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Preface
Dissidence and controversy are what bring science forward.

Agreement and acceptance rarely stimulate experiments and progress.
Thor Heyerdahl.
Outline. In this chapter the reader may find the contents and the purpose of this book,

and a framework general enough to encompass almost all TTT tools. Beside the reader

may find a proposal of nomenclature. Main emphasis in this book is on the mathemat-

ical features of models and algorithms for travel demand assignment to a transportation

network. Implementation and application issueswill be the topics of a future companion

book (possibly by other authors) as well as control and design tools.

Since hunting gathering era human brains have evolved to be more sensitive to var-

iations in space and/or time of the surrounding environment rather than regularity

and uniformity; (mostly unconscious) representations of location over space and

evolution over time allowed human beings to survive in challenging conditions. This

is still the case: a pedestrian wishing to cross a urban street tries to anticipate evo-

lution over time of the locations of the surrounding vehicles.

Developing a (mathematical) model of real systems, as common in modern

applied sciences, is a more conscious way to follow that ancestral attitude.

Even though future were perfectly determined by past, according to Beowulf’s

well known statement “Fate will unwind as it must!” (but not to authors’ opinion),

still it may not be perfectly forecasted due to lack of enough information about past,

to uncertainty affecting forecasting methods,…. Thus, however desirable, in several

cases a precise model providing deterministic description and forecasting of system

state cannot be developed, and the most general modelling tools include both

dynamic and stochastic features together with space characterisation.

It should be remarked that any kind of representation or model mentioned above

is, as beauty, in the mind of the beholder; therefore dynamics or stochasticity are

features of (mathematical) models only, a sort of social constructions agreed by

the modeller community, not be confused with the object of their applications, such

variations in space and/or time in a real system. Along this line of reasoning

observations of real world are facts, whilst models are opinions about them.

The focus of this book is the use of mathematical modelling methods to assist

in the understanding, prediction, policy assessment and design of transportation

systems; but what is a “transportation system”, or most pertinently what do we

mean by it for the purposes of this book? Firstly, it contains the infrastructure,

the pavements to walk on, the roads on which we cycle, drive or may use a bus
xi



xii Preface
or taxi, the train tracks, as well as the fleets of buses, airplanes and trains that are

used to run services and transport goods. Secondly, it contains the users of the

transportation system, namely the people who choose where, when and how to

travel, as well as the goods operators and suppliers who decide how and where

to transport their goods. Thirdly, it contains the various public and private organi-

sations responsible for planning, operating, pricing and providing information on

the infrastructure.

Such a “system” contains many interacting elements. A traveller may decide to

drive to their normal place of work during a more busy (congested) period of the

day than they would normally, and by doing so contributes additionally to the

congestion for that day. This congestion may delay other road users who are using

some of the same roads, but perhaps travelling between an entirely different origin

and destination to the first traveller. The additional delay experienced may, on the

other hand, hold back the second traveller so that traffic is in fact more freely

running that it might be on some downstream stretch of road on their intended

route. This may cause the responsive traffic signals at an intersection to trigger

at a different time, and so influence some other travellers. On the other hand,

our second traveller has such a bad experience of travelling that day that they

decides to try a different route when they make that trip next time, whereas the first

traveller decides that re-adjusting their departure time would be wise in the future.

As this happening, a private transport operator decides to introduce a new high-

speed train service in the area, which our first traveller then decides to use on some

subsequent day, thus alleviating some of the pressure on road capacity. At the same

time as all these interactions are on-going, each minute of every day, a transport

planner is deciding on how to make adjustments to achieve some policy objective,

and as a result introduces on some subsequent day a new high-occupancy vehicle

lane for certain hours of the day.

This is only one example. Making sense of such systems is no simple task.

Mathematical models are a tool for capturing at least some of this complexity,

assisting those who are responsible for planning and designing such systems for

the ‘public good’. They allow location-specific data to be systematically used to

calibrate a model to particular locale. Importantly, the models that will interest

us in this book have a clear forecasting capability, allowing the modeller to study

“what-if” scenarios. These scenarios may range, for example, from studying the

impact of potential future changes to travel demand patterns, the effect of alterna-

tive control measures, or the impact of policy measures on travellers’ experience

and network performance.

These models are, in some respect, always wrong, as always the case in all

applied sciences. They always omit or over-simplify or incorrectly capture some

phenomenon, and so when using them it is always important to be as clear as possible

on the limitations of the model, what it is not able to capture as well as what it is

representing. The modeller has the responsibility to communicate this to the

decision-maker, however much the decision-maker may not like to hear it. To do this

effectively, we believe we need a clear, standard reference system’ for dynamic
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transportation analysis, in order that particular models and model assumptions fit

into such a unified framework. Developing such a consistent and systematic treat-

ment is a major goal of this book, and therefore we take some time and care in defin-

ing and explaining our terminology, assumptions and concepts, and how these relate

to both the real-world and to common methods used for modelling dynamic trans-

portation systems.
1 Purpose of this book
Travel and transportation play a central role in the lives of most of the world’s pop-

ulation. Transportation provides both a means of trade in moving goods, and a way

of moving people to engage in employment, education, social and other activities.

If we had observed the same geographical area over a period of past decades, we

would likely have seen that the size and structure of employment, production and

residential areas had changed over time, and these changes had in turn changed the

requirements and pressures on the transportation system. At the same time, these

changes will have made environmental, social and economic impacts, some

positive and some negative, with some winners and some losers. It is natural then

to ask whether we can hold a mirror to the past, and use it to see into the future; at

least then we may be able to react in a better way to the inevitable changes the

mirror shows us, and thereby as a society expend resources more efficiently (in

the sense of less negative and more positive impacts). It is only one more step

to then realise that the mirror analogy is limited, that unless we believe the future

is pre-determined we may influence it by our actions, both as individuals and as

organisations. Understanding such influences and their likely consequences then

provides a way of not only ‘managing’ a transportation system more effectively,

but also positively engineering it to improve the lives of the people using it.

The current book fits into this wide area of ‘transportation planning’, and partic-

ularly the field of transportation modelling which aims to postulate mathematical

systems that broadly approximate the changes and processes underlying such

phenomena.

Space and time are two intrinsically important aspects to understanding travel-

lers’ needs and what transportation systems can supply. Let us firstly consider space.

The type and density of activities are not distributed evenly across a city or region,

and there are fixed geographical features (rivers, mountains, valleys, etc.) that influ-

ence the feasibility of different transportation options across an area. Dense, ‘verti-

cal’ residential areas provide very different challenges to more sparsely distributed

ones. There also complex interactions that play out in the transport infrastructure; a

congested road or overcrowded bus may be partially the result of travellers avoiding

overloaded facilities, meaning that a good solution will not be understood without

considering system-level interactions between the various travel needs of people/

organisations and the services and facilities which are provided. Over the last

50 years the transportation community has developed rather sophisticated ways of
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representing these kinds of spatial interactions, typically by representing the infra-

structure as a network (mathematical ‘graph’), and by considering various levels

of sophistication in representing the behavioural responses of travellers (e.g. from

the perfectly informed traveller to random utility approaches). At the same time,

however, it should be mentioned that while the individual fields have developed

to a high level, it is relatively rare to find a consistent integration of demand model-

ling and network modelling.

There are rather well developed (if not always consistent) methods, then, for con-

sidering ‘space’; so what about ‘time’?While travel time, as a disincentive in making

travel choices, is a central aspect of transportation planning, by the word ‘time’ we

are instead referring here to changes that occur over time (“dynamics”). As there is

considerable potential for confusion, let us very early on make a clear distinction:

changes on a ‘within-day’ time-scale are the kind of changes that we would expect

to see as we made a journey on a particular day, or if we compared our travel expe-

rience with someone travelling by the same route/service but at a different time on

that day (there are many other ways to characterise this kind of time, but these exam-

ples suffice for now). On the other hand, changes on a ‘between-day’ time-scale con-

cern, for example, the way in which we might adapt our travel choice next time we

make a journey, based on our travel experiences today. While researchers have been

aware of both ‘within-day’ and ‘between-day’ effects for several decades, it is only

relatively recently that a concerted effort has been made to develop tools and

methods to explicitly model them. On the within-day scale, this has been achieved

by introducing and adapting methods from traffic flow theory for use in network

models. On the between-day scale, it has involved bringing in new techniques from

both applied mathematics (for deterministic dynamical systems) and probability the-

ory (for stochastic processes).

The new student to this field is faced with an extremely challenging task to digest

and assimilate these developments, with their various assumptions, approaches and

need to draw on different aspects of mathematics. In fact, it is also a challenge for the

experienced researcher to keep fully abreast of developments in this field, as without

detailed reading it is often unclear where a new paper fits within the literature, and

how it complements or advances previous developments. The intention of this book

is to bring together the theoretical work in this field in an internally consistent way.

This means unifying transportation network modelling theory, travel choice theory

and traffic flow theory, while drawing on relevant mathematical concepts from oper-

ations research, matrix algebra, dynamical systems, statistics and simulation. Our

intention is that the book is self-contained, so does not require additional reading,

although we suggest further reading for those interested. In order to assist us in this

goal of being self-contained, we supply a mathematical supplement which outlines

the main mathematical ideas that we will draw on.

Apart from the pedagogical aim, to assist newcomers to the field, it might be

asked: why do we wish to set out a consistent theoretical approach to such problems?

What advantage does it give? One answer might that it is a purely aesthetic objective,

that having a single unifying theoretical frame is satisfying purely in its own right.
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Certainly we would admit that personally we do find satisfaction in this aesthetic

quality, however we feel that it has much greater significance than this, for several

reasons. Firstly, as we shall show, it provides a way of using theory to assess what we

might expect from applying such a modelling approach to any case-study, for exam-

ple in terms of uniqueness, stability or reproducibility of its predictions. These have

important implications for project evaluation, and may not be self-evident from com-

putational application alone, especially given the complex nature and interactions

involved in such models. Secondly, our book is an attempt to integrate the state-

of-the-art in a way that we hope generates a kind of feedback effect with the aca-

demic community, whereby our work provokes a reaction either in terms of disagree-

ments with our method of integration, or the stimulus for new research directions,

which in turn will impact on the future state-of-the-art. Thirdly, we intend that

our approach leads to a kind of taxonomy of models that facilitate easier communi-

cation of assumptions, by reference to a common modelling frame. This is important

in order that forecasting is not seen as a kind of supernatural divination, akin to ‘read-

ing’ tarot cards, but so that uncertainty over assumptions made and trends assumed

can be properly communicated to decision-makers.

Given the task to bring together several theoretical fields, it has been necessary to

keep the focus of the book firmly on the development of forecasting methods. In

order that the book be of a manageable size, we therefore do not consider two activ-

ities that might be said to ‘bookend’ the task of forecasting, namely calibration and

design. We should mention, however, that the approaches described are, we believe,

especially suited to these two activities. In the case of calibration, as we write this

book we are in a period of unprecedented data availability, ranging from various

kinds of ‘tracking’ data (from mobile phone activity, GPS or Bluetooth, for exam-

ple), to archived detector data over long periods, and other means of inferring activity

patterns (e.g. shopping transaction data, video surveillance). Such data reveals a

complex, time-of-day-varying, daily-varying, heterogeneous pattern of travel behav-

iour that is not only poorly captured by steady-state approaches, but is actually rather

difficult to ‘project’ onto the conventional ideologies. Moreover the approaches pre-

sented that are developed from probability theory provide a means of calibrating

such models using formal statistical inference. In terms of design, the process

approach we develop allows us to examine how likely it is that the system could

be influenced to attain and operate under very different transportation system designs

to the present. The traditional, ‘comparative statics’ approach, on the other hand,

only allows us to assess alternative designs on the premise they are attainable from

the present.

Even given our decision to focus on the theoretical development of forecasting

methods, space limitations mean that it has still been necessary to be selective in

terms of the kinds of problem considered. This means we exclude many important

areas, such as the routing of freight vehicles, the use of taxis (or taxi-like vehicles),

and the behaviour of pedestrians in continuous space, such as a square. Given its

rather long association with dynamic processes, and the practical use of disequilib-

rium forecasts, it would have been interesting to have included a consideration of
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land-use and transport interaction models. Methodologically, it would have been

very relevant to include a consideration of tour-based and activity-based approaches,

given their natural association with scheduling during the day, and a more thorough

study of microscopic approaches, given their natural relation with stochastic process

models. Perhaps the most natural extension to our work would have been to include

mode choice (integrated with route/service and time-of-day choice) in a fully multi-

modal modelling approach. The list could continue, and we would have sufficient to

write several books. No doubt we will irritate many people by the problems we

decided to include and exclude, but in the end we satisfied ourselves that our choice

of what to include was a kind of metaphor for how a modeller in practice must

approach a real-life study: ultimately, not all processes may be represented in a cho-

sen modeller, and so the modeller must always accept (often unwillingly) that there

are potentially important aspects that are outside the remit of the model chosen. If the

task of a modeller is to provide the tools for a modelling tool-box, then we hope that

we can be considered to have provided a good selection of screwdrivers and chisels,

and hope that others in the future can add to this box with their own selection of saws

and hammers.

Looking to the future, modelling faces unprecedented challenges and opportuni-

ties. On the one hand, it must rise to the challenge of representing ‘new’ forms of

transportation, such as autonomous and/or connected vehicles, electric bicycles

and shared mobility services, and the seemingly ever more complex ways that lives

are organised; for example, if we plan a business meeting in an autonomous vehicle

in such a way that the trip ends at a social meeting point at some prescribed time

(greater than the minimum time to reach that point), what do we consider the purpose

and destination of the trip to be, and what value-of-time and routing principle may be

consider operating? How might we model populations of individuals being trans-

ported around a city in coordinated, shared transportation?

These challenges are balanced by new opportunities in terms of the richness and

extent of the data we may expect. Some have argued that such data may be of

such extent that models are no longer required, since we might expect to have

almost complete observation of travel movements and related phenomena. Actu-

ally, we believe the contrary to be true; this is exactly when models are needed

most. The quantity of data from such sources is potentially overwhelming and

diverse, and models may then be used to extract key patterns from this morass

of information. Furthermore, even with perfect observation of the past, we return

to our original question of whether we will simply use it as a mirror for the future.

Without forecasting tools we will be unable to consider how the future might

change and how we might influence it in a beneficial direction. In an era of

“big data”, we need even more than before simplified, abstracted models that

are able to provide an indication of the likely future trajectory of our transportation

system, and the influence that individuals, organisations and policy-makers may

have on such a trajectory.
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2 Contribution of this book
Most branches of engineering were founded on physics (and/or chemistry) developed

from late 19th century, and now are well-established. This actually is the traditional

image to common folks of an engineer: a person able to solve practical problems that

are well rooted on a specific background, for instance electronics, hydraulics, etc.,

through specialised mathematical tools. Good examples within transportation engi-

neering are analysis and design of components such as vehicles (and their engines),

facilities, etc., and traffic engineering, developed by applying a metaphor derived

from fluid dynamics, which deals with the behaviour of several vehicles sharing

the same facility and the design of traffic control devices, such as traffic lights,

ATC, etc.,.

At the beginning of 50s of the last century a new paradigm was introduced, by

linking together the contributions of several authors, leading to the (abstract) systems

engineering, where emphasis is on mathematical representation of a problem rather

than its physical background. This is a new type of engineer: a person able to solve a

practical problem considering it as a whole through an ever increasing box of non

specialised mathematical tools.

For what may now be considered a charming synchronicity, John G. Wardrop, in

his seminal presentation held on 24 January 1952, and published in June (Wardrop,

1952), founded transportation systems engineering, including both analysis and

design. In his paper, he proposed a wide and comprehensive review of traffic engi-

neering, but at the same time, he understood that traffic engineering techniques can

be used only to analyse the performance of a single component (cfr p. 344). He also

stated that a transportation system cannot be studied on a single element basis, but as

a whole system indeed (note that he actually used the word “system”).

Hence, starting from a small example, he proposed his now widely known two

principles to model travel demand distribution over alternative routes in a transpor-

tation networks (cfr p. 345). Then, he stated that these two criteria must be extended

to deal with a whole network, where route are broken into links possibly shared by

other routes, even though (cfr p. 348) in the case of a network of roads the theoretical

problem becomes very complicated. This way, John G.Wardrop introduced the main

elements of any effective model of a transportation system:

• a user behaviour model, which simulate how level-of-service, say journey times,

affects user choices, as expressed in his paper by the two criteria (travel demand);

• a performance model, which simulate how user choices, say flows, affect level of

service, say journey times; it is made up by a network model representing

topological features and, at a link level, by performance – flow relations derived

by applying traffic engineering techniques (transportation supply).

Besides, he greatly stressed The Value of a Theoretical Approach (cfr p. 326) as the

only effective one, thus stating that models within a specific theory should be devel-

oped. These models, now referred to as travel demand assignment to transportation
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networks, are the basic tools to simulate a transportation system. It is also worth not-

ing that, pointing out that the user behaviour is likely selfish and does not lead

towards the most efficient pattern, he stated the need of supply network design.

From the seed planted by J.G. Wardrop the still growing tree of the modern Traf-

fic and Transportation Theory (TTT) emerged. A general overview of existing prob-

lems and tools of TTT is given below in order to point out the contribution of this

book. TTT studies the interactions between the level of service provided by trans-

portation systems and the results of several types of user choice behaviour, which

may regard in a hierarchical order from bottom to top:

• driving, concerning interactions between users travelling on the same facility and

their effects on travel time, …;

• routing, concerning connections between origin and destination of the journey,

parking location and type, possibly departing time, …;

• travelling, concerning transportation mode, time-of-day, destination, frequency,

…;

• mobility, concerning car ownership, driving licence acquisition, … .

On top of the above hierarchy there are the kinds of user behaviour addressed by

land-use/transport interaction theories.

Tools of TTT have reached a very advanced and sophisticated level, and large-

scale applications are a current practice. Most of these tools are based on explicitly

behavioural modelling approaches, which grant clear interpretation of parameters. A

taxonomy is given in Table 1 below where for brevity’s sake kinds of choice behav-
iour others than routing and driving have not be explicitly considered. A brief review

of these tools is given in the four sections below to introduce the nomenclature used

in this book and the contents of the chapters of this book.

(in round parenthesis the number of the corresponding section below.)
2.1 Traffic analysis
This section briefly discusses methods for traffic analysis, which addresses the

effects of driving choice behaviour, and are usually derived from Traffic Theory,

described in details in Appendix B, also discussing Queuing Theory for bottlenecks.
Table 1 Tools of TTT.

Modelled
behaviour

Problems methods

Analysis descriptive—
predictive Decision prescriptive

Driving Traffic analysis (2.1) Traffic control (2.3)

Driving and
routing

Transportation systems
analysis (2.2)

Transportation systems control and
design (2.4)
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Under steady-state conditions (introduced in Chapter 1) the most commonly used

model to describe vehicles flowing along a street (railway, airway, …) is the so-

called fundamental diagram (FD) describing the relations among density, flow

and (space average) speed. In particular, in the stable regime speed is a decreasing

function of flow, that can be used to specify travel time functions.

When steady state conditions do not hold, within-day dynamics (introduced in

Chapter 1) in a link should explicitly be taken into account through three kinds of

macroscopic models, described in details in Appendix B:

• continuous in space and time;

• discrete in space and continuous in time;

• discrete in space and time.

The full specification of all the above models requires an equation describing the rela-

tion between speed and flow or between speed and density, to be derived from the FD,

as well some network equations to lead to within-day dynamic assignment models.

In appendix B mesoscopic and microscopic modelling approaches will also be

described.
2.2 Transportation systems analysis
This section briefly discusses methods for transportation systems analysis, which can

be distinguished into methods for:

• travel demand analysis,

• transportation supply analysis,

• demand–supply interaction analysis, or assignment.

Before applying any of the above methods some preliminary steps should be carried

out. The study area is delimited and divided into zones, where a journey starts or ends,

and main infrastructures and services are singled out to support journeys between any

pair of them. Then, users are distinguished, following a 5W approach, with respect to.

WHO: socio-economic characteristics and grouped into categories (or into

commodities for freight),

WHY: trip purpose,

WHAT: trip frequency,

WHERE: trip origin and destination [for simplicity’s sake we will assume that

each journey is defined by a single trip, thus trip-chains or tours are not

considered],

WHEN: time of day (morning vs. afternoon peak period, day of week vs.

weekend days, winter vs. summer, special events, usual vs. emergency

conditions, …).

Once trip origins and destinations have been singled out, itineraries between each

pair of origin and destination can be defined, possibly distinguished by category,

purpose, …. Then, each itinerary can be broken down into links, each link being
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a stretch of street, railway, airway,…, with common characteristics. In the most gen-

eral case an itinerary is a routing strategy including both pre-trip and en-route choices

depending on information available to users.

2.2.1 Travel demand analysis
During each time-of-day, users belonging to different user categories, with different

trip purposes, and journeying between different origin–destination pairs interact each
other and compete to access same infrastructures and services, thus for easy refer-

ence any combinations of user category, trip purpose, origin–destination pair is

called a user class (u.c.). Given a time-of-day, for each user class the travel demand

flow defines.

HOW MANY users are moving in the study area.

Travel demand flows can be estimated through statistic methods giving the so-

called origin–destination travel demand flow matrices (or o-d matrices for short).

They are assumed constant in the following, since, as already stated above, kinds
of choice behaviour others than routing and driving are not explicitly considered
in this book. Thus, the travel demand model describes:

HOW users reach their destinations from their origins.

Travelling choice behaviour can be modelled through any discrete choice anal-

ysis theory (e.g. Random Utility, Fuzzy Utility, Prospect,… theory), as described in

Appendix A. Under within-day dynamic conditions, user departure time choice

behaviour should also be taken into account through pre-fixed proportions or through

a further choice model, where the utility function includes penalty for early or late

arrival with respect to desired arrival time.

2.2.2 Transportation supply analysis
Methods for transportation supply analysis combine methods for traffic flow analysis,

with methods derived from the Theory of Congested Networks, including synchronic

and diachronic networks, described in details in Chapter 1. In this book tools for

modelling continuous supply, e.g. pedestrians moving in a square, are not considered.
The connections between trip origins and destinations are described by an ori-

ented graph, such that each link is described by an oriented arc between two nodes

and each itinerary is described by a route, with nodes modelling junctions. Moreover,

each origin and each destination is modelled through a further node connected to the

main network through connecting arcs (or connectors) not corresponding to links

(see Section 1.2).

Under steady-state conditions a flow and a transportation cost are associated to

each arc; usually cost is a combination of several attributes regarding time (on-board,

waiting, delay due to junctions,…), money (fuel cost, tolls, fees,…), and reliability

(dispersion indices of travel time, …

The transportation supply model describes:

HOW MUCH it costs to users reach their destination from their origins.

Within-day dynamics greatly affects the transportation supply model, since arc

flows and costs depend on time, moreover the flow of an arc also depends on the
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position within the arc. The flow entering an arc at a given time depends on travel

time to reach the arc, generally through different paths, the travel time of each of

these paths depends on the travel time of each arcs previously traversed, which in

turn depend on the flow that has traversed them. Therefore, within-day dynamic

models require that HOWLONG it takes to users to reach their destination from their

origins is explicitly modelled (if travel time is different from transportation cost).

2.2.3 Assignment
Traditional equilibrium assignment searches for mutually consistent arc flows and

costs. It was first introduced under steady-state conditions by Wardrop (1952),

who named it User Equilibrium (UE).

Equilibrium assignment may effectively be formulated through fixed-point

models which can be easily extended to deal with several types of assignment

Fixed-point models can easily be specified combining together the three equations

of the transportation supply model and the three equations of the travel demand

model, as described in Chapter 3, starting from assignment to uncongested networks

described in Chapter 2.

Equilibrium assignment may be regarded as a special case of day-to-day

dynamics (see Chapter 1) that mainly affects the travel demand model, in this case

indeed both the utility function and the choice function are specified through recur-

sive equations. This approach allows to explicitly modelling evolution over time

through deterministic and stochastic process models, as described in Chapters 4

and 5.

Methods for within-day dynamic equilibrium assignment (traditionally called

Dynamic Traffic Assignment) follow the same structure of steady-state equilibrium

assignment. Still user departure time choice behaviour should also be taken into

account; moreover, the flow and cost consistency relations are non-linear as dis-

cussed above; therefore, several results available for steady-state equilibrium no lon-

ger apply. Moreover, each of the three kinds of macroscopic models described in

Section 2.1 leads to different assignment methods that can hardly be put under a

common framework to highlight their mutual relationships, let alone mesoscopic

and microscopic models. Within-day dynamics may be combined with day-to-day

dynamics leading to so-called doubly dynamic assignment. These topics are

described in Chapter 6.
2.3 Traffic control
Most methods for traffic flow control are based on the description and prediction of

traffic flows without any modelling of routing choice behaviour.

They include fixed sign strategies, such as priority junctions or roundabouts

designed off-line, as well variable sign strategies, such as ramp metering or traffic

lights. The latter may be applied off-line to support transportation planning or in sim-

ple cases when there is no need of adaptive control or on-line to support real-time

traffic management.
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On-line applications requires sensors for flow monitoring and within-day

dynamic models for flow prediction, such as those described in Section 2.1, or simple

data-driven methods, such as methods from time series analysis, Bayesian networks,

Artificial Neural Networks (ANN).

All these topics are out of the scope of this book.
2.4 Transportation systems control and design
Methods for transportation systems control and design provide optimal features of

transportation interventions taking into account their effects on travel demand,

say on user route (and departure time, if the case) choice behaviour (quite often under

the assumption of constant demand flows). This is usually achieved by considering

any model for equilibrium assignment as a constraint embedded within the whole

optimization model underling the design method.

Methods for transportation systems or better transportation supply control and

design may be grouped into:

• Methods for transportation systems control or transportation network capacity

design, or for Continuous Network Design, such as network signal setting

design with equilibrium constraints, bus frequency design, …;

• Methods for transportation network topology design, or for Discrete Network

Design, such as Urban Network Design, including both signal setting design

and lane allocation with equilibrium constraints [lane allocation cannot

consistently be carried out without including signal setting design too], design of

bus lines, … .

On-line transportation systems control methods can also be combined with Intelli-

gent Transportation Systems (ITS) such as Advanced Transportation Information

Systems (ATIS), which may provide information or indications. In this case any

information or indication provided to users should be consistent with the control

strategy and the user reaction leading to closed-loop systems; satisfactory models

of such systems are still an open issue. Currently no method is available to design

all features of a transportation system, possibly including a ITS.

According to an arguable but long since established tradition, measures regarding

restricted area access policy, parking policy, tolls, congestion charge, and the like,

are collectively known as Travel Demand Management (TDM) measures. Needless

to say travel demand resulting from the free choices made by users cannot be cen-

trally managed, but only be described. These kinds of interventions should be con-

sidered part of transportation supply design within a consistent plan also including

kinds of interventions mentioned above.

All these topics are out of the scope of this book.
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3 Scope of this book
On deciding on the scope of the book, we decided to make several restrictions, omit-

ting explicit treatment of several important topics, on the grounds that we wish the

content of the book to be of a manageable size for the reader to appreciate. This is not,

however, intended to suggest a boundary of what is possible with the presented

framework; on the contrary, we hope that our work encourages other to cast future

modelling advances within the presented conceptual frame. While there are many

limitations of our work, which we discuss as the detailed treatment unfolds, there

are several aspects that deserve particular mention at the outset. Firstly, we will

consider only journeys that occur from a single origin to a single destination. This

excludes tours, for example a home-shop-work journey with multiple destinations,

as well as good deliveries to multiple locations. Secondly, we consider only networks

consisting of a single mode, and make no explicit treatment of inter-modality (e.g.

park-and-ride, or a goods delivery combining truck with last-mile delivery by

bicycle). Both of these exclusions are significant, but we have made this choice

in order to keep the material more manageable, and in any case the study of such

issues within a fully dynamic transportation systems is to our knowledge an open

research question.

Through Chapters 1–4 main emphasis is on macroscopic modelling, then micro-

scopic methods are discussed in Chapter 5 on time-driven Stochastic Process models

for Day-to-day Dynamic assignment, and in Chapter 6 where macroscopic, meso-

scopic and (event-driven) microscopic modelling approaches toWithin-Day Dynam-

ics are discussed. Data-driven methods are not discussed for brevity’s sake; anyhow

they seemmore useful to solve specific problems, such short-term traffic forecasting,

incident-detection, …, rather than providing a wide insight of traffic and transpor-

tation systems.
4 Summary
4.1 Major findings
Travel and transportation play a central role in the lives of most of the world’s pop-

ulation. Thus travel demand and transportation supply as well as their interaction

should carefully be analysed to effectively assess the effects of transportation plan-

ning policies and traffic control strategies. This book deals with travel demand

assignment to a transportation network, the main tool for transportation system anal-

ysis and planning. This preface describes the purpose and the contribution of this

book with respect to the current literature about the tools of Traffic and Transporta-

tion Theory.
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4.2 Further readings
A wide description of most of the tools of TTT may be found in the books by

Cascetta (2001, 2009); assignment tools are also described, but without a complete

and comprehensive analysis of mathematical features, on the other hand implemen-

tation is also discussed. Another widely used book is by de Dios Ortuzar and

Willumsen (2011), where implementation and application issues are discussed

with great details.
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Introduction
 1

Giulio Erberto Cantarella

University of Salerno, Salerno, Italy

The knowledge of first principles, as space, time, motion, number,

is as sure as any of those which we get from reasoning.

And reason must trust these intuitions of the heart,

and must base on them every argument.

Blaise Pascal, Pens�ees (translated by W. F. Trotter).

Outline. In this chapter the reader may find the basic definitions and assumptions

used to develop the models presented in the next chapters. This is consistent with

the methodology common to applied sciences whose first steps are a preliminary

analysis aimed at providing a simplified description of the system under study and a

statement of assumptions about space and time modelling possibly including sto-

chastic approaches.

A model for transportation system analysis tries to describe the state of a transpor-

tation system as resulting from the interaction between travellers willing to travel and

transportation supply systems providing opportunities to them. In the this section and

the following ones we outline the methodology, common to all modern applied sci-

ences such as engineering and economics, applied in this book and the main assump-

tion supporting it. Reader of this book is assumed familiar with fundamentals of

Calculus, of Theory of Probability, and of Inferential Statistics.

Through all this book we keep clearly separated features of the real world, say

(data from) observations, and those of the modelling tools trying to use different

words as far as we can; for instance location over space and evolution over time come

from observations of the real word, while spatial and dynamic are adjectives only

used to denote models trying to describe these phenomena. Similar considerations

hold with regards to observed variations or fluctuations over space or time in real

world and to adjectives such as random or stochastic only used to denote models try-

ing to describe these variations as well as other sources of uncertainty. The following

examples may help understanding this point and to introduce some basic elements of

modelling theory.

