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Preface

This monograph, consisting of two books, I and II, includes fresh approaches in the
two branches of combinatorics and functional equations, concentrating on algebraic
approaches to establishing a rigorous theory for discussing the property of beingwell-
defined and solutions for which it is not necessary to care about convergence or non-
convergence and suitability. Its central feature is in building up a theory for unifying
the theories of counting distinct classes in classifications under a variety of isomor-
phisms on a variety of combinatorial configurations, particularly maps (rooted and
un-rooted), embeddings of graphs on surfaces, even graphs themselves and so forth,
with an infinite partition vector as given parameter.

Thismonograph is on the basis ofmyprevious books:Enumerative Theory ofMaps
published by Kluwer (Springer) in 1999, General Theory of Map Census by Science
in 2009 and Theory of Combinatorial Functional Equations (in Chinese) published by
USTC Press in 2015, by introducing the extension of an integral domainwhich is a ring
of obeying the cancelation law, a mathematical theory for a series of combinatorial
functional equations, discovered mostly in the last 30 years or more in specific cases,
relevant for countingnon-isomorphic classes, via certain classifications of combinato-
rial configurations, particularly combinatorial maps, graphic embedding on surfaces,
even graphs themselves, lattices, networks, hypergraphs, matroids, words, designs,
cryptographics, to name only a few, with an infinite partition vector as given parame-
ter.

This monograph might be seen as an advanced version of the previous one, re-
flecting a series of items of progress made since then.

First, almost all equations are generalized to have constant coefficients of certain
terms for each equation. These constants are arbitrarily givenmostly inℤ+ because of
their original usage.

Second, all functional equations related to plane trees andnear-trees are shown to
have their solutions in the form of an explicision (or explicit expression) summation-
free obtained only by transformations on the extension of integral domain.

Third, all functional equations related to outer planar maps are shown to have
their solutions in the form of an explicision obtained only by transformations on the
extension of integral domain.

Fourth, all functional equations related to planar maps are indirectly shown to
have their solutions in the form of explicisions implied from an investigation of a cor-
responding planar embedding by introducing a new extra parameter vector.

Fifth, all functional equations related to maps on surfaces are still indirectly
shown to have their solutions in the form of explicisions looking not so complicated
as in the third case via investigations of the embedding of underlying graphs with
symmetry considered.

https://doi.org/10.1515/9783110625837-201
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Sixth, all solutions of equations consideredhavea specific case as oneof the appli-
cations done just from determining the number of certain equivalent classes of maps
under a given parameter vector.

The whole book is concentrated on contemplating the constructibility and the re-
alizability not only for systematization in theory but also for efficientization in running
and for intelligentization in usage.

The constructibility enables us to emphasize onexploiting the inner constructions
for the consistency theory established on each equation considered in the extension
of integral domain. The realizability enables us to evaluate the solution via a number
of operations on the extension of integral domain itself as well.

Although all equations have a combinatorial meaning as a special case or in one
of their applications, the basic theoretical principles presented in this subject can be
seen as puremathematics, independent of combinatorics, particularly, from the point
of view of maps related to graph theory.

For each equation with meson functional, from certain restrictions, a number of
function equations, difference (straight and slope) equations, and differential (ordi-
nary and partial) equations are also involved with as an application for classifying
varieties of combinatorial maps. From these, explicit expressions of the solutions for
the corresponding meson functional equations are indirectly extracted, as shown in
each of the chapters from Chapter 3 through Chapter 21.

The monograph is divided into two books, I and II. In Book I, the central content
is on basic theory of equations with or without a functional. And book II is on an ad-
vanced theory of meson functional equations because of its universality.

This volume is Book I titled Combinatorial Functional equations I—Basic Theory,
which contains Introduction and Chapter 1 through Chapter 10.

Introduction provides an overall view of all the equations particularly mentioned
as representatives.

Chapter 1 and Chapter 2 are for themain background from algebra, theory of func-
tions and functionals, and only for meson functionals with the general equation.

From Chapter 3 on through Chapter 7, basic equations including function equa-
tions with one and more variables and functional equations with infinite variables
under basic functionals such as straight and/or slope differences, ordinary or partial
differentials and most simple meson equations under the meson functional are, to a
certain extent, investigated. The origins of them are with certain enumerations of a
variety of maps in a finite number of parameters on surfaces of smaller genera.

Chapter 3 and Chapter 4 are concerned with equations of functions of, respec-
tively, one and at least two variables.

Chapter 5 is involved with basic functional equations under a straight difference,
a slope difference, or both.

Chapter 6 and Chapter 7 are concentrated on, respectively, ordinary and partial
differential equations.
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FromChapter 8 throughChapter 10,we are only concernedwith basicmeson func-
tional equations. They are all solved directly by extracting the solution with the coef-
ficient of each term in the solution as an explicision (i. e., explicit expression) in the
form of a summation-free, or finite sum with all terms positive in the extension of in-
tegral domain.

Chapter 8 addresses two types of tree equations under a meson functional with
constant coefficients.

Chapter 9 and Chapter 10 address two types of near-tree equations, or, as we may
say, uni-cyclic equation andwintersweets equations, under themeson functionalwith
constant coefficients on the extension of the integral domain.

An attempt has beenmade to keep the presentation of this book as self-contained
as possible. It should not be necessary to read more specialized books beforehand
whatever; the concepts of the extension of an integral domain (a ring obeying the can-
celation law) and of the meson functional have to be clearly understood.

Because of the concentration only on algebraic qualitative and quantitative the-
ories of all equations considered, many articles on map enumeration are omitted, for
which I would like to apologize. However, for more details as regards the references
one is referred to the bibliographies of my previous two books: Enumerative Theory of
Maps [44] (1999, pp. 392–406) and General Theory of Map Census [51] (2009, pp. 451–
470).

Many people, I‘should mention, are, directly or indirectly, contributors to this
book.However, I canonlynamea fewbecause of the limited space. First of all, I have to
expressmyappreciation to ProfessorW. T. Tutte for indicating tome the potential topic
onmap enumeration when I was in the University ofWaterloo 30 years ago. This topic
should now be seen as the origin of the present book. Many of my cooperators used
to do, or are still doing, research on the topics around, such as Junliang Cai, Han Ren,
Rongxia Hao, Zhaoxiang Li,Wenzhong Liu, Yan Xu, Yongli Zhang, and Liyan Pan, and
they are presenting a number of new relevant results. Last but not least, I have also to
express my heartiest thanks to Juniang Cai, Rongxia Hao, Zhaoxiang Li and Liangxia
Wan for carefully reading the manuscripts to avoid too many errors and mistakes. Of
course, any error or mistake remaining belongs to myself.

Daotiancun, Beijing Y. P. Liu
October, 2018
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Introduction

From Chapter 3 on through Chapter 10, all typical equations considered are listed for
an overall picture of this book. The book is divided in four parts.

Part one consists of two chapters: Chapter 3 and Chapter 4 dealing with function
equations.

In Chapter 3, six types of equations are covered.
First, we consider the quadratic equation for f ∈ ℛ{z}with four independent con-

stant parameters

{
azf 2 − bf + c = 0;
f |z=0 = d,

(1)

where a, b, c, d ∈ ℤ+. In this equation, the coefficient az of f 2 involves the variable z.
Second, we consider the quadratic equation for f ∈ ℛ{z} with four independent

constant parameters

{
af 2 − bf + cz = 0;
f |z=0 = d,

(2)

where a, b, c, d ∈ ℤ+. In this equation, the term independent of f involves the vari-
able z.

Third, we consider the quadratic equation for f ∈ ℛ{z} with four independent
constant parameters

{
a(1 + z)f 2 − b(1 + z)f + cz = 0;
f |z=0 = d,

(3)

where a, b, c, d ∈ ℤ+, abc > 0. Several coefficients (like a(1+ z), b(1+ z) and cz) involve
the variable z.

Fourth, we consider the cubic equation for f ∈ ℛ{z}

{
{
{

f 3 + a(1 − z)
z2

f 2 + b(z − 2)
z

f + c = 0;

f |z=0 = d,
(4)

where a, b, c, d ∈ ℤ+.
Fifth, we consider the cubic equation for f ∈ ℛ{z}

{
azf 3 − 3bzf 2 + (3z − 1)f + c = 0;
f |z=0 = d,

(5)

where a, b, c, d ∈ ℤ+.

https://doi.org/10.1515/9783110625837-202
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Sixth, we consider the quartic equation for f ∈ ℛ{z}

{
zf 4 − a(1 − z)f 3 + b(1 − 3z)f 2 + 3zf − cz = 0;
f |z=0 = d,

(6)

where a, b, c, d ∈ ℤ+.
In Chapter 4, five types of equations are covered.
First, we consider the quadratic equation for f ∈ ℛ{x, y} with four independent

constant parameters

{
axy2f 2 + (x − 1)f + c(x − 1) = 0;
f |x=0,y=0 = d,

(7)

where a, c, d ∈ ℤ+, ac > 0.
Second, we consider the quadratic equation for f ∈ ℛ{x, y}

{
{
{

axyf
x − f
− (1 + y)f + cx2y = 0;

fx=0,y=0 = d,
(8)

where a, c, d ∈ ℤ+.
Third, we consider the linear equation for f ∈ ℛ{x, y}

{{
{{
{

f = cx2y + axy
1 − xy
(

x
1 − x

h − 1
1 − x

f)

f |x=0,y=0 = d,
(9)

where a, c, d ∈ ℤ+ and h = f (1, y).
Fourth, we consider the quadratic equation for f ∈ ℛ{x, y}

{
ax2y(1 − x2)f 2 − (1 − x2 + x2y)f + c(1 − x2) + bx2yh = 0;
f |x=0,y=0 = d,

(10)

where a, b, c, d ∈ ℤ+ and h = f (1, y).
Fifth, we consider the equation of higher degree for f ∈ ℛ{x, y}

{{
{{
{

f = cx2y + ax2y(f − h)
x2(1 + h)2 − (1 + f )2

;

f |y=0 = d(⇒ hy=0 = d),
(11)

where a, c, d ∈ ℤ+ and h = f (1, y).
Part two consists of basic functional equations which involve fundamental func-

tionals as differences (straight and slope) in Chapter 5.
In Chapter 5, five types of equations are covered.
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First, we consider the equation in which only one straight difference occurs for
f ∈ ℛ{x, y}

{
f (1 − axyδ1,x(xf )) = c;
f |x=y=0 = d,

(12)

where a, c, d ∈ ℤ+ and δ1,x(xf ) = ((xf )x=1 − (xf ))/(1 − x) is the straight difference of xf
between 1 and x shown in Chapter 2.

Second, we consider the equation in which two straight differences occur for f ∈
ℛ{x, y}

{
f (1 + ayzt(ft=1 + fz=1)) = c + byzt(δ1,t(tf ) + δ1,z(zf ));
f |y=0⇒z=t=0 = d,

(13)

in which, both straight differences of z and t occur for a, b, c, d ∈ ℤ+.
Third, we consider the equation in which only one slope difference occurs for f ∈

ℛ{x, y}

{
f = c + ax2yf 2 + by𝜕1,x(x2f ) − xyhf − (h − 1)(f − 1);
f |x=0⇒y=0 = d (initial condition!),

(14)

where a, b, c, d ∈ ℤ+ and h = f |x=1 ∈ ℛ{y}with only one slope difference of x shown in
Chapter 2.

Fourth, we consider the equation in which two slope differences occur for f ∈
ℛ{y, z, t}

{{{
{{{
{

f = 2cyz2t +
ayzt𝜕1,zf

1 − 𝜕1,z ft=12

−
byzt𝜕1,tf

1 − 𝜕1,t fz=12
f |y=0⇒z=t=0 = d,

(15)

where a, b, c, d ∈ ℤ+.
Fifth, we consider the equation in which one straight difference and one slope

difference occur for f ∈ ℛ{x, y}

{{
{{
{

f = c + bxyδ1,x(xf ) +
ax2y(δ1,xf )2

1 − (1 + 𝜕1,xf )
;

f |y=0⇒x=0 = d,
(16)

such that f ∈ ℛ{x, y} for a, b, c, d ∈ ℤ+.
Part three consists of basic functional equations involving fundamental function-

als: ordinary differential and partial differential in, respectively, Chapter 6 and Chap-
ter 7.

In Chapter 6, six ordinary differential equations are covered.
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First, we consider the equation in which one ordinary differentiation occurs with
a variable parameter for h ∈ ℛ{y}

{{
{{
{

ydh
dy
= 2τ(2aydh

dy
+ bh);

h|y=0 = d,
(17)

where a, b, d ∈ ℤ+ and τ is known from

𝜕ny τ =
{{{
{{{
{

0, when n = 0;
1, when n = 1;
3∑n−1i=1 𝜕

i
yτ𝜕

n−i
y τ, when n ≥ 2,

for n ≥ 0.
Second, we consider the equation inwhich one ordinary differentiation occurs for

h ∈ ℛ{x}

{
{
{

2x2 dh
dx
= −c + a(1 − x)h;

h0 = h|x=0 = d,
(18)

where a, c, d ∈ ℤ+.
Third, we consider the quadratic equation in which one ordinary differentiation

occurs for f ∈ ℛ{x}

{
{
{

2x2 df
dx
= −c + b(1 − x)f − axf 2;

f0 = f |x=0 = d,
(19)

where a, b, c, d ∈ ℤ+
Fourth, we consider the quadratic equation in which one ordinary differentiation

occurs for f ∈ ℛ{x} with two variable parameters

{{{
{{{
{

4x2 df
dx
= bα(x)f − axf 2 − 2cxβ(x);

df
dx

x=0
= d,

(20)

for a, b, c, d ∈ ℤ+ where

{
{
{

α(x) = 1 − 2x − 2xfOrien;

β(x) = fOrien + 2x
dfOrien
dx
,

and fOrien the solution of equation (19).
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Fifth, we consider the quadratic equation in which one ordinary differentiation
occurs for f ∈ ℛ{x} with three independent constant parameters

{{
{{
{

ax2 df
dx
= −d + (1 − bx)f − cxf 2

f |x=0 = d,
(21)

where a, b, c, d ∈ ℤ+.
Sixth, we consider the quadratic equation in which one ordinary differentiation

of second order occurs for f ∈ ℛ{x}

{{{
{{{
{

(2az + 5bf − 3cz df
dz
)
d2f
dz2
= 48z;

f |z=0 = d,
df
dz

z=0
= d,

(22)

where a, b, c, d ∈ ℤ+.
In Chapter 7, seven partial differential equations are covered.
First, we consider the quadratic function equation for f ∈ ℛ{x, y}

{
{
{

x4yf 2 + a(y − x2)f − bx2yf ∗ + c(x2 − y) = 0;

f |x=y=0 = d,
(23)

where a, b, c, d ∈ ℤ+ and f ∗ = 𝜕2xf used in the partial differential equations appearing
below.

Second, we consider the system of partial differential equations about (g, f ) ∈
ℛ2{x, y}

{{{{{{{
{{{{{{{
{

g =
x4y(f + x 𝜕f𝜕x ) − yx

2g∗

x2 − y − 2x4yf
;

f = x
4yf 2 − x2yf ∗ + x2 − y

x2 − y
;

f |x=y=0 = 1, g|x=y=0 = 0,

(24)

where f ∗ = 𝜕2xf and g
∗ = 𝜕2xg.

Third, we consider the system of partial differential equations for (g, f , h) ∈
ℛ3{x, y}

{{{{{{{{{{
{{{{{{{{{{
{

x4y(z 𝜕g
𝜕z
)
z=x
= x2(1 − 2x2yh)f − yfix≥4;

x3zyδz,x(uh|x=u) = (x2 − 2x4yh)g − ygix≥3;

x4yh2 + (y − x2)h − x2yh2x + x
2 − y = 0;

f |x=y=0 = 0; g|x=z=y=0 = 1; h|x=y=0 = 1,

(25)
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where fix≥4 and gix≥3 are the results from functions f and g deleting the terms of x with
degrees less than and equal to, respectively, 4 and 3.

Fourth, we consider the system of partial differential equations for (g, f , h, p) ∈
ℛ4{x, y}

{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{
{

x4y(x 𝜕g
𝜕x
+ [z 𝜕h
𝜕z
]
z=x
) = x2f − x4y(g + g2 + 2pf ) − y(f − x2𝜕2xf );

x4y(p + x 𝜕p
𝜕x
) = x2(x2 − y − 2x4yp)g + x2y𝜕2xg;

x3zy
z − x

δz,x(up|x=u) = x2(1 − 2x2yp)h − y(h − x2𝜕2xh);

x4yp2 + (y − x2)p − x2y𝜕2xp + x
2 − y = 0;

f |x=z=y=0 = g|x=z=y=0 = h|x=z=y=0 = 0; p|x=z=y=0 = 1.

(26)

Fifth, we consider the equation in which two partial differentiations occur for f ∈
ℛ{x, y} with three constant parameters

{{
{{
{

axy(2y 𝜕f
𝜕y
− x 𝜕f
𝜕x
) = (1 − xyf |x=1)f − c;

f |x=0.y=0 = d,
(27)

where a, c, d ∈ ℤ+ and a ̸= 0.
Sixth, we consider the equation in which one partial differentiation with a con-

stant parameter occurs for f ∈ ℛ{x, y} with four constant parameters

{{
{{
{

ax3y 𝜕f
𝜕x
= (1 − ax2y + xy

1 − x
)f − bx

2y
1 − x

f |x=1 − c(xy + 1);

f |x=0,y=0 = d,
(28)

where a, b, c, d ∈ ℤ+ and a ̸= 0.
Seventh, we consider the equation in which one partial differentiation occurs for

f ∈ ℛ{x, y} with four constant parameters

{{
{{
{

2ax4y 𝜕f
𝜕x2
= (1 − ax2y + x2y

1 − x2
)f − bx2y

1 − x2
f |x=1 − c;

f |x=0,y=0 = d,
(29)

where a, b, c, d ∈ ℤ+ and a ̸= 0.
Part four consists of basic equations involving the meson functional in Chapter 8

through Chapter 10.
In Chapter 8, two types of basic functional equations are covered.
First, we consider a most simple equation with the meson functional and three

independent constant coefficients for f ∈ ℛ{x, y}
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{{{
{{{
{

∫
y

ay2f
1 − cyf

= f − by1;

f |y=0 = d,
(30)

where a, b, c, d ∈ ℤ+, f = f (y) ∈ ℛ{x, y} and y = (0, y2, y3, . . .).
Second,we consider anothermost simple equationwith themeson functional and

three independent constant coefficients for f ∈ ℛ{x, y}

{{
{{
{

ax∫
y

yδx,y(uf |x=u) = f − c;

f |x=0,y=0 = d,
(31)

where a, c, d ∈ ℤ+ and f = f (x, y) ∈ ℛ{x, y} for y = (y1, y2, y3, . . .).
In Chapter 9, only one type of basic equation involving the meson functional is

covered.
Consider the meson equation for f ∈ ℛ{x, y} with three independent constant

coefficients,

{{
{{
{

a2x∫
y

y𝜕x,yf |x=u = f − a1x
2fgtree;

f |x=0,y=0 = a0,
(32)

where a0, a1, a2 ∈ ℤ+, fgtree ∈ ℛ{x, y} is the solution of equation (31) with a = c = d = 1.
Because the solution of equation (32) when a0 = a1 = a2 = 1 is the enufunction of
general plane rooted trees with the root-vertex valency (x) and the vertex partition
vector (y) as parameters, equation (32) is called a type of unicycle model.

In Chapter 10, another type of basic equation involvingwith themeson functional
is covered.

Consider the meson equation for f ∈ ℛ{x, y} with four independent constant co-
efficients as

{{{
{{{
{

a2x∫
y

yδx,y(uf |x=u) = (1 −
a3xy3
1 − y2
)f − a1;

f |x=0⇔y=0 = a0,
(33)

where a0, a1, a2, a3 ∈ ℤ+.
Because of a solution of equation (33) for a0 = a1 = a2 = a3 = 1, meaningful in

wintersweets as outer planar maps, this equation is called a wintersweets model.





1 Preliminaries

For the sake of brevity we adopt, throughout this book, the usual logical conven-
tions: disjunction, conjunction, negation, implication, equivalence, universal quan-
tification, belong to, and existential quantification, denoted by the familiar symbols:
∨, ∧, ¬,⇒,⇔, ∀, ∈ and ∃, respectively.

1.1 Sets and mappings

A set consists of objects considered to have a property in common. The objects are
called elements of the set. If a set consists of all objects considered, then the set is said
to be universal, and denoted by Ω. Usually, sets are represented by capital letters, as
A, B, C, and elements by lower case ones, as a, b, c. The statement “a is an element
of the set A” is denoted “a ∈ A”. If any element of set A is an element of set B, then A
is called a subset of B, denoted by A ⊆ B. A set without an element is the empty set,
denoted by 0.

Any set A is a subset of A itself and the empty set is always a subset of any set. We
denoted by𝒪 the set, or family of all subsets, in the universal set, i. e.,𝒪 = {A | A ⊆ Ω},
or 2Ω. Naturally, 0,Ω ∈ 𝒪.

For two setsA,B ∈ 𝒪,wedenote by∪ and∩ the twooperations called, respectively,
union and intersection, i. e.,

A ∪ B = {x | x ∈ A or x ∈ B} and A ∩ B = {x | x ∈ A, x ∈ B}.

Set A minus set B, denoted by A\B, is the result of deleting all elements of B from
A, or called the difference of A and B.

If B ⊆ A, the difference is denoted by A − B. If A = Ω, the difference is denoted by
B̄ = Ω − B, called the complement of B.

Because each of ∪ and ∩ satisfies the commutative law and the associative law, we
are allowed to adopt

n
⋃
i=1

Ai and
n
⋂
i=1

Ai (1.1.1)

where Ai ∈ Ω and both i and n, where 1 ≤ i ≤ n and n ≥ 1, are positive integers.
Moreover, they satisfy the distributive law. These laws are similar towhat appeared for
addition andmultiplication in arithmetics. However, the idempotent law, the absorp-
tion law, the unitary law and the universal bound law are not available for similarity
as regards arithmetics (see § 1.1 in [52] (Liu YP)). On the basis of what was mentioned
above, the following results can be found.

https://doi.org/10.1515/9783110625837-001



2 | 1 Preliminaries

Theorem 1.1.1. For any A,X ⊆ Ω, we have

{
(A ∩ X = A) ∨ (A ∪ X = X)⇒ A = 0;
(A ∩ X = X) ∨ (A ∪ X = A)⇒ A = Ω.

(1.1.2)

Theorem 1.1.2. For any A,B ⊆ Ω, we have

A ∩ B = A⇔ A ∪ B = B. (1.1.3)

Theorem 1.1.3. For any A,B,C ⊆ Ω, we have

(A ∩ B = A ∩ C) ∧ (A ∪ B = A ∪ C)⇔ B = C. (1.1.4)

Theorem 1.1.4. For any A ⊆ Ω, we

A = A. (1.1.5)

Theorem 1.1.5. For any A,B ⊆ Ω, we have

A ∪ B = A ∩ B; A ∩ B = A ∪ B. (1.1.6)

Let A,B ⊆ Ω. A mapping from A to B is a correspondence between A and S such
that any element of A has a corresponding element of B. An element in A is said to
be co-image (or back image, or initial image), and an element in B, image (or forward
image, or end image).

For two sets A and B,

A × B = {(x, y) | ∀x ∈ A,∀y ∈ B},

is called theirCartesian product. The Cartesianproduct of a setX and itself is called the
power of X. For example, X×X = X2. Generally,Xn−1×X = Xn where n ≥ 1. Particularly,
X0 = 0 and X1 = X.

It is seen that ∪, ∩ and \ are all mappings from 2Ω × 2Ω to 2Ω (2Ω × 2Ω → 2Ω), and ̄
from 2Ω to itself (2Ω → 2Ω).

An injection from set A to set B is a mapping α : A→ B such that, ∀a, b ∈ A,

a ̸= b⇒ α(a) ̸= α(b).

An injection is also called a 1–1 mapping. A surjection is a mapping β : A → B such
that, ∀b ∈ B,

∃a ∈ A, β(a) = b.

For example, union ∪, intersection ∩, and difference \ are all surjections, but not in-
jections. A mapping with both injection and surjection is called a bijection, or 1–1 cor-
respondence. For example, the complement ̄ is a bijection.
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1.1 Sets and mappings | 3

If repetition of an element in a set is allowable, then the set is said to bemultiple;
otherwise, nonmultiple. All sets considered in this book are nonmultiple unless specif-
ically indicated otherwise. The number of occurrences of an element in a multiple set
is called themultiplier of the element.

Two sets A and B with a bijection are said to have their cardinalities equal, i. e.,
|A| = |B|. For example, the set of all positive integers and the set of all positive even
numbers have the same cardinality. A set with its cardinality a finite number is said to
be a finite; otherwise, an infinite set. Two finite sets have the same number of elements
if, and only if they have the same cardinality. For two finite sets X and T, we have

|X × Y | = |X| × |Y | = |X||Y |.

Let XY be the set of all mappings from X to Y , then |XY | = |Y ||X|.
An isomorphism, denoted by A ∼ B, of two multiple sets A and B is a bijection

between A and B such that corresponding elements have the same multiplier. It is
easily seen that A ∼ B implies that their cardinalities are equal.

Theorem 1.1.6. Two multiple sets A and B have an isomorphism τ if, and only if,

|A| = |B| (1.1.7)

with ∀a ∈ A, m(a) = m(τ(a)) where m is the multiplier.

Proof. Necessity is from the definition of isomorphism. Sufficiency is from the defini-
tion of bijection.

As consequence, two sets A and B are isomorphic if, and only if, |A| = |B|.
However, the recognition of isomorphism between two systems (2A;∪,∩, )̄ and

(2B;∪,∩, )̄ is not so easy in general because of the three operations involved.
On a set A ̸= 0, if there is an operation, denoted by⬦, such that the following four

axioms: Group 1–Group 4 are satisfied, then we call A a group, denoted by (A;⬦, 1⬦).
Group 1 (closed law) ∀x, y ∈ A, x ⬦ y ∈ A.
Group 2 (associative law) ∀x, y, z ∈ A, (x ⬦ y) ⬦ z = x ⬦ (y ⬦ z).
Group 3 (identity law) ∃1(⬦) (simply 1) ∈ A, such that ∀x ∈ S, x ⬦ 1(⬦) = x.
Group 4 (inverse law) ∀x ∈ S, ∃y ∈ S, x ⬦ y = 1(⬦).

If ⬦ satisfies the commutative law in the group, then it is called a commutative group,
or Abelian group. For an Abelian group, the operation ⬦ is always replaced by + and
the identity by 0.

If there is another operation, denoted by ⋅, on an Abelian group (A;+,0) such that
⋅ satisfies Group 1–Group 3 and {+, ⋅} satisfies the distributive law: ∀a, b, c ∈ A,

(a + b) ⋅ c = a ⋅ c + b ⋅ c c ⋅ (a + b) = c ⋅ a + c ⋅ b, (1.1.8)

then A is a ring, denoted by (A;+, ⋅,0, 1).
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4 | 1 Preliminaries

On the ring, if ⋅ satisfies the commutative law, then the ring is said to be com-
mutative. If a commutative ring A satisfies the cancelation law: ∀a, b, c ∈ A, c ̸= 0,
a ⋅ c = b ⋅ c ⇒ a = b, then the ring is called an integral domain.

On a commutative ring (A;+, ⋅,0, 1), if for any a ∈ A, a ̸= 0, there exists a−1 such
that a ⋅ a−1 = a−1 ⋅ a = 1, then it is called a field.

A space (exactly, vector space or linear space) over a field F, denoted by (𝒳 , F;+, ∙)
(simply 𝒳 ), is an Abelian group (𝒳 ,+), or 𝒳 , in company with the field (F,+, ∙), or
simply F, satisfying the following four axioms: Space 1–Space 4. The operation “+” is
called vector sum, “∙” a scalar product. In theAbelian group𝒳 and the fieldF, addition
symbols are the same. For the scalar product a ∙ A = aA for a ∈ F and A ∈ 𝒳 , one
adopts the same symbol as the multiplication in F. An element of 𝒳 is called a vector.
An element of F is called a scalar.
Space 1 ∀a ∈ F, ∀A,B ∈ 𝒳 , a(A + B) = aA + aB.
Space 2 ∀a, b ∈ F, ∀A ∈ 𝒳 , (a + b)A = aA + bA.
Space 3 ∀a, b ∈ F, ∀A ∈ 𝒳 , (ab)A = a(bA).
Space 4 ∀A ∈ 𝒳 , 1A = A.

Onemight like to understand the distinctions in symbols between vectors and scalars.
0𝒳 and 0F denote the elements zero of, respectively, 𝒳 and F. From Space 1–Space 4,
it is seen that ∀A ∈ 𝒳 , 0FA = 0𝒳 and ∀a ∈ F, a0𝒳 = 0𝒳 . Hence, both 0𝒳 and 0F
are only denoted by 0. For 𝒴 ⊆ 𝒳 , if 𝒴 is a space itself with the same operations as in
𝒳 , then 𝒴 is called a subspace of 𝒳 , denoted by 𝒴 ⊆vect 𝒳 (or simply, 𝒴 ⊆ 𝒳 if there
arises no confusion). Because of 0 being itself a space, called the zero space or a trivial
space, denoted by 0 as well, 0 is a subspace of any space. The subspace consists of all
vectors of order 2 and 0 is denoted by 𝒥 .

1.2 Functions and transformations

Let𝒪 = 2𝕏, when𝕏 is a set of numbers; amappingϕ fromA ∈ 𝒪 toB ∈ 𝒪 is a function.
A and B are, respectively, called domain and co-domain of ϕ. The sets D = {x | ∃y ∈
B, y = ϕ(x)} ⊆ A and Y = {y | ∃x ∈ A, y = ϕ(x)} ⊆ B are, respectively, the co-domain set
and image set(or range) of ϕ. If D ⊆ Xn, n is a positive integer, then the function ϕ is
called a function of n variables (or n-function), denoted by ϕ = ϕ(x), x = (x1, x2, . . . , xn)
is a row vector. When n = 1, ϕ is a function of one variable; otherwise, a function of
several variables. If ϕ(0) = 0, then ϕ is a homogeneous function.

Although the set of all integer numbers ℤ, the set of all rational numbers ℚ, the
set of real numbersℝ and the set of all complex numbersℂ are involved in this book,
domains and ranges are always in ℝ unless specifically indicated otherwise.

By two functions f and g being equal, i. e., f = g, is meant that their domains are
the same and their ranges are the samewith the property that, for any x in the domain,
f (x) = g(x).
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1.2 Functions and transformations | 5

If a function ϕ has the property: for any x and y,

ϕ(x + y) = ϕ(x) + ϕ(y), (1.2.1)

then ϕ is said to be a linear function; otherwise, a nonlinear function. Let a = (a1, a2,
a3, . . .) and b = (b1, b2, b3, . . .), then (a,b) = a1b1 + a2b2 + ⋅ ⋅ ⋅ + anbn = a(b) is called the
inner product of a and b where =T represents the transpose.

Theorem 1.2.1. A homogeneous function ϕ : ℝn → ℝ is linear if, and only if, there exists
a constant vector a such that

ϕ = (a,x). (1.2.2)

Proof. Since ϕ is a homogeneous function,

ϕ(0) = 0. (1.2.3)

From the linearity, i. e., (1.2.1), by substitutingy for−x, (1.2.3) leads toϕ(x)+ϕ(−x) = 0.
Hence,

ϕ(−x) = −ϕ(x). (1.2.4)

On the basis of (1.2.1), for any positive integer n, we have

ϕ(
n
∑
i=1

xi) =
n
∑
i=1

ϕ(xi) (1.2.5)

where xi = (0, . . . ,0, xi,0, . . . ,0), i = 1, 2, . . . , n.
Let x = xi, 1 ≤ i ≤ n, then, for any positive integer n,

ϕ(nx) = nϕ(x). (1.2.6)

Because of n
mx = y, i. e., nx = my, from (1.2.6), we have nϕ(x) = mϕ(y), i. e.,

ϕ(m
n
y) = ϕ(x) = m

n
ϕ(y). (1.2.7)

From (1.2.4), (1.2.6) is valid for any rational number n. By the density of rational num-
bers and the connectedness of function ϕ, for any a ∈ ℝ, we have

ϕ(ax) = aϕ(x). (1.2.8)

Necessity. Because of the linearity of ϕ, for any x, y ∈ ℝn, ϕ(x + y) = ϕ(x) + ϕ(y).
Since, for any ℝ,

x =
n
∑
i=1

xi1i,
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6 | 1 Preliminaries

where 1i is the vector of all components 0 but only the ith 1, by (1.2.5),

ϕ(x) = ϕ(
n
∑
i=1

xi1i), by (1.2.8),

=
n
∑
i=1

xiϕ(1i).

Therefore, (1.2.2) is valid where a = (ϕ(11),ϕ(12), . . . ,ϕ(1n)). The necessity is done.
Sufficiency. By considering a(x + y) = ax + ay, from (1.2.1), the sufficiency is

done.

The operation x = t+a on the functionϕ(x) is called a translation. It is easily seen
that any nonhomogeneous function can be obtained by translation.

LetA = (ai,j)1≤i≤n,1≤j≤m be an n×m (i. e., n rows andm columns) matrix. By employ-
ing x = Az, the n variables in x replaced by m variables in z, the procedure is called
doing a linear transformation on a function ϕ(x).

Theorem 1.2.2. On a ring, all m × n linear transformations form a linear space.

Proof. On the basis of the four axioms on a space: Space 1–Space 4, because of allm×n
matrices forminganAbeliangroup formatrix addition, all linear transformations form
a linear space.

Although Theorem 1.2.2 is not new in linear algebra, attention should be paid to
the fact that the valid areamuch larger thanℤ,ℚ,ℝ andℂ etc., orwe say that elements
in the ring are not necessarily numbers.

Only a square matrix may to have an inverse. All matrices which have an inverse
are called invertible. It is well known that a matrix is invertible if, and only if, its de-
terminant is not 0.

Theorem 1.2.3. On a ring (not necessarily commutative) R, all squarematrices of deter-
minants not 0 form a noncommutative ring.

Proof. By the definition of a ring, we arrive at the conclusion.

Given two functions f and g of one variable x. If the range of g is the range of f ,
we have the composition, denoted by f ∘ g = fg, i. e., for any x available, f ∘ g(x) =
f (g(x)). However, when g = f , f ∘ g ̸= f 2 in general. For example, let f (x) = x + 1, then
f ∘ f (x) = f (f (x)) = f (x+ 1) = x+2. But f 2 = (x+ 1)2 = x2 +2x+ 1. For avoiding confusion,
take f ∘ f = f ∘2. Recurrently, f ∘ f ∘n−1 = f ∘n, n ≥ 3. When f (x) = x, f ∘n = f , n ≥ 2. For
convenience of usage, f ∘1 = f is always assumed. This function is called the identity,
denoted by 1. The function f (x) = xn, n ≥ 0, is called a power function where n is its
degree. When n = 0, the power function f (x) = 1 is confirmed.
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1.2 Functions and transformations | 7

Given three functions h : A → B, g : B → C and f : C → D of one variable x with
both f and g a surjection. Observe that f ∘ g ∘ h = fgh. Because of

(fg)h(x) = fg(h(x)) = f (gh(x)) = f (gh)(x),

for any x ∈ A, we have (fg)h = f (gh). Thus it is shown that the composition satisfies
the associative law. Hence, fgh is meaningful.

Any function f : A → B has a left identity, denoted by 1A, and a right identity,
denoted by 1B, such that

1Af = f = f 1B. (1.2.9)

This is called the identity law.
For a function r : S → T where S ⊆ A and T ⊆ B, if for any x ∈ S, r(x) = f (x), the r

is called the restriction of f , i. e., r = f |S. Conversely, f is called a extension of r. For a
function i : S → A, if for any x ∈ S, i(x) = x, then i is called the inclusion. Thus, i = 1A|S.

A function can always be represented as a composition of two functions: one is an
injection and the other is a surjection. Assume the image set of f isU ⊆ B, then f = r ∘ i,
where the restriction r = f |A : A → U is a surjection and the inclusion i : U → B is an
injection.

Given two functions f : A→ B and g : B→ A.We address composition. If f ∘g = 1B,
then f is the left inverse of g and g, the right inverse of f . If a function has both left
inverse and the right inverse, then from the identity law (1.2.9), the two inverses are
the same, called the inverse. The inverse of f is denoted by f −1.

Theorem 1.2.4. A function of domain not empty has a left inverse if, and only if, it is
an injection. A function of domain not empty has a right inverse if, and only if, it is a
surjection. A function of domain not empty has an inverse if, and only if, it is a bijection

Proof. Assume g : B → A with the left inverse f : A → B, then fg = 1B. Hence,
g(x1) = g(x2) implies x1 = f (g(x1)) = f (g(x2)) = x2. This shows that g is an injection.

Conversely, assume g : B → A is an injection. Because of B ̸= 0, let x0 ∈ B. Since
g is an injection, for any x ∈ A, there is at most one y ∈ B such that g(y) = x. Let the
function

f (x) = {
y(g(y) = x), when x is in the image set of g;
x0, otherwise.

It is easily checked, for any y ∈ B, that f (g(y)) = y, i. e., fg = 1B. Hence, g has the left
inverse. This is the first statement.

Symmetrically, the second statement is a result of the first. Then the third is de-
duced from the first two statements.
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8 | 1 Preliminaries

In the theorem, the condition B ̸= 0 is of no importance, otherwise it is a degener-
acy of the theorem. On the basis of the uniqueness of inverse, we have

(g−1)
−1
= g. (1.2.10)

Further, the inverse of the composition of two functions obeys the rule of reversing the
order:

(fg)−1 = g−1f −1. (1.2.11)

Because of there beingno commutative law for composition of two functions, the order
has to be considered.

Let x be an undeterminate (not necessary a number!), then xn, integer n ≥ 0, is
called a monomial of degree n. Take x0 = 1. A polynomial is a linear combination of
monomials. For example,

a0 + a1x + a2x
2 + ⋅ ⋅ ⋅ + anx

n (= ax[n+1] =
n
∑
i=0

aix
i) (1.2.12)

is the general form of a polynomial of degree n, n ≥ 1, where

a = (a0, a1, a2, . . . , an) and x[n+1] = (1, x, x
2, . . . , xn).

The components of a are called the coefficients of the polynomial and a, the coefficient
vector shown in (1.2.12). A monomial with its coefficient in a polynomial is called a
term.

For a ring R (precisely (R;+, ∘,0, 1), the symbol ∘ is always omitted in expressions);
let

PR = {ax

[n+1] | ∀a ∈ R

n+1, n ≥ 0},

then on PR, the addition (+) and multiplication (∘, often omitted!) are

s
∑
i=0

aix
i +

t
∑
i=0

bix
i =

max{s,t}
∑
i=0
(ai + bi)ix

i

for ai = 0 (i > s ≥ 0) and bi = 0 (i > t ≥ 0);

(
s
∑
i=0

aix
i)(

t
∑
j=0

bjx
j) =

s+t
∑
k=0

ckx
k

where

ck = ∑
0≤i≤s,0≤j≤t

i+j=k

aibj =
k
∑
i=0

k−i
∑
j=0

aibk−j.
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1.2 Functions and transformations | 9

Theorem 1.2.5. (PR;+, ∘,0, 1) is a ring.

Proof. First, for addition and multiplication, it is easy to check the axioms: Group 1
(closed law), Group 2 (associative law), commutative law, and distributive law, i. e.,
(1.1.8).

From (1.2.12), when a = (0,0,0, . . .) = 0, the polynomial is 0 (Group 3 for +) and
when a = (1,0,0, . . . .) = 0, the polynomial is 1 (Group 3 for ∘).

For +, the inverse of polynomial determined by a is the polynomial by −a (Group 4
for +). However, Group 4 is not valid for ∘.

In consequence, (PR;+,0) is an Abelian group and (PR; ∘, 1) can only be checked to
satisfy the axioms: Group 1–Group 3. By considering the distributive law, the theorem
is proved.

Let ℛ = (PR;+, ∘,0, 1). Because of ℛ ⊆ ℛ[x], the ring ℛ[x] is called an extension
ofℛ.

In general, because of a polynomial of m (m ≥ 2) variables and n (n ≥ 2) degree
have the form

pn(xm) =
n
∑
i=0

pi(xm−1)x
i
m (1.2.13)

where pi(xm−1) is a polynomial of m − 1 variables and degree i, by employing Theo-
rem 1.2.5 recurrently, we find thatℛ[x] is an extension of ringℛ.

Theorem 1.2.6. A polynomial p(x) has (x − a) as a factor if, and only if, p(a) = 0.

Proof. Because of p(x)with factor (x−a), there exists a polynomial q(x)whose degree
is at least 1 less than the degree of p(x), so that p(x) = (x − a)q(x). Therefore, p(a) = 0.

Conversely, on the basis of p(a) = 0, assume p(x) = c0 + c1x + c2x2 + ⋅ ⋅ ⋅ + cnxn; we
have

p(x) =
n
∑
i=0

cix
i −

n
∑
i=0

cia
i =

n
∑
i=1

ci(x
i − ai)

= (x − a)(c1 +
n
∑
i=2

ci
i−1
∑
j=0

ajxi−1−j).

Therefore, p(x) has a factor (x − a).

Theorem 1.2.7. Two polynomials over an infinite field are equal if, and only if, their co-
efficient vectors are the same.

Proof. Since the sufficiency is easily seen to be true, only it is necessary only to prove
the necessity. Because of two polynomials are equal with the same degree, assume
p(x) = a0 +a1x+ ⋅ ⋅ ⋅+anxn and q(x) = b0 +b1x+ ⋅ ⋅ ⋅+bnxn are equal. If ai = bi not for all
0 ≤ i ≤ n, then from Theorem 1.2.6, d(x) = p(x) − q(x) has at most n points such that
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10 | 1 Preliminaries

d(x) = 0 and d(x) ̸= 0 for other points. This is a contradiction to p(x) and q(x) being
equal.

In Theorem 1.2.7, an infinite field cannot be replaced by a finite field. For example,
on a mod 3 integer field Z3, the polynomials p(x) = x3 − x and q(x) = 0 are the same,
but their coefficients are different.

Theorem 1.2.8. There is only one polynomial of degree not greater than n, satisfying the
values at n + 1 distinct points.

Proof. Suppose ai, 0 ≤ i ≤ n, are n + 1 distinct points. We have p(ai) = yi, 0 ≤ i ≤ n.
Now, construct a polynomial p(x) of degree n such that p(ai) = yi, 0 ≤ i ≤ n, i. e.,

p(x) =
n
∑
i=0

yi(
qi(x)
qi(ai)
) (1.2.14)

where

qi(x) =
n
∏
0≤j≤n
j≠i

(x − ai).

Attention: Because of the distinction among ai, 0 ≤ i ≤ n, qi(ai) ̸= 0, 0 ≤ i ≤ n.
In what follows, observe the uniqueness. Assume r(x) is another polynomial of

degree n satisfying r(ai) = yi, 0 ≤ i ≤ n. Because of p(ai)− r(ai) = 0, 0 ≤ i ≤ n, the poly-
nomial p(x)− r(x) of degree at most n has n+ 1 factors of degree 1. From Theorem 1.2.6,
the only possibility is p(x) − r(x) = 0, i. e., p(x) = r(x).

In proving the theorem, (1.2.14) provides an explicit formula for determining a
polynomial of degree n via the values at n + 1 distinct points. This formula is called
Lagrange interpolation. Usage of Lagrange interpolation is not only for determining a
polynomial but also for approximating a general nonlinear function.

1.3 Extensions of integral domain on series

A polynomial of infinite degree is called a series. The general form of a series is

s(x) = a0 + a1x + a2x
2 + ⋅ ⋅ ⋅ =

∞
∑
i=0

aix
i, (1.3.1)

where, for any i, 0 ≤ i ≤∞, ai ∈ R, R is a ring.
Occasionally, for generality, finitemonomials of negative powers are allowed, i. e.,

for a nonnegative integer L,

s[−](x) =
∞
∑
i=−L

aix
i =

L
∑
i=1

a−ix
−i +
∞
∑
i=0

aix
i, (1.3.2)

is called the Laurent series.
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1.3 Extensions of integral domain on series | 11

For convenience, a series is representedby its coefficients in a vector. For example,
s(x) in (1.3.1) is a = (a0, a1, a2, . . . ,∞).

The addition of two series a and b is defined by

a + b = c, c = (a0 + b0, a1 + b1, a2 + b2, . . . ,∞).

Let SR = {a | ∀a ∈ R∞}, i. e., the set od all series such that each of its coefficients is
in the ring R, then, by considering the closed law on SR for addition deduced from that
on R, we have c ∈ S. Similarly, the commutative law and the associative law on SR are
from those on R. Let 0 = (0,0,0, . . . ,∞), then 0+a = a+0 = a, 0 is the zero on SR. For
a ∈ SR, the inverse of −a = (−a0 − a1,−a2, . . . ,−∞) because of (−a) + a = a + (−a) = 0.
Hence, (SR;+,0) is an Abelian group.

For two series s1, s2 ∈ SR defined by, respectively, a and b, let

a ∗ b = c, c = (c0, c1, c2, . . . ,∞),

where, for i = 0, 1, 2, . . . ,∞,

ci = ∑
j+k=i
0≤j,k≤i

ajbk =
i
∑
j=0

ajbi−j.

From the closedness for multiplication on R, the closedness for ∗ on SR is easily seen.
Thus, ∗ can be dealt with as the multiplication on SR.

For a,b, c ∈ SR, let h = a ∗ (b ∗ c) and g = (a ∗ b) ∗ c. Since, for i = 0, 1, 2, . . . ,∞,

hi =
i
∑
j=0

aj(
i−j
∑
k=0

bkci−j−k), by the associative law on R,

=
i
∑
j=0

i−j
∑
k=0

ajbkci−j−k

and

gi =
i
∑
j=0
(

j
∑
k=0

akbj−k)ci−j, by exchanging Σj and Σk ,

=
i
∑
j=0
(

i−j
∑
k=0

ajbk)ci−j−k , by the associative law on R,

=
i
∑
k=0
(

i
∑
j=k

akbj−k)ci−j, by substituting l = j − k for j,

=
i
∑
k=0

ak(
i
∑
j=k

bj−kci−j), by the associative law on R,

=
i
∑
k=0

ak(
i−k
∑
l=0

blci−l−k),

we have h = g. This shows that ∗ obeys the associative law on SR.
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12 | 1 Preliminaries

Let 11 = (1,0,0, . . . ,0). Since for any a ∈ SR (a ̸= 0), a ∗ 1 = 1 ∗ a = 1, we find that
11 is the identity on SR.

Theorem 1.3.1. Letℛ{x} = (SR;+, ∗,0, 1), thenℛ{x} is a ring if, and only if, R is a ring.

Proof. Sufficiency. On the basis of what discussed above, only necessary to observe if
the two operations satisfy the distributive law.

For any a,b, c ∈ SR, let h = a ∗ (b + c) and g = a ∗ b + a ∗ c. Because of

hi =
i
∑
j=0

aj(bi−j + ci−j) =
i
∑
j=0
(ajbi−j + ajci−j) = (a ∗ b)i + (a ∗ c)i = gi,

where the second equality is from the distributive law on R, we find that the distribu-
tive law holds on SR as well.

Necessity. It is easily seen that we have a relationship between (SR;+,0) and R
as SR ⇔ R, + on SR ⇔ + on R and hence the closed law, the associate law, and the
commutative law. By considering 0 ∈ SR ⇒ 0 ∈ R as the zero and −a ∈ SR ⇒ −a ∈ R
as the inverse, from the four axioms we use Group 2–Group 4, and R induced from
SR is an Abelian group. On the basis of the relationship between ∗ on SR and ⋅ on
R, for multiplication, the closed law, associative law and the identity law on R are
established from those on SR. Further, for + and ⋅ on R, the distributive law is from that
on SR. Thus, the ring R is derived from the ring SR. This is the necessity.

On the basis of Theorem 1.3.1, from R = R{0} ⊂ R{x}, R{x} is the extension of the
ring R via a series with only one undeterminate, which is still a ring. Similarly, the
extensions ℛ{x}, x = (x1, x2, x3, . . .) of ring R can be established from {x} as a starting
point. For example, R{x1, x2} = R{x1}{x2} and for any integer n ≥ 3, R{xn} = R{xn−1}{xn}.

From the procedure of proving Theorem 1.3.1, all the extensions obtained in this
way are a ring if R is commutative.

More generally, Theorem 1.2.5 enables us to extract the extensions for the case
that some undeterminates make it allowable to generate polynomials but not series.
For example, R[x1, x2} represents the case that S(x1, x2) = S[x1]{x2} ∈ ℛ[x1, x2} is a poly-
nomial of x1 and a series of x2. Thus, the meaning of ℛ[x1, . . . , xk]{xk+1, . . .} is known
for n ≥ 3.

Let L(x) = a−l0x
−l0 + a−l0+1x

−l0+1 + a−l0+2x
−l0+2 + ⋅ ⋅ ⋅ + a∞x∞ be a Laurent series

of x with the least power −l0, integer l0 ≥ 0, where ai ∈ R, −l0 ≤ i ≤ ∞, and R a
ring. Denote by ℒ the set of all Laurent series. Similarly to S, L(x) is represented by
a = (a−l0 , a−l0+1, a−l0+2, . . . , a∞).

If a + b = c is defined by

ci = ai + bi, −l0 ≤ i ≤∞,

then the addition is established on ℒ.
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1.3 Extensions of integral domain on series | 13

Let a ∗ b = c be such that

ci =
i
∑
j=−l0

ajbi−j, −l0 ≤ i ≤∞.

The multiplication is established on ℒ.

Theorem 1.3.2. Let ℒ{R; x} = (ℒ;+, ∗,0, 1), then ℒ{R; x} is a ring if, and only if, R is a
ring.

Proof. It is only necessary to pay attention to the fact that any ordinary series S(y) can
be deduced from a Laurent series L(x) by the substitution xi = yi+l0 , −l0 ≤ i ≤ ∞.
Therefore, the conclusion is derived from Theorem 1.3.1.

A ring which obeys the cancelation law is called an integral domain.

Theorem 1.3.3. Both ℒ{R; x} andℛ{x} are integral domains.

Proof. According to what has been mentioned, it is only necessary to prove the theo-
rem forℛ{x}.

First, we prove that the ring R is actually an integral domain. Since R is an integer
ring, it is easily shown from arithmetics that, for any integer a, b, c ∈ R, c ̸= 0, ac =
bc ⇔ a = b, hence the cancelation law. Therefore, R is an integral domain.

Then, we derive thatℛ{x} is also an integral domain from the integral domain R.
From Theorem 1.3.1,ℛ{x} = (SR;+, ∗,0, 1) is a ring.

For the cancelation law, a polynomial without 0 has to be investigated. Two cases
should be considered. Let c ̸= 0.

Case 1 c0 ̸= 0. Because of ℛ{x} being a ring, there exists c ∈ SR such that
S(x)S(x) = 1, i. e., c is the inverse of c. This implies the cancelation law.

Case 2 c0 = 0. Let an integer, α ≥ 1, be the minimal power of all terms in Sc(x)
determined by c. From Sc(x) = cαxαT(x) with T(x) in Case 1, the minimality of α leads
to the existence of the inverse T−1(x) for T(x). For any Sa(x), Sb(x) ∈ SR, we have

Sa(x)Sc(x) = Sb(x)Sc(x)⇒ Sa(x)cαx
α = Sb(x)cαx

α,

by cα ̸= 0 in R,
⇒ Sa(x)x

α = Sb(x)x
α,

by x not being zero,
⇒ Sa(x) = Sb(x).

This is the cancelation law. Hence,ℛ(x) is an integral domain.

For the functions considered in this book, their coefficients are all in the integral
domain ℛ. Particularly, they are in the extensions R{x} unless specifically indicated
otherwise. Occasionally, ℒ{x} = ℒ{R;x} if necessary.
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14 | 1 Preliminaries

Leta(x) ∈ R{x}. For convenience, denote bya{x} = (a0, a1, a2, . . . ,∞){x} the function
a(x), as a series of the determinate x.

The differential of the series a(x)with respect to x is defined to be a transformation
such that

da
dx
= a{x}A (1.3.3)

where the matrix A = (ai,j)0≤i,j≤∞, ai = (ai,0, ai,1, ai,2, . . . , ai,∞) = 0[i], i. e., in 0, only the
ith component 1 changed from 0. Attention: 0[0] = 0.

Let n0→i = (0, 1, 2, 3, . . . , i) and Ik→∞ = (ai,j)k≤i,j≤∞ where

ai,j = {
1, when k ≤ i = j ≤∞;
0, otherwise.

Simply, Diag 1k→∞ = Diag[1k , 1k+1, 1k+2, . . .) = Ik→∞ for k ≥ 0. Thus, we have

A = n0→∞ Diag[0,Diag 11→∞).

Therefore, we have

da
dx
= a{x}(n0→∞ Diag[0,Diag 11→∞)). (1.3.4)

Theorem 1.3.4. da
dx ∈ ℛ{x} if, and only if, a(x) ∈ ℛ{x}.

Proof. On the basis of (1.3.4), the conclusion is straightforwardly obtained.

The integral of a series a(x) ∈ SR with respect to x is defined as

∫ a(x)dx = a{x}B (1.3.5)

where B = (bi,j)0≤i,j≤∞, bi = (bi,0, bi,1, bi,2, . . . , bi,∞) = 0[1/(i+1)], i. e., the ith component 0
of 0 replaced by 1/(i + 1), 0 ≤ i ≤∞.

Let us introduce another vector,

1/n1→n−1 = (1,
1
2
,
1
3
, . . . ,

1
n
)

for n ≥ 1. By employing the symbols used in (1.3.4), because of B = 1/∞Diag 10→∞,
(1.3.5) becomes

∫ a(x)dx = a{x}(1/(n + 1)0→∞ Diag 10→∞). (1.3.6)

For convenience, the integral of any constant is always pre-assumed to be the constant
itself.

Theorem 1.3.5. ∫ a(x)dx ∈ ℛ{x} if, and only if, a(x) ∈ ℛ{x}.

Proof. On the basis of (1.3.6), the conclusion is easily drawn.
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1.4 Functionals and functional equations | 15

1.4 Functionals and functional equations

For a set S and P, a partition of S, let P = {P0,P1,P2,P3, . . .}, then we find that Pi ∈ S
for any integer i ≥ 0; Pi ∩ Pj = 0 for any integers i, j ≥ 0; and ⋃i≥1 Pi = S. The last two
statements are always written as

∑
i≥0

Pi = S,

the sum(or, as we say, disjoint union) of all Pi, i ≥ 0.
Let si, i ≥ 1, be the cardinality |{Pj | ∀j ≥ 1, |Pj| = i,Pj ∈ P}|, then s = (s1, s2, s3, . . .)

is called the partition vector, while P0 is taken for certain technical usage as its cardi-
nality |P0| = m.

For a set S, let 𝒫 be all the partitions of S; the function

fS = ∑
P∈𝒫

xm(P)ys(P), (1.4.1)

where

ys(P) =∏
i≥1

ysi(P)i ,

is called the partition function of S.
Let n = 1 + ∑i≥1 si and s = m + ∑i≥1 isi. Because of the nonnegativity of m and si

for all i ≥ 1, if m and s are given, the function fs in (1.4.1) becomes a polynomial. This
enables us to determine fS fromm + s smaller to greater.

A functional is considered in this book as a transformation from the function space
with the basis, e. g., {1, x, x2, x3, . . .} to itself or another space, i. e., an abstract linear
space.

For a function f ≡ f (x) ≡ f (x, y), the operation

δx,zf |x=u =
f (x) − f (z)

x − z
(1.4.2)

is called a straight difference of f . Denote by [f ]ix = 𝜕
i
xf the coefficient of xi in f ∈ ℛ{x, y}

for i ≥ 0.

Theorem 1.4.1. The operator δx,z on f defined by (1.4.2) is a linear functional.

Proof. Let Fi = [f ]ix, i ≥ 0 and Fδi = [δx,zf |x=u]
i
x, i ≥ 0. Because of

f (x) − f (z) = (x − z)∑
i≥0

Fi(
i−1
∑
j=0

xjzi−1−j)

= (x − z)∑
j≥0

xj( ∑
i≥j+1

Fiz
i−1−j),
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16 | 1 Preliminaries

we have

δx,zf |x=u = ∑
j≥0

xj( ∑
i≥j+1

Fiz
i−1−j)

and hence

Fδj = ∑
i≥0

Fi+j+1z
i, j ≥ 0.

This implies that the straight difference δx,z determines a transformation given byYδ =
(y[δ]i,j )i,j≥0 where

y[δ]i,j =
{{{
{{{
{

0, when i > j;
1, when i = j;
zj−i, otherwise,

in the function space with basis {1, x, x2, x3, . . .}. On the basis of Theorem 1.2.1, the con-
clusion is drawn.

For a function f ≡ f (x) ≡ f (x, y), the operation

𝜕x,zf |x=u =
zf (x) − xf (z)

x − z
(1.4.3)

is called the slope difference of f .

Theorem 1.4.2. The operator 𝜕x,z on f (f (0) = 0) defined by (1.4.3) is a linear functional.

Proof. Let Fi = [f ]ix, i ≥ 0 and F𝜕i = [𝜕x,zf |x=u]
i
x, i ≥ 0. Because of

𝜕x,zf |x=u = ∑
i≥0

Fi(
zxi − xzi

x − z
) (1.4.4)

we have F𝜕0 = −F0 = f (0) = 0, F𝜕1 = 0. For i ≥ 2,

F𝜕i = [∑
i≥2

Fi
zxi − xzi

x − z
]
i

x
.

Because of i ≥ 2,

zxi − xzi = xz(xi−1 − zi−1)

= (x − z)
i−2
∑
j=0

xj+1zi−1−j

= (x − z)
i−1
∑
j=1

xjzi−j
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1.4 Functionals and functional equations | 17

and hence

𝜕x,zu
i =

zxi − xzi

x − z
=

i−1
∑
j=1

xjzi−j.

From (1.4.4),

F𝜕i = [∑
i≥2

Fi
i−1
∑
j=1

xjzi−j]
i

x

= ∑
j≥i+1

Fjz
j−i

(1.4.5)

for i ≥ 1.
On the basis of (1.4.5), it is seen that the slope difference 𝜕x,z is a transformation

given by Y𝜕 = (y
[𝜕]
i,j )i,j≥1 where

y[𝜕]i,j = {
0, when i > j;
zj−i+1, otherwise,

in the function space with basis {1, x, x2, x3, . . .}. On the basis of Theorem 1.2.1, the con-
clusion is drawn.

For a function f (x) in the functional space with basis {1, x, x2, x3, . . .}, the differen-
tial of f with respective to x, denoted by df

dx , is defined as a linear combination of

dxi

dx
= {

0, when i = 0;
ixi−1, when i ≥ 1,

(1.4.6)

for i ≥ 0.

Theorem 1.4.3. The operator d
dx defined by (1.4.6) is a linear functional.

Proof. Let Fdff i = [
df
dx ]i, i ≥ 0. From (1.4.6), Fdff i = (i + 1)Fi, i ≥ 0, we see that the

differential is the transformation determined by Ydff = (y
[dff]
i,j )i,j≥0, where

y[dff]i,j = {
i, when j = i − 1;
0, otherwise,

(1.4.7)

for i, j ≥ 0. On the basis of Theorem 1.2.1, the theorem is done.

For a function f (x) in the functional space with basis {1, x, x2, x3, . . .}, the integral
of f with respective to x, denoted by ∫ fdx, is defined as a linear combination of

∫ xidx =
{
{
{

x, when i = 0;
1

i + 1
xi+1, when i ≥ 1,

(1.4.8)

for i ≥ 0.
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18 | 1 Preliminaries

Theorem 1.4.4. The operator ∫dx defined by (1.4.8) is a linear functional.

Proof. Let Fint i = [∫ fdx]i, i ≥ 0. From (1.4.8), Fint i =
1
i+1Fi+1, i ≥ 0, we see that the

integral is the transformation determined by Yint = (y
[int]
i,j )i,j≥0, where

y[int]i,j =
{
{
{

1
i + 1
, when j = i + 1;

0, otherwise,
(1.4.9)

for i, j ≥ 0. On the basis of Theorem 1.2.1, the theorem is done.

Let us write (x)n = x(x − 1) ⋅ ⋅ ⋅ (x − n + 1), for integer n ≥ 1, called the decrease
factorial function. As shown in Rota GC [75] (1964), the umbrella operation (or shadow
operator) denoted by L is the linear extension by transforming xi into a polynomial
pi(x) of degree i for i ≥ 1. Because of the constant term, which is allowed to bemissing,
only homogeneous polynomials are considered with pi(0) = 0. For example, pi(x) =
(x)i.

Theorem 1.4.5. The shadow operator is a linear functional.

Proof. Let FLi = [Lf]i, the coefficient of (x)i, i ≥ 0, in Lf. L is determined by the matrix
YL = (y

[L]
i,j )i,j≥1 of infinite dimension by

y[L]1,j = {
1, when j = 1;
0, otherwise,

(1.4.10)

and, for i ≥ 2,

y[L]i,j =

{{{{{{
{{{{{{
{

−(i − 1)y[L]i−1,1, when j = 1;
−(i − 1)y[L]i−1,j + y

[L]
i−1,j−1, when 2 ≤ j ≤ i − 1;

1, when j = i;
0, otherwise,

(1.4.11)

the transformation is a functional. On the basis of Theorem 1.2.1, the conclusion is
drawn.

All functionals mentioned above are transformations from the space of functions
into itself.

However, in Chapter 2, a new functional, called the meson functional, is going to
be investigated from the space of functions into a general abstract linear space instead
of the function space itself.

An equation of functions which involves a certain functional is concisely called
a functional equation. Of the two volumes of the book, Volume II is concentrated on
meson functional equations.
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1.5 Notes | 19

1.5 Notes

1.5.1. The basic knowledge needed in the whole book is explained in this chapter to
make the book, in principle, self-contained. All material mentioned is particularly de-
signed for use in the relevant context.

1.5.2. The systemof sets using (Ω;∪,∩, )̄ forms a lattice, or from another point of view,
aBooleanalgebra.As regards the algebraic structure, onemighthavea look inBirkhoff
G [2] for details.

1.5.3. In §1.2, theorems 1.2.1 and 1.2.2 are not necessarily restricted for real functions.
They both have a more general form for mappings on an abstract symbol set.

1.5.4. For more about the algebraic notions in §1.3, one might wish to read [79] (Sha-
farevich IR).

1.5.5. On umbrella calculus under a shadow functional, a number of topics involved
with polynomials are particularly investigated in [75] (Rota GC), [74] (Roman SM, Rota
GC), [78] (Rota GC, Shen J, Taylor BD), [76] (Rota GC, Kahaner D, Odlyzko A), [77] (Rota
GC, Taylor BD), [63] (Mullin RC, Rota GC), et al.

1.5.6. In [19] (Liu YP, 1986), or [60] (Liu YP, Book 3: 1163–1167), the meson functional
is used as the shadow operator. However, in [24] (Liu YP, 1986), or [60] (Liu YP, Book 3:
1175–1179), because of the shadow operator going from a basis to another on the func-
tion space itself, the linear operator which transforms a function space to a vector
space (or abstract linear space) should be employed under a name different from that
of the shadow. By [36] (Liu YP, 1990), or [60] (Liu YP, Book 3: 1326–1331), this operator
is denoted ∫y.

Because the above operators mentioned in Section 1.4 are all seen as different
types of functionals, by [57] (Liu YP, 2012), or [60] (Liu YP, Book 23: 11223–11230) and
[58] (Liu YP, 2012), or [60] (Liu YP, Book 23: 11276–11283), this operator is named a
meson functional.
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2 Meson functional

2.1 Basic concepts

Let 𝒱 be an abstract linear space with its basis {y1, y2, y3, . . .} over a field F and ℱ the
space of functions with its basis {y, y2, y3, . . .} over the field F. The transformation from
ℱ to 𝒱, denoted by ∫y, such that∫

y

yi = yi, for i ≥ 1, (2.1.1)

is called ameson functional.
Attention: for an element c ∈ F, ∫y c = c is always ensured and hence, ∫y y0 = 1.
Because for ai ∈ F ∫

y

aiy
i = ai ∫

y

yi

and for ai, aj ∈ F ∫
y

(aiyi + ajyj) = ai ∫
y

yi + aj ∫
y

yj,
we see that, for any

fi = ∑
j≥0

aijy
j, i = 1, 2,

on the basis of ∫
y

afi = a∫
y

∑
j≥0

aijy
j

= a∑
j≥0

aij ∫
y

yj

= a∫
y

fi, a ∈ F;
∫
y

(af1 + bf2) = ∑
j≥0
(aa1j + ba2j)∫

y

yj= a∑
j≥0

a1jyj + b∑
j≥0

a2jyj= a∫
y

f1 + b∫
y

f2, a, b ∈ F,
(2.1.2)

the functional is linear on the spaceℱ .

https://doi.org/10.1515/9783110625837-002
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22 | 2 Meson functional

On the other hand, the transformation from 𝒱 toℱ , denoted by ∫y, such that
y∫ yi = yi, for i ≥ 1, (2.1.3)

is called anti-meson.
Attention: for an element c ∈ F, ∫y c = c is always ensured and hence ∫y y0 = 1.
For the anti-meson, because, for ai ∈ F,

y∫ aiyi = ai y∫ yi
and, for ai, aj ∈ F,

y∫(aiyi + ajyj) = ai y∫ yi + aj y∫ yj,
we see that, for any

vi = ∑
j≥0

aijy
j, i = 1, 2,

on the basis of
y∫ avi = a y∫∑

j≥0
aijyj

= a∑
j≥0

aij

y∫ yj
= a y∫ vi, a ∈ F;

y∫(av1 + bv2) = ∑
j≥0
(aa1j + ba2j) y∫ yj= a∑
j≥0

a1jyj + b∑
j≥0

a2jyj

= a y∫ v1 + b y∫ v2, a, b ∈ F,

(2.1.4)

this functional is also linear on the space 𝒱 .

Theorem 2.1.1. The meson ∫y and anti-meson ∫y functionals are mutually inverse.
Proof. For any s ∈ ℱ , s = s0 + s1y + s2y2 + ⋅ ⋅ ⋅,

v = ∫
y

s = ∑
i≥0

siyi ∈ 𝒱 ,
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we have
y∫ v = y∫(∫

y

∑
i≥0

siy
i), by (2.1.2),

= y∫(∑
i≥0

si ∫
y

yi), by (2.1.1),
= y∫(∑

i≥0
siyi), by (2.1.4),

= ∑
i≥0

si

y∫ yi, by (2.1.3),= s ∈ ℱ .
Hence, ∫y is the inverse of ∫y.

Conversely, for any v ∈ 𝒱, v = v0 + v1y1 + v2y2 + ⋅ ⋅ ⋅,
s = y∫ v = ∑

i≥0
viy

i ∈ ℱ ,
we have ∫

y

s = ∫
y

( y∫∑
i≥0

viyi), by (2.1.4),
= ∫

y

(∑
i≥0

vi

y∫ yi), by (2.1.3),
= ∫

y

(∑
i≥0

viy
i), by (2.1.2),

= ∑
i≥0

vi ∫
y

yi, by (2.1.1),= v ∈ 𝒱 .
Therefore, ∫y is the inverse of ∫y.
2.2 Shift

For a,b ∈ 𝒱, assume a = (a0, a1, a2, . . .) and b = (b0, b1, b2, . . .). The transformation
from a to b such that

bi = ai+1, i ≥ 0, (2.2.1)

is called a left shift, denoted by L.
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24 | 2 Meson functional

In fact, it is seen that

LaT = LaT, T is the transpose,
where L = (li,j)0≤i,j≤∞ and

li,j = {1, when j = i + 1;
0, otherwise,

0 ≤ i, j ≤∞.
Theorem 2.2.1. The left shift L obeys the following rules:
(i) Ln = (lni,j)0≤i,j≤∞ where

lni,j = {1, when j = i + n;
0, otherwise.

(ii) LLT = I ̸= LTL where I = (ei,j)0≤i,j≤∞, i. e., the identity,
ei,j = {1, when j = i;

0, otherwise.
(iii) For any a ∈ 𝒱 ,

y∫(La) = y y∫ a.
(iv) For any s(y) ∈ ℱ , ∫

y

ys(y) = L∫
y

s(y).
Proof. Different from (i) proved by induction, (ii)–(iv) are all from the definition.

For a,b ∈ 𝒱, assume a = (a0, a1, a2, . . .) and b = (b0, b1, b2, . . .), the transformation
from a to b such that

bi = {ai−1, when i ≥ 1;
0, otherwise i = 0, (2.2.2)

is called the right shift, denoted by R.
It is easily seen that

RaT = RaT, T is the transpose,
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2.3 Truncation | 25

where R = (ri,j)0≤i,j≤∞ and

ri,j = {1, when j = i − 1;
0, otherwise,

0 ≤ i, j ≤∞.
Theorem 2.2.2. The right shift R obeys the following rules:
(i) Rn = (lni,j)0≤i,j≤∞ where

lni,j = {1, when j = i − n;
0, otherwise.

