compression

and expansion for the heat to flow away. Such rapid alternations in the compression of

the gas are said to be adiabatic.

In either isothermal or adiabatic processes, the pressure in a gas is due to collisions of

the gas molecules with the container walls. You will recall that pressure is force per unit

area or, fromNewton, time rate of change of momentum per unit area. Let us investigate

the mechanism of this momentum change in a confined gas. The direction of motion of

the molecules changes when they strike a wall so that the resulting change in momentum

appears as pressure in the gas. The rate at which the change of momentum occurs, and so

the magnitude of the pressure change, depends on two quantities. It increases either if the

number of collisions per second between the gas particles and the walls increases or if the

amount of momentum transferred per collision becomes greater, or both.

During an isothermal compression of a gas, an increase of pressure results because a

given number of molecules are forced into a smaller volume and they necessarily collide

with the container walls more frequently.

During an adiabatic compression of a gas, the pressure increase partly results from an

increase in the number of wall collisions as described above, as well as from the greater

momentum transfer per collision. Both of these increases are due to the temperature

change which accompanies the adiabatic compression. From kinetic theory, we know

that the velocity of gas molecules varies as the square root of the absolute temperature of

the gas. As contrasted with the isothermal, in the adiabatic process the molecules get

hotter, move faster, collide with the container walls more frequently, and, having greater

momentum themselves, transfer more momentum to the walls during each individual

collision. For a given volume change DV, the rate of momentum change, and therefore
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the pressure increase, is seen to be greater in the adiabatic process. Hence, the gas is

stifferdit takes more force to expand or compress it. We shall see later in this chapter that

sound waves are adiabatic alternations.

1.3 PROPAGATION OF SOUND THROUGH GAS

The propagation of sound through a gas can be fully predicted and described if we

take into account the factors just discussed, viz., the mass and stiffness of the gas, and its

conformance with basic physical laws. Such a mathematical description will be given in

detail in later chapters. We are now concerned with a qualitative picture of sound

propagation.

If we put a sinusoidally vibrating wall in a gas (see Fig. 1.1a), it will accelerate adjacent

air particles and compress that part of the gas nearest to it as it moves forward from rest.

This initial compression is shown in Fig. 1.1b as a crowding of dots in front of the wall.

The dots represent air particles. These closely crowded air particles have, in addition to

their random velocities, a forward momentum gained from the wall. They collide with

their neighbors to the right and, during the collision, transfer forward momentum to

these particles, which were at rest. These particles in turn move closer to their neighbors,

with which they collide, and so on. Progressively more and more remote parts of the

medium will be set into motion. In this way, through successive collisions, the force built

up by the original compression may be transferred to distant parts of the gas.

When the wall reverses its motion, a rarefaction occurs immediately in front of it (see

Fig. 1.1c and d). This rarefaction causes particles to be accelerated backward, and the

above process is now repeated in the reverse direction, and so on, through successive

cycles of the source.

It is important to an understanding of sound propagation that you keep in mind the

relative variations in pressure, particle displacement, and particle velocity. Note that, at

any one instant, the maximum particle displacement and the maximum pressure do not

occur at the same point in the wave. To see this, consider Fig. 1.1c. The maximum

pressure occurs where the particles are most tightly packed, i.e., atD2 ¼ 1.7 m. But atD2

the particles have not yet moved from their original rest position, as we can see by

comparison with Fig. 1.1a. At D2, then, the pressure is a maximum, and the particle

displacement is zero. At this instant, the particles next to the wall are also at their zero-

displacement position, for the wall has just returned to its zero position. Although the

particles at both D2 and d0 have zero displacement, their environments are quite

different. We found the pressure at D2 to be a maximum, but the air particles around d0
are far apart, and so the pressure there is a minimum. Halfway between d0 and D2 the

pressure is found to be at the ambient value (zero incremental pressure) and the

displacement of the particles at a maximum. At a point in the wave where pressure is a

maximum, the particle displacement is zero. Where particle displacement is a maximum,
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the incremental pressure is zero. Pressure and particle displacement are then 90 degrees

out of phase with each other.

At any given point on the wave, the pressure and particle displacement are varying

sinusoidally in time with the same frequency as the source. If the pressure is varying as cos

2pft, the particle displacement, 90 degrees out of phase, must be varying as sin 2pft. The
velocity of the particles, however, is the time derivative of displacement and must be
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Figure 1.1 Pressure and displacement in a plane sound wave produced by a sinusoidally vibrating
wall. D1 ¼ one-fourth wavelength; D2 ¼ one-half wavelength; D3 ¼ three-fourths wavelengths;
D4 ¼ one wavelength; D5 ¼ two wavelengths. Rmeans displacement of the air particles to the right, L
means displacement to the left, and O means no displacement. Crowded dots mean positive excess
pressure and spread dots mean negative excess pressure. The frequency of vibration of the piston is
100 Hz.
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varying as cos 2pft. At any one point on the wave, then, pressure and particle velocity are
in phase.

We have determined the relative phases of the particle displacement, velocity, and

pressure at a point in the wave. Now we ask, “What phase relationship exists between

values of, say, particle displacement measured at two different points on the wave?” If the

action originating from the wall were transmitted instantaneously throughout the me-

dium, all particles would be moving in phase with the source and with each other. This is

not the case, for the speed of propagation of sound is finite, and at points increasingly

distant from the source there is an increasing delay in the arrival of the signal. Each

particle in the medium is moved backward and forward with the same frequency as the

wall, but not at the same time. This means that two points separated a finite distance from

each other along the wave in general will not be moving in phase with each other. Any

two points that are vibrating in exact phase will, in this example of a plane wave, be

separated by an integral number of wavelengths. For example, in Fig. 1.1f, the 344.8- and

689.6-cm points are separated by exactly one wavelength. A disturbance at the 689.6-cm

point occurs at about 0.01 s after it occurs at the 344.8-cm point. At room temperature,

22�C, this corresponds to a speed of propagation of 344.8 m/s. Mathematically stated, a

wavelength is equal to the speed of propagation divided by the frequency of vibration.

l ¼ c

f
(1.1)

where l is the wavelength in meters, c is the speed of propagation of the sound wave in

m/s, and f is the frequency in hertz (or cycles/s).

What is a plane wave? In Fig. 1.1 it is assumed that the wall is infinite in size so that

everywhere in front of it the air particles are moving as shown by the line at the center of

the wall. Such a sound wave is called plane because it is behaving the same at every plane

parallel to the surface of the oscillating wall.

Sound waves in air are longitudinal; i.e., the direction of the vibratory motion of air

particles is the same as the direction in which the wave is traveling. This can be seen from

Fig. 1.1. Light, heat, or radio waves in free space are transverse; i.e., the vibrations of the

electric and magnetic fields are perpendicular to the direction in which the wave

advances. By contrast, waves on the surface of water are circular. The vibratory motion

of the water molecules is in a small circle or ellipse, but the wave travels horizontally.

1.4 MEASURABLE ASPECTS OF SOUND

Consider first what measurements might be made on the medium before a sound

wave or a disturbance is initiated in it. The gas particles (molecules) are, on the average, at

rest. They do have random motion, but there is no net movement of the gas in any

direction. Hence, we say that the particle displacement is zero. It follows that the particle
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velocity is zero. Also, when there is no disturbance in the medium, the pressure throughout

is constant and is equal to the ambient pressure, so that the incremental pressure is zero. A

value for the ambient pressure may be determined from the readings of a barometer. The

density, another measurable quantity in the medium, is defined as usual as the mass per

unit volume. It equals the ambient density when there is no disturbance in the medium.

When a sound wave is propagated in the medium, several measurable changes occur.

The particles are accelerated and as a result are displaced from their rest positions. The

particle velocity at any point is not zero except at certain instants during an alternation.

The pressure at any point varies above and below the ambient pressure. Also, the

temperature at a point fluctuates above and below its ambient value. The incremental

variation of pressure is called the sound pressure or the excess pressure. An incremental

pressure variation, in turn, causes a change in the density called the incremental density. An

increase in sound pressure at a point causes an increase in the density of the medium at

that point.

The speed with which an acoustical disturbance propagates outward through the

medium is different for different gases. For any given gas, the speed of propagation is

proportional to the square root of the absolute temperature of the gas (see Eq. 1.8). As is

the case for all types of wave motion, the speed of propagation is given by Eq. (1.1).

PART II: TERMINOLOGY
You now have a general picture of the nature of a sound wave. To proceed further

in acoustics, you must learn the particular “lingo” or accepted terminology. Many

common words such as pressure, intensity, and level are used in a special manner.

Become well acquainted with the special meanings of these words at the beginning as

they will be in constant use throughout the text. The list of definitions below is not

exhaustive, and some additional terminology will be presented as needed in later chapters

[5]. If possible, your instructor should make you take measurements of sounds with a

sound level meter and a sound analyzer so that the terminology becomes intimately

associated with physical phenomena.

1.5 GENERAL

Acoustic
The word “acoustic,” an adjective, means intimately associated with sound waves or with

the individual media, phenomena, apparatus, quantities, or units discussed in the science

of sound waves. For example, “Through the acoustic medium came an acoustic radiation

so intense as to produce acoustic trauma. The acoustic filter has an output acoustic

impedance of 10-acoustic ohms.” Other examples are acoustic horn, transducer, energy,

wave, admittance, refraction, mass, component, and propagation.
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Acoustical
The word “acoustical,” an adjective, means associated in a general way with the science

of sound or with the broader classes of media, phenomena, apparatus, quantities, or

units discussed in the science of sound. For example, “Acoustical media exhibit

acoustical phenomena whose well-defined acoustical quantities can be measured, with

the aid of acoustical apparatus, in terms of an acceptable system of acoustical units.”

Other examples are acoustical engineer, school, glossary, theorem, and circuit

diagram.

Imaginary unit
The symbol j ¼ ffiffiffiffiffiffiffi�1

p
is the imaginary unit. In the case of a complex quantity

z ¼ x þ jy, we denote the real part by <(z) ¼ x, where < is a capital R in the Fraktur

typeface, and the imaginary part by J(z) ¼ y, where J is a capital I in the Fraktur

typeface. It is worth noting that
ffiffiffiffiffiffiffi�1

p
can be positive or negative, as with the square root

of any number, and many texts use the negative square root i, where i ¼ � j. Mathe-

matica also uses the positive square root but denotes it by a double-struck i instead of j. A

complex quantity z ¼ x þ jy can also be represented in terms of magnitude jzj and phase
angle q by

z ¼ ��z��e jq ¼ ��z��ðcos qþ j sin qÞ;
where the magnitude (aka modulus or absolute value) is given by

jzj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
and the phase angle is given by

q ¼ arctanðy=xÞ

Harmonically varying quantity
In this text, a harmonically varying quantity will be denoted by a tilde. Hence, if j

represents a generic quantity, we denote that it is harmonically varying by writing it as j.

In the analyses that follow, the tilde will help us to distinguish time-dependent (or signal)

variables from system parameters or constants. Although the wave is periodic, it may be

of arbitrary shape. The simplest case is a sinusoidal wave, which meansej ¼ je jut; (1.2)

where u ¼ 2pf is the angular frequency in rad/s and f is the frequency in Hz (hertz,

formerly cycles/second). Note that if j is real, it represents the peak amplitude of ej.
However, it may be complex, containing phase information such as that relating to the
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position in space, in which case the peak amplitude is the magnitude of j or jjj. Because
most of the problems dealt with in this chapter relate to steady-state linear systems driven

by sinusoidal sources, this simple shorthand saves us from having to carry the time de-

pendency term, e jut, through the calculations. If we are deriving an expression for one

harmonically varying quantity in terms of another, the exponent will cancel in the final

transfer function.

Instantaneous value
In the steady state, the instantaneous value j(t) is defined by

jðtÞ ¼ <�ej� ¼ <�j e jut
�
. (1.3)

This is the actual value that would be observed at any instant in time t. However, the

real part of a complex quantity should only be taken at the end of deriving an expression

so that the correct phase relationships are maintained throughout. It is often the case that

the product of two imaginary quantities yields a real one.

Root mean square value
The root mean square or rms value of a time-varying quantity is that which delivers the

same amount of power on average as a constant quantity of the same value. For example,

a direct electrical current passing through an electrical resistance produces the same

amount of heat as an alternating current having the same rms value. The rms value jrms is

given by

jrms ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

T

Z T

0

ðjðtÞÞ2dt
s

. (1.4)

If the quantity j(t) is a periodic function of time, then T ¼ 1/f is the period of

repetition. It turns out that in the case of the simple sinusoidal function described by

Eq. (1.3),

jrms ¼
��ej��ffiffiffi
2

p ; (1.5)

where
��ej�� denotes the magnitude of ej. However, the periodic function can have any

arbitrary shape, which is expandable by a Fourier series of harmonics. The rms value is

then given by the Euclidian norm (or root of the sum of the squares) of the peak am-

plitudes of the harmonics divided by
ffiffiffi
2

p
. In the case of nonperiodic quantities, the

interval T should be long enough to make the value obtained essentially independent of

small changes in the length of the interval.
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1.6 STANDARD INTERNATIONAL (SI) UNITS

The SI system of units is used throughout this book. Some of the fundamental

units are listed in Table 1.1. However, this list is by no means exhaustive. Other units

used in electroacoustics can be derived from them and will be introduced as and when

needed.

In addition, for very large or very small quantities, it is useful to use the prefixes

shown in Table 1.2.

1.7 PRESSURE AND DENSITY

The standard unit of pressure in the SI system is the pascal (Pa), where

1 Pa ¼ 1 N/m2.

Static pressure (P0)
The static pressure at a point in the medium is the pressure that would exist at that point

with no sound waves present. At normal barometric pressure, P0 equals approximately

105 Pa. Standard atmospheric pressure is usually taken to be 0.760 m Hg at 0�C. This is a
pressure of 101,325 Pa. In this chapter, when solving problems we shall assume

P0 ¼ 105 Pa.

Table 1.1 List of SI units
Quantity Unit Symbol

Length Meter m

Mass Kilogram kg

Time Second s

Temperature Kelvin K

Magnetic flux density Tesla T

Force Newton N

Power Watt W

Table 1.2 Prefixes for large or small quantities

Multiples Name Deca Hecto Kilo Mega Giga Tera Peta Exa Zetta Yotta

Symbol da h k M G T P E Z Y

Factor 101 102 103 106 109 1012 1015 1018 1021 1024

Subdivisions Name Deci Centi Milli Micro Nano Pico Femto Atto Zepto Yocto

Symbol d c m m n p f a z y

Factor 10e1 10e2 10e3 10e6 10e9 10e12 10e15 10e18 10e21 10e24
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Microbar (mbar)
Although not an SI unit, a microbar is a unit of pressure often used in acoustics. One

microbar is equal to 0.1 Pa.

Instantaneous sound pressure [p(t)]
The instantaneous sound pressure at a point is the incremental change from the static

pressure at a given instant caused by the presence of a sound wave. The unit is the pascal

(Pa).

Effective sound pressure (prms)
The effective sound pressure at a point is the root mean square (rms) value of the

instantaneous sound pressure. The unit is the pascal (Pa).

Density of air (r0)
The ambient density of air is given by the formula

r0 ¼ P0

287T
kg
�
m3; (1.6)

where T is the absolute temperature and P0 is the static pressure. At a normal room

temperature of T ¼ 295�K (22�C or 71.6�F) and for a static pressure P0 ¼ 105 Pa, the

ambient density is

r0 ¼ 1:18 kg
�
m3.

This value of r0 will be used in solving problems unless otherwise stated. Note that

here the temperature in �C is obtained by subtracting 273 from the one in �K.

1.8 SPEED AND VELOCITY

Speed of sound (c)
The speed of sound in air is given approximately by the formula

c ¼ 331:4þ 0:607q m=s (1.7)

where q is the ambient temperature in �C. For temperatures above 30�C or

below �30�C, the velocity of sound must be determined from the exact formula:

c ¼ 331:4

ffiffiffiffi
T

p

273
¼ 331:4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ q

273

r
m=s; (1.8)
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where T is the ambient temperature in �K. At a normal room temperature of q ¼ 22�C
(¼71.6�F),

c ¼ 344:8 m=s; or 1131:2 ft=s.

These values of c will be used in solving problems unless otherwise stated.

Instantaneous particle velocity (particle velocity) [u(t)]
The instantaneous particle velocity at a point is the velocity, due to the sound wave only,

of a given infinitesimal part of the medium at a given instant. It is measured over and

above any motion of the medium as a whole. The unit is m/s.

Effective particle velocity (urms)
The effective particle velocity at a point is the root mean square of the instantaneous

particle velocity (see Effective sound pressure section for details). The unit is m/s.

Instantaneous volume velocity [U(t)]
The instantaneous volume velocity, due to the sound wave only, is the rate of flow of the

medium perpendicularly through a specified area S. That is, U(t) ¼ Su(t), where u(t) is

the instantaneous particle velocity. The unit is m3/s.

1.9 IMPEDANCE

Acoustic impedance (ZA) (American standard acoustic impedance)
The acoustic impedance at a given surface is defined as the complex ratio [6] of effective

sound pressure averaged over the surface to effective volume velocity through it. The

surface may be either a hypothetical surface in an acoustic medium or the moving surface

of a mechanical device. The unit is N$s/m5 or rayls/m2 [7].

ZA ¼ epeU N$s
�
m5
�
rayls

�
m2
�
. (1.9)

Specific acoustic impedance (Zs)
The specific acoustic impedance is the complex ratio of the effective sound pressure at a

point of an acoustic medium or mechanical device to the effective particle velocity at that

point. The unit is N$s/m3 or rayls [8]. That is,

ZS ¼ epeu N$s
�
m3ðraylsÞ. (1.10)
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Mechanical impedance (ZM)
The mechanical impedance is the complex ratio of the effective force acting on a

specified area of an acoustic medium or mechanical device to the resulting effective

linear velocity through or of that area, respectively. The unit is N$s/m or rayls$m2. That

is,

ZM ¼
efeu N$s=m

�
rayls$m2

�
. (1.11)

Characteristic impedance (r0c)
The characteristic impedance is the ratio of the effective sound pressure at a given point

to the effective particle velocity at that point in a free, plane, progressive sound wave. It is

equal to the product of the density of the medium times the speed of sound in the

medium (r0c). It is analogous to the characteristic impedance of an infinitely long,

dissipationless electric transmission line. The unit is N$s/m3 or rayls.

In the solution of problems in this book, we shall assume for air that

r0c ¼ 407 rayls;

which is valid for a temperature of 22�C (71.6�F) and a static pressure of 105 Pa.

1.10 INTENSITY, ENERGY DENSITY, AND LEVELS

Sound intensity (I)
The sound intensity measured in a specified direction at a point is the average rate at

which sound energy is transmitted through a unit area perpendicular to the specified

direction at the point considered. The unit is W/m2. In a plane or spherical free-

progressive sound wave, the intensity in the direction of propagation is

I ¼ p2rms

r0c
¼
��ep��2
2r0c

W
�
m2. (1.12)

Sound energy density (D)
The sound energy density is the sound energy in a given infinitesimal part of the gas

divided by the volume of that part of the gas. The unit is W$s/m3. In many acoustic

environments, such as in a plane wave, the sound energy density at a point is

D ¼ p2rms

r0c
2
¼ p2rms

gP0
W$s

�
m3. (1.13)
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where g is the ratio of specific heats for a gas and is equal to 1.4 for air and other diatomic

gases. The quantity g is dimensionless.

Electric power level or acoustic intensity level
The electric power level, or the acoustic intensity level, is a quantity expressing the ratio

of two electrical powers or of two sound intensities in logarithmic form. The unit is the

decibel (dB). Definitions are

Electric power level ¼ 10 log10
W1

W2
dB (1.14)

Acoustic intensity level ¼ 10 log10
I1

I2
dB (1.15)

where W1 and W2 are two electrical powers and I1 and I2 are two sound intensities.

Extending this thought further, we see from Eq. (1.14) that

Electric power level ¼ 10 log10
e21rms

R1

R2

e22rms

dB

¼ 20 log10
e1rms

e2rms
þ 10 log10

R2

R1
dB (1.16)

where e1rms is the voltage across the resistanceR1 in which a powerW1 is being dissipated

and e2rms is the voltage across the resistance R2 in which a power W2 is being dissipated.

Similarly,

Acoustic intensity level ¼ 20 log10
p1rms

p2rms
þ 10 log10

RS2

RS1
dB (1.17)

where p1rms is the pressure at a point where the specific acoustic resistance (i.e., the real

part of the specific acoustic impedance) is RS1 and p2rms is the pressure at a point where

the specific acoustic resistance is RS2. We note that

10 log10ðW1=W2Þ ¼ 20 log10ðE1=E2Þ
only if R1 ¼ R2 and that

10 log10ðI1=I2Þ ¼ 20 log10ðp1rms=p2rmsÞ
only if RS2 ¼ RS1.

The word “level” implies a position relative to another position, for example, “the

water level is 2 m above its normal level.” This means that any quantity in acoustics

designated as “level” is the magnitude of a quantity, expressed in logarithmic units,
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which is so many units above the magnitude of another quantity, also expressed in

logarithmic units. Hence, 10 log A is not a level, but

10 log A� 10 log B ¼ 10 logðA=BÞ
is a level for A measured above a level for B. In electronics and acoustics, the level

differences are measured in decibels. The quantity B is usually referred to as the

“reference quantity.”

Levels involving voltage and pressure alone are sometimes spoken of with no regard

to the equalities of the electric resistances or specific acoustic resistances. This practice

leads to serious confusion. It is emphasized that the manner in which the terms are used

should be clearly stated always by the user to avoid confusion.

Sound pressure level
The sound pressure level (SPL) of a sound, in decibels, is 20 times the logarithm to the

base 10 of the ratio of the measured effective sound pressure of this sound to a reference

effective sound pressure. That is,

SPL ¼ 20 log10
prms

pref
dB. (1.18)

In the United States, pref is either

pref ¼ 20 mPa rms (0.0002 mbar rms) or

pref ¼ 0.1 Pa rms (1 mbar rms)

The reference pressure listed first above is in general use for measurements dealing with

hearing and for sound level and noise measurements in air (e.g., in rooms and outdoors)

and sometimes in liquids. The second reference pressure has gained widespread use for

calibrations of transducers and some types of sound level measurements in liquids. The

two reference levels are almost exactly 74 dB apart. The reference pressure must always

be stated explicitly. Thus, in the case of Eq. (1.18), using the first reference pressure, the

result of a measurement would be expressed. “The sound pressure level is X decibels re

(0.0002 mbar).”

Intensity level (IL)
The intensity level of a sound, in decibels, is 10 times the logarithm to the base 10 of the

ratio of the intensity of this sound to a reference intensity. That is,

IL ¼ 10 log10
I

Iref
dB (1.19)

In the United States the reference intensity is usually taken to be 10e12 W/m2. This

reference at standard atmospheric conditions in a plane or spherical progressive wave was
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originally selected as corresponding approximately to the reference pressure

(0.0002 mbar).

The exact relation between intensity level and SPL in a plane or spherical progressive

wave may be found by substituting Eq. (1.12) for intensity in Eq. (1.19):

IL ¼ SPLþ 10 log10
p2ref

r0cIref
dB. (1.20)

Substituting pref ¼ 20 mPa rms and Iref ¼ 10e12 W/m2 yields

IL ¼ SPLþ 10 log10
400

r0c
dB. (1.21)

It is apparent that the intensity level IL will equal the SPL only if r0c ¼ 400 rayls. For

certain combinations of temperature and static pressure, this will be true, although for

T ¼ 22�C and P0 ¼ 105 Pa, r0c ¼ 407 rayls. For this common case then, the intensity

level is smaller than the SPL by about 0.1 dB. The reference quantity must always be

stated explicitly.

Acoustic power level (PWL)
The acoustic power level of a sound source, in decibels, is 10 times the logarithm to the

base 10 of the ratio of the acoustic power radiated by the source to a reference acoustic

power. That is,

PWL ¼ 10 log10
W

Wref
dB. (1.22)

In most countries, Wref is 1 pW (i.e., 10e12 W). This means that a source radiating

one acoustic watt has a power level of 120 dB.

If the temperature is 20�C (67�F) and the pressure is 101,325 Pa (0.76 m Hg), the

SPL in a duct with an area of 1 m2 cross section, or at a distance of 0.282 m from the

center of a “point” source (at this distance, the spherical surface has an area of 1 m2), is,

from Eqs. (1.12) and (1.18),

SPL1m2 ¼ 10 log10
Ir0c

p2ref
¼ 10 log10

Wr0c

Sp2ref

¼ 10 log10

 
W � 412:5� 1�

2� 10�5
�2
!

¼ 10 log10
W

10�12
þ 0:1;
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whereW is acoustic power inW, r0c is characteristic impedance ¼ 412.5 rayls, S ¼ 1 m2

of area, and pref is rms reference sound pressure ¼ 20 mPa rms.

In words, the SPL equals the acoustic power level plus 0.1 dB under the special

conditions that the power passes uniformly through an area of 1 m2, the temperature is

20�C (67�F), and the barometric pressure is 0.76 m (30 in.) Hg.

Sound level
The sound level at a point in a sound field is the reading in decibels (dB) of a sound level

meter constructed and operated in accordance with the latest edition of “American

National Standard Specification for Sound Level Meters [9].”

The meter reading (in decibels, dB) corresponds to a value of the sound pressure

integrated over the audible frequency range with a specified frequency weighting and

integration time. The standard sound level meter has three frequency weightings, A, B,

and C, as shown in Fig. 1.2. The C scale treats all frequencies within the operating range

approximately equally. The B scale is seldom used. The A scale discriminates against

frequencies below 800 Hz. When reporting measurements, if the C scale has been used,

the result is usually given in dB. If the A scale has been used, the result must be given in

dBA.

Figure 1.2 Weighting curves for sound level measurements. The A, B, and C curves can be regarded
as very rough approximations to the contours of equal loudness [10] at 40, 70, and 100 phons,
respectively, to compensate for the reduced sensitivity of the ear to very low and very high fre-
quencies. Hence, the weighted sound level in phons at any frequency is the sound level in dB SPL
(sound pressure level) at a frequency of 1 kHz that sounds as loud, and 0 phons is roughly the lower
limit of perception, depending on the individual.
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Band power level (PWLn)
The band power level for a specified frequency band is the acoustic power level for the

acoustic power contained within the band. The width of the band and the reference

power must be specified. The unit is the decibel. The letter n is the designation number

for the band being considered.

Band pressure level (BPLn)
The band pressure level of a sound for a specified frequency band is the effective SPL for

the sound energy contained within the band. The width of the band and the reference

pressure must be specified. The unit is the decibel. The letter n is the designation number

for the band being considered.

Power spectrum level
The power spectrum level of a sound at a specified frequency is the power level for the

acoustic power contained in a band one cycle per second wide, centered at this specified

frequency. The reference power must be specified. The unit is the decibel (see also the

discussion under Pressure spectrum level).

Pressure spectrum level
The pressure spectrum level of a sound at a specified frequency is the effective SPL for

the sound energy contained within a band one cycle per second wide, centered at this

specified frequency. The reference pressure must be explicitly stated. The unit is the

decibel.

Discussion. The concept of pressure spectrum level ordinarily has significance only for

sound having a continuous distribution of energy within the frequency range under

consideration.

The level of a band of uniform noise with a continuous spectrum exceeds the

spectrum level by

Cn ¼ 10 log10ð fb � faÞ dB; (1.23)

where fb and fa are the upper and lower frequencies of the band, respectively.

The level of a uniform noise with a continuous spectrum in a band of width fb � fa
Hz is therefore related to the spectrum level by the formula

Ln ¼ Cn þ Sn; (1.24)

where Ln is SPL in dB of the noise in the band of width fb � fa, forCn see Eq. (1.23), Sn is

spectrum level of the noise, and n is designation number for the band being considered.
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NOTES
[1] Moore’s law was originated by Gordon E. Moore, a co-founder of Intel, in 1965 and states that the

number of transistors on an integrated circuit for minimum component cost doubles every 24 months.
[2] For those who have wondered how those impedance and directivity plots were calculated for

Acoustics in 1952, MIT hired a room of over 50 women, each were given a motorized mechanical
computer of that era, and they did the computations for professors. They were efficient, accurate, and
got large jobs done in short times by working long hours.

[3] Hamming RW. Numerical methods for scientists and engineers. 2nd ed. Dover Publications; 1987
[Preface].

[4] This is only approximately true, as the air does have viscosity, but the shearing forces are very small
compared with those in solids.

[5] A good manual of terminology is american national standard acoustical terminology. ANSI S1.1-1994
(R2004). New York (N.Y.): American National Standards Institute. http://webstore.ansi.org/.

[6] Complex ratio has the same meaning as the complex ratio of voltage and current in electric-circuit
theory.

[7] This notation is taken from table 12.1 of American national standard acoustical terminology, ANSI
S1.1-1994 (R2004).

[8] Named in honor of Lord Rayleigh.
[9] American National standard specification for sound level meters, ANSI S1.4�1983 (R2006)/ANSI

S1.4A�1985 (R2006). New York (N.Y.): American National Standards Institute.
[10] See ISO 226. Acoustics: Normal equal-loudness-level contours. Available from: 2003 http://www.

iso.org.
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CHAPTER TWO

The wave equation and solutions

PART III: THE WAVE EQUATION

2.1 INTRODUCTION

We have already outlined the nature of sound propagation in a gas in a qualitative way. In

this chapter we shall put the physical principles described earlier into the language of

mathematics. The approach is in two steps. First, we shall establish equations expressing

Newton’s second law of motion, the gas law, and the laws of conservation of mass.

Second, we shall combine these equations to produce a wave equation.

The mathematical derivations are given in two ways: with and without use of vector

algebra. Those who are familiar with vector notations will appreciate the generality of

the three-dimensional vector approach. The two derivations are carried on in parallel; on

the left sides of the pages, the one-dimensional wave equation is derived with the use of

simple differential notations; on the right sides, the three-dimensional wave equation is

derived with the use of vector notations. The simplicity of the vector operations is

revealed in the side-by-side presentation of the two derivations.

2.2 DERIVATION OF THE WAVE EQUATION

2.2.1 The equation of motion
IfwewriteNewton’s second law for a small volumeof gas located in ahomogeneousmedium,

we obtain the equation ofmotion, or the force equation as it is sometimes called. Imagine the

small volume of gas to be enclosed in a box with weightless flexible sides (Fig. 2.1).

One-dimensional derivation [1] Three-dimensional derivation [2]

Let us suppose that the box is

situated in a medium where the

sound pressure p increases from left

to right at a space rate of vp/vx (see

Fig. 2.1).

Let us suppose that the box is situated in a medium (see

Fig. 2.1) where the sound pressure p changes in space at a

space rate of

grad p ¼ Vp ¼ i
vp

vx
þ j

vp

vy
þ k

vp

vz
;

where i, j, and k are unit vectors in the x, y, and z

directions, respectively, and p is the pressure at a point.
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Assume that the sides of the box are completely frictionless, i.e., any viscous drag

between gas particles inside the box and those outside is negligible. Thus the only forces

acting on the enclosed gas are due to the pressures at the faces of the box.

The difference between the forces acting on the two sides of our tiny box of gas is

equal to the rate at which the force changes with distance times the incremental length of

the box:

Note that the positive gradient causes an acceleration of the box in the negative

direction of x.

Force acting to accelerate the

box in the positive x direction

Force acting to accelerate the box in the positive

direction

¼ �
�
vp

vx
Dx

�
DyDz. (2.1a) ¼ � i

��
vp

vx
Dx

�
DyDzþ j

�
vp

vy
Dy

�
DxDz

þ k

�
vp

vz
Dz

�
DxDy

�
.

(2.lb)

Δy

Δx

Δz

x

Area = ΔyΔz

Figure 2.1 The very small “box” of air shown here is part of a gaseous medium in which the sound
pressure increases from left to right at a space rate of vp/vx (or, in vector notation, grad p). The sizes of
the dots indicate the magnitude of the sound pressure at each point.

Division of both sides of the above equation

by Dx Dy Dz ¼ V gives the force per unit

volume acting to accelerate the box:

Division of both sides of the equation by Dx
Dy Dz ¼ V gives the force per unit volume

acting to accelerate the box:

f

V
¼ �vp

vx
. (2.2a)

f

V
¼ �Vp. (2.2b)
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By Newton’s Law, the force per unit volume ( f/V ) of Eq. (2.2) must be equal to the

time rate of change of the momentum per unit volume of the box. We have already

assumed that our box is a deformable packet so that the mass of the gas within it is always

constant. That is,

The approximations just given are generally acceptable provided the sound pressure

levels being considered are below about 110 dB re 20 mPa. Levels above 110 dB are so

large as to create hearing discomfort in many individuals.

f

V
¼ �vp

vx
¼ M

V

vu

vt
¼ r0

vu

vt
; (2.3a)

Where u is the average velocity of the gas

in the “box” in the x direction, r0 is the
space average of the instantaneous density

of the gas in the box, and M ¼ r0V is the

total mass of the gas in the box.

f

V
¼ �Vp ¼ M

V

Dq

Dt
¼ r0

Dq

Dt
; (2.3b)

Where q is the average vector velocity of

the gas in the “box,” r0 is the average
density of the gas in the box, andM ¼ r0V
is the total mass of the gas in the box.

D/Dt is not a simple partial derivative but

represents the total rate of the change of

the velocity of the particular bit of gas in

the box regardless of its position, i.e.,

Dq

Dt
¼ vq

vt
þ qx

vq

vx
þ qy

vq

vy
þ qz

vq

vz
;

where qx, qy, and qz are the components of

the vector particle velocity q.
If the change in density of the gas due to the

sound wave is small enough, then the

instantaneous density r0 is approximately

equal to the average density r0.

Then,

If the vector particle velocity q is small

enough, the rate of change of momentum of

the particles in the box can be approximated

by the rate of change of momentum at a fixed

point, Dq/Dt z vq/vt, and the

instantaneous density r0 can be approximated

by the average density r0. Then,

� vp

vx
¼ r0

vu

vt
. (2.4a) � Vp ¼ r0

vq

vt
. (2.4b)
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2.2.2 The gas law
If we assume an ideal gas, the CharleseBoyle gas law applies to the box. It is

PV ¼ RT (2.5)

where P is the total pressure in the box, V is the volume equal to Dx Dy Dz, T is the

absolute temperature in �K, and R is a constant for the gas whose magnitude is

dependent on the mass of gas chosen [3]. Using this equation, we can find a relation

between the sound pressure (excess pressure) and an incremental change in V for our

box. Before we can establish this relation, however, we must know how the temperature

T varies with changes in P and V and, in particular, whether the phenomenon is

adiabatic or isothermal.

At audible frequencies the wavelength of a sound is long compared with the spacing

between air molecules. For example, at 1000 Hz, the wavelength l equals 0.34 m, as

compared with an intermolecular spacing of 10�9 m. Now, whenever a portion of any

gas is compressed rapidly, its temperature rises, and, conversely, when it is expanded

rapidly, its temperature drops. At any one point in an alternating sound field, therefore,

the temperature rises and falls relative to the ambient temperature. This variation occurs

at the same frequency as that of the sound wave and is in phase with the sound pressure.

Let us assume, for the moment, that the sound wave has only one frequency. At points

separated by one-half wavelength, the pressure and the temperature fluctuations will be

l80� out of phase with each other. Now the question arises, is there sufficient time during

one-half an alternation in the temperature for an exchange of heat to take place between

these two points of maximally different temperatures?

It has been established [4] that under normal atmospheric conditions the speed of

travel of a thermal diffusion wave at 1000 Hz is about 0.5 m/s, and at 10,000 Hz it is

about 1.5 m/s. The time for one-half an alternation of 1000 Hz is 0.0005 s. In this time,

the thermal wave travels a distance of only 0.00025 m. This number is very small

compared with one-half wavelength (0.17 m) at 1000 Hz. At 10,000 Hz the heat travels

7.5 � 10�5 m, which is a small distance compared with a half wavelength

(1.7 � 10�2 m). It appears safe for us to conclude, therefore, that there is negligible heat

exchange in the wave in the audible frequency range. Gaseous compressions and

expansions of this type are said to be adiabatic.

For adiabatic expansions, the relation between the total pressure and the volume is

known to be [5].

PV g ¼ constant; (2.6)

where g is the ratio of the specific heat of the gas at constant pressure to the specific heat

at constant volume for the gas. This equation is obtained from the gas law in the form of

28 Acoustics: Sound Fields, Transducers and Vibration



Eq. (2.5), assuming adiabatic conditions. For air, hydrogen, nitrogen, and oxygen, i.e.,

gases with diatomic molecules,

g ¼ 1:4:

Expressing Eq. (2.6) in differential form, we have

dP

P
¼ �gdV

V
. (2.7)

Let

P ¼ P0 þ p; V ¼ V0 þ s; (2.8)

where P0 and V0 are the undisturbed pressure and volume, respectively, and p and s are
the incremental pressure and volume, respectively, owing to the presence of the sound

wave. Then, to the same approximation as that made preceding Eq. (2.4) and because

p << P0 and s << V0,

p

P0
¼ �gs

V0
. (2.9)

The time derivative of this equation gives

1

P0

dp

dt
¼ � g

V0

ds
dt
. (2.10)

2.2.3 The continuity equation
The continuity equation is a mathematical expression stating that the total mass of gas in a

deformable “box” must remain constant. Because of this law of conservation of mass, we

are able to write a unique relation between the time rate of change of the incremental

velocities at the surfaces of the box.

One-dimensional derivation Three-dimensional derivation

Refer to Fig. 2.2. If the mass of gas within the

box remains constant, the change in volume s
depends only on the difference of displacement

of the air particles on the opposite sides of the

box. Another way of saying this is that, unless

the air particles adjacent to any given side of

the box move at the same velocity as the box

itself, some will cross into or out of the box and

the mass inside will change.

If the mass of gas within the box remains

constant, the change in incremental volume s
depends only on the divergence of the vector

displacement. Another way of saying this is

that, unless the air particles adjacent to any

given side of the box move at the same velocity

as the side of the box itself, some will cross into

or out of the box and the mass inside will

change; so

(Continued )
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dcont'd

In a given interval of time the air particles on

the left-hand side of the box will have been

displaced xx. In this same time, the air particles

on the right-hand side will have been displaced

xx þ
vxx

vx
Dx.

The difference of the two quantities above

multiplied by the area DyDz gives the

increment in volume s

s ¼ vxx

vx
DxDyDz (2.11a)

or

s ¼ V0 div x ¼ V0 V $x (2.11b)

s ¼ V0
vxx

vx
. (2.12)

Differentiating with respect to time yields, Differentiating with respect to time yields,

vs
vt

¼ V0
vu

vx
; (2.13a)

where u is the instantaneous particle

velocity.

vs
vt

¼ V0 V$q; (2.13b)

where q is the instantaneous particle

velocity.

Δy

Δx

Δz

Volume at one 
instant equals 
Δx Δy Δz

(a)

00

Δy

zyx
x

x x ΔΔΔ
∂

∂
+Δ )(

ξ

Volume at another 
instant equals 

zyx
x

x x ΔΔΔ
∂

∂
+Δ )(

ξ

(b)

ξx

Δz

Figure 2.2 Change in volume of the box with change in position. From (a) and (b) it is seen that the
incremental change in volume of the box is s ¼ (vxx/vx) Dx Dy Dz.
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Example 2.1. In the steady state, that is,

vu=vt ¼ jueu ¼
ffiffiffi
2

p
urms;

determine mathematically how the sound pressure in a plane progressive sound wave

(one-dimensional case) could be determined from measurement of the particle velocity

alone.

Solution. From Eq. (2.4a) we find in the steady state that

� vprms

vx
¼ jur0urms.

Written in differential form,

� Dprms ¼ jur0urmsDx.

If the particle velocity is 1 cm/s, u is 1000 rad/s, and Dx is 0.5 cm, then

Dprms ¼ �j0:005� 1000� 1:18� 0:01

¼ �j0:059 Pa.

We shall have an opportunity in Chapter 5 of this text to see a practical application of

these equations to the measurement of particle velocity by a velocity microphone.

2.2.4 The wave equation in rectangular coordinates

One-dimensional derivation Three-dimensional derivation

The one-dimensional wave equation is

obtained by combining the equation of motion

(2.4a), the gas law (2.10), and the continuity

equation (2.13a). Combination of (2.10) and

(2.3a) gives

The three-dimensional wave equation is

obtained by combining the equation of motion

(2.4b), the gas law (2.10), and the continuity

equation (2.13b). Combination of (2.10) and

(2.13b) gives

vp

vt
¼ �gP0

vu

vx
. (2.14a)

vp

vt
¼ �gP0 V$q. (2.14b)

Differentiate (2.14a) with respect to t: Differentiate (2.14b) with respect to t:

v2p

vt2
¼ �gP0

v2u

vtvx
. (2.15a)

v2p

vt2
¼ �gP0V$

vq

vt
. (2.15b)

(Continued )
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Let us, by definition, set

c2 ¼ gP0

r0
. (2.19)

We shall see later that c is the speed of propagation of the sound wave in the medium.

Also, the quantity gP0 is the bulk modulus of the fluid medium.

dcont'd

Differentiate (2.4a) with respect to x: Take the divergence of each side of Eq. (2.4b):

� v2p

vx2
¼ r0

v2u

vxvt
. (2.16a) � V$ðVpÞ ¼ r0 V$

vq

vt
. (2.16b)

Assuming interchangeability of the x and t

derivatives, and combining (2.15a) and (2.16a),

we get

Replacing the V$(V p) by V2p, we get

v2p

vx2
¼ r0

gP0

v2p

vt2
. (2.18a) � V2p ¼ r0V$

vq

vt
; (2.17)

where V2 is the operator called the Laplace

operator. Combining (2.15b) and (2.17),

we get

V2p ¼ r0

gP0

v2p

vt2
. (2.18b)

We obtain the one-dimensional wave equation We obtain the three-dimensional wave

equation

v2p

vx2
¼ 1

c2
v2p

vt2
. (2.20a) V2p ¼ 1

c2
v2p

vt2
. (2.20b)

In rectangular coordinates

V2ph
v2p

vx2
þ v2p

vy2
þ v2p

vz2
. (2.21)

(Continued )
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Eqs. (2.20) and (2.22) apply to sound waves of “small” magnitude propagating in a

source-free, homogeneous, isotropic, frictionless gas at rest.

2.2.5 The wave equation in cylindrical coordinates
The one-dimensional wave equations derived above are for plane-wave propagation

along one dimension of a rectangular coordinate system. In the case of a line source, such

as a vertical stack of loudspeakers in an auditorium, the sound spreads out radially in all

directions as a cylindrical wave. To apply the wave equation to cylindrical waves, we must

replace the operators on the left side of Eqs. (2.20) and (2.22) by operators appropriate to

cylindrical coordinates. Assuming equal radiation in all directions about the axis of

symmetry, the wave equation in one-dimensional cylindrical coordinates is

v2p

vw2
þ 1

w

vp

vw
¼ 1

c2
v2p

vt2
; (2.23)

where w is the radial distance from the axis of symmetry or source if it is a line source.

2.2.6 The wave equation in spherical coordinates
In an anechoic (echo-free) chamber or in free space, we frequently wish to express

mathematically the radiation of sound from a spherical (nondirectional) source of sound.

In this case, the sound wave will expand as it travels away from the source, and the wave

front always will be a spherical surface. To apply the wave equation to spherical waves, we

must replace the operators on the left side of Eqs. (2.20) and (2.22) by operators

appropriate to spherical coordinates.

dcont'd

We could also have eliminated p and retained

u, in which case we would have

We could also have eliminated p and retained

q, in which case we would have

v2u

vx2
¼ 1

c2
v2u

vt2
. (2.22a) V2q ¼ 1

c2
v2q

vt2
; (2.22b)

where V2q ¼ V(V$q) when there is no

rotation in the medium.
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Assuming equal radiation in all directions, the wave equation in one-dimensional

spherical coordinates is

v2p

vr2
þ 2

r

vp

vr
¼ 1

c2
v2p

vt2
; (2.24)

where r is the distance from the origin of the spherical coordinate system or source if it is

a point source. Simple differentiation will show that (2.24) can also be written

v2ðprÞ
vr2

¼ 1

c2
v2ðprÞ
vt2

. (2.25)

It is interesting to note that this equation has exactly the same form as Eq. (2.20a).

Hence, the same formal solution will apply to either equation except that the dependent

variable is p(x,t) in one case and p(r,t)r in the other case. The latter suggests that the

solution for the spherical wave equation is of the same form as that to the plane wave

equation, but divided by r as will be shown further in this text.

2.2.7 General one-dimensional wave equation (Webster’s equation) [6]
A general one-dimensional equation that is often used to describe waves in flaring ducts

or horns can be written as

1

SðxÞ
v

vx

�
SðxÞ vp

vx

�
¼ 1

c2
v2p

vt2
; (2.26)

which in expanded form becomes

v2p

vx2
þ 1

SðxÞ
�
vSðxÞ
vx

�
vp

vx
¼ 1

c2
v2p

vt2
; (2.27)

where S(x) is a function that describes the variation of cross-sectional area with x. The

first term is the Laplace operator and is present in all plane wave equations. It describes

the curvature of the pressure distribution along the x ordinate. The second term de-

scribes the pressure gradient due to the variation of cross-sectional area with x. Naturally,

this term is absent in the case of a plane wave, where the cross-sectional area is constant

(and can be infinite in theoretical models). In the case of a cylindrical wave, the area is

given by S(w) ¼ 2pwl, where l is the width of the wave along the axis of symmetry (again

this can be infinite). Note that x is replaced by the radial ordinate w. Substituting

S(w) ¼ 2pwl in Eq. (2.27) yields Eq. (2.23), the wave equation for a cylindrical wave.

Likewise, substituting S(r) ¼ 4pr2 in Eq. (2.27) and replacing x with r yields Eq. (2.24),

the wave equation for a spherical wave.
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PART IV: SOLUTIONS OF THE WAVE EQUATION IN ONE
DIMENSION

2.3 GENERAL SOLUTIONS OF THE ONE-DIMENSIONAL WAVE
EQUATION

The one-dimensional wave equation was derived with either sound pressure or particle

velocity as the dependent variable. Particle displacement, or the variational density, may

also be used as the dependent variable. This can be seen from Eqs. (2.4a) and (2.13a) and

the conservation of mass, which requires that the product of the density and the volume

of a small box of gas remain constant. That is,

r0V ¼ r0V0 ¼ constant (2.28)

and so

r0dV ¼ �Vdr0. (2.29)

Let

r0 ¼ r0 þ r; (2.30)

where r is the incremental change in density. Then, approximately, from Eqs. (2.8) and

(2.29),

r0s ¼ �V0r. (2.31)

Differentiating,

vs
vt

¼ �V0

r0

vr

vt

so that, from Eq. (2.13a),

vr

vt
¼ �r0

vu

vx
. (2.32)

Also, we know that the particle velocity is the time rate of change of the particle

displacement:

u ¼ vxx

vt
. (2.33)
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Inspection of Eqs. (2.4a), (2.13a), (2.32), and (2.33) shows that the pressure, particle

velocity, particle displacement, and variational density are related to each other by de-

rivatives and integrals in space and time. These operations performed on the wave

equation do not change the form of the solution, as we shall see shortly. Because the form

of the solution is not changed, the same wave equation may be used for determining

density, displacement, or particle velocity as well as sound pressure by substituting p, or

xx, or u for p in Eq. (2.20a) or r, x, or q for p in Eq. (2.20b), assuming, of course, that

there is no rotation in the medium.

2.3.1 General solution
With pressure as the dependent variable, the wave equation is

v2p

vx2
¼ 1

c2
v2p

vt2
. (2.34)

The general solution to this equation is a sum of two terms,

p ¼ f1

�
t � x

c

�
þ f2

�
t þ x

c

�
; (2.35)

where f1 and f2 are arbitrary functions. We assume only that they have continuous

derivatives of the first and second order. Note that because t and x occur together, the

first derivatives with respect to x and t are exactly the same except for a factor of � c.

The ratio x/c must have the dimensions of time, so that c is a speed. From

c2 ¼ gP0=r0 ½Eq. ð2.19Þ�
we find that

c ¼
�
1:4� 105

1:18

�1=2

¼ 344:4 m=s

in air at an ambient pressure of 105 Pa and at 22�C. This quantity is nearly the same as the

experimentally determined value of the speed of sound, 344.8 see Eq. (1.8), so that we

recognize c as the speed at which a sound wave is propagated through the air.

From the general solution to the wave equation given in Eq. (2.35) we observe two

very important facts:

1. The sound pressure at any point x in space can be separated into two components: an

outgoing wave, f1(t � x/c), and a backward-traveling wave, f2(t þ x/c).

2. Regardless of the shape of the outward-going wave (or of the backward-traveling

wave), it is propagated without change of shape. To show this, let us assume that,

at t ¼ t1, the sound pressure at x ¼ 0 is f1(t1). At a time t þ t1 þ t2 the sound wave

36 Acoustics: Sound Fields, Transducers and Vibration



will have traveled a distance x equal to t2c m. At this new time the sound pressure is

equal to

p ¼ f1ðt1 þ t2 � t2cÞ ¼ f1ðt1Þ.

In other words the sound pressure has propagated without change. The same

argument can be made for the backward-traveling wave that goes in the�x direction.

It must be understood that inherent in Eqs. (2.34) and (2.35) are two assumptions. First,

the wave is a plane wave, i.e., it does not expand laterally. Thus the sound pressure is not a

function of the y and z ordinates but is a function of distance only along the x ordinate.

Second, it is assumed that there are no losses or dispersion (scattering of the wave by

turbulence or temperature gradients, etc.) in the air, so that the wave does not lose energy

as it is propagated.

2.3.2 Steady-state solution
In nearly all the studies that we make in this text we are concerned with the steady state.

Let us first consider the time-dependent part of the solution at a fixed point in space so

that the pressure is only dependent on time. As is well known from the theory of Fourier

series, a steady-state periodic wave of arbitrary shape can be represented by a linear

summation of sine-wave functions, each of which is of the form

pðtÞ ¼
XN

n¼�N

pnðtÞ; (2.36)

where

pnðtÞ ¼ cne
junt ¼ cnðcos unt þ j sin untÞ; (2.37)

where un ¼ nu ¼ 2p nf is the angular frequency and cn is the peak amplitude of the nth

component of the wave given by

cn ¼ 1

T

Z T

0

pðtÞe�juntdt; (2.38)

where T ¼ 1/f is the period of the wave. Taking the second time derivative of pn yields

v2

vt2
pnðtÞ ¼ v2

vt2
cne

junt ¼ �u2
ncne

junt ¼ �u2
npnðtÞ; (2.39)

which gives the identities

v

vt
¼ jun; (2.40)
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v2

vt2
¼ �u2

n. (2.41)

Hence the steady-state plane-wave equation for any point in space can be written in

the form �
v2

vx2
þ u2

n

c2

�
pnðx; tÞ ¼ 0; (2.42)

which is generally known as the Helmholtz wave equation. Because the wave is propagated

without change of shape, we need to consider, in the steady state, only those solutions to

the wave equation for which the time dependence at each point in space is sinusoidal and

which have the same angular frequencies nu as the source. A general solution that sat-

isfies this equation is given by

pnðx; tÞ ¼
�
pnþe�junx=c þ pn�e junx=c

�
e junt; (2.43)

where the þ and � subscripts indicate the forward and backward traveling waves

respectively. In the steady state, therefore, we may replace f1 and f2 of Eq. (2.35) by a sum

of functions each having a particular angular driving frequency un so that

pðx; tÞ ¼
XN

n¼�N

pnðx; tÞ ¼
XN

n¼�N

<
��

pnþe�junx=c þ pn�e junx=c
�
e junt

�
. (2.44)

Generally we omit writing < although it always must be remembered that the real

part must be taken when using the final expression for the sound pressure that would

actually be observed, for example, when making an animated plot of a sound field.

It is customary in texts on acoustics to define a wave-number k where

k ¼ u

c
¼ 2pf

c
¼ 2p

l
; (2.45)

which can be considered as the spatial angular frequency in rad/m. When k is multiplied

by a characteristic dimension such as the length of a tube or the radius of a circular

radiator, it forms a useful dimensionless parameter that is proportional to the frequency.

Let us now drop < and the subscript n for convenience. Also, we will replace the factor

e ju
t

with a tilde. Any one term of Eq. (2.44), with these changes, becomes

epðxÞ ¼ epþe�jkx þep�e jkx. (2.46)
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Eq. (2.46) represents two traveling waves: one with amplitude epþ traveling in the

positive x direction and the other with amplitudeep� traveling in the negative x direction,

where the amplitudes are independent of position x. The appearance of these two so-

lutions occurs because in solving the wave equation we have not specified the direction

of travel or any boundary conditions and so the result simply tells us that these solutions

can occur. The complex values of epþ and ep� are determined from the boundary con-

ditions. The real parts of the forward and reverse traveling solutions are represented in

Fig. 2.3 (a) and (b) respectively, which shows the waveforms in space at a snapshot in

time, whereas if the plots were animated, they would be moving in the directions of the

arrows. At any fixed point, the pressure or velocity would oscillate as the wave passed

through it, with the oscillations having the same shape versus time as versus distance. This

is a property of plane waves where the waves propagate without changing shape.

Similarly, the solution to Eq. (2.22a) for velocity, assuming steady-state conditions is

euðxÞ ¼ euþe�jkx þ eu�e jkx. (2.47)

( )jkxep −
+ℜ ~+p~  direction of travel 

x

x

( ))/(~)(~
0cepxu jkx ρ−

+ℜ=

−p~  direction of travel ( )jkxep−ℜ ~

( ))/(~)(~
0cepxu jkx ρ−−ℜ=

(a)

(b)

Figure 2.3 Solutions to the steady-state one-dimensional wave equation. (a) Forward and (b) reverse
traveling waves.
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A similar expression for the velocity can also be obtained from the expression for the

pressure by applying Eq. (2.4a) to Eq. (2.46):

euðxÞ ¼ 1

�jur0

v

vx
epðxÞ

¼ 1

r0c

�epþe�jkx � ep�e jkx�;
(2.48)

the real part of which is also shown in Fig. 2.3. The wave Eq. (2.48) for velocity is similar

to Eq. (2.46) for pressure except for one important difference, which is the minus sign

preceding ep�. The reason for this is fairly simple. During a positive pressure half-cycle,

the resulting velocity is always in the direction of travel. Therefore, in the case of the

wave with amplitude epþ traveling in the positive x direction, positive pressure produces

positive velocity because it is in the positive x direction, as shown by the dashed arrows in

Fig. 2.3a. However, in the case of the wave with amplitudeep� traveling in the negative x

direction, positive pressure produces negative velocity because it is in the negative x

direction, as shown by the dashed arrows in Fig. 2.3b. Of course, the converse applies

during a negative pressure half cycle. The ratio of pressure to particle velocity is the

specific acoustic impedance Zs of the medium, which is obtained by dividing the

pressure from Eq. (2.46) by the velocity from Eq. (2.48) to give

Zs ¼ epðxÞeuðxÞ ¼ r0c. (2.49)

It is worth noting that in the case of freely traveling waves, which are also known as

progressive waves, the pressure and particle velocity are in phase and hence the

impedance has a real value. This is very much a characteristic of traveling longitudinal

waves, a class that includes sound pressure waves because the particles oscillate in the

direction of propagation as opposed to transverse waves whereby the medium oscillates

in a direction at right angles to the direction of propagation. An example of the latter is

the wave motion of a plucked string.

Example 2.2.Determine the power flow in a freely traveling wave at a fixed point as

a function of time.

Answer:

pðtÞ ¼ K cos ut

uðtÞ ¼ pðtÞ=rc
Power flow ¼ p�u ¼ 	

K2


rc
�
cos2 ut ¼ 	

K2


rc
�	
1� sin2 ut

�
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Thus the power flows by a point in a freely traveling wave like a series of “sausages.”

This is explained by referring back to Fig. 1.1. The vibrating surface sends power into

the wave when it is moving either to the right or the left. At the instant whenever the

surface changes direction, the power drops to zero.

Example 2.3. Assume that for the steady state, at a point x ¼ 0, the sound pressure

in a one-dimensional outward-traveling wave has the recurrent form shown by the

dotted curve in Fig. Ex. 2.3a. This wave form is given by the real part of the equation

pð0; tÞ ¼ 4e j628t þ 2e j1884t.

(a) What are the particle velocity and the particle displacement as a function of time at

x ¼ 5 m? (b) What are the rms values of these two quantities? (c) Are the rms values

dependent upon x?

Solution

a. We have for the solution of the wave equation giving both x and t [see Eq. 2.46]

pðx; tÞ ¼ 4e j628ðt�x=cÞ þ 2e j1884ðt�x=cÞ.

From Eq. (2.4a) we see that

uðx; tÞ ¼ � 1

jur0

vpðx; tÞ
vx

or

uðx; tÞ ¼ 1

r0c
pðx; tÞ.

And from Eq. (2.33) we have

xðx; tÞ ¼ 1

jr0c

�
4

628
e j628ðt�x=cÞ þ 2

1884
e j1884ðt�x=cÞ

�
.

At x ¼ 5 m, x/c ¼ 5/344.8 ¼ 0.0145 s,

uð5; tÞ ¼ 1

407

�
4e j628ðt�0:0145Þ þ 2e j1884ðt�0:0145Þ

�
and

xð5; tÞ ¼ 1

407

�
4

628
e j½628ðt�0:0145Þ�ðp=2Þ� þ 2

1884
e j½1884ðt�0:0145Þ�ðp=2Þ�

�
:
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Taking the real parts of the two preceding equations,

uð5; tÞ ¼ 1

407
ð4 cosð628t � 9:1Þ þ 2 cosð1884t � 27:3ÞÞ

xð5; tÞ ¼ 1

407

�
4

628
sinð628t � 9:1Þ þ 2

1884
sinð1884t � 27:3Þ

�
.

Note that each term in the particle displacement is 90 degrees out of time phase with the

velocity and that the wave shape is different. As might be expected, integration

diminishes the higher frequencies. These equations are plotted in Fig. Ex. 2.3b.

b. The rms magnitude of a sine wave is equal to its peak amplitude divided by
ffiffiffi
2

p
. This

may be verified by squaring the sine wave and finding the average value over one

cycle and then taking the square root of the result. If two sine waves of different

frequencies are present at one time, the rms value of the combination is equal to the

square root of the sums of the squares of the individual peak amplitudes divided byffiffiffi
2

p
, so that

p ¼ 1ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
42 þ 22

p
¼ 3:16 Pa;

u ¼ 1

407
ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
42 þ 22

p
¼ 7.77� 10�3 m=s;

xx ¼ 1

407
ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�

4

628

�2

þ
�

2

1884

�2
s

¼ 1:12� 10�5 m.

c. The rms values of u and xx are independent of x for a plane progressive sound wave.

p(0,t)
ω
ω
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 = 1884 
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Figure Example 2.3A
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407

6

u(x,t) 

407

6−

628407

4

⋅

ξ (x,t) 

628407

4

⋅
−

Figure Example 2.3B

2.4 SOLUTION OF WAVE EQUATION FOR AIR IN A TUBE
TERMINATED BY AN IMPEDANCE

For this example of wave propagation, we shall consider a hollow cylindrical tube,

terminated at one end (x ¼ 0) by an impedance ZT and at the other (x ¼ l ) end by a flat

vibrating piston (see Fig. 2.4). Alternatively, we could have interchanged the positions of

the piston and termination impedance, but the arrangement shown has been chosen

because it simplifies the equations. For example, in the case of a rigid termination the

particle velocity is shown to be proportional to sin x as opposed to sin (l � x). However,

care needs to be taken when calculating the impedance where the velocity has to be

taken as that in the negative x direction. The angular frequency of vibration of the piston
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is u, and its rms velocity is eu0 at x ¼ l. We shall assume that the diameter of the tube is

sufficiently small so that the waves travel down the tube with plane wave fronts. For this

to be true, the ratio of the wavelength of the sound wave to the diameter of the tube must

be greater than about 6.

Particle velocity
The form of solution we shall select is Eq. (2.48). If l is the length of the tube, then at

x ¼ l the particle velocity must be equal to the velocity eu0 of the piston. The boundary
conditions are:

At x ¼ l; euðlÞ ¼ eu0;
so that

euðlÞ ¼ epþe�jkl � ep�e jkl
r0c

¼ eu0. (2.50)

At x ¼ 0, epð0Þ=ð�euð0ÞÞ ¼ Zsð0Þ ¼ ZT ;

where the pressure is taken from Eq. (2.46). Note that velocity is negative here because it

is in the reverse x direction. Henceepð0Þ
�euð0Þ ¼ epþ þ ep�ep� � epþ r0c ¼ ZT . (2.51)

Driving piston 
Hollow cylindrical tube 

Impedance termination ZT

0 lS = cross-sectional area 
)~(),( 0utlu ℜ=

x

Figure 2.4 Tube with rigid side walls and termination impedance ZT. The velocity at x ¼ 0 has a value
of u0 cos ut m/s.
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Transmitted and reflected pressures
Eliminating ep� between Eqs. (2.50) and (2.51) yields

epþ ¼ ðr0c � ZT Þr0ceu0
r0cðe jkl þ e�jklÞ þ ZT ðe jkl � e�jklÞ . (2.52)

Similarly, eliminating epþ between Eqs. (2.50) and (2.51) yields

ep� ¼ �ðr0c þ ZT Þr0ceu0
r0cðe jkl þ e�jklÞ þ ZT ðe jkl � e�jklÞ . (2.53)

Remember that

sin y ¼ 	
e jy � e�jy

�
ð2jÞ and cos y ¼ 	
e jy þ e�jy

�

2.

Hence

epþ ¼ ðr0c � ZT Þr0ceu0
2ðr0c cos kl þ jZs sin klÞ (2.54)

and

ep� ¼ �ðr0c þ ZT Þr0ceu0
2ðr0c cos kl þ jZs sin klÞ ; (2.55)

whereep� is the transmitted pressure magnitude andepþ is reflected pressure magnitude. The

amount of sound reflected depends on how the tube is terminated. The reflection

coefficient G is given by

G ¼ epþep� ¼ ZT � r0c

ZT þ r0c
: (2.56)

In some places along the tube, the reflected wave will interfere constructively with the

transmitted wave, thus producing a pressure maximum, and at others it will interfere

destructively causing a pressure minimum. If the reflection is 100%, these maxima and

minima become antinodes and nodes respectively. We shall examine these in greater detail

in the next paragraph, which describes the case of a rigid termination. The ratio of

maximum to minimum pressure along the tube is given by the Standing Wave Ratio or

SWR where

SWR ¼ 1þ jGj
1� jGj: (2.57)
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Of particular interest are the cases where (1) the pressure is zero at the termination

(resilient termination), (2) the termination impedance is equal to the characteristic

impedance of the tube (anechoic termination), and (3) the velocity is zero at the

termination (rigid termination). All three cases are summarized in Table 2.1. The first

case produces maximum negative reflection (that is, with reversed phase), the second

zero reflection, and the third maximum positive reflection.

Sound-proofing materials are often defined by the absorption coefficient a, which is

given by

a ¼ 1� ��Gj2.
Impedance
Inserting Eqs. (2.54) and (2.55) into Eqs. (2.46) and (2.48) gives us

epðxÞ ¼ �ZT cos kxþ jr0c sin kx

r0c cos kl þ jZT sin kl
r0ceu0; (2.58)

euðxÞ ¼ r0c cos kxþ jZT sin kx

r0c cos kl þ jZT sin kl
eu0. (2.59)

The specific acoustic impedance Zs along the tube is then given by the ratio of

pressure to velocity:

ZsðxÞ ¼ epðxÞ
�euðxÞ ¼

ZT

r0c
þ j tan kx

1þ j
ZT

r0c
tan kx

r0c. (2.60)

Let us now recast this equation into two series impedances, as seen at the piston:

ZsðlÞ ¼
�

1

ZT
þ j

1

r0c
tan kl

��1

þ
�
ZT

r20c
2
� j

cot kl

r0c

��1

; (2.61)

the equivalent circuit for which is shown in Fig. 2.5.

Table 2.1 Termination impedances, standing wave ratios, and reflection coefficients for three types
of tube termination
Quantity Resilient termination Anechoic termination Rigid termination

Termination impedance (ZT) 0 r0c N
Standing wave ratio (SWR) N 1 N
Reflection coefficient (G) �1 0 1

Absorption coefficient (a) 0 1 0
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Amazingly, a tube with any termination impedance ZT can be represented by the

impedance of a blocked tube (with ZT ¼N) in series with an open tube (with ZT ¼ 0)

and two external impedances connected across them, which are related to the termi-

nation impedance ZT and characteristic impedance r0c. However, this makes more

sense when we consider that when the impedance of the open tube is zero, the

impedance of the blocked tube is infinite and vice versa. Hence the impedance seen

between the input terminals simply alternates between ZT and (r0c)
2/ZT as we sweep the

piston generator frequency, which is entirely consistent with the standing wave ratio.

When ZT ¼ r0c, the two series impedances are the complex conjugates of each other

and we just see the characteristic impedance r0c at the input terminals. We shall use

equivalent circuits extensively in this text. Also, it will be shown in Figs. 10.6 and 10.7

how the impedances of a blocked tube and open tube respectively may be represented by

arrays of electrical circuit elements.

Impedance measurement
If we place two probe microphones in the tube, with one at x ¼ l1 and the other at

x ¼ l2, then the ratio of the pressures epðl1Þ and epðl2Þ is given byepðl1Þepðl2Þ ¼ ZT cos kl1 þ jr0c sin kl1

ZT cos kl2 þ jr0c sin kl2
; (2.62)

which is independent of eu0. The termination impedance is then given by

ZT

r0c
¼ �j

sin kl1 � ðsin kl2Þepðl1Þ=epðl2Þ
cos kl1 � ðcos kl2Þepðl1Þ=epðl2Þ; (2.63)

which is the principle of an impedance tube, which is used for measuring samples of

material for which the impedance is unknown. An elegant feature of the method is that

the measurement is independent of the piston velocity or actual magnitudes of the

)(~ lp
ZT

TZ
c22

0ρ

− jρ0c cot kl
(blocked tube) 

jρ0c tan kl
(open tube) 

0
~u

0
~u

Figure 2.5 Equivalent electrical circuit for a tube with a termination impedance ZT, in which the single
tube is represented by two tube impedances, each in parallel with an external impedance. The piston
is represented by a current generator. The reason for this will become clearer in the next chapter.
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pressures. Only the relative pressure ratio is needed to calculate the impedance. However,

when the impedance is a large multiple (or small fraction) of r0c, the calibration of the

microphones becomes very critical, as does the accuracy of the distances l1 and l2 be-

tween them and the sample.

Rigid termination (infinite impedance)
If we let ZT ¼N in Eq. (2.59), the tube is terminated with a rigid wall, which gives us

euðxÞ ¼ eu0sin kx

sin kl
(2.64)

or

uðx; tÞ ¼ u0e
jut sin kx

sin kl
. (2.65)

Refer to Fig. 2.6. If the length l and the frequency are held constant, the particle

velocity will vary from a value of zero at x ¼ 0 to a maximum at x ¼ l/4, that is, at x

equal to one-fourth wavelength. In the entire length of the tube the particle velocity

varies according to a sine function.

Between the end of the tube and the l/4 point, the oscillatory motions are in phase. In

other words, there is no progressive phase shift with x. This type of wave is called a

standing wave [5] because, in the equation, x and ct do not occur as a difference or a sum

in the argument of the exponential function. Hence the wave is not propagated. In cases

where there are absolutely no losses, the term stationary wave [5] is also used, although

this can only be approximated in practice.

In the region between x ¼ l/4 and x ¼ l/2, the particle velocity still has the same

phase except that its amplitude decreases sinusoidally. At x ¼ l/2, the particle velocity is

zero. In the region between x ¼ l/2 and x ¼ l the particle velocity varies with x

x = 0 x = l
x

4
λ

4
λ

)(~ bu  = 0)(~ au  = max

a b

)0(~u  = 0

Figure 2.6 Portion of the tube with a rigid termination showing the direction and magnitude of
movement of the air particles as a function of x. At position a, the particle velocity and displacement
are a maximum. At position b, they are zero.
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according to a sine function, but the particles move 180 degrees out of phase with those

between 0 and l/2. This is seen from Eq. (2.64), wherein the sines of arguments greater

than p are negative.

If we fix our position at some particular value of x and assume constant l, then, as we

vary frequency, both the numerator and denominator of Eq. (2.64) will vary. When kl is

some multiple of p, the particle velocity will become very large, except at x ¼ l or at

points where kx is a multiple of p, that is, at points where x equals multiples of l/2. Then

for kl ¼ np

ljeu¼N ¼ nl

2
n ¼ 1; 2; 3; ::: (2.66)

Eq. (2.64) would indicate an infinite velocity under this condition. In reality, the

presence of some dissipation in the tube, which was neglected in the derivation of the

wave equation, will keep the particle velocity finite, though large.

The particle velocity euðxÞwill be zero at those parts of the tube where kx ¼ np and n

is an integer or zero [7]. That is,

xjeu¼0
¼ l

2
n n ¼ 1; 2; 3;. (2.67)

In other words, there will be planes of zero particle velocity at points along the length

of the tube whenever l is greater than l/2.

Some examples of the particle velocity for l slightly greater than various multiples of

l/2 are shown in Fig. 2.7. Two things in particular are apparent from inspection of these

graphs. First, the quantity n determines the approximate number of half wavelengths that

exist between the two ends of the tube. Secondly, for a fixedeu0, the maximum velocity of

the wave in the tube will depend on which part of the sine wave falls at x ¼ l. For

example, if l � nl/2 ¼ l/4, the maximum amplitude in the tube will be the same as that

at the piston. If l � nl/2 is very near zero, the maximum velocity in the tube will become

very large.

Let us choose a frequency such that n ¼ 2 as shown. Two factors determine the

amplitude of the sine function in the tube. First, at x ¼ l the sine curve must pass

through the point u0. Second, at x ¼ 0 the sine curve must pass through zero. It is

obvious that one and only one sine wave meeting these conditions can be drawn so that

the amplitude is determined. Similarly, we could have chosen a frequency such that

n ¼ 2, but where the length of the tube is slightly less than two half wavelengths. If this

case had been asked for, the sine wave would have ended with a negative instead of a

positive slope at x ¼ l.
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Figure 2.7 Variation of the particle velocity u(x,t) for t ¼ 0, as a function of the distance along the tube
of Fig. 2.4 for three frequencies, i.e., for three wavelengths. At x ¼ l, the rms particle velocity is u0, and
at x ¼ 0, the particle velocity is zero. The period T ¼ 1/f.
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Sound pressure
The sound pressure in the tube may be found from the velocity with the aid of the

equation of motion Eq. (2.4a), which, in the steady state, becomes

epðxÞ ¼ �jur0

Z euðxÞ dx. (2.68)

The constant of integration in Eq. (2.68), resulting from the integration of Eq. (2.4a),

must be independent of x because we integrated with respect to x. The constant then

represents an increment to the ambient pressure of the entire medium through which the

wave is passing. Such an increment does not exist in our tube, so that in Eq. (2.68) we

have set the constant of integration equal to zero. Integration of Eq. (2.68), after we have

replaced euðxÞ by its value from Eq. (2.64), yields

epðxÞ ¼ jr0ceu0 cos kx
sin kl

(2.69)

or

pðx; tÞ ¼ jr0cu0e
jut cos kx

sin kl
. (2.70)

This result could alternatively have been obtained by setting ZT ¼N in Eq. (2.58).

The pressure ep will be zero at those points of the tube where kx ¼ np þ p/2 (where n is

an integer or zero),

xjep¼0
¼ l

2

�
nþ 1

2

�
. (2.71)

The pressure will equal zero at one or more planes in the tube whenever l is greater

than l/4. Some examples are shown in Fig. 2.8. Here again, quantity n is equal to an

approximate number of half wavelengths in the tube.

Refer once more to Fig. 2.7, which is drawn for t ¼ 0. The instantaneous particle

velocity is at its maximum (as a function of time). By comparison, in Fig. 2.8 at t ¼ 0, the

instantaneous sound pressure is zero. At a later time t ¼ T/4 ¼ 1/(4f ), the instantaneous

particle velocity has become zero and the instantaneous sound pressure has reached its

maximum. Eqs. (2.64) and (2.69) say that whenever kx is a small number, the sound

pressure leads by one-fourth period behind the particle velocity. At some other places in

the tube, for example when x lies between l/4 and l/2, the sound pressure lags the

particle velocity by one-fourth period.

To see the relation between p and umore clearly, refer to Fig. 2.7 and Fig. 2.8, for the

case of n ¼ 2. In Fig. 2.7, the particle motion is to the right whenever u is positive and to

The wave equation and solutions 51



the left when it is negative. Hence, at x ¼ l/2, the particles on either side are moving

toward each other, so that one-fourth period later the sound pressure will have built up

to a maximum, as can be seen from Fig. 2.8. At the 2l/2 point, the particles are moving

apart, so that the pressure is dropping to below barometric as can be seen from Fig. 2.8.

(λ/2) 

4
3T

t =

2(λ/2) 

4
3T

t =

3(λ/2) 

4
3T

t =

t = T/4 

t = T/4

p(x,t)

0

x = 0 

p(x,t)

0

x = 0 

p(x,t)

0

x = 0 

x = l

x = l

x = l

t = T/4 

t = 0; T/2; T

t = 0; T/2; T

t = 0; T/2; T

n = 1 

n = 2 

n = 3 

x

x

x

Figure 2.8 Variation of the sound pressure p (x,t) as a function of the distance along the tube for three
frequencies, i.e., for three wavelengths. At x ¼ l, the rms particle velocity is u0, and at x ¼ 0, it is zero.
The period T equals 1/f.
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Fig. 2.7 and Fig. 2.8 also reveal that, wherever along the tube the magnitude of the

velocity is zero, the magnitude of the pressure is a maximum, and vice versa. Hence, for

maximum pressure, Eq. (2.67) applies.

Specific acoustic impedance
It still remains for us to solve for the specific acoustic impedance Zs, at any plane x, in the

tube. Taking the ratio of Eq. (2.69) to Eq. (2.64) or setting ZT ¼N in Eq. (2.60) yields

Zs ¼ epðl0Þ
�euðl0Þ ¼ �jr0c cot kl

0 ¼ jXs; (2.72)

where Xs is the reactance, and where we have set

x ¼ l0. (2.73)

That is, l0 is the distance between any plane x in Fig. 2.4 and the rigid end of the tube
at 0. The �j indicates that at low frequencies where cot kl0 z 1/kl0, the particle velocity
leads the pressure in time by 90 degrees and the reactance Xs is negative. At all fre-

quencies the impedance is reactive and either leads or lags the pressure by exactly

90 degrees depending, respectively, on whether Xs is negative or positive. The reactance

Xs varies as shown in Fig. 2.9. If the value of kl0 is small, we may approximate the

cotangent by the first two terms of a series

cot kl0z
1

kl0
� kl0

3
. (2.74)

This approximation is valid whenever the product of frequency times the distance

from the rigid end of the tube to the point of measurement is very small. If the second

term is very small, then it may be neglected with respect to the first.

−jZS = XS

0

l′ = 0 

n = 3 

x

l′ = λ /2 l′ = λ l′ = l

Figure 2.9 The specific acoustic reactance (prms/urms) along the tube of Fig. 2.4 for a particular fre-
quency, i.e., a particular wavelength where 3(l/2) is a little less than the tube length l. For this case, the
number of zeros is three, and the number of poles is four.
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Let us see how small the ratio of the distance l0 to the wavelength l must be if the

second term of Eq. (2.74) is to be 3% or less than the first term. That is, let us solve for

l0/l from

2pl0

3l
� 0:03

l

2pl0
; (2.75)

which gives us

l0

l
� 0:05: (2.76)

In other words, if cot kl0 is to be replaced within an accuracy of 3% by the first term of

its series expansion, l0 must be less than one-twentieth wavelength in magnitude.

Assuming l0 < l/20, Eq. (2.72) becomes

Zs ¼ jXs ¼ �j
r0c

kl0
¼ 1

juðl0=r0c2Þ
h

1

juCs
rayls. (2.77)

Hence, the specific acoustic impedance of a short length of tube can be represented as

a “capacitance” called specific acoustic compliance, of magnitudeCs ¼ l0/r0c2. Note also

that Cs ¼ l0/gP0, because of Eq. (2.19).
The acoustic impedance is of the same type, except that an area factor appears so that

ZA ¼ ep
Seu ¼ 1

juðV=r0c
2Þ h

1

juCA
N$s


m5; (2.78)

where V ¼ l0S is the volume and S is the area of cross section of the tube.CA is called the

acoustic compliance and equals V/r0c
2. Note also that CA ¼V/gP0, from Eq. (2.19).

Example 2.3. A cylindrical tube is to be used in an acoustic device as an impedance

element. (a) The impedance desired is that of a compliance. What length should it have

to yield a reactance of 1.4 � 103 rayls at an angular frequency of 1000 rad/s? (b) What is

the relative magnitude of the first and second terms of Eq. (2.74) for this case?

Solution: The reactance of such a tube is

ðaÞ Xs ¼ 1:4� 103 ¼ gP0
ul0

¼ 1:4� 105

103l0
.

Hence, l0 ¼ 0.1 m.

ðbÞ kl
0

3
÷

1

kl0
¼ k2l02

3
¼ u2l02

3c2
¼ 106 � 10�2

ð3Þð344:8Þ2 ¼ 0:028:

Hence, the second term is about 3% of the first term.
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2.5 IMPEDANCE OF A CLOSED TUBE USING THE
INHOMOGENEOUS WAVE EQUATION

Boundary conditions
We have already found the impedance of a closed tube by taking the solution to the

following Helmholtz wave equation�
v2

vx2
þ k2

�epðxÞ ¼ 0 (2.79)

and applying boundary conditions to the solution. It is known as a homogeneous wave

equation because there are no sound sources explicit in the equation. These are included

in the boundary conditions that are applied to the solution. Here we shall consider the

inhomogeneous wave equation�
v2

vx2
þ k2

�epðxÞ ¼ �dðx� lÞ v

vx
epðxÞjx¼l; (2.80)

which includes the sound source at x ¼ l on the right-hand side, where d is the Dirac

delta function. This useful function describes a singularity when its argument is zero (in

this case when x ¼ l ) but returns a zero value for all other arguments. In solving the

equation using this alternative method, we shall introduce some useful techniques for

approaching acoustical problems in general, which make use of orthogonality and the

properties of the Dirac delta function. The solution itself will provide useful identities for

trigonometrical functions with numerical advantages over more conventional ones. In

Fig. 2.6, the piston at x ¼ l oscillates with velocity eu0. Hence, using the relationship of

Eq. (2.4a), gives �
v2

vx2
þ k2

�epðxÞ ¼ jkr0cdðx� lÞeu0. (2.81)

In other words, we are describing the piston as a point source at the end of the tube.

Solution of the inhomogeneous wave equation for a closed tube
Let the solution be in the form of an eigenfunction expansion

epðxÞ ¼
XN
n¼ 0

eAn cosðnpx=lÞ. (2.82)

When the piston is stationary, this satisfies the boundary conditions

v

vx
epðxÞjx¼0 ¼ 0;

v

vx
epðxÞjx¼l ¼ 0: (2.83)

The wave equation and solutions 55



Inserting Eq. (2.82) in Eq. (2.81) and multiplying both sides by cos(mpx/l ) while

integrating over the length of the tube givesXN
n¼ 0

�
k2 � n2p2

l2

�eAn

Z l

0

cosðmpx=lÞ cosðnpx=lÞdx

¼ jkr0ceu0 Z l

0

cosðmpx=lÞdðx� lÞdx.
(2.84)

The two integrals have the following identities

Z l

0

cosðmpx=lÞ cosðnpx=lÞdx ¼

8>>><>>>:
0; ms n

l; m ¼ n ¼ 0

l=2; m ¼ ns 0

(2.85)

Z l

0

cosðmpx=lÞdðx� lÞdx ¼ cosðmpÞ ¼ ð�1Þm. (2.86)

The first is the property of orthogonality and the second is a property of the Dirac delta

function Z N

�N
FðxÞdðx� lÞdx ¼ FðlÞ. (2.87)

Hence, cos(mpx/l) in this case is the orthogonal (or normalizing) function and we can

eliminate the summation to yield

eAn ¼ jklr0ceu0ð2� d0nÞð�1Þn
k2l2 � n2p2

; (2.88)

so that the solution of Eqs. (2.80) and (2.81), given by Eq. (2.82), becomes

epðxÞ ¼ jklr0ceu0XN
n¼ 0

ð2� d0nÞð�1Þn cosðnpx=lÞ
k2l2 � n2p2

; (2.89)

where dmn is the Kronecker delta function

d0n ¼
(
0; ms n

1; m ¼ n.
(2.90)
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Eq. (2.89) is equivalent to the solution of Eq. (2.79), given by Eq. (2.69)

epðxÞ ¼ jr0ceu0 cos kx
sin kl

. (2.91)

Impedance of the closed tube
We saw previously that the impedance of a closed tube is given by

Zs ¼ epðlÞ
�eu0 ¼ �jr0c cot kl; (2.92)

which is equivalent to the following expression obtained using Eq. (2.89)

Zs ¼ epðlÞ
�eu0 ¼ �jr0c

XN
n¼ 0

ð2� d0nÞkl
k2l2 � n2p2

. (2.93)

Because modes occur when kl ¼ np, the eigenfrequencies are given by

f ¼ nc

2l
or l ¼ n

2
l; n ¼ 1; 2; 3. (2.94)

Expansions for cot and csc
We have thus obtained a useful expansion for cot kl, which converges when truncated to

a finite number of terms and retains the singularities at kl ¼ np, unlike the more

conventional formula cot kl ¼ (cos kl)/(sin kl), where

sin kl ¼
XN
n¼ 0

ð�1ÞnðklÞ2nþ1

ð2nþ 1Þ! ; (2.95)

cos kl ¼
XN
n¼ 0

ð�1ÞnðklÞ2n
ð2nÞ! . (2.96)

Hence

cot x ¼
XN
n¼ 0

ð2� d0nÞx
x2 � n2p2

. (2.97)

Similarly, by comparing the pressures given by Eqs. (2.89) and (2.91) at x ¼ 0, we

obtain

csc x ¼
XN
n¼ 0

ð2� d0nÞð�1Þnx
x2 � n2p2

. (2.98)
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It is also useful to have an expression for the difference between the above

csc x� cot x ¼ tan
x

2
¼
XN
n¼ 0

4x

ð2nþ 1Þ2p2 � x2
. (2.99)

Hence

tan x ¼
XN
n¼ 0

2x

ðnþ 1=2Þ2p2 � x2
. (2.100)

2.6 IMPEDANCE OF AN OPEN TUBE USING THE INHOMOGENEOUS
WAVE EQUATION

Solution of the inhomogeneous wave equation for an open tube
If the tube of Fig. 2.6 is open at x ¼ 0 instead of closed, let the solution be in the form of

an eigenfunction expansion

epðxÞ ¼
XN
n¼ 0

eAn sinððnþ 1=2Þpx=lÞ. (2.101)

When the piston is stationary, this satisfies the boundary conditions

epðxÞjx¼0 ¼ 0;
v

vx
epðxÞjx¼l ¼ 0: (2.102)

Inserting Eq. (2.101) in Eq. (2.81) and multiplying both sides by sin((mþ1/2)px/l)

while integrating over the length of the tube givesXN
n¼ 0

 
k2 � ðnþ 1=2Þ2p2

l2

!eAn

Z l

0

sinððmþ 1=2Þpx=lÞ sinððnþ 1=2Þpx=lÞdx

¼ jkr0ceu0 Z l

0

sinððmþ 1=2Þpx=lÞdðx� lÞdx.

(2.103)

The two integrals have the following identitiesZ l

0

sinððmþ 1=2Þpx=lÞ sinððnþ 1=2Þpx=lÞ dx ¼
(
0; ms n

l=2; m ¼ n
(2.104)Z l

0

sinððmþ 1=2Þpx=lÞdðx� lÞdx ¼ sinððmþ 1=2ÞpÞ ¼ ð�1Þm. (2.105)
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The first is the property of orthogonality and the second is a property of the Dirac delta

function Z N

�N
FðxÞdðx� lÞdx ¼ FðlÞ. (2.106)

Hence, sin((mþ1/2)px/l ) in this case is the orthogonal (or normalizing) function and

we can eliminate the summation to yield

eAn ¼ 2jklr0ceu0 ð�1Þn
k2l2 � ðnþ 1=2Þ2p2

; (2.107)

so that the solution of Eqs. (2.80) and (2.81), given by Eq. (2.101), becomes

epðxÞ ¼ 2jklr0ceu0XN
n¼ 0

ð�1Þn sinððnþ 1=2Þpx=lÞ
k2l2 � ðnþ 1=2Þ2p2

. (2.108)

Eq. (2.108) is equivalent to the solution of Eq. (2.79), which would be obtained by

applying the boundary conditions to the solution to the homogeneous wave equation,

given by

epðxÞ ¼ �jr0ceu0sin kx

cos kl
. (2.109)

Impedance of the open tube
We saw previously that the impedance of an open tube is given by

Zs ¼ epðlÞ
�eu0 ¼ jr0c tan kl; (2.110)

which is equivalent to the following expression obtained using Eq. (2.108)

Zs ¼ epðlÞ
�eu0 ¼ jr0c

XN
n¼ 0

2kl

ðnþ 1=2Þ2p2 � k2l2
. (2.111)

Because modes occur when kl ¼ (n þ ½)p, the eigenfrequencies are given by

f ¼ ð2nþ 1Þc
4l

or l ¼ 2nþ 1

4
l; n ¼ 0; 1; 2; 3. (2.112)

Expansion for tan
We have thus obtained a useful expansion for tan kl, which converges when truncated to

a finite number of terms and retains the singularities at kl ¼ (n + 1/2)p, unlike the more
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conventional formula tan kl ¼ (sin kl)/(cos kl), where the sine and cosine expansions are

given by Eqs. (2.95) and (2.96) respectively. Hence

tan x ¼
XN
n¼ 0

2x

ðnþ 1=2Þ2p2 � x2
. (2.113)

2.7 SOLUTION OF WAVE EQUATION FOR AIR IN A TUBE FILLED
WITH ABSORBENT MATERIAL

Ducts and tubes are often filled with absorbent material in order to minimize

standing waves, such as in transmission-line loudspeaker enclosures or exhaust-pipe muf-

flers, for example. Let us now modify the one-dimensional wave equation in rectangular

coordinates, Eq. (2.34), taking into account the thermal and viscous losses in the material�
P0

v

vx2
� juRf þ u2r0

�ep ¼ 0 (2.114)

where in the steady state we have let v2


vt2 ¼ �u2 and Rf is the specific flow resistance

per unit length of the absorptive material in rayls/m. For simplicity we are assuming that

the resistance is constant for all frequencies. A more comprehensive treatment of sound

in absorbent materials will be given in Section 7.6. Notice too that we have omitted the

specific heat ratio g because we are assuming that the heat conduction within the material

is such that the pressure fluctuations are isothermal. We define a complex density by

r ¼ r0 þ
Rf

ju
; (2.115)

so that the wave equation simplifies to

�
v2

vx2
þ u2

c2

�ep ¼ 0; (2.116)

where

c ¼
ffiffiffiffiffi
P0

r

r
. (2.117)

Hence the solution is epðxÞ ¼ epþe�jkx þ p�e jkx; (2.118)

where the complex wave number is given by

k ¼ u

c
¼ u

ffiffiffiffiffi
r

P0

r
; (2.119)
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and the characteristic impedance of the tube is

Zs ¼
ffiffiffiffiffiffiffiffi
rP0

p
. (2.120)

In general, viscous or flow losses are dynamic and therefore associated with a change

in the density of the medium whereas thermal conduction is static and therefore asso-

ciated with a change in the bulk modulus. Viscous and thermal losses also occur in

narrow unfilled tubes and these will be treated in some detail in Sections 4.22 to 4.24.

2.8 FREELY TRAVELING PLANE WAVE

Sound pressure
If the rigid termination of Fig. 2.4 is replaced by a perfectly absorbing termination, a

backward-traveling wave will not occur. Hence, Eq. (2.46) becomes

epðxÞ ¼ epþe�jkx; (2.121)

where epþ is the complex amplitude of the wave. This equation also applies to a plane

wave traveling in free space.

Particle velocity
From Eq. (2.4a) in the steady state, we have

euðxÞ ¼ �1

jkr0c

v

vx
epðxÞ. (2.122)

Hence,

euðxÞ ¼ epþ
r0c

e�jkx ¼ epðxÞ
r0c

. (2.123)

The particle velocity and the sound pressure are in phase. This is mathematical proof of

the statement made in connection with the qualitative discussion of the wave propagated

from a vibrating wall in Chapter 1 and Fig. 1.1.

Specific acoustic impedance
The specific acoustic impedance is

Zs ¼ epðxÞeuðxÞ ¼ r0c rayls. (2.124)
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This equation says that in a plane freely traveling wave the specific acoustic

impedance is purely resistive and is equal to the product of the average density of the gas

and the speed of sound. This particular quantity is generally called the characteristic

impedance of the gas because its magnitude depends on the properties of the gas alone. It is

a quantity that is analogous to the surge impedance of an infinite electrical line. For air at

22�C and a barometric pressure of 105 Pa, its magnitude is 407 rayls.

2.9 FREELY TRAVELING CYLINDRICAL WAVE

Sound pressure
A solution to the cylindrical wave equation (2.23) is

epðwÞ ¼ epþHð2Þ
0 ðkwÞ þ ep�Hð1Þ

0 ðkwÞ; (2.125)

where epþ is the amplitude of the sound pressure in the outgoing wave at unit distance

from the axis of symmetry andep� is the same for the reflected wave.H 0
(1)

(x) andH 0
(2)

(x)

are Hankel functions defined by

H
ð1Þ
0 ðxÞ ¼ J0ðxÞ þ jY0ðxÞ; (2.126)

H
ð2Þ
0 ðxÞ ¼ J0ðxÞ � jY0ðxÞ; (2.127)

where J0(x) and Y0(x) are Bessel functions of the first and second kind respectively, as

plotted in Fig. 2.10. The “2” in parentheses denotes an outgoing cylindrical wave and

the “1” denotes an incoming one. In the far field

epðwÞjw/N ¼
ffiffiffiffiffiffiffiffiffi
2

pkw

r �epþe�jðkw�p=4Þ þ ep�e jðkw�p=4Þ
�
. (2.128)

Figure 2.10 Bessel functions of the first (black curve) and second (gray curve) kind.
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We can see from Fig. 2.10 that cylindrical waves, which are essentially two-

dimensional because of the lack of axial dependency, differ from plane ones in two re-

spects: firstly the radial wavelength is longer nearer the axis of symmetry than in the far

field; secondly they decay in amplitude as they spread out, adopting an inverse square-

root law in the far field. The latter makes sense when we consider that the area of the

wave front is proportional to the radial distance w. The radiated power is the intensity

multiplied by the area, where the intensity is given by Eq. (1.12). The intensity, in turn, is

proportional to the square of the pressure and therefore inversely proportional to the

radial distance. Hence the power remains constant. The same kind of wave deformation

can be seen if you drop a pebble in a pond. Note the singularity in the Y(x) function

when x ¼ 0. If there are no reflecting surfaces in the medium, only the first term of

Eq. (2.125) is needed, i.e.,

epðwÞ ¼ epþHð2Þ
0 ðkwÞ. (2.129)

Particle velocity
With the aid of Eq. (2.4b), we solve for the particle velocity in the w direction:

euðwÞ ¼ � 1

jkr0c

v

vw
epðwÞ

¼ �j
epþ
r0c

H
ð2Þ
1 ðkwÞ.

(2.130)

In the far field

euðwÞ ¼ �j
epþ
r0c

ffiffiffiffiffiffiffiffiffi
2

pkw

r
e�jðkw�3p=4Þ ¼ epþ

r0c

ffiffiffiffiffiffiffiffiffi
2

pkw

r
e�jðkw�p=4Þ. (2.131)

Specific acoustic impedance
The specific acoustic impedance is found from Eq. (2.129) divided by Eq. (2.130):

Zs ¼ epðwÞeuðwÞ ¼ jr0c
H

ð2Þ
0 ðkwÞ

H
ð2Þ
1 ðkwÞ

rayls. (2.132)

Plots of the magnitude and phase angle of the impedance as a function of kw are given

in Fig. 2.11 and Fig. 2.12 respectively.

For large values of kw, that is, for large distances or for high frequencies, Eq. (2.132)

becomes, approximately,

Zszr0c rayls. (2.133)
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The impedance here is nearly purely resistive and approximately equal to the char-

acteristic impedance for a plane freely traveling wave. In other words, the specific

acoustic impedance for a large distance from a cylindrical source in free space is nearly

equal to that in a tube in which no reflections occur from the end opposite the

source.
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Figure 2.11 Plot of the magnitude of the specific acoustic-impedance ratio jZsj/(r0c) in a cylindrical
freely traveling wave as a function of kw, where k is the wave number equal to u/c or 2p/l andw is the
distance from the axis of symmetry. jZsj is the magnitude of the ratio of pressure to particle velocity in
a cylindrical free-traveling wave, and r0c is the characteristic impedance of air.
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Figure 2.12 Plot of the phase angle, in degrees, of the specific acoustic-impedance ratio jZsj/r0c in a
cylindrical wave as a function of kw, where k is the wave number u/c or 2p/l and w is the distance
from the axis of symmetry.
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2.10 FREELY TRAVELING SPHERICAL WAVE

Sound pressure
A solution to the spherical wave Eq. (2.25) is

epðrÞ ¼ eAþ
e�jkr

r
þ eA�

e jkr

r
; (2.134)

where eAþ is the amplitude of the sound pressure in the outgoing wave at unit distance

from the center of the sphere and eA� is the same for the reflected wave. This equation

can also be written in terms of spherical Hankel functions h0
(1)
(x) and h0

(2)
(x)

epðrÞ ¼ �jk
�eAþh

ð2Þ
0 ðkrÞ � eA�h

ð1Þ
0 ðkrÞ

�
; (2.135)

which are also known as Hankel functions of fractional order, as defined by

h
ð1Þ
0 ðxÞ ¼ j0ðxÞ þ jy0ðxÞ; (2.136)

h
ð2Þ
0 ðxÞ ¼ j0ðxÞ � jy0ðxÞ; (2.137)

j0ðxÞ ¼ sin x

x
; (2.138)

y0ðxÞ ¼ �cos x

x
; (2.139)

where j0(x) and y0(x) are spherical Bessel functions of the first and second kind

respectively, as plotted in Fig. 2.13. The “2” in parentheses denotes an outgoing spherical

wave and the “1” denotes an incoming one. These spherical Bessel functions are related

to the cylindrical Bessel functions of half-integer order J1
2
ðxÞ and Y1

2
ðxÞ by

j0ðxÞ ¼
ffiffiffiffiffi
p

2x

r
J1
2
ðxÞ; (2.140)
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Figure 2.13 Spherical Bessel functions of the first (black curve) and second (gray curve) kind.
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y0ðxÞ ¼
ffiffiffiffiffi
p

2x

r
Y1

2
ðxÞ. (2.141)

We can see that spherical waves differ from cylindrical ones in two respects: first, the

radial wavelength remains constant as they progress, as is the case with plane waves;

second, although they decay in amplitude as they spread out, they adopt a direct inverse

law in the far field. The latter makes sense when we consider that the area of the wave

front is proportional to the square of the radial distance r. The radiated power is the

intensity multiplied by the area, where the intensity is given by Eq. (1.12). The intensity,

in turn, is proportional to the square of the pressure and therefore inversely proportional

to the square of the radial distance. Hence the power remains constant.

If there are no reflecting surfaces in the medium, only the first term of this equation is

needed, i.e.,

epðrÞ ¼ eAþ
e�jkr

r
. (2.142)

Particle velocity
With the aid of Eq. (2.4b), solve for the particle velocity in the r direction:

euðrÞ ¼ 1

�jkr0c

v

vr
epðrÞ

¼
eAþ
r0c

�
1þ 1

jkr

�
e�jkr

r
.

(2.143)

Specific acoustic impedance
The specific acoustic impedance is found from Eq. (2.142) divided by Eq. (2.143),

Zs ¼ epðrÞeuðrÞ ¼ r0c
jkr

1þ jkr
¼ r0ckrffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ k2r2
p


90� � tan�1kr rayls. (2.144)

Plots of the magnitude and phase angle of the impedance as a function of kr are given

in Figs. 2.14 and 2.15 respectively.

For large values of kr, that is, for large distances or for high frequencies, this equation

becomes, approximately,

Zszr0c rayls. (2.145)

The impedance here is nearly purely resistive and approximately equal to the char-

acteristic impedance for a plane freely traveling wave. In other words, the specific
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acoustic impedance for a large distance from a spherical source in free space is nearly

equal to that in a tube in which no reflections occur from the end opposite the source.

The important steady-state relations derived in this chapter are summarized in

Table 2.2.
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Figure 2.14 Plot of the magnitude of the specific acoustic-impedance ratio jZsj/(r0c) in a spherical
freely traveling wave as a function of kr, where k is the wave-number equal to u/c or 2p/l and r is the
distance from the center of the spherical source. jZsj is the magnitude of ratio of pressure to particle
velocity in a spherical free-traveling wave, and r0c is the characteristic impedance of air.
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Figure 2.15 Plot of the phase angle, in degrees, of the specific acoustic-impedance ratio jZsj/r0c in a
spherical wave as a function of kr, where k is the wave number u/c or 2p/l and r is the distance from
the center of the spherical source.
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PART V: SOLUTIONS OF THE HELMHOLTZ WAVE EQUATION
IN THREE DIMENSIONS

2.11 RECTANGULAR COORDINATES

In the steady state, Eq. (2.20b) for the three-dimensional wave equation in rectangular

coordinates can be written 	
V2 þ k2

�epðx; y; zÞ ¼ 0; (2.146)

where the Laplace operator is given by

V2 ¼ v2

vx2
þ v2

vy2
þ v2

vz2
(2.147)

Table 2.2 General and steady-state relations for small-signal sound propagation in gases
Name General equation Steady-state equation

Wave equation in p or u v2ðÞ
vx2

¼ 1

c2
v2ðÞ
vt2

V2ðÞ ¼ 1

c2
v2ðÞ
vt2

v2ðprÞ
vr2

¼ 1

c2
v2ðprÞ
vt2

v2ðÞ
vx2

¼ �u2

c2
ðÞ

V2ðÞ ¼ �u2

c2
ðÞ

V2ðprÞ ¼ �u2

c2
ðprÞ

Equation of motion vp

vx
¼ �r0

vu

vt

grad p ¼ �r0
vq

vt

u ¼ �1

jur0

vp

vx

p ¼ �jur0

Z
u dx

grad p ¼ �jur0q

Displacement x ¼ !u dt
x ¼ !q dt

x ¼ u

ju

x ¼ q

ju

Incremental density r ¼ r0

gP0

p ¼ p

c2

vr

vt
¼ �r0

vu

vx

r ¼ r0

gP0

p ¼ p

c2

r ¼ �r0

ju

vu

vx
Incremental temperature

DT ¼ T0

P0

g� 1

g
p DT ¼ T0

P0

g� 1

g
p
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and k ¼ u/c ¼ 2p/l. Let the solution to Eq. (2.146) be of the formepðx; y; zÞ ¼ ep0XðxÞYðyÞZðzÞ. (2.148)

Substituting this in Eq. (2.146) and dividing through by X(x)Y(y)Z(z) yields�
1

X

v2 X

vx2
þ k2x

�
þ
�
1

Y

v2Y

vy2
þ k2y

�
þ
�
1

Z

v2Z

vz2
þ k2z

�
¼ 0; (2.149)

where

k2 ¼ k2x þ k2y þ k2z. (2.150)

For example, in the case of a plane wave with a direction of travel in the zx plane at an

angle q to the z axis, we have kz ¼ k cos q, kx ¼ k sin q, and ky ¼ 0. The first bracketed

term of Eq. (2.149) depends on x only, whereas the second term depends on y only and

the third term z only. However, they must all add up to zero, which means that either

they all have constant values, the combination of which is zero, or they are all zero. We

shall assume the latter, in which case Eq. (2.149) can be separated into three equations,

one for each ordinate as follows.

The plane wave equation in x

�
v2

vx2
þ k2x

�
X ¼ 0: (2.151)

The plane wave equation in y

�
v2

vy2
þ k2y

�
Y ¼ 0: (2.152)

The plane wave equation in z

�
v2

vz2
þ k2z

�
Z ¼ 0: (2.153)

The solutions to Eqs. (2.151), (2.152) and (2.153) are

XðxÞ ¼ Xþe�jkxx þ X�e jkxx;
YðyÞ ¼ Yþe�jkyy þ Y�e jkyy; and
ZðzÞ ¼ Zþe�jkzz þ Z�e jkzz
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respectively, so that the solution to Eq. (2.146) is

epðx; y; zÞ ¼ epþe�jðkxxþkyyþkzzÞ þep�e jðkxxþkyyþkzzÞ. (2.154)

2.12 CYLINDRICAL COORDINATES

In problems where there is axial symmetry, cylindrical coordinates are often useful,

as shown in Fig. 2.16. We shall use these for planar circular radiators. In the xy plane of

the rectangular coordinate system, the x and y ordinates are replaced by polar ordinates w

and f where the radial ordinate w is given by

w ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
(2.155)

and the azimuthal ordinate f is given by

f ¼ arctan ðy=xÞ. (2.156)

Conversely

x ¼ w cos f; (2.157)

y ¼ w sin f. (2.158)

The rectangular z ordinate simply becomes the axial cylindrical ordinate. The three-

dimensional wave equation in cylindrical coordinates is	
V2 þ k2

�epðw;f; zÞ ¼ 0; (2.159)

where the Laplace operator is given by

V2 ¼ v2

vw2
þ 1

w

v

vw
þ 1

w2

v2

vf2
þ v2

vz2
; (2.160)

z

y

x

z

0

wφ

φP(w, ,z)

Figure 2.16 Cylindrical coordinates.
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which is often written in the following short form:

V2 ¼ 1

w

v

vw

�
w

v

vw

�
þ 1

w2

v2

vf2
þ v2

vz2
. (2.161)

Let the solution to Eq. (2.159) be of the form

epðw;f; zÞ ¼
XN
n¼ 0

epnWnðwÞFnðfÞZðzÞ. (2.162)

Substituting this in Eq. (2.159), multiplying through by w2, and dividing through by

Wn(w)Fn(f)Z(z) yields

w2

Wn

v2Wn

vw2
þ w

Wn

vWn

vw
þ k2ww

2 ¼ � 1

Fn

v2Fn

vf2
� w2

Z

v2Z

vz2
� k2zw

2; (2.163)

where

k2 ¼ k2w þ k2z. (2.164)

If both sides of Eq. (2.163) are equated to a constant of separation n2, then Eq. (2.163)

can then be separated into three equations for each ordinate as follows.

The radial equation in w

�
v2

vw2
þ 1

w

v

vw
þ k2w � n2

w2

�
WnðwÞ ¼ 0: (2.165)

The solution to this equation is of the form

WnðwÞ ¼ WnþHð2Þ
n ðkwwÞ þWn�Hð1Þ

n ðkwwÞ; (2.166)

where Hn
(1)
(x) and Hn

(2)
(x) are Hankel functions defined by

Hð1Þ
n ðxÞ ¼ JnðxÞ þ jYnðxÞ; (2.167)

Hð2Þ
n ðxÞ ¼ JnðxÞ � jYnðxÞ; (2.168)

where Jn(x) and Yn(x) are Bessel functions of the first and second kind respectively, as

plotted in Figs. 2.17 and 2.18. The “2” in parentheses denotes an outgoing cylindrical

wave and the “1” denotes an incoming one.
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The azimuthal equation in f�
v2

vf2
þ n2

�
FnðfÞ ¼ 0: (2.169)

The solution to this equation is of the form

FnðfÞ ¼ An cosðnfÞ þ Bn sinðnfÞ. (2.170)

It can be seen that the integer n denotes the nth harmonic of the azimuthal modes of

vibration where f ¼ 2p represents a full rotation about the z axis. The values of An and

Bn depend on where the nodes and antinodes lie on the circumference. For example,

setting Bn ¼ 0 would place the nodes at f ¼ 0, p, and 2p.

Figure 2.17 Bessel functions of the first kind.

Figure 2.18 Bessel functions of the second kind.
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The axial equation in z

�
v2

vz2
þ k2z

�
ZðzÞ ¼ 0: (2.171)

The solution to this plane wave equation is of the form

ZðzÞ ¼ Zþe�jkzz þ Z�e jkzz; (2.172)

where the þ sign denotes a forward traveling wave and the � sign a reverse one. From

Eq. (2.164) we observe that

kz ¼

8>><>>:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � k2w

q
; k 	 kw$

�j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2w � k2

q
; k < kw

; (2.173)

Hence for k < kw the forward traveling term becomes an evanescent decaying one.

Evanescent waves typically occur close to sound sources in the form of nonpropagating

standing waves.

2.13 SPHERICAL COORDINATES

So far, we have only considered the one-dimensional spherical wave equation and

its solution. In many problems where there are spherical surfaces but no axial or rota-

tional symmetry, it is necessary to use spherical coordinates as shown in Fig. 2.19. The x,

y, and z ordinates are replaced by spherical ordinates r, f, and q, where the radial ordinate

r is given by

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
; (2.174)

z

y

x

r
r cos 

φ

φ

θ

θ

θ

θ
0

r sin 

P(r, , )

Figure 2.19 Spherical coordinates.
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the inclination angle q is given by

q ¼ arccot
�
z
. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2
p �

; (2.175)

and the azimuth angle f is given by

f ¼ arctan ðy=xÞ. (2.176)

Conversely

x ¼ r sin q cos f; (2.177)

y ¼ r sin q sin f; (2.178)

z ¼ r cos q: (2.179)

The three-dimensional wave equation in spherical coordinates is	
V2 þ k2

�epðr; q;fÞ ¼ 0; (2.180)

where the Laplace operator is given by

V2 ¼ v2

vr2
þ 2

r

v

vr
þ 1

r2
v2

vq2
þ 1

r2 tan q

v

vq
þ 1

r2 sin2 q

v2

vf2
; (2.181)

which is often written in the following short form:

V2 ¼ 1

r2
v

vr

�
r2
v

vr

�
þ 1

r2 sin q

v

vq

�
sin q

v

vq

�
þ 1

r2 sin2 q

v2

vf2
. (2.182)

Let the solution to Eq. (2.180) be of the form

epðr; q;fÞ ¼
XN
n¼ 0

Xn
m¼ 0

epmnRnðrÞZmnðqÞFmðfÞ. (2.183)

Substituting this in Eq. (2.180), multiplying through by r2, and dividing through by

Rn(r) Zmn(q)Fn(f) yields

r2

Rn

v2Rn

vr2
þ 2r

Rn

vRn

vr
þ k2r2 ¼ � 1

Zmn

v2Zmn

vq2
� 1

Zmn tan q

vZmn

vq
� 1

Fm sin2 q

v2Fm

vf2
.

(2.184)

If both sides of Eq. (2.184) are equated to a constant of separation n(n þ 1), then

Eq. (2.184) can then be separated into three equations for each ordinate as follows.
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The radial equation in r
After equating the left-hand side of Eq. (2.184) to n(n þ 1), we have�

v2

vr2
þ 2

r

v

vr
þ k2 � nðnþ 1Þ

r2

�
RnðrÞ ¼ 0. (2.185)

The solution to this equation is of the form

RnðrÞ ¼ Rnþhð2Þn ðkrÞ þ Rn�hð1Þn ðkrÞ; (2.186)

where hn
(1) (x) and hn

(2) (x) are spherical Hankel functions, which are also known as

Hankel functions of fractional order, as defined by

hð1Þn ðxÞ ¼ jnðxÞ þ jynðxÞ; (2.187)

hð2Þn ðxÞ ¼ jnðxÞ � jynðxÞ; (2.188)

where jn(x) and yn(x) are spherical Bessel functions of the first and second kind

respectively, as plotted in Figs. 2.20 and 2.21. The “2” in parentheses denotes an out-

going spherical wave and the “1” denotes an incoming one. These spherical Bessel

functions are related to the cylindrical Bessel functions of integer order Jnþ1
2
ðxÞ and

Ynþ1
2
ðxÞ by

jnðxÞ ¼
ffiffiffiffiffi
p

2x

r
Jnþ1

2
ðxÞ; (2.189)

ynðxÞ ¼
ffiffiffiffiffi
p

2x

r
Ynþ1

2
ðxÞ. (2.190)

Figure 2.20 Spherical Bessel functions of the first kind.
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The inclination equation in q

After equating the right-hand side of Eq. (2.184) to n(n þ 1), we have

1

Zmn

v2Zmn

vq2
þ 1

Zmn tan q

vZmn

vq
þ nþ 1 ¼ � 1

Fm sin2 q

v2Fm

vf2
. (2.191)

Equating the left-hand side of Eq. (2.191) to another constant of separation m2/sin2 q

yields �
v2

vq2
þ 1

tanq

v

vq
þ nðnþ 1Þ � m2

sin2q

�
ZmnðqÞ ¼ 0. (2.192)

After substituting z ¼ cos q, the inclination equation becomes�	
1� z2

� v2

vz2
� 2z

v

vz
þ nðnþ 1Þ � m2

1� z2

�
ZmnðzÞ ¼ 0: (2.193)

The solution to this equation is of the form

ZmnðzÞ ¼ QmnP
m
n ðzÞ (2.194)

or

ZmnðqÞ ¼ QmnP
m
n ðcos qÞ; (2.195)

where Pn
m(cos q) is the associated Legendre function. In the case of axisymmetry, where

m ¼ 0, it reduces to the Legendre function (or Legendre polynomial) denoted by

Pn(cos q), as plotted in Fig. 2.22.

Figure 2.21 Spherical Bessel functions of the second kind.
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The azimuth equation in f

Equating the right-hand side of Eq. (2.191) to the constant of separation m2/sin2 q yields�
v2

vf2
þ m2

�
FmðfÞ ¼ 0: (2.196)

The solution to this equation is of the form

FmðfÞ ¼ Am cosðmfÞ þ Bm sinðmfÞ. (2.197)

It can be seen that the integer m denotes the mth harmonic of the azimuthal modes of

vibration where f ¼ 2p represents a full rotation about the z axis. The values of Am and

Bm depend on where the nodes and antinodes lie on the circumference. For example,

setting Bm ¼ 0 would place the nodes at f ¼ 0, p, and 2p. Now the complete solution to

Eq. (2.180) may be written as

epðr; q;fÞ ¼
XN
n¼ 0

Xn
m¼ 0

epmn�Rnþhð2Þn ðkrÞ þ Rn�hð1Þn ðkrÞ
�

�Pm
n ðcos qÞðAm cosðmfÞ þ Bm sinðmfÞÞ.

(2.198)

which in the case of axial symmetry (m ¼ 0) simplifies to

epðr; qÞ ¼
XN
n¼ 0

epn�Rnþhð2Þn ðkrÞ þ Rn�hð1Þn ðkrÞ
�
Pnðcos qÞ. (2.199)
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Figure 2.22 Legendre functions.
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Problem 2.1. A piccolo is a side-blown half-flute which is open at both ends (open-

open pipe), whereas a pan flute is end blown and blocked at the opposite end (open-

closed pipe). Assuming an effective air column length of 294 mm in both, including

any end corrections, which instrument has the lowest fundamental resonance frequency?

Which instrument does not produce even harmonics and thus has a “hollower” tone?

Using Eq. (2.112), calculate the fundamental resonance frequency (n ¼ 0) for the pan

flute. Assuming the eigenfrequencies of an open-open pipe to be the same as those of a

closed-closed one, use Eq. (2.94) to calculate the fundamental resonance frequency

(n ¼ 1) of the piccolo.

Problem 2.2. The wall of an infinitely long cylinder of radius a moves radially with

velocity eu0. Hence it may be considered to be “pulsating.” Derive the radial pressure

distribution using both the homogeneous and inhomogeneous wave equations and thus

verify the Bessel function identity used in Eq. (4.198).

Hint: Because of the infinite length and rotational symmetry of the cylinder, this

reduces to a one-dimensional problem in the radial distance from the center w. The axial

symmetry ensures that there is zero pressure gradient at the center, which behaves like a

rigid termination to the waves transmitted from the wall. Hence, it is analogous to the

closed tube of Section 2.7. In the steady state, the solution to the homogenous wave

equation (2.23) in cylindrical coordinates is given by Eqs. (2.126) and (2.127). However,

we omit the Y0 function because of continuity at the center. Find the unknown coef-

ficient by applying the velocity boundary condition at the wall (w ¼ a) using the first line

of Eq. (2.48) but replacing the axial ordinate x with the radial ordinate w and noting that

v/vwJ0(kw) ¼ kJ1(kw). To find the solution to the inhomogeneous wave equation, rewrite

Eqs. (2.115) and (2.116) in cylindrical coordinates using the Laplace operator of Eq.

(2.23) and replacing the length l with the radius a. Let the solution be in the form

epðwÞ ¼ PN
n¼ 0

eAn J0ðbnw=aÞ;
where bn are the solutions to J1(bn) ¼ 0. Insert this into the inhomogeneous wave

equation and solve for eAn using the orthogonal integrals of Eqs. (A2.101a) and (A2.154)

of Appendix II. Then equating the solutions to the homogenous and inhomogeneous wave

equations gives the identity of Eq. (4.198).

NOTES
[1] Nonvector derivations of the wave equation are given in Rayleigh, theory of sound, vol. 2, pp. 1e15,

(Dover, 1945); P.M. Morse. Vibration and sound. 2nd ed. New York: Acoustical Society of America;
1981. p. 217e225; L.E. Kinsler, A. R. Frey, A. B. Coppens, and J. V. Sanders. Fundamentals of
acoustics. 4th ed. New York: John Wiley & Sons, Inc.; 2000. p. 113e213; and other places.

[2] A vector derivation of the wave equation is given in two papers that must be read together: W.J.
Cunningham, application of vector analysis to the wave equation, J Acoust Soc Am 1950; 22:61 and
R.V.L. Hartley. Note on Application of Vector Analysis to the Wave Equation. J Acoust Soc Am
1950;22:511.
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[3] If a mass of gas is chosen so that its weight in grams is equal to its molecular weight (known to chemists
as the gram-molecular weight, or the mole), then the volume of this mass at 0�C and 0.76 m Hg is the
same for all gases and equals 0.02242 m3. Then R ¼ 8.314 watt-sec per degree centigrade per gram-
molecular weight. If the mass of gas chosen is n times its molecular weight, Then R ¼ 8.314 n.

[4] Beranek See LL. Acoustic measurements. New York: Acoustical Society of America; 1988. p. 49.
[5] Serway RA, Jewett JW. Principles of physics: a calculus - based text. 4th ed. Calif: Thomson Brooks/

Cole, Belmont; 2006, ISBN 053449143X. p. 550.
[6] Webster AG. Acoustical impedance, and the theory of horns and of the phonograph. Proc Natl Acad

Sci USA 1919;5:275e82.
[7] For the type of source we have assumed and no dissipation, this case breaks down for kl ¼ np.
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CHAPTER THREE

Electromechanoacoustical circuits

PART VI: MECHANICAL CIRCUITS

3.1 INTRODUCTION

The subject of electromechanoacoustics (sometimes called dynamical analogies) is the

application of electrical circuit theory to the solution of mechanical and acoustical

problems. In classical mechanics, vibrational phenomena are represented entirely by

differential equations. This situation existed early in the history of telephony and radio as

well. As telephone and radio communication developed, it became obvious that a

schematic representation of the elements and their interconnections was valuable. Unlike

a mechanical drawing, a schematic representation simply shows how the individual

circuit elements are connected, or their topology, rather than where they are physically

located. One of the most celebrated examples outside the field of engineering is the map

of the London Underground, which was designed by an electrical engineer [1] who

realized that passengers simply wanted a clear diagram of how to get from one place to

another without the geographical details of the route. Schematic diagrams made it

possible for engineers to visualize the performance of a circuit without laboriously

solving its equations. Such a study would have been hopelessly difficult if only the

equations of the system were available.

There is another important advantage of a schematic diagram besides its usefulness in

visualizing the system. Often one has a piece of equipment for which one desires the

differential equations. The schematic diagram may then be drawn from visual inspection

of the equipment. Following this, the differential equations may be formed directly from

the schematic diagrams. Most engineers are trained to follow this procedure rather than

to attempt to formulate the differential equations directly.

Schematic diagrams have their simplest applications in circuits that contain lumped

elements, i.e., where the only independent variable is time. Such elements are valid

when the wavelength greatly exceeds the dimensions of the component. In other words,

lumped element models are models with zero space dimensions. In distributed systems,

which are common in acoustics, there may be as many as three space variables and a time

variable. Here, a schematic diagram becomes more complicated to visualize than the

differential equations, and the classical theory comes into its own again. There are many
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problems in acoustics, however, in which the elements are lumped and the schematic

diagram may be used to good advantage.

Four principal requirements are fulfilled by the methods used in this text to establish

schematic representations for acoustic and mechanical devices. They are as follows.

1. The methods must permit the formation of schematic diagrams from visual in-

spection of devices.

2. They must be capable of such manipulation as will make possible the combination of

electrical, mechanical, and acoustical elements into one schematic diagram.

3. They must preserve the identity of each element in combined circuits so that one can

recognize immediately a force, voltage, mass, inductance, and so on.

4. They must use the familiar symbols and the rules of manipulation for electrical circuits.

Several methods that have been devised fulfill one or two of the above four requirements,

but not all four. A purpose of this chapter is to present a new method for handling

combined electrical, mechanical, and acoustic systems. It incorporates the good features

of previous theories and also fulfills the above four requirements. The symbols used

conform with those of earlier texts wherever possible [2e6].

Note that a simple procedure for conversion of admittance-type circuits to

impedance-type circuits is given in Part IX, Section. 3.8.

3.2 PHYSICAL AND MATHEMATICAL MEANINGS OF CIRCUIT
ELEMENTS

The circuit elements we shall use in forming a schematic diagram are those of

electrical circuit theory. These elements and their mathematical meaning are tabulated in

Table 3.1 and should be learned at this time. There are generators of two types. There are

five types of circuit elements: resistance, capacitance, inductance, transformation, and

gyration. There are three generic quantities: (1) the drop across the circuit element; (2)

the flow through the circuit element; and (3) the magnitude of the circuit element [7].

Attention should be paid to the fact that the quantityea is neither restricted to voltageee nor eb to electrical currentei. In some problems ea will represent force ef or velocity eu or
pressureep or volume velocity eU. In those casesebwill represent, respectively, velocity eu or
force ef or volume velocity eU or pressure ep. Similarly, the quantity c might be any

appropriate quantity such as mass, compliance, inductance, resistance, etc. The physical

meaning of the circuit elements c depends on the way in which the quantities ea andeb are
chosen, with the restriction that ea �ffiffi

2
p $

ebffiffi
2

p has the dimension of power in all cases. The

complete array of alternatives is shown in Table 3.2.

An important idea to fix in your mind is that the mathematical operations associated with

a given symbol are invariant. If the element is of the inductance type, for example, the dropea across it is equal to the time derivative of the flow eb through it multiplied by its size c.
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Table 3.1 Mathematical and physical significance of symbols

Symbol Name

Meaning

Transient Steady-state

Constant drop

generator

The drop ea is independent of what is connected to

the generator. Its internal impedance is zero so that

if one of any number of generators in a circuit is

switched off, it is replaced by a short circuit. The

arrow points to the positive terminal of the

generator.

Constant flow

generator
The flow eb is independent of what is connected to

the generator. Its internal impedance is infinity so

that if one of any number of generators in a circuit

is switched off, it is replaced by an open circuit.

The arrows point in the direction of positive flow.

Resistance-type

element

a ¼ bc ea ¼ ebc

Capacitance-type

element
a ¼ 1

c

R
b dt ea ¼ eb

juc

Inductance-type

element
a ¼ c db

dt ea ¼ juceb

Transformation-type

element

a ¼ cg

b ¼ d

c
a

b
¼ c2

g

d

ea ¼ ceg
eb ¼

ed
ceaeb ¼ c2
eged

Gyration-type

element

c1a ¼ d

b ¼ c2g

a

b
¼ 1

c1c2

d

g

c1ea ¼ edeb ¼ c2egeaeb ¼ 1

c1c2

edeg
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Note that this rule is not always followed in electrical circuit theory because conductance

and resistance there are often indiscriminately written beside the symbol for a resistance-

type element. The invariant operations to be associated with each symbol are shown in

columns 3 and 4 of Table 3.1.

An infinite impedance generator is a flow generator in the impedance analogy and a

drop generator in the admittance analogy. Conversely, a zero impedance generator is a

drop generator in the impedance analogy and a flow generator in the admittance analogy.

A drop generator “hates” short circuits for obvious reasons. A flow generator “hates”

open circuits because when the flow is blocked, the drop rises to infinity. In fact a flow

generator can be approximated by a very large drop generator with a very large series

resistance whose value is the drop divided by the desired flow.

The transformation element is ideal in that it neither creates nor dissipates power.

Hence, the dot productea�$eb on the primary side is always equal toeg�$ed on the secondary
side. It is also reversible, unlike, for example, an amplifier. If the transformation ratio is

c:1, as illustrated in Table 3.1, then you divide the drop ea on the primary side to obtain

the drop eg on the secondary side. Conversely, if the transformation ratio is 1:c, then you

multiply the drop ea on the primary side to obtain the drop eg on the secondary side. Of

course, to conserve power, the opposite operation is performed on the flow so that it

increases by the same ratio that the drop decreases or vice versa.

Table 3.2 Values for a, b, and c in electrical, mechanical, and acoustical circuits

Element Electrical

Mechanical Acoustical

Admittance
analogy

Impedance
analogy

Impedance
analogy

Admittance
analogy

ea ee eu ef ep eUeb ei ef eu eU ep
c ¼ RE c ¼ 1

RM

¼YM c ¼ RM c ¼ RA c ¼ 1

RA

¼YA

c ¼ CE c ¼ MM c ¼ CM c ¼ CA c ¼ MA

c ¼ L c ¼ CM c ¼MM c ¼MA c ¼ CA

c ¼ ZE ¼ eeei c ¼ YM ¼ euef
¼ 1

ZM

c ¼ ZM ¼
efeu

¼ 1

YM

c ¼ ZA ¼ epeU
¼ 1

YA

c ¼ YM ¼
eUep

¼ 1

ZA
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The gyration element is used to convert an admittance-type circuit to an impedance-

type one or vice versa. This means that the flow ed on the secondary side is equal to the

drop ea on the primary side multiplied by the forward mutual conductance c1. Likewise,

the flow eb on the primary side is equal to the drop eg on the secondary side multiplied by

reverse mutual conductance c2. The forward and reverse mutual conductances c1 and c2,

respectively, may have different values in which case energy is either consumed (as in an

amplifier) or dissipated. In this chapter, it will be used exclusively as an energy conserving

element in passive transducers, in which case c1 ¼ c2 ¼ c.

3.3 MECHANICAL ELEMENTS

Mechanical circuit elements need not always be represented by electrical symbols.

Because one frequently draws a mechanical circuit directly from inspection of the me-

chanical device, more obvious forms of mechanical elements are sometimes useful, at

least until the student is thoroughly familiar with the analogous circuit. We shall

accordingly devise a set of “mechanical” elements to be used as an introduction to the

elements of Table 3.1.

In electrical circuits, a voltage measurement is made by attaching the leads from a

voltmeter across the two terminals of the element. Voltage is a quantity that we can

measure without breaking into the circuit. To measure electric current, however, we

must break into the circuit because this quantity acts through the element. In mechanical

devices, on the other hand, we can measure the velocity (or the displacement) without

disturbing the machine by using a capacitive or inertially operated vibration pickup to

determine the quantity at any point on the machine. It is not velocity but force that is

analogous to electric current. Force cannot be measured unless one breaks into the

device.

It becomes apparent then that if a mechanical element is strictly analogous to an

electrical element, it must have a velocity difference appearing between (or across) its

two terminals and a force acting through it. Analogously, also, the product of the rms

force f in N and the in-phase component of the rms velocity u in m/s is the power in W.

We shall call this type of analogy, in which a velocity corresponds to a voltage and a force

to a current, the admittance-type analogy. It is also known as the “inverse” analogy.

Many texts teach in addition a “direct” analogy. It is the opposite of the admittance

analogy in that force is made to correspond to voltage and velocity to current. In this

chapter, we shall call this kind of analogy an impedance-type analogy. To familiarize the

student with both concepts, all examples will be given here both in admittance-type and

impedance-type analogies. Table 3.3 shows a comparison of the symbolic representation

of elements in each analogy.
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Table 3.3 Conversion from admittance-type analogy to impedance-type analogy, or vice versa

Element

Mechanical analogies Acoustical analogies

Admittance type Impedance type Admittance type Impedance type

Infinite impedance generator

(impedance analogy) and zero

admittance generator

(admittance analogy)

Zero impedance generator

(impedance analogy) and

infinite admittance generator

(admittance analogy)

Dissipative element e resistance

(impedance analogy) and

conductance (admittance

analogy)

Mass element

Compliant element

Impedance element (impedance

analogy) and admittance

element (admittance analogy)
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Transformation element If there

are any drug dosages in this

chapter, please verify them and

indicate that you have done so

by initialing this query. converts

from one impedance to another

and is useful for coupling

between electrical, mechanical

or acoustical domains

Mechanical to acoustic (admittance type) Mechanical to acoustic (impedance type)

Gyration element e converts an

admittance circuit to an

impedance one or vice versa

and is useful for coupling

between electrical, mechanical

or acoustical domains

Mechanical (admittance) to acoustic

(impedance)

Mechanical (impedance) to acoustic (admittance)

Electrom
echanoacousticalcircuits
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Mechanical impedance ZM and mechanical admittance YM
The mechanical impedance is the complex ratio of force to velocity at a given point in a

mechanical device. We commonly use the symbol ZM for mechanical impedance, where

the subscript M stands for “mechanical.” The unit is N s/m or mechanical ohm.

In the admittance analogy, the mechanical admittance is the inverse of the mechanical

impedance. It may also be referred to as the mechanical mobility, but we shall use the

more commonly used term admittance. It is the complex ratio of velocity to force at a

given point in a mechanical device. We commonly use the symbol YM for mechanical

admittance. The unit is m/ N$s or mechanical siemens (S).

Mass MM

Mass is that physical quantity which when acted on by a force is accelerated in direct

proportion to that force. The unit is kg. At first sight, mass appears to be a one-terminal

quantity because only one connection is needed to set it in motion. However, the force

acting on a mass and the resultant acceleration are reckoned with respect to the earth

(inertial frame) so that in reality the second terminal of mass is the earth.

The mechanical symbol used to represent mass is shown in Fig. 3.1. The upper end of

the mass moves with a velocity eu with respect to the ground. The R-shaped configuration
represents the “second” terminal of the mass and has zero velocity. The force can be

measured by a suitable device inserted between the point 1 and the next element or

generator connecting to it.

Mass MM obeys Newton’s second law that

f ðtÞ ¼ MM
duðtÞ
dt

; (3.1)

where f(t) is the instantaneous force in N, MM is the mass in kg, and u(t) is the instan-

taneous velocity in m/s.

In the steady state (see Eqs. (2.36e2.44)), with an angular frequency u equal to 2p

times the frequency of vibration, we have the special case of Newton’s second law,ef ¼ juMMeu; (3.2)

MMu~

1
f~

Figure 3.1 Mechanical symbol for a mass.
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where j ¼ ffiffiffiffiffiffiffi�1
p

as usual.

The admittance-type analogous symbol that we use as a replacement for the me-

chanical symbol in our circuits is a capacitance type, which is shown in Fig. 3.2(a). The

mathematical operation invariant for this symbol is found from Table 3.1. In the steady

state, we have

ea ¼
eb
juc

or eu ¼
ef

juMM
: (3.3)

This equation is seen to satisfy the physical law given in Eq. (3.2). Note the

similarity in appearance of the mechanical and analogous symbols in Figs. 3.1 and

3.2(a). In electrical circuits, the time integral of the current through a capacitor is

charge. The analogous quantity here is the time integral of force, which is

momentum.

The impedance-type analogous symbol for a mass is an inductance, which is shown in

Fig. 3.2(b). The invariant operation for steady state is ea ¼ juceb or ef ¼ juMMeu. It also
satisfies Eq. (3.2). Note, however, that in this analogy, one side of the mass element is not

necessarily grounded; this often leads to confusion. In electrical circuits, the time integral

of the voltage across an inductance is flux turns. The analogous quantity here is

momentum.

Mechanical compliance CM
A physical structure is said to be a mechanical compliance CM if, when it is acted on by a

force, it is displaced in direct proportion to the force. The unit is m/N. Compliant

elements usually have two apparent terminals.

The mechanical symbol used to represent a mechanical compliance is a spring. It is

shown in Fig. 3.3. The upper end of the element moves with a velocity eu1 and the lower
end with a velocity eu2. The force required to produce the difference between the ve-

locities eu1 and eu2 may be measured by breaking into the machine at either point 1 or

point 2. Just as the same current would be measured at either end of an element in an

MMu~

f
~

MMf
~

u~

Admittance - type 

(a) (b)

Impedance - type 

Figure 3.2 (a) Admittance-type and (b) impedance-type symbols for a mass.
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electrical circuit, the same force will be found here at either end of the compliant

element.

Mechanical compliance CM obeys the following physical law:

a ¼ 1

c

Z
b dt or f ðtÞ ¼ 1

CM

Z
uðtÞdt; (3.4)

where CM is the mechanical compliance in m/N, and u(t) is the instantaneous velocity in

m/s equal to eu1 � eu2, the difference in velocity of the two ends.

In the steady state, with an angular frequency u, equal to 2p times the frequency of

vibration, we have

ef ¼ eu
juCM

; (3.5)

where ef and eu are taken to be complex quantities.

The admittance-type analogous symbol used as a replacement for the mechanical

symbol in our circuits is an inductance, which is shown in Fig. 3.4(a). The invariant

mathematical operation that this symbol represents is given in Table 3.1. In the steady

state, we have

eu ¼ juCM
ef : (3.6)

CM

1

2

1
~u

2
~u

Figure 3.3 Mechanical symbol for a mechanical compliance.

CMu~

f
~

CMf
~

u~

Admittance - type 

(a) (b)

Impedance - type 

Figure 3.4 (a) Admittance-type and (b) impedance-type symbols for a mechanical compliance.
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In electrical circuits, the time integral of the voltage across an inductance is flux turns.

The analogous quantity here is the time integral of velocity, which is displacement.

This equation satisfies the physical law given in Eq. (3.5). Note the similarity in

appearance of the mechanical and analogous symbols in Fig. 3.3 and 3.4(a).

The impedance-type analogous symbol for a mechanical compliance is a capacitance.

It is shown in Fig. 3.4(b). The invariant operation for steady state is ea ¼ eb=juc oref ¼ eu=juCM . It also satisfies Eq. (3.5). In electrical circuits, the time integral of the

current through a capacitor is the charge. The analogous quantity here is the

displacement.

Mechanical resistance RM and mechanical conductance GM

A physical structure is said to be a mechanical resistance RM if, when it is acted on by a

force, it moves with a velocity directly proportional to the force. The unit is N$s/m or

rayls m2.

We also define here a quantity GM, the mechanical conductance, which is the

reciprocal of RM. The unit of conductance is m/N$s or 1/rayls m2.

The above representation for mechanical resistance is usually limited to viscous

resistance. Frictional resistance is excluded because, for it, the ratio of force to velocity is

not a constant. Both terminals of resistive elements can usually be located by visual

inspection.

The mechanical element used to represent viscous resistance is the fluid dashpot

shown schematically in Fig. 3.5. The upper end of the element moves with a velocity eu1
and the lower with a velocity eu2. The force required to produce the difference between

the two velocities eu1 and eu2 may be measured by breaking into the machine at either

point 1 or point 2.

Mechanical resistance RM obeys the following physical law:

ef ¼ RMeu ¼ 1

GM
eu; (3.7)

where ef is the force in N, eu is the difference between the velocities eu1 and eu2 of the two
ends, RM is the mechanical resistance in N$s/m, and GM is the mechanical conductance

in m/N s.

1
~u

2
~u

1

2

RM

Figure 3.5 Mechanical symbol for mechanical (viscous) resistance.
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The admittance-type analogous symbol used to replace the mechanical symbol in our

circuits is a resistance. It is shown in Fig. 3.6(a). The invariant mathematical operation

that this symbol represents is given in Table 3.1. In either the steady or transient state, we

have

eu ¼ GM
ef ¼ 1

RM

ef : (3.8)

In the steady state, eu and ef are taken to be complex quantities. This equation satisfies

the physical law given in Eq. (3.7).

The impedance-type analogous symbol for a mechanical resistance is shown in

Fig. 3.6(b). It also satisfies Eq. (3.7).

Mechanical generators
The mechanical generators considered will be one of the two types: constant velocity or

constant force. A constant velocity generator is represented as a very strong motor attached to

a shuttle mechanism in the manner shown in Fig. 3.7. The opposite ends of the generator

have velocities eu1 and eu2. One of these velocities, either eu1 or eu2, is determined by factors

external to the generator. The difference between the velocities eu1 and eu2, however, is a
velocity eu that is independent of the external load connected to the generator.

GM

f~

u~ RM
f~

u~

Admittance-type Impedance-type 

(a) (b)

Figure 3.6 (a) Admittance-type and (b) impedance-type symbols for a mechanical resistance.

1
~u1

2 2
~u

u~

Figure 3.7 Mechanical symbol for a constant velocity generator.
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The symbols that we used in the two analogies to replace the mechanical symbol for a

constant velocity generator are shown in Fig. 3.8. The invariant mathematical operations

that these symbols represent are also given in Table 3.1. The tips of the arrows point to

the “positive” terminals of the generators. The wave inside the circle in Fig. 3.8(a) in-

dicates that the internal admittance of the generator is zero. The arrow inside the circle of

Fig. 3.8(b) indicates that the internal impedance of the generator is infinite.

A constant force generator is represented here by an electromagnetic transducer (e.g., a

moving-coil loudspeaker) in the primary of which an electric current of constant

amplitude is maintained. Such a generator produces a force equal to the product of the

current ei, the flux density B, and the effective length of the wire l cutting the flux�ef ¼ Blei�. This device is shown schematically in Fig. 3.9. The opposite ends of the

generator have velocities eu1 and eu2 that are determined by factors external to the

generator. The force that the generator produces and that may be measured by breaking

into the device at either point 1 or point 2 is a constant force, independent of what is

connected to the generator.

The symbols used in the two analogies to replace the mechanical symbol for a

constant force generator are given in Fig. 3.10. The invariant mathematical operations

that these symbols represent are also given in Table 3.1. The arrows point in the direction

of positive flow. Here the arrow inside the circle indicates infinite admittance and the

wave inside the circle zero impedance.

f~
f~ u~

u~ u~

Admittance - type 

(a) (b)

Impedance - type 

Figure 3.8 (a) Admittance-type and (b) impedance-type symbols for a constant velocity generator.

1
~u1

2
~u

2

f~

Figure 3.9 Mechanical symbol for a constant force generator.
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Levers
Simple lever
It is apparent that the lever is a device closely analogous to a transformer. The lever in its

simplest form consists of a weightless bar resting on an immovable fulcrum, so arranged

that a downward force on one end causes an upward force on the other end (see

Fig. 3.11). From elementary physics, we may write the equation of balance of moments

around the fulcrum ef 1l1 ¼ ef 2l2
or, if not balanced, assuming small displacements,eu1l2 ¼ eu2l1: (3.9)

Also,

YM1 ¼ eu1ef 1 ¼
�
l1

l2

�2

YM2;

ZM1 ¼
efeu1 ¼

�
l2

l1

�2

ZM2:

(3.10)

The above equations may be represented by the ideal transformers of Fig. 3.12,

having a transformation ratio of (l1/l2):1 for the admittance type and (l2/l1):1 for the

impedance type.

1
~f

2
~u

2
~f

1
~u

3
~f

YM2

l1l2

Figure 3.11 Simple lever.

f~u~

Admittance - type Impedance - type 

u~f~

f~

(a) (b)

Figure 3.10 (a) Admittance-type and (b) impedance-type symbols for a constant force generator.
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Floating lever
As an example of a simple floating lever, consider a weightless bar resting on a fulcrum

that yields under force. The bar is so arranged that a downward force on one end tends to

produce an upward force on the other end. An example is shown in Fig. 3.13.

To solve this type of problem, we first write the equations of moments. Summing the

moments about the center support gives

l1ef 1 ¼ l2ef 2
and summing the moments about the end support gives

ðl1 þ l2Þef 1 ¼ l2ef 3: (3.11)

When the forces are not balanced and if we assume infinitesimal displacements, the

velocities are related to the forces through the admittances so that

eu3 ¼ YM3
ef 3 ¼ YM3

l1 þ l2

l2
ef 1;

eu2 ¼ YM2
ef 2 ¼ YM2

l1

l2
ef 1:

(3.12)

Also, by superposition, it is seen from simple geometry that

1
~f

2
~u

2
~f

1
~u

Admittance-type Impedance-type 

1:
2

1

l
l

YM2 1
~f

2
~u

2
~f

1
~u 1:

1

2

l
l

ZM2

(a) (b)

Figure 3.12 (a) Admittance-type and (b) impedance-type symbols for a simple lever.

1
~f

2
~u

2
~f

1
~u

3
~f

YM2

l1l2

1

2
3

YM3

Admittances constrained 
to move up and down only 

3
~u

Figure 3.13 Floating lever.
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eu01 ¼ eu3l1 þ l2

l2
for eu2 ¼ 0;

eu001 ¼ eu2l1
l2
for eu3 ¼ 0;

so that

eu1 ¼ eu01 þ eu001 ¼ l1 þ l2

l2
eu3 þ l1

l2
eu2 (3.13)

and, finally,

eu1ef 1 ¼ YM1 ¼ YM3

�
l1 þ l2

l2

�2

þ YM2

�
l1

l2

�2

: (3.14)

This equation may be represented by the analogous circuit of Fig. 3.14. The lever

loads the generator with two admittances connected in series, each of which behaves as a

simple lever when the other is equal to zero. It will be seen that this is a way of obtaining

the equivalent of two series masses without a common zero-velocity (ground) point.

This will be illustrated in Example 3.3.

YM3

1
~u

3
~f1

~f
3

~u

1:
2

21
⎟⎟⎠

⎞
⎜⎜⎝

⎛ +
l

ll

1:
2

1
⎟⎟⎠

⎞
⎜⎜⎝

⎛
l
l

YM22
~f

2
~u

Figure 3.14 Admittance-type symbol for a floating lever.

MM22
~u

RM1
MM1

u~ CM

RM2

Figure 3.15 Six-element mechanical device.
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Example 3.1. The mechanical device of Fig. 3.15 consists of a piston of mass MM1

sliding on an oil surface inside a cylinder of mass MM2. This cylinder in turn slides in an

oiled groove cut in a rigid body. The sliding (viscous) resistances are RM1 and RM2,

respectively. The cylinder is held by a spring of compliance CM. The mechanical

generator maintains a constant sinusoidal velocity of angular frequency u, whose

magnitude is eu m/s. Solve for the force ef produced by the generator.

Solution. Although the force will be determined ultimately from an analysis of the

admittance-type analogous circuit for this mechanical device, it is frequently useful to

draw a mechanical circuit diagram. This interim step to the desired circuit will be

especially helpful to the student who is inexperienced in the use of analogies. Its use

virtually eliminates errors from the final circuit.

To draw the mechanical circuit, note first the junction points of two or more ele-

ments. This locates all element terminals which move with the same velocity. There are

in this example two velocities, eu and eu2, in addition to “ground” or zero velocity. These

two velocities are represented in the mechanical circuit diagram by the velocities of two

imaginary rigid bars, 1 and 2 of Fig. 3.16, which oscillate in a vertical direction. The

circuit drawing is made by attaching all element terminals with velocity eu to the first bar

and all terminals with velocity eu2 to the second bar. All terminals with zero velocity are

drawn to a ground bar. Note that a mass always has one terminal on ground [8]. Three

elements of Fig. 3.15 have one terminal with the velocityeu: the generator, the massMM1,

and the viscous resistance RM1. These are attached to bar 1. Four elements have one

terminal with the velocity eu2: the viscous resistances RM1 and RM2, the mass MM2, and

the compliance CM. These are attached to bar 2. Five elements have one terminal with

zero velocity: the generator, both masses, the viscous resistance RM2, and the compliance

CM.

We are now in a position to transform the mechanical circuit into an admittance-type

analogous circuit. This is accomplished simply by replacing the mechanical elements

with the analogous admittance-type elements. The circuit becomes such as that shown in

Fig. 3.17. Remember that, in the admittance-type analogy, force “flows” through the

elements and velocity is the drop across them. The resistors must have Gs written

alongside them. As defined above, GM ¼ 1/RM, and the unit is m/N$s or mechanical

siemens.

MM2

2
~u

RM1

MM1

u~

CM

RM2

1 2 

Figure 3.16 Mechanical circuit for the device of Fig. 3.15.
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The equations for this circuit are found in the usual manner, using the rules of

Table 3.1. Let us determine YM ¼ eu=ef , the mechanical admittance presented to the

generator. The mechanical admittance of the three elements in parallel on the right-hand

side of the schematic diagram iseu2ef 2 ¼ 1

1

1=juMM2
þ 1

GM2
þ 1

juCM

¼ 1

juMM2 þ RM2 þ 1

juCM

:

Including the element GM1, the mechanical admittance for that part of the circuit

through which ef 2 flows is, then,euef 2 ¼ GM1 þ 1

juMM2 þ RM2 þ 1

juCM

:

Note that the input mechanical admittance YM is given by

YM ¼ euef ¼ euef 1 þef 2:
and

ef 1 ¼ eu
1=juMM1

¼ juMM1eu:
Substituting ef 1 and ef 2 into the second equation preceding gives us the input

admittance:

YM ¼ euef ¼ 1

juMM1 þ 1

GM1 þ 1
juMM2þRM2þ 1

juCM

: (3.15a)

f~

u~

GM1

2
~u

2
~f

1
~f

CM
MM2MM1

GM2

Figure 3.17 Admittance-type analogous circuit for the device of Fig. 3.15.
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The mechanical impedance is the reciprocal of Eq. (3.15a):

ZM ¼
efeu ¼ juMM1 þ 1

GM1 þ 1

juMM2 þ RM2 þ 1
juCM

: (3.15b)

The result is ef ¼ ZMeuN. (3.16)

Example 3.2. As a further example of a mechanical circuit, let us consider the two

masses of 2 and 4 kg shown in Fig. 3.18. They are assumed to rest on a frictionless plane

surface and to be connected together through a generator of constant velocity that is also

free to slide on the frictionless plane surface.

Let its velocity be

u0ðtÞ ¼ 2 cos 1000t cm=s

so that

eu0 ¼ 2e j1000tcm=s

or

jeu0j ¼ 2 cm=s at u ¼ 1000 Hz.

Draw the admittance-type analogous circuit and determine the force ef produced by

the generator. Also, determine the admittance presented to the generator.

Solution. The masses do not have the same velocity with respect to ground. The

difference between the velocities of the two masses is eu0. The element representing a

mass is that shown in Fig. 3.2(a) with one end grounded and the other moving at the

velocity of the mass.

The admittance-type circuit for this example is shown in Fig. 3.19. The velocity eu0
equals eu1 þ eu2, where eu1 is the velocity with respect to ground ofM1 and eu2 is that forMM3.

The force ef is

0
~u

MM1

Free to slide on 
flat frictionless 
surface 

MM2

1 2 

Figure 3.18 Three-element mechanical device.
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ef ¼ 1

1

juMM1
þ 1

juMM2

ju0je j1000t

¼ juMM1MM2

MM1 þMM2
jeu0je j1000t

¼ j1000� 2� 4� 0:02

2þ 4
e j1000t ¼ j26:7e j1000t N:

(3.17)

The j indicates that the time phase of the force is 90 degrees leading with respect to

that of the velocity of the generator. Hence, the rms force is

frms ¼

���ef ���ffiffiffi
2

p :90+ ¼ 18:9N:90+ (3.18)

Obviously, when one mass is large compared with the other, the force is that

necessary to move the smaller one alone. This example reveals the only type of case in

which masses can be in series without the introduction of floating levers. At most, only

two masses can be in series because a common ground is necessary.

The admittance presented to the generator is

YM ¼ eu0ef ¼ MM1 þMM2

juMM1MM2

¼ 6

j1000� 8
¼ �j7:5� 10�4 m=N$s

(3.19)

Example 3.3. An example of a mechanical device embodying a floating lever is

shown in Fig. 3.20. The masses attached at points 2 and 3 may be assumed to be

resting on very compliant springs. The driving force ef 1 will be assumed to have a

frequency well above the resonance frequencies of the masses and their spring

supports so that

f~

0
~u

MM2

MM1

Figure 3.19 Admittance-type analogous circuit for the device of Fig. 3.18.
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YM2z
1

juMM2

YM3z
1

juMM3

Also, assume that a mass is attached to the weightless lever bar at point 1, with an

admittance

YM1 ¼ 1

juMM1
:

Solve for the total admittance presented to the constant force generator ef 1.
Solution. By inspection, the admittance-type analogous circuit is drawn as shown in

Fig. 3.21(a,b). Solving for YM ¼ eu1�ef 1, we get
YM ¼ 1

ju

"
MM2MM3l

2
2

MM3l
2
1 þMM2ðl1 þ l2Þ2

þMM1

# (3.20)

Note that if l2 / 0, the admittance is simply that of the mass MM1. Also, if l1 / 0,

the admittance is that of MM1 and MM3, that is,

Pivot
points

1
~f

l1
1 2

3

MM1

l2

MM2MM3

Pivot
points

l1 23

MM1

l2 2
~f

MM3 MM2

3
~f

2
~u3

~u
1

~u
1

~f
1

(a)

(b)

Figure 3.20 (a) Mechanical device embodying a floating lever. (b) Mechanical diagram of (a). The
compliances of the springs are very large so that all of f2 and f3 go to move MM2 and MM3.
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YM ¼ 1

juðMM3 þMM1Þ (3.21)

In an admittance-type circuit (with transformers eliminated), it is possible with one

or more floating levers to have one or more MM s with no ground terminal (s).

PART VII: ACOUSTICAL CIRCUITS

3.4 ACOUSTICAL ELEMENTS

Acoustical circuits are frequently more difficult to draw thanmechanical ones because the

elements are less easy to identify. Aswas the case for mechanical circuits, themore obvious

forms of the elements will be useful as an intermediate step toward drawing the analogous

circuit diagram. When the student is more familiar with acoustical circuits, he or she will

be able to pass directly from the acoustic device to the final form of the equivalent circuit.

In acoustic devices, the quantity we are able to measure most easily without

modification of the device is sound pressure. Such a measurement is made by inserting a

small hollow probe tube into the sound field at the desired point. This probe tube leads to

(a)

(b)

Figure 3.21 (a) Admittance-type analogous circuit for the device of Fig. 3.20. (b) Same as (a) but with
transformers removed.
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one side of a microphone diaphragm. The other side of the diaphragm is exposed to

atmospheric pressure. A movement of the diaphragm takes place when there is a dif-

ference in pressure across it. This difference between atmospheric pressure and the in-

cremental pressure created by the sound field is the sound pressure ep.
Because we can measure sound pressure by such a probe tube arrangement

without disturbing the device, it seems that sound pressure is analogous to voltage in

electrical circuits. Such a choice requires us to consider current as being analogous to

some quantity which is proportional to velocity. As we shall show shortly, a good

choice is to make current analogous to volume velocity, the volume of gas displaced

per second.

A strong argument can be made for this choice of analogy when one considers the

relations governing the flow of air inside such acoustic devices as loudspeakers, mi-

crophones, and noise filters. Inside a certain type of microphone, for example, there is

an air cavity that connects to the outside air through a small tube (see Fig. 3.22).

Assume, now, that the outer end of this tube is placed in a sound wave. The wave will

cause a movement of the air particles in the tube. Obviously, there is a junction

between the tube and the cavity at the inner end of the tube at point A. Let us

ask ourselves the question “What physical quantities are continuous at this junction

point?ˮ.
First, the sound pressure just inside the tube at A is the same as that in the cavity just

outside A. That is to say, we have continuity of sound pressure. Second, the quantity of

air leaving the inner end of the small tube in a given interval of time is the quantity that

enters the cavity in the same interval of time. That is, the mass per second of gas leaving

the small tube equals the mass per second of gas entering the volume. Because the

pressure is the same at both places, the density of the gas must also be the same, and it

follows that there is continuity of volume velocity (cubic meters per second or m3/s) at

this junction. Analogously, in the case of electricity, there is continuity of electric current

at a junction. Continuity of volume velocity must exist even if there are several tubes or

cavities joining near one point. A violation of the law of conservation of mass otherwise

would occur.

Spherical 

Tube

A

closed cavity

Figure 3.22 Closed cavity connecting to the outside air through a tube of cross-sectional area S. The
junction plane between the tube and the cavity occurs at A.
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We conclude that the quantity that flows through our acoustical elements must be the

volume velocityU in m3/s and the drop across our acoustical elements must be the pressure

p in Pa. This conclusion indicates that the impedance type of analogy is the preferred

analogy for acoustical circuits. The product of the effective sound pressure p times the in-

phase component of the effective volume velocity U gives the acoustic power in W.

In this part, we shall discuss themore general aspects of acoustical circuits. In Chapter 4,

we explain fully the approximations involved and the rules for using the concepts enun-

ciated here in practical problems.

Acoustic mass MA

Acoustic mass is a quantity proportional to mass but having the dimensions of kg/m4. It is

associated with a mass of air accelerated by a net force which acts to displace the gas

without appreciably compressing it. The concept of acceleration without compression is

an important one to remember. It will assist you in distinguishing acoustic masses from

other elements.

The acoustical element that is used to represent an acoustic mass is a tube filled with

the gas as shown in Fig. 3.23.

The physical law governing the motion of a mass that is acted on by a force is

Newton’s second law, f(t) ¼MM du(t)/dt. This law may be expressed in acoustical terms

as follows:

f ðtÞ
S

¼ MM

S

d½uðtÞS�
dt S

¼ pðtÞ ¼ MM

S2
dUðtÞ
dt

pðtÞ ¼ MA
dUðtÞ
dt

(3.22)

where

p(t) is the instantaneous difference between pressures in Pa existing at each end of a

mass of gas of MM kg undergoing acceleration.

MA ¼MM/S
2 is the acoustic mass in kg/m4 of the gas undergoing acceleration. This

quantity is nearly equal to the mass of the gas inside the containing tube divided by

the square of the cross-sectional area. To be more exact, we must note that the gas in

the immediate vicinity of the ends of the tube also adds to the mass. Hence, there are

l

Figure 3.23 Tube of length l and cross-sectional area S.
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“end corrections” that must be considered. These corrections are discussed in

Chapter 4 (page 121).

U(t) is the instantaneous volume velocity of the gas in m3/s across any cross-sectional

plane in the tube. The volume velocity U(t) is equal to the linear velocity u(t)

multiplied by the cross-sectional area S.

In the steady state, with an angular frequency u, we have

ep ¼ juMA eU (3.23)

where ep and eU are taken to be complex quantities.

The impedance-type analogous symbol for acoustic mass is shown in Fig. 3.24(a), and

the admittance-type is given in Fig. 3.24(b). In the steady state, for either, we get Eq.

(3.23). The arrows point in the direction of positive flow or positive drop.

Acoustic compliance CA
Acoustic compliance is a constant quantity having the dimensions of m5/N. It is asso-

ciated with a volume of air that is compressed by a net force without an appreciable

average displacement of the center of gravity of air in the volume. In other words,

compression without acceleration identifies an acoustic compliance.

The acoustical element that is used to represent an acoustic compliance is a volume of

air drawn as shown in Fig. 3.25.

The physical law governing the compression of a volume of air being acted on by a

net force was given as

f ðtÞ ¼ ð1=CMÞ
Z

uðtÞdt:

Volume 
of air 

V

Figure 3.25 Enclosed volume of air V with opening for entrance of pressure variations.

U~

p~

Impedance-type 

MA

Admittance-type 

U~

p~MA(a) (b)

Figure 3.24 (a) Impedance-type and (b) admittance-type symbols for an acoustic mass.
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Converting from mechanical to acoustical terms,

f ðtÞ
S

¼ 1

CMS

Z
uðtÞ S

S
dt or pðtÞ ¼ 1

CMS2

Z
UðtÞdt

or

pðtÞ ¼ 1

CA

Z
UðtÞdt: (3.24)

where

p(t) is instantaneous pressure in Pa acting to compress the volume V of the air.

CA ¼CMS
2 is acoustic compliance in m5/N of the volume of the air undergoing

compression. The acoustic compliance is nearly equal to the volume of air divided by

gP0, as we shall see in Chapter 4 (page 121 to 125).

U(t) is instantaneous volume velocity in m3/s of the air flowing into the volume that

is undergoing compression. The volume velocity U(t) is equal to the linear velocity

u(t) multiplied by the cross-sectional area S.

In the steady state with an angular frequency u, we have

ep ¼ eU
juCA

; (3.25)

where ep and eU are taken to be complex quantities.

The impedance-type analogous element for acoustic compliance is shown in

Fig. 3.26(a) and the admittance-type in Fig. 3.26(b). In the steady state for either, Eq.

(3.25) applies.

Acoustic resistance RA and acoustic conductance GA

Acoustic resistance RA is associated with the dissipative losses occurring when there is a

viscous movement of a quantity of gas through a fine mesh screen or through a capillary

tube. The unit is N$s/m5 or rayls/m2.

CA CA

Admittance - type Impedance - type 

U~ p~

p~ U~

(a) (b)

Figure 3.26 (a) Impedance-type and (b) admittance-type symbols for an acoustic compliance.
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The acoustic element used to represent an acoustic resistance is a fine mesh screen

drawn as shown in Fig. 3.27.

The reciprocal of acoustic resistance is the acoustic conductance GA. The unit is

m5/N$s or acoustic siemens.

The physical law governing dissipative effects in a mechanical system was given by

f(t) ¼ RM u(t) or, in terms of acoustical quantities,

pðtÞ ¼ RAUðtÞ ¼ 1

GA
UðtÞ; (3.26)

where

p(t) is the difference between instantaneous pressures in Pa across the dissipative

element.

RA ¼ RM/S
2 is acoustic resistance in N$s/m5.

GA ¼GMS
2 is acoustic conductance in m5/N$s.

U(t) is instantaneous volume velocity in m3/s of the gas through the cross-sectional

area of resistance.

The impedance-type analogous symbol for acoustic resistance is shown in Fig. 3.28(a)

and the admittance-type in Fig. 3.28(b).

Acoustic generators
Acoustic generators can be of either the constant volume velocity or the constant

pressure type. The prime movers in our acoustical circuits will be exactly like those

Figure 3.27 Fine mesh screen which serves as an acoustical symbol for acoustic resistance.

RM

U~

p~ GM
U~

p~

Impedance-type Admittance-type 

(a) (b)

Figure 3.28 (a) Impedance-type symbol for acoustic resistance and (b) admittance-type symbol for
acoustic conductance.
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shown in Fig. 3.7 and 3.9 except that eu2 often will be zero and eu1 will be the velocity of a
small piston of area S. Remembering that eu ¼ eu1 � eu2, we see that the generator of

Fig. 3.7 has a constant volume velocity eU ¼ euS and that of Fig. 3.9 a constant pressure

of ep ¼ ef =S.
The two types of analogous symbols for acoustic generators are given in Figs. 3.29

and 3.30. The arrows point in the direction of the positive terminal or the positive flow.

As before, a wave inside the circle indicates zero impedance or admittance and an arrow

inside the circle indicates infinite impedance or admittance.

Example 3.4. The acoustic device of Fig. 3.31 consists of three cavities V1, V2, and

V3, two fine mesh screens RA1 and RA2, four short lengths of tube T1, T2, T3, and T4,

and a constant pressure generator. Because the air in the tubes is not confined, it ex-

periences negligible compression. Because the air in each of the cavities is confined, it

experiences little average movement. Let the force of the generator be

f ðtÞ ¼ 10�5 cos ut N

U~

U~ p~

p~ p~

Impedance - type Admittance - type 

(a) (b)

Figure 3.29 (a) Impedance-type and (b) admittance-type symbols for a constant pressure generator.

U~p~

Impedance - type Admittance - type 

p~U~

U~

(a) (b)

Figure 3.30 (a) Impedance-type and (b) admittance-type symbols for a constant volume velocity
generator.

Piston

f~

T1 T2 T3 T4

V1 V2 V3

RA1 RA2

Figure 3.31 Acoustic device consisting of four tubes, three cavities, and two screens driven by a
constant pressure generator.
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so that ef ¼ 10�5e jut N

or ���ef ��� ¼ 10�5 N at u ¼ 1000 Hz.

Also, let the radius of the tube a ¼ 0.5 cm; the length of each of the four tubes

l ¼ 5 cm; the volume of each of the three cavities V ¼ 10 cm3; and the magnitude of the

two acoustic resistances RA ¼ 10 N$s/m5. Neglecting end corrections, solve for the

volume velocity eU0 at the end of the tube T4.

Solution. Remembering that there is continuity of volume velocity and pressure at the

junctions, we can draw the impedance-type analogous circuit from inspection. It is

shown in Fig. 3.32. The bottom line of the schematic diagram represents atmospheric

pressure, which means that here the variational pressure ep is equal to zero. At each of the

junctions of the elements 1 to 4, a different variational pressure can be observed. The end

of the fourth tube (T4) opens to the atmosphere, which requires that MA4 be connected

directly to the bottom line of Fig. 3.32.

Note that the volume velocity of the gas leaving the tube T1 is equal to the sum of the

volume velocities of the gas entering V1 and T2. The volume velocity of the gas leaving

T2 is the same as that flowing through the screen RA1 and is equal to the sum of the

volume velocities of the gas entering V2 and T3.

One test of the validity of an analogous circuit is its behavior for direct current.

If one removes the piston and blows into the end of the tube T1 (Fig. 3.31), a

steady flow of air from T4 is observed. Some resistance to this flow will be offered

by the two screens RA1 and RA2. Similarly in the schematic diagram of Fig. 3.32, a

steady pressure ep will produce a steady flow eU through MA4, resisted only by RA1

and RA2.

As an aside, let us note that an acoustic compliance can occur in a circuit without one

of the terminals being at ground potential only if it is produced by an elastic diaphragm.

For example, if the resistance in Fig. 3.31 were replaced by an impervious but elastic

diaphragm, the element RA1 in Fig. 3.32 would be replaced by a compliance-type

element with both terminals above ground potential. In this case, a steady flow of air

U~

p~ CA1

1
~U

MA11 2 

CA2

3
~U

MA4

2
~U 4

~U

RA1
MA2 RA2

MA33

5
~U

4

CA3

0
~U

Figure 3.32 Impedance-type analogous circuit for the acoustic device of Fig. 3.31.
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could not be maintained through the device of Fig. 3.31 as can also be seen from the

circuit of Fig. 3.32, with RA1 replaced by a compliance.

Determine the element sizes of Fig. 3.32:

ep ¼
ef
S
¼ 10�5e j1000t

pð5� 10�3Þ2 ¼ 0:1273e j1000t Pa;

MA1 ¼ MA2 ¼ MA3 ¼ MA4 ¼ r0l

S
¼ 1:18� 0:05

7:85� 10�5
¼ 750 kg=m4;

CA1 ¼ CA2 ¼ CA3 ¼ V

gP0
¼ 10�5

1:4� 105
¼ 7:15� 10�11 m5=N;

RA1 ¼ RA2 ¼ 10 N$s
�
m5:

We now determine the ratio ep�eU0.ep4 ¼ juMA4 eU0 ¼ j7:5� 105 � eU0 Pa

eU5 ¼ juCA3ep4 ¼ �5:36� 10�2 � eU0 m3=s

eU4 ¼ eU5 þ eU0 ¼ 0:946eU0

ep3 ¼ ðRA2 þ juMA3ÞeU4 þ ep4 ¼ 	
9:46þ j14:6� 105


eU0

eU3 ¼ juCA2ep3 ¼ 	� 0:1043þ j6:77� 10�7

eU0

eU2 ¼ eU3 þ eU4 ¼ 	
0:842þ j6:77� 10�7


eU0

ep2 ¼ ðRA1 þ juMA2ÞeU2 þ ep3 ¼ 	
17:37þ j2:091� 106


eU0

eU1 ¼ juCA1ep2 ¼ 	� 0:1496þ j1:242� 10�6

eU0

eU ¼ eU2 þ eU1 ¼ 	
0:692þ j1:919� 10�6


eU0

ep ¼ juMA1 eU þep2 ¼ 	
15:93þ j2:61� 106


eU0:
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The desired value of eU0 is

eU0 ¼ 0:1273e j1000t

15:93þ j2:61� 106

or

UðtÞz4:88� 10�8 cosð1000t � 90�Þ

z4:88� 10�8 sin 1000t:

In other words, the impedance is principally that of the four acoustic masses in series

so that eU0 lags ep by nearly 90 degrees.

Example 3.5. A Helmholtz resonator is frequently used as a means for eliminating

an undesired frequency component from an acoustic system. An example is given in

Fig. 3.33(a). A constant force generatorG produces a series of tones, among which is one

that is not wanted. These tones actuate a microphone M whose acoustic impedance is

500 N$s/m5. If the tube T has a cross-sectional area of 5 cm2, l1 ¼ l2 ¼ 5 cm, l3 ¼ 1 cm,

V ¼ 1000 cm3, and the cross-sectional area of l3 is 2 cm
2, what frequency is eliminated

from the system?

Solution. By inspection we may draw the impedance-type analogous circuit of

Fig. 3.33(b). The element sizes are

p~

CA3

1
~U

MA1

2
~U

MA2

MA3 RA1

RV

G M

T

P

l1 l2

l3

2 cm2 5 cm2(a)

(b)

Figure 3.33 (a) Acoustic device consisting of a constant force generator G, piston P, tube Twith length
l1 þ l2, microphone M, and Helmholtz resonator R with volume V and connecting tube as shown. (b)
Impedance-type analogous circuit for the device of (a).
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MA1 ¼ MA2 ¼ r0l1

ST
¼ 1:18� 0:05

5� 10�4
¼ 118 kg

�
m4;

MA3 ¼ r0l3

SR
¼ 1:18� 0:01

2� 10�4
¼ 59 kg

�
m4;

CA3 ¼ V

gP0
¼ 10�3

1:4� 105
¼ 7:15� 10�9m5

�
N;

RA1 ¼ 500 N$s
�
m5:

It is obvious that the volume velocity eU2 of the transducer M will be zero when the

shunt branch is at resonance. Hence,

u ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MA3CA3

p ¼ 104ffiffiffiffiffiffiffiffiffi
42:2

p ¼ 1540 rad=s;

f ¼ 245 Hz.

Mechanical rotational systems
Mechanical rotational systems are handled in the same manner as mechanical rectilineal

systems. Table 3.4 shows quantities analogous in the two systems.

Table 3.4 Analogous quantities in rectilineal and rotational systems
Rectilineal systems Rotational systems

Symbol Quantity Unit Symbol Quantity Unitef Force N eT Torque N$meu Velocity m/s eq Angular velocity rad/sex Displacement m ef Angular

displacement

rad

ZM ¼ ef =eu Mechanical

impedance

N$s/m ZR ¼ eT�eq Rotational

impedance

N$m$s/rad

YM ¼ eu=ef Mechanical

admittance

m/N�1$s�1 YR ¼ eq�eT Rotational

admittance

rad/N$m$s

RM Mechanical

resistance

N$s/m RR Rotational

resistance

N$m$s/rad

GM Mechanical

conductance

m$N�1/s�1 GR Rotational

conductance

rad/N$m$s

MM Mass kg IR Moment of

inertia

kg$m2

CM Mechanical

compliance

m/N CR Rotational

compliance

rad/N$m

WM Mechanical power W WR Rotational power W
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PART VIII: TRANSDUCERS

A transducer is defined as a device for converting energy from one form to

another. Of importance in this text is the electromechanical transducer for converting

electrical energy into mechanical energy, and vice versa. There are many types of such

transducers. In acoustics, we are concerned with microphones, earphones, loudspeakers,

and vibration pickups and vibration producers which are generally linear passive

reversible networks.

The type of electromechanical transducer chosen for each of these instruments de-

pends on such factors as the desired electrical and mechanical impedances, durability, and

cost. It will not be possible here to discuss all means for electromechanical transduction.

Instead we shall limit the discussion to electromagnetic and electrostatic types. Also, we

shall deal with mechanoacoustic transducers for converting mechanical energy into

acoustic energy.

3.5 ELECTROMECHANICAL TRANSDUCERS

Two types of electromechanical transducers, electromagnetic and electrostatic, are

commonly employed in loudspeakers and microphones. Both may be represented by

transformers with properties that permit the joining of mechanical and electrical circuits

into one schematic diagram.

Electromagnetic-mechanical transducer
This type of transducer can be characterized by four terminals. Two have voltage and

current associated with them. The other two have velocity and force as the measurable

properties. Familiar examples are the moving-coil loudspeaker or microphone and the

variable-reluctance earphone or microphone.

The simplest type of moving-coil transducer is a single length of wire in a uniform

magnetic field as shown in Fig. 3.34. When a wire is moved upward with a velocity eu as
shown in Fig. 3.34(a), a potential difference ee will be produced in the wire such that

terminal 2 is positive. If, on the other hand, the wire is fixed in the magnetic field

(Fig. 3.34(b)) and a currentei is caused to flow into terminal 2 (therefore, 2 is positive), a

force ef will be produced that acts on the wire upward in the same direction as that

indicated previously for the velocity.

The basic equations applicable to the moving-coil type of transducer areef ¼ Bl ei; (3.27a)

ee ¼ Bl eu; (3.27b)
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whereei is electrical current in A,ef is “open-circuit” force in N produced on the mechanical circuit by the currentei,
B is magnetic flux density in T,

l is effective length in m of the electrical conductor that moves at right angles across

the lines of force of flux density Beu is velocity in m/see is “open-circuit” electrical voltage in V produced by a velocity eu.
The right-hand sides of Eq. (3.27) have the same sign because when eu and ef are in the

same direction, the electrical terminals have the same sign.

One analogous symbol for this type of transducer is the “ideal” transformer given in

Fig. 3.35(a). The “windings” on this ideal transformer have infinite impedance, and the

transformer obeys Eq. (3.27) at all frequencies, including steady flow. The mechanical

N

Velocity u with positive 
direction upward 

S

e
2

1

N

The current i produces a 
force f acting upward 

S

i

2

1 f

(a) (b)

Figure 3.34 Simplified form of moving-coil transducer consisting of a single length of wire cutting a
magnetic field of flux density B. (a) The conductor is moving vertically at constant velocity so as to
generate an open-circuit voltage across terminals 1 and 2. (b) A constant current is entering terminal 2
to produce a force on the conductor in a vertical direction.

i~

u~

f~

e~

1:Bl(a)

i~

f~

u~

e~

Blmg 1=(b)

Figure 3.35 Analogous symbols for the electromagnetic transducer of Fig. 3.34. (a) The mechanical
side is of the admittance type. (b) The mechanical side is of the impedance type.
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side of this symbol necessarily is of the admittance type if current flows in the primary.

The other analogous symbol is the “ideal” gyrator given in Fig. 3.35(b). It is customary

to define the mutual conductance gm of a gyrator, which is the same in both directions, as

the ratio of the flow on one side to the drop on the other. The mechanical side of this

symbol necessarily is of the impedance type if current flows in the primary. The invariant

mathematical operations which these symbols represent are given in Table 3.1. They lead

directly to Eq. (3.27). The arrows point in the directions of positive flow or positive

potential.

Electrostatic-mechanical transducer
This type of transducer may also be characterized by four terminals. At two of them,

voltages and currents can be measured. At the other two, forces and velocities can be

measured.

An example is a piezoelectric crystal microphone such as is shown in Fig. 3.36. A

force ef applied uniformly over the face of the crystal causes an inward displacement of

magnitude ex in meters. As a result of this displacement, a voltage ee appears across the
electrical terminals 1 and 2. Let us assume that a positive displacement (inward) of the

crystal causes terminal 1 to become positive. For small displacements, the induced

voltage is proportional to displacement. The inverse of this effect occurs when no

external force acts on the crystal face but an electrical generator is connected to the

terminals 1 and 2. If the external generator is connected so that terminal 1 is positive, an

internal forceef is produced which acts to expand the crystal. For small displacements, the

developed force ef is proportional to the electric charge eq stored in the electrodes.

Using the above relationships, we can write

eq ¼ CEee� d31ef (3.28a)

f~

1

2
Electrical 
terminals 

Rigid wall to 
which crystal 
is cemented

Distributed 
force        
with positive 
direction 
inward

d

w

h

Figure 3.36 Piezoelectric crystal transducer mounted on a rigid wall.
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ex ¼ d31ee�CM
ef (3.28b)

whereeq is electrical charge in C stored in the electrodes of the piezoelectric device,ee is “open-circuit” electrical voltage in V produced by a displacement ex,ef is “open-circuit” force in N produced by an electrical charge eq,ex is displacement in m of a dimension of the piezoelectric device in m,

d31 is piezoelectric strain coefficient with dimensions of C/N or m/V. It is a real number

when the network is linear, passive, and reversible. (The subscripts denote the relative

directions of the applied field and resulting movement or vice versa. In this case, the

two are at right angles. If they were in the same direction, for example, we would use

d11, d22, or d33, where 1, 2, and 3 can be regarded as denoting the x, y, or z directions.)

and the electrical capacitance CE and mechanical compliance CM are given by

CE ¼ ε0εrhw

d
(3.29)

CM ¼ h

Ydw
(3.30)

where

ε0 is permittivity of free space in F/m,

εr is relative permittivity of the free (nonblocked) piezoelectric dielectric

(dimensionless),

Y is Young’s modulus of elasticity in N/m2 with electrical short-circuited.

In reality, CE and CM vary with displacement ex, but it is assumed that the displacement is

very small, so these are linearized equations. If the material shows no piezoelectric effect,

applying an external force ef simply leads to a deflection ex according to Hooke’s law.

Because of the piezoelectric effect, the displacement also leads to an induced chargeeq on
the electrodes, which in turn leads to a voltage (electrical force)ee. Conversely, applying
an electrical voltage leads to a mechanical force. Solving Eqs. (3.28a) and (3.28b) for ee
and ef gives

ee ¼ 1

1� k231

�
1

CE
eq� d31

CECM

ex� (3.31a)

ef ¼ 1

1� k231

�
d31

CECM
eq� 1

CM

ex� (3.31b)

where k31 is the dimensionless piezoelectric coupling coefficient which is related to the

piezoelectric strain coefficient d31 by
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k31 ¼ d31ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CECM

p ¼ d31

ffiffiffiffiffiffiffiffi
Y

ε0εr

r
; 0 < k31 < 1 (3.32)

Another commonly used parameter is the piezoelectric stress coefficient g31 in Vm /N or

m2/C, which is defined by

g31 ¼ d31

ε0εr
¼ k31ffiffiffiffiffiffiffiffiffiffiffiffi

ε0εrY
p (3.33)

Eq. (3.31) is often inconvenient to use because they contain charge and displacement.

One prefers to deal with current and velocity, which appear directly in the equation for

power. Conversion to current and velocity may be made by the relations

eu ¼ dx

dt
¼ juex; (3.34a)

ei ¼ dq

dt
¼ jueq; (3.34b)

so that Eq. (3.31) becomes, in z-parameter matrix form,

"eeef
#

¼

2666664
1

juC0
E

d31

juC0
ECM

d31

juC0
ECM

1

juC0
E

3777775
24 ei
�eu
35: (3.35)

The elements of Eq. (3.35) are related by the equations

C0
E ¼ 	

1� k231


CE (3.36)

C0
M ¼ 	

1� k231


CM (3.37)

Note in particular that

C0
E is electrical capacitance measured with the mechanical “terminals” blocked so

that no motion occurs ðeu ¼ 0Þ.
CE is electrical capacitance measured with the mechanical “terminals” operating into

zero mechanical impedance so that no force is built up
�ef ¼ 0

�
.

C0
E is mechanical compliance measured with the electrical terminals open-circuited	ei ¼ 0



.

CM is mechanical compliance measured with the electrical terminals short-circuited

ðee ¼ 0Þ.
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The equivalent circuit shown in Fig. 3.37(a) is essentially a two-port network defined by

the z-parameters in the matrix of Eq. (3.35), although z-parameter matrices will be

discussed in greater detail in Section. 3.10. Noting from Eqs. (3.36) and (3.37) that

C0
ECM ¼ CEC

0
M , Eq. (3.31) can alternatively be written as

"eeef
#

¼

2666664
1

juC0
E

d31

juCEC
0
M

d31

juCEC
0
M

1

juC0
M

3777775
24 ei
�eu
35: (3.38)

which is represented by the equivalent circuit as shown in Fig. 3.37(b). The mechanical

sides of Fig. 3.37(a,b) are of the impedance-type analogy. Let us discuss Fig. 3.37(a) first.