Suppose that you are walking a path in a wood looking for seeds of horse-chestnut

trees to play conkers with a friend you expect will pay you a visit in the near future (or
Dynamics and Stochasticity in Transportation Systems. https://doi.org/10.1016/B978-0-12-814353-7.00001-7
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2 CHAPTER 1 Introduction
for any other reason). You may observe the number of seeds at the foot of each tree

along the path in a given day, location over space, and/or at the foot of a tree in con-

secutive days, evolution over time. The sample of observations can be collected in an

array of variables, such that the index describes the tree (space) or the day (time).

If the number of observations is too large to be easily remembered you may

compute the observed mean to have a roughly idea of the number seeds you

may find together with the observed variance to describe how dispersed the obser-

vations are around the observed mean. Both these values, as well as others indica-
tors from descriptive statistics, are to be considered as observations since they can

be computed from them through (simple algebraic) equations. [This aggregation

procedure introduces a source of uncertainty somehow different from the one dis-

cussed below.]

A more sophisticated approach is based on probabilistic models based on random
variables, such that the model mean and the model variance try to reproduce the

observedmean or variance, andmore generally the probability (density) function tries

to mimic the observed frequency distribution; an example are models based on the

Poisson random variable, popular models for both location over space and evolution

over time. These models are not considered proper spatial or dynamic models since

they lack an explicit description of location over space or of evolution over time.

Spatial or dynamic models are those used to explicitly forecast the location over

space (in a future day) or of the evolution over time (in a given location). Models

including random variables are used when forecasting is affected by uncertainty

due to the lack of enough information and possibly other sources of uncertainty,

see below so that effective deterministic models cannot be specified; according to

these considerations dynamic models are named deterministic or stochastic pro-
cesses. [This source of uncertainty due to lack of enough information is somehow

different from the one due to the aggregation procedure discussed above.]

After its specification, any kind of model should be calibrated against observed

data, say its parameters should be estimated through inference statistics methods,
before a practical application is possible. This issue is out of the scope of this book.

The modelling approach discussed above can be extended multi-class models
which also take into account the distribution over other quantitative features, the size

of seeds besides their number, or qualitative features, say different types of items to

collect such as walnut seeds or mushrooms. Multi-type models occur when the dis-

tribution of these features is duly modelled, usually through a probabilistic model.

All the above considerations hold in other fields of application aswell: if we change

the path with a long urban street, the seeds with cars, and the trees with links we get the

main elements of Traffic Theory, briefly presented in Appendix B to this book.

Before any (mathematical) model can be developed a preliminary analysis

should be carried out aiming at highlighting the most relevant features and provid-

ing a simplified (verbal qualitative) description of the system under study, as briefly

reviewed in the beginning of Section 2.2 in the Preface for transportation systems.

Main elements are repeated below for reader’s convenience together with new

considerations.
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Users can be travellers, or persons, and freight, or goods. This book main empha-

sis is on travellers, but most described models can relatively easily adapted to freight

transportation. In the following a user may mean a walking person, a person riding a

bicycle, a vehicle, a ton of freight, a (20 ft long) container, …, thus pronoun “it” is

utilised.

Several types of user choice behaviour occur in real life; this book mostly focuses

on two of them only [HYP ①]:

• driving, concerning interactions between users moving on the same facility

(called congestion) and their effects on travel time, …;

• routing, concerning connections between origin and destination of the journey,

parking location and type, possibly departing time, … .

User driving behaviour is usually modelled within the transportation supply models,

which describe (if and) how routing user choices affect level of service, say travel

time, delay at junctions, monetary cost,…. On the other hand, user routing behaviour

is usually modelled within the travel demand models, which describe how provided

level of service affects routing user choices.

Transportation supply systems can be distinguished between those providing

continuous over space and time services (walk, bicycles, cars, vans, trucks, …) or

discrete services (buses, trains, airplanes, ferries,…), often requiring quite different

modelling approaches; the geographical scale, urban/metropolitan areas vs. extra-

urban connections, is also a relevant features. Discrete service transportation systems

operating in urban areas are often called transit systems.

Making a sharp distinction, a discrete service system may be called:

• frequency-based: most users arrive at random at stops without any pre-trip

planning since they do not precisely know the timetable or the frequency is

so high that it does not matter, thus users perceive the system as a set of lines

with a given frequency over time, (often urban services, like buses, metro lines,

…),

• schedule-based: most users arrive at stops at a chosen instant of time after some

pre-trip planning since they precisely know the timetable thus users perceive the

system as a set of scheduled connections (most often extra-urban services, inter-

city trains, air flights, …).

Presented modelling approaches can be applied to either case above.

For each time of day period relevant for the study at the hand, users are assumed

grouped into user classes (multi-user class models) with respect to origin-destination

pair and possibly to user category and trip purpose. Each group being associated a

travel demand flow, assumed constant in the following, and a common set of itiner-

aries, as well as of behavioural parameters. Each itinerary is broken down into links,

each link being a stretch of street (railway, airway, …), possibly shared by others

itineraries. Both itineraries and links are modelled following a discrete space

approach through the elements of a graph as described in the next section [HYP②].
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[In this book, as already stated in the preface, tools for continuously modelling

space, e.g. for dealing with pedestrians moving in a square, are not considered.]

Many models presented through this book follow a macroscopic approach [HYP

③] describing the aggregate results of decisions of all the users through flow vari-

ables, measured by number of users per time unit, rather than tracing the journey of

each single user as in mesoscopic or microscopic modelling approach; some meso-

scopic and microscopic are also discussed, but with less details.
1.1 Space modelling: Graphs and networks
In this book, as said above, the space is modelled in a discrete way through graphs

and networks; while these two words are often used as synonymous we wish to

give them different meanings as shown below; Section 1.1.1 reviews basic defi-

nitions (under steady state conditions) useful for this book (for more details and

applications of graphs and networks to other applied sciences too, see for instance

Barabási, 2016). The way to apply these models to transportation systems analysis

will briefly be discussed in Section 1.1.2. Algebraic details will be introduced in

Chapter 2.
1.1.1 Basic elements of graph and network theory
A graph, G, is mathematical object defined by an order pair of (finite) sets, G=(N,
A), the first one usually called the set of nodes (or vertices), N, and the second one

usually called the set of arcs, A, a subset of the Cartesian product between the first

one and itself, A�N�N, with elements a=(n1, n2) 2 A where n1, n2 2 N.
If any element in set A is an unordered pair, (n1, n2)= (n2, n1), the graph is

called undirected and its arcs are often called edges. Vice versa, if all the elements

of set A are ordered pairs, arcs (n1, n2) and (n2, n1) are different, the graph is

called directed, or a digraph; in this case the first node n1, is called the tail of

arc (n1, n2) exiting from node n1, while the second node n2 is the head of arc

(n1, n2) entering to node n2.
If needed we may assume that a graph does not contain parallel arcs, say different

arcs with same head and tail with no loss of generality; indeed if the graph contains

some parallel arcs, it suffices to introduce further nodes to get a new (equivalent)

graph without parallel arcs. Therefore, if the number of nodes is finite the number

of arcs is finite as well.

Graphs used in all applications to model space in transportation systems analysis

are always directed, thus for simplicity’s sake we will further refer to this kind of

graphs only, omitting the word directed.

Fig. 1.1 shows a (directed) graph with 4 nodes: A, B, C, D, and 5 arcs: 1= (A,C),

2=(B,D), 3=(B,C), 4=(A,B), 5=(C,D).

A path from origin node no to destination node nm is (a graph) defined by a

sequence of m arcs such that the head of an arc is the tail of the successive one
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FIG. 1.1

A directed graph with 4 nodes and 5 arcs.

51.1 Space modelling: Graphs and networks
(adjacent arcs), that is (nO, n1), (n1, n2), …, (nm-1, nm), a single arc being a special

case; the origin node, nO, and the destination node, nm, are assumed different. On

the other hand, if the origin and the destination are the same node the path is called

a loop. In an elementary path no node appears twice, thus each node, but the desti-

nation, is tail of one arc and head of one arc, with the exemption of the origin; hence

an elementary path does not contain loops, and is also called loop-less. Thus, if the

number of arcs is finite the number of elementary paths is finite as well. In a simple
path no arc appears twice, Thus, if the number of arcs is finite the number of simple

paths is finite as well.

There 12 pairs of nodes in graph inFig. 1.1; 6 of them—(B,A), (C,A), (C,B), (D,A),

(D,B), (D,C)—are not connected by any path, 3 of them—(A,B), (B,C), (D,C)—are

connected, eachbyone pathmadebyone arc only; last 3 pairs of nodes—(A,C), (A,D),

(B,D)—are connected by more than one path, at least one of them composed by more

than one arc.

In particular, the pair of nodes (A,D) is connected by 3 paths: 1=(ACD),

2=(ABD) and 3=(ABCD), shown in Fig. 1.2A–C, respectively. [Paths are numbered

after arcs 1, 2, 3, respectively.]

An elementary hyperpath is an extension of elementary path where some (pos-

sibly all) nodes, called diversion nodes, may be the tail of one or more arcs, called

diversion arcs, each of which is given a positive weight summing up to one, called

diversion proportion; according to this definition an elementary path is an elemen-

tary hyperpath where there is no diversion node. An elementary hyperpath (with

some diversion nodes) reduces to an elementary path when all diversion proportions

are equal to one, and it is called simple; otherwise it is called a composed elementary

hyperpath, made up by several overlapping elementary paths, each given a traversing

probability obtained from diversion proportions. It is worth noting that a path may

well belong to several hyperpaths, with different traversing probabilities. Thus, if the

number, mP., of elementary paths is finite the number of hyperpaths is finite as well,

at most 2mp - 1.

Let nodes A and B be diversion nodes in Fig. 1.1. Between nodes A and B there

are 3 simple hyperpaths given by paths: 1=(ACD), 2= (ABD) and 3=(ABCD),

shown in Fig. 1.2A–C. Furthermore there are 4 composed hyperpaths:
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FIG. 1.2

(A) Path 1¼ (ACD) between nodes A and D. (B) Path 2¼ (ABD) between nodes A and D.

(C) Path 3¼ (ABCD) between nodes A and D.
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• 4 made by paths 1 and 2, assuming that a diversion may occur at node A only;

• 5 made by paths 1 and 3, assuming that a diversion may occur at node A only;

• 6 made by paths 2 and 3, assuming that a diversion may occur at node B only;

• 7 made by paths 1, 2 and 3, assuming that a diversion may occur both at node A

and/or node B.

Composed hyperpaths 4, 5, 6, and 7 are shown in Fig. 1.3A–D, respectively. [They
are numbered by the sum of the indices of the paths composing them plus 1.]

An ordered pair of (different) nodes, (nO, nD) is called connected if there is at

least one (hyper-)path from the first node, nO, to the second node, nD, single-con-
nected if there is exactly one (hyper-)path, and multi-connected if there are at least
two (hyper-) paths; it is worth noting that the inverse pair (nD, nO) may not be

connected.
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(A) Composed hyperpath 4. (B) Composed hyperpath 5. (C) Composed hyperpath 6.

(D). Composed hyperpath 7.

71.1 Space modelling: Graphs and networks
If cost variables are attached to arcs (and possibly to nodes) of a graph it becomes

a network, as described below. In discrete networks variables are attached to arc as a
whole, while in continuous network variables can be attached to each point along

each arc.

A network is a graph with a cost, ca, attached to each arc a. With no loss of gen-

erality a cost c’ associated to a node n can be transformed into an arc cost by
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splitting node n into two nodes n1 and n2 and introducing arc (n1, n2) with cost c’.
The arc cost may be a combination of different cost attributes, depending on the

application.

In a Cost Affine Network (CAN) a cost can be associated to each path through an
affine transformation obtained by summing up costs of all arcs belonging to the paths

and adding some specific and/or non-additive path costs; then hyperpath costs can be

obtained summing up path costs weighted by traversing probabilities.

A flow network is a network with a flow, fa, attached to each arc a. A flow may

also be associated to each node equal to the sum of the flows of all arcs entering or

exiting the node, unless the node is a source (origin), total exiting flow is greater than

total entering flow, or a sink (destination) vice versa. In a Flow Affine Network
(FAN) the flow associated to each arc can be obtained by an affine transformation

of path/hyperpath flows adding base flows due to other phenomena not modelled by

paths/hyperpaths (see Chapter 2 for formal details and equation for arc flow conser-

vation at nodes).

A FlowAffineNetwork that is also a Cost Affine Network such that the Cost Trans-

formation matrix is given by the transpose of the Flow Transformation matrix is called

a Transpose cost flow Affine Network (TAN). [In this case it is easy to devise simple

data structures for moving from path/hyperpath variables to/from arc variables.]

A congested network is a flow network where arc costs depend on arc flows

through arc cost (�flow) functions. Quite often the cost attached to an arc can be

split in two terms: one including all congested cost attributes depending on flows

cost plus one including non-congested cost attributes, independent of arc flows.

In this case path/hyperpath flows depend in turn on path/hyperpath flows. On the

other hand, a flow network where arc costs do not depend at all on arc flows is called

uncongested.
1.1.2 Graphs and networks in transportation system analysis
The practical application of a graph model requires specifying what is modelled by

nodes, and which relationship is modelled by arcs, together with the meaning of

flows and costs.

In some applications for transportation systems analysis, nodes usually represent

locations in space, such as street junctions, airports,…, while arcs represent connect-

ing links, such as streets, airways, …; graphs and networks for this kind of applica-

tions are called synchronic (or space or 2D graphs or networks). In more detailed

modelling approaches further nodes and arcs may be introduced, such as a node

for each enter or exit to/fro an intersection, thus each manoeuvre may be represented

by an arc, a node for each transit stop, … .

In other applications, for instance to explicitly model scheduled services, it can be

useful that a node represents both a location in space and an instant in time; graphs

and networks for this kind of applications are called diachronic (or space-time or 3D

graphs or networks), and are usually acyclic.
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In addition, each origin or each destination is modelled through a further node

connected to the main network through connecting arcs (or connectors) not corre-

sponding to links, as already stated in the preface. It should be noted the above def-

initions only refer to the kind of application without affecting the mathematical

features of a graph or a network, thus all the above definitions, including those of

paths or hyperpaths, hold for any kind of applications.

Paths and hyperpaths, as well as other graphs, can be used to model itineraries

available to users say routing alternatives resulting from routing choice behaviour,

as described by choice modelling tools in Appendix A. As already stated in the Pref-

ace, in the most general case an itinerary is a routing strategy including both pre-trip

and en-route choices depending on information available to users, as it occurs for

instance if a while-trip information system is in operation, in urban transit networks

with overlapping lines, …; these strategies can effectively be modelled through

hyperpaths under mild assumptions. In the following the graph used to model an itin-

erary, in most of the cases a paths or an hyperpath, will be called a route, unless fur-
ther details are needed.

In transportation system analysis generally not all pairs of nodes are relevant,

but only those representing an origin and a destination pairs, as defined in Preface.

Preface, each of them is called an OD pair. Connected, single-connected and multi-

connected OD pairs are defined according to definitions introduced earlier with

respect to routes.

After the graph has been defined, the practical application of a network model

requires specifying what is modelled by costs, flows and cost-flow functions. At this

aim it is better to distinguish steady-state conditions vs. within-day dynamics, as dis-

cussed in the next section. Anyhow, in transportation applications congested cost

attributes usually includes travel time along a street, a stretch of railway,…, waiting

time at junctions,…, and possibly other congested costs, such as on-board crowding

disutility, penalty for early/late arrival/departure with respect to an indifference time

interval; whilst non-congested costs includes monetary costs, due to fuel, tolls, fees,

fares, … .
1.2 Time modelling: Dynamic models
Time in nature (at a macro scale at least) follows the time’s arrow defined by the

second law of thermodynamics - that is our experience of time irreversibility; time

in history follows a continuous line from past to present to future as well as.

Time as a social construct to organise daily activities usually follows two

evolutions:

• within-day dynamics: that occurs over continuous time during the 24h of a given

day (conventionally from 4:00 to 4:00 in transportation systems analysis); often

only a part of the day is considered, e.g. the morning peak hour (7:30–8.30);
models for transportation systems analysis where this dynamics is explicitly
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taken into account are called within-day dynamic, otherwise (within-day) steady-

state;

• day-to-day dynamics: that occurs over discrete time from (a part of) a given day

and the next one; models for transportation systems analysis where this dynamics

is explicitly taken into account are called day-to-day dynamic, otherwise

equilibrium (Box 1.1).

Both these two kinds of dynamics can be observed in a real transportation system

and need to be properly modelled through different tools for a complete descrip-

tion of a transportation system. Unfortunately no complete model including both

kinds is already available in literature, while only partial modelling approaches

have been proposed, named double dynamic models (see Chapter 6). Nonetheless,

in this book, as shown in the following Section 1.5, we propose a modelling

framework general enough to encompass most existing approaches and to support

new ones.

Most effective models used to approach equilibrium analysis are derived from

Fixed-Point (FP) theory, as described in Chapter 3 under steady state conditions;

these models are very powerful and flexible, and also useful to recognise equilib-

rium a special case of Day-to-Day Dynamic analysis. Almost all models used to

approach Day-to-Day Dynamic analysis are Deterministic Process (DP) models

derived from the Non-linear Dynamic Systems theory, as described in Chapter

4, or are derived from the Stochastic Process theory when several sources of uncer-

tainty are explicitly taken into account (see next section), as described in Chapter 5.

Following above considerations, under steady-state conditions, Deterministic and

Stochastic process models used for Day-to-Day Dynamic analysis are more prop-

erly specified in discrete time; they are a very powerful tools for time limit analysis

of the evolution over time, DPs suitable for carrying out stability and bifurcation

analysis, SPs suitable to carrying out full statistical description through the invari-

ant probability distribution.

On the other hand, Deterministic and Stochastic process models used for Within-

DayDynamic analysis (see Chapter 6) are more properly specified in continuous time

following a macroscopic or a microscopic approach, respectively. The application of

continuous time or (event-driven) SP models are often called micro-simulation (see
Box 1.1 Diary metaphor.
Consider an instant of time (assumed a measurable quantity at macroscopic level) described in the

form: YYYY/MM/DD/sec, where sec is a real number in the range [0, 86400].When you wish to put a

new entry in your diary, for example a one-day workshop, first you look for the page corresponding to

the year YYYY, the month MM, the day DD, and likely write down on top of the page the title and

venue of the congress, then youwrite downwithin the page details of the timetable that, in theory, may

refer any time, sec, within the day. Still, scheduling any event between the day before, the day of the

workshop, and the day after is meaningless.
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also appendix B). In this case however these tools are used to analyse the evolution

over time during a transient, and the time limit analysis is rather meaningless, since

main input data, such as demand flows, and some state variables, such as queue

length, keep changing over time. These models are often discretised over time

and space for solution.

Under steady-state conditions, space can be modelled through a discrete net-

work and a (generalised) transportation cost can be associated to each arc, usually

combination of several attributes regarding time (on-board, waiting, delay due to

junctions, …) and money (fuel cost, tolls, fees, …), the unit of measure unit being

time as for all other costs. Moreover, a flow can be associated to each arc, measured

in users per time unit as all other flows. This way, a Transpose cost flow Affine

Network (TAN) is obtained, which can be considered synchronic. Cost-flow func-

tions, modelling driving behaviour can be specified through application of Traffic

Flow Theory, reviewed in Appendix B, while route choice behaviour can be mod-

elled through tools of Choice Modelling, reviewed in Appendix A.

Since transportation supply can be modelled through a TAN, the theory of travel

demand assignment under steady-state conditions is now well developed, both for

continuous and discrete (frequency-based) service systems.

Under within-day dynamic conditions different modelling approaches are usu-

ally followed to describe transportation supply with continuous or discrete (sched-

uled) service systems. In the latter case, indeed, a diachronic discrete TAN can

effectively be used to model space and time, thus models for steady-state conditions

can almost straightforwardly still be applied. In some cases a diachronic discrete

TAN could also be used for continuous service systems by duly discretising time,

still in several other cases TANs are not suitable for properly modelling Within-day

Dynamics.

On the other hand, mostly modelling continuous service systems under within-day

dynamic conditions is based on continuous networks since (as already noted in the pref-

ace) flows and costs depend on time and on the positionwithin the arc.Moreover, travel

time should explicitly be modelled if different from transportation cost.

In addition, the relation between arc and route flows is highly non-linear since the

flow entering an arc at a given time depend on travel time to reach the arc, generally

through different paths, the travel time of each of these paths depends on the travel

time of each arcs previously traversed, which in turn depend on the flow that has

traversed them. Hence, within-day dynamic models for transportation supply anal-

ysis are highly non-linear including several feedbacks.

Under within-day dynamic conditions demand modelling also requires to include

departure time choice behaviour through pre-fixed proportions or explicit choice

model through tools of Choice Modelling, reviewed in Appendix A. It is not surpris-

ing that no fully consistent unifying general theory is available yet; some existing

modelling approaches will be reviewed in Chapter 6, embedding them in the general

framework depicted in Section 1.5.
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1.3 Uncertainty modelling: Stochastic models
Several sources of uncertainty may prevent a precise description of a transportation

system. Some of them are discussed below.

• User perception errors: users may take wrong decisions since they wrongly

perceived or weight attributes such as travel time or money affecting the set

and the utility values of the available options.

• User heterogeneity: aggregation is necessary to keep any model at a manageable

level of complexity but it introduces modelling errors:

• over space, for example during study area delimitation and zoning;

• over time, for example neglecting difference among days of the week;

• over type, for example grouping users with respect to class of income, age,

education degree.

• Missing attributes: due lack of data modeller may decide to exclude some

attributes who affect users’ behaviour, for example weather conditions, or may

ignore them.

• Attribute measurement errors: attribute measurements may be affected by errors

due to for example data collection procedures, different conditions during

collection.

All these sources of uncertainty, as well as others not described above, support the

use of uncertain numbers to model (at least some of) the relevant variables of an

effective user choice behaviour modelling. As already noted in Preface, even though

future were perfectly determined by past, still it may not be perfectly forecasted due

to lack of enough information about past, as well as to uncertainty affecting forecast-

ing methods.

Several approaches are available to the skilled modeller to catch the many elusive

facets of uncertainty, including fuzzy sets theory, evidence theory, possibility theory

leading to fuzzy numbers, probability theory leading to random (numbers or) vari-

ables, each of them with strengths and weaknesses, and generally modelling only

some of the many facets of uncertainty (some of these approaches are described

in Appendix A with reference to choice modelling).

In this book we will mostly use random variables from probability theory since

they are well established in transportation systems analysis, calibration of models

based on them can be consistently carried out through techniques from inferential

statistics, they can easily be casted in a day-to-day dynamic framework leading to

stochastic process models. On the other hand, the formal structure of assignment

models presented in Chapters 2–4 following a macroscopic approach do not need

random variables and may well include other approaches to uncertainty. Needless

to say Stochastic process model for day-to-day dynamic assignment, described in

Chapter 5, are meaningful under the assumptions of Probability Theory only.

Within-day Dynamics can be modelled, as shown in Chapter 6, through different

approaches: macroscopic, mesoscopic and microscopic, the last leading requiring
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a sort of stochastic modelling. As already noted in the previous section, micro-

simulation or discrete simulation usually refers to the application of continuous

time or (event-driven) SP models, as in Chapter 6 for Within-day Dynamic analysis

and in appendix B for traffic flow analysis.
1.4 Founding conceptual equations
This section describes the main framework used in this book to develop models for

travel demand assignment to transportation networks, and will applied in Chapters

2–6. It is general enough to encompass other approaches that are already available

literature, but not mentioned in this book, or to support the development of new ones.

The proposed framework for assignment models requires to specify six equations

among six vectors, thus any model consistent with it is named SEAM, acronym of

Six Equation Assignment Model, also meaning that it joins together the transporta-

tion supply model and the travel demand model, as described below.

Given the network modelling connections and cost function, the transportation

supply model describes how user choice behaviour affects network level of service

through three equations:

EQN 1. arc-route flow consistency relation;

EQN 2. arc cost(�flow) function, modelling effects of driving behaviour (through a

macroscopic approach), say congestion (cfr Chapter 2), in uncongested

networks arc costs do not depend on arc flows, thus Eq. 2 is not present;

similar concepts may be defined for mesoscopic and microscopic

approaches; in some cases the arc cost may be different from travel time, and

both need to be separately modelled;

EQN 3. route-arc cost consistency relation.

The arc cost(�flow) function is always non-linear. Under steady state conditions

both the flow and the cost consistency relations can be specified through affine trans-

formations. On the other hand under within-day dynamic conditions, flow (and pos-

sibly cost) consistency relations are highly non-linear.

Given the travel demand flows, assuming that each itinerary is described by a

route, the travel demand model this model describes how network level of service

affects user route choice behaviour, usually through three equations:

EQN 4. route utility function, between route utility and costs,

EQN 5. route choice function, between route utilities and route choice proportions,

EQN 6. route-demand flow consistency relation, involving demand flows and route

choice proportions.

The route-demand flow consistency equation is linear in any case, under the assump-

tion of constant demand flows. The utility function is specified through an affine

transformation almost always in research analysis, as well as in practical applica-

tions. The route choice function, derived from any discrete choice analysis theory
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(e.g. Random Utility, Fuzzy Utility, Prospect, … theory) is non-linear; together the

utility function and the choice function make the choice model (cfr Appendix A).

Full exploitation of the SEAM framework is currently available for steady-state

assignment only, still this conceptual framework may be applied in a broader sense to

within-day dynamic assignment too.

Once all the six equations have been specified the resulting SEAM is usually sim-

plified into a model with two non-linear equations between two vectors only with

respect to:

• route costs and flows: Eq. 1, Eq. 2 and Eq. 3 are combined together into the route

cost function, while Eq. 4, Eq. 5 and Eq. 6 are combined together into the route

flow function, or

• arc costs and flows: Eq. 2 stays alone, and Eq. 3 Eq. 4, Eq. 5 Eq. 6 and Eq. 1 are

combined together into the arc flow equation.

Either model it is named TEAM, acronym of Two Equation Assignment Model. This
modelling approach is very effective when a TAN can be used to model transporta-

tion supply, since highlight the role of non-linear Eqs. 2 and 5.
1.5 Summary
1.5.1 Major findings
This introduction reports the main hypothesis and definitions underling the models

proposed in this book for travel demand assignment to a transportation network, also

helping classifying them. At the end of the chapter a general modelling framework is

proposed, named SEAM, acronym of Six Equation Assignment Model. This frame-

work is an original contribution of the authors who already used them in some of their

recent papers.

Models for within-day static assignment, where no kind of dynamics is explicitly

addressed, are described in full details in Chapter 2, for uncongested networks, and

Chapter 3 where fixed-point (FP) models for equilibrium assignment to congested

network are discussed. In Chapters 4 and 5 deterministic (DP) and stochastic process

(SP) models for day-to-day dynamic assignment are respectively presented. Models

for within-day dynamic assignment are described in full details in Chapter 6. Defi-

nitions and notations are introduced in a progressive way chapter by chapter.

The reader may find useful to move from this point to Appendix A to review

Choice Modelling Theories and to Appendix B to review Traffic Flow Theory.
1.5.2 Further readings
As already stated implementation and application issues are out of the scope of this

book, mainly focusing on mathematical features. For details on these issues see

Cascetta (2009). Further considerations on within-day static vs. dynamic flows

can be found in K€ohler et al. (2009). A companion book (possibly by other authors)

discussing these issues has already been programmed for 2020.
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CHAPTER
Assignment to uncongested
networks
 2
Giulio Erberto Cantarella
University of Salerno, Salerno, Italy

The White Rabbit put on his spectacles.

“Where shall I begin, please, your Majesty” he asked.

“Begin at the beginning,” the King said gravely,

“and go on till you come to the end; then stop.”

Lewis Carroll, Alice in Wonderland.

Outline. This chapter introduces basic definitions and notations common to all

kinds of assignment models proposed in the next chapters, and a comprehensive

modelling approach to static assignment to uncongested networks useful as such

or as a part of models for assignment to congested network; presented models are

consistent with the SEAM modelling framework presented in Chapter 1, actually

being a special case, called Five Equation Assignment Model since the arc cost

function is missing; the arc flow function as a flexible model is introduced and

discussed.

Methods for travel demand assignment to transportation networks play a central role in

transportation system analysis describing how travel demand and transportation supply

interact each other. These methods allow to compute performance level and user flow

for each supply element (network arc), resulting from origin-destination demand

flows, user choice behaviour, and the interactions between supply and demand in

the current or any design scenario. Their results, in turn, are the inputs for the design

and/or assessment evaluation of transportation projects.

This chapter discusses within-day static assignment to uncongested transportation

networks, the simplest kind of assignment, relevant as such and as the first step of a

long journey through increasingly more general kinds of assignment discussed in the

following Chapters 3–5, before moving to within-day dynamic assignment in Chapter

6. In any case travel demand is assumed given [HYP ④].

The topic of travel demand assignment to uncongested transportation networks has

beenrarelybeendiscussedassuchin literature.ThebookbySheffi (1985)was the first to

provide a specific analysis of this kind of assignment assuming that the route choice

behaviour is described by aRandomUtilityModel (cfr Chapter 3), naming it Stochastic
Dynamics and Stochasticity in Transportation Systems. https://doi.org/10.1016/B978-0-12-814353-7.00002-9

# 2020 Elsevier Inc. All rights reserved.

17

https://doi.org/10.1016/B978-0-12-814353-7.00002-9


18 CHAPTER 2 Assignment to uncongested networks
Network Loading (SNL); since then this name has been widely used - assignment with

deterministic route choice being traditionally called All-or-Nothing (AoN). Strangely,

afterwards the name Dynamic Network Loading (DNL) has been introduced for defin-

ing the relationship between route and arc flows and costs (cfr EQN 1 and EQN 2 of

SEAM) under within-day dynamic conditions, thus leading to ambiguous meaning of

Network Loading. Recently, the book by Cascetta (2009) introduced clearer names

and acronyms: Stochastic/Deterministic assignment to Uncongested Networks

(SUN/DUN).

In this chapter, we introduce and discuss a comprehensive modelling approach

to assignment to uncongested networks, including all those mentioned above as

well as all those that result from most route choice modelling approaches (cfr

Appendix B to the book). Hence we named it Comprehensive assignment to

Uncongested Networks (CUN). It is described for steady-state conditions, but

it also applies to any TAN. Presented models are consistent with the SEAM

modelling framework presented in Chapter 1, actually being a special case, called

Five Equation Assignment Model (FEAM) since EQN 2, arc cost function, is

missing. Emphasis is models and their features, whilst solution algorithms are

only briefly addressed.

A special case occur assuming that all users follow a maximum utility or mini-

mum cost routes, this kind of assignment is traditionally called All-or-Nothing

(AoN) assignment and this denomination is followed in this book since it may be

derived from several theories, such as Deterministic Utility Theory, Expected Utility

Theory, or as a limit case of Random or Fuzzy Utility Theory (see Remarks in the

Summary at the end of this chapter).