(ii) R = LT.
(iii) RRT = I⟨10⟩ = RTR = I, where I⟨10⟩ is the identity (the matrix with all entries on the

diagonal 1; all other entries 0).
(iv) For any a ∈ 𝒱 ,

y∫(Ra) = y−1 y∫(a − a0y0).
(v) For any s(y) ∈ ℱ , ∫

y

y−1(s(y) − s0) = R∫
y

s(y).
Proof. Different from (i) proved by induction, (ii) and (iv)–(v) are all from the defini-
tion. Then (iii) is from (ii) and Theorem 2.2.1(ii).

2.3 Truncation

The operation of the first i components on a vector put all 0 is called a truncation,
denoted by J, or precisely an i-truncation.

For a ∈ 𝒱, let Ja = Ja, J = (ci,j)0≤i,j≤∞, then
ci,j = {1, when j = i, i ≥ 1;

0, otherwise. (2.3.1)

Let Ii,j be the matrix in which only the entry at (i, j) is 1 with all others 0, then the
left shift matrix

L = ∑
i≥0

Ii,i+1;
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26 | 2 Meson functional

L2 = (∑
i≥0

Ii,i+1)(∑
i≥0

Ii,i+1)= ∑
i≥0

Ii,i+2.
Further, for any integer n ≥ 1,

Ln = (∑
i≥0

Ii,i+1)n−1(∑
i≥0

Ii,i+1)= (∑
i≥0

Ii,i+n−1)(∑
i≥0

Ii,i+1)= ∑
i≥0

Ii,i+n. (2.3.2)

Similarly, for the right shift matrix R, we have

Rn = (∑
i≥0

Ii,i−1)n−1(∑
i≥0

Ii,i−1)= (∑
i≥0

Ii,i−n+1)(∑
i≥0

Ii,i−1)= ∑
i≥0

Ii,i−n. (2.3.3)

Theorem 2.3.1. For any integer n ≥ 1, the n-truncation matrix
J(n) = RnLn, (2.3.4)

where J(1) = J.
Proof. From (2.3.2) and (2.3.3),

RnLn = (∑
i≥0

Ii,i−n)(∑
i≥0

Ii,i+n)=∑
i≥n

Ii,i.
This is the conclusion.

2.4 Projection

On 𝒱, let a = ∑j≥0 ajyj ∈ 𝒱, then the operation P and Q deduced from{{{{{{{{{
Pa = ∑

j≥0
(j + 1)aj+1yj;

Qa =∑
j≥1

1
j
aj−1yj, (2.4.1)

is, respectively, called left projection and right projection.
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2.4 Projection | 27

It is easily seen that if Pa = PaT and P = (pi,j)0≤i,j≤∞, then we have
pi,j = {i + 1, when j = i + 1;

0, otherwise. (2.4.2)

Similarly, if Qa = QaT and Q = (qi,j)0≤i,j≤∞, then we have
qi,j = { 1i , when j = i − 1, i ≥ 1;

0, otherwise. (2.4.3)

Theorem 2.4.1. If n = (1, 2, 3, . . . ,∞) and u = (1, 1/2, 1/3, . . . ,∞), then the left projection
matrix and the right projection matrix are, respectively,

P = nL and Q = RuT (2.4.4)

where L and R are, respectively, the left shift matrix and the right shift matrix.

Proof. From (2.3.2),

nL = n(∑
i≥0

Ii,i+1), by the distributive law,= ∑
i≥0

nIi,i+1, by the definition of Ii,j,= ∑
i≥0
(i + 1)Ii,i+1, from (2.4.2),= P.

The first conclusion is done.
We proceed similarly for the last conclusion.

Attention: P and Q are not commutative under multiplication, because of

PQ = ( I 0T

0 0
) and QP = ( 0 0

0T I
) . (2.4.5)

Theorem 2.4.2. For integer n ≥ 2, let Pn = PPn−1 = (p(n)i,j )0≤i,j≤∞ and Qn = QQn−1 =(q(n)i,j )0≤i,j≤∞, then we have
p(n)i,j = {∏n−1l=0 (i + n − l), when j = i + n;

0, otherwise,
(2.4.6)

and

q(n)i,j = {{{∏n−1l=0
1

i + n − l , when j = i − n, i ≥ n;
0, otherwise. (2.4.7)
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28 | 2 Meson functional

Proof. When n = 2, because of
PP = (∑

i≥0
(i + 1)Ii,i+1)(∑

i≥0
(i + 1)Ii,i+1),

the first conclusion of Theorem 2.4.1 is employed,= (∑
i≥0
(i + 1)(i + 2)Ii,i+2),

the definition of matrix Ii,j is employed,= P2,
this is the case of the first conclusion when n = 2.

For n ≥ 3, we have
PPn−1 = (∑

i≥0
Ii,i+1)(∑

i≥0

n−2∏
l=0
(i + n − 1 − l)Ii,i+n−1),

induction is employed,= ∑
i≥0
(i + n) n−2∏

l=0
(i + n − 1 − l)Ii,i+n= ∑

i≥0

n−1∏
l=0
(i + n)Ii,i+n= Pn.

Therefore, the first conclusion is drawn.
Similarly, by considering Theorem 2.2.2(ii) and Theorem 2.4.2, the second conclu-

sion is drawn from the first one.

2.5 Convolution

The convolution of two vectors a,b ∈ 𝒱, denoted by a ⊗ b, is
a ⊗ b = c = (c0, c1, c2, c3, . . .) (2.5.1)

where, for integer j ≥ 0,
cj = j∑

i=0
aibj−i. (2.5.2)

Let s, h ∈ ℱ . For integer i ≥ 0, let Si = 𝜕iys and Hi = 𝜕iyh, then we have{{{{{{{{{{{
S = ∫

y

s = (S0, S1, S2, . . .) ∈ 𝒱 ;
H = ∫

y

h = (H0,H1,H2, . . .) ∈ 𝒱 . (2.5.3)
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2.6 Differential and integral | 29

Theorem 2.5.1. LetΨ = S andΦ = H, then
Ψ ⊗Φ = ∫

y

(sh). (2.5.4)

Proof. Since 𝜕iy(sh) = i∑
j=0

SjHi−j, by (2.3.2),= S ⊗H,
from (2.3.3), the theorem is done.

From the commutativity ofℱ under multiplication, it is seen that the convolution
obeys the commutative law on 𝒱; this implies that, for any s, h ∈ ℱ ,∫

t

s ⊗ ∫
y

h = ∫
t

h ⊗ ∫
y

s. (2.5.5)

For any integer k ≥ 1 and h ∈ ℱ , let H[k]i = 𝜕iyhk, i ≥ 0; then we have
H[k]i = {Hi, k = 1 ;∑ij=0 H[k−1]i−j Hj, when k ≥ 1. (2.5.6)

For any integer k ≥ 1, let
Φ[k] = ∫

y

hk , (2.5.7)

then from (2.3.3), we have

Φ[k] = (H[k]0 ,H[k]1 ,H[k]2 , . . .). (2.5.8)

Theorem 2.5.2. For any integers k ≥ 1 and i ≥ 0,Φ[k]i = H[k]i , i. e.,

Φ[k]i = {Φi, when k = 1;∑ij=0Φ[k−1]i−j Φj, when k ≥ 2. (2.5.9)

Proof. From (2.5.6) and (2.5.8), (2.5.9) is derived.

2.6 Differential and integral

For the function yn, integer n ≥ 0, the following operation:
d
dy

yn = {nyn−1 when n ≥ 1;
0, when n = 0, (2.6.1)
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30 | 2 Meson functional

is called the differential. The differential on the space ℱ{y; y} over the field F(y), is
determined by the linear extension, i. e., for any a ∈ F,

d
dy
(ayn) = a d

dy
yn

and
d
dy
(ym + yn) = d

dy
ym + d

dy
yn.

Theorem 2.6.1. For any s = s(y), t = t(y) ∈ ℱ{y; y},
d(st)
dy
= ds
dy

t + s dt
dy
. (2.6.2)

Proof. Let si = 𝜕iys(y) and ti = 𝜕iyt(y), i ≥ 0. Because of𝜕ny(dsdy t) = n∑
k=0
(k + 1)sk+1tn−k and

𝜕ny(s dtdy) = n∑
k=0
(k + 1)tk+1sn−k ,

we have𝜕ny(dsdy t) + 𝜕ny(s dtdy) = n∑
k=0
(k + 1)sk+1tn−k + n∑

k=0
(k + 1)tk+1sn−k= n∑

k=0
(k + 1)sk+1tn−k + n∑

k=0
(n − k + 1)tn−k+1sk= (n + 1)sn+1t0 + n−1∑

k=0
(k + 1)sk+1tn−k+ n∑

k=1
(n − k + 1)tn−k+1sk + (n + 1)tn+1s0= (n + 1)sn+1t0 + n−1∑

k=0
((k + 1)sk+1tn−k + (n − k)tn−ksk+1)+ (n + 1)tn+1s0= (n + 1)sn+1t0 + (n + 1) n∑

k=1
sktn−k+1 + (n + 1)tn+1s0= (n + 1) n+1∑

k=0
sktn−k+1= 𝜕ny d(st)dy
.

Therefore, (2.6.2) is proven.
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2.6 Differential and integral | 31

Theorem 2.6.2. For s = s(y) ∈ ℱ{y; y}, and integer n ≥ 1,
dsn

dy
= nsn−1 ds

dy
. (2.6.3)

Proof. We proceed by induction. When n = 0 and n = 1, it is easily seen that the
conclusion is true. For n ≥ 2, because of

dsn

dy
= ds
dy

sn−1 + sdsn−1
dy
, by Theorem 2.3.1,= ds

dy
sn−1 + s(n − 1)sn−2 ds

dy
,

by the induction hypothesis,= sn−1 ds
dy
+ (n − 1)sn−1 ds

dy
,

by the commutative law for multiplication,= (1 + n − 1)sn−1 ds
dy
,

by the distributive law for multiplication and addition,= nsn−1 ds
dy
,

then (2.6.3) is obtained.

On the basis ofℱ{y; y}, for any integer n ≥ 1, the operation defined by∫ yndy = 1
n + 1yn+1 (2.6.4)

is called integration.
Then, by linear extension, we have, for any a ∈ F,∫(ayn)dy = a∫ yndy

and ∫(ym + yn)dy = ∫ ymdy + ∫ yndy
onℱ{y; y}.
Theorem 2.6.3. For any s = s(y), t = t(y) ∈ ℱ{y; y},∫ ds

dy
tdy = st − ∫ s dt

dy
dy. (2.6.5)

Brought to you by | Stockholm University Library
Authenticated

Download Date | 10/30/19 5:37 AM



32 | 2 Meson functional

Proof. On the basis of the cancellation law on the integral domain ℱ{y; y}, it is only
necessary to prove ∫ ds

dy
tdy + ∫ s dt

dy
dy = ∫ d(st)

dy
dy.

For any integer n ≥ 1, because of𝜕ny(∫ dsdy tdy) = 1n𝜕n−1y (dsdy t) and 𝜕ny(∫ s dtdydy) = 1n𝜕n−1y (s dtdy),
we have 𝜕ny(∫ dsdy tdy) + 𝜕ny(∫ s dtdydy) = 1n(𝜕n−1y (dsdy t) + 𝜕n−1y (s dtdy))= 1

n
𝜕n−1y (d(st)dy

), Theorem 2.6.1 is employed,= 𝜕ny(∫ d(st)dy
dy).

Therefore, (2.6.5) is obtained.

Theorem 2.6.4. For any integer n ≥ 0 and s ∈ ℱ{y; y},∫(sn ds
dy
)dy = sn+1

n + 1 . (2.6.6)

Proof. On the basis {y, y2, y3, . . .}, from (2.3.4), for any integer n ≥ 1, we have
d
dy
∫ yndy = d

dy
( yn+1
n + 1), by (2.6.1),= yn.

This implies that on the basis of ℱ{y; y}, integration is the inverse of differentiation.
From the linearity of the two operations onℱ{y; y}, for any s ∈ ℱ{y; y}, by (2.6.3), we
have

sn+1 = (n + 1)∫(sn ds
dy
)dy.

By dividing n + 1 on the two sides, (2.6.6) is obtained.
Theorem 2.6.5. For any s = s(z) ∈ ℱ{z; y},

(∫
z

ds
dz
)T = L(P(∫

z

s)T) (2.6.7)
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2.6 Differential and integral | 33

where P is the left projection matrix and

z∫ LPsT = d
dz

z∫ s (2.6.8)

where s = ∫z s ∈ 𝒱 .

Proof. First, we prove (2.6.7). Let si = 𝜕iz, i ≥ 0, then∫
z

s = (s0, s1, s3, . . .) = s.
Since the right hand side of (2.6.7) is

PsT = (0, s1, 2s2, 3s3, . . .)⇒ L(P(∫
z

s)T) = (s1, 2s2, 3s3, . . .)
and the left hand side of (2.6.7) is∫

z

ds
dz
= ∫

z

(∑
n≥0
(n + 1)sn+1zn)= ∑

n≥0
(n + 1)sn+1 ∫

z

zn= (s1, 2s2, 3s3, . . .),
by comparing the two sides, (2.6.7) is found.

Then, we prove (2.6.8). Because of LPsT = (s1, 2s2, 3s3, . . .),
z∫ LPsT = z∫ ∑

n≥0
(n + 1)sn+1zn

= ∑
n≥0
(n + 1)sn+1 z∫ zn= ∑

n≥0
(n + 1)sn+1zn.

The left hand side is the differential of s. On the other hand, because of s = ∫z s,
z∫ s = z∫(∫

z

s) = z∫∫
z

s = s.
The left hand side is the differential of s as well. Therefore, (2.6.8) is obtained.
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34 | 2 Meson functional

Theorem 2.6.6. For any v = v(v0, v1, v2, . . .) ∈ 𝒱 , let v = v(z) = ∫z v ∈ ℱ(z; y), then
dv
dz
= z∫ vPTLT (2.6.9)

and ∫ vdz = z∫ vQT. (2.6.10)

Proof. First, we prove (2.6.9). Because of v = ∫z s, by transposing the two sides of
(2.6.7), and then invoking ∫z, (2.6.9) is found.

Then, we prove (2.6.10). Because of

vQT = (0, v0, 12v1, 13v2, 14v3, . . .), by v ∈ 𝒱 ,= ∑
n≥0

1
n + 1vnzn,

we have
z∫ vQT = z∫ ∑

n≥0

1
n + 1vnzn, by the linearity of the anti-meson functional,

= ∑
n≥0

1
n + 1vn z∫ zn, by 𝜕nz s = vn(n ≥ 0),= ∫ sdz.

This is (2.6.10).

2.7 Differences

We proceed on the basis ofℛ{z} ⊆ ℱ{z, y}. For integer n ≥ 1, two operations are estab-
lished as

δx,yz
n = xn − yn

x − y (2.7.1)

and 𝜕x,yzn = yxn − xynx − y , (2.7.2)

called straight difference and slope difference, respectively.
For any function f (z) ∈ ℛ{z}, by the linear extension from (2.7.1) and (2.7.2), the

straight difference and the slope difference of f = f (z) are, respectively, obtained:
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δx,yf = f (x) − f (y)x − y , (2.7.3)𝜕x,yf = yf (x) − xf (y)x − y . (2.7.4)

Theorem 2.7.1. For any f ∈ ℛ{z}, let f = f (z), then𝜕x,y(zf ) = xyδx,yf . (2.7.5)

Proof. From the linearity of 𝜕x,y and δx,y, it is only necessary to discuss f (z) = zn, n > 0.
Because of 𝜕x,yzf = 𝜕x,yzn+1= yxn+1 − xyn+1

x − y= xy xn − yn
x − y= xyδx,yzn= xyδx,yf ,

the conclusion is drawn.

Theorem 2.7.2. For any f ∈ ℛ{z},
x2y2δ2x2 ,y2 (zf ) − 𝜕2x2 ,y2 (zf ) = x2y2δx2 ,y2(zf 2). (2.7.6)

Proof. From (2.7.3) and (2.7.4), the left hand side of (2.7.6) is

x2y2((x2f (x2) − y2f (y2))2 − x2y2(f (x2) − f (y2))2)
x2 − y2= x2y2(x2f 2(x2) − y2f 2(y2))

x2 − y2 .
From (2.7.3), this is the right hand side of (2.7.6).

For a set𝒜 of configurations, let

f𝒜(x, y) = ∑
A∈𝒜

xm(A)yn(A) (2.7.7)

wherem(A) ≥ 0 and n(A) ≥ 0 are, respectively, an invariant number and an invariant
vector of A. Let F𝒜(x, y) be a function of two variables such that

F𝒜(x, y) = y∫ f𝒜(x, y). (2.7.8)

The powers of x and y on F𝒜(x, y) are, respectively, called the first parameter and
the second parameter.
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36 | 2 Meson functional

Theorem 2.7.3. Let 𝒮 and 𝒯 be two sets of configurations. If for T ∈ 𝒯 , there exists
a mapping from 𝒯 to 𝒮 as λ(T) = {S1, S2, . . . , Sm(T)+1} such that Si corresponds 1–1 to{i,m(T) + 2 − i}, where i and m(T) + 2 − i are the contributions to, respectively, the first
parameter and the second parameter, i = 1, 2, . . . ,m(T) + 1, satisfying the condition

𝒮 = ∑
T∈𝒯

λ(T),
then

F𝒮 (x, y) = xyδx,y(zf𝒯 ) (2.7.9)

where f𝒯 = f𝒯 (z) = f𝒯 (z, y).
Proof. On the basis of λ,

F𝒮 (x, y) = ∑
T∈𝒯

m(T)+1∑
i=1

xiym(T)−i+2yn(T)

= xy ∑
T∈𝒯

xm(T)+1 − ym(T)+1
x − y yn(T)= xyδx,y(zf𝒯 ).

This is (2.7.9).

Corollary 2.7.4. Let f𝒯 and F𝒮 be, respectively, given by (2.7.7) and (2.7.8), then

F𝒮 (x, y) = ∫
y

xyδx,y(zf𝒯 ).
Proof. From (2.7.8) and Theorem 2.7.3, the conclusion is derived.

Theorem 2.7.5. Let 𝒮 and 𝒯 be two sets of configurations. If for T ∈ 𝒯 , there exists
a mapping from 𝒯 to 𝒮 as λ(T) = {S1, S2, . . . , Sm(T)−1} such that Si corresponds 1–1 to{i,m(T) − i} where i and m(T) + 2 − i are the contributions to, respectively, the first pa-
rameter and the second parameter, i = 1, 2, . . . ,m(T) − 1, satisfying the condition

𝒮 = ∑
T∈𝒯

λ(T),
then

F𝒮 (x, y) = 𝜕x,y(f𝒯 ) (2.7.10)

where f𝒯 = f𝒯 (z) = f𝒯 (z, y).
Proof. On the basis of the determination of λ,

F𝒮 (x, y) = ∑
T∈𝒯

m(T)−1∑
i=1

xiym(T)−iyn(T)
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= xy ∑
T∈𝒯

yxm(T) − xym(T)
x − y yn(T)= 𝜕x,y(f𝒯 ).

This is (2.7.10).

Corollary 2.7.6. Let f𝒯 and F𝒮 be, respectively, determined by (2.7.7) and (2.7.8), then

F𝒮 (x, y) = ∫
y

𝜕x,y(f𝒯 ).
Proof. From (2.7.8) and Theorem 2.7.5, the conclusion is drawn.

2.8 Meson equations

If an equation involves the meson functional, probably companied by some of differ-
ences, differentiations, and/or integrations, it is in short called ameson equation.

In this book, all meson equations are considered to be of the form{{{{{f = a + bx
γA(x; f ) + cxα ∫

y

(yβB(y : f , f |x=y ,O));
f |y=0⇒x=0 = d, (2.8.1)

where α ≥ 0 and β, γ ≥ 1 are integers, a, b, c, d ∈ ℛ, f ,A,B ∈ ℛ{x, y} and O is a set of
operations as regards functionals including probably a meson functional itself.

Observation 2.8.1. If a ̸= d, then equation (2.8.1) is not consistent.
Proof. Because of β, γ ≥ 1, no constant term is in f −a and hence the conclusion of the
observation.

This observation enables us to restrict ourselves to considering equation (2.8.1)
always with the condition: a = d.

Because of f , A = A(x; f ) and B = B(y : f , f |x=y ,O) all in ℛ{x; y}, we are allowed
to write it as a sum of homogeneous functions of a parameter chosen beforehand in
ℛ{x; y}.

Let n = |n| = |(n1, n2, n3, . . .)| and s = inT be, respectively, called the pan-order
and the pan-size where i = (1, 2, 3, . . .) and T is the transpose of a vector, or generally a
matrix.

Observation 2.8.2. For two sizes s1 and s2, s1 + s2 is a size as well.
Proof. Let s1 = in1 and s2 = inT2 . Because of s1 + s2 = i(nT1 + n2)T, s = inT, n = nT1 + nT2 ,
is a size as well.
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38 | 2 Meson functional

This observation enables us to introduce two types of partitioning of the set

𝒜f = {n | a power index of f ∈ ℛ{y}}
for pan-order and for pan-size. Thus, we have

f (x; y) = {∑n≥0 F∗,n for n as the pan-order;∑n≥0 Fs,∗ for s as the pan-size,
(2.8.2)

where F∗,n and Fs,∗ are, respectively, homogeneous in n and s for y.

Observation 2.8.3. For two functions f , g ∈ ℛ{x; y} determined by, respectively, Fi(i ≥
0) and Gj(j ≥ 0) as in (2.8.2), their product is determined by

Cl = l∑
k=0

FkGl−k (2.8.3)

for l ≥ 0.
Proof. For pan-order, it is natural. For pan-size, it is from Observation 2.8.2.

This observation shows that Cl is determined by Fi(i ≤ l) and Gj(j ≤ l). If f = g,
then fg = f 2 and Cl = F[2]l for l ≥ 0. Furthermore, for any integer n ≥ 3, f n is the sum of

F[n]l = l∑
k=0

FkF
[n−1]l−k

over l ≥ 0.
On the basis of equations (2.8.1) and (2.8.2), two infinite equation systems can be

extracted each of which is equivalent to equation (2.8.1) inℛ{x; y}.
Because of the additivity for the pan-order and pan-size, from A(x, f ) ∈ ℛ{x, y},

we are allowed to write

A(x, f ) = {∑s≥0 As,∗, when s is the pan-size;∑m≥0 A∗,n, when n is the pan-order. (2.8.4)

Because of B(y : f , f |x=y ,O) ∈ ℛ{x, y}, let B(y : f , f |x=y ,O) = B0 + yB1 + y2B2 + ⋅ ⋅ ⋅, then
we have ∫

f

(yβB(y : f , f |x=y ,O)) = ∑
i≥0

yβ+iBi

where

Bi = {∑s≥0 Bi[s,∗], when s is the pan-size;∑n≥0 Bi[∗,n], when n is the pa-order. (2.8.5)

Brought to you by | Stockholm University Library
Authenticated

Download Date | 10/30/19 5:37 AM



2.8 Meson equations | 39

Lemma 2.8.4. Equation (2.8.1) for a = d is equivalent to the equation system of infinite
number of undeterminates Fs,∗, s ≥ 0,{{{{{Fs,∗ = a + bx

γAs,∗ + cxα∑
i≥0

yβ+iBi[s−1,∗], for s ≥ 1;
Fs,∗ = a, for s = 0. (2.8.6)

Proof. Because of the equality for two subfunctions with the same pan-size on the
two sides of equation (2.8.1), a solution of equation (2.8.6) determines a solution of
equation (2.8.1)

Similarly, for order, we have the following.

Lemma 2.8.5. Equation (2.8.1) for a = d is equivalent to the equation system of an infi-
nite number of undeterminates F∗,n, n ≥ 0,{{{{{F∗,n = a + bx

γA∗,n + cxα∑
i≥0

yβ+iBi[∗,n−1], for n ≥ 1;
F∗,n = a, for n = 0. (2.8.7)

Proof. Because of the equality for two subfunctions with the same pan-order on the
two sides of equation (2.8.1), a solution of equation (2.8.6) determines a solution of
equation (2.8.1).

A function f ∈ ℛ{y} with all terms xmyi form ≥ 0 and i ≥ 0 havingm ∈ {ij | j ≥ 1}
is said to be a partition function. Let 𝒫 be the set of all partition functions.

Observation 2.8.6. Any partition function is inℛ{x; y}.
Proof. The reason is that polynomials are seen as special cases of series.

Observation 2.8.7. For any partition function f ∈ ℛ{x; y}, f |pan-size=s = ⟨f ⟩s is a homo-
geneous polynomial of pan-size s.

Proof. Because of the limitation ys allowable from s given, ⟨f ⟩s in the partition func-
tion has a finite number of terms and hence is a homogeneous polynomial of pan-
size s.

Observation 2.8.8. If f is a solution of equation (2.8.1), then, for any integer s ≥ 1, the
homogeneous polynomial ⟨f ⟩s for pan-size can be determined by ⟨f ⟩t , t ≤ s − 1.
Proof. On the basis of Observation 2.8.7, by considering α, β ≥ 1, the conclusion is
drawn.

Theorem 2.8.9. Equation (2.8.1) is well-defined onℛ{x; y} for f ∈ 𝒫 if, and only if, a = d.
Proof. Observation 2.8.1 provides the necessity. Only the sufficiency is considered. Be-
cause of the initial condition of equation (2.8.1) and the three observations just men-
tioned above, we are allowed to establish a procedure for reaching the solution of
equation (2.8.1).
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40 | 2 Meson functional

2.9 Notes

2.9.1. Since the series of articles byBlissard (see [3, 4], 1861—1862), the Blissard opera-
tion dealingwith a symbol operator has been established, it looks no further attention
hasbeenpaid to it until Rotadealtwith a functional, called shadow (orumbrella) func-
tional, to extract a summation free explicit form of the Bell number for enumerating
partitions of a set (or an integer), as shown in Rota GC [75] a century ago.

2.9.2. Umbrella calculus is formulated on the basis of shadow functionals by theRota
group with relationships to Hopf algebra and the Möbius algebra. The reader inter-
ested in symbol algebra is referred to [63] (Mullin RC, Rota GC, 1970), [74] (Roman SM,
Rota GC, 1978), [75] (Rota GC, 1964), [76] (Rota GC, Kahaner D, Odlyzko A, 1973), [77]
(Rota GC, Tayler BD, 1994), [78] (Rota GC, Shen J, Tayler BD, 1997) etc.

2.9.3. In the beginning of our research on the enumeration of planar maps with a
vertex partition vector as parameter, the shadow operator used to be misemployed as
a particular type of Blissard operator denoted by φ as in [17–31, 34, 35] (Liu YP, 1985–
1989).

2.9.4. Then, from 1990 on, as shown in [36–39, 41, 43] (Liu YP, 1990—1993), etc., the
operator has been ignored as a more general functional of transforming the space of
functions to an abstract linear space denoted by ∫ instead of the shadow functional.

2.9.5. Because of the distinction of the functional from the shadow, we have had to
adopt in our work the meson functional as shown in [57, 58] (Liu YP, 2012) since 2012,
particularly in [59] (Liu YP, 2015).

2.9.6. This book only concentrates on the property of being well-defined of the me-
son functional equations considered and their solutions extracted via constructions
for realization on computers without much investigation on the inner structures of
the functional itself. These structures hopefully are useful for evaluating the explicit
forms of their solutions in the extended integral domain directly.
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3 Function equations of one variable

3.1 First coefficient variable

Let ℛ{z} be the extension of integral domain ℱ{z} over the integer ring R with z as
an undeterminate. Of course, ℛ{z} is a ring as well. The equation considered in this
section is about finding a function f of z, f ∈ ℛ+{z}, such that

{
azf 2 − bf + c = 0;
f |z=0 = d,

(3.1.1)

where a, b, c, d ∈ R+ is satisfied. This is equation (1) in Introduction.
At first glance, it looks like an ordinary quadratic equation. However, its main

differences from the quadratic equation in elementary algebra are: (1) at least one of
the coefficients in the terms involving the undeterminate contains a variable; (2) the
solution has to be inℛ+{x}.

Whenever noticing that if a = b = c = d = 1, the equation becomes what is
obtained in enumerating the classes of non-isomorphic planted plane trees. We face
the suggestion to call equation (3.1.1) themodel of planted trees.

In what follows, some conditions have to be clarified.

Condition 1. Because of f ∈ ℛ{z},

f = ∑
n≥0

Fnz
n (3.1.2)

where Fn ∈ ℛ, n ≥ 0.

From the initial condition of (3.1.1), whenever

c = bd (3.1.3)

is satisfied, equation (3.1.1) has the possibility of consistency, and hence only

{
azf 2 − bf + bd = 0;
f |z=0 = d,

(3.1.4)

has to be considered.

Condition 2. If d = 0, equation (3.1.4) becomes

(azf − b)f = 0.

Because of the triviality that f = 0 is a degenerate case of a linear equation, it is
only necessary to consider azf − b = 0. However, because of the non-existence of an
inverse of az inℛ{z}, this leads to the conclusion that equation (3.1.4) has no solution.
Therefore, d ̸= 0.

https://doi.org/10.1515/9783110625837-003
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42 | 3 Function equations of one variable

Condition 3. Because of that, b = 0 or a = 0 leads to the triviality of equation (3.1.4),
and both a ̸= 0 and b ̸= 0 have to be pre-assumed.

Theorem 3.1.1. Equation (3.1.4) has, and is the only one to have, a solution in ℛ+{z} if,
and only if, abd ̸= 0.

Proof. Because of the infiniteness in the ringℛ, no zero factor exists inℛ. Thus, b−1 ∈
ℛ. By the cancelation law, equation (3.1.4) has the following equivalent form:

{
f = ab−1zf 2 + d;
f |z=0 = d,

(3.1.5)

inℛ{z}.
From (3.1.2), by equating the coefficients of terms with the same degree on two

sides, equation (3.1.5) becomes, for any integerm ≥ 0,

{{{{{
{{{{{
{

F0 = d (the initial condition), m = 0;
Fm=

a
b
𝜕m−1z f 2 (two coefficients of zm equal)

=
a
b

m−1
∑
i=0

FiFm−1−i, m ≥ 1.
(3.1.6)

Since all Fl, 0 ≤ l ≤ m−1, are known, Fm is determined by some of Fl, 0 ≤ l ≤ m−1.
On account of the principle shown in the proof of Theorem 2.8.9, the conclusion

is drawn.

In the proof of Theorem 3.1.1, it is seen that (3.1.6) has provided the solution of
equation (3.1.5), hence equation (3.1.1), if any, has the form of a sum with all terms
positive.

Moreover, when a = b = d = 1 (c = bd = 1), the Fm become the Catalan numbers

Cm =
(2m)!

m!(m + 1)!
=

1
2m + 1
(
2m + 1
m
), (3.1.7)

or in the form of a recursion

Cm = {
1, whenm = 0;
∑m−1l=0 ClCm−1−l, whenm ≥ 1.

(3.1.8)

Theorem 3.1.2. The solution of equation (3.1.4) is determined by

Fm =
amdm+1(2m)!
bmm!(m + 1)!

(3.1.9)

for m ≥ 0.
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3.1 First coefficient variable | 43

Proof. We proceed by induction onm. Whenm = 0, from the initial condition of equa-
tion (3.1.4), (3.1.9) is checked to be true. When m ≥ 1, on the basis of the assumption
that, for any integer 0 ≤ l ≤ m − 1, (3.1.9) holds. From (3.1.6), we have

Fm =
a
b

m−1
∑
l=0

aldl+1(2l)!
bll!(l + 1)!

am−1−ldm−1−l+1(2(m − 1 − l))!
bm−1−l(m − 1 − l)!(m − 1 − l + 1)!

=
amdm+1

bm
m−1
∑
l=0

(2l)!
l!(l + 1)!

(2(m − 1 − l))!
(m − 1 − l)!(m − 1 − l + 1)!

,

by (3.1.8) and (3.1.7),

=
amdm+1

bm
(2m)!

m!(m + 1)!
.

Thus, (3.1.9) is true form ≥ 1.

This is a summation-free explicision (i. e., an explicit expression) of Fm.
Now, let us go back to the specific case of a = b = c = d = 1 in equation (3.1.1).

Theorem 3.1.3. The equation

{
zf 2 − f + 1 = 0;
f |z=0 = 1,

(3.1.10)

for f ∈ ℛ{z} is well-defined. The solution of equation (3.1.10) is determined by

{{{
{{{
{

F0 = 1 (the initial condition), m = 0;

Fm =
m−1
∑
i=0

FiFm−1−i, m ≥ 1,
(3.1.11)

for Fm = 𝜕mz f , m ≥ 0. For m ≥ 0,

Fm =
(2m)!

m!(m + 1)!
. (3.1.12)

Proof. The first conclusion is seen to be true from Theorem 3.1.1. The second con-
clusion is seen to be true from (3.1.6). The third conclusion is seen to be true from
(3.1.8).

From (3.1.7) and (3.1.7),Fm in (3.1.12) is just theCatalannumberCm. This explicision
is, particularly, summation-free.

In what follows, some examples are given to show certain direct applications of
equation (3.1.1) and other equations which are going to be discussed in this book.

Example 1. Topological classifications of binary trees. A binary tree is defined to be a
tree such that it has exactly one vertex of valency 2 (root-vertex!) with all other vertices
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44 | 3 Function equations of one variable

Figure 3.1.1: Binary trees of n = 1–2.

Figure 3.1.2: Binary trees of n = 3.

of valency either 1 (end vertex!) or 3 (inner vertex!). In some references, a root-vertex is
called a peak and the end vertex is called an articulate vertex.

Two binary trees are said to be topologically equivalent if they are treated as pla-
nar embedding equivalents. In other words, edges at a vertex are certainly considered
to have a rotation (a cyclic order).

In Figure 3.1.1 and Figure 3.1.2, non-equivalent binary treeswith the number n = 0,
1 and 2 of non-end vertices are shown. For example, when n = 0, only one binary three
T0,1 as shown. When n = 1, only one as well, shown as T1,1. When n = 2, two binary
trees are shown as T2,1 and T2,2. When n = 3, five binary trees are as shown by T3,1,
T3,2, . . . ,T3,5.

Because two smaller binary trees are obtained by deleting the root-vertex (or the
peak), the enumerating function tbint = tbint(z) is checked to satisfy equation (3.1.10).
From Theorem 3.1.3,

𝜕mz tbint =
(2m)!

m!(m + 1)!
= Tm.

Therefore, T0 = 1, T1 = 1, T2 = 2 and T3 = 5.

Example 2. Classification of plane rooted trees by size n ≥ 0. A plane tree is a planar
embedding of a tree, because of two sides occurring at one end of an edge. If the pair
at an end and a side for a chosen edge is marked on a plane tree, then the plane tree
is called rooted. The symbol of the mark is said to be the root, denoted by a hollow.
In Figure 3.1.3, Ln,i denote the i (i ≥ 1)th plane rooted tree of size n. Because of the
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3.1 First coefficient variable | 45

Figure 3.1.3: Plane rooted trees of n = 0–4.

asymmetry of a rooted plane tree, each hollow on a plane tree represents a rooted
one. Rooted plane trees produced from a chosen plane tree are distinguished by i.
For integer n ≥ 0 given, the number of rooted isomorphic classes of plane trees is
Λn = ln,1 + ln,2 + ln,3 + ⋅ ⋅ ⋅, where ln,i, i ≥ 1, is the number of hollows on Ln,i. For example,
as shown in Figure 3.1.3, Λ0 = 1, Λ1 = 1, Λ2 = 2, Λ3 = 5 and Λ4 = 14.

The recursion (3.1.8) is satisfied by Λn, Λn = Cn, n ≥ 0.

Example 3. Classification of planar rooted petal bundles by size. In a planar embed-
ding of a graph, each edge has two sides and two ends. A pair {end,side} marked is
called a root. A graph with a singe vertex is said to be a petal bundle. The mark of a
root is represented by ahollowon its figure as shown in Figure 3.1.4.Pn,i is the ith (i ≥ 1)
isomorphic class of a planar petal bundle of size n. A hollow determines a rooted petal
bundle. For given integer n ≥ 0, the number of planar rooted petal bundles of size n is
Pn = ln,1 + ln,2 + ln,3 + ⋅ ⋅ ⋅, where ln,i, i ≥ 1, is the number of hollows on Pn,i. For example,
in Figure 3.1.4, P0 = 1, P1 = 1, P2 = 2, P3 = 5 and P4 = 14. On Pn,i, each pair of two
occurrences of a number represents an edge.

Figure 3.1.4: Planar petal bundles of size n = 0–4.

Similarly, it can be shown that the function tpet determined by 𝜕nz tpet = Pn (n ≥ 0)
satisfies equation (3.1.1) for a = b = c = d = 1. From Theorem 3.1.3, Pn = Cn, n ≥ 0.
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46 | 3 Function equations of one variable

Example 4. Sequence of integrals. Consider the function

λ(z) = ∑
n≥0

zn b
2n+1

π

1

∫
−1

τ2n√1 − τ2dτ.

It is well known that, for any integer n ≥ 0,

b2n+1

π

1

∫
−1

τ2n√1 − τ2dτ = Cn.

From Theorem 3.1.3,

𝜕mz λ(z) = Fm

for m ≥ 0. On account of equation (3.1.10) being well-defined, λ(z) is the solution of
equation (3.1.1) for a = b = c = d = 1 as well.

Example 5. Continued fraction. We address the continued fraction

1

1 −
τ2

1 −
τ2

1 −
τ2

1 −
τ2

1 −
τ2

1 − ⋅ ⋅ ⋅

= ∑
m≥0

Cmτ
2m = ψ(τ);

let τ = √z, then, from Theorem 3.1.3, 𝜕mz ξ = 𝜕
m
z ψ(√z) = Fm. From Theorem 3.1.1 (whose

specific case of a = b = d = 1 is Theorem 3.1.3), ξ (z) is the solution of equation (3.1.1)
in the case of a = b = c = d = 1.

3.2 Last coefficient variable

Letℛ{z} be the extension of the integral domainℛ consisting of all Laurent series over
the integer ring R with z as an undeterminate.

The purpose of this section is to find a function f ∈ ℛ{z} with all coefficients pos-
itive over the non-negative part of the real field ℝ+ such that the equation

{
af 2 − bf + cz = 0;
f |z=0 = d,

(3.2.1)

where a, b, c, d ∈ ℤ+ is satisfied. This is equation (2) in Introduction.
Because of the constant term involving a variable, the equation is said to be of the

type of last coefficient variable.
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3.2 Last coefficient variable | 47

Observation 3.2.1. If d ≠ 0, then equation (3.2.1) is not consistent.

Proof. Assume integer d > 0. Let Fn = 𝜕nZ f , n ≥ 0, then from equation (3.2.1),

aF20 − bF0 = ad
2 − bd = 0 ⇒ ad = b ⇒ F0 =

b
a
.

Because of F0 ∈ ℝ+, a > and b > 0. However, for determining F1, from equation (3.2.1),
we have

2aF0F1 − bF1 + c = 0 ⇒ 2bF1 + c = 0 ⇒ F1 = −
c
2b
< 0,

where the last ⇒ is reasoned from the fact that if c = 0 then the equation becomes
trivial. A contradiction to F1 ∈ ℝ+ occurs.

If a new function h of z is introduced with f = zh, then equation (3.2.1) becomes

{
az2h2 − bzh + cz = 0;
h|z=0 = d.

This is just the type discussed in the last section.
So, another equation is considered in this section as

{
af 2 − bf + cz = 0;
𝜕1zf = d,

(3.2.2)

for f ∈ ℛ{z} with all coefficients in ℝ+.

Observation 3.2.2. In equation (3.2.2), c = bd.

Proof. Because of 𝜕0z f = 0, from equation (3.2.2), we have

−b𝜕1zf + c = 0 ⇒ d = c
b
⇒ b > 0,

and hence c = bd.

On account of a = 0 leading to equation (3.2.2) being trivial, in what follows, only

{
af 2 − bf + bdz = 0;
𝜕1zf = d,

(3.2.3)

where abcd ̸= 0, a, b, c, d ∈ ℤ+ and f ∈ℛ{z} is considered.

Theorem 3.2.3. Equation (3.2.3) has, and is the only one to have, a solution in f ∈ℛ{z}.
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48 | 3 Function equations of one variable

Proof. Let f ∈ℛ{z} be determined by Fm = 𝜕mz f ∈ ℝ+,m ≥ 0.
It is well known that F0 = 0 and F1 = d. For integerm ≥ 2, from equation (3.2.3),

bFm = a
m
∑
i=0

FiFm−i, by F0 = 0,

= a
m−1
∑
i=1

FiFm−i.

Because of b > 0,

Fm =
a
b

m−1
∑
i=1

FiFm−i. (3.2.4)

By the induction principle on n, on the basis of all Fi (0 ≤ i ≤ m − 1) being known,
from (3.2.5), Fm is then determined.

On account ofm being arbitrarily chosen, f is determined as the solution.

On the basis of the proof of Theorem 3.2.1, a procedure is easily found to extract
the solution:

Fm =
{{{
{{{
{

0, whenm = 0;
d, whenm = 1;
a
b ∑

m−1
i=1 FiFm−i, whenm ≥ 2.

(3.2.5)

By employing (3.2.5), one might like to see what happens for m smaller. Then we
have

F0 = 0, known from what we mentioned above;
F1 = d, from the initial condition.

Whenm = 2, from (3.2.5),

F2 =
a
b

1
∑
i=1

FiF2−i =
a
b
F21 =

a
b
d2,

F3 =
a
b

2
∑
i=1

FiF3−i =
a
b
(2F1F2) = 2(

a2d3

b2
),

F4 =
a
b

3
∑
i=1

FiF4−i =
a
b
(2F1F3 + F

2
2)

=
a
b
(4d(a

2d3

b2
) + (

a2d4

b2
))

= 5(a
3d4

b3
),
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F5 =
a
b

4
∑
i=1

FiF5−i = 2
a
b
(F1F4 + F2F3)

= 2(a
b
)(5(a

b
)
3
d5 + 2(a

b
)
3
)

= 14(a
b
)
4
d5.

Theorem 3.2.4. The solution of equation (3.2.3) determined by Fm, m ≥ 0, has a
summation-free explicision in the form of

Fm =
{{{
{{{
{

0, when m = 0;
d, when m = 1;
( ab )

m−1dmCm−1,
(3.2.6)

where Cm−1 is the Catalan number shown in (3.1.7).

Proof. Because of F0 = 0 and F1 = d as is known from the initial condition of equation
(3.2.3), F1 is checked from C0 = 1.

For all 1 ≤ l ≤ m − 1,

Fl = (
a
b
)
l−1
dlCl−1

are assumed to be true. By the principle of induction, we determine Fm.
On the basis of (3.2.5) and the assumption, we see that

Fm =
a
b

m−1
∑
i=1
(
a
b
)
i−1
diCi−1(

a
b
)
m−i−1

dm−iCm−i−1

= (
a
b
)
m−1

dm
m−1
∑
i=1

Ci−1Cm−i−1, by (3.1.8),

= (
a
b
)
m−1

dmCm−1.

This is the conclusion.

This theorem enables us to find the condition for the solution of equation (3.2.3)
with all coefficients integers.

Corollary 3.2.5. The solution f of equation (3.2.3) holds for all 𝜕mz = Fm ∈ ℤ+ if, and only
if, b/a ∈ ℤ+.

Proof. A direct result of Theorem 3.2.4.

Now, let us to go back to the case of a = b = c = d = 1 for equation (3.2.3), i. e.,

{
f 2 − f + z = 0;
𝜕1zf = 1.

(3.2.7)
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50 | 3 Function equations of one variable

Theorem 3.2.6. Equation (3.2.7) is well-defined onℛ{z}.

Proof. We have the case of a = b = c = d = 1 of Theorem 3.2.3.

From (3.2.5) of a = b = c = d = 1, a procedure is easily found to extract the solution
of equation (3.2.7) as

Fm =
{{{
{{{
{

0, whenm = 0;
1, whenm = 1;
∑m−1i=1 FiFm−i, whenm ≥ 2.

(3.2.8)

On the basis of (3.2.8), a summation-free explicision is easily found as well.

Theorem 3.2.7. The solution f of equation (3.2.7) is in the summation-free form of

𝜕mx f =
(2m − 2)!
(m − 1)!m!

(3.2.9)

for integer m ≥ 1.

Proof. In the case of a = b = c = d = 1 of Theorem 3.2.4, by (3.1.8), the conclusion is
then drawn.

For Theorems 3.2.6 and 3.2.6, some applications are shown via examples.

Example 1. Classification of planted trees by size. A planted tree is a plane rooted tree
with rooted vertex of valency 1. The enumerating function of planted trees by size as
the parameter is

tplant = zttree = ∑
n≥1

Cn−1z
n (3.2.10)

where ttree is the enumerating function of plane rooted trees by size (see Liu YP [46],
Tutte WT [85], 1964).

Example 2. Classification of lei petal bundles. Lei petal bundles are plane petal bun-
dles with root face of valency 1. The enufunction (i. e., enumerating function!) of lei
petal bundles by size is denoted by

tlei = ztpet

where tpet is the enufunction of plane rooted petal bundles by size.
From Example 2 in 3.1 and Example 1 in this section,

tlei = tplant = ∑
n≥1

Cn−1z
n.
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3.2 Last coefficient variable | 51

Figure 3.2.1: Non-separable outer-planar maps of size 1–4.

Example 3. Non-separable outer-planar maps. In Liu YP [33], it was shown that the
enufunction of non-separable outer-planar rooted maps by size fnsp = fnsp(z) is a so-
lution of equation (3.2.7).

Figures 3.2.1 and 3.2.2 show all suchmaps of size from 1 through 5 where Sn,i is the
ith equivalent class of size n.
Hollows near the edges distinguish the non-equivalent classes, or rooted manners.
Thus,

1(S1,1) for size 1,
1(S2,1) for size 2,

1(S3,1) + 1(S3,2) = 2 for size 3,
1(S4,1) + 3(S3,2) + 1(S4,3) = 5 for size 4,

and

1(S5,1) + 3(S5,2) + 3(S5,3) + 4(S5,4) + 2(S5,5) + 1(S5,6) = 14 for size 5.

To be compared with (3.2.9) we have

𝜕1zfnsop = 1 = 𝜕
1
zf ; 𝜕

2
z fnsop = 1 = 𝜕

2
z f ;

𝜕3z fnsop = 2 = 𝜕
3
z f ; 𝜕

4
z fnsop = 5 = 𝜕

4
z f ;

𝜕5z fnsop = 14 = 𝜕
5
z f .

Figure 3.2.2: Non-separable outer-planar maps of size 5.
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52 | 3 Function equations of one variable

3.3 At least two coefficients variable

If an equation of function has at least two coefficients variable, then it is called a levity
variform.

In this section, only quadratic equations with all three coefficients variable are
considered and are called total variform.

This equation is of the form

{
a(1 + z)f 2 − b(1 + z)f + cz = 0;
f |z=0 = d,

(3.3.1)

where a, b, c, d ∈ ℛ+, abc > 0. This is equation (3) in Introduction.
Let Fi = 𝜕izf and F

[2]
i = 𝜕

i
zf

2, i ≥ 0, then

F[2]i =
i
∑
j=0

FjFi−j. (3.3.2)

On the basis of equation (3.3.1), because of

bf = a(1 + z)f 2 − bzf + cz, (3.3.3)

the equation system

{{{
{{{
{

bF0 = aF
[2]
0 , when n = 0;

bF1 = c + aF
[2]
1 + aF

[2]
0 − bF0, n = 1;

b(Fn) = a(F[2]n + F
[2]
n−1) + bFn−1, n ≥ 2,

(3.3.4)

is easily found for F0 = d.
Let F̂[2]n−1 = F

[2]
n − 2F0Fn, then from (3.3.2), we have

F̂[2]n−1 =
n−1
∑
i=1

FiFn−i. (3.3.5)

Lemma 3.3.1. Equation (3.3.1) is equivalent to the following equation system:

{{{
{{{
{

bF0 = aF
[2]
0 , when n = 0;

(b − 2aF0)F1 = c, when n = 1;
(b − 2aF0)Fn = a(F̂

[2]
n−1 + F

[2]
n−1) − bFn−1, when n ≥ 2,

(3.3.6)

for F0 = d and f ∈ ℛ{z}.

Proof. By a series of transformations which are equivalent inℛ{z}, equation (3.3.6) is
obtained from equation (3.3.1).
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3.3 At least two coefficients variable | 53

On the basis of equation (3.3.6), a number of conditions on a, b, c and d for the
consistence of equation (3.3.5) and hence equation (3.3.1) are found.

Observation 3.3.2. For abc > 0 with all of a, b, c ∈ ℤ+, the solution of equation (3.3.6)
satisfies d(b − ad) = 0.

Proof. From the first equation of equation (3.3.6), the initial condition leads tod = ad2.
This is the conclusion.

This observation enables us to discuss equation (3.3.5) in two cases: (i) d = 0 and
(ii) d = b/a.

Let F[2]n = 2F0Fn + ⋅ ⋅ ⋅ + 2Fi−1Fn−i+1 + F̂
[2]
n−i where

F̂[2]n−i =
n−i
∑
j=i

FiFn−i (3.3.7)

for 1 ≤ i ≤ ⌊n/2⌋ and n ≥ 1; then equation (3.3.6) becomes

{{{{{{{
{{{{{{{
{

aF[2]0 − bF0 = 0, when n = 0;

F1 =
c

b − 2aF0
, when n = 1;

Fn =
a(F̂[2]n−1 + F

[2]
n−1) − bFn−1

b − 2aF0
, when n ≥ 2.

(3.3.8)

The condition abc > 0 in equation (3.3.1) is for avoiding unnecessary cumbersome
variants.

First, for d = 0, equation (3.3.8) becomes

{{{{{
{{{{{
{

F0 = 0, when n = 0;
F1 =

c
b
, when n = 1;

Fn =
a(F̂[2]n−1 + F

[2]
n−1) − bFn−1
b

, when n ≥ 2,

(3.3.9)

for n ≥ 1.

Theorem 3.3.3. Equation (3.3.9) is well-defined onℛ{z} for abc > 0, a, b, c ∈ ℤ+.

Proof. It is well-known that we have F0 and F1 for n = 0 and 1. For n ≥ 2, according to
theprinciple of induction onn, the assumption of allFl for 0 ≤ l ≤ m−1 known ismade.
From the assumption, all of F̂[2]n−1, F

[2]
n−1 and Fn−1 are known. Therefore, F4 is clear from

the third equation of equation (3.3.9). The uniqueness of the solution is determined
only by the initial condition.

This theorem enables us to induce a number of corollaries.

Corollary 3.3.4. The solution of equation (3.3.9) holds for all coefficients non-negative
integers if, and only if, b is a common factor of a and c.
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54 | 3 Function equations of one variable

Proof. The reason is the fact that, for positive integers a, b and c, both c/b and a/b
are integers if, and only if, b is a common factor of a and c on the basis of (3.3.8) and
(3.3.9).

When a = b = c = 1, equation (3.3.9) becomes

{{{
{{{
{

F0 = 0, when n = 0;
F1 = 1, when n = 1;
Fn = (F̂

[2]
n−2 + F

[2]
n−1) + Fn−1, when n ≥ 2,

(3.3.10)

for n ≥ 0.

Corollary 3.3.5. The solution of equation (3.3.10) holds for all coefficients non-negative
integers.

Proof. This is a direct result of Theorem 3.3.3 and Corollary 3.3.4 in the case of a = b =
c = 1.

Then, for d = b/a, equation (3.3.8) becomes

{{{{{
{{{{{
{

F0 =
b
a
, when n = 0;

F1 = −
c
b
, when n = 1;

Fn = Fn−1 −
a
b
(F̂[2]n−1 + F

[2]
n−1), when n ≥ 2,

(3.3.11)

for n ≥ 0.

Theorem 3.3.6. Equation (3.3.11) is well-defined onℛ{z} for abc > 0, a, b, c ∈ ℤ+.

Proof. Similar to the proof of Theorem 3.3.3.

Let f and f  be the functions inℛ{z} determined by, respectively, Fn in (3.3.9) and
Fn in (3.3.11) for n ≥ 0.

Theorem 3.3.7. For integers n ≥ 0, F0 = F0 − b/a and Fn = −F

n for n ≥ 1.

Proof. We consider equations (3.3.9) and (3.3.11), which are known to be true for n = 0
and 1. We proceed by induction on n ≥ 1. Assume that, for any positive integer l ≤ l ≤
n − 1, Fl + Fl = 0, to see what happens for l = n. Because of

Fn + F

n =

a
b
(F̂[2]n−1 + F

[2]
n−1) − Fn−1 + F


n−1

−
a
b
( ̂F
[2]
n−1 + F

[2]
n−1)

=
a
b
(F̂[2]n−1 − ̂F

[2]
n−1) + 2F


n−1

+
a
b
(F[2]n−1 − F

[2]
n−1)
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3.3 At least two coefficients variable | 55

= 2Fn−1 +
a
b
(−2F0F


n−1)

= 2Fn−1 − 2F

n−1

= 0,

the conclusion is obtained.

This theorem tells us that f  = 1 − f .
When a = b = c = 1, equation (3.3.11) becomes

{{{
{{{
{

F0 = 1, when n = 0;
F1 = −1, when n = 1;
Fn = Fn−1 − (F̂

[2]
n−1 + F

[2]
n−1), when n ≥ 2,

(3.3.12)

for n ≥ 0.

Theorem 3.3.8. Equation (3.3.12) is well-defined onℛ{z} for abc > 0, a, b, c ∈ ℤ+.

Proof. This is a result of Theorem 3.3.6 in the case of a = b = c = 1.

Corollary 3.3.9. The solution of equation (3.3.12) holds for all coefficients as non-
positive integers except only for F0 = 1.

Proof. This is a result of Theorem 3.3.7 and Corollary 3.3.5.

Let h and h be the functions determined, respectively, by Hn = Fn in (3.3.10) and
Hn = Fn in (3.3.12).

Corollary 3.3.10. h = 1 − h.

Proof. This is the special case of a = b = c = 1 in Theorem 3.3.7.

On the basis of Corollary 3.3.5, some examples are shown to have applications in
combinatorics.

Example 1. Classification of non-separable outer-planar simple rooted maps by size.
Let fnsops ∈ ℛ{z} be the enufunction for enumerating non-isomorphic classes of non-
separable outer-planar simple rootedmapswith size n as parameter. That implies Fn =
𝜕nz fnsopt, n ≥ 0, in (3.3.10).

By employing (3.3.10), one can see that

F1 = 1, F2 = 0, F3 = F4 = 1, F5 = 3, F6 = 6 and F7 = 15.

See Figure 3.3.2 and Figure 3.3.3, where we refer to

F1 by 1P1,1, F3 by 1P3,1,
F4 by 1P4,1, F5 by 1P5,1 + 2P5,2,

F6 by 5P6,1 + 1P6,2 and
F7 by 1P7,1 + 6P7,2 + 3P7,3 + 4P7,6.
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56 | 3 Function equations of one variable

Example 2. Classification of non-isomorphic non-separable outer-planar rooted tri-
angulations by the valency m of root-face. Because it is well-known that a non-
separable outer-planar simple map of size n is a non-separable outer-planar trian-
gulation of root-face valencym if, and only if, n = 2m − 3, we have

𝜕mz fnsotr = 𝜕
2m−3
z fnsops|root-face valencym

where fnsotr ∈ ℛ{z} is the enufunction of non-isomorphic non-separable outer-planar
rooted triangulations by the valencym of the root-face.

Only n = 3, 5 and 7 are available for, respectively,m = 3, 4 and 5. Then 𝜕3z fnotr = 1,
𝜕4z fnotr = 2 and 𝜕5z fnotr = 4 are represented by, respectively, 1P3,1, 2P5,2 and 4P7,4 in
Figure 3.3.2 and Figure 3.3.3.

Example 3. Isomorphic classification of planted trinary trees. A planted trinary tree
is a trinary tree of end vertex rooted type. A trinary tree is a tree with all vertices of
valency 3 except for ends (of valency 1).

According to the out-duality, a map is a planted trinary tree if, and only if, its out-
dual is a non-separable outer-planar triangulation. The number of end vertices of a
planted trinary tree is the valency of the root-face of the outer-planar triangulation.

Because the number of end vertices in a planted trinary tree is 2 less than the
number of its 3-valent vertices, a trinary tree of order n ≥ 4 has m = (n + 2)/2 end
vertices.

Let fptri−t ∈ ℛ{z} be the enufunction of planted trinary trees by the number s of
3-valent vertices as parameter, then

𝜕szfptri-t = 𝜕
2s−3
z fnsops|root-face valency s

where s ≥ 1.
In Figure 3.3.1, one can see the number of isomorphic classes of planted trinary

trees for s = 1, 2 and 3 as (1T1,1) + (2T2,1) + (3T3,1).

Figure 3.3.1: Planted trinary trees with 1–3 trivalent vertices.
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3.4 Model of triangulations | 57

Figure 3.3.2: Non-separable outer-planar simple rooted maps of size 0–6.

Figure 3.3.3: Non-separable outer-planar simple rooted maps of size 7.

Example 4. Isomorphic classification of non-separable outer-planar simple rooted
maps including the vertex map. By the substitution f = g − 1 in equation (3.3.1) with
a = b = c = 1 and d = 0, one can see the equation about g is

{
(1 + z)g2 − 3(1 + z)g + 3z + 2 = 0;
g|z=0 = 1.

(3.3.13)

The solution of equation (3.3.13) is g = f + 1 where f is determined by Fm = 𝜕mz f ,
m ≥ 0, which are shown in (3.3.10).

3.4 Model of triangulations

Consider the equation (Liu YP [51], p. 70)

{
{
{

f 3 + 1 − z
z2

f 2 + z − 2
z

f + 1 = 0;

f |z=0 = 0,
(3.4.1)

for f ∈ ℛ{z} with all coefficients in ℤ+. This is equation (4) in Introduction I when
a = b = c = 1 and d = 0 this being meaningful in the classification of outer-planar
triangulations.
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58 | 3 Function equations of one variable

For convenience, by the cancelation law, equation (3.4.1) is transformed into

{
2zf = z2f 3 + (1 − z)f 2 + z2f + z2;
f |z=0 = 0.

(3.4.2)

Because of f ∈ ℛ{z}, f is determined by Fm = 𝜕mz f for n ≥ 0, and hence f
2, f 3 by,

respectively,

{{{{
{{{{
{

F[2]m =
m
∑
i=0

FiFm−i,

F[3]M =
m
∑
i=0

FiF
[2]
m−i,

(3.4.3)

for n ≥ 0.
By the initial condition

{
F[2]0 = F

[2]
1 = 0;

F[3]0 = F
[3]
1 = F

[3]
2 = 0.

(3.4.4)

Then (3.4.3) becomes

{{{{{
{{{{{
{

F[2]m =
m−1
∑
i=1

FiFm−i, form ≥ 2;

F[3]m =
m−2
∑
i=1

FiF
[2]
m−i, form ≥ 3,

(3.4.5)

for n ≥ 0.
On the basis of equation (3.4.2), by transforming inℛ{z}, it is seen that the equa-

tion system

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{{{{{{{{{{{{{{
{

z0 : F[2]0 = 0
(for constant term);

z1 : 2F0 = F
[2]
1 − F

[2]
0

(for first term);
z2 : 2F1 = F

[3]
0 + F

[2]
2 − F

[2]
1 + F0 + 1

(for second term);
z3 : 2F2 = F

[3]
1 + F

[2]
3 − F

[2]
2 + F1

(for third term);
z4 : 2F3 = F

[3]
2 + F

[2]
4 − F

[2]
3 + F2

(for third term);
zn+1 : 2Fn = F

[3]
n−1 + F

[2]
n+1 − F

[2]
n + Fn−1

(for n + 1-st term, n ≥ 4),

(3.4.6)
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3.4 Model of triangulations | 59

is equivalent to equation (3.4.2) and hence to equation (3.4.1)
For z0, F[2]0 = 0 ⇒ F20 = 0 ⇒

F0 = 0. (3.4.7)

This is the initial condition.
For z1, because of F0 = 0 and hence F

[2]
1 = 0, 2F0 = F

[2]
1 − F

[2]
0 is an identity.

For z2, from F0 = F
[2]
1 = F

[3]
0 = 0, 2F1 = F

[3]
0 + F

[2]
2 −F

[2]
1 + F0 + 1 ⇒ 2F1 = F

[2]
2 + 1 ⇒

(F1 − 1)
2 = 1 ⇒ F1 = 1. (3.4.8)

For z3, from F[3]1 = 3F
2
0F1 = 0, F

[2]
3 = 2F1F2 = 2F2 and F[2]2 = F

2
1 = 1, 2F2 = F

[3]
1 +

F[2]3 − F
[2]
2 + F1 = 2F2 ⇒ an identity.

For z4, from F[3]2 = 0, F
[2]
4 = 2F3 + F

2
2 , F
[2]
3 = 2F2,

2F3 = F
[3]
2 + F

[2]
4 − F

[2]
3 + F2 ⇒ 2F3 = 2F3 + F

2
2 − 2F2 + F2

⇒ F22 − F2 = F2(F2 − 1) = 0.

Because of F2 = 1 not being available, for Fn ∈ ℤ+ for all n ≥ 2, this enables us to have

F2 = 0. (3.4.9)

Observation 3.4.1. If F2 = 1, then F3 ̸∈ ℤ+.

Proof. From F0 = 0, F1 = 1 and F2 = 1, we have the equation

2F4 = F
[3]
3 + F

[2]
5 − F

[2]
4 + F3 ⇒

2F4 = 1 + (2F4 + 2F3) − (2F3 + 1) + F3 ⇒
0 = 1 + 2F3 − 2F3 − 1 ⇒ F3 = 0.

We proceed addressing F4. By F1 = F2 = 1 and F3 = 0,

2F5 = F
[3]
4 + F

[2]
6 − F

[2]
5 + F4 ⇒

2F5 = 3F
2
1F2 + (2F1F5 + 2F2F4 + F

2
3) − (2F1F4 + 2F2F3) + F4 ⇒

2F5 = 3 + (2F5 + 2F4) − (2F4) + F4
⇒ F4 + 3 = 0.

However, F4 = −3 ̸∈ ℤ+.

This enables us to choose F2 = 0 instead of F2 = 1.
For z5, from F[3]3 = F

3
1 = 1,

F[2]5 = 2F1F4 + 2F2F3 = 2F4,

F[2]4 = 2F1F3 + F
2
2 = 2F3,
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60 | 3 Function equations of one variable

2F4 = F
[3]
3 + F

[2]
5 − F

[2]
4 + F3

⇒ 2F4 = 1 + 2F4 − 2F3 + F3
⇒ 0 = 1 − F3 ⇒

F3 = 1. (3.4.10)

Now we consider zn+2(n ≥ 4). Because of F0 = 0, F1 = 1 and F2 = 0, we have

F[3]n = F0F
[2]
n +

n−1
∑
i=1

FiF
[2]
n−i

= ∑
1≤i,j,k≤n−1

FiFjFk ,

F[2]n+1 = 2F0Fn+1 + 2F1Fn + 2F2Fn−1
n−2
∑
i=3

FiFn+1−i

= 2Fn +
n−1
∑
i=2

FiFn+1−i,

and, by F2 = 0,

F[2]n+2 = 2F1Fn+1 + 2F2Fn +
n−1
∑
i=3

FiFn+2−i

= 2Fn+1 +
n−1
∑
i=3

FiFn+2−i.

Thus, 2Fn+1 = F[3]n + F
[2]
n+2 − F

[2]
n+1 + Fn ⇒

0 = ∑
1≤i,j,k≤n−1
i+j+k=n

FiFjFk +
n−1
∑
i=3

FiFn+2−i − Fn −
n−1
∑
i=2

FiFn+1−i ⇒

Fn = Σ
(1)
n−1 + Σ

(2)
n−1 (3.4.11)

where, by F2 = 0,

{{{{{
{{{{{
{

Σ(1)n−1 = ∑
1≤i,j,k≤n−1
i+j+k=n

FiFjFk ;

Σ(2)n−1 =
n−1
∑
i=3

FiFn+2−i −
n−2
∑
i=3

FiFn+1−i.
(3.4.12)

Observation 3.4.2. For any integer n ≥ 3, Σ(2)n−1 ≥ 0.
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Proof. Because of Fn+2−i − Fn+1−i ≥ 0,

n−1
∑
i=3

FiFn+2−i −
n−2
∑
i=3

FiFn+1−i

= Fn−1F3 +
n−2
∑
i=3

FiFn+2−i −
n−2
∑
i=3

FiFn+1−i

= Fn−1 +
n−2
∑
i=3

Fi(Fn+2−i − Fn+1−i)

≥ 0.

From (3.4.12), this is the conclusion.

In the proof of Observation 3.4.2, all Fn ∈ ℤ+ and Fn ≥ Fn−1 for n ≥ 3 are known to
be true by induction on n from F0, F1, F2 ∈ ℤ+.

Observation 3.4.3. For any integer n ≥ 3, Fn ∈ ℤ+ is determined only by Fl, 0 ≤ l ≤ n−1,
on the basis of F0 = 0 and F2 = 0.

Proof. On the basis of Observation 3.4.2, having checked Σ(1)n−1 and Σ
(2)
n−1, the conclusion

is drawn.

Theorem 3.4.4. Equation (3.4.6), and hence equation (3.4.1), is well-defined for all
Fn(n ≥ 0) ∈ ℤ+ if, and only if, F2 = 0.

Proof. This results from the procedure for evaluating a solution of equation (3.4.6)
mentioned above.

This theorem enables us to complete the procedure for getting the solution only
from the initial conditions F0 = 0 and F2 = 0.

Theorem 3.4.5. The solution of equation (3.4.6), and hence equation (3.4.1), is in the
form of a sum with all terms positive,

Fn =

{{{{{{
{{{{{{
{

0, when n = 0;
1, when n = 1;
0, when n = 2;
Σ(1)n−1 + Σ

(2)
n−1, when n ≥ 3,

(3.4.13)

where Σ(1)n−1 and Σ
(2)
n−1 are seen in (3.4.12).

Proof. On the basis of Observation 3.4.2 and Theorem 3.4.4, the conclusion is drawn.

Although (3.4.13) is particularly suitable for us to go further on the other two
stages: efficientization and intelligentization, an explicision in the form of a sumwith
all terms positive is also found.
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62 | 3 Function equations of one variable

Theorem 3.4.6. In (3.4.13), for integer n ≥ 0,

Fn =

{{{{{{
{{{{{{
{

0, when n = 0 and n = 2;
1, when n = 1;

∑
⌈ n+12 ⌉≤l≤n−1

(
n − 1
l
)(

3l − n − 3
l − 1
), when n ≥ 3.

(3.4.14)

Proof. Because

Σ(1)n−1 + Σ
(2)
n−1 = ∑
⌈ n+12 ⌉≤l≤n−1

(
n − 1
l
)(

3l − n − 3
l − 1
)

for n ≥ 3 in (3.4.13), from Theorem 3.4.5, the conclusion is drawn.

Some applications are shown of usage of the equation discussed in this section.

Example 1. Classification of outer-planar rooted triangulations by the valency of
rooted face. In Liu YP [51] (Section 3.1), one can see that the solution of equation
(3.4.1) is f = zgot where got is the enufunction of outer-planar rooted triangulations
with the valency of the rooted face as parameter, i. e., 𝜕nz got = 𝜕

n+1
z f for n ≥ 0.

In Figures 3.4.1–3.4.3, one can see the rooted non-isomorphic classes of outer-
planar triangulations with the root-face valency at most 7. As a result of (3.4.14) in

Figure 3.4.1: Classification of outer-planar triangulations of root-face valency 0–5.

Figure 3.4.2: Classification of outer-planar triangulations of root-face valency 6 (I).
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3.5 Model of quadrangulations | 63

Figure 3.4.3: Classification of outer-planar triangulations of root-face valency 6 (II).

Theorem 3.4.6

𝜕0z got = 𝜕
1
zf = 1, 𝜕

1
zgot = 𝜕

2
z f = 0, 𝜕

2
zgot = 𝜕

3
z f = 1,

𝜕3zgot = 𝜕
4
z f = 1, 𝜕

4
z got = 𝜕

5
z f = 4, 𝜕

5
zgot = 𝜕

6
z f = 10,

𝜕6z got = 𝜕
7
z f = 34.

Example 2. From Figure 3.4.1 through Figure 3.4.3, one might also see the rooted non-
isomorphic non-separable outer-planar triangulations contained in outer-planar tri-
angulations, and hence those with given value of the root-face valency. This task will
be completed in the next chapter as corollaries.

Here, the rooted non-isomorphic classes of non-separable outer-planar triangula-
tions with a number of inner faces of at most 4 are provided as

(1T3,1) + (2T4,2) + (5T5,1) + (6T6,6 + 6T6,7 + 2T6,8).

On account of the relation between the root-face valency and the number of inner
faces in a non-separable outer-planar triangulation, where T3,1; T4,2; T5,1 and T6,i, 6 ≤
i ≤ 8, we have those with the number of inner faces, respectively, 1; 2; 3 and 4.