Looking into the electrical terminals 1 and 2, the element C0
E is the electrical

capacitance of the transducer. To measure C0
E, a sinusoidal driving voltageee is applied to

the transducer terminals 1 and 2, and the resulting sinusoidal current is measured. During

this measurement, the mechanical terminals 3 and 4 are open-circuited (motion blocked,eu ¼ 0). A very low driving frequency is used so that the mass reactance and mechanical

resistance can be neglected. The negative capacitance �C0
E represents the force of

attraction between the electrodes which varies with the displacement. Hence, it can be

thought of as a negative stiffness which can be subtracted from the natural stiffness of the

material.

Looking into the mechanical terminals 3 and 4 of Fig. 3.37(b), C0
M is the mechanical

compliance of the transducer measured at low frequencies with the electrical terminals 1

and 2 open-circuited
	ei ¼ 0



. A sinusoidal driving forceef is applied to terminals 3 and 4 of

the transducer and the resulting sinusoidal displacement is measured. Again, the negative

compliance �C0
M is because of the force of attraction between the electrodes. Elimi-

nating eq and ex between Eq. (3.31) leads to the following simplified equations

e~

2

C′E f~

4

)/(:1 31 MCd

e~

i~

2

1

C′M

u~
3

f~

C′E

4

1:)/( 31 ECd(b)

(a) i~
1

u~
3

C′M− C′E

− C′M

Figure 3.37 Two forms of analogous symbols for piezoelectric transducers. The mechanical sides are
of the impedance type.
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ef ¼ d31

CM
ee� 1

CM

ex (3.39a)

ee ¼ d31

CE

ef þ 1

CE
eq (3.39b)

In the steady state eu ¼ juex andei ¼ jueq so that

ef ¼ d31

CM
ee� 1

juCM
eu (3.40a)

ee ¼ d31

CE

ef þ 1

juCE

ei (3.40b)

from which we obtain the two simplified equivalent electrical circuits as shown in

Fig. 3.38.

Looking into the mechanical terminals 3 and 4 of Fig. 3.38(a), the element CM is

the mechanical compliance of the transducer but measured in a different way. A

sinusoidal driving force ef is applied to terminals 3 and 4 of the transducer at a very

low frequency so that the mass reactance and mechanical resistance can be neglected,

and the resulting sinusoidal displacement is measured. During this measurement, the

electrical terminals 1 and 2 are short-circuited ðee ¼ 0Þ. Looking into the electrical

terminals 1 and 2 of Fig. 3.38(b), the element CE is the electrical capacitance

measured at low frequencies with the mechanical terminals 3 and 4 short-circuited�ef ¼ 0
�
.

A sinusoidal driving voltage e applied to the terminals 1 and 2 of Fig. 3.38(a) produces

an open-circuit force

e~

2

C E f~

4

)/(:1 31 MCd

e~

i~

2

1
u~

3

f~

CE

4

1:)/( 31 ECd

i~
1

u~
3

CM(a)

(b)

′

C M′

Figure 3.38 Two simplified forms of analogous symbols for piezoelectric transducers. The mechanical
sides are of the impedance type.
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ef ¼ d31

CM
ee: (3.41)

A sinusoidal driving force ef applied to the terminals 3 and 4 of Fig. 3.38(b) produces

an open-circuit voltage

ee ¼ d31

CE

ef : (3.42)

The choice between the alternative analogous symbols of Fig. 3.38 is usually made on

the basis of the use to which the transducer will be put. If the electrostatic transducer is a

microphone, it usually is operated into the gate of a field-effect transistor so that the

electrical terminals are essentially open-circuited. In this case, the circuit of Fig. 3.38(b) is

the better one to use because CE can be neglected in the analysis whenei ¼ 0. On the

other hand, if the transducer is a loudspeaker, it usually is operated from a low-

impedance amplifier so that the electrical terminals are essentially short-circuited. In

this case, the circuit of Fig. 3.38(a) is the one to use because C0
E u is small in comparison

with the output admittance of the amplifier.

The circuit of Fig. 3.38(a) corresponds more closely to the physical facts than does

that of Fig. 3.38(b). If the device could be held motionless ðeu ¼ 0Þ when a voltage was

impressed across terminals 1 and 2, there would be no stored mechanical energy. All the

stored energy would be electrical. This is the case for circuit (a), but not for (b). In other

respects the two circuits are identical.

At higher frequencies, the mass MM and the resistance RM of the crystal must be

considered in the circuit. These elements can be added in series with terminal 3 of

Fig. 3.38.

These analogous symbols indicate an important difference between electromagnetic

and electrostatic types of coupling. For the electromagnetic case, we ordinarily use an

admittance-type analogy, but for the electrostatic case, we usually employ the

impedance-type analogy.

In the next part we shall introduce a different method for handling electrostatic

transducers. It involves the use of the admittance-type analog in place of the impedance-

type analog. The simplification in analysis that results will be immediately apparent. By

this new method, it will also be possible to use the impedance-type analog for the

electromagnetic case.

3.6 MECHANOACOUSTIC TRANSDUCER

This type of transducer occurs at a junction point between the mechanical and

acoustical parts of an analogous circuit. An example is the plane at which a loudspeaker

diaphragm acts against the air. This transducer may also be characterized by four
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terminals. At two of the terminals, forces and velocities can be measured. At the other

two, pressures and volume velocities can be measured. The basic equations applicable to

the mechanoacoustic transducer are ef ¼ Sep; (3.43a)

eU ¼ Seu; (3.43b)

whereef is force in N,ep is pressure in Pa,eU is volume velocity in m3/s,eu is velocity in m/s,

S is area in m2.

The analogous symbols for this type of transducer are given at the bottom of Table 3.3

(page 70). They are seen to lead directly to Eq. (3.43).

3.7 EXAMPLES OF TRANSDUCER CALCULATIONS

Example 3.6. An ideal moving-coil loudspeaker produces 2 Wof acoustic power

into an acoustic load of 4 � 104 N s/m5 when driven from an amplifier with a constant

voltage output of 1.0 V rms. The area of the diaphragm is 100 cm2. What open-circuit

voltage will it produce when operated as a microphone with an rms diaphragm velocity

of 10 cm/s?

Solution. From Fig. 3.35 we see that, always,ee ¼ Bleu:
The power dissipated W gives us the rms volume velocity of the diaphragm Urms:

Urms ¼
ffiffiffiffiffiffiffi
W

RA

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

4� 104

r
¼ 7:07� 10�3m3=s

or

urms ¼ 0:707 m=s;

Bl ¼ erms

urms
¼ 1

0:707
¼ 1:414 T$m

Hence, the open-circuit voltage for an rms velocity of 0.1 m/s is

erms ¼ 1:414� 0:1 ¼ 0:1414 V:
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Example 3.7. A lead magnesium niobateelead titanate (PMN-PT) crystal as shown

in Fig. 3.36 with w ¼ 0.5 mm, d ¼ 2 mm, and h ¼ 2 mm has the following mechanical

and electrical properties:

d31 ¼ 750 � 10�12 C/N or m/V

Y ¼ 20 � 109 N/m2

r ¼ 8000 kg/m3

ε0 ¼ 8.85 � 10�12 F/m

εr ¼ 6500

k31 ¼ d31

ffiffiffiffiffiffiffiffi
Y

ε0εr

r
¼ 0:442

This crystal is to be used in a microphone with a circular (weightless) diaphragm.

Determine the diameter of the diaphragm if the microphone is to yield an open-

circuit voltage of �70 dB re 1 V rms for a sound pressure level of 74 dB re

20 mPa at 100 kHz.

Solution. The circuit for this transducer with the transformer removed is shown in

Fig. 3.39, where the circuit elements are defined by

C0
M ¼ 	

1� k231

 h

Ywd
¼ 1� 0:4422

20� 0:5� 106
¼ 8� 10�8m=N;

MM ¼ 4

p2
rwdh ¼ 4� 8� 0:5� 2� 2� 10�6

p2
¼ 6:5� 10�6kg

�
m3;

CE ¼ ε0εrwh

d
¼ 8:85� 10�12 � 6:5� 0:5 ¼ 28:8� 10�12 F;

RM ¼ negligibly small.

Because only the open-circuit voltage is desired, CE may be neglected in the cal-

culations. frms is the total force applied to the crystal by the diaphragm. Solving for erms

yields

erms ¼ frmsðd31=CEÞ
1� u2MMC0

M

:

u~f~
C′M 31

~

d
eCE

MM

Figure 3.39 Analogous circuit of the impedance type for a crystal microphone.
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The force f equals the area of the diaphragm S times the sound pressure p.

Solving for p,

prms ¼ 20� 10�6 � 1074=20

¼ 0:1N
�
m2

Solving for e,

1

erms
¼ 1070=20 ¼ 3:16� 103;

or

erms ¼ 3:16� 10�4 V:

Hence,

S ¼ frms

prms
¼ 3:16� 10�4

	
1� 6:282 � 1010 � 6:5� 8� 10�14



0:1� ð750=28:8Þ

¼ 9.65� 10�5 m2

S ¼ 0:965 cm2:

This corresponds to a diaphragm with a diameter of about 1.1 cm.

Example 3.8. A loudspeaker diaphragm couples to the throat of an exponential

horn that has an acoustic impedance of (300 þ j300) N$s/m5. If the area of the loud-

speaker diaphragm SD is 0.08 m2, determine the mechanical impedance load on the

diaphragm because of the horn.

Solution. The analogous circuit is shown in Fig. 3.40. The mechanical impedance at

terminals 1 and 2 represent the load on the diaphragm:

u~ U~

f~

1:DS

j300

2

1

4

3

p~
300

Figure 3.40 Example of a mechanoacoustic transducer. The acoustic impedance of a horn (at
terminals 3 and 4) loads the diaphragm with a mechanical impedance SD

2 (300 þ j300) N s/m.
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ZM ¼
efeu ¼ S2Dð300þ j300Þ

¼ 6.4� 10�3ð300þ j300Þ

¼ 1:92þ j1.92 N$s=m.

PART IX: CIRCUIT THEOREMS, ENERGY, AND POWER

In this part we discuss conversions from one type of analogy to the other, Thé-

venin’s theorem, energy and power relations, transducer impedances, and combinations

of transducers.

3.8 CONVERSION FROM ADMITTANCE-TYPE ANALOGIES TO
IMPEDANCE-TYPE ANALOGIES

In the preceding parts, we showed that electromagnetic and electrostatic trans-

ducers require two different types of analogy if they are to be represented by the net-

works shown in Table 3.1. A further need for two types of analogy is apparent from the

standpoint of ease of drawing an analogous circuit by inspection. The admittance type of

analogy is better for mechanical systems and the impedance type for acoustic systems.

The circuits we shall use, however, will frequently contain electrical, mechanical, and

acoustical elements. Because analogies cannot be mixed in a given circuit, we must have a

simple means for converting from one to the other.

We may readily derive one analogy from the other if we recognize that:

Elements in series in the circuit of one analogy correspond to elements in parallel in

the other.

Resistance-type elements become conductance-type elements, capacitance-type

elements become inductance-type elements, and inductance-type elements

become capacitance-type elements.

The sum of the drops across the series elements in a mesh of one analogy corresponds

to the sum of the currents at a branch point of the other analogy.

This is equivalent to saying that one analogy is the dual of the other. In electrical circuit

theory one learns that the quantities that “flow” in one circuit are the same as the “drops”

in the dual of that circuit. This is also true here.

To facilitate the conversion from one type of analogy to another, a method that we

shall dub the “dot” method is used [9]. Assume that we have the admittance-type analog

of Fig. 3.17 and that we wish to convert it to an impedance-type analog. The procedure

is as follows (see Fig. 3.41):
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Place a dot at the center of each mesh of the circuit and one dot outside all meshes.

Number these dots consecutively.

Connect the dots together with lines so that there is a line through each element and

so that no line passes through more than one element.

Draw a new circuit such that each line connecting two dots now contains an element

that is the inverse of that in the original circuit. The inverse of any given element may

be seen by comparing corresponding columns for admittance-type analogies and

impedance-type analogies of Table 3.3. The complete inversion (dual) of Fig. 3.41 is

shown in Fig. 3.42.

Solving for the velocities or the forces in the two circuits using the rules of Table 3.1

will readily reveal that they give the same results.

After completing the formation of an analogous circuit, it is always profitable to ask

concerning each element. If this element becomes very small or very large, does the

circuit behave in the same way the device itself would behave? If the circuit behaves

properly in the extremes, it is probably correct.

3.9 THÉVENIN’S THEOREM

It appears possible, from the foregoing discussions, to represent the operation of a

transducer as a combination of electrical, mechanical, and acoustical elements. The

connection between the electrical and mechanical circuit takes place through an elec-

tromechanical transducer. Similarly, the connection between the mechanical and

acoustical circuit takes place through a mechanoacoustic transducer. A Thévenin’s the-

orem may be written for the combined circuits, just as is written for electrical circuits

only.

CMGM2

MM2MM1

GM1

u~
f~

2 3 

1

4 5 2
~u

Figure 3.41 Preparation by the “dot” method for taking the dual of Fig. 3.17.

u~ f~ RM1

MM1

1

2

CM

2
~u

RM2MM23 4 5

Figure 3.42 Dual of the circuit of Fig. 3.40. Solving for the forces or velocities in this circuit using the
rules of Table 3.1 yields the same values as solving for the forces or velocities in Fig. 3.41.
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The requirements which must be satisfied in the proper statement and use of Thé-

venin’s theorem are that all the elements be linear and there be no hysteresis effects.

In the next few paragraphs, we shall demonstrate the application of Thévenin’s

theorem to a loudspeaker problem. The mechanical radiation impedance presented by

the air to the vibrating diaphragm of a loudspeaker or microphone will be represented

simply as ZMR in the impedance-type analogy or YMR ¼ l/ZMR in the admittance-type

analogy. The exact physical nature of ZMR will be discussed in Chapters 4, 12, and 13.

Assume a simple electrodynamic (moving-coil) loudspeaker with a diaphragm that

has only mass and a voice coil that has only electrical resistance (see Fig. 3.43(a)). Let this

loudspeaker be driven by a constant voltage generator. By making use of Thévenin’s

theorem, we wish to find the equivalent mechanical generator eu0 and the equivalent

mechanical admittance YMS of the loudspeaker, as seen in the interface between the

diaphragm and the air. The circuit of Fig. 3.43(a) with the transformer removed is shown

in Fig. 3.43(b). The Thévenin’s equivalent circuit is shown in Fig. 3.43(c).

We arrive at the values of eu0 and YMS in two steps.

Step 1. Determine the open-circuit velocity eu0 by terminating the loudspeaker in an

infinite admittance, YMA ¼N (that is, ZMA ¼ 0), and then measuring the velocity of the

diaphragm eu0. As we discussed in Part II, ZMA ¼ 0 can be obtained by acoustically

connecting the diaphragm to a tube whose length is equal to one-fourth wavelength.

This is possible at low frequencies. Inspection of Fig. 3.43(b) shows that

e~

Af~

YMR

RE(a)

Au~

Bl:1 

MMD

Bl
e~

RE/(Bl)2
Af~

YMRAu~MMD

(b)

YMRAu~0
~u

YMS(c)

Figure 3.43 Analogous circuits for a simplified moving-coil loudspeaker radiating sound into air. (a)
Analogous circuit. (b) Same with transformer removed. (c) Same, reduced to its Thévenin’s equivalent.
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eu0 ¼ eeBl
juMMDRE þ ðBlÞ2: (3.44)

Step 2. Short-circuit the generator e without changing the mesh impedance in that

part of the electrical circuit. Then determine the admittance YMS looking back into the

output terminals of the loudspeaker. For example, YMS for the circuit of Fig. 3.43(b) is

equal to the parallel combination of 1/juMMD and RE/(Bl)
2, that is,

YMS ¼ RE

juMMDRE þ ðBlÞ2: (3.45)

The Thévenin’s equivalent circuit for the loudspeaker (looking into the diaphragm) is

shown schematically in Fig. 3.43(c), where eu0 and the admittance YMS are given by Eqs.

(3.44) and (3.45), respectively.

The application of Thévenin’s theorem as discussed above is an example of how

general theorems originally applying to linear passive electrical networks can be applied

to great advantage to the analogs of mechanical and acoustic systems, including

transducers.

3.10 TRANSDUCER IMPEDANCES

Let us look a little closer at the impedances at the terminals of electromechanical

transducers. It has become popular over the years for electrical circuit specialists to

express the equations for their circuits in matrix form. The matrix notation is a

condensed manner of writing systems of linear equations [10,11]. We shall express the

properties of transducers in matrix form for those who are familiar with this concept.

An explanation of the various mathematical operations to be performed with matrices

is beyond the scope of this book. The student not familiar with matrix theory is advised

to deal directly with the simultaneous equations from which the matrix is derived. A

knowledge of matrix theory is not necessary, however, for an understanding of any

material in this text.

Transmission matrix for an electrical two-port network
As we shall see, transmission matrices are particularly useful because an overall trans-

mission matrix M can be easily obtained by multiplying together the individual trans-

mission matrices for each circuit element. The general two-port network shown in

Fig. 3.44 can be represented by the following matrix equation:"eeineiin
#

¼ A$

"eeouteiout
#

¼
"
a11 a12

a21 a22

#
$

"eeouteiout
#
; (3.46)
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where the transmission parameters are given by

a11 ¼ eeineeout ��eiout ¼ 0; (3.47)

a12 ¼ eeineiout jeeout ¼ 0; (3.48)

a21 ¼ eiineeout ��eiout ¼ 0; (3.49)

a22 ¼ eiineiout jeeout ¼ 0; (3.50)

In other words:

a11 is ratio of applied input voltage to output voltage measured with the output

terminals open-circuited.

a12 is ratio of applied input voltage to output current measured with the output

terminals short-circuited.

a21 is ratio of applied input current to output voltage measured with the output

terminals open-circuited.

a22 is ratio of applied input current to output current measured with the output

terminals short-circuited.

Transmission matrix for an electromagnetic-mechanical transducer
Let us determine the transmission matrix for the electromagnetic-mechanical transducer

of Fig. 3.45. In that circuit ZE is the electrical impedance measured with the mechanical

ine~

ini
~

outi~

oute~
2-port 
network 

Figure 3.44 Electrical two-port network.

0
~e ZL

ZE

0

~
f

0

~
i 1

~
i

1
~e

ZMu~ Lu~ 0
~u

Lf
~

f
~

Bl

1

Figure 3.45 Analogous circuit for an electromagnetic-mechanical transducer. The mechanical side is
of the impedance type.
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terminals “blocked,” that is, eu ¼ 0; ZM is the mechanical impedance of the mechanical

elements in the transducer measured with the electrical circuit “open-circuited”; and ZL

is the mechanical impedance of the acoustic load on the diaphragm. The quantity Bl is

the product of the flux density times the effective length of the wire cutting the lines of

force perpendicularly. The individual transmission matrices for each element can be

written from inspection"ee0ei0
#

¼
"
1 ZE

0 1

#
$

"ee1ei1
#

¼ M0$

"ee1ei1
#
; (3.51)

"ee1ei1
#

¼
"

0 Bl

1=Bl 0

#
$

24efeu
35 ¼ M1$

24efeu
35; (3.52)

24efeu
35 ¼

"
1 ZM

0 1

#
$

24ef LeuL
35 ¼ M2$

24ef LeuL
35; (3.53)

24ef LeuL
35 ¼

"
1 0

1=ZL 1

#
$

24ef 0eu0
35 ¼ M3$

24ef 0eu0
35: (3.54)

The overall transmission matrix is then obtained as follows

M ¼ M0$M1$M2$M3

¼
24 1 ZE

0 1

35$
24 0 Bl

1=Bl 0

35$
24 1 ZM

0 1

35$
24 1 0

1=ZL 1

35

¼
24A11 A12

A21 A22

35;
(3.55)

where

A11 ¼ Bl

ZL
þ ZE

Bl

�
1þ ZM

ZL

�
; (3.56)

A12 ¼ Bl þ ZEZM

Bl
; (3.57)

Electromechanoacoustical circuits 129



A21 ¼ 1

Bl

�
1þ ZM

ZL

�
; (3.58)

A22 ¼ ZM

Bl
: (3.59)

We see from Fig. 3.45 that euo ¼ 0 so that"ee0ei0
#

¼
"
A11 A12

A21 A22

#
$

24ef 0
0

35 (3.60)

From this matrix, we can gather everything we need to know about the transducer.

For example, the parameters at the interfaces between the circuit elements (voltages,

currents, forces and velocities, etc.) can be obtained through a combination of the overall

transmission matrix and elemental matrices. Straightaway we obtain the force exerted on

the load

ef L ¼ ef 0 ¼ ee0
A11

¼ ZLBlee0
ZEðZM þ ZLÞ þ ðBlÞ2 (3.61)

and hence also the load velocity

euL ¼ ee0
A11ZL

¼ Blee0
ZEðZM þ ZLÞ þ ðBlÞ2 (3.62)

The latter is important for evaluating the radiated sound pressure, as will be explained

in Chapters 4, 12, and 13. The total electrical impedance ZET as viewed from the

voltage generator is found to be

ZET ¼ ee0ei0 ¼ A11
ef 0

A21
ef 0 ¼ ZE þ ðBlÞ2

ZM þ ZL
(3.63)

The second term on the right-hand side is usually called the motional impedance

because if the mechanical side is blocked there is no movement (that is, ZL /N) and

then ZET ¼ ZE, which is the static impedance. This equation illustrates a striking fact, viz.,

that the electromagnetic transducer is an impedance inverter. By an inverter we mean that a

mass reactance on the mechanical side becomes a capacitance reactance when referred to

the electrical side of the transformer, and vice versa. Similarly, an inductance on the

electrical side reflects through the transformer as a mechanical compliance.
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Impedance matrix for an electromagnetic-mechanical transducer
Refer to Fig. 3.44. Another type of matrix in common usage is the impedance matrix

based on z-parameters:" eeineeout
#

¼ Z$

24 eiin
�eiout

35 ¼
"
z11 z12

z21 z22

#
$

24 eiin
�eiout

35; (3.64)

where the z-parameters are given by

z11 ¼ eeineiin ��eiout ¼ 0; (3.65)

z12 ¼ eein
�eiout ��eiin ¼ 0; (3.66)

z21 ¼ eeouteiin ��eiout ¼ 0; (3.67)

z22 ¼ eeout
�eiout ��eiin ¼ 0 (3.68)

In other words,

z11 is ratio of input voltage to applied input current measured with the output ter-

minals open-circuited.

z12 is ratio of input voltage to applied output current measured with the input ter-

minals open-circuited.

z21 is ratio of output voltage to applied input current measured with the output

terminals open-circuited.

z22 is ratio of output voltage to applied output current measured with the input

terminals open-circuited.

Comparing Eq. (3.64) with Eq. (3.46), we can solve for the following transmission

parameter to z-parameter transformation equations

z11 ¼ a11=a21; (3.69)

z12 ¼ detðAÞ=a21; (3.70)

z21 ¼ 1=a21; (3.71)

z22 ¼ a22=a21; (3.72)
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where

detðAÞ ¼ a11a22 � a12a21: (3.73)

Many passive networks, especially ones in which no energy is created or lost, have a

determinant whose magnitude is unity, in which case the z-parameter matrix is sym-

metrical about the diagonal. That is, z12 ¼ z21. However, we shall see that in the case of

an electromagnetic-mechanical transducer, it turns out to be skew symmetrical, that is,

with z12 ¼ �z21, because det(A) ¼ �1, which in turn is because of the fact that the

current flow in a wire resulting from movement through a magnetic field is in the

opposite direction to that producing the same movement (Fleming’s generator rule vs.

motor rule). The reverse transformation equations are of the same form

a11 ¼ z11=z21; (3.74)

a12 ¼ detðZÞ=z21; (3.75)

a21 ¼ 1=z21; (3.76)

a22 ¼ z22=z21; (3.77)

where

detðZÞ ¼ z11z22 � z12z21: (3.78)

Applying the transformations of Eqs. (3.69e3.72) to the transmission parameters of

Eq. (3.56e3.59), while noting that in this instance eu0 ¼ 0 and ef 0 ¼ ef L, yields the
following z-parameter impedance matrix:

"ee0ef L
#

¼

2666664
ZE þ ðBlÞ2

ZM þ ZL

�BlZL

ZM þ ZL

BlZL

ZM þ ZL

ZMZL

ZM þ ZL

3777775$
24ei0
0

35; (3.79)

Not surprisingly, z11 ¼ ZET as given by Eq. (3.63). If we remove the load

impedance by letting ZL / N, we obtain the following simple z-parameter impedance

matrix for just the transducer without any external load:"ee0ef L
#

¼
"
ZE �Bl

Bl ZM

#
$

24 ei0
�euL

35 (3.80)

132 Acoustics: Sound Fields, Transducers and Vibration



Transmission matrix for an electrostatic-mechanical transducer
For the electrostatic-mechanical transducer of the type shown in Fig. 3.46, ZE is the

electrical impedance with the mechanical motion free
�ef ¼ 0

�
,

Z0
EhZE þ 1

juC0
E

is the electrical impedance with the mechanical motion blocked (~u ¼ 0).

ZL is the mechanical impedance of the acoustical load on the diaphragm.

ZMhRM þ juMM þ 1

juCM

is the mechanical impedance of the mechanical elements in the transducer measured

with the electrical terminals short-circuited ðee1 ¼ 0Þ. Z 0
M is the mechanical impedance

of the mechanical elements measured with the electrical terminals open-circuited	ei1 ¼ 0


. It is defined by the same expression as that for ZM above except that CM is

replaced by

C0
M ¼

 
1� d231

CECM

!
CM

which is the mechanical compliance in the transducer withei1 ¼ 0.

The individual transmission matrices for each element can be written from

inspection: "ee0ei0
#

¼
"
1 ZE

0 1

#
$

"ee1ei1
#

¼ M0$

"ee1ei1
#
; (3.81)

"ee1ei1
#

¼
"

1 0

juC0
M 1

#
$

"ee2ei2
#

¼ M1$

"ee2ei2
#
; (3.82)

0
~e ZL

ZE

0

~
f

0

~
i 1

~
i

1
~e

u~ Lu~ 0
~u

Lf
~

f
~

2
~e

2

~
i

EC′

C
d:1 ZM

Figure 3.46 Analogous circuit for an electrostatic-mechanical transducer. The mechanical side is of
the impedance type.
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"ee2ei2
#

¼
"
CM=d31 0

0 d31=CM

#
$

24efeu
35 ¼ M2$

24efeu
35; (3.83)

24efeu
35 ¼

"
1 ZM

0 1

#
$

24ef LeuL
35 ¼ M3$

24ef LeuL
35; (3.84)

24ef LeuL
35 ¼

"
1 0

1=ZL 1

#
$

24ef 0eu0
35 ¼ M4$

24ef 0eu0
35: (3.85)

Using the relationship C0
ECM ¼ CEC

0
M from Eqs. (3.36) and (3.37), the overall

transmission matrix is then obtained as follows:

M ¼ M0$M1$M2$M3$M4

¼
24 1 ZE

0 1

35$
24 1 0

juC0
E 1

35$
24CM=d31 0

0 d31=CM

35$
24 1 ZM

0 1

35$
24 1 0

1=ZL 1

35

¼
24A11 A12

A21 A22

35;
(3.86)

where

A11 ¼ juC0
ECM

d31

�
1þ Z 0

M

ZL

� 
Z 0
E þ d231

u2C02
E C

2
M

	
Z 0
M þ ZL


!; (3.87)

A12 ¼ juC0
ECM

d31
Z 0
M

 
Z 0
E þ d231

u2C02
E C

2
MZ 0

M

!
; (3.88)

A21 ¼ juC0
ECM

d31

�
1þ Z0

M

ZL

�
; (3.89)

A22 ¼ juC0
MECM

d31
Z 0
M : (3.90)
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Impedance matrix for an electrostatic-mechanical transducer
Applying the transformations of Eqs. (3.69e3.72) to the transmission parameters of Eqs.

(3.87e3.90), while noting that in this instance eu0 ¼ 0 and ef 0 ¼ ef L, yields the

following z-parameter impedance matrix:

"ee0ef L
#

¼

2666664
Z 0
E þ

�
d31

uC0
ECM

�2
1

Z 0
M þ ZL

d31

juC0
ECM

ZL

Z 0
M þ ZL

d31

juC0
ECM

ZL

Z 0
M þ ZL

Z0
MZL

Z 0
M þ ZL

3777775$
24ei0
0

35; (3.91)

If we remove the load impedance by letting ZL /N, we obtain the following

simple z-parameter impedance matrix for just the transducer without any external load:

"ee0ef L
#

¼

2666664
Z 0
E

d31

juC0
ECM

d31

juC0
ECM

Z0
M

3777775$
24 ei0
�euL

35: (3.92)

This matrix is symmetrical about the main diagonal, as for any ordinary electrical

passive network. By contrast matrix (3.80) is skew symmetrical because the

off-diagonal elements have opposite signs. For transient problems, replace ju by the

operator s ¼ d/dt [9].

The impedance matrix for the electrostatic transducer is almost identical in form to

that for the electromagnetic transducer, the difference being that the mutual terms have

the same sign, as contrasted to opposite signs for the electromagnetic case. This means

that while electrostatic transducers are reciprocal, electromagnetic transducers are

antireciprocal. For the electrostatic transducer, the total impedance is given from

Eq. (3.91) as

ZET ¼ z11 ¼ Z 0
E þ

�
d31

uC0
ECM

�2
1

Z 0
M þ ZL

: (3.93)

The first and second terms on the right-hand side are called the static and motional

impedances, respectively, as before.

Again we see that the transducer acts as a sort of impedance inverter. An added positive

mechanical reactance (þXM) comes through the transducer as a negative electrical

reactance.

Some interesting facts can be illustrated by assuming that we have an electrostatic and

an electromagnetic transducer, each stiffness controlled on the mechanical side so that
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ZM þ ZL ¼ 1

juCM1
: (3.94)

Substitution of Eqs. (3.94) into (3.63) yields

ZET ¼ ZE þ ju
	
B2l2CM1



: (3.95)

The mechanical compliance CM appears from the electrical side to be an

inductance with a magnitude B2l2CM1. We now substitute Eqs. (3.94) into (3.63) to

obtain

ZET ¼ z11 ¼ Z0
E þ j

�
d31

C0
ECM

�2
C0
M1

u
: (3.96)

The mechanical compliance C0
M of this transducer appears from the electrical side to

be a negative capacitance (see Fig. 3.37(b)), that is to say, C0
M1 appears to be an

inductance with a magnitude that varies inversely with u2. The effect of this is simply to

reduce the value of C0
M . Another way of looking at this is to note from Fig. 3.46 that

with RM ¼MM ¼ 0 and ZL ¼ 1/juC0
ML, the total compliance is less thanC0

M because of

the added compliance C0
ML.

Analogous circuits for the two-port network using z-parameters [12]
The transmission matrix for a two-port network may be conveniently separated into

three matrices"ee1ei1
#

¼
"
1 z11

0 1

#
$

"
0 �z12

1=z21 0

#
$

"
1 z22

0 1

#
$

"ee2ei2
#
: (3.97)

These matrices multiply together to form a single transmission matrix containing the

elements defined in Eqs. (3.74e3.77)"ee1ei1
#

¼
"
a11 a12

a21 a22

#
$

"ee2ei2
#
: (3.98)

The first matrix of Eq. (3.97) contains only the self-impedance z11 of the input port,

which is shown as a series impedance in Fig. 3.47(a) and (b). Similarly, the third matrix

contains only the self-impedance z22 of the output port, also shown as a series impedance

in Fig. 3.47(a) and (b). The second matrix contains the mutual impedances z12 and z21
between the input and output, and vice versa
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"ee 01ei1
#

¼
"

0 �z12

1=z21 0

#
$

"ee 02ei2
#
: (3.99)

This may be considered as a gyrator in which the polarity of the forward trans-

conductance is reversed. However, it is more intuitive to represent it as a pair of current-

controlled voltage sources, as shown in Fig. 3.47(a). Then the relationships of Eq. (3.99)

are shown explicitly. Alternatively, we may represent it as a pair of voltage-controlled

current sources, as shown in Fig. 3.47(b). If the mutual impedances are equal, that is

z21 ¼ z12, then we may use the purely passive scheme shown in Fig. 3.47(c). Here, the

matrices divide up as follows"ee1ei1
#

¼
"
1 z11 � z12

0 1

#
$

"
1 0

1=z12 1

#
$

"
1 z22 � z12

0 1

#
$

"ee2ei2
#
: (3.100)

We will use this for modeling a lossy tube in Section. 4.23.

Example 3.9. A moving-coil earphone, which is driven at frequencies above its first

resonance frequency, may be represented by the circuit of Fig. 3.43(a). Its mechanical and

electrical characteristics are

RE ¼ 8 U
B ¼ 1 T (104 G)

l ¼ 3=4 m

(a)

(b)

(c)

Figure 3.47 Analogous circuit of the two-port network using (a) current-controlled voltage sources
(b) voltage-controlled current sources, and (c) all-passive elements for case where z12 ¼ z21.
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MMD ¼ 60 mg

YMR ¼ ju2.7 � 10�3 m/N$s
where YMR is the admittance that the diaphragm sees when the earphone is on the ear

(because of the stiffness of the air trapped in the ear cavity), MMD is the mass of the

diaphragm, RE and l are the resistance and the length of wire wound on the voice coil,

and B is the flux density cut by the moving coil. Determine the sound pressure level

produced at the ear at 1000 Hz when the earphone is operated from a very low

impedance amplifier with an output voltage of erms ¼ 1 V. Assume that the area of the

diaphragm is 1 cm2.

Solution. The circuit diagram for the earphone with the element sizes given in SI units is

shown in Fig. 3.48(a). Eliminating the transformer gives the circuit of Fig. 3.48(b).

Solving, we get eu ¼ ef 2YMR ¼ 	
10�4ep
 j6280	2:7� 10�3



¼ 	

j1:7� 10�3

ep;

ef D ¼ juMMDeu ¼ 	�6:4� 10�4

ep;

ef ¼ ef D þef 2 ¼ 	�5:4� 10�4

ep;

1
1

3
ee ¼ euþ 14:22ef ¼ 	

j1:7� 10�3 � 7:67� 10�3

ep;

jprmsj ¼ 1:33� 103ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:72 þ 7:672

p z170 Pa;

8 ¾:1 2
~~ fp =

2.7 × 10-3 

2.7 × 10-3

60 × 10-6 

60 × 10-6 

14.22 

1 e~

f~

u~

Df~

e~

Df~

2
~~ fp =

(a)

(b) 10-4

10-4

Figure 3.48 Analogous circuits for Example 3.9.
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SPL ¼ 20 log
170

2� 10�5
¼ 138:6 dB re 20 m Pa.

Example 3.10. Two transducers, one a piezoelectric crystal and the other a moving

coil in a magnetic field, are connected to a mass MM2 of 6.27 g as shown in Fig. 3.49(a).

Determine the total stored mechanical energy in the massesMM1 andMM2 at 10 kHz for

the following constants:

e~

Bl
1RE

2
~f

MM1

0
~u

1:33

EC
d

EC′

1
~f 3

~f

MM2 4
~f

CM 5
~f

e~ Moving - coil 
transducer 

Piezo - electric 
transducer 

0
~u

MM2

e
ER

Bl ~

ER
Bl 2)(

MM1

0
~u

MM2

CMed
CE ~

33

( )ed
C

R
Bl E

E

~
33

+

ER
Bl 2)(

0
~u

(a)

(b) (d)

(c)

Figure 3.49 Combined electrostatic-electromagnetic transducers. (a) Block mechanical diagram of
the device. (b) Analogous circuit with impedances on mechanical side. (c) Same as (b), except that the
electrical elements are referred to the mechanical side. (d) Because the mechanical part of circuit
(c) has zero impedance, (c) simplifies to this form.
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erms ¼ 1 V

RE ¼ 10 U
B ¼ 1 T

l ¼ 20 m

CE ¼ 1.3 � 10�9 F

MM1 ¼ 6.4 � 10�3 kg

MM2 ¼ 6.27 � 10�3 kg

CM ¼ 2 � 10�8 m/N

d33 ¼ 10�9 C/N

u ¼ 62,800 rad/s

Solution. The transducers are shown schematically in (b) of Fig. 3.49. A further

simplification of this diagram is shown in (c). Let us determine the value of ZM first.

ZM1 ¼ juðMM1 þMM2Þ � j
1

CMu

¼ jð402þ 394Þ � j796 ¼ 0:

In other words, the impedance is zero at 10 kHz. Hence, circuit (c) simplifies to that

shown in (d). Then the velocity eu0 of the two masses MM1 and MM2 is

euo ¼
�
Bl

RE
þCE

d33

�
RE

ðBlÞ2ee
¼
 
1

Bl
þ RECE

ðBlÞ2d33

!ee
¼
�
1

20
þ 10� 1:3

202

�ee ¼ 	
82:5� 10�3


ee
so that u0rms ¼ 82.5 � 10�3 m/s. The total mechanical stored energy in the two masses

MM1 and MM2 is

1

2
ðMM1 þMM2Þu20rms ¼ 0:5� ð6:4þ 6:27Þ � 82:52 � 10�9 ¼ 4:31� 10�5W$s.

NOTES
[1] The London Underground map was designed by Harry Beck and introduced in 1933. He received

only 5 guineas for his efforts.
[2] Gehlshoj B. Electromechanical and electroacoustical analogies. Copenhagen: Academy of Technical

Sciences; 1947.
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1933;4:249e67. The mobility method of computing the vibrations of linear mechanical and
acoustical systems: Mechanical-electrical analogies. J Appl Phys 1938;9:373e478.

[4] Olson HF. Dynamical analogies. New York: D. Van Nostrand Company, Inc.; 1943.
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[7] Among the four circuit elements, the first three are two-poles. This list is exhaustive. The trans-

formation element is a four-pole. There are other lossless four-poles which one might have chosen in
addition, e.g., the ideal gyrator.

[8] An exception to this rule may occur when the mechanical device embodies one or more floating
levers, as we just learned.

[9] Gardner MF, Barnes JL. Transients in linear systems. New York: John Wiley & Sons, Inc.; 1942.
p. 46e9.
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p. 463e548.

[11] Attia JO. Electronics and circuit analysis using MATLAB. 2nd ed. Boca Raton, Florida: CRC; 2004.
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CHAPTER FOUR

Acoustic components

4.1 INTRODUCTION

We have attempted to present the material in different parts of this text in three

ways. The first way is in a form where acoustical phenomena can be visualized and

thought of in terms, for example, of analogous electrical circuits. This form is found in

the first three chapters. The second way is where straightforward mathematical analysis

leads to results that are commonly encountered in engineering practice. This form is

found in Chapter 7 where ready-made formulas and tables for loudspeaker systems are

presented. The third way is where more advanced mathematical analysis or software is

necessary to handle complex acoustical problems, such as when the wavelength is no

longer much greater than the largest dimension of the physical structure. We will

introduce the mathematical tools for tackling such problems in later chapters, starting

with lossy tubes in Section 4.22 and a model for an enclosure in Section 7.18.

In this chapter, we will start with the acoustical and mechanical elements that are used

to form electromechanoacoustic circuits that, in turn, are used to calculate the perfor-

mance of loudspeakers, microphones, and acoustic filters. One obvious acoustical

element is the air intowhich the sound is radiated. Others are air cavities, tubes, slots, and

porous screens both behind and in front of actively vibrating diaphragms. These various

elements have acoustic impedances associated with them, which can, in some frequency

ranges, be represented as simple lumped elements. In other frequency ranges, where the

length of the tube or cavity is greater than one-sixteenth of the wavelength such that we

have to consider axial pressure fluctuations, distributed elements, analogous to electric

lines, must be used in explaining the performance of the devices. For example, a

two-port network for a tube of any length is given in Section 4.23 together with

analogous circuits. When the radius is greater than one-twenty fifth of the wavelength,

we effectively have an enclosure and must consider lateral pressure fluctuations.

Enclosures are treated in Chapters 7 and 10. This text does not pretend to advance the

science of acoustic components to anything approaching a state of completion. Much

research remains to be done. Nonlinearities that occur at higher sound levels, such as

shock waves and turbulence, are not covered here. It does attempt to interpret the

available theories in such a way that the reader can construct and understand the per-

formance of common acoustic devices.
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PART X: ACOUSTIC ELEMENTS

4.2 ACOUSTIC MASS (INERTANCE)

A tube open at both ends and with rigid walls behaves as an acoustic mass if it is short

enough so that the air in it moves as a whole without appreciable compression. In setting

up the boundary condition, the assumption is made that the sound pressure at the open

end opposite the source is nearly zero. This assumption would be true if it were not for

the radiation impedance of the open end, which acts very much like a piston radiating

into open air. However, this radiation impedance is small for a tube of small diameter and

acts only to increase the apparent length of the tube slightly. Therefore, the radiation

impedance will be added as a correction factor later.

Tube of medium diameter
To be able to neglect viscous losses inside the tube, the radius of the tube a in meters must

not be too small. Also, to be able to neglect transverse resonances in the tube, the radius

must not be too large. The equations that follow are valid for a radius in meters greater

than about 0.05
� ffiffiffi

f
p

and less than about 10/f, where f is the frequency in Hertz.

To demonstrate acoustic mass, take a tube of length [0. Let us designate the boundary
acoustic impedance at one end as ZA ¼ 0, i.e., ep ¼ 0. At the other end the acoustic

impedance looking into the tube, using the solution of the one-dimensional wave

Eq. (2.60), is

ZA ¼ j
r0c

pa2
tan k[0 (4.1)

where r0 is density of the gas in kg/m
3, c is speed of sound in m/s, a is radius of tube in m,

k is wave number ¼ u/c in m�1.

For small values of k[0,

tan k[0 ¼ k[0 þ ðk[0Þ3
3

(4.2)

If [0<l/16, the second term will be less than 5% as large as the first, so

ZA ¼ ju
r0[

0

pa2
¼ juMAN$s

�
m5 (4.3)

MA ¼ r0[
0

pa2
acoustic mass with units kg

�
m4 (4.4)

End corrections. Most acoustic masses are tubes that terminate at one end or the

other, or both, in open air or at the boundary of a large cavity. The air particles at the end
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of a tube do not instantaneously disperse from their organized status inside the tube so

that their behavior at the end is equivalent to a short extension of the tube, i.e., an end

correction. In what follows, we will simply give the end corrections and later in the chapter

will derive them.

End correction [00 if the open end of the tube terminates in a wall is called an infinite

baffle or flanged tube.

If a < l/25, the end correction [00 for this case is

[00 ¼ MA1pa
2

r0
¼ 8a

3p
z0.85a m (4.5)

The total mass MA of Eq. (4.4) now becomes

MA ¼ r0ð[0 þ [00Þ
pa2

¼ r0[

pa2
kg
�
m4 (4.6)

If both ends terminate in a flange,

MA ¼ r0ð[0 þ 2[00Þ
pa2

¼ r0[

pa2
kg
�
m4 (4.7)

End correction [00 if the open end of the tube terminates in open air is called an

unflanged tube.

If a < l/25, the end correction in this case is again like a mass, but because the

organized state of the gas particles drops off faster than in the flanged tube case, the size of

MA1 is smaller. Hence,

[00 ¼ MA1pa
2

r0
¼ 2a

p
z0.64a m (4.8)

Eqs. (4.6) and (4.7) are valid in either case, except [00 must be properly chosen.

4.3 ACOUSTIC COMPLIANCES

In Eq. (2.72) we showed that a length of tube, rigidly closed on one end (x ¼ 0),

with a radius in meters greater than 0.05
� ffiffiffi

f
p

(so that the sidewall friction can be

neglected) and less than 10/f (so lateral standing waves are not present) has an input

acoustic impedance at the open end equal to

ZA ¼ �jr0c

pa2
cot k[0 (4.9)

where ZA ¼ Zs/(pa
2), r0 is density of the gas in kg/m3, c is speed of sound in m/s, a is

radius of tube in m, k is wave number ¼ u/c in m�1, [0 is length of the tube in m.
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For values of k that are not too large, the cotangent may be replaced by

cot k[0 ¼ 1

k[0
� k[0

3
(4.10)

Thus

ZA ¼ �j
1

uðV=r0c
2Þ þ ju

[0r0
3pa2

þ/ (4.11)

For [0 < l/10, Eq. (4.9) becomes

ZA ¼ �j
1

uCA
(4.12a)

The acoustic compliance obviously is

CA ¼ V

r0c
2
¼ V

gP0
with units m5=N (4.13)

Limitations on an acoustic compliance
An acoustic compliance obtained by compressing air in a closed volume can be repre-

sented by a two-terminal device, but one terminal must always be at “ground potential.” That

is to say, one terminal is outside of the enclosure V, which is at atmospheric pressure, i.e.,

a sound pressure of 0. Therefore, it is never possible to insert an acoustic compliance between

acoustic masses or acoustic resistances.

Series acoustic compliance
To obtain a series acoustic compliance, a diaphragm or stretched membrane must be

used. Of course, diaphragms and stretched membranes resonate at various frequencies.

The range where they act as compliances is restricted to that region well below the lowest

frequency of resonance. A combination of a series acoustic compliance, an acoustic mass,

and an acoustic resistance is shown in Fig. 4.1.

p~

CA

U~

RAMALow resistance 

Stiffness
controlled
diaphragm   

Mass of air in
which little com –
pression occurs 

(a) (b)

Figure 4.1 (a) Example of a series acoustic compliance obtained with a stiffness-controlled dia-
phragm. (b) Analogous circuit.
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Analogous circuits for acoustic masses and compliances are shown in Fig. 4.2. The

circuits in (a) and (c) are for cases where [0 < l/16 and involve CA andMA alone. When

l/16 > [0 > l/8, the second terms in Eqs. (4.2) and (4.10) cannot be neglected and this

leads to the added elements CA/3 in (b), MA/3 in (d), and the more complicated

symmetric circuit of (e).

If the tube is not round, we may replace a by
ffiffiffiffiffiffiffiffi
S=p

p
, where S is the cross-sectional

area of the tube.

Example 4.1. The old-fashioned jug of Fig. 4.3 is used in a country dance band as a

musical instrument. You are asked to analyze its performance acoustically. If the inside

dimensions of the jug has diameter 20 cm and air cavity height 25 cm, give the analogous

circuit, the element sizes, and the acoustic impedance for the air cavity portion of the jug

at 50, 100, and 300 Hz. Assume T ¼ 22�C and P0 ¼ 105 Pa. (Note: The neck portion

will be discussed later in this part.)

Solution. The speed of sound at 22�C is about 345 m/s. Hence,

l50 ¼ 6.9 m

l100 ¼ 3.45 m

l300 ¼ 1.15 m

The length l of the jug is 0.25 m. Hence,

l ¼ l50

27.6
¼ l100

13.8
¼ l300

4.6
¼ 0.25 m

(a) (b)

(c) (d)

(e)

Figure 4.2 Approximate analogous circuits for a short tube of medium diameter. (a) and (b) Circuits
used when ep2�eU2 is very small (open end). (c) and (d) Circuits used when ep2�eU2 is very large (closed
end). (e) Circuit used for any value of ep2�eU2. Circuits (a) and (c) yield the impedance within about 5%
for a tube length l0 that is less than l/16. Circuits (b), (d), and (e) yield the impedance within about 5%
for l0 < l/8.
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At 50 Hz, where l/l ¼ 1/28, the cavity portion of the jug may be represented by an

acoustic compliance:

CA ¼ V

gP0
¼ 7.85� 10�3

1.4� 105
¼ 5.61� 10�8 m5

�
N

ZA ¼ �j
108

314� 5.61
¼ �j5.7� 104 N$s

�
m5

At 100 Hz, where l/l ¼ 1/14, the cavity portion of the jug may be represented by a

series acoustic mass and acoustic compliance:

MA ¼ lr0
3pa2

¼ 0:25� 1:19

3pð0:1Þ2 ¼ 3:2 kg
�
m4

CA ¼ 5.61� 10�8 m5
�
N

ZA ¼ j

�
628� 3.2� 108

628� 5.61

�
¼ �j2.6� 104

At 300 Hz, where l/l ¼ 1/5, the acoustic impedance of the cavity portion of the jug

must be solved directly from Eq. (4.9):

ZA ¼ �jr0c

pa2
cot kl

¼ �jð1.19� 345Þ
pð0.1Þ2 cot

2p� 300� 0.25

345

ZA ¼ �j2.7� 103 N$s
�
m5

2.5 cm 

25 cm

3.75 cm 

20 cm 

Figure 4.3 Sketch of a musical jug.
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Example 4.2. The jug of Example 4.1 has a neck with a diameter of 2.5 cm and a

length of 3.75 cm (see Fig. 4.3). At what frequency will the jug resonate?

Solution. First, let us assume that the frequency of resonance is so low that the length

of the neck l0 is small compared with l/16. Then, because the air in it is not constrained,

it will be an acoustic mass:

MA ¼ r0ð[0 þ 0:85aþ 0:61aÞ
pa2

¼ 1:19

 
0:0375þ 1:45� 0:0125

pð0:0125Þ2
!

¼ 135 kg=m4

The volume velocity through the neck of the jug is the same as that entering the air

cavity inside. Hence, the two elements are in series and will resonate at

f ¼ 1

2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MACA

p ¼ 104

2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
135� 5.61

p

¼ 58 Hz

4.4 ACOUSTIC RESISTANCES

Any device in which the flow of gas occurs in phase with and directly proportional

to the applied pressure may be represented as a pure acoustic resistance. In other words,

there is no stored (reactive) energy associated with the flow. Four principal forms of

acoustic resistance are commonly employed in acoustic devices: fine-meshed screens

made of metal or cloth, small-bore tubes, narrow slits, and porous acoustical materials.

Screens are often used in acoustic transducers because of their low cost, ease of se-

lection and control in manufacture, satisfactory stability, and relative freedom from

inductive reactance. Slits are often used where an adjustable resistance is desired. This is

accomplished by changing the width of the slit. Tubes have the disadvantage that unless

their diameter is very small, which in turn results in a high resistance, there is usually

appreciable inductive reactance associated with them. However, if a combination of

resistance and inductance is desired, they are useful. Such combinations will be treated

later in this part. Fibrous or porous acoustic materials, porous ceramics, and sintered

metals are often used in industrial applications and are mixtures of mass and resistance. In

all four forms of acoustic resistance, the frictional effects producing the resistance occur

in the same manner.
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In Fig. 4.4, we see the opposite sides 1 and 2 of a slit, or tube, or of one mesh of

screen. An alternating pressure difference
�ep1 � ep2� causes a motion of the air molecules

in the space between the sides 1 and 2. At 1 and 2, the air particles in contact with the

sides must remain at rest. Halfway between the sides, the maximum amplitude of motion

will occur. Frictional losses occur in a gas whenever adjacent layers of molecules move

over each other with different velocities. Hence, frictional losses occur in the example of

Fig. 4.4 near each of the walls as marked by the letter (a). In any tube, slit, mesh, or

interstice, the losses become appreciable when the regions in which adjacent layers differ

in velocity extend over the entire space.

Screens. The specific acoustic resistances of a variety of dust screen sizes are shown in

Table 4.1. The acoustic resistance is obtained by dividing the values of Rs in this table by

the area of screen being considered.

Care should be taken that a screen is tensioned before it is fitted. Otherwise it will not

behave as a pure resistance but more like a membrane with compliance. If it is too slack,

its motion will be nonlinear. The acoustic resistances of screens are generally determined

by test and not by calculations.

(a) Regions in which viscous losses occur

1

2

1
~p 2

~p

(a)

(a)

Figure 4.4 Sketch showing the diminution of the amplitude of vibration of air particles in a sound
wave near a surface. The letters (a) show the regions in which viscous losses occur.

Table 4.1 Specific acoustic resistances of dust screens

Type
RS, rayls,
N$s/m3

Mesh
opening, mm

No. holes/
cm2

Open
area, %

Thickness,
mm

Weight,
g/m2

Acoustex 003 3 285 529 43% 255 110

Acoustex 006 6 105 4761 52% 63 25

Acoustex 010 10 120 3025 44% 105 51

Acoustex 020 20 68 8100 38% 62 32

Acoustex 032 32 38 22,500 32% 48 25

Acoustex 047 47 38 19,600 28% 48 31

Acoustex 075 75 25 32,400 20% 52 33

Acoustex 090 90 41 8100 14% 125 86

Acoustex 145 145 27 19,600 14% 70 52

Acoustex 160 160 21 36,100 16% 58 45

Acoustex 260 260 18 40,000 13% 60 48

Courtesy of Saati Spaddata based on existing product range.
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Tubeof small diameter [0.005 <
ffiffi
l

p
< radiusa (inmeters) < 0.002/

ffiffi
f

p
] [1]

As derived in Section 4.24, the acoustic impedance of a tube of very small diameter,

neglecting the end corrections, is

ZA ¼ RA þ juMA N$s
�
m5 (4.14)

where

RA ¼ 8ml

ð1þ 4BuÞpa4 N$s
�
m5 (4.15)

MA ¼ 4ð1þ 3BuÞr0l
3ð1þ 4BuÞpa2 kg

�
m4 (4.16)

where m is viscosity coefficient. For air m ¼ 1.86 � 10�5 N$s/m2 at 20�C and 0.76 m

Hg. This quantity varies with temperature, that is, mf T 0.7, where T is in �K, l is length
of tube in m, a is radius of tube in m, MA is acoustic mass of air in tube in kg/m4, r is

density of gas in kg/m3, and the boundary slip factor Bu is given by

Bu ¼ �
2a�1

u � 1
�
Knðx 0 for a > 6 mmÞ; (4.17)

where au is the accommodation coefficient, which is assumed to have a value of 0.9, and

Kn is the (dimensionless) Knudsen number given by

Kn ¼ lm=a; (4.18)

where lm ¼ 60 nm is the molecular mean free path length between collisions.

The mechanical impedance of a very small tube is found by multiplying Eq. (4.14) by

(pa2)2, which yields

ZM ¼ 8pm l þ j
4

3
MMu (4.19)

where MM ¼ r0pa
2l ¼ mass of air in the tube in kilograms.

Narrow slit [2] [t (in meters) < 0.003/
ffiffi
f

p
]

The acoustic impedance of a very narrow slit, neglecting end corrections, is

ZA ¼ 12m l

t3w
þ j

6r0lu

5wt
N$s
�
m5 (4.20)

where l is length of slit in m in direction in which the sound wave is traveling (see

Fig. 4.5), w is width of slit in m as viewed from the direction from which the wave is

coming (see Fig. 4.5), t is thickness of slit in m (see Fig. 4.5).
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The mechanical impedance of a very narrow slit is given by multiplying Eq. (4.20)

by t2w2:

ZM ¼ 12m lw

t
þ j

6

5
MMu (4.21)

where MM ¼ r0lwt ¼ mass of air in the slit in kg.

Example 4.3. An acoustic resistance of 1 MN$s/m5 is desired as the damping

element in an earphone. Select a screen and the diameter of hole necessary to achieve this

resistance.

Solution. As the resistance is needed for an earphone, it should be quite small. If we

select a 020 mesh screen (see Table 4.1), the specific acoustic resistance is 20 rayls. For an

acoustic resistance of 106 N$s/m5, an area S is needed of

S ¼ 20

106
¼ 20 mm2

The diameter d of the hole required for this area is

d ¼ 2a ¼ 2

ffiffiffi
S

p

r
¼ 5.05 mm

4.5 CAVITY WITH HOLES ON OPPOSITE SIDESdMIXED
MASS-COMPLIANCE ELEMENT

A special case of an element that is frequently encountered in acoustical devices

and that has often led to confusion in analysis is that shown in Fig. 4.6. Imagine this to be

a doughnut-shaped element, each side of which has a hole of radius a bored in it. When a

flow of air with a volume velocity eU1 enters opening 1, all the air particles in the vicinity

of the opening will move with a volume velocity eU1. Part of this velocity goes to

compress the air in the cylindrical space 3, and part of it appears as a movement of air that

is not appreciably compressed. It was pointed out earlier that a portion of a gas that

compresses without appreciable motion of the particles is to be treated as an acoustic

compliance.

w

t

l

Direction of
travel of

sound wave 

Figure 4.5 Dimension of a narrow slit.
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By inspection of Fig. 4.6 we see that the portion enclosed approximately by the

dotted lines moves without appreciable compression and, hence, is an acoustic mass and

that lying outside the dotted lines is an acoustic compliance. The analogous circuit for

this acoustic device is given in Fig. 4.7. The volume velocity eU1 entering opening 1

divides into two parts, one to compress the air (eU3) and the other (eU2) to leave opening

2. By judicious estimation, we arrive at values for MA. If the length l of the cylinder is

fairly long and the volume 3 is large, MA is merely the end correction l00 of Eq. (4.5). If
the volume 3 is small, thenMA becomes nearly the acoustic mass of a tube of radius a and

length l/2. The acoustic compliance is determined by the volume of air lying outside of

the estimated dotted lines of Fig. 4.6.

4.6 INTERMEDIATE-SIZED DUCTSdMIXED MASS-RESISTANCE
ELEMENTS

Medium tube [a (in meters) > 0:01
� ffiffi

f
p

and a <10/f] [3,4]
The acoustic impedance for a tube with a radius a (in meters) that is less than 0.002/

ffiffiffi
f

p
was given by Eqs. (4.14) and (4.16). Here we shall give the acoustic impedance for a tube

whose radius (in meters) is greater than 0.01/
ffiffiffi
f

p
but still less than 10/f. For a tube whose

radius lies between 0.002/
ffiffiffi
f

p
and 0.01/

ffiffiffi
f

p
interpolation must be used. The acoustic

impedance of the intermediate-sized tube is equal to

ZA ¼ RA þ juMA (4.22)

l

a

b

3

3

21

Figure 4.6 Example of a mixed mass-compliance element made from a cavity with holes on opposite
sides.

CA

2
~UMA

1
~U MA

3
~U

Figure 4.7 Analogous circuit for the device of Fig. 4.6.
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where

RA ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2ur0m

p
pa2

�
[0

a
þ ð2Þ � 0:7

�
N$s=m5

(4.23)

MA ¼ r0ð[0 þ ð2Þ[00Þ
pa2

kg
�
m4 (4.24)

where a is radius of tube in m, r0 is density of air in kg/m3, m is viscosity coefficient. For

air, m ¼ 1.86 � 10�5 N$s/m2 at 20�C and 0.76 m Hg. This quantity varies with tem-

perature, that is, mf T 0.7, where T is in �K, l0 is actual length of the tube, l00 is end
correction for the tube. It is given by Eq. (4.5) if the tube is flanged or by Eq. (4.8) if the

tube is unflanged. The numbers (2) in parentheses in Eqs. (4.23) and (4.24) must be used

if both ends of the tube are being considered. If only one end is being considered, replace

the number (2) with the number 1, and u is angular frequency in rad/s.

Medium slit [t (in meters) > 0.02/
ffiffi
f

p
and t < 20/f ] [5]

The acoustic impedance of a medium slit, neglecting end corrections, is

ZA ¼ l
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2ur0m

p
t2w

þ ju
r0l

tw
N$s=m5

4.7 PERFORATED SHEETdMIXED MASS-RESISTANCE ELEMENT [a
(IN METERS) > 0.01/

ffiffiffi
f

p
AND a < 10/f] [3,4]

Many times, in acoustics, perforated sheets are used as mixed acoustical elements.

We shall assume a perforated sheet with the dimensions shown in Fig. 4.8 and holes

whose centers are spaced more than one diameter apart. For this case, the acoustic

impedance for each area b2, that is, each hole, is given by

ZA ¼ RA þ juMA

Holes with
radius a

b

b

t

Figure 4.8 Thin perforated sheet with holes of radius a, and length l, spaced a distance b on centers.
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where

RA ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2ur0m

p
pa2

(
t

a
þ 1:4

 
1þ 0:13

ffiffiffiffiffiffi
Ah

Ab

r
� Ah

Ab

!)
N$s=m5 (4.25)

MA ¼ r0

pa2

n
t þ 1:7a

�
1� 2:26

a

b

	o
kg=m4 (4.26)

where Ah ¼ pa2 is area of hole in m2, Ab ¼ b2 is area of a square around each hole in m2,

t is thickness of the sheet in m.

If there are n holes, the acoustic impedance is approximately equal to 1/n times that

for one hole.

Definition of Q
If this mass-resistance element is used with a compliance to form a resonant circuit, we

are often interested in the ratio of the angular frequency of resonance u0 to the angular

bandwidth u (rad/s) measured at the half-power points. This ratio is called the “Q” of

the circuit and is a measure of the sharpness of the resonance curve.

The “QA” of a perforated sheet when used with a compliance of such size as to

produce resonance at angular frequency u0 is

QA ¼ u0MA

RA
¼

ffiffiffiffiffiffiffiffiffiffi
u0r0

p
2m

a
t þ 1.7að1� ða=bÞÞ
t þ 2að1� ðpa2=b2ÞÞ (4.27)

TheQA is independent of the number of holes in the perforated sheet. We repeat that

these formulas are limited to cases where the centers of the holes are spaced more than a

diameter apart.

4.8 ACOUSTIC TRANSFORMERS

As for the other acoustical elements, there is no configuration of materials that will

act as a “lumped” transformer over a wide frequency range. Also, what may appear to be

an acoustic transformer when impedances are written as mechanical impedances may not

appear to be one when written as acoustic impedances, and vice versa. As an example of

this situation, let us investigate the case of a simple discontinuity in a pipe carrying an

acoustic wave.

Junction of two pipes of different areas
A junction of two pipes of different areas is equivalent to a discontinuity in the area of a

single pipe (see Fig. 4.9a).

If we assume that the diameter of the larger pipe is less than l/16, then we may write

the following two equations relating the pressure and volume velocities at the junction:ep1 ¼ ep2 (4.28)

eU1 ¼ eU2 (4.29)
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Eq. (4.28) says that the sound pressure on both sides of the junction is the same.

Eq. (4.29) says that the volume of air leaving one pipe in an interval of time equals that

entering the other pipe in the same interval of time. The transformation ratio for

acoustic impedances is unity so that no transformer is needed.

For the case of a circuit using lumped mechanical elements, the discontinuity appears

to be a transformer with a turns ratio of S1:S2 because, from Eq. (4.28),ef 1
S1

¼
ef 2
S2

(4.30)

and, from Eq. (4.29), eu1S1 ¼ eu2S2 (4.31)

where ef 1 and ef 2 are the forces on the two sides of the junction, and eu1 and eu2 are the

average particle velocities over the areas S1 and S2. We have

ef 1 ¼ S1

S2
ef 2 (4.32)

and

eu2 ¼ S1

S2
eu1 (4.33)

so that

ZM1 ¼
ef 1eu1 ¼

�
S1

S2

�2ef 2eu2 ¼
�
S1

S2

�2

ZM2 (4.34)

A transformer is needed in this case and is drawn as shown in Fig. 4.9c.

It must be noted that a reflected wave will be sent back toward the source by the

simple discontinuity. We saw in Part IV that, in order that there be no reflected wave, the

specific acoustic impedance in the second tube
�ep2�eu2� must equal that in the first tube�ep1�eu1�. This is possible only if S1 ¼ S2, that is, if there is no discontinuity.

1
~U

S1 1
~p

(a) (b) (c)

2
~p

1:1 2
~U

S2

1
~u

1
~f 2

~f

S1:S2 2
~u

Figure 4.9 (a) Simple discontinuity between two pipes. (b) Acoustic-impedance transducer repre-
sentation of (a); because the transformation ratio is unity, no transformer is required. (c) Mechanical
impedance transducer representation of (a).
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To find the magnitude and phase of the reflected wave in the first tube resulting from

the discontinuity, we shall use material from Part IV. Assume that the discontinuity exists

at x ¼ 0. The specific acoustic impedance in the first tube is

ZS1 ¼ ep1eu1 (4.35)

If the second tube is infinitely long, the specific acoustic impedance for it at the

junction will be

ZS2 ¼ ep2eu2 ¼ r0c (4.36)

(see Eq. 2.124). The impedance ZS1 at the junction is, from Eqs. (4.28) and (4.33),

ZS1 ¼ ep1
S2eu2
S1

¼ ep2
S2eu2
S1

(4.37)

From Eqs. (4.36) and (4.37),

ZS1 ¼ S1

S2
r0c (4.38)

Using Eqs. (2.46) and (2.122), setting x ¼ 0, we may solve for the reflected wave ep�
in terms of the incident wave epþ. ep1 ¼ epþ � ep� (4.39)

eu1 ¼ 1

r0c

�epþ � ep�� (4.40)

ep1eu1 ¼ S1

S2
r0c ¼ r0c

epþ þ ep�epþ � ep� (4.41)

ep� ¼ S1 � S2

S1 þ S2
epþ (4.42)

The sound pressure epT of the transmitted wave in the second tube at the junction

point must equal the sound pressure in the first tube at that point,epT ¼ epþ þ ep� (4.43)

so that

epT ¼ 2S1

S1 þ S2
epþ (4.44)
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If S1 equals S2, there is no reflected wave ep� and then epþ ¼ epT .
Note also that if S2 becomes vanishingly small, this case corresponds to the case of a

rigid termination at the junction. For this case,ep� ¼ epþ (4.45)

and epþ þ ep� ¼ 2epþ (4.46)

This equation illustrates the often-mentioned case of pressure doubling. That is to say,

when a plane sound wave reflects from a plane rigid surface, the sound pressure at the

surface is double that of the incident wave.

Two pipes of different areas joined by an exponential connector [6]
An exponential connector may be used to join two pipes of different areas. Such a

connector (see Fig. 4.10) acts as a simple discontinuity when its length is short compared

with a wavelength and as a transformer for acoustic impedances when its length is greater

than a half wavelength.

If the second tube is infinitely long, then at x ¼ l (see Fig. 4.10),ep2eu2 ¼ r0c (4.47)

If the cross-sectional area of the exponential connector is given by

SðxÞ ¼ S1e
mx (4.48)

and the length of the connector is l, then the specific acoustic impedance at x ¼ 0 is

ZS1 ¼ ep1eu1 ¼ r0c
cosðbl þ qÞ þ j sinðblÞ
cosðbl � qÞ þ j sinðblÞ (4.49)

1
~U

S1

1
~p

(a) (b)

(c)

2
~p
2

~U

S2

1
~u

1
~f 2

~f
2

~u

x = 0 
x

x = l

S(x) = S1emx

exponential connector 

21 : SS

12 : SS

Figure 4.10 (a) Exponential connector between two pipes. (b) High-frequency representation of
(a) using acoustic-impedance transducer. (c) High-frequency representation of (a) using mechanical-
impedance transducer.
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where

b ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4u2=c2Þ � m2

q
in m�1

where m is flare constant in m�1 (see Eq. 4.48), q ¼ tan�1 (m/2b), c is speed of sound in

m/s, l is length of the exponential connector in m, and r0 is density of air in kg/m3.

At low frequencies (b imaginary and l/l large),ep1eU1

¼ ep2eU2

or ZA1 ¼ ZA2 (4.50)

At high frequencies (b real and l/l > 1),ep1eu1 ¼ ep2eu2 (4.51)

or

ZA1 ¼ S2

S1
ZA2 (4.52)

At intermediate frequencies, the transformer introduces a phase shift, and the

transformation ratio varies between the limits set by the two equations above.

The transformation ratio for acoustic impedance at high frequencies is seen from

Eq. (4.52) to be
ffiffiffiffiffiffiffiffiffiffiffiffi
S2=S1

p
(see Fig. 4.10b). That is to say,

ZA1 ¼
 ffiffiffiffiffi

S2

S1

r !2

ZA2 (4.53)

For mechanical impedance at high frequencies, the transformation ratio is seen from

Eq. (4.52) to be
ffiffiffiffiffiffiffiffiffiffiffiffi
S2=S1

p
(see Fig. 4.10c). That is to say,

ZM1 ¼
 ffiffiffiffiffi

S1

S2

r !2

ZM2

Example 4.4. It is desired to resonate the cavity in front of the diaphragm of a call

loudspeaker, such as that found in a cellphone, to 3 kHz using an array of laser-drilled

sound outlet holes. The cavity has a volume of 0.4 cm3 and a wall thickness of 1 mm.

Determine the size and number of holes needed, assuming QA ¼ 1.5 and a ratio of hole

diameter to on-center spacing of 0.5.

Solution. From Eq. (4.27) we see that, approximately,

QAz
a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1.18u0

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 1.86� 10�5

p

a ¼ 1.5� 0.00397� ffiffiffi
2

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6.28� 3000

p ¼ 61.3 mm
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The diameter of the hole is 123 mm.

The reactance of the cavity at resonance equals

XB ¼ 1

u0CA
¼ gP0

18840� V
¼ 1.4� 1011

18840� 0.4
¼ 18.6� 106 N$s

�
m5

The desired acoustic mass of the holes is

MA ¼ XB

u0
¼ 18.6� 106

18840
¼ 985 kg

�
m4

If there are n holes, the acoustic mass for each hole equals

nMA ¼ nð985Þ kg�m4

From Eq. (4.26),

nð985Þ ¼ 1.18

pð61.32 � 1012
� �0.001þ �1.7� 18.6� 10�6

�ð0.75Þ�

n ¼ ð1.18Þ�1.024� 10�3
�

pð985Þð3.76� 10�9
�z104 holes

Example 4.5. Design a single-section T low-pass wave filter, as shown in Figs. 4.6

and 4.7, with a cutoff frequency of 100 Hz and Q value of 1
� ffiffiffi

2
p

for critical damping.

The filter is driven by a piston at the entrance on the left and terminated with an

impedance of R0 ¼ 103 N$s/m5 at the exit on the right.

Solution. Because the filter is driven by a piston with a defined velocity, it can be

regarded as having a source impedance that is very large in comparison with the acoustic

mass on the left of Fig. 4.7. We can therefore ignore that element. The filter is thus

reduced to a second-order type with a cutoff frequency of

f0 ¼ 1

2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MACA

p

The design Q is equal to

Q ¼ 1

R0

ffiffiffiffiffiffiffi
MA

CA

r
From these two equations, we can solve for CA and MA.

MA ¼ 1

4p2f 20 CA

¼ R0Q

2p f0
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So

CA ¼ 1

2p f0R0Q

¼
ffiffiffi
2

p

2p� 100� 103
¼ 2.25� 10�6 m5=N

MA ¼ 103

2p� 100� ffiffiffi
2

p ¼ 1.125 kg=m4

From Section 4.6 and Eq. (4.24), with l0 equal to zero, we get the size of the hole in

the device of Fig. 4.6.

MA ¼ r0ð0.85aÞ
pa2

ð1.18Þð0.85Þ
pa

¼ 1.125

a ¼ 28.4 cm

The diameter of the hole is 0.57 m. The volume of the cavity is

V ¼ CAgP0 ¼ 1.4� 2.25� 10�6 � 105

¼ 0.315 m3

The elements for the T section are thereby determined.

PART XI: ELEMENTARY REFLECTION AND RADIATION
OF SOUND
To fully specify a source of sound, we need to know, in addition to other prop-

erties, its directivity characteristics at all frequencies of interest. Some sources are

nondirectional, that is to say, they radiate sound equally in all directions and as such are

called spherical radiators. Others may be highly directional, either because their size is

naturally large compared with a wavelength or because of special design. In particular, we

shall examine how the shape of the radiator influences its directivity.

The most elementary radiator of sound is a spherical source whose radius is small

compared with one-sixth of a wavelength. Such a radiator is called a simple source or a

point source. Its properties are specified by the magnitude of the velocity of its surface and

by its phase relative to some reference. More complicated sources such as plane or curved

radiators may be treated analytically by applying boundary conditions or as a combi-

nation of simple sources, each with its own surface velocity and phase, and these will be

covered in Chapters 12 and 13.
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A particularly important consideration in the design of loudspeakers and horns is

their directivity characteristics. This chapter serves as an important basis for later chapters

dealing with loudspeakers, baffles, and horns.

The basic concepts governing radiation of sound must be grasped thoroughly at the

outset. It is then possible to reason from those concepts in deducing the performance of

any particular equipment or in planning new systems. Examples of measured radiation

patterns for common loudspeakers are given here as evidence of the applicability of the

basic concepts.

The directivity pattern of a transducer used for the emission or for reception of sound is

a description, usually presented graphically, of the response of the transducer as a

function of the direction of the transmitted or incident sound waves in a specified plane

and at a specified frequency.

The beam width of a directivity pattern is used in this text as the angular distance

between the two points on either side of the principal axis where the sound pressure level

is down 6 dB from its value at q ¼ 0.

Before considering specific sound sources, we will first study some fundamental

properties of sound waves using the example of reflection from a plane.

4.9 REFLECTION OF A PLANE WAVE FROM A PLANE

Reflections from a plane are specular, meaning that they are well defined because of

the regular geometry of the reflecting surface, as opposed to diffuse, as in the case of an

irregular reflecting object. In the latter case, the sound waves are reflected in many

different directions. However, although a sphere reflects sound over a wide angle, as we

shall see in Sections 12.3 and 12.4, the reflection is specular because the reflecting surface

is regular. Refer to Fig. 4.11. A plane wave with amplitude epI is incident on a plane at

x ¼ 0, the surface of which has a specific acoustic impedanceZs. Depending on the value

of Zs, a portion of the incident wave is reflected with amplitude epR. The angle qI
between the incident wave and the normal to the plane, formed by the x axis, is the angle

of incidence. Similarly, the angle qR between the reflected wave and the normal to the

y

x
0

Rp~

Ip~

θR

θI

Zs

Figure 4.11 Reflection of a plane wave from a plane at x ¼ 0.

162 Acoustics: Sound Fields, Transducers and Vibration



plane is the angle of reflection. In this instance, we assume neither wave has any component

in the z direction (away from the page).

Substituting kx ¼ k cos q, ky ¼ k sin q, and kz ¼ 0 in the wave equation solution of

Eq. (2.154) (which satisfies k2 ¼ k2x þ k2y þ k2z), we obtain the following expression for

the pressure field in the negative x region of Fig. 4.11:

epðx; yÞ ¼ epI e�jkx cos qI e�jky sin qI þ epRe jkx cos qRe jky sin qR . (4.54)

where the particle velocity in the x direction is given by

euxðx; yÞ ¼ 1

�jkr0c

v

vx
epðx; yÞ

¼ 1

r0c

�epI e�jkx cos qI e�jky sin qI cos qI � epRe jkx cos qRe jky sin qR cos qR

	
.

(4.55)

Let us now consider the boundary condition for two values of ZS. When Zs ¼N,

the surface is totally rigid and the normal particle velocity at x ¼ 0 is zero. This is often

referred to as a Neumann boundary condition. Hence,

euxð0; yÞ ¼ 1

r0c

�epI e�jky sin qI cos qI � epRe jky sin qRcos qR

	
¼ 0; (4.56)

which is satisfied if

qR ¼ �qI (4.57)

and epR ¼ epI . (4.58)

The latter would appear to be a reasonable assumption considering that no losses

occur during a reflection from a perfectly rigid boundary. When Zs ¼ 0, the surface is

totally flexible or resilient and the surface pressure is zero. This is often referred to as a

Dirichlet boundary condition and is somewhat akin to the boundary condition at the

mouth of an open pipe if we assume that the radiation load is negligible. It is also often

referred to as a “pressure release” boundary condition. In this case

epð0; yÞ ¼ epI e�jky sin qI þepRe jky sin qR ¼ 0; (4.59)

which is satisfied if

qR ¼ �qI (4.60)

and epR ¼ �epI . (4.61)
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Again the latter would appear to be a reasonable assumption considering that no

losses occur during a reflection from a perfectly resilient boundary. Eq. (4.60) is known as

the law of reflection. Generally, the law of reflection can be shown to hold for all boundary

impedance values. The impedance at the plane is simply the ratio of the pressure to

particle velocity:

Zs ¼ epð0; yÞeuxð0; yÞjqR¼�qI
¼

�epI þ epR�r0c�epI � epR�cos qI . (4.62)

Rearranging for epR gives

G ¼ epRepI ¼ Zs cos qI=ðr0cÞ � 1

Zs cos qI=ðr0cÞ þ 1
(4.63)

where G is the reflection coefficient.

The above equation tells us that if we let Zs ¼ r0c, only normal incident waves (i.e.,

qI ¼ 0) are totally absorbed. If qI s 0, there will be a reflected wave. In other words, a

r0c boundary condition is not an open window. This has quite far reaching implications in

acoustics. For example, when waves from a sound source in an anechoic chamber reach

the walls, they are rarely perfectly normal. Hence, absorbent “wedges” are typically used

to produce multiple or diffuse reflections so that after a certain number of reflections, the

reverberant sound field is reduced to an acceptable level. Also, when modeling sound

sources using the finite element method, it is usually necessary to create a virtual

anechoic chamber filled with air elements. A sphere coated with r0c elements should

produce acceptable results provided that the sphere is large enough for the waves that

reach its inner surface to be spherically diverging far-field ones. Otherwise, if the field

immediately adjacent to the inner surface is the complex near-field, then reflections are

guaranteed. We shall study the differences between the near-field and far-field pressure

due to various sound sources further on in this text.

4.10 RADIATION FROM A PULSATING SPHERE

The pulsating sphere may be one of the most difficult sound sources to realize in

practice, but it is the easiest three-dimensional source to analyze. Because of rotational

symmetry, it can be treated as a one-dimensional problem with just a single radial

ordinate r. Many practical sources behave in a similar way at low frequencies where they

become virtually omnidirectional, as we shall see. Also, ultrasonic hydrosounders are

often in the form of a sphere coated with a piezoelectric transducer. Essentially, the

pulsating sphere is a sphere whose radius oscillates harmonically. In the limiting case, it

will lead us to the point source, which forms a fundamental building block in acoustics.

Pressure field. Because the sphere is radiating into free space, where there are no

reflections, we take the outward going part of the solution to the spherical wave
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Eq. (2.25) given by Eq. (2.142), where eAþ is an unknown coefficient to be determined

from the boundary conditions. Let us now impose a boundary condition at the surface of

the sphere whereby the particle velocity normal to the surface, given by Eq. (2.143), is

equal to the uniform surface velocity eu0 so that euðRÞ ¼ eu0, where R is the radius, which

gives

eAþ ¼ jkR2r0ce
jkR

1þ jkR
eu0. (4.64)

Inserting this into Eq. (2.142) and substituting eU0 ¼ 4pR2eu0, where eU0 is the total

volume velocity, yields

epðrÞ ¼ jkr0c eU0
e�jkðr�RÞ

4pr
D; (4.65)

where D is called a directivity function, but here it has no angular dependency and is

merely a frequency response function given by

D ¼ 1

1þ jkR
. (4.66)

which is plotted in Fig. 4.12. Likewise from Eq. (2.143) for the velocity we have

euðrÞ ¼ 1

�jkr0c

v

vr
epðrÞ

¼ ð1þ jkrÞeU0
e�jkðr�RÞ

4pr2
D.

(4.67)
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Figure 4.12 Plot of 20 log10(jDj) for a pulsating sphere with constant radial acceleration. Frequency is
plotted on a normalized scale, where kR ¼ 2pR/l ¼ 2pfR/c.
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Radiation impedance
The specific radiation impedance is found by dividing the pressure at r ¼ R from Eq.

(4.65) by the surface velocity eu0 as follows:
Zs ¼ epðRÞeu0 ¼ jkR

1þ jkR
r0c; (4.68)

or

Zs ¼ Rs þ jXs ¼ k2R2 þ jkR

k2R2 þ 1
r0c. (4.69)

It turns out that this is the same as the impedance from Eq. (2.144) for a freely

propagating spherical wave at a distance R from the origin. It is also the first time

derivative of D from Eq. (4.66), above, multiplied by r0R. The real and imaginary parts,

Rs and Xs, are plotted in Fig. 4.13.

It is seen from Fig. 4.13 that for kR < 0.3, that is, when the diameter is less than one-

tenth of the wavelength, the radiation impedance is mainly that of a mass reactance

because the resistive component is negligible compared with the reactance component.

This mass loading may be thought of as a layer of air on the outside of the sphere, the

thickness of which equals 0.587 of the radius of the sphere. At all frequencies, the loading

shown in Fig. 4.13 may be represented by the equivalent circuit inset.

Figure 4.13 Real and imaginary parts of the normalized specific radiation impedance Zs/r0c of the air
load on a pulsating sphere of radius R located in free space. Frequency is plotted on a normalized scale
where kR ¼ 2pfR/c ¼ 2pR/l. Note also that the ordinate is equal to ZM/r0cS, where ZM is the me-
chanical impedance; and to ZAS/r0c, where ZA is the acoustic impedance. The quantity S is the area for
which the impedance is being determined, which in this case is S ¼ 4pR2 and r0c is the characteristic
impedance of the medium.
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We also observe from Fig. 4.12 that for kR < 0.3, the radiated sound pressure

is proportional to the volume acceleration
�
jueU0

�
so that the radiated intensity, which is

proportional to the square of the radiated pressure (see Eq. 1.12), is held constant. This is

because of the fact that the decreasing velocity (which is the time integral of the

acceleration) is compensated for by the rising radiation resistance, which is proportional

to the square of the velocity:

I ¼




epðrÞffiffiffi

2
p




2 1

r0c
¼




 eu0ffiffiffi

2
p




2 RM

4pr2
¼




 eu0ffiffiffi

2
p




2R2

r2
Rs; (4.70)

where in this case the mechanical radiation resistance is given by RM ¼ 4pR2Rs.

The relationship between radiation impedance and far-field pressure forms the basis

of a useful theorem developed in Section 13.13. For kR > 3, the pressure is proportional

to the volume velocity eU0 because the radiation impedance is mainly resistive.

Eqs. (4.65) and (4.67) are significant because they reveal the difference between the

responses of a microphone sensitive to pressure and a microphone sensitive to particle

velocity as the microphones are brought close to a small spherical source of sound at low

frequencies. As r is made smaller, the output of the pressure-responsive microphone will

double for each halving of the distance between the microphone and the center of the

spherical source. Expressed in decibels, the output increases 6 dB for each halving of

distance. For the velocity-responsive microphone, the output variation is not so simple.

Only at sufficiently large distances (k2r2 >> 1) does the output increase 6 dB for each

halving of distance. For shorter distances, the second term inside the parentheses on the

right-hand side of Eq. (4.67) becomes large, and the magnitude of ~u increases at a rate

exceeding þ6 dB for each halving of distance. For very short distances (k2r2 << 1), the

rate of increase of ~u approaches a limit ofþ12 dB for each halving of distance. It is for this

reason that the voice of a vocalist sounds “bassy” when he or she sings very near to a

velocity-sensitive microphone which was designed to have its best response when located

a large distance from the source of sound. This is commonly known as the proximity

effect.

Another significant thing is to be learned from Eq. (4.69). At low frequencies, it is

very difficult to radiate sound energy from a small loudspeaker. A small loudspeaker may

be likened to a pulsating balloon of some small radiusR. The specific acoustic impedance

Zs of the air presented to each square centimeter of the balloon is given by Eq. (4.69) and

Fig. 4.13. At low frequencies, the impedance becomes nearly purely reactive, and the

resistance becomes very small. Hence, the power radiated by a small loudspeaker be-

comes very small. At high frequencies, kR > 2, the impedance Zs becomes nearly purely

resistive and has its maximum value of r0c so that the power radiated for a given value ofeU0 reaches its maximum.
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4.11 RADIATION FROM A MONOPOLE POINT SOURCE
(SIMPLE SOURCE)

Pressure and particle velocity
The pressure and particle velocity in the sound field of a monopole point source are

obtained by setting R/ 0 in Eqs. (4.65) and (4.67), respectively:

epðrÞ ¼ jkr0c eU0
e�jkr

4pr
; (4.71)

euðrÞ ¼ ð1þ jkrÞeU0
e�jkr

4pr2
; (4.72)

where eU0 is volume velocity in m3/s of the very small source and is equal to
�
4pa2

�eu0,ep is sound pressure in Pa at a distance r from the simple source.

Strength of a point source [6]
The magnitude of the total air flow at the surface of a simple source in m3/s is given by

U0 and is called the strength of a point source.

Intensity at distance r
At a distance r from the center of a simple source, the intensity is given by

I ¼




epðrÞffiffiffi

2
p




2 1

r0c
¼




 eU0ffiffiffi

2
p




2f 2r04r2c

W
�
m2. (4.73)

When the dimensions of a source are much smaller than a wavelength, the radiation

from it will be much the same no matter what shape the radiator has, as long as all parts of

the radiator vibrate substantially in phase. The intensity at any distance is directly pro-

portional to the square of the volume velocity and the frequency. We will show in

Section 12.2 how the point source itself can form a very useful building block for solving

problems in acoustics.

4.12 COMBINATION OF POINT SOURCES

Thebasic principles governing thedirectivity patterns from loudspeakers canbe learned

by studying combinations of simple sources. This approach is very similar to the consideration

of Huygens wavelets in optics, which will be discussed more in Section 12.1. Basically, our

problem is to add, vectorially, at the desired point in space, the sound pressures arriving at that

point from all the simple sources. Let us see how this method of analysis is applied.

Two point sources
The geometric situation is shown in Fig. 4.14. It is assumed that the distance r from the

two point sources to the point P at which the pressure p is being measured is large

compared with the separation b between the two sources.
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The spherical sound wave arriving at the point p from source 1 will have traveled a

distance r � Dr where

Dr ¼ 1

2
b sin q (4.74)

and from Eq. (4.71) the sound pressure will be

ep1ðr; qÞ ¼
eAþ

r � Dr
e�jkðr�DrÞ; (4.75)

where eAþ ¼ jkr0c eU0

�ð4pÞ.
The wave from source 2 will have traveled a distance r þ Dr so that

ep2ðr; qÞ ¼
eAþ

r þ Dr
e�jkðrþDrÞ. (4.76)

The sum of p ¼ p1 þ p2, assuming r >> b, gives

epðr; qÞ ¼
eAþ
r
e�jkr

�
e jkDr þ e�jkDr

�
. (4.77)

Noting that e jx ¼ cos x þ j sin x yields

epðr; qÞ ¼ 2eAþ
r

e�jkrDðqÞ; (4.78)

0
~U+

r − Δr

r + Δr

r

),(~ θrp

Δr

Δr

b

0
~U+

θ
z

½b

½b

P

1

2

Figure 4.14 Two point (simple) sources vibrating in phase located a distance b apart and at distance r
and angle q with respect to the observation point P.
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where the directivity function D(q) is given by D(q) ¼ cos kDr. Substituting Eq. (4.74)

and k ¼ 2p/l in Eq. (4.78) gives

DðqÞin�phase ¼ cosððpb=lÞ sin qÞ. (4.79)

Note that if we reverse the polarity of one of the sources, we obtain

DðqÞantiphase ¼ j sinððpb=lÞ sin qÞ; (4.80)

which we will use together with Eq. (4.79) in Chapter 13 to derive the directivity

pattern of two pistons in an infinite baffle.

Referring to Fig. 4.14, we see that if b is very small compared with a wavelength, the

two sources essentially coalesce and the pressure at a distance r at any angle q is double

that for one source acting alone. The directivity pattern will be that of Fig. 4.25 for a

pulsating sphere, i.e., omnidirectional.

As b gets larger, however, the pressures arriving from the two sources will be

different in phase and the directivity pattern will not be a circle. In other words, the

sources will radiate sound in some directions better than in others. Maxima will occur

when

ml ¼ b sin q; m ¼ 0; 1;. (4.81)

and nulls will occur when�
mþ 1

2

�
l ¼ b sin q; m ¼ 0; 1;. (4.82)

As a specific example, let b ¼ l/2. For q ¼ 0 or 180 degrees, it is clear that the

pressure arriving at a point P will be double that from either source. However, for

q ¼ �90 degrees, the time of travel between the two simple sources is just right so that

the radiation from one source completely cancels the radiation from the other. Hence,

the pressure at all points along the �90 degrees axis is zero. Remember, we have limited

our discussion to r >> b.

Directivity patterns, expressed in decibels relative to the pressure at q ¼ 0, are given

in Fig. 4.15 for the two in-phase sources with b ¼ l/4; l/2; l; 3l/2; and 2l.

A very important observation can be made from the directivity patterns for this

simple type of radiator that applies to all types of radiation. The longer the extent of the

radiator (i.e., here, the greater b is), the sharper will be the principal lobe along the

q ¼ 0 axis at any given frequency and the greater the number of side lobes. As we shall

see in the next paragraph, it is possible to suppress the side lobes, that is to say, those

other than the principal lobes at 0 and 180 degrees, by simply increasing the number of

elements.
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Linear array of point sources
The geometric situation for this type of radiating array is shown in Fig. 4.16. The sound

pressure produced at a point P by N identical in-phase point sources, lying in a straight

line, the sources at distance b apart and with the extent d ¼ (N � 1)b small compared

with the distance r, is

epðr; qÞ ¼ N
eAþ
r
e�jkrDðqÞ; (4.83)
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Figure 4.15 Far-field directivity patterns for the two in-phase point sources of Fig. 4.14. Symmetry of
the directivity patterns occurs about the axis passing through the two sources. Hence, only a single
plane is necessary to describe the directivity characteristics at any particular frequency. The directivity
index (DI) is given at q ¼ 0�. (The directivity index is discussed in Section 4.16.)
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where

DðqÞ ¼ 1

N

XðN�1Þ=2

n¼ð1�NÞ=2
e�jnkb sin q ¼ 1

N

XðN�1Þ=2

n¼ð1�NÞ=2
cosðnkb sin qÞ. (4.84)

Using the identity of Eq. (A2.51) from Appendix II, this simplifies to

DðqÞ ¼ sin ððNpb=lÞ sin qÞ
N sin ððpb=lÞ sin qÞ . (4.85)

Note that for N ¼ 2 we can use the identity sin 2x ¼ 2 sin x cos x (from Eq (A2.47)

of Appendix II) to obtain Eq. (4.79).

From Fig. 4.17d, we see that when the wavelength is smaller than the pitch b of the

point sources, we have global maxima with an amplitude of 0 dB and local maxima of

smaller amplitude in between. The ratio between the amplitudes of the global maxima

and the smallest local maxima approachesN asN increases. In this case, whereN ¼ 4, the

ratio is 3.7 or 11.3 dB. Global maxima will occur when

ml ¼ b sin q; m ¼ 0; 1;. (4.86)

and nulls will occur when

ml ¼ Nb sin q;

(
m ¼ 1; 2;/

ms0;N ; 2N ;/
(4.87)

r

),(~ θrp

d
θ

zb

P

Figure 4.16 A linear array of N simple sources, vibrating in phase, located a distance b apart. The
center of the array is at distance r and angle q with respect to the observation point P.
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Hence, the global maxima are determined by the pitch of the individual point sources

and the nulls are determined by the total length of the array. The global maxima

correspond to the sampling wave number (or spatial sampling frequency) kS of the array,

which is the wave number at which the point sources are one wavelength apart, so that

kS ¼ 2p/b. In this case, d ¼ 3b so that lS ¼ d/3. Below this wavelength, the maxima of

the directivity function no longer decay with increasing angle but begin to rise again after

a specific angle given by l ¼ 2b sin q. This phenomenon is known as spatial aliasing and is

particularly important for microphone arrays.

As a special case, let us assume that the number of points becomes very large and that

the separation b becomes very small. Then, as before,

d ¼ ðN � 1ÞbzNb (4.88)

which we insert into Eq. (4.85) and, noting that the denominator term N sin(p d/(Nl)

sin q)/ (p d/l) sin q as N/N, we obtain the following directivity function for a

linear line array

DðqÞ ¼ sin ððpd=lÞ sin qÞ
ðpd=lÞ sin q

. (4.89)

As before, it is assumed that the extent of the array d is small compared with the

distance r. Nulls will occur when

ml ¼ d sin q; m ¼ 1; 2;/: (4.90)

Now that there are no spaces between the point sources, which have coalesced into a

line source, the global maxima have vanished and we are left with local maxima that

decay with increasing angle q.

Plots of Eq. (4.85) for N ¼ 4 and d ¼ l/4, l/2, l, 3l/2, and 2l are shown in

Fig. 4.17. Similar plots forN/ N and b / 0, that is, Eq. (4.89), are given in Fig. 4.18.

The principal difference among Figs. 4.15, 4.17, and 4.18 for a given ratio of array

length to wavelength is in the suppression of the “side lobes.” That is, sound is radiated

well in the q ¼ 0 degree and q ¼ 180 degrees directions for all three arrays. However, as

the array becomes longer and the number of elements becomes greater, the radiation

becomes less in other directions than at q ¼ 0 degree and q ¼ 180 degrees.

4.13 STEERED BEAM-FORMING ARRAY OF POINT SOURCES

We saw in the previous paragraph that at high frequencies a linear array of point

sources becomes highly directional. There are many applications in acoustics where we

wish to concentrate sound in a particular direction or, in the case of microphones,
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receive sound from a particular direction while blocking unwanted sounds from

elsewhere. This can be achieved by applying appropriate time delays or advances to the

point sources as shown in Fig. 4.19 to “steer” the beam in the desired direction at an

angle a to the z axis. The other difference between Fig. 4.19 and the previous Fig. 4.16 is

that we have rotated the reference z axis by 90 degrees so that it is now the axis of

rotational symmetry. This is important when we come to optimize the array.

Although in this example delays and advances are applied to the sources in the positive

and negative z positions, respectively, we would in practice only use delays so that the

source with the largest advance would have zero delay and the delay would increase
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Figure 4.17 Far-field directivity patterns for a linear array of four simple in-phase sources evenly
spaced over a length d. The directivity index (DI) is given at q ¼ 0�.
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progressively toward the source with the largest delay, which would have its delay

doubled. However, the symmetrical arrangement shown in Fig. 4.19 simplifies the

analysis somewhat. In the first instance, let us assume that all the sources have equal

strengths. Then, we can write

DðqÞ ¼ 1

N

XðN�1Þ=2

n¼ð1�NÞ=2
e�jnkbðcos q�cos aÞ. (4.91)
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Figure 4.18 Far-field directivity patterns for a linear line array radiating uniformly along its length d.
The directivity index (DI) is given at q ¼ 0�.
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For simplicity, let us assume an even number of sources N so that the contribution

from each side is equal and the sinusoidal parts of the exponents cancel each other

DðqÞ ¼ 2

N

XN=2

n¼ 1

cos

��
n� 1

2

�
kbðcos q� cos aÞ

�
; (4.92)

which leads to

DðqÞ ¼ sin ððNpb=lÞðcos q� cos aÞÞ
N sin ððpb=lÞðcos q� cos aÞÞ . (4.93)

which is plotted for d ¼ l/2 and d ¼ 5l in Fig. 4.20a and b, respectively. We see that

when the wavelength is greater than the length d of the array, the directivity degenerates

to virtually omnidirectional. However, we can add different weightings An to the sources

and optimize them using a technique known as the least mean squares method:

DðqÞ ¼ 2

N

XN=2

n¼ 1

An cos

��
n� 1 =

2

�
kbðcos q� cos aÞ

�
. (4.94)
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Figure 4.19 A steered beam-forming array of N simple sources, located a distance b apart and
vibrating with different phases. The time advance applied to each source at a negative distance z from
the center is given by the distance shown divided by the speed of sound c. Each source at a positive
distance z from the center (not marked) has a time delay equal to the time advance of its opposite
source the same negative distance z from the center. The center of the array is at distance r and angle
q with respect to the observation point P.
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First of all, we define a target or reference directivity function Dref (q) to which we

wish to find the best “fit.” The ideal directivity function is simply an infinite impulse at

the angle a, which can be written using the Dirac delta function:

Dref ðqÞ ¼ dðq� aÞ. (4.95)
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Figure 4.20 Far-field directivity patterns for a beam-forming array of 10 simple sources evenly spaced
over a length d, where the steering angle a ¼ 60 degrees. The directivity index (DI) is given at q ¼ a. In
(a) and (b) are shown directivity patterns for 10 sources of equal strength but with different time
delays/advances according to Fig. 4.19. In (c) and (d) are shown directivity patterns for 10 sources with
the same time delays/advances as (a) and (b) but with strengths optimized using the least-mean-
squares method.
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Of course, we may choose any function we like for Dref (q) depending on what

directivity pattern we are aiming for. Let us define an error function E(An) as

EðAnÞ ¼
Z p

�p



DðqÞ �Dref ðqÞj2 sin q dq. (4.96)

To minimize the error, we differentiate it with respect to An and set the result to zero:

v

vAn
EðAnÞ ¼ 2

Z p

�p

cos
��
m� 1 =

2
�
kbðcos q� cos aÞ�

�ðDðqÞ �Dref ðqÞÞ sin q dq ¼ 0; m ¼ 1; 2;/N ; (4.97)

which can be expressed in the following short form:

XN=2

n¼ 1

AnImn ¼ Jm; m ¼ 1; 2;/N ; (4.98)

where

Imn ¼ 2

N

Z p

�p

cos
��
m� 1 =

2
�
kb
�
cos q� cos aÞ�cos��n� 1 =

2
�
kbðcos q� cos aÞ� sin q dq.

(4.99)

The evaluation of the integral Imn has two parts

Imn ¼ Kmn þ Lmn; (4.100)

where

Kmn ¼

8>>>><>>>>:
sinððm� nÞkbð1þ cos aÞÞ þ sinððm� nÞkbð1� cos aÞÞ

Nðm� nÞkb ; msn

2

N
; m ¼ n;

(4.101)

Lmn ¼ sinððmþ n� 1Þkbð1þ cos aÞÞ þ sinððmþ n� 1Þkbð1� cos aÞÞ
Nðmþ n� 1Þkb ; (4.102)

and

Jm ¼
Z p

�p

Dref ðqÞcos
��
m� 1 =

2
�
kbðcos q� cos aÞ�sin q dq ¼ sin a. (4.103)
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where we have used the property of the Dirac delta function from Eq. (A2.154) of

Appendix II. Eq. (4.98) is a set of simultaneous equations which we now write in

matrix form

M$a[b0a[M�1$b (4.104)

where

Mðm; nÞ ¼ Imn ¼ Kmn þ Lmn (4.105)

aðnÞ ¼ An (4.106)

bðmÞ ¼ Jm ¼ sin a (4.107)

Directivity patterns are plotted from Eq. (4.94) for d ¼ l/2 and d ¼ 5l in Fig. 4.20c

and d, respectively, using coefficientsAn calculated from Eqs. (4.101), (4.102), and (4.104).

We see that for small wavelengths (l ¼ d/5), there is very little difference between

the directivity pattern of the sources of equal strengths in (b) and that of the optimized

sources in (d).

Here the optimized weightings are:

A�1 ¼ 4.72; A�2 ¼ 5.00; A�3 ¼ 4.90; A�4 ¼ 4.53; A�5 ¼ 4.64;

so there is no more �5% variation between them.

However, there is a significant increase in directivity when the wavelength is larger

than d (l ¼ 2d) as can be seen from (a) and (c).

But this comes at the expense of efficiency with optimized weightings of

A�1 ¼ 1; 027; 841; A�2 ¼ �2; 097; 341; A�3 ¼ 1; 559; 833;

A�4 ¼ �580; 418; A�5 ¼ 90; 094;

the sum of which is just 9. Hence, they virtually cancel each other!

Beam-forming arrays often have source strengths that progressively decrease toward

the outer edges to reduce the side lobes. These are known as “shaded arrays” [7] and the

technique is similar to windowing as used in Fourier transforms. Of course, delays can

also be used in arrays to prevent high-frequency beaming so that the directivity pattern is

as wide as possible regardless of wavelength [8].

4.14 DIPOLE POINT SOURCE (DOUBLET)

A dipole point source is a pair of monopole point sources separated by a very small

distance and vibrating in opposing phase. The geometric situation is shown in Fig. 4.21.

The average distance r to the observation point P is assumed to be large compared with

the separation b between the two sources.

It can be clearly seen that the sound pressure at q ¼ 90 degrees and q ¼ 270 degrees

will be zero because the contribution at those points will be equal from the two sources
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and 180 degrees out of phase. The pressures at q ¼ 0 degree and q ¼ 180 degrees will

depend on the ratio of b to the wavelength l. For example, if b ¼ l, we shall have zero

sound pressure at those angles just as we did for b ¼ l/2 in the case of two in-phase

sources. In the present case, we have a maximum pressure at q ¼ 0 degree and

q ¼ 180 degrees for b ¼ l/2.

The usual case of interest, however, is the one for

b << l (4.108)

Obviously, the separation distance b can never be zero as this would result in complete

cancellation of the two monopole outputs. As we shall see, their combined output is

directly proportional to b. From Fig. 4.21, we have the following relationship

Dr ¼ 1

2
b cos q. (4.109)

We can now write the pressure field as the sum of the two monopole point sources

from Eq. (4.71) as follows:

epdðr; qÞ ¼ jkr0c eU0

4p

 
e�jkðr�DrÞ

r � Dr
� e�jkðrþDrÞ

r þ Dr

!

¼ jkr0c eU0e
�jkr

4p

 
ðr þ DrÞe jkDr � ðr � DrÞe�jkDr

r2 � ðDrÞ2
!
;

(4.110)

where eU0 is the volume velocity of each source. Because Dr < r, we ignore the (Dr)2

term in the denominator. This gives an error of �1% for r � 5b, depending on q. Also,

we can expand the exponents within the parentheses in Eq. (4.110) as follows:

e�jkDr ¼ cos kDr � j sin kDr. (4.111)
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Figure 4.21 Geometry of dipole point source.
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Substituting Eq. (4.111) into Eq. (4.110) we obtain

epdðr; qÞ ¼ jkr0c eU0

�
2j sin kDr þ 2

Dr

r
cos kDr

�
e�jkr

4pr
. (4.112)

We can make further approximations based on the assumption that the path differ-

ence Dr is very small in comparison with the wavelength l as follows:

sin kDrzkDr; cos kDrz1: (4.113)

This gives an additional error of <1.4% for kb cos q < 0.5. Substituting Eqs. (4.109)

and (4.113) in Eq. (4.112) yields

epdðr; qÞ ¼ j
�
kbr0c eU0

��1
r
þ jk

�
e�jkr

4pr
cos q; (4.114)

where eU0 ¼ strength in m3/s of each point source and the first term in parentheses is a

force known as the dipole strength.

The ratio of the complex sound pressure epd produced by the dipole point source to

the complex sound pressure epm produced by a monopole point source is found by

dividing Eq. (4.114) by Eq. (4.71). This division yieldsepdðr; qÞepmðr; qÞ ¼ �b

r
ð1þ jkrÞ cos q. (4.115)

θ

r

P

θ = 0 

b

Figure 4.22 Dipole point source. This type of source consists of twomonopole point sources vibrating
180 degrees out of phase. They are located a distance b apart and are at an angle q and a distance r
with respect to the observation point P. The lower half of the graph shows by the area of the circles
the magnitude of the sound pressure as a function of angle q. The upper half of the graph shows the
variation of the radial and azimuthal components of the particle velocity as a function of angle q.
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When the square of the distance r from the acoustic doublet is large compared with

l2/36 (k2r2 >> 1), Eq. (4.114) reduces to

epdðr; qÞ ¼ �u2r0 eU0b

c
$
e�jkr

4pr
cos q: (4.116)

For this case, the pressure varies with q as shown in Figs. 4.22 and 4.23. It changes

inversely with distance r in exactly the same manner as for the simple source.

Near the acoustic doublet, for r2 << l2/36 (that is, k2r2 << 1), Eq. (4.114) reduces

to

epd ¼ ur0 eU0b
e jðp=2�krÞ

4pr2
cos q. (4.117)

For this case, the pressure also varies with cos q as shown in Fig. 4.23, but it changes

inversely with the square of the distance r. We are still assuming that r >> b. We can also

derive the particle velocity euðr; qÞ from Eq. (4.114) using Eq. (2.4a) as follows:

euðr; qÞ ¼ 1

�jkr0c

v

vr
epðr; qÞ

¼ eU0b

�
2

r2
� k2 þ j

2k

r

�
e�jkr

4pr
cos q.

(4.118)
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Figure 4.23 Far-field directivity pattern for a dipole point sound source (a) on a linear scale and (b) on
a logarithmic scale. The directivity index (DI) is given at q ¼ 0�.
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Now we can derive the free-field specific acoustic impedance by dividing the

pressure from Eq. (4.114) by the particle velocity from Eq. (4.118) as follows:

zs ¼ epðr; qÞeuðr; qÞ ¼ jkrð1þ jkrÞ
2� k2r2 þ 2jkr

r0c

¼ k4r4 þ j
�
k3r3 þ 2kr

�
k4r4 þ 4

r0c.

(4.119)

In the near field where kr << 1, the imaginary part of the impedance dominates and

so the load is mass-like. This results from the fact that, at low frequencies in particular, we

have a virtual acoustic short circuit between the two sources. Therefore, the dipole has to

move a significant amount of air to radiate any sound. However, in the far field, the

waves are spherically diverging and the impedance approaches the characteristic

impedance of free space

zsjkr/N ¼ r0c. (4.120)

Near-field and far-field
The difference between near-field and far-field behaviors of sources must always be borne

in mind. When the directivity pattern of a loudspeaker or some other sound source is

presented in a technical publication, it is always understood that the data were taken at a

distance r sufficiently large so that the sound pressure was decreasing linearly with dis-

tance along a radial line connecting with the source, as was the case for Eq. (4.116). This

is the far-field case. For this to be true, two conditions usually have to be met. First, the

extent b of the radiating array must be small compared with r, and r2 must be large

compared with l2/36. In acoustics, the size factor indicated is usually taken to be larger

than 3 to 10.

One more item is of interest in connection with the acoustic doublet. The particle

velocity is composed of two components: one radially directed and the other perpen-

dicular to that direction. At q ¼ 0 and 180 degrees, the particle velocity is directed

radially entirely (see Fig. 4.22). At q ¼ 90 and 270 degrees, the particle velocity is

entirely perpendicular to the radial line. In between, the radial component varies as the

cos q and the perpendicular component as the sin q.

An interesting fact is that at q ¼ 90 and 270 degrees, a doublet sound source appears

to propagate a transversely polarized sound wave. To demonstrate this, take two

unbaffled small loudspeakers into an anechoic chamber. Unbaffled loudspeakers

(transducers) are equivalent to doublets because the pressure increases on one side of the

diaphragm whenever it decreases on the other. Hold the two transducers about 0.5 m

apart with both diaphragms facing the floor (not facing each other). Let one transducer

radiate a low-frequency sound and the other act as a microphone connected to the input

of an audio amplifier. As we see from Fig. 4.22, no sound pressure will be produced at the
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diaphragm of the microphone, but there will be transverse particle velocity. A particle

velocity is always the result of a pressure gradient in the direction of the velocity.

Therefore, the diaphragm of the microphone will be caused to move when the two

transducers are held as described above. When one of the transducers is rotated through

90 degrees about the axis joining the units, the diaphragm of the microphone will not

move because the pressure gradient will be in the plane of the diaphragm. Hence, the

sound wave appears to be plane polarized.

You have now learned the elementary principles governing the directional charac-

teristics of sound sources. We shall be able to use these principles in understanding the

measured or calculated behavior of some of the more complicated sound sources found

in acoustics.

4.15 RADIATION FROM AN OSCILLATING SPHERE

We saw that the monopole point source is effectively a pulsating sphere with an

infinitesimally small radius. Similarly, the dipole point source can be considered as a rigid

sphere with an infinitesimally small radius oscillating back and forth along its axis. This

provides us with some useful insight into the operation of a loudspeaker without any

baffle or enclosure whatsoever, but unlike the more accurate circular piston in free space

(see Section 13.10), it yields simple closed-form solutions for the pressure field and

radiation impedance. As in the case of the pulsating sphere, the impedance can be

represented by a simple equivalent circuit. We shall now consider a sphere of radius R

that oscillates back and forth along a dipole axis with velocity u0 as shown in Fig. 4.24 so

that the normal surface velocity in the radial direction is u0cosq. A spherical coordinate

system is used where r is the distance from the origin at the center of the sphere and q is

the angle subtended with the dipole axis. The area of each surface element is

dS ¼ R2 sin q dq df. (4.121)
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Figure 4.24 Geometry of oscillating sphere.
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Near-field pressure
The volume velocity produced by each element is

deU0 ¼ eu0 cos q dS
¼ eu0 cos q�R2 sin q dq df

�
.

(4.122)

If we now integrate this over the surface of the sphere, we obtain the volume velocity:

eU0 ¼ 2R2eu0 Z 2p

0

Z p=2

0

cos q sin q dq df ¼ Seu0; (4.123)

where S is the effective surface area of the sphere (including both front and rear surfaces)

given by

S ¼ 2pR2. (4.124)

We see from Eq. (4.114) that the dipole source produces a pressure field that is

proportional to cos q as follows:

epðr; qÞ ¼ jkr0ceA0

�
1

r
þ jk

�
e�jkr

4pr
cos q; (4.125)

where the term eU0b has been replaced with the unknown coefficient eA0 ¼ eU0b.

Likewise, from Eq. (4.118) we have the particle velocity

euðr; qÞ ¼ eA0

�
2

r2
� k2 þ j

2k

r

�
e�jkr

4pr
cos q. (4.126)

Let us now impose a boundary condition at the surface of the sphere whereby the

particle velocity normal to the surface is equal to the angle-dependent surface velocityeu0 cos q. Hence, at r ¼ R we have

euðR; qÞ ¼ eA0

�
2

R2
� k2 þ j

2k

R

�
e�jkR

4pR
cos q

¼ eu0e�jkRcos q.

(4.127)

Solving this for eA0 yields eA0 ¼ 4pR3eu0
2� k2R2 þ 2jkR

. (4.128)

If we now substitute this in Eq. (4.125), together with eU0 ¼ 2pR2eu0 from

Eq. (4.123), we obtain the pressure

epðr; qÞ ¼ jr0c
kReU0

2� k2R2 þ 2jkR

�
1

r
þ jk

�
e�jkr

2pr
cos q. (4.129)
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Far-field pressure
In the far field, where r /N, Eq. (4.129) simplifies to

epðr; qÞjr/N ¼ jkr0c eU0
e�jkr

4pr
DðqÞ; (4.130)

where

DðqÞ ¼ 2jkR

2� k2R2 þ 2jkR
cos q. (4.131)

The directivity pattern 20 log10(D(q)/D(0)) is plotted in Fig. 4.25 along with that of a

pulsating sphere, and the on-axis responseD(0) is plotted in Fig. 4.26. It can be seen that

when kR ¼ ffiffiffi
2

p
, the pressure is proportional to acceleration:

epðr; qÞjr/N;kR¼ ffiffi
2

p ¼ jkr0c eU0
e�jkr

4pr
cos q. (4.132)

At this frequency, we have a resonant peak with a Q factor of 1
� ffiffiffi

2
p

. Above this

frequency, the pressure is proportional to velocity as in the case of the pulsating

sphere:

epðr; qÞjr/N;kR>>1 ¼ r0c
eU0

R
$
e�jkr

2pr
cos q; (4.133)
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Figure 4.25 Far-field directivity patterns 20 log10(jD(q)j/jD(0)j) of the oscillating and pulsating
spheres.
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but below it the pressure is proportional to the time derivative of the acceleration:

epðr; qÞjr/N;kR<<1 ¼ �k2R2r0c
eU0

R
$
e�jkr

4pr
cos q. (4.134)

When the sphere moves forward, it compresses the air in front of it causing an in-

crease in pressure above static pressure. Similarly, it creates a partial vacuum behind it

causing a net decrease in pressure. Hence, the radiated sound pressures in front of and

behind it are in opposite phases. The antiphase sound from the rear partially cancels the

sound from the front at low frequencies. However, complete cancellation never occurs

because of the finite path length from the rear to the front of the sphere. Hence, the

phase difference is

� ð1þ 2d=lÞp radians

where d is the path length difference and l is the wavelength. As the frequency decreases,

the wavelength increases relative to the path difference and the phase difference

asymptotically approaches �p. This results in a pressure response that falls at a rate

of �6 dB per halving of frequency.

In Section 4.14 we derived the pressure field because of a compact dipole point source.

However, from Eq. (4.112), we can write the equation for the on-axis pressure response

of a dipole point source where the spacing Dz0 between the two point sources is

comparable to the wavelength l of the sound being radiated:

epðr; 0Þ ¼ �r0ueU0 sinðpDz0=lÞ e
�jkr

2pr
; (4.135)
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Figure 4.26 Plot of 20 log10(D(0)) for an oscillating sphere of radius R with constant axial acceleration.
Frequency is plotted on a normalized scale, where kR ¼ 2pR/l ¼ 2pfR/c.
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from which it can be seen that the pressure magnitude versus frequency, with constant

acceleration, is just a series of half sinusoids like a comb filter. Nulls occur when

Dz0 ¼ nl and peaks occur when Dz0 ¼ (n þ ½)l. This is in stark contrast with the

oscillating sphere which has a continuous monotonic pressure response with just a single

peak and no nulls. This is because the resulting sound field is due to an infinite number of

point sources all over the surface according to the HuygenseFresnel principle, which

will be discussed in greater detail in Section 12.1. Hence, there are many path lengths

between the rear and front and at no frequency do they all produce a cancellation.

However, the peak at kR ¼ ffiffiffi
2

p
is because of an average path length difference of

Dz0 ¼ pR/
ffiffiffi
2

p
.

Radiation impedance
The total force eF acting on the sphere is obtained by integrating the pressure from Eq.

(4.129) over the surface as follows:

F ¼ 2R2

Z 2p

0

Z p=2

0

epðR; qÞ cos q sin q dq df

¼ r0c eU0
2

3
$

jkRð1þ jkRÞ
2� k2R2 þ 2jkR

e�jkR:

(4.136)

The specific radiation impedance Zs can be written as follows:

Zs ¼ Rs þ jXs ¼
eFeU0e
�jkR

¼ 2

3
$

jkRð1þ jkRÞ
2� k2R2 þ 2jkR

r0c

¼ 2

3
$
k4R4 þ j

�
k3R3 þ 2kR

�
k4R4 þ 4

r0c.

(4.137)

It turns out that this is the same as the impedance from Eq. (4.119) for a freely

propagating wave due to a dipole point source at a distance R from the origin. The real

and imaginary parts, Rs and Xs, are plotted in Fig. 4.27. The main difference between

Fig. 4.27 and the impedance of a pulsating sphere shown in Fig. 4.13 is that the real part

falls even more rapidly at low frequencies because of the rear wave cancellation. It is

proportional to (kR)4 as opposed to (kR)2 in the case of the pulsating sphere. In both

cases, the imaginary part is proportional to kR at low frequencies and 1/(kR) at high

frequencies.
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PART XII: DIRECTIVITY INDEX

4.16 DIRECTIVITY INDEX AND DIRECTIVITY FACTOR

Charts of the directivity patterns of sound sources are sufficient in many cases, such as

when the source is located outdoors at a distance from reflecting surfaces. Indoors, it is

necessary in addition to know something about the total power radiated to calculate the

reinforcing effect of the reverberation in the room on the output of the sound source.

A number is calculated at each frequency that tells the degree of directivity without the

necessity for showing the entire directivity pattern. This number is the directivity factor

or, when expressed in decibels, the directivity index.
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Figure 4.27 Real and imaginary parts of the normalized specific radiation impedance Zs/r0c of the air
load on an oscillating sphere of radius R in free space. Frequency is plotted on a normalized scale,
where kR ¼ 2pR/l ¼ 2pfR/c.
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Directivity factor [Q( f)]
The directivity factor is the ratio of the intensity [9] on a designated axis of a sound

radiator at a stated distance r to the intensity that would be produced at the same position

by a point source if it were radiating the same total acoustic power as the radiator. Free

space is assumed for the measurements. Usually, the designated axis is taken as the axis of

maximum radiation, in which case Q( f ) always exceeds unity. In some cases, the

directivity factor is desired for other axes where Q( f ) may assume any value equal to or

greater than zero.

Directivity index [DI( f)]
The directivity index is 10 times the logarithm to the base 10 of the directivity factor:

DIð f Þ ¼ 10 log10 Qð f Þ. (4.138)

Calculation of Q( f) and DI( f )
The intensity I at a point removed a distance r from the acoustical center of a source of

sound located in free space is determined by first measuring the effective sound pressure

prms and letting I ¼ jpjrms2 /r0c. If the source is a point source so that I is not a function ofV

and is located in free space, the total acoustic power radiated is

Wp ¼ 4pr2I .

If the source is not a point source, the total acoustic power radiated is determined by

summing the intensities over the surface of a sphere of radius r. That is, the total radiated

power is

W ¼ r2

r0c

Z 2p

0

Z p

0

p2rmsðq;f; rÞsin q dq df; (4.139)

where the coordinate of any point in space is given by the angles q and f and the radius r

(see Fig. 4.28) and P2
rmsðq;f; rÞ equals the mean square sound pressure at the point

designated by q, f, and r.

z

y

x

φ

θ

dθ

dφ

r

dS
A

0

Figure 4.28 Coordinate system defining the angle q and f and the length r of a line connecting a
point A to the center of a sphere. The area of the incremental surface dS ¼ r2 sin q dq df.
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Usually an analytical expression for P2
rmsðq;fÞ does not exist. In practice, therefore,

data are taken at the centers of a number of areas, approximately equal in magnitude, on

the surface of a sphere of radius r surrounding the source. As an example, we show in

Fig. 4.29 a spherical surface divided into 20 equal parts of the same shape. The measured

intensities on each of these parts may be called I1, I2, I3, etc. The total power radiatedW

is found from

W ¼ I1S1 þ I2S2 þ/þ I20S20; (4.140)

where S1, S2,., S20 are the areas of the 20 parts of the spherical surface. If, as in

Fig. 4.29, the surface is divided into 20 equal parts, then S1 ¼ S2 ¼ S3 ¼. ¼ S20.

By definition, the directivity factor Q( f ) is

Qð f Þ ¼


paxj2
r0c

4pr2

W
¼ 4pjprmsðqax;faxÞj2R 2p

0

R p
0 jprmsðq;fÞj2sin q dq df

; (4.141)

where jpaxj2 is the magnitude of the mean square sound pressure on the designated axis of

the sound source at a certain distance r (see Fig. 4.31, 0� axis, as an example).
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Figure 4.29 Division of a spherical surface into 20 planar surfaces bound by identical equilateral
triangles. Black numbers denote surfaces on nearest side and white numbers denote ones on farthest
side. Resulting polyhedron is a regular icosahedron, in which the 12 apexes are the corners of three
intersecting golden rectangles (that is, having side ratios of 1:(1 þ O5)/2) that lie in the xy, yz, and xz
planes with their centers at the origin. The coordinates of the midpoints of the sectors are given in
Table 4.2.
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For the special case where, for any particular value of q, the sound pressure produced

by the sound source is independent of the value of f, that is to say, there is an axis of

symmetry, Eq. (4.141) simplifies to

Qð f Þ ¼ 4p p2rmsð0Þ
2p
R p
0 p2rmsðqÞ sin q dq

. (4.142)

where the designated axis is the axis of symmetry. The magnitude signs are left off for

convenience. Many sources, such as loudspeakers, are fairly symmetrical about the

principal axes so that Eq. (4.142) is valid. We notice that the integral in the denominator

has the same form as that of Eq. (13.271) used for the Bouwkamp impedance theorem and

thus represents the total radiated power. Also, for pistons of area S, where RAR ¼ Rs/S,

the on-axis pressure p(0) is given by Eqs. (13.101) and (13.234) so that

Qð f Þ ¼ k2a2r0cjDð0Þj2
ð2ÞRS

(4.143)

which is a useful result because the on-axis directivity D(0) and specific radiation

resistance RS have relatively simple analytical solutions for pistons. Note that a ¼ ffiffiffiffiffiffiffiffi
S=p

p
for a noncircular piston and the number 2 in parentheses is only applicable to dipole

pistons. Otherwise, for monopoles, it should be omitted. This is because dipole pistons

radiate from both sides and therefore radiate twice as much power as monopoles. For

pressure sources,

Qð f Þ ¼ k2a2jDð0Þj2
ð2ÞGSr0c

;

where GS is the specific radiation conductance.

If no analytical solution is available, the only choice is to take measurements at a

number of points with the angles qn in a horizontal plane around the source so that

Qð f Þ ¼
�
4p p2rmsð0Þ

�ð180�=pÞ
2p

P180�=Dq

n¼ 1

p2rmsðqnÞ sin qn Dq

; (4.144)

where Dq is separation in degrees of the successive points around the sound source at

which measurement of prms(qn) was made (see Fig. 4.31 as an example), 180�/Dq is the

number of measurements that were made in passing from a point directly in front of the

source to one directly behind the source (0e180 degrees). The sound source is assumed

to be symmetrical so that the variation between 360 and 180 degrees is the same as that

between 0 and 180 degrees.
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If the source is mounted in an infinite baffle, measurement is possible only in a

hemisphere. Hence, the value of n in Eq. (4.142) varies from 1 to 90 degrees/Dq. If the
source in an infinite baffle is nondirectional in the hemisphere, which is usually the case

for ka < 0.5, then the directivity factor Q ¼ Qh ¼ 2, that is, DI ¼ 3 dB.

If the directivity pattern is not quite symmetrical, then the factor of 4 in the

numerator of Eq. (4.142) becomes 8 and the value of n varies from 1 to 360 degrees/Dq.
This, in effect, averages the two sides of the directivity pattern.

For easy reference, the directivity indexes for (1) a piston in free space, (2) an

oscillating sphere in free space, (3) a piston in an infinite plane baffle, (4) a hemispherical

dome in an infinite baffle, and (5) a one-sided piston in free space are plotted as a

function of ka in Fig. 4.30.

Detailed calculations are shown in Table 4.3 for a box-enclosed loudspeaker having

the directivity pattern at a frequency of 3000 Hz shown in Fig. 4.31.

After a directivity factor has been calculated at each frequency, a plot of directivity

index DI( f ) in decibels is made with the aid of Eq. (4.138). For the loudspeaker with the

directivity patterns of Fig. 4.31, the directivity index as a function of frequency is shown

in Fig. 4.32.

Qð f Þ ¼ 4p� ð180�=pÞ

2p
P18
1





prmsðqnÞprmsð0Þ




2sin qn � 10�

¼ 11.5

1.48
¼ 7.7;

DIð f Þ ¼ 10 log 7.7 ¼ 8.9 dB.
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Figure 4.30 Directivity indexes for the radiation from (1) a circular piston in free space without any
baffle; (2) an oscillating sphere in free space; (3) a circular piston in an infinite plane baffle; (4) a
hemispherical dome in an infinite baffle; and (5) a one-sided circular piston in free space. These are
plotted using Eq. (4.143), which is divided by two in the case of the piston and oscillating sphere in
free space because they radiate from both sides and hence radiate twice the power. Frequency is
plotted on a normalized scale, where ka ¼ 2pa/l ¼ 2pfa/c.
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Table 4.3 Calculation of directivity index DI(f )a

qn (degrees) sin qn Directivity (dB)



p ðqnÞ

pax




2 


p ðqnÞ
pax




2sin qn

5 0.087 0.1 1.02 0.09

15 0.259 �0.4 0.92 0.24

25 0.423 �1.5 0.71 0.30

35 0.574 �3.2 0.47 0.27

45 0.707 �5.3 0.30 0.21

55 0.819 �7.4 0.18 0.15

65 0.906 �10.4 0.09 0.08

75 0.966 �14.5 0.04 0.03

85 0.996 �16.9 0.02 0.02

95 0.996 �15.7 0.03 0.03

105 0.966 �16.5 0.02 0.02

115 0.906 �23.1 0.00 0.00

125 0.819 �22.7 0.01 0.00

135 0.707 �18.0 0.02 0.01

145 0.574 �22.3 0.01 0.00

155 0.423 �26.6 0.00 0.00

165 0.259 �16.6 0.02 0.01

175 0.087 �12.9 0.05 0.00

1.48

aAt f ¼ 3000 Hz for a type 8030A loudspeaker having the directivity patterns shown in Fig. 4.31. The quantity
Dq ¼ 10 degrees ¼ p/18 rad.

Table 4.2 Coordinates of mid-points of sectors

Sector
numbers

Coordinate

x y z

1e8 � 1ffiffi
3

p ¼ �0.577 � 1ffiffi
3

p ¼ �0.577 � 1ffiffi
3

p ¼ �0.577

9e12 �2ð ffiffi5p þ2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6ð3 ffiffi5p þ7Þp ¼ �0.934 �

ffiffi
5

p þ1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6ð3 ffiffi5p þ7Þp ¼ �0.357 0

13e16 0 � 2ð ffiffi5p þ2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6ð3 ffiffi5p þ7Þp ¼ �0.934 �

ffiffi
5

p þ1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6ð3 ffiffi5p þ7Þp ¼ �0.357

17e20 �
ffiffi
5

p þ1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6ð3 ffiffi5p þ7Þp ¼ �0.357 0 � 2ð ffiffi5p þ2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

6ð3 ffiffi5p þ7Þp ¼ �0.934
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Figure 4.31 Measured directivity patterns for a type 8030A 5-in direct-radiator loudspeaker in a 285-
by 189- by 178-mm aluminum box. The squares give the directivity index at q ¼ 0�. Courtesy of
Genelec OY, Finland.
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PART XIII: RADIATION IMPEDANCES

4.17 PULSATING SPHERE

In Part XI, we derived the radiation impedance for a sphere with a uniformly pulsating

surface. For the results, refer to Eq. (4.69) and Fig. 4.13.

It is seen from Fig. 4.13 that for kR < 0.3, that is, when the diameter is less than one-

tenth the wavelength, the impedance load on the surface of the sphere is that of a mass

reactance because the resistive component is negligible compared with the reactive

component.

At all frequencies, the loading shown in Fig. 4.13 may be represented by the

equivalent circuits of Fig. 4.33. The element sizes for the mechanical and acoustic ad-

mittances and impedances are given with the circuits.

4.18 OSCILLATING SPHERE

In Part XI we derived the radiation impedance for a rigid sphere that oscillates

axially. For the results, refer to Eq. (4.137) and Fig. 4.27.
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Figure 4.32 Directivity indexes for 0� axes of the directivity patterns of Fig. 4.31. The data apply to a
type 8030A 5-in direct-radiator loudspeaker in a 285- by 189- by 178-mm aluminum box. Courtesy of
Genelec OY, Finland.
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It is seen fromFig. 4.27 that for kR < 1, that is, when the diameter is less than one-third

the wavelength, the impedance load on the surface of the sphere is that of a mass reactance

because the resistive component is negligible compared with the reactive component.

At all frequencies, the loading shown in Fig. 4.27 may be represented by the

equivalent circuits of Fig. 4.34. The element sizes for the mechanical and acoustic ad-

mittances and impedances are given with the circuits.
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Figure 4.34 Exact radiation impedances and admittances for all values of kR for a rigid sphere that
oscillates axially. (a) Mechanical-impedance analogy; (b) acoustic-impedance analogy; (c) mechanical-
admittance analogy; (d) acoustic-admittance analogy. The quantity R is the radius of the sphere.
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4.19 PLANE CIRCULAR PISTON IN INFINITE BAFFLE

The specific impedance in N$s/m3 of the air load on one side of a plane piston

mounted in an infinite baffle (see Fig. 13.3) and vibrating sinusoidally is given by Eqs.

(13.116)e(13.118). Plots of the real and imaginary parts of

Zs

r0c
¼ Rs þ jXs

r0c
(4.145)

are shown in Fig. 4.35 as a function of ka. Similar graphs of the real and imaginary parts

of the specific admittance

Ysr0c ¼ r0cðGs þ jBsÞ ¼ r0c

�
Rs

R2
s þ Xs

X

� j
Xs

R2
s þ X2

s

�
(4.146)

are shown in Fig. 4.36. The specific admittance is in m3$N�1$s�1 (rayls�1).
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Figure 4.35 Real and imaginary parts of the normalized specific radiation impedance Zs/r0c of the air
load on one side of a plane circular piston of radius a in an infinite flat baffle. Frequency is plotted on a
normalized scale, where ka ¼ 2pa/l ¼ 2pfa/c.
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The data of Fig. 4.35 are used in dealing with impedance analogies and the data of

Fig. 4.36 in dealing with admittance analogies.

We see from Fig. 4.35 that, for ka < 0.5, the reactance varies as the first power of

frequency while the resistance varies as the second power of frequency. At high fre-

quencies, for ka > 5, the reactance becomes small compared with the resistance, and the

resistance approaches a constant value.

The admittance, on the other hand, is better behaved. The conductance is constant

for ka < 0.5, and it is also constant for ka > 5 although its value is larger.

Approximate analogous circuits
The behavior just noted suggests that, except for the ripples in the curves for ka between

1 and 5, the impedance and the admittance for a piston in an infinite baffle can be
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Figure 4.36 Real and imaginary parts of the normalized specific radiation admittance r0cYs of the air
load on one side of a plane circular piston of radius a in an infinite flat baffle. Frequency is plotted on a
normalized scale, where ka ¼ 2pa/l ¼ 2pfa/c.
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approximated over the whole frequency range by the analogous circuits of Fig. 4.37.

Those circuits give the mechanical and acoustic impedances and admittances, where

RM2 ¼ pa2r0c N$s=m (4.147)

RM ¼ RM2 þ RM1 ¼ 128a2r0c=ð9pÞ

¼ 4.53a2r0c N$s=m

(4.148)

RM1 ¼ 1.386a2r0c N$s=m (4.149)

CM1 ¼ 1.89
��

par0c
2
� ¼ 0.6

��
ar0c

2
�
m=N (4.150)

MM1 ¼ 8a3r0
�
3 ¼ 2.67a3 r0 kg (4.151)

GM2 ¼ 1
��

pa2r0c
� ¼ 0.318

��
a2r0c

�
m$N�1$s�1 (4.152)

GM1 ¼ 0.722
��

a2r0c
�
m$N�1$s�1 (4.153)
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Figure 4.37 Approximate radiation impedances and admittances for a piston in an infinite baffle or
for a closed-back piston for all values of ka.(a) Mechanical-impedance analogy; (b) acoustic-
impedance analogy; (c) mechanical-admittance analogy; (d) acoustic-admittance analogy.
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RA2 ¼ r0c
��

pa2
� ¼ 0.318r0c

�
a2 N$s

�
m5 (4.154)

RA ¼ RA2 þ RA1 ¼ 128r0c
��

9p3a2
�

¼ 0.459r0c
�
a2 N$s

�
m5

(4.155)

RA1 ¼ 0.1404r0c
�
a2 N$s

�
m5 (4.156)

CA1 ¼ 1.89pa3
��

r0c
2
� ¼ 5.94a3

��
r0c

2
�
m5
�
N (4.157)

MA1 ¼ 8r0
��

3p2a
� ¼ 0.27r0=a kg

�
m4 (4.158)

GA2 ¼ pa2
�ðr0cÞ m5$N�1$s�1 (4.159)

GA1 ¼ 7.12a2
�ðr0cÞ m5$N�1$s�1 (4.160)

All constants are dimensionless and were chosen to give the best average fit to the

functions of Figs. 4.35 and 4.36.

Low- and high-frequency approximations
At low and high frequencies, these circuits may be approximated by the simpler cir-

cuits given in the last column of Table 4.4.

It is apparent that when ka < 0.5, that is, when the circumference of the piston 2pa is

less than one-half wavelength l/2, the impedance load presented by the air on the

vibrating piston is that of a mass shunted by a very large resistance. In other words,

R2 ¼ (R1 þ R2)
2 is large compared with u2M1

2. In fact, this loading mass may be

imagined to be a layer of air equal in area to the area of the piston and equal in thickness

to about 0.85 times the radius because�
pa2
�ð0.85aÞr0z2.67a3r0 ¼ MM1

At high frequencies, ka > 5, the air load behaves exactly as though it were con-

nected to one end of a tube of the same diameter as the piston, with the other end of

the tube perfectly absorbing. As we saw in Eq. (2.124), the input mechanical resistance

for such a tube is pa2r0c. Hence, intuitively one might expect that at high frequencies

the vibrating rigid piston beams the sound outward in lines perpendicular to the face

of the piston. This is actually the case for the immediate near field close to the piston.

At a distance, however, the far-field radiation spreads, as we learned earlier in this

chapter.
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4.20 PLANE CIRCULAR FREE DISK

A disk in free space without surrounding structure is a suitable model, at low

frequencies, for a direct-radiator loudspeaker without a baffle of any sort. In other words,

the loudspeaker radiates as a dipole. The radiation impedance is given by Eqs. (13.248)e
(13.250).

Table 4.4 Radiation impedance and admittance for one side of a plane circular piston in an infinite
bafflea

Impedance

Mechanical Specific Acoustic

Analogous circuits
f ¼ drop
u ¼ flow

p ¼ drop
u ¼ flow

p ¼ drop
U ¼ flow

ka < 0.5:

M1 M1

R

R

R2

Series

resistance, R

RM ¼ pa4r0u
2

2c
RS ¼ a2r0u

2

2c
RA ¼ r0u

2

2pc

Shunt

resistance, R

RM ¼ 128a2r0c

9p
RS ¼ 128r0c

9p2 RA ¼ 128r0c

9p3a2

Mass, M1

ka > 5:

MM1 ¼ 8a3r0
3

MS1 ¼ 8ar0
3p

MA1 ¼ 8r0
3p2a

Resistance, R2 RM2 ¼ pa2r0c RS2 ¼ r0c RA2 ¼ r0c

pa2

Admittance
u ¼ drop
f ¼ flow

u ¼ drop
p ¼ flow

U ¼ drop
p ¼ flow

ka < 0.5:

G

G2

M1

Series

conductance, G

GM ¼ 9p
128a2r0c

GS ¼ 9p2

128r0c
GA ¼ 9p3a2

128r0c

Mass, M1

ka > 5:

MM1 ¼ 8a3r0
3

MS1 ¼ 8ar0
3p

MA1 ¼ 8r0
3p2a

Conductance,

G2

GM2 ¼ 1
pa2r0c

GS2 ¼ 1
r0c

GA2 ¼ pa2

r0c

aThis table gives element sizes for analogous circuits in the region where ka < 0.5 and ka > 5. All constants are
dimensionless. For the region between 0.5 and 5.0, the charts of Figs. 4.35 and 4.36 should be used.

Graphs of the real and imaginary parts of the normalized specific impedance load on

one side of the diaphragm, Zs/r0c, as a function of ka for the free disk, are shown in

Fig. 4.38. The data of Fig. 4.38 are used in dealing with impedance analogies. For

admittance analogies, the complex admittance can be obtained by taking the reciprocal

of the complex impedance.

A simple equivalent circuit, approximately valid for all frequencies like those shown

in Fig. 4.37, cannot be drawn for this case. At very low frequencies, however, it is
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possible to represent the impedance by an equivalent circuit, which is similar to that for

an oscillating sphere. In the frequency ranges where ka < 0.5 and ka > 5, analogous

circuits of the type shown in Table 4.5 may be used.

4.21 PLANE CIRCULAR PISTON RADIATING FROM ONE SIDE ONLY
IN FREE SPACE

The specific impedance (N$s/m3) of the air load on a plane piston in free space,

which has one surface vibrating sinusoidally while the other remains stationary, is given

by Eqs. (13.254) and (13.255) and plotted in Fig. 4.39.
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Figure 4.38 Real and imaginary parts of the normalized specific radiation impedance Zs/r0c of the air
load on one side of a plane circular piston of radius a in free space. Frequency is plotted on a
normalized scale, where ka ¼ 2pa/l ¼ 2pfa/c.
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Graphs of the real and imaginary parts of the normalized mechanical impedance

ZM/pa
2 r0c as a function of ka for a piston so mounted are shown in Fig. 12.36. It is

simply the mean of the impedances of a plane circular piston in an infinite baffle and the

same in free space.

To a fair approximation, the radiation impedance for a one-sided piston in free space

may be represented over the entire frequency range by the same analogous circuits used

for the piston in an infinite baffle and shown in Fig. 4.37, where the elements now are

RM2 ¼ pa2r0c N$s=m (4.161)

RM ¼ RM2 þ RM1 ¼ 16a2r0c=p

¼ 5.09a2r0c N$s=m
(4.162)

RM1 ¼ 1.95a2r0c N$s=m (4.163)

CM1 ¼ 1
��

par0c
2
� ¼ 0.318

��
ar0c

2
�
m=N (4.164)

Table 4.5 Radiation impedance and admittance for one side of a plane circular piston in free spacea.

Impedance

Mechanical Specific Acoustic

Analogous circuits
f ¼ drop
u ¼ flow

p ¼ drop
u ¼ flow

p ¼ drop
U ¼ flow

ka < 0.5:

Series

resistance, R

Series

resistance, R

Mass, M1

Compliance, C1

ka > 5:

Resistance, R2

RM ¼ 8a6r0u
4

27pc3

MM1 ¼ 4a3r0
3

CM1 ¼ 1ffiffi
6

p
par0c

2

RM ¼ pa2r0c

RS ¼ 8a4r0u
4

27p2c3

MS1 ¼ 4ar0
3p

CS1 ¼ affiffi
6

p
r0c

2

RS ¼ r0c

RA ¼ 8a2r0u
4

27p3c3

MA1 ¼ 4r0
3p2a

CA1 ¼ pa3ffiffi
6

p
r0c

2

RA ¼ r0c

pa2

M

R

M R

R

C

Admittance
u ¼ drop
f ¼ flow

u ¼ drop
p ¼ flow

U ¼ drop
p ¼ flow

ka < 0.5:

Series

conductance, G

Mass, M1

Compliance, C1

ka > 5:

Conductance, G2

GM ¼ u2

6pr0c
3

MM1 ¼ 4a3r0
3

CM1 ¼ 1ffiffi
6

p
par0c

2

GM ¼ 1
pa2r0c

GS ¼ a2u2

6r0c
3

MS1 ¼ 4ar0
3p

CM1 ¼ pa3ffiffi
6

p
r0c

2

GS ¼ 1
r0c

GA ¼ pa4u2

6r0c
3

MA1 ¼ 4r0
3p2a

CA1 ¼ pa3ffiffi
6

p
r0c

2

GA ¼ pa2

r0c

G

G

M

C G

M

aThis table gives element sizes for analogous circuits in the region where ka < 0.5 and ka > 5. All constants are
dimensionless. For the region between 0.5 and 5.0, the chart of Fig. 4.38 should be used.
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MM1 ¼ 2a3r0 kg (4.165)

GM2 ¼ 1
��

pa2r0c
� ¼ 0.318

��
a2r0c

�
m$N�1$s�1 (4.166)

GM1 ¼ 0.513
��

a2r0c
�
m$N�1$s�1 (4.167)

RA2 ¼ r0c
��

pa2
� ¼ 0.318r0c

�
a2 N$s

�
m5 (4.168)

RA ¼ RA2 þ RA1 ¼ 16r0c
��

p3a2
�

¼ 0.516r0c
�
a2 N$s

�
m5

(4.169)
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Figure 4.39 Real and imaginary parts of the normalized specific radiation impedance Zs/r0c of the air
load on one side of a plane circular piston of radius a radiating from one side only into free space.
Frequency is plotted on a normalized scale, where ka ¼ 2pa/l ¼ 2pfa/c.
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RA1 ¼ 0.1977r0c
�
a2 N$s

�
m5 (4.170)

CA1 ¼ pa3
��

r0c
2
� ¼ 3.142a3

��
r0c

2
�
m5
�
N (4.171)

MA1 ¼ 2r0
��

p2a
� ¼ 0.2026r0=a kg

�
m4 (4.172)

GA2 ¼ pa2
�ðr0cÞ m5$N�1$s�1 (4.173)

GA1 ¼ 5.06a2
�ðr0cÞ m5$N�1$s�1 (4.174)

In the frequency ranges where ka < 0.5 and ka > 5, analogous circuits of the type

shown in Table 4.6 may be used.

Table 4.6 Radiation impedance and admittance for a plane circular piston radiating from one side
only in free spacea

Impedance

Mechanical Specific Acoustic

Analogous circuits
f ¼ drop
u ¼ flow

p ¼ drop
u ¼ flow

p ¼ drop
U ¼ flow

ka < 0.5:

Series

resistance, R

Series

resistance, R

Mass, M1

ka > 5:

Resistance, R2

RM ¼ pa4r0u
2

4c

RM ¼ 16a2r0c

p

MM1 ¼ 2a3r0

RM2 ¼ pa2r0c

RS ¼ a2r0u
2

4c

RS ¼ 16r0c

p2

MS1 ¼ 2ar0
p

RS2 ¼ r0c

RA ¼ r0u
2

4pc

RA ¼ 16r0c

p3a2

MA1 ¼ 2r0
p2a

RA2 ¼ r0c

pa2

M1

R

R M1

R2

Admittance
u ¼ drop
f ¼ flow

u ¼ drop
p ¼ flow

U ¼ drop
p ¼ flow

ka < 0.5:

Series

conductance, G

Mass, M1

ka > 5:

Conductance, G2

GM ¼ p
16a2r0c

MM1 ¼ 2a3r0

GM2 ¼ 1
pa2r0c

GS ¼ p2

16r0c

MS1 ¼ 2ar0
p

GS2 ¼ 1
r0c

GA ¼ p3a2

16r0c

MA1 ¼ 2r0
p2a

GA2 ¼ pa2

r0c

G

G

M

aThis table gives element sizes for analogous circuits in the region where ka < 0.5 and ka > 5. All constants are
dimensionless. For the region between 0.5 and 5.0, the chart of Fig. 4.39 should be used.
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PART XIV: VISCOUS AND THERMAL LOSSES

4.22 SOUND IN LOSSY TUBES

In Section 2.4, we examined the propagation of one-dimensional waves in a loss-free

tube. To be able to neglect viscous losses inside the tube, the radius of the tube must

not be too small. Also, to be able to neglect transverse resonances in the tube, the radius

must not be too large. Here we shall rederive the one-dimensional wave equation

using a slightly different procedure than before, taking into account the viscous and

thermal losses that take place at the boundary wall, using what are known as the

NaviereStokes equations. In accordance with the continuum theory of gases, tradi-

tional models have assumed that the axial velocity at the wall of the tube is zero and

that the temperature there is ambient because of the sheer number of collisions

occurring between air molecules and the wall. However, as the diameter of the tube is

reduced relative to the mean free path of the molecules, fewer collisions occur so that

the axial velocity and temperature both increase at the wall. This is generally known as

a slip boundary condition. Formulation is now available [10] that models this slip, thus

allowing us to model tubes of much smaller diameter than was previously possible. The

resulting wave number is complex, and from this new wave number we shall derive

two new parameters called the dynamic density and dynamic compressibility which

replace the density and inverse bulk modulus, respectively, in the expressions for wave

number and characteristic impedance. These result from the average flow over the

cross section of the tube as if the losses were homogeneous throughout the bulk of the

acoustic medium, although they are actually localized near the tube wall. We will also

define a viscous boundary thickness to define the region within which most of the

viscous losses occur. For those readers who are not interested in the full derivation but

only wish to apply the results to practical uses, you may skip on to the results shown in

Figs. 4.46e4.51.

Two-terminal electrical components generally obey Kirchhoff ’s law. In other words,

the current flowing out of one terminal is equal to that flowing into the other. However,

the exact model of a tube does not obey this law because, due to losses, the volume

velocity flowing out of one end is less than that flowing into the other. Therefore, we

must model it as a four-terminal device or two-port model. We shall develop a discrete-

element two-port model, which is a useful result as it allows us to apply electrical circuit

theory. However, we shall see that under certain frequency or diameter ranges, we can

make useful two-terminal approximations for an open or closed tube which form the

basis of some of the acoustic components presented in Section 4.4.
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4.23 WAVE EQUATION FOR AN INFINITE LOSSY TUBE

Assumptions
The circular tube of radius a shown in Fig. 4.40 has z as the axial ordinate and w as the

radial ordinate. In the following discussion, it is assumed that the radial pressure distri-

bution is uniform and that the pressure variations are purely axial. This has been shown

to be valid provided that a(meters) � 104/f 3/2 [11]. Also, it is assumed that the radial

velocity is zero, but the axial velocity is allowed to vary radially because of laminar flow

resulting from viscous losses. Thermal conduction through the tube wall is also taken

into consideration, where the wall is at ambient temperature T0. However, boundary slip

is allowed for, whereby the axial particle velocity adjacent to the tube wall can be

nonzero and the air temperature there can be nonambient. This is particularly relevant in

the case of very narrow tubes, where the viscous and thermal losses are less than would be

predicted if we were to assume “no slip”. By “no slip”, we mean if the axial velocity at

the wall were zero and the temperature there were ambient. Furthermore, the degree of

slip is proportional to the gradient of the radial distribution of the velocity or temperature

at the tube wall. In this section, we shall introduce the concept of the viscous boundary

layer, which is a region adjacent to the wall in which the axial velocity is less than it would

be in a loss-free tube. Outside the boundary layer, the tube is considered to be loss-free

such that the axial velocity is unaffected by the wall.

Categories
An open tube may be divided into five categories: wide, medium, narrow, very narrow,

and ultra-narrow. In a wide tube, the viscous and thermal losses are negligible so that the

tube can be treated as a pure mass. In a medium tube, the thickness of the viscous

boundary layer increases with frequency. Although the resistance is smaller than the mass

reactance, it increases with the square root of frequency.

In a narrow tube, the resistance is greater than the mass reactance and is relatively

independent of frequency. The viscous boundary layer completely fills the tube so that the

velocity distribution between the walls is parabolic. In a very narrow tube, the resistance

remains independent of frequency, but the mass becomes negative. Finally, we have the

ultra-narrow tube in which there is total absorption of the sound so that it appears infinite

and the impedance seen at the entrance is the characteristic impedance of the tube.

z2a

w

Figure 4.40 Geometry of tube.
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The momentum conservation equation
In accordance with the conservation of momentum law, we can write the linearized

NaviereStokes equation [12].�
r0

v

vt
� mV2

�
uðwÞ ¼ �vp

vz
; (4.175)

where

V2 ¼ v2
��

vw2
�þ w�1v

�ðvwÞ
and u is the axial velocity, p is the axial pressure, r0 ¼ 1.18 kg/m3 and

m ¼ 18.6 � 10�6 N$s/m2 are the density and viscosity of air, respectively, and z is the

axial ordinate. Replacing the time derivative with ju gives�
V2 þ k2V

�euðwÞ ¼ � k2V
jur0

vep
vz

; (4.176)

where kV is the viscous (or shear) wave number given by

kV ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�jur0=m

p
. (4.177)

Thermal conduction (entropy) and the gas law
Fourier’s law for thermal conduction gives

kV2esðwÞ ¼ juT0

�
r0CVep=P0 � CP

ed�; (4.178)

where ep, ed, and es are the small pressure, density, and temperature fluctuations respec-

tively. Also, k¼ 25.4� 10�3 N,s�1,K�1 is the thermal conductivity, T0 ¼ 295�K is the

ambient temperature, CV is the specific heat capacity under constant volume, and CP is

the specific heat capacity under constant pressure. For an ideal gas we can write the

following linearized equation of state [12]ep
P0

¼
ed
r0

þ esðwÞ
T0

: (4.179)

Eliminating ed from Eqs. (4.178) and (4.179) gives

kV2esðwÞ ¼ jur0T0

�
ðCV � CPÞ ep

P0
þ CP

esðwÞ
T0

�
. (4.180)

We also note that CP�CV ] P0/(r0T0) [11] so that�
V2 þ Prk

2
V

�esðwÞ ¼ Prk
2
V

r0CP
ep; (4.181)
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where Pr is the (dimensionless) Prandtl number given by

Pr ¼ mCP=k (4.182)

which is the ratio of the viscous diffusion rate to the thermal diffusion rate.

Solution of the velocity and temperature radial equations
Eqs. (4.176) and (4.181) for the radial velocity and temperature distributions, respec-

tively, are subject to the following slip boundary conditions:

euðaÞ ¼ �aBu
veuðwÞ
vw






w¼a’

(4.183)

esðaÞ ¼ �aBe
vesðwÞ
vw






w¼a’

(4.184)

where the boundary slip factors Bu and Be are given by

Bu ¼ �
2a�1

u � 1
�
Kn; (4.185)

Be ¼ 2g

Prð1þ gÞ
�
2

ae
� 1

�
Kn; (4.186)

which are zero in the case of no slip, where euðaÞ ¼ esðaÞ ¼ 0.

We note that g ¼ CP/Cv is the specific heat ratio, au and ae are the accommodation

coefficients, both of which are assumed to have a value of 0.9, and Kn is the (dimen-

sionless) Knudsen number given by

Kn ¼ lm=a; (4.187)

where lm ¼ 60 nm is the molecular mean free path length between collisions [10].

We let

euðwÞ ¼ � 1

jur0

vep
vz

ð1� FðkV ;w;BuÞÞ; (4.188)

esðwÞ ¼ ep
r0CP

ðð1� FðkT ;w;BeÞÞ; (4.189)

which after substituting in Eqs. (4.176) and (4.181), respectively, leads to a new pair of

equations: �
V2 þ k2V

�
FðkV ;w;BuÞ ¼ 0; (4.190)

�
V2 þ k2T

�
FðkT ;w;BeÞ ¼ 0; (4.191)
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where kT is the thermal (or entropy) wave number given by

kT ¼ ffiffiffiffiffi
Pr

p
kV . (4.192)

Eqs. (4.190) and (4.191) are subject to the boundary conditions

FðkV ; a;BuÞ þ aBu
v

vw
FðkV ;w;BuÞ




w¼a

¼ 1; (4.193)

FðkT ; a;BeÞ þ aBe
v

vw
FðkT ;w;BeÞ




w¼a

¼ 1 (4.194)

Solutions to Eqs. (4.190) and (4.191) are given by

FðkV ;w;BuÞ ¼ AJ0ðkVwÞ; (4.195)

FðkT ;w;BeÞ ¼ BJ0ðkTwÞ. (4.196)

The unknown coefficients can be found by substituting Eqs. (4.195) and (4.196) in

the boundary conditions of Eqs. (4.193) and (4.194), respectively, to give

A ¼ ð J0ðkV aÞ � BukV aJ1ðkV aÞÞ�1

and

B ¼ ð J0ðkTaÞ � BekTaJ1ðkTaÞÞ�1
.

The average values across the tube cross section are defined by

hFðkV ; a;BuÞi ¼ 1

pa2

Z2p
0

Za
0

FðkV ;w;BuÞwdwdf

¼ QðkV aÞ
1� 0.5Buk

2
V a

2QðkV aÞ
;

(4.197)

where

QðxÞ ¼ 2J1ðxÞ
xJ0ðxÞ ¼

 XN
n¼ 0

x2

x2 � b2n

!�1

; (4.198)

where bn are the zeros of J1(x), such that J1(bn) ¼ 0, and for large n, we may use

bnjn / N z (n þ ¼)p. Unlike the conventional individual expansions for J0(x) and J1(x)

given by Eq. (A2.71) of Appendix II, this expansion does not blow up for larger values of

x when the expansion limit is truncated.
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Similarly,

hFðkT ; a;BeÞi ¼ QðkTaÞ
1� 0.5Bek

2
Ta

2QðkTaÞ . (4.199)

In Fig. 4.41, the axial velocity along the radius of a narrow tube is plotted at a

frequency of 100 Hz using Eq. (4.188), where the radius of the tube is 1 mm. Also, the

axial velocity along the radius of a wide tube is plotted in Fig. 4.42 at a frequency of

10 kHz, where the radius is 1 mm.
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/~
)(~ 0
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Figure 4.42 Variation of normalized velocity along radius of medium-sized tube of radius 1 mm at a
frequency of 10 kHz. The effective boundary layer thickness is 22.4 mm.

Figure 4.41 Variation of normalized velocity along radius of ultra-narrow tube of radius 1 mm at a
frequency of 100 Hz. The effective boundary layer thickness is 224 mm.
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The effective boundary layer thickness dvisc can be calculated using the formula [12].

dvisc ¼
ffiffiffiffiffiffiffiffi
2m

r0u

s
(4.200)

In Fig. 4.41, the effective boundary layer thickness of 224 mm is much greater than

the radius of the tube, so the normalized velocity never reaches the theoretical maximum

value of unity even at the center (w ¼ 0). At the wall, the boundary slip condition is

clearly visible as the velocity does not reach zero. By contrast, the effective boundary

layer thickness in Fig. 4.42 of 22.4 mm is only 2.24% of the radius, which explains why

the normalized velocity is unity over most of the radius and only falls rapidly close to the

wall (w ¼ a), albeit after a small peak. At the edge of the boundary layer, it is about 86%

of the velocity at the center. At the wall, the velocity is virtually zero, so there is no

appreciable slip.

Mass conservation and Helmholtz wave equation
Finally, we use the following mass conservation equation or equation of continuity [12].

ju
�ed�þ r0

v

vz
heui ¼ 0. (4.201)

For the average velocity, we can write from Eq. (4.188)

heui ¼ � 1

jur0

vep
vz

ð1� hFðkV ; a;BuÞiÞ. (4.202)

Differentiating Eq. (4.202) with respect to z and inserting it in Eq. (4.201) yields

�ed� ¼ � 1

u2
ð1� hFðkV ; a;BuÞiÞ v

2ep
vz2

. (4.203)

Also, from the gas law of Eq. (4.178)

ep
P0

¼
�ed�
r0

þ hesi
T0

; (4.204)

where the average temperature is derived from Eq. (4.189) as follows

hesi ¼ ep
r0CP

ð1� hFðkT ; a;BeÞiÞ. (4.205)

Substituting Eq. (4.205) in Eq. (4.204) while noting that

CP � Cv ¼ P0=ðr0T0Þ and g ¼ CP=Cv
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so that

CP ¼ gP0

ðg� 1Þr0T0
(4.206)

gives �ed� ¼ r0

gP0
ð1þ ðg� 1ÞhFðkT ; a;BeÞiÞep. (4.207)

Equating Eqs. (4.203) and (4.207) then leads to the following Helmholtz wave

equation:

v2ep
vz2

þ k2ep ¼ 0; (4.208)

where

k2 ¼ ð1þ ðg� 1ÞÞhFðkT ; a;BeÞiÞu2r0

ð1� hFðkV ; a;BuÞiÞgP0 (4.209)

or, using Eqs. (4.197) and (4.199),

k2 ¼

 
1þ ðg� 1Þ QðkTaÞ

1� 0.5Bek
2
Ta

2QðkTaÞ

!
u2r0 

1� QðkV aÞ
1� 0.5Buk

2
V a

2QðkV aÞ

!
gP0

. (4.210)

Dynamic density
To simplify the expressions for the wave number k and characteristic impedance Z0, we

can use the following shorthand known as the dynamic density where hui is given by Eq.
(4.202) so that

r ¼ � 1

juheui vepvz ¼ r0

1� hFðkV ; a;BuÞi

¼ r0

 
1� QðkV aÞ

1� 0.5Buk
2
V a

2QðkV aÞ

!�1

.

(4.211)

Dynamic compressibility
Also, the dynamic compressibility is defined by

C ¼
�ed�
r0ep . (4.212)
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From the ideal gas law of Eq. (4.207), we obtain�ed�
r0ep ¼ 1

gP0
ð1þ ðg� 1ÞhFðkT ; a;BeÞiÞ; (4.213)

which is inserted in Eq. (4.212) to give

C ¼ 1

gP0

 
1þ ðg� 1ÞQðkTaÞ

1� 0.5Bek
2
Ta

2QðkTaÞ

!
. (4.214)

Wave number and characteristic impedance
Using the expressions for the dynamic density r and dynamic compressibility C from

Eqs. (4.211) and (4.214), respectively, the wave number of Eq. (4.210) simply becomes

k ¼ u
ffiffiffiffiffiffiffi
rC

p
(4.215)

By comparing this with the wave number for a loss-free plane wave (from Eqs. 2.19

to 2.45)

k ¼ u

ffiffiffiffiffiffiffiffi
r0

gP0

r
(4.216)

we see that when there are no viscous or thermal losses r ¼ r0 and C ¼ 1/(gP0).

Hence, the compressibility is the inverse bulk modulus of the medium. Similarly, from

Eq. (2.124), we see that the characteristic specific impedance of an infinite tube is

Zs ¼
ffiffiffiffiffiffiffiffiffi
r=C

p
. (4.217)

4.24 FINITE LOSSY TUBES

A two-port network for a finite tube of any length [13]
We have already introduced two-port networks for transducers using z-parameters in

Section 3.10. Here we shall apply the theory to a tube with viscous and thermal losses. A

general equivalent circuit for passive two-port networks is shown in Fig. 4.43. Because of

inp~

z11 − z12inu~ outu~

outp~

2-port network 
z22 − z21

z12 = z21

Figure 4.43 Equivalent electrical circuit for a general passive 2-port network.
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the reciprocity of the tube, or in other words, the fact that it does not matter at which

end there is a transmitter or receiver, we obtain z22 ¼ z11 and z21 ¼ z12.

From Eq. (3.64), we write"epinepout
#

¼
"
z11 z12

z21 z22

#
$

" euin
�euout

#
. (4.218)

The equations for the tube with losses take on the same form as those without losses

which we have already derived in Chapter 2. From Eqs. (2.58) to (2.59) for the pressure

and velocity in a finite tube, the following z-parameters are obtained:

z11 ¼ z22 ¼ epðlÞ
�euðlÞ






ZT¼N

¼ �jZs cot kl; (4.219)

z12 ¼ z21 ¼ epð0Þ
�euðlÞ






ZT¼N

¼ �jZs cosec kl; (4.220)

z11 � z12 ¼ z22 � z21 ¼ jZs tanðkl=2Þ
where we have replaced r0c with Zs for a tube with viscous and thermal losses. This is

equivalent to using a piston to apply a velocity u(l ) at z ¼ lwhile the other end (at z ¼ 0)

is blocked (hence zT ¼N) and using a probe microphone to measure the pressure at

z ¼ l and z ¼ 0. The pressures ep(l ) and ep(0) are then divided by eu(l ) to determine z11
and z12, respectively. The wave number k and characteristic impedance Zs with losses

are given by Eqs. (4.215) and (4.217), respectively. The trigonometrical functions in

Eqs. (4.219) and (4.220) can be conveniently calculated to within 1% using Eqs. (A2.42)

and (A2.43) from Appendix II with the expansion limits set to 20(1 þ jxj)/arg x. Using

the relationships of Eqs. (3.74)e(3.77), we can write the following equations for the

transmission parameters "epineuin
#

¼
"
a11 a12

a21 a22

#
$

"epouteuout
#
; (4.221)

where

a11 ¼ epðlÞepð0Þ





ZT¼N

¼ cos kl; (4.222)

a12 ¼ epðlÞ
�euð0Þ






ZT¼0

¼ jZs sin kl; (4.223)

216 Acoustics: Sound Fields, Transducers and Vibration



a21 ¼ �euðlÞepð0Þ





ZT¼N

¼ j sin kl

Zs
; (4.224)

a22 ¼ �euðlÞ
�euð0Þ






ZT¼0

¼ cos kl. (4.225)

If the tube is blocked at the far end, the impedance Zin at the entrance is simply

Zin ¼ epineuin




euout¼0

¼ z11 ¼ �jZs cot kl. (4.226)

If the far end is open, then

Zin ¼ epineuin




epout¼0

¼ z11 � z12 þ
�

1

z11 � z12
þ 1

z12

��1

¼ jZs tan kl. (4.227)

The tangent, cotangent, and cosecant functions may be conveniently calculated using

Eqs. (A2.42), (A2.43), and (A2.43a), respectively, from Appendix II.

A two-port network for a short finite tube
When the wavelength is about six times greater than the length l of the tube or greater,

we can take just the first two terms of the equivalent series forms for the cotangent and

cosecant so that Eqs. (4.219) and (4.220) reduce to

z11 ¼ z22z� jZs

�
1

kl
� kl

3

�
¼ 1

juCs
þ juM s

3
; (4.228)

z12 ¼ z21z� jZs

�
1

kl
þ kl

6

�
¼ 1

juCs
� juM s

6
. (4.229)

where Cs ¼ Cl is a lossy specific compliance and Ms ¼ rl is a lossy specific mass. The

bold typeface indicates that these are not pure reactances but also contain resistive

components due to losses. The compliance Cs contains thermal losses and Ms contains

viscous losses. The dynamic compressibility C and dynamic density r are given by Eqs.

(4.214) and (4.211), respectively. The compliance and mass are shown in Fig. 4.44 as an

equivalent electrical circuit. It is valid so long as the radius a is greater than the molecular

mean free path length lm. When one end of the tube is open and the radiation load is

negligible, the corresponding pair of terminals is effectively shorted and, at low fre-

quencies, the two upper mass elements ½Ms dominate so that the total mass is Ms.
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When one end is closed, the corresponding pair of terminals is open-circuited and, at

low frequencies, the compliance element Cs dominates. The mass is now due to one

upper element and the negative middle element, which gives

1

2
M s � 1

6
M s ¼ 1

3
M s.

The fact that the mass of a blocked tube is one-third of that of an open tube

can be verified by expanding the tangent function of Eq. (4.227), as we did in

Section 4.2.

A two-port network for a short finite tube using approximate discrete
elements
Let us now shorten the equivalent series forms of the Bessel functions in the function

Q(x) of Eq. (4.198) to just their first two terms:

QðxÞ ¼ 2J1ðxÞ
xJ0ðxÞz

8� x2

8� 2x2
(4.230)

We now apply this to the dynamic density from Eq. (4.211) to obtain

r ¼ �r0
8� ð2þ 4BuÞk2V a2 þ 0.5Buk

4
V a

4

ð1þ 4BuÞk2V a2 þ 0.5Buk
4
V a

4
. (4.231)

For small values of kVa, this simplifies to

r ¼ �8r0

ð1þ 4BuÞk2V a2
; (4.232)

which after substituting kV from Eq. (4.177) yields

r ¼ 8m

juð1þ 4BuÞa2 . (4.233)

We also apply Eq. (4.230) to the dynamic compressibility from Eq. (4.214) to obtain

C ¼ 1

gP0

 
8g� ð1þ gþ 4BeÞk2Ta2 þ 0.5Bek

4
Ta

4

8� ð2þ 4BeÞk2Ta2 þ 0.5Bek
4
Ta

4

!
. (4.234)

Cs

½Ms ½Ms

6
1– Ms

 

Figure 4.44 A 2-port network for a short tube of radius a, length l, which is valid for a > lm, the
molecular mean free path.
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For small values of kTa, this simplifies to

C ¼ 1=P0. (4.235)

By substituting Eqs. (4.233) and (4.235) into Eqs. (4.215) and (4.217), we obtain

the asymptotic wave number and characteristic impedance for a short very narrow

tube

kja/0 ¼ 2ð1� jÞ
a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mu

ð1þ 4BuÞP0

r
; (4.236)

Zsja/0 ¼ 2ð1� jÞ
a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mP0

ð1þ 4BuÞu

s
. (4.237)

To separate out the reactive and resistive elements of Fig. 4.44, we have to include

the second-order terms of Eqs. (4.215) and (4.217). However, the approximation is

not optimum because the singularity of the polynomial approximation of Q(x) in

Eq. (4.230) does not match that of the Bessel function expression. Hence, we will modify

Eq. (4.230) to align the singularities

QðxÞ ¼ 2J1ðxÞ
xJ0ðxÞz

a2 � �1� a2
�
8
�
x2

a2 � x2
; (4.238)

where a ¼ 2.4048 is the first zero of J0(x). In other words, J0(a) ¼ 0. The numerator

part of this approximation has been determined to lead to the same asymptotic ex-

pressions for r, C, k, and Zs as Eq. (4.230). We now apply this to the dynamic density

from Eq. (4.211) to obtain

r ¼ r0

8�
�
8

a2
þ 4Bu

�
k2V a

2 þ 8� a2

2a2
Buk

4
V a

4

�ð1þ 4BuÞk2V a2 þ
8� a2

2a2
Buk

4
V a

4

. (4.239)

Ignoring the fourth-order terms and substituting kV from Eq. (4.177) yields

r ¼ 8m

juð1þ 4BuÞa2 þ
�
8
�
a2
�þ 4Bu

1þ 4Bu
r0. (4.240)

The impedance because of the complex mass Ms is then given by

ZV ¼ juMs ¼ jurl ¼ 8ml

ð1þ 4BuÞa2 þ jur0l

�
8
�
a2
�þ 4Bu

1þ 4Bu
. (4.241)
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We see that the first term represents the resistance because of viscous flow losses while

the second term represents the mass reactance. We also apply Eq. (4.238) to the dynamic

compressibility from Eq. (4.214) to obtain

C ¼ 1

gP0
$

8g�
�
1þ

�
8

a2
� 1

�
gþ 4Be

�
k2Ta

2 þ 8� a2

2a2
Bek

4
Ta

4

8�
�
8

a2
þ 4Be

�
k2Ta

2 þ 8� a2

2a2
Bek

4
Ta

4

. (4.242)

Ignoring the fourth-order terms and substituting kT from Eqs. (4.177), (4.182),

(4.192), and (4.206) yields

C ¼ 1

gP0
$

gþ ju

�
1þ ��8�a2�� 1

�
gþ 4Be

�
gP0a

2

8ðg� 1ÞkT0

1þ ju

��
8
�
a2
�þ 4Be

�
gP0a

2

8ðg� 1ÞkT0

. (4.243)

We will use the approximation that

1þ ��8�a2�� 1
�
gz8

�
a2.

The impedance because of the complex compliance Cs is then given by

ZT ¼ 1

juCs
¼ 1

juCl
¼ 1þ juRTCT

juðC0 þ CT þ juRTC0CT Þ

¼ 1

juC0 þ 1

RT þ 1

juCT

;
(4.244)

where

C0 ¼ l

gP0
; (4.245)

CT ¼ ðg� 1ÞC0; (4.246)

RT ¼
��
8
�
a2
�þ 4Be

�
gP0a

2

8ðg� 1ÞkT0CT
;

z
ð1þ 3BeÞgP0a2
6ðg� 1ÞkT0CT

.

(4.247)
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Similarly, we can separate ZV from Eq. (4.241) into its constituent elements:

ZV ¼ RV þ juM0; (4.248)

where

RV ¼ 8ml

ð1þ 4BuÞa2; (4.249)

M0 ¼
�
8
�
a2
�þ 4Bu

1þ 4Bu
r0lz

1þ 3Bu

1þ 4Bu
$
4

3
r0l. (4.250)

These elements are shown on the equivalent electrical circuit of Fig. 4.45 and are

known as lumped elements as opposed to the distributed ones of Eqs. (4.219) and (4.220)

because the mass, compliance, and resistance elements have been separated out into

discrete elements, whereas in reality they are evenly distributed over the length of the

tube. However, the distributed parameter model may be considered as an infinite

number of lumped parameter sections coupled together, where each one is infinitesi-

mally short. At low frequencies, the impedance because of CT is larger than RT so that

the total compliance is effectively C0 þ CT ¼ 1/P0. The low-frequency pressure fluc-

tuations are isothermal because of heat transfer to and from the wall of the tube. At higher

frequencies, RT represents energy loss because of the time taken for the heat to flow back

and forth. At even higher frequencies, RT is greater than the impedance because of CT, so

very little heat is transferred, making the pressure fluctuations adiabatic in nature. The total

compliance is then effectively C0 ¼ 1/(gP0). Hence, the compliance at low frequencies is

greater than that at high frequencies by a factor of g (that is, around 40% greater).

Regimes for an open-ended tube
The real and imaginary impedances at the entrance of the tube with the far end open,

that is, with one pair of terminals of the two-port network shorted, are shown in

Figs. 4.46 and 4.47, respectively. In each case, a number of different curves are plotted.

For the exact curves (black), Eq. (4.227) is used together with the exact wave number and

C0 

½M0 ½M0

61− M0

½RV ½RV

CT

6
1− RV

 

RT

Figure 4.45 A 2-port network for a short narrow tube of radius a length l, which is valid for a> lm, the
molecular mean free path.
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characteristic impedance of Eqs. (4.215) and (4.217), respectively. These are valid for a>
lm. Real and imaginary approximate curves are also shown for the three following

regimes:

1. For the very narrow radius or asymptotic curves (medium gray dashed), Eq. (4.227) is

also used but with the asymptotic wave number and characteristic impedance of Eqs.

(4.236) and (4.237), respectively. The real curve is valid for lm < a < 0.00008l
ffiffiffi
f

p
and the imaginary curve for lm < a < 0.0005

ffiffi
l

p
. We ignore the compliance ele-

ments of the analogous circuit of Fig. 4.45, which has the output terminals shorted in

0.1

1

10

100

1000

10000

100000

0.001 0.01 0.1 1 10

.)lyar(
ecnadep

mi
cificepslae

R

a (mm)

Ultra narrow

Exact
Narrow

Medium

and very narrowNarrow and very narrow

Figure 4.46 Real impedance at the entrance of an open-ended tube at a frequency of 100 Hz plotted
against its radius a where the length l of the tube is 10 mm. The exact solution is given by Eq. (4.227)
together with Eqs. (4.215) and (4.217). For medium, narrow and very narrow tubes, Zin ¼ RV þ juM0

where RV and M0 are given by Eqs. (4.251) and (4.252) for medium tubes, Eqs. (4.249) and (4.250) for
narrow tubes, and Eqs. (4.249) and (4.250a) for very narrow tubes. The ultra narrow solution is given by
Eq. (4.237).
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the case of an open tube, so that the input impedance reduces to Zin ¼ RV þ juM0,

where RV is given by Eq. (4.249) and M0 becomes a negative mass given by

M0 ¼ � 64m2l3

3ð1þ 4BuÞ2P0a4
: (4.250a)

Hence, there is a null in the black curve of Fig. 4.47where the sign of themass changes. The

negative mass is derived from the property of the tangent function in Eq. (4.227) whereby

Jð jð1� jÞtanðð1�jÞxÞÞz�4x3
�
3; x/0:Also,<ð jð1 � jÞtanðð1�jÞxÞÞz2x; x/0.
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mI
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Narrow
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Exact
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Figure 4.47 Imaginary impedance at the entrance of an open-ended tube at a frequency of 100 Hz
plotted against its radius a where the length l of the tube is 10 mm. The exact solution is given by
Eq. (4.227) together with Eqs. (4.215) and (4.217). For medium, narrow and very narrow tubes,
Zin ¼ RV þ juM0 where RV and M0 are given by Eqs. (4.251) and (4.252) for medium tubes, Eqs. (4.249)
and (4.250) for narrow tubes, and Eqs. (4.249) and (4.250a) for very narrow tubes. The ultra narrow
solution is given by Eq. (4.237).

Acoustic components 223



2. At low frequencies, we can ignore the compliance elements of Fig. 4.45 for an

open tube. Hence, the input impedance reduces to Zin ¼ RV þ juM0 where RV

and M0 are given by Eqs. (4.249) and (4.250), respectively, and these are used for

the narrow radius curves (medium gray), commonly known as the Poisseulle flow.

The real curve is valid for 0.00008l
ffiffiffi
f

p
< a < 0.002

� ffiffiffi
f

p
and the imaginary curve

for 0.0005
ffiffi
l

p
< a < 0.002

� ffiffiffi
f

p
.

3. For medium radius tubes (light gray), that is for a > 0.01
� ffiffiffi

f
p

, we again ignore the

compliance elements of Fig. 4.45 and use the expression Zin ¼ RV þ juM0, but this

time apply the expressions developed by Ingard for RV and M0 as follows:

RV ¼ l

a

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2ur0m

p
(4.251)

M0 ¼ r0l (4.252)

The fact that the resistance in Eq. (4.251) varies with frequency does not really matter

much in practice. In a resonant system, such as where the acoustic mass of the tube is

combined with the acoustic compliance of a cavity, the resistance only dominates over a

small range of frequencies either side of the resonant frequency, especially as the resis-

tance of a medium tube is relatively small and so the Q value is likely to be high. Hence,

we can simply use the value of the resistance at the resonant frequency for all frequency

values.

Let us now examine the elements RV and M0 of Fig. 4.45. Using Eqs. (4.249) and

(4.250) but with zero slip (Bu ¼ 0), the frequency at which their impedances are equal is

given by

uV ¼ RV

M0
¼ 6m

a2r0
or a ¼

ffiffiffiffiffiffiffiffiffiffiffi
6m

uVr0

s
(4.253)

It turns out that an effective viscous boundary layer thickness dvisc can be defined by

dVisc ¼
ffiffiffiffiffiffiffiffi
2m

ur0

s
(4.254)

This can be obtained by letting tan kl z kl in Eq. (4.227) for a short tube, while

letting Q(x) z � 2j/x in Eq. (4.211) for a medium radius as well as ignoring

boundary slip and only keeping the higher powers of (a
ffiffiffiffi
u

p
) in the resulting

expression for Zin.