First we introduce basic notations and definitions in Section 2.1, then we dis-

cuss single-class assignment, when of all users belonging to the same class, in

Section 2.2, and multi-class assignment in Section 2.3, when users are grouped

into classes with different characteristics; in Section 2.4 independent route formu-

lation is discussed and finally in Section 2.5 the arc flow function is introduced

for assignment to uncongested networks.
2.1 Basic notations and definitions
Connections are described by an oriented graph G(N, A�N�N), an order pair of a

set of nodes N and a set of arcs A. Each origin and each destination is modelled

through a further node connected to the main network through connecting arcs (or

connectors) not corresponding to real infrastructures. Each route connecting an ori-

gin - destination pair (o-d pair) is described by an acyclic sub-graph depending on

the application: a path, when the route to destination is completely chosen at origin,

or a hyperpath, when the route chosen is result of travelling strategy including both

pre-trip and en-route choices.

Transportation supply is modelled through a (synchronic or diachronic) flow net-

work, that is a graph with a transportation cost, ca, and a flow, fa, associated to each arc,
a. Moreover, a transportation cost, wr, and a flow, hr, is associated to each route, r.
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Main sets and vectors used in the following are enlisted below in alphabetical order

(sets come first) for reader’s convenience:

A is the set or arcs, assumed non empty and finite, with m= |A | elements;

R is the set or routes assumed non empty and finite, with n= |R | elements;

c�0 is the m�1 (column) vector of arc costs with entries ca;
f�0 is the m�1 (column) vector of total arc flows with entries fa;
h�0 is the n�1 (column) vector of route flows with entries hr;
w�0 is the n�1 (column) vector of total route costs with entries wr.

Under steady state conditions, consistency equations hold among the above variables

expressed by affine transformations (TAN):

f¼B � hþ fZ (2.1)

w¼BT � cþwZ (2.2)

where

B is the m�n arc-route generalised incidence matrix (ARGIM) with entries

bar2]0,1] if route r uses arc a, bar=0 otherwise; meaning of entries bar depends
on the definition of route, see below for details and examples;

fZ�0 is them�1 (column) vector of other arc flowswith entries fZ,a not due to
route flows, for instance route flows h regard car flows, while arc flows in

vector fZ regard lorries, taxis, …;

wZ�0 is the n�1 (column) vector of other route costswith entrieswZ,r that are

not additive over generic arc costs, for instance tolls, fees,… with respect to

travel time.

Eq. (2.1) also expresses the arc flow conservation at each node for each o-d pair.

[Thus, no further equation is need like in fluid or electric networks where route flows

are not introduced as variables.]

The arc-route generalised incidence matrix in Eqs (2.1) and (2.2) is very useful

for compact matrix notations, but there is no need to explicitly define it for compu-

tation and application. [Examples below show it for pedagogical purpose only.]

Above equations and the meaning of matrix of B are discussed below for two cases: routes are

modelled by paths or by hyperpaths. Further useful definitions of route variables will be introduced
and discussed at the end of this chapter. Let

Δ be the arc-path incidence matrix with entries δak=1 if arc a belongs to path k, δak=0
otherwise.

Table 2.1 shows the arc-path incidence matrix for graph in Fig. 1.1 with respect to the 3 paths

connecting nodes A and B, already shown in Fig. 1.2.

The cost of path k is given by the sum of arc costs over all arcs belonging to path k plus the other

path cost:

Xk ¼
X

a2kcaþXZ,k 8k
or Xk ¼

X
a
δakcaþXZ,k 8k

or X¼ΔT � cþxZ

(2.3)
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where

xk�0 is the cost of path k;

x�0 is the path cost vector, with entries xk;

xZ,k�0 is the other cost of path k;

xZ�0 is the path other cost vector, with entries xZk.

Table 2.2 shows an example of the arc-path cost consistency equation, with respect to the arc-

path incidence matrix in Table 2.1, other costs are not considered.

Analogously the flow of arc a is given by the sum of the path flows over all paths traversing arc

a plus the other arc flow:

fa ¼
X

k:a2kyK þ fZ,a 8a

or fa ¼
X

k
δakyK þ fZ,a 8a

or f¼Δ � yþ fZ

(2.4)

where

yk�0 is the flow of path k;

y�0 is the path flow vector, with entries yk.

If routes are paths then h=y, w=x, and the arc-route generalised incidence matrix is given by

the arc-path incidence matrix, B=Δ, thus (2.1) and (2.2) are proved.

Table 2.3 shows an example of the arc-path cost consistency equation, with respect to the arc-

path incidence matrix in Table 2.1, other flows are not considered.

Table 2.1 Incidence matrix (cfr graph in Fig. 1.1)
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Ontheotherhand, if routesarehyperpaths, they includes somediversionnodes andeacharcexiting

fromanydiversion node is givena diversion proportion (cfrChapter 1).Letψar2[0,1] be the diversion
proportion given to arc a with reference to hyperpath (route) r, it may have the following values:

ψar 2]0,1], if arc a is a diversion arc belonging to hyperpath r, ψar=1 meaning that only one

diversion arc exits from the diversion node,

ψar=1, if arc a is not a diversion arc, and belongs to hyperpath r,
ψar=0, otherwise, that is if arc a does not belong to hyperpath r.

All diversion proportions from the same (diversion) node have to sum up to 1. The values of

diversion proportions at a diversion nodes depend on the application.

For instance for an urban transit system with overlapping lines they are proportional to the fre-

quencies of the bus lines considered within the hyperpath among all lines available at the bus stop

corresponding to the diversion node. Fig. 2.1 shows an example of transit network (cfr Chapter 1),

each arc is a bus line, the attached number is the bus frequency, A and B may be diversion nodes.

Corresponding diversion proportions for the composed hyperpaths 4, 5, 6, and 7—cfr

Fig. 1.3A–D—are shown in Fig. 2.2A–D.
The proportion λkr that user follows path k having chosen hyperpath r is given by:

λkr ¼
Y

a2k ψar

thus

λkr 2]0,1] if path k is in hyperpath r,

λkr=0 otherwise, that is path k is not in hyperpath r.

Let

Λ be the path-hyperpath proportion matrix with entries λkr, with
P

k λkr=1 8r.
Table 2.4 shows an example of the path-hyperpaths proportion matrix considering the simple

hyperpaths 1, 2, and 3, and the composed hyperpaths 4, 5, 6, and 7.

Table 2.3 Path-arc flow consistency
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IG. 2.2

A) Diversion proportions for composed hyperpath 4. (B) Diversion proportions for

omposed hyperpath 5. (C) Diversion proportions for composed hyperpath 6. (D)

iversion proportions for composed hyperpath 7.
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The cost of hyperpath r is given by the weighted sum of the path costs over all paths belonging

to hyperpath r plus the other hyperpath cost not including other path cost:

wr ¼
X

k
λkrxk þwZ,r

0 8r
or

w¼ ΛT �xþwZ
0 (2.5)

where

wZ
0 �0 is the vector of other route costs with entries wZ,r

0 not including other path costs.

Analogously the flow of path k is given by the weighted sum of the hyperpath flows over all

hyperpaths including path k:

yk ¼
X

r
λkr hr 8k

or

y¼Λ �h (2.6)

If routes are hyperpaths combining Eqs (2.3) and (2.5) yields:

w¼ ΛT �ΔT � cþwZ (2.7)

T 0

Table 2.4 Path-hyperpath matrix
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where wZ =Λ � xZ+wZ . Moreover, combining Eqs. (2.4) and (2.6) yields:

f¼Λ �Δ �hþ fZ (2.8)

Thus assuming B=Λ � Δ (2.1) and (2.2) are proved.
2.2 Basic assignment models
This section presents models for assignment to uncongested networks if users are

only distinguished with respect to o-d pair i they are travelling from/to with a com-

mon set of routes, called the route choice set assumed non empty and finite. Main

vector notations used in the following are enlisted below in alphabetical order for

reader’s convenience (sets come first, then Roman letters, at last Greek letters); these

notations exploit the block structure of most vectors and matrices introduced in the

previous section.

A is the set of arcs, with m= |A | elements;

Ri is the set of (elementary) routes for o-d pair i, with ni= |Ri | elements;

n=
P

i ni is the number of routes connecting all o-d pairs;
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Shi ≜{hi�0: 1T hi=di} � ni is the feasible route flow set for o-d pair i
according to route-demand flow consistency Eq. (2.13);

Sh ≜ {h with blocks hi 2 Shi}={h with blocks hi�0: 1T hi=di} �n be the

feasible route flow set;
Bi is the (m�ni) block of the ARGIM for o-d pair i;
c�0 is the m�1 (column) vector of arc costs;
di�0 is the demand flow for o-d pair i;
f�0 is the m�1 (column) vector of total arc flows;
fZ�0 is the m�1 (column) vector of other arc flows;
hi�0 is the ni�1 (column) block of the vector of route flows for o-d pair i;
hi(�) is the ni�1 (column) route flow function for o-d pair i;
pi�0 is the ni�1 (column) block of the vector of route choice proportions for

o-d pair i, with 1T pi=1;

pi(�) is the ni�1 (column) route choice function for o-d pair i;
vi is the ni�1 block of the (column) vector of route systematic utility for o-d pair i;
wi�0 is the ni�1 block of the (column) vector of total route costs for o-d pair i;
wZi�0 is the ni�1 block of the (column) vector ofother route costs for o-d pair i;
wi(�) is the ni�1 (column) route cost function for o-d pair i;
θi>0 is the vector of the route choice function parameters for o-d pair i;
ψi>0 is the utility scale parameter in the route choice model, for o-d pair i.

Arc and route and demand flows are assumed measured by a common unit: users per

time unit, where a user may be a person walking or riding a bicycle, or a vehicle (a

car, a bus, a truck, …), a ton of freight, a TEU, …. Arc and route costs are assumed

measured by a common unit, usually travel time or money, through duly homogeni-

zation of different attributes not explicit introduced to simplify notations.

This section focuses on transportation systems with a single transportation mode

[HYP ⑤] and single vehicle type [HYP ⑥].
2.2.1 Supply model
Transportation supply models express how user behaviour affects network perfor-

mances. This section describes the two equations that according to the FEAM

framework specify the transportation supply model for a transportation system in

steady-state conditions in the case of an uncongested network, when users are dis-

tinguished with respect to o-d pair only.

• arc-route flow consistency relation

Under the steady-state assumption the total arc flows due to all o-d pairs can be

obtained from the route flows through an affine transformation from the route space

to the arc space defined by the arc-route generalised incidence matrix; highlighting

the block structure in Eq. (2.1) it yields:

f¼
X

i
Bi �hiþ fZ (2.9)
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• arc cost function

No arc cost function since the network is uncongested, thus the arc cost vector, c, is

an input data.

• route-arc cost consistency relation

Under the steady-state assumption the route costs for o-d pair i, can be obtained from
the arc costs through an affine transformation from the arc space to the route space

defined by the transpose of arc-route generalised incidence matrix; highlighting the

block structure in Eq. (2.2) it yields:

wi ¼Bi
T �cþwZi 8i (2.10)
2.2.2 Demand model
Travel demand models express how network performances affect user choice behav-

iour. Only route choice behaviour, and possibly vehicle type choice behaviour are

explicitly modelled assuming constant demand flows. This section first describes

the three equations that according to SEAM framework specify the travel demand

model with given demand flows (constant demand).

• route utility function

The utility function for o-d pair i is assumed specified through a linear transformation

of route costs [HYP ⑦], almost always in research analysis as well as in practical

applications:

vi ¼�ψiwi 8i (2.11)

whereψi>0 is the utility scale parameter, such that the termψiwi is dimensionless

to be consistent with utility unit. A constant term has not been introduced since it

plays the same role of the other route cost vector. [More generally the utility function

may be any continuous non-linear strictly decreasing separable function, since the

utility of a route only depends on the cost of that route.]

• route choice function

Route choice behaviour for o-d pair i can be described by applying any discrete

choice modelling theory (see Appendix A2 to the book) so that route choice propor-

tions depend on route systematic utility:

pi ¼ pi vi; θið Þ 8i (2.12)

where θi is the choice function parameter vector, whose meaning depends on the

choice model specification. If a utility scale parameter is present, it is considered

included in the utility parameter ρi (or vice versa).
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Definition 1 A choice function is defined regular, if:

• it is continuous and monotone increasing with respect to systematic utility,

• it is continuously differentiable with symmetric positive semi-definite (with

respect to real vectors) Jacobian, formally rpi(vi) � 0,

• resulting choice proportions depend on differences between systematic utility

values only [HYP ⑧].

Most often Random Utility Theory (RUT) is applied, assuming that (i) each user,

travelling between o-d pair i, associates to each available route a perceived utility,
(ii) the perceived utility is modelled by a continuous random variable, with mean

given by the systematic utility, due to several sources of uncertainty regarding the

users or the modeller, and (iii) chooses the maximum perceived utility route; thus

the choice probability of an alternative is given by the probability that its perceived

utility is equal to maximum among all alternatives; hence the route choice propor-

tions are assumed defined by the route choice probabilities.

When the perceived utility co-variance matrix is non singular, a probabilistic
route choice function is obtained; it is also called strictly positive if each alternative

gets a strictly positive probability, whichever are the systematic utility values; exam-

ples of strictly positive probabilistic route choice functions are the Logit, Weibit,

Probit, Gammit choice functions, usually adopted for route choice modelling.

[Strictly positive choice functions may sound somehow unrealistic, as any model

they have to be considered suitable mathematical approximations.] If the parameters

of the perceived utility pdf do not depend on systematic utility values, the resulting

choice function is called invariant, if continuous and continuously differentiable, it is
regular.

Anyhow Eq. (2.12) is generally enough to include choice models derived from

other discrete choice theories, such as Fuzzy Utility Theory, Bounded Rationality,

Prospect Theory, … (some of them are described in Appendix B). In any case, a

choice function combined with an utility function gives a choice model.

An example of choice function (2.12) derived from RUT is the well known Logit choice function,

often used as benchmark. For each o-d pair i, connected by routes in the route choice set R , the
i

choice proportion/probability of using route r is given by:

pr ¼ exp vr=θið Þ=
X

k2Ri exp vk=θið Þ 8r 2Ri

where θi=(60.5/π) σiffi0.78 σi>0 is a dispersion parameter proportional to the standard deviation σi
common to the perceive utilities of all routes connecting o-d pair i; the above Logit function is

invariant if the route choice set Ri and the dispersion parameter θi do not depend on systematic

utility values. Combing the above choice function with the utility function: vr=�ψi wr, leads to:

pr ¼ exp �wr=θið Þ=
X

k2Ri exp �wk=θið Þ 8r 2Ri

The utility scale parameter ψi is included in the dispersion parameter θi.
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• route-demand flow consistency relation

Flow conservation for o-d pair i can be expressed as:

hi ¼ di pi 8i (2.13)

It assures that the sum of the flows of all routes connecting the o-d pair i sum up to the

demand flow, that is 1T hi=di, since 1
T pi=1, and non-negative, hi�0, since di�0

and pi�0. A constant term has not been introduced since the resulting arc flows may

be considered in the other arc flow vector. Let

ni be the number of routes connecting o-d pair i;
n=

P
i ni be the number of routes connecting all o-d pairs;

Shi ≜ {hi�0: 1T hi=di} � ni is the feasible route flow set for o-d pair i
according to route-demand flow consistency Eq. (2.13); this set

• has a finite dimension if the number of routes available to o-d pair i is finite (as it
occurs considering all or some elementary routes),

• is non empty if o-d pair i is connected by at least one route,

• is compact, since closed and bounded [in the Euclidean space],

• is convex.

Sh ≜ {h with blocks hi 2 Shi}={h with blocks hi�0: 1T hi=di}� n be the feasible
route flow set, with same features of sets Shi since their number is finite.

Fig. 2.3 shows the feasible route flow set for an o-d pair connected by 3 routes (cfr

pair of nodes (A, D) in Chapter 1), with demand flow d. It is described by a triangle in
a 3-dimensional space defined by 3 axis, one for reach route flow, h1, h2, h3, each
vertex representing the case of all demand flow, d, using one route only.

Set in Fig. 2.3 can also be drawn in a 2-dimensional space (plane), as in Fig. 2.4. It

is still described by a triangle each vertex representing the case of all demand flow, d,
using one route only (cfr De Finetti diagram). On each axis the wide tick is at flow

equal to 0.50d, narrow ticks at 0.25d or 0.75d; the three axes meet in point represent-

ing the case of all 3 route flows being equal, h1=h2=h3=1/3 (the blue circle).
FIG. 2.3

Feasible route set, in 3D space, for 3 routes.



FIG. 2.4

Feasible route set, in 2D space, for 3 routes.

28 CHAPTER 2 Assignment to uncongested networks
Table 2.5 shows an example of demand model, say Eqs (2.11), (2.12), and (2.13), from route costs

to route flows, through route utility and route choice proportions, with reference to the 3 routes in
Tables 2.2 and 2.3. Choice functions is the Logit function in the above example, the utility scale

factor is included in dispersion parameter θ=7; the demand flow d=3600.

Table 2.5 Demand model.
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2.2.3 Parking choice behaviour
Parking choice behaviour jointly with route choice behaviour can easily be casted

in the previously described model, defined by Eqs (2.9)–(2.13), by describing each

destination with three nodes:

1. the access node, it models the access to parking facilities available in the

destination zone and it is connected through a parking arc for each available

parking type (free, metered, illegal, on street, on dedicated areas, …) to

2. the egress node, it models the egress from the parking facility and it is connected

through walking arcs to

3. the final destination node, and possibly to the final destination nodes in other

zones.

The cost associated to each parking arc includes time to find a slot, fare (for metered

slots) or mean fine (for illegal parking), and can be differentiated by od pair i, user
category j and vehicle type m to model restricted parking policies. This modelling

approach is based on Bifulco (1993).



292.3 Independent route formulations
2.3 Independent route formulations
The above presented FEAM(2.9)–(2.13) can be reformulatedwith respect to indepen-

dent route variables. Indeed one route choice proportion or flow is redundant because

it may easily be obtained from the others, assuming all o-d pairs connected by at least

two routes with no loss of generality; indeed arc flows due to o-d pairs connected by

one route can be added to the vector of other arc flows.With reference to the standard

form for simplicity’s sake, for each user class i anyof the first n͂i=ni�1 routes is called

an independent route, i-route for short. To get a compact matrix formulation, let

ni be the number of routes connecting o-d pair i;
n͂i=ni � 1 be the number of i-routes connecting o-d pair i;
Ii be the (ni�ni) identity matrix;

Ei be the (n͂i�ni) matrix obtained by dropping the last row from the identity

matrix Ii;

ei=[0, 0, …, 1]T be the ni-th versor, say a (ni�1) column vector given by the

transpose of the last row of the identity matrix Ii;

1i=[1, 1, …, 1]T be an (ni�1) column vector with all entries equal to one;

Li=(Ii – ei �1iT) � Ei
T be a (ni� n͂i) the route - i-route matrix, obtained from the

(n͂i� n͂i) identity matrix by adding at the bottom one more row given by the

(1� n͂i) row vector �1i
T with all entries equal to �1.
Table 2.6 shows how matrix L can be obtained from matrix I for 3 routes.

Table 2.6 Route—i-route matrix.
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The equations below hold between route and i-route choice proportion and flow

vectors in any case:

~pi ¼Ei �pi 8i (2.14)

~hi ¼Ei � hi 8i (2.15)

pi ¼Li � ~piþei 8i (2.16)

hi ¼Li � ~hiþhZi 8i (2.17)

where

h͂i�0 is the n͂i�1 (column) block of the vector of i-route flows for o-d pair i;
h͂i(�) is the n͂i�1 (column) i-route flow function for o-d pair i;
p͂i�0 is the n͂i�1 (column) block of the vector of i-route choice proportions for

o-d pair i, with 1T pi<1;

p͂i(�) is the n͂i�1 (column) i-route choice function for o-d pair i;
w͂i is the n͂i�1 (column) i-route cost (differences) function for o-d pair i.
hZi=di ei is a (ni�1) column vector with all entries equal to 0, but the last one

equal to the demand flow.

In most cases, such as for invariant choice functions derived from RUT, the route

choice proportions pi for user class i do not actually depend on systematic utilities

vi but on their differences only [HYP ⑧]. Let v͂i be the vector of i-route systematic

utility differences, with an entry for each i-route given by the i-route systematic util-

ity minus the systematic utility of the last route, that is:

v͂i ¼Li
T vi 8i (2.18)

Thus the i-route choice proportions p͂i may be specified as a function of the i-route

systematic utility differences, that is:

~pi ¼ ~pi v͂i; θ�i
� � 8i (2.19)

See Section 2.2 for details about its specifications and features.

Definition 2 A choice function referring to independent alternatives only is defined

strictly (positive) regular, if:

• it gives strictly positive choice proportions for any values of systematic

utility,

• it is continuous and monotone strictly increasing with respect to systematic utility

differences,

• it is continuously differentiable with symmetric positive definite (with respect to

real vectors) Jacobian, r p͂i(v͂i)	0,

• resulting choice proportions depend on systematic utility differences only.
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Instances of strictly regular choice functions are invariant strictly positive probabi-

listic choice functions derived from the Random Utility Theory (such that the per-

ceived utility pdf is strictly positive over an unbounded set with non null

measure). Examples are the Logit, Weibit, Probit, Gammit choice functions, usually

adopted for route choice modelling. Instances also exist from other discrete choice

theories (see Appendix A1).

Moreover, let

w͂i be the vector of i-route cost differences, with an entry for each i-route given

by the i-route cost minus cost of the last route, that is:

w͂i ¼Li
T � wi 8i (2.20)

The supply model (2.9)–(2.10) repeated below for reader’s convenience:

f¼
X

i
Bi �hiþ fZ (2.9)

wi ¼Bi
T �cþwZi 8i (2.10)

can be formulated with respect to the i-route variables including Eq. (2.17) into (2.9)

and (2.20) into (2.10):

f¼
X

i
Bi � Li � h͂iþhZi

� �þ fZ (2.21)

w͂i ¼Li
T � Bi

T � cþwZi

� � 8i (2.22)

or

f¼
X

i
Bi

0 � h͂iþ fZ
0 (2.23)

w͂i ¼Bi
0T � cþ w͂Zi 8i (2.24)

where

Bi
0 ¼Bi �Li

fZ
0 ¼Bi �hZiþ fZ

w͂Zi ¼Li
T �wZi

Furthermore, the demand model (2.11)–(2.13) can be formulated with respect to the

i-route variables as:

v͂i ¼�ψi w͂i 8i (2.25)

p͂i ¼ p͂i v͂i; θ�i
� � 8i (2.26)

h͂
0
i0 ¼ di p͂i 8i (2.27)

Eq. (2.27) assures that the sum of the flows of all routes connecting the o-d pair i are
upper bounded the demand flow, that is 1T h͂i
di, since 1

T p͂i
1, and non-negative,

h͂i�0, since di�0 and p͂i�0.
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Eqs (2.23)–(2.27) describe the assignment to uncongested network with respect

to arc and i-route variables, they are equivalent to (2.9)–(2.13) since they lead to the
same arc flows. This model is useful for some relevant features of the i-route flow

function as discussed below, these features will be useful in Chapter 3.

Moreover, this formulation allow to clearly indentify the actual size of the assign-

ment problem, that is the number of independent variables, say the number of i-routes.

It is worth stressing that this modelling approach can only be applied with linear util-

ity functions [HYP ⑦ mentioned above] and with route choice functions such that

choice proportions depend on differences between systematic utility values only

[HYP ⑧ mentioned above].
2.4 Multi class assignment
In this section users are distinguished with respect to o-d pair they are travelling

from/to, i, with a common set of routes, called the route choice set, Ri, as in the pre-

vious section, but they are also distinguished with the respect the user class they
belong, j, with specific arc costs, route utility and choice functions, as well as any

behavioural parameter. User classes can be used to distinguish users with different

socio-economic characteristics, such as age, occupation, household size, …, type of

freight, shipping size.

This section presents models for multi-class assignment to uncongested networks

assuming that users are distinguished with respect to o-d pair i and user class jwith a
common set of routes, called the route choice set, Rij, assumed non empty and finite,

extending equations presented in the previous section. Main vector notations used

in the following are enlisted below in alphabetical order for reader’s convenience

(sets come first, then Roman letters, after Greek letters); these notations highlight

the need of a further block structure of most vectors and matrices introduced in

the Section 2.2.

A is the set of arcs, with m= |A |;
Rij is the set of (elementary) routes for o-d pair i and user class j, with nij= |Rij |;

Bij is the m�nij block of the ARGIM for o-d pair i and user class j;
c�0 is the m�1 (column) vector of arc generic costs, common to all user

classes;

c j�0 is the m�1 (column) vector of arc total costs for user class j;
cS
j �0 is the m�1 (column) vector of arc specific costs for user class j, such as

additive tolls, …;

dij�0 is the demand flow for o-d pair i and user class j;
f�0 is the m�1 (column) vector of total arc flows;
f j�0 is the m�1 (column) vector of arc flows of user class j;
fZ�0 is the m�1 (column) vector of other arc flows;
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hij�0 is the nij�1 (column) block of the vector of route flows for o-d pair i and
user class j;

hij(�) is the nij�1 (column) route flow function for o-d pair i and user class j;
pij�0 is the nij�1 (column) vector of route choice proportions for o-d pair i

and user class j, with 1T pij=1;

pij(�) is the nij�1 (column) route choice function for o-d pair i and user class j;
vij is the nij�1 block of the (column) vector of route systematic utility for o-d

pair i and user class j;
wij�0 is the nij�1block of the (column) vector of total route costs for o-d pair i

and user class j;
wZij�0 is the nij�1 block of the (column) vector of other route costs for o-d

pair i and user class j;
ηij>0 is the flow equivalence parameter for o-d pair i and user class j;
θij>0 is the vector of the route choice function parameters for o-d pair i and

user class j;
ψij>0 is the utility scale parameter in the route utility function for o-d pair i

and user class j;
χij>0 is the cost equivalence parameter for o-d pair i and user class j,

modelling for example different on-board comfort, speeds, ... .

Arc and route and demand flows for each user class j are assumed measured by a

specific common unit, say users per time unit, the flow equivalent parameters enable

to combined them together. Arc and route costs are assumed measured by a common

unit, usually travel time or money, through duly homogenization of different attri-

butes not explicit introduced to simplify notations.
2.4.1 Supply model
This section describes the extension of the two equations that according to the FEAM

framework specify the transportation supply model for a transportation system in

steady-state conditions in the case of an uncongested network, to the case of users

distinguished with respect to both o-d pair and user class.

• arc-route flow consistency relation

Under the steady-state assumption the arc flows due to each user class j (and all o-d

pairs) can be obtained from the route flows through an affine transformation:

f j ¼
X

i
Bij �hij 8j (2.28a)

Then the total arc flows can be obtained by summing up over all user classes:

f¼
X

j
ηij f

jþ fZ (2.28b)

where

ηij�0 is the equivalence flow parameter for o-d pair i and user class j such that
all arc flows of any user class are measured in the same unit.
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• arc cost function

No arc cost function since the network is uncongested, thus the arc cost vector, c, is

an input data.

• route-arc cost consistency relation

The arc costs are generally different with respect to the o-d pair i and user class j to
reflect different performances and can be defined through an affine transformation of

common arc costs:

c j ¼ χij cþcS
j 8j (2.29a)

where

cS
j �0 is the A�1 (column) vector of arc specific costs for user class j, such as

additive tolls, …; these costs may be used for modelling congestion charge

tolls, limited access, … differentiated per user class;

χij �0 is the equivalence cost parameter for o-d pair i and user class j such that
all arc costs of any user class are measured in the same unit.

Under the steady-state assumption the route costs for o-d pair i and user class j can be
obtained from the corresponding arc costs through an affine transformation:

wij ¼Bij
T � c jþwZij 8i, j (2.29b)

2.4.2 Demand model
This section describes the straightforward extension of the three equations that

according to the FEAM (or SEAM) framework specify the transportation demand

model with given demand flows (constant demand) to the case of users distinguished

with respect to user class too.

• route utility function

The utility function for o-d pair i is assumed specified through a linear transformation

of route costs, almost always in research analysis as well as in practical applications:

vij ¼�ψijwij 8i, j (2.30)

where ψij>0 is the utility scale parameter for o-d pair i and user class j.

• route choice function

Route choice behaviour for o-d pair i and user class j can be described by applying

any discrete choice modelling theory so that route choice proportions depend on

route systematic utility:

pij ¼ pij vij; θij
� � 8i, j (2.31)
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FIG. 2.5

Feasible i-route set, for 2 i-routes.
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where θij is the choice function parameter vector for o-d pair i and user class j;
see Section 2.2 for details about route choice function specification and features.

• route-demand flow consistency relation

Flow conservation for o-d pair i and user class j can be expressed as:

hij ¼ dij pij 8i, j (2.32)

It assures that flows of all routes connecting the o-d pair i for user class j sum up to

demand flow, that is 1T hij=dij, since 1
T pij=1 and non-negative, hij�0, since dij�0

and pij�0.

Fig. 2.5 shows the feasible i-route flow set for an o-d pair connected by 2 i-routes,

with demand flow d. It is described by a triangle in a 2-dimensional space defined by

2 axis, one for reach i-route flow, h͂1 and h͂2, each vertex representing the case of all

demand flow, d, using one i-route only.

If the distribution among user classes is given, the above three equations are

enough to model the travel demand. On the other hand, if the distribution among user

classes is explicitly modelled further equations are needed. This issue is out of the

scope of this book.
2.4.3 Reduction to the standard form
The above model for multi-class assignment to uncongested networks can easily be

reformulated in a form similar to the single-class case, which is called in the follow-

ing the standard form. At this aim, let

i0 =(i, j) denote the combination of o-d pair i and user class j,

d ̅i0 ¼ ηij dij,

h̅i0 ¼ ηj hij,

w ̅i0 ¼ 1=χij
� �

wij,
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w ̅Zi0 ¼ 1=χij
� �

wZijþBij
T cS

j
� �

,

ψ̅i0 ¼ψ ij χij,

the above presented Eqs (2.28)–(2.32) become

f¼
X

i0
Bi0 � h̅i0 þ fZ ð2:280Þ

w ̅i0 ¼Bi0
T � cþ w̅Zi0 8i0 ð2:290Þ

vi0 ¼�ψ̅i0 w ̅i0 8i0 ð2:300Þ

pi0 ¼ pi0 vi0 ; θ�i0
� � 8i0 ð2:310Þ

hi0 ¼ d ̅i0 pi0 8i0 ð2:320Þ

formally equal to Eqs (2.9)–(2.13), although some variables have a slightly differ-

ent meaning; it is worth noting that parameters ηj still play a role, since they are

hidden in variables d ̅i0, whilst parameters χij, which in this new formulation cannot

be distinguished from parameters ψ ̅i0, still play a role, since they are hidden in

variables w ̅Zi0.
This formulation will be useful in the below Section 2.5 and in Chapters 3–5,

since enable to make reference to basic Eqs (2.9)–(2.13) without any loss of

generality.