As a matter of fact, if the vertex map is arranged as a non-separable outer-planar
triangulation without inner face in degeneracy, then the enufunction fnot = fnot(z) of
non-separable outer-planar rooted triangulations with the number of inner faces as
parameter is a solution of the equation

{
zf 2 − f + 1 = 0;
fz=0 = 1.

(3.4.15)

This again goes back to tbint in Section 3.1.

3.5 Model of quadrangulations

Consider the equation

{
zf 3 − 3zf 2 + (3z − 1)f + 1 = 0;
f |z=0 = 1,

(3.5.1)
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64 | 3 Function equations of one variable

where f ∈ ℛ{z} with all coefficients in ℤ+. This is equation (5) in Introduction when
a = b = c = d = 1 because of it is meaningful in the classification of non-separable
outer-planar quadrangulations.

For any integer n ≥ 0, let Fn = 𝜕nz f be the coefficient of the termwith zn in f ∈ ℛ{z},
then the coefficients F[2]n and F[3]n of zn in, respectively, f 2 and f 3 have the form

{{{{{
{{{{{
{

F[2]n =
n
∑
i=0

FiFn−i;

F[3]n = ∑
i+j+k=n
0≤i,j,k≤n

FiFjFk =
n
∑
i=0

FiF
[2]
n−i,

(3.5.2)

for n ≥ 0.

Theorem 3.5.1. Equation (3.5.1) is equivalent to the equation system as

{
−F0 + 1 = 0; when n = 0;
F[3]n−1 − 3F

[2]
n−1 + 3Fn−1 − Fn = 0, when n ≥ 1,

(3.5.3)

for Fn ∈ ℛ{z}, n ≥ 0.

Proof. By employing the cancelation law onℛ{z}, for z0, equation (3.5.1) leads to the
equation

−F0 + 1 = 0.

This is the first equation of equation (3.5.3) for the initial condition.
Then, for any integern ≥ 2, the coefficient of the term involving zn, equation (3.5.1),

leads to the equation

F[3]n−1 − 3F
[2]
n−1 + 3Fn−1 − Fn = 0.

This is the other equation in the system equation (3.5.3) for all n ≥ 1. Since all trans-
formations used above are equivalences onℛ{z}, the conclusion is drawn.

On thebasis of this theorem,weare allowed to concentrate on the equation system
(3.5.3) instead of equation (3.5.1).

Let (F0, F1, F2, . . . , Fn, . . .) be a solution of equation (3.5.3). Because F0 = 1, which is
the initial condition determined by the first equation of equation (3.5.3), Fn for n ≥ 1
can be extracted by the following procedure.

From F0 = 1, it is seen that

F[2]0 = 1 and F[3]0 = 1. (3.5.4)

When n = 1, F[3]0 − 3F
[2]
0 + 3F0 − F1 = 0 ⇒ 1 − F1 = 0 ⇒

F1 = 1. (3.5.5)

Then F[2]1 = 2 and F
[3]
1 = 3.
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3.5 Model of quadrangulations | 65

When n = 2, F[3]1 − 3F
[2]
1 + 3F1 − F2 = 0 ⇒ 0 − F2 = 0 ⇒

F2 = 0. (3.5.6)

Then F[2]2 = 1 and F
[3]
2 = 3.

When n = 3, F[3]2 − 3F
[2]
2 + 3F2 − F3 = 0 ⇒ 0 − F3 = 0 ⇒

F3 = 0. (3.5.7)

Then F[2]3 = 0 and F
[3]
3 = 3.

When n = 4, F[3]3 − 3F
[2]
3 + 3F3 − F4 = 0 ⇒ 3 − F4 = 0 ⇒

F4 = 3. (3.5.8)

Then F[2]3 = 0 and F
[3]
3 = 3.

When n ≥ 4, F[3]n−1 − 3F
[2]
n−1 + 3Fn−1 − Fn = 0⇒

Fn = F
[3]
n−1 + 3Fn−1 − 3F

[2]
n−1. (3.5.9)

Observation 3.5.2. If n = 2(mod 3) or 0(mod 3), then Fn = 0 for n ≥ 1.

Proof. In away to sketch the proof by themeaning of Fn in non-separable outer-planar
quadrangulations without inner-face number n = 0(mod 3) or 2(mod 3) shown in Ex-
ample 1 afterward in this section.

Observation 3.5.3. For any integer n ≥ 0, F[3]n + 3Fn − 3F
[2]
n ≥ 0.

Proof. We proceed by induction on n. The cases for n ≤ 3 are known. For n ≥ 4, sup-
pose F[3]n−1 + 3Fn−1 − 3F

[2]
n−1 ≥ 0 is known, we prove F

[3]
n + 3Fn − 3F

[2]
n ≥ 0. According to

Observation 3.5.2, we are allowed to consider n = 1(mod 3). From F0 = F
[2]
0 = F

[3]
0 = 1,

F[3]n = F
[3]
n−1 + 3Fn and F[2]n = F

[2]
n−1 + 2Fn.

Because of

F[3]n + 3Fn − 3F
[2]
n = F

[3]
n−1 − 3F

[2]
n−1, by Observation, 3.5.2,

= F[3]n−1 + 3Fn−1 − 3F
[2]
n−1, by induction hypothesis,

≥ 0.

This is the conclusion.

The two observations above enable us to establish our theorems.

Theorem 3.5.4. Equation (3.5.1) is well-defined inℛ{z}.

Proof. Our proof is on the basis of Theorem 3.5.1, Observation 3.5.2 and Observa-
tion 3.5.3. On account of the procedure shown in (3.5.4)–(3.5.8), Fn is only determined
by Fl,0 ≤ l ≤ n − 1, for any integer n ≥ 1. The conclusion is drawn.
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66 | 3 Function equations of one variable

This theoremenablesus only todiscuss equation (3.5.3) for equation (3.5.1) inwhat
follows.

Theorem 3.5.5. The solution of equation (3.5.1) is determined by Fn = 𝜕nz f , n ≥ 0, in the
form

Fn =
{{{
{{{
{

1, when n = 0;
0, when n = 0(mod 3) or 1(mod 3);
Σn−1 otherwise,

(3.5.10)

where

Σn−1 = F
[3]
n + 3Fn − 3F

[2]
n

for n = 1(mod 3), n ≥ 1.

Proof. For n = 0, the case follows from the initial condition. For n = 0(mod 3) or
1(mod3), the case follows fromObservation 3.5.2. The last case is done from (3.5.9).

This theorem suggests us to introduce a substitute as

f = 1 + zg (3.5.11)

inℛ{z} to transform equation (3.5.1) into

{
z3g3 − 1 = g;
g|z=0 = 1.

(3.5.12)

Theorem 3.5.6. Equation (3.5.12) is well-defied inℛ{z}.

Proof. Let x = z3 where h = g|z3=x, then equation (3.5.12) becomes

{
xh3 − 1 = h;
h|x=0 = 1.

(3.5.13)

We work on the basis of Hn = 𝜕
n
xh for n ≥ 0. When n = 0, we have the equation H0 = 1.

This is the initial condition. Then, for n ≥ 1, we proceed by induction on n. On account
of the equation, Hn = H[3]n−1. Assume, for 0 ≤ s ≤ n − 1, that Hs = H[3]s−1. We prove
Hn = H

[3]
n−1. Because H

[3]
n−1 is only dependent on Hs for n − 1 ≥ s ≥ 0, Hn is determined.

Because h is well-defined for the equation, g is well-defined for equation (3.5.12).

Corollary 3.5.7. Equation (3.5.13) is well-defined. Its solution is in the form of a sum-
mation-free explicision, for n ≥ 0,

Hn =
{
{
{

1, when n = 0;
1

2n + 1
(
3n
n
), when n ≥ 1.

(3.5.14)
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3.5 Model of quadrangulations | 67

Proof. We work on the basis of Hn = H[3]n−1 from H0 = 1 for n ≥ 0. We proceed by
induction on n, and the conclusion can be drawn.

This corollary enables us to deduce an explicision of the solution of equation
(3.5.12) and hence equation (3.5.1).

Theorem 3.5.8. The solution of equation (3.5.12) is determined by Gn = 𝜕
n
z g for n ≥ 0 in

the form

Gn =

{{{{
{{{{
{

1, when n = 0;
0, n = 1(mod 3) and 2(mod 3);
G[3]n−3, n = 0(mod 3)

} ,

when n ≥ 1.

(3.5.15)

Proof. This is a result of Theorem 3.5.6.

Furthermore, a summation-free explicision of Gn can also be found.

Theorem 3.5.9. The solution of equation (3.5.12) has a summation-free explicision in the
form

Gn =

{{{{
{{{{
{

1, when n = 0 and 1;
1

2s + 1
(
3s
s
), when n = 2s + 1, s ≥ 1;

0, otherwise.

(3.5.16)

Proof. This is a result of Theorem 3.5.6 and its Corollary 3.5.7.

Example 1. Classification of non-separable outer-planar quadrangulations by inner
size. By inner size is meant the number of inner edges, or say, those that are not
on the root-face boundary. Let q be the enufunction for counting non-isomorphic
classes of non-separable outer-planar rooted quadrangulations by inner size. From
non-separability and outer planarity, the least one is a quadranglewithout inner edge.

On the basis of the quadrangle, any non-separable outer-planar rooted quadran-
gulation can be done by adding three non-root edges, while one inner edge and one
inner face (quadrangle!) are produced step by step. If s is the inner size of a quadran-
gulation, then it has inner size s + 1, number of non-rooted edges 3s and size 3s + 1.
Thus, for s ≥ 0,

𝜕3s+4z f = 𝜕3s+3z g = 𝜕szq. (3.5.17)

In Figure 3.5.1, one can see the rooted non-isomorphic classes 𝜕szq for 0 ≤ s ≤ 3:

(1T0,1) + (3T1,1) + (8T2,1 + 4T2,2) + (20T3,1 + 10T3,2 + 10T3,3 + 5T3,4 + 10T3,5).
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68 | 3 Function equations of one variable

Figure 3.5.1: Classification of non-separable outer-planar quadrangulations.

Example 2. Isomorphic classes of planted quadrary tree by the number ends. A quad-
rary tree is a tree whose vertices of valencies number either 1 or 4. On the basis of
Example 1, because the outer dual of a quadrary tree is a non-separable outer-planar
quadrangulation, from a bijection between their isomorphic classes, the correspond-
ing task can be done.

3.6 General model

Consider the equation

{
zf 4 − (1 − z)f 3 + (1 − 3z)f 2 + 3zf − z = 0;
f |z=0 = 1,

(3.6.1)

for f ∈ ℛ{z}. This is equation (6) in Introduction when a = b = c = d = 1 because it is
meaningful in the classification of general outer-planar maps.
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3.6 General model | 69

This equation is extracted from an investigation of the classification of general
outer-planar maps within rooted isomorphism. One may refer to Liu YP ([51], p. 100)

Because of f |z=0 = 1, for n ≥ 0, let

{{{
{{{
{

𝜕nz f
i(= F[i]n ) =

i
∑
k=0

FkF
[i−1]
i−k , i ≥ 2;

𝜕nz f = Fn(= F
[1]
n ).

(3.6.2)

On the extension of integral domainℛ{z}, equation (3.6.1) is equivalently transformed
as

−F[3]0 + F
[2]
0 = 0 ⇒ F[2]0 (−F0 + 1) = 0,

by f |z=0 = 1,
⇒ F0 = 1,

F[i]0 = 1 (2 ≤ i ≤ 4);

F[4]0 − F
[3]
1 + F

[3]
0 + F

[2]
1 − 3F

[2]
0 + 3F0 − 1 = 0

⇒ 1 − 3F1 + 1 + 2F1 − 3 + 3 − 1 = 0
⇒ −F1 + 1 = 0
⇒ F1 = 1,

F[2]1 = 2, F[3]1 = 3, F[4]1 = 4;

F[4]n−1 − F
[3]
n + F

[3]
n−1 + F

[2]
n − 3F

[2]
n−1 + 3Fn−1 = 0

⇒ F[4]n−1 − (3Fn +
n−1
∑
k=1

FkF
[2]
n−k) + F

[3]
n−1

+ (2Fn +
n−1
∑
k=1

FkFn−k) − 3F
[2]
n−1 + 3Fn−1 = 0.

Thus, we have

Fn = F
[4]
n−1 −

n−1
∑
k=1

Fk(Fn−k + F
[2]
n−k)

+ F[3]n−1 +
n−1
∑
k=1

FkFn−k − 3F
[2]
n−1 + 3Fn−1

= (F[4]n−1 −
n−1
∑
k=1

FkF
[2]
n−k)

+ (F[3]n−1 + 3Fn−1 − 3F
[2]
n−1)

( = Fi;0≤i≤n−1 = F≤n−1), n ≥ 2.

(3.6.3)
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70 | 3 Function equations of one variable

Because of F0 = 1, 2F0Fn−1 = 2Fn−1 in F
[2]
n−1, equation (3.6.3) becomes

{
Fn = Σ

(1)
n−1 + Σ

(2)
n−1, n ≥ 2;

F0 = F1 = 1,
(3.6.4)

where

{{{{{
{{{{{
{

Σ(1)n−1 = F
[4]
n−1 −

n−1
∑
k=1

FkF
[2]
n−k ;

Σ(2)n−1 = F
[3]
n−1 − 3Fn−1 − 3

n−2
∑
i=1

FiFn−1−i.
(3.6.5)

Lemma 3.6.1. Equation (3.6.1) for f ∈ ℛ{z} is equivalent to equations (3.6.3) and hence
to equation (3.6.4) for F ∈ ℛ∞{z} where F = (F0, F1, F2, . . .).

Proof. Because all transformations in the process from equation (3.6.1) through equa-
tions (3.6.3) are equivalent, the conclusion is drawn.

This lemma enables us only to consider the system of equations (3.6.3), or equiv-
alently equation (3.6.4), instead of equation (3.6.1).

Theorem 3.6.2. Inℛ∞{z}, the system of equations (3.6.4) and hence equation (3.6.1) in
ℛ{z} has, and is the only one to have, a solution.

Proof. On the basis of the equivalence between (3.6.1) and (3.6.4), for any integer n ≥ 1,
Fn ∈ ℛ is uniquely derived from F0 = 1 by (3.6.4). Then the conclusion is directly
drawn.

Now, one might like to investigate some constructions of the solution for evaluat-
ing a compact expression.

Observation 3.6.3. For any integer n ≥ 3,

F[4]n−1 ≥
n−1
∑
k=2

FkF
[2]
n−k . (3.6.6)

Proof. We proceed by induction on n, and the conclusion can be drawn.

Similarly, another inequality can also be obtained.

Observation 3.6.4. For any integer n ≥ 3,

F[3]n−1 ≥ 3Fn−1 + 3
n−2
∑
i=1

FiFn−1−i. (3.6.7)

Proof. We proceed by induction on n, and the conclusion can be drawn.
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Theorem 3.6.5. The solution of equations (3.6.4) and hence equation (3.6.1) in ℛ{z} is
of the form

Fn = {
F0 = 1; when n = 0;
Σ(1)n−1 + Σ

(2)
n−1, when n ≥ 1,

(3.6.8)

where Σ(1)n−1 and Σ
(2)
n−1, both non-negative, are shown in (3.6.5).

Proof. By considering the procedure shown in the beginning of this section, it is seen
that Fn for n ≥ 0 determines a solution of equations (3.6.4) and hence equation (3.6.1)
in ℛ{z}. Its integrality and non-negativity are shown in Observation 3.6.3 and Obser-
vation 3.6.4. This is the conclusion.

Now, one might like to seek some constructions of the solution for evaluating a
compact expression.

Example 1. Classification of general outer-planar quadrangulations within a rooted
isomorphism by size. From the quadrangularity of the inner faces, no self-loop occurs.
From the outer planarity, no multi-edge occurs. Hence, all quadrangulations consid-
ered here are simple (by no means seen without difficulty!).

In Liu YP [51] (pp. 99–100), one can see the proof that the solution foq of (3.6.1)
is the enufunction of general outer-planar rooted quadrangulations with size as the
parameter.

By (3.6.4), the solution of equation (3.6.1) was calculated as

foq(z) = 1 + z + 2z
2 + 5z3 + 15z4 + 48z5 + 160z3

+ 552z7 + 1953z8 + ⋅ ⋅ ⋅ .

For example, the coefficient 1953 of z8 ismeant that all general outer-planar quad-
rangulations of size 8 have 1953 rooted isomorphic classes. Because trees are all outer
planar without inner face, from (3.1.6),

𝜕nz troot =
(2n)!

n!(n + 1)!
,

then the general trees of size 8 have

(16)!
8!9!
= 13 × 11 × 10 = 1430

rooted isomorphic classes. Hence, general outer-planar quadrangulations with at
least one inner face have 1953 − 1430 = 523 rooted isomorphic classes as shown in
Figure 3.6.1–Figure 3.6.6 where we have Q1,i, 1 ≤ i ≤ 30, general outer-planar rooted
quadrangulations with one inner face, and Q2,i, 1 ≤ i ≤ 3, general outer-planar rooted
quadrangulations with two inner faces. A hollow represents the location of a root.
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72 | 3 Function equations of one variable

There being no hollow in a figure represents that all incident pairs {end,side} (or
{semi-edge,semi-side}) on the boundary of the outer face have a hollow.

In Figure 3.6.1, rooted isomorphic classes are provided as

12Q1,1 + 12Q1,2 + 24Q1,3 + 24Q1,4 + 12Q1,5 + 12Q1,6;

altogether 96 rooted isomorphic classes.

Figure 3.6.1: Classification of general outer-planar quadrangulations: Q1,1–Q1,6.

In Figure 3.6.2, one can see

24Q1,7 + 24Q1,8 + 12Q1,9 + 12Q1,10 + 24Q1,11 + 12Q1,12,

altogether 108 rooted isomorphic classes.

Figure 3.6.2: Classes of general outer-planar quadrangulations: Q1,7–Q1,12.

In Figure 3.6.3, is shown

24Q1,13 + 12Q1,14 + 24Q1,15 + 24Q1,16 + 12Q1,17 + 6Q1,18,

altogether 102 rooted isomorphic classes.
In Figure 3.6.4, it is shown that

24Q1,19 + 12Q1,20 + 6Q1,21 + 12Q1,22 + 24Q1,23 + 24Q1,24
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Figure 3.6.3: Classes of general outer-planar quadrangulations: Q1,13–Q1,18.

Figure 3.6.4: Classes of general outer-planar quadrangulations: Q1,19–Q1,24.

has altogether 102 rooted isomorphic classes.
In Figure 3.6.5, it is seen that

24Q1,25 + 12Q1,26 + 24Q1,27 + 12Q1,28 + 12Q1,29 + 3Q1,30

has, altogether, 87 rooted isomorphic classes.

Figure 3.6.5: Classes of general outer-planar quadrangulations: Q1,15–Q1,30.

In Figure 3.6.6, it is seen that

16Q2,1 + 8Q2,2 + 4Q1,27

has, altogether, 16 + 8 + 4 = 28 rooted isomorphic classes.
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Figure 3.6.6: Classes of general outer-planar quadrangulations: Q2,1–Q2,3.

Since general outer-planar quadrangulations with one inner face have

96 + 108 + 102 + 102 + 87 = 495

classes and general outer-planar quadrangulations with two inner faces have 28
classes, general outer-planar quadrangulations with at least one inner face have
28 + 495 = 523 classes. By considering 1430 classes of general outer-planar quadran-
gulations without inner face, 1930 + 523 = 1953 classes are done.

3.7 Notes

3.7.1. From Example 1 and Example 2 in Section 3.2, one can see that, for arbitrarily
given size, the number of isomorphic classes for planted trees is equal to lei petal bun-
dles. Is there a bijection between them? The bijection is known to be the planar dual
between them.

3.7.2. Similarly, from Example 2 and Example 3 in Section 3.2, for size given, planted
trees and non-separable outer-planar rooted maps have the same number of isomor-
phic classes. Is there a bijection between their isomorphic classes? This question re-
mained unanswered yet in the literature. Here, such a bijection is provided.

For a non-separable outer-planarmap (including the linkmap, amapwith a single
edge which is a link, as a degenerate case), the map obtained by arranging each edge
on the outer face boundary and each inner face as, respectively, an end vertex and a
inner vertex, two vertices adjacent as their corresponding faces adjacent or one inci-
dent to the other, is called its outer dual. The root-edge is chosen in a corresponding
way. It can be shown that the outer dual of a non-separate outer-planar rooted map is
a planted plane tree. Because of the symmetry, the outer dual of a planted plane tree is
a non-separable outer-planar rootedmap. This is a bijection, or a 1–1 correspondence.
The reader is referred to Liu YP [44], or for some details to Liu YP [56].

3.7.3. By duality and outer duality, problem 5.1 and problem 5.2 in Liu YP [33] have
been solved. This shows that the equations considered being well-defined stimulates
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3.7 Notes | 75

the discoveries of some laws, rules and theorems to reflect certain inner relationships
among some distinguished objects characterized by those equations.

3.7.4. In Section 3.4, by substituting f = zg into equation (3.4.1), we have

{
z3g3 + (1 − z)g2 + (z − 2)g + 1 = 0;
g|z=0 = 1.

(3.7.1)

This is equation (11.4) about Φ in Liu YP [32]. Although an explicision is found, the
form is rather complicated as a multiple sum of alternative terms. In Example 1 of
Section 3.4, got is g in (3.7.1). However, the solution of equation (3.4.1) determined by
(3.4.14) is a sum of positive terms evaluated only via transformations in the exten-
sion of integral domainℛ{z}. This is an answer of problem 11.1. Although this result is
equivalent to that in Dong FM-Liu YP [8], the procedure looks simpler.

3.7.5. Because of the emphasis on recursion in the form of a sum with all terms posi-
tive, the details for extracting a compact explicision is often omitted without descrip-
tion for the reader. However, as soon as it is clear that an equation iswell-defined, how
to transform the solution in the form of an explicision with all coefficients as a sum of
all terms positive, and further only one term, or as we say, a summation-free form, is
still an indispensable problem!
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4 Equations of function with several variables

4.1 Elimination of variables

Consider the equation

{
axy2f 2 + b(x − 1)f + c(x − 1) = 0;
f |x=0,y=0 = d,

(4.1.1)

for f ∈ ℛ{x, y} and a, b, c, d ∈ ℤ+. This is equation (7) in Introduction when b = 1.
When a = b = c = d = 1, one can see that the result of equation (4.1.1) is just the

equation that appeared in Liu YP [13] (equation (5.3), 1984), for enumerating plane
tree-like maps with the size and the outer face valency as two parameters.

Although this equation has two variables, x and y, we notice that, by the substi-
tution

z = xy2

1 − x
, (4.1.2)

equation (4.1.1) becomes

{
azf 2 − bf − c = 0;
f |z=0 = d,

(4.1.3)

for f ∈ ℛ{z}. This is an equation with only one variable z, i. e., equation (3.1.1).

Observation 4.1.1. Equation (4.1.1) onℛ{x, y} is equivalent to equation (4.1.3) onℛ{z}.

Proof. Because of

𝜕sxz
l = y2l(s − 1

l − 1
) = y2l (s − 1)!
(l − 1)!(s − l)!

(4.1.4)

for l ≥ 1, we have z ∈ ℛ{x, y} and henceℛ{z} = ℛ{x, y}.

This observation enables us to consider equation (4.1.3) instead of equation (4.1.1).

Theorem 4.1.2. Equation (4.1.1) is well-defined if, and only if, c = bd and abd ̸= 0.

Proof. This is a result of Observation 4.1.1 and Theorem 3.1.1.

From this theorem, we are allowed to only discuss

{
azf 2 − bf − bd = 0;
f |z=0 = d,

(4.1.5)

for a, b, d ∈ ℤ+ and abd > 0.

https://doi.org/10.1515/9783110625837-004
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78 | 4 Equations of function with several variables

Theorem 4.1.3. The solution of equation (4.1.5) is determined by

𝜕mz f = (
a
b
)
m dm+1

2m + 1
(
2m + 1
m
) (4.1.6)

for any integer m ≥ 0.

Proof. Because of equation (4.1.5), same as equation (3.1.5), Theorem 3.1.2 results in
(4.1.6).

On the basis of (4.1.2), (4.1.4) and Theorem 4.1.3, onemight think of an explicision
of 𝜕m,nx,y f in the solution of equation (4.1.1) form, n ≥ 0.

Theorem 4.1.4. The solution f of equation (4.1.1) is determined by the following explici-
sions:

𝜕m,nx,y f =

{{{{{{
{{{{{{
{

d, when m = n = 0;
( ab )

m dm+1
2m+1 (

2m+1
m )(

m−1
k−1),

when n = 2k and m ≥ k ≥ 1;
0, otherwise,

(4.1.7)

for m, n ≥ 0.

Proof. By (4.1.6),

𝜕m,nx,y f = (
a
b
)
m dm+1

2m + 1
(
2m + 1
m
)𝜕m,nx,y z

m, by (4.1.4),

= (
a
b
)
m dm+1

2m + 1
(
2m + 1
m
)(

m − 1
k − 1
),

the conclusion is drawn.

The explanation above shows how to eliminate a variable in an equation with at
least two variables by introducing a substitution of variables.

In what follows, two othermethods are introduced for eliminating a variable. One
is to fix a variable at a constant number. The other is to consider the coefficients of
terms in the unknown function expressed by the variable one hopes to be eliminate.
Only the former is discussed in this section because of the latter beingmet everywhere
for each equation considered.

In Dong FM-Liu YP [8], one can find the equation

{
{
{

xyf
x − f
− (1 + y)f + x2y = 0;

fx=0,y=0 = 0.
(4.1.8)

This is equation (8) in Introduction when a = c = 1 and d = 0 because it is meaningful
in a classification of non-separable simple outer planar maps.
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4.1 Elimination of variables | 79

By the cancelation law, equation (4.1.8) is transformed to

{
xf = (1 + y)f 2 − x2yf + x3y;
fx=0,y=0 = 0,

(4.1.9)

for f ∈ ℛ{x, y}.
Because of equivalence,we are allowed todiscuss equation (4.1.9) insteadof equa-

tion (4.1.8).
Let f ∈ ℛ{x, y}bea solutionof equation (4.1.9); then f is determinedbyFm,n = 𝜕m,nx,y f

form, n ≥ 0. Furthermore, let F∗,m = 𝜕mx f and F∗,n = 𝜕
n
y f , then

{{{
{{{
{

F∗,n = ∑
m≥0

Fm,n ∈ ℛ{x}, for n ≥ 0;

F∗,m = ∑
n≥0

Fm,n ∈ ℛ{y}, form ≥ 0,
(4.1.10)

and hence f is determined by F∗,n(n ≥ 0), or by F∗,m(m ≥ 0) as well.
Now, F∗,n for all n ≥ 0 are chosen to determine f as follows:

y0 : xF∗,0 = F
[2]
∗,0 + F

[2]
∗,−1 − x

2F∗,−1, by no sense of F∗,−1,

= F[2]∗,0 = F
2
∗,0.

By the initial condition, we have

F∗,0 = 0 ⇒ F[2]∗,0 = 0 and F
[2]
∗,1 = 0. (4.1.11)

For F∗,1,

y1 : xF∗,1 = F
[2]
∗,1 + F

[2]
∗,0 − x

2F∗,0 + x
3 by (4.1.11),

= x3.

By the cancelation law for x,

F∗,1 = x
2 ⇒ F[2]∗,1 = 0 and F

[2]
∗,2 = x

4. (4.1.12)

For F∗,2, we have

y2 : xF∗,2 = F
[2]
∗,2 + F

[2]
∗,1 − x

2F∗,1 by (4.1.12),

= x4 − x2x2.

Hence,

F∗,2 = 0 ⇒ F[2]∗,2 = x
4 and F[2]∗,3 = 0. (4.1.13)
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80 | 4 Equations of function with several variables

For F∗,3,

y3 : xF∗,3 = F
[2]
∗,3 + F

[2]
∗,2 − x

2F∗,2 by (4.1.13),

= x4.

By the cancelation law for x,

F∗,3 = x
3 ⇒ F[2]∗,3 = 0 and F

[2]
∗,4 = 2x

5. (4.1.14)

For F∗,4,

y4 : xF∗,4 = F
[2]
∗,4 + F

[2]
∗,3 − x

2F∗,3 by (4.1.14),

= 2x5 − x2x3 = x5.

By the cancelation law for x,

F∗,4 = x
4 ⇒ F[2]∗,4 = 2x

5 and F[2]∗,5 = 2x
6. (4.1.15)

For F∗,5,

y5 : xF∗,5 = F
[2]
∗,5 + F

[2]
∗,4 − x

2F∗,4 by (4.1.15),

= 2x6 + 2x5 − x2x4 = x6 + 2x5.

By the cancelation law for x,

F∗,5 = x
5 + 2x4 ⇒ F[2]∗,5 = 2x

6 and F[2]∗,6 = 2x
7 + 5x6. (4.1.16)

For F∗,n, n ≥ 6, we have

F∗,n =
1
x
(F[2]∗,n + F

[2]
∗,n−1) − xF∗,n−1. (4.1.17)

Theorem 4.1.5. Equation (4.1.9), and hence equation (4.1.8), is well-defined onℛ{x, y}.

Proof. On the basis of (4.1.11)–(4.1.16), when 0 ≤ n ≤ 5, F∗,n are determined from
F∗,0 = 0 (the initial condition). For n ≥ 6, if all F∗,k are determined for k ≤ n − 1,
then from (4.1.17), F∗,n is determined by all F∗,k for k ≤ n − 1. Hence, the conclusion is
drawn.

Combinatorial structures of the solution of equation (4.1.9) have to be investigated
on all F∗,n, n ≥ 0, for any given integerm ≥ 3, because they are known form ≤ 2 from
(4.1.11)–(4.1.13).

Observation 4.1.6. For any integer m ≥ 3 given, if n ≥ 2m− 2 or n ≤ m− 1, then F∗,n = 0,
else F∗,n ̸< 0.
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4.1 Elimination of variables | 81

Proof. We proceed by induction on m. For 0 ≤ m ≤ 5, from (4.1.11)–(4.1.16), the con-
clusion are checked. In general, form ≥ 6, whenever all Fk.n for k ≤ m − 1 are known,
from (4.1.17), Fm,n is deduced to obey the conclusion.

In fact, the observation can be shown for non-separable outer planar maps. From
Theorem 4.1.5, the conclusion of this observation is easily obtained.

Observation 4.1.7. For any integer m ≥ 3, if m ≤ n ≤ 2m − 3, then F[2]∗,n − x
2F∗,n−1 ≥ 0.

Proof. On the basis of Observation 4.1.6, for m ≥ 3, only whenm ≤ n ≤ 2m − 3, F∗,n is
allowed to be non-zero. Because of F∗,n ≥ 0,

F[2]∗,n ≥ 2F∗,1F∗,n−1 = 2x
2F∗,n−1 ≥ x

2F∗,n−1.

This is the conclusion.

Because of F∗,0 = 0, this observation enables us to write

Σ04.11(n−1) =
F[2]∗,n − x

2F∗,n−1
x

= xF∗,n−1 +
1
x

n−2
∑
i=2

F∗,iF∗,n−i, (4.1.18)

which only depends on F∗,k, 0 ≤ k ≤ n − 1.

Observation 4.1.8. For any integer m ≥ 3, if m ≤ n ≤ 3m − 5, then

x(F
[2]
∗,n + F

[2]
∗,n−1), (4.1.19)

i. e., x is a factor of F[2]∗,n + F
[2]
∗,n−1.

Proof. Because of any non-zero term in F[2]∗,n and F
[2]
∗,n−1 with a factor x

2, the conclusion
is true.

On the basis of this observation, it is well-known that all coefficients of Σ04.11(n−1)
given by (4.1.19) are all in ℤ+.

Theorem 4.1.9. The solution f of equation (4.1.9) and hence equation (4.1.8) determined
by F∗,n, n ≥ 0, has the form

F∗,n =

{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{
{

0, when n = 0;
x2, when n = 1;
0, when n = 2;
x3, when n = 3;
x(F∗,n−1 + 2F∗,n−2)

+∑n−3i=3 F∗,i(
F∗,n−i + x2F∗,n−1−i

x
),

when n ≥ 4.

(4.1.20)
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82 | 4 Equations of function with several variables

Proof. The cases of 0 ≤ n ≤ 2 are clear from (4.1.11)–(4.1.13). The general case of n ≥ 3
is based on (4.1.14)–(4.1.17) and Observation 4.1.7.

This theorem enables us to evaluate the solution of equation (4.1.9), and hence
equation (4.1.8), directly from a recursion in the form of a sumwith all terms positive.

Theorem 4.1.10. The solution f of equation (4.1.9) and hence equation (4.1.8) is deter-
mined by 𝜕(m,n)(x,y) f = Fm,n for 1 ≤ m ≤ n ≤ 2m−3, which is in a summation-free explicision:

𝜕(m,n)(x,y) f = {
1, when m = 2 and n = 1;
1
n (

n
m−1)(

m−3
n−m), when 3 ≤ m ≤ n ≤ 2m − 3.

(4.1.21)

Proof. On the basis of Theorem 4.1.9, we proceed by induction onm ≥ 1, and the con-
clusion can in principle be drawn.

In equation (4.1.9), by x = 1, let h = f |x=1 ∈ ℛ{y}, then h satisfies the equation

{
(1 + y)h2 − (1 + y)h + y = 0;
h|y=0 = 0.

(4.1.22)

This is an equation in total variform shown in Section 3.3 when a = b = c = 1 and
d = 0.

Theorem 4.1.11. The solution h of equation (4.1.22) determined by 𝜕nyh = Hn for n ≥ 1,
which is in an explicision in the form of a sum with all terms positive:

𝜕nyh =

{{{{{{
{{{{{{
{

1, when n = 1;
0, when n = 2;
∑nm=3

1
n (

n
m−1)(

m−3
n−m), when 9 ≥ n ≥ 3;

∑nm=⌈(n−3)/2⌉
1
n (

n
m−1)(

m−3
n−m), when n ≥ 10.

(4.1.23)

Proof. Because of Hn = F∗,n|x=1, from (4.1.21), (4.1.23) is easily obtained.

4.2 Linear forms

Consider the equation

{{
{{
{

f = x2y + xy
1 − xy
(

x
1 − x

h − 1
1 − x

f)

f |x=0,y=0 = 0,
(4.2.1)

where f ∈ ℛ{x, y} and h = f (1, y) ∈ ℛ{y}.
This is equation (9) in Introduction when a = c = 1 and d = 0, it beingmeaningful

in a classification for restriction to outer planar maps.
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4.2 Linear forms | 83

For convenience, it is transformed onℛ{x, y} into its equivalent

(1 + xy
(1 − xy)(1 − x)

)f = x2y + x2y
(1 − xy)(1 − x)

h. (4.2.2)

For any integer n ≥ 0, let

𝜕nyh = Hn and 𝜕ny f = F∗,n (4.2.3)

where

F∗,n = ∑
m≥0

Fm,nx
m, Fm,n = 𝜕

(m,n)
(x,y) f and Hn = F∗,n|x=1. (4.2.4)

By employing the cancelation law onℛ{x, y}, equation (4.2.2) is transformed into

(1 − x)f = (1 − x)x2y − (x − x2)x2y2 + x2y(h − f ), (4.2.5)

and we obtain

y0 : (1 − x)F∗,0 = 0 ⇒ F∗,0 = 0 and H0 = 0, (4.2.6)

y1 : (1 − x)F∗,1 = (1 − x)x
2 + x2(H0 − F∗,0)

⇒ (1 − x)F∗,1 = (1 − x)x
2

⇒ F∗,1 = x
2 and H1 = 1,

(4.2.7)

y2 : (1 − x)F∗,2 = −(x − x
2)x2 + x2(H1 − F∗,1)

⇒ (1 − x)F∗,2 = −(1 − x)x
3 + x2(1 − x2)

⇒ F∗,2 = x
2 and H1 = 1,

(4.2.8)

in general, for n ≥ 3,

yn : (1 − x)F∗,n = x
2(Hn−1 − F∗,n−1). (4.2.9)

Lemma 4.2.1. Equation (4.2.2) onℛ{x, y} is equivalent to the equation system

{{{{{{
{{{{{{
{

F∗,1 = x2 ⇒ H1 = 1, when n = 1;
F∗,1 = x2 ⇒ H1 = 1, when n = 2;
F∗,n = xF∗,n + x2(Hn−1 − F∗,n−1).
⇒ Hn = F∗,n|x = 1, when n ≥ 3,

(4.2.10)

from F+,0 = 0⇒ H0 = 0 onℛ{x}∞.
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84 | 4 Equations of function with several variables

Proof. Because all transformations based on the cancelation law that are an equiva-
lence onℛ{x, y}, the conclusion is drawn.

This lemma enables us discuss a solution of the equations of system (4.2.10) in-
stead of equation (4.2.2), and hence equation (4.2.1).

Theorem 4.2.2. Equation (4.2.2), and hence equation (4.2.1), is well-defined onℛ{x, y}.

Proof. We proceed by induction on n ≥ 0. When n = 0, the result is known from the
initial condition. When n = 1 and 2, the results are from (4.2.7) and (4.2.8). In general,
(4.2.10) leads to the conclusion.

Because we aim at an expression in the form of a sum with all terms positive,
relative constructions of the solution have to be investigated in correspondence.

Observation 4.2.3. For any integer n ≥ 1, F∗,n has a factor x2.

Proof. We proceed by induction on n. From (4.2.7) and (4.2.8), the conclusion for n = 1
and 2 is true. For n ≥ 3, assume that x2|F∗,n−1. We prove x2|F∗,n. Because of

(1 − x)F∗,n = x
2(Hn−1 − F∗,n−1), by the assumption,

= x2 ∑
m≥2

Fm,n−1(1 − x)(
m−1
∑
i=0

xi),

by the cancelation law, we have

F∗,n = x
2 ∑
m≥2

Fm,n−1(
m−1
∑
i=0

xi). (4.2.11)

Therefore, x2|F∗,n.

This observation tells us that, for any integer n ≥ 1, the minimum degree of x in
F∗,n is not less than 2.

Observation 4.2.4. For any integer n ≥ 3, Hn − F8,n has a factor 1 − x.

Proof. This follows from the proof of Observation 4.2.3.

Observation 4.2.5. For any integer n ≥ 3, if m ≥ n, then Fm,n = 0.

Proof. We proceed by induction on n, on the basis of (4.2.10).

This observation shows that, for any integer n ≥ 3, F∗,n is a polynomial of x with
degree at most n.

Observation 4.2.6. For any integer n ≥ 3, Fm,n ∈ 𝒵+.

Proof. We proceed by induction on n, on the basis of (4.2.10).
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The observations above claim that all F∗,n for n ≥ 3 are polynomials of x with
minimum degree not less than 2, the maximum degree is not greater than n, and all
coefficients are non-negative.

Observation 4.2.7. For any integer n ≥ 3,

Hn−1 − F∗,n−1
1 − x

≥ 0. (4.2.12)

Proof. This is a result of Observation 4.2.6.

The observations described above are helpful as they clarify the structure of the
solution of equation (4.2.1).

Theorem 4.2.8. The solution of equation (4.2.2), and hence equation (4.2.1), determined
by F∗,n for n ≥ 1, is a recursion in the form of a sum of finite non-negative terms:

F∗,n =
{{{
{{{
{

x2, when n = 1;
x2, when n = 2;
x2∑n−2j=0 (∑

n−1
i=j+1 Fi,n−1)x

j, when n ≥ 3.
(4.2.13)

Proof. From (4.2.10), it is only necessary to consider the case of n ≥ 3. On the basis of
Observations 4.2.5 and 4.2.7, the conclusion is drawn.

Although equation (4.2.2) is linear about f ∈ ℛ{x, y}, one has another function
h = f |x=1 ∈ ℛ{y}. This function h cannot be determined directly by taking x = 1 on the
equation. A new parameter ξ ∈ ℛ{y} is introduced satisfying the relations

{{{
{{{
{

1 + ξy
(1 − ξy)(1 − ξ )

= 0;

ξ 2y + ξ 2y
(1 − ξy)(1 − ξ )

h = 0,
(4.2.14)

called a characteristic equation of equation (4.2.2).
There is an equivalence between equation (4.2.14) and

{
ξ = 1 + ξ 2y;
h = ξy.

(4.2.15)

From ξ ∈ ℛ{y}, by the first relation in (4.2.15), we have

𝜕ny ξ = {
1, when n = 0;
∑n−1i=0 (𝜕

i
yξ )(𝜕

n−1−i
y ξ ), when n ≥ 1,

(4.2.16)

for n ≥ 0.
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86 | 4 Equations of function with several variables

Then, by the second relation in (4.2.15), we have

𝜕nyh = {
0, when n = 0;
𝜕n−1y ξ , when n ≥ 1,

(4.2.17)

for n ≥ 0 where 𝜕n−1y ξ is given by (4.2.16) for n ≥ 1.

Theorem 4.2.9. The function h in equation (4.2.2) is determined by Hn, n ≥ 0, in a
summation-free explicision:

Hn = {
0, when n = 0;
(2n−2)!
n!(n−1)! , when n ≥ 1.

(4.2.18)

Proof. Because equation (4.2.15) is the same as equation (3.2.7), from (3.2.9) and
(4.2.8), (4.2.18) is obtained.

Further, for m, n ≥ 0 and f ∈ ℛ{x, y} being the solution of equation (4.2.2) and
hence equation (4.2.2), a summation-free explicision of 𝜕m,nx,y f can also obtained.

Theorem 4.2.10. Let f be the solution of equation (4.2.2), hence equation (4.2.1), and
Fm,n = 𝜕m,nx,y f for m, n ≥ 0. Then Fm,n has the form

Fm,n =
{{{
{{{
{

1, when m = 2 and n = 1;
m−1
n−1 (

2n−m−2
n−2 ), when 2 ≤ m ≤ n and n ≥ 2;

0, otherwise.
(4.2.19)

Proof. Method 1 is by induction on the basis of (4.2.13). Method 2 is by induction on
the basis of (4.2.15) and (4.2.16).

Example 1. We study an isomorphic classification of restrict outer planar rootedmaps
with size and valency of root-vertex. A outer planar map is called restrict if there is no
loop in the root-loop and nor after a contraction of the root-loop.

Consider the equation in Liu YP [45] (pp. 90–92), or [48] (pp. 69–70),

{
{
{

f = 1 + x2yf + xy
1 − x
(h − xf );

f |x=0,y=0 = 1,
(4.2.20)

where h = fx=1.
Or equivalently, its normal has the form of

(1 − x2y + x2y
1 − x
)f = 1 + xy h

1 − x
. (4.2.21)

By the cancelation law,

(1 − x + x3y)f = 1 − x + xyh. (4.2.22)
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Theorem 4.2.11. Equation (4.2.22), or equation (4.2.21), is well-defined inℛ{x, y}.

Proof. The proof is similar to the proof of Theorem 4.2.2.

Because of

∑
m≥1

Fm,n−1
m+1
∑
i=0

xi+1 =
3
∑
m=1
(
2(n−1)
∑
j=1

Fj,n−1)x
m

+
2n
∑
m=4
(
2(n−1)
∑

j=m−2
Fj,n−1)x

m,

from (4.2.21),

Fm,n =

{{{{{{
{{{{{{
{

0, whenm = 0;
∑2(n−1)j=1 Fj,n−1, when 1 ≤ m ≤ 3;
∑2(n−1)j=m−2 Fj,n−1, when 4 ≤ m ≤ 2n
0, whenm ≥ 2n + 1.

(4.2.23)

By (4.2.23), for n = 1, 2 and 3,

F⋆,1 = x + x
2; F⋆,2 = 2x + 2x

2 + 2x3 + x4;

F⋆,3 = 7x + 7x
2 + 7x3 + 5x4 + 3x5 + x6.

(4.2.24)

On this basis, Figures 4.2.1–4.2.6 show the classification of such maps with size
3 and less. In these figures, Tm,n(i) stands for the ith map with size n and root-vertex
valencym. In each figure, a small hollow indicates the location of the root.

From (4.2.24), it is seen that restrict outer planar maps of size 1 have two possibili-
ties: root-vertex valency: 1 and 2. They are (F1,1, F2,1) = (1, 1). Figure 4.2.1 shows the two
classes:

F1,1 = 1 ⇒ 1T1,1(1); F2,1 = 1 ⇒ 1T2,1(1).

From (4.2.23), it is seen that restricting to outer planar maps of size 2 leaves four
possibilities of root-vertex valenciesm: 1 ≤ m ≤ 4. They are

(F1,2, F2,2, F3,2, F4,2) = (2, 2, 2, 1).

Figure 4.2.1: Classes of restrict outer planar maps with size 1 and valencies 1–2.
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88 | 4 Equations of function with several variables

Figure 4.2.2: Classification of restrict outer planar maps of size 2 and valencies 1–4.

Figure 4.2.2 shows the classes. They are

F1,2 = 2 ⇒ 1T1,2(1) + 1T1,2(2);
F2,2 = 2 ⇒ 1T2,2(1) + 1T2,2(2);
F3,2 = 2 ⇒ 2T3,2(1);
F4,2 = 1 ⇒ 1T4,2(1).

From (4.2.23), it is seen that restricting to outer planar maps of size 3 and root-
vertex valenciesm, 1 ≤ m ≤ 6, we have

(F1,3, F2,3, F3,3, F4,3, F5,3, F6,3) = (7, 7, 7, 5, 3, 1).

Figure 4.2.3: Classification of restrict outer planar maps of size 3 and valency 1.

Figure 4.2.3 provides the case of valency 1:

F1,3 = 7 ⇒ 1T1,3(1) + 1T1,3(2) + 1T1,3(3) + 2T1,3(4) + 1T1,3(5) + 1T1,3(6).

Figure 4.2.4 provides such classes in two cases:

F2,3 = 7 ⇒ 2T2,3(1) + 1T2,3(2) + 1T2,3(3) + 1T2,3(4) + 2T2,3(5).

Figures 4.2.5 and 4.2.6 provide the classes for root-vertex valencies, respectively,
3 and 4–6:

F3,3 = 7 ⇒ 2T3,3(1) + 2T3,3(2) + 2T3,3(3) + 1T3,3(4)
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Figure 4.2.4: Classification of restrict outer planar maps of size 3 and valency 2.

Figure 4.2.5: Classification of restrict outer planar maps of size 3 and valency 3.

Figure 4.2.6: Classification of restrict outer planar maps of size 3 and valencies 4–6.

and

F4,3 = 5 ⇒ 2T4,3(1) + 3T4,3(2);
F5,3 = 3 ⇒ 3T5,3(1);
F6,3 = 1 ⇒ 1T6,3(1).

Onemight like to see if it is possible to get an explicision of the solution f ∈ ℛ{x, y}
of equation (4.2.20). Because h ∈ ℛ{y} is unknown as well, a parameter ξ ∈ ℛ{y}
instead of x has to be considered to satisfy the characteristic equation as in (4.2.14),

{
1 − ξ + ξ 3y = 0;
h = ξ 2,

(4.2.25)

from the equivalence (4.2.22) of equation (4.2.20).
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Let ξ be determined by Pi = 𝜕iyξ for i ≥ 0. From equation (4.2.25), we have

y0 P0 = 1⇒ P0 = 1 ⇒ P[2]0 = 1,P
[3]
0 = 1;

y1 P1 = P
[3]
0 ⇒ P0 = 1 ⇒ P[2]1 = 2,P

[3]
1 = 3;

y2 P2 = P
[3]
1 ⇒ P2 = 3 ⇒ P[2]2 = 7,P

[3]
2 = 12;

y3 P2 = P
[3]
2 ⇒ P3 = 12 ⇒ P[2]3 = 30,P

[3]
3 = 55;

yn(n ≥ 4)
{{
{{
{

Pn = P
[3]
n−1 ⇒

P3 =
n−1
∑
i=0

PiP
[2]
n−1−i
⇒

{{{{{
{{{{{
{

P[2]n =
n−1
∑
i=0

PiPn−1−i,

P[3]n =
n
∑
i=0

PiP
[2]
n−i.

(4.2.26)

Let h be determined by Hn for n ≥ 0. Because of h = ξ 2 in (4.2.25), we have

Hn = {
1, when n = 0;
∑ni=0 PiPn−i, when n ≥ 1.

(4.2.27)

Theorem 4.2.12. Let frop = f (x, y) be the solution of equation (4.2.20) and hrop =
frop|x=1 = h(y), then we have

𝜕nyhrop = {
1, when n = 0;
2(3n+1)!
n!(2n+2)! , when n ≥ 1,

(4.2.28)

and

𝜕(m,n)(x,y) frop = {
1, when m = 0, n = 0;
∑mk=⌈m/2⌉

3k−m
n−k (

3n−m−1
n−k−1 )(

k
m−k), when n ≥ 1, 1 ≤ m ≤ 2n;

(4.2.29)

Proof. Because of hrop = h and hence 𝜕nyhrop = Hn in (4.2.27), (4.2.28) can be done by
induction on n. On the basis of (4.2.23), (4.2.29) can be done by induction on n.

Corollary 4.2.13. For integer n ≥ 1, we have the identity

2(3n + 1)!
n!(2n + 2)!

= ∑
⌈m/2⌉≤k≤m
1≤m≤2n

3k −m
n − k
(
3n −m − 1
n − k − 1

)(
k

m − k
). (4.2.30)

Proof. It canbedirectly provedby inductiononnas a result of (4.2.25) and (4.2.26).

This corollary suggests us to determine the function h of one variable first if the
direct determination of the function f of two variables needs some sophistication in
solving the equation for f ∈ ℛ{x, y} involving h = f |x=1 ∈ ℛ{y}.
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4.3 Quadratic forms

Consider the equation about f ∈ ℛ{x, y} as

{
x2y(1 − x2)f 2 − (1 − x2 + x2y)f + (1 − x2) + x2yh = 0;
f |x=0,y=0 = 1,

(4.3.1)

where h = f (1, y) ∈ ℛ{y}. This is equation (10) in Introduction when a = b = c = d = 1
because of it is meaningful in a classification of Eulerian planar maps.

For convenience, its equivalence

f = 1 + x2y
1 − x2
(h − f ) + x2yf 2 (4.3.2)

is used.
Because of the occurrences of x always in the formof x2, by the substitution z = x2,

equation (4.3.2) becomes

f = 1 + zy
1 − z
(h − f ) + zyf 2. (4.3.3)

Let F⋆,n = 𝜕ny f and Hn = 𝜕
n
yh, then we have

Hn = F⋆,n|z=1 = ∑
m≥0

Fm,n (4.3.4)

where Fm,n = 𝜕
(m,n)
(z,y) f ,m, n ≥ 0.

Writing F[2]⋆,n = 𝜕
n
y f

2,

F[2]⋆,n =
n
∑
i=0

F⋆,iF⋆,n−i, (4.3.5)

by (4.3.3),

F⋆,n = {
1, when n = 0;
zF[2]⋆,n−1 +

z(Hn−1−F⋆,n−1)
1−z , when n ≥ 2.

From (4.3.4), it is seen that

Hn−1 − F⋆,n−1 = ∑
m≥0
(Fm,n−1 − Fm,n−1z

m)

= (1 − z) ∑
m≥1

Fm,n−1(
m−1
∑
i=0

zi)

= (1 − z)∑
i≥0
( ∑
m≥i+1

Fm,n−1)z
i.

Therefore,

F⋆,n = {
1, when n = 0;
z(F[2]⋆,n−1 +∑i≥0(∑m≥i+1 Fm,n−1)z

i), when n ≥ 1.
(4.3.6)
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92 | 4 Equations of function with several variables

Observation 4.3.1. For any integer n ≥ 1, F∗,n is determined by all F∗,k , 0 ≤ k ≤ n − 1.

Proof. From (4.3.6), it is seen that for thewhole right hand sideof the relation involving
F∗,n there is only dependence on F∗,k, 0 ≤ k ≤ n − 1. This implies the conclusion.

On the basis of this observation, we are allowed to establish the qualitative theory
of equation (4.3.1).

Theorem 4.3.2. Equation (4.3.1) onℛ{z, y} is well-defined.

Proof. On the basis of Observation 4.3.1, all F∗,n can be determined from the initial
conditiononℛ{x, y}. Hence, equation (4.3.1) has, and is theonly one tohave, a solution
onℛ{x, y}.

In order to evaluate the solution f ∈ ℛ{x, y} of equation (4.3.1), its relative struc-
tures have be investigated.

Lemma 4.3.3. For any integer n ≥ 0, F⋆,n is a polynomial of z with degree of z at most n.

Proof. We proceed by induction on n. Because of F⋆,0 = 1, the conclusion is true when
n = 0. For general n ≥ 1, assume the truth for k, n = k ≥ 1. By (4.3.6),

F⋆,k+1 = z(F
[2]
⋆,k +∑).

From the assumption, F[2]⋆,k is a polynomial of z with the degree at most k. Since the
degree of ∑ is less than that of F[2]⋆,k, the degree of zF

[2]
⋆,k is at most k + 1. Hence, for

n = k + 1, the degree of F∗,n is at most n. This is the conclusion.

This lemma enables us to get the solution of equation (4.3.1) in a recursion as a
sum of finite terms.

Lemma 4.3.4. For any integer n ≥ 0, F⋆,n has all coefficients of terms in ℤ+.

Proof. We proceed by induction on n. Because of only addition andmultiplication be-
ing used for getting F∗,n from F∗,k, 0 ≤ k ≤ n − 1, the conclusion is drawn.

This lemma enables us to see that all coefficients of the terms in F∗,n are positive.

Theorem 4.3.5. The solution f ∈ ℛ{x, y} of equation (4.3.1) determined by F∗,n = 𝜕ny f for
n ≥ 0 as a recursion in form, as a sum with all terms positive, is

F⋆,n =
{
{
{

1, when n = 0;
z(∑n−1i=0 F⋆,iF⋆,n−i +∑ i+1≤m≤n−1

0≤i≤n−1
Fm,n−1zi), when n ≥ 1.

(4.3.7)

Proof. On the basis of the two lemmas, by (4.3.5), (4.3.6) becomes (4.3.7).
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Example 1. Isomorphic classification of planar Eulerian rooted maps with size and
root-vertex valency are arbitrarily given. By (4.3.7),

F⋆,1 = z(F
2
⋆,0 + 0) = z(1 + 0) = z,

F⋆,2 = z(2F⋆,0F⋆,1 + F1,1) = z(2z + 1)

= z + 2z2,

F⋆,3 = z(2F⋆,0F⋆,2 + F
2
⋆,1 + ∑

i+1≤m≤2
0≤i≤1

Fm,2x
i)

= z(2z + 5z2 + 3 + 2z)

= 3z + 4z2 + 5z3,

F⋆,4 = z(2F⋆,0F⋆,3 + 2F⋆,0F⋆,3 + ∑
i+1≤m≤3=0

0≤i≤2

Fm,3x
i)

= z(6z + 10z2 + 14z3 + 12 + 9z + 5z2)

= 12z + 15z2 + 15z3 + 14z4.

Wemight state that the solutions of equation (4.3.1), denoted by fpE = f (x, y) ∈ ℛ{x, y}
and hpE = fpE|x=1 = h(y) ∈ ℛ{y}, are, respectively,

fpE = 1 + (z)y + (z + 2z
2)y2 + (3z + 4z2 + 5z3)y3

+ (15z2 + 15z3 + 14z4)y4 + ⋅ ⋅ ⋅

and

hpE = 1 + (1)y + (3)y
2 + (12)y3 + (56)y4 + ⋅ ⋅ ⋅

where z = x2.
In Figures 4.3.1–4.3.5, aTm,n stands for a figure which is a map of size n and root-

vertex valencym with a root-isomorphic classes, 2 ≤ m ≤ 8 and 1 ≤ n ≤ 4.

Figure 4.3.1: Classes of planar Euler root-maps of size 1–2.
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94 | 4 Equations of function with several variables

Figure 4.3.2: Classes of planar Euler root-maps of size 3.

From Figures 4.3.1 through 4.3.2, it is seen that planar Euler root-maps of size 1 have 1
class, i. e., 1T2,1, the coefficient F⋆,1 = x2 of the term y in fpE; planar Euler root-maps of
size 2 have 3 classes, i. e., 1T2,2+2T4,2, the coefficient F⋆,2 = x2+2x4 of term y2 in fpE and
the planar Euler root-maps have 3 classes, i. e., (2T2,3+4T4,3)+(3T6,3)+(2T6,3)+(1T2,3) =
3T2,3 + 4T4,3 + 5T6,3, the coefficient F⋆,4 = 3x2 + 4x4 + 5x6 of the term y4 in fpE.

From Figs. 4.3.3 through 4.3.5, it is seen that planar Euler root-maps of size 4 have
56 classes, i. e., (2T2,3 + 4T4,3) + (3T6,3) + (2T6,3) + (1T2,3) = 3T2,3 + 4T4,3 + 5T6,3, the
coefficient F⋆,4 = 3x2 + 4x4 + 5x6 of the term y4 in fpE.

Figure 4.3.3: Classes of planar Euler root-maps of size 4 I.

Figure 4.3.4: Classes of planar Euler root-maps of size 4 II.
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Figure 4.3.5: Classes of planar Euler root-maps of size 4 III.

Example 2. Consider the equation about f ∈ ℛ{x, y} as

{
x2y(1 − x)f 2 − (1 − x + x2y)f + xyh + (1 − x) = 0;
f |x=0,y=0 = 1,

(4.3.8)

where h = f (1, y) ∈ ℛ{y}.
For convenience, its equivalent form

f = 1 + xy
1 − x
(h − xf ) + x2yf 2 (4.3.9)

is adopted. Similarly, a qualitative theory is established and for equation (4.3.8) its
solution is evaluated for getting a recursion in the formof a sumwith all termspositive.

4.4 Forms of degree not less three

Consider the equation about f ∈ ℛ{x, y} as

{{
{{
{

f = x2y + x2y(f − h)
x2(1 + h)2 − (1 + f )2

;

f |y=0 = 0 (⇒ hy=0 = 0),
(4.4.1)

where h = f (1, y) ∈ ℛ{y}. This is equation (11) in Introductionwhen a = c = 1 and d = 0
because it is meaningful in a classification for non-separable Euterian planar maps

Since only x2 appears in the equation, let z = x2, equation (4.4.1) becomes

{
{
{

f = zy + zy(f − h)
z(1 + h)2 − (1 + f )2

;

f |y=0 = 0 (⇒ hy=0 = 0),
(4.4.2)

where h = f (1, y).
For convenience, equation (4.4.2) is equivalently transformed into

{
(f − zy)(z(1 + h)2 − (1 + f )2) = zy(f − h);
f |y=0 = 0(⇒ hy=0 = 0).

(4.4.3)
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96 | 4 Equations of function with several variables

For any integer n ≥ 0, let

F[i]∗,n = {
𝜕ny f = [f ]n = F∗,n, when i = 1;
𝜕ny f

i = [f i]n = [f [i]]n, when i ≥ 2.
(4.4.4)

As a matter of fact, only i = 2 is used here. Because of

F[2]∗,n =
n
∑
j=0

F∗,n−iF∗,i, n ≥ 0, (4.4.5)

and because of h = f |z=1, for any integer n ≥ 0,

{{{
{{{
{

Hn = 𝜕
n
yh = F∗,n|z=1;

H[2]n =
n
∑
j=0

Hn−iHi,
(4.4.6)

our aim is to determine all functions F∗,n with one variable z for n ≥ 0.
For convenience in the usage of equation (4.4.3), we notice that

[1 + f ]n = 𝜕
n
y (1 + f ) = {

1 + F∗,0, when n = 0;
F∗,n, when n ≥ 1,

(4.4.7)

and

[1 + f ][2]n = 𝜕
n
y (1 + f )

2 = {
(1 + F∗,0)2, when n = 0;
2F∗,n + F[2]∗,n, when n ≥ 1.

(4.4.8)

From (4.4.6), we have

[1 + h]n = 𝜕
n
y (1 + h) = {

1 + H0, when n = 0;
Hn, when n ≥ 1,

(4.4.9)

and

[1 + h][2]n = 𝜕
n
y (1 + h)

2 = {
(1 + H0)

2, when n = 0;
2Hn + H[2]n , when n ≥ 1.

(4.4.10)

Because of

[(f − zy)(z(1 + h)2 − (1 + f )2)]0 = [f − zy]0[z(1 + h)
2 − (1 + f )2]0

= [f ]0(z[(1 + h)
2]0) − [(1 + f )

2]0, by (4.4.10) and (4.4.8),

= F∗,0(z(1 + H0)
2 − (1 + F∗,0)

2)
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and

[zy(f − h)]0 = 0.

From equation (4.4.3), we have

F0(z(1 + H0)
2 − (1 + F0)

2) = 0. (4.4.11)

It is seen that the initial condition of equation (4.4.3) is satisfied, i. e.,

F∗,0 = 0 ⇒ {
H0 = 0 ⇒ H[2]0 = 0
F[2]∗,0 = 0.

(4.4.12)

For any integer n ≥ 1, because of

[(f − zy)(z(1 + h)2 − (1 + f )2)]n

=
n
∑
i=0
[f − zy]i[z(1 + h)

2 − (1 + f )2]n−i, by (4.4.12),

=

{{{{{{
{{{{{{
{

(F∗,1 − z)[z(1 + h)2 − (1 + f )2]0 = (F∗,1 − z)(z − 1),
when n = 1;

F∗,n(z − 1) +∑
n−1
i=1 F∗,n−i(z[1 + h]

[2]
i − [1 + f ]

[2]
i ),

when n ≥ 2

and

[zy(f − h)]n = z(Fn−1 − Hn−1),

from equation (4.4.3), we have

{{{{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{{{{
{

(F∗,1 − z)(z − 1) = z(F0 − H0) ⇒ F∗,1 − z = 0
⇒ F1 = z, when n = 1;

F∗,2(z − 1) = z(F1 − H1) ⇒ F∗,2(z − 1) = z(z − 1)
⇒ F2 = z, when n = 2;

F∗,n(z − 1) = z(F∗,n−1 − Hn−1) +
n−2
∑
i=1

F∗,n−i([1 + f ]
[2]
i − z[1 + h]

[2]
i )

⇒ F∗,n = z
F∗,n−1 − Hn−1

z − 1
+
n−2
∑
i=1

F∗,n−i
[1 + f ][2]i − z[1 + h]

[2]
i

z − 1
,

when n ≥ 3.

(4.4.13)

Theorem 4.4.1. Equation (4.4.2) is well-defined onℛ{z, y}.

Proof. From (4.4.4) and (4.4.10), all F∗,n, n ≥ 2, are determined by Fi, 0 ≤ i ≤ n − 1. It is
easy to see that F∗,n ∈ ℛ{z} ⊆ ℛ{z, y}. Therefore, f ∈ ℛ{z, y} is a solution of equation
(4.4.3). Furthermore, F∗,n, n ≥ 1, is determined by the value of F0. From the initial
condition of equation (4.4.3), this solution is the only one.
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Assume that F∗,n is a polynomial of z with degreemn, i. e., it has the form

F∗,n =
mn

∑
j=0

Fj,nz
j (4.4.14)

where Fj,n ∈ ℛ, 0 ≤ j ≤ mn, n ≥ 1.
From (4.4.6),

Fn−1 − Hn−1 =
mn−1

∑
j=1

Fj,n−1(z
j − 1)

= (z − 1)
mn−1

∑
j=1

Fj,n−1(1 + z + ⋅ ⋅ ⋅ + z
j−1)

= (z − 1)
mn−1−1
∑
k=0
(

mn−1

∑
j=k+1

Fj,n−1)z
k .

(4.4.15)

On one hand, from (4.4.4) and (4.4.6),

F[2]∗,i − zH
[2]
i =

i
∑
j=1
(F∗,jF∗,i−j − zHjHi−j)

= z(z − 1)
i
∑
j=1

mj+mi−j−1

∑
t=0
(
mj+mi−j

∑
s=t+1

Λ(s)j,i )z
t ,

where

Λ(s)j,i =
{{{
{{{
{

0, when 0 ≤ s < 2;
∑ k+l=s

1≤k≤mj
1≤l≤mi−j

Fk,jFl,i−j, when s ≥ 2, (4.4.16)

and

F∗,i − zHi =
mi

∑
j=1

Fj,i(z
j − z)

= z(z − 1)
mi

∑
j=2

Fj,i(1 + z + ⋅ ⋅ ⋅ + z
j−2)

= z(z − 1)
mi−2
∑
t=0
(

mi

∑
j=t+2

Fj,i)z
t .

From (4.4.8) and (4.4.10),

[1 + f ][2]i − z[1 + h]
[2]
i = 2(F∗,i − zHi) + (F

[2]
∗,i − zH

[2]
i )

= z(z − 1)(2
mi−2
∑
t=0
(

mi

∑
j=t+2

Fj,i)z
t +

i
∑
j=1

mj+mi−j−1

∑
t=0
(
mj+mi−j

∑
s=t+1

Λ(s)j,i )z
t).

(4.4.17)
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4.4 Forms of degree not less three | 99

By (4.4.15) and (4.4.17), (4.4.13) leads to

F∗,n =

{{{{{{{{{{{{
{{{{{{{{{{{{
{

0, when n = 0;
z, when n = 1, 2, 3;
z∑mn−1−1

k=0 (∑
mn−1
j=k+1 Fj,n−1)z

k

+ z∑n−2i=1 Fn−i(2∑
mi−2
t=0 (∑

mi
j=t+2 Fj,i)z

t

+∑ij=1∑
mj+mi−j−1
t=0 Aj,izt),

when n ≥ 4,

(4.4.18)

where

Aj,i =
mj+mi−j

∑
s=t+1

Λ(s)j,i , (4.4.19)

and Λ(s)j,i is given by (4.4.16).
From (4.4.18) and (4.4.19), it is seen that F∗,n, n ≥ 0, provides an expression of the

solution f ∈ ℛ{z, y} of equation (4.4.2).

Lemma 4.4.2. For any integer n ≥ 2, F∗,n is a polynomial of z with degree ⌊n/2⌋.

Proof. For a polynomial P of z, denote by μ(P) the degree of P, we showmn = μ(F∗,n) =
⌊n/2⌋. From (4.4.5),

μ(F[2]∗,n) = max
0≤i≤n
(mn−i +mi). (4.4.20)

It is easily seen that when n = 2 and 3, the conclusion is checked to be true. We
proceed by induction on n ≥ 4, assume for any 0 ≤ i ≤ n − 1, μ(F∗,i) = mi = ⌊i/2⌋, to
provemn = ⌊n/2⌋.

From (4.4.5), it is seen that μ(F[2]∗,n) ≤ max{μ(Fn−i) + μ(F∗,i) | 0 ≤ i ≤ n} = ⌊n/2⌋.
Because of F∗,0 = 0, ⌊n/2⌋ = max{μ(F∗,n−i) + μ(F∗,i) | 1 ≤ i ≤ n − 1} = ⌊n/2⌋. By the
assumption,

⌊n/2⌋ ≤ max
1≤i≤n−1
{μ(F∗,n−i) + μ(F∗,i) ≤ ⌊(n − i)/2⌋ + ⌊i/2⌋} ≤ ⌊n/2⌋.

On the other hand, for n ≥ 4, from the induction assumption, by (4.4.17), we have

μ(F∗,n) = μ(
[1 + f ][2]n−1 − z[1 + h]

[2]
n−1

z − 1
) = 1 + μ(F[2]∗,n−2)

= 1 + ⌊(n − 1)/2⌋ = 1 + ⌊n/2⌋ − 1 = ⌊n/2⌋.

From (4.4.13), the conclusion is drawn.

On thebasis of this lemma, in (4.4.18) and (4.4.19), allmi, 0 ≤ i ≤ n, canbe replaced
by ⌊i/2⌋.
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100 | 4 Equations of function with several variables

Lemma 4.4.3. For any integer n ≥ 2, all coefficients of polynomial F∗,n are non-negative
integers.

Proof. From (4.4.18) and (4.4.19), by induction on n, the conclusion can be drawn.

Theorem 4.4.4. The solution ̂f of equation (4.4.1) determined by F̂∗,n for n ≥ 0 has a
recursion in the form of a sum with all terms positive,

F̂∗,n =

{{{{{{{{{{{{
{{{{{{{{{{{{
{

0, when n = 0;
x2, when n = 1, 2, 3;
x2∑mn−1−1

k=0 (∑
⌊(n−1)/2⌋
j=k+1 F̂j,n−1)x2k

+ x2∑n−2i=1 F̂∗,n−i(2∑
⌊(i−2)/2⌋
t=0 (∑⌊i/2⌋j=t+2 F̂j,i)x

2t

+∑ij=1∑
⌊j/2⌋+⌊(i−j)/2⌋−1
t=0 Âj,ix2t),

when n ≥ 4,

(4.4.21)

where

Âj,i =
⌊j/2⌋+⌊(i−j)/2⌋
∑
s=t+1

Λ̂(s)j,i (4.4.22)

and

Λ(s)j,i =
{{{
{{{
{

0, when s = 0 and 1;
∑ k+l=s

1≤k≤⌊j/2⌋
1≤l≤⌊(i−j)/2⌋

F̂k,jF̂l,i−j, when s ≥ 2. (4.4.23)

Proof. By considering the relationship between the solution f of equation (4.4.2) and
the solution ̂f of equation (4.4.1) and Lemma 4.4.2, from (4.4.18) and Lemma 4.4.3, the
conclusion is drawn.