In other words, at u ¼ uV, we have a ¼
ffiffiffi
3

p
dVisc so that the radius is about 1.73 times

greater than the effective boundary layer thickness when the mass reactance and

resistance are equal. Above this frequency, the mass reactance of the air in the tube

224 Acoustics: Sound Fields, Transducers and Vibration



dominates and below it the viscous resistance dominates. If we insert the values

m ¼ 1.86 � 10�5 N$s/m2 and r0 ¼ 1.18 kg/m3 into Eq. (4.253) we also obtain

a ¼ 0.004
� ffiffiffi

f
p

, which is the demarcation between narrow and medium radius tubes

above. Hence, in a narrow tube, the frequency-invariant resistance dominates, and in a

medium diameter one the mass reactance dominates and the resistance is proportional to

the square root of frequency. This can be clearly seen from Figs. 4.46 and 4.47 where he

mass reactance and resistance are both approximately 10 rayls at a ¼ 0.4 mm.

Ultra-narrow tube
At high frequencies in narrow tubes, we encounter a fourth regime which is distinct

from those already discussed (very narrow, narrow, and medium) and where the lumped

parameter model of Fig. 4.45 no longer applies. Let us now examine some properties of

the tangent function in Eq. (4.227) for the impedance of an open tube. The argument kl

and Zs can be expressed in terms of lumped parameters using the wave number from Eq.

(4.215) together with jurl ¼ juMs ¼ ZV and juCl ¼ juCs ¼ 1/ZT so that

Zin ¼ j
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ZVZT

p
tan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ZV=ZT

p
. (4.255)

We can see that for small arguments of the tangent function, where tan klz kl, the

impedance of the open tube is just Zin ¼ ZV. Using similar arguments with Eq. (4.226),

where cot klz 1/(kl), we find that the impedance of a blocked tube is Zin ¼ ZT. From

Eq. (4.248), ZV ¼ RV þ juM0. From Eq. (4.244), we will use the approximation

ZT ¼ 1/( juC0). Putting these into Eq. (4.255), we obtain

Zin ¼ j
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ZVZT

p
tan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðRV þ juM0ÞjuC0

p
. (4.256)

If u << uV, then this simplifies to

Zinju<<uV
¼ j

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ZVZT

p
tan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�juRVC0

p ¼ j
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ZVZT

p
tan
�
ð1� jÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uRVC0=2

p 	
.

(4.257)

From Eq. (A2.48) of Appendix II, one property of the tangent function is that

tan(x � jy)z �j for virtually any value of x provided that y is greater than about 2.

Hence, we can define a transition frequency uT by

uT ¼ 8

RVC0
¼ gP0a

2

ml2
. (4.258)

Below the transition frequency, the tube regimes are those for an open-ended tube

above. Above it, the impedance is given by

Zinju<<uV
¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

ZVZT

p ¼ Zs. (4.259)
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where the asymptotic expression for Zs is given by Eq. (4.237). In this regime, the

impedance is proportional to the inverse square root of frequency and the real and

imaginary parts are equal, as can be seen in Figs. 4.48 and 4.49 where the transition

frequency according to Eq. (4.258) is 1.45 kHz. Above this frequency, the dashed

curves for Zs from Eq. (4.237) match very closely with the black curves for the exact
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Figure 4.48 Real impedance at the entrance of an open-ended tube plotted against frequency f. The
radius a of the tube is 1.1 mm and the length l is 1 mm. The exact solution is given by Eq. (4.227) and
the characteristic impedance Zs by Eq. (4.217). The lumped parameter model is as shown in Fig. 4.45,
where the pair of terminals at the far end is short-circuited.

1000

10000

100000

00001000100101

Im
ag

in
ar

y 
sp

ec
ifi

c 
im

pe
da

nc
e 

(r
ay

l).

f (Hz)

Lumped 

Exact 

ℑ(Zs)

Figure 4.49 Imaginary impedance at the entrance of an open-ended tube plotted against frequency
f. The radius a of the tube is 1.1 mm and the length l is 1 mm. The exact solution is given by Eq. (4.227)
and the characteristic impedance Zs by Eq. (4.217). The lumped parameter model is as shown in
Fig. 4.45, where the pair of terminals at the far end is short-circuited.
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expression of Eq. (4.227). At low frequencies, the dark gray curves representing the

lumped parameter model of Fig. 4.45 with one pair of terminals shorted appear to be

a good approximation for the black exact curves. Although there is up to 25% error

in the imaginary lumped impedance at low frequencies, it is less than 10% of the

total impedance, which is mainly resistive and so the impedance modulus is fairly

accurate.

Interestingly, above the transition frequency of 1.45 kHz, the real and imaginary

impedances of the closed tube shown in Figs. 4.50 and 4.51, respectively, are virtually

identical to those of the open tube shown in Figs. 4.48 and 4.49, respectively. This is

not so surprising considering that if the tangent function in Eq. (4.227) converges

toward �j, then the cotangent function in Eq. (4.226) must converge toward j.

Together with the fact that the input impedance is the characteristic impedance Zs, this

suggests that the tube under this regime behaves as an infinitely long one in which no

sound is transmitted to the far end or reflected back from it because of full internal

absorption. This can be confirmed if we take a look at the two-port model of Fig. 4.43.
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Fig. 4.50 Real impedance at the entrance of a closed tube plotted against frequency f. The radius a of
the tube is 1.1 mm and the length l is 1 mm. The exact solution is given by Eq. (4.227) and the
characteristic impedance Zs by Eq. (4.217). The lumped parameter model is as shown in Fig. 4.45,
where the pair of terminals at the far end is open-circuit.
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The z-parameters are described by Eqs. (4.219) and (4.220), which under this regime

reduce to

z11ju>uT
¼ z22ju>uT

zZs; (4.260)

z12ju>uT
¼ z21ju>uT

z0; (4.261)

because cotan(x � jy)/ j and cosec(x � jy) / 0 for y > 2 for any x. As stated above,

the existence of this regime is conditional that uT << uV where uVand uT are given by

Eqs. (4.253) and (4.258), respectively. Hence,

8

RVC0
<<

RV

M0
. (4.262)

Now let us define a Q value by

Q ¼ 1

RV

ffiffiffiffiffiffiffi
M0

C0

r
<<

1ffiffiffi
8

p . (4.263)
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Figure 4.51 Imaginary impedance at the entrance of a closed tube plotted against frequency f. The
radius a of the tube is 1.1 mm and the length l is 1 mm. The exact solution is given by Eq. (4.227) and
the characteristic impedance Zs by Eq. (4.217). The lumped parameter model is as shown in Fig. 4.45,
where the pair of terminals at the far end is open-circuit.
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In practice, the regime only exists for highly damped tubes where Q < 0.05 or

l > (6 � 106)a2. According to Eq. (4.258), it describes the asymptotic curves in Fig. 4.46

and Fig. 4.47 for a < 3 mm and hence can be regarded as an “ultra-narrow” tube regime.
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CHAPTER FIVE

Microphones

PART XV: GENERAL CHARACTERISTICS OF MICROPHONES

Microphones are electroacoustic transducers for converting acoustic energy into

electric energy. They serve two principal purposes. First, they are used for converting

music or speech into electric signals that are transmitted or processed in some manner

and then reproduced. Second, they serve as measuring instruments, converting acoustic

signals into electric currents that are processed and displayed. In some applications such as

telephony, high electrical output, low cost, and durability are greater considerations than

fidelity of reproduction. In other applications, small size and high fidelity are of greater

importance than high sensitivity and low cost. In measurement applications we may be

interested in determining the sound pressure or the particle velocity. In some applications

the microphone must operate without appreciable change in characteristics regardless of

major changes in temperature and barometric pressure.

For these different applications, a variety of microphones have been developed. For

the purposes of discussion in this part they are divided into three broad classes, in each of

which there are a number of alternative constructions. The classes are:

• Pressure microphones.

• Pressure-gradient microphones.

• Combinations of (1) and (2).

In this part we shall describe the distinguishing characteristics of these three types. In the

next two parts we shall discuss in detail several examples of each type involving

electromagnetic and electrostatic types of transduction. A brief summary of their char-

acteristics is given in Table 5.1, which will be explained in greater detail in this chapter.

Table 5.1 Summary of different microphone types
Microphone type Pressure Pressure-gradient

Electrostatic: (condenser, electret,

or piezoelectric)

Displacement sensitive Velocity sensitive

Stiffness controlled Resistance controlled

High-frequency resonance Midfrequency resonance

Electromagnetic: (moving-coil

or ribbon)

Velocity sensitive Acceleration sensitive

Resistance controlled Mass controlled

Midfrequency resonance Low-frequency resonance
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5.1 PRESSURE MICROPHONES

A pressure microphone is one that responds to changes in sound pressure. A

common example of a pressure microphone is the one with a diaphragm, the back side of

which is terminated in a closed cavity (see Fig. 5.1). A tiny hole through the wall of the

cavity keeps the average pressure inside the cavity at atmospheric pressure. However,

rapid changes in pressure, such as those produced by a sound wave, cause the diaphragm

to move backward and forward.

If a pressure microphone is placed in a small cavity in which the pressure is varied, as

shown in Fig. 5.2, the output voltage will be the same regardless of what position the

microphone occupies in the cavity. On the other hand, if a pressure microphone is placed

at successive points 1, 2, 3, and 4 of Fig. 5.3a, it will respond differently at each of these

Small air leak

Closed cavity

Diaphragm
Mechanical 
connection to 
the transducing 
element which 
produces an 
output voltage

Figure 5.1 Sketch of a pressure-actuated microphone consisting of a rigid enclosure, in one side of
which there is a flexible diaphragm connected to a transducing element.

Cavity with 
dimensions 
less than λ /16

(a)

(b)

Figure 5.2 Sketch of a pressure chamber.
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points for reasons that can be seen from Fig. 5.3b. The pressure drops p1, p2, p3, and p4 are

different from each other by an amount Dp, if the spacings Dx are alike.

If a pressure microphone is placed in a plane sound wave of constant intensity I (watts

flowing through a unit area in the plane of the wave front), the force acting to move the

diaphragm will be independent of frequency because prms ¼ ffiffiffiffiffiffiffiffi
Ir0c

p
[see Eq. (1.12)].

5.2 PRESSURE-GRADIENT MICROPHONES

A pressure-gradient microphone is one that responds to a difference in pressure at

two closely spaced points. A common example of this type of microphone has a dia-

phragm, both sides of which are exposed to the sound wave. Such a construction is

shown in Fig. 5.4.

Cavity connected 
in series with an 
acoustic mass
All dimensions 
less than /16

51 2 3 4

End correction

(a)

(b)

Figure 5.3 Sketch of an arrangement in which a pressure gradient is produced.

Mechanical connection 
to the transducing 
element which produces 
an output voltage

Diaphragm

Immovable frame

Δ l

Figure 5.4 Sketch of a pressure-gradient microphone consisting of a movable diaphragm, both sides
exposed, connected to a transducing element.
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If a pressure-gradient microphone is placed in the cavity of Fig. 5.2a, there will be no

net force acting on the diaphragm and its output will be zero. This happens because there

is no pressure gradient in the cavity. In contrast, if a pressure-gradient microphone is

placed at the successive positions 1e4 of Fig. 5.3a, it will produce an output voltage

proportional to the pressure gradient Dp/Dx. In other words, if Dx is the same between

successive points, the microphone output will be independent of whichever of the four

positions it occupies in Fig. 5.3a.

If a very small pressure-gradient microphone is placed in a plane sound wave traveling

in the x direction, the complex force ef D acting to move the diaphragm will be

ef D ¼ �S
vep
vx
Dl cos q (5.1)

whereep is sound pressure

vep
vx
cos q is the component of the x gradient of pressure acting across the faces of the

diaphragm

q is the angle the normal to the diaphragm makes with the direction of travel of the

wave (see Fig. 5.5)

Dl is the effective distance between the two sides of the diaphragm (see Fig. 5.4)

S is area of diaphragm.

The equation for a plane traveling sound wave has already been given (Eq. (2.121)); It is

ep ¼ ep0e�jkx (5.2)

where

k ¼ u/cepo is pressure at x ¼ 0

If we assume that the introduction of the microphone into the sound field does not affect

the pressure gradient, we may substitute Eq. (5.2) into Eq. (5.1) and get

ef D ¼ jep0uS Dl cos q

c
e�jkx. (5.3)

Principle axis 
of microphone

Direction of travel 
of the sound wave

θ

Figure 5.5 Pressure-gradient microphone with principal axis located at an angle q with respect to the
direction of travel of the sound wave.
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The magnitude of the force at any point x is���ef D��� ¼ jepjuS Dl cos q

c
. (5.4)

It should be remembered (see Eq. (2.4)) that in the steady state the pressure gradient is

proportional to jur0 times the component of particle velocity in the direction the

gradient is being taken. The force fD is therefore proportional to the particle velocity at

any given frequency. A reference to Fig. 5.5 is sufficient to convince one that when

q ¼ 90 degrees, the force acting on the diaphragm will be zero because the conditions of

symmetry require that the pressure be the same on both sides of the diaphragm. From Eq.

(5.4) we also see that the effective force acting on the diaphragm is proportional to

frequency and the sound pressure.

In spherical coordinates, for a microphone whose dimensions are small compared

with r, Eq. (5.1) becomes

ef D ¼ �S
vep
vr
Dl cos q. (5.5)

The equation for a spherical wave is found from Eq. (2.142)

epðrÞ ¼ eA0
e�jkr

r
(5.6)

Substituting (5.6) in (5.5) gives

ef D ¼
eA0ð1þ jkrÞ

r2
e�jkrSðDl cos qÞ. (5.7)

This yields ���ef D���rms ¼ jepjrmsuS Dl cos q

c
$

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2r2

p

kr
. (5.8)

However, we see from Eq. (2.124) that in a plane wave the rms velocity is related to

the rms pressure by

jeujrms ¼
jepjrms

r0c
(5.9)

and in a spherical wave (Eq. (2.144))

jeujrms ¼
jepjrms

r0c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2r2

p

kr
(5.10)

Microphones 235



where jeujrms is the rms particle velocity in the direction of travel of the sound wave.

Hence, Eqs. (5.4) and (5.8) become���ef D���
rms

¼ jeujrmsur0S Dl cos q. (5.11)

In other words, the effective (rms) force fD acting on the diaphragm of a pressure-

gradient microphone is directly proportional to the effective particle velocity in the

direction of propagation of the wave, to the frequency, to the density of the air, to the size

and area of the diaphragm, and to the angle it makes with the direction of propagation of

the sound wave. This statement is true for any type of wave frontdplane, spherical,

cylindrical, or otherdprovided the microphone is so small that its presence does not

appreciably disturb the sound wave.

At any given frequency, the response of the microphone is proportional to the cos q,

which yields the directivity pattern shown in Fig. 5.6a. This shape of plot is commonly

referred to as a “figure of eight” pattern. The same pattern, plotted in decibels relative to

the force at q ¼ 0, is given in Fig. 5.6b. It is interesting to observe that the pattern is the

same as that for an acoustic doublet or for an unflanged diaphragm at low frequencies (see

Fig. 4.23 and Fig. 13.23).

The frequency response of a pressure-gradient (particle-velocity) microphone,

when placed in a spherical wave, is a function of the curvature of the wave front. That

is to say, from Eq. (5.10) we see that for values of k2r2 (kr equals ur/c) large compared

with 1 the particle velocity is linearly related to the sound pressure. A large value of

kr means that either the frequency is high or the radius of curvature of the wave front
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Figure 5.6 (a) Directivity characteristic of the pressure-gradient microphone of Fig. 5.4. (b) Same but
with scale in dB.
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is large. However, for values of k2r2 small compared with 1, which means that the

radius of curvature is small or the frequency is low, or both, the particle velocity is

proportional to jepj=ðurÞ. As a result, when a person talking or singing moves near to a

pressure-gradient microphone so that r is small, his voice seems to have become more

“boomy” or “bassy” because the output of the microphone increases with decreasing

frequency.

The path difference Dl depends on whether the diaphragm is a rigid piston or

flexible. Because a microphone may be considered to be a sound source in reverse, we

can use the radiation impedance of the equivalent rigid or flexible sound source to give

us the relationship between the diaphragm pressure and velocity in Eqs. (5.1) and (5.11),

which are rearranged as

Zs ¼
ef D
Seu ¼ jur0 Dl cos q; (5.12)

so that we can solve for Dl. We will assume that the incident sound waves are on-axis so

that q ¼ 0. In the case of a rigid circular piston of radius a with no baffle, the specific

radiation impedance Zs is given by

Zsjl>>a ¼
ef D
Seu ¼ jr0c

4ka

3p
: (5.13)

Equating Eqs. (5.12) and (5.13) yields

Dl ¼ 4a

3p
: (5.14)

Using the resilient disk in free space model to give the radiation impedance for a

perfectly flexible diaphragm, where

Zsjl>>a ¼ jr0cpka=4;

we find that

Dl ¼ pa

4
: (5.15)

5.3 COMBINATION OF PRESSURE AND PRESSURE-GRADIENT
MICROPHONES

A combination of pressure and pressure-gradient microphones is one that responds

to both the pressure and the pressure gradient in a wave. A common example of such a

microphone is the one having a cavity at the back side of the diaphragm that has an

opening to the outside air containing an acoustic resistance (see Fig. 5.7a).
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The analogous circuit for this device is shown in Fig. 5.7b. If we let

ep1 ¼ ep0e�jkx (5.16)

ep2 ¼ ep1 þ v
�ep0e�jkx

�
vx

Dl cos q

¼ ep1�1� j
u

c
Dl cos q

�
:

(5.17)

Let us say that eUD is the volume velocity of the diaphragm, eU0 is the volume velocity

of the air passing through the resistance, epD is the net pressure acting to move the dia-

phragm, and ZAD is the diaphragm impedance. In the case of an electrostatic or ribbon

microphone, the radiation mass will have a significant effect, so for the sake of simplicity

let us lump this in with ZD. The acoustic resistance RAwill also have a mass component,

Δ

Air cavity

Diaphragm

Mechanical 
connection to 
the transducing 
element which 
produces an 
output voltage

Acoustic 
resistance 

(a)

(b)

Figure 5.7 (a) Sketch of a combination pressure and pressure-gradient microphone consisting of a
right enclosure in one side of which is a movable diaphragm connected to a transducing element and
in another side of which is an opening with an acoustic resistance RA. (b) Acoustic-impedance circuit
for (a).
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but we assume that it is very small compared with the resistance. Then we can write the

following equations from Fig. 5.7b:

eUD

�
ZAD þ 1

juCA

�
� eU0

juCA
¼ ep1

�eUD

juCA
þ eU0

�
RA þ 1

juCA

�
¼ �ep2;

(5.18)

which are solved for eUD. The pressure difference across the diaphragm is

epD ¼ eUDZAD ¼
ZAD

�ep1RA þ ep1 �ep2
juCA

�
ZADRA � jððRA þ ZADÞ=uCAÞ . (5.19)

Substitution of (5.17) in (5.19) yields

epD ¼ ep1 ZAD

�
RA þ Dl cos q

cCA

�
ZADRA � jððRA þ ZADÞ=uCAÞ . (5.20)

Let

Dl

cCARA
¼ B; (5.21)

where B is an arbitrarily chosen dimensionless constant. Because ef D ¼ epDS, where S is

the effective area of the diaphragm, we have���ef D��� ¼ ep1jAjSð1þ B cos qÞ; (5.22)

where A is the ratio given by

A ¼ ZADRA

ZADRA � jððRA þ ZADÞ=uCAÞ . (5.23)

A plot of the force j fDj acting on the diaphragm as a function of q for B ¼ 1 is shown

in Fig. 5.8a. The same pattern plotted in decibels is given in Fig. 5.8b. The directivity

pattern for B ¼ 1 is commonly called a cardioid pattern. Other directivity patterns are

shown in Fig. 5.30 for B ¼ 0, 12, 1,
ffiffiffi
3

p
, 3, and N.
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PART XVI: PRESSURE MICROPHONES
Pressure microphones are the most widely used of the three basic types discussed in

the preceding part. They are applicable to acoustic measuring systems and to the pickup

of music and speech in broadcast studios, public-address installations, and hearing aids.

Many engineers and artists believe that music reproduced from the output of a well-

designed pressure microphone is superior to that from the more directional types of

microphone because the quality of the reverberation in the auditorium or studio is fully

preserved, because undesirable waveform distortion is minimized, and because the

quality of the reproduced sound is not as strongly dependent as for other types on how

close the talker or the musical instrument is to the microphone.

Two principal types of pressure microphones are commonly found in broadcast,

public address, recording, and acoustical measurement. They are the electromagnetic and

electrostatic types. We shall analyze one commercially available microphone of each of

these two types in the next few sections of this part. Various other types of microphones

are used in other applications, such as the piezoelectric hydrophone in underwater

systems, the hot-wire microphone in aerodynamic measurements, and the Rayleigh disk

in absolute particle velocity measurements. Lack of space precludes their inclusion here.

However, electret (electrostatic with stored charge) and MEMS (micromechanical) types

will be discussed in Chapter 8 in relation to cell phones.
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Figure 5.8 (a) Directivity characteristic of the combination pressure and pressure-gradient micro-
phone of Fig. 5.7. (b) Same but with scale in dB.
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5.4 ELECTROMAGNETIC MOVING-COIL MICROPHONE (DYNAMIC
MICROPHONE)

General features
The moving-coil electromagnetic microphone is a medium-priced instrument of high

sensitivity. It is principally used in broadcast work and in applications where long cables

are required or where rapid fluctuations or extremes in temperature and humidity are

expected.

The best designed moving-coil microphones have open-circuit voltage responses to

sounds of random incidence that are within 5 dB of the average response over the fre-

quency range between 40 and 16,000 Hz. Sound pressures as low as 16 dB SPL and as

high as 140 dB SPL re 20 mPa can be measured. Changes of response with temperature,

pressure, and humidity are believed to be, in the better instruments, of the order of

3e5 dB maximum below 1000 Hz for the temperature range of 10e100�F, pressure
range of 0.65e0.78 m Hg, and humidity range of 0%e90% relative humidity.

The electrical impedance is that of a coil of wire. Below 1000 Hz, the resistive

component predominates over the reactive component. Most moving-coil microphones

have a nominal electrical impedance of about 300 U. The mechanical impedance is not

high enough to permit use in a closed cavity without seriously changing the sound

pressure therein.

To connect a dynamic microphone to an amplifier, a stepping-up transformer is

required, which is usually contained within the microphone housing.

Construction
The electromagnetic moving-coil microphone consists of a diaphragm that has fastened

to it a coil of wire situated in a magnetic field (see Fig. 5.9a). In addition, there are

acoustical circuits behind and in front of the diaphragm to extend the response of the

microphone over a greater frequency range. A cutaway view of a widely used type of

moving-coil microphone is shown in Fig. 5.9b and a cross-sectional sketch is shown in

Fig. 5.10.

Electro-mechano-acoustical relations
The sound passes through the dust screen and arrives at an array of sound holes in front of

the diaphragm, which form a small acoustic mass and a small acoustic resistance, although

most of the acoustic resistance is provided by the dust screen. The holes are so small that

their radiation impedance, operating as a loudspeaker, is essentially reactive over the

whole frequency range (see Fig. 4.39). The front cavity between the holes and dia-

phragm is a small acoustic compliance. Hence, the total acoustical circuit in front of the

diaphragm is that of Fig. 5.11. The pressure epB is that which the sound wave would
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Dust screen,    Front cavity,     Dome,     Suspension, ,  (20 μm)

Transducer case                                                                   Back cavity, 

Voice coil, 

Acoustic resistor, 

NdFeBr magnet 

Sound holes, ,(b)
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Electrical connection 
Air gap, 

Acoustic mass, 

Figure 5.9 (a) Diagrammatic representation of the essential elements of a moving-coil (dynamic)
microphone. (b) Cutaway view of a commercially available moving-coil microphone type D230. In this
varimotion design, the thickness of the diaphragm varies radially to provide higher compliance in the
suspension and greater stiffness at the center, which moves the dome break-up modes out of the
operating frequency range. (a) From Beranek, Acoustic Measurements, John Wiley & Sons, Inc., New York,
1949. (b) Courtesy of AKG.
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produce at the face of the grid if the holes of the grid were closed off. eUH is the volume

velocity of the air that moves through the holes. eUD is the volume velocity of the

diaphragm and is equal to the effective linear velocity euD of the diaphragm times its

effective area SD. The radiation mass looking outward from the grid openings is MAA.

The acoustic mass and resistance of the holes and dust screen are MAH and RAH. The

compliance of the air space in front of the diaphragm is CAF. At all frequencies, except

the very highest, the effect of the protective screen can be neglected.

Behind the diaphragm the acoustical circuit is more complicated. First there is an air

gap between the diaphragm and the magnet that forms an acoustic compliance and

resistance (see Fig. 5.9b). This air gap connects with a large back cavity that is also an

acoustic compliance. In the connecting passages, there are screens that serve as acoustic

resistances. Also, the interconnecting passages form an acoustic mass. The large air cavity

connects to the outside of the microphone through a narrow pressure-equalizing tube,

which prevents static displacements of the diaphragm due to variations in atmospheric

Thevenin generator 
for outside circuit

To
diaphragm

1

2

Figure 5.11 Acoustical circuit for the elements in front of the diaphragm of the microphone of Fig. 5.9
(acoustic-impedance analogy).

Capsule

Housing

Elastic
suspension

Grid cap
Connector insert

ScrewGasket

Foam
insert

Leads

Transformer
(not shown)

Figure 5.10 Cross-section of a commercially available moving-coil microphone type D230. Courtesy of
AKG.
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pressure. It also attenuates the output of the microphone at the very lowest frequencies

because the sound arriving at the rear of the diaphragm via the tube cancels that at the

front. However, for simplicity, we shall ignore this tube during our analysis because its

effect is only evident well below the working frequency range of the microphone,

although in some designs it is tuned to resonate with the back cavity and thus boost the

low-frequency output rather like a bass-reflex port in a loudspeaker, a topic which is

covered in more detail in Chapter 7.

The complete acoustical circuit behind the diaphragm is given in Fig. 5.12. The

acoustic compliance and resistance directly behind the diaphragm are CAG and RAG

respectively, the acoustic resistances of the screens are RAS, the acoustic mass of the

interconnecting passage is MAS, and the acoustic compliance of the large back cavity is

CAB.

The electromechanical circuit (mechanical-admittance analogy) for the diaphragm

and voice coil is given in Fig. 5.13. The force exerted on the diaphragm is ef D, and its

resulting velocity is euD. Here, MMD is the mass of diaphragm and voice coil; CMS is the

compliance of the suspension; L is the inductance of voice coil; and RE is the electric

resistance of the voice coil.ZEL is the electric impedance of the electric load towhich the

microphone is connected. The quantityee0 ¼ BleuD is the open-circuit voltage produced

by the microphone. There will also be some mechanical resistance due to the suspension,

but this is generally very small compared with the acoustic resistance RAS so we will

ignore it.

To combine Figs. 5.11e5.13, the dual of Fig. 5.13 must first be taken; it is shown in

Fig. 5.14. Now, to join Figs. 5.11, 5.12, and Fig. 5.14, all forces in Fig. 5.14 must be

Admittance analogy

Figure 5.13 Mechano-electrical circuit of diaphragm, voice coil, and magnetic field of the microphone
of Fig. 5.9 (mechanical-admittance analogy).

To
diaphragm

Figure 5.12 Acoustical circuit for the elements behind the diaphragm of the microphone of Fig. 5.9
(acoustic-impedance analogy).
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divided by the area of the diaphragm SD and all velocities multiplied by SD. This can be

done by inserting an area transformer into the circuit. Recognizing that eUD must be the

same for all three component circuits, we get the circuit of Fig. 5.15 for the moving-coil

microphone.

Performance
The performance of the circuit of Fig. 5.15 can best be understood by reference to

Fig. 5.16, which is derived from Fig. 5.15. Let us assume from now on that ZEL / N.

This means that the electrical terminals are open circuited so that the voltage appearing

across them is the open-circuit voltage ee0 (see Fig. 5.13). In the circuit of Fig. 5.15, the

“short-circuit” velocity is equal to ee0=Bl.
At very low frequencies, Fig. 5.15 reduces to Fig. 5.16a. The generator epB is

effectively open circuited by the three acoustic compliances CAF, CAG, and CAB, and the

mechanical compliance CMS of which only CAB and CMS have appreciable size. Also, all

of the resistances and reactances of the masses are small compared with the reactances of

CAB and CMSSD
2 . Hence, ee0 is very small. This region is marked (a) in Fig. 5.17, where

we see the voltage response in decibels as a function of frequency. In region (a), the

response increases at the rate of 6 dB per octave increase in frequency.

Figure 5.14 Mechano-electrical circuit of the diaphragm, voice coil, and magnetic field of the
microphone of Fig. 5.9 (mechanical-impedance analogy). Note that uD is also equal to e0/Bl.

Figure 5.15 Complete electro-mechano-acoustical circuit of the moving-coil microphone of Fig. 5.9
(impedance analogy). The electromechanical transformer has been cleared from the circuit.
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20 log 10 )~/~( kHz10 ee

Figure 5.17 Open-circuit voltage response characteristic of a moving-coil microphone of the type
shown in Fig. 5.9. The vertical scale is in dB and the reference voltage ee1kHz is the value of eeo at 1 kHz.
Courtesy of AKG.

Near principle
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Very low
frequencies
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cavity behind
the diaphragm
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(d)

Figure 5.16 Moving-coil microphones. Simplified circuits for four frequency regions (impedance
analogy). The excess pressure produced by the sound wave at the front of the microphone with the
sound holes blocked off is epB and the open-circuit voltage is eeo.
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As the frequency increases (see Fig. 5.16b), a highly damped resonance condition

occurs involving the resistance and mass of the screens behind the diaphragm, RAS and

MAS, and the diaphragm constants themselves, MMD and CMS, together with the

compliance CAB back of the back cavity. This is region (b) of Fig. 5.17. A highly

important design feature, therefore, is a resistance of the screens RAS large enough so that

the response curve in region (b) is as flat as possible. The damping is so great that it makes

more sense to define this region by two break frequencies uL and uU, which define the

upper and lower limits of this region rather than a single resonance frequency u0. These

are defined by

uL ¼ CAB þ S2DCMS

RASCABS
2
DCMS

(5.24)

uU ¼ RAS

MAS þMMD

	
S2D

(5.25)

and

u0 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
uLuU

p
(5.26)

The lower frequency uLmarks the beginning of the 6 dB/octave low-frequency roll-

off, which occurs at 55 Hz in Fig. 5.17, where the response is 3 dB less than that in the

flat region. The upper frequency uU occurs somewhere near the upper limit of region

(b). At the resonance frequency u0, the mass and compliance elements cancel each

other’s reactances leaving just resistive element RAS. At this frequency, the midband

sensitivity is given by

ee0 ¼ BlepB
SDRAS

(5.27)

In the case of the microphone shown in Fig. 5.9, the sensitivity is 2.4 mV/Pa

or �52 dBV/Pa.

Above region (b) (see Fig. 5.16c), a resonance condition results that involves pri-

marily the mass of the diaphragmMMD and the stiffness of the air immediately behind it,

CAG. This yields the response shown in region (c) of Fig. 5.17. The resonance frequency

uC at the center of region (c) is given by

uC ¼ SDffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MMDCAG

p (5.28)

Because the air gap is so small, the viscous air flow therein has a damping effect on this

resonance, as represented byRAG, which is important for keeping the frequency response

reasonably flat. The large value ofRAS damps the antiresonance ofCAGwithMAS, which

would otherwise produce a suck-out in the frequency response.
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Finally, a third resonance occurs involving primarily the acoustical elements in front

of the diaphragm (see Fig. 5.16d and region (d) of Fig. 5.17). The resonance frequency

uD at the center of region (d) is given by

uD ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðMAA þMAHÞCAF

p (5.29)

Because there are three reactive elements in the circuit (MAA þMAH, CAF, and

MMD), the response then drops off at the rate of �18 dB per doubling of frequency. Of

course, this is the open-circuit roll-off and a steeper rate is likely to occur if the

microphone is loaded with a capacitive cable that will resonate with the coil inductance

at some frequency. A step-up transformer also has a limited bandwidth, although through

careful design this need not compromise the performance of the microphone. The low-

frequency response depends on the inductance, which is maximized through the use of a

generous core size and an ample number of turns. The high-frequency response is

extended through the use of a split bobbin to reduce the interwinding capacitance and

several interleaving primary and secondary sections, which reduces the leakage

inductance.

These various resonance conditions result in a microphone whose response is sub-

stantially flat from 50 to 20,000 Hz except for diffraction effects around the microphone.

These diffraction effects will influence the response in different ways, depending on the

direction of travel of the sound wave relative to the position of the microphone. The

usual effect is that the response is enhanced in regions (c) and (d) if the sound wave

impinges on the front of the microphone at normal (perpendicular) incidence compared

with grazing incidence. One purpose of the outer protective screen is to minimize this

enhancement.

5.5 ELECTROSTATIC MICROPHONE (CAPACITOR MICROPHONE)

General features
The electrostatic type of microphone is used extensively as a standard microphone for the

measurement of sound pressure and as a studio microphone for the high-fidelity pickup

of music. It can be made small in size so it does not disturb the sound field appreciably in

the frequency region below 1000 Hz.

Sound-pressure levels as low as 10 dB and as high as 185 dB re 0.0002 mbar can be

measured with standard instruments. The mechanical impedance of the diaphragm is that

of a stiffness and is high enough so that measurement of sound pressures in cavities is

possible. The electrical impedance is that of a pure capacitance.

The temperature coefficient for a well-designed capacitor microphone is less than

0.025 dB for each degree Celsius rise in temperature.
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Continued operation at high relative humidities may give rise to noisy operation

because of leakage across the insulators inside. Quiet operation can be restored by

desiccation.

Construction
In principle, the electrostatic microphone consists of a thin diaphragm, a very small

distance behind which there is a back plate (see Fig. 5.18). The diaphragm and back plate

are electrically insulated from each other and form an electric capacitor. In precision

measuring-microphones, commonly used diaphragm materials are nickel, stainless alloy,

and titanium. Sometimes there can be problems with pin holes in nickel and wrinkles in

stainless alloy. Titanium suffers from neither of these problems. The thickness of

the diaphragm is typically a few micrometers, and the tension is usually greater than

2000 N/m.

A commercial form of this type of microphone is shown in Fig. 5.19. The holes in the

back plate form an acoustic resistance that serves to damp the diaphragm at resonance.

One manner in which the microphones are operated is shown in Fig. 5.18b. The re-

sistances R1 and R2 are made very large to keep the membrane charge constant at low

frequencies and thus preserve the bass response. The direct voltage E is several hundred

volts and acts to polarize the microphone. A JFET buffer amplifier is usually located close

to the microphone capsule; otherwise the capacitance of the microphone leads would

exceed that of the microphone itself and therefore attenuate its output.

Membrane

Slot

Back
chamber

Gap

z

w0 a

aj d

jth ring of holes

Bp~

rj

Back plate

E

Microphone 
capsule

R2

C

R1

Bias

JFET

(a) (b)

Figure 5.18 (a) Cross-sectional sketch of an electrostatic microphone. (b) Simple FET circuit for use
with capacitor microphone.
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Figure 5.19 Cutaway view of the B&K type 4190 capacitor microphone. The perforated back plate
serves both as the second terminal of the condenser and as a means for damping the principal
resonant mode of the diaphragm. The cap with holes in it serves both for protection and as an
acoustic network at high frequencies. This microphone has a polarizing voltage of E ¼ 200 V. Courtesy
of Brüel & Kjær Sound & Vibration Measurement A/S.
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Electromechanical relations
Electrically, the electrostatic microphone is a capacitor with a capacitance that varies with

time so that the total charge Q(t) is

QðtÞ ¼ q0 þ qðtÞ ¼ CEðtÞðE þ eðtÞÞ; (5.30)

where q0 is the quiescent charge in coulombs, q(t) is the incremental charge in coulombs,

CE(t) is the capacitance in farads, E is the quiescent polarizing voltage in volts, and e(t) is

the incremental voltage in volts.

The capacitance CE (t) in farads is equal to (see Fig. 5.18a)

CEðtÞ ¼ CE0 þ CE1ðtÞ ¼ ε0S

d � hðtÞz
ε0S

d

�
1þ hðtÞ

d

�
;

zCE0

�
1þ hðtÞ

d

� (5.31)

where CE0 is the capacitance in farads for h(t) ¼ 0 and CE1(t) is the incremental

capacitance in farads, ε0 is a factor of proportionality that for air equals 8.85 � 10�12, S is

the effective area of one of the plates in square meters, d is the quiescent separation in

meters, and h(t) is the average incremental separation in meters. It is assumed in writing

the right-hand term of Eq. (5.31) that the square of the maximum value of h(t) is small

compared with d2.

If we similarly assume that ½eðtÞ�2max << E2, then Eqs. (5.30) and (5.31) yield

q0 þ qðtÞ ¼ CE0E þ CE0E

�
eðtÞ
E

þ hðtÞ
d

�
(5.32)

so that

qðtÞ ¼ CE0

�
eðtÞ þ E

d
hðtÞ

�
. (5.33)

The total stored potential energyW(t) at any instant is equal to the sum of the stored

electrical and mechanical energies,

1

2
QðtÞ2	CEðtÞ plus 1

2
hðtÞ2	CMS;

where CMS is the mechanical compliance of the moving plate in m/N. That is,

W ðtÞ ¼ 1

2

ðq0 þ qðtÞÞ2
CE0 þCE1ðtÞ þ

1

2

hðtÞ2
CMS

z
1

2

q20 þ 2q0qðtÞ
CE0

�
1þ hðtÞ

d

�þ 1

2

hðtÞ2
CMS

¼ 1

2

q0

CE0
ðq0 þ 2qðtÞÞ

�
1� hðtÞ

d

�
þ 1

2

hðtÞ2
CMS

. (5.34)
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The force in N at any instant acting to move the plate is, from the equation for work,

dW ¼ f dh,

f0 þ f ðtÞ ¼ dW ðtÞ
dh

(5.35)

so that, by differentiation of Eq. (5.34),

f0 þ f ðtÞz� q0

2dCE0
ðq0 þ 2qðtÞÞ þ hðtÞ

CMS

¼ � q20
2dCE0

þ
�
hðtÞ
CMS

� qðtÞq0
dCE0

�
:

(5.36)

Hence, because E ¼ q0/CE0,

f ðtÞ ¼ hðtÞ
CMS

� EqðtÞ
d

. (5.37)

Rearranging Eq. (5.33) gives

eðtÞz� EhðtÞ
d

þ qðtÞ
CE0

. (5.38)

In the steady state,

ju eq ¼ ei
ju en ¼ eu (5.39)

where eq, ei, en, and eu are now taken to be complex harmonically varying quantities; so

Eqs. (5.37) and (5.38) become, in z-parameter matrix form,

24 ef
�ee
35 ¼

266664
1

ju CMS

E

ju d

E

ju d

1

ju CE0

377775$
" eu
�ei
#

(5.40)

with ee and ef also being complex harmonically varying quantities.
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Analogous circuits
Eq. (5.40) may be represented by either of the networks shown in Fig. 5.20, or the

simplified versions shown in Fig. 5.21 where

C0
E0 ¼ �CE0CMS

�
d2
	
E2C2

MS



CE0 � CMS

�
d2
	
E2C2

MS


 ¼ CE0d
2

�E2CMSCE0 þ d2
;

¼ CE0

1� ðE2
	
d2


CMSCE0

(5.41)
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Figure 5.20 Alternate electromechanical analogous circuits for electrostatic microphones (imped-
ance analogy).
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Figure 5.21 Simplified alternate electromechanical analogous circuits for electrostatic microphones
(impedance analogy).
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C0
MS ¼ CMS

1� ðE2=d2ÞCMSCE0
. (5.42)

The negative polarity of eemakes sense when we consider that in Fig. 5.18a: a positive

incident pressure causes a reduction in separation d, which in turn increases the

capacitanceCE(t) in Eq. (5.30). If the total charge remains constant, then the incremental

voltage e(t) must be negative. If we were to reverse the polarity of the bias voltage E,

however, ee would become positive.

Note in particular that:

CE0 is electrical capacitance measured with the mechanical “terminals” blocked so

that no motion occurs (eu ¼ 0).

C
0
E0 is electrical capacitance measured with the mechanical “terminals” operating

into zero mechanical impedance so that no force is built up (ef¼ 0).

CMS is mechanical compliance measured with the electrical terminals open circuited

(ei ¼ 0).

C0
MS is mechanical compliance measured with the electrical terminals short circuited

(ee ¼ 0).

The negative elements �CE0 and �CMS in Fig. 5.20a,b respectively are due to the force

of electrostatic attraction toward the back plate. These circuits were first shown as

Fig. 3.37 and Fig. 3.38, and the element sizes were given in Eqs. (3.36) and (3.37). In

practice, the circuit of Fig. 5.21b is ordinarily used for electrostatic microphones.

When the microphone shown in Fig. 5.19 is radiating sound into air, the force built

up at the face of the microphone when a voltage is applied to electrical terminals (3e4 of
Fig. 5.21b) is very small. Hence, when an electric-impedance bridge is used to measure

the capacitance of the microphone, the capacitance obtained is approximately equal to

C
0
E0.

By Thévenin’s theorem, the capacitor microphone in a free field can be represented

by Fig. 5.22. The quantityeeo is the open-circuit voltage produced at the terminals of the

microphone by the sound wave and equals (from Eq. (5.40) and Fig. 5.21)

ee0 ¼ � euE
ju d

¼ �CMSSepBE
d

; (5.43)

where the force ef B, acting on the microphone with the diaphragm blocked so thateu ¼ 0, is equal to the blocked pressure epB times the area of the diaphragm S.

Figure 5.22 Thévenin’s circuit of a capacitor microphone of the type shown in Fig. 5.18 situated in
free space.
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Acoustical relations
The microphone of Fig. 5.19 has a diaphragm with the property of massMMD in addition

to the mechanical compliance CMS assumed so far. However, unlike with the dynamic

microphone, the two parameters are not separable and it is difficult to evaluate them with

any accuracy over the whole frequency range because of the localized nature of the

loading on the membrane, which is strongly coupled to the motion of the air in the gap

and back-plate openings. However, we will use lumped-parameter elements with ap-

proximations to gain insight. For the 4190 microphone, the complete acoustical and

mechanical circuit in the impedance-type analogy is seen in Fig. 5.23. The internal

acoustical circuit consists of an air gap directly behind the diaphragm with an acoustic

compliance CAG, a back plate, including holes and a slot, with acoustic resistance and

massRAS andMAS, and a back cavity behind the plate with an acoustic stiffnessCAB. The

radiation impedance looking outward from the front side of the diaphragm is

RAA þ juMAA, where RAA and MAA are found from Table 4.6. In this circuit epB is the

incident pressure at the diaphragmwhen it is restrained frommoving,MAD ¼MMD/S
2 is

the acoustic mass of the diaphragm, S is the effective area of the diaphragm, and eUD ¼
SeuD is the volume velocity of the diaphragm.

When Fig. 5.21b is combined with Fig. 5.23, the complete circuit for the electro-

static microphone shown in Fig. 5.24 is obtained.

CAS

Bp~

MAA MAD MAS

CAG CAB

RASDU
~

RAA

Figure 5.23 Acoustical circuit of a capacitor microphone including the radiation mass and the
acoustical elements behind the diaphragm (impedance analogy).

Figure 5.24 Complete electroacoustical circuit of a capacitor microphone (impedance analogy).
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Performance
The performance of the capacitor microphone shown in Fig. 5.19, viz., the B&K type

4190, can best be understood by reference to Figs. 5.25 and 5.26, which are derived from

Fig. 5.24. At low frequencies the circuit is essentially that of Fig. 5.25a. From this circuit,

the open-circuit voltage ee0 is equal to
ee0 ¼ E

d

CABCAS

CAB þ CAS

epB
S
. (5.44)

At low frequencies, therefore, ee0 is independent of frequency. This is the frequency
region shown as (a) in Fig. 5.26. Note that CAS is inversely proportional to the dia-

phragm tension T, and CAB is proportional to the back cavity volume V but inversely

proportional to the atmospheric pressure P0 (see Eq. (4.13)). In a measuring microphone

the tension is set high enough so that CAB >> CAS, which makes the microphone

relatively insensitive to changes in atmospheric pressure.

In the vicinity of the first major resonance, the circuit becomes that of Fig. 5.25b. At

resonance, the volume velocity through the compliance CAB is limited only by the

magnitude of the acoustic resistance RAS. In general, this resistance is chosen to be large

enough so that the resonance peak is less than 2 db (26%) higher than the response at

lower frequencies. The response near resonance is shown at (b) in Fig. 5.26.

Above the resonance frequency, the circuit becomes that of Fig. 5.25c. The volume

velocity is controlled entirely by the mass reactance. Hence,

ee0 ¼ E

u2ðMAA þMAD þMASÞd
epB
S
. (5.45)

Low frequencies

Near resonance

Above resonance
1

(a)

(b)

(c)

Figure 5.25 Capacitor microphonedsimplified circuits (impedance analogy) for low frequencies (a),
near resonance (b), and above resonance (c). The excess pressure produced by the sound wave at the
diaphragm of the microphone with the microphone held motionless is epB , and the open-circuit
voltage is ee0.
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In this frequency region the response decreases at the rate of 12 dB per octave (see

region (c) of Fig. 5.26).

At higher frequencies, further resonances could occur, but if they are not completely

damped by the radiation resistance RAA (which is no longer negligible compared with

juMAA), the resonance peaks are likely to be limited by the viscous air flow resistance

RAS in the holes or gap.

In a detailed analysis, which we shall not reproduce here, Zuckerwar [1] finds that the

membrane mass and compliance elements can be approximated by Ref. [1].

CAS ¼ S2

8pT
; (5.46)

MAS ¼ 4rMh

3S
; (5.47)

which gives a resonant frequency of

u0 ¼
ffiffiffi
6

p

a

ffiffiffiffiffiffiffiffiffi
T

rMh

s
. (5.48)

The fundamental resonant frequency of a membrane is

u1 ¼ a1

a

ffiffiffiffiffiffiffiffiffi
T

rMh

s
; (5.49)
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Figure 5.26 Free-field response of the B&K type 4190 capacitor microphone shown in Fig. 5.19.
Courtesy of Brüel & Kjær Sound & Vibration Measurement A/S.
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where a1 ¼ 2.4048 is the first zero of the Bessel function J0(x). The two frequencies u0

and u1 differ by only 2%, which implies that the lumped-element model is an accurate

representation of the membrane up to u0. If we assume the back plate is virtually as large

as the membrane, the membrane deflection ehðwÞ at low frequencies is given by

ehðwÞ ¼
�
1� w2

a2

�eh0; (5.50)

where eh0 is the maximum deflection at the center. Hence the average deflection is given

by

< eh >¼ 2p

S

Za
0

ehðwÞwdw ¼ eh0
2
. (5.51)

Thus the average deflection is half of that at the center, which means that the effective

membrane area is half of the total area S. The optimum back-plate radius b is given by

Ref. [1].

b ¼
ffiffiffi
2

3

r
a. (5.52)

When designing a capacitor microphone, it is desirable to minimize the air gap width

d to maximize the sensitivity and hence also the signal to noise ratio. Obviously this limits

the diaphragm excursion and thus also the maximum sound pressure that can be

detected, but this is not generally a problem unless the microphone is designed to record

very high sound pressure levels such as those produced by jet engines. Using a small gap,

Paschen’s law [2] works in our favor because larger electric field strengths (E/d) can be

obtained before break down than in larger gaps. Once the gap width and maximum

electric field strength have been established, we have to apply enough tension to the

membrane for it to resist the electrostatic force of attraction toward the back plate. In

other words, the positive mechanical compliance CMS in Fig. 5.20a must be less than the

negative electrical compliance � CE0 when referred to the mechanical side

CMS <
d2

E2CE0
. (5.53)

However, because CMS ¼ 1/(8pT) and CE0 ¼ ε0S/d from Eqs. (5.46) and (5.31)

respectively, we can write

T >
ε0a

2E2

8d3
; (5.54)

258 Acoustics: Sound Fields, Transducers and Vibration



which is similar to a more rigorous solution [3] based on the static membrane wave

equation

T >
ε0a

2E2

a21d
3

. (5.55)

PART XVII: PRESSURE-GRADIENT MICROPHONES

5.6 ELECTROMAGNETIC RIBBON MICROPHONES

General features
The ribbon microphone has approximately the same sensitivity and impedance as a

moving-coil microphone when used with a suitable impedance-matching transformer.

Because of its figure 8 directivity pattern, it used to be extensively used in broadcast and

public-address applications to eliminate unwanted sounds that are situated in space,

relative to the microphone, about 90 degrees from those sounds that are wanted but fell

from favor because the delicate ribbon material was too prone to damage. However,

because newer more rugged materials have emerged, the ribbon microphone has seen a

significant revival of interest in recent years. This has also been helped by the reduction in

size and weight made possible by the introduction of neodymium magnets. The ribbon

microphone is often preferred by singers to introduce a “throaty” or “bassy” quality into

their voices. Similarly, it produces a rich, full sound when placed close to amplified

instruments. A disadvantage of the ribbon microphone is that, unless elaborate wind

screening is resorted to, it is often very noisy when used outdoors.

Construction
A typical form of a pressure-gradient microphone is that represented by Fig. 5.27. It

consists of a ribbon with a very low resonant frequency hung in a slot in a baffle. A

magnetic field transverses the slot so that a movement of the ribbon causes a potential

difference to appear across its ends. In this way, the moving conductor also serves as the

diaphragm. In modern design, the ribbon element might be 38-mm long, 3.5-mmwide,

and 4-mm thick with a clearance of 0.25 mm at each side.

From Eq. (5.11) we see that the pressure difference acting to move the diaphragm is

epR ¼ ef R.S ¼ euur0Dl cos q; (5.56)

whereef R is the net force acting to move the ribbon.eu is the particle velocity in the wave in the direction of propagation of the wave.
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S is the effective area of ribbon.

Dl is the effective distance between the two sides.

q is the angle the normal to the ribbon makes with the direction of travel of the wave.

This equation is valid as long as the height of the baffle is less than approximately one-half

of the wavelength.

RoswelliteTM

ribbon

Neodymium 
magnets

Lead-out 
wires

Steel magnetic 
path

Section through magnet 
and plate

N SN S

Figure 5.27 Sketch of the ribbon and magnetic structure for a velocity microphone type KSM313
�2012, Shure Incorporated. The lead-out wires are soldered to metal blocks, and these blocks are
clamped against the ribbon by the rectangular plates and the hex-shaped screws that thread into the
steel frame. Courtesy of Shure Incorporated.
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Analogous circuit
The equivalent circuit (impedance analogy) for this type of microphone is shown in

Fig. 5.28. There epR is the pressure difference that would exist between the two sides

of the ribbon if it were held rigid and no air could leak around it; ZAA is the acoustic

impedance of the medium viewed from one side of the ribbon; eUR ¼ SeuR is the

volume velocity of the ribbon; euR is the linear velocity of the ribbon; MAR,

CAR, and RAR are the acoustic constants of the ribbon itself (for example,

MAR ¼MMR/S
2, where MMR is the mass of the ribbon); MAS and RAS are the

acoustic mass and resistance, respectively, of the slots at either edge of the ribbon;

and eUS is the volume velocity of movement of the air through the slot on the two

sides of the ribbon.

Over nearly all the frequency range, the radiation impedance ZAA is a pure mass

reactance corresponding to an acoustic mass MAA (see Eq. (4.172)). In a properly

designed microphone, eUS << eUR. Also, the microphone is operated above the

resonance frequency so that uMAR >> 1/(uCAR). Usually, also, uMAR >> RAR.

Hence, the circuit of Fig. 5.28 simplifies into a single acoustic mass of magnitude

2MAA þMAR.

When the admittance analogy is used and the electrical circuit is considered, we get

the complete circuit of Fig. 5.29. Here, MMA ¼MAAS
2, MMR ¼MARS

2, B is flux

density, l is length of the ribbon, and ef R ¼ epRS.

Figure 5.29 Simplified electromechanical analogous circuit for a ribbon microphone (admittance
analogy).

Figure 5.28 Analogous acoustical circuit for a ribbon microphone (impedance analogy).
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Performance
The open-circuit voltageee0 of the microphone is found from solution of Fig. 5.29 to be

ee0 ¼ Blef R
juð2MMA þMMRÞ . (5.57)

Substitution of Eq. (5.56) in Eq. (5.57) yields

jee0j ¼ jeuj ðBlÞr0Dl
2MMA þMMR

S cos q: (5.58)

The open-circuit voltage is directly proportional to the component of the particle

velocity perpendicular to the plane of the ribbon. In a well-designed ribbon micro-

phone, this relation holds true over the frequency range from 50 to 10,000 Hz. The

lower resonance frequency is usually about 15e25 Hz. The effects of diffraction begin at

frequencies of about 2000 Hz but are counterbalanced by appropriate shaping of the

magnetic pole pieces.

PART XVIII: COMBINATION MICROPHONES

5.7 ELECTRICAL COMBINATION OF PRESSURE AND PRESSURE-
GRADIENT TRANSDUCERS

One possible way of producing a directivity pattern that has a single maximum (so-called

unidirectional characteristic) is to combine electrically the outputs of a pressure and a

pressure-gradient microphone. The two units must be located as near to each other in

space as possible so that the resulting directional characteristic will be substantially in-

dependent of frequency.

Microphones with unidirectional, or cardioid, characteristics are used primarily in

broadcast or public-address applications where it is desired to suppress unwanted sounds

that are situated, with respect to the microphone, about 180 degrees from wanted

sounds. With respect to impedance and sensitivity, this type of cardioid microphone is

similar to a ribbon or to a moving-coil microphone when suitable impedance-matching

transformers are used.

The equation for the magnitude of the open-circuit output voltage of a pressure

microphone in the frequency range where its response is “flat” isee0 ¼ Aep: (5.59)
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The equation for the open-circuit output voltage of a magnetic or ribbon type of

pressure-gradient microphone in the same frequency range isee 00 ¼ Cep cos q: (5.60)

Adding Eqs. (5.59) and (5.60) and letting C/A ¼ B givesee0 ¼ Aepð1þ B cos qÞ: (5.61)

B will be a real positive number only if ee0 and ee 00 have the same phase.

The directional characteristic for a microphone obeying Eq. (5.61) will depend on

the value of B. For B ¼ 0, the microphone is a nondirectional type; for B ¼ 1, the

microphone is a cardioid type; for B ¼N, the microphone is a figure 8 type. The value

of B can also take on other values that are optimized for particular characteristics. For

example, we may wish to maximize the rejection of ambient or nondirect sound. The

directivity factor Q as defined in Eq. (3.142) is given by

QðBÞ ¼ 2D2ð0ÞR p

0
D2ðqÞsin qdq

¼ 3ð1þ BÞ2
3þ B2

; (5.62)

where the directivity function is given by

DðqÞ ¼ 1þ B cos q

1þ B
(5.63)

and on-axis D(0) ¼ 1. The condition for maximum off-axis rejection is

v

vB
QðBÞ ¼ 6ð1þ BÞð3� BÞ

ð3þ B2Þ2 ¼ 0; (5.64)

which is met when B ¼ 3 and Q(3) ¼ 4. This gives what is known as the hypercardioid

pattern. Alternatively, we may wish to maximize the ratio of the sound captured from the

front to that received from the rear, where the rear is defined as anything at an angle of

greater than 90 degrees. Let us define the function P such that

PðBÞ ¼
R p=2
0 D2ðqÞsin qdqR p
p=2D

2ðqÞsin qdq
¼ 3þ 3Bþ B2

3� 3Bþ B2
. (5.65)

The condition for maximum front-to-rear ratio is

v

vB
PðBÞ ¼ 6

�
3� B2



ð3� 3Bþ B2Þ2 ¼ 0; (5.66)

which is met when B ¼ ffiffiffi
3

p
and Pð ffiffiffi

3
p Þ ¼ ð2 þ ffiffiffi

3
p Þ=ð2 � ffiffiffi

3
p Þ ¼ 13:9. This gives

what is known as the supercardioid pattern. In Fig. 5.30 directional characteristics for six

values of B are shown.
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Figure 5.30 Graphs of the expression R ¼ 20 log10((1 þ B cos q)/(1 þ B)) as a function of q for B ¼ 0,
½, 1,

ffiffiffi
3

p
, 3, and N.
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The voltageee 00 is a function of kr, as discussed in Section 5.3, so that the voltageeeo as
given by Eq. (5.61) will vary as a function of frequency for small values of ur/c, where r is

the distance between the microphone and a small source of sound. Here, as is the case for

a pressure-gradient microphone, a “bassy” quality is imparted to a person’s voice if he

stands very close to the microphone.

5.8 ACOUSTICAL COMBINATION OF PRESSURE AND PRESSURE-
GRADIENT MICROPHONES

One example of an acoustical design responding to both pressure and pressure

gradient in a sound wave was described earlier in Section 5.3 (p. 206). The directional

patterns for this type of design are the same as those shown for Fig. 5.30.

Because this type of microphone has a flat response as a function of frequency for ep
constant (i.e., constant sound pressure at all frequencies in the sound wave), a transducer

must be chosen whose output voltage for a constant differential force acting on the

diaphragm is inversely proportional to the quantity A defined in Eq. (5.23), i.e.,

ee0f1=jAj ¼
����ZAD � j½ðRA þ ZADÞ=uCARA�

ZAD

���� (5.67)

As an example, let us take the case of a microphone for which ZAD >> RA and 1/u

CARA >> 1. In this case the response of the transducer must be proportional to

1=jAj ¼ 1

u CARA
¼ cB

Dlu
; (5.68)

where B is given by Eq. (5.21).

Restated, the transducer must have an output voltage for a constant net force acting

on the diaphragm that is inversely proportional to frequency, if a flat frequency response

is desired. This is the case for a moving-coil or ribbon transducer above the natural

resonance frequency of the diaphragm.

5.9 DUAL-DIAPHRAGM COMBINATION OF PRESSURE AND
PRESSURE-GRADIENT MICROPHONES

A versatile microphone that is popular in recording studios and for recording

ensembles on location is the dual-diaphragm variable-pattern capacitor microphone, the

schematic of which is shown in Fig. 5.31. It has two diaphragms: one mounted in front

(F) of and the other mounted at the back (B) of a common central plate (P). An array of

holes in the central plate provides a mixture of resistance and reactance. When the slider

of the potentiometer is at position “k,” the polarizing voltages on both diaphragms are

equal so that they behave like a pair of back-to-back pressure microphones. Hence the
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resulting directivity pattern is omnidirectional. The low compliance of the air in the

holes of the plate ensures that the resonance frequencies of the diaphragms are high to

provide a suitably wide working bandwidth. As with all pressure microphones, it is

stiffness-controlled and displacement-sensitive in this mode.

When the slider is at the other end of its range in position “i,” the polarizing voltages

on the two diaphragms are of equal magnitude but opposite polarity. Therefore, the

microphone is only sensitive to the difference in pressures at the two diaphragms so that

they behave more or less as a single diaphragm. Hence the resulting directivity pattern is

figure 8. The resonance frequency is now determined by the diaphragm tension instead

of the stiffness of the trapped air, which now travels back and forth through the holes

providing a high viscous damping resistance. It is this damping resistance that determines

the bandwidth of the microphone, which is resistance-controlled and velocity-sensitive

in this mode. Without this resistance, the frequency response would be just one sharp

resonant peak.

When the slider is at position “j,” no polarizing voltage is supplied to the diaphragm

at the back (B), which in turn no longer contributes to the output voltage. Because it has

low mass and high compliance, the back diaphragm is also acoustically transparent so that

we have essentially the same configuration as an acoustic combination of pressure and

pressure-gradient microphones shown in Fig. 5.7.

The analogous circuit for this kind of microphone is shown in Fig. 5.32, where ep1
and ep2 are the pressures on the outer surfaces of the front and back diaphragms, eU1 andeU2 are their respective volume velocities, E1 and E2 are the front and back polarizing

voltages, and ee is the microphone output voltage. Also, CE0 is the static capacitance of

each diaphragm when blocked, S ¼ pa2 is the surface area of each diaphragm, d is

distance between each diaphragm and the central plate, CAP is the compliance of the air

in the holes of the plate, CAG is the compliance of the air in the gap between each

diaphragm and the plate, and ZAD is the impedance of each diaphragm that includes the

Polarizing supply + –

To amplifier 
B P F 

i   j   k 

Figure 5.31 Schematic of a dual-diaphragm capacitor microphone with a variable directivity pattern.
In switch positions “i,” “j,” and “k,” bi-, uni-, and omnidirectional directivity patterns are obtained
respectively.
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mass, compliance, radiation mass, and resistance. The holes in the plate are represented

by the T-circuit impedances ZAP1 and ZAP2 using the tube model shown in Fig. 4.45

except that the holes are assumed to be so narrow that the pressure variations are

effectively isothermal and hence RT can be ignored. The elements CE0 and CAG are

defined by

CE0 ¼ ε0S

d
; (5.69)

CAG ¼ Sd

r0c
2
; (5.70)

where ε0 ¼ 8.85 � 10�12 is the permittivity of free space, r0 ¼ 1.18 kg/m3 is the static

density of air, and c ¼ 345 m/s is the speed of sound in free space. From Fig. 5.32 we can

write the following equations:

ep1 ¼ epa þ�ZAD þ 1

juCAG

�eU1 � 1

juCAG

eU3; (5.71)

ep2 ¼ epb � 1

juCAG

eU4 þ
�
ZAD þ 1

juCAG

�eU2; (5.72)

0 ¼ � 1

juCAG

eU1

�
ZAP1 þ ZAP2 þ 1

juCAG

�eU3 þ ZAP2 eU4; (5.73)

0 ¼ � 1

juCAG

eU2 þ ZAP2 eU3 þ
�
ZAP1 þ ZAP2 þ 1

juCAG

�eU4; (5.74)

Figure 5.32 Analogous circuit for a dual-diaphragm capacitor microphone with a variable directivity
pattern.
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ee1 ¼ Sd

E1CE0
epa ¼

�
1

�juCE0
þ 1

2juCE0

�ei1 þ 1

2juCE0

ei2; (5.75)

ee2 ¼ Sd

E2CE0
epb ¼ 1

2juCE0

ei1 þ � 1

�juCE0
þ 1

2juCE0

�ei2; (5.76)

eU1 ¼ Sd

E1CE0

ei1; (5.77)

eU2 ¼ Sd

E2CE0

ei2; (5.78)

ee ¼ ei1 þei2
2juCE0

: (5.79)

Firstly we solve Eqs. (5.73) and (5.74) for eU3 and eU4 and insert these into Eqs. (5.71)

and (5.72). If we then insert epa;epb; eU1, and eU2 from Eqs. (5.75e5.78) respectively into

Eqs. (5.71) and (5.72), and solve forei1 andei2 before inserting the latter in Eq. (5.79), we

obtain an expression for the output voltageee. Furthermore, we use the expression for ep2
given by Eq. (5.17).

Omnidirectional performance
If E2 ¼ E1, which corresponds to the slider being at position “k” in Fig. 5.31, we have a

pressure microphone and the sensitivity is given by

eek ¼
E1

�
2� j

u

c
Dl cos q

�
2juSd

 
ZAD þ

ðZAP1 þ 2ZAP2Þ 1
juCAG

ZAP1 þ 2ZAP2 þ 1
juCAG

!ep1; (5.80)

where we let

Dl ¼ ðl þ pa=4Þ (5.81)

in accordance with Eq. (5.15) for a resilient disk. Using this formula, the exact on-axis

response with the switch in position “i” for an omnidirectional pattern is plotted in

Fig. 5.33. We see from this formula that the directivity pattern is essentially omnidi-

rectional provided that

f <<
c

3aþ pl
(5.82)
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so that the cos q term becomes insignificant. The impedances can be expanded as

follows:

ZAD ¼ juMAD þ 1

juCAD
þ 1

1

juMAR
þ 1

RAR

; (5.83)

ZAP1 ¼ RAP

2
þ ju

MAP

2
; (5.84)

ZAP2 ¼ 1

juCAP
� RAP

6
� ju

MAP

6
; (5.85)

where dynamic massMAD and compliance CAD of the membrane are given by Ref. [1].

MAD ¼ 4rDh

3S
; (5.86)
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Figure 5.33 Exact (solid) and approximate (dashed) curves of the on-axis responses of a dual-
diaphragm condenser microphone in three different modes: omni-, uni-, and bidirectional. Exact
results from Eqs. (5.80, 5.98, 5.103) are shown by black, dark gray, and light gray solid curves
respectively. Approximate results from Eqs. (5.95, 5.99, 5.104) are shown by black, dark gray, and light
gray dashed curves respectively. The parameters are given in Table 5.2.
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CAD ¼ S2

8pT
; (5.87)

where rD is the density of the membrane material, h is its thickness, S ¼ pa2 is its surface

area, a is its radius, and T is its tension. The acoustic radiation mass and resistance are

given by

RAR ¼ r0c

S
; (5.88)

MAr ¼ r0

4a
: (5.89)

From Chapter 4 the plate mass, compliance, and resistance are given by

RAP ¼ 8ml

ð1þ 4BuÞa2pSff
; (5.90)

MAP ¼ 1þ 3Bu

1þ 4Bu

4r0l

3Sff
; (5.91)

Table 5.2 Dual-diaphragm condenser microphone parameters

Membrane

Radius a 12.6 mm

Thickness h 2.5 mm
Density rD 1400 kg/m3

Tension T 50 N/m

Air

Density r0 1.18 kg/m3

Absolute viscosity m 17.9 mN s/m2

Mean free path l 60 nm

Accommodation coefficient a 0.9

Adiabatic sound speed c 345 m/s

Specific heat ratio g 1.403

Gap d 50 mm
Permittivity ε0 8.85 pF/m

Polarizing voltage E1 100 V

Plate

Hole radius ap 6 mm
Hole pitch (center to center) p 18 mm
Depth l 1.15 mm
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CAP ¼ lSff

r0c
2
; (5.92)

where l is the thickness of the plate, ap is the hole diameter, m ¼ 18.6 � 10�6 N $ s/m2 is

the viscosity of air, and ff is the fill factor, which for a rectangular hole grid is given by

ff ¼ pa2p

p2
; (5.93)

where p is the hole pitch. Also Bu is the boundary slip factor that is given by

Bu ¼
�
2

au
� 1

�
lm

ap
; (5.94)

where au ¼ 0.9 is the accommodation coefficient and lm ¼ 60 nm is the mean free path

length of an air molecule between collisions. It is assumed that the holes are so narrow

that the pressure variations within them are isothermal because of heat conduction

through the walls. Hence the specific heat ratio g is absent from the expression for CAP.

Because the membrane is flexible as opposed to rigid, the radiation massMAR is that of a

resilient disk in free space as derived in Chapter 13. If we ignore MAP, MAR, RAR, CAD,

and u3 in Eq. (5.80), we obtain the following approximate formula for the sensitivity

eekzE1

�
1� j

u

2c
Dl cos q

���
CAG þCAP

2

�
þ ju

RAPCAGCAP

12

�
Sd

�
1� u2MAD

�
CAG þ CAP

2

�
þ ju

RAPCAP

12

� ep1: (5.95)

Using this formula, the approximate on-axis response with the switch in position “k”

for an omnidirectional pattern is plotted in Fig. 5.33 and also in Fig. 5.34 along with the

180 degrees off-axis response. We see that at low to mid frequencies, where u/ 0, the

reference sensitivity is given by

eekðref Þ ¼
E1

�
CAG þCAP

2

�
Sd

ep1: (5.96)

The upper limit of the working range is roughly determined by the resonance

frequency

fU ¼ 1

2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MAD

�
CAG þ CAP

2

�s : (5.97)
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Bidirectional performance
If E2 ¼ �E1, which corresponds to the slider being at position “i” in Fig. 5.31, we have a

pressure-gradient microphone and the exact sensitivity is given by

eei ¼ E1Dl cos q

2cSd

 
ZAD þ

ZAP1
1

juCAG

ZAP1 þ 1
juCAG

!ep1; (5.98)

which gives a bidirectional directivity pattern at all frequencies. Using this formula, the

on-axis response is plotted in Fig. 5.33 and also in Fig. 5.34 along with the 180 degrees

off-axis response. If we ignoreMAP,MAR, andRAR, we obtain the following approximate

formula for the sensitivity

eeiz E1Dl cos q

2cSd

�
RAP

2þ juRAPCAG
þ juMAD þ 1

juCAD

�ep1; (5.99)

which is also plotted in Fig. 5.33.We also see that at mid frequencies, where juCAD > 2/

RAP but juMAD < RAP/2 and juRAPCAG < 2, the reference sensitivity is given by

eeiðref Þ ¼ E1Dl

cSdRAP
ep1: (5.100)

-85

-80

-75

-70

-65

-60

-55

-50

-45

-40

10 100 1000 10000 100000

S
en

si
tiv

ity
 (d

B
 re

 1
 V

/P
a)

Frequency (Hz)

Front
Rear

Figure 5.34 Plots of the on-axis responses at the front (black) and rear (gray) of a dual-diaphragm
condenser microphone in unidirectional mode. The parameters are given in Table 5.2.
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The lower cut-off frequency is

fL ¼ 1

pRAPCAD
(5.101)

and the upper limit of the working range is roughly determined by the resonance

frequency:

fU ¼ 1

2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MADCAG

p : (5.102)

Unidirectional performance
If E2 ¼ 0, which corresponds to the slider being at position “j” in Fig. 5.31, we have a

combination of pressure and pressure-gradient microphones and the exact sensitivity is

given by

eej ¼
1

2
ðeei þeekÞ

1� CE0E
2
1

4juS2d2

8<:
 
ZAD þ

ðZAP1 þ 2ZAP2Þ 1
juCAG

ZAP1 þ 2ZAP2 þ 1
juCAG

!�1

þ
 
ZAD þ

ZAP1
1

juCAG

ZAP1 þ 1
juCAG

!9=;
�1
;

(5.103)

which is plotted in Fig. 5.33. The expression in the numerator is a pure summation of

the pressure and pressure-gradient responses obtained with the switch in positions “k”

and “i” respectively. In those positions, all terms containing CE0 are balanced out, but in

position “j” there is no such balance, which explains the presence of the complicated

denominator term in Eq. (5.103). However, the denominator only contributes at low

frequencies so that after removing all the high-frequency terms we can make the

following approximation:

eej ¼
2

RAPCAD
þ ju

2

RAP

�
1

CAD
� CE0E

2
1

4S2d2

�
þ ju

$
eei þeek

2
; (5.104)

which produces a shelf at low frequencies that is determined by the amount of negative

stiffness produced by the force of electrostatic attraction. This in fact helps to equalize the

amount of low-frequency attenuation, which would otherwise be 6 dB because of taking

the half sum of the pressure and pressure-gradient responses, where the former is flat at
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low frequencies and the latter rolls-off at a rate of 6 dB per octave. The low-frequency

shelf starts to rise at the upper frequency of

fSU ¼ 1

pRAPCAD
(5.105)

and levels off at the lower frequency of

fSL ¼ 1

pRAP

�
1

CAD
� CE0E

2
1

4S2ds

�
: (5.106)

The approximate on-axis response with the switch in position “j” for a unidirectional

pattern is plotted in Fig. 5.33 where the approximate expressions for eei and eek obtained
from Eqs. (5.95) and (5.99) respectively are inserted into Eq. (5.104).

Condition for equal sensitivity in all three switch positions
Ideally we would like the sensitivity of the microphone to be the same at all three switch

positions “i”, “j”, and “k”. It turns out that this is also the condition for obtaining the

optimum cardioid directivity pattern in position “j,” which is met by setting eei ¼ eek in
Eqs. (5.95) and (5.99) to yield

RAP ¼ Dl�
CAG þ CAP

2

�
c

; (5.107)

which after inserting the path length difference from Eq. (5.15) gives

RAP ¼
l þ pa

4�
CAG þ CAP

2

�
c

: (5.108)

Quite a large resistance is needed to meet this condition so that the holes through the

plate have to be very narrow.

Condition for stability
Another condition that must be met is for the restoring force of the membrane tension to

be greater than the force of electrostatic attraction towards the plate. We see from the

schematic that this is met if

CA0 ¼
�

Sd

CE0E1

�2

CE0 > CAD (5.109)
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or using the expressions from Eqs. (5.69) and (5.87), we obtain the minimum tension

value:

T >
ε0a

2E2
1

8d3
: (5.110)

Typically the tension should be about three times the minimum value to allow for

slackening through age and environmental conditions.

NOTES
[1] Zuckerwar AJ. In: Wong GSK, Embleton TFW, editors. AIP handbook of condenser microphones.

New York: AIP Press; 1995. p. 47e58. Chap. 3.
[2] Paschen F. Über die zum Funkenübergang in Luft, Wasserstoff und Kohlensäure bei verschiedenen

Drucken erforderliche Potentialdifferenz (On the Potential Difference Required to Cause Spark-over
in Air, Hydrogen and Carbon Dioxide Under Different Pressures). Ann Phys 1889;273(5):69e75.

[3] Streng JH. Sound radiation from a circular stretched membrane in free space. J Audio Eng Soc
1989;37(3):107e18.
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CHAPTER SIX

Electrodynamic loudspeakers

PART XIX: BASIC THEORY OF ELECTRODYNAMIC
LOUDSPEAKERS

6.1 INTRODUCTION

An electrodynamic or moving-coil loudspeaker is an electromagnetic transducer

for converting electrical signals into sounds. When the original version of this book was

published in 1954 under the title Acoustics, the only practical amplifying device available

was the vacuum tube, so output power was expensive. Hence, the efficiency of the

electrodynamic loudspeaker was one of the most important factors. As the cost of

amplifier watts has decreased, there has been a steady trend toward smaller loudspeakers

coupled with ever more powerful amplifiers, which are needed to compensate for the

reduced radiating efficiency of the smaller diaphragms. Two developments have spurred

this trend: the replacement of the vacuum tube with silicon transistor and the intro-

duction of the so-called digital amplifiers using various coding schemes, the most

popular being pulse-width modulation or Class D. In mobile devices, which rely on

battery power, the efficiency issue has not gone away. The most important development

for mobile devices has been the introduction of rare-earth neodymium magnets, which

have enabled significant miniaturization. One trend which has enabled loudspeakers of

all sizes to be used with smaller enclosures has been the development of high-compliance

suspensions which are stable enough not to cause rocking modes. The term “acoustic

suspension” has been dubbed [1] to describe a loudspeaker which has an enclosure so

small that the air inside the enclosure is stiffer than the suspension.

There are two principal types of loudspeakers: those in which the vibrating surface

(called the diaphragm) radiates sound directly into the air, and those in which a horn is

interposed between the diaphragm and the air. The direct-radiator type is used in most

home and car entertainment, mobile devices, and in small public-address systems. The

horn type is used in more exotic hi-fi systems (especially those using tubes), in large

sound systems in theaters and auditoriums, and in music and outdoor-announcing

systems.

The principal advantages of the direct-radiator type are (1) small size, (2) low cost,

and (3) a satisfactory response over a comparatively wide frequency range. The principal

disadvantages are (1) low efficiency and (2) narrow directivity pattern at high frequencies.

For use in home, car, and mobile audio, where little acoustic power is necessary, the
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advantages far outweigh the disadvantages. In theater and outdoor sound systems, where

large amounts of acoustic power are necessary and where space is not important, the

more efficient horn-type loudspeaker is generally used.

All the types of transduction discussed in the previous chapter on Microphones might

be used for loudspeakers. In this text, however, we shall limit ourselves to electrodynamic

loudspeakers, the type most commonly used in home, car, mobile, and professional

audio.

6.2 CONSTRUCTION [2]

A cross-sectional sketch of a typical loudspeaker drive unit is shown in Fig. 6.1.

The diaphragm (1) is a cone made from a suitably light and stiff material, although most

of the stiffness comes from the fact that it is curved. In the center is a dust cap (2), which

guards against metallic dust fouling the magnetic gap and prevents sound from the back

of the diaphragm leaking through to the outside world. If the loudspeaker were mounted

in a bass-reflex enclosure, such leakage could seriously reduce the Q of the port

resonance. Attached to the top of the cone is a coil former on which the coil (3) is

wound. This coil is located in the gap of a magnetic path, comprising a pole piece (4) and

pole plate (5), where the magnetic flux is produced by a permanent magnet (6), which is

a

b3

1

2

6 7

8

9

10 

11 

1. Cone (diaphragm) 
2. Dust cap 
3. Voice coil 
4. Pole piece 
5. Pole plate 
6. Permanent magnet 
7. Basket 
8. Surround 
9. Spider 
10. Electrical connections 
11. Infinitely large baffle 

4

5

Figure 6.1 Cross-sectional sketch of a direct-radiator loudspeaker assumed to be mounted in an
infinite baffle.
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held in place by a basket structure (7). The diaphragm is supported at the perimeter and

near the voice coil by a surround (8) and spider (9), respectively, so that it is free to move

only in an axial direction. The name “spider” originates from the early electrodynamic

loudspeakers in which the cone was supported by a spider-like slotted disk that was

anchored to the pole piece in place of the dust cap. Apart from this modification and the

switch from electromagnets to alnico (aluminumenickelecobalt) permanent magnets in

the 1930s and then to ferrite magnets in the 1970s (for economic reasons, not perfor-

mance related), there has been very little change in the construction of electrodynamic

loudspeakers since the RiceeKellogg [3] patent of 1924. We will refer to the spider and

surround as the suspension. In general, sound from the back of the cone exits through

holes in the basket (7), whereas sound from the back of the dome (2) leaks through the

magnetic gap and spider (9), which is often made from a phenolic resin-impregnated

textile, before exiting through the basket.

When an audio signal is applied to the electrical connections (10), the resulting

current through the voice coil creates a magnetomotive force which interacts with the

air-gap flux of the permanent magnet and causes a translatory movement of the voice coil

and, hence, of the cone to which it is attached. The movement of the cone in turn

displaces the air molecules at its surface thus producing sound waves. Usually, the cone is

sufficiently stiff at low frequencies to move as a whole. At high frequencies, however,

vibrations from the center travel outward toward the edge in the form of waves. The

results of these traveling waves and of resonances in the cone itself are to produce

irregularities in the frequencyeresponse curve at the higher frequencies and to influence
the relative amounts of sound radiated in different directions. Unless treated, metal cones

have relatively low internal damping and tend to produce high Q resonances, but at

frequencies higher than paper or polymer cones due to their high ratio of flexural rigidity

to density. Care needs to be taken in the choice of surround material and means of

attachment to the coil former to minimize such resonances. Paper and polymer cones

have greater damping so that the compression waves propagating through the cone from

the coil are mainly absorbed at higher frequencies. This leads to an interesting

phenomenon whereby the effective radiating area of the cone decreases with frequency,

which is beneficial for maintaining a widely dispersed sound field. Eventually, only the

dust cap radiates and the stationary cone acts as a horn. We will discuss the vibration

modes of the cone later in this chapter.

In Fig. 6.1, the drive unit is shown mounted in a flat baffle (11) assumed to be of

infinite extent. Obviously, this is not possible in practice, but it is an ideal configuration

which simplifies our analysis of the drive unit. By definition, a baffle is any means for

acoustically isolating the front side of the diaphragm from the rear side. For purposes of

analysis, the diaphragm may be considered at low frequencies to be a planar piston of

radius amoving with uniform velocity over its entire surface. This is a fair approximation

at frequencies for which the distance b on Fig. 6.1 is less than about one-tenth
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wavelength. The piston in an infinite baffle is the only sound source which gives a

uniformly flat far-field on-axis response under constant acceleration, and this

phenomenon is explained in Section 6.6.

6.3 ELECTRO-MECHANO-ACOUSTICAL CIRCUIT

Before drawing a circuit diagram for a loudspeaker, we must identify the various

elements involved. The voice coil has inductance and resistance, which we shall call LE
and RE, respectively. The diaphragm and the wire on the voice coil have a total mass

MMD. The diaphragm is mounted on flexible suspensions at the center and at the edge.

The total effect of these suspensions may be represented by a mechanical compliance

CMS and a mechanical resistance RMS ¼ 1/GMS, where GMS is the mechanical

conductance. The air cavity and the holes at the rear of the center portion of the

diaphragm form an acoustic network which, in most loudspeakers, can be neglected in

analysis because they have no appreciable influence on the performance of the loud-

speaker. However, both the rear and the front side of the main part of the diaphragm

radiate sound into the open air.

An acoustic radiation impedance is assigned to each side and is designated as

ZAR ¼ l/YAR, where YAR is the acoustic radiation admittance. Thus, the mechanical

radiation admittance seen by each side of the diaphragm is YMR ¼ SD
2 YAR, where SD is

the effective diaphragm area. Approximate equivalent circuits for YMR and YAR are

given in Fig. 4.37c and d, respectively.

We observe that one side of each flexible suspension is at zero velocity. For the

mechanical resistance, this also must be true because it is contained in the suspensions.

We already know from earlier chapters that one side of the mass and one side of the

radiation admittance must be considered as having zero velocity. Similarly, we note that

the other sides of the masses, the compliance, the conductance, and the radiation

admittances all have the same velocity, viz., that of the voice coil.

From inspection, we are able to draw a mechanical circuit and the electromechanical

analogous circuit using the admittance analogy. These are shown in Fig. 6.2a and b,

respectively. The symbols have the following meanings:eeg is open-circuit voltage of the generator (audio amplifier) in volts (V).

Rg is generator resistance in electrical ohms (U).
LE is inductance of voice coil in henrys (H), measured with the voice-coil movement

blocked, i.e., for euc ¼ o.

RE is resistance of voice coil in electrical ohms (U), measured in the same manner

as LE.

B is steady air-gap magnetic field or flux density in Tesla (T).

l is length of wire in m on the voice-coil winding.ei is electric current in amperes (A) through the voice-coil winding.
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ef c is force in N generated by interaction between the alternating and steady mmfs,

that is, ef c ¼ Blei.euc is voice-coil velocity in m/s, that is, euc ¼ ee=Bl, where ee is the so-called counter

emf.

a is radius of diaphragm in m.

MMD is mass of the diaphragm and the voice coil in kg.

CMS is total mechanical compliance of the suspensions in m/N.

GMS ¼ 1/RMS is mechanical conductance of the suspension in m$N�1$s�1.

RMS is mechanical resistance of the suspensions in N$s/m.

YMR ¼ 1/ZMR ¼ GMR þ jBMR is mechanical radiation admittance in m$N�1$s�1

from one side of the diaphragm (see Fig. 4.36). The boldG indicates thatGMR varies

with frequency.

(a)

(b)

(c)

(d)

Figure 6.2 (a) Mechanical circuit of direct-radiator loudspeaker; (b) electro-mechano-acoustical
analogous circuit of the admittance type; (c) electrical circuit showing static electrical impedance ZES
and motional electrical impedance ZEM; and (d) analogous circuit of the admittance type with elec-
trical quantities referred to the mechanical side.
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ZMR ¼ RMR þ jXMR is mechanical radiation impedance in N$s/m from one side of a

piston of radius a mounted in an infinite baffle (see Fig. 4.35). The bold R indicates

that RMS varies with frequency.

SD ¼ pa2 is effective area of diaphragm in m2.epR is pressure on the diaphragm due to the radiation load, that is, epR ¼ 2eUc

�
YMR.eUc is volume velocity produced by the diaphragm, that is, eUc ¼ SDeuc.

It should be noted that the coil inductance LE is highly nonlinear. In practice, the

reactive coil impedance does not rise linearly with frequency but is roughly proportional

to the square root of frequency. A more accurate model [4] can be made by adding a

second inductor with a resistor in parallel with it, but in this text we shall use the simple

model with a single inductor.

The circuit of Fig. 6.2b with the mechanical side brought through the transformer

to the electrical side is shown in Fig. 6.2c. Hence, this represents the circuit as seen

from the input terminals. It is important for several reasons. Firstly, we have to take the

electrical impedance into account when considering the load presented by the loud-

speaker to the amplifier driving it. The loading effect will also modify the frequency

response of any passive crossover network that may be used. In addition, we can

calculate the parameters of a drive unit by measuring the input impedance, as will be

explained in Section 6.10, without the need for an anechoic chamber. The mechanical

admittance YM1 ¼ euc.ef c is zero if the diaphragm is blocked so that there is no motion

ðeuc ¼ 0Þ but has a value different from zero whenever there is motion. For this reason,

the quantity ZEM ¼ B2l2YM1 is usually called the motional electrical impedance. A

quantity often found on data sheets is the electrical suspension resistance

RES ¼ B2l2GMS ¼ B2l2/RMS. This resistance is in series with the coil resistance RE at

resonance. When the electrical side is brought over to the mechanical side, we have the

circuit of Fig. 6.2d.

The circuit of Fig. 6.2d will be easier to solve if its form is modified. First, we

recognize the equivalence of the two circuits shown in Fig. 6.3a and b according to

Bl

eg
~

cu~

(a)
22lB

RR Eg +
22lB

LE

EEg

g

LjRR

Ble

ω++ )(

~
cu~

(b)

22lB

RR Eg +

22lB

LE

Figure 6.3 The electrical circuit (referred to the mechanical side) is shown here in two equivalent
forms (a and b) according to Norton’s theorem. The circuits are of the admittance type. (Note: The
generator in (b) is of constant flow type.).
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Norton’s theorem (see Fig. 14.4). Next, we substitute Fig. 6.3b for its equivalent in Fig. 6.2d.

Then, we take the dual of Fig. 6.2d to obtain Fig. 6.4a. (See Figs. 3.41 and 3.42).

The performance of a direct-radiator loudspeaker is directly related to the diaphragm

velocity. Having solved for it, we may compute the acoustic power radiated and the

sound pressure produced at any given distance from the loudspeaker in the far field.

Voice-coil velocity at medium and low frequencies
The voice-coil velocity euc, neglecting u2L2 compared with (Rg þ RE)

2, is found from

Fig. 6.4a,

eucz eegBl
ðRg þ REÞðRM þ jXMÞ (6.1)

where

RM ¼ B2l2

Rg þ RE
þ RMS þ 2RMR (6.2)

XM ¼ uMM ¼ uMMD þ 2XMR � 1

uCMS
(6.3)

LjRR

Ble

E Eg

g

ω++ )(

~

CMS

2RMR

cu~

(a)

cf
~

Eg RR

lB

+

22

22lB

LE

MMD

Rf
~

RMS

2XMR

Electrical Mechanical 
Acoustic 
radiation 

Eg

g

RR

Ble

+

~

CMScu~(b)

cf
~

Eg RR

lB

+

22

MMD

Rf
~

RMS

2MM1

cu~

Figure 6.4 (a) Low-frequency analogous circuit of the impedance type with electrical quantities
referred to mechanical side. ZMR is given by Fig. 4.35. The quantity ef c represents the total force acting
in the equivalent circuit to produce the voice-coil velocity euc . (b) Single-loop approximation to
Fig. 6.4a valid for XMR

2 [ RMR
2 .
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Voice-coil velocity at low frequencies
At low frequencies, assuming in addition that XMR

2 [ RMR
2 , we have from Fig. 6.4b that

ðXMÞlow f ¼ uðMMD þ 2MM1Þ � 1

uCMS
(6.4)

where

MM1 ¼ 2:67a3r0 (6.5)

is the mass in kg contributed by the air load on one side of the piston for the frequency

range in which ka < 0.5. (See Table 4.4). The quantity ka equals the ratio of the

circumference of the diaphragm to the wavelength.

The voice-coil velocity is found from Eq. (6.1), using Eqs. (6.2) and (6.4) for RM and

XM, respectively, so that

euc ¼ eeg
BlQES

bcð f Þ (6.6)

where bc( f ) is a dimensionless frequency response function given by

bcð f Þ ¼
j
f

fS

1� f 2

f 2S
þ j

1

QTS
$
f

fS

(6.7)

The suspension resonance frequency fS is given by

fS ¼ 1

2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MMSCMS

p ; (6.8)

where MMS ¼MMD þ 2MM1 is the combined diaphragm and air-load mass, and

QTS ¼
�

B2l2

Rg þ RE
þ RMS

��1 ffiffiffiffiffiffiffiffiffiffi
MMS

CMS

r
. (6.9)

When f ¼ fS, the real terms in the denominator of Eq. (6.7) vanish, and we see from

Eq. (6.9) that the total Q value of the suspension resonance equals QTS where QTS is

the reciprocal of the effective resistance in the mechanical circuit multiplied by the

square root of the ratio of the mass to the compliance of the diaphragm. If we define f1
and f2 as the frequencies at which the velocity is 3 dB below its peak value, then

QTS ¼ fS/( f2 � f1). Therefore, increasing the Q value increases the height of the
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resonance peak while decreasing its width. At fS, the inertial and static reactances in

Fig. 6.4b cancel each other so that the velocity euc is simply the driving force (first term

in Eq. 6.6) divided by the total resistance in the loop, as shown in Fig. 6.6b. The totalQ

can be separated into two parts

QTS ¼ 1

1

QES
þ 1

QMS

¼ QESQMS

QES þQMS
(6.10)

namely the electrical Q

QES ¼ Rg þ RE

B2l2

ffiffiffiffiffiffiffiffiffiffi
MMS

CMS

r
(6.11)

and the mechanical Q

QMS ¼ 1

RMS

ffiffiffiffiffiffiffiffiffiffi
MMS

CMS

r
(6.12)

The normalized velocity is plotted in Fig. 6.5 using 20 log10jbcj. It is a universal

resonance curve. Below the resonance frequency, it has a slope of þ6 dB per octave of

frequency. Above the resonance frequency, it has a slope of �6 dB per octave. The

acceleration is given by the first time derivative of the velocity
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eac ¼ jueuc ¼ 2pfSeeg
BlQES

acð f Þ (6.13)

where ac( f ) is a dimensionless frequency response function given by

acð f Þ ¼
�f 2

f 2S

1� f 2

f 2S
þ j

1

QTS
$
f

fS

(6.14)

The displacement is given by the first time integral of the velocity

ehc ¼ euc
ju

¼ eeg
2pfSBlQES

gcð f Þ (6.15)

where gc( f ) is a dimensionless frequency response function given by

gcð f Þ ¼ 1

1� f 2

f 2S
þ j

1

QTS
$
f

fS

(6.16)

The normalized displacement and acceleration are also plotted in Fig. 6.5 along with

the velocity. We see that when f/fS � 1/3, the displacement is virtually constant. This is

the stiffness-controlled range in which the displacement is simply the static deflection

as determined by Hooke’s law, that is, the product of the driving force and the

compliance:

ehcjf�1=3fS
z

eegBl
Rg þ RE

CMS (6.17)

The displacement curve is that of a second-order low-pass filter with a 12 dB/octave

slope when f/fS � 3. As is seen from Eq. (6.16), the displacement in this range is pro-

portional to 1/f 2, and the equivalent circuit is that shown in Fig. 6.6a. When f/fS � 3,

the acceleration is virtually constant. This is the mass-controlled range in which the ac-

celeration is simply the driving force divided by the mass in accordance with Newton’s

second law of motion

eacjf�3fS
z

eegBl
ðRg þ REÞMMS

(6.18)

The acceleration curve is that of a second-order high-pass filter with a 12 dB/octave

slope when f/fS � 1/3. As can be seen from Eq. (6.16), the acceleration in this range is

proportional to f 2, and the equivalent circuit is that shown in Fig. 6.6c.
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6.4 POWER OUTPUT

The acoustic power radiated in watts from both the rear and the front sides of the

loudspeaker is

W ¼
���� eucffiffiffi

2
p
����2ð2RMRÞ (6.19)

Hence, assuming u2L2 � (Rg þ RE)
2, and using Eq. (6.1) for euc, we obtain

W ¼
���� eegffiffiffi

2
p
����2 2B2l2RMR

ðRg þ REÞ2
�
R2
M þ X2

M

� (6.20)

(a)

(b)

(c)

(d)

Figure 6.6 Simplified forms of the circuit of Fig. 6.4a valid for very low frequencies (a), at principle
resonance frequency (b), above principle resonance frequency (c), and at high frequencies (d).
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Above the suspension resonance frequency, the diaphragm mass dominates so that

XM [ RM where XM z juMMS. In addition, when the wavelength is small compared

with the diameter of the diaphragm, we see from Table 4.4 that

RMR ¼ u2S2Dr0
2pc

(6.21)

where

SD ¼ pa2 (6.22)

is the effective area of the diaphragm of Fig. 6.1. Inserting these into Eq. (6.20) yields

W ¼
e2
gðrmsÞB

2l2S2Dr0

pðRg þ REÞ2M2
MSc

; 2f0 < f <
c

4pa
(6.23)

where

egðrmsÞ ¼
���� eegffiffiffi

2
p
���� (6.24)

In this frequency range, the radiated power is fairly constant because, as the frequency

increases, the falling velocity is compensated for by the rising radiation resistance. At

higher frequencies where RMR ¼ SDr0c, we have

W ¼
2e2

gðrmsÞB
2l2SDr0c

ðRg þ REÞ2u2M2
MS

; f >
5c

2pa
(6.25)

Hence, the radiated power is proportional to the inverse square of the frequency

when the radiation impedance is mainly resistive and the equivalent circuit is that shown

in Fig. 6.6d.

6.5 THIELEeSMALL PARAMETERS [5]

A complete low-frequency model of a loudspeaker drive unit can be defined by

just six parameters known as the ThieleeSmall parameters, which are

RE;QES;QMS; fS; SD; and VAS.

So far, we have introduced all of these except for VAS. The parameters QES, QMS, fS,

and SD are defined by Eqs. (6.11), (6.12), (6.8), and (6.22), respectively. The parameter

VAS is the equivalent suspension volume. In other words, it is the volume of air having the

same acoustic compliance as the suspension and is defined as

VAS ¼ CASr0c
2 ¼ CMSS

2
Dr0c

2 (6.26)
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The use of this parameter will make more sense when we consider the performance

of the loudspeaker with an enclosure of volume VB, which in its simplest approximation

is an extra compliance in the loop of Fig. 6.4b. Straight away, we can say that mounting

the drive unit in a box of volume VB ¼ VAS will result in a total compliance that is half

that of the drive unit in free space or an infinite baffle. Hence, the suspension resonance

frequency will be raised by a factor of
ffiffiffi
2

p
. From these six parameters, we can furnish our

equivalent circuit of Fig. 6.4b with all the required element values:

CMS ¼ VAS

S2Dr0c
2

(6.27)

Then from Eq. (6.8)

MMS ¼ 1

ð2pfSÞ2CMS

(6.28)

and from Eq. (6.12)

RMS ¼ 1

QMS

ffiffiffiffiffiffiffiffiffiffi
MMS

CMS

r
(6.29)

Inserting Eq. (6.28) into Eq. (6.11) yields

Bl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

RE

2pfSQESCMS

s
(6.30)

where we have ignored Rg because this is not a drive unit parameter. Finally,

MMD ¼MMS � 2MM1, where MM1 is given by Eq. (6.5). Another parameter that is

commonly found in loudspeaker data sheets, although it is not a ThieleeSmall param-

eter, is the maximum (linear) displacement or xmax. It is a difficult parameter to specify in

any meaningful way because it depends on how much distortion can be tolerated and

varies with frequency [6].

6.6 SOUND PRESSURE PRODUCED AT DISTANCE R

We show in Eq. (13.104) that the far-field on-axis pressure produced by a plane

circular piston in an infinite baffle is given by

epðrÞ ¼ jf r0 eUc
e�jkr

r

¼ r0SDeace�jkr

2pr

(6.31)
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where eac is given by Eqs. (6.8), (6.9), and (6.13) so that

epðrÞ ¼ eegBlSDr0
ðRg þ REÞMMS

$
e�jkr

2pr
ac (6.32)

The frequency response is then given by ac in Eq. (6.14). In other words, the

frequency response is proportional to the cone acceleration and remains flat above the

suspension resonance.

The fact that the on-axis frequency response remains flat, even though the radiated

power decreases when the wavelength is small in comparison with the circumference of

the piston, may seem slightly surprising. However, what we have not taken into account

here is the spatial distribution of the radiated sound pressure which becomes increasingly

narrow at high frequencies. Although we are not dealing with an ideal flat piston and

have not included the effect of the coil inductance, Eq. (6.32) is useful for defining the

voltage sensitivity of a loudspeaker within its working frequency range between the

suspension resonance and cone break-up (which we will discuss later in this chapter). It

shows that for a given coil resistance RE, the sensitivity is increased by maximizing the Bl

factor and diaphragm area SD while minimizing the total moving mass MMS, which

includes the radiation mass MMR, although it is usually very small in comparison with

MMD. These requirements are usually in conflict with each other, so it is not possible to

optimize all of them in a practical design. Because the most common nominal impedance

of a loudspeaker is 8 U, the rms generator voltage eg(rms) is usually taken as
ffiffiffi
8

p
or

2.83 Vrms to deliver 1 Wof power into an 8 U load. Hence, Eq. (6.32) can then be used

to give the power sensitivity which is usually expressed in dB SPL (sound pressure level)

(relative to 20 mPa, see Eq. 1.18) for WE ¼ 1 W at r ¼ 1 m, so that

Sensitivity ¼ 20 log10

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ZnomWE

p
BlSDr0

2prðRg þ REÞMMS � 20� 10�6

!
dB SPL=W=m (6.33)

where Znom is the nominal electrical impedance of the drive unit. Theoretically, it is the

average value over the loudspeaker’s working frequency range, but in practice it is about

10%e30% greater than RE so that at some frequencies, especially those below resonance,

more than 1 Wwill be supplied at the nominal voltage. Alternatively, by combining Eqs.

(6.8), (6.11), (6.26), and (6.33), we may conveniently express the sensitivity in terms of

the ThieleeSmall parameters VAS and QES:

Sensitivity ¼ 20 log10

 
1

rc � 20� 10�6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ZnomWE2pf

3
SVASr0

ðRg þ REÞQES

s !
dB SPL=W=m

(6.34)
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Sometimes, we wish to determine how far a diaphragm must travel to produce a

target SPL. From Eqs. (1.18) and (6.31), we obtain

hpeak ¼
ffiffiffi
2

p
r � 10

	
SPL
20 � 5



pf 2r0SD

(6.35)

Low frequencies
From Eq. (13.101), we see that the magnitude of the pressure at a point in free space a

distance r from either side of the loudspeaker in an infinite baffle is that of a point source

multiplied by a directivity function:

epðr; qÞ ¼ jka2r0ceuce�jkr

2r
DðqÞ; (6.36)

where the directivity function D(q) is given by

DðqÞ ¼ 2J1ðka sin qÞ
ka sin q

: (6.37)

A piston whose diameter is less than one-third wavelength (ka < 1.0) is essentially

nondirectional at low frequencies, that is D(q) z 1 for any value of q. Hence, we can

approximate it by a hemisphere whose volume velocity is eUc ¼ SDeuc. It is assumed in

writing this equation that the distance r is great enough so that it is situated in the “far

field.” Assuming a loss-free medium, the total radiated power distributed over a spherical

surface in the far field is

W ¼ 4pr2I ¼ 4pr2

r0c

����epðrÞffiffiffi
2

p
����2 (6.38)

where I is the intensity at distance r in W/m2. From this, we see for a point source

radiating to both sides of an infinite baffle (or free space) that

prmsðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
Wp0c

4pr2

r
(6.39)

It is worth noting that it only takes 1 W of acoustic power to produce 6.7 Pa or

109 dB SPL at 1 m, which is as loud as a pneumatic drill! The fact that it takes much

more than 1 W of input power to achieve this with a loudspeaker is due to the low

efficiency of most loudspeakers.
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Medium frequencies
At medium frequencies, where the radiation from the diaphragm becomes directional

but yet where the diaphragm vibrates as one unit, i.e., as a rigid piston, the pressure

produced at a distance r depends on the power radiated and the directivity factor Q.

The directivity factor Q was defined in Chapter 4 as the ratio of the intensity on a

designated axis of a sound radiator to the intensity that would be produced at the same

position by a point source radiating the same acoustic power.

For a directional source in an infinite baffle such as we are considering here,

prmsðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W1Qr0c

4pr2

r
(6.40)

where, W1 is acoustic power in W radiated from one side of the loudspeaker. Q is

directivity factor for one side of a piston in an infinite plane baffle. Values of Q are found

from Fig. 4.30. Note that W1 equals W/2 and, at low frequencies where there is no

directionality, Q ¼ 2, so that Eq. (6.40) reduces to Eq. (6.39) at low frequencies.

We see from Eq. (6.40) that, as frequency increases, Q increases while W1 decreases.

In other words, the reduction in radiated power is compensated for by the concentration

of the radiated sound pressure over a decreasing beamwidth. The transition is so smooth

that the frequency response remains flat. This can also be explained by the fact that the

on-axis sound pressure is due to an infinite number of point sources over the surface of

the piston, the radiation from which arrives in phase, where the frequency response of

each point source is flat.

6.7 FREQUENCYeRESPONSE CURVES

A frequencyeresponse curve of a loudspeaker is defined as the variation in sound

pressure or acoustic power as a function of frequency, with some quantity such as voltage

or electrical power held constant. To calculate the full frequency response, we refer to

Fig. 6.4 but using Eqs. (13.116)e(13.118) for the exact acoustic radiation impedance

instead of lumped elements. The total impedance in the loop with all quantities referred

to the mechanical side is

ZMT ¼ B2l2

Rg þ RE þ juLE
þ juMMD þ RMS þ 1

juCMS

þ 2SDr0c

�
1� J1ð2kaÞ

ka
þ j

H1ð2kaÞ
ka

� (6.41)
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where k ¼ u/c. The diaphragm velocity is then given by the driving force divided by the

total impedance

ucðrmsÞ ¼
����� egðrmsÞBl
ðRg þ RE þ juLEÞZMT

����� (6.42)

We than calculate the on-axis pressure using

prmsðrÞ ¼ r0fSDucðrmsÞ
r

(6.43)

and

SPL ¼ 20 log10

�
prmsðrÞ
pref

�
(6.44)

where pref ¼ 20 mPa rms. The on-axis pressure of a typical 100 mm loudspeaker in an

infinite baffle is plotted in Fig. 6.7. For this application, the mass of the cone is made as

light as possible and the compliance of the suspension as high as possible consistent with

mechanical stability. The high frequency response is aided by means of a concentric

secondary or “whizzer” cone.
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Figure 6.7 On-axis pressure response and efficiency of an electrodynamic loudspeaker in an infinite
baffle for which eg(rms) ¼ 2.83 Vrms, RE ¼ 7 U, LE ¼ 100 mH, QES ¼ 2.2, QMS ¼ 5, fS ¼ 125 Hz,
SD ¼ 56 cm2, and VAS ¼ 2 L.
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6.8 ELECTRICAL INPUT IMPEDANCE

If we ignore the radiation resistance, which is a negligibly small part of the input

impedance, and add the radiation mass to the mechanical mass so that

MMS ¼MMD þ 2MM1, we can write the electrical input impedance ZE from inspection

of Fig. 6.2:

ZE ¼ ZES þ ZEM ¼ RE þ juLE þ
�
ju

MMS

B2l2
þ 1

B2l2GMS
þ 1

juB2l2CMS

��1

¼ RE þ juLE þ B2l2

RMS

0BBB@
j

QMS
$
f

fS

1� f 2

f 2S
þ j

QMS
$
f

fS

1CCCA
(6.45)

The electrical impedance curve of a typical 100 mm loudspeaker in an infinite baffle

is plotted in Fig. 6.8. The peak at 125 Hz coincides with the suspension resonance

frequency fS. If we ignore the effect of the coil inductance LE, the input impedance at fS
is approximately ZE ¼ RE þ RES, where RES ¼ B2l2/RMS (¼REQMS/QES). Therefore,

a high peak indicates a large Bl factor or small mechanical damping resistance or both. At

high frequencies, the impedance rises due to the increasing contribution of the coil

inductance LE. At very low frequencies, the impedance approaches the DC resistanceRE

asymptotically, which in this case is 7 U.
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Figure 6.8 Electrical impedance ZE of an electrodynamic loudspeaker in an infinite baffle with the
same parameters as those in Fig. 6.7.
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6.9 EFFICIENCY

Medium frequencies
The efficiency of a loudspeaker is defined as 100 times the ratio of the acoustic power

radiated to the power supplied by the electrical generator. In the medium frequency

range between the suspension resonance and the point where the coil inductance starts to

contribute to the electrical impedance, the power supplied by the generator is

approximately

WEz
e2
gðrmsÞ
RE

(6.46)

where we are assuming that Rg � RE. UsingW from Eq. (6.23), the reference efficiency

Eff is then given by

Eff ¼ 100
W

WE
z100

B2l2S2Dr0

pREM
2
MSc

; 2f0 < f <
c

4pa
(6.47)

Not surprisingly, if we compare this with Eq. (6.32), we find that the same parameters

which contribute to a high SPL also make for an efficient loudspeaker, namely high field

strength, lowmass, and a large radiating area. By combining Eqs. (6.8), (6.11), (6.26), and

(6.47), we obtain a convenient expression for the reference efficiency in terms of

ThieleeSmall parameters:

Eff ¼ 100
W

WE
z100

8p2VASf
3
S

QESc3
; 2f0 < f <

c

4pa
(6.48)

At resonance
When f ¼ fS, the cone velocity is at a maximum value which is found by letting XM ¼ 0

in Eq. (6.1) so that

euc ¼ eegBl
ðRg þ REÞRM

(6.49)

From Eqs. (6.19) and (6.21),

W ¼
e2
gðrmsÞB

2l2u2
SS

2
Dr0

pcðRg þ REÞ2R2
M

(6.50)
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The input power at resonance, assuming RMS [ 2RMR, is given by

WE ¼
e2
gðrmsÞ

Rg þ RE þ ðB2l2Þ=RMS
(6.51)

Then the efficiency at resonance, assuming RE >> Rg, is given by

EffS ¼ 100
W

WE
¼ 100

B2l2u2
SS

2
Dr0

pcðB2l2 þ RERMSÞRMS
(6.52)

Noting that QMS ¼ uS MMS/RMS and QES ¼ uSMMSRE/(Bl)
2, we obtain

EffS ¼ 100
W

WE
¼ 100

QESQ
2
MSB

2l2S2Dr0

ðQES þQMSÞpREM
2
MSc

(6.53)

Comparing this with Eq. (6.47) and using the relationship of Eq. (6.10) yields the

following relationship between the efficiency at resonance EffS and the midband refer-

ence efficiency Ef f :

EffS

Eff
¼ QTSQMS (6.54)

All frequencies
The power supplied by the generator at all frequencies is

WE ¼ e2gðrmsÞ<
�

1

ZE

�
(6.55)

where the electrical impedance ZE is given by Eq. (6.45). The radiated power is given by

Eq. (6.19) where the cone velocity is given by Eq. (6.42) and RMR by

RMR ¼ SDr0c

�
1� J1ð2kaÞ

ka

�
(6.56)

from Eq. (13.117). Hence,

Eff ¼ 100
W

WE
¼ 100

���� Bl

ðRE þ juLEÞZMT

����2 2SDr0c

<ð1=ZEÞ
�
1� J1ð2kaÞ

ka

�
(6.57)

where ZMT is given by Eq. (6.41). The efficiency of a typical 100 mm loudspeaker in an

infinite baffle is plotted in Fig. 6.7. Not surprisingly, the loudspeaker is most efficient at the

suspension resonance fS where the input impedance is also at a maximum so that relatively

little current is drawn. The efficiency falls off at high frequencies due to diaphragm and

coil inertia, where most of the input power is dissipated in heating the voice coil.
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6.10 MEASUREMENT OF THIELEeSMALL PARAMETERS

Before embarking on a loudspeaker enclosure design, we need to know the six

ThieleeSmall parameters that will be used to calculate the low-frequency response of

our chosen drive unit in the enclosure. Most drive unit manufacturers now provide these

on their data sheets, but if they are not available, we have to measure them. Even if they

are available, production tolerances are such that we cannot always expect our computed

frequency response to match the measured one unless the model used for computation is

based on parameters obtained from the measured sample. In this section, it is shown how

to obtain the ThieleeSmall parameters purely by measuring the electrical input voltage

at different frequencies using a multimeter and a calibrated variable-frequency oscillator.

During the tests, the electrodynamic loudspeaker is preferably mounted in a baffle

such as the IEC 268-5 baffle [7], which is the standard baffle used by manufacturers. We

see from Fig. 12.28 that if the outer diameter of the baffle is at least four times that of the

loudspeaker, the radiation mass or reactive load is that of a piston in an infinite baffle. It

should be borne in mind that if the loudspeaker is measured without any baffle, the

radiation mass is halved which will result in a small error that can be corrected. It is not

essential to perform the tests in an anechoic chamber: A large room that is not too noisy

or reverberant will suffice. A variable-frequency source of sound with an output

impedance Rg greater than 20 times the nominal impedance of the loudspeaker is

connected to the loudspeaker terminals. An AC voltmeter is then connected across the

terminals. The value of Rg should include both the inherent output impedance of the

generator and any external resistor connected to in order to make up the desired

impedance. The value of eg(rms) is that measured by the meter before the loudspeaker is

connected. Some AC meters are only designed to work at around 50e60 Hz, so it is

worth checking to see if the reading varies with frequency with the loudspeaker

disconnected. If it does, the open-circuit readings should be used to calibrate the

measurements to the loudspeaker. The parameters are then determined as follows.

Measurement of suspension resonance frequency fS
To measure fS, the frequency is varied until a maximum meter reading is obtained (see

Fig. 6.9). From Fig. 6.2 and Fig. 6.8, we see that maximum electrical loudspeaker

Rg

eg(rms) e(rms)

Loudspeaker 
drive unit 

AC meter 

Signal 
generator 

Figure 6.9 Circuit for determining the ThieleeSmall parameters of a loudspeaker.
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impedance corresponds to maximum mechanical admittance, which in turn occurs at

the resonance frequency fS or uS. The reading obtained at this frequency is emax.

Measurement of QMS and QES

The minimum reading emin in Fig. 6.8 is found by reducing the frequency until the

voltage reading no longer changes. Increase the frequency again until the voltage reading

gives a value of emid ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
emaxemin

p
. The frequency at this point is fL. Then, increase the

frequency beyond fS (maximum voltage reading) until the voltage reading gives a value offfiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
emaxemin

p
for a second time. The frequency at this point is fU. Note that fS ¼ ffiffiffiffiffiffiffiffi

fLfU
p

.

The mechanical Q is then given by

QMS ¼ fS

fU � fL

�
eg � emin

eg � emax

� ffiffiffiffiffiffiffiffi
emax

emin

r
(6.58)

and the electrical Q by

QES ¼
�
1� emax

eg

�
eminQMS

emax � emin
(6.59)

If the signal generator is a current source, then eg / N and the bracketed terms

become unity. These equations assume that the effect of the coil inductance LE at around

fS is negligible.

Measurement of RE
The electrical resistance of the voice coil is measured with a milliohm meter.

Measurement of SD
The effective area of the diaphragm can be determined by coupling its front side to a

closed box. The volume of air V0 enclosed in the space bounded by the diaphragm and

the sides of the box must be determined accurately. Then a slant manometer for

measuring air pressure is connected to the airspace. The cone is then displaced a known

distance x meters, the manometer is read, and the incremental pressure p is determined.

Then,

p ¼ P0

V0
xSD (6.60)

or

SD ¼ P0

V0

p

x
(6.61)
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where P0 is the ambient pressure. The pressures P0 and p both must be measured in the

same units, and V0/x should be determined in m2.

Usually, SD can be determined accurately enough for most calculations from Fig. 6.1,

that is, SD ¼ pa2. To determine the effective radius amore accurately, we assume that the

displacement of the surround (8) decreases linearly between its inner and outer edges

which have radii a1 and a2, respectively. Then, the effective radius is given by

a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a21 þ a1a2 þ a22

3

r
(6.62)

and, hence, the effective area by

SD ¼ p

3

�
a21 þ a1a2 þ a22

�
(6.63)

Measurement of VAS
The equivalent suspension volume VAS (see Eq. 6.26) can be obtained in two ways.

Either we add mass to the diaphragm and observe the change in resonance frequency or

we add stiffness in the form of a sealed enclosure. The first method is simplest and is

suitable for most loudspeakers. However, in the case of microspeakers used in mobile

devices, it is impractical to attach masses as the risk of destabilizing the diaphragm is too

great.

The added mass is usually a rod of nonferrous metal (e.g., enameled copper wire or

solder) bent into a circle or spiral and attached to the diaphragm using tape or blu tack so

that it does not bounce.

If the original resonance frequency was fS and the resonance frequency after addition

of a mass Mx kg is f 0S, then

fS ¼ 1

2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MMSCMS

p (6.64)

and

f 0S ¼ 1

2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðMMS þMxÞCMS

p (6.65)

where CMS is mechanical compliance of the suspension in m/N. Simultaneous solution

of Eqs. (6.64) and (6.65) yields

MMS ¼ Mx

ð fS=f 0SÞ2 � 1
(6.66)
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Combining this with Eqs. (6.27) and (6.28) yields

VAS ¼
 
1� f 02S

f 2S

!
S2Dr0c

2

ð2pf 0SÞ2Mx

(6.67)

Alternatively, if the drive unit is mounted in a sealed enclosure of known volume VB,

then the new resonance frequency is given by

fC ¼ 1

2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CMS þ CMB

MMCCMSCMB

r
(6.68)

where CMB is the mechanical stiffness due to the air in the enclosure given by

CMB ¼ VB

S2Dr0c
2

(6.69)

Because of the air mass loading within the box, the total moving mass may

be modified slightly, in which case we denote a new value MMC and a new electrical

QEC:

QEC ¼ RE

B2l2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MMCðCMS þ CMBÞ

CMSCMB

s
(6.70)

Simultaneous solution of Eqs. (6.11), (6.64), (6.68), and (6.70) yields

CMS ¼
�
fCQEC

fSQES
� 1

�
CMB (6.71)

Hence, from Eq. (6.27)

VAS ¼
�
fCQEC

fSQES
� 1

�
VB (6.72)

In Chapter 7 of this book, on Loudspeaker Enclosures, design charts are presented

from which it is possible to determine, without laborious computation, the sound

pressure from a direct-radiator loudspeaker as a function of frequency including the

directivity characteristics. Methods for determining the constants of box and bass-reflex

enclosures are also presented. If the reader is interested only in learning how to choose a

baffle for a loudspeaker, he or she may proceed directly to Chapter 7. The next part deals

with the factors in design that determine the overall response and efficiency of the

loudspeaker.
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6.11 EXAMPLES OF LOUDSPEAKER CALCULATIONS

Example 6.1. Given the efficiency of Eq. (6.47) for a loudspeaker in an infinite

baffle, determine the reference sound pressure equivalent to the efficiency assuming that

the directivity factor Q (for radiation to one side) equals 2.

Solution. The sound pressure at distance r, assuming no directivity, is related to the

acoustic power radiated to one side as follows (see Eqs. 6.40 and 6.46):

prmsðrÞ ¼ ffiffiffiffiffiffiffiffi
r0cI

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
r0cW1

2pr2

r
where I is intensity at distance r. W1 ¼W/2 is total acoustic power radiated from one

side of the diaphragm.

The reference sound pressure is

prmsðrÞ ¼
ffiffiffiffiffiffiffiffiffi
r0c

2pr2

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eff

200
WE

r

¼ egðrmsÞr0BlSD
2prREðMMD þ 2MM1Þ

which is that given by Eq. (6.32) in the passband where ac z 1 and it is assumed that

Rg � RE.

Example 6.2. As an example of the efficiency to be expected from an electrody-

namic loudspeaker of conventional design mounted in an infinite baffle and radiating

directly from both sides of the baffle, let us calculate the reference efficiency Eff from Eq.

(6.48) for the case of a commercial loudspeaker with an advertised diameter of 10 cm. In

addition, let us calculate the ratio of the efficiency at the suspension resonance frequency

to the reference efficiency. The values of the six ThieleeSmall parameters are as follows:

RE ¼ 7 U
QES ¼ 2.2

QMS ¼ 5

fS ¼ 125 Hz

SD ¼ 56 cm2

VAS ¼ 0.002 m3 (2 L)

Also

a ¼
ffiffiffiffiffiffiffiffiffiffiffi
SD=p

p
¼ 42:22 mm

QTS ¼ QESQMS

QES þQMS
¼ 1:528
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r0, density of air ¼ 1.18 kg/m3

c, speed of sound ¼ 344.8 m/s.

Solution. From Eq. (6.48), we obtain

Eff ¼ 100
8� ð3:14Þ2 � 0:002� ð125Þ3

2� ð344:8Þ3 ¼ 0:342%

For radiation from one side of the loudspeaker only, divide this figure by 2. Hence,

only 0.171% of the available electrical power is radiated to one side of the diaphragm at

mid to low frequencies. This illustrates the statement made at the beginning of this

chapter that the efficiency of this type of loudspeaker is usually low.

For our example, the transition frequency at which the loudspeaker starts to become

more directional and the efficiency decreases rapidly occurs when ka lies approximately

between 1 and 2. For our example, ka ¼ 1 corresponds to a frequency of

f ¼ c

2pa
¼ 344:8

2p� 0:04222
¼ 1:3 kHz

Obviously, a smaller diaphragm of lighter weight would result in this transition

extending to a higher frequency. However, a reduction in the massMMD occasioned by a

smaller diaphragm will cause an increase in the first resonance frequency with a resulting

loss in bass response. A further disadvantage of a smaller diaphragm is that, for a given

sound pressure, a greater voice-coil velocity euc is needed. A longer air gap and a larger

magnet structure must therefore be provided.

From Eq. (6.54), we obtain the efficiency at the suspension resonance:

EffS ¼ 1:528� 5� 0:342 ¼ 2:61%

Hence, the ratio EffS/Eff equals 7.64, and efficiency at fS equals 1.3% for radiation

from one side only.

PART XX: DESIGN FACTORS AFFECTING DIRECT-RADIATOR
LOUDSPEAKER PERFORMANCE

A loudspeaker generally is designed to provide an efficient transfer of electric

power into acoustic power and to effect this transfer uniformly over as wide a frequency

range as possible. To accomplish this, the voice coil, diaphragm, and amplifier must be

properly chosen. The choice of the elements and their effect on efficiency, directivity,

and transient response are discussed here.
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6.12 MAGNET SIZE

A cross-sectional sketch of a typical microspeaker is shown in Fig. 6.10. In this discus-

sion, it is assumed that the coil fills the gap in the magnetic path without any air spaces

and that it has the same permeability as free space. For the sake of argument, the wire

cross section might be rectangular so that any gap width or length could accommodate an

integer number of turns or layers, respectively. It is also assumed that the reluctances of

the pole pieces are negligible in comparison with that of the gap, so these are ignored.

The radii of the diaphragm, magnet, and coil are a, am, and ac, respectively.

Suppose the solid curve in Fig. 6.11 to represent the demagnetizing portion of the

hysteresis loop for a magnetizing force Hsat obtained with the coil gaps in Fig. 6.10

closed, where BR is the remanent flux density. To neutralize the residual magnetism, it is

necessary to apply, by means of a suitable field winding, a demagnetizing magnetomotive

force J in ampere-turns. IfHC is the coercive force and lm the length of the magnet, then

J ¼ HClm. Therefore, J may be termed the inherent magnetomotive force for maintaining

the remanent flux density BR.

With the coil gaps in Fig. 6.10 closed, let us reduce the magnetic field strength from

Hsat to zero and then increase it to H1 in the reverse direction, so that the flux density is

reduced to B1. The net magnetomotive force available to produce this flux density in the

magnet is HClm � H1lm or in other words, the difference between the inherent MMF

and applied MMF.

ac
am

lm

wg

lg

a

1. Dome (diaphragm) 
2. Permanent magnet 
3. Basket 
4. Surround 
5. Sound hole 

4

1

3

5

5

2

Figure 6.10 Cross-sectional sketch of a microspeaker.
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Next, let us gradually pull the pole pieces apart and at the same time reduce the

demagnetizing current in the field coil so as to keep the flux density constant at B1.

Suppose the procedure to be continued until the current has been reduced to zero and

suppose lg in Fig. 6.10 to be the corresponding gap length. Because this gap has been

introduced without any change of flux density in the magnet, it follows that the mag-

netomotive force now available to send the flux f across the gap is therefore H1lm,

namely that neutralized by the negative magnetomotive force of the field coil before the

gap was introduced. The flux f across the gap is given by

f ¼ B1pa
2
m ¼ Bg � 2pacwg (6.73)

where B1 is the flux density in the magnet and Bg is the flux density in the gap. In

addition, the magnetomotive force required to send flux across the gap is given by

Jg ¼ Bglg

mo
; (6.74)

where m0 ¼ 4p � 10�7 H/m is the permeability of free space, but it was shown that

the magnetomotive force required to send flux across the gap is given by H1lm.

Therefore,

H1lm ¼ Bglg

mo
: (6.75)

HC  0 Hsat

B

H

(BH) max

Hmax H1

B1

(B1 × H1)

(B × H)

Bmax

BR

Remanence 

Coercivity 

Figure 6.11 A typical demagnetization curve.
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From Eqs. (6.73) and (6.75), it follows that the volume Vm of the magnet is given by

Vm ¼ pa2mlm

¼ Bg � 2pacwg

B1
$
Bglg

H1mo

¼ 2pacwglgB
2
g

moB1H1

(6.76)

From Eq. (6.76), it is evident that for a given flux density in the given dimensions of

the gap, the volume of the magnet is a minimum when the product B1H1 is a maximum.

The variation of this product with H in the magnet core is shown in Fig. 6.11 as a dashed

curve from which it follows that the volume of the magnet is a minimum when it is

operated at magnetomotive forceHmax. The value of the product (BH)max, also known as

the maximum energy product, for a magnetic material is the best criterion of its suitability

for use as a permanent magnet and the volume is then given by

Vm ¼ 2pacwglgB
2
g

m0ðBHÞmax

(6.77)

Notice that

Vg ¼ 2pacwglg (6.78)

is the volume occupied by the gap. In addition, let us assume that the field in the pole

pieces is in saturation so that Bg ¼ Bsat. This prevents the field from varying significantly

with the driving current in the coil and thus improves linearity. Hence, the magnet

volume can be written as

Vm ¼ B2
sat

m0ðBHÞmax

Vg (6.79)

If the demagnetization curve were perfectly linear, the values of Hmax and Bmax

would be exactly half of the values of the coercivity and remanence, respectively, which

are more commonly found in manufacturer’s data than Hmax and Bmax. However,

because of nonlinearity, a factor of 2/3 should give a reasonably good estimate for many

materials, although neodymium iron boron (NdFeB) magnets [8] are remarkably close to

ideal, as can be seen in Fig. 6.12. The upper curves are the intrinsic B versus H values

which show the flux density excluding the flux due to the external applied field, and the
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lower curves are the actual “normal” B versus H values including the total net flux. It

should be noted that the intrinsic coercivity is slightly greater than the actual coercivity.

Commercial NdFeB magnets are denoted by a grade which specifies the maximum

energy product in mega-gauss-oersteds and the minimum intrinsic coercivity in kilo-

oersteds. For example, a Grade N4811 NdFeB magnet has a maximum energy prod-

uct BHmax of 48 MGOe and a minimum intrinsic coercivity Hci of 11 kOe. For our

calculations, it is more convenient to use MKS units, in which case the conversions can

be made using

1 G ¼ 10�4 T (6.80)

1 Oe ¼ 103

1p
A=m (6.81)

Hence, a Grade N4811 NdFeB magnet has a maximum energy product BHmax of

382 kTA/m and a minimum intrinsic coercivity Hci of 875 kA/m.

Figure 6.12 Demagnetization curves for a commercial neodymium iron boron magnet at five
different temperatures ranging from 25 to 125�C. Upper curves are intrinsic values and lower curves
are actual values including applied field.
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6.13 VOICE-COIL DESIGN

Effect of coil size on efficiency
Let us now reconsider Eq. (6.47) to see how to maximize the efficiency in terms of the

actual coil dimensions. The resistance RE can be expressed in terms of the mass of the

voice-coil winding MMC by writing

RE ¼ k l

p a2w
(6.82)

where k is resistivity of voice-coil conductor in units ofU$m. The value of k for different

materials is given in Table 6.1. aw is radius of wire in m. l is length of voice-coil winding

in m.

We also note that the volume occupied by the coil wire is

Vw ¼ pa2wl (6.83)

where for simplicity we are assuming that the space occupied by the coil former and

insulation is negligible compared with the conductor. Inserting Eqs. (6.82) and (6.83)

into Eq. (6.47) yields

Effz100
VwB

2S2Dr0

pkM2
MSc

; 2f0 < f <
c

4pa
(6.84)

We now define the total moving mass by

MMS ¼ M 0
MS þMMC (6.85)

whereM 0
MS is the combined mass of the diaphragm and radiation load excluding the coil,

and MMC is the mass of the coil given by

MMCzVwrw ¼ p

4
Vgrw (6.86)

where rw is the density of the voice-coil wire in kg/m3 (see Table 6.1). Inserting Eqs.

(6.85) and (6.86) into Eq. (6.84) yields

Effz100
VwB

2S2Dr0

pk
�
Vwrw þM 0

MS

�2
c
; 2f0 < f <

c

4pa
(6.87)
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To find the optimum coil volume, we differentiate with respect to Vw and set the

result to zero:

v

vVw
Eff ¼ 100

�
M 0

MS � Vwrw
�
B2S2Dr0

pk
�
Vwrw þM 0

MS

�2
c

¼ 0 (6.88)

so that the optimum coil volume is given by

Vw ¼ M 0
MS

�
rw (6.89)

Hence, the optimum mass for the coil is that of the diaphragm (less the coil) com-

bined with the radiation mass. However, this optimum is quite broad and in practice one

Table 6.1 Resistivity and density of various metals

Metal element
Resistivity k,
10�6 U$m

Density rw,
103 kg/m3 kp2w, U$kg2/m5 Ranking

Aluminum 0.0283 2.70 0.206 6

Antimony 0.417 6.6 18.2 21

Bismuth 1.190 9.8 114.2876 27

Cadmium 0.075 8.7 5.68 14

Calcium 0.046 1.54 0.109 4

Carbon 8.0 2.25 40.5 25

Cesium 0.22 1.9 0.794 8

Chromium 0.026 6.92 1.25 9

Cobalt 0.097 8.71 7.36 19

Copper 0.0172 8.7 1.30 10

Gold 0.0244 19.3 9.09 20

Iridium 0.061 22.4 30.6 24

Iron 0.1 7.9 6.24 18

Lead 0.220 11.0 26.6 23

Lithium 0.094 0.534 0.0268 1

Magnesium 0.046 1.74 0.139 5

Manganese 0.050 7.42 2.75 12

Mercury 0.958 13.5 174 28

Molybdenum 0.057 10.2 5.93 15

Nickel 0.078 8.8 6.04 16

Platinum 0.10 21.4 45.8 26

Potassium 0.071 0.87 0.0537 3

Silver 0.0163 10.5 1.80 11

Sodium 0.046 0.97 0.0433 2

Tin 0.115 7.3 6.13 17

Titanium 0.032 4.5 0.648 7

Tungsten 0.055 19.0 19.9 22

Zinc 0.059 7.1 2.97 13
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can err on the side of greater coil mass. If the coil wire has a circular cross section, then

the gap volume is Vg ¼ 4Vw/p, otherwise for a square cross section Vg ¼ Vw. Let us

suppose for the sake of argument that we can make the diaphragm as light as we wish and

that it remains perfectly rigid. Then, setting M 0
MS ¼ MMC gives

Effz100
2B2S2Dr0
p2kr2wVgc

; 2f0 < f <
c

4pa
; M 0

MSzMMC (6.90)

From this equation, we see that the efficiency is independent of the coil resistance,

number of turns, or wire diameter. It is only dependent on the volume of the gap and the

properties of the conductor, namely the resistivity k and the density rw. The product krw
2

which appears in the denominator of Eq. (6.90) is given in Table 6.1 for various materials

and ranked in ascending order. Unfortunately, the top-ranked four materialsdlithium,

sodium, potassium, and calciumdare not practicable for loudspeakers because they are

highly reactive metals. Although copper is the material most commonly used in voice

coils, there are many instances where aluminum has been successfully deployed to give

increased efficiency and sensitivity. The problem in microspeakers is that aluminum lead

out wires are somewhat brittle and liable to break after repeated flexing, although an

alloy could be used. We have already deduced in Eq. (6.79) that the size of the magnet

VM is directly related to that of the magnetic gap VG. Hence, reducing the gap volume

not only makes the loudspeaker more efficient but also reduces the required magnet size

and therefore saves cost and weight.

Number of turns and wire diameter
The length l of the coil wire is

l ¼ 2pacN (6.91)

where N is the number of turns and the cross-sectional area Sw of the wire is

Sw ¼ p a2w ¼ pwglg

4N
(6.92)

Inserting Eqs. (6.91) and (6.92) into Eq. (6.82) for the coil resistance and solving for

N yields

N ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wglgRE

8ack

s
(6.93)

Then the wire radius is given by

aw ¼
ffiffiffiffiffiffiffiffi
wglg

4N

r
¼
�

Vgk

4pRE

�1=4

(6.94)
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from Eqs. (6.78), (6.82) and (6.91). Therefore, we conclude that while reducing the coil

volume is beneficial for efficiency and reducing the magnet size, there is a limit to how

much the volume can be reduced because eventually the wire becomes so thin that it is

difficult to manufacture with any reasonable tolerance. In addition, smaller coils are more

difficult to cool, although with the increased efficiency they should not run so hot.

Interestingly, the efficiency and wire radius are both independent of the coil geometry,

and only dependent on its volume. This means there is a certain amount of flexibility

regarding the diameter d or length lg of the coil. Ideally, we would like to maximize lg as

this would also maximize the linear displacement xmax. In microspeakers, however, the

gap length cannot be increased too much as the thickness of the component is an

important factor in the design of the host product, especially if it is a mobile device. It is

obvious from Eq. (6.94) that thinner wire is needed for high impedance loudspeakers in

which RE is large. However, reducing RE usually results in greater losses in the amplifier

and associated power source, so it is rarely less than about 3 U.

6.14 DIAPHRAGM BEHAVIOR

The simple theory using the method of equivalent circuits, which we have just

derived, is not valid above some frequency between 300 and 1000 Hz. In the higher

frequency range, the cone, diaphragm mass MMD , and also the radiation impedance

change no longer move as a single unit. These changes may occur with great rapidity as a

function of frequency. As a result, no exact mathematical treatment is available by which

the performance of a loudspeaker can be predicted in the higher frequency range, unless

the geometry is very simple, as in the case of a shallow spherical shell [9]. Cones are often

approximated by concentric rings [10] or finite element models. Modern finite element

models include the magnetic path and nonlinear behavior [11].

A detailed study of one particular loudspeaker is reported here as an example of the

behavior of the diaphragm [12]. The diaphragm is a felted-paper cone, about 170 mm in

effective diameter (see Fig. 6.13), having an included angle of 118 degrees. The

soundepressureelevel response curve for this loudspeaker measured on the principal

axis is shown in Fig. 6.14.

This particular loudspeaker has, in addition to its fundamental resonance, other peaks

and dips in the response at points 1e8 as indicated on the curve. The major resonance at

90 Hz is the principal suspension resonance fS and has the relative amplitude given by 20

logQTS from Eq. (6.14). Immediately above that is a fairly flat region. At point 1, which

is located at 420 Hz, the cone breaks up into a resonance of the form shown by the first

sketch in Fig. 6.15. Here, there are four nodal lines on the cone extending radially, and

four regions of maximum movement. As indicated by the plus and minus signs, two

regions move outward while two regions move inward. The net effect is a pumping of air
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back and forth across the nodal lines. The cone is also vibrating as a whole in and out of

the page. The net change in the output is an increase of about 5 dB relative to that which

it would be if the cone were perfectly rigid. A similar situation exists at point 2 at 500 Hz,

except that the number of nodal lines is increased from 4 to 6. At point 3, 650 Hz, the

vibration becomes more complex. Nodal lines are no longer well defined, and the

speaker vibrates in such a way that the increase in pressure level is again about 5 dB.
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Figure 6.14 On-axis response of a 200 mm diameter loudspeaker mounted in an infinite baffle. After
Corrington [12].
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Figure 6.13 Detail of the edge of a felted-paper loudspeaker cone from a 200 mm loudspeaker. After
Corrington. Amplitude and phase measurements on loudspeaker cones. Proc IRE 1951;39:1021e26.
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For point 4 at 940 Hz, a new type of vibration has become quite apparent. The

diaphragm moves in phase everywhere except at the surround. Looking at the surround

construction shown in Fig. 6.13 and at the vibration pattern of Fig. 6.15(4), we can

deduce what happens. The center part of the cone vibrates at a fairly small amplitude,

Figure 6.15 Nodal pattern of the cone of the loudspeaker whose response curve is given in Fig. 6.14 at
420 Hz (1), 500 Hz (2), 650 Hz (3), 940 Hz (4), 1100 Hz (5), 2150 Hz (6), 2800 Hz (7), and 3800 Hz (8). The
shaded and dashed lines indicate lines of small amplitude of vibration. The (þ) and (�) signs indicate
regions moving in opposite directions, i.e., opposite phases. After Corrington [12] with changes.
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whereas the main part of the cone has a larger amplitude. At the 147 mm diameter, the

amplitude of vibration is very small. At this point the corrugation has a large radius

(4 mm). As the cone moves to and fro, the paper tends to roll around this curve, and this

excites the 2.4 mm corrugation that follows into violent oscillation at its resonance

frequency. The surround resonance is 180 degrees out of phase with respect to the main

part of the cone. However, the main part of the cone has a high amplitude produced by

the rocking motion around the 147 mm diameter, and because of its greater area, only

part of its effect in producing a high sound level is canceled out by the surround motion.

The net result is a peak in output (see point 4 of Fig. 6.14).

At point 5, 1100 Hz, a sharp decrease in response is observed. The decrease seems to

be the result of a movement of the nodal line toward the apex of the cone, and a

reduction of the amplitude of the (þ) portion. Here, the effect is a pumping of air back

and forth across the nodal line, with a cancellation in output. This vibration is very

characteristic, and at the time such motion occurs, the response drops vigorously.

As frequency is increased, the loudspeaker breaks up into still different characteristic

modes of vibration. As shown in Fig. 6.15, case 6, several nodal lines appear concentric

to the surround of the loudspeaker. When these occur, a large increase in output is

obtained, as shown at point 6 of Fig. 6.14. As frequency is increased, other such reso-

nances occur, with more nodal lines becoming apparent. These nodal lines are the result

of waves traveling from the voice coil out to the edge of the cone and being reflected

back again. These outwardly and inwardly traveling waves combine to produce a

standing-wave pattern that will radiate a maximum of power at some particular angle

with the principal axis of the loudspeaker.

To reduce standing-wave patterns of the type shown in cases 6, 7, and 8 of Fig. 6.15,

it is necessary that a termination of proper mechanical impedance be placed at the outer

edge of the diaphragm. This termination must be one that absorbs waves traveling

outward from the center of the cone so that nowave is reflected back. In practical design,

a synthetic foam or rubber supporting edge is frequently employed. A rubber supporting

edge is also effective in reducing the surround resonance. The resulting effect is to

produce a more uniform response in the frequency region between 700 and 1500 Hz of

Fig. 6.14.

The finite delay time it takes for higher frequency waves, which may be transverse or

longitudinal, to travel through the cone from the edge of the voice coil to an absorbent

surround has the effect of widening the directivity pattern, although the nonplanar

geometry of the cone also has this effect (see Section 12.10), but due to a phase advance

toward the surround as opposed to a phase delay. In theory, the two effects could be

arranged to cancel each other so that the cone would act largely as a planar source, which

would produce a maximally flat axial response, albeit with cup resonances and an

increasingly narrow beamwidth at high frequencies.
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Often a highly damped cone material is chosen, such as paper, so that the waves

propagating within it are absorbed at high frequencies. Consequently, an ever decreasing

portion of the cone radiates at high frequencies until the sound is coming mainly from the

edge of the coil. If the mass of the coil were negligible compared with that of the cone, the

moving mass would also progressively decrease with frequency and the radiated power

would remain constant. Furthermore, the shrinking radiating area would maintain a wide

directivity pattern as well as a flat on-axis response. Although this sounds like an ideal so-

lution, greatest efficiency is actuallyobtained bymaking the coil and diaphragmmasses equal

(see Eq. 6.89), so there is a limit to how much the total mass can decrease with frequency.

6.15 DIRECTIVITY CHARACTERISTICS

The response curve of Fig. 6.7 and the information of the previous three para-

graphs reveal that above the frequency where ka ¼ 2 (usually between 800 and 2000 Hz),

a direct-radiator loudspeaker can be expected to radiate less and less power. The rate at

which the radiated power would decrease, if the cone were a rigid piston, is between 6

and 12 dB for each doubling of frequency. This decrease in power output is not as

apparent directly in front of the loudspeaker as at the sides because of directivity. That is

to say, at high frequencies, the cone directs a larger proportion of the power along the

axis than in other directions. In addition, the decrease in power is overcome in part by

the resonances that occur in the diaphragm, as we have seen from Fig. 6.14.

Directivity patterns for typical loudspeakers
Typical directivity patterns for a 5-inch-diameter direct-radiator loudspeaker, mounted

in one of the two largest sides of a closed box having the dimensions 285 by 189 by

178 mm, were shown in Fig. 4.31. These data are approximately correct for loudspeakers

of other diameters if the frequencies beneath the graphs are multiplied by the ratio of

5 inch to the diameter of the loudspeaker in inches.

Comparison with the directivity patterns for a flat rigid piston in a sphere, as shown in

Fig. 12.23, reveals that the directivity patterns for a flat piston are different from those for

an actual loudspeaker. This difference results from the cone angle, the speed of propagation

of sound in the cone relative to that in the air, and the resonances in the cone. In this

connection, it is interesting to see how the speed varies with frequency in an actual cone.

Speed of propagation of sound in cone
Let us define the average speed of propagation of sound in the cone as the distance be-

tween the apex and the surround, divided by the number of wavelengths in that distance,

multiplied by the frequency in cycles per second. For the particular 200 mm loudspeaker

of Figs. 6.13e6.15, the phase shift and the average speed of propagation of the sound wave
from the apex to the surround of the cone are given in Fig. 6.16. At low frequencies, the
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cone moves in phase so that the speed can be considered infinite. At high frequencies, the

speed asymptotically approaches that in a flat sheet of the same material, infinite in size.

Intensity level on designated axis
We have stated already that at high frequencies a loudspeaker diaphragm becomes

directional. To calculate the enhancement of the sound pressure on the axis of the

loudspeaker as compared with that indicated by Eqs. (4.65) and (4.66) for an omnidi-

rectional source, it is convenient to use the concepts of directivity factor and of direc-

tivity index as defined in Part XII (pages 163 to 168). For example, we might wish to

know the intensity (or the SPL) on the axis of the loudspeaker, given the efficiency

response and the directivity factor. This is done as follows.

The intensity as a function of frequency on the axis of symmetry of the loudspeaker

divided by the electrical power available is equal to the product of (1) the efficiency

response characteristic, (2) the directivity factor, and (3) 1/4pr2, where r is the distance at

which the intensity is being measured. In decibels, we have

10 log10
Iax

WE
¼ 10 log10 Eff � 20þDI� 10 log10 4pr

2 (6.95)

where IE ¼ jpaxj2
�
r0c is intensity in watts per square meter on the designated axis at a

particular frequency. pax is SPL in Pa measured on the designated axis at a particular
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frequency. Eff ¼ 100W/WE is ratio of total acoustic power radiated by the front side of

the loudspeaker to the power supplied by the electrical generator. DI is given by Eq.

(4.138) and Fig. 4.30. Note that, for the piston in an infinite baffle, the DI at low fre-

quencies is 3 dB because the power is radiated into a hemisphere, and that the last term of

Eq. (6.95) is the area of a sphere, in decibels.

Expressed in terms of the SPL on the designated axis re 20 mPa, Eq. (6.95) becomes

(see Eq. 6.40)

SPL re 20 mPa ¼ 20 log10
pax

0:00002
¼ 10 log10 WE

þ 10 log10 Eff þDI� log10 4pr
2

þ 10 log10r0c þ 74 dB

(6.96)

6.16 TRANSFER FUNCTIONS AND THE LAPLACE TRANSFORM

If we substitute s ¼ ju in Eq. (6.14), we obtain

acðsÞ ¼ s2

s2 þ uS

QTS
sþ u2

S

(6.97)

where s is the imaginary frequency variable. The roots of the denominator polynomial

are known as poles. If QTS � 0.5, the roots of the denominator polynomial are real and

given by

s ¼ �uS

 
1

2QTS
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4Q2
TS

� 1

s !
(6.98)

If QTS > 0.5, the roots of are complex and given by

s ¼ �uS

 
1

2QTS
� j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1

4Q2
TS

s !
(6.99)

or expressed as magnitude and phase as

s ¼ �uS:� arccosð1=ð2QTSÞÞ:
The dotted curves in Fig. 6.17 are plotted from Eq. (6.97), but solid lines are linear

approximations plotted from the poles or roots of the denominator polynomial. The

locus of these poles is shown in Fig. 6.18. The arrows on the negative real axis show the

direction in which the poles move as QTS is increased. When QTS ¼ 0.5, the poles are
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real and coincident at �uS. When QTS > 0.5, they become a complex conjugate pair

and follow the arrows on the semicircular path. If there were no damping such that

QTS ¼N, the poles would lie on the imaginary axis.

A more general transfer function is represented by

FðsÞ ¼ QNs
N þQN�1s

N�1 þ/þQ2s
2 þQ1sþQ0

PMsM þ PM�1sM�1 þ/þ P2s2 þ P1sþ P0
¼
PN

n¼0Qns
nPM

m¼0Pms
m

(6.100)
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which includesN zeros in the numerator as well asM poles in the denominator. Although

we are unlikely to encounter zeros when dealing with larger loudspeakers, they do occur

in cell phone designs which are generally more complicated, having small sound holes

with viscous losses. Certainly, when we consider loudspeakers in bass-reflex enclosures

or with auxiliary filters we will encounter higher order denominator polynomials. After

solving the denominator and numerator polynomials for the poles pm and zeros qn
respectively, we can rewrite the transfer function as

FðsÞ ¼ ðsþ q1Þðsþ q2Þ/ðsþ qN�1Þðsþ qN Þ
ðsþ p1Þðsþ p2Þ/ðsþ pM�1Þðsþ pMÞ ¼ PN

n¼ 1ðsþ qnÞ
PM

m¼ 1ðsþ pmÞ
(6.101)

This is a convenient form which enables us to tailor the frequency response by

manipulating the roots of the denominator polynomial and to calculate the transient

response by means of the inverse Laplace transform.

6.17 TRANSIENT RESPONSE

The design of a loudspeaker enclosure and the choice of amplifier impedance

eventually must be based on subjective judgments as to what constitutes “quality” or

perhaps simply on listening “satisfaction.” It is believed by many observers that a flat

soundepressureelevel response over at least the frequency range between 70 and

7000 Hz is found desirable by most listeners. Some observers believe that the response

should be flat below 1000 Hz but that between 1000 and 4000 Hz it should be about

5 dB higher than its below-1000-Hz value. Above 4000 Hz, the response should re-

turn to its low-frequency value. It is also believed by some observers that those

loudspeakers which sound best generally reproduce tone bursts [13] well, although this

requirement is better substantiated in the literature for the high frequencies than for

the low.

An important factor determining the transient response of the circuits of Fig. 6.4 is

the amount of damping of the motion of the loudspeaker diaphragm that is present.

For a given loudspeaker, the damping may be changed (1) by choice of the amplifier

impedance Rg, or (2) by adjustment of the resistive component of the impedance of

the enclosure for the loudspeaker, or (3) by choosing a drive unit with a smaller QTS

value, or (4) by any combination of (1) to (3). The amplifier impedance may be

adjusted using negative current feedback to increase QTS or positive current feedback

to reduce it. The latter provides a negative output impedance which is subtracted

from RE.
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Before we can apply the transform to Eq. (6.101), we must split the expression into a

sum of partial fractions, each containing a single factor in its denominator:

FðsÞ ¼ A1

sþ p1
þ A2

sþ p2
þ/þ AM�1

sþ pM�1
þ AM

sþ pM
¼
XM
m¼ 1

Am

sþ pm
(6.102)

This is achieved using a technique known as the residues theorem. The residues Am

are found from the formula

Am ¼ ðsþ pmÞFðsÞjs/�pm
(6.103)

For the expression of Eq. (6.97) this gives

acðsÞ ¼ s2

ðsþ p1Þðsþ p2Þ

¼ ð1Þ þ p21
ðp2 � p1Þðsþ p1Þ þ

p22
ðp1 � p2Þðsþ p2Þ

(6.104)

The extra unity term in parentheses comes from the fact that the numerator

polynomial is of the same order as the denominator. However, we shall drop it from

subsequent handling. If M < N, then this term vanishes anyway. The poles p1 and p2 are

given by

p1 ¼ uS

 
1

2QTS
� j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1

4Q2
TS

s !
(6.105)

p2 ¼ uS

 
1

2QTS
þ j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1

4Q2
TS

s !
(6.106)

To obtain the response in the time domain, we apply the inverse Laplace transform:

f ðtÞ ¼ L�1ðFðsÞÞ ¼ 1

2pj

Z gþjN

g�jN
FðsÞestds (6.107)

where g is an arbitrary positive constant chosen so that the contour of integration lies to

the right of all singularities in F(s). The Laplace transform is a variant of the Fourier

transform that converts a function of time to one of imaginary frequency as opposed to

real frequency.

FðsÞ ¼ Lð f ðtÞÞ ¼ 1

2pj

Z N

0

f ðtÞe�stds (6.108)
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Table 6.2 shows the Laplace transforms of some input waveforms that we may wish to

use to investigate the time response of a loudspeaker system with its associated enclosure

and electrical filters.

We see that the Laplace transform of an infinite impulse at t ¼ 0, which is

represented by the Dirac delta function d(t), is simply unity. Therefore, applying the

inverse Laplace transform directly to the frequency response function in s will give us

the infinite impulse response of the system. Applying the inverse Laplace transform to

Eq. (6.104) is fairly straightforward because according to Table 6.2 the 1/(s þ pm) terms

become exponents:

ac ¼ p21
ðp2 � p1Þe

�p1t þ p22
ðp1 � p2Þe

�p2t (6.109)

If we wish to evaluate the time response to an input waveform other than an infinite

impulse, we may multiply Eq. (6.104) by the Laplace transform of the waveform before

applying the inverse Laplace transform. For example, if we wished to evaluate the

response to a Heaviside step function H(t), which represents a step from 0 to 1 at t ¼ 0,

we could multiply Eq. (6.104) by 1/s before applying the inverse Laplace transform.

Alternatively, we could convolve the impulse response of Eq. (6.109) with the Heaviside

step function in the time domain using the convolution integral:

acðtÞ 	HðtÞ ¼
Z N

�N
acðxÞHðt � xÞdx

¼ p1e
�p1t � p2e

�p2t

p1 � p2

¼

8>>>>><>>>>>:

sinðq� uSt sin qÞ
sin q

e�uSt cos q; QTS > 0:5

sinhðq� uSt sinh qÞ
sinh q

e�uSt cosh q; QTS � 0:5

(6.110)

Table 6.2 Laplace transforms of various functions of time

f(t) d(t) H(t) sin ut cos ut e�ut 1 � e�ut
ae�at � be�bt

a� b
1 � ae�bt � be�at

a� b

F(s) 1
1

s
u

s2 þ u2

s

s2 þ u2

1

sþ u

u

sðsþ uÞ
s

ðsþ aÞðsþ bÞ
ab

SðS þ aÞðS þ bÞ
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where

cos q ¼ 1

2QTS
; sin q ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1

4Q2
TS

s
; QTS > 0:5 (6.111)

cosh q ¼ 1

2QTS
; sinh q ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4Q2
TS

� 1

s
; QTS � 0:5 (6.112)

which gives the same result as multiplying Eq. (6.104) by 1/s before applying the inverse

Laplace transform. Hence, the impulse response is a powerful expression which can be

used to predict the response to any input waveform.

We see from Eq. (6.110) that when QTS > 0.5, the time response to a step function

has an oscillatory component represented by the sine and cosine functions of uSt and a

decaying component represented by the exponent term which contains the decay constant

uS/(2QTS). The response to a step function is plotted in Fig. 6.19 with fS ¼ 50 Hz. The

black curve forQTS ¼ 3 gives an undershoot value of 62% and ringing for several cycles,

each about 20 ms in duration. They gray curve for QTS ¼ 0.3 shows just 6.4% under-

shoot and no ringing.

An input waveform of particular interest is that of a finite tone burst1 of frequency u0

and duration t0 involves a somewhat more complicated expression:

FðtÞ ¼ ð1�Hðt � t0ÞÞsin u0t (6.113)
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Figure 6.19 Time response to a unity step function where fS ¼ 50 Hz. The black curve is for QTS ¼ 3
and the gray for QTS ¼ 0.3.

1 A tone burst is a wave-train pulse that contains a number of waves of a frequency.
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which yields the pressure waveform

acðtÞ 	 FðtÞ ¼ �u4 þ u4
S þ 2u2u2

S cos 2 q
��1

� �csc q�uu3
S sinðuSt sin qÞ þ u3uS sinðuSt sin q� 2qÞ�e�uSt cos q þHðt � t0Þ

� �csc q sin ut0
�
u4
S sinðuSðt � t0Þsin q� qÞ þ u2u2

S sinðuSðt � t0Þsin q� 3qÞ�
� csc q cos ut0

�
uu3

S sinðuSðt � t0Þsin qÞ þ u3uS sinðuSðt � t0Þsin q� 2qÞ��
� e�uSðt�t0ÞcosðqÞ þ ð1�Hðt � t0ÞÞ

�
2u3uS cos q cos ut þ u2

�
u2 � u2

S

�
sin ut

�o
(6.114)

We see from Fig. 6.20 that the beginning of the tone burst excites the suspension

resonance frequency which is superimposed on the tone burst even though the

tone-burst frequency is three times higher than that of the suspension resonance. As a

result, the tone takes a while to settle before it is switched off, at which point the

suspension resonance is triggered again before finally decaying. Hence, loudspeakers

with a high QTS tend to produce bass with a “one-note” quality. Not only is the

suspension resonance frequency boosted in the frequency response, but it also adds

overhang to transients at other frequencies.

It is known that the reverberation time in the average living room is about 0.5 s,

which corresponds to a decay constant of 13.8 s�1. Psychological studies also indicate

that if a transient sound in a room has decreased to less than 0.1 of its initial value within

0.1 s, most listeners are not disturbed by the “overhang” of the sound. This corresponds

to a decay constant of 23 s�1, which is a more rapid decay that occurs in the average
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Figure 6.20 Transient response to a tone burst of frequency f0 ¼ 150 Hz and duration t0 ¼ 73 ms,
where the suspension resonance frequency fS ¼ 50 Hz and QTS ¼ 3.
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living room. Although criteria for acceptable transient distortion have not been estab-

lished for loudspeakers, it seems reasonable to assume that if the decay constant for a

loudspeaker is greater than four times this quantity, i.e., greater than 92 s�1, no serious

objection will be met from most listeners to the transient occurring with a tone burst.

Accordingly, the criterion that is suggested here as representing satisfactory transient

performance is

uS

2QTS
> 92 s�1 (6.115)

Eq. (6.110) reveals that the greater uS/(2QTS), the shorter the transient. Eq. (6.115)

should be construed as setting a lower limit on the amount of damping that must be

introduced into the system. It is not known how much damping ought to be introduced

beyond this minimum amount.

In the next chapter, we shall discuss the relation between the criterion of Eq. (6.115)

and the response curve with baffle.

Each of the diaphragm resonances (e.g., points 1e8 in Fig. 6.14) has associated with it

a transient decay time determined from an equation like Eq. (6.110). To fulfill the

criterion of Eq. (6.115), it is usually necessary to damp the loudspeaker cone and to

terminate the edges so that a response curve smoother than that shown in Fig. 6.14 is

obtained. With the very best direct-radiator loudspeakers, much smoother response

curves are obtained. The engineering steps and the production control necessary to

achieve low transient distortion and a smooth response curve may result in a high cost for

the completed loudspeaker.

6.18 NONLINEARITY [14]

There are a number of nonlinear mechanisms in electrodynamic loudspeakers

which give rise to harmonic distortion. They tend to be dominant at different fre-

quencies. In some cases, the nonlinearity is a function of input current and in others of

displacement, or even both. An overview is given in Table 6.3.

Suspension compliance
The purpose of the suspension (see (9) in Fig. 6.1) is to provide a linear restoring force

that moves the coil back to its rest position and to ensure that it is correctly centered.

However, from Fig. 6.21a, we see that for large excursions, the suspension becomes

stiffer as it stretches and so the compliance becomes nonlinear, typically in an asym-

metrical manner, as shown in Fig. 6.21b. It is also common for hysteresis losses to prevent

the coil from returning to the same position as before. To combat this, a “regressive”

spider design [15] has been proposed in which the corrugations diminish in height with

increasing radius.
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Force factor
If the coil length hc is equal to the gap length hg (see Fig. 6.22a), the force factor decreases

as soon as the coil starts to move in the x direction because the part of the coil which is

then outside the gap experiences a much smaller force. This typically produces the

Table 6.3 Overview of nonlinearities in electrodynamic loudspeakers
Nonlinearity As a function of Frequency range Mechanism

Compliance CMS Displacement x Below fS Nonlinear restoring force

Force factor Bl Displacement x,

current i

Low frequencies

(where x is greatest)

Nonlinear force, f ¼ Bli

Displacement x,

velocity u

Nonlinear damping,

e ¼ Blu

Coil inductance LE Displacement x High frequency

modulated by

low frequency

Inductance varies with

position of coil relative to

pole piece

Displacement x,

current i

Ditto Extra reluctance force,

ff i2

Current i High frequencies Nonlinear permeability of

steel

Coil resistance RE Current i All frequencies Resistance increases with

temperature

Young’s modulus E

of cone material

Strain ε At normal vibration

mode frequencies

of cone

Stress s is nonlinear

function of strain,

s ¼ Eε. For large

amplitude vibrations,

further nonlinearity

caused by change in

geometry

Doppler effect Displacement x High frequency

modulated by

low frequency

Variable time shift t ¼ x/c in

propagated sound causes

frequency modulation

distortion

f

x

(a) (b) 

Figure 6.21 (a) Sketch of suspension at center and extreme end positions and (b) nonlinear force
versus displacement curve (solid curve) with ideal linear curve (dashed line).
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dashed curve shown in Fig. 6.22b. To improve linearity and to extend the maximum

excursion, the length of the coil is often extended beyond the length of the gap and this is

known as overhang. This typically produces the solid curve shown in Fig. 6.22b. Alter-

natively, it can be shorter, which is known as underhang. One disadvantage of overhang is

that the ratio of force factor Bl to moving massMMS is decreased, which tends to reduce

efficiency somewhat (see Eq. 6.47). Although force-factor nonlinearity is most

noticeable at low frequencies, where the coil excursion is greatest, if theQTS value of the

drive unit is fairly high, then the distortion has a minimum at the suspension resonance

frequency. In other words, the peak at the resonance frequency has a filtering effect on

the distortion harmonics. By the same token, distortion harmonics of frequencies in the

roll-off region (below resonance) are augmented.

Coil inductance
Like the force factor Bl, the coil inductance LE also varies according to the position of the

coil in the gap, albeit in a somewhat less symmetrical manner. In fact, the inductance is

greatest when the coil is in its innermost position and completely surrounded by iron, as

we see from Fig. 6.23. Conversely, it is smallest when the coil is in its outermost position

and partly surrounded by air, which has a much smaller relative permeability than iron.

Although the inductance alone would only affect the high frequencies, the fact that the

excursion is greatest at low frequencies means that the effect of the nonlinearity is for the

low frequencies to modulate the high frequencies.

Not only does the inductance vary with coil position x, but it also varies with current i.

The flux density B varies in a nonlinear fashion with the magnetizing force H (see

Fig. 6.11) and hence in turn with the current i. To minimize this effect, the pole piece
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Figure 6.22 (a) Sketch of a coil of length hc in a magnetic gap of length hg and (b) force factor versus
displacement curves with hc ¼ hg (dashed line) and hc > hg (solid line).
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and pole plate are normally saturated as much as possible so that there is relatively little

variation of BwithH. In addition, the inclusion of a shorting ring around the pole piece,

as shown in Fig. 6.23, reduces the variation of LE with both x and i. It is usually made of

aluminum and behaves like a short-circuited secondary winding of a transformer in

which the voice coil forms the primary.

A third nonlinear mechanism due to the coil inductance is the reluctance force. This

was actually the driving force used in the receivers of early telephone handsets. In the

receiver, an electromagnet would actuate a steel plate in close proximity to it. Then the

first loudspeakers were simply receivers with horns attached. Although the transduction

was inherently nonlinear, the vibrations of the plate were small enough for the distortion

not to be too serious. However, in a modern dynamic speaker, such a driving force is an

undesirable by-product of the principal transduction mechanism.

Coil resistance
As the power dissipated by the coil is increased, its temperature also increases, which leads

to an increase in resistance. At very low frequencies, the temperature increases during

every half cycle of the input signal, thus leading to odd harmonic distortion. At higher

frequencies, the thermal inertia of the coil smoothes out the temperature variations so

that instead we have a phenomenon known as power compression whereby the rise in coil

resistance temporarily reduces the sensitivity of the loudspeaker. The use of a current-

source amplifier [16] with motional feedback to provide damping has been proposed

to minimize this effect. Alternatively, a ferrofluid [17] may be suspended within the

magnetic gap. This will effectively conduct heat away from the coil to the pole plate,

which acts as a heat sink. Another advantage is that the magnetic fluid reduces the width

of the gap to the diameter of the coil wire plus the thickness of the former. A slight

disadvantage is that viscosity of the fluid increases mechanical damping and hence

reduces QMS. Ideally, to maintain maximum efficiency at resonance, we would prefer all

of the damping to be provided electrically so that QTS z QES and QMS [ QES.

Large LE

x

Small LE

Shorting ring 

Figure 6.23 Sketch of a coil in two extreme positions along its journey back and forth in the x di-
rection. In the innermost position, the inductance LE is greatest and in the outermost position it is
smallest. The inclusion of the shorting ring minimizes the amount of variation of LE.
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Young’s modulus of cone material
At low to mid frequencies, the cone should move as a perfectly rigid piston in which case

there is no flexing and the nonlinear stress versus strain relationship should have no effect

whatsoever. However, at higher frequencies, vibration modes within the cone will occur

and the motion is likely to be nonlinear depending on the amplitude. This can be

mitigated by ensuring that either the cone material has sufficient internal damping or

that the radial waves are absorbed by a lossy surround. One should also use a crossover

which diverts the higher frequencies to another drive unit.

Doppler effect
Suppose that a loudspeaker reproduces two tones simultaneously, one at a sufficiently

low frequency to produce significant excursion and the other at a much higher

frequency. As the cone moves toward the listener during a positive half cycle of the low

note, the pitch of the high note will be raised by a small amount. In addition, as the cone

moves away from the listener during a negative half cycle, the pitch will be lowered. This

is the same phenomenon that causes the apparent frequency of a siren to change when an

ambulance drives past. Hence, the low note frequency modulates the high note. In

practice, the effect is usually minimized through careful choice of crossover frequency

[18].

Example 6.3. If the circular gap in the permanent magnet has a radial length of

0.2 cm, a circumference of 8 cm, and an axial length of 1.0 cm, determine the energy

stored in the air gap if the flux density is 10,000 G.

Solution

Volume of air gap ¼ ð0:002Þð0:08Þð0:01Þ ¼ 1:6� 10�6 m3

Flux density ¼ 1 T.

From books on magnetic devices, we find that the energy stored is

W ¼ B2V

2m

where the permeability m for air is m0 ¼ 4p � 10�7 H/m. Hence, the air-gap energy is

W ¼ ð1Þ�1:6� 10�6
�

ð2Þð4p� 10�7Þ ¼ 2

p
¼ 0:636 J

Example 6.4. A 5-inch loudspeaker is mounted in one of the two largest sides of a

closed box having the dimensions 285 by 189 by 178 mm. Determine and plot the

relative power available efficiency and the relative SPL on the principal axis.
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Solution. Typical directivity patterns for this loudspeaker are shown in Fig. 4.31. The

directivity index on the principal axis as a function of frequency is shown in Fig. 4.32. It

is interesting to note that the transition frequency from low directivity to high directivity

is about 1 kHz. Because the effective radius of the radiating cone for this loudspeaker is

about 0.055 m, ka at this transition frequency is

ka ¼ 2pfa

c
¼ 1000p� 0:13

344:8
¼ 1:18

or unity, as would be expected from our previous studies. The transition from the circuit

of Fig. 6.6c (where we assumed that u2MM1
2 [ <MR

2 and u2L2 � (Rg þ RE)
2) to

Fig. 6.6d also occurs at about ka ¼ 1. Now, let us model the loudspeaker as a spherical

cap in a sphere. From the box dimensions, the equivalent radius R of the equivalent

sphere is

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð285� 189� 178Þ

4p

3

r
¼ 132 mm

Because the effective radius a of the cap is 55 mm, the half-angle of the cap is given by

a ¼ arcsin (55/132) ¼ 25 degrees. The directivity patterns of a cap of half-angle

30 degrees are shown in Fig. 6.24. Considering the approximate nature of the model,

these directivity patterns are remarkably consistent with those shown in Fig. 4.31 for the
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Figure 6.24 Plots of the directivity patterns of a typical 5-inch-diameter loudspeaker in a closed box
baffle using an oscillating spherical cap in a sphere as a model.
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actual loudspeaker. One advantage of this model is its simplicity because Eq. (12.59) for

the directivity pattern is in the form of a fast-converging expansion.

Now, let us determine the SPL on the principal axis of the loudspeaker, using Eqs.

(12.58) and (12.61) together with

euc ¼ Bl

ðRE þ juLEÞjuMMS
eeg

which is derived from Fig. 6.4a, assuming that above resonanceMMS dominates the loop

impedance. In addition, let us assume that the amplifier impedance is very low. The

results are given by the dashed curve in Fig. 6.25. Above 200 Hz, the pressure level starts

to rise due to the baffle effect of the enclosure, although the amount of lift is limited by

the coil inductance which starts to have effect at around the same point. The cupped

shape of the diaphragm helps to maintain a wide directivity pattern at higher frequencies,

but the radiated power is falling off, so the sound pressure must also start to fall (unlike

with a flat piston where the concentration of sound on its axis maintains a level output).

The fact that the model uses a convex dome as opposed to a concave cone will introduce

errors but a quick comparison of Fig. 12.28 with Fig. 12.32 for a convex and a concave

dome, respectively, shows that the trends are broadly similar. Hence, we see a second-

order or 12 dB/octave high frequency roll-off due to the compounded effect of the

diaphragm inertia and coil inductance. In addition, at higher frequencies, cone

resonances occur, as we said before, and the typical response curve of Fig. 6.14 is

obtained.
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Figure 6.25 Graphs of the computed efficiency and sound pressure level measured on the principal
axis of a typical 5-inch-diameter loudspeaker in a closed box baffle. RE ¼ 6.6 U, LE ¼ 0.5 mH,
Bl ¼ 4.5 Tm, and MMS ¼ 9.6 g. The reference level is chosen arbitrarily. SPL, sound pressure level.
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To calculate the efficiency, let us assume that it is mounted in an infinite baffle and

that one-half the power is radiated to each side.

The efficiency, from one side of the loudspeaker, is given by Eq. (6.57) divided by 2,

where for the frequency range well above resonance, we have used the approximations

ZMTzjuMMS and ZEzRE þ juLE.

From this we obtain the solid curve of Fig. 6.25a. It is seen that, above f ¼ 1000 Hz,

the efficiency drops off.
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CHAPTER SEVEN

Loudspeaker systems

PART XXI: SIMPLE ENCLOSURES

Loudspeaker enclosures are the subject of more controversy than any other item

connected with modern high-fidelity music reproduction. Even though the behavior of

enclosures is well understood, opinions and pseudo theories as to the effects of enclosures

on loudspeaker response still persist. For instance, the very mention of directivity is

guaranteed to spark a lively debate among audio engineers, with some favoring a wide

pattern, whereas others prefer a narrow pattern, although virtually all agree that a

constant pattern is desirable to ensure that the room reflections produced by the off-axis

sound have the correct frequency balance. Personal preferences aside, it could be that the

choice depends on the program material. A narrow pattern with fewer room reflections

allows the listener to hear the acoustics of the recording location more clearly, as well as

the positions of the individual performers on the stage. Hence, we might expect a narrow

pattern to favor recordings made in a natural acoustic space such as a concert hall,

church, or theater. On the other hand, for close-miked studio recordings, a greater sense

of presence and listener envelopment may be created by employing a wide pattern

that produces many reflections around the room to produce some sense of a live

performance, albeit in a flawed domestic listening space. After all, unlike the majority of

loudspeakers, musical instruments do not generally fire in one direction only at higher

frequencies. One thing that we cannot control is the fact that at low frequencies, where

the wavelength is much larger than the diaphragm, loudspeakers are invariably omni-

directional, except for a few dipole/cardioid designs. More directive patterns at low

frequencies come at the cost of reduced efficiency.

The design of an enclosure should be undertaken only with full knowledge of the

characteristics of the loudspeaker and of the amplifier available, but fortunately most

reputable manufacturers now provide the ThieleeSmall parameters in their data sheets

along with other useful figures such as sensitivity, xmax, and power rating.

A large part of the difficulty of selecting a loudspeaker and its enclosure arises from

the fact that the psychoacoustic factors involved in the reproduction of speech and music

are not understood. Listeners will rank order differently four apparently identical

loudspeakers placed in four identical enclosures. It has been remarked that if one selects

his own components, builds his own enclosure, and is convinced he has made a wise

choice of design, then his own loudspeaker sounds better to him than does anyone else’s
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loudspeaker. In this case, the frequency response of the loudspeaker seems to play only a

minor part in forming a person’s opinion.

Many working in the field of loudspeaker design believe that it is as much an art as a

science because it involves many choices which reflect personal preferences such as

maximum loudness versus bass extension, physical size, directivity characteristics, and so

forth. In this chapter, we shall discuss only the physics of the problem. Designers should

be able to achieve, from this information, any reasonable frequency-response curve that

they may desire. Furthermore, they will have to seek information elsewhere or to decide

for themselves which shape of frequency-response curve will give greatest pleasure to

themselves and to other listeners.

With the information of this chapter, the high-fidelity enthusiast should be able to

calculate, if he or she understands AC circuit theory, the frequency-response curve for his

or her amplifiereloudspeakerebaffle combination. Design graphs are presented to

simplify the calculations, and three complete examples are worked out in detail. Un-

fortunately, the calculations are sometimes tedious, but there is no short cut to the

answer.

7.1 BRIEF SUMMARY OF COMMON LOUDSPEAKER SYSTEMS

In the sections that follow, information is given on the detail design of loudspeaker

systems. A brief summary of the four most common systems is given here as an aid to

understanding the relative advantages of each of those that are discussed.

Loudspeaker in closed box
It is not practical to mount a loudspeaker in the wall of a residence. Alternatively, an

unbaffled speaker would behave like a dipole radiator and at low frequencies would

radiate little power. To eliminate radiation from the rear side, all loudspeakers before

1950 were mounted in a simple box. In the equivalent circuit, see Fig. 7.1a, the presence

of the box appears as a series compliance CMB which equals S2DVB

�
1:4P0, where VB is

the volume of the box. Its presence raises the speaker’s resonance frequency above that if

it were in an infinite baffle. Obviously, to minimize this increase, the volume of the box

must be made very large. Historically, increasing the compliance CMS to compensate

would result in too large an excursion of the voice coil at low frequencies.

Air-suspension loudspeaker system
A unique solution to box size came with the perception that if the suspension

compliance CMS were made very large, the compliance of the box CMB (i.e., its volume)

could be made much smaller, actually equaling the magnitude of the CMS of the usual

loudspeaker. A different method of suspending the cone was used and, after about 1950,

box volumes were often as small as 20 L.
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Bass-reflex loudspeaker system
The bass-reflex system is a means for obtaining a greater response at low frequencies than

that from the same loudspeaker in a closed box. Actually, it is often used to boost the

output at low frequencies from a system using a relatively small box. Its special feature is a

port in the box from which sound emerges that adds to that directly radiated by the

loudspeaker. The port is a tube with a cross-sectional area about equal to the area of the

loudspeaker cone and a length that is chosen to give the desired resonance frequency.

The simplified equivalent circuit is shown in Fig. 7.1b. Two resonant frequencies

occur: that of the loudspeaker (u0) and that of the box/port. Usually,

MMSCMS ¼ MMPCMB ¼ 1/u0. At u0, euc approaches zero and euP becomes very large.

Below u0, euc and euP are out of phase, and the response is not enhanced by the addition of

the port. However, for one to two octaves above u0 the response is usually enhanced

by about 5 dB.

Transmission-line enclosures
A transmission-line enclosure is the result of research leading to a small box containing a

small loudspeaker and yet producing a strong bass sound. The box may have a volume

as little as 2 L. The loudspeaker drive unit usually has a stiff cone with a diameter between

CMB

RMR
E

g

R
Ble~

CMScu~ MMS RMS
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RMR1
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ge~  = Generator voltage   RMS = Resistance of suspension 

RE = Electrical voice-coil resistance  CMS = Compliance of suspension 
Bl = Electro-mechanical force factor  CMB = Compliance of air in box 
MMS = Mass of diaphragm & coil incl. radiation RMR = Radiation resistance 

RMR1 = Radiation resistance of diaphragm RMR2 = Radiation resistance of port 
MMP = Mass of port incl. end corrections 

Figure 7.1 Low-frequency analogous circuits for (a) a closed-box loudspeaker and (b) a bass-reflex
loudspeaker with electrical quantities referred to mechanical side. For simplicity, generator, box,
leakage, and port resistances are omitted.

Loudspeaker systems 333



5 and 12 cm, and its voice coil is capable of large excursions without generating

appreciable distortion. The front side of the cone radiates directly into the listening space.

Connected to the rear side is a tube whose length is one-fourth that of the lowest desired

bass frequency, and the open end of which also radiates into the listening space. A small

displacement of the cone will result in a large displacement of the air particles at the end

of the tube. For strong bass at 100 Hz, this means a length of 86 cm. The difficulty in

the overall design of the system is that the tube also resonates at frequencies higher than

the 100 Hz. Their strength at the opening end of the tube is diminished by tapering the

tube and filling it with a porous acoustical material of low flow resistance.

7.2 UNBAFFLED DIRECT-RADIATOR LOUDSPEAKER

A baffle is a structure for shielding the front-side radiation of a loudspeaker dia-

phragm from the rear-side radiation which can potentially cancel it at low frequencies.

The necessity for shielding the front side from the rear side can be understood if we

consider that an unbaffled loudspeaker at low frequencies is the equivalent of a pair of

simple spherical sources of equal strength located near each other and pulsing out of phase

(see Fig. 7.2). The rear side of the diaphragm of the loudspeaker is equivalent to one of

these sources, and the front side is equivalent to the other.

If we measure, as a function of frequency f, the magnitude of the rms sound pressure p

at a point A, fairly well removed from these two sources, and if we hold the volume

velocity of each constant, we find from Eq. (4.117) that���ep��� ¼ �r0 f
2
�� eU0

��bp
rc

cos q (7.1)

whereeU0 is strength of each simple source in m3/s.

b is separation between the simple sources in m.

r0 is density of air in kg/m3 (1.18 kg/m3 for ordinary temperature and pressure).

r

b

A

θ

Figure 7.2 Doublet sound source equivalent at low frequencies to an unbaffled vibrating diaphragm.
The point A is located at a distance r and at an angle q with respect to the axis of the loudspeaker.
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r is distance in m from the sources to the point A. It is assumed that r >> b.

q is angle shown in Fig. 7.2.

c is speed of sound in m/s (344.8 m/s, normally).

In other words, for a constant-volume velocity of the loudspeaker diaphragm, the

pressure ep measured at a distance r is proportional to the square of the frequency f and to

the cosine of the angle q and is inversely proportional to r. In terms of decibels, the sound

pressure ep increases at the rate of 12 dB for each octave (doubling) in frequency.

In the case of an actual unbaffled loudspeaker, below the first resonance frequency

where the system is stiffness-controlled, the velocity of the diaphragm is not constant but

doubles with each doubling of frequency. This is an increase in velocity of 6 dB per

octave. Hence, the pressure ep from a loudspeaker without a baffle increases

12 þ 6 ¼ 18 dB for each octave increase in frequency. Above the first resonance

frequency, where the system is mass-controlled, the velocity of the diaphragm decreases

6 dB for each octave in frequency. Hence, in that region, the pressure ep increases

12 � 6 ¼ 6 dB for each octave increase in frequency and we can use the curve shown in

Fig. 13.22 for an unbaffled circular piston (b ¼ a).