Equations for multi-class assignment can straightforwardly be reformulated with

respect to i-route flows and costs, as in the case of single class assignment; details are

not reported for brevity’s sake.
2.4.4 Multi-vehicle and multi-mode assignment
User classes may also be used to further distinguish users with respect the vehicle

type, slow vs. fast cars, traditional vs. advanced cars, … and/or the transportation

mode, walk, bicycle, car,… they use to travel. In this case flow and cost equivalence

parameters, ηij and χij, permit to characterise vehicle type and/or transportation

mode.

The degree of occupancy, say the average number of travellers per vehicle, per

user class jmay be considered included in the flow equivalence parameter ηijwith no
loss of generality. On the other hand, if the choice proportions among vehicle types

and/or transportation modes are explicitly modelled further equations are needed,

and these parameters may play a very relevant role. This issue is out of the scope

of this book.
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2.5 Arc flow function and arc feasible set
In this section the arc flow function is introduced and discussed as a model for the

Comprehensive assignment to an Uncongested Network. Main vector notations used

in the following are enlisted below in alphabetical order (sets come first, then Roman

letters, at last Greek letters) for reader’s convenience:

Sf � n is the feasible arc flow set;

d is the vector of demand flows, with entries di;
f(�) is the arc flow function.

All equations describing the supply and the demand modes put in standard form, say

with formal reference to the basic Eqs (2.9)–(2.13), can be combined together to

define the arc flow function, that is the relation between arc flows and arc costs:

f c; di,ψi, θi8ið Þ≜
X

i
di Bi �pi �ψi Bi

T � cþwZi; θi
� �� �þ fZ (2.33)

Thus (omitting parameters for simplicity’s sake):

f¼f c; dð Þ 8c� 0 (2.34)

Fig. 2.6 shows a data-flow diagram of the arc flow function, highlighting the roles of

the main variables.

The very same function is obtained with respect to i-route flows and costs with

reference to Eqs (2.23)–(2.27). A formally similar function is obtained in the case of

multi-class assignment; all considerations below still hold in any case.

The arc flow function gets values in the feasible arc flow set:

Sf≜ f� 0 : f¼
X

i
Bi hiþ fZ, hi � 0 : 1T hi ¼ di8i

n o
�m
where m is the set of real m�1 (column) vectors with Euclidean distance.

This set is a linear transformations of the route feasible set, thus it:

• has a finite dimension if the number of arcs is finite,

• is non empty if each o-d pair is connected by at least one route,
d

h

f

w

c

FIG. 2.6

Data-flow diagram of the arc flow function.
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• is compact, since closed (or its closure is considered if open) and bounded, the

latter if the number of routes available to each o-d pair is finite (as it occurs

considering all or some elementary routes),

• is convex.

The arc flow function share all features of the route flow functions if the number of

routes available to each o-d pair is finite. Accordingly it is defined regular if:

• it is continuous and monotone decreasing with respect to arc costs:

f c0ð Þ� f c00ð Þð ÞT � c0�c00ð Þ
 0 8c0 6¼ c00
• it is continuously differentiable with symmetric negative semi-definite (with

respect to real vectors) Jacobian, r f(c) ≼ 0.

It is worth noting it is not strictly monotone / regular even if all the route choice

functions are strictly monotone/regular, thus it is not invertible, and different arc cost

vectors giving the same arc flow vector may exist.

Since the arc flow function is defined by the sum over all o-d pairs, it is homog-

enous of degree 1 with respect to demand flows:

f c; αdð Þ¼ α f c; dð Þ 8α> 0 (2.35)

The arc flow function can easily be computed if route can explicitly be enumerated.

Computation algorithms that avoid explicit route enumeration are available for some

probabilistic choice functions derived from RUT (and choice functions described in

the appendix). Eq. (2.33) implies that arc flows due to each o-d pair i can be com-

puted one by one and then summed up together, independently of the order. These

algorithms are usually based on shortest (hyper-)path algorithms, or some extensions

of them; they share a similar structure starting from an origin (destination):

• forward (backward) step: arc weights are computed defining how much of the

demand will traverse each arc;

• backward (forward) step: back tracing from each destination (forward tracing

from each origin) demand flows are added to each arc taking into account arc

weights computed in the first step.

In some cases the solution is guaranteed within a finite number of steps, in others

Montecarlo techniques are needed that can only provide an unbiased estimation

of the searched arc flow vector within a finite number of steps. Details are out of

the scope of this book (see Cascetta, 2009).

Table 2.7 shows an example of the arc flow function (2.34), from arc costs to arc flows, summing

up Tables 2.2, 2.5, and 2.3. Choice functions is the Logit function in the above example, the utility
scale factor ψ is included in dispersion parameter θ=7; the demand flow is d=3600.
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392.5 Arc flow function and arc feasible set
With reference to the route feasibility set shown in Fig. 2.4, Fig. 2.7 shows the effects on the

route flows h of doubling or halving the dispersion parameter θ, that is θ 2 {14.0, 7.0, 3.5}. [As

already noted it includes the utility scale factor ψ].

As expected increasing θ move h towards the conditions of users uniformly spreading among

all routes, that is all route flows being equal to one third of demand flow, d/3, say θ=∞ (350 is a

Table 2.7 Arc flow function
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great enough value in this case). On the other hand, decreasing θmove h towards the conditions of

all users concentrating on the shortest route 1, say θ=0 (0.7 is a small enough value in this case).

In this examples, as in the following chapters, we make reference to route flows since they can

described in a plane figure, cfr Fig. 2.4, but any computation can be carried out without explicit

enumeration of routes, as already stated.
2.6 Summary
2.6.1 Major findings
This chapter presented several models for Comprehensive assignment to Uncon-

gested Networks, within Five Equation Assignment Modelling (FEAM) framework,

obtained from the SEAM framework dropping the equation relative to the arc cost

function. All of them can be reduce to the standard form and then to the arc flow

function. Results hold under any assumptions leading to a Transpose Affine Network

(TAN), being synchronic or diachronic.

The proposed approach is very general, can easily extended under other assump-

tions, and enables to specify models for assignment to congested networks, as shown

in the next chapters. It should be remarked that optimization models are available for

some very particular instances of assignment to uncongested networks, but they can-

not be generalised, nor used for general models for assignment to congested networks

(see appendix to Chapter 5 in Cascetta, 2009, for a review).

All parameters introduced above are to be calibrated against real/simulated data,

this relevant issues is out the scope of this book. As already stated implementation

and application issues are out of the scope of this book, mainly focusing on mathe-

matical features. (For details on these issues see Cascetta (2009). A companion book

(possibly by other authors) discussing these topics is under planning.

2.6.2 Further readings
Hyperpaths and their relationship with pre-trip en-route route choice strategies have

been introduced by Nguyen and Pallottino (1988) and Spiess and Florian (1989).

For details on schedule-based assignment to diachronic networks see the recent book

edited by Gentile and N€okel (2016), even though the contents mostly refer to deter-

ministic assignment only (see below). Some references on assignment with fuzzy

utility see next chapter.

2.6.3 Remarks
Some approaches to assignment assume that all sources of uncertainty are negligible,

thus all users travelling between o-p pair i follow maximum utility routes, and do

not use at all any of the other routes. This user choice behaviour assumption (cfr

Wardop, 1952) may be obtained from Deterministic Utility Theory, or as a limit

of Random/Fuzzy Utility Theory when dispersion goes to zero, as well as from

the Expected Utility Theory. (See Appendix A for more details.) This approach leads

to the so-called All-or-Nothing (AoN) assignment for uncongested networks.
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In this case, the route choice function (2.12) is actually a multi-valued function

(also called a one-to-many or a point-to-set function or a map), since it may well be

the case that the systematic utility values of two or more routes are equal to the max-

imum. Thus the arc function (2.34) turns out a multi-valued function as well.

A different approach, often followed to avoid this kind of functions, is useful for

equilibrium assignment to congested networks described in this chapter. Let

pDi(vi) � 0 be any of the route deterministic choice proportion vectors corre-

sponding to systematic utility vector vi for o-d pair i with 1T pDi(vi) = 1; for any

route r
if vir < vimax then pir =0 , if pir > 0 then vir = vimax
[The case pir = 0 with vir = vimax it is not ruled out by this condition.]

From the above condition for any systematic utility vector vi pDi = pDi(vi) is

equivalent to the following condition (see Appendix A for more details):

vi
T � pDi�qið Þ� 0 8qi � 0 with 1T qi ¼ 1 (2.36)

If condition (2.37), instead of Eq. (2.12), is combined with Eqs (2.9), (2.10), (2.11)

and (2.13) the following condition is obtained, equivalent to the arc flow function

with deterministic route choice behaviour:

cT � f� fDð Þ� 0 8f 2Sf (2.37)

where fD is any of the arc flow vectors corresponding to arc cost vector c. [Other

flows and other costs are omitted to avoid awkward equations.] The (linear varia-

tional) inequality (2.37) is equivalent to the following linear optimization model:

fD ¼ argminf2Sf c
T � f (2.38)

See remarks at the end of the next chapter for further comments.
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CHAPTER
3
Assignment to congested
networks: User
equilibrium—Fixed points
Giulio Erberto Cantarella
University of Salerno, Salerno, Italy

Phil: Do you know what today is?

Rita: No, what?

Phil: Today is tomorrow. It happened.

from movie Groundhog Day.

Outline. This chapter describes a comprehensive modelling approach to steady-state

user equilibrium assignment to congested networks through Fixed-Point (FP)

models; presented models are consistent with the SEAM modelling framework pre-

sented in Chapter 1; first the route cost and flows functions are also introduced and

discussed, then fixed-point models with respect to flows and/or costs are introduced

and discussed.

As already noted, methods for travel demand assignment to transportation networks

play a central role in transportation system analysis, they allow to compute flows and

costs for each supply element, resulting from origin-destination demand flows, user

choice behaviour, congestion and their interactions in any scenario.

This chapter discusses Fixed-Point (FP) models for steady-state equilibrium

assignment to congested transportation networks, one of the most used kind of

assignment, implemented in several commercial software applications. They will

turn out a special case of the Deterministic Process models described in

Chapter 4.

User Equilibrium assignment searches for mutually consistent arc flows and

costs. It was first introduced under steady-state conditions by Wardrop (1952),

who named it User Equilibrium (UE), following a modelling approach to route

choice behaviour that we may now consider an application of the Deterministic Util-

ity Theory. A more general kind of equilibrium based on application of the RUT was

introduced by Daganzo and Sheffi (1977), who named it Stochastic User Equilibrium
Dynamics and Stochasticity in Transportation Systems. https://doi.org/10.1016/B978-0-12-814353-7.00003-0
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(SUE). The book by Sheffi (1985) provided several optimisation models for both UE

and SUE. Afterwards Daganzo (1983) introduced fixed-point models using the

inverse cost function. A general and flexible framework was proposed by

Cantarella (1997), still based on FP models, but without the need of the inverse cost

function (see also Chapters 5 and 6 in Cascetta, 2009).

This chapter introduces and discusses a comprehensive fixed-point modelling

approach to equilibrium assignment to congested networks, including all those men-

tioned above as well as all those that result from most route choice modelling

approaches (cfr Appendix A1 to the book). Hence it is named Comprehensive User

Equilibrium assignment to congested networks (CUE). It is described for steady-

state conditions, but it also applies to any TAN. Presented models are consistent with

the SEAM modelling framework presented in Chapter 1, leading to fixed-point

models.

A special case occur assuming that all users follow a maximum utility or mini-

mum cost routes, this kind of assignment is most often called just User Equilibrium

(UE) assignment (see above) and this denomination is followed in this book; it may

be derived from several theories, such as Deterministic Utility Theory, Expected

Utility Theory, or as a limit case of Random or Fuzzy Utility Theory (see Remarks

at the end of this chapter for details and comments).

Section 3.1 introduces basic equations. Section 3.2 discusses fixed-point models.

Existence and basic uniqueness conditions, solution algorithms, and conditions for

their convergence are presented (implementation issues are not discussed); advanced

uniqueness and convergence conditions are discussed in Section 3.3.
3.1 Basic equations
This section presents the basic equations for (within-day static) user equilibrium

assignment adding the arc cost function to the five equations in the standard form

introduced in the previous Chapter 2, reference is made to Eqs (2.9)–(2.13) and
(2.23)–(2.27), but the presented approach can straightforwardly be applied to

multi-class assignment (2.29)–(2.32) as well; all definitions and assumptions intro-

duced in the previous chapter still hold, unless otherwise stated. Main vector nota-

tions from Chapter 2 as well as few new ones used in the following are enlisted below

in alphabetical order for reader’s convenience (sets come first, then Roman letters, at

last Greek letters).

A is the set of arcs, with m¼j A j elements;

m is the set of real m�1 (column) vectors with Euclidean distance;

m is the number of arcs;

ni is the number of routes connecting o-d pair i;
n¼P

i ni is the number of routes connecting all o-d pairs;
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ñi¼ni - 1 is the number of i-routes connecting o-d pair i;
ñ ¼ P

i ñi is the number of i-routes connecting all o-d pairs;

Ri is the set of routes for o-d pair i, with ni¼j Ri j elements;

R¼[i Ri is the set of routes for all o-d pairs, with n¼j R j¼P
i ni elements;

Sf is the feasible arc flow set;

Shi is the feasible route flow set for o-d pair i;
Sh is the feasible route flow set;

Sh̃ is the feasible i-route flow set;

B is the (m�n) ARGIM;

Bi is the (m�ni) block of the ARGIM for o-d pair i;
c�0 is the m�1 (column) vector of arc costs;
c(�) is the m�1 (column) arc cost function;
di�0 is the demand flow for o-d pair i;
d�0 is the demand flow vector with entries di;
f�0 is the m�1 (column) vector of total arc flows;
fZ�0 is the m�1 (column) vector of other arc flows;
f(�) is the m�1 (column) arc flow function;
h�0 is the n�1 (column) vector of route flows for all o-d pairs;

hi�0 is the ni�1 (column) block of the vector of route flows for o-d pair i;
hi(�) is the ni�1 (column) route flow function for o-d pair i;
h(�) is the n�1 (column) route flow function for all o-d pairs;

h̃ is the ñ � 1 (column) vector of i-route flows for all o-d pairs;

h̃(�) is the ñ � 1 (column) route flow function for all o-d pairs;

pi�0 is the ni�1 (column) block of the vector of route choice proportions for
o-d pair i, with 1T pi¼1;

pi(�) is the ni�1 (column) route choice function for o-d pair i;
vi is the ni�1 block of the (column) vector of route systematic utility

for o-d pair i;
wi�0 is the ni�1 block of the (column) vector of total route costs

for o-d pair i;
w�0 is the n�1 (column) vector of total route costs;
wZi�0 is the ni�1 block of the (column) vector of other route costs for o-d pair i;
wZ�0 is the n�1 (column) vector of other route costs for all o-d pairs;

w(�) is the n�1 (column) route cost function for all o-d pairs;

wi(�) is the ni�1 (column) route cost function for o-d pair i;
w̃ is the ñ � 1 (column) vector of i-route costs for all o-d pairs;

w̃(�) is the ñ � 1 (column) i-route cost function for all o-d pairs;

θi>0 is the vector of the route choice function parameters for o-d pair i;
κa>0 is the capacity of arc a;
κ>0 is the m�1 (column) vector of the arc capacities, with entries κa;
ψi>0 is the utility scale parameter in the route choice model, for o-d pair i.
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3.1.1 Supply models
Transportation supply models express how user behaviour affects network perfor-

mances. This section describes the three equations that according to the SEAM

framework specify the transportation supply model for a transportation system in

steady-state conditions in the case of a congested network.

• arc-route flow consistency relation

Under the steady-state assumption the total arc flows due to all o-d pairs can be

obtained from the route flows through an affine transformation from the route space

to the arc space defined by the arc-route generalised incidence matrix:

f¼
X

i
Bi �hi + fZ (3.1)

or

f¼B �h + fZ
• arc cost function

Due to congestion, say driving user behaviour, arc costs depend on the arc total

flows:

c¼ c f; κð Þ� 0 8f 2 Sf (3.2)

where

Sf≜ {f�0: f5
P

i Bi hi+ fZ, hi�0: 1T hi¼di 8 i}� m is the feasible arc flow

set; this set, as already stated in Chapter 2,

• has a finite dimension if the number of arcs is finite,

• is non empty if each o-d pair is connected by at least one route,

• is compact, since closed and bounded, the latter if the number of routes

available to each o-d pair is finite (as it occurs considering all or some

elementary routes),

• is convex;

κ>0 is the vector of the arc capacities, with entries κa, say the maximum flow

that may traverse arc a, measured consistently with arc flows; in most

functions the arc cost actually depends on the ratio between the arc flow and

the capacity, fa / κa, in this case the capacity plays the role of arc flow

scale factor.

Other parameters of the arc cost function are not explicitly introduced. [Function

(3.2) is considered a vector function, thus singular is used; sometime plural “arc cost

functions” is used to stress that each arc has its own cost function.] The cost function

is called:
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• separable, the cost of each arc a, ca, only depends on the corresponding flow, fa,
• non-separable, the cost of at least an arc a, ca, depends on the flow of another

arc, fa0.

Most often cost functions are derived from Traffic Flow Theory for arcs modelling

moving along a street (a railway, an airway, …) or from Queuing Theory for

arcs modelling waiting at a bottleneck, such as a junction approach (see

Appendix A).

All usually adopted cost functions can be assumed:

• continuous over the set of feasible arc flows Sf; this assumption implies that

the function may be defined for values of flow greater than capacity

too, and no vertical asymptote is present, according to within-day static

assumption;

• continuously differentiable with respect to arc flows over the set of feasible

arc flows Sf; [or better over a suitable (open) superset of Sf such that all point

of Sf are interior points of it], with Jacobian matrix JC(f)¼—c(f), thus

JC(f)¼0 means that the network is uncongested, and JC(f) 6¼0 that it is

congested (at least for some arcs); a continuously differentiable arc cost

function is:

• separable, if JC(f) is a diagonal matrix;

• non-separable, if JC(f) otherwise; in this case it is useful to distinguish two

cases:
ο JC(f) is symmetric,

ο JC(f) is asymmetric.
In the followingM� 0 (� 0) means that matrixM is positive (semi-)definite,M� 0

(≼ 0) that is negative (semi-)definite, with respect to real vectors, thus matrixMmay

be not symmetric. Another relevant feature is monotonicity:

• the arc cost function is strictly increasing monotone, a sufficient condition for this

is that the Jacobian matrix is positive definite (for real vectors), JC(f)�0, but not

necessarily symmetric:

c f 0ð Þ	 c f 00ð Þð ÞT � f 0 	 f 00ð Þ> 0 8f 0 6¼ f 00

• the arc cost function is increasing monotone, a necessary and sufficient condition

for this is that the Jacobian matrix is positive semi-definite (for real vectors),

JC(f) � 0, but not necessarily symmetric:

c f 0ð Þ	 c f 00ð Þð ÞT � f 0 	 f 00ð Þ≥0 8f 0 6¼ f 00

This feature can easily be checked for separable arc cost functions, and strict mono-

tonicity holds for all usually adopted separable cost functions. On the other hand, this

may not be the case for non-separable cost functions.
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An example of separable arc cost functions is given by the often used BPR-like function (Fig. 3.1

and Table 3.1):

ca ¼ co,a 1 + ν1 fa=κað Þν2
� �

:

where
ν1>0 is the congestion multiplier: how much greater is the arc cost when flow is equal to

capacity with respect to zero flow cost; this parameter is to be calibrated against data,

in urban applications 2 is an often used values [in the original BPR function it was set

to 0.15 for extra urban highways];

ν2>0 is the congestion exponent: how fast the arc cost increases against flow; this (integer)

parameter too is to be calibrated against data, in urban applications 2 is an often used

values; as this value increases the shape of the function tends to a vertical asymptote

[in the original BPR function it was set to 4];

co,a>0 is the cost when flow is zero.
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Arc cost functions.

Table 3.1 Parameters of arc cost functions; ν2¼2 for all arcs.
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• route-arc cost consistency relation

Under the steady-state assumption the route costs for o-d pair i, can be obtained from
the arc costs through an affine transformation from the arc space to the route space

defined by the transpose of arc-route generalised incidence matrix:

wi ¼Bi
T � c+wZi 8i (3.3)

or

w¼BT � c +wZ:

• route cost function

The three Eqs (3.1)–(3.3) describing the supply model can be combined to define the

route cost function for each o-d pair i which expresses the relation between route

costs and route flows, say how user choice behaviour affects network performances:

wi h; κð Þ≜Bi
T � c B �h+ fZ; κð Þ+wZi8i:

that are blocks of the block vector function: w(h; κ), thus.
w5w h; κð Þ� 0 8h2 Sh (3.4)

where

ni is the number of routes connecting o-d pair i;
n¼P

i ni is the number of routes connecting all o-d pairs;

Shi ≜ {hi�0: 1T hi¼di} �  ni is the feasible route flow set for o-d pair i;
according to route-demand flow consistency Eq. (2.13) in Chapter 2,

repeated below as (3.8), it (see Fig. 2.3)

• has a finite dimension if the number of routes available to o-d pair i is finite (as it
occurs considering all or some elementary routes),

• is non empty if o-d pair i is connected by at least one route,

• is compact, since closed and bounded [in the Euclidean space],

• is convex.

Sh ≜ {h with blocks hi 2 Shi}¼{h with blocks hi�0: 1T hi¼di} �  n is the

feasible route flow set, with same features of sets Shi since their number is

finite.

The route cost function share most of the features of the arc cost function,

but generally is increasing monotone, with a positive semi-definite Jacobian,

rw(h) � 0, both for increasing or strictly increasing arc cost

functions.

Similar equations can be defined with respect to i-route variables (details are

omitted) leading to the i-route cost function:

w5w h; κð Þ� 0 8h2 Sh (3.5)
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where

ñi¼ni - 1 is the number of i-routes connecting o-d pair i;
ñ ¼ P

i ñi s the number of i-routes connecting all o-d pairs;

Sh̃ ≜ {h̃ with blocks h̃i�0: 1T h̃i
di} � en is the feasible i-route flow set, it

• has a finite dimension if the number of routes available to each o-d pair i is finite
(as it occurs considering all or some elementary routes),

• is non empty if each o-d pair i is connected by at least

one route,

• is compact, since closed and bounded [in the Euclidean

space

• is convex,

• has interior points.

The route cost function share most of the features of the arc cost function, but gen-

erally is increasing monotone, with a negative semi-definite Jacobian, rw̃(h̃) ≼ 0,

both for increasing or strictly increasing arc cost function.
3.1.2 Demand models
Travel demand models express how network performances affect user choice behav-

iour. This section first describes the three equations that according to SEAM frame-

work specify the travel demand model as already introduced in the previous chapter

and repeated here for reader’s convenience.

• route utility function

The utility function for o-d pair i is assumed specified through a linear trans-

formation of route costs, almost always in research analysis as well as in practical

applications:

vi ¼	ψiwi 8i (3.6)

where ψi>0 is the utility scale parameter, such that the term ψwi is dimensionless

to be consistent with utility unit.

• route choice function

Route choice behaviour for o-d pair i can be described by applying any discrete

choice modelling theory (see appendix A2 to the book) thus route choice proportions

depend on route systematic utility:

pi ¼ pi vi; θið Þ 8i (3.7)
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where θi is the choice function parameter vector, whose meaning depends on the

choice model specification. If a utility scale parameter is present, it is considered

included in the utility parameter ψi (or vice versa).

• route-demand flow consistency relation

Flow conservation for o-d pair i can be expressed as:

hi ¼ di pi 8i (3.8)

It assures that flows of all routes connecting the o-d pair i sum up to demand flow,

that is 1T hi¼di, since 1T pi¼1, and non-negative, hi�0, since di�0 and pi�0.

• route flow function

The three Eqs (3.6)–(3.8) describing the demand model can be combined to

define the route flow function for o-d pair i, which expresses the relation between

route flows and route costs, say how network performances affect user choice

behaviour:

hi wi; di,ψ, θið Þ≜di pi 	ψwi; θið Þ 8i
that are blocks of the block vector function (omitting parameters): h(w; d), thus.

h5h w; dð Þ 2 Sh 8w� 0 (3.9)

with values in set Sh introduced above. Since demand flows are non-negative the

route flow function has the same features of the route choice proportion functions;

in particular if each of them is regular, that is.

• it is continuous and monotone increasing with respect to systematic utility values,

• it is continuously differentiable with symmetric negative semi-definite (with

respect to real vectors) Jacobian,

the route flow function is regular:

• it is continuous and monotone decreasing with respect to route costs,

• it is continuously differentiable with symmetric negative semi-definite (with

respect to real vectors) Jacobian, rh(w) ≼ 0.

Similar equations can be defined with respect to i-route variables (details are omit-

ted) leading to the i-route flow function:

eh5eh ew; dð Þ 2 Sh~ 8ew� 0 (3.10)

with values in set Sh̃ introduced above.

Since demand flows are non-negative the i-route flow function features can easily

be derived from those of the i-route choice proportion functions; in particular if each

of them is strictly regular, that is.
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• it gives strictly positive choice proportions for any values of systematic utility,

• it is continuous, continuously differentiable and monotone strictly increasing

with respect to systematic utility differences,

• it has symmetric negative definite (with respect to real vectors) Jacobian,

r h̃(w̃)�0,

• resulting choice proportions depend on systematic utility differences only,

the i-route flow function is strictly regular:

• it is continuous and monotone strictly decreasing with respect to i-route costs,

• it is continuously differentiable with symmetric negative definite (with respect to

real vectors) Jacobian,

• resulting route flows depend on i-route costs, say on differences between route

costs only;

moreover, in this case the feasible i-route flow set is an open set with interior

points only, Sh̃ ≜ {h̃ with blocks h̃i>0: 1T h̃i<di} � en, as already noted above.
3.2 Fixed-point models for equilibrium assignment
The set of six Eqs (3.1)–(3.3) and (3.6)–(3.8) defines a fixed-point (FP) model

with respect to all the six basic variables, describing the comprehensive user

equilibrium (CUE) state, as a consistent condition between costs and flows.
Fixed-points

Let φ(x) be a vector function from set S to set φ(S),
any point x*¼φ(x*) 2S is a fixed-point of this function.
Fig. 3.2 shows a data-flow diagram of the fixed-point model (3.1)–(3.3) and
(3.6)–(3.8), highlighting the roles of the main variables. The loop between flows

and costs is a graphical illustration of the fixed-point consistency. This figure also high-

lights that a fixed-point model for CUE can be obtained by combining together the arc

flow function. Which models the comprehensive assignment to uncongested networks

(CUN), and the arc cost function, which models the congestion due to users sharing the

same transportation facility; formal details are given in Section 3.2.2 below.
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FIG. 3.2

Data-flow diagram of the Fixed-Point models for equilibrium assignment.

Table 3.2 Equilibrium assignment.
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533.2 Fixed-point models for equilibrium assignment
Table 3.2 shows an example of the equilibriumassignment obtained by combining the arc cost functions

in Fig. 3.1with the arc flow function inTable 2.7. Choice functions is the Logit function, the utility scale
factor ψ is included in dispersion parameter θ¼7; the demand flow is d¼3600, as in Table 2.7.
Continued
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With reference to the route feasibility set shown in Fig. 2.4, Fig. 3.3 compares the CUE and

the CUN route flow patterns. As expected they are quite different; indeed, the effect of con-

gestion is quite relevant thus routes 2 and 3 (and arcs 2 and 3) are more used in the CUE pat-

FIG. 3.3

CUE vs. CUN route flows.
tern. Still when the dispersion parameter goes to infinity, θ¼∞ (350 is a great enough value in

this case), the two flow patterns are equal since all route flows are one third of demand flow, d/

3, in both cases.

In this examples, as in the following chapters, we make reference to route flows since they can

described in a plane figure, cfr Fig. 2.4, but any computation can be carried out without explicit

enumeration of routes, as already stated.

To further analyse the model it is better to reduce the number of equations and

variables, as shown in the following. In any case all described models are equivalent

since they provide the same solution(s); nevertheless as discussed below, each of

them may be useful for different purposes.

3.2.1 Two equation assignment models
Fixed-point models described below are made by two equations with respect to two

variables, a flow vector and a cost vector, or Two Equation Assignment Models

(TEAMs), since only two equations of the above discussed six equations are non-

linear: the arc cost function and the route choice function.

• route costs and flows

Models based on route costs and flows are made by Eq. (3.4) describing the supply

model and (3.9) the demand model, repeated below for reader’s convenience:

w∗5w h∗; κð Þ� 0 (3.11)
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h∗5h w∗; dð Þ 2 Sh (3.12)

These models are useful as the base for developing general day-to-day dynamic pro-

cess models described in Chapter 4.

• i-route costs and flows

Models based on i-route costs and flows are made by Eq. (3.5) describing the

supply model and (3.10) the demand model, repeated below for reader’s

convenience:

ew∗5ew eh∗; κ
� �

� 0 (3.13)

eh∗5eh ew∗; dð Þ 2 Sh~ (3.14)

These models are useful for the specification of solution algorithms based on explicit

route enumeration. Their main usefulness is for advanced uniqueness analysis in

Section 3.3. It is worth stressing that this modelling approach can only be applied

with linear utility functions [HYP⑦ in Chapter 2.] and with route choice functions

such that choice proportions depend on differences between systematic utility values

only [HYP⑧ in Chapter 2.].

• arc costs and flows

Fixed-point models with respect to arc flows and/or costs are the most used for

specifying basic uniqueness conditions as well as solution algorithms. All of them

are based on the arc cost function, c¼c(f; κ), (3.2) and the arc flow function, f5 f(c;

d), introduced in Chapter 2, as a model for assignment to uncongested networks:

c∗¼ c f∗; κð Þ� 0 (3.15)

f∗5f c∗; dð Þ 2 Sf (3.16)

where κ is the arc capacity vector, d the demand flow vector and Sf� m is the

feasible arc flow set, which.

• has a finite dimension if the number of arcs is finite,

• is non empty if each o-d pair is connected by at least one route,

• is compact, since closed and bounded,

• is convex.

If all the route choice functions, and the route flow functions as well, are regular,

the arc flow function f5 f(c; d) 2 Sf is regular:

• it is continuous and monotone decreasing with respect to arc costs,

f c0ð Þ	 f c00ð Þð ÞT � c0 	c00ð Þ
 0 8c0 6¼ c00
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• it is continuously differentiable with symmetric negative semi-definite (with

respect to real vectors) Jacobian, Jf(c)¼rf(c) ≼ 0.

The arc flow function can also be obtained combing the route flow function (3.9)

with the arc-route flow consistency relation (3.1) and the route-arc cost consistency

relation (3.3), or with reference to the i-route flows and costs as shown in Section 2.3.