Example 1. Isomorphic classification of non-separable Euler planar rooted maps by
size and root-vertex valency. As a matter of fact, in (4.4.21), F̂m,n is the number of iso-
morphic classes of non-separable Euler planar rootedmapswith size n and root-vertex
valency 2m. Figures 4.4.1–4.4.3 provide, respectively, the cases for sizes 1–3, 4–5 and
6. For instance, from Figure 4.4.3, it is seen that

(1T2,6) + (2T4,6) + (2T2,6 + 2T4,6) + (2T2,6 + 4T4,6) + (1T2,6 + 4T4,6) + (T6,6)
= 6T2,6 + 12T4,6 + 1T6,6.

We might state that in non-separable Euler planar rooted maps of size 6, the root-
vertex valencies have three possibilities: 2, 4 and 6. They have, respectively, 6, 12 and
1 isomorphic classes.
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4.5 Notes | 101

Figure 4.4.1: Non-separable Euler planar rooted maps of sizes 1–3.

Figure 4.4.2: Non-separable Euler planar rooted maps of sizes 4–5.

Figure 4.4.3: Non-separable Euler planar rooted maps of size 6.

4.5 Notes

4.5.1. In solving an equation of a functionwith several variables, a universal principle
is available to find a way to reduce variables, and/or decrease its degree so that the
equation is transformed into one with less variables, or a system of equations with
less degree. How could we seek a proper manner for employing the principle? This
depends on the level of understanding the structures of the equation considered.

Most equations encountered in this book still involve some parts of the unknown
or undeterminate. In order to extract the solution needed for the equation as an ex-
plicit expression (or abbreviated, as explicision), via a certain number of characteris-
tic curves excluding the whole unknown, to evaluate parts of the unknown such that
the equation is transformed into an ordinary one without any part of the unknown.
The Tutte quadratic method, or multi-root method, is an example only for quadratic
equations. See Tutte WT [80–84].
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102 | 4 Equations of function with several variables

However, in this book, all equations considered, or relevant, are addressed with-
out usage of this method. In consequence, the solutions with its companion parts are
evaluated at the same time.

4.5.2. A linear equation of an unknown with a companion part in variables comes
from the research of root-isomorphic classification for outer planar maps; see Liu
YP [23–26]. Based on these is the method of characteristic curves, as shown by (4.2.14)
in 4.2. It is different from Tutte’s.

4.5.3. If f in equation (4.1.5) is replaced by

g = f − x
2y

x
, i. e., f = xg − (xy)2, (4.5.1)

then we have

xg = (xy)g + (xy)
2

1 − (xy) − g
− (xy)g − (xy)2. (4.5.2)

By substituting z = xy, we have

{
(x + z)g2 − (x − xz − 2z2)g + z2 = 0;
g|x=0,z=0.

(4.5.3)

Theorem 4.5.1. Equation (4.5.3) is well-defined inℛ{x, z}. Its solution g, determined by
Gn = 𝜕

n
z g(n ≥ 0) ∈ ℛ{x}, is of the form of a sum with terms positive,

xGn =

{{{{{{
{{{{{{
{

0, when 0 ≤ n ≤ 2;
0, when n = 3;
x∑n−3i=3 G∗,iG∗,n−i +∑

n−4
i=3 G∗,iG∗,n−1−i + xG∗,n−1 + 2G∗,n−2,

when n ≥ 4.

(4.5.4)

Proof. Thefirst conclusion is fromTheorem4.4.1. The second conclusion is drawn sim-
ilarly to the proof of Theorem 4.4.4.

4.5.4. In Liu YP [51] (equation (8.1.15), p. 211) a very early version in [13] (equation
(3.8), 1984), one might find the equation for f ∈ ℛ{x, y},

{
x2y(1 − x)f 2 − (1 − x + x2y)f + xyh + (1 − x) = 0;
f |x=0,y=0 = 1,

(4.5.5)

where h = f (1, y) ∈ ℛ{y}.
By transforming equation (4.5.5) into its equivalent form,

{
{
{

f = 1 + xy
1 − x
(h − xf ) + x2yf 2;

f |y=0⇒x=0 = 1,
(4.5.6)
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4.5 Notes | 103

similar to Theorems 4.3.2 and 4.3.5, that equation (4.5.6) is well-defined and its so-
lution has the form of a finite sum with all terms positive can also be seen. In fact,
the solution is determined by F∗,n (n ≥ 1), which is a polynomial of x with degree not
greater than 2n and all coefficients in 𝒵+.

4.5.5. From the decomposition principle presented by Liu YP [21] (1986), equation
(4.4.1) can easily be derived. In Liu YP [40] (1992), an explicision of its solution in
summation-free form is also provided. Equation (1) in Liu YP [42] (1992) is just equa-
tion (4.4.23).

4.5.6. From (4.4.21), by substituting z = x2, a solution of equation (4.4.1) is done in
ℛ{x, y}. Although recursion is very convenient for efficientization and intelligentiza-
tion, explicision is necessary for use of computers. For convenience, an explicision of
an implicit function is also necessary.We need to get an explicision of the solution f of
equation (4.4.1) determined by F∗,n (n ≥ 0)without the knowledge of F∗,i (0 ≤ i ≤ n−1).

Let g = f + 1 and l = h + 1, for getting an equivalence of equation (4.4.1),

{
g3 − (1 + x2y)g2 + x2(y − l2)g + x2(l2 − yl + x2yl2) = 0;
g|x=y=0 = 1,

(4.5.7)

where l = g(1, y) ∈ ℛ{y}.
Because equation (4.4.21) is of degree three with a part l of the unknown f , certain

complications are involved in the evaluation. In order to determine l, a parameter q =
q(y) ∈ ℛ{x, y} is introduced satisfying the relation

q − 1 = l(yq2) (4.5.8)

and we have the equation

{
x2y(x2 − 1)p2 + (x2y − x2 + 1)p + x2 − 1 − x2yq = 0;
p|x=y=0 = 1,

(4.5.9)

to determine q = p(1, y).
On ℛ{x, y}, whenever the substitution z = x2 is employed, equation (4.5.9) be-

comes

{
zy(z − 1)f 2 + (zy − z + 1)f + z − 1 − zyq = 0;
f |x=y=0 = 1,

(4.5.10)

where q = f (1, y).
In Section 4.3, the solution of equation (4.3.3) is shown by (4.3.6). The case of z = 1

is just q.
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5 Difference equations

5.1 With straight difference of one variable

Consider the equation for f ∈ ℛ{x}

{
f (1 − xyδ1,x(xf )) = 1;
f |y=0⇒x=0 = 1, (5.1.1)

where δ1,x(xf ) = ((xf )x=1 − (xf ))/(1 − x) is the straight difference of xf between 1 and
x. This is equation (12) in Introduction when a = c = d = 1 it being meaningful in the
classification for loopless planar maps.

Since only one variable x is involved, the equation is said to be in straight differ-
ence form of one variable.

For any integer n ≥ 0, let F∗,n = [f ]n = 𝜕ny f , then
𝜕ny f (1 − xyδ1,x(xf )) = n

∑
i=0 F∗,i[1 − xyδ1,x(xf )]n−i. (5.1.2)

Write h = f |x=1 and Hn = [h]n = 𝜕nyh, n ≥ 0, then

[1 − xyδ1,x(xf )]j = [1 − xy h − xf1 − x
]
j
. (5.1.3)

When j = 0,

[1 − xyδ1,x(xf )]0 = 1. (5.1.4)

When j ≥ 1,

[1 − xyδ1,x(xf )]j = −[xy h − xf1 − x
]
j

= −
x

1 − x
[h − xf ]j−1

= −
x

1 − x
(Hj−1 − xF∗,j−1).

(5.1.5)

Lemma 5.1.1. Equation (5.1.1) for f ∈ ℛ{x, y} is equivalent to the equation system

{
𝜕0y (f (1 − xyδ1,x(xf ))) = 1, n = 0;
𝜕ny (f (1 − xyδ1,x(xf ))) = 0, n ≥ 1m

(5.1.6)

for {F∗,n = 𝜕ny f | n ≥ 0} ⊆ ℛ{x}.
https://doi.org/10.1515/9783110625837-005
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106 | 5 Difference equations

Proof. Because of

𝜕0y (f (1 − xyδ1,x(xf ))) = [f (1 − xyδ1,x(xf ))]0
and (5.1.2),

[f (1 − xyδ1,x(xf ))]0 = F∗,0[1 − xyδ1,x(xf )]0, (5.1.2),
= F0,0, from the initial condition,
= 1.

(5.1.7)

This is the case of n = 0 in (5.1.6).
For any integer n ≥ 1, from (5.1.2) and (5.1.6),

𝜕ny (f (1 − xyδ1,x(xf ))) = [f (1 − xyδ1,x(xf ))]n, from (5.1.2),

=
n
∑
i=0 Fi[1 − xyδ1,x(xf )]n−i, from (5.1.4) and (5.1.5),

= F∗,n − x
1 − x

n−1
∑
i=0 F∗,i(Hn−i−1 − xF∗,n−i−1)

= 0.

This is the general case of equation (5.1.1), i. e.,

F∗,n = x
1 − x

n−1
∑
i=0 F∗,i(Hn−i−1 − xF∗,n−i−1). (5.1.8)

Therefore, the conclusion is drawn.

Observation 5.1.2. For integer j ≥ 0, (1 − x)|(Hj − xF∗,j).
Proof. For j ≥ 0, it is seen that Hj = F0,j + F1,j + ⋅ ⋅ ⋅ + Fi,j + ⋅ ⋅ ⋅ where F∗,j = F0,j + F1,jx +
⋅ ⋅ ⋅ + Fi,jxi + ⋅ ⋅ ⋅. When i = j = 0, because of F0,0 − xF0,0 = 1 − x, the conclusion is true.
For i, j ≥ 1, because of

Fi,j − xFi,jxi = Fi,j(1 − xi+1) = Fi,j(1 − x)( i
∑
l=0 xl),

we have (1 − x)|(Fi,j − xFi,jxi). From
Hj = ∑

i≥0 Fi,j
we have (1 − x)|(Hj − xF∗,j). This is the conclusion.

This observation enables us to see that, for any integer n ≥ 0,

Hn − xF∗,n
1 − x

∈ ℛ{x}

is a polynomial of x.
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5.1 With straight difference of one variable | 107

Observation 5.1.3. For integer j ≥ 0, F∗,j is a polynomial of x with degree j.
Proof. When n = 0, F∗,0 = δ∗,0F0,0 = 1 is a polynomial of x with degree 0 = n. By
induction, for n ≥ 1, assume for any 0 ≤ k ≤ n− 1, F∗,k is a polynomial of x with degree
k; we prove F∗,n is a polynomial of x with degree n. Let dF = d(F) be the degree of F
and write dk = d(F∗,k). From (5.1.8), we have

d(F∗,j) = 1 + d( j−1∑
i=0 F∗,iHj−i−1 − xF∗,j−i−1

1 − x
)

= 1 + d(F∗,j−1), by induction assumption,
= 1 + (j − 1) = j.

(5.1.9)

This is the conclusion.

This observation enables us only to discuss Fm,n for 0 ≤ m ≤ n whenever n ≥ 1 is
given. Moreover, for n ≥ 1, all F∗,n are seen without a constant term not zero. So, it is
only necessary to consider n ≥ 1.

Theorem 5.1.4. Equation (5.1.1) is well-defined inℛ{x, y}.

Proof. Because of a solution f of equation (5.1.1) is determined by F∗,n for n ≥ 0 in
Lemma 5.1.1, (5.1.7) and (5.1.8), one is led to the conclusion.

Because there is no constant in F∗,n for n ≥ 1, (5.1.9) enables us to write
{
F∗,n = F1,nx + F2,nx2 + ⋅ ⋅ ⋅ + Fn,nxn, ;
Hn = F1,n + F2,n + ⋅ ⋅ ⋅ + Fn,n, (5.1.10)

for {Fj,n | n ≥ j ≥ 1} ⊆ ℛ.
For any integer j ≥ 0, from (5.1.10),

Hj − xF∗,j = j
∑
l=1 Fl,j(1 − xj+1)

= (1 − x)
j
∑
l=1 Fl,j( j
∑
s=0 xs)

= (1 − x)(Hj + ∑
l≤s≤j
1≤l≤j

Fs,jxl),
and hence

Hj − xF∗,j
1 − x

= Hj + ∑
l≤s≤j
1≤l≤j

Fs,jxl. (5.1.11)
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108 | 5 Difference equations

By substituting (5.1.11) into (5.1.8),

F∗,n = x n−1
∑
i=0 F∗,i(Hn−i−1 + ∑

l≤s≤n−i−1
1≤l≤n−i−1

Fs,n−i−1xl). (5.1.12)

From (5.1.7) and (5.1.12),

F∗,n = {{{{{{
{

1, when n = 0;
x∑n−1i=0 F∗,i(Hn−i−1 +∑n−i−1l=1 Λl,n−i−1xl), from F0,k = 0 (k ≥ 1),
= x(F∗,n−1 +∑ 0≤l≤n−i−1

0≤i≤n−2
F∗,iΛl,n−i−1xl), when n ≥ 1,

(5.1.13)

where

Λl,n−i−1 = n−i−1∑
s=l Fs,n−i−1. (5.1.14)

Theorem 5.1.5. The solution f of equation (5.1.1) onℛ{x, y} is determined by F∗,n = 𝜕ny f ∈
ℛ{x} for n ≥ 0 i in the form of a sum with finite terms all positive as

F∗,n = {{
{

1, when n = 0;
x(F∗,n−1 +∑ 0≤l≤n−i−1

0≤i≤n−2
F∗,iΛl,n−i−1xl), when n ≥ 1,

(5.1.15)

where Λl,n−i−1 is given in (5.1.14).
Proof. This is a result of (5.1.13) and (5.1.14).

Example 1. Classification of loopless planar rooted maps by size and root-vertex va-
lency. In Liu YP [36], one finds the equation

f = 1 +
xyδ1,x(xf )

1 − xyδ1,x(xf ) . (5.1.16)

One of its solutions is just the enufunction of root-isomorphic classes of loopless
planar maps with size and root-vertex valency as two parameters. However, attention
should be paid to the fact that u, v, h and h1 in [36] are, respectively, x, y f and h here.

Because of the existence of (1 − xyδ1,x(xf ))−1 onℛ{x, y}, equation (5.1.16) is equiv-
alent to equation (5.1.1). See Figure 5.1.1 for sizes between 0 and 2.

In Figure 5.1.2, the distinct root-isomorphic classes of loopless planar maps with
size 3 are provided by

(T1,3 + T3,3) + (T1,3 + 2T2,3) + (T1,3 + 2T2,3 + 3T3,3) + (T3,3) + (T2,3)
= (1 + 1 + 1)T1,3 + (2 + 2 + 1)T2,3 + (1 + 3 + 1)T3,3
= 3T1,3 + 5T2,3 + 5T3,3.
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5.1 With straight difference of one variable | 109

Figure 5.1.1: Classes of loopless planar rooted maps with sizes: 0–2.

Figure 5.1.2: Classes of loopless planar rooted maps with size 3.

In Figure 5.1.3, the distinct root-isomorphic classes of loopless planar maps with size
4 are provided by

(T1,4 + 3T2,4) + (3T1,4 + 2T2,4 + 3T3,4) + (T1,4 + T4,4)
+ (T1,4 + 4T2,4 + 3T3,4) + (T1,4 + 4T2,4 + 3T3,4)
= (1 + 3 + 1 + 1 + 1)T1,4 + (2 + 2 + 4 + 4)T2,4
+ (3 + 3 + 3)T3,4 + T4,4
= 7T1,4 + 13T2,4 + 9T3,4 + T4,4.

Figure 5.1.3: Classes of loopless planar rooted maps with size 4 I.
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Figure 5.1.4: Classes of loopless planar rooted maps with size 4 II.

Figure 5.1.5: Classes of loopless planar rooted maps with size 4 III.

In Figures 5.1.4 and 5.1.5, the distinct non-isomorphic classes of loopless planar maps
with size 4 are provided by

(2T1,4 + 2T2,4 + 4T4,4) + (T1,4 + 3T3,4 + 4T4,4)
+ (T2,4 + 3T3,4) + (T4,4) + (2T2,4 + 2T4,4)
= (2 + 1)T1,4 + (2 + 1 + 2)T2,4 + (3 + 3)T3,4
= +(4 + 4 + 1 + 2)T4,43T1,4 + 5T2,4 + 6T3,4 + 11T4,4,

(T1,4 + T2,4 + 2T4,4) + (T1,4 + 3T3,4) + (T1,4 + 3T3,4) + (T2,4)
= (1 + 1 + 1)T1,4 + (1 + 1)T2,4 + (3 + 3)T3,4 + (2)T4,4
= 3T1,4 + 2T2,4 + 6T3,4 + 2T4,4.

In Figures 5.1.3–5.1.5, the distinct root-isomorphic classes of loopless planarmaps
with size 4 are provided by

13T1,4 + 20T2,4 + 21T3,4 + 14T4,4.
This is F∗,n for n = 4 in (5.1.13), i. e.,

F4 = 13x + 20x
2 + 21x3 + 14x4.
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5.2 Form of several straight differences | 111

5.2 Form of several straight differences

Consider the equation for f ∈ ℛ{y, z, t}

{
f (1 + yzt(ft=1 + fz=1)) = 1 + yzt(δ1,t(tf ) + δ1,z(zf ));
f |y=0⇒z=t=0 = 1. (5.2.1)

This is equation (13) in Introduction when a = b = c = d = 1 because it is mean-
ingful in the dichrosum (i. e., dichromate sum) for ordinary planar maps.

In the equation, both a straight difference for z anda straight difference for t occur.
So, this equation is said to be in the form of several straight differences.

Because of f ∈ ℛ{y, z, t}, whenever all F∗,n = 𝜕ny f ∈ ℛ{z, t} for n ≥ 0 are determined
by equation (5.2.1), a solution of the equation is easily found.

For convenience, let us write

{
[f |z=1]n = [f ]n|z=1 = F∗,n|z=1;
[f |t=1]n = [f ]n|t=1 = F∗,n|t=1, (5.2.2)

and

{{{{{{{{{{
{{{{{{{{{{
{

[δ1,z(zf )]n = 1
1 − z
([f |z=1]n − z[f ]n)

=
1

1 − z
(F∗,n|z=1 − zF∗,n);

[δ1,t(tf )]n = 1
1 − t
([f |t=1]n − z[f ]n)

=
1

1 − t
(F∗,n|t=1 − zF∗,n).

(5.2.3)

On the basis of (5.2.2) and (5.2.3), a procedure can be established to determine all
F∗,n for n ≥ 1 from F0 which is known by the initial condition as follows.

When n = 0,

y0 : [f (1 + yzt(f |z=1 + f |t=1))]0 = [1 + yzt(δ1,z(zf ) + δ1,t(tf ))]0.
Because of

[f (1 + yzt(f |z=1 + f |t=1))]0 = [f ]0[1 + yzt(f |z=1 + f |t=1)]0 = F0
and

[1 + yzt(δ1,z(zf ) + δ1,t(tf ))]0 = 1,
we have

F∗.0 = 1 ⇒ F∗.0|z=1 = 1 and F∗.0|t=1 = 1. (5.2.4)
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112 | 5 Difference equations

When n = 1,

y1 : [f (1 + yzt(f |z=1 + f |t=1))]1 = [1 + yzt(δ1,z(zf ) + δ1,t(tf ))]1.
Because of

[f (1 + yzt(f |z=1 + f |t=1))]1 = [f ]0[1 + yzt(f |z=1 + f |t=1)]1
+ [f ]1[1 + yzt(f |z=1 + f |t=1)]0, by (5.2.4),
= zt[f |z=1 + f |t=1]0 + F1, by (5.2.4),
= F1 + 2zt

and
[1 + yzt(δ1,z(zf ) + δ1,t(tf ))]1 = zt[δ1,z(zf ) + δ1,t(tf )]0, by (5.2.3),

= 2zt

we have F1 + 2zt = 2zt, i. e.,

F∗,1 = 0 ⇒ F∗,1|z=1 = 0 and F∗,1|t=1 = 0. (5.2.5)

For n ≥ 2, by equation (5.2.1), we have

yn : [f (1 + yzt(f |z=1 + f |t=1))]n = [1 + yzt(δ1,z(zf ) + δ1,t(tf ))]n.
On the left hand side,

[f (1 + yzt(f |z=1 + f |t=1))]n
=

n
∑
i=0[f ]i[1 − yzt(f |z=1 + f |t=1)]n−i
= F∗,n + zt n−1∑

i=0 F∗,i[f |z=1 + f |t=1]n−i−1, by (5.2.2),

= F∗,n + zt n−1∑
i=0 F∗,i(F∗,n−i−1|z=1 + F∗,n−i−1|t=1).

On the right hand side, from n ̸= 0,

[1+yzt(δ1,z(zf ) + δ1,t(tf ))]n
= zt[δ1,z(zf ) + δ1,t(tf )]n−1, by (5.2.3),

= zt(
F∗,n−1|z=1 − zF∗,n−1

1 − z
+
F∗,n−1|t=1 − tF∗,n−1

1 − t
).

Therefore, we have

F∗,n = zt(F∗,n−1|z=1 − zF∗,n−11 − z
+
F∗,n−1|t=1 − tF∗,n−1

1 − t

−
n−1
∑
i=0 F∗,i(F∗,n−i−1|z=1 + F∗,n−i−1|t=1)).

(5.2.6)

Also, F∗,n ∈ ℛ{z, t}.
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5.2 Form of several straight differences | 113

Theorem 5.2.1. Equation (5.2.1) onℛ{y, z, t} is well-defined.

Proof. It is easily seen that (5.2.4) leads to the initial condition of equation (5.2.1). From
(5.2.6), for any n ≥ 1, F∗,n is determined by only Fi, 0 ≤ i ≤ n− 1. Hence, equation (5.2.1)
has a solution onℛ{y, z, t}.

From uniqueness of the procedure of finding F∗,n for the given initial condition,
the solution is the only one.

As amatter of fact, (5.2.6) has already provided us a recursion for a finite sumwith
all terms positive.

Theorem 5.2.2. The solution of equation (5.2.1)ℛ{y, z, t} is f = 1, i. e.,

𝜕ny f = {
1, when n = 0;
0, when n ≥ 1.

(5.2.7)

Proof. When n = 0, (5.2.4) shows F∗,0 =, the initial condition of equation (5.2.1). When
n = 1, (5.2.5) shows F∗,1 = 0.

For n ≥ 2, we proceed by induction on n. Assume for any integer i, n − 1 ≥ i ≥ 1,
F∗,i = 0. We prove F∗,n = 0 by (5.2.6).

On account of the assumption,
F∗,n−1|z=1 − zF∗,n−1

1 − z
+
F∗,n−1|t=1 − tF∗,n−1

1 − t
= 0

and
n−1
∑
i=0F∗,i(F∗,n−i−1|z=1 + F∗,n−i−1|t=1)
= F∗,0(F∗,n−1|z=1 + F∗,n−1|t=1)
= 0.

Then, from (5.2.6), we have F∗,n = 0.
This is the conclusion.

Example 1. Dichrosum equation of ordinary planar rooted maps. In Tutte WT [87]
(1971), Tutte proposed the equation

ϕ = 1 + μxz2t − xzt(ϕϕt=1 − ϕt=1 − tϕ
1 − t
)

+ νyzt2 − yzt(ϕϕz=1 − ϕz=1 − zϕ
1 − z
).

(5.2.8)

By substituting x = y into equation (5.2.8), we have

ϕ = 1 + μyz2t − yzt(ϕϕt=1 − ϕt=1 − tϕ
1 − t
)

+ νyzt2 − yzt(ϕϕz=1 − ϕz=1 − zϕ
1 − z
).

(5.2.9)
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114 | 5 Difference equations

In fact, equation (5.2.1) is equation (5.2.9) for μ = ν = 0. Both equation (5.2.8) and
equation (5.2.9) are in the form of several straight differences. Although their being
well-defined can be addressed in a similar manner to that of equation (5.2.1), their
solutions are much more complicated than the solution of equation (5.2.1) is.

Example 2. Dichrosum forμ = ν = 0. Because, for the dichromat (or Tutte polynomial)
χμ,ν, we have

χ0,0(M) = {1, whenM = ϑ, the vertex map;
0, otherwise,

the dichrosum function of ordinary planarmaps is the constant 1, the solution of equa-
tion (5.2.1). The fact in this section is proved only by Theorem 5.2.2.

5.3 With slope difference of one variable

Consider the equation for f ∈ ℛ{x, y}

{
f = 1 + x2yf 2 + y𝜕1,x(x2f ) − xyhf − (h − 1)(f − 1);
f |x=0⇒y=0 = 1 (the initial condition!), (5.3.1)

where h = f |x=1 ∈ ℛ{y}. This is equation (14) in Introduction when a = b = c = d = 1
because it is meaningful in the classification of simple planar maps.

On account of the slope difference for only one variable x, the equation is called
a slope difference of one variable.

For f ∈ ℛ{x, y}, f is determined by

F∗,n = [f ]n = 𝜕ny f ∈ ℛ{x}, n ≥ 0. (5.3.2)

Thus, the problem of evaluating f for equation (5.3.1) becomes that of extracting all
F∗,n for n ≥ from the initial condition of equation (5.3.1) onℛ{x, y}.

If Fi, 0 ≤ i ≤ n, are to be found, then

F[2]∗,n = [f 2]∗,n = 𝜕ny f 2 = n
∑
i=0 F∗,iF∗,n−i. (5.3.3)

Because of

[hf ]n = 𝜕
n
y (hf ) =

n
∑
i=0[h]i[f ]n−i (5.3.4)

and

[h]n = {
F∗,0(= 1 = F∗,0|x=1), when n = 0 (the initial value!);
F∗,n|x=1, when n ≥ 1,

(5.3.5)

Brought to you by | Ludwig-Maximilians-Universität München Universitätsbibliothek (LMU)
Authenticated

Download Date | 11/2/19 5:46 PM



5.3 With slope difference of one variable | 115

we have

[hf ]n =
n
∑
i=0 Fi|x=1Fn−i. (5.3.6)

Furthermore,

[𝜕1,x(x2f )]n = x
1 − x
(F∗,n|x=1 − xF∗,n) (5.3.7)

and

[(h − 1)(f − 1)]n =
n
∑
i=0[h − 1]i[f − 1]n−i, the initial value,

= {
0, when n = 0;
∑n−1i=1 [h]ifn−i, when n ≥ 1.

(5.3.8)

On the basis of these, by equation (5.3.1),

y0 : [f ]0 = 1 − [(h − 1)(f − 1)]0, by (5.3.8),
= 1([h]0 − 1)([f ]0 − 1), by (5.3.5),

= 1 − (F0 − 1)
2

⇒ F0 = 1 − (F0 − 1)
2 = 2F0 − F

2
0

⇒ 0 = F0(1 − F0).

By the initiation of equation (5.3.1), the only possibility is

F0 = 1. (5.3.9)

From equation (5.3.1), we also have

y1 : [f ]1 = x
2[f 2]0 + [𝜕1,x(x2f )]0 − x[hf ]0 − [(h − 1)(f − 1)]1. (5.3.10)

By (5.3.9), [h − 1]0 = [f − 1]0 = F0 − 1 = 0. For any integer n ≥ 2,

[(h − 1)(f − 1)]n =
n−1
∑
i=1[h]i[f ]n−i. (5.3.11)

When n = 1, [(h − 1)(f − 1)]1 = 0. Thus, (5.3.10) becomes

[f ]1 = x
2[f 2]0 + [𝜕1,x(x2f )]0 − x[hf ]0.

By employing (5.3.3) and (5.3.7),

F1 = x
2F20 + x − xF

2
0, by (5.3.9),

= x2.
(5.3.12)
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116 | 5 Difference equations

If, for integer n ≥ 1, all F∗,i, 0 ≤ i ≤ n− 1, are known, then, by equations (5.3.1) and
(5.3.3)–(5.3.8),

yn : [f ]n = x
2[f 2]n−1 + [𝜕1,x(x2f )]n−1 − x[hf ]n−1 − [(h − 1)(f − 1)]n
= x2

n−1
∑
i=0 FiFn−1−i + x

1 − x
(Fn−1|x=1 − xFn−1)

− x
n−1
∑
i=0 Fi|x=1Fn−1−i − n−1∑i=1 Fi|x=1Fn−i.

(5.3.13)

Lemma 5.3.1. For any integer n ≥ 1, F∗,n is a polynomial of x with degree 2n and mini-
mum of degrees not less than 2.

Proof. When n = 1, from (5.3.12), the conclusion is true.
For n ≥ 2, we proceed by induction on n; assume that all F∗,i, 0 ≤ i ≤ n − 1, are

polynomials of x with the minimum not less than 2 and maximum not greater than 2i
of degrees. Denote by d(P) the degree of the polynomial P. By the assumption,

d(
n−1
∑
i=0 FiFn−1−i) = 2i + 2(n − 1 − i) = 2(n − 1),
d(Fn−1|x=1 − Fn−1) = 1 + 2(n − 1) = 2n − 1,

d(
n−1
∑
i=0 Fi|x=1Fn−1−i) ≤ 2(n − 1),

and

d(
n−1
∑
i=1[h]i[f ]n−i) ≤ 2(n − 1).

From (5.3.13),

d(F∗,n) = 2 + 2(n − 1) = 2n. (5.3.14)

By considering that F∗,n has neither a term with degree 0 of x nor a term with
degree 1 of x, the conclusion is drawn.

This lemma enables us to express F∗,n, n ≥ 1, in the form
F∗,n = 2n
∑
m=2 Fm,nxm, Fm,n ∈ ℛ. (5.3.15)

Hence, we have
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5.3 With slope difference of one variable | 117

Fn−1|x=1 − xFn−1
1 − x

=
1

1 − x
(
2(n−1)
∑
m=2 Fm,n−1(1 − xm+1))

=
2(n−1)
∑
m=2 Fm,n−1 m

∑
i=0 xi

=
2(n−1)
∑
i=0 Λi,n−1xi

(5.3.16)

where

Λi,n−1 = 2(n−1)
∑

m=max{2,i} Fm,n−1. (5.3.17)

Theorem 5.3.2. Equation (5.3.1) onℛ{x, y} is well-defined.

Proof. Via (5.3.2)–(5.3.13), F∗,n, n ≥ 0, as obtained provide a solution f of equation
(5.3.1). Because of F∗,n ∈ ℛ{x}, f ∈ ℛ{x, y}. By considering the uniqueness of F∗,n under
the initial condition, f is the only solution.

In order to clarify the solution and make it as simple as possible, its useful struc-
tures have to be further investigated.

Lemma 5.3.3. For any integer n ≥ 3, polynomial F∗,n has its minimum of degrees not
less than n.

Proof. Although we checked from (5.3.13) that, for n = 1 and 2, the minimum degree
of F∗,n is greater than n, the minimum degree of F3 is just 3.

For n ≥ 4, we proceed by induction on n. Assume for any integer i, 3 ≤ i ≤ n − 1,
that polynomial Fi has its minimum degree i. From Lemma 5.3.1,

Fi =
2i
∑
m=i Fm,ixi. (5.3.18)

Denote by l(Fi) the minimum degree of Fi, then l(Fi) = i. Because of

Fn−1|x=1 − xFn−1
1 − x

= ∑
⟨n−1,i⟩≤m≤2(n−1)

0≤i≤2(n−1)

Fm,n−1xi, (5.3.19)

we have

[𝜕1,x(x2f )]n−1 = x 2(n−1)
∑
i=0 ( 2(n−1)

∑
m=⟨n−1,i⟩ Fm,n−1)xi

= ∑
⟨n−1,i⟩≤m≤2(n−1)

0≤i≤2(n−1)

Fm,n−1xi+1, (5.3.20)
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118 | 5 Difference equations

where ⟨n − 1, i⟩ = max{n − 1, i},

x[hf ]n−1 = 2(n−1)∑
m=0 Ψm,n−1xm+1 (5.3.21)

in which

Ψm,n−1 = {{
{

∑n−1−⌊m/2⌋i=n−1−m Fi|x=1Fm,n−1−i, 0 ≤ m ≤ n − 1 ;

∑n−1−⌊m/2⌋i=0 Fi|x=1Fm,n−1−i, n ≤ m ≤ 2(n − 1) ,

and

[(h − 1)(f − 1)]n =
2(n−1)
∑
m=1 Φm,n−1xm (5.3.22)

where

Φm,n−1 = {{{{{{{{
{

∑n−1i=n−m Fi|x=1Fm,n−1−i, when 1 ≤ m ≤ 2;

∑n−⌊m/2⌋i=n−m Fi|x=1Fm,n−1−i, when 3 ≤ m ≤ n − 1,

∑n−⌊m/2⌋i=1 Fi|x=1Fm,n−1−i, when n ≤ m ≤ 2(n − 1).

Observation 5.3.4. For any integer n − 1 ≥ m ≥ 0, n ≥ 3,

Λm−1,n−1 −Ψm−1,n−1 −Φm,n−1 = 0.
Proof. The result can be found in Example 1 of this section.

On this basis, by (5.3.3), (5.3.19) and (5.3.13), the assumption leads to

l(F∗,n) = min{2 + l([f 2]n−1), l([𝜕1,x(x2f )]n−1 − x[hf ]n−1 − [(h − 1)(f − 1)]n)}
≥ min{2 + (n − 1), n} ≥ n.

Therefore, the lemma is proved.

From Lemma 5.3.1 and Lemma 5.3.3, we write

[f 2]n−1 = 2(n−1)
∑

m=n−1Ωm,n−1xm, (5.3.23)

Ωm,n−1 = ∑
l+t=m
(l,t)∈𝒮m,n−1

Fl,iFt,n−1−i, (5.3.24)

where 𝒮m,n−1 = {(l, t) | i ≤ l ≤ 2i, n − 1 − i ≤ t ≤ 2(n − 1 − i),0 ≤ i ≤ n − 1}.
Observation 5.3.5. For integer 2(n − 1) ≥ m ≥ n − 1, n ≥ 3,

Λm−1,n−1 ≥ Ψm−1,n−1 +Φm,n−1.
Proof. The result can be found in Example 1 of this section.
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5.3 With slope difference of one variable | 119

Lemma 5.3.6. The polynomial F∗,n has all its coefficients non-negative integers.
Proof. From Observation 5.3.5, the conclusion is derived.

Now, we are allowed to present the solution f of equation (5.3.1) determined by
F∗,n(n ≥ 0) in the form of a finite sum with all terms non-negative integers.

Theorem 5.3.7. The solutions f of equation (5.3.1) are determined by F∗,n = 𝜕ny f for n ≥ 0
as

F∗,n =
{{{{{{
{{{{{{
{

1, when n = 0;
x2, when n = 1;
2x4, when n = 2;
x2∑2(n−1)m=n−1 Ωm,n−1xm +∑2nm=n Δm,n−1xm, when n ≥ 3,

(5.3.25)

where
Δm,n−1 = Λm−1,n−1 −Ψm−1,n−1 −Φm,n−1 (5.3.26)

and Ωm,n−1, Λm−1,n−1, Ψm−1,n−1 and Φm,n−1 are given by, respectively, (5.3.24), (5.3.17),
(5.3.21) and (5.3.22).

Proof. This is a result of what was described above.

In what follows, the example shows equation (5.3.1) to be meaningful in combi-
natorics.

Example 1. Isomorphic classes of planar simple rootedmaps by size and root-face va-
lency. A map is said to be simple if neither a loop nor a multi-edge occurs.

Equation (5.3.1) is as a specific case of an equation fromLiuYP [35] for determining
the enufunction with face partition vector.

In Figures 5.3.1–5.3.3, kSm,n stands for a figure Swhosemaps are of size n, root-face
valencym with k hollows (distinct classes). We have

when n = 0, 1S0,0 ⇔ F0 = 1;

when n = 1, 1S2,1 ⇔ F1 = x
2;

when n = 2, 2S4,2 ⇔ F2 = 2x
4;

when n = 1, 1S3,3 + 5S6,3 ⇔ F3 = x
3 + 5x6;

when n = 1, 1S4,4 + 8S5,4 + 14S8,4 ⇔ F4 = x
4 + 8x5 + 14x8.

Figure 5.3.1: Classes of planar simple rooted maps with sizes 0–2.
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120 | 5 Difference equations

Figure 5.3.2: Classes of planar simple rooted maps with size 3.

Figure 5.3.3: Classes of planar simple rooted maps with size 4.

As is seen, the corrections of Observation 5.3.4 and Observation 5.3.5 are natural.

Example 2. Equation

{
f = 1 + zyf 2 + y𝜕1,z(zf );
f |z=y=0 = 1, (5.3.27)

is also a type of straight difference with one variable.
In Liu YP [41], it is seen that the enufunction f of non-separable Euler planar

rooted maps with size (power of y) and root-vertex valency (power of x) satisfies the
equation

x2y(1 − x2)f 2 − (1 − x2 + x2y)f + (1 − x2) + x2yh = 0, (5.3.28)

where h = f |x=1.
By substitution z = x2 to equation (5.3.28) and the cancelation law for (1 − x2),

equation (5.3.28) can be transformed into equation (5.3.27).
Thus, the enumeration of root-isomorphic classes of non-separable Euler planar

maps can be done by solving a slope difference equation with one variable.

5.4 Form of several slope differences

In an equation of several variables, if the unknown comes to us with slope differences
of two or more variables, it is said to be in the form of several slope differences.
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5.4 Form of several slope differences | 121

Consider the equation for f ∈ ℛ{y, z, t}

{{{
{{{
{

f = 2yz2t +
yzt𝜕1,zf
1 − 𝜕1,z ft=12

−
yzt𝜕1,tf
1 − 𝜕1,t fz=12

,

f |y=0⇒z=t=0 = 0. (5.4.1)

This is equation (15) in Introduction when a = b = c = 1 and d = 0 because it is
meaningful in a classification of non-separable planar bipartite maps.

For f ∈ ℛ{z, t, y}, it is only necessary to determine F∗,n = [f ]n = 𝜕ny f , n ≥ 0.
By the initial condition of equation (5.4.1),

F0 = [f ]0 = f |y=0⇒z=t=0 = 0. (5.4.2)

For any integer n ≥ 0,

{
[fz=1]n = F∗,n|z=1, n ≥ 1 and [fz=1]0 = 0;
[ft=1]n = F∗,n|t=1, n ≥ 1 and [ft=1]0 = 0. (5.4.3)

Furthermore,

[𝜕1,zf ]n = zF∗,n|z=1 − F∗,n1 − z
, by (5.4.2) and (5.4.3),

= {
0, when n = 0;
tF∗,n|t=1−F∗,n

1−t ,
(5.4.4)

[𝜕1,tf ]n = tF∗,n|t=1 − F∗,n1 − t
, by (5.4.2) and (5.4.3),

= {
0, when n = 0;
zF∗,n|z=1−F∗,n

1−z ,
(5.4.5)

[𝜕1,zft=1]n = zF∗,n|t=1,z=1 − F∗,n|t=11 − z
, by (5.4.2) and (5.4.3),

= {
0, when n = 0;
zF∗,n|t=1,z=1−F∗,n|t=1

1−z ,

(5.4.6)

and

[𝜕1,tfz=1]n = tF∗,n|z=1,t=1 − F∗,n|z=11 − t
, by (5.4.2) and (5.4.3),

= {
0, when n = 0;
tF∗,n|z=1,t=1−F∗,n|z=1

1−t .

(5.4.7)
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122 | 5 Difference equations

We notice that

(1 −
𝜕1,zft=1

2
)
−1
= ∑

i≥0(𝜕1,zft=12
)
i
.

From (5.4.6), for any integer i ≥ 0,

yi

(
𝜕1,zft=1

2
)
i
,

and hence

[(1 −
𝜕1,zft=1

2
)
−1
]
i
= [

i
∑
j=0(𝜕1,zft=12

)
i
]
i
. (5.4.8)

Similarly, by (5.4.6), for any integer i ≥ 0,

[(1 −
𝜕1,tfz=1

2
)
−1
]
i
= [

i
∑
j=0(𝜕1,tfz=12

)
j
]
i
. (5.4.9)

Now, we are allowed to determine F∗,n in the order of n = 0, 1, 2, 3, . . ..
When n = 0, from equations (5.4.1) and (5.4.3)–(5.4.9),

y0 : F0 = 0 ⇒ [fz=1]0 = [ft=1]0 = 0, [𝜕1,zf ]0 = [𝜕1,tf ]0 = 0,
[𝜕1,zft=1]0 = [𝜕1,tfz=1]0 = 0,
[(1 −
𝜕1,zft=1

2
)
−1
]
0
= 1,

[(1 −
𝜕1,tfz=1

2
)
−1
]
0
= 1.

(5.4.10)

This is the initial condition of equation (5.4.1).
When n = 1 from equations (5.4.1) and (5.4.10),

y1 : F1 = 2z
2t + zt([𝜕1,zf ]0 − [𝜕1,tf ]0) = 2z2t

⇒ [fz=1]1 = 2t, [ft=1]1 = 2z2, [𝜕1,zf ]1 = 2zt,
[𝜕1,tf ]1 = 0, [𝜕1,zft=1]1 = 2, [𝜕1,tfz=1]1 = 0,
[(1 −
𝜕1,zft=1

2
)
−1
]
1
= 2,

[(1 −
𝜕1,tfz=1

2
)
−1
]
0
= 0.

(5.4.11)
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When n = 2, from equations (5.4.1) and (5.4.11),

y2 : F2 = zt([
𝜕1,zf

1 − 𝜕1, zft=1
2

]
1
− [
𝜕1,tf

1 − 𝜕1, tfz=1
2

]
1
)

= zt[𝜕1,zf ]1 = 2z2t2
⇒ [fz=1]2 = 2t2, [ft=1]2 = 2z2,
[𝜕1,zf ]2 = 2zt2, [𝜕1,tf ]2 = 2z2t,
[𝜕1,zft=1]2 = 2, [𝜕1,tfz=1]2 = 2,
[(1 −
𝜕1,zft=1

2
)
−1
]
2
= 2zt + t2,

[(1 −
𝜕1,tfz=1

2
)
−1
]
2
= 2.

(5.4.12)

We now consider the general case of n ≥ 3. First, we discuss how

(1 −
𝜕1,zft=1

2
)
−1

and (1 −
𝜕1,tfz=1

2
)
−1

can be expressed by Fi, 0 ≤ i ≤ n − 1.
From (5.4.8) and (5.4.9),

[(1 −
𝜕1,zft=1

2
)
−1
]
i
=

i
∑
j=0[(𝜕1,zft=12

)
j
]
i
(i. e., Σ(z)i ) (5.4.13)

and

[(1 −
𝜕1,tfz=1

2
)
−1
]
i
=

i
∑
j=0[(𝜕1,tfz=12

)
j
]
i
(i. e., Σ(t)i ) (5.4.14)

are, respectively, deduced.
Because of 𝜕1,zft=1, 𝜕1,tfz=1 ∈ ℛ{z, t}, by the multiplication principle,

[(
𝜕1,zft=1

2
)
j
]
i
, [(
𝜕1,tfz=1

2
)
j
]
i
∈ ℛ{z, t}.

By considering that they are only determined by F0, F1, . . . , Fi, it is seen that (5.4.13)
and (5.4.14) are also determined only by F0, F1, . . . , Fi.

Theorem 5.4.1. Equation (5.4.1) is well-defined onℛ{z, t, y}.

Proof. It is only necessary to determine F∗,n = 𝜕ny f ∈ ℛ{z, t}, n ≥ 0. From (5.4.10)–
(5.4.12), we see that F0 = 0 (the initial condition!), F1 = 2z2t and F2 = 2z2t2. It is easily
seen that they are inℛ{z, t}.
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124 | 5 Difference equations

For n ≥ 3 we proceed by induction on n; assume that Fi ∈ ℛ{z, t}, 0 ≤ i ≤ n − 1,
have been obtained. We evaluate F∗,n ∈ ℛ{z, t}.

By employing equation (5.4.1), from n ≥ 3, we have

yn : F∗,n = zt n−1∑
i=0([𝜕1,zf ]i[1 − 𝜕1,zft=12

]
n−1−i

− [𝜕1,tf ]i[1 − 𝜕1,tfz=12
]
n−1−i)

= zt
n−1
∑
i=0([𝜕1,zf ]iΣ(z)n−1−i − [𝜕1,tf ]iΣ(t)n−1−i)

(5.4.15)

where Σ(z)n−1−i and Σ(t)n−1−i are, respectively, given by (5.4.13) and (5.4.14).
From (5.4.4)–(5.4.9), the right hand side in (5.4.15) is only dependent on Fi, 0 ≤

i ≤ n − 1. By the assumption, F∗,n ∈ ℛ{z, t}. Therefore, f ∈ ℛ{z, t, y} is a solution of
equation (5.4.1).

By considering the uniqueness of the procedure mentioned above for the initial
value, equation (5.4.1) only has a single solution.

In what follows, some useful structures of F∗,n for n ≥ 0, are investigated.
Lemma 5.4.2. For any integer n ≥ 1, 2|F∗,n, i. e., 2 is a factor of F∗,n.
Proof. We proceed by induction on n. From (5.4.11) and (5.4.11), when n = 1 and 2,
2|F∗,n.

When n ≥ 3, assume for any integer i, 2 ≤ i ≤ n − 1, 2|F∗,n are known, we prove the
case of i = n.

From (5.4.4) and (5.4.5), the assumption leads to 2| [𝜕1,zf ]i and 2| [𝜕1,tf ]i for 0 ≤ i ≤
n − 1. From (5.4.15), 2|F∗,n. This is the conclusion.
Lemma 5.4.3. For any integer n ≥ 2, F∗,n is a polynomial of not only z but also t with
degree not greater than n and minimum degree not less than 2.

Proof. We proceed by induction on n ≥ 1. From (5.4.11) and (5.4.11), it is easily seen
that the conclusion is true when n = 1 and 2.

For convenience, denote by dz(P) and dt(P) the degree of a polynomial P ∈ ℛ{z, t}
for, respectively, z and t.

When n ≥ 3, assume that dz(F∗,k) = dt(F∗,k) = k with minimum degree 2 for
2 ≤ k ≤ n − 1. We prove that dz(F∗,n) = dt(F∗,n) = n with minimum degree 2.

Observation 5.4.4. For any integer n ≥ 3,

n−1
∑
i=0[𝜕1,zf ]iΣ(z)n−1−i − n−1∑i=0[𝜕1,tf ]iΣ(t)n−1−i ≥ 0.

Proof. See Example 2 of this section.
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Observation 5.4.5. For any integer s, n − 1 ≥ s ≥ 1, dz(Σ(z)s ) ≤ s.
Proof. It is seen by induction on the basis of (5.4.13).

From (5.4.15),

dz(F∗,n) = 1 + dz(n−1∑
i=0([𝜕1,zf ]iΣ(z)n−1−i − [𝜕1,tf ]iΣ(t)n−1−i)),

by Observation 5.4.4,

= 1 + dz(
n−1
∑
i=0[𝜕1,zf ]iΣ(z)n−1−i)

= 1 + max
0≤i≤n−1 dz([𝜕1,zf ]i) + dz(Σ(z)n−1−i)

= 1 + dz([𝜕1,zf ]1) + dz(Σ(z)n−2),
by Observation 5.4.5,
= 1 + (1 + n − 2) = n,

(5.4.16)

and

dt(F∗,n) = 1 + max
0≤i≤n−1 dt([𝜕1,zf ]i) + dt(Σ(z)n−1−i)

= 1 + dt([𝜕1,zf ]n−1) + dt(Σ(z)0 )
= 1 + (n − 1) + 0 = n.

(5.4.17)

Therefore, F∗,n is a polynomial of degree n of not only z but also t.
Further from what was mentioned in the proof of Theorem 5.4.1, it is seen that,

for n ≥ 2, zt| F∗,n, i. e., F∗,n has a minimum degree not less than 2 of not only z but
also t.

Lemma 5.4.6. For any integer n ≥ 1, F∗,n comes to us with all coefficients non-negative
integers.

Proof. From (5.4.15), it is seen that Observation 5.4.4 leads to all coefficients of F∗,n
being non-negative. As to integrity, it is deduced from F∗,n ∈ ℛ{z, t}.

On the basis of Theorem 5.4.1 and Lemmas 5.4.2–5.4.6, let

[f ]n = F∗,n = ∑
2≤m≤n
2≤s≤n

Fm,s;nzmts, 0 ≤ Fm,s;n ∈ ℛ. (5.4.18)

Then we have

{{{{{{{
{{{{{{{
{

[𝜕1,zf ]n = ∑
1≤m≤n−1
2≤s≤n

(
n
∑

k=m+1 Fk,s;n)zmts;
[𝜕1,zft=1]n = ∑

1≤m≤n−1
2≤s≤n

(
n
∑

k=m+1 Fk,s;n)zm,
(5.4.19)
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126 | 5 Difference equations

and
{{{{{{{
{{{{{{{
{

[𝜕1,tf ]n = ∑
2≤m≤n
1≤s≤n−1

(
n
∑

k=s+1 Fm,k;n)zmts,
[𝜕1,tfz=1]n = ∑

2≤m≤n
1≤s≤n−1

(
n
∑

k=s+1 Fm,k;n)zm.
(5.4.20)

Based on (5.4.18), for any integer i ≥ 2, we can write

[f i]n = F
[i]∗,n = {{
{

∑nl=0 FlFn−l, when i = 2,

∑nl=0 FlF[i−1]n−l , when i ≥ 3,
(5.4.21)

then from (5.4.13) and (5.4.13),

Σ(z)i = {1, when i = 0;
∑ij=1[ 𝜕1,z ft=12 ]

[j]
i , when i ≥ 1,

Σ(t)i = {1, when i = 0;
∑ij=1[ 𝜕1,t fz=12 ]

[j]
i , when i ≥ 1.

(5.4.22)

Therefore, from (5.4.19), (5.4.20) and (5.4.22),

{{{{{
{{{{{
{

n−1
∑
i=0[𝜕1,zf ]iΣ(z)n−1−i = ∑1≤m,s≤n−1Am,s;n−1zmts;
n−1
∑
i=0[𝜕1,tf ]iΣ(t)n−1−i = ∑1≤m,s≤n−1Bm,s;n−1zmts,

(5.4.23)

where Am,s;n−1,Bm,s;n−1 ∈ ℛ{z, t}, Am,s;n−1 − Bm,s;n−1 ≥ 0 (Observation 5.4.4!), being de-
pendent only on Fi, 0 ≤ i ≤ n − 1, and given in (5.4.19)–(5.4.22).

Theorem 5.4.7. For any integer n ≥ 3,

F∗,n = ∑
2≤m,k≤n Fm,k;nzmtk (5.4.24)

where Fm,k;n = Am−1,s−1;n−1 − Bm−1,s−1;n−1 ≥ 0 are given in (5.4.23).
Proof. This is a direct result of the above.

This theorem provides the solution of equation (5.4.1) with all coefficients in the
form of a finite sum with all terms positive.

Example 1. Chromatic equation of non-separable planar rooted maps. In Liu YP [15],
the equation

(g − λ(λ − 1)xz2t)(1 − 𝜕zgt=1
λ
)(1 − 𝜕tgz=1

λ
)

= yzt𝜕zg(1 −
𝜕tgz=1
λ
) − xzt𝜕tg(1 −

𝜕zgt=1
λ
)

(5.4.25)
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5.4 Form of several slope differences | 127

occurs where

g = ∑
M∈ℳP(M : λ)xp(M)yq(M)rp(M)ts(M)

is a function of x, y, z and t such thatℳ is the set of all non-separable planar rooted
maps with p(M) non-rooted vertices, q(M) non-rooted faces, r(M) root-vertex valency
and s(M) root-face valency ofM. P(M : λ) is the chromatic polynomial ofM.

In equation (5.4.25), 𝜕z and 𝜕t are, respectively, the slope differences: 𝜕1,z and 𝜕1,t .
If equation (5.4.25) has x = y (the size n(M) = p(M) + q(M)!) and λ = 2, then it is

equivalent to equation (5.5.1).

Example 2. Root-isomorphic classes of non-separable planar bipartite maps with
given size root-vertex valency and root-face valency. Because a map has chromatic
number 2 if, and only if, its underlying graph is bipartite, it is seen that, for any
integer n ≥ 1, F∗,n/2 in the solution f of equation (5.4.1) provides the number of root-
isomorphic classes of non-separable planar bipartite maps with size n.

In Figure 5.4.1, a, b and c give F1/2 = z2t, F2/2 = z2t2 and F3/2 = z2t3. Here, the
powers of z and t are, respectively, the root-face and root-vertex valencies. From d in
Figure 5.4.1 to e in Figure 5.4.2, F4/2 = z2t4 + z4t2. f–g in Figure 5.4.2 as

F5/2 = z
2t5 + (z2t3 + 2z4t2 + 2z4t3)

= z2(t3 + t5) + z4(2t2 + 2t3).

Figure 5.4.1: Classes of non-separable planar bipartite maps with sizes: 1–4.

Figure 5.4.2: Classes of non-separable planar bipartite maps with sizes: 4–5.

Brought to you by | Ludwig-Maximilians-Universität München Universitätsbibliothek (LMU)
Authenticated

Download Date | 11/2/19 5:46 PM



128 | 5 Difference equations

Figure 5.4.3: Classes of non-separable planar bipartite maps with size 6.

From h in Figure 5.4.2 to i–l in Figure 5.4.3,

F6/2 = z
2t6 + (z2t3 + 2z4t3) + (z2t3 + 2z4t2 + 2z4t3 + z4t4)

+ (2z2t4 + 2z4t2 + 2z4t4) + z6t2

= z2(4t3 + 2t4 + t6) + z4(4t2 + 2t3 + 3t4) + z6t2.

5.5 Mixed form of straight and slope differences

Consider the equation for f ∈ ℛ{x, y}

{{
{{
{

f = 1 + xyδ1,x(xf ) + x2y(δ1,xf )2
1 − (1 + 𝜕1,xf ) ;

f |y=0⇒x=0 = 1. (5.5.1)

This is equation (16) in Introduction when a = b = c = d = 1 because it is meaningful
in a classification of simple planar maps.

In this equation, on account of both straight and slope differences being involved,
it is called amixed form of straight and slope differences.

Although F∗,n ∈ ℛ{x} for n ≥ 1 can be directly deduced in the form of a sum with
all terms positive from the equation, a complication occurs for an infinite sum

∑
k≥0[1 + 𝜕1,xf1 − x

]
i

where i ≥ 1.
The aim of this section is to avoid the evaluation of an infinite sum. It is only nec-

essary to expand δ1,xf , δ1,x(xf ) and 𝜕1,xf in equation (5.5.1) on ℛ{x, y}, for getting one
of its equivalent expressions,

{
f 2 − (xh + xy(1 − x)h + 1)f + xh = 0;
f |y=0,x=0 = 1, (5.5.2)

where h = f |x=1.
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5.5 Mixed form of straight and slope differences | 129

Then the first line of equation (5.5.1) is transformed into

f 2 − f − (xh + xy(1 − x)h)f + xh = 0
⇒ f (f − 1) − xh(f − 1) = xy(1 − x)hf
⇒ (f − xh)(f − 1) = xy(1 − x)hf
⇒ (1 − f )𝜕1,xf = xyhf .

(5.5.3)

For any integer i ≥ 1, let Fi = 𝜕iyf be a polynomial of x with degree mi, from the
initial condition of equation (5.5.1), we have

Fi =
mi

∑
m=1 Fm,ixm (5.5.4)

and

[
xh − f
1 − x
]
i
= {
−1, when i = 0;
∑mi−1
k=0 (∑ml

l=max{k+1,2} Fl,i)xk , when i ≥ 1.
(5.5.5)

By employing the third line of (5.5.3),

y0 : [1 − f ]0[𝜕1,xf ]0 = 0, by (5.5.5),
⇒ (1 − F0)(−1) = 0
⇒ F0 = 1 (the initial value of equation (5.5.1)),

(5.5.6)

and

y1 : [1 − f ]0[𝜕1,xf ]1 + [1 − f ]1[𝜕1,xf ]0
= x[hf ]0, by (5.5.5),

⇒ (−F1)(−1) = xF0|x=1F0
⇒ F1 = x.

(5.5.7)

In general, for any integer n ≥ 2,

yn :
n
∑
i=0[1 − f ]i[𝜕1,xf ]n−i = x[hf ]n−1,

by [1 − f ]0 = 0 and [𝜕1,xf ]0 = −1,
⇒ F∗,n = n−1∑

i=1 Fi[𝜕1,xf ]n−i
+ x

n−1
∑
i=0 Fi|x=1Fn−1−i.

(5.5.8)

Theorem 5.5.1. Equation (5.5.1) is well-defined onℛ{x, y}.
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Proof. By the principle of induction, based on (5.5.3) and (5.5.6)–(5.5.8), to determine
F∗,n for n ≥ 0, a solution of equation (5.5.1) is found onℛ{x, y}.

Because of the uniqueness of the procedure used under the given initial condition
of equation (5.5.1), this solution is the only one.

In order to seek a relatively simple expression of the solution, it is absolutely nec-
essary to investigate some concrete structures of polynomials F∗,n for n ≥ 1.
Lemma 5.5.2. For any integer n ≥ 1, F∗,n is polynomial of degree n with minimum de-
gree 1 inℛ{x}.

Proof. For convenience, denote by dz(P) the degree of a polynomial P of z. If P has
only one variable, substitute for d(P). From (5.5.7), d(F∗,1) = m1 = 1. The conclusion is
true.

By the principle of induction, assume that, for any integer i, 1 ≤ i ≤ n − 1, d(F1) =
mi = i are known. We prove d(F∗,n) = mn = n.

By (5.5.8),

d(F∗,n) = max{max{d(Fi) + d(Fn−i)|1 ≤ i ≤ n − 1},
1 +max{d(Fn−1−i)|0 ≤ i ≤ n − 1}},
by the induction assumption,
= max{max{i + (n − i)|1 ≤ i ≤ n − 1},
1 +max{n − 1 − i|0 ≤ i ≤ n − 1}}
= 1 + (n − 1) = n.

This is the conclusion for the degree. As for the minimum degree, the conclusion is
drawn from (5.5.4) and (5.5.7).

Therefore, (5.5.4) can be precisely written as

F∗,i = i
∑
m=1 Fm,ixm. (5.5.9)

Lemma 5.5.3. For any integer n ≥ 1, F∗,n has all coefficients in ℤ+.
Proof. Similarly, by induction, the conclusion can be done.

For any polynomials p and q of x, write X[pq]i = 𝜕
i
x(pq), then

X[pq]i = ∑
i1+i2=i
0≤i1 ,i2≤i

X[p]i1 X[q]i2 . (5.5.10)

Let [𝜕f ] = [𝜕1,xf ] and let
Πk,i = {−1, when i = 0;

∑ml
l=max{k+1,2} Fl,i, when i ≥ 1,

(5.5.11)
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we have

[𝜕1,xf ]n−i = n−i∑
j=1 Πj,n−ixj, (5.5.12)

and by following the procedure in the proof of Lemma 5.5.2:

Fi[𝜕1,xf ]n−i = n
∑
j=1( ∑j1+j2=j

0≤j1 ,j2≤n−1

Fj1 ,iΠj2 ,n−i)xj. (5.5.13)

From (5.5.12),

X[Fi𝜕Fn−i]j,n−1 = ∑
j1+j2=j

0≤j1 ,j2≤n−1

Fj1 ,iΠj2 ,n−i (5.5.14)

is determined by coefficients of polynomials Fi for 0 ≤ i ≤ n − 1.

Theorem 5.5.4. In the solution f of equation (5.5.1), F∗,n for n ≥ 0 obeys an expression
determined only by the coefficients of the polynomials Fi for 0 ≤ i ≤ n − 1,

F∗,n = {{{{{{
{

1, when n = 0;
∑nm=1(∑n−1i=1 X[Fi𝜕Fn−i]m,n−1 +∑n−1i=0 HiFm−1, n−1−i)xm,

when n ≥ 1,
(5.5.15)

where X[Fi𝜕Fn−i]m is given by (5.5.14) and

Hi = [h]i = Fi|x=1 = i
∑
m=0 Fm,i. (5.5.16)

Proof. On the basis of Theorem 5.5.4 and (5.5.8), by (5.5.11), (5.5.14) and (5.5.16), F∗,n for
n ≥ 0, is determined by all coefficients of the polynomials Fi, 0 ≤ i ≤ n − 1.

Example 1. Root-classification of dual simple planar maps by size and root-face va-
lency. A map is said to be complewhen there is neither a cut edge nor a cut pair of two
edges. Because of that the dual of a comple map is a simple map, the name is for so.

From the uniqueness of duality, the equation for comple planar maps with given
size and root-face valency is the same as for simple planar maps with given size and
root-vertex valency as shown in equation (5.5.1).

Example 2. Root-classification of simple planar maps by size and root-vertex valency.
By simple map is meant there to be neither a loop edge nor a multi-edge. It is easily
seen that a cut edge or 2-circuit is allowed in a simple map.

Figures 5.5.1–5.5.3 show the root-isomorphic classes of simple planar maps with
sizes: 0–4.
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132 | 5 Difference equations

Figure 5.5.1: Root-isomorphic classes of simple planar maps with sizes: 0–3.

Figure 5.5.2: Root-isomorphic classes of simple planar maps with sizes: 3–4.

In Figure 5.5.1, (a) represents F∗,0 = 1, i. e., for a vertexmap itself without edge. (b) and
(c) provide F1 = x and F2 = x + x2, i. e., the classes with, respectively, size 1 and size 2.

In Figure 5.5.1 (d), Figure 5.5.2 (e) and (f ), we present F3 = (x+2x2)+(x+x3)+(x2) =
2x + 3x2 + x3, i. e., a classification for size 3.
Cases (g) and (h) in Figure 5.5.2, (i), (j) and (k) in Figure 5.5.3 present

F4 = (x + 3x
2) + (3x + 2x2 + 3x3) + (x + x4) + (x + 4x2 + 3x3) + (x2)

= 6x + 10x2 + 6x3 + x4,

i. e., the classification for size 4.

Figure 5.5.3: Root-isomorphic classes of simple planar maps with size 4.
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5.6 Notes

5.6.1. In Section 5.1, the solution f ∈ ℛ{x, y} of equation (5.5.1) is provided in the form
of a finite sunwith all terms positive. As a specific case, the number of non-isomorphic
classes of loopless planar maps with given size and root-vertex valency.

The enumeration of loopless planar maps is from Liu YP [16] (1983). In Bender
EA-Wormald NC [1] (1985), the topic is further investigated as well.

In Li ZX-Liu YP [10] (2002), by the enufunction of loopless planar maps with size
(y) and root-face valency (x) as parameters, the equation

(1 − x)x2yf 2 − (1 − x + xy(1 − x)h + x2y)f + 1 − x + xyh = 0 (5.6.1)

is found where h = f |x=1. Via transformation and the constant term of f considered,
the equation

{
f = 1 + x2yf 2 − xyhf + xyδ1,x(xf );
f |y=0⇒x=0 = 1, (5.6.2)

is obtained. Furthermore, for such maps on a projective plane, a straight difference
equation of one variable is also established,

{
f = x2ySf − xy(Sh + S1f ) + xyδ1,x(xf ) + ℒ(S);
f |y=0⇒x=0 = 0, (5.6.3)

where h = f |x=1, S is the solution of equation (5.6.2), S1 = S|x=1 and
ℒ(S) = x2y(𝜕(xS)

𝜕x
− S2).

5.6.2. In Cai JL-Liu YP [7], from enumerating ordinary planar rooted maps with size
(y), root-vertex valency (z) and root-face valency (x), an equation for g is extracted as

((1 − x)(1 − z)(f ∗ − f ) + x − z)g = (1 − x)f ∗ − (1 − z)f (5.6.4)

where f (x, y) = g|z=1 f ∗ = g|x=1.
By transformation and the constant term of g considered, a straight difference

equation of several variables

{
{
{

(f ∗ − f )g = (f ∗ − f ) z − x
(1 − z)(1 − x)

+ δ1,zg − δ1,xg;
g|y=0⇒x=0,z=0 = 0, (5.6.5)

is found. Because of the occurrence of y, it looks as if there is no way as in Section 5.2
to solve it yet.

Brought to you by | Ludwig-Maximilians-Universität München Universitätsbibliothek (LMU)
Authenticated

Download Date | 11/2/19 5:46 PM



134 | 5 Difference equations

However, via decomposition of maps, another equation for g arises:

g = 1 + x2yzfg + xyzδ1,x(xg) − (1 − z)xyzf ∗g (5.6.6)

is induced. Because of the symmetry between x and z in g with constant term consid-
ered, it becomes

{{
{{
{

g = 1 + xyz(xf + zf ∗ − f ∗ + f
2
)g + xyz(δ1,x(xg) + δ1,z(zg));

g|y=0⇒x=0,z=0 = 1. (5.6.7)

This is a straight difference equation of several variables which can be solved in the
way of Section 5.2.

5.6.3. In investigating the enufunction of planar simple bipartite maps with size (y)
and root-face valency (x, z = x2), an equation for f arises:

zyf 2 − ( zy
1 − z
+ f ∗) + ( zy

1 − z
+ 1)f ∗ = 0 (5.6.8)

is extracted where f ∗ = |z=1 refer to Liu YP [44] (equation (7.4.21)).
Via a transformation and the initial value considered, the equation for f

{
f = 1 + zyf 2 + y𝜕1,x(zf ) − (f ∗ − 1)(f − 1);
fy=0⇒z=0 = 1, (5.6.9)

is attained. This is a slope difference equation of one variable. By the method used in
5.3, a recursion as a sum of finite positive terms, and an explicision can be done.

5.6.4. The slope difference equation of several variables

{{{
{{{
{

f = 6yz2t +
yzt𝜕1,zf
1 − 𝜕1,z ft=13

−
yzt𝜕1,tf
1 − 𝜕1,t fz=13

,

f |y=0⇒z=t=0 = 0, (5.6.10)

can by themethod used in Section 5.4 be addressed to evaluate its solution by a recur-
sion in the form of a sum of finite positive terms, even an explicision.

In fact, equation (5.6.10) is (5.4.25) when λ = 3. So, equation (5.6.10) is meaningful
in combinatorics.

5.6.5. The enufunction of non-separable Euler planar rooted maps with the num-
ber of non-root-vertices (z), the number of non-root-faces (y) and root-vertex valency
(x, t = x2) is shown to satisfy the equation

f = tz + ty(f − f ∗)
t(1 + f ∗)2 − (1 + f )2 (5.6.11)

where f ∗ = f |t=1.
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5.6 Notes | 135

The following mixed straight and slope difference equation for f ∈ ℛ{t, y, z} is
shown to be well-defined and its solution satisfies equation (5.6.11) as well:

{{
{{
{

f = tz +
tyδ1,tf

(1 − 𝜕1,tf )2 − tδ21,tf ;
f |z=0,y=0⇒t=0 = 0. (5.6.12)
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6 Ordinary differential equations

6.1 Parametric equations

On the basis of equivalent equations, or equation systems transformed by character-
istic curves, or surfaces from a function, or functional equation, to establish a differ-
ential equation for evaluating a solution (or rather the solution, if it is known to be
well-defined!); that is, a local (restricted) solution via a differential equation deduced
from the original equation.

In LiuYP [13] (i. e., (3.8)with interchange between x and y!), one finds the equation
for f

(x − 1)x2yf 2 + (x2y − x + 1)f + x − 1 − xyh = 0 (6.1.1)

where h = f |x=1.
From this equation, a parameter θ is introduced to express both h and y such that

h is expressed as a function of only y, i. e.,

{
{
{

h = 4θ − 3
(3θ − 2)2

;

y = (1 − θ)(3θ − 2).
(6.1.2)

In order to determine h, observe what is the equation satisfied by h. Because of

{{
{{
{

dh
dθ
=
2(5 − 6θ)
(3θ − 2)3

;

dy
dθ
= 5 − 6θ,

(6.1.3)

we have
dh
dy
=

2
(3θ − 2)3

. (6.1.4)

From (6.1.2) and (6.1.4),

{{
{{
{

ydh
dy
= 2τ(ydh

dy
+ h);

τ = y
1 − 3τ
,

(6.1.5)

where τ = 1 − θ.

Lemma 6.1.1. In equation (6.1.5), τ ∈ ℛ+{y}.

Proof. LetTn = 𝜕ny τ, where integer n ≥ 0. From the second case of (6.1.5) and τ = y+3τ2,

y0 : T0 = 3T
2
0 ⇒ T0(1 − 3T0) = 0, T0 ∈ ℛ+,
⇒ T0 = 0;

y1 : T1 = 1 + 6T0T1 ⇒ T1 = 1.

https://doi.org/10.1515/9783110625837-006
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138 | 6 Ordinary differential equations

For n ≥ 2,

yn : Tn = 3
n−1
∑
i=1

TiTn−i.

Hence, for n ≥ 0,

Tn =
{{{
{{{
{

0, when n = 0;
1, when n = 1;
3∑n−1i=1 TiTn−i, otherwise.

