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Preface

Themain objective of this two-volume book is to convince the readers thatMathemat-
ica1 can be used effectively as an aid in solving mathematical problems or at least to
inspire the idea of a solution. Since we do not want to devote much space or time to
repeating material covered in many other places, we will assume that the readers are
already familiar with the basics of real analysis (e. g., as presented in the book [14] or
in the more advanced book [12], which contains more than we need) and of Mathe-
matica® (including some elements of theWolfram Programming Language™ roughly
of the same scope as in Sections 1–6 of [9]).

Our approach is to describe some of the theory and to guide the readers through
solutions to a number of classroom problems. Most of these problems come from the
lecture notes [13] for the course of analysis for computer science students, given at
the University of Warsaw during 2011–2018. The problems we chose were the ones in
which Mathematica® could be genuinely useful in a way that did not involve simply
applying some standard algorithm or plotting a graph, but which required the stu-
dents to think and come up with some mathematical idea. Sometimes this idea is a
guess inspired by aMathematica® calculation or a visual representation of the prob-
lem. In some special cases Mathematica® can only verify this guess and sometimes
it can prove its correctness in full generality. In all such cases we normally still want
to obtain a rigorous mathematical proof. In some cases we will provide such proofs
in detail, although sometimes we will only sketch them or limit ourselves to a special
case, leaving the details and greater generality to the readers.

We will sometimes also useMathematica®’s abilities to solve mathematical prob-
lems which are too difficult for us to solve by hand (sometimes because of their com-
plexity and sometimes because the solution requires mathematical knowledge that
lies beyond the scope of this book). We believe that such examples are useful and in-
teresting because they show how the strengths of Mathematica® (or other computer
programs) can complement human weaknesses and vice versa. When using a com-
puter program as an aid in mathematics it is important to understand what such pro-
grams are well suited to and what they are not, and also what kind of problems (in-
cluding incorrect answers) one can run into. To learn to judiciously use a computer
is becoming a necessity in many areas of science and mathematics and we hope our
book will prove useful in this respect.

We shall frequently statewell-knownmathematical theorems and often omit their
proofs. Usually we will refer the readers to books included in the bibliography (except
when theproof is simple enough for the readers to supply it themselves). In some cases

1 WolframMathematica® is a system formodern technical computing, see http://www.wolfram.com/
for further information.

https://doi.org/10.1515/9783110590142-201
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we will only give a “proof” based onMathematica® or an illustration. There is a natu-
ral question that has beenmuch discussed in recent years: when can results obtained
by means of a computer software be regarded as mathematical proofs? The most pop-
ular view is that such results can be considered as proofs provided the source code of
the mathematical software is open so that it can be examined to make sure that it is
correct. In the case of commercial programs likeMathematica® the source code is not
publicly available so one should consider results obtained bymeans of such programs
as tentative and prove them by mathematical means or at least confirm their validity
by means of other, independent programs. Since our purpose is to useMathematica®

as an educational tool, we shall not be concerned with the correctness of Mathema-
tica®’s implementation of various algorithms and we will usually not try to describe
them. However, the readers should be aware that the methods used by mathematical
computer programs are usually very different from the ones used by humans. In addi-
tion, often the methods (algorithms) used byMathematica® to obtain even quite ele-
mentary results depend onmathematical toolsmuchmore advanced than the scope of
this book. Among examples of this kind are solving transcendental (non-polynomial)
equations and inequalities, computingfinite sumsand sumsof series, integration, etc.

We have been teaching analysis with Mathematica® at the University of War-
saw for computer science students for several years and we have found the above
described approach quite effective. A typical mathematics course at the University
of Warsaw consists of lectures at which the theory is taught and of accompanying
problem classes. This book is primarily based on problem classes and therefore has
a similar style. We only briefly sketch the necessary theoretical material and refer the
readers for further details to standard textbooks, some of which can be found in the
bibliography. Our book can also be seen as a supplement for any standard textbook
on calculus or analysis and we shall cover standard first and second year calculus
(analysis) topics, where we can benefit from using Mathematica® a lot. Volume 1
is devoted to single-variable calculus and volume 2 to the many-variable case. Our
examples belong to pure mathematics and we do not consider any applications in
physics and other sciences. Many textbooks exist which deal with such applications.

Although this book is based on a course of analysis for computer science students,
itwas actually a traditionalmathematical course illustratedwith examples fromMath-
ematica® rather than a course of constructive or algorithmic mathematics (i. e., the
kind of mathematics thatMathematica® itself makes use of). An excellent example of
an introduction to analysis of the latter kind is [4], which we highly recommend. The
difference between the constructive approach and the traditional approach is that the
former avoids all indirect methods, such as “proofs by contradiction” which cannot
be implemented on a computer. These are replaced, whenever possible, by “construc-
tions”, which in principle could be turned into computer programs. Not everything in
analysis can be done constructively (and thus not everything can be implemented on
a computer) and the extent to which this is possible is an active area of research. Al-
though in this bookwe do not adopt a constructive approach, we only try to attract the
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attention of readers to such issues when they arise. We also do not consider the algo-
rithms used by Mathematica® in detail (we recommend the already mentioned book
[9] for some of such discussions, especially in connection with the Risch integration
algorithm). We will make some comments on the algorithms from time to time in the
hope that some readers will be inspired to pursue such topics further. Finally, there
is another very important issue that we will only touch the surface of. It does not be-
long to traditional mathematics but is something of which one soon becomes aware
of (often painfully) when one tries to apply Mathematica®’s symbolic capabilities to
“real life” mathematical problems. This issue is computational complexity. In tradi-
tional mathematics a problem is often considered as solved as soon as a method (an
algorithm) of solving it is found. These algorithmsmay, however, have such high com-
plexity that in practice they allow only very simple cases to be solved in acceptable
time. Some of the most impressive algorithms (e. g., quantifier elimination discussed
in Chapter 1) have a very high complexity. This motivates the search for methods of
solving problems quite different from the standard ones (an example of this is the
standard algorithm for integrating rational functions, taught in all traditional Calcu-
lus courses, which is unusable in practice due to its need to factorize arbitrary polyno-
mials). Again, in this book we only point out the existence of these important issues.

As mentioned earlier, we assume some familiarity with the programming lan-
guage used by Mathematica® (Wolfram Language™), which means its basic syntax,
the structure ofMathematica® expressions, different formsof expressions (InputForm,
TraditionalForm, FullForm), patterns and pattern matching, etc. Recent versions of
Mathematica® can use the so called “free-form input”, which allows the user to use
“natural language” to tellMathematica® to solve certain problems. Natural language
has obvious advantages over formal languages. For example,Mathematica® has func-
tions Element and MemberQ but only MemberQ[{1,2,3},1] and Element[1,Integers]

will produce the answer True. If we use free-form input, the questions “is 1 an element
of the set {1, 2, 3}?”, “is 1 a member of the set {1, 2, 3}?” and “is 1 a member of the ratio-
nals?” will return the same answer True. Although free-form input is improving, it is
still quite limited in scope and we have decided not to use it. Using a formal language
has the advantage of clarity, which is essential when we want to do something more
complicated than a single operation like solving an equation or plotting a graph. Of
course there is a price. Not only do we have to use the correct syntax (for example,
in the Wolfram Language different kind of brackets ( ), { }, [ ] have different meanings
and must not be mixed up) but to use Mathematica® effectively one needs to use its
built-in functions. However, there are many thousands of them, each having a large
number of options. In practice it means that one of themost importantMathematica®

skills is efficient use of its extensive documentation (the Wolfram Language & System
Documentation Center™). Whenever the readers come across an unfamiliar function
or an unfamiliar option of a familiar function they should use “?FunctionName” to ob-
tain information about it. In fact, it is not necessary to remember the whole function
name as long as Mathematica®’s autocomplete feature is turned on (it is by default).
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We expect the readers to look up the necessary information themselves but we will
sometimes provide links to some selected help topics. We would also like to point out
that this book is written in LATEX and it is not possible to make the input and output ex-
actly the way they would look inMathematica®. Most of our input cells will resemble
InputForm with a mixture of StandardForm, while the output cells will mostly resem-
ble StandardForm. Large input and output cells are sometimes shown as graphics. We
shall use the large letter I in both input and output to represent the complex num-
ber i, where i2 = −1, although in StandardFormMathematica® actually uses a special
symbol for it. The same is true for the letter E for exp(1).

AlthoughMathematica® has become quite affordable recently, still not everybody
has access to the latest version. All examples in this book shouldwork in the sameway
with versions higher than 11.3 but this may not always be true for earlier ones. Some
functions, such as DiscreteLimit, were introduced only in version 11.2 and will not
work in earlier ones. Usually one can obtain the same results in earlier versions by
means of a more complicated code. For example, DiscreteLimit can in many cases
be replacedby Limitbutnot always (wegive an example below). Sometimes (although
comparatively rarely) the behavior of the built-in functions changes between different
versions. For example, this happened to the function Limit: in Mathematica® 10 it
always returns (by default) one-sided limits, inMathematica® 11 it returns two-sided
ones. Thus, inMathematica® 10, Limit[1/n, n -> 0] returns∞, while inMathemat-
ica® 11 it returns Indeterminate. This is because the left sided and the right sided
limits are different: −∞ and∞.

Apart from suchdifferences, any version ofMathematica® later than 6.0 should be
suitable formost of theMathematica® code in this book. Earlier versions aremuch less
suitable because the graphics, both static and interactive, will not work. We strongly
encourage the readers to consult the documentation for more detailed and up-to-date
information and possible further issues.

We also recommend reading this book from the beginning since many pieces of
advice are scattered throughout the text (since thematerial can be grouped differently
and sometimes we digress to some interesting related topics).

Finally, we would like to say a few words about our use of the word “function”
throughout the book. We assume that all readers are familiar with the ordinary use of
the word “function” in mathematics. Informally it is a “black box” mechanism that,
for a given element of a set, usually a number x, produces an element of another set,
e. g., x2. More formally, a function or a mapping is a special case of a relation between
two sets. Theword function is also used in computer science (where it is a special case
ofwhat is called a “subroutine”). It is a programwhich,when suppliedwith certain in-
put data, produces an output (the usual way to express this is by saying “it returns an
output”). Applying a function to data (which must be given as function’s arguments)
and computing the result is called “evaluation”. To be a function a subroutine should
always return output. Subroutines that only change some data in computer’s memory
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are not functions. Like mathematical functions, computer science functions have ar-
guments and can be composed. The programming style based on writing programs as
compositions of (preferably simple) functions is called “functional”. This is the style
of programming most suited to mathematics and Mathematica® programs written in
this style (which implies avoiding looping constructions suchas Do, For, While,which,
since they do not produce output, are not functions) tend to be more efficient than
those written in the more common “procedural” style. Throughout the book we use
the word “function” in bothmathematical and computer science sense without trying
to distinguish them. We hope that after reading this introduction the readers will not
find it confusing.

Although there exist a number of books on calculus withMathematica®, we hope
that ours offers a different perspective and will inspire the reader to experiment with
other topics in analysis, which we have had to leave out. This book is primarily in-
tended for educational purposes, but we believe that some parts of it can be of interest
to researchers as well.





1 Number systems
Usually, courses of analysis begin with number systems. Real analysis begins with
the real numbers, which are either introduced axiomatically [12], [1] or constructed
from something more “basic”, e. g., natural numbers or integers (which themselves
are either introduced axiomatically [14] or defined in terms of sets [15]).

In this chapter we shall explain howMathematica® deals with sets, numbers and
sequences of numbers and consider many other related topics.

1.1 Sets

One of the first notions one has to learn to study modern mathematics is the notion
of a set, since the natural language of modern mathematics is provided by set theory.
Mathematica® uses the so called Wolfram Language, which does not have a built-in
function corresponding to the mathematical notion of “set”. It is important to remark
that thebuilt-in function “Set”means something completely different. Afinite ordered
set exists inMathematica® as List. One can also study the properties of ordinary finite
sets by using the fact that Mathematica® has a natural way to sort (or order) any list
of objects. This is done either by the function Sort or by the function Union:

In[⋅]:= Sort[{b, 7, 3, "dog", "cat", a}]

Out[⋅]:= {3, 7, cat, dog, a, b}

In the example above the list contains objects of different kinds (symbols, numbers
and strings of texts), butMathematica® has a canonical way to arrange them. Because
of this, any finite set of objects has a canonical representation as an ordered set so we
can study sets bymeans of these canonical representations. If we want to check if two
sets are equal, it is enough to checkwhether their canonical representations are equal.
For example, the lists {1,2,3} and {2,1,3} are clearly not equal:

In[⋅]:= {1, 2, 3} == {2, 1, 3}

Out[⋅]:= False

but they represent the same sets, therefore applying Sort or Union will return True:

In[⋅]:= Union[{1, 2, 3}] == Union[{2, 1, 3}]

Out[⋅]:= True

Note that the function Join will not give the same result:

In[⋅]:= Join[{1, 2, 3}] == Join[{2, 1, 3}]

Out[⋅]:= False

since it just concatenates lists without sorting them:

In[⋅]:= Join[{2, 1, 3}, {1}]

Out[⋅]:= {2, 1, 3, 1}

https://doi.org/10.1515/9783110590142-001
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Standardmathematical operations onfinite sets (like union, intersection, comple-
ment) are implemented inMathematica® as functions. For instance, Union applied to
lists performs the usual sum operation on sets:

In[⋅]:= Union[{2, 3, 4}, {2, 3, 5}]

Out[⋅]:= {2, 3, 4, 5}

Intersection and Complement are other built in set-theoretic functions. They only
work on lists.

Membership in a list is determined by the function MemberQ (which should not be
confused with Element, see below):

In[⋅]:= MemberQ[{a, b, c, d, 1}, d]

Out[⋅]:= True

1.2 Domains

Certain sets of numbers are built in Mathematica® as “domains”: Integers, Ratio-
nals, Reals, Complexes, Algebraics and Primes. As their names suggest, the domain
Reals is used for real numbers, Complexes is for complex numbers, Algebraics is for
numbers that solve polynomial equations with rational coefficients and so on. As ex-
pected, the usual inclusions of sets are preserved (that is, the domain of Integers is a
subset of the domain of Rationals). There is one more domain, Booleans, which con-
sists of symbols True and False. Many functions will give the answer True or False,
for instance comparing two numbers and determining which one is greater or less.
You can type in either 1 < 2 or Less[1,2] to get an output “True”.

Domains are generally used togetherwith the function Element, which allows one
to test for membership in these domains (for checking whether a given number is an
element of a certain domain) and often with certain functions, e. g., Simplify, Full-
Simplify, Reduce, Solve, Resolve, Minimize, Maximize, FindInstance. We will con-
sider them later on.

Let us have a look at the following examples:

In[⋅]:= Element[2, Reals]

Out[⋅]:= True

In[⋅]:= Element[Sqrt[2], Rationals]

Out[⋅]:= False

As can be seen from these examples, the function Element takes two arguments,
a number and a domain, and it is a Boolean function, which means that we can think
of it as answering the following question: is the number an element of the domain? If
the answer is not immediately obvious,Mathematica® returns the input unevaluated:

Brought to you by | Chalmers University of Technology
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In[⋅]:= Element[(Sqrt[3] - Sqrt[2])*(Sqrt[2] + Sqrt[3]),

Integers]

Out[⋅]:= (−√2 + √3) (√2 + √3) ∈ ℤ

This illustrates one of Mathematica®’s basic principles: when there is an input for
whichMathematica® has no rules to apply, it returns the input. We can then apply to
it additional transformations, not performed by default by theMathematica® kernel.
The simplest way is to use the function Simplify or its more powerful (but more time
consuming) variant FullSimplify:

In[⋅]:= Simplify[Element[(Sqrt[3] - Sqrt[2])*(Sqrt[2] +

Sqrt[3]), Integers]]

Out[⋅]:= True

Instead of using Simplify or FullSimplify one can apply one of many built-in
function that Mathematica® has for transforming expressions. For example, in this
case Expand will show us that the expression above is, in fact, 1, and then we can
check whether it is an integer or not:

In[⋅]:= Expand[(Sqrt[3] - Sqrt[2])*(Sqrt[2] + Sqrt[3])]

Out[⋅]:= 1

In[⋅]:= Element[%, Integers]

Out[⋅]:= True

Some functions accept domains as one of their arguments. For example, to solve
a given algebraic equation over the reals we can use

In[⋅]:= x /. Solve[x^3 == 1, x, Reals]

Out[⋅]:= {1}

In many cases if we do not specify the domain, Mathematica® assumes that it is
working with complex numbers. For instance, just solving the cubic equation above
without specifying the domain yields three roots:

In[⋅]:= x /. Solve[x^3 == 1, x]

Out[⋅]:= {1, −(−1)1/3, (−1)2/3}
Wecanalsouse adifferentmethod to obtain the real solutions: to findfirst the complex
ones and then select only the real ones:

In[⋅]:= Select[x /. Solve[x^3 == 1, x], Element[#1, Reals] & ]

Out[⋅]:= {1}

Returning to the functions Simplify and FullSimplify, there are several useful
options. We can add an option TimeConstraint to FullSimplify to control the time
spent on evaluation. This forcesMathematica® to abort the evaluation once the time
set in TimeConstraint is reached and to return the simplest form of the expression
found so far.

Brought to you by | Chalmers University of Technology
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What Simplify actually does is to try to simplify the given expression using built-
in rules as well as possibly additional rules and information provided by the users.
There is a default sense inwhich one expression is considered as simpler than another
one.

The build-in notion of complexity of an expression (corresponding roughly to its
LeafCount, which is based on the FullForm representation of expressions or the rep-
resentation of expressions by means of the graph-theoretic notion of trees) will not
always agree with what appears “simpler” to human eyes. For instance, Mathemat-
ica® by default considers the expression√x y as “simpler” than√x√y:

In[⋅]:= {LeafCount[Sqrt[x*y]], LeafCount[Sqrt[x]*Sqrt[y]]}

Out[⋅]:= {7, 11}

In[⋅]:= FullForm[Sqrt[x*y]]

Out[⋅]:= Power[Times[x,y], Rational[1,2]]

In[⋅]:= FullForm[Sqrt[x]*Sqrt[y]]

Out[⋅]:= Times[Power[x, Rational[1, 2]], Power[y,

Rational[1,2]]]

In fact,Mathematica®’s default notion of “simplicity” (or rather complexity) can
be changed by the user by means of the options ComplexityFunction and Transfor-

mationFunctions. For example, Mathematica® cannot find any simpler form of the
following expression by using the default ComplexityFunction:

In[⋅]:= FullSimplify[Sin[x]*Cos[x]]

Out[⋅]:= Cos[x] Sin[x]

However, suppose we want to find an expression without any cosines. For this pur-
pose we need to define some function which will “penalize” the presence of cosines.
For example, the complexity function below adds to the default ComplexityFunction
(which is essentially LeafCount) three times the number of occurrences of cosines in
the expression:

In[⋅]:= Simplify[Sin[x]*Cos[x], ComplexityFunction ->

(LeafCount[#1] + 3*Count[#1, _Cos, Infinity] & )]

Out[⋅]:= 1

2
Sin[2 x]

Of course, in this example instead of changing ComplexityFunction one can just use
the build-in function TrigReduce:

In[⋅]:= TrigReduce[Sin[x]*Cos[x]]

Out[⋅]:= 1

2
Sin[2 x]

Simplify has another important option TransformationFunctions. By default,
Simplify uses a number of transformations, which replace an expression by an equiv-
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alent expression. However, some useful functions are not used, since they are gener-
ally time consuming. For example, the function Factor, which tries to factorize poly-
nomials, has a very high time complexity, and therefore this function is not used by
default. However, one can always add it to all functions used automatically as follows:

In[⋅]:= FullSimplify[(x^4 - 16)/(2 + x),

TransformationFunctions -> {Automatic, Factor}]

Out[⋅]:= (−2 + x) (4 + x2)

Compare this with FullSimplify with default options:

In[⋅]:= FullSimplify[(x^4 - 16)/(2 + x)]

Out[⋅]:= −16 + x
4

2 + x

1.3 Assumptions in Mathematica®

It is possible to specify arbitrary symbolic assumptions about variables in the Wol-
fram Language. Assumptions is an option for functions like Simplify, Refine and In-

tegrate and can take the form of equations, inequalities and domains. This option
should not be confusedwith $Assumptions, which is a default setting for Assumptions
and which can be modified temporarily by the function Assuming.

Sometimes it is necessary to specify the domain towhich the values of the symbols
belong. Let us compare the following outputs:

In[⋅]:= Simplify[Abs[x^2]]

Out[⋅]:= Abs[x]2

In[⋅]:= Assuming[Element[x, Reals], Simplify[Abs[x^2]]]

Out[⋅]:= x2

In[⋅]:= Simplify[Abs[Cos[x]] <= 1]

Out[⋅]:= Abs[Cos[x]] ≤ 1

In[⋅]:= Assuming[Element[x, Reals], Simplify[

Abs[Cos[x]] <= 1]]

Out[⋅]:= True

Note that the function Refine, unlike Simplify, just applies assumptions but does
not attempt to make any other simplifications, not related to the assumptions:

In[⋅]:= Refine[Sqrt[x^2], Assumptions -> {Element[x, Reals]}]

Out[⋅]:= Abs[x]

In[⋅]:= Assuming[x > 0, Refine[Sqrt[x^2] +

Cos[x]^2 + Sin[x]^2]]

Out[⋅]:= x + Cos[x]2 + Sin[x]2
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6 | 1 Number systems

In[⋅]:= Simplify[Sqrt[x^2] + Cos[x]^2 + Sin[x]^2,

Assumptions -> {x > 0}]

Out[⋅]:= 1 + x

BydefaultMathematica®makes simplificationswhich are valid for complex num-
bers. If the user wants some simplifications which require additional assumptions
which do not hold in general, one has to use the Assumptionsmechanism. This is, for
example, whyMathematica® does not give the answer True to the following identity:

In[⋅]:= Simplify[Sqrt[x*y] == Sqrt[x]*Sqrt[y]]

Out[⋅]:=√x y == √x√y

However,

In[⋅]:= Assuming[x >= 0 && y >= 0, Simplify[

Sqrt[x*y] == Sqrt[x]*Sqrt[y]]]

Out[⋅]:= True

The alternative form, which is more useful, is

In[⋅]:= Simplify[Sqrt[x]*Sqrt[y], Assumptions ->

{x >= 0 && y >= 0}]

Out[⋅]:=√x y

Note that the assumption x > 0, or any assumption that uses an inequality sign, au-
tomatically implies that x is real.

One can also use a global variable $Assumptions to define certain assumptions
that will hold throughout the session. For example,

In[⋅]:= $Assumptions = {Element[_, Reals]};

In[⋅]:= $Assumptions

Out[⋅]:= {_ ∈ ℝ}

This is a quick way to make the assumption that everything (this is what the pattern _
stands for) in any expression is real, for example,

In[⋅]:= Simplify[Re[x*y]]

Out[⋅]:= x y

(of course we could have used the more limited assumption that the symbols x and y
represent real numbers).

To remove the global assumptions we should use

In[⋅]:= $Assumptions = True

and we can see that the following expression above will then not be simplified:

In[⋅]:= Simplify[Re[x*y]]

Out[⋅]:= Re[x y]
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We can also locally change assumptions:

In[⋅]:= Block[{$Assumptions = a > 0}, Refine[Sqrt[a^2]]]

Out[⋅]:= a

The function Assuming is effectively equivalent to this block construction.
There exists one exception to the discussion above: the function PowerExpand.

This function, without any assumptions, will perform a transformation of powers in
the expression, which might not be true in general. For example,

In[⋅]:= PowerExpand[Sqrt[x*y]]

Out[⋅]:=√x√y

As we know, this only holds if x and y are both positive. The reason for that behav-
ior is simply practical convenience. If PowerExpand is used with Assumptions, then it
behaves like any other Mathematica® function; in other words, it only performs ex-
pansions that are valid under the given assumptions. For example, the following ex-
pansion is valid only for x ≥ 0:

In[⋅]:= PowerExpand[Sqrt[x^2]]

Out[⋅]:= x

Suppose we want to add the assumption x < 0. Then PowerExpand gives the correct
answer:

In[⋅]:= PowerExpand[Sqrt[x^2], Assumptions -> x < 0]

Out[⋅]:= −x

Note that this is the only case in which Assuming and Assumptions are not equivalent.
For example, in the following expression PowerExpand ignores conditions in the func-
tion Assuming and gives an incorrect answer:

In[⋅]:= Assuming[x < 0, PowerExpand[Sqrt[x^2]]]

Out[⋅]:= x

Therefore, one needs to be aware of the fact that assumptions in PowerExpandmust be
given by means of the Assumptions option and any other way (even the global setting
with $Assumptions) will be ignored.

1.4 Quantifiers

Quantifiers play a big role in formulating axioms and theorems in pure mathemat-
ics. In algorithmic (computer) mathematics, they can also be used to solve non-trivial
problems, by means of an algorithm called “quantifier elimination”.

InMathematica® quantifiers are expressed by functions ForAll and Exists. They
can be entered with the help of the Writing Assistant palette.
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8 | 1 Number systems

In[⋅]:= ForAll[x, Element[x, Reals], x > 0]

Out[⋅]:= ∀x,x∈ℝ x > 0
In[⋅]:= ∀x,x∈ℝ x > 0

Out[⋅]:= ∀x,x∈ℝ x > 0
In[⋅]:= Exists[x, Element[x, Reals], x > 0]

Out[⋅]:= ∃x,x∈ℝ x > 0
By default Mathematica® does not apply any rules to quantified expressions, and
therefore we have the same expression as the input and the output.

Applying Reduce or Resolve (and also FullSimplify) to an expression with quan-
tifiers will causeMathematica® to use a famous algorithm called “quantifier elimina-
tion”, which (in certain situations) will return an equivalent expression without any
quantifiers and without the associated bound variables (variables to which the quan-
tifiers apply). The free variables (the ones that are not quantified) will remain. For
instance, in the following example there is one bound variable x and a free variable a.
After quantifier elimination an explicit condition on the parameter a is obtained:

In[⋅]:= Resolve[ForAll[x, x^2 + a > 0], Reals]

Out[⋅]:= a > 0

If there are no free variables then the result should be either True or False.
The difference between Resolve and Reduce is that Reducewill often return amore

“reduced” expression, but at the cost of longer computation. In simple cases both
functions will return the same answer:

In[⋅]:= Resolve[ForAll[x, Element[x, Reals], x > 0]]

Out[⋅]:= False

In[⋅]:= Reduce[ForAll[x, Element[x, Reals], x > 0]]

Out[⋅]:= False

In[⋅]:= Resolve[Exists[x, Element[x, Reals], x^2 < 0]]

Out[⋅]:= False

In[⋅]:= Reduce[Exists[x, Element[x, Reals], x^2 < 0]]

Out[⋅]:= False

Let us try something more complicated. We ask: “what is the condition on b and
c which will make the quadratic below positive for all values of x?”

In[⋅]:= Resolve[ForAll[x, Element[x, Reals],

x^2 + b*x + c > 0]]

Out[⋅]:= b ∈ ℝ&& b2 − 4c < 0&& c > 0

This is an example where we can see that Reduce gives a more “reduced” answer than
Resolve:
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1.4 Quantifiers | 9

In[⋅]:= Reduce[ForAll[x, Element[x, Reals],

x^2 + b*x + c > 0]]

Out[⋅]:= c > 0&& − 2√c < b < 2√c

Here is another interesting problem: we ask Mathematica® for the conditions
when the quadratic ax2 + bx + c has two equal roots:

In[⋅]:= Resolve[ForAll[{x, y}, a*x^2 + b*x + c == 0 &&

a*y^2 + b*y + c == 0, x == y], {a, b, c}]

Out[⋅]:= (a = 0&& b ̸= 0) || (a = 0&& c ̸= 0) || (a ̸= 0&& c =
b2

4a
)

Unfortunately the quantifier elimination algorithm, although surprising and
beautiful, has a very high complexity, which means that if we try to use it on ex-
pressions with a larger number of free parameters, it will not finish in a reasonable
time even on a very fast computer.

It is important to know thatMathematica® assumes that the symbols are complex
numbers (unless they appear in an inequality) if no information about the domain is
given. This is demonstrated by the following example, whereMathematica® assumed
that x is a complex number:

In[⋅]:= Reduce[Exists[x, x^2 == -1]]

Out[⋅]:= True

If we want x to be real, we have to explicitly specify this:

In[⋅]:= Reduce[Exists[x, Element[x, Reals], x^2 == -1]]

Out[⋅]:= False

There are certain situations where we may get a surprising answer, for example,

In[⋅]:= Reduce[Exists[x, Element[x, Complexes], x^2 < 0]]

Out[⋅]:= False

This looks like a mistake, since of course there are complex numbers whose square
is negative. However (for reasons connected with efficiency) the function Reduce by
default assumes that anything that appears in an inequality is real. So if we really
want to work with complex numbers we must inform Reduce about that explicitly by
specifying Complexes as the domain of Reduce (it is not enough just to use Complexes
inside the quantifier):

In[⋅]:= Reduce[Exists[x, x^2 < 0], Complexes]

Out[⋅]:= True

We state this here only for completeness, because we will be generally working with
real numbers and such issues will not arise.
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1.5 Complex numbers

There is a subject called Complex Analysis, which deals with functions of complex
numbers. In this bookwe shall be primarily concernedwith real analysis (althoughwe
will sometimes digress into complex topics) but we will begin with complex numbers.

In Wolfram Language we can work with both explicit complex numbers and sym-
bolic complex variables. There aremany built-in functions toworkwith complex num-
bers (e. g., to evaluate the real and imaginary part, the absolute value and the argu-
ment, to compute the complex conjugate of a given complex number, to convert to
different forms of a complex number and so on).

When dealing with complex numbers, one of the most useful functions is Com-
plexExpand. ComplexExpand can work with numerical complex expressions, which it
arranges in the standard form for representing complex numbers (the real part + the
imaginary part):

In[⋅]:= ComplexExpand[1/(1 + I)]

Out[⋅]:= 1

2
−

I

2

ComplexExpand can also work with symbolic complex variables. By default, with-
out the second argument in ComplexExpand, all variables are assumed to be real,
whereas if we specify that one or more variables are complex in the second argument,
then the output is different:

In[⋅]:= ComplexExpand[a + I*a + I*b]

Out[⋅]:= a + I (a + b)

In[⋅]:= ComplexExpand[a + b, b]

Out[⋅]:= a + I Im[b] + Re[b]

In[⋅]:= ComplexExpand[a + b, {a, b}]

Out[⋅]:= I (Im[a] + Im[b]) + Re[a] + Re[b]

If an expression is real, then ComplexExpand acts just like Expand:

In[⋅]:= ComplexExpand[(a + b)^3]

Out[⋅]:= a3 + 3 a2 b + 3 a b2 + b3

If the expression is complex, then it will be arranged in the standard form:

In[⋅]:= ComplexExpand[(a + I*b)^3]

Out[⋅]:= a3 − 3 a b2 + I (3 a2 b − b3)

There is an option TargetFunctions of the function ComplexExpand. With this option
ComplexExpandwill try to give the result in terms of functions that are specified by the
user from the list Re, Im, Abs, Arg, Conjugate, Sign. By default Re and Im are used.
This is illustrated by the following examples, if the expression contains a complex
symbol:
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1.6 Real numbers | 11

In[⋅]:= ComplexExpand[a + b*I, a]

Out[⋅]:= I (b + Im[a]) + Re[a]

In[⋅]:= ComplexExpand[a + b*I, a, TargetFunctions ->

{Arg, Abs}]

Out[⋅]:= Abs[a] Cos[Arg[a]] + I (b + Abs[a] Sin[Arg[a]])

1.6 Real numbers

Rigorous courses of analysis (or any other branch of mathematics) begin with certain
statements (called axioms) about undefined “primitive objects”,which are assumed to
be true (because one always has to begin somewhere). Then everything else is proved
by using these statements and basic rules of logic (which, we assume, everyone is
familiar with). However, the choice of both the “primitive objects” and the “axioms”
is not unique. This is true even if we want to make the number of axioms as small as
possible or as “basic” level as possible.

It is commonly agreed that the most basic level is that of set theory, and one can
indeed set up the foundations of mathematics (and hence also of analysis) beginning
with axioms of set theory [15]. There are, in fact, several such “axiomatic set theories”
(e. g., the Zermelo–Fraenkel set theory). Eachof themallowsone to construct thenatu-
ral numbers beginningwith sets. Oncenatural numbers havebeen constructed, Peano
axioms, which will be discussed in Section 1.8, then become theorems, and one can
then construct the rationals, and eventually the real numbers.

Another possible approach is to start with the natural numbers (satisfying the
Peano axioms) and then construct the rationals, reals and complexes. To do this we
still need to use the language of set theory, but we can treat it as part of “logic”.

Finally, we can take the quickest approach but also one that makes the most as-
sumptions and introduces axioms that uniquely define the real numbers. The integers
and the rationals are then defined as special kinds of real numbers.

Here we will take the last axiomatic approach to real numbers but we shall omit
the axioms, assuming that the reader is already familiar with them (see, for example,
[14]). In other words, we will assume that there exists a setℝwith three binary opera-
tions + , ⋅ and > such that ℝ is a complete (commutative) ordered field. The meaning
of “complete” will be explained later.

Mathematica® has a number of built-in “rules” which effectively implement these
axioms for both complex and real numbers (recall that by defaultMathematica® treats
all variables as complex numbers).

Certain properties of complex numbers are carried out automatically on evalua-
tion. For example,Mathematica® by default assumes that both addition andmultipli-
cation are commutative and associative so it immediately converts b+a to a+b, and b a
to a b (i. e., variables are automatically arranged in the canonical lexicographic order).

Brought to you by | Chalmers University of Technology
Authenticated

Download Date | 10/7/19 9:47 AM



12 | 1 Number systems

Similarly, the associative laws for addition andmultiplication are used automatically;
for instance

In[⋅]:= (a + b) + c

Out[⋅]:= a + b + c

However, the distributive law is not applied automatically:

In[⋅]:= a*(b + c)

Out[⋅]:= a (b + c)

If we wantMathematica® to apply it we need to use some other function, for example
Expand or Distribute:

In[⋅]:= Expand[a*(b + c)]

Out[⋅]:= a b + a c

In[⋅]:= Distribute[a*(b + c)]

Out[⋅]:= a b + a c

The reason why Mathematica® applies certain basic operations automatically is
due to the need for efficiency in computations. This need even forces Mathematica®

to perform certain operations, like cancelations, without checking that no division by
0 is involved:

In[⋅]:= (x*(x - y))/(x - y)

Out[⋅]:= x

The question of mathematical correctness of such a cancelation is moot. One could
argue that the very fact thatwewrite 1/x implies that x is non-zero.However, automatic
canceling of common factors can (very rarely) have surprising consequences and even
lead towrong answers, so one should be aware of it. This problem is unavoidable since
there is no algorithm that can decide in general if an expression is zero or not.

Mathematica® also has a built-in non-commutativemultiplication, denoted by **
(though we shall not use it here):

In[⋅]:= Distribute[(a + b) ** (a + b)]

Out[⋅]:= a ** a + a ** b + b ** a + b ** b

One can check inMathematica® that the method of “quantifier elimination” will
verify the axioms of an ordered field for real numbers. For example, we use Resolve
(or Reduce) and quantifiers to check that the distributive rule holds:

In[⋅]:= Resolve[ForAll[{x, y, z}, Element[{x, y, z}, Reals],

x*(y + z) == x*y + x*z]]

Out[⋅]:= True
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Similarly, other axioms can be checked, for instance

In[⋅]:= Resolve[ForAll[{x, y, z}, Element[{x, y, z}, Reals]

&& x <= y, x + z <= y + z]]

Out[⋅]:= True

In[⋅]:= Resolve[ForAll[{x, y, z}, z >= 0 &&

x <= y, x*z <= y*z]]

Out[⋅]:= True

The following expression contains one quantified (bound) variable x and two free
variables y and z:

In[⋅]:= Exists[{x}, Element[{x, y, z}, Reals],

x + y == 0 && x + z == 0]

The statement says that there exists a (complex) number x which has two additive
inverses, y and z. Eliminating quantifiers will tell us that y and z must be equal. This
can be viewed as a proof that every number has a unique additive inverse.

In[⋅]:= Reduce[Exists[{x}, Element[{x, y, z}, Reals],

x + y == 0 && x + z == 0]]

Out[⋅]:= z ∈ ℝ&& y == z

The axioms of ordered field are insufficient to determine the real numbers
uniquely. In other words, there exist many different ordered fields, which are not
“isomorphic” to ℝ. (Two sets with additional mathematical structure are said to be
isomorphic if there exists a bijective mapping between them, such that both the map-
ping and the inverse preserve the structure.) In fact, the set ℚ of rational numbers
is also an ordered field, and the inclusion ℚ → ℝ preserves all the structure, but,
of course, it is not a bijection (the real numbers are uncountable). In fact, there is
just one additional axiom (of completeness) which is needed to determine the real
numbers uniquely, but we shall leave it for later (see Section 1.12).

One consequence of the fact that only real numbers can be ordered is that any
function that involves ordering (e. g., functions that maximize or minimize) can be
applied only to subsets of real numbers or to real-valued functions.

1.7 Infinities

As usual in analysis we extend the real line by two symbols∞ and −∞. InMathemat-
ica® we can simply input them as Infinity (∞ in TraditionalForm) and -Infinity

(−∞), but it is useful to note that the full forms of these expressions are DirectedIn-
finity[1] and DirectedInfinity[-1]:

In[⋅]:= FullForm[Infinity]

Out[⋅]:= DirectedInfinity[1]
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In fact, Mathematica®’s function DirectedInfinity gives an “infinity” in the direc-
tion of each complex number z (for instance, DirectedInfinity[I] denotes infinity
in the direction pointing up along the imaginary axis). This may be useful in certain
problems of complex analysis, for instance

In[⋅]:= Limit[E^z, z -> DirectedInfinity[-1]]

Out[⋅]:= 0

In[⋅]:= Limit[E^z, z -> DirectedInfinity[1]]

Out[⋅]:=∞

There is also a non-directed complex infinity, ComplexInfinity, whose FullForm
is DirectedInfinity[ ]:

In[⋅]:= FullForm[ComplexInfinity]

Out[⋅]:= DirectedInfinity[ ]

ComplexInfinitywill play no role in this book but it will sometimes occur in the out-
put of some computations.

There is also another symbol, Indeterminate, which is used whenever a certain
operation cannot be performed:

In[⋅]:= 0/0

⋅ ⋅ ⋅ Power: Infinite expression 1
0 encountered.

⋅ ⋅ ⋅ Infinity: Indeterminate expression 0 ComplexInfinity encountered.

Out[⋅]:= Indeterminate

Certain arithmetical operations are defined on infinities. Those operations which
are not defined return Indeterminate. Here we give a couple of examples of the ones
that are defined:

In[⋅]:= Infinity + Infinity

Out[⋅]:=∞

In[⋅]:= Infinity*Infinity

Out[⋅]:=∞

In[⋅]:= Infinity + 1

Out[⋅]:=∞

In[⋅]:= 2*Infinity

Out[⋅]:=∞

In[⋅]:= 1/Infinity

Out[⋅]:= 0

Examples of undefined operations are

In[⋅]:= Infinity - Infinity

⋅ ⋅ ⋅ Infinity: Indeterminate expression −∞ +∞ encountered.

Out[⋅]:= Indeterminate
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1.8 Integers and the Principle of Mathematical Induction | 15

In[⋅]:= Infinity/Infinity

⋅ ⋅ ⋅ Infinity: Indeterminate expression 0∞ encountered.

Out[⋅]:= Indeterminate

In[⋅]:= 0*Infinity

⋅ ⋅ ⋅ Infinity: Indeterminate expression 0∞ encountered.

Out[⋅]:= Indeterminate

Note also that

In[⋅]:= 1/0

⋅ ⋅ ⋅ Power: Infinite expression 1
0 encountered.

Out[⋅]:= ComplexInfinity

Whenever operations involving infinities are defined, they obey all the axioms of an
ordered field:

In[⋅]:= 2 < Infinity

Out[⋅]:= True

In[⋅]:= -Infinity < -10

Out[⋅]:= True

1.8 Integers and the Principle of Mathematical Induction

As we have already mentioned before, the most common axiomatic approach to anal-
ysis is based on constructing the real numbers after beginning with sets or with inte-
gers. For example, one can begin with the so called system of axioms of Peano ([14]).

Peano’s axioms. There exists a setℕwith an element 1 ∈ ℕ and a function S : ℕ→
ℕ (called the successor function) which satisfies the following axioms:
1. ∀n, n∈ℕ ∃S(n)S(n) ∈ ℕ (each n ∈ ℕ has a successor);
2. S(n) ̸= 1 (1 is not the successor of any n ∈ ℕ);
3. S(n) = S(m) ⇔ n = m (if m and n inℕ have the same successor, then m = n, i. e.,

two distinct elements inℕ cannot have the same successor);
4. if A ⊂ ℕ has the properties

– 1 ∈ A and
– n ∈ A⇒ S(n) ∈ A,
then A = ℕ.

The last axiom is called the induction axiom.
It turns out that by starting only with these axiomswe can construct the set of real

numbers satisfying all the axioms (including the completeness axiombelow). Alterna-
tively, if we start with the axioms of real numbers, we first define S : ℝ+ → ℝ+ (where
ℝ+ = {x ∈ ℝ | x > 0}) by S(x) = x + 1. A subset A of the real numbers possessing the
property in the hypothesis of axiom 4 is called an inductive subset ofℝ. For example,
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16 | 1 Number systems

ℝ+ is an inductive subset ofℝ.Wenowdefineℕ as the intersectionof all inductive sub-
sets ofℝ+. It is easy to prove thatℕ defined in this way satisfies all of Peano’s axioms.
In particular, axiom 4 now becomes a theorem (known as the “Principle of Mathemat-
ical Induction”), whose proof follows almost trivially from the definition. The result is
extremely useful in proving theorems in which some statement is asserted to hold for
all natural numbers (or possibly integers larger than some given integer).

The Principle of Mathematical Induction works as follows. Suppose we wish to
prove that some sentence An, which depends on the integer n, holds for all n ≥ 1.
We consider the set A = {k ∈ ℕ | Ak is true}. We first prove that 1 ∈ A, i. e., A1 is true.
Finally we prove that n ∈ A ⇒ n + 1 ∈ A. Thus, A satisfies the hypothesis of axiom 4,
hence it is equal toℕ. Thus An is true for all n ∈ ℕ.

Let us consider two examples.

1.8.1 Example

Consider the finite sum
n
∑
k=1 k3 = 13 + 23 + . . . + n3.

Let us askMathematica® to find a closed form formula for this sum:

In[⋅]:= Sum[i^3, {i, 1, n}]

Out[⋅]:= 1

4
n2 (1 + n)2

Now that we know the answer let us try to prove it by induction. Let A1 state that 13 =
1222/4, which is true. Now suppose An is true for some n ∈ ℕ. Then

n+1
∑
k=1 k3 = n

∑
k=1 k3 + (n + 1)3 = 14n2(n + 1)2 + (n + 1)3
=
1
4
(n + 1)2(n2 + 4n + 4) = 1

4
(n + 1)2(n + 2)2.

Hence, An+1 is also true.
Next we give a different example, which illustrates how Mathematica® can be

used to suggest a solution to a problem, which it alone cannot solve.