The TEAMs (3.15) and (3.16) are useful for basic and advanced uniqueness

analysis, as shown in “Basic uniqueness conditions” section and Section 3.3.
3.2.2 One equation assignment models
It is often worth to further reduce the number of the equations and the variables to

one, by including one equation into the other with reference to any TEAM described

above, leading to One equation Assignment Models (OEAMs). Considering TEAM

(3.15) and (3.16) with respect to arc costs and flows only yields to:

f∗5f c f∗; κð Þ; dð Þ 2 Sf (3.17)

c∗¼ c f c∗; dð Þ; κð Þ� 0 (3.18)

The OEAM (3.17) is useful for existence analysis and algorithm convergence anal-

ysis if the Jacobian of the arc cost function is symmetric, as shown in “Existence

conditions” section and Section 3.2.4. The OEAM (3.18) is useful for algorithm con-

vergence analysis if the Jacobian of the flow cost function is symmetric, as it occurs

for regular arc flow functions, even if the Jacobian of the arc cost function is asym-

metric, as shown in Section 3.2.4. OEAMs with respect to route or i-route variables

are not reported for brevity.

The data-flow diagram in Fig. 3.2 above is also a description of the OEAMs

(3.17) and (3.18). Indeed, as already noted, this figure also highlights that a fixed-

point model for CUE can be obtained by combining together the arc flow function.

Which models the comprehensive assignment to uncongested networks (CUN), and

the arc cost function, which models the congestion due to users sharing the same

transportation facility.
3.2.3 Existence and basic uniqueness analysis
This subsection presents sufficient conditions for existence (at least one solution

exists) or uniqueness (at most one solution exists) of the equilibrium assignment

flows and costs with reference to the fixed-point models presented above. Those

models are equivalent, say from the solution of one of them can easily be obtained

the solution of the others, as well as any other variables through Eqs (3.1)–(3.6); thus
it suffices to state conditions with reference to one fixed-point model only, not nec-

essarily the same for existence and uniqueness analysis.
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Existence conditions
Existence conditions. Sufficient conditions for existence of solutions can be easily

derived with reference to OEAM (3.17), involving the composed function f(c(�))
defined over set Sf with values in the same set (see Section 2.5), as:

1. each o-d pair i is connected by at least one route,

2. the arc cost function c(f; κ) is continuous with respect to the arc flows f,

3. the arc flow function f(c; d) is continuous with respect to the arc costs c

(as for a regular arc flow function), since all the route choice functions are

continuous.
Proof is based on the Brouwer’s theorem.
Indeed, necessary existence conditions hold, since set Sf is non empty for hypothesis 1, and the

composed function f(c(�)) defined over set Sf has values in set Sf by definition.

In addition, both the assumptions of Brouwer’s theorem hold, since set Sf is compact and con-

vex, and the composed function f(c(�)) is continuous for hypotheses 2 and 3.

Sufficient fixed-point existence conditions - Brouwer’s theorem

Let φ(x) be a vector function from set S to set φ(S), and x*¼φ(x*) one of its fixed-points, if

necessary conditions for fixed-point existence hold, sufficient conditions for the existence of at least

one fixed-point are that

	 set S is compact and convex,

	 function φ(x) is continuous.

Necessary fixed-point existence conditions

Let φ(x) be a vector function from set S to set φ(S), and x*¼φ(x*) one of its fixed-points,

necessary conditions for the existence of at least one fixed-point are that

	 the domain S is non empty,

	 the co-domain φ(S) is a subset of the domain, that is φ(S)�S.
The very same conditions can be derived with reference to OEAMs with respect

to route or i-route flows.
Basic uniqueness conditions
Uniqueness may be stated with respect arc costs and flows with reference to TEAMs

(3.15)–(3.16) or to i-route costs and flows with reference to TEAMs (3.13)–(3.14).
Basic sufficient uniqueness conditions are reported below. Advanced sufficient con-

ditions and references are discussed in Section 3.3.
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Uniqueness conditions/arc. Sufficient conditions for uniqueness of solutions can

be easily derived with reference to TEAM (3.15)–(3.16) as:

1. the arc cost function c(f; κ) is strictly increasing monotone with respect to the arc

flows f; if it is continuously differentiable a sufficient condition is that the

Jacobian matrix is positive definite (for real vectors), but not necessarily

symmetric, JC(f)�0;

2. the arc flow function f(c; d) is decreasing monotone with respect to the arc costs

c; if it is continuously differentiable a necessary and sufficient condition is that

the Jacobian matrix is negative semi-definite (for real vectors), but not

necessarily symmetric, Jf(c) ≼ 0, (as for a regular arc flow function, in this case

the Jacobian matrix is also symmetric).
Proof is based on reductio ad absurdum.

Assuming that two different fixed-points exist:(c*, f*) 6¼ (c**, f**), Eqs (3.15) and (3.16) yield:
c∗¼ c f∗ð Þ c∗∗¼ c f∗∗ð Þ
f∗5f c∗ð Þ f∗∗5f c∗∗ð Þ

for hypothesis 1:

c f 0ð Þ	c f 00ð Þð ÞT � f 0 	 f 00ð Þ> 0 8f 0 6¼ f 00

for hypothesis 2:

f c0ð Þ	 f c00ð Þð ÞT � c0 	c00ð Þ
 0 8c0 6¼ c00

Thus

c f∗ð Þ	c f∗∗ð Þð ÞT � f∗	 f∗∗ð Þ> 0 since f∗ 6¼ f∗∗

f c∗ð Þ	 f c∗∗ð Þð ÞT � c∗	c∗∗ð Þ
 0 since c∗ 6¼ c∗∗

leading to a contradiction. Hence either one of (or both) assumptions 1 and 2 does not hold or

there are not two different fixed-points.
Weaker uniqueness conditions can be stated with respect to i-route costs and

flow, if the utility function is linear [HYP⑦] and choice proportions depend on dif-

ferences between systematic utility values only [HYP⑧].

Uniqueness conditions /i-route. Sufficient conditions for uniqueness of solutions

can be easily derived with reference to TEAM (3.13)–(3.14) as:

1. the arc cost function c(f; κ) is increasing monotone with respect to the arc flows f;
if it is continuously differentiable a sufficient condition is that the Jacobian

matrix is positive semi-definite (for real vectors), but not necessarily symmetric,

JC(f)� 0; thus the i-route cost function w̃5 w̃(h̃; κ) is increasing monotone with

respect to the i-route flows h̃;
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2. the i-route flow function h̃5 h̃(w̃; d) is strictly decreasing monotone with respect

to the i-route costs w̃, as it occurs for a strictly regular function based on strictly

regular i-route choice functions; if it is continuously differentiable a sufficient

condition is that the Jacobian matrixis negative definite (for real vectors) but not

necessarily symmetric, r h̃(w̃)�0.
Proof is based on reductio ad absurdum, as for uniqueness conditions/arc, and it is omitted for

brevity’s sake.
3.2.4 Solution algorithms and convergence analysis
Algorithms based on the Method of Successive Averages (MSA) (introduced for

equilibrium assignment by Powell and Sheffi, 1982; Daganzo, 1983) are the most

used to solve fixed-point models for equilibrium assignment, since they can accom-

modate any choice model from RUT as well as other choice modelling approaches,

and are suitable for large scale applications.

With reference to OEAM (3.17) or (3.18), basic iteration of MSA algorithms

requires the computation of the arc cost function to get arc costs from arc flows

and the computation of the arc flow function to get arc flows from arc costs. Similar

algorithms may be specified with respect to route or i-route variables.
Algorithms based on the Method of Successive Averages (MSA)

Let φ(x) be a vector function from a non-empty convex set S to set φ(S)�S, with a unique

fixed-point x*¼φ(x*) in set S, MSA algorithms provide a succession of solutions belonging to S,
xk 2S, possibly converging to required fixed-point, according to the following recursive equation:

xk ¼ xk	1 + 1=kð Þ φ xk	1
� �	xk	1

� �
withx0 ¼ x0 2 S

or xk ¼ 1=kð Þφ xk	1
� �

+ k	1ð Þ=kð Þ xk	1 withx0 ¼ x0 2 S

If at any iteration the succession provides the fixed-point the algorithm, the it will stop and vice

versa. Sufficient conditions for theoretical convergence of such a succession may be stated through

Blum’s theorem, which also applies when only an unbiased estimation of the function φ(x) is
available.
• MSA Flow Averaging algorithm

Applying the Method of Successive Averages to model (3.17) the MSA-FA algo-

rithm is obtained based on the recursive equation:

fk ¼ fk	1 + 1=kð Þ f c fk	1
� �	 fk	1

� �
with f0 ¼ f0 2 Sf

�
(3.19)
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It can be proved asymptotically converging to f*5 f(c(f*; κ); d) 2 Sf if the existence
and uniqueness/arc conditions hold and the Jacobian of the arc cost function is

symmetric.

• MSA Cost Averaging algorithm

On the other hand, applying the MSA to model (3.18) the MSA-CA algorithm is

obtained based on the recursive equation:

ck ¼ ck	1 + 1=kð Þ c f ck	1
� �	ck	1

� �
with c0 ¼ c f0ð Þ and f0 2 Sf

�
(3.20)

It may be proved asymptotically converging to c*5 (c(f(c*; d); κ) if the existence
and uniqueness/arc conditions hold and the Jacobian of the arc flow function is

symmetric.

Convergence conditions of both algorithms can be stated through Blum’s theo-

rem (see appendix). If the choice proportions from a RUM cannot be evaluated

exactly, an unbiased estimation of the arc flow function can be obtained through

Monte Carlo techniques (see Section 2.5); in this case, only almost sure convergence
can be assured.

Since MSA algorithms only provide a succession of feasible solutions, in prac-

tical applications the algorithm is stopped when a convergence index is below a

given error threshold, ε, or a maximum number of iterations is reached. A conver-

gence index often used for MSA-FA is the average absolute difference over flows:
X

a
| fa c fk	1

� �	 fa
k	1 j =fak	1

� �
=m:

��

A similar index, based on arc costs, may be defined forMSA-CA. Others indices may

be defined based on the maximum difference, possibly excluding arcs with very

low flows.
3.3 Advanced uniqueness and convergence analysis
This section presents advanced sufficient conditions for uniqueness (at most one

solution exists) of the equilibrium assignment flows and costs with reference to

the fixed-point models presented above, and in some cases of convergence of

MSA algorithms or of other kinds of algorithms. Each set of conditions presented

below has a counterpart based on features of Jacobian matrices for differentiable

functions.

This section is based on an elaboration of the content of.

• Uniqueness of Stochastic User Equilibrium, paper prepared by Cantarella G.E.,

Gentile G., and Velonà P. for the Proceedings of 5th IMA conference on

Mathematics in Transportation, London, UK, April 2010,

that were never published. Unless otherwise stated, earlier versions of most condi-

tions below have first been proposed in a paper and a book available in Italian only:
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• Condizioni di unicità dei flussi e dei costi di equilibrio stocastico, by Cantarella

G.E. inMetodi e Tecnologie dell’Ingegneria, a cura di G.E. Cantarella e F. Russo,
376–391. Franco Angeli Editore, 2001;

• Assegnazione a reti di trasporto: modelli di punto fisso, by Cantarella, G.E. &

Velonà, P. Collana Trasporti - Franco Angeli Editore, 2010.

Uniqueness conditions discussed below are identified by a letter code followed by /

and the kind of variables used. For conditions requiring differentiable functions a

capital D is added; in this case it is also assumed that conditions hold over a suitable

(open) superset of Sf or c(Sf) such that all point of Sf or c(Sf) are interior points of it.
All proofs of main conditions are by based on reductio ad absurdum and omitted for

brevity’ sake; proof of D conditions results from features of Jacobianmatrices, unless

otherwise stated. An example below shows a comparison among them.

Uniqueness Conditions Ar/arc:

c f 0ð Þ	 c f 00ð Þð ÞT � f 0 	 f 00ð Þ> 0 8f 0 6¼ f 00

f c0ð Þ	 f c00ð Þð ÞT � c0 	c00ð Þ
 0 8c0 6¼ c00

These conditions have already been discussed in Section 3.2.3 (first in

Cantarella, 1997).

Uniqueness Conditions Ar/arc - D:

—c fð Þ� 0:

—f cð Þ≼0 as it occurs for invariant choice functionsð Þ:
These conditions are the differentiable counter part of the above (a different proof

in Daganzo, 1983, with respect to a different fixed-point model requiring the inverse

of the arc cost function; another proof in Sheffi, 1985, based on optimization

models).

Uniqueness Conditions A/arc:

c f 0ð Þ	 c f 00ð Þð ÞT � f 0 	 f 00ð Þ> f c f 0ð Þð Þ	 f c f 00ð Þð Þð ÞT � c f 0ð Þ	 c f 00ð Þð Þ

8f 0 6¼ f 00 2 Sf : c f 0ð Þ 6¼ c f 00ð Þ
These conditions are a generalisation of the Ar/arc conditions. Condition A/arc also

support the convergence of MSA algorithms (as noted in SUE: conditions for solu-
tion uniqueness and MSA-based algorithm convergence, by Cantarella G.E. and

Velonà P., in Preprints of XIII Meeting of Euro Working Group on Transportation,

Padua, Italy, September 2009).

A special of conditions A/arc occur for invertible arc cost functions, as

shown below.

Uniqueness Conditions A/arc for invertible cost functions:

If the arc cost function is invertible with q(c)¼c	1(c) conditions A/arc

become:
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c0 	c00ð ÞT � q c0ð Þ	q c00ð Þð Þ> f c0ð Þ	 f c00ð Þð ÞT � c0 	c00ð Þ8c0 6¼ c00 2 c Sf
� �

with f 0 ¼ q c0ð Þ 6¼ q c00ð Þ¼ f 00 8c0 6¼ c00 2 c Sf
� �

:

Uniqueness Conditions A/arc - D for invertible cost functions:

—c f¼ q cð Þð Þ	1	—f cð Þ� 08c2 c Sf
� �

[It is noteworthy that this expression appeared in Daganzo, 1983 only to prove con-

ditions Ar above.]

Other conditions, without any evident relationship with the previous ones, can be

derived from a corollary of the Banach’s theorem.
Sufficient fixed-point existence and uniqueness conditions - corollary to Banach’s theorem

Let φ(x) be a vector function from non empty set S to set φ(S) (that is necessary conditions for

existence hold), it has exactly one fixed-point x*¼φ(x*) if

	 set S is compact,

	 function φ(x) is strictly non-expansive:

φ x0ð Þ	φ x00ð Þk k2 < x0 	x00k k28x1 6¼ x2 2 S

REMARK. If function φ(x) is continuously differentiable with Jacobian —φ(x), a sufficient
conditions for being strictly non expansive is that the second norm of its Jacobian is less than one, jj
—φ(x) jj2<1 8x2S. [Any other vector norm may be used as well.]

REMARK. According to the Banach’s theorem it suffices that set S is complete, but in this case

function φ(x) has to be a contraction, that is uniformly strictly non-expansive.
Banach’s theorem and its corollary can also be used to state convergence condi-

tions of fixed-point algorithms based on the Method of Repeated Approximations

(MRA), more efficient than those base on the MSA.
Algorithms based on the Method of Repeated Approximations (MRA)

Let φ(x) be a vector function from a non-empty convex set S to set φ(S)�S, with a unique

fixed-point x*¼φ(x*) in set S, MRA algorithms provide a succession of solutions belonging to S, xk

2S, possibly converging to the required fixed-point, according to the following recursive equation:

xk ¼φ xk	1
� �

withx0 ¼ x0 2 S

Sufficient conditions for theoretical convergence of such a succession are those of the Banach’s

theorem or its corollary for existence and uniqueness of the fixed-point.
Uniqueness Conditions Br/arc:

c f c0ð Þð Þ	c f c00ð Þð Þk k2 < c0 	c00k k28c0 6¼ c00 2 c Sf
� �

:
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meaning that the composed function c(f(c)) is strictly non-expansive. Similar condi-

tions hold w.r.t. the composed function f(c(f)). Condition Br may rarely be applied,

since generally involved functions are not strictly non-expansive.

Uniqueness Condition Br/arc - D:

— c f¼ f cð Þð Þ½ � �— f cð Þ½ �k k2 < 18c2 c Sf
� �

:

These conditions are the differentiable counter part of the above.

Uniqueness Conditions B/arc:

c0 	c00ð ÞT c0 	c00ð Þ> c f c0ð Þð Þ	c f c00ð Þð Þð ÞT � c0 	c00ð Þ8c0 6¼ c00 2 c Sf
� �

or c0 	 c f c0ð Þð Þð Þ	 c00 	c f c00ð Þð Þð Þð ÞT � c0 	c00ð Þ> 08c0 6¼ c00 2 c Sf
� �

meaning that function c - c(f(c)) is strictly monotone increasing. These conditions are

a generalisation of the Br/arc conditions.

Uniqueness Conditions B/arc - D:

I	—c f¼ f cð Þð Þ �—f cð Þð Þ� 08c2 c Sf
� �

These conditions are the differentiable counter part of the above.

Uniqueness Condition C/arc. Both conditions A-arc and B-arc are instances of the

general uniqueness condition requiring that:

the composed function c	c f cð Þð Þð Þ is invertible for c2 c Sf
� �

(3.21)

These are most general conditions currently available with respect to arc cost and

arc flow functions, encompassing all the conditions presented above. It should

be noted that conditions Ar/arc require features for the arc cost function and the

arc flow function separately, while all the others refer to features of some combi-

nation of them.

If both the arc cost function, c(f), and the arc flow function, f(c), are continuous,

condition (3.21) implies that the composed function (c - c(f(c))) is strictly monotone,

thus either of the following two conditions holds:

function c	c f cð Þð Þð Þ is strictly increasing monotone (3.22)

function c	c f cð Þð Þð Þ is strictly decreasing monotone (3.23)

Uniqueness Condition C/arc-D.

|I	—c f¼ f cð Þð Þ �—f cð Þ | 6¼ 08c2 S∗c (3.24)

where S∗c is over a suitable open superset of set c(Sf) such that all point of c(Sf) are
interior points of it; this condition can be proved a sufficient condition for function

(c - c(f(c))) being invertible, through the global inverse function theorem. Indeed

since the arc flow function c(f) has been assumed continuously differentiable, it is

also continuous thus set c(Sf) is connected and bounded since Sf is connected (con-

vex) and bounded (compact). If arc cost function is strictly positive, set S∗c can be

chosen as a subset of the set of strictly positive real vectors.



Global inverse function theorem

Let φ(x) be a vector function over the non empty connected and bounded set S, and S0 be an open
superset of S such that (it has interior points and) all point of S are interior points of it, if

	 function φ(x) is continuously differentiable over set S0,
	 its Jacobian matrix is non singular over set S0, jrφ(x)j 6¼0 8x 2S0, thus it is invertible,

then function φ(x) is invertible over set S.
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Conditions C /arc and C/arc-D includes as special cases conditions Ar, A, Br, B.

Uniqueness Condition C/arc-D. Remark 1.

Since the arc cost function, c(f), and the arc flow function, f(c), are assumed con-

tinuously differentiable functions, the determinant j I - —c(f¼ f(c)) � — f(c) j is a con-
tinuous function of the vector of arc costs, c, thus due to the Sign-Preserving property
of Continuous Functions (Bolzano’s theorem) condition (3.24) implies that either of

the following two conditions holds, C1 or C2, but not both:

|I	—c f¼ f cð Þð Þ �—f cð Þ |> 0 8c2 S∗c (3.25a)

|I	—c f¼ f cð Þð Þ �—f cð Þ |< 0 8c2 S∗c (3.25b)

Uniqueness Condition C/arc-D. Remark 2.

Condition expressed by (3.24) is equivalent to assuming that all eigenvalues of

matrix —c(f¼ f(c)) � — f(c) are different from 1, since.

	 the determinant of a matrix is equal to the product of its eigenvalues, and.

	 each of them eigenvalues λa of matrix I	—c(f¼ f(c)) �— f(c) are given by 1	 ωa,

where ωa is one of the m eigenvalues of matrix—c(f¼ f(c)) � — f(c).
Eigenvalues of the product of two matrices

Let M be a k� r matrix and N be a r�k matrix, thus both the products k�kM � N and

r� r N � M are well-defined:

if k< r, the r� r matrix N � M has all the k eigenvalues of the k�k matrix M � N plus

r - k zero eigenvalues;

if k¼ r, M and N are both r� r square matrices, and have the same eigenvalues;

if k> r, the k�k matrix M � N has all the r eigenvalues of the r� r matrix N � M plus

k - r zero eigenvalues;

summing up, the two matrices M � N and N � M have the same non zero eigenvalues.
Moreover, the two squarem�mmatrices—c(f) �— f(c) and— f(c) �—c(f) have the

same eigenvalues, thus the order of the product is not relevant to check condition

(3.24), and it can be also be expressed as:

|I	—f c fð Þð Þ �—c fð Þ | 6¼ 0 8f 2 Sf (3.26)
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As shown below conditions (3.24) and (3.26) can also be expressed with respect

to route cost and flow functions or i-route cost and flow functions leading to

same result:

|I	—w h¼ h wð Þð Þ �—h wð Þ | 6¼ 0 8w2 Sw (3.27)

|I	—h w hð Þð Þ �—w hð Þ | 6¼ 0 8h2 Sh (3.28)

|I	—w h¼ hwð ÞÞ �—h wð Þ | 6¼ 0 8w2 Sw (3.29)

|I	—h w hð Þð Þ �—w hð Þ | 6¼ 0 8h2 Sh (3.30)

Same considerations hold for conditions (3.25a) and (3.25b).

Thus, conditions C/	D are equivalent whichever are the variables and the func-

tions used.
First it is worth noting that the two n�nmatrices—w(h) �—h(w) and—h(w) �—w(h) have the same

eigenvalues. Moreover, Eqs (3.1), (3.9), and (3.3) imply that:
—f cð Þ¼B �—h w5BΤ �c +wZ

� � �BΤ:

and Eqs (3.3), (3.2), (3.1) imply that:

—w hð Þ¼BΤ �—c f5B �h+ fZð Þ �B:
Thus the n�n square matrix.

—w hð Þ �—h wð Þ5BΤ �—c f5B �h+ fZð Þ �B �—h wð Þ:
has the same non zero eigenvalues of m�m matrix.

—c f5B �h+ fZð Þ �B �—h wð Þ �BΤ ¼—c f¼ f cð Þð Þ �—f cð Þ:
and the n�n square matrix.

—h wð Þ �—w hð Þ¼—h wð Þ �BΤ �—c f5B �h+ fZð Þ �B:
has the same non zero eigenvalues of the m�m matrix.

B �—h wð Þ �BΤ �—c f5B �h+ fZð Þ¼—f cð Þ �—c fð Þ:
Similar considerations apply for i-route cost and flow functions.
On the other hand, formally similar Ar, A, Br, B uniqueness conditions can be

stated with respect to i-route (or route) variables and functions, but they are not

equivalent to those with respect to arc variables. Ar, B, C / i-route conditions only

are explicitly reported below, and D counterparts are not explicitly reported for

brevity’s sake.

Uniqueness Conditions Ar/i-route:

w h0ð Þ	w h00ð Þð ÞT � h0 	h00ð Þ� 0 8h0 6¼ h00

h w0ð Þ	h w00ð Þð ÞT � w0 	w00ð Þ< 0 8w0 6¼w00
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These conditions are a generalisation of the Ar/arc conditions.

Uniqueness Conditions B/i-route:

h0 	h00ð ÞT h0 	h00ð Þ> h w h0ð Þð Þ	h w h00ð Þð Þð ÞT � h0 	h00ð Þ8h0 6¼ h00 2 Sh:

or h0 	 h w h0ð Þð Þð Þ	 h00 	h w h00ð Þð Þð Þð ÞT � h0 	h00ð Þ> 08h0 6¼ h00 2 Sh:

meaning that function h̃ – h̃(w̃(h̃)) is strictly monotone increasing.

Uniqueness Condition C/arc. Both conditions A/i-route and B/i-route are

instances of the general uniqueness condition requiring that:

the composed function h̃ – h̃(w̃(h̃)) is invertible for h̃ 2 2 Sh̃.
This is the most general condition currently available with respect to i-route vari-

ables, encompassing all the other i-route conditions; its D counterpart is given by

(3.30), already introduced above.

All the /arc-D uniqueness conditions are compared in Fig. 3.4 below for a two-arc network, where

f¼h, h~¼ h1, c¼w, w~¼ c1 - c2. A separable cost function is associated to each arc a¼1, 2: ca(fa)
with derivative xa¼∂ca(fa) / ∂ fa. Thus the Jacobian—c(f) of the arc cost vector function is given by

the diagonal matrix:

0
Vc(f) =

0
X2

X1

The choice function is an invariant Logit:

pa(c1, c2)¼exp.(	ca/θ) / (exp(	c1/θ)+exp.(	c2/θ)) 8a¼1, 2.

with θ μ σ>0, and ∂θ / ∂ca¼0, a¼1, 2. Let y¼ (d/θ) p1(c1,c2) p2(c1,c2), the Jacobian of the arc
flow functions is given by the (singular) matrix.

For differentiable functions, each of the arc uniqueness conditions Ar, A, Br, B, C1, and

C2 defines a region over the plane z1¼x1 � y and z2¼x2 � y, as shown in Fig. 3.4 to support

comparison among them. The white line between C1 and C2 sub-regions corresponds to condi-

tion: j I 	 —c(f¼ f(c)) � —f(c) j¼0 8c 2 Sc, thus the two regions are separated. It is noteworthy

that the uniqueness region for A/arc conditions is not connected, thus it actually breaks down

into 3 sub-regions, only one sub-region may actually be considered due to Bolzano (sign-

preserving) theorem. Graphs confirm implications among uniqueness conditions as already dis-

cussed above.

p1(1–p1)
Vf(c) = –(d/θ)

p2(1–p2)–p2 p1

–p1 p2

–1

–11

1
= –y
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Following on the above example, each of the /i-route-D uniqueness conditions Ar, A, Br, B,

C1, and C2 defines a region over the plane z1 and z2 as shown in Fig. 3.5 to support comparison

among them. Uniqueness regions are generally different from their arc counterparts, apart from

conditions C as expected from above considerations. It is noteworthy that the uniqueness regions

for conditions A, B and C1 equal. Moreover they.
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It is should be noted that uniqueness conditions A, B and C allow for non mono-

tone arc cost functions, which may well be the case for non-separable arc cost func-

tions. [These conditions also allow for non-differentiable arc cost functions, such as

piecewise linear functions, as it may occur when equilibrium assignment is embed-

ded within a transportation supply design model.]

It is, therefore, worthwhile to introduce some requirements for non monotone arc

cost functions:

	 strict positivity.

ca fað Þ> 0 8fa � 0:

	 monotonicity after capacity κa.

ca fa
0ð Þ	ca fa

00ð Þð Þ fa
0 	 fa’

00ð Þ � 0 8fa0, fa00 � κa:

	 consistency with capacity κa.

ca fa ¼ κað Þ¼ ν ca fa ¼ 0ð Þ with ν� 1:

Monotone strictly increasing arc cost functions surely meet these requirements if the

null-flow cost is strictly positive, ca(fa¼0)>0, as it is always the case.

A further relationship between the arc and i-route uniqueness conditions can be

exploited through the following uniqueness conditions, which hold under the

assumption of invariant strictly positive choice functions.

Uniqueness Condition G. Uniqueness is guaranteed under the following condi-

tion about the Jacobian of the cost function, —c(f):

—c fð Þ + γ Ið Þ0� 0 8f 2 Sf

where 0<γ
γ* and γ*¼	MAX{(x / jj B L x jj2)T (—h~(w̃5 w̃ (h~)))	1 (x / jj B L x

jj2)>0, with x 2 {x: jj x jj¼1, jj B L x jj2>0}}; L, h~, w̃ have been defined in

Section 2.3.

This condition first appeared in

• Guido Gentile/(2003) Sufficient conditions for the uniqueness of the solution to
the Stochastic User Equilibrium problem, Internal report available at http://w3.

uniroma1.it/guido.gentile.

Further details and a proof are in:

• Gentile G., Velonà P., Cantarella G.E. (2014). Uniqueness of stochastic user

equilibrium with asymmetric volume-delay functions for merging and

diversion. In EURO J. of Transportation and Logistics 3, p309–331.

Condition G implies condition A/iro-D conditions (not explicitly mentioned above).

Moreover condition Ar/arc-D implies conditions G since the sum of positive definite

http://w3.uniroma1.it/guido.gentile
http://w3.uniroma1.it/guido.gentile
http://w3.uniroma1.it/guido.gentile
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matrices is a positive definite matrix. It is also noteworthy that condition G does not

require features of any composed function.
3.4 Summary
3.4.1 Major findings
This chapter presented several fixed-point models for Comprehensive User

Equilibrium assignment to congested Networks, within Six Equation Assignment

Modelling (SEAM) framework; further models have been presented within Two

Equation Assignment Modelling (TEAM) or One Equation Assignment Modelling

(OEAM) framework. Results hold under any assumptions leading to a Transpose

Affine Network (TAN), being synchronic or diachronic.

The proposed approach is very general, can easily extended under other assump-

tions about route choice behaviour modelling, and enables to specify models for day-

to-day dynamic assignment to congested networks, as shown in the next chapters.

Optimization models are available for some very particular instances of User Equi-

librium assignment to congested networks, but they cannot be generalised, nor used

for general models for day-to-day dynamic assignment to congested networks (see

appendix to Chapter 5 in Cascetta, 2009, for a review).

This approach can rather easily be extended to assignment with demand flows

variable with respect to costs, and/or multi-type or multi-mode assignment, where

the choice behaviour among vehicle types or transportation modes is explicitly

described by choice models. These extensions are out of the scope of this book

(and will possibly be described in a future book on advanced topics, some details

can be found in Chapter 6 in Cascetta, 2009).

Fixed-pointmodels forCUEassignment caneasilybeembeddedwithinmethods for

Transportation SupplyDesign, suchUrbanNetworkDesignwhere decisional variables

are signal settings and street directions, while equilibrium assignment is a constraint.

All parameters introduced above are to be calibrated against real /simulated data,

this relevant issues is out the scope of this book. As already stated implementation

and application issues are out of the scope of this book, mainly focusing on mathe-

matical features. (For details on these issues see Cascetta (2009). A companion book

(possibly by other authors) discussing these topics is under planning.
3.4.2 Further readings
Wardrop (1952) introduced the User Equilibrium (UE) assignment, whose beha-

vioural assumptions are often referred to as Wardrop’s I principle, and introduced

as well as the System Optimum (SO) assignment, assuming that users cooperate

to minimize total system cost, according to the so-called II Wardrop’s principle.

Generally for congested networks UE and SO assignment lead to different flow
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and cost patterns, apart from very special cases. SO assignment, often useful as a

reference for transportation planning, may be applied when users do not have auton-

omous route decision capability, such as during controlled people evacuation or

freight transportation. An extension to Stochastic System Optimum has been pro-

posed by Maher et al. (2005).