(6.1.6)

Because of T0,T1 ∈ ℛ+ and (6.1.6), Ti ∈ ℛ+(i ≤ n − 1) leads, for any integer n ≥ 2, to
Tn ∈ ℛ+, τ ∈ ℛ+{y} as can be seen by induction.

From (6.1.6),

τ = y + 3y2 + 18y3 + 135y4 + ⋅ ⋅ ⋅ . (6.1.7)

Furthermore, by induction on n, it is shown that, for integer n ≥ 1,

Tn =
3n−1

n
(
2n − 2
n − 1
). (6.1.8)

By comparing with (6.1.6) and (6.1.8), the combinatorial identity is done: for integer
n ≥ 2,

(
2n − 2
n − 1
) =

n−1
∑
i=1

3n
i(n − i)
(
2i − 2
i − 1
)(

2(n − i) − 1
n − i − 1

). (6.1.9)

Theorem 6.1.2. Equation

{{
{{
{

ydh
dy
= 2τ(2ydh

dy
+ h);

h|y=0 = 1,
(6.1.10)

is well-defined onℛ+{y}.

This is equation (17) in Introduction when a = b = d = 1 because it is meaningful
in a classification for ordinary planar maps.

Proof. Let Hn = 𝜕
n
yh, n ≥ 0. Write d = 2y dhdy + h and Dn = 𝜕

n
Yd for n ≥ 0. Because of

[ydh
dy
]
n
= 𝜕ny(y

dh
dy
) = nHn, n ≥ 1, (6.1.11)

and, for n ≥ 0,

[2ydh
dy
+ h]

n
= 𝜕nyd = Dn
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6.1 Parametric equations | 139

where

Dn = {
H0, n = 0;
(2n + 1)Hn, n ≥ 1,

(6.1.12)

for n ≥ 0,

[τd]n =
{{{
{{{
{

0, when n = 0;
H1, when n = 1;
∑ni=1 TiDn−i, when n ≥ 2.

(6.1.13)

On the basis of equation (6.1.10), by (6.1.6), (6.1.11) and (6.1.13), we have

y1 : [ydh
dy
]
1
= 2[τd]1 ⇒ H1 = 2T1H0 = 0,

by initial condition: H0 = 1,
⇒ H1 = 2T1 = 2,

y2 : [ydh
dy
]
2
= 2[τd]2 ⇒ 2H2 = 2(3H1 + 3)

⇒ H2 = 3H1 + 3 = 9,

(6.1.14)

and, for n ≥ 2,

yn : [ydh
dy
]
n
= 2[τd]n ⇒ nHn = 2

n
∑
i=1

TiDn−i.

Therefore

Hn =
2
n

n
∑
i=1

TiDn−i. (6.1.15)

In consequence, for integer n ≥ 0,

Hn =
{{{
{{{
{

1, when n = 0;
2, when n = 1;
2
n ∑

n
i=1 TiDn−i, when n ≥ 2.

(6.1.16)

On the basis of (6.1.16), from (6.1.8) and (6.1.12), it is seen that Hn is determined
by Hi, i ≤ n − 1. Thus, Hn ∈ ℛ+. This leads to the fact that h ∈ ℛ+{y} is a solution
of equation (6.1.10). Further by considering the uniqueness of the procedure starting
from the initial condition, h ∈ ℛ+{y} is the only solution of equation (6.1.10).
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140 | 6 Ordinary differential equations

In fact, from (6.1.8) and (6.1.12), (6.1.16) becomes

𝜕nyh =
{{{
{{{
{

1, when n = 0;
2, when n = 1;
2
n ∑

n
i=1

3i−1(2n−2i+1)(2i−2)!
i!(i−1)! Hn−i, when n ≥ 2,

(6.1.17)

for n ≥ 0.
On the other hand, for integer n ≥ 1, write h = dh

dy and H

n = 𝜕

n
yh
. From

{{{
{{{
{

h = 2
(1 − 3τ)3

;

τ = ( 1
1 − 3τ
)y,

(6.1.18)

and by induction on n, it is shown that

Hn =
2 ⋅ 3n+1(2n + 2)!

n!(n + 3)!
. (6.1.19)

Because of nHn = Hn for n ≥ 1 and by (6.1.19), it is seen that

𝜕nyh =
{{{
{{{
{

1, when n = 0
(initial condition of equation (6.1.10));

2⋅3n(2n)!
n!(n+2)! , when n ≥ 1.

(6.1.20)

Via (6.1.17) and (6.1.20), the identity

3(2n)!
2(n + 2)!n!

=
n
∑
i=1

(2n − 2i + 1)!(2i − 2)!
(n − i + 2)!(n − i)!

(6.1.21)

is found for integer n ≥ 1.
One might see that by τ, h is determined. Then it is much simpler than the case

that h is determined directly by θ as in Liu YP [13]. This suggests us carefully to choose
a parameter, or adaptively to substitute a parameter so that sophistication occurs as
little as possible.

The choice of an equation for a function considered is also essential for us to re-
duce the complexity in the procedure of solving it. For example, in Liu YP [12], the
function Y(x) is treated so as to satisfy a differential equation of first order instead of
the equation of second order in Tutte WT [80] to make the procedure of determining
Y much simpler.

In addition, for proving that an equation is well-defined, usually it is necessary to
transform the equation into a suitable equivalence so that the procedure of seeking a
solution from the initial condition is as simple as possible.

In what follows, several examples are chosen to address the universality for the
methods mentioned in this section.
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6.1 Parametric equations | 141

Figure 6.1.1: Root-classes of ordinary planar maps of size 2.

Figure 6.1.2: Root-classes of ordinary planar maps of size 3 I.

Example 1. Classification of ordinary planar rootedmaps by size. By (6.1.20), the num-
ber of root-isomorphic classes of ordinary planar maps with given size is known. For
example, when n = 0, 1 represents that ordinary planar maps without edge has 1 root-
isomorphic class. This is the vertexmap itself. When n = 1, 2 shows that such amap of
size 1 has 2 classes. They are the link map and the loop map seen, respectively, in the
left and the right in Figure 4.2.1. Such maps of size 2 have 9 classes as 2a + b + 2c + 4d,
as shown in Figure 6.1.1.

Ordinary planar maps of size 3 have 54 root-classes. They have 3a+ 2b+ c + 6d + e
(i. e., 3 + 2 + 1 + 6 + 1 = 13) root-classes shown in Figure 6.1.2, 6f + 6g + 3h + 6i + 6j
(6 + 6 + 3 + 6 + 6 = 27) in Figure 6.1.3, 3k + 6l + 3m + 2n (3 + 6 + 3 + 2 = 14) shown in
Figure 6.1.4. The total sum is 13 + 27 + 14 = 54.

Figure 6.1.3: Root-classes of ordinary planar maps of size 3 II.
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142 | 6 Ordinary differential equations

Figure 6.1.4: Root-classes of ordinary planar maps of size 3 III.

Example 2. In Liu YP [29] and Liu YP [31], one might see the equation for f ∈ ℛ{x, y}

f 2 − (xh + xy(1 − x)h + 1) + xh = 0 (6.1.22)

where h = f |x=1.
It is well-known that h and y obey expressions of t as

{
{
{

h = t2(2 − t);

y = (t − 1)(2 − t)
t2
.

(6.1.23)

Because of

{{
{{
{

dh
dt
= t(4 − 3t);

dy
dt
=
4 − 3t
t3
,

we have
dh
dy
= t4. (6.1.24)

Furthermore, the ordinary differential equation

{{{
{{{
{

ydh
dy
= (t − 1)h;

t = 1 + t2

2 − t
y,

(6.1.25)

is obtained.

Example 3. In Liu YP [36], one might see the equation for f ∈ ℛ{x, y} with h = f |x=1 ∈
ℛ{x}

x2yf 2 + (1 − x + xyh)f + x − 1 = 0. (6.1.26)

It is well-known that h and y obey expressions of t (refer to Liu YP [16] and Liu YP [14]),
the equation

{
{
{

h = t2(2 − t);

y = t − 1
t4
,

(6.1.27)
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is obtained. Because of

{{
{{
{

dh
dt
= t(4 − 3t);

dy
dt
=
4 − 3t
t5
,

we have

dh
dy
= t6. (6.1.28)

On the basis of (6.1.27) and (6.1.28), the ordinary differential equation

{{
{{
{

ydh
dy
= (t − 1)(ydh

dy
+ h);

t = 1 + t4y,
(6.1.29)

is obtained.

Example 4. In Liu YP [19], one finds the equation for f ∈ ℛ{x, y} with h = f |x=1 ∈ ℛ{x}

f 2 + ((1 + xy)(1 − x) − xh)f + x2(1 − x)y(1 + h) = 0. (6.1.30)

It is well-known that h and y obey expressions of η as a parameter as

{{
{{
{

h = 1
3
η(4 − η);

y = 1
27
(η − 1)(4 − η)2.

(6.1.31)

Because of

{{{
{{{
{

dh
dη
=
2
3
(2 − η);

dy
dη
=
1
9
(η − 2)(η − 4),

we have

dh
dy
=

6
4 − η
. (6.1.32)

On the basis of (6.1.31) and (6.1.32), the ordinary differential equation as

{{{
{{{
{

(4 − η)dh
dy
= 6;

η = 1 + 27
(4 − η)2

y,
(6.1.33)

is obtained.
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144 | 6 Ordinary differential equations

Example 5. In Tutte WT [80], one might see the enufunction h = h(y) of simple planar
rooted triangulations and y expressed by s as

{
{
{

h = s(1 + s)
(1 − s)2
;

y = −s(1 + s)2.
(6.1.34)

Because of

{{
{{
{

dh
ds
=

3s + 1
(1 − s)3
;

dy
ds
= −(1 + 3s)(1 + s),

we have
dh
dy
= −

1
(1 − s)3(1 + s)

. (6.1.35)

On the basis of (6.1.34) and (6.1.35), the ordinary differential equation

{{{
{{{
{

(1 − s)ydh
dy
= h;

s = − y
(1 + s)2
,

(6.1.36)

is obtained.

Example 6. In Tutte WT [80], the enufunction h = h(y) of strict planar rooted triangu-
lations and y are expressed by λ as a parameter as

{
h = λ(3 − 2λ);
y = λ3(1 − λ).

(6.1.37)

Because of

{{
{{
{

dh
ds
= λ2(3 − 4λ);

dy
ds
= λ3(1 − λ),

we have
dh
dy
=

1
λ2
. (6.1.38)

On the basis of (6.1.37) and (6.1.38), the ordinary differential equation

{{
{{
{

(3 − 2λ)ydh
dy
= (1 − λ)h;

λ = 1 − y
λ3
,

(6.1.39)

is obtained.
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6.2 Sum of petal bundles | 145

6.2 Sum of petal bundles

For determining the number of root-isomorphic classes of petal bundles on orientable
surfaces, the following first order differential equation occurs (see Liu YP [47]):

{
{
{

2x2 dh
dx
= −1 + (1 − x)h;

h0 = h|x=0 = 1.
(6.2.1)

This is equation (18) in Introduction when a = c = d = 1 because it is meaningful
in a classification for petal bundles on all orientable surfaces.

Theorem 6.2.1. Equation (6.2.1) is well-defined onℛ+{x}.

Proof. The first case of equation (6.2.1) is transformed into one of its equivalences as

h = 1 + xh + 2x2 dh
dx
. (6.2.2)

Let Hn = 𝜕
n
xh, n ≥ 0. From the initial condition,

H0 = h0 = 1 ∈ ℤ+. (6.2.3)

Because of

{
{
{

𝜕nxxh = 𝜕
n−1
x h = Hn−1;

𝜕nxx
2 dh
dx
= 𝜕n−2x

dh
dx
= (n − 1)Hn−1

for n ≥ 1, by (6.2.2),

Hn = Hn−1 + 2(n − 1)Hn−1 = (2n − 1)Hn−1 ∈ ℤ+. (6.2.4)

Thus,h ∈ ℛ+{x}obtainedby (6.2.3) and (6.2.4) satisfies equation (6.2.2), andhence
is a solution of equation (6.2.1).

From the uniqueness of Hn (n ≥ 1) for H0, this solution is the only one.

In fact, from the recursion deduced from (6.2.3) and (6.2.4), it is seen that, for any
integer n ≥ 1,

Hn = (2n − 1)!! =
(2n − 1)!

2n−1(n − 1)!
. (6.2.5)

In Liu YP [47], one might see the following ordinary equation for g:

{{{
{{{
{

4x2 dg
dx
= (1 − 2x)g − x(h + 2xdh

dx
);

dg
dx

x=0
= 1,

(6.2.6)

where h determined by (6.2.5) is the solution of equation (6.2.1).
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Note carefully that h satisfies (6.2.1), which is equivalent to

{
{
{

4x2 dg
dx
= (1 − 2x)g − h + 1;

g0 = g|x=0 = 0.
(6.2.7)

Theorem 6.2.2. Equation (6.2.7) is well-defined onℛ+{x}.

Proof. The first case of equation (6.2.7) is equivalent to

g = 4x2 dg
dx
+ 2xg + h − 1. (6.2.8)

Let Gn = 𝜕
n
xg, n ≥ 0. Because of

𝜕nxxg = 𝜕
n−1
x g = Gn−1, n ≥ 1;

𝜕nx
dg
dx
= Gn+1𝜕

n
x
dxn+1

dx
= (n + 1)Gn+1, n ≥ 0;

𝜕nxx
2 dg
dx
= 𝜕n−2x

dg
dx
= (n − 1)Gn−1,

for (6.2.5),

y0 : G0 = H0 − 1 ⇒ G0 = 0(initial condition!) (6.2.9)

and, for n ≥ 1,

yn : Gn = 4(n − 1)Gn−1 + 2Gn−1 + Hn

= (4n − 2)Gn−1 + Hn.
(6.2.10)

From (6.2.9) and (6.2.10), G0 ∈ ℤ+ and Gn ∈ ℤ+ are obtained, respectively. Thus,
g ∈ ℛ+{x} satisfies (6.2.8) and hence is a solution of equation (6.2.7).

From the uniqueness of Gn (n ≥ 1) for G0, this solution is the only one.

On the basis of (6.2.9) and (6.2.10), we find that, for n ≥ 2,

Gn = Hn +
n
∏
i=2
(4i − 2) +

n−1
∑
i=2

Hi

n
∏
j=i+1
(4j − 2). (6.2.11)

On the other hand, we look for an equation satisfied by f = g + h where h and g
are, respectively, the solutions of equation (6.2.1) and equation (6.2.7).

Because h and g are, respectively, the solutions of equations (6.2.1) and (6.2.7),
h and g satisfy, respectively, (6.2.2) and (6.2.8), and hence

g + h = (−1 + h + 2xg + 4x2 dg
dx
) + (1 + xh + 2x2 dh

dx
).
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6.2 Sum of petal bundles | 147

From (6.2.2), by substituting xh + 2x2 dhdx in the first parenthesis, of −1 + h,

f = 1 + 2xf + 4x2 df
dx
. (6.2.12)

By considering f0 = f |x=0 = g0 + h0 = 1 and then using (6.2.12), f satisfies the equation

{
{
{

4x2 df
dx
= −1 + (1 − 2x)f ;

f0 = f |x=0 = 1.
(6.2.13)

Theorem 6.2.3. Equation (6.2.13) is well-defined onℛ+{x}.

Proof. Take f = g+h such that g andh are, respectively, the solutions of equation (6.2.1)
and equation (6.2.7), then from Theorems 6.2.1 and 6.2.2, g ∈ ℛ+{x} and h ∈ ℛ+{x}.
Thus, f ∈ ℛ+{x}. As mentioned above, f is a solution of equation (6.2.13) inℛ+{x}.

On the other hand, if f determined by Fn = 𝜕nx f , n ≥ 0, there is another solution of
equation (6.2.13) inℛ+{x}, of the form

𝜕nxxf = 𝜕
n−1
x f = Fn−1, n ≥ 1;

𝜕nx
df
dx
= Fn+1𝜕

n
x
dxn+1

dx
= (n + 1)Fn+1, n ≥ 0;

𝜕nxx
2 df
dx
= 𝜕n−2x

df
dx
= (n − 1)Fn−1,

and considering (6.2.12), it is seen that

y0 : F0 = 1 (the initial condition of equation (6.2.13)) (6.2.14)

and that, for n ≥ 1,

yn : Fn = 2Fn−1 + 4(n − 1)Fn−1
= (4n − 2)Fn−1.

(6.2.15)

Because of the uniqueness of Fn ∈ ℤ+ (n ≥ 1) in the procedure shown as (6.2.15)
on F0 = 1 ∈ ℤ+, it is the only solution of equation (6.2.13).

On the basis of Theorem 6.2.3, and from F0 = 1 and (6.2.15), the only possibility is
that f = g + h.

Because of (4n− 2)Fn−1 = 2(2n− 1)Fn−1, on comparing with (6.2.4) and F0 = H0 = 1,
we have, for n ≥ 1,

Fn = 2
nHn =

2n(2n − 1)!
2n−1(n − 1)!

. (6.2.16)

By considering f = g + h (i. e., g = f − h) with (6.2.5) and (6.2.16), we have, for n ≥ 1,

Gn = (2
n − 1)Hn =

(2n − 1)(2n − 1)!
2n−1(n − 1)!

. (6.2.17)
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148 | 6 Ordinary differential equations

On account of (6.2.11), we obtain, for n ≥ 2,

2(2n−1 − 1)Hn =
n
∏
i=2
(4i − 2)

+
n−1
∑
i=2

Hi

n
∏
j=i+1
(4j − 2)

(6.2.18)

where Hi, 2 ≤ i ≤ n, is given by (6.2.5). Thus, the identity

2(2n−1 − 1)(2n − 1)!! =
n
∏
i=2
(4i − 2)

+
n−1
∑
i=2
(2i − 1)!!

n
∏
j=i+1
(4j − 2)

(6.2.19)

is concluded to.

Example 1. Root-isomorphic classification of orientable petal bundles on surfaces by
size. The case of genus 0 surface (i. e., S0) is seen in Figure 3.1.4. Orientable petal bun-
dles of sizes 0, 1, 2, 3 and 4 on S0, have, respectively, 1, 1, 2, 5 and 14 classes, in total
1 + 1 + 2 + 5 + 14 = 23 classes.

In Figure 6.2.1,we show the cases of genus 1 (i. e., S1) and genus 2 (i. e., S2) surfaces.
In the figure, i and ̄i (or i) represent the edge i on which two sides are with different
directions (or the same direction) for i = 1, 2, 3 and 4. On S1, because of no map (the
petal bundle is a specific case) with 0 1 edges, only observe those of sizes 2, 3 and 4.
For size 2, only 1a represents 1 class. For size 3, 4b + 3c + 3d, we have a total of 10
classes. For size 4, 8e + 8f + 8g + 8h + 16i + 8j + 4k + 4l + 4m + 2n, we have a total of 70
classes. On S2, only size 4 is a possibility. In this case, 4o + 8p + 8q + 1r, and we have
in total 21 classes. See Figure 6.2.2.

Example 2. Root-isomorphic classification of non-orientable petal bundles on sur-
faces by size. In Figures 6.2.3 and 6.2.4, it is seen that petal bundles of size 1 only
occur on a non-orientable surface of genus 1, i. e., S ̃1; Size 2 is only possible on S ̃1 and
S2̃; and size 3 is only possible on S ̃1, S2̃ and S3̃.

In Figure 6.2.3, it is seen that we have petal bundles of size 1 on S ̃1, only 1a, i. e.,
1 class. There are petal bundles of size 2 on S ̃1 and S2̃, respectively, 1b + 3c and 2d + 2e,
i. e., 4 and 4 classes.

InFigure 6.2.4,wehave root-isomorphic classes of petal bundles onnon-orientable
surfaces with size 3. In the figure, e, like a, b, c and d, shows such classes of petal
bundles on surface S ̃1.

Thus, the number of such classes for petal bundles on non-orientable surfaces of
genus ̃1 is 6a + 6b + 6c + 3d + 1e, in total 6 + 6 + 6 + 3 + 1 = 22; f–m show the classes on
surface S2̃, and n–u on the surface S3̃.
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6.2 Sum of petal bundles | 149

Figure 6.2.1: Petal bundles on orientable surface of genus 1 with sizes: 2–4.

Figure 6.2.2: Petal bundles on orientable surface of genus 2 with size 4.
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150 | 6 Ordinary differential equations

Figure 6.2.3: Petal bundles on non-orientable surfaces with sizes 1–2.

Figure 6.2.4: Petal bundles on non-orientable surfaces with size 3.

Hence, the number of such classes of petal bundles with size 3 on the non-orientable
surface of genus 2̃ is 6f +12g+6h+6i+3j+3k+3l+3m, in total 6+12+6+6+3+3+3+3 = 42
and on the non-orientable surface of genus 3̃, 2n + 6o + 12p + 3q + 6r + 6s + 3t + 3u,
a total of 2 + 6 + 12 + 3 + 6 + 6 + 3 + 3 = 41. See Figure 6.2.4.

6.3 Orientable sum

In Liu YP [44] (1999, Theorem 8.5.1, p. 268), the equation for f ∈ ℛ{x}

{
{
{

2x2 df
dx
= −1 + (1 − x)f − xf 2;

f0 = f |x=0 = 1,
(6.3.1)

occurs. The aim is a solution inℛ+{x} if there is any.
This is equation (19) in Introduction when a = b = c = d = 1 because it is mean-

ingful in a classification for ordinary maps on all orientable surfaces.
Equation (6.3.1) is transformed into its equivalence

{
{
{

f = 1 + xf + 2x2 df
dx
+ xf 2;

f0 = f |x=0 = 1.
(6.3.2)
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Figure 6.2.4: Continued.
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152 | 6 Ordinary differential equations

Because of f ∈ ℛ+{x}, f is determined by [f ]n = 𝜕nx f for n ≥ 0. Let Fn = [f ]n for
n ≥ 0, then

[xf ]n = [f ]n−1 = {
0, when n = 0;
Fn−1, when n ≥ 1,

(6.3.3)

and

[xf 2]n = [f
2]n−1 =

n
∑
i=0

FnFn−i, n ≥ 0. (6.3.4)

Since, for any integer n ≥ 0,

[
df
dx
]
n
= {

0, when n = 0;
(n + 1)Fn+1, when n ≥ 1,

we have

[x2 df
dx
]
n
= [

df
dx
]
n−2
= {

0, when 2 ≥ n ≥ 0;
(n − 1)Fn−1, when n ≥ 3.

(6.3.5)

On the basis of (6.3.3)–(6.3.5), by equation (6.3.2), we have

x0 : F0 = 1 + [xf ]0 + 2[x
2 df
dx
]
0
+ [xf 2]0 = 0 ⇒ F0 = 1, (6.3.6)

x1 : F1 = [xf ]1 + 2[x
2 df
dx
]
1
+ [xf 2]1 = F0 + F

2
0 ⇒ F1 = 1 + 1 = 2, (6.3.7)

x2 :

{{{{{{
{{{{{{
{

F2 = [xf ]2 + 2[x
2 df
dx
]
2
+ [xf 2]2

= F1 + 2F1 + 2F0F1
= 2 + 4 + 4

}}}}}}
}}}}}}
}

⇒ F2 = 10, (6.3.8)

and, for n ≥ 2,

xn :

{{{{{
{{{{{
{

Fn = [xf ]n + 2[x
2 df
dx
]
n
+ [xf 2]n

= Fn−1 + 2(n − 1)Fn−1 +
n−1
∑
i=0

FiFn−1−i

}}}}}
}}}}}
}

⇒ Fn = (2n − 1)Fn−1 +
n−1
∑
i=0

FiFn−1−i.

(6.3.9)

Lemma 6.3.1. For any integer n ≥ 0,

1 (when n = 0)
2 (when n = 1)

(2n − 1)Fn−1 +∑
n−1
i=0 FiFn−1−i (when n ≥ 2)

}}}
}}}
}

= Fn ∈ ℤ+. (6.3.10)
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6.3 Orientable sum | 153

Proof. Because of F0 = 1, F1 = 2 ∈ ℤ+, the conclusion is true for n = 0 and 1. For n ≥ 2,
by employing induction assumption we find that, for any i, 0 ≤ i ≤ n − 1, Fi ∈ ℤ+.
Because of all Fn−1, Fi, Fn−1−i ∈ ℤ+, (6.3.10) leads to Fn ∈ ℤ+. This is the conclusion.

This tells us that the function f determined by (6.3.10) in Lemma 6.3.1 obeys f ∈
ℛ+{x}.

Theorem 6.3.2. Equation (6.3.1) is well-defined onℛ{x}.

Proof. It is easily understood that the function f obtained by (6.3.10) is a solution of
equation (6.3.1) because of F0 = 1, the initial condition of the equation. Then we con-
sider the uniqueness of the procedure for the initial condition. This solution is the only
one of equation (6.3.1).

Example 1. On all orientable surfaces, root-isomorphic classes of ordinal maps with
given size. Because of the results in, e. g., Liu YP [44] (1999, Theorem 8.5.1, p. 268),
or in dedeal, in Liu, YP [48] (2001, Theorem 9.5.1, p. 314), the enufunction of ordinary
maps with size as a parameter on all orientable surfaces satisfies equation (6.3.1), and
hence, Theorem6.3.2 leads to the solution f determined by (6.3.10) as the enufunction.
Here, only those for size at most 3 are shown.

From (6.3.10), we have F0 = 1, F1 = 2, F2 = 10 and F3 = 74. Among F0 + F1 + F2 =
1 + 2 + 10 = 13 maps, only 1 is not on S0 (sphere, or plane). This map has 2 edges with
1 vertex, shown in a of Figure 6.3.1 on S1 (orientable surface of genus 1, or torus).

Figure 6.3.1: Classes of maps of size 3 on orientable surfaces of genus not 0.
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154 | 6 Ordinary differential equations

Because all maps of size 3 only are allowed to be on orientable surfaces of genus at
most 1, among all F3 = 74maps, only 20 are non-planar. They are all on S1. As shown in
Figure 6.3.1, seeb–g, i. e., 4b+3c+3d+3e+6f +1g, wehave a total of 4+3+3+3+6+1 = 20.

Example 2. Consider the generalized equation

{
{
{

ax2 df
dx
= −b + b(1 − x)f − cxf 2;

f |x=0 = 1,
(6.3.11)

where a, b, c ∈ ℤ+, b|a b|c.
For convenience, the first case of equation (6.3.11) is replaced by its equivalence,

bf = b + bxf + ax2 df
dx
+ cxf 2.

From b|a, α = a/b ∈ ℤ+. From b|c, β = c/b ∈ ℤ+. The equation becomes

f = 1 + xf + αx2 df
dx
+ βxf 2. (6.3.12)

On the basis of (6.3.3)–(6.3.5), (6.3.12) leads to

x0 : F0 = 1 + [xf ]0 + a[x
2 df
dx
]
0
+ β[xf 2]0 = 0

⇒ F0 = 1,
(6.3.13)

x1 : F1 = [xf ]1 + α[x
2 df
dx
]
1
+ β[xf 2]1 = F0 + βF

2
0

⇒ F1 = 1 + β,
(6.3.14)

and, for n ≥ 2,

xn :

{{{{{
{{{{{
{

Fn = [xf ]n + α[x
2 df
dx
]
n
+ β[xf 2]n

= Fn−1 + α(n − 1)Fn−1 + β
n−1
∑
i=0

FiFn−1−i

}}}}}
}}}}}
}

⇒ Fn = (αn − α + 1)Fn−1 + β
n−1
∑
i=0

FiFn−1−i.

(6.3.15)

Lemma 6.3.3. For any integer n ≥ 0,

1 (when n = 0)
1 + β (when n = 1)

(αn − α + 1)Fn−1 + β∑
n−1
i=0 FiFn−1−i (when n ≥ 2)

}}}
}}}
}

= Fn ∈ ℤ+. (6.3.16)
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Proof. Because of F0 = 1, F1 = 1 + β ∈ ℤ+, and for any integer n ≥ 2, by the induction
assumption,Fi ∈ ℤ+, 0 ≤ i ≤ n−1, then (6.3.16) leads toFn ∈ ℛ+. This is the conclusion.

This lemma shows that f ∈ ℛ+{x} is determined by (6.3.16).

Theorem 6.3.4. Equation (6.3.11) is well-defined onℛ{x}.

Proof. In (6.3.16), since F0 = 1 is just the initial condition of equation (6.3.11), from
the function f ∈ ℛ+{x} ⊆ ℛ{x} determined by (6.3.16), it is seen that f is a solution of
equation (6.3.11).

Furthermore, from the uniqueness of f as determined by (6.3.16) for the initial
condition F0, f is the only solution of equation (6.3.11).

Because of Fn, n ≥ 2, being of the form of a finite sum of positive terms as shown
in (6.3.16), all coefficients of f are expressed in the form of a finite sum of positive
integers.

6.4 Non-orientable sum

In Liu YP [46] (2003, Theorem 9.6, p. 209. Attention should be paid to the expression
of b(x), “−” being replaced by “+”!); one might find

{{{
{{{
{

4x2 df
dx
= α(x)f − xf 2 − 2xβ(x);

df
dx

x=0
= 1,

(6.4.1)

where
{
{
{

α(x) = 1 − 2x − 2xfOrien;

β(x) = fOrien + 2x
dfOrien
dx
.

(6.4.2)

Here, fOrien as determined by (6.3.10) is the solution of equation (6.3.1).
This is equation (20) in Introduction when a = c = d = 1 because it is meaningful

in a classification for petal bundles on all non-orientable surfaces.
For convenience, the first case of equation (6.3.1) is transformed into one of its

equivalences by

f = xb(x) + 2x(1 + fOrien)f + 4x
2 df
dx
+ xf 2

= A(x) + 2B(x)f + 2xfOrienf + xf
2

(6.4.3)

where

{{{
{{{
{

A(x) = x(fOrien + 2x
dfOrien
dx
);

B(x) = x(f + 2x df
dx
).

(6.4.4)
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156 | 6 Ordinary differential equations

For integer n ≥ 0, let On = [fOrien]n, i. e., 𝜕nx fOrien. From (6.3.10),

On =
{{{
{{{
{

1, when n = 0;
2, when n = 1;
(2n − 1)On−1 +∑

n−1
i=0 OiOn−1−i, when n ≥ 2.

(6.4.5)

For any integer n ≥ 1,

[A(x)]n = [fOrien + 2x
dfOrien
dx
]
n−1

= On−1 + 2[
dfOrien
dx
]
n−2

= On−1 + 2(n − 1)On−1

= (2n − 1)On−1

(6.4.6)

and

[B(x)]n = [f + 2x
df
dx
]
n−1

= Fn−1 + 2[
df
dx
]
n−2

= Fn−1 + 2(n − 1)Fn−1
= (2n − 1)Fn−1

(6.4.7)

where Fn = [f ]n, n ≥ 0.
On the basis of equation (6.4.4), for integer n ≥ 0,

[f ]n = [A(x)]n + 2[B(x)f ]n + 2[fOrienf ]n−1 + [f
2]n−1. (6.4.8)

By employing (6.4.6) and (6.4.7),

x0 : F0 = 0 + 0 + 0 + 0 = 0,

by noticing that O0 = 1 and F0 = 0,

x1 : F1 = 1 + 0 + 0 + 0 = 1

and, for any integer n ≥ 2, by noticing that O0 = 1 and F0 = 0 as well,

Fn = (2n − 1)On−1 + 2(2n − 1)Fn−1 + 2
n−1
∑
i=1

FiOn−1−i +
n−2
∑
i=1

FiFn−1−i

= (2n − 1)On−1 + 4nFn−1 +
n−2
∑
i=1

Fi(2On−1−i + Fn−1−i).
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In consequence, for integer n ≥ 0,

Fn =

{{{{{{
{{{{{{
{

0, when n = 0;
1, when n = 1;
(2n − 1)On−1 + 4nFn−1
+∑n−2i=1 Fi(2On−1−i + Fn−1−i), when n ≥ 2.

(6.4.9)

Lemma 6.4.1. For any integer n ≥ 0, Fn ∈ ℤ+ is determined by (6.4.9).

Proof. First, F0 = 0 ∈ ℤ+ and F1 = 1 ∈ ℤ+. Then, for integer n ≥ 2, by induction,
assume Fi ∈ ℛ+, 0 ≤ i ≤ n − 1. By Lemma 6.3.1, On ∈ ℤ+, n ≥ 0. By the assumption,
Fn−1 ∈ ℤ+ and Fi, Fn−1−i ∈ ℤ+, 1 ≤ i ≤ n − 2. From (6.4.9), Fn ∈ ℤ+ is deduced. The
conclusion is drawn.

This lemma tells us that the function f determined by (6.4.9) is inℛ+{x} ⊆ ℛ{x}.

Theorem 6.4.2. Equation (6.4.1) is well-defined onℛ{x}.

Proof. Because f is determined by (6.4.9) satisfying (6.4.3) the first case of equation
(6.4.1) with F1 = 1 =

df
dx |x=0, Lemma 6.4.1 leads us to see that f is a solution of equation

(6.4.1).
Furthermore, by considering the uniqueness of {Fn | n ≥ 0} determined from

(6.4.9) for the initial condition F1 = 1, f determined by {Fn | n ≥ 0} is the only solution
of equation (6.4.1).

It is shown from the theorem that f = fNon determined by (6.4.9) is just the solution
of equation (6.4.1).

Example 1. Root-isomorphic classes of non-orientable maps. Since a map whose un-
derline graph without circuit is never non-orientable (a loop is a circuit in its own
right!), themaps of their underline graphs as trees do not occur in our case. Denote by
Gx−y−z the zth item in all graphs with size x and order y. The solution fNon of equation
(6.4.1) is just the enufunction of all non-orientable rootedmapswith size as parameter.
From (6.4.9), Fn = 𝜕nx fNon, denoted by Nn, n ≥ 0. Then we have

N0 = 0, N1 = 1, N2 = 14, and N3 = 223.

In Figures 6.4.1–6.4.3, all root-isomorphic classes of non-orientablemapswith size not
greater 3 are shown.

In Figure 6.4.1, a shows that maps of size 1 have only 1 class. In maps of size 2,
maps of underline graph G2−1−1 have 4b + 1c, in total 4 + 1 = 6 = 5 classes on S ̃1 and
2d+ 2e, in total 2+ 2 = 4 classes on S2̃, a total of 9 classes. Maps of the underline graph
G2−2−1 have 4f , in total 4 classes and 1f , in total 1 class, in summary 5 classes on S ̃1.
Thus, maps of size 2 have 5 + 5 = 10 classes on S ̃1 and 4 classes on S2̃, in summary
10 + 4 = 14 classes.
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158 | 6 Ordinary differential equations

Figure 6.4.1: Classes of non-orientable maps with sizes 1–2.

Figures 6.4.2–6.4.3 provide classes of non-orientable maps with size 3. Among them,
Figure 6.4.2 shows the classes of maps considered of underline graph G3−1−1 with size
3 and Figure 6.4.3, all other classes of maps with size 3. Attention: A figure without
hollow on one side of each edge stands for 12 (i. e., 4 × 3) hollows.

In Figure 6.4.2, 6a + 6b + 6c + 3d + 1e, in total 6 + 6 + 6 + 3 + 1 = 22 classes on S ̃1,
6f + 12g + 6h + 6i + 3j + 3k + 3l + 3m, in total 6 + 12 + 6 + 6 + 3 + 3 + 3 + 3 = 42 classes on
S2̃ and 2n + 6o + 12p + 3q + 6r + 6s + 3t + 3u, a total of 2 + 6 + 12 + 3 + 6 + 6 + 3 + 3 = 41
classes on S3̃.

In Figure 6.4.3, of the underline graph G3−2−1, we have 12a + 6b + 6c + 6d, in total
30 classes on S ̃1 and 6e + 12f + 6g, in total 24 classes on S2̃.

Of the underline graph G3−2−2, 6h, i. e., classes on S ̃1 and 3i, i. e., 3 classes on S2̃.
Of the underline graph G3−2−3, 6j + 6k + 3l, i. e., we have 15 classes on S ̃1 and 6m +

3n + 3o, i. e., 12 classes on S2̃.
Of G3−2−4, 3p, i. e., 3 classes on S ̃1 and 3q, i. e., 3 classes on S2̃.
Of G3−3−1, 6r, i. e., 6 classes on S ̃1.
Of G3−3−2, 6s + 3t, i. e., 9 classes on S ̃1.
Of G3−3−3, 6u, i. e., 6 classes on S ̃1.
On G3−3−4, 1v, i. e., 1 classes on S ̃1.
In consequence, non-orientablemapsof size 3have 22+30+6+15+3+6+6+6+1 = 96

classes on S ̃1, 42 + 24 + 3 + 12 + 3 = 86 classes on S2̃, 41 on S3̃. On all non-orientable
surfaces, maps of size 3 have 96 + 86 + 41 = 223 classes in all.
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Figure 6.4.2: Classes of non-orientable maps with underline graph G3−1−1.
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160 | 6 Ordinary differential equations

Figure 6.4.2: Continued.

Figure 6.4.3: Other classes of non-orientable maps with size 3.
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Figure 6.4.3: Continued.
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162 | 6 Ordinary differential equations

6.5 Ordinary total sum

Consider the equation for f ∈ ℛ{x}

{
{
{

ax2 df
dx
= −1 + (1 − bx)f − cxf 2;

f |x=0 = 1,
(6.5.1)

where a, b, c ∈ ℤ+.
This is equation (21) in Introduction when d = 1 and then a = 4, b = 2, c = 1 be-

cause it is meaningful in a classification for ordinary maps on all surfaces (orientable
and non-orientable).

The following equivalence of the first case of equation (6.5.1) is adopted:

f = 1 + bxf + ax2 df
dx
+ cxf 2. (6.5.2)

From equation (6.5.2),

[f ]n = [1]n + b[xf ]n + a[x
2 df
dx
]
n
+ c[xf 2]n

= {
1, when n = 0;
b[f ]n−1 + a[

df
dx ]n−2 + c[f

2]n−1, when n = 0,

(6.5.3)

for any integer n ≥ 0.
Let Fn = [f ]n = 𝜕nx f and

[
df
dx
]
n−2
= (n − 1)Fn−1;

[f 2]n−1 =
n−1
∑
i=0

FiFn−1−i.

Based on (6.5.3),

x0 : F0 = 1, (6.5.4)

x1 : F1 = bF0 + 0 + cF
2
0 ⇒ F1 = b + c, (6.5.5)

and, for n ≥ 2,

xn :

{{{{{
{{{{{
{

Fn = b[f ]n−1 + a[
df
dx
]
n−2
+ c[f 2]n−1

= bFn−1 + a(n − 1)Fn−1 + c
n−1
∑
i=0

FiFn−1−i

}}}}}
}}}}}
}

⇒ Fn = (an − a + b)Fn−1 + c
n−1
∑
i=0

FiFn−1−i.

(6.5.6)
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6.6 Four color sum for triangulations on sphere | 163

Lemma 6.5.1. For any integer n ≥ 0,

1 (when n = 0)
b + c (when n = 1)

(an − a + b)Fn−1 + c∑
n−1
i=0 FiFn−1−i
(when n ≥ 2)

}}}}}}
}}}}}}
}

= Fn ∈ ℤ+ (6.5.7)

Proof. Because of F0 = 1, F1 = b + c ∈ ℤ+, the conclusion is true for n = 0 and 1. We
proceed by induction. For integer n ≥ 2, assume Fi ∈ ℤ+, 0 ≤ i ≤ n − 1. Because Fn
is determined only by Fi, 0 ≤ i ≤ n − 1, from the third case of (6.5.7), the assumption
leads to Fn ∈ ℤ+. This is the conclusion.

This lemma tells us that the function f determined by (6.5.7) is inℛ+{x} ⊆ ℛ{x}.

Theorem 6.5.2. Equation (6.5.1) is well-defined onℛ{x}.

Proof. On the basis of (6.5.4)—(6.5.6), from Lemma 6.5.1, known that f ∈ ℛ+{x} ⊆ ℛ{x}
determined by (6.5.7) is a solution of equation (6.5.2) and hence equation (6.5.1).

Furthermore, by considering the uniqueness of the procedure for evaluating Fn,
n ≥ 0, by (6.5.7) from the initial condition F0, f is the only solution of equation (6.5.1).

Because of each Fn, n ≥ 2, is a finite sum of positive integers, the function f is an
expression in the form of a sum with all terms positive.

Example 1. When a = 4, b = 2 and c = 1, equation (6.5.1) becomes the equation in Liu
YP [46] (2003, Theorem 9.7, p. 213)

{
{
{

4x2 df
dx
= −1 + (1 − 2x)f − xf 2;

f0 = f |x=0 = 1,
(6.5.8)

used for determining thenumber of root-isomorphic classes of ordinarymapswith size
as parameter on all surfaces (orientable and non-orientable). The number is called the
ordinary sum.

Example 2. Because equation (6.5.8) is the sum of equation (6.3.1) and equation
(6.4.1), the solution of equation (6.5.8) can be directly derived by (6.3.10) and (6.4.9).

6.6 Four color sum for triangulations on sphere

Consider the quadratic equation with ordinary differentiation of second order for f ∈
ℛ{x}
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164 | 6 Ordinary differential equations

{{{{
{{{{
{

(2z + 5f − 3z df
dz
)
d2f
dz2
= 48z;

f |z=0 = 0,
df
dz

z=0
= 0.

(6.6.1)

This is equation (22) in Introduction when a = c = 1 and d = 0 because it is
meaningful in four color sums for planar triangulations as addressed by Tutte.

On the extension of the integral domainℛ{y}, for equivalently transforming equa-
tion (6.6.1) about f into a system of equations about {Fn = 𝜕ny | integer n ≥ 0}, let us
write

s = 2z + 5f − 3z df
dz
, Sn = 𝜕

n
y s;

f  = d
2f

dz2
, Fn = 𝜕

n
y f
,

(6.6.2)

where the integer n ≥ 0. Thus, for n ≥ 0,

Sn =
{{{
{{{
{

5F0, when n = 0,
2(1 + F1), when n = 1,
(5 − 3n)Fn, when n ≥ 2;

Fn = (n + 2)(n + 1)Fn+2.

(6.6.3)

Furthermore, for integer n ≥ 0, let

Δn =
n
∑
i=0

SiF

n−i. (6.6.4)

On the basis of (6.6.2)–(6.6.4), from equation (6.6.1),

z0 : Δ0 = S0F

0 = 0,

by S0 = 5F0 and F

0 = 2F2,

⇒ Δ0 = (5F0)(2F

2 )

(6.6.5)

for n = 0. From the initial condition of equation (6.6.1) F0 = 0, the equality Δ0 = 0
holds.

For n = 1,

z1 : Δ1 = S0F

1 + S1F


0 ,

by S0 = 0 and F

1 = 6F3,

⇒ Δ1 = S1F

0 ,

by S1 = 2(1 + F1) and F

0 = 2F2,

⇒ Δ1 = 2(1 + F1)2F2.

(6.6.6)
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From the initial condition F1 = 0 of equation (6.6.1), the equality Δ1 = 48 holds when
F2 = 12.

For n = 2,

z2 : Δ2 = S0F

2 + S1F


1 + S2F


0 ,

by S0 = 0 and F1 = 0,
⇒ Δ2 = 2(6F3) + S2F


0 ,

by S2 = (5 − 6)F2 and F

0 = 2F2,

⇒ Δ2 = 12F3 − F2(2F2).

(6.6.7)

Because of the condition F2 = 12 for Δ1 = 48, Δ2 = 0 holds only when F3 = 2F2 = 24.
For n = 3,

z3 : Δ3 = S0F

3 + S1F


2 + S2F


1 + s3F


0 ,

by S0 = 0 and S1 = 2,
⇒ Δ3 = 2(12F4) + S2(6F3) + S3(2F2),

by S2 = −F2 and S3 = −4F3,
⇒ Δ3 = 2(12F4) − F2(6F3) − 4F3(2F2).

(6.6.8)

Because of the condition F3 = 24 for Δ2 = 0, the quality Δ3 = 0 holds only when
F4 = 6F2 + 8F2 = 168.

In general, for n ≥ 4, because of S0 = 0, S1 = 2 and Fn−1 = (n + 1)nFn+1,

zn : Δn = 2(n + 1)nFn+1 +
n
∑
i=2

SiF

n−i,

by the first case of equation (6.6.3),

= 2(n + 1)nFn+1 −
n
∑
i=2
(3i − 5)FiF


n−i,

by the second case of equation (6.6.3),

= 2(n + 1)nFn+1 −
n
∑
i=2

λn,iFiFn−i+2,

(6.6.9)

where

λn,i = (3i − 5)(n − i + 2)(n − i + 1).

Only when

Fn+1 =
1

2(n + 1)n

n
∑
i=2

λn,iFiFn−i+2, (6.6.10)

the equality Δn = 0 holds.
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166 | 6 Ordinary differential equations

Theorem 6.6.1. Equation (6.6.1) for f is equivalent to the system of equations for
{Fn | n ≥ 0}

Δn =
{{{
{{{
{

0, when n = 0;
48, when n = 1;
0, when n ≥ 2,

(6.6.11)

with the conditions F0 = 0 and F1 = 0, where Δn is given by (6.6.9).

Proof. By the procedure from (6.6.5) through (6.6.10), it is seen that a solution of equa-
tion (6.6.1) can be transformed into a solution of the system of equations equation
(6.6.11). Conversely, from (6.6.7)–(6.6.10), a solution of the system of equations (6.6.11),
and hence a solution of equation (6.6.1), can be derived.

The theorem enables us to extract a solution of equation (6.6.11) for getting a so-
lution of equation (6.6.1).

Lemma 6.6.2. In a solution Fn(n ≥ 0) of equation (6.6.11), Fn ≥ 0 for any integer n ≥ 0.

Proof. We proceed by induction. With a view on the discussion of (6.6.5)–(6.6.8), from
F0 = F1 = 0, F2 = 12, F3 = 24 and F4 = 168, it is seen that the conclusion is true for
n ≤ 4. For n ≥ 5, assume that Fj ≥ 0 for 0 ≤ j ≤ n − 1. By (6.6.10), on account of λn,i ≥ 0
for 2 ≤ i ≤ n − 1, the assumption leads to Fn ≥ 0.

Theorem 6.6.3. Equation (6.6.1) is well-defined onℛ+{z}.

Proof. From Theorem 6.6.1 and Lemma 6.6.2, the function f determined by the proce-
dure of doing (6.6.5)–(6.6.10) is a solution inℛ+{z}. Then, by considering the unique-
ness of the procedure by running from (6.6.5) through (6.6.10) based on the initial con-
ditions F0 = F1 = 0, we find that the solution is the only one.

Furthermore, the solution of equation (6.6.1) enables us to get its expression in the
form of a finite sum with all terms positive.

Theorem 6.6.4. The solution of equation (6.6.1) has its expression in the form of a finite
sum with all terms positive,

Fn =

{{{{{{{{{
{{{{{{{{{
{

0, when n = 0, 1;
12, when n = 2;
24, when n = 3;
168, when n = 4;
∑n−1i=2
(3i−5)(n−i+1)(n−i)

2(n−1)n FiFn−i+1, when n ≥ 5.

(6.6.12)

Proof. From the initial conditions of equation (6.6.1), by (6.6.6)–(6.6.10), (6.6.12) is then
obtained.

Brought to you by | Ludwig-Maximilians-Universität München Universitätsbibliothek (LMU)
Authenticated

Download Date | 11/2/19 5:43 PM



6.6 Four color sum for triangulations on sphere | 167

Next, as an example, we show an application of equation (6.6.1).

Example 1. Four color sum on root-isomorphic classes of planar triangulations. In
Tutte WT [86] is shown a solution of equation (6.6.1): Fn, n ≥ 0 such that

h = ∑
n≥1

Fn+2z
n

is the four color sum function of planar rooted triangulations, i. e., Hn = 𝜕
n
z h = Fn+2,

n ≥ 1, is the total sum of colorations by 4 colors over all non-separable planar rooted
triangulations with 2n faces.

Lemma 6.6.5. In the solution Fn(n ≥ 0) of the system of equations (6.6.11), for any inte-
ger n ≥ 4,

2(n + 1)n


n
∑
i=2
(3i − 5)(n − i + 2)(n − i + 1)FiFn−i+2. (6.6.13)

Proof. By (6.6.12),

2(n + 1)nFn+1 =
n
∑
i=2
(3i − 5)(n − i + 2)(n − i + 1)FiFn−i+2.

From the combinatorial meaning of Fn+1, Fn+1 is a positive integer, i. e., Fn+1 ∈ ℤ+.
Therefore, the conclusion is drawn.

The conclusion above can be directly proved by (6.6.12) itself, however, it looks
that some complication might be involved.

Theorem 6.6.6. On the solution Fn(n ≥ 0) of equation (6.6.1) as determined by (6.6.12),
for any integer n ≥ 2, Fn ∈ ℤ+.

Proof. This is a direct result of Lemma 6.6.5.

In Figure 6.6.1, it is seen thatH1 = F3 andH2 = F4 aremeaningful in combinatorics,
particularly, in the four color sum of maps. For example, a shows that non-separable

Figure 6.6.1: Four color sum of root-classes of triangulations on sphere.
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168 | 6 Ordinary differential equations

planar triangulations of 2 faces have only 1 root-isomorphic class. Its chromatic poly-
nomial isP(a) = λ(λ−1)(λ−2).When λ = 4,P(a)|λ=4 = 4×3×2 = 24. This isH1 = F3 = 24.
From b and c, it is seen that non-separable planar triangulations of 4 faces have 4 root-
isomorphic classes. Thus,

H2 = F4 = 1P(b)|λ=4 + 3P(c)|λ=4
= λ(λ − 1)(λ − 2)(λ − 3)|λ=4 + 3λ(λ − 1)(λ − 2)

2|λ=4
= 24 + 3 × 12 × 22 = 7 × 24 = 168.

6.7 Notes

6.7.1. All differential functional equations mentioned in 6.1 can be directly solved by
integration. However, certain complications are often encountered in trying to sim-
plify.

How to find the simplest differential equation is a problem absolutely necessary
to do further research on via suitable parametric expressions. For example, in Tutte
WT [84], a function for planar c-nets (or 3-connected planar maps) is extracted from
a second order ordinary differential equation. However, in Liu YP [12], one works by a
first order ordinary differential equation to get a result that is very simple.

6.7.2. In Liu YP [44] (1999, Theorem 8.5.2, p. 271), the first order ordinary differential
equation

{
{
{

4x2 dg
dx
= (1 − x)g − x(1 + h);

g|x=0 = 0,
(6.7.1)

is provided for counting the root-isomorphic classes of non-orientable petal bundles
with size as parameter. Here h is determined by equation (6.2.1). Notably, h is the solu-
tion of equation (6.2.1) if the constant term is omitted. It can be shown that the solution
g of equation (6.6.1) is just determined by (6.2.17).

6.7.3. The expression for Fn in the form of a finite sum of all terms positive shown by
(6.3.10) should be done further for getting an explicision of the summation free case.

6.7.4. On the basis of the explicision of Fn determined by (6.3.10), we evaluate an
explicision in the summation free form of Fn determined by (6.4.9).

6.7.5. On the basis of (6.3.10) and (6.4.9), we evaluate an explicision in the form of a
finite sum with all terms positive of Fn as determined by (6.5.7).

6.7.6. Equation (6.6.1) firstly occurs in Tutte WT [86] (1982). However, no suitable ex-
pression, particularly an explicision, has been found yet up to now.
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7 Partial differential equations

7.1 Quadrangulations on sphere

Consider the equation (applied later!) for f ∈ ℛ{x, y}

{
x4yf 2 + (y − x2)f − x2yf ∗ + x2 − y = 0;
f |x=y=0 = 1, (7.1.1)

where f ∗ = 𝜕2xf . This is equation (23) in Introduction when a = b = c = d = 1. It is
meaningful for quadrangulations on the sphere.

This equation is derived from a theory of decomposition appearing in Liu YP [40]
(1992). More clearly this is found in Liu YP [44] (Section 5.4, 1999). Some definitions
relevant for y have to be attended to.

Let Fn = [f ]n = 𝜕ny f , n ≥ 0, then, for any integer n ≥ 0,

F∗n = [f ∗]n = [𝜕2xf ]n = 𝜕2x[f ]n = 𝜕2xFn. (7.1.2)

In order to evaluate Fn, n ≥ 0, the first case of equation (7.1.1) is transformed into
one of its equivalences by

x2f = x4yf 2 + yf − x2yf ∗ + x2 − y
= x4yf 2 + y(f − x2f ∗ − 1) + x2. (7.1.3)

Because, for any integer n ≥ 0,

[f 2]n =
n
∑
i=0 FiFn−i (7.1.4)

and

[f − x2f ∗ − 1]n = {F0 − x2F∗0 − 1, when n = 0;
Fn − x4F∗n , when n ≥ 1,

(7.1.5)

we have, from (7.1.3),

y0 : x2[f ]0 = [x
2]0 ⇒ x2F0 = x

2;

⇒ F0 = 1, F∗0 = 0, (7.1.6)

y1 : x2[f ]1 = x
4[f 2]0 + [f − x

2f ∗ − 1]0,
by (7.1.4)–(7.1.5),

= x4F0F0 + (F0 − x
2F∗0 − 1),

by (7.1.6),

= x4 ⇒ x2F1 = x
4

⇒ F1 = x
2, F∗1 = 1,

(7.1.7)

https://doi.org/10.1515/9783110625837-007
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170 | 7 Partial differential equations

y2 : x2[f ]2 = x
4[f 2]1 + [f − x

2f ∗ − 1]1,
by (7.1.4)–(7.1.5),

= x4(2F0F1) + (F1 − x
2F∗1 ),

by (7.1.6)–(7.1.7),

= 2x6 ⇒ x2F2 = 2x
6

⇒ F2 = 2x
4, F∗2 = 0,

(7.1.8)

y3 : x2[f ]3 = x
4[f 2]2 + [f − x

2f ∗ − 1]2,
by (7.1.4)–(7.1.5),

= x4(F21 + 2F0F2) + (F2 − x
2F∗2 ),

by (7.1.6)–(7.1.8),

= x4(x4 + 4x4) + 2x4

⇒ x2F2 = 5x
8 + 3x4

⇒ F3 = 5x
6 + 2x2, F∗3 = 2,

(7.1.9)

and

y4 : x2[f ]4 = x
4[f 2]3 + [f − x

2f ∗ − 1]3,
by (7.1.4)–(7.1.5),

= x4(2F1F2 + 2F0F3) + (F3 − x
2F∗3 ),

by (7.1.6)–(7.1.9),

= x4(14x6 + 4x2) + 5x6

⇒ x2F2 = 14x
10 + 9x6

⇒ F3 = 14x
8 + 9x4, F∗4 = 0.

(7.1.10)

As a matter of fact, for any integer n ≥ 2,

x2Fn = x
4[f 2]n−1 + [f − x2f ∗]n−1
= x4

n−1
∑
i=0 FiFn−1−i + Fn−1 − x2F∗n−1. (7.1.11)

Lemma 7.1.1. For any integer n ≥ 1, Fn has a factor x2.

Proof. Because f is an even function for x, f has no term of x2i+1 where i ≥ 0 is an
integer.

First, from (7.1.7) and (7.1.8), both F1 and F2 have a factor x2.
Then we proceed by induction for n ≥ 3. For any i, 2 ≤ i ≤ n − 1, assume Fi has x2

as a factor. By (7.1.11) and the assumption, Fn has x2 as a factor (attention: x4|(Fn−1 −
x2F∗n−1)!). Therefore, the conclusion is drawn.
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7.1 Quadrangulations on sphere | 171

This lemma tells us that on the basis of (7.1.11), for any integer n ≥ 2,

x2(x
4[f 2]n−1 + [f − x2f ∗]n−1) (7.1.12)

and, for n ≥ 0, Fn ∈ ℛ+{x}.
Lemma 7.1.2. For any integer n ≥ 1, Fn is a polynomial of x with degree at most 2n.

Proof. From (7.1.6) and (7.1.7), F0 and F1 obey the conclusion.
We proceed by induction for n ≥ 3. Assume for 1 ≤ i ≤ n − 1, Fi is a polynomial of

x with degree at most 2i. Then from Lemma 7.1.1, the degree of [f − x2f ∗]n−1 is d([f −
x2f ∗]n−1) ≤ 2(n − 1) − 2 = 2n − 4. Because the degree of x4[f 2]n−1 is d(x4[f 2]n−1) ≤
4 + 2(n − 1) = 2n + 2, from (7.1.11), d(Fn) ≤ d(x4[f 2]n−1) − 2 ≤ (2n + 2) − 2 = 2n. Therefore,
based on the induction principle, the conclusion is easily drawn.

Lemma 7.1.3. For any integer n ≥ 1, Fn has no term of x with odd degree.

Proof. This is a result of f being even for x.

The three lemmas above with the procedures of the proofs enable us to express Fn
for n ≥ 1 in the form of

Fn =
2n
∑
m=2
2|m

Fm,nxm
=

n
∑
m=1 F2m,nx2m

(7.1.13)

where F2m,n ∈ ℛ+. Thus, because of
[f − x2f ∗]n = n

∑
m=2 F2m,nx2m, (7.1.14)

by (7.1.11), we have Fn ∈ ℛ+{x}.
Theorem 7.1.4. Equation (7.1.1) is well-defined onℛ{x, y}.

Proof. First, because of (7.1.3) equivalent to the first case of equation (7.1.1) and the
initial condition F0 = 1 of equation (7.1.1), on the basis of the lemmas above, f : Fn for
n ≥ 0 evaluated from (7.1.6), (7.1.7) and (7.1.11), provide a solution of equation (7.1.1) on
ℛ{x, y}.

Then, by considering the uniqueness of the procedure in evaluating Fn(n ≥ 1) on
ℛ{x, y} for the initial condition of equation (7.1.1), f is known to be the only solution of
equation (7.1.1).

In what follows, we discuss expressions of Fn, n ≥ 2, in the form of a finite sum
with all terms positive.
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172 | 7 Partial differential equations

Let us write F[2]n = [f 2]n, n ≥ 0. On the basis of (7.1.6) and (7.1.7), for n ≥ 2,
F[2]n = n
∑
i=0 FiFn−i
= 2Fn + 2x

2Fn−1 + n−2∑
i=2 FiFn−i.

(7.1.15)

Denote by Σn the summation for i from 2 through n − 2; then from (7.1.13), n ≥ 5, we
have

Σn =
n−2
∑
i=2 n−i+1∑t=2 ( t

∑
l=1 F2l,iF2(t−l),n−i)x2t

=
n−1
∑
t=2Φ2t,nx2t , (7.1.16)

where

Φ2t,n = t
∑
l=1(min{n−2,n−t+1}

∑
i=2 F2l,iF2(t−l),n−i). (7.1.17)

On this basis, from (7.1.11), we have, for n ≥ 5,

Fn = x
2(2(Fn−1 + x2Fn−2) + Σn−1) + Fn−1 − x2F∗n−1x2

. (7.1.18)

Meanwhile, from (7.1.14),

Fn−1 − x2F∗n−1
x2

=
1
x2

n−1
∑
l=2 F2l,n−1x2l

=
n−2
∑
l=1 F2(l+1),n−1x2l.

(7.1.19)

From (7.1.13),

2x2(Fn−1 + x2Fn−2) = 2(F2,n−1x4 + n
∑
l=3Λlx

2l)

= 2F2,n−1x4 + n
∑
l=3 2Λlx

2l
(7.1.20)

where Λl = F2(l−1),n−1 + F2(l−2),n−2 for 3 ≤ l ≤ n and from (7.1.16),

x2Σn−1 = x2 n−2∑
t=2Φ2t,n−1x2t

=
n−1
∑
t=3Φ2(t−1),n−1x2t . (7.1.21)
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7.1 Quadrangulations on sphere | 173

Theorem 7.1.5. Let f = f 0-quad be the solution of equation (7.1.1), determined by Qn =
𝜕ny f 0-quad ∈ ℛ+{x}, for n ≥ 0, then

Qn =

{{{{{{{{{{{{
{{{{{{{{{{{{
{

1, when n = 0;
x2, when n = 1;
2x4, when n = 2;
5x6 + 2x2, when n = 3;
14x8 + 9x4, when n = 4;
∑nm=1 Q2m,nx2m, when n ≥ 5,

(7.1.22)

where

Q2m,n =
{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{
{

Q4,n−1, when m = 1;
Q6,n−1 + 2F2,n−1, when m = 2;
2(Q2(m−1),n−1 + Q2(m−2),n−2)
+ Q2(m+1),n−1 +Φ2(m−1),n−1, when 3 ≤ m ≤ n − 2;

2(Q2(n−2),n−1 + Q2(n−3),n−2)
+Φ2(n−1),n−1, when m = n − 1;

2(Q2(n−1),n−1 + Q2(n−2),n−2), when m = n,

(7.1.23)

andΦ2t,n determined by (7.1.17).
Proof. By substituting (7.1.19)–(7.1.21) into (7.1.18), the conclusion is easily drawn.

Lemma 7.1.6. For any integer n ≥ 0,

when n = 0(mod 2), Q2,n
when n = 1(mod 2), Q4,n} = 0.

Proof. For n ≤ 4, from (7.1.22), it is seen that the conclusion is true. For n ≥ 5, by
induction on n. Assume for any integer i ≤ n−1, the conclusion is true.When n is even.
Because of n − 1 odd. From the assumption, Q4,n−1 = 0. From (7.1.22), Q2,n = Q4,n−1 = 0.
n is odd, because n − 1 even. By the assumption, Q4,n−1 = 0. Hence, according to the
principle of induction, the conclusion is easily drawn.

Lemma 7.1.7. For any integer n ≥ 1, Q2(n−1),n = 0.
Proof. When n = 1, . . . , 5. From (7.1.19), the lemma is true. When n ≥ 6, we proceed by
induction on n. Assume for any integer i ≤ n − 1, F2(i−1),i = 0. By (7.1.23),

Q2(n−1),n = 2(Q2(n−2),n−1 + Q2(n−3),n−2) +Φ2(n−1),n−1;
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174 | 7 Partial differential equations

by the assumption, Q2(n−2),n−1 = 0 and Q2(n−3),n−2 = 0. On the basis of (7.1.17), when
t = n − 1,

Φ2(n−1),n−1 = n−1∑
l=1(min{n−3,2}
∑
i=2 Q2l,iQ2(n−2),n−i−1)

=
n−1
∑
l=1(Q2l,2Q2(n−2),n−3).

Because of Q2(n−2),n−3 = 0, Φ2(n−1),n−1 = 0. Therefore, by the principle of induction, the
lemma is true.

Corollary 7.1.8. For integer n ≥ 5, the sequence {Qn | n ≥ 1} determined by (7.1.22) and
(7.1.23) satisfies the identity

Q2(n−2),n−1 + Q2(n−3),n−2 + ∑
2≤i≤min{n−3,2}

1≤l≤n−1

Q2l,iQ2(n−2),n−i−1 = 0. (7.1.24)

Proof. By Theorem 7.1.5 and Lemma 7.1.7, the conclusion is drawn.

Example 1. Root-isomorphic classes of planar near-quadrangulations.
In Figure 7.1.1, root-isomorphic classes planar near-quadrangulations with size

and root-face valency as parameters are provided. The cases for size 0, 1 and 2 showno
difference with trees. They are already shown in Figure 3.1.3 as, respectively, L0,1, L1,1
and L2,1. From L3,1 and L3,2, it is also seen that planar near-quadrangulations of size 3
and root-face valency 6 have 3L3,1 + 2L3,2, in total 5 classes. From 4L4,1 + 8L4,3 + 2L4,3, it
is seen that those of size 4 and root-face valency 8 have 14 classes. Their contributions
to Q3 and Q4 are, respectively, 5x6 and 14x8.

From a of Figure 7.1.1, it is found that planar near-quadrangulations of size 3 and
root-face valency 2 have 2a, a total of 2 classes. Their contribution to Q3 is 2x2. From
b, c and d of Figure 7.1.1, it is found that planar near-quadrangulations of size 4 and
root-valency 4 have 4b + 4c + 2d, a total of 9 classes. The contribution to Q4 is 9x4.

In summary, we have the two parts Q3 = 5x6 + 2x2 and Q4 = 14x8 + 9x4. Here, the
effect of Lemma 7.1.6 and Lemma 7.1.7 might be seen.

Figure 7.1.1: Classes of planar near-quadrangulations of sizes 3–4.
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7.1 Quadrangulations on sphere | 175

Example 2. In Liu YP [44] (Section 5.4, 1999), an equation for f is given:

{
x4yf 2 + (1 − x2)f + x2 − x2f ∗ − 1 − 0;
f |x=y=0 = 1, (7.1.25)

where f ∗ = 𝜕2xf .
For this equation, attention has to be paid to the fact that, because [f ]n = 𝜕ny f

(n ≥ 0) is not a polynomial of x, trouble occurs in determining f . However, it can be
avoided by restricting the power of y.

Example 3. In Liu YP-Cai JL [6] (2000), an equation with three variables occurs:

{
x4zf 2 + (y − x2)f + x2 − x2yf ∗ − y = 0;
f |x=y=z=0 = 1, (7.1.26)

where f ∗ = 𝜕2xf .
For this equation and the like, f can be determined by [f ]s,t = 𝜕s,ty,zf for s, t ≥ 0,

more or less, without cumbersome dealings.

Example 4. Lack-1 face near-quadrangulations on the sphere. Consider the equation

{{
{{
{

(x2 − 2x4yq − y)f = x
3zy

z − x
(zq|x=z − xq) + yfix≥3;

f |x=z=y=0 = 0, (7.1.27)

where q = q(x, y) is the solution of equation (7.1.1), and fix≥3 is the function obtained
by truncating all terms with degree of x less than 3 from f .

For convenience, it is necessary to discuss the issue of being well-defined and the
procedure of evaluating the solution of an equation considered.

First, equation (7.1.27) is transformed into one of its equivalences:

f = 2x2yf 0-nqf +
xzy
z − x
(zf 0-nq|x=z − xf 0-nq) + x−2yfix≥3 (7.1.28)

where f 0-nq([f 0-nq]n = 𝜕ny f 0-nq = Qn, n ≥ 0) determines the solution of equation (7.1.1),
given by (7.1.22) and (7.1.23).

On the basis of (7.1.28), for Fn = [f ]n, n ≥ 0, the procedure of evaluating them
follows:

y0 : [f ]0 = 0(by y as a factor on the right);
⇒ F0 = 0, [f 0-nqf ]0 = 0, [fix≥3]0 = 0, (7.1.29)

y1 : [f ]1 =
xz
z − x
[zf 0-nq|x=z − xf 0-nq]0

=
xz
z − x
(z[f 0-nq]0|x=z − x[f 0-nq]0)

=
xz
z − x
(zQ0|x=z − xQ0),

by (7.1.22) and (7.1.23),
⇒ F1 = xz, [f 0-nqf ]1 = xz, [fix≥3]1 = 0,

(7.1.30)
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176 | 7 Partial differential equations

y2 : [f ]2 = 2x
2[f 0-nqf ]1 +

xz
z − x
[zf 0-nq|x=z − xf 0-nq]1

= 2x2(xz) + xz
z − x
(zQ1|x=z − xQ1),

by (7.1.22) and (7.1.23),

= 2x3z + xz(z2 + xz + x2)

⇒ F2 = 3x
3z + x2z2 + xz3,

[f 0-nqf ]2 = 4x
3z + x2z2 + xz3,

[fix≥3]2 = 0,

(7.1.31)

y3 : [f ]3 = 2x
2[f 0-nqf ]2 +

xz
z − x
[zf 0-nq|x=z − xf 0-nq]2

= 2x2(4x3z + x2z2 + xz3)

+
xz
z − x
(zQ2|x=z − xQ2),

by (7.1.22) and (7.1.23) ,

⇒ F3 = 9x
5z + 4x4z2 + 4x3z3 + 2x2z4 + 2xz5,

(7.1.32)

and, for any integer n ≥ 4,

yn : [f ]n = 2x
2[f 0-nqf ]n−1 + xz

z − x
[zf 0-nq|x=z

− xf 0-nq]n−1 + x−2[fix≥3]n−1
⇒ Fn = x

2
n−1
∑
i=0QiFn−1−i
+
2(n−1)
∑
j=1 xj(

2n−3
∑

m⟨1,j−1⟩Qm,n−1zm−j+1)
+
2n−5
∑
m=2 xm𝜕m+2x Fn−1.

(7.1.33)

Lemma 7.1.9. For any integer n ≥ 1, Fn is a polynomial of x or y with both degrees neither
less than 1 nor greater than 2n − 1 onℛ+{x, z}.
Proof. Similarly to the proofs of Lemma 7.1.1–Lemma 7.1.3.