1.8.2 Example

Let pn denote the n-th prime number. Show that ∀n, n∈ℕ&& n≥12 pn ≥ 3n. Before we come
to the proof (where we will use induction), let us try to see how we could discover
this statement with the help of Mathematica®. Mathematica® has a built-in function
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1.8 Integers and the Principle of Mathematical Induction | 17

Prime[n], which gives the n-th prime number. To check if the theorem is true for small
integers n we can plot the functions Prime[n] and 3n together:

In[⋅]:= DiscretePlot[{Prime[n], 3*n}, {n, 1, 50}, PlotMarkers

-> Automatic, Filling -> None]

Figure 1.1

Wesee that once thegraphof the functionPrime[n] (discs) crosses that of 3n (squares),
it seems to stay above the latter, although the rate of growth of Prime[n] is not always
greater than that of 3n (which is three). To see how Prime[n] increases, we will look
at the graph of the function that measures the differences between successive primes:

In[⋅]:= DiscretePlot[Prime[i + 1] - Prime[i],

{i, 1, 50, 1}, Joined -> True]

Figure 1.2
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We see (what is actually quite obvious) that the differences must be at least 2. The
question of whether there are infinitelymany pairs of primes differing by 2 is a famous
unsolved problem (recently there have been some remarkable results2). We can also
see that two successive “jumps” of size 2 occur once (3, 5, 7) and it is easy to prove that
this can never happen again. So now it should be easy to complete a proof: basically
the function 3n goes up in steps of 3, the function Prime can go up by 2 but in the next
step it has to go up by at least 4. Once it is ahead by at least 2, it can never fall behind.

Let us now give a formal inductive proof. We first check that the statement is true
for n = 12. Indeed,

In[⋅]:= Prime[12]

Out[⋅]:= 37

In[⋅]:= 12*3

Out[⋅]:= 36

We now assume that the result holds for some n ≥ 12, that is, pn > 3n, and we will
try to show that pn+1 > 3n + 3. There are two possibilities. Either pn+1 − pn > 2, in
which case pn+1 − pn ≥ 4 (the difference must be even) and the inductive step follows,
or pn+1 − pn = 2. But then, by the inductive hypothesis pn+1 = pn + 2 > 3n + 2, hence
pn+1 ≥ 3n+ 3. But, of course, we cannot have pn+1 = 3n+ 3, hence pn+1 > 3n+ 3 and the
inductive step is complete.

1.9 Algebraic equations and algebraic numbers

Although real analysis can be studied without any mention of complex numbers, it is
not a good approach when one is interested in the way computer programs do analy-
sis. That is because many algorithms, even those that compute ultimately real quan-
tities, make use of complex numbers. Probably the most profound example of this
phenomenon is the Risch algorithm for computing indefinite integrals, which we will
discuss later on in this book. The most famous classic example is solving polynomial
equations (this example, of course, really belongs to algebra rather than analysis but
we shall not engage in such pedantry here).Mathematica® by default assumes, unless
specified otherwise, that one is working over the field of complex numbers when solv-
ing algebraic equations. As mentioned in Section 1.2, in order to obtain a real answer
one needs to specify additionally the third argument, the domain Reals.

Instead of the function Solve we will often use the function Reduce, which can
solve a variety of equations and inequalities but gives answers in a different form.

2 https://www.nature.com/news/first-proof-that-infinitely-many-prime-numbers-come-in-pairs-
1.12989
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1.9 Algebraic equations and algebraic numbers | 19

Both functionshave their advantages, but tounderstand thembetter the reader should
consult the documentation.

Now let us now try an equation with a parameter:

In[⋅]:= sols = Solve[x^3 - a == 0, x]

Out[⋅]:= {{x -> a1/3}, {x -> −(−1)1/3 a1/3}, {x -> (−1)2/3 a1/3}}
It is easy to prove that a cubic polynomial equationmust possess at least one real root.
Mathematica® can verify that they satisfy the original equation:

In[⋅]:= Simplify[x^3 - a /. sols]

Out[⋅]:= {0, 0, 0}

Now, suppose we only wanted to know the real root. We can askMathematica® to find
it (using either Solve or Reduce):

In[⋅]:= Reduce[x^3 - a == 0, x, Reals]

Out[⋅]:= x == Root[-a + #1^3 & , 1]

This strange looking answer tells us that there is exactly one real root. To express it,
Mathematica® does not use radicals but the “root object” Root. It is a symbolic ex-
pression beginning with the head Root, whose second argument is a number from 1 to
the degree of the equation (in this case 1). You should think of these “root objects” as
symbolic expressions like √2 or √a. If we replace a by a number, Mathematica® can
compute this expression with an arbitrary precision. For example

In[⋅]:= N[Root[-2 + #1^3 & , 1], 3]

Out[⋅]:= 1.26

This confirms that the root found byMathematica® above is indeed real. We can also
check that the other roots are not:

In[⋅]:= N[Reduce[x^3 - 2 == 0, x], 3]

Out[⋅]:= x == -0.630 - 1.091 I || x == 1.26 ||
x == -0.630 + 1.091 I

One more useful function, the function Roots (not Root), is used to obtain a dis-
junction (factorization) of equations which represent the roots of a polynomial equa-
tion:

In[⋅]:= Roots[(x - 1)*(x - 2)^2*(x - 3)^2 == 0, x]

Out[⋅]:= x == 3 || x == 3 || x == 2 || x == 2 || x == 1

Compare this with the output given by Reduce, where the multiple roots are not taken
into account:

In[⋅]:= Reduce[(x - 1)*(x - 2)^2*(x - 3)^3 == 0, x]

Out[⋅]:= x == 1 || x == 2 || x == 3
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20 | 1 Number systems

Let us consider another example:

In[⋅]:= rts = x /. Solve[x^3 - 15*x + 2 == 0, x]

Out[⋅]:= { 5

(−1 + 2 I√31)1/3 + (−1 + 2 I√31)1/3,
−

5(1 + I√3)
2(−1 + 2 I√31)1/3 − 1

2
(1 − I√3)(−1 + 2 I√31)1/3,

−
5(1 − I√3)

2(−1 + 2 I√31)1/3 − 1

2
(1 + I√3)(−1 + 2 I√31)1/3}

The reason why this may appear strange is that actually all the roots of this equa-
tion are real, as can be shown by askingMathematica®:

In[⋅]:= FullSimplify[(Element[#1, Reals] & ) /@ rts]

Out[⋅]:= {True, True, True}

The problem here is that, although the roots are real, there is no way to express
them in terms of radicals without using complex i. One can, of course, show that the
roots are real by evaluating them numerically, or by using the function ComplexEx-

pand:

In[⋅]:= Simplify[ComplexExpand[rts]]

Out[⋅]:= {√5 (Cos[1
3
ArcTan[2√31]] + √3 Sin[

1

3
ArcTan[2√31]]) ,

−2√5 Cos[
1

3
ArcTan[2√31]],

√5 (Cos[
1

3
ArcTan[2√31]] − √3 Sin[

1

3
ArcTan[2√31]])}

We have obtained expressions for all three roots that are clearly real but they are not
expressed in terms of radicals. The famous theorems due to Abel and (more generally)
to Galois state that the roots of arbitrary polynomial equations of degree greater or
equal to five cannot be expressed in terms of radicals (like 3√2 + i).Mathematica® can
still solve such equations, but expresses the solutions using Root:

In[⋅]:= x /. Solve[x^5 + 2*x^3 + x - 2 == 0, x]

Out[⋅]:= {Root[−2 + #1 + 2 #13 + #15 &, 1],
Root[−2 + #1 + 2 #13 + #15 &, 2], Root[−2 + #1 + 2 #13 + #15 &, 3],
Root[−2 + #1 + 2 #13 + #15 &, 4], Root[−2 + #1 + 2 #13 + #15 &, 5]}

Both Root objects and radicals are examples of algebraic numbers.3 Of course,
some special higher degree equations can be solved in radicals:

3 http://reference.wolfram.com/language/ref/AlgebraicNumber.html
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1.10 Non-algebraic equations | 21

In[⋅]:= sols = x /. Solve[x^5 + 2*x^3 + x - 1 == 0, x]

Out[⋅]:= {−(−1)1/3, (−1)2/3, 1
3
(1 − 5(

2

11 + 3√69
)
1/3
+ (

1

2
(11 + 3√69))

1/3
) ,

1

3
−

1

6
(1 + I√3) (

1

2
(11 + 3√69))

1/3
+

5(1 − I√3)
3 × 22/3(11 + 3√69)1/3 ,

1

3
−

1

6
(1 − I√3) (

1

2
(11 + 3√69))

1/3
+

5(1 + I√3)
3 × 22/3(11 + 3√69)1/3 }

RootReduce will try to reduce the solutions to a simpler form or to convert the
radicals to Root objects (except for the case of roots of degree 1 and 2):

In[⋅]:= RootReduce[sols]

Out[⋅]:= {1
2
(−1 − I√3),

1

2
(−1 + I√3), Root[−1 + 2 #1 − #12 + #13 &, 1],

Root[−1 + 2 #1 − #12 + #13 &, 2], Root[−1 + 2 #1 − #12 + #13 &, 3]}

On the other hand, the inverse operation, ToRadicals, only works in special cases,
e. g.,

In[⋅]:= ToRadicals[Root[5 - 4*#1^3 + #1^6 & , 6]]

Out[⋅]:= (2 + I)1/3
1.10 Non-algebraic equations

In this section we will discuss one more feature of Mathematica®, which appeared
only in version 9, the ability to solve exactly non-algebraic equations, that is, equa-
tions in which functions other than polynomials and rational functions (and also ex-
pressions that can be reduced to polynomials, e. g., by a substitution) appear.

Consider, for example, the equation

In[⋅]:= Exp[x] == Sin[x] + x

Out[⋅]:= Ex == x + Sin[x]

This is, of course, a transcendental (non-algebraic) equation and most computer pro-
grams can only solve it approximately. If we try Solve or Reduce to solve this equation,
without any additional information we will have

In[⋅]:= Solve[Exp[x] == Sin[x] + x, x]

⋅ ⋅ ⋅ Solve: This system cannot be solved with the methods available

to Solve.

Out[⋅]:= Solve[Ex == x + Sin[x], x]

However,Mathematica® can prove that this equation has no real solutions:

In[⋅]:= Solve[Exp[x] == Sin[x] + x, x, Reals]

Out[⋅]:= {}

It can also find exact complex solutions in any bounded region inℂ. For instance, we
have two solutions that lie in the unit disk:
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22 | 1 Number systems

In[⋅]:= sols = x /. Solve[Exp[x] == Sin[x] + x && Abs[x] <= 1,

x]

Out[⋅]:= {Root[{−E#1 + Sin[#1] + #1&, 0.69512021780453778395228754266096116534888601484275672699242−
0.71872357647417749581491533428206539507394356773736262990844 I}], Root[{−E#1 + Sin[#1] + #1&, 0.69512021780453778395228754266096116534888601484275672699242+
0.71872357647417749581491533428206539507394356773736262990844 I}]}

Mathematica® uses its own system for naming and distinguishing these solutions.
These solutions are represented by Root objects. In the case of algebraic equations
Root objects are ordered and numbered. In the case of non-algebraic equations, in-
stead of ordering and numbering them,Mathematica® gives an approximation which
distinguishes different roots. These roots can of course be computed to an arbitrary
precision:

In[⋅]:= N[First[sols], 3]

Out[⋅]:= 0.695 - 0.719 I

Traditional methods (e. g., Newton’s method) can only solve such equations ap-
proximately and require starting values. The function FindRootusesNewton’smethod
(or a variant of the secantmethod) to compute numerical solution to the equationwith
a given initial condition (which can be complex):

In[⋅]:= FindRoot[Exp[x] == Sin[x] + x, {x, 1 + I}]

Out[⋅]:= {x -> 0.69512 + 0.718724 I}

Unlike Solve and Reduce, FindRoot can return a “false” root:

In[⋅]:= FindRoot[Exp[x] == Sin[x] + x, {x, 1}]

⋅ ⋅ ⋅ FindRoot: The line search decreased the step size to within

tolerance specified by AccuracyGoal and PrecisionGoal but was

unable to find a sufficient decrease in the merit function.

You may need more than MachinePrecision digits of working

precision to meet these tolerances.

Out[⋅]:= {x -> 0.601346}

Note that FindRoot can also work with systems of equations.
In general,Mathematica® can find the roots of any equation in one variable given

by an analytic function (i. e., one that has a convergent Taylor expansion at every point
of its domain; see Chapter 6). The methods that it uses are too advanced to be de-
scribed in this book, but we shall make use of this ability later on.

1.11 Sequences of real numbers and their limits

A sequence of real numbers a1, a2, . . . , an, . . . is a function a : ℕ → ℝ, where an =
a(n). We shall usually denote such a sequence by {an}. Mathematica® has no special
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1.11 Sequences of real numbers and their limits | 23

objects corresponding to the notion of a sequence (the function Sequence is a pro-
gramming rather than a mathematical concept) but sometimes it is useful to simulate
the behavior of sequences by using lists. For example

In[⋅]:= Table[(-1)^n*(1/n), {n, 1, 8}]

Out[⋅]:= {−1, 1
2
,−

1

3
,
1

4
,−

1

5
,
1

6
,−

1

7
,
1

8
}

can be viewed as the beginning (the first eight terms) of the sequence {(−1)n/n}.
A sequence {an} is said to be monotone if it is increasing, i. e., an+1 ≥ an for all n,

or if it is decreasing, i. e., an+1 ≤ an for all n. If a strict inequality holds, then we say
that the sequence is strictly monotone.

We say that a sequence {an} tends to a limit a ∈ ℝ, as n tends to infinity, and
write limn→∞ an = a (or an → a), if given any ε > 0 we can find an integer n0(ε) (the
notation is meant to remind us that this integer depends on ε) such that |an − a| < ε
for all n ≥ n0(ε). We say that a sequence {an} tends to∞ (−∞) if given any M ∈ ℝ
there exists n0(M) such that an > M (an < M) for all n ≥ n0(M). A sequence {an} is
called convergent if it has a limit inℝ. When limn→∞ an =∞ (or −∞) we say that {an}
is divergent to∞ or −∞.

One can easily prove the following well-known properties of limits (see, for in-
stance [14, Section 2], [13]).

Properties of limits:
(i) the limit of a convergent sequence is unique, i. e., if an → a and an → b, then

a = b;
(ii) if an → a and f : ℕ→ ℕ is such that limn→∞ f (n) =∞, then af (n) → a;
(iii) if an → a and bn → b, then an + bn → a + b;
(iv) if an → a and bn → b, then anbn → ab;
(v) if an → a and an ̸= 0 for each n and a ̸= 0, then a−1n → a−1;
(vi) if an ≤ A for each n and an → a, then a ≤ A; if an ≥ B for each n and an → a, then

a ≥ B;
(vii) if an = c for all n, then an → c.

Statements (i) to (vi) are also valid when a and b are either∞ or −∞, provided that
the operations on the right hand side (involving a and b) are well-defined (i. e.,Math-
ematica® does not return Indeterminate).

Note also the following important fact: a sequence {an}∞n=1 has a limit a if and only
if the sequence {an}∞n=k has a as its limit for some k ≥ 1. In other words, when consid-
ering limits of sequences one can always ignore any finite number of initial terms of
the sequence.

The following theorems are also very important (see, for instance, [14, Section 2]
for their proofs).
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24 | 1 Number systems

Theorem 1 (The Monotone Convergence Theorem). Every bounded monotonic se-
quence {an} of real numbers converges. Equivalently, a monotonic sequence converges
if and only if it is bounded.

Moreover, if the sequence is increasing, then limn→∞ an = sup({an}). If it is de-
creasing, then limn→∞ an = inf({an}).
Theorem 2 (Bolzano–Weierstrass Theorem). Every bounded sequence has a conver-
gent subsequence.

In versions ofMathematica® older than version 11.2, limits of sequences are com-
puted using the function Limit, which is actually intended for computing limits of
sequences that are obtained by restricting a continuous function a : ℝ → ℝ toℕ. In
version 11.2 of Mathematica® a new function DiscreteLimit was introduced, which
can compute the limits of many sequences which do not arise in this way. For example

In[⋅]:= DiscreteLimit[1/Prime[n], n -> Infinity]

Out[⋅]:= 0

while
In[⋅]:= Limit[1/Prime[n], n -> Infinity]

Out[⋅]:= lim
n→∞ 1

Prime[n]
Note that when an expression is formatted in TraditionalForm the functions Dis-

creteLimit and Limit will look exactly the same:

In[⋅]:= TraditionalForm[DiscreteLimit[f[n], n -> Infinity]]

Out[⋅]//TraditionalForm= lim
n→∞ f(n)

In[⋅]:= TraditionalForm[Limit[f[n], n -> Infinity]]

Out[⋅]//TraditionalForm= lim
n→∞ f(n)

There also exist DiscreteMaxLimit (MaxLimit) and DiscreteMinLimit (MinLimit) for
computing limit superior and limit inferior.

We will use DiscreteLimit although almost all examples that we will consider
can equally well be solvedwith Limit. However, here is an example4 where the results
after using DiscreteLimit and Limit are different:

In[⋅]:= DiscreteLimit[n*Sin[2*Pi*E*n!], n -> Infinity]

Out[⋅]:= 2π

In[⋅]:= Limit[n*Sin[2*Pi*E*n!], n -> Infinity]

Out[⋅]:= Indeterminate

Here we assume that the reader is familiar with the number π and trigonometric func-
tions.

4 https://math.stackexchange.com/questions/76097/what-is-the-limit-of-n-sin-2-pi-cdot-e-cdot-n-
as-n-goes-to-infinity
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1.11 Sequences of real numbers and their limits | 25

Now let us try some other limits.

In[⋅]:= DiscreteLimit[(1 - 1/n)^n, n -> Infinity]

Out[⋅]:= 1
E

In[⋅]:= DiscreteLimit[(1.0001 - 1/n)^n, n -> Infinity]

Out[⋅]:=∞

In[⋅]:= DiscreteLimit[(0.99999 + 1/n)^n, n -> Infinity]

Out[⋅]:= 0.

Note thatMathematica® returned an approximate zero. This is a general principle: if a
formula contains any inexact number (all decimal fractions represent inexact numbers
in Mathematica®) the answer will always be inexact. Generally it is better to avoid
using inexact numbers in symbolic computations. The following expression gives the
exact answer to the example above:

In[⋅]:= DiscreteLimit[(99999/100000 + 1/n)^n, n -> Infinity]

Out[⋅]:= 0

1.11.1 Example

Often a result ismuch easier to prove if we somehowdiscover the answer (by guessing,
using a graphic program orMathematica®). Let us compute ⌊nx⌋ /n, where x is a real
number.

In[⋅]:= DiscreteLimit[Floor[n*x]/n, n -> Infinity]

Out[⋅]:= x

In the case of limits, it is often the case that to prove that an → x it is easier to
prove the equivalent result |an − x|→ 0. In this case we have

0 ≤

x − ⌊nx⌋

n

=
|nx − ⌊nx⌋ |

n
≤
1
n

since |nx − ⌊nx⌋ | ≤ 1.

1.11.2 Example: the number e

Let us start with a well-known limit
In[⋅]:= DiscreteLimit[(1 + 1/n)^n, n -> Infinity]

Out[⋅]:= E

This is usually taken as the definition of the number e. However, one needs to prove
that the limit exists. The argument is based on applying the Monotone Convergence
Theorem. To prove that the sequence (1 + 1/n)n is convergent it is enough to show that
it is bounded and increasing. Let us first verify this withMathematica®:
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26 | 1 Number systems

In[⋅]:= Reduce[(1 + 1/n)^n < 3 && n >= 1, Integers]

Out[⋅]:= n ∈ ℤ&& n ≥ 1

This means thatMathematica® reduced the given condition to “n is an integer greater
than or equal to 1”. Now let us verify that the sequence is increasing. This will take
longer:

In[⋅]:= Reduce[(1 + 1/n)^n < (1 + 1/(n + 1))^(n + 1) &&

n >= 1, Integers]

Out[⋅]:= n ∈ ℤ&& n ≥ 1

Aswehave explained in the prefacewewill (usually) not try to describe the algorithms
that Mathematica® uses to obtain results such as these. This is a fascinating subject
but it is not within the scope of this book.

Let us now consider the mathematical way of proving that the sequence is
bounded, i. e., (1 + 1/n)n < 3. For n = 1 the inequality is obvious. The proof for
n ≥ 2 is very simple and uses only the Binomial Theorem. This theorem is known to
Mathematica® in the form

In[⋅]:= Sum[Binomial[n, i]*a^i*b^(n - i), {i, 0, n}]

Out[⋅]:= (a + b)n

where the binomial coefficient (nk) is given by

In[⋅]:= FunctionExpand[Binomial[n, k], Assumptions ->

{Element[{n, k}, Integers], n >= k >= 0}]

Out[⋅]:= Gamma[1 + n]
Gamma[1 + k] Gamma[1 − k + n]

Mathematica® expresses the answer in terms of the Gamma function, which is the
so called “special function” defined for all complex (and in particular real) numbers
which has the property

In[⋅]:= FullSimplify[Gamma[n + 1], Assumptions ->

Element[n, Integers] && n >= 0]

Out[⋅]:= n!

Now we can easily see that for n ≥ 2

(1 + 1
n
)
n
= 1 + 1 + 1

2!
(1 − 1

n
) +

1
3!
(1 − 1

n
) (1 − 2

n
) + . . . +

1
nn

≤ 1 + 1 + 1
2!
+

1
3!
+ . . . ≤ 1 + 1 + 1

2
+

1
22
+ . . . = 3.

The same binomial formula shows at once that

(1 + 1
n
)
n
≤ (1 + 1

n + 1
)
n+1

(just expanding both sides and comparing the terms). This kind of method cannot be
used byMathematica®. Although it can expand expressions such as
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1.12 Supremum and infimum | 27

In[⋅]:= Expand[(a + b)^5]

Out[⋅]:= a5 + 5a4b + 10a3b2 + 10a2b3 + 5ab4 + b5

it cannot do so with a general n:

In[⋅]:= Expand[(a + b)^n]

Out[⋅]:= (a + b)n

1.12 Supremum and infimum

To state the last of the axioms that characterize the real numbers we need the con-
cepts of the supremum (least upper bound) and the infimum (greatest lower bound) of
a subset of ℝ.

Let A be a non-empty subset ofℝ. A real numberM such that for all a ∈ Awe have
a ≤ M is called an upper bound for A. Similarly, if there is a numberm such that a ≥ m
for all a ∈ A, we say thatm is a lower bound of A. Of course a set may have no upper or
lower bound (when it has one we say that it is bounded above or below) and if it has
one, it has infinitelymanybounds. IfM is anupper boundofA andalso for every upper
boundN wehaveN ≥ M, thenwe say thatM is the supremum (or the least upper bound)
ofA. The infimum (greatest lower bound) is defined similarly. When the setA has only
finitelymany elements, it has both themaximumand theminimumelement and these
are precisely the supremum and the infimum of the set. Infinite subsets of ℝ do not,
of course, necessarily havemaximum orminimum elements (think of open intervals).
However, we have the Axiom of Completeness: every non-empty subset A ⊂ ℝwhich is
bounded above has a supremum.By replacingAwith−A = {−a | a ∈ ℝ}we see that the
analogous statement holds also for sets bounded below, with supremum replaced by
infimum. For sets that are not bounded above we consider the supremum to be equal
to∞ and for sets not bounded below we consider the infimum to be equal to −∞. The
supremum of the empty set is −∞ and the infimum is∞.

A reformulation of the definition of supremum (similarly for infimum) that is often
useful in practical problems is: “a supremumof a setA is an upper boundM ofA, such
thatM − ε is not an upper bound of A for every ε > 0”.

Let us consider the set

A = {x ∈ ℝ | x2 < 2}. (1.1)

Actually, we can check withMathematica® that there exists an element satisfying our
definition of the least upper bound, that is, one that is larger than all reals whose
squares are less than two, but such that anything smaller than it no longer has this
property:

In[⋅]:= Reduce[Exists[M, ForAll[y, y^2 <= 2, y <= M && ForAll[

e, e > 0, Exists[z, z^2 <= 2 && M - e <= z]]]]]

Out[⋅]:= True
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A typical example of the use of the axiom of completeness is proving the existence of
roots, for example the square root of 2. It was already known to Ancient Greeks that
there is no rational number whose square is equal to 2 (the discovery of this fact is
attributed to Pythagoras). Now let us sketch an argument [12] which uses the axiom of
completeness to show that there exists a real number whose square is 2. We consider
the setA defined by (1.1). This set is bounded above. For example, 3 is an upper bound,
since for any integer larger than 3 its square will be larger than 2. Hence the set has
a least upper bound a. Now we need to show that a2 = 2, which is done by indirect
argument [12, Prop. 4.2]. Of course this information is built intoMathematica®:

In[⋅]:= Reduce[Exists[x, Element[x, Rationals], x^2 == 2]]

Out[⋅]:= False

In[⋅]:= Reduce[Exists[x, Element[x, Reals], x^2 == 2]]

Out[⋅]:= True

Finding suprema and infima is one of the main tasks of analysis. A large part of
this book will be concerned with this problem and we will see that only in certain
special cases complete solutions are possible.

Mathematica® has many built-in functions that try to find suprema and infima
automatically. The most important ones are Maximize and Minimize. As their names
suggest, these functions try to find the maximum andminimum of a set (normally the
set of values of some function).

Suppose, for example, we want to find the supremum and the infimum of the set
of real numbers of the form x3 − 3x2 + 1, where x is a real number in the open interval
(−1, 1). We can do this with Maximize and Minimize as follows:

In[⋅]:= Maximize[{x^3 - 3*x^2 + 1, -1 < x < 1}, x]

Out[⋅]:= {1, {x -> 0}}

The set (function) has a maximum value 1 attained at the point where x = 0.

In[⋅]:= Minimize[{x^3 - 3*x^2 + 1, -1 < x < 1}, x]

⋅ ⋅ ⋅ Minimize: Warning: there is no minimum in the region in

which the objective function is defined and the constraints

are satisfied; returning a result on the boundary.

Out[⋅]:= {-3, {x -> -1}}

This timeMathematica® produces a warning that the minimum is not attained at any
point within the region but it returns a point on the boundary and a minimum is at-
tained there. That, as we shall prove later, is exactly equivalent to the statement that
the infimum is −3.

To verify the result, we can plot the graph of the function x → x3 −3x2 + 1 by using
Plot[x^3 - 3*x^2 + 1, {x, -1, 1}].
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1.12 Supremum and infimum | 29

We can solve the same problem by using quantifiers. In the first case both the
supremum and the infimum are actually attained, i. e., they are the maximum and
minimum values. In the second case the infimum is not attained.

In[⋅]:= Reduce[Exists[x, -1 <= x <= 1, y == x^3 - 3*x^2 + 1],

Reals]

Out[⋅]:= −3 ≤ y ≤ 1

In[⋅]:= Reduce[Exists[x, -1 < x < 1, y == x^3 - 3*x^2 + 1],

Reals]

Out[⋅]:= −3 < y ≤ 1

Maximize and Minimize work with any number of variables. For example:

In[⋅]:= Maximize[{x + y, x^2 + y^2 == 1}, {x, y}]

Out[⋅]:= {√2, {x ->
1

√2
, y ->

1

√2
}

Even if the function is real-valued but is expressed in terms of complex numbers
(which quite often happens when usingMathematica®) Maximize will not work:

In[⋅]:= Maximize[{Abs[2*x + I*y], x^2 + y^2== 1}, {x, y}]

⋅ ⋅ ⋅ Maximize: The objective function Abs[2 x+I y] contains a

nonreal constant I.

Out[⋅]:= Maximize[{Abs[2 x + I y], x^2 + y^2 == 1}, {x, y}]

In such cases it is necessary to use the function ComplexExpand to explicitly express
the function in terms of the real and imaginary parts of the complex variable:

In[⋅]:= ComplexExpand[Abs[2*x + I*y]]

Out[⋅]:=√4x2 + y2

In[⋅]:= Maximize[{ComplexExpand[Abs[2*x + I*y]],

x^2 + y^2 == 1}, {x, y}]

Out[⋅]:= {2, {x -> -1, y -> 0}}

1.12.1 Example

Let us find the supremum and infimum of the following sets of real numbers:

A = {7n + 9k
9n + 7k

, n > 0, k > 0} , B = {7n + 9k
9n + 7k

, n ∈ ℕ, k ∈ ℕ} . (1.2)

The ability to compute limits can be very useful in proving that an upper (lower)
bound of a set is a supremum (infimum). This is due to the following trivial lemma.

Lemma 3. Let A be a set and M its upper bound. Then M is the supremum of A if and
only if there exists a sequence {an}, an ∈ A such that limn→∞ an = M.
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30 | 1 Number systems

Let us see how this is applied in practice.Weapproach theproblemfirst by looking
at it graphically. We will use the functions Plot3D and DiscretePlot3D. First, let us
look at the graphs which correspond to both sets:

In[⋅]:= g1 = Plot3D[(7*n + 9*k)/(9*n + 7*k), {n, 1, 20},

{k, 1, 20}, ColorFunction -> ({Opacity[0.5], Green}

& ), Mesh -> False];

In[⋅]:= g2 = DiscretePlot3D[(7*n + 9*k)/(9*n + 7*k), {n, 1, 20},

{k, 1, 20}, AxesLabel -> {"n", "k"}];

In[⋅]:= Show[g1, g2]

Figure 1.3

Clearly all the points belonging to the set B (represented by the discrete lattice of
points) belong to A (represented by the surface). Looking at the graph and possibly
expanding the range of n and k it seems that the surface and the lattice lie inside the
box. The question is how to find the size of the enclosing box. In fact, for the surface
this can be done using Maximize and Minimize:

In[⋅]:= Maximize[{(7*n + 9*k)/(9*n + 7*k), n > 0, k > 0},

{n, k}]

Out[⋅]:= {
9

7
, {n ->

9

98
, k ->

1

14
}}

In[⋅]:= Minimize[{(7*n + 9*k)/(9*n + 7*k), n > 0, k > 0},

{n, k}]

Out[⋅]:= {
7

9
, {n ->

1

18
, k ->

7

162
}}

SometimesMathematica® is not able to solve the problemover an unbounded domain
of the function.
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Clearly in our example 9/7 and 7/9 are the upper and lower bounds for the surface.
Let us prove this by using Reduce:

In[⋅]:= Reduce[7/9 < (7*n + 9*k)/(9*n + 7*k) < 9/7 &&

n > 0 && k > 0, {n, k}]

Out[⋅]:= n > 0&& k > 0

This says that the inequality “reduces” to the conditions n > 0 and k > 0, whichmean
that indeed these are an upper and lower bound (the reader can prove it easily by
hand). So once we have found upper and lower bounds, we can try to prove that the
first is the least one (i. e., supremum)and the second is thegreatest one (i. e., infimum).
So now, according to the lemma, we need to find sequences lying in A and B whose
limits are the two bounds. In fact, our sequences will be in B (and hence also in A)
whichwill prove that the bounds are actually the supremumand infimumof both sets.

For the first sequence we fix k = 1, and we consider the sequence an = (7n + 9)/
(9n + 7). We have

In[⋅]:= DiscreteLimit[(7*n + 9)/(9*n + 7), n -> Infinity]

Out[⋅]:= 7

9

Similarly we fix n = 1 and define bk = (7 + 9k)/(9 + 7k). We have

In[⋅]:= DiscreteLimit[(7 + 9*k)/(9 + 7*k), k -> Infinity]

Out[⋅]:= 9

7

We can illustrate this as follows.

In[⋅]:= g3 = Graphics3D[{Red, PointSize[0.025], Point[Table[

{n, 1, (7*n + 9)/(9*n + 7)}, {n, 1, 20}]]}];

In[⋅]:= g4 = Graphics3D[{Purple, PointSize[0.025], Point[

Table[{1, k, (7 + 9*k)/(9 + 7*k)}, {k, 1, 20}]]}];

In[⋅]:= Show[g1, g2, g3, g4]

Figure 1.4
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32 | 1 Number systems

Of course there are many other sequences of points in Bwhose limits are 9/7 and 7/9.
Also, the supremum and infimum of the surface and a lattice of points need not to be
the same, as in this example.

Note an important fact: althoughMathematica® was able to solve the problem of
finding the supremum and infimum of the set of points lying on the surface, it cannot
do the samewith the lattice (although it can solve the problem on any finite part of the
lattice). Indeed, the expression

In[⋅]:= Maximize[{(7*n + 9*k)/(9*n + 7*k), Element[{n, k},

Integers] && n > 0 && k > 0}, {n, k}]

is returned not evaluated.
Although Maximize (and Minimize) do work over the integers in finite cases,

In[⋅]:= Maximize[{(9*k + 7*n)/(7*k + 9*n), Element[{n, k},

Integers] && 10 > n > 0 && 10 > k > 0}, {n, k}]

Out[⋅]:= {
97

79
, {n -> 1, k -> 10}}

the problem of finding the least and greatest bounds of infinite discrete sets of points
is actually harder. The function NMaximize, which uses numerical approximate meth-
ods, is more successful, but its answer is not guaranteed to be correct even approxi-
mately:

In[⋅]:= NMaximize[{(7*n + 9*k)/(9*n + 7*k), Element[{n, k},

Integers] && n > 0 && k > 0}, {n, k}]

⋅ ⋅ ⋅ NMaximize: Failed to converge to the requested accuracy

or precision within 100 iterations.

Out[⋅]:= {1.2819, {n -> 1, k -> 170}}

Here only the first three digits are correct, as compared with

In[⋅]:= N[9/7]

Out[⋅]:= 1.28571
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2 Recursive sequences, discrete dynamical systems
and their limits

A recursive sequence is the sequence which is defined as follows: several initial values
are given and the remaining ones are defined in terms of the previous ones. In this
chapter we will show how to define recursive sequences by various methods, solve
recurrence equations and also digress to other related topics (computing with inexact
numbers with a given precision and so on).

Let us start with a simple case and define a recurrence

a1 = 1, an = an−1 + 1.

Let us first look at some explicit terms of this sequence. There are a number of ways to
do this. The fastest is the built-in function RecurrenceTable:

In[⋅]:= RecurrenceTable[{a[n] == a[n - 1] + 1, a[1] == 1},

a, {n, 1, 5}]

Out[⋅]:= {1, 2, 3, 4, 5}

To get a better feeling for what is actually going on when Mathematica® builds
this kind of lists, we will first do so using more basic programming constructs. Read-
ers familiar with other programming languages might be tempted to use looping con-
structs. It is possible to do so withMathematica® becauseMathematica® has looping
constructs such as Do, For and While, but it is generally better, both from the point of
view of elegance and efficiency, to try to write programs in functional style and avoid
them.

There are other ways to define recurrences. For instance a direct recursive defini-
tion:

In[⋅]:= Clear[a]

In[⋅]:= a[1] := 1; a[n_] := a[n - 1] + 1

In[⋅]:= a[3]

Out[⋅]:= 3

Mathematica® remembers only the following information about a:

In[⋅]:= ?a

Out[⋅]:= Global`a

a[1] := 1

a[n_] := a[n-1] + 1

and, therefore, computations might become slow.
We can modify the definition of a[n] above by using dynamic programming [16]

such that in each evaluation the value of a[n] will be memorized and therefore the
calculations become faster at the expense of using a little memory.

https://doi.org/10.1515/9783110590142-002
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34 | 2 Recursive sequences, discrete dynamical systems and their limits

In[⋅]:= Clear[a]

In[⋅]:= a[1] := 1; a[n_] := a[n] = a[n - 1] + 1

In[⋅]:= a[3]

Out[⋅]:= 3

NowMathematica® remembers the following data about a:

In[⋅]:= ?a

Out[⋅]:= Global`a

a[1] := 1

a[2] = 2

a[2] = 3

a[n_] := a[n] = a[n-1] + 1

Mathematica® has several functions designed to perform iterations. Here we will
use Nestand NestList. The function Nest takes three arguments andworks as follows:

In[⋅]:= Clear[f]

In[⋅]:= Nest[f, a, 5]

Out[⋅]:= f[f[f[f[f[a]]]]]

There is also a related function, NestList, which returns a list of all the values (begin-
ning with the initial one) obtained during iteration:

In[⋅]:= NestList[f, a, 4]

Out[⋅]:= {a, f[a], f[f[a]], f[f[f[a]]], f[f[f[f[a]]]]}

We will see later on how to apply these functions to recursive sequences.
Mathematica® has a function RSolve designed to solve recursive equations. Only

certain types of equations can be solved as most are too difficult for RSolve:

In[⋅]:= RSolve[{a[n + 1] == a[n]*(a[n] + 1), a[1] == 1},

a[n], n]

Out[⋅]:= RSolve[{a[n + 1] == a[n] (a[n] + 1), a[1] == 1},

a[n], n]

Fortunately, usually one can find the limits of sequences defined by such equations
(when they exist) without solving the equations.

In the next exampleswewill considermore complicated recurrences andmethods
of computing the terms of recursive sequences and finding their limits.

2.1 Example

Consider the sequence {an} given by

a1 = 1, an+1 =
1
2
(an +

2
an
) . (2.3)

Brought to you by | Chalmers University of Technology
Authenticated

Download Date | 10/7/19 9:48 AM
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Using RecurrenceTable we can find the first few terms of the sequence:

In[⋅]:= RecurrenceTable[{a[n] == (1/2)*(a[n - 1] + 2/a[n - 1]),

a[1] == 1}, a, {n, 1, 5}]

Out[⋅]:= {1, 3
2
,
17

12
,
577

408
,
665857

470832
}

Let us compare howmuch time is required to compute a few terms of the sequence
by using a simple recursive definition approach and by using the so called dynamic
programming technique. We set the initial value

In[⋅]:= a[1] = 1

Out[⋅]:= 1

and then we define the following elements of the sequence by

In[⋅]:= a[n_] := (1/2)*(a[n - 1] + 2/a[n - 1])

To compute several elements of the sequence and to check the amount of timeMathe-
matica® needs for this computation we use the function Timing (the function Timing

evaluates the expression and returns a list of the time in seconds used and the result
obtained):

In[⋅]:= Timing[Table[a[i], {i, 1, 20}]; ]

Out[⋅]:= {2.70313, Null}

In the expression above the semi-column actually suppresses the result of the eval-
uation (since it is very long) and therefore we see Null as the second element of the
output. We see that it takes a lot of time to compute the elements of the sequence.
Using dynamic programming we compute the same result faster:

In[⋅]:= Clear[a]

In[⋅]:= a[1] = 1; a[n_] := a[n] = (1/2)*(a[n - 1] + 2/a[n - 1])

In[⋅]:= Timing[Table[a[i], {i, 1, 20}]; ]

Out[⋅]:= {0.046875, Null}

The terms of our sequence (2.3) are obtained by iterating the function Func-

tion[x,1/2 (x+2/x)] and evaluating it at 1. In an abbreviated (pure) form the func-
tion can be written as 1/2(# + 2/#)&.

In[⋅]:= NestList[(1/2)*(#1 + 2/#1) & , 1, 5]

Out[⋅]:= {1, 3
2
,
17

12
,
577

408
,
665857

470832
,
886731088897

627013566048
}

Because we started with an exact initial value 1 and our function also contains
only exact numbers, the whole computation is performed using exact arithmetic,
which is very slow and not very informative. Let us replace the initial value 1 by an
inexact number (1.). All computations will then be with inexact numbers. Recall that
in Mathematica® decimals always represent inexact numbers, or more precisely so
called MachinePrecision numbers.
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36 | 2 Recursive sequences, discrete dynamical systems and their limits

In[⋅]:= NestList[(1/2)*(#1 + 2/#1) & , 1., 6]

Out[⋅]:= {1., 1.5, 1.41667, 1.41422, 1.41421, 1.41421, 1.41421}

It now looks like the iteration stabilizes after only a few steps. We can see better what
is going on by expressing the output in InputForm, because otherwiseMathematica®

(by default) shows only a few leading digits:

In[⋅]:= InputForm[NestList[(1/2)*(#1 + 2/#1) & , 1., 6]]

Out[⋅]//InputForm= {1., 1.5, 1.4166666666666665, 1.4142156862745097,

1.4142135623746899, 1.414213562373095,

1.414213562373095}

The sequence still stabilizes, but that is only because a point is reached where the
difference between successive numbers is smaller than the precision with which the
computations have been performed (the so called machine precision, which is in this
case 15 digits).

InMathematica® Precision of an approximate number is not exactly equal to the
number of digits after the decimal point and in fact it is not even an integer but a real
number which measures the relative error in the number. It is approximately equal to
the number of significant digits.

When the differences between successive terms becomes sufficiently smallMath-
ematica® no longer distinguishes between them and the sequence appears to reach
a fixed point of iteration. We could reach this fixed point quicker if instead of Nest
(NestList) we use the function FixedPoint (FixedPointList) which performs iter-
ation until a fixed point is reached. FixedPoint starts with an expression and then
applies the function repeatedly until the result no longer changes:

In[⋅]:= InputForm[FixedPointList[(1/2)*(#1 + 2/#1) & , 1.]]

Out[⋅]//InputForm= {1., 1.5, 1.4166666666666665, 1.4142156862745097,

1.4142135623746899, 1.414213562373095,

1.414213562373095}

In[⋅]:= Length[%]

Out[⋅]:= 7

It took six iterations to reach the fixed point. Of course we have to be careful not to use
FixedPoint with an exact initial value since the exact sequence has no fixed point!
(We could, however, use the form FixedPoint[a,f,n] which will stop either after a
fixed point is reached or after n iterations, whichever happens sooner.)

In addition to MachinePrecision arithmeticMathematica® also has arbitrary pre-
cision arithmetic. A number a with precision p is most easily entered as N[a, p]. Here
a should either be an exact number (which has precision infinity) or a number with
precision higher than p. For example,

In[⋅]:= N[1, 5]

Out[⋅]:= 1.0000
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In[⋅]:= N[1/4, 20]

Out[⋅]:= 0.25000000000000000000

In[⋅]:= N[%, 5]

Out[⋅]:= 0.25000

In[⋅]:= Precision[%]

Out[⋅]:= 5.

Note the difference between using $MachinePrecision and MachinePrecision:

In[⋅]:= N[1, $MachinePrecision]

Out[⋅]:= 1.000000000000000

In[⋅]:= Precision[%]

Out[⋅]:= 15.9546

But

In[⋅]:= N[1, MachinePrecision]

Out[⋅]:= 1.

In[⋅]:= Precision[%]

Out[⋅]:= MachinePrecision

As we have already mentioned before, exact numbers have infinite precision:

In[⋅]:= Precision[1]

Out[⋅]:=∞

We can compute our example with higher precision:

In[⋅]:= FixedPointList[(1/2)*(#1 + 2/#1) & , N[1, 30]]

Out[⋅]:= {1.00000000000000000000000000000,

1.50000000000000000000000000000,

1.41666666666666666666666666667,

1.41421568627450980392156862745,

1.41421356237468991062629557889,

1.41421356237309504880168962350,

1.41421356237309504880168872421,

1.41421356237309504880168872421}

In[⋅]:= Length[%]

Out[⋅]:= 8

In fact, we need 100 digits of precision to make the sequence longer by just a few
elements:

In[⋅]:= Length[FixedPointList[(1/2)*(#1 + 2/#1) & , N[1, 100]]]

Out[⋅]:= 10
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Mathematica® can completely solve our recurrence:

In[⋅]:= sol[n_] = First[a[n] /. RSolve[{a[n] == (1/2)*

(a[n - 1] + 2/a[n - 1]), a[1] == 1}, a[n], n]]

⋅ ⋅ ⋅ Solve: Inverse functions are being used by Solve, so some

solutions may not be found; use Reduce for complete

solution information.