SUE with RUMs over a finite support have recently been byWatling et al. (2015,

2018), see also Rasmussen et al. (2015). SUE with Value of Time (VoT) randomly

distributed among users has been discussed in Cantarella and Binetti (1998). SUE for

explicit modelling of parking choice behaviour has been introduced by Bifulco

(1993), as already noted in Section 2.2.3. For details on schedule-based assignment

to diachronic networks see the recent book edited by Gentile and N€okel (2016), even
though the contents mostly refer to deterministic assignment only, as already noted in

the previous Chapter 2. A few authors have addressed the User Equilibrium assign-

ment with route fuzzy utility, for instance Henn (2000), Ridwan (2004), Henn and

Ottomanelli (2006), Ghatee and Hashemi (2009).
3.4.3 Remarks
As noted above Wardrop (1952) introduced the User Equilibrium (UE) assignment,

whose behavioural assumptions are often referred to as Wardrop’s I principle. This

approach to equilibrium assignment is equivalent to those assuming that all sources

of uncertainty are negligible, thus all users travelling between o-p pair i follow max-

imum utility routes, and do not use at all any of the other routes. As already noted in

the previous Chapter 2 and in the beginning of this chapter this user choice behaviour

assumption may be obtained from several assumptions.

In this case, the route choice function (3.7) [cfr (2.12)] and the arc function

(2.34) turns out multi-valued functions. Even though general fixed-point theory also

includes fixed-point of multi-valued functions, a different approach is often followed

to avoid this kind of functions. Assuming a Wardropian user route choice behaviour,

from the previous chapter any arc flow vectors fD corresponding to arc cost vector c

must satisfies the following condition [cfr (2.37)]:

cT � f	 fDð Þ� 0 8f 2Sf (3.31)

Following the same line of reasoning leading to OEAMs, condition (3.31) may be

combined with the arc cost function (3.2) to get a variational inequality (VI) model:

c fDð ÞT � f	 fDð Þ� 0 8f 2Sf (3.32)

This model has at least one solution if the arc cost function (3.2) is continuous, and at

most one if it is monotone strictly increasing. As for any VI model, if the Jacobian

matrix of the arc cost function is symmetric there exist convex optimisation models

equivalent to VI model (3.30). Further details can be found in Cascetta (2009) and in

Sheffi (1985), a useful reference on this topic is:
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Patriksson M. (1994). The Traffic Assignment Problem: Model and Methods.

VSP, Utrecht, The Netherlands.

Below UE assignment is compared with SUE assignment, as a special instance of

CUE, to evidence all the many advantages of SUE with respect to UE, thus motivat-

ing why UE is only been briefly discussed in this book. On the other hand, it is should

be remember that solving UE assignment is less computer demanding than SUE

assignment or other kinds of CUE assignment, thus UE assignment may still be a

useful tool for very large scale application if computing time is an issue.

1. SUE includes a more realistic description of user route choice behaviour

modelling

— dispersion among users (heterogeneity), users’ perception errors, dispersion of a

user behaviour over days, …

— aggregation errors (due for instance to zoning), missing attributes, attribute

measurement errors (say errors in the supply model), … .

All above issues can hardly be neglected. In other words when applying UE we are

assuming that users do not commit any error in forecasting LoS, and that we do not

commit any error in modelling their behaviour and in modelling network LoS. This

looks as a rather unrealistic assumption, in particular when other choice dimension

are involved, such as departure time, apart from route.

UE can be considered just a limit case of SUE when uncertainty goes to zero. It

should be also noted that in any modelling approach in Engineering, Economics,

Applied Sciences,… a step-wise map, as the flow-cost map in UE, is usually approx-

imated by continuous functions such as logistic or other smooth functions. In this

sense SUE-Logit should at least be considered a useful smooth approximation of

UE(see point 2.2 below), apart from any behavioural considerations.

We better say SUEs, SUE indeed may be specified through several different route

choice models derived from RUT, such as any from the Logit family, Weibit, Probit,

Gammit or a mix of these, just to mention a few. Each of these models includes at

least one behavioural parameter, sometimes several, to be calibrated, which (try

to) model all sources of uncertainty, regarding both the users and the modeller,

mentioned above. [Some scholars thinks that having no behavioural parameter to

be calibrated is an advantage of UE; clearly this is not the case, since behavioural

parameters make a model more flexible and more amenable to real-world applica-

tion.] Moreover in some recent papers approaches to model route choice set too have

been proposed.

Flexibility of SUE is a highly relevant features in particular when dealing with

multi-user assignment where user are grouped into classes (see also point 2.1 below),

such as commuters vs. non-commuters, ATIS-equipped vs. non-equipped vehicle,

and in the near future autonomous/automated vs. traditional vehicles.
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Furthermore, the SUE arc flow pattern is less sensible to input data such

as demand flows with respect to UE pattern, thus SUE is better suited for project

assessment giving more robust results (requiring less precise solution algorithms,

see below).

2. SUE shows some very useful mathematical features with respect to UE

1. uniqueness of link flows also implies uniqueness of link flows per user class,

and of (i-)route flows and costs;

2. flows depend on costs through a continuous, c. differentiable function f(c)

with symmetric Jacobian, under very mild assumptions met by all choice

models used in current practice.

3. Fixed-point models for SUE show several useful mathematical features with

respect to any kind of models available for UE as enlisted below

1. Fixed-point models available for SUE are simpler and require a much simpler

mathematical background (see also point 4 below).

2. These models for SUE allow for weak uniqueness and convergence

conditions, including non necessarily increasing cost functions c(f); these

conditions cannot be extended to UE, however modelled.

3. These models can be solved through simple and feasible algorithms proved

converging under very mild assumptions even for cost functions with

asymmetric Jacobian; these conditions cannot be extended to UE, however

modelled.

4. An effective and efficient algorithm-independent indicator to measure

how far a flow pattern f is from the search SUE flow pattern is any

metric between the two vectors f and f(c(f)). This approach cannot easily

be applied for UE since in this case f(c) is a point-to-set map, thus any

metric between the values of a duly defined gap function of two

successive intermediate solutions are used instead; but all gap functions

proposed until now are very flat close to the equilibrium flow pattern thus

this indicator is rather ineffective, moreover it is not efficient since it also

requires the computation of the gap function, and it is based on two

solutions, which in turn depends on the solution algorithm. Regarding

algorithm convergence it is also relevant noting that the SUE arc flow

pattern is less sensible to costs with respect to UE pattern (cfr previous

comment on sensitivity with respect to demand flows), thus there is no

need of a high convergence threshold, 10	3 being enough in most cases, to

be compared with 10	6, or even less, often required for UE solution.

[Most engineering applications do not require more than three significant

digits.]

5. Fixed-point models for SUE, as well as all the related analysis, can easily be

extended to deal with VoT distributed among users (in much simpler way than

UE with VoT distributed among users according to a r.v., which also looks

rather inconsistent).
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6. Fixed-point models for SUE, as well as all the related analysis, can easily be

extended to deal with SUE with variable demand including any kind of non-

separable demand models, whilst models for UE require the inverse demand

function, not available in the most general case, and anyway hard to define

and compute, apart from other limiting assumptions. Thus, SUE approached

through fixed-point models is the only general option for equilibrium

assignment with variable demand.

7. Solutions from a fixed-point model for SUE can easily be compared with

fixed-point states of a day-to-day dynamic (deterministic) process model

(see next chapter).

8. Fixed-point models for SUE are expressed by a (square) system of non-linear

equations to be included in optimization models for transportation supply

design, such as signal setting and street direction design, possibly including

stability constraints derived from a day-to-day dynamic (deterministic)

process model.

4. As said above SUE may effectively be modelled through highly flexible fixed-

point models. Even though some optimization models are also available for

SUE, (see appendix to Chapter 5 in Cascetta, 2009; Sheffi, 1985) as well for UE,

the use of optimization models is somehow misleading, since the nature of

equilibrium assignment models is descriptive/predictive (aiming at describing

real world), not prescriptive (aiming at providing which decision is best to

implement). Moreover, optimization models show several disadvantages with

respect to fixed-point models:

• the mathematical background of KKT conditions for non-linear continuous

optimization is much more complicated with respect to (square) systems of

non-linear equations and fixed-point models;

• optimization models are harder to be formalised, that is: a proof should be

provided that the optimization models actually describe the assignment

problem at the hand, this kind of proof may not be easy to state and/or to

understand;

• their formulation may require additional hypotheses, such differentiability

and/or symmetry of Jacobian matrix of cost function;

• they are hard to be analysed [e.g. compare the proof of uniqueness through a

FP model or an optimization one, see for instance Sheffi, 1985];

• they can hardly be extended to general assignment problems, such as cost

functions with asymmetric Jacobian, variable demand, multi-user multi-

mode assignment, … .

Similar considerations also apply to VI models for SUE, as proposed in some

recent papers. It should be noted these models are improper VI since solution is

always an interior point of the set of solution and the VI always holds as an equality

condition.
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Appendix: Proofs of convergence conditions for MSA-based
fixed-point algorithms

Convergence of MSA algorithms through a corollary of Blum’s
theorem for compact sets
Generally MSA-based algorithms do not provide the equilibrium arc flows in a finite

number of iterations, but only a succession of arc flow patterns. They are a special

instance of the Method of Successive convex Combinations (MSC); sufficient

conditions for convergence of MSC-based methods may be stated through Blum’s

theorem, which also applies when only an unbiased estimation of arc flow function

is available.

First use of MSA-based algorithm to solve equilibrium assignment with separa-

ble arc cost functions (with diagonal Jacobian) through an optimisation problem is in:

Powell W.B. and Sheffi Y. (1982). The Convergence of Equilibrium Algorithms

with Predetermined Step Sizes. Transportation Science, 16, 45–55.
Other step size strategies have been proposed to improve practical convergence

of MSA-based algorithms, such as restarting strategies: index k is updated at each
Sufficient MSC convergence conditions - corollary of Blum’s theorem over compact sets

Let φ(x) be a vector function from a non-empty compact convex set S to set φ(S)�S, with a

unique fixed-point x*¼φ(x*) in set S,

IF there exists

- a non negative real value function ψ(x)�0 defined over set S, with continuous firstrψ(x) and
second r2ψ(x) derivatives,

such that

a. jψ(x) 	 ψ(x*)j>0 8 x 2 S, x 6¼x*
b. rψ(x)T [φ(x) 	 x]<0 8 x 2 S, x 6¼x*

with rψ(x*)T [φ(x*) 	 x*]¼0

ΤΗΕΝ the sequence xk¼xk-1+αk (φ(xk-1) 	 xk-1) 2 S, with x0 2 S and αk 2]0,1] 8k such that Σk

αk¼∞ and Σk (αk)2<∞, converges to the unique fixed-point x*.
Remark. Assessing convergence only requires that function ψ(x) exists, but the sequence xk is

actually obtained without computing ψ(x).
Remark. From any function bounded below a non negative function ψ(x) can be obtained.

Remark. The most natural choice for function ψ(x) is a strictly convex function that attains its

minimum at the fixed-point x*.
Remark. Using weights αk 2]0,1] assures that the sequence, xk, is inside set S, xk 2 S, if it starts

from a point xo 2 S, since set S has been assumed convex.

Remark. The sequence of weights αk¼ (1/k) is the sequence with largest elements

αk 2]0,1] such that Σk>0 αk¼∞ and Σk>0 (αk)2<∞; it gives the Method of Successive

Averages (MSA).

Remark. If xk is an unbiased realisation of a sequence of random variables almost surely

convergence is assured.

[For the original statement of Blum’s theorem see: Blum J.R. (1954).Multidimensional Stochastic

Approximation Methods. Ann. Math. Stat. 25, 737–744.]
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iteration as k¼k+1 starting from k¼ko, with ko¼1 at first iteration, then index k is
restarted from ko after k* iterations (with k*¼∞ we get MSA), and ko is either equal
to 1 again, ko¼1, or increased by one, ko¼ko+1.

The Method of Repeated Approximations (MRA) is obtained with αk¼1, but in

this case convergence conditions of the Blum’s theorem are not satisfied, since Σk

(αk)2¼∞. In this case sufficient convergence conditions can be stated through the

Banach’s theorem and its corollaries, see p.14; conditions on function φ(x) are very
strong and not often satisfied.
Convergence of the MSA-FA algorithm
As noted in the main text (p. 12) applying the Method of Successive Averages to

model (3.17) the MSA-FA algorithm is obtained based on the recursive equation:

fk ¼ fk	1 + 1=kð Þ f c fk	1
� �	 fk	1

� �2 Sf with f0 ¼ f0 2 Sf (3.19)
�

It can be proved asymptotically converging to f*5 f(c(f*; κ); d) 2 Sf if the exis-

tence and uniqueness /arc conditions hold and the Jacobian of the arc cost function

is symmetric by applying the corollary of Blum’s theorem over compact sets as

shown below.

The proof shows that the assumptions of the corollary of Blum’s theorem over compact sets hold,

with reference to the MSA, if
• for existence conditions:

E1. each o-d pair i is connected by at least one route,

thus the feasible arc flow set Sf is non-empty, beside being compact and convex,

E2. the arc cost function c(f) is continuous with respect to the arc flows f,

E3. the arc flow function f(c) is continuous with respect to the arc costs c;

• for uniquenss conditions /arc:

U1.the arc cost function c(f) is s. monotone increasing with respect to the arc flows f,

U2.the arc flow function f(c) is monotone decreasing with respect to the arc costs c;

• moreover:

S1. the arc cost function c(f) is continuously differentiable with symmetric positive definite for real

vectors Jacobian matrix —c(f)�0.

Let φ(x)¼ f(c(x)) as in the corollary of Blum’s theorem over a compact set; this fuction has

exactly one fixed-point f* 2 Sf for existence and uniqueness conditions; let c*¼c(f*).
The vector valued function c(x) - c* is continuous over set Sf (according to existence condi-

tions E2) with cont. Symmetric Jacobian —[c(x) - c*]¼—c(x) (for hypothesis S1). Thus, there

exists a real valued function ψ(x), defined over set Sf, for which gradient and Hessian matrix

are rψ(x)¼c(x) - c* and r2ψ(x)¼—[c(x) - c*]¼—c(x), respectively. Hence, function ψ(x) is
twice differentiable.

Since the arc cost function c(x) is strictly monotone increasing (according to uniqueness

conditions U1), rψ(x)¼c(x) - c* is a vector-valued strictly monotone increasing function. Thus,

functionψ(x) is strictly convex over set Sf. Sincerψ(f*)¼c(f*) - c*¼0, functionψ(x) has a unique
Continued
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minimum at f*, ψ(x)>ψ(f*) 8x 6¼ f*, x 2 Sf, and ψ(x) is bounded from below. Thus, assumption a

holds for function ψ(x).
Moreover, condition f*¼ f(c(f*)) yields:

• for x¼ f*2Sf

rψ f∗ð ÞT φ f∗ð Þ	 f∗½ � ¼rφ f∗ð ÞT f c f∗ð Þð Þ	 f∗½ � ¼ 0

• for x 6¼ f*2Sf

rψ xð ÞT φ xð Þ	x½ � ¼ c xð Þ	c∗½ �T f c xð Þð Þ	x½ � ¼ c xð Þ	c f∗ð Þ½ �T f c xð Þð Þ	 f c f∗ð Þð Þ + f∗	x½ � ¼
¼ f c xð Þð Þ	 f c f∗ð Þð Þ½ �T c xð Þ	c f∗ð Þ½ �	 c xð Þ	c f∗ð Þ½ �T x	 f∗½ �

The arc cost function is strictly monotone increasing (uniqueness condition U1) and the arc flow

function is monotone decreasing (uniqueness conditions U2), therefore.

f c xð Þð Þ	 f c f∗ð Þð Þ½ �T c xð Þ	c f∗ð Þ½ � 
 0 and	 c xð Þ	 c f∗ð Þ½ �T x	 f∗½ �< 0 thusrψ xð ÞT φ xð Þ	x½ �< 0

Hence, assumption b holds for function ψ(x).
[This proof is from Cantarella, 1997, who slightly adapted the Feasible Flow Space Conver-

gence Corollary in Daganzo, 1983.]
Weak form of the Corollary of Blum’s theorem over compact sets.

Let φ(x) be a vector function from a non-empty compact convex set S to set φ(S)�S, with a

unique fixed-point x*¼φ(x*) in set S,
IF there exists

	 a non negative real value functionψ(x) defined over set S, with continuous firstrψ(x) and second
r2ψ(x) derivatives, and

	 a subset S• � S, with x*¼ φ(x•) 8 x•2 S•, x* 2 S•

such that

a. jψ(x) 	 ψ(x•)j>0 8 x 2 S, x 62 S•

with jφ(x•) 	 φ(x*)j¼0 8 x• 2 S•

b. rψ(x)T [φ(x) 	 x]<0 8 x 2 S, x 62 S

with rψ(x•)T [φ(x•) 	 x•]¼0 8 x• 2 S

ΤΗΕΝ the sequence xk¼xk-1+αk (ψ(xk-1)	 xk-1), with x0¼xo2 S and αk2]0,1] 8k such that Σk>0

αk¼∞ and Σk>0 (αk)2<∞, converges to a point x• in set S•, thus called the convergence set. The

fixed-point x* can be computed as x*¼ φ(x•).
Remark. Assessing convergence only requires that function ψ(x) and subset S• exist, but the

sequence xk is actually obtained without computing ψ(x) (or subset S•).
Remark. From any function bounded below a non negative function ψ(x) can be obtained.

Remark. Themost natural choice for functionψ(x) is a convex function that attains its minimum at

any point x•2 S•, in this case set S• is convex.

All other remarks for the standard form of the corollary still applies.

[See details in Cantarella, 1997.]
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As already noted, the most natural choice for function ψ(x) is a strictly convex

one with its minimum at the fixed-point x*. When only a convex, but not strictly

convex, function ψ(x) can be found, a weaker form of Blum’s theorem can be

adopted.
Convergence of the MSA-CA algorithm
As noted in the main text (p. 12) applying the Method of Successive Averages to

model (3.18) the MSA-CA algorithm is obtained based on the recursive equation:

ck ¼ ck	1 + 1=kð Þ c f ck	1
� �	ck	1

� �2 Sc with c0 ¼ c f0ð Þ and f0 2 Sf (3.20)
�

where

Sf is the feasible arc flow set non empty (if each o-d pair is connected by at least

one route), compact (since closed and bounded), and convex; it also is the

domain of the arc cost function c(�);
c(Sf) is the co-domain of the arc cost function c(�); it is non empty and compact

if the arc cost function c(�)is continuous, but generally not convex (unless the
arc cost function were linear);

Sc is the convex hull of set c(Sf); it is non empty and compact, as set c(Sf), and
convex by definition.

If the existence and uniqueness /arc conditions hold and the Jacobian of the arc flow

function is symmetric, the MSA-CA algorithm can be proved asymptotically

converging to an arc cost vector c• 2 Sc such that c*¼c(f(c•; d); κ) 2 c(Sf) and
f*5 f(c*; d) 2 Sf by applying the weak form of the corollary of Blum’s theorem over

compact sets as shown below. The arc cost vector c• does not need to be unique, and

generally is not. Let.

S�≜ c� 2 Sc : c∗¼ c f c�; dð Þ; κð Þf g be the convergence set, with c∗2 S� and
f∗¼ f c�ð Þ, since c∗¼ c f∗ð Þ:
The proof shows that the assumptions of the weak form of the corollary of Blum’s theorem over

compact sets hold, with reference to the MSA, If
• for existence conditions:

E1. each o-d pair i is connected by at least one route,

thus the feasible arc flow set Sf is non-empty, beside being compact and convex,
therefore Sc is non-empty, compact and convex (see also E2),

E2. the arc cost function c(f) is continuous with respect to the arc flows f,

E3. the arc flow function f(c) is continuous with respect to the arc costs c;

• for uniquenss conditions /arc:

U1.the arc cost function c(f) is s. monotone increasing with respect to the arc flows f,
Continued
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U2.the arc flow function f(c) is monotone decreasing with respect to the arc costs c (as it occurs for

invariant RUMs);

• moreover:

S2. the arc flow function f(c) is continuously differentiable with symmetric (as it occurs for invariant

RUMs) negative semi-definite for real vectors Jacobian matrix, 	—f(c)� 0.

Let φ(x)¼c(f(x)) as in the weak form of the corollary of Blum’s theorem over a compact set;

this fuction has exactly one fixed-point c* 2 c(Sf)�Sc, a non-empty, compact and convex set for

existence and uniqueness conditions; let f*¼ f(c*). Moreover, let S• be defined as above.

The vector valued function f* 	 f(x) is continuous over set Sc (according to existence conditions
E3) with cont. Symmetric Jacobian—[f*	 f(x)]¼	—f(x) (for hypothesis S2). Thus, there exists a real
valued functionψ(x), defined over set Sc, for which gradient andHessianmatrix arerψ(x)¼ f*	 f(x)

and r2ψ(x)¼—[ f* 	 f(x)]¼	—f(x), respectively. Hence, function ψ(x) is twice differentiable.
Since the arc flow function f(x) is monotone decreasing (according to uniqueness conditions

U2),rψ(x)¼ f* - f(x) is a vector-valued monotone increasing function over set Sc.. Thus, function

ψ(x) is convex over set Sc. Since rψ(c*)¼ f* 	 f(c*)¼0, function ψ(x) has a minimum at c* 2
c(Sf)�Sc, or ψ(x)�ψ(c*), 8x 2Sc, and ψ(x) is bounded from below. Moreover, since rψ(c•)¼
f* 	 f(c•)¼0 8 c• 2 S•, function ψ(x) has a minimum at any point c• 2 S• (but not at any other

point) henceψ(x)>ψ(c•)¼ψ(c*), 8x 62 S• (and set S• is convex). Thus assumption a holds for func-

tion ψ(x).

• for c• 2 S•�Sc, that is f(c
•)¼ f*¼ f(c*)

rψ c�ð ÞT φ c�ð Þ	c�½ � ¼ f∗	 f c�ð Þ½ �T c f c�ð Þð Þ	c�½ � ¼ 0

• for x 2 Sc, c 62 S•�Sc, that is f(x) 6¼ f*¼ f(c*)

rψ(x)T [φ(x)	x] ¼ [f∗ 	 f(x)]T [c(f(x))	x]¼
¼ f c∗ð Þ	 f xð Þ½ �T c f xð Þð Þ	c f c∗ð Þð Þ+ c∗	x½ � ¼

¼ f c∗ð Þ	 f xð Þ½ �T c f xð Þð Þ	c f c∗ð Þð Þ½ �+ f c∗ð Þ	 f xð Þ½ �T c∗	x½ � ¼

¼	 c f xð Þð Þ	c f c∗ð Þð Þ½ �T f xð Þ	 f c∗ð Þ½ �+ f c∗ð Þ	 f xð Þ½ �T c∗	x½ �
The arc cost function is strictly monotone increasing (uniqueness condition U1) and the arc flow

function is monotone decreasing (uniqueness conditions U2), therefore

	 c f xð Þð Þ	c f c∗ð Þð Þ½ �T f xð Þ	 f c∗ð Þ½ �< 0 and f c∗ð Þ	 f xð Þ½ �T c∗	x½ � 
 0

thusrψ xð ÞT φ xð Þ	x½ �< 0

Hence, assumption b holds for function ψ(f).
[This proof has been adapted from Cantarella, 1997.]
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CHAPTER
4
Assignment to congested
networks: Day-to-day
dynamics—Deterministic
processes
Giulio Erberto Cantarella
University of Salerno, Salerno, Italy
There is another danger which

you can scarcely hope to escape.

It is the weight of the past.

Vita Sackville-West

Outline. This chapter describes a comprehensive modelling approach to day-to-day

dynamic assignment to congested networks through discrete-time Markovian deter-

ministic process (DP) models; presented models are consistent with the SEAM

modelling framework presented in Chapter 1; first simple models for cost and choice

update are introduced and discussed, then deterministic process models based on

them with respect to flows and costs are introduced and discussed. At last more gen-

eral models encompassing most existing models are discussed.

Methods for day-to-day (or inter-periodic) dynamic assignment play a central role in

advanced transportation system analysis, since they allow to analyse and forecast

equilibrium stability and fluctuations around it, as a result of past events.

This chapter discusses deterministic process (DP) models for day-to-day (or

intra-periodic) dynamic assignment to congested transportation networks, a kind

of assignment still at research level and not yet fully implemented in commercial

software. They will turn out closely related to stochastic process (SP) models,

described in the next Chapter 5.

Even though exactly one user equilibrium flow and cost patterns exist (existence

and uniqueness conditions hold), the equilibrium analysis discussed in the previous

chapter does not allow to analyse whether (and under which conditions) the system

state, flow and cost patterns, evolves towards the user equilibrium, and, if not

whether, it evolves towards some kind of attractor. This stability analysis can be

addressed through DP models, discussed in this chapter.
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Moreover, the equilibrium analysis does not allow to analyse transients after

demand and/or supply changes, nor to obtain a statistical description of the system

state evolution over time, i.e. means, modes, moments and, more generally, fre-

quency distributions, this kind of analysis requiring SP models discussed in the next

chapter.

It should be stressed that day-to-day dynamics ontologically occur over discrete

time, while within-day dynamics, discussed in Chapter 6, occur over continuous

time, say any instant of time within a day (cfr Introduction). Thus in this chapter

we will only discussed discrete-time deterministic process models, say models

derived from the discrete-time non-linear dynamic system theory; apart from being

the only consistent approach to day-to-day dynamics, it also allow us to easily bridge

to (discrete) time-driven SP models, described in next chapter.

Some comments on DP models over continuous time are reported in the Sum-

mary at the end of this chapter, since some authors have proposed such a kind of

models in the past. The special case of all users following a maximum utility or min-

imum cost routes will not be discussed since rather unrealistic under day-to-day

dynamics, and not consistent with SP models; moreover, many models based on

these behavioural assumptions are also based on continuous time modelling.

It is worth noting that in his seminal paper, Wardrop (1952) alluded to the role of

dynamic adaptation in transportation networks. When providing a justification for

the introduction of the equilibrium concept, by stating that ‘it may be assumed that

traffic will tend to settle down into an equilibrium situation’.

Horowitz (1984) was the first to explicitly describe day-to-day dynamics, propos-

ing DP models for a two-link transportation network derived from discrete-time non-

linear dynamic system theory. Cascetta (1987, 1989) was the first to propose SP

models (more details in the next chapter) for analyse day-to-day dynamics in trans-

portation systems. He also stressed that equilibrium models should be considered a

special cases of day-to-day dynamic ones. Cantarella and Cascetta (1995) were the

first to propose a unifying general theory, based on RUM, encompassing FP models

for UE assignment and DP and SP models for DD assignment to general transpor-

tation networks. Since then several papers have been proposed, with an increasing

interest in the last decade.

Even though day-to-day is the term commonly used in literature a much better

term would be epoch, which, as stated in Cascetta (1989) ‘can have either a “chro-

nological” interpretation as successive reference periods of similar characteristics

(e.g. the a.m. peak period of successive working days) or they can be defined as “fic-

titious” moments in which users acquire awareness of path attributes and make their

choices’.

The specification of a DP models for day-to-day dynamic assignment requires an

extension of both the supply and the demand models by including sub-models of:

• user memory and learning: how users forecast the level of service that they will

experience today, from experience and other sources of information, such as

informative systems, about previous days;
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• user habit and inertia to change: how users make a choice today, possibly

repeating yesterday choice to avoid the effort needed to take a decision, or

reconsidering it according to the forecasted level of service.

In this chapter, for pedagogical purpose we first introduce and discuss some simple

DP models for day-to-day dynamic assignment to congested networks, including

fixed-point models as a special case; one of these approaches allows also to analyt-

ically derive several interesting results about fixed-point stability. Then general DP

models are discussed. They may include most route choice modelling approaches

(cfr Appendix to the book). They are described under steady-state conditions, but

they also apply to any TAN used for within-day dynamics, as discussed in

Chapter 6. Presented DPmodels are consistent with the SEAMmodelling framework

presented in Chapter 1.

Section 4.1 introduces basic equations for simple deterministic process models

discussed in Section 4.2; in Sections 4.3 and 4.4 long-term evolution over time is

discussed and fixed-point stability and bifurcations are analysed respectively for

those simple models; general models are discussed in Sections 4.5 and 4.6.
4.1 Basic equations for simple DP models
This section presents the basic equations for (within-day static) day-to-day dynamic

assignment through DP models adding the cost updating and the choice updating fil-

ters to the six equations introduced in the previous Chapter 3; the presented approach

can straightforwardly be applied to i-route variables instead of route ones and/or to

multi-class assignment as well. All definitions and assumptions introduced in the

previous chapters still hold, unless otherwise stated. Main vector notations from

Chapters 2 and 3 as well few new ones used in the following are enlisted below

in alphabetical order for reader’s convenience (sets come first, then Roman letters,

at last Greek letters). Variables that may change over the day have a superscript, usu-

ally k. When any ambiguity might occur with power exponent, the argument is

between round brackets.

A is the set of arcs, with m¼ |A | elements;

is the set of real m�1 (column) vectors with Euclidean distance;

m is the number of arcs;

ℕ is the set of natural numbers, that is positive integers;

ni is the number of routes connecting o-d pair i;
n¼P

ini is the number of routes connecting all o-d pairs;

Ri is the set of routes for o-d pair i, with ni¼ |Ri | elements;

R¼[iRi is the set of routes for all o-d pairs, with n¼ |R | ¼P
ini elements;

is the arc cost set, given by the convex hull of set c(Sf);
is the feasible arc flow set;

is the feasible route flow set for o-d pair i;
is the feasible route flow set;
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is the route cost set for o-d pair i, an affine transformation of the arc

cost set Sc;

Bi is the (m�ni) i-th block of the ARGIM for o-d pair i;
B is the (m�n) (row block) ARGIM;

ck�0 is the m�1 (column) vector of actual arc costs on day k;
c(�) is the m�1 (column) arc cost function;
di�0 is the demand flow for o-d pair i;
d�0 is the demand flow vector with entries di;
fk�0 is the m�1 (column) vector of total arc flows on day k;
fZ�0 is the m�1 (column) vector of other arc flows;
f(�) is the m�1 (column) arc flow function;
hk�0 is the n�1 (column) vector of route flows for all o-d pairs on day k;
hk;i�0 is the ni�1 i-th block of the (column) vector of route flows for o-d pair

i on day k;
hi(�) is the ni�1 (column) vector route flow function for o-d pair i;
h(�) is the n�1 (column) route flow function for all o-d pairs;

pk;i�0 is the ni�1 i-th block of the (column) vector of route choice
proportions for o-d pair i, with 1TPk;i¼1, on day k;

pi(�) is the ni�1 (column) vector route choice function for o-d pair i;
vk;i is the ni�1 i-th block of the (column) vector of route systematic utility for

o-d pair i on day k;
wk�0 is the n�1 (column) vector of actual route costs on day k;
wk;i�0 is the ni�1 i-th block of the (column) vector of actual route costs for

o-d pair i on day k;
wZi�0 is the ni�1 i-th block of the (column) vector of other route costs for o-d

pair i;
wZ�0 is theni�1blockof the (column)vector ofother route costs for o-d pair i;
w(�) is the n�1 (column) actual route cost function for all o-d pairs;

wi(�) is the ni�1 block the (column) vector actual route cost function for o-d

pair i;
xk�0 is the m�1 (column) vector of forecasted arc costs for day k;
yk;i�0 is the ni�1 i-th block of the (column) vector of forecasted route costs

for o-d pair i on day k;
yk�0 is the n�1 (column) vector of total route forecasted costs on day k;

α2 ]0, 1[ is the choice updating parameter;
β2 ]0, 1[ is the cost updating parameter;
ζj is the weight given to the actual cost occurred in any of the μ previous days,

in a Moving Average filter

θi>0 is the vector of the route choice function parameters for o-d pair i;
κa>0 is the capacity of arc a;
κ>0 is the m�1 (column) vector of the arc capacities, with entries κa;
μ>1 is the integer memory depth, in a Moving Average filter;

ψi>0 is the utility scale parameter in the route choice model, for o-d pair i.
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4.1.1 Supply models for simple DP models
Transportation supply models express how user behaviour affects network perfor-

mances. This section describes the three equations that according to the SEAM

framework specify the transportation supply model for the day-to-day dynamics

of a transportation system, needing an extension of EQN3 (or EQN2).