The unbaffled loudspeaker has the same analogous circuit as that shown in Fig. 6.4,

but there are two important differences. Instead of the radiation impedance being

approximated by that of a piston in an infinite baffle as plotted in Fig. 4.35 from

Eqs. (13.117) and (13.118), with approximations given in Table 4.4, we use the radiation

impedance of a free disk as plotted in Fig. 4.38 from Eqs. (13.249) and (13.250)

(with b ¼ a), with approximations given in Table 4.5. The other difference is that the

on-axis sound pressure is proportional to the total radiation force eF0 rather than the volume

velocity eU0. From Eqs. (13.237), (13.249), and (13.250), we obtain

epðrÞ ¼ jf r0 eU0
ZS

r0c
$
e�jkr

r
¼ jf eu0ZM

e�jkr

rc

¼ jf eF0
e�jkr

2rc
;

(7.1a)

where we have substituted kb
PN
n¼ 0

An ¼ ZS=ðr0cÞ, eU0 ¼ pa2eu0, ZS ¼ ZM/(pa
2), and

eF0 ¼ 2ZMeu0, taking into account the mechanical radiation impedance ZM on both

sides. Hence, if the diaphragm acceleration is constant, the on-axis response is simply the

magnitude of the radiation impedance and is shown in Fig. 13.22 (b ¼ a). However, in

practice, the acceleration varies with frequency, which is what determines the baffled

response. Because the radiation impedance is small compared with the mechanical

impedance of the driver in most cases and therefore has little influence on the velocity,

we see that the unbaffled response is the product of the baffled response and the radiation
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impedance. Eq. (7.1a) happens to be the same as Eq. (13.128) for the on-axis pressure of

a resilient disk in free space.

The absence of a baffle makes the loudspeaker more directional because, in the plane

of the baffle, the sound pressure tends to reduce to zero. Hence, there are fewer reflections

from side walls. This figure 8 directivity pattern may be used to extend the width of

the stereo “sweet spot” in a room. If the listener moves toward one side of the listening

area, he or she will move further off the main axis of the nearest loudspeaker than that

of the furthest one. Hence, the sound pressure of the nearest loudspeaker will be

reduced automatically relative to that of the furthest one, which will compensate for its

proximity.

Certain kinds of loudspeaker that have very low moving mass, such as electrostatic or

planar magnetic types, are used almost exclusively without a baffle because the extra

stiffness provided by a closed box would push the fundamental resonance frequency up

too high. The problem of low-frequency cancellation is compensated for by using a

very large radiating area. Full-range electrostatic or planar magnetic loudspeakers have

radiating areas of at least 0.5 m2.

7.3 INFINITE BAFFLE

In the previous chapter, we talked about direct-radiator loudspeakers in infinite

baffles. Reference to Fig. 6.7 reveals that with an infinite baffle, the response of a direct-

radiator loudspeaker is enhanced over that just indicated for no baffle. It was shown that

if one is above the suspension resonance frequency, but below the first diaphragm break-

up mode, usually the response is flat with frequency (unless the Bl product is very large),

and that if one is below the first resonance frequency, the response decreases at the rate of

12 dB per octave instead of 18 dB per octave. Hence, the isolation of the front side from

the back side by an infinite baffle is definitely advantageous.

In practice, the equivalent of an infinite baffle is a very large enclosure, well damped

by absorbing material. One practical example is to mount the loudspeaker in one side of

a closet filled with clothing, allowing the front side of the loudspeaker to radiate into the

adjoining listening room.

Design charts covering the performance of a direct-radiator loudspeaker in an infinite

baffle are identical to those for a closed box. We shall present these charts in Section 7.6.

7.4 FINITE-SIZED FLAT BAFFLE

The discussion above indicated that it is advisable to shield completely one side of

the loudspeaker from the other, as by mounting the loudspeaker in a closet. Another

possible alternative is to mount the loudspeaker in a flat baffle of finite size, free to stand

at one end of the listening room. The worst shape for such a baffle is circular because
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sound from the rear arrives at the front at the same time whichever radial path is taken.

Hence, at some frequencies, where the radial path length is a multiple of the wavelength

l, the front radiation is partially canceled, and we have a comb filter effect, as shown in

Fig. 13.22. The effect is considerably smeared if we use a rectangular baffle with the drive

unit offset from the center as is the case with the IEC 268-5 baffle [1].

The performance of a loudspeaker in a free-standing flat baffle leaves much to be

desired, however. If the wavelength of a tone being radiated is greater than twice the

smallest lateral dimension of the baffle, the loudspeaker will act according to Eq. (7.1).

This means that for a finite flat baffle to act approximately like an infinite baffle at 50 Hz,

its smallest lateral dimension must be about 3.5 m (11.5 ft), which limits its use to

midrange units or above. However, even above this frequency, sound waves traveling

from behind the loudspeaker reflect off walls and meet with those from the front and

cause alternate cancellations and reinforcements of the sound as the twowaves come into

phase or out of phase at particular frequencies in particular parts of the room. Hence, the

loudspeaker must be located away from walls or reflecting objects to minimize this effect.

7.5 OPEN-BACK CABINETS

An open-back cabinet is simply a box with one side missing and with the loud-

speaker mounted in the side opposite the open back. Many portable stereos are of this

type. Such a cabinet performs nearly the same as a flat baffle that provides the same path

length between the front and back of the loudspeaker. One additional effect, usually

undesirable, occurs at the frequency where the depth of the box approaches a quarter

wavelength. At this frequency, the box acts as a resonant tube, and more power is radiated

from the rear side of the loudspeaker than at other frequencies. Furthermore, the sound

from the rear may combine in phase with that from the front at about this same

frequency, and an abnormally large peak in the response may be obtained.

7.6 CLOSED-BOX BAFFLE [2,3]

The most commonly used type of loudspeaker baffle is a closed box in one side of

which the loudspeaker is mounted. In this type, discussed here in considerable detail, the

back side of the loudspeaker is completely isolated from the front. A customary type of

closed-box baffle is shown in Fig. 7.3. The sides are made as rigid as possible using

some material like 5-ply plywood or MDF, 0.75e1.0 in. thick, and braced to prevent

resonance. A slow air leak must be provided in the box so that changes in atmospheric

pressure do not displace the neutral position of the diaphragm.

When selecting a loudspeaker, the first two questions that arise are how loud must it

go and what bass cutoff frequency can be tolerated? This of course will depend on the

application, and the radiated sound pressure will need to be greater for an auditorium
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than for a domestic living room. For a cellphone ringtone, it must be possible to hear it in

a noisy street environment. In general, the low-frequency sound pressure is limited by

the displacement limit xmax, and the high-frequency sound pressure is limited by the

power rating. In fact, at higher frequencies, the situation is worse because at least the

larger low-frequency displacement pumps air through the magnetic gap, which helps to

cool the voice coil. If the suspension alone is not stiff enough to limit the full-power

displacement at low frequencies, then part of the function of the box is to provide the

extra stiffness needed to keep the displacement in check. Otherwise, an auxiliary high-

pass filter must be employed. As more stable suspension materials have been developed,

the trend has been toward more compliant suspensions so that an ever greater proportion

of the stiffness can be provided by air in the box which in turn makes the volume of the

box correspondingly smaller. This principle is known as air suspension [4].

Summary of closed-box baffle design

To determine the volume of the closed box and the �3 dB cutoff frequency:

If the ThieleeSmall parameters (RE, QES, QMS, fS, SD, and VAS) of the chosen drive

unit are not supplied by the manufacturer, they may be measured according to Section

6.10. Then QTS ¼ QESQMS/(QES þ QMS).

From Table 7.2, select the frequency-response shape, taking into account that the

closed-box QTC value must be higher than the infinite baffle QTS of the drive unit. The

effect of various QTC values on the frequency-response shape can be seen from Fig. 7.16.

Further advice regarding QTC is given in the paragraph following Eq. (7.56).

Estimate the volume of air in the box VA using Eq. (7.61). However, if the box is

filled or has a thick lining, then the QTC value will be modified. Using the manufac-

turer’s or measured value of flow resistance Rf for the lining material, compute RAB from

Plywood or MDF 
18 to 25 mm 
thick 

Acoustical lining 
13 to 38 mm 
thick 

Figure 7.3 Typical plywood box with loudspeaker mounted off center in one side and lined with a
layer of soft absorbent acoustical material.
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Eq. (7.7) and QMB from Eq. (7.58). Determine the volume VA from Eq. (7.60). The

total internal volume is then VB ¼ VA þ VM, where VM is the volume of the

lining material.

Determine the closed-box resonance frequency fC from Eq. (7.28). From the value of

f3dB/fC given in Table 7.2, compute the cutoff frequency f3dB.

To determine the maximum sound pressure level (SPL):

If the loudspeaker is to be used near a wall or a rigid planar surface, which is large

compared with the longest wavelength to be reproduced, then the maximum sound

pressure SPLmax is obtained from Eq. (6.34) to give

SPLmax ¼ 20 log10

0@ 1

rc � 20� 10�6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ZnomWmax2pf

3
SVASr0

q
REQES

1AdB SPL@ 1m

where Wmax is the maximum rated input power. Otherwise, if it is to be used in the free

field, subtract 6 dB from SPLmax.

To determine the excursion limit:

The maximum peak diaphragm displacement at frequencies well below the closed-box

resonance is obtained from Eq. (7.64) to give

hmax ¼ 1

SDcð1þ VAS=VABÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ZnomWmaxVAS

p
REQESpfsr0

However, we see from Fig. 7.17 that at frequencies below the closed-box resonance, the

displacement peaks at a higher value in the case of Chebyshev alignments. For example,

the displacement peaks at 1.4hmax in the case of the 3-dB Chebyshev alignment or 2hmax

in the case of the 6-dB Chebyshev alignment. If this peak value is greater than the rated

xmax limit of the drive unit, then it should be arranged for the box resonance frequency

fC to be placed below the lower limit of the frequency range of the program material to

be reproduced. If this is not possible, a high-pass filter should be employed to remove all

content below the box resonance frequency. If this is not possible either, then an

alternate drive unit with a greater xmax limit should be considered.

Fig. 7.4 shows the effective diameter of a drive unit required to achieve a given SPL,

with a peak displacement of 1 mm, when radiating omnidirectionally into free space

from a closed-box enclosure. This is obtained from Eq. (6.35), but adjusted by a factor of

O2 for free-space omnidirectional radiation. Hence, for loudspeakers that are to be

placed near a wall, the required diameter should be divided by O2. Because the diameter

has an inverse square-root relationship with the displacement, quadrupling the peak

displacement halves the required diameter. Hence, there has been a trend toward smaller

drive units with greater xmax values, usually achieved by extending the coil beyond the
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magnetic gap, although this reduces sensitivity and efficiency. Considering that the

maximum effective diameter of an individual drive unit is around 40 cm, the difficulty of

producing very low frequencies at high sound pressures is evident. For large auditoriums,

the very large diameters are made up by stacking multiple loudspeakers.
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Figure 7.4 Drive unit effective diameter required to produce a given sound pressure level, with a peak
displacement of 1 mm, when radiating omnidirectionally into free space from a closed-box enclosure.
If the peak displacement is quadrupled (say a peak displacement of 4 mm is allowed), then the
required diameter is halved.
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Analogous circuit
A closed box reacts on the back side of the loudspeaker diaphragm. This reaction may

be represented by an acoustic impedance which at low frequencies is a compliance

operating to stiffen the motion of the diaphragm and to raise the resonance frequency. At

high frequencies, the reaction of the box, if unlined, is that of a multiresonant circuit.

This is equivalent to an impedance that varies cyclically with frequency from zero to

infinity to zero to infinity, and so on. This varying impedance causes the frequency-

response curve to have corresponding peaks and dips.

If the box is lined with a sound-absorbing material, these resonances are damped, and

at high frequencies the rear side of the diaphragm is loaded with an impedance equal to

that for the diaphragm in an infinite baffle radiating into free space. The acoustical circuit

for the box and radiation load on the diaphragm is given in Fig. 7.5. The reactance and

resistance of the box are XAB and RAB. The radiation mass and resistance on the front of

the diaphragm are MAR and RAR, respectively.

At low frequencies, where the diaphragm vibrates as one unit so that it can be treated

as a rigid piston, a complete electromechanoacoustical circuit can be drawn that

describes the behavior of the box-enclosed loudspeaker. This circuit is obtained by

combining Fig. 6.4(b) and Fig. 7.5. To do this, the acoustical radiation element of the

circuit labeled “2MM1” in Fig. 6.4(b) is removed, and the circuit of Fig. 7.5 is substituted

in its place. The resulting circuit with the transformer removed and everything referred

to the acoustical side is shown in Fig. 7.6.

Some interesting facts about loudspeakers are apparent from this circuit. First, the

electrical generator (power amplifier) resistance Rg and the voice-coil resistance RE

appear in the denominator of one of the resistances shown. This means that if one desires

a highly damped or an overdamped system, it is possible to achieve this by using a power

Front of 
diaphragm 

Back of 
diaphragm 

Box

Diaphragm radiation 

Figure 7.5 Analogous acoustical circuit for a loudspeaker box. The volume velocity of the diaphragm
is eUC .
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amplifier with very low output impedance. Second, the circuit is of the simple resonant

type so that we can solve for the voice-coil volume velocity (equal to the linear velocity

times the effective area of the diaphragm) by the use of universal resonance curves.

Our problem becomes, therefore, one of evaluating the circuit elements and then

determining the performance by using standard theory for electrical series LRC circuits.

Values of electrical-circuit elements
All the elements shown in Fig. 7.6 are in units that yield acoustic impedances in N$s/m5,

which means that all elements are transformed to the acoustical side of the circuit. This

accounts for the effective area of the diaphragm SD appearing in the electrical part of the

circuit. The quantities shown areeeg is open-circuit voltage in V of the audio amplifier driving the loudspeaker.

B is flux density in the air gap in T (1 T ¼ 104 G).

l is length of the wire wound on the voice coil in m.

Rg is output electrical impedance (assumed resistive) in U of the audio amplifier.

RE is electrical resistance of the wire on the voice coil in U.
a is effective radius in m of the diaphragm.

SD ¼ pa2 is effective area in m2 of the diaphragm.

Values of the mechanical-circuit elements
The elements for the mechanical part of the circuit differ here from those of Part XIX in

that they are transformed over to the acoustical part of the circuit so that they yield

acoustic impedances in N$s/m5.

MAD ¼ MMD

�
S2D is acoustic mass of the diaphragm and voice coil in kg/m4.

MMD is mass of the diaphragm and voice coil in kg.

CAS ¼ CMSS
2
D is acoustic compliance of the diaphragm suspensions in m5/N.

CMS is mechanical compliance in m/N.

Box

Front side of 
diaphragm 
radiation 

Mechanical part 
of loudspeaker Electrical 

Figure 7.6 Circuit diagram for a direct-radiator loudspeaker mounted in a closed-box baffle. This
circuit is valid for frequencies below about 400 Hz.
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RAS ¼ RMS

�
S2D is acoustic resistance of the suspensions in N$s/m5.

RMS is mechanical resistance of the suspensions in N$s/m.

These quantities may readily be measured with a simple setup in the laboratory, as

described in Section 6.10. It is helpful, however, to have typical values of loudspeaker

constants available for rough computations, and these are shown in Figs. 7.7 and 7.8. The

average value of RE for a drive unit with an advertised impedance of 8 U is around 6.3 U.
The magnitude of the air-gap flux density B varies from 0.6 to 1.4 T depending on the

cost and size of the loudspeaker.

0

50

100

150

200

250

300

350

400

0 2 4 6 8 10 12 14 16 18

E
ffe

ct
iv

e 
di

am
et

er
 (m

m
)

Advertised diameter (Inches)

0

25

50

75

100

125

150

175

200

225

250

0 2 4 6 8 10 12 14 16 18

Fr
ee

 a
ir 

re
so

na
nc

e 
fre

qu
en

cy
 (H

z)

Advertised diameter (Inches)

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

0 2 4 6 8 10 12 14 16 18

E
ffe

ct
iv

e 
ar

ea
 (s

q.
 m

)

Advertised diameter (Inches)

0

50

100

150

200

250

300

350

400

450

500

0 2 4 6 8 10 12 14 16 18

S
us

pe
ns

io
n 

eq
ui

va
le

nt
 v

ol
um

e 
(L

)

Advertised diameter (Inches)

(a) (b)

(c) (d)

Figure 7.7 (a) Relation between effective diameter of a loudspeaker and its advertised diameter. (b)
Average resonance frequencies of direct-radiator loudspeakers when mounted in IEC 268-5 baffles [1]
versus the advertised diameters. (c) Average effective radiating areas of loudspeakers versus the
advertised diameters. (d) Average compliances of suspensions of loudspeakers versus the advertised
diameters, where the compliance is expressed as an equivalent volume in liters.
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Impedance of closed box with absorbent lining
The type of reactance function shown in Fig. 7.12 without absorbent lining is not

particularly desirable because of the very high value that XAB reaches at the first normal

mode of vibration (resonance) for the box, which occurs when the depth of the

box equals one-half wavelength. A high reactance reduces the power radiated to a very

(a)

(d)(c)

(b)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10 12 14 16 18

E
le

ct
ric

al
 Q

Advertised diameter (Inches)

0

1

2

3

4

5

6

7

8

9

10

0 2 4 6 8 10 12 14 16 18

M
ec

ha
ni

ca
l Q

Advertised diameter (Inches)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10 12 14 16 18

To
ta

l Q

Advertised diameter (Inches)

0

5

10

15

20

25

30

35

0 2 4 6 8 10 12 14 16 18

M
as

s 
lo

ad
in

g 
fa

ct
or

 (%
)

Advertised diameter (Inches)

MS

MSE
ES C

M
lB

RQ 22=
MS

MS

MS
MS C

M
R

Q 1=

MSES

MSES
TS QQ

QQQ
+

=
200MM1/MMS

Figure 7.8 (a) Average electrical QES values of loudspeaker drive units versus the advertised di-
ameters. (b) Average mechanical QMS values of loudspeaker drive units versus the advertised di-
ameters. (c) Average total QTS values of loudspeaker drive units versus the advertised diameters. (d)
Average mass loading factors of loudspeaker drive units versus the advertised diameters, where the
mass loading factor is the ratio of the radiation mass on both sides in an infinite baffle (2MM1) to the
total moving mass of the drive unit (MMS), where MMS ¼ MMD þ 2MM1.
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small value. To reduce the magnitude of XAB at the first normal mode of vibration, an

acoustical lining is placed in the box. This lining should be highly absorbent at the

frequency of this mode of vibration and at all higher frequencies. For normal-sized

boxes, a satisfactory lining is a 25 mm-thick layer of bonded mineral wool, bonded

Fiberglass, bonded hair felt, Cellufoam (bonded wood fibers), etc. For small cabinets,

where the largest dimension is less than 0.5 m, a 12.5 mm-thick layer of absorbing

material may be satisfactory.

At low frequencies, where the thickness of the lining is less than 0.05 wavelength,

the impedance of the box presented to the rear side of the diaphragm is represented by

the analogous circuit of Fig. 7.9 and equals

ZAB ¼ RAB þ jXAB (7.2)

where

XAB z uMAB � 1

uðCAA þ CAMÞ (7.3)

andCAA andMAB are the acoustic compliance and mass, respectively, of the air inside the

box given by

CAA ¼ VA

gP0
(7.4)

MAB ¼ Br0
pa

(7.5)

where

VA is volume of air in the box in m3 excluding that contained within the pores of the

lining material. The volume of the loudspeaker should also be subtracted from the

Figure 7.9 Analogous circuit for the acoustic impedance ZAB presented to the rear side of the diaphragm
at low frequencies where the smallest dimension of the box is less than one-sixteenth wavelength.
The volume velocity of the diaphragm ¼ eUc ; MAB ¼ acoustic mass of the air load on the rear side of
diaphragm; CAA ¼ acoustic compliance of the air in the box excluding the lining; CAM ¼ acoustic
compliance of the air in the pores of the lining; and RAM ¼ acoustic resistance of the lining.
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actual volume of the box to obtain this number. To a first approximation, the volume

of the speaker in m3 equals 0.4 � the fourth power of the advertised diameter in m.

g ¼ 1.4 for air for adiabatic compressions.

P0 is atmospheric pressure in Pa (about 105 on normal days).

pa ¼ ffiffiffiffiffiffiffiffiffi
SDp

p
if the loudspeaker is not circular.

B is a constant, given in Fig. 7.10 for a box of the type shown in Fig. 7.11, which is

dependent on the ratio of the effective area of the loudspeaker diaphragm SD to the

area L2 of the side of the box in which it is mounted.

We see from Fig. 7.10 that when the diaphragm has the same area as the cross-

sectional area of the box, that is SD/L
2 ¼ 1, the box becomes a closed tube of length

L/2 and the mass load on the rear of the diaphragm is one-third of the total mass in the

box, so that B ¼ ffiffiffi
p

p
=6. On the other hand, when the area of the diaphragm is very

small compared with the cross-sectional area of the box, that is SD/L
2 / 0, the mass on

the rear of the diaphragm is that of a piston in an infinite baffle so that B/8=ð3pÞ.
It is assumed that the pressure variations in the pores of the lining material are

isothermal so that the compliance of the lining material is given by

CAM ¼ VM

P0
(7.6)
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Figure 7.10 End-correction factor B for the reactance term of the impedance at the rear side of the
loudspeaker diaphragm mounted in a box of the type shown in Fig. 7.11. Because the diaphragm is
circular, it cannot have the same area as the wall in which it is mounted (SD/L

2 ¼ 1). Hence, the last
part of the curve beyond SD/L

2 ¼ p/4 is only applicable to square diaphragms and is thus dotted. The
acoustic reactance of the box on the diaphragm is given by XAB ¼ �gP0/uVA þ uBr0/pa. For a
noncircular diaphragm of area SD, pa ¼ ffiffiffiffiffiffiffiffi

SDp
p

.
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whereVM is the total volume of the pores. Then, from Fig. 7.9, the resistance is defined by

RAB ¼ <
0@ juCAA þ 1

RAM þ ð juCAMÞ�1

!�1
1A

¼ RAM�
1þ VA

gVM

�2

þ u2R2
AMC2

AA

(7.7)

where

RAM ¼ dRf/(3SM) is one-third of the total flow resistance of a layer of thickness d of

the acoustical material that lines the box divided by the area of the acoustical material

SM. The units are N$s/m5. The flow resistance equals the ratio of the pressure drop

across the sample of the material to the linear air velocity through it. For lightweight

materials the flow resistance Rf is about 100 rayls for each 25 mm of thickness. For

dense materials like PF Fiberglass board or rockwool duct liner, the flow resistance

may be as high as 2000 rayls for each 25 mm of thickness of the material. For

example, if the flow resistance per 25 mm of material is 500 rayls, the thickness is

75 mm, and the area is 0.2 m2, then RAM ¼ 1500/(3 � 0.2) ¼ 2500 N$s/m5.

It is assumed in writing this equation that the material does not occupy more than

20% of the volume of the box.

Sound propagation in homogeneous absorbent materials [5]
The sound propagation in fibrous or porous acoustical materials can be described with a

relatively simple analytical model if the constituent (the solid part of the material) is

assumed to be rigid [6]. A model taking into account the flexibility of the constituent [7]

2L

L

aL

Figure 7.11 Loudspeaker mounted in a closed box with internal dimensions L � L � L/2 when un-
lined and a diaphragm of area SD ¼ pa2 at the center of the L � L face where L2/SD ¼ 16. When lining
of thickness d ¼ L/10 is added to the rear surface, the internal depth is increased to 0.6L. While this
type of box is convenient for analysis, the construction shown in Fig. 7.3 is more commonly used.
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would better describe behavior of the relatively low-density absorbents used in loud-

speakers, but such a model requires parameters that are quite difficult to obtain. A good

empirical description of sound propagation in absorbents has been presented by Delany

and Bazley [8], with extensions by Miki [9]. Flow resistance is needed to compute the

acoustical properties of a porous material. It can be determined when the porosity and the

average (rms) fiber diameter are known, by using an equation derived by Sides et al. [10]:

Rf ¼ Dp

ud
¼ 4mð1� 4Þ

4r2

 
1� 4

p
ð1� 4Þ

2þ ln
m4

2rr0u

þ 6

p
ð1� 4Þ

!
(7.8)

where

Rf is flow resistance of material in rayls/m.

Dp is pressure difference across material in Pa.

u is flow velocity in the material in m/s.

d is thickness of the material in m.

m is viscosity coefficient. For air, m ¼ 1.86 � 10�5 N$s/m2 at 20�C and 0.76 m Hg.

4 is porosity of the material.

r is fiber diameter (rms average).

r0 is density of air in kg/m3.

As Eq. (7.8) shows, the flow resistance is a function of flow velocity. Eq. (7.8) is

actually the equation of the static flow resistance, and sowith sound the rms value of flow

velocity should be used. With flow velocities associated with sound pressures of interest,

the variation of the flow resistance is rather small, and so this nonlinear effect can be

ignored and a typical value of flow velocity can be used; Sides et al. recommend a value of

u ¼ 0.03 m/s. If the flexibility of the constituent were taken into account, the resistance

values would be somewhat lower. The porosity 4 is defined as the proportion of the

constituent material to the total volume of the absorbent and is defined by

4 ¼ 1� rM

rC
(7.9)

where

rM is density of absorbent material in kg/m3.

rC is density of the constituent material (e.g., glass 2200e2900 kg/m3).

Typical values of porosity in acoustical absorbents range from 0.95 to 0.99. When the

flow resistance is determined, then the characteristic impedanceZs can be determined by

Zs ¼ r0c

( 
1þ a1

�
Rf

f

�b1
!

� ja2

�
Rf

f

�b2
)

(7.10)
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and the wave number k by

k ¼ u

c

( 
1þ a3

�
Rf

f

�b3
!

� ja4

�
Rf

f

�b4
)

(7.11)

where

r0 is density of air in kg/m3.

c is speed of sound in air in m/s.

f is frequency in Hz.

u is angular frequency (2pf ).

The coefficients a1 to b4 are given in Table 7.1.

The original coefficients given by Delany and Bazley give an excellent match to

experimental results when 0.01 < f/Rf < 1, but the coefficients should not be used for

extrapolation outside this range; using these coefficients with low values of flow resis-

tance and frequency (such as those usually applied in loudspeakers) can yield negative

values of attenuation. In such cases, the coefficients given by Miki should be used

instead. The lower limit of validity for Miki’s equations is f/Rf > 0.0005. Other con-

ditions for validity of these equations are that the porosity is close to unity and that the

flow resistance Rf is between 20 and 800 rayls/cm. In practice, the soft bulk fibrous

absorbents, such as natural and synthetic organic fibers and soft glass wool, used in

loudspeakers meet these additional conditions. The more rigid absorbent sheets

commonly used for room acoustics treatment have anisotropic acoustical characteristics,

and these models cannot be applied as such.

Impedance of closed box with or without absorbent lining at all
frequencies
Until now, we have only dealt with low frequencies using the circuit shown in Fig. 7.9,

which is valid when the wavelength is greater than 8 times the smallest dimension of the

box. To see the effect of the internal standing wave modes on the impedance or to

Table 7.1 Values of coefficients used in Eqs. (7.10) and (7.11) for characteristic
impedance and wave number, respectively, of a homogenous absorbent material.
Coefficient Delany and Bazley Miki

a1 0.0511 0.070

a2 0.0768 0.107

a3 0.0858 0.109

a4 0.175 0.160

b1 0.75 0.632

b2 0.73 0.632

b3 0.70 0.618

b4 0.59 0.618
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investigate the effect of placing lining material on the rear surface, we need a full model

of the enclosed space. Such a model will be developed in Section 7.18 resulting in

Eq. (7.131) for the self- and mutual impedances of a closed box with two pistons in one

wall and an impedance boundary condition on the opposite wall as shown in Fig. 7.34.

The second piston is intended to represent the coupling to a bass-reflex port. The width,

length, and depth of the box are lx, ly, and lz, respectively. The dimensions of the pistons

are a1 � b1 and a2 � b2. However, for a closed box with no bass-reflex port, we just use

Z11 from Eq. (7.128a) and divide through by a21 to obtain the acoustic impedance, which

is in the form of an eigenfunction expansion. In the case of a box with the dimensions

shown in Fig. 7.11, where lx ¼ ly ¼ L, lz ¼ x1 ¼ y1 ¼ L/2, and a1 ¼ a, this reduces to:

ZAB ¼ z11�
pa2
�2 ¼ �jr0c

(
1

L2
cot

kL

2
þ k

p2a2

XN
m¼ 0

XN
n¼ 0

ð2� dm0Þð2� dn0Þ
kmn
�
n2 þ m2

�þ dm0dn0

� J21

 
2pa

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ n2

p
L

!
cot

kmnL

2

)
;

(7.12)

where kmn is given by

kmn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 �

�
2mp

lx

�2

�
�
2np

ly

�2
s

. (7.13)

Although this expansion looks complicated, it is highly amenable to numerical

computation, and the impedance can be used as part of a matrix expression for the

equivalent circuit, as will be demonstrated in Examples 7.2 and 7.3. The first term is

simply that of a tube with the same depth lz as that of the box and a termination

impedance Zs. The impedance of a tube was given by Eq. (2.60). For the impedance of

the lining we set

Zs ¼ Rf d

3
þ P0

jud
(7.14)

where d is the thickness of the lining, and we are assuming that the material is so porous

that it is mainly air. For simplicity, we will let lz ¼ L/2, lx ¼ ly ¼ L, a1 ¼ b1 ¼ ffiffiffiffiffiffi
SD

p
,

and y1 ¼ L/2. In Fig. 7.12, the specific impedance is plotted for the box of Fig. 7.11 with

acoustic lining on the rear surface only to a depth of d ¼ L/10 in addition to the box
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depth of L/2. Hence, the air volume is VA ¼ L3/2, and the material volume is

VM ¼ L3/10. The flow resistance of the lining is Rf d ¼ 3r0c to maximize absorption at

high frequencies.

We see from Fig. 7.12 that at high frequencies the unlined box impedance varies

dramatically with frequency between zero reactance and very high reactance. With

lining, the box resonances (normal modes of vibration) are damped out so that RSB has a

constant value of around r0c and XSB approaches zero. If this behaved simply like an

acoustic transformer (see Eq. (4.38)), we might expect the high-frequency value of RSB

to be r0c/16, that is, the impedance of the lining divided by the ratio of the area of the

lining to that of the diaphragm. However, the transformer model is only valid when the

wavelength is large compared with the depth L/2. Instead, we see a much higher value of

RSB because, as the size of the box is increased, the impedance seen by the diaphragm

approaches that of a piston in an infinite baffle, which is r0c.

Acoustical material may also be used to enlarge effectively the volume of enclosed air.

Gaseous compressions in a sound wave are normally adiabatic. If the air space is

completely filled with a soft, lightweight material such as kapok or Cellufoam (foamed

wood fibers), the compressions become isothermal. This means that the speed of sound

decreases from c ¼ 344.8 m/s to c ¼ 292 m/s. Reference to Fig. 7.12 shows that this

lowers the reactance at low frequencies just as does an increase in box dimension L. This

also means that in Eq. (7.4) the value of g is 1.0 instead of 1.4. In some designs, activated

Figure 7.12 Normalized specific acoustic impedance ðZSB=r0c ¼ ZMB=ðSDr0cÞ ¼ ZABSD=r0cÞ of the
closed box shown in Fig. 7.11. The lining has a specific flow resistance of Rf d ¼ 3r0c, which provides
optimum sound absorption at higher frequencies. The position of the first normal mode of vibration
occurs when L/2 ¼ l/2, that is, it occurs at

ffiffiffiffiffi
SD

p
=l ¼ 0:25 for L2/SD ¼ 16. Without the lining, RSB ¼ 0.
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carbon is used to increase the apparent volume of the box even further. The pores

within the material have a vast internal surface area on which air molecules are adsorbed

when the pressure increases. When the pressure decreases, they are released again, the

effect of which is to reduce the stiffness of the air in the box. However, the flow

resistance of the material will have the effect of reducing the Q of the closed-box

resonance, which may or may not be a good thing depending on what the value was

to begin with [11,12].

Unlined closed box at low frequencies
In an unlined box, XAB is not well behaved for wavelengths shorter than eight times the

smallest dimension of the box [13], as is seen from Fig. 7.12. If the dimension behind the

loudspeaker is less than about l/4, the reactance is negative (compliance dominated). If

that dimension is greater than l/4, the reactance is usually positive (mass dominated).

When that dimension is equal to l/2, the reactance becomes very large and the sound

pressure radiated from the loudspeaker is attenuated. However, in many applications,

such as tweeters, cellphones, and MP3-player docking stations, the box is small

compared with the wavelength over most of the working frequency range and so these

typically have unlined enclosures. For those frequencies where the wavelength of sound

is greater than eight times the smallest dimension of the box, the acoustic reactance

presented to the rear side of the loudspeaker is a series mass and compliance as given by

Eq. (7.3), but with CAM ¼ 0. For example, if the depth of the box is 2 cm, then the

maximum frequency for Eq. (7.3) is 2.18 kHz, and the reactance will become very large

at 8.72 kHz. The impedance at all frequencies is given by Eq. (7.12), but with Zs /N,

so that

kmnZs

kr0c
þ j tan kmnlz

1þ j
kmnZs

kr0c
tan kmnlz

¼ �jcot kmnlz (7.15)

To determine the end-correction factor B used in Eq. (7.5) and for the plot of

Fig. 7.10 (where for simplicity we let lz ¼ L/2, lx ¼ ly ¼ L, a1 ¼ b1 ¼ ffiffiffiffiffiffi
SD

p
, and

y1 ¼ L/2), we make the following low-frequency (k / 0) approximations:

cot
kL

2
z

2

kL
� kL

6
(7.16)

kmn z j
2p

L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ n2

p
(7.17)
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and

k

kmn
cot

kmnL

2
z� kL

2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ n2

p (7.18)

Noting that ZAB ¼ jXAB, where XAB is given by Eq. (7.3), we obtain the following

expression for the end-correction factor B:

B ¼
ffiffiffiffiffiffiffiffiffi
pSD

p
r0

MAB ¼ p1=2
ffiffiffiffiffiffi
SD

p
6L

þ L

2
ffiffiffiffiffiffi
SD

p
XN
m¼ 0

XN
n¼ 0

ð2� dm0Þð2� dn0Þ�
p
�
m2 þ n2

��3=2þ dm0dn0

J21

�
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðm2þn2Þ

q ffiffiffiffiffiffi
SD

p
L

�
;

(7.19)

which is valid for lined or unlined boxes.

Location of loudspeaker drive unit in box
The results shown in Fig. 7.12 for the reactance of the closed box apply to a loudspeaker

mounted in the center of one of the L by L sides. This location of the loudspeaker leaves

something to be desired, because waves traveling outward from the diaphragm reach the

outside edges of the box simultaneously and in combination set up a strong diffracted

wave in the listening space. To reduce the magnitude of the diffracted wave, the loud-

speaker should be moved off center by several inchesdpreferably in the direction of one

corner. The use of rounded corners also helps to mitigate diffraction effects.

Note that if an ideal flat drive unit occupies the whole of one wall, no modes will

occur between the adjacent walls, only between the drive unit and opposite (rear) wall.

This is because the drive unit itself and the opposite wall are both reflected in the

adjacent walls, which act like mirrors. Hence, the drive unit behaves like an infinite

piston facing an infinite reflective surface.

The front face of the box of Fig. 7.11 need not be square. It is possible to make the ratio

of the two front edges vary between one and three without destroying the validity of the

charts, for the same total volume. In hi-fi loudspeaker enclosures, it is not unusual for all the

sides to be of different lengths with a “golden ratio” of 21/3 (¼1.26) between the two

smallest sides and the two largest ones so that the largest side is 22/3 (¼1.6) times longer than

the shortest one. The purpose of this is to interleave the internal vibration modes so that

they do not reinforce each other. It is also common to make the width of the front panel as

narrow as possible (hence, there will be little in the way of modes between the side walls)

and also to extend the height of the box so that the loudspeaker is floor standing. It is

advisable to locate the drive unit at about one-third of the internal height from either the

top or bottom so as not to coincide with the antinodes of the first or second vertical modes.
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Effect of box compliance on resonance frequency and Q
Let us analyze the effect of the closed-box baffle on the lowest resonance frequency of a

direct-radiator loudspeaker. For convenience, let us define a net compliance CAB for a

lined box:

CAB ¼ CAA þ CAM (7.20)

where CAM is the compliance of the air in the lining material (we assume that it is highly

porous so that it is mainly air) given by Eq. (7.6) and CAA is the compliance of the

remaining free space given by Eq. (7.4). Let us define an apparent box volume VAB for a

lined box in terms of the volume of the lining material VM and the remaining internal

free space VA so that

VAB ¼ VA þ gVM (7.21)

However, the total physical internal volume of the box VB is

VB ¼ VA þ VM (7.22)

which is smaller than the apparent volume VAB due to the isothermal pressure fluctu-

ations within the lining material. For a loudspeaker mounted in an infinite baffle, the

frequency for zero reactance is

fSB ¼ 1

2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CASðMAD þ 2M 0

A1Þ
p (7.23)

where we have assumed that the radiation reactance XAR from each side of the dia-

phragm equals uM 0
A1 and that M 0

A1 ¼ 0.27r0/a.

From Fig. 7.6, we see that the resonance frequency fC for the loudspeaker in a closed-

box baffle with a volume less than about 200 L is

fC ¼ 1

2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CAS þ CAB

CASCABðMAD þMA1 þMABÞ

s
(7.24)

where CAB andMAB are given by Eqs. (7.20) and (7.5) andMA1 is the radiation mass of a

closed-back piston given by MA1 ¼ 3/4M
0
A1 z 0.2r0/a.

The ratio of (7.24) to (7.23) is equal to the ratio of the resonance frequency with the

box to the resonance frequency with an infinite baffle. This ratio is

fC

fSB
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1þ CAS

CAB

��
1þ 2M 0

A1 �MA1 �MAB

MAD þMA1 þMAB

�s
. (7.25)
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Let us assume that MAB is approximately the radiation mass of a piston in an infinite

baffle and that M 0
A1 z 0.043MAD so that Eq. (7.25) is approximately:

fC

fSB
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1.01

�
1þ CAS

CAB

�s
(7.26)

Hence, the 1% difference in mass loading alone between the loudspeaker in a closed

box and in an infinite baffle will produce a 0.5% increase in resonance frequency.

Often, it is difficult to find an “infinite” baffle in which to determine the resonance

frequency. If the loudspeaker is held in free space without a baffle, the mass loadingM00
A1

on the diaphragm will be exactly one-half its value in an infinite baffle, that is,

M00
A1 ¼ 0.135r0/a. Hence, the ratio of the resonance frequency in the closed box fC to

the resonance frequency without baffle fSA is approximately

fC

fSA
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0.97

�
1þ CAS

CAB

�s
(7.27)

Ignoring the mass loading effect, the above equations for the frequency shift due to a

lined box can be conveniently expressed in terms of the ThieleeSmall parameters fS, and

VAS (IEC-baffle [1] resonance frequency and equivalent suspension volume, respec-

tively), and the apparent box volume VAB:

fC

fS
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ VAS

VAB

r
(7.28)

This equation is plotted in Fig. 7.13.

Values of radiation (front-side) impedance
Acoustical elements always give the newcomer to the field of acoustics some difficulty

because they are not well behaved. That is to say, the resistances vary with frequency, and,

when the wavelengths are short, so do the masses.

The radiation impedance for the radiation from the front side of the diaphragm is

simply a way of indicating schematically that the air has mass, that its inertia must be

overcome by the movement of the diaphragm, and that it is able to accept power from

the loudspeaker. The magnitude of the front-side radiation impedance depends on

whether the box is very large so that it approaches being an infinite baffle or whether the

box has dimensions of less than about 0.6 by 0.6 by 0.6 m (7.6 ft3), in which case the

behavior is quite different.
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Very large box (approximating infinite baffle)
RAR is radiation resistance for a piston in an infinite baffle in N$s/m5. This resistance is

determined from the ordinate of Fig. 4.35 multiplied by 407/SD. If the frequency is low,

so that the effective circumference of the diaphragm (2pa) is less than l, that is, ka < 1

(where k ¼ 2p/l), RAR may be computed from

RARz
0.159u2r0

c
z0.0215f 2 (7.29)

XAR is radiation reactance for a piston in an infinite baffle. This reactance is deter-

mined from the ordinate of Fig. 4.35, multiplied by 407/SD. For ka < 1, XAR is given by

XAR ¼ uMA1z
0.270ur0

a
z
2.0f

a
(7.30a)

and

MA1 ¼ 0.270r0
a

z
0.318

a
(7.30b)

Small- to medium-sized box (less than 200 L)
RAR is approximately the radiation impedance for a one-sided piston in free space. This

resistance is determined from the ordinate of Fig. 4.39 multiplied by 407/SD. If the
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Figure 7.13 Frequency ratio fC/fS ¼ ratio of the resonance frequency for a loudspeaker in a closed-
box baffle to the resonance frequency for the same loudspeaker in an IEC 268-5 baffle [1].
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frequency is low so that the effective circumference of the diaphragm (2pa) is less than l,

RAR may be computed from

RAR ¼ pf 2r0
c

z0.01076f 2 (7.31)

XAR is approximately the radiation reactance for a one-sided piston in free space. This

reactance is determined from the ordinate of Fig. 4.39 multiplied by 407/SD. For ka < 1,

XAR is given by

XAR ¼ uMA1z
uð0.2026Þr0

a
z
1.5f

a
(7.32a)

and

MA1 ¼ 0.2026r0
a

z
0.239

a
(7.32b)

Radiation equation
At very low frequencies where the diaphragm has not yet become a directional radiator

(i.e., its circumference is less than about a wavelength), the loudspeaker in a closed-box

baffle may be treated as though it were a simple spherical source of sound. We find from

Eq. (4.71) that the sound pressure a distance r away from such a source in a free field is

given by

epðrÞ ¼ �jf r0 eUc
e�jkr

2r
; kR << 1 (7.33)

whereep is sound pressure in Pa at a distance r from the loudspeaker.eUc ¼ eucSD is volume velocity of the diaphragm in m3/s.

r0 is density of air in kg/m3 (about 1.18 kg/m3 for normal room conditions).

r is distance from the loudspeaker in m.

f is frequency in Hz.

R ¼ (3VB/4p)
1/3 is average dimension of the enclosure.

At higher frequencies, where the diaphragm is becoming more directional but yet is

still vibrating substantially as a rigid piston, we use Eq. (13.104) for a piston in an infinite

baffle. When the wavelength is small compared with the dimensions of the box, it acts as

a large baffle so that the pressure at a distance r in a free field is

epðrÞ ¼ �jf r0 eUc
e�jkr

r
; kR >> 1 (7.34)
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Hence, there is a 6 dB lift at higher frequencies due to the baffle effect. Examples of

this can be seen in Figs. 12.24 and 13.30, which show the on-axis pressure responses of a

piston in a sphere and a closed-back circular baffle, respectively. If the corners of the box

are square, the rise will be accompanied by some ripples in the on-axis response due to

reflections from the corners. No exact solution exists for this kind of problem, although

some useful approximations can be made [14e16]. Otherwise, if the corners are

rounded, the transition will be smoother like that of a point source in a sphere shown in

Fig. 12.15. Let us now modify Eq. (7.33) by adding an on-axis directivity function D(0)

so that it covers the transition region:

epðrÞ ¼ �jf r0 eUc
e�jkr

2r
Dð0Þ (7.35)

The type of approximation we use forD(0) will depend on the form of the enclosure.

If it is very rounded, the following expression provides a reasonably good approximation

to a point source on a sphere:

Dð0Þ z 1þ jkR

1þ jkR=2
(7.36)

where R is the radius of the sphere and k ¼ 2pf/c, so that the pressure magnitude is

��pðrÞ��z f r0jUcj
2r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2R2

1þ k2R2=4

s
(7.37)

The approximation of Eq. (7.36) is plotted in Fig. 7.14 along with the exact

expression for a point source on a sphere from Eq. (12.47). For an enclosure in which the

loudspeaker occupies the full width, a closed-back piston model is more appropriate, in

which case

Dð0Þ z 1� 2
�
ka
� ffiffiffi

5
p �2 þ j2

�
ka
� ffiffiffi

5
p �

1� �ka� ffiffiffi
5

p �2 þ j
�
ka
� ffiffiffi

5
p � (7.38)

where a is the radius of the piston so that the pressure magnitude is

��pðrÞ��z f r0jUcj
2r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð5� 2k2a2Þ2 þ 20k2a2

ð5� k2a2Þ2 þ 5k2a2

s
. (7.39)

The approximation of Eq. (7.38) is plotted in Fig. 7.15 along with the exact

expression for a closed-back piston in free space from Eq. (13.253). This gives a more

rapid 6 dB transition than the point source on a sphere. Because most drive units are

designed to have as flat a response as possible in a flat baffle, the only way to correct for
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Figure 7.14 Plot of 20 log10D(0) for a point source in a sphere of radius R, which is used to model the
baffle effect of a loudspeaker in a rounded closed-box baffle with constant diaphragm acceleration.
The black curve shows the exact result from Eq. (12.47) and the gray curve shows the approximation
from Eq. (7.36).
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Figure 7.15 Plot of 20 log10D(0) for a closed-back piston of radius a in free space, which is used to
model the baffle effect of a loudspeaker in a narrow closed-box baffle with constant diaphragm
acceleration. The black curve shows the exact result from Eq. (13.253) and the gray curve shows the
approximation from Eq. (7.38). It is interesting to note that the exact on-axis response of the closed-
back piston is obtained from the sum of the on-axis responses of a free piston and a piston in an
infinite baffle, where the latter is just unity under constant acceleration. The on-axis response of a free
piston is simply the magnitude of its radiation impedance shown in Fig. 4.38.
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this 6 dB lift is to include the inverse of the functionD(0) in the crossover network as will

be discussed in Section 7.20. At even higher frequencies, the on-axis response starts to

roll off, even if the diaphragm is rigid and perfectly well behaved, because of the cone

shape, which can be thought of as an approximate concave dome. See Fig. 12.32. The

roll-off is somewhat irregular due to “cup” resonances. The directivity pattern then

becomes constant with an angle of dispersion that corresponds to the arc angle of

the concave dome, as shown in Fig. 12.31.

Diaphragm volume velocity eUc

We determine the volume velocity eUc from Fig. 7.6:

eUc ¼ eegBl
SDðRg þ REÞ

 
B2l2

ðRg þ REÞS2D
þ RA þ jXA

! (7.40)

where, from Fig. 7.6,

RA ¼ RAS þ RAB þ RAR (7.41)

XA ¼ uMA � 1=ðuCAÞ (7.42)

MA ¼ MAD þMA1 þMAB (7.43)

CA ¼ CASCAB

ðCAS þ CABÞ (7.44)

The radiation mass and resistance RAR andMA1 are generally given by Eqs. (7.31) and

(7.32) but for very large boxes or for infinite baffles are given by Eqs. (7.29) and (7.30).

In an effort to simplify Eq. (7.40), let us define aQTC in the same manner as we do for

electrical circuits. First, let us set

uC ¼ 2pfC ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MACA

p (7.45)

where uC ¼ angular resonance frequency for zero reactance. Then,

QEC ¼ ðRg þ REÞS2D
B2l2

ffiffiffiffiffiffiffi
MA

CA

r
(7.46)

QMC ¼ 1

RA

ffiffiffiffiffiffiffi
MA

CA

r
(7.47)
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QTC ¼ QECQMC

QEC þQMC
(7.48)

so that we can write

eUc ¼ SDeeg
BlQEC

BCð f Þ (7.49)

where the frequency-response function BCð f Þ is given by

BCð f Þ ¼
j
f

fC

1� f 2

f 2C
þ j

1

QTC
$
f

fC

(7.50)

This has the same form as bcð f Þ in Eq. (6.7) for a loudspeaker in an infinite baffle,

which is plotted in Fig. 6.5, except that the parameters have been modified by the

enclosure.

Reference volume velocity and sound pressure
A reference diaphragm volume velocity is arbitrarily defined here by the equation

UcðrmsÞ ¼ egðrmsÞBlSD
ðRg þ REÞuMM

(7.51)

where we have set the total mass to MA ¼ MM

�
S2D. This reference volume velocity is

equal to the actual volume velocity above the resonance frequency under the special

condition that R2
A of Eq. (7.41) is small compared with u2M2

A. This reference volume

velocity is consistent with the efficiency defined in Section 6.9.

The reference sound pressure at low frequencies, where it can be assumed that there is

unity directivity factor, is found from Eqs. (7.33) and (7.51):

prms ¼
egðrmsÞBlSDr0

ðRg þ REÞMM4pr
(7.52)

It is emphasized that the reference sound pressure will not be the actual sound

pressure in the region above the resonance frequency unless the motion of the diaphragm

is mass-controlled and unless the directivity factor is nearly unity. The reference pressure

is, however, a convenient way of locating “zero” decibels on a relative SPL response

curve, and this is the reason for defining it here.
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Radiated sound pressure for ka < 1
The radiated sound pressure in the frequency region where the circumference of the

diaphragm (2pa) is less than a wavelength (i.e., where there is negligible directivity) is

found by inserting the volume velocity from Eqs. (7.49) and (7.50) into Eq. (7.33) so that

epðrÞ ¼ � eegBlSDr0
ðRg þ REÞMM

$
e�jkr

4pr
aCð f Þ; kR << 1 (7.53)

where aC( f ) is a frequency-response function in the form of a second-order high-pass

filter which is proportional to the acceleration of the cone. It is defined by

aCð f Þ ¼
�f 2

f 2C

1� f 2

f 2C
þ j

1

QTC
$
f

fC

(7.54)

Notice that Eq. (7.53) is very similar to Eq. (6.32) for the sound pressure radiated

from a loudspeaker in an infinite baffle, the only difference being the factor of 4 in the

denominator instead of 2. The reason for this is that the sound pressure is doubled when

radiating into half space instead of whole space. Otherwise, there are very little differ-

ences in the reference sensitivity apart from that due to the change in mass loading when

the loudspeaker is mounted in the enclosure. However, this will be negligible in most

cases. Similarly, the sensitivity is the same as that given in Eq. (6.33) but with a factor of 4

in the denominator:

Sensitivity ¼ 20 log10

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ZnomWE

p
BlSDr0

4prðRg þ REÞMM � 20� 10�6

!
dB SPL=W=m (7.55)

Alignments for predetermined frequency-response shapes
The normalized SPL is plotted in Fig. 7.16 using 20 log10jaCj from Eq. (7.54). Note that

at the resonance frequency fC, the SPL is simply 20 log10QTC so that it is 6 dB for

QTC ¼ 2, 3 dB for QTC ¼ ffiffiffi
2

p
, 0 dB for QTC ¼ 1, and so forth.

We should observe that, even in the frequency range where the diaphragm diameter

is less than one-third wavelength, the value of QTC is not strictly constant because RAR

increases with the square of the frequency. In using Eq. (7.54) and Fig. 7.16, therefore,

RA inQTC probably ought to be calculated as a function of u/uC. Usually, however, the

value of RA at uC is the only case for which calculation is necessary.

The curve for QTC ¼ 1
� ffiffiffi

2
p

, also known as critical damping, has a Butterworth

high-pass frequency-response shape. It gives the flattest possible response down to

fC where it is 3 dB below the passband level. Hence, we see that we can choose a
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frequency-response shape and engineer the loudspeaker accordingly. Instead of

defining the shape by the QTC factor, which only tells us the magnitude at the reso-

nance frequency fC, it is more convenient to define the largest amount of deviation

from the flat level that we wish to allow, or ripple factor, in dB. Chebyshev alignments

are defined in this way, and theQTC values needed for various ripple factors are given in

Table 7.2. These are calculated from the formulae given in Appendix I. Small loud-

speakers are often deliberately designed with a peak in the bass response to make them

sound more impressive on first hearing and thus compensate for the lack of deep bass.

On the other hand, if this is overdone, the effect of the poor transient response (see

Section 6.17), with the resulting “one note” bass, can be fatiguing. For larger loud-

speakers with more extended bass, the Bessel frequency-response shape, which has a

maximally linear phase response, offers a useful compromise between bass extension

and good transient response. If the loudspeaker is to be situated in a relatively small

listening room where the low frequencies are likely to be augmented by room modes,

then a gentle roll-off is desirable, as provided by the synchronous shape, which has two

real coincident poles. In this case, a relatively small room is one in which the largest

dimension is less than 6 m.
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Figure 7.16 Normalized sound pressure level (SPL) response of a loudspeaker in a closed box at low
frequencies using 20 log10jaCj from Eq. (7.54). An infinite baffle or a closed-box enclosure is assumed.
QTC is the same as QTC of Eq. (7.48), and uC is found from Eq. (7.45). The graph applies only to the
frequency range where the wavelengths are greater than about three times the advertised diameter
of the diaphragm.
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Referring back to Eq. (6.115), we find that we suggested for satisfactory transient

response that uS/(2QTS) > 92 s�1. Let us see what this means in terms of QTC.

In terms of QTC, the suggested criterion for satisfactory transient response is

QTC <
uC

184
(7.56)

As an example, if uC ¼ 2pfC ¼ 2p40 ¼ 251 rad/s, then QTC should be less than

1.37. This would mean that the peak in the response curve must be less than 2.7 dB.

Methods for achieving desired QTC values will be discussed as part of the example

below.

Setting the value of QTC and determination of the total box volume VT
The QTC of a loudspeaker in a closed box is never the same as its free-space QTS unless

the box is extremely large and empty. However, it is the closed-box QTC which de-

termines the final frequency-response shape. Its value obviously depends on the inherent

mechanical resistance [see QMC from Eq. (7.47)] and electrical damping [see QEC from

Eq. (7.46)] of the drive unit, which we cannot change very easily in the case of a passive

loudspeaker design except through the choice of drive unit. However, we can control

the box volume and filling material. If we ignore the acoustic mass loading effect so that

MA ¼ S2DMMS, the ratio of QTC to QTS is found from Eqs. (7.48) and (6.9):

QTC

QTS
¼

B2l2

Rg þ RE
þ RMS

B2l2

Rg þ RE
þ RMS þ RMB

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ CAS

CAB

r
(7.57)

Table 7.2 Resonance frequencies and Q values for various second-order
frequency-response shapes.
Frequency-response shape f3dB/fC QTC

Synchronous 1.5538 0.5000

Bessel 1.2720 0.5774

Butterworth 1.0000 0.7071

Chebyshev with 0.1 dB ripple 0.93682 0.76736

Chebyshev with 0.5 dB ripple 0.88602 0.86372

Chebyshev with 1.0 dB ripple 0.86234 0.9565

Chebyshev with 2.0 dB ripple 0.84461 1.1287

Chebyshev with 3.0 dB ripple 0.84090 1.3047

Chebyshev with 4.0 dB ripple 0.84312 1.4934

Chebyshev with 5.0 dB ripple 0.84842 1.6996

Chebyshev with 6.0 dB ripple 0.85544 1.9269
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Let us define QMB for the box:

QMB ¼ 1

RMB

ffiffiffiffiffiffiffiffiffiffi
MMS

CMS

r
¼ r0c

2

RABuSVAS
(7.58)

where RAB is calculated from Eq. (7.7). Hence,

QTC

QTS
¼

1

QES
þ 1

QMS

1

QES
þ 1

QMS
þ 1

QMB

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ VAS

VAB

r
(7.59)

where VAB ¼ VA þ gVM, which is solved for VA to yield

VA ¼ VAB � gVM ¼ VAS

Q2
TC

�
1

QTS
þ 1

QMB

�2

� 1

� gVM (7.60)

whereVM is the volume of the lining material andVA the remaining free space. Although

a value of VA is required to calculate RAB from Eq. (7.7), a first approximation is given by

letting QMB ¼N so that

VAz
VAS

ðQTC=QTSÞ2 � 1
� gVM (7.61)

The total internal volume of the box is then VB ¼ VA þVM.

Cone displacement
The first time integral of the velocity from Eqs. (7.49) and (7.50) gives the displacement:

ehC ¼ euC
ju

¼ eUC

juSD
¼ eeg

uCBlQEC
gCð f Þ (7.62)

where gC( f ) is a dimensionless frequency-response function given by

gCð f Þ ¼ 1

1� f 2

f 2C
þ j

1

QTC
$
f

fC

(7.63)

This is plotted in Fig. 7.17. At very low frequencies, we have

eh0 ¼ eeg
uCBlQEC

¼ eeg
uSBlQESð1þ VAS=VABÞ (7.64)

Loudspeaker systems 365



Hence, reducing the size of the box reduces the amount of displacement at low

frequencies below uC and thus enables greater sound pressure to be obtained at higher

frequencies above uC with less risk of displacement limiting due to the low frequencies

present. On the other hand, reducing the box volume raises uC and therefore reduces the

sound pressure at low frequencies, so a compromise has to be reached somewhere.

7.7 MEASUREMENT OF BAFFLE CONSTANTS

The constants of the baffle may be measured after the loudspeaker constants are

known. Refer to Fig. 7.6. The quantities RAR and XAR are determined from Eqs. (7.31)

and (7.32). The electrical and mechanical quantities are measured directly.

Measurement of CAB
Using the same procedure as for measuring fS and QEC in Section 6.10, determine a

new fC and QEC and solve for CAB from Eq. (6.71) so that

CAB ¼ VAS

r0c
2

�
fCQEC

fSQES
� 1

� (7.65)
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Figure 7.17 Normalized cone displacement of a loudspeaker in a closed box at low frequencies using
jgC(f)j from Eq. (7.63). QTC is the same as QTC of Eq. (7.48), and uC is found from Eq. (7.45).
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Measurement of RAB
Using the same procedure as for measuring QES and QMS in Section 6.10, determine a

new QEC and QMC and solve for RAB from

RAB ¼ uCðMAD þMA1 þMABÞ
QMC

� ðRAS þ RARÞ

where MAD ¼ MMD

�
S2D; MA1 is given by Eq. (7.32b), and

RAS þ RAR ¼ RMS þ RMR

S2D

Example 7.1. Miniature loudspeaker. A miniature loudspeaker intended for use

in mobile products has the ThieleeSmall parameters given below:

RE ¼ 7.2 U
QES ¼ 2.05

QMS ¼ 3.48

fS ¼ 476 Hz

SD ¼ 1.40 cm2

VAS ¼ 4.81 cm3

It is assumed that the loudspeaker will be used mainly near a large flat surface such as a

table.

Determine the reference sound pressure at a distance of 0.1 m for 0.5 W input.

Determine the percentage shift in the first resonance frequency of the loudspeaker

from the value for an infinite baffle if an unlined box having a volume of 1 cm3 is used.

Determine the sound pressure at the closed-box resonance frequency, assuming

RAB ¼ 0.

Determine the volume of a box that will cause a shift in infinite baffle resonance

frequency of only 25%.

Determine the sound pressure at the closed-box resonance frequency for the box of (c).

Solution 1. To calculate the maximum SPL, we first obtain CMS, MMS, and Bl from

Eqs. (6.27), (6.28), and (6.30), respectively:

CMS ¼ 4.81� 10�6

ð1.40� 10�4Þ2 � 1.18� 3452
¼ 1.75 mm=N

MMS ¼ 1

ð2� 3.14� 476Þ2 � 0.00175
¼ 64 mg

Bl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

7.2

2� 3.14� 476� 2.05� 0.00175

r
¼ 0.82T$m
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From Eq. (6.33), we obtain the reference sound pressure:

20 log10

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8� 0.5

p � 0.82� 1.401� 10�4 � 1.18

2� 3.14� 0.1� 7.2� 64� 10�6 � 20� 10�6

!
¼ 93.4 dB SPL

Solution 2. From Eq. (7.28), we obtain the closed-box resonance frequency:

fC ¼ fS

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ VAS

VB

r
¼ 476�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4.81

1

r
¼ 1147 Hz

Solution 3. The sound pressure at resonance is simply increased by a factor of QTC

compared with the reference level. From Eq. (6.10), QTS¼ 2.05�3.48/(2.05þ3.48)¼
1.29. At resonance,

QTC ¼ fC

fS
QTS ¼ 1147

476
� 1.29 ¼ 3.11

Then the sound pressure is simply 93.4 þ 20 log103.11 ¼ 103.3 dB SPL.

Solution 4. We rearrange the equation of part 2 of the solution to obtain

VB ¼ VAS

ðfC=fSÞ2 � 1

so that for a 25% shift in resonance frequency, where fC/fS ¼ 1.25 or fC ¼ 595 Hz, we

have

VB ¼ 4.81

1.252 � 1
¼ 8.55 cm2

which is too large a volume for most mobile products and, in any case, the diaphragm

displacement becomes unacceptably large because of the greater compliance of air in the

larger box.

Solution 5. Using the same procedure as in part 3 of the solution, we obtain the sound

pressure at the new resonance frequency of 595 Hz:

93.4þ 20 log10

�
595

476
� 1.29

�
¼ 97.6 dB SPL

Example 7.2. Low-frequency loudspeaker (woofer). Design a loudspeaker to

be used with a 600-Hz crossover network and which is intended for use in a small- to

medium-sized room where the bass response will be augmented by room modes. A

maximum sound pressure of 99 dB SPL will be sufficient. Let us choose the Bandor

type 100DW/8A drive unit which has a 6-in. diameter aluminum cone that is free from
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resonances until well above the crossover frequency. The ThieleeSmall parameters

are as follows:

RE ¼ 6.27 U
QES ¼ 0.55

QMS ¼ 2.2

fS ¼ 39 Hz

SD ¼ 120 cm2

VAS ¼ 21.6 L

which gives a QTS value of

QTS ¼ QESQMS

QES þQMS
¼ 0.44

For a small listening room, we desire a smooth low-frequency roll-off, so we choose

the Butterworth alignment from Table 7.2, which returns a QTC value of 1
� ffiffiffi

2
p

and

gives a good transient response without ringing. The frequency-response shape for this

value is shown in Fig. 7.16. However, to reuse this design with a bass-reflex port in a

future example, we set QTC ¼ 0.7, which is close enough. In addition, we will not fill

the box completely with lining material because this would kill the bass-reflex resonance

when the port is added. Therefore, we set the volume of the lining material to be one-

third of that of the remaining free space or one-quarter of the total volume. That is,

VM ¼ VA/3 ¼ VB/4 because VB ¼ VA þVM. We estimate VA from Eq. (7.61):

VAz
VAS

ð1þ g=3Þ�Q2
TC

�
Q2

TS � 1
� ¼ 21.6

ð1þ 1.4=3Þð0.72=0.442 � 1Þ ¼ 9.6 L

and VM ¼ 9.6/3 ¼ 3.2 L, which we use to compute RAB from Eq. (7.7), where CAA ¼
VA/(gP0). First though, we have to calculate RAM ¼ Rf d/(3SM), where Rf is the flow

resistance of the lining material chosen such that Rf d/3 ¼ r0c ¼ 412 rayl, which is the

impedance of free space and thus provides optimum sound absorption at higher fre-

quencies. In addition, SM is the area of the lining material, which in this case is the area of

the back panel given by SM ¼ lxly ¼ 0.15 � 0.3175 ¼ 0.04763 m2, so that RAM ¼ 412/

0.047625 ¼ 8651 N$s/m5. We just need to find the internal depth lz from the volume

after computing the following from Eq. (7.7)

RABz
8651�

1þ 3

1.4

�2

þ
�
2� 3.14� 0.7

0.44
� 39

�2

� 86512 �
�

0.0096

1.4� 105

�2

¼ 871N$s
�
m5
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Then, from Eq. (7.58), the box Q is determined:

QMB ¼ 1.18� 3452

871� 2� 3.14� 39� 0.0216
¼ 30.5

so that after inserting this into Eq. (7.60) we obtain the air volume:

VA ¼ VAS	
1þ g

3


(
Q2

TC

�
1

QTS
þ 1

QMB

�2

� 1

)

¼ 21.6�
1þ 1.4

3

�n
0.72

�
1

0.44
þ 1

30.5

�2

� 1
o ¼ 9.15 L

from which VM ¼ 9.15/3 ¼ 3.05 L, VB ¼ 9.15 þ 3.05 ¼ 12.2 L, and VAB ¼
9.15 þ (1.4 � 3.05) ¼ 13.42 L. The internal depth is then lz ¼ VA/SM ¼
0.00915/0.04763 ¼ 0.192 m. The box is shown in Fig. 7.18. The internal width lx is

15 cm, which is the smallest width that will accommodate the drive unit. The acoustic

center of the drive unit is about one-third of the internal height from the bottom so as

not to coincide with the antinodes of the first or second vertical modes. The box

contains one 31.8 by 15 by 6.4 cm piece of lining material. From Eq. (7.28), we obtain

the closed-box resonance frequency:

fC ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 21.6

13.42

r
� 39 ¼ 63 Hz

From Table 7.2, we see that the cutoff frequency is f3dB ¼ 1 � 63 ¼ 63 Hz. From Eq.

(6.48), we can calculate the reference efficiency, noting that a loudspeaker in a box is half

as efficient as one radiating from both sides in an infinite baffle:

Eff ¼ 100
8� 3.142 � 0.0216� 393

2� 0.55� 3453
¼ 0.224%

Plywood 19 mm
thick

Acoustical lining
= 6.4 cm thick

= 19.2 cm

= 
11.5 cm

31.8 cm =
15 cm

Figure 7.18 Example of closed-box enclosure design.
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To calculate the maximum SPL, we first obtain CMS, MMS, and Bl from Eqs. (6.27),

(6.28), and (6.30), respectively:

CMS ¼ 0.0216

0.0122 � 1.18� 3452
¼ 1.07 mm=N

MMS ¼ 1

ð2� 3.14� 39Þ2 � 0.00107
¼ 0.0156 kg

Bl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

6.27

2� 3.14� 39� 0.55� 0.00107

r
¼ 6.59T$m

Knowing that the power rating Wmax is 100 W, we obtain from Eq. (6.33)

SPLmax ¼ 20 log10

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6.27� 100

p � 6.59� 0.012� 1.18

4� 3.14� 6.27� 0.0156� 20� 10�6

!
¼ 99.6 dB SPL @1m

where a drive unit in a box produces the half the pressure of one in an infinite baffle.

Next, use Eq. (7.64) to check the peak displacement at low frequencies at full power:

hmax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 6.27� 100

p

2� 3.14� 39� 6.59� 0.55� ð1þ 21.6=13.42Þ ¼ 15.3 mm

but at the resonance frequency fC ¼ 63 Hz, the maximum displacement is

QTChmax ¼ 0.7 � 15.3 ¼ 10.7 mm. It turns out that the xmax value of the drive unit

is 14 mm, so there should be no problems with this design as most program material is

above this frequency.

Let us now create a semianalytical simulation model of the design of Fig. 7.18 using

two-port networks and transmission matrices, as introduced in Section 3.10 and Fig. 4.43.

The schematic is shown in Fig. 7.19. Although it is based on the circuit of Fig. 7.6, a gyrator

has been inserted between the electrical elements and the mechanical ones, which enables

us to calculate more easily the generator currenteig from which we obtain the electrical

impedance.We are ignoring the generator impedanceRg because in the experimental setup

this is negligible compared with RE. The dashed boxes are lumped-element two-port

networks and the solid boxes are analytical ones. From the schematic, we create the

transmission matrices required to represent each two-port network as follows:

1. Coil. 24eegeig
35 ¼

"
1 ZE

0 1

#
$

"ee1ei1
#

¼ C$

"ee1ei1
#

where ZE ¼ RE þ juLE
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2. Electromechanical transduction."ee1ei1
#

¼
"
0 Bl

ðBlÞ�1
0

#
$

24ef 2eu2
35 ¼ E$

24ef 2eu2
35

3. Diaphragm. 24ef 2eu2
35 ¼

"
1 ZMD

0 1

#
$

24ef 3eu3
35 ¼ D$

24ef 3eu3
35

where ZMD ¼ juMMD þ RMS þ 1/( juCMS). We must exclude the radiation mass from

the diaphragm so that MMD ¼MMS � 16r0a
3/3, where a ¼ ffiffiffiffiffiffiffiffiffiffiffi

SD=p
p

.

4. Mechanoacoustical transduction.24ef 3eu3
35 ¼

"
SD 0

0 S�1
D

#
$

" ep4eU4

#
¼ M$

" ep4eU4

#

Diaphragm 
radiationCoil

1

E-M

2

Diaphragm

3 4

M-A

X

Y
5

=

Box

X

Y
6

==

Figure 7.19 Semianalytical model of example closed-box enclosure design shown in Fig. 7.18, using
transmission matrices. The dashed boxes are lumped-element two-port networks, and the solid boxes
are analytical ones.
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5. Diaphragm radiation." ep4eU4

#
¼
"
1 ZA1

0 1

#
$

" ep5eU5

#
¼ F$

" ep5eU5

#

where ZA1 is the acoustic-radiation impedance of the diaphragm given by Eqs.

(13.116)e(13.118) with a ¼ ffiffiffiffiffiffiffiffiffiffiffi
SD=p

p
.

6. Box. " ep5eU5

#
¼
"

1 0

Z�1
AB 1

#
$

" ep6eU6

#
¼ B$

" ep6eU6

#

where ZAB is given by Eq. (7.12) and

Zs ¼
Rf d

3
þ P0

jud
;

where the value of the lining flow resistance Rf is chosen such that Rf d/3 ¼ r0c ¼ 412

rayl, which is the impedance of free space and thus provides optimum sound absorption

at higher frequencies. The dimensions are given in Fig. 7.18 except for a1 ¼ b1
ffiffiffiffiffiffi
SD

p
.

First, we evaluate ep6 at the end of the chain:24eegeig
35 ¼ A$

"ep6
0

#

where

A ¼ C$E$D$M$F$B ¼
"
a11 a12

a21 a22

#

Hence, ep6 ¼ eeg�a11. Then, we work backward to obtain the volume velocities we

wish to evaluate. In particular, we are interested in the far-field pressure which, ac-

cording to Eq. (7.33), is a function of eUc ¼ eU5. This procedure is fairly straightforward

and does not involve any matrix inversion. From the box matrix (6), we obtain the

diaphragm volume velocity: eUc ¼ eU5 ¼ p6=ZAB

To plot the normalized far-field on-axis pressure, we simply divide eUc by a reference

volume velocity

eUref ¼ eegBlSD
uMMSRE
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and plot 20 log10
�� eUc

�eUref

�� as shown in Fig. 7.20. The output from the diaphragm is

fairly smooth apart from one small feature at 430 Hz, which is due to the fundamental

vertical mode of the box. Finally, we can obtain the input impedance from eeg�eig whereeig ¼ a21ep6 and from above ep6 ¼ eeg�a11. Therefore, the input impedance is simply

ZE ¼ a11/a21, as plotted in Fig. 7.21.

PART XXII: BASS-REFLEX ENCLOSURES

7.8 GENERAL DESCRIPTION

The bass-reflex enclosure is a closed box in which an opening, usually called the port,

has been made [17e26]. The area of the port is commonly made equal to or smaller than

the effective area of the diaphragm of the drive unit. A common construction of this type

of loudspeaker is shown in Fig. 7.22. When the diaphragm vibrates, part of its

displacement compresses the air inside the box and the remainder of its displacement

moves air outward through the port. Thus, the port is a second “diaphragm,” driven by
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Figure 7.20 Graphs of the on-axis sound pressure level produced by the closed-box enclosure design
shown in Fig. 7.18. The dashed curves are calculated from 20 log10

��eUc
�eUref

��. Solid curves are measured.
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Figure 7.21 Graphs of the electrical input impedance of the closed-box enclosure design shown in
Fig. 7.18. The dashed curves are calculated from ZE ¼ ��eeg�eig�� ¼ a11=a21. Solid curves are measured.

Diaphragm

Loudspeaker

Port

Tube of length with mass
and resistance 

Box with compliance 
and mass

Area =

Area =

Figure 7.22 Bass-reflex baffle. The port has an area Sp, and the diaphragm has an area SD. The inner
end correction for the tube is included in the magnitude of MAP.
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the back side of the loudspeaker diaphragm. The port is, at low frequencies, equivalent to

a short length of tube with an acoustic mass reactance and a series acoustic resistance.

This tube has an end correction on the inner end and a radiation impedance on the outer,

or radiating, end.

We shall assume for the remainder of this analysis that ka < 0.5. In other words, we

are restricting ourselves to the very lowefrequency region where the radiation from

both the port and the loudspeaker is nondirectional.

7.9 ACOUSTICAL CIRCUIT

The acoustical circuit for the box and the port is given in Fig. 7.23. The series

radiation mass and resistance on the front side of the diaphragm are, respectively,MA1 and

RAR1. The mass loading on the back side of the diaphragm isMAB. The resistance due to

leakage through the walls of the box, or even through a woven dust cap or gasket, is RAL.

The compliance and resistance of the lined box are CAB and RAB. The mass and resis-

tance of the air in the port that penetrates the side of the box, including the inner end

correction, areMAP and RAP, respectively. Finally, the series radiation mass and resistance

from the front side of the port are, respectively, MA2 and RAR2. The values of these

quantities areMAB as in Eq. (7.5); RAB as in Eq. (7.7);CAB as in Eq. (7.20);MA2 as in Eq.

(7.32), but with a2 instead of a, that is, MA2 ¼ 0:64a2r0
��

pa22
�
; RAR2 as in Eq. (7.31);

and

MA1 is acoustic-radiation mass for the front side of the loudspeaker dia-

phragm ¼ 0.2026r0/a kg/m
4. Note that we assume the loudspeaker unit is equiv-

alent to a piston radiating from one side only in free space.

RAR1 ¼ 0.01075f 2 is acoustic-radiation resistance for the front side of the loud-

speaker diaphragm in N$s/m5 (see Fig. 4.39 for ka > 1.0).

Front of
diaphragm

Back of
diaphragm

Box Port Port radiation

Diaphragm radiation

Figure 7.23 Analogous acoustical circuit for a loudspeaker box with a port. The volume velocity of the
diaphragm is eUc , that of the port is eUP , that of the box is eUB, and that due to leakage is eUL.
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MAP ¼ ðt þ 0:64a2Þr0
��

pa22
�
is acoustic mass of the air in the port in kg/m4. This

quantity includes the inner end correction.

RAP is acoustic resistance of the air in the port in N$s/m5. [See Eq. (4.23). Use the

number (1) in the parentheses.]

r0 is density of air in kg/m3 (normally about 1.18 kg/m3).

a2 is effective radius in m of the port in the vented enclosure. If the port is not circular,

then let a2 ¼ ffiffiffiffiffiffiffiffiffiffi
Sp=p

p
, where Sp is the effective area of the opening in m2.

Sp ¼ pa22 is effective area of the port in m2.

t is length of the tube or the thickness of the wall of the enclosure in which the port is

cut in m.

In case, the port is composed of a number of identical small openings or tubes, the

following procedure is followed.

Let N equal the number of such openings in the enclosure. For each opening, the

acoustic mass and resistance including MA2 and RAR2 are as follows:

MA ¼ ðt þ 1:7a3Þr0
��

pa23
�
kg=m4 [see Eq. (4.26)]

RA is acoustic resistance of each opening in N$s/m5 [see Eq. (4.25)]

a3 is effective radius of each opening in m.

The total acoustic mass and resistance for the N identical openings are as follows:

MA2 þMAP ¼MA/N kg/m4

RAR2 þ RAP ¼ RA/N N$s/m5.

The directivity factor for a group of holes is about equal to that for a piston with an area

equal to the area within a line circumscribing the entire group of holes.

7.10 ELECTROMECHANOACOUSTICAL CIRCUIT

The complete circuit for a loudspeaker in a bass-reflex enclosure is obtained by

combining Figs. 6.4(b) and 7.23. To do this, the acoustical radiation element of the

circuit labeled “2MM1” in Fig. 6.4(b) is removed, and the circuit of Fig. 7.23 is

substituted in its place. The resulting circuit with the transformer removed and every-

thing referred to the acoustical side is shown in Fig. 7.24.

Box Port
Port 

radiation
Diaphragm 
radiation

Mechanical part 
of loudspeakerElectrical

Figure 7.24 Complete electromechanoacoustical circuit for a bass-reflex loudspeaker. The total force
produced at the voice coil by the electric current is epcSD, where SD is the area of the diaphragm. The
volume velocity of the diaphragm is eUc , that of the port is eUP , that of the box is eUB , and that due to
leakage is eUL. Note that MAP includes the inner mass loading for the port.
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If the port is closed off so that eUP , the volume velocity of the air in the port, equals

zero, then Fig. 7.24 essentially reduces to Fig. 7.6. At very low frequencies, the mass of

air moving out of the lower opening is nearly equal to that moving into the upper

opening at all instants. In other words, at very low frequencies, the volume velocities at

the two openings are nearly equal in magnitude and opposite in phase.

Summary of bass-reflex design

To determine the cutoff frequency, frequency response, and the volume of the box:

If the ThieleeSmall parameters (RE, QES, QMS, fS, SD, and VAS) of the chosen drive

unit are not supplied by the manufacturer, they may be measured according to Section

6.10. Then QTS ¼ QESQMS/(QES þ QMS).

From Table 7.4, select the frequency-response shape for which theQTS value is closest

to that of the chosen drive unit (or choose a drive unit whose QTS value is closest to that

of the desired frequency-response shape).

From the values of f3dB/fS, fB/fS, and VAB/VAS given in the table, compute the cutoff

frequency f3dB, box resonance frequency fB, and apparent box volume VAB, respectively,

from the ThieleeSmall parameters fS and VAS.

The frequency-response shape below the first diaphragm break-up mode is shown in

Fig. 7.26.

To determine the maximum SPL:

If the loudspeaker is to be used near a wall or a rigid planar surface, which is large

compared with the longest wavelength to be reproduced, then the maximum sound

pressure SPLmax at a distance r is obtained from Eq. (6.34) to give

SPLmax ¼ 20 log10

0@ 1

rc � 20� 10�6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ZnomWmax2pf

3
SVASr0

REQES

s 1AdB SPL @ 1 m

where Wmax is the maximum rated input power. Otherwise, if it is to be used in the free

field, subtract 6 dB from SPLmax.

AcousticMechanicalElectrical

Figure 7.25 Simplification of the circuit of Fig. 7.24, where the mechanical and acoustical quantities
are referred to the electrical side using the admittance type analogy.
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To determine the excursion limit:

The maximum peak diaphragm displacement at frequencies well below the box

resonance is obtained from Eq. (7.101) to give

hmax ¼ 1

SDc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ZnomWmaxVAS

REQESpfsr0

s
However, we see from Fig. 7.27 that at frequencies above the box resonance, the

displacement peaks at a smaller value. For example, the displacement peaks at 0.5hmax in

the case of the 0.25 dB Chebyshev alignment or 0.25hmax in the case of the Butterworth

alignment. If this peak value is greater than the rated xmax limit of the drive unit, then an

alternate drive unit with a greater xmax limit should be considered. If, however, the

subresonance hmax value is greater than the rated xmax limit of the drive unit, it should be

arranged for the box resonance frequency to be placed at the lower limit of the frequency

range of the program material to be reproduced. If this is not possible, a high-pass filter

should be employed to remove all content below the box resonance frequency. Best

results are obtained when the filter is designed as part of the overall system [20,25,26]. If

this is not possible either, then an alternate drive unit with a greater xmax limit should be

considered.

To determine the port dimensions:

The maximum peak pressure pmax in Pa is obtained from SPLmax using

-80

-70

-60

-50

-40

-30

-20

-10

0

0.1 1 10

N
or

m
al

iz
ed

 o
n-

ax
is

 re
sp

on
se

 (d
B)

f

Cheby 0.01 dB
Cheby 0.1   dB
Cheby 0.25 dB
Cheby 0.5   dB

Butterworth
Bessel
Synchronous

fS

Figure 7.26 On-axis frequency responses of fourth-order bass-reflex alignments generated from
Table 7.4 by taking 20 times the logarithm of Eq. (7.73).
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pmax ¼ 2
ffiffiffi
2

p
� 10

�
SPLmax

20
�5
�
Pa

Determine the peak volume displacement Vmax required to produce pmax at the box

resonance frequency fB, which is obtained from Eq. (13.104) to yield

Vmax ¼ rpmax

2pf 2Br0
m3

Choose the volume of the port VP to be several times larger than Vmax but within a

reasonable limit. Then calculate the approximate length t of the port using Eq. (7.97) and

the approximate cross-sectional area SP ¼ VP/t. Either choose a convenient area SP and

calculate the exact length t using Eq. (7.98) or choose a convenient length t and calculate

the exact area SP using Eq. (7.99).

Study Sections 7.16 and 7.17 (pages 342e343) for construction, adjustment, and per-

formance.

The quantities not listed in the previous paragraph areeeg is open-circuit voltage in V of the audio amplifier.

B is flux density in the air gap in T (1 T ¼ 104 G).
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Figure 7.27 Plots of normalized displacement eh=eh0 for the fourth-order bass-reflex alignments of
Table 7.4. For simplicity, we assume that QMS >> QES so that QES z QTS.
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l is length in m of voice-coil wire.

Rg is output electrical resistance in U of the audio amplifier.

RE is electrical resistance in U of the voice coil.

a is effective radius of the diaphragm in m.

MAD ¼ MMD

�
S2D is acoustic mass of the diaphragm and the voice coil in kg/m4.

CAS ¼ CMSS
2
D is acoustic compliance of the diaphragm suspension in m5/N.

RAS ¼ RMS

�
S2D is acoustic resistance of the diaphragm suspension in N$s/m5.

7.11 RADIATED SOUND

The port in the box of a bass-reflex baffle is generally effective only at fairly low

frequencies. At those frequencies, its dimensions are generally so small that it can be

treated as though it were a simple source. The loudspeaker diaphragm can also be treated

as a simple source because its area is often nearly the same as that of the opening.

Referring to Eq. (4.71), we find that the sound pressure a distance r away from the

bass-reflex loudspeaker isep ¼ ep1 þep2 þep3zjur0
4pr

	eUce
�jkr1 � eUPe

�jkr2 � eULe
�jkr3



(7.66)

whereep1, ep2, and ep3 are complex sound pressures, respectively, from the diaphragm, port,

and leakage outlet at distance r.

r is average distance of the point of observation from the diaphragm and the port.

Note that r is large compared with the diaphragm and port radii.

r1, r2, and r3 are actual distances, respectively, of the point of observation from the

diaphragm, port, and leakage outlet.eUc is complex volume velocity of the diaphragm.eUP is complex volume velocity of the port. Note that the negative sign is used for eUP

because, except for phase shift introduced by CAB and MAP, the air from the port

moves outward when the air from the diaphragm moves inward.eUL is complex volume velocity of the leakage path.

In addition, the complex volume velocity necessary to compress and expand the air

in the box is eUB ¼ eUc � eUP � eUL (7.67)

If we now let r1 ¼ r2 ¼ r3 ¼ r by confining our attention to a particular point in space

in front of the loudspeaker where this is true, we get

ep z jur0
4pr

�eUc � eUP � eUL

�
e�jkr (7.68)
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Because eUc � eUP � eUL ¼ eUB, we have simply that��ep��z f r0
�� eUB

��
2r

(7.69)

Amazing as it seems, the sound pressure produced at faraway points equidistant from

cone and port of a bass-reflex loudspeaker is directly proportional to the volume velocity

necessary to compress and expand the air inside the box!

At very low frequencies, where the reactance of CAB is very high, eUc becomes nearly

equal to eUP, and ~UL becomes insignificant so that the pressure, measured at points

r ¼ r1 ¼ r2 ¼ r3, approaches zero. In fact, the two sources ~Uc and ~UP behave like a dipole

so that the radiated sound pressure decreases by a factor of 4 for each halving of fre-

quency. In addition, if we are below the lowest resonance frequency of the circuit of

Fig. 7.24, the diaphragm velocity eUc halves for each halving of frequency. Hence, in this

very lowefrequency region, the sound pressure decreases by a factor of 16, which is

24 dB, for each halving of frequency. In other words, the slope is fourth order. Note

that this decrease is greater than that for a loudspeaker in a closed box or in an infinite

baffle.

7.12 ALIGNMENTS FOR PREDETERMINED FREQUENCY-RESPONSE
SHAPES

As with the loudspeaker in a closed-box enclosure, we can choose a pre-

determined frequency-response shape and engineer the loudspeaker accordingly using

an alignment table, which we shall generate in this section. In the interest of simplifying

our analysis, let us redraw Fig. 7.24 to be as shown in Fig. 7.25, referring the me-

chanical and acoustical quantities to the electrical side. Furthermore, we have assumed

that at low frequencies we can ignore RAR1 and RAR2, and that the effects of the box

and port resistances, RAB and RAP, respectively, can be accounted for by adjusting the

value of RAL. It has been found in practice that RAL is the dominant source of damping

of the box resonance [21]. The new quantities shown on that circuit are defined as

follows:

MMS ¼ MMD þ S2DðMA1 þMABÞ (7.70)

MAT ¼ MA2 þMAP (7.71)

This circuit is exactly that which appears across the generator, which makes it easier

to evaluate the electrical input impedance. In addition, it looks more like an electrical

filter network. The electrical and mechanical sections form a first-order band-pass filter,

which in conjunction with the first-order time derivative in Eq. (7.69) given by the
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frequency term f, produces a net second-order high-pass filter. The acoustical section

forms a second second-order high-pass filter so that the overall response is fourth order.

However, these two second-order filters do not operate in isolation but are coupled to a

degree which depends on their relative resonance frequencies and the size of the box.

Hence, we shall introduce a coupling factor VAS/VAB during the following analysis,

commonly known as the compliance ratio. As the volume of the box VAB is increased

relative to the suspension equivalent volume VAS, the amount of coupling is weakened.

From the circuit of Fig. 7.25 we obtain

epðrÞ ¼ eegBlSDr0
ðRg þ REÞMMS

$
e�jkr

4pr
GðsÞ (7.72)

where the frequency-response function G(s) is given by

GðsÞ ¼ s4

s4 þ P3s3 þ P2s2 þ P1sþ P0
(7.73)

and the coefficients of the denominator polynomial in s ¼ ju are given by

P3 ¼ uS

QTS
þ uB

QL
(7.74)

P2 ¼
�
1þ VAS

VAB

�
u2
S þ u2

B þ uSuB

QTSQL
(7.75)

P1 ¼ uSu
2
B

QTS
þ u2

SuB

QL
(7.76)

P0 ¼ u2
Su

2
B (7.77)

where uS is the angular suspension resonant frequency in an infinite baffle given by

uS ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MMSCMS

p (7.78)

QES is the electrical Q factor

QES ¼ uS

Rg þ RE

ðBlÞ2 MMS (7.79)

QMS is the mechanical Q factor

QMS ¼ uS
1

RMS
MMS (7.80)
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QTS is the total Q factor

QTS ¼ QESQMS

QES þQMS
(7.81)

uB is the angular resonant frequency of the box and port (including end corrections)

given by

uB ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MATCAB

p (7.82)

QL is the acoustical Q factor due to box and port losses

QL ¼ uBRALCAB (7.83)

VAB is the apparent box volume, including the lining, which is related to the acoustic

compliance by

VAB ¼ r0c
2CAB (7.84)

and VAS is the suspension equivalent volume

VAS ¼ S2Dr0c
2CMS (7.85)

To solve Eqs. (7.74)e(7.77) for uS, uB, QTS, and VAS/VAB, we first eliminate QTS

from Eqs. (7.74) and (7.76) and insert u2
S ¼ P0

�
u2
B from Eq. (7.77), which gives

u4
B

QL
� P3u

3
B þ P1uB � P0

QL
¼ 0 (7.86)

which is a quartic equation that has to be solved for uB so that

uB ¼ 1

4

0@S þQLP3 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3Q2

LP
2
3 � S2 � 2QL

�
8P1 �Q2

LP
2
3

�
S

s 1A;

where

S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2

LP
2
3 þ 8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2

LP1P3 � 4P0

3

r
cos

�
f

3

�s

and

f ¼ arccos

0@ ffiffiffiffiffi
27

p
Q2

L

�
P2
1 � P0P

2
3

�
2
�
Q2

LP1P3 � 4P0
�3=2

1A:
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Then, from Eq. (7.77), (7.74), and (7.75), respectively, we obtain the other three

quantities:

uS ¼
ffiffiffiffiffi
P0

p
uB

(7.87)

QTS ¼ QLuS

P3QL � uB
(7.88)

VAS

VAB
¼ P2 � u2

B

u2
S

� uB

QTSQLuS
� 1 (7.89)

Let a predefined fourth-order frequency-response function be given by

GðsÞ ¼ s4�
s2 þ u1

Q1
sþ u2

1

��
s2 þ u2

Q2
sþ u2

2

� (7.90)

which has a value of 1
� ffiffiffi

2
p

or�3 dB whenu ¼ 1. The values ofu1,u2,Q1, andQ2 for a

number of frequency-response shapes are given in Table 7.3, which are calculated from

the formulas given in Appendix I. Because the suspension and box resonance frequencies

are the same in the Butterworth alignment, the two complex-conjugate pole pairs lie on

a semicircle in the complex plane with angles of p/4 between them. We shall see in

Section 7.15 that these coincident resonance frequencies are useful when it comes to

evaluating QL. We may create a range of sub-Butterworth alignments with such coin-

cident resonance frequencies by multiplying the angles between the poles and the

negative real axis by a scaling factor B, which has values between 0 and 1. When B ¼ 0,

we have the synchronous alignment in which all four poles are coincident and real.

These sub-Butterworth alignments are generated by solving the quartic equation

Table 7.3 Resonance frequencies and Q values for various fourth-order frequency-response shapes.
Frequency-response shape u1 Q1 u2 Q2

Synchronous (B ¼ 0) 0.4350 0.5000 0.4350 0.5000

Sub-Butterworth (B ¼ 0.6) 0.5634 0.5142 0.5634 0.6575

Bessel (close to B ¼ 0.77) 0.6992 0.5219 0.6237 0.8055

Sub-Butterworth (B ¼ 0.9) 0.8482 0.5329 0.8482 1.0233

Butterworth (B ¼ 1) 1.0000 0.5412 1.0000 1.3066

Chebyshev with 0.01 dB ripple 1.2870 0.5746 1.0356 1.7237

Chebyshev with 0.1 dB ripple 1.5370 0.6188 1.0519 2.1829

Chebyshev with 0.25 dB ripple 1.6900 0.6573 1.0574 2.5361

Chebyshev with 0.5 dB ripple 1.8310 0.7051 1.0600 2.9406
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U4 þ 2(a þ b) U3 þ 2(1 þ 2ab) U2 þ 2(a þ b) U � 1 ¼ 0 for U, where a ¼ cos(Bp/4)

and b ¼ cos(3Bp/4). Although there are four solutions for U, only one is real and

positive. Then u1 ¼ u2 ¼ ffiffiffiffi
U

p
, Q1 ¼ 0.5 sec(Bp/8), and Q2 ¼ 0.5 sec(3Bp/8).

Equating the denominator of Eq. (7.90) with that of Eq. (7.73) gives

P3 ¼ u1

Q1
þ u2

Q2
(7.91)

P2 ¼ u2
1 þ u2

2 þ
u1u2

Q1Q2
(7.92)

P1 ¼ u1u
2
2

Q1
þ u2

1u2

Q2
(7.93)

P0 ¼ u2
1u

2
2 (7.94)

Then after inserting these values for P0 to P3 into Eqs. (7.86)e(7.89), we can generate

the alignments given in Table 7.4.

Shown in Fig. 7.26 are frequency responses generated from Table 7.4 using Eq.

(7.73). The frequency scale is normalized using fS as the reference point because this is a

fixed parameter of the loudspeaker drive unit. We see that the Chebyshev alignments

give greater low-frequency extension at the cost of increased box size.

7.13 PORT DIMENSIONS

Knowing the ThieleeSmall parameters of the drive unit (RE, QES, QMS, fS, SD,

and VAS), we choose a suitable alignment from Table 7.4, which gives us the required

box volume VAB and resonance frequency fB. The total acoustic mass of the port

Table 7.4 Fourth-order alignments for bass-reflex enclosures for QL ¼ 7.
Frequency-response shape f3dB/fS VAB/VAS QTS fB/fS

Synchronous (B ¼ 0) 2.2990 0.2899 0.2593 1.0000

Sub-Butterworth (B ¼ 0.6) 1.7748 0.4028 0.3010 1.0000

Bessel (close to B ¼ 0.77) 1.4941 0.5242 0.3312 0.9735

Sub-Butterworth (B ¼ 0.9) 1.1790 0.6914 0.3689 1.0000

Butterworth (B ¼ 1) 1.0000 0.9422 0.4048 1.0000

Chebyshev with 0.01 dB ripple 0.8143 1.5511 0.4572 0.8838

Chebyshev with 0.1 dB ripple 0.6963 2.3308 0.5120 0.7839

Chebyshev with 0.25 dB ripple 0.6374 2.9747 0.5553 0.7259

Chebyshev with 0.5 dB ripple 0.5894 3.7464 0.6073 0.6742

386 Acoustics: Sound Fields, Transducers and Vibration



including end corrections and assuming that it behaves as a flanged tube at one end only

is given by

MAT ¼ r0

SP

�
t þ 0.84

ffiffiffiffiffi
SP

p �
(7.95)

Otherwise, if it is flanged at both ends, the correction factor is changed from 0.84 to

0.96, or to 0.72 if unflanged at both ends. The volume of air in the port VP, which is

simply the product of its cross-sectional area SP and its length t, should be chosen to be

several times greater than the amount of air it has to displace to produce the maximum

sound pressure at full power. Hence,

SP ¼ VP=t (7.96)

Inserting Eqs. (7.84), (7.95), and (7.96) into Eq. (7.82) but ignoring the end-

correction factor yields the following approximate equation for the port length t:

tz
c

uB

ffiffiffiffiffiffiffiffiffi
VP

VAB

r
(7.97)

in which case the approximate cross-sectional area SP is given by Eq. (7.96). However,

we may wish to choose a more convenient area SP and readjust the length t accordingly

using the following exact formula:

t ¼ SPc
2

VABu
2
B

� 0.84
ffiffiffiffiffi
SP

p
(7.98)

or we may wish to choose a length t and calculate the exact area SP using

SP ¼ 0.842V 2
ABu

4
B

4c4

 
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4c2t

0.842VABu
2
B

s !2

(7.99)

7.14 DIAPHRAGM DISPLACEMENT

From the circuit of Fig. 7.25, we can derive the diaphragm volume velocity eUc

from which we obtain the diaphragm displacement:

eh ¼ eUc

�ð juSDÞ
¼ uSeeg

BlQES

�
s2 þ ðuB=QLÞsþ u2

B

s4 þ P3s
3 þ P2s

2 þ P1sþ P0

� (7.100)
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At very low frequencies, the loudspeaker is virtually open at the back because the

acoustic impedances of the box and port present very little opposition. Hence, the

low-frequency displacement eh0 is determined purely by the mechanical complianceCMS

of the suspension:ehju/0 ¼ eh0 ¼ eeg
BlQESuS

¼ CMSBl
eeg
RE

�
i.e. Hooke’s law where Bl

eeg
RE

¼ ef�
(7.101)

This makes a useful reference point with which to normalize the displacement curves

which are shown in Fig. 7.27 for the alignments of Table 7.4. We see that the Chebyshev

alignments, which give greater low-frequency extension, not only require a larger box

size but also require a loudspeaker drive unit with a greater excursion limit xmax.

7.15 ELECTRICAL INPUT IMPEDANCE AND EVALUATION OF QL

Also from the circuit of Fig. 7.25, we can derive the electrical input impedance ZE

as seen across the loudspeaker terminals:

ZE ¼ eegREeeg � Bl eUc

�
SD

¼ RE

�
1þ uSs

QES

�
s2 þ ðuB=QLÞsþ u2

B

s4 þ E3s
3 þ E2s

2 þ E1sþ E0

�� (7.102)

where the denominator polynomial coefficients are given by

E3 ¼ uS

QMS
þ uB

QL
(7.103)

E2 ¼
�
1þ VAS

VAB

�
u2
S þ u2

B þ uSuB

QMSQL
(7.104)

E1 ¼ uSu
2
B

QMS
þ u2

SuB

QL
(7.105)

E0 ¼ u2
Su

2
B (7.106)

The coefficients E0 to E3 differ from the coefficients P0 to P3 of Eqs. (7.74)e(7.77),

respectively, in thatQTS is replaced byQMS. Normalized impedance curves are plotted in

Fig. 7.28 for the alignments of Table 7.4. When comparing these curves with the

impedance of a loudspeaker in an infinite baffle, as shown in Fig. 6.8, we see that the

peak at fS due to the parallel resonance of MMS with CMS has been split into two peaks

with a minima in between at fB due to the series resonance of MATwith CAB. For the
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Synchronous, Bessel, and Butterworth alignments, where fB ¼ fS, the two peaks are

symmetrical either side of fB. However, in the case of the Chebyshev alignments,

the peaks are asymmetrical with the smaller peak occurring below fBwhich indicates that

the low-frequency response is extended at the cost of extra power.

The minima at fB is particularly useful for checking the tuning of the port.

Furthermore, in the case of alignments where fB ¼ fS (e.g., Synchronous, Bessel, and

Butterworth), we can simplify Eq. (7.102) at f ¼ fB to give the impedance at the box

resonance dip:

ZEju¼us¼uB
¼ ZEB ¼ RE

0BB@1þ
1

QESQL

VAS

VAB
þ 1

QMSQL

1CCA (7.107)

from which we obtain

QL ¼ VAB

VAS

�
1

QESððZEB=REÞ � 1Þ �
1

QMS

�
(7.108)

which enables us tomeasure theQL value for the box and port resonance. See Section 7.17.
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Figure 7.28 Plots of normalized electrical impedance jZE=RE j for the fourth-order bass-reflex align-
ments of Table 7.4. We let QMS ¼ 9QTS so that QES ¼ 1.125QTS.
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7.16 PERFORMANCE

With the formulas and charts just given, it is possible to calculate the response of

the loudspeaker in a bass-reflex enclosure. A complete example is given after Section 7.17.

From Fig. 7.25, we see that for frequencies below uB, radiation from the port

(proportional to �eUP) is out of phase with the radiation from the diaphragm

(proportional to eUc). As a result, the response at very low frequencies is usually not

enhanced by the addition of the port. Above the resonance frequency uB, radiation from

the port is in phase with that from the diaphragm, with a resulting enhancement over the

closed-baffle response. The amount of the increase in response generally averages about

3 dB over a frequency range of one to two octaves.

An important reason for using a bass-reflex enclosure is that the loudspeaker produces

less distortion at frequencies of arounduB for a given acoustic power radiated than would

be the case if the box were closed. The assumption on which this statement is made is

that the motion of the air in the port is distortionless even though the amplitude of

vibration is large. This is true generally because there is no suspension or magnetic circuit

in the port in which nonlinear effects can occur. However, to avoid turbulence, the port

should be as smooth as possible with filleted edges at each end. A large loudspeaker

diaphragm usually is superior to a small one because the amplitude of its motion is less,

thereby reducing nonlinear distortion.

One disadvantage of a bass-reflex enclosure is that the port can produce pipe modes at

higher frequencies, and these cannot be damped using absorbent material without

negating the benefit of the port. However, their effect can be mitigated by locating the

mouth of the port on the rear of the box so that they are less audible at the front. At the

box resonance, the wavelength is usually very large compared with the box dimensions,

so the small resulting phase difference between the outputs of the port and diaphragm

will have little effect on the performance [27].

An advantage of a bass-reflex enclosed loudspeaker is that, where room space is a factor,

a properly tuned bass-reflex system helps to offset the effect of the small box volume.

7.17 CONSTRUCTION AND ADJUSTMENT NOTES

Bear in mind that many drive units nowadays are designed for use in “air-

suspension” closed-box enclosures and can be identified by their very low resonance

frequencies. In a bass-reflex design, the high compliance of their suspensions could lead

to excessive diaphragm excursion below the box resonance frequency.

The box should be very rigid to resist vibration. The joints should be tight-glued, and

the larger panels should be braced by gluing reinforcing strips to them. The access side

should be screwed on securely with strips of sealing material such as neoprene. Most

drive units are now supplied with sealing gaskets.
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When the cabinet has been completed and the loudspeaker has been installed, the

correctness of the tuning may be determined by connecting an audio oscillator with an

output impedance about 100 times that of the loudspeaker to the electrical terminals.

Next, connect a voltmeter across the loudspeaker terminals. Then, vary the frequency of

the oscillator to find the minimum reading between the two peaks (see Fig. 7.28). This

should occur at the calculated frequencyuB if the design is correct. The ratio of the voltage

reading at this frequency to that at some very low frequency, where it reaches an absolute

minimum, gives the ratio ZEB/RE from which we can calculate QL using Eq. (7.108).

The resonance frequencyuB of the enclosure can be adjusted by varying the length of

the port. A typical value ofQL is around 7. If it is much lower than this, there is probably

a problem with leakage caused by a poor seal. To find the source of leakage, block the

port and drive the loudspeaker (with minimum source impedance) at a very low

frequency and listen around the box for any turbulent “hissing” sounds.

Example 7.3. Bass-reflex enclosure design. In the previous part, we discussed in

detail the design of a closed-box baffle for a low-frequency (woofer) loudspeaker. We

presented methods for the determination of its physical constants, and we showed a

comparison between measurements and calculations.

In this part, we shall use the same loudspeaker drive unit as part of a pair with double

the box volume, so that each unit “sees” the same volume as before. If a pair of 8 U drive

units is used, this provides a choice of 4 U or 16 U loads for parallel or series combi-

nations, respectively. A port will be introduced into the box that resonates with the box

compliance to the same frequency as the mechanical or driver part of the circuit of

Fig. 7.25, that is,

uS ¼ 1
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

MMSCMS

p
.

Your brief is to design a compact floor-standing loudspeaker that can produce 105 dB

SPL at 1 m so that it will be suitable for a medium to large listening area. In other words,

the low frequencies will not be augmented by room modes. Therefore, the frequency

response should be a flat as possible down to 41 Hz, the lowest note on a bass guitar. To

give the widest possible dispersion and for cosmetic reasons, the drive unit should not be

too large. A suitable drive unit is the Bandor type 100DW/8A used in the previous

closed-box example. To reach the required SPL, we will need to use two of these, one

above the other, which doubles the radiating area without increasing the width and

therefore maintains the horizontal directivity pattern. From actual measurements (see

Section 6.10), the ThieleeSmall parameters are as follows:

RE ¼ 6.27 U
QES ¼ 0.522

QMS ¼ 1.9

fS ¼ 37 Hz
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SD ¼ 120 cm2

VAS ¼ 24 L

If we reuse the same volume per drive unit as the closed-box design, then

VAB ¼ 13.42 L. Hence, VAB/VAS ¼ 13.42/24 ¼ 0.56, which from Table 7.4 would

suggest the use of a Bessel alignment whereVAB/VAS ¼ 0.52, and the frequency response

is plotted in Fig. 7.26. At fS ¼ 37 Hz, the response isd7.4 dB with thed3 dB point at

1.49fS ¼ 55 Hz. However, the QTS value of

QTS ¼ QESQMS

QES þQMS
¼ 0.41

is somewhat higher than the optimum value of 0.33 given by Table 7.4 for a Bessel

alignment. This may be corrected by using an amplifier with a negative output

impedance of Rg ¼ �1.45 U (due to positive current feedback [28]). However, for the

purpose of this analysis, we shall proceed with an “underdamped” Bessel alignment by

setting Rg ¼ 0.

VAB ¼ 2� 0.5242� 24 ¼ 25.2 L

From Eq. (6.48), we can calculate the reference efficiency, noting that on one hand a

loudspeaker in a box is half as efficient as one radiating from both sides in an infinite

baffle, but on the other, this is compensated for by having two of them:

Eff ¼ 100
8� 3.142 � 0.024� 373

0.522� 3453
¼ 0.448%

To calculate the maximum SPL, we first obtain CMS, MMS, and Bl from Eqs. (6.27),

(6.28), and (6.30), respectively

CMS ¼ 0.024

0.0122 � 1.18� 3452
¼ 1.19 mm=N

MMS ¼ 1

ð2� 3.14� 37Þ2 � 0.00119
¼ 0.0156 kg

Bl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

6.27

2� 3.14� 37� 0.522� 0.00119

r
¼ 6.59 T$m

Knowing that the power rating Wmax is 100 W, we obtain from Eq. (6.33)

SPLmax ¼ 20 log10

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6.27� 100

p � 6.59� 0.012� 1.18

2� 3.14� 6.27� 0.0156� 20� 10�6

!
¼ 105:6 dB SPL @ 1 m
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where two drive units in a box produce the same pressure as a single one in an infinite

baffle. Next, use Eq. (7.101) to check the peak displacement at low frequencies at full

power:

hmax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 6.27� 100

p

6.59� 0.522� 2� 3.14� 37
¼ 44.3mm

but from Fig. 7.27 we see that for the Bessel alignment the maximum above fS frequency is

0.126 times this value, or 5.6 mm. It turns out that the xmax value of the drive unit is 14 mm,

with a linear limit of 4.5 mm, so there should benoproblemswith this design.Now,we turn

to the port dimensions, but first we must calculate the volume displacement Vmax required

from the maximum pressure pmax (see Summary of bass-reflex design section, p. 334).

pmax ¼ 2� 1.414� 10
105.6�7.4

20
�5 ¼ 2.3 Pa

so that from Eq. (6.35)

Vmax ¼ 1� 2.3

2� 3.14� 372 � 1.18
¼ 0.23 L

Let the volume of the port be 10 times the maximum volume displacement, or

VP ¼ 10Vmax ¼ 2.3 L. From Table 7.4, the box resonance frequency is

fB ¼ 0.9735fS ¼ 36 Hz. The approximate length of the port excluding end effects is

obtained from Eq. (7.97):

tz
345

2� 3.14� 36

ffiffiffiffiffiffiffiffiffi
2.3

25.2

r
¼ 46.1 cm

so that the approximate cross-sectional area is

SP ¼ VP=t ¼ 0:0023=0:461 ¼ 50 cm2; say 15 cm� 3:4 cm ¼ 51 cm2

Then, the actual length is calculated from Eq. (7.98):

t ¼ 0.0051� 3452

0.0252� ð2� 3.14� 36Þ2 � 0.84� ffiffiffiffiffiffiffiffiffiffiffiffiffi
0.0051

p ¼ 41.1 cm

We let the lining material occupy one-quarter of the total box volume so that

VM ¼ VB/4 ¼ VA/3 because VB ¼ VA þVM. We already know that

VAB ¼ VA þ gVM ¼ 25.2 L where g ¼ 1.4. Hence,

VA ¼ 25.2

1þ 1.4=3
¼ 17.2 L

and VM ¼ 17.2/3 ¼ 5.7 L so that VB ¼ 17.2 þ 5.7 ¼ 22.9 L. Hence, the compliance of

the air in the box is CAA ¼VA/(gP0) ¼ 0.0172/(1.4 � 105) ¼ 1.23 � 10�7 and the
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lining material CAM ¼ VM/P0 ¼ 0.0061/105 ¼ 6.1 � 10�8 so that the apparent

compliance is CAB ¼ CAA þ gCAM ¼ 1.23 � 10�7 þ 6.1 � 10�8 ¼ 1.84 � 10�7. The

box and port dimensions are shown in Fig. 7.29. The internal width W is 15 cm, which

is the smallest width that will accommodate the drive units. The acoustic center of the

two drive units is about one-third of the internal height from the top so as not to

coincide with the antinodes of the first or second vertical modes. The box contains one

63.5 by 15 by 6.4 cm piece of lining material. Let us now calculate the box and port

losses. If the flow resistance is Rf ¼ 200 rayl/cm, then acoustic resistance of the lining

material with a depth of 6.4 cm becomes

RAM ¼ 6.4� 200

3� 0.635� 0.15
¼ 4480 N$s

�
m5

so that the box resistance from Eq. (7.7) is

RAB ¼ 4480�
1þ 17.2

1.4� 6.1

�2

þ ð2� 3.14� 36� 4480� 1.23� 10�7Þ2

¼ 492 N$s
�
m5

from which we obtain QA due to absorption within the box:

QA ¼ 1

uBRABCAB
¼ 1

2� 3.14� 36� 492� 1.84� 10�7
¼ 49

Plywood 19 mm
thick

Acoustical lining
= 6.4 cm thick

19.2 cm

22.9 cm

63.5 cm

50.1 cm

= 3.4 cm = 3.4 cm

15 cm

15 cm

Figure 7.29 Example of bass-reflex enclosure design.
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The resistance of the port is given by Eq. (4.23):

RAP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4� 3.14� 36� 1.18� 1.86� 10�5

p

0.15� 0.034

 
0.411ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0.15� 0.034=3.14
p þ 2

!
¼ 238 N$s

�
m5

from which we obtain Qp of the port:

Qp ¼ 1

uBRAPCAB
¼ 1

2� 3.14� 36� 238� 1.84� 10�7
¼ 101

These Q values are very high, which supports the commonly held view that leakage

losses dominate. Unfortunately, the effect of leakage cannot be determined until the

loudspeaker and its enclosure are assembled and measured. A common value of QL due

to all losses is around 7.

Let us now create a semianalytical simulation model of the design of Fig. 7.29 using

two-port networks and transmission matrices, as introduced in Section 3.10 and

Fig. 4.43. The schematic is shown in Fig. 7.30. Although it is based on the circuit of

Fig. 7.24, a gyrator has been inserted between the electrical elements and the mechanical

ones, which enables us to calculate more easily the generator currenteig from which we

Port
Port 

radiation

Diaphragm 
radiationCoil

1

E-M

1

2

2

Diaphragm

3 4

M-A

3 4

5

=

BoxLeak

X

Y
6 7 8 9

98765

6 –= 7 8 = 0=5 =

2

Figure 7.30 Semianalytical model of example bass-reflex enclosure design shown in Fig. 7.29 using
transmission matrices. The dashed boxes are lumped-element two-port networks, and the solid boxes
are analytical ones. Here, the two drive units are connected in parallel so that the net coil resistance RE
is halved. If the drive units are connected in series, replace ½RE, ½LE, and Bl with 2RE, 2LE, and 2Bl.
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obtain the electrical impedance. We are ignoring the generator impedance Rg because in

the experimental setup this is negligible compared with RE. The dashed boxes are

lumped-element two-port networks, and the solid boxes are analytical ones. Here, the

two drive units are connected in parallel so that the net coil resistance RE is halved. If the

drive units are connected in series, replace ½RE, ½LE, and Bl with 2RE, 2LE, and 2Bl.

From the schematic, we create the transmission matrices required to represent each two-

port network as follows:

1. Coil. 24eegeig
35 ¼

264 1
1

2
ZE

0 1

375$"ee1ei1
#

¼ C$

"ee1ei1
#

where ZE ¼ RE þ juLE.

2. Electromechanical transduction."ee1ei1
#

¼
"
0 Bl

ðBlÞ�1
0

#
$

24ef 2eu2
35 ¼ E$

24ef 2eu2
35

3. Diaphragm. 24ef 2eu2
35 ¼

"
1 2ZMD

0 1

#
$

24ef 3eu3
35 ¼ D$

24ef 3eu3
35

where ZMD ¼ juMMD þ RMS þ 1/( juCMS). We must exclude the radiation mass from

the diaphragm so that MMD ¼MMS � 16r0a
3/3, where a ¼ ffiffiffiffiffiffiffiffiffiffiffi

SD=p
p

.

4. Mechanoacoustical transduction.24ef 3eu3
35 ¼

"
2SD 0

0 2S�1
D

#
$

" ep4eU4

#
¼ M$

" ep4eU4

#

5. Diaphragm radiation." ep4eU4

#
¼
"
1 ZA1

0 1

#
$

" ep5eU5

#
¼ F$

" ep5eU5

#

where ZA1 is the acoustic-radiation impedance of the diaphragm, taking into account

the mutual radiation impedance, given by Eqs. (13.339) and (13.345) where ZA1 ¼
(Z11 þ Z12)/SD and a ¼ ffiffiffiffiffiffiffiffiffiffiffi

SD=p
p

.
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6. Leak. " ep5eU5

#
¼
"
1 0

R�1
AL 1

#
$

" ep6eU6

#
¼ L$

" ep6eU6

#

where the leakage resistance is given by

RAL ¼ QL=ð2pfBCABÞ ¼ 7
��

2� 3.14� 36� 1.84� 10�7
� ¼ 168; 200 N$s

�
m5.

7. Box. " ep6eU6

#
¼
"
b11 b12

b21 b22

#
,

" ep7eU7

#
¼ B,

" ep7eU7

#

The mechanical z-parameters of the two-port network for the bass-reflex enclosure

are given by the following equation, which is derived in a similar manner to Eq. (7.131)

in Section 7.18, except that the circular pistons are replaced by rectangular pistons of

width ap in the x direction and bp in the y direction. In addition, the drivers and port are

mounted half way between the side walls so that x1 ¼ x2 ¼ lx/2. We obtain the acoustical

z-parameters by dividing through by apbpaqbq to yield

Zpq ¼ r0c

8>><>>:
1

lxly

Zs

r0c
þ j tan klz

1þ j
Zs

r0c
tan klz

þ 8ly

p2bpbqlx

�
XN
n¼ 1

k

n2k0n
cos

�
npyp

ly

�
cos

�
npyq

ly

�
sin

�
npbp

2ly

�
sin

�
npbq

2ly

� k0nZs

kr0c
þ j tan k0nls

1þ j
k0nZs

kr0c
tan k0nls

þ 2lx

p2apaqly

XN
m¼ 1

k

m2km0
sin

�
mpap

lx

�
sin

�
mpaq

lx

� km0Zs

kr0c
þ j tan km0lz

1þ j
km0Zs

kr0c
tan km0lz

þ 16lxly

p4apaqbpbq

XN
m¼ 1

XN
n¼ 1

k

m2n2kmn
sin

�
mpap

lx

�
sin

�
mpaq

lx

�
cos

�
mpyp

ly

�

� cos

�
npyq

ly

�
sin

�
npbp

2ly

�
sin

�
npbq

2ly

� kmnZs

kr0c
þ j tan kmnlz

1þ j
kmnZs

kr0c
tan kmnlz

9>>>=>>>;
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where

kmn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 �

�
2mp

lx

�2

�
�
np

ly

�2
s

and

Zs ¼ Rf d

3
þ P0

jud

where the value of the lining flow resistance Rf is chosen such that Rfd/3 ¼ r0c ¼ 412

rayl, which is the impedance of free space and thus provides optimum sound absorption

at higher frequencies. Then, the transmission-matrix parameters for the box are given by

b11 ¼ Z11/Z21, b12 ¼ (Z11Z22 � Z12Z21)/Z21, b21 ¼ 1/Z21, and b22 ¼ Z22/Z21. The

dimensions are given in Fig. 7.29 except for a1 ¼ b1 ¼ ffiffiffiffiffiffi
SD

p
.

8. Port. " ep7eU7

#
¼
24 cos kpt jZpsin kpt

jZ�1
p sin kpt cos kpt

35$" ep9eU9

#
¼ P$

" ep8eU8

#

where the port wave number kP and characteristic impedance ZP are obtained from Eqs.

(4.215) and (4.217), respectively. The port is assumed to be large enough to ignore

boundary slip and thermal conduction so that we only consider the viscous flow losses to

obtain kP ¼ ux/c ¼ 2pfx/c, ZP ¼ r0cx/SP, and SP ¼ a2b2 where

x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2J1ðkV aPÞ

kV aPJ0ðkV aPÞ

s
; ap ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2b2=p

p
; and kV ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�jp2f r0=m

p
where m ¼ 1.86 � 10�5 m2/s is the viscosity coefficient for air at 20�C.
9. Port radiation. " ep8eU8

#
¼
"

1 0

Z�1
A2 1

#
$

" ep9eU9

#
¼ R$

" ep9eU9

#

In this case, the port outlet is rectangular and close to the floor so that ZA2 may be

given by the impedance of a rectangular piston in an infinite baffle using Eqs. (13.326)

and (13.327), where ZA2 ¼ (Rs þ jXs)/(a2b2).

First, we evaluate ep9 at the end of the chain:24eegeig
35 ¼ A$

"ep9
0

#
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where

A ¼ C$E$D$M$F$L$B$P$R ¼
"
a11 a12

a21 a22

#

Hence, ep9 ¼ eeg�a11. Then, we work backward to obtain the volume velocities we

wish to evaluate. In particular, we are interested in the far-field pressure, which ac-

cording to Eq. (7.69) is a function ofeUB ¼ eUc � eUL � eUp ¼ eU6 � eU8.

This procedure is fairly straightforward and does not involve any matrix inversion.

From the port radiation matrix (9), we obtaineUP ¼ eU8 ¼ ep9�ZA2

and working back further to the box matrix (7) we obtain" ep6eU6

#
¼ N$

"ep9
0

#

where

N ¼ B$P$R ¼
"
n11 n12

n21 n22

#

so that eUc � eUL ¼ eU6 ¼ n21ep9
and thereforeeUB ¼ eUc � eUL � eUP ¼ eU6 � eU8 ¼ ðn21 � 1=ZA2Þeg=a11

The port volume velocity is given byeUP ¼ eU8 ¼ eg=ða11ZA2Þ
and the diaphragm volume velocity byeUc � eUL ¼ eU6 ¼ n21eeg�a11

To plot the normalized far-field on-axis pressure, we simply divide eUB by a reference

volume velocity
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eUref ¼ 2eegBISD
uMMSRE

and plot 20 log10
�� eUB

�eUref

�� as shown in Fig. 7.31. The port and diaphragm volume

velocities,

20 log10
�� eUP

�eUref

�� and 20 log10
���eUc � eUL

��eUref

��;
respectively, are plotted separately in Fig. 7.32. Although the effects of box and port

modes are clearly seen in the calculated response of Fig. 7.31, most of the irregularities

are emanating from the mouth of the port as is seen from Fig. 7.32. By contrast, the

output from the diaphragm is fairly smooth apart from one small feature at 220 Hz,

which is due to the fundamental vertical mode of the box. At 375, 750, and 1125 Hz, we

see the first, second, and third port modes, respectively. The effect of these will be

mitigated somewhat by mounting the port on the rear of the enclosure as is seen from the

measured response of Fig. 7.31. Finally, we can obtain the input impedance from eeg�eig
where eig ¼ a21ep9 and from above ep9 ¼ eeg�a11. Therefore, the input impedance is

simply ZE ¼ a11/a21, as plotted in Fig. 7.33.
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Figure 7.31 Graphs of the on-axis sound pressure level produced by the bass-reflex enclosure

design shown in Fig. 7.29. The dashed curves are calculated from 20 log10
��eUB
�eUref

��. Solid curves are
measured.
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Figure 7.32 Graphs of the on-axis sound pressure level produced by port and diaphragm of the bass-

reflex enclosure design shown in Fig. 7.29. The dashed curves are calculated from 20 log10
��eUP
�eUref

��
and 20 log10

���eUc � eUL
��eUref

�� for the port and diaphragm, respectively. Solid curves are measured.
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Figure 7.33 Graphs of the electrical input impedance of the bass-reflex enclosure design shown in
Fig. 7.29, where the two drive units are connected in parallel. The dashed curves are calculated from

ZE ¼ ��eeg�eig�� ¼ a11=a21. Solid curves are measured.
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PART XXIII: TWO-PORT NETWORK FOR SMALL ENCLOSURES
In this part, we shall use the two-port network theory, introduced in Section 3.10

and Fig. 4.43, to create a z-parameter matrix that describes a bass-reflex enclosure in

which the rear of the loudspeaker diaphragm connects to one port and the bass-reflex

port connects to the other. Absorbent lining material is located on the internal wall

opposite to the diaphragm and bass-reflex port. This matrix is valid for all wavelengths

because it is based on eigenfunction expansions of the internal modes.

For a closed-box enclosure, we simply set the velocity at the bass-reflex port to zero

so that we are left with one-port network or impedance at the rear of the diaphragm,

which is given by the first element of the matrix z11.

7.18 TWO-PORT NETWORK FOR A BASS-REFLEX ENCLOSURE

A sketch of the two-port enclosure is shown in Fig. 7.34. It is a generic enclosure,

which we shall use for purposes other than the bass-reflex enclosure in Example 7.3, such

as the simple enclosure in Section 7.6, normal modes of a rectangular enclosure in

Section 10.3, and horn bends in Section 9.14.

The two ports, represented by piston 1 and piston 2, are circular and planar. To

simplify the problem, there is only acoustic lining on the surface opposite to the two

ports, represented by a termination impedance at z ¼ 0. For a bass-reflex enclosure, this

avoids having too much absorption which would negate the advantage of the port, the

resonance of which is best damped by the acousto-mechano-electrical coupling to the

voice-coil resistance. If the force and velocity at piston 1 are given by eF1 and eu1,
respectively, and the force and velocity at piston 2 by eF2 and eu2, then

lz

lx

Termina�on 
impedance Zs
at z = 0

ly

x1

x

yz

0

y2

y1

a1
Piston 1

Piston 2

x2

a2

Figure 7.34 Sketch of the bass-reflex enclosure as a two-port network.
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24 eF1eF2

35 ¼
"
z11 z12

z21 z22

#" eu1
�eu2

#
; (7.109)

where the mechanical self-impedance z11 of piston 1 is the ratio of the force to velocity at

piston 1 with piston 2 blocked

z11 ¼ eF1eu1
����eu2¼0

. (7.110)

Similarly, the mechanical self-impedance z2 of piston 2 is the ratio of the force to

velocity at piston 2 with piston 1 blocked

z22 ¼ eF2

�eu2
����eu1¼0

; (7.111)

which is obtained by interchanging “1” and “2” in the expression for z11. In a passive

network such as this, the mutual impedances z12 and z21 are equal and given by

z12 ¼ eF1

�eu2
����eu1¼0

¼ z21 ¼ eF2eu1
����eu2¼0

. (7.112)

For simplicity, we let either eu1 ¼ eu0 when eu2 ¼ 0 or eu2 ¼ eu0 when eu1 ¼ 0,

although in practice they will be different and, according to the superposition of fields,

the pressure field will be the sum of those produced by the velocity at each inlet, which

in turn depends on the inlet pressure and impedance. However, this simplification

enables us to write a single expression for the internal pressure due to the velocity eu0 at
any inlet

epðx; y; zÞ ¼ r0ceu0 XN
m¼ 0

XN
n¼ 0

�
Amne

�jkmnz þ Bmne
jkmnz
�
cosðmpx=lxÞcosðnpy=lyÞ;

(7.113)

where

kmn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 �

�
mp

lx

�2

�
�
np

ly

�2
s

. (7.114)

The boundary condition of zero pressure gradient at the perfectly rigid side walls

(x ¼ 0, x ¼ lx, y ¼ 0, y ¼ ly) is accounted for by the cosine expansions in m and n. In

other words, only standing waves whose wavelengths are integer or half-integer divisions

of lx and ly can exist in the x and y directions, respectively. The term with the coefficient
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Bmn represents plane waves traveling from the pistons in the negative z direction and the

term with the coefficient Amn represents reflected plane waves traveling in the positive z

direction. The strengths of the reflections depend on the value of the impedance specific

Zs in the plane z ¼ 0. The unknown expansion coefficients Am and Bn are found by

applying the boundary conditions at the pistons in the front baffle (z ¼ lz) and at the rear

wall (z ¼ 0), which is terminated in a specific impedance Zs. The velocity in the z

direction is given by

euzðx; y; zÞ ¼ 1

�jkr0c

v

vz
epðx; y; zÞ

¼ 1

k
eu0 XN

m¼ 0

XN
n¼ 0

kmn
�
Amne

�jkmnz � Bmne
jkmnz
�
cosðmpx=lxÞcosðnpy=lyÞ.

(7.115)

At z ¼ 0, epðx; y; 0Þ ¼ �Zseuzðx; y; 0Þ; (7.116)

so that

Bmn ¼ kmnZs þ kr0c

kmnZs � kr0c
Amn. (7.117)

To evaluate the pressure field due to a velocity eu0 at piston 1, we set the following

boundary conditions at z ¼ lz,

euzðx; y; lzÞ ¼
8<:eu0; x1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a21 � ðy� y1Þ2

q
� x � x1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a21 � ðy� y1Þ2;

q
y1 � a � y � y1 þ a

0; everywhere else

:

(7.118)

After inserting Eq. (7.117) into Eq. (7.115), we then multiply through by cos(ppx/lx)

and cos(qpy/ly) and integrate over x and y as follows:

euzðx; y; zÞ ¼ 2

k
eu0 XN

m¼ 0

XN
n¼ 0

kmnAmn
kr0c cos kmnlz þ jkmnZs sin kmnlz

kr0c � kmnZs

�
Z lx

0

cosðmpx=lxÞcosðppx=lxÞdx
Z ly

0

cosðnpy=lyÞcosðqpy=lyÞdy

¼ eu0 Z y1þa1

y1�a1

cosðqpy=lyÞ
Z x1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a21�ðy�y1Þ2

p

x1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a21�ðy�y1Þ2

p cosðppx=lxÞdxdy:

(7.119)

Using the property of orthogonality such that p ¼ m and q ¼ n together with the

integral identities
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Z lx

0

cosðmpx=lxÞcosðppx=lxÞdx ¼
( ð1þ dm0Þlx=2; p ¼ m

0; p s m
(7.120)

Z ly

0

cosðnpy=lyÞcosðqpy=lyÞdy ¼
( ð1þ dn0Þly=2; q ¼ n

0; q s n
(7.121)

Z x1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a21�ðy�y1Þ2

p

x1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a21�ðy�y1Þ2

p cosðppx=lxÞdx ¼

8>>>><>>>>:
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a21 � ðy� y1Þ2

q
; p ¼ 0

2lx

pp
cos

�
ppx1

lx

�
sin

�
pp

lx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a21 � ðy�y1Þ2

q �
; ps 0

(7.122)Z y1þa1

y1�a1

cos

�
npy

ly

�
sin

�
mp

lx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a21 � ðy� y1Þ2

q �
dy

¼ pa1mlyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2l2x þ m2l2y

q cos

�
npy1

ly

�
J1

0@pa1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2l2x þ m2l2y

q
lxly

1A;

(7.123)

we obtain

A00 ¼ pa21
2lxly

$
r0c � Zs

r0c cos klz þ jZs sin klz
; (7.124)

A0n ¼ 2k

lxlyk0n

Z y1þa1

y1�a1

cos

�
npy

ly

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a21 � ðy� y1Þ2

q
dy

� kr0c � k0nZs

kr0c cos k0nlz þ jk0nZs sin k0nlz
;

(7.125)

Am0 ¼ 2k

mpkm0ly
cos

�
mpx1

lx

�Z y1þa1

y1�a1

sin

0@mp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a21 � ðy� y1Þ2

q
lx

1Ady

� kr0c � km0Zs

kr0c cos km0lz þ jkm0Zs sin km0lz
;

(7.126)
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Amn ¼ ð2� dm0Þð2� dn0Þka1
kmn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2l2x þ m2l2y

q cos

�
mpx1

lx

�
cos

�
npy1

ly

�
J1

0@pa1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2l2x þ m2l2y

q
lxly

1A

� kr0c � kmnZs

kr0c cos kmnlz þ jkmnZs sin kmnlz
;

(7.127)

where dm0 is the Kronecker delta function. Inserting Eqs. (7.117) and (7.127) into

Eq. (7.113) gives

epðx; y; zÞ ¼ �r0ceu0
(
pa21
lxly

$
Zs cos kzþ jr0c sin kz

r0c cos klz þ jZs sin klz
þ 2ka1

XN
m¼ 0

XN
n¼ 0

cos

�
mpx1

lx

�

� cos

�
npy1

ly

� ð2� dm0Þð2� dn0Þ
kmn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2l2x þ m2l2y þ dm0dn0

q J1

0@pa1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2l2x þ m2l2y

q
lxly

1A

� cos

�
mpx

lx

�
cos

�
npy

ly

�
kmnZs cos kmnzþ jkr0c sin kmnz

kr0c cos kmnlz þ jkmnZs sin kmnlz

�
(7.127a)

where we have inserted the term dm0dn0 to avoid a singularity in the denominator when

m ¼ n ¼ 0 and to ensure a zero result. Otherwise, we see that as m ¼ n / 0, J1(x)/

x / x/2 for small x, so that the first term of the expansion is nonzero and equal to the

first term in the braces. This is the “tube” term as it describes the pressure field that

would result if the piston were as large as the wall in which it is mounted, in which case

all the other terms would vanish. In the opposite extreme, to derive the expression for

the pressure field when the piston is so small that it can be considered as a point source,

let us replace eu0 with a volume velocity eU0 divided by the area of the piston pa21 and

again use the relationship J1(x)/x/ x/2 for small x to yield

epðx; y; zÞja1/0 ¼ � r0c eU0
k

lxly

XN
m¼ 0

XN
n¼ 0

ð2� dm0Þð2� dn0Þ
kmn

cos

�
mpx1

lx

�
cos

�
npy1

ly

�

� cos

�
mpx

lx

�
cos

�
npy

ly

�
kmnZs cos kmnzþ jkr0c sin kmnz

kr0c cos kmnlz þ jkmnZs sin kmnlz
:

(7.127b)
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The mechanical self-impedance is given by

z11 ¼ 1

�eu0
Z y1þa1

y1�a1

Z x1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a21�ðy�y1Þ2

p

x1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a21�ðy�y2Þ2

p epðx; y; lzÞdx dy (7.128)

Using the integral of Eq. (7.123) gives

z11 ¼ r0c

8<:p2a41
lxly

$

Zs

r0c
þ j tan klz

1þ j
Zs

r0c
tan klz

þ 4ka21lxly
XN
m¼ 0

XN
n¼ 0

kmnZs

kr0c
þ j tan kmnlz

1þ j
kmnZs

kr0c
tan kmnlz

� ð2� dm0Þð2� dn0Þ
kmn

	
n2l2x þ m2l2y



þ dm0dn0

cos2
�
mpx1

lx

�
cos2

�
npy1

ly

�
J21

0@pa1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2l2x þ m2l2y

q
lxly

1A9=;:

(7.128a)

The mutual mechanical impedance z12 is given by

z12 ¼ 1

�eu0
Z y2þa2

y2�a2

Z x2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a22�ðy�y2Þ2

p

x2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a22�ðy�y2Þ2

p epðx; y; lzÞdx dy (7.129)

Using the integral of Eq. (7.123) gives

z12 ¼ r0c

(
p2a21a

2
2

lxly
$

Zs

r0c
þ j tan klz

1þ j
Zs

r0c
tan klz

þ 4ka1a2lxly
XN
m¼ 0

XN
n¼ 0

kmnZs

kr0c
þ j tan kmnlz

1þ j
kmnZs

kr0c
tan kmnlz

$
ð2� dm0Þð2� dn0Þ

kmn

	
n2l2x þ m2l2y



þ dm0dn0

� cos

�
mpx1

lx

�
cos

�
npy1

ly

�
J1

0@pa1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2l2x þ m2l2y

q
lxly

1A

� cos

�
mpx2

lx

�
cos

�
npy2

ly

�
J1

0@pa2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2l2x þ m2l2y

q
lxly

1A9=;:

(7.130)
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All the self- and mutual mechanical impedances are given by the single expression

zpq ¼ r0c

(
SpSq

lxly
$

Zs

r0c
þ j tan klz

1þ j
Zs

r0c
tan klz

þ 4kapaqlxly
XN
m¼ 0

XN
n¼ 0

kmnZs

kr0c
þ j tan kmnlz

1þ j
kmnZs

kr0c
tan kmnlz

$
ð2� dm0Þð2� dn0Þ

kmn

	
n2l2x þ m2l2y



þ dm0dn0

� cos

�
mpxp

lx

�
cos

�
npyp

ly

�
J1

0@pap

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2l2x þ m2l2y

q
lxly

1A

� cos

�
mpxq

lx

�
cos

�
npyq

ly

�
J1

0@paq

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2l2x þ m2l2y

q
lxly

1A9=;
(7.131)

where

kmn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 �

�
mp

lx

�2

�
�
np

ly

�2
s

: (7.132)

and Sp ¼ pa2p; Sq ¼ pa2q . The self- and mutual mechanical Z-parameters of Eq.

(7.131) may be converted into specific or acoustic ones, but we have to be careful

when converting into mutual-specific Z-parameters. Let us denote the mechanical Z-

parameters by

ZMpq ¼
ef peuq
�����eup¼0

¼ zpq:

Although the conversion to self-specific Z-parameters is straightforward, the mutual

ones depend on whether we define the specific impedance as the ratio of pressure to

velocity or the ratio of force to volume velocity
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ZSpq ¼ eppeuq
����eup¼0

¼ ZMpq

Sp
or Z 0

Spq ¼
ef peUq

�����eUp¼0

¼ ZMpq

Sq

The same care has to be taken in converting mutual-specific Z-parameters into

acoustic ones, although the conversion from mechanical into acoustic is straightforward

ZApq ¼ eppeUq

�����eUp¼0

¼ ZSpq

Sq
¼ Z 0

Spq

Sp
¼ ZMpq

SpSq
:

PART XXIV: TRANSMISSION-LINE ENCLOSURES

7.19 TRANSMISSION-LINE ENCLOSURES

General description
A transmission-line enclosure has a duct or tube between the rear side of the loud-

speaker and an opening to the outside world, which is usually folded to save space.

Sound is radiated both from the front of the loudspeaker and from the opening. Unlike a

bass-reflex enclosure where the dimensions of the enclosure and port are usually small

compared with the wavelength, the duct is long enough for it to introduce significant

phase shifts at low frequencies. If the length of the duct is one-quarter of a wavelength, a

small movement of the loudspeaker diaphragm creates a large movement of air at the

duct opening. Thus, the enclosure causes a large response at the quarter-wavelength

frequency, and this permits a small loudspeaker (2e4 in. diameter) to radiate appre-

ciable sound at frequencies down to 100 Hz. But there is a problem. When the fre-

quency is increased, the sound radiated from the tube opening becomes opposite in

phase from that radiated from the front of the loudspeaker. Thus, a sizable dip in the

total radiated sound will occur. This dip in response will happen at half-wavelength

multiples. In practice, two solutions to this problem have been employed. One is to

use a digital signal processor (DSP) to change the phases and the other is to fill the tube

with a lightweight sound-absorbing material. Both solutions remove or greatly modify

the “bumpiness” in the response curve. When the latter solution is selected, the tube is

usually tapered in length so that it acts like in inverse horn loudspeaker. Although the

extent is not known to which DSP is used in practice and/or adding sound-absorbing

material in the duct, two transmission-line loudspeakers are shown in Fig. 7.35.
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Fig. 7.35a shows a substantially straight transmission line as used in the Bose Wave�
music system. Fig. 7.35b shows a tapered transmission line. A commercial example is the

Bowers and Wilkins Nautilus�, which as the name suggests, uses a tapered transmission

line rolled into a spiral.

Summary of transmission-line design

To determine the cutoff frequency, frequency response, and the volume of the box:

If the ThieleeSmall parameters (RE, QES, QMS, fS, SD, and VAS) of the chosen drive

unit are not supplied by the manufacturer, they may be measured according to Section

6.10. Then QTS ¼ QESQMS/(QES þ QMS).

If we assume that the drive unit will behave more or less as if it were mounted in an

infinite baffle, we can select the frequency-response shape from Table 7.2 for which the

QTC value is closest to the QTS value of the chosen drive unit (or choose a drive unit

whose QTS value is closest to that of the desired frequency-response shape).

From the value of f3dB/fC in the table, compute the cutoff frequency f3dB assuming that

fC z fS.

The frequency-response shape below the first diaphragm break-up mode but above

the transmission-line cutoff frequency fT is shown in Fig. 7.16. Below fT, the roll-off

increases from second-order (12 dB/octave) to third-order (18 dB/octave).

To determine the maximum SPL:

If the loudspeaker is to be used near a wall or a rigid planar surface, which is large

compared with the longest wavelength to be reproduced, then the maximum sound

pressure SPLmax at a distance r is obtained from Eq. (6.34) to give

CU~

U~TU~

T
a
Throat 
area ST

Loud

Transmiss
(inverted h
length lT fi
absorbent 

speaker

Mouth are

sion line 
horn) of 
lled with 
material 

a SM
(a) (b)

Figure 7.35 Transmission-line enclosures: (a) Substantially “straight” transmission line, except for
some flaring near the drive unit, as used in the Bose Wave� music system. Courtesy of Bose Corpo-
ration. (b) “Tapered” transmission line. The diaphragm has an area SD.

410 Acoustics: Sound Fields, Transducers and Vibration



SPLmax ¼ 20 log10
1

rc � 20� 10�6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ZnomWmax2pf

3
SVASr0

REQES

s
dB SPL @ 1 m

where Wmax is the maximum rated input power. Otherwise, if it is to be used in the free

field, subtract 6 dB from SPLmax.

To determine the excursion limit:

The maximum peak diaphragm displacement at frequencies well below the suspension

resonance is obtained from Eq. (6.15) to give

hmax ¼ 1

SDc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ZnomWmaxVAS

REQESpfsr0

s
If this value is greater than the rated xmax limit of the drive unit, then a high-pass filter

should be employed to remove all content below the suspension resonance frequency. If

this is not possible, then an alternate drive unit with a greater xmax limit should be

considered.

To determine the transmission-line dimensions and filling material:

Determine the flow velocity u from Eq. (7.137) and the flow resistance of the filling

material from Eq. (7.8).

Calculate the length lTof the transmission-line using Eq. (7.138). Choose a convenient

mouth area SM to fit around the back of the drive unit and choose a throat area STwhich is

about 4e8 times smaller. The volume of the transmission line VT is then given by Eq.

(7.139).

Calculate the specific acoustic resistance RST of the filling material from Eq. (7.140)

and the transmission-line cutoff frequency from Eq. (7.141).

The cutoff frequency should be less than one-half of the suspension resonance fre-

quency fS. If it is not, then consider a different filling material with a higher flow resistance

Rf. Alternatively, increase the length lTof the transmission line or reduce the throat area

STor both.

To obtain a smooth frequency response from passive loudspeaker, without equal-

ization, the tapered transmission line shown in Fig. 7.35b is preferable. Although a horn

is commonly used as a high-pass filter because it increases the radiated volume velocity

above its cutoff frequency, here we have an inverted parabolic horn which, as we shall

see, acts as a low-pass filter because it attenuates the volume velocity radiated from its

outlet or throat. To obtain the smoothest possible response, it is tuned to roll-off well

below the fundamental resonance frequency of the drive unit, which in turn behaves as

though it is mounted in large sealed enclosure except that the filling material may damp

the fundamental resonance slightly. The low-frequency roll-off of a loudspeaker with a
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transmission-line enclosure has a second-order slope initially, increasing to third-order

below the transmission-line cutoff frequency.

We shall assume for the remainder of this analysis that ka < 0.5. In other words, we

are restricting ourselves to the very lowefrequency region where the radiation from

both the port and the loudspeaker is nondirectional. Hence, we can draw the simplified

model of Fig. 7.36.

Acoustical circuit
The acoustical circuit for the transmission line and radiation is given in Fig. 7.36 using

lumped elements, except for the transmission line, which is treated as a two-port

network. The series radiation mass and resistance on the front side of the diaphragm

are, respectively, MA1 and RAR1. Unlike with the bass-reflex enclosure, we omit leakage

losses as we shall assume that the losses within the lining material will dominate over all

others. Finally, the series radiation mass and resistance from the throat of the transmission

line are, respectively, MA2 and RAR2. The values of these quantities are MA2 as in

Eq. (7.32), but with aT instead of a, that is,

MA2 ¼ 0.2026r0=aT

RAR2 as in Eq. (7.31), and

~

~ ~

:1 

~

~ ~~ –

Front of 
diaphragm 

Back of 
diaphragm 

Throat radiation 

Diaphragm radiation 

~

Transmission line 

Figure 7.36 Analogous acoustical circuit for a loudspeaker box with a transmission line, which is a
reverse finite horn and may be modeled using the transmission-parameter matrices given in Section
9.13. In the case of Fig. 7.35(b), it is parabolic. The volume velocity of the diaphragm is eUc and that of
the transmission-line throat outlet is eUT .
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MA1 is acoustic-radiation mass for the front side of the loudspeaker

diaphragm ¼ 0.2026r0/a kg/m
4. Note that we assume the loudspeaker unit is

equivalent to a piston radiating from one side only in free space.

RAR1 ¼ 0.01075f 2 is acoustic-radiation resistance for the front side of the

loudspeaker diaphragm in N$s/m5 (see Fig. 4.39 for ka > 1.0).

r0 is density of air in kg/m3 (normally about 1.18 kg/m3).

aT is effective radius in m of the transmission-line throat. If it is not circular, then let

aT ¼ ffiffiffiffiffiffiffiffiffiffiffi
ST=p

p
, where ST is the effective area of the throat opening in m2.

SM ¼ pa2M is effective cross-sectional area of the transmission-line mouth in m2.

ST ¼ pa2T is effective cross-sectional area of transmission-line throat outlet in m2.

lT is length of the transmission line in m.

Electromechanoacoustical circuit
The complete circuit for a loudspeaker with a transmission-line enclosure is obtained by

combining Figs. 6.4(b) and 7.36. To do this, the acoustical radiation element of the

circuit labeled “2MM1” in Fig. 6.4(b) is removed, and the circuit of Fig. 7.36 is

substituted in its place. The resulting circuit with the transformer removed and every-

thing referred to the acoustical side is shown in Fig. 7.37.

The quantities not listed in the previous paragraph areeeg is open-circuit voltage in V of the audio amplifier.

B is flux density in the air gap in T (1 T ¼ 104 G).

l is length in m of voice-coil wire.

Rg is output electrical resistance in U of the audio amplifier.

RE is electrical resistance in U of the voice coil.

a is effective radius of the diaphragm in m.

MAD ¼ MMD

�
S2D is acoustic mass of the diaphragm and the voice coil in kg/m4.

CAS ¼ CMSS
2
D is acoustic compliance of the diaphragm suspension in m5/N.

RAS ¼ RMS

�
S2D is acoustic resistance of the diaphragm suspension in N$s/m5.

MA1 RAR1

MA2

RAR2

TU~

Transmission line
Outlet

radiation
Diaphragm 
radiation

DEg

g

SRR
Ble

)(

~

CAScU~

cp~

2

22

)( DEg SRR
lB MAD RAS

Mechanical part  
of loudspeakerElectrical

Figure 7.37 Complete electromechanoacoustical circuit for a transmission-line loudspeaker. The total
force produced at the voice coil by the electric current is epcSD, where SD is the area of the diaphragm.
The volume velocity of the diaphragm is eUc and that of the transmission-line throat outlet is eUT .
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If the outlet of the transmission line is closed off so that eUT equals zero, then Fig. 7.37

essentially reduces to Fig. 7.6. At very low frequencies, the mass of air moving out of the

lower opening is nearly equal to that moving into the upper opening at all instants. In

other words, at very low frequencies, the volume velocities at the two openings are

nearly equal in magnitude and opposite in phase.

Radiated sound
The outlet in the box of a transmission-line baffle is generally effective only at fairly low

frequencies. At those frequencies, its dimensions are generally so small that it can be

treated as though it were a simple source. The loudspeaker diaphragm can also be treated

as a simple source because its area is often nearly the same as that of the opening.

Referring to Eq. (4.71), we find that the sound pressure at a distance r away from the

transmission-line loudspeaker is

ep ¼ ep1 þ ep2 z jur0
4pr

	eUce
�jkr1 � eUTe

�jkr2


; (7.133)

whereep1 and ep2 are complex sound pressures, respectively, from the diaphragm and

transmission-line outlet at distance r.

r is average distance of the point of observation from the diaphragm and the

transmission-line outlet. Note that r is large compared with the diaphragm and port

radii.

r1 and r2 are actual distances, respectively, of the point of observation from the dia-

phragm and transmission-line outlet.eUc is complex volume velocity of the diaphragm.eUT is complex volume velocity of the transmission-line outlet. Note that the

negative sign is used for eUT because, except for phase shift introduced by the

transmission line, the air from its throat outlet moves outward when the air from

the diaphragm moves inward.

In addition, the complex volume velocity necessary to compress and expand the air

inside the transmission line is eUB ¼ eUc � eUT . (7.134)

If we now let r1 ¼ r2 ¼ r by confining our attention to a particular point in space in

front of the loudspeaker where this is true, we get

ep z jur0
4pr

�eUc � eUT

�
e�jkr . (7.135)

Because eUc � eUT ¼ eUB, we have simply that
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��ep��z f r0
�� eUB

��
2r

. (7.136)

As with the bass-reflex enclosure, the sound pressure produced at faraway points

equidistant from cone and outlet of a transmission-line loudspeaker is directly propor-

tional to the volume velocity necessary to compress and expand the air inside the

transmission line.

At very low frequencies, where the wavelength is much greater than the length lTof

the transmission line, eUc becomes nearly equal to eUT , and the pressure, measured at

points r ¼ r1 ¼ r2, approaches zero. In fact, the two sources behave like a dipole so that

the radiated sound pressure decreases by a factor of 2 for each halving of frequency. In

addition, if we are below the lowest resonance frequency of the circuit of Fig. 7.37, the

diaphragm velocity eUc halves for each halving of frequency. Hence, in this very lowe
frequency region, the sound pressure decreases by a factor of 8, which is 18 dB, for each

halving of frequency. In other words, the slope is third order. Note that this decrease is

greater than that for a loudspeaker in a closed box or in an infinite baffle (which is second

order) but less than that for a loudspeaker in a vented box (which is fourth order). The

effect is somewhat similar to mounting the loudspeaker in a very large flat open baffle

(which is also third order).

The flow resistance Rf of the filling material, given by Eq. (7.8) is dependent on the

flow velocity u and is therefore nonlinear. The problem is that the flow velocity varies

with frequency and with position along the tapered transmission line. This could lead to

a very complicated analysis, but if we make sure that there is enough attenuation within

the transmission line for the radiation from the throat outlet not to interfere too much

with the direct radiation from the diaphragm, we need not worry too much about the

accuracy of the model. The flow resistance will mainly affect the damping of the

fundamental resonance of the drive unit over a relatively small range of frequencies.

Therefore, we set the rms velocity value to that of the diaphragm at resonance at its

maximum displacement:

u z
usxmaxffiffiffi

2
p . (7.137)

We then obtain the flow resistance Rf from Eq. (7.8). Usually, we set the length lT to

be one-quarter of the wavelength at the suspension resonance frequency fS so that

lT ¼ c

4fs
. (7.138)

This rather naı̈ve formula assumes the free-space speed of sound c, whereas in the

lossy filling material it is somewhat slower [see Eqs. (2.115) and (2.117) for the speed of

sound in a material with flow resistance Rf]. However, this is largely compensated for by
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the fact that the resonance in a tapered duct is not a true quarter-wavelength one, but

rather occurs when lT ¼ al/(2p), where J0(a) ¼ 0, or lT ¼ l/2.61274 (assuming

ST << SM). The volume occupied by the transmission line is

VT ¼ ST þ SM

2
lT . (7.139)

By examining the asymptotic low-frequency behavior of the tapered transmission

line, we find that its specific resistance RST, as seen from the mouth, is

RST ¼ SM

SM � ST
lTRf ln

SM

ST
. (7.140)

If the filling material has ample overall specific resistance (>400 rayls), we can use the

following empirical formula for the transmission-line cutoff frequency

fTz
2P0

3RST lT
. (7.141)

Performance
With the information just given, it is possible to calculate the response of the loudspeaker

in a transmission-line enclosure. A complete example is given in the next section.

From Fig. 7.37, we see that, for frequencies below uT, radiation from the

transmission-line outlet (proportional to �eU0) is out of phase with the radiation from

the diaphragm (proportional to eUc). As a result, the response at very low frequencies is

usually not enhanced by the transmission line. Above the cutoff frequency uT, radiation

from the throat is in phase with that from the diaphragm at some frequencies but out of

phase at others. However, because the radiation from the throat is attenuated, it has

relatively little influence on the overall response. Consequently, a transmission-line

enclosure behaves somewhat like a large open baffle, and the need for a reasonably

stiff suspension is even greater than in the case of a bass-reflex enclosure. A large

loudspeaker diaphragm usually is superior to a small one because the amplitude of its

motion is less, thereby reducing nonlinear distortion.

At low frequencies, the wavelength is usually very large compared with the box

dimensions if the transmission line is folded, so the small resulting phase difference

between the outputs of the transmission line and diaphragm will have little effect on the

performance.

An advantage of a transmission-line loaded loudspeaker is that the buildup of pressure

inside the enclosure is much less than inside a closed-box or even a bass-reflex enclosure

above the box resonance. Therefore, pressure waves from the rear of the diaphragm are

less likely to couple to the walls of the enclosure and cause unwanted vibrations.
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Example 7.4. Transmission-line enclosure design. In the previous part, we

discussed in detail the design of a bass-reflex baffle for a low-frequency (woofer) loud-

speaker. We presented methods for the determination of its physical constants, and we

showed a comparison between measurements and calculations.

In this part, we shall use a single full-range unit loaded at the rear with a transmission

line. The brief here is to design a compact loudspeaker for domestic use with extended

bass response at moderate listening levels in an enclosure no larger than 2½ liters. We aim

to produce 86 dB SPL at 1 m using just 2 Wof input power, or 92 dB SPL from a stereo

pair. We wish to extend the frequency response down to 140 Hz. We assume that the

loudspeaker will be placed near a wall to support the low frequencies.

A suitable drive unit is the Peerless 2½-inch “Tymphany” type 830,985. The

ThieleeSmall parameters are as follows:

RE ¼ 3.7 U
QES ¼ 0.83

QMS ¼ 3.46

fS ¼ 140 Hz

SD ¼ 22 cm2

VAS ¼ 0.472 L

Then

QTS ¼ QESQMS

QES þQMS
¼ 0.67.

From Eq. (6.48), we can calculate the reference efficiency

Eff ¼ 100
8� 3.142 � 472� 10�6 � 1403

0.83� 344.83
¼ 0.3%.

To calculate the maximum SPL, we first obtain CMS, MMS, and Bl from Eqs. (6.27),

(6.28), and (6.30), respectively:

CMS ¼ 472� 10�6

0.00222 � 1.18� 344.82
¼ 0.695 mm=N;

MMS ¼ 1

ð2� 3.14� 140Þ2 � 695� 10�6
¼ 0.0019 kg;

Bl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3.7

2� 3.14� 140� 0.83� 695� 10�6

r
¼ 2.7 T$m.
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We obtain from Eq. (6.33)

SPL2W ¼ 20 log10

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3.7� 2

p � 2.7� 0.0022� 1.18

2� 3.14� 3.7� 0.0019� 20� 10�6

!
¼ 86.7 dB SPL @ 1 m.

Next we use Eq. (6.35) to check the peak displacement at fS for 86 dB SPL:

hpeak ¼
ffiffiffi
2

p � 1� 10

�
86
20
�5
�

p� 1402 � 1.18� 0.0022
¼ 1.8 mm.

However, QTS ¼ 0.66 so that at resonance the actual displacement is

0.66 � 1.8 ¼ 1.2 mm and the sound pressure is 86 þ 20 log100.66 ¼ 82.4 dB SPL. It

turns out that the xmax value of the drive unit is 2 mm, so there should be no problems

with this design provided that the input power is limited to just 2 Wat low frequencies.

For the purpose of evaluating the flow resistance of the filling material, we take the flow

velocity u from Eq. (7.137) as follows:

uz
2p140� 0.0012ffiffiffi

2
p ¼ 0.75 m=s.

Suppose that our filling material, which in this case is lamb’s wool, has a porosity

4 ¼ 0.98 and an average fiber diameter of 50 mm. From Eq. (7.8), we obtain the flow

resistance:

Rf ¼ 4� 1.86� 10�5 � 0.02

0.98� 502 � 10�12

0BB@ 1� 4

p
� 0.02

2þ ln
1.86� 10�5 � 0.98

2� 50� 10�6 � 1.18� 0.75

þ 6

p
� 0.02

1CCA
¼ 1433 rayls=m.

Now, we turn to the transmission-line dimensions. Let us make the length lTequal to

one-quarter wavelength at fS from Eq. (7.138), so that

lT ¼ 344.8

4� 140
¼ 0.62 m.

For convenience, we make the mouth area a square large enough to fit the diameter

of the drive unit:

SM ¼ 7 cm� 7 cm ¼ 49 cm2

and

ST ¼ SM=4 ¼ 12.25 cm2;
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which from Eq. (7.139) makes the total volume

VT ¼ ð12.25þ 49Þ � 10�4

2
� 0.62 ¼ 1.9� 10�3 m3 or 1.9 L.

From Eq. (7.140), this gives a specific resistance value of

RST ¼ 49

49� 12.25
� 0.62� 1433� ln

49

12.25
¼ 1642 rayls.

Now from Eq. (7.141), we can calculate the cutoff frequency

fTz
2� 105

3� 1642� 0.62
¼ 65.5 Hz;

which is well below the suspension resonance frequency fS of the drive unit.

Let us now create a semianalytical simulation model of the design of Fig. 7.38 using

two-port networks and transmission matrices, as introduced in Section 3.10 and

Fig. 4.43. The schematic is shown in Fig. 7.39. Although it is based on the circuit of

Fig. 7.37, a gyrator has been inserted between the electrical elements and the mechanical

ones, which enables us to calculate more easily the generator currenteig from which we

obtain the electrical impedance. We are ignoring the generator impedance Rg because in

the experimental setup this is negligible compared with RE. The dashed boxes are

lumped-element two-port networks and the solid boxes are analytical ones. From the

schematic, we create the transmission matrices required to represent each two-port

network as follows:

1. Coil. 24eegeig
35 ¼

"
1 ZE

0 1

#
$

"ee1ei1
#

¼ C$

"ee1ei1
#

where ZE ¼ RE þ juLE.

3.5 cm 

44.5 cm 

7 cm 

9 cm 

7 cm 

9 cm 

3.5 cm 

11 cm 

“Throat” 

Absorbent 
lining 

Figure 7.38 Example of transmission-line enclosure design.
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2. Electromechanical transduction."ee1ei1
#

¼
"
0 Bl

ðBlÞ�1
0

#
$

24ef 2eu2
35 ¼ E$

24ef 2eu2
35

3. Diaphragm. 24ef 2eu2
35 ¼

"
1 ZMD

0 1

#
$

24ef 3eu3
35 ¼ D$

24ef 3eu3
35

where ZMD ¼ juMMD þ RMS þ 1/(juCMS). We must exclude the radiation mass from

the diaphragm so that MMD ¼MMS � 16r0a
3/3, where a ¼ ffiffiffiffiffiffiffiffiffiffiffi

SD=p
p

.

4. Mechanoacoustical transduction.24ef 3eu3
35 ¼

"
SD 0

0 S�1
D

#
$

" ep4eU4

#
¼ M$

" ep4eU4

#

LERE

Throat
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Figure 7.39 Semianalytical model of example transmission-line enclosure design shown in Fig. 7.38
using transmission matrices. The matrix for the transmission line is given in Eq. (9.65) for a reverse
parabolic horn.
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5. Diaphragm radiation." ep4eU4

#
¼
"
1 ZA1

0 1

#
$

" ep5eU5

#
¼ D$

" ep5eU5

#

where ZA1 is the acoustic-radiation impedance of the diaphragm given by Eqs.

(13.116)e(13.118) with a ¼ ffiffiffiffiffiffiffiffiffiffiffi
SD=p

p
.

6. Transmission line. Distributed parameter model:" ep5eU5

#
¼ 1

a11a22 � a12a21

"
a22 a12

a21 a11

#
$

" ep6eU6

#
¼ T$

" ep6eU6

#

where

a11 ¼ �p

2
kxMð J0ðkxT ÞY1ðkxMÞ � J1ðkxMÞY0ðkxT ÞÞ

a12 ¼ j
ZST

SM

p

2
kxMð J0ðkxT ÞY0ðkxMÞ � J0ðkxMÞY0ðkxT ÞÞ

a21 ¼ j
ST

ZST

p

2
kxMð J1ðkxT ÞY1ðkxMÞ � J1ðkxMÞY1ðkxT ÞÞ

a22 ¼ ST

SM

p

2
kxMð J1ðkxT ÞY0ðkxMÞ � J0ðkxMÞY1ðkxT ÞÞ

where

xT ¼ ST lT=ðSM � ST Þ and xM ¼ SMlT=ðSM � ST Þ.
For ZST and k, we use Eqs. (7.10) and (7.11), respectively. The ratio of the throat

volume velocity to the mouth volume velocityeUT

�eUc ¼ eU6

�eU5 ¼ 1=a11

is plotted in Fig. 7.40, assuming that the pressure at the throat is virtually zero. We see

that the volume velocity rolls off smoothly above fT ¼ 65.5 Hz.

7. Throat radiation. " ep6eU6

#
¼
"

1 0

Z�1
A2 1

#
$

" ep7eU7

#
¼ R$

" ep7eU7

#
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In this case, the throat outlet is rectangular and close to a large planar surface so that ZA2

may be given by the impedance of a rectangular piston in an infinite baffle using Eqs.

(13.326) and (13.327), where

ZA2 ¼ ðRs þ jXsÞ=ST .
First, we evaluate ep7 at the end of the chain:24eegeig

35 ¼ A$

"ep7
0

#

where

A ¼ C$E$D$M$F$T$R ¼
"
a11 a12

a21 a22

#

Hence, ep7 ¼ eeg�a11. Then, we work backward to obtain the volume velocities we

wish to evaluate. In particular, we are interested in the far-field pressure, which ac-

cording to Eq. (7.136) is a function ofeUB ¼ eUc � eUT ¼ eU5 � eU6.

This procedure is fairly straightforward and does not involve any matrix inversion.

From the outlet radiation matrix (7), we obtain

Figure 7.40 Graph of the volume velocity attenuation produced by the transmission-line enclosure

design shown in Fig. 7.38. Curve is calculated from 20 log10
��eUT
�eUc

��.
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eUT ¼ eU6 ¼ ep7�ZA2

and working back further to the transmission-line matrix (6) we obtain" ep5eU5

#
¼ N$

"ep7
0

#

where

N ¼ T$R ¼
"
n11 n12

n21 n22

#

so that eUc ¼ eU5 ¼ n21ep7
and therefore eUB ¼ eUc � eUT ¼ eU5 � eU6 ¼ ðn21 � 1=ZA2Þeeg�a11

The throat volume velocity is given byeUT ¼ eU6 ¼ eeg�ða11ZA2Þ
and the diaphragm volume velocity byeUc ¼ eU5 ¼ n21eeg�a11

To plot the normalized far-field on-axis pressure, we simply divide eUB by a reference

volume velocity

eUref ¼ eegBISD
uMMSRE

and plot 20 log10
�� eUB

�eUref

�� as shown in Fig. 7.41. The throat and diaphragm volume

velocities,

20 log10
�� eUT

�eUref

��and 20 log10
�� eUc

�eUref

��
respectively, are plotted separately in Fig. 7.42. Individually, the outputs from the dia-

phragm and throat are very smooth, but their combined output shown in Fig. 7.41 does

exhibit some very small 1 dB ripples which will be hardly audible. Obviously, the

response at 90 Hz is not increased much by the tube, only about 2.6 dB. If the added

sound-absorbing material is a lot less attenuating, the bass response will be greater, but

the radiation from the port will become very “peaky” and the combined response will be
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Figure 7.42 Graphs of the on-axis sound pressure level produced by throat and diaphragm of the
transmission-line enclosure design shown in Fig. 7.38. The dashed curves are calculated from

20 log10
��eUT
�eUref

�� and 20 log10
��eUc
�eUref

�� for the transmission-line outlet and diaphragm, respectively.
Solid curves are measured.
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Figure 7.41 Graphs of the on-axis sound pressure level produced by the transmission-line enclosure

design shown in Fig. 7.38. The dashed curves are calculated from 20 log10
��eUB
�eUref

��. Solid curves are
measured.
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irregular. The design goal is to allow only enough “peakiness” that the irregularities will

not be perceived by the listener. If the “peakiness” is great enough to give a substantial

boost to the lowest frequencies, digital signal processing will have to be employed to

make the total radiation adequately smooth with frequency. Finally, we can obtain the

input impedance fromeeg�eig whereeig ¼ a21ep7 and from above ep7 ¼ eeg�a11. Therefore,
the input impedance is simply ZE ¼ a11/a21, as plotted in Fig. 7.43.

PART XXV: MULTIPLE DRIVE UNITS

7.20 CROSSOVER FILTERS

Many high-fidelity sound systems employ two or more loudspeaker drive units.

One, called a woofer, covers the low-frequency range, whereas the other, called a tweeter,

covers the high-frequency range. Sometimes, a third unit or squawker is included to cover

the midrange. An electrical network, called a crossover network, is used to divide the

output energy from the amplifier into the different frequency regions covered by the

multiple drive units. Here, we shall concentrate on two-way crossovers as the same rules

can be applied when designing loudspeakers with three or more drive units.
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Figure 7.43 Graphs of the electrical input impedance of the transmission-line enclosure design

shown in Fig. 7.38. The dashed curves are calculated from ZE ¼ ��eeg�eig�� ¼ a11=a21. Solid curves are
measured.
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Classical crossover filters
Fig. 7.44 shows an outline schematic of a two-way loudspeaker with a classical crossover

network. The woofer is fed via an nth-order low-pass filter and the tweeter via an nth-

order high-pass filter. The transfer functions of the low-pass and high-pass filters are Ln(s)

andHn(s), respectively, where s ¼ ju is the complex frequency. These filters are designed

such that when their outputs are summed, they form all-pass filters Fn(s) ¼ Ln(s) þ Hn(s),

that is, jFn(s)j ¼ 1 at all frequencies, although the phase varies except in the case of n ¼ 1.

Furthermore, the input impedance is R at all frequencies, so that the power dissipation is

uniform. Low-pass filter circuits of orders n ¼ 1 to 6 are shown in Fig. 7.45 along with

their transfer functions. The complementary high-pass filter circuits and transfer func-

tions are shown in Fig. 7.46. The filters in these figures are labeled B1, B12, and so forth,

where the B stands for Butterworth and the superscript denotes the number of cascaded

sections. The even-order filters are commonly referred to as LinkwitzeRiley [29,30]

and are often favored because the woofer and tweeter are in phase at the crossover

frequency, whereas in the case of odd-order filters, they are 90 degrees out of phase, as is

seen from the Nyquist plots of Fig. 7.47. This is cited as reducing the chances of off-axis

nulls occurring in the directivity pattern around the crossover frequency [31], although

this also largely depends on the ratio of the wavelength to drive unit spacing. Obviously,

the drive unit spacing should be as small as possible.

On the other hand, odd-order filters have a constant power response [32],

regardless of drive unit spacing, and the coil inductance of the woofer can be included

as part of the last inductor in the filter, thus eliminating the need for a Zobel network

for correcting the load impedance as well as giving greater accuracy. Another feature of

odd-order filters is that they form all-pass filters regardless of the polarity of the drives.

This is a useful feature when combining a dipole open-baffle driver with a monopole

woofer because the response will be flat both on-axis and 180 degrees off-axis, even

though the polarity of the dipole is reversed at the rear. However, the time-domain

response is affected by the polarity as we will discuss. All-pass filters need not be sym-

metrical [33e35]. If we include the low-frequency roll-off of the tweeter in its high-pass

filter transfer function, the overall order of the filter is increased by 2. It would be making

nth-order 
high-pass 
filter Hn(s)

nth-order  
low-pass 
filter Ln(s)

Tweeter

Woofer

Figure 7.44 Outline schematic of a two-way loudspeaker with a classical crossover network.
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the low-pass filter to the woofer unnecessarily complicated to increase its order by the

same amount.

High-pass crossover filters which take into account the native response
of the tweeter
Classical crossover filters make two assumptions about the loudspeaker drive units. First,

they assume that the load impedance is a constant resistance at all frequencies. Second,

they assume that the frequency responses of the drive units are flat with zero phase shift in

the crossover frequency range. If we were to select drive units and crossover frequencies

such that these assumptions were approximately true, we would end up with more drive

units than necessary in a complicated and expensive design, because each unit would be

working over only part of its usable frequency range.
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Figure 7.45 Classical low-pass crossover filters: (a) first-order; (b) second-order; (c) third-order; (d)
fourth-order; (e) fifth-order; and (f) sixth-order. In each case, the inductor and capacitor values are
given by L ¼ R/u0 and C ¼ 1/(u0R), respectively, where u0 ¼ 2pf0 is the crossover frequency and R is
the coil resistance of the woofer. The labels B1, B32, and so forth are the names of the transfer
functions where B stands for Butterworth and the number is the order of the function. Note that the
square in B32 means that it is equivalent to two cascaded third-order Butterworth filters, making a net
sixth-order filter.
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Third-order high-pass filter with a series capacitor
The simplest high-pass filter is just a series capacitor, as shown in Fig. 7.48. Using the

same methodology as in Sections 7.6 and 7.12, we can write the following expression for

the radiated sound:

epðrÞ ¼ eegBISDr0
ðRg þ REÞMMS

$
e�jkr

4pr
GðsÞ (7.142)
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Figure 7.46 Classical high-pass crossover filters: (a) first-order; (b) second-order; (c) third-order; (d)
fourth-order; (e) fifth-order; and (f) sixth-order. In each case, the inductor and capacitor values are
given by L ¼ R/u0 and C ¼ 1/(u0R), respectively, where u0 ¼ 2pf0 is the crossover frequency and R is
the coil resistance of the tweeter. Note that in the case of the second- and sixth-order functions, the
tweeter terminals must be reversed. The labels B1, B32, and so forth are the names of the transfer
functions where B stands for Butterworth and the number is the order of the function. Note that the
square in B32 means that it is equivalent to two cascaded third-order Butterworth filters, making a net
sixth-order filter.

428 Acoustics: Sound Fields, Transducers and Vibration



(a)

(c) (d)

(f)(e)

(b)

Figure 7.47 Nyquist plots for classical crossover filters in the complex plane: (a) first-order; (b) second-
order; (c) third-order; (d) fourth-order; (e) fifth-order; and (f) sixth-order. Black solid curves show the
low-pass transfer functions Ln(s), gray solid curves show the high-pass transfer functions Hn(s), and
black dotted curves show the resultant all-pass transfer functions Fn(s) ¼ Ln(s) þ Hn(s), where s ¼ ju is
the complex frequency and n is the order of the crossover. Note that for the first-order crossover, there
is no dotted curve because the resultant is always þ1, marked by a pentagram. Black dots indicate the
crossover frequencies at which u ¼ u0, and arrows show the direction of increasing frequency. The
maximum phase shift of Fn(s) is 0 for n ¼ 1, p for n ¼ 2, 2p for n ¼ 3, 4, 5, and 3p for n ¼ 6.



where the third-order frequency-response function G(s) is given by

GðsÞ ¼ s3

s3 þ P2s2 þ P1sþ P0
(7.143)

and the coefficients of the denominator polynomial in s ¼ ju are given by

P2 ¼ uC

QTC
þ uE (7.144)

P1 ¼
�
uC þ uE

QMC

�
uC (7.145)

P0 ¼ u2
CuE (7.146)

where uC is the angular resonant frequency of the tweeter in its closed-box enclosure,

QMC is its mechanicalQ factor,QTC is its totalQ factor, and uE is the cutoff frequency of

the electrical filter comprising the external capacitor C and inductor RE:

uE ¼ 1

REC
(7.147)

The electrical Q factor is given by

QEC ¼ QMCQTC

QMC �QTC
(7.148)

The transfer function of a third-order Butterworth high-pass filter is shown in

Fig. 7.46(c) so that

P2 ¼ 2u0 (7.149)

P1 ¼ 2u2
0 (7.150)

P0 ¼ u3
0 (7.151)

C
Tweeter 

Figure 7.48 Third-order high-pass filter in which the native response of tweeter provides the second-
order part of the transfer function and the series capacitor provides the first-order part.
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where u0 is the angular crossover frequency. Equating Eqs. (7.144)e(7.146) with

Eqs. (7.149)e(7.151) and solving for u0, uE, and QTC gives

u3
0 � 2QMCuCu

2
0 þQMCu

2
C ¼ 0 (7.152)

which has to be solved for u0. Then,

uE ¼ u3
0

u2
C

(7.153)

and

QTC ¼ uC

2u0 � uE
(7.154)

Numerical values for these solutions are given in Table 7.5. A tweeter unit should be

chosen which hasQMC and QEC values that match, as closely as possible, those in one of

the rows of the table, remembering that the QEC value will be modified by any series

resistance added to match the sensitivity of the tweeter to that of the woofer. Then, the

crossover frequency f0 is given as a multiple of fC. For example, if the QMC and QEC

values are 2 and 1.7, respectively, and the resonance frequency is fC ¼ 2 kHz, we use the

fourth row of Table 7.5 to arrive at a crossover frequency of

f0 ¼ 0.7892� 2 ¼ 1.56 kHz

and an electrical cutoff frequency of

fE ¼ 0.4916� 2 ¼ 0.98 kHz

If the coil resistance is 6 U, the value of the capacitor is then given by

C ¼ 1

2pfERE
¼ 1

2� 3.14� 980� 6
¼ 27 mF

Table 7.5 Parameters for third-order Butterworth high-pass crossover filter using a series capacitor.
QMC QEC QTC f0/fC fE/fC

1.0 N 1.0000 1.0000 1.0000

1.2 4.1510 0.9309 0.8921 0.7099

1.5 2.3729 0.9191 0.8318 0.5754

2.0 1.7039 0.9201 0.7892 0.4916

3.0 1.3392 0.9259 0.7564 0.4327

4.0 1.2112 0.9297 0.7424 0.4091

5.0 1.1457 0.9322 0.7346 0.3964

10 1.0343 0.9374 0.7202 0.3735

N 0.9428 0.9428 0.7071 0.3535
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Unfortunately, choosing a tweeter to use with this type of filter is not so easy, as few

manufacturers provide much information about their tweeters, which is strange

considering that woofers now come with a full set of ThieleeSmall parameters practi-

cally as standard (ThieleeSmall parameters are discussed in Section 6.5). Let this be

considered as a plea to manufacturers to rectify the situation and provide all the data

necessary to design the crossover filter.

Note that for higher values ofQMC, the crossover frequency f0 is about half an octave

below the resonance frequency fC. Hence, the working range of the tweeter is extended.

In fact many commercial closed-box loudspeakers have a capacitor in series with the

woofer to augment the bass response [36]. However, this advantage is reduced as QMC

approaches unity.

Fourth-order high-pass filter with a series capacitor and shunt inductor
The fourth-order high-pass filter is shown in Fig. 7.49. Using the same methodology as

in Sections 7.6 and 7.12, we can write the following expression for the radiated sound:

epðrÞ ¼ eegBISDr0
ðRg þ REÞMMS

$
e�jkr

4pr
GðsÞ (7.155)

where the fourth-order frequency-response function G(s) is given by

GðsÞ ¼ s4

s4 þ P3s3 þ P2s2 þ P1sþ P0
(7.156)

and the coefficients of the denominator polynomial in s ¼ ju are given by

P3 ¼ uC

QTC
þ uE

QE
(7.157)

P2 ¼ u2
C þ u2

E þ uCuE

QMCQE
(7.158)

P1 ¼
�

uE

QTC
þ uC

QE

�
uCuE (7.159)

P0 ¼ u2
Cu

2
E (7.160)

C
Tweeter 

L

Figure 7.49 Fourth-order high-pass filter in which the native response of tweeter provides one
second-order part of the transfer function and the series capacitor and shunt inductor provide the
other.