Out[⋅]:=√2 Coth [2−1+n ArcCoth [ 1
√2
]]

The function RSolve warns us that there may be also other solutions; we shall ignore
this warning and compute the limit.

In[⋅]:= DiscreteLimit[sol[n], n -> Infinity]

Out[⋅]:=√2

Without any initial conditions we can obtain the general solution

In[⋅]:= First[a[n] /. RSolve[{a[n] == (1/2)*

(a[n - 1] + 2/a[n - 1])}, a[n], n]]

Out[⋅]:= −I√2 Cot[2n C[1]]

Here C[1] is an arbitrary constant to be determined from initial conditions. However,
this answer is not satisfactory to us, since we get the complex i in the answer and we
do not clearly see the dependence on initial data. To make things clearer, we obtain
the answer which explicitly depends on the initial conditions:

In[⋅]:= First[a[n] /. RSolve[{a[n] == (1/2)*

(a[n - 1] + 2/a[n - 1]), a[1] == x}, a[n], n]]

⋅ ⋅ ⋅ Solve: Inverse functions are being used by Solve, so some

solutions may not be found; use Reduce for complete

solution information.

Out[⋅]:=√2 Coth [2−1+n ArcCoth [ x
√2
]]

and we can check the limits:
In[⋅]:= DiscreteLimit[%, n -> Infinity, Assumptions -> {x > 0}]

Out[⋅]:=√2

In[⋅]:= DiscreteLimit[%%, n -> Infinity, Assumptions -> {x < 0}]

Out[⋅]:= −√2

Note that the last two evaluations take a lot of time.
Now we are going to find the limit of our sequence (2.3) without solving the re-

currence equation. We will start by assuming that the sequence an has a limit. Under
this assumption, we will find all the possible values that this limit can have. Finally
we will prove this assumption (that the limit exists) and determine its actual values.

Consider the sequence given by the equation an+1 = 1/2(an + 2/an) and assume it
has a limit a (possibly∞ or −∞). We can suppose that an ̸= 0 for all n; otherwise the
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sequence could not be defined. We can consider the equation as an equality of two
sequences {an+1} and {1/2(an + 2/an)}. The sequence {an+1} is a subsequence of {an}
and therefore has the same limit a. Looking at the equation we immediately see that
a ̸= 0. Then the sequence {1/2(an + 2/an)} converges to 1/2(a+ 2/a). Thus we obtain the
equation

a = 1
2
(a + 2

a
).

Solving it we get:

In[⋅]:= a /. Solve[a == (1/2)*(a + 2/a), a, Reals]

Out[⋅]:= {−√2, √2}
There are also two other possibilities that we will still need to consider:∞ and −∞
(which also satisfy the equation).

We now turn to the next stage: proving the existence of a limit and finally deter-
mining its value. Now we will need the information (which we have not used so far)
about the initial condition. We can prove the following statements. If a1 > 0, then
an ≥ √2 for n > 1, which follows from the well-known inequality between the geomet-
ric and arithmetic means of two numbers: 1/2(an+2/an) ≥ √2 and induction. If a1 < 0,
then an ≤ −√2 for n > 1. The sequence is decreasing exactly when

In[⋅]:= Reduce[(1/2)*(x + 2/x) <= x, x]

Out[⋅]:= −√2 ≤ x < 0 ∨ x ≥ √2

Since a1 = 1, we have an ≥ √2 for n > 1 and the next term of the sequence an+1 will be
smaller and it can never fall below√2. Thus the sequence ismonotone decreasing and
bounded below by √2, hence it has a limit greater than or equal to √2. But the only
possibilities are∞ and √2 and since the sequence is decreasing, the only possibility
for the limit is√2.Arguing in the sameway,we see that if the initial valuea1 is negative,
then the limit of the sequence is −√2.

It is natural to think of a sequence given by a recursive equation as of the motion
of a particle, which at the starting time is at a1, then moves to a2, etc. The equation
an+1 = f (an) (in our case f (x) = 1/2(x + 2/x)) can be thought of as an equation of
motion of a particle, giving its position at time n + 1 in terms of its position at time n.
This is known as a discrete dynamical system. A fixed point of a function f : X → X,
where X ⊂ ℝ, is a point x ∈ X such that f (x) = x. In other words, if the particle is
located at a fixed point it stops moving. As we will see later, when f is a continuous
function, a limit of such a sequence will always have to be a fixed point of f . Of course
a fixed point is always the limit of the constant sequence starting at that point.

Mathematica®’s ability to quickly create interactive visualizations using Manip-

ulate (or Dynamic) makes it easy to study discrete dynamical systems even in cases
when they are difficult to deal with mathematically. In the interactive illustration be-
lowwe show themovement of a particle (red point) whose position is an+1 after n itera-
tions. Initially the slider for the number of iterations should be set to zero. The starting
point can be chosen by moving the gray circle (locator inMathematica®) to any point
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in the interval [−4, 4] on the real line. By default the starting point is chosen as 2. The
blue points correspond to the fixed points. Because it is difficult to manually move the
initial point to the position of the fixed points, one can do it by clicking the plus sign
in the upper right corner and choose one of the bookmarked positions. All motions
of the particle are on the real line but for visual convenience we use 2-dimensional
graphics. We also use the function Quiet to suppress any unwanted messages from
Mathematica®. Once locator is used to choose the starting point, then by increasing
the number of iterations we can watch the point move to a limit, which is one of the
two fixed points:√2 and −√2.

In[⋅]:= Manipulate[Quiet[Module[{fix}, fix =

FixedPoint[(1/2)*(#1 + 2/#1) & , First[p], m];

Graphics[{PointSize[0.02], Point[p], Red,

PointSize[0.02], Point[{fix, 0}], Blue, Point[

{{Sqrt[2], 0}, {-Sqrt[2], 0}}]}, PlotRange ->

{{-4, 4}, {-1, 1}}, Axes -> True]]], {{p, {2, 0}},

{-4, 0}, {4, 0}, Locator}, {{m, 0, "number of

iterations"}, 0, 10, 1, Appearance -> "Labeled"},

Bookmarks -> {"fixed point 1" :> (p = {Sqrt[2], 0}),

"fixed point 2" :> (p = {-Sqrt[2], 0})}]

Figure 2.1
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2.2 Example: the Fibonacci sequence | 41

In the example above the sequence obtained from the recurrence eventually becomes
monotonic,making it possible to use theMonotone Convergence Theorem to conclude
the existence of a limit. We will now consider a case where this is not true.

2.2 Example: the Fibonacci sequence

The famous Fibonacci sequence is given by

a1 = 1, a2 = 1, an+1 = an + an−1.

We can generate its terms with

In[⋅]:= RecurrenceTable[{a[n + 1] == a[n] + a[n - 1], a[1] == 1,

a[2] == 1}, a, {n, 1, 14}]

Out[⋅]:= {1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377}

We can also solve the recurrence with RSolve:

In[⋅]:= RSolve[{a[1] == 1, a[2] == 1, a[n] == a[n - 1] +

a[n - 2]}, a[n], n]

Out[⋅]:= {{a[n] -> Fibonacci[n]}}

In[⋅]:= First[a[n] /. RSolve[{a[1] == 1, a[2] == 1,

a[n] == a[n - 1] + a[n - 2]}, a[n], n]]

Out[⋅]:= Fibonacci[n]

Mathematica® returns a built-in symbol Fibonacci[n]. Below we use notation Fn for
our sequence. We can expand it using

In[⋅]:= FunctionExpand[Fibonacci[n]]

Out[⋅]:=
( 1
2
(1 +√5))

n
− ( 2

1+√5
)
n
Cos [nπ]

√5

Note that this can be simplified under the assumption that n is either even or odd:

In[⋅]:= Simplify[FunctionExpand[Fibonacci[n]],

Assumptions -> Element[n/2, Integers]]

Out[⋅]:=
( 1
2
(1 +√5))

n
− ( 2

1+√5
)
n

√5

In[⋅]:= Simplify[FunctionExpand[Fibonacci[n]],

Assumptions -> Element[(n + 1)/2, Integers]]

Out[⋅]:=
( 2
1+√5
)
n
+ ( 1

2
(1 +√5))

n

√5
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42 | 2 Recursive sequences, discrete dynamical systems and their limits

The sequence clearly diverges monotonically to∞:

In[⋅]:= DiscreteLimit[Fibonacci[n], n -> Infinity]

Out[⋅]:=∞
But the sequence

sn =
Fn+1
Fn

has an interesting limit:

In[⋅]:= DiscreteLimit[Fibonacci[n + 1]/Fibonacci[n],

n -> Infinity]

Out[⋅]:= 1

2
(1 +√5)

The sequence sn is obviously given by the recurrence equation

s1 = 1, sn = 1 +
1

sn−1
.

It can be easily solved by RSolve

In[⋅]:= First[s[n] /. RSolve[{s[n]*s[n - 1] == s[n - 1] + 1,

s[1] == 1}, s[n], n]]

Out[⋅]:= (Fibonacci[n] + Fibonacci[1 + n] - LucasL[n]

- LucasL[1 + n])/(Fibonacci[1 + n] - LucasL[1 + n])

The answer involves another built-in function LucasL:
In[⋅]:= FunctionExpand[LucasL[n]]

Out[⋅]:= (1
2
(1 +√5))

n

+ (
2

1 +√5
)
n

Cos [nπ]

Of course we can generate the terms of the sequence {sn} using RecurenceTable or
FixedPointList:

In[⋅]:= N[RecurrenceTable[{s[n]*s[n - 1] == s[n - 1] + 1,

s[1] == 1}, s, {n, 1, 8}]]

Out[⋅]:= {1., 2., 1.5, 1.66667, 1.6, 1.625, 1.61538, 1.61905}

In[⋅]:= InputForm[FixedPointList[1 + 1/#1 & , 1.]]

Out[⋅]//InputForm=
{1., 2., 1.5, 1.6666666666666665, 1.6, 1.625, 1.6153846153846154, 1.619047619047619,

1.6176470588235294, 1.6181818181818182, 1.6179775280898876, 1.6180555555555556,

1.6180257510729614, 1.6180371352785146, 1.6180327868852458, 1.618034447821682,

1.618033813400125, 1.6180340557275543, 1.6180339631667064, 1.6180339985218035,

1.618033985017358, 1.6180339901755971, 1.6180339882053252, 1.6180339889579018,

1.6180339886704433, 1.6180339887802426, 1.618033988738303, 1.6180339887543225,

1.6180339887482038, 1.6180339887505406, 1.6180339887496482, 1.618033988749989,

1.618033988749859, 1.6180339887499087, 1.6180339887498896, 1.618033988749897,

1.618033988749894, 1.6180339887498951, 1.618033988749895}
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2.2 Example: the Fibonacci sequence | 43

In[⋅]:= Length[%]

Out[⋅]:= 39

This sequence has reached a fixed point after 38 steps. We know that the exact se-
quence will never reach its limit, but if we take any approximation up to some preci-
sion p, eventually all the elements of the sequence will have the same first p digits.
So the numbers will be equal to each other up to this precision p and Mathematica®

will decide that it has reached the fixed point. But we know that this is not a real fixed
point. Suppose we want to get a longer sequence by using more precision. The above
computation is done using the so called machine arithmetic, which is done using Ma-
chinePrecision, whose value depends on the type of CPUused. Asmentioned earlier,
Mathematica® can also have arbitrary precision arithmetic. Recall (see the previous
example in Section 2.1) that the easiest way to enter a number with a given precision
p is N[a, p], where a is an exact number. For example the number

In[⋅]:= N[1, 20]

Out[⋅]:= 1.0000000000000000000

is 1 with 20 correct digits. If all numbers in a formula have non-machine precision,
Mathematica® performs computations using its special model of arithmetic, which
actually keeps track of the precision. Note however that the precision of an answer can
either be higher or lower than the precision of the input. In fact, this is what happens
in our example, the Precision of the result of each iteration is actually higher than
that of the previous one:

In[⋅]:= rt = RecurrenceTable[{s[n + 1] == 1 + 1/s[n],

s[1] == N[1, 1]}, s, {n, 1, 9}]

Out[⋅]:= {1., 2., 1.5, 1.7, 1.60, 1.63, 1.615, 1.619, 1.6176}

In[⋅]:= Map[Precision, rt]

Out[⋅]:= {1., 1.30103, 1.77815, 2.17609, 2.60206, 3.01703,

3.43616, 3.8537, 4.27184}

We see that the precision is actually getting larger, hence a fixed point will never be
reached! Hence, the next computation will never finish:

In[⋅]:= Length[FixedPointList[1 + 1/#1 & , N[1, 1]]]

Out[⋅]:= $Aborted

We can stop the computation above after inserting the third argument of the function
FixedPointList:

In[⋅]:= Length[FixedPointList[1 + 1/#1 & , N[1, 1], 500]]

Out[⋅]:= 501

However, we can make sure that a fixed point is reached by forcing Mathematica®

to perform all iterations using fixed precision (rather than its own variable precision
arithmetic). The idea is to make the global variables $MinPrecision and $MaxPreci-
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44 | 2 Recursive sequences, discrete dynamical systems and their limits

sion equal to the same number, which will be our chosen fixed precision. By default
these variables have the values

In[⋅]:= {$MinPrecision, $MaxPrecision}

Out[⋅]:= {0, ∞}

We can set them to other values; however, since we want to change them only tem-
porarily, we use the construction Block, which is often used for such a purpose:

In[⋅]:= Length[Block[{$MinPrecision = 20, $MaxPrecision = 20},

FixedPointList[1 + 1/#1 & , N[1, 20]]]]

Out[⋅]:= 49

We can, of course, easily calculate the possible “candidates” for the limit of the
sequence

In[⋅]:= s /. Solve[s == 1 + 1/s, s, Reals]

Out[⋅]:= {1
2
(1 −√5),

1

2
(1 +√5)}

Note that neither∞ nor −∞ satisfies the equation. However proving the existence of
a limit is this time harder (see below).

As in the previous example we can study how the sequence behaves by using Ma-
nipulate. Although the sequence does appear to converge to (1 +√5) /2 for all starting
points except for (1 −√5) /2 (which is the other fixed point), the sequence does not ap-
pear to become monotone. Let us confirm this in our case with s1 = 1:

In[⋅]:= Sign[Differences[RecurrenceTable[{s[n + 1] ==

1 + 1/s[n], s[1] == 1}, s, {n, 1, 10}]]]

Out[⋅]:= {1, -1, 1, -1, 1, -1, 1, -1, 1}

The function Differences applied to a list gives the list of differences between succes-
sive elements. The function Sign returns the sign of a number, i. e., +1 for a positive
number,−1 for a negative number and 0 for 0. Sowe can see that the signs of the differ-
ences between successive elements keep changingand the sequence is notmonotonic.
This suggests the following idea to prove the convergence.

Let us consider two subsequences of {sn}, the subsequence of elements with an
even index {s2n} and the subsequence of elements with an odd index {s2n+1}. We will
prove that both of these subsequences converge to the same limit. Then we will use
the following simple lemma.

Lemma 4. Let {an} be a sequence of real numbers and suppose its subsequences {a2n}
and {a2n+1} both have the same limit g. Then g is the limit of {an}.

So toprove that {s2n} converges and that {s2n+1} converges,wewill prove that {s2n+1}
is increasing and {s2n} is decreasing. In otherwords,wewant to show that s2n+1−s2n−1 >
0 and s2n+2 − s2n < 0. We proceed by induction on n. We can check directly that the
result is true for n = 1:
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2.2 Example: the Fibonacci sequence | 45

In[⋅]:= RecurrenceTable[{s[n + 1] == 1 + 1/s[n], s[1] == 1},

s, {n, 1, 4}]

Out[⋅]:= {1, 2, 3
2
,
5

3
}

So suppose now that it is true for n = k. We have

s2k+3 − s2k+1 =
1

s2k+2
−

1
s2k
> 0, s2k+4 − s2k+2 =

1
s2k+3
−

1
s2k+1
< 0.

Hence both sequences are monotonic by induction. Note also that sn is always
bounded, since 1 ≤ sn ≤ 2 by induction (with the assumption that s1 = 1). Hence
both s2n and s2n+1 have limits, say, a and b. The equation s2n+1 = 1 + 1/s2n implies that
b = 1 + 1/a. The equation s2n+2 = 1 + 1/s2n+1 implies a = 1 + 1/b. Solving these together
gives

In[⋅]:= {a, b} /. Solve[{b == 1 + 1/a, a == 1 + 1/b}, {a, b}]

Out[⋅]:= {{1
2
(1 −√5),

1

2
(1 −√5)}, {

1

2
(1 +√5),

1

2
(1 +√5)}}

Hence a = b and the sequence {sn} is convergent.
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3 Series

In this chapter we define the concept of series and discuss their convergence. We con-
sider various convergence tests and give several examples. We also discuss a number
of related questions, for instance, Riemann’s theorem on conditionally convergent se-
ries, divergent series and power series.

3.1 Sequences and series

We will model sequences by lists which can be thought of as sequences that are con-
stant after a certain number of terms. SinceMathematica® cannot deal with symbolic
lengths, we will fix n as some small integer but it will be clear that everything we say
will work with an arbitrary n.

In[⋅]:= n = 4;

In[⋅]:= cc = Table[c[i], {i, 1, n}]

Out[⋅]:= {c[1], c[2], c[3], c[4]}

Mathematica® has two useful functions (in some sense almost inverse to each
other) that take lists as arguments and which naturally extend to sequences. The first
one is the function Differences, which has already appeared in Chapter 2 and which
returns the list of differences between successive elements:

In[⋅]:= dd = Differences[cc]

Out[⋅]:= {-c[1] + c[2], -c[2] + c[3], -c[3] + c[4]}

A sequence convergent to 0 is called a null sequence. We have the following trivial
but useful lemma.

Lemma 5. If a sequence an is convergent, then its difference sequence is a null sequence.

Results about limits of general sequences can often be reduced to results about
null sequences, which often can be proved more easily than for general sequences.
Here is a very useful fact about null sequences, which follows directly from the defi-
nition of limits.

Lemma 6. A sequence an is a null sequence if and only if the sequence |an| is a null
sequence.

The second useful function Accumulate is almost inverse to the function Differ-

ences:

In[⋅]:= Accumulate[cc]

Out[⋅]:= {c[1], c[1] + c[2], c[1] + c[2] + c[3],

c[1] + c[2] + c[3] + c[4]}

https://doi.org/10.1515/9783110590142-003
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48 | 3 Series

For a sequence it gives a sequence of partial sums. Note that

In[⋅]:= Differences[Accumulate[cc]]

Out[⋅]:= {c[2], c[3], c[4]}

differs from the original sequence only be the first element; in other words, it is the
original list without the first element:

In[⋅]:= Rest[cc]

Out[⋅]:= {c[2], c[3], c[4]}

If we perform the operations in the reverse order, we get

In[⋅]:= Accumulate[Differences[cc]]

Out[⋅]:= {-c[1] + c[2], -c[1] + c[3], -c[1] + c[4]}

This does not quite get us back to where we started but the following does:

In[⋅]:= Accumulate[Differences[cc]] + c[1]

Out[⋅]:= {c[2], c[3], c[4]}

or

In[⋅]:= Accumulate[Prepend[Differences[cc], c[1]]]

Out[⋅]:= {c[1], c[2], c[3], c[4]}

Since removing or adding afinite number of elements of a sequencedoes notmake any
difference to the limit, we can think of the functions Differences and Accumulate as
essentially inverse to each other.

A series is often informally thought of as an infinite sum, but there are several
risks in this approach and we do not recommend it. Instead, we define the notion of a
series as in [7]. By a serieswemean the sequence of partial sums of some sequence. If
this sequence of partial sums has a limit, it is called the sum of the series. If the limit
is a real number we say that the series is convergent to that number. Therefore, we
clearly distinguish between two objects: the series and its sum. The latter may or may
not exist. Unfortunately, it is customary to denote both the series and its sum by the
same symbol∑∞n=1 an and we have to be careful in interpreting the notation.

The partial sums of a series ∑∞n=0 an are simply the solutions of the recurrence
equation s1 = a0, sn+1 = sn + an. Thus, instead of the function Accumulate, we can use
the function RecurrenceTable:

In[⋅]:= Clear[n]

In[⋅]:= RecurrenceTable[{s[1] == a[0], s[n + 1] ==

s[n] + a[n]}, s, {n, 1, 3}]

Out[⋅]:= {a[0], a[0] + a[1], a[0] + a[1] + a[2]}

It follows from Lemma 5 that a necessary condition for a series associated with an
to converge is that an is a null sequence. However, we will soon see that the series of
a null sequence is not always convergent (e. g., the harmonic series).
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3.2 The functions Sum and NSum | 49

3.2 The functions Sum and NSum

Mathematica®’s function Sum has multiple uses. First of all, it can be used to simply
add up a list of numbers, e. g.,

In[⋅]:= Sum[1, {10}]

Out[⋅]:= 10

The index in Sum can run over an arbitrary list:

In[⋅]:= Sum[i^2, {i, {2, 4, 7, 9, 11}}]

Out[⋅]:= 271

The function Sum is able to computemany finite sums explicitly, sometimes expressing
them in terms of special functions. For example,

In[⋅]:= Sum[i^3, {i, 1, n}]

Out[⋅]:= 1

4
n2(1 + n)2

In[⋅]:= Sum[i, {i, 1, n, 2}]

Out[⋅]:= (1 + Floor [1
2
(−1 + n)])

2

In[⋅]:= Sum[1/k^2, {k, 1, n}]

Out[⋅]:= HarmonicNumber[n, 2]

This means that the sequence of partial sums of a sequence ai can also be computed
as

In[⋅]:= Table[Sum[a[i], {i, 1, k}], {k, 1, 3}]

Out[⋅]:= {a[1], a[1] + a[2], a[1] + a[2] + a[3]}

The sum of a series can be computed in Mathematica® simply by combining the
functions Sum and Limit:

In[⋅]:= DiscreteLimit[Sum[1/k^2, {k, 1, n}], n -> Infinity]

Out[⋅]:= π2

6

In fact, one can obtain the result more simply:

In[⋅]:= Sum[1/k^2, {k, 1, Infinity}]

Out[⋅]:= π2

6

Note, however, that while in the case of convergent series there is no difference be-
tween the outputs above inMathematica®, in the case of divergent series there is one.
For example,

In[⋅]:= Sum[1/n, {n, 1, Infinity}]

⋅ ⋅ ⋅ Sum: Sum does not converge.

Out[⋅]:=
∞
∑
n=1

1

n
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50 | 3 Series

In[⋅]:= DiscreteLimit[Sum[1/n, {n, 1, k}], k -> Infinity]

Out[⋅]:=∞

In[⋅]:= Sum[(-1)^n, {n, 1, Infinity}]

⋅ ⋅ ⋅ Sum: Sum does not converge.

Out[⋅]:=
∞
∑
n=1
(−1)n

In[⋅]:= DiscreteLimit[Sum[(-1)^n, {n, 1, k}], k -> Infinity]

Out[⋅]:= Indeterminate

So we see that in these cases using an explicit DiscreteLimit gives us more informa-
tion since it distinguishes between divergence to infinity and the other kind of diver-
gence (non-existence of a limit).

The function Sumhas anoption VerifyConvergencewhichbydefault is set to True.
It will therefore always try to verify convergence and will inform us if it can show that
the series is not convergent, as in the example above.

Now let us look at the sum

In[⋅]:= Sum[1/n^n, {n, 1, Infinity}]

Out[⋅]:=
∞
∑
n=1

n−n

Mathematica® returns the original input unchanged.What canwe conclude from this?
We can conclude that one of two things happened. One possibility is thatMathemat-
ica® verified that the series is convergent but couldnot findany closed formexpression
for the sum. The other possibility is thatMathematica® could not decide whether the
series is convergent or not. To distinguish between these possibilities we need to use
the function SumConvergence, which will be discussed in greater detail in Section 3.6.

In[⋅]:= SumConvergence[1/n^n, n]

Out[⋅]:= True

Now we know that the series is convergent butMathematica® cannot find any closed
form formula. In such cases we can now use the function NSum to compute the numer-
ical value of this sum to any desired precision:

In[⋅]:= NSum[1/n^n, {n, 1, Infinity}, WorkingPrecision -> 20]

Out[⋅]:= 1.2912859970626635404

Alternatively we can write

In[⋅]:= N[Sum[1/n^n, {n, 1, Infinity}], 20]

Out[⋅]:= 1.2912859970626635404

Here the function Sum passed the task of computation to NSum. For simple problems
we can use the second approach, but for more complicated ones some of the options
offered by the function NSummay be needed.
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3.3 Absolute convergence | 51

Of course there many series for whichMathematica® cannot decide whether they
are convergent or not. For instance, in Section 3.5.5 we shall prove that the next series
is convergent butMathematica® cannot do it:

In[⋅]:= Sum[Sin[1/n]*Sin[n], {n, 1, Infinity}]

Out[⋅]:=
∞
∑
n=1

Sin [
1

n
] Sin[n]

Again the function Sum returns the input. But this time Mathematica® cannot decide
whether this series converges:

In[⋅]:= SumConvergence[Sin[1/n]*Sin[n], n]

Out[⋅]:= SumConvergence [Sin [
1

n
] Sin[n], n]

If nevertheless we try to compute this sum numerically to a high degree of precision,
i. e., we write N[Sum[Sin[1/n]*Sin[n], {n, 1, Infinity}], 30], we will get a lot of
warning messages from Mathematica®. This is because Mathematica® fails to notice
that the series has non-constant signs and is using a wrong computational method.
By changing the method, we can successfully compute the answer to any precision:

In[⋅]:= NSum[Sin[1/n]*Sin[n], {n, 1, Infinity},

WorkingPrecision -> 30, Method -> "AlternatingSigns"]

Out[⋅]:= 0.98629511964584094677185426431

Sometimes whenMathematica® is doing numerical computations with Machine-

Precision, even if we know that the answer should be real, wemay still get a complex
number with a tiny imaginary part:

In[⋅]:= NSum[Sin[1/n]*(-1)^(101*n), {n, 1, Infinity}]

Out[⋅]:= -0.550797 - 1.565212×10−13 I

There are two ways to deal with this problem. We can either use the function Chop

which replaces small numbers by zero:

In[⋅]:= Chop[NSum[Sin[1/n]*(-1)^(101*n), {n, 1, Infinity}]]

Out[⋅]:= -0.550797

or use extended precision in our calculation:

In[⋅]:= NSum[Sin[1/n]*(-1)^(101*n), {n, 1, Infinity},

WorkingPrecision -> 20]

Out[⋅]:= -0.550796848133929

3.3 Absolute convergence

We first introduce the notion of absolute convergence. We say that a series ∑∞n=1 an is
absolutely convergent if the series∑∞n=1 |an| is convergent. Note thatwhen a is complex,
then |a| is the modulus of a, which is a positive real number.
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52 | 3 Series

The following properties hold.
1. If∑∞n=1 an is absolutely convergent, then∑

∞
n=1 an is convergent.

2. A convergent series with terms of constant sign (either positive or negative) is ab-
solutely convergent. If an > 0 (an < 0) for all n, then ∑

∞
n=1 an is convergent if and

only if its sequence of partial sums is bounded above (below). When a series with
positive (negative) terms is convergent we write ∑∞n=1 an < ∞ (∑∞n=1 an > −∞). We
use this notation only for series whose terms have a constant sign.

3. If∑∞n=1 an is absolutely convergent andπ : ℕ→ℕ is anybijection, then∑
∞
n=1 aπ(n)=

∑∞n=1 an.

As we will see in Section 3.7, property 3 is not true for series which are not absolutely
convergent.

The following tests can be used to show that the series is absolutely convergent.
They can also sometimes be used to show that a series which is known to be not ab-
solutely convergent is actually divergent.

D’Alembert’s ratio test. Assume that an ̸= 0. If limn→∞ |an+1/an| = g ∈ ℝ∪{∞, −∞},
then the following statements hold.
– If g < 1, then the series∑∞n=1 an is absolutely convergent.
– If g > 1, then the series∑∞n=1 an is divergent.

Cauchy’s root test. If limn→∞ sup |an|1/n = g ∈ ℝ ∪ {∞, −∞}, then the following
statements hold.
– If g < 1, then the series∑∞n=1 an is absolutely convergent.
– If g > 1, then the series∑∞n=1 an is divergent.

The root test is actually stronger than the ratio test: one can show that in all cases
when the ratio test works, so does the root test, but one can construct examples in
which d’Alembert’s ratio test does notwork but the Cauchy root test does (for instance,
∑∞n=1 2

(−1)n2−n). Note that the root test (and hence also the ratio test) fails when g = 1.
D’Alembert’s ratio test and Cauchy’s root test are implemented in the option

Method in Mathematica®’s function SumConvergence, which we will discuss later on
in this chapter.

3.4 Convergence of series with terms of constant signs

The theory of convergent series is traditionally divided into two parts. The first part is
concernedwith series whose terms have the same signs. The second part is concerned
with series that have infinitelymanyof bothpositive andnegative terms.Note that, just
like in the case of a sequence, convergence of a series is unaffected by ignoring a finite
number of terms. However, unlike the case of the limit of a sequence, removing a finite
number of terms from a series may change the value of its sum (if that value is finite).

Brought to you by | Chalmers University of Technology
Authenticated

Download Date | 10/7/19 3:23 AM



3.4 Convergence of series with terms of constant signs | 53

In this sectionwe statewithout proof some basic facts about convergence of series
with constant signs anddescribe several tests of convergence. The proofs can be found
in [12] and [14].

The following two tests are extremely useful for proving convergence of series of
positive terms by hand but are generally unsuitable for present day computer alge-
bra programs. They reason is that they involve comparing a given series (which we
are trying to test) with another one, about which we must already know whether it is
convergent or not. Choosing a suitable series involves making an “educated guess”,
something that humans are still better at than computers.

The comparison test. Let an, bn > 0 and suppose that an ≤ bn for all n ∈ ℕ. Then
the following statements hold.
– If∑∞n=1 bn is convergent, then∑

∞
n=1 an is convergent.

– If∑∞n=1 an is divergent, then∑
∞
n=1 bn is divergent.

The limit comparison test. Let an, bn > 0 and suppose that limn→∞ an/bn = c.
Then the following statements hold.
– If c > 0, then∑∞n=1 bn is convergent if and only if∑

∞
n=1 an is convergent (in this case

the two sequences {an} and {bn} are said to be similar).
– If c = 0, then the convergence of∑∞n=1 bn implies the convergence of∑∞n=1 an.
– If c =∞, then the divergence of∑∞n=1 bn implies the divergence of∑∞n=1 an.

The next two tests are implemented in the option Method inMathematica®’s function
SumConvergence.

Raabe’s test. Suppose an > 0 and limn→∞ n(an/an+1 − 1) = g ∈ ℝ ∪ {∞, −∞}. Then
the following statements hold.
– If g > 1, then the series∑∞n=1 an is convergent.
– If g < 1, then the series∑∞n=1 an is divergent.

The last test uses the concept of an improper integral of a continuous function, which
will be considered later. However, we shall state the test now (see also Chapter 7)
because it is one of the most effective tests at Mathematica®’s disposal (due to the
fact that Mathematica® is much better than an average human mathematician at
integration).

Integral test. Let f be a continuous, positive, decreasing function of x for x ≥ 1 and
limx→∞ f (x) = 0. Then ∑

∞
n=1 f (n) is convergent if and only if ∫

∞
1 f (x)dx is convergent.

3.4.1 Example

Let us study for which values of the parameter a the following series∑∞n=1(5
1/n − 1)a is

convergent.
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In[⋅]:= SumConvergence[(5^(1/n) - 1)^a, n, Assumptions ->

{Element[a, Reals]}]

Out[⋅]:= a > 1

Let us try to use the comparison test. We will see later that it is enough to deal
with the case a = 1 so let us consider it first. The trick is to choose the right series to
compare. It is often useful to look at some graphs. We would like to find two positive
integers p, q and constants c1 and c2 such that the graph of 51/n − 1 lies between that
of c1/np and c2/nq for sufficiently large n. We could use Manipulate to find candidates
for such p and q but we will illustrate this only with the usual “static” graph:

In[⋅]:= DiscretePlot[{5^(1/n) - 1, 1/n, 3/n}, {n, 1, 20},

PlotMarkers -> {Automatic, 9}]

Figure 3.1

So the graph suggests that 1/n < 51/n − 1 < 3/n for all n > 1, which we can try to verify
by the function Reduce:

In[⋅]:= Reduce[1/n < 5^(1/n) - 1 < 3/n && n > 1, n, Integers]

⋅ ⋅ ⋅ Reduce: Unable to decide whether numeric quantity

Log[5] + 3ProductLog [−
Log[5]
3 51/3
] is equal to zero.

Out[⋅]:= n ∈ ℤ&& n ≥ 2

Mathematica® uses advancedmethods to prove this inequality. In this particular case
in the proof there appeared some identity thatMathematica® could not prove exactly,
but verified by using high precision computations. Thismeans that the identity almost
certainly holds and we can treat this kind of result as valid. Evaluating the same ex-
pression again does not give a message as Mathematica® from now on assumes that
the identity holds (until we quit the session):
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In[⋅]:= Reduce[1/n < 5^(1/n) - 1 < 3/n && n > 1, n, Integers]

Out[⋅]:= n ∈ ℤ&& n ≥ 2

Mathematica® says that almost certainly the inequality is true for n ≥ 2. Hence, 1/na <
(51/n − 1)a < 3a/na and the series ∑∞n=1(5

1/n − 1)a is convergent for a > 1 and divergent
for a ≤ 1.

The limit comparison testworks evenquicker sincewedonotneed tobother trying
to find suitable p and q. However, this requires the ability to compute limits:

In[⋅]:= DiscreteLimit[(5^(1/n) - 1)^a/(1/n^a), n -> Infinity,

Assumptions -> {a > 0}]

Out[⋅]:= Log[5]a

We shall see how this limit can be computed by hand later, when we consider the
Taylor series. However, somewhat surprisingly the inequalities we use to apply the
comparison test can be proved rather easily (which is again not how Mathematica®

proves them).
Consider the inequality 51/n − 1 < 3/n. Transforming we easily see that it is equiv-

alent to 5 < (1 + 3/n)n. Now let us write the right hand side as ((1 + 1/(n/3))n/3)3. We
have already seen that this sequence is increasing (in fact its limit is e3). For n = 3 its
n-th term is 8, hence it and all the others are larger than 5 (actually even for n = 2 the
inequality already holds but we only need to show that it holds for some n).

Next let us consider the inequality 1/n < 51/n − 1. It is equivalent to (1 + 1/n)n < 5.
We know that the sequence on the left hand side is monotonically increasing and is
always less than 3. Hence it is less then 5.

3.5 Convergence of series with terms of non-constant signs

In this section we will discuss some methods of proving convergence of series whose
terms do not have constant sign.

3.5.1 Grouping of terms

A simple method, which is useful when dealing with convergence of series with non-
constant signs is a method of grouping of terms. Namely, consider the relationship
between the following two series:

∞

∑
i=0

ai = a0 + a1 + a2 + a3 + ⋅ ⋅ ⋅ (3.4)

and
∞

∑
i=0
(a2i+1 + a2i) = (a0 + a1) + (a2 + a3) + ⋅ ⋅ ⋅ (3.5)
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First note that if (3.4) is convergent, so is (3.5). This can be seen by looking at the se-
quences of partial sums and observing that the second sequence is a subsequence of
the first. Since any subsequence of a convergent sequence is convergent, the result fol-
lows. Now suppose thatwe know that the second series is convergent. Then it does not
in general follow that the first also is. For example, consider the series (1−1)+(1−1)+⋅ ⋅ ⋅.
This is just the series 0 + 0 + ⋅ ⋅ ⋅, so its partial sums are all 0 and the limit of the (con-
stant) sequence of zeros is 0. But the series 1 − 1 + 1 − 1 + ⋅ ⋅ ⋅ = ∑∞n=0(−1)

n is divergent,
since its sequence of partial sums is 1, 0, 1, . . ..

However, suppose now we know that (3.5) is convergent and also that the se-
quence {an} is a null sequence (that is, the necessary condition for convergence of (3.4)
is satisfied). In this case from the convergence of (3.5) follows the convergence of (3.4).
Indeed, consider the sequence of partial sums of (3.4) {sn}, where sn = ∑

n
i=0 ai.We have

already seen that a sequence is convergent if and only if its two subsequences of even
indexed terms and odd indexed terms are convergent to the same limit (Lemma 4 in
Chapter 2). The sequence {s2n} is just the sequence of terms of (3.5), hence it is conver-
gent. The sequence {s2n+1} also converges to the same limit because s2n+1 = s2n + a2n+1
and a2n+1 → 0. (We see that we only needed the assumption that a2n+1 → 0 rather
than an → 0.)

Informally speaking we have shown that if the necessary condition for conver-
gence of a series, i. e., the condition an → 0, is satisfied, we can “group” and “un-
group” the series into pairs without affecting convergence. The same argument shows
that this is also true about grouping the terms (or “inserting brackets”) into groups of
terms of arbitrary fixed length (e. g., 3): (a0+a1+a2)+(a3+a4+a5)+(a6+a7+a8)+ ⋅ ⋅ ⋅. In
fact, it can even be proved that we can group a series into segments of various lengths,
as long as their lengths are bounded, e. g., all less than 30. However, we shall not need
these results here.

3.5.2 Example

Let us show that the series ∑∞n=1(−1)
n+1/√n is convergent. We simply group the terms

in pairs and observe that

In[⋅]:= Refine[Together[(-1)^(2*k - 1)/Sqrt[2*k - 1]

+ (-1)^(2*k)/Sqrt[2*k]], Element[k, Integers]]

Out[⋅]:= −2
√k +√2√−1 + 2k
2√k√−1 + 2k

This expression is always negative. It can actually be reduced to a “simpler” form by
“rationalizing” the numerator. Mathematica®’s functions Simplify or FullSimplify
will not do this automatically, but we already know that we can try to change the de-
fault ComplexityFunction as follows:
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In[⋅]:= g[k_]:=FullSimplify[(Sqrt[2]*Sqrt[2*k - 1] - 2*

Sqrt[k])/(2*Sqrt[k]*Sqrt[2*k - 1]), ComplexityFunction

-> Function[x, Count[Numerator[x], _Power, Infinity]]]

Out[⋅]:= 1

√k(√2 − 2√2k − 2√k√−1 + 2k)

In[⋅]:= Simplify[Sign[g[k]], Assumptions ->

{Element[k, Integers], k > 0}]

Out[⋅]:= -1

Since
In[⋅]:= DiscreteLimit[g[k]/(1/k^(3/2)), k -> Infinity]

Out[⋅]:= − 1

4√2
the series is convergent by the limit comparison test.

3.5.3 Abel’s summation formula

First, recall the definition of the inner or dot product. We can think of it as the product
of two lists of the same length (or vectors of the same dimension):

In[⋅]:= l[a_, n_] := Table[a[i], {i, 1, n}]

In[⋅]:= l[a, 3]

Out[⋅]:= {a[1], a[2], a[3]}

In[⋅]:= l[a, 3] . l[b, 3]

Out[⋅]:= a[1] b[1] + a[2] b[2] + a[3] b[3]

In[⋅]:= Dot[l[a, 3], l[b, 3]]

Out[⋅]:= a[1] b[1] + a[2] b[2] + a[3] b[3]

In fact,Mathematica®’s function Dot is a special case of amore general function called
Inner, but as we will not need it here, we will not say any more about it.

It is important not to omit the dot, because otherwise one gets a very different
product:

In[⋅]:= l[a, 3] l[b, 3]

Out[⋅]:= {a[1] b[1], a[2] b[2], a[3] b[3]}

The dot is also necessary when multiplying matrices; without it we get a very dif-
ferent answer, which is not the usual product of matrices:

In[⋅]:= {{a, b}, {c, d}}.{{e, f}, {g, h}}

Out[⋅]:= {{a e + b g, a f + b h}, {c e + d g, c f + d h}}

In[⋅]:= {{a, b}, {c, d}} {{e, f}, {g, h}}

Out[⋅]:= {{a e, b f}, {c g, d h}}
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Wewill now consider two lists, such that the length of the first one is one less than
the length of the second one, say, 4 and 5:

In[⋅]:= list1 = l[a, 4]

Out[⋅]:= {a[1], a[2], a[3], a[4]}

In[⋅]:= list2 = l[b, 5]

Out[⋅]:= {b[1], b[2], b[3], b[4], b[5]}

Note that

In[⋅]:= Length[Differences[list2]]

Out[⋅]:= 4

In[⋅]:= Length[Accumulate[list1]]

Out[⋅]:= 4

This means that it makes sense to consider the dot product of Differences[list1]
and Accumulate[list2]:

In[⋅]:= Collect[Expand[Differences[list2] .

Accumulate[list1]], a[_]]

Out[⋅]:= a[1] (-b[1] + b[5]) + a[2] (-b[2] + b[5]) +

a[3] (-b[3] + b[5]) + a[4] (-b[4] + b[5])

It suggests the following formula:

In[⋅]:= Simplify[Differences[list2] . Accumulate[list1]

== -Most[list2] . list1 + Total[list1]*Last[list2]]

Out[⋅]:= True

Rearranging and rewriting in usual mathematical (rather then in Mathemati-
ca®’s) notation we get Abel’s summation formula, which is easy to prove by induction:

n
∑
i=1

aibi =
n
∑
k=1
(

k
∑
i=1

ai) (bk − bk+1) + bn+1
n
∑
i=1

ai. (3.6)

3.5.4 Dirichlet’s and Abel’s tests

Suppose that we are given two sequences {an} and {bn}. What are the weakest condi-
tions that we need to impose on both so that we can conclude that the “inner product”
(or the “dot product”)∑∞n=1 anbn is convergent? For example, if an > 0 and bn > 0 for all
n, and∑∞n=1 an <∞,∑

∞
n=1 bn <∞, then it is easy to see that∑

∞
n=1 anbn <∞. Indeed, for

a series of positive terms, convergence is equivalent to boundedness of its sequence of
partial sums. The conclusion follows from the inequality ∑mi=1 aibi ≤ (∑

m
i=1 ai)(∑

m
i=1 bi),

which follows simply by expanding the right hand side. But the result is not true in
general. For example, let us take an = (−1)n+1/√n, bn = (−1)n+1/√n. We have
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In[⋅]:= SumConvergence[(-1)^(n + 1)*(1/Sqrt[n]), n]

Out[⋅]:= True

In[⋅]:= SumConvergence[(-1)^(n + 1)*(1/Sqrt[n])*(-1)^(n + 1)*

(1/Sqrt[n]), n]

Out[⋅]:= False

The second result is just the fact that the harmonic series is divergent.
We can think of Abel’s summation formula (3.6) as an identity involving se-

quences. On the left hand side we have the sequence of partial sums of the sequence
{aibi}, on the right hand side there is the sum of two sequences. Thus, if we find a set
of conditions that make both sequences on the right hand side converge, so will the
sequence on the left.