• Arc-route flow consistency relation

Under the steady-state assumption the yesterday arc flows due to all o-d pairs can be

obtained from the yesterday route flows through an affine transformation from the

route space to the arc space defined by the arc-route generalised incidence matrix (cfr

Eq. 3.1), given hi
08 i, blocks of h0:

fk�1 ¼
X

i
Bi � hk�1;i + fZ 2 Sf 8k2ℕ

or fk�1 ¼B � hk�1 + fZ 8k2ℕ
(4.1)

omitting other arc flows fZ in the following for simplifying notation.

• Arc cost function

Due to congestion, say driving user behaviour, yesterday actual arc costs depend on

yesterday arc flows (cfr Eq. 3.2):

ck�1 ¼ c fk�1; κ
� �� 02 Sc 8fk�1 2 Sf8k2ℕ (4.2)

where κ>0 is the vector of the arc capacities. The arc cost flow function as well its

parameters are assumed day-invariant.

• Route-arc cost updating function

When modelling day-to-day dynamics the actual costs, resulting from congestion,

are usually different from the forecasted costs affecting user choice behaviour,

namely the route utility values in the demand models (see next sub-section).

The yesterday actual route costs for o-d pair i can be obtained from the yesterday

actual arc costs through a transformation from the arc space to the route space

defined by the transpose of arc-route generalised incidence matrix (cfr Eq. 3.3):

wk�1;i ¼Bi
T � ck�1 +wZi 2 Sc 8i 8k2ℕ

omitting other route costs wZi and wZ in the following for simplifying notation.

After knowing yesterday actual costs, users, supported by words of mouth and

possibly informative systems, elaborate them to get forecast costs. Let yk;i�0 be

the ni�1 block of the (column) vector of total route forecasted costs for o-d pair

i on day k.
The route cost updating filter models how today forecasted costs are affected by

yesterday actual cost as well as further past actual costs, that is user memory and learn-

ing process. Some simple models are described below, general ones in Section 4.5.
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– Only yesterday filter

In the most straightforward approach to cost updating, the today forecasted costs are

assumed equal the yesterday actual costs without being affected by further past costs;

the so-called only yesterday (OY) filter is specified by the following recursive

equation:

yk;i ¼wk�1;i 8i 8k2ℕ

Given c0, combining the route-arc consistency relation with the OY filter leads to:

yk;i ¼Bi
T � ck�1 8i 8k2ℕ (4.3.1)

– Exponential smoothing filter

According to an exponential smoothing, ES(β), filter they are defined by a strict con-
vex combination of yesterday forecasted and yesterday actual costs, as specified by

the following recursive equation, given

yk;i ¼ βwk�1;i + 1�βð Þyk�1;i 8i 8k2ℕ

where β2 ]0, 1[ is the cost updating parameter, that is the weight given to yester-

day actual costs; in the following the cost updating parameter β is assumed time

invariant and common to all users.

Given c0, and y0;i ¼Bi
T � c08i combining the arc flow function with the ES(β)

filter leads to:

yk;i ¼ βBi
T � ck�1 + 1�βð Þ yk�1;i 8k2ℕ (4.3.2)

The OY filter (4.3.1) is a limit case obtained putting β¼1 in Eq. (4.3.2).

The ES(β) filter tries to model how each user make forecasts mixing own expe-

rience, experience shared with other users, as well as any other source of information

such as ITS. It is worth noting that, the resulting forecasted costs are a convex com-

bination of costs occurred today or on each previous day until first day, with weights

β, β (1�β), β (1�β)2,…, respectively, the farther the day in the past the smaller the

weight. [Still if today is day k the first day k¼0 gets a weight (1�β)k that is greater
than the weight β (1�β)k�1 given to the first day k¼1 if the updating parameter is

less than one half, β<0.5.] Even though according to an ES filter an infinite memory

is assumed, the weight given to any of the past days becomes rather small after few

days, for instance with β¼0.5, it is less that 0.1% after 9 days, and with β¼0.6, after

7 days; thus the ES(β) filter may be considered an effective approximation of a finite

memory (Fig. 4.1).

If the ES(β) filter models user experience the value of the cost updating parameter

β should be calibrated against real data, a still open issue; values of the cost updating
parameter in the range [0.5, 0.8] seem likely. Extensive experimentations are surely

needed to provide sound estimates. On the other hand, if the ES(β) filter models the

forecasting filter of an ATIS the cost updating parameter β becomes a design

variable.
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FIG. 4.1

Data-flow diagram of the DP models for day-to-day dynamic assignment.
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– Moving average filter

Sometimes a model of user memory and learning process with explicitly finite mem-

ory depth μ may be useful, as in Chapter 5 for analysing some stochastic process

models. Thus, a moving average, MA(β,μ), filter with one parameter β and memory

depth μ is introduced. At this aim, first the weighs of the ES filter are only applied to

μ previous days; thus at day t, the summation starts at day t�μ+1; then applying a

scaling factor ensures that these weights ζk sum to 1, leading to a (strict) convex mov-

ing average MA(β,μ) filter with one parameter; (normalised) decreasing weights ζj
for last μ days are given by:

ζj ¼ β 1�βð Þj�1= 1� 1�βð Þμð Þ� 0 8j¼ 1,2,…,μ

where

μ>1, μ2ℕ, is the memory depth, say how many previous day actual costs

affect today forecasted costs;

β2 ]0, 1[ is the cost updating parameter, that used to compute the weights given

to previous actual costs to compute today forecasted costs;

ζj is the weight given to the actual cost occurred in any of the μ previous days,P
jζj¼1.

The weights of the MA filter may also be defined the following recursive equation,

useful for computation:

ζ1 ¼ β= 1� 1�βð Þμð Þ j¼ 1

ζj ¼ ζj�1 1�βð Þ 8j¼ 2,…,μ

Using the above specified weights after the initialization step (see below), the route
cost updating function, which expresses the relation between today forecasted route

costs and previous day route costs, is defined as:

yk;i ¼
X

j¼1,…,μ
ζjwk�j;i 8i 8k2ℕ , k> μ

or yk;i ¼CMk�1;i � ζ
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where

ζ is the μ�1 vector with entries ζj;
CMk�1;i is the μ�nmemorymatrix of costs with μ columns given by the actual

costs in the μ previous days, wk�j;i, 8 j¼1, 2, …, μ for o-d pair i at the
beginning of day k; at the end of day k the current cost memory matrix

CMk�1;i is updated by dropping last column, moving all others columns

rightwards and putting wk as first column to get CMk;i.

Initialization ofCMk;i, say specification ofCMi
μ, may be carried out assuming that:

• all the μ columns of CMi
μ are equal to Bi

T c0;

• the ES filter (4.3.2) is applied for μ days to fill the μ columns of matrix CMi
μ:

Combining the arc flow function with the MA(β,μ) filter leads to:

yk;i ¼
X

j¼1,…,μ
ζjBi

T � ck�j 8i 8k2ℕ , k> μ (4.3.3)

For μ¼1 and/or β¼1 it is assumed ζ1¼1, say today forecasted costs are equal to

yesterday actual costs, as in a OY filter (4.3.1).

The weights given to actual travel experiences in the past depend only on the rel-

ative distance in time they are away from the present, i.e. the model MA(β,μ) is time-

homogeneous.

With either of the above initialization approaches, as μ goes to infinite the first

and last weights got to β and 0, respectively:

ζ1 ¼ β= 1� 1�βð Þμð Þ> βgoes to β,

ζμ ¼ β 1�βð Þμ�1= 1� 1�βð Þμð Þ> 0 goes to 0:

Moreover as μ goes to infinite the MA(β,μ) filter (4.3.3) tends to the ES(β) filter
(4.3.2). Fig. 4.1 shows a comparison between weights of the ES and the MS filters

with same cost updating parameter β against different values of memory depth μ.
Results show that the ES(β) filter is a very good approximation of a MA(β,μ), but
for very low values of memory depth, μ�3 which seems rather unrealistic. Hence,

from the practical point-of-view the preference between an ES filter or a MS filter is

more a matter of mathematical convenience rather than a modelling issue. On the

other hand, they have different theoretical features as shown in sub-section.

Equivalent i-route formulations can also be defined for all the above filters; they

are omitted for brevity’s sake (cfr Section 2.3).

• Route cost updating function

Eqs (4.1), (4.2), (4.3.#) describing the supply model can be combined to define the

route cost updating function, which expresses the relation between today forecasted

route costs and yesterday route flows and possibly other flows (cfr Eq. 3.4), for given

h0;i8 i, blocks of h0 and y0;i8 i, blocks of y0. Let yk�0 be the n�1 (column) vector

of total route forecasted costs on day k.
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– With only yesterday filter

yk;i ¼Bi
T � c

X
i
Bi � hk�1;i; κ

� �
8i 8k2ℕ

that are blocks of the block vector recursive function:

yk ¼BT � c B � hk�1; κ
� � 8k2ℕ

or, remembering from Section 3.1.1 the route cost function (3.4) w¼w(h;κ):

yk ¼w hk�1; κ
� � 8k2ℕ (4.4.1)

– With exponential smoothing filter

yk;i ¼ βBi
T � c

X
i
Bi � hk�1;i; κ

� �
+ 1�βð Þyk�1;i 8i 8k2ℕ

that are blocks of the block vector recursive function:

yk ¼ βBT � c Bi � hk�1; κ
� �

+ 1�βð Þyk�1 8k2ℕ

or remembering from Section 3.1.1 the route cost function (3.4) w¼w(h;κ):

yk ¼ βw hk�1; κ
� �

+ 1�βð Þ yk�1 8k2ℕ (4.4.2)

– With moving average filter

yk;i ¼
X

j¼1,…,μ
ζjBi

T � c
X

i
Bi � hk�j;i; κ

� �
8k2ℕ , k> μ

that are blocks of the block vector recursive function:

yk ¼
X

j¼1,…,μ
ζjB

T � c B � hk�j; κ
� � 8k2ℕ , k> μ

or remembering from Section 3.1.1 the route cost function (3.4) w¼w(h;κ):

yk ¼
X

j¼1,…,μ
ζjw hk�j; κ

� � 8k2ℕ , k> μ (4.4.3)

In multi-user assignment users may be grouped into classes (cfr Section 2.4), each

with a different value of the cost updating parameter β and memory depth μ (if the

case), this way commuters and non-commuters, ATIS equipped and non-equipped

users and/or human driven vs. automated vehicles, different commodities might

be differentiated, at the expense of increasing the number of parameters; other

approaches to modelling user memory and learning may require several parameters

as well. These general modelling approaches are not suitable for the discussion of the

long-term evolution over time and the analysis of fixed-point stability and bifurca-

tions in Sections 4.3 and 4.4.

In fully disaggregate approaches, each class is made up by a single user, thus the

cost updating parameter βmay be defined for each single user, and memorymay only

refer to personal experience. These models are better suited for disaggregate assign-

ment through stochastic process models, as described in Chapter 5.
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• Arc cost updating function

The very same route cost updating function (4.4.#) is obtained by first computing

forecasted arc costs by applying any of the above cost updating filters to arc costs.

Let xk�0 is the m�1 (column) vector of arc forecasted costs for day k.

– Only yesterday filter

xk ¼ c fk�1; κ
� � 8k2ℕ (4.5.1)

for given f0.

– Exponential smoothing filter

xk ¼ β c fk�1; κ
� �

+ 1�βð Þ xk�1 8k2ℕ (4.5.2)

for given f0, and x0¼c(f0)
where

β2 ]0, 1[ is the cost updating parameter.

– Moving average filter

xk ¼
X

j¼1,…,μ
ζjc fk�j; κ

� � 8k2ℕ , k> μ (4.5.3)

where

μ>1, μ2ℕ, is the memory depth;
β2 ]0, 1[ is the cost updating parameter;

ζj ¼ β 1�βð Þj�1= 1� 1�βð Þμð Þ� 0 8j¼ 1,2,…,μ:

In this case the above equations are used instead of (4.2), with forecasted route costs

defined by the following relation (cfr Eq. 3.3):

• Route-arc cost consistency relation

yk;i ¼Bi
T � xk 8i 8k2ℕ

to be used instead of (4.3.#).
4.1.2 Demand models for simple DP models
Travel demand models express how network performances affect user choice behav-

iour. This section describes the three equations that according to the SEAM frame-

work specify the travel demand model for the day-to-day dynamics of a

transportation system, needing an extension of EQN5, as shown below.

• Route utility function

The utility function for o-d pair i is assumed specified through a linear transformation

of today route forecasted costs, almost always in research analysis as well as in prac-

tical applications (cfr Eq. 3.6):

vk;i ¼�ψi y
k;i 8i 8k2ℕ (4.6)
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where ψi>0 is the utility scale parameter, such that the term ψi y
k;i is dimension-

less to be consistent with utility unit, it is assumed day-invariant.

[The features of whole model are not affected if first route utility values are com-

puted from actual route costs, then any of the above filters is applied to past actual

and/or forecasted utility values. Still this is not a general condition as discussed in

Section 4.5.]

• Route choice updating function

When modelling day-to-day dynamics today route choice behaviour is generally

affected by user habit effect and inertia to change yesterday choice. Very simple

models are described below, more general ones are in Section 4.5.

– No inertia filter

In the most straightforward approach to choice updating both habit and inertia are

neglected, thus for each o-d pair i the today route choice proportions depend on today
route systematic utility values through any discrete choice models theory (see

Appendix to the book) (cfr Eq. 3.7):

pk;i ¼ pi v
k;i; θi

� � 8i 8k2ℕ (4.7.1)

where θi is the choice function parameter vector, whose meaning depends on the

choice model specification. If a utility scale parameter is present, it is considered

included in the utility parameter ψi (or vice versa). The route choice function as well

its parameters are assumed day-invariant.

– Exponential smoothing filter

In a more realistic, but still very simple, approach to choice updating, only some

users reconsider yesterday choice (but not necessarily change them), and their

route choice behaviour is modelled through any choice function as above; the

others simple repeat their yesterday choices actual costs, that is their choice behav-

iour is modelled by yesterday route proportions. Following this approach for each

o-d pair i today choice proportions are given by an Exponential Smoothing, ES(α),
filter given p0;i:

pk;i ¼ αpi v
k;i; θi

� �
+ 1�αð Þpk�1;i 8i 8k2ℕ (4.7.2)

where

α2 ]0, 1[ is the choice updating parameter, that is the proportion of users

reconsidering yesterday choice; in the following the choice updating

parameter α is assumed day-invariant and common to all users.

Remark. If pk�1;i�0, 1Tpk�1;i¼1, pi(v
k;i;θi)�0, and 1Τpi(v

k;i;θi)¼1, condition

α2 ]0, 1[ assures that pk;i�0, 1Tpk;i¼1.

Remark. If the choice proportions, pi(v
k;i;θi), are defined through choice func-

tions derived from RUT, they are given the meaning of choice probability condi-

tional to the event of reconsidering yesterday choice, and the choice updating
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parameter, α, is given the meaning of the reconsidering probability. [In this case

Eq. (4.7.2) is an application of a basic lemma of Theory of Probability: P(B)¼
P(A) P(B/A)+ (1�P(A)) P(B/Ac).]

In the following the choice updating parameter α is assumed time invariant and

common to all users. Comments made above for the cost updating parameter β about
calibration, as well as on numerical interpretation, apply to the flow updating param-

eter α too; in this case values in the range [0.4, 0.6] seem likely.

Eq. (4.7.2) tries to model in simple but effective way user inertia to change and

how much users are prone to review their habit.

– Moving average filter

Moving average filters for modelling habit and inertia have not been proposed so far.

Their interpretation does not seem straightforward, thus they will not be discussed

below.

• Route-demand flow consistency relation

Flow conservation for o-d pair i can be expressed as:

hk;i ¼ dip
k;i 8i 8k2ℕ (4.8)

It assures that flows of all routes connecting the o-d pair i sum up to demand flow,

that is 1Thk;i¼di, since 1Tpk;i¼1, and non-negative, hk;i�0, since di�0 and

pk;i�0.

• Route choice updating function

Eqs (4.6), (4.7.#), (4.8) describing the demand model can be combined to define the

route flow updating function, which expresses the relation between today route flows
and yesterday route flows (cfr Eq. 3.9), for given h0;i8 i, blocks of h0:
– With no inertia filter

hk;i ¼ dipi �ψiy
k;i; θi

� � 8i 8k2ℕ

or, remembering from Section 3.1.2 the route flow function (3.9) h¼h(w;d):

hk ¼ h yk; d
� � 8k2ℕ (4.9.1)

– With exponential smoothing filter

hk;i ¼ α dipi �ψi y
k;i; θi

� �
+ 1�αð Þhk�1;i 8i 8k2ℕ

or, remembering from Section 3.1.2 the route flow function (3.9) h¼h(w;d):

hk ¼ αh yk; d
� �

+ 1�αð Þhk�1 8k2ℕ (4.9.2)

An equivalent i-route formulation can also be defined; it is omitted for brevity’s sake

(cfr Section 2.3).
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In multi-user assignment users may be grouped into classes (cfr Section 2.4), each

with a different value of the choice updating parameter α, thus increasing the number

of parameters; other approaches to modelling user memory and learning may require

several parameters as well. These general modelling approaches are not suitable for

the discussion of the long-term evolution over time and the analysis of fixed-point

stability and bifurcations in Sections 4.3 and 4.4.

In fully disaggregate approaches, each class is made up by a single user, thus the

choice updating parameter α may be defined for each single user. These models are

better suited for disaggregate assignment through stochastic process models, as

described in Chapter 5.
4.1.3 Arc flow updating function
In this section the arc flow updating function is introduced and discussed. It can be

obtained by combining together equations (4.1, 4.3.#, 4.6, 4.7.#, 4.8), or equations

(4.1, 4.3.#, 4.9.#), and remembering the arc flow function (2.33) introduced in

Section 2.5. Thus, given f0:

– With no inertia filter (cfr Eq. 2.34 in Section 2.5)
ð4:10:1Þ
– With exponential smoothing filter
ð4:10:2Þ
Eq. (4.10.2) too can be considered an extension of the arc flow function (2.34) introduced in

Section 2.5. Indeed, f(xk;α d) are the today arc flows due to the (α d) users who have reconsider
their yesterday choice, and (1�α) fk�1 are the today arc flows due to the ((1�α) d) users who have
not, thus summing up the today arc flows are:

fk ¼ f xk; αd
� �

+ 1�αð Þ fk�1 8k2ℕ

As noted in Section 2.5 the arc flow function is homogenous of degree 1 with respect to demand

flows: f(c;α d)¼α f(c;d), 8α>0, (cfr 2.35), then Eq. (4.10.2).
4.2 Simple DP models
The set of six equations (4.1)–(4.3.#) and (4.6)–(4.8) defines a discrete timeMarkov-

ian deterministic process (DP) model with respect to all the six basic variables,

describing the evolution over time of them.



Discrete time Markovian deterministic processes

Let φ(x;θ) be a vector function from set S to set φ(S), the recursive equation xk¼φ(xk�1,…;θ)2S

with x02S defines a discrete time deterministic process (DP), useful to describe the evolution over

time of a system where the state at time (day) k is described by xk, S is the state space, φ(�) is the
transition function, and θ are its parameters. The sequence x0, x1, x2, x3, x4,…, xk�1, xk, xk+1,…2S,
called a trajectory, depends on the initial state x0 and the values of the parameters θ.

The process is called Markovian if today state xk depends on yesterday state xk�1 only.

Remark. This condition can be obtained also if today state depends on finite number of previous

day states by duly specifying an equivalent process with further state variables.

Remark. If today state also depends on itself, the DP can be put in a Markovian form through the

approaches described in Appendix C.
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Fig. 4.1 shows a data-flow diagram of the DP model (4.1–4.3) and (4.6–4.8),
highlighting the roles of the main variables.
Deterministic processes as discrete-time non-linear dynamic systems

Discrete time deterministic processes are native discrete-time non-linear dynamic systems, for which

time is integer and increased by 1 at each iteration. They should not be confused with discrete-time

non-linear dynamic systems used to approximate continuous-time deterministic processes, the so-

called Poincar�e maps obtained through stroboscopic technique, for which time may be real and

increased by a real value.
To further analyse the model it is better to reduce the number of equations and

variables, as shown in the following (cfr Section 3.2). Given a specification of the

cost updating filter and of the choice updating filter the resulting model can be spec-

ified with respect to route or i-route variables (not explicitly reported for brevity’s

sake) as well as to arc variables, leading to equivalent models.

4.2.1 Two equation assignment models
Given an ES cost updating filter and an ES choice updating filter, the resulting DP

models are made by two equations with respect to two vectors, a flow vector and a

cost vector, say a two equation assignment models (TEAMs). They can be specified

with respect to route (i-route) or arc variables as show below.

• Route costs and flows—ES/ES

DP models based on route costs and flows may be specified by the ES route cost

updating Eq. (4.4.2) describing the supply model and the ES route flow updating

Eq. (4.9.2) the demand model, from a given initial state (y0, h0):

yk ¼ βw hk�1; κ
� �

+ 1�βð Þyk�1 8k2ℕ (4.11)

hk ¼ αh yk; d
� �

+ 1�αð Þhk�1 8k2ℕ (4.12)
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The DP model (4.11, 4.12) can easily be rewritten as a proper Markovian DP, today

state only depends on yesterday one by putting Eq. (4.11) into (4.12), but still keep-

ing Eq. (4.11). The state variables of DP model (4.11, 4.12) are (yk, hk); the updating

parameters are α and β; other parameters are demand flow, d, and any other param-

eter in choice functions and in the arc cost function. This model is useful when

explicit path enumeration can be carried out; it is worth noting that this is hardly

the case if routes are hyperpaths. This model is also useful as a base for developing

stochastic process models described in Chapter 5.

A DP model providing an equivalent evolution over time can be specified with

respect to arc variables as shown below.

• Arc costs and flows—ES/ES

DP models based on arc costs and flows may be specified from given initial state by

the ES arc cost updating Eq. (4.5.2) and the ES arc flow updating Eq. (4.10.2), from a

given initial state (x0¼c(f0), f02Sf):
ð4:13Þ
ð4:14Þ

where

Sf is the feasible arc flow set non empty;

Sc is the convex hull of set c(Sf), c(Sf) being the co-domain of the arc cost

function c(�).
The DP model (4.13, 4.14) can easily be rewritten as a proper Markovian DP by put-

ting Eq. (4.13) into (4.14), but still keeping Eq. (4.13). The state variables of DP

model (4.13, 4.14) are (xk, fk); the state space is Sc�Sf; the updating parameters

are α and β; other parameters are demand flow, d, and any other parameter in choice

functions and in the arc cost function. This model is useful when routes (being them

paths or hyperpaths) cannot be explicitly enumerated. This model also allows a com-

plete stability analysis as shown in Sections 4.3 and 4.4.

Given anMAcost updating filter and anES choice updating filter, the resultingDP

models can be specified with respect to route (i-route) or arc variables as show below.

• Route costs and flows—MA/ES

DP models based on route costs and flows may also be specified from given initial

state by the MA route cost updating Eq. (4.4.3) and the ES route flow updating

Eq. (4.9.2) the demand model, from a given initial state defined route flows h in

the first μ days (see the above Section 4.1.1 for details):

yk ¼
X

j¼1,…,μ
ζjw hk�j; κ

� � 8k2ℕ ,k> μ (4.15a)

hk ¼ αh yk; d
� �

+ 1�αð Þhk�1 8k2ℕ (4.15b)
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with

ζj ¼ β 1�βð Þj�1= 1� 1�βð Þμð Þ� 0 8j¼ 1,2,…,μ (4.16)

The DP model (4.15a, 4.15b) can easily be rewritten so that today state only

depends on previous day ones by putting Eq. (4.15a) into (4.15b) actually leading

to a OEAM:

hk ¼ αh
X

j¼1,…,μ
ζjw hk�j; κ

� �
; d

� �
+ 1�αð Þhk�1 (4.17)

Still the resulting DPmodel (4.17) is not properlyMarkovian, an equivalent Markov-

ian DP can be specified as described below through μ+1 equations.

The system state at day k�1 is described by a vector |hk�1 made up by μ blocks,

one block for yesterday flows 1hk�1, and one block jhk�1 j¼2, …, μ for each of

the μ�1 previous days kept in memory. Therefore, on each day k today’s flows, con-
tained in the first block 1hk, are updated according to Eq. (4.15b), and each of all the

other blocks are used tokeep amemoryof theμ�1previous days flows,whilst theμ-th
previous day flows are no longer recorded. According to this state definition today

state only depends on yesterday, leading to the following Markovian DP:

1hk ¼ αh
X

j¼1,…,μ
ζjw

jhk�1; κ
� �

; d
� �

+ 1�αð Þ1hk�1 8k2ℕ ,k> μ (4.18)

jhk ¼ j�1hk�1 j¼ 2,…,μ (4.19)

The above model is actually a multi equation assignment model, but it is still con-

sidered a TEAM since it is derived from a TEAM, and contains two types of

equations only.

The state variables of DPmodel (4.18, 4.19) are the route flow blocks jhkj¼1,…,

μ; the updating parameters are α and β and μ in Eq. (4.16) that defines memory

weights ζj; other parameters are demand flow, d, and any other parameter in choice

functions and in the arc cost function.

This model is useful when explicit path enumeration can be carried out; it is worth

noting that this is hardly the case if routes are hyperpaths. This model is also useful as

a base for developing stochastic process models described in Chapter 5.

A DP model providing an equivalent evolution over time can be specified with

respect to arc variables by the MA arc cost updating Eq. (4.5.3) and the ES arc flow

updating Eq. (4.10.2) as shown below.

• Route costs and flows—MA/ES

1fk ¼ α f
X

j¼1,…,μ
ζjc

jfk�1; κ
� �

; d
� �

+ 1�αð Þ1fk�1 8k2ℕ ,k> μ (4.20)

jfk¼j�1fk�1 j¼ 2,…,μ (4.21)

The state variables of DP model (4.20, 4.21) are the arc flow blocks jfkj¼1,…, μ+1;
the state space is the union of μ copies of set Sf; the updating parameters are α and β
and μ in Eq. (4.16) that defines memory weights; other parameters are demand flow,

d, and any other parameter in choice functions and in the arc cost function. This

model is useful when explicit route enumeration cannot be carried out.



974.2 Simple DP models
4.2.2 One equation assignment models
Given an OY cost updating filter and/or an NI choice updating filter, the resulting DP

models are made by one equation with respect to one vector, a flow vector or a cost

vector, say one two equation assignment models (OEAMs). They can be specified

with respect to arc or route variables, as well as i-route variables. Arc formulations

only are reported below for brevity’s sake.

• Arc costs and flows—OY/ES
ð4:22Þ
This model can be obtained from (4.13, 4.14) with β¼1 or from (4.20, 4.21) with

β¼1 and μ¼1.

• Arc costs and flows—ES/NI

xk ¼ β c f xk�1; d
� �

; κ
� �

+ 1�βð Þxk�1 8k2ℕ (4.23)

This model can be obtained from (4.13, 4.14) with α¼1.

• Arc costs and flows—MA/NI

xk ¼
X

j¼1,…,μ
ζjc f xk�1; d

� �
; κ

� � 8k2ℕ ,k> μ (4.24)

This model can be obtained from (4.20, 4.21) with α¼1.

• Arc costs and flows—OY/NI
ð4:25Þ

or xk ¼ c f xk�1; d

� �
; κ

� � 8k2ℕ (4.26)

Either of these models can be obtained from (4.13, 4.14) with α¼1 and β¼1 or from

(4.20, 4.21) with α¼1, β¼1 and μ¼1.

Even though all the above OEAMs can be obtained as limit cases of previous

described TEAMs they may not share all their features as discussed in Sections 4.3

and 4.4.
4.2.3 Fixed point states
All the above discussed DP models have the same fixed-point states, which are con-

sistent with CUE, as described by the fixed-point models presented in the previous

Chapter 3. An explicit proof is given below for DP (4.13, 4.14) and (4.20, 4.21) only

for brevity’s sake. This result implies that fixed-point states of all the above

described DP models do not depend on updating parameters. Thus, existence and

uniqueness conditions discussed in Chapter 3 still hold. But, this condition may

not hold for general DP models described in Sections 4.5 and 4.6. Anyway, fixed-

point states depend on other parameters, such as demand flows, dispersion parame-

ters, arc capacity, see Section 4.4.1 for further comments.



Fixed-point states of a deterministic process

Let xk¼φ(xk�1;θ)2S with x02S be a discrete-time Markovian deterministic process, any state

x∗ 2S such that

x∗¼ xk ¼ xk�1 orx∗¼φ x∗; θð Þ
is a fixed-point state of it, generally depending on the parameters θ. It is a parametric fixed-point of the

transition function φ(�) as well (cfr the implicit function theorem).
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Given x∗ ¼xk¼xk�1 and f∗ ¼ fk¼ fk�1, Eqs (4.13), (4.14) lead to
x∗¼ β c f∗; κð Þ + 1�βð Þx∗
f∗¼ α f x∗; dð Þ + 1�αð Þ f∗
or

0¼ β c f∗; κð Þ�βx∗

0¼α f x∗; dð Þ�α f∗

Since both updating parameters α and β are different from zero, it yields

x∗¼ c f∗; κð Þ
f∗¼ f x∗; dð Þ
to be compared with fixed-point model (3.15, 3.16) for CUE.

Given f∗ ¼ jfk¼ jfk�18 j¼1, …, μ+1, Eqs (4.20), (4.21) lead to

f∗¼ α f Σj¼1,…,μ ζj c f∗; κð Þ; d
� �

+ 1�αð Þ f∗
f∗¼ f∗

or

f∗¼ α f c f∗; κð ÞΣj¼1,…,μ ζj; d
� �

+ 1�αð Þ f∗
Since Σj¼1, …, μ ζj¼1, it yields:

f∗¼ α f c f∗; κð Þ; dð Þ + 1�αð Þ f∗
or

0¼α f c f∗; κð Þ; dð Þ�α f∗:

Moreover, since the choice updating parameter α is different from zero, it yields:

f∗ ¼ f(c(f∗;κ);d)

to be compared with fixed-point model (3.17) for CUE.