On the basis of this lemma, for any integer n ≥ 1 and F(n)s,t = 𝜕s,tx,zf ∈ ℛ+, we have
Fn = ∑

1≤s,t≤2n−1 F(n)s,t xszt = 2n−1∑s=1 F(n)s,∗xs = 2n−1∑t=1 F(n)∗,t zt . (7.1.34)

Theorem 7.1.10. Let fmis-1 be the solution of equation (7.1.27), then, for any integer n ≥ 0,
[fmis-1]n = Fn we have

Fn = x
2
n−1
∑
i=0QiFn−1−i + 2(n−1)∑

j=1 Aj,n−1xj + 2n−5∑
m=2 xmFm+2,n−1, (7.1.35)
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7.2 Quadrangulations on projective plane | 177

where

Aj,n−1 = 2n−3
∑

m=⟨1,j−1⟩Qm,n−1zm−j+1, 1 ≤ j ≤ 2(n − 1). (7.1.36)

Proof. On the basis of (7.1.34), see Theorem 7.1.4 and Theorem 7.1.5.

In Figure 7.1.2, a shows the root-classes of lack-1 planar near-quadrangulations
with size 1: xz, i. e., F1 = xz obtained by (7.1.30). b and c show the root-classes of lack-1
planar near-quadrangulationswith size 2: 3x3z+xz3(b)+x2z2(c) = 3x3z+x2z2+xz3 = F2,
as given by (7.1.31).

Figure 7.1.2: Classes of lack-1 planar near-quadrangulations with sizes 1–2.

Similarly, in Figure 7.1.3, one might see that the root-classes of lack-1 planar near-
quadrangulations with size 3:

2xz(a) + xz(b) + x3z3(c) + 5x5z + xz5(d) + 5x5z + xz5(e)

+ 3x3z3(f ) + 4x4z2 + 2x2z4(g)

= 10x5z + 4x4z2 + 4x3z3 + 2x2z4 + 2xz5 + 3xz = F3,

as given by (7.1.32).

7.2 Quadrangulations on projective plane

In Liu YP [51] (Section 4.5, 2009), one finds the system of equations for g and f

{{{{{{{
{{{{{{{
{

g =
x4y(f + x 𝜕f𝜕x ) − yx2g∗

x2 − y − 2x4yf
;

f = x
4yf 2 − x2yf ∗ + x2 − y

x2 − y
;

f |x=y=0 = 1, g|x=y=0 = 0,
(7.2.1)

where f ∗ = 𝜕2xf and g∗ = 𝜕2xg. This is equation (24) in Introductionwhich ismeaningful
in a classification for quadrangulations on the projective plane.
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178 | 7 Partial differential equations

Figure 7.1.3: Classes of lack-1 planar near-quadrangulations with size 3.

In the system of equations, although the differential function of f occurs, because of
the independence of the second equation and its solution given in Section 7.1, this
equation is already known.

In fact, f = f 0-quad is determined by Qn = 𝜕
n
y f 0-quad, for n ≥ 0, all of which are

shown in (7.1.22).
From (7.1.22), we have, for any integer n ≥ 0,

[x 𝜕f
𝜕x
]
n
= x[ 𝜕f
𝜕x
]
n

= x 𝜕Qn
𝜕x
, by (7.1.23),

=
2n
∑
m=1 2mQ2m,nx2m.

(7.2.2)

Thus, equation (7.2.1) is equivalently transformed into

{{
{{
{

g =
x4y(f + x 𝜕f𝜕x ) − yx2g∗

x2 − y − 2x4yf
;

g|x=y=0 = 0, (7.2.3)

where f = f 0-quad is given in Section 7.1 and g∗ = 𝜕2xg ∈ ℛ{y}.
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7.2 Quadrangulations on projective plane | 179

The first case of equation (7.2.3) is further transformed into a suitable equivalence:

x2g = x4y(f + x 𝜕f
𝜕x
) − x2yg∗ + yg + 2x4yfg

= x4y(f − 1 + x 𝜕f
𝜕x
) + y(g − x2g∗) + 2x4yfg. (7.2.4)

Because of [f ]0 = Q0 = 1 and
dQ0
dx = 0, for any integer n ≥ 0,

[f + x 𝜕f
𝜕x
]
0
= [f ]0 + x

d[f ]0
dx

= Q0 + x
dQ0
dx

= 1.

Moreover,

[f + x 𝜕f
𝜕x
]
n
= {

1, when n = 0;
Qn + x

dQn
dx , when n ≥ 1.

(7.2.5)

Let Gn = [g]n = 𝜕nyg, then from [g]0 = 0, [g
∗]0 = 0. Hence for n ≥ 0,

[g − x2g∗]n = {0, when n = 0;
[g]n − x2[g∗]n, when n ≥ 1,

(7.2.6)

and

[fg]n =
n
∑
i=0QiGn−i. (7.2.7)

On the basis of (7.2.4)–(7.2.7),

y0 : x2[g]0 = x
4[y(f + x 𝜕f

𝜕x
)]

0
+ [y(g − x2g∗)]0

+ 2x4[yfg]0 = 0
⇒ G0 = 0 and G

∗
0 = 0,

(7.2.8)

y1 : x2[g]1 = x
4[f + x 𝜕f
𝜕x
]
0
+ [g − x2g∗]0 + 2x4[fg]0

= x4(Q0 + x
dQ0
dx
) + (G0 − x

2G∗0)
+ 2x4Q0G0

= x4

⇒ G1 = x
2 and G∗1 = 1,

(7.2.9)
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180 | 7 Partial differential equations

y2 : x2[g]2 = x
4[f + x 𝜕f
𝜕x
]
1
+ [g − x2g∗]0 + 2x4[fg]1

= x4(Q1 + x
dQ1
dx
) + (G1 − x

2G∗1 )
+ 2x4(Q0G1 + Q1G0)

= x4(x2 + 2x2) + 2x6

= 5x6

⇒ G2 = 5x
4 and G∗2 = 0,

(7.2.10)

and

y3 : x2[g]3 = x
4[f + x 𝜕f
𝜕x
]
2
+ [g − x2g∗]2 + 2x4[fg]2

= x4(Q2 + x
dQ2
dx
) + (G2 − x

2G∗2 )
+ 2x4(Q0G2 + Q1G1 + Q2G0)

= x4(2x4 + 8x4) + 5x4 + 2x4(5x4 + x4)

= 5x4 + 22x8

⇒ G3 = 5x
2 + 22x6 and G∗3 = 5.

(7.2.11)

As a matter of fact, for any integer n ≥ 1,

x2Gn = x
4(Qn−1 + xdQn−1

dx
) + (Gn−1 − x2G∗n−1)

+ 2x4
n−1
∑
i−0QiGn−1−i. (7.2.12)

Lemma 7.2.1. For any integer n ≥ 1, Gn has no term with odd degree of x.

Proof. From (7.2.9)–(7.2.11), it is easily seen that G1, G2 and G3 have no term of odd
degree. Furthermore, for n ≥ 3, we proceed by induction on n. Assume it holds for all
Gi, 1 ≤ i ≤ n − 1: there is no term of odd degree. Because of the parity, x dQn−1

dx has no
term of odd degree. By the assumption and (7.2.12), Gn has no term with odd degree
of x.

Although all Gn ∈ ℛ{x}, for n ≥ 1 are even functions, it is still unknown whether
or not Gn has a constant term for some n.

Lemma 7.2.2. For any integer n ≥ 1, Gn has terms with degree of x not less than 2.

Proof. From (7.2.9)–(7.2.11), it is seen that among G1, G2 and G3, the degree of x is not
less than 2. Further, for integer n ≥ 3 we proceed by induction on n. Assume all of
Gi for 1 ≤ i ≤ n − 1, do not have a term of x whose degree is less than 2. Because of
G∗n−1 = 𝜕2xGn−1, the assumption leads to x2|Gn−1. By Lemma 7.2.1, x4|(Gn−1 − x2G∗n−1). By
(7.2.12), x2|Gn. Therefore, the conclusion is drawn.
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7.2 Quadrangulations on projective plane | 181

This lemma tells us that, for any integer n ≥ 1, x2|Gn.

Lemma 7.2.3. For any integer n ≥ 1, Gn has x2 as a factor.

Proof. This is a direct result of Lemma 7.2.2.

Next, an upper bound of term degrees among all terms of Gn for integer n ≥ 1 is
estimated.

Lemma 7.2.4. For any integer n ≥ 1, Gn is a polynomial of x with degree at most 2n.

Proof. From (7.2.9)–(7.2.11), it is found that all ofG1,G2 andG3 satisfy the conclusion. In
general, for n ≥ 4, we proceed by induction on n. Assume for any integer i: 1 ≤ i ≤ n−1,
thatGi is a polynomial of degree at most 2i. We prove thatGn is a polynomial of degree
at most 2n.

For a polynomial p of x, denote by d(p) the degree of p. From (7.2.12),

d(Gn) = max

{{{{{{{{
{{{{{{{{
{

d(Qn−1 + xdQn−1
dx
) + 2

d(Gn−1 − x2G∗n−1) − 2
d(

n−1
∑
i−0QiGn−1−i) + 2

}}}}}}}}
}}}}}}}}
}

, by assumption,

= max

{{{{{
{{{{{
{

d(Qn−1 + xdQn−1
dx
) + 2

d(
n−1
∑
i−0QiGn−1−i) + 2

}}}}}
}}}}}
}

= d(
n−1
∑
i−0QiGn−1−i) + 2

= d(Gn−1) + 2, by assumption,
= 2(n − 1) + 2 = 2n.

Therefore, the conclusion is drawn.

This theorem enables us to evaluate a solution g determined byGn (n ≥ 1) of equa-
tion (7.2.3) such that all coefficients on Gn are in ℤ+.
Theorem 7.2.5. Equation (7.2.3), and hence equation (7.2.1), is well-defined onℛ{x, y}.

Proof. First, from the equivalency between equation (7.2.4) and equation (7.2.3) and
G0 = 0 as the initial condition of equation (7.2.3), on the basis of the above lemmas,
g : Gn, for n ≥ 0 as determined by (7.2.8)–(7.2.11) and (7.2.12) provides a solution of
equation (7.2.3) onℛ{x, y}.
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182 | 7 Partial differential equations

Then, by considering the uniqueness of the procedure to evaluate a solution g on
ℛ{x, y} under the initial condition of equation (7.2.3), the solution of equation (7.2.3) is
the only one.

On the basis of Theorem 7.2.5, one more structure of the solution g has to be men-
tioned.

Lemma 7.2.6. For any integer n ≥ 1, the polynomial Gn ∈ ℛ+{x}.
Proof. From (7.2.9)–(7.2.11), it is seen that all of G1, G2 and G3 are inℛ+{x}. In general
for n ≥ 4, we proceed by induction on n. Assume for any integer i (1 ≤ i ≤ n − 1),
Gi ∈ ℛ+{x}. We prove Gn ∈ ℛ+{x}.

From Theorem 7.1.5 it can be deduced that, for any integer n ≥ 0, Qn ∈ ℛ+{x}, and
hence x dQn

dx ∈ ℛ+{x}. Furthermore,

Qn−1 + xdQn−1
dx
∈ ℛ+{x}.

By assumption, Gn−1 − x2G∗n−1 ∈ ℛ+{x} and
n−1
∑
i−0QiGn−1−i ∈ ℛ+{x}.

By (7.2.12), Gn ∈ ℛ+{x}.
Lemmas 7.2.2, 7.2.4 and 7.2.6 enable us, for any integer n ≥ 1, to write

Gn =
n
∑
i=1G2i,n (7.2.13)

where G2i,n ∈ ℛ.
From (7.1.22),

x2(Qn−1 + dQn−1
dx
) = x2(∑

m=1(2m + 1)Q2m,n−1x2m)
=

n
∑
m=2(2m − 1)Q2m−2,n−1x2m. (7.2.14)

Because of G∗n = 𝜕2xGn = G2,n, for n ≥ 1,
Gn−1 − x2G∗n−1 = n−1

∑
m=2G2m,n−1x2m
= x2

n−2
∑
m=1G2m,n−1x2m. (7.2.15)
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7.2 Quadrangulations on projective plane | 183

From (7.1.22) and (7.1.23),
n−1
∑
i=0QiGn−1−i = ∑

l≤t≤(n−1−i)+l
0≤l≤i

0≤i≤n−1

Q2l,iG2(t−l),n−1−ix2t
=

n−1
∑
i=0( ∑0≤l≤t

0≤t≤n−i−2

+ ∑
t−(n−i−1)≤l≤i
n−i−1≤t≤n−1

)Q2l,iG2(t−l),n−1−ix2t
=

n−1
∑
i=0 i
∑
t=0ψ2t,ix2t , ψ2l,i in (7.2.17) below,

=
n−1
∑
t=0Ψ2t,n−1x2t

where

Ψ2t,n−1 = n−1∑
i=t ψ2t,i (7.2.16)

and

ψ2t,i = {∑tl=0 Q2l,iG2(t−l),n−1−i, when 0 ≤ t ≤ n − i − 2;
∑il=t−(n−i−1) Q2l,iG2(t−l),n−1−i, when n − i − 1 ≤ t ≤ n − 1.

(7.2.17)

Therefore,

x2[f 0-quadg]n−1 = n
∑
m=1Ψ2(m−1),n−1x2m. (7.2.18)

Theorem 7.2.7. Let g = f ̃1 -quad determined by Pn = 𝜕ny f ̃1 -quad ∈ ℛ+{x}, for n ≥ 0 be the
solution of equation (7.2.1). Then

Pn =

{{{{{{{{{
{{{{{{{{{
{

0, when n = 0;
x2, when n = 1;
5x4, when n = 2;
5x2 + 22x6, when n = 3;
∑nm=1 P2m,nx2m, when n ≥ 4,

(7.2.19)

where

P2m,n =
{{{{{{
{{{{{{
{

P2,n−1 + 2Ψ0,n−1, when m = 1;
(2m − 1)Q2(m−1),n−1 + P2m,n−1 + 2Ψ2(m−1),n−1, when 2 ≤ m ≤ n − 2;
(2n − 3)Q2(n−2),n−1 + 2Ψ2(n−2),n−1, when m = n − 1;
(2n − 1)Q2(n−1),n−1 + 2Ψ2(n−1),n−1, when m = n.

(7.2.20)

Proof. When n = 0, 1, 2 and 3, the results are, respectively, clear from the initiation of
equation (7.2.1), (7.2.9), (7.2.10) and (7.2.11). For n ≥ 4, by (7.2.12),

Brought to you by | Ludwig-Maximilians-Universität München Universitätsbibliothek (LMU)
Authenticated

Download Date | 11/2/19 11:49 PM



184 | 7 Partial differential equations

Pn = x
2(Qn−1 + dQn−1

dx
) +

Pn−1 − x2P∗n−1
x2

+ 2x2
n−1
∑
i=0QiGn−1−i

=
n
∑
m=2(2m − 1)Q2(m−1),n−1x2m + n−2∑

m=1P2m,n−1x2m
+

n
∑
m=1 2Ψ2(m−1),n−1x2m.

After rearrangement, the conclusion is drawn.

This theorem enables us to get the solution of equation (7.2.1) in the form of a sum
with all terms positive.

Example 1. From Ren H-Liu YP [65] (1999), one finds the equation for f and g,

{{{{{
{{{{{
{

x4yzf 2 + (z − x2)f + (x2 − z − x2zf ∗) = 0;
g = 2x2yzfg + x2z 𝜕(xf )

𝜕x
+ x−2z(g − x2g∗);

f |x=y=z=0 = 1, g|x=y=z=0 = 0,
(7.2.21)

where f ∗ = 𝜕2xf and g∗ = 𝜕2xg.
Because 𝜕nz g ∈ ℛ{x, y}, n ≥ 1, are polynomials of x and y, the issue of being well-

defined of this partial differential equation and the solution in the form of a finite sum
with all terms positive can be addressed by following the procedure described in the
context of this section. Some explicisions derived from Lagrange inversion are very
simple. However, the result obtained in this section is very favorable for use of a com-
puter. Moreover, the inversion can also be treated as a functional from the function
space to itself. On this topic, it is absolutely necessary to do further research.

Example 2. Consider the system of equations about g and f

{{{{{{{
{{{{{{{
{

g =
x4y(f + x 𝜕f𝜕x ) − x4y2(1 + g⬦)

x2 − y − 2x4yf
;

f = x
4yf 2 − x∗yf ∗ + x2 − y

x2 − y
;

f |x=y=0 = 1, g|x=y=0 = 0,
(7.2.22)

where f ∗ = 𝜕2xf and g⬦ = 𝜕4xg.
The issue of being well-defined of equation (7.2.22) can be addressed in a similar

manner to the context in this section.

Lemma 7.2.8. For any integer n ≥ 0,

when n = 0(mod 2), P2,n
when n = 1(mod 2), P4,n} = 0.
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7.3 Quadrangulations on torus | 185

Proof. The proof is similar to the proof of Lemma 7.1.6. On account of (7.2.12), we pro-
ceed by induction.

Lemma 7.2.9. For any integer n ≥ 1, P2(n−1),n = 0.
Proof. The proof is similar to the proof of Lemma 7.1.7. On account of (7.2.12), we pro-
ceed by induction.

Lemma 7.2.10. For any integer n ≥ 1, P4,n = P2,n+1 in (7.2.20).
Proof. Weproceed on the basis of Lemma 7.2.8 and Lemma 7.2.9, by employing (7.2.12),
inductively, or directly evaluating by (7.2.20).

Via Lemma 7.2.10, the equivalence between equation (7.2.22) and equation (7.2.1
can be directly derived.

Example 3. Root-isomorphic classification of near-quadrangulations by size and root-
face valency on projective plane. The solution g = f ̃1 -quad of equation (7.2.1) provides
the classes of near-quadrangulationsby size and root-face valencyonprojectiveplane.

In Figure 7.2.1, we have the classes of near-quadrangulations on projective plane
by sizes: 1–3. For example, 1a represents that the quadrangulations of size 1 have only
1 class and the root-face valency of them is 2. This is P1 = x2. Near-quadrangulations
of size 2 on projective plane have 4b + 1c, i. e., 4 + 1 = 5 classes. Because of them all
coming with root-face valency 4, P2 = (4 + 1)x4 = 5x4. Near-quadrangulations of size
3 on the projective plane have two parts. One part of them with root-valency 2 has
2d + 2e + 1f , i. e., 2 + 2 + 1 = 5 classes. The other part of them with root-valency 6 has
6g + 3h + 6i + 6j + 1k, i. e., 3 × 6 + 3 + 1 = 22 classes. Therefore, P3 = 5x2 + 22x6.

7.3 Quadrangulations on torus

Consider the partial differential system of equations for f , g and h

{{{{{{{{{
{{{{{{{{{
{

x4y(z 𝜕g
𝜕z
)
z=x = x2(1 − 2x2yh)f − yfix≥4;

x3zyδz,x(uh|x=u) = (x2 − 2x4yh)g − ygix≥3;
x4yh2 + (y − x2)h − x2yh2x + x

2 − y = 0;
f |x=y=0 = 0; g|x=z=y=0 = 1; h|x=y=0 = 1

(7.3.1)

where fix≥4 and gix≥3 are, respectively, obtained by deleting the terms of degrees for x
not greater than 4 and 3 from the functions f and g.

This is equation (25) in Introduction, which is meaningful in a classification for
quadrangulations on the torus.
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186 | 7 Partial differential equations

Figure 7.2.1: Classes of near-quadrangulations on projective plane with sizes 1–3.

We proceed on the basis of the equivalence between the system composed of the sec-
ond and third equations of equation (7.3.1) and the system equation (7.1.27). Their so-
lutions g = fmis-1 and h = f 0-quad, are, respectively given by (7.1.2)–(7.1.4) and (7.1.35)–
(7.1.36). It is only necessary to consider the first of equation (7.3.1).

For convenience, equation (7.3.1) is transformed into a suitable equivalence:

f = x2y(z 𝜕g
𝜕z
)
z=x + 2x2yhf + x−2yfix≥4

= x2y(z 𝜕fmis-1
𝜕z
)
z=x + 2x2yf 0-quadf + x−2yfix≥4.

(7.3.2)

Let f be determined by [f ]n𝜕ny f = Fn, for n ≥ 0.We proceed on the basis of equation
(7.3.2). Because y has a factor on the right hand side,
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7.3 Quadrangulations on torus | 187

y0 : [f ]0 = 0 ⇒ F0 = 0, hence F0|ix≥4 = 0. (7.3.3)

This is the initial condition of equation (7.3.1): f |x=y=0 = 0.
For any integer n ≥ 1,

yn : [f ]n = x
2[z 𝜕fmis-1
𝜕z
]
n−1z=x + 2x2[f 0-quadf ]n−1

+ x−2[fix≥4]n−1
⇒ Fn = x

2(z 𝜕On−1
𝜕z
)
z=x + 2x2 n−1∑i=0 FiQn−1−i

+ x−2Fn−1|ix≥4.
(7.3.4)

By employing Theorem 7.1.4 and Theorem 7.1.10,

F1 = x
2(z 𝜕O0
𝜕z
)
z=x + 2x2Q0F0 + x

−2F0|ix≥4
= x2(0) + 2x2(0) + x−2(0) = 0, F1|ix≥4 = 0, (7.3.5)

F2 = x
2(z 𝜕O1
𝜕z
)
z=x + 2x2(Q0F1 + Q1F0)

+ x−2F1|ix≥4
= x2(x4) + 2x2(0) + x−2(0) = x4,
hence F2|ix≥4 = x4,

(7.3.6)

F3 = x
2(z 𝜕O2
𝜕z
)
z=x + 2x2(Q0F2 + Q1F1 + Q2F0)

+ x−2F2|ix≥4
= x2(8x4) + 2x2(x4) + x−2(x4) = x2 + 10x6,
hence F3|ix≥4 = 10x6,

(7.3.7)

F4 = x
2(z
𝜕O3
𝜕z
)
z=x + 2x2(Q0F3 + Q1F2

+ Q2F1 + Q3F0) + x
−2F3|ix≥4

= x2(10x6 + 8x6 + 12x6 + 8x6 + 10x6 + 3x2)

+ 2x2(x2 + 10x6) + x−2(10x6)
= (48x8 + 3x4) + (20x8 + 2x4) + 10x4,

hence F4 = 15x
4 + 68x8.

(7.3.8)

Via evaluating the root-isomorphic classes of near-quadrangulation of at most 4
edges on sphere, the results are the same as those obtained by (7.3.5)–(7.3.8).

Lemma 7.3.1. For any integer n ≥ 1, Fn is a polynomial of x with maximum degree not
greater than 2n without term of odd degree and a constant term onℛ+[x].
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188 | 7 Partial differential equations

Proof. From (7.3.5)–(7.3.8), the conclusion is true for 1 ≤ n ≤ 4. In general, we proceed
by induction on n for n ≥ 5. Assume for any integer i (1 ≤ i ≤ n−1), Fi is a polynomial of
degree 2iwithout a termof odd degree and a constant term, to prove the conclusion for
i = n. In (7.3.4), it is found that On and Qn are a polynomial of x with degree 2nwithout
term of odd degree and constant term in ℛ+[x]. From the assumption and that the
minimum degree is x in Fn−1|ix≥4 is at least 4, Fn is a polynomial of x with degree 2n
without term of odd degree and constant term inℛ+[x]. This is the conclusion.

Based on this lemma, Fn, n ≥ 1, can be expressed as

Fn =
n
∑
m=1B2m,nx2m, Bm,n ∈ ℛ+. (7.3.9)

Thus,

x−2Fn|ix≥4 = n
∑
m=2B2m,nx2m−2 = n−1

∑
m=1B2(m+1),nx2m. (7.3.10)

By (7.3.4),

Fn = x
2(z 𝜕On−1
𝜕z
)
z=x + 2x2 n−1∑i=0 FiQn−1−i

+
n−2
∑
m=1B2(m+1),n−1x2m.

(7.3.11)

Theorem 7.3.2. The system of partial differential equations (7.3.1) is well-defined on
ℛ+{x, y}.
Proof. Because a function determined by (7.3.11) satisfies equation (7.3.2), from equiv-
alency, this function provides a solution of equation (7.3.1).

Furthermore, from the uniqueness of the procedure to evaluating the function
(Fn, n ≥ 0) by (7.3.11) onℛ+[x] based on the initiation, this solution is the only one.

On the basis of this theorem, let the solution of equation (7.3.1) be f = f 1-nq, g = f crq
and h = f 0-nq, then, for any integer n ≥ 0,

𝜕nx f 1-nq = Fn, 𝜕
n
x f crq = On and 𝜕nx f 0-nq = Qn (7.3.12)

are, respectively, determined by (7.3.11), Theorem 7.1.10 and Theorem 7.1.4.

Theorem 7.3.3. For the solution f of the partial differential systemof equations equation
(7.3.1), write 𝜕nx f 1-nq = Tn, then, for any integer n ≥ 1, Tn has the form of a finite sum with
all terms positive,

Tn = x
2(z 𝜕On−1
𝜕z
)
z=x + 2x2 n−1∑i=0 TiQn−1−i

+
n−2
∑
m=1T2(m+1),n−1x2m

(7.3.13)
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7.3 Quadrangulations on torus | 189

where

T2(m+1),n−1 = 𝜕2mx Tn−1, 1 ≤ m ≤ n − 1.

Proof. From Theorem 7.3.2, it is known that, for any integer n ≥ 1, Tn = Fn. By (7.3.11),
the conclusion is drawn.

Example 1. Root-isomorphic classes of near-quadrangulationson torus. InFigure 7.3.1,
classes of near-quadrangulations with size 3 on torus are shown: 1a = x2 and
6b + 3c + 1d = 10x6, i. e., T3 = x2 + 10x6(F3). This is the result given in (7.3.7). These are
listed in Table 7.3.1.

Figure 7.3.1: Classes of near-quadrangulations on torus of size 3.

Table 7.3.1: Vertices, faces and classes in Figure 7.3.1.

Order Vertices Faces Classes

a (1,2, γ1,3, γ2, γ3) (1,3)(γ1,2, γ3, γ2) {1,β1,3,β3}
b (3,1,2, γ1, γ2)(γ3) (1, γ2, γ1,2,3, γ3) {3, α3}, {1,β1}, {α1, γ2},{2,β1}, {α2, γ1}, {γ2,β3}
c (3,1,2, γ1)(γ2, γ3) (1,3, γ2, γ1,2, γ3) {3, α3,2, α2}, {1, α1,

γ1,β1}, {γ3,β3, γ2,β2}
d (3,1,2)(γ3, γ1, γ2) (3, γ1,2, γ3,1, γ2) {K1 + K2 + K3}
In this table, from the column of order (First, or Order), it is seen that the maps in
the alphabetical order are marked by a, b, c, . . .. From the column of faces (Third, or
Faces), it is seen that all the faces in the face set of the map are marked by the letter at
the corresponding entry of first column. The same for the column of vertices (Second,
or Vertices) and the column of classes (Fourth, or Classes).

The number of root-isomorphic classes of a map is the number of hollows in the
map shown in Figure 7.3.1.

For example, in the first column, all near-quadrangulations of size 3 on torus are
listed as a, b, c and d.
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190 | 7 Partial differential equations

In each entry of the second column, the first pair of parentheses shows the root-
vertex with its valency.

In each entry of the third column, the first pair of parentheses shows the root-face
with its valency.

In each entry of the fourth column, a pair of braces represents a root-isomorphic
class inwhich each symbol (quadricell) produces an automorphismof the correspond-
ing map.

In the Faces column, from the first pair of parentheses in the first entry, it is seen
that the root-face valency of map a is 2 (i. e., x2). In the Classes column, from the num-
ber of brace pairs in the first entry, it is seen that the number of root-isomorphic classes
is 1. Thus, 𝜕2xT3 = 1.

The first symbol (or quadricell) in the Classes column is chosen to be its represen-
tative denoted by a hollow as shown in Figure 7.3.2. The first quadricell in the root-
vertex and the first quadricell in the root-face are the same. This quadricell is the root
of the corresponding map. See also Table 7.3.2.

In Figure 7.3.2, root-isomorphic classes of near-quadrangulations on torus of size
4 are shown as 1a + 4b + 8c + 2d = 15x4, i. e., T4,4 = 15x4(F4,4) which is the same as
𝜕4xF4 = 15x

4, obtained by (7.3.8).

Figure 7.3.2: Classes of near-quadrangulations on torus of size 4.

Table 7.3.2: Vertices, faces and classes in Figure 7.3.2.

Order Vertices Faces Classes

a (4,1,2,3)(γ4, γ1, γ2, γ3) (1, γ2,3, γ4)(γ1,2, γ3,4) {K1 + K2 + K3 + K4}
b (4,1)(r4,2,3, γ1, γ2, γ3) (1, γ2,3, r4)(γ1,4,2, γ3) {4, α4,1, α1}, {γ4,β4, γ1,β1},{2, α3, γ2,β3}, {α2,3,β2, γ3}
c (4,1,2, γ1,3, γ2, γ3)(r4) (1,3,4, r4)(γ1,2, γ3, γ2) {4, α4}, {1,β3}, {α1, γ3}, {2,β2},{α2, γ2}, {γ1, α3}, {β1,3}, {γ4,β4}
d (4,1,2, γ1)(r4,3, γ2, γ3) (1,4,3, r4)(γ1,2, γ3, γ2) {4, α4,2, α2, γ4,β4, γ2,β2},{1, α1, γ1,β1,3, α3, γ3,β3}
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7.4 Quadrangulations on Klein bottle | 191

7.4 Quadrangulations on Klein bottle

Consider the partial differential system of equations about f , g, h and p

{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{
{

x4y(x 𝜕g
𝜕x
+ [z 𝜕h
𝜕z
]
z=x) = x2f − x4y(g + g2 + 2pf ) − y(f − x2𝜕2xf );

x4y(p + x 𝜕p
𝜕x
) = x2(x2 − y − 2x4yp)g + x2y𝜕2xg;

x3zy
z − x

δz,x(up|x=u) = x2(1 − 2x2yp)h − y(h − x2𝜕2xh);
x4yp2 + (y − x2)p − x2y𝜕2xp + x

2 − y = 0;
f |x=z=y=0 = g|x=z=y=0 = h|x=z=y=0 = 0; p|x=z=y=0 = 1.

(7.4.1)

This is equation (26) in Introduction, which is meaningful in a classification for
quadrangulations on the Klein bottle.

From the system of equations (7.1.2), equation (7.1.27) and (7.2.1),

p = f 0-nq, h = f crq and g = f ̃1-nq. (7.4.2)

Their expressions in the form of a finite sum with all terms positive are, respectively,
given by (7.1.2)–(7.1.4), (7.1.35)–(7.1.36) and (7.2.19)–(7.2.20). Thus, it is only necessary
to determine f via Fn = 𝜕ny f = [f ]n, n ≥ 1.

First, the first equation in (7.4.1) is transformed into one of its equivalences:

f = x2y(x 𝜕g
𝜕x
+ [z 𝜕h
𝜕z
]
z=x) + x2y(g + g2 + 2pf )

+ x−2y(f − x2𝜕2xf ). (7.4.3)

Since y is a factor of the part on the right hand side with the equal sign,

[f ]n = F0 = 0. (7.4.4)

This is the initial condition to equation (7.4.3) from equation (7.4.1).
For any integer n ≥ 1,

[f ]n = x
2[x 𝜕g
𝜕x
+ (z 𝜕h
𝜕z
)
z=x]n−1 + x2[g + g2 + 2pf ]n−1

+ x−2[f − x2𝜕2xf ]n−1, by (7.4.2),
= x2(x 𝜕Pn−1

𝜕x
+ (z 𝜕On−1
𝜕z
)
z=x)

+ x2(Pn−1 + n−1∑
i=0 PiPn−1−i + 2 n−1∑i=0QiFn−1−i)

+ x−2(Fn−1 − x2𝜕2xFn−1).
(7.4.5)
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192 | 7 Partial differential equations

On the basis of this, by (7.2.19), (7.1.35) and (7.1.2),

F1 = x
2(x 𝜕P0
𝜕x
+ (z 𝜕O0
𝜕z
)
z=x)

+ x2(P0 + P0P0 + 2Q0F0)

+ x−2(F0 − x2𝜕2xF0)
= 0, hence F1 − x

2𝜕2xF1 = 0,

(7.4.6)

F2 = x
2(x 𝜕P1
𝜕x
+ (z 𝜕O1
𝜕z
)
z=x)

+ x2(P1 + 2P0P1 + 2(Q0F1 + Q1F0)

+ x−2(F1 − x2𝜕2xF1)
= x2(2x2 + x2) + x2(x2) = 4x4,

hence F2 − x
2𝜕2xF2 = 0 = 4x

4,

(7.4.7)

F3 = x
2(x 𝜕P2
𝜕x
+ (z 𝜕O2
𝜕z
)
z=x)

+ x2(P2 +
2
∑
i=0PiP2−i + 2 2

∑
i=0QiF2−i)

+ x−2(F2 − x2𝜕2xF2)
= x2(20x4 + 3x4 + 2x4 + 3x4)

+ x2(5x4 + x4 + 8x4) + x−2(4x4)
= 4x2 + 42x6,

hence F3 − x
2𝜕2xF3 = 42x

6,

(7.4.8)

F4 = x
2(x
𝜕P3
𝜕x
+ (z
𝜕O3
𝜕z
)
z=x)

+ x2(P3 +
3
∑
i=0PiP2−i + 2 3

∑
i=0QiF2−i)

+ x−2(F3 − x2𝜕2xF3)
= x2(13x2 + 180x6)

+ x2(13x2 + 124x6)

+ x−2(42x6)
= 68x4 + 304x8,

hence F4 − x
2𝜕2xF4 = 68x

4 + 304x8.

(7.4.9)

By directly classifying near-quadrangulations of size 4 on the Klein bottle into
root-isomorphic classes via joint trees shown in Liu YP [46] (2003, pp. 14–18), or [62]
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7.4 Quadrangulations on Klein bottle | 193

(Liu, YP, 2017, pp. 197–201), it is seen that the results are the same as those in (7.4.5)–
(7.4.8).

Lemma 7.4.1. For any integer n ≥ 1, Fn is a polynomial of x with degree at most 2n with
neither a term of odd degree nor a constant term onℛ+[x].
Proof. From (7.4.6)–(7.4.9), it is found that the conclusion is true for 1 ≤ n ≤ 4. For
n ≥ 5, we proceed by induction on n. Assume for any integer 1 ≤ i ≤ n − 1, that Fi is a
polynomial of x with degree 2nwith neither a term of odd degree nor a constant term.
We prove the conclusion for i = n. On the basis of the last three sections, Pn−1, On−1
andQn−1 in (7.4.5) are all polynomials of degree at most 2(n−1) onℛ+[x]with neither a
term of odd degree nor a constant term. By the assumption and knowing that all terms
in Fn−1|ix≥4 are with degree of x at least 4, Fn is deduced to be a polynomial of degree at
most 2(n − 1) + 2 = 2n inℛ+[x] with neither a term of odd degree nor a constant term.
This is the conclusion.

Based on this lemma, Fn, for n ≥ 1, can be expressed in the form of

Fn =
n
∑
m=1Km,nx2m, Km,n ∈ ℛ+. (7.4.10)

Thus,

x−2(Fn − x2𝜕2xFn) = n
∑
m=2Km,nx2m−2 = n−1

∑
m=1Km+1,nx2m. (7.4.11)

From (7.4.5),

Fn = x
2(x 𝜕Pn−1
𝜕x
+ (z 𝜕On−1
𝜕z
)
z=x)

+ x2(Pn−1 + n−1∑
i=0 PiPn−1−i + 2 n−1∑i=0QiFn−1−i)

+
n−1
∑
m=1Km+1,nx2m.

(7.4.12)

Theorem 7.4.2. The system of partial differential equations (7.4.1) is well-defined on
ℛ+[x, z].
Proof. It is easily shown that the function evaluated from (7.4.12) is a solution of equa-
tion (7.4.3), and hence equivalently of equation (7.4.1).

Furthermore, by considering theuniqueness of the evaluationprocedure basedon
(7.4.12) from the initial condition of equation (7.4.1), the solution is the only one.

On the basis of this theorem, let f = f 2̃-nq g = f ̃1-nq h = f crq p = f0-nq be consisting
of the solution set of the system of equations (7.4.1), then, for any integer n ≥ 0,

𝜕nx f ̃1-nq = Pn, 𝜕nx f crq = On and 𝜕nx f 0-nq = Qn (7.4.13)

are determined by (7.4.12), Theorems 7.1.10 and 7.1.4.
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194 | 7 Partial differential equations

Theorem 7.4.3. In the solution set of system of equations (7.4.1), write 𝜕nx f 2̃-nq = Kn,
then, for any integer n ≥ 0, Kn has an expression in the form of a finite sum with all
terms positive,

Kn = x
2(x 𝜕Pn−1
𝜕x
+ (z 𝜕On−1
𝜕z
)
z=x)

+ x2(Pn−1 + n−1∑
i=0 PiPn−1−i + 2 n−1∑i=0QiKn−1−i)

+
n−1
∑
m=1Km+1,nx2m

(7.4.14)

where n ≥ 1 and K0 = 0.

Proof. From Theorem 7.4.2, it is known that, for any integer n ≥ 1, Kn = Fn. By (7.4.12),
the conclusion is drawn.

Example 1. Root-isomorphic lasses of near-quadrangulations on Klein bottle. Only
the case of size not greater than 3 is allowed. Because maps of size 1 only are allowed
on the sphere, near-quadrangulations on the Klein bottle come with at least 2 edges.
Figure 7.4.1 shows near-quadrangulations of size 2. Figures 7.4.2 and 7.4.3 show those
of size 3, with, respectively, 1 and 2 vertices.

Figure 7.4.1: Classes of near-quadrangulations of size 2 on Klein bottle.

Table 7.4.1: Vertices, edges and classes in Figure 7.4.1.

Order Vertices Faces Classes

a (1,β1,2,β2) (1, α1,2, α2) {1, α1,2, α2}hen we proceed by induction {β1, γ1,β2, γ2}
b (1,2,β1, γ2) (1, α2, α1,2) {1, α1,β1, γ1}hen we proceed by induction {2, α2,β2, γ2}
In Table 7.4.1, vertices, faces and root-isomorphic classes of near-quadrangulations of
size 2 in Figure 7.4.1 are listed (cf. the explanation of Table 7.3.1).
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7.4 Quadrangulations on Klein bottle | 195

As a matter of fact, all these near-quadrangulations are only quadrangulations.
InTable 7.4.2, vertices, faces and root-isomorphic classes of near-quadrangulations

of size 3 and order 1 in Figure 7.4.2 are listed (cf. the explanation of Table 7.3.1).

Figure 7.4.2: Classes of near-quadrangulations of size 3 and order 1 on Klein bottle.

Table 7.4.2: Vertices, edges and classes in Figure 7.4.2.

Order Vertices Faces Classes

a (1,β1,2,3,β2,β3) (1, α1,2, α3)(3, γ2) {3, γ2}, {α2,β3}
b (1,2,3,β1,β2, γ3) (1, α3, γ2,3)(α1,β2) {α1,2, γ1,β2}
c (1,2, γ1,2,β2, γ3) (1,3)(α1, α2,β3,β2) {1,β1,3,β3}

InTable 7.4.3, vertices, faces and root-isomorphic classes of near-quadrangulations
of size 3 and order 2 in Figure 7.4.3 are listed (cf. the explanation of Table 7.3.1).

where {Ki} = {i}, {αi}, {βi}, {γi}, i = 1, 2, 3, and K = {1, α, β, γ} is the Klein group (see
Liu YP [44]).

Example 2. Root-isomorphic classes of quadrangulations on Klein bottle (contin-
ued!).

In Table 7.4.4, vertices, faces and root-isomorphic classes of quadrangulations of
size 4 and order 2 in Figure 7.4.4 are listed (cf. the explanation of Table 7.3.1).

In Table 7.4.5, vertices, faces and root-isomorphic classes of quadrangulations of
size 4 and order 2 in Figure 7.4.5 are listed (cf. the explanation of Table 7.3.1).

In Table 7.4.6, vertices, faces and root-isomorphic classes of quadrangulations of
size 4 and order 2 in Figure 7.4.6 are listed (cf. the explanation of Table 7.3.1).

In Table 7.4.7, vertices, faces and root-isomorphic classes of quadrangulations of
size 4 and order 2 in Figure 7.4.7 are listed (cf. the explanation of Table 7.3.1).

From Figures 7.4.4–7.4.7, it is seen that quadrangulations of size 4 and order 2 on
a Klein bottle have 12 + 16 + 8 + 32 = 68 root-isomorphic classes in all.
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196 | 7 Partial differential equations

Figure 7.4.3: Classes of near-quadrangulations of size 3 and order 2 on Klein bottle.

Table 7.4.3: Vertices, edges and classes in Figure 7.4.3.

Order Vertices Faces Classes

a (3,1,2,β2,β1)(γ3) (1, γ2,β2, α1,3, γ3) {3, α3}, {γ3,β3}, {1, γ1},{α1,β1}, {2, γ2}, {α2,β2}
b (3,1,β1,2,β2)(γ3) (1, α1,2, α2,3, γ3) {3, α3}, {γ3,β3}, {1, γ2},{α1,β2}, {2, γ1}, {α2,β1}
c (3,1,2,β1, γ2)(γ3) (1, α2, γ1,2,3, γ3) {K1}, {K2}, {K3}
d (3,1,β1)(γ3,2,β2) (1, α1,3,2, α2, γ3) {3, α3, γ3,β3}, {1, γ1,

2, γ2}, {α1,β1, α2,β2}
e (3,1,2,β1)(γ3, γ2) (1, α2,β3, γ1,2, γ3) {3, α3,2, α2}, {γ3,β3,

γ2,β2}, {1, α1,β1, γ1}
f (3,1,2, γ1)(γ3,β2) (1,3,β2, α1, α2, γ3) {3, α3,2, α2}, {γ3,β3,

β2, γ2}, {1, α1, γ1,β1}
g (3,1,β1,2)(γ3,β2) (1, α1,2,β3, α2, γ3) {3, α2}, {α3,2}, {β3, γ2},{γ3,β2}, {1, γ1}, {α1,β1}
h (3,1,2)(γ3,β1, γ2) (1,β3, α2, γ1,2, γ3) {3, α2, γ3,β2}, {α3,2,

β3, γ2}, {1, α1,β1, γ1}
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7.4 Quadrangulations on Klein bottle | 197

Figure 7.4.4: Classes of quadrangulations of size 4 and order 2 on Klein bottle I.

Table 7.4.4: Vertices, edges and classes in Figure 7.4.4.

Order Vertices Faces Classes

a (4,1,2,3)(γ4,β1, γ2,β3) (1,β4, α3, γ4)(α1, γ2,3,β2) {4, α4,2, α2, γ4,β4, γ2,β2},{1, α1,3, α3,β1, γ1,β3, γ3}
b (4,1,2,3)(γ4, γ1,β3,β2) (1,β3, α2, γ4)(2, γ3,4, γ1) {4, α1,2, α3, γ4,β1,β3, γ2},{α4,1, α2,3,β4, γ1, γ3,β2}
c (4,1,2)(γ4,β1,3,β3,β2) (1,β4, α2, γ4)(α1,3, α3,β2) {4, α4}, {γ4,β4}, {1, α2}, {α1,2},{β1, γ2}, {γ1,β2}, {3, γ3}, {α3,β3}

Figure 7.4.5: Classes of quadrangulations of size 4 and order 2 on Klein bottle II.

Table 7.4.5: Vertices, edges and classes in Figure 7.4.5.

Order Vertices Faces Classes

d (4,1)(γ4,2,β1,3, γ2,β3) (1, α2, α3, γ4)(α1,3,β2,β4) {4,1}, {α4, α1}, {β4,β1}, {γ4, γ1},{2, α2}, {γ2,β2}, {3, γ3}, {α3,β3}
e (4,1)(γ4,2,β2, γ1,3,β3) (1,3, α3, γ4)(α1, γ2,β2,β4) {4, α4,1, α1}, {γ4,β4, γ1,β1},{2, γ2,3, γ3}, {α2,β2, α3,β3}
f (4,1)(γ4,2,3, γ1,β3,β2) (1,β3, α2, γ4)(α1, α3,β2,β4) {4, α4,1, α1}, {γ4,β4, γ1,β1},{2, α3,β3, γ2}, {α2,3, γ3,β2}
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198 | 7 Partial differential equations

Figure 7.4.6: Classes of quadrangulations of size 4 and order 2 on Klein bottle III.

Table 7.4.6: Vertices, edges and classes in Figure 7.4.6.

Order Vertices Faces Classes

g (4,1,β1,2)(γ4,3,β3, γ2) (1, α1,2, γ4)(α2, γ3,β3,β4) {4, α2, γ4,β2}, {α4,2,β4, γ2},{1, γ1,3, γ3}, {α1,β1, α3,β3}
h (4,1,2, γ1)(γ4,3,β2, γ3) (1,4,3, γ4)(α1, α2, γ3,β2) {4, α4,2, α2, γ4,β4,β2, γ2},{1, α1, γ1,β1,3, α3, γ3,β3}
i (4,1,2,β1)(γ4,3, γ2,β3) (1, α2, α3, γ4)(α1,4,3,β2) {4, α4,2, α2, γ4,β4, γ2,β2},{1, α1,β1, γ1,3, α3,β3, γ3}

Figure 7.4.7: Classes of quadrangulations of size 4 and order 2 on Klein bottle IV.

Table 7.4.7: Vertices, edges and classes in Figure 7.4.7.

Order Vertices Faces Classes

j (4,1,2, γ1,3,β2, γ3)(γ4) (1,3,4, γ4)(α1, α2, γ3,β2) {4, α4}, {γ4,β4}, {1,β3}, {α1, γ3},{2, γ2}, {α2,β2}, {3,β1}, {α3, γ1}
k (4,1,2,β1,3,β3,β2)(r4) (1, α2,4, γ4)(α1,3, α3,β2) {K1}, {K2}, {K3}, {K4}
l (4,1,2,3,b1, r2,b3)(r4) (1, α3,4, γ4)(α1, γ2,3,β2) {4, α4}, {γ4,β4}, {1, γ3}, {α1,β3},{2,β2}, {α2, γ2}, {3, γ1}, {α3,β1}
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7.5 Surface loopless model | 199

7.5 Surface loopless model

Consider the partial differential equation for f ∈ ℛ{x, y}

{{
{{
{

axy(2y 𝜕f
𝜕y
− x 𝜕f
𝜕x
) = (1 − xyf |x=1)f − 1;

f |x=0.y=0 = 1, (7.5.1)

where a ∈ ℛ+, a ̸= 0. This is equation (27) in Introduction when c = d = 1 because it
is meaningful in a classification for loopless maps on orientable surfaces and whole
(orientable and non-orientable) surfaces according as a = 1 and a = 2.

Equation (7.5.1) is transformed onℛ{x, y} into one of the equivalences as

f = axy(2y 𝜕f
𝜕y
− x 𝜕f
𝜕x
) + xyf |x=1f + 1. (7.5.2)

For convenience, let us write

f = ∑
n≥0 Fnyn, Fn = [f ]n ∈ ℛ{x}. (7.5.3)

From the initial condition of equation (7.5.1),

[f |x=0]0 = 1. (7.5.4)

On the basis of (7.5.3), for any integer n ≥ 0,

[f |x=1]n = Fn|x=1, [y 𝜕f𝜕y]n = nFn and [x 𝜕f
𝜕x
]
n
= xdFn

dx
. (7.5.5)

Let Hn = Fn|x=1, for n ≥ 0, then from (7.5.3) and (7.5.5) we have, for any integer
n ≥ 0,

[f |x=1f ]n = n
∑
i=0HiFn−i. (7.5.6)

We proceed on the basis of (7.5.3)–(7.5.6). From (7.5.2),

y0 : [f ]0 = 1 ⇒ F0 = 1;
⇒ F0 = 1, H0 = 1,

(7.5.7)

y1 : [f ]1 = ax[2y
𝜕f
𝜕y
− x 𝜕f
𝜕x
]
0
+ x[f |x=1f ]0,

by (7.5.5)–(7.5.6),
= x(H0F0) = x
⇒ F1 = x, H1 = 1,

(7.5.8)
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200 | 7 Partial differential equations

y2 : [f ]2 = ax[2y
𝜕f
𝜕y
− x 𝜕f
𝜕x
]
1
+ x[f |x=1f ]1,

by (7.5.5)–(7.5.6),
= ax(2x − x) + x(H0F1 + H1F0),
by (7.5.5)–(7.5.8),

= ax(2x − x) + x(1 + x) = x + (a + 1)x2

⇒ F2 = x + (a + 1)x
2, H2 = a + 2,

(7.5.9)

y3 : [f ]3 = ax[2y
𝜕f
𝜕y
− x 𝜕f
𝜕x
]
2
+ x[f |x=1f ]2,

by (7.5.5)–(7.5.6),

= ax(2(2F2) − x
dF2
dx
) + x

2
∑
i=0HiF2−i,

by (7.5.5)–(7.5.9),

= ax(3x + 2(a + 1)x2) + x((a + 2)

+ 2x + (a + 1)x2)

⇒ {
F3 = (a + 2)x + (3a + 2)x2 + (2a2 + 3a + 1)x3,
H3 = 2a2 + 7a + 5,

(7.5.10)

and, for any integer n ≥ 4,

yn : [f ]n = ax[2y
𝜕f
𝜕y
− x 𝜕f
𝜕x
]
n−1 + x[f |x=1f ]n−1,

by (7.5.5)–(7.5.6),

⇒ Fn = ax(2(n − 1)Fn−1 − xdFn−1dx
)

+ x
n−1
∑
i=0HiFn−1−i.

(7.5.11)

Lemma 7.5.1. For any integer n ≥ 1, Fn is a polynomial of x with degree n without con-
stant term.

Proof. From (7.5.8)–(7.5.10), for n = 1, 2 and 3, the conclusion is true. For n ≥ 4 in
general, we proceed by induction on n. Assume Fi is a polynomial of x with degree
without a constant term for any integer i: n > i ≥ 1. We prove the conclusion for i = n.
Because x is a factor of the part on the right hand side of (7.5.11), Fn has no constant
term. Denote by d the degree of a polynomial of x. From (7.5.11),

d(Fn) = 1 + d(Fn−1), by the assumption,
= 1 + (n − 1) = n.

Therefore, the conclusion is proved.
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Based on Lemma 7.5.1, Fn can be expressed in the form of

Fn =
n
∑
i=1 Fi,nxi (7.5.12)

where Fi,n ∈ ℛ, for n ≥ i ≥ 1.

Lemma 7.5.2. In (7.5.11), the polynomial

2(n − 1)Fn−1 − xdFn−1dx
≥ 0

for n ≥ 2 if, and only if, Fn−1 ≥ 0.
Proof. From (7.5.12),

2(n − 1)Fn−1 − xdFn−1dx
= 2(n − 1)

n−1
∑
i=1 Fi,n−1xi − n−1∑i=1 iFi,n−1xi

=
n−1
∑
i=1(2(n − 1) − i)Fi,n−1xi.

Because of n ≥ 2, 2(n − 1) − i > 0 for any i: 1 ≤ i ≤ n. This leads to the conclusion.

This lemma enables us to write

Λn−1 = 2(n − 1)Fn−1 − xdFn−1dx
as a polynomial of x with degree not greater than n − 1 determined only by Fi (1 ≤ i ≤
n − 1) such that, for any integer 1 ≤ i ≤ n − 1,

Λi,n−1 = 𝜕ixΛn−1(∈ ℛ+)
= (2n − i − 2)Fi,n−1.

Lemma 7.5.3. For any integer n ≥ 1, Fn ∈ ℛ+[x] (i. e., the set of all polynomials of x with
every coefficient non-negative).

Proof. Based on Lemmas 7.5.1–7.5.2 and a ∈ ℛ+, we proceed by induction on n, Fi,n =
𝜕ixFn ∈ ℛ+ for 1 ≤ i ≤ n and then Fn ∈ ℛ+[x] is found.

This lemma shows the probability of equation (7.5.1) to have a solutionwhose coef-
ficient can be expressed as either a finite sum of positive terms or it is summation-free.

Theorem 7.5.4. Equation (7.5.1) is well-defined onℛ+[x, y}.
Proof. Let fnl, 𝜕ny fnl = Fn, for n ≥ 0, be evaluated by (7.5.7)–(7.5.11). Because fnl satisfies
equation (7.5.2) and equation (7.5.2) is equivalent to equation (7.5.1), fnl is also a solution
of equation (7.5.1). From Lemma 7.5.3, fnl ∈ ℛ+[x, y}.

By considering the procedure to evaluate fnl from (7.5.7) to (7.5.11) onℛ+[x, y}, the
uniqueness of fnl is seen for the initial condition of equation (7.5.1). This solution is the
only one.
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On the basis of the three lemmas mentioned above, we are allowed to construct
the solution of equation (7.5.1) in a form preferable to automatic production.

Theorem 7.5.5. The solution f = fnl of equation (7.5.1) on ℛ+[x, y} are determined by
Fn = 𝜕ny fnl, for n ≥ 0, in the form of

{
𝜕ny fnl = x(Fn−1 + aΛn−1 + Σn−1), when n ≥ 1;
𝜕0y fnl = 1, when n = 0,

(7.5.13)

where

{{{{{
{{{{{
{

Λn−1 = n−1∑
i=1(2n − i − 2)Fi,n−1xi;

Σn−1 = n−1∑
i=1 Fi|x=1Fn−1−i.

(7.5.14)

Proof. On the basis of Theorem 7.5.4 and Lemma 7.5.2 with their proofs, via rearrange-
ments, (7.5.13) is then found.

Because Fn−1, Λn−1 and Σn−1 all are of the formof a finite sumwith all terms positive
in ℛ+[x], the Fn, for n ≥ 1 are all of the form of a finite sum with all terms positive in
ℛ+[x].

In addition, it is also seen that all coefficients in Fn, for n ≥ 1, are in ℤ+.
Example 1. Given root-vertex valency and size, determine the root-isomorphic classes
of loopless maps on orientable surfaces. Consider the equation

{{
{{
{

xy(2y 𝜕f
𝜕y
− x 𝜕f
𝜕x
) = (1 − xyf |x=1)f − 1;

f |x=0.y=0 = 1, (7.5.15)

found in Liu YP [48] (p. 211, (8.4.8)). Its solution is the enufunction of loopless rooted
maps on orientable surfaces with root-vertex valency and size as parameters in which
the coefficient of xmyn in ℤ+ provides the number of root-isomorphic classes of such
maps with root-vertex valencym and size n.

Whena = 1, equation (7.5.1) becomes equation (7.5.15).Hence, the solutionof equa-
tion (7.5.15) is just (7.5.13) and (7.5.14) in the case of a = 1.

Theorem 7.5.6. Let ϕ ∈ ℛ{x, y} be determined by Φn = 𝜕
n
yϕ, for n ≥ 0, be the enufunc-

tion of loopless rooted maps on orientable surfaces with root-vertex valency m(xm) and
size n(yn) as two parameters, then

{
Φn = x(Φn−1 + Λn−1 + Σn−1), n ≥ 1;
Π0 = 1, n = 0,
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where
{{{{{
{{{{{
{

Λn−1 = n−1∑
i=1(2n − i − 2)Φi,n−1xi;

Σn−1 = n−1∑
i=1 Φi|x=1Φn−1−i.

Proof. This is a result of Theorem 7.5.5 when a = 1.

Example 2. Given root-vertex valency and size, determine the root-isomorphic classes
of loopless maps on all (orientable and non-orientable) surfaces. Consider the equa-
tion

{{
{{
{

2xy(2y 𝜕f
𝜕y
− x 𝜕f
𝜕x
) = (1 − xyf |x=1)f − 1;

f |x=0.y=0 = 1, (7.5.16)

found in Liu YP [48] (p. 213, (8.4.17)).
Its solution is the enufunction of loopless rooted maps on all surfaces with root-

vertex valency and size as parameters in which the coefficient of xmyn in ℤ+ provides
the number of root-isomorphic classes of such maps with root-vertex valency m and
size n.

When a = 2, equation (7.5.1) becomes equation (7.5.16). Hence, the solution of
equation (7.5.16), is just (7.5.13) and (7.5.14) in the case of a = 2.

From the two examples, we see the reason that equation (7.5.1) is called a surface
loopless model.

7.6 Surface endless model

Consider the equation for f ∈ ℛ{x, y} as

{{
{{
{

ax3y 𝜕f
𝜕x
= (1 − ax2y + xy

1 − x
)f − x2y

1 − x
f |x=1 − xy − 1;

f |x=0,y=0 = 1, (7.6.1)

where a ∈ ℛ+, a ̸= 0. This is equation (28) in Introduction when b = c = d = 1 because
it is meaningful in a classification for endless maps on orientable surfaces and whole
(orientable and non-orientable) surfaces according as a = 1 and a = 2.

Onℛ{x, y}, equation (7.6.1) is transformed into a suitable one of its equivalences:

f = ax3y 𝜕f
𝜕x
+ ax2yf + xy

1 − x
(xf |x=1 − f ) + xy + 1. (7.6.2)

Let f ∈ ℛ{x, y} be determined by Fn = [f ]n = 𝜕ny f ∈ ℛ{x}, n ≥ 0. This is

f = ∑
n≥0 Fnyn, Fn = [f ]n ∈ ℛ{x}. (7.6.3)
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204 | 7 Partial differential equations

By the initial condition of equation (7.6.1),

[f |x=0]0 = 1. (7.6.4)

From (7.6.3), it is seen that, for n ≥ 0,

[f |x=1]n = Fn|x=1 and [x 𝜕f
𝜕x
]
n
= xdFn

dx
. (7.6.5)

Write Hn = Fn|x=1, n ≥ 0. By (7.6.5),
Hn = ∑

i≥0 𝜕ixFn (7.6.6)

for n ≥ 0.
On the basis of (7.6.4)–(7.6.6). By (7.6.2),

y0 : [f ]0 = 1 (all terms but constant term with y
on the right hand side of equation (7.6.2));

⇒ F0 = 1, H0 = 1,
(7.6.7)

y1 : [f ]1 = ax
2[x 𝜕f
𝜕x
]
0
+ ax2[f ]0 +

x[xf |x=1 − f ]0
1 − x

+ x,

by (7.6.5)–(7.6.6),

= ax2 − x + x = ax2

⇒ F1 = ax
2, H1 = a,

(7.6.8)

y2 : [f ]2 = ax
2[x 𝜕f
𝜕x
]
1
+ ax2[f ]1 +

x[xf |x=1 − f ]1
1 − x

,

by (7.6.5)–(7.6.6),

= 2a2x4 + a2x4 + ax2 = ax2 + 3a2x4

⇒ F2 = ax
2 + 3a2x4, H2 = a + 3a

2,

(7.6.9)

and, for any integer n ≥ 3,

yn : [f ]n = ax
2[x 𝜕f
𝜕x
]
n−1 + ax2[f ]n−1

+
x[xf |x=1 − f ]n−1

1 − x
,

by (7.6.5)–(7.6.6),

⇒ Fn = ax
3 dFn−1

dx
+ ax2Fn−1

+
x(xHn−1 − Fn−1)

1 − x
.

(7.6.10)
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7.6 Surface endless model | 205

Lemma 7.6.1. For any integer n ≥ 1, Fn is a polynomial in x with terms of degrees be-
tween 2 and 2n.

Proof. From (7.6.8)–(7.6.9), the lemma is true for n = 1 and 2. For n ≥ 3 in general,
we proceed by induction on n. Assume, for any integer i (n − 1 > i ≥ 1), that Fi is a
polynomial of x with all terms of degrees between 2 and 2i. We prove the lemma for
i = n. Letd(p) is the degree of polynomial p of x. Because x2 is a factor on the right hand
side of (7.6.10), the minimum degree of all terms of Fn is not less than 2. By (7.6.10),

d(Fn) = 2 + d(Fn−1), by the assumption,
= 2 + 2(n − 1) ≤ 2n.

Therefore, the lemma is true.

On the basis of this lemma, it is seen that, for n ≥ 1, Fn has the form

Fn =
2n
∑
i=2 Fi,nxi and Hn =

2n
∑
i=2 Fi,n. (7.6.11)

This lemma shows that, for any integer n given, Fn is of the form of a finite sum of
terms not greater than 2n.

Lemma 7.6.2. For any integer n ≥ 1,

(1 − x)|(xHn − fn) and xHn − Fn
1 − x

≥ 0. (7.6.12)

Proof. From (7.6.11),

xHn − Fn
1 − x

=
∑2ni=2 Fi,n(x − xi)

1 − x

= x
2n
∑
i=2 Fi,n( 1 − xi−11 − x

).
(7.6.13)

Because of (1 − x)|(1 − xi−1) for any integer i ≥ 2, the first conclusion is true. Because of
1 − xi−1
1 − x
=

i−2
∑
j=0 xj,

for any integer i ≥ 2, the second conclusion is true.

From the proof of the lemma, it is seen that

xHn − Fn
1 − x

= ∑
j+1≤i≤2n
1≤j≤2n−2

Fi,nxj. (7.6.14)

Lemma 7.6.3. For any integer n ≥ 1, Fn ∈ ℛ+[x].
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206 | 7 Partial differential equations

Proof. Because a ∈ ℛ+, on the basis of two lemmas mentioned above, (7.6.10) and the
inductive principle lead to Fn ∈ ℛ+[x) if, and only if,

(xHn − Fn)/(1 − x) ∈ ℛ+[x).
By (7.6.13), the conclusion is drawn.

As a matter of fact, the conclusion of this lemma can be strengthened to all coef-
ficients of polynomial Fn being in ℤ+ whenever a ∈ 𝒵+.
Theorem 7.6.4. Equation (7.6.1) is well-defined onℛ+[x, y}.
Proof. Let f = fnd, 𝜕ny fnd = Fn,n ≥ 0. They are evaluated from (7.6.7)–(7.6.10). Because of
fnd satisfying the equation (7.6.2), the equivalence between equation (7.6.2) and equa-
tion (7.6.1) shows that fnd is a solution of equation (7.6.1) as well. From Lemma 7.6.3,
fnd ∈ ℛ+[x, y}.

By considering the procedure to get fnd by employing (7.6.7)–(7.6.10) on ℛ+[x, y},
it is seen that fnd is unique for the initial condition. Therefore, fnd is the only solution
of equation (7.6.1).

This theorem shows that it only is necessary to investigate fnd for exploiting more
useful structures on any general solution of equation (7.6.1).

Theorem 7.6.5. The solution fnd of equation (7.6.1) on ℛ+[x, y} obeys an expression of
the form of a finite sum with all terms positive like, for any integer n ≥ 0,

[fnd]n =
{{{
{{{
{

1, when n = 0;
ax2, when n = 1;
ax2Λn−1 + xΠn−1, when n ≥ 2,

(7.6.15)

where

{{{{{
{{{{{
{

Λn−1 = 2n−2∑
i=2 (i + 1)Fi,n−1xi;

Πn−1 = ∑
i+1≤j≤2n−2
1≤i≤2n−4

Fj,n−1xi. (7.6.16)

Proof. By substituting (7.6.11) and (7.6.14) into (7.6.10), (7.6.15) can be found after rear-
rangement.

Example 1. Root-isomorphic classes of Endlessmaps on orientable surfaceswith root-
vertex valency and size given. Consider the equation for f ∈ ℛ{x, y}

{{
{{
{

x3y 𝜕f
𝜕x
= (1 − x2y + xy

1 − x
)f − x2y

1 − x
f |x=1 − xy − 1;

f |x=0,y=0 = 1. (7.6.17)
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7.6 Surface endless model | 207

A special case of the first in equation (7.6.17) might be seen in [48] (2008, p. 180,
equation (7.5.12)). One of its solution is the enufunction of determining the number of
root-isomorphic classes of end-cutlessmaps onall orientable surfaceswith root-vertex
valency and size given.

When a = 1, equation (7.6.1) becomes equation (7.6.17). Because of it being well-
defined, the solution of equation (7.6.17) is just the case of a = 1 in the solution of
equation (7.6.15).

Theorem 7.6.6. The solution f = felo ∈ ℛ+[x, y} of equation (7.6.17) determined by On =
𝜕ny felo, for n ≥ 0, is of the form of a finite sum with all terms positive,

On =
{{{
{{{
{

1, when n = 0;
x2, when n = 1;
x2Λn−1 + xΠn−1, when n ≥ 2,

(7.6.18)

where

{{{{{
{{{{{
{

Λn−1 = 2n−2∑
i=2 (i + 1)Oi,n−1xi;

Πn−1 = 2n−4∑
i=1 (2n−2∑j=i+1Oj,n−1)xi. (7.6.19)

Proof. This is a direct result of Theorem 7.6.5

Example 2. Root-isomorphic classes of endless maps on all (orientable and non-
orientable) surfaces with root-vertex valency and size given. Consider the equation
for f ∈ ℛ{x, y}

{{
{{
{

2x3y 𝜕f
𝜕x
= (1 − 2x2y + xy

1 − x
)f − x2y

1 − x
f |x=1 − xy − 1;

f |x=0,y=0 = 1. (7.6.20)

When a = 2, equation (7.6.1) becomes equation (7.6.20). From the fact of it being
well-defined, the solution of equation (7.6.20) is just the case of a = 2 in the solution
of equation (7.6.1).

Theorem 7.6.7. The solution f = fela ∈ ℛ+[x, y} of equation (7.6.17) as determined by
An = 𝜕ny fela, for n ≥ 0, is in the form of a finite sum with all terms positive,

An =
{{{
{{{
{

1, when n = 0;
2x2, when n = 1;
2x2Λn−1 + xΠn−1, when n ≥ 2,

(7.6.21)
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208 | 7 Partial differential equations

where

{{{{{
{{{{{
{

Λn−1 = 2n−2∑
i=2 (i + 1)Ai,n−1xi;

Πn−1 = 2n−4∑
i=1 (2n−2∑j=i+1Aj,n−1)xi.

(7.6.22)

Proof. This is a direct result of Theorem 7.6.5.

The two examples above suggest us to call equation (7.6.1) a surface endlessmodel.

7.7 Surface Euler model

Consider the equation for f ∈ ℛ{x, y}

{{
{{
{

2ax4y 𝜕f
𝜕x2
= (1 − ax2y + x2y

1 − x2
)f − x2y

1 − x2
f |x=1 − 1;

f |x=0,y=0 = 1, (7.7.1)

where a ∈ ℤ+, a ̸= 0. This is equation (29) in Introduction when b = c = d = 1 because
it is meaningful in a classification for Eulerianmaps on orientable surfaces andwhole
(orientable and non-orientable) surfaces according as a = 1 and a = 2.

Equation (7.7.1) is on ℛ{x2, y} (because of only x2 occurring in the equation!) ⊆
ℛ{x, y} transformed into the suitable one of equivalences as

f = 1 + ax2y(f + 2x2 𝜕f
𝜕x2
) +

x2y
1 − x2
(f |x=1 − f ). (7.7.2)

Let z = x2. For f ∈ ℛ{z, y} instead of f ∈ ℛ{x2, y} ⊆ ℛ{x, y}, let f be determined by
Fn = [f ]n = 𝜕ny f ∈ ℛ{z}, for n ≥ 0, i. e.,

f = ∑
n≥0 Fnyn, Fn = [f ]n ∈ ℛ{z}. (7.7.3)

From the initial condition of equation (7.7.1),

[f |x=0]0 = 1. (7.7.4)

By (7.7.3), it is seen that, for n ≥ 0,

[f |z=1]n = Fn|z=1 and [z 𝜕f
𝜕z
]
n
= z dFn

dz
. (7.7.5)

Write Hn = Fn|z=1, for n ≥ 0. By (7.7.5), it is known that, for n ≥ 0,
Hn = ∑

i≥0 𝜕izFn. (7.7.6)
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7.7 Surface Euler model | 209

On the basis of (7.7.4)–(7.7.6). By (7.7.2),

y0 : [f ]0 = 1(all terms but constant term on right
side of equation (7.7.2) with y as factor);

⇒ F0 = 1(the initiation of equation (7.7.1)),
H0 = 1,

(7.7.7)

y1 : [f ]1 = az[f + 2z
𝜕g
𝜕z
]
0
+
z[f |x=1 − f ]0

1 − z
,

by (7.7.5)–(7.7.6),

= ax2(1 + 0) + 0 = az
⇒ F1 = az, H1 = a,

(7.7.8)

y2 : [f ]2 = az[f + 2z
𝜕g
𝜕z
]
1
+
z[f |z=1 − f ]1

1 − z
,

by (7.7.5)–(7.7.6),

= az(az + 2az) + z(a − az)
1 − z

= 3a2z2 + az

⇒ F2 = 3a
2z2 + az, H2 = 3a

2 + a,

(7.7.9)

and, for any integer n ≥ 3,

yn : [f ]n = az[f + 2z
𝜕g
𝜕z
]
n−1 + z[f |z=1 − f ]n−11 − z

,

by (7.7.5)–(7.7.6),

⇒ Fn = az(Fn−1 + 2z dFn−1dz
)

+
z

1 − z
(Hn−1 − Fn−1).

(7.7.10)

Lemma 7.7.1. For any integer n ≥ 1, Fn is a polynomial of x with degree of each term at
least 1 and at most n.

Proof. On the basis of (7.7.8)–(7.7.9). For n = 1 and 2, the conclusion is true. For n ≥ 3
in general, we proceed by induction. Assume, for any integer i: n > i ≥ 1, Fi is a poly-
nomial of z with the degree of each term at least 1 and at most i. We prove the case of
i = n. Because z is a factor on the right hand side of (7.7.10), Fn has no constant term
with degree of each term at least 1. Let d(p) be the degree of a polynomial of z. From
(7.7.10),

d(Fn) = 2 + d(Fn−1), by the assumption,
= 2 + 2(n − 1) = 2n.