Consider first the sequence∑nk=1(∑
k
i=1 ai)(bk−bk+1) (thedot product of the sequence

of partial sums of one sequence and the difference sequence of the other). We will
always assume that the sequence {bn} is monotone, so the differences all have the
same sign. Since∑nk=1(bk −bk+1) = b1 −bn+1, this is convergent if limn→∞ bn ∈ ℝ. Since
the series of differences has constant signs it is absolutely convergent. Now suppose
that all the partial sums∑ki=1 ai are bounded byM. Then

n
∑
k=1


(

k
∑
i=1

ai) (bk − bk+1)

≤

n
∑
k=1

M|bk − bk+1| = M
n
∑
k=1
|bk − bk+1|,

which is bounded. Hence ∑nk=1(∑
k
i=1 ai)(bk − bk+1) is absolutely convergent. Now con-

sider the other term bn+1∑
n
i=1 ai. From the fact that the sequence {bn+1} is convergent

and ∑ni=1 ai is bounded, it does not follow that bn+1∑
n
i=1 ai is convergent. We need to

make a stronger assumption. One possibility is to assume that limn→∞ bn = 0 and
∑ni=1 ai are bounded. In this case the term bn+1∑

n
i=1 ai also converges (to 0) and we can

conclude that ∑ni=1 aibi converges. If we only assume that limn→∞ bn = g ∈ ℝ, but g
is not necessarily 0, we need a stronger assumption about {an}, namely, that the se-
quence∑ni=1 ai converges, that is, the series∑

∞
i=1 ai is convergent. Thus we have proved

Dirichlet’s andAbel’s criteria (tests) for the convergence of inner product of sequences.

Theorem 7. Suppose we have two sequences {an} and {bn}, where {bn} is monotone con-
vergent to g. Suppose also that one of the following conditions holds.

Dirichlet’s test. The partial sums∑ni=1 ai are bounded and g = 0.
Abel’s test. The series∑∞i=1 ai is convergent.
Then ∑∞i=1 aibi is convergent.

Its easy to show that one can deduce the Abel test from the Dirichlet test.
One well-known consequence of Abel’s test is the Leibniz test for convergence.
Leibniz’s test. Let {cn} be a monotonic null sequence (i. e., limn→∞ cn = 0). Then

∑∞n=0(−1)
ncn converges.

Indeed,we simply take in the statement of theDirichlet testan = (−1)n andbn = cn.
Clearly,∑ni=1 ai are bounded and {bn} is a monotonic null sequence.
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The Dirichlet test is, of course, more general than the Leibniz test. For example, it
applies to examples such as

In[⋅]:= SumConvergence[(-1)^(n*((n + 1)/2))/n, n]

Out[⋅]:= True

In[⋅]:= SumConvergence[(-1)^Quotient[n, 5]/n, n]

Out[⋅]:= True

However,

In[⋅]:= SumConvergence[(-1)^n^2015/n, n]

Out[⋅]:= SumConvergence[
(−1)n

2015

n
, n]

Here we need to observe something that Mathematica® fails to notice (this could be
changed in future versions), namely, that

In[⋅]:= FullSimplify[Mod[n^2015, 2], Element[n, Integers]]

Out[⋅]:= Mod[n, 2]

That means thatMathematica® should simplify (−1)n
2015
/n to (−1)n/n. That it does not

do so in version 11.3 we consider an omission. In each case the series can be thought
of as a “dot product” of two sequences satisfying the conditions of the Dirichlet test.
Sometimes such a decomposition and particularly the fact that one of the sequences
has bounded partial sums can be difficult to notice.

3.5.5 Example

Consider ∑∞n=1 sin(nx)/n and suppose that x is not an integer multiple of π (otherwise
all the terms are zero). Testing for convergence we get:

In[⋅]:= SumConvergence[Sin[n*x]/n, n, Assumptions ->

Element[x, Reals]]

Out[⋅]:= True

It is not obvious that one can use the Dirichlet test. The series can be regarded as the
dot product of two sequences {1/n} and {sin(nx)}, but does the latter have bounded
partial sums? We can check this withMathematica®:

In[⋅]:= Sum[Sin[n*x], {n, 1, m}]

Out[⋅]:= Csc [
x

2
] Sin [

m x

2
] Sin [

1

2
(1 + m) x]

Since

csc(x

2
) sin(mx

2
) sin( 1

2
(m + 1)x)


≤

csc(x

2
)

=


1
sin(x/2)



is independent ofm, the partial sums are bounded for fixed x.
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The trigonometric identity

m
∑
n=1

sin(nx) = csc(x
2
) sin(mx

2
) sin( 1

2
(m + 1)x)

can be proved by purely trigonometric means (we leave this as an exercise for those
readers interested in elementary trigonometry) but the easiest way is by using Euler’s
formula in complex analysis relating the exponential and trigonometric functions.
This can be obtained inMathematica® in several ways, e. g.,

In[⋅]:= ComplexExpand[Exp[I*x]]

Out[⋅]:= Cos[x] + I Sin[x]

In[⋅]:= ExpToTrig[Exp[I*x]]

Out[⋅]:= Cos[x] + I Sin[x]

We now see that

m
∑
n=1

sin(nx) = Im(
m
∑
n=1
(cos(nx) + i sin(nx))) = Im(

m
∑
n=1

einx) .

Clearly,

m
∑
n=1

einx = e
ix(eimx − 1)
eix − 1

as the sum ofm terms of a geometric progression. Hence,

In[⋅]:= Simplify[ComplexExpand[Im[(E^(I*x)*(-1 + E^(I*m*x)))/

(-1 + E^(I*x))]]]

Out[⋅]:= Csc [
x

2
] Sin [

m x

2
] Sin [

1

2
(1 + m) x]

Note thatMathematica® can actually find the sum of this series:

In[⋅]:= Sum[Sin[n*x]/n, {n, 1, Infinity}]

Out[⋅]:= 1

2
I (Log [1 − EI x] − Log [E−I x (−1 + EI x)])

Mathematica®’s answer unfortunately involves the complex i, which is inconvenient
for some purposes. Even if we use FullSimplify with the assumption that x is real,
we get the same answer:

In[⋅]:= Assuming[Element[x, Reals], FullSimplify[Sum[Sin[n*x]/n,

{n, 1, Infinity}]]]

Out[⋅]:= 1

2
I (Log [1 − EI x] − Log [E−I x (−1 + EI x)])

However, since we know that the sum of real numbers is surely real we can try to get
an answer not involving complex i in a different way:
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In[⋅]:= FullSimplify[ComplexExpand[Re[Sum[Sin[n*x]/n,

{n, 1, Infinity}]], TargetFunctions -> {Im, Re}]]

Out[⋅]:= 1

2
(-ArcTan[1 - Cos[x], -Sin[x]] +

ArcTan[1 - Cos[x], Sin[x]])

The answer involves a two-argument version of the inverse trigonometric function
tan−1 but involves no explicit i. Moreover, we can similarly show that

In[⋅]:= FullSimplify[ComplexExpand[Im[Sum[Sin[n*x]/n,

{n, 1, Infinity}]], TargetFunctions -> {Im, Re}]]

Out[⋅]:= 0

One should be aware that Dirichlet’s and Abel’s tests are not really suitable for
present day computer programs since they require “guessing” how to decompose an
infinite series into a dot product of two sequences with the required properties. For
example, the current version of Mathematica® cannot determine the convergence of
the series∑∞n=1 sin(n) sin(1/n) even though it is very similar to the above one:

In[⋅]:= SumConvergence[Sin[1/n]*Sin[n], n]

Out[⋅]:= SumConvergence [Sin [
1

n
] Sin[n], n]

We know that {sin(n)} has bounded partial sums and {sin(1/n)} monotonically con-
verges to 0, so to human eyes the problem of convergence is not harder than before.

3.6 The function SumConvergence

This section will be devoted to the deeper study of the function SumConvergence.

In[⋅]:= Options[SumConvergence]

Out[⋅]:= {Method -> Automatic, Assumptions :> $Assumptions,

Direction -> 1}

The option Direction gives us the direction of summation, where the indices can
go to∞ or to −∞:

In[⋅]:= SumConvergence[1/z^n, n, Direction -> 1]

Out[⋅]:= Abs[z] > 1

In[⋅]:= SumConvergence[1/z^n, n, Direction -> -1]

Out[⋅]:= Abs[z] < 1

For us the most interesting option of SumConvergence is Method. It takes four pos-
sible values: “IntegralTest”, “RaabeTest”, “RatioTest”, “RootTest”. These are not the
only tests thatMathematica® uses but they are the only ones that the user can choose.
When we tellMathematica® to use one of these tests, it will return the answer True or
False depending on the result of the test. Let us first look at some examples:
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In[⋅]:= tests = {"IntegralTest", "RaabeTest", "RatioTest",

"RootTest"};

In[⋅]:= (SumConvergence[1/n^n, n, Method -> #1] & ) /@ tests

Out[⋅]:= {SumConvergence[n−n, n, Method -> "IntegralTest"],

True, True, True}

We see that in this case all the tests except for the integral test succeeded.
Note also that the function SumConvergence can also be usedwith series involving

a parameter and that one can use the assumptions mechanism. For example,

In[⋅]:= SumConvergence[n^a, n, Assumptions -> Element[a,

Reals]]

Out[⋅]:= 1+a < 0

In[⋅]:= SumConvergence[(n^(1/n) - 1)^a, n,

Assumptions -> Element[a, Reals]]

Out[⋅]:= a > 1

Without using AssumptionsMathematica® cannot give an answer:

In[⋅]:= SumConvergence[(n^(1/n) - 1)^a, n]

Out[⋅]:= SumConvergence [(−1 + n
1
n )

a
, n]

We can check that none of these tests in our list will work for the alternating har-
monic series:

In[⋅]:= (SumConvergence[(-1)^(n + 1)*(1/n),

n, Method -> #1] & ) /@ tests

Out[⋅]:= {SumConvergence[
(−1)1+n

n
, n, Method -> IntegralTest ] ,

SumConvergence[
(−1)1+n

n
, n, Method -> RaabeTest ] ,

SumConvergence[
(−1)1+n

n
, n, Method -> RatiolTest ] ,

SumConvergence[
(−1)1+n

n
, n, Method -> RootTest ]}

NeverthelessMathematica® can show convergence:

In[⋅]:= SumConvergence[(-1)^(n + 1)*(1/n), n]

Out[⋅]:= True

3.6.1 Example

Let us consider convergence of the series of the form∑∞n=1 n
−p:

In[⋅]:= SumConvergence[n^(-p), n]

Out[⋅]:= Re[p] > 1
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Mathematica®’s answer is actually valid for complex p. If we wanted to consider only
real values we could have used the following expression:

In[⋅]:= SumConvergence[n^(-p), n, Assumptions ->

Element[p, Reals]]

Out[⋅]:= p > 1

Let us check which of the tests was successful:

In[⋅]:= (SumConvergence[n^(-p), n, Method -> #1,

Assumptions -> Element[p, Reals]] & ) /@ tests

Out[⋅]:= {p > 1, p > 1, SumConvergence[n−p, n, Method ->

RatioTest, Assumptions -> p ∈ ℝ] ,
SumConvergence[n−p, n, Method ->

RootTest, Assumptions -> p ∈ ℝ]}

We see that both the integral test and Raabe’s test work. We can verify this withMath-
ematica®:

In[⋅]:= Integrate[x^(-p), {x, 1, Infinity},

Assumptions -> Element[p, Reals]]

Out[⋅]:= ConditionalExpression [
1

−1 + p
, p > 1]

In[⋅]:= Limit[n*((n + 1)^p/n^p - 1), n -> Infinity]

Out[⋅]:= p

Both Raabe’s test and the integral test show that the series is convergent when p > 1.
Raabe’s test also shows that the series is divergent for p < 1.

The series ∑∞n=1 1/n is known as the harmonic series. It is divergent and provides
an example of a series which satisfies the condition that its n-th term tends to 0 yet is
not convergent. The series ∑∞n=1 1/n

p for various p provide a very useful family which
very often turn out to be suitable for using in the comparison or the limit comparison
tests.

Let us now consider another problem that Mathematica® is unable to solve: de-
termine if the series

∞

∑
n=1
(

1
n9/8
+
(−1)n

n
) (3.7)

is convergent.

In[⋅]:= SumConvergence[1/n^(9/8) + (-1)^n/n, n]

Out[⋅]:= SumConvergence [
1

n9/8
+
(−1)n

n
, n]

Of course, it is very easy to see that this series is convergent. We simply use the well-
known and easy to prove fact (which follows from the earlier stated property of limits
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of sequences) that the sum of the sum of two series is the sum of their sums, provided
everything is defined.

In[⋅]:= SumConvergence[1/n^(9/8), n]

Out[⋅]:= True

In[⋅]:= SumConvergence[(-1)^n/n, n]

Out[⋅]:= True

Hence, the series (3.7) is convergent.

3.7 Riemann’s theorem on conditionally convergent series

We now know that the alternate harmonic series∑∞n=1(−1)
n+1/n is convergent although

it is not absolutely convergent. Such a series is called conditionally convergent. Condi-
tionally convergent series are tricky as their sumsdonobehave like ordinary sums. For
example, these sums (that is, the limits of the sequences of partial sums) can change
when the terms are rearranged. In fact, Riemann’s theorem on conditionally conver-
gent series [14, Section 5.3.3] asserts that for any a ∈ ℝ ∪ {∞, −∞} one can find a
permutation of terms such that the sum of the series will be a (that includes the cases
a = ∞ and a = −∞). The proof is an algorithm which is easy to implement inMathe-
matica®. This is done in [17], where some interesting related questions are considered.
Here we will give a different implementation which is more suitable for a graphic rep-
resentation of the theorem.

Consider for instance the alternate harmonic series∑∞n=1(−1)
n+1/n and assume that

a ∈ ℝ. The algorithm is as follows. Let A be the set of all positive terms of this series
and let B be the set of all negative terms of this series, all arranged in the order of the
appearance in the original series. We start by adding elements of A in turn until we
reach a number a1 which is greater than a. Because the sum of the series consisting
of elements of A is infinity, this must always occur after a finite number of additions.
Then we start adding elements of B until our sum becomes a2 < a. Then we again
add a finite number of the remaining elements of A until the sum becomes a3 > a and
we continue in this way. One can easily see that |a − an| → 0, hence the sequence
of partial sums an of the rearranged alternate harmonic series tends to a. The reader
should supply an algorithm for a =∞(−∞).

The algorithmwritten above constructs partial sums that are arbitrary close to the
given number a but it never stops. Of course, when we want to implement the algo-
rithm on a computer, we have to decide when to stop. There are several natural places
to do that, for example, whenwe obtain a sufficiently close approximation orwhenwe
have used a given number of terms of the series. Our implementation uses a slightly
different approach. We provide a list of positive terms and negative terms and the pro-
gram stops when it can no longer continue (when there are no more needed elements
in one of the lists). The program returns a fragment of the rearranged sequence of
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terms of the alternate harmonic series (so that the partial sums of the series are ob-
tained by applying the function Accumulate to the list) and approximate sum. Note
that our algorithm works for an arbitrary conditionally convergent series.

In[⋅]:= Rearrangement[a_, pos_, neg_] :=

Module[{p = pos, n = neg, s = {}, sum = 0},

Catch[While[p != {} || n != {},

While[sum <= a, If[p == {}, Throw[{s, N[sum]}],

AppendTo[s, First[p]]; sum = sum + First[p];

p = Rest[p]]]; While[sum >= a, If[n == {},

Throw[{s, N[sum]}], AppendTo[s, First[n]];

sum = sum + First[n]; n = Rest[n]]]]; {s, N[sum]}]]

For the alternate harmonic series we have:

In[⋅]:= listpos[n_] := Table[(-1)^(k + 1)/k, {k, 1, n, 2}];

In[⋅]:= listneg[n_] := Table[(-1)^(k + 1)/k, {k, 2, n, 2}];

In[⋅]:= Rearrangement[2, listpos[30], listneg[20]]

Out[⋅]:= {{1, 1
3
,
1

5
,
1

7
,
1

9
,
1

11
,
1

13
,
1

15
,−

1

2
,
1

17
,
1

19
,
1

21
,
1

23
,
1

25
,
1

27
,
1

29
} ,

1.83587}

We can now see how the partial sums of the rearranged series converge to 2.

In[⋅]:= ListLinePlot[Accumulate[First[Rearrangement[2,

listpos[2500], listneg[2500]]]]]

Figure 3.2
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3.8 The Cauchy product of series

Suppose we have two infinite series∑∞i=0 ai and∑
∞
i=0 bi. We know that we canmultiply

a series by a number (just multiply each term) and we can formally add them:

∞

∑
i=0

ai +
∞

∑
i=0

bi =
∞

∑
i=0
(ai + bi).

Weknow that this equation is also valid for the sumsof the series,whenever both sides
are defined.

We would naturally like to define the product of two series in such a way that the
analogous property holds, that is, the sumof the product series∑∞i=0 ai×∑

∞
i=0 bi should

be the product of the sums of∑∞i=0 ai and∑
∞
i=0 bi, when again everything is defined. It

is obvious that the product must be a sum of the terms aibj for all i and j but the order
in which we add them is important (unless we have an absolutely convergent series
or a finite sum) for the product series to have the desired property. When we multiply
and expand finite sums, Mathematica® arranges the terms in its own standard order
but if we used this order for multiplying infinite series, the product series would not
have good properties. Therefore, we define the so called Cauchy product of series by
“going along the diagonals” in the infinite matrix as in the picture below.

In[⋅]:= g1 = Graphics[Flatten[Table[If[i - j <= 4,

Point[{i/3, j/3}], Point[{}]], {i, 0, 4},

{j, 0, -4, -1}], 1]];

In[⋅]:= g2 = Graphics[Flatten[Table[If[i - j <= 3,

Text[Subscript[a, i]* Subscript[b, -j],

{i/3, j/3}], Text["", {i/3, j/3}]], {i, 0, 3},

{j, 0, -3, -1}], 1]];

In[⋅]:= g3 = Graphics[Table[Line[Table[{(n - i)/3, -i/3},

{i, 0, n}]], {n, 0, 3}]];

In[⋅]:= Show[g1, g2, g3]

Figure 3.3
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Formally, we define the Cauchy product by

∞

∑
i=0

ai ×
∞

∑
i=0

bi =
∞

∑
n=0
(

n
∑
i=0

aibn−i)

= a0b0 + (a0b1 + a1b0) + (a0b2 + a1b1 + a2b0) + ⋅ ⋅ ⋅ .

The theorem due to Mertens says that if both series∑∞i=0 ai and∑
∞
i=0 bi are conver-

gent and if one of them is absolutely convergent, then the sum of their Cauchy product
is the product of their sums.

3.9 Divergent series

We know that a series can be divergent in different ways, it can be divergent to∞ or
−∞ or have no limit. The fact that a series is divergent to infinity can sometimes be
useful. For example:

In[⋅]:= SumConvergence[1/Prime[n], n]

Out[⋅]:= False

This tells us that the sum of the series ∑∞n=1 1/pn is ∞, which implies that there are
infinitely many primes. On the other hand,

In[⋅]:= SumConvergence[(-1)^n, n]

Out[⋅]:= False

This alone does not tell us anything useful about this series.
We will now see that in many cases we can find a different notion of “sum” of

series, which gives a finite answer in the case of some divergent series. This is referred
to as “regularized sum” and can be calculated using the option Regularization in
Mathematica®’s function Sum. For example, we have

In[⋅]:= Sum[(-1)^n, {n, 0, Infinity}, Regularization ->

"Cesaro"]

Out[⋅]:= 1

2

This answer looks strange but surprisingly regularization is useful and not only in
mathematics (where it is used to prove formulas about sums of convergent series [10,
Section 1.2], in solving differential equations [2], etc.) but also in modern physics.

We begin with the notion of regularized sum of a series [10]. In this section we
shall use the notation ∑∞n=1 an for a series (sequence of partial sums of the sequence
{an}, and we will write S(∑

∞
n=1 an) for its sum (limit) if it exists. Then a regularized sum

is a function S∗ : 𝒮 → ℝ (more generally ℂ), where 𝒮 is a set of all series, with the
following properties:
1. S∗(∑∞n=1 an) = S(∑

∞
n=1 an) for every convergent series∑

∞
n=1 an;
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2. S∗(a0 +∑
∞
n=1 an) = a0 + S

∗(∑∞n=1 an) (invariance with respect to addition);
3. S∗(∑∞i=1(ai + bi)) = S

∗(∑∞i=1 ai) + S
∗(∑∞i=1 bi);

4. S∗(∑∞i=1 λai) = λS
∗(∑∞i=1 ai);

5. S∗(∑∞i=1 ai ×∑
∞
i=1 bi) = S

∗(∑∞i=1 ai) S
∗(∑∞i=1 bi), where × is the Cauchy product.

Consider the divergent series ∑∞n=0(−1)
n. Let us assume that there is some S∗ which

satisfies properties 1–5 above and such that S∗(∑∞n=0(−1)
n) = S0 ∈ ℝ. Then it is easy to

find S0. Indeed,

S0 = S
∗ (
∞

∑
n=0
(−1)n) = S∗ (1 +

∞

∑
n=1
(−1)n) = 1 + S∗ (

∞

∑
n=1
(−1)n) = 1 − S0.

Hence, S0 = 1/2. Of course, this does mean that such regularization exists and clearly
it should be given explicitly.

To define a regularization one needs to find a function S∗ with the above proper-
ties. For example, the Cesàro regularization is based on the following theorem (see,
for instance, [14, Theorem 2.64]).

Theorem 8. Let an be a sequence with limit g ∈ ℝ ∪ {∞, −∞}. Then the sequence of
arithmetic means {(∑ni=1 ai)/n} has limit g.

InMathematica® we can create means from lists by using for instance

In[⋅]:= (#1/Length[#1] & ) /@ Rest[Accumulate[{a, b, c, d, e}]]

Out[⋅]:= {a + b
2
,
1

3
(a + b + c),

1

4
(a + b + c + d),

1

5
(a + b + c + d + e)}

Note that the sequence of means of a sequencemay be convergent when the sequence
itself has no limit. The standard example is {(−1)n}, which does not have a limit, while

In[⋅]:= DiscreteLimit[Sum[(-1)^k, {k, 1, n}]/n, n -> Infinity]

Out[⋅]:= 0

Theorem 8 is the basis for the Cesàro regularization, in whichwe define the Cesàro
sum of a series as the limit of the sequence of means of the sequence of partial sums
of the sequence. That is,

S∗ (
∞

∑
i=1

ai) = lim
m→∞
∑mn=0∑

n
k=0 ak

m + 1
. (3.8)

It is easy to check that S∗ defined in (3.8) satisfies conditions 1–5 above.
An important application of Cesàro’s regularization is Cesàro’s theorem on the

Cauchy product of two convergent series. The theorem states that the Cauchy product
is Cesàro summable and its Cesàro sum is the product of the sums of two series.

There are other implemented regularization methods inMathematica® (the Abel
method, which uses power series discussed in Section 3.10, the Borel method, which
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uses integration discussed later on as well, the Dirichlet method, which uses a func-
tion series, and the Euler methods for alternating sums).

Wewill not consider any applications of divergent series here except for remarking
that with their help one can prove various identities involving convergent series (see
examples in [10]).

For example, let t be a number such that −π ≤ t ≤ π. Then the following identity
holds:

∞

∑
n=1

(−1)n−1(1 − cos(tn))
n2

=
t2

4
. (3.9)

The proof given in [10] involves expanding the series on the left (which we can prove
is convergent) in terms of t and then rearranging and expressing it in terms of diver-
gent series which can be summed using a regularizationmethod. Because the original
series is convergent, the answer that one gets using this method must be equal to the
ordinary sum of the series.

Mathematica® gives a much more complicated answer for the left hand side,
namely,

In[⋅]:= FullSimplify[Sum[((-1)^(n - 1)*(1 - Cos[t*n]))/n^2,

{n, 1, Infinity}], Assumptions -> -Pi <= t <= Pi]

Out[⋅]:= 1

12
(π2 + 6 PolyLog [2, −E−I t] + 6 PolyLog[2, −EI t])

andMathematica® is unable to prove the above identity. In situations, when we have
an identity we believe to be true but whichMathematica® cannot prove, it is still pos-
sible to provide some evidence for the truth (or possibly disproving it) by substituting
randomnumbers lyingwithin some range.However, using MachinePrecision random
numbers may sometimes not be sufficient to confirm such an identity, because the
inaccuracy of calculations may cause the program to give different answers on both
sides. This is a situation in which Mathematica®’s ability to control precision can be
useful.

In[⋅]:= Sum[((-1)^(n - 1)*(1 - Cos[t*n]))/n^2,

{n, 1, Infinity}] == t^2/4 /. Transpose[{Thread[t ->

RandomReal[{-Pi, Pi}, {7}, WorkingPrecision -> 10]]}]

Out[⋅]:= {True, True, True, True, True, True, True}

Using only MachinePrecision we sometimes can get False:

In[⋅]:= Sum[((-1)^(n - 1)*(1 - Cos[t*n]))/n^2,

{n, 1, Infinity}] == t^2/4 /.

Transpose[{Thread[t -> RandomReal[{-Pi, Pi}, {7}]]}]

Out[⋅]:= {False, True, True, True, True, True, True}
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3.10 Power series

A power series is a series of the form∑∞n=0 an(x − x0)
n, where {an} is a sequence of real

(or complex) numbers called the coefficients of the power series and x is inℝ orℂ. The
number x0 is called the center of the power series. The set of points {x : ∑∞n=0 an(x −
x0)n converges} is called the region of convergence of the series. It is always non-empty
because it always contains the point x0. One can show that the region of convergence
is always an interval which could be just the point x0, a finite interval (closed, open
or half open) or the entire real line (in the complex case the region of convergence
is a disk). There are formulas to find the radius of convergence of power series [14]
which can be derived from convergence tests. Note that the radius of convergence does
not determine the region of convergence and the endpoints of the interval have to be
checked separately.

The function SumConvergence can also be used to find the region of convergence
of power series. Here are a few examples.

In[⋅]:= SumConvergence[n!*x^n, n]

Out[⋅]:= x == 0

The region of convergence of ∑∞n=1 n!x
n is just the center of the series. This is easily

proved by using either the root or the ratio test.

In[⋅]:= SumConvergence[(x - 1)^n/n, n]

Out[⋅]:= Abs[-1 + x] <= 1 && x ̸= 2

In the real case this says that the series∑∞n=1(x−1)
n/n converges on the half open inter-

val [−2, 2). Convergence inside the open interval (−2, 2) can again be easily proved by
using the root or ratio test, but the endpoints −2 and 2 must be considered separately.
For x = 2 we get ∑∞n=1(−1)

n/n which we know is convergent (by the Dirichlet test) and
for x = 2 we get the harmonic series, which we know is divergent. In the complex case
the result says that the series is convergent on the entire closed disk |x − 1| ≤ 1 except
at x = 2.

In[⋅]:= SumConvergence[x^n/n!, n]

Out[⋅]:= True

This says that the series∑∞n=1 x
n/n! converges on the entire real line (complex plane).

Let ∑∞n=0 an(x − x0)
n be a series with a region of convergence I ⊂ ℝ. Then f (x) :=

∑∞n=0 an(x − x0)
n defines a function f : I → ℝ. Functions defined in this way are called

analytic functions and we will see that they possess many properties of polynomials.
Here are some important analytic functions:

exp(x) =
∞

∑
n=0

xn

n!
,

sin(x) =
∞

∑
n=0

(−1)n

(2n + 1)!
x2n+1,

Brought to you by | Chalmers University of Technology
Authenticated

Download Date | 10/7/19 3:23 AM



72 | 3 Series

cos(x) =
∞

∑
n=0

(−1)n

(2n)!
x2n.

All of these series have the region of convergence ℝ (or ℂ in the complex plane),
hence the corresponding functions are defined everywhere. Such analytic functions
are called entire. These functions are equal to the familiar functions usually defined
in a different way in elementary calculus courses. One can show that the functions
cos and sin are indeed equal to the usual trigonometric functions defined in terms of
ratios of sides of right angled triangles and exp(x) = ex, where e was defined earlier
as a limit of a certain sequence.

We can use the properties of the Cauchy product of series to prove that these func-
tions defined by power series have the expected properties. For example, let us show
the identity

exp(x + y) = exp(x) exp(y).

Wewill prove this by showing that the same identity holdswhenexpdenotes the series
itself, rather than its sum and the product on the right denotes the Cauchy product of
the series. Then from Mertens’ theorem it will follow that our identity (in which exp
means the sum of the series) is true.

The expression on the left is the sum of a power series in z = x + y, which after
expansion of each term (x + y)n becomes a power series in two variables x and y. We
can find the coefficient of xnym by usingMathematica®’s function SeriesCoefficient
(which will be considered in greater detail later, when we study the Taylor expansion
of functions):

In[⋅]:= SeriesCoefficient[Exp[x + y], {x, 0, n}, {y, 0, m}]

Out[⋅]:=
{
{
{

1

m! n!
n ≥ 0 ∧ m ≥ 0

0 True

Note that this kindof expression inMathematica® theword True shouldbe interpreted
as saying “otherwise”.

Now we do the same to the power series on the right hand side and we see that
the coefficients are the same. This means that this series is the same as the series on
the left hand side:

In[⋅]:= SeriesCoefficient[Exp[x]*Exp[y], {x, 0, n}, {y, 0, m}]

Out[⋅]:=
{
{
{

1

m! n!
n ≥ 0 ∧ m ≥ 0

0 True

In somecasesMathematica®maynot give the same result unlessweuse FullSimplify
possibly with certain assumptions. Consider for instance the following trigonometric
identity:
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In[⋅]:= TrigExpand[Cos[x + y]]

Out[⋅]:= Cos[x] Cos[y] - Sin[x] Sin[y]

If we use the same method as above, Mathematica® will not return the same expres-
sions on the right and the left hand sides. However, we can show that they are equiv-
alent by using FullSimplify with suitable assumptions:

In[⋅]:= FullSimplify[SeriesCoefficient[Cos[x + y], {x, 0, n},

{y, 0, m}], Assumptions -> Element[{m, n}, Integers]

&& m >= 0 && n >= 0]

Out[⋅]:=
Cos [ 1

2
(m + n)π]
m! n!

In[⋅]:= FullSimplify[SeriesCoefficient[Cos[x]*Cos[y] -

Sin[x]*Sin[y], {x, 0, n}, {y, 0, m}], Assumptions ->

Element[{m, n}, Integers] && m >= 0 && n >= 0]

Out[⋅]:=
Cos [ 1

2
(m + n)π]
m! n!

In general, we cannot expect that applying FullSimplify to twodifferent but equal ex-
pressionswill produce the same expression. For this reason it is usually better to apply
FullSimplify to the difference of the expressions and check whether Mathematica®

returns 0:

In[⋅]:= FullSimplify[SeriesCoefficient[Cos[x + y], {x, 0, n},

{y, 0, m}] - SeriesCoefficient[Cos[x]*Cos[y] -

Sin[x]*Sin[y], {x, 0, n}, {y, 0, m}], Assumptions ->

Element[{m, n}, Integers] && m >= 0 && n >= 0]

Out[⋅]:= 0
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4 Limits of functions and continuity
In this chapter we will extend the concept of limit to arbitrary real-valued functions of
one real variable, define continuity and study someproperties of continuous functions
and related topics. We state without proof several important theorems on continuous
functions and give some examples of their applications.

4.1 Limits of functions
Let A ⊂ ℝ. We say that a point x ∈ ℝ ∪ {∞, −∞} is a limit point of A if there exists a
sequence {an} with an ∈ A, an ̸= x for all n such that limn→∞ an = x. Note that x itself
need not be in A. In fact∞ is the only limit point of ℕ. Another example is an open
interval A = (a, b), in which case a and b are both limit points although they do not
belong to A. Of course, a point of A can be (but need not be) a limit point. The most
common type of limit point that belongs to A is an interior point, that is, a point that
is contained in an open interval which is a subset of A.

Let x0 be a limit point of A and let f : A → ℝ be a function. We say that g ∈
ℝ∪ {∞, −∞} is the limit of function f as x → x0 (written as limx→x0 f (x) = g) if for every
sequence xn → x0 we have

In[⋅]:= DiscreteLimit[f[x[n]], n -> Infinity] == g

This definition illustrates clearly the distinction between Mathematica®’s func-
tions DiscreteLimit and Limit. Limit is defined for functions in terms of Discrete-
Limit, which is defined for sequences. On the other hand, since a sequence an is a
function a : ℕ→ ℝ, where a(n) = an, the limit of the sequence an (DiscreteLimit) is
defined as the limit (Limit) limn→∞ a(n).

This definition of limit is known as Heine’s definition. It is equivalent to another
definition known as Cauchy’s definition. UnlikeHeine’s definition, Cauchy’s definition
takes a different form in the cases when both x0 and g are real numbers and in the
cases when any of them is either∞ or −∞. This means that there are nine different
definitions, though as they are very similar we will only state two of them.

Definition 1. Let a ∈ ℝ be a limit point of A ⊂ ℝ, let f : A → ℝ be a function and let
g ∈ ℝ. Then limx→a f (x) = g if and only if for every ε > 0 there is a δ > 0 such that
0 < |x − a| < δ implies |f (x) − g| < ε.

Note that δ depends on both a and ε.

Definition 2. Suppose that∞ is a limit point ofA (e. g.,A = ℝ). Then limx→∞ f (x) =∞
if for everyM > 0 there exists N > 0 such that x > N implies f (x) > M.

The function Limit returns conditional answers and admits assumptions:

In[⋅]:= Limit[x^a, x -> Infinity]

Out[⋅]:= ConditionalExpression[∞, a > 0]

https://doi.org/10.1515/9783110590142-004
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76 | 4 Limits of functions and continuity

In[⋅]:= Limit[x^a, x -> Infinity, Assumptions -> {a < 0}]

Out[⋅]:= 0

If for some reason we wish to get an unconditional answer we can use the option Gen-

erateConditions:
In[⋅]:= Limit[x^a, x -> Infinity, GenerateConditions -> False]

Out[⋅]:=∞

We should do this only in case we are sure that a > 0.
Limits of functions at a point have properties analogous to those of limits of se-

quences and their proofs reduce to the proofs of analogous results for sequences. For
example, it is easy to extend statements about the limits of sums, products and recip-
rocals of sequences to sums, products and reciprocals of functions. We will thus omit
these statements (see [14, Chapter 3]).

Here are some examples of computation of certain important limits which can be
proved by using the Taylor series:

In[⋅]:= Limit[(Exp[x] - 1)/x, x -> 0]

Out[⋅]:= 1

In[⋅]:= Limit[Sin[x]/x, x -> 0]

Out[⋅]:= 1

In[⋅]:= Limit[(Cos[x] - 1)/x^2, x -> 0]

Out[⋅]:= −1
2

4.2 One-sided limits
Let f : A → ℝ be a function and a ∈ ℝ be a limit point. We say that g is a limit of f at
a from the right (or from above) if for each sequence xn → a such that xn > a for all
n ∈ ℕ we have limn→∞ f (xn) = g. In this case we write limx→a+ f (x) = g. We say that g
is a limit of f at a from the left (or from below) if for each sequence xn → a such that
xn < a for all n ∈ ℕ we have limn→∞ f (xn) = g. We write limx→a− f (x) = g. We have the
following theorem.

Theorem 9. The limit limx→a f (x) = g if and only if limx→a− f (x) and limx→a− f (x) both
exist and are equal to g.

Of course in the case when a = ∞ all limits are actually limits from the left and
when a = −∞ all limits are limits from the right.

As we already know, the function Limit computes limits of functions in Math-
ematica®. It provides one of the cases in which a significant change took place in
Mathematica® in version 11, which does not preserve “backward compatibility” (i. e.,
certain outputs will be different when evaluated in earlier versions ofMathematica®).
The main difference is that before version 11Mathematica®’s Limit by default always
computed the limit from the right:
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4.2 One-sided limits | 77

In[⋅]:= Limit[1/x, x -> 0]

Out[⋅]:=∞

To get the limit from the left one had to use the options Direction:

In[⋅]:= Limit[1/x, x -> 0, Direction -> 1]

Out[⋅]:= −∞

The two limits are not equal, hence the two-sided limit does not exist. This is indeed
the answer that Limit returns inMathematica® 11:

In[⋅]:= Limit[1/x, x -> 0]

Out[⋅]:= Indeterminate

This, as we already know, means that the limit does not exist.
To compute one-sided limits in Mathematica® 11, we have to use the option Di-

rection, which still can take the values 1 and −1 as in older versions or “FromAbove”
and “FromBelow”:

In[⋅]:= Limit[1/x, x -> 0, Direction -> "FromAbove"]

Out[⋅]:=∞

One can also compute the limit in the complex plane, for example,

In[⋅]:= Limit[1/x, x -> 0, Direction -> "Complexes"]

Out[⋅]:= ComplexInfinity

Here we should mention another difference in the behavior of the function Limit

in Mathematica® 11 and in the earlier versions. Consider the limit of the function
sin(1/x) as x tends to 0. Clearly this limit does not exist:

In[⋅]:= Plot[Sin[1/x], {x, -1, 1}, Exclusions -> {x == 0}]

Figure 4.1

InMathematica® 10 we obtain
In[⋅]:= Limit[Sin[1/x], x -> 0, Direction -> -1]

Out[⋅]:= Interval[{-1,1}]
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78 | 4 Limits of functions and continuity

This is a non-standard answerwhich reflects the fact that as x approaches 0 (even from
above) the values of the function assume all values in the interval [−1, 1]. InMathemat-
ica® 11, however, we obtain

In[⋅]:= Limit[Sin[1/x], x -> 0, Direction -> "FromAbove"]

Out[⋅]:= Indeterminate

which agrees with the usual convention that this kind of limit does not exist.

4.3 Continuous functions
Definition 3. Let a ∈ A ⊂ ℝ and let f : A→ ℝ be a function.We say that f is continuous
at a if for every sequence an → a we have limn→∞ f (an) = f (limn→∞ an) = f (a). If f
is continuous at all points in its domain we say that it is continuous. There is also a
natural notion of a left and right continuity at a point a. If a function is not continuous
at a, then we say that it is discontinuous at a.

Note that adoes not have to be a limit point ofA since every function is continuous
at an isolated point (because in such a case the only sequences convergent to the point
are the constant sequences).

Note also thatwedonot consider continuity of a functionat apointwhichdoesnot
lie in its domain. Thus the function f : ℝ \ {0}→ ℝwhich takes x to 1/x is continuous
everywhere. However, it cannot be extended to a continuous function f : ℝ → ℝ.
Any such extended function will be discontinuous at 0. For instance if we extend the
function f (x) = 1/x with f (0) = 3, then it is obviously discontinuous:

In[⋅]:= Plot[1/x, {x, -2, 2}, Exclusions -> 0,

Epilog -> Point[{0, 3}]]

Figure 4.2
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The above definition of continuity is given in Heine’s form. There is also Cauchy’s ver-
sion, which we state as a theorem.

Theorem 10. A function f : A → ℝ is continuous at a ∈ A if and only if for every ε > 0
there exists δ > 0 such that |f (x) − f (a)| < ε whenever x ∈ A and |x − a| < δ.

An interesting consequence of this theorem is that we can prove the continuity of
certain functions by using quantifier elimination. For example, we can prove that the
function f (x) = x2 − x + 1 is continuous everywhere:

In[⋅]:= f[x_] := x^2 - x + 1

In[⋅]:= Resolve[ForAll[{e, x}, e > 0, Exists[d, d > 0,

ForAll[{y}, Element[{y}, Reals] && Abs[x - y] < d,

Abs[f[x] - f[y]] < e]]]]

Out[⋅]:= True

Of course, this is not a practical approach to proving continuity of functions. Instead,
one starts by proving that the set of continuous functions (with a fixed domain) is
closed under the operations of addition, multiplication, division (when defined) and
composition of function, i. e., that the set of continuous functions has the structure of
an algebra (see [14]). Since it is obvious that all constant functions are continuous and
that the identity function x → x is continuous, it follows that all rational functions are
continuous.

Another important set of continuous functions is the set of the analytic functions,
i. e., functions defined by a power series. As we stated in Chapter 3, such a series is al-
ways convergent in an interval, which could be open, closed, half open and bounded
or unbounded. One can show that a function defined in this way is always contin-
uous in its entire region of convergence (if the interval has endpoints, the function
is left or right continuous at these endpoints). This is Abel’s Limit Theorem (see [14,
p. 416]).

4.4 Discontinuous functions

Let us now consider some examples of discontinuous functions. The simplest type of
discontinuity is a simple jump at a point. In one such situation both one-sided limits
exist and are equal but are not equal to the value of the function at the point. Such a
function can be made continuous by changing its value at a single point. The other
kind of jump discontinuity is when the function is either left continuous or right con-
tinuous but not continuous as in the picture below. The best way to produce functions
with this property inMathematica® is by using the function Piecewise, e. g.,

In[⋅]:= Plot[Piecewise[{{x, x <= 1}, {1 + x^2, x > 1}}],

{x, -2, 2}]
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80 | 4 Limits of functions and continuity

Figure 4.3

This function is obtained by joining two continuous functions whose right and left
limits at 1 do not agree. Indeed, we can compute the limits

In[⋅]:= Limit[Piecewise[{{x, x <= 1}, {1 + x^2, x > 1}}],

x -> 1, Direction -> "FromAbove"]

Out[⋅]:= 2

In[⋅]:= Limit[Piecewise[{{x, x <= 1}, {1 + x^2, x > 1}}],

x -> 1, Direction -> "FromBelow"]

Out[⋅]:= 1

In[⋅]:= Limit[Piecewise[{{x, x <= 1}, {1 + x^2, x > 1}}],

x -> 1]

Out[⋅]:= Indeterminate

This is an example of a left continuous function.
We could of course use the function If to obtain the same plot as above by using

In[⋅]:= Plot[If[x <= 1, x, 1 + x^2], {x, -2, 2},

Exclusions -> 1]

HoweverMathematica® cannot reliably performmathematical operations such as dif-
ferentiation and integration on piecewise functions defined bymeans of If. For exam-
ple in the following expression

In[⋅]:= D[If[x <= 1, x, 1 + x^2], x]

Out[⋅]:= If[x <= 1, 1, 2 x]

Mathematica® does not notice that the function is not differentiable at 1, whereas us-
ing Piecewise it gives the correct answer:

In[⋅]:= D[Piecewise[{{x, x <= 1}, {1 + x^2, x > 1}}], x]

Out[⋅]:=
{
{
{

1 x < 1
2 x x > 1
Indeterminate True
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4.4 Discontinuous functions | 81

Another important kind of discontinuity is when the one-sided limits do not exist.
For example

In[⋅]:= f[x_] := Piecewise[{{Sin[1/x], x != 0}}, 1]

This situation is better seen by using an interactive graphic representation:

In[⋅]:= Manipulate[Show[Plot[f[x], {x, 1 - d, 1},

PlotRange -> {{-1, 1}, {-1, 1.2}}], Plot[f[x],

{x, -1, -1 + d}, PlotRange -> {{-1, 1}, {-1, 1.2}}],

Epilog -> {PointSize[0.02], Point[{{0, 1}}]}],

{{d, 0.1, "d"}, 0.01, 0.99, 0.01}]

Figure 4.4
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82 | 4 Limits of functions and continuity

In the next example the limit from the left exists but the limit from the right does not.
This is another example of the left continuous function.