432 Acoustics: Sound Fields, Transducers and Vibration



where uC is the angular resonant frequency of the tweeter in its closed-box enclosure,

QMC is its mechanicalQ factor,QTC is its totalQ factor, and uE is the cutoff frequency of

the electrical filter comprising the external capacitor C and coil resistance L:

uE ¼ 1

LC
(7.161)

The electrical Q factor of the filter is given by

QE ¼ uEREC (7.162)

The electrical Q factor of the tweeter is given by

QEC ¼ QMCQTC

QMC �QTC
(7.163)

The transfer function of a fourth-order LinkwitzeRiley or B22 high-pass filter is

shown in Fig. 7.46(d), so that

P3 ¼ 2
ffiffiffi
2

p
u0 (7.164)

P2 ¼ 4u2
0 (7.165)

P1 ¼ 2
ffiffiffi
2

p
u3
0 (7.166)

P0 ¼ u4
0 (7.167)

where u0 is the angular crossover frequency. Equating Eqs. (7.157)e(7.160) with

Eqs. (7.164)e(7.167) and solving for u0, uE, and QTC gives

u6
0 � 3u2

Cu
2
0 þ

2
ffiffiffi
2

p
u3
Cu

3
0

QMC
� 3u4

Cu
2
0 þ u6

C ¼ 0 (7.168)

which has to be solved for u0. Then,

uE ¼ u2
0

uC
(7.169)

QE ¼ u2
0u

2
C

QMC

�
4u2

0u
2
C � u2

0 � u2
C

� (7.170)

and

QTC ¼ QEu
2
C

u0

�
2
ffiffiffi
2

p
QEuC � u0

� (7.171)
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Numerical values for these solutions are given in Tables 7.6 and 7.7. In Table 7.6, the

crossover frequency f0 if below the tweeter’s resonance frequency fC and in Table 7.7 f0 is

above fC. The latter is a safer solution as it is less likely to lead to excessive diaphragm

excursion or a dip in the input impedance. A tweeter unit should be chosen which has

QMC and QEC values that match, as closely as possible, those in one of the rows of the

table, remembering that theQEC value will be modified by any series resistance added to

match the sensitivity of the tweeter to that of the woofer. Then, the crossover frequency

f0 is given as a multiple of fC. For example, if the QMC and QEC values are 3 and 1.2,

respectively, and the resonance frequency is fC ¼ 2 kHz, we use the fourth row of

Table 7.7 to arrive at a crossover frequency of

f0 ¼ 1.8161� 2 ¼ 3.63 kHz

and an electrical cutoff frequency of

fE ¼ 3.2985� 2 ¼ 6.60 kHz

Table 7.6 Solution 1 parameters for fourth-order LinkwitzeRiley (B22) high-pass crossover filter using
a series capacitor and shunt inductor.
QMC QEC QTC f0/fC fE/fC QE

1/O2 N 0.7071 1.0000 1.0000 0.7071

1.0 3.2743 0.7660 0.6666 0.4444 0.7660

2.0 1.3924 0.8209 0.5712 0.3263 0.8209

3.0 1.1604 0.8368 0.5506 0.3031 0.8368

4.0 1.0703 0.8444 0.5415 0.2932 0.8444

5.0 1.0224 0.8489 0.5363 0.2876 0.8489

10 0.9380 0.8576 0.5266 0.2773 0.8576

N 0.8660 0.8660 0.5176 0.2679 0.8660

In this solution, the crossover frequency f0 is below the tweeter resonance frequency fC.

Table 7.7 Solution 2 parameters for fourth-order LinkwitzeRiley (B22) high-pass crossover filter using
a series capacitor and shunt inductor.
QMC QEC QTC f0/fC fE/fC QE

1/O2 N 0.7071 1.0000 1.0000 0.7071

1.0 3.2743 0.7660 1.5001 2.2502 0.7660

2.0 1.3924 0.8209 1.7506 3.0646 0.8209

3.0 1.1604 0.8368 1.8161 3.2985 0.8368

4.0 1.0703 0.8444 1.8468 3.4107 0.8444

5.0 1.0224 0.8489 1.8646 3.4767 0.8489

10 0.9380 0.8576 1.8989 3.6061 0.8576

N 0.8660 0.8660 1.9318 3.7321 0.8660

In this solution, the crossover frequency f0 is above the tweeter resonance frequency fC.
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If the coil resistance is 6 U, the value of the capacitor is then given by

C ¼ QE

2pfERE
¼ 1

2� 3.14� 6600� 6
¼ 3.9 mF

and the value of the inductor is given by

L ¼ 1

ð2pfEÞ2C
¼ 1

ð2� 3.14� 6600Þ2 � 3.9� 10�6
¼ 150 mH

Effect of phase delay of second-order crossover on time-domain
response to square waves
Although we have already discounted the use of a second-order crossover when taking

into account the frequency response of the tweeter, this serves as a relatively simple

example of what the phase delay of a crossover does to the shape of a square wave.

Obviously, the effects will only be more pronounced in higher-order crossover filters. A

square wave W(t) can be described by an infinite series of sinusoidal waves:

W ðtÞ ¼ 4

p

XN
n¼ 0

sin unt

2nþ 1
(7.172)

where un¼ (2n þ 1)u are odd harmonics. According to Table 6.2, the Laplace transform

of the square wave is

W ðsÞ ¼ 4

p

XN
n¼ 0

un

ð2nþ 1Þ�s2 þ u2
n

� (7.173)

Thus, the frequency-domain response of the second-order filter to a square wave is

GðsÞ ¼ ðL2ðsÞ þH2ðsÞÞ$W ðsÞ

¼ F2ðsÞ$W ðsÞ ¼ u2
0 � s2

ðu0 þ sÞ2$
4

p

XN
n¼ 0

un

ð2nþ 1Þ�s2 þ u2
n

� (7.174)

In other words,G(s) is the sum of the outputs of the low-pass and high-pass filters and

thus constitutes an all-pass filter. Taking the inverse Laplace transform then gives us the

time-domain response to a square wave:

gðtÞ ¼ 1

2pj

Z gþjN

g�jN
GðsÞestds ¼ 4

p

XN
n¼ 0

2u0unðe�u0t � cos untÞ þ
�
u2
0 � u2

n

�
sin unt

ð2nþ 1Þ�u2
0 þ u2

n

�
(7.175)
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The distortion of a square wave produced by the phase delay of a second-order all-

pass crossover filter is shown in Fig. 7.50, where the square wave frequency is f ¼ 1 kHz

and the crossover frequency is f0 ¼ 4 kHz. Clearly, the output waveform is radically

different from the input one. The spikes are a result of the tweeter being out of phase

with the woofer. Also shown is the effect on a square wave of a third-order all-pass filter

in which the tweeter is in phase with the woofer and here the spikes are inverted. We

mentioned previously that the phase of the tweeter may be reversed in the case of odd-

order all-pass filters without affecting the all-pass magnitude. However, we see in

Fig. 7.50 that when the tweeter of a first- or third-order all-pass filter is connected in

antiphase, the square wave becomes the same as that for a second-order all-pass filter.

Note that the first-order all-pass filter with the tweeter connected in phase with the

woofer is the only one which faithfully preserves the shape of the square wave but

unfortunately, like the second-order filter, is impractical for real nonideal tweeters.

What we have is an imperfect time delay filter. If it were ideal, the phase would

increase linearly with frequency in Fig. 7.47 so that it would keep wrapping round

indefinitely, whereas in reality it stops at p for n ¼ 2, 2p for n ¼ 3, 4, 5, and 3p for n ¼ 6.

Hence, the time delay s decreases above the crossover frequency according to

s ¼ :F2ðsÞ
u

¼ �2

u
arctan

u

u0

The effect of this is to delay the low frequencies relative to the high ones so that the

sound from the tweeter arrives at the listener before that from the woofer.

The audibility of phase distortion has provoked a lively debate over the years [37e41],
but why not design the loudspeaker correctly in the first place so that there need not be

any doubt about its accuracy? As we shall see in the next section, the solution to this

problem need not be complicated if we approach it holistically and take into account all

the factors that affect the response of the loudspeaker, including the baffle effect.

Crossover filters with zero phase shift
In the previous section, we studied the waveform distortion produced by classical

crossover networks. We also saw that the simplest high-pass filterH(s) is a series capacitor

(see Fig. 7.48). Let us now take its transfer function and deduce what low-pass filter

L(s) when summed with it will produce an output which is real and constant at all

frequencies, that is, simply unity:

LðsÞ þHðsÞ ¼ 1 (7.176)

where

HðsÞ ¼ s3

ðsþ u0Þ
�
s2 þ u0sþ u2

0

� (7.177)
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Figure 7.50 Distortion of a square wave produced by the phase delay of a second-order all-pass
crossover filter, where the output voltage is the sum of the output voltages of the low-pass and
high-pass filters. The square wave frequency is 1 kHz, and the crossover frequency is 4 kHz.
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Hence,

LðsÞ ¼ 1�HðsÞ ¼ u0

sþ u0
$
2s2 þ 2u0sþ u2

0

s2 þ u0sþ u2
0

(7.178)

The first part of this transfer function is just simple first-order low-pass filter. The

second part is a shelf with a 6 dB boost at frequencies above the crossover frequency u0.

As it happens, such a boost is provided by the baffle effect whereby the woofer acts as

a point source when the wavelength is large compared with the dimensions of the

box but behaves like a piston in an infinite baffle when the wavelength is small.

Comparing Eq. (7.178) with Eq. (7.38) for the on-axis response of a closed-back piston

in free space, we deduce that the ideal crossover frequency is

f0 ¼ ffiffiffi
5

p
c
�ð2paÞ (7.179)

It should be noted that the methods developed in this chapter are by no means

perfect, because of the assumptions we have made about the baffle effect and the drive

units behaving as perfectly rigid flat pistons. However, computer algorithms have been

developed [42] which can optimize the crossover component values taking into account

the measured responses of the drivers.

Example 7.4. Crossover for woofer of Example 7.2. In this example, we shall

implement a third-order Butterworth high-pass filter using a series capacitor for the

first-order section and the native response of the tweeter for the second-order section.

Because the tweeter will be mounted in a sphere, we shall design a crossover to

compensate for the 6 dB lift associated with a point source in a sphere (see Fig. 7.14) so

that it provides part of the first-order section. The low-pass section will be designed to

give an all-pass overall response with zero phase shift, as discussed in the previous section.

Hence, the low-pass section will use just a series inductor together with the 6 dB lift due

to the baffle effect, using a closed-back piston as a model (see Fig. 7.15). Because the

woofer occupies almost the full width of the box, we will take a as 9.4 cm which, using

Eq. (7.179), gives us a crossover frequency of

f0 ¼ 2.24� 344.8=ð2� 3.14� 0.094Þ ¼ 1305 Hz

Hence, the value of the series inductance needed is

L1 ¼ RE

2pf0
¼ 6.27

2� 3.14� 1305
¼ 0.766 mH

However, the coil inductance is 0.71 mH, so to make up the difference we will use an

inductor with a value of 0.766e0.71 ¼ 56 mH.Next, we need to choose a tweeter suitable

for a crossover frequency of 1305 Hz. The SEAS model 27TFF (H0831) has a resonance

frequency of fC ¼ 1200 Hz, which is close enough. The effective area of the dome is
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SD ¼ 7.5 cm2. The maximum sound pressure of the woofer has already been specified as

99.6 dB SPL at a distance of r ¼ 1 m. At the crossover frequency f0, the sound pressure

produced by the tweeter is 3 dB less than this, that is 96.6 dB SPL, and decreases at a rate of

18 dB/octave below f0. The peak displacement at f0 is obtained from Eq. (6.35) to give

hpeak ¼
ffiffiffi
2

p
r � 10

SPL
20
�5

pf 2r0SD
¼ 1.414� 1� 10

96.6
20
�5

3.14� 13052 � 1.18� 7.5� 10�4
¼ 0.2 mm

which is within the linear excursion limit of 0.5 mm and at frequencies above and below

f0 the displacement is reduced. Using the method described in Section 6.10 for

measuring the ThieleeSmall parameters, we estimate the Q factors from the impedance

curve to be

QEC ¼ uSMMDRES

�ðBlÞ2 ¼ 2p� 1200� 0.0003� 4.8
�
3.52 ¼ 0.89

QMC ¼ uSMMDRE

�ðBlÞ2 ¼ 2p� 1200� 0.0003� 10.2
�
3.52 ¼ 1.88

In addition, the quoted sensitivity is 92 dB SPL in a baffle at 1 m with an input

voltage of 2.83 Vrms (or 86 dB SPL in free space). However, the woofer has a sensitivity

of 79.6 dB SPL in free space, so the tweeter needs a series resistor to match its sensitivity

to that of the woofer. If RE ¼ 4.8 U, then the series resistor value is

R1 ¼ RE

	
10ðTweeterSensitivity�WooferSensitivityÞ=20 � 1



¼ 4.8�

	
10ð92�79.6Þ=20 � 1



¼ 15.2 Uz15U

This will modify the values of QEC and QTC as follows:

Q0
EC ¼

�
1þ R1

RE

�
QEC ¼

�
1þ 15

4.8

�
� 0.89 ¼ 3.67

Q0
TC ¼ Q0

ECQMC=ðQ0
EC þQMCÞ ¼ 1.24

which is close enough to unity for a third-order Butterworth response. We need to

correct for the 6 dB lift in the response of the tweeter due to the baffle effect. We will

simplify this by mounting the tweeter on a wooden sphere so that we can model it as a

point source on a sphere of radius R. Then, the transfer function of the point source on a

sphere from Eq. (7.36) (producing a 6 dB lift) provides the shelf filter response

sþ c=R

sþ 2c=R
¼ sþ uE

sþ u0
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where the radius of the sphere is given by

R ¼ 2c=u0 ¼ 344:8=ð3:14� 1305Þ ¼ 84:1 mm

Thus, the 6 dB transition takes place between fE ¼ f0/2 ¼ 1305/2 ¼ 653 Hz and

f0 ¼ 1305 Hz with a first-order slope. Hence, we need the series capacitor to continue

the first-order slope from fE downward and its value is determined by

C1 ¼ 1

2pfEðRE þ R1Þ ¼ 1

2� 3.14� 653� ð4.8þ 15Þ ¼ 12.3 mFz12 mF

The network is shown in Fig. 7.51.

7.21 DUAL-CONCENTRIC DRIVE UNITS

A difficulty with mounting a woofer and tweeter side by side or one above the

other is that the path that the sound has to travel from each of the loudspeakers to a

listener will be different in different parts of the listening room. Hence, in the vicinity of

the crossover frequencies, cancellation of the sound will result at some parts of the room,

and addition will occur at others.

To avoid this effect, the loudspeakers are sometimes mounted concentrically, i.e., the

tweeter is placed behind and on the axis of the woofer (see Fig. 7.52). In this arrange-

ment, the diaphragm of the woofer acts as a horn and the tweeter usually has a phase plug

in front of it. Horn loudspeakers will be discussed in greater detail in Chapter 9.

Problem 7.1. A loudspeaker drive unit with a fiberglass cone has the Thiele-Small

parameters: RE ¼ 5.6 U, QES ¼ 0.46, QMS ¼ 7.58, fS ¼ 50 Hz, SD ¼ 137 cm3,

and VAS ¼ 19.5 L.

Calculate the box volume and port dimensions needed to give a Chebyshev fre-

quency response with 0.01 dB ripple and a maximum sound pressure of SPLmax ¼ 100

Tweeter R1
C1

Woofer 
L1

Figure 7.51 Crossover network of Example 7.4 with a crossover frequency of f0 ¼ 1305 Hz. The values
of the crossover circuit elements are R1 ¼ 15 W (25 W), L1 ¼ 56 mH, and C1 ¼ 12 mF. The woofer is a
Bandor type 100DW/8A mounted in a closed-box baffle as described in Example 7.2 and shown
Fig. 7.18. The tweeter is a SEAS type 27TFF (H0831) mounted in a 16 cm diameter sphere.
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dB SPL at 1 m. Show that to make the port volume ten times the volume displacement

needed to produce 100 dB SPL, the optimum bore diameter is around 9 cm. Also,

calculate the cut-off frequency.

Hint: Obtain QTS from Eq. (6.10). Obtain VAB and fB from Table 7.4. Calculate the

maximum peak pressure and volume displacement required to produce that pressure

using formulas from “Summary of bass-reflex design” on p. 334. Let the port volume be

VP ¼ 10Vmax and use Eqs. (7.97) and (7.96) to calculate the approximate length t and

cross-sectional area SP respectively so that the diameter is dP ¼ 2
ffiffiffiffiffiffiffiffiffiffiffi
SP=p

p
. Using a

diameter of 9 cm, then calculate the exact length t from Eq. (7.98). Obtain the cut-off

frequency f3dB from Table 7.4.
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CHAPTER EIGHT

Cell phone acoustics

PART XXVI: ACOUSTICAL TRANSDUCERS FOR CELL PHONES

The number of cell phones in the world is approaching 6 billion. These range from

those that provide simple telephone services to those that serve as full business and

entertainment centers. For all these, acoustical design is very important, but such design

is involved because of limitations of space, ergonomics, and frequently the requirement

of producing good-sounding music.

Shown in Fig. 8.1 is a cell phone with the characteristics of an entertainment center.

The three main electroacoustic elements are the handsfree loudspeaker, the receiver, and

the microphone. The basic principles for the loudspeakers are the same as that for a

loudspeaker in a closed baffle as presented in Chapter 7.

8.1 LOUDSPEAKER AND MICROPHONE

Basic considerations
The sound-producing part in all cell phones is a flat radiating surface, i.e., the diaphragm,

which is analogous to the cone in a hi-fi loudspeaker. The diaphragm is set in motion by

an attached moving coil located in a magnetic field. The diaphragm and the coil may be

circular or square. In the cell phone of Fig. 8.1, there are two flat diaphragms and driving

coils, one of which feeds into the handsfree loudspeaker opening and the other into the

call receiver opening. The small fully enclosed space behind either diaphragm is

analogous to an acoustic compliance. The combined mass of the diaphragm and coil is

analogous to an acoustic mass. These elements at resonance determine the low-

frequency cutoff of the radiated sound.

Handsfree loudspeaker
In the simplest cell phones, the ringtone is a buzz or a repeated ring resembling that of

an old landline phone. In an entertainment center type, the ringtone is often an excerpt

from a musical composition. Also, continuous music may be played through it. As

shown, the handsfree loudspeaker opening is on the side of the cell phone so that the

phone can be laid on a flat surface and thus is “handsfree.” If the surface is large enough,

the energy output of the loudspeaker will be double that compared with the handheld
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position because the opening is radiating into half space. Like any small closed-box

loudspeaker the trend in cell phones is toward the “acoustic suspension” concept,

i.e., the stiffness of the suspension for the diaphragm is a small fraction of that of the

airspace behind. The volume of the backspace is about 1 cm3. This design is only

practical if the diaphragm is fairly stable and the resonant frequencies are constant.

Surprisingly, in the cell phone of Fig. 8.1, the user can carry on a telephone conver-

sation with it on a surface, despite the proximity of the microphone to the handsfree

opening. This is possible because the output of the microphone has an “echo

canceling” feature in the digital circuitry and its output is also attenuated while the

loudspeaker is operating. Nowadays handsfree loudspeakers are very loud, often pro-

ducing as much as 105 phons at a distance of 10 cm.

Receiver
The receiver is similar to the handsfree loudspeaker. In Fig. 8.1, the volume of the

space behind its diaphragm is larger and it contains the electronics and the keyboard.

There is greater chance of leakage from this space and, if it should occur, the low-

frequency output will be diminished. The opening is always held close to the

ear, which mitigates the effect of leakage from the rear space.

Microphone
The microphone is an electret or microelectromechanical system (MEMS) type, more of

which will be discussed later. It is only actuated when voice transmission is required.

Receiver opening

Handsfree 
loudspeaker opening 

Microphone opening

Figure 8.1 Cell phone Nokia model 7.1 showing the positions of the receiver, handsfree loudspeaker,
and microphone openings. Courtesy of HMD Global OY.
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8.2 CIRCUIT DIAGRAM FOR A CELL PHONE LOUDSPEAKER/
RECEIVER

The circuit diagram for a cell phone loudspeaker system is given in Fig. 8.2. The

elements are derived from the circuit of a loudspeaker in a closed box baffle as given in

Fig. 7.6. The symbols are as follows:eeg is open-circuit voltage of the generator (audio amplifier) in volts (V).

Rg is generator resistance in electrical ohms (U).
RE is resistance of voice coil in electrical ohms (U).
B is steady air-gap magnetic field or flux density in Tesla (T).

l is length of wire on the voice coil winding in m.ei is electric current through the voice coil winding in amperes (A).

a is radius of diaphragm in m.

SD ¼ pa2 is area of diaphragm in m2.ePc$SD is force produced by the current in the coil in Pa$m2.eUc is volume velocity produced by the diaphragm in m3/s.

MAD is acoustic mass of the diaphragm and the voice coil in kg/m4.

CAS is total acoustic compliance of the suspensions in m5/N.

RAS is acoustic resistance of the suspensions in N$s/m5.

CAB is total acoustic compliance of the back enclosure in m5/N.

CAF is acoustic compliance of the front cavity in m5/N.

RAB is acoustic resistance of the leak path through the enclosure (needed to relieve

changes in atmospheric pressure) in N$s/m5.

MAH is acoustic mass of the sound hole(s) in kg/m4.

RAH is acoustic resistance of the dust screen in N$s/m5.

ZAE is radiation impedance (including the effect of proximity to the ear).

DEg
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Ble
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+

CAS

cU
~

cp~
2

22

)( DEg SRR

lB

+

MAD RAS

ZAE

CAB

RAB

MAH RAH

CAF

2

1

3

Figure 8.2 Analogous circuit of a handsfree loudspeaker or receiver in a cell phone. All circuit
elements are referred to the acoustical side. In the case of a receiver, ZAE is the impedance of the ear
including any leakage because it is unlikely to be sealed. In the case of a handsfree loudspeaker near a
flat surface, ZAE can be considered to be the radiation impedance of a piston in an infinite baffle.
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The radiation impedance, ZAE, is difficult to specify because the impedance for the

receiver opening is highly dependent on how the user uses the handset. Because both of

the openings are small, the radiation impedance when not too near the ear will

approximate that for a small diaphragm in the end of a tube. Possible means for assuring a

known radiation impedance in the receiver opening are to deliberately build a degree of

controlled leakage that is at least as great as the uncontrolled leakage that would occur in

normal usage. The controlled leakage path may lead to the outside space as shown in

Fig. 8.3(a) or to the internal space as shown in Fig. 8.3(b). The more probable solution is

that shown in Fig. 8.3(a), and for it a series acoustic resistance and acoustic mass must be

connected between the circles “1” and “3” in Fig. 8.2. For the solution of Fig. 8.3(b), the

mass and resistance should be connected between the circles “1” and “2.” Obviously the

controlled leakage addition will reduce the output strength. The solution of Fig. 8.3(b)

in particular will cause loss of low frequencies because of the acoustic short circuit

between the front and back of the diaphragm, unless the space inside the handset is very

large (>60 cm3).

Acoustic low-pass filter (helmholtz resonator)
In cell phones, for both the handsfree loudspeaker and the receiver, the

compliance of the front cavity CAF and the mass of the sound opening MAH form a

Front cavity 
Sound holes 
Dust screen 

Internal leak 

Front cavity 
Sound holes 
Dust screen 

External leak 
(a) (b)

Figure 8.3 Cross section of leak-tolerant receiver in cell phone with (a) external leak and (b) internal
leak [1].
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Helmholtz resonator. This is a second-order low-pass filter. The angular resonance

frequency is

u2
0 ¼ 1=ðMAHCAFÞ. (8.1)

When listening to music, the resonance frequency is normally set at the upper limit

of the required frequency range, and the Q of the resonance is controlled by the

resistance RAH of the dust screen. To calculate the dimensions of the resonator, we can

either choose the radius a of the opening and calculate the length l according to l ¼ n

c2a2/(4p f 0
2V ) � za or choose the length and calculate the radius according to

a ¼ 2pzf 20 V

nc2

 
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ nc2l

pz2f 20V

s !
. (8.2)

These are general formulas for a Helmholtz resonator, such as a bottle, which are

derived from those given in Sections 4.2 and 4.3 for an acoustic mass MAH and acoustic

compliance CAF, respectively.

The quantities are defined as follows:

l is length of opening in m.

a is radius of opening in m.

z is end correction factor.

f0 is resonance frequency in Hz.

V is volume of cavity in m3.

c is speed of sound ¼ 348.8 m/s at P0 ¼ 105 Pa and T ¼ 22�C.
The end correction factor for the opening is given by

z ¼

8>>><>>>:
1:28; unflanged at both ends

1:49; flanged at one end; unflanged at the other

1; 7; flanged at both ends

(8.3)

8.3 DESIGN CONSIDERATIONS

Dust screens
All of the openings, for the loudspeakers and microphone, must be covered by a dust

screen, which not only protects against the ingress of magnetic dust but also helps

damp out the various Helmholtz resonances. Data on dust screens are given in

Section 4.4.
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Magnetic fields
High strength neodymium magnets have generally improved the performance of

miniature loudspeakers; however, their proximity to sound holes means that magnetic

dust can be sucked in and clog the coil gap. Magnetic fields can also affect magnetic

strips on credit cards.

Acoustic shock
The location of a loudspeaker opening is very important because, if it is tightly held

against the ear, damage to hearing may result. Loudspeaker openings are often located on

the sides of a phone so that they cannot be sealed against the ear. Another frequent

location is on a rear surface that is curved, which also prevents closure of the opening

when laid on a table.

Protection against damage to the loudspeaker
It is vital that all seals be secure. If the back enclosure leaks, the stiff cushion of the air that

limits the excursion of the diaphragm no longer exists and physical damage may result. At

low frequencies, the generated sound pressure is limited by diaphragm excursion and at

high frequencies by power dissipation. The input voltage to a voice coil is often limited

according to a digital signal processor model [2] of the loudspeaker parameters and how

they change according to conditions such as temperature. In addition, audio peak

clipping, called dynamic range compression, is used extensively to make the sound

louder.

Turbulence
At low particle velocities, the flow of air in a tube is linear. In other words, the velocity

increases with radial distance from the wall as discussed in Chapter 4. As the velocity is

increased beyond a certain point, the flow becomes turbulent with the formation of

chaotic eddies and vortices. The Reynolds number is given by

Re ¼ r0ud

m
(8.4)

where

r0 is density of air in kg/m3.

u is particle velocity in m/s.

d is diameter of tube in m.

m is viscosity coefficient in N$s/m2 (see Eq. (4.23)).

The point at which the flow becomes turbulent varies considerably with both geometry

and surface finishes. As a rule of thumb, the Reynolds number should be kept below
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1000 and the particle velocity below 10 m/s. All surfaces should be smooth with no

sharp edges.

Wind noise [3]
The location of the microphone on the handset is critical with respect to wind noise.

The worst location is on a large flat area such as a front cover because there is greater

boundary layer turbulence than on a small area. The bottom edge is better and the best

position is away from the center of the bottom edge. The direction of the wind also

makes a significant difference. When the microphone is on the surface facing the wind,

there is generally less noise than when it is facing away because turbulence builds up as air

flows past an obstacle. Trailing edge vortex shedding also contributes to wind noise, but

to a lesser degree than boundary layer turbulence. In general, all surfaces should be as

smooth as possible with no sharp edges.

Handling noise
Handling noise is generated by friction when a handset is held. Smooth surfaces produce

less noise than rough ones. The noise is amplified by structural vibrations within housing

as well as normal modes within the internal space, although the latter will be reduced by

the presence of electronic components. Therefore, the housing should be either rigid or

well damped, or both. Adding ribs to the inner surfaces of the housing increases its

rigidity. These precautions will also help to reduce unwanted resonance peaks and dips in

the handsfree loudspeaker and receiver frequency responses.

8.4 HEAD AND TORSO SIMULATOR

The most commonly used device for testing the receiver of a cell phone is a head

and torso simulator or HATS, which has a pair of “soft” ears (pinna) on a head with

shoulders, as shown in Fig. 8.4. The HATS microphone is located at the eardrum

position. Unfortunately, acoustical simulation of the head and torso simulator is not so

simple because to date there is no reliable equivalent circuit available using lumped

elements. Not only is the model complicated by leakage into open air, but the loading

varies with force and handset position. Therefore, finite element modeling would have

to be used. However, once a finite element model has been made for the acoustic path

between the receiver and microphone, which is mainly the ear plus the space

surrounding it and the phone, the results can be converted into a two-port model. The

two-port model is then imported into an equivalent circuit for the receiver and

microphone.

It should be noted that the head and torso simulator is a multipurpose device.

Although the head beyond the immediate vicinity of the ear has little influence on the
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testing of a receiver, it is important for testing the microphone in a cell phone, in which

case the sound source is in the mouth. Because the receiver opening is not in tight

contact with the ear opening, it is probably sufficient to assume that the radiation

impedance for it is similar to that for a diaphragm in the end of a tube. In testing, the

head and torso simulator has largely replaced the older ear simulators, which looked

nothing like real human ears. They were originally used for testing of the receivers in a

conventional phone handset. For readers who are interested to find out what the

impedance of an ear or that of an older simulator looks like, the data sheets [4] for the

B&K 4185 sealed ear simulator or B&K 4195 nonsealed ear simulator with IEC low-leak

and high-leak couplers are informative.

8.5 MICROPHONES

Electret microphones
Until the electret condenser microphone (ECM) was invented by Sessler and West

[5e8], all condenser microphones required a polarizing voltage supply. Such condenser

microphones are treated in Section 5.5. The name electret literally means “electrostatic

magnet.” It is a dielectric in which a permanent charge is embedded. In Sessler andWest’s

invention, as shown in Fig. 8.5(a), the dielectric was a metalized Teflon foil which

formed the diaphragm and the electrode was a stationary plate located behind it. In

recent years, the charge storage capacity has been increased by using porous membranes

[9]. Metalized electrets have a dipole charge because a charge of opposite polarity to that

contained by the membrane is induced in the metallic coating. Although this gives a

more stable charge, it means that, for a given membrane charge, the resulting field decays

Figure 8.4 B&K type 4128D head and torso simulator with cell phone Nokia model Lumia 800. The
simulator has a sound source inside the mouth and a microphone inside the ear. Courtesy of Brüel and
Kjær Sound and Vibration Measurement A/S and Nokia OY. Photograph by Enrico Pascucci.
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with increasing electrode separation, whereas in an externally polarized condenser

microphone, the field remains constant. However, this is not a major issue in a micro-

phone where the electrode spacing is usually very small. The capacitance of the electret

membrane is given by

CM ¼ ε0εrS

h
(8.5)

where ε0 is the permittivity of air, εr is the relative permittivity of the dielectric, S is the

area of the membrane, and h is the thickness of the electret membrane. This voltage then

also appears across the air gap when the microphone terminals are at the same potential.

The capacitance of the air gap is given by

CG ¼ ε0S

d
(8.6)

where d is the width of the gap. Then the total capacitance across the input terminals is

CE0 ¼ CMCG

CM þ CG
(8.7)

d h

Electrode with 
charge σ0

Metalized coating 
with charge σ1

e

Electret with 
charge −σm

d h

e

h d

(a) (b)

Figure 8.5 Simplified cross section of an electret transducer: (a) Single-ended and (b) Push-pull.
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The negative membrane charge is usually expressed as a charge per unit area �sm or

charge density so that the total charge is �smS. The charge induced in the electrode is

given by

s0 ¼ CGsm

2ðCM þ CGÞ . (8.8)

The charge induced in the membrane coating is given by

s1 ¼ ð2CM þ CGÞsm
2ðCM þ CGÞ . (8.9)

so that when d ¼N, there is zero charge on the electrode (s0 ¼ 0) and the charge on the

coating is equal and opposite to the electret charge so that s1 ¼ sm. In general, the total

induced charge on the electrode and coating is equal and opposite to the electret charge.

When d ¼ 0, the induced charge is shared equally so that s0 ¼ s1 ¼ sm/2. Although the

charge may be distributed throughout the electret, we may model it as a concentrated

layer somewhere near the middle, depending on how symmetrical the charge distri-

bution is. Inevitably some charge is lost both near the outer surface and near the coating,

where there will be some recombination of positive and negative charge. Hence we may

treat the concentrated charge layer and coating as electrodes of a capacitor across which

there is a polarizing voltage E, where the dielectric thickness is h/2, so that

E ¼ Ssm

2ðCM þ CGÞ . (8.10)

Hence we can use the same equivalent circuits as those for an externally polarized

electrostatic microphone shown in Fig. 5.20.

The voltage sensitivity versus average diaphragm displacement Dd is given by

Ref. [10].

Dein ¼ �E

d
Dd ¼ � hsm

2ε0ðεrd þ hÞDd (8.11)

It is well known that single-ended electrostatic transducers are nonlinear because the

charge varies with displacement. This is not such a problem with microphones at

moderate sound pressures because the displacement is very small and hence almost linear.

However, for microphones at high sound pressures or loudspeakers, which have to

displace a significant volume of air, a linear transducer may be created using the constant-

charge push-pull principle. All conventional electrostatic loudspeakers with external

polarizing supplies use this principle, which was first proposed by Frederick Hunt and

then commercialized by Peter Walker [11e13]. An electret equivalent of this is shown in
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Fig. 8.5(b), which has been proven to be linear both theoretically [10] and experi-

mentally [14]. Fig. 8.6 shows a cutaway view of an electret microphone.

So far we have only considered the foil electret microphone. In fact there are three

types:

Foil-type or diaphragm-type. The diaphragm itself is made of an electret dielectric.

However, the electret may not be strong enough to maintain tension over a long

period, especially if it is porous, and may therefore require support from an additional

membrane.

Back electret. The electret film is adhered to the back plate of the microphone capsule,

which forms an electrode, and the diaphragm is made of a metalized but uncharged

material.

Front electret. This is a newer design, which is essentially the reverse of the back

electret. The back plate is eliminated from the design, and the condenser is formed by

the metalized diaphragm and the inside surface of the capsule. The electret film is

adhered to the inside front cover, which is perforated to let sound through.

The circuit for an electret microphone as shown in Fig. 8.7 is simpler than that for an

externally polarized microphone, shown in Fig. 5.18, because the electret provides the

polarization for the capsule, although the bias for the FETusually settles to zero due to

leakage.

When ECMs were first introduced, they were only expected to last for the lifetimes

of the products in which they were used. However, with improved materials and pro-

cesses, the ability to store charge over long periods has steadily increased. The loss of

charge is compensated for by slackening of the diaphragm. Hence the sensitivity change

over 28 years [15] has been found to be less than 1 dB.

Microelectromechanical system microphones
At the time of writing, most low-cost cell phones use analogue electret microphones,

whereas midmarket models use both analogue microelectromechanical system

Figure 8.6 Cutaway view of an electret microphone. Courtesy of Hosiden.
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microphones and digital electret microphones, where the latter are analogue electret

microphones with onboard analogue-to-digital converters. This has the advantage of

immunity to electrical noise pickup by the connections between the microphone and

baseband chip. Many top-end models now use digital MEMS microphones because

these have better signal-to-noise ratios (typically 69 dB). Also, MEMS microphones are

smaller and can be surface mounted, which is an advantage in products that may have

stereo microphones for recording as well as multiple microphones for noise cancellation.

The sensitivity of a MEMS microphone is typically �38 to �42 dBV/Pa, and the

acoustic performance is very stable.

A cross section of a MEMS microphone [16,17] is shown in Fig. 8.8. Although its

operation is the same as that of a conventional capacitor microphone, as described in

Section 5.5, the fabrication is somewhat different and is more akin to that of an inte-

grated circuit. The substrate is made of silicon. On this rests a “free” diaphragm of

polysilicon which is 1 mm thick. The patented free diaphragm design avoids film stress

which would otherwise stiffen it. The backplate has a 0.5 mm layer of polysilicon coated

with a 1.5 mm layer of low-stress silicon nitride. The various layers are deposited and

etched to form the entire structure. The gap between the diaphragm and substrate is

Microphone 
capsule 

JFET 

Figure 8.7 FET circuit for an electret microphone.

Figure 8.8 Cross section of a SiSonic microelectromechanical system microphone. Courtesy of
Knowles Electronics, LLC.
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created by means of a sacrificial layer of phosphorus-doped glass, which is removed using

an HF acid release process. The same method is also used to create the gap between the

diaphragm and backplate. A detailed view of the backplate and diaphragm is shown in

Fig. 8.9.

Because the cost of silicon wafer is fixed, the price of each MEMS microphone

depends on how many can be made from a single wafer. Hence it is necessary for the

diaphragm to be small for economic reasons as well as for miniaturization. The dia-

phragm is typically 0.6 mm in diameter with a gap of about 4 mm. The polarizing voltage

of 11 V is developed by a charge pump within a separate integrated circuit (see Fig. 8.10),

which also contains the amplifier and analogue-to-digital converter, if there is one.

PART XXVII: TYPE APPROVAL TESTING OF CELL PHONES

The most commonly used standard for the acoustical testing of cell phones today is

the 3GPP Technical Specification [18,19], which is part of the overall set of specifications

for the third generation network, although many network operators have their own type

approval requirements which are usually variations of or additions to 3GPP. However,

this only provides the acceptable limits for the test results. The test setups and methods

for calculating the results are specified in other documents [20,21].

8.6 MEASUREMENTS FOR TYPE APPROVAL

Because there are many measurements in type approval testing, we shall only discuss the

basic acoustic ones.

Figure 8.9 Detailed SEM photograph of a SiSonic microelectromechanical system microphone. The
diaphragm is visible through the holes in the backplate. The small holes provide acoustic damping
because of viscous flow losses. Courtesy of Knowles Electronics, LLC.
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Frequency response
Here we shall confine ourselves to broadband telephony (100 Hze8 kHz) as opposed to

narrowband (100 Hze4 kHz). To measure the send frequency response, the sound

source is calibrated by means of a microphone holder attached to the head and torso

simulator (see Fig. 8.4). Then the calibration microphone is attached to the microphone

holder with the diaphragm at the mouth reference point (MRP), which is 25 mm in

front of the lip plane. The sound source is equalized to give a constant sound pressure of

typically �4.7 dB Pa at all test frequencies. The frequency response is measured by

connecting an analyzer to the point of interconnection (POI). In a landline phone, this is

an analogue connection to the public switched telephone network, but in a cell phone it

is usually the digital interface point (formerly digital air interface). The measured fre-

quency response is plotted between upper and lower limits known as a mask. Thus, to

meet the requirements of type approval, the plot must fall within this mask. A typical

frequency response is shown in Fig. 8.11.

To measure the receive frequency response, a signal is applied to the POI, and the

microphone at the drum reference point (DRP) within the HATS is connected to an

analyzer. A typical frequency response is shown in Fig. 8.12.

Loudness rating
The loudness rating LR is calculated from the measured response over a set of frequencies

which are spaced 1/3 octave apart according to the following formula:

LR ¼ �10

m
log10

XN2

i¼N1

100:1mðSi�WiÞ (8.12)

where

m ¼ 0.175 is a constant.

Figure 8.10 Cross section of a SiSonic microelectromechanical system microphone inside its package
which provides an environmental and interference shield. The integrated circuit, which provides the
polarizing voltage and amplification, is on the left. Courtesy of Knowles Electronics, LLC.
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Si refers to the sensitivities at frequency fi of the send or receive electroacoustic path.

Wi refers to the weighting factors given in Table 8.1, where SLR refers to the send

loudness rating and RLR to the receive loudness rating.

Notice the minus sign in Eq. (8.12), which means that the larger the loudness rating, the

quieter the phone.

However, care has to be taken in evaluating the sensitivities from the digital POI of a

cell phone. They are expressed in dB re V/Pa in the send direction and dB re Pa/V in the
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Figure 8.11 Typical send frequency response (gray) with mask (black).

Figure 8.12 Typical receive frequency response (gray) with mask (black).
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receive direction, which are analogue quantities. This is fairly straightforward in a

landline phone where we are simply concerned with the analogue voltage across a 600 U
termination. In a digital system, it is convenient to use the maximum “full-scale” level

before clipping as the reference point or 0 dBFS. This has been defined as equivalent to

the voltage which is required to deliver 2.06 mWof power into a 600 U load. Hence

0 dBFS ¼ 3.14 dBm0 ¼ 0.922 dBVðor 1.112 VrmsÞfor send and receive (8.13)

For type approval, the send and receive loudness ratings must be

SLR ¼ 8� 3 dB

RLR ¼ 2� 3 dB

Sidetone
When we talk, we normally hear our own voices via the external acoustic path between

our mouths and ears. It is unnatural to have one ear obscured by a cell phone, so the

acoustic path is replaced by an electrical one between the microphone and receiver. This

is known as sidetone. There are two kinds, one being a deliberate path within the handset

Table 8.1 Weights for wideband SLR and RLR calculations.
Frequency (Hz) WSi (SLR) WRi (RLR)

100 103.0 115.4

125 75.3 87.5

160 60.2 72.3

200 59.5 72.1

250 52.9 67.2

315 59.4 75.8

400 45.4 63.6

500 56.6 74.6

630 53.5 70.4

800 53.8 69.9

1000 55.9 70.9

1250 64.2 78.4

1600 60.6 74.9

2000 73.7 85.2

2500 70.4 81.6

3150 87.1 95.4

4000 68.2 77.0

5000 84.5 91.7

6300 86.5 92.4

8000 71.0 89.0
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and the other the result of echo from an imperfect analogue interface, or hybrid, to a

two-wire line within the network. The latter is minimized through use of a digital echo

canceler because delayed sidetone is extremely irritating to the caller. Other sidetone

paths may be carried by the mechanical structure of the phone or the space within it.

The sidetone rating is calculated using Eq. (8.12) as before except that the sensitivities

Si are for the path between the MRP and DRP and are thus dimensionless because

pressure is measured (in Pa) at both points. In addition, m ¼ 0.225 and the weights are

given in Table 8.2.

There are two sidetone ratings. One is the sidetone masking rating (STMR) and the

other is the listener sidetone rating (LSTR). In the case of the STMR, the test signal

comes from the mouth simulator, whereas in the case of the LSTR, it is an external

diffuse field. Hence the latter is a characterization of the room noise picked up via the

electrical sidetone path. However, it is often more useful to evaluate the listener’s

sidetone performance of a handset indirectly by the difference

D ¼ LSTR� STMR (8.14)

where D is a parameter of the phone which is independent of the network.

Table 8.2 Weights for wideband sidetone masking rating and
listener sidetone rating calculations.
Band No. Midfrequency (Hz) Wi

1 100 115.4

2 125 87.5

3 160 72.3

4 200 72.1

5 250 67.2

6 315 75.8

7 400 63.6

8 500 74.6

9 630 70.4

10 800 69.9

11 1000 70.9

12 1250 78.4

13 1600 74.9

14 2000 85.2

15 2500 81.6

16 3150 95.4

17 4000 77.0

18 5000 91.7

19 6300 92.4

20 8000 89.0
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CHAPTER NINE

Horn loudspeakers

PART XXVIII: HORN DRIVE UNITS

9.1 INTRODUCTION

Horn loudspeakers usually consist of an electrodynamic drive unit coupled to a horn.

When well designed, the large end of the horn, called the “mouth,” has an area suf-

ficiently large to radiate sound efficiently at the lowest frequency desired. The small end

of the horn, called the “throat,” has an area selected to match the acoustic impedance of

the drive unit and to produce as little nonlinear distortion of the acoustic signal as

possible.

Horn loudspeakers are in widespread use in cinemas, theaters, concert halls, stadiums,

and arenas where large acoustic powers must be radiated and where control of the

direction of sound radiation is desired. The efficiency of radiation of sound from one side

of a well-designed direct-radiator loudspeaker was shown in Chapters 6 and 7 to be

typically less than 1%. By comparison, the efficiency of radiation from a horn loud-

speaker usually lies between 10% and 50%.

The principal disadvantages of horn loudspeakers compared with the direct-radiator

loudspeakers are higher cost and larger size.

Before proceeding with an analysis of the horn loudspeaker, it should be mentioned

again that the radiating efficiency of a direct-radiator loudspeaker can be increased at low

frequencies by mounting several units side by side in a single baffle. The mutual inter-

action among the radiating units serves to increase the radiation resistance of each unit

substantially. For example, two identical direct-radiator loudspeakers very close to each

other in an infinitely large plane baffle, and vibrating in phase, will produce four times

the intensity on the principal axis as will one of them alone.

Direct-radiator loudspeakers used in an array often are not as satisfactory at high

frequencies as one horn loudspeaker because of the difficulty of obtaining uniform phase

conditions from different direct-radiator diaphragms. That is to say, the conditions of

vibration of a loudspeaker cone are complex, so that normal variations in the uniformity

of cones result in substantial differences in the phases of the radiated signals of different

cones at high frequencies. A very irregular and unpredictable response curve and

directivity pattern result.
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This problem does not arise with a horn where only a single drive unit is employed.

When two or more drive units are used to drive a single horn, the frequency range in

which the response curve is not adversely affected by the multiplicity of drive units is that

where the diaphragms vibrate in one phase.

9.2 ELECTRO-MECHANO-ACOUSTICAL CIRCUIT [1]

The drive unit for a horn loudspeaker is essentially a small direct-radiator loud-

speaker that couples to the throat of a flaring horn as shown in Fig. 9.1. In the next part

we shall discuss the characteristics of the horn itself. In this section we restrict ourselves

to that part of the frequency range where the complex mechanical impedance ZMT

looking into the throat of a horn is a pure resistance:

ZMT ¼ 1

YMT
¼ r0cST N$s=m (9.1)

where

r0 is density of air in kg/m3

c is velocity of sound in m/s

r0c ¼ 406 rayls at 22�C and 105 Pa ambient pressure

ST is area of the throat in m2

YMT is mechanical admittance at the throat of the horn in m/N s

A cross-sectional drawing of a compression drive unit for a horn loudspeaker is shown in

Fig. 9.2. It has a diaphragm and voice coil with a total mass MMD, a mechanical

compliance CMS, and a mechanical resistance RMS ¼ 1/GMS. The quantity GMS is the

mechanical conductance of the diaphragm in m/N s.

Behind the diaphragm is a back cavity that is usually filled with a soft acoustical

material. At low frequencies this space acts as a complianceCMB, which can be lumped in

with the compliance of the diaphragm. At high frequencies the reactance of this space

Mouth of
the horn  

Throat of
the horn  

Figure 9.1 Cross section of a simple horn loudspeaker with an exponential cross section. For this
design, the radius of the throat is 0.1, the radius of the mouth 1.7, and the length is 5.0 (arbitrary units).
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becomes small so that the space behind the diaphragm becomes a mechanical radiation

resistance RMB ¼ 1/GMB with a magnitude equal to that given in Eq. (9.1). This

resistance combines with the mechanical radiation resistance of the throat, and the

diaphragm must develop power both to its front and its back. Obviously, any power

developed behind the diaphragm is wasted, and at high frequencies this sometimes be-

comes as much as one-half of the total generated acoustic power.

In front of the diaphragm there is an air space or front cavity with compliance CM1.

At low frequencies the air in this space behaves like an incompressible fluid, that is, uCM1

is small, and all the air displaced by the diaphragm passes into the throat of the horn. At

high frequencies, the mechanical reactance of this air space becomes sufficiently low (i.e.,

the air becomes compressible), so that all the air displaced by the diaphragm does not pass

into the throat of the horn.

The voice coil has an electrical resistanceRE and inductance LE. As stated above, YMT

is the mechanical admittance at the throat of the horn.

By inspection, we draw the admittance-type analogous circuit shown in Fig. 9.3. In

this circuit, forces “flow” through the elements, and the velocity “drops” across them. The

generator open-circuit voltage and resistance are eeg and Rg. The electric current is ei;
the linear velocity of the voice coil and diaphragm iseuc; the linear velocity of the air at the
throat of the horn is euT ; and the force at the throat of the horn is ef T . As before, the area
of the diaphragm is SD and that of the throat is ST.

Figure 9.2 Cross section of a horn compression drive unit. The diaphragm couples to the throat of the
horn through a small cavity with a mechanical compliance CM1. Note that in this design, the annular
channels within the phase plug meet the front cavity at nodal points so as to suppress the normal
modes, which would otherwise occur [19]. Such modes would produce a somewhat uneven fre-
quency response. Courtesy of Celestion.
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9.3 REFERENCE EFFICIENCY

In the middle-frequency range many approximations usually can be made to

simplify the analogous circuit of Fig. 9.3. Because the drive unit is very small, the mass of

the diaphragm and the voice coil MMD is very small. This in turn usually means that the

compliance of the suspensionCMS is large to keep the resonance frequency low. Also, the

conductance of the suspension GMS usually is large, and the reactance uCM1 is small.

Hence, in this frequency range, the circuit reduces essentially to that of Fig. 9.4a, where

the conductance behind the diaphragm is

GMBh
1

r0cSD
m$N=s. (9.2)

With the area-changing and electromechanical transformers removed, we get

Fig. 9.4b, where the radiation conductance at the throat is

GMTh
ST

r0cS
2
D

m$N=s. (9.3)

ge~

1:BlRg cf
~

Tf
~

i
~

GMB

RE

cu~

DT SS :

Tu~
TcS0

1
ρ

(a)

ge~

Rg i
~

B2l2GMB

RE 2

~
i

B2l2GMT

1

~
i

(b)

Figure 9.4 Simplified analogous circuits of the admittance type for the drive unit in the region where
the motion of the diaphragm is resistance-controlled by the horn (a) and with the transformers
removed (b).

ge~

1:BlLERg cf
~

MMD

Tf
~

i
~

CMS GMB

RE

cu~

DT SS :

Tu~GMS YMTCMB

CM1

Figure 9.3 Electro-mechano-acoustical analogous circuit of the admittance type for the drive unit. To
derive this, we assume that the mechanical impedance at the horn throat is r0cST, that is, the me-
chanical admittance is YMT ¼ 1/(r0cST).
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As before, ST is the area of the throat and SD is the area of the diaphragm in m2. We

have assumed here that the cavity behind the diaphragm in this frequency range is nearly

perfectly absorbing, which may not always be true. Usually, however, this circuit is valid

over a considerable frequency range because of the heavy damping provided by the

conductance of the horn GMT. Also, GMTusually is smaller than GMB so that most of the

power supplied by the diaphragm goes into the horn.

Solution of Fig. 9.4b gives us

ei2 ¼ GMB

GMB þGMT

ei. (9.4)

Assuming that the output resistance Rg of the generator is small compared with the

coil resistance RE of the drive unit, the total electrical power supplied from the

generator is

Total power supplied ¼
����� eiffiffiffi2p

�����
2�

RE þ B2l2
GMBGMT

GMB þGMT

�
. (9.5)

Using the solution of Eq. (9.4), the reference efficiency Eff is equal to the power

delivered to the horn, ���ei2. ffiffiffi
2

p ���2B2l2GMT ;

times 100 divided by the total power supplied:

Eff ¼ ðGMB=ðGMB þGMT ÞÞ2B2l2GMT

RE þ B2l2GMBGMT=ðGMB þGMT Þ � 100. (9.6)

From Eqs. (9.2, 9.3 and 9.6) we get

Eff ¼ 100B2l2ðST=SDÞ
ð1þ ST=SDÞððB2l2 þ SDr0cREÞðST=SDÞ þ SDr0cREÞ (9.7)

or, in terms of ThieleeSmall parameters,

Eff ¼ 100ðST=SDÞSDc
ð1þ ST=SDÞððSDc þ uSQESVASÞðST=SDÞ þ uSQESVASÞ; (9.8)

where we have used Eqs. (6.27) and (6.30) for the Bl factor. We note that the value of

GMT, and hence the ratio ST/SD would seem to need to be large for high efficiency.

However, if ST/SD becomes too large, reference to Fig. 9.4b shows that too much power

will be dissipated inGMB and the efficiency will be low. To optimize the efficiency, let us
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now differentiate the above with respect to (ST/SD) and equate the result to zero. Hence

maximum efficiency occurs when

ST

SD
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SDr0cRE

B2l2 þ SDr0cRE

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uSQESVAS

SDc þ uSQESVAS

r
; (9.9)

so that the maximum efficiency is

Eff ðmaxÞ ¼ 100B2l2� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2l2 þ SDr0cRE

p
þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

SDr0cRE
p �2; (9.10)

which can also be given in terms of ThieleeSmall parameters:

Eff ðmaxÞ ¼ 100SDc

ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SDc þ uSQESVAS

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uSQESVAS

p Þ2. (9.11)

To increase the efficiency further, it is seen from Eq. (9.10) that the length l of the

wire on the voice coil should be increased as much as possible without altering electrical

resistance RE. Within given space limitations, this can be done by winding the voice coil

from wire with a rectangular cross section rather than with a circular cross section. This

means that the voice-coil mass will be increased. Increasing l further will demand a wire

of larger cross section, which will require a larger air gap, with a corresponding reduction

in B or increase in magnet size. Also, the voice coil must not become too large as its mass

will limit the high-frequency response.

9.4 FREQUENCY RESPONSE

The frequency response of a complete horn loudspeaker, in the range where the

throat impedance of the horn is a resistance as given by Eq. (9.1), is determined by

solution of the circuit of Fig. 9.3. A horn-loaded drive unit behaves very differently from

a direct radiator. The diaphragm of a direct-radiator loudspeaker is mass controlled because

a flat on-axis response is given at frequencies where the acceleration of the diaphragm is

constant. Because the velocity decreases with frequency, so does the radiated power for

u > c/a, but this is compensated for by an increasingly narrow directivity pattern, which

is how the flat on-axis response is maintained. By contrast, a horn has a fairly constant

directivity pattern over its operating frequency range. Hence, for a flat frequency

response, the radiated power must also be constant, which can only be achieved if the

velocity is constant. Hence the diaphragm of horn-loaded drive unit is resistance controlled.

For purposes of analysis, we shall divide the frequency range into three parts, A, B, and

C, as shown in Fig. 9.5.
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Midfrequency range
In the midfrequency range, designated as B in Fig. 9.5, the response is equal to the

reference efficiency given by Eq. (9.8). Here, the response is “flat” with frequency, and,

for the usual high-frequency units used in auditoriums with 300-Hz cutoff frequencies,

the flat region extends from a little above 500 to a little below 3000 Hz. In this region the

velocity of the diaphragm is constant with frequency, rather than decreasing in inverse

proportion to frequency as was the case for a direct-radiator loudspeaker.

Resonance frequency
It is apparent from Fig. 9.3 that because uCM1 is small, zero reactance will occur at the

frequency where

f0 ¼ 1

2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MMDðCMSCMB=ðCMS þ CMBÞÞ

p . (9.12)

In practice, this resonance usually is located in the middle of region B of Fig. 9.5 and

is heavily damped by the conductance GMT, so that the velocity of the diaphragm is

resistance controlled.

Low frequencies
At frequencies well below the resonance frequency, the response will drop off 6 dB for

each octave decrease in frequency if the throat impedance is a resistance as given by Eq.

(9.1). This case is shown as region A in Fig. 9.5.

Figure 9.5 Normalized frequency response of the mechanical force ef T or velocity euT at the throat of a
horn drive unit, in the frequency region where the mechanical impedance at the throat is a pure
resistance r0cST. The ordinate is a logarithmic scale, proportional to decibels.
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Let us simplify Fig. 9.3 so that it is valid only for the low-frequency region, well

below the resonance of the diaphragm. Then the inductance LE, the mass MMD, the

compliance CM1, and the conductances GMS and GMB may all be dropped from the

circuit, giving us Fig. 9.6.

Assuming the throat admittance of the horn is a pure conductance as given by

Eq. (9.3), the frequency at which the frequency response is 3 dB down is given in terms

of the ThieleeSmall parameters by

uL ¼
�
1þ VAS

VB

�
uSQESSDc

SDc þ ð1þ SD=ST ÞuSQESVAS
. (9.13)

where VB is the volume of the back cavity. In practice, however, the throat impedance

ZMT of the horn near the lowest frequency at which one wishes to radiate sound is not a

pure resistance. Hence, region A needs more careful study. Solving for the mechanical

admittance at the diaphragm of the drive unit yields

YMc ¼ eucef c ¼ juCM2ðST=SDÞ2YMT

juCM2 þ ðST=SDÞ2YMT

(9.14)

where

CM2 ¼ CMSCMB

CMS þCMB
(9.15)

and YMT is the mechanical admittance at the throat of the horn with area ST. The

mechanical impedance at the diaphragm of the drive unit is the reciprocal of YMc,

ZMc ¼
ef ceuc ¼

�
SD

ST

�2

ZMT � j
1

uCM2
(9.16)

where ZMT ¼ 1/YMT is the mechanical impedance at the throat of the horn with

area ST.

ge~

1:BlRg cf
~

Tf
~

i
~

≡ CM2

RE

cu~

DT SS :

Tu~ YMT
MBMS

MBMS

CC

CC

+

Figure 9.6 Analogous circuit for a horn drive unit in the region where the diaphragm would be
stiffness controlled if the horn admittance were infinite. The actual value of the mechanical admit-
tance of the horn at the throat is zMT.
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As we shall show in the next part, the mechanical impedance at the throat of ordinary

types of horn at the lower end of the useful frequency range is equal to a mechanical

resistance in series with a negative compliance. That is to say,

ZMThRMT þ j
1

uCMT
. (9.17)

The bold RMT indicates that this resistance varies with frequency. Usually, its

variation is between zero at very low frequencies and r0cST (as given by Eq. 9.1) at some

frequency in region A of Fig. 9.5. Hence, the admittance YMT ¼ l/ZMT is a resistance in

series with a negative mass reactance. In the frequency range where this is true, therefore,

the reactive part of the impedance ZMc can be canceled out by letting (see Eqs. 9.16 and

9.17)

S2D
S2T

1

CMT
¼ 1

CM2
¼
�

1

CMB
þ 1

CMS

�
. (9.18)

Then,

ZMc ¼ RMT

�
SD

ST

�2

h
1

GMc
(9.19)

where GMc is the acoustic conductance of the throat of the horn at low frequencies

transformed to the diaphragm.

The efficiency for frequencies where the approximate circuit of Fig. 9.6 holds, and

where the conditions of Eq. (9.18) are met, is

Eff ¼ 100B2l2GMc

RE þ B2l2GMc
(9.20)

assuming Rg >> RE. The conductance GMc usually varies from “infinity” at very low

frequencies down to ST
�	

S2Dr0c


at some frequency in region A of Fig. 9.5.

High frequencies
At very high frequencies, the response is limited principally by the combined mass of the

diaphragm and the voice coilMMD. If the compliance CM1 of the front cavity were zero,

the response would drop off at the rate of 6 dB per octave (see region C of Fig. 9.5). It is

possible to choose CM1 to resonate with MMD at a frequency that extends the response

upward beyond where it would extend if it were limited by MMD alone. We can un-

derstand this situation by deriving a circuit valid for the higher frequencies as shown in
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Fig. 9.7. It is seen that a damped antiresonance occurs at a selected high frequency uU,

which is given in terms of the ThieleeSmall parameters of the drive unit by

uU ¼ uS

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VAS

VF

�
1þ ST

SD

�
1þ SDc

uSQESVAS

��s
(9.21)

with a QU value of

QU ¼ uU

�
ST c

VF
þ uS

�
1

QES
þ uSVAS

SDc

���1

(9.22)

where VF is the volume of the front cavity. Above this resonance frequency, the response

drops off 12 dB for each octave increase in frequency (see region C of Fig. 9.5).

Because the principal diaphragm resonance (Eq. 9.12) is highly damped by the throat

resistance of the horn, it is possible to extend the region of flat response of a drive unit

over a range of four octaves by proper choice of CM1 at higher frequencies and by

meeting the conditions of Eq. (9.18) at lower frequencies.

9.5 EXAMPLES OF HORN CALCULATIONS

Example 9.1. Find the maximum efficiency of a 2-inch theater horn drive unit

designed to operate in the frequency range above 500 Hz with the following Thielee
Small parameters:

RE ¼ 6.4 U
QES ¼ 0.8

fS ¼ 250 Hz

SD ¼ 13.2 cm2

VAS ¼ 0.1 L.

ge~

LERg

22lB

M MD

i
~

B2l2GMB

RE

B2l2GMT

B2l2CM1

Figure 9.7 Analogous circuit for a horn drive unit at high frequencies where the diaphragm mass
reactance is much larger than its compliance reactance.
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Solution. From Eq. (9.9) the optimum throat area is

ST ¼ 13.2� 10�4 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2� 3.14� 250� 0.8� 0.1� 10�3

13.2� 10�4 � 348.8þ 2� 3.14� 250� 0.8� 0.1� 10�3

s

¼ 6:11 cm2;

which from Eq. (9.11) gives a maximum efficiency of

Eff ðmaxÞ ¼ 100SDc� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
13.2� 10�4 � 348.8þ 2� 3.14� 250� 0.8� 0.1� 10�3

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 3.14� 250� 0.8� 0.1� 10�3

p �2
¼ 36.7%.

Example 9.2. To extend the high-frequency response of the previous example,

reduce the throat area to ST ¼ 0.66 cm2 (ST/SD ¼ 0.05) and recalculate the efficiency.

Also determine the upper resonance frequency and theQ of the resonance, as well as the

theoretical lower cutoff frequency that would be obtained with an infinite horn of low

cutoff frequency and a 0.1 L back cavity (i.e., VB ¼ VAS).

Solution. Then we obtain the efficiency from Eq. (9.8), which gives

Eff ¼ 100� 0.05� 13.2� 10�1 � 348.8

ð1þ 0.05Þðð13.2� 10�1 � 348.8þ 2� 3.14� 250� 0.8� 0.1

� 0.05þ 2� 3.14� 250� 0.8� 0.1



¼ 14:2%;

which is still quite good. If we set the depth d of the front cavity to d ¼ 1 mm so that

VF z dSD ¼ 1.32 cm3, we obtain the high-frequency resonance from Eq. (9.21), which

gives

fU ¼ 250

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0.1� 10�3

1� 10�3 � 13.2� 10�4

�
1þ 0.05�

�
1þ 13.2� 10�4 � 348.8

2� 3.14� 250� 0.8� 0.1� 10�3

��s

¼ 2.42 kHz.

Using Eq. (9.22) we obtain a Q value of

QU ¼ 2� 3.14� 2420�
�
0.66� 10�4 � 348.8

10�3 � 13.2� 10�4
þ 2� 3.14� 250

�
1

0.8
þ 2� 3.14� 250� 0.1� 10�3

13.2� 10�4 � 348.8

���1

¼ 0:762;
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which is fairly optimal for a flat frequency-response with a smooth roll-off. Finally, from

Eq. (9.13) we obtain the following lower cutoff frequency with an ideal infinite horn:

fL ¼ 1

2� 3.14
ð1þ 1Þ 2� 3.14� 250� 0.8� 13.2� 10�4 � 348.8

13.2� 10�4 � 348.8þ ð1þ 20Þ � 2� 3.14� 250� 0.8� 0.1� 10�3

¼ 59.4Hz.

Of course this is unrealistic in practice as the lower cutoff frequency is more likely to

be determined by the characteristics of the horn, which we shall examine in the next

section. The full frequency response is plotted in Fig. 9.5.

PART XXIX: HORNS

9.6 GENERAL DESCRIPTION

A horn is in effect an acoustic transformer. It transforms a small-area diaphragm into a

large-area diaphragm without the difficulties of cone resonances discussed in Section

6.14. A large-area diaphragm has a radiation impedance that is more nearly resistive over

the desired frequency range than is the radiation impedance for a small-area diaphragm

(see Fig. 4.35). As a result, more power is radiated at low frequencies for a given volume

velocity of air. A horn is also a directivity controlling device, which radiates over an

angle defined by the flare angle of the mouth.

In designing a horn for a particular application, we usually wish to select the pa-

rameters so as to radiate the maximum amount of acoustic power over the desired fre-

quency range with suitably low nonlinear distortion. Once we have stated the frequency

range, tolerable distortion, and desired radiated power, we can choose the drive unit and

then proceed to calculate the throat and the mouth diameters and the length and shape of

the horn.

9.7 POSSIBLE PROFILES [2]

When it comes to considering various horn profiles, there are only a limited

number with exact analytical solutions to the wave equation. For a start, an exact solution

relies upon a profile that fits a coordinate system which leads to a separable wave

equation. In other words, the coordinate system must be orthogonal, having coordinate

surfaces that all meet at right angles. In Part V we presented solutions to the three-

dimensional Helmholtz wave equation in three such coordinate systems, namely, rect-

angular, cylindrical, and spherical. Generally, cylindrical coordinates lead to parabolic
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horns (with two parallel and two nonparallel side walls), while spherical coordinates lead

to conical horns.

There are only a few other three-dimensional orthogonal coordinate systems that

lead to practical horn profiles. Of these are spheroidal coordinates, which come in two

flavors: prolate and oblate. Although they are too complicated to deal with in this text,

they are worth mentioning. Spheroidal coordinates are constructed from overlapping

families of ellipses and hyperbolas, which share two focal points. If the ellipses are rotated

about an axis passing through the focal points, they become prolate spheroids (cigar

shaped) and we have a prolateespheroidal coordinate system. Then any one of the

rotated hyperbolas can be chosen as a horn profile. Such a profile looks parabolic near the

throat but becomes more conical as the distance from the throat increases. Similarly, if

the ellipses are rotated about an axis passing between the two focal points, they become

oblate spheroids (flying saucer shaped) and we have an oblateespheroidal coordinate

system. Again, any one of the rotated hyperbolas can be chosen as a horn profile [3]. In

this case, however, the profile looks hyperbolic near the throat but becomes more conical

as the distance from the throat increases. However, spheroidal wave functions [4,20],

unlike Bessel and Legendre functions, are not frequency independent. The fact that a

whole series of harmonics must be calculated at each frequency step somewhat com-

plicates the analysis. Ellipsoidal coordinates lead to similar horn profiles but with cross

sections that are not circular.

Some other three-dimensional coordinate systems are simply two-dimensional sys-

tems translated through parallel planes. For example, ellipticalecylindrical coordinates

are formed by translating the ellipses and hyperbolas of the spheroidal system. From this

we can form horn profiles having two straight parallel walls and two curved walls that are

hyperbolas. Again, we have the problem that the resulting Mathieu functions [4] are not

frequency independent.

A rigorous treatment of a horn profile would involve solving the wave equation in

three dimensions with the correct boundary conditions at the throat, walls, and mouth,

but the analysis would be somewhat complicated. It is much simpler if we can reduce the

wave equation down to one dimension by assuming that pressure variations over the

cross section of the horn are minimal. In practice, the errors produced by such an

assumption are fairly small. We have already introduced Webster’s equation [21], Eq.

(2.27), which is one-dimensional, but allows for a number of different functions S(x) to

describe the variation of cross-sectional area Swith distance x along its length. However,

this equation assumes that the wave front does not change shape as it progresses along the

length of the horn; otherwise it is not truly one-dimensional. In the case of a parabolic

horn (with two parallel walls and two nonparallel) or conical horn, this assumption is

generally true. However, we shall also consider exponential and hyperbolic horns in

which case the wave front starts off substantially planar near the throat and becomes more

curved as it progresses along the length of the horn. As a result, the infinite horn exhibits
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an abrupt cutoff frequency below which no power is transmitted. However, for a finite

horn, the errors produced by this one-dimensional assumption are not too bad. It should

be noted that there is no orthogonal coordinate system for an exponential or hyperbolic

horn that leads to a separable wave equation with an exact solution, but proposals have

been made to improve Webster’s one-dimensional theory that include recasting it [5],

applying expansions [6] or correction factors [7,8], and smoothing the cutoff disconti-

nuity with a complex wave number [9].

First we shall consider infinite horns, as these provide the simplest solutions for the

throat impedance and hence radiated power under idealized conditions. If the horn is a

number of wavelengths long and if the mouth circumference is larger than the wave-

length, we may call it “infinite” in length. This simplification leads to equations that are

easy to understand and are generally useful in design. Then we shall develop 2-port

transmission matrices for finite horns, which can be used as part of an overall loud-

speaker system design. Our analysis will be limited to parabolic, conical, exponential, and

hyperbolic horns.

For a horn to be a satisfactory transformer, its cross-sectional area near the throat end

should increase gradually with axial distance x. If it does, the transformation ratio

remains reasonably constant with frequency over a wide range. Exponential and hy-

perbolic horns are closer to this ideal, but the more gradual cutoff of a conical horn

makes it easier to integrate into a loudspeaker system when used as a high-frequency unit

or tweeter. The parabolic horn is often used in reverse as a transmission line because it is

the easiest to construct.

We already mentioned that the directivity is largely defined by the flare angle at the

mouth. This is certainly the case for parabolic and conical horns when the wavelength is

smaller than the diameter of the mouth. The mouth of a conical horn behaves somewhat

like a spherical cap in a sphere because it produces spherical waves that are largely

confined within the angle of the apex of the cone at high frequencies. A conical horn

may not necessarily have a circular cross-section though. A rectangular cross-section

enables different angles of dispersion in the horizontal and vertical planes. It also

produces a smoother on-axis response. Pulsating spherical and rectangular caps in spheres

are discussed in Example 9.4 and covered in detail in Section 12.7. The high-frequency

directivity factor is

Qð f Þ ¼ 4pR2

SM
(9.23)

where R is the radius of the mouth and SM is the area of the mouth. In the case of a

rectangular cone, the area is given by Eq. (12.69). Unfortunately, exponential and hy-

perbolic horns produce a more planar wave in the middle of the flare at high frequencies,

resulting in a somewhat narrower directivity pattern. Multiple horns or “multicell”
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horns are often used to mitigate this effect. They may either comprise multiple horns

with each having its own drive unit or horns with a common drive unit. Another option

is to use a hybrid exponential/conical horn [10].

9.8 MOUTH SIZE

The large end (mouth) of the horn should have a circumference large enough so

that the radiation impedance is nearly resistive over the desired frequency range.

Reference to Fig. 4.35 shows that this will be true for ka > 1: that is, C/l > 1, where C

is the circumference of the mouth of the horn and l is the wavelength of the lowest tone

that it is desired to radiate. If the mouth of the horn is not circular but square, it will

behave in nearly the same way, as far as radiated power is concerned, for equal mouth

areas. Hence, for good design, the mouth circumference C or mouth area SM,

C ¼ 2
ffiffiffiffiffiffiffiffiffiffi
pSM

p
> l (9.24)

where l is the longest wavelength of sound that is to be radiated efficiently.

9.9 INFINITE PARABOLIC HORN [11]

Theoretical considerations
A parabolic horn can either have a rectangular cross section with two parallel straight

walls and two nonparallel straight walls, or a circular cross section with a curved wall

following a parabola. The former gives more accurate results using the one-dimensional

wave equation and is easier to construct, but in the figures we shall use the latter for

convenience. The equation describing the cross-sectional area S(x) as a function of the

distance x along the axis is

SðxÞ ¼ STx=xT (9.25)

where ST is the area of the throat, which is located at a distance x ¼ xT ahead of the apex

at x ¼ 0. In the steady state, the Helmholtz equation for the parabolic horn is obtained

by inserting S(x) from Eq. (9.25) into Eq. (2.27) to yield�
v2

vx2
þ 1

x

v

vx
þ k2

�epðxÞ ¼ 0 (9.26)

where

k ¼ 2p

l
¼ u

c
(9.27)

and
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ep is harmonically varying sound pressure at a point along the length of the horn in Pa.

(It is assumed that the pressure is uniform across the cross section of the horn.)

c is speed of sound in m/s.

x is distance along the length of the horn from the apex in m.

xT is distance from the apex to the throat in m.

ST is cross-sectional area of the throat in m2.

S is cross-sectional area at x in m2.

The general solution for the pressure in a parabolic horn of any length is

epðxÞ ¼ epþHð2Þ
0 ðkxÞ þ ep�Hð1Þ

0 ðkxÞ (9.28)

where epþ denotes the pressure amplitude of the forward traveling wave and ep� that of the

backwards traveling wave. The tilde replaces the factor e jut. Using Eq. (2.122), the velocity

is given by

euðxÞ ¼ � 1

jkr0c

v

vx
epðxÞ

¼ 1

jr0c

�epþHð2Þ
1 ðkxÞ þ ep�Hð1Þ

1 ðkxÞ
�
:

(9.29)

Throat impedance
Noting that in an infinite horn there are no reflections from the mouth, we set ep� ¼ 0

to obtain the acoustic throat impedance, which is the ratio of the pressure ep to the

volume velocity eU at x ¼ xT, so that

ZAT ¼ epðxT ÞeUðxT Þ
¼ epðxT Þ

STeuðxT Þ ¼ j
r0c

ST

H
ð2Þ
0 ðkxT Þ

H
ð2Þ
1 ðkxT Þ

¼ r0c

ST

 
2

pkxT
	
J21 ðkxT Þ þ Y 2

1 ðkxT Þ

þ j

J0ðkxT ÞJ1ðkxT Þ þ Y0ðkxT ÞY1ðkxT Þ
J21 ðkxT Þ þ Y 2

1 ðkxT Þ

!
N$s
�
m5

(9.30)

where we have used the relationships of Eqs. (A2.75) and (A2.111) from Appendix II.

This is the same as the radiation impedance of an infinitely long pulsating cylinder of

radius xT. If we equate the real and imaginary parts of the impedance, we find that the

cutoff frequency occurs at kxT ¼ 0.268, which we shall designate as fc, where

fc ¼ 0.268c

2pxT
. (9.31)
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The throat impedance of an infinite parabolic horn is plotted in Fig. 9.9.

9.10 INFINITE CONICAL HORN

Theoretical considerations
The equation describing the cross-sectional area S(x) as a function of the distance x along

the axis is

SðxÞ ¼ ST ðx=xT Þ2 (9.32)

where ST is the area of the throat, which is located at a distance x ¼ xT ahead of

the apex at x ¼ 0. In the steady state, the Helmholtz equation for the conical horn is

obtained by inserting S(x) from Eq. (9.32) into Eq. (2.27) to yield�
v2

vx2
þ 2

x

v

vx
þ k2

�epðxÞ ¼ 0 (9.33)

where

k ¼ 2p

l
¼ u

c
(9.34)

andep is harmonically varying sound pressure at a point along the length of the horn in Pa.

(It is assumed that the pressure is uniform across the cross section of the horn.)

c is speed of sound in m/s.

x is distance along the length of the horn from the apex in m.

xT is distance from the apex to the throat in m.

ST is cross-sectional area of the throat in m2.

S is cross-sectional area at x in m2.

Figure 9.8 Plot of the quantities A and B, which are defined by the relations given on the graph.
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The general solution for the pressure in a conical horn of any length is

epðxÞ ¼ epþe�jkx

x
þ ep�e jkxx (9.35)

Hyperbolic 

25 cm 

Exponential

Conical 
Parabolic

Throat area 
ST = 58 cm2

Area = 1210 cm2

STRAT/(ρ0c)

STXAT/(ρ0c)1

23

4

1

2

3

4

∞

Figure 9.9 Plot of normalized throat impedances for infinite parabolic (1), conical (2), exponential (3),
and hyperbolic (4) horns using Eqs. (9.30, 9.37, 9.45, and 9.57) respectively. Real impedances STRAT/
(r0c) are represented by solid curves and the imaginary impedances STXAT/(r0c) are represented by
dashed curves. The value of a for the hyperbolic horn is ½. The cutoff frequencies of the parabolic,
conical, exponential, and hyperbolic horns are 1182 Hz, 792 Hz, 337 Hz, and 399 Hz respectively.
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whereepþ denotes the pressure amplitude of the forward traveling wave andep� that of the

backwards traveling wave. The tilde replaces the factor e jut. Using Eq. (2.122), the

velocity is given by

euðxÞ ¼ � 1

jkr0c

v

vx
epðxÞ

¼ 1

r0c

(epþ�1� j

kx

�
e�jkx

x
�ep��1þ j

kx

�
e jkx

x

)
:

(9.36)

Throat impedance
Noting that in an infinite horn there are no reflections from the mouth, we set ep� ¼ 0

to obtain the acoustic throat impedance, which is the ratio of the pressure ep to the

volume velocity eU at x ¼ xT, so that

ZAT ¼ epðxT ÞeUðxT Þ
¼ epðxT Þ

STeuðxT Þ ¼ r0c

ST

jkxT

1þ jkxT

¼ r0c

ST

�
k2x2T

1þ k2x2T
þ j

kxT

1þ k2x2T

�
N$s

�
m5:

(9.37)

This is the same as the radiation impedance of a pulsating sphere of radius xT. The

special case of kxT ¼ 1 occurs at the cutoff frequency, which we shall designate as fc, where

fc ¼ c

2px1
. (9.38)

The throat impedance of an infinite conical horn is plotted in Fig. 9.9.

9.11 INFINITE EXPONENTIAL HORN

Theoretical considerations
The equation describing the cross-sectional area S(x) as a function of the distance x along

the axis is

SðxÞ ¼ STe
mx (9.39)

where ST is the area of the throat, which is located at x ¼ 0. In the steady state, the

Helmholtz equation for the exponential horn is obtained by inserting S(x) from Eq.

(9.39) into Eq. (2.27) to yield
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�
v2

vx2
þ m

v

vx
þ k2

�epðxÞ ¼ 0 (9.40)

where

k ¼ 2p

l
¼ u

c
(9.41)

andep is harmonically varying sound pressure at a point along the length of the horn in Pa.

(It is assumed that the pressure is uniform across the cross section of the horn.)

c is speed of sound in m/s.

x is distance along the length of the horn from the throat in m.

m is flare constant in m�1. Obviously, m determines the magnitude of the second

term of the equation above, which expresses the rate at which the sound pressure

changes with distance down the horn. If m ¼ 0, Eq. (9.40) becomes the equation for

propagation in a cylindrical tube, i.e., a horn with zero flare.

ST is cross-sectional area of the throat in m2.

S is cross-sectional area at x in m2.

The general solution for the pressure in an exponential horn of any length is

epðxÞ ¼ e�mx=2

�epþe�jkx
ffiffiffiffiffiffiffiffiffi
1�m2

4k2

p
þ ep�e jkx ffiffiffiffiffiffiffiffiffi

1�m2

4k2

p �
(9.42)

where epþ denotes the pressure amplitude of the forward traveling wave and ep� that of the

backwards traveling wave. The tilde replaces the factor e jut. Using Eq. (2.122), the velocity

is given by

euðxÞ ¼ � 1

jkr0c

v

vx
epðxÞ

¼ e�mx=2

r0c

8<:epþ
0@ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� m2

4k2

s
� j

m

2k

1Ae
�jkx

ffiffiffiffiffiffiffiffiffi
1�m2

4k2

p
�ep�

0@ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� m2

4k2

s
þ j

m

2k

1Ae
jkx

ffiffiffiffiffiffiffiffiffi
1�m2

4k2

p 9=;:

(9.43)

Throat impedance
Noting that in an infinite horn there are no reflections from the mouth, we set ep� ¼ 0

to obtain the acoustic throat admittance, which is the ratio of the volume velocity eU to

the pressure ep at x ¼ xT, so that
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YAT ¼ eUðxT ÞepðxT Þ ¼ STeuðxT ÞepðxT Þ ¼ ST

r0c

0@ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� m2

4k2

s
� j

m

2k

1Am5$N�1$S�1

¼ GAT þ jBAT :

(9.44)

The acoustic impedance Z ¼ 1/YAT at the throat is

ZAT ¼ r0c

ST

0@ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� m2

4k2

s
þ j

m

2k

1A
¼ RAT þ jXAT N$s

�
m5:

(9.45)

The real and imaginary parts of Z and YAT behave alike with frequency and differ

only by the magnitude (S/r0c)
2 and the sign of the imaginary part. Note also that, unlike

with the parabolic or conical horns, this impedance is independent of the distance x

along the axis of the horn. Next, we shall examine how varying the flare constant m

affects the acoustic impedance ZAT.

Flare constant and throat impedance
When the flare constant m is greater than 4p divided by the wavelength (m > 2k, low

frequencies), the acoustic resistance RAT and the acoustic reactance XAT, at the throat

of the horn where the area is ST, are

RAT ¼ 0

XAT ¼ r0c

ST

0@m

2k
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

4k2
� 1

s 1A:

(9.46)

When the flare constant m equals 4p divided by the wavelength, the acoustic resis-

tance, and reactance are

RAT ¼ 0

XAT ¼ r0cm

2kST
¼ r0c

ST
:

(9.47)

For all cases where m is less than 4p divided by the wavelength (m < 2k, high fre-

quencies), the acoustic resistance and reactance at any point x along the horn where the

cross-sectional area is S are
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RAT ¼ r0c

ST

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� m2

4k2

s

XAT ¼ r0cm

2kST
¼ r0c

2m

2uST
h

1

uCAT

(9.48)

where CAT ¼ 2ST/r0c
2m.

For very high frequencies, the reactance approaches zero and the resistance ap-

proaches r0c/ST or r0c/S in general. This is also the impedance for a plane progressive

sound wave in a tube of uniform cross section S.

Cutoff frequency
The special case of m ¼ 4p/l occurs at a frequency that we shall designate as fc, where

fc ¼ mc

4p
. (9.49)

This frequency fc is called the cutoff frequency because, for frequencies lower than

this, no power will be transmitted down the horn, i.e., the impedance at all positions

along the horn is purely reactive (see Eq. 9.46). The throat impedance of an infinite

exponential horn is plotted in Fig. 9.9.

To obtain the acoustic impedance at the throat of the horn in terms of the cutoff

frequency, we observe that fc/f ¼ m/2k. Substituting in Eq. (9.45) yields

ZAT ¼ r0c

ST

0@ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

�
fc

f

�2
s

þ j
fc

f

1A ¼ RAT þ jXAT (9.50)

where

ST is throat area in m2.

r0c is characteristic impedance of air in rayls.

fc is cutoff frequency.

f is driving frequency.

Graphs of two quantities A and B that are directly proportional to the resistive and

reactive parts of the acoustic impedance at the throat of an infinitely long exponential

horn are shown in Fig. 9.8. The quantities A and B also are directly proportional to the

real and imaginary parts of the acoustic admittance at the throat. The relations among A,

B, RAT, XAT, GAT, and BAT are given on the graph. When the frequency is greater than

approximately double the cutoff frequency fc, the throat impedance is substantially

resistive and very near its maximum value in magnitude.
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9.12 INFINITE HYPERBOLIC HORN (HYPEX) [12]

Theoretical considerations
The equation describing the cross-sectional area S(x) as a function of the distance x along

the axis is

SðxÞ ¼ ST

�
cosh

x

xT
þ a sinh

x

xT

�2

(9.51)

where ST is the area of the throat, which is located at x ¼ 0 and 0 � a � 1. We can vary

the parameter a to create any profile between hyperbolic (a ¼ 0) and exponential

(a ¼ 1). In the steady state, the Helmholtz equation for the hyperbolic horn is obtained

by inserting S(x) from Eq. (9.51) into Eq. (2.27) to yield�
v2

vx2
þ 2

xT
$
sinhðx=xT Þ þ a coshðx=xT Þ
coshðx=xT Þ þ a sinhðx=xT Þ$

v

vx
þ k2

�epðxÞ ¼ 0 (9.52)

where

k ¼ 2p

l
¼ u

c
(9.53)

andep is harmonically varying sound pressure at a point along the length of the horn in Pa.

(It is assumed that the pressure is uniform across the cross section of the horn.)

c is speed of sound in m/s.

xT is reference axial distance from the throat in m.

x is distance along the length of the horn from the throat in m.

a is parameter that never exceeds unity.

ST is cross-sectional area of the throat in m2.

S is cross-sectional area at x in m2.

The general solution for the pressure in an hyperbolic horn of any length is

epðxÞ ¼ 1

coshðx=xT Þ þ a sinhðx=xT Þ

0@epþe�jkx

ffiffiffiffiffiffiffiffiffiffiffi
1� 1

k2x2
T

q
þ ep�ejkx

ffiffiffiffiffiffiffiffiffiffiffi
1� 1

k2x2
T

q 1A (9.54)

whereepþ denotes the pressure amplitude of the forward traveling wave andep� that of the

backwards traveling wave. The tilde replaces the factor e jut. Using Eq. (2.122), the

velocity is given by

euðxÞ ¼ � 1

jkr0c

v

vx
epðxÞ. (9.55)
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Throat impedance
Noting that in an infinite horn there are no reflections from the mouth, we set ep� ¼ 0

to obtain the acoustic throat admittance, which is the ratio of the volume velocity eU to

the pressure ep at x ¼ xT, so that

YAT ¼ eUðxT ÞepðxT Þ ¼ STeuðxT ÞepðxT Þ ¼ ST

r0c

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1

k2x2T

s
� j

a

kxT

!
m5
�
N$s

¼ GAT þ jBAT :

(9.56)

The acoustic impedance ZAT ¼ 1/YAT at the throat is

ZAT ¼ r0c

ST

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1

k2x2T

s
� j

a

kxT

!�1

N$s
�
m5

¼ RAT þ jXAT :

(9.57)

The real and imaginary parts of ZAT and YAT behave alike with frequency and differ

only by the magnitude (S/r0c)
2 and the sign of the imaginary part. Note also that like

with an exponential horn, but unlike the parabolic or conical horns, this impedance is

independent of the distance x along the axis of the horn.

Cutoff frequency
The special case of xT ¼ l/2p occurs at a frequency that we shall designate fc, where

fc ¼ c

2pxT
. (9.58)

This frequency fc is called the cutoff frequency because, for frequencies lower than

this, no power will be transmitted down the horn, i.e., the impedance at all positions

along the horn is purely reactive. The throat impedance of an infinite hyperbolic horn is

plotted in Fig. 9.9.

In Fig. 9.9, the throat impedances for the parabolic, conical, exponential, and hy-

perbolic horn types are shown. At very high frequencies, all these types behave about

alike. At low frequencies, however, there are considerable differences. These differences

can be shown by comparison of the throat impedances for the conical and hyperbolic

horns with that for the exponential horn.

For all horns, the throat resistance is very low, or zero, below the cutoff frequency.

Above the cutoff frequency, the specific throat resistance rises rapidly to its ultimate value

of r0c for those cases where the rate of taper is small near the throat of the horn. For
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example, the specific throat resistance for the hyperbolic horn reaches r0c at about one-

twentieth the frequency at which the specific throat resistance for the conical horn

reaches this value. Similarly for the hyperbolic horn, the specific throat resistance ap-

proaches unity at about one-third the frequency for the exponential horn.

It would seem that for best loading conditions on the horn drive unit over the fre-

quency range above the cutoff frequency, one should use the hyperbolic horn. However,

it should also be remembered that the nonlinear distortion will be higher for the hy-

perbolic horn because the wave travels further in the horn before the pressure drops off

owing to area increase than is the case for the other horns. For minimum distortion at

given power per unit area, the conical horn is obviously the best of the three. The

exponential horn is usually a satisfactory compromise in design because it falls between

these two extremes.

9.13 FINITE HORNS

Transmission parameters
A horn can be represented as a 2-port network, which is described by the following

transmission-parameter matrix:" epTeUT

#
¼
"
a11 a12

a21 a22

#
$

" epMeUM

#
¼ A$

" epMeUM

#
(9.59)

where epT and eUT are the pressure and volume velocity respectively at the throat and epM
and eUM are the pressure and volume velocity respectively at the mouth. The matrix

elements are given by

a11¼ epTepM
����eUM¼0

(9.60)

a12¼ epTeUM

����epM¼0

(9.61)

a21¼
eUTepM
����eUM¼0

(9.62)

a22¼
eUTeUM

����epM¼0

(9.63)
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Throat impedance
The acoustic impedance at the throat of the horn is given by

ZAT ¼ a11ZAM þ a12

a21ZAM þ a22
(9.64)

where ZAM is the acoustic radiation impedance at the mouth.

Reverse horn
If the horn is used in reverse, as a tapered transmission line for example, we write" epMeUM

#
¼ 1

DetðAÞ$
"
a22 a12

a21 a11

#
$

" epTeUT

#
. (9.65)

If no energy is added or dissipated within the horn

DetðAÞ ¼ a11a22 � a12a21 ¼ 1. (9.66)

However, this does not apply in the case of a transmission line filled with absorbent

material.

Finite parabolic horn
The matrix elements are given by

a11 ¼ �p

2
kxMð J0ðkxT ÞY1ðkxMÞ � J1ðkxMÞY0ðkxT ÞÞ (9.67)

a12 ¼ j
r0c

SM
$
p

2
kxMð J0ðkxT ÞY0ðkxMÞ � J0ðkxMÞY0ðkxT ÞÞ (9.68)

a21 ¼ j
ST

r0c
$
p

2
kxMð J1ðkxT ÞY1ðkxMÞ � J1ðkxMÞY1ðkxT ÞÞ (9.69)

a22 ¼ ST

SM
$
p

2
kxMð J1ðkxT ÞY0ðkxMÞ � J0ðkxMÞY1ðkxT ÞÞ (9.70)

where ST is the area of the throat, SM is the area of the mouth, and the length l of the horn

from the throat to the mouth is given by l ¼ xM � xT, so that xT ¼ l/((SM/ST) � 1).

The throat impedance of a finite parabolic horn is plotted in Fig. 9.10.
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Finite conical horn
The matrix elements are given by

a11 ¼
ffiffiffiffiffiffiffi
SM

ST

r �
cos kl � 1

kxM
sin kl

�
(9.71)

a12 ¼ j
r0cffiffiffiffiffiffiffiffiffiffiffiffi
STSM

p sin kl (9.72)

25 cm 

Throat area 
ST = 58 cm2

Mouth area 
SM = 1210 cm2

STRAT/(ρ0c)

STXAT/(ρ0c)

Hyperbolic 
Exponential
Conical 
Parabolic

1

23

4

1
2

3

4

Parabolic 
Conical 
Exponential 
Hyperbolic 

Figure 9.10 Plot of normalized throat impedances for finite parabolic (1), conical (2), exponential (3),
and hyperbolic (4) horns using Eq. (9.64) and Eq. (13.116) for ZAM ¼ Zs/SM, assuming termination in an
infinite baffle. Real impedances STRAT/(r0c) are represented by solid curves and the imaginary im-
pedances STXAT/(r0c) are represented by dashed curves. The value of a for the hyperbolic horn is ½.
The cutoff frequencies of the parabolic, conical, exponential, and hyperbolic horns are 1182 Hz,
792 Hz, 337 Hz, and 399 Hz respectively.
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a21 ¼ j

ffiffiffiffiffiffiffiffiffiffiffiffi
STSM

p
r0c

��
1

kxM
� 1

kxT

�
cos kl þ

�
1þ 1

k2xMxT

�
sin kl

�
(9.73)

a22 ¼
ffiffiffiffiffiffiffi
ST

SM

r �
cos kl þ 1

kxT
sin kl

�
(9.74)

where ST is the area of the throat, SM is the area of the mouth, and the length l of the

horn from the throat to the mouth is given by l ¼ xM � xT, so that xT ¼ l/(
ffiffiffiffiffiffiffiffiffiffiffiffi
SMST

p � 1).

The throat impedance of a finite conical horn is plotted in Fig. 9.10.

Finite exponential horn [13]
The matrix elements are given by

a11 ¼
ffiffiffiffiffiffiffi
SM

ST

r
ðcosðkl cos qÞ � tan q sinðkl cos qÞÞ (9.75)

a12 ¼ j
r0cffiffiffiffiffiffiffiffiffiffiffiffi
STSM

p sec q sinðkl cos qÞ (9.76)

a21 ¼ j

ffiffiffiffiffiffiffiffiffiffiffiffi
STSM

p
r0c

sec q sinðkl cos qÞ (9.77)

a22 ¼
ffiffiffiffiffiffiffi
ST

SM

r
ðcosðkl cos qÞ þ tan q sinðkl cos qÞÞ (9.78)

where ST is the area of the throat, SM ¼ STe
ml is the area of the mouth, l is the length of

the horn from the throat to the mouth, and q ¼ arcsin(m/2k). The throat impedance of a

finite exponential horn is plotted in Fig. 9.10.

Finite hyperbolic horn
The matrix elements are given by

a11 ¼
ffiffiffiffiffiffiffi
SM

ST

r
ðcosðkl cos qÞ � b tan q sinðkl cos qÞÞ (9.79)

a12 ¼ j
r0cffiffiffiffiffiffiffiffiffiffiffiffi
STSM

p sec q sinðkl cos qÞ (9.80)
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a21 ¼ j

ffiffiffiffiffiffiffiffiffiffiffiffi
STSM

p
r0c

	ðb� aÞsin q cosðkl cos qÞ þ 	1þ ðab� 1Þsin2 q
sec q sinðkl cos qÞ

(9.81)

a22 ¼
ffiffiffiffiffiffiffi
ST

SM

r
ðcosðkl cos qÞ þ a tan q sinðkl cos qÞÞ (9.82)

where ST is the area of the throat,

SM ¼ ST ðcoshðl=xT Þ þ a sinhðl=xT ÞÞ2

is the area of the mouth, l is the length of the horn from the throat to the mouth, and

q ¼ arcsin(1/kxT). The quantity b is given by

b ¼
ffiffiffiffiffiffiffi
ST

SM

r
ðsinhðl=xT Þ þ a coshðl=xT ÞÞ. (9.83)

The throat impedance of a finite hyperbolic horn is plotted in Fig. 9.10.

Truncation effects
Whenever the bell diameter is not large or when the horn length is short, it is not

possible to use the infinite approximation for the throat impedance. Instead we must use

the exact equation of Eq. (9.64). However, we see from Fig. 9.10 that, for a given size

horn, the parabolic and conical horns are closer to the infinite ideal of Fig. 9.9 than are

the exponential and hyperbolic types. To illustrate what the words “large bell diameter”

and “long length” mean, let us refer to Fig. 9.11 for a finite exponential horn of various

sizes.

If the circumference of the mouth of the horn divided by the wavelength is less than

about 0.5 (i.e., the diameter of the mouth divided by the wavelength is less than about

0.16), the horn will resonate like a cylindrical tube, i.e., at multiples of that frequency

where the length is equal to a half wavelength. This condition is shown clearly by the two

lower-frequency resonances in Fig. 9.11a.

When the circumference of the mouth of the horn divided by the wavelength is

greater than about 3 (i.e., diameter divided by wavelength greater than about 1.0), the

horn acts nearly like an infinite horn. This is shown clearly by comparison of c and d of

Fig. 9.11, for the region where f/fc is greater than about 2, which is the case where the

ratio of mouth diameter to wavelength exceeds 0.5.

In the frequency region where the circumference of the mouth to wavelength ratio

lies between about 1 and 3, the exact equation for a finite exponential horn (Eq. (3.49))

must be used, or the results may be estimated from a and b of Fig. 9.11.
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0.03λc

0.3λc

0.367λc

0.03λc

Resistance

0.03λc

0.03λc

0.1λc

0.2λc

0.302λc

0.192λc

Reactance

Resistance

Reactance

Resistance

Reactance

Resistance

Reactance

(a)

(c) (d)

(b)

∞

Figure 9.11 Graphs showing the variation in specific acoustic impedance at the throat of four
exponential horns as a function of frequency with bell diameter as the parameter. The cutoff frequency
fc ¼ mc/4p and the throat diameter ¼ 0.03 c/fc; both are held constant. Bell circumferences are (a)
C ¼ 0.314lc, (b) C ¼ 0.628lc, (c) C ¼ 0.942lc, and (d) C ¼ N. The mouth of the horn is assumed to be
terminated in an infinite baffle.
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When the length of the horn becomes less than one-quarter wavelength, it may be

treated as a simple discontinuity of area such as was discussed in Section 4.8 (pp. 131 to

133).

Obviously, if one chooses a certain mouth area and a throat area to obtain maximum

efficiency, the length of the horn is automatically set by the flare constant m, which is in

turn directly dependent on the desired cutoff frequency.

Nonlinear distortion
A sound wave produces an expansion and a compression of the air in which it is traveling.

We find from Eq. (2.6) that the relation between the pressure and the volume of a small

“box” of the air at 20�C through which a sound wave is passing is

P ¼ 0.726

V 1.4
(9.84)

where

V is specific volume of air in m3/kg ¼ 1/r0
P is absolute pressure in bars, where 1 bar ¼ 105 Pa

This equation is plotted as curve AB in Fig. 9.12.

Assuming that the displacement of the diaphragm of the drive unit is sinusoidal, it acts

to change the volume of air near it sinusoidally. For large changes in volume, the pressure

built up in the throat of the horn is no longer sinusoidal, as can be seen from Fig. 9.12.

The pressure wave so generated travels away from the throat toward the mouth.

If the horn were simply a long cylindrical pipe, the distortion would increase the

distance the wave progressed according to the formula (air assumed) [14,15]

p2

p1
¼ gþ 1

2
ffiffiffi
2

p
g
k
p1

P0
x ¼ 1.21k

p1

P0
x (9.85)

where

p1 is rms sound pressure of the fundamental frequency in Pa.

p2 is rms sound pressure of the second harmonic in Pa.

P0 is atmospheric pressure in Pa.

k ¼ u/c ¼ 2p/l is wave number in m�1.

g ¼ 1.4 for air.

x is distance the wave has traveled along the cylindrical tube in m.

Eq. (9.85) breaks down when the second-harmonic distortion becomes large, and a

more complicated expression, not given here, must be used.

In the case of an exponential horn, the amplitude of the fundamental decreases as the

wave travels away from the throat, so that the second-harmonic distortion does not

increase linearly with distance. Near the throat it increases about that given by Eq. (9.85),
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but near the mouth the pressure amplitude of the fundamental is usually so low that very

little additional distortion occurs.

The distortion introduced into a sound wave after it has traveled a distance x down an

exponential horn for the case of a constant power supplied to unit area of the throat is

found as follows:

1. Differentiate both sides of Eq. (9.85) with respect to x, so as to obtain the rate of

change in p2 with x for a constant p1. Call this Eq. (9.85a).

2. In Eq. (9.85a), substitute for p1 the pressure pTe
�mx/2, where pT is the rms pressure of

the fundamental at the throat of the horn in Pa and m is the flare constant.

3. Then let pT ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
ITr0c;

p
where IT is the intensity of the sound at the throat in W/m2

and r0c is the characteristic acoustic impedance of air in rayls.

4. Integrate both sides of the resulting equation with respect to x.

P = Absolute pressure in bars 
V = Specific volume 

    = 1/ρ0 in m3/kg 

 = 1.403

t

A

BV0

P0
t

γ

Figure 9.12 Plot of the gas equation PVg ¼ 1.26 � 104, valid at 20�C. Normal atmospheric pressure
(0.76 m Hg) is shown as P0 ¼ 1 bar.
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This yields:

percent second� harmonic distortion ¼ 50ðgþ 1Þ
gP0

ffiffiffiffiffiffiffiffiffiffiffi
ITr0c

2

r
f

fc

�
1� e�mx=2

�
: (9.86)

For an infinitely long exponential horn, at normal atmospheric pressure and tem-

perature, the equation for the total distortion introduced into a wave that starts off

sinusoidally at the throat is

Percent second� harmonic distortion ¼ 1.22
f

fc

ffiffiffiffiffi
IT

p � 10�2 (9.87)

where

f is driving frequency in Hz.

fc is cutoff frequency in Hz.

IT is intensity in W/m2 at the throat of the horn.

Eq. (9.87) is shown plotted in Fig. 9.13. Actually, this equation is nearly correct for finite

horns because most of the distortion occurs near the throat.

Eq. (9.87) reveals that, for minimum distortion, the cutoff frequency fc should be as

large as possible, which in turn means as large a flare constant as possible. In other words,

the horn should flare out rapidly to reduce the intensity rapidly as one travels along the

horn toward the mouth.

Unfortunately, a high cutoff frequency is not a feasible solution for horns that are

designed to operate over a wide frequency range. In this case, it is necessary to operate

the horn at low power at the higher frequencies if the distortion is to be low at these

Figure 9.13 Percentage second-harmonic distortion in an exponential horn as a function of the in-
tensity at the horn throat with the ratio of the frequency to the cutoff frequency as parameter.
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frequencies. This goal is achieved automatically to some extent in reproducing speech

and music because above 1000 Hz the intensity for these sounds decreases by about a

factor of 10 for each doubling of frequency.

9.14 BENDS IN HORNS

A horn loudspeaker for use at low frequencies is very large and long, because the

flare rate m must be small for a low cutoff frequency and the area of the mouth must be

large to radiate sound properly. As a consequence, it has become popular to “fold” the

horn so that it will fit conveniently into a cabinet of reasonable size.

Many types of folded horns have been devised that are more or less successful in

reproducing music and speech with satisfactory frequency response. To be successful, the

bends in folded horns must not be sharp when their lateral dimensions approach a half

wavelength, or they will change the spectrum of the radiated sound.

Useful data on the comparative performance of folded horns are not available. This is

partly because it is difficult to measure the response of large folded horns in an anechoic

chamber and partly because commercial companies guard their data. To get some idea of

the effect of an abrupt 180 degrees bend as shown in Fig. 9.14, we can use the 2-port

model for a cavity developed in Section 7.18, except that the circular pistons are

replaced by rectangular pistons of width lx in the x direction and l ¼ ly/2 in the y di-

rection. Also, x1 ¼ x2 ¼ lx/2, y1 ¼ 3l/2, and y2 ¼ l/2. The 2-port model is shown in

Fig. 9.15. The volume velocity entering the bend is eUin and the volume velocity leaving

the bend is eUout: We assume that the two ducts that are joined at the bend are both

infinitely long so that the acoustic source and termination impedances, zS and zT
respectively, of the network are given by

Figure 9.14 Geometry of 180 degrees bend.

496 Acoustics: Sound Fields, Transducers and Vibration



zS ¼ zT ¼ r0c

lxl
. (9.88)

The self-impedances of the network are

z11 ¼ z22 ¼ �j
r0c

lxl

0BB@cot klz

2
þ kl

XN
n¼ 0

cot

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2l2 �

�
nþ 1

2

�2

p2lz=l

s �
�
nþ 1

2

�2

p2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2l2 �

�
nþ 1

2

�2

p2

s
1CCA (9.89)

and the mutual impedances are

z12 ¼ z21 ¼ �j
r0c

lxl

0BB@cot klz

2
� kl

XN
n¼ 0

cot

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2l2 �

�
nþ 1

2

�2

p2lz=l

s �
�
nþ 1

2

�2

p2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2l2 �

�
nþ 1

2

�2

p2

s
1CCA. (9.90)

We define the transmission coefficient a by

a ¼ 20 log10
eUout

2eUin

¼ 20 log10
z12zS

z211 � z212 þ z11ðzS þ zT Þ þ zSzT
:

(9.91)

This is plotted in Fig. 9.16 as a function of kl.

We see that there are strong transverse modes when

kl ¼ ðnþ 1=2Þp; n ¼ 0; 1; 2;. (9.92)

or 2l ¼ (n þ ½)l. Such modes of vibration may be reduced by curving the bend or

simply by chamfering the corners. If possible, the wavelength should be long compared

with the width of the duct at the bend. Then the attenuation will be very small.

z11 − z12 outU
~

z22 − z21

z12 = z21 zTzSinU
~

2

Figure 9.15 Equivalent electrical circuit for a 180 degrees bend.
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We note that this model of the bend does not take into account normal modes

resulting from sound reflected back from the bend into the preceding duct because we do

not know its length, so we just assume it to be infinite. Supposing we let zS ¼N, we

then have a rigid piston with a volume velocity eUin where the sound enters the bend at

z ¼ lz. This would produce strong normal modes at

klz ¼ np; n ¼ 1; 2;. (9.93)

However, such reflections are also reduced by curving the bend or chamfering the

corners.

9.15 CROSS-SECTIONAL SHAPES

Earlier it was stated that the cross-sectional shape of a horn is not too important.

This is true provided the lateral dimensions of the horn are not comparable with a

wavelength. When the lateral dimensions are large enough, standing waves exist across

the duct, similar to the standing waves in a closed end tube. These waves are usually not

important in an exponential horn that is circular or square in cross section because,

generally, only that section of the horn near the mouth is greater than a half wavelength.

In a rectangular horn that is constructed with two sides parallel and the other two

sides varying according to the exponential or hyperbolic law, standing waves may exist

between the two parallel walls. These resonances occur at wavelengths that are sub-

multiples of the width of the duct, i.e., at frequencies equal to

Figure 9.16 Transmission of sound through a 180 degrees bend as a function of kl.
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f ¼ nc

2lx
(9.94)

or wavelengths equal to

l ¼ 2lx

n
(9.95)

where n is an integer, that is, 1, 2, 3, 4,..
For example, suppose that the width of the horn were 0.5 m. Then resonances

(standing waves) would occur at 345, 690, 1034, etc., Hz. At these frequencies, reduced

power output generally occurs. In general, the upper frequency limit for operation of a

horn should be chosen sufficiently low so that troubles from transverse standing waves are

avoided.

9.16 MATERIALS

The material from which a horn is constructed is very important. If the side walls

of the horn resonate mechanically at one or more frequencies in the range of operation,

“dips” in the power output curve will occur. Undamped thin metal is the least desirable

material because the horn from which it is made will resonate violently at fairly low

frequencies. Heavy metals, covered on the outside with thick mastic material so that

mechanical resonances are damped, are much better. A concrete or plaster horn 1 or 2

inch in thickness is best because of its weight and internal damping.

Plywood is commonly used in the construction of large horns. Although it is not as

satisfactory as concrete, it gives satisfactory results if its thickness exceeds 3/4 inch and if it

is braced with wooden pieces glued on at frequent, irregular intervals.

Example 9.3. Low-frequency horn design. A horn for radiating low frequencies

is required. It is desired that the frequency response be flat between 40 and 600 Hz and

that the horn be designed to be heard throughout a 500-seat auditorium with a volume

of 5000 m3. Therefore, from Fig. 10.17, we see that we need to radiate an acoustic power

of 3.6 W if we wish to reproduce the sound of a large orchestra. We shall select the

exponential horn as the best compromise shape of horn for our use. Because the lowest

frequency at which good radiation is desired is 40 Hz, we choose the mouth area from

Eq. (9.24).

Mouth area SM ¼ l2

4p
¼ c2

4pf 2
¼ 6:05m2:

This is probably too large for a mouth area in most applications, so that a compromise

in design is necessary.

Horn loudspeakers 499



Let us choose arbitrarily a mouth area of 2.4 m2. This corresponds to the bell opening

shown in Fig. 9.11b. We see from this chart that below f ¼ 3fc, there will be two reso-

nances that are not desirable, but they are fairly well damped.

Let us design for a cutoff frequency of

fc ¼ 40Hz:

The flare constant m equals (see Eq. 9.49)

m ¼ 4pfc

c
¼ 4p� 40

344.8
¼ 1:44m�1:

Let us choose a 12-inch direct-radiator unit with the following ThieleeSmall

parameters:

RE ¼ 6 U
QES ¼ 0.2

QMS ¼ 4.4

fS ¼ 20 Hz

SD ¼ 0.0486 m2

VAS ¼ 0.368 m3.

From Eq. (9.9), it appears that for maximum efficiency SD/ST should equal 12/3 .

However, to keep the length down, let us make

SD

ST
¼ 1:

Then,

GMT ¼ ST

r0cS
2
D

¼ 1

1.18� 348.8� 0.0486
¼ 0:05m$N=s:

Let us calculate the reference efficiency. From Eq. (9.8),

Eff ¼ 100� 0.05� 348.8

2� ð0.05� 348.8þ 2� 2p� 20� 0.2� 0.368Þ ¼ 23.9%:

As a trial, let us make SD/ST ¼ 2.0. ThenGMT ¼ 0.025, and Eff ¼ 25.3%. Finally, let

ST/SD ¼ 2. Then, GMT ¼ 0.1, and Eff ¼ 18.3%.

It is seen that the ratio of the throat and diaphragm areas may be made equal with little

loss of efficiency, thereby making our horn of reasonably short length. However, for

good high frequency response, it is desirable to have as small a throat area as possible. To

reconcile this, we shall employ a “rubber neck” [16], which is a short section of horn

with a higher flare rate than the rest of the horn (see Fig. 4.10). At low frequencies it

behaves as a simple discontinuity so that the throat area is that of the mouth of the neck,

but at high frequencies it is that of the throat of the neck. Hence we shall make the area of
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the mouth of the neck equal to SD , but the throat area of the neck will be equal to SD/2.

Let the neck have a cutoff frequency of 100 Hz. Then its flare constant is

mn ¼ 4pfn

c
¼ 4p� 100

344.8
¼ 3:65m�1:

The length of the neck xn is found from Eq. (9.39):

emnxn ¼ 2

or

mnxn ¼ lnð2Þ ¼ 0.693

xn ¼ 0.693

3.65
¼ 0:19m

The length of the rest of our horn is found from Eq. (9.39):

emx ¼ 2.4

0.0486
¼ 49.4

or

mx ¼ lnð49.4Þ ¼ 3.90

x ¼ 3.90

1.44
¼ 2:71m:

The intensity for a horn with a throat area of 0.5 � 0.0486 m2 radiating 3.6 W of

acoustic power is 0.015 W/cm2, assuming uniform pressure distribution. Let us set the

upper limit of operation at 600 Hz. Then f/fc ¼ 10. The line for 10 in Fig. 9.13 at

0.015 W/cm2 shows that the percent second-harmonic distortion in the horn will be

about 1.5%, which, bearing in mind that this is for peaks of short duration, will hardly be

audible.

This calculation would seem to indicate that the low-frequency unit could be

operated successfully above 600 Hz. However, it seems from experience that for psy-

chological reasons the crossover from the low-frequency to the high-frequency horn

should occur at a frequency below 600 Hz for best auditory results.

Let us see what back enclosure volume VB the drive-unit circuit ought to have if the

total compliance CM2 is to balance out the mass reactance of the horn at frequencies

below the diaphragm resonance frequency. The quantity CM2 includes the combined

compliance of the loudspeaker CMS and that of the enclosure behind it CMB. From Eqs.

(9.17, 9.18) and (9.45), we have the condition
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1

CM2
¼ S2D

S2TCMT

¼ S2Dr0c
2m

2ST

where

1

CM2
¼ 1

CMB
þ 1

CMS
¼ S2Dr0c

2

VB
þ S2Dr0c

2

VAS

so that after canceling all the SD
2 r0c

2 terms, we have

VB ¼
�

m

2ST
� 1

VAS

��1

¼
�

1:44

2� 0:0486
� 1

0:368

��1

¼ 0:0826 m3 or 82.6 L.

Two possible horns for our design are the straight square horn shown in Fig. 9.17 or

the folded horn of the Klipsch type [17] shown in Fig. 9.18, which has the dimensions

given in Table 9.1.

By placing the Klipsch horn in the corner of the room, the three adjoining walls form

the final part of the horn flare. Of course, this is not the only way to fold a horn [18]. If

the straight horn is used, it will probably be necessary to put it partially above the ceiling

or below the floor to make its presence nonobjectionable in the room.

Example 9.4. High-frequency horn design. In this example we shall design a

horn-loaded tweeter for use with the bass-reflex loudspeaker design of Example 7.3. The

tweeter will be the same type as that used for the closed-box design of Example 7.2 and

for which a crossover is designed in Example 7.4. However, because the bass-reflex

design uses two bass drive units, we shall design a horn for the tweeter to increase its

sensitivity. The horn, which is shown in Fig. 9.19, is mounted in a sphere so that we can

model the radiation from the mouth as a rectangular cap in a sphere, which will be

described in detail in Chapter 12. The horn has conical profile to give a smooth response

0.156 m

1.55 m 

2.71 m
0.19 m

0.22 m

1.55 m 

0.22 m 0.156 m 

0.22 m 

0.156 m 

End view

Figure 9.17 Plans for a simple straight exponential horn with a cutoff frequency of 40 Hz, a throat
area of 0.0243 m2, and a mouth area of 2.4 m2.
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Figure 9.18 Horizontal section for a Klipsch type of folded exponential horn. This particular horn is
about 1 m high and has smooth response below 600 Hz. There are two 12-inch drive units, one above
the other.

Table 9.1 Dimensions of horn in Example 9.3
Location Length (m) Area of horn (m2) Flare rate (Hz)

Point A 0 0.029 0

Point B 0.209 0.061 97

Point C 0.741 0.075 35

Point C 1.402 0.232 40

150 mm 

21 mm 

15º

38.25º

VF

19.4 mm 

19.4 mm 

5.44 mm 

13 mm 
38.8 mm 

75 mm 

21 mm 

10.88 mm 

Figure 9.19 Example of high-frequency horn design. For clarity, only the diaphragm of the drive unit
is shown. The front plate, coil, and magnet, etc. are omitted.
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with a gentle roll-off (see Fig. 9.10). This makes it easier to design a simple crossover than

in the case of exponential or hyperbolic types, which have more abrupt transitions. Also,

its cross section is rectangular to smooth out any deep nulls, which would otherwise

appear in its on-axis response if it were circular (see Fig. 12.21).

From the manufacturer’s data we have

RE ¼ 4.9 U
LE ¼ 50 mH
fC ¼ 750 Hz

MMS ¼ 0.32 g

SD ¼ 7 cm2

Because the tweeter is supplied with its own integral closed-box enclosure, the reso-

nance frequency fC is the closed-box resonance frequency. From this we shall deduce

the total mechanical compliance CMC, which combines the compliance of the sus-

pension with that of the air in the enclosure. Similarly, the total resistance RMC

combines the resistance of the suspension with that of the enclosure. From actual

measurements we deduce that

QEC ¼ 0.75;

QMC ¼ 1.64.

Also

CMC ¼ 1

ð2pfcÞ2MMS

¼ 103

ð2p� 750Þ2 � 0.32
¼ 0.141mm=N.

Hence from Eqs. (6.10e6.12) we obtain

QTC ¼ QECQMC

QEC þQMC
¼ 0.515;

RMC ¼ 1

QMC

ffiffiffiffiffiffiffiffiffiffi
MMS

CMC

r
¼ 1

1.64

ffiffiffiffiffiffiffiffiffiffiffi
0.32

0.141

r
¼ 0:92N$s=m;

Bl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RE

QEC

ffiffiffiffiffiffiffiffiffiffi
MMS

CMC

rs
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4.9

0.75

ffiffiffiffiffiffiffiffiffiffiffi
0.32

0.141

rs
¼ 3:14T$m.
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Let us now create a semianalytical simulation model of the design of Fig. 9.19 using

2-port networks and transmission matrices, as introduced in Section 3.10 and Fig. 4.43.

The schematic is shown in Fig. 9.20. Although the drive unit part is based on the circuit

of Fig. 9.3, a gyrator has been inserted between the electrical elements and the me-

chanical ones so that the whole circuit is written using the impedance analogy. Also, we

have added the horn and horn mouth impedance to the circuit. We are ignoring the

generator impedance Rg because in the experimental setup this is negligible compared

with RE. The dashed boxes are lumped-element 2-port networks and the solid boxes are

analytical ones. From the schematic we create the transmission matrices required to

represent each 2-port network as follows:

1. Coil. 24eegeig
35 ¼

"
1 ZE

0 1

#
$

"ee1ei1
#

¼ C$

"ee1ei1
#

where ZE ¼ RE þ juLE.

LERE

CA1

Horn mouth 
radiation 

ge~

CMCMMD RMC

Coil

1

gi
~

1
~e

E-M

1
~i

2

2
~u

2
~f

Diaphragm and box 

3 4 

M-A

SD:1Bl

3
~f 4

~p

3
~u

CUU ~~
4 =

X

Y

Horn Front cavity 

X

Y
765

7
~p6

~p5
~p4

~p

TUU ~~
5 = MUU ~~

6 = 0~
7 =UCUU ~~

4 =

ZAM

Figure 9.20 Semianalytical model of example high-frequency horn design shown in Fig. 9.19 using
transmission matrices. The dashed boxes are lumped-element 2-port networks and the solid boxes are
analytical ones.
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2. Electro-Mechanical Transduction."ee1ei1
#

¼
"

0 Bl

ðBlÞ�1
0

#
$

24ef 2eu2
35 ¼ E$

24ef 2eu2
35.

3. Diaphragm. 24ef 2eu2
35 ¼

"
1 ZM

0 1

#
$

24ef 3eu3
35 ¼ D$

24ef 3eu3
35

where ZM ¼ juMMD þ RMC þ 1/( juCMC). We must exclude the radiation mass from

the diaphragm so that

MMD ¼ MMS � 16r0a
3
�
3; where a ¼

ffiffiffiffiffiffiffiffiffiffiffi
SD=p

p
.

4. Mechano-acoustical transduction.24ef 3eu3
35 ¼

"
SD 0

0 S�1
D

#
$

" ep4eU4

#
¼ M$

" ep4eU4

#
.

5. Front cavity. " ep4eU4

#
¼
"

1 0

juCA1 1

#
$

" ep5eU5

#
¼ F$

" ep5eU5

#

where the acoustic compliance of the front cavity, which has a total volume of 1.4 cm3, is

given by

CA1 ¼ VF

r0c
2
¼ 1.4� 10�6

1.18� 344.82
¼ 4.99� 10�12 m5

�
N.

6. Horn. " ep5eU5

#
¼
"
b11 b12

b21 b22

#
$

" ep6eU6

#
¼ H$

" ep6eU6

#
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where

b11 ¼
ffiffiffiffiffiffiffi
SM

ST

r �
cos kl � 1

krM
sin kl

�
;

b12 ¼ j
r0cffiffiffiffiffiffiffiffiffiffiffiffi
STSM

p sin kl;

b21 ¼ j

ffiffiffiffiffiffiffiffiffiffiffiffi
STSM

p
r0c

��
1

krM
� 1

krT

�
cos kl þ

�
1þ 1

k2rM rT

�
sin kl

�
;

b22 ¼
ffiffiffiffiffiffiffi
ST

SM

r �
cos kl þ 1

krT
sin kl

�
;

and l ¼ rM � rT. We see from Fig. 9.19 that rT ¼ 22 mm and rM ¼ 75 mm. The horn is

defined by the angles a ¼ 15 degrees in the vertical direction and b ¼ 30 degrees in the

horizontal direction. Hence from Eq. (12.69) we can calculate the throat area ST and

mouth area SM as follows:

ST ¼ 4R2
T

8><>:arctan

0B@ tan
p

12
tan

p

6

sec2
p

12
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sec2

p

12
þ tan2

p

6

r
1CAþ arctan

0B@ tan
p

12
tan

p

6

sec2
p

6
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sec2

p

6
þ tan2

p

12

r
1CA
9>=>;

¼ 4� 0:0222 � 0:13 ¼ 2:52 cm2

SM ¼ 4� 0:0752 � 0:13 ¼ 29:3 cm2:

7. Horn Mouth Radiation." ep6eU6

#
¼
"

1 0

Z�1
AM 1

#
$

" ep7eU7

#
¼ R$

" ep7eU7

#
.

The horn mouth radiation impedance ZAM is reasonably well approximated by that of a

rectangular cap in a sphere using Eqs. (12.122) and (12.123, where

ZAM ¼ ðRs þ jXsÞ=S.

First we evaluate ep7 at the end of the chain24eegeig
35 ¼ A$

"ep7
0

#
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where

A ¼ C$E$D$M$F$H$R ¼
"
a11 a12

a21 a22

#
.

Hence ep7 ¼ eeg�a11: Then we work backwards to obtain the volume velocities we wish

to evaluate. In particular, we are interested in the far-field pressure, which according to

Eq. (12.117) is a function of eUM ¼ eU6. This procedure is fairly straightforward and

does not involve any matrix inversion. From the mouth radiation matrix (7), we obtaineUM ¼ eU6 ¼ ep7�ZAM .

To plot the normalized far-field on-axis pressure, we simply divide eUM by a reference

volume velocity

eUref ¼ eegBlSD
uMMDRE

and multiply it by the on-axis response D(0,f) of the spherical cap from Eq. (12.120).

A plot of

20 log10
��Dð0;fÞeUM

�eUref

��
is shown in Fig. 9.21. The maximum gain we may expect to see from the horn is

20 log10(SM/ST) ¼ 21.3 dB. However, the actual gain is usually less than this and we see

Figure 9.21 Graphs of the on-axis sound pressure level produced by the high-frequency horn design
shown in Fig. 9.19. The dashed curves are calculated from 20 log10

��Dð0;fÞeUM
�eUref

��. Solid curves are
measured. During testing it was found that placing a small sphere of about 1 cm in diameter in front
of the diaphragm improved the correlation between the measured and calculated responses at high
frequencies.
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that in this example the combined gain of the horn and baffle effect of the sphere is

14e20 dB between 1.5 and 11 kHz. Finally, we can obtain the input impedance fromeeg�eig where eig ¼ a21ep7 and from above ep7 ¼eeg/a11. Therefore the input impedance is

simply ZE ¼ a11/a21, as plotted in Fig. 9.22.
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CHAPTER TEN

Sound in enclosures

PART XXX: SOUND FIELDS IN SMALL REGULARLY SHAPED
ENCLOSURES

10.1 INTRODUCTION

The study of sound in enclosures involves not only a search into how sounds are reflected

backward and forward in an enclosure but also investigations into how to measure sound

under such conditions and the effect various materials have in absorbing and controlling

this sound. Also of great importance in applying one’s engineering knowledge of the

behavior of sound in such enclosed spaces is an understanding of the personal preferences

of listeners, whether listening in the room where the music is produced or listening at a

remote point to a microphone pickup. Psychological criteria for acoustic design have

occupied the attention of many investigators and should always be borne in mind. This

chapter is confined to physical acoustics.

Two extremes to the study of sound in enclosures can be analyzed and understood

easily. At one extreme, we have small enclosures of simple shape, such as rectangular

boxes, cylindrical tubes, or spherical shells. In these cases, the interior sound field is

describable in precise mathematical terms, although the analysis becomes complicated if

the walls of the enclosures are covered in whole or in part with acoustical absorbing

materials.

At the other extreme, we have very large irregularly shaped enclosures where no

precise description can be made of the sound field but where a statistically reliable

statement can be made of the average conditions in the room. This is analogous to a study

that a physician might make of a particular man to determine the number of years he will

live, as opposed to a study of the entire population on a statistical basis to determine how

long a man, on the average, will live. As might be expected, the statistical study leads to

simpler formulas than the detailed study of a particular case.

10.2 STATIONARY AND STANDING WAVES

One type of small regularly shaped enclosure, the rigidly closed tube, has been

discussed already in Part IV. This case provides an excellent example of the acoustical

situation that exists in large enclosures.
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First, we noted that along the x axis of the tube, the sound field could be described as

the combination of an outward-traveling wave and a backward-traveling wave.

Actually, the outward-traveling wave is the sum of the original free-field wave that

started out from the source plus the outward-going waves that are making their second,

third, fourth, and so on round trips. Similarly, the backward-traveling wave is a com-

bination of the first reflected wave and of waves that are making the return leg of their

second, third, fourth, and so on round trips. These outward- and backward-traveling

waves add in magnitude to produce what is called a stationary wave if the intensity

along the tube is zero. If there is some, but not complete, absorption at the terminating

end of the tube so that power flows along the tube away from the source (intensity not

equal to zero), it is called a standing wave. In the case of complete absorption, we have a

traveling or progressive wave.

10.3 NORMAL MODES AND NORMAL FREQUENCIES

We saw from Eq. (2.70) that whenever the driving frequency is such that sin kl/ 0,

the pressure in the tube reaches a very large value. That is to say, the pressure is very large

whenever

kl ¼ np (10.1)

Then, because

k ¼ 2pf

c
¼ 2p

l
; (10.2)

we have

fn ¼ nc

2l
(10.3)

or

l

ln
¼ n

2
(10.4)

where

n ¼ 1; 2; 3; 4;.N

fn is nth resonance (normal) frequency of the tube.

ln c/fn is nth resonance (normal) wavelength of the tube.

Eq. (10.3) tells us that the pressure is very large whenever the length of the tube equals

some integral multiple of a half wavelength (l/2).
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The condition where the frequency equals nc/2l so that a very large sound pressure

builds up in the tube is called a resonance condition or a normal mode of vibration of the air

space in the tube. The frequency fn of a normal mode of vibration is called a normal fre-

quency. There are an infinite number of normal modes of vibration for a tube because n can

take on all integral values between 0 and N. We may look on the tube, or in fact on any

enclosure, as a large number of acoustic resonators, each with its own normal frequency.

In the closed-tube discussion of Part IV, we made no mention of the effect on the

results of the cross-sectional shape or size of the tube. It was assumed that the transverse

dimensions were less than about 0.1 wavelength so that no transverse resonances would

occur in the frequency region of interest.

If the transverse dimensions are greater than one-half wavelength, we have a small

room which, if rectangular, can be described by the dimensions shown in Fig. 10.1.

Waves can travel in the room backward and forward between any two opposing walls.

They can travel also around the room involving the walls at various angles of incidence. If

these angles are chosen properly, the waves will return on themselves and set up

stationary or standing waves. Each standing wave is a normal mode of vibration for the

enclosure.

In Sec. 7.18, we solve such a rectangular enclosure mathematically and describe

exactly the distribution of sound as determined by the strength of a piston source in one

of the walls. In this section, however, we shall describe the simplest cases to gain insight

into the problem.

The number of modes of vibration in a rectangular enclosure is much greater than

that for the rigidly closed tube whose diameter is small compared with a wavelength. In

fact, the normal frequencies of such an enclosure are given by the equation

fn ¼ un

2p
¼ c

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
nx

lx

�2

þ
�
ny

ly

�2

þ
�
nz

lz

�2
s

(10.5)

where

fn is the nth normal frequency in Hz.

nx, ny, and nz are integers that can be chosen separately. They may take on all integral

values between 0 and N.

y

x

z

0

ly

lx

lz

Figure 10.1 Dimensions and coordinate system for a rectangular enclosure.
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lx, ly, and lz are dimensions of the room in m.

c is speed of sound in m/s.

As an example, let us assume that the z dimension, lz, is less than 0.1 of all wavelengths

being considered. This corresponds to nz being zero at all times. Hence,

fnx;ny;0 ¼ c

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
nx

lx

�2

þ
�
ny

ly

�2
s

(10.6)

Let lx ¼ 4 m and ly ¼ 3 m. Find the normal frequencies of the nx ¼ 1, ny ¼ 1, and the

nx ¼ 3, ny ¼ 2 normal modes of vibration. We have

f1;1;0 ¼ 344.8

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1

16
þ 1

9

r
¼ 71.8Hz

and

f3;2;0 ¼ 344.8

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
9

16
þ 4

3

r
¼ 237Hz

The sound-pressure distribution in a rectangular box for each normal mode of

vibration with a normal frequency un is proportional to the product of three cosines:

pnx;ny;nz a cos
pnxx

lx
cos

pnyy

ly
cos

pnzz

lz
e junt (10.7)

where the origin of coordinates is at the corner of the box. It is assumed in writing Eq.

(10.7) that the walls have very low absorption. If the absorption is high, the sound

pressure cannot be represented by a simple product of cosines.

If we inspect Eq. (10.7) in detail, we see that nx, ny, and nz indicate the number of

planes of zero pressure occurring along the x, y, and z coordinates, respectively. Such a

distribution of sound pressure levels (SPLs) can be represented by forward- and

backward-traveling waves in the room. This situation is analogous to that for the closed

tube (one-dimensional case). Examples of pressure distributions for three modes of

vibration in a rectangular room are shown in Fig. 10.2. The lines indicate planes of

constant pressure extending from floor to ceiling along the z dimension. Note that nx
and ny indicate the number of planes of zero pressure occurring along the x and y

coordinates, respectively.

The angles qx, qy, and qz at which the forward- and backward-traveling waves are

incident on and reflect from the walls are given by the relations

qx ¼ arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðny=lyÞ2 þ ðnz=lzÞ2

q
nx=lx

¼ arccos
nxc

2lxfn
(10.8)
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qy ¼ arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnx=lxÞ2 þ ðnz=lzÞ2

q
ny=ly

¼ arccos
nyc

2lyfn
(10.9)

qz ¼ similarly (10.10)

Figure 10.2 Sound-pressure contour plots on a section through a rectangular room. The numbers on
the plots indicate the relative sound pressure.
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For the examples where nx ¼ 1, ny ¼ 1 and nx ¼ 3, ny ¼ 2, the traveling waves reflect

from the x ¼ 0 and x ¼ lx walls at

ðqxÞ1;1;0 ¼ arctan
lx

ly
¼ arctan

4

3
¼ 53.1�

ðqxÞ3;2;0 ¼ arctan
2lx

3ly
¼ arctan

8

9
¼ 41.6�

The angles of reflection at the y ¼ 0 and y ¼ ly walls are

ðqyÞ1;1;0 ¼ arctan
ly

lx
¼ arctan

3

4
¼ 36.9�

ðqyÞ3;2;0 ¼ arctan
3ly

2lx
¼ arctan

9

8
¼ 48.4�

The wave fronts travel as shown in (a) and (b) of Fig. 10.3. It is seen that there are two

forward-traveling waves (1 and 3) and two backward-traveling waves (2 and 4). In

the three-dimensional case, there will be four forward- and four backward-traveling

waves.

When the acoustical absorbing materials are placed on some or all surfaces in an

enclosure, energy will be absorbed from the sound field at these surfaces and the

Figure 10.2 (continued).
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sound-pressure distribution will be changed from that for the hard wall case. For

example, if an absorbing material were put on one of the lxlz walls, the sound pressure at

that wall would be lower than at the other lxlzwall and the traveling wave would undergo

a phase shift as it is reflected from the absorbing surface.

All normal modes of vibration cannot be excited to their fullest extent by a sound

source placed at other than a maximum pressure point in the room. In Fig. 10.2, for

example, the source of sound can excite only a normal mode to its fullest extent if it is at a

1.0 contour. Obviously, because the peak value of sound pressure occurs on a 1.0

contour, the microphone also must be located on a 1.0 contour to measure the

maximum pressure.

If the source is at a corner of a rectangular room, it will be possible for it to excite

every mode of vibration to its fullest extent, provided it radiates sound energy at every

normal frequency. Similarly, if a microphone is at the corner of the room, it will measure

the peak sound pressure for every normal mode of vibration, provided the mode is

excited.

If either the source or the microphone is at the center of a rectangular room, only

one-eighth of the normal modes of vibration will be excited or detected because at the

center of the room, seven-eighths of the modes have contours of zero pressure. In

Fig. 10.2, as an illustration, two out of the three normal modes portrayed have contours

of zero pressure at the center of the room. In fact, only those modes of vibration having

even numbers simultaneously for nx, ny, and nz will not have zero sound pressure at the

center.

(a) (b)

Figure 10.3 Wave fronts and direction of travel for (a) nx ¼ 1, ny ¼ 1 normal mode of vibration; and
(b) nx ¼ 3 and ny ¼ 2 normal mode of vibration. These represent two-dimensional cases where nz ¼ 0.
The numbers 1 and 3 indicate forward-traveling waves, and the numbers 2 and 4 indicate backward-
traveling waves.
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Examples of the transmission of sound from a point source to an observation

point in a model sound chamber are shown in Figs. 10.4 and 10.5. The curves

were obtained using the following equation for the pressure at the observation point

(x, y, z):

epðx; y; zÞ ¼ �4 r0c eU0

lxly

XN
m¼ 0

XN
n¼ 0

k cos ðmpx0=lxÞ cos ðnpy0=lyÞ cos ðmpx=lxÞ cos ðnpy=lyÞ
kmnð1þ dm0Þð1þ d0nÞ

�
kmnZs

kr0c
cos kmnzþ j sin kmnz

cos kmnlz þ j
kmnZs

kr0c
sin kmnlz

(10.11)

where

kmn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 �

�
mp

lx

�2

�
�
np

ly

�2
s

(10.12)

and k ¼ u/c ¼ 2p/l, which is derived in the same way as we derive the 2-port network

for a bass reflex enclosure in Part XXIV, except that the rectangular pistons are replaced

by a point source of volume velocity eU0 at a point (x0, y0, lz) described by the Dirac delta

function

dðx� x0Þdðy� y0Þ.
The absorbing material at z ¼ 0 has a specific impedance Zs, which is related to the

flow resistance Rf of the material by

Zs ¼ Rf d

3
þ P0

j ud
(10.13)

where d is the thickness for the material, which is subtracted from lz. The eightfold

increase in the number of modes of vibration that were excited with the source at the

corner over that with the source at the center is apparent. It is apparent also that the

addition of sound-absorbing material decreases the height of resonance peaks and

smoothes the transmission curve, particularly at the higher frequencies, where the

sound-absorbing material is most effective.
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Figure 10.4 Comparison of two transmission curves calculated with and without an absorbing
sample on a 762 by 607 mm wall of a model chamber with dimensions 762 by 607 by 406 mm. (a)
Bare chamber, (b) one wall absorbent, where Rf d/3 z r0c. The source was in one corner (lx, ly, lz), and
the observation point was diagonally opposite (0, 0, 0). The plots are of 20 log10(lxlyep(x,y,z)/(r0ceU0)),
where ep(x,y,z) is calculated from Eq. (10.11). This result has also been verified experimentally [1].
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10.4 STEADY-STATE AND TRANSIENT SOUND PRESSURES

Sound pressure at normal modes
When a source of sound is turned on in a small enclosure, such as that of Fig. 10.1, it will

excite one or more of the stationary-wave possibilities, i.e., normal modes of vibration in

Figure 10.5 Same as Fig. 10.4, except that the point of observation is in the center of the room (lx/2, ly/
2, lz/2). (a) Bare chamber, (b) one wall absorbent.
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the room. Let us assume that the source is constant in strength and is of a single frequency

and that its frequency coincides with one of the normal frequencies of the enclosure. The

sound pressure for that normal mode of vibration will build up until the magnitude of its

rms value (averaged in time and also in space by moving the microphone backward and

forward over a wavelength) equals [1]

jpnj ¼ K

kn
(10.14)

where

K is a source constant determined principally by the strength and location of the

source and by the volume of the room.

kn is damping constant determined principally by the amount of absorption in the

room and by the volume of the room. The more absorbing material that is introduced

into the room, the greater kn becomes, and the smaller the value of the average

pressure. The value of kn is inversely proportional to the value of Qn.

Blocked-tube impedance and equivalent circuit
To illustrate what happens when the driving frequency does not necessarily coincide

with the normal frequency, we shall simplify the problem by considering only those

modes of vibration which occur in one direction only. Hence, we may model the room

as a one-dimensional tube. Furthermore, although absorption mainly occurs at boundary

surfaces, we may simplify the problem even further by assuming that it occurs

everywhere. Also, we assume the acoustic resistance to have the same value at all fre-

quencies, although this is unlikely in practice. However, if the variation of resistance with

frequency is known, the resistance value at each normal frequency may be used to

improve accuracy.

According to Eq. (2.72), the specific impedance ZTof a blocked tube is given by

ZT ¼ �jZs cot kl (10.15)

which is expanded using Eq. (A2.43) from Appendix II:

ZT ¼ �jZs

XN
n¼ 0

ð2� d0nÞkl
ðklÞ2 � n2p2

(10.16)

where from Eqs. (2.115), (2.119), and (2.120), the complex wave number k and char-

acteristic impedance Zs are given by

k ¼ u

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

P0

�
r0 þ

Rf

ju

�s
(10.17)
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Zs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P0

�
r0 þ

Rf

ju

�s
(10.18)

where P0 is the static pressure, r0 is the density of air, and Rf is the flow resistance per unit

length of the filling material. Hence, the impedance of the tube may be written as

ZT ¼ 1

C0s
þ
XN
n¼ 1

Zn (10.19)

where each impedance term is represented by a parallel resonance circuit in which

Zn ¼ 1

Cn
$

sþ Rn

Ln

s2 þ Rn

Ln
sþ 1

LnCn

(10.20)

where s ¼ u, and the specific compliance Cn, mass Ln, and resistance Rn element values

are given by

C0 ¼ l

P0
; Cn ¼ l

2P0
; Ln ¼ 2r0l

n2p2
; Rn ¼ 2Rf l

n2p2
(10.21)

or

Zn ¼ 1

Cn
$

sþ un

Qn

s2 þ un

Qn
sþ u2

n

(10.22)

where the angular normal frequency un and Qn values are given by

un ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
LnCn

p ¼ npc

1
� ffiffiffi

g
p ; Qn ¼ un

r0

Rf
¼ npr0cffiffiffi

g
p

Rf l
(10.23)

The equivalent circuit for a blocked tube using this impedance expansion is shown in

Fig. 10.6a.

Alternatively, we may use the expansion of Eq. (A2.42) from Appendix II for the

admittance:

ZT ¼ �j
Zs

tan kl
¼
 XN

n¼ 0

Yn

!�1

(10.24)

522 Acoustics: Sound Fields, Transducers and Vibration



where

Yn ¼
1

Ln
s

s2 þ Rn

Ln
sþ 1

LnCn

(10.25)

and

Cn ¼ 2l�
nþ 1

2

�2

p2P0

; Ln ¼ r0l

2
; Rn ¼ Rf l

2
(10.26)

so that

un ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
LnCn

p ¼

�
nþ 1

2

�
pc

l
ffiffiffi
g

p ; Qn ¼ un
r0

Rf
¼

�
nþ 1

2

�
pr0cffiffiffi

g
p

Rf l
(10.27)

(a)

L1

(b)

R1

C1

L2

R2

C2

C0 L0

R0

C0

L1

R1

C1

L2

R2

C2

Figure 10.6 Equivalent circuits for the impedance ZT of a blocked tube using an impedance
expansion (a) and an admittance expansion (b).
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The equivalent circuit for a blocked tube using this admittance expansion is shown in

Fig. 10.6b. In general, we use the impedance expansion to calculate the time response of

the pressure as a function of an input velocity and the admittance expansion to calculate

the time response of the velocity as a function of an input pressure.

Open-tube impedance and equivalent circuit
Although we shall only consider the decay of sound in a blocked tube, the equivalent

circuit of an open tube is derived here just for completeness as it is frequently

encountered in the field of acoustics.

According to Eq. (2.60) with ZT ¼ 0, the specific impedance ZT of an open tube

is given by

ZT ¼ jZs tan kl (10.28)

which is expanded using Eq. (A2.42) from Appendix II:

ZT ¼
XN
n¼ 0

Zn (10.29)

where

Zn ¼ 1

Cn
$

sþ Rn

Ln

s2 þ Rn

Ln
sþ 1

LnCn

(10.30)

and

Cn ¼ l

2P0
; Ln ¼ 2r0l�

nþ 1

2

�2

p2

; Rn ¼ 2Rf l�
nþ 1

2

�2

p2

(10.31)

or

Zn ¼ 1

Cn
$

sþ un

Qn

s2 þ un

Qn
sþ u2

n

(10.32)

where

un ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
LnCn

p ¼

�
nþ 1

2

�
pc

1
� ffiffiffi

g
p ; Qn ¼ un

r0

Rf
¼

�
nþ 1

2

�
pr0cffiffiffi

g
p

Rf l
(10.33)
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The equivalent circuit for an open tube using this impedance expansion is shown in

Fig. 10.7a.

Alternatively, we may use the expansion of Eq. (A2.43) from Appendix II for the

admittance:

ZT ¼ j
Zs

cot kl
¼

 
1

L0

sþ R0

L0

þ
XN
n¼ 1

Yn

!�1

(10.34)

where

Yn ¼
1

Ln
s

s2 þ Rn

Ln
sþ 1

LnCn

(10.35)

(a)

L1

(b)

R1

C1

L2

R2

C2

L0

R0

L1

R1

C1

L2

R2

C2

L0

R0

C0

Figure 10.7 Equivalent circuits for the impedance ZT of an open tube using an impedance expansion
(a) and an admittance expansion (b).
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and

Cn ¼ 2l

n2p2P0
; L0 ¼ r0l; Ln ¼ r0l

2
; R0 ¼ Rf l; Rn ¼ Rf l

2
(10.36)

so that

un ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
LnCn

p ¼ npc

l
ffiffiffi
g

p ; Qn ¼ un
r0

Rf
¼ npr0cffiffiffi

g
p

Rf l
(10.37)

The equivalent circuit for an open tube using this admittance expansion is shown in

Fig. 10.7b.

Resonance curve
When the driving frequency does not coincide with the normal frequency, the pressure

for that particular mode of vibration builds up according to a standard resonance curve as

shown in Fig. 10.8. The maximum value of the resonance curve is given by

Znju¼un
¼ ðQn þ jÞQnRn

zQ2
nRn;Qn � 3

(10.38)

The width of the resonance curve at the half-power (3 dB down) points is equal to

Ref. [2].

f 00 � f z
fn

Qn
(10.39)

When driven by an excitation velocity u0, the magnitude of the sound pressure pn for

a single mode as a function of frequency is given by

Figure 10.8 Resonance curve for a normal mode of vibration with Qn ¼ 3. Sound pressure level versus
the ratio of frequency to fn.
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jpnj ¼ u0jZnj ¼ u0

Cn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2

nu
2 þ u2

n

Q2
n

�
u2
n � u2

�2 þ u2
nu

2

s
(10.40)

where u is the angular driving frequency and un is the angular normal frequency given

approximately by Eq. (10.5).

Obviously, if the driving frequency lies between two normal frequencies or if kn is

large so that the resonance curve is broad, more than one normal mode of vibration will

be excited significantly, each to the extent shown by Eq. (10.40). Because the phase

above a normal frequency is opposite to that below it, there will be a cancellation at some

frequency between a pair of adjacent normal frequencies, leading to a minimum

impedance value. These minimum impedance frequencies correspond to the resonance

frequencies un in the admittance expansion.

Transient response
When the source of sound is turned off, each normal mode of vibration behaves like an

electrical parallel resonance circuit in which energy has been stored initially. The pressure

for each normal mode of vibration will decay exponentially at its own normal frequency

as shown in Fig. 10.9. To simulate the decay of sound, let us apply an impulse to our tube

model, rather like a hand clap in a room. We simply take the expression for the

impedance of each mode given by Eq. (10.22) and apply the inverse Laplace transform

given by Table 6.2 in Sec. 6.17 to obtain

pnðtÞ ¼ u0ZnðtÞ ¼ u0

Cn
e�un t cos qn

sin ðqn þ unt sin qnÞ
sin qn

(10.41)

where cos qn ¼ 1/(2Qn). If only one mode of vibration is excited, the decay is as shown

in Fig. 10.9a. Stated differently, on a log pn scale versus time, the magnitude of the rms

SPL decays linearly with time.

If two or more modes of vibration are decaying simultaneously, beats will occur

because each has its own normal frequency (Fig. 10.9b). However, as we superimpose an

ever greater number of modes, the waveform becomes a series of impulses (Fig. 10.9c), as

we would expect, due to the original impulse being reflected at each end of the tube and

thus making multiple round journeys along it. In a real room, as opposed to a simple

one-dimensional tube, early reflections would behave in a similar manner, being distinct

and thus specular in nature. However, later reflections resulting from random reflections

of multiple surfaces tend to cluster together and are termed diffuse.

In this illustration, each mode has the same decay constant (un/2Qn ¼ Rf/2r0)

because the specific flow resistance per unit length Rf has been assumed to be

independent of frequency. However, it is very possible that each will have its own decay

constant, dependent on the position of the absorbing materials in the room.
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In actual measurements of sound in rooms, it is quite common to use fast Fourier

transforms (FFTs) to create waterfall plots of the sound pressure decay against both time

T and frequency f, which in this case is obtained as follows:

pnð f ;TÞ ¼
ZTþdt

T�dt

�
0:54� 0:46 cos

�
t � T þ dt

dt
p

��
pnðtÞe j2pftdt (10.42)
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Figure 10.9 (a) Sound-pressure decay curve for the first mode of vibration. (b) Sound-pressure decay
curve for the first two modes of vibration. (c) Sound-pressure decay curve for the first 10 modes of
vibration in a blocked tube, where l ¼ 3.5 m and Rf ¼ 10 rayls/m.
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where the integration is performed over a sliding interval or “window” of width 2dt

centered on the time of interest T. The term in parenthesis is the Hamming window

function, which minimizes any unwanted frequency components that may otherwise

appear in the spectrum because of the finite integral limits. In this way, we can plot the

variation of the frequency spectrum with time and thus see how the individual normal

modes of vibration decay relative to each other, as shown in Fig. 10.10.

Figure 10.10 Waterfall plot of sound-pressure decay in a tube in which l ¼ 3.5 m, Rf ¼ 10 rayls/m,
dt ¼ 0.5 s, and the first five modes are summed in the calculation. The 0th mode is ignored because it
simply gives a constant change in pressure.
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In summary, we see that when a sound source of a given frequency is placed in an

enclosure, it will excite one or more of the infinity of resonance conditions called normal

modes of vibration. Each of those normal modes of vibration has a different distribution

of sound pressures in the enclosure, its own normal frequency, and its own damping

constant. The damping constant determines the maximum height and the width of the

steady-state sound-pressure resonance curve.

In addition, when the source of sound is turned off, the sound pressure associated

with each mode of vibration decays exponentially with its own normal frequency and at

a rate determined by its damping constant. The room is thus an assemblage of resonators

that act independently of each other when the sound source is turned off. The larger the

room and the higher the frequency, the nearer together will be the normal frequencies

and the larger will be the number of modes of vibration excited by a single-frequency

source or by a source with a narrow band of frequencies.

10.5 EXAMPLES OF RECTANGULAR ENCLOSURES

Example 10.1. Determine the normal frequencies and directional cosines for the

lowest six normal modes of vibration in a room with dimensions 5 � 4 � 3 m.

Solution. From Eq. (10.5), we see that

f1;0;0 ¼ 348.8

2
� 1

5
¼ 34.9 Hz

f0;1;0 ¼ 348.8

2
� 1

4
¼ 40.4 Hz

f1;1;0 ¼ 348.8

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

25
þ 1

16

r
¼ 55.8 Hz

f2;0;0 ¼ 348.8

2
� 2

5
¼ 69.8 Hz

f2;1;0 ¼ 348.8

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4

25
þ 1

16

r
¼ 82.3 Hz

f0;0;1 ¼ 348.8

2
� 1

3
¼ 58.1 Hz
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From Eqs. (10.8e10.10) we find the direction cosines for the various modes as

follows:

ð1; 0; 0Þ mode: qx ¼ 0; qy ¼ 90�; qz ¼ 90�

ð0; 1; 0Þ mode: qx ¼ 90�; qy ¼ 0�; qz ¼ 90�

ð1; 1; 0Þ mode: qx ¼ arc cos
348.8

2� 5� 55.8
¼ 51.3�

qy ¼ arc cos
348.8

2� 4� 55.8
¼ 38.6�

qz ¼ 90�

ð2; 0; 0Þ mode: qx ¼ 0; qy ¼ 90�; qz ¼ 90�

ð2; 1; 0Þ mode: qx ¼ arc cos
2� 348.8

2� 5� 82.3
¼ 32.1�

qy ¼ arc cos
348.8

2� 4� 82.3
¼ 58.0�

qz ¼ 90�

ð0; 0; 1Þ mode: qx ¼ 90�; qy ¼ 90�; qz ¼ 0�

Example 10.2. A rectangular room with dimensions lx ¼ 3 m, ly ¼ 4 m, and

lz ¼ 5 m is excited by a sound source located in one corner of the room. The SPL

developed is measured at another corner of the room. The sound source produces a

continuous band of frequencies between 450 and 550 Hz, with a uniform spectrum

level, and a total acoustic power output of 1 W. When the sound source is turned off, a

linear decay curve (log p vs. t) is obtained, which has a slope of 30 dB/s. (a) Determine

graphically the number of normal modes of vibration excited by the source; (b) deter-

mine the approximate angle of incidence of the traveling-wave field involving the walls at

x ¼ 0 and x ¼ lx in each of the principal groupings of normal frequencies shown in the

graphical construction.

Solution. (a) A graphical solution to Eq. (10.5) is given in Fig. 10.11. The frequency of

any given normal mode of vibration is the distance from the origin of coordinates to one

of the black spheres shown. That frequency will be made up of three components given
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by cnx/2lx, cny/2ly, and cnz/2lz. Notice that along the vertical coordinate, the normal

frequencies occur in increments of 348.8/6 along the right-hand axis in increments of

348.8/8 and along the remaining axis in increments of 348.8/10. On the layer labeled

N0, there are 53 normal frequencies. The total number of normal frequencies between

450 and 550 Hz for this room is 507. The average frequency is 500 Hz.

Figure 10.11 Normal frequency diagram, drawn to scale for a 3 by 4 by 5 m rectangular room with
hard walls. Most of the vertical lines are omitted to avoid confusion. After Hunt, Beranek, and Maa, [1]
Analysis of Sound Decay in Rectangular Rooms, J. Acoust. Soc. Am., 11: 80e94 (1939).
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Solution. (b) The qx angles of incidence can be divided into 10 principal groups as

shown in Fig. 10.11. The angles are as follows:

qxð0; ny; nzÞz90�

qxð1; ny; nzÞzcos�1

�
345

6
$
1

500

�
z83�

qxð2; ny; nzÞzcos�1

�
2.345

6.500

�
z77�

qxð3; ny; nzÞzcos�1ð0.345Þz70�

qxð4; ny; nzÞzcos�1ð0.46Þz63�

qxð5; ny; nzÞzcos�1ð0.575Þz55�

qxð6; ny; nzÞzcos�1ð0.69Þz46�

qxð7; ny; nzÞzcos�1ð0.805Þz36�

qxð8; ny; nzÞzcos�1ð0.92Þz23�

qxð9; ny; nzÞzcos�1ð0.995Þz6�

PART XXXI: SOUND IN LARGE ENCLOSURES

10.6 BASIC MATTERS

When a sound source, having components that extend over a band of frequencies,
radiates sound into a large irregular enclosure, a microphone that is moved about will
experience fluctuations in sound pressure. The maxima and minima of these fluctua-
tions will lie much closer together in such an enclosure than in a small or regular
enclosure because there are a large number of room resonances in all bands except for
the very lowest frequency bands. Thus, in these enclosures, the mean square sound
pressure can be determined by moving the microphone back and forth over a short
distance. The sound field is largely a superposition of plane waves traveling in all
directions with equal probability. This condition is called a diffuse sound field. To avoid
the influence of the direct sound, this condition is experienced at a reasonable distance
from the source.
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The number of reflections from surfaces in such a room per second is equal to c/d,

where d is the mean free path of the wave and c is the speed of sound. By actual measurements

in rooms of varying shapes and sizes, it has been found that mean free path is equal to

d ¼ 4V

S
m (10.43)

where V is the volume of the room in m3 and S is the total area of the surfaces of the

room in m2. If, after establishing a steady-state sound field, the source of sound is turned

off, the sound energy stored in the enclosure will decrease with each reflection (See

Fig. 10.12) according to

DðnÞ ¼ D0ð1� aÞn (10.44)

where D0 is the steady-state energy density before the source was turned off, n is the

number of reflections that have occurred, and a is the sound absorption coefficient,

which is taken to be averaged for all angles of incidence. By replacing n with ct/d ¼
(cS/4V )t, the decay formula is

DðtÞ ¼ D0ð1� aÞðcS=4V Þt ¼ D0e�ðcS=4V Þð�lnð1�aÞÞt (10.45)

where ln is the logarithm to the base e. In a reverberant sound field, the energy density is

proportional to the mean square sound pressure. Hence,

p2avðtÞ ¼ p2avð0Þe�ðcS=4V Þð�lnð1�aÞÞt (10.46)

Because 10 log10 of the exponential function equals

10ðcS=4V Þðlog10ð1� aÞÞt;

Surface with α

Figure 10.12 Path of a sound wave with energy density D0 as it travels distances of 4V/S and reflects
off surfaces with average absorption coefficient a.
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where we have used the relationship log10 x ¼ log10 e$ln x, the SPL decays at the

rate of

� 10cS

4V
log10ð1� aÞ dB=s (10.47)

10.7 THE REVERBERATION EQUATIONS

The reverberation time of the enclosure is defined as the time required for the SPL

to fall 60 dB. Thus, the well-known Eyring equation [3], which gives the

reverberation time T for an energy drop of 60 dB (often denoted by T60), is obtained

from Eq. (10.47), with S ¼ Stot ¼
P

Si, where Si’s are areas of particular surfaces in the

room, such as audience area and ceiling area:

T ¼ 24V

�cStot log10ð1� aeyÞ s (10.48)

where V is the volume of room in m3, Stot is the area of all surfaces in the room, and aey is

the average sound absorption coefficient for the surface Si as shown in Fig. 10.12. The

Eyring equation is usually presented with either the natural logarithm or log10 in the

denominator and with c taken as 343.5 m/s at 20�C so that

T ¼ 0.161V

Stotð � lnð1� aeyÞÞ ¼ 0.161V

Stotð � 2.30 log10ð1� aeyÞÞ s (10.49)

Note that if the surfaces are perfectly absorbing, i.e., aey ¼ 1.0, the reverberation time

T goes to zero.

The Sabine equation [4] was derived by Wallace Sabine from measurements he

made in a number of rooms at Harvard University:

T ¼ 0.161V

Stotatot
s ðmetric unitsÞ (10.50)

T ¼ 0.049V

Stotatot
s ðEnglish unitsÞ (10.51)

Note that, in the Sabine equation, T only goes to zero if atot approaches infinity.

Even today, most published data on acoustical materials and the absorption of audiences

and the like have been obtained using the Sabine equation, partly because the formula

is simpler to use and partly because for aey less than 0.26, atot is decreasingly less

than 0.3.

It is possible to derive the absorption coefficients in one equation from the absorption

coefficients in the other equation [5]. In the Sabine equation, let
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atot ¼
P

as;iSi

Stot
(10.52)

where as,i is the Sabine absorption coefficient for a particular area Si and Stot ¼ SSi.

In the Eyring equation, let

aey ¼
P

ae;iSi

Stot
(10.53)

where ae,i is the Eyring absorption coefficient for a particular area Si.

Then, we find

aey

atot
¼
P

ae;iSiP
as;iSi

(10.54)

Hence,

ae;i ¼ ðaey=atotÞas;i. (10.55)

10.8 AIR ABSORPTION

As a sound wave travels from one reflection to another in a room, some energy is

lost in the air itself. Such absorption in all but very large rooms is appreciable only at

frequencies above 1000 Hz. When the reverberation equations are corrected to account

for air absorption, they read as follows.

Eyring equation, metric units:

T ¼ 0.161V

Stotð � lnð1� aeyÞÞ þ 4mV
¼ 0.161V

Stotð � 2.30 log10ð1� aeyÞÞ þ 4mV
. (10.56)

Sabine equation, metric units:

T ¼ 0.161T

Stotatot þ 4mV
; (10.57)

where m is the energy attenuation constant in units of reciprocal length. Measured values

of 4m under some typical atmosphere conditions are shown in Table 10.1.

10.9 TOTAL STEADY SOUND PRESSURE LEVEL

We are now in a position to incorporate the direct sound field from a source into

the energy equations and calculate the total steady-state SPL.
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Direct steady-state sound pressure
The space average sound pressure in a room (determined by moving a microphone back

and forth over at least one wavelength) at a distance r from a small directional source

radiating W watts is

p2ðrÞ ¼ r0cW

4pr2
Q N2

�
m4; (10.58)

where Q is the directivity index (not in decibels) (see Sec. 4.16).

Reverberant steady-state sound pressure
The sound power absorbed by the first reflection isWa; hence, the power remaining for

the reverberant field isWr ¼W(1 � a). Let t0 be the length of time it takes for the sound

to travel one mean free path length:

t0 ¼ 4V

cS
s. (10.59)

Let the steady-state value of the reverberant energy density be Dr
0. Then, the total

energy per second removed from the room is

D0
rVa

t0
¼ Wr ; (10.60)

Table 10.1 Measured values of air attenuation constant m (multiplied by 4) in me1 as a function of
frequency, temperature, and relative humidity
Relative
humidity Temperature �C (�F) 2000 Hz 4000 Hz 6300 Hz 8000 Hz

30% 15� (59�) 0.0147 0.0519 0.1144 0.1671

20� (68�) 0.0122 0.0411 0.0937 0.1431

25� (77�) 0.0111 0.0335 0.0759 0.1178

30� (86�) 0.0114 0.0292 0.0633 0.0975

50% 15� (59�) 0.0096 0.0309 0.0712 0.1102

20� (68�) 0.0092 0.0258 0.0577 0.0896

25� (77�) 0.0101 0.0234 0.0489 0.0748

30� (86�) 0.0119 0.0234 0.0443 0.0655

70% 15� (59�) 0.0081 0.0231 0.0519 0.0808

20� (68�) 0.0088 0.0208 0.0437 0.0671

25� (77�) 0.0105 0.0208 0.0396 0.0586

30� (86�) 0.0131 0.0231 0.0391 0.0548
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which yields, where pr
2 ¼ Dr

0r0c2,

p2r ¼ 4r0cW

Sa
ð1� aÞN2

�
m4. (10.61)

Total steady-state sound pressure
Combining Eqs. (10.58) and (10.61) yields

p2ðrÞ ¼ Wr0c

�
Q

4pr2
þ 4ð1� aÞ

Sa

	
N2
�
m4. (10.62)

The restrictions on this equation are that a not be too large and the mean free path is

about 4V/S. The absorption coefficient a is the Eyring coefficient.

10.10 OPTIMUM REVERBERATION TIME

The following formula [6e11] gives the average optimum reverberation time T

for a given auditorium volume V based on subjective results:

log10V ¼ 5.72þ log10T � 2.43ffiffiffiffi
T

p ; (10.63)

which is solved numerically for T and plotted in Fig. 10.13.
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Figure 10.13 Optimum reverberation T versus auditorium volume V.
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10.11 SOUND STRENGTH G

It is now customary in auditorium acoustics to express Eq. (10.61) in terms of

sound strengthG [12]. Sound strengthG, in decibels, is the ratio of the sound energy that

comes from a nondirectional source (Q ¼ 1) measured at a distance r in the auditorium

to the same sound energy from the same source but measured in an anechoic chamber at

r ¼ 10 m. Thus, the reference sound pressure is

p2ref ¼ Wr0c

4p�100
(10.64)

Division of Eq. (10.62) by (10.64) and taking 10 log to get decibels yields the sound

strength G:

G ¼ 10 log10

�
100

r2
þ 1600pð1� atotÞ

Stotatot

�
dB. (10.65)

The reason atot is used here instead of aey because it has been found that if T is

measured in an actual hall and if Sa is determined from the Sabine formula

(T ¼ 0.161V/Stotatot) and if this value for Sa is used in theG equation to calculateG, the

calculated G equals the actual measured values of G in the hall very closely (when using

the reverberation method of calibrating the standard dodecahedral source) (see

Fig. 10.14). If the Eyring equation is used, this means that the [�2.30 log(1 e aey)] must

be used and not just aey to calculate G. If aey is used, the calculated G will be about

2.5 dB higher than the measured G.

The second term in Eq. (10.65) would seem to indicate that the reverberant sound

field is uniform in an auditorium, but SPLs measure larger in the front part of an audi-

torium than toward the rear (see Section 10.12). This term actually indicates the average

of the SPLs determined from measurements at a large number of positions in the audi-

torium (with r large enough that the first term does not appreciably influence the second).

10.12 EARLY AND REVERBERANT SOUND IN CONCERT HALLS

It can be shown that the second term of Eq. (10.65) may be divided into two parts,

one for early sound (that arriving within 80 ms of the direct sound) and the other for late

(reverberant) sound (after 80 ms), both varying with distance r [13]. These equations are

Eearly ¼ 31200T

V
e�0.04r=T



1� e�1.11=T

�
; (10.66)

Ereverberant ¼ 31200T

V
e�0.04r=T



e�1.11=T

�
. (10.67)
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As an example, these equations, with V ¼ 20,000 m3 and T ¼ 2 s, are plotted in

Fig. 10.15. Zero on the ordinate is set for the direct sound with r ¼ 10 m. For r between

10 and 40 m, the top curve predicts the difference in G(total) to be 3.8 dB. Measure-

ments made in nine shoebox-shaped halls, with average V ¼ 16,500 m3 and T ¼ 2.5 s,

found that for r between 10 and 40 m, G(total) drops about 2 dB, while in 11 surround

halls, with averageV ¼ 23,000 m3 and T ¼ 2.2 s, it drops by about 5 dB. The quantity of

3.8 dB above for V ¼ 20,000 m3 and T ¼ 2 s is correctly between these two numbers. In

addition, measurements show that the levels drop off faster if the reverberation times are

less than about 1.5 sdthe drop-off rate significantly increasing (nearer the drop in direct

sound level) as RT’s become less than 0.7 s.

10.13 DISTANCE FOR EQUALITY OF DIRECT AND REVERBERANT
SOUND FIELDS

We will define the distance rrev at which the reverberant field takes over as the

distance at which the direct and reverberant fields are equal. Hence,

rrev ¼ 1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
QStotatot

pð1� atotÞ

s
. (10.68)
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Figure 10.14 Values of G at middle frequencies measured in 10 concert halls (4 shoebox shaped, 4
surround, and 2 fan shaped) versus Gmid calculated from measurements of RT in these halls.
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The total absorbent area Stot and absorption coefficient atot are both related to the

volume of the auditorium. On average [8]

Stot ¼ 2.2V 2=3. (10.69)

Let us also assume the reverberation time is the optimum value given by Eq. (10.63)

and plotted in Fig. 10.13, and that we have a point source withQ ¼ 1. From Eqs. (10.48)

and (10.50),

atot ¼ 0:161V

StotT
; aey ¼ 1� e�0:161V=ðStotTÞ (10.70)

We can now deduce the distance rrev, which is shown in Fig. 10.16.

We note that rrev will be greater for sources which are more directional than a point

source (Q > 1). It is common to use directional loudspeakers such as horns or column

arrays in more reverberant spaces where satisfactory speech intelligibility is needed. The

reference distance is generally taken as 10 m, which is valid for even the larger concert

halls.
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Figure 10.15 Calculation of the component values of G with V ¼ 20,000 m3 and T ¼ 2 s. The refer-
ence sound pressure level at 10 m distance is 0 dB. “Total” at top is the sum of “Direct,” “Early Re-
flected,” and “Late.” “Early” is the sum of “Direct” and “Early Reflected.” “Early reflected” is from Eq.
(10.66) and “Late” is from Eq. (10.67). From Barron M, Lee LJ. Energy relations in concert auditoriums. J
Acoust Soc Am 1988;84(2):618e628.

Sound in enclosures 541



10.14 SOUND LEVELS FOR SPEECH AND MUSIC

When designing a sound system for a specific auditorium, we need to know how

much sound pressure is required to produce realistic volumes for music or speech or

both. The second column of Table 10.2 shows the maximum peak SPL at 10 m from

various sources. However, conversational speech at such a distance is too quiet so the

third column gives an SPL value adjusted for a distance of 1 m, which is more natural.

The orchestra is adjusted for a distance of 3 m, which represents a good seat a few rows

back from the stage. For speech, the crest factor (the difference between the maximum

peak SPL and average rms SPL) is about 13 dB. For music, it is about 20 dB.

Knowing the required pressure from the third column of Table 10.2, Stot from

Eq. (10.69), and aey from Eq. (10.70), we can evaluate the acoustic power required [17]

from Eq. (10.62) as follows:

W ¼ 4� 10ðSPL=10Þ�10

r0c

 
Q

4pr2ref
þ 4ð1� aeyÞ

Stotaey

!�1

; (10.71)

where rref ¼ 10 m and the SPL value is taken from the third column of Table 10.2. The

maximum peak acoustic power is plotted against auditorium volumes in Fig. 10.17. Of
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Figure 10.16 Distance rrev from an omnidirectional source, at which the reverberant sound is equal to
the direct sound, versus auditorium volume V. Optimum reverberation time T is assumed (see
Fig. 10.13).
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Figure 10.17 Peak acoustic power W versus auditorium volume V for various sound sources. Opti-
mum reverberation time T is assumed (see Fig. 10.13). The maximum peak sound pressure levels are
given in Table 10.2.

Table 10.2 Maximum peak sound pressure levels (SPLs) due to various sound sources [14]

Sound source
Maximum peak SPL (dB) at
10 m from source

Maximum peak SPL (dB)
adjusted for 1 m
(conversational speech) and
3 m (others)

Conversational speech [15] 56 76

Declamatory speech [15] 67.5 78

Large orchestra [16] 92 102.5
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course, the required amplifier output power will depend on the choice of loudspeaker.

For example, a living room with a volume of 60 m3 will require a stereo amplifier with a

power rating of 6 W per channel to reproduce a large orchestra if the loudspeakers have

an efficiency of 1%. If loudspeakers with an efficiency of 10% can be employed, the

power rating of the amplifier can be reduced to 0.6 W per channel.

Problem 10.1. An auditorium is 12.5 m long by 10 m wide by 8 m high. We assume

all surfaces to be perfectly reflective except for those in the table below for which the

Sabine absorption coefficients as are given.

Calculate the total volume V of the auditorium, the total absorptive area Stot, the

average Sabine absorption coefficient atot, the reverberation time T, sound strength G,

the distance rrev from a source to equal direct and reverberant fields, and the average

Eyring absorption coefficient aey. Is the reverberation time optimum for the size of

auditorium? Also, calculate the amplifier power needed in a sound system to reproduce

the sound of a large orchestra assuming the loudspeakers have an efficiency of 0.5%.
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CHAPTER ELEVEN

Room design for loudspeaker listening

In the light of various caveats about room and loudspeaker design, there are no precise

answers to the questions: “What precautions should be taken in typical living rooms

toward making listening to recorded music over loudspeakers as pleasant as possible?” and

“How should loudspeaker outputs be adjusted to gowith different room characteristics?”

Sean Olive et al. [1] boldly state “Given that today the sound quality of commercial

phonograph recordings remains highly variable, there are always opportunities for good

room corrections to sound bad and for bad room corrections to sound good.” Added to

this is what some call “Beranek’s Law” [2]: “If one selects his own components, builds his

own loudspeaker enclosure, and is convinced he made a wise choice of design, then his

own loudspeaker sounds better to him than does anyone else’s loudspeaker.”

The following discussion is offered as a general guide to listening to recorded music

with loudspeakers located in a living room.

PART XXXII: HOME ROOM DESIGN

11.1 CONCERT HALL ACOUSTICS

Because listening to music in your home is an alternative to listening to music in a

concert hall, the acoustical factors that make a concert hall satisfactory must be

considered when planning room and loudspeaker configurations. These concert hall

factors include direct sound, loudness, adequacy of bass, degree of source spreading,

reverberation time, strength and quality of the reverberant field, envelopment, freedom

from distortion, freedom from echoes, and quietness.

Direct sound
Wherever one sits in a concert hall, the direct sound should be clearly heard before the

energy in early reflections and reverberation have risen to the level that starts masking

that sound. Freedom from masking of the direct sound is particularly important in the

frequency region above 700 Hz. If the direct sound is not clearly heard, the music lacks

impact and the listener may tend to go to sleep. This problem is particularly important in

shoebox-shaped halls with small seating capacities because the sidewalls that reflect early

sound are nearer to the listener, which means that the reflections start masking the direct
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sound sooner. One possible design for a hall with limited seating is to make it fan shaped.

This way, all listeners are nearer the stage, and the sidewalls do not reflect early sound

toward the audience areas. In Boston Symphony Hall, which is shoebox-shaped, the

statues and niches and edges of high-up windows reflect sound above 700 Hz back

toward the stage, which decreases the energy that would otherwise reflect from the

sidewalls and thus preserves audibility of the direct sound.

Loudness
In a concert hall, the music must be loud enough as measured by the quantity Sound

Strength G in dB. The magnitude of G is determined by the total overall sound-

absorbing quantities of the audience, sidewalls, ceiling, and performers on stage. The

greater their absorption, the lesser is G.

Loudness of the bass sounds
A common complaint in concert halls is inadequate loudness of the bass sounds. A

measure of bass loudness is a quantity called Bass Index, which is the strength of the

sound G in the 125 Hz octave frequency band minus the strength of the sound at

midfrequencies (average of the strength G in the 500 and 1000 Hz bands). Generally, if

the walls are adequately heavy and the absorption of the audience seats at low frequencies

is not too high, the bass loudness will be satisfactory.

Degree of source spreading
The sound in a concert hall is more pleasant if there are early reflections that come from

lateral directionsdthe sidewalls in a shoebox-shaped hall. Early lateral reflections spread

the source, which results in a fuller tone. Of course, these reflections must not come so

soon as to mask the direct sound, but they must occur in the interval between 30 and

80 ms after arrival of the direct sound. The optimum shoebox-hall width for meeting

this requirement is about 24 m. It is difficult to achieve sufficient early lateral reflections

in halls where the audience surrounds the orchestra. In fan-shaped halls, early lateral

reflections are nonexistent.

Reverberation time
Reverberation is part of the music that one hears in a concert hall. No symphonic piece

sounds good outdoors where there is no reverberation. Optimum reverberation time for

the current symphonic repertoire is 1.8e2.1 s. For chamber music, the optimum time is

1.5e1.7 s. Reverberation does not contribute to loudness.

Strength and quality of the reverberant sound field
The quality of the reverberant field is enhanced if there are substantial irregularities on

the sidewalls and ceiling. In some halls, this is accomplished by niches on the sidewalls
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above the top balcony and by coffers in the ceiling. These irregularities must be of depths

of up to 0.5 m. Such great depths are not desirable below the upper balcony because

lateral sound reflections of high quality are needed from there.

Envelopment
In the best halls, the audience feels enveloped by the reverberant sound. This is a matter

of the strength G of the reverberant sound measured 80 ms after arrival of the direct

sounddthe higher the strength, the greater the envelopment. However, the design of

concert halls of the future may be influenced by a trend in modern phonograph

recordings. In these, some of the recording microphones are placed near the performers.

The others record the reverberant sound. The relative strength of the two is then

adjusted by the tonmeister and the tendency is to make the strength of the reverberant

field relative to the direct sound lower than is experienced in the actual concert hall. The

strength of the reverberant sound field may be reduced in a hall by adding appropriate

sound absorption materials in the sidewalls and ceiling.

Freedom from distortion, noise, and echoes
It almost goes without saying that these must be avoided in a concert hall. Distortion can

come from repetitive small-scale irregularities on the sidewalls below the top balcony.

This is sometimes called the “picket fence” effect. Noise generally comes from the

ventilating system. Echoes are easy to identify in computer simulation of a hall during the

planning stage.

11.2 LISTENING ROOM ACOUSTICS

Typical space
The typical American living room has dimensions of, say, 7 � 9 m with a ceiling height

of 2.7 m. Window frames, draperies, and pictures on the walls provide diffusion of the

sound field at high frequencies, but at frequencies below 1000 Hz, the sound field is

generally not diffused. The reverberation times are often greatly different at different

frequencies depending on the sound absorption qualities of furniture, wall hangings, and

carpets.

Reverberation times
There is general agreement that reverberation times at midfrequencies (500 and 1000 Hz

octave frequency bands) should not exceed 0.5 s, and at low frequencies (62 and 125 Hz

bands), it may rise somewhat, say, to 1.25 times that at midfrequencies. Control of the

low-frequency sound is possible by selecting heavily upholstered furniture. In other

words, the room should neither sound “dead” nor very reverberant, partly because the

reverberation time of the recorded sound should come through in its pristine form.
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Loudness
Loudness is generally not a problem because the amplification of the playback system is

easily adjustable.

Placement of loudspeakers
Of course, the answer to this question depends on the system purchased. A five-

loudspeaker system will be handled differently from a two- or three-speaker system.

Let us first talk about the interaction of room resonances with loudspeaker location.

The four lowest modes of vibration in the above-mentioned typical living room will

have frequencies of 19.2, 24.5, 31.2, and 38.4 Hz. These will only be excited if the

loudspeaker is put in the corner of the room. Even if the loudspeaker is in the corner,

the listener would also have to be in another corner to hear those resonances. If either the

loudspeaker or the listener is located in the center of the room, the four lowest modes

that the listener would hear would be double in frequency, 38.2, 49, 62.4, and 76.4 Hz.

Because neither the listener nor the loudspeaker will likely be in either place, the

frequencies of the first four modes that are heard will probably lie between about 30 and

60 Hz.

From Fig. 11.1, we see that the lowest note of the double bass is 41 Hz and that of the

cello is 65 Hz, so these notes may be better served by their harmonics. It is well known

that if the harmonics of a musical note are heard, the hearing mechanism will supply the

missing fundamentals.

If the typical five- or six-loudspeaker system is employed, the woofer will be at the

front of the room and the others will circle the listener. In this case, the question arises as

to the directivity characteristics of the side and rear loudspeakers.

Directivity of loudspeakers above the cutoff frequency
This category includes all loudspeakers surrounding the listener. Some listeners prefer

the sound to come from loudspeakers that have relatively narrow directivity patterns at all

of these frequencies. The reason is that they wish to hear only the sound that is recorded.

If the patterns are broad, they will overlap in the room, and the recorded sounds from the

different loudspeakers will arrive at different times, and a “smearing” effect results.

Others feel that the smear is equivalent to increased “envelopment,” which they feel is a

good thing.

Some subjective tests
There are electrical systems that are sold to “correct” the reproduced sound in the room.

Olive et al. [1] made subjective tests of several such electrical systems. For the tests, they

used a high-quality loudspeaker operating above a crossover frequency at 80 Hz and a

high-quality subwoofer. The woofer was located in a left-front corner, and the other
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loudspeaker was located in a direction about halfway between the center of the room and

the location of the woofer. Eight subjects were seated on chairs in the center. The

reverberation time for the room was 0.4 s, and the levels for all of the correcting systems

being compared were adjusted to be the same as determined by dBAmeasurements at the

listening positions.

According to the test subjects, the most preferred systems had the flattest spectral

balances and they were rated as “full and neutral.” This could be accomplished by rolling

off the response below the cutoff frequency by, say, 6 dB per octave, to compensate for

the rise in reverberation time and loudness owing to uneven sound absorption in the

listening room. The lowest preferred systems were rated as “colored, harsh, and thin.”

Surprisingly, the best-rated systems had a downward-sloping frequency response toward

the high end of the frequency spectrum.

A more elaborate system was described in some detail in the Science Times section of

the New York Times (9/6/2011) as providing sound of the quality heard in the best

shoebox-shaped halls. To quote with some editing, the company Audyssey in Los

Angeles said “That listening tests showed that speakers directly ahead and to either side of

Figure 11.1 Musical scale.
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the listener provided the most attractive sound stage. The ‘wide speakers’ mimicked the

reflections from the side walls of a concert hall. For ‘depth of stage’, listeners preferred

speakers in front and high above. This sounddalso slightly delayeddgave a sense of

where the different instruments were. For full concert-hall-effect three speakers were in

front; twowere elevated; twowere wide; twowere slightly behind, and twowere directly

behind.” Of course a subwoofer in the corner of the room was used. It was emphasized

that the levels had to be adjusted so that a flat frequency response was achieved at the

listeners’ positions. No mention was made of how the loudspeakers were driven by

present-day symphonic recordings.