Therefore, the conclusion is drawn.
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210 | 7 Partial differential equations

On the basis of this lemma, we are allowed to write Fn for n ≥ 1 in the form of

Fn =
n
∑
i=1 Fi,nzi and Hn =

n
∑
i=1 Fi,n. (7.7.11)

Lemma 7.7.2. For any integer n ≥ 1,

(1 − z)|(Hn − fn), and Hn − Fn
1 − z
≥ 0 (7.7.12)

if, and only if, Fn ∈ ℛ+[z].
Proof. From (7.7.11),

Hn − Fn
1 − z
=
∑ni=1 Fi,n(1 − zi)

1 − z
. (7.7.13)

Because of (1 − z)|(1 − zi) for i ≥ 1, the first conclusion is true. Because of

1 − zi

1 − z
=

i−1
∑
j=0 zj ≥ 0

for i ≥ 1, the second conclusion is true.

In the proof of this lemma, it is seen that

Hn − Fn
1 − z
= ∑

j+1≤i≤n
1≤j≤n−1

Fi,nzj. (7.7.14)

Lemma 7.7.3. For any integer n ≥ 1, Fn ∈ ℛ+[z].
Proof. We proceed on the basis of the two lemmas above. Because a ∈ ℤ+, (7.7.10) and
induction principle show that Fn ∈ ℛ+[z) if, and only if, Hn − Fn/1 − z ∈ ℛ+[z). From
(7.7.13), the conclusion is drawn.

This lemma enables us to evaluate the solution of equation (7.7.1)) in the form of a
sum with all terms positive.

Theorem 7.7.4. Equation (7.7.1) is well-defined onℛ+[z, y}.
Proof. The feu in which 𝜕ny feu = Fn, for n ≥ 0, are determined by (7.7.7)–(7.7.10). Because
the fnd satisfy equation (7.7.2), the equivalence between equation (7.7.2) and equation
(7.7.1) shows that feu is a solution of equation (7.7.1) as well. From Lemma 7.7.3, feu ∈
ℛ+[z, y}.

By considering the procedure for getting feu by (7.7.7)–(7.7.10), it is seen that feu is
unique from the initial condition of equation (7.7.1) on ℛ+[z, y}. This solution is the
only one onℛ+[z, y}.
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7.7 Surface Euler model | 211

This theorem enables us to evaluate the solution of equation (7.7.1) in a form favor-
able to the use of computers

Theorem 7.7.5. The solution feu of equation (7.7.1) on ℛ+[z, y}(z = x2!) determined by
Fn = [feu]n = 𝜕ny feu obeys an expression of the form of a finite sum with all terms positive
as, for any integer n ≥ 0,

[feu]n =

{{{{{{
{{{{{{
{

1, when n = 0;
ax2, when n = 1;
3a2x4 + ax2, when n = 2;
∑nm=1 A2m,n−1x2m, when n ≥ 3,

(7.7.15)

where for 2 ≤ m ≤ n − 1,

A2m,n−1 = {{{{{{
{

∑n−1i=1 F2i,n−1, when m = 1;
(2m − 1)aF2(m−1),n−1 +∑n−1i=m F2i,n−1, when 2 ≤ m ≤ n − 1;
(2n − 1)aF2(n−1),n−1, when m = n.

(7.7.16)

Proof. By substituting (7.7.11) and (7.7.13) into (7.7.10), [feu]n is obtained for n ≥ 3 after
rearrangement. For 0 ≤ n ≤ 2, the result follows from (7.7.7)–(7.7.9).

Example 1. Root-isomorphic classes of Euler maps on orientable surfaces with root-
vertex valency and size given. We have the partial differential equation

{{
{{
{

2x4y 𝜕f
𝜕x2
= (1 − x2y + x2y

1 − x2
)f − x2y

1 − x2
f |x=1 − 1;

f |x=0,y=0 = 1, (7.7.17)

whose first case appears in Liu YP [48] (2008, Section 6.5). Its solution is the enufunc-
tion of Euler rooted maps on orientable surfaces with root-vertex valency and size as
two parameters.

Attention has to be paid to the fact that when a = 1, equation (7.7.1) becomes equa-
tion (7.7.17). Thus, a solution of equation (7.7.17) is a specific case in the solution of
equation (7.7.15) or equation (7.7.16) when a = 1.

Theorem 7.7.6. The solution feuo of equation (7.7.17) onℛ+[z, y} (z = x2!) as determined
by On = [feuo]n = 𝜕ny feuo has an expression in the form of a finite sum with all terms
positive as for any integer n ≥ 0,

On =

{{{{{{
{{{{{{
{

1, when n = 0;
x2, when n = 1;
3x4 + x2, when n = 2;
∑nm=1 A2m,n−1x2m, when n ≥ 3,

(7.7.18)
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212 | 7 Partial differential equations

where for 2 ≤ m ≤ n − 1,

A2m,n−1 = {{{{{{
{

∑n−1i=1 O2i,n−1, when m = 1;
(2m − 1)O2(m−1),n−1 +∑n−1i=m O2i,n−1, when 2 ≤ m ≤ n − 1;
(2n − 1)O2(n−1),n−1, when m = n.

(7.7.19)

Proof. This is the case a = 1 of (7.7.15) and (7.7.16).

Example 2. Root-isomorphic classes of Euler maps on all (orientable and non-orient-
able) surfaces with root-valency and size given. We have the partial differential equa-
tion

{{
{{
{

4x4y 𝜕f
𝜕x2
= (1 − 2x2y + x2y

1 − x2
)f − x2y

1 − x2
f |x=1 − 1;

f |x=0,y=0 = 1, (7.7.20)

whose first equation is a specific case of the first of equation (7.7.1) when a = 2. This
solution is just the enufunction of Euler rooted maps on all (orientable and non-
orientable) surfaces with root-vertex valency and size as two parameters.

Attention has to be paid to the fact that when a = 2, equation (7.7.1) becomes equa-
tion (7.7.20). Thus, a solution of (7.7.20) is the specific case in the solution of equation
(7.7.1) when a = 2. This is why equation (7.7.1) is called a surface Euler model.

Theorem 7.7.7. The solution feua of equation (7.7.1) on ℛ+[z, y} (z = x2!) as determined
by Qn = [feua]n = 𝜕ny feua has an expression in the form of a finite sum with all terms
positive as, for any integer n ≥ 0,

Qn =

{{{{{{
{{{{{{
{

1, when n = 0;
2x2, when n = 1;
12x4 + 2x2, when n = 2;
∑nm=1 A2m,n−1x2m, when n ≥ 3,

(7.7.21)

where for 2 ≤ m ≤ n − 1,

A2m,n−1 = {{{{{{
{

∑n−1i=1 Q2i,n−1, when m = 1;
2(2m − 1)Q2(m−1),n−1 +∑n−1i=m O2i,n−1, when 2 ≤ m ≤ n − 1;
2(2n − 1)Q2(n−1),n−1, when m = n.

(7.7.22)

Proof. The case a = 2 of (7.7.15) and (7.7.16).

7.8 Notes

7.8.1. The sphere is a foundation of general surfaces. In Example 4 in Section 7.1, a sur-
face with some boundaries is paid attention to. As a matter of fact, lack-1 face can be
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seen as a boundary. By considering the root-face also as a boundary, a cylinder is ob-
tained. Thus, the classification of maps on surfaces can be transformed into that on
the sphere.

7.8.2. In Ren H-Liu YP [67], the root-isomorphic classes of near-triangulations on
cylinder are discussed. Although an explicision is given, because of the complication
for calculation, no final result is treated. However, by an application of the theory
presented in this book, an expression in the form of a finite sum with all terms pos-
itive can be given favorable to computers. If a map has all vertices, but two, of even
valency, then it is called Euler trace, or universal map. In Zhang YL-Liu YP-Cai JL [90],
a cubic equation is provided. Its being well-defined and its solution in the form of a
finite sum with all terms positive can also be established by the theory in this book.

7.8.3. In Cai JL-Liu YP [6], a quadratic equation of three variables can, by taking y = z,
be transformed into equation (7.1.1). Naturally, the solution of three variables in the
form of a sum with all terms positive can be derived in a similar way to Section 7.1.

7.8.4. The root-isomorphic classification ofmaps is initiated fromTutteWT [80] (1962)
for planar triangulations. By following this method, BrownWT [5] (1965) investigated
such a classification for quadrangulations on the sphere and on a disc (or a sphere
with a boundary as the simplest surface with a hole). A sphere with two holes is called
a pan-cylinder in Liu YP [53] (2012). For a quadrangulation on a pan-cylinder, if each
boundary is treated as a face, then it becomes a lack-1 face quadrangulation (see Ex-
ample 4 in Section 7.1) on the sphere. A lack-1 quadrangulation (Section 7.1) can also
be dealt with as a map with all faces quadrangles but with two exceptions. The dual
of a lack-1 quadrangulation is a type of a universal map (or Euler walk) because all
vertices have even valencies except for two vertices. A closed Euler walk is called an
Euler tour. In Liu YP [55] (1979), one sees that an Euler tour is applied to determining
the maximum genus of a graph.

7.8.5. In Ren H-Liu YP [68] (2001), root-isomorphic classes are discussed on a torus
to determine the enufunctions with up to 4 variables for 4 parameters. Although ex-
plicisions are found with certain complication, most of them are in the form of sum-
mations with terms alternate, not yet all only positive. In Ren H-Liu YP [72] (2002) and
Hao RX-Liu YP [9] (2002) etc., this is seen as well.

7.8.6. On projective plane, see Ren H-Liu YP [66] (2000), [70] (2002), [71] (2002), Ren
H-Deng M-Liu YP [73] (2005), Li ZX-Liu YP [10] (2002), Xu Y-Liu YP [89] (2007), Liu
WZ-Liu YP [11] etc. All functions encountered can be expressed in the form of a finite
sum with all terms positive.

7.8.7. Equation system (7.4.1) in Section 7.4 as for the dual of 4-regularmaps on a Klein
bottle looks very much simpler than those in Ren H-Liu YP [69] (2001). And then, all
68, instead of 67 in [69], quadrangulations on a Klein bottle are shown in Example 2
of Section 7.4.
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214 | 7 Partial differential equations

7.8.8. On the relationshipbetween systemsof differential equations inSections 7.2–7.4
and combinatorial enumerations, see Liu YP [53] (2012), where details are given.

7.8.9. On the equations in Sections 7.5–7.7, see Liu YP [54] (2012). Some numerical
results for a size not greater than 10 in Section 7.5might be found in Pan LY-Liu YP [64]
(2013).

Brought to you by | Ludwig-Maximilians-Universität München Universitätsbibliothek (LMU)
Authenticated

Download Date | 11/2/19 11:49 PM



8 Tree equations

8.1 Planted model

Consider the equation

{{{
{{{
{

a2 ∫
y

y2f
1 − a3yf

= f − a1y1;

f |y=0 = a0,
(8.1.1)

where a = (a0, a1, a2, a3) ∈ ℤ4+, f = f (y) ∈ ℛ{y} and y = (y1, y2, y3, . . .). This is equation
(30) in Introduction when a0, a1, a2 and a3 are, respectively, replaced by d, b, a and c.

The first equation of equation (8.1.1) has appeared in [18, 20] (Liu YP, 1985) when
a1 = a2 = 1, i. e.,

∫
y

y2f
1 − yf
= f − y1. (8.1.2)

Because a solution of equation (8.1.2) holds for planted trees for a0 = 0, equation
(8.1.1) is called of planted tree model.

In equation (8.1.1), let fa = fa(y) ∈ ℛ{y}, y = (y1, y2, y3, . . .), be a solution, then it is
of the form

fa = ∑
n≥0

Fa[n] (8.1.3)

where Fa[n] is a homogeneous polynomial of y with degree n. Then we have

Fa[n] = ∑
n∈𝒩

Fa,ny
n (8.1.4)

where𝒩 = {n | n ≥ 0, |n| = n}, and |n| is the sum of all components in n.
Because of

1
1 − a3yf

= ∑
m≥0
(a3yf )

m, (8.1.5)

we have
y2f

1 − a3yf
= ∑

m≥1
am3 y

m+1fm.

Equivalently, equation (8.1.1) becomes

{{
{{
{

f = a1y1 + a2 ∑
m≥1

am3 ym+1f
m;

Fa[0] = a0.
(8.1.6)

https://doi.org/10.1515/9783110625837-008

Brought to you by | Ludwig-Maximilians-Universität München Universitätsbibliothek (LMU)
Authenticated

Download Date | 11/2/19 11:51 PM



216 | 8 Tree equations

In equation (8.1.6), for integer i ≥ 1, let

f ia = ∑
n≥0

F[i]a[n] (8.1.7)

where F[i]a[n] is a homogeneous polynomial of y with degree n in f ia.
From the initial condition of equation (8.1.6) and equation (8.1.3), because there

is no constant term on the right hand side of the first equation in equation (8.1.6), for
i ≥ 1, we have

F[i]a[0] = a
i
0 = 0. (8.1.8)

Since f 1a = fa, we have F
[1]
a[n] = Fa[n], for n ≥ 0. Furthermore, from equation (8.1.7), for

n ≥ 0 and i ≥ 1,

F[i]a[n] = {
0; when n = 0;
∑n−1j=1 Fa[j]F

[i−1]
a[n−j], otherwise.

(8.1.9)

Observation 8.1.1. For any integers i ≥ 2 and n ≥ 1, F[i]a[n] are determined only by Fa[j],
1 ≤ j ≤ n − 1.

Proof. From (8.1.9), by induction, the fact can be seen.

We consider the fact that yn for nonnegative integral vector n = (n1, n2, n3, . . .) can
be seen as a partition of a set with n elements into ni subsets of cardinality i, i ≥ 1. For
this reason, f as shown in (8.1.3) is called a partition function.

Observation 8.1.2. For any integer n = |n| and π(n)(= n1 + 2n2 + 3n3 + ⋅ ⋅ ⋅) ≥ n ≥ 1, the
partition functions Fa[n] are all polynomials.

Proof. From the nonnegative integrality, for π(n) ≥ n ≥ 1, Fa[n] involves a finite num-
ber of yi, i ≥ 1, and hence, as well, a finite number of possibilities to form a term of
degree n.

On the basis of equation (8.1.6), Fa[n], 0 ≤ m ≤ 4, are evaluated in what follows.
Because of a0 = 0, F0 = 0.
For n = 1, from (8.1.8), it is seen that

∑
m≥1

am3 ym+1F
[m]
a[0] = 0

and hence

Fa[1] = a1y1 + a2∑
i≥1

ai3yi+1F
[i]
a[0]

= a1y1.
(8.1.10)
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8.1 Planted model | 217

Therefore, from (8.1.9), we have

F[i]a[1] = 0 (i ≥ 2). (8.1.11)

For n = 2, from (8.1.10), we have

∑
m≥2

am3 ym+1F
[m]
a[1] = 0

and hence

Fa[2] = a2(a3y2F
[1]
a[1] +∑

i≥2
ai3yi+1F

[i]
a[0])

= a1a2a3y1y2.
(8.1.12)

For n = 3, from (8.1.12), we have

∑
m≥3

am3 ym+1F
[m]
a[2] = 0

and hence

Fa[3] = a2(a
2
3y3F
[2]
a[2] + a3y2F

[1]
a[2] +∑

i≥3
ai3yi+1F

[i]
a[0])

= a2(a
2
3y3F
[2]
a[2] + a3y2F

[1]
a[2])

= a2(a
2
3y3(a

2
1y

2
1) + a3y2(a1a2a3y1y2))

= a21a2a
2
3y3y

2
1 + a1a

2
2a3y1y

2
2 .

(8.1.13)

For n = 4, from (8.1.13), we have

∑
m≥4

am3 ym+1F
[m]
a[2] = 0

and hence

Fa[4] = a2(a
3
3y4F
[3]
a[3] + a

2
3y3F
[2]
a[3] + a3y2F

[1]
a[3])

+ a2∑
i≥4

ai3yi+1F
[i]
a[0]

= a2(a
3
3y4F
[3]
a[3] + a

2
3y3F
[2]
a[3] + a3y2F

[1]
a[3]).

(8.1.14)

On account of (8.1.10), (8.1.12) and (8.1.13), from (8.1.9),

{{{{{{
{{{{{{
{

F[1]a[3] = a
2
1a2a

2
3y3y

2
1 + a1a

2
2a3y1y

2
2

= a1a2(a1a23y3y
2
1 + a2a3y1y

2
2);

F[2]a[3] = 2Fa[1]Fa[2] = 2a
2
1a2a3y

2
1y2;

F[3]a[3] = (Fa[1])
3 = a31y

3
1 .
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218 | 8 Tree equations

By (8.1.14), it turns out that

Fa[4] = a2(a
3
3y4(a

3
1y

3
1 ) + a

2
3y3(2a

2
1a2y

2
1y2))

+ a2(a3y2a1a2(a1y3y
2
1 + a2y1y

2
2))

= a31a2a
3
3y

3
1y4 + 2a

2
1a2a

2
3y

2
1y2y3

+ a21a2a3y
2
1y2y3 + a

2
1a

2
2a3y1y

3
2

= a31a2a
3
3y

3
1y4 + a

2
1a2a3(2a1a3 + 1)y

2
1y2y3

+ a1a
3
2a3y1y

3
2 .

(8.1.15)

Lemma 8.1.3. For any integer n ≥ 1, Fa[n] is a homogeneous polynomial of yn =
(y1, y2, . . . , yn) with degree n.

Proof. For n ≥ 4, from (8.1.9), (8.1.10), (8.1.12), (8.1.13) and (8.1.15), the conclusion is
seen. In fact, forn ≥ 1, from (8.1.9),wehaveF[i−1]a[n−1] = 0, i ≥ n+1. Because of yiF

[i−1]
a[n−1] = 0

for all i ≥ n+ 1, from equation (8.1.6), it is seen that Fa[n] is independent of all yi, i ≥ n1,
and hence we have the conclusion.

This lemma tells us thatFa,n is independent of yi, i ≥ n+1, for anypositive integern.
On this basis, from equation (8.1.6), we have the following.

Lemma 8.1.4. Equation (8.1.6), and hence equation (8.1.1), is equivalent to the system
of equations:

Fa[n] =
{{{
{{{
{

0, when n = 0;
a1y1, when n = 1;
a2∑

n−1
i=1 a

i
3yi+1F

[i]
a[n−1], when n ≥ 1.

(8.1.16)

Proof. This is a direct result of Lemma 8.1.3.

Now, we are allowed to present our main result of this section.

Theorem 8.1.5. Onℛ{y}, equation (8.1.1) is well-defined if, and only if, a0 = 0.

Proof. The necessity is obvious from what was mentioned above. Then it is only nec-
essary to show that the system of equations (8.1.16) has, and is the only one to have, a
solution for the sufficiency.

We proceed by induction on n ≥ 1. We evaluate Fa[1], Fa,2, . . . , Fa[n], . . . in this order.
First, from (8.1.10), (8.1.12), (8.1.13) and (8.1.15), we have seen that Fa[1], Fa,2, Fa[3] and
Fa[4] each is determined by those already done before. Then, to determine Fa[n] for
n ≥ 5 whenever Fa[i], i ≤ n − 1, we use the assumption. Since all terms on the right
hand side of the last equation in equation (8.1.16) are known, Fa[n] is determined as
well. The conclusion is drawn.
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8.2 Solution planted | 219

8.2 Solution planted

Although equation (8.1.16) provides a method to evaluate the solution of equation
(8.1.6) and hence equation (8.1.1) in its own right, it is still necessary to observe the
structure of the solution for certain distinct purposes.

Observation 8.2.1. In the solution evaluated from equation (8.1.16), the terms of yi have
a factor ai11 a

|i|−i1
2 .

Proof. On the basis of equation (8.1.16), we proceed by induction on n ≥ 1.When n = 1,
because of Fa[1] = a1y1, the result for Fa[1] and then for F

[i]
a[i] (i ≥ 2), is easily checked to

be true.
For n ≥ 2, assume that, for any i ≤ n − 1, the Fa[i], and then F[j]a[i] (j ≥ 1) as well,

satisfy the result. Because of all F[j]a[i] (1 ≤ i ≤ n−1, j ≥ 1) obey the result, by considering
the additivity of the result, Fa[n] satisfies the result as well.

On the basis of Lemma8.1.3,we are allowed towrite the homogeneous polynomial
Fa[n] of degree n as

Fa[n] = ∑
|in|=n

Fa[in]y
in (8.2.1)

where yn = (y1, y2, . . . , yn) and in = (i1, i2, . . . , in). For convenience, let us denote by

π(Fin ) =
n
∑
j=1

jij = ni
T
n (8.2.2)

its size where n = (1, 2, . . . , n).

Observation 8.2.2. For twohomogeneouspolynomialsAandB,wehaveπ(AB) = π(A)+
π(B).

Proof. Let i and j be a power vector of a term in, respectively, A and B. Since i + j is a
power vector of AB, we have π(AB) = n(i + j)T = niT + njT = π(A) + π(B). This is the
conclusion.

Lemma 8.2.3. For any integers n ≥ 1 and k, 1 ≤ k ≤ n, if F[k]a[in] > 0, then

π(Fa[in]) = 2n − k. (8.2.3)

Proof. Weproceedby inductiononn. Forn = 1,wehave k = 1. Because ofF[1]a[1] = Fa[1] =
a1y1 in the second line of (8.1.16), we have π(F

[1]
a[1]) = π(Fa[1]) = 1 × 1 = 2 × 1 − 1 = 2n − 1.

For n ≥ 2, let us assume π(F[j]a[i]) = 2i− j for 1 ≤ j ≤ i and i ≤ n− 1 to evaluate π(F
[k]
a[n])

for 1 ≤ k ≤ n. On the basis of the last line in (8.1.16), we have to evaluate π(F[i]a[n−1])
for 1 ≤ i ≤ n − 1. Because of all these results together with the assumption, we have
π(F[i]a[n−1]) = 2(n − 1) − i for 1 ≤ i ≤ n − 1. On account of

Brought to you by | Ludwig-Maximilians-Universität München Universitätsbibliothek (LMU)
Authenticated

Download Date | 11/2/19 11:51 PM



220 | 8 Tree equations

π(yi+1F
[i]
a[n−1]) = (i + 1) + (2n − 2 − i) = 2n − 1,

which is independent of i, from the last line in (8.1.16), we have

π(Fa[n]) = π(yi+1F
[i]
a[n−1]) = 2n − 1.

Then we have F[i]a[n], 2 ≤ i ≤ n, by the second line of (8.1.9). Because of

π(Fa[j]F
[i−1]
a[n−j]) = (2j − 1) + (2(n − j) − (i − 1))

= 2n − i,

which is independent of j, we have

π(F[i]a[n]) = π(Fa[j]F
[i−1]
a[n−j]) = 2n − i.

The conclusion is drawn.

The case of k = 1 holds independently from a fundamental point of view.

Corollary 8.2.4. For any integer n ≥ 1, π(Fa[n]) = 2n − 1.

Proof. This is the case of k = 1 in Lemma 8.2.3.

Let ℐn = {in ≥ 0 | niTn = 2n − 1}. From Corollary 8.2.4, we have

Fa[n] = ∑
in∈ℐn

Fa[in]y
in . (8.2.4)

Furthermore, for integer k, 2 ≤ k ≤ n, from (8.1.9), we have

F[k]a[n] = ∑
in∈ℐn

F[k]a[in]y
in . (8.2.5)

Of course, when k = 1, then F[1]a[n] = Fa[n] and F
[1]
a[in]
= Fa[in]. This is (8.2.4).

Theorem 8.2.5. Equation (8.1.1) for a0 = 0 has its solution inℛ{y} determined by

Fa[n] =

{{{{{{{{{{{{
{{{{{{{{{{{{
{

0, when n = 0;
a1y1, when n = 1;
a1a2a3y1y2, when n = 2;
a21a2a

2
3y1y

2
2 + a1a

2
2a3y

2
1y2, when n = 3;

a31a2a
3
3y

3
1y4 + a

2
1a2a3(2a1a3 + 1)y

2
1y2y3 + a1a

3
2a3y1y

3
2 , when n = 4;

a2a3y2Fa[n−1] + a2∑
n−1
i=3 a

i−1
3 yiF
[i−1]
a[n−1] + a

n−1
1 a2yn−11 yn, when n ≥ 5.

(8.2.6)
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8.3 Restrictions planted | 221

Proof. When n = 0, it is determined by the initial condition of equation (8.1.1) for
a0 = 0.

When n = 1, 2, 3 and 4, the results follow from (8.1.10), (8.1.12), (8.1.13) and (8.1.10).
When n ≥ 5, because of F[1]a[n−1] = Fa[n−1] and F

[n−1]
a[n−1] = a

n−1
1 y[n−1]1 , from (8.1.16), we

have

Fa[n] = a2
n−1
∑
i=1

ai3yi+1F
[i]
a[n−1], by i ⇐ i + 1,

= a2
n
∑
i=2

ai−13 yiF
[i−1]
a[n−1], by F

[1]
a[n−1] = Fa[n−1],

= a2a3y2Fa[n−1] + a2
n
∑
i=3

ai−13 yiF
[i−1]
a[n−1],

by F[n−1]a[n−1] = a
n−1
1 an−13 yn−11 ,

= a2a3y2Fa[n−1] + a2
n−1
∑
i=3

ai−13 yiF
[i−1]
a[n−1]

+ an−11 a2a
n−1
3 yn−11 yn.

Because of Lemma 8.1.4, this is what we want to prove.

On account of a0, a1, a2 ∈ ℝ+, from this theorem, by considering that all of Fa[k],
1 ≤ k ≤ 4, are of the form of a sumof positive terms and that, for any integer n ≥ 5, Fa[n]
is of the form of a sum of positive terms whenever Fa,k is so for any integer k ≤ n − 1, it
is seen that all Fa[n] are of the form of a sum of positive terms.

8.3 Restrictions planted

Now, we observe the special case of equation (8.1.1) when a0 = 0 and a1 = a2 = a3 = 1.
This is the equation

{{{
{{{
{

∫
y

y2f
1 − yf
= f − y1;

f |y=0 = 0.
(8.3.1)

This is an equation satisfied by the enumerating function, denoted by f = F0 +
F1 + F2 + ⋅ ⋅ ⋅, of rooted plane planted trees with non-rooted vertex partition vector as
parameter.
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222 | 8 Tree equations

Theorem 8.3.1. Equation (8.3.1) has, and is the only one to have, the solution deter-
mined by

Fn =

{{{{{{{{{{{{
{{{{{{{{{{{{
{

0, when n = 0;
y1, when n = 1;
y1y2, when n = 2;
y1y22 + y

2
1y2, when n = 3;

y1y22 + 3y
2
1y2y3 + y

3
1y4, when n = 4;

y2Fn−1 +∑
n−1
i=3 yiF

[i−1]
n−1 + y

n−1
1 yn, when n ≥ 5.

(8.3.2)

Proof. On the basis of Lemma 8.1.4 and Theorem 8.1.5, the conclusion is drawn by
taking a1 = a2 = a3 = 1 and by substituting Fn, Fn−1 and F

[i−1]
n−1 (3 ≤ i ≤ n − 1) for Fa[n],

Fa[n−1] and F
[i−1]
a[n−1] (3 ≤ i ≤ n − 1), respectively, in (8.2.6).

Let Fi be the coefficient of the term with yi in f , then

Fn = ∑|i|=n
i>0 Fiy

i

where Fi is the number of non-isomorphic classes of rooted planted plane trees each
of which is with the partition vector i, i. e., ij non-rooted vertices of valency j ≥ 1.

In Figures 8.1.1 and 8.1.2 of Liu [59], all distinct isomorphic classes of rooted
planted plane trees with order n+ 1 for n = 1, 2, 3 and 4 show the correctness of (8.3.2).

According to Liu [49], it is seen that

Fi =
(n − 1)!

i!
. (8.3.3)

Theorem 8.3.2. The solution of equation (8.3.1) is determined by

Fn = ∑
i∈ℐn

(n − 1)!
i!

yi (8.3.4)

where ℐn = {i ≥ 0||i| = n,π(i) = niT = 2n − 1}, for n ≥ 0.

Proof. We proceed on the basis of Theorems 8.1.1 and 8.2.5 for a0 = 0 and a1 = a2 =
a3 = 1. From (8.3.3), the conclusion is drawn.

Lemma 8.3.3. Equation (8.3.1) is equivalent to

{{
{{
{

f = y1 + ∑
m≥1

ym+1f
m;

f |y=0 = 0,
(8.3.5)

inℛ{y}.
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Proof. By considering that equation (8.1.1) is equivalent to equation (8.1.6), the con-
clusion is the case of a0 = 0 and a1 = a2 = a3 = 1.

Let t = (t1, t2, t3, . . .) = (f , f 2, f 3, . . .), then from Liu [20] (or Liu [18]), by considering
that only one way is available to generate a plane tree of rooted valency i ≥ 2 via
producing a new vertex valency j ≥ i − 1 from a plane tree of valency j, it is shown that
the solution f = t1 of equation (8.3.1) is just the first entry of a solution of the infinite
dimensional vector equation

(I − Y)tT = y1e
T
1 (8.3.6)

where e1 = (1,0,0,0, . . .), I is the unit matrix of infinite dimension and Y = (yi,j)i≥1,j≥1
with

yi,j = {
yj−i+2, when i ≤ j + 1;
0, when i ≥ j + 2.

(8.3.7)

In fact, ti = f i, i ≥ 2, is the enumerating function of plane trees with rooted valency i
for the partition vector of non-rooted vertices as parameter.

Because of

(I − Y)−1 = ∑
n≥0

Yn (8.3.8)

inℛ{y}, equation (8.3.6) has a solution

tT = y1(∑
n≥0

Yn)eT1 . (8.3.9)

In what follows, our aim is the determination of Yn = (y[n]i,j )i≥1,j≥1.

Lemma 8.3.4. For any integer n ≥ 2, y[n]i,j = 0 (i ≥ n + 2, 1 ≤ j ≤ i − n − 1).

Proof. When n = 2, from (8.3.7), for any integer i ≥ 3, in the ith row of Y , yi,j = 0,
1 ≤ j ≤ i − 2 and for any integer j ≥ 1, in the jth column Y , yi,j = 0, i ≥ j + 2. Because of

y[2]i,j = ∑
k≥1

yi,kyk,j

for i, j ≥ 1, we have, for any i ≥ 4, 1 ≤ j ≤ i − 3,

y[2]i,j =
j+1
∑
k=i−1

yi,kyk,j, from i ≥ j + 3,

=
j+1
∑
k=j+2

yi,kyk,j, from j + 2 > j + 1,

= 0.

This is the case for n = 2 in the conclusion.
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224 | 8 Tree equations

For any integer n ≥ 3, assume that, for 2 ≤ l ≤ n − 1, we have y[l]i,j = 0, i ≥ l + 2,
1 ≤ j ≤ i − l − 1. We prove the case for l = n. From (8.3.7), for any i ≥ 3, in the ith row of
Y , yi,j = 0, 1 ≤ j ≤ i − 2 and from the assumption, for any j ≥ 1, in the jth column of Y ,
yi,j = 0, i ≥ j + (n − 1) + 1. On account of the associative law for matrix multiplication,
for any i, j ≥ 1,

y[n]i,j = ∑
k≥1

yi,ky
[n−1]
k,j .

For any i ≥ n+ 2, 1 ≤ j ≤ i−n− 1, because of all entries which are 0 in [yi,1, yi,i−2] (others
not 0!) on the ith row of Y and all entries which are 0 in [yj+n,j, y∞,j) (the others not 0!)
on the jth column of Yn−1, we have

y[n]i,j = ∑
k≥1

yi,ky
[n−1]
k,j ,

by yi,k = 0, k ∈ [1, i − 2],

= ∑
k∈Λ

yi,ky
[n−1]
k,j ,

by Λ = [i − n,∞) ∩ [1, n + j − 1] = 0,
= 0.

This is the case for n ≥ 3 in the conclusion.

This lemma enables us to write Yn = (y[n]i,j )i≥1,j≥1 as

y[n]i,j =
{{{
{{{
{

∑n+j−1k=1 yi,ky
[n−1]
k,j , when 1 ≤ i ≤ 2, j ≥ 1;

∑n+j−1k=i−1 yi,ky
[n−1]
k,j , when i ≥ 3, j − i ≥ −n;

0, otherwise, i. e., i ≥ 3, j − i ≤ −(n + 1),

(8.3.10)

for n ≥ 2.

Lemma 8.3.5. For any integer n ≥ 2, y[n]i,j , i ≥ 1, j ≥ 1, are determined only by {y
[n]
i,1 , 2 ≤

i ≤ n + 1} and {y[n]1,j , j ≥ 1}.

Proof. When n = 1, from (8.3.7), it is seen that, for any integer s ≥ 1, yi+s,j+s =
y(j+s)−(i+s)+2 = yj−i+2 = yi,j. For convenience, such a property of a matrix is called
slope translational. It can be seen that the product of two slope translational matrices
is still slope translational. Hence, Y2 is slope translational, i. e., for any integer s ≥ 0,
y[2]i+s,j+s = y

[2]
i,j . Furthermore, for any integer n ≥ 3, Yn is slope translational, i. e., for any

integer s ≥ 0, y[n]i+s,j+s = y
[n]
i,j . From Lemma 8.3.4, the conclusion is drawn.

Based on this lemma, for any integer n ≥ 1, let us write

y[n]k = {
y[n]n−k+2,1, when 1 ≤ k ≤ n;
y[n]1,n−k+2, when k ≥ n + 1.

(8.3.11)
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Conversely, for any integer i, j ≥ 1,

y[n]i,j = {
y[n]j−i+2, when j − i ≥ −n;
0, when j − i ≤ −(n + 1).

(8.3.12)

Attention. (1) Because of y[1]i,j = yi,j, when n = 1, (8.3.12) becomes (8.3.7).
(2) For any integer n ≥ 1, y[n]1 = y

n
1 and for n ≥ 2, y

[n]
2 = ny

n−1
1 y2.

From (8.3.9),

τ1 = y1(∑
n≥0

y[n]1,1 ), by (8.3.12);

= y1(∑
n≥0

y[n]2 ),
(8.3.13)

where y[0]0 = 1.

Lemma 8.3.6. For Fn, n ≥ 1, in the solution of equation (8.1.1) with a0 = 0 and
a1 = a2 = 1, we have

Fn = y1
n−1
∑
i=1

yi+1y
[n−2]
n−i . (8.3.14)

Proof. Since each nonzero entry of Yn, n ≥ 1, is a homogeneous polynomial of degree
n, all y[n]i , i ≥ 1, are homogeneous polynomials of degree n. Because τ1 is a solution
of equation (8.3.1), it is seen that y1y

[n−2]
n−i for 1 ≤ i ≤ n − 1 in (8.3.13) is a part of Fn−1,

i. e., a part of τ1 is a homogeneous polynomial of degree n − 1. From the uniqueness
of the solution, Fn = y1y

[n−1]
n−1 . From (8.3.10) and (8.3.12), the conclusion can easily be

drawn.

Theorem 8.3.7. For any integer n ≥ 1, we have

𝜕iyFn =
(n − 1)!

i!
(8.3.15)

where n = |n| and 𝜕iy is the coefficient operator for extracting the coefficient of the term
with yi.

Proof. From Theorem 8.3.1 and Theorem 8.3.2, the conclusion is drawn.

Example 1. Root-isomorphic classes of planted trees with vertex partition vector as
parameters. On the basis of (8.3.2), one finds that, for any integer n, Fn provides the
polynomial of y whose coefficient of yn is the number of root-isomorphic classes of
planted trees with the vertex partition vector n = (n1, n2, n3, . . .)where ni is the number
of non-rooted vertices of valency i ≥ 1 and order n + 1 and size n = |n|.

Figure 8.3.1 provides the root-isomorphic classes of planted trees with vertex par-
tition vectors as a = (1), b = (1, 1), c = (2,0, 1) and d = (1, 2,0) of orders 2, 3 and 4. For
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226 | 8 Tree equations

Figure 8.3.1: Classes of planted trees with vertex partition of order 2–4.

example, a has 1 class, i. e., F1 = y1; b has 1 class, i. e., F2 = y1y2; each of c and d has 1
class, i. e., F3 = y21y3 + y

3
1 .

Figure 8.3.2 provides the root-isomorphic classes of planted trees with vertex par-
tition vectors as a = (3,0,0, 1), b = (2, 1, 1,0), and c = (1, 3,0,0) of order 5. Here, a has
1 class, b has 3 classes and c has 1 class, i. e., F4 = y31y4 + 3y

2
1y2y3 + y1y

3
2 .

Figure 8.3.2: Classes of planted trees with vertex partition of order 5.

8.4 Explicit expressions planted

Let us go back to equation (8.1.6) which is equivalent to equation (8.1.1) for a0 = 0.
Now, one might be motivated to establish an equation system of infinite dimen-

sion,

tTa = a2Yat
T
a + a1y1e

T
1 (8.4.1)

where a = (a1, a2, a3) ∈ ℤ3+, ta = (ta1, ta2, ta3, . . .), e1 = (1,0,0, . . .) and

ya[i,j] = {
aj3yj−i+2, when −1 ≤ j − i;
0, otherwise, i. e., j − i ≤ −2,

(8.4.2)

for integers i, j ≥ 1.
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8.4 Explicit expressions planted | 227

We have

Ya = Y[a3, a
2
3, a

3
3, . . .]

where [a3, a23, a
3
3, . . .] = (a3, a

2
3, a

3
3, . . .)I, a diagonal matrix of infinite dimension, and

Y = (yi,j)i.j≥1 is given by (8.3.7).

Observation 8.4.1. If ta is a solution of equation (8.4.1), then ta1 is the solution of equa-
tion (8.1.1) for a0 = 0.

Proof. Because the first equation in equation (8.4.1) is just equation (8.1.6) and hence
equation (8.1.1) for a0 = 0. This is the conclusion.

This observation tells us that an explicision of the solution of equation (8.1.1) for
a0 = 0 can be extracted from a solution of equation (8.4.1).

Theorem 8.4.2. Equation (8.4.1) is well-defined for a ∈ ℤ3+ and a1a2a3 ̸= 0.

Proof. We proceed on the basis of the equivalence between equation (8.4.1) and

(I − a2Ya)t
T
a = a1y1e

T
1 .

Because the inverse of I − a2Ya is

(I − a2Ya)
−1 = ∑

i≥0
(a2Ya)

i,

the conclusion is drawn.

This theorem and Observation 8.4.1 enable us to determine the solution of equa-
tion (8.1.1) via that of equation (8.4.1).

Observation 8.4.3. When integer n = |n| is given, then the solution ta of equation (8.4.1)
is only dependent on some yi for 1 ≤ i ≤ n.

Proof. Because of the maximum valency of a planted tree of order n + 1 is n, the con-
clusion follows.

This observation enables us to restrict equation (8.4.1) in terms of dimension n for
integer n given.

Lemma 8.4.4. For integer n ≥ 1 given, the infinite dimensional system equation (8.4.1)
is equivalent to the following equation system in dimension n − 1:

(I(n−1)×(n−1) − a2Ya((n−1)×(n−1)))t
T
a(n−1) = a1y1e

T
1(n−1) (8.4.3)

where ta(n−1) = (ta(1), ta(2), . . . , ta(n−1))andYa((n−1)×(n−1)) are, respectively, all onℛ{yn−1}n−1

andℛ{yn−1}(n−1)×(n−1).

Proof. This is a direct result of Observation 8.4.3.
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228 | 8 Tree equations

Now, we are allowed to describe an explicision of the solution of equation (8.4.1)
and then that of equation (8.1.1).

Theorem 8.4.5. The solution ta(1) of equation (8.4.1) for integer n ≥ 1 given has an expli-
cision

ta1(n−1) = a1y1(1 +
n−1
∑
i=1

ai2y
[i]
a[1,1]) (8.4.4)

where y[1]a[1,1] = ya[1,1] is determined by (8.4.2) and y
[i]
a[1,1] is the entry at (1, 1) of the squared

matrix Yi
a[(n−1)×(n−1)] for 2 ≤ i ≤ n − 1.

Proof. We proceed on the basis of Lemma 8.4.4. Because

ta1(n−1) = a1y1[(I(n−1)×(n−1) − a2Ya((n−1)×(n−1)))
−1]≤n−1e

T
1(n−1)

= a1y1(1 +
n−1
∑
i=1

ai2y
[i]
a[1,1]),

the conclusion is drawn.

Example 1. When n = 4. We proceed on the basis of Theorem 8.4.5. Because of the
coefficient matrix with dimension 3

Ya(3×3) =(
a3y2 a23y3 a33y4
a3y1 a23y2 a33y3
0 a23y1 a33y2

)

we have y[1]a[1,1] = a3y2, y
[2]
a[1,1] = a

2
3y

2
2 +a

3
3y1y3 and y

[3]
a[1,1] = a

3
3y

3
2 + (2+a3)a

4
3y1y2y3+a

6
3y

2
1y4.

By employing (8.4.4),

ta1(3) = a1y1
+ a1a2a3y1y2
+ a1a

2
2(a

2
3y1y

2
2 + a

3
3y

2
1y3)

+ a1a
3
2(a

3
3y1y

3
2 + (2 + a3)a

4
3y

2
1y2y3 + a

6
3y

3
1y4).

For a1 = a2 = a3 = 1, this result can be checked in Figure 8.3.1 and Figure 8.3.2.

In what follows, a summation-free explicision of the solution of equation (8.1.1)
for a0 = 0 and a3 = 1 is extracted in a direct manner.

Because of the only occurrence of a1y1 and a2yi, i ≥ 2 in the equation, f is a func-
tion of a1y1 and a2yi, i ≥ 2. This enables us to introduce the substitution

zj = {
a1y1, when j = 1;
a2yj, when j ≥ 2,

(8.4.5)

for integer j ≥ 1.
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By substituting zj for a1y1 (j = 1) and a2yj (j ≥ 2) in equation (8.1.6), the result is

{{
{{
{

f = z1 + ∑
m≥1

am3 zm+1f
m;

f |z=0 = 0
(8.4.6)

inℛ{z}. This is just equation (8.3.5) when a3 = 1.

Theorem 8.4.6. The solution of equation (8.1.1) for a3 = 1 is determined by the explicit
expression

𝜕iyFa,|i| =
ai11 a
|i|−i1
2 (|i| − 1)!

i!
(8.4.7)

for |i| = n ≥ 1 where i = (i1, i2, i3, . . .).

Proof. On the basis of Theorem 8.3.7. From (8.4.1) and (8.4.2), the conclusion is drawn.

8.5 General model

Second, consider the equation

{{
{{
{

a2x∫
y

yδx,y(uf |x=u) = f − a1;

f |x=0,y=0 = a0,
(8.5.1)

where a = (a0, a1, a2) ∈ ℤ3+, f = f(x, y) ∈ ℛ{x, y}, y = (y1, y2, y3, . . .) and

δx,y(uf |x=u) =
xf (x) − yf (y)

x − y
,

called the straight difference of the function uf (u) between x and y.
Because a solution of equation (8.5.1) in the case a0 = a1 = a3 = 1 given in [18,

20] (Liu YP, 1985) holds for general plane trees, this equation is called in general tree
model.

This is equation (31) in Introduction when a0, a1 and a2 are, respectively, replaced
by d, c and a.

For convenience, let Fa[m](y) = 𝜕mx f , m ≥ 0, and id(y) = |n|, where n = (n1, n2,
n3, . . .), i. e., the power vector of y, |n| = n1 + n2 + n3 + ⋅ ⋅ ⋅. For any integer n ≥ 0, write

Fa[m,n] = Fm(y)|id(y)=n(= ∑
|n|=n

Fa[m,n]y
n),

or Fa[m,n] is the sum of terms with yn, |n| = n in Fa[m](y), a polynomial of degree n.
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230 | 8 Tree equations

Therefore, it is seen that

f = ∑
m≥0

Fa[m](y)x
m. (8.5.2)

Because

δx,y(uf |x=u) =
xf − yf |u=y

x − y

=
x∑m≥0 Fa[m](y)x

m − y∑m≥0 Fa[m](y)y
m

x − y

= ∑
m≥0

Fa[m](y)
xm+1 − ym+1

x − y
,

xm+1 − ym+1 = (x − y)(
m
∑
i=0

xiym−i),

and

δx,y(uf |x=u) = ∑
m≥0

Fa[m](y)(
m
∑
i=0

xiym−i)

= ∑
i≥0
∑
m≥i

Fa[m](y)y
m−ixi

= ∑
i≥m
m≥0 Fa[i](y)y

i−mxm,

we have

∫
y

yδx,y(uf |x=u) = ∑
i≥m
m≥0 Fa[i](y)yi−m+1x

m.

Then the first line of equation (8.5.1) becomes

f = a1 + a2 ∑
i≥m−1
m≥1 Fa[i](y)yi−m+2x

m. (8.5.3)

Theorem 8.5.1. Equation (8.5.1) is equivalent to

{{
{{
{

f = a1 + a2 ∑
i≥m−1
m≥1 Fa[i](y)yi−m+2x

m;

f |y=0⇒x=0 = a0,
(8.5.4)

inℛ{x, y}.

Proof. By considering that (8.5.3) is equivalent to the first line of equation (8.1.1) on
ℛ{x, y}, the conclusion is drawn.
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This theorem enables us then only to discuss on equation (8.5.4) instead of equa-
tion (8.1.1) without indication.

Observation 8.5.2. When a0 ̸= a1, equation (8.5.4) is not consistent.

Proof. Because no solution exists for satisfying the initial condition of equation (8.5.4)
when a0 ̸= a1, the conclusion is drawn.

This enables us only to investigate the case of a0 = a1 for equation (8.5.4) or equa-
tion (8.5.1).

On the basis of the observation, because

∑
i≥m

Fa[i](y)yi−m+1 = ∑
i≥m−1

Fa[i](y)yi−m+2,

equation (8.5.4) becomes

{{
{{
{

f = a0 + a2 ∑
i≥m−1
m≥1 Fa[i](y)yi−m+2x

m;

f |y=0⇒x=0 = a0.
(8.5.5)

Based on equations (8.5.5) and (8.5.2), we have

x0 : Fa[0](y) = a0, i. e., the initial condition of equation (8.5.5); (8.5.6)

x1 : Fa[1](y) = a2∑
i≥0

yi+1Fa[i](y)

= a2(y1Fa[0](y) + y2Fa[1](y) + y3Fa[2](y)
+ y4Fa[3](y) + ⋅ ⋅ ⋅),
by Fa[0](y) = a0,
= a2a0y1 + a2(y2Fa[1](y) + y3Fa[2](y)
+ y4Fa[3](y) + ⋅ ⋅ ⋅);

(8.5.7)

x2 : Fa[2](y) = a2∑
i≥1

yiFa[i](y)

= a2(y1Fa[1](y) + y2Fa[2](y) + y3Fa[3](y)
+ y4Fa[4](y) + ⋅ ⋅ ⋅);

(8.5.8)

x3 : Fa[3](y) = a2∑
i≥2

yi−1Fa[i](y)

= a2(y1Fa[2](y) + y2Fa[3](y) + y3Fa[4](y)
+ y4Fa[5](y) + ⋅ ⋅ ⋅);

(8.5.9)
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x4 : Fa[4](y) = a2∑
i≥3

yi−2Fa[i](y)

= a2(y1Fa[3](y) + y2Fa[4](y) + y3Fa[5](y)
+ y4Fa[6](y) + ⋅ ⋅ ⋅);

(8.5.10)

and so forth.
Let f = (Fa[1], Fa[2], Fa[3], . . .). Then, from (8.1.6)–(8.1.10), equation (8.5.5) becomes

fT = a0a2y1e
T
1 + Yaf

T (8.5.11)

where Ya = a2Y and Y is just given in equation (8.3.6).

Theorem 8.5.3. Equation (8.5.5) is equivalent to equation (8.5.11) inℛ{y}.

Proof. Since each entry of Y is inℛ{y}, we have Y ∈ ℛ{y}. Then the conclusion can be
proved.

This theorem enables us to determine f from equation (8.5.11) for a solution of
equation (8.5.5) and then equation (8.5.1).

Theorem 8.5.4. Equation (8.5.5) is well-defined inℛ{y}.

Proof. By the equivalent transformation onℛ{y}, equation (8.5.5) becomes

(I − a2Y)
−1fT = a0a2y1e

T
1 . (8.5.12)

By considering

(I +∑
i≥1
(a2Y)

i)(I − a2Y) = I = (I − a2Y)(I +∑
i≥1
(a2Y)

i),

it is seen that

I +∑
i≥1
(a2Y)

i = (I − a2Y)
−1.

Hence,

fTa = a0a2y1(I +∑
i≥1
(a2Y)

i)eT1 (8.5.13)

is a solution of equation (8.5.5). Because of the uniqueness of the inverse of the coef-
ficient matrix, the solution is the only one.
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8.6 Solution general

On the basis of (8.5.7)–(8.5.10), by the equivalent transformations onℛ{x, y},

x1 : Fa[1](y) = ∑
i≥0,i ̸=1

a2yi+1
1 − a2y2

Fa[i](y)

=
a2

1 − a2y2
a0(y1 + y3Fa[2](y)

+ y4Fa[3](y) + ⋅ ⋅ ⋅);

(8.6.1)

x2 : Fa[2](y) = ∑
i≥1,i ̸=2

a2yi
1 − a2y2

Fa[i](y)

=
a2

1 − a2y2
(y1Fa[1](y) + y3Fa[3](y)

+ y4Fa[4](y) + ⋅ ⋅ ⋅);

(8.6.2)

x3 : Fa[3](y) = ∑
i≥2,i ̸=3

a2yi−1
1 − a2y2

Fa[i](y)

=
a2

1 − a2y2
(y1Fa[2](y) + y3Fa[4](y)

+ y4Fa[5](y) + ⋅ ⋅ ⋅);

(8.6.3)

x4 : Fa[4](y) = ∑
i≥3,i ̸=4

a2yi−2
1 − a2y2

Fa[i](y)

=
a2

1 − a2y2
(y1Fa[3](y) + y3Fa[5](y)

+ y4Fa[6](y) + ⋅ ⋅ ⋅);

(8.6.4)

and for any integerm ≥ 5,

xm : Fa[m](y) =
a2y1

1 − a2y2
Fa[m−1](y)

+ ∑
i≥m+1

a2yi−m+2
1 − a2y2

Fa[i](y).
(8.6.5)

In what follows, relevant results are explained for determining all Fa[m,n] when
any integersm ≥ 1 and n ≥ 1 are given. Let min(Fm(y)) (max(Fm(y))) be the minimum
(maximum) degree of powers of y among all nonzero terms in Fm(y).

Observation 8.6.1. For any integer m ≥ 3, Fa[m](y) is independent of Fa[i](y), 3 ≤ i ≤
m − 2.

Proof. From (8.6.3), it is seen that Fa[3](y) is independent of Fa[3−2](y) = Fa[1](y). From
(8.6.4), it is seen that Fa[4](y) is independent of Fa[1](y) and Fa[2](y). For m ≥ 5, from
(8.6.5), it is seen that Fa[m](y) depends only on Fa[m−1](y) and Fa[i](y), i ≥ m + 1. This is
the conclusion.
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According to (8.6.5), this observation enables us to see that all entries of Y =
(yi,j)i,j≥1 in (8.5.12), yi,j = 0 for any integer i ≥ 3 and 1 ≤ j ≤ i − 2.

Observation 8.6.2. For any integer m ≥ 2,min(Fa[m]) = min(Fa[m−1]) + 1.

Proof. On the basis of (8.5.13), it is seen that all nonzero entries are of the same degree
i ≥ 2 in Y i and that min(a0a1y1y

[i−1]
i,1 ) = min(a0a1y1yi−11 ) = min(yi1) = i. Because of

{{{{
{{{{
{

Fa[m] = ∑
j≥i−1

a0a
j+1
2 y1y
[j]
i,1 , when i ≥ 2;

Fa[1] = a0a2y1(1 +∑
j≥1

aj2y
[j]
1,1),

(8.6.6)

we have min(F[m]) = min(y1yi−1a[m,1]). On account of min(Fa[1]) = min(y1) = 1,
min(Fa[m]) = min(Fa[m−1]) + 1 is done.

In fact, this observation tells us that, for any integer m ≥ 1, min(F[m]) = m when-
ever Fa[1] = 1. Certainly, it is true because of min(Fa[1]) = min(y1) = 1.

If another parameter n = id(y) = |n|wheren is the power vector of y is considered,
then, for any integerm ≥ 1, we have

Fa[m] = ∑
n≥1

Fa[m,n]. (8.6.7)

Observation 8.6.3. For any two integers m and n(≥ m ≥ 1), Fa[m,n] is independent of yi
for i ≥ n −m + 2.

Proof. From (8.6.5),

Fa[m](y) = a2 ∑
i≥m−1

yi−m+2Fa[i](y).

For any integer n ≥ m − 1,

Fa[m,n] = a2 ∑
i≥m−1

yi−m+2Fa[i,n−1],

by Observation 8.6.1,

= a2
n−1
∑

i=m−1
yi−m+2Fa[i,n−1].

(8.6.8)

Therefore, Fa[m,n] is independent of yi, i ≥ (n − 1) −m + 2 + 1 = n −m + 2. This is just the
conclusion.

This observation reveals the existence of a finite max(Fa[m]) form ≥ 1.

Lemma 8.6.4. Given integer m ≥ 1. For any integer n ≥ 1, if n ≤ m − 1, then Fa[m,n] = 0.

Proof. Since min(Fa[m](y)) = m from Observation 8.6.2, the conclusion is soon done.
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This lemma provides the minimumm for Fa[m,n] ̸= 0.

Lemma 8.6.5. For any integers m, n ≥ 1, Fa[m,n] = a0am2 y
m
1 if, and only if, n = m.

Proof. When m = n = 1, from (8.6.8), Fa[m,n] = a2y1Fa[0,0] = a0a2y1. When m = n ≥ 2,
assume that Fa[j,j] = a0a

j
2y

j
1 for 1 ≤ j ≤ m − 1. We proceed by induction onm = n, from

(8.6.8), we have

Fa[m,m] = a2y1Fa[m−1,m−1], by the assumption,

= a2y1(a0a
m−1
2 ym−11 )

= a0a
m
2 y

m
1 .

This is the conclusion.

On the basis of what was mentioned above, we are allowed to evaluate Fa[m,n] for
n ≥ 1. On account of Lemma 8.6.4, Fa[m,n] are determined in the order of n from smaller
to greater as shown in what follows for n ≤ 4
n = 1: Fa[1,1];
n = 2: Fa[1,2], Fa[2,2];
n = 3: Fa[1,3], Fa[2,3], Fa[3,3];
n = 4: Fa[1,4], Fa[2,4], Fa[3,4], Fa[4,4]; etc.

By employing (8.6.8), we start from the initial condition: Fa[0,0] = a0.
n = 1: Fa[1,1] = a2y1Fa[0,0] = a0a2y1;
n = 2: Fa[1,2] = a2(y2Fa[1,1]) = a0a22y1y2,

Fa[2,2] = a2y1Fa[1,1] = a2y1(a0a2y1) = a0a22y
2
1 ;

n = 3: Fa[1,3] = a2(y2Fa[1,2] + y3Fa[2,2]) = a0a32(y1y
2
2 + y

2
1y3),

Fa[2,3] = a2(y1Fa[1,2] + y2Fa[2,2]) = a0a32y
2
1y2 + y

3
1 ,

Fa[3,3] = a2y1a0a22y
2
1 = a0a

3
2y

3
1 ;

n = 4: Fa[1,4] = a2(y2Fa[1,3] + y3Fa[2,3] + y4Fa[3,3]) = a0a42 (y1y
3
2 + 3y

2
1y2y3 + y

3
1y4),

Fa[2,4] = a2(y1Fa[1,3] + y2Fa[2,3] + y3Fa[3,3]) = a0a42 (3y
2
1y

2
2 + 2y

3
1y3),

Fa[3,4] = a2(y1Fa[2,3] + y2Fa[3,3]) = a0a42 (2y
3
1y2 + y

3
1y2) = 3a0a

4
2y

3
1y2,

Fa[4,4] = a2(y1Fa[3,3]) = a0a42y
4
1 ; etc.

Then we are allowed to provide the solution in the form of a finite sum of positive
terms.

Theorem 8.6.6. The solution of equation (8.5.1) is determined by

Fa[m,n] =

{{{{{{
{{{{{{
{

a0, when m = 0, n = 0;
a0a2y1, when m = 1, n = 1;
a2∑

n−1
i=m−1 yi−m+2Fa[i,n−1], when 1 ≤ m ≤ n, n ≥ 2;

0, otherwise.

(8.6.9)
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236 | 8 Tree equations

Proof. When n = 0 andhencem = 0, the result is from the initial condition of equation
(8.5.1). For 1 ≤ n ≤ 4, Fa[m,h] are found in the above calculation. For n ≥ 5, the results
are from (8.6.8).

8.7 Restrictions general

Now, we are go back equation (8.5.1) in the cases of a0 = a1 = a2 = 1. This is the
equation

{{
{{
{

x∫
y

yδx,y(uf |x=u) = f − 1;

f |x=0,y=0 = 1.
(8.7.1)

This is the enumerating equation for determining thenumber of asymmetric plane
trees via thepartition vector of non-rooted vertices as parameter. It looks that the equa-
tion for the first time occurs in Liu [32] (1989) with an equivalent form. However, on
the enumeration of asymmetric plane trees is from Tutte [85] (1964).

For convenience, for a function f ∈ ℛ{x, y}, let [f ]m = 𝜕mx f and ⟨f ⟩n = 𝜕
n
yf where

n = |n| and n is a power vector of y. Then f is determined by Fm,n = ⟨[f ]m⟩n for all
m ≥ 0 and n ≥ 0.

Theorem 8.7.1. The solution of equation (8.7.1) is determined by

Fm,n =

{{{{{{
{{{{{{
{

1, when m = 0, n = 0;
y1, when m = 1, n = 1;
∑n−1i=m−1 yi−m+2Fi,n−1, when 1 ≤ m ≤ n, n ≥ 2;
0, otherwise.

(8.7.2)

Proof. This is a special case of Theorem 8.6.6 with a0 = a1 = a2 = 1.

One might like to see what happens in an enumeration of general plane trees for
m, n smaller. The reader is referred to the examples in Liu [59] (2015, pp. 211–227).

For any yn, let π(yn) = π, write

π(n) =
n
∑
i=1

ini. (8.7.3)

Lemma 8.7.2. For any integer m, n ≥ 1, Fm,n has |𝒩m,n| terms, where

𝒩m,n = {n ≥ 0 | |n| = n,π(n) = 2n −m}. (8.7.4)

Proof. First, to check that, for 1 ≤ n ≤ 4, in Fm,n obtained in Section 8.6, each n satisfy
π(n) = 2n −m. These enable us to write π(Fm,n) = 2n −m.
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8.7 Restrictions general | 237

Then, we proceed by induction on n. Assume for any integer 1 ≤ j ≤ n − 1, π(Fi,j) =
2j − i are known. On the basis of (8.6.8), since

π(y1y
l
2Fm−1,n−1−l) = 1 + 2l + 2(n − 1 − l) − (m − 1)

= 1 + 2(n − 1) − (m − 1)
= 2n −m

and
π(yi−m+2y

l
2Fi,n−1−l) = (i −m + 2) + 2l + 2(n − 1 − l) − i

= (−m + 2) + 2(n − 1)
= 2n −m,

we have π(Fm,n) = 2n −m.
On the other hand, if there exists n ̸∈ 𝒩m,n, |n| = n as the power vector in Fm,n,

then π(Fm,n) = π(n) ̸= 2n −m. A contradiction to π(Fm,n) = 2n −m occurs.
Therefore, the conclusion is true.

This lemma tells us that, for any integersm, n ≥ 1, Fm,n is a homogeneous polyno-
mial of degree n with |𝒩m,n| terms. Let

σn(x) = (∑
i≥1

yix
i)

n
(8.7.5)

and let
ℒ2n−m = {n | a power vector of y in 𝜕

2n−m
x σn(x)

for n = (n1, n2, n3, . . .) and nj = 0,
j ≥ i + 1}.

(8.7.6)

Lemma 8.7.3. For any integers m, n ≥ 1, we have

𝒩m,n = ℒ2n−m (8.7.7)

where n = |n|.

Proof. First, for any i ∈ ℒ2n−m, because of

∑
j≥1

jij = 2n −m

and |i| = n, we see that i ∈ 𝒩m,n.
Then, for any n ∈ 𝒩m,n, because of

∑
i≥1

ini = 2n −m,

induced from |n| = n, we also see that n ∈ ℒ2n−m.
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238 | 8 Tree equations

In fact, Lemma 8.7.3 implies that, for any integers n ≥ m ≥ 1, Fm,n = 𝜕2n−mx σn(x).

Lemma 8.7.4. For any integers m, n ≥ 1, we have

Fm,n =
1
n
𝜕2n−mx σn(x)

= ∑
i∈ℒ2n−m

(n − 1)!
(nm+1 + 1)i!

yi
(8.7.8)

where n = |i|.

Proof. From Lemma 8.7.3, by considering the form of σn(x), the conclusion is drawn.

From this lemma, we are allowed to determine coefficients of each term in the
solution of equation (8.7.1) in the form of a summation.

Theorem 8.7.5. Let fgtree be the solution of equation (8.7.1), then, for any integer m ≥ 0,

𝜕mx fgtree =
{
{
{

1, when m = 0;
∑ n∈𝒩m,|n||n|≥m (|n|−1)!

(nm+1+1)n!yn, when m ≥ 1,
(8.7.9)

where𝒩m,|n| is shown in Lemma 8.7.2.

Proof. From Lemmas 8.7.2–8.7.4, the conclusion is drawn.

Example 1. On vertex partition of plane trees. Letm and n = (n1, n2, n3, . . .) be, respec-
tively, the valency m of root-vertex and the vertex partition vector n = (n1, n2, n3, . . .),
i. e., ni, i ≥ 1, is the number of non-rooted vertices of valency i. Denote by Pm,n the poly-
nomial of y whose coefficient of yn is the number of root-isomorphic classes of plane
trees with root-vertex valencym and vertex partition vector n where n = |n|, the num-
ber of non-rooted vertices, n + 1 is the order. Because of the triviality for 0 ≤ m + n < 2,
it is only necessary to discuss the case 2 ≤ m + n ≤ 5.

Whenm + n = 2, only P1,1 = y1. It is shown by a in Figure 8.3.1.
When m + n = 3, we have P2,1 = 0 and P1,2 = y1y2. The latter is shown by b in

Figure 8.3.1.
Whenm + n = 4, we have P3,1 = 0, P2,2 = y21 and P1,3 = y

2
1y2 + y1y

2
2. P1,3 is shown by

c and d in Figure 8.3.1. P2,2 is shown by a in Figure 8.7.1.

Figure 8.7.1: Classes of plane trees with vertex partition.
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8.8 Explicit expressions general | 239

Whenm+ n = 5, we have P4,1 = 0, P3,2 = 0, P2,3 = 2y21y2 and P1,4 = y1y
3
2 + 3y

2
1y2y3 + y4y

3
1 .

P1,4 is shown by a, b and c in Figure 8.3.2. P2,3 is shown by b in Figure 8.7.1.
All the above show Pm,n = Fm,n in (8.7.2), or (8.7.8).

8.8 Explicit expressions general

In this section, we address the explicit expression of the solution of equation (8.5.5),
as well as equation (8.5.1), on the basis of the restriction for a0 = a1 = a2 = 1 in
Section 8.7.

Observation 8.8.1. If A is the coefficient of a term with yn in the solution of equation
(8.7.1), then a0a

|n|
2 A is the coefficient of a term with yn in the solution of equation (8.5.1).

Proof. On the basis of 8.6.9, we proceed by induction on n. When n = 0 and n = 1
(hence m = 0 and m = 1), the conclusion is found. For general n ≥ 2, assume when
k ≤ n − 1 (hence 1 ≤ m ≤ k − 1), the conclusion is found as we prove for k = n (hence
1 ≤ m ≤ n). By employing (8.6.9), because of Fa[i,n−1] = a0an−12 Fi,n−1 for 1 ≤ i ≤ n, we
have

Fa[m,n] = a2
n−1
∑

i=m−1
yi−m+2Fa[i,n−1]

= a2(a0a
n−1
2

n−1
∑

i=m−1
yi−m+1Fi,n−1)

= a0a
n
2

n−1
∑

i=m−1
yi−m+1Fi,n−1.

This is the conclusion.

This observation enables us to evaluate an explicit expression of the solution of
equation (8.5.1) from its restriction on a1 = a1 = a2 = 1.

Theorem 8.8.2. Let fgtree be the solution of equation (8.5.1), then, for any integer m ≥ 0,

𝜕mx fgtree =
{
{
{

a0, when m = 0;
a0a
|n|
2 ∑ n∈𝒩m,|n||n|≥m (|n|−1)!

(nm+1+1)n!yn, when m ≥ 1,
(8.8.1)

where𝒩m,|n| is shown in Lemma 8.7.2.

Proof. Onaccount of Theorem8.7.5, byObservation8.8.1, the conclusion canbe found.

On the basis of (8.5.13), the explicit expression can also be obtained via an infinite
matrix analysis.
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240 | 8 Tree equations

8.9 Notes

8.9.1. In Liu [61] (2016, Book 22, p. 10736, Program 76), one can find the equation

{{{
{{{
{

f = ay1 + b∫
y

y2f
1 − cyf
;

f |y=0 = d,
(8.9.1)

for seeking the condition of being well-defined. When a, b, c and d are all constants,
the method employed in the first three sections of this chapter is still available. The
earliest occurrences of the specific case of a = b = c = 1 and d = 0 are in Liu [18] (1985)
and [20] (1986). This specific case is equivalent to equation (8.1.1).

8.9.2. In Liu [61] (2016, Book 22, p. 10737, Program 77), one can find the equation

{{
{{
{

f = a + b∫
y

yδx,y(uf |x=u);

f |x=0,y=0 = c.
(8.9.2)

When a = (a0, a1, a2) = (a, b, c), this equation is equivalent to equation (8.5.1).

8.9.3. In Liu [61] (2016, Book 22, p. 10737, Program 78), one can find the equation

{{{
{{{
{

f = (a − bx∫
y

yf |x=y)
−1
;

f |x=0,y=0 = c.

(8.9.3)

The earliest occurrence of the specific case of a = b = c = 1 is in Wu and Liu [88]
(2000).

8.9.4. In Liu [61] (2016, Book 22, p. 10737, Program 79), one might find the equation

{{
{{
{

f = a + bxf ∫
y

yf |x=y ;

f |x=0,y=0 = c.
(8.9.4)

The earliest occurrence of the specific case of a = b = c = 1 is in Wu and Liu [88]
(2000).

8.9.5. In Liu [61] (2016, Book 22, p. 10738, Program 80), one can find the equation

{{{
{{{
{

f − ay1 − d = bxf ∫
y

y2(f − 1)
1 − y − cyf

;

f |x=0,y=0 = c.
(8.9.5)

Its specific case of a = b = c = d = 1 occurs in Liu [59] (2015, p. 219). If d = 0 instead of
d = 1, it is equivalent to equation (8.1.1).
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8.9.6. For the enumeration of planted and plane trees with vertex partition vector as
parameter, a number of methods have been used since Tutte [83] (1964) by analysis of
the functions. Others are referred to in Liu [18] (1985), [20] (1986) andWu and Liu [88]
(2000) by analysis of infinite dimensional matrices, Liu [32] (1989) and [43] (1993) by
Lagrangian inversion, Liu [49] and [50] (2008) by elementary combinatorics, Liu [59]
(2015) by solving a combinatorial functional equation, etc.
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9 Near-tree equations first part

9.1 Unicycle model

Consider the equation

{{
{{
{

a2x∫
y

y𝜕x,yf |x=u = f − a1x2fTree;
f |x=0,y=0 = a0 (9.1.1)

where a0, a1, a2 ∈ ℛ+, fTree ∈ ℛ{x, y} (i. e., fregtree given by (8.7.9) in Chapter 8) is the
solution of equation (8.7.1) in Chapter 8 and

𝜕x,yf |x=u = yf (x) − xf (y)x − y

called the slope difference of the function f (u) between x and y.
This is equation (32) in Introduction.
Because of a solution of equation (9.1.1) for a0 = 0, a1 = a2 = 1 is meaningful in

unicyclic planemaps as shown by Liu [18, 20] (1985), this equation is called a unicycle
model.

For convenience, let Fa[m](y) = 𝜕mx f , or in brief, [f ]m, a = (a0, a1, a2), m ≥ 0, and
id(y) = |n|, where n = (n1, n2, n3, . . .), i. e., the power vector of y, |n| = n1 + n2 + n3 + ⋅ ⋅ ⋅.
For any integer n ≥ 0, write

Fa[m,n] = Fa[m](y)|id(y)=n(= ∑|n|=n Fa[m,n]yn),
or, as we may say, Fa[m,n] is the sum of all terms of y with degree n in Fa[m](y). This is
a homogeneous polynomial of degree n.