Similar proofs exists for OEAMs (4.22), (4.23), (4.24), (4.25), (4.26).
A special case occurs when there is a unique fixed-point state and from any initial

state belonging to the state space the system converges towards it. In this case the

(unique) fixed point is called globally stable.

Sufficient conditions for existence, uniqueness and global stability are given by

the Banach theorem and its corollaries, requiring that the state space is non empty

and compact and the transition function is strictly non-expansive.



Sufficient conditions for fixed-point global stability—Corollary
to Banach’s theorem

Let xk¼φ(xk�1;θ)2S with x02S be a deterministic process, with compact state space S, and

x∗ ¼φ(x∗;θ)2S be a fixed-point state of it.

IF the transition function φ(x) is strictly non-expansive:

kφ x’ð Þ�φ x}ð Þk< kx’�x}k8x1 6¼ x2 2 S

where k �k is any vector norm/distance.

THEN the fixed-point state x∗ ¼φ(x∗;θ)2S is unique and globally stable, that is any trajectory

xk¼φ(xk�1) converges to the fixed-point state x* from any initial state x02S in the state space:

lim k!∞ xk ¼ x∗ 8x0 2 S

Remark. If the transition function φ(x) is continuously differentiable with Jacobian —φ(x), a
sufficient conditions for being strictly non expansive is that the a matrix norm (induced by a vector

norm) of its Jacobian is less than one, |k—φ(x) |k<18x2S.

994.2 Simple DP models
Still, strictly non-expansiveness of the transition function is a strong condition

that do not hold for any of the DPmodels described in the previous section. A weaker

condition for fixed-point global stability requiring that the state space is non empty

and compact and the transition function is continuous can be stated by finding a

Lyapunov function.
Sufficient conditions for fixed-point global stability—Lyapunov
functions

Let xk¼φ(xk�1;θ)2S with x02S be a deterministic process, with compact state space S, and

x∗ ¼φ(x∗;θ)2S be a fixed-point state of it.

IF the transition function φ(x) is continuous and there exist a continuous non negative scalar

function ‘()�0, called a Lyapunov function, defined over the state space S such that:

‘ xð Þ> 0 ‘ φ xð Þð Þ<‘ xð Þ 8x2 S,x 6¼φ x; θð Þ
‘ x∗ð Þ¼ 0 ‘ φ x∗ð Þð Þ¼ ‘ x∗ð Þ 8x∗2 S, x∗¼φ x∗; θð Þ

THEN the fixed-point state x∗ ¼φ(x∗;θ)2S is unique and globally stable, that is any trajectory

xk¼φ(xk�1) converges to the fixed-point state x* from any initial state x02S in the state space:

lim k!∞ xk ¼ x∗ 8x0 2 S

Remark. If the transition function is strictly non-expansive a Lyapunov function exists given by

‘(x)¼kφ(x)�xk, thus the existence of a Lyapunov function is a weaker condition than the non-

expansiveness of the transition function.

Remark. Sometimes the Lyapunov function is defined non positive.

Remark. Sometimes a Lyapunov function can only be defined locally, say over a subset of the

state space.
Toauthor’ knowledge, no conditionbasedonexistence of aLyapunov functionhas

been proposed assuring global stability of a unique fixed-point of aDP of the kind dis-

cussed in this book, such asDP-ES/ESandDP-MA/ES.Thus, this is still an open issue.

When conditions for globally stability cannot be stated, even if a fixed-point

state exists and is unique the system may not evolve towards it, as discussed
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below. Local stability analysis can be carried out based on the features of the

Jacobian matrix of the recursive equations specifying the DP, as shown

Sections 4.3 and 4.4.
4.2.4 Solution issues and convergence analysis
Any of the above described discrete-time Markovian deterministic process models

can be solved by repeatedly applying the recursive equations that specify it, given

an initial state and values of all parameters, and is suitable for large scale applications.
Solution of deterministic processes

Given an initial state x02S, the recursive equation xk¼φ(xk�1;θ)2S is repeatedly applied for a

pre-fixed number of iterations or until a sort of convergence is reached (see below). The resulting

trajectory generally depends on the initial state x0.

Remark. A fixed-point state is not suitable initial state since in this case the state will always

reproduces itself.
With reference to the examples already discussed in Chapters 2 and 3, Fig. 4.2 shows the trajec-

tories of flow on route 1 from day 105 to day 120 obtained by applying DP-ES/ES with α¼0.50,
β¼0.60, dispersion parameter θ¼7, and increasing demand flow d from 3600 to 3900, 4200. The

trajectories with small values of the demand flow d reach the unique fixed-point state (consistent

with SUE, cfr Table 3.2 and Fig. 3.3 for d¼3600), but for larger values the trajectories keep oscil-

lating between two states. Similar results can be observed decreasing the Logit dispersion param-

eter θ and/or the arc capacities.
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FIG. 4.2

A route flow against day given by DP-ES/ES (dotted line shows SUE) with d¼ 3600 (flat

line), 3900 (spiky line), 4200 (largely spiky line).



Fig. 4.3 shows the trajectories obtained increasing β from 0.60 to 0.65, 0.70. The trajectories

of DP-ES/ES with small values of the cost updating parameter β reach the unique fixed-point

state (consistent with SUE, cfr Table 3.2 and Fig. 3.3), but for larger values the trajectories keep

oscillating between two states. As shown above, the fixed-point state is not affected by the values of

β. Similar results can be observed increasing the choice updating parameter α.

Fig. 4.4 shows a comparison between the trajectories obtained by applying DP-ES/ES with

β¼0.60 and those of DP-MA/ES with same value of β and memory depth μ¼3, 4. The trajectories

from DP-ES/ES and DP-MA/ES with μ¼4 reach the unique SUE (and cannot be distinguished),

but with μ¼4 the trajectory from DP-MA/ES keep oscillating between two states.
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FIG. 4.3

A route flow against day given by DP-ES/ES (dotted line shows SUE) with β ¼ 0.60 (flat

line), 0.65 (spiky line), 0.70 (largely spiky line).
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FIG. 4.4

A route flow against day given by DP with MA μ¼ 3 (largely spiky line), 4 (flat line), and

with ES (hidden flat line).
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Results of simple examples show that the trajectory of a DP may not converge

to a fixed-point state (consistent with SUE) even if it is unique, as stated below

where some notions about the convergence of a deterministic process are briefly

reviewed to introduce notations and definitions (and to support the unfamiliar

reader).
Convergence sets of a deterministic process

A convergence set, is a proper subset of the state space, having the following properties:

� it has a dimension strictly less than the dimension of the state space,

� the system cannot evolve towards a state out of the convergence starting from its interior;

� the convergence set is minimal, that is it does not strictly include any other convergence set.

An example of convergent set is a fixed-point state.

Types of attractors of a deterministic process

There are four main types of attractors:

– fixed-point attractors: once reached the system always takes up the same point, their dimension

is zero;

– periodic attractors: once reached the system periodically moves among a finite number of points,

their dimension is zero;

– quasi-periodic attractors: once reached the system moves on a torus, that is a toroidal surface

containing infinite many points, with non zero integer dimension;

– a-periodic attractors: once reached the systemmoves within a fractal set containing infinite many

points with non zero non-integer dimension.

If there is no attraction domain any of the sets described above is just a convergence set. For

example a fixed-point state is a repulsor, if from any other initial state the system diverges from the

fixed-point state, or a saddle, if from some initial states the system converges to the fixed-point state

and from others diverges from it.

Attractors of a deterministic process

An attractor is a convergence set that

– has an attraction domain (also called basin of attraction), which is a proper super-set of the

convergence set such that from any initial state belonging to the attraction domain the system

converges towards the attractor; the attraction domainmay be a proper sub-set of the state space or

the whole state space.

Convergent deterministic processes

A DP is called convergent from an initial state if its state tend to a convergence set. The state space

may be considered partitioned into convergence regions, say attraction domains, and non-

convergence regions, from which the DP does not tend to any attractor, say it is not convergent.

Usually borders among regions can only be identified through brute force.



Chaotic attractors of a deterministic process

An attractor is called chaotic if two trajectories starting however close will greatly diverge after some

time (but they still are in the attractor in any case). This is often called the butterfly effect (usually with

reference to continuous-time NDSs). Fixed-point, periodic and quasi-periodic attractors are non-

chaotic. Almost always an a-periodic attractor is chaotic; in this case the system state evolves over

time through successive contractions on some directions and stretching and folding on others.

According to the shadow theorem although a numerically computed chaotic trajectory diverges

exponentially from the true trajectory with the same initial coordinates, there exists an errorless

trajectory with a slightly different initial condition that stays near (‘shadows’) the numerically

computed one. Therefore, the fractal structure of chaotic trajectories seen in computer maps is real.

(Cfr Ott, E. (1993). Chaos in Dynamical Systems. New York: Cambridge Univ. Press, pp. 18–19.)

1034.3 Dissipativeness analysis
As shown above a qualitative analysis of convergence and types of attractors

(if any) can be carried-out by repeatedly applying the recursive equations that

specify a DP. Analytical tools to address these issues are described in the next

Sections 4.3 and 4.4.

4.3 Dissipativeness analysis
This section presents analytical conditions for differentiable DP models being con-

vergent to some attractors, possibly depending on the initial state and the model

parameters, through a dissipativeness analysis.
Dissipative deterministic processes

A differentiable deterministic process is called dissipative if a (small enough) ball round any initial

state will shrink as the DP evolves, and the state space tends to reduce to a null measure set, that is a set

with a dimension smaller than the state space, say an attractor, or a convergence set. If the ball shrinks

after stretching and folding a chaotic fractal attractor will likely be observed. Let δ(J(x))¼ |det(J(x))|
be the absolute value of the determinant (absdet) of matrix J(x). A sufficient condition for

dissipativeness is:

δ J xð Þð Þ< 18x2 Swithδ 6¼ 0:

If δ¼0, the analysis should be moved to a space with reduced dimensions where δ 6¼0, through

proper linear transformations; otherwise dissipativeness cannot be assessed.

A DP may be dissipative, say convergent, from any initial state in a sub-set (locally dissipative) of

the state space only or in the whole state space (globally dissipative).

Differentiable deterministic processes

A deterministic process xk¼φ(xk�1;θ)2S is called differentiable (DDP) if its transition function φ(�)
s differentiable over the state space S (or subset of it), with J(x)¼ rφ(x) being the Jacobian matrix of

the transition function.
From the Jacobian matrix of a DDP model the Lyapunov multipliers can be

defined to formally identify the type of an attractor (instead of the qualitative analysis

of trajectories).



Lyapunov multipliers of a differentiable deterministic processes

Given a differentiable DP specified by transition function φ(�), let φk(�) be the transition function

applied k times with Jacobian matrix —φk(�) that can be computed through the chain rule. Given an

initial state x0 and values of all parameters let be λk;j be the j-th eigenvalue of matrix —φk(x0), the

contracting or expanding factor for each direction, called μj�0 (not to be confused with the memory

depth of a MA filter), is given by:

μj ¼ limk!∞ j λk;jj
� �1=k

If the product of the n multipliers is less than one, μ1 μ2…μn<1, the DP is converging to an

attractor; μj<1 defines a shrink direction, while μj>1 a stretching direction followed by a folding, as

noted above. Assuming the multipliers sorted in a ascent order, 0�μn�…�μj�…�μ1, the type of
attractor can be identified by the following conditions.

fixed-point or periodic attractor 0�μn�…�μ1<1

quasi-periodic attractor 0�μn�…�μj+1<μj¼…¼μ1¼1

the number of μj¼1 is the dimension of the torus

a-periodic attractor 0�μn�…�μj+1�1<μj¼…¼μ1
the number of μj>1 is the dimension of the fractal

Remark. Condition μ1 μ2…μn<1, which holds for all types of attractors, is clearly implied by the

reported conditions for the first three types.

Remark. If the DP specified by transition function φ(�) is dissipative, δ(—φ(�))<1, then

δ(—φk(x0))<1, thus confirming condition μ1 μ2…μn<1.

Remark. Sometimes Lyapunov multipliers are named after Poincarè or Floquet.
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The dissipativeness of the DP TEAMs described in Section 4.2.1 is discussed

below; some comments are also provided about DP OEAMs from Section 4.2.2.
4.3.1 Dissipativeness of DP-ES/ES
To analyse whether the DP-ES/ES model (4.13, 4.14), specified with respect to arc

variables and repeated below for reader’s convenience:

xk ¼ β c fk�1; κ
� �

+ 1�βð Þ xk�1 8k2ℕ (4.13)
ð4:14Þ
is dissipative is necessary to first define its Jacobian matrix J(x, f), which is given by:

J x, fð Þ¼
1�βð Þ Im β Jc fð Þ

α 1�βð ÞJf xð Þ 1�αð Þ Im + αβJf xð Þ � Jc fð Þ
(4.27)

where m is the number of arcs, Jf(x)¼ r f(x) is the Jacobian of the arc flow func-

tion, and Jc(f)¼ rc(f) is the Jacobian of the arc cost function (cfr Chapter 3).

The absdet of Jacobian matrix J(x, f) can be computed from its block structure

giving:

δ J x, fð Þð Þ¼ 1�βð Þm 1�αð Þm 8 x, fð Þ (4.28)
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Since α2 ]0, 1[ and β2 ]0, 1[, then δ(J(x))2 ]0, 1[, thus DP-ES/ES is dissipative

from any initial state in the whole state space. It is worth noting that the absdet

δ(J(x, f)) only depends on the updating parameters α and β, and does not depend

on the point where is computed, nor on any others parameters such demand flows,

capacities, …

An equivalent results is obtained with respect to route (or i-route) variables, with

reference to DP (4.11, 4.12):

δ J y, hð Þð Þ¼ 1�βð Þn 1�αð Þn 8 y, hð Þ
where n is the number of routes
Determinant of block matrices 1 (Theorem 3 in Sylvester (2000))

LetM be a 2�2 block matrix, with first row [M11 jM12] and second row [M21 jM22], and

M11, M12, M21 and M22 square matrices of the same size. If M11 �M21¼M21 �M11, then the

determinant of matrix M is given by: det(M)¼det(M11 �M22�M21 M12)
Since 1�βð Þ Im � α 1�βð Þ Jf xð Þ¼α 1�βð ÞJf xð Þ � 1�βð Þ Im,

det J x, fð Þð Þ¼ det 1�βð Þ Im � 1�αð Þ Im + αβ Jf xð Þ � Jc fð Þð Þ�α 1�βð ÞJf xð Þ � βJc fð Þð Þ Þ

¼ det 1�βð Þ 1�αð Þ Im + αβ 1�βð ÞJf xð Þ � Jc fð Þð Þ�αβ 1�βð Þ Jf xð Þ � Jc fð ÞÞÞ
¼ 1�βð Þm 1�αð Þm
4.3.2 Dissipativeness of DP-MA/ES
To analyse whether the DP-MA/ES model (4.18, 4.19), specified with respect to

route variables and repeated below for reader’s convenience:

1hk¼ αh Σj¼1,…,μ ζjw
jhk�1; κ
� �

; d
� �

+ 1�αð Þ1hk�18k2ℕ ,k> μ (4.18)

jhk¼j�1hk�1 j¼ 2,…,μ (4.19)

is dissipative is necessary to first define its Jacobian matrix J(jh), with respect to

the block vector of route flows |h¼ jh j¼1, …, μ. The Jacobian matrix J(jh) has
a special structure [indeed it is a Frobenius block matrix], as shown below for

μ¼4:

J j hð Þ¼

α ζ1G1 + 1�αð Þ In α ζ2G2 α ζ3G3 α ζ4G4

In 0 0 0

0 In 0 0

0 0 In 0

(4.29)

where y¼y(jh) is a compact way to express Eq. (4.4.3), Jh(jh)¼ rh(y¼y(jh)),
Jw(

jh)¼ rw(jh), Gj¼Jh(y(jh)) �Jw(jh) with entries depending on system parame-

ters also. Moreover, cfr (4.26), ζj¼β (1�β)j–1/(1� (1�β)μ)�08 j¼1, 2, …, μ.
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The absdet of Jacobian matrix J(jh) can be computed from its block structure

giving:

δ J j hð Þð Þ¼ α ζμ δ Gμ
� �

(4.30)
Determinant of block matrices 2 (cfr Acknowledgements in Sylvester (2000))

Let M be a 2�2 block matrix, with first row [M11 j M12] and second row [M21 j M22],

and M11 and M22 square matrices, M12 and M21 not necessarily square matrices, M22 non

singular/invertible.

The determinant of matrix M is given by: det Mð Þ¼
det M11M22�M12M22

�1M21M22

� �
From matrix algebra the absdet δ(J) of the above Jacobian matrix J is equal to absdet of the

following matrix J0 obtained through properly interchanging some columns:
J’ j hð Þ¼

α ζ4G4 α ζ1G1 + 1�αð Þ In α ζ2G2 α ζ3G3

0 In 0 0

0 0 In 0

0 0 0 In

thus δ(J)¼δ(J’)¼α ζ4 δ(G4)
Omitting arguments for simplicity’s sake, matrixGμ¼Jh �Jw is singular since Jw
is singular due to the demand-route flow consistency equation; thus the above result,

however elegant, is not useful to assess dissipativeness.

As shown in Appendix A, dissipativeness analysis can be further advanced by

specify a DP model with respect to i-route flows equivalent DP-MA/ES model

(4.18, 4.19), such that the equivalent of matrix Gμ is non-singular.

It turns out that the DP-MA/ESmay not be dissipative, that is may not converge to

any kind of attractor (from some initial states at least) as day goes to infinite, espe-

cially for high values of β and low values of μ. On the other hand, whichever is the

value of β, there always exists a large enough memory depth μ∗ such that for any

memory larger than this value μ∗ the DP-MA/ES is dissipative from any initial state

(further details in Appendix A to this chapter).
4.3.3 Dissipativeness of DP-OEAMs
As in the previous cases, to analyse whether each of the DP-OEAMs described in

Section 4.2.2 is dissipative is necessary to first define its Jacobian matrix J (omitting

argument). In all cases the absolute value of the determinant of J may be out of the

range ]0, 1[, each of these DP models may be not dissipative, that is it may not con-

verge to any kind of attractor, details are omitted for brevity’s sake. Therefore, even

if there is a unique fixed-point x∗, it may be an attractor from some initial states only,

but not from all of them, or not an attractor at all.
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Jacobian matrices for models (4.22) and (4.23) are given below for reference.

J fð Þ¼ 1�αð Þ Im + αJf x¼ c fð Þð Þ � Jc fð Þ

J xð Þ¼ 1�βð Þ Im + βJc f¼ f xð Þð Þ � Jf xð Þ
In both cases the determinant is a function of the entries of matrices Jf (x) and Jc(f)

too, besides the updating parameters.
4.4 Fixed-point state local stability and bifurcation analysis
As already noted a deterministic process may evolve towards fixed-points as well as

other kind of attractors, such periodic, quasi-periodic, and a-periodic attractors, or

may not converge at all, depending on values of parameters and/or initial states. This

section describes methods to analyse whether a fixed-point is an attractor without

explicitly running the underlying deterministic process model.

A special case of convergent DP occurs when a fixed-point state is an attractor

and its attraction domain is the whole state space: from any initial state belonging to

the state space the system converges towards it, the (unique) fixed point is globally

stable as discussed in Section 4.2.3. When conditions for globally stability cannot be

stated, local analysis can be carried out based on the features of the Jacobian matrix

of the recursive equations specifying the DP, as shown below.

4.4.1 Local stability analysis
This section presents sufficient conditions for local stability of a fixed-point state of

DP-ES/ES, that is a local attraction domain exists thus the fixed-point state is an

attractor. These conditions are based on a spectral analysis of the Jacobian matrix

of the transition function. As already noted, fixed-points of DP-ES/ES are consistent

with CUE.
Some results from matrix analysis

Given a n�n real matrix J, let

λj be one of the n eigenvalues of matrix J, real or component of a complex conjugate pair:

λj ¼ λRj� iλIj, with no loss of generality λIj>0;

ν#(J)�0 be any matrix norm of matrix, where subscript # highlights that there exist several

different norms.

the following relations hold:

λRj + iλIj
� �

λRj� iλIj
� �¼ λRj

� �2
+ λIj
� �2 ¼ λRj + i λIj

� ��� ��2 ¼ λRj� i λIj
� ��� ��2

det(J)¼Πj λj, for the determinant of matrix J,

δ(J)¼ |det(J) | ¼Πj |λj | �0, for the absolute value determinant of matrix J,

ρ(J)¼maxj |λj | �0, for the spectral radius of matrix J by definition,

ν#(J)�ρ(J), for any matrix norm.

Moreover ν#(J)<1)ρ(J)<1)δ(J)<1.



Local stability of fixed-point states of a differentiable deterministic
process

Let with x02S be a differentiable deterministic process with n�n

Jacobian matrix rφ(x;θ), and x∗ ¼φ(x∗;θ)2S be a fixed-point state of it.

Let λj∗ be one of the n eigenvalues of the real matrixrφ(x∗;θ), real or component of a complex

conjugate pair: λj∗ ¼ λRj∗� i λIj∗, with no loss of generality λIj∗ > 0;

ρ∗¼ MAX j|λj∗|� 0 be the spectral radius of matrix rφ(x∗;θ).
IF ρ∗ <1

THEN the fixed-point state x∗ ¼φ(x∗;θ)2S is locally stable, that is there exists a neighbourhood
Sx∗�S of x*, such that any trajectory converges to the fixed-point state x* from any initial state in the

neighbourhood:

lim k!∞ xk ¼ x∗ 8x0 2 Sx∗

In other words, x* is a fixed-point attractor and Sx∗ is its attraction domain.

Remark. This results can be proved by showing that under condition ρ∗ <1 a local Lyapunov

function exists in a neighbourhood of the fixed-point state. Thus global stability implies local stability.

Remark. On the Argand real—imaginary plan, condition ρ∗ <1 means that all the n eigenvalues
are within the unitary circle round the origin.

Remark. A sufficient condition for ρ∗ <1 is that there exists a matrix norm strictly less than one,

ν#(rφ(x∗;θ))<1, since for any matrix J ν#(J)�ρ(J) for any matrix norm.

Relationship between dissipativeness and local stability conditions

Let with x02S be a differentiable deterministic process with n�n

Jacobian matrix rφ(x;θ), whose spectral radius is ρ(rφ(x;θ)).
IF ρ (rφ(x;θ))<18x2S

THEN any fixed-point state x∗ ¼φ(x∗;θ)2S is locally stable, moreover the DP is dissipative,

since for any matrix J, ρ(J)<1)δ(J)<1.

Remark. If the transition function φ(x) is continuously differentiable with Jacobian —φ(x), a
sufficient conditions for being strictly non expansive, and the fixed-point globally stable, is that the a

matrix norm (induced by a vector norm) of its Jacobian is less than one, ν#(rφ(x))<18x2S, For any
matrix J ν#(J)�ρ(J), so ν#(J)<1)ρ(J)<1, thus local stability conditions hold.
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To analyse whether a fixed-point state (x*, f*) of the DP-ES/ES model (4.13,

4.14), specified with respect to arc variables, is local stable is necessary to first define

the 2m�2m Jacobian matrix J(x, f) (cfr Eq. 4.27, given below for reader’s conve-

nience) then its eigenvalues

J x, fð Þ¼
1�βð Þ Im βJc fð Þ

α 1�βð ÞJf xð Þ 1�αð Þ Im + αβJf xð Þ � Jc xð Þ
(4.27)

wherem is the number of arcs, Jf(x)¼ r f(x) is the Jacobian of the arc flow function,

and Jc(f)¼ rc(f) is the Jacobian of the arc cost function. In order to highlight the

role of the updating parameters as well as of the other parameters and input data, let
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λj(f,x) be one of the 2m eigenvalues of the 2m�2mmatrix J(x, f), depending on

demand flows, arc capacities, dispersion parameters, updating parameters,

etc.; they may be real or may occur in complex conjugate pairs,

λj ¼ λRj� i λIj;
ωj(f,x)Z be one of the m eigenvalues of the m�m matrix G(x, f)¼Jf(x) �Jc(f),

depending on demand flows, arc capacities, dispersion parameters, etc., but

not on the updating parameters α and β; these eigenvalues are a-dimensional

after the entries of matrixG(x, f); they may be real or may occur in complex

conjugate pairs, ωj ¼ωRj� iωIj:

Omitting arguments to simplify notations, for each eigenvalue ωj of matrix G two

eigenvalues λj and λm+j of matrix J can be obtained as solutions of the following

(reduced) quadratic equation:

λ2� 1�αð Þ + 1�βð Þ + αβωð Þ λ+ 1�αð Þ 1�βð Þð Þ¼ 0 (4.31)
Determinant of block matrices 1 (Theorem 3 in Sylvester (2000))

LetM be a 2�2 block matrix, with first row [M11 jM12] and second row [M21 jM22], and

M11, M12, M21 and M22 square matrices of the same size. If M11 �M21¼M21 �M11, then the

determinant of matrix M is given by: det(M)¼det(M11 �M22�M21 M12)
Eigenvalues λ of matrix J are the solutions of the polynomial equation det(J�λ I )¼0, that is
2m

δ(J�λ I2m)¼0. From at the 2�2 block structure of matrix J�λ I2m

J�λ I2m ¼
1�βð Þ Im�λ Im β Jc

α 1�βð ÞJf 1�αð Þ Im + αβ Jf � Jc�λ Im

it yields:

δ J�λ I2mð Þ¼ δ 1�β�λð Þ Im � 1�α�λð Þ Im + αβ Jf Jcð Þð Þ�α 1�βð ÞJf � β JcÞ
¼ δ 1�β�λð Þ 1�α�λð Þ Im + αβ 1�β�λð Þ Jf Jc�α β 1�βð ÞJf � Jcð Þð Þ
¼ δ 1�β�λð Þ 1�α�λð Þ Im�αβλJf � Jcð Þð Þ

From δ((1�β�λ) ((1�α�λ) I�α β λ Jf �Jc))¼0, (1�β�λ) (1�α�λ) are the eigenvalues of
(α β λ)G¼ (α β λ) Jf �Jc; moreover, the eigenvalues of (α β λ)G are (α β λ) ω, therefore: ((1�β)�λ)
((1�α)�λ)¼ (α β λ) ω, that is Eq. (4.31).
Remark. Since λj+λm+j¼ ((1�α)+ (1�β)+α β ω) and λj λm+j¼ (1�α)(1�β),
ωj¼0 implies λj¼ (1�α) and λm+j¼ (1�β); moreover λj¼ (1�α) implies λm+j¼
(1�β), then ωj¼0, as well as λj¼ (1�β) implies λm+j¼ (1�α), then ωj¼0; there-

fore ωj¼0 is equivalent to λj¼ (1�α) and λm+j¼ (1�β).
Remark. With (1�α)¼0 or (1�β)¼0 Eq. (4.31) becomes:

λ2� 1�αð Þ + αωð Þ λ¼ 0 or λ2� 1�βð Þ+ βωð Þ λ¼ 0
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with solutions λm+j¼0, and λj¼ (1�α)+α ω or λj¼ (1�β)+β ω respectively; as

expected λj are the eigenvalues of the Jacobian matrices for models (4.22) and (4.23).

Conditions for local stabilityofa fixed-point (x*, f*) requires that the spectral radius,
ρ∗ , of the Jacobian matrix computed at the fixed-point, J(x*, f*), is less than one:

ρ∗¼ MAX j|λj∗|< 1 (4.32)

Remark. Since ωj¼0 is equivalent to λj¼ (1�α)2 ]0, 1[ and λm+j¼ (1�β)2 ]0, 1[,

zero eigenvalues ωj¼0 have no effect of fixed-point local stability. Thus, the very

same stability condition can be stated with respect to route (or i-route), since in the

case ωj are the eigenvalues of matrix —h(w) �—w(h) that has the same non zero

eigenvalues of matrixG (cfr Uniqueness Condition C/arc-D. Remark 2, in Chapter 2).

Remark. The above considerations also explain the difference between the absdet

with respect to arc variables, (1�β)m (1�α)m and theonewith respect to route variables
(1�β)n (1�α)n, without any effect on local stability as well as on dissipativeness.

Remark. Since λj λm+j¼ (1�α) (1�β)<1, at least one of the two eigenvalues λj
and λm+j has absolute value smaller than 1.

Local stability condition
By combining solutions of Eq. (4.31) with Eq. (4.32) stability condition (4.32) can be

stated for the DP-ES/ES with respect to the eigenvalues ω∗ of matrixG(x*, f*) com-

puted at the fixed-point (as shown in Appendix B).

ωRj
∗�1 + eR

� �2
=eR

2 + ωIj
∗

� �2
=eI

2 < 1 8j¼ 1,…,m (4.33a)

where

eR ¼ 1 + 1�αð Þ 1�βð Þð Þ= αβð Þ� 1 (4.33b)

eI ¼ 1� 1�αð Þ 1�βð Þð Þ= αβð Þ� 1 (4.33c)

In other words, all the eigenvalues ωj∗ should be within the interior of a stability

region defined by an ellipse on the Argand plan, with shape depending on eR and

eI being the real and the imaginary semi-axis respectively (Fig. 4.5). It is worth noting

that exchanging each other the values of α and β has no effect on the stability region.
The stability region is located on real axis between the values (1�2 eR)¼

� ωo(α,β) and 1, with

ωo α, βð Þ¼ 1 + 2 1�αð Þ + 1�βð Þð Þ= α βð Þ� 1 (4.34)

Updating parameters have a symmetrical effect on the stability bound function
ωo(�) :ωo(α,β)¼ωo(β,α). It always gets values greater than or equal to 1 and goes to

infinity as either of the updating parameters, α or β, goes to zero (Fig. 4.6), thus the

lower the values of updating parameters, the greater the area of stability region is.

The value of this function is to be considered an input data, since it depends on updating

parameters α and β, which are input data resulting from the calibration of the model or

design scenario. Several values of parameters α and βmap into the same value of func-

tion ωo(α,β), all of them having the same effect on the stability bound on the real axis.
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FIG. 4.5

Stability region with α¼0.50 and β¼0.60 (or with α¼0.60 and β¼0.50).

FIG. 4.6

The stability bound function ωo(α,β) against α and β.
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On the imaginary axes (ωR¼0) the stability region is located between the lower

bound �(1+(1�α)(1�β))/(αβ)� �1 and the upper bound (1+(1�α)(1�β))/
(αβ)� +1; both bounds tend to (minus/plus) infinity as either of the updating param-

eters, α or β, goes to zero, thus confirming that low values of α and/or β have a

stabilisation effect.
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When either of the updating parameters is equal to one, α¼1 or β¼1, cfr DP-OY/

ES or DP-ES/NI, the stability region is a circle and λn+j¼08 j, when both are equal to
one, cfr DP-OY/NI, the stability region is the unitary circle, in this case indeed

λj¼ωj8 