In[⋅]:= Plot[Piecewise[{{x, x <= 1}, {Sin[1/(x - 1)],

x > 1}}], {x, -2, 2}]

Figure 4.5

We can check that the limit from above does not exist
In[⋅]:= Limit[Piecewise[{{x, x <= 1}, {Sin[1/(x - 1)],

x > 1}}], x -> 1, Direction -> "FromAbove"]

Out[⋅]:= Indeterminate

4.4.1 Example: the Dirichlet function

One can define inMathematica®more complicated functions, for example the famous
Dirichlet function, which is not continuous at any point:

In[⋅]:= dirichlet[x_] := Boole[Simplify[Element[x, Rationals]]]

This function is equal to 1 for rational numbers and is equal to 0 otherwise:

In[⋅]:= dirichlet /@ {Sqrt[2], 1/2, Pi}

Out[⋅]:= {0, 1, 0}

However, there is not much thatMathematica® can do with this kind of function.
We cannot, for example, draw a graph of it since for plotting of graphsMathematica®

uses approximate numbers, andMathematica® does not consider approximate num-
bers as either rational or irrational:

In[⋅]:= Element[1.1, Rationals]

Out[⋅]:= 1.1 ∈ ℚ
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4.4 Discontinuous functions | 83

We can of course get some idea of the way the graph of such a function looks by using
DiscretePlot. Here we combine two plots, one over a set of rationals and another one
over irrationals.
In[⋅]:= Show[DiscretePlot[dirichlet[t], {t, -1, 1, 1/10},

Filling -> None], DiscretePlot[dirichlet[t], {t, -1, 1,

Sqrt[2]/15}, Filling -> None]]

Figure 4.6

It is easy to see that the Dirichlet function is periodic and every rational number is a
period.

In[⋅]:= $Assumptions = {Element[q, Rationals],

Element[s, Rationals], NotElement[u, Rationals],

NotElement[v, Rationals]}

Out[⋅]:= {q ∈ ℚ, s ∈ ℚ, u ̸∈ ℚ, v ̸∈ ℚ}

In[⋅]:= dirichlet[s + q]

Out[⋅]:= 1

In[⋅]:= dirichlet[v + q]

Out[⋅]:= 0

Similarly we can define a function that is continuous only at the point 0:

In[⋅]:= dd[x_] = Piecewise[{{x, Element[x, Rationals]}}]

Out[⋅]:= {
x x ∈ ℚ

0 True

In[⋅]:= Show[DiscretePlot[dd[t], {t, -1, 1, 1/10},

Filling -> None], DiscretePlot[dd[t],

{t, -1, 1, Sqrt[2]/15}, Filling -> None]]
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84 | 4 Limits of functions and continuity

Figure 4.7

4.5 The main theorems on continuous functions

In this section we will discuss several important theorems on continuous functions.

Theorem 11 (The Weierstrass theorem). Let I be a closed interval [a, b]. A continuous
function f : I → ℝ has a maximum and a minimum value (i. e., it attains its supremum
and infimum).

Let I denote an interval (which could be infinite). We say that a function f : I → X
has the Darboux property if for any a, b ∈ I and any real number p between f (a) and
f (b) there exists a real number q between a and b such that f (q) = p.

A discontinuous function can have the Darboux property; for example, the func-
tion

f (x) = {
x, x ≤ 1,
sin(1/(x − 1)), x > 1,

which appeared in Section 4.4, clearly has the Darboux property although it is discon-
tinuous at 1. However, we have the following theorem (see [14, Theorem 4.14]).

Theorem 12 (Intermediate value property). A continuous function f : I → ℝ has the
Darboux property.

A form of the theorem (easily proved to be equivalent) that is very useful in appli-
cations is the following. If a and b are two unequal real numbers with a < b and f is a
continuous function on [a, b] such that the values of f at a and b have opposite signs,
then the equation f (x) = 0 has a solution in the interval [a, b].
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4.5 The main theorems on continuous functions | 85

4.5.1 Example

Consider the following problem: find a solution of the equation x3 − 3x = −1 with
precision 1/100 (i. e., a number x such that there is an exact root of the equation p
with |x − p| < 1/100).

We consider the function

In[⋅]:= Clear[f]; f[x_] := x^3 - 3*x + 1

and look for solutions of f (x) = 0. Mathematica® has several built-in functions that
can solve this problemwith arbitrary precision (see below), but we shall use the Inter-
mediate Value Theorem and a simple While loop. Before we start we need to find two
real numbers a and b such that f (a) and f (b) have different signs. Without looking at
the graph of f this needs some guessing, e. g.,

In[⋅]:= f[0]

Out[⋅]:= 1

In[⋅]:= f[1]

Out[⋅]:= -1

Sowe know that there is a root between 0 and 1.We can now start at 0 and keep adding
1/100 until we get to a number p such that f (p) is negative. Then there has to be a root
in the interval (p − 1/100, p), which will be our solution.

In[⋅]:= a = 0; While[f[a] > 0, a += 1/100]; {a - 1/100, a}

Out[⋅]:= {17
50
,
7

20
}

In[⋅]:= N[{17/50, 7/20}]

Out[⋅]:= {0.34, 0.35}

We check the graph:

In[⋅]:= Plot[f[x], {x, 17/50, 7/20}]

Figure 4.8
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86 | 4 Limits of functions and continuity

Thus any number in the interval (17/50, 7/20) is a solution to the problem.
There is another natural algorithm we can use. We start as above, by finding two

points a and b (e. g., 0 and 1) where the function has different signs. We then divide
the interval [a, b] into two equal halves, [a, c] and [c, b]. If the signs of f at a and c are
different, we choose the interval [a, c] otherwise we choose [c, b]. We then subdivide
again and continue the process until the width of the interval (denoted below by d) is
less than 1/100. We then return the midpoint:

In[⋅]:= Module[{a = 0, b = 1, c = 1/2, d = 1},

While[d >= 1/100, If[Sign[f[a]*f[c]] == -1,

a = a; b = c; c = (a + b)/2; d = b - a,

a = c; b = b; c = (a + b)/2; d = b - a]]; N[c, 3]]

Out[⋅]:= 0.348

Of course Mathematica® has a number of built-in functions that can solve this
problem (with the required precision or much higher if desired). As the equation is a
polynomial one, we could use the function NSolve:

In[⋅]:= NSolve[f[x] == 0, x, WorkingPrecision -> 2.6]

Out[⋅]:= {{x -> -1.88}, {x -> 0.347}, {x -> 1.53}}

The function FindRootworks evenwith non-algebraic equations but needs a start-
ing value:

In[⋅]:= FindRoot[f[x] == 0, {x, 0}, WorkingPrecision -> 2.6]

Out[⋅]:= {x -> 0.347}

Mathematica® can find the solutions of polynomial equations exactly and also
with an arbitrary precision:

In[⋅]:= rts = x /. Solve[x^3 - 3*x == -1, x, Reals]

Out[⋅]:= {Root[1 - 3*#1 + #1^3 & , 1], Root[1 - 3*#1 + #1^3 & , 2],

Root[1 - 3*#1 + #1^3 & , 3]}

In[⋅]:= N[rts, 2.6]

Out[⋅]:= {-1.88, 0.347, 1.53}

Note that we can also find a rational approximation to the exact root above:

In[⋅]:= Rationalize[rts[[2]], 1/100]

Out[⋅]:= 5

14

4.6 Inverse functions and their continuity

We say that a function f : A → B is injective or one-to-one if f (x) = f (y) implies x = y.
We know that f is injective if and only if it has an inverse function f −1 : f (A) → A
(where f (A) is the image of A under f ).
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Let I be an interval. It follows easily from the intermediate value property theorem
that a continuous function f : I → ℝ is injective if and only if it is either strictly
monotone increasing (x < y implies f (x) < f (y)) or strictly monotone decreasing (x < y
implies f (x) > f (y)). In this situation one can show that the inverse function is also
continuous. This does not have to be true if the domain of f is not an interval. Consider,
for example, the continuous functions f : A → B where A = (0, 1) ∪ {2}, B = (0, 1],
f (x) = x for 0 < x < 1 and f (2) = 1. Then f has an inverse function g = f −1, which is
defined by g(x) = x, x ∈ (0, 1) and g(1) = 2, but it is not a continuous function (it does
not have the Darboux property). We can illustrate this example as follows:

In[⋅]:= Graphics[{PointSize[0.02], Line[{{0, 0}, {1, 0}}],

Point[{2, 0}], Line[{{0, 0}, {0, 1}}], Point[{0, 1}],

Arrow[{{0.5, 0}, {0, 0.5}}], Arrow[{{0.98, 0},

{0, 0.98}}], Arrow[{{2, 0}, {0, 1}}]}]

Figure 4.9

Mathematica® has a built-in function InverseFunction which will return the inverse
of certain (not very complicated) functions:

In[⋅]:= InverseFunction[Sin]

Out[⋅]:= ArcSin

In[⋅]:= InverseFunction[Function[x, 3*x + 1]]

Out[⋅]:= Function[x,
1

3
(-1 + x)]

Even when Mathematica® cannot give an explicit form of the inverse function, one
can use it for computation and plotting:
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88 | 4 Limits of functions and continuity

In[⋅]:= f = Sin[#1] - #1 & ;

In[⋅]:= g = InverseFunction[f];

In[⋅]:= Plot[{f[x], g[x]}, {x, -2, 2}]

Figure 4.10

4.7 Example: recursive sequences and continuity

We can now revisit the topic of recursive sequences. Suppose we are given a sequence
defined by a system of recurrence equations,

a1 = x, an+1 = f (an),

where f is a continuous function. Then if an is convergent to a limit a ∈ ℝ, and a has
to be a fixed point of f . This follows immediately from the continuity of f since

f (a) = f( lim
n→∞

an) = lim
n→∞

f (an) = lim
n→∞

an+1 = a.

Now let us assume that the function f has two fixed points a and b and it is defined
and one-to-one (injective) on [a, b]. Then since f ismonotonic, clearly f ([a, b]) = [a, b].
In other words, if our recursive sequence starts at some x in between two fixed points,
the whole sequence has to remain in between these two fixed points. Moreover, since
an injective function has to be monotonic, one of these points has to be the limit,
depending on whether the sequence is increasing or decreasing.
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Let us illustrate this with an example. Consider the function given by

In[⋅]:= Clear[f]; f[x_] := 3 - 1/x

There are only two fixed points:

In[⋅]:= x /. Solve[f[x] == x, x]

Out[⋅]:= {1
2
(3 −√5) ,

1

2
(3 +√5)}

which means these are the only possible limits of the sequence

a1 = x, an+1 = 3 −
1
an
.

Let us try to analyze the behavior of this sequence for various starting real num-
bers x. First we need to deal with the problem that for certain starting values x, such
as 1/3, a term of the sequence can become 0, which means that the subsequent terms
will not be defined.Wewill say that the sequence explodes in such a case andwe need
to exclude such points. The set of points at which the sequence explodes satisfies an
inverse recurrence relation:

In[⋅]:= Solve[a[n + 1] == 3 - 1/a[n], a[n]]

Out[⋅]:= {{a[n] ->
1

3 − a[n + 1]
}}

So we can define

b1 = 0, bn+1 =
1

3 − bn
.

We can solve this with RSolve and find that we get an increasing sequence of points
with limit

In[⋅]:= Limit[Simplify[b[n] /. RSolve[{b[n + 1] == 1/(3 - b[n]),

b[1] == 0}, b[n], n]], n -> Infinity]

Out[⋅]:= {1
2
(3 −√5)}

Let us now try to considerwhatwill happen if we start at any other point.We know
that the function must send the interval [c1, c2] = [(3 − √5)/2, (3 + √5)/2] to itself. We
only need to know where it is increasing:

In[⋅]:= Reduce[f[x] >= x, x]

Out[⋅]:= x < 0 ||
1

2
(3 −√5) ≤ x ≤

1

2
(3 +√5)

So the function is increasing in the interval [c1, c2], hence if we start at any point of
(c1, c2], the limit must be c2. Of course if we start at c1 the sequence is constant. What
about the other starting points? If we start to the right of c2, then the function will be
decreasing, but as it cannot “jump” into the interval or over it (because of continuity
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90 | 4 Limits of functions and continuity

and injectivity), the sequence has to remain to the right of c2 and converge to c2 from
the right. Moreover, if x is negative, f (x) has to be positive and is greater than 3 (the
“jump” is possible because f cannot be continuously defined at 0!), and after that the
sequence will converge to c2 from the right. Finally, if we start between 0 and c1, then
the sequence will decrease until it becomes negative (because it cannot be bounded
below as otherwise it would have to have another limit), and then it will jump to the
right side of c2 and converge to it from above. The conclusion is that the sequence
either explodes or converges to c2 = (3 +√5)/2, except when it starts at c1 = (3 −√5)/2
as it remains there. We suggest the reader to illustrate the behavior of this dynamical
system by using Manipulate as in Chapter 2.

4.8 Uniform continuity and the Lipschitz property

A function f : A → ℝ is said to be uniformly continuous if for every ε > 0 there is a
δ > 0 such that for x, y ∈ A with |x − y| < δ we have |f (x) − f (y)| < ε.

Note that when we write the definition in terms of quantifiers, the difference be-
tween ordinary continuity and uniform continuity amounts to the difference in the
order of quantifiers: for continuity we have

∀ε, ε>0∀x, x∈A∃δ, δ>0∀y, y∈A∧ |x−y|<δ |f (x) − f (y)| < ε

and for uniform continuity we have

∀ε, ε>0∃δ, δ>0∀x, x∈A∀y, y∈A∧ |x−y|<δ |f (x) − f (y)| < ε.

Clearly uniform continuity implies ordinary continuity but the converse is not
true. We can demonstrate this usingMathematica®. Since the condition is written en-
tirely in terms of quantifiers, it should be possible to prove it for polynomial and ratio-
nal functions by quantifier elimination. Let us compare two functions, the function

In[⋅]:= Clear[f, g]; f[x_] := x^2

defined on ℝ and the function

In[⋅]:= g[x_] := Sqrt[x]

defined on ℝ+. As we know both functions are continuous:
In[⋅]:= Reduce[ForAll[{e, x}, e > 0, Exists[d, d > 0,

ForAll[{y}, Element[{y}, Reals] &&

Abs[x - y] < d, Abs[f[x] - f[y]] < e]]]]

Out[⋅]:= True

In[⋅]:= Reduce[ForAll[{e, x}, e > 0 && x >= 0,

Exists[d, d > 0, ForAll[{y}, y >= 0 &&

Abs[x - y] < d, Abs[g[x] - g[y]] < e]]]]

Out[⋅]:= True
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However, the first one is not uniformly continuous while the second one is:

In[⋅]:= Reduce[ForAll[e, e > 0, Exists[d, d > 0,

ForAll[{x, y}, Element[{x, y}, Reals] &&

Abs[x - y] < d, Abs[f[x] - f[y]] < e]]]]

Out[⋅]:= False

In[⋅]:= Reduce[ForAll[e, e > 0, Exists[d, d > 0,

ForAll[{x, y}, x >= 0 && y >= 0 &&

Abs[x - y] < d, Abs[g[x] - g[y]] < e]]]]

Out[⋅]:= True

We have the following theorem [14, Theorem 3.38].

Theorem 13. Every continuous function f on a bounded closed interval [a, b] is uni-
formly continuous therein.

We can demonstrate this by restricting the function x → x2 to the unit interval:

In[⋅]:= Reduce[ForAll[e, e > 0, Exists[d, d > 0,

ForAll[{x, y}, 0 <= x <= 1 && 0 <= y <= 1 &&

Abs[x - y] < d, Abs[f[x] - f[y]] < e]]]]

Out[⋅]:= True

A function f : A → ℝ satisfies the Lipschitz condition if there exists a constant
c > 0 such that |f (x) − f (y)| ≤ c|x − y|. Obviously, every function that satisfies the
Lipschitz condition is uniformly continuous.

Let us show that the function x → √x does not satisfy the Lipschitz condition on
[0, ∞) but does so on [1, ∞):

In[⋅]:= Reduce[Exists[c, c > 0, ForAll[{x, y}, x >= 0 && y >= 0,

Abs[Sqrt[x] - Sqrt[y]] <= c*Abs[x - y]]], Reals]

Out[⋅]:= False

In[⋅]:= Reduce[Exists[c, c > 0, ForAll[{x, y}, x >= 1 && y >= 1,

Abs[Sqrt[x] - Sqrt[y]] <= c*Abs[x - y]]], Reals]

Out[⋅]:= True

In fact we can actually, instead of deciding whether such a constant c exists, find its
value by removing the function Exists from the expression above:

In[⋅]:= Reduce[ForAll[{x, y}, x >= 1 && y >= 1,

Abs[Sqrt[x] - Sqrt[y]] <= c*Abs[x - y]], Reals]

Out[⋅]:= c ≥
1

2

Brought to you by | Chalmers University of Technology
Authenticated

Download Date | 10/7/19 12:17 PM



92 | 4 Limits of functions and continuity

Note that this time we needed to add the domain Reals to Reduce:

In[⋅]:= Reduce[Exists[c, c > 0, ForAll[{x, y}, x >= 0 &&

y >= 0, Abs[Sqrt[x] - Sqrt[y]] <= c*Abs[x - y]]]]

⋅ ⋅ ⋅ Reduce: Reduce was unable to prove that a radical of

an expression containing only real variables and parameters

is real-valued. If you are interested only in solutions for

which all radicals contained in the input are real-valued,

use Reduce with domain argument Reals.

Out[⋅]:= Reduce [∃c, c>0∀{x,y}, x≥0&&y≥0Abs[√x −√y] ≤ c Abs[x − y]]

This happenswhenever functions that can take non-real values, such as roots, appear
in an expression to which Reduce is applied.

The reader should prove all the above results by hand. See also [14] for other ex-
amples.

4.8.1 Example

Finally, we consider an example which cannot be solved by using quantifier elimina-
tion (because it involves a non-algebraic function).

Consider the following problem: decide whether the function log(x) has the Lips-
chitz property or is uniformly continuous (a) on (0, ∞) and (b) on [a, ∞) for a > 0.

This is the kind of situation whereMathematica®’s dynamic graphic capabilities
can be very useful. The dynamic graphic below shows that we can find ε > 0 (in this
case ε = 1) and a pair of points x, y > 0 such that |x − y| < δ is arbitrarily small
while | log(x) − log(y)| = ε. We can use the slider to make δ smaller and see that the
distance between log(x) and log(y) (represented by the vertical green line) does not
change (here x = δ and y = δ/e). Hence, the function is not uniformly continuous on
the interval (0, ∞).

In[⋅]:= Manipulate[Show[Plot[Log[x], {x, 0.0001, 1.2},

PlotRange -> {{0, 1.3}, {-5, 1}}],

Graphics[{Red, Opacity[0.3], Rectangle[{d/E, 0},

{d, Log[d/E]}], Opacity[1], Thickness[0.01],

Blue, Line[{{d, 0}, {d, Log[d/E]}}], Line[{{d/E, 0},

{d/E, Log[d/E]}}], Green, Line[{{d, Log[d]},

{d, Log[d/E]}}]}], AxesOrigin -> {0, 0}, PlotRange ->

{{0, 1.3}, {-5, 1}}], {{d, 1, "d"}, 0.001, 1}]
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Figure 4.11

We can also see that if x, y > a for some a > 0, then the above argument no longer
works because we cannot move x and y arbitrarily close to 0. In fact, we can show that
when restricted to [a, ∞) the function log has the Lipschitz property. Indeed, suppose
that y > x. Then

log(y
x
) = log(x + (y − x)

x
) = log(1 + y − x

x
) ≤ log(1 + y − x

a
).
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94 | 4 Limits of functions and continuity

We now use the fact that log(z + 1) ≤ z for z ≥ 1, whichMathematica® can prove:

In[⋅]:= Reduce[Log[1 + z] <= z, z]

Out[⋅]:= z > -1

Hence

log(y
x
) ≤

y − x
a

on [a, ∞), whichmeans that loghas the Lipschitz propertywith the Lipschitz constant
equal to 1/a.
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5 Differentiation
In this chapter we consider the concept of differentiability and derivative of a function
at a point andonan interval.We see that differentiability is a special case of continuity,
but of another function called the difference quotient. We then consider various prop-
erties of derivatives and applications of differentiation, in particular to finding global
and local extrema and to convexity of functions.We also illustrate some aspects of the
use of patterns and transformation rules in Mathematica®’s programming language
by the example of a user-defined derivative.

5.1 Difference quotient and derivative of a function

Let I be an open interval in ℝ, a ∈ I and let f : I → ℝ be a function. Its difference
quotient is a function Q : I \ {a}→ ℝ given by

In[⋅]:= Q[a_, f_][x] := DifferenceQuotient[f[x], {x, a - x}]

In[⋅]:= Q[a, f][x]

Out[⋅]:= f[a] − f[x]
a − x

Note that the difference quotient is not defined at the point a. We are going to consider
the following question: can Q be extended to a function ϕ : I → ℝ such that ϕ is
continuous at a? If the answer is “yes”, then we say that f is differentiable at a and
ϕ(a) is its derivative at a.

In the interactive graphic below we show the graphs of the difference quotients
of the functions x → |x|k, where k ∈ {1/2, 1, 3/2, 2}. We see that the first two functions
√|x| and |x| are not differentiable at 0 while the remaining functions are all differen-
tiable.

In[⋅]:= Manipulate[Plot[Evaluate[Q[0, Abs[#1]^k & ][x]],

{x, -1, 1}, Exclusions -> 0, AxesOrigin -> {0, 0}],

{{k, 1/2, "k"}, 1/2, 2, 1/2, Appearance -> "Labeled"},

SaveDefinitions -> True]

https://doi.org/10.1515/9783110590142-005
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Figure 5.1
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5.1 Difference quotient and derivative of a function | 97

The definition can be expressed in the more usual way in terms of limits: f is differen-
tiable at a if the limit

lim
x→a

Q(a, f )(x) = lim
x→a

f (x) − f (a)
x − a

exists, in which case the limit is called the derivative of f at a. The derivative of a func-
tion f at a point a is usually denoted as f (a) or ( df (x)dx )|x=a. If f is differentiable on an
open interval I, then the derivative is also a function f  : I → ℝ, x → f (x).

The second order derivative is defined at a point awhenever the first order deriva-
tive exists in a neighborhood of a and is differentiable (and hence also continuous) at
a. We then say that f is twice differentiable at a and denote its second order derivative
by f (a) or ( d

2f (x)
dx2 )|x=a. In general, we define the n-th order derivative of a function f as

f (n) = (f (n−1)). If f is n times differentiable and the n-th order derivative is continuous,
then f is said to be of class Cn.

Geometrically the difference quotient represents the secant line of the graph of f
connecting the points (x, f (x)) and (a, f (a)). As the point x approaches a, the secant
approaches the tangent to the graph of f at (a, f (a)):

In[⋅]:= f[t_] := t^3

In[⋅]:= Manipulate[Show[Graphics[{Red, PointSize[0.01],

Point[{1, 0}], Point[{1, f[1]}], Blue,

Point[{1 + t, f[1 + t]}], Point[{1 + t, 0}],

Thickness[0.005], Line[{{1, 0}, {1, f[1]}}],

Line[{{1 + t, f[1 + t]}, {1 + t, 0}}],

Line[{{1, If[t > 0, f[1], f[1 + t]]},

{1 + t, If[t > 0, f[1], f[1 + t]]}}], Green,

Line[{{1, f[1]}, {1 + t, f[1 + t]}}]}],

Plot[f[x], {x, 0, 2}], Plot[f[1] +

Derivative[1][f][1]*(x - 1), {x, -1, 2},

PlotStyle -> Red], Axes -> True,

PlotRange -> {{0.3, 1.5}, {0, f[1.5]}},

AspectRatio -> 1], {{t, 0.5, "h"}, -1, 1},

SaveDefinitions -> True]
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Figure 5.2

It is easy to see that if a function is differentiable at a point a, it has to be continuous
there. Indeed, for any an → a we have

lim
n→∞

f (an) = lim
n→∞
(
(an − a)(f (an) − f (a))

an − a
+ f (a)) = f (a).
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When the limit limx→a− (f (x)−f (a))/(x−a) exists, the function f is said to be left dif-
ferentiable at a and the limit is called its left hand derivative. If the limit limx→a+ (f (x)−
f (a))/(x − a) exists, then f is said to be right differentiable at a and the limit is its right
hand derivative. A function is differentiable if and only if both its left and right hand
derivatives exist and are equal.

The following is an example of a function which has both right and left hand
derivatives at 1 but they are not equal (hence the function is not differentiable):

In[⋅]:= Plot[Piecewise[{{x, x <= 1}, {x^2, x > 1}}], {x, 0, 2}]

Figure 5.3

Indeed, the right hand derivative is

In[⋅]:= Limit[(Piecewise[{{x, x <= 1}, {x^2, x > 1}}]

- 1)/(x - 1), x -> 1, Direction -> "FromAbove"]

Out[⋅]:= 2

while the left hand derivative is

In[⋅]:= Limit[(Piecewise[{{x, x <= 1}, {x^2, x > 1}}]

- 1)/(x - 1), x -> 1, Direction -> "FromBelow"]

Out[⋅]:= 1

On the other hand, the functionwhose graph is shown below has neither left nor right
hand derivatives:

In[⋅]:= Manipulate[Plot[Piecewise[{{x*Sin[1/x], x != 0}}],

{x, -r, r}, PlotRange -> All], {{r, 1, "r"}, 0.01,

1, Appearance -> "Labeled"}, SaveDefinitions -> True]
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Figure 5.4

When the tangent to the graph at a point is vertical, the derivative at that point exists
and is equal to∞ but the function is said to be non-differentiable there:

In[⋅]:= Plot[Surd[x, 3], {x, -1, 1}]

Figure 5.5

Note, however, that from the point of view of differential geometry the curve which
represents the graph is regular (or smooth).
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The reason why we use the function Surd rather than x1/3 (Power[x, 1/3]) is that
inMathematica® x1/n is not a real number for negative x and odd integer n greater than
one. For example,

In[⋅]:= N[(-1)^(1/3)]

Out[⋅]:= 0.5 + 0.866025 I

This is due to the fact that in complex analysis any number has n complex roots.When
n is odd, then any negative number always has just one real root, but this is not the
“principal root”, used in complex analysis. In the case n = 3 the principal root is a
complex number with a positive imaginary part. In order to be consistent with this
convention Mathematica®’s function Power always returns this (complex) principal
root. Therefore, if one wants to get a real number, one needs to use the function Surd

(or in this case the function CubeRooot), defined specifically for this purpose:

In[⋅]:= Surd[-1, 3]

Out[⋅]:= -1

In[⋅]:= CubeRoot[-1]

Out[⋅]:= -1

Note that in TraditionalForm the expression above will look like a cube root 3√−1.
In the example below the derivative from the left is −∞ and the one from the right

is∞. The tangent is also vertical but the derivative does not exist.

In[⋅]:= Plot[Sqrt[Abs[x - 2]], {x, 0, 4}]

Figure 5.6

Note that in this case the curve is not smooth.
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5.2 Differentiation in Mathematica®

Mathematica®’s approach to differentiation is a little non-standard, sinceMathemat-
ica® has two distinct notions of derivative, which wewill call “derivative of an expres-
sion” and “derivative of a function”. Each can be essentially used for the samepurpose
but they are conceptually different and each is more convenient in a certain context.
It is therefore advisable to learn to use both, which is whywe devote the whole section
to this topic. In particular, we will explain why instead of writing

In[⋅]:= (x^2)

Out[⋅]:= (x2)

we have to write either

In[⋅]:= D[x^2, x]

Out[⋅]:= 2 x

or

In[⋅]:= (Function[x, x^2])

Out[⋅]:= Function[x, 2 x]

and instead of

In[⋅]:= Sin[x]

Out[⋅]:= Sin[x]

we must write

In[⋅]:= Sin[x]

Out[⋅]:= Cos[x]

5.2.1 Differentiation of expressions using D

Recall that inMathematica® “everything is an expression” and an expression always
has the form F[x1, x2, . . . , xn], where F is called the head of the expression and each
xi is an argument. Both the head and the arguments can themselves be either atoms
or expressions of the above form. Here we will only consider certain special kinds of
expressions which are related to mathematical functions. One can think of them as
arising by applying a mathematical function to a certain number of variables. For ex-
ample x2 + 2 x + 1, 2 x + a, Sin[x Exp[x y2]] + 3 are such expressions. It is important
to keep in mind the distinction between expressions and the corresponding functions
(of one variable); for example, the function Function[x, x2 + 2 x + 1] corresponds to
the expression x2 + 2 x + 1. In this sectionwewill only consider functions of one vari-
able, so if an expression contains two symbols, like 2 x + a, we think of a as a constant
and take as the corresponding function Function[x, 2 x + a] (and not the function of
two variables Function[{x, a}, 2 x + a]).
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Expressions are differentiated inMathematica® using the symbol D. Thederivative
of an expression expr with respect to a variable x is written as D[expr,x]:

In[⋅]:= D[x*Sin[x], x]

Out[⋅]:= x Cos[x] + Sin[x]

Note that D treats every symbol in an expression that does not explicitly depend on x
as a constant:

In[⋅]:= D[a*x^2 + b + 2, x]

Out[⋅]:= 2 a x

Otherwise if, for instance, we want b to depend on x, we need to write either

In[⋅]:= D[a*x^2 + b[x] + 2, x]

Out[⋅]:= 2 a x + b[x]

or

In[⋅]:= D[a*x^2 + b + 2, x, NonConstants -> b]

Out[⋅]:= 2 a x + D[b, x, NonConstants -> {b}]

There is another approach (which we mention only briefly as we will not use it)
that uses the “total differential” Dt instead of D. Dt makes the opposite assumption
to that of D, i. e., that everything is non-constant unless declared to be a constant by
means of the option Constants:

In[⋅]:= Dt[a*x, x]

Out[⋅]:= a + x Dt[a, x]

In[⋅]:= Dt[a*x, x, Constants -> a]

Out[⋅]:= a

In[⋅]:= Dt[a*x^2 + b, x, Constants -> {a, b}]

Out[⋅]:= 2 a x

If wewanta to be treated as a constant globally,we can give it the Attribute Constant.
The symbol a will then be treated by Dt as a constant until the kernel is quit or the
Attribute is cleared:

In[⋅]:= SetAttributes[a, Constant]

In[⋅]:= Dt[a x, x]

Out[⋅]:= a

In[⋅]:= ClearAttributes[a, Constant]

If by using D we want to compute the value of the derivative of a function f at a
point a we have to use a replacement rule, i. e., the following

In[⋅]:= D[f[x], x] /. x -> a

Out[⋅]:= f[a]
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computes the derivative f (a). Note that the substitution of a for x has to be done after
differentiation, otherwise we will get 0. Of course the name of the variable can be any
allowed name, i. e., the expressions

In[⋅]:= D[x^3, x] /. x -> 2

Out[⋅]:= 12

In[⋅]:= D[var^3, var] /. var -> 2

Out[⋅]:= 12

both return the same answer. However, we have to be sure that the variable x does not
have an assigned value or we can use a scoping construct such as Block or Module,
e. g.,

In[⋅]:= x = 1; D[x^3, x]

⋅ ⋅ ⋅ General: 1 is not a valid variable.

Out[⋅]:= 𝜕11

In[⋅]:= Block[{x}, D[x^3, x] /. x -> 2]

Out[⋅]:= 12

In[⋅]:= Clear[x]

In general when differentiating with respect to x an expression of the form F[x],
where F is an atomic expression, Mathematica® treats the head of the expression as
the name of a function and if it knows the derivative of F, for example G, then it returns
G[x]:

In[⋅]:= D[Sin[x], x]

Out[⋅]:= Cos[x]

Otherwise it returns F[x] (or in FullForm the output is Derivative[1][F][x]). The
function Derivative will be discussed in Section 5.2.2.

In[⋅]:= D[Abs[x], x]

Out[⋅]:= Abs[x]

In[⋅]:= % // FullForm

Out[⋅]//FullForm= Derivative[1][Abs][x]

Although Abs is a built-in function, Mathematica® does not have any value assigned
as its derivative because in the complex plane Abs is not differentiable at any point,
but in the real case we can give a formula which is valid for every point except 0. So
we can define our own derivative that will suit our purpose:

In[⋅]:= Derivative[1][Abs] = Piecewise[{{1, #1 > 0},

{-1, #1 < 0}}, Indeterminate] &

Out[⋅]:=
{{{
{{{
{

1 #1 > 0
−1 #1 < 0 &
Indeterminate True
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Hence,

In[⋅]:= D[Abs[x], x]

Out[⋅]:=
{{{
{{{
{

1 x > 0

−1 x < 0

Indeterminate True

5.2.2 Differentiation of functions using Derivative

Derivative is used todifferentiate functions.Mathematica® allowsone todefine func-
tions in two ways: by means of patterns and rules and as pure functions. We can use
Derivative in both cases.

We first define a function by means of patterns:

In[⋅]:= cube[x_] := x^3

Mathematica® remembers the following information about this function:

In[⋅]:= ?cube

Out[⋅]:= Global`cube

cube[x_] := x3

In[⋅]:= DownValues[cube]

Out[⋅]:= {HoldPattern[cube[x_]] :> x3}

We can now differentiate the function cube by

In[⋅]:= Derivative[1][cube]

Out[⋅]:= 3 #12 &

The result is a pure function that can be immediately applied to arguments. There is a
quicker way to achieve the same result:

In[⋅]:= cube

Out[⋅]:= 3 #12 &

Note that we cannot use D in this case:
In[⋅]:= D[cube, x]

Out[⋅]:= 0

However, we can form an expression cube[x] which we can differentiate:

In[⋅]:= D[cube[x], x]

Out[⋅]:= 3 x2

Calculating derivatives at points using Derivative is very simple:

In[⋅]:= cube[2]

Out[⋅]:= 12
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Exactly the same approach works for pure functions, e. g.,

In[⋅]:= Function[x, x^3]

Out[⋅]:= Function[x, 3 x2]

In[⋅]:= #^3 & [2]

Out[⋅]:= 12

The same method also works with built-in functions, for example:

In[⋅]:= {Sin, Cos}
Out[⋅]:= {Cos[#1] &, -Sin[#1] &}

In[⋅]:= Map[Derivative[1], {Sin, Cos}]

Out[⋅]:= {Cos[#1] &, -Sin[#1] &}

Note that the derivative of a constant function is zero:

In[⋅]:= Derivative[1][1 &]

Out[⋅]:= 0 &

Using Derivative has a number of advantages over using D; for example, it is
much simpler to plot the graph of a derivative:

In[⋅]:= Plot[{cube[x], cube[x]}, {x, -1, 1}]

Figure 5.7

To achieve the same result by means of D we need to use a more complicated code:

In[⋅]:= Plot[Evaluate[{cube[x], D[cube[x], x]}], {x, -1, 1}]

InMathematica® the n-th derivative of an expression f[x] is obtained by D[f[x],
{x, n}] and of a function f as Derivative[n][f]. The last can also be entered for
small n by using  several times (for instance for n = 2 we write f).
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5.2.3 Algebraic rules of differentiation

The basic properties of derivatives follow from properties of limits and allow us to
turn differentiation into an algorithm.More precisely, these properties show that once
we know the derivatives of a certain family of “basic” functions there is an algebraic
algorithm that computes the derivatives of their sums, products, inverses and compo-
sitions. Of course, the derivatives of these basic functions have to be computed using
analytic means, that is, by computing suitable limits of difference quotient functions.
The basic rules [14, Theorem 3.48] can easily be verified for the functions D or Deriva-
tive:
(i) the derivative of a constant is zero

In[⋅]:= D[1, x]

Out[⋅]:= 0

(ii) the sum rule
In[⋅]:= D[f[x] + g[x], x]

Out[⋅]:= f[x] + g[x]

(iii) the Leibniz rule (the product rule)

In[⋅]:= D[f[x] g[x], x]

Out[⋅]:= g[x] f[x] + f[x] g[x]

(iv) the quotient rule

In[⋅]:= D[f[x]/g[x], x] // Together

Out[⋅]:= g[x] f[x] − f[x] g[x]
g[x]2

The “chain rule” is the rule for computing the derivative of the composition of two
functions [14, Theorem 3.51]:

In[⋅]:= D[f[g[x]], x]

Out[⋅]:= f[g[x]] g[x]
or

In[⋅]:= Derivative[1][Composition[f, g]]

Out[⋅]:= f[g[#1]] g[#1]&

From the chain rule we can derive the very important rule for differentiation of inverse
functions:

In[⋅]:= InverseFunction[f]

Out[⋅]:= 1

f [f(−1)[#1]]
&

or
In[⋅]:= D[InverseFunction[f][x], x]

Out[⋅]:= 1

f [f(−1)[x]]
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108 | 5 Differentiation

5.2.4 Example: user-defined derivative

A good exercise in Mathematica®’s pattern and rule-based programming is to write
one’s own version of D (or of Derivative):

In[⋅]:= d[Sin[x_], x_] := Cos[x]

d[Cos[x_], x_] := -Sin[x]

d[Exp[x_], x_] := Exp[x]

d[Log[x_], x_] := 1/x

d[f_, x_] /; FreeQ[f, x] := 0

d[x_, x_] := 1

d[(f_) + (g_), x_] := d[f, x] + d[g, x]

d[(f_)*(g_), x_] := d[f, x]*g + f*d[g, x]

d[(y_)^(a_), x_] := y^a*d[a*Log[y], x]

d[(f_)[u_], x_] := Block[{v}, (d[f[v], v] /.

v -> u)*d[u, x]]

The first four rules define how d operates on “basic functions”.We have included only
the functions Sin, Cos, Exp and Log. Next we have the rule that says that the derivative
of a constant (i. e., an expression that does not explicitly involve x) is 0 and that the
derivative of the identity function x → x is 1. Next comes the rule for differentiating
sums and products (the Leibniz rule). Next we have a rule for differentiating powers.
In fact, our rule for differentiating powers is based on an easy to prove formula known
as “logarithmic differentiation”:

df (x)
dx
= f (x)d log(|f (x)|)

dx

(the formula is valid even without the absolute value if we accept the existence of
logarithms of negative numbers, which we shall not go into here). The last rule is the
chain rule.

Note thatMathematica® cannot “deduce” the rule for differentiating integer pow-
ers from the rule for differentiating products, like we do in ordinary mathematics, be-
cause Mathematica®’s rules apply to the FullForm of the expressions, and the Full-
Form of, for example, x3 is

In[⋅]:= FullForm[x^3]

Out[⋅]//FullForm= Power[x, 3]

and not Times[x, x, x], which is the form of x x x before it gets evaluated:

In[⋅]:= FullForm[Hold[x x x]]

Out[⋅]//FullForm= Hold[Times[x, x, x]]
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5.3 Main properties of differentiable functions | 109

The reader can check that the derivative d we have just defined gives the same
answers as the built-in function D, e. g.,

In[⋅]:= d[Sin[x] Log[x Cos[x^2]], x] // Simplify

Out[⋅]:= Cos[x] Log[x Cos[x2]] + Sin[x] (
1

x
− 2 x Tan[x2])

In[⋅]:= D[Sin[x] Log[x Cos[x^2]], x] // Simplify

Out[⋅]:= Cos[x] Log[x Cos[x2]] + Sin[x] (
1

x
− 2 x Tan[x2])

In[⋅]:= d[Sin[x]/x, x]

Out[⋅]:= Cos[x]
x
−

Sin[x]
x2

In[⋅]:= D[Sin[x]/x, x]

Out[⋅]:= Cos[x]
x
−

Sin[x]
x2

5.3 Main properties of differentiable functions

Let f : I → ℝ, where I is an interval, and a ∈ I. We say that f has a local maximum
(respectively local minimum) at a if there is some δ > 0 such that for all x ∈ I with
|x − a| < δ we have f (x) ≤ f (a) (respectively f (x) ≥ f (a)). If strict inequalities hold we
say that f has a strict local maximum (respectively strict local minimum) at a.

The word extremum refers to both maxima and minima. A global extremum is al-
ways a local one but, of course, the converse is not true. In fact, a differentiable func-
tion on a non-closed interval need not attain its global extrema (see the graph in Sec-
tion 5.3.1).

The following simple fact is extremely useful.

Theorem 14 (Fermat’s Interior Extremum Theorem). Let I be anopen interval, a ∈ I and
let f : I → ℝ be differentiable at a. If f has a local extremum at a, then f (a) = 0.

Apoint a such that f (a) = 0 is called a critical point of f and f (a) is called a critical
value.

Suppose now that I is a closed interval and f is differentiable. Then by the Weier-
strass theorem (see Theorem 11 in Chapter 4) the function f has to attain its supremum
and infimum (i. e., it has to have amaximumand aminimumvalue). Thus themaxima
must occur either at critical points or at the endpoints of the interval. In such cases we
can find the global maximum andminimum by solving the equation f (x) = 0, i. e., by
finding the critical points and then comparing the critical values of f with its values
at the endpoints. In general a differentiable function need not have a finite number of
critical points. However, complex analytic functions (and in particular real ones) have
a finite number of them, which follows from what is known as the Identity Theorem.
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110 | 5 Differentiation

If the number of critical points is finite, then we can find the global maximum and
minimum by an algorithm (provided we have an algorithm for solving equations).

Another important theorem that we need is Mean Value Theorem [14, Theo-
rem 4.17].

Theorem 15 (Mean Value Theorem). If f : [a, b] → ℝ, where a < b, is differentiable on
(a, b) and is continuous on [a, b], then there exists at least one point c ∈ [a, b] such that

f (b) − f (a)
b − a

= f (c).

This immediately implies that if f (c) > 0 on an interval I, then f is strictly in-
creasing on I and if f (c) < 0, then f is strictly decreasing. The same holds with > (<)
replaced by ≥ (≤) and the word “strictly” removed. However, if f is strictly increas-
ing on I, we can only conclude that f (x) ≥ 0 on I (consider for example the function
f (x) = x3 on [0, 1], which is strictly increasing, but f (0) = 0).

Recall that a Lipschitz function f : I = [a, b] → ℝ was defined as one for which
there exists a constantM such that |f (x) − f (y)| ≤ M|x − y| for all x, y ∈ I. A Lipschitz
function is always continuous and even uniformly continuous but not necessarily dif-
ferentiable. Suppose, however, that a function f is differentiable in (a, b). Then the
Lipschitz condition is equivalent to the derivative of the function being bounded on
I. Indeed, suppose that f is Lipschitz with constant M. Let c ∈ (a, b). Then for every
x ∈ I \ {c}

|f (x) − f (c)|
|x − c|

≤ M.

Taking limits we obtain f (c) ≤ M, hence the derivative of f is bounded on I. Con-
versely, suppose that for all x ∈ (a, b)we have |f (x)| ≤ C. Let x, y ∈ (a, b). Then by the
Mean Value Theorem we have (f (x) − f (y))/(x − y) = f (ξ ) for some ξ ∈ (x, y) ⊂ (a, b).
Hence |f (x) − f (y)|/|x − y| = |f (ξ )| ≤ C and f is Lipschitz with constant C. This makes
it much easier to check if a differentiable function is Lipschitz. For example, consider
the function f (x) = sin(log(x)) for x ≥ 1. Since the function is differentiable, we need
only to compute its derivative to show that it is Lipschitz:

In[⋅]:= D[Sin[Log[x]], x]

Out[⋅]:= Cos[Log[x]]
x

Clearly, on [1, ∞] we have | cos(log(x))|/|x| ≤ 1, hence the function is Lipschitz.
Recall (see Section 4.6 in Chapter 4) that a continuous function f : I → ℝ defined

on an interval has an inverse function (defined on its image) if and only if it is strictly
monotone. The latter condition can be checked by computing the derivative, since
we know that if f (x) > 0 on I, then f is strictly monotone. If f (x) ≥ 0 on I, then f
need not be strictly monotone (f can be constant on a non-trivial subinterval), and,
hence, f may not have an inverse function. However, if in addition f is analytic and
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5.3 Main properties of differentiable functions | 111

not constant, then f (x) ≥ 0 implies that f has an inverse function (for example, the
inverse function to f (x) = x3 is g(x) = x1/3 on ℝ).