Because of the initial condition of equation (9.1.1),

Fa[0](y) = a0 = 0. (9.1.2)

Therefore,

f = ∑
m≥1 Fa[m](y)xm. (9.1.3)

Since

𝜕x,y(f |x=u) = xf − yf |u=yx − y
, from (9.1.3),

=
x∑m≥1 Fa[m](y)xm − y∑m≥1 Fa[m](y)ym

x − y
,

by extracting the common factor in the numerator,

https://doi.org/10.1515/9783110625837-009
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244 | 9 Near-tree equations first part

= xy ∑
m≥1 Fa[m](y)xm−1 − ym−1x − y

and

xm−1 − ym−1 = (x − y)(m−2∑
i=0 xiym−i−2),

we have

𝜕x,y(f |x=u) = xy ∑
m≥1 Fa[m](y)(m−2∑i=0 xiym−i−2),

by exchanging two sums,

= ∑
i≥0 ∑m≥i+2 Fa[m](y)ym−i−1xi+1,
by interchanging two indicesm and i,

= ∑
m≥2( ∑i≥m+2 Fa[i](y)yi−m−1)xm+1
= ∑

i≥m+1
m≥3 Fa[i](y)yi−mxm,

and hence

x∫
y

yδx, y(uf |x=u) = ∑
i≥m+1
m≥3 Fa[i](y)yi−m+1xm+1
= ∑

i≥m
m≥4 Fa[i](y)yi−m+2xm.

Because of

fTree = 1 + ∑
m≥1 𝜕mx fTreexm

given in Theorem 8.7.5 in Chapter 8, let Tm = 𝜕mx fregtree, m ≥ 1, then from equation
(9.1.1), we have

f = a1x
2(1 + ∑

m≥1Tmxm) + a2 ∑i≥m
m≥4 Fa[i](y)yi−m+2xm

= a1(x
2 + T1x

3) + ∑
m≥4(a1Tm−2 + a2 ∑i≥m Fa[i](y)yi−m+2)xm

= ∑
m≥2 a1Tm−2 + a2 ∑i≥m

m≥2 Fa[i](y)yi−m+2xm.
(9.1.4)

On account of the equivalence between equation (9.1.4) and equation (9.1.1) for
a0 = 0 on ℛ{x, y}, (9.1.2) enables us only to observe equation (9.1.4) for evaluating a
solution of equation (9.1.1).
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9.1 Unicycle model | 245

Lemma 9.1.1. The system of equations

{{
{{
{

Fa[0] = Fa[1] = 0, when m = 0 and 1;
Fa[m] = a1Tm−2 + a2 ∑

i≥m yi−m+2Fa[i], when m ≥ 2, (9.1.5)

about Fa[m] = Fa[m](y), m ≥ 0, is equivalent to equation (9.1.1) onℛ{y}where Tm, m ≥ 0,
are given by Theorem 8.7.5.

Proof. From the equivalences between equation (9.1.5) and equation (9.1.4) and be-
tween equation (9.1.4) and equation (9.1.1), the conclusion is drawn.

The lemma enables us to establish the property of being well-defined of equation
(9.1.1) via equation (9.1.5).

Theorem 9.1.2. Equation (9.1.1) for a0 = 0 is well-defined onℛ{x, y}.

Proof. Because of Fa[0] and Fa[1] in equation (9.1.5), it is only necessary to observe the
vector f = (F2, F3, F4, . . .) ∈ ℛ{y}∞.

For f, equation (9.1.5) provides the following equation:

(I − a2Yunicl)f
T = a1t

T (9.1.6)

where t = (T0,T1,T2, . . .) are from (8.7.9) in Chapter 8 and Yunicl = (yi,j)i≥2,≥2,
yi,j = {yj−i+2, when j ≥ i;

0, otherwise, i. e., j < i.
(9.1.7)

Because of the existence of the inverse of the coefficient matrix,

(I − a2Yunicl)
−1 = ∑

l≥0(a2Yunicl)
l, (9.1.8)

we see that

fT = a1(I − a2Yunicl)
−1tT (9.1.9)

is the solution of equation (9.1.6) and hence of equation (9.1.1).
Therefore, the conclusion is drawn.

This theorem shows the basic theoretical aspect in the systematization stage for
the equation with constant coefficients of the unicycle model.
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246 | 9 Near-tree equations first part

9.2 Solution unicyclic

In order to accomplish the other two stages: efficientization and intelligentization,
a solution in form as a finite sum of all terms positive is particularly favorite.

Let Fa[m,n] = Fa[m]|n=|n| = ⟨Fa[m]⟩n,m ≥ 2, n ≥ 0. From (9.1.5),

Fa[m,n⟩ = a1⟨Tm−2⟩n + a2 ∑
i≥m yi−m+2⟨Fa[i]⟩n−1. (9.2.1)

Lemma 9.2.1. For any integer n ≥ 0, Fa[m,n⟩ = 0, m ≥ n + 3.
Proof. When n = 0, from (9.2.1), we have

Fa[m,0⟩ = {⟨T0⟩0 = a1, whenm = 2;
0, whenm ≥ 3.

This means that Fa[m,0⟩ = 0 whenm ≥ n + 3 = 0 + 3 = 3.
For any integer n ≥ 1, assume Fa[m,n−1⟩ = 0, m ≥ (n − 1) + 3 = n + 2. By induction,

we show that Fa[m,n⟩ = 0 for m ≥ n + 3. Because of Tm,n = 0 for m ≥ n + 1, we have
Tm−2,n = 0 for m − 2 ≥ n + 1, i. e., m ≥ n + 3. If m ≥ n + 3, then, for any integer i ≥ m,
we have i ≥ n + 3 > (n − 1) + 3 = n + 2. By the assumption, Fa[i,n−1⟩ = 0 for i ≥ m. From
(9.1.6), Fa[m,n⟩ = 0 form ≥ n + 3.

This lemma enables us to see that, for any integer n ≥ 0 given, it is enough only
to determine a finite number of Fa[m,n⟩ for 2 ≤ m ≤ n + 2 while (9.2.1) becomes

Fa[m,n⟩ = a1⟨Tm−2⟩n + a2 n+1∑
i=m yi−m+2⟨Fa[i]⟩n−1,

by using j = i −m,

= a1⟨Tm−2⟩n + a2 n−m+1∑
j=0 yj+2⟨Fa[j+m]⟩n−1.

(9.2.2)

Lemma 9.2.2. Given an integerm ≥ 2. For any integer n ≥ 0, Fa[m,n⟩ is independent of yi,
i ≥ n + 2.

Proof. First, we check that, for n = 0 and 1, Fa[m,n⟩ is independent of yi, i ≥ n + 2.
Then, for general integer n ≥ 2, by induction, assume Fa[m,l⟩, l ≤ n − 1, is indepen-

dent of yi, i ≥ l + 2. We prove that Fa[m,n⟩ is independent of yi, i ≥ n + 2. Because of
Tm−2,n = ⟨𝜕m−2x f rsgree⟩n and (8.7.9) in Chapter 8, Tm−2,n is independent of yi, i ≥ n + 1.
From the assumption, Fa[j+m,n−1⟩, 0 ≤ j ≤ n − m + 1, is independent of yi, i ≥ n + 1.
Because of the occurrence of yn+1 in (9.2.2), Fa[m,n⟩ is independent of yi, i ≥ n + 2.

This lemma enables us to consider the infinite vector as a finite one of n+1 entries,
denoted by yn+1, in determining Fa[m,n⟩ for any integersm ≥ 2 and n ≥ 0.
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Lemma 9.2.3. For any two integers n ≥ 1 and m = n + 2, Fa[m,n⟩ = Fa[n+2,n⟩ = a1yn1 .
Proof. From (9.2.2), Fa[n+2,n⟩ = a1⟨Tn⟩n. From (8.7.9) in Chapter 8 and nn+3 = 0, ⟨Tn⟩n =
⟨𝜕nx f regtree⟩n = y

n
1 , n ≥ 1. The conclusion is drawn.

In what follows, for n = 1, 2 and 3, Fa[m,n] (m ≥ 2) are evaluated.
We proceed on the basis of Lemma 9.1.1 and Lemmas 9.2.1–9.2.3, let the integer n

be given, then it is only necessary to evaluate Fa[m,n⟩ for 2 ≤ m ≤ n + 1. As a matter of
fact, they are all homomorphic polynomials of y with degree n.

Let n = 1 and then 2 ≤ m ≤ n + 2 = 3. Because Fa[3,1⟩ = a1y1 (Lemma 9.2.3), only
Fa[2,1⟩ is considered. By (9.2.2),

Fa[2,1⟩ = a1⟨T0⟩1 + a2y2⟨Fa[2]⟩0, by Theorem 8.7.5 and (9.2.1),
= 0 + a1a2y2 = a1a2y2.

(9.2.3)

Let n = 2 and hence 2 ≤ m ≤ n + 2 = 4. Because Fa[4,2⟩ = a1y21 (Lemma 9.2.3), only
Fa[3,2⟩ and Fa[2,2⟩ are considered. From (9.2.2),

Fa[3,2⟩ = a1⟨T1⟩2 + a2y2⟨Fa[3]⟩1,
by (8.7.9) in Chapter 8 and Lemma 9.2.3,
= a1y1y2 + a1a2y1y2 = a1(1 + a2)y1y2

(9.2.4)

and
Fa[2,2⟩ = a1⟨T0⟩2 + a2(y2⟨Fa[2]⟩1 + y3⟨Fa[3]⟩1),

by (8.7.9) in Chapter 8 and Lemma 9.2.3,

= a1a2(a2y
2
2 + y1y3).

(9.2.5)

When n = 3 and hence 2 ≤ m ≤ n + 2 = 5. Because Fa[5,3⟩ = a1y31 (Lemma 9.2.3),
only Fa[4,3⟩, Fa[3,3⟩ and Fa[2,3⟩ are considered. By (9.2.2),

Fa[4,3⟩ = a1⟨T2⟩3 + a2y2⟨Fa[4]⟩2,
by (8.7.9) in Chapter 8 and Lemma 9.2.3,

= 2a1y
2
1y2 + a2y2a1y

2
1 = a1(2 + a2)y

2
1y2,

(9.2.6)

Fa[3,3⟩ = a1⟨T1⟩3 + a2(y2⟨Fa[3]⟩2 + y3⟨Fa[4]⟩2),
by (8.7.9) in Chapter 8, (9.2.4) and Lemma 9.2.3,

= a1(y1y
2
2 + y

2
1y3) + a2(y2(a1(1 + a2)y1y2) + y3(a1y

2
1))

= a1((1 + a2)y
2
1y3 + (1 + a2 + a

2
2)y1y

2
2)

(9.2.7)

and
Fa[2,3⟩ = a1⟨T0⟩3 + a2(y2⟨Fa[2]⟩2 + ya[3]⟨F3⟩2 + y4⟨Fa[4]⟩2),

by (9.2.4), (9.2.5) and Lemma 9.2.3,

= a2(y2(a1a2(a2y
2
2 + y1y3)) + y3(a1(1 + a2)y1y2) + y4(a1y

2
1))

= a1a2(a
2
2y

3
2 + (1 + 2a2)y1y2y3 + y

2
1y4).

(9.2.8)
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Theorem 9.2.4. Equation (9.1.1) for a0 = 0 has, and is the only one to have, its solution
as determined by

Fa[m,n⟩ =
{{{{{{{{{
{{{{{{{{{
{

a1, when m = 2, n = 0;
a1y1, when m = 3, n = 1;
a1a2y2, when m = 2, n = 1;
a1Tm−2,n + a2∑n−m+1j=0 yj+2Fa[j+m,n−1], when 2 ≤ m ≤ n + 2, n ≥ 2;
0, otherwise,

(9.2.9)

for integers m, n ≥ 0 onℛ{x, y}.

Proof. From the case of n = 0 in the proof of Lemma 9.2.1, (9.2.3) and (9.2.2), the con-
clusion is drawn.

9.3 Explicit expressions unicyclic

Let yn = (y1, y2, y3, . . . , yn), then from Lemma 9.2.1 and Lemma 9.2.2, for any integer
n ≥ 1, Fa[m,n⟩ is a homogeneous polynomial of degree n in yn+1. Write 𝒥 (Fa[m,n⟩), or in
brief,

𝒥m,n = {in+1 | Fa[m,n⟩ has a term of degree n = |in+1|}. (9.3.1)

Lemma 9.3.1. For any vector in+1 ∈ 𝒥m,n,
n+1
∑
j=1 jij = 2(n + 1) −m.

Proof. We proceed by induction on n. From (9.2.3)–(9.2.8), Fa[m,n⟩,m ≥ 2, are checked
to satisfy the conclusion for n ≤ 3.

Forn ≥ 4, assume that, for any integer l ≤ n−1, all il+1 ∈ 𝒥m,l satisfy the conclusion.
We prove the case of l = n. For integral vector i = (i1, i2, i3, . . .), let

π(i) =∑
j≥1 jij.

Because of π(i) = 2n −m for any i ∈ 𝒥 (Tm,n), π(Tm−2,n) = 2n − (m − 2) = 2(n + 1) −m. By
the assumption, for any i ∈ 𝒥 (yj+2Fa[j+m,n−1⟩), π(i) = (j + 2) + π(Fa[j+m,n−1⟩) = ((j + 2) +
2n) − (j +m) = 2(n + 1) −m, 0 ≤ j ≤ n −m + 1. Therefore, from (9.2.2), for any i ∈ 𝒥m,n,
π(i) = 2(n + 1) −m. This is the desired conclusion.

Because the conclusion is independent of the choice of in+1 ∈ 𝒥m,n, we are allowed
to write

π(Fm,n) = n+1∑
j=1 jij, for in+1 ∈ 𝒥m,n, (9.3.2)
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i. e., π(Fm,n) = π(in+1) = 2(n + 1) −m. Let
λn(z) = (

n+1
∑
j=1 yjxj)

n

(9.3.3)

and write

ℐ2n−m+2 = {i | a power vector of terms in 𝜕2n−m+2z λn(z)}. (9.3.4)

Lemma 9.3.2. For two integers m ≥ 2 and n ≥ 0,

ℐ2n−m+2 = {i ≥ 0 | |i| = n, π(i) = 2n −m + 2}. (9.3.5)

Proof. For any i ∈ ℐ2n−m+2, from (9.3.5), there exists a term with power vector

i in 𝜕2n−m+2z λn(z) s. t. |i| = n, π(i) = 2n −m + 2.

This implies that the set on the left hand side of the equality is a subset of the set on
the right hand side.

Conversely, for i in the set on the right hand side, since xmyi in Fa[m,n⟩ corresponds
toyixπ(i) in 𝜕2n−m+2z λn(z), wehave i ∈ ℐ2n−m+2. This implies that the set on the right hand
side of the equality is a subset of the set on the left hand side.

This lemma enables us to investigate structural relations between Fa[m,n⟩ and
𝜕2n−m+2z λn(z).

Lemma 9.3.3. Given any integer n ≥ 3. For 2 ≤ m ≤ n + 2, Fa[m,n] is independent of yi,
i ≥ n −m + 4.

Proof. For n = 2, 3 and 4, (9.2.4)–(9.2.8), the conclusions are checked.
For n ≥ 5, by induction on n, assume that Fa[m,n−1⟩ satisfies the conclusion, i. e.,

only depends on yi, 1 ≤ i ≤ (n−1)−m+4 = n−m+2.We prove that Fa[m,n⟩ only depends
on yi, 1 ≤ i ≤ n −m + 3.

Let δ(F) = max{i | yi in F}. On the basis of (9.2.9), it suffices to determine

max{δ(Tm−2,n), δ(n−m+1∑
j=0 yj+2Fa[j+m,n−1⟩)}.

From (8.7.8) in Chapter 8, we have δ(Tm−2,n) ≤ n −m + 3. Because of
δ(yn−m+3Fa[n+1,n−1⟩) = max{δ(yj+2Fa[j+m,n−1⟩) | 0 ≤ j ≤ n −m + 1},

we have

δ(Fa[m,n]) = δ(n−m+1∑
j=0 yj+2Fa[j+m,n−1⟩)

= δ(yn−m+3Fa[n+1,n−1⟩), by the assumption,
= n −m + 3.

Hence, Fa[m,n⟩ is independent of yi, i ≥ n −m + 4.
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This lemma enables us to construct the set {i ≥ 0 | |i| = n, π(i) = 2n −m + 2} by n
recursively.

Lemma 9.3.4. For any integers m ≥ 2 and n ≥ 0, 𝒥m,n = ℐ2n−m+2.
Proof. Let 𝒜 be the set on the right hand side of (9.3.5). From Lemma 9.3.2, it is only
necessary to prove 𝒥m,n = 𝒜.

First, given a vector i ∈ 𝒥m,n. We prove i ∈ 𝒜. From (9.3.1), i is a power vector of
a term in Fa[m,n⟩. Since Fa[m,n⟩ is a homogeneous polynomial of degree n, |i| = n. By
Lemma 9.3.1, π(i) = 2(n + 1) −m. Therefore, i ∈ 𝒜.

Then, given a vector i ∈ 𝒜, we prove i ∈ 𝒥m,n. By following the procedure appear-
ing in the proof of Lemma 9.3.3, i ∈ 𝒥m,n, is easily obtained.

The conclusion of this lemma shows that, for any i ∈ 𝒥m,n, there exists a factor
αm,n(i) so that

Fa[m,n⟩ = ∑
i∈ℐ2n−m+2 α

a1 ,a2
m,n (i) |n|!i! yi. (9.3.6)

On the basis of this lemma, an explicision (or explicit expression) of the solution
of equation (9.1.1) can be done.

Theorem 9.3.5. The solution of equation (9.1.1) for a0 = 0 is determined by the following
explicision:

Fa[m,n⟩ =
{{{{{{{{{
{{{{{{{{{
{

a1, when m = 2, n = 0;
a1y1, when m = 3, n = 1;
a1a2y2, when m = 2, n = 1;
a1Tm−2,n + a2∑n−m+1j=0 yj+2Σa[j,n−1⟩, when 2 ≤ m ≤ n + 2, n ≥ 2;
0, otherwise,

(9.3.7)

where

Σa[j,n−1⟩ = ∑
i∈ℐ2n−j−m α

a1 ,a2
j+m,n−1(i) (|n| − 1)!i!

yi.

Proof. From (9.1.5), (9.2.1) and (9.3.6), the conclusion is drawn.

In fact, on the basis of (9.2.2), by following the procedure from (9.2.3) to (9.2.8),
αa1 ,a2m,n (i) can be recursively determined.

On the other hand, another method for extracting an explicision of the solution
of equation (9.1.1) for a0 = 0 can be realized on the basis of (9.1.9).

Because of

(I − a2Yunicl)
−1 = ∑

i≥0(a2Yunicl)
i,
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we have

fTa = ∑
k≥0 a1(a2Yunicl)

ktT (9.3.8)

where (a2Yunicl)0 = I, fa = (Fa[2], Fa[3], Fa[4], . . .) and t = (T0,T1,T2, . . .), which are
known from (8.7.9) in Chapter 8.

Then the only thing we have to do is to calculate Yk
unicl = (y

[k]
i,j )i,j≥1 from Yunicl =

(yi,j)i,j≥1 where
yi,j = {yj−i+2, when j ≥ i;

0, otherwise,
(9.3.9)

and

y[k]i,j = {y[k]j−i+2, when j ≥ i;
0, otherwise.

(9.3.10)

In fact, for k = 1, y[1]i,j = yi,j and for k ≥ 2,
y[k]j−i+2 = j−i+2∑

l=2 yly
[k−1]
j−i+2−l. (9.3.11)

Since all matrices Y[k]unicl, k ≥ 1, are upper-triangular, we have y[k]i,j = y[k]1,j−i+1 for any
i, j ≥ 1. It is only necessary to determine the first row y[k]1,j = y[k]j+1 of y[k]j−i+2 (j ≥ 1) forY[k]unicl.

Given an integer n ≥ 0. We have Fa[m,n⟩ (2 ≤ m ≤ n + 2) from Lemma 9.2.1, let
fa[n+1] = (Fa[2], Fa[3], . . . , Fa[n+2]). FromLemma9.2.2, onlyyn+1 = (y1, y2, . . . , yn+1) is avail-
able for y. Then (9.3.8) becomes

(In+1 − a2Yn+1|yi=0,i≥n+2)fTa[n+1] = a1tTn+1 (9.3.12)

where tn+1 = (T0,T1, . . . ,Tn) and Yn+1|yi=0,i≥n+2 is the first principal sub-matrix of order
n + 1 restricted on yi = 0, i ≥ n + 2.

Theorem 9.3.6. For any integer n ≥ 0, the solution of equation (9.3.12) has the following
explicision:

fTa[n+1]||n|=n = n
∑
k=0 a1(a2Yn+1)k |yi=0,i≥n+2tTn+1. (9.3.13)

Proof. Because of Lemmas 9.1.1 and 9.2.2, the solution of equation (9.1.1) and hence
equation (9.1.6) from Theorem 9.1.2 is a polynomial of y with degree at most n. It is
determined by (9.3.13). The conclusion is drawn.
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Example 1. Given n = 1 and hence 2 ≤ m ≤ 3. Because of

(
⟨Fa[2]⟩≤1
⟨Fa[3]⟩≤1) = a1 [(1 0

0 1
) + a2 (

y2 y3
0 y2
)](

1
y1
) ,

by y3 = 0,

= a1 [(
1
y1
) + a2⟨

y2
y1y2
⟩≤1] ,

by deleting term of degree 2,

= a1 (
a1 + a1a2y2

a1y1
) .

They are checked by (9.3.7).

9.4 Restrictions unicyclic

When a0 = 0, a1 = a2 = 1, equation (9.1.1) becomes

{{
{{
{

x∫
y

y𝜕x,yf |x=u = f − x2fregtree;
f |x=0,y=0 = 0. (9.4.1)

This is the equation seen in Liu [18] (1985), [20] (1986). Its solution is the enumerating
function for counting non-isomorphic unicyclic plane asymmetric maps with vertex
partition vector as parameter.

Attention. The asymmetry is meant as the root edge on the circuit and on the side in
the outface of the unicyclic plane map.

Theorem 9.4.1. Equation (9.4.1) has, and is the only one to have, a solution as deter-
mined by

Fm,n =
{{{{{{{{{
{{{{{{{{{
{

1, when m = 2, n = 0;
y1, when m = 3, n = 1;
y2, when m = 2, n = 1;
Tm−2,n +∑n−m+1j=0 yj+2Fj+m,n−1, when 2 ≤ m ≤ n + 2, n ≥ 2;
0, otherwise,

(9.4.2)

onℛ{x, y} for integers m, n ≥ 0.

Proof. Because of equation (9.4.1) as a specific case of equation (9.1.1) with a0 = 0,
a1 = a2 = 1, from Theorem 9.1.2, equation (9.4.1) is well-defined on ℛ{x, y}. Then, by
Theorem 9.2.4, the conclusion is drawn.

Brought to you by | Ludwig-Maximilians-Universität München Universitätsbibliothek (LMU)
Authenticated

Download Date | 11/2/19 11:57 PM



9.4 Restrictions unicyclic | 253

This theorem enables us to evaluate all Fm,n for m, n ≥ 0 in the order from n = 0
on increasing one by one.

On the basis of Lemmas 9.2.1 and 9.2.2, for any integer n ≥ 0, it is only necessary
to consider 2 ≤ m ≤ n + 2 and yn+1 instead of y for determining Fm(m ≥ 0). Let fn+1 =
⟨(F2, F3, . . . , Fn+2)⟩≤n, tn+1 = ⟨(T0,T2, . . . ,Tn)⟩≤n and Yn+1 = ⟨(yi,j)1≤i,j≤n+1⟩≤n where

yi,j = {yj−i+2, when 0 ≤ j − i ≤ n − 1;
0, otherwise.

(9.4.3)

Lemma 9.4.2. For any integer n ≥ 1, tn+1 = ⟨(T0,T2, . . . ,Tn)⟩n satisfies the following
system of equations:

fTn+1 = Yn+1fTn+1 + tTn+1. (9.4.4)

Proof. The result of (9.1.6) can be restricted to a1 = a2 = 1 and at most a term with
degree n is given.

Example 1. When n = 1, equation (9.4.4) becomes

(
⟨F2⟩≤1
⟨F3⟩≤1) = (y2 0

0 y2
)(
⟨F2⟩≤1
⟨F3⟩≤1) + (⟨T0⟩≤1⟨T1⟩≤1) .

Theorem 9.4.3. An explicision of the solution of equation (9.4.4) is determined by

fTn+1 = n
∑
i=0Yi

n+1tTn+1. (9.4.5)

Proof. Since equation (9.4.4) is equivalent to

(In+1 − Yn+1)fTn+1 = tTn+1
inℛ{x, y} and the inverse of (In+1 − Yn+1) is

(In+1 − Yn+1)−1 = n
∑
i=0Yi

n+1
for the restriction on n, the conclusion is drawn.

Example 2. When n = 1, the solution of equation (9.4.4) is determined by

(
⟨F2⟩≤1
⟨F3⟩≤1) = [(1 0

0 1
) + (

y2 0
0 y2
)]≤1 ( 1y1)

= (
1 + y2 0
0 1 + y2

)(
1
y1
) .

This leads to ⟨F2⟩≤1 = 1 + y2 and ⟨F3⟩≤1 = y1, the case of a1 = a2 = 1 in Example 1 of
Section 9.3.
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Another manner for inducing an explicision of the solution of equation (9.4.1) is
to employ the method described in Section 9.3.

Theorem 9.4.4. The solution of equation (9.4.1) is determined by the following explici-
sion:

Fm,n =
{{{{{{{{{
{{{{{{{{{
{

1, when m = 2, n = 0;
y1, when m = 3, n = 1;
y2, when m = 2, n = 1;
Tm−2,n +∑n−m+1j=0 yj+2Σj,n−1, when 2 ≤ m ≤ n + 2, n ≥ 2;
0, otherwise,

(9.4.6)

where

Σj,n−1 = ∑
i∈ℐ2n−j−m α

1,1
j+m,n−1(i) (|n| − 1)!i!

yi.

Proof. We have the specific case of a1 = a2 = 1 in (9.3.7).

Example 3. Root-isomorphic classes of unicyclic maps with face partition vector
given. A map is called a unicycle model if its underlying graph has, and is the only
one to have, a circuit. Because of rootedness, the root is restricted to the circuit. By
considering

(m; i) = (valency of root-vertex; partition vector of non-root-vertices)

is given, we find all the root-isomorphic classes. In Figure 9.4.1, one might see that

a = y2: F2,1 = y2;
b = y1y2 and c = y1y2: F3,2 = 2y1y2;
d = y22 and e = y1y3: F2,2 = y2 + y1y3;
f = 2y21y2 and g = y

2
1y2: F4,3 = 3y21y2;

h = y1y22 , i = y1y
2
2 , j = y1y

2
2 , k = y

2
1y3 and l = y

2
1y3: F3,3 = 3y1y22 + 2y21y3;

m = 2y1y2y3, n = y1y2y3, o = y32 and p = y
2
1y4: F2,3 = 3y1y2y3 + y32 + y21y4.

9.5 Notes

9.5.1. In (9.3.6), the coefficient αa1 ,a2m,n (i) can be determined by the procedure shown in
(9.3.7), or on the basis of (9.3.13). We proceed for the case of α1 = α2 = 1, by using
(9.4.6), or on the basis of (9.4.5). It might be helpful to do the specific case before doing
the general case.

9.5.2. We introduce new functionals from the basis {x, x2, x3, . . .} to itself to extract a
simplest explicision. Let Λ be all the functionals λ : 𝜕m,nx,y λf = Fm,n for f ∈ ℛ{x, y}.
Obviously, the identity functional is in Λ and the Lagrangian inversion as a functional
is in Λ as well.

Brought to you by | Ludwig-Maximilians-Universität München Universitätsbibliothek (LMU)
Authenticated

Download Date | 11/2/19 11:57 PM



9.5 Notes | 255

Figure 9.4.1: Classes of unicyclic maps of order not greater than 4.

9.5.3. By exploiting the constructions of Λ, we observe a way to identify if is there a
functional λ such that 𝜕m,nx,y λf is a finite sum of all terms positive or summation free for
a function f ∈ ℛ{x, y} of certain condition when positive integersm and n are given.

9.5.4. It looks a type of problems on a null space of infinite dimensional vector where
some new operations necessarily should be introduced. It looks necessary to classify
the functionals shown in Section 9.5.3 in a suitable way.

9.5.5. Equation (9.1.1) can be more generalized to the case that some of a0, a1 and a2
are polynomials of a variable, x, or yi (i ≥ 1 given). First, observe the condition, or con-
ditions, for establishing a qualitative theory for the consistency. Then, observe how
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256 | 9 Near-tree equations first part

to evaluate a solution by a series of transformations, or operations, on ℛ{x, y}. This
might be the central part of Program 81 posed in Liu YP [61] (Book 22, 2016, p. 10738).

9.5.6. As a matter of fact, this chapter finishes, in principle, the first level of the Pro-
gram 81 emphasized in the qualitative theory in Liu YP [61] (Book 22, 2016, p. 10738)
for all of a0 = c, a1 = a and a2 = b constant in ℤ+ and even ℝ+. However, if some
of a0, a1 and a2 are allowed to be negative, it is definitely not straightforward unless
an additional condition, or additional conditions, is or are to be further investigated
because the meaning in combinatorics is not yet known.
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10 Near-tree equations second part

10.1 Wintersweets model

Consider the equation

{{{
{{{
{

a2x∫
y

yδx,y(uf |x=u) = (1 − a3xy31 − y2
)f − a1;

f |x=0⇔y=0 = a0, (10.1.1)

onℛ{x, y} where a0, a1, a2, a3 ∈ ℛ+.
This is equation (33) in Introduction.
Because a solution of equation (10.1.1) for a0 = a1 = a2 = a3 = 1 is meaningful in

wintersweets as planemaps, as shown in Liu [18] (1985), and [20] (1986), this equation
is called the wintersweets model.

For convenience, the first line of equation (10.1.1) is represented by the equivalent
form as follows inℛ{x, y}:

f = a1 +
a3xy3
1 − y2

f + a2x∫
y

(yδx,y(uf |x=u)). (10.1.2)

Let Fa[m] = 𝜕mx f (= [f ]m), m ≥ 0, and id(y) = |i|, where a = (a0, a1, a2, a3), i =
(i1, i2, i3, . . .), i. e., the power vector of y, |i| = i1 + i2 + i3 + ⋅ ⋅ ⋅. For integer n ≥ 0, write

Fa[m,n⟩ = Fa[m]|id(y)=n(= ∑|i|=n Fa[m,i]yi) = ⟨Fa[m]⟩n.
Or we may say: Fm,n is the sum of all terms with degree n of y in Fm, a homogeneous
polynomial of degree n for y. Then it is seen that

f = ∑
m≥0[f ]mxm = ∑m≥0 Fa[m]xm. (10.1.3)

Because of

δx,y(uf |x=u) = xf − yf |u=yx − y
, by (10.1.3),

=
x∑m≥0 Fa[m]xm − y∑m≥0 Fa[m]ym

x − y
,

in view of the common factor from the numerator,

= ∑
m≥0 Fa[m] xm+1 − ym+1x − y

https://doi.org/10.1515/9783110625837-010
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258 | 10 Near-tree equations second part

and

xm+1 − ym+1 = (x − y)( m
∑
i=0 xiym−i),

we have

δx,y(uf |x=u) = ∑
m≥0 Fa[m]( m

∑
i=0 xiym−i), by interchanging two Σ,

= ∑
i≥0∑m≥i Fa[m]ym−ixi, by interchangingm and i,

= ∑
m≥0(∑i≥m Fa[i]yi−m)xm,

and hence

∫
y

yδx,y(uf |x=u) = ∑
m≥0(∑i≥m yi−m+1Fa[i])xm.

From equation (10.1.2),

f = a1 +
a3xy3
1 − y2

f + a2 ∑
m≥0(∑i≥m yi−m+1Fa[i])xm+1,

by substitutingm + 1 form,

= a1 +
a3xy3
1 − y2

f + a2 ∑
m≥1( ∑i≥m−1 yi−m+2Fa[i])xm,

by (10.1.3),

= a1 + ∑
m≥1( a3y31 − y2

Fa[m−1] + a2∑
i≥0 yi+1Fa[i+m−1])xm.

(10.1.4)

On the basis of (10.1.3) and (10.1.4), we have

x0 : Fa[0] = a1 = a0, as the initiation of equation (10.1.1),
⇒ Fa[m,0] = 0, m ≥ 1; Fa[0,n] = 0, n ≥ 1, (10.1.5)

x1 : Fa[1] = ( a3y31 − y2
+ a2y1)a1 + a2∑

i≥1 yi+1Fa[i]
= (

a3y3
1 − y2
+ a2y1)a1 + a2(y2Fa[1] + y3Fa[2]

+ y4Fa[3] + ⋅ ⋅ ⋅),
(10.1.6)

x2 : Fa[2] = ( a3y31 − y2
+ a2y1)Fa[1] + a2∑

i≥1 yiFa[i+1]
= (

a3y3
1 − y2
+ a2y1)Fa[1] + a2(y2Fa[2] + y3Fa[3]

+ y4Fa[4] + ⋅ ⋅ ⋅),
(10.1.7)
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10.1 Wintersweets model | 259

x3 : Fa[3] = ( a3y31 − y2
+ a2y1)Fa[2] + a2∑

i≥1 yi+1Fa[i+2]
= (

a3y3
1 − y2
+ a2y1)Fa[2] + a2(y2Fa[3] + y3Fa[4]

+ y4Fa[5] + ⋅ ⋅ ⋅),
(10.1.8)

x4 : Fa[4] = ( a3y31 − y2
+ a2y1)Fa[3] + a2∑

i≥1 yi+1Fa[i+3]
= (

a3y3
1 − y2
+ a2y1)Fa[3] + a2(y2Fa[4] + y3Fa[5]

+ ya[4]Fa[6] + ⋅ ⋅ ⋅),
(10.1.9)

and, for any integerm ≥ 5,

xm : Fa[m] = ( a3y31 − y2
+ a2y1)Fa[m−1] + a2∑

l≥1 yl+1Fa[l+m−1]. (10.1.10)

On the basis of (10.1.5)–(10.1.10), let us write fa = (Fa[1], Fa[2], Fa[3], . . .) and x =
(x1, x2, x3, . . .), then f = a1 + faxT. This enables us to only consider f instead of f for
solving equation (10.1.1).

Lemma 10.1.1. Equation (10.1.1) is equivalent to the following vector equationonℛ{x, y}:

fTa = Ya[wnt]fT + cTa (10.1.11)

where

{{{
{{{
{

ca = (
a3y3
1 − y2
+ a2y1)a1e1 = caa1e1 (Recall e1 = (1,0,0, . . .)!);

ca =
a3y3
1 − y2
+ a2y1,

and Ya[wnt] = (ya[i,j])i,j≥1,
ya[i,j] = {{{{{{
{

a2yj−i+2, when j − i ≥ 0;
ca, when j − i = −1;
0, when j − i ≤ −2.

Proof. Because of all equivalences on ℛ{x, y} from equation (10.1.1) to (10.1.11) via
(10.1.5)–(10.1.10), the conclusion is drawn.

This lemma enables us to establish the theorem of the property of being well-
defined for equation (10.1.1).

Theorem 10.1.2. Equation (10.1.1) has, and is the only one to have, a solution onℛ{x, y}
if, and only if, a0 = a1.
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260 | 10 Near-tree equations second part

Proof. The condition a0 = a1 is derived from (10.1.5).
Because of the equivalence between equation (10.1.1) and

(I − Ya[wnt])fT = caeT1
onℛ{x, y}, the existence and uniqueness of the inverse of (I −Ya[winst]) onℛ{x, y} lead
to the conclusion.

Throughout, for equation (10.1.1), a0 = a1 is always considered to hold wherever
it occurs.

10.2 Solution for wintersweets

In order to determine a solution of equation (10.1.1), the relevant structures of Fa[m,n⟩
for allm, n ≥ 1 are investigated.

For any integer m ≥ 1, the determination of Fa[m,n⟩, n ≥ 1, is discussed. Let
miny(Fa[m]) be the minimum of degrees among all nonzero terms of Fa[m] for y.
Lemma 10.2.1. Given the integer m ≥ 1. For any integer n ≥ 1, if n ≤ m − 1, then
Fa[m,n⟩ = 0.
Proof. From (10.1.5), Fa[m,0⟩ = 0 for any integerm ≥ 1. Because of miny(Fa[i]) ≥ i, i ≥ 1,
from (10.1.6), miny(Fa[1]) = miny(y3Fa[0]) = 1. For m = 2, from (10.1.7), miny(Fa[2]) =
miny(y3Fa[1]) = 1 + miny(Fa[1]) = 2. Hence, Fa[m,j⟩ = 0, 0 ≤ j ≤ 1. In general, assume
that, for 2 ≤ s ≤ m − 1, we have Fa[s,j⟩ = 0, 1 ≤ j ≤ m − 2. By induction on m, we
prove that, for s = m, we have Fa[m,j⟩ = 0, 0 ≤ j ≤ m − 1. From the assumption,
miny(Fa[m−1]) = m − 1. On account of (10.1.10),

min
y
(Fa[m]) = min

y
(y3Fa[m−1])

= 1 +min
y
(Fa[m−1]) = 1 + (m − 1)

= m.

Therefore, Fa[m,j⟩ = 0, 1 ≤ j ≤ m − 1.
This lemma enables us to omit all Fa[m,n⟩, n ≤ m − 1, for anym ≥ 1 given.

Lemma 10.2.2. For any two integer m, n ≥ 1, Fa[m,n⟩ = (a2y1 + a3y3)m if, and only if,
n = m.

Proof. When m = n = 1, from (10.1.6), Fa[1,1⟩ = a3y3Fa[0,0⟩ + a2y1Fa[0,0⟩ = a2y1 + a3y3.
When m = n ≥ 2, assume for any integer j, 1 ≤ j ≤ m − 1, Fa[j,j⟩ = (a2y1 + a3y3)j. By
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10.2 Solution for wintersweets | 261

induction onm = n, we prove Fa[m,m⟩ = (a2y1 + a3y3)m. From (10.1.10),

Fa[m,m⟩ = ⟨( a3y31 − y2
+ a2y1)Fa[m−1]⟩

m

= ⟨
a3y3
1 − y2
+ a2y1⟩

1
Fa[m−1,m−1⟩

= (a2y1 + a3y3)Fa[m−1,m−1⟩,
by the assumption,
= (a2y1 + a3y3)

m.

This is the necessity.
By considering the uniqueness of homogeneous polynomial of degree m for y in

Fm,m, the sufficiency is proved.

The last two lemmas provide the maximum lower bound of term degrees for y in
Fa[m,n] wheneverm is given. However, what is more important to us is to estimate the
minimum upper bound of the degrees via (10.1.10).

Lemma 10.2.3. For any two integersm and n (n ≥ m ≥ 1, mn ̸= 1), Fa[m,n⟩ is independent
of yi, i ≥ n −m + 2.

Proof. From (10.1.10), for any two integers n ≥ m ≥ 1, we have

Fa[m,n⟩ = ∑
l≥0⟨a3y3yl2Fa[m−1]⟩n + a2 ∑i≥m−1⟨yi−m+2Fa[i]⟩n,
= ∑

l≥0 a3y3yl2Fa[m−1,n−l−1⟩ + a2 ∑i≥m−1 yi−m+2Fa[i,n−1⟩,
by Lemma 10.2.1,

=
n−m
∑
l=0 a3y3yl2Fa[m−1,n−l−1⟩ + a2 n−1

∑
i=m−1 yi−m+2Fa[i,n−1⟩.

(10.2.1)

On this basis, for small integersm and n, it is easily checked that the Fa[m,n⟩ satisfy
the conclusion. In general, assume Fa[i,n−1⟩, form− 1 ≤ i ≤ n− 1 satisfy the conclusion.
By induction on n, because of

{yi−m+2 | m − 1 ≤ i ≤ n − 1} ∩ {yi | i ≥ n −m + 2} = 0,
and the assumption, we see that Fa[m,n⟩ is independent of yi, i ≥ n −m + 2.

Based on the last three lemmas, we are allowed to determine all Fa[m,n⟩ form, n ≥ 1
in the order of m + n ≥ 2 from smaller to greater and then m from greater to smaller.
For instance, m + n = 2 : Fa[1,1⟩; m + n = 3 : Fa[2,1⟩, Fa[1,2⟩; m + n = 4 : Fa[3,1⟩, Fa[2,2⟩,
Fa[1,3⟩;m + n = 5 : Fa[4,1⟩, Fa[3,2⟩, Fa[2,3⟩, Fa[1,4⟩; etc.

From Lemma 10.2.1, Fa[2,1⟩ = 0, Fa[3,1⟩ = 0 and Fa[4,1⟩ = Fa[3,2⟩ = 0. From
Lemma 10.2.2, Fa[1,1⟩ = a2y1a3f5, Fa[2,2⟩ = (a2y1a3f5)2 and Fa[3,3⟩ = (a2y1a3f5)3.
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262 | 10 Near-tree equations second part

For convenience, for any function g ∈ ℛ{y}, denote by ⟨g⟩n the homogeneous part
of degree n for y in g.

When m + n = 1, it is only necessary to evaluate Fa[1,1⟩ = a2y1 + a3y3 known from
Lemma 10.2.2.

Whenm + n = 3, it is only necessary to evaluate Fa[1,2⟩. From (10.2.1),

Fa[1,2⟩ = 1
∑
l=0 a3y3yl2Fa[0,1−l⟩ + a2 1

∑
i=0 yi+1Fa[i,1⟩,

by (10.1.5),
= a3y3y2Fa[0,0⟩ + a2y2Fa[1,1⟩
= a1a3y2y3 + a2y2(a2y1 + a3y3)

= a22y1y2 + (a1 + a2)a3y2y3.

(10.2.2)

When m + n = 4, we only study Fa[1,3⟩ and Fa[2,2⟩. From Lemma 10.2.2, Fa[2,2⟩ =
(a2y1 + a3y3)2. For Fa[1,3⟩, from (10.2.1),

Fa[1,3⟩ = 2
∑
l=0 a3y3yl2Fa[0,2−l⟩ + a2 2

∑
i=0 yi+1Fa[i,2⟩

= a3y3y
2
2Fa[0,0⟩ + a2(y2Fa[1,2⟩ + y3Fa[2,2⟩)

= a1a3y
2
2y3 + a2(y2(a

2
2y1y2 + (a1 + a2)a3y2y3)

+ y3(a2y1 + a3y3)
2)

= a1a3y
2
2y3 + a

3
2y1y

2
2 + (a1 + a2)a2a3y

2
2y3

+ 2a22a3y1y
2
3 + a2y3(a

2
2y

2
1 + a

2
3y

2
3)

= a32y1y
2
2 + 2a

2
2a3y1y

2
3 + a

3
2y

2
1y3

+ (a1 + a1a2)a2a3y
2
2y3 + a2a

2
3y

3
3 .

(10.2.3)

Whenm + n = 5, we only study Fa[1,4⟩ and Fa[2,3⟩. First, from (10.2.1),

Fa[2,3⟩ = a3 1
∑
l=0 y3yl2Fa[1,2−l⟩ + a2 2

∑
i=1 yiFa[i,2⟩

= a3(y3Fa[1,2⟩ + y2y3Fa[1,1⟩) + a2(y1Fa[1,2⟩ + y2Fa[2,2⟩)
= a3y2y3Fa[1,1⟩ + (a3y3 + a2y1)Fa[1,2⟩ + a2y2Fa[2,2⟩
= a3y2y3(a2y1 + a3y3) + (a2y1 + a3y3)(a

2
2y1y2

+ (a1 + a2)a3y2y3) + a2y2(a2y1 + a3y3)
2

= ((a1 + a2 + a3 + a2a3)y2y3 + 2a
2
2y1y2)(a2y1 + a3y3)

= (a1 + a2 + a3 + a2a3 + 2a
2
2a3)y1y2y3

+ 2a32y
2
1y2 + (a1 + a2 + a3 + a2a3)a3y2y

2
3.

(10.2.4)
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Let a = a1 + a2 + a3 + a2a3. From (10.2.1), we have

Fa[1,4⟩ = a3 3
∑
l=0 y3yl2Fa[0,3−l⟩ + a2 3

∑
i=0 yi+1Fa[i,3⟩

= a3y3y
3
2Fa[0,0⟩ + a2(y2Fa[1,3⟩ + y3Fa[2,3⟩ + y4Fa[3,3]rng)

= a1a3y3y
3
2 + a2(y2(a

3
2y1y

2
2 + 2a

2
2a3y1y

2
3 + a

3
2y

2
1y3

+ (a1 + a1a2)a2a3y
2
2y3 + a2a

2
3y

3
3) + y3((a + 2a

2
2a3)y1y2y3

+ 2a32y
2
1y2 + aa3y2y

2
3) + y4(a2y1 + a3y3)

3)

= a42y1y
3
2 + a2(2a

2
2 + aa2 + 2a

2
2a3)y1y2y

2
3 + 3a

4
2y

2
1y2y3

+ 3a42y
2
1y2y3 + 3a

3
2a3y

2
1y3y4 + a

4
2y

3
1y4 + a2a3(a + a2a3)y2y

3
3

+ a1a2(1 + a2)a3y
3
2y4 + a2a

3
3y

3
3y4.

(10.2.5)

Theorem 10.2.4. The solution of equation (10.1.1) is determined by Fa[m,n⟩ for m, n ≥ 0
all in the form of sums of finite positive terms as

Fa[m,n⟩ =

{{{{{{{{{{{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{{{{{{{{{{{
{

a1, when m = n = 0, m + n = 0;
a2y1 + a3y3, when m = n = 1, m + n = 2;
a22y1y2 + (a1 + a2)a3y2y3, when m = 1, n = 2, m + n = 3;
(a2y1 + a3y3)2, when m = 2, n = 2, m + n = 4;
a32y1y

2
2 + 2a

2
2a3y1y

2
3 + a

3
2y

2
1y3

+ (a1 + a1a2)a2a3y22y3
+ a2a23y

3
3 , when m = 1, n = 3, m + n = 4;

(a2y1 + a3y3)n, when m = n, m + n ≥ 5;
a3y3∑

n−m
l=0 yl2Fa[m−1,n−l−1⟩
+ a2∑

n−1
i=m−1 yi−m+2Fa[i,n−1⟩, when n − 1 ≥ m ≥ 3, ,m + n ≥ 5;

0, otherwise.

(10.2.6)

Proof. From Lemma 10.2.1, the first case is clear. The second, the fourth and the sixth
cases are from Lemma 10.2.2. The third and the fifth cases are, respectively, from
(10.2.2) and (10.2.3). In general, all other cases are from Lemma 10.2.3.

This theorem enables us to evaluate the solution of equation (10.1.1) by the param-
eters m and n recursively for investigating efficientization and further intelligentiza-
tion.
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264 | 10 Near-tree equations second part

10.3 Explicit expression for wintersweets

In mathematics, an explicision of an implicit function, particularly the solution of an
equation, is very favorable for usages inmathematical reasoning. Twoways for getting
an explicision are discussed in this section.

First, the direct method. For any yn, write

π(n) =
n
∑
i=1 ini(or π(yn)).

For a polynomial Fa[m,n] of y, denote
𝒫(Fm,n) = {n | n is a power vector of a term in Fm,n}.

Lemma 10.3.1. For any integer m = n ≥ 1, let Fa[n,n⟩ = Fa[n], then π(Fa[n]) = {πi(n) | 0 ≤
i ≤ n}, where

πi(n) = {π(n) = 3n − 2i | n ∈ 𝒫(Fa[n])}, 0 ≤ i ≤ n. (10.3.1)

Proof. From Lemma 10.2.2, since for any integer n ≥ 1,

Fa[n,n⟩ = n
∑
i=0(ni)ai2an−i3 yi1y

n−i
3

and π(yi1y
n−i
3 ) = i + 3(n − i) = 3n − i, we have

π(Fa[n,n⟩) = {3n, 3n − 2, 3n − 4, . . . , n + 2, n}.
Because of the distinction among all the n + 1 elements pairwise and exact n + 1 terms
in Fa[n,n⟩, πi(n) = π(yi1yn−i3 ) for 0 ≤ i ≤ n. Therefore, (10.3.1) is certainly obtained.

This lemma tells us that, for any integer m = n ≥ 1, Fc[n,n] is a homogeneous
polynomial of degree n and n + 1 terms. Moreover,

π(Fa[n,n⟩) = n
∑
i=0π(Fa[n]i)

where

π(F[n]i) = {π(n) | π(n) = π(yn−i1 yi3) = 3n − 2i, n ∈ 𝒫(F[n])}
for 0 ≤ i ≤ n.

Lemma 10.3.2. For any integers n − 1 ≥ m ≥ 1, we have π(Fm,n) = {π(n) | 0 ≤ i ≤ n − 1},
where

πi(n) = 2n −m + 2i, 0 ≤ i ≤ n − 1. (10.3.2)
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Proof. First, for 2 ≤ m + n ≤ 5, n ≥ m ≥ 1. On the basis of (10.2.2)–(10.2.6), from
Lemma 10.3.1, it is only necessary to consider Fa[1,2⟩, Fa[1,3⟩, Fa[2,3⟩ and Fa[1,4⟩.

For Fa[1,2⟩, we have
Fa[1,2⟩ = y1y2 + 2y2y3 ⇒ π(F1,2) = {π(y1y2),π(y2y3)} = {3, 5}.

Because of 3 = 2 × 2 − 1 + 2 × 0 = π0(F1,2) and 5 = 2 × 2 − 1 + 2 × 1 = π1(F1,2), we see that
F1,2 satisfies the conclusion. Therefore,

𝒫(F1,2) = 𝒫0(F1,2) + 𝒫1(F1,2)
= {(1, 1,0)} + {(0, 1, 1)}.

For Fa[1,3⟩, we have
F1,3 = y1y22 + 2y1y23 + y21y3 + 3y22y3 + y33 ⇒

π(F1,3) = {5, 7, 5, 7, 9} = {5, 7, 9}.
Because of 5 = 2 × 3 − 1 + 2 × 0 = π0(F1,3), 7 = 2 × 3 − 1 + 2 × 1 = π1(F1,3) and 9 =
2 × 3 − 1 + 2 × 2 = π2(F1,3), it is seen that F1,3 satisfies the conclusion. Therefore,

𝒫(F1,3) = 𝒫0(F1,3) + 𝒫1(F1,3) + 𝒫2(F1,3)
= {(1, 2,0), (2,0, 1)} + {(1,0, 2), (0, 2, 1)} + {(0,0, 3)}.

Similarly, Fa[2,3⟩ and Fa[1,4⟩ can be checked.
Then, for n ≥ m ≥ 3 in general, assume all Fa[s,t⟩ satisfy the conclusion for t ≤ s ≤

n − 1. We prove that Fa[m,n⟩ shows satisfaction.
From (10.3.2), for n ≥ m ≥ 3,

π(Fm,n) = n−m⋃
l=0 π(y3yl2Fm−1,n−l−1) ∪ n−1

⋃
l=m−1π(yl−m+2Fl,n−1).

By the assumption,

π(y3y
l
2Fm−1,n−l−1) = {3 + 2l + (2(n − l + 1) − (m − 1) + 2i) | 0 ≤ i ≤ n − l − 2}

= {2n −m + 2i + 2 | 0 ≤ i ≤ n − l − 2}
= {2n −m + 2i | 1 ≤ i ≤ n − l − 1}

and
π(yl−m+2Fl,n−1) = {l −m + 2 + (2(n − 1) − l + 2i) | 0 ≤ i ≤ n − 2}

= {2n −m + 2i | 0 ≤ i ≤ n − 2}.

Since when l = 0, the former is in the case: i = n − 1, from the union of the two,

π(Fm,n) = {2n −m + 2i | 0 ≤ i ≤ n − 1}.
This is the conclusion.
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When m = n, if the case i = n is put in (10.3.2) in Lemma 10.3.2, then (10.3.1) in
Lemma 10.3.1 is again done.

Corollary 10.3.3. For any integers n ≥ m ≥ 1, π(Fa[m,n⟩) = {πi(Fa[m,n⟩) | 0 ≤ i ≤ n},
where

πi(Fa[m,n⟩) = 2n −m + 2i, 0 ≤ i ≤ n. (10.3.3)

Proof. This is a direct result of Lemma 10.3.2.

Let

ω(x) = ω(x, y) = ∑
k≥1 ykxk , (10.3.4)

then, for any integers n ≥ m ≥ 1, i ≥ 0, write

ℒ2n−m+2i = {n | n is the power vector of a tern in 𝜕2n−m+2ix ωn(x)}. (10.3.5)

For any integers n ≥ m ≥ 1, n − 1 ≥ i ≥ 0, write

𝒩i(m, n) = {n ≥ 0 | |n| = n,π(n) = 2n −m + 2i}. (10.3.6)

Lemma 10.3.4. For any integers m, n ≥ 1,𝒩i(m, n) = ℒ2n−m+2i.
Proof. First, for any n ∈ ℒ2n−m+2i, because of

∑
j≥1 jnj = 2n −m + 2i

and |n| = n, we have n ∈ 𝒩i(m, n).
Then, for any n ∈ 𝒩i(m, n), since |n| = n leads to

∑
j≥1 jnj = 2n −m + 2i,

we have n ∈ ℒ2n−m+2i.
Therefore, the conclusion is drawn.

For a homogeneous polynomial P of ywith degree at least 1, denote by P̂ the poly-
nomial obtained by taking all coefficients of terms in P as 1. As a matter of fact, Corol-
lary 10.3.3 implies that, for any integers n ≥ m ≥ 1, F̂ia[m,n⟩ = �̂�2n−m+2ix ωn(x), 0 ≤ i ≤ n.

Lemma 10.3.5. Given integers m, n ≥ 1, there exists a constant αa[m,n]i , such that

Fia[m,n⟩ = αa[m,n]i 𝜕2n−mx σn(x)

= ∑
n∈ℒ2n−m+2i

αa[m,n]i n!
nn!

yn
(10.3.7)

where n = |n|.
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Proof. From Corollary 10.3.3 and the form of ωn(x), the conclusion is drawn.

This lemma enables us to provide the solution of equation (10.1.1) such that all
coefficients of its terms are summation free.

Theorem 10.3.6. Let fwnt be the solution of equation (10.1.1), then

⟨𝜕mx fwnt⟩n =

{{{{{{{
{{{{{{{
{

0, when m = 0 but n ̸= 0,
or m ≥ 1 and , n = 0, or n < m;

a1, when m = 0 and n = 0;

∑ n∈𝒩i(m,n)
0≤i≤n

αa[m,n]i n!
nn! yn, otherwise,

(10.3.8)

where𝒩m,n is shown in (10.3.6).
Proof. From Lemma 10.3.5 and the form of equation (10.1.1), the conclusion is easily
drawn.

Second, we have the matrix method. We work on the basis of (10.1.11) in Lem-
ma 10.1.1. Because of Lemma 10.2.1, for any integer n ≥ 1, it is only necessary to discuss
fa[n] = (Fa[1], Fa[2], . . . , Fa[n]) instead of f. Because of Lemma 10.2.3, y can be replaced
by yn−m+1 = (y1, y2, . . . , yn−m+1).
Lemma 10.3.7. Given any integer n = |n| ≥ 4, equation (10.1.1) for a1 = a0 is equiva-
lent to

fTa[n] = ⟨Ya[wnt]⟩nfTa[n] + ca[n]a1eT1n (10.3.9)

where ca[n] = a2y1 + a3y3(1 + y2 + y22 + ⋅ ⋅ ⋅ + yn−12 ), e1n = (1,0, . . . ,0)n and Ya[wnt]n =
(ya[i,j])1≤i,j≤n such that

ya[i,j] = {{{{{{
{

ca[n], when j − i = −1;
a2yj−i+2, when j − i ≥ 0;
0, when j − i ≤ −2.

Proof. On the basis of Lemma 10.1.1, by deleting all non-relevant terms and variables
from Lemma 10.2.1 and Lemma 10.2.3, the conclusion is drawn.

Because of the equivalence between equation (10.3.9) and the equation

⟨I − Yawnt⟩nf
T
a[n] = ca[n]a1eT1n , (10.3.10)

we are allowed to only investigate equation (10.3.10) instead of equation (10.3.9).

Theorem 10.3.8. Given an integer n ≥ 4, the solution of equation (10.3.10) is of the form

fTa[n] = n
∑
l=0 ca[n]a1⟨Ya[wnt]⟩lneT1n . (10.3.11)
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268 | 10 Near-tree equations second part

Proof. Because of ⟨Ya[wnt]⟩n+1 = 0,
⟨I − Ya[wnt]⟩−1n = n

∑
i=0⟨Ya[wnt]⟩in

From Lemma 10.3.7 and (10.3.10), the conclusion is drawn.

Based on this theorem, it is only necessary for us to calculate the powers of ma-
trix ⟨Yawnt⟩n for getting an explicision of the solution of equation (10.3.9), and hence
equation (10.1.1) from Lemma 10.3.7.

Let y[k]a[i,j] be the entry at position (i, j), 1 ≤ i, j ≤ n, in (Yawnt)
[k]
n , then ⟨Yawnt⟩

k
n =

(y[k]a[i,j])1≤i,j≤n where
yka[i,j] = {ya[i,j], when k = 1;

ya[i,∗]y[k−1]a[∗,j], when n ≥ k ≥ 2,

in which ya[i,∗] and ya[∗,j] are, respectively, the row vector and the column vector of a
matrix.

10.4 Restrictions for wintersweets

Now, let us to consider the equation

{{{
{{{
{

x∫
y

yδx,y(uf |x=u) = (1 − xy3
1 − y2
)f − 1;

f |x=0⇔y=0 = 1, (10.4.1)

onℛ{x, y}.
This is the equation obtained from equation (10.1.1) in the case of a0 = a1 = a2 =

a3 = 1, for the first time addressed in Liu [18] (1985) and then in [20] (1986), etc., for
enumerating the number of non-isomorphic classes of rooted wintersweets with the
vertex partition vector as parameter.

However, in those papers, the equation appeared only in the form of

f = 1 +
xy3
1 − y2

f + x∫
y

(yδx,y(uf |x=u)), (10.4.2)

the equivalent form of the first line of equation (10.4.1) inℛ{x, y}.
Let us write f = (F1, F2, F3, . . .) where 𝜕ix for i ≥ 1, and x = (x1, x2, x3, . . .), then

f = 1+ fxT. This enables us only to consider f instead of f for solving equation (10.4.2).
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Lemma 10.4.1. Equation (10.4.2) is equivalent to the following vector equation on
ℛ{x, y}:

fT = Ywntf
T + cT (10.4.3)

where

{{{
{{{
{

c = ( y3
1 − y2
+ y1)e1 = ce1 (recall that e1 = (1,0,0, . . .)!);

c =
y3

1 − y2
+ y1,

and Ywnt = (yi,j)i,j≥1,
yi,j = {{{{{{
{

yj−i+2, when j − i ≥ 0;
c, when j − i = −1;
0, when j − i ≤ −2.

Proof. This is Lemma 10.1.1 for a0 = a1 = a2 = a3 = 1.

Similarly to Theorem 10.1.2, our theorem for the property of being well-defined of
equation (10.4.1) is soon obtained.

Theorem 10.4.2. Equation (10.4.2), and hence equation (10.4.1) has, and is the only one
to have, one solution onℛ{x, y}.

Proof. On the basis of Lemma 10.4.1, because of the equivalence of equation (10.4.1) to

(I − Ywnt)f
T = ceT1

onℛ{x, y}, the existence and uniqueness of (I − Ywnt)
−1 onℛ{x, y} lead to the conclu-

sion.

Because

(I − Ywnt)
−1 = ∑

i≥0(Ywnt)
i, (10.4.4)

Theorem 10.4.2 enables us to get the solution of equation (10.4.3) in the form of

fT = ∑
i≥0 c(Ywnt)

ieT1 . (10.4.5)

Although (10.4.5) presents an explicision of the solution as f = 1 + fxT, for com-
putability, a parameter has to be introduced so that, for any given value of the param-
eter, the part of solution can be evaluated.

Let n = |n| be the degree of a term with yn in f . Because of Lemma 10.1.1 and
Lemma 10.2.1, we are allowed to adopt fn = fnxTn for n ≥ 1 instead of f − 1 in equation
(10.4.1) where fn = (F1,n, F2,n, . . . , Fn,n), xn = (x, x2, . . . , xn) and Fi,n = ⟨𝜕ixf ⟩n, 1 ≤ i ≤ n.
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270 | 10 Near-tree equations second part

Lemma 10.4.3. For integer n ≥ 1 given, equation (10.4.3) is equivalent to

(I − ⟨Ywnt⟩n)f
T
n = c

T
n (10.4.6)

onℛ{x, y}.

Proof. Since all transformations from equation (10.4.3) to equation (10.4.6) and vice
versa are equivalent onℛ{x, y}, the conclusion follows.

This lemma enables us to get a solution of equation (10.4.6) in the form of

fTn =
n
∑
i=0 c⟨Ywnt⟩

i
n⟨e1⟩

T
n (10.4.7)

where ⟨e1⟩n is an n-dimensional vector with only the first entry 1 and all others 0. We
have y[1]i,j = yi,j and

y[1]i,1 = {{{{{{
{

y2, when i = 1;
c, when i = 2;
0, otherwise,

and for any integer k ≥ 2,

y[k]i,1 = {{{{{{
{

yi,∗y[k−1]∗,1 , when 1 ≤ i ≤ k;
c, when i = k + 1;
0, otherwise,

(10.4.8)

we see that, for any integers n ≥ 5 and 1 ≤ k ≤ n − 1,

Yk
wnt⟨e1⟩n = y

[k]∗,1 (10.4.9)

where y[k]∗,1 = (y[k]1,1 , y[k]2,1 , . . . , y[k]n,1 )T as given in (10.4.8).
Theorem 10.4.4. For an integer n ≥ 1 and hence 1 ≤ m ≤ n, the solution of equation
(10.4.6) is determined by

fTn =
n−1
∑
k=0⟨cy[k]∗,1⟩n (10.4.10)

where c = y3/(1 − y2) + y1 and y
[k]∗,1 is given in (10.4.9) and (10.4.8).

Proof. Because f = 1 + xfT, for n ≥ 1, fn = xnfTn. On account of Lemma 10.4.3, the
conclusion is drawn.

Similarly to the discussion of Theorem 10.3.6 we extract another explicision of the
solution of equation (10.4.1).

Brought to you by | Ludwig-Maximilians-Universität München Universitätsbibliothek (LMU)
Authenticated

Download Date | 11/3/19 12:04 AM



10.4 Restrictions for wintersweets | 271

Theorem 10.4.5. Let fwnst be the solution of equation (10.4.1), then

⟨𝜕mx fwnst⟩n =

{{{{{{{
{{{{{{{
{

0, when m = 0 but n ̸= 0,
or m ≥ 1 and , n = 0, or n < m;

1, when m = 0 and n = 0;

∑ n∈𝒩i(m,n)
0≤i≤n

α[m,n]i n!
nn! yn, otherwise,

(10.4.11)

where𝒩m,n is shown in (10.3.6) and α[m,n]i = α
a[m,n]
i |a=(1,1,1,1).

Proof. The conclusion is drawn from the specific case of a0 = a1 = a2 = a3 = 1 in
(10.3.8) of Theorem 10.3.6.

Although two explicisions of the solution of equation (10.4.1) have been obtained,
the exact result is still not easy to calculate even on computers for big parameters.
This is why we concentrate our attention to finding recursive expressions particularly
in the form of a sum of finite terms all of which are positive.

Theorem 10.4.6. The solution of equation (10.4.1) is determined by Fm,n for m, n ≥ 0, all
of which are in the form of polynomials with positive terms,

Fm,n =

{{{{{{{{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{{{{{{{{
{

1, when m = n = 0, m + n = 0;
y1 + y3, when m = n = 1, m + n = 2;
y1y2 + 2y2y3, when m = 1, n = 2, m + n = 3;
(y1 + y3)2, when m = 2, n = 2, m + n = 4;
y1y22 + 2y1y

2
3 + y

2
1y3

+ 2y22y3 + y
3
3 , when m = 1, n = 3, m + n = 4;

(y1 + y3)n, when m = n, m + n ≥ 5;
y3∑

n−m
l=0 yl2Fm−1,n−l−1
+∑n−1i=m−1 yi−m+2Fi,n−1, when n − 1 ≥ m ≥ 3, m + n ≥ 5;

0, otherwise.

(10.4.12)

Proof. This is the specific case of a0 = a1 = a2 = a3 = 1 in (10.2.6) of Theorem 10.2.4.

Example 1. Root-isomorphic classes of wintersweets with root-vertex valency and ver-
tex partition vector. A map seen as a plane tree with each non-rooted end appending
at most one circuit of length not greater than two is called a wintersweet. The root
is restricted not to be on a circuit. The solution of equation (10.4.1) is the enufunc-
tion f of root-isomorphic classes of wintersweets with root-vertex valency (power of
x) and the vertex partition vector (power vector of y) as parameters. This implies that
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272 | 10 Near-tree equations second part

Figure 10.4.1: Classes of wintersweets with order 2–3.

Fm,n|n=n = 𝜕m,nx,y f is the number of root-isomorphic classes of wintersweets with root-
vertex valencym and order n + 1. For example, in Figure 10.4.1,

(a + b) + (c + d + e) = (y1 + y3) + (y1y2 + y2y3 + y2y3)
= (y1 + y3) + (y1y2 + 2y2y3)
= F1,1 + F1,2

and f + g + h = y21 + 2y1y3 + y
2
3 = F2,2.

In Figure 10.4.2,

a + b + c + (d + f + g) + e = y1y
2
2 + 2y1y

2
3 + y

2
1y3 + (y

2
2y3 + y

2
2y3 + y

2
2y3) + y

3
3

= y1y
2
2 + 2y1y

2
3 + y

2
1y3 + 3y

2
2y3 + y

3
3

= F1,3,
h + i + j + k = y31 + 3y

2
1y3 + 3y1y

2
3 + y

3
3

= (y1 + y2)
3

= F3,3,
and

(l +m + n) + o + (p + q) = (2y1y2y3 + 2y1y2y3 + 2y1y2y3) + 2y
2
1y2 + (2y2y

2
3 + 2y2y

2
3)

= 6y1y2y3 + 2y
2
1y2 + 4y2y

2
3

= F2,3.
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Figure 10.4.2: Classes of wintersweets with order 4.
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Figure 10.4.3: Classes of wintersweets with order 5.

In Figure 10.4.3,

(a + b + c) + (d + e) + h + (f + g) + i + (j + k) + l +m

= (2 + 2 + 2)y1y2y
2
3 + (2 + 1)y1y

2
3y4

+ 2y21y2y3 + (1 + 2)y
2
1y3y4 + y

3
1y4 + (2 + 2)y2y

2
3 + y

3
2y3 + y

3
3y4

= 6y1y2y
2
3 + 3y1y

2
3y4 + 2y

2
1y2y3 + 3y

2
1y3y4 + y

3
1y4 + 4y2y

2
3 + y

3
2y3 + y

3
3y4

= F1,4.
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10.5 Notes

10.5.1. In (10.3.7), the coefficient αm,na[m,n](i) can be determined by the procedure shown
in (10.2.6), or on the basis of (10.3.11). For the case of α1 = α2 = a3 = 1, we may work
by using (10.4.10), or on the basis of (10.4.7). It might be helpful to do the specific case
before the general case.

10.5.2. We may introduce new functionals from the basis {x, x2, x3, . . .} to itself to ex-
tract a simplest explicision. Let Λ stand for all the functionals λ : 𝜕m,nx,y λf = Fm,n for
f ∈ ℛ{x, y}. Obviously, the identity functional is in Λ and the Lagrangian inversion as
a functional is in Λ as well.

10.5.3. Wemaywork by exploiting the constructions of Λ, to observe a way to identify
if is there a functional λ such that 𝜕m,nx,y λf is a finite sum of all terms positive or sum-
mation free for a function f ∈ ℛ{x, y} of a certain condition when positive integers m
and n are given.

10.5.4. It looks a type of problems on a null space of infinite dimensional vector with
some new operations necessarily should be introduced. It looks necessary to classify
the functionals shown in 10.5.3 in a suitable way.

10.5.5. Equation (10.1.1) can be generalized to the case that some of a0, a1, a2 and a3
are polynomials of a variable, x, or yi (i ≥ 1 given). First, observe the condition, or con-
ditions, for establishing a qualitative theory for the consistency. Thenwe observe how
to evaluate a solution by a series of transformations, or operations, on ℛ{x, y}. This
might be the central part of Program 84 posed in Liu YP [61] (Book 22, 2016, p. 10739).

10.5.6. As amatter of fact, this chapter finishes, in principle, the first level of the Pro-
gram 84 in Liu YP [61] (Book 22, 2016, p. 10739) for all of a0 = d, a1 = b, a2 = c and
a3 = a constants in ℤ+ and ℝ+. However, if some of a0, a1, a2 and a3 are allowed to
be negative, it is definitely not straightforward unless additional condition, or condi-
tions, are to be further investigated because the meaning in combinatorics is not yet
known.
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