Concluding remarks
There is not much more to be said. When setting up a listening system, it is recom-

mended that a suitable room-correction system be used to obtain the best response of the

combined room/loudspeaker system.
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CHAPTER TWELVE

Radiation and scattering of sound by
the boundary value method

In this chapter and the next, we will derive results that were used in previous chapters to

study transducers and their radiation characteristics. The aim is to provide insight into

how the shape of a transducer determines its behavior as well as an understanding of how

to solve acoustical problems analytically. In each problem, a new concept or method is

introduced so that each problem is slightly more complicated than the previous one.

Formulas are given which the interested reader may use as part of his or her own sim-

ulations. In this chapter, we will take the wave equation solutions of Chapter 2 and apply

the appropriate boundary conditions to them to determine the unknown coefficients.

This is known as the boundary value method. In fact, we have already used this method

to solve for the reflection of a plane wave from a plane in Section 4.9, radiation from a

pulsating sphere in Section 4.10, and an oscillating sphere Section 4.15. In Chapter 13,

we will treat sound sources as arrays of point sources, which are integrated using the

boundary integral method.

PART XXXIII: RADIATION IN CYLINDRICAL COORDINATES

12.1 RADIATION FROM A PULSATING INFINITE CYLINDER

The infinitely long pulsating cylinder is a useful model for vertical loudspeaker arrays.

If the height of the array is much greater than the wavelength of the sound being

radiated, then we can use a two-dimensional model of infinite extent. Because of axial

symmetry, it can be treated as a one-dimensional problem with just a single radial

ordinate w.

Pressure field
Because the cylinder is radiating into free space, where there are no reflections, we

take the outward-going part of the solution to the cylindrical wave Eq. (2.125) given

by Eq. (2.129), where epþ is an unknown coefficient to be determined from the
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boundary conditions. Let us now impose a boundary condition at the surface of the

cylinder whereby the particle velocity normal to the surface, given by Eq. (2.130), is

equal to the uniform surface velocity eu0 so that euðaÞ ¼ eu0, where a is the radius,

which gives

epþ ¼ jr0ceu0
H

ð2Þ
1 ðkaÞ

. (12.1)

Inserting this into Eq. (2.129) and substituting eU0

�
l ¼ 2paeu0, where eU0

�
l is the

total volume velocity per unit length, yields

epðwÞ ¼ jr0c
�eU0

�
l
�

2paH
ð2Þ
1 ðkaÞ

H
ð2Þ
0 ðkwÞ. (12.2)

12.2 RADIATION FROM AN INFINITE LINE SOURCE

In the limit as the radius of the cylinder shrinks to zero, we have an infinite line

source. In Section 13.14, we will use this as a building block for an infinite ribbon, which

can be treated as an array of line sources using the HuygenseFresnel principle. When the

radius is very small, we find that

H
ð2Þ
1 ðkaÞja/0 ¼ 2j

pka
; (12.3)

which, after inserting into Eq. (12.2), gives the pressure field of an infinite line source:

epðwÞ ¼ kr0c
�eU0

�
l
�

4
H

ð2Þ
1 ðkwÞ. (12.4)

In the far field, we find that

H
ð2Þ
1 ðkwÞjw/N ¼

ffiffiffiffiffiffiffiffiffi
2

pkw

r
e
�j
�
kw�p

4

�
; (12.5)

so that the far-field pressure for a line source is given by

epðwÞ ¼ r0c
�eU0

�
l
�

2

ffiffiffiffiffiffiffiffiffi
k

2pw

r
e
�j
�
kw�p

4

�
. (12.6)

Interestingly, the far-field pressure given by Eq. (12.6) varies with the inverse square

root of the radial distance w from the source so that the sound pressure falls by 3 dB for
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every doubling of distance, which is a characteristic of cylindrically diverging waves.

This is in contrast to a spherically diverging wave, where the pressure given by Eq.

(2.142) varies with the inverse square of the radial distance r from the source so that the

SPL falls by 6 dB for every doubling of distance. Hence, line sources, in the form of

vertical stacks of loudspeakers, are popular in auditoriums because they give a more

uniform sound pressure distribution.

PART XXXIV: RADIATION AND SCATTERING IN SPHERICAL
COORDINATES

12.3 SCATTERING OF A PLANE WAVE FROM A RIGID SPHERE

In this example, the expression scattering has been applied rather than reflection because

not only does a sphere reflect sound but sound waves can bend around it, a phenomenon

known as diffraction. Generally, scattering refers to a mixture of reflection and diffraction.

In the case of reflection from a plane (see Section 4.9), we used rectangular coordinates in

x and y. Here, we are considering a sphere [1], so it is convenient to use axially sym-

metrical spherical coordinates in r and q as shown in Fig. 12.1. In general, the solution for

the resultant field is the sum of the incident field in the absence of any obstacle and the

scattered field which is that which would be produced if the obstacle itself were radiating

with a notional surface velocity which is normal to its surface. If the object is rigid, this

notional velocity must be equal and opposite to the component of velocity of the

incident wave that is normal to the surface of the obstacle in its absence. The result of this

is to produce zero net velocity normal to the surface of the obstacle when it is present in

the resultant field. Because the incident wave front arrives at different parts of the surface

at different times, the normal surface velocity varies in magnitude and phase over q,

except when the wavelength is very large compared with the diameter of the sphere, in

which case it behaves as a simple omnidirectional source or pulsating sphere as discussed

in Section 4.10.

r

0

),(~ θrp

Ip~

θ

R

Figure 12.1 Geometry of plane wave and sphere.
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Incident field
In spherical coordinates, the incident plane wave pressure is

epIðr; qÞ ¼ ep0e�jkr cos q. (12.7)

Fortunately, this expression can be expanded in terms of spherical Bessel functions jn
and Legendre functions Pn as follows:

epIðr; qÞ ¼ ep0XN
n¼ 0

ð�jÞnð2nþ 1ÞjnðkrÞPnðcos qÞ. (12.8)

This expression, which is similar in form to Eq. (2.199) for the solution to the wave

equation in spherical coordinates, is treated more rigorously later in the derivation of

Eq. (13.63).

Scattered field
We assume that the pressure field scattered from the sphere is a solution to Eq. (2.180),

the Helmholtz wave equation in spherical coordinates. However, due to axial symmetry,

we can ignore Eq. (2.197) for the azimuthal part of the solution. Furthermore, because

the sphere is in free space, there are no waves reflected back toward the sphere

(Sommerfeld condition). Hence, we can take just the outward-traveling part of

Eq. (2.186) for the radial part of the solution. Combining this with Eq. (2.195) for the

inclinational part of the solution gives

epsðr; qÞ ¼ ep0XN
n¼ 0

Anh
ð2Þ
n ðkrÞPnðcos qÞ; (12.9)

where An are unknown series coefficients that are determined by applying appropriate

boundary conditions.

Resultant field
Using the principle of superposition of fields, we now express the resultant field epðr; qÞ as
the sum of the incident and scattered fields:epðr; qÞ ¼ epIðr; qÞ þepsðr; qÞ. (12.10)

At the rigid surface of the sphere, where r ¼ R, we have the boundary condition of

zero normal velocity. Hence, from Eq. (2.4a), the pressure gradient must also be zero:

v

vr
epðr; qÞjr¼R ¼ 0; (12.11)

556 Acoustics: Sound Fields, Transducers and Vibration



so that

v

vr
epsðr; qÞjr¼R ¼ � v

vr
epIðr; qÞjr¼R. (12.12)

What this equation tells us is that the scattered field is that which would be produced

if the surface of the sphere itself were oscillating with a velocity equal and opposite to the

normal velocity of the incident wave at the surface in the absence of the sphere. Inserting

the expressions for eps and epI from Eqs. (12.9) and (12.8), respectively, into Eq. (12.12)

givesXN
n¼ 0

Anh
0ð2Þ
n ðkRÞPnðcos qÞ ¼ �

XN
n¼ 0

ð�jÞnð2nþ 1Þj0nðkRÞPnðcos qÞ; 0 � q � p;

(12.13)

where

j0nðkRÞ ¼ v

vr
jnðkrÞjr¼R ¼ k

2nþ 1
ðnjn�1ðkRÞ � ðnþ 1Þjnþ1ðkRÞÞ; (12.14)

h0ð2Þn ðkRÞ ¼ v

vr
hð2Þn ðkrÞjr¼R ¼ k

2nþ 1

�
nh

ð2Þ
n�1ðkRÞ � ðnþ 1Þhð2Þnþ1ðkRÞ

�
. (12.15)

Straight away, by matching the coefficients of Pn(cos q) on both sides of Eq. (12.13),

we can see that the unknown coefficients An are given by

An ¼ �ð�jÞnð2nþ 1Þ j0nðkRÞ
h
0ð2Þ
n ðkRÞ

. (12.16)

Inserting Eq. (12.16) into Eq. (12.9) gives the scattered field as

epsðr; qÞ ¼ �ep0XN
n¼ 0

ð�jÞnð2nþ 1Þ j0nðkRÞ
h
0ð2Þ
n ðkrÞ

hð2Þn ðkrÞPnðcos qÞ. (12.17)

The resultant fieldepðr; qÞ is then given by Eq. (12.10) using Eq. (12.7) forepIðr; qÞ and
Eq. (12.17) forepsðr; qÞ. The magnitude of the normalized pressure

��epðw; zÞ�ep0�� is plotted
in Figs. 12.2 and 12.3 in cylindrical coordinates w and z where r ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

w2 þ z2
p

and

cos q ¼ z
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

w2 þ z2
p

. It can be seen from Fig. 12.2 that the incident field is hardly

disturbed at all when kR ¼ 0.1, i.e., when the wavelength is much greater than its

circumference. On the other hand, at the other end of the spectrum, the plot for

kR ¼ 10 in Fig. 12.3 tells us that there are significant interference patterns in the vicinity

of the sphere when the wavelength is considerably shorter than the circumference of the

sphere.
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Figure 12.2 Resultant pressure field jepðw; zÞj=ep0 due to the scattering of a plane wave from a sphere
for kR ¼ 0.1. The arrow shows the direction of the incident wave.

Figure 12.3 Resultant pressure field jepðw; zÞ=ep0j due to the scattering of a plane wave from a sphere
for kR ¼ 10. The arrow shows the direction of the incident wave.
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Far-field pressure
As the distance r from the center of the sphere is increased to many wavelengths, the

asymptotic expression for the spherical Hankel function becomes

hð2Þn ðkrÞjr/N ¼ j nþ1

kr
e�jkr . (12.18)

Inserting this into Eq. (12.17) yields

epsðr; qÞjr/N ¼ �jR ep0
2r

e�jkrDðqÞ; (12.19)

where D(q) is a directivity function given by

DðqÞ ¼ 2

kR

XN
n¼ 0

ð2nþ 1Þ j0nðkRÞ
h
0ð2Þ
n ðkRÞ

Pnðcos qÞ. (12.20)

The directivity pattern 20 log10(D(q)/D(0)) is plotted in Fig. 12.4 for various values

of kR.

Let a reflection coefficient be defined by

DðpÞ ¼ 2

kR

XN
n¼ 0

ð�1Þnð2nþ 1Þ j0nðkRÞ
h
0ð2Þ
n ðkRÞ

z

(�5jk2R2
�
3; kR < 0:5

�1; kR > 2;
(12.21)

Figure 12.4 Directivity pattern 20 log10(jD(q)j/jD(p)j) of the far-field pressure due to the scattering of
a plane wave from a rigid sphere (excluding the incident field).
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where we have used the identity Pn(�1)¼ (�1)n. Similarly, let a transmission coefficient

be defined by

Dð0Þ ¼ 2

kR

XN
n¼ 0

ð2nþ 1Þ j0nðkRÞ
h
0ð2Þ
n ðkRÞ

z

(
jk2R2

�
3; kR < 0:5

kR; kR > 10;
(12.22)

where we have used the identity Pn(1) ¼ 1. These reflection and transmission co-

efficients are plotted against kR in Fig. 12.5.

For small values of kR, the transmission and reflection coefficients are both fairly

weak. We see that, above kR ¼ 2, the reflection coefficient remains virtually constant,

whereas the transmission coefficient shows that energy is concentrated in the direction of

the incident wave. This can also be seen from Fig. 12.3. This may seem somewhat

counterintuitive because one might expect an obstacle to cast a shadow at high fre-

quencies, and we will see later that this is indeed the case when the obstacle is planar.

However, in this case, the smooth continuous contours or the sphere enable sound waves

to be diffracted around it at high frequencies. The fact that higher frequency waves are

scattered more than lower frequency ones is also true for light, which explains why the

sky is blue.

12.4 SCATTERING FROM A RIGID SPHERE BY A POINT SOURCE

Refer to Fig. 12.6. Let a point source of volume velocity eU0 be located at a

distance d from a sphere of radius R. We wish to calculate the resultant pressure field

⏐ ⏐

⏐ ⏐

π

Figure 12.5 Transmission and reflection coefficients for the scattering of a plane wave by a rigid sphere.
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epðr; qÞ at a distance r from the center of the sphere and at an angle q with the axis passing

through the point source and center of the sphere. The distance r1 between the obser-

vation point and the point source is given by

r1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ d2 � 2rd cos q

p
. (12.23)

Incident field
In spherical coordinates, the incident pressure field due to the point source is obtained by

substituting r ¼ r1 in Eq. (4.71) to give

epIðr; qÞ ¼ jkr0c eU0
e�jkr1

4pr1
. (12.24)

This expression can be expanded in terms of spherical Bessel functions jn and

Legendre functions Pn from Eq. (13.68) as follows:

epI ðr; qÞ ¼ k2r0c eU0

4p

XN
n¼ 0

ð2nþ 1Þhð2Þn ðkdÞjnðkrÞPnðcos qÞ; r � d. (12.25)

Scattered field
As in the case of the previous problem of the plane wave and a sphere, we assume that the

pressure field scattered from the sphere is a general axisymmetric solution to Eq. (2.180),

the Helmholtz wave equation in spherical coordinates:

epsðr; qÞ ¼ r0c eU0

4pR2

XN
n¼ 0

Anh
ð2Þ
n ðkrÞPnðcos qÞ; (12.26)

where An are unknown series coefficients that are determined by applying appropriate

boundary conditions. However, this time the solution is in terms of the source volume

r

0

),(~ θrp

0
~U

θ

R d

r1

Figure 12.6 Geometry of point source and sphere.
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velocity instead of pressure. To keep the coefficients An dimensionless, the volume

velocity has been converted into a particle velocity by dividing it by the surface area of

the sphere S ¼ 4pR2 and then converted into a pressure term by multiplying it by the

specific acoustic impedance of free space r0c.

Resultant field
Using the principle of superposition of fields, we now express the resultant fieldepðr; qÞ as
the sum of the incident and scattered fields:epðr; qÞ ¼ ep1ðr; qÞ þ epsðr; qÞ. (12.27)

At the rigid surface of the sphere, where r ¼ R, we have the boundary condition of

zero normal velocity. Hence, from Eq. (2.4a), the pressure gradient must also be zero:

v

vr
epðr; qÞjr¼R ¼ 0; (12.28)

so that

v

vr
epsðr; qÞjr¼R ¼ � v

vr
epI ðr; qÞjr¼R; (12.29)

which, after inserting the expressions for eps and epI from Eqs. (12.26) and (12.25),

respectively, givesXN
n¼ 0

Anh
0ð2Þ
n ðkRÞPnðcos qÞ ¼ � k2R2

XN
n¼ 0

ð2nþ 1Þhð2Þn ðkdÞj0nðkRÞPnðcos qÞ;

0 � q � p;

(12.30)

where

j0nðkRÞ ¼ v

vr
jnðkrÞjr¼R ¼ k

2nþ 1
ðnjn�1ðkRÞ � ðnþ 1Þjnþ1ðkRÞÞ; (12.31)

h0ð2Þn ðkRÞ ¼ v

vr
hð2Þn ðkrÞjr¼R ¼ k

2nþ 1

�
nh

ð2Þ
n�1ðkRÞ � ðnþ 1Þhð2Þnþ1ðkRÞ

�
. (12.32)

Straight away, by matching the coefficients of Pn(cos q) on both sides of Eq. (12.30),

we can see that the unknown coefficients An are given by

An ¼ �k2R2ð2nþ 1Þhð2Þn ðkdÞ j0nðkRÞ
h
0ð2Þ
n ðkRÞ

. (12.33)
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Inserting Eq. (12.33) into Eq. (12.26) gives the scattered field as

epsðr; qÞ ¼ �k2R2r0c eU0

S

XN
n¼ 0

ð2nþ 1Þhð2Þn ðkdÞ jn
0ðkRÞ

h
0ð2Þ
n ðkRÞ

hð2Þn ðkrÞPnðcos qÞ; (12.34)

where S ¼ 4pR2 is the total surface area of the sphere. The resultant field epðr; qÞ is then
given by Eq. (12.27) using Eq. (12.24) forepIðr; qÞ and Eq. (12.34) forepsðr; qÞ. We see that

the resultant field obeys the principle of reciprocity in that it is not affected by exchanging

the source and observation point, which can be verified by exchanging d and r in

Eqs. (12.24) and (12.34). We will apply this principle in Section 13.3. The magnitude of

the normalized pressure, ��Sepðw; zÞ��rc eU0

���;
is plotted in Figs. 12.7 and 12.8 in cylindrical coordinates w and z where

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 þ z2

p
and cos q ¼ z

. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 þ z2

p
.

It can be seen from Fig. 12.7 that the incident field is hardly disturbed at all when

kR ¼ 0.1, i.e., when the wavelength is much greater than the circumference of the

sphere, except that the constant pressure contours are distorted slightly so that they

Figure 12.7 Resultant pressure
��Sepðw; zÞ�rceU0

�� field due to the scattering of a point source from a
rigid sphere for kR ¼ 0.1.
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become normal to the surface of the sphere. On the other hand, at the other end of the

spectrum, the plot for kR ¼ 10 in Fig. 12.3 tells us that there are significant interference

patterns in the vicinity of the sphere when the wavelength is considerably shorter than

the circumference of the sphere. In addition, the shadow regions are more distinct than

those that are produced by an incident plane wave in Fig. 12.3.

Far-field pressure
As the distance r from the center of the sphere is increased to many wavelengths, the

asymptotic expression for the spherical Hankel function becomes that of Eq. (12.18).

Inserting Eq. (12.18) into Eq. (12.34) yields

epsðr; qÞjr/N ¼ jkr0c eU0

4pr
e�jkrDðqÞ; (12.35)

where D(q) is a directivity function given by

DðqÞ ¼ �
XN
n¼ 0

jnð2nþ 1Þhð2Þn ðkdÞ j0nðkRÞ
h
0ð2Þ
n ðkRÞ

Pnðcos qÞ. (12.36)

Figure 12.8 Resultant pressure field jSepðw; zÞj�rceU0 due to the scattering of a field from a point
source by a rigid sphere where kR ¼ 10.
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The directivity pattern 20 log10(D(q)/D(0)) is plotted in Fig. 12.9 for various values

of kR. Let a reflection coefficient be defined by

Dð0Þ ¼ �
XN
n¼ 0

jnð2nþ 1Þhð2Þn ðkdÞ j0nðkRÞ
h
0ð2Þ
n ðkRÞ

; (12.37)

where we have used the identity Pn(1) ¼ 1. Similarly, let a transmission coefficient be

defined by

DðpÞ ¼ �
XN
n¼ 0

ð�jnÞð2nþ 1Þhð2Þn ðkdÞ j0nðkRÞ
h
0ð2Þ
n ðkRÞ

; (12.38)

where we have used the identity Pn(�1) ¼ (�1)n. These reflection and transmission

coefficients are plotted against kR in Figs. 12.10 and 12.11. For small values of kR, the

transmission and reflection coefficients are both fairly weak, but more or less equal

because the sound is scattered in all directions. It can be seen that above kR ¼ 2, the

reflection coefficient remains virtually constant. In the plot for d ¼ R, the point source is

on the surface of the sphere and the reflection coefficient above kR ¼ 2 is 100% because

the point source is behaving as though it is on an infinite plane. In the plot for d ¼ 2R,

the reflected wave has decayed over twice the distance between the point source and the

sphere. We will study the behavior of a point source on a sphere in greater detail when
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Figure 12.9 Directivity pattern 20 log10(jD(q)j/jD(0)j) of the far-field pressure for d ¼ 2R due to the
scattering of a point source from a rigid sphere (excluding the incident field).
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dealing with sound sources. Above kR ¼ 10, we do not see the rising transmission

coefficient that we saw with the plane wave. Instead, it oscillates around unity (0 dB) due

to constructive and destructive interference. Hence, the sound from a point source is not

concentrated by the sphere like that from a plane wave. The reason for this is that

components of the plane wave strike the sphere from many different directions,

including the sides, and these components can be diffracted around it.

-30

-25

-20

-15

-10

-5

0

5

10

0.1 1 10 100

Tr
an

sm
is

si
on

/re
fle

ct
io

n 
co

ef
fic

ie
nt

 (d
B

)

kR

Reflection coeff. (20 log10 D(0) )

Transmission coeff. (20 log10 D( ) )

d = R

Figure 12.10 Transmission and reflection coefficients for the scattering of a point source by a rigid
sphere for d ¼ R. Frequency is plotted on a normalized scale, where kR ¼ 2pR/l ¼ 2pfR/c.
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Figure 12.11 Transmission and reflection coefficients for the scattering of a point source by a rigid
sphere for d ¼ 2R. Frequency is plotted on a normalized scale, where kR ¼ 2pR/l ¼ 2pfR/c.
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12.5 RADIATION FROM A POINT SOURCE ON A SPHERE

This problem is essentially the same as the last one when d ¼ R. However, this

time we shall introduce the property of orthogonality to obtain a simple solution. By

reciprocity, the resulting expression can be used to obtain the pressure at a point on the

sphere due to a source at some point in space. This is a useful model for the diffraction

effects of the human head on sound arriving at one ear, assuming a hard sphere model of

the head. Unlike the pulsating sphere, only an infinitesimally small part of the surface is

oscillating, so that the velocity distribution is described by

euðR; qÞ ¼
(eu0; 0 � q � d

0; d � q � p
; (12.39)

where d is a vanishingly small angle.

Near-field pressure
We assume that the pressure field generated is a general axisymmetric solution to Eq.

(2.180), the Helmholtz wave equation in spherical coordinates:

epðr; qÞ ¼ r0ceu0XN
n¼ 0

Anh
ð2Þ
n ðkrÞPnðcos qÞ. (12.40)

Applying the velocity boundary condition gives

euðR; qÞ ¼ 1

�jkr0c

v

vr
pðr; qÞjr¼R

¼ eu0
�jk

XN
n¼ o

Anh
0ð2Þ
n ðkRÞPnðcos qÞ ¼

8<:eu0; 0 � q � d

0; d � q � p;

(12.41)

where the derivative of the spherical Hankel function h
0ð2Þ
n ðkRÞ is given by Eq. (12.32).

We now multiply both sides of Eq. (12.41) with the orthogonal function Pm (cos q) and

integrate over the surface of the sphere, where the area of each surface element is given by

dS ¼ 2pR2 sin q dq;

so that

1

�jk

XN
n¼ 0

Anh
0ð2Þ
n ðkRÞ

Z p

0

Pnðcos qÞPmðcos qÞR sin q dq ¼
Z d

0

Pmðcos qÞR sin q dq

(12.42)
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It can be seen from Eq. (12.42) that we have effectively exchanged q dependency for

m dependency. Hence, Eq. (12.42) represents an infinite set of simultaneous equations

where m ¼ 0, 1, 2, .. The integral identities are given by Eqs. (A2.66) and (A2.67) in

Appendix II. However, dmn is the Kronecker delta function which is zero unless m ¼ n in

which case its value is 1. In other words, we have a matrix in which only the diagonal

terms are nonzero, so that the coefficients are given directly by

An ¼ �jk
ð2nþ 1Þd2
4h

0ð2Þ
n ðkRÞ

(12.43)

without having to solve a system of equations. Finally, by inserting (12.43) in (12.40) and

letting eU0 ¼ pðdRÞ2eu0, we can write the near-field pressure as

epðr; qÞ ¼ �jr0c
eU0

S

XN
n¼ 0

ð2nþ 1Þ2hð2Þn ðkrÞPnðcos qÞ
nh

ð2Þ
n�1ðkRÞ � ðnþ 1Þhð2Þnþ1ðkRÞ

; (12.44)

where S ¼ 4pR2 is the total surface area of the sphere. The magnitude of the normalized

pressure, ��Sepðw; zÞ��r0c eU0

���;
is plotted in Figs. 12.12 and 12.13 in cylindrical coordinates w and z where

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 þ z2

p
and cos q ¼ z

. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 þ z2

p
.

We can see from Fig. 12.12 that at low frequencies the pressure contours are more or

less concentric with the acoustic center at a distance of around ½R in front of the point

source. By contrast, the contours in Fig. 12.13 are eccentric so that at high frequencies,

the further you are from the source, the further the source appears to be from its actual

position.

Far-field pressure
In the far field, we can use the asymptotic expression for the spherical Hankel function

from Eq. (12.18), which when inserted into Eq. (12.44) gives

epðr; qÞjr/N ¼ jkr0c
eU0

4pr
e�jkrDðqÞ; (12.45)

where

DðqÞ ¼ � 1

k2R2

XN
n¼ 0

jnþ1ð2nþ 1Þ2Pnðcos qÞ
nh

ð2Þ
n�1ðkRÞ � ðnþ 1Þhð2Þnþ1ðkRÞ

. (12.46)
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Figure 12.12 Pressure field jSepðw; zÞj�r0ceU0 due to a point source on a rigid sphere for kR ¼ 0.1.

Figure 12.13 Pressure field
��Sepðw; zÞ�r0ceU0

�� due to a point source on a rigid sphere for kR ¼ 10.
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The directivity pattern 20 log10(jD(q)j/jD(0)j) is plotted in Fig. 12.14 for various

values of kR. The far-field on-axis response is given by

Dð0Þ ¼ 1

k2R2

XN
n¼ 0

jnð2nþ 1Þ2
nh

ð2Þ
n�1ðkRÞ � ðnþ 1Þhð2Þnþ1ðkRÞ

. (12.47)

The on-axis response 20 log10jD(0)j and 180 degrees off-axis response 20 log10jD(p)j
are plotted against kR in Fig. 12.15. It can be seen that there is a 6 dB lift in the on-axis

response when the wavelength is approximately equal to the circumference of the sphere.

This is due to the fact that the point source acts as a pure monopole radiator at low fre-

quencies as though the sphere were not present. However, at high frequencies, the sphere

acts as a large baffle and the radiated sound is concentrated in half space thus doubling the

pressure value. Because the sphere is smooth and continuous with no reflecting edges, the

transition from whole-space to half-space radiation is also smooth, producing just some

very small ripples in the on-axis response. We shall see that this is not so in the case of

radiators with edges. Hence, the sphere represents an idealized loudspeaker enclosure.

12.6 RADIATION FROM A SPHERICAL CAP IN A SPHERE

In reality, loudspeakers do not have vanishingly small diaphragms, and at high

frequencies the size and shape of the radiator strongly influences the resulting sound field.
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Figure 12.14 Far-field directivity pattern 20 log10(jD(q)j/jD(0)j) of the far-field pressure due to a point
source on a rigid sphere of radius R.
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The spherical cap [2] represents a curved finite diaphragm which follows the contour

of the sphere. This makes it easier to analyze than a flat piston, which we shall

consider in Section 12.8. The spherical cap shown in Fig. 12.16 is set in a rigid sphere

of radius R and moves with an axial velocity euo such that the velocity distribution is

described by

euðR; qÞ ¼
(eu0 cos q 0 � q � a

0; a � q � p
; (12.48)
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Figure 12.15 Plots of 20 log10jD(0)j and 20 log10jD(p)j where D(q) is the directivity function of a
point source on a rigid sphere of radius R. Frequency is plotted on a normalized scale, where
kR ¼ 2pR/l ¼ 2pfR/c.
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Figure 12.16 Geometry of oscillating cap in a rigid sphere.
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where a is the half angle of the arc formed by the cap. Although the cap is rigid in this

case, other velocity distributions are possible [6]. The total volume velocity is given by

eU0 ¼ eu0R2

Z 2p

0

Z a

0

cos q sin q df ¼ Seu0; (12.49)

where S is the effective surface area of the cap given by

S ¼ pR2 sin2 a. (12.50)

If the cap were radially pulsating, we would drop the cos q term from Eqs. (12.48) and

(12.49) and the effective surface area would be

S ¼ 2pR2ð1� cos aÞ ¼ 4pR2 sin2ða=2Þ.

Near-field pressure
Again we assume that the pressure field generated is a general axisymmetric solution to

Eq. (2.180), the Helmholtz wave equation in spherical coordinates:

epðr; qÞ ¼ r0ceu0XN
n¼ 0

Anh
ð2Þ
n ðkrÞPnðcos qÞ. (12.51)

Applying the velocity boundary condition of Eq. (2.4a) gives

euðR; qÞ ¼ 1

�jkr0c

v

vr
pðr; qÞ

����
r¼R

¼ eu0
�jk

XN
n¼ 0

Anh
0ð2Þ
n ðkRÞPnðcos qÞ ¼

8<:
eu0 cos q; 0 � q � a

0 a � q � p;

(12.52)

where the derivative of the spherical Hankel function h
0ð2Þ
n ðkRÞ is given by Eq. (12.32).

We now multiply both sides of (12.41) with the orthogonal function Pm (cos q) and

integrate over the surface of the sphere, where the area of each surface element is

given by

dS ¼ 2pR2 sin q dq;

so that

1

�jk

XN
n¼ 0

Anh
0ð2Þ
n ðkRÞ

Z p

0

Pnðcos qÞPmðcos qÞ sin q dq ¼
Z a

0

Pmðcos qÞ cos q sin q dq

(12.53)
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from which we obtain the coefficients as follows:

A0 ¼ jk
�sin2 a

4h
0ð2Þ
0 ðkRÞ

; (12.54)

A1 ¼ jk
cos3 a� 1

2h
0ð2Þ
1 ðkRÞ

; (12.55)

An ¼ jkð2nþ 1Þsin a
sin a Pnðcos aÞ þ cos a P1

nðcos aÞ
2ðn� 1Þðnþ 2Þh0ð2Þn ðkRÞ

; n � 2; (12.56)

where we have used the integral identities from Eqs. (A2.66) and (A2.68) in Appendix II.

Separate terms have been derived for n ¼ 0 and 1 in Eq. (A2.68) because the expression

for n � 2 is singular at n ¼ 1. Alternatively, if the cap were radially pulsating, we would

drop the cos q term from the right-hand side of Eqs. (12.48) and (12.52) and use Eq.

(A2.69) from Appendix II. Finally, by inserting Eqs. (12.54), (12.55) and (12.56) in Eq.

(12.51), we can write the near-field pressure as

epðr; qÞ ¼ �jkr0ceu0
 

sin2 a

4h
0ð2Þ
0 ðkRÞ

h
ð2Þ
0 ðkrÞ þ 1� cos3 a

2h
0ð2Þ
1 ðkRÞ

h
ð2Þ
1 ðkrÞ cos q

�sin a
XN
n¼ 2

ð2nþ 1Þ sin a Pnðcos aÞ þ cos a P1
nðcos aÞ

2ðn� 1Þðnþ 2Þh0ð2Þn ðkRÞ hð2Þn ðkrÞPnðcos qÞ
!

(12.57)

Far-field pressure
In the far field, we can use the asymptotic expression for the spherical Hankel function

from Eq. (12.18), which when inserted into Eq. (12.57) gives

epðr; qÞjr/N ¼ �jkr0cS
eu0
4pr

e�jkrDðqÞ; (12.58)

where S is the dome effective area given by S ¼ pa2 and

Dð0Þ ¼ � 2

k2R2

 
j

2h
ð2Þ
1 ðkRÞ

þ 3
�
1� cos3 a

�
sin2 a

�
h
ð2Þ
0 ðkRÞ � 2h

ð2Þ
2 ðkRÞ

� cos q

þ
XN
n¼ 2

jnþ1ð2nþ 1Þ2�sin a Pnðcos aÞ þ cos a P1
nðcos aÞ

�
ðn� 1Þðnþ 2Þ sin a

�
nh

ð2Þ
n�1ðkRÞ � ðnþ 1Þhð2Þnþ1ðkRÞ

�Pnðcos qÞ
!
.

(12.59)
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When a ¼ 1 =

2p, the second term simplifies to that for an oscillating sphere, as

described in Section 4.15, and odd terms in the expansion vanish so that Eq. (12.59)

simplifies to

DðqÞja¼p
2
¼ �j

2k RejkR

2� k2R2 þ j2kR
cos q

�j
2

k2R2

XN
n¼ 0

ð�1Þnð4nþ 1Þ2P2nð0Þ
ð2n�1Þð2nþ2Þ

�
2nh

ð2Þ
2n�1ðkRÞ�ð2nþ1Þhð2Þ2nþ1ðkRÞ

�P2nðcos qÞ;
(12.60)

which represents the superposition of two fields. The first term represents an oscillating

sphere and the second two diametrically opposed hemispherical caps or a hemispherical

dome in an infinite baffle, which will be discussed in greater detail in Sec. 12.9. The

same kind of superposition of fields, or “Gutin concept,” will be used in Section 13.11

to describe a single-sided piston. The directivity pattern 20 log10(jD(q)j/jD(0)j) for
a ¼ 60 degrees is plotted in Fig. 12.17 for various values of ka. As expected, we see that

at low frequencies the pattern is almost omnidirectional. However, at high frequencies,

the spherical cap shows a fairly constant angle of dispersion, which is approximately

0 dB
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Figure 12.17 Far-field directivity pattern 20 log10(jD(q)j/jD(0)j) of the far-field pressure due to a
spherical cap of radius a in a rigid sphere for a ¼ 60 degrees, where a is the half angle of the arc
formed by the cap.
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equal to the angle of arc formed by the cap itself. The far-field on-axis response is

given by

Dð0Þ ¼ � 2

k2R2

 
j

2h
ð2Þ
1 ðkRÞ

þ 3
�
1� cos3 a

�
sin2 a

�
h
ð2Þ
0 ðkRÞ � 2h

ð2Þ
2 ðkRÞ

�

þ
XN
n¼ 2

jnþ1ð2nþ 1Þ2�sin a Pnðcos aÞ þ cos a P1
nðcos aÞ

�
ðn� 1Þðnþ 2Þ sin a

�
nh

ð2Þ
n�1ðkRÞ � ðnþ 1Þhð2Þnþ1ðkRÞ

�!:
(12.61)

The on-axis response 20 log10jD(0)j is plotted against ka in Fig. 12.18. Like the point

source on a sphere, we see a rise in the response around kR ¼ 1 (i.e., the wavelength is

roughlyequal to the circumference of the sphere), due to the transition fromwhole-space to

half-space radiation. However, like the oscillating sphere, the response starts to fall above

ka ¼ 5 because the response is proportional to the cap velocitywhen the radiation resistance

is mainly resistive, as indicated in Fig. 12.19. Unlike the oscillating sphere, the falling

response is accompanied by ripples due to the discontinuity at the edge of the cap. This

produces cancellation effects due to path length differences from different parts of the cap.

Radiation impedance
The total radiation force eF is given by

eF ¼ R2

Z 2p

0

Z a

0

epðR; qÞcos q sin q dq df (12.62)
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Figure 12.18 Plot of 20 log10jD(0)j where D(q) is the directivity function of a spherical cap of radius a
in a rigid sphere, where a is the half angle of the arc formed by the cap. The axial acceleration of the
cap is constant. Frequency is plotted on a normalized scale, where ka ¼ 2pa/l ¼ 2pfa/c.
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using the identity of Eq. (A2.68) from Appendix II. The specific impedance Zs is then

given by

ZS ¼ eFeU0

¼ jr0c

0@sin2 ah
ð2Þ
0 ðkRÞ

4h
ð2Þ
1 ðkRÞ

�
�
1� cos3 a

�2
h
ð2Þ
1 ðkRÞ

sin2 a
�
h
ð2Þ
0 ðkRÞ � 2h

ð2Þ
2 ðkRÞ

�
1A

�
XN
n¼ 2

ð2nþ 1Þ2�sin aPnðcos aÞ þ cos aP1
nðcos aÞ

�2
hð2Þn ðkRÞ

ðn� 1Þ2ðnþ 2Þ2
�
nh

ð2Þ
n�1ðkRÞ � ðnþ 1Þhð2Þnþ1ðkRÞ

� ;

(12.63)

where we have used the expression for eU0 from Eq. (12.49). When a ¼ 1/2p, the

odd terms of the expansion vanish, except for the second term, which simplifies to
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Figure 12.19 Real and imaginary parts of the normalized specific radiation impedance Zs/r0c
of the air load on an oscillating spherical cap of radius a in a rigid sphere, where a is the half
angle of the arc formed by the cap. Frequency is plotted on a normalized scale, where
ka ¼ 2pa/l ¼ 2pfa/c.
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that for an oscillating sphere, as described in Section 4.15. Hence, Eq. (12.63) sim-

plifies to

Zsja¼p
2
¼ r0c

	
k4a4 þ j

�
k3a3 þ 2ka

�
3ðk4a4 þ 4Þ

�j
XN
n¼ 0

ð4nþ 1Þ2ðP2nð0ÞÞ2hð2Þ2n ðkRÞ
ð2n� 1Þ2ð2nþ 2Þ2

�
2nh

ð2Þ
2n�1ðkRÞ � ð2nþ 1Þhð2Þ2nþ1ðkRÞ

�!; (12.64)

which represents the superposition of two fields. The first term represents an oscillating

sphere and the second two diametrically opposed hemispherical caps or a hemispherical

dome in an infinite baffle, which will be discussed in greater detail in Section 12.9. The

same kind of superposition of fields, or “Gutin concept,” will be used in Section 13.11 to

describe a single-sided piston. The real and imaginary parts, Rs and Xs, are plotted in

Fig. 12.19 where

Zs ¼ Rs þ jXs ¼ <ðZSÞ þ jJðzsÞ. (12.65)

We can see that the impedance of the 90 degrees cap is roughly the average of the

pulsating and oscillating spheres. At 15 degrees, the cap approaches a piston in an infinite

baffle, which we will study later. There are ripples in the impedance curves above ka ¼ 2

due to interference patterns in the immediate vicinity of the radiator.

12.7 RADIATION FROM A RECTANGULAR CAP IN A SPHERE

A useful model for the mouth of a circular horn is the spherical cap in a sphere

[3]. However, this can be shown to have a somewhat irregular on-axis response with

peaks and dips due to interference between sound radiated from the center of the cap

and its perimeter. In addition, circular horns are rarely used these days, and it is more

common to find a rectangular horn with an aspect ratio chosen so that its horizontal

radiation is concentrated over an angle which covers the auditorium area. However,

one additional advantage of this arrangement is that on-axis irregularities are less likely.

The question we wish to answer is what is the optimum aspect ratio for a smooth on-

axis response? Until now we have only dealt with problems with axial symmetry, which

are independent of the azimuthal angle f. In other words, they are really two

dimensional in r and q. The rectangular cap in a sphere is our first genuinely three-

dimensional problem in spherical coordinates (r, q, f), and its geometry is shown in

Fig. 12.20. The rectangular cap, which is defined by the half angles a and b, is set in a

rigid sphere of radius R and pulsates with a velocity eu0 such that the velocity distri-

bution is described by
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euðR; q;fÞ ¼

8>>>>>>><>>>>>>>:
eu0;

(
0 � q � q0; 0 � f � arctanðtan b=tan aÞ
0 � q � q1; 0 � f � arctanðtan a=tan bÞ

0;

(
q0 � q � p; 0 � f � arctanðtan b=tan aÞ
q1 � q � p; 0 � f � arctanðtan a=tan bÞ

; (12.66)

where
q0 ¼ arctanðtan a=cos fÞ; (12.67)

q1 ¼ arctanðtan b=cos fÞ: (12.68)

To calculate the effective surface area S of the cap, where the area of each surface

element is given by
dS ¼ R2 sin q dq df;

we need only integrate over one quarter of the cap and multiply the result by four:

S ¼ 4R2

0BB@Z arctan tan b

tan a

0

Z arctan tan a
cos f

0

sin q dq dfþ
Z arctan tan a

tan b

0

Z arctan tan b

cos f

0

sin q dq df

1CCA

¼ 4R2

(
arctan

 
tan a tan b

sec2 aþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sec2 aþ tan2 b

q !
þ arctan

 
tan a tan b

sec2 bþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sec2 bþ tan2 a

q !)

z4R2 sin a sin b; a <
p

4
; b <

p

4

(12.69)

R 

2β 

2α 

φ 

θ0 

R cos θ0 = r cos α  

R sin θ0 cos φ = r sin α 

Figure 12.20 Geometry of rectangular cap in sphere. For clarity the sphere is not shown.
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Near-field pressure
The Helmholtz wave equation in spherical coordinates is given by

V2 ¼ v2

vr2
þ 2

r

v

vr
þ 1

r2
v2

vq2
þ 1

r2 tan q

v

vq
þ 1

r2 sin2 q

v

vf2
; (12.70)

The resulting pressure field is given by the following solution:

epðr; q;fÞ ¼ r0ceu0XN
n¼ 0

Xn=2
m¼ 0

Amnh
ð2Þ
n ðkrÞP2m

n ðcos qÞ cos 2 mf; (12.71)

where Amn are the as-yet unknown power series coefficients, which are evaluated by
applying appropriate boundary conditions. To meet the boundary condition of sym-
metry at f ¼ 0, we use only cosine terms in the solution. Applying the velocity
boundary condition gives

euðR; q;fÞ ¼ 1

�jkr0c

v

vr
pðr; q;fÞ

����
r¼R

¼ eu0
�jk

XN
n¼ 0

Xn=2
m¼ 0

Amnh
0ð2Þ
n ðkRÞP2m

n ðcos qÞ cos 2 mf
(12.72)

where the derivative of the spherical Hankel function h
0ð2Þ
n ðkRÞ is given by

h0ð2Þn ðk;RÞ ¼ v

vr
hð2Þn ðkrÞjr¼R ¼ k

2nþ 1

�
nh

ð2Þ
n�1ðkRÞ � ðnþ 1Þhð2Þnþ1ðkRÞ

�
. (12.73)

We now equate Eq. (12.66) with Eq. (12.72) while truncating the infinite series limit

to N. Then multiplying both sides with the orthogonal function

P2p
q ðcos qÞ cos 2 pf

and integrating over the surface of the sphere gives

1

�jk

XN
n¼ 0

Xn=2
m¼ 0

Amnh
0ð2Þ
n ðkRÞ

Z p

0

P2m
n ðcos qÞP2p

q ðcos qÞ sin q dq

Z 2p

0

cos 2 mf cos 2 pf df

¼
Z arctan tan b

tan a

0

cos 2 pf

Z arctan tan a
tan f

0

P2p
q ðcos qÞ sin q dq df

þ
Z p

2
þarctan tan a

tan b

p
2
�arctan tan a

tan b

cos 2 pf

Z arctan tan b

ðcos f�p=2Þ

0

P2p
q ðcos qÞ sin q dq df

þ
Z p

p�arctan tan b

tan a

cos 2 pf

Z arctan tan a
cosðf�pÞ

0

P2p
q ðcos qÞ sin q dq df

(12.74)
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from which we obtain the coefficients:

Amn ¼ ð2nþ 1Þ2ðn� 2mÞ! Imn
j2pðnþ 2mÞ!

�
nh

ð2Þ
n�1ðkRÞ � ðnþ 1Þð2Þnþ1ðkRÞ

� ; (12.75)

where

Imn ¼
Z arctan tan b

tan a

0

cos 2mf

Z arctan tan a
cos f

0

P2m
n ðcos qÞ sin q dq df

þ
Z p

2
þarctan tan a

tan b

p
2
�arctan tan a

tan b

cos 2mf

Z arctan tan b

sin f

0

P2m
n ðcos qÞ sin q dq df

þ
Z p

p�arctan tan b

tan a

cos 2mf

Z arctan tan a
�cos f

0

P2m
n ðcos qÞ sin q dq df;

(12.76)

Ion ¼
Z arctan tan b

tan a

0

tan affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2 fþ tan2 a

p P�1
n

 
cos fffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cos2 fþ tan2 a
p !

df

þ
Z p

2
þarctan tan a

tan b

p
2
�arctan tan a

tan b

tan affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2 fþ tan2 b

p P�1
n

 
sin fffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sin2 fþ tan2 b
p !

df

þ
Z p

p�arctan tan b

tan a

tan affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2 fþ tan2 a

p P�1
n

 
�cos fffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cos2 fþ tan2 a
p !

df;

(12.77)

and we have used the integral identities (12.78)Z 2p

0

cos 2 mf cos 2 pf df ¼
(
p; m ¼ p

0; msp
(12.78)

Z p

0

P2m
n ðcos qÞP2q

q ðcos qÞ sin q dq ¼

8>><>>:
2ðnþ 2mÞ!

ð2nþ 1Þðn� 2mÞ!; m ¼ p and n ¼ q

0; msp or nsq

(12.79)

Z j

0

Pnðcos qÞ sin q dq ¼ P�1
n ðcos jÞ sin j (12.80)
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Far-field pressure
In the far field, we can use the asymptotic expression for the spherical Hankel function:

hð2Þn ðkrÞ
���
r/N

¼ jnþ1

kr
e�jkr ; (12.81)

which when inserted into Eq. (12.71) gives

epðr; q;fÞjr/N ¼ �jkr0cS
eu0
4pr

e�jkr Dðq;fÞ; (12.82)

where S is the cap effective area given by Eq. (12.49) and

Dðq;fÞ ¼ � 4p

k2S

XN
n¼ 0

Xn=2
m¼ 0

Amn j
nP2m

n ðcos qÞ cos 2 mf. (12.83)

The far-field on-axis response is obtained using the relationship

P2m
n ð1Þ ¼ dm0 (12.84)

so that

Dð0; 0Þ ¼ � 4p

k2S

XN
n¼ 0

A0n j
n. (12.85)

The on-axis response 20 log10jD(0,0)j is plotted against kR in Fig. 12.21. The black

curve shows the response of a pulsating circular cap in a sphere [from Eq. (13.83)], which
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Figure 12.21 Plot of 20 log10jD(0,0)jwhereD(q,f) is the directivity function of a rectangular cap in a rigid
sphere of radius R, where a and b are the two half angles of the arc formed by the cap. The axial accel-
eration of the cap is constant. Frequency is plotted on a normalized scale, where kR¼ 2pR/l ¼ 2pfR/c.
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has even deeper nulls than those of the oscillating cap shown in Fig. 12.18. Replacing it

with a square cap, shown by the dark gray trace, immediately reduces the heights of the

peaks and depths of the nulls. The smoothest response is that of the rectangular cap with

an aspect ratio of 1:3 shown by the light gray trace. The worst shape is circular because at

certain frequencies, the sound from near the perimeter arrives out of phase with that

from the center and cancels it. At other frequencies, it is in phase and reinforces it. By

making the cap rectangular, the cancellations are never complete because the amount of

sound radiated from near the corners is reduced compared with what it would be if the

cap were circular.

Radiation impedance
The total radiation force eF is given by

eF ¼ 2R2

0B@Z arctan tan b

tan a

0

Z arctan tan a
cos f

0

epðR; q;fÞ sin q dq df

þ
Z p

2
þarctan tan a

tan b

p
2
�arctan tan a

tan b

Z arctan tan b

sin f

0

epðR; q;fÞ sin q dq df

þ
Z p

p�arctan tan b

tan a

Z arctan tan b

�cos f

0

epðR; q;fÞ sin q dq df

1CCA

(12.86)

The specific impedance Zs is then given by

Zs ¼
eFeU0

¼ eF
Seu0 ¼ 2R2r0c

S

XN
n¼ 0

Xn=2
m¼ 0

Amnh
ð2Þ
n ðkRÞImn; (12.87)

where we use the expression for S from Eq. (12.69). The real and imaginary parts, Rs and

Xs, are given by

Zs ¼ Rs þ jXs ¼ <ðZsÞ þ jJðZsÞ. (12.88)

12.8 RADIATION FROM A PISTON IN A SPHERE

The geometry of the piston of radius a in a sphere of radius R is shown in

Fig. 12.22. In this example, we shall see the effect of having a planar radiator as opposed

to the curved ones in all the previous examples. In the previous problem, the spherical
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cap followed the contour of the sphere so that there was only angular dependency in

the velocity boundary condition with no radial dependency. This led to a direct solution

for the expansion coefficients. Here, a flat circular piston [4] oscillates with a uniform

axial velocity of eu0. Hence, the velocity boundary condition is more complicated so that

the expansion coefficients can only be obtained by solving a set of simultaneous

equations.

Near-field pressure
Again we assume that the pressure field generated is a general axisymmetric solution to

Eq. (2.180), the Helmholtz wave equation in spherical coordinates:

epðr; qÞ ¼ r0ceu0XN
n¼ 0

Anh
ð2Þ
n ðkrÞPnðcos qÞ; (12.89)

where An are the as-yet unknown expansion coefficients, which will be calculated by

means of a set of simultaneous equations in matrix form. Now, we define the velocity

boundary condition on the piston aseuzðr1; qÞ ¼ eu0; 0 � q � a; r ¼ r1; (12.90)

where

r1 ¼ R cos a

cos q
; (12.91)

and the velocity boundary condition on the sphere as

eurðR; qÞ ¼ 1

�jkr0c
$
v

vr
epðr; qÞjr¼R ¼ 0; a < q < p; r ¼ R; (12.92)

R 

),(~ θrp

r 

α
θ a = R sinα

Sphere

Piston

0 0
~u

Figure 12.22 Geometry of piston in a rigid sphere.
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where the subscript z denotes the axial direction, or normal to the piston, and the

subscript r denotes the radial direction, or normal to the sphere. The piston velocity

boundary condition can be obtained using

euzðr1; qÞ ¼ 1

�jkr0c

v

vz
pðr; qÞjr¼r1

; (12.93)

where
v

vz
¼ vr

vz
$
v

vr
þ vq

vz
$
v

vq
; (12.94)

vr

vz
¼ cos q; (12.95)

vq

vz
¼ �sin q

r
; (12.96)

so that

euzðr1; qÞ ¼ eu0
�jk

XN
n¼ 0

An

	
h0ð2Þn ðkr1ÞPnðcos qÞ cos q� 1

r1
hð2Þn ðkr1ÞP0

nðcos qÞ sin q



;

(12.97)

where the derivative of the spherical Hankel function h
0ð2Þ
n ðkr1Þ is given by Eq. (12.32)

and the derivative of the Legendre function P0
nðcos qÞ is given from Eq. (A2.65) in

Appendix II by

P0
nðcos qÞ ¼ v

vq
Pnðcos qÞ ¼ nðnþ 1Þ

ð2nþ 1Þ sin q
ðPn�1ðcos qÞ � Pnþ1ðcos qÞÞ: (12.98)

The sphere boundary condition is the same as that for the spherical cap in a sphere

given by Eq. (12.52). We also note that the area of each surface element on the piston and

the sphere are given, respectively, by

dSp ¼ 2p
r21

cos q
sin q dq; (12.99)

dSs ¼ 2pR2 sin q dq. (12.100)

Hence, we can create an infinite set of simultaneous equations by multiplying Eqs.

(12.90) and (12.92) through by Pm(cos q) and integrating over the surfaces of the piston

and sphere:Z a

0

euzðr1; qÞPmðcos qÞr21 tan q dqþ R2

Z p

a

eurðR; qÞPmðcos qÞ sin q dq

¼ eu0 Z a

0

Pmðcos qÞr21 tan q dq; m ¼ 0; 1; 2;/.

(12.101)
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In matrix form, this becomes

M$a ¼ b0a ¼ M�1$b; (12.102)

where the matrix M and vectors a and b are given by

Mðmþ1; nþ1Þ ¼
Imn þ

�
nh

ð2Þ
n�1ðkRÞ � ðnþ 1Þhð2Þnþ1ðkRÞ

�
Kmn

2nþ 1
;

(
m ¼ 0; 1;.;N

n ¼ 0; 1;.;N
;

(12.103)

bðmþ 1Þ ¼ �jLm; m ¼ 0; 1;.;N ; (12.104)

aðnþ 1Þ ¼ An; n ¼ 0; 1;.;N ; (12.105)

where

Imn ¼
Z a

0

n�
nh

ð2Þ
n�1ðkr1Þ � ðnþ 1Þhð2Þnþ1ðkr1Þ

�
Pnðcos qÞ cos q

þ nðnþ 1Þhð2Þn ðkr1ÞðPn�1ðcos qÞ � Pnþ1ðcos qÞÞ
.
kr1

o
Pmðcos qÞ r

2
1

R2
tan q dq;

(12.106)

Kmn ¼
Z p

a

Pnðcos qÞPmðcos qÞ sin q dq; (12.107)

Lm ¼
Z a

0

Pmðcos qÞ r
2
1

R2
tan q dq. (12.108)

A solution to the integral Kmn is given by Eq. (A2.70) in Appendix II. Unfortunately,

integrals Imn and Lm have no analytical solutions and, therefore, have to be evaluated

numerically using, for example,Z a

0

f ðqÞdq ¼ a

P

XP
p¼ 1

f ðqpÞ; where qp ¼ p� 1=2

P
a. (12.109)

Far-field pressure
In the far field, we can use the asymptotic expression for the spherical Hankel function

from Eq. (12.18), which when inserted into Eq. (12.89) gives

epðr; qÞjr/N ¼ �jkr0cS
eu0
4pr

e�jkrDðqÞ. (12.110)
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where S is the piston area given by S ¼ pa2 and

DðqÞ ¼ � 4

k2R2 sin2 a

XN
n¼ 0

An j
nPnðcos qÞ. (12.111)

The directivity pattern 20 log10(jD(q)j/jD(0)j) for a ¼ 60 degrees is plotted in

Fig. 12.23 for various values of ka. The far-field on-axis response is given by

Dð0Þ ¼ � 4

k2R2 sin2 a

XN
n¼ 0

An j
n. (12.112)

The on-axis response 20 log10jD(0)j is plotted against ka in Fig. 12.24. Comparing

the directivity pattern of Fig. 12.23 with that of a spherical cap shown in Fig. 12.17 we

see that the piston is more directional at high frequencies, concentrating its output over

a decreasing angle. By contrast, the spherical cap shows a fairly constant angle of

dispersion at high frequencies, which is approximately equal to the angle of arc formed

by the cap itself. The on-axis responses of Fig. 12.24 are quite interesting. They all

show an overall 6 dB rise due to the transition from whole-space radiation at low

frequencies to half-space radiation at high frequencies. In addition, there are ripples in

the response above ka ¼ 1.5 due to reflections from the edge of the piston, which acts as

a secondary radiator interfering with the direct radiation. Furthermore, the 15 degrees
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Figure 12.23 Far-field directivity pattern 20 log10(jD(q)j/jD(0)j) of the far-field pressure due to a piston
of radius a in a rigid sphere for a ¼ 60 degrees, where R ¼ a/sin a is the radius of the sphere.
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cap behaves rather like the point source on a sphere and produces ripples below

ka ¼ 1.5 due to diffraction around the sphere. An important difference between planar

sources and curved “constant directivity” sources such as the spherical cap (see

Fig. 12.18), driven with constant acceleration, is that the on-axis response of the latter

rolls off in the region where the radiation impedance is resistive and the radiated

pressure is thus proportional to the velocity of the radiating surface. With a planar

source, the narrowing of the directivity pattern and subsequent concentration of the

radiated pressure on axis tends to compensate for this and maintain a level response. At

lower frequencies, where the radiation load is mainly mass, both have a level pressure

response with constant acceleration due to Newton’s second law: force ¼ mass �
acceleration.

Radiation impedance
The total radiation force eF is given by

eF ¼
Z 2p

0

Z a

0

epðr1; qÞr21 tan q dq df. (12.113)

The specific impedance Zs is then given by

ZS ¼ eFeU0

¼ 2r0c

R2 sin2 a

XN
n¼ 0

An

Z a

0

hð2Þn ðkr1ÞPnðcos qÞr21 tan q dq; (12.114)
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Figure 12.24 Plot of 20 log10jD(0)j where D(q) is the directivity function of a piston of radius a in a
rigid sphere, where R ¼ a/sin a is the radius of the sphere. The axial acceleration of the piston is
constant. Frequency is plotted on a normalized scale, where ka ¼ 2pa/l ¼ 2pfa/c.
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where eU0 ¼ pR2 sin2 a eu0. The real and imaginary parts, Rs and Xs, are plotted in

Fig. 12.25 where

Zs ¼ Rs þ jXs ¼ <ðZsÞ þ jJðZsÞ. (12.115)

The main difference between these curves and those of Fig. 12.19 for the spherical

cap is that they all show ripples due to interference patterns in the immediate vicinity of

the piston.

12.9 RADIATION FROM AN OSCILLATING CONVEX DOME IN AN
INFINITE BAFFLE

A convex dome [5] of radius a and radius of curvature R in an infinite baffle is

shown in Fig. 12.26. We shall solve this problem using field matching, whereby we

make use of the fact that the dome in an infinite baffle produces the same field as

that of two back-to-back domes in free space that oscillate in opposite directions.

The latter produces a symmetrical field which is identical to that of the single

dome together with its image field due to reflection from the baffle. In this way,
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Figure 12.25 Real and imaginary parts of the normalized specific radiation impedance Zs/r0c of the
air load on an oscillating piston of radius a in a rigid sphere, where R ¼ a/sin a is the radius of the
sphere. Frequency is plotted on a normalized scale, where ka ¼ 2pa/l ¼ 2pfa/c.
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the boundary condition of zero velocity or pressure gradient at the baffle is satisfied

automatically.

Near-field pressure
Again we assume that the pressure field generated is a general axisymmetric solution to

Eq. (2.180), the Helmholtz wave equation in spherical coordinates:

epðr; qÞ ¼ r0ceu0XN
n¼ 0

Anh
ð2Þ
n ðkrÞPnðcos qÞ; (12.116)

where An are the as-yet unknown expansion coefficients, which will be calculated by

means of a set of simultaneous equations in matrix form. The normal particle velocityeusðR; qÞ at the surface of the dome is given by

eusðR; qÞ ¼ 1

�jkr0c

v

vr
pðr; qÞjr¼R

¼ eu0
�jk

XN
n¼ 0

Anh
0ð2Þ
n ðkRÞPnðcos qÞ.

(12.117)

where the derivative of the spherical Hankel function h
0ð2Þ
n ðkRÞ is given by Eq. (12.32).

For q � a, this is simply equal to the normal velocity of the dome. However, for q > a,

we are in the image field to the left of the baffle plane, as indicated by PI in Fig. 12.26,

and we need to match this velocity with that of the particle velocity eu1ðqÞ at the

corresponding point P0 to the right of the plane. The latter is defined by

eu1ðr1; q1Þ ¼ 1

�jkr0c

v

vn
epðr; qÞjr¼r1;q¼q1

; (12.118)
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Figure 12.26 Geometry of convex dome in infinite baffle.
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where the derivative is taken with respect to the normal n of the surface such that

v

vn
¼ vr

vn
$
v

vr
þ vq

vn
$
v

vq
; (12.119)

vr

vn
¼ cos b; (12.120)

vq

vn
¼ sin b

r
: (12.121)

The following useful relationships can be derived from the geometry of the

problem:

cos b ¼ R

r1
ð1� 2 cos a cos qÞ; (12.122)

r1 ¼ R
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4 cos aðcos a� cos qÞ

p
; (12.123)

cos q1 ¼ R

r1
ð2 cos a� cos qÞ: (12.124)

Inserting all of the above into Eq. (12.118) leads to

eu1ðr1; q1Þ ¼ eu0
�jk

XN
n¼ 0

An

	
h0ð2Þn ðkr1Þcos bPnðcos q1Þ þ hð2Þn ðkr1Þ sin b

r1
P0
nðcos q1Þ



;

(12.125)

where the derivative of the spherical Hankel function h
0ð2Þ
n ðkRÞ is given by Eq.

(12.32) and the derivative of the Legendre function P0
nðcos q1Þ is given by Eq.

(A2.65) from Appendix II. By matching the fields, the velocity boundary condition

can be expressed by

eusðR; qÞ ¼
( eu0 cos q; 0 � q � aeu1ðr1; q1Þ a < q � p

. (12.126)

As before, we multiply through with the orthogonal function Pm (cos q) and

integrate over the surface of the sphere, where the area of each surface element is

given by

dS ¼ 2pR2 sin q dq;
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to yield the following infinite set of simultaneous equations:Z p

0

eusðR; qÞPmðcos qÞ sin q dq ¼ eu0 Z a

0

Pmðcos qÞ cos q sin q dq

þ
Z p

a

eu1ðr1; q1ÞPmðcos qÞ sin q dq; m ¼ 0; 1; 2;..

(12.127)

Inserting Eqs. (12.117) and (12.125) for eusðR; qÞ and eu1ðr1; q1Þ, respectively, into Eq.

(12.127), while truncating the infinite summation limits to order N, gives

XN
n¼ 0

An

0@2dmn

�
nh

ð2Þ
n�1ðkRÞ � ðnþ 1Þhð2Þnþ1ðkRÞ

�
ð2nþ 1Þ2 � Imn

1A¼ �jKm; m ¼ 0; 1; 2;.;N

(12.128)

where

Imn ¼
Z p

a

 
nh

ð2Þ
n�1ðkr1Þ � ðnþ 1Þhð2Þnþ1ðkr1Þ

2nþ 1
Pnðcos q1Þ cos b

�nðnþ 1Þhð2Þn ðkr1Þ
ð2nþ 1Þkr1 ðPn�1ðcos q1Þ � Pnþ1ðcos q1ÞÞ sin b

sin q1

!
Pmðcos qÞ sin q dq;

(12.129)

Km ¼
Z a

0

Pmðcos qÞ cos q sin q dq

¼

8>>>><>>>>:

�
1� cos3 a

��
3; m ¼ 1

�sin a
sin a Pmðcos aÞ þ cos a P1

mðcos aÞ
ðm� 1Þðmþ 2Þ ; ms1

(12.130)

where the identities of Eqs. (A2.66) and (A2.68) from Appendix II have been applied.

Unfortunately, the integral Imn has no analytical solution and has to be evaluated

numerically using, for example,Z p

a

f ðqÞ dq ¼ p� a

P

XP
p¼ 1

f ðqpÞ; where qp ¼ aþ p� 1=2

P
ðp� aÞ: (12.131)
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In matrix form, Eq. (12.128) becomes

M$a ¼ b0a ¼ M�1$b; (12.132)

where the N�N matrix elements are given by

Mðmþ 1; nþ 1Þ ¼
2dmn

�
nh

ð2Þ
n�1ðkRÞ � ðnþ 1Þhð2Þnþ1ðkRÞ

�
ð2nþ 1Þ2 � Imn;

(
m ¼ 0; 1;/;N

n ¼ 0; 1;/;N
;

(12.133)

bðmþ 1Þ ¼ �jKm; m ¼ 0; 1;/;N ; (12.134)

aðnþ 1Þ ¼ An; n ¼ 0; 1;/;N ; (12.135)

Far-field pressure
In the far field, we can use the asymptotic expression for the spherical Hankel function

from Eq. (12.18), which when inserted into Eq. (12.116) gives

epðr; qÞjr/N ¼ �jkr0cS
eu0
2pr

e�jkrDðqÞ; (12.136)

where S is the dome effective area given by S ¼ pa2 and

DðqÞ ¼ � 2

k2R2 sin2 a

XN
n¼ 0

An j
nPnðcos qÞ: (12.137)

In the case where a ¼ ½p, we obtain the following simple expansion solution from

Eq. (12.60):

DðqÞa¼p
2

��� ¼ �j
2

k2R2

XN
n¼ 0

ð�1Þnð4nþ 1Þ2P2nð0ÞP2nðcos qÞ
ð2n� 1Þð2nþ 1Þ

�
2nh

ð2Þ
2n�1ðkRÞ � ð2nþ 1Þhð2Þ2nþ1ðkRÞ

�:
(12.138)

The directivity pattern 20 log10(jD(q)j/jD(0)j) for a ¼ 60 degrees is plotted in

Fig. 12.27 for various values of ka. The results are fairly similar to those of the spherical

cap in a sphere in that at low frequencies the pattern is almost omnidirectional and at

high frequencies the dome cap shows a fairly constant angle of dispersion which is
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approximately equal to the angle of arc formed by the dome itself. The far-field on-axis

response is given by

Dð0Þ ¼ � 2

k2R2 sin2 a

XN
n¼ 0

Anj
n: (12.139)

The on-axis response 20 log10jD(0)j is plotted against ka in Fig. 12.28. Again, the

response is fairly similar to that of the spherical cap in a sphere except that there is no

6 dB level shift between low and high frequencies due to that fact that the sound is

radiated into half space at all frequencies.
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Figure 12.27 Far-field directivity pattern 20 log10(jD(q)j/jD(0)j) of the far-field pressure due to a
convex dome of radius a in an infinite baffle for a ¼ 60 degrees, where a is the half angle of the arc
formed by the dome.
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Radiation impedance
The total radiation force eF is given by

eF ¼ R2

Z 2p

0

Z a

0

epðR; qÞ cos q sin q dq df; (12.140)

using the identity of Eq. (A2.68) from Appendix II. The specific impedance Zs is then

given by

Zs ¼
eFeU0

¼ 2r0c

sin2 a

XN
n¼ 0

Anh
ð2Þ
n ðkRÞKn; (12.141)

where we have used the expression for eUo from Eq. (12.49). The real and imaginary

parts, Rs and Xs, are plotted in Fig. 12.29 where

Zs ¼ Rs þ jXs ¼ <ðZsÞ þ jJðZsÞ: (12.142)

Again the results are fairly similar to those for a spherical cap in a sphere except at low

frequencies where the radiation impedance is greater due to the half-space radiation load.

12.10 RADIATION FROM AN OSCILLATING CONCAVE DOME IN AN
INFINITE BAFFLE

A concave dome [5] of radius a and radius of curvature R in an infinite baffle is

shown in Fig. 12.30. In this problem, we shall introduce the concept of coupling whereby
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Figure 12.28 Plot of 20 log10jD(0)j where D(q) is the directivity function of a convex dome of radius a
in an infinite baffle, where a is the half angle of the arc formed by the dome. The axial acceleration of
the dome is constant. Frequency is plotted on a normalized scale, where ka ¼ 2pa/l ¼ 2pfa/c.
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the field epIðr; qÞ inside the imaginary sphere, which includes the space inside the dome, is

coupled to an external field epðr; qÞ. Again, the baffle can be removed so that we have an

equivalent field which is symmetrical either side of the plane of the baffle. However, in the

external field, we completely ignore the dome as if it inhabited some other universe. What

we have in effect is a breathing disk in free space with identical pressure distributions on

both faces, which are also the same as that of the mouth of the dome. The velocity dis-

tributions are also equal in magnitude to that of the mouth, but have opposite directions.

This enables us to apply the same field-matching condition as in the convex dome.

Near-field pressure
We assume that the external pressure field epðr; qÞ in the region r � R is a general

axisymmetric solution to Eq. (2.180), the Helmholtz wave equation in spherical

coordinates:

epðr; qÞ ¼ r0ceu0XN
n¼ 0

xnh
ð2Þ
n ðkrÞPnðcos qÞ; (12.143)

where xn are the as-yet unknown expansion coefficients, which will be calculated by

means of a set of simultaneous equations in matrix form. The normal particle velocityeuSðR; qÞ at the surface of the sphere is given by

euðR; qÞ ¼ 1

�jkr0c

v

vr
epðr; qÞjr¼R

¼ eu0
�jk

XN
n¼ 0

xnh
0ð2Þ
n ðkRÞPnðcos qÞ;

(12.144)

where the derivative of the spherical Hankel function h0ð2Þn ðkRÞ is given by Eq. (12.32).

The internal field epIðr; qÞ must be continuous everywhere in the region r � R. Hence,

we omit the spherical Bessel function of the second kind, which has a singularity at r ¼ 0,

from the spherical Hankel function so that

epIðr; qÞ ¼ r0ceu0XN
n¼ 0

yn jnðkrÞPnðcos qÞ; (12.145)

where yn are the unknown expansion coefficients. The normal particle velocity euIðR; qÞ
at the surface of the sphere is given by

euIðR; qÞ ¼ 1

�jkr0c

v

vr
pIðr; qÞjr¼R

¼ eu0
�jk

XN
n¼ 0

yn j
0
nðkRÞPnðcos qÞ:

(12.146)
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At the surface of the dome, the normal particle velocity has to match the axial

velocity eu0 of the dome. Hence,euIðR; qÞ ¼ �eu0 cos q; 0 � q � a: (12.147)

In addition, we have the coupling condition whereby the normal particle velocity on

the inner surface of the imaginary sphere has to match that on its outer surfaceeuIðR; qÞ ¼ euðR; qÞ; a � q � p: (12.148)

Likewise, the pressure on the inner surface of the sphere has to match that on its outer

surface: epðR; qÞ ¼ epIðR; qÞ; a < q � p: (12.149)

Finally, we apply the field matching whereby the pressure on the outer surface of the

imaginary sphere is equal to that of its mirror image, which lies inside the image sphere:epðR; qÞ ¼ epIðr1; q1Þ; 0 < q � a: (12.150)

From the geometry of the problem, we can write

r1 ¼ R
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4 cos aðcos a� cos qÞ

p
; (12.151)

cos q1 ¼ R

r1
ð2 cos a� cos qÞ: (12.152)

Now, we have all of the boundary conditions in place, we can create the following

pair of infinite simultaneous equations in the unknown coefficients xn and yn in the usual

manner by multiplying through Pm(cos q) and integrating over the surface of the

imaginary sphere together with its image and the surface of the dome:Z p

0

epðR; qÞPmðcos qÞ sin q dq ¼
Z a

0

epIðr1; q1ÞPmðcos qÞ sin q dq

þ
Z p

a

epIðR; qÞPmðcos qÞ sin q dq; m ¼ 0; 1; 2;/;

(12.153)Z p

0

euIðR; qÞPmðcos qÞ sin q dq ¼ �eu0 Z a

0

Pmðcos qÞ cos q sin q dq

þ
Z p

a

euðR; qÞPmðcos qÞ sin q dq; m ¼ 0; 1; 2;/:

(12.154)
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In matrix form, this becomes
x ¼ A$y; (12.155)

y ¼ B$xþ c; (12.156)

where
x ¼ ½x0; x1;.; xm�; y ¼ ½y0; y1;.; ym�;

where the matrices A and B and vector c are given by

Aðmþ 1; nþ 1Þ ¼ mþ 1=2

h
ð2Þ
m ðkRÞ

ðImn þ jnðkRÞKmnÞ;
(
m ¼ 0; 1;.;N

n ¼ 0; 1;.;N
; (12.157)

Bðmþ 1; nþ 1Þ ¼ mþ 1=2

j0mðkRÞ
h0ð2Þn ðkRÞKmn;

(
m ¼ 0; 1;/;N

n ¼ 0; 1;/;N
; (12.158)

cðmþ 1Þ ¼ jk
mþ 1=2

j0mðkRÞ
Lm; m ¼ 0; 1;/;N ; (12.159)

where

Imn ¼
Z a

0

jnðkr1ÞPnðcos q1ÞPmðcos qÞ sin q dq; (12.160)

Kmn ¼
Z p

a

Pnðcos qÞPmðcos qÞ sin q dq

¼

8>>>>>>>><>>>>>>>>:

sin a
�
Pmðcos aÞP0

nðcos aÞ � Pnðcos aÞP0
mðcos aÞ

�
mðmþ 1Þ � nðnþ 1Þ ; msn

1þ ðPmðcos aÞÞ2 cos aþ 2
Xm�1

j¼ 1

Pjðcos aÞðPjðcos aÞcos a� Pjþ1ðcos aÞÞ

2mþ 1
; m¼n

(12.161)

Lm ¼
Z a

0

Pmðcos qÞcos q sin q dq

¼

8>>>><>>>>:

�
1� cos3 a

��
3; m ¼ 1

�sin a
sin a Pmðcos aÞ þ cos a P1

mðcos aÞ
ðm� 1Þðmþ 2Þ ; ms1;

(12.162)
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where the identities of Eqs. (A2.66), (A2.68), and (A2.70) from Appendix II have been

applied. Unfortunately, the integral Imn has no analytical solution and has to be evaluated

numerically using, for example,Z a

0

f ðqÞdq ¼ a

P

XP
p¼ 1

f ðqpÞ; where qp ¼ p� 1=2

P
a: (12.163)

Solving Eqs. (12.155) and (12.156) for x and y gives

y ¼ ½I� B$A��1$c; (12.164)

x ¼ A$y: (12.165)

Far-field pressure
In the far field, we can use the asymptotic expression for the spherical Hankel function

from Eq. (12.18), which when inserted into Eq. (12.143) gives

epðr; qÞjr/N ¼ �jkr0cS
eu0
2pr

e�jkrDðqÞ; (12.166)

where S is the dome effective area given by S ¼ pa2 and

DðqÞ ¼ � 2

k2R2 sin2 a

XN
n¼ 0

xn j
nPnðcos qÞ: (12.167)

The directivity pattern 20 log10(jD(q)j/jD(0)j) for a ¼ 60 degrees is plotted in

Fig. 12.31 for various values of ka. Not surprisingly, the directivity is similar to that of the

convex dome. The far-field on-axis response is given by

Dð0Þ ¼ � 2

k2R2 sin2 a

XN
n¼ 0

xn j
n: (12.168)

The on-axis response 20 log10jD(0)j is plotted against ka in Fig. 12.32. This shows

some interesting features. The dips in the responses of the convex dome shown in

Fig. 12.28 for various values a are now replaced with resonant peaks. In each case, the

resonant frequency is determined by the compliance of the dome cavity and the radiation

mass. The peak is fairly broad due to the damping effect of the radiation resistance. At

ka ¼ 4.1, we see a sharp dip due to a radial standing wave across the mouth of the dome,

where the air just circulates back and forth between points of maximum and minimum

pressure. Above this frequency, the response is fairly uneven due to standing wave

harmonics.
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Radiation impedance
The total radiation force eF is given by

eF ¼ R2

Z 2p

0

Z a

0

epðR; qÞ cos q sin q dq df (12.169)

using the identity of equation (A2.68) from Appendix II. The specific impedance Zs is

then given by

Zs ¼ eFeU0

¼ 2r0c

sin2 a

XN
n¼ 0

yn jnðkRÞLn; (12.170)
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Figure 12.31 Far-field directivity pattern 20 log10(jD(q)j/jD(0)j) of the far-field pressure due to a
concave dome of radius a in an infinite baffle for a ¼ 60 degrees, where a is the half angle of the arc
formed by the dome.
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where we have used the expression for eUo from Eq. (12.49). The real and imaginary

parts, Rs and Xs, are plotted in Fig. 12.33, where

Zs ¼ Rs þ jXs ¼ <ðZsÞ þ jJðZsÞ: (12.171)

We can see from these curves that at the first peak in the radiation resistance, which

more or less corresponds with the first peak in the on-axis response, the radiation

reactance is at a minimum, so that the radiation efficiency is enhanced. Below this

resonance, the reactance is positive due to the radiation mass. Immediately above it, the

reactance is negative due to the compliance of the dome cavity. However, due to

standing wave modes, the reactance is alternately positive and negative as the frequency

increases above ka ¼ 4.

Problem 12.1. In Section 12.1, we derived the sound pressure at a radial distance w

from the axis of an infinitely long pulsating cylinder of radius a. Divide the pressure at the

surface (where w ¼ a) by the surface velocity eu0 to obtain the specific radiation

impedance, after substituting eU0 ¼ 2paleu0. Separate the impedance into real and

imaginary parts by multiplying the numerator and denominator by the complex con-

jugate of the denominator H
ð1Þ
1 ðkaÞ and applying the Hankel function identities of
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Figure 12.32 Plot of 20 log10jD(0)j where D(q) is the directivity function of a concave dome of
radius a in an infinite baffle, where a is the half angle of the arc formed by the dome. The axial
acceleration of the dome is constant. Frequency is plotted on a normalized scale, where ka ¼ 2pa/
l ¼ 2pfa/c.
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Eqs. (A2.74) and (A2.75) of Appendix II. Use the Wronskian of Eq. (A2.111) to simplify

the real part and thus show that it is the throat impedance of an infinite hyperbolic horn

given by Eq. (9.30) if we set a ¼ xT.

Problem 12.2. In Section 12.6, we derived the nearfield pressure, far-field pressure

and radiation impedance of an oscillating spherical cap in a sphere. Derive the same for a

pulsating spherical cap in a sphere using the same methods. In other words, instead of the

cap oscillating axially, it moves radially with a velocity u0%, which removes the cosq
terms from Eqs. (12.48), (12.49), (12.52), (12.53), and (12.62). Instead of Eq. (A2.68),

use Eq. (A2.69) from Appendix II to evaluate the integral on the right-hand-side of Eq.

(12.53) and the integral of Eq. (12.62). Show that the results are the same as those

obtained in Section 13.5 using the boundary integral method.
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Figure 12.33 Real and imaginary parts of the normalized specific radiation impedance Zs/r0c of the
air load on a concave dome of radius a in an infinite baffle, where a is the half angle of the arc formed
by the dome. Frequency is plotted on a normalized scale, where ka ¼ 2pa/l ¼ 2pfa/c.
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CHAPTER THIRTEEN

Radiation and scattering of sound by
the boundary integral method

PART XXXV: BOUNDARY INTEGRALS AND THE GREEN’S
FUNCTION

13.1 THE HUYGENSeFRESNEL PRINCIPLES

The HuygenseFresnel principle states that each point on the wave front of a propagating

wave can be replaced with a point source as illustrated in Fig. 13.1, thus creating an array

of wavelets whereby each wavelet is unaffected by the presence of all the other wavelets.

Some time later, the wave front is equivalent to the envelope of these wavelets. In other

words, the resultant field is due to the sum of the point sources, using the principle of

superposition. The point sources can be monopoles or dipoles. Although the forward

propagating wave remains unaltered, the principle does not explain the creation of a

backward propagating wave that was not present in the original. However, if the surface

over which the point sources are distributed encloses the original source(s) fully, we can

use the principle to analyze the internal or external fields separately. It can also be used to

Wave front at time t Wave front at time t + Δ t

Figure 13.1 HuygenseFresnel principle.
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analyze sound radiation from vibrating surfaces, which may or may not be closed,

provided that the boundary conditions are correct.

13.2 THE RAYLEIGH INTEGRALS AND GREEN’S FUNCTION

In this section, monopole and dipole boundary integrals are derived in an intuitive

way based on the HuygenseFresnel principle whereby monopole and dipole point

sources are summed over surfaces. A more mathematically rigorous treatment follows in

Section 13.3. We have treated all problems so far in this text as boundary value problems

based on solutions to the following homogeneousHelmholtz wave equation in an arbitrary

coordinate system: �
V2 þ k2

�epðrÞ ¼ 0; (13.1)

where, for example, in rectangular coordinates (r) ¼ (x,y,z) and the Laplace operator V2

is given in rectangular, cylindrical, and spherical coordinates by Eqs. (2.147), (2.160),

and (2.181), respectively. By homogeneous, we mean that the equation describes waves that

could exist, but there are no driving forces or velocities present in the equation to create

them. These come later from the boundary conditions. In general, the boundary value

method involves solving the homogeneous Helmholtz wave equation in a suitable

orthogonal coordinate system such that it becomes a separable equation. That is, the

equation is split into a set of differential equations, each with respect to one ordinate only,

as described in Sections 2.9e2.11. The solutions to those equations then contain con-

stants, which can be determined by applying boundary conditions. By a suitable coor-

dinate system, we mean one that first must lead to a separable wave equation (if there is

more than one ordinate involved) and second fits the geometry of the problem, by which

we mean that boundary conditions can be applied by setting pressure or velocity to

specific values at constant ordinate values. The simplest example is the pulsating sphere

that is solved by setting the particle velocity at the surface of the sphere, where the radial

ordinate is equal to the sphere’s radius. In the limit, when the radius approaches zero, this

leads to the pressure field due to a point source as defined in Eq. (4.71). Let us now recast

this equation in the following form:

epðrjr0Þ ¼ jkr0c eU0gðrjr0Þ; (13.2)

where r and r0 are the positions of the observation point and source respectively in an

arbitrary coordinate system. The function gðrjr0Þ is known as the Green’s function and is

defined by

gðrjr0Þ ¼ e�jkðr�r0Þ

4pðr� r0Þ: (13.3)
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For example, in rectangular coordinates, we would write

gðx; y; zjx0; y0; z0Þ ¼ e�jk
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx�x0Þ2þðy�y0Þ2þðz�z0Þ2

p

4p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� x0Þ2 þ ðy� y0Þ2 þ ðz� z0Þ2

q : (13.4)

The Green’s function is a useful short hand for the spatial distribution due to a point

source, but it does not indicate its absolute strength. In this instance, it tells us that the

sound pressure varies sinusoidally as it spreads outwards from the source, and its

amplitude is inversely proportional to the distance from the source. It should be noted

that there is a singularity at r ¼ r0. Using the HuygenseFresnel principle we can treat a

vibrating surface as an array of point sources, or rather surface elements that in the limit

shrink to points. In the case of a closed surface (i.e., that which fully encloses a volume),

we need not worry about the back wave when considering the external field. The

volume velocity of each surface element is given byeU0ðr0Þ ¼ eu0ðr0ÞdS0; (13.5)

where dS0 is the area of the surface element and eu0ðr0Þ is the velocity normal to the

surface at point r0. The radiated field is the sum of the fields due to all the point sources so

that

epMðrÞ ¼ jkr0c

ZZ eu0ðr0Þgðrjr0ÞdS0; (13.6)

which is known as the monopole Rayleigh integral. Furthermore, using the relationship

eu0ðr0Þ ¼ 1

�jkr0c

v

vn0
epðr0Þ (13.7)

leads to

epMðrÞ ¼ �
ZZ

v

vn0
epðr0Þgðrjr0ÞdS0: (13.8)

Similarly, the surface can be made up of dipole point sources, each comprising two

monopole point sources of opposite polarity, separated by a distance Dz0 that tends to
zero. Let the Green’s function be defined in axisymmetric sphericalecylindrical co-
ordinates by

gðr; qjz0Þ ¼ e�jkr1

4pr1
; (13.9)
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where

r21 ¼ r2 þ z20 � 2rz0 cos q

and q is the inclination angle of the observation point relative to the z-axis, which passes

through the two monopole point sources. The dipole point source is located at a distance

z0 from the origin and r is the distance from the observation point to the origin. The

gradient of the Green’s function in the z direction is then given by

v

vz0
gðr; qjz0Þjz0¼0 ¼

�
1

r
þ jk

�
cos q

e�jkr

4pr
: (13.10)

From Eq. (4.114), the field due to a single dipole point source has previously been

shown to be

epðr; qÞ ¼ jkr0c eU0b

�
1

r
þ jk

�
cos q

e�jkr

4pr
; (13.11)

which after substituting Eq. (13.10) and letting b ¼ Dz0 becomes

epðr; qÞ ¼ jkr0c eU0Dz0
v

vz0
gðr; qjz0Þjz0¼0: (13.12)

Again, using the relationships of Eqs. (13.5) and (13.7), together with

Dz0

vep0
vz0

����
Dz0/0

¼ �ep0; (13.13)

leads to

epðr; qÞ ¼ ep0 v

vz0
gðr; qjz0Þjz0¼0dS0; (13.14)

which is then integrated over the surface to give

epDðrÞ ¼
ZZ epðr0Þ v

vn0
gðrjr0ÞdS0 (13.15)

in any coordinate system. This is known as the dipole Rayleigh integral. We note that the

derivative of the Green’s function is taken with respect to the normal n0 to the surface

because the axis of each dipole element must be normal to the surface.
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13.3 THE KIRCHHOFFeHELMHOLTZ BOUNDARY INTEGRAL

In the previous section we introduced the Green’s function

gðrjr0Þ ¼ e�jkðr�r0Þ

4pðr� r0Þ; (13.16)

which turns out to be a solution of the following inhomogeneous wave equation:�
V2 þ k2

�
gðrjr0Þ ¼ �dðr� r0Þ: (13.17)

An important principle in acoustics is that of reciprocity whereby the locations of the

sound source r0 and its observation point r are interchangeable. It can be seen that Eqs.

(13.16) and (13.17) are unaffected by interchanging r and r0. Hence

gðrjr0Þ ¼ gðr0jrÞ (13.18)

and

dðr� r0Þ ¼ dðr0 � rÞ: (13.19)

Eq. (13.17) differs from the homogeneous wave Eq. (13.1) in that the Dirac delta

function d on the right hand side represents the excitation at the point r0. Eq. (13.17)

describes the normalized pressure field (that is, divided by ikrc eU0) of a point source.

However, it is desirable to solve the following inhomogeneous wave equation for any

source distribution: �
V2 þ k2

�epðrÞ ¼ �ef ðrÞ; (13.20)

where ef ðrÞ is a source pressure distribution in Pa/m2. This can be achieved [1,2] by

multiplying Eq. (13.17) by epðrÞ and then subtracting it from Eq. (13.20) multiplied by

gðrjr0Þ, which leads to

gðrjr0ÞV2epðrÞ � epðrÞV2gðrjr0Þ ¼ epðrÞdðr� r0Þ � gðrjr0Þef ðrÞ: (13.21)

Using the reciprocity relationships of Eqs. (13.18) and (13.19), we can exchange r

and r0 in Eq. (13.21) and integrate over an arbitrary volume containing all the sources to

obtain ZZZ �
gðrjr0ÞV2

0epðr0Þ �epðr0ÞV2
0gðrjr0Þ

�
dV0

¼
ZZZ epðr0Þdðr� r0ÞdV0 �

ZZZ
gðrjr0Þef ðr0ÞdV0;

(13.22)
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where the zero subscripts indicate differentiation with respect to the r0 coordinates.

Using Green’s theorem [3], which essentially states that anything created within a

diverging volume passes through its outer surface, the volume integral of the term in

parentheses can be replaced with a surface integral:ZZZ �
gðrjr0ÞV2

0epðr0Þ � epðr0ÞV2
0gðrjr0Þ

	
dV0

¼
ZZZ

V0

�
gðrjr0ÞV0epðr0Þ � epðr0ÞV0gðrjr0Þ

	
dV0

¼
ZZ �

gðrjr0Þ v

vn0
epðr0Þ � epðr0Þ v

vn0
gðrjr0Þ

�
dS0;

(13.23)

where the surface of integration bounds the volume of the original volume integral, and

the Laplace operator is replaced with a first-order derivative normal to the surface,

pointing away from the space enclosed by the surface integral. We can verify the first step

of Eq. (13.23) by working backwards. Although taking the derivative of the two products

in the second line leads to four terms, two of them cancel to leave the remaining two

terms in the first line. The third line is obtained from the second by the divergence

theorem of Gauss. Inserting Eq. (13.23) into Eq. (13.22) and using the property of the

Dirac delta function to solve the volume integral epðr0Þdðr� r0Þ yieldsepðrÞ ¼ epV ðrÞ þ epSðrÞ; (13.24)

where epV ðrÞ is a volume integral given by

epV ðrÞ ¼
ZZZ

gðrjr0Þef ðr0ÞdV0 (13.25)

and epSðrÞ is the KirchhoffeHelmholtz surface integral given byepSðrÞ ¼ epMðrÞ þ epDðrÞ (13.26)

where epMðrÞ is the monopole integral given by

epMðrÞ ¼
ZZ

gðrjr0Þ v

vn0
epðr0ÞdS0 (13.27)

and epDðrÞ is the dipole integral given by

epDðrÞ ¼ �
ZZ epðr0Þ v

vn0
gðrjr0ÞdS0: (13.28)
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What is remarkable about Eq. (13.24) is that, merely given a solution gðrjr0Þ to the

wave equation for a point source, it provides a solution for the pressure field epðrÞ
everywhere in the presence of an arbitrary source distributionef ðr0Þwithin the volume of

integration.

It should be noted that in this instance, the integrals epMðrÞ and epDðrÞ have nothing to
dowith reflections, although they can be applied to problems of scattering surfaces when

appropriate boundary conditions are applied. The volume of integration does not have a

physical reflecting boundary surface but a transparent notional one. Inside the volume,epMðrÞ and epDðrÞ cancel each other so that there is no net contribution from epSðrÞ, and
the field is entirely given by the volume integral, orepðrÞjr˛V0

¼ epV ðrÞ; epSðrÞ ¼ 0; epMðrÞ ¼ �epDðrÞ: (13.29)

However, outside the boundary, the field due to the surface integral cancels the field

due to the volume integral:

epðrÞjr;V0
¼ 0; epSðrÞ ¼ �epV ðrÞ;

 epMðrÞ ¼ epDðrÞ ¼ �epV ðrÞ=2
if planar infinite surface

!
: (13.30)

Hence, epSðrÞ is a discontinuous solution to Eq. (13.20), which is only valid outside

the volume containing the sources (provided that the sign is reversed). If the volume is

infinitely large, the Sommerfeld condition applies and the boundary integrals vanish so

that epðrÞ ¼ epV ðrÞ is a solution to Eq. (13.20) everywhere. In practice, however, the

volume of integration only has to include all the sources under consideration, but not

necessarily all the observation points. The usefulness of the boundary surface integral of

Eq. (13.26) for solving acoustical problems cannot be overstated; it forms the basis for

many numerical methods such as Boundary Element Modeling (or BEM). It is an

embodiment of the HuygenseFresnel principle discussed in Section 13.1. The surface

of integration must be a closed one, which fully encloses all the sources, although they

may form part or all of the surface. By a closed surface, we could also mean an infinite

plane that isolates the sources on one side of the plane (or within the plane itself) from

the observation field on the other. Although epMðrÞ and epDðrÞ are both needed in the

case of general surfaces, such as the spherical cap in a sphere in Section 13.5, we shall

see that in the case of planar sources, one of the integrals can often be eliminated

because of the symmetry of the problem. Before we apply the boundary integral to

some problems of practical importance, we shall take a further look at the Green’s

function.
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13.4 THE GREEN’S FUNCTION IN DIFFERENT COORDINATE
SYSTEMS

Rectangular coordinates
Rectangular coordinatesdnear-field
The Green’s function in rectangular coordinates was given by Eq. (13.4) as

gðx; y; zjx0; y0; z0Þ ¼ e�jkR

ð4pRÞ; (13.31)

where R is the Euclidean distance, which is given by

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� x0Þ2 þ ðy� y0Þ2 þ ðz� z0Þ2

q
: (13.32)

However, problems are often encountered when using this expression because the

space variables are all enclosed in a square-root sign and therefore cannot be separated.

This makes finding analytical solutions very difficult, and one often has to resort to using

moveable-origin coordinate systems. This limits its use to numerical integration in the

KirchhoffeHelmholtz surface integral. Unfortunately, the Green’s function of

Eq. (13.31) is not particularly amenable to numerical integration because it is singular at

the origin and leads to oscillatory integrands at high frequencies. The dipole integral is

even more problematic because the Green’s function normal gradient has a 1/R2 term,

which leads to diverging numerical and analytical integrals. Furthermore, where the

surface of integration encloses one or more sources, we can only calculate the field on

the side of the surface where there are no sources and the waves are diverging. In other

words we cannot solve the reverse problem and calculate the field in which there are

sources and the waves converge toward them. A more powerful formula is given by

gðx; y; zjx0; y0; z0Þ ¼ �j

8p2

Z N

�N

Z N

�N

e�jðkxðx�x0Þþkyðy�y0Þþkzjz�z0jÞ

kz
dkxdky (13.33)

where

kz ¼

8>><>>:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � k2x � k2y

q
; k2x þ k2y � k2

�j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y � k2

q
; k2x þ k2y > k2

(13.34)

where kx, ky, and kz represent the spatial frequency components in the x, y, and z di-

rections respectively of a plane wave of spatial frequency k traveling in an arbitrary di-

rection. For example, if the direction of travel subtends an angle q with the z-axis, then

the trace velocity seen along the z-axis is c/cos q and the wave number is kz ¼ k cos q.
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Hence the wavelength will appear to be longer along the z-axis. To gain a better un-

derstanding of Eq. (13.33) we may compare it with Eq. (7.113) for the pressure field

inside an enclosure by letting kx ¼ mp/lx, ky ¼ np/ly, and kz ¼ kmn. We also replace the

infinite integrals with summations. In other words, Eq. (13.33) may be thought of as the

spatial distribution of an infinite enclosure in which traveling plane waves of any

wavelength may exist as opposed to standing ones of particular wavelengths that

correspond to the dimensions of the finite enclosure. The fact that a point source can be

represented as integral over all spatial frequencies is not so surprising when we consider

that an infinite impulse contains all frequencies.

It may seem counterintuitive to introduce two extra integrals, but the troublesome 1/

R term has vanished along with the square-root sign in the exponent. When used in the

KirchhoffeHelmholtz integrals, we will show in Section 13.19 that this integral form of

the Green’s function is an inverse Fourier transform. This leads to an important theorem

that forms the basis of near-field acoustical holography in which the dipole

KirchhoffeHelmholtz integral evaluated over one plane is the Fourier transform of the

pressure distribution in that plane. The sound field spectra is then propagated in k-space

to another parallel plane in which the Green’s function is the inverse Fourier transform

that gives the pressure in that plane. Furthermore, we can solve the so-called reverse

problem where there are one or more sources in the field of interest. This method of

calculation is particularly amenable to the digital processing of sound fields captured by

planar microphone arrays to calculate the entire sound field of interest. In other words, if

there are sources on one side of the array, we can plot the pressure field on both sides of

the array. This is not possible using the Euclidean form of the Green’s function of Eq.

(13.31).

Proof of the Fourier Green’s function in rectangular coordinates
To derive the Fourier Green’s function, we shall apply a triple Fourier transform, one for

each Cartesian ordinate, to the Green’s function in the spatial domain to convert it to the

spatial frequency domain or k-space.

Gðkx; ky; kzÞ ¼
Z N

�N

Z N

�N

Z N

�N
gðx; y; zjx0; y0; z0Þe jðkxxþkyyþkzzÞdxdydz; (13.35)

whereG(kx, ky, kz) is the Fourier transform of g(x, y, zjx0, y0, z0). The inverse transform is

gðx; y; zjx0; y0; z0Þ ¼ 1

8p3

Z N

�N

Z N

�N

Z N

�N
Gðkx; ky; kzÞe�jðkxxþkyyþkzzÞdkxdkydkz:

(13.36)
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To solve for G(kx, ky, kz), we take the Fourier transform of Eq. (13.17)Z N

�N

Z N

�N

Z N

�N

�
V2 þ k2

�
gðx; y; zjx0; y0; z0Þe jðkxxþkyyþkzzÞdxdydz

¼ �
Z N

�N

Z N

�N

Z N

�N
dðx� x0Þdðy� y0Þdðz� z0Þe jðkxxþkyyþkzzÞdxdydz;

(13.37)

where

V2 ¼ v2

vx2
þ v2

vy2
þ v2

vz2
: (13.38)

Using the general property of the Dirac delta function from Eq. (154) of Appendix II

and noting that

V2e�jðkxxþkyyþkzzÞ ¼
�
� k2x � k2y � k2z

	
e�jðkxxþkyyþkzzÞ

yields�
k2 � k2x � k2y � k2z

	Z N

�N

Z N

�N

Z N

�N
gðx; y; zjx0; y0; z0Þe jðkxxþkyyþkzzÞdxdydz

¼ �e jkðkxx0þkyy0þkzz0Þ;

(13.39)

which after substituting in Eq. (13.35) gives us the Green’s function in k-space:

Gðkx; ky; kzÞ ¼ e jðkxx0þkyy0þkzz0Þ

k2x þ k2y þ k2z � k2
: (13.40)

Applying the inverse Fourier transform of Eq. (13.36) then gives us a Fourier Green’s

function in terms of k-parameters:

gðx; y; zjx0; y0; z0Þ ¼ 1

8p3

Z N

�N

Z N

�N

Z N

�N

e�jðkxðx�x0Þþkyðy�y0Þþkzðz�z0ÞÞ

k2x þ k2y þ k2z � k2
dkxdkydkz

¼ 1

8p3

Z N

�N

Z N

�N

Z N

�N

e�jðkxðx�x0Þþkyðy�y0Þþkzðz�z0ÞÞ�
kz þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � k2x � k2y

q 	�
kz �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � k2x � k2y

q 	 dkxdkydkz;
(13.41)

which has two poles: one at kz ¼ þs and the other at kz ¼ �s, where

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � k2x � k2y

q
:
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We now convert Eq. (13.41) from a volume integral to a surface one by integrating

over kz using the residue theorem, which states that

Z N

�N
f ðxÞe�jxtdx ¼

8>>>>>><>>>>>>:

�2pj ðsum of residues of f ðxÞe jxtat all its poles ai
above the real axisÞ; t � 0

2pj ðsum of residues of f ðxÞe jxtat all its poles ai
on or below the real axisÞ; t < 0

; (13.42)

where each residue is defined by

ðx� aiÞf ðxÞe�jxt
��
x/ai

: (13.43)

Applying this to Eq. (13.41) to solve the integral over kz gives

gðx; y; zjx0; y0; z0Þ ¼ �j

8p2

Z N

�N

Z N

�N

e�jðkxðx�x0Þþkyðy�y0Þþsjz�z0jÞ

s
dkxdky: (13.44)

If we let kz ¼ s, this then gives us Eq. (13.33).

Rectangular coordinatesdfar-field
At a large distance R, Eq. (13.31) simplifies to

gðx; y; zjx0; y0; z0ÞjR/N ¼ e�jkðxðx�x0Þþyðy�y0Þþzðz�z0Þ=r

4pr

¼ e�jkr

4pr
e jkðxx0þyy0þzz0Þ=r ;

(13.45)

where

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
: (13.46)

Cylindrical coordinates
If we substitute

x ¼ w cos f; y ¼ w sin f; x0 ¼ w0 cos f0; y0 ¼ w0 sin f0 (13.47)

in Eq. (13.31) and use

sin f sin f0 þ cos f cos f0 ¼ cosðf� f0Þ;
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we obtain

gðw;f; zjw0;f0; z0Þ ¼ e�jkR

ð4pRÞ; (13.48)

where

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 þ w2

0 � 2ww0 cosðf� f0Þ þ ðz� z0Þ2
q

: (13.49)

However, this expression is of limited use and suffers from all the same drawbacks as

were described in reference to the Euclidean Green’s function in rectangular coordinates

given by Eq. (13.31). A more powerful formula [4] is given by

gðw;f; zjw0;f0; z0Þ ¼ �j

4p

XN
n¼ 0

ð2� dn0Þcos nðf� f0Þ

�
Z N

0

JnðkwwÞJnðkww0Þ e
�jkzjz�z0j

kz
kwdkw;

(13.50)

where

kz ¼

8>><>>:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � k2w;

q
0 � kw � k

�j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2w � k2

q
; kw > k;

(13.51)

which is known as the LambeSommerfeld integral [5,6]. This equation can be

considered as the integral over all spatial frequencies of radial standing waves in an infinite

cylinder, which are also summed over all azimuthal harmonics of order n. The

component in the z direction is planar as represented by the exponent term. The reason

why we have radial standing waves is that incoming waves pass through the z axis (or

w ¼ 0) before traveling back out again. In doing so, the imaginary part of the Hankel

function, or Yn function, changes sign. Thus the Yn function is canceled leaving just the

Jn function. This can be considered as the same phenomena as the incoming waves being

reflected back from a rigid termination at w ¼ 0. Hence the standing waves. In the case

of axial symmetry, we exclude all azimuthal harmonics but the n ¼ 0 term:

gðw; zjw0; z0Þ ¼ �j

4p

Z N

0

J0ðkwwÞJ0ðkww0Þ e
�jkzjz�z0j

kz
kwdkw: (13.52)

We will apply this formula to problems with cylindrical symmetry such as circular

sources.
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Proof of the Fourier Green’s function in cylindrical coordinates
If we substitute x0 ¼ w0 cos f0, y0 ¼ w0 sin f0, x ¼ w cos f, y ¼ w sin f, kx ¼ kw cos 4,

and ky ¼ kw sin 4 in Eq. (13.33) and use the identity of Eq. (46) in Appendix II, we

obtain

gðw;f; zjw0;f0; z0Þ ¼ �j

8p2

Z 2p

0

Z N

0

e�jkwðw cosð4�fÞ�w0 cosð4�f0ÞÞ

� e�j
ffiffiffiffiffiffiffiffiffiffi
k2�k2w

p
jz�z0jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 � k2w

q kwdkwd4:

(13.53)

We then expand the first exponent term using Eq. (110) of Appendix II to give

gðw;f; zjw0;f0; z0Þ ¼ �j

8p2

XN
m¼ 0

XN
n¼ 0

ð2� dm0Þð2� dn0Þjm�n

�
Z 2p

0

Z N

0

cos mð4� f0Þcos nð4� fÞJmðkww0ÞJnðkwwÞ e
�j

ffiffiffiffiffiffiffiffiffiffi
k2�k2w

p
jz�z0jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 � k2w

q kwdkwd4;

(13.54)

where the angular integral over 4 is solved using

Z 2p

0

cos mð4� f0Þcos nð4� fÞd4 ¼

8>><>>:
2p cos nðf� f0Þ

2� dn0
m ¼ n

0; msn

; (13.55)

so that the double expansion of Eq. (13.54) reduces to the single one of Eq. (13.50).

Spherical coordinates
The Green’s function in rectangular coordinates was given by Eq. (13.4):

gðx; y; zjx0; y0; z0Þ ¼ e�jkR

ð4pRÞ; (13.56)

where

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� x0Þ2 þ ðy� y0Þ2 þ ðz� z0Þ2

q
: (13.57)
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If we substitute

x ¼ r sin q cosf; y ¼ r sin q sinf; z ¼ r cos q

x0 ¼ r0 sinq0 cosf0; y0 ¼ r0 sinq0 sinf0; z0 ¼ r0 cosq0

(13.58)

and use

sinf sinf0 þ cosf cosf0 ¼ cosðf� f0Þ;

we obtain

gðr; q;fjr0; q0;f0Þ ¼ e�jkR

ð4pRÞ; (13.59)

where

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ r20 � 2rr0ðsin q sin q0 cosðf� f0Þ þ cos q cos q0Þ

q
: (13.60)

However, as in the cylindrical and rectangular cases, this expression is of limited use

and suffers from all the same drawbacks as were described in reference to the Euclidean

Green’s function in rectangular coordinates given by Eq. (13.31). A more powerful

formula [7] is given by

gðr; q;fjr0; q0;f0Þ ¼�jk

4p

XN
n¼ 0

ð2nþ 1Þ
Xn
m¼ 0

ð2� dm0Þ ðn� mÞ!
ðnþ mÞ! cos mðf� f0Þ

� Pm
n ðcos q0ÞPm

n ðcos qÞ

8><>:
jnðkr0Þhð2Þn ðkrÞ; r > r0

jnðkrÞhð2Þn ðkr0Þ; r < r0:

(13.61)

In the case of axial symmetry, we exclude all terms from the summation in m except

for the m ¼ 0 term:

gðr; qjr0; q0Þ ¼ �jk

4p

XN
n¼ 0

ð2nþ 1ÞPnðcos q0ÞPnðcos qÞ
8<: jnðkr0Þhð2Þn ðkrÞ; r > r0

jnðkrÞhð2Þn ðkr0Þ; r < r0:

(13.62)

By relocating the source to q0 ¼ p, r0 / N, we obtain the expansion for a plane

wave:

e�jkr cos q ¼
XN
n¼ 0

ð�jÞnð2nþ 1ÞjnðkrÞPnðcos qÞ: (13.63)
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Like the Fourier Green’s functions in rectangular and cylindrical coordinates, this

expansion form in spherical coordinates can be applied to reverse problems (see Ref. [8],

pp. 210e211, Eqs. (6.107)e(6.110) for compact KirchhoffeHelmholtz integrals. Note

thatGN andGD are not equivalent to the Green’s function given by Eq. (13.61) above or

its normal derivative but can be derived from it using the method we shall apply in

Section 13.5).

Sphericalecylindrical coordinates
Sphericalecylindrical coordinatesdnear-field
If we substitute

x ¼ r sin q cos f; y ¼ r sin q sin f; z ¼ r cos q; x0 ¼ w0 cos f0; y0 ¼ w0 sin f0

(13.64)

in Eq. (13.31) and use

sin f sin f0 þ cos f cos f0 ¼ cosðf� f0Þ;
we obtain

gðr; qjw0;f0Þ ¼ e�jkR

ð4pRÞ; (13.65)

where

R2 ¼ r2 þ w2
0 þ z20 � 2rðw0 sin q cosðf� f0Þ þ z0 cos qÞ: (13.66)

If we set z0 ¼ 0 and f ¼ 0, this simplifies to

R2 þ r2 þ w2
0 � 2rw0 sin q cos f0: (13.67)

Again, this expression is of limited use, and a more powerful formula [9] is given by

gðr; q;fjw0;f0Þ ¼

8>>>>>><>>>>>>:

�jk

4p

XN
n¼ 0

ð2nþ 1Þhð2Þn ðkrÞjnðkw0ÞPnðsin q cosðf� f0ÞÞ; w0 � r

�jk

4p

XN
n¼ 0

ð2nþ 1ÞjnðkrÞhð2Þn ðkw0ÞPnðsin q cosðf� f0ÞÞ; w0 � r

;

(13.68)

where

Pnðsin q cosðf� f0ÞÞ ¼
XN
m¼ 0

ð2� dm0Þð�1ÞmP�m
n ð0ÞPm

n ðcos qÞcosðmðf� f0ÞÞ;
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which is a modified form of the Gegenbauer addition theorem or multipole expansion.

We shall use it to derive near-field expressions for axisymmetric planar sources.

Sphericalecylindrical coordinatesdfar-field
At a large distance r, the terms containing r in Eq. (13.66) dominate. Hence the

remaining terms can be replaced with ones that enable R to be factorized as follows:

R2 ¼ r2 � 2rðw0 sin q cosðf� f0Þ þ z0 cos qÞ þ w2
0 þ z20

zr2 � 2rðw0 sin q cosðf� f0Þ þ z0 cos qÞ

þ ðw0 sin q cosðf� f0Þ þ z0 cos qÞ2

¼ ðr � w0 sin q cosðf� f0Þ � z0 cos qÞ2:

(13.69)

Thus we can write the far-field Green’s function as

gðr; q;fjw0;f0; z0Þjr/N ¼ e�jkðr�w0 sin q cosðf�f0Þ�z0 cos qÞ

4pr
: (13.70)

We will use this formula to derive far-field expressions for axisymmetric planar

sources.

13.5 BOUNDARY INTEGRAL METHOD CASE STUDY: RADIALLY
PULSATING CAP IN A RIGID SPHERE

In this section, we shall apply the boundary integral method to a pulsating cap in a

sphere to illustrate its application to an elementary acoustical problem that has already

been treated in Section 12.6 using the boundary value method. The geometry of the

problem is shown in Fig. 12.16. From Eq. (13.26), we can write the pressure field as a

surface integral:

epðr; qÞ ¼
Z 2p

0

Z p

0

gðr; qjr0; q0Þjr0¼R

v

vr0
epðr0; q0Þjr0¼RR

2 sin q0dq0df0

�
Z 2p

0

Z p

0

epðr0; q0Þjr0¼R

v

vr0
gðr; qjr0; q0Þjr0¼RR

2 sin q0dq0df0;

(13.71)

where the Green’s function in axisymmetric spherical coordinates is given from

Eq. (13.62) by

gðr; qjr0; q0Þjr0¼R ¼ �jk

4p

XN
n¼ 0

ð2nþ 1ÞPnðcos q0ÞPnðcos qÞjnðkRÞhð2Þn ðkrÞ; (13.72)
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and its normal gradient is given by

v

vr0
gðr; qjr0; q0Þjr0¼R ¼ �jk

4p

XN
n¼ 0

ð2nþ 1ÞPnðcos q0ÞPnðcos qÞj0nðkRÞhð2Þn ðkrÞ; (13.73)

where the derivative of the spherical Bessel function is given by Eq. (12.31). We see from

Eq. (13.71) that we have a superposition of two fields. The first integral (monopole)

represents the incident sound field due to the velocity source, formed by the cap. The

normal pressure gradient, or velocity distribution, is obtained from the boundary con-

ditions at the surface of the sphere:

v

vr0
epðr0; q0Þjr0¼R ¼

(�jkr0ceu0; 0 � q � a

0; a < q � p:
(13.74)

The second integral (dipole) represents the sound field reflected by the sphere. The

surface pressure distribution, which is a function of q0, is not yet known and is thus

represented as a Legendre series:

epðr0; q0Þjr0¼R ¼ r0ceu0 XN
m¼ 0

AmPmðcos q0Þ; (13.75)

where the unknown coefficients Am have to be determined. Inserting Eqs. (13.72)

e(13.75) into Eq. (13.71) yields

epðr; qÞ ¼ �k2R2r0ceu0XN
n¼ 0

�
nþ 1

2

�
Pnðcos qÞjnðkRÞhð2Þn ðkrÞ

Z a

0

Pnðcos q0Þsin q0dq0

þ jkR2r0ceu0XN
n¼ 0

�
nþ 1

2

�
Pnðcos qÞj0nðkRÞhð2Þn ðkrÞ

XN
m¼ 0

Am

Z p

0

Pmðcos q0ÞPnðcos q0Þsin q0dq0;

(13.76)

where the integrals can be solved using the identities of Eqs. (66) and (69) from

Appendix II to give

epðr; qÞ ¼ kR2r0ceu0XN
n¼ 0

Pnðcos qÞhð2Þn ðkrÞ
�
jAnj

0
nðkrÞ � k

�
nþ 1

2

�
jnðkRÞsin aP�1

n ðcos aÞ
�
:

(13.77)
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To solve for the unknown coefficients An, we apply the following boundary con-

dition to the above pressure field:

v

vr
epðr; qÞjr¼R ¼ �jkr0ceuðR; qÞ ¼

(�jr0ceu0; 0 � q � a

0; a < q � p:
(13.78)

The surface velocity can be represented by the following Legendre series:

euðR; qÞ ¼ eu0XN
n¼ 0

BnPnðcos qÞ; (13.79)

where the coefficients Bn are found by multiplying through by the orthogonal function

Pm(cos q) and integrating over the surface as follows:Za
0

Pnðcos qÞsin qdq ¼
XN
n¼ 0

Bn

Z p

0

Pmðcos qÞPnðcos qÞsin qdq (13.80)

and applying the identities of Eqs. (66) and (69) from Appendix II to yield

Bn ¼
�
nþ 1

2

�
sin aP�1

n ðcos aÞ: (13.81)

The coefficients are finally solved by applying Eq. (13.78) to Eq. (13.77) and equating

the coefficients of Pn(cos q) to give

An ¼ �
�
nþ 1

2

�
sin aP�1

n ðcos aÞ 1þ jkR2jnðkRÞh0ð2Þn ðkRÞ
R2j0nðkRÞh0ð2Þn ðkRÞ

; (13.82)

which, after inserting into Eq. (13.77), gives

epðr; qÞ ¼ �jkr0ceu0XN
n¼ 0

�
nþ 1

2

�
sin aP�1

n ðcos aÞPnðcos qÞ h
ð2Þ
n ðkrÞ

h
0ð2Þ
n ðkRÞ

: (13.83)

This is exactly the same equation as would be obtained using the boundary value

method described in Section 12.6. In the far field, applying the asymptotic expression for

the spherical Hankel function from Eq. (12.18) gives

epðr; qÞ ¼ �jkr0cS
eu0
4pr

e�jkrDðqÞ; (13.84)
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where the directivity function is given by

DðqÞ ¼ sin a

2k2R2 sin2ða=2Þ
XN
n¼ 0

jnþ1ð2nþ 1Þ2P�1
n ðcos aÞPnðcos qÞ

nh
ð2Þ
n�1ðkRÞ � ðnþ 1Þhð2Þnþ1ðkRÞ

; (13.85)

and S ¼ 4pR2sin2a/2. The radiation impedance is given by

Zs ¼
eFeU0

¼ 2pR2

Seu0
Z a

0

epðr; qÞsin q dq

¼ �jr0c
sin2a

sin2ða=2Þ
XN
n¼ 0

�
nþ 1

2

�2�
P�1
n ðcos aÞ�2hð2Þn ðkRÞ

nh
ð2Þ
n�1ðkRÞ � ðnþ 1Þhð2Þnþ1ðkRÞ

:

(13.86)

13.6 REFLECTION OF A POINT SOURCE FROM A PLANE

Here we consider what happens when a point source is placed near an infinite

reflective planar boundary. Essentially, a hard reflecting surface is the acoustic equivalent

to a mirror in optics whereby each reflecting element on its surface acts as a light source.

A mirror can be regarded as a perfect hologram because it produces an intensity that

varies with direction in accordance with the law of reflection. That is, the angle of

reflection is equal to the angle of incidence. Hence, when you walk past a mirror, the

view changes, whereas when you walk past a picture or video screen, it does not. This is

because the latter provides only intensity information and no directional information.

The directional information comes from the phase of each point source on the surface.

For analytical purposes, it is often convenient to replace the reflecting plane with a

transparent plane of symmetry, which has a symmetrically identical source behind it as

shown in Fig. 13.2.

This property of symmetry has already been applied in previous examples such as the

domes in Sections 12.9 and 12.10. The source and its image both have the same

perpendicular distance d from the plane. With the image source present, the pressure

fields with and without the reflecting plane can be shown to be identical if we consider

that in both cases the field is symmetrical to either side of the plane. Therefore, the

pressures must be equal on opposite faces of the plane, in which case the pressure

gradient in the plane must be zero. Because it takes a pressure gradient to generate a

particle velocity, this also satisfies the boundary condition of zero particle velocity normal

to the plane. Of course, there is no physical image source, so this model is only valid on

the source side of the surface.
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The principle can be expressed by the superposition of fields as follows. If the point

source is located at a distance z0 from an infinite screen at z ¼ 0, there will be an extra

field superimposed on the original because of a virtual source behind the screen. Using

Eqs. (13.2), (13.31), (13.48), and (13.49) for a point source, the field epSðw;f; zÞ pro-
duced by the source in cylindrical coordinates is given by

epSðw;f; zÞ ¼ jkr0c eUS
e�jkRS

4pRS
; (13.87)

where

RS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 þ w2

0 � 2ww0 cosðf� f0Þ þ ðzþ z0Þ2
q

: (13.88)

The field epIðw;f; zÞ produced by the image is then

epIðw;f; zÞ ¼ jkr0c eUS
e�jkRI

4pRI
; (13.89)

where

RI ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 þ w2

0 � 2ww0 cosðf� f0Þ þ ðz� z0Þ2
q

; (13.90)
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Figure 13.2 Reflection of a point source from (a) a plane and (b) equivalent source and image.
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which produces a resultant field

epðw;f; zÞ ¼ epSðw;f; zÞ þ epIðw;f; zÞ
¼ jkr0c eUS

 
e�jkRs

4pRS
þ e�ikRI

4pRI

!
:

(13.91)

Let us now recast this equation in the form

epðw;f; zÞ ¼ jkr0c eUSGðw;f; zjw0;f0; z0Þ; (13.92)

where

Gðw;f; zjw0;f0; z0Þ ¼ e�jkRS

4pRS
þ e�ikRI

4pRI
(13.93)

is a boundedGreen’s function. Notice that we use the upper caseG. An interesting feature

of this bounded Green’s function is that its normal derivative with respect to the plane

(i.e., with respect to z) is zero. Now suppose that part of the plane is in motion and

radiating sound. Points on the plane can be represented byG if we let z0 / 0 so that the

source and its image coalesce. Hence

Gðw;f; zjw0;f0; 0Þ ¼ e�jkR

2pR
¼ 2gðw;f; zjw0;f0; 0Þ; (13.94)

where

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 þ w2

0 � 2ww0 cosðf� f0Þ þ z2
q

: (13.95)

We can use this Green’s function in the monopole Rayleigh integral to represent a

planar source in an infinite baffle. Because the normal derivative of G is zero, the dipole

Rayleigh integral vanishes, and the point sources on the surface become monopole point

sources of double strength.

PART XXXVI: RADIATION AND SCATTERING IN
CYLINDRICAL-SPHERICAL COORDINATES

13.7 RADIATION FROM A RIGID CIRCULAR PISTON IN AN INFINITE
BAFFLE

The simplest monopole planar source is the oscillating circular piston (or rigid disk) in an

infinite baffle. The piston is assumed to be rigid so that all parts of its surface vibrate in
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phase, and its velocity amplitude is independent of the mechanical or acoustic loading on

its radiating surface. Remarkably, its radiation impedance was first derived by Rayleigh

[10] before the direct radiator loudspeaker had even been invented [11], yet it has been

widely accepted as an idealized model for such when mounted in an enclosure situated

near a wall or, even better, mounted directly in a wall as commonly found in recording

studios. The model is useful in the frequency range up to the first diaphragm break-up

mode. It should be noted that here the term “infinite baffle” refers to an infinitely large

plane rigid wall that surrounds the piston and not a finite sealed enclosure, which is often

referred to as an infinite baffle enclosure. The only thing they have in common is that

they both block the transmission path between the back and the front of the radiating

surface. However, the infinitely large wall model does not take into account reflections

from the edges of a real finite enclosure. Also both sides of the radiating surface are open

to half space so that the loading effects of a real finite enclosure such as compliance,

standing waves, absorption, and wall vibration, etc. are ignored. The original derivation

of the radiation impedance by Rayleigh over 100 years ago used the nonintegral Green’s

function of Eq. (13.16) with an ingenious coordinate system. Here we shall follow the

approach of King [12] using the integral Green’s function in cylindrical coordinates given

by Eq. (13.52).

Boundary conditions
The circular piston of radius a shown in Fig. 13.3 is mounted in an infinite baffle in the

xy plane with its center at the origin and oscillates in the z direction with a harmonically

time-dependent velocity eu0, thus radiating sound into a homogeneous loss-free medium.

The area of each surface element is given by

dS0 ¼ w0dw0df0: (13.96)

The monopole source elements shown in Fig. 13.4, together with their images, form

the piston source. As they are coincident in the plane of the baffle, they coalesce to form

elements of double strength. Hence the piston in an infinite baffle can be modeled as a

“breathing” disk in free space. It may also be considered as a pulsating sphere of the same

radius compressed into the plane of the disk. Because of the symmetry of the pressure

fields on either side of the baffle,epðw; zÞ ¼ epðw;�zÞ: (13.97)

Consequently, there is the following Neumann boundary condition on its surface:

v

vz
epðw; zÞjz¼0þ ¼ 0; a < w � N; (13.98)
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Figure 13.4 Equivalence between circular piston in infinite baffle and double-sided monopole piston
in free space or “breathing” disk in free space.
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Figure 13.3 Geometry of rigid circular piston in infinite baffle. The point of observation P is located at
a distance r and angle q with respect to the origin at the center of the piston.
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which is satisfied automatically. On the surface of the disk there is the coupling condition

v

vz
epðw; zÞjz¼0þ ¼ �jkr0ceu0; 0 � w � a (13.99)

and k is the wave number given by k ¼ u/c ¼ 2p/l, u is the angular frequency of

excitation, r0 is the density of the surrounding medium, c is the speed of sound in that

medium, and l is the wavelength.

Far-field pressure
The far-field pressure distribution is given by Eq. (13.27) taking into account the double

strength source:

epðr; qÞ ¼ �2

Z 2p

0

Z a

0

gðr; qjw0;f0Þ
v

vz0
epðw0; z0Þjz0¼0þ w0dw0df0; (13.100)

where the far-field Green’s function in spherical-cylindrical coordinates given by Eq.

(13.70) is used. Inserting Eqs. (13.70) and (13.99) into Eq. (13.100) and integrating over

the surface, using Eqs. (76) and (95) from Appendix II (with z ¼ kw0 sin q, b ¼ k sin q,

and letting f ¼ p/2 so that cos(f � f0) ¼ sin f0), gives

epðr; qÞ ¼ jka2r0ceu0e�jkr

2r
DðqÞ; (13.101)

where the directivity function D(q) is given by

DðqÞ ¼ 2J1ðka sin qÞ
ka sin q

; (13.102)

which is often referred to as the Fraunhofer or Airy diffraction pattern. The normalized

directivity function 20 log10jD(q)j is plotted in Fig. 13.5 for four values of ka ¼ 2pa/l,

that is, for four values of the ratio of the circumference of the piston to the wavelength.

When the circumference of the piston (2pa) is less than one-half wavelength, that is,

ka < 0.5, the piston behaves essentially like a point source. When ka becomes greater

than 3, the piston is highly directional.

The on-axis pressure is evaluated by setting q ¼ 0 in Eq. (13.70) before inserting it in

Eq. (13.100) and integrating over the surface to give

Dð0Þ ¼ 1; (13.103)

which means that the on-axis far-field pressure is proportional to the piston acceleration at

all frequencies and is often written as

epðr; 0Þ ¼ jr0 f eU0
e�jkr

r
; (13.104)
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where eU0 ¼ pa2eu0 is the total volume velocity. This is a general expression for a planar

source in an infinite baffle and also applies to nonuniform velocity distributions where

the volume velocity is the product of the average velocity and the radiating area, which

can be of arbitrary shape.

Although the piston behaves as a more or less omnidirectional source for ka � 1,

similar to a pulsating sphere, the output of the piston is 6 dB less than that of the pulsating

sphere at very low frequencies. Because the piston is radiating into half space, its output

per unit surface area is double that of the pulsating sphere, which is radiating into whole

space. However, the sphere has four times the surface area of a piston of the same radius.

Therefore it produces twice the output. Unlike the pulsating sphere, the on-axis

response of the piston does not roll-off at high frequencies, which is a property of

planar sources in general, as already discussed in Section 12.8 regarding a piston in a
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Figure 13.5 Far-field directivity patterns for a rigid circular piston in an infinite baffle as a function of
ka ¼ 2pa/l ¼ 2pfa/c, where a is the radius of the piston. The directivity index never becomes less
than 3 dB because the piston radiates only into half space.
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sphere. Unlike the piston in a sphere, there is no 6 dB level shift between low and high

frequencies because the baffled piston effectively radiates into half space at all frequencies.

As we shall see, its radiation impedance, like that of a pulsating sphere, is dominated by

mass reactance at low frequencies and resistance at high frequencies.

In the low-frequency region, the radiated sound pressure and hence also intensity are

held constant under constant piston acceleration. This is because the decreasing velocity

is compensated for by the rising radiation resistance, as discussed in greater detail in

Section 4.10.

At higher frequencies, where the impedance starts to become more resistive, the

beam pattern, coincidentally, becomes increasingly narrow. This phenomenon com-

pensates for the fall in on-axis output that would otherwise occur. Indeed, in the case of

the pulsating sphere, the radiated sound pressure is proportional to the surface velocity in

the region where the load is resistive and therefore falls under constant acceleration and

falling velocity. It seems a remarkable coincidence of nature that this transition occurs so

smoothly as to produce a completely flat on-axis response, although it does not seem so

surprising when we consider that the on-axis response results from the sum of an array of

point sources that are all in phase, where the field of each point source is frequency

invariant under constant volume acceleration.

Near-field pressure
The near-field pressure distribution is given by the boundary integral of Eq. (13.27)

taking into account the double-strength source:

epðr; qÞ ¼ �2

Z 2p

0

Z a

0

gðr; qjw0;f0Þ
v

vz0
epðw0; z0Þjz0¼0þ w0dw0df0; (13.105)

where the Green’s function in spherical-cylindrical coordinates given by Eq. (13.68) is

used. Mast and Yu [13] show that inserting Eqs. (13.68) and (13.99) into Eq. (13.105) and

integrating over the surface gives [46]

epðr; qÞ ¼ 2r0ceu0XN
n¼ 0

ð�1Þn G
�
nþ 1 =

2

�
Gðnþ 2ÞG

�
2nþ 1 =

2

� �ka
2

�2nþ2

�1F2

�
nþ 1; nþ 2; 2nþ 3

2
;�k2a2

4

�
h
ð2Þ
2n ðkrÞP2nðcos qÞ;

(13.106)

which converges for r > a but is generally used for w � a. The other part of the Green’s

function of Eq. (13.68) could be used to derive an expression for r < a as was done

previously by Stenzel [14]. However, a better expression is provided byMast and Yu [13],
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which is derived by moving the origin of the coordinate system to a point on the z axis

that lies in the same plane as the observation point to give

epðw; zÞ ¼ r0ceu0ffiffiffi
p

p
XN
n¼ 0

ð�1Þnð4nþ 1Þ
G

�
nþ 1

2

�
Gðnþ 1Þ j2nðkwÞf2n; (13.107)

where f2n is given by the following recursion formulas:

f0 ¼ e�jkz � e�jkra ; (13.108)

f2n ¼ �f2n�2 � krah
ð2Þ
2n�1ðkraÞðP2nðz=raÞ � P2n�2ðz=raÞÞ; (13.109)

and

ra ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ a2

p
; (13.110)

which converges for w2 < a2 þ z2 but is generally used for w < a and is thus termed the

paraxial solution. These equations are an elegant and important result for ultrasound

because they eliminate the need for inefficient numerical integration at high frequencies.

In particular, the number of terms needed for convergence in the paraxial expansion

decreases linearly toward the z-axis until just a single term remains. This is the closed-

form Backhaus axial solution [47]:

epð0; zÞ ¼ r0ceu0�e�jkz � e�jkra
�
: (13.111)

The first term represents a point source at the center of the piston and the second

term radiation from the perimeter. The magnitude of the axial pressure is

jepð0; zÞj ¼ 2r0cjeu0 sin kðra � zÞ=2j Near the surface of the piston, it is approximately

jepð0; zÞjzr0ckajeu0j=ð1þ z=aÞ for ka < 0.5 and z < 0.5a. Hence, at low frequencies, the

radiated sound pressure of a loudspeaker may be calculated from the diaphragm velocity

[see Eq. 13.101], which in turn may be measured using a probe microphone close to the

center. The pressure field for three values of ka is plotted in Fig. 13.6 and for ka ¼ 12p in

Fig. 13.7. From these figures, we can see the formation of the central and side lobes of

the directivity patterns at the start of the far-field or Fraunhofer diffraction zone, where

the waves are spherically diverging. The near-field or Fresnel region is dominated by

nonpropagating interference patterns due to the differences in path lengths from

different parts of the radiating surface. However, in the immediate near field of Fig. 13.7,

the pressure fluctuations are relatively small and we see here the formation of a plane

wave, which extends outwards with increasing frequency. The furthest axial peak is a
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Figure 13.6 Normalized near-field pressure plots for a rigid circular piston in an infinite baffle as a
function of ka ¼ 2pa/l ¼ 2pfa/c. Where a is the radius of the piston, jepj is the pressure magnitude, eu0
is the piston velocity, r0 is the density of the acoustic medium, and c is the speed of sound in that
medium.
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focal point, which is useful for ultrasound applications. Also, we can make the following

observations:

1. At low frequencies, where ka < 3, the on-axis pressure of Eq. (13.111) converges to

the far-field approximation of Eq. (13.104) at around z ¼ pa/2.

2. At high frequencies, where ka > 3, the on-axis pressure converges to the far-field

approximation at around z ¼ ka2/2, which is known as the Rayleigh distance

[15,16]. The on-axis near-field pressure is oscillatory and there are ka/(2p) or a/l

cycles before it converges to the far-field response, where one cycle spans two

magnitude peaks or two nulls. The pressure on the face of the piston also oscillates

radially with a total of ka/2p or a/l cycles between the center and perimeter.

Furthermore, if ka ¼ np or nl ¼ 2a, where n is an integer, the pressure at the center

of the piston is at a null for even n and at a peak for odd n.

3. The number of lobes in the directivity pattern corresponds to the number of axial

peaks plus the number of peaks along the radius of the piston.

An alternative expression to Eq. (13.107) is given in Reference [48].

Figure 13.7 Normalized near-field pressure plots for a rigid circular piston in an infinite baffle as a
function of ka ¼ 2pa/l ¼ 2pfa/c. Where a is the radius of the piston, jepj is the pressure magnitude, eu0
is the piston velocity, r0 is the density of the acoustic medium, and c is the speed of sound in that
medium.
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Radiation impedance and high-frequency asymptotic expression
The near-field pressure distribution is given by Eq. (13.27) taking into account the

double-strength source:

epðw; zÞ ¼ 2

Z 2p

0

Z a

0

gðr; qjw0; z0Þ v

vz0
epðw0; z0Þjz0¼0þw0dw0df0; (13.112)

where the Green’s function in cylindrical coordinates given by Eq. (13.52) is used. In this

form Eq. (13.112) is known as the monopole King integral [12]. Inserting Eqs. (13.52)

and (13.99) into Eq. (13.112) and integrating over the surface gives

epðw; zÞ ¼ �kar0ceu0 Z N

0

J0ðkwwÞJ1ðkwaÞ 1
kz
e�jkzzdkw; (13.113)

where we have used the integral solution of Eq. (95) from Appendix II and kz is given by

Eq. (13.51). To investigate the asymptotic high-frequency behavior, we let k /N in

Eq. (13.113) to give

epðw; zÞjk/N ¼ �r0ceu0e�jkza

Z N

0

J1ðkwaÞJ0ðkwwÞdkw

¼
8<:�r0ceu0e�jkz; 0 � w � a

0; w > a:

(13.114)

This slightly trivial solution describes the sound being radiated as a laser beam

confined within the diameter of the piston. It can also be regarded as a virtual infinite

tube or transmission line in space starting from the perimeter of the piston. At first sight,

this may appear to contradict Eq. (13.111), because the axial nulls and peaks never

actually disappear. On the contrary, they become more numerous and travel out further

with increasing frequency. However, in the high frequency limit, the radial width of this

range of hills and dales shrinks so much that they become insignificant.

The total radiation force is found by integrating the pressure from Eq. (13.113) over

the surface of the piston and again using the integral of Eq. (95) from Appendix II to give

eF ¼ �
Z 2p

0

Z a

0

epðw; zÞjz¼0þwdwdf

¼ 2pka2r0ceu0
0B@Z k

0

J21 ðkwaÞ
kw

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � k2w

q dkw þ j

Z N

k

J21 ðkwaÞ
kw

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2w � k2

q dkw

1CA:

(13.115)
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King [12] shows the solution to be

Zs ¼ eFeU0

¼ Rs þ j Xs; (13.116)

where eU0 ¼ pa2eu0 is the total volume velocity and Rs is the specific radiation resistance

in N$s/m3 (rayl) given by

Rs ¼ r0c

�
1� J1ð2kaÞ

ka

�
zr0c

k2a2

2
; ka < 0:5; (13.117)

where the bold R indicates that the quantity varies with frequency. Xs is the specific

radiation reactance in N$s/m3 (rayl) given by

Xs ¼ r0c
H1ð2kaÞ

ka
zr0c

8ka

3p
; ka < 0:5; (13.118)

where J1 and H1 are Bessel and Struve functions respectively as defined by Eqs. (71) and

(125) in Appendix II. Plots of the real and imaginary parts of

Zs

r0c
¼ Rs þ jXs

r0c
(13.119)

are shown in Fig. 4.35 as a function of ka. Similar graphs of the real and imaginary parts

of the specific admittance

Ysr0c ¼ r0cðGs þ jBsÞ ¼ r0c

�
Rs

R2
s þ X2

s

� j
Xs

R2
s þ X2

s

�

z
9p2

128
� j

3p

8ka
; ka < 0:5

(13.120)

are shown in Fig 4.36. The specific admittance is in m3$N�1 s�1 (rayl�1).

We see from Fig. 4.35 that, for ka < 0.5, the reactance varies as the first power of

frequency while the resistance varies as the second power of frequency. At high fre-

quencies, for ka > 5, the reactance becomes small compared with the resistance, and the

resistance approaches a constant value.

The admittance, on the other hand, is better behaved. The conductance is constant

for ka < 0.5, and it is also constant for ka > 5 although its value is larger.
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13.8 RADIATION FROM A RESILIENT CIRCULAR DISK WITHOUT A
BAFFLE [17]

The resilient circular disk in free space is the simplest dipole planar source and the

dipole complement of the rigid circular piston in an infinite baffle. It can be used as an

approximate model for unbaffled loudspeakers of the electrostatic or planar magnetic

type, in which it is assumed that a perfectly uniform driving pressure is applied to a very

light flexible membrane diaphragm in free space. Because of the dipole nature of the

source, there is zero pressure in the plane of the disk extending beyond its perimeter.

Walker [18] pointed out that such a source is acoustically transparent, in that it does not

disturb the field around it, and used this idealized model to derive the far-field on-axis

pressure response of an electrostatic loudspeaker, which provides a useful approximation

over the loudspeaker’s working range. However, it should be noted that the model as-

sumes a freely suspended membrane, whereas in reality it is usually clamped at the

perimeter, which effectively removes the singularity from the perimeter of the idealized

model [19].

Boundary conditions
The basic configuration is shown in Fig. 13.8. The infinitesimally thin membrane-like

resilient disk is assumed to be perfectly flexible, has zero mass, and is free at its perim-

eter. It is driven by a uniformly distributed harmonically varying pressure ep0 and thus

radiates sound from both sides into a homogeneous loss-free acoustic medium. In fact,

a
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w

0

w0
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r

R P
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elements  

Disk 

Figure 13.8 Geometry of resilient circular disk in free space. The point of observation P is located at a
distance r and angle q with respect to the origin at the center of the disk.
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there need not be a disk present at all and instead the driving pressure could be acting on

the air particles directly. However, for expedience, the area over which this driving

pressure is applied shall be referred to as a disk from here onwards. The pressure field on

one side of the xy plane is the symmetrical “negative” of that on the other, so thatepðw; zÞ ¼ �epðw;�zÞ: (13.121)

Consequently, there is a Dirichlet boundary condition in the plane of the disk where

these equal and opposite fields meet.epðw; 0Þ ¼ 0; a < w � N: (13.122)

On the front and rear surfaces of the disk, the pressures are epþ and ep respectively,

which are given by

epþðw0Þ ¼ �ep�ðw0Þ ¼ ep0
2; 0 � w0 � a (13.123)

and k is the wave number given by k ¼ u/c ¼ 2p/l, where u is the angular frequency of

excitation, r0 is the density of the surrounding medium, c is the speed of sound in that

medium, and l is the wavelength.

Far-field pressure
The far-field pressure distribution is given by the dipole boundary integral of Eq.

(13.28), taking into account the surface pressure on both sides:

epðr; qÞ ¼
Z 2p

0

Z a

0

�epþðw0Þ � ep�ðw0Þ
� v

vz0
gðr; qjw0;f0Þjz0¼0þw0dw0df0; (13.124)

where the far-field Green’s function in spherical-cylindrical coordinates given by Eq.

(13.70) is used. Inserting Eqs. (13.70), (13.121) and (13.123) into Eq. (13.124) and

integrating over the surface, using Eqs. (76) and (95) from Appendix II [with z ¼ kw0 sin

q, b ¼ k sin q, and letting f ¼ p/2 so that cos(f � f0) ¼ sin f0], gives

epðr; qÞ ¼ jka2ep0e�jkr

4r
DðqÞ; (13.125)

where the directivity function D(q) is given by

DðqÞ ¼ 2J1ðka sin qÞ
ka sin q

cos q: (13.126)

The on-axis pressure is evaluated by setting q ¼ 0 in Eq. (13.70) before inserting it in

Eq. (13.124) and integrating over the surface to give

Dð0Þ ¼ 1 (13.127)
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so that the on-axis response can be written as

epðr; 0Þ ¼ jf eF0
e�jkr

2rc
; (13.128)

which just gives a constant 6 dB/octave rising response at all frequencies for a given

driving force eF0 ¼ Sep0, where S ¼ pa2 is the area. Eq. (13.128) is true for a planar

resilient radiator of any shape. The normalized directivity function 20 log10jD(q)/D(0)j is
plotted in Fig. 13.9 for four values of ka ¼ 2pa/l, that is, for four values of the ratio of

the circumference of the disk to the wavelength. The directivity pattern is that of a rigid piston

in an infinite baffle multiplied by cos q. When the circumference of the disk (2pa) is less than

one-half wavelength, that is, ka < 0.5, the resilient disk behaves essentially like a dipole

point source. When ka becomes greater than 3, the resilient disk is highly directional,

like the piston in an infinite baffle. In fact, at very high frequencies, they both radiate

sound as a narrow central lobe (Airy disk) accompanied by a number of very small side

lobes, in which case the factor of cos q makes relatively little difference. In the case of a

push-pull electrostatic loudspeaker,

ep0 ¼ EP

d
$
2eI in
jupa2

; (13.129)
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Figure 13.9 Far-field directivity patterns for a resilient circular disk in free space as a function of
ka ¼ 2pa/l ¼ 2pfa/c, where a is the radius of the disk.
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where EP is the polarizing voltage, d is the membrane-electrode separation, andeI in is the
static input current to each electrode, assuming that the motional current is negligible in

comparison. Substituting this in Eq. (13.128) yields

epðr; 0Þ ¼ EP

d
$
eI ine�jkr

2prc
; (13.130)

which is Walker’s equation [18], albeit obtained by a slightly different method.

Near-field pressure
The near-field pressure distribution is given by Eq. (13.28) taking into account the

surface pressure on both sides:

epðr; qÞ ¼
Z 2p

0

Z a

0

�epþðw0Þ �ep ðw0Þ
� v

vz0
gðr; qjw0;f0Þjz0¼0þw0dw0df0; (13.131)

where the Green’s function in spherical-cylindrical coordinates given by Eq. (13.68) is

used. It has been shown [17] that inserting Eqs. (13.68) and (13.123) into Eq. (13.131)

and integrating over the surface gives

epðr; qÞ ¼ �jep0XN
n¼ 0

ð�1ÞnG
�
nþ 3 =

2

�
Gðnþ 2ÞG

�
2nþ 3 =

2

� �ka
2

�2nþ2

�1F2

�
nþ 1; nþ 2; 2nþ 5

2
;�k2a2

4

�
h
ð2Þ
2nþ1ðkrÞP2nþ1ðcos qÞ;

(13.132)

which converges for r > a but is generally used for w � a. The other part of the Green’s

function of Eq. (13.68) could be used to derive an expression for r < a. However, a better

expression is provided by moving the origin of the coordinate system to a point on the z

axis that lies on the same plane as the observation point to give

epðw; zÞ ¼ jep0ffiffiffi
p

p
kw

XN
n¼ 0

ð�1Þnð4nþ 3Þ
G

�
nþ 3 =

2

�
Gðnþ 1Þ j2nþ1ðkwÞf2nþ1; (13.133)

where f2nþ1 is given by the following recursion formulas:

f1 ¼ j

�
z

ra
e�jkra � e�jkz

�
; (13.134)
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f2nþ1 ¼ �f2n�1 þ krah
ð2Þ
2n ðkraÞðP2nþ1ðz=raÞ � P2n�1ðz=raÞÞ; (13.135)

and

ra ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ a2

p
; (13.136)

which converges for w2 < a2 þ z2 but is generally used for w < a and is thus termed the

paraxial solution. The number of terms in the expansion needed for convergence de-

creases linearly toward the z-axis until just a single term is needed. This is the closed-

form axial solution:

epð0; zÞ ¼ ep0
2

�
e�jkz � zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z2 þ a2
p e�jk

ffiffiffiffiffiffiffiffiffi
z2þa2

p �
: (13.137)

The pressure field for three values of ka is plotted in Fig. 13.10. We can see that the

plane wave region near the surface forms more readily than in the case of the rigid piston

(see Fig. 13.6), no doubt aided by the uniform pressure distribution at the surface of the

resilient disk. At ka ¼ 6p, the pressure field fluctuations in the vicinity of the resilient

disk are smaller than for the rigid piston. Furthermore, the axial pressure response of a

rigid disk given by Eq. (13.111) has nulls, whereas the resilient disk axial response given

by Eq. (13.137) is oscillatory but with decreasing magnitude toward the face of the disk.

An alternative expression to Eq. (13.133) is given in Reference [48].

Surface velocity
Using the solutions for the near-field pressure from Eqs. (13.133)e(13.135), and taking

the normal pressure gradient at the surface of the disk, the surface velocity is given by

eu0ðwÞ ¼ j

krc

d

dz
epðw; zÞjz¼0þ

¼ � ep0
rc

ffiffiffi
p

p
XN
n¼ 0

ð�1Þnð4nþ 3Þ
G

�
nþ 3 =

2

�
Gðnþ 1Þ f 02n

j2nþ1ðkwÞ
kw

;

(13.138)

where

f 00 ¼ 1� j
e�jka

ka
; (13.139)

f 02n ¼ �f 02n�2 � h
ð2Þ
2n ðkaÞðð2nþ 1ÞP2nð0Þ � ð2n� 1ÞP2n�2ð0ÞÞ: (13.140)

The magnitude and phase of the normalized velocity are shown in Figs. 13.11 and

13.12, respectively, for four values of ka. For small k, it can be shown to agree well with
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Figure 13.10 Normalized near-field pressure plots for a resilient circular disk in free space as a
function of ka ¼ 2pa/l ¼ 2pfa/c, where a is the radius of the disk. jepj is the pressure magnitude, ep0 is
the driving pressure.
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the asymptotic expression given by Eq. (13.144). We see that the velocity increases

rapidly toward the perimeter, where it is singular. This is a feature of uniform pressure

sources in general due to the discontinuity at the perimeter. However, it is exacerbated in

this case by the acoustic short circuit between the front and rear surfaces of the dipole

source.
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Figure 13.11 Normalized surface velocity magnitude for a resilient circular disk in free space as a
function of w/a, where w is the radial ordinate and ka ¼ 2pa/l ¼ u/c, where a is the radius of the disk.
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Figure 13.12 Surface velocity phase for a resilient circular disk in free space as a function of w/a,
where w is the radial ordinate and ka ¼ 2pa/l ¼ u/c, where a is the radius of the disk.
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Radiation admittance and low-frequency asymptotic surface velocity
The near-field pressure distribution is given by Eq. (13.28) taking into account the

surface pressure on both sides:

epðw; zÞ ¼
Z 2p

0

Z a

0

�epþðw0Þ � ep�ðw0Þ
� v

vz0
gðw; zjw0; z0Þjz0¼0þw0dw0df0; (13.141)

where the integral Green’s function in cylindrical coordinates given by Eq. (13.52) is

used. In this form Eq. (13.141) is known as the dipole King integral. Inserting Eqs.

(13.52) and (13.123) into Eq. (13.141) and integrating over the surface gives

epðw; zÞ ¼ �ka r0ceu0 Z N

0

J0ðkwwÞJ1ðkwaÞ 1

kz
e�jkzzdkw; (13.142)

where we have again used the integral of Eq. (95) from Appendix II and kz is given by

Eq. (13.51). The disk velocity eu0ðwÞ can be derived using the following relationship for

the normal pressure gradient:

eu0ðwÞ ¼ 1

�jkr0c

v

vz
epðw; zÞjz¼0þ

¼ aep0
2kr0c

Z N

0

J1ðkwaÞJ0ðkwwÞkzdkw:
(13.143)

For small k, we obtain

eu0ðwÞjk/0 ¼ jaep0
2kr0c

Z N

0

J1ðkwaÞJ0ðkwwÞkwdkw

¼ jep0E�w2


a2
�

pkar0c

�
1� w2

a2

��1

;

(13.144)

where E is the complete elliptic integral of the second kind. Hence there is a singularity

at the perimeter. The total volume velocity eU0 is found by integrating the velocity from

Eq. (13.143) over the surface of the disk and again using the integral of Eq. (95) from

Appendix II to give

eU0 ¼
Z 2p

0

Z a

0

eu0ðwÞwdwdf

¼ pa2ep0
kr0c

0B@Z k

0

J21 ðkwaÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � k2w

q
kw

dkw � j

Z N

k

J21 ðkwaÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2w � k2

q
kw

dkw

1CA;

(13.145)
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The solution [17,20] has been shown to be

Ys ¼
eU0

Sep0 ¼ Gs þ jBs; (13.146)

where eU0 ¼ pa2eu0 is the total volume velocity and Gs is the specific radiation

conductance in m3$N�1 s�1 (rayl�1) given by

Gs ¼ 1

r0c

�
1þ J1ð2kaÞ

ka
� 2J0ð2kaÞ � pðJ1ð2kaÞH0ð2kaÞ � J0ð2kaÞH1ð2kaÞÞ

�

z
1

r0c
$
k2a2

6
; ka < 0:5;

(13.147)

where the bold G indicates that the quantity varies with frequency and Bs is the specific

radiation susceptance in m3$N�1 s�1 (rayl�1) given by

Bs ¼ � 1

r0c

�
4

p ka
�H1ð2kaÞ

ka
þ 4ka

p 2F3

�
1; 1;

3

2
;
3

2
; 2;�k2a2

��

z
1

r0c
$
4

pka
; ka < 0:5;

(13.148)

where Jn andHn are Bessel and Struve functions respectively and 2F3 is a hypergeometric

function. Plots of the real and imaginary parts of

r0cYs ¼ r0cðGs þ jBsÞ (13.149)

are shown in Fig. 13.13 as a function of ka. Similar graphs of the real and imaginary parts

of the specific impedance

Zs

r0c
¼ Rs þ jXs

r0c
¼ 1

r0c

 
Gs

G2
s þ B2

s

� j
Bs

G2
s þ B2

s

!

z
pk4a4

96
� j

pka

4
; ka < 0:5

(13.150)

are shown in Fig. 13.14. The specific admittance is in m3$N�1 s�1 (rayl�1). Although

the impedance and admittance functions of the rigid disk in an infinite baffle show

ripples (see Figs. 13.35 and 13.36, respectively), those of the resilient disk are
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smooth almost monotonic functions. We can see that at low frequencies the

impedance and admittance curves are more reactive than those of a piston in an

infinite baffle, so that less power is radiated. This is due to the cancellation of the

acoustic output by the rear wave or acoustic “short circuit,” which is generally the

case with all dipole sources.
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Figure 13.13 Real and imaginary parts of the normalized specific radiation admittance r0cYs of the air
load on one side of a plane circular resilient disk of radius a in free space. Frequency is plotted on a
normalized scale, where ka ¼ 2pa/l ¼ 2pfa/c.
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Relationship between a resilient disk in free space and a rigid piston in
an infinite baffle
Suppose that the radiation resistance and reactance of a rigid disk in an infinite baffle are

denoted by Rs and Xs respectively and Gs and Bs are the radiation conductance and

susceptance respectively of a resilient disk in free space as defined in Eqs. (13.147) and

(13.148), then

ðr0cÞ2
d

dðkaÞ kaGsðkaÞ ¼ RsðkaÞ ¼ r0c

�
1� J1ð2kaÞ

ka

�
; (13.151)
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Figure 13.14 Real and imaginary parts of the normalized specific radiation impedance Zs/r0c of the
air load on one side of a plane circular resilient disk of radius a in free space. Frequency is plotted on a
normalized scale, where ka ¼ 2pa/l ¼ 2pfa/c.
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or

GsðkaÞ ¼ 1

kaðr0cÞ2
Z

RsðkaÞdðkaÞ; (13.152)

and

ðr0cÞ2
d

dðkaÞ kaBsðkaÞ ¼ XsðkaÞ ¼ r0c

�
H1ð2kaÞ

ka

�
; (13.153)

or

BsðkaÞ ¼ 1

kaðr0cÞ2
�Z

XsðkaÞdðkaÞ þ 4

p

�
: (13.154)

13.9 RADIATION FROM A RESILIENT DISK IN AN INFINITE
BAFFLE [21]

A resilient disk in an infinite baffle, like the previous example, represents a source

with a uniform pressure distribution over its radiating surface, unlike the rigid piston

where the velocity is uniform. This makes the problem slightly harder to solve because

we have to include a trial function for the disk velocity distribution in the surface in-

tegral. The trial function is in the form of a series expansion, the unknown coefficients of

which have to be calculated via a set of simultaneous equations. However, it is worth the

effort because, as we shall see, this particular source represents the diffraction pattern due

to a plane wave passing through a circular aperture in an infinite screen, which is an

important result in optics too. The transmission coefficient, or radiation conductance,

was first calculated by Bouwkamp [20] in his PhD dissertation using the boundary value

method in the oblate-spheroidal coordinate system. Less than a decade later, Spence [22]

calculated the surface velocity distribution and directivity pattern. However, oblate-

spheroidal functions are rather complicated, so instead we shall use the boundary inte-

gral method with the Green’s function in cylindrical coordinates and a trial function first

used by Streng [23] for a membrane.

Boundary conditions
The configuration is the same as that shown in Fig. 13.3. The infinitesimally thin

membrane-like resilient disk is mounted in an infinite baffle in the xy plane with its

center at the origin. It is assumed to be perfectly flexible, has zero mass, and is free at its

perimeter. It is driven by a uniformly distributed harmonically varying pressure ep0 and
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thus radiates sound from both sides into a homogeneous loss-free acoustic medium. In

fact, there need not be a disk present at all and instead the driving pressure could be

acting on the air particles directly. However, for expedience, the area over which this

driving pressure is applied shall be referred to as a disk from here onwards. As with the

rigid piston in an infinite baffle, we will model this as a “breathing” disk in free space.

Because of the symmetry of the pressure fields on either side of the baffleepðw; zÞ ¼ epðw;�zÞ: (13.155)

Consequently, there is a Neumann boundary condition in the plane of the disk where

these fields meet:

v

vZ
epðw; zÞjz¼0 ¼ 0; a < w � N; (13.156)

which is satisfied automatically. On the front and rear surfaces of the disk, the pressures

are epþ and ep respectively, which are given by

epþðw0Þ ¼ ep�ðw0Þ ¼ ep0
2; 0 � w0 � a: (13.157)

The pressure gradient is given by

v

vz0
epðw0; z0Þjz0¼0þ ¼

(�jkr0ceuðw0Þ; 0 � w0 � a;

0; w0 > a;
(13.158)

where euðw0Þ is the unknown surface velocity distribution and k is the wave number

given by k ¼ u/c ¼ 2p/l, where u is the angular frequency of excitation, r0 is the

density of the surrounding medium, c is the speed of sound in that medium, and l is the

wavelength. We will use the following trial function, which is itself a solution to the free-

space Helmholtz wave equation in oblate-spheroidal coordinates [20],

eu0ðw0Þ ¼ ep0
2r0c

XN
n¼ 0

An

�
nþ 1

2

��
1� w2

0

a2

�n�1
2

; (13.159)

where An are the as-yet unknown power series coefficients that will be evaluated by

means of a set of simultaneous equations in matrix form. Note that the n ¼ 0 term is

singular when w0 ¼ a. This is due to the discontinuity at the perimeter, which is inherent

in the problem [2]. Otherwise, if we were modeling a problem with zero velocity at the

perimeter, such as a membrane with a clamped perimeter [19], we would replace�
nþ 1 =

2
�
in the index with

�
n � 1 =

2
�
. Using a trial function, any velocity distribution is

possible, and this is not the only trial function that may be used [24,25].
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Calculation of the velocity series coefficients
The near-field pressure distribution is given by Eq. (13.27) taking into account the

double strength source

epðw; zÞ ¼ �2

Z 2p

0

Z a

0

gðw; zjw0; z0Þ v

vz0
epðw0; z0Þjz0¼0w0dw0df0; (13.160)

where the Green’s function in cylindrical coordinates given by Eq. (13.52) is used. In this

form Eq. (13.160) is known as the monopole King integral. Inserting Eqs. (13.52),

(13.158), (13.159), and (13.99) into Eq. (13.160) and integrating over f0 gives

epðw; zÞ ¼ k
ep0
2

XN
n¼ 0

An

�
nþ 1

2

�Z a

0

�
1� w2

0

a2

�n�1
2
Z N

0

J0ðkwwÞ J0ðkww0Þ e
�jkzz

kz
kwdkww0dw0;

(13.161)

where kz is given by Eq. (13.51). At the surface of the disk, we have the coupling

condition

epðw; zÞjz¼0þ ¼ ep0
2
; 0 � w � a (13.162)

which leads to the following coupled equationXN
n¼ 0

AnInðwÞ ¼ FðwÞ (13.163)

which is to be solved for the power series coefficients An, where

FðwÞ ¼ 1; 0 � w � a (13.164)

and

InðwÞ ¼ k

�
nþ 1

2

�Z a

0

�
1� w2

0

a2

�n�1
2
Z N

0

J0ðkwwÞ J0ðkww0Þ kw
kz

dkww0dw0: (13.165)

The infinite integral [49-51] is given by Eq. (A2.106a), together with Eqs. (A2.11a)

and (A2.150), from Appendix II with m ¼ n ¼ 0 and g ¼ 1
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Z N

0

J0ðkwwÞJ0ðkww0Þ kwffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � k2w

q dkw ¼
ffiffiffi
p

p
k

2

XN
m¼ 0

1

ðm!Þ2
�
w

w0

�2m

�
XN
r¼ 0

G

�
r

2
þ 1

2

�
G
�r
2
þ 1
	
G2

�
r

2
� mþ 1

2

���jkw0

2

�r�1

;

(13.166)

so that

InðwÞ ¼ k

�
nþ 1

2

� ffiffiffi
p

p
k

2

XN
m¼ 0

w2m

ðm!Þ2

�
XN
r¼ 0

G

�
r

2
þ 1

2

�
G
�r
2
þ 1
	
G2

�
r

2
� mþ 1

2

���jk

2

�r�1 Z a

0

�
1� w2

0

a2

�n�1
2

wr�2m
0 dw0;

(13.167)

which is simplified with help of the integral

Z a

0

�
1� w2

0

a2

�n�1
2

w
m
0 dw0 ¼

amþ1G

�
nþ 1

2

�
G

�
mþ 1

2

�
2G
�
nþ m

2
þ 1
	 (13.168)

to give

InðwÞ ¼ � ffiffiffi
p

p
G

�
nþ 3

2

�XN
m¼ 0

1

ðm!Þ2

�
XN
r¼ 0

G

�
r

2
þ 1

2

�
G
�r
2
þ 1
	
G

�
r

2
� mþ 1

2

�
G
�
n� mþ r

2
þ 1
	��jka

2

�rþ1�w
a

	2m
;

(13.169)
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which is an expansion in (w/a)2m. We also note that

FðwÞ ¼
XN
m¼ 0

dm0

�w
a

	2m
; 0 � w � a (13.170)

where dm0 is the Kronecker delta function. Inserting Eqs. (13.169) and (13.170) into Eq.

(13.163) and equating the coefficients of (w/a)2m yields the following (N þ 1) � (N þ 1)

matrix equation

M$a ¼ b0a ¼ M�1$b; (13.171)

where the matrix M and vectors a and b are given by

Mðmþ 1; nþ 1Þ ¼ nTmðkaÞ;
(
m ¼ 0; 1;/; N

n ¼ 0; 1;/; N
(13.172)

bðmþ 1Þ ¼ dm0; m ¼ 0; 1;/; N (13.173)

aðnþ 1Þ ¼ An; n ¼ 0; 1;/; N (13.174)

and the infinite power series limits have been truncated to order N. The monopole

cylindrical wave function nTm is named the StenzeleSpence function in tribute to their

pioneering work and is defined by

nTmðkaÞ ¼ � ffiffiffi
p

p G

�
nþ 3

2

�
ðm!Þ2

XN
r ¼ 0

nPmðrÞ
��jka

2

�rþ1

(13.175)

nPmðrÞ ¼
G

�
r

2
þ 1

2

�
G
�r
2
þ 1
	
G

�
r

2
� mþ 1

2

�
G
�r
2
� mþ nþ 1

	 (13.176)

Now that we have the surface velocity series coefficients An, we can derive some ra-

diation characteristics for the resilient disk.

Far-field pressure
The far-field pressure distribution is given by Eq. (13.27) taking into account the

double-strength source:

epðr; qÞ ¼ �2

Z 2p

0

Z a

0

gðr; qjw0;f0Þ
v

vz0
epðw0; z0Þjz0¼0þw0dw0df0; (13.177)
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where the far-field Green’s function in spherical-cylindrical coordinates given by Eq.

(13.70) is used. Inserting Eqs. (13.70), (13.158) and (13.159) into Eq. (13.177) and

integrating over the surface, using Eqs. (76) and (96) from Appendix II [with z ¼ kw0 sin

q, b ¼ k sin q, and letting f ¼ p/2 so that cos(f � f0) ¼ sin f0], gives

epðr; qÞ ¼ jka2ep0e�jkr

4r
DðqÞ; (13.178)

where the directivity function D(q) is given by

DðqÞ ¼
XN
n¼ 0

AnG

�
nþ 3

2

��
2

ka sin q

�nþ1
2

Jnþ1
2
ðka sin qÞ: (13.179)

The on-axis pressure is evaluated by setting q ¼ 0 in Eq. (13.70) before inserting it in

Eq. (13.177) and integrating over the surface to give

Dð0Þ ¼
XN
n¼ 0

Anz

(
4j=ðpkaÞ; ka < 0:5

1; ka > 2:
(13.180)

It is worth noting that D(0) is simply the normalized radiation admittance, that is

Dð0Þ ¼ r0cðGS þ jBSÞ;
where Gs and Bs are given by Eqs. (13.193) and (13.194) respectively. The asymptotic

expression for low-frequency on-axis pressure is then simply

epðr; 0Þz� a

pr
ep0e�jkr ; ka < 0:5 (13.181)

and at high frequencies

epðr; 0Þzj
ka2

4r
ep0e�jkr ; ka > 2; (13.182)

which is the same as for a resilient disk in free space at all frequencies. The on-axis

response is shown in Fig. 13.15, calculated from the magnitude of D(0). The normal-

ized directivity function 20 log10jD(q)/D(0)j is plotted in Fig. 13.16 for four values of

ka ¼ 2pa/l, that is, for four values of the ratio of the circumference of the piston to the

wavelength. When the circumference of the piston (2pa) is less than one-half wave-

length, that is, ka < 0.5, the disk behaves essentially like a point source. When ka be-

comes greater than 3, the resilient disk is highly directional, rather like the rigid piston in

an infinite baffle except without the nulls.
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Figure 13.16 Far-field directivity patterns for a resilient disk in an infinite baffle as a function of
ka ¼ 2pa/l ¼ 2pfa/c, where a is the radius of the disk.
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Near-field pressure
The near-field pressure distribution is given by Eq. (13.27) taking into account the

surface pressure on both sides:

epðr; qÞ ¼ 2

Z 2p

0

Z a

0

gðr; qjw0;f0Þ
v

vz0
epðw0; z0Þz0¼0þw0dw0df0; (13.183)

where the Green’s function in spherical-cylindrical coordinates given by Eq. (13.68) is

used. It has been shown [21] that inserting Eqs. (13.68), (13.158) and (13.159) into Eq.

(13.183) and integrating over the surface gives

pðr; qÞ ¼ ep0XN
n¼ 0

An

XP
p¼ 0

ð�1ÞpG
�
pþ 1 =

2

�
G

�
nþ 3 =

2

�
h
ð2Þ
2p ðkrÞP2pðcos qÞ

G

�
2pþ 1 =

2

�
G

�
pþ nþ 3 =

2

�
�
�
ka

2

�2pþ2

1F2

�
pþ 1; pþ nþ 3

2
; 2pþ 3

2
;�k2a2

4

�
; (13.184)

which converges for r > a. For r � a, we derive a suitable expression from Eq. (13.161),

which is weakly singular at kw ¼ k. However, we can remove this singularity as follows:

First, we substitute

kw ¼ k
ffiffiffiffiffiffiffiffiffiffiffiffi
1� t2

p
for kw � k

and

kw ¼ k
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ t2

p
for kw > k

in Eq. (13.161) to obtain

epðw; zÞ ¼ ep0XN
n¼ 0

AnG

�
nþ 3

2

�
ðIFin þ jIInf Þ; (13.185)

where

IFin ¼
�
2

ka

�n�3
2
Z 1

0

�
1

1� t2

�n
2
þ1

4

Jnþ1
2

�
ka

ffiffiffiffiffiffiffiffiffiffiffiffi
1� t2

p 	
J0

�
kw

ffiffiffiffiffiffiffiffiffiffiffiffi
1� t2

p 	
e�jkztdt; (13.186)
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�
2

ka

�n�3
2
Z N

0

�
1
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�n
2
þ1

4

Jnþ1
2

�
ka

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ t2

p 	
J0

�
kw

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ t2

p 	
e�kztdt:

(13.187)
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We then apply the expansion or Eq. (109) from Appendix II to give

IFin þ jIInf ¼
XN
p¼ 0

ð�1Þp

p!G

�
nþ pþ 3 =

2

��ka
2

�2pþ2

2F1
�
� p;�n� p� 1

2
; 1;
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�

�
0@Z 1

0

�
1� t2

�p
e�jkztdt þ j

Z N

0

�
1þ t2

�p
e�kztdt

1A; (13.188)

which, after integrating, yields

IFin ¼
ffiffiffi
p

p
2

XN
p¼ 0

ð�1Þp
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nþ pþ 3 =

2
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2
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(13.189)

IInf ¼
ffiffiffi
p

p
2

XN
p¼ 0

ð�1Þp

G

�
nþ pþ 3 =
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��ka
2

�2pþ2

2F1
�
� p;�n� p� 1

2
; 1;

w2

a2

�

�
�
2

kz

�pþ1
2�
Hpþ1

2
ðkzÞ � Ypþ1

2
ðkzÞ

	
:

(13.190)

Eq. (13.189) converges everywhere and is therefore suitable for r < a. Unfortunately,

Eq. (13.190) only converges for z2 > w2 þ a2 and is therefore not suitable. However, Eq.

(13.187) converges everywhere and can be calculated numerically without problem and

is therefore suitable for r < a. Using the BabineteBouwkamp principle, this represents

the field scattered by a hole in an infinite screen in the presence of an incident plane

wave, as plotted in Fig. 13.39 for three values of ka.

Surface velocity
The magnitude and phase of the normalized velocity from Eq. (13.159) are shown in

Figs. 13.17 and 13.18, respectively, for four values of ka. We see that the velocity in-

creases rapidly toward the perimeter where it is singular. This is a feature of uniform

pressure sources in general because of the discontinuity at the perimeter.
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Radiation admittance
The total volume velocity eU0 is found by integrating the velocity from Eq. (13.159) over

the surface of the disk to give

eU0 ¼
Z 2p

0

Z a

0

eu0ðw0Þw0dw0df0 ¼ pa2ep0
2r0c

XN
n¼ 0

An: (13.191)
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Figure 13.17 Normalized surface velocity magnitude for a resilient circular disk in an infinite baffle as
a function of w/a where w is the radial ordinate and ka ¼ 2pa/l ¼ u/c, where a is the radius of the
disk.
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where w is the radial ordinate and ka ¼ 2pa/l ¼ u/c, where a is the radius of the disk.

656 Acoustics: Sound Fields, Transducers and Vibration



The specific radiation admittance is then given by

Ys ¼ eU0

Sep0 ¼ Gs þ jBs; (13.192)

where eU0 is the total volume velocity and Gs is the specific radiation conductance in

m3$N�1 s�1 (rayl�1) given by

Gs ¼ 1

r0c
<
 XN

n¼ 0

An

!

z
1

r0c
$
8

p2
; ka < 0:5;

(13.193)

where the bold G indicates that the quantity varies with frequency. Bs is the specific

radiation susceptance in m3$N�1 s�1 (rayl�1) given by

Bs ¼ 1

r0c
J

 XN
n¼ 0

An

!

z
1

r0c
$
4

pka
; ka < 0:5:

(13.194)

Plots of the real and imaginary parts of

r0cYs ¼ r0cðGs þ jBsÞ (13.195)

are shown in Fig. 13.19 as a function of ka. Similar graphs of the real and imaginary parts

of the specific impedance

Zs

r0c
¼ Rs þ jXs

r0c
¼ 1

r0c

 
Gs

G2
s þ B2

s

� j
Bs

G2
s þ B2

s

!

z
k2a2

2
� j

pka

4
; ka < 0:5

(13.196)

are shown in Fig. 13.20. The specific admittance is in m3$N�1 s�1 (rayl�1). Although

the impedance and admittance functions of the rigid disk in an infinite baffle show

ripples (see Figs. 13.35 and 13.36 respectively), those of the resilient disk are smooth,

almost monotonic functions.
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Figure 13.19 Real and imaginary parts of the normalized specific radiation admittance Ys/r0c of the
air load on one side of a plane circular resilient disk of radius a in an infinite baffle. Frequency is
plotted on a normalized scale, where ka ¼ 2pa/l ¼ 2pfa/c.
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13.10 RADIATION FROM A RIGID CIRCULAR PISTON IN A FINITE
CIRCULAR OPEN BAFFLE [26,27]

A disk in a circular baffle is a useful model for an open-baffle type loudspeaker and

in the limiting case a loudspeaker without a baffle of any sort. Loudspeaker drive units are

often measured in a finite baffle such as the rectangular IEC 268-5 baffle. See IEC

60268-5, ed. 3.1, “Sound system equipment - Part 5: Loudspeakers,” available from

http://webstore.iec.ch/. For example, for a nominal 8-in (200 mm) diameter loud-

speaker, the baffle size would be 1.65 m long by 1.35 m wide, with the loudspeaker offset

from the center by 22.5 cm lengthways and 15 cm widthways. If we have a rigorous

model of the baffle, we can subtract its diffraction effects from the measurement to reveal

the true response of the drive unit. The problem was first solved by Nimura and

Watanabe [28] using the boundary value method in the oblate-spheroidal coordinate

system. However, oblate-spheroidal functions are rather complicated, so instead we shall

use the boundary integral method with the Green’s function in cylindrical coordinates

and a trial function first used by Streng [23] for a membrane. Previous solutions for the

limiting case of a disk in free space have been obtained by Bouwkamp [20] using the

boundary value method and Sommerfeld [29] using the boundary integral method in

cylindrical coordinates. Meixner and Fritze [30] plotted the near-field pressure, a

formidable task without the benefit of modern computing power, and Wiener [31]

plotted the far-field directivity pattern.

Boundary conditions
The circular piston of radius a shown in Fig. 13.21 is mounted in a finite circular baffle of

radius b in the xy plane with its center at the origin and oscillates in the z direction with a

harmonically time-dependent velocity eu0, thus radiating sound from both sides into a

homogeneous loss-free medium. The dipole source elements shown in Fig. 13.21 form

the piston source. The area of each surface element is given by

dS0 ¼ w0dw0df0$ (13.197)

The pressure field on one side of the xy plane is the symmetrical “negative” of that on

the other, so that epðw; zÞ ¼ �epðw;�zÞ: (13.198)

Consequently, there is a Dirichlet boundary condition in the plane of the disk where

these equal and opposite fields meet:epðw; 0Þ ¼ 0; b < w � N; (13.199)
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which is satisfied automatically. On the front and rear surfaces of the baffle, there is a

Neumann boundary condition

v

vz
epðw; zÞjz¼0� ¼ 0; a < w � b: (13.200)

Also, on the front and rear surfaces of the disk, there is the coupling condition

v

vz
epðw; zÞjz¼0� ¼ �jkr0ceu0; 0 � w � a; (13.201)

where k is the wave number given by k ¼ u/c ¼ 2p/l, u is the angular frequency of

excitation, r0 is the density of the surrounding medium, c is the speed of sound in that

medium, and l is the wavelength. To tackle this problem, we shall use the dipole surface

integral of Eq. (13.28). However, some prior expression for the frontal surface pressure

distribution epþðw0Þ is needed. In addition, because the disk can radiate from both sides,

the rear surface pressure distribution ep�ðw0Þ must be included too, whereepþðw0Þ ¼ �ep�ðw0Þ. Streng [23] showed that the surface pressure distribution for any

flat axially symmetric unbaffled source (or sink), based on Bouwkamp’s solution [20] to

the free-space wave equation in oblate-spheroidal coordinates, could be written as

epþðw0Þ ¼ �ep�ðw0Þ ¼ kbr0ceu0a2
b2

XN
n¼ 0

An

�
nþ 3

2

��
1� w2

0

b2

�nþ1
2

; 0 � w0 � b:

(13.202)

where An are the as-yet unknown power series coefficients, which will be evaluated by

means of a set of simultaneous equations in matrix form.
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Figure 13.21 Geometry of rigid circular piston in finite baffle. The point of observation P is located at
a distance r and angle q with respect to the origin at the center of the piston.
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Formulation of the coupled equation
The near-field pressure distribution is given by the boundary integral of Eq. (13.28)

taking into account the surface pressure on both sides

epðw; zÞ ¼
Z 2p

0

Z b

0

�epþðw0Þ �ep�ðw0Þ
� v

vz0
gðw; zjw0; z0Þjz0¼0þw0dw0df0; (13.203)

where the Green’s function in cylindrical coordinates given by Eq. (13.52) is used. In this

form Eq. (13.203) is known as the dipole King integral. Inserting Eqs. (13.52), (13.198)

and (13.202) into Eq. (13.203) and integrating over f0 gives

epðw; zÞ ¼ kbr0ceu0a2
b2

XN
n¼ 0

An

�
nþ 3

2

�Z b

0

�
1� w2

0

b2

�nþ1
2

�
Z N

0

J0ðkwwÞJ0ðkww0Þe�jkzjzjkwdkww0dw0;

(13.204)

where kz is given by Eq. (13.51). At the surface of the disk, we have the coupling

condition

v

vz
epðw; zÞjz¼0 ¼ �jkr0ceu0FðwÞ; (13.205)

where F(w) is a dimensionless function of the surface velocity distribution. We will use

different expressions for F(w) when considering a piston in free space and a piston or

point source in a circular baffle. This leads to the following coupled equationXN
n¼ 0

AnInðwÞ ¼ FðwÞ; (13.206)

where

InðwÞ ¼ a2

b

�
nþ 3

2

�Z b

0

�
1� w2

0

b2

�nþ1
2
Z N

0

J0ðkwwÞJ0ðkww0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � k2w

q
kwdkww0dw0:

(13.207)

The infinite integral [46e48] is given by Eq. (A2.106b), together with Eqs. (A2.11a)

and (A2.150), from Appendix II with m ¼ n ¼ 0 and g ¼ 1
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(13.208)

where dr,1 is the Kronecker delta function that is included to ensure that the r ¼ 1 term

goes to zero in an orderly way without having a singularity due to G(0) in the numerator.

Hence
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(13.209)

which is simplified with help of the integral
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to give
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(13.211)
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Solution of the power series coefficients for a piston in free space
Eq. (13.211) is an expansion in (w/b)2m. Hence, to solve for the expansion coefficients, it

is useful to also express the disk and baffle velocity distribution F(w) as a function of

(w/b)2m. In the case of a disk in free space where b ¼ a, we have

FðwÞjb¼a ¼ 1 ¼
XN
m¼ 0

dm;0

�w
a

	2m
; 0 � w � a (13.212)

where dm0 is the Kronecker delta function. Inserting Eqs. (13.211) and (13.212) in Eq.