In[⋅]:= InverseFunction[#^3 &]

⋅ ⋅ ⋅ InverseFunction: Inverse functions are being used. Values

may be lost for multivalued inverses.

Out[⋅]:= #11/3 &

5.3.1 Example: global and local extrema

Next we consider a case that will demonstrate Mathematica®’s ability to solve prob-
lems that are very hard or impossible to solve by hand.

Let us find themaximumandminimumvalues of the function f (x) = sin(cos(5x))−
e(x−1)

2
on the interval [0, 2]. We can plot the function to see the approximate an-

swers:

In[⋅]:= f[x_] := Sin[Cos[5 x]] - E^(x - 1)^2

In[⋅]:= Plot[f[x], {x, 0, 2}]

Figure 5.8

Mathematica®’s functions Maximize and Minimize can tell us the global maximum
and minimum. Let us first compute the minimum:

In[⋅]:= Minimize[{f[x], 0 <= x <= 2}, x]

Out[⋅]:= {-E + Sin[Cos[10]], {x -> 2}}

The first element is the minimum value, the second one is a list {x− > a}, where a
is a point where the minimum is attained. Note that Mathematica® returns only one
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112 | 5 Differentiation

such point, even though the function may attain minima at other points too. For ex-
ample,

In[⋅]:= Minimize[(x - 1)^2 (x - 2)^2, x]

Out[⋅]:= {0, {x -> 1}}

but the function is also zero at point 2.
Returning to our example, we see that the minimum value is attained at the end

of the interval, where x = 2 (as we can also see from the graph), and is equal to

In[⋅]:= f[2]

Out[⋅]:= -E + Sin[Cos[10]]

The answer given by Maximize will be more complicated, since Mathematica®

needs to express the root in an exact form. There is no general standard form of ex-
pressing roots of such equations so Mathematica® does it using “root objects” (see
Chapter 1):

In[⋅]:= Maximize[{Sin[Cos[5 x]] - E^(x - 1)^2, 0 <= x <= 2}, x]

Out[⋅]:= {−E(−1+Root[{−2 E
(−1+ #1)2+5 Cos[Cos[5 #1]] Sin[5 #1]+2 E(−1+#1)

2
#1&,1.22259830515136658892}])2

+ Sin[Cos[5 Root[
{−2 E(−1+#1)

2

+ 5 Cos[Cos[5 #1]] Sin[5 #1] + 2 E(−1+#1)
2

#1&,
1.22259830515136658892}]]],
{x→ Root[{−2 E(−1+#1)

2

+ 5 Cos[Cos[5 #1]] Sin[5 #1] + 2 E(−1+#1)
2

#1&,
1.22259830515136658892}]}}

In[⋅]:= N[%]

Out[⋅]:= {-0.217221, {x -> 1.2226}}

The critical points of f can be found by solving the equation f (x) = 0 in the inter-
val 0 < x < 2. This can be done either by using Solve or Reduce:

In[⋅]:= crits = x /. Solve[f[x] == 0 && 0 < x < 2, x, Reals]

Out[⋅]:= {Root[{−2 E−1+#1
2

+ 5 Cos[Cos[5 #1]] Sin[5 #1] + 2 E−1+#1
2

#1&, 0.180932451667257231810}],
Root[{−2 E−1+#1

2

+ 5 Cos[Cos[5 #1]] Sin[5 #1] + 2 E−1+#1
2

#1&, 0.55358202938476197032}],
Root[{−2 E−1+#1

2

+ 5 Cos[Cos[5 #1]] Sin[5 #1] + 2 E−1+#1
2

#1&, 1.22259830515136658892}]}

In[⋅]:= N[crits]

Out[⋅]:= {0.180932, 0.553582, 1.2226}

We see that there are three critical points. We can now compute the values of f at the
critical points and at the endpoints. These points are our candidates for themaximum
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5.3 Main properties of differentiable functions | 113

and the minimum, so we make a list of them:

In[⋅]:= candidates = (Join[{0}, crits, {2}]);

In[⋅]:= f /@ candidates // N

Out[⋅]:= {-1.87681, -1.37658, -2.02275, -0.217221, -3.4623}

We see that the maximum is attained at the fourth point and the minimum is at the
last (the right endpoint 2).

Let us now consider the question of determining the nature of the critical points
(that is,whether they are localmaxima, localminimaor neither). For thiswewill study
the sign of the derivative of f in the interval (0, 2). Clearly, if a function is increasing
(decreasing) to the left of a critical point and decreasing (increasing) to the right, the
point is a local maximum (minimum). So we can determine the nature of the critical
points by finding where the function is increasing and where it is decreasing. We can
use Reduce to solve the inequality

In[⋅]:= Reduce[f[x] > 0 && 0 < x < 2, x]

Out[⋅]:= 0 < x < Root{
[−2 E(−1+#1)

2

+ 5 Cos[Cos[5 #1]] Sin[5 #1] + 2 E(−1+#1)
2

#1&,
0.180932451667257231810}]||
Root{[−2 E(−1+#1)

2

+ 5 Cos[Cos[5 #1]] Sin[5 #1] + 2 E(−1+#1)
2

#1&,
0.55358202938476197032}] < x <
Root{[−2 E(−1+#1)

2

+ 5 Cos[Cos[5 #1]] Sin[5 #1] + 2 E(−1+#1)
2

#1&,
1.22259830515136658892}]

and we can immediately determine the nature of the critical points. However, there
are also more elementary methods to demonstrate this. The first is to observe that the
derivative

In[⋅]:= f[x]
Out[⋅]:= −2 E(−1+x)

2

(−1 + x) − 5 Cos[Cos[5 x]] Sin[5 x]

is a continuous function. This implies (by the Darboux property) that the sign of the
derivative can change only after passing though a critical point. This means that to
determine the intervals of monotonicity we only need to check the signs of the deriva-
tive at points lying between the points (for example at midpoints). Below the function
Partition divides our list of “candidates” into sublists of length 2 with offset 1. Apply-
ing the function Mean gives us a list of themidpoints and then by applying the function
Sign we find the sign of the derivative at them:

In[⋅]:= Sign[f[#]] & /@ (Mean /@ (Partition[candidates, 2, 1]))

Out[⋅]:= {1, -1, 1, -1}

From this we see that the first critical point is a local maximum, the second a local
minimum and the third again a local maximum.
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114 | 5 Differentiation

Note that we made the assumption that f  is continuous. Is this always true? No,
as we will show in Section 5.3.2. But it turns out that continuity of the derivative is not
required since the derivative of any function always has the Darboux property, even
when it is not continuous.5

The second approach to determine the nature of critical points makes use of the
second order derivative. In the next chapter wewill show (using Taylor’s formula) that
if the second order derivative at a critical point is positive, then the point is a local
minimum and if it is negative, a local maximum. Let us check this in our case:

In[⋅]:= Sign[f[#]] & /@ crits

Out[⋅]:= {-1, 1, -1}

We could try to compute the global maxima and minima on the whole ℝ. We first
compute the limits as x →∞(−∞), which are both −∞. This tells us that the function
is not bounded from below. It also follows that there exists some interval [−r, r] such
that the maximum on this interval is equal to the maximum on ℝ (in other words,
the function is bounded above and its supremum is attained onℝ). However, it is not
in general possible to determine the value of r which is sufficient for this purpose.
Moreover, as r increases finding the maximum value takes longer and longer.

5.3.2 Example

In the following examplewewill show that it is possible to have a functionwith a local
minimum such that there is no interval to the left where the function is decreasing and
no interval to the right where it is increasing. Moreover, we will show that the deriva-
tive of this function is not continuous. Also we will be able to see that the Darboux
property for the derivative holds.

We will define a function which depends on a parameter c ≥ 1. We could define
it as a function of two variables, x and c, but at this point we prefer to think of it as a
function of one variable with a parameter.

In[⋅]:= g[c_][x_] := Piecewise[{{(Sin[1/x] + c)*x^2,

x != 0}, {c*x^2, x == 0}}]

In[⋅]:= Manipulate[Plot[g[c][x], {x, -r, r}, PlotRange ->

All], {{c, 1, "c"}, 1, 2, Appearance -> "Labeled"},

{{r, 1, "r"}, 0.01, 1, Appearance -> "Labeled"},

SaveDefinitions -> True]

5 https://en.wikipedia.org/wiki/Darboux%27s_theorem_(analysis).
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Figure 5.9
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The function g[c] has a local minimum at 0 (since | sin(1/x)| ≤ 1 and c ≥ 1). For c > 1
the localminimumat 0 is strict. For c = 1 there are points arbitrarily close to 0 inwhich
the function has the value 0.

Let us show that for every r > 0 the restrictions of g[c] to [0, r] and [−r, 0] are not
monotone. The derivative of g[c] is given by

In[⋅]:= FullSimplify[g[c][x]]

Out[⋅]:=
{
{
{

−Cos [
1

x
] + 2 x (c + Sin [

1

x
]) x ̸= 0

0 True

Let us consider points xn = 1/(2πn), where n is an integer:

In[⋅]:= Simplify[g[c][1/(2 Pi n)], Assumptions ->

Element[n, Integers]]

Out[⋅]:= −1 + c

nπ
For large enough n these values are negative, while the points xn are positive and as
small as we like. Now consider the points yn = 1/(π(2n + 1)), where n is an integer.

In[⋅]:= Simplify[g[c][1/(Pi (2 n + 1))], Assumptions ->

Element[n, Integers]]

Out[⋅]:= 1 +
2c

π + 2 nπ
This time by choosing large enough n we can make yn arbitrarily close to 0 while
2c/(2πn + π) + 1 > 0. The sequences −xn and −yn have analogous properties on the
negative axis.

Let us now show that g[c] is differentiable at 0 but its derivative is not continu-
ous there. To see that the function g[c] is differentiable, we consider the difference
quotient defined earlier in this chapter:

In[⋅]:= Q[0, g[c]][x]

Out[⋅]:= {
x (c + Sin [ 1

x
]) x ̸= 0

0 True

In[⋅]:= Limit[%, x -> 0]

Out[⋅]:= 0

Hence the derivative of g[c] at 0 is defined and is 0. In order for the derivative to be
continuous its limit as x → 0 has to exist and has to be equal to the value of the
derivative at 0. But the limit does not exist.

In[⋅]:= Limit[-Cos[1/x] + 2*x*(c + Sin[1/x]), x -> 0]

Out[⋅]:= Interval[{-1, 1}]

Mathematica® 11 somewhat surprisingly returns an interval rather than Indetermi-

nate, although the limit of Cos[1/x] is Indeterminate and the limit of the second term
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is zero. In any case the limit does not exist and the derivative is not continuous at
zero. However, it is clear from the graph (for c = 2) that the derivative has the Darboux
property:

In[⋅]:= Plot[x*(2 + Sin[1/x]) - Cos[1/x], {x, -1, 1},

Exclusions -> {x == 0}]

Figure 5.10

5.3.3 Example: the inverse function of the hyperbolic sine

Let us consider the following example. We will consider the hyperbolic trigonometric
functions, which inMathematica® are defined as Sinh and Cosh. Since in this example
we do not want to use Mathematica®’s built-in knowledge about these functions we
will define our own versions:

In[⋅]:= sinh[x_] := (Exp[x] - Exp[-x])/2

In[⋅]:= cosh[x_] := (Exp[x] + Exp[-x])/2

Unfortunately in this example the function InverseFunction does not work correctly
inMathematica® 11.3:

In[⋅]:= InverseFunction[sinh][x]

⋅ ⋅ ⋅ InverseFunction: Inverse functions are being used. Values

may be lost for multivalued inverses.

Out[⋅]:= Log [x −√1 + x2]

As we will see below the function has two inverses over the complex numbers and
Mathematica® chooses the one which is incorrect over the real numbers. We can
clearly see that this function does not take real values. It is a pity that the current
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version of Mathematica® does not allow to specify the domain over which Inverse-

Function should be considered. We will derive the correct answer below.
Wewill now show that the function sinh is invertible and compute the derivatives

of its inverse. Our first approach is simply to find the inverse function. To show that
the function sinh is invertible we need to show that the equation sinh(x) = y has at
most one solution. In fact wewill show that it has exactly one solution for every real y:

In[⋅]:= x /. Solve[y == sinh[x], x, Reals]

Out[⋅]:= {Log [y +√1 + y2]}

This equation is easy to solve by hand (just use the substitution ex = t and solve the
resulting quadratic equation). This means that the inverse function of sinh is x →
log(x +√x2 + 1). We can now find its derivative directly:

In[⋅]:= Simplify[D[Log[Sqrt[x^2 + 1] + x], x]]

Out[⋅]:= 1

√1 + x2

The weakness of this approach is that it requires explicitly solving the equation f (x) =
y for x. In general this can be very hard to do or even impossible in an explicit form.
However, we do not need to solve the equation to prove the existence of an inverse or
even to find a formula for it. Since the function is defined on an interval, we only need
to show that it is strictly monotone:

In[⋅]:= D[sinh[x], x]

Out[⋅]:= 1

2
(E−x + Ex)

Note also that the image of sinh is the whole of ℝ, since

In[⋅]:= FunctionRange[sinh[x], x, y]

Out[⋅]:= True

The answer True after applying the function FunctionRange means that every real
number belongs to the range. Since the derivative is positive everywhere, the func-
tion sinh has an inverse function defined on ℝ. We can find the derivative using the
formula

In[⋅]:= Derivative[1][InverseFunction[f]][x]

Out[⋅]:= 1

f [f(−1)[x]]

Since the derivative of sinh is clearly cosh, this can be written as
1

cosh(sinh(−1)(x))
.

This is indeed a solution of the problem, but as it is not given in a convenient form, we
now make use of the (easy to prove) identity cosh(x)2 − sinh(x)2 = 1 and obtain

1
cosh(sinh(−1)(x))

=
1

√sinh2(sinh−1(x)) + 1
=

1
√1 + x2

.
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Since cosh takes only positive values we take the positive square root. We can now
check that this is exactly the answer we get by differentiatingMathematica®’s built-in
function ArcSinh:

In[⋅]:= D[ArcSinh[x], x]

Out[⋅]:= 1

√1 + x2

5.4 Convex functions

Definition 4. A function f : I → ℝ is said to be convex if for every λ ∈ (0, 1) and every
x, y ∈ I we have

f (λx + (1 − λ)y) ≤ λf (x) + (1 − λ)f (y).

If the above holds with ≤ replaced by ≥, then the function f is called concave.

Geometrically this corresponds to the fact, as illustrated below, that the blue point
on the secant connecting two points with coordinates (x, f (x)) and (y, f (y)) lies above
the red point on the graph of the function f :

In[⋅]:= Manipulate[Module[{f = (#1 - 1)^2 + 5 & },

Show[Plot[f[x], {x, -1, 3}, AxesOrigin -> {0, 0}],

Graphics[{Line[{{p[[1]], 0}, {p[[1]], f[p[[1]]]}}],

Line[{{q[[1]], 0}, {q[[1]], f[q[[1]]]}}],

Line[{{t*p[[1]] + (1 - t)*q[[1]], 0},

{t*p[[1]] + (1 - t)*q[[1]], f[t*p[[1]] +

(1 - t)*q[[1]]]}}], Line[{{p[[1]], f[p[[1]]]},

{q[[1]], f[q[[1]]]}}], Red, PointSize[0.02],

Point[{t*p[[1]] + (1 - t)*q[[1]],

f[t*p[[1]] + (1 - t)*q[[1]]]}], Blue,

Point[{t*p[[1]] + (1 - t)*q[[1]], t*f[p[[1]]] +

(1 - t)*f[q[[1]]]}]}]]], {{p, {0, 0}}, {-1, 0},

{1.9, 0}, Locator}, {{q, {2, 0}}, {2, 0}, {3, 0},

Locator}, {{t, 0.5, "t"}, 0, 1}, SaveDefinitions

-> True]

Brought to you by | Chalmers University of Technology
Authenticated

Download Date | 10/7/19 2:51 AM



120 | 5 Differentiation

Figure 5.11

There is an equivalent formulation of convexity, which also has a geometric interpre-
tation. Consider the following difference quotient function (of two variables):

Q̃(f )(x, y) = f (x) − f (y)
x − y

,

where x, y ∈ I. If we fix one of the variables, say y, we obtain a function of one variable
(whose domain is I \ {y}). One can show that f is convex if and only if the difference
quotient function is increasing when viewed as a function of one variable.

The following interactive illustration shows that the slope of any secant of the
graph of a convex function is an increasing function:

In[⋅]:= Manipulate[Module[{f = (#1 - 1)^2 + 5 & ,

g, P, Q}, g = Plot[f[x], {x, -1, 5}];

P = {p[[1]], f[p[[1]]]}; Q = {q[[1]], f[q[[1]]]};

Show[g, Graphics[{Text["P", P], Text["Q", Q],

Red, Line[{P, Q}]}], Axes -> True, Frame ->

False, PlotRange -> All, AxesOrigin -> {0, 0},

Ticks -> None]], {{p, {0, 0}}, {-1, 0}, {1.9, 0},

Locator}, {{q, {2, 0}}, {2, 0}, {5, 0}, Locator},

SaveDefinitions -> True]
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Figure 5.12

A convex function needs not be differentiable or even continuous. For example it is
easy to check that the following function is convex on [−1, 1]:

In[⋅]:= gg[x_] := Piecewise[{{2, x == -1},

{Abs[x], -1 < x < 0}, {x^2, Inequality[0, LessEqual,

x, Less, 1]}, {2, x == 1}}]

In[⋅]:= Plot[gg[x], {x, -1, 1}, Prolog ->

{Point[{{-1, 3/2}, {1, 3/2}}]}, PlotRange ->

{{-1, 1.1}, {0, 2}}]

Figure 5.13
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122 | 5 Differentiation

This function is not differentiable at 0 (but is both left and right differentiable) and it
is not continuous at the endpoints of the interval.

Using the fact that the difference quotient function of a convex function is increas-
ing one can show that a convex function on an interval has both left and right deriva-
tives at every interior point of the interval (because as we move the left point of the
secant keeping the right point fixed, the slope of the secant gives us an increasing and
bounded function, hence, the left derivative exists; the analogous argument holds for
the right derivative). These two one-sided derivatives need not be equal but their exis-
tence implies that the function is continuous at all points in the interior of the interval
(left [right] differentiability implies left [right] continuity which together imply conti-
nuity).

If f is differentiable (in the interior of its domain), then one can characterize its
convexity in terms of the first order derivative. A geometric characterization is that the
tangent to the graph of a convex function (at points over the interior of the domain)
lies below the graph. Naturally, the tangents to the graph of a concave function lie
above it. The function shown below is convex on certain subintervals of its domain
(the convex part of the function is shown in red) and concave at others. The points
where the behavior changes are endpoints of the intervals of convexity and concav-
ity and the tangents at such point lie above the graph on one side and below on the
other.

In[⋅]:= Manipulate[Module[{f = Sin[6*#1^3] & , u, v},

u = Minimize[{f[x], -1 <= x <= 1}, x][[1]];

v = Maximize[{f[x], -1 <= x <= 1}, x][[1]];

Show[Plot[f[x], {x, -1, 1}, ColorFunction ->

Function[x, If[Derivative[2][f][x] > 0, Red, Blue]],

ColorFunctionScaling -> False, Epilog ->

{PointSize[0.02], Point[{a, 0}]}, PlotRange ->

{{-1, 1}, (4/3)*{u, v}}], Plot[f[a] +

Derivative[1][f][a]*(x - a), {x, -1, 1},

PlotRange -> {{-1, 1}, (4/3)*{u, v}}]]],

{{a, 0, "a"}, -1, 1, Appearance -> "Labeled"},

SaveDefinitions -> True]
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Figure 5.14

Another characterization of convexity of a differentiable function is that its derivative
is increasing (the slopes of tangents are increasing). The derivative of a function is
not necessarily differentiable itself, but when it is, the condition that the derivative is
increasing can be replaced by the condition that the second order derivative is non-
negative (positive for strict convexity). This is generally themost convenient condition
andwasused in the graphabove to color the convex and concaveparts of the graph red
and blue (bymeans of the ColorFunction option of Plot). The option ColorFunction-
Scaling is used to stopMathematica® from scaling the argument in ColorFunction to
lie between 0 and 1.

5.4.1 Jensen’s inequality

One of the most common applications of convexity is in proving inequalities. The first
definition of convexity above (Definition 4) leads by an easy inductive argument to
one of the most useful inequalities, Jensen’s inequality.

Theorem 16 (Jensen’s inequality). Let f : I → ℝbe a convex function, x1, x2, . . . , xn ∈ I
and let t1, t2, . . . , tn ∈ [0, 1] be such that∑

n
i=1 ti = 1. Then

f (
n
∑
i=1

tixi) ≤
n
∑
i=1

tif (xi).
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5.4.1.1 Example
Let us consider the following inequality:

1 + 3√e2a 3√eb ≤ 3√(1 + ea)2 3√1 + eb.

To prove it we first rewrite it in the form

1 + e2a/3eb/3 ≤ (1 + ea)2/3(1 + eb)1/3.

Let us take the natural logarithm of both sides (we can do it, since both sides are pos-
itive and the function log is increasing):

log(1 + e2a/3eb/3) ≤ 2
3
log(1 + ea) + 1

3
log(1 + eb).

Since 2/3 + 1/3 = 1 and the function x → log(ex + 1) has the second order derivative,

In[⋅]:= D[Log[1 + E^x], {x, 2}] // Simplify

Out[⋅]:= Ex

(1 + Ex)2

which is positive, the function is convex, and we can use Jensen’s inequality:

In[⋅]:= F[t1 x1 + t2 x2] <= t1 F[x1] + t2 F[x2]/.

{x1 -> a, x2 -> b, t1 -> 2/3, t2 -> 1/3,

F -> (Log[1 + E^#] &)}

Out[⋅]:= Log [1 + E
2a
3
+ b

3 ] ≤
2

3
Log [1 + Ea] +

1

3
Log [1 + Eb]

The right hand side is log((ea + 1)2/3(eb + 1)1/3), hence, applying exp to both sides gives
the desired inequality.
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6 Sequences and series of functions

In this chapter we will consider the problem of approximating functions by polyno-
mials and representing functions by power series. We will discuss the Taylor series
andMathematica®’s function Series. Next we consider uniform and almost uniform
convergence of function sequences and series and conditions for continuity and dif-
ferentiability of their limits and sums.

6.1 Power series continued

We will now return to the subject of power series, which we already introduced in
Section 3.10.

A power series can be viewed as a generalization of a polynomial. Recall that poly-
nomials are just lists of numbers (a0, . . . , ad) together with rules for adding and mul-
tiplying any two such lists. It is convenient to write polynomials in the form a0 + a1x +
a2x2 + . . .+anxn, where x is called an indeterminate or a variable. Formal power series
are defined in exactly the sameway, except thatwe consider infinite rather than just fi-
nite sequences. Such a series can be written in the form a0 +a1x+a2x2 + . . .+anxn + . . .,
where x is again a variable. Two such series can also be added and multiplied (the
multiplication being given by the Cauchy product).

One important difference between polynomials and formal power series is that a
polynomial always defines a function given by substituting numbers for the variable
x. However, in the case of formal power series the situation is more complicated for
although we can “substitute” a number for x, the number series thus obtained may
not be convergent (it is always convergent when we substitute 0). To obtain a function
we need to find the set of points where the series is convergent.

Also recall from Section 3.10 that we consider power series of the form∑∞n=0 an(x−
x0)n, where x0 is called the center of the series. It is not hard to prove that a power
series defines a function that is continuous in the interior of its region of convergence.
A result by Abel known asAbel’s continuity/limit theorem [14, Theorem 9.51] states that
the function is also left or right continuous at the endpoints of the region of conver-
gence (provided the region of convergence contains those endpoints).

Any polynomial can be rewritten as a polynomial with any given center. Let us
demonstrate how this can be done withMathematica®. Consider the polynomial

In[⋅]:= poly[x_] := x^3 + 3*x^2 - 2*x + 5

We want to rewrite it as a polynomial with center at x0 = 1:

In[⋅]:= poly1[x] = Expand[poly[x] /. x -> y + 1] /. y -> x - 1

Out[⋅]:= 7 + 7 (−1 + x) + 6 (−1 + x)2 + (−1 + x)3

https://doi.org/10.1515/9783110590142-006
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126 | 6 Sequences and series of functions

In[⋅]:= Simplify[poly[x] == poly1[x]]

Out[⋅]:= True

Later on in this chapter we will see how to use the Taylor expansion for the same pur-
pose. For power series the situation ismore complicated, since every serieswith center
x0 is convergent at x = x0, but a series may not be convergent at every point (hence
it will not be possible to rewrite it with the center at a point which lies outside of its
region of convergence).

6.1.1 Example

A powerful feature of Mathematica® is its ability to express sums of certain power
series in terms of built-in analytic functions. Consider the function

f (x) =
∞
∑
n=1 (x − 1)n√n + 1

.

Let us first find the region of convergence of the power series and then sketch the graph
of the function which is defined by this power series. The region of convergence of the
power series is [0, 2):

In[⋅]:= SumConvergence[(x - 1)^n/Sqrt[n + 1], n]

Out[⋅]:= Abs[-1 + x] < 1 || x == 0

We can plot the region of convergence as follows:

In[⋅]:= reg = Graphics[{Disk[{0, 0}, 0.04], Thickness[0.01],

Line[{{0, 0}, {1.95, 0}}], Red, Disk[{1, 0}, 0.04],

Black, Circle[{2, 0}, 0.04]}]

Figure 6.1

Mathematica® can find an exact formula for this series in terms of the special function
PolyLog:

In[⋅]:= f[x_] = Sum[(x - 1)^n/Sqrt[n + 1], {n, 0, Infinity}]

Out[⋅]:=
PolyLog[ 1

2
, −1 + x]

−1 + x

Let us plot the function over the region of convergence:

In[⋅]:= Show[{Plot[f[x], {x, -2, 2}, AxesOrigin ->

{0, 0}], reg}]
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Figure 6.2

Note that the function itself is defined and differentiable on the entire negative real
axis, although the series is not convergent there. It is actually also defined on the pos-
itive axis, but it assumes complex values there, e. g.,

In[⋅]:= N[ComplexExpand[f[3]]]

Out[⋅]:= -0.805031 - 1.06447 I

6.1.2 Example

Let us consider the series∑∞n=0((−1)n+2)nxn. This is an example of the series thatMath-
ematica® cannot deal with in this form and needs human help. Note that applying
SumConvergence does not work:

In[⋅]:= SumConvergence[(2 + (-1)^n)^n*x^n, n]

Out[⋅]:= SumConvergence[(2 + (−1)n)n xn, n]

Not surprisingly,Mathematica® cannot also find the sum:

In[⋅]:= Sum[((-1)^n + 2)^n*x^n, {n, 0, Infinity}]

Out[⋅]:=
∞
∑
n=0(2 + (−1)n)n xn

Noting that the coefficient of xn is 1 for n odd and 3n for n even, we can write this
series as the sum of two series ∑∞n=0 x2n+1 and ∑∞n=0 32nx2n that are easy to deal with.
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128 | 6 Sequences and series of functions

The region of convergence of the original series will then be the intersection of the
regions of convergence of these two series.

In[⋅]:= SumConvergence[3^(2*n)*x^(2*n), n]

Out[⋅]:= Abs[x] <
1

3
|| 3x == 1 || x == −

1

3

We have to be careful here, since this answer in Mathematica® 11.3 is clearly wrong,
as the series is not convergent when x = 1/3.

In[⋅]:= SumConvergence[x^(2*n + 1), n]

Out[⋅]:= Abs[x] < 1

Hence the region of convergence is [−1/3, 1/3) and the sum is

In[⋅]:= f[x_] = Sum[3^(2*n)*x^(2*n), {n, 0, Infinity}] +

Sum[x^(2*n + 1), {n, 0, Infinity}]

Out[⋅]:= 1

1 − 9 x2
+

x

1 − x2

The graph of the function over its region of convergence is

In[⋅]:= Plot[f[x], {x, -3^(-1), 1/3}]

Figure 6.3

Note that again that the function found byMathematica® is defined on a much larger
region:

In[⋅]:= Plot[f[x], {x, -1, 1}, Exclusions -> {-3^(-1), 1/3}]
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Figure 6.4

Aswewill see in Section 6.2, although the series thatwewere givenwas only defined in
the interval [−1/3, 1/3), the function f can also be expressed as a power series outside
of this interval, but the series will be a different one with a different center.

Note also that we could find the radius of convergence of the original series by
using the Cauchy–Hadamard Theorem, which says that the radius of convergence R of
a power series∑∞n=0 an(x − x0)n is given by

1
R
= lim

n→∞ sup(|an|1/n).
InMathematica® 11.3 lim sup is computed by the function MaxLimit:

In[⋅]:= MaxLimit[Abs[2 + (-1)^n], n -> Infinity]

Out[⋅]:= 3

Thus the radius of convergence is R = 1/3.

6.2 Taylor polynomials and Taylor series

Let f : D → ℝ be a function which is n times differentiable at x0 ∈ D. We define the
n-th Taylor polynomial of f with center at x0 by Tn(f ) : D→ ℝ, where

Tn(f )(x) =
n
∑
k=0 f (k)(x0)(x − x0)kk!

.

We view Tn(f ) as a degree n polynomial approximation to f near x0. Of course the
Taylor polynomial depends on both n and x0 and sometimes it is denoted by Tn(f , x0),
but for simplicity of notation we will omit the center of expansion.
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130 | 6 Sequences and series of functions

If the function f is smooth (differentiable infinitelymany times), then one can also
form its Taylor series ∑∞k=0 f (k)(x0)(x − x0)k/k!, but it need not converge everywhere
where the original function is infinitely differentiable. It may even happen that the
Taylor series diverges everywhere except the center [3, Section 24].

The first Taylor polynomial is

T1(f )(x) = f (x0) + f
(x0)(x − x0).

Since f is differentiable, we have

f (x) − T1(f )(x) = (
f (x) − f (x0)

x − x0
− f (x0))(x − x0).

Let

r(x) = f (x) − f (x0)
x − x0

− f (x0).
By the definition of derivative this can be extended to a function defined on D such
that limx→x0 r(x) = 0. Hence we have f (x) = T1(f )(f ) + R(x), where R(x) = (x − x0)r(x)
is some function on D with the property that

lim
x→x0 R(x)

x − x0
= 0.

This is generalized to an arbitrary function of class Cn in the following theorem.

Theorem 17 (The Peano Remainder Terms Theorem [1, Section 7.9]). If f : D → ℝ is n
times differentiable at x0 ∈ D and D contains an open interval I such that x0 ∈ I (in such
a situation we say that D is a neighborhood of x0), then

f (x) = Tn(f )(x) + Rn(x),

where

lim
x→x0 Rn(x)
(x − x0)n

= 0.

WecanalsowriteRn(x) = (x−x0)nrn(x),where rn has theproperty limx→x0rn(x) = 0.
Any function h that has the property limx→x0 h(x)/g(x) = 0 is called an o(g(x))

function. Hence the remainder Rn is an o((x − x0)n) function. Note that there are a
number of useful functions related to asymptotics implemented inMathematica®.6

We can easily show that a representation of f in the form of the sum of a polyno-
mial of degree n and an o((x − x0)n) function is unique (we will refer to this represen-
tation as the Peano representation of the function).

We can use the Peano Remainder Terms Theorem to prove an important result
about local maxima and minima (which we mentioned in Chapter 5).

6 https://reference.wolfram.com/language/guide/Asymptotics.html
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Theorem 18. Let f : (a, b) → ℝ be n times differentiable at c ∈ (a, b), where n ≥ 2.
Assume that f (k)(c) = 0 for k = 1, 2, . . . , n − 1 and α = f (n)(c) ̸= 0. We have
(i) if n is even and α > 0 (α < 0), then f has a strict local minimum (maximum) at c;
(ii) if n is odd, then f does not have a local extremum at c.

In particular, if c is a critical point of f , i. e., f (c) = 0, and if f (c) > 0 (f (c) < 0),
then f has a local minimum (maximum) at c.

The proof follows immediately from the Peano Remainder Terms Theorem. We
write

f (x) − f (c) = α(x − c)
n

n!
+ (x − c)nrn(x),

f (x) − f (c)
(x − c)n

=
α
n!
+ rn(x).

If n is even, then the term (x − c)n is always positive. Since rn(x) → 0 as x → c, if
α > 0, then f (x) > f (c) in some neighborhood of c. Hence, there is a strict minimum
at c. Similarly, if α > 0, then f (x) < f (c) in some neighborhood of c, hence c is a local
maximum. If n is odd, then f (x) − f (c) changes sign when x passes through c, hence
there is neither a local maximum nor a local minimum at c.

Given a function f and a point a, we canfind the following expansion consisting of
the Taylor polynomial of degree nwith center at a and the remainder inMathematica®

as follows:
In[⋅]:= Clear[f]

In[⋅]:= Series[f[x], {x, a, 2}]

Out[⋅]:= f[a] + f[a] (x − a) + 1

2
f[a] (x − a)2 + O[x − a]3

Note that the remainder is denoted in Mathematica® by O[x − a]n+1, where n = 2 in
our case. Mathematica®’s O notation does not quite correspond to the mathematical
standard “little o” notation. It essentially means that the remainder is of the form (x −
a)3h(x), where h(x) is some analytic function (that is, one that itself is defined by a
power series near a).

There is a convenient short form for Series:
In[⋅]:= f[x] + O[x, a]^3

Out[⋅]:= f[a] + f[a] (x − a) + 1

2
f[a] (x − a)2 + O[x − a]3

When a is 0, we can omit it:

In[⋅]:= f[x] + O[x]^3

Out[⋅]:= f[0] + f[0] x + 1

2
f[0] x2 + O[x]3

Note that Mathematica® by default assumes that the symbolic functions are analytic
and can be expanded as power series:

In[⋅]:= Series[g[x]*Cos[x], {x, 0, 2}]

Out[⋅]:= g[0] + g[0] x + 1

2
(−g[0] + g[0]) x2 + O[x]3
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132 | 6 Sequences and series of functions

It is also possible to tellMathematica® that the symbolic function is not analytic:

In[⋅]:= Series[g[x]*Cos[x], {x, 0, 2}, Analytic -> False]

Out[⋅]:= g[x] (1 −
x2

2
+ O[x]3)

but we cannot tellMathematica® that g is of class Cn.
Taylor series with center at 0 are known asMaclaurin series. For the function sin

we have:
In[⋅]:= Sin[x] + O[x]^6

Out[⋅]:= x −
x3

6
+

x5

120
+ O[x]6

In this case we can obtain the general coefficient of the Taylor series:

In[⋅]:= SeriesCoefficient[Sin[x], {x, 0, n}]

Out[⋅]:= {
I In (−1+ (−1)n)

2 n! n ≥ 0

0 True

Note that although the coefficients are real numbers,Mathematica® uses the complex
i to obtain a general formula.

The function Series returns a special kind of object and its Head is SeriesData:

In[⋅]:= FullForm[f[x] + O[x]^2]

Out[⋅]//FullForm= SeriesData[x, 0, List[f[0],

Derivative[1][f][0]], 0, 2, 1]

SeriesData returned by the function Series does not represent an infinite series but
only a formula essentially equivalent to the Peano representation of a function. Such
an object always contains information about a finite number of series coefficients. For
example, if

In[⋅]:= ss = Sum[x^n/n!, {n, 0, 4}] + O[x]^5

Out[⋅]:= 1 + x +
x2

2
+

x3

6
+

x4

24
+ O[x]5

then
In[⋅]:= SeriesCoefficient[ss, {x, 0, 4}]

Out[⋅]:= 1

24

However,

In[⋅]:= SeriesCoefficient[ss, {x, 0, 5}]

Out[⋅]:= SeriesCoefficient [1 + x +
x2

2
+

x3

6
+

x4

24
+ O[x]5, {x, 0, 5}]

To obtain the n-th Taylor polynomial we use the function Normal (this is a multi-
purpose function used in different context which returns what is called “the normal
form” of various expressions):
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In[⋅]:= Normal[Series[f[x], {x, a, 2}]]

Out[⋅]:= f[a] + (−a + x) f[a] + 1

2
(−a + x)2 f[a]

As we mentioned earlier, to extract a coefficient in a series expansion we need to use
the function SeriesCoefficient:

In[⋅]:= SeriesCoefficient[f[x] + O[x]^4, {x, 0, 3}]

Out[⋅]:= 1

6
f(3)[0]

This is the same answer we can get by asking for a suitable coefficient of the Taylor
polynomial:

In[⋅]:= Coefficient[Normal[f[x] + O[x]^4], x^3]

Out[⋅]:= 1

6
f(3)[0]

SeriesCoefficient works both on power series (objects with Head SeriesData)
and on analytic functions. It will always compute the coefficient of the n-th term for
a numerical n, but in many cases it will not be able to return a general formula for a
symbolic n:

In[⋅]:= SeriesCoefficient[Sin[Cos[x] - 1], {x, 0, n}]

Out[⋅]:= SeriesCoefficient[-Sin[1 - Cos[x]], {x, 0, n}]

However, for n = 20 we have

In[⋅]:= SeriesCoefficient[Sin[Cos[x] - 1], {x, 0, 20}]

Out[⋅]:= − 60657859289

2432902008176640000

Mathematica® tries to express a convergent series in terms of built-in analytic
functions, for example,

In[⋅]:= Sum[x^n/(2*n + 1)!, {n, 0, Infinity}]

Out[⋅]:=
Sinh [√x]
√x

Only in the case of such kind of expressions the function SeriesCoefficient will re-
turn a coefficient of an arbitrary degree (and in some cases also a symbolic one). If
Mathematica® cannot express a series in terms of known analytic functions, it is un-
able to return the coefficients, even when they are obvious, for example,

In[⋅]:= SeriesCoefficient[Sum[x^n/(n^2)!, {n, 0,

Infinity}], {x, 0, 10}]

Out[⋅]:= SeriesCoefficient[
∞
∑
n=0 xn

n2! , {x, 0, 10}]
In such cases the Peano representation gives the desired result:

In[⋅]:= SeriesCoefficient[Sum[x^n/(n^2)!, {n, 0, 4}] +

O[x]^5, {x, 0, 4}]

Out[⋅]:= 1

20922789888000
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Now, suppose f itself is a polynomial, e. g.,

In[⋅]:= f[x_] := 1 - 2*x + 3*x^2 + x^3

What will be its Taylor polynomials with center at 0? The answer follows immediately
from the uniqueness of the Peano representation mentioned above:

In[⋅]:= Table[Normal[Evaluate[f[x]] + O[x]^n], {n, 1, 4}]

Out[⋅]:= {1, 1 - 2 x, 1 - 2 x + 3 x2, 1 - 2 x + 3 x2 + x3}

The third and higher Taylor polynomials are equal to the polynomial f (x) itself. The
lower ones are just the truncations of the polynomial f (x) after the corresponding de-
gree. Now let us consider the Taylor polynomials of f with centers at points other than
0, e. g., at 1. Again by the uniqueness theorem, the third polynomial will be just the
same polynomial but rearranged so that the center is at 1:

In[⋅]:= Normal[f[x] + O[x, 1]^4]

Out[⋅]:= 3 + 7 (-1 + x) + 6 (−1 + x)2 + (−1 + x)3

In[⋅]:= Expand[%]

Out[⋅]:= 1 - 2 x + 3 x2 + x3

Note that this also gives us another method of rewriting a polynomial as a polynomial
centered around any givennumber a: we simply use the Taylor polynomial of the same
degree centered at a.

As we know, series can be added and can also be multiplied by means of the
Cauchyproduct.We canalso perform these operations on their Peano representations.
For example

In[⋅]:= g1 = Cos[x] + O[x]^10; g2 = Cos[x] + O[x]^3;

In[⋅]:= g1*g2

Out[⋅]:= 1 − x2 + O[x]3

For any series which begins with a non-zero constant term we can find its multi-
plicative inverse by writing either

In[⋅]:= 1/(Cos[x] + O[x]^10)

Out[⋅]:= 1 +
x2

2
+ O[x]4

or

In[⋅]:= 1/Cos[x] + O[x]^4

Out[⋅]:= 1 +
x2

2
+ O[x]4

Functions which are not analytic at some point can sometimes be expanded in a
series centered at that point but this series will not in general be a power series. For
example, we can expand
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In[⋅]:= 1/Sin[x] + O[x]^3

Out[⋅]:= 1

x
+

x

6
+ O[x]3

This kind of series is called a Laurent series and it plays an important role in complex
analysis but it does not have the properties of power series that will be important for
us.

Series (or,more precisely, their Peano representations) can also be composed, just
like functions, but only if the center of the first series is the value of the second at its
own center. Thus, since cos(0) = 1 we can evaluate

In[⋅]:= ComposeSeries[Sin[x] + O[x, 1]^4, Cos[x] + O[x]^3]

Out[⋅]:= Sin[1] −
1

2
Cos[1] x2 + O[x]3

However, the following composition

In[⋅]:= ComposeSeries[Sin[x] + O[x]^10, Cos[x] + O[x]^10]

is not defined.
The function InverseSeries corresponds to the function InverseFunction; in

other words, it gives a series for the inverse of the function represented by the original
series:

In[⋅]:= InverseSeries[Series[Sin[x], {x, 0, 3}]]

Out[⋅]:= x +
x3

6
+ O[x]4

In general the function InverseSeriesmay not return a power series but a more gen-
eral type of series (the Puiseux series):

In[⋅]:= InverseSeries[1 + x^2 + O[x]^10]

Out[⋅]:=√x − 1 + O[x − 1]9/2
Note that in Mathematica® 11.3 there is a bug which causes many examples
with InverseSeries not to be properly evaluated, for instance expressions
InverseSeries[1 - x^2 + O[x]^10] or InverseSeries[Cos[x] + O[x]^10], which
work fine inMathematica® 10.4.

The main practical application of these operations on series is that they allow us
to find the Peano representation of functions, which are compositions of functions
whose Peano representations (or Taylor series) are known, without the need to com-
pute derivatives.

6.2.1 Example

Let us find the limit

lim
x→∞(x − x2 log( 1x + 1)).

This problem can be easily solved by using the l’Hospital rule, butwewill showhow to
use the Peano Remainder Terms Theorem. First we convert the problem to one where
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the limit is taken as the variable goes to 0 (in order to avoid series expansions at infin-
ity). So let us take y = 1/x. The problem reduces to finding

lim
y→0 y − log(y + 1)y2

.

Since
In[⋅]:= Log[1 + y] + O[y]^3

Out[⋅]:= y −
y2

2
+ O[y]3

we have log(1 + y) = y − y2/2 + r(y)y2, where limy→0 r(y) = 0. Hence,
lim
y→0 y − log(y + 1)y2

= lim
y→0 y2/2 − r(y)y2y2

= lim
y→0( 12 − r(y)) = 12 .

Instead of using the substitution y = 1/xwe could have used the Taylor expansion
at infinity:

In[⋅]:= x - x^2*Log[1/x + 1] + O[x, Infinity]

Out[⋅]:= 1

2
+ O [

1

x
]
1

This tells us that the function f can be written in the form 1/2 + ̃r(x), where
limx→∞ ̃r(x) = 0. Hence we get the same answer as above.

6.2.2 Example

Let us study for which a > 0 the series∞
∑
n=1( 1
√n
− tan−1( 1

√n
))

a

is convergent.
The function SumConvergence cannot deal with this problem in Mathematica®

10.4. However in version 11.3 something surprising happens. The first evaluation of
the following expression returns the original input but a subsequent evaluation re-
turns the correct solution (provided we do not quit the Kernel in between):

In[⋅]:= SumConvergence[(1/Sqrt[n] - ArcTan[1/Sqrt[n]])^a,

n, Assumptions -> {a > 0}]

Out[⋅]:= 3 a > 2

This is probably due to some internal time constraint on the evaluation and the fact
that Mathematica® often saves intermediate computation results and reuses them in
subsequent evaluations. Thiswould explainwhy on the second evaluationMathemat-
ica® has sufficient time to arrive at the solution.We have not been able to test whether
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performing this computation on a very fast computer would return the answer on the
first attempt.

Let us now show how to deal with this problemwith the help of the Taylor expan-
sion. First, note that we are dealing with a sum of positive terms:

In[⋅]:= Reduce[ArcTan[x] < x, x]

Out[⋅]:= x > 0

So now let us consider the following Taylor expansion with center at 0 of the function
ArcTan:

In[⋅]:= ArcTan[x] + O[x]^5

Out[⋅]:= x −
x3

3
+ O[x]5

Hence if f (n) = 1/√n− tan−1(1/√n), then f (n) = 1/(3n3/2)+R3(n), where limn→∞ R3(n)/
(1/n3/2) = 0. Hence using the limit comparison test we see that f (n) is similar to 1/n3/2
and f (n)a to 1/n3a/2. Hence the series converges if and only if a > 2/3.
6.2.3 Approximating functions by Taylor polynomials

The Peano Remainder Terms Theorem can be viewed as the “local” version of Taylor’s
theorem, which tells us that the Taylor polynomial of f with center x0 approximates
the function f better and better the closer we are to x0 (see [11, Chapter 7]). However,
this approximation may be good only at x0. Let us consider the function

In[⋅]:= h[x_] := Piecewise[{{0, x == 0}}, Exp[-(x^2)^(-1)]]

In[⋅]:= Plot[h[x], {x, -1, 1}]

Figure 6.5
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This function is differentiable everywhere (including 0) infinitelymany times. One can
easily show that all of its derivatives at 0 are zero, e. g.,

In[⋅]:= Derivative[20][h][0]

Out[⋅]:= 0

Moreover,

In[⋅]:= Limit[h[x]/x^n, x -> 0, Assumptions -> n >= 0]

Out[⋅]:= 0

Thus the Taylor formula for h takes the trivial form h(x) = 0 + h(x), where 0 is the
n-th Taylor polynomial at zero for every n and h itself is the remainder. In this case
the Taylor polynomials with center at zero give us no information about the behavior
of the function except at zero. Note that h is an example of an infinitely differentiable
function whose Taylor series does not converge to it.

The Peano Remainder Terms Theorem is purely local: it does not help us at all to
measure howwell a Taylor polynomial approximates the function f in some neighbor-
hood of x. Still, it can be very useful for solving certain problems.

To obtain global information about the approximation of a function by its Tay-
lor polynomials we need a different form for the remainder. There are many of them
but the best-known one is Lagrange’s form. It requires stronger assumptions on the
function f .

Theorem 19 (The Lagrange Remainder Terms Theorem [14, Theorem 8.44]). Let f be
an (n + 1) times differentiable function in the interval (a, b) and suppose that the n-th
derivative of f is continuous at a and b. Then there exists some c ∈ (a, b) such that

f (x) = Tn(f )(x) +
f (n+1)(c)
(n + 1)!

(x − x0)
n+1.

Note that forn = 0 this gives theMeanValueTheorem. In generalweknownothing
about the value of c except that it lies in the interval (a, b). However, this information is
often sufficient to obtain a global estimate of the quality of the Taylor approximation.
A very useful consequence is the following statement.

Corollary 1. Let f be as in Theorem 19 and suppose that |f n+1(x)| ≤ M for all x ∈ (a, b).
Then

|f (x) − Tn(f )(x)| ≤
M(b − a)n+1
(n + 1)!

on the whole interval (a, b).

Note that the right hand side tends to 0 as n → ∞. If f is differentiable infinitely
many times and if the result above holds for every positive integer n, then the Taylor
polynomials are the partial sums of series that converges to f on (a, b). For example,
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if f (x) = sin(x), then f (n)(x) is bounded on the entire real line for all n and we see that
f is the sum of its Taylor series. Since f was defined as the sum of a convergent power
series in Section 3.10 and we know that such a representation must be unique, the
Taylor series and the power series centered at 0 which defines the function sin must
be the same. Exactly the same is true for the function f (x) = exp(x). Even though its
derivatives are not bounded globally (as in the case of sin or cos) they are still bounded
by the same constant for every n on (a, b). The constant now depends on the interval,
but in any case, the remainder must tend to 0 as n →∞ at any point on the real line.
More generally, we shall see later on that if a function is defined by a convergent power
series centered at x0 in an interval, then it is infinitely many times differentiable and
the series must coincide with the Taylor series at x0.

The Lagrange form of the remainder contains more information than the Peano
one (although it needs stronger assumptions on f ) and can therefore be used for the
same purposes and for some other purposes for which the Peano form is not suitable.

6.2.4 Example: rational approximation of√e

Let us find a rational approximation to√e with error less than 0.001.
This is easy to do in Mathematica®. In fact, the function Rationalize will solve

exactly our problem:

In[⋅]:= Rationalize[Sqrt[E], 0.001]

Out[⋅]:= 61

37

In[⋅]:= Abs[% - E^(1/2)] < 0.001

Out[⋅]:= True

Of course there aremany solutions to this problemandMathematica® chooses the one
with the least possible denominator.

Let us now see how this can be done with the help of Taylor polynomials and the
Lagrange form of the remainder. Using the Lagrange Remainder Terms Theorem we
have

e1/2 = 1 + 1
2
+
1
2!
(
1
2
)
2
+ . . . + ecn 1

(n + 1)!
(
1
2
)
n+1
,

where cn is some number between 0 and 1/2, hence it is less than 1/2. Thus the remain-
der is bounded above by 2(1/2)n+1/(n + 1)! (since√e < 2).

We now use the While loop to find the first n for which this remainder is less than
0.001:

In[⋅]:= n = 1; While[(2*(1/2)^(n + 1))/(n + 1)! >=

0.001, n++]; n

Out[⋅]:= 4
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Hence the answer we obtain is

In[⋅]:= Sum[(1/2)^n/n!, {n, 0, 4}]

Out[⋅]:= 211

128

In[⋅]:= Abs[% - E^(1/2)] < 0.001

Out[⋅]:= True

6.2.5 Example: illustration of approximation of functions with Taylor polynomials

In the interactive illustration below we display the graph of a function and its Tay-
lor polynomials of varying degrees (from 0 to 10). We can manipulate three param-
eters: the degree of the Taylor polynomial, its center and the region over which we
consider the approximation. With the default function sin, we observe that as we in-
crease the degree of the polynomial, the Taylor polynomial approximates the function
over a larger and larger region, but the approximation is better near the center of ex-
pansion. Our second example is the function x → 1/(3 − x), which is not defined at
x = 3 and has two branches. We see that to approximate the branch to the left of the
point 3, we need to choose a center to the left of 3, and to approximate the branch to
the right, we need to choose a center to the right of 3. The last function is x → log(x+1).
For this function the Taylor series with center at 0 is convergent only in the interval
(−1, 1] (we only show the graph over the positive axis). To approximate it elsewhere a
different center has to be chosen.

In[⋅]:= T[n_, a_: 0][f_] := Normal[f[x] + O[x, a]^(n + 1)]

In[⋅]:= Manipulate[Show[{Plot[f[x], {x, 0, 2*Pi},

PlotStyle -> {Thick, Black}, Exclusions ->

If[Head[f[[1]]] === Power, {3}, None]],

Plot[Evaluate[T[n, a][f]], {x, a - r, a + r},

PlotStyle -> Red], Graphics[{Green, PointSize[0.03],

Point[{a, f[a]}]}]}], {{a, 0, "center"}, 0, 2*Pi,

Appearance -> "Labeled"}, {{r, 1, "region"}, 0.1,

2*Pi, Appearance -> "Labeled"}, {{n, 0, "degree"},

0, 10, 1, Appearance -> "Labeled"}, {{f, Sin[#1] & ,

"function"}, {Sin[#1] & , 1/(3 - #1) & ,

Log[1 + #1] & }, PopupMenu}, SaveDefinitions -> True]
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Figure 6.6

6.3 Convergence of sequences and series of functions

We started this book with the axioms of the real numbers, which are of course the
most basic objects of real analysis. However, we have already pointed out that most
(though not all) concepts that we have defined, such as sequences, series and their
limits, can also be defined when the real numbers are replaced by complex numbers
and most of the theorems have their complex analogues. In fact, much of what we
have done so far can be done in a more abstract setting, in which sequences, series,
limits, derivatives, etc., are considered in the context of Banach spaces (see [7, Chapter
V]). Here we will not do this but only observe that most of the definitions of these con-
cepts and most of the proofs for both real and complex numbers depend on the fact
that both real and complex numbers are vector spaces and that they have a notion
of “distance”, which is given by |x − y|, where | ⋅ | denotes the absolute value for real
numbers and the modulus for complex ones. We will now show that much of the the-
ory of sequences, series and their convergence remains valid if numbers are replaced
by functions f : X → ℝ, where X will be a subset of ℝ. We first need to introduce the
concept of “distance” between two functions. If X is compact and the functions are
continuous, then the natural concept of distance between two such functions f and g
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is the maximum distance between their values at the same points in X. For example,
consider the functions f (x) = cos(x) and g(x) = x − x3/3 on the interval [−1, 1]:

In[⋅]:= Plot[{Cos[x], x - x^3/3}, {x, -1, 1}, PlotStyle ->

{Red, Green}, Prolog -> With[{a = -0.636},

Line[{{a, Cos[a]}, {a, a - a^3/3}}]]]

Figure 6.7

What is the distance between these functions? According to our definition it is the
largest distance between two points on the red and green curves with the same
x-coordinate. It can be computed as follows:

In[⋅]:= N[Maximize[{Abs[Cos[x] - x + x^3/3], -1 <= x <= 1}, x]]

Out[⋅]:= {1.35473, {x->-0.636733}}

Since functions on X form a vector space, we only need to define the distance be-
tweena function and the constant functionwith value0. This is called the (supremum)
norm of f and is denoted by ‖f ‖:

‖f ‖ = sup
X
|f (x)|.

The distance between two functions f and g is then defined by

dist(f , g) = ‖f − g‖ = sup
X
|f (x) − g(x)|.

Note, however, that this will only be a real number if the supremum is attained, i. e.,
is a maximum. This will always be the case when the functions are continuous and
are defined on a compact set. Since distance should always be finite, we will not use
this word except when dealing with continuous functions defined on compact sets.
However, the norm of a function is defined without these restrictions. The norm has
the following properties:
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(i) ‖f ‖ ≥ 0;
(ii) ‖f ‖ = 0 if and only if f = 0 (the zero function);
(iii) if λ ∈ ℝ, then ‖λf ‖ = |λ|‖f ‖;
(iv) ‖f + g‖ ≤ ‖f ‖ + ‖g‖ (the triangle inequality).

Note that the triangle inequality for the norm implies the “usual” triangle inequality
for the distance:

dist(f , g) ≤ dist(f , h) + dist(h, g).

This is true even if we allow distance to take the value∞.
Now let us consider a sequence {fn} of real-valued functions on some interval (not

necessarily compact) X ⊂ ℝ. We say that such a sequence is pointwise convergent if
for each x ∈ X the sequence {fn(x)} is convergent. In this case we can define a function
f : X → ℝ by f (x) = limn→∞ fn(x) and we say that the sequence is pointwise con-
vergent to f . As we will soon see, pointwise convergence is not a good notion of con-
vergence for functions as it does not have useful properties. This is because although
the values of the functions fn at a given x approach the value of f , the functions fn do
not become closer to f as n → ∞. The correct notion of convergence for functions is
uniform convergence, defined below, which means that dist(f , fn)→ 0 as n→∞.

Both pointwise convergence and uniform convergence can be expressed in terms
of quantifiers: for pointwise convergence we have

∀ε, ε>0 ∀x, x∈X ∃N ,N∈ℕ ∀n>N |fn(x) − f (x)| < ε
and for uniform convergence we have

∀ε, ε>0 ∃N ,N∈ℕ ∀x, x∈X ∀n>N |fn(x) − f (x)| < ε.
As we can see, just as in the case of ordinary and uniform continuity, the difference
between pointwise convergence and uniform convergence can be expressed in terms
of the difference in the order of quantifiers. The reader may be interested to know
whether there is an example to show uniform convergence using quantifier elimina-
tion, just as we did in the case of uniform continuity. Unfortunately this cannot be
done because any such statement would involve quantification over the integers and
there is no such algorithm (quantifier elimination algorithms exist only over real num-
bers).

Uniform convergence implies pointwise convergence. The main use of pointwise
convergence is that it provides the necessary condition for uniform convergence and
in finding the function to which the given sequence could be uniformly convergent.
Unfortunately, aswewill soon see, uniformconvergence onnon-compact sets is rather
rare; for example, we will see that polynomial sequences do not converge uniformly
onℝ. Fortunately, almost all the important properties of uniform convergence are sat-
isfied for a weaker notion of convergence called “almost uniform convergence”.We say
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that a sequence of functions {fn} converges almost uniformly to f onX if the restrictions
of f to all closed intervals contained in X converge uniformly.

6.3.1 Examples: pointwise, uniform and almost uniform convergence of function
sequences

(i) Consider the sequence of functions {fn}with fn = xn defined on the closed interval
[0, 1]. Computing limn→∞ xn we get that the limit is the discontinuous function
f (x) = 0 for x < 1 and f (1) = 1, as we see in the following interactive illustration:

In[⋅]:= Manipulate[Plot[Evaluate[{x^n, Piecewise[

{{0, x < 1}}, 1]}], {x, 0, 1}, PlotStyle ->

{Black, Orange}, PlotRange -> {0, 1.1},

Epilog -> {Orange, PointSize[0.02],

Point[{1, 1}]}, Axes -> False],

{n, 1, 50, 1, Appearance -> "Labeled"}]

Figure 6.8

On the other hand, for each fixed n, the distance between fn and f is clearly 1,
hence the sequence does not converge uniformly. It also does not converge almost
uniformly, since it does not converge on the entire interval [0, 1], which is closed.
Note that the limit function is discontinuous although all the functions in the se-
quence are continuous.
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If we restrict the domain to the half closed interval [0, 1) the answer will change.
The limit function is now 0 (a continuous functions). The sequence is still not
uniformly convergent but it is almost uniformly convergent, since it is clearly uni-
formly convergent on every closed subinterval of [0, 1).

(ii) Consider the sequence {fn} with fn(x) = xn − xn+1 on the interval [0, 1], illustrated
below:

In[⋅]:= Manipulate[Plot[x^n - x^(n + 1), {x, 0, 1},

PlotRange -> {0, 0.25}], {n, 1, 50, 1,

Appearance -> "Labeled"}]

Figure 6.9

The limit function is the constant function 0. To check uniform convergence we
compute the distance between the n-th term of the sequence and the limit func-
tion, which is just the supremum norm of the n-th term. We first find the critical
points:

In[⋅]:= f[n_][x_] := x^n - x^(n + 1)

In[⋅]:= x[n_] = x /. First[Solve[D[f[n][x], x] == 0, x]]

Out[⋅]:= n

1 + n
For each n we have only one critical point xn and since the function is 0 at both
ends, fn assumes the maximum value at this point. We see that

‖fn‖ = |fn(xn)| = (
n

n + 1
)
n
− (

n
n + 1
)
n+1
.
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Since

In[⋅]:= Limit[f[n][x[n]], n -> Infinity]

Out[⋅]:= 0

the sequence {fn} is uniformly convergent.
(iii) For the sequence of functions {fn} with fn(x) = xn − x2n the situation is somewhat

different. The limit function is again the zero function but a calculation analogous
to the one in (ii) gives the value at the moving maximum equal to 1/4, which is
independent of n. That means that again the convergence is not uniform on [0, 1]
but is almost uniform on [0, 1) since the maximum can be moved to the right of
any closed subinterval:

In[⋅]:= Manipulate[Plot[x^n - x^(2*n), {x, 0, 1},

PlotRange -> {0, 0.25}], {n, 1, 30, 1,

Appearance -> "Labeled"}]

Figure 6.10

(iv) For the sequence {fn} with fn(x) = nx/(1 + n + x) on [0, ∞) we have

In[⋅]:= Limit[(n*x)/(1 + n + x), n -> Infinity,

Assumptions -> x > 0]

Out[⋅]:= x
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So the sequence converges pointwise to the function f (x) = x. Is the convergence
uniform? The distance between fn and f is given by

In[⋅]:= Maximize[{x - (n*x)/(1 + n + x), x >= 0}, x]

Out[⋅]:= {∞, {x -> Indeterminate}}

Hence the sequence does not converge uniformly. We can see that if we restrict
ourselves to any closed interval (by moving the two locator points in the interac-
tive plot below), then the distance between the two restrictions of the functions
in the sequence and the limiting function can be made arbitrarily small:

In[⋅]:= Manipulate[Plot[{(n*x)/(1 + n + x), x},

{x, 0, 5}, PlotRange -> {{0, 5}, {0, 5}},

Prolog -> {Red, Line[{p, q}], Line[

{{First[p], (n*First[p])/(1 + n + First[p])},

{First[p], First[p]}}], Line[{{First[q],

(n*First[q])/(1 + n + First[q])},

{First[q], First[q]}}]}], {n, 1, 100, 1,

Appearance -> "Labeled"}, {{p, {2, 0}}, {0, 0},

{5, 0}, Locator}, {{q, {3, 0}}, {0, 0}, {5, 0},

Locator}]

Figure 6.11
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6.3.2 Continuity and differentiability of limits and sums

We saw in the first example above (see Section 6.3.1 (i)) that a sequence of continuous
functions can converge pointwise to a discontinuous one. One of the most important
properties of uniform convergence is the fact that the limit of a uniformly convergent
sequence of continuous functions is continuous. This phenomenon is best understood
in terms of interchanging limit operations: if {fn} is uniformly convergent on X, then
for every a ∈ X we have the following statement.

Theorem 20 ([14, Theorem 9.12]). The limit of a uniformly convergent sequence of con-
tinuous functions on X is continuous on X. That is, for each a ∈ X

lim
x→a ( limn→∞ fn(x)) = lim

n→∞ (limx→a fn(x)) .
In general, of course, limits cannot be interchanged (one example is the sequence

fn(x) = xn on [0, 1] at the point 1).
It is obvious that the conclusion of the theorem holds also for sequences of func-

tions which are only almost uniformly convergent, since continuity is a “local prop-
erty”; in other words, to decide whether a function is continuous or not at some point
a we only need to know its values in some neighborhood of a, which can always be
taken to be a closed interval. Note that this observation immediately tells us that the
sequence in Section 6.3.1 (i) cannot be almost uniformly convergent on [0, 1], because
the limit function is not continuous.

The situationwith differentiability ismore complicated. Let us consider the family
of differentiable functions {fn} with fn(x) = √x2 + 1/n, where x ∈ ℝ. The sequence is
pointwise convergent to

In[⋅]:= Limit[Sqrt[x^2 + 1/n], n -> Infinity,

Assumptions -> Element[x, Reals]]

Out[⋅]:= Abs[x]

which is not differentiable at 0. Evaluating expressions

In[⋅]:= FullSimplify[Maximize[{Sqrt[x^2 + 1/n] - x,

x >= 0}, x], Assumptions -> {n > 0}];

In[⋅]:= FullSimplify[Maximize[{Sqrt[x^2 + 1/n] + x,

x <= 0}, x], Assumptions -> {n > 0}];

we see that the maximum is 1/√n, which tends to 0 as n → ∞. Hence, a uniformly
convergent sequence of differentiable functions may have a limit that is not differen-
tiable.

In[⋅]:= Manipulate[Plot[{Sqrt[x^2 + 1/n], Abs[x]},

{x, -1, 1}, PlotRange -> {{-1, 1}, {0, 2}},

AxesOrigin -> {0, 0}, AspectRatio -> Automatic],

{n, 1, 1000, 1, Appearance -> "Labeled"}]
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Figure 6.12

Even when a sequence of differentiable functions {fn} converges uniformly to a
differentiable function f , it could happen that at some point a the sequence of
derivatives f n(a) does not converge to f (a). This happens for the sequence {fn} with
fn(x) = x/(nx2 + 1) on ℝ, which converges uniformly to 0, but f n(0) = 1 (see [14,
p. 407]):

In[⋅]:= Manipulate[Plot[x/(n*x^2 + 1), {x, -1, 1},

PlotRange -> {{-1, 1}, {-0.5, 0.5}}],

{n, 1, 1000, 1, Appearance -> "Labeled"}]
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Figure 6.13

A sufficient condition for the limit of a sequence of differentiable functions to be dif-
ferentiable is given by the following theorem.

Theorem 21 (Differentiation of a sequence of functions [14, Theorem 9.40]). Suppose
that the sequence of functions {fn} is such that
(i) fn is of class C1 on [a, b];
(ii) there is some point x0 ∈ [a, b] such that the sequence {fn(x0)} converges;
(iii) the sequence of derivatives {f n} converges uniformly on [a, b] to g.
Then {fn} converges uniformly to some f on [a, b] such that f (x) = g(x) on [a, b].

In particular, this means that if a sequence of functions of class C1 on X is con-
vergent on X and its sequence of derivatives is almost uniformly convergent, then the
limit of the sequence is a differentiable function whose derivative is the limit of the
derivatives of the functions in the given sequence.

The theory of convergence of sequences of functions is quite analogous to the the-
ory of convergence of number sequences. Most results which can be formulated for
number sequences also hold for function sequences with the absolute value | ⋅ | re-
placed by the norm ‖ ⋅ ‖. For example, the Cauchy criterion takes the following form.
A sequence of functions {fn} is uniformly convergent if and only if for every ε > 0 there
is an integer N such that for every pair of integers n,m larger than N, ‖fn − fm‖ < ε.

Series of functions are defined in the same way as they are defined for numbers:
they are simply sequences of partial sums (in which the sums are formed using the
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152 | 6 Sequences and series of functions

usual addition of functions). Thus we can speak of pointwise, uniform and almost
uniform convergence of series.

The above theorems about sequences of functions imply corresponding theorems
for series. For example, the sum of an almost uniformly convergent series of continu-
ous functions is continuous. Also, if {fn} is a sequence of functions of class C1 on [a, b]
such that for some x0 ∈ [a, b] the series∑

∞
n=0 fn(x0) is convergent and the series∑∞n=0 f n

is uniformly convergent on [a, b], then ∑∞n=0 fn is uniformly convergent on [a, b] to a
differentiable function and its derivative is ∑∞n=0 f n (see [14, Corollary 9.41]). For this
reason, in the case of function series we are almost always interested in determining
whether it is (almost) uniformly convergent. Although there is no algorithm that can
be used, just as in the case of numbers series, there are a number of tests. Some of
them reduce the problem to a problem involving sequences or series of numbers. Next
we present some basic tests.

Let {fn} be a sequence of functions defined on X.
(1.) A necessary condition for (almost) uniform convergence of ∑∞n=0 fn is that the se-

quence {fn} converges (almost) uniformly to the zero function, which is equivalent
to the condition that the sequence of numbers {‖fn‖} converges to 0.

(2.) A sufficient condition for (almost) uniform convergence of∑∞n=0 fn is that the series
of positive numbers∑∞n=0 ‖fn‖ converges, which follows from the Cauchy criterion.
Clearly in this case the series∑∞n=0 fn also converges absolutely.

(3.) The most difficult cases are when the necessary condition ‖fn‖ → 0 is satisfied
but the series∑∞n=0 ‖fn‖ diverges. In such situations we need to use other methods.
One of them is the Dirichlet test.

Theorem 22 (Dirichlet’s test for uniform convergence [14, Theorem 9.29]). Suppose
that {bn} is a sequence of (non-negative) functions on X such that bn(x) ≥ bn+1(x) and
bn tends to zero uniformly on X. If {an} is a sequence of functions such that |sn(x)| ≤ M
for all n and x ∈ X, where sn(x) = ∑

n
k=1 ak(x), then ∑∞k=1 ak(x)bk(x) converges uniformly

on X.

The problem with the above sufficient condition (2.) is the need to compute the
suprema of fn over X, which, as we know, can sometimes be a difficult problem. Often,
it is easier to find an upper bound for the values of a function than to find the least
upper bound (supremum). This makes the following test useful when trying to prove
uniform convergence of function series.

Theorem 23 (Weierstrass M-test [14, Theorem 9.25]). Let {Mn} be a sequence of non-
negative real numbers and let {fn} be a sequence of functions defined on X, such that
|fn(x)| ≤ Mn for all x ∈ X and each n ∈ ℕ. If the series∑∞k=1Mk converges, then the series
∑∞k=1 fk converges uniformly (and absolutely) on X.
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Finally we can state a very important result about power series, which follows
from the Weierstrass M-test.

Theorem 24 ([14, Theorem 9.26]). Let R > 0 be the radius of convergence of the power
series ∑∞k=0 ak(x − x0)k and let 0 < r < R. Then ∑∞k=0 ak(x − x0)k converges uniformly
on [x0 − r, x0 + r]. In other words, any power series is almost uniformly (and absolutely)
convergent in the interior of its region of convergence.

It follows from this theorem that a power series∑∞k=0 ak(x − x0)k is infinitely many
times differentiable in the interior of its region of convergence and its derivative can
be computed by “term-by-term differentiation”, i. e., it is equal to the power series
∑∞k=1 kak(x − x0)k−1. From this in turn it follows that if a function f can be expressed
as a convergent power series, then this series must be its Taylor series. Indeed, if
f (x) = ∑∞k=0 ak(x − x0)k, then by differentiating repeatedly term-by-term and substi-
tuting x = x0 we obtain an = f (n)(x0)/n!, which is the n-th coefficient of the Taylor
series with center x0.

We have just seen that a power series determines a continuous function on its
region of convergence. This function is differentiable infinitely many times, and all of
its derivatives are also givenbypower serieswith the same radius of convergence.Note
that the derivative of the power series may not be convergent at an endpoint, even if
the original power series itself is convergent there:

In[⋅]:= SumConvergence[x^n*((-1)^n/n), n]

Out[⋅]:= SumConvergence[x^n*((-1)^n/n), n] || x == 1

but for the derivative we have

In[⋅]:= SumConvergence[x^n*(-1)^n, n]

Out[⋅]:= Abs[x] < 1

6.3.3 Examples: pointwise, uniform and almost uniform convergence of function
series

(i) Let us investigate pointwise, uniform and almost uniform convergence of the se-
ries ∑∞n=1 x2/(n4 + x4) for x ∈ ℝ.
We easily see that the sequence {fn}, where fn = x2/(n4 + x4), uniformly converges
to 0:

In[⋅]:= Manipulate[Plot[x^2/(n^4 + x^4), {x, -10, 10},

PlotRange -> {0, 1}], {n, 1, 10, 1}]
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Figure 6.14

In this case we can actually easily find the norms of the functions fn:

In[⋅]:= FullSimplify[Maximize[x^2/(n^4 + x^4), x],

Assumptions -> Element[n, Integers] && n > 0]

Out[⋅]:= { 1
2 n2
, {x -> -n}}

Since the series∑∞n=1 1/(2n2) converges, our series is uniformly convergent.
Instead of computing the norms, we could have observed that the inequality

x2

n4 + x4
≤

1
2n2

holds for all x ∈ ℝ, hence the result follows from the Weierstrass M-test.
(ii) Let us investigate the convergence of the series f (x) = ∑∞n=0 xe−nx on (0, ∞).

For a fixed x, the series ∑∞n=0 xe−nx is just the geometric series with constant ratio
r = e−x with 0 < r < 1, hence the series is pointwise convergent. Next let us find
the norms of the functions fn(x) = xe−nx:

In[⋅]:= x /. Solve[D[x/E^(n*x), x] == 0, x, Reals][[1, 1]]

Out[⋅]:= 1

n

Hence the maximum of fn is attained at x = 1/n and is equal to 1/(e n). Thus, the
necessary condition for uniform convergence is satisfied but the series of norms
diverges. Hence we have to use a different approach.
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In this case the easiest thing to do is to note that we can actually compute the sum
of the series s, its partial sums sn and hence the remainders rn = s − sn because
they are all sums of geometric series. Thus

rn = s − sn =
∞
∑

k=n+1 xe−kx = xe−nxex − 1
.

So the question of the uniform convergence of our series reduces to the question
whether {gn} with gn = xe−nx/(ex − 1) converges uniformly to 0 on (0, ∞). This is
clearly not true on thewhole (0, ∞), but it is true on any compact subset in (0, ∞)
either by looking at the following illustration:

In[⋅]:= Manipulate[Plot[x/(E^(n*x)*(E^x - 1)), {x, 0, 10},

PlotRange -> {0, 1}], {n, 1, 10, 1}]

Figure 6.15

or by computing

In[⋅]:= Limit[x/(E^(n*x)*(E^x - 1)), x -> 0]

Out[⋅]:= 1

Hence the series is not uniformly convergent but is almost uniformly convergent.
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6.3.4 Example

Let us show that the function f (x) = cos(√x) is differentiable infinitely many times at
0 and let us find its fifth derivative.

Strictly speaking we should speak of right derivatives or derivatives from above,
since the formula is not defined for negative x. Observe, however, that for non-negative
x the function f (x) is given by the series∑∞n=0(−1)nxn/(2n)! and the series is defined and
convergent for all x. But, as we said earlier, this means that it must be the Taylor series
with center at 0 of the function g(x) = ∑∞n=0(−1)nxn/(2n)!, where g is an extension of f
to the whole real axis. Hence its fifth derivative at 0 will be

In[⋅]:= (5!*(-1)^5)/10!

Out[⋅]:= − 1

30240

This can be verified either by a direct computation of derivatives (note that we need to
use Limit here as direct substitution will not work):

In[⋅]:= Limit[D[Cos[Sqrt[x]], {x, 5}], x -> 0]

Out[⋅]:= − 1

30240

or by computing the fifth coefficient of the Taylor series:

In[⋅]:= 5!*SeriesCoefficient[Cos[Sqrt[x]], {x, 0, 5}]

Out[⋅]:= − 1

30240

Note that we can actually plot the graph of the function over the negative and
positive axis:

In[⋅]:= Plot[Cos[Sqrt[x]], {x, -10, 100}]

Figure 6.16
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The reason why this works is that the functions cos is defined on the whole complex
plane and takes real values for pure imaginary arguments, as can be seen by evaluat-
ing

In[⋅]:= ComplexExpand[Cos[I*x]]

Out[⋅]:= Cosh[x]

where the function cosh was defined in Section 5.3.3.
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7 Integration
In this chapter we first define an indefinite integral (antiderivative) of a function and
discuss the Risch algorithm which is used by Mathematica® to compute it. Then we
define the Riemann integral, state the fundamental theorem of calculus and consider
some applications.

7.1 Indefinite integrals

Let f : I → ℝ be a function, where I ⊂ ℝ is an interval. We say that a differentiable
function F : I → ℝ is an indefinite integral of f on I (or an antiderivative or a primitive
function) if F(x) = f (x) for all x ∈ I. This naturally leads to two questions. One is:
what kind of functions have antiderivatives? Clearly, not all. For example, we know
already that the derivative of any function must have the Darboux property, hence a
function that does not have this property, for example, a function that has a “simple
jump” discontinuity, cannot have a primitive function.

Later we shall see that any continuous function has an antiderivative (the fun-
damental theorem of calculus). As we have already seen (example in Section 5.3.2)
a function may have an antiderivative even if it is not continuous. Moreover, if a func-
tion has an antiderivative, it has infinitely many of them, since if we add any constant
to an antiderivative of a function we will get another antiderivative. Note that in prac-
tice this means that two antiderivatives of the same function can look quite different:
for example both sin2 x and − cos(2x)/2 are antiderivatives of sin(2x). That causes a
linguistic difficulty: should one speak of the antiderivative or an antiderivative of a
function? We shall usually use the definite article when we refer to the whole class
of antiderivatives and to the indefinite one when we want to refer to a particular an-
tiderivative.

The antiderivative of a function f is usually denoted by∫ f (x) dx. InMathematica®

one computes antiderivatives by using the function Integrate, e. g.,

In[⋅]:= Integrate[x*Cos[x], x]

Out[⋅]:= Cos[x] + x Sin[x]

In many books on calculus and analysis one writes x sin x + cos x + c, where c denotes
an arbitrary constant. We can obtain this kind of answer by solving the differential
equation

dF(x)
dx
= f (x).

This is done using the function DSolve. For example:

In[⋅]:= DSolve[F[x] == x*Cos[x], F[x], x]

Out[⋅]:= {{F[x] -> C[1] + Cos[x] + x Sin[x]}}

https://doi.org/10.1515/9783110590142-007
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160 | 7 Integration

The second natural question is: can we find explicitly an antiderivative of a given
function? If the function f is continuous, then the fundamental theorem of calculus
(which we will discuss later in this chapter) gives us an antiderivative ∫xa f (x) dx.

However, one reallywishes to have something analogous to the case of differentia-
tion. In otherwords,wewould like tohave analgorithmwhich, for some large family of
functions whose antiderivatives belong to this family, computes the antiderivatives of
functions obtained by algebraic operations and compositions of functions in the fam-
ily and expresses themagain in terms of functions in the family. Let usmake this state-
ment a little more precise. We consider the family of “elementary functions”, which
includes rational functions, exponentials, logarithms and algebraic functions (e. g.,
solutions of polynomial equations whose coefficients are elementary functions), as
well as trigonometric, inverse trigonometric, hyperbolic and inverse hyperbolic func-
tions. We require this family to be closed under composition. The question can now
be formulated as follows: is there an algorithm which, given an elementary function,
returns an elementary functionwhich is its antiderivative? (Of course, this means that
when an elementary function does not have an elementary antiderivative the algo-
rithm should inform us of that.)

The study of this problem began in the nineteenth century. For a long time it was
believed that no algorithm of this kind could exist. Instead, a number of “heuristic
tricks” were developed which try to reduce certain integrals to certain already known
ones. One such trick is the so called “integration by parts”. This is based on the Leibniz
formula for differentiation and takes the form

∫ f (x)dg(x)
dx

dx = f (x)g(x) − ∫ g(x)df (x)
dx

dx.

The point of this kind of formula is that it sometimes allows to replace the problem of
finding the antiderivative of a function by the problem of finding the antiderivative of
a simpler function. Successful use of such tricks requires skill and luck. For example,

∫ xex dx = ∫ x de
x

dx
dx = xex − ∫ ex dx

dx
dx = ex(x − 1) + c.

However, the indefinite integral ∫ xex
2
dx cannot be found using integration by parts

and requires a different trick (substitution). Such a “bag of tricks” is still taught in
most university courses. We shall not consider it here, as there are many books on
the subject and Mathematica® uses a very different approach. It is based on an algo-
rithm discovered in the 1960s by Risch, based on nineteenthcentury work of Liouville
and Hermite and early twentiethcentury work of Hardy [8]. The algorithm is known as
the Risch algorithm and is used by most modern computer algebra systems, including
Mathematica®. The algorithm can very rapidly find the antiderivatives of extremely
complicated looking functions. For example [8], the following complicated elemen-
tary function has an elementary antiderivative:
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In[⋅]:= ∫ ((x (x + 1)((x2 E2x
2

− Log[x + 1]2)
2

+ 2 E3x
2

x(x − (2x3 + 2x2 + x + 1) Log[x + 1])))/
((x + 1) Log[x + 1]2 − (x3 + x2) E2x

2

)
2
) dx

Out[⋅]:= x − Log[1 + x] −
Ex

2

x Log[1 + x]
E2x

2
x2 + Log[1 + x]2

−
1

2
Log[Ex

2

x − Log[1 + x]]

+
1

2
Log[Ex

2

x + Log[1 + x]]

In principle the algorithm can decide if the antiderivative of an elementary function
can be expressed in an elementary form and returns either this antiderivative or in-
formation that no such derivative exists. But this is currently impossible to realize in
practice. First of all, the Risch algorithm has many branches and some of them have a
very high complexity, whichmeans that a complicated case may take impossibly long
to compute.Most computer programs includingMathematica® donot implement such
branches at all and whenMathematica® enters into one of them it sometimes returns
the answer unevaluated.

There is another problem that results sometimes from the use of the Risch algo-
rithm, illustrated in the following example. Let us consider the rational function

In[⋅]:= f[x_] := (x^2 + 2*x + 4)/(x^4 - 7*x^2 + 2*x + 17)

This function is defined and continuous onℝ since its denominator has no roots inℝ:

In[⋅]:= Solve[x^4 - 7*x^2 + 2*x + 17 == 0, x, Reals]

Out[⋅]:= {}

However, the antiderivative returned byMathematica® is not continuous:

In[⋅]:= g[x_] = Integrate[f[x], x]

Out[⋅]:= 1

2
ArcTan [

−1 − x
−4 + x2

] −
1

2
ArcTan [

1 + x
−4 + x2

]

In[⋅]:= Plot[g[x], {x, 1, 3}, Exclusions -> 2]

Figure 7.1
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As we will see later, when we discuss the fundamental theorem of calculus, we know
that a continuous function always has a continuous antiderivative. Looking at the
above graph we can see that we could get such an antiderivative by shifting the left
branch down or the right branch up so that theymeet.We can actually give an explicit
formula for a continuous antiderivative by computing first the size of a jump:

In[⋅]:= Limit[g[x], x -> 2, Direction -> "FromBelow"] -

Limit[g[x], x -> 2, Direction -> "FromAbove"]

Out[⋅]:= π

In[⋅]:= h[x_] := Piecewise[{{g[x], x < 2}, {g[x] + Pi, x >

2}}, Limit[g[x], x -> 2, Direction -> "FromBelow"]]

In[⋅]:= Plot[h[x], {x, 1, 3}]

Figure 7.2

The fact that Mathematica® sometimes returns a discontinuous antiderivative of a
continuous function is not a bug but a consequence of the way the Risch algorithm
works. However, note that when we compute a definite integral over an interval, in
which the antiderivative found by the Risch algorithm has a discontinuity,Mathemat-
ica® notices that and returns the correct answer:

In[⋅]:= Integrate[f[x], {x, 1, 3}]

Out[⋅]:= π − ArcTan [2
3
] − ArcTan [

4

5
]

If we simply used the fundamental theoremof calculuswith the discontinuous deriva-
tive we would have got an incorrect answer:

In[⋅]:= g[3] - g[1]

Out[⋅]:= − ArcTan [2
3
] − ArcTan [

4

5
]
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7.2 The Risch algorithm

We will not try to describe the complete Risch algorithm but we will give a sketch of
the main ideas. The most detailed survey can be found in [5, 6].

The first observation is that, although the algorithm finds antiderivatives of both
real and complex elementary functions, it actually needs complex numbers to work.
Whenwework over the complex numbers, there are fewer elementary functions since
all trigonometric and inverse trigonometric functions can be expressed in terms of the
exponential function and its inverse, the logarithm. InMathematica® we can accom-
plish this conversion by using the function TrigToExp:

In[⋅]:= TrigToExp /@ {Sin[x], ArcSin[x], Tan[x], ArcTan[x]}

Out[⋅]:= {1
2
I E−I x − 1

2
I EI x, − I Log [I x + √1 − x2] ,

I (E−I x − EI x)
E−I x + EI x , 12 I Log[1 − I x] −

1

2
I Log[1 + I x]}

There is a problem here: the logarithm as a function on the set of non-zero complex
numbers is not an ordinary function but a multi-valued one:

In[⋅]:= Simplify[Exp[x + 2*Pi*I*n], Element[n, Integers]]

Out[⋅]:= Ex

Hence, for a complex y the logarithm of y has infinitely many branches differing by
integermultiples of 2πi. TheRisch algorithm, being purely algebraic, ignores this issue
and this sometimes results in the “wrong branch” problem we saw in the example
above.

Themost important mathematical result which is the basis of the Risch algorithm
was actually proved by Liouville in the nineteenth century and is known as Liouville’s
Principle. In order to state it in its modern formulation we need some concepts from
modern algebra.

7.2.1 Differential algebras

Definition 5. A differential field is a field F together with an operator𝒟F : F → F such
that for all f , g ∈ F

𝒟F(f + g) = 𝒟F(f ) +𝒟F(g),
𝒟F(f g) = g𝒟F(f ) + f 𝒟F(g).

The operator𝒟F is called a derivation or a differential operator.

Definition 6. A differential field (E, 𝒟E) is called an extension of a differential field
(F, 𝒟F) if F ⊂ E and for all f ∈ F

𝒟E(f ) = 𝒟F(f ).
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Definition 7. The field of constants of (E, 𝒟E) is the set (actually a field) of elements
K ⊂ E such that

K = {k ∈ E, 𝒟E(k) = 0}.

For example, the field of rational functions with rational coefficients ℚ(x) =
{f (x)/g(x)}, where f and g are polynomials, is equipped with the differential operator
𝒟(x) = 1, which is the ordinary differentiation.

In general F(θ) denotes the field of rational functions {f (θ)/g(θ)}, where f and g
are polynomials with coefficients in F. This is the smallest field that contains F and θ.
By induction we can define F(θ1, θ2, . . . , θn) := F(θ1, θ2, . . . , θn−1)(θn).
Definition 8. Let F be a differential field and let E be a differential extension of F.
1. An element v ∈ E for which there exists u ∈ F such that

𝒟(v) = 𝒟(u)
u

is said to be logarithmic over F. In this case we write v = log(u).
2. An element v ∈ E for which there exists u ∈ F such that

𝒟(v)
v
= 𝒟(u)

is said to be exponential over F. In this case we write v = exp(u).
3. If for v ∈ E there exists a polynomial g ∈ F[z] such that g(v) = 0, we say that v is

algebraic over F. If v is not algebraic over F we say that it is transcendental over F.
4. Let E be an extension field of a differential field F. E is called an elementary ex-

tension of F if it can be obtained from F by successively taking logarithmic, expo-
nential or algebraic extensions. In other words, we can write E = F(θ1, θ2, . . . , θn),
where θi is logarithmic, exponential or algebraic over F(θ1, θ2, . . . , θi−1) for each
i = 1, . . . , n.

Now we can state Liouville’s Principle.

Theorem 25 (Liouville’s Principle). Let F be a differential field with a constant field K.
For f ∈ F, suppose there is some g ∈ E, where E is an elementary extension of F with
the same field of constants K, such that 𝒟(g) = f . Then there exist v0, . . . , vm ∈ F and
constants c!, . . . , cm ∈ K such that

f = 𝒟(v0) +
m
∑
i=1 ci 𝒟(vi)vi

.