(13.206) and equating the coefficients of (w/a)2m yields the (N þ 1) � (N þ 1) matrix

equation

M$a ¼ b; (13.213)

where the matrix M and vectors a and b are given by

Mðmþ 1; nþ 1Þ ¼ nBmðkaÞ;
(
m ¼ 0; 1;/; N

n ¼ 0; 1;/; N
; (13.214)

bðmþ 1Þ ¼ dm;0; m ¼ 0; 1;/; N ; (13.215)

aðnþ 1Þ ¼ An; n ¼ 0; 1;/; N ; (13.216)

and the infinite power series limits have been truncated to order N. The dipole cylin-

drical wave function nBm is named the BouwkampeStreng function in tribute to their

pioneering work and is defined by

nBmðkaÞ ¼ �j
ffiffiffi
p

p
G

�
nþ 5

2

�
1

ðm!Þ2
XN
r¼ 0

nSmðrÞ
��jka

2

�r

; (13.217)

where

nSmðrÞ ¼
G

�
r

2
� 1

2
þ dr;1

�
G
�r
2
þ 1
	
G

�
r

2
� m� 1

2

�
G
�r
2
þ n� mþ 1

	: (13.218)

Solution of the power series coefficients for a piston in a circular baffle
For a finite baffle, where b s a, we can employ the following least-mean-squares (LMS)

algorithm. From Eq. (13.206), let an error function be defined by
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EðAnÞ ¼
Z b

0

�����XN
n¼ 0

AnInðwÞ �FðwÞ
�����
2

wdw: (13.219)

where

FðwÞ ¼
(
1; 0 � w � a

0; a < w � b;
(13.220)

To find the values of An that minimize the error, we take the derivative of E with

respect to An and equate the result to zero

v

vAn
EðAnÞ ¼ 2

Z b

0

I�mðwÞ
 XN

n¼ 0

AnInðwÞ � FðwÞ
!
wdw ¼ 0; (13.221)

which, after truncating the infinite series limit to order N, yields the following set of

N þ 1 simultaneous equationsXN
n¼ 0

An

Z b

0

I�mðwÞInðwÞwdw ¼
Z a

0

I�mðwÞwdw; m ¼ 0; 1;/N ; (13.222)

where

I�mðwÞ ¼ a2

b2

XP
p¼ 0

mB
�
pðkbÞ

�w
b

	2p
; (13.223)

InðwÞ ¼ a2

b2

XQ
q¼ 0

nBqðkbÞ
�w
b

	2q
: (13.224)

Integrating over w yields the following (N þ 1) � (N þ 1) matrix equation

M$a ¼ b; (13.225)

where the matrix M and vectors a and b are given by

Mðmþ 1; nþ 1Þ ¼
XP
p¼ 0

XQ
q¼ 0

mB
�
qðkbÞnBqðkbÞ
pþ qþ 1

;

(
m ¼ 0; 1;/; N

n ¼ 0; 1;/; N
; (13.226)

bðmþ 1Þ ¼ �
XP
p¼ 0

mB
�
pðkbÞ

pþ 1

�a
b

	2p
; m ¼ 0; 1;/; N ; (13.227)

aðnþ 1Þ ¼ An; n ¼ 0; 1;/; N (13.228)
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Solution of the power series coefficients for a point or ring source in a
circular baffle
In the case of a ring source of radius a in a circular baffle, we have

FðwÞ ¼ a

2
dðw � aÞ; (13.229)

where d is the Dirac delta function. Inserting this into Eq. (13.221) and truncating the

infinite series limit to order N, yields the following set of N þ 1 simultaneous equationsXN
n¼ 0

An

Z b

0

I�mðwÞInðwÞwdw ¼ a

2

Z b

0

dðw � aÞI�mðwÞwdw; m ¼ 0; 1;/N ;

(13.230)

where I�m(w) and In(w) are given by Eqs. (13.223) and (13.224), respectively. Integrating

over w and using the property of the Dirac delta function yields the same matrix

equations as Eqs. (13.225)e(13.228) except that

bðmþ 1Þ ¼
XP
p¼ 0

mB
�
pðkbÞ

�a
b

	2p
: (13.231)

In the limiting case of a point source at the center of a circular baffle, we let a / 0 so

that

bðmþ 1Þ ¼ mB
�
0ðkbÞ: (13.232)

Now that we have the surface pressure series coefficients An, we can derive some

radiation characteristics for the disk in free space or open circular baffle or a point source

in a circular baffle.

Far-field pressure
The far-field pressure distribution is given by the dipole boundary integral of Eq.

(13.28), taking into account the surface pressure on both sides:

epðr; qÞ ¼
Z 2p

0

Z b

0

�epþðw0Þ � ep�ðw0Þ
� v

vz0
gðr; qjw0;f0Þjz0¼0þw0dw0df0; (13.233)

where the far-field Green’s function in spherical-cylindrical coordinates given by Eq.

(13.70) is used. Inserting Eqs. (13.70), (13.198), and (13.202) into Eq. (13.233) and
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integrating over the surface, using Eqs. (76) and (96) from Appendix II [with z ¼ kw0 sin

q, b ¼ k sin q, and letting f ¼ p/2 so that cos(f � f0) ¼ sin f0], gives

epðr; qÞ ¼ jka2r0ceu0e�jkr

2r
DðqÞ; (13.234)

where the directivity function D(q) is given by

DðqÞ ¼ kb cos q
XN
n¼ 0

AnG

�
nþ 5

2

��
2

kb sin q

�nþ3
2

Jnþ3
2
ðkb sin qÞ: (13.235)

The on-axis pressure is evaluated by setting q ¼ 0 in Eq. (13.70) before inserting it

into Eq. (13.233) and integrating over the surface to give

Dð0Þ ¼ kb
XN
n¼ 0

An; (13.236)

so that the on-axis response can be written as

epðr; 0Þ ¼ jr0 f eU0
e�jkr

r
kb
XN
n¼ 0

An: (13.237)

where eU0 ¼ pa2eu0 is the total volume velocity. It is worth noting that in the unbaffled

case, where b ¼ a, D(0) is simply the normalized radiation impedance, that is D(0) ¼
(Rs þ jXs)/(r0c) where Rs and Xs are given by Eqs. (13.249) and (13.250), respectively.

Using standard curve-fitting methods, the following asymptotic expression can be

written as

Dð0Þzj0:66

�
b

a
� 0:3

�
ka; kb < 0:5: (13.238)

The on-axis response for five values of b is shown in Fig. 13.22, calculated from the

magnitude of D(0).

We can see from Fig. 13.22 that, in the case of an unbaffled piston (b ¼ a) radiating

from both sides, the on-axis sound pressure falls at 6 dB/octave for small values of ka

owing to the decreasing path difference (as a proportion of wavelength l) between the

antiphase rear radiation and the front radiation, which it partially cancels. This is also true

of the oscillating sphere (see Fig. 4.26), but the attenuation is not as great because of the

longer path difference around the sphere.
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At larger values of ka, the rear radiation moves in and out of phase with that from the

front. However, the comb-filter effect is fairly “smeared,” the largest peak being 3 dB at

ka ¼ p/O2 (or l ¼ 2O2 a), the reason being that rear radiation is due to the sum of many

ring sources spread over the radius of the piston, each with a different path length to the

front, so that at no particular frequency do they combine to produce a source that is

either directly in phase or out of phase with that from the front. Unlike the oscillating

sphere, the on-axis response does not roll-off at high frequencies, which is a property of

planar sources, as already discussed in Section 12.8.

By contrast, when we include a circular baffle and increase its size, the actual radiating

area decreases in proportion to the total so that it behaves more like a coherent point

source at the center. Hence, when b ¼ 4a, a deep null can be seen at ka ¼ p/2 or l ¼ 4a,

which is the distance from the center to the edge. Of course, a piston at the center of a

circular baffle is the “worst case,” and it would be interesting to compare these results

with those of an offset piston in a circular, rectangular, or elliptical baffle, for example, to

“smear” the path difference effect.
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Figure 13.22 Plot of 20 log10(D(0)) where D(q) is the directivity function of a plane circular piston of
radius a in a flat open circular baffle of radius b. When b ¼ a (solid black curve), there is no baffle and
the piston is radiating from both sides in free space. When b ¼N (dotted black curve), the piston is in
an infinite baffle. The axial acceleration of the piston is constant. Frequency is plotted on a normalized
scale, where ka ¼ 2pa/l ¼ 2pfa/c.
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The normalized directivity function 20 log10jD(q)/D(0)j for a piston in free space is

plotted in Fig. 13.23 for four values of ka ¼ 2pa/l, that is, for four values of the ratio of

the circumference of the disk to the wavelength. When the circumference of the piston

(2pa) is less than one-half wavelength, that is, ka< 0.5, it behaves essentially like a dipole

point source. In fact, to a first approximation, an unbaffled thin piston is simply a doublet

because an axial movement in one direction compresses the air on one side of it and

causes a rarefaction of the air on the other side. When ka becomes greater than 3, the

piston is highly directional, like the piston in an infinite baffle. Also, the directivity

function for a piston in a finite open baffle is plotted in Fig. 13.24 for four values of ka

with b ¼ 2a and in Fig. 13.25 for four values of b.

Near-field pressure
The near-field pressure distribution is given by Eq. (13.28) taking into account the

surface pressure on both sides:

epðr; qÞ ¼
Z 2p

0

Z b

0

�epþðw0Þ �ep ðw0Þ
	 v

vz0
gðr; qjw0;f0Þjz0¼0þw0dw0df0; (13.239)
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Figure 13.23 Far-field directivity patterns for a plane circular piston radiating from both sides into
free space as a function of ka ¼ 2pa/l ¼ 2pfa/c, where a is the radius of the piston.
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Figure 13.24 Far-field directivity patterns for a circular piston in a plane open circular baffle as a
function of ka ¼ 2pa/l ¼ 2pfa/c, where a is the radius of the piston and b ¼ 2a is the radius of the
baffle.
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Figure 13.25 Far-field directivity patterns for a circular piston in a plane open circular baffle as a
function of b at ka ¼ p/2 or l ¼ 4a, where a is the radius of the piston and b is the radius of the baffle.

Radiation and scattering of sound by the boundary integral method 669



where the Green’s function in spherical-cylindrical coordinates given by Eq. (13.68) is

used. It has been shown [17] that inserting Eqs. (13.68), (13.198) and (13.202) into

Eq. (13.239) and integrating over the surface gives

epðr; qÞ ¼ 2jkbr0ceu0a2
b2

XN
n¼ 0

An

XP
p¼ 0

ð�1ÞpG
�
pþ 3

2

�
G

�
nþ 5

2

�
h
ð2Þ
2pþ1ðkrÞP2pþ1ðcos qÞ

G

�
2pþ 3

2

�
G

�
pþ nþ 5

2

�

�
�
kb

2

�2pþ2

1F2

�
pþ 1; pþ nþ 5

2
; 2pþ 5

2
;�k2b2

4

�
;

(13.240)

which converges for r > b. For r � b, we derive a suitable expression from Eq. (13.204),

which is weakly singular at kw ¼ k. However, we can remove this singularity as follows:

Firstly, we substitute

kw ¼ k
ffiffiffiffiffiffiffiffiffiffiffiffi
1� t2

p
for kw � k

and

kw ¼ k
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ t2

p
for kw > k

in Eq. (13.204) to obtain

epðw; zÞ ¼ k2a2r0ceu0XN
n¼ 0

AnG

�
nþ 5

2

�
ðIFin þ IInf Þ; (13.241)

where

IFin ¼ �
�
2
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(13.242)
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(13.243)
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We then apply the expansion of Eq. (109) from Appendix II to give

IFin þ IInf ¼ �
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(13.244)

which after integrating yields
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(13.246)

Eq. (13.245) converges everywhere and is therefore suitable for r < b. Unfortunately,

Eq. (13.246) only converges for z2 > w2 þ b2 and is therefore not suitable. However, Eq.

(13.243) converges everywhere and can be calculated numerically without problem and

is therefore suitable for r < b. The pressure field of a rigid piston in free space is plotted in

Fig. 13.26 for three values of ka. At ka ¼ 6p, the sound field of the unbaffled piston

shows similar characteristics to the baffled one, except that the radial pressure beyond its

perimeter is zero, as with any planar dipole source. This suggests that, at high fre-

quencies, objects on either side of the source have less effect on the sound field, except

that the axial nulls are not as deep and the peaks are slightly higher. It can be shown that

at low frequencies, where ka < 1, the on-axis pressure converges to the far-field

approximation at increasingly greater distances due to the proximity effect (bass tip-

up). The pressure field of a rigid piston in a circular baffle of radius b ¼ 2a is plotted

in Fig. 13.27 for two values of ka.
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Figure 13.26 Normalized near-field pressure plots for a rigid circular piston in free space as a function
of ka ¼ 2pa/l ¼ 2pfa/c, where a is the radius of the piston. jepj is the pressure magnitude, eu0 is the
piston velocity, r0 is the density of the acoustic medium, and c is the speed of sound in that medium.
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Radiation impedance of a piston in a circular baffle
The total radiation force is found by integrating the pressure from Eq. (13.202) over the

surface of the disk on both sides to give

eF ¼
Z 2p

0

Z a

0

�epþðw0Þ � ep ðw0Þ
	
wdwdf

¼ 2pa2r0ceu0XN
n¼ 0

An

(
1�

�
1� a2

b2

�nþ3
2

)
:

(13.247)
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Figure. 13.27 Normalized near-field pressure plots for a rigid circular piston in a finite open circular
baffle of radius b ¼ 2a as a function ka ¼ 2pa/l ¼ 2pfa/c, where a is the radius of the piston. jepj is the
pressure magnitude, eu0 is the piston velocity, r0 is the density of the acoustic medium, and c is the
speed of sound in that medium.
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The specific radiation impedance Zs is then given by

Zs ¼
eFeU0

¼ Rs þ jXs; (13.248)

where eU0 ¼ pa2eu0 is the total volume velocity and Rs is the specific radiation resistance

in N$s/m3 (rayl) given by

Rsjbsa ¼ kbr0c<
 XN

n¼ 0

An

(
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�
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�nþ3
2

)!

Rsjb¼a ¼ kar0c<
 XN

n¼ 0

An

!
zr0c

8k4a4

27p2
; ka < 0:5;

(13.249)

where the bold R indicates that the quantity varies with frequency and Xs is the specific

radiation reactance in N$s/m3 (rayl) given by

Xsjbsa ¼ kbr0cJ

 XN
n¼ 0

An
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�
1� a2
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�nþ3
2

)!

Xsjb¼a ¼ kar0cJ

 XN
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An
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zr0c

4ka

3p
; ka < 0:5:

(13.250)

Plots of the real and imaginary parts of

Zs

r0c
¼ Rs þ jXs

r0c
(13.251)

are shown in Fig. 13.28 as a function of ka.

The data of Fig. 13.28 are used in dealing with impedance analogies. The complex

admittance can be obtained by taking the reciprocal of the complex impedance.

The specific admittance is given by

Ys ¼ Gs þ jBs ¼ Rs

R2
s þ X2

s

� j
Xs

R2
s þ X2

s

Ysjb¼a ¼ ðGs þ jBsÞjb¼az
1

r0c

�
k2a2

6
� j

3p

4ka

�
; ka < 0:5:
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Figure 13.28 Real and imaginary parts of the normalized specific radiation impedance Zs/r0c of the
air load on one side of a plane circular piston of radius a in a flat circular open baffle of radius b. When
b ¼ a (solid black curve), there is no baffle and the piston is radiating from both sides into free space.
When b ¼N (dotted black curve), the piston is in an infinite baffle. Frequency is plotted on a
normalized scale, where ka ¼ 2pa/l ¼ 2pfa/c.
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13.11 RADIATION FROM A RIGID CIRCULAR PISTON IN A FINITE
CIRCULAR CLOSED BAFFLE [32] (ONE-SIDED RADIATOR)

The configuration is the same as that shown in Fig. 13.21 for a piston in an open

baffle except that the velocity on the rear of the piston is zero. We can achieve this

boundary condition by superposition of fields (or Gutin concept) whereby we combine

the field of a piston in an open finite baffle with that of a piston in an infinite baffle. The

former has negative velocity �eu0 on its rear surface, whereas the latter, if treated as a

“breathing” disk in free space, has positive velocity eu0 on its rear surface. Hence, when

the two fields are combined, their rear surface velocities cancel to produce a zero velocity

boundary condition as illustrated in Fig. 13.29. However, if we wish the front velocity to

be eu0 and not 2eu0, we must halve the result.

Although the piston and baffle are both infinitesimally thin in this model, it can be

used to model a finite cylindrical enclosure with reasonable accuracy. In fact, the radi-

ation characteristics of the single-sided piston without a baffle (b ¼ a) are remarkably

similar to those of a piston at the end of an infinite tube [33]. In the case of a finite

cylinder, there will be secondary reflections from the far end, but they will be consid-

erably weaker than the primary ones from the perimeter of the baffle.

Dipole 
elements 

Baffle

Disk 

z

Disk 

z

Baffle

Disk 

z

Monopole 
elements 

Monopole 
elements of 
double strength 

Plane of symmetry 

Piston in finite open baffle Piston in infinite baffle Piston in finite closed baffle 

Figure 13.29 Gutin concept: By superposition of fields, a one-sided piston in a finite closed baffle is
equivalent to the sum of a double-sided dipole piston in a finite open baffle and a monopole piston in
an infinite baffle. Also see Fig.13.4 for the monopole piston model.
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Far-field pressure
The directivity function D(q) is half the sum of that from Eq. (13.102) for a piston in an

infinite baffle and that from Eq. (13.235) for a piston in a finite open baffle:

DðqÞ ¼ J1ðka sin qÞ
ka sin q

þ kb

2
cos q

XN
n¼ 0

AnG

�
nþ 5

2

��
2

kb sin q

�nþ3
2

Jnþ3
2
ðkb sin qÞ: (13.252)

Similarly, the on-axis pressure is obtained from Eqs. (13.103) and (13.236) to give

Dð0Þ ¼ 1

2

 
1þ kb

XN
n¼ 0

An

!
: (13.253)

The on-axis response for five values of b is shown in Fig. 13.30, calculated from the

magnitude of D(0). The normalized directivity function 20 log10jD(q)/D(0)j for a

one-sided piston in free space is plotted in Fig. 13.31 for four values of ka ¼ 2pa/l, that

is, for four values of the ratio of the circumference of the disk to the wavelength. Also,

the directivity function for a piston in a finite closed baffle is plotted in Fig. 13.32 for

four values of ka with b ¼ 2a and in Fig. 13.33 for four values of b.
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Figure 13.30 Plot of 20 log10(D(0)) where D(q) is the directivity function of a plane circular piston of
radius a in a plane closed circular baffle of radius b. When b ¼ a (solid black curve), there is no baffle
and the piston is radiating from one side only in free space. When b ¼N (dotted black curve), the
piston is in an infinite baffle. The axial acceleration of the piston is constant. Frequency is plotted on a
normalized scale, where ka ¼ 2pa/l ¼ 2pfa/c.
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Figure 13.31 Far-field directivity patterns for a plane circular piston radiating from one side only into
free space as a function of ka ¼ 2pa/l ¼ 2pfa/c, where a is the radius of the piston.
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Fig. 13.32 Far-field directivity patterns for a circular piston in a plane closed circular baffle as a
function of ka ¼ 2pa/l ¼ 2pfa/c, where a is the radius of the piston and b ¼ 2a is the radius of the
baffle.
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Near-field pressure
The near-field pressure is simply the average of the pressures from Eqs. (13.106) and

(13.240) for r > a or Eqs. (13.107) and (13.241) for r � a. The pressure field for a

one-sided piston in free space is plotted in Fig. 13.34 for three values of ka. The

pressure response on the shadow side of the one-sided radiator is interesting not only

for what it reveals about the diffraction effects around an infinitesimally thin edge but

also for the fact that this pressure field is actually the difference between the baffled

(monopole) and unbaffled (dipole) responses of the rigid piston. In particular, the

differences persist into the high-frequency range. The pressure field for a rigid circular

piston in a closed circular baffle of radius b ¼ 2a is plotted in Fig. 13.35 for two values

of ka.

Radiation impedance
The same principle can also be applied to the radiation impedance, which is proportional

to the sum of the surface pressures of a piston in a finite baffle and an infinite baffle.

Hence the real part can be obtained from Eqs. (13.117) and (13.249) as follows:
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(13.254)
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Fig. 13.33 Far-field directivity patterns for a circular piston in a plane closed circular baffle as a
function of b at ka ¼ p/2 or l ¼ 4a, where a is the radius of the piston and b is the radius of the baffle.
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Figure 13.34 Normalized near-field pressure plots for a rigid circular piston radiating from one side
only into free space as a function of ka ¼ 2pa/l ¼ 2pfa/c, where a is the radius of the piston. jepj is the
pressure magnitude, eu0 is the piston velocity, r0 is the density of the acoustic medium, and c is the
speed of sound in that medium.
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Likewise, the imaginary part can be obtained from Eqs. (13.118) and (13.250) as

follows:

Xsjbsa ¼ r0c
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Figure 13.35 Normalized near-field pressure plots for a rigid circular piston in a closed circular baffle
of radius b ¼ 2a as a function of ka ¼ 2pa/l ¼ 2pfa/c, where a is the radius of the piston. jepj is the
pressure magnitude, eu0 is the piston velocity, r0 is the density of the acoustic medium, and c is the
speed of sound in that medium.
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Plots of the real and imaginary parts of

Zs

r0c
¼ Rs þ jXs

r0c
(13.256)

are shown in Fig. 13.36 as a function of ka.
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Figure 13.36 Real and imaginary parts of the normalized specific radiation impedance Zs/r0c of the
air load on one side of a plane circular piston of radius a in a flat circular closed baffle of radius b. When
b ¼ a (solid black curve), there is no baffle and the piston is radiating from one side only into free
space. When b ¼ N (dotted black curve), the piston is in an infinite baffle. Frequency is plotted on a
normalized scale, where ka ¼ 2pa/l ¼ 2pfa/c.
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The specific admittance is given by

Ys ¼ Gs þ jBs ¼ Rs

R2
s þ X2

s

� j
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�
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13.12 THE BABINETeBOUWKAMP PRINCIPLE

Kirchhoff theory
In its original form, Babinet’s principle [34] simply states that the diffraction pattern

resulting from the transmission of a plane wave through an aperture in an infinite screen

is equivalent to that produced by the scattering of the same incident wave by the

complementary disk. In the Kirchhoff theory of diffraction [35], it is assumed that the

screen and complementary disk are either both rigid or both resilient, in which case

the field scattered by an aperture in a rigid screen or complementary rigid disk can be

represented by radiation from a rigid piston in an infinite baffle. Similarly, the field

scattered by an aperture in a resilient screen or complementary resilient disk can be

represented by radiation from a resilient disk in free space. If this were true, it would

make life much simpler as everything could be calculated from closed-form solutions.

The problem is that the former assumes that the velocity of the scattered wave at the

aperture or complementary rigid disk is the same as that of the incident wave, as if it were

unaffected by the presence of the scattering object. Similarly, the latter assumes that the

pressure of the scattered wave at the aperture or complementary resilient disk is the same

as that of the incident wave. At best, this is an approximation [22] that can only be used

when the wavelength is much smaller than the aperture or disk.

Bouwkamp theory
Bouwkamp’s modified version [20] of Babinet’s principle states that the diffraction

pattern resulting from the transmission of a plane wave through an aperture in an infinite

rigid screen (see Fig. 13.37c) is equivalent to that produced by the scattering of the same

incident wave by the complementary resilient disk (see Fig. 13.37f). Also, the flip side of

this is that the diffraction pattern resulting from the transmission of a plane wave through

an aperture in an infinite resilient screen (see Fig. 13.38c) is equivalent to that produced

by the scattering of the same incident wave by the complementary rigid disk (see

Fig. 13.38f). Furthermore, Bouwkamp states that:

• The sound field scattered by a rigid disk is equivalent to that produced if the disk itself

were radiating in free space, provided that the velocity at the surface of the disk is equal

to that of the incident plane wave in the absence of any scattering obstacle.
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• The sound field scattered by a resilient disk is equivalent to that produced if the disk

itself were radiating in an infinite rigid baffle, provided that the pressure at the surface of

the disk is equal to that of the incident plane wave in the absence of any scattering

obstacle.

The general principle is illustrated in Figs. 13.37 and 13.38, but before we discuss

apertures, we will consider the scattering from plane objects.

Reflection from plane rigid objects [31]
We have already discussed the radiation of sound from moving surfaces using the

boundary integral method. It often happens in acoustics that once you have found a

solution for one problem, you get another for free. This is certainly the case with

reflection from plane objects, and here it will be shown how. Imagine a plane wave being

Complementary disk 

Resultant sound field Incident field in
absence of aperture Field scattered by aperture

Infinite
screen 

Resultant sound field Incident field in
absence of disk 

Infinite
screen 

Infinite
screen 

0~ =u 0~ =u 0~ =u 0~ =u 0~ =u

0~ =u 0~ =u0~ =p 0
~~ pp =

Field scattered by disk

(a) (b) (c)

(d) (e) (f)

Figure 13.37 The BabineteBouwkamp principle for a circular aperture in an infinite rigid screen.
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reflected from an arbitrary rigid surface. At the surface, the normal velocity is zero. Now

we let the resulting pressure field epðrÞ comprise two components as follows:epðrÞ ¼ epIðrÞ þ epSðrÞ (13.257)

where epIðrÞ is the incident wave in the absence of any obstacles and epSðrÞ is the scattered
wave. To satisfy the boundary condition of zero normal velocity at the surface, the

normal velocity of the surface producing the scattered wave must be equal and opposite

to the component of the velocity of the incident wave that is normal to the surface. This

is easiest to illustrate with a planar obstacle such as a circular disk in free space, as shown in

Fig. 13.8 except that in this case it is perfectly rigid. LetepIDðzÞ be a simple plane incident

wave traveling along the disk’s axis of symmetry, which in this case is defined as the z-

axis, and let the disk be located at z ¼ 0. At the disk, the velocity and hence also the

gradient of the resultant field epDðzÞ are both zero:

eu0 ¼ �jkr0c
v

vz
epDðw; zÞjz¼0 ¼ 0; 0 � w � a; (13.258)

Complementary disk 

Resultant sound field Incident field in
absence of aperture Field scattered by aperture 

Infinite
screen

Resultant sound field Incident field in
absence of disk 

Field scattered by disk

Infinite
screen

Infinite
screen

0~ =p 0~ =p0~ =p 0~ =p 0~ =p

0~ =p0~ =p
0~ =u 0

~~ uu =

(a) (b) (c)

(d) (e) (f)

Figure 13.38 The BabineteBouwkamp principle for a circular aperture in an infinite resilient screen.
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where w is the radial ordinate and a is the radius of the disk. Also, from Eq. (13.257) and

to preserve continuity, the resultant pressure gradient is the sum of the incident and

scattered pressure gradients:

v

vz
epDðw; zÞjz¼0 ¼ v

vz
epIDðw; zÞjz¼0 þ

v

vz
epSDðw; zÞjz¼0 ¼ 0; 0 � w � a: (13.259)

Hence, the velocity eu0 of the disk is equal and opposite to the velocity euID of the

incident wave in the absence of any scattering obstacles:

eu0 ¼ �jkr0c
v

vz
epSDðw; zÞjz¼0 ¼ jkr0c

v

vz
epIDðw; zÞjz¼0 ¼ �euID; 0 � w � a:

(13.260)

Therefore, the scattered field epSDðw; zÞ is that which would be produced if the disk

were oscillating back and forth with the same velocity as the incident wave, but with

opposite phase, and the resultant field epDðw; zÞ is the sum of the incident and scattered

fields: epDðw; zÞ ¼ epIDðw; zÞ þ epSDðw; zÞ; (13.261)

as expressed in Fig. 13.38def. However, we have to ask whether scattered fieldepSDðw; zÞ
is the same as that of a disk in free space or one in an infinite baffle. To answer that, we

have to consider another boundary condition, which lies in the plane of the disk beyond

its perimeter. We can already assume that the field on one side of this plane will be the

symmetrical negative of that on the other. This can be explained by the fact that on the

“bright” side (facing the incident wave), the radiated sound represents the reflected

sound, whereas on the “dark” side, it is of opposite phase and therefore cancels the

incident wave that would otherwise be present in the absence of the disk. However, in a

baffle, these equal and opposite pressure values on either side of the baffle would produce

a discontinuous field when added to the original incident wave. Therefore, the disk must

behave as though it is oscillating in free space, thus producing a continuous field with

zero pressure in the plane beyond its perimeter as shown in Fig. 13.38f. Hence, the

resultant pressure in that region is simply that of the incident wave in the absence of any

obstacles. The scattered field epSDðw; zÞ is that of a rigid disk oscillating in free space,

which has already been evaluated in Section 13.10, using the dipole part of the

KirchhoffeHelmholtz boundary integral.

Reflection from plane resilient objects
In the case of a resilient disk in the presence of an incident plane wave traveling toward it

along its axis of symmetry, the boundary condition at its surface is that of zero pressure:epDðw; zÞjz¼0 ¼ epIDðw; zÞjz¼0 þ epSDðw; zÞjz¼0 ¼ 0; 0 � w � a: (13.262)
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Hence, the pressure of the scattered field at the surface must be equal and opposite to

the pressure of the incident wave in the absence of any scattering obstacles:ep0 ¼ epSDðw; zÞjz¼0 ¼ �epIDðw; zÞjz¼0; 0 � w � a: (13.263)

Therefore, the scattered field epSDðw; zÞ is that which would be produced if the disk

were in motion with the same pressure as the incident wave, but opposite phase, and the

resultant field epDðw; zÞ is the sum of the incident and scattered fields:epDðw; zÞ ¼ epIDðw; zÞ þ epSDðw; zÞ; (13.264)

as expressed in Fig. 13.37def. Furthermore, the scattered fields on each side of the disk

are symmetrical and both of opposite polarity to the incident wave. This has the effect of

creating a shadow on the “dark” side and reversing the phase of the reflected wave on the

“bright” side because of the boundary condition of zero pressure, as opposed to zero

velocity. If the boundary condition in the plane beyond the perimeter of the disk were

one of zero pressure, the velocities on each side would be equal and opposite thus adding

to and subtracting from the velocity of the incident wave on consecutive sides. This

would in turn lead to a discontinuity in the velocity distribution of the resultant field at

the plane. Hence, the scattered field is that of a resilient disk in an infinite baffle with

symmetrical fields on each side, or a “breathing” resilient disk, which we have already

evaluated in Section 13.9, using the monopole part of the KirchhoffeHelmholtz

boundary integral.

The BabineteBouwkamp principle for diffraction through a circular
aperture in a rigid screen
Essentially, the boundary conditions for a circular aperture in an infinite rigid screen are

the same as those for the complementary rigid disk in free space above and Fig. 13.38d,

except that they are interchanged as shown in Fig. 13.37a. Hence, the resultant velocity is

zero at the screen, which is the scattering obstacle, and the pressure in the aperture is the

same as that of the incident wave in the absence of any scattering obstacles. However,

although the rigid disk itself was treated as the source of the scattered wave, it is not so

convenient to treat the infinite rigid screen as such. Instead, the aperture is treated as the

source whereby the pressure is uniform everywhere within it and the aperture acts as a

pressure source, namely a resilient disk in an infinite baffle, which we have already

evaluated in Section 13.9, using the monopole part of the KirchhoffeHelmholtz

boundary integral, and satisfies the boundary condition of zero velocity on the screen. To

calculate the resultant field on both sides of the screen, we simply add the scattered field to

the incident field in the absence of an aperture, i.e., the incident plane wave plus its

reflection from a continuous infinite rigid screen plus the radiation from the resilient

disk. This is illustrated in Fig. 13.37aec. For clarity, the diagram portrays the scattering
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of a sound wave at some very high frequency where there is minimal diffraction.

However, the principle applies at all frequencies. In general, for diffraction through a

circular aperture in a rigid screen,

epIHðzÞ ¼

8>>><>>>:
ep0�e jkz þ e�jkz

�
; bright side of rigid screen

0; dark side of rigid screenep0e jkz; without diskðor screenÞ
(13.265)

and

epSHðzÞ ¼
( ep0; z ¼ 0þ
�ep0 z ¼ 0� :

(13.266)

These expressions are plotted in Fig. 13.39 for ka ¼ 1, 5, and 10.

The BabineteBouwkamp principle for diffraction through a circular
aperture in a resilient screen
Here we interchange the boundary conditions for a resilient disk in free space, described

above. Hence, the resultant pressure is zero at the screen, which is the scattering obstacle,

and the velocity in the aperture is the same as that of the incident wave in the absence of

any scattering obstacles. The aperture is treated as the source, namely a rigid disk in free

space, which we have already evaluated in Section 13.10, using the dipole part of the

KirchhoffeHelmholtz boundary integral, and satisfies the boundary condition of zero

pressure on the screen. To calculate the resultant field on both sides of the screen, we

simply add the scattered field to the incident field in the absence of an aperture, i.e., the

incident plane wave plus its reflection from a continuous infinite resilient screen plus the

radiation from the rigid disk. This is illustrated in Fig. 13.38aec. For clarity, the diagram

portrays the scattering of a sound wave at some very high frequency where there is

minimal diffraction. However, the principle applies at all frequencies. In general, for

diffraction through a circular aperture in a resilient screen,

epIHðzÞ ¼

8>>><>>>:
ep0�e jkz � e�jkz

�
; bright side of resilient screen

0; dark side of resilient screenep0e jkz; without diskðor screenÞ
(13.267)

and

� jkr0c
v

vz
epSHðzÞjz¼0 ¼ eu0: (13.268)
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Figure 13.39 Normalized plots of pressure field due to a plane wave diffracted through a circular hole
in an infinite rigid screen as a function of ka ¼ 2pa/l ¼ 2pfa/c, where a is the radius of the hole. jepj is
the pressure magnitude, ep0 is the incident pressure at the hole in the absence of a screen, r is the
density of the acoustic medium, and c is the speed of sound in that medium.
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PART XXXVII: RADIATION THEOREMS, RADIATION IN
RECTANGULAR-SPHERICAL COORDINATES, MUTUAL
IMPEDANCE

13.13 THE BOUWKAMP IMPEDANCE THEOREM [36]

To find the radiation impedance of a piston in an infinite baffle, we used an expression for

the near-field pressure and integrated the pressure over the surface of the piston to find

the total force. However, the far-field pressure is generally given by a much simpler

expression. According to Bouwkamp’s impedance theorem, if the acoustic medium is

loss free, we can obtain the radiation resistance of a piston, or combination of pistons, of

any shape, vibrating in an infinite baffle or free space (assuming antisymmetry) as follows:

We integrate the square of the far-field pressure over a hemispherical surface, while

letting the radius tend to infinity, and then divide the result by the specific impedance of

free space to obtain the total radiated power. We then obtain the acoustic radiation

resistance by dividing the power by the square of the volume velocity of the piston(s).

Furthermore, we can obtain the radiation reactance by integrating the square of the far-

field pressure over certain complex values of the spherical inclination angle q. In general,

the far-field pressure is given in spherical coordinates (r, q, f) by

epðr; q;fÞ ¼ jkr0c eU0

2pr
Dðq;fÞ; (13.269)

although, in the case of an axisymmetric source such as the circular piston, there is no

f dependency. The total radiated power W is given by

W ¼
���� eU0ffiffiffi

2
p
����2RAR ¼ 1

r0c

Z 2p

0

Z p
2

0

����epðr; q;4Þffiffiffi
2

p
����2r2 sin q dq d4

��
r/N

; (13.270)

where RAR is the acoustic radiation resistance of the source and eU0 is its total volume

velocity. Hence the specific radiation resistance is given by

Rs ¼ SRAR ¼ k2r0cS

4p2

Z 2p

0

Z p
2

0

jDðq;fÞj2 sin q dq df: (13.271)

Also, the specific radiation reactance is given by

Xs ¼ SXAR ¼ �j
k2r0cS

4p2

Z 2p

0

Z p
2
þjN

p
2
þj0

jDðq;fÞj2 sin q dq df: (13.272)

It is fairly straightforward to verify this result by inserting the directivity function of

Eq. (13.102) together with kw ¼ k sin q into Eqs. (13.271) and (13.272). In this way, the
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expressions for the radiation impedance given by Eqs. (13.118) and (13.117) can be

duplicated, bearing in mind that sin(p/2 þ jN) ¼ cos jN ¼ cosh N ¼N. Of course,

this theorem is not limited to radiators with uniform surface velocity. Bouwkamp’s

expression [36] includes the square of average surface velocity divided by the square of

the velocity at some reference point, although we have omitted this here. We will use this

theorem to derive an expression for the radiation impedance of a rectangular piston in an

infinite baffle.

We can extend Bouwkamp’s impedance theorem to a pressure (resilient) source,

where the far-field pressure is given by

epðr; q;fÞ ¼ jkSep0
4pr

Dðq;fÞ

so that the total radiated power is given by

W ¼
���� ep0
2
ffiffiffi
2

p
����2GAR ¼ 1

r0c

Z 2p

0

Z p
2

0

����epðr; q;4Þffiffiffi
2

p
����2r2 sin q dq d4

��
r/N

;

where GAR is the acoustic radiation conductance of the source and ep0
2 is the driving

pressure on one side only of the baffle or plane. Hence the specific radiation conductance

is given by

GS ¼ GAR

S
¼ k2S

4p2r0c

Z 2p

0

Z p
2

0

jDðq;fÞj2 sin q dq d4

and the specific radiation susceptance is given by

BS ¼ BAR

S
¼ j

k2S

4p2r0c

Z 2p

0

Z p
2
þjN

p
2
þj0

jDðq;fÞj2 sin q dq d4:

13.14 RADIATION FROM AN INFINITELY LONG OSCILLATING
STRIP IN AN INFINITE BAFFLE [37,38]

Boundary conditions
Essentially this is the limiting case of a rectangular piston as one of its dimensions tends to

infinity. The infinitely long strip of width d shown in Fig. 13.40 is mounted in an infinite

baffle in the xy plane and oscillates in the z direction with a harmonically time-

dependent velocity eu0. As with the circular piston in an infinite baffle, the monopole

source elements, together with their images, coalesce to form elements of double
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strength. Because of the symmetry of the pressure fields on either side of the baffle, there

is the following Neumann boundary condition on its surface:

v

vz
epðx; zÞjz¼0þ ¼ 0;

8>>>><>>>>:
�N � x < �d

2
;

�d

2
< x � N

(13.273)

which is satisfied automatically. On the surface of the strip there is the coupling

condition

v

vz
epðx; yÞjz¼0þ ¼ �jkr0ceu0; �d

2
� x � d

2
; (13.274)

where r0 is the density of air or any other surrounding medium, c is the speed of sound in

that medium, and k ¼ 2p/l ¼ u/c is the wave number.

Far-field pressure
The pressure at point P due to a single line source at x0 is obtained from Eq. (12.6) to give

epðr; qÞ ¼ r0c
�eU0



l
�

2

ffiffiffiffiffiffiffiffiffi
k

2pr1

r
e
�j

�
kr1�p

4

	
; (13.275)

where
�eU0



l
�
is the volume velocity per unit length, k ¼ u/c ¼ 2p/l is the wave

number, and

x

y

z

P

0 x0
2
d

2
d−

r r1

θ BaffleBaffle                           Strip 

d

Figure 13.40 Geometry of infinitely long rigid strip in infinite baffle. The point of observation P is
located at position (x,y,z) in rectangular coordinates.
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r21 ¼ r2 cos2qþ ðr sin q� x0Þ2: (13.276)

Hence, the pressure due to the strip is the integral across its width of Eq. (13.275) for

a single line source taking into account the double strength sources and lettingeU0 ¼ ldeu0 as follows:
epðr; qÞ ¼ r0ceu0 Z d

2

�d
2

ffiffiffiffiffiffiffiffiffi
k

2pr1

r
e
�j

�
kr1�p

4

	
dx0

: (13.277)

At a large distance r, the terms containing r in Eq. (13.276) dominate. Hence the

remaining terms can be replaced with ones that enable r1 to be factorized as follows

r21 ¼ r2 þ x20 � 2rx0 sin q

zr2 þ x20sin
2q� 2rx0 sin q

¼ ðr � x0 sin qÞ2;

(13.278)

which after inserting into Eq. (13.277) gives

epðr; qÞ ¼ r0ceu0 ffiffiffiffiffiffiffi
k

2pr

r
e
�j

�
kr�p

4

	 Z d
2

�d
2

e jkx0 sin qdx0

¼ kdr0ceu0
2

ffiffiffiffiffi
d

pr

r
e
�j

�
kr�p

4

	
DðqÞ;

(13.279)

where the directivity function D(q) is given by

DðqÞ ¼
sin

�
1

2
kd sin q

�
�
1

2
kd

�3=2

sin q

; (13.280)

which is the same as that of a finite line source of length d in its plane, as given by Eq.

(4.89). The directivity pattern is shown in Fig. 4.18. The on-axis pressure is given by

Dð0Þ ¼ 1

, ffiffiffiffiffiffiffiffi
1

2
kd

r
:

In Section 2.1, we saw that in the case of a piston radiating into an infinitely long

tube, the pressure ep along the tube is directly proportional to the piston velocity eu0.
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Assuming the tube is much narrower than the wavelength, this represents a one-

dimensional system. In three-dimensional space, such as that of a piston in an infinite

baffle radiating into free space, the radiated pressure is proportional to the acceleration of

the piston jueu0. Not surprisingly, in the two-dimensional space of an infinite strip we

find that the pressure is proportional to
ffiffiffiffiffi
ju

p eu0.
Radiation impedance
Using the Bouwkamp impedance theorem (see Section 13.13), the radiated power per

unit length l is given by

W ¼
���� eU0ffiffiffi

2
p
����2RAR ¼ l

r0c

Z p
2

�p
2

����epðr; qÞffiffiffi
2

p
����2rdqjr/N; (13.281)

where the integration is taken over a half-cylindrical surface in the extreme far field.

Using the pressure from Eq. (13.279), we obtain the real and imaginary parts of the

impedance as follows:

Rs¼ ldRAR ¼ r0c
kd

p

Z p
2

0

D2ðqÞdq; (13.282)

Xs ¼ ldXAR ¼ r0c
kd

p

Z p
2
þjN

p
2
þj0

D2ðqÞdq; (13.283)

where Rs is the specific radiation resistance in N$s/m3 (rayl), where the bold R indicates

that the quantity varies with frequency, and Xs is the specific radiation reactance in N$s/

m3 (rayl). Substituting t ¼ sin q yields

Rs ¼ ldRAR ¼ r0c
kd

p

Z1
0

0BBB@
sin

�
kd

2
t

�
kd

2
t

1CCCA
2

dtffiffiffiffiffiffiffiffiffiffiffiffi
1� t2

p

¼ r0c
kd

2
1F2

�
1

2
;
3

2
; 2;�k2d2

4

�

zr0c
kd

2
; kd < 0:5;

(13.284)
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Xs ¼ ldXAR ¼ r0c
kd

p

Z N

0

0BBB@
sin

�
kd

2
t

�
kd

2
t

1CCCA
2

dtffiffiffiffiffiffiffiffiffiffiffiffi
t2 � 1

p

¼ r0c
1

kd
G

2;1
2;4

 
k2d2

4

����1;32
1;1;0;1

2

!

zr0c
kd

p

�
3

2
� g� ln

�
kd

2

��
; kd < 0:5;

(13.285)

where F is the hypergeometric function, G is the Meijer G function, and g ¼ 0.5772 is

Euler’s constant. Separate plots of Rs/r0c and Xs/r0c are shown in Figs. 13.43 and 13.44,

respectively, as a function of kd.

13.15 THE FAR-FIELD PRESSURE DISTRIBUTION AS A SPATIAL
FREQUENCY SPECTRUM OF THE SOURCE VELOCITY
DISTRIBUTION

Two-dimensional system
In a two-dimensional system with a planar source, the far-field pressure distribution is

given by a generalized version of Eq. (13.279), where eu0ðx0Þ is the source velocity

distribution:

epðr; qÞ ¼ r0c

ffiffiffiffiffiffiffi
k

2pr

r
e
�j

�
kr�p

4

	 Z N

�N
eu0ðxÞe jkx0 sin qdx0

¼ �j
e
�j

�
krþp

4

	
ffiffiffiffiffiffiffiffiffiffi
2pkr

p eFðkxÞ;
(13.286)

where

eFðkxÞ ¼
Z N

�N

ef ðx0Þe jkxx0dx0; (13.287)

which is simply the Fourier transform or spatial frequency spectrum of the normal

pressure gradient distribution ef ðx0Þ in the xy plane:

ef ðx0Þ ¼ � v

vz0
epðx0; z0Þjz0¼0 ¼ jkr0ceuðx0Þ; (13.288)
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where kx is the spatial frequency of the component of a wave in the x direction given by

kx ¼ k sin q: (13.289)

In the case of a strip of infinite extent in the y direction, the velocity distribution is

just a step function in the x direction:

f ðx0Þ ¼

8>>>>>>>>>><>>>>>>>>>>:

0; x < �d

2

1; �d

2
� x � d

2

0; x > �d

2
:

(13.290)

By inspection of Eq. (13.279) we see that

DðkxÞ ¼ 2p

jkdr0ceu0 FðkxÞ ¼
sin

�
1

2
kxd

�
1

2
kxd

: (13.291)

Now let us convert from polar coordinates in r and q to rectangular coordinates in x

and z, using

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ x2

p
; (13.292)

sin q ¼ xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ x2

p (13.293)

and project the polar directivity pattern onto a distant parallel screen. Hence, the

spatial frequency kx at a point on the screen a horizontal distance x from the z axis is

scaled by

kx ¼ k sin q ¼ kxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ x2

p : (13.294)

At a given frequency u ¼ kc, only the spectrum up to spatial frequency kx ¼ k is

displayed on the screen as q varies from 0 to p/2. As the frequency is increased, more

of the spectrum is shown but never the whole spectrum. We also note that the

amplitude of the spectrum is scaled by (z2 þ x2)�1/4 because of the 1=
ffiffi
r

p
term in

Eq. (13.279).
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Three-dimensional system
Here we consider a three-dimensional system in rectangular coordinates (x,y,z) with an

arbitrary source velocity distribution in an infinite baffle in the xy plane, which radiates

into half space. The pressure field is given by the Rayleigh integral of Eq. (13.6) using the

Green’s function given by Eq. (13.4), which for z0 ¼ 0 can be written as

gðx; y; zjx0; y0; 0Þ ¼ e�jkr1

4pr1
; (13.295)

where

r21 ¼ ðx� x0Þ2 þ ðy� y0Þ2 þ z2: (13.296)

If we let x ¼ r sin qx, y ¼ r sin qy, and z2 ¼ r2 � x2 � y2, then

r21 ¼ r2 � 2rx0 sin qx � 2ry0 sin qy þ x20 þ y20

zðr � x0 sin qx � y0 sin qyÞ2; r2[x20 þ y20;

(13.297)

where qx is the angle of elevation subtended with the z axis in the x direction, and qy is

that subtended with the z axis in the y direction as follows:

sin qx ¼ xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p ¼ x

r
; (13.298)

sin qy ¼ yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p ¼ y

r
: (13.299)

Alternatively, in cylindrical coordinates we have sin qx ¼ sin q cos f and sin qy ¼ sin

q sin f. Inserting the Green’s function of Eq. (13.295) into the Rayleigh integral of Eq.

(13.6), while doubling the source strength due to half-space radiation, yields

epðx; y; zÞ ¼ jkr0c
e�jkr

2pr

Z N

�N

Z N

�N
euðx0; y0Þe jkðx0 sin qxþy0 sin qyÞdx0dy0

¼ e�jkr

2pr
eFðkx; kyÞ;

(13.300)

where

eFðkx; kyÞ ¼
Z N

�N

Z N

�N

ef ðx0; y0Þe jðkxx0þkyy0Þdx0dy0; (13.301)
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which is simply the Fourier transform or spatial frequency spectrum of the normal

pressure gradient distribution ef ðx0; y0Þ in the xy plane:

ef ðx0; y0Þ ¼ � v

vz0
epðx0; y0; z0Þ��z0¼0

¼ jkr0ceuðx0; y0Þ; (13.302)

where kx and ky are the spatial frequencies given by

kx ¼ k sin qx; (13.303)

ky ¼ k sin qy; (13.304)

and the amplitude in the distant plane is scaled by (x2 þ y2 þ z2)�1/2.

Axisymmetric three-dimensional system
In an axisymmetric system with a planar source, such as a piston in an infinite baffle, the

pressure distribution is given by the Rayleigh integral of Eq. (13.6) using the Green’s

function given by Eq. (13.70), which for z0 ¼ 0 and f ¼ p/2 can be written as

pðr; qÞ ¼ jkr0c
e jkr

2pr

Z 2p

0

Z N

0

euðw0Þe jkw0 sin q sin f0w0dw0f0

¼ e jkr

r

Z N

0

ef ðw0ÞJ0ðkw0 sin qÞw0dw0

¼ e jkr

r
eFðkwÞ;

(13.305)

where we have used Eq. (76) from Appendix II to solve the integral and

eFðkwÞ ¼
ZN
0

ef ðw0ÞJ0ðkww0Þw0dw0; (13.306)

which is simply the Hankel transform or spatial frequency spectrum of the normal

pressure gradient distribution ef ðw0Þ in the w plane:

ef ðw0Þ ¼ � v

vz0
epðw0; z0Þ

����
z0¼0

¼ jkr0ceuðw0Þ; (13.307)

where kw is the spatial frequency given by

kw ¼ k sin q: (13.308)
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In the case of a piston in an infinite baffle, the velocity distribution is just a step

function in the w direction:

ef ðw0Þ ¼
(
jkr0ceu0; 0 � w0 � a

0; w0 > a
; (13.309)

so that applying the integral solution of Eq. (95) from Appendix II yields

eFðkwÞ ¼ jkr0ceu0 Z a

0

J0ðkw0 sin qÞw0dw0

¼ jka2r0ceu0J1ðka sin qÞ
ka sin q

:

(13.310)

By inspection of Eq. (13.102), we see that

DðkwÞ ¼ 2

jka2r0ceu0 eFðkwÞ: (13.311)

Now let us convert from polar coordinates in r and q to cylindrical coordinates in w

and z, using

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ w2

p
; (13.312)

sin q ¼ wffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ w2

p ; (13.313)

and project the polar directivity pattern onto a distant parallel screen. Hence, the spatial

frequency kw at a point on the screen a horizontal distance w from the z axis is scaled by

kw ¼ k sin q ¼ kwffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ w2

p : (13.314)

At a given frequency u ¼ kc, only the spectrum up to spatial frequency kw ¼ k is

displayed on the screen as q varies from 0 to p/2. As the frequency is increased, more of

the spectrum is shown but never the whole spectrum. We also note that the amplitude of

the spectrum is scaled by (z2 þ w2)�1/2 because of the 1/r term in Eq. (13.101).

13.16 THE BRIDGE PRODUCT THEOREM

This important theorem in acoustics is a corollary of the fact that the pressure

distribution in one plane is a Fourier transform of the velocity distribution in another

one that is far away and parallel to it, as discussed in the previous section. For simplicity,

let us consider a two-dimensional system in the xz plane of infinite extent in the y
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direction. We then multiply the Fourier transform of an arbitrary velocity distribution

f(x) by that of a line source at x0 as follows:

FðKÞ ¼
Z N

�N
f ðxÞe jKxdx�

Z N

�N
dðx� x0Þe jKxdx

¼
Z N

�N
f ðxÞe jKðxþx0Þdx;

(13.315)

where d(x � x0) is the Dirac delta function and we have used the property thatZ N

�N
dðx� x0Þe jKxdx ¼ e jKx0 : (13.316)

If we now substitute x0 ¼ x þ x0, we obtain

FðKÞ ¼
Z N

�N
f ðx0 � x0Þe jKx0dx0; (13.317)

which is simply the Fourier transform of the original distribution f(x) shifted to a new

origin at x0 as illustrated in Fig. 13.41. This is somewhat analogous to the principle of

amplitude modulation whereby multiplying a baseband signal by a single tone in the time

domain produces a modulated tone with “sideband” spectrums on either side of the tone

in the frequency domain. Here the space domain is analogous to the frequency domain

and the spatial frequency domain is analogous to the time domain, as the product is taken

f(x)

0
x

Take product of Fourier transforms
in spatial frequency domain  

f(x − x0)

0
x

x0

δ (x − x0)

0
x

x0

 Space domainSpace domain 

Figure 13.41 Product theorem: origin shifting.
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in the latter. Seeing that the far-field pressure of a planar source is the Fourier transform

of the source velocity distribution, we can use the product theorem to derive the far-field

pressure for a transducer array by simply taking the product of the directivity function for

a single transducer and that of any number of point sources located in the array positions,

as illustrated in Fig. 13.42.

13.17 RADIATION FROM A RIGID RECTANGULAR PISTON IN AN
INFINITE BAFFLE [39,40]

Far-field pressure
Using the product theorem given in Section 13.16, the directivity pattern is equal to the

product of the directivity patterns for two line arrays at right angles to each other [see Eq.

(4.89)]. The directivity pattern for this type of radiating source with dimensions lx and ly
is given by the formula

Dðqx; qyÞ ¼
sin

�
1

2
klx sin qx

�
1

2
klx sin qx

$

sin

�
1

2
kly sin qy

�
1

2
kly sin qy

; (13.318)

where qx is the angle between the normal to the surface of the piston and the projection

of the line joining the middle of the surface and the observation point on the plane

normal to the surface and parallel to lx; qy is the same as qx, with ly substituted for lx.

It is often more convenient to express Eq. (13.318) using spherical coordinates using

sin qx ¼ sin q cos f; sin qy ¼ sin q sin f: (13.319)

Also, we shall substitute sinc x ¼ (sin x)/x to obtain

Dðq;fÞ ¼ sinc

�
1

2
klx sin q cos f

�
$sinc

�
1

2
kly sin q sin f

�
: (13.320)

=

Figure 13.42 Product theorem: array creation.
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Radiation impedance
Using the Bouwkamp impedance theorem, the radiation resistance and reactance can be

found by inserting Eq. (13.320) into Eqs. (13.271) and (13.272) respectively to give

Rs ¼ klxkly
r0c

p2

Z p
2

0

Z p
2

0

sinc2
�
1

2
klx sin q cos f

�
$sinc2

�
1

2
kly sin q sin f

�
sin q dq df;

(13.321)

Xs ¼ �jklxkly
r0c

p2

Z p
2

0

Z p
2
þjN

p
2
þj0

sinc2
�
1

2
klx sin q cos f

�
$sinc2

�
1

2
kly sin q sin f

�
sin q dq df;

(13.322)

where Rs is the specific radiation resistance in N$s/m3 (rayl). The bold R indicates that

the quantity varies with frequency, and Xs is the specific radiation reactance in N$s/m3

(rayl). Substituting t ¼ sin q in Eqs. (13.321) and (13.322) yields

Rs ¼ klxlyr0c

4p2

Z p=2

0

Z 1

0

sinc2
�
klx

2
t cos f

�
sinc2

�
kly

2
t sin f

�
tdtdfffiffiffiffiffiffiffiffiffiffiffiffi
1� t2

p ; (13.323)

Xs ¼ klxlyr0c

4p2

Z p=2

0

Z N

1

sinc2
�
klx

2
t cos f

�
sinc2

�
kly

2
t sin f

�
tdtdfffiffiffiffiffiffiffiffiffiffiffiffi
t2 � 1

p ; (13.324)

where we note that sin(p/2 þ jN) ¼ cos jN ¼ cosh N ¼N. An analytical solution to

Eq. (13.323) can be found by substituting s ¼ sin f and expanding the sinc functions

using

sinc2x ¼ ðsin xÞ2
x2 ¼
XN
n¼ 1

ð�1Þnþ1
22n�1

ð2nÞ! x2n�2; (13.325)

which gives

Rs ¼ r0cffiffiffi
p

p
XN
m¼ 0

XN
n¼ 0

ð�1Þmþn

ð2mþ 1Þð2nþ 1Þðmþ 1Þ!ðnþ 1Þ!G
�
mþ nþ 3

2

��klx
2

�2mþ1�kly
2

�2nþ1

:

(13.326)

A somewhat more complicated evaluation of the integrals in Eq. (13.324) is given in

Ref. [40]. Firstly, the sine squared terms have to be expanded into cosine terms using

Eqs. (A2.46) and (A2.50) from Appendix II. Then the infinite integral is evaluated before
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expanding the resulting Bessel and Struve functions. The range of the remaining finite

integral has to be split into two at lx

. ffiffiffiffiffiffiffiffiffiffiffiffiffi
l2x þ l2y

q
yielding

Xs ¼ 2rc

p

 
1� sincðklxÞ

qklx
þ 1� sincðqklxÞ

klx
þ
XM
m¼ 0

ð�1ÞmfmðqÞ
ð2mþ 1Þm!ðmþ 1Þ!

�
klx

2

�2mþ1
!
;

(13.327)

where q ¼ ly/lx,

fmðqÞ ¼
2F1

�
1;mþ 1

2
;mþ 3

2
;

1

1þ q2

�
þ 2F1

�
1;mþ 1

2
;mþ 3

2
;

1

1þ q�2

�
ð2mþ 1Þð1þ q�2Þmþ1=2

þ 1

2mþ 3

Xm
n¼ 0

gmnðqÞ;

(13.328)

and

gmnðqÞ ¼
0@ 2mþ 3

2n

1AXm
p¼ n

ð�1Þp�n
q2n�1

ð2p� 1Þ�1þ q2
�p�1=2

0@m� n

p� n

1A

þ
0@ 2mþ 3

2nþ 3

1A Xm
p¼m�n

ð�1Þp�mþnq2nþ2

ð2p� 1Þ�1þ q�2
�p�1=2

0@ n

p� mþ n

1A:

(13.329)

Separate plots of Rs/r0c and Xs/r0c are shown in Figs. 13.43 and 13.44 respectively as

a function of kl, where l ¼ lx is the smallest dimension. Separate plots of Rs/r0c and Xs/

r0c are also shown in Figs. 13.45 and 13.46 respectively as a function of ka, where a is a

notional radius that gives the same circular area S as the actual area of the rectangular

piston, which is given by S ¼ pa2 ¼ lxly.

13.18 MUTUAL RADIATION IMPEDANCE BETWEEN RIGID
CIRCULAR PISTONS IN AN INFINITE BAFFLE [41e43]

Boundary conditions
When sound sources are radiating in close proximity to each other, their radiation

characteristics may be affected by their acoustic interaction, depending on their spacing

and the frequency. Here we consider two circular pistons of radii a1 and a1, as shown in

Fig. 13.47, which are mounted in an infinite rigid baffle in the xy plane with a separation
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distance d between their centers and oscillate in phase in the z direction with a

harmonically time-dependent velocity eu0.
According to the principle of superposition of fields, we obtain the directivity pattern

from the combinations shown in Fig. 13.48.
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Impedance analogy
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ρ

∞

Figure 13.43 Normalized specific radiation resistance Rs/r0c of the air load on one side of a plane
rectangular piston in an infinite flat baffle for five different aspect ratios q¼ ly/lx, where lx and ly are the
dimensions of the piston. Frequency is plotted on a normalized scale, where kl ¼ 2pl/l ¼ 2pl/c and
l ¼ lx is the smallest dimension. In the case of q ¼N, the impedance is that of an infinitely long
strip.
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Directivity
According to the product theorem of Section 13.16, we multiply the directivity pattern

of a single piston from Eq. (13.102) by that of two point sources in phase from Eq. (4.79)

to produce the directivity patterns of Fig. 13.48(b) and (d). Similarly, we multiply the

directivity pattern of a single piston by that of two point sources in antiphase from Eq.

(4.80) to produce the directivity patterns of Fig. 13.48(c) and (e). Hence, the directivity

pattern of Fig. 13.48(a) is given by

Dðq;fÞ ¼ a21D1ðqÞ
a21 þ a22

e j
kd
2
sin q sin f þ a22D2ðqÞ

a21 þ a22
e�j kd

2
sin q sin f; (13.330)

where

e� j kd
2
sin q sin f ¼ cos

�
kd

2
sin q sin f

�
� j sin

�
kd

2
sin q sin f

�
(13.331)

and D1(q) is the directivity pattern of the piston of radius a1 as given by

D1ðqÞ ¼ 2J1ðka1 sin qÞ
ka1 sin q

(13.332)
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Figure 13.44 Normalized specific radiation reactance Xs/r0c of the air load on one side of a plane
rectangular piston in an infinite flat baffle for four different aspect ratios q ¼ ly/lx, where lx and ly are
the dimensions of the piston. Frequency is plotted on a normalized scale, where kl ¼ 2pl/l ¼ 2pl/c
and l ¼ lx is the smallest dimension. In the case of q ¼N, the impedance is that of an infinitely
long strip.
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and D2(q) is the directivity pattern of the piston of radius a2 as given by

D2ðqÞ ¼ 2J1ðka2 sin qÞ
ka2 sin q

: (13.333)
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Figure 13.45 Normalized specific radiation resistance Rs/r0c of the air load on one side of a plane
rectangular piston in an infinite flat baffle for five different aspect ratios q¼ ly/lx, where lx and ly are the
dimensions of the piston. Frequency is plotted on a normalized scale, where ka ¼ 2pa/l ¼ 2pa/c and
a is a notional radius that gives the same circular area S as the actual area of the rectangular piston,
which is given by S ¼ pa2 ¼ lylx.

706 Acoustics: Sound Fields, Transducers and Vibration



Note that Eqs. (4.79) and (4.80) have been modified to include the f dependency.

Then

jDðq;fÞj2 ¼ a41D
2
1ðqÞ þ a42D

2
2ðqÞ þ 2a21a

2
2D1ðqÞD2ðqÞcosðkd sin q sin fÞ�

a21 þ a22
�2 ; (13.334)

where we have noted that sin2(kd sin q sin f) ¼ 1 � cos2(kd sin q sin f).

Impedance
We now obtain the total radiation impedance of the two pistons using Bouwkamp’s

impedance theorem of Eqs. (13.271) and (13.272)

ZS ¼ RS þ jXS ¼ k2r0cS

4p2

Z 2p

0

0B@Z p
2

0

jDðq;fÞj2 þ
Z p

2
þjN

p
2
þj0

jDðq;fÞj2
1CAsin q dq df;

(13.335)
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Figure 13.46 Normalized specific radiation reactance Xs/r0c of the air load on one side of a plane
rectangular piston in an infinite flat baffle for five different aspect ratios q¼ ly/lx, where lx and ly are the
dimensions of the piston. Frequency is plotted on a normalized scale, where ka ¼ 2pa/l ¼ 2pfa/c and
a is a notional radius that gives the same circular area S as the actual area of the rectangular piston,
which is given by S ¼ pa2 ¼ lxly.
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Figure 13.47 Geometry of two circular pistons in an infinite baffle. The point of observation P is
located at a distance r from the origin at an inclination angle q with respect to the z axis.
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where S ¼ p
�
a21 þ a22

�
is the total radiating area. The total specific radiation resis-

tance is given by

RS ¼ a21

a21 þ a22
R11 þ a22

a21 þ a22
R22 þ 2a1a2

a21 þ a22
R12

¼ 4k2r0c

p
�
a21 þ a22

� Z 2p

0

Z p
2

0

�
a41D

2
1ðqÞ þ a42D

2
2ðqÞ

þ a21a
2
2D1ðqÞD2ðqÞcosðkd sin q sin fÞ�sin q dq df;

(13.336)

where R11 and R22 are the self-resistances of each piston and R12 is the mutual resistance

between the two pistons. The specific radiation reactance is given by

XS ¼ a21

a21 þ a22
X11 þ a22

a21 þ a22
X22 þ 2a1a2

a21 þ a22
X12

¼ �j
4k2r0c

p
�
a21 þ a22

� Z 2p

0

Z p
2
þjN

p
2
þj0

�
a41D

2
1ðqÞ þ a42D

2
2ðqÞ

þ a21a
2
2D1ðqÞD2ðqÞcosðkd sin q sin fÞ�sin q dq df;

(13.337)

where X11 and X22 are the self-reactances of each piston and X12 is the mutual reactance

between the two pistons. The first term in each integral, which is independent of the

spacing d, may be identified as the self-impedance Z11 of the first piston

a1a1 a1
a2 a2

a2
d

(a) (b) (d) (e)(c)

Figure 13.48 Combination of pistons of radii a1 and a2.
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Z11 ¼ 2r0c

0B@Z p
2

0

J21 ðka1 sin qÞ
sin q

dqþ
Z p

2
þjN

p
2
þj0

J21 ðka1 sin qÞ
sin q

dq

1CA; (13.338)

which after substituting m ¼ k sin q, as discussed in Section 13.13, gives

Z11 ¼ R11 þ jX11 ¼ r0c

��
1� J21 ðka1Þ

ka1

�
þ j

H1ðka1Þ
ka1

�
: (13.339)

Similarly, the second term in each integral may be identified as the self-impedance

Z22 of the second piston

Z22 ¼ R22 þ jX22 ¼ r0c

��
1� J21 ðka2Þ

ka2

�
þ j

H1ðka2Þ
ka2

�
: (13.340)

The third term in each integral then gives the mutual impedance Z12 so that, after

integrating over f using the integral solution of Eq. (A2.77) from Appendix II (with

z ¼ kd sin q), we have

Z12 ¼ 2r0c

0B@Z p
2

0

J1ðka1 sin qÞJ1ðka2 sin qÞ
sin q

J0ðkd sin qÞdq

þ
Z p

2
þjN

p
2
þj0

J1ðka1 sin qÞJ1ðka2 sin qÞ
sin q

J0ðkd sin qÞdq

1CA;

(13.341)

which after substituting s ¼ sin q becomes

Z12 ¼ 2r0c

0@Z 1

0

J1ðka1sÞJ1ðka2sÞ
s
ffiffiffiffiffiffiffiffiffiffiffiffi
1� s2

p J0ðkdsÞdsþ
Z N

1

J1ðka1sÞJ1ðka2sÞ
s
ffiffiffiffiffiffiffiffiffiffiffiffi
1� s2

p J0ðkdsÞds
1A:

(13.342)

We then expand the J1 functions using the following Lommel expansion

JnðkasÞ ¼ sn
XN
m¼ 0

�
ka

2

�m
�
1� s2

�m
m!

JnþmðkaÞ (13.343)
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to give

Z12 ¼ 2r0c
XN
m¼ 0

XN
n¼ 0

�
ka1

2

�m�
ka2

2

�n
Jmþ1ðka1ÞJnþ1ðka2Þ

m!n!

�
0@Z 1

0

J0ðkdsÞ
�
1� s2

�mþn�1=2
sdsþ jð�1Þmþn

Z N

1

J0ðkdsÞ
�
s2 � 1

�mþn�1=2
sds

1A;

(13.344)

which can be solved with help from Eqs. (A2.96), (A2.97), and (A2.98) of Appendix II to

yield

Z12 ¼ 2r0cffiffiffi
p

p
XN
m¼ 0

XN
n¼ 0

�
ka1

kd

�m�
ka2

kd

�nGðmþ nþ 1=2ÞJmþ1ðka1ÞJnþ1ðka2Þ
m!n!

h
ð2Þ
mþnðkdÞ;

(13.345)

where the total specific radiation impedance is given by

ZS ¼ a21
a21 þ a22

Z11 þ a22
a21 þ a22

Z22 þ 2a1a2

a21 þ a22
Z12 (13.346)

and hmþn
(2) is the spherical Hankel function defined in Eq. (A2.133) of Appendix II. For

very large wavelengths and separations, where ka << 1 and d >> a, we have

Z12zr0c
ðka1Þðka2Þ

2

�
sinðkdÞ
kd

þ j
cosðkdÞ

kd

�
; ðka1Þðka2Þ << 1;

ffiffiffiffiffiffiffiffi
a1a2

p
d

<< 1;

(13.347)

where R11 ¼ (ka)2/2. Plots of the real normalized mutual radiation resistance (R12/R11)

and reactance (X12/R11) for ka ¼ 1 are shown in Fig. 13.49 as a function of kd.

Array of pistons
We now extend the model to an array of N pistons, each of radius ap, where the pth and

qth pistons are separated by a distance dpq. Multiplying Eq. (13.346) through by the total

area p
�
a21 þ a22

�
yields the total mechanical impedance

ZM ¼ p
�
a21 þ a22

�
ZS ¼ pa21Z11 þ pa22Z22 þ 2pa1a2Z12: (13.348)

We may represent this with an N-port model in the following matrix form

F ¼ Z$u; (13.349)
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where u is the velocity vector

u ¼ eu1 eu2 / eup / euN �T: (13.350)

Because we are extending this model to an unlimited number of ports, we define all the

velocities as positive flowing into the ports. Then Z is the mechanical impedance matrix

Z ¼

266666666666664

z11 z12 / z1q / z1N

z21 z22 / z2q / z2N

« « « «

zp1 zp2 / zpq / zpN

« « «

zN1 zN2 / zNq / zNN

377777777777775
; (13.351)

and F is the force vector

F ¼  eF1 eF2 / eFq / eFN

�T
: (13.352)
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Figure 13.49 Real and imaginary parts of the normalized mutual radiation impedance Z12 of the air
load on one side of two plane circular pistons of radius a and separation d in an infinite baffle.
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The mechanical self-impedance elements on the diagonal are given by

zpp ¼ pa2pðRpp þ jXppÞ ¼ pa2pr0c

��
1� J21 ðkapÞ

kap

�
þ j

H1ðkapÞ
kap

�
(13.353)

and the symmetrical mutual-impedance elements are given by

zpq ¼ zqp ¼ papaqðRpq þ jXpqÞ

¼ 2
ffiffiffi
p

p
apaqr0c

XN
m¼ 0

XN
n¼ 0

�
kap

kdpq

�m�
kaq

kdpq

�n

�Gðmþ nþ 1=2ÞJmþ1ðkapÞJnþ1ðkaqÞ
m!n!

h
ð2Þ
mþnðkdpqÞ:

(13.354)

The self- and mutual acoustic impedances are given by

Zpq ¼ zpq

p2a2pa
2
q

: (13.355)

13.19 NEAR-FIELD ACOUSTICAL HOLOGRAPHY [8]

The forward problem
In Section 13.3 we stated that an infinite plane counts as a closed surface over which a

boundary surface integral may be evaluated because it isolates the sources on one side of

the plane from the observation field on the other. You will also recall from Section 13.15

that the far-field pressure distribution is the Fourier transform of the velocity distribution

over an infinite plane. To calculate the near-field pressure we also have to take the inverse

Fourier transform, and this technique is known as near-field acoustical holography. If we

take the Fourier Green’s function of Eq. (13.33) and insert it into the dipole part of the

KirchhoffeHelmholtz boundary integral of Eq. (13.28) or dipole Rayleigh integral, we

obtain

epðx; y; zÞ ¼ 1

8p2

Z N

�N

Z N

�N
2ep0ðx0; y0; z0Þ

�
Z N

�N

Z N

�N
e�jðkxðx�x0Þþkyðy�y0Þþkzðz�z0ÞÞdkxdkydx0dy0;

(13.356)

which gives the pressure epðx; y; zÞ in the z-plane in terms of the pressure ep0ðx0; y0; z0Þ
on both faces of the z0-plane. The forward problem is defined as the one where the field is

calculated for z � z0, and all sources are located in the region z � z0. Rearranging the

integrals gives

Radiation and scattering of sound by the boundary integral method 713



epðx; y; zÞ ¼ 1

4p2

Z N

�N

Z N

�N
e�jkzðz�z0Þ

�
Z N

�N

Z N

�N
ep0ðx0; y0; z0Þe jðkxx0þkyy0Þdx0dy0e�jðkxxþkyyÞdkxdky;

(13.357)

where

kz ¼

8>><>>:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � k2x � k2y ;

q
k2x þ k2y � k2

�j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y � k2

q
; k2x þ k2y > k2

: (13.358)

We shall now reconstruct this equation by a different method in three simple steps.

First, we take the spatial Fourier transform of the pressure in the z0-plane:

ePðkx; ky; z0Þ ¼
Z N

�N

Z N

�N
ep0ðx0; y0; z0Þe jðkxx0þkyy0Þdx0dy0: (13.359)

The transformed pressure ePðkx; ky; z0Þ contains no references to the spatial ordinates

x and y. It is simply the wave-number spectra, each component of which represents a

plane harmonic traveling wave, provided that the associated wave number is real.

However, nonpropagating evanescent fields can exist, in which case the transform

component represents a field of uniform phase that oscillates in time, but not in space,

and decays exponentially with distance. Next, the wave-number spectra is propagated in

k-space to the parallel z-plane by multiplying it with an exponent propagator term as

follows ePðkx; ky; z0; zÞ ¼ e�jkzðz�z0ÞePðkx; ky; z0Þ: (13.360)

Over values of kx and ky for which kz is real, the propagator is simply a phase term

that does not affect the amplitude of the spectra. However, when kz is imaginary, the

propagator becomes a decaying exponent that when multiplied with the spectra rep-

resents nonpropagating evanescent waves. Finally, we take the inverse Fourier transform

to construct the pressure field in the z-plane, which is essentially the sum of all the fields

produced by each component of the wave-number spectra:

epðx; y; zÞ ¼ 1

4p2

Z N

�N

Z N

�N

ePðkx; ky; z0; zÞe�jðkxxþkyyÞdkxdky: (13.361)

Combining Eq. (13.361) with Eqs. (13.358) and (13.360) gives Eq. (13.357).

However, Eq. (13.361) has computational and interpretational advantages over the

Rayleigh integral and is particularly amenable to the digital processing of sound fields

captured by planar microphone arrays to calculate the entire sound field of interest.
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The reverse problem
It turns out that we can apply exactly the same equations that were used for the forward

problem, above, to the inverse problem, where the field is calculated for z � z0 and all

sources are also located in the region z � z0. The only difference now is that over values

of kx and ky for which kz is imaginary, the propagator becomes a growing exponent

because the nonpropagating evanescent waves increase in strength when approaching the

sources.

13.20 TIME REVERSAL

Imagine that we place a planar array of microphones between a stage and an

audience and then make a recording of a performance by musicians on the stage. We

assume that the extent of the array is large enough to be considered infinite and that the

microphones are small enough and far enough apart not to disturb the sound field

produced. We also assume that the ratio of the smallest wavelength to the microphone

pitch is large enough not to introduce spatial aliasing. If we play back the recording

through an infinite array of either omnidirectional (monopole) or bidirectional (dipole)

loudspeakers in place of the microphones (making the same assumptions as with the

microphones), we will faithfully reproduce the concert when listening from the audience

side of the array. However, if we listen from the stage side, we will not hear what was

heard by the musicians, but that which was heard by the audience. Reproducing a sound

field with sources in it is not so easy. Near-field acoustical holography, as described in the

previous section, only provides a way to calculate the sound field on the stage side. In

other words, we only have a virtual field, not a real one.

In time reversal, we play the recording backwards. Although this obviously makes no

sense for music, it does have an interesting effect in the case of signals such as a

continuous tone or an impulse. During the recording, an impulse arrives at the middle

microphone first and then the ones on either side of that and works its way progressively

toward the outermost microphones. During normal playback, the impulse leaves the

loudspeakers in the same order as it arrived at the corresponding microphones, but if

the recording is played backwards the sound emanates in reverse order starting from the

outermost loudspeakers and finishing from the middle one. The effect of this is to focus

the sound toward the source from which it was originally produced during the

recording. If the sound was produced by a point source [see Eq. (4.71)], will the original

source be faithfully reproduced?

To answer that question, let us now consider a simpler example. Suppose now that we

have a spherical wave converging toward a point. If there is no source or sink at the focal

point, the spherical wave will pass through the focal point and reemerge as a diverging

wave. From Eq. (2.134) we have

epðrÞ ¼ eAþ
e�jkr

r
þ eA�

e jkr

r
; (13.362)

Radiation and scattering of sound by the boundary integral method 715



where eA� is the amplitude of the sound pressure in the incoming wave at unit distance

from the center of the sphere and eAþ is the same for the outgoing wave. To meet the

boundary condition of pressure continuity, or zero pressure gradient, at the center, we seteAþ ¼ �eA� so that

epðrÞ ¼ 2jeA�
sin kr

r
: (13.362)

The incoming wave is reflected back out again as if there were a rigid termination

point at the center. To absorb it we have to place a point sink�eAþe�jkr


r at the center. It

has been pointed out that, when time reversing the waves produced by dropping a pebble

into a pond, a pebble must rise out of the water at the end of the sequence [44]. In the

case of a plane wave, it is relatively straight forward to absorb it using a r0c termination as

was shown in Section 2.4. In the case of a converging spherical wave, the characteristic

impedance is only approximately r0c at a distance of several wavelengths from the center,

as demonstrated by Eq. (2.144). At closer distances, the impedance is mainly massive.

Therefore, a sphere whose surface impedance is r0c can only be used as an acoustic sink

to absorb an incoming spherical wave if it has a diameter of several wavelengths.

If we now return to the problem of the planar loudspeaker array, the same principle

applies. In the absence of any acoustic sink, the waves converge on the point from which

the sound originally emanated and reemerge on the opposite side. As they pass through

the focal point, there is a transition from the positive phase angle of the converging wave

to the negative phase angle of the diverging one [45]. Hence the imaginary part of the

pressure field is zero in the plane of the focal point where the converging and diverging

waves meet. In this way, the singularity of the original point source is removed and we are

left with an approximation of it.

Problem 13.1. In Section 13.17, we derived the far-field directivity of a rectangular

piston in an infinite baffle using the Bridge product theorem. Show that Eq. (13.318)

may also be derived using the far-field Green’s function of Eqs. (13.45) and (13.46) in the

Rayleigh integral of Eq. (13.6), taking into account the double-strength source as

illustrated in Fig. 13.4 for a circular piston. The rectangular piston lies in the xy plane

with its center located at the origin of the rectangular coordinate system and oscillates

with a velocity eu0 in the z-direction.

Hint: Use the integral
R lx=2
�lx=2

ejkxx0=Rdx0 ¼
h
ejkxx0=R

jkx=R

ilx=2
�lx=2

¼ sinðklxx=2RÞ
kx=2R

together with

sin q1 ¼ x/R and sin q2 ¼ y/R. Show that the far-field pressure is of the formepðx; y; zÞ ¼ jklxlyr0ceu0e�jkR

2pR Dðqx; qyÞ
Problem 13.2. In Section 13.17, we derived the radiation impedance of a rectan-

gular piston in an infinite baffle from the far-field directivity using Bouwkamp’s

impedance theorem. Show that Eqs. (13.323) and (13.324) may also be derived using the
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Fourier Green’s function of Eqs. (13.33) and (13.34) in the Rayleigh integral of Eq.

(13.6), taking into account the double-strength source as illustrated in Fig. 13.4 for a

circular piston. The rectangular piston lies in the xy plane with its center located at the

origin of the rectangular coordinate system and oscillates with a velocity eu0 in the z-

direction.

Hint: Because the sinusoidal function is odd, the imaginary parts of the complex

exponents cancel out over the positive and negative values of kx and ky in the infinite

integrals. After evaluating the surface integrals to derive the expression for the specific

impedance Zs, use polar coordinates, where kx ¼ kt cos f, ky ¼ kt sin f, and

dkxdky ¼ k2tdtdf, to reduce the double infinite integral to a single infinite one over t and

a single finite one over f. Then separate the infinite integral into real and imaginary parts

to produce the resistance Rs and reactance Xs, respectively.

Problem 13.3. Use the Bridge product theorem to derive the far-field directivity

pattern of four pistons of radius a in an infinite baffle regularly spaced in a straight line at

intervals of d, where the directivity of an array of N point sources is given by Eq. (4.85)

and that of a circular piston in an infinite baffle is given by Eq. (13.102). Use the identity

(sin 4x)/(sin x) ¼ 4 cos x cos 2x and do not forget to include the f dependency in Eq.

(4.85) as was done in Section 13.8.
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[45] Mellow TJ, Kärkkäinen LM. Expansions for infinite or finite plane circular time-reversal mirrors and
acoustic curtains for wave-field-synthesis. J Acoust Soc Am 2014;135(3):1256e77.

[46] Zeitler B, Zeitler E. The field of sound of a circular membrane. J Acoust Soc Am 2004;116(2):916e7.
[47] Backhaus H, Trendelenburg F. Ueber die richtwirkung von kolbenmembranen (On the directivity of

piston membranes). Z Tech Phys (Leipzig) 1927;7:630.
[48] Poletti MA. Spherical expansions of sound radiation from resilient and rigid disks with reduced error.

J Acoust Soc Am 2018;144(3):1180e9.
[49] Bouwkamp CJ. On integrals occurring in the theory of diffraction of electromagnetic waves by a

circular disk. Proc Koninklijke Nederl Akademie Wetenschappen Ser A Math Sci
1950;53(5):654e61. http://www.dwc.knaw.nl/DL/publications/PU00018814.pdf.

[50] Aarts RM, Janssen AJEM. Sound radiation quantities arising from a resilient circular radiator. J Acoust
Soc Am 2009;126(4):1776e87.

[51] Rdzanek WP. Sound scattering and transmission through a circular cylindrical aperture revisited using
the radial polynomials. J Acoust Soc Am 2018;143(3):1259e82. See Appendix E.

Radiation and scattering of sound by the boundary integral method 719

http://www.dwc.knaw.nl/DL/publications/PU00018814.pdf


CHAPTER FOURTEEN

Vibroacoustics (membranes, plates,
and shells)

PART XXXVIII: MEMBRANES

14.1 INTRODUCTION TO VIBROACOUSTICS

Apart from a brief overview of loudspeaker diaphragm behavior in Section 6.14, until

now we have treated all sound sources as if they were either perfectly rigid or perfectly

flexible (resilient). Real diaphragms, of course, fall somewhere between these two

extremes in their behavior. Until now, we have concentrated on airborne waves (or sound

fields) radiating from sound sources into free space or confined within cavities or ducts.

Vibroacoustics is the subject that deals with waves within structures such as membranes,

plates, and shells. We shall begin with membranes, which are plates so thin that they can be

treated as if they have zero-bending stiffness. Membranes are used as diaphragms in high-

end electrostatic or planar-magnetic loudspeakers. However, unlike a resilient disk, which

we treated in Section 13.8 and 13.9, a membrane is clamped at its perimeter and can

therefore support standing waves. Plates are slightly more complicated because they have

finite bending stiffness. We will examine how these can be used as loudspeaker diaphragms

in Section 14.19, but for now we will simply calculate their modes with various boundary

conditions.

The third kind of structure we shall consider is the spherical shell which is the most

common kind of diaphragm and is found in devices ranging from microspeakers to hi-fi

dome tweeters. These are more rigid than plates for the same thickness and therefore

resonate at higher frequencies. We will examine the behavior of membranes, plates, and

shells as loudspeaker diaphragms fully coupled into their surrounding air loads. Hence,

we will introduce the concept of fluidestructure interaction.

14.2 MEMBRANE WAVE EQUATION IN RECTANGULAR
COORDINATES

A membrane is normally pretensioned, so we will define a force per unit length T

that we can assume to be uniformly distributed throughout the membrane. As we shall

see, the membrane tension is analogous to static pressure in the case of pressure waves in
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air as it determines the restoring force. Although pressure waves in air are longitudinal, in a

membrane we have transverse waves. In other words, the displacement h at each point is

normal to the direction of travel rather than back and forth in the direction of travel. Let

the density of the membrane be rD and its thickness be h. Referring to Fig. 14.1, we wish

to find the restoring force Fx acting on the element of the membrane when it is displaced

from the position of equilibrium (at h ¼ 0). The net restoring force is proportional to the

difference between the normal components Th(x þ dx) and Th(x) of the tension T at the

points x þ dx and x, respectively.

We can write

FhðxÞ ¼ �
Thðxþ dxÞ � ThðxÞ

�
dy

¼ T

�
v

vx
hðxþ dxÞ � v

vx
hðxÞ

�
dy

¼ T
v2h

vx2
dxdy.

(14.1)

The second-order differential in (Eq. 14.1) is the termed the curvature of the mem-

brane and is equal to the inverse of the radius of curvature. Similarly, the restoring force

in the y direction is given by

FhðyÞ ¼ �
Thðyþ dyÞ � ThðyÞ

�
dx

¼ T

�
v

vy
hðyþ dyÞ � v

vy
hðyÞ

�
dx

¼ T
v2h

vy2
dxdy.

(14.2)
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Figure 14.1 Membrane element in rectangular coordinates shown as (a) cross section and (b) from
above.
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In accordance with Newton’s second law, the sum of the restoring forces must equal

the element’s mass rDhdxdy times its normal acceleration. Hence

FhðxÞ þ FhðyÞ ¼ T

�
v2h

vx2
þ v2h

vy2

�
dxdy ¼ rDh

v2h

vt2
dxdy. (14.3)

The wave equation for the membrane in rectangular coordinates is therefore

V2h ¼ 1

c2D

v2h

vt2
; (14.4)

where the Laplace operator V2 is given by

V2 ¼ v2

vx2
þ v2

vy2
(14.5)

and the speed of sound in the membrane cD is given by

cD ¼
ffiffiffiffiffiffiffiffi
T

rDh

s
. (14.6)

In the steady state, we replace the first time derivative in (Eq. 14.4) with ju to obtain�
V2 þ k2D

�eh ¼ 0; (14.7)

where the wavenumber kD of the membrane is given by

kD ¼ u

cD
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y

q
. (14.8)

The general form of this wave equation is the same as the Helmholtz wave equation

for sound pressure waves given by Eq. (2.146) except that the speed of sound is different,

and the z-term is missing from the Laplace operator because here we have a

2-dimensional wave instead of a 3-dimensional one. Hence, the general unbounded

solution is

ehðx; yÞ ¼ ehþe�jðkxxþkyyÞ þ eh�ejðkxxþkyyÞ. (14.9)

14.3 SOLUTION OF THE MEMBRANE WAVE EQUATION FOR A
RECTANGULAR MEMBRANE

Consider a finite rectangular membrane of dimensions lx and ly, which is clamped

at its perimeter, where x ¼ 0 or lx and y ¼ 0 or ly, so that we have the boundary

conditions
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ehðx; 0Þ ¼ ehðx; lyÞ ¼ ehð0; yÞ ¼ ehðlx; yÞ ¼ 0: (14.10)

Only modes that satisfy these boundary conditions can exist so that

kx ¼ mp=lx (14.11)

ky ¼ np=ly: (14.12)

Hence, the solution of Eq. (14.7) for a finite rectangular membrane is the form of an

eigenfunction expansion

ehðx; yÞ ¼
XN
m¼ 1

XN
n¼ 1

eAmn sin

�
mpx

lx

�
sin

�
npy

ly

�
(14.13)

where the products of the two cosine terms for each value of m and n are the eigenfunctions

and the expansion coefficients eAmn depend on the excitation conditions. Although an

infinite membrane can support any frequency, just like open space, a finite membrane

that is clamped at its perimeter can only support specific frequencies, known as eigen-

frequencies. In the case of a rectangular membrane, these are given by

fmn ¼ umn

2p
¼ cD

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
m

lx

�2

þ
�
n

ly

�2
s

; (14.14)

which has a similar form to Eq. (10.5) for the eigenfrequencies of pressure waves within a

rectangular enclosure.

14.4 MODES OF A RECTANGULAR MEMBRANE

The eigenfunctions sin(mpx/lx) sin(npy/ly) are plotted in Fig. 14.2.

14.5 GREEN’S FUNCTION FOR A RECTANGULAR MEMBRANE

So far, we have only solved the homogeneous membrane wave equation (see Eq.

14.7) to find out what vibration modes may be possible, but which ones will actually be

excited depends on the specific driving conditions. Different modes will occur

depending on whether the membrane is driven with a uniform pressure distribution, for

example, or a driving velocity is applied at a point off-center. Let us now write an

inhomogeneous membrane equation by adding an arbitrary driving pressure distributionep0ðx; yÞ to the homogeneous one of Eq. (14.7)�
V2 þ k2D

�ehðx; yÞ ¼ �ep0ðx; yÞ
T

; (14.15)
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where

V2ehðx; yÞ ¼ �p2

 
m2

l2x
þ n2

l2y

!ehðx; yÞ (14.16)

We then multiply both sides by a normalizing function, which in this case is

sin(ppx/lx) sin(qpy/ly), and integrate over the surface of the membrane 
k2D � p2

 
m2

l2x
þ n2

l2y

!!XN
m¼ 1

XN
n¼ 1

eAmn

Z lx

0

sin

�
mpx

lx

�
sin

�
ppx

lx

�
dx

Z ly

0

sin

�
npy

ly

�
sin

�
qpy

ly

�
dy

¼ �1

T

Z ly

0

Z lx

0

ep0ðx; yÞ sin�ppxlx
�
sin

�
qpy

ly

�
dxdy.

(14.17)

m = 1, n = 1 m = 1, n = 2 m = 1, n = 3

m = 2, n = 1 m = 2, n = 2 m = 2, n = 3

m = 3, n = 1 m = 3, n = 2 m = 3, n = 3
Figure 14.2 Eigenfuctions of a rectangular membrane.
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Using the orthogonal integral from Eq. (A2.57) of Appendix IIZ lx

0

sin

�
mpx

lx

�
sin

�
ppx

lx

�
dx ¼

(
0; msp

ð1� dm0Þlx=2; m ¼ p;
(14.18)

together with the same integral with m, p, x, and lx exchanged for n, q, y, and ly, yields

eAmn ¼ 4

T
�
k2mn � k2D

�
lxly

Z ly

0

Z lx

0

ep0ðx; yÞ sin�mpxlx
�
sin

�
npy

ly

�
dxdy; (14.19)

where

kmn ¼ p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

l2x
þ n2

l2y

s
. (14.20)

Hence, the displacement ehðw;fÞ for a given pressure distribution ep0ðw0;f0Þ is

ehðx; yÞ ¼ 4

T

XN
m¼ 1

XN
n¼ 1

sinðmpx=lxÞ sinðnpy=lyÞ�
k2mn � k2D

�
lxly

�
Z ly

0

Z lx

0

ep0ðx0; y0Þ sinðmpx0=lxÞ sinðnpy0=lyÞdx0dy0
(14.21)

This can also be written as

ehðx; yÞ ¼ 1

T

Z ly

0

Z lx

0

ep0ðx0; y0ÞGðx; yjx0; y0Þdx0dy0; (14.22)

where G(x, yjx0, y0) is the Green’s function for the membrane given by

Gðx; yjx0;y0Þ ¼ 4
XN
m¼ 1

XN
n¼ 1

sinðmpx=lxÞ sinðnpy=lyÞ sinðmpx0=lxÞ sinðnpy0=lyÞ�
k2mn � k2D

�
lxly

;

(14.23)

which can be shown to satisfy the inhomogeneous wave equation for excitation by a

point source at (x0, y0)�
V2 þ k2D

�
Gðx; yjx0;y0Þ ¼ �dðx� x0Þdðy� y0Þ. (14.24)

Notice that the Dirac delta functions on the right-hand side denotes a concentrated

point excitation at (x0, y0) in a similar manner to the point source in space described by

the Green’s function of Eqs. (13.16) and (13.17). However, in this case we have a bounded

Green’s function denoted by the upper case G.
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14.6 MEMBRANE WAVE EQUATION IN POLAR COORDINATES

As the Laplace operator of Eq. (14.5) is the same as that of the wave equation in

three dimensions given by Eq. (2.147) but without the z-term, it follows that the Laplace

operator for the membrane in polar coordinates, which is given by

V2 ¼ v2

vw2
þ 1

w

v

vw
þ 1

w2

v2

vf2
. (14.25)

A rigorous derivation of this is given in Ref. [1]. Following the same procedure as in

Section 2.10, where we separate the wave equation into its radial and angular (azimuthal)

parts, we arrive at the solution to the homogeneous membrane wave equation�
V2 þ k2D

�ehðw;fÞ ¼ 0. (14.26)

The general unbounded solution is

ehmðw;fÞ ¼ �eAm cosðm4Þ þ eBm sinðm4Þ��ehþHð2Þ
m ðkDwÞ þ eh�Hð1Þ

m ðkDwÞ
�
. (14.27)

14.7 SOLUTION OF THE MEMBRANE WAVE EQUATION FOR A
CIRCULAR MEMBRANE

Consider a finite circular membrane of radius awith its center at the origin, which

is clamped at its perimeter, where w ¼ a, so that we have the boundary conditionehða;fÞ ¼ 0: (14.28)

We assume that the membrane is continuous at the center so that we can disregard the

Neumann functions in Eq. (14.27). These would only be needed in special cases such as

an annular membrane. Hence, the Hankel functions reduce to a Bessel function. Only

modes that satisfy these boundary conditions can exist so that

kD ¼ amn=a; (14.29)

where amn are zeros of the Bessel function such that Jm(amn) ¼ 0. Hence, the solution to

Eq. (14.26) for a finite circular membrane is in the form of an eigenfunction expansion

ehðw;fÞ ¼
XN
m¼ 0

XN
n¼ 1

�eAmn cosðmfÞ þ eBmn sinðmfÞ
�
Jmðamnw=aÞ; (14.30)

where the expansion coefficients eAmn and eBmn depend on the excitation conditions.

Here we shall assume eBmn ¼ 0. Some eigenvalues are given in Table 14.1.
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For large values

amnjn/N ¼
�
m

2
þ n� 1

4

�
p. (14.31)

The eigenfrequencies are given by

fn ¼ un

2p
¼ cDamn

2pa
. (14.32)

where the speed of sound in the membrane cD is given by Eq. (14.6).

14.8 MODES OF A CIRCULAR MEMBRANE [2]

The eigenfunctions cos(mf)Jm(amnw/a) are plotted in Fig. 14.3. The modes for

m ¼ 0 are known as axisymmetric modes and the values of a0n for these are given in the

first row of Table 14.1.

14.9 GREEN’S FUNCTION FOR A CIRCULAR MEMBRANE

Let us now write an inhomogeneous membrane equation by adding a driving

pressure distribution ep0ðw;fÞ to the homogeneous one of Eq. (14.26)�
V2 þ k2D

�ehðw;fÞ ¼ �ep0ðw;fÞ
T

; (14.33)

where

ehðw;fÞ ¼
XN
m¼ 0

XN
n¼ 1

eAmn cosðmfÞJmðamnw=aÞ. (14.34)

Using the recursion formulas of Eqs. (A2.83) and (A2.84) from Appendix II it can be

shown that

V2ehðw;fÞ ¼ �a2mn
a2
ehðw;fÞ. (14.35)

Table 14.1 Zeros amn of the Bessel function Jm(amn)

a01 2.4048 a02 5.5201 a03 8.6537 a04 11.792

a11 3.8317 a12 7.0156 a13 10.173 a14 13.324

a21 5.1356 a22 8.4172 a23 11.620 a24 14.796

a31 6.3802 a32 9.7610 a33 13.015 a34 16.223
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From Eqs. (14.6) and (14.8), the wave number for the membrane is

kD ¼ u

cD
¼ u

ffiffiffiffiffiffiffiffi
rDh

T

r
. (14.36)

The tension T is included in the denominator on the right-hand side of Eq. (14.33)

to ensure consistency of units on both sides of the equation. As usual, we multiply both

sides by a normalizing function, which in this case is cos(pf)Jp(apqw/a), and integrate

over the surface of the membraneXN
m¼ 0

XN
n¼ 1

eAmn

�
k2D � a2mn

a2

�Z 2p

0

cosðmfÞcosðpfÞd4
Z a

0

Jmðamnw=aÞJpðapqw=aÞwdw

¼ �1

T

Z 2p

0

Z a

0

ep0ðw;fÞcosðpfÞJpðapqw=aÞwdwdf.
(14.37)

m = 0, n = 1 m = 0, n = 2 m = 0, n = 3

m = 1, n = 1 m = 1, n = 2 m = 1, n = 3

m = 2, n = 1 m = 2, n = 2 m = 2, n = 3

Figure 14.3 Eigenfunctions of a circular membrane.
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Using the orthogonal integrals from Eqs. (A2.56) and (A2.101) of Appendix IIZ 2p

0

cosðmfÞcosðpfÞd4 ¼
(
0; msp

ð1þ dm0Þp; m ¼ p
(14.38)

Z a

0

Jmðamnw=aÞJmðamqw=aÞwdw ¼
(
0; nsq

a2J2mþ1ðamnÞ
	
2; n ¼ q

(14.39)

yields

eAmn ¼
2

Z 2p

0

Z a

0

ep0ðw;fÞcosðmfÞJmðamnw=aÞwdwdf
pTð1þ dm0Þ

�
a2mn � k2Da

2
�
J2mþ1ðamnÞ

. (14.40)

Hence, the displacement ehðw;4Þ for a given pressure distribution ep0ðw0;f0Þ is

ehðw;fÞ ¼ 2

pT

XN
m¼ 0

XN
n¼ 1

cosðmfÞJmðamnw=aÞ
ð1þ dm0Þ

�
a2mn � k2Da

2
�
J2mþ1ðamnÞ

�
Z 2p

0

Z a

0

ep0ðw0;f0Þcosðmf0ÞJmðamnw0=aÞw0dw0df0.

(14.41)

This can also be written as

ehðw;fÞ ¼ 1

T

Z 2p

0

Z a

0

ep0ðw0;40ÞGðw;fjw0;f0Þw0dw0df0; (14.42)

where G(w, fjw0, f0) is the Green’s function for the membrane given by

Gðw;fjw0;f0Þ ¼ 2

p

XN
m¼ 0

XN
n¼ 1

cosðmfÞJmðamnw=aÞcosðmf0ÞJmðamnw0=aÞ
ð1þ dm0Þ

�
a2mn � k2Da

2
�
J2mþ1ðamnÞ

; (14.43)

which can be shown to satisfy the inhomogeneous wave equation [1] for excitation by a

point source at (w0, f0)�
V2 þ k2D

�
Gðw;fjw0;f0Þ ¼ �1

w
dðw � w0Þdðf� f0Þ: (14.44)
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14.10 RADIATION FROM A CIRCULAR MEMBRANE WITHOUT
A BAFFLEdANALYTICAL MODEL OF AN ELECTROSTATIC
LOUDSPEAKER COUPLED TO ITS SURROUNDING AIR [3]

In this section, we will introduce the concept of fluidestructure coupling. So far,

we have only considered sound radiation from a pure pressure source in free space as if

the uniform electrostatic force were driving the air particles directly without any

structure, as described in Section 13.8 under the heading “Radiation from a resilient

circular disk without a baffle”. However, a real membrane has mass and stiffness, because

of its tension, as well as the boundary condition of zero velocity at its perimeter where it

is clamped. Without this boundary condition, the velocity of the resilient disk was

infinite at the perimeter.

Also, in the previous section, we only considered the behavior of the membrane in

vacuum. When surrounded by a fluid medium such as air, there is a strong and highly

localized interaction between the membrane and the surrounding air. The radiation

mass, which is usually considerably greater than the mass of the membrane, lowers the

lowest resonance frequencies while the radiation resistance damps the higher ones.

Hence the membrane and free space wave equations must be solved simultaneously.

Using the Fourier free-space Green’s function enables all the integrals to be evaluated

analytically and thus avoids numerical integration.

Boundary conditions
The membrane of radius a lies in the xy plane, as shown in Fig. 13.8, with its center at the

origin and the uniform driving pressure epI is applied to its surface in the z direction. The
pressure field on one side of the xy plane is the symmetrical “negative” of that on the

other, so that epðw; zÞ ¼ �epðw;�zÞ: (14.45)

Consequently, there is a Dirichlet boundary condition in the plane of the membrane

where these equal and opposite fields meet, so thatepðw; 0Þ ¼ 0; w � a: (14.46)

On the front and rear outer surfaces of the membrane, there is the coupling condition

v

vz
epðw; zÞ





z¼0�
¼ �jkrceu0ðwÞ;
¼ k2r0c

2hðwÞ; 0 � w � a;

(14.47)

where eu0ðwÞ is the normal particle velocity in the z direction at the surfaces, ehðwÞ is the
membrane displacement, and k is the wave number given by
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k ¼ u

c
¼ 2p

l
; (14.48)

u is the angular frequency of excitation, r0 is the density of air or any other surrounding

medium, c is the speed of sound in that medium, and l is the wavelength. We will

represent the unknown surface pressure distribution epþðw0Þ by a power-series trial or

basis function [4,5], which is itself based on a solution to the free-space wave equation in

oblate spheroidal coordinates [6].

epþðw0Þ ¼ �ep�ðw0Þ ¼ epI
2

XN
n¼ 0

An

�
nþ 3

2

��
1� w2

0

a2

�nþ1=2

; (14.49)

where eAn are the power-series coefficients, which have to be solved for. Notice that the

surface pressure is zero at w0 ¼ a, which satisfies the boundary condition of Eq. (14.46).

Wave equation for the membrane in free space
The construction of the electrostatic loudspeaker is shown in Fig. 14.4, with stationary

electrodes on either side of the membrane, each at a distance d from it. The membrane is

assumed to be circular with a radius a, and its conductive coating is charged by the

polarizing voltage EP via the high-value resistor RP, which keeps the membrane charge

reasonably constant at all but the very lowest frequencies. The inhomogeneous steady-

state wave equation for the displacement ehðwÞ of the circular membrane, which is

clamped at its perimeter, can be written with the inherent membrane forces on the left

and the external forces on the right�
TV2 � juzs � u2rDh

�ehðwÞ ¼ epþðwÞ � ep�ðwÞ � epI ; ehðaÞ ¼ 0; (14.50)

where the Laplace operator is given by

V2 ¼ v2

vw2
þ 1

w

v

vw
; (14.51)

andepþðwÞ andep�ðwÞ are the front and rear pressure distributions, respectively, due to the
surrounding acoustic medium, T is the tension (which is evenly distributed throughout

the membrane), rD is the density of the membrane material, and h is its thickness. The

driving pressure epI is related to the input voltage eein by

epI ¼ b

SD
eein; (14.52)

where b is the electromechanical conversion factor, which is given by

b ¼ 2CED
EP

d
; (14.53)
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and the interelectrode capacitance of the loudspeaker is given by

CED ¼ ε0SD

2d
; (14.54)

where SD is the membrane surface area, given by SD ¼ pa2, and ε0 is the permittivity of

free space. The arbitrary specific acoustic impedance zs is defined by

zS ¼ RS þ juMS � b2

iuCEDSD
; (14.55)

Polarizing
supply EP

Membrane

Electrodes

Audio input

Spacers

d

d
a

RP

Figure 14.4 Construction of electrostatic loudspeaker.
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where RS and MS are the distributed resistance and mass respectively of the dust screen

(not shown) and perforations in the electrodes either side of the membrane, which are

usually designed to damp its vibration modes. For this analysis, it is assumed that the mass

is negligible and that the resistance is linear and will not vary with frequency. The

remaining term is the “negative impedance” that results from the increase in electrostatic

attraction toward each electrode as the membrane approaches it. We rewrite Eq. (14.50)

in the “Helmholtz” form using the modified diaphragm wavenumber k0D as follows�
V2 þ k02D

�eh ¼ 1

T

�epþðwÞ � ep�ðwÞ � epI�; ehðaÞ ¼ 0; (14.56)

where

k0D ¼ kD

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� j

zS

kDðkÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
rDhT

p
r

; (14.57)

kD ¼ u=cD ¼ kc=cD; (14.58)

and

cD ¼
ffiffiffiffiffiffiffiffi
T

rDh

s
; (14.59)

where cD is the speed of sound in the membrane.

Solution of the membrane wave equation
The solution to membrane wave equation, Eq. (14.56), subject to the edge constraintehðaÞ ¼ 0, is given by Eq. (14.30), but with the azimuthal ordinate f suppressed because

of axial symmetry.

ehðwÞ ¼ 1

T

Z 2p

0

Z a

0

�epþðw0Þ � ep�ðw0Þ � epI�Gðwjw0Þw0dw0d40: (14.60)

We rewrite the Green’s function of Eq. (14.43) for the membrane using the modified

wavenumber k0D as follows

Gðwjw0Þ ¼ 1

p

XN
m¼ 1

J0ðamw=aÞJ0ðamw0=aÞ
J21 ðamÞ

�
a2m � k02Da2

� ; 0 � w � a; (14.61)

where am is the mth zero of J0(k
0
Da) such that J0(k

0
Da) ¼ 0 when k0Da ¼ am. Inserting Eqs.

(14.45), (14.49) and (14.61) in Eq. (14.60), while integrating over the surface of the

membrane and baffle, yields
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ehðwÞ ¼ �a2

T
epI XN

m¼ 1

J0ðamw=aÞ
J1ðamÞ

�
a2m � k02Da

2
�

�
 

2

am
�
XN
n¼ 0

AnG

�
nþ 5

2

��
2

am

�nþ3=2Jnþ3=2ðamÞ
J1ðamÞ

!
.

(14.62)

where we have used the integrals of Eqs. (A2.95) and (A2.96) from Appendix II.

Solution of the free-space wave equation
We write the free-space wave equation in axisymmetric cylindrical coordinates as�

v2

vw2
þ 1

w
$
v

vw
þ v2

vz2
þ k2

�epðw; zÞ ¼ 0: (14.63)

The solution is that same as that for a rigid circular piston in a finite open circular baffle

given by Eq. (13.203) but with b ¼ a. Hence, after inserting Eqs. (13.52), (14.45) and

(14.49) into Eq. (13.203) and integrating over the surface of the membrane, we obtain

epðw; zÞ ¼ epI
2

XN
n¼ 0

An

�
nþ 3

2

�Z a

0

�
1� w2

0

a2

�nþ1
2
Z N

0

J0ðkwwÞ J0ðkww0Þe�jkzjzjkwdkww0dw0;

(14.64)

which is the same as Eq. (13.204) if we substitute b ¼ a and

kbr0ceu0a2
b2

¼ epI
2
: (14.65)

Applying the boundary condition of Eq. (14.47) to Eq. (14.64) leads to an expression

for the surface particle displacement ehðwÞ as follows
ehðwÞ ¼ 1

k2r0c
2

v

vz
epðw; zÞ





z¼0�

¼ �jepI
2k2ar0c

2

XN
n¼ 0

AnInðwÞ
(14.66)

where In(w) is given by Eq. (13.211) with the substitutions b ¼ a and m ¼ q to give

InðwÞ ¼
XN
q¼ 0

nBq

�w
a

�2q
; (14.67)

where nBq(ka) is given by Eqs. (13.217) and (13.218). To solve the membrane and free-

space wave equations simultaneously, we wish to equate the two displacements given in
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Eqs. (14.62) and (14.66). However, Eq. (14.62) is in the form of a Bessel series, with the

radial ordinate w in the argument of the Bessel function, whereas Eq. (14.66) is in the

form of a power series in w. Therefore, we let�w
a

�2q ¼
XN
m¼ 1

amJ0ðamw=aÞ; (14.68)

where am is the mth zero of J0(am) (i.e., mth solution of J0(am) ¼ 0). Multiplying through

by the normalizing function J0(akw/a) and integrating over w while applying the

property of orthogonality leads to

am ¼

Z a

0

ðw=aÞ2qJ0ðakw=aÞwdwZ a

0

J0ðamw=aÞJ0ðakw=aÞwdw

¼ 1F2ðqþ 1Þ; 1; qþ 2;�a2m
	
4
�

ðqþ 1ÞJ21 ðamÞ
;

(14.69)

where we have used the integrals of Eqs. (A2.95) and (A2.100) from Appendix II. Hence,

after substituting Eqs. (14.67) to (14.69) into Eq. (14.66), we obtain

ehðwÞ ¼ �jepI
2k2ar0c

2

XN
n¼ 0

An

XN
q¼ 0

nBqðkaÞ
XN
m¼ 1

1F2ðqþ 1Þ; 1; qþ 2;�a2m
	
4
�

ðqþ 1ÞJ21 ðamÞ
J0ðamw=aÞ:

(14.70)

Final set of simultaneous equations for the power-series coefficients
Equating the right-hand sides of Eqs. (14.62) and (14.70) and then equating the coef-

ficients of J0(anw/a), yields the following set of N þ 1 simultaneous equations in AnXN
n¼ 0

nJm

�
k0Da; ka

�
An ¼ 1; m ¼ 1; 2;.;N þ 1; (14.71)

where

mJn

�
k0Da; ka

� ¼ am

2J1ðamÞ

(
G

�
nþ 5

2

��
2

am

�nþ3=2

Jnþ3=2ðamÞ

� j
a2m � k02Da

2

a2ðkaÞ
XQ
q¼ 0

nBqðkaÞ 1
F2

�
qþ 1; 1; qþ 2;�a2m

	
4
�

qþ 1

9=;
(14.72)
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and a is the fluid-loading factor defined by

aðkaÞ ¼ au

ffiffiffiffiffiffiffiffiffi
2ar0
T

r
¼ ka

ffiffiffiffiffiffiffiffiffiffiffiffi
2agP0

T

r
; (14.73)

where the infinite series have been truncated to ordersN, Q, and R, nBq(ka) is the dipole

cylindrical wave function defined in Eqs. (13.217) and (13.218), and 1F2 is the hyper-

geometric function.

Radiation impedance
The total volume velocity eU0 produced by the membrane is equal to the integral of its

velocity eu0ðwÞ ð¼ juehðwÞÞ from Eqs. (14.66) and (14.67) over its surface, without

making the substitution of Eqs. (14.68) and (14.69), as follows

eU0 ¼ jkc

Z 2p

0

Z a

0

ehðwÞwdwd4
¼ SDepI

2karc

XN
n¼ 0

An

XQ
q¼ 0

nBqðkaÞ
qþ 1

(14.74)

The total radiation force eFR acting on both sides of the membrane can be found by

integrating the surface pressure from Eq. (14.49) over its surface as follows

eFR ¼ 2

Z 2p

0

Z a

0

epþðw0Þw0dw0d40 ¼ 2SDepI : (14.75)

where z is the force transmission coefficient defined by

2 ¼ eFR

SDepI ¼ eFReFI

¼
XN
n¼ 0

An (14.76)

In other words, it is the proportion of the electrostatic driving force that acts on the

radiation load on both sides of the membrane. The rest just acts on the membrane itself.

The specific radiation impedance ZSR for just one side of the membrane is then given by

ZSR ¼ eFR

2eU0

¼ karc2

0@XN
n¼ 0

An

XQ
q¼ 0

nBqðkaÞ
qþ 1

1A�1

: (14.77)

The specific diaphragm impedance ZSD is given by

ZSD ¼ eFI � eFReU0

¼ 2karcð1� 2Þ
0@XN

n¼ 0

An

XQ
q¼ 0

nBqðkaÞ
qþ 1

1A�1

; (14.78)
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where eFI ¼ SDepI and the total specific motional (input) impedance ZSI is given by

ZSI ¼ eFIeU0

¼ 2karc

0@XN
n¼ 0

An

XQ
q¼ 0

nBqðkaÞ
qþ 1

1A�1

: (14.79)

Far-field pressure
The far-field pressure is the same as that given by Eq. (13.234) for a rigid circular piston

in a finite open circular baffle after making the substitution of Eq. (14.65)

epðr; qÞ ¼ jka2epIe�jkr

4r
DðqÞ

¼ jε0ka
2EP

d
$
eein
2d
$
e�jkr

2r
DðqÞ;

(14.80)

where epI is given by Eqs. (14.52) and (14.53) and the directivity function D(q) by

DðqÞ ¼ cos q
XN
n¼ 0

AnG

�
nþ 5

2

��
2

ka sin q

�nþ3
2

Jnþ3=2ðka sin qÞ; (14.81)

which, for q ¼ 0 (i.e., on-axis), simplifies to

Dð0Þ ¼
XN
n¼ 0

An ¼ z; (14.82)

using z from Eq. (14.76). (The on-axis response of a resilient disk in free space is given by

setting z ¼ 1). The on-axis pressure then simplifies to

epðr; 0Þ ¼ jka2zepIe�jkr

4r

¼ jε0ka
2z

EP

d
$
eein
2d
$
e�jkr

2r
;

(14.83)

which is plotted in Fig. 14.5 for zS ¼ 0 so that there is no viscous damping or elec-

trostatic force of attraction. We see that the response is highly modal at the lower fre-

quencies but becomes increasingly smoother at the higher frequencies, where the

radiation impedance becomes more resistive. Although the finite element modal (FEM)

agrees well with the rigorous calculation from Eq. (14.83) at lower frequencies, it

becomes increasingly irregular above 1 kHz because of insufficient resolution of the
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elements. From Eqs. (14.6) and (14.32), we obtain the fundamental in vacuo resonance

frequency

f0 ¼ a0

2pa

ffiffiffiffiffiffiffiffi
T

rDh

s
¼ 217 Hz; (14.84)

where a0 ¼ 2.4048. However, the radiation mass brings this down to 75 Hz in Fig. 14.5.

Substituting eI inzjuCEDeein in Eq. (14.83) leads to

epðr; 0Þzz
EP

d
$
eI in
c
$
e�jkr

2pr
; (14.85)

which, in the case of z ¼ 1, is Walker’s equation [7] A better approximation is given by

zz2r0c=ðRS þ 2r0cÞ: (14.86)

In this “modified Walker’s equation” a dust screen of specific acoustic resistance RS is

used to damp the modes. A total resistance of around 100 rayls (including both front and

back covers) is usually sufficient.
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Figure 14.5 Comparison of on-axis response of a 250 mm diameter membrane in free space calcu-
lated from Eq. (14.83) (black curve) with a FEM simulation (gray curve), where pI ¼ 1 N/m2, a ¼ 0.125 m,
h ¼ 12 mm, rD ¼ 1667 kg/m3, T ¼ 100 N/m, r ¼ 1 m, and zS ¼ 0.
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PART XXXIX: PLATES

14.11 PLATE WAVE EQUATION IN POLAR COORDINATES

Essentially, a plate is a membrane that is thick enough to have a bending stiffness that

significantly modifies its vibrational behavior. When a plate bends, its outer surface is

under tension while its inner one is under compression. Between the two surfaces is a

middle layer, known as the neutral layer, which is neither under tension nor com-

pression. The surface under tension shrinks and thus pulls the material from either side

toward it while the surface under compression tends to spread out. As a result, if a plate is

bent downwards, the edges on either side will tend to curl upwards. The degree towhich

this happens is a property of the material known as the Poisson’s ratio n. Here we shall

assume a value of n ¼ 0.3.

The homogeneous wave equation in any coordinate system for the displacement h is

obtained by adding the inertia term to Eq. (105) of Ref. [8].

DV4hþ rDh
d2h

dt2
¼ 0; (14.87)

where h is the thickness of the plate and rD is the density of the plate material. The

flexural rigidity D is given by

D ¼ Yh3

12ð1� n2Þ; (14.88)

where Y is the Young’s modulus of the plate material and n is the Poisson’s ratio. We can

rewrite the above wave equation in the following steady-state Helmholtz form as�
V4 � k4D

�eh ¼ 0; (14.89)

where the wavenumber is given by

kD ¼
�
u2rDh

D

�1=4

¼ u

cD
¼ 2p

lD
: (14.90)

Hence the bending-wave velocity in the plate cD is given by

cD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u

ffiffiffiffiffiffiffiffi
D

rDh

svuut : (14.91)
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Therefore, high frequencies travel faster in a plate than low ones, which makes it a

dispersive medium. This contrasts with the membrane in which the speed of sound is

constant. The wave Eq. (14.89) gets factorized as follows�
V2 þ k2D

��
V2 � k2D

�eh ¼ 0: (14.92)

Hence, h can either be a solution of

V2ehþ k2Deh ¼ 0 (14.93)

or

V2eh� k2Deh ¼ 0; (14.94)

where, in the case of polar coordinates, the Laplace operator is given by

V2 ¼ v2

vw2
þ 1

w
$
v

vw
þ 1

w2
$
v2

vf2
: (14.95)

14.12 SOLUTION OF THE PLATE WAVE EQUATION FOR A
CIRCULAR PLATE

In the case of the first solution, we see that Eq. (14.93) is identical to Eq. (14.26)

for a circular membrane, for which the solution was found to be

ehðw;fÞ ¼
XN
m¼ 0

XN
n¼ 1

�eAmn cosðmfÞ þ eBmn sinðmfÞ
�
Jmðamnw=aÞ; (14.96)

where

amn ¼ kDa: (14.97)

These eigenvalues depend on the boundary conditions while the expansion coefficientseAmn and eBmn depend on the excitation as well as the boundary conditions. However, in

the case of the second solution, we rewrite Eq. (14.94) as

V2ehþ ðjkDÞ2eh ¼ 0; (14.98)

which is like having an imaginary wavenumber. Hence the solution is

ehðw;fÞ ¼
XN
m¼ 0

XN
n¼ 1

�eAmn cosðmfÞ þ eBmn sinðmfÞ
�
Imðamnw=aÞ; (14.99)

where Im is the hyperbolic Bessel function defined by

ImðxÞ ¼ j�mJmðjxÞ: (14.100)
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Hence, the full solution can be written as

ehðw;fÞ ¼
XN
m¼ 0

XN
n¼ 1

�eAmn cosðmfÞ þ eBmn sinðmfÞ
�

� ðCmnJmðamnw=aÞ þDmnImðamnw=aÞÞ:
(14.101)

For simplicity, let us suppress the sinusoidal part of the angular modes such thateBmn ¼ 0. Hence, Eq. (14.101) becomes

ehðw;fÞ ¼
XN
m¼ 0

XN
n¼ 1

eAmnhmn; (14.102)

where the eigenfunctions are given by

hmn ¼ cosðmfÞðCmnJmðamnw=aÞ þDmnImðamnw=aÞÞ: (14.103)

14.13 MODES OF A CLAMPED CIRCULAR PLATE

In the case of a clamped plate, we have two boundary conditions at the perimeter.

Firstly, there is zero displacement

hmnjw¼a ¼ cosðmfÞðCmnJmðamnÞ þDmnImðamnÞÞ ¼ 0: (14.104)

Secondly, there is no bending so that the gradient of the displacement is zero

v

vw
hmnjw¼a ¼ amn

2a
cosðmfÞ � fCmnðJm�1ðamnÞ � Jmþ1ðamnÞÞ

þDmnðIm�1ðamnÞ þ Imþ1ðamnÞÞg ¼ 0:

(14.105)

We obtain the eigenvalues amn by solving Eqs. (14.104) and (14.105) as a set of

simultaneous equations




 JmðamnÞ Jm�1ðamnÞ � Jmþ1ðamnÞ
ImðamnÞ Im�1ðamnÞ þ Imþ1ðamnÞ






 ¼ 0: (14.106)

Some eigenvalues are given in Table 14.2. Unlike a simply supported or free plate,

which we will consider next, the clamped plate has eigenvalues that are independent of n.

For large values

amnjn/N ¼
�
m

2
þ n� 1

2

�
p: (14.107)
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From Eqs. (14.88), (14.90) and (14.97), the eigenfrequencies are given by

fmn ¼ a2mnh

4pa2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Y

3ð1� n2ÞrD

s
: (14.108)

In other words, to keep the eigenfrequencies as high as possible, it is necessary to use a

material with a high ratio of Young’s modulus to density. Increasing the thickness also

raises the eigenfrequencies but increases the mass which leads to reduced sensitivity when

used as a transducer diaphragm. From Eq. (14.104),

Dmn ¼ �Cmn
JmðamnÞ
ImðamnÞ; (14.109)

so that the eigenfunctions become

hmn ¼ Cmn cosðmfÞ
�
Jmðamnw=aÞ � JmðamnÞ

ImðamnÞImðamnw=aÞ
�
; (14.110)

which are plotted in Fig. 14.6.

14.14 MODES OF A SIMPLY SUPPORTED CIRCULAR PLATE

In the case of a simply supported plate, the first boundary condition of zero dis-

placement at the perimeter is identical to that for a clamped plate, as given by Eq.

(14.104). However, instead of zero bending for the second boundary condition, we have

zero bending moment because the edge is free to rotate

Mwjw¼a ¼ �D

�
v2

vw2
þ n

w
$
v

vw

�
hmnjw¼a

¼ �D

a2
cosðmfÞðCmnWmn þDmnXmnÞ ¼ 0;

(14.111)

where

Wmn ¼ �
mðmþ n� 1Þ � a2mn

�
JmðamnÞ þ ð1� nÞamnJmþ1ðamnÞ; (14.112)

Table 14.2 Eigenvalues for a clamped circular plate

a01 3.1962 a02 6.3064 a03 9.4395 a04 12.577

a11 4.1609 a12 7.7993 a13 10.958 a14 14.109

a21 5.9057 a22 9.1969 a23 12.402 a24 15.580

a31 7.1435 a32 10.537 a33 13.795 a34 17.005
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Xmn ¼ �
mðmþ n� 1Þ þ a2mn

�
ImðamnÞ � ð1� nÞamnImþ1ðamnÞ: (14.113)

We obtain the eigenvalues amn by solving Eqs. (14.104) and (14.113) as a set of

simultaneous equations 




 JmðamnÞ Wmn

ImðamnÞ Xmn






 ¼ 0: (14.114)

Some eigenvalues are given in Table 14.3, which are fairly close to those shown in

Table 14.1 for a circular membrane, especially the larger values.

For large values

amnjn/N ¼
�
m

2
þ n� 3

4

�
p: (14.115)

m = 0, n = 1 m = 0, n = 2 m = 0, n = 3

m = 1 , n = 1 m = 1 , n = 2 m = 1 , n = 3

m = 2, n = 1 m = 2, n = 2 m = 2, n = 3

Figure 14.6 Eigenfunctions of a clamped circular plate.
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From Eq. (14.104),

Dmn ¼ �Cmn
JmðamnÞ
ImðamnÞ; (14.116)

so that the eigenfunctions become

hmn ¼ Cmn cosðm4Þ
�
Jmðamnw=aÞ � JmðamnÞ

ImðamnÞImðamnw=aÞ
�
; (14.117)

which are plotted in Fig. 14.7. These shapes are similar to those shown in Fig. 14.3 for a

circular membrane.

Table 14.3 Eigenvalues for a simply supported circular plate (n ¼ 0.3)

a01 2.2215 a02 5.4516 a03 8.6114 a04 11.761

a11 3.7280 a12 6.9627 a13 10.138 a14 13.297

a21 5.0610 a22 8.3736 a23 11.589 a24 14.772

a31 6.3212 a32 9.7236 a33 12.988 a34 16.201

m = 0, n = 1 m = 0, n = 2 m = 0, n = 3

m = 1, n = 1 m = 1, n = 2 m = 1, n = 3

m = 2, n = 1 m = 2, n = 2 m = 2, n = 3

Figure 14.7 Eigenfunctions of a simply supported circular plate.

Vibroacoustics (membranes, plates, and shells) 745



14.15 MODES OF A FREE CIRCULAR PLATE

In the case of a plate with a free edge, the second boundary condition of zero

bending moment at the perimeter is identical to that for a simply supported plate, as given

by Eq. (14.253). However, instead of zero displacement for the first boundary condition,

we have zero shear force because the edge can move freely

Qwjw¼a ¼ �D
v

vw

�
v2

vw2
þ 1

w
$
v

vw

�
hmnjw¼a

¼ �D

a3
cosðmfÞðCmnYmn þDmnZmnÞ ¼ 0;

(14.118)

where

Ymn ¼ m
�
mðm� 2Þ � a2mn

�
JmðamnÞ �

�
m2 � a2mn

�
amnJmþ1ðamnÞ; (14.119)

Zmn ¼ m
�
mðm� 2Þ þ a2mn

�
ImðamnÞ þ

�
m2 þ a2mn

�
amnImþ1ðamnÞ: (14.120)

We obtain the eigenvalues amn by solving Eqs. (14.111) and (14.118) as a set of

simultaneous equations 




Wmn Ymn

Xmn Zmn






 ¼ 0: (14.121)

Some eigenvalues are given in Table 14.4.

For large values

amnjn/N ¼
�
m

2
þ n� 3

4

�
p: (14.122)

From Eq. (14.104),

Dmn ¼ �Cmn
JmðamnÞ
ImðamnÞ; (14.123)

Table 14.4 Eigenvalues for a free circular plate (n ¼ 0.3)

a01 0.0000 a02 3.0005 a03 6.2003 a04 9.3675

a11 1.5756 a12 4.4808 a13 7.7153 a14 10.897

a21 2.6494 a22 5.8163 a23 9.1294 a24 12.350

a31 3.6817 a32 7.0792 a33 10.481 a34 13.750
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so that the eigenfunctions become

hmn ¼ Cmn cosðmfÞ
�
Jmðamnw=aÞ � Ymn

Zmn
Imðamnw=aÞ

�
; (14.124)

which are plotted in Fig. 14.8. For the m ¼ 0, n ¼ 0 mode, the whole plate just moves

continuously through space in the axial direction.

PART XXXX: SHELLS

14.16 SHELL WAVE EQUATION IN POLAR COORDINATES

Like a plate, a shell has bending stiffness, but it has additional stiffness because of its

curvature. If you hold a sheet of paper by the edge, it will hang down because it has no

stiffness. However, if you curve it even slightly, it will support small objects such as a

m = 0, n = 1 m = 0, n = 2 m = 0, n = 3

m = 1, n = 1 m = 1, n = 2 m = 1, n = 3

m = 2, n = 1 m = 2, n = 2 m = 2, n = 3

Figure 14.8 Eigenfunctions of a free circular plate.
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pencil. The dynamic shell wave equations [9] are obtained by adding an axial inertia term

to the static shell equations [8]. We shall simplify our analysis by assuming that the shell is

shallow, or the radius of curvature R is large, so that we can ignore radial and tangential

components of the displacement eh. This is a reasonable assumption for height/radius

ratios up to around 0.25. The following simultaneous steady-state equations for a

spherical shell with an applied external harmonic load distribution ep0ðw;fÞ need to be

solved for the displacement eh and an Airy stress function eF
DV4ehðw;fÞ � 1

R
V2eFðw;fÞ � u2rDh ehðw;fÞ ¼ �ep0ðw;fÞ; (14.125)

V4eFðw;fÞ þ hY

R
V2ehðw;fÞ ¼ 0; (14.126)

where, in the case of polar coordinates, the Laplace operator is defined by

V2 ¼ v2

vw2
þ 1

w

v

vw
þ 1

w2

v2

vf2
: (14.127)

The flexural rigidity D is defined by

D ¼ Yh3

12ð1� n2Þ; (14.128)

where h is the thickness of the shell, Y is the Young’s modulus of elasticity of the shell

material, n is its Poisson’s ratio, and rD is its density. Let a harmonic function ej be

defined, which satisfies

V2ej ¼ 0 (14.129)

so that

V2eFðw;fÞ ¼ �hY

R

�ehðw;fÞ � ej�; (14.130)

which, in turn, satisfies Eq. (14.126). Substituting Eq. (14.130) in Eq. (14.125) gives the

following single steady-state homogeneous wave equation for the displacement�
DV4 þ hY

R2
� u2rDh

�ehðw;fÞ ¼ hY

R
ej� ep0ðw;fÞ; (14.131)

which can be written in the Helmholtz form as follows�
V4 � k4D

�ehðw;fÞ ¼ hY

DR
ej� ep0ðw;fÞ

D
; (14.132)
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where kD is the wavenumber of the shell, which is given by

kD ¼ 2p

lD
¼ u

cD
¼
�
rDh

D
u2 � hY

R2D

�1
4

: (14.133)

The bending-wave velocity cD in the shell is given by

cD ¼ u=kD: (14.134)

As with a plate, high frequencies travel faster in the shell than low frequencies, which

makes the shell a dispersive medium. We see that at some transition frequency fINF the

speed of sound becomes infinite, as does also the wavelength. Below fINF, the wavelength

is complex with a phase angle of p/4. Hence static solutions [8,10] are usually written in

terms of Thomson (a.k.a. Kelvin) functions, which can be defined as Bessel functions

with eip/4 in their arguments [11]. This transition frequency is given by

fINF ¼ 1

2pR

ffiffiffiffiffiffi
Y

rD

s
: (14.135)

14.17 GREEN’S FUNCTION FOR A SHALLOW SPHERICAL SHELL

Let the solution to Eq. (14.132) for a shallow spherical shell of radius a be in the

form of the eigenfunction expansion

ehðw;fÞ ¼
XN
m¼ 0

XN
n¼ 1

eAmnhmnðw;fÞ; (14.136)

where the eigenfunctions are given by

hmnðw;fÞ ¼ cosðmfÞðJmðamnw=aÞ � BmnImðamnw=aÞ þCmnÞ: (14.137)

We use the following identity for the Laplace operator in Eq. (14.132)

V4hmnðw;fÞ ¼ a4mn
a4

hmnðw;fÞ þ Cmn

�
m2
�
m2 � 3

�
w4

� a4mn
a4

�
cos mf (14.138)

so that Eq. (14.132) is satisfied if kDa ¼ amn and

ej ¼ RD

hY

XN
m¼ 0

XN
n¼ 1

eAmnCmn

�
m2
�
m2 � 3

�
w4

� a4mn
a4

�
cos mf: (14.139)
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After inserting Eq. (14.136) into Eq. (14.132), while using the identities of Eqs.

(14.138) and (14.139), we multiply both sides by the normalizing function

h�pqðw;fÞ ¼ cosðpfÞ
�
Jp

�
a�pqw

.
a
�
� B�

pqIp

�
a�pqw

.
a
�
þ C�

pq

�
(14.140)

and integrate over the surface of the shell to yield

pa2
XN
m¼ 0

XN
n¼ 1

eAmn

�
a4mn
a4

� k4D

�
Dmn ¼ �1

D

Z 2p

0

Z a

0

ep0ðw;fÞh�pqðw;fÞwdwdf;
(14.141)

where

Dmn ¼ 1

pa2

Z 2p

0

Z a

0

h�pqðw;fÞhmnðw;fÞwdwdf: (14.142)

Because of the property of orthogonality, only terms where m ¼ p and n ¼ q are

nonzero so that

eAmn ¼
a2
Z 2p

0

Z a

0

ep0ðw;4Þh�mnðw;fÞwdwd4
pDDmn

�
k4Da

4 � a4mn
� : (14.143)

If there is resistance in the system, so that a�mnsamn, the integrals in Eq. (14.142) are

evaluated using Eqs. (56), (95) and (102) of Appendix II to give

Dmn ¼ 1þ dm0

2

�
CmnC

�
mn þ 2

amnJm
�
a�mn
�
Jmþ1ðamnÞ � a�mnJmðamnÞJmþ1

�
a�mn
�

a2mn � a�2mn

� 2Bmn

amnJm
�
a�mn
�
Imþ1ðamnÞ þ a�mnImðamnÞJmþ1

�
a�mn
�

a2mn þ a�2mn

� 2B�
mn

a�mnJmðamnÞImþ1

�
a�mn
�þ amnIm

�
a�mn
�
Jmþ1ðamnÞ

a�2mn þ a2mn

þ 2BmnB
�
mn

amnIm
�
a�mn
�
Imþ1ðamnÞ � a�mnImðamnÞImþ1

�
a�mn
�

a2mn � a�2mn

þ 2Cmn

Jm
�
a�mn
�� B�

mnImþ1

�
a�mn
�

a�mn
þ 2C�

mn

Jmþ1ðamnÞ � BmnImþ1ðamnÞ
amn

�
:

(14.144)
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Otherwise, if there are no losses, so that a�mn ¼ amn, then

Dmn ¼ 1þ dm0

2

�
J2mðamnÞ � Jm�1ðamnÞJmþ1ðamnÞ

þ B2
mn

�
I2mðamnÞ � Im�1ðamnÞImþ1ðamnÞ

�þ C2
mn

þ 4Cmn

�amn
2

�m1F2

�
m

2
þ 1;

m

2
þ 2;mþ 1;�a2mn

4

�
ðmþ 1Þm!

� 4BmnCmn

�amn
2

�m1F2

�
m

2
þ 1;

m

2
þ 2;mþ 1;

a2mn
4

�
ðmþ 1Þm!

� 2

amn
Bmnð JmðamnÞImþ1ðamnÞ þ Jmþ1ðamnÞImðamnÞÞ

�
;

(14.145)

where 1F2 is the hypergeometric function.

Hence, after inserting Amn from Eq. (14.143) into Eq. (14.136), the displacementehðw;fÞ for a given pressure distribution ep0ðw0;f0Þ is

ehðw;fÞ ¼ a2

pD

XN
m¼ 0

XN
n¼ 1

hmnðw;fÞ
Dmn

�
k4Da

4 � a4mn
� Z 2p

0

Z a

0

ep0ðw0;f0Þh�mnðw0;f0Þw0dw0df0:

(14.146)

This can also be written as

ehðw;fÞ ¼ 1

D

Z 2p

0

Z a

0

ep0ðw0;f0ÞGðw;fjw0;f0Þw0dw0df0; (14.147)

where G(w, fjw0, f0) is the Green’s function for the shell given by

Gðw;fjw0;f0Þ ¼ a2

p

XN
m¼ 0

XN
n¼ 1

hmnðw;fÞh�mnðw0;f0Þ
Dmn

�
k4Da

4 � a4mn
� ; (14.148)

which can be shown to satisfy the inhomogeneous wave equation for excitation by a

point source at (w0, f0)�
V4 � k4D

�
Gðw;4jw0;40Þ�

XN
m¼ 0

XN
n¼ 1

AmnCmn

�
m2
�
m2 � 3

�
w4

� a4mn
a4

�
cos mf

¼ �1

w
dðw � w0Þdð4� 40Þ:

(14.149)
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where

Amn ¼ a2h�mnðw0;f0Þ
pDmn

�
k4Da

4 � a4mn
�: (14.150)

14.18 RADIATION FROM A CIRCULAR SHALLOW SPHERICAL
SHELL IN AN INFINITE BAFFLEdMODEL OF A DOME-SHAPED
DYNAMIC LOUDSPEAKER COUPLED TO ITS SURROUNDING
AIR [12]

The spherical shell is a somewhat commonly used structure for dynamic loud-

speaker diaphragms ranging from small Bluetooth devices to hi-fi midrange units and

tweeters. To simplify our analysis, we shall exclude the ring surround, basket, magnet,

and rear cavity from the model and instead assume that the dome is open to free space on

both sides and mounted in a planar baffle, which extends to infinity from its perimeter.

However, a specific acoustic impedance zS is included in the complex wavenumber,

which may be used to model distributed impedances such as external resistance (e.g., a

screen) or mixed mass and resistance in the form of an array of sound outlet holes.

Internal damping can also be modeled using complex flexural rigidity. The specific

impedance may even be used to approximate lumped elements such as the compliance of

a rear cavity. In addition to making the shallow shell assumption by ignoring the radial

and tangential components of the displacement, we will assume the radiation load to be

that of a planar circular source.

Boundary conditions
An elastic spherical shell with radius a and thickness h, as shown in Fig. 14.9, is set in an

infinite baffle of the same thickness with its center located on the z axis, which forms the

axis of symmetry. Hence, there is no f dependency and we set m ¼ 0 in the equations

from here onwards. The spherical shell surface is defined by

z ¼ R
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� w2
	
R2

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2

	
R2

q �

z
a2 � w2

2R
; R > 2a ðfor surface average error < 10%Þ:

(14.151)

The radius of curvature R is related to the dome height H by

R ¼ a2

2H
(14.152)

752 Acoustics: Sound Fields, Transducers and Vibration



and the surface area SD of a shallow shell is

SD ¼ 2pR
�
R �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � a2

p �
zpa2; R > 2a:

(14.153)

Within its perimeter, the shell is homogenous and continuous and is fabricated from an

isotropic material with a Poisson’s ratio of n ¼ 0.3. In this model, the shell and coil former

are formed from the same piece of material and have the same thickness. Hence, at the

perimeter, there is assumed to be neither bending nor radial strain. Also, the coil force ef g is
applied to the perimeter in the z direction. A separate suspension is assumed to be attached

either to the coil or directly to the shell perimeter. It is assumed to provide pure linear

compliance CMS in the z direction with mechanical damping RMS, and its mass is included

with that of the voice coil, which is denoted byMMC. The coil driving forceef g is used as the
input in a wave equation for the shell, which is defined in terms of the input voltageeeg byef g ¼ Bleeg	RE; (14.154)

Infinite baffle

Shell

Coil force gf z

w

h

a
H

R 0
~

Figure 14.9 Geometry of the shell in an infinite baffle.
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where RE is the electrical resistance of the coil and Bl is the product of magnetic flux and

coil length. The total mechanical damping resistance RMT is then given by

RMT ¼ RMS þ ðBlÞ2	RE: (14.155)

The displacement ehðwÞ of the shell is then be used as a parameter to couple it to the

surrounding loss-free acoustic medium. Hence the shell and free space wave equations

must be solved simultaneously.

Axisymmetric solutions to the shell wave equations
The axisymmetric solutions to Eqs. (14.125) and (14.126), where we have suppressed

any f dependency, are eigenfunctions of the formehnðwÞ ¼ eC1nJ0ðkDwÞ þ eC2nY0ðkDwÞ þ eC3nI0ðkDwÞ þ eC4nK0ðkDwÞ þ eC5n (14.156)

eFnðwÞ ¼ � 2HhY

k2Da
2

�eC1nJ0ðkDwÞ þ eC2nY0ðkDwÞ � eC3nI0ðkDwÞ � eC4nK0ðkDwÞ
�

þ rDha
2u2

8H
eC5nw

2 þ eC6n log w þ eC7n

(14.157)

where eC5n ¼ ejn and n is the eigen index. Using Eqs. (14.128) and (14.152), let us

rewrite the wavenumber from Eq. (14.133) as

k4D ¼ rDh

D
u2 � x4

a4
; (14.158)

where

x4 ¼ 48
�
1� n2

�
H2
	
h2 (14.159)

In Eqs. (14.156) and (14.157), the arguments of the Bessel functions J, Y, I, and K can

only have specific values, or eigenvalues, which satisfy the boundary conditions. The

eigenvalues of the system are represented by setting kDa ¼ bn. The eigenvalues and

constants are then determined by applying boundary conditions, which are evaluated

with help from the following identities:

d

dw
Z0ðkDwÞ ¼ HkDZ1ðkDwÞ; (14.160)

d2

dw2
Z0ðkDwÞ ¼ k2D

�
� Z1ðkDwÞ

kDw
HZ0ðkDwÞ

�
; (14.161)
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d3

dw3
Z0ðkDwÞ ¼ k3D

( 
1H

2

k2Dw
2

!
Z1ðkDwÞ � Z0ðkDwÞ

kDw

)
; (14.162)

where Z can represent either J (upper sign) or I (lower sign).

Boundary condition of continuity at the center
In this configuration, ehn and eFn must be continuous at the apex (w ¼ 0). Therefore, we

have eC2n ¼ eC4n ¼ eC6n ¼ 0 (14.163)

Boundary condition of zero bending at the perimeter
We assume zero bending at the perimeter. Therefore

v

vw
ehnðwÞjw¼a ¼ �bn

a
eC1nJ1ðbnÞ þ

bn

a
eC3nI1ðbnÞ ¼ 0 (14.164)

so that eC3n ¼ J1ðbnÞ
I1ðbnÞ

eC1n (14.165)

Boundary condition of zero radial strain at the perimeter
We assume zero radial strain at the perimeter. Hence�
v2

vw2
� n

w

v

vw

�eFnðwÞ



w¼a

¼ 2hHY

a2

eC1n

�
J0ðbnÞ �

1þ n

bn
J1ðbnÞ

�

þ eC3n

�
I0ðbnÞ�

1þ n

bn
I1ðbnÞ

��
þð1� nÞu2

n

a2rDh

4H
eC5n ¼ 0;

(14.166)

where from Eq. (14.158)

u2
n ¼ D

�
b4n þ x4

�
a4rDh

(14.167)

so that

eC5n ¼ � 2x4

ð1� nÞ�b4n þ x4
�eC1n

�
J0ðbnÞ �

1þ n

bn
J1ðbnÞ

�

þ eC3n

�
I0ðbnÞ �

1þ n

bn
I1ðbnÞ

��
:

(14.168)

Vibroacoustics (membranes, plates, and shells) 755



Coil impedance at the perimeter
The coil mass and suspension produce an axially symmetric (vertical) shear force resultant

Qv at the perimeter. Hence, assuming that a � R,eQvnðwÞ



w¼a

¼
�eQnðwÞ þ eNnðwÞ w

R

�
w¼a

¼ �
�

1

CMS
þ junRMT � u2

nMMC

� ehnðaÞ
2pa

;

(14.169)

where MMC is the mass of the coil and its former, CMS is the compliance of the sus-

pension, and RMT is the total damping resistance. Also, the shear force is defined by

eQnðwÞ ¼ �D
v

vw
V2ehnðwÞ





w¼a

¼ �b3n

a3
D
�eC1nJ1ðbnÞ þ eC3nI1ðbnÞ

� (14.170)

and the radial membrane force is defined by

eNnðwÞ ¼ �1

w

v

vw
eFðwÞ

¼ �2HhY

a2bn

�eC1nJ1ðbnÞ þ eC3nI1ðbnÞ
�� eC5n

u2
na

2rDh

4H
;

(14.171)

so that inserting Eqs. (14.167), (14.170) and (14.171) into Eq. (14.169) yieldseC5n ¼ �eC1nJ0ðbnÞ � eC3nI0ðbnÞ �
�
b4n þ x4

�
� 4eC1nJ1ðbnÞ � bn

�eC1nJ0ðbnÞ þ eC3nI0ðbnÞ
�

bn

0@MMD

MMS

�
b4n þ x4

�� a2KS

pD
� j

RS

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b4n þ x4

rShD

s 1A; (14.172)

where the mass MMS of the shell is

MMS ¼ pa2rDh (14.173)

and the total mass of the shell and coil is

MMD ¼ MMS þMMC: (14.174)
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Let u0 be a notional angular frequency, representing the suspension resonance of a

perfectly rigid shell (including its coil mass). Hence, the compliance may be defined by

CMS ¼ 1

u2
0MMD

: (14.175)

From Eqs. (14.167), (14.173) and (14.175), the compliance may be expressed as follows

CMS ¼ za2

pD
�
b40 þ x4

�; (14.176)

where b0 is a notional zeroth eigenvalue and z is the mass loading factor defined by

z ¼ MMS

MMD
: (14.177)

Also, let the total Q of the fundamental resonance u0 be defined by

QTS ¼ 1

RMT

ffiffiffiffiffiffiffiffiffiffiffi
MMD

CMS

r
: (14.178)

Calculation of the eigenvalues
Equating Eq. (14.168) with Eq. (14.172) and inserting the expressions for CMS and RMT

from Eqs. (14.176) and (14.178) respectively, together with the identity for eC3n from Eq.

(14.165), produces a characteristic equation that can be solved for the eigenvalues

1

z

0@b4n � b40 � j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
b40 þ x4

��
b4n þ x4

�q
QTS

1A
�
�ð1� nÞb4n � ð1þ nÞx4�W ðbnÞ þ 4x4

1þ n

bn
J1ðbnÞI1ðbnÞ

�

�ð1� nÞ�b4n þ x4
�2�

W ðbnÞ �
4

bn
J1ðbnÞI1ðbnÞ

�
¼ 0;

(14.179)

where

W ðbnÞ ¼ J0ðbnÞI1ðbnÞ þ J1ðbnÞI0ðbnÞ (14.180)

and the notional zeroth eigenvalue b0 is defined by

b40 ¼ a2MMS

pD
u2
0 � x4; (14.181)

which is then used as a parameter in the characteristic equation (not a solution) to define

the suspension stiffness.
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Eigenvalues with zero load at the perimeter
If there is no loading at the perimeter, then MMC ¼ 0 and u0 ¼ 0. Hence, Eq. (14.179)

reduces to�
b4n þ x4

�
W ðbnÞ � 2

ð1� nÞb4n þ 2x4

bnx
4

J1ðbnÞI1ðbnÞ
�

¼ 0: (14.182)

For zero height, setting x4 ¼ 0, yields the following eigenvalues:

b1 ¼ 0 b2 ¼ 3:8317 b3 ¼ 7:0156 b4 ¼ 10:174 b5 ¼ 13:324;

whereas setting x4 ¼N gives

b1 ¼ e jp=4N b2 ¼ 5:9057 b3 ¼ 9:1969 b4 ¼ 12:402 b5 ¼ 15:580:

Using the asymptotic expression for the Bessel function from Eq. (90) of Appendix

II, it can be shown that

bnjn/Nzðn� 3=4Þp; H=h ¼ 0: (14.183)

From Eq. (14.158), the eigenfrequencies are obtained using

fn ¼ h

4pa2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Y

3rD

�
b4n

1� n2
þ 48

H2

h2

�s
: (14.184)

Note that for any height H, the factor
�
b4n þ x4

�
in Eq. (14.182) determines the first

eigenvalue, which is given by b1 ¼ ejp/4x and returns a zero value for the first eigen-

frequency f1 when entered into Eq. (14.184). Not surprisingly, when H ¼ 0, Eq.

(14.184) reduces to the eigenfrequency equation for a plate. However, when H > 10h,

say, the equation for the fundamental shell eigenfrequency in asymptotic form becomes

f2z
H

pa2

ffiffiffiffiffiffi
Y

rD

s
; H > 10h

¼ 1

2pR

ffiffiffiffiffiffi
Y

rD

s
¼ fINF:

(14.185)

This slightly surprising result [9] indicates that the when the height of the apex is

much greater than the wall thickness, the fundamental resonant frequency (second

eigenfrequency f2) of the shell is dependent only on its radius of curvature and material

properties regardless of the wall thickness. (This does not apply to the first eigenfre-

quency, or piston eigenfrequency, which remains zero.) This effect is demonstrated in

Fig. 14.10 where the eigenfrequencies are plotted against the height to thickness ratio.
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The eigenfrequencies fn are normalized to the fundamental eigenfrequency fP2 of the

corresponding flat circular plate, where

fP2 ¼ b22h

4pa2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Y

3ð1� n2ÞrD

s
and b2 ¼ 3:8317: (14.186)

On the left-hand side of the plot, the eigenfrequencies converge to those of the flat

circular plate with the same boundary conditions. On the right-hand side, the asymp-

totic value is fINF/fP2 ¼ 0.4502 H/h. However, f1 ¼ 0 for any height because the shell is

free to float through space, and so this is the “piston” eigenfrequency. Notice how as we

increase the curvature by increasing the height/thickness ratio (H/h), the lower-order

eigenfrequencies increase more than the higher-order ones. This is because the curva-

ture appears to be greater for larger wavelengths than it does for smaller ones. As an

analogy, the earth appears to be flat to us because we are small, whereas if we were giants,

we would see that it is spherical.

Eigenvalues with infinite load at the perimeter
If MMC ¼N and u0 ¼ 0, then the shell’s dynamic axial movement is blocked, although

it can still move through space at constant velocity and hence returns a zero value for the

first eigenfrequency. Eq. (14.179) reduces to
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Figure 14.10 Eigenfrequencies of a shallow spherical shell with zero load at the perimeter.
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�
b4n þ x4

�(
W ðbnÞ þ

4ð1þ nÞx4J1ðbnÞI1ðbnÞ
bn
�ð1� nÞb4n � ð1þ nÞx4�

)
¼ 0; (14.187)

which is identical to that for a clamped shell, [9] except for the factor
�
b4n þ x4

�
, which

gives the piston mode. For zero height, setting x4 ¼ 0 yields the following eigenvalues:

b1 ¼ 0 b2 ¼ 3:1962 b3 ¼ 6:3064 b4 ¼ 9:4395 b5 ¼ 12:577;

whereas setting x4 ¼N gives

b1 ¼ ejp=4N b2 ¼ 5:9057 b3 ¼ 9:1969 b4 ¼ 12:402 b5 ¼ 15:580:

Again, using the asymptotic expression from Eq. (90) of Appendix II, expressions for

the large eigenvalues can be obtained:

bnjn/Nzðn� 1Þp; H=h ¼ 0; (14.188)

bnjn/Nznp; H=h ¼ N: (14.189)

In Fig. 14.11, the eigenfrequencies fn of a simply supported shell are normalized to

the fundamental eigenfrequency fP2 of the corresponding flat circular plate where

fP2 ¼ b22h

4pa2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Y

3ð1� n2ÞrD

s
: (14.190)

On the left-hand side of the plot, the eigenfrequencies converge to those of a

clamped flat circular plate. On the right-hand side, the asymptotic value is fINF/

fP1 ¼ 0.6470H/h.

Eigenvalues with finite load at the perimeter
With a low stiffness boundary condition, b1 and f1 have values fairly close to b0 and f0
respectively but are not coincident because of the interaction between the modes. As the

stiffness is increased, b1 and f1 approach asymptotic values representing blocked axial

movement no matter how large b0 and f0 are. The perimeter damping changes the angle

of all the eigenvalues such that the angle of the complex eigenvalues is no longer

45 degrees and the imaginary parts of the remainder are no longer zero.

Eigenfunctions
Substituting Eqs. (14.163), (14.165) and (14.168) in Eq. (14.156) yields the following

eigenfunctions

hnðwÞ ¼ J0ðbnw=aÞ � BnI0ðbnw=aÞ þ Cn; (14.191)
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which are the solutions to the following homogeneous wave equation�
V4 � k4D

�
hnðwÞ þ

a4n
a4
Cn ¼ 0; (14.192)

where the Laplace operator is given by

V2 ¼ v2

vw2
þ 1

w

v

vw
(14.193)

and the coefficients Bn and Cn by

Bn ¼ �
eC3neC1n

¼ �J1ðbnÞ
I1ðbnÞ

; (14.194)

Cn ¼
eC5neC1n

¼ �2x4ðW ðbnÞ � 2ð1þ nÞJ1ðbnÞI1ðbnÞ=bnÞ
ð1� nÞI1ðbnÞ

�
b4n þ x4

� : (14.195)

Solution of the wave equation for the shell in an infinite baffle
The inhomogeneous steady-state wave equation for the displacement ehðwÞ of the cir-

cular shallow spherical shell, with the above boundary conditions at its perimeter, can be

written with the inherent shell forces on the left and the external forces on the right as

0.1

1

10

100

0.1 1 10 100

fn/
fP

2

H/h

n = 2

fINF/fP2=0.6470H/h

n = 10
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n = 7
n = 6

n = 5

n = 4

n = 3

n = 11

n = 9

Figure 14.11 Eigenfrequencies of a shallow spherical shell with infinite load at the perimeter.
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D
�
V4 � k04D

�ehðwÞ þD
XN
n¼ 1

eAn
a4n
a4
Cn ¼ z

�epþðwÞ �ep�ðwÞ � dðw � bÞ
2pb

ef g� (14.196)

where the Laplace operator is given by Eq. (14.193) and epþðwÞ and ep�ðwÞ are the front
and rear pressure distributions, respectively, due to the surrounding acoustic medium,D is

the flexural rigidity of the shell material, and a is its radius. The concentrated ring force

due to the coil of radius b is represented by Dirac delta function. Although we will set

b ¼ a to model the shell shown in Fig. 14.9, we will also use this equation in Section 14.19

to investigate a free plate with a coil of zero mass where bs a. The solution is given by

ehðwÞ ¼ z

D

Z 2p

0

Z a

0

�
2epþðw0Þ � dðw0 � bÞ

2pb
ef g�Gðwjw0Þw0dw0d40; (14.197)

where k0Dis the complex wavenumber of the shell defined by

k04D ¼ k4D � ju
z

D
zS; (14.198)

k4D ¼ rDh

D
u2 � x4

a4
; (14.199)

x4 ¼ 48
�
1� n2

�
H2
	
h2; (14.200)

rD is the density of the shell material, h is its thickness, and H is the dome height. A

specific acoustic impedance such as that due to a mesh with flow resistance is define by

zS. The Green’s function for the shell from Eq. (14.148) can be rewritten suppressing the

axial term in f and f0 as follows

Gðwjw0Þ ¼ a2

p

XN
n¼ 1

hnðwÞh�nðw0Þ
Dn

�
b4n � k04Da4

�; 0 � w � a: (14.201)

where

h�nðw0Þ ¼ J0
�
b�nw0

	
a
�� B�

nI0
�
b�nw0

	
a
�þ C�

n : (14.202)

Velocity distribution
On the surface of the shell, let the velocity distribution eu0ðwÞ be defined as

eu0ðwÞ ¼
ef g

2r0cSD

XN
m¼ 1

AmhmðwÞ; (14.203)

where hm(w) is given by Eq. (14.191) above.
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Solution of the free-space wave equation
The free-space wave equation is the same as that given by Eq. (14.63) for a membrane in

free space, but because of the presence of an infinite baffle, we use the monopole solution

which is the same as that for a resilient disk in an infinite baffle given by Eq. (13.160).

Hence, after inserting Eqs. (13.52), (13.158), and (14.203) into Eq. (13.160) and inte-

grating over f0, we obtain

epðw; zÞ ¼ kef g
2SD

XN
m¼ 1

Am

Z a

0

hmðw0Þ
Z N

0

J0ðkwwÞJ0ðkww0Þ e
�jkzz

kz
kwdkww0dw0:

(14.204)

Then setting z ¼ 0 yields the surface pressure

epþðwÞ ¼
ef g
SD

XN
m¼ 1

AmImðk;wÞ; (14.205)

where

Imðk;wÞ ¼ k

2

Z a

0

hmðw0Þ
Z N

0

J0ðkwwÞJ0ðkww0Þ kwffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � k2w

q dkww0dw0 (14.206)

and the infinite integral is given by Eq. (13.166). Hence,

Imðk;wÞ ¼ k

2

ffiffiffi
p

p
k

2

XN
q¼ 0

w2q

ðq!Þ2

�
XN
r¼ 0

G
�r
2
þ r

2

�
G
�r
2
þ 1
�
G2
�r
2
� qþ r

2

���jk

2

�r�1 Z a

0

hmðw0Þwr�2q
0 dw0

(14.207)

which is simplified with help of the integralsZ a

0

J0ðbmw0=aÞwr�2q
0 dw0 ¼ ar�2qþ1

r � 2qþ 1 1F2

�
r

2
� qþ 1

2
;
r

2
� qþ 3

2
; 1;�b2m

4

�
(14.208)

Z a

0

I0ðbmw0=aÞwr�2q
0 dw0 ¼ ar�2qþ1

r � 2qþ 1 1F2

�
r

2
� qþ r

2
;
r

2
� qþ 3

2
; 1;

b2m
4

�
(14.209)

Z a

0

w
r�2q
0 dw0 ¼ ar�2qþ1

r � 2qþ 1
(14.210)
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so that

Imðk;wÞ ¼ �
ffiffiffi
p

p
2

XN
r¼ 0

G

�
r

2
þ 1

2

�
G
�r
2
þ 1
� ��jka

2

�rþ1XN
q¼ 0

1

ðq!Þ2G
�
r

2
� qþ 1

2

��w
a

�2q

�

0BBB@1
eF2

�
r

2
� qþ 1

2
;
r

2
� qþ 3

2
; 1;

�a2m
4

�

� Bm1
eF2

�
r

2
� qþ 1

2
;
r

2
� qþ 3

2
; 1;

a2m
4

�
þ Cm

G

�
r

2
� qþ 3

2

�
1CCCA;

(14.211)

where 1
eF2 is the regularized hypergeometric function.

Formulation of the coupled shell
Substituting Eqs. (14.205) and (14.201) in Eq. (14.197), integrating over the surface of

the shell, and then equating the displacement with that given in Eq. (14.203) (whereehðwÞ ¼ �jeu0ðwÞ=kc), while replacing w with w0 in Eq. (14.205) and equating the

coefficients of hn(w), leads to the following coupled equation

An

jD
�
b4n � k04Da4

�
4zka4r0c

2
þ
XN
m¼ 1

Am
2

a2Dn

Z a

0

Imðk;w0Þh�nðw0Þw0dw0 ¼ h�nðbÞ
2Dn

; (14.212)

where we have used the property of the Dirac delta function.

Final set of simultaneous equations for the power-series coefficients
From Eq. (14.212), together with the identity of Eq. (14.208), the following set of M

simultaneous equations in Am can be written asXM
m¼ 1

mJn

�
k0Da; ka

�
Am ¼ 1; n ¼ 1; 2;.;M ; (14.213)

where mJn is an element of the mth column and nth row of theM � Mmatrix given by

mJn

�
k0Da; ka

� ¼ jkadmnDn

�
b4n � k04Da4

�
za2ðkaÞh�nðbÞ

þ
ffiffiffi
p

p
h�nðbÞ

XN
r¼ 1

��jka

2

�r

Hmnr ; (14.214)
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where Dn is given by Eq. (14.144) with m ¼ 0, dmn is the Kronecker delta function, and

the infinite series limit has been truncated to order M. The dimensionless quantity a is

the fluid-loading factor given by

aðkaÞ ¼ a2u
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ar0=D

p
¼ ka2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2agP0=D

p
; (14.215)

where P0 is the static pressure defined by P0 ¼ r0c
2/g. The function Hmnr is defined by

Hmnr ¼
G
�r
2

�
G

�
r

2
þ 1

2

� XN
q¼ 0

1

q!G
�r
2
� q
�

�

0B@1
eF2

�
r

2
� q;

r

2
� qþ 1; 1;�b2m

4

�
� Bm1

eF2

�
r

2
� q;

r

2
� qþ 1; 1;

b2m
4

�
þ Cm

G
�r
2
� qþ 1

�
1CA

�
�
1
eF2

�
qþ 1; qþ 2; 1;�b�2n

4

�
� B�

n1
eF2

�
qþ 1; qþ 2; 1;

b�2n
4

�
þ C�

n

Gðqþ 2Þ
�
;

(14.216)

Far-field pressure
The far-field pressure is derived by inserting the far-field Green’s function in

sphericalecylindrical coordinates from Eq. (13.70), together with Eq. (14.203) and

(13.158), into Eq. (13.177) and integrating over the surface of the shell using Eqs. (76)

and (95) from Appendix II (with z ¼ kw0 sin q, b ¼ k sin q, and letting f ¼ p/2 so that

cos(f � f0) ¼ sin f0) together with the following integrals:Z a

0

J0ðkw0 sin qÞJ0ðbmw0=aÞw0dw0 ¼ a2
bmJ1ðbmÞJ0ðka sin qÞ � ðka sin qÞJ1ðka sin qÞJ0ðbmÞ

b2m � ðka sin qÞ2
(14.217)Z a

0

J0ðkw0 sin qÞI0ðbmw0=aÞw0dw0 ¼ a2
bmI1ðbmÞJ0ðka sin qÞ þ ðka sin qÞJ1ðka sin qÞI0ðbmÞ

b2m þ ðka sin qÞ2
(14.218)

to give

epðr; qÞ ¼ jaef g
4rSD

e�ikrDðqÞ; (14.219)
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where r is the distance from the origin to the observation point and q is the angle

subtended to the axis of symmetry. The directivity function D(q) is given by

DðqÞ ¼ 2ka
XN
m¼ 1

Am

 
bmJ1ðbmÞJ0ðka sin qÞ � ðka sin qÞJ1ðka sin qÞJ0ðbmÞ

b2m � ðka sin qÞ2

� Bm
bmI1ðbmÞJ0ðka sin qÞ þ ðka sin qÞJ1ðka sin qÞI0ðbmÞ

b2m þ ðka sin qÞ2 þ Cm
J1ðka sin qÞ
ka sin q

!
:

(14.220)

For q ¼ 0 (i.e., on-axis), this simplifies to

Dð0Þ ¼ ka
XM
m¼ 1

Am

�
2
J1ðbmÞ
bm

� 2Bm
I1ðbmÞ
bm

þ Cm

�
: (14.221)

The far-field on-axis responses of a 25 mm dia. aluminum dome loudspeaker are

plotted in Figs. 14.12 and 14.13 with h ¼ 10 and 20 mm, respectively. The remaining

quantities are given in Tables 14.5 and 14.6 with the in vacuo eigenfrequencies given in

Table 14.7.
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Figure 14.12 Far-field on-axis pressure response of the fully coupled 25 mm dia. aluminum dome
loudspeaker in an infinite baffle with h ¼ 10 mm and 1 W input. The remaining quantities are given in
Tables 14.5 and 14.6, with the in vacuo eigenfrequencies given in Table 14.7.
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To provide maximum efficiency according to the criteria of Section 6.13, the coil

wire diameter t is calculated to make the mass MMW of the coil wire equal to the

remaining moving mass. This is achieved by solving

MMW ¼ MMS þMAR þMMF (14.222)
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Figure 14.13 Far-field on-axis pressure response of the fully coupled 25 mm dia. aluminum dome
loudspeaker in an infinite baffle with h ¼ 20 mm and 1 W input. The remaining quantities are given in
Tables 14.5 and 14.6, with the in vacuo eigenfrequencies given in Table 14.7.

Table 14.5 Aluminum shell quantities for the 25 mm dia. dynamic
loudspeaker

Radius a ¼ 12.5 mm
Thickness h ¼ 10/20 mm
Apex height H ¼ 0.5/1.0 mm

Young’s modulus Y ¼ 69 GN/m2

Poisson’s ratio n ¼ 0.3

Density of shell rD ¼ 2700 kg/m3

Shell mass MMS ¼ 13.3/26.6 mg

Density of air r0 ¼ 1.18 kg/m3

Speed of sound in air c ¼ 345 m/s

Damping/loading zS ¼ 0 kg/s

Observation distance r ¼ 1 m
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for t. The wire mass MMW is given by

MMW ¼ pt2lrC
	
4; (14.223)

where rC is the density of the coil wire. The total length l of the coil wire is related to the

coil resistance RE by

l ¼ pt2RE

	ð4sCÞ; (14.224)

Table 14.6 Coil and suspension quantities for the 25 mm dia. dynamic
loudspeaker

Suspension frequency f0 ¼ 700 Hz
Suspension resistance RMS ¼ 0.06 N s m

Coil electrical resistance RE ¼ 8 U
Coil wire diameter t ¼ 56/65 mm
Coil wire density rC ¼ 8700 kg/m3

Coil wire resistivity sC ¼ 17.2 nUm
Coil wire total length l ¼ 1.09/1.47 m

Coil wire length per turn lT ¼ 78.5 mm

Coil number of turns n ¼ 14/18

Coil mass MMC ¼ 25.0/47.3 mg

Magnetic flux density B ¼ 1 T

Flux coil-length product Bl ¼ B � l ¼ 0.87/1.47 T m

Input voltage for 1 W egðrmsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
REW

p jW¼1 Wrms ¼ 2:83 V

Table 14.7 Eigenfrequencies for the 25 mm aluminum shell

Frequency
h ¼ 10 mm h ¼ 20 mm

no. H ¼ 0.5 mm H ¼ 1.0 mm H ¼ 0.5 mm H ¼ 1.0 mm

n ¼ 1 699.98 699.99 699.69 699.92

n ¼ 2 5177.8 10,313 5261.8 10,356

n ¼ 3 5314.6 10,382 5774.5 10,629

n ¼ 4 5676.1 10,573 6976.8 11,352

n ¼ 5 6375.3 10,969 8834.5 12,751

n ¼ 6 7471.1 11,658 10,367 14,947

n ¼ 7 8903.7 12,713 12,531 17,849

n ¼ 8 11,358 14,175 16,092 20,464

n ¼ 9 13,589 16,048 20,468 22,859

n ¼ 10 16,291 18,258 25,542 27,221
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where sC is the resistivity of the coil wire. The shell massMMS is given by Eq. (14.173),

MMR is the radiation mass on both sides of a piston in an infinite baffle given by

MMR ¼ 16a3r0
	
3; (14.225)

and MMF is the mass of the coil former given by

MMF ¼ 2pantrDh; (14.226)

where n is the number of turns given by

n ¼ l=lT ; (14.227)

and

lT ¼ 2pa (14.228)

is the length per turn. Then the total coil mass MMC is given by

MMC ¼ MMW þMMF : (14.229)

Comparing Figs. 14.12 and 14.13, we see that the main effect of increasing the

thickness h of the shell from 10 to 20 mm is to produce a dip in the midband sensitivity

due to the increased inertia. Otherwise, the two figures are remarkably similar. Changing

the dome height H has a much more significant effect. In each case, the diaphragm

break-up starts just above 5 kHz (gray curve) when the dome height is 0.5 mm, but this

rises to above 10 kHz (black curve) when it is 1 mm. We see from Table 14.7 that the

lower eigenfrequencies are largely determined by the dome height, whereas the higher

ones are determined more by the dome thickness. Because of the high overall mechanical

impedance, the radiation resistance acting on the coupled shell does not appear to have

the damping effect on the higher-order modes that it does in the case of the membrane

response shown in Fig. 14.5.

PART XXXXI: INDUCTION LOUDSPEAKERS

14.19 RADIATION FROM A CIRCULAR PLATE IN AN INFINITE
BAFFLEdMODEL OF AN INDUCTION LOUDSPEAKER COUPLED
TO ITS SURROUNDING AIR [13,14]

So far, we have analyzed membrane and shell type loudspeaker diaphragms but only

looked briefly at plates to calculate their mode frequencies with various boundary con-

ditions. With the shell, we followed the traditional approach of using curvature, together

with the material properties, to maximize the stiffness and thus raise the eigenfrequencies
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as high as possible. This in turn made the pressure response relatively flat until the first

break-up frequencies occurred, above which it became highly irregular. The ideal material

has a high ratio of Young’s modulus to density. With an ultra-light membrane, there is no

bending stiffness and instead we can use the combination of a dust-screen and radiation

resistance to damp the modes, as will be demonstrated in Chapter 15.

Here we explore a third way, which is to use the phenomenon whereby the modes of a

free circular plate are not propagated on-axiswhen drivenby a concentrated ring force, such

as that produced by a voice coil. Hence, the on-axis response looks as flat as that of a rigid

piston, provided that the acoustic load is very light. However, the free plate differs from a

piston in that if the radius of the ring force is reduced until it effectively becomes a point

force at the center, the radiated power becomes constant! Hence, the directivity pattern

of the free plate does not shrink with increasing frequency as does that of a rigid piston.

Unfortunately, if the circular plate is used as the diaphragm of a dynamic, or moving-

coil, loudspeaker, the coil mass introduces irregularities into the on-axis response. The

edge suspension, or surround, also detracts slightly from the ideal free plate, so it is

important to set the suspension resonance frequency well before the first plate mode.

One way to compensate for the coil mass is to rebalance the plate by adding nodal ring

masses, but they do not remove all the modes completely and they reduce efficiency by

adding to the total moving mass [15].

Construction of an induction loudspeaker
What if wewere to drive the platewithout attaching a coil to it at all, but instead could drive

it from a stationary voice coil? One option might be to look to the past by reintroducing

the reluctance transducer as used in telephone receivers for much of the 20th century.

The scheme shown in Fig. 14.14 has like magnetic pole pieces facing each other. In

other words, north faces north and south faces south so that the steady-state flux in the

gap is forced to flow radially through the plate between the inner and outer pole pieces

rather than across the gap between opposite pole pieces. In Fig. 14.14, the voice coil is

wound in two halves, one on each side of the plate, where the þ signs denote current

flowing into the page while the � signs denote current flowing out of it. Of course, the

signal current is alternating, so this just indicates the relative directions of the instanta-

neous currents in the windings, which are arranged for an induction loudspeaker. For a

reluctance loudspeaker, the winding on one side would be reversed and the plate would

be made from a ferromagnetic material. Hence, during one half of a cycle, the magnetic

flux in one core would increase while in the other it would decrease and thus cause the

plate to be attracted towards the one with the greater flux. In this way, we would have a

pushepull reluctance transducer. The plate of the single-sided version used in telephones

had to be clamped at the perimeter, rather than elastically supported, to prevent it from

being pulled toward the magnetic pole pieces. The pushepull arrangement shown

balances out the quiescent force of attraction so that a compliant surround may be used.
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However, thin steel plates saturate at relatively low flux levels and therefore the reluc-

tance loudspeaker would have very limited acoustic output, which is why early loud-

speakers using this principle were essentially telephone receivers with horns attached to

boost the inevitably weak sound output.

Instead, we shall induce a current in a nonferromagnetic plate using the configuration

shown in Fig. 14.14. The quiescent field still flows radially through the plate, but the

signal field flows across it in two loops around the upper and lower halves of the

windings. Hence, the voice coil can be considered as the primary winding of a trans-

former that induces a circular eddy current in the plate, so that the plate behaves as a

shorted secondary winding if it is blocked. However, if it is free to move, a back emf ee is
produced, which is proportional to its velocity euC according toee ¼ BleuC; (14.230)

ai 
ao 

2 2
i oa a+  

lg  lg 
h 

d 

Plate 

Core 

Voice coil 

2
ia  

Magnets 

Surround 

b 

a 

S S 

S S 

N N 

Figure 14.14 Cross-sectional sketch of an induction loudspeaker, which is assumed to be mounted in
an infinite baffle. Not shown is a rigid, but acoustically transparent, basket structure to support the
magnets on each side. To minimize its effect on the radiation of sound, the radius of the magnet is
much smaller than that of the plate.
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where B is the flux density in the gap and l is the path length of the induced eddy current

loop.

The eddy currentei produces a magnetic field that in turn produces a force ef C, which
acts on the plate to make it move according toef C ¼ Blei: (14.231)

In our analysis, we shall ignore the fact that both faces of the plate shown in Fig. 14.14

are partially covered by the magnet structure. In our worked example, the magnet

structure will cover less than 15% of the surface area, so the error should be small.

Analogous circuit
The complete electro-mechano-acoustical analogous circuit is shown in Fig. 14.15 using

the impedance analogy throughout.

This is an approximate circuit that represents the plate as a lumped mass MMD and

ignores its vibrational behavior. Therefore, it is only valid for frequencies below the first

plate mode. We shall replace everything beyond the terminals 4 and 5 with an analytical

model later in this section, while incorporating everything before them in the driving

force and boundary conditions (after some simplifications). For simplicity, we assume all

the flux produced by the coil couples the “shorted turn” of the plate; and therefore the

inductance LEC is mutual to both the primary and secondary windings of the virtual

transformer of turns ratio N. Otherwise, we would have to add two leakage inductances:

one in series with coil resistanceREC and the other in series with the resistanceRED of the

“shorted turn.” Although the coil inductance is a series impedance in a dynamic loud-

speaker, which limits the high-frequency output, here it is a shunt impedance that shorts

the input at low frequencies and should therefore be made as large as possible. In fact,

there is a trade-off between greater low-frequency displacement when the gap distance lg
is increased and larger inductance when it is reduced. The blocking capacitor CE,

together with LEC, forms a second-order high-pass filter that reduces the low-frequency

displacement, avoids shorting of the input, and prevents saturation of the iron core.

Figure 14.15 Electro-mechano-acoustical analogous circuit of the induction loudspeaker using the
impedance analogy throughout.
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The symbols have the following meanings:eeg is voltage of the generator or amplifier (assuming negligible output impedance) in

volts (V).

REC is resistance of voice coil in ohms (U).
LEC is inductance of voice coil in henrys (H).

N is number of turns of voice coil.

RED is loop resistance seen by induced plate eddy current in ohms (U).
B is steady state air gap magnetic field or flux density in Tesla (T).

l is length in meters (m) of eddy current loop induced in plate.ei is plate eddy current in amperes (A).ef C is force acting on the plate according to Eq. (14.231).euC is plate velocity in m/s according to Eq. (14.230).

RMS is mechanical resistance of the surround in N$s/m.

CMS is mechanical compliance of the surround in m/N.

MMD is mechanical mass of the plate in Kg.

SD ¼ pa2 is area of the plate (ignoring the surround) in m2.

ZAR is acoustical radiation impedance in N$s/m5.ep is pressure on the plate in Pa due to the radiation load.eU is volume velocity in m3/s produced by the plate.

We will use the following definitions:

REC ¼ sc lc

pa2w
; (14.232)

where sc is the resistivity of the coil wire, aw is the wire radius given by

aw ¼ 1

2

ffiffiffiffiffiffi
Aw

N

r
; (14.233)

Aw is the winding window area, assuming only 2/3 of the area is available after

allowing for the bobbin, insulation, etc., so that

Aw ¼ 4

3
dðao � aiÞ; (14.234)

lc is the length of the voice coil given by

lc ¼ 2Npb; (14.235)

and b ¼ (ai þ ao)/2 is the average radius of the voice coil windings as well as that of the

induced eddy current.Whereas the flux density B in a dynamic loudspeaker is normally set

to the saturation density BSAT, here we will set it to around 1 T m where the relative

permeability mr is maximum (around 35,000 for silicon steel). This ensures that the
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inductance is dominated by the air gap, which in turn gives maximum linearity,

according to

LEC ¼ N2m0Ag

4lg þ lc=mr
z
N2m0Ag

4lg
; mr >> lc=ð4lgÞ; (14.236)

where Ag is the cross-sectional area of the core given by

Ag ¼ pa2i : (14.237)

The resistance of the eddy current loop, or “shorted turn,” is

RED ¼ sdl

Ad
; (14.238)

where sd is the resistivity of the plate, l is the length of the eddy current loop given by

l ¼ 2pb; (14.239)

and Ad is the cross-sectional area of the eddy current loop given by

Ad ¼ ðao � aiÞh: (14.240)

Because the shorted turn, which comprises the secondary winding of the transformer,

occupies only a small part of the winding window, the total electrical resistance RE

(referred to the primary) is dominated by the resistance of the shorted turn RED, such that

RE ¼ REC þN2REDzN2RED; (14.241)

Hence, the number of turns required for a given coil resistance is

N ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðao � aiÞRE

pðao þ aiÞsd

s
: (14.242)

Before we develop the analytical model of the mechanical and acoustical parts of

Fig. 14.15, we shall simplify the electrical part as shown in Fig. 14.16, where the

electrical impedance ZE is given by

ZE ¼ RED þ

0BB@ N2

juLEC
þ N2

REC þ 1

juCE

1CCA
�1

(14.243)
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and the forceef g, which we shall apply to the plate as a ring force due to the eddy current,
is given by

ef g ¼ juLEC

REC þ juLEC þ 1

juCE

$
Bl

NZE
eeg

z
u2

u2 � ju
uC

QC
� u2

C

$
Bl

NRED
eeg; N2RED >> REC

(14.244)

where uC is the lower cut-off frequency due to the induction coil winding inductance

uC ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LECCE

p (14.245)

Figure 14.16 (a) The electrical part of Fig. 14.15 referred to the secondary side of the induction
transformer. (b) The Thévenin equivalent of the generator voltage source, together with REC and LEC.
(c) The equivalent of (b) according to Norton’s theorem. (d) The admittance analogy of the electrical
part from (c) referred to the mechanical side.
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and

QC ¼ N2RED

ffiffiffiffiffiffiffiffiffi
CE

LEC

r
: (14.246)

The cut-off frequency uC should be well above the frequency below which satu-

ration occurs

uSAT ¼
ffiffiffi
2

p
eg

ðBSAT � BÞAgN
: (14.247)

In the boundary conditions at the perimeter of the plate, we will add the mechanical

resistance RMS to the stiffness reactance of the surround so that the mechanical Q is

defined by

QMS ¼ 1

RMS

ffiffiffiffiffiffiffiffiffiffiffi
MMD

CMS

r
: (14.248)

Although the coil produces a ring force of radius b, for the electrical damping due to

the resistance of the “shorted turn” we will simplify the boundary conditions by

assuming that this damping produces an equivalent mechanical resistance of (Bl)2/RED at

the center, which is a reasonable approximation provided that b � 0.26 a. We will assume

that this resistance dominates ZE (see Fig. 14.16(d)) so that

QES ¼ RED

B2l2

ffiffiffiffiffiffiffiffiffiffiffi
MMD

CMS

r
: (14.249)

However, because the Bessel functions Y0 and K0 are singular when their arguments

are zero, we shall apply a small offset d from the center to begin with and then derive the

equation for the eigenvalues as d/ 0.