This can also be written as

∫ f = v0 +
m
∑
i=1 ci log(vi). (7.10)
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7.2 The Risch algorithm | 165

Liouville’s Principle does not, of course, give us an algorithm for finding an-
tiderivatives: such algorithms have to be constructed separately. However, the prin-
ciple tells us that any elementary function, which has an elementary antiderivative,
must have one of the form (7.10) (it may also have antiderivatives which do not have
this form). There are, in fact, a number of algorithms which compute antideriva-
tives in the form (7.10) for different types of extensions. The difference between them
concerns essentially efficiency of computation – a very important issue for practical
computations but one which we will ignore here.

7.2.2 Example 1: integration of rational functions

Let us first describe the most basic algorithm which illustrates Liouville’s Principle –
an algorithm for finding antiderivatives of rational functions with coefficients in ℝ.
A version of this algorithm is taught in all calculus courses. Rather than trying to de-
scribe the general theory, we will consider a typical example. Suppose wewish to find
the antiderivative of the following rational function:

In[⋅]:= f[x_] := (x^5 + x + 1)/(x^4 - 2*x^3 + 2*x^2 - 2*x + 1)

Mathematica® returns the answer

In[⋅]:= Integrate[f[x], x]

Out[⋅]:= 1

4
(−10 −

6

−1 + x
+ 8 x + 2 x2 − 4 ArcTan[x]

+ 6 Log[−1 + x] + Log[1 + x2])

This does not have the Liouville form (7.10) but we know that we can convert it to one
by means of TrigToExp. So let us now consider how to obtain an antiderivative in Li-
ouville’s form directly.

In general, given a rational function of the form p(x)/q(x), where the degree of
p(x) is larger than that of q(x), we use polynomial division to reduce it to the form
h(x)+p1(x)/q(x), where deg p1(x) < deg q(x). InMathematica®we canuse the function
PolynomialQuotentRemainder to do this for us:

In[⋅]:= pqr = PolynomialQuotientRemainder[Numerator[f[x]],

Denominator[f[x]], x]

Out[⋅]:= {2 + x, −1 + 4 x − 2 x2 + 2 x3}

Hence f (x) is equal to

In[⋅]:= First[pqr] + Last[pqr]/Denominator[f[x]]

Out[⋅]:= 2 + x +
−1 + 4 x − 2 x2 + 2 x3

1 − 2 x + 2 x2 − 2 x3 + x4

So we only need to find the antiderivative of

In[⋅]:= g[x_] := Last[pqr]/Denominator[f[x]]
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Next, we compute all the complex roots of the denominator:

In[⋅]:= roots = x /. Solve[Denominator[g[x]] == 0, x]

Out[⋅]:= {-I, I, 1, 1}

Thus our denominator factorizes as

In[⋅]:= Times @@ (x - #1 & ) /@ roots

Out[⋅]:= (−1 + x)2 (−I + x) (I + x)

For this situation when deg p(x) < deg q(x), one can prove that an antiderivative of
the following form always exists:

∫
p(x)
q(x)

dx = p1(x)
q1(x)
+

n
∑
i=1 ci log(x − ai),

where q(x) = ∏ni=1(x − ai)di , q1(x) = ∏ni=1(x − ai)di−1 and p1(x) is a polynomial with
deg p1(x) < deg q1(x).

In our case an antiderivative of g(x)must have the form

In[⋅]:= int = a/(x - 1) + b*Log[x - 1] + c*Log[x - I]

+ d*Log[x + I];

We can now compute the parameters a, b, c, d by

In[⋅]:= sols = SolveAlways[g[x] == D[int, x], x]

Out[⋅]:= {{a -> −
3

2
, b ->

3

2
, c ->

1

4
+

I

2
, d ->

1

4
−

I

2
}}

and obtain the antiderivative in Liouville’s form:

In[⋅]:= int /. sols[[1]]

Out[⋅]:= − 3

2 (−1 + x)
+

3

2
Log[−1 + x] + (

1

4
+

I

2
) Log[−I + x]

+ (
1

4
−

I

2
) Log[I + x]

If wewant to get a solution not containing complex numbers, we can take the real part
and use ComplexExpand:

In[⋅]:= ComplexExpand[Re[%]]

Out[⋅]:= − 3

2 (−1 + x)
−

1

2
Arg[−I + x] +

1

2
Arg[I + x]

+
3

4
Log[(−1 + x)2] +

1

4
Log[1 + x2]

The output still contains I, but the argument function Arg is real-valued and can
be expressed in terms of ArcTan. With the help of a little trigonometry we now see that
it differs by a constant from the one returned byMathematica®.

From the point of view of efficiency, the weakest point of the above algorithm
is the need to completely factor the denominator of the rational function. There is
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a method called Hermite reduction [5] that instead of complete factorization only re-
quires the so called “squarefree factorization”, given inMathematica® by the function
FactorSquareFree:

In[⋅]:= FactorSquareFree[Denominator[f[x]]]

Out[⋅]:= (−1 + x)2 (1 + x2)

See also theWolfram™demonstration by S. Blake.7 AlthoughHermite reduction does
not require the complete factorization, still in general algebraic numbers will appear
among the coefficients of the antiderivative. For example:

In[⋅]:= Integrate[1/(x^3 + x + 1), x]

Out[⋅]:= RootSum[1 + #1 + #1^3 & , Log[x - #1]/(1 + 3*#1^2) & ]

The function RootSum is just a short notation for the expression which is obtained by
applying Normal to it:

In[⋅]:= Normal[Integrate[1/(x^3 + x + 1), x]]

Out[⋅]:= Log[x − Root[1 + #1 + #13 &, 1]]
1 + 3 Root[1 + #1 + #13 &, 1]2

+
Log[x − Root[1 + #1 + #13 &, 2]]
1 + 3 Root[1 + #1 + #13 &, 2]2

+
Log[x − Root[1 + #1 + #13 &, 3]]
1 + 3 Root[1 + #1 + #13 &, 3]2

In[⋅]:= N[%]

Out[⋅]:= (-0.20861 - 0.18382 I) Log[(-0.34116 - 1.1615 I) + x]

- (0.20861 - 0.18382 I) Log[(-0.34116 + 1.1615 I)

+ x] + 0.41723 Log[0.68232 + x]

7.2.3 Example 2: the Risch algorithm for an exponential extension

Let us now consider the situation where we have an exponential extension. Suppose,
for example, wewant to compute the antiderivative of 1/(ex+1).Mathematica® returns
the answer

In[⋅]:= Integrate[1/(E^x + 1), x]

Out[⋅]:= x − Log[1 + Ex]

We introduce a new variable y = ex, and we try to compute ∫ 1/(y + 1) dx, where
dy/dx = y. For this situation one can prove that if an antiderivative exists, then it
has the following (compatible with Liouville’s Principle) form:

∫
P(x, y)
Q(x, y)

dx = p(x, y)
q(x, y)
+

m
∑
i=1 ci log(qi),

7 Blake S. Integration using Hermite reduction. Wolfram Demonstrations Project™, publishedMarch
7 2011. https://demonstrations.wolfram.com/IntegrationUsingHermiteReduction/

Brought to you by | Chalmers University of Technology
Authenticated

Download Date | 10/7/19 9:54 AM



168 | 7 Integration

where Q(x, y) = ∏mi=1 Qdi
i (x, y), q(x, y) = ∏

m
i=1 Qci

i (x, y) with ci = di − 1 except when
Qi(x, y) = y, in which case ci = di, and qi(x, y) are the irreducible factors ofQi(x, y), not
including y. We write the two-variable polynomial p(x, y) = ∑i y

ipi(x), where pi(x) is a
polynomial in x.

Hence in our case we have Q(x, y) = y + 1, Q1(x, y) = q1(x, y) = y + 1, q(x, y) = 1. We
take p(x, y) = p0(x) and, hence, the antiderivative must have the form

∫
1

y + 1
dx = p0(x) + c log(y(x) + 1).

Differentiating this we obtain (below we use p0 in Mathematica®’s input and output
cells instead of p0):

In[⋅]:= D[p0[x] + c*Log[y[x] + 1], x]

Out[⋅]:= c y[x]
1 + y[x]

+ p0[x]
Since y(x) = y we get
In[⋅]:= int = (c*y)/(y + 1) + p0[x];

Next we find the unknown function p0(x) and the coefficient c by using

In[⋅]:= SolveAlways[int == 1/(y + 1), y]

Out[⋅]:= {{p0[x] -> 1, c -> -1}}

(here we should interpret -> as equality). Hence, p0(x) = x, c = −1. We finally obtain

In[⋅]:= int = x - Log[E^x + 1]

If we repeat the same process for the antiderivative ∫ x/(ex + 1) dx, we get a con-
tradiction (because c should be constant). Hence, in this case there is no elementary
antiderivative. Indeed,Mathematica® returns the answer

In[⋅]:= Integrate[x/(E^x + 1), x]

Out[⋅]:= x2

2
− x Log[1 + Ex] − PolyLog[2, −Ex]

which involves the non-elementary function PolyLog.
We will not consider any more examples (the interested reader can consult [9] or

the survey article [5] for a complete account or [8]).

7.2.4 Limitations of Mathematica®’s integration

Mathematica® like most other computer algebra systems does not have the full Risch
algorithm implemented. For example, let us compute the derivative of an elementary
function:
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In[⋅]:= D[x*Sin[x^{ArcSin[x]}, x]

Out[⋅]:= x1+ArcSin[x] Cos [xArcSin[x]] (ArcSin[x]
x
+

Log[x]
√1 − x2

)

+ Sin [xArcSin[x]]
Now we try to find the antiderivative:

In[⋅]:= Integrate[%, x]

Out[⋅]:= ∫(x1+ArcSin[x]Cos[xArcSin[x]](ArcSin[x]
x
−

Log[x]
√1 − x2

) + Sin[xArcSin[x]])dx
We see that in this case Mathematica® is unable to find the antiderivative although
the fully implemented Risch algorithm should be able to do so.

Note thatwhenexpressed in termsof exponential, logarithmic andalgebraic func-
tions the integrand takes the form:

In[⋅]:= TrigToExp[%%]

Out[⋅]:= 1

2
I (E−I x−I Log[I x+√1−x2] − EI x−I Log[I x+√1−x2]) + 1

2
(E−I x−I Log[I x+√1−x2] + EI x−I Log[I x+√1−x2])

x1−I Log[I x +√1 − x2]( Log[x]
√1 − x2

−
I Log[I x +√1 − x2]

x
)

It is easy to see that the extension needed to compute this integral is a tower of tran-
scendental and algebraic extensions. The original Risch algorithmdid not include this
case and it was only worked out by Manuel Bronstein in 1987. The most complete ex-
isting implementation of the Risch algorithm was written by Manuel Bronstein and
Barry Trager in the computer algebra program Axiom.8

Since the Risch algorithm is very complicated and time consuming, Mathemat-
ica® often will not attempt to use it but try to find the derivative in terms of the so
called “special functions”. “Special functions” is a name used for a large variety of
mathematical functions, defined by methods such as power series expansions, so-
lutions to certain differential equations and recursion. Mathematica® can compute
the values of such built-in functions to arbitrary precision and knows many identi-
ties involving them. Wolfram Research™ has a web site devoted to special functions,
http://functions.wolfram.com, where a vast amount of information about them can
be found. We have already seen thatMathematica® returns special functions to many
integrals for which no elementary representation exists. It also happens sometimes in
cases when an elementary antiderivative could be found.

7.3 The Riemann integral

We will only sketch briefly the basic idea of the Riemann integral. For details we refer
the reader to [14]. Consider a bounded function f on a closed interval [a, b]. A par-
tition of [a, b] is a finite ordered set of points a = x0 < x1 < . . . < xn = b, which

8 https://en.wikipedia.org/wiki/Axiom_(computer_algebra_system)
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170 | 7 Integration

divides the interval [a, b] into n closed subintervals. Let Δk = xk − xk−1, k = 1, 2, . . . , n.
LetMk = supx∈[xk−1 ,xk] f (x),mk = infx∈[xk−1 ,xk] f (x). Then the sum ∑nk=1MkΔk is called an
upper Darboux sum and ∑nk=1mkΔk a lower Darboux sum of f on [a, b]. Geometrically,
an upper (lower) sum represents the area of the union of rectangles with [xk−1, xk] as
base and height themaximum (minimum) value of f on [xk−1, xk]. Obviously any lower
Darboux sum is smaller than any upper Darboux sum. Note also that whenwe replace
a partition by a subpartition (in other words, we subdivide some intervals) an upper
sum will decrease and a lower sum will increase. Let U(f ) (L(f )) denote the infimum
(supremum) of the set of all upper (lower) Darboux sums. This is called the upper
(lower) Darboux integral. When U(f ) = L(f )we say that the function f is Darboux inte-
grable and the common value U(f ) = L(f ) is called the Darboux (or Riemann) integral
and is denoted by ∫ba f (x) dx.

In[⋅]:= f[x_] := Sin[8*x]/2 + 1/2

In[⋅]:= areaMax[f_, x_][a_, b_] := First[Maximize[{f[x],

a <= x <= b}, x]]*(b - a)

In[⋅]:= areaMin[f_, x_][a_, b_] := First[Minimize[{f[x],

a <= x <= b}, x]]*(b - a)

In[⋅]:= maX[f_, x_][a_, b_] := First[Maximize[{f[x], a <=

x <= b}, x]]

In[⋅]:= miN[f_, x_][a_, b_] := First[Minimize[{f[x], a <=

x <= b}, x]]

In[⋅]:= Manipulate[Module[{ll, maxs, mins, maxArea, minArea,

maxRectangles, minRectangles, g2 = Plot[f[x],

{x, 0, 1}]}, BlockRandom[SeedRandom[rr]; ll =

Partition[Join[{0}, Sort[RandomReal[{0, 1}, {m}]],

{1}], 2, 1]; maxs = Apply[maX[f, x], ll, {1}];

mins = Apply[miN[f, x], ll, {1}];

maxArea = maxs . Abs[Apply[Subtract, ll, {1}]];

minArea = mins . Abs[Apply[Subtract, ll, {1}]];

maxRectangles = Table[Rectangle[{ll[[i, 1]], 0},

{ll[[i, 2]], maxs[[i]]}], {i, 1, Length[ll]}];

minRectangles = Table[Rectangle[{ll[[i, 1]], 0},

{ll[[i, 2]], mins[[i]]}], {i, 1, Length[ll]}];

Show[Graphics[{Text[StringJoin["max area = ",

ToString[maxArea]], {0.6, 0.6}], Text[StringJoin[

"min area = ", ToString[minArea]], {0.6, 0.5}], Red,

Opacity[0.2], maxRectangles, Blue, minRectangles}],

g2]]], {{m, 8, "number of points"}, 8, 30, 1,

ControlType -> PopupMenu}, {{rr, 0, ""},

Button["new random partition", rr =

RandomInteger[2^64 - 1]] & }, SaveDefinitions -> True]
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7.3 The Riemann integral | 171

Figure 7.3

The illustration above shows upper and lower Darboux sums (pink and violet rect-
angles) for a continuous function and a random choice of the partition. SeedRandom
is used to generate a new random sample. BlockRandom assures that only the extra
points are generated when we increase the number of points of the partition.

Note that if the function is not continuous, then the supremum and infimum val-
ues may not be attained on the intervals of the partition. There is an alternative ap-
proach to integration due to Riemann. In this approach for each partition 𝒫, a = x0 <
x1 < . . . < xn = b, we choose points x̄1, . . . , x̄n with x̄k ∈ [xk−1, xk] for k = 1, 2, . . . , n
and consider sums Sn = ∑

n
k=1 f (x̄k)Δk . Clearly this (Riemann) sum always lies between

the corresponding Darboux sums. For any𝒫 the norm ‖𝒫‖ is defined as the maximum
max1≤k≤n Δk . A function f is said to be Riemann integrable if and only if there exists a
number ℐ with the following property: for each ε > 0 there is a δ > 0 such that for ev-
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ery Riemann sum σ associated with a partition𝒫 with ‖𝒫‖ < δ one has |σ −ℐ| < ε. The
number ℐ is called the Riemann integral of f on [a, b]. One can show that ℐ is indepen-
dent of the particular choice of partition and subinterval points x̄k and the concepts
of Darboux integral and Riemann integral coincide (see [14, Chapter 6]). From now
we shall generally speak only of Riemann integral and Riemann integrability (or just
integrability).

The Darboux definition is particularly useful for determining which functions are
integrable while the Riemann approach (as we shall soon see) is more useful in con-
crete computations. With the help of the Darboux definition it is easy to show that
all continuous functions and also bounded functions that are continuous except for a
countable number of jump discontinuities are integrable (see [14, p. 221] and [14, The-
orem6.21, p. 231]). There are also functions that canbe easily shownnot to beRiemann
integrable, e. g., the Dirichlet function, which is defined by

In[⋅]:= f[x_] := Piecewise[{{1, Element[x, Rationals]}}]

In[⋅]:= f /@ {Sqrt[2], Pi, 1/2, E}

Out[⋅]:= {0, 0, 1, 0}

We immediately see that the function is not Riemann integrable. Indeed, let x0, . . . , xn
be any partition of [0, 1]. Since every interval contains both rationals and irrationals,
we see that L(f ) = 0 and U(f ) = 1. The function is thus not Riemann integrable. Nev-
ertheless, Integrate gives

In[⋅]:= Integrate[f[x], {x, 0, 1}]

Out[⋅]:= 0

This is, indeed, the correct answer but it needs a different and more powerful concept
of integral, the so called Lebesgue integral. The Dirichlet function is not Riemann in-
tegrable but it is Lebesgue integrable and Integrate returns the result of the Lebesgue
integral. (All functions that are Riemann integrable are also Lebesgue integrable and
the corresponding integrals are the same.)

The Darboux definition of the integral can also be used to prove the basic prop-
erties of integrals. These follow in a straightforward manner from properties of sums
and limits. Here we only state them (for the proofs see [14, Theorems 6.25, 6.26]).

Theorem 26 (General properties of the definite integral). Let f and g be integrable on
[a, b].
1. If c1 and c2 are constants, then the functions c1f + c2g are integrable and

b

∫
a

(c1f (x) + c2g(x)) dx = c1

b

∫
a

f (x) dx + c2

b

∫
a

g(x) dx.

2. If f (x) ≤ g(x) on [a, b], then
b

∫
a

f (x) dx ≤
b

∫
a

g(x) dx.
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3. Assume that f is bounded on [a, b] and c ∈ [a, b]. Then f is integrable on [a, b] if
and only if f is integrable on [a, c] and [c, b] and

b

∫
a

f (x) dx =
c

∫
a

f (x) dx +
b

∫
c

f (x) dx.

4. The functions fg and |f | are also integrable on [a, b] and the following inequality
holds:



b

∫
a

f (x) dx

≤

b

∫
a

|f (x)| dx.

The notions of the definite and indefinite integrals are related by one of the most
famous results in mathematics, known as the Fundamental Theorem of Calculus. In
fact, this theorem is often presented in the form of two theorems, called the First and
the Second Fundamental Theorem of Calculus.

Theorem 27 (The First Fundamental Theorem of Calculus, the Newton–Leibniz for-
mula). If f is integrable on [a, b] and F is an antiderivative of f on [a, b], then

b

∫
a

f (x) dx = F(b) − F(a).

Note that here we use the word antiderivative in the strict mathematical sense,
which means that F has to be a differentiable and therefore continuous function on
[a, b]. Recall that the Risch algorithm sometimes returns an “antiderivative” that may
have points of discontinuity. Nevertheless,Mathematica® generally computes definite
integrals correctly (see the example and discussion at the end of Section 7.1).

The First Fundamental Theorem of Calculus can be thought of as saying that inte-
gration is a left inverse of differentiation. To see this let us replace b by x and consider
∫
x
a f (t)dt as a function of x. The theorem now says

x

∫
a

d F(t)
dt
= F(x) − F(a).

In other words, integrating the derivative of a function returns the same function (up
to a constant). The Second Fundamental Theorem of Calculus says that integration is
also the right inverse of differentiation.

Theorem 28 (The Second Fundamental Theorem of Calculus). Let f be an integrable
function on [a, b]. We define

F(x) =
x

∫
a

f (t)dt

for a ≤ x ≤ b. Then F is continuous on [a, b] and differentiable at every point c at which
f is continuous. In this case F(c) = f (c).
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Note that this gives us away to construct an antiderivative of any continuous func-
tion on [a, b].Mathematica® actually “knows” this theorem:

In[⋅]:= Clear[f]

In[⋅]:= D[Integrate[f[t], {t, a, x}], x]

Out[⋅]:= f[x]

Note, however, that if we try to do the same thing with a defined function, the evalu-
ation may take much longer and the answer can be complicated:

In[⋅]:= f[x_] := 1/(x^3 + 1)

In[⋅]:= D[Integrate[f[t], {t, 1, x}], x]

Out[⋅]:= ConditionalExpression[

1

9
(−

3

(1 + 1
x
)x2
−

3(−1)2/3
(1 − (−1)1/3

x
)x2

+
3(−1)2/3x( 1

x
− (−1)2/3 + x

x2
)

(−1)2/3 + x ), Re[x] > 1&& Im[x] == 0]

We will explain why we get this kind of answer in the next subsection. Using Assump-
tionsmakes the answer simpler:

In[⋅]:= D[Integrate[f[t], {t, 1, x}, Assumptions -> x > 1], x]

Out[⋅]:= 1

18
(

6

1 + x
−

3 (−1 + 2 x)
1 + (−1 + x) x

+
12

1 + 1
3
(−1 + 2 x)2

)

In[⋅]:= % // FullSimplify

Out[⋅]:= 1

1 + x3

However, if we define f to be a function whose antiderivativeMathematica® does not
know, we get the answer quite quickly:

In[⋅]:= f[x_] := x^x

In[⋅]:= D[Integrate[f[t], {t, 1, x}], x]

Out[⋅]:= xx

The difference is that in the first case Mathematica® first found a complicated an-
tiderivative using the Risch algorithm and then tried to differentiate it, resulting in a
complicated answer (made evenmore complicated byMathematica®’s attempt to give
conditions for its validity), and in the second case,Mathematica® quickly decided that
it could not find an antiderivative so it applied the Second Fundamental Theorem of
Calculus to the original input and quickly returned the answer. Hence if we wanted
Mathematica® to not evaluate the integral but to use the Second Fundamental Theo-
rem of Calculus, we could do this:

In[⋅]:= f[x_] := 1/(x^3 + 1)

In[⋅]:= Block[{f}, D[Integrate[f[t], {t, a, x}], x]]

Out[⋅]:= 1

1 + x3
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Using Block in thisway turns f temporarily into anundefined function;Mathematica®

then applies the Second Fundamental Theorem and finally replaces the symbol f by
its definition.

7.3.1 Using Integrate and NIntegrate with definite integrals

Here we will try to explain briefly various kinds of definite integrals that appear in
Mathematica®. These are obtained by using the function Integrate with various
kinds of limits (symbolic or numerical) and possibly with assumptions. (There are
also numerical integrals that can be computed with NIntegratewhich we will briefly
discuss below.)

The most general type of definite integral in Mathematica® has the form Inte-

grate[f[x],{x,a,b}], where at least one of the limits a and b is symbolic. In this case
Mathematica® assumes that the integral is a path integral computed in the complex
plane along a straight line joining the points corresponding to the complex numbers
a and b.Mathematica® then tries to find the most general complex antiderivative and
determine the region of values of a and b in which the formula for the antiderivative is
valid. This problem is difficult and Mathematica® generally returns a suboptimal re-
gion where the answer is correct. Such formulas can be very complicated. The reader
may consider, for example, the following simple definite integral forwhichMathemat-
ica® gives a very complicated looking answer (which we omit):

In[⋅]:= Integrate[1/x, {x, a, b}]

There are two ways to avoid this issue. We can instructMathematica® that we do not
want any conditions (which may cause problems when we use the formula):

In[⋅]:= Integrate[1/x, {x, a, b}, GenerateConditions -> False]

Out[⋅]:= -Log[a] + Log[b]

or we can specify conditions on a and b by using Assumptions:

In[⋅]:= Integrate[1/x, {x, a, b}, Assumptions -> {b > a > 0}]

Out[⋅]:= Log[
b

a
]

When the limits are numerical and exact, an exact numerical answerwill be given
ifMathematica® is able to compute it:

In[⋅]:= Integrate[1/Sqrt[4 - x^2], {x, -1, 1}]

Out[⋅]:= π
3

Finally, there is NIntegrate, a powerful function that performs numerical inte-
gration using many methods (including Riemann sums), controlled by the option
Method. This function can compute values of integrals that cannot be found by the
exact method of Integrate to arbitrary precision. For example,
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In[⋅]:= Integrate[1/Log[4 + x^3], {x, -1, 1}]

Out[⋅]:=
1

∫−1 1

4 + x3
dx

In[⋅]:= NIntegrate[1/Log[4 + x^3], {x, -1, 1},

WorkingPrecision -> 20]

Out[⋅]:= 1.4547429629288028678

We can also do this:

In[⋅]:= N[Integrate[1/Log[4 + x^3], {x, -1, 1}]]

Out[⋅]:= 1.45474

However, the reader should be aware of the fact that this answer was not obtained by
Integrate. In fact, Integrate could not find the answer and Mathematica® passed
the problem to NIntegrate. In the examples below two different methods are used to
obtain the same answer and therefore, they can be used to check correctness of the
answer:

In[⋅]:= N[Integrate[x^2, {x, -1, 1}]]

Out[⋅]:= 0.666667

In[⋅]:= NIntegrate[x^2, {x, -1, 1}]

Out[⋅]:= 0.666667

NIntegrate is a very reliable function. It is extremely rare for it to return wrong an-
swers, something that happens much more frequently for Integrate.

7.3.2 Riemann sums

Recall that by a Riemann sum of a function f defined on [a, b] we mean a sum of the
form ∑nk=1 f (x̄k)Δk . The point x̄k lies in the interval [xk−1, xk], with the most common
choices being x̄k = xk−1, x̄k = xk and x̄k = (xk−1 + xk)/2. If f is integrable, then we can
compute its integral by choosing a sequence of partitions 𝒫k with ‖𝒫k‖→ 0 and find-
ing the limit. The most natural “partitioning scheme” is simply division into intervals
of equal length, in which case the condition ‖𝒫k‖ → 0 is always satisfied. The inte-
gral takes the form limn→∞(∑nk=1(b − a)f (x̄k)/n). Thus this method reduces computing
definite integrals to computing limits of Riemann sums. Usually, however, it is easier
to compute integrals by using the First Fundamental Theorem of Calculus. In fact we
can sometimes reverse the process and compute limits of Riemann sums by finding
antiderivatives.

7.3.2.1 Example
Compute limn→∞(∑2nk=n+1 1/k).
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First note thatMathematica® can compute this limit directly:

In[⋅]:= Limit[Sum[1/k, {k, n + 1, 2*n}], n -> Infinity]

Out[⋅]:= Log[2]

In[⋅]:= Sum[1/k, {k, n + 1, 2*n}]

Out[⋅]:= -PolyGamma[0, 1 + n] + PolyGamma[0, 1 + 2 n]

Mathematica® does this by expressing the sum in terms of special functions and then
computing the limit by using its extensive knowledge of such functions. We will find
it easier, however, to note that the sum∑2nk=n+1 1/k can be written in the form

n
∑
k=1 1

k + n
=

n
∑
k=1 1n 1

1 + k/n
.

Ifwedivide the interval [0, 1] inton equal parts and take x̄k = xk−1 = k/n, we see thatwe
have the n-th Riemann sum of the function f (x) = 1/(1 + x) on [0, 1]. Hence the limit is

In[⋅]:= Integrate[1/(1 + x), {x, 0, 1}]

Out[⋅]:= Log[2]

7.3.2.2 Example
Sums whose limits as n → ∞ are integrals (Riemann sums) have to have a special
form. However, the method of Riemann sums works also for certain sums which are
not actually Riemann sums but are “close” to them. Here is one example. Suppose we
wish to compute the limit

lim
n→∞( n
∑
k=1 n

8kn + 2k + 5n2
) .

Mathematica® can do it directly:

In[⋅]:= Limit[Sum[n/(8*k*n + 2*k + 5*n^2), {k, 1, n}],

n -> Infinity]

Out[⋅]:= 1

8
Log [

13

5
]

Inspecting the summand we see that we are not dealing with a Riemann sum.
However, if we remove the summand 2k from the denominator, we get a Riemann sum,
which can be evaluated by integration:

lim
n→∞( n
∑
k=1 n

8kn + 5n2
) = lim

n→∞( 1n n
∑
k=1 1

8k/n + 5
) .

This is
In[⋅]:= Integrate[1/(5 + 8*x), {x, 0, 1}]

Out[⋅]:= 1

8
Log [

13

5
]
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Weobtain the same answer. Let us try to prove that the two limits are the samewithout
computing them. This is equivalent to

In[⋅]:= Limit[Sum[n/(8*k*n + 2*k + 5*n^2) -

n/(8*k*n + 5*n^2), {k, 1, n}], n -> Infinity]

Out[⋅]:= 0

Consider the sum
n
∑
k=1( n

8kn + 2k + 5n2
−

n
8kn + 5n2

).

The summand is
In[⋅]:= Together[n/(8*k*n + 2*k + 5*n^2) - n/(8*k*n + 5*n^2)]

Out[⋅]:= − 2 k

(8 k + 5 n)(2 k + 8 k n + 5 n2)

So we need to show that the limit of the sum
n
∑
k=1 2k
(8k + 5n)(8kn + 2k + 5n2)

is 0 as n→∞. This sum is clearly smaller than

2n2

(5n)(5n2)
=

2
25n
,

which tends to 0 as n → ∞. One can generalize this argument to other sums which
are asymptotic Riemann sums.

7.4 Improper integrals
The definite integrals we have considered so far have all involved bounded functions
definedon closed intervals. However, inmany applications these kinds of integrals are
insufficient: sometimeswewant to integrate functionswhich are unbounded orwhere
the domain over which we want to integrate is infinite. Such integrals can be defined
by a simple extension of Riemann integration and are known as improper integrals.
Improper integrals come in two types (kinds), known as the first type and the second
type.

7.4.1 Integrals over infinite intervals (improper integrals of the first type)

The first type of integrals are integrals defined over infinite intervals, for example:

In[⋅]:= Integrate[Log[x]/x^3, {x, 1, Infinity}]

Out[⋅]:= 1

4
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In[⋅]:= Integrate[Exp[x], {x, -Infinity, 1}]

Out[⋅]:= E

In[⋅]:= Integrate[x/E^x^2, {x, -Infinity, Infinity}]

Out[⋅]:= 0

The first and second integrals above (with only one infinite limit) are defined as
limits of ordinary Riemann integrals, e. g.,∞

∫
1

log x
x3

dx = lim
t→∞ t

∫
1

log x
x3

dx,

1

∫−∞ ex dx = lim
t→−∞ 1

∫
t

ex dx.

They can be computed byMathematica® by means of these definitions, e. g.,

In[⋅]:= Limit[Integrate[Log[x]/x^3, {x, 1, t}], t -> Infinity]

Out[⋅]:= 1

4

but thismay takemuch longer thanusing infinity directly in the limit, sinceMathemat-
ica® first attempts to compute an integralwith a symbolic limit. Compare, for example,

In[⋅]:= Integrate[1/(x^3 + 1), {x, 1, Infinity}]

Out[⋅]:= 1

9
(√3π − Log[8])

with
In[⋅]:= Limit[Integrate[1/(x^3 + 1), {x, 1, t}], t -> Infinity]

Out[⋅]:= $Aborted

If we want to use the second method, it is much better to use Assumptions:

In[⋅]:= Limit[Integrate[1/(x^3 + 1), {x, 1, t},

Assumptions -> {t > 1}], t -> Infinity]

Out[⋅]:= 1

9
(√3π − Log[8])

Although generally it is preferable to use the first approach (infinite limits), like
in the case of infinite sums, the two methods can return different answers when the
integrals are not convergent:

In[⋅]:= Integrate[1/x, {x, 1, Infinity}]

⋅ ⋅ ⋅ Integrate: Integral of 1
x

does not converge on {1, ∞}.
Out[⋅]:=

∞
∫
1

1

x
dx

In[⋅]:= Limit[Integrate[1/x, {x, 1, t}, Assumptions ->

{t > 1}], t -> Infinity]

Out[⋅]:=∞
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The following integral is defined as the sum of two integrals:∞
∫−∞ f (x) dx =

c

∫−∞ f (x) dx +
∞
∫
c

f (x) dx,

where c is any number. It is easy to show that the answer is always independent of the
choice of c. Thus,

In[⋅]:= Integrate[x/E^x^2, {x, -Infinity, 1}] +

Integrate[x/E^x^2, {x, 1, Infinity}]

Out[⋅]:= 0

There are also situations when the two integrals ∫c−∞ f (x) dx and ∫∞c f (x) dx do not
exist, but the symmetric limit limt→∞ ∫t−t f (x) dx exists. In such cases we call the value
of this limit the Cauchy principal value of the integral (the integral is still considered
divergent). One can compute the Cauchy principal value in Mathematica® using the
option PrincipalValue:

In[⋅]:= Integrate[x^3, {x, -Infinity, Infinity}]

⋅ ⋅ ⋅ Integrate: Integral of x3 does not converge on {−∞,∞}.
Out[⋅]:= ∫∞−∞ x3 dx

In[⋅]:= Integrate[x^3, {x, -Infinity, Infinity},

PrincipalValue -> True]

Out[⋅]:= 0

7.4.2 Improper integrals of the first type and infinite sums

There is both an analogy and a relationship between improper integrals of the first
type and infinite sums. All basic convergence tests for series, such as the comparison
test, the limit comparison test and theDirichlet test, have their analogues for improper
integrals of the first type (see [14, Theorem 7.5] for the comparison test and [14, Theo-
rem 7.17] for the limit comparison test). The Dirichlet test for integrals is as follows.

Theorem 29 (Dirichlet test for integrals). If f , g : [a,∞) → ℝ, g is decreasing with
limx→∞ g(x) = 0, for every r ∈ [a,∞) f is Riemann integrable on [a, r] and there exists
M ∈ ℝ such that |∫ra f (x) dx| < M for all r ∈ [a,∞), then ∫∞a f (x)g(x) dx converges.

For example, this test shows that the integrals∫∞1 (sin x)/x dx and∫∞1 (cos x)/x3/2 dx
are convergent. Unlike in the case of sums, Mathematica® does not have a functions
for testing convergence of integrals but it performs a test of convergence every time
an improper integral is computed:

In[⋅]:= Integrate[Sin[x]/x, {x, 1, Infinity}]

Out[⋅]:= 1

2
(π − 2 SinIntegral[1])
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In[⋅]:= Integrate[1/Log[x], {x, 2, Infinity}]

⋅ ⋅ ⋅ Integrate: Integral of 1
Log[x] does not converge on {2,∞}.

Out[⋅]:=
∞
∫
2

1

Log[x]
dx

Note that Mathematica® was able to compute the first integral above in terms of a
value of a special function. We can also compute the integral using NIntegrate and
compare the answers (as mentioned before they are computed in a different way):

In[⋅]:= NumberForm[N[Integrate[Sin[x]/x, {x, 1,

Infinity}], 11], 10]

Out[⋅]//NumberForm= 0.6247132564

In[⋅]:= NumberForm[NIntegrate[Sin[x]/x, {x, 1,

Infinity}, PrecisionGoal -> 11,

WorkingPrecision -> 11], 10]

Out[⋅]//NumberForm= 0.6247132564

(NumberForm tellsMathematica® how many digits to show on the screen.)
Just like for sums, there is also the concept of absolute convergence for integrals,

which is stronger than ordinary convergence.Mathematica® often finds absolute con-
vergence difficult to deal with; for example, it is obvious that ∫∞1 | sin x|/x2 dx is con-
vergent by the comparison test with the following integral:

In[⋅]:= Integrate[1/x^2, {x, 1, Infinity}]

Out[⋅]:= 1

The following computation, however, does not end in a reasonable time:

In[⋅]:= Integrate[Abs[Sin[x]]/x^2, {x, 1, Infinity}]

Out[⋅]:= $Aborted

On the other hand, this is computed quickly:

In[⋅]:= Integrate[Sin[x]/x^2, {x, 1, Infinity}]

Out[⋅]:= -CosIntegral[1] + Sin[1]

In addition to the analogy between infinite series and improper integrals of the
first type, there is also a more direct relationship.

Theorem 30 (The integral test [14, Theorem 7.25]). Suppose that f is a non-negative,
continuous and decreasing function of x for x ≥ 1. Then ∑∞k=1 f (k) is convergent if and
only if ∫∞1 f (x) dx is convergent. Moreover, when the series converges∞

∫
1

f (x) dx ≤
∞
∑
k=1 f (k) ≤

∞
∫
1

f (x) dx + f (1)

Brought to you by | Chalmers University of Technology
Authenticated

Download Date | 10/7/19 9:54 AM



182 | 7 Integration

or, equivalently, ∞
∑
k=2 f (k) ≤

∞
∫
1

f (x) dx ≤
∞
∑
k=1 f (k).

A rigorous proof is given inmany textbooks (see, for example, [14, p. 300]) but the
basic idea is based on the following picturewhich shows that the area under the graph
of f over a finite interval lies between the two sums of areas of the rectangles, given by
the two Riemann sums (which in this case coincide with Darboux sums).

In[⋅]:= Manipulate[Module[{f = 1/#1^2 & , g1, g2, g},

g = Plot[f[x], {x, 1, m}, PlotRange -> {{1, m},

{0, 0.3}}]; g1 = Graphics[Table[{Opacity[0.2], Blue,

Rectangle[{n, 0}, {n + 1, f[n + 1]}]}, {n, 1, m}]];

g2 = Graphics[Table[{Opacity[0.2], Red,

Rectangle[{n, 0}, {n + 1, f[n]}]}, {n, 1, m}]];

Show[g, g1, g2, PlotRange -> {{1, m}, {0, 0.3}},

AxesOrigin -> {0, 0}]], {{m, 10, "m"}, 5, 20, 1,

Appearance -> "Labeled"}]

Figure 7.4

Since in general it is easier to test integrals for convergence than series, this theorem
is most often used for testing the convergence of infinite series by reducing it to the
question of convergence of improper integrals (rather than the other way round). In
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fact, this test is exactly the IntegralTest, which is a value of the option Method to the
function SumConvergence discussed earlier (See Section 3.4).

7.4.2.1 Example
Test for convergence the series∑∞n=2 1/(n loga(n)).

The integral test reduces the problem to the convergence of the integral
∫
∞
2 1/(x loga(x)) dx. We could easily solve it by using the substitution u = log(x).
InMathematica®

In[⋅]:= Integrate[1/(x*Log[x]^a), {x, 2, t}, Assumptions

-> {Element[a, Reals], t > 2}]

Out[⋅]:= Log[2]1−a − Log[t]1−a
−1 + a

This is, of course, convergent if and only if a > 1 since log(t)1−a → 0 as t →∞.

7.4.2.2 Example
Compute

lim
x→0+ (∞∑n=1 sin x

(nx)4 + 4
) .

Mathematica® gives the answer quickly:

In[⋅]:= Limit[Sum[Sin[x]/(4 + (n*x)^4), {n, 1, Infinity}],

x -> 0, Direction -> "FromAbove"]

Out[⋅]:= π
8

but in order to do so it first computes a sum:

In[⋅]:= Sum[Sin[x]/(4 + (n*x)^4), {n, 1, Infinity}]

Out[⋅]:= 1

x
(
1

16
+

I

16
) ((−1 + I) x + π Cot [

(1 + I)π
x
] +

π Coth [
(1 + I)π

x
]) Sin[x]

We can solve the problem by using only integration by applying the first inequal-
ity in the above theorem according to which the sum ∑∞n=1(sin x)/((nx)4 + 4) must lie
between two expressions

sin x
∞
∫
1

1
(nx)4 + 4

dn

and

sin x
∞
∫
1

1
(nx)4 + 4

dn + sin x
x4 + 4
.
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Since

In[⋅]:= Limit[Sin[x]/(x^4 + 4), x -> 0]

Out[⋅]:= 0

we have

lim
x→0+ (∞∑n=1 sin x

(nx)4 + 4
) = lim

x→0+(∞∫
1

sin x
(nx)4 + 4

dn) .

It remains to compute sin∫∞1 1/((nx)4 + 4) dn, which can be done either by hand or in
Mathematica® as follows:

In[⋅]:= Integrate[1/((n*x)^4 + 4), {n, 1, Infinity},

Assumptions -> x > 0]

Out[⋅]:=
π + ArcTan[1 − x] − ArcTan[1 + x] − ArcTanh[ 2 x

2+ x2 ]
8 x

In[⋅]:= Limit[Sin[x]*%, x -> 0, Direction -> "FromAbove"]

Out[⋅]:= π
8

7.4.3 Integrals of unbounded functions (improper integrals of the second type)

The theory of improper integrals of the second type is very similar to the theory of
improper integrals of the first type. These involve integrals of functions which have
singularities at some points in their domains, near which the values tend to∞ or −∞.
We start with functions which have a singularity at an endpoint. Consider for example

In[⋅]:= Integrate[Log[x]^2, {x, 0, 1}]

Out[⋅]:= 2

The function log2(x) is not defined at 0 and tends to∞ as x → 0. The integral is defined
as

In[⋅]:= Limit[Integrate[Log[x]^2, {x, t, 1}, Assumptions ->

{0 < t < 1}], t -> 0]

Out[⋅]:= 2

Improper integrals with a singularity at the right endpoint are defined similarly.
When we have singularities only at both endpoints, we choose any point inside and
represent the integral as the sum of two integrals:

1

∫
0

log(x)
x − 1

dx = (
1/2
∫
0

+
1

∫
1/2) log(x)

x − 1
dx = lim

t→0 1/2
∫
t

log(x)
x − 1

dx + lim
s→1 s

∫
1/2 log(x)x − 1

dx.
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In[⋅]:= Limit[Integrate[Log[x]/(x - 1), {x, t, 1/2},

Assumptions -> {t > 0}], t -> 0]

Out[⋅]:= 1

12
(π2 + 6 Log[2]2)

In[⋅]:= Limit[Integrate[Log[x]/(x - 1), {x, 1/2, s},

Assumptions -> {1/2 < s < 1}], s -> 1]

Out[⋅]:= 1

12
(π2 − 6 Log[2]2)

In[⋅]:= Integrate[Log[x]/(x - 1), {x, 0, 1}]

Out[⋅]:= π2

6

There are also improper integrals with singularities inside the domain, e. g.,

In[⋅]:= Integrate[1/(x - 2), {x, 0, 3}]

⋅ ⋅ ⋅ Integrate: Integral of 1−1+ x does not converge on {0, 3}.
Out[⋅]:=

3

∫
0

1

−2 + x
dx

This integral is defined as the sum of two integrals over [0, 2) and (2, 3] but they are
both not convergent. In such cases we can try the principal value approach:

In[⋅]:= Integrate[1/(x - 2), {x, 0, 3}, PrincipalValue -> True]

Out[⋅]:= -Log[2]

Finally let us note that improper integrals of the second type can often be con-
verted to improper integrals of the first type by a suitable substitution. For example,
consider

In[⋅]:= Integrate[Log[x]^2, {x, 0, 1}]

Out[⋅]:= 2

Using the substitution y = 1/x, we see that dx = −dy/y2 and the integral transforms
into an integral of the first type:

In[⋅]:= Integrate[Log[y]^2/y^2, {y, 1, Infinity}]

Out[⋅]:= 2
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