Boundary conditions
Although we will reuse the derivation for the shell in an infinite baffle to analyze the

behavior of the plate diaphragm, there are two important differences here. Firstly,

because the plate is flat, we set

H ¼ 0; (14.250)

which leads to

x ¼ eC5n ¼ Cn ¼ 0 and R ¼ N; (14.251)

so that after setting kDa ¼ bn, the eigenfunctions of Eq. (14.156) becomeehnðwÞ ¼ eC1nJ0ðbnw=aÞ þ eC2nY0ðbnw=aÞ þ eC3nI0ðbnw=aÞ þ eC4nK0ðbnw=aÞ:
(14.252)
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Secondly, because there is no coil former joined to the perimeter, we replace the

boundary condition of zero bending at the perimeter with one of zero bending moment, so

that as the stiffness of the surround is reduced to zero, we have a truly free edge. Hence,

we replace Eq. (14.164) with an axisymmetric version of Eq. (14.111)�
v2

vw2
þ n

w
$
v

vw

�ehnðwÞ




w¼a

¼ �D
bn

a2

�eC1nðð1� nÞJ1ðbnÞ � bnJ0ðbnÞÞ þ eC2nðð1� nÞY1ðbnÞ � bnY0ðbnÞÞ

�eC3nðð1� nÞI1ðbnÞ � bnI0ðbnÞÞ þ eC4nðð1� nÞK1ðbnÞ þ bnK0ðbnÞÞ
� ¼ 0;

(14.253)

At the perimeter, we have a shear force due to the surround

eQnðwÞ



w¼a

¼ �D
v

vw
V2ehnðwÞ





w¼a

¼ �b3n

a3
D
�eC1nJ1ðbnÞ þ eC2nY1ðbnÞ þ eC3nI1ðbnÞ � eC4nK1ðbnÞ

�

¼ �
�

1

CMS
þ junRMS

� ehnðaÞ
2pa

;

(14.254)

where CMS and RMS are the mechanical compliance and resistance of the surround

respectively, as given by Eqs. (14.175) and (14.248). Near the center, we have a shear

force due to the electrical damping resistance of the “shorted turn”

eQnðwÞ



w¼d

¼ �D
v

vw
V2ehnðwÞ





w¼d

¼ �b3n

a3
D
�eC1nJ1ðbnd=aÞ þ eC2nY1ðbnd=aÞ þ eC3nI1ðbnd=aÞ � eC4nK1ðbnv=aÞ

�

¼ �jun
B2l2

RED

ehnðdÞ
2pd

;

(14.255)
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We also use the angular eigenfrequency un from Eq. (14.167), and total mass MMD

from Eqs. (14.173) and (14.174) with the coil mass MMC ¼ 0 and mass loading factor

z ¼ 1. Substituting these into Eqs. (14.254) and (14.255), while rearranging, leads toeC1n

�
gnJ0ðbnÞ � b3nJ1ðbnÞ

�þ eC2n

�
gnY0ðbnÞ � b3nY1ðbnÞ

�
þ eC3n

�
gnI0ðbnÞ � b3nI1ðbnÞ

�þ eC4n

�
gnK0ðbnÞ þ b3nK1ðbnÞ

� ¼ 0
(14.256)

eC1n

�
snJ0

�
bn
d

a

�
� b3nJ1

�
bn
d

a

��
þ eC2n

�
snY0

�
bn
d

a

�
� b3nY1

�
bn
d

a

��

þ eC3n

�
snI0

�
bn
d

a

�
� b3nI1

�
bn
d

a

��
þ eC4n

�
snK0

�
bn
d

a

�
þ b3nK1

�
bn
d

a

��
¼ 0

(14.257)

where

gn ¼ b20
2

�
b20 þ j

b2n
QMS

�
(14.258)

sn ¼ a

d
j
b20b

2
n

2QES
(14.259)

and the notional zeroth eigenvalue b0 is defined by

b40 ¼ a2MMD

pD
u2
0: (14.260)

For continuity at the center, there is zero slope

v

vw
ehnðwÞ





w¼d

¼ � bn

a

�eC1nJ1

�
bn
d

a

�
þ eC2nY1

�
bn
d

a

�

� eC3nI1

�
bn
d

a

�
þ eC4nK1

�
bn
d

a

��
¼ 0

(14.261)

From Eqs. (14.253), (14.256), (14.257), and (14.261) we obtain the following

equation for the eigenvalues bn




















ð1� nÞJ1ðbnÞ � bnJ0ðbnÞ ð1� nÞY1ðbnÞ � bnY0ðbnÞ �ð1� nÞI1ðbnÞ þ bnI0ðbnÞ ð1� nÞK1ðbnÞ þ bnK0ðbnÞ

J1

�
bn
d

a

�
Y1

�
bn
d

a

�
�I1

�
bn
d

a

�
K1

�
bn
d

a

�
gnJ0ðbnÞ � b3nJ1ðbnÞ gnY0ðbnÞ � b3nY1ðbnÞ gnI0ðbnÞ � b3nI1ðbnÞ gnK0ðbnÞ þ b3nK1ðbnÞ

snJ0

�
bn
d

a

�
� b3nJ1

�
bn
d

a

�
snY0

�
bn
d

a

�
� b3nY1

�
bn
d

a

�
snI0

�
bn
d

a

�
� b3nI1

�
bn
d

a

�
snK0

�
bn
d

a

�
þ b3nK1

�
bn
d

a

�






















¼ 0

(14.262)
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In the limit, as d/a / 0, we obtain the equation for the eigenvalues where

the electrical damping resistance is represented by a concentrated shear force at the center

I1ðbnÞ
�
4b2n
�
2b3nð1� nÞJ1ðbnÞ � εnJ0ðbnÞ

�
� cn

�
p
�
2b3nð1� nÞY1ðbnÞ � εnY0ðbnÞ

�� 2b4nK0ðbnÞ
��

þ I0ðbnÞ
�
4b2nð2bngnJ0ðbnÞ � εnJ1ðbnÞÞ

� cn
�
pð2bngnY0ðbnÞ � εnY1ðbnÞÞ þ 4bngnK0ðbnÞ þ 2b4nK1ðbnÞ

��
þ 2cn

�
J1ðbnÞ

�
2b3nð1� nÞK1ðbnÞ �

�
b4n � gnð1� nÞ�K0ðbnÞ

�
� εnJ0ðbnÞK1ðbnÞ � b3n þ 2gnð1� nÞ=bn

� ¼ 0;

(14.263)

where

cn ¼ j
b20b

2
n

2QES
; (14.264)

εn ¼ b4n þ ð1� nÞb
2
0

2

�
b20 þ j

b2n
QMS

�
: (14.265)

If there is no damping, such that QMS ¼ QES ¼N, the eigenvalue equation sim-

plifies to








b40
2
J0ðbnÞ � b3nJ1ðbnÞ

b40
2
I0ðbnÞ � b3nI1ðbnÞ

bn J0ðbnÞ � ð1� nÞJ1ðbnÞ �bnI0ðbnÞ þ ð1� nÞI1ðbnÞ









 ¼ 0 (14.266)

These eigenvalues are plotted in Fig. 14.17 against b0.

The eigenfrequencies are given by

fn ¼ b2n
2pa2

ffiffiffiffiffiffiffiffi
D

rDh

s
: (14.267)

Because the plate is continuous at the center, we now seteC2n ¼ eC4n ¼ 0; (14.268)

so that the eigenfunctions are given byehnðwÞ ¼ J0ðbnw=aÞ � BnI0ðbnw=aÞ; (14.269)
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where from Eq. (14.253) we obtain

Bn ¼ �
eC3neC1n

¼ �ð1� nÞJ0ðbnÞ � bnJ0ðbnÞ
ð1� nÞI0ðbnÞ � bnI0ðbnÞ

: (14.270)

Far-field pressure of a free plate with an evenly distributed radiation
load
To begin with, we shall assume that the radiation impedance of a rigid piston is evenly

distributed over the surface of the plate. For this purpose, we shall use the complex

wavenumber of Eqs. (14.198) and (14.199) with z ¼ 1, x ¼ 0, and

zS ¼ r0c

�
1� J1ð2kaÞ

ka
þ j

H1ð2kaÞ
ka

�
: (14.271)

Figure 14.17 Eigenvalues of an elastically supported circular plate calculated from Eq. (14.263) with a
Poisson’s ratio n ¼ 0.3 and zero damping so that QES ¼ QMS ¼ N. As we vary b0 from 0 to N, the
stiffness of the surround increases such that when b0 ¼ 0 we have a free plate and when b0 ¼N it is
simply supported because, although it cannot be deflected vertically at the perimeter, it can still bend.
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Inserting the Green’s function of Eq. (14.201), together with Eq. (14.269) for the

eigenfunctions, into Eq. (14.197), while ignoring the surface pressure term, and inte-

grating over the surface of the plate yields

ehðwÞ ¼ �a2ef g
pD

XN
n¼ 1

ðJ0ðbnw=aÞ � BnI0ðbnw=aÞÞ
�
J0
�
b�nb
	
a
�� B�

nI0
�
b�nb
	
a
��

Dn

�
b4n � k04Da4

� .

(14.272)

The surface velocity is simply the first time-derivative of the displacement, which in

the steady state gives eu0ðwÞ ¼ juehðwÞ ¼ jkcehðwÞ: (14.273)

The far-field pressure is derived by inserting the far-field Green’s function in

sphericalecylindrical coordinates from Eq. (13.70), together with Eqs. (14.273) and Eq.

(13.158), into Eq. (13.177) and integrating over the surface of the plate using Eqs. (76)

and (95) from Appendix II (with z ¼ kw0 sin q, b ¼ k sin q, and letting f ¼ p/2 so that

cos(f � f0) ¼ sin f0) together with the integrals of Eqs. (14.217) and (14.218) to give

epðr; qÞ ¼ �j
aeFg

4rSD
e�jkrDðqÞ; (14.274)

where the directivity function is given by

DðqÞ ¼ 2a2ðkaÞ
XN
n¼ 1

J0
�
b�nb
	
a
�� B�

nI0
�
b�nb
	
a
�

jDn

�
b4n � k04Da

4
�

�
 
bmJ1ðbmÞJ0ðka sin qÞ � ðka sin qÞJ1ðka sin qÞJ0ðbmÞ

b2m � ðka sin qÞ2

� Bn
bmI1ðbmÞJ0ðka sin qÞ þ ðka sin qÞJ1ðka sin qÞI0ðbmÞ

b2m þ ðka sin qÞ2
!
;

(14.275)

and a is the fluid-loading factor given by Eq. (14.215). For the on-axis response we have

Dð0Þ ¼ 2a2ðkaÞ
XM
m¼ 1

J0
�
b�mb
	
a
�� B�

mI0
�
b�mb
	
a
�

jDm

�
b4m � k04Da4

� �
J1ðbmÞ
bm

� Bm
I1ðbmÞ
bm

�
: (14.276)

If there are no losses so thatQES ¼ QMS ¼N and the surround is perfectly flexible so

that b0 ¼ 0, Eq. (14.266) for the eigenvalues reduces to that of a free circular plate

ðð1� nÞJ1ðbnÞ � bnJ0ðbnÞÞI1ðbnÞ þ ðð1� nÞI1ðbnÞ � bnI0ðbnÞÞJ1ðbnÞ ¼ 0 (14.277)
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from which

Bm ¼ �ð1� nÞJ0ðbmÞ � bmJ0ðbmÞ
ð1� nÞI0ðbmÞ � bmI0ðbmÞ

¼ J1ðbmÞ
I1ðbmÞ

; m > 1: (14.278)

Hence, if we insert Bm ¼ J1(bm)/I1(bm) into Eq. (14.276), we see that all the terms for

m > 1 vanish. However, for m ¼ 1 or b0 ¼ 0þ, we need to take more care because,

according to Eq. (14.270), B1 ¼ �1, not þ 1. Also, J1(b1)/b1 ¼ I1(b1)/b1 ¼ 0.5. From

Eq. (14.145) (with m ¼ 0 for axisymmetry), we have D1 ¼ 4. Then, the on-axis response

reduces to

Dð0Þ ¼ j
a2ðkaÞ
k04Da4

¼ j
2ar0�

rDhþ
zS

ju

�; (14.279)

which contains no modes whatsoever! If we insert this into Eq. (14.274), while noting

that at low frequencies zS z juMMR/SD, where the radiation massMMR is given by Eq.

(14.225), we obtain

epðr; 0Þjka<0:1 ¼ eegBl
RE

SDr0
MMD þMMR

e�ikr

2pr
; (14.280)

which is simply Eq. (6.32) for the on-axis pressure of a dynamic loudspeaker in an

infinite baffle. The evenly distributed on-axis response of a free magnesium plate is

plotted in Fig. 14.18 using Eq. (14.274) and the quantities given in Table 14.8. We see

that the response is perfectly smooth with just a small lift at higher frequencies as the

radiation load transitions from mass reactance to resistance. However, we do see a model

response 45 degrees off-axis. Interestingly, the directivity pattern is much broader when

the plate is driven by a concentrated point force at the center (b ¼ 0) than when it is

driven by a ring force of the same magnitude at the perimeter (b ¼ a), as can also be seen

in the directivity patterns of Fig. 14.19.

Far-field response of the induction loudspeaker
We will now calculate the far-field pressure response of a fully coupled magnesium alloy

plate configured as an induction loudspeaker according to Fig. 14.14 using the quantities

given in Tables 14.8 and 14.9. Magnesium alloy is an excellent choice of material for the

plate because it has both good electrical and mechanical properties. According to

Table 6.1, it is one of the highest-ranking materials for a voice coil, having a high ratio of

conductivity to density. It also has a high ratio of Young’s modulus to density. The

far-field pressure is derived by inserting the far-field Green’s function in sphericale
cylindrical coordinates from Eq. (13.70), together with Eq. (14.203) and (13.158),

into Eq. (13.177) and integrating over the surface of the plate using Eqs. (76) and (95)

from Appendix II (with z ¼ kw0 sin q, b ¼ k sin q, and letting f ¼ p/2 so that

cos(f � f0) ¼ sin f0) together with the integrals of Eqs. (14.217) and (14.218) to give
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Figure 14.18 Far-field on-axis pressure response of the 100 mm dia. free circular plate in an infinite
baffle with an evenly distributed radiation load (gray) and fully coupled to the surrounding air (black).
In both cases, the plate is driven with a concentrated point force of fg ¼ 10 N at the center (b ¼ 0),
although the evenly distributed response is identical to that with a ring force of any radius b, including
b ¼ a. Also shown is the off-axis response at 45 degrees with a concentrated force of fg ¼ 10 N at the
center (b ¼ 0) (dark gray dashed) and a ring force of the same magnitude at the perimeter (b ¼ a)
(light gray dashed). In both cases, the radiation load is evenly distributed. The parameters are given in
Table 14.8.

Table 14.8 Magnesium plate quantities for the 100 mm dia. induction
loudspeaker

Radius a ¼ 50 mm
Thickness h ¼ 600 mm
Resistivity sD ¼ 46 nU$m
Young’s modulus Y ¼ 42 GN/m2

Poisson’s ratio n ¼ 0.3

Density of plate rD ¼ 1740 kg/m3

Plate mass MMD ¼ 8.2 g

Density of air r0 ¼ 1.18 kg/m3

Speed of sound in air c ¼ 345 m/s

Observation distance r ¼ 1 m
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epðr; qÞ ¼ �j
aef g
4rSD

e�jkrDðqÞ; (14.281)

where the directivity function is given by

DðqÞ ¼ 2ka
XN
n¼ 1

Am

 
bmJ1ðbmÞJ0ðka sin qÞ � ðka sin qÞJ1ðka sin qÞJ0ðbmÞ

b2m � ðka sin qÞ2

� Bn
bmI1ðbmÞJ0ðka sin qÞ þ ðka sin qÞJ1ðka sin qÞI0ðbmÞ

b2m þ ðka sin qÞ2
!
;

(14.282)

Figure 14.19 Directivity pattern of the 100 mm dia. free circular plate in an infinite baffle with an
evenly distributed radiation load at ka ¼ 1 (f ¼ 1.1 kHz, black), ka ¼ 3 (3.3 kHz, dark gray), ka ¼ 5
(f ¼ 5.5 kHz, medium gray), and ka ¼ 10 (f ¼ 11 kHz, light gray). (a) Driven by a concentrated point
force of fg ¼ 10 N at the center (b ¼ 0) (b) Driven by a ring force of the same magnitude at the
perimeter (b ¼ a).
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and the coefficients Am are found by solving the set of simultaneous equations in Eq.

(14.213). The on-axis response is by

Dð0Þ ¼ 2ka
XM
m¼ 1

Am

�
J1ðbmÞ
bm

� Bm
I1ðbmÞ
bm

�
: (14.283)

In the case of a free plate, this reduces to

Dð0Þ ¼ 2kaA1: (14.284)

The on-axis response of the fully coupled free plate is shown in Fig. 14.18 using the

quantities given in Table 14.8. We see that even though the plate is thick enough for the

fluidestructure coupling to be relatively weak (a(ka) is seven times lower than that of

the membrane of Section 14.10), the variation in acoustic load across the surface is enough

Table 14.9 Coil and suspension quantities for the 100 mm dia. induction
loudspeaker

Electrical cut-off frequency fC ¼ 676 Hz
Electrical cut-off Q QC ¼ 0.747

Capacitor value CE ¼ 22 mF
Coil electrical resistance RE ¼ 8 U
Coil electrical inductance LEC ¼ 2.5 mH

Coil average radius b ¼ 13 mm

Coil wire diameter t ¼ 0.95 mm

Coil window half-width d ¼ 10 mm

Coil window height aO � ai ¼ 6 mm

Coil wire resistivity sC ¼ 17.2 nU$m
Coil wire total length lC ¼ 7.15 m

Coil wire length per turn l ¼ 81.7 mm

Coil number of turns N ¼ 88

Magnetic flux density B ¼ 1 T

Saturation flux density BSAT ¼ 1.4 T

Flux coil-length product Bl ¼ B � l ¼ 98 mT$m
Magnetic gap width lg ¼ 0.3 mm

Saturation frequency fSAT ¼ 183 Hz

Suspension frequency f0 ¼ 150 Hz

Mechanical Q QMS ¼ 7.73

Electrical Q QES ¼ 1.21

Total suspension Q QTS ¼ 1.05

Suspension resistance RMS ¼ 1 N$s/m
Input voltage for 10 W eg(rms) ¼ REWjW¼10 Wrms ¼ 8.94 V
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to produce modal features in the on-axis response compared to the evenly distributed

response. The displacement at the center is obtained by setting w ¼ 0 and Cm ¼ 0 in Eq.

(14.203) for the velocity and then dividing by ju to obtain

ehð0Þ ¼
ef g

2jur0cSD

XM
m¼ 1

Amð1� BmÞ: (14.285)

The peak displacement of an equivalent piston giving the same sound pressure is

hpk ¼
ffiffiffi
2

p
r10

�
SPL
20
�5
�

pf 2r0SD
: (14.286)

where SPL ¼ 20 log10(jprmsj/20 � 10�6). The far-field on-axis response of a 100 mm

dia. magnesium induction loudspeaker is plotted in Fig. 14.20 (black), together with the

45-degrees off-axis (dark gray dashed). Apart from the small dip at 3e4 kHz, the modes

are largely smoothed out both on and off-axis because of the mechanical and electrical

resistances in the boundary conditions. However, these resistances also have the effect of

Figure 14.20 Far-field pressure response of the fully coupled 100 mm dia. magnesium alloy induction
loudspeaker in an infinite baffle with 10 W input on-axis (black) and 45 degrees off-axis (dark gray
dashed). Also shown are the displacement at a distance b from the center (dark gray) and the dis-
placement of an equivalent rigid piston (light gray dashed). The quantities and in vacuo eigen-
frequencies are given in Tables 14.8e14.10.
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removing some of the energy from the plate at higher frequencies, which leads to a

moderate narrowing of the directivity pattern compared to the free plate, as we see from

Fig. 14.21. However, the directivity is still much broader than that of a rigid piston

shown in Fig. 13.5. Also shown in Fig. 14.20 are the peak displacement at the center

(dark gray) and the displacement of an equivalent rigid piston (light gray dashed). This

demonstrates how much more volume velocity is produced by a plate, especially at

higher frequencies, than by a rigid piston with the same on-axis response. The in vacuo

eigenfrequencies are given in Table 14.10.

Problem 14.1. Show that the Green’s function for a rectangular membrane, given

by Eq. (14.23), is a solution to the inhomogeneous wave equation of Eq. (14.24).

Figure 14.21 Directivity pattern of the 100-mm induction loudspeaker at ka ¼ 1 (1.1 kHz, black),
ka ¼ 3 (3.3 kHz, dark gray), ka ¼ 5 (5.5 kHz, medium gray), and ka ¼ 10 (11 kHz, light gray).
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Hint: Let the Green’s function be of the form Gðx; yjx0;y0Þ ¼PN
m¼ 1

PN
n¼ 1

Amn sinðmpx=lxÞsinðnpy=lyÞ and solve for Amn by inserting this into Eq.

(14.24), using the identity of Eq. (14.16) for the Laplace operator, multiplying both sides

by sin(ppx/lx) sin(qpy/ly), and integrating over the surface of the membrane using the

integral of Eq. (14.18) together with the property of the Dirac delta function of Eq.

(A2.154) from Appendix II.

Problem 14.2. Using the recursion formulas of Eqs. (A2.83) and (A2.84) from

Appendix II, show that V2Gðw;fjw0;f0Þ ¼ �a2
mn

a2
Gðw;fjw0;f0Þ is valid, where G(w,

fjw0, f0) is the Green’s function for a circular membrane given by Eq. (14.43). Show

that this Green’s function is a solution to the inhomogeneous wave equation of Eq.

(14.44).

Hint: Let the Green’s function be of the form Gðw;fjw0;f0Þ ¼PN
m¼ 0

PN
n¼ 1

Amn cosðmfÞJmðamnw=aÞ and solve for Amn by inserting this into Eq. (14.44),

multiplying both sides by cos(pf)Jp(apqw/a), and integrating over the surface of the

membrane using the integrals of Eqs. (14.38) and (14.39) together with the property of

the Dirac delta function of Eq. (A2.154) from Appendix II.

Problem 14.3. Calculate the first three axisymmetric eigenfrequencies f01, f02, and

f03 of a simply supported circular aluminum plate with a radius of 12.5 mm and thickness

of 0.2 mm, where rD ¼ 2700 kg/m3, Y ¼ 69 � 10�9 N/m2, and n ¼ 0.3.

Hint: Use Eq. (14.108) with eigenvalues from Table 14.3.

Problem 14.4. Show that the Green’s function for a shallow spherical shell, given by

Eq. (14.148), is a solution to the inhomogeneous wave equation of Eq. (14.149).

Hint: Let the Green’s function be of the form Gðw;4jw0;40Þ ¼PN
m¼ 0

PN
n¼ 1

Amnhmnðw;4Þ; where hmn(w, f) ¼ cos(mf) (Jm(amnw/a) � BmnIm(amnw/a) þ
Cmn) and solve for Amn by inserting this into Eq. (14.149), using the identity of Eq.

(14.138) for the Laplace operator, multiplying both sides by h�pqðw;fÞ from Eq. (14.140)

and integrating over the surface of the shell using the integrals of Eq. (14.142) together

with the property of the Dirac delta function of Eq. (A2.154) from Appendix II.

Problem 14.5.Calculate the first four axisymmetric eigenfrequencies f01, f02, and f03
of a clamped aluminum spherical shell with a radius of 12.5 mm, thickness of 40 mm,

and height of 2 mm, where rD ¼ 2700 kg/m3, Y ¼ 69 � 10�9 N/m2, and n ¼ 0.3.

Table 14.10 Eigenfrequencies for the 100-mm magnesium plate
n ¼ 1 n ¼ 2 n ¼ 3 n ¼ 4 n ¼ 5 n ¼ 6 n ¼ 7 n ¼ 8

264 Hz 507 Hz 2.28 kHz 5.08 kHz 9.00 kHz 14.0 kHz 20.2 kHz 27.5 kHz
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Hint: Use Eq. (14.184). The first four eigenvalues from Eq. (14.187) are:

b1 ¼ 12.854 þ j12.854, b2 ¼ 5.9034, b3 ¼ 9.1898, and b4 ¼ 12.386. Note that

b1
4 ¼ �109.2 � 103.
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CHAPTER FIFTEEN

Electrostatic loudspeakers

PART XXXXII: FUNDAMENTALS OF ELECTROSTATIC
LOUDSPEAKERS

15.1 INTRODUCTION TO ELECTROSTATIC LOUDSPEAKERS

Although the number of electrostatic loudspeaker manufacturers in the world can

be counted on two hands, this type of loudspeaker has been regarded as a benchmark for

sound quality for more than 60 years because of its low distortion, low coloration, and

outstanding transient response. The main drawback is that it is difficult to produce high

sound pressure levels, especially at lower frequencies, unless the diaphragm is very large.

This can then lead to beaming at high frequencies, although we shall examine a method

to counter this.

Instead of passing a current through a coil within a magnetic field to drive a rigid

cone or dome radiator, an electrostatic loudspeaker simply consists of a perfectly flexible

charged membrane held under the tension between two perforated electrodes or

“stators.” The signal across the stators creates an electric field that pulls the charged

membrane back and forth to produce sound waves, which exit through the perforations

in the stators. It is the same force that makes your hair stand on end when you rub a

balloon on your clothes and then hold it close to your head. The membrane is thinner

than a human hair, which makes this the closest thing to moving air particles directly

without any mechanical structure.

Compared to a dynamic loudspeaker, this simple transduction method turns the

whole design paradigm on its head. Whereas the radiation load of a dynamic loudspeaker

only accounts for a small portion of the total moving mass, including the voice coil and

diaphragm, the mass of the gossamer-thin membrane of an electrostatic loudspeaker is

tiny compared to that of the air which it is moving. Therefore, the stiffness of the air in an

enclosurewould raise the fundamental resonance frequency so high that all the bass would

be lost. Indeed, the fundamental resonance frequency would occur when the enclosure

depth is roughly one quarter of the wavelength. To prevent this, electrostatic loudspeakers

mostly operate in free space. Hence, a large diaphragm is needed to prevent the antiphase

rear waves from canceling those from the front at the lower frequencies.

Because the membrane is so light and there is no enclosure, an electrostatic loud-

speaker is acoustically transparent over its working frequency range, which starts at the
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fundamental resonance, as determined by the tension and radiation mass, and ends where

the inertia of the membrane starts to have an effect.

Another major difference from dynamic loudspeakers is that, to avoid problems with

vibration modes or cone “breakup,” the diaphragm of a dynamic loudspeaker must be

made as rigid as possible, which means that there is a lower limit to how thin it can be

made. To reduce the moving mass and thus improve efficiency and transient response, the

thickness can only be reduced further by employing expensive exotic materials. Even

then, the inevitable “breakup” cannot be eradicated altogetherdonly moved up to

frequencies above those to be reproduced by the driver. Higher frequencies must be

reproduced by another smaller driver with the added complexity of a crossover. Another

approach is to use highly damped materials, but these reduce the high-frequency radi-

ation efficiency due to a shrinking effective area and, in the case of domes, narrow the

directivity pattern because the dome effectively becomes a ring source.

By contrast, the membrane of an electrostatic loudspeaker may be perfectly flexible

with the restoring force provided purely through tensioning. Although the driving force

is uniform over the whole membrane, this does not make it immune to vibration modes,

unless the membrane were somehow freely suspended (such as the resilient disk in

Chapter 13). As we saw in the Chapter 14, the clamped perimeter does result in modes,

but these can be effectively damped out by the acoustic flow resistance of a fine mesh

cover material, which also serves to exclude dust and moisture. In any case, at higher

frequencies, where the radiation load becomes more resistive than massive, the modes are

effectively damped by the radiation resistance.

Various methods have been used to prevent high-frequency beaming. One of the

most common is to use separate “wide” and “narrow” electrostatic drive units for the

lower and higher frequency ranges, respectively, with a crossover network to separate

the frequency ranges feeding each one of them. Another method is to curve the

membrane, but this adds distortion to an otherwise linear transduction mechanism and

curtails the lower frequencies due to increased stiffness. If you curve a piece of paper, you

can support small objects on it, which is why such designs typically use shallow curves

that only spread the sound out over relatively narrow angles. In this chapter, we shall

focus on the use of delay lines to control the directivity pattern.

15.2 CONSTRUCTION

A typical electrostatic loudspeaker configuration is shown in Fig. 15.1.

In the middle is a light flexible membrane, which is held under tension and clamped at

its perimeter between insulating ring spacers. The spacers separate the membrane from

the rigid stators or ring electrodes located on either side of it at a distance d. The mem-

brane is circular with a radius a and has a conductive coating that is charged by a polarizing

supply with a dc voltage EP. The polarizing supply is connected via a high-value resistor
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RP to prevent the charge on the membrane from varying significantly when the alter-

nating signal voltage eein is applied to deflect the membrane to either side of its central

position. This keeps the force acting on the membrane linear, and the constant-charge

principle was an important step forward in making commercial electrostatic loud-

speakers viable [1,2].We take the input voltageeein to be that across the entire secondary of
the push-pull step up transformer in Fig. 15.1, which is still the most common way to

develop the large signal voltage required to drive an electrostatic loudspeaker. As the

membrane moves, it produces sound that passes through the perforations in the

stators. The most common membrane material is polyester (PET or Mylar), but

Polarizing supply EP

Membrane

Ring electrodes

Audio input

Delay line Delay line

Spherical 
wave front

Spacers

d

d
a

RP

ine~2
1

ine~2
1

FrontBack

+
−

Figure 15.1 Construction of pushepull electrostatic loudspeaker with delay lines.
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polyimide (Kapton) has also been used. If the loudspeaker is required to produce low

frequencies and therefore large membrane excursions, the conductive coating on the

membrane is likely to have a high resistance to prevent the charge migrating to the central

part, whichwill be closest to the stator atmaximumexcursion. Such coatings are usually in

the form of graphite, Elvamide, or indium-tin-oxide (ITO).

PART XXXXIII: DIRECTIVITY CONTROL

15.3 DIRECTIVITY CONTROL

Although there will probably always be a heated debate on exactly what directivity

pattern is most desirable for sound reproduction through loudspeakers in an average

listening room, one thing there does at least seem to be a consensus on is that the pattern

should be as consistent as possible over the entire audio frequency range [3e5]. In the

normal listening position, most of what we hear is reflected sound coming from the

off-axis directions. Hence, if the reflected sound does not have the correct tonal balance,

it cannot possibly sound natural.

In addition to having low coloration and low distortion, electrostatic loudspeakers

enable us to control the directivity pattern produced by a single diaphragm in a way that

is not possible with dynamic loudspeakers, by partitioning the stators into concentric

annular rings, which are connected to tappings along the delay line shown in Fig. 15.1.

Because the membrane is flexible, each part can move more-or-less independently

from the rest according to the signal on the nearest ring. Because of the delay line, the

sound first emanates from the center, followed by the first ring, and then each successive

ring in turn until it is radiated from the outermost ring by which time the sound from the

center is already some distance away from the membrane. We just need to determine

how to configure the delay to produce the optimum wavefront shape.

The traditional approach has been to arrange the delay to reproduce the wavefront of

a virtual point source located behind the membrane [6]. Because of the finite size of the

membrane, Walker [7] correctly pointed out that the delay line needs to be attenuated to

prevent irregularities in the frequency response of the radiated sound. Because the far-

field pressure response is the Fourier transform of the sound source, the attenuation

may be regarded as a windowing function. It is essentially a shaded array.

Now imagine a massless sphere oscillating back and forth with constant velocity at all

frequencies, thus radiating sound into free space. Such a sound source would have a

constant figure-of-eight directivity pattern and at higher frequencies, where the wave-

length is smaller than the sphere, constant power would be radiated because of the mainly

resistive radiation impedance. Unfortunately, such a sound source is impractical to

construct. Even if it were possible to make a large perfectly rigid hemispherical dynamic
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driver, it would need a lot of signal boosting at high frequencies to make it move with

constant velocity, rather than constant acceleration, and thus radiate constant power.

Instead, we shall describe how to imitate an oscillating sphere using a planar circular

electrostatic loudspeaker with stators partitioned into concentric annular rings that are

connected to a delay line [8]. These rings reproduce the sound that would emanate from

an oscillating sphere placed immediately behind the membrane (and in contact at the

center) as it arrives at the membrane. It turns out that using a geometric approximation

that assumes a plane wave traveling axially from the face of the imaginary sphere gives far

superior results to reproducing the true magnitude and phase of the waves produced by

the sphere using a finite membrane. We shall compare the effect of partitioning them

into a finite number of rings with equal area, equal delay sections, and equal widths,

using a continuously varying radial delay as an ideal reference. A significant benefit of

using an analog delay line is that it converts the capacitive load of the electrostatic

loudspeaker into an almost purely resistive one that is much easier for amplifiers to drive.

To begin with, we shall ignore secondary effects, such as the membrane mass and

stiffness, the stator perforations, and stray capacitances, which are all considered later in

the chapter. This will enable us to concentrate fully on how to control the directivity. In

other words, we shall treat the membrane as a pure pressure source with zero mass and

stiffness, aka a resilient disk as described in Section 13.8.

15.4 CONTINUOUS DELAY

Let us now consider the ideal situation whereby we increase the number of rings

while reducing their widths until the delay becomes continuously variable along the

radius of the membrane. Then we can isolate the effect of the delay profile from the

discretization of the rings. If we treat the membrane as a pure pressure source with zero

mass and stiffness, the far-field radiated sound pressure at a distance r and angle q from its

center is obtained by inserting Eqs. (13.70) and (13.121) into Eq. (13.124) to yield

epðr; qÞ ¼ jk cos q
e�jkr

r

Z a

0

epþðwÞJ0ðkw sin qÞwdw; (15.1)

where J0 is the zero-order Bessel function, k ¼ u/c is the wave number, u ¼ 2pf is the

angular frequency, and epþðwÞ is the radial distribution of the electrostatic driving

pressure. The tilde denotes a harmonically varying quantity where the term e jut has been

suppressed.

No Delay. If there is no delay, then the pressure everywhere on the surface of each

side is just half the driving pressure

epþðwÞ ¼ ep0
2
; (15.2)
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where

ep0 ¼ ε0EP

d2
eein (15.3)

and ε0 is the permittivity of air. The far-field pressure response then becomes that of

Eq. (13.125)

epðr; qÞ ¼ jka2ε0
EP

d
$
eein
2d
$
e�jkr

2r
DðqÞ; (15.4)

where the directivity function is given by

DðqÞ ¼ 2J1ðka sin qÞ
ka sin q

cos q: (15.5)

The normalized directivity pattern 20 log10jD(q)j � 20 log10jD(0)j is plotted in

Fig. 15.2.

Noting that D(0) ¼ 1, let the normalized on-axis response be

pnorm ¼ epðr; 0Þ
aep0e�jkr

�ð4rÞ ¼ jkaDð0Þ ¼ jka; (15.6)
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Figure 15.2 Directivity patterns at various frequencies of 280 mm diameter membrane with no delay.
Naturally, the high frequencies are extremely directive.
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which is plotted in Fig. 15.7 (black dashed). The input current eI inzjuCEeein is almost

entirely due to the static capacitanceCE ¼ ε0pa
2/(2d) so that the on-axis pressure simply

becomes Walker’s equation [7]

epðr; 0Þ ¼ EP

d
$
e�jkr

2pr
$
eI in
c
: (15.7)

Virtual point source. The geometry of a traditional “virtual point source” is shown in

Fig. 15.3.

Because of its finite radius a, the membrane can only reproduce the part of the

wavefront emanating from the source, which forms a spherical cap with half angle a and

radius of curvature R, where

R ¼ a cot a: (15.8)

To reproduce this, the delay must account for the time taken for the wave to travel the

distance DR at each point w along the radius according to

DR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ w2

p
� R: (15.9)

Hence, the surface pressure distribution is given by

epþðwÞ ¼ ep0
2
e jkDR ¼ ep0

2
e�jkð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffia2 cot2 aþw2

p �a cot aÞ; (15.10)

which leads to the directivity pattern

DðqÞ ¼ 2 cos q

Z 1

0

e�jkað ffiffiffiffiffiffiffiffiffiffiffiffiffiffifficot2 aþs2
p �cot aÞJ0ðkas sin qÞsds; (15.11)
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r
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θ

∆

∆

Figure 15.3 Geometry of virtual point source, which behaves like two back-to-back spherical caps
with a discontinuity where they join, unlike a smooth oscillating sphere.
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where we have substituted s ¼ w/a. The directivity pattern 20 log10jD(q)j � 20

log10jD(0)j is plotted in Fig. 15.4. The on-axis response is

pnorm ¼ jkaDð0Þ ¼ 2j

ka

��
1þ jka

sin a

�
e
�jka

sin a �
�
1þ jka

tan a

�
e
�jka

tan a

�
; (15.12)

which is plotted in Fig. 15.7 (dark gray).

Virtual oscillating sphere. Naively, we might insert the pressure produced by

an oscillating sphere, given by Eq. (4.129), into Eq. (15.1), while settingeP0 ¼ r0c eU0

��
pa2
�
, to yield

pnorm ¼ �2k2a2

2� k2a2 þ j2ka

 
e�jka � e�j

ffiffi
2

p
kaffiffiffi

2
p

!
; (15.13)

where we have substituted r2 ¼ w2 þ a2 and cos q ¼ a/r. The first term in parentheses

gives the true response of an oscillating sphere that would be obtained if the membrane

were infinitely large. However, the second term, which is a “diffraction” term because of
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Figure 15.4 Directivity patterns at various frequencies of a virtual point source (unshaded) using
a 280 mm diameter membrane, where the half angle a ¼ 40 degrees is close to that of the Quad
ESL63 [6].
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the membrane’s finite size, interferes with the first term to produce an irregular response

as shown in Fig. 15.7 (light gray dashed). Hence, for our virtual oscillating sphere, we

shall adopt the geometry shown in Fig. 15.5, where the axial distance between each

point on the front surface of the virtual sphere and the membrane is a �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � w2

p
.

The amount of delay required at each point along the radius of the membrane is the

time taken for sound to travel this distance axially as a plane wave. Hence,

epþðwÞ ¼ ep0
2
e�jkða� ffiffiffiffiffiffiffiffiffiffi

a2�w2
p Þ; (15.14)

which leads to the directivity pattern

DðqÞ ¼ 2 cos q

Z 1

0

e�jkað1� ffiffiffiffiffiffiffiffi
1�s2

p ÞJ0ðkas sin qÞsds; (15.15)

where we have substituted s ¼ w/a. The directivity pattern 20 log10jD(q)j � 20

log10jD(0)j is plotted in Fig. 15.6.

The on-axis response is

pnorm ¼ kaDð0Þ ¼ 2j

ka

�
1� e�jka � jka

�
; (15.16)

which is plotted in Fig. 15.7 (black) along with the following first-order high-pass filter

approximation (light gray)
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Figure 15.5 Geometry of virtual oscillating sphere.
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pnormz
2jka

2þ jka
. (15.17)

This approximation can be included as part of a crossover filter response, for example.

The cut-off frequency is given by fC ¼ c/(pa). Above fC, we have

pnormz2; f >
c

pa
. (15.18)

Then from Eqs. (15.4), (15.6), and (15.18), the voltage sensitivity is

epðr; 0Þ ¼ ε0a
EP

d
$
eein
2d
$
e�jkr

r
; f >

c

pa
(15.19)

and at lower frequencies we have

epðr; 0Þ ¼ jε0ka
2EP

d
$
eein
2d
$
e�jkr

2r
; f <

c

pa
; (15.20)
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Figure 15.6 Directivity patterns at various frequencies of a virtual oscillating sphere using a 280 mm
diameter membrane. The broad figure-of-eight pattern is almost constant at all frequencies.
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which is the same as Eq. (15.4) (with D(0) ¼ 1) for the voltage sensitivity of a massless

flexible membrane at all frequencies. It is equivalent to Walker’s Eq. (15.7) but given in

terms of input voltage instead of current, sowe shall call it Walker’s voltage equation. The

maximum field strength that we can realistically expect without breakdown is

EP/d ¼ 2000 V/mm. Similarly, the input voltage should not exceed 4000 V peak across

2 mm. If the radius a is 14 cm and the permittivity of free space ε0 is 8.85 pF/m, the

maximum RMS sound pressure from Eq. (15.19) is 105 dB SPL at 1 m re 20 mPa. This

pressure increases by 6 dB for every doubling of the diameter.

The on-axis plot of a virtual oscillating sphere shown in Fig. 15.7 tells us that, in

theory, a continuously increasing delay in the driving pressure along the radius of the

membrane produces a very smooth response, with just some very small ripples, and an

almost constant figure-of-eight directivity pattern at all frequencies, as shown in

Fig. 15.6. Although perfectly constant directivity is not achieved, the result is remarkably

good considering the finite size of the membrane. Next, we will look at the dis-

cretization of the delay into rings of various widths.
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Figure 15.7 On-axis responses 20 log10jpnorm/2j of a 280 mm diameter membrane with a continuous
and unattenuated delay line configured to simulate a virtual oscillating sphere (black), a naïve
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0.75 fC ¼ 588 Hz.
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15.5 EFFECT OF DISCRETIZATION INTO RINGS OF FINITE WIDTH

Rings of Equal Delay.One option might be to vary the widths of the rings so that

there are equal delay sections between them, in which case the on-axis pressure is

pnorm ¼ kaDð0Þ ¼ ka
XN
n¼ 0

e�jka
nþ1=2

Nþ1

�
a2n � a2n�1

a2

�
(15.21)

where the radius of the nth ring is

an ¼ a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

�
1� nþ 1

N þ 1

�2
s

; (15.22)

a0 is the radius of the center disk and a�1 ¼ 0. In Eq. (15.21), the term in parentheses is

proportional to the area of the nth ring while the exponent term represents the delay

applied to that ring. The cross section of a stator with rings of equal delay is shown in

Fig. 15.8.

Rings of Equal Area. Another option might be to vary the widths of the rings so that

they all have the same area and capacitance, in which case the on-axis pressure is

pnorm ¼ kaDð0Þ ¼ ka
XN
n¼ 0

e

�jka

0@1�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

a2
n�1=2

a2

q 1A�
a2n � a2n�1

a2

�
; (15.23)

where the radius of the nth ring is

an ¼ a

ffiffiffiffiffiffiffiffiffiffiffiffiffi
nþ 1

N þ 1

r
. (15.24)

The cross section of a stator with rings of equal delay is shown in Fig. 15.9.

Rings of Equal Width. The last option we shall consider is one in which the rings are

of equal width, in which case the on-axis pressure is again given by Eq. (15.23), but with

the radius of the nth ring given by

an ¼ a
nþ 1

N þ 1
. (15.25)

The cross section of a stator with rings of equal delay is shown in Fig. 15.10, while the

on-axis responses with equal delay, equal area, and equal width are plotted in Fig. 15.11.

The ring widths are listed in Table 15.1. Arguably, the rings of equal delay produce the

smoothest response at higher frequencies because of their finer resolution of the rapid

increase in delay near the rim, as shown in Fig. 15.8.
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However, the outer rings are so thin that stray capacitances will dominate the ring

capacitances, whereas a stator with rings of equal width largely avoids this problem. Also,

the wide center disk (144 mm diameter) will produce high-frequency beaming. If the

rings have equal width, they can all be narrow compared to the wavelength over most of

the audio spectrum.

Figure 15.8 Cross section of a stator divided into concentric rings of equal delay, where purely for
illustration each ring has been shifted to the left by the distance that a wave would have traveled
during the time delay applied to that ring.

Electrostatic loudspeakers 803



15.6 A PRACTICAL DELAY LINE

Delay Path Length. We saw in the last section that discretization of the delay into

rings of finite width produces irregularities in the response at higher frequencies.

However, the delay was an ideal delay like that produced by a DSP, whereas in practice,

the delay is more likely to take the form of an analog delay line on the high-voltage side

Figure 15.9 Cross section of a stator divided into concentric rings of equal area, where purely for
illustration each ring has been shifted to the left by the distance that a wave would have traveled
during the time delay applied to that ring.

804 Acoustics: Sound Fields, Transducers and Vibration



of the transformer, such as that shown in Fig. 15.12. Otherwise, a separate stepping up

transformer would be needed to feed each ring. Unless complicated inductors with

center taps or a very large number of inductors are used, analog delay lines tend to

introduce a degree of attenuation at the higher frequencies. In this case, this turns out to

have a smoothing effect on the response.

Figure 15.10 Cross section of a stator divided into concentric rings of equal width, where purely for
illustration each ring has been shifted to the left by the distance that a wave would have traveled
during the time delay applied to that ring.
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Table 15.1 Dimensions of rings.

Ring
Equal delay
(mm)

Equal area
(mm)

Equal width
(mm)

a0 72 53 20

a1 � a0 26 22 20

a2 � a1 17 17 20

a3 � a2 12 14 20

a4 � a3 7.7 12 20

a5 � a4 4.4 11 20

a6 � a5 1.4 10 20
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Figure 15.12 Constant impedance delay line ignoring stray capacitance.
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From Fig. 15.5, we see that the total delay path length zTat each point along the radial

ordinate w is given by

zT ¼ a�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � w2

p
¼ a

0@1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� w2

a2

r 1A. (15.26)

For discretized rings, the delay section zn required for the nth ring is the

difference between the total delay zTn at that ring and the sum of all the previous

delay sections

zn ¼ zTn �
Xn�1

m¼ 1

zm; (15.27)

where

zTn ¼ a

0@1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

�
an�1 þ an

2a

�2
s 1A. (15.28)

Notice that we have taken the delay path to the mid-point (an�1 þ an)/2 of each ring.

The nth path length zn is related to the time delay Tn of the nth section by

zn ¼ cTn; (15.29)

where c is the speed of sound.

Delay Line ignoring Stray Capacitance. In Fig. 15.12, CRn are the ring capacitances

that are given by

CRn ¼ ε0p
�
a2n � a2n�1

�
2d

(15.30)

CR0 ¼ ε0pa
2
0

�ð2dÞ (15.31)

while Cn are shunt capacitors used to make up the required capacitance for the correct

delay and impedance. The delay line comprises inductors Ln together with the total

capacitances of each section

CTn ¼ CRn þ Cn=2 (15.32)

where RT is the termination resistance on the far right-hand side of Fig. 15.12. The same

resistance RT is also connected across each inductor to create a series of Zobel networks

such that the impedance presented to the preceding section is always 2RT. The voltage

transfer function of each delay section is given by
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eeneen�1
¼ un

sþ un
(15.33)

provided that the inductor values are set to

Ln ¼ 2R2
TCTn; (15.34)

where s ¼ ju and the angular turnover frequency is given by

un ¼ 1

2RTCTn
. (15.35)

The time delay Tn per section is defined by

Tn ¼ zn

c
¼ 1

un
¼ 2RTCTn ¼ Ln

RT
. (15.36)

so that the total capacitance per section is given by

CTn ¼ zn

2cRT
: (15.37)

We can now furnish each section of the delay with its respective component values

Cn ¼ 2ðCTn � CRnÞ (15.38)

where CTn is given by Eq. (15.37) and CRn by Eq. (15.30). From Eq. (15.36) we have

Ln ¼ znRT

c
. (15.39)

We wish to minimize the capacitor values so that most of the signal current flows

through the rings. If we set C1 ¼ 0 so that CT1 ¼ CR1, then

RT ¼ z1

2cCR1
. (15.40)

Each delay section is represented by the transmission matrix"een�1ein�1

#
¼ An$

"eenein
#

(15.41)

where each element of An is given by

a11ðnÞ ¼ een�1een
����ein¼0

¼ 1þ 2
sLnRT

sLn þ RT
sCTn; (15.42)
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a12ðnÞ ¼ een�1ein
����een¼0

¼ 2
sLnRT

sLn þ RT
; (15.43)

a21ðnÞ ¼ ein�1een
�����ein¼0

¼ sCTn; (15.44)

a22ðnÞ ¼ ein�1ein
�����een¼0

¼ 1: (15.45)

However, the first section contains no inductor, only the capacitance of the center

disk

A0 ¼
"

1 0

sCR0 1

#
. (15.46)

Hence, we can describe the whole delay line of Fig. 15.12 by multiplying together

the chain matrices for all the sections24eeineiin
35 ¼ A0$A1/AN$

24 1 0

ð2RT Þ�1
1

35$
24eeN

0

35

¼ A$

24eeN
0

35 ¼
24 a11 a12

a21 a22

35$
24eeN

0

35
(15.47)

where eein and eiin are the input voltage and current, respectively, and eeN is the voltage

across the termination impedance 2RT. We evaluate eeN fromeeN ¼ eein=a11. (15.48)

The then voltage and current at the junction of each section may be calculated by

working back from the termination resistor RT as follows

"eenein
#

¼ Anþ1$Anþ2/AN$

26664
1 0

1
=ð2RT Þ 1

37775$
24eeN

0

35. (15.49)
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Hence the driving pressure produced by each ring is

epn ¼ ε0EP

d2
een (15.50)

ep0 ¼ ε0EP

d2
eein (15.51)

15.7 FAR-FIELD SOUND PRESSURE

The far-field pressure is derived in the same way as that for a resilient disk in free

space in Section 13.8 and is the sum of the pressures radiated from each individual ring

epðr; qÞ ¼ �jaep0e�jkr

4r
DðqÞ (15.52)

where D(q) is the directivity function given by

DðqÞ ¼ 2

a
cot q

 
a0 J1ðka0 sin qÞ þ

XN
n¼ 1

epnep0 ðan J1ðkan sin qÞ � an�1 J1ðkan�1 sin qÞÞ
!
.

(15.53)

The normalized directivity pattern 20 log10jD(q)j � 20 log10jD(0)j is plotted in

Fig. 15.13. The on-axis response is given by

pnorm ¼ kaDð0Þ ¼ ka20
a

þ
XN
n¼ 1

epnk�a2n � a2n�1

�
ep0a ; (15.54)

which is plotted in Fig. 15.14 using the quantities shown in Table 15.2, where the total

delay is 255 ms and the width of each ring is 2 cm.

15.8 NEUTRALIZATION OF STRAY CAPACITANCES

Inevitably, in the real world, we encounter stray capacitances between adjacent

rings. This may be in the form of capacitance between the stator rings themselves

(anything up to 10% of the capacitance of the air gap), in the wiring and most signifi-

cantly within the windings of the inductors, which need many turns of wire to produce

the high inductance values needed. The capacitances between adjacent rings and within

the wiring can be measured directly, but the winding capacitances of the inductors are

best found indirectly by measuring their self-resonance frequencies. The effect of the

stray capacitance is to bypass the inductors at high frequencies and thus reduce the

amount of delay in the delay line. This in turn narrows the directivity pattern and thus

810 Acoustics: Sound Fields, Transducers and Vibration



Figure 15.13 Directivity patterns at various frequencies of a 280 mm diameter membrane discretized
into six equal rings, each having a width of 20 mm, and a center disk with a radius of 20 mm, using the
delay line of Fig. 15.12 with six sections.
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Figure 15.14 On-axis responses of a 280 mm diameter membrane with the delay configured to
simulate an oscillating sphere where the delay is continuous (gray) and discretized into six equal rings
and center disk (black) using the delay line of Fig. 15.12.
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lifts the on-axis response. Although we will describe a method for neutralizing the stray

capacitances, it is best not to neutralize all of them in practice because some lift in the

on-axis response is usually needed to compensate for the high-frequency roll-off due to

the inertia of the membrane.

A scheme for neutralizing the stray capacitances CSn is shown in Fig. 15.15 in the

form of the cross-coupled capacitors CXn. For effective neutralization, we set

CXn ¼ CSn. (15.55)

Although the effect of these neutralizing capacitors is to make the stray capacitances

between adjacent rings vanish, the capacitances between opposite rings are effectively

increased to include CSn. Hence, we modify Eq. (15.34) for the inductors to

Ln ¼ 2R2
T ðCTn þ CSnÞ; (15.56)

Table 15.2 Quantities for idealized electrostatic loudspeaker and delay line.

Parameters
Resistor and
constants Inductors (H) Capacitors (pF)

Turnover
frequencies (kHz)

a ¼ 14 cm RT ¼ 282 kU L1 ¼ 2.66 C1 ¼ 0 f1 ¼ 16.9

d ¼ 1 mm r0 ¼ 1.18 kg/m3 L2 ¼ 4.90 C2 ¼ 5.75 f2 ¼ 9.18

r ¼ 1 m c ¼ 345 m/s L3 ¼ 7.80 C3 ¼ 20.0 f3 ¼ 5.77

ein ¼ 2
ffiffiffi
2

p
kVrms ε0 ¼ 8.85 pF/m L4 ¼ 11.5 C4 ¼ 43.6 f4 ¼ 3.92

EP ¼ 2 kV L5 ¼ 16.9 C5 ¼ 89.4 f5 ¼ 2.66

N ¼ 6 L6 ¼ 28.4 C6 ¼ 211 f6 ¼ 1.59

RP

L1 Ln

L1 Ln

C1 Cn RT

C1 Cn RT

Disk
CR0

Ring 1
CR1

Ring n
CRnEP

LN

LN

CN

CN

Ring N
CRN

RTRTRT

RTRTRT

CSNCSnCS1

CSNCSnCS1

CXN

CXN

CXn

CXn

CX1

CX1

2

~
Ne

2

~
Ne

2

~
ine

2

~
ine

Figure 15.15 Constant impedance delay line with compensation for stray capacitance CSn in the form
of CXn.
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and Eq. (15.35) for the turnover frequency to

un ¼ 1

2RT ðCTn þ CSnÞ ; (15.57)

where the voltage transfer function of each delay section is still given by Eq. (15.33). The

time delay Tn per section is defined by

Tn ¼ zn

c
¼ 1

un
¼ 2RT ðCTn þ CSnÞ ¼ Ln

RT
: (15.58)

so that the total capacitance per section is given by

CTn ¼ zn

2cRT
� CSn. (15.59)

We can now furnish each section of the delay with its respective component values

Cn ¼ 2ðCTn �CRnÞ (15.60)

where CTn is given by Eq. (15.59) and CRn by Eq. (15.30). From Eq. (15.58) we have

Ln ¼ znRT

c
. (15.61)

Each delay section is defined by the transmission matrix"een�1ein�1

#
¼ An$

"eenein
#

(15.62)

where each element of An is given by

a11ðnÞ ¼ RTLnð2CTn þ CSn þ CXnÞs2 þ Lnsþ RT

RTLnðCSn � CXnÞs2 þ Lnsþ RT
; (15.63)

a12ðnÞ ¼ 2RTLns

RTLnðCSn � CXnÞs2 þ Lnsþ RT
; (15.64)

a21ðnÞ ¼
ðCTn þ 2CXnÞs

�
RTLn

�
CSn þ CTnCXn

CTn þ 2CXn

�
s2 þ Lnsþ RT

�
RTLnðCSn � CXnÞs2 þ Lnsþ RT

; (15.65)

a22ðnÞ ¼ RTLnðCSn þ CXnÞs2 þ Lnsþ RT

RTLnðCSn � CXnÞs2 þ Lnsþ RT
; (15.66)
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The remaining calculations proceed as per the previous section from Eq. (15.46)

onwards.

15.9 SUMMARY OF DIRECTIVITY CONTROL

We see that when the delay line of an electrostatic loudspeaker is configured so that

it imitates an oscillating sphere, it is not the delay line but the discretization of the stator

into rings of finite width that produces irregularities in the pressure response of

Fig. 15.11. However, a very smooth response may be obtained using an analog delay line,

as shown in Fig. 15.14. Although this does not produce a constant directivity pattern up

to the very highest frequencies, broad directivity is maintained throughout the vital

midrange and lower treble, as shown in Fig. 15.13. Eq. (15.19) is a useful formula for the

voltage sensitivity when such a delay line is used, although Walker’s voltage equation of

Eq. (15.20) still applies for f < c/(pa).

PART XXXXIV: LUMPED-ELEMENT MODEL OF AN ELECTROSTATIC
LOUDSPEAKER

15.10 ELECTRO-MECHANO-ACOUSTICAL CIRCUIT

In Section 14.10 we developed an analytical (distributed-element) model of a circular

electrostatic loudspeaker. Here we will develop a simpler lumped-element model which

is valid when there is sufficient resistance (usually in the form of a dust screen) to suppress

the membrane modes. Using an analogous circuit, we will then develop useful design

formulas.

The analogous circuit of the electrostatic loudspeaker shown in Fig. 15.1 is given by

Fig. 15.16. Although this is a general circuit, we shall assume for this analysis that the

loudspeaker is circular with radius a and has no enclosure whatsoever.

The symbols have the following meanings:eein is the voltage of the generator (audio amplifier) in volts (V).eiin is the total input current in amperes (A).

Radiation

ine~

CMD MMT RMS
Electrical

ini
~

mi
~

Du

Df

Mechanical

SD:1d
EC P

E2:1
DU

0
~p

si
~

CE

CE 2MAR
2
ARC

2RAR

2ZAR

ZM

~

~

~
−

Figure 15.16 Electro-mechano-acoustical analogous circuit of the electrostatic loudspeaker shown in
Fig. 15.1.
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eis is the static part of the input current in amperes (A).eim is the motional part of the input current in amperes (A).

CE is the static capacitance between the electrodes in Farads (F).

�CE represents the negative capacitance due to electrostatic attraction in Farads (F).

EP is the polarization supply voltage in volts (V).

d is the separation distance between the membrane and each electrode in meters (m).ef D is the mechanical force driving the membrane in Newtons (N).euD is the average velocity of the membrane in m/s.

ZM ¼ ef D.euD is the total mechanical impedance in N$s/m.

CMD is the mechanical compliance of the membrane in m/N due to its tension.

MMT is the total moving mass of the membrane and stator perforations in kg.

RMS is the mechanical resistance due to viscous flow losses through the stator

electrode perforations and dust screen.

SD ¼ pa2 is the surface area of the membrane in m2, where a is the radius in m.eUD ¼ SDeuD is the total volume velocity in m3/s.ep0 is the pressure in N/m2 driving the radiation load 2ZAR on both sides of the

membrane.

MAR is the acoustic radiation mass on one side of the membrane in kg/m4.

CAR is the acoustic radiation compliance on one side of the membrane in m5/N.

RAR is the acoustic radiation resistance on one side of the membrane in N,s/m5.

For simplicity, we assume that the output impedance of the amplifier and resistance of the

cables are negligible, and we also ignore any stray capacitance in the cables. There are two

transformers: the first acts as an interface between the electrical domain and the me-

chanical one converting voltage to force ef D and current eim to velocity euD, while the

second acts as an interface between the mechanical and acoustical domains, converting

force to pressure ep0 and velocity euD to volume velocity eUD.

Notice how the input currenteiin divides into two: one is the static currenteis while the
other is the motional current eim. The static current still flows when the membrane is

blocked (or the polarization voltage EP is turned off), but the motional current is

dependent on the membrane velocity euD. Unfortunately, in most practical electrostatic

loudspeakerseis[eim, so that the electrical input impedance is defined almost entirely by

CE, although it is possible to measure the motional current by “balancing out” the static

current with a capacitor [7]. The stator resistance RMS is technically an acoustic flow

resistance, but it is included on the mechanical side of Fig. 15.16 for convenience.

15.11 NEGATIVE COMPLIANCE AND STABILITY

The negative capacitance�CE represents the electrostatic force of attraction. When

referred to themechanical side, it forms a negative compliance andmust always exceedCMD

invalue to prevent themembrane frombeing attracted towhichever stator is closest.Hence,
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if there were insufficient tension to counteract this, wewould have an unstable equilibrium

in the central position, like that of a marble balanced on top of a dome. Therefore

CMD <
d2

4CEE
2
P

(15.67)

Although the force acting on the membrane is linear under dynamic conditions,

because of the constant-charge principle mentioned at the beginning of the chapter, the

resistance RP in Fig. 15.1 (together with any resistive coating) will not prevent charge

from migrating to the closest stator during very slow or static displacements. Hence, the

electrostatic force of attraction will increase as the membrane approaches the stator,

causing it to stick. Hence, a reasonably thick layer of insulation is needed on the insides of

the stators to limit the minimum distance between the membrane and the conducting

parts of the stators. This is equivalent to driving the stators with series capacitors in which

the insulating material forms the dielectric, but, for simplicity, we shall omit these ca-

pacitors in this analysis.

15.12 STATIC MEMBRANE COMPLIANCE

At very low frequencies, all inertial and resistive elements have very little effect and

can therefore be removed from the analogous circuit of Fig. 15.16 to obtain that shown

in Fig. 15.17.

To obtain the static membrane and negative compliances CMD0 and �CME0

respectively, we solve the static (in vacuo) membrane wave equation for the displacement

h(w) versus the radial ordinate w�
v2

vw2
þ 1

w

v

vw
þ 1

CMESDT

�
hðwÞ ¼ � fD0

SDT
; hðaÞ ¼ 0 (15.68)

where fD0 is the static membrane driving force, which is given by

fD0 ¼ bein; (15.69)

and b is the electromechanical conversion factor, which is given by

b ¼ 2CE
EP

d
; (15.70)

where CE ¼ ε0SD=ð2dÞ.

0Df

0MEC−

0MDC

D avu jωη= ̴̴

̴

Figure 15.17 Simplified analogous circuit for very low frequencies referred to the mechanical side.
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We have referred the negative capacitance�CE to the mechanical side in Eq. (15.68)

so that it becomes a negative mechanical compliance

�CME ¼ �CE

b2
¼ � d2

4CEE
2
P

. (15.71)

We solve Eq. (15.68) to obtain

hðwÞ ¼ 2fD0J0ða0w=aÞ
pTa0

	
a20 � ðCMESDTÞ�1

a2


J1ða0Þ

(15.72)

where a0 is the first zero of the Bessel function J0. From this we see that the displacement

becomes indeterminate when

a20 ¼ ðCMESDTÞ�1a2. (15.73)

Hence for stability,

T >
2ε0a

2

a20d

�
EP

d

�2

. (15.74)

The average displacement is given by

hav ¼ 1

pa2

Z 2p

0

Z a

0

hðwÞwdwd4 ¼ 4fD0

pTa20

	
a20 � ðCMESDTÞ�1

a2



¼ 2J1ða0Þhð0Þ
a0

¼ hð0Þ
2:316

(15.75)

Hence, the displacement at the center is about 2.3 times the average, and the total

combined static compliance is given by

CMT0 ¼ hav

fD0
¼ 4

pTa20

	
a20 � ðCMESDTÞ�1a2


 ¼
�

1

CMD0
� 1

CME0

��1

; (15.76)

so that

CMD0 ¼ 4

pa40T
; (15.77)

CME0 ¼ 4

a20
CME ¼ CE0

b2
; (15.78)

Hence, from Eqs. (15.71) and (15.78), the static negative capacitance is related to the

dynamic negative capacitance by

� CE0 ¼ � 4

a20
CE. (15.79)
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15.13 DYNAMIC MEMBRANE COMPLIANCE AND DYNAMIC
RESISTANCE

By similar argument, we find that the dynamic mechanical compliance is given by

CMD ¼ a20
4
CMD0 ¼ 1

pa20T
(15.80)

and the dynamic resistance is given by

RMS ¼ a20
4
SDRS. (15.81)

However, it is inconvenient to have different circuit element values for static and

dynamic conditions. Hence, we use the following bilinear approximations for hybrid

staticedynamic compliances, which transition from static to dynamic at around half the

resonance frequency f0

C0
MD ¼

1þ 2
f

f0

a20
4
þ 2

f

f0

CMD (15.82)

� C0
E ¼

1þ 2
f

f0

a20
4
þ 2

f

f0

ð�CEÞ. (15.83)

We will derive an expression for the membrane resonance frequency f0 further on.

Note that we only apply this transformation to the negative electrical capacitance

associated with the motional current, not the positive one associated with the static

current. By applying the same bilinear approximation to both the negative and positive

mechanical compliances, we are not changing the condition for stability of

Eq. (15.74).

15.14 SETTING TENSION TO LIMIT DISPLACEMENT AND
MAINTAIN STABILITY

The stress must not exceed the maximum value smax for the membrane material,

which for polyester is 55e75 MPa, yet for stability it must be greater than the minimum

value given by Eq. (15.74). Hence the tension should lie within the range
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2ε0a
2

a20d

�
EP

d

�2

< T < smaxh; (15.84)

where h is the thickness of the membrane. However, the tension is usually set to at least

three times the minimum value for stability to allow for varying environmental condi-

tions and aging. Now that we have established the safe limits for the tension, we wish to

set it so that the displacement at low frequencies stays within the gap width d. By

applying ohms law to the total impedance of the two compliant elements, CMD0

and�CME0, given by Eqs. (15.77) and (15.78) respectively and shown in Fig. 15.17, then

rearranging we obtain

T ¼ 4CEEP

pa20d

�
2eein
a20ehav þ EP

d

�
. (15.85)

The most efficient way to operate the loudspeaker is to arrange for the maximum

peak input voltage to be equal to twice the polarization voltage. Also, let us set the

peak average displacement to one-third of the gap width so that eein=ehav ¼ 6EP=d in

Eq. (15.85). Hence

T ¼ ε0a
2

d

�
EP

d

�2

; (15.86)

which is nearly three times the minimum value in Eq. (15.74). If we use this tension

value in Eqs. (15.71 and (15.80), then

C0
ME ¼ a20

2
C0
MD ¼ 2:89C0

MD. (15.87)

15.15 RADIATION IMPEDANCE

To derive the radiation impedance ZAR, we modify Eq. (13.212) from Section

13.10 for the uniform velocity distribution of a rigid piston to obtain that for one with a

parabolic velocity distribution

FðwÞ ¼ 2

�
1� w2

a2

�
¼ 2

XN
m¼ 0

ðdm0 � dm1Þ
	w
a


2m
; 0 � w � a (15.88)

and replace Eq. (13.215) with b(m þ 1) ¼ 2(�dm0 þ dm1). By analyzing the low

frequency asymptotic behavior, we obtain the radiation impedance elements

MAR ¼ 8r0
5p2a

; (15.89)
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CAR ¼
ffiffiffi
5

p
pa3

6r0c
2
; (15.90)

RAR ¼ r0c

pa2
. (15.91)

From Eq. (13.125), the far-field on-axis pressure with no delay is given by

epðrÞ ¼ jka2ep0e�jkr

4r
(15.92)

Notice that the far-field pressure is the first-order derivative of the driving pressure.

At high frequencies, where the wavelength is small compared to the membrane; this

risng response is caused by the decreasing beam width that concentrates the radiated

energy on axis. At low frequencies, the antiphase rear radiation partially cancels that from

the front. Only the phase shift due to the path difference prevents the cancellation from

being complete. However, as the frequency decreases, the cancellation becomes more

complete as the path difference is equal to an ever-smaller portion of the wavelength.

15.16 FREQUENCY RESPONSE

A simplified on-axis frequency response of the electrostatic loudspeaker using

linear approximations is shown in Fig. 15.18, although the full response from the

analogous circuit of Fig. 15.16 together with Eq. (15.92) is given by

Diaphragm stiffness 
control: 3rd-order

f

On-axis pressure

Diaphragm mass 
control: flatRadiation resistance 

control: 1st-order
Radiation mass 
control: 1st-order

f0 f1 f2

No delay

Constant directivity

Figure 15.18 Frequency response using linear approximations. Solid curve is for no delay and dashed
curve is for constant directivity (virtual oscillating sphere), which is achieved using concentric ring
electrodes fed from tappings along a delay line, as described in Sections 15.4e15.6.
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epðrÞ ¼ jε0ka
22$

EP

d
$
eein
2d
$
e�jkr

2r
; (15.93)

where z is the force factor, which is given by

2 ¼ SDep0ef D ¼ 2S2DZAR

2S2DZAR þ ZMD

. (15.94)

The acoustic radiation impedance is given by

ZAR ¼

 
1

juMAR
þ 1

RAR þ 1

juCAR

!�1

; (15.95)

and the mechanical membrane impedance by

ZMD ¼ juMMT þ RMS þ 1

ju

�
1

C0
MD

� b2

C0
E

�
. (15.96)

To ensure the displacement does not exceed the gap width d, it is useful to calculate

the peak displacement, which from Eq. (15.75) is given by

hpeak ¼ a0

2J1ða0Þ
ffiffiffi
2

p ehav ¼ 2:316
ffiffiffi
2

p ehav; (15.97)

where the average displacement is given by

ehav ¼ euD
ju
�
ZMD þ 2S2DZAR

� . (15.98)

Now let us simplify the circuit of Fig. 15.16 over specific frequency ranges to gain a

better understanding of how the frequency response is determined.

The mechanical impedance is plotted in Fig. 15.19, also using linear approximations,

which can be divided into five regions as follows:

1. Membrane stiffness control, f < f0. In the region f < f0, the membrane massMMD and

stator resistance RMS have negligible effect and the radiation load is almost a pure

mass. Hence, after omitting the electrical part and referring the negative capacitance

and acoustical elements to the mechanical side, the circuit of Fig. 15.16 simplifies to

that of Fig. 15.20. This is a simple second-order high-pass filter, but when combined

with the increasing amount of cancellation between the rear and front radiation with

decreasing frequency, it gives rise to the third-order slope shown in Fig. 15.18.

2. Stator resistance control, f z f0. At the fundamental membrane resonance frequency

f0, the reactance of the combined positive and negative compliances in Fig. 15.20

Electrostatic loudspeakers 821



cancels that of the radiation mass, so that in Fig. 15.16 we are left with just the stator

resistance RMS, as shown in Fig. 15.21.

Ignoring the mass of the membrane, the resonance frequency is given by

f0 ¼ 1

2pSD

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2MAR

�
1

CMD
� 1

CME

�s
(15.99)

with a Q factor of

Q ¼ 2pf0S
2
D2MAR

RMS
¼ SD

RMS

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2MAR

�
1

CMD
� 1

CME

�s
(15.100)

Figure 15.19 Plot of mechanical impedance ZM versus frequency f for the analogous circuit shown in
Fig. 15.16 using linear approximations.

MDC׳
Du

Df 0
~pSD2SD2MAR

MEC׳−˜

˜

Figure 15.20 Simplified analogous circuit for mechanical impedance when f < f0.
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whereMAR, CME, and CMD are given by Eqs. (15.89), (15.71), and (15.80), respectively.

If we set the tension according to Eq. (15.86) so that �CME ¼ �1/(2pT ), then

f0 ¼ 1

8a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5
�
a20 � 2

�
T

par0

s
¼ 1

3:26a

ffiffiffiffiffiffiffi
T

ar0

s
(15.101)

Q ¼ 4a

RMS

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p
�
a20 � 2

�
ar0T

5

s
¼ 6:17a

ffiffiffiffiffiffiffiffiffiffi
ar0T

p
RMS

(15.102)

To prevent excessive membrane excursion at the resonance frequency yet maintain an

optimum bass response, the ideal value of Q is in the range 0.7e1.0. Hence, we choose

the dust screen to have a specific acoustic resistance of

RS ¼ RMS

SD
¼ 1

Q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2MARðCME � CMDÞ

CMECMD

s
¼ 2

Q

ffiffiffiffiffiffiffiffiffi
r0T

a

r
(15.103)

Note that when we turn off the polarizing voltage, both f0 and Q increase by 24%

because CME ¼ 2.89CMD.

3. Radiation mass control, f0 < f < f1. In the region f0 < f < f1, the membrane imped-

ance is small compared to the radiation load, which is still mainly mass, although the

radiation resistance is increasing with frequency. Note that the radiation mass is much

greater than the mechanical mass of the membrane. Hence, the circuit of Fig. 15.16

simplifies to that of Fig. 15.22.

Here the driving pressure ep0 is constant, but the wavelength is still larger than the

half-circumference of the membrane, so that the directivity pattern is a reasonably

constant figure-of-eight; and we still have an increasing amount of cancellation be-

tween the rear and front waves with decreasing frequency. Hence, we have a first-

order slope in Fig. 15.18 and Eq. (15.20) for the on-axis pressure is valid in this

region. Notice that the effect of CAR in Fig. 15.16 is to make the net radiation

Du

Df RMS 0
~pSD

Figure 15.21 Simplified analogous circuit for mechanical impedance when f z f0.
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resistance proportional to f 4 in this region. Combined with the predominantly

massive radiation impedance (due toMAR), this causes the velocity euD to be inversely

proportional to f. Hence the radiated power is proportional to f 2, i.e., 6 dB/octave.

The radiated power could only be leveled by mounting the membrane in an infinite

baffle or an extremely large enclosure, in which case CAR would vanish from

Fig. 15.16.

4. Radiation resistance control, f1 < f < f2. In the region f1 < f < f2, the wavelength is

smaller than the half-circumference, but membrane impedance is still small compared

to the radiation load; and the radiation load has now become resistive so that the

radiated power is constant. However, the on-axis pressure in Fig. 15.18 continues to

rise at a rate of 6 dB/octave because of the narrowing directivity pattern without a

delay, according to Eq. (15.20). However, if a delay line is used to imitate an oscil-

lating sphere, the on-axis pressure is constant as given by Eq. (15.19). The simplified

circuit is shown in Fig. 15.23.

Only in this region, where the membrane velocity is constant and the radiation load

resistive, is the total radiated power constant. The frequency f1 is given by

f1 ¼ c

pa
(15.104)

The radiation resistance effectively damps the diaphragm modes, whereas below f1, we

rely on the viscous flow resistance of a dust screen.

Du

Df 0
~pSD2SD2MAR

Figure 15.22 Simplified analogous circuit for mechanical impedance when f0 < f < f1.

Du

Df 0
~pSD2SD2RAR

Figure 15.23 Simplified analogous circuit for mechanical impedance when f1 < f < f2.
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5. Membrane and stator mass control, f > f2. In the region f > f2, the combined mass

reactance of the membrane and stator perforations is greater than the radiation

resistance so that we have the circuit shown in Fig. 15.24. Here, the radiated power

decreases with increasing frequency. Hence, without a delay, the on-axis pressure

response flattens off. As the directivity pattern continues to shrink, the radiated power

becomes increasingly on-axis concentrated. Otherwise, if a delay line is used to keep

the pattern constant, the on-axis pressure falls at a rate of 6 dB/octave with increasing

frequency.

The frequency f2 is given by

f2 ¼ S2DRAR

�ðpMMT Þ (15.105)

where MMT is the total moving mass of the membrane and stator perforations

MMT ¼ MMD þ 2MMS (15.106)

andRAR is the acoustic radiation resistance given by Eq. (15.91). At high frequencies, the

membrane moves almost uniformly as a piston, unlike at very low frequencies where the

displacement is almost parabolic. Hence, the effective mass of the membrane is

MMD ¼ SDrDh; (15.107)

where rD and h are the density and thickness of the membrane respectively. From

Eq. (4.26), the mass of the air in the stator perforations is

MMS ¼ SDr0

	
t þ 0:85ah

	
1� 1:28

ffiffiffiffiffi
fh

p 

.
fh; (15.108)

where t is the thickness of the stator, ah is the radius of the holes, and fh is the porosity,

that is, ratio of open area to total area. The end correction factor of 0.85 is for the outside

of the stator only. On the inside, the distance d between the stator and membrane is

usually so small that there will be little in the way of extra mass extending beyond the

hole entrance. Notice that the end correction factor depends on the square root of the

Du

Df 0
~pSD2SD2RAR

MMT

Figure 15.24 Simplified analogous circuit for mechanical impedance when f > f2.

Electrostatic loudspeakers 825



porosity. For a triangular array of holes of radius ah and hole pitch bh, the porosity is given

by

fh ¼ 2pa2hffiffiffi
3

p
b2h
. (15.109)

Hence,

f2 ¼ r0c

pðrDhþ 2r0ðt þ 0:85ahð1� 1:2
ffiffiffiffiffi
fh

p ÞÞ=fhÞ
. (15.110)

Notice how this cut-off frequency is independent of the membrane area. This is a fairly

simple stator model and a more comprehensive one can be found in Ref. [9].

15.17 SUMMARY OF ELECTROSTATIC LOUDSPEAKER DESIGN

We can see from Eqs. (15.19) and (15.20) that to maximize the radiated sound

pressure, the field strength EP/d should be as close to its maximum allowable value as

possible, which is around 2 kV/mm. Similarly, we generally set the maximum peak signal

voltage 1

=

2eein to the same value as the polarizing voltage EP because the maximum sound

pressure is proportional to the product of the two, but their sum should not exceed 4 kV/

mm.

If the gap distance d is reduced, we can reduce both EP and eein while keeping the

sound pressure constant. Hence the sensitivity is increased. Although the capacitance is

increased proportionately, the input current does not change because of the reduced

voltage. Hence the reactive power is reduced, while the efficiency is increased. With a

smaller gap, some very low bass is sacrificed, but this is usually in a region where there is

little output anyway because of rear-wave cancellation.

A good place to start the design process is with the highest frequency of interest

because we can use this to define the membrane thickness h independently of its radius a.

From this we can work out the maximum tension T that it can withstand. Maximizing

the tension enables a smaller gap d to be employed without the membrane touching the

electrodes at the maximum input voltage at low frequencies, where the displacement is

highest. We have shown (see Eqs. 15.84 and 15.86) that making the tension large enough

to avoid contact automatically meets the condition for stability under the electrostatic

force of attraction.

Knowing the tension, we can then define the fundamental resonance frequency f0 for

any given radius a or choose a fundamental resonance frequency to find the required

radius. Having found the radius, we can define the gap d, the polarizing voltage EP, the

specific resistance of the dust screen Rs (for the desiredQ factor), and the sound pressure

level.
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1. Referring to Fig. 15.18, choose the highest frequency of interest f2. By rearranging

Eq. (15.110), calculate the membrane thickness h using

h ¼ r0

rD

�
c

pf2
� 2

t þ 0:85ahð1� 1:28
ffiffiffiffiffi
fh

p Þ
fh

�
(15.111)

or we can calculate the cut-off frequency for a given thickness

f2 ¼ r0c

pðrDhþ 2r0ðt þ 0:85ahð1� 1:28
ffiffiffiffiffi
fh

p ÞÞ=fhÞ
. (15.112)

2. Let the tension be 60% of the maximum value, so that

T ¼ 0:6smaxh: (15.113)

3. Using this tension, choose the lowest frequency of interest (or fundamental resonance

frequency) f0, which is given by Eq. (15.101) and repeated here for convenience

f0 ¼ 1

3:26a

ffiffiffiffiffiffiffi
T

ar0

s
(15.114)

From this we obtain the membrane radius a in terms of the fundamental resonance

frequency f0

a ¼ 1

2:2

ffiffiffiffiffiffiffiffiffi
T

f 20 r0

3

s
: (15.115)

When building an electrostatic loudspeaker, it is easier to adjust the tension by measuring

the resonance frequency, like tuning a drum skin, rather than by measuring the tension

directly, as Eq. (15.114) gives a direct relationship between the two.

4. Assuming the maximum peak input signal is equal to the polarizing voltage such that
1 =

2eein ¼ EP , we obtain from Eq. (15.93) the maximum rms sound pressure at f0
assuming Q ¼ 1

so that z z 1

SPL0 ¼ 94þ 20 log10

�
ε0pa

2f0ffiffiffi
2

p
rc

$
E2
P

d2

�
dB at f0. (15.116)

If this is not loud enough, then it is necessary to lower f0 by increasing a. Note that this

equation ignores the attenuation due to the resistance RS of a dust screen.
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5. Choose a suitable Q value of 0.7e1.0. Again, using T ¼ 0.6$smax$h, we obtain the

optimum specific acoustic resistance of the covering cloth from Eq. (15.103) as

follows

RS ¼ 2

Q

ffiffiffiffiffiffiffiffiffi
r0T

a

r
. (15.117)

6. Assuming EP/d ¼ 2000 V/mm and T ¼ 0.6$smax$h, we obtain from Eq. (15.86) the

gap distance between the membrane and each stator

d ¼ ε0a
2

T

�
EP

d

�2

. (15.118)

7. Then we obtain the polarizing voltage using simply

EP ¼
�
EP

d

�
d. (15.119)

8. If a delay line is used, this may be designed using the formulas given in Sections 15.6

and 15.8. Some experimentation will be needed to find the maximum value of the

termination resistance RT that does not result in negative capacitor values yet gua-

rantees optimum efficiency. If the pushepull transformer shown in Fig. 15.1 has a

turns ratio of 1:s þ s, and the nominal input impedance is Znom, then the turns ratio

is given by

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
RT

2Znom

r
. (15.120)

Once the design has been arrived at, the frequency response with normal directivity may

be calculated using Eq. (15.93). Constant directivity may be modeled by including the

factor u1/( ju þ u1), where u1 ¼ 2c/a.

Example 15.1. We now use the equations of Section 15.17, to derive the tension,

resistance, gap width, and polarizing voltage required for the 280 mm diameter mem-

brane for which we derived the on-axis pressure and directivity pattern in the previous

sections while assuming an ideal membrane with no mass or tension. If we use a stator

with a thickness of t ¼ 1 mm perforated with holes of radius ah ¼ 1.5 mm and pitch

bh ¼ 5 mm in a triangular array, the porosity is given by

fh ¼ 2pa2hffiffiffiffiffiffiffi
3b2h

q ¼ 2� 3:14� 1:52ffiffiffiffiffiffiffiffiffiffiffiffiffi
3� 52

p ¼ 0:33:
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Then if we use a membrane with a thickness of h ¼ 12 mm and density of

rD ¼ 1400 kg/m3, the upper cut-off frequency is given by

f2 ¼ r0c

pðrDhþ 2r0

	
t þ 0:85ah

	
1� 1:28

ffiffiffiffiffi
fh

p 

.
fh




¼ 1:18� 344:8

3:14�
0@1400� 12� 10�6 þ 2� 1:18�

10�3 þ 0:85� 1:5� 10�3 �
	
1� 1:28� ffiffiffiffiffiffiffiffiffi

0:33
p 


0:33

!

¼ 4:9 kHz.

Assuming the tensile strength of polyester is smax ¼ 60 MPa and the stress is 60% of

the maximum, we obtain the tension from

T ¼ 0:6smaxh ¼ 0:6� 60� 106 � 12� 10�6 ¼ 432 N.

Then, for a membrane radius of 140 mm, the resonance frequency is

f0 ¼ 1

3:26a

ffiffiffiffiffiffiffi
T

ar0

s
¼ 1

3:26� 0:14

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
432

0:14� 1:18

r
¼ 112 Hz

and the maximum output at f0 is given by

SPL0 ¼ 20log10

�
ε0pa

2f0

20� 10�6 �
ffiffiffi
2

p
rc
$
E2
P

d2

�

¼ 20log10

 
8:85� 10�12 � 3:14� 0:142 � 112

20� 10�6 � 1:414� 1� 344:8

�
2000

10�3

�2
!

¼ 88 dB

We let Q ¼ 1 so that we can obtain the optimum specific acoustic resistance of the

dust screen

RS ¼ 2

Q

ffiffiffiffiffiffiffiffiffi
r0T

a

r
¼ 2

1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:18� 432

0:14

r
¼ 121 rayls:

Referring to Table 4.1 on p. 126, this value may be made up from using a 75 rayls

dust screen on the front and a 47 rayls screen on the back, for example. The gap between

the membrane and each stator is given by

d ¼ ε0a
2

T

�
EP

d

�2

¼ 8:85� 10�12 � 0:142

432

�
2000

10�3

�2

¼ 1:6 mm
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and the polarizing voltage by

EP ¼
�
EP

d

�
d ¼ 2000

10�3
� 1:6� 10�3 ¼ 3200 V.

These values are used in Eq. (15.93) to calculate the on-axis response shown in

Fig. 15.25 for an electrostatic loudspeaker without a delay line. Also shown is the on-axis

response of the same loudspeaker calculated from rigorous equations [10] from Section

14.10 based on an analytical model. This reveals an excellent correlation between the

lumped-element model and the analytical one, except that the latter shows a 2.7 dB dip

at 330 Hz, which is smoothed out by the simpler lumped-element model. Because the

simple model cannot reproduce any harmonics above the fundamental resonance, this

correlation is dependent on the membrane being well damped through the use of a dust

screen. The simple model appears to overestimate the peak displacement by around 10%

at the lowest frequencies, whereas the rigorous model keeps it just within the gap width

of 1.6 mm.

Note that the plot of Walker’s voltage equation shown in Fig. 15.25 uses the

following version of Eq. (15.20) which is modified to include the resistance RS of the

dust screen

epðr; 0Þ ¼ jε0ka
2 2r0c

2r0c þ RS
$
EP

d
$
eein
2d
$
e�jkr

2r
; f0 < f < f2. (15.121)
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Figure 15.25 Comparison of the on-axis response of an electrostatic loudspeaker without a delay line
calculated using the lumped-element Eq. (15.93), based on the quantities given in Example 15.1, with
an analytical calculation using distributed-element equations from Section 14.10. Also shown is a plot
of the Walker’s voltage equation from Eq. (15.121).
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Next, we combine the on-axis response of a real membrane, based on the lumped-

element model, from Eq. (15.93) with Eq. (15.52) for the far-field pressure of an ideal

electrostatic loudspeaker with a delay line to yield that of a real membrane with a delay

line

epðr; qÞ ¼ �jka2ep0 2S2DZAR

2S2DZAR þ ZMD

$
e�jkr

4r
DðqÞ; (15.122)

whereD(q) is given by Eq. (15.53). This is plotted in Fig. 15.26 for q ¼ 0 (on-axis). Also,

the reference sensitivity is given by Eq. (15.19), modified to include the resistance of the

dust screen

epðr; 0Þ ¼ jε0a
2r0c

2r0c þ RS
$
EP

d
$
eein
2d
$
e�jkr

r
; f1 < f < f2. (15.123)
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Figure 15.26 The on-axis response of the electrostatic loudspeaker with a delay line as previously
shown in Fig. 15.14 but modified to include the response of a real membrane as given by Eqs. (15.122)
and (15.53) using the quantities derived in Example 15.1. The fundamental resonance frequency is
f0 ¼ 112 Hz and the “flat” region lies between f1 ¼ 784 Hz and f2 ¼ 4.9 kHz.
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Assuming 1 =

2eein ¼ EP ¼ 3200 V, d ¼ 1.6 mm, a ¼ 160 mm, and RS ¼ 121 rayls,

this gives a pressure of 4.31 Pa rms or 106.7 dB SPL with an input voltage of 2 � 3200 V

rms.

Although the high-frequency response appears to roll-off prematurely, in practice this

can be compensated for by omitting some of the stray neutralizing capacitors.

Problem 15.1. A simple electrostatic loudspeaker with no delay or any kind of

directivity control whatsoever has a diameter of 10 cm (i.e., radius of 5 cm). Assuming a

maximum field strength of 2000 V/mm, calculate the maximum rms sound pressure in

Pa and dB SPL re 20 mPa at 1 m on-axis at 1 kHz. Assume that 1

=

2eein ¼ EP .

Hint: From Eq. (15.20), prmsðr; 0Þ ¼ 2pf ε0a
2ðEP=dÞ2

��
2
ffiffiffi
2

p
rc
�
and use Eq. (1.18)

to calculate the sound pressure level in dB SPL.

Problem 15.2. Suppose that the loudspeaker has a gap width of d ¼ 0.224 mm.

Calculate the polarization voltage EP, minimum tension T needed for stability (from Eq.

15.86), resonance frequency f0, and specific resistance RS needed for unity Q. Assuming

the maximum membrane stress before breaking is 55 MPa, calculate the maximum

allowable tension according to Eq. (15.113).
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APPENDIX I

Frequency response shapes for
loudspeakers [1]

In the following high-pass filter functionsG(s), the order of the function is denoted byN

and the frequency at which the magnitude of the response is 1
� ffiffiffi

2
p

(that is, 3 dB below

the pass band level) is denoted by u3dB.

Synchronous

GðsÞ ¼
�

s

sþ u0

�N

where

u0 ¼ u3dB

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
21=N � 1

p
Bessel
The Bessel polynomials are generated from the following power series in s:

BnðsÞ ¼
Xn
k¼ 0

aks
k

where s ¼ ju and

ak ¼ ð2n� kÞ!
2n�kk!ðn� kÞ!

Also, we define a frequency scaling factor g such that

jBnðjgÞj ¼ a0
ffiffiffi
2

p
¼ 2n!

2n�1=2n!

833 j



Bessel polynomials

First order: B1(s) ¼ s þ 1

Second order: B2(s) ¼ s2 þ 3s þ 3

Third order: B3(s) ¼ s3 þ 6s2 þ 15s þ 15

Fourth order: B4(s) ¼ s4 þ 10s3 þ 45s2 þ 105s þ 105

Fifth order: B5(s) ¼ s5 þ 15s4 þ 105s3 þ 420s2 þ 945s þ 945

Sixth order: B6(s) ¼ s6 þ 21s5 þ 210s4 þ 1260s3 þ 4725s2 10,395s þ 10,395

If the real parts of the roots or poles are a1, a2,.aN and the imaginary parts of the

roots or poles are b1, b2,.bN, then

un ¼ gffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2n þ b2n

q

Qn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2n þ b2n

q
2an

Odd order

GðsÞ ¼ sN�
s2 þ u1

Q1
sþ u2

1

��
s2 þ u2

Q2
sþ u2

2

�
/

 
s2 þ uðN�1Þ=2

QðN�1Þ=2
þ sþ u2

ðN�1Þ=2

!�
sþ uðNþ1Þ=2

�

Even order

GðsÞ ¼ sN�
s2 þ u1

Q1
sþ u2

1

��
s2 þ u2

Q2
sþ u2

2

�
/

 
s2 þ uN=2

QN=2
sþ u2

N=2

!

Butterworth
Odd order

GðsÞ ¼ sN�
s2 þ u3dB

Q1
sþ u2

3dB

��
s2 þ u3dB

Q2
sþ u2

3dB

�
/

 
s2 þ u3dB

QðN�1Þ=2
sþ u2

3dB

!
ðsþ u3dBÞ
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The poles lie on a circle of radius u3dB, each at an angle of qn to the real axis, where

Qn ¼ 1

2 cos qn

and

qn ¼ � n

N
p; n ¼ 1; 2;/ðN � 1Þ=2

Even order

GðsÞ ¼ sN�
s2 þ u3dB

Q1
sþ u2

3dB

��
s2 þ u3dB

Q2
sþ u2

3dB

�
/

 
s2 þ u3dB

QN=2
sþ u2

3dB

!

where

qn ¼ � n� 1

2N
p; n ¼ 1; 2;/N=2

Chebyshev
Chebyshev polynomials

First order: C1(U) ¼ U
Second order: C2(U) ¼ 2U2 � 1

Third order: C3(U) ¼ 4U3 � 3U
Fourth order: C4(U) ¼ 8U4 � 8U2 þ 1

Fifth order: C5(U) ¼ 16U5 � 20U3 þ 5U
Sixth order: C6(U) ¼ 32U6 � 48U4 þ 18U2 � 1

where

U ¼ u

uP

and uP is the pass-band limit, which is defined as the frequency at which the final 0 dB

crossing occurs before roll-off. Let R be the maximum permitted magnitude of the

pass-band ripples in dB. Thus we define a ripple factor by

ε ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
100:1R � 1

p
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Also, we define a frequency scaling factor g by

g ¼ u3dB

up
¼ cosh

�
1

N
arccosh

�
1

ε

��
and then find the roots of the polynomial

1þ ε
2C2

N

so that the imaginary parts of the roots a1, a2,.aN give the real parts of the poles and the

real parts of the roots b1, b2,.bN give the imaginary parts of the poles. Then

un ¼ gffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2n þ b2n

q

Qn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2n þ b2n

q
2an

Odd order

GðsÞ ¼ sN�
s2 þ u1

Q1
sþ u2

1

��
s2 þ u2

Q2
sþ u2

2

�
/

 
s2 þ uðN�1Þ=2

QðN�1Þ=2
sþ u2

ðN�1Þ=2

!�
sþ uðN�1Þ=2

�

Even order

GðsÞ ¼ sN�
s2 þ u1

Q1
sþ u2

1

��
s2 þ u2

Q2
sþ u2

2

�
/

 
s2 þ uN=2

QN=2
sþ u2

N=2

!
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APPENDIX II

Mathematical formulas [1,2]

In the following formulas, m and n are integers, and m and n can have any value.

Binomial theorem

ð1� xÞn ¼
Xn
m¼ 0

ð�1Þm
�n
m

�
xm ¼

Xn
m¼ 0

ð�1Þmn!
m!ðn� mÞ!x

m; any x; n positive integer

(A2.1)

ð1� xÞv ¼
XN
m¼ 0

ð�1ÞmGðv þ 1Þ
m!Gðv � mþ 1Þ x

m; 0 � jxj < 1; vs� 1;�2;�3;. (A2.2)

ð1� xÞ�1 ¼
XN
m¼ 0

ðH1Þmxm; 0 � jxj< 1 (A2.3)

ð1� xÞ�2 ¼
XN
m¼ 0

ðH1Þmðmþ 1Þxm; 0 � jxj< 1 (A2.4)

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p ¼
XN
m¼ 0

ð2mÞ!
ðm!Þ2

�x
2

�2m
; 0 � jxj < 1 (A2.5)

Gamma function

GðnÞ ¼ n!=n ¼ ðn� 1Þ! (A2.6)

Gðnþ 1Þ ¼ nGðnÞ ¼ n! (A2.7)

Gðv þ 1Þ ¼
Z N

0

xve�xdx (A2.8)
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Gð1=2Þ ¼ ffiffiffi
p

p
(A2.9)

Gðnþ 1=2Þ ¼
ffiffiffi
p

p
Gð2nÞ

22n�1GðnÞ ¼
ffiffiffi
p

p ð2nÞ!
22nn!

(A2.10)

Gð�nþ 1=2Þ ¼ ð�1Þnp
Gðnþ 1=2Þ ¼ ð�1Þn ffiffiffi

p
p

22n�1GðnÞ
Gð2nÞ ¼ ð�1Þn ffiffiffi

p
p

22nn!

ð2nÞ! (A2.11)

Gðm� nÞ
Gð�nÞ ¼ ð�1ÞmGðnþ 1Þ

Gðn� mþ 1Þ (A2.11a)

Gð�nÞ
Gð�n� mÞ ¼ ð�1ÞmGðnþ mþ 1Þ

Gðnþ 1Þ (A2.11b)

Pochhammer symbol

ðmÞv ¼ Gðmþ vÞ
GðmÞ (A2.12)

Hyperbolic formulas

ex ¼
XN
k¼ 0

xk

k!
(A2.13)

e�x ¼
XN
k¼ 0

ð�1Þkxk
k!

(A2.14)

ex ¼ cosh xþ sinh x (A2.15)

e�x ¼ cosh x� sinh x (A2.16)

cosh x ¼ ex þ e�x

2
(A2.17)
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sinh x ¼ ex � e�x

2
(A2.18)

cosh jx ¼ cos x (A2.19)

sinh jx ¼ j sin x (A2.20)

sech x ¼ 1

cosh x
(A2.21)

cosech x ¼ 1

sinh x
(A2.22)

tanh x ¼ sinh x

cosh x
(A2.23)

coth x ¼ cosh x

sinh x
(A2.24)

cosh2 x� sinh2 x ¼ 1 (A2.25)

cosh2 xþ sinh2y ¼ coshðxþ yÞ coshðx� yÞ (A2.26)

cosh ðx� jyÞ ¼ cosh x cosh jy� sinh x sinh jy ¼ cosh x cos y� j sinh x sin y (A2.27)

sinh ðx� jyÞ ¼ sinh x cosh jy� cosh x sinh jy ¼ sinh x cos y� j cosh x sin y (A2.28)

cosh2 x ¼ 1þ cosh 2x

2
(A2.29)

sinh2 x ¼ cosh 2x� 1

2
(A2.30)

d

dx
cosh x ¼ sinh x (A2.31)

d

dx
sinh x ¼ cosh x (A2.32)
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Trigonometric formulas
Definitions

e�jx ¼
XN
k¼ 0

ð�jxÞk
k!

(A2.33)

e jx ¼ cos xþ j sin x (A2.34)

e�jx ¼ cos x� j sin x (A2.35)

cos x ¼ e jx þ e�jx

2
(A2.36)

sin x ¼ e jx � e�jx

2
(A2.37)

cos jx ¼ cosh x (A2.38)

sin jx ¼ j sinh x (A2.39)

sec x ¼ 1

cos x
(A2.40)

cosec x ¼ 1

sin x
(A2.41)

tan x ¼ sin x

cos x
¼
XN
k¼ 0

2x�
kþ 1

2

�2

p2 � x2

(A2.42)

cot x ¼ cos x

sin x
¼
XN
k¼ 0

ð2� dokÞx
x2 � k2p2

(A2.43)

csc x ¼ 1

sin x
¼
XN
n¼ 0

ð2� d0nÞð�1Þnx
x2 � n2p2

(A2.43a)
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Formulas

cos2 xþ sin2 x ¼ 1 (A2.44)

cos2 x� sin2 y ¼ cosðxþ yÞ cosðx� yÞ (A2.45)

cosðx� yÞ ¼ cos x cos yHsin x sin y (A2.46)

sinðx� yÞ ¼ sin x cos y� cos x sin y (A2.47)

tanðx� yÞ ¼ tan x� tan y

1Htan x tan y
(A2.48)

cos2x ¼ 1þ cos 2x

2
(A2.49)

sin2x ¼ 1� cos 2x

2
(A2.50)

sin nx ¼ sin x
Xn�1

2

k¼ 1�n
2

cosð2kxÞ (A2.51)

arctan x� arctan y ¼ arctan

�
x� y

1þ xy

�
(A2.52)

arctan xþ arctan y ¼ arctan

�
xþ y

1� xy

�
(A2.53)

Derivatives

d

dx
cos x ¼ �sin x (A2.54)

d

dx
sin x ¼ cos x (A2.55)
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Integrals

Z 2p

0

cosðmfÞ cosðnfÞdf ¼
(

0; msn

ð1þ dn0Þp; m ¼ n
(A2.56)

Z 2p

0

sinðmfÞ sinðnfÞdf ¼
(

0; msn

ð1� dn0Þp; m ¼ n;
(A2.57)

Oblique-angled triangle (Fig. AII.1)

a2 ¼ b2 þ c2 � 2bc cos A (A2.58)

b2 ¼ a2 þ c2 � 2ac cos B (A2.59)

c2 ¼ a2 þ b2 � 2ab cos C (A2.60)

Legendre functions
Definitions

PnðzÞ ¼ ð�1Þn
2nn!

dn

dzn

�
1� z2

�n
Rodrigues’ formula (A2.61)

PnðzÞ ¼ 1

2n

Xjn2j
k¼ 0

ð�1Þkð2n� 2kÞ!
k!ðn� kÞ!ðn� 2kÞ!z

n�2k (A2.62)

Pm
v ðzÞ ¼ ð�1Þm�1� z2

�m=2 dm
dzm

PvðzÞ (A2.63)

A

BC

a

b
c

FIG. AII.1 Oblique-angled triangle.
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Recursion formulas

ðnþ 1ÞPnþ1ðzÞ þ nPn�1ðzÞ ¼ ð2nþ 1ÞzPnðzÞ (A2.64)

nðnþ 1ÞðPnþ1ðzÞ � Pn�1ðzÞÞ ¼ ð2nþ 1Þ�z2 � 1
� d

dz
PnðzÞ (A2.65)

Integrals

Z p

0

Pmðcos qÞPnðcos qÞ sin q dq ¼ 2dmn

2nþ 1
(A2.66)

Z d

0

Pmðcos qÞ sin q dq ¼ d2

2
; d/0 (A2.67)

Z a

0

Pnðcos qÞ cos q sin q dq ¼

8>>>>>>><>>>>>>>:

�
sin2 a

�	
2; n ¼ 0�

1� cos3 a
�	

3; n ¼ 1

�sin2 a
Pnðcos aÞ þ cot a P1

nðcos aÞ
ðn� 1Þðnþ 2Þ ; n � 2

(A2.68)Z a

0

Pnðcos qÞ sin q dq ¼ sin a P�1
n ðcos aÞ (A2.69)

Z a

a

PnðcosqÞPmðcos qÞ sin q dq

¼

8>>>>>>>><>>>>>>>>:

sin aðPmðcos aÞP0
nðcos aÞ � Pnðcos aÞP0

mðcos aÞÞ
mðmþ 1Þ � nðnþ 1Þ ; msn

1þ ðPmðcos aÞÞ2cos aþ 2
Xm�1

j¼ 1

Pjðcos aÞðPjðcos aÞ cos a� Pjþ1ðcos aÞÞ

2mþ 1
; m¼n

(A2.70)
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Bessel functions
Definitions

JvðzÞ ¼
�z
2

�v XN
m¼ 0

ð�1Þm
m!ðmþ vÞ!

�z
2

�2m
; Bessel function (A2.71)

YvðzÞ ¼ cos vp JvðzÞ � J�vðzÞ
sin vp

; Neumann function (A2.72)

YnðzÞ ¼ 2

p
ln
�z
2

�
JnðzÞ � 1

p

Xn�1

k¼ 0

ðm� k� 1Þ!
k!

�z
2

�2k�n

�1

p

XN
k¼ 0

ð�1Þkðjðkþ 1Þ þ jðkþ nþ 1ÞÞ
k!ðkþ nÞ!

�z
2

�2kþn

(A2.73)

Hð1Þ
v ðzÞ ¼ JvðzÞ þ jYvðzÞ; Hankel function (A2.74)

Hð2Þ
v ðzÞ ¼ JvðzÞ � jYvðzÞ; Hankel function (A2.75)

Integral representations

JnðzÞ ¼ 1

2p

Z 2p

0

e jðz sin f�nfÞdf (A2.76)

JnðzÞ ¼ 1

2p

Z 2p

0

cosðz sin f� nfÞdf (A2.77)

JvðzÞ ¼ 2

G

�
v þ 1

2

�
G

�
1

2

��z
2

�v Z p=2

0

ðsin fÞ2v cosðz cos fÞdf (A2.78)
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Relations

J�nðzÞ ¼ ð�1Þn JnðzÞ (A2.79)

Y�nðzÞ ¼ ð�1Þn YnðzÞ (A2.80)

Y�n�1
2
ðzÞ ¼ ð�1Þn Jnþ1

2
ðzÞ (A2.81)

Ynþ1
2
ðzÞ ¼ ð�1Þn�1

J�n�1
2
ðzÞ (A2.82)

Recursion formulas

Zv�1ðazÞ þ Zvþ1ðazÞ ¼ 2v

az
ZvðazÞ (A2.83)

Zv�1ðazÞ � Zvþ1ðazÞ ¼ 2

a
$
d

dz
ZvðazÞ (A2.84)

where Z can represent J, Y, H(1), or H(2).

Limiting forms for small arguments

JvðzÞjz/0 ¼ 1

Gðv þ 1Þ
�z
2

�v
; vs� 1;�2;�3; $$$ (A2.85)

Y0ðzÞjz/0 ¼ 2

p
ln z (A2.86)

YvðzÞjz/0 ¼ GðvÞ
p

�z
2

�v
; vs0 (A2.87)
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Forms for large arguments

JvðzÞ ¼
ffiffiffiffiffiffi
2

pz

r 266664cos
�
z� v

p

2
� p

4

�XN
k¼ 0

ð�1ÞkþvG

�
2k� v þ 1

2

�
G

�
2kþ v þ 1

2

�
pð2kÞ!ð2zÞ2k

�sin
�
z� v

p

2
� p

4

�XN
k¼ 1

ð�1ÞkþvG

�
2k� v � 1

2

�
G

�
2kþ v � 1

2

�
pð2k� 1Þ!ð2zÞ2k�1

377775
(A2.88)

YvðzÞ ¼
ffiffiffiffiffiffi
2

pz

r 266664sin
�
z� v

p

2
� p

4

�XN
k¼ 0

ð�1ÞkþvG

�
2k� v þ 1

2

�
G

�
2kþ v þ 1

2

�
pð2kÞ!ð2zÞ2k

þ cos
�
z� v

p

2
� p

4

�XN
k¼ 1

ð�1ÞkþvG

�
2k� v � 1

2

�
G

�
2kþ v � 1

2

�
pð2k� 1Þ!ð2zÞ2k�1

377775
(A2.89)

Asymptotic forms for very large arguments

JvðzÞjz/N ¼
ffiffiffiffiffiffi
2

pz

r
cos
�
z� v

p

2
� p

4

�
(A2.90)

YvðzÞjz/N ¼
ffiffiffiffiffiffi
2

pz

r
sin
�
z� v

p

2
� p

4

�
(A2.91)
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Hð1Þ
v ðzÞjz/N ¼

ffiffiffiffiffiffi
2

pz

r
e
j

�
z�v p

2
�p

4

�
(A2.92)

Hð2Þ
v ðzÞjz/N ¼

ffiffiffiffiffiffi
2

pz

r
e
�j

�
z�v p

2
�p

4

�
(A2.93)

Integrals

Z a

0

J0ðbxÞdx ¼ a
n
J0ðabÞ þ p

2
ðJ1ðabÞH0ðabÞ � J0ðabÞH1ðabÞÞ

o
(A2.94)

Z a

0

J0ðbxÞxdx ¼ a

b
J1ðabÞ (A2.95)

Z a

0

�
1� x2

a2

�mþ1
2

J0ðbxÞxdx ¼ a2

2
G

�
mþ 3

2

��
2

ab

�mþ3
2

Jmþ3
2
ðabÞ; Sonine’s Integral

(A2.96)

Z N

0

�
x2

a2
� 1

�mþ1
2

J0ðbxÞxdx ¼ a2

2
G

�
mþ 3

2

��
2

ab

�mþ3
2

J�m�3
2
ðabÞ; Pritchard’s Integral

(A2.97)

Z N

0

�
1� x2

a2

�mþ1
2

J0ðbxÞxdx ¼ a2

2
G

�
mþ 3

2

��
2

ab

�mþ3
2

H
ð2Þ
mþ3

2

ðabÞ (A2.98)

Z a

0

�
1� x2

a2

�mþ1
2

JvðbxÞxdx ¼ ffiffiffi
p

p a2

2

�
ab

4

�v G

�
mþ 3

2

�
G

�
v

2
þ 1

2

�
G

�
v

2
þ mþ 5

2

�

�1F2

�
v

2
þ 1;

v

2
þ mþ 5

2
; v þ 1;�a2b2

4

� (A2.99)
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Z a

0

�x
a

�m
JvðbxÞxdx ¼ a2

v þ mþ 2

�
ab

2

�v
1

Gðv þ 1Þ

�1F2

�
v

2
þ m

2
þ 1;

v

2
þ m

2
þ 2; v þ 1;�a2b2

4

� (A2.100)

Z a

0

Jkðakmx=aÞJkðaknx=aÞxdx ¼
(

0; akmsakn

a2J2kþ1ðaknÞ=2 akm ¼ akn

; JkðaknÞs0

(A2.101)

where

aknz

�
k

2
þ n� 1

4

�
p; n/N:

Za
0

Jkðbkmx=aÞJkðbknx=aÞxdx

¼

8>>>><>>>>:
0; bkmsbkn

a2

 
1� k2

b2kn

!
J2k ðbknÞ

2
; bkm ¼ bkn

; J 0kðbknÞ ¼ 0

(A2.101a)

where

bknz

�
k

2
þ nþ 1

4

�
p; n/N:

Z a

0

Jkðakmx=aÞJkðaknx=aÞxdx

¼

8>>>>>><>>>>>>:
a2
akmJkðaknÞJkþ1ðakmÞ � aknJkðakmÞJkþ1ðaknÞ

a2km � a2kn
; akmsakn

a2
J2k ðaknÞ � Jk�1ðaknÞJkþ1ðaknÞ

2
; akm ¼ akn

; JkðaknÞs0

(A2.102)
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2

Z 1

0

J21 ðzxÞ
x
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p dx ¼ 1� J1ð2zÞ
z

(A2.103)

2

Z N

1

J21 ðzxÞ
x
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p dx ¼ H1ð2zÞ
z

(A2.104)

2

Z 1

0

J21 ðzxÞ
x

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p
dx ¼ 1�1F2

�
1

2
;
3

2
; 2;�z2

�
(A2.105)

2

Z N

1

J21 ðzxÞ
x

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p
dx ¼ 4

p



1

z
þ z

3 2F3

�
1; 1;

3

2
; 2;

5

2
;�z2

��
(A2.106)

Z N

0

JmðaxÞJnðbxÞ xgffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � x2

p dx ¼ �j
ffiffiffi
p

p ð�jkÞgð�1Þðpþ1Þ=2

2n!

�
b

a

�nXN
r¼ 0

��jka

2

�r�g

�
G

�
r þ 1

2

�
2F1

�
p� r

2
;
q� r

2
; nþ 1;

b2

a2

�
G
�r
2
þ 1
�
G

�
r � p

2
þ 1

�
G

�
r � q

2
þ 1

�;
(A2.106a)

for � 1 � g � 3, where p ¼ m þ n þ g is a positive odd integer and q ¼ n � m þ g.Z N

0

JmðaxÞJnðbxÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � x2

p
xgdx ¼ j

ffiffiffi
p

p ð�jkÞgð�1Þðpþ1Þ=2

a2n!

�
b

a

�nXN
r ¼ 0

��jka

2

�r�g

�
G

�
r � 1

2
þ dr;1

�
2F1

�
p� r

2
þ 1;

q� r

2
þ 1; nþ 1;

b2

a2

�
G
�r
2
þ 1
�
G

�
r � p

2

�
G

�
r � q

2

�
(A2.106b)

for � 1 � g � 1, where p ¼ m þ n þ g is a positive odd integer and q ¼ n � m þ g.
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Expansions

J0

�
z
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ t2

p �
¼ 2

XN
n¼ 0

ð�1Þn
1þ dn0

J2nðzÞJ2nðztÞ; Gegenbauer summation theorem

(A2.107)

J0

�
z
ffiffiffiffiffiffiffiffiffiffiffiffi
1� t2

p �
2
XN
n¼ 0

JnðzÞ
n!

�z
2

�n
t2n; Lommel addition theorem (A2.108)

JvðazÞJmðbzÞ ¼

�
1

2
az

�v�
1

2
bz

�m

Gðmþ 1Þ
XN
n¼ 0

ð�1Þn
�
1

2
az

�2n

n!Gðnþ v þ 1Þ 2F1

�
� n;�n� v;mþ 1;

b2

a2

�
(A2.109)

e�jx cos q ¼ J0ðxÞ þ
XN
k¼ 1

j�k cosðkqÞJkðxÞ (A2.110)

Wronskian

JvðzÞYvþ1ðzÞ � Jvþ1ðzÞYvðzÞ ¼ � 2

pz
(A2.111)

Hyperbolic bessel functions
Definitions

IvðzÞ ¼ j�vJvðjzÞ; Hyperbolic Bessel function (A2.112)

IvðzÞ ¼
�z
2

�v XN
m¼ 0

1

m!ðmþ vÞ!
�z
2

�2m
(A2.113)

KvðzÞ ¼ p

2
jvþ1Hð1Þ

v ð jzÞ; Hyperbolic Neumann function (A2.114)
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KvðzÞ ¼ p

2
ð�jÞvþ1

Hð2Þ
v ð�jzÞ (A2.115)

KnðzÞ ¼ ð�1Þnþ1ln
�z
2

�
InðzÞ þ 1

2

Xn�1

k¼ 0

ð�1Þkðn� k� 1Þ!
k!

�z
2

�2k�n

þð�1Þn
2

XN
k¼ 0

jðkþ 1Þ þ jðkþ nþ 1Þ
k!ðkþ nÞ!

�z
2

�2kþn

(A2.116)

Recursion formulas

Iv�1ðzÞ � Ivþ1ðzÞ ¼ 2v

z
IvðzÞ (A2.117)

Iv�1ðzÞ þ Ivþ1ðzÞ ¼ 2
d

dz
IvðzÞ (A2.118)

Kv�1ðzÞ � Kvþ1ðzÞ ¼ �2v

z
KvðzÞ (A2.119)

Kv�1ðzÞ þ Kvþ1ðzÞ ¼ �2
d

dz
KvðzÞ (A2.120)

Limiting forms for small arguments

IvðzÞjz/0 ¼ 1

Gðv þ 1Þ
�z
2

�v
; vs� 1;�2;�3; $$$ (A2.121)

K0ðzÞjz/0 ¼ �ln z (A2.122)

KvðzÞjz/0 ¼ GðvÞ
2

�
2

z

�v

(A2.123)
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Wronskian

IvðzÞKvþ1ðzÞ þ Ivþ1ðzÞKvðzÞ ¼ 1

z
(A2.124)

Struve function
Definitions

HvðzÞ ¼
�z
2

�vþ1 XN
m¼ 0

ð�1Þm

G

�
mþ 3

2

�
G

�
mþ v þ 3

2

��z
2

�2m
; Struve function (A2.125)

Integral representation

HvðzÞ ¼ 2

G

�
v þ 1

2

�
G

�
1

2

��z
2

�v Z p
2

0

ðsin fÞ2v sinðz cos fÞdf (A2.126)

Recursion formulas

Hv�1ðzÞ þHvþ1ðzÞ ¼ 2v

z
HvðzÞ þ

�
1

2
z

�v

ffiffiffi
p

p
G

�
v þ 3

2

� (A2.127)

Hv�1ðzÞ �Hvþ1ðzÞ ¼ 2
d

dz
HvðzÞ �

�
1

2
z

�v

ffiffiffi
p

p
G

�
v þ 3

2

� (A2.128)
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Integrals

Z a

0

H0ðbxÞdx ¼ a2
b

p 2F3

�
1; 1;

3

2
;
3

2
; 2;�a2b2

4

�
(A2.129)

Spherical bessel functions
Definitions

jnðzÞ ¼
ffiffiffi
p

p
2z

Jnþ1
2
ðzÞ; Spherical Bessel function (A2.130)

ynðzÞ ¼
ffiffiffi
p

p
2z

Ynþ1
2
ðzÞ; Spherical Neumann function (A2.131)

hð1Þn ðzÞ ¼ jnðzÞ þ jynðzÞ; Spherical Hankel function (A2.132)

hð2Þn ðzÞ ¼ jnðzÞ � jynðzÞ; Spherical Hankel function (A2.133)

jnðzÞ ¼ ð�1Þnzn
�
1

z

d

dz

�n
sin z

z
; Rayleigh’s formula (A2.134)

ynðzÞ ¼ �ð�1Þnzn
�
1

z

d

dz

�n
cos z

z
; Rayleigh’s formula (A2.135)

j0ðzÞ ¼ sin z

z
(A2.136)

j1ðzÞ ¼ �z
1

z

d

dz

sin z

z
¼ sin z

z2
� cos z

z
(A2.137)

j2ðzÞ ¼ z2
1

z

d

dz

�
1

z

d

dz

sin z

z

�
¼
�
3

z3
� 1

z

�
sin z� 2

z2
cos z (A2.138)

y0ðzÞ ¼ � cos z

z
(A2.139)
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y1ðzÞ ¼ z
1

z

d

dz

cos z

z
¼ � cos z

z2
� sin z

z
(A2.140)

y2ðzÞ ¼ �z2
1

z

d

dz

�
1

z

d

dz

cos z

z

�
¼
�
� 3

z3
þ 1

z

�
cos z� 3

z2
sin z (A2.141)

Recursion formulas

fn�1ðzÞ þ fnþ1ðzÞ ¼ 2nþ 1

z
fnðzÞ (A2.142)

nfn�1ðzÞ � ðnþ 1Þfnþ1ðzÞ ¼ ð2nþ 1Þ d

dz
fnðzÞ (A2.143)

where f can represent j, y, h(1), or h(2).

Limiting forms for small arguments

jvðzÞjz/0 ¼
ffiffiffi
p

p

2G

�
v þ 3

2

��z
2

�v
; vs� 1;�2;�3; $$$ (A2.144)

yvðzÞjz/0 ¼ �
G

�
v þ 1

2

�
2
ffiffiffi
p

p
�
2

z

�vþ1

(A2.145)

Asymptotic forms for large arguments

jvðzÞjz/N ¼
sin
�
z� v

p

2

�
z

(A2.146)

yvðzÞjz/N ¼
cos
�
z� v

p

2

�
z

(A2.147)
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hð1Þv ðzÞjz/N ¼ �j
e
j

�
z�v p

2

�
z

(A2.148)

hð2Þv ðzÞjz/N ¼ j
e
�j

�
z�v p

2

�
z

(A2.149)

Hypergeometric function

pFqða1; a2; $$$ap; b1; b2; $$$bq; zÞ ¼ Gðb1ÞGðb2Þ$$$ðbqÞ
Gða1ÞGða2Þ$$$ðapÞ

�
XN
n¼ 0

Gðnþ a1ÞGðnþ a2Þ$$$ðnþ apÞ
Gðnþ b1ÞGðnþ b2Þ$$$ðnþ bqÞ

zn

n!

(A2.150)

Dirac delta function

dðz� aÞ ¼
(

0; zsa

Indeterminate; z¼a
(A2.151)

dðzÞ ¼ e�z2=a2

a
ffiffiffi
p

p
�����
a/0

(A2.152)

Z N

�N
dðzÞdz ¼ 1 (A2.153)

Z N

�N
FðzÞdðz� aÞdz ¼ FðaÞ (A2.154)
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Miscellaneous functions

dmn

(
0; msn

1; m ¼ n
; Kronecker delta function (A2.155)

ðmÞv ¼ Gðmþ vÞ
GðmÞ ; Pochhammer symbol (A2.156)
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APPENDIX III

Answers to problems

Problem 2.1.

From Eq. (2.112), we see that the eigenfrequencies of the pan flute are in multiples of

2n þ 1. In other words, they are in odd multiples, and the even ones are missing. The

fundamental resonance frequency is given by f ¼ c/(4l ) ¼ 345/(4 � 0.294) ¼ 293 Hz.

From Eq. (2.94), we see that the eigenfrequencies of the pan flute are in multiples of

n. In other words, they are in odd and even multiples. The fundamental resonance fre-

quency is given by f ¼ c/(2l) ¼ 345/(2 � 0.294) ¼ 587 Hz.

Problem 2.2.

In the steady state, the homogenous wave equation in cylindrical coordinates from Eq.

(2.23) becomes �
v2

vw2
þ 1

w
$
v

vw
þ k2

�epðwÞ ¼ 0:

Although a solution is given by Eqs. (2.125) and (2.126), we omit the Y0 function

because of continuity at the center so that the solution becomesepðwÞ ¼ ep�J0ðkwÞ;
where the J0 function is analogous to the cosine function in the case of a closed tube and

satisfies the boundary condition at the center

v

vw
epðwÞjw¼0 ¼ 0:

At the cylinder wall, where w ¼ a, we have

1

�jkr0c
$
v

vw
epðwÞjw¼a ¼ �eu0;

which leads to

ep� ¼ jr0ceu0
J1ðkaÞ .

Hence,

epðwÞ ¼ jr0ceu0 J0ðkwÞ
J1ðkaÞ : (A3.1)
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Next, we shall rewrite the inhomogeneous Eqs. (2.80) and (2.81) in cylindrical co-

ordinates using the Laplace operator of Eq. (2.23)�
v2

vw2
þ 1

w
$
v

vw
þ k2

�epðwÞ ¼ �dðw � aÞ v

vw
epðwÞjx¼a

¼ jkr0cdðw � aÞeu0;
(A3.2)

which includes the sound source at w ¼ a on the right-hand side, where d is the Dirac

delta function. Let the solution be in the form of an eigenfunction expansion

epðwÞ ¼
XN
n¼ 0

eAnJ0ðbnw=aÞ; (A3.3)

where bn is the solution to

J1ðbnÞ ¼ 0:

When the wall is stationary, this satisfies the boundary conditions

v

vw
epðwÞjw¼0 ¼ 0;

v

vw
epðwÞjw¼a ¼ 0:

Inserting Eq. (A3.3) into Eq. (A3.2) and multiplying both sides by J0ðbmw=aÞ while
integrating over the radius of the cylinder givesXN

n¼ 0

eAn

�
k2 � b2n

a2

�Z a

0

J0ðbmw=aÞJ0ðbnw=aÞwdw

¼ jkr0ceu0 Z a

0

J0ðbmw=aÞdðw � aÞwdw:

The two integrals have the following identities:Z a

0

J0ðbmw=aÞJ0ðbnw=aÞwdw ¼
(
0; ms n

a2J20 ðbnÞ=2; m ¼ nZ a

0

J0ðbmw=aÞdðw � aÞwdw ¼ aJ0ðbmÞ:

The first is the property of orthogonality from Eq. (A2.101a) of Appendix II, and the

second is a property of the Dirac delta function from Eq. (A2.154) of Appendix II.

Hence, J0ðbmw=aÞ in this case is the orthogonal (or normalizing) function and we can

eliminate the summation to yield

eAn ¼ 2jkar0ceu0�
k2a2 � b2n

�
J0ðbnÞ
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so that the solution of Eq. (2), given by Eq. (3), becomes

epðwÞ ¼ 2jkar0ceu0XN
n¼ 0

J0ðbnw=aÞ�
k2a2 � b2n

�
J0ðbnÞ

: (A3.4)

By comparing the pressures given by Eqs. (A3.1) and (A3.4) at w ¼ a, we obtain

J0ðkaÞ
J1ðkaÞ ¼

XN
n¼ 0

2ka

k2a2 � b2n
:

Hence,

QðxÞ ¼ 2J1ðxÞ
xJ0ðxÞ ¼

 XN
n¼ 0

x2

x2 � b2n

!�1

:

For large n, we can substitute bnzðn þ 1=4Þp; n/N:
Problem 7.1.

From Eq. (6.10), we obtainQTS ¼ 0.46 � 7.58/(0.46 þ 7.58) ¼ 0.43. This is within

7% of the QTS value in Table 7.4 required for a 0.01 dB Chebyshev alignment.

Multiplying the VAB/VAS figure from the table by VAS of the drive unit gives the box

volume VAB ¼ 1.5511 � 19.5 ¼ 30.3 L. Also, from the table, we see that the required

port resonance frequency is fB ¼ fB/fS � fS ¼ 0.8838 � 50 ¼ 44.2 Hz. From the

“Summary of bass-reflex design” on p. 334, we obtain the maximum peak pressure

pmax ¼ 2
ffiffiffi
2

p
� 10

�
SPLmax

20
�5
�
¼ 2:83 Pa

and the maximum volume displacement require to produce that pressure

Vmax ¼ rpmax

2pf 2Br0
¼ 1� 2:83

2� 3:14� 44:22 � 1:18
¼ 195 cm3.

We let the port volume be VP ¼ 10Vmax ¼ 1.95 L. The approximate tube length t is

given by Eq. (7.97)

tz
c

uB

ffiffiffiffiffiffiffiffiffi
VP

VAB

r
¼ 345

2� 3:14� 44:2

ffiffiffiffiffiffiffiffiffi
1:95

30:3

r
¼ 31:5 cm

where the cross-sectional area of the tube from Eq. (7.96) is SP ¼ VP/t ¼ 1.96 � 10�3/

0.315 ¼ 62.2 cm2 and the diameter is dP ¼ 2
ffiffiffiffiffiffiffiffiffiffiffi
SP=p

p ¼ 8.9 cm. If we use a 9 cm

diameter tube with a cross-sectional area SP ¼ ¼p � 92 ¼ 63.6 cm2, the exact length is

given by Eq. (7.98)

t ¼ SPc
2

VABu
2
B

� 0:84
ffiffiffiffiffi
SP

p ¼ 63:6� 10�4 � 3452

30:3� 10�3 � ð2� 3:14� 44:2Þ2 � 0:84
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
63:6� 10�4

p

¼ 25:7 cm:
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Also, from Table 7.4, we see that the cutoff frequency is f3dB ¼ f3dB/fS � fS ¼
0.8143 � 50 ¼ 40.7 Hz.

Problem 10.1.

The total volume is simply V ¼ 12.5 � 10 � 8 ¼ 1000 m3 and, from the table, the

total absorptive area is Stot ¼ 100 þ 125 þ 32 ¼ 257 m2. The average Sabine absorption

coefficient atot is given by Eq. (10.52)

atot ¼
P

as;iSi

Stot
¼ 0:7� 100þ 0:6� 125þ 0:5� 32

257
¼ 161

257
¼ 0:626:

The reverberation time T is given by Eq. (10.50)

T ¼ 0:161V

Stotatot
¼ 0:161VP

as;iSi
¼ 0:161� 1000

257� 0:626
¼ 1s;

which according to Fig. 10.13 is fairly optimum for the size of auditorium. The sound

strength G is given by Eq. (10.65)

G ¼ 10 log10

�
100

r2
þ 1600pð1� atotÞ

Stotatot

�

¼ 10 log10

�
100

102
þ 1600� 3:14� ð1� 0:626Þ

257� 0:626

�
¼ 11 dB.

The distance rrev from a source to equal direct and reverberant fields is given by

Eq. (10.68)

rev ¼ 1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
QStotatot

pð1� atotÞ

s
¼ 1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 257� 0:626

3:14� ð1� 0:626Þ

s
¼ 2:93 m.

The average Eyring absorption coefficient aey is given by Eq. (10.70)

aey ¼ 1� e�0:161V=ðStotTÞ ¼ 1� 2:72�0:161�1000=ð257�1Þ ¼ 0:466:

The required acoustic power is given by Eq. (10.71) using the maximum peak SPL of

a large orchestra from column three of Table 10.2

W ¼ 4� 10ðSPL=10Þ�10

r0c

 
Q

4pr2ref
þ 4ð1� aeyÞ

Stotaey

!�1

¼ 4� 10ð102:5=10Þ�10

1:18� 345

�
1

4p� 102
þ 4� ð1� 0:466Þ

257� 0:466

��1

¼ 0:938 W.

860 Appendix III



If the loudspeakers have an efficiency of 0.5%, the required amplifier power is

0.938 � 100/0.5 ¼ 188 W.

Problem 12.1.

The specific radiation impedance is given by

Zs ¼ epðaÞeu0 ¼ jr0c
H

ð2Þ
0 ðkaÞ

H
ð2Þ
1 ðkaÞ

;

which is separated into real and imaginary parts as follows:

Zs ¼ jr0c
H

ð2Þ
0 ðkaÞHð1Þ

1 ðkaÞ
H

ð2Þ
1 ðkaÞHð1Þ

1 ðkaÞ

¼ r0c
Y0ðkaÞJ1ðkaÞ � J0ðkaÞY1ðkaÞ þ jð J0ðkaÞJ1ðkaÞ þ Y0ðkaÞY1ðkaÞÞ

J21 ðkaÞ þ Y 2
1 ðkaÞ

:

Applying the Wronskian yields,

Zs ¼ r0c

 
2

pka
�
J21 ðkaÞ þ Y 2

1 ðkaÞ
�þ j

J0ðkaÞJ1ðkaÞ þ Y0ðkaÞY1ðkaÞ
J21 ðkaÞ þ Y 2

1 ðkaÞ

!
.

Problem 12.2.

The spherical cap is set in a rigid sphere of radius R and moves with a radial velocityeu0 such that the velocity distribution is described by

euðR; qÞ ¼
(eu0; 0 � q � a

0; a < q � p
; (A3.1)

where a is the half angle of the arc formed by the cap. The total volume velocity is

given by

eU0 ¼ eu0R2

Z 2p

0

Z a

0

sin q dq d4 ¼ Seu0; (A3.2)

where S is the effective surface area of the cap given by

S ¼ 2pR2ð1� cos aÞ ¼ 4pR2 sin2ða=2Þ: (A3.3)

Near-field Pressure. Again, assuming that the pressure field generated is a general

axisymmetric solution to Eq. (2.180), the Helmholtz wave equation in spherical co-

ordinates is

epðr; qÞ ¼ r0ceu0XN
n¼ 0

Anh
ð2Þ
n ðkrÞPnðcos qÞ: (A3.4)
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Applying the velocity boundary condition gives

euðR; qÞ ¼ 1

�jkr0c

v

vr
pðr; qÞjr¼R

¼ eu0
�jk

XN
n¼ 0

Anh
0ð2Þ
n ðkRÞPnðcos qÞ ¼

8<:
eu0; 0 � q � a

0; a < q � p;

(A3.5)

where the derivative of the spherical Hankel function h0ð2Þn ðkRÞ is given by Eq. (12.32).

We now multiply both sides of Eq. (A3.5) with the orthogonal function Pm (cos q) and

integrate over the surface of the sphere, where the area of each surface element is given

by dS ¼ 2pR2 sin q dq, so that

1

�jk

XN
n¼ 0

Anh
0ð2Þ
n ðkRÞ

Z p

0

Pnðcos qÞPmðcos qÞ sin qdq ¼
Z a

0

Pmðcos qÞ sin qdq;

(A3.6)

from which we obtain the coefficients as follows:

An ¼ �jkð2nþ 1Þ sin aP�1
n ðcos aÞ

2h0ð2Þn ðkRÞ ; (A3.7)

where we have used the integral identities from Eqs. (A2.66) and (A2.69) in Appendix

II. Finally, by inserting Eq. (A3.7) in Eq. (A3.4), we can write the near-field pressure as

epðr; qÞ ¼ �jkr0ceu0XN
n¼ 0

�
nþ 1 =

2
�
sin aP�1

n ðcos aÞPnðcos qÞ h
ð2Þ
n ðkrÞ

h0ð2Þn ðkRÞ: (A3.8)

Far-field Pressure. In the far field, we can use the asymptotic expression for the

spherical Hankel function from Eq. (12.18), which when inserted into Eq. (A3.8) gives

epðr; qÞjr/N ¼ epðr; qÞ ¼ �jkr0cSeu0e�jkr

4pr
DðqÞ; (A3.9)

where S is the dome effective area given by Eq. (A3.3) and

DðqÞ ¼ sin a

2k2R2 sin2ða=2Þ
XN
n¼ 0

jnþ1ð2nþ 1Þ2P�1
n ðcos aÞPnðcos qÞ

nh
ð2Þ
n�1ðkRÞ � ðn� 1Þhð2Þnþ1ðkRÞ

: (A3.10)

The far field on axis response is given by

Dð0Þ ¼ sin a

2k2R2 sin2ða=2Þ
XN
n¼ 0

jnþ1ð2nþ 1Þ2P�1
n ðcos aÞ

nh
ð2Þ
n�1ðkRÞ � ðn� 1Þhð2Þnþ1ðkRÞ

: (A3.11)
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Radiation Impedance. The total radiation force eF is given by

eF ¼ R2

Z 2p

0

Z a

0

epðR; qÞ sin q dq d4

¼ �4pR2jr0ceu0XN
n¼ 0

�
nþ 1 =

2

�2�
sin aP�1

n ðcos aÞ�2hð2Þn ðkRÞ

nh
ð2Þ
n�1ðkRÞ � ðn� 1Þhð2Þnþ1ðkRÞ

(A3.12)

using the identity of Eq. (A2.69). The specific impedance Zs is then given by

Zs ¼ eFeU0

¼ �jr0c
sin2 a

sin2ða=2Þ
XN
n¼ 0

�
nþ 1 =

2

�2�
P�1
n ðcos aÞ�2hð2Þn ðkRÞ

nh
ð2Þ
n�1ðkRÞ � ðn� 1Þhð2Þnþ1ðkRÞ

; (A3.13)

where we have used the expression for eU0 from Eq. (A3.2).

Problem 13.1.

The far-field pressure is given by Eq. (13.6)

epðx; y; zÞ ¼ 2jkr0ceu0 Z ly=2

�ly=2

Z lx=2

�lx=2
gðx; y; xjx0; y0; z0Þjz0¼0dx0dy0;

where the Green’s function is given by Eqs. (13.33) and (13.34)

gðx; y; xjx0; y0; z0Þ ¼ e�jkðxðx�x0Þþyðy�y0Þþzðz�z0ÞÞ=R

4pR
;

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
:

By combining the above equations, we get

epðx; y; zÞ ¼ 2jkr0ceu0e�jkR

4pR

Z lx=2

�lx=2
ejkxx0=Rdx0

Z ly=2

�ly=2
ejkyy0=Rdy0

¼ jklxlyr0ceu0e�jkR

2pR
$
sinðklxx=2RÞ
klxx=2R

$
sinðklyy=2RÞ
klyy=2R

:

We note that sin qx ¼ x/R and sin qy ¼ y/R which yields

epðx; y; zÞ ¼ jklxlyr0ceu0e�jkR

2pR
Dðqx; qyÞ;
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where

Dðqx; qyÞ ¼
sin

�
1

2
klx sin qx

�
1

2
klx sin qx

$

sin

�
1

2
kly sin qy

�
1

2
kly sin qy

:

Problem 13.2.

The near-field pressure is given by Eq. (13.6)

epðx; y; zÞ ¼ 2jkr0ceu0 Z ly=2

�ly=2

Z lx=2

�lx=2
gðx; y; xjx0; y0; z0Þjz0¼0 dx0dy0;

where the Green’s function is given by Eqs. (13.33) and (13.34)

gðx; y; xjx0; y0; z0Þ ¼ �j

8p2

Z N

�N

Z N

�N

e�jðkxðx�x0Þþkyðy�y0Þþkzjz�z0jÞ

kz
dkxdky

kz ¼

8>><>>:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � k2x � k2y

q
; k2x þ k2y � k2

�j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y � k2

q
; k2x þ k2y > k2:

By combining the above equations, we get

epðx; y; zÞ ¼ kr0c

4p2
eu0 Z N

�N

Z N

�N

e�jðkxxþkyyþkzjzjÞ

kz

Z lx=2

�lx=2
e jkxx0dx0

Z ly=2

�ly=2
e jkyy0dy0dkxdky.

The total radiation force is then given by

ef ¼
Z ly=2

�ly=2

Z lx=2

�lx=2
epðx; y; zÞjz¼0 dxdy:

The imaginary parts of the complex exponents cancel over the negative and positive

values of kx and ky so that this simplifies to

ef ¼ kr0c

4p2
eu0 Z N

�N

Z N

�N

Z lx=2

�lx=2
cosðkxxÞdx

Z ly=2

�ly=2
cosðkyyÞdy

�
Z lx=2

�lx=2
cosðkxx0Þdx0

Z ly=2

�ly=2
cosðkyy0Þdy0 1

kz
dkxdky:
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The specific radiation impedance is the ratio of the total radiation force to the total

volume velocity. Hence, after integrating over the surface of the piston, we have

Zs ¼
efeU0

¼
ef

lxlyeu0 ¼ klxlyr0c

4p2

Z N

�N

Z N

�N
sinc2ðkxlx=2Þ sinc2ðkyly=2Þ 1

kz
dkxdky;

where sinc(z) ¼ sin(z)/z. By using polar coordinates, where kx ¼ kt cosf, ky ¼ kt sinf,

and dkxdky ¼ k2tdtdf, we reduce the double infinite integral to a single infinite one over t

and a single finite one over f. Also, the infinite integral is split to produce the real

resistance Rs and the imaginary reactance Xs so that

Zs ¼ Rs � jXs;

where

Rs ¼ klxlyr0c

4p2

Z p=2

0

Z 1

0

sinc2
�
klx

2
t cos f

�
sinc2

�
kly

2
t sin f

�
tdtdfffiffiffiffiffiffiffiffiffiffiffiffi
1� t2

p ;

Xs ¼ klxlyr0c

4p2

Z p=2

0

Z N

1

sinc2
�
klx

2
t cos f

�
sinc2

�
kly

2
t sin f

�
tdtdfffiffiffiffiffiffiffiffiffiffiffiffi
t2 � 1

p .

Substituting t ¼ sin q in the above equation yields

Rs ¼ klxlyr0c

4p2

Z p
2

0

Z p
2

0

sinc2
�
klx

2
sin q cos f

�
sinc2

�
kly

2
sin q sin f

�
sin qd qdf;

Xs ¼ klxlyr0c

4p2

Z p
2

0

Z p
2
þjN

p
2
þj0

sinc2
�
klx

2
sin q cos f

�
sinc2

�
kly

2
sin q sin f

�
sin qd qdf;

where we note that sin(p/2 þ jN) ¼ cos jN ¼ cosh N ¼N.

Problem 13.3.

Dðq;fÞ ¼ 2J1ðka sin qÞ
ka sin q

$
sinð2kd sin q sin fÞ

4 sin

�
1

2
kd sin q sin f

�

¼ 2J1ðka sin qÞ
ka sin q

$cos

�
1

2
kd sin q sin f

�
cosðkd sin q sin fÞ

Problem 14.1.

Let the Green’s function be of the form

Gðx; yjx0;y0Þ ¼
XN
m¼ 1

XN
n¼ 1

Amn sinðmpx=lxÞ sinðnpy=lyÞ:
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Inserting this into Eq. (14.24), multiplying both sides by sin(ppx/lx) sin(qpy/ly), and

integrating over the surface of the membrane givesXN
m¼ 1

XN
n¼ 1

Amn

 
k2D � m2p2

l2x
� n2p2

l2y

!Z lx

0

sin

�
mpx

lx

�
sin

�
ppx

lx

�
dx

Z ly

0

sin

�
npy

ly

�
sin

�
qpy

ly

�
dy

¼ �
Z lx

0

dðx� x0Þ sin
�
ppx

lx

�
dx

Z ly

0

dðy� y0Þ sin
�
qpy

ly

�
dy:

Applying the integral of Eq. (14.18) together with the property of the Dirac delta

function of Eq. (A2.154) from Appendix II yields

Amn ¼ 4

lxly

 
m2p2

l2x
þ n2p2

l2y
� k2D

! sin

�
mpx0

lx

�
sin

�
npy0

ly

�
:

Hence,

Gðx; yjx0;y0Þ ¼ 4
XN
m¼ 1

XN
n¼ 1

sinðmpx=lxÞ sinðnpy=lyÞ sinðmpx0=lxÞ sinðnpy0=lyÞ�
k2mn � k2D

�
lxly

;

where

kmn ¼ p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

l2x
þ n2

l2y

s
.

Problem 14.2.

Let the Green’s function be of the form

Gðw;fjw0;f0Þ ¼
XN
m¼ 0

XN
n¼ 1

Amn cosðmfÞJmðamnw=aÞ:

Inserting this into Eq. (14.44), multiplying both sides by cos(pf)Jp(apqw/a), and

integrating over the surface of the membrane givesXN
m¼ 0

XN
n¼ 1

Amn

�
k2D � a2mn

a2

�Z 2p

0

cosðmfÞ cosðpfÞd4
Z a

0

Jmðamnw=aÞJpðapqw=aÞwdw

¼ �
Z 2p

0

dðf� f0Þ cosðpfÞdf
Z a

0

dðw � w0ÞJpðapqw=aÞdw:
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Applying the integrals of Eqs. (14.38) and (14.39) together with the property of the

Dirac delta function of Eq. (A2.154) from Appendix II yields

Amn ¼ 2 cosðmf0ÞJmðamnw0=aÞ
pð1þ dm0Þ

�
a2mn � k2Da

2
�
J2mþ1ðamnÞ

:

Hence,

Gðw;fjw0;f0Þ ¼ 2

p

XN
m¼ 0

XN
n¼ 1

cosðmfÞJmðamnw=aÞ cosðmf0ÞJmðamnw0=aÞ
ð1þ dm0Þ

�
a2mn � k2Da

2
�
J2mþ1ðamnÞ

:

Problem 14.3.

f01 ¼ a201h

4pa2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Y

3ð1� n2ÞrD

s
¼ 2:22152 � 0:2� 10�3

4p� �12:5� 10�3
�2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
69� 109

3� ð1� 0:32Þ � 2700

s

¼ 1:54 kHz;

f02 ¼
�
a02

a01

�2

f01 ¼
�
5:4516

2:2215

�2

668 ¼ 9:26 kHz;

f03 ¼
�
a03

a01

�2

f01 ¼
�
8:6114

2:2215

�2

668 ¼ 23:1 kHz;

Problem 14.4.

Let the Green’s function be of the form

Gðw;4jw0;40Þ ¼
XN
m¼ 0

XN
n¼ 1

Amnhmnðw;4Þ;

where hmn(w, f) ¼ cos(mf) ( Jm(amnw/a) � BmnIm(amnw/a) þ Cmn). Inserting this into

Eq. (14.149), multiplying both sides by h�pqðw;fÞ, and integrating over the surface of the
shell gives XN

m¼ 0

XN
n¼ 1

Amn

�
a4mn

a4
� k4D

�Z 2p

0

Z a

0

hmnðw;4Þh�pqðw;4Þwdwdf

¼ �
Z 2p

0

Z a

0

dðw � w0Þdð4� 40Þh�pqðw;4Þdwdf.
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Applying the integrals of Eq. (14.142) together with the property of the Dirac delta

function of Eq. (A2.154) from Appendix II yields

Amn ¼ a2h�mnðw0;40Þ
pDmn

�
k4Da

4 � a4mn
�:

Hence,

Gðw;4jw0;40Þ ¼ a2

p

XN
m¼ 0

XN
n¼ 1

hmnðw;4Þh�mnðw0;40Þ
Dmn

�
k4Da

4 � a4mn
� :

Problem 14.5.

f01 ¼ h

4pa2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Y

3rD

�
b41

1� n2
þ 48

H2

h2

�s

¼ 40� 10�6

4p� �12:5� 10�3
�2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
69� 109

3� 2700

 
�109:2� 103

1� 0:32
þ 48�

�
2� 10�3

40� 10�6

�2
!vuut ¼ 0 Hz;

f02 ¼ 40� 10�6

4p� �12:5� 10�3
�2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
69� 109

3� 2700

 
5:90344

1� 0:32
þ 48�

�
2� 10�3

40� 10�6

�2
!vuut ¼ 20:7 kHz;

f03 ¼ 40� 10�6

4p� �12:5� 10�3
�2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
69� 109

3� 2700

 
9:18984

1� 0:32
þ 48�

�
2� 10�3

40� 10�6

�2
!vuut ¼ 21:3 kHz;

f04 ¼ 0:2� 10�3

4p� �12:5� 10�3
�2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
69� 109

3� 2700

 
12:3864

1� 0:32
þ 48�

�
2� 10�3

40� 10�6

�2
!vuut ¼ 22:7 kHz.

Problem 15.1.

prmsðr; 0Þ ¼ 2pf ε0a
2

�
EP

d

�2
1

2
ffiffiffi
2

p
rc

¼ 2� 3:14� 103 � 8:85� 10�12 � 0:052 � �2000=10�3
�2

2� ffiffiffi
2

p � 1� 345
¼ 0:570 Pa

Hence, the sound pressure level is 20 log10(0.57/(20 � 10�6)) ¼ 89.1 dB SPL.
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Problem 15.2.

From Eq. (15.119), the polarization voltage is

EP ¼
�
EP

d

�
d ¼ 2000

10�3
� 0:224� 10�3 ¼ 448 V.

From Eq. (15.86), the minimum tension is

T ¼ ε0a
2

d

�
EP

d

�2

¼ 8:85� 10�12 � 0:052

0:224� 10�3

�
2000

10�3

�2

¼ 395 N=m.

From Eq. (15.114), the resonance frequency is

f0 ¼ 1

3:26a

ffiffiffiffiffiffiffi
T

ar0

s
¼ 1

3:26� 0:05

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
395

0:05� 1:18

r
¼ 502 Hz.

From Eq. (15.117), the resistance is

RS ¼ 2

Q

ffiffiffiffiffiffiffiffiffi
r0T

a

r
¼ 2

1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:18� 395

0:05

r
¼ 193 rayls.

From Eq. (15.113), the maximum tension is

T ¼ 0:6smaxh ¼ 0:6� 55� 106 � 12� 10�6 ¼ 396 N=m.
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Index
‘Note: Page numbers followed by “f ” indicate figures; “t” indicate tables and “b” indicate boxes.’

A
Absorption coefficients (room)
Eyring, 535e536
Sabine, 535e536

Absorption in air, 536
Acoustic, definition, 11
Acoustic compliance, 54, 105e106, 145e149
Acoustic components, 143e229
Acoustic conductance, 106e107, 471
Acoustic generators, 107e112
Acoustic impedance, 16
Acoustic inertance. See Mass
Acoustic mass, 104e105, 144
Acoustic materials, 2, 149, 347e348, 535
Acoustic radiation impedance, 821
Acoustic resistance, 106e107, 149e152
Acoustic transformers, 155e161
Acoustical, definition, 12
Acoustical circuits, 102e112
Acoustical elements, 102e104
Acoustical holography, 713e715
Acoustical standards, 16
Acoustics
in concert halls, 547
in living rooms, 549e552

Adiabatic, definition, 7
Adiabatic alternations, 7e8
Admittances
analogies, 85, 93
conversion to impedance analogies,

124e125
definitions, 85
mechanical, 81e82

Air, basics, 6, 8e10
Air attenuation constant, 537t
Air density, 14e15
Air losses, 500e501
Air speed, 15e16
Air-suspension loudspeakers, 332
Airy
diffraction pattern, 628
disk, 637e639
stress function, 747e748

Alignment tables for loudspeaker in

bass-reflex enclosure, 374e376
closed-box enclosure, 339e340, 370f, 382

Alternating signal voltage, 792e794
American Standards Assoc., 16
Analogies, 81e82
admittance type, 85
conversion of, 124e125
impedance type, 85
rotational, 112
transformation, 84

Anechoic chamber, 164, 183e184, 282, 297,
496e497, 539

Angular eigenfrequency, 778
Arbitrary specific acoustic impedance,

732e734
Area, effective, of diaphragm, 234, 282, 447
Attenuation of sound in air, 536
Auditoriums
mean free path, 534
reverberation time, 535e536
sound absorption coefficients, 534
sound decay rate, 531e532
sound energy density, 17e18
sound pressure levels, 15

Average room absorption coefficient, 535
Axisymmetric solutions to shell wave equations,

754e755

B
Babinet-Bouwkamp principle, 655, 683e690
Baffle
bass-reflex, 333, 374e376
closed-box, 333f, 337e366
finite, 336e337
infinite, 336
open back, 337
unbaffled, 334e336

Barometric pressure (atmospheric), 14
Bass quality
explanation, 259
pressure-gradient microphone, 265
ribbon microphone, 263

Beam width, 162, 820
Beam-forming, 4e5, 173e179
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Bending-wave velocity
in plate, 740
in shell, 749

Bends in horns, 496e498
Bessel functions, 62, 71, 75, 727, 728t, 776
Boundary conditions, 39, 44, 55, 211, 403e404,

475e476, 626e628, 731e732, 752e754,
777e781

of continuity at center, 755
Dirichlet, 637, 659e660
Neumann, 626e628, 648, 659e660, 727
slip, 207
of zero bending at perimeter, 755
of zero radial strain at perimeter, 755e756

Boundary integral method, 553e603
case study, 567e570

Boundary layer thickness, 213
Boundary value method, 553e603
Bouwkamp impedance theorem, 192, 690e691,

694e695, 702
Box
bass-reflex, 333, 374e376
closed, 314, 337e366
open-back, 337
transmission-line, 333e334, 409e425

C
Capacitor microphones
construction and properties, 249
humidity effects, 249
temperature effects, 248

Cardioid pattern, 239
hypercardioid, 263
supercardiod, 263

Cellphone acoustics, 445e462
call loudspeaker, 445
diaphragm, 445
dust screen, 150, 449
electret microphone, 452e455
low-pass filter, 448e449
magnetic fields, 450
MEMS microphone, 455e457
sidetone, 460e461
testing, 451, 457e461
turbulence, 450e451
wind noise, 451

Characteristic impedance, 17, 46e47, 62
Charles-Boyle gas law, 28

Circular membrane. See also Rectangular
membrane

Eigenfunctions, 729f
Green’s function for, 728e730
membrane wave equation solution for,

727e728
modes, 728
radiation from circular membrane without baffle,

731e739
boundary conditions, 731e732
far-field pressure, 738e739
radiation impedance, 737e738
simultaneous equations for power-series
coefficients, 736e737

solution of free-space wave equation,
735e736

solution of membrane wave equation,
734e735

wave equation for membrane in free space,
732e734

Circular plate
modes of simply supported, 743e745
solution of plate wave equation for,

741e742
Clamped circular plate
eigenfunctions, 744f
eigenvalues for, 743t
modes of, 742e743

Closed tube, 55e58. See also Tubes
Closed-box baffle, 333f, 337e366
Coefficients
absorption, 535e536
reflection, 45, 559e560
transmission, 497, 559e560, 565e566, 647

Coil, voice, 307e310
Coil driving force, 753e754
Coil impedance at perimeter, 756e757
Coil inductance, 772e773
Combination microphones, 262e265
Complex wavenumber of shell, 762
Compliance, 757
acoustic, 105e106, 145e149, 153
closed box, 337e366
closed tube, 207
drive unit, 278e279
jug, 148
mechanical, 89e91
series, acoustic, 146e149
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Components, acoustic, 143e229
Compressibility dynamic, 207, 214e215, 217
Condenser microphones. See Capacitor

microphones
Cone. See Diaphragm
Conical horn, 474e477
Connector, exponential, 158e161
Constants
barometric pressure, 14
characteristic impedance, 17, 47, 60e62
decay, room, 527
density-of-air, 15
drive unit, 279e280
flare, 483e484
reference quantities, 18e19
speed of sound, 15e16
Thiele-Small, 440

Continuity equation, 29e31
Conversion tables, impedance-to-admittance

analogies, 85, 124e125
Coordinates
cylindrical, 70e73
oblate spheroidal, 647e648, 659
rectangular, 68e69
spherical, 73e78

Coupled shell formulation, 764
Coupler. See Connector
Cross-section shapes, horns, 498e499
Crossover networks, 436e440
Curvature of membrane, 722e723
Cut-off frequency, 776, 800
Cut-off frequency of horn, 440e441
Cylindrical wave, 62e64

D
Decay curves, for sound in rooms, 531
Delay line ignoring stray capacitance, 807e808
Delay path length, 804e805
Density, air
definition, 15
dynamic, 207, 214, 218
formula, 15
normal, 15
variational, 15

Diameter, effective, of diaphragms, 310
Diaphragms
behavior, 310e314
diameter, effective, 310

Diffraction of plane wave
through resilient screen, 688e690
through rigid screen, 687e688

Diffuse sound field, 533
Dimensionless parameter, 764e765
Dipole source. See Doublet
Dipole strength, 181
Dirac delta functions, 726, 858e859, 866
Direct sound, 547e548
Directivity, 189
Directivity characteristics
of loudspeakers, 162, 550
of microphones, 161, 236f, 240

Directivity control of electrostatic loudspeakers,
794e795, 814

continuous delay, 795e801
discretization effects into rings of finite width,

802e803
far-field sound pressure, 810
neutralization of stray capacitances, 810e814
practical delay line, 804e810

Directivity factor, 189
Directivity function, 738e739, 765e767, 781e782
Directivity index (DI)
calculation, 190e194
definition, 189
of sources, 192

Directivity patterns, 170, 179, 314
dipole point source (doublet), 179e183
sphere (pulsating & oscillating), 164e167

Dirichlet boundary condition, 731
Discretization effects into rings of finite width,

802e803, 803fe805f
Dispersive medium, 741
Displacement, 747e748
of shell, 754

Distortion
horn, 472e474
large-amplitude waves, 478
loudspeakers, 322e325
phase delay of crossover, 435e436
transient, 322e323

Doublet
microphone, 179e183
piston without baffle, 184e185
simple, 182

Driving pressure, 732e734
Dual diaphragm microphones, 265e275
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Dynamic compressibility, 207, 214e215,
217

Dynamic density, 207, 214, 217
Dynamic loudspeaker. See Direct-radiator

Loudspeakers
Dynamic membrane compliance, 818
Dynamic microphone, 241e248
Dynamic resistance, 818
Dynamic shell wave equations, 747e748

E
Early sound, 539e540
Eddy current, 772
Effective area of diaphragm, 234, 282, 447
Effective diameter of diaphragm, 310
Effective length of tube, 145
Effective particle velocity, 16
Effective sound pressure, 15
Effective volume velocity, 16
Efficiency
horn, 466e468
loudspeakers, 295e296

Eigen-frequencies, 724, 728, 743, 758e759
for 100-mm magnesium plate, 788t
for 25 mm aluminum shell, 768t
of shallow spherical shell with infinite load at

perimeter, 761f
of shallow spherical shell with zero load at

perimeter, 759f
Eigenfunction, 724, 761e762
of circular membrane, 729f
of clamped circular plate, 744f
of free circular plate, 747f
of rectangular membrane, 725f
of simply supported circular plate, 745f

Eigenvalues
calculation, 757e758
for clamped circular plate, 743t
with finite load at perimeter, 760
for free circular plate, 746t
with infinite load at perimeter, 760
for simply supported circular plate, 745t
with zero load at perimeter, 758e759

Electret microphone, 452e455
Electrical damping resistance, 779
Electrical impedance, 775e776
Electro-mechano-acoustical circuit,

814e815

Electrodynamic loudspeakers, 277e330
advantages, 277e278
baffle
finite, 279e280, 289
infinite, 279e280, 289

bass-reflex, 300, 374e376
closed-box, 298e299, 337e366
constants, 247
construction, 278e280
design factors, 302e306
diaphragm, 310e314
directivity, 314e316
dual concentric, 440e441
efficiency, 295e296
element values, 289
impedance, input, 294
metals, 308t
non-linearity, 323e330
power output, 287e288
response, 292e293
Thiele-Small parameters, 288e289, 297e300
transfer function, 316e318
transient, 318e323
transmission-line enclosures, 333e334, 409e425
unbaffled, 334e336
voice-coil velocity, 283e284

Electromagnetic microphones, 241e248
Electromagnetic transducers, 113e115, 128e130
Electromechanical conversion factor, 732e734
Electrostatic loudspeakers, 732e734, 733f,

791e792
construction, 792e794, 793f
design, 826e832, 830fe831f
directivity control, 794e795
lumped-element model of, 814e815

Electrostatic microphones. See Capacitor
Microphones

Electrostatic transducers, 115e120, 133e134
Elements of circuits
acoustical, 102e112
compliance, acoustic, 105e106
compliance, mechanical, 89e91
general, 81e82
generator, acoustic, 107e112
generator, mechanical, 92e93
mass, acoustic, 104e105, 144
mass, mechanical, 294
mechanical, 81e82
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resistance, acoustic, 106e107
resistance, mechanical, 91e92
transformers, acoustic, 155e161
transformers, mechanical, 94

Elvamide, 792e794
Enclosures
bass-reflex, 317e318, 374e376
closed-box, 337e366
transmission-line, 333e334, 409e425

End corrections, tubes, 144e145
Energy density, definition, 17e18
Energy flux. See Intensity
Equivalent suspension volume, 288e289, 299,

355
Exponential, horn, 481e484, 487, 490
Exponential connector, 158e161
Eyring, equation, 535e536

F
Far-field
pressure, 738e739, 765e769, 766f, 862
of free plate with evenly distributed radiation
load, 781e784

response of induction loudspeaker, 784e789
sound pressure, 810
directivity patterns at various frequencies, 811f
parameters for idealized electrostatic
loudspeaker and delay line, 812t

Ferrofluid, 326
Field, sound
near, 183e184
diffuse, 533
direct, 536
far, 183e184
free, 357, 512
reverberant, 164, 534, 539e541

Field matching, 588e589, 594e597
Figure-of-eight directivity pattern, 794e795
Filters, electrical, 320, 382e383, 428e430,

432e433
Finite element modal (FEM), 738e739
Flare constant, 483e484
Flexural rigidity, 740, 748e749
Flow resistance, 347e348, 415, 418
Fluctuations of sound, in room, 533
Fluid-loading factor, 736e737, 764e765, 781e782
Fluidestructure coupling, 731
Fluidestructure interaction, 721

Flux density
definition, 485e486
typical, for loudspeakers, 303,

325e326
Force equation, 25
Force transmission coefficient, 737
Forward traveling wave, 73, 478, 482, 485e486,

516
Fourier series, 15, 37e38
Fourier transform, 179, 319e320, 613e614,

695e701, 713e714
Fourier’s law, 149
Fraunhofer
diffraction pattern, 628
diffraction zone, 631e633

Free circular plate
Eigenfunctions of, 747f
Eigenvalues for, 746t
modes of, 746e747

Free-space wave equation
membrane in, 732e734
solution of, 735e736, 763e764

Frequency response, 820e826, 820f
Fresnel region, 631e633
Friction, in air, 145
Fundamental in vacuo resonance frequency,

738e739
Fundamental resonance, 757
frequency, 791, 826e828, 857

G
Gas
adiabatic, 7
isothermal, 7
law, 25, 28e29

Generators
acoustic, 107e112
constant force, 93, 93fe94f, 111, 111f
constant pressure, 108e109, 108f
constant velocity, 92, 92fe93f
loudspeakers. See Direct radiator

Loudspeakers
mechanical, 92e93

Graphite, 792e794
Green’s function, 863, 865e868
for circular membrane, 728e730
for rectangular membrane, 724e726
for shallow spherical shell, 749e752
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H
Handsfree loudspeaker, 445e446
Hankel functions, 727
Harmonic function, 748e749
Helmholtz form, 748e749
Helmholtz resonator, 111, 111f, 448e449
Helmholtz wave equation, 38, 55, 861e862
cylindrical coordinates, 70e73
infinite lossy tube, 213e214
inhomogeneous, 609
plane wave, 37
rectangular coordinates, 68e69
for sound pressure waves, 723
spherical coordinates, 73e78

History, 1e5
Homogeneous membrane wave equation, 724e725
Homogeneous wave equation in coordinate

system, 740
Homogenous wave equation, 857
Horn drive units, 463e464
circuit for, 464e465
efficiency, 466e468
response, 468e472

Horn loudspeakers, 463e510
Horns
advantages, 463
bends, 496e498
circuit for, 464e465
conductance, 466
conical, 479e481, 489e490
cross-section shapes, 498e499
cutoff frequency, 484, 486e487
disadvantages, 463
distortion
drive unit, 463e464
non-linear, 493e496

exponential, 481e484, 490, 498e499
finite, 487e496
flare constant, 483e484
folded, 496, 502
frequency response, 468e472
high frequencies, 471e472
hyperbolic, 485e487, 490e491
impedance, 463, 478e479, 481, 483e484, 486,

488
Klipsch, 502
low-frequency, 469e471
materials, 499e509

midfrequency, 469
mouth, 477
parabolic, 477e479, 483, 486

Humidity, effects, 241
Huygens-Fresnel principle, 605e606
Hyperbolic Bessel function, 741e742

I
Impedances
acoustic, 16
analogies, 29, 31, 124e125
characteristic, 17, 60e62
closed box, 337e366
definitions, 16e17
horn. See Horns
infinite, 48e49
loudspeaker, 309e310
measurement, 47e48
mechanical, 17, 88
perforated sheet, 154e155
screens, 149
specific, 15e17, 61e64
transducer, 127e140
tubes, 43e60

Indium-tin-oxide (ITO), 792e794
Induction loudspeakers, 770e789, 771f
analogous circuit, 772e776
boundary conditions, 777e781
coil and suspension parameters, 785t
construction, 770e772
electro-mechano-acoustical analogous circuit,

772f
far-field pressure of free plate with evenly

distributed radiation load, 781e784
far-field response, 784e789
radiation from circular plate in infinite baffle, 770

Inertance. See Mass
Infinite baffle, 145, 198e201, 336, 588e602,

625e635, 647e657, 691e692,
701e713

Inhomogeneous membrane equation, 724e725
Inhomogeneous steady-state wave equation for

displacement, 732e734, 762
Inhomogeneous wave equation, 858
Intensity
definition, 17
level, 19e20

Isothermal, definition, 7
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J
Jug, 147

K
Kelvin function. See Thomson function
King integral, 634, 643, 649, 661
Kirchhoff-Helmholtz boundary integral, 609e611
Klipsch horn, 502
Knudsen number, 151

L
Laplace operator, 732e734, 741, 747e748
cylindrical coordinates, 70e73
Green’s theorem, 609e610
rectangular coordinates, 68e69
spherical coordinates, 73e78

Laplace transform, 316e318, 527
Large amplitude waves, 478
Least-mean-squares method, 663e664
Legendre function, 76
Levels, 17e22
Levers, 94e102
Linings, baffle box, 338be339b, 344e347
Loudness
concert hall, 547
listening room, 549e552

Loudspeakers
bass-reflex enclosed, 374e376
box enclosed, 337e366
direct radiator. See Electrodynamic loudspeakers
dual concentric, 440e441
electrodynamic, 277e278
magnet size, 303e306
transmission line enclosures, 333e334, 409e425
wave, 357e360

Lumped-element model of electrostatic
loudspeaker

dynamic membrane compliance and dynamic
resistance, 818

electro-mechano-acoustical circuit, 814e815
frequency response, 820e826
negative compliance and stability, 815e816
radiation impedance, 819e820
setting tension to limiting displacement and

maintaining stability, 818e819
static membrane compliance, 816e818

M
Magnesium alloy, 784e786
Magnet size, 303e306
Magnetic fields, 450
Mass
acoustic, 144
diaphragm, 310e314
mechanical, 81e82
voice-coil, 307e310

Mass loading factor, 757
Materials, sound absorbent, 347e349
Matrices
transmission parameter, 127e128, 216e217
z-parameter, 117, 131e132, 135, 252, 397e398

Mean free path
of air molecules, 6, 151, 210e211, 217
of waves, 534

Mechanical circuits, 81e82
Mechanical compliance, 89e91
Mechanical elements, 85e102
Mechanical generators, 92e93
Mechanical impedance, 17, 88
Mechanical resistance, 91e92
Mechano-acoustic transducers, 120e121
Membrane(s), 721
Green’s function for circular membrane,

728e730
Green’s function for rectangular membrane,

724e726
modes of circular membrane, 728
modes of rectangular membrane, 724
radiation from circular membrane without baffle,

731e739
and stator mass control, 825e826
stiffness control, 821
vibroacoustics, 721
wave equation

in polar coordinates, 727
in rectangular coordinates, 721e723
solution, 734e735
solution for circular membrane, 727e728
solution for rectangular coordinates, 723e724

MEMS microphone, 455e457
Metals
density, 308t
resistivity, 308t
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Microphones, 231e275
bass quality, 236e237, 243e244
capacitor. See Capacitor microphones
cardioid, 239, 262e265
combination, 237e239, 262e265
directivity, 236, 239, 262e265
dual diaphragm, 265e275
electret, 452e455
electrostatic. See Capacitor microphones
gradient, 233e237, 259e262
MEMS, 455e457
moving coil, 241e248
piezoelectric, 115
pressure, 232e233, 240
pressure gradient, 233e237, 259e262
ribbon. See Ribbon microphones
summary, 231t

Modified Walker’s equation, 738e739
Mutual impedance of
bend in horn, 496e498
pistons in closed box with or without lining,

349e352
pistons in infinite baffle, 403, 690e691

N
Navier-eStokes equation, 207, 209
Near field, 164, 183e184, 631e633
pressure, 861e862, 864

Negative impedance, 732e734
Networks, 124, 253e254
Neumann functions, 727
Neutral layer, 740
Neutralization of stray capacitances, 810e814
constant impedance delay line, 812f

Non-linear distortion
in horns, 474
in loudspeakers, 474

Normal frequencies, 512e518, 527, 530
Normal frequency diagram, 532f
Normal modes of vibration, 351, 513, 517, 530
Norton’s theorem, 282e283, 282f, 775f
Notional zeroth eigenvalue, 757e758, 778

O
On-axis pressure, 738e739
Optimum reverberation time, 538, 543f, 548
Orchestra power levels, 544
Orthogonality, 55e56, 59, 567, 750
Oscillating sphere, 196e197

P
Parabolic horn, 411e412, 420f, 475e478
Perforated sheet, 154e155, 154f
Piezoelectric transducer, 118fe119f, 164
Pipes, junctions, 158e161
Piston
without baffle, 676
directivity, 705e706
eigenfrequency, 759
in infinite baffle, 170, 198e201, 625e635
one-sided (closed-back), 193, 204e206, 357,

676f, 679
Plane waves
impedance terminated tube, 43e44
reflection from plane, 162e164

Plate(s), 721, 740e741
modes
of clamped circular plate, 742e743
of free circular plate, 746e747
of simply supported circular plate, 743e745

solution of plate wave equation for circular plate,
741e742

wave equation in polar coordinates, 740e741
Point source
dipole (doublet), 179e183
monopole (simple), 168

Poisseulle flow, 224
Poisson’s ratio, 740
Polar coordinates
membrane wave equation in, 727
plate wave equation in, 740e741
shell wave equation in, 747e749

Polar diagram. See Directivity patterns
Polyester, 792e794
Polyimide, 792e794
Port
definition, 374e376
performance, 390

Power
level, band, spectrum, 20, 22
power-series coefficients, simultaneous equations

for, 736e737, 764e765
Prandtl number, 209e210
Pressure
ambient (atmosphere), 10e11
gradient, 183e184, 556e557
microphones, 232e233, 237e240
reference, 19
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Pressure level, 310e311
Pressure spectrum level, 22
Product theorem, 700f
Propagation
through gas, 8e10
general, 11e13
in porous materials, 347e348
speed in air, 10

Pulsating sphere, 196

Q
of loudspeakers, 278e279
of perforated sheet, 155

R
Radial membrane force, 756e757
Radiation
from concave dome in infinite baffle, 594e602
from convex dome in infinite baffle, 588e594
from dipole point source (doublet), 179e183
impedance, 737e738, 819e820, 863
of pistons, 673e674
between pistons in infinite baffle, 703e713

from infinite cylinder or line source, 554e555
from infinite strip in infinite baffle, 691e695
from linear array (beam-forming), 171e173
from loudspeaker, 636
mass control, 823e824
from monopole point source (simple), 168
from one-sided piston (closed-back), 204e206,

356e357
from oscillating sphere, 184e188, 196e197
from piston in a sphere, 582e588
from piston in finite circular closed baffle,

676e683
from piston in finite circular open baffle,

659e674
from piston in infinite baffle, 198e201
from point source on sphere, 567e570
from pulsating sphere, 164e167, 196
from rectangular cap in a sphere, 577e582
from rectangular piston in infinite baffle,

701e703
from resilient disk in infinite baffle, 647e657
from resilient disk without baffle, 636e647
resistance control, 824
from spherical cap in a sphere, 570e577

Rate of sound decay, 527

Rayl, 16
Rayleigh distance, 633
Rayleigh integrals, 606e608
Reactance. See Impedance
Receiver, 446e448
Reciprocity, 567, 609e610
Rectangular coordinates, membrane wave

equation in, 721e723
Rectangular membrane. See also Circular

membrane
Eigenfuctions of, 725f
Green’s function for, 724e726
modes, 724

Reference
intensity, 19e20
power, 22

Reflection
diffuse, 162e163, 527
plane wave from plane, 162e164
plane wave from plane resilient object, 686e687
plane wave from plane rigid object, 684e686
point source from plane, 623e625
specular, 162e163, 527

Relative humidity. See Humidity
Resistance
acoustic, 106e107, 149e152
flow, 60, 338e339
frictional, 91
lossy tube, 220
mechanical, 91e92
radiation, oscillating sphere, 192
radiation, pistons, 625e635
radiation, pulsating sphere, 167
screens, 150
viscous, 91
voice-coil, 341e342

Resistivity
metals, 308t
wire, 768

Resonance curve, 526e527
Resonance frequency, 469, 821e823
Resonator, Helmholtz, 111, 448e449
Response of loudspeaker
in bass-reflex enclosure, 374e376
in closed-box enclosure, 337e366
in infinite baffle, 336

Response of microphone, 236, 241, 245, 246f,
247e248, 256f
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Reverberant sound, 539e541
definition, 539
enclosures, 533e535
equations, 535e536
Eyring, 535e536, 538
Sabine, 535e536

living rooms, 549
optimum, 538

Reynolds number, 450
Ribbon microphones, 259

S
Sabine, 1, 535e536
Sabine absorption coefficient, 860
Scattering
plane wave from sphere, 555
point source from sphere, 560e566

Shallow spherical shell
green’s function for, 749e752
radiation in infinite baffle, 752e769, 753f

Shear force, 756e757
Sheets, perforated, 154e155
Shell(s), 747e749
aluminum shell parameters, 767t
coil and suspension parameters, 768t
eigenfrequencies for aluminum shell, 768t
green’s function for shallow spherical shell,

749e752
mass, 768e769
radiation from circular shallow spherical shell,

752e769
solution of wave equation for shell, 762
wave equation in polar coordinates, 747e749

Shorted turn, 772e774, 776
Side lobe, 173, 179
Simple source, 168
Single steady-state homogeneous wave equation,

748e749
Slip (boundary), 151, 207e208, 210, 213,

270e271
Slit, impedance, 151
Sound
definition, 5e8
diffuse field, 461, 527, 533
direct, 540e541
energy density, 17e18
intensity, 17
pressure, 18e19, 51e53
reverberant, 540e541

speed, 6
velocity, 6, 61, 63
weighting curves, 21f

Sound absorption, in air, 534
Sound energy, density, 17e18
Sound levels, 21
for music, 542e544
for speech, 542e544

Sound strength, G, 539
Sources
dipole point source (doublet), 179e183
free piston without baffle, 636e647, 731e739
linear array (beam-forming), 171e173
monopole point source (simple), 168
one-sided piston (closed-back), 676e683, 676f
piston in infinite baffle, 198e201, 625e635
pulsating sphere, 164e167, 196
rooms, inside, 548
spherical. See Spherical sources
two (simple) point sources in phase, 168e170

Specific acoustic impedance
cylindrical wave, 61e62
definition, 16e17
plane wave, 53e54
spherical wave, 63e64

Specific diaphragm impedance, 737e738
Specific heat, of air, 7
Specific radiation impedance, 171e172, 237, 674,

737, 861, 865
Spherical shell, 721, 752
Spherical wave, 65e67
Squawker, 425
Standing wave, 48, 60, 313, 498e499, 511e513,

601, 616, 721
Standing wave ratio, 45, 46t
Static membrane compliance, 816e818
Stationary wave, 48, 512
Stator resistance control, 821e823
Stiffness (reciprocal of compliance). See

Compliance
Stray capacitances
delay line ignoring, 807e808
neutralization of, 810e814

Superposition, 95e96
of fields, 403, 556, 562, 574e575, 624, 676, 676f
of waves, 533

Suspension resonance frequency, 284, 297e298,
415

Symbols, meaning of, 82, 83t

880 Index



T
Terminology, 11
Thermal and viscous losses, 207
Thermal conductivity, 209
Thermal diffusion wave, 28
Thévenin’s theorem, 125e127
Thiele-Small
measurement, 297e300
parameters, 3e4, 288e289, 338

Thomson function, 749
Time reversal, 715e717
Total mechanical damping resistance (RMT),

753e754
Transducers, 113
Transformers, acoustic, 155e161
Transient behavior
loudspeakers, 318e323
rooms, 527e530

Transmission
line loudspeaker enclosure, 60, 353, 413f, 414
matrix, 813e814

Tubes
closed, 55e58
filled with absorbent material, 60e61
intermediate diameter, 153e154
lossy, 207e229
piston in end of, 109
rigidly closed, 511, 513e514
small diameter, 144, 151
specific acoustic impedance, 66e67
termination impedances, 46t, 496e497

Turbulence, 450e451
Tweeter, 352, 425e427, 428f, 430f, 431, 432f,

433e436

U
Units, mks, SI, 305e306

V
Velocity distribution, 762e763
Vibroacoustics, 721

induction loudspeakers, 770e789
membranes, 721
plates, 740e741
shells, 747e749

Virtual oscillating sphere, 798e799, 799f
Virtual point source, 797, 797f
Viscosity of air, 153e154, 209, 270e271, 398
Viscous and thermal losses, 207
Voice-coil
design, 307e310
velocity, 283e286

Volume velocity, 16

W
Walker’s voltage equation, 800e801, 830e831
Wave equation for membrane in free space,

732e734. See also Helmholtz wave
equation

Wave number, 215, 740, 748e749
Wavelength, 10
Waves
backward traveling, 514e516
cylindrical, 62e64
evanescent, 73, 714
forward traveling, 514e516
free progressive, 17
plane, 555
spherical, 65e67
standing, stationary, 511e512

Webster’s equation, 34, 475e476
Weighting curves, 21f
Wind noise, 451
Wire mass, 768e769
Woofer, 425e426, 438

Y
Young’s modulus, cone, 327

Z
Zero bending moment, 743e744, 746, 777
Zero shear force, 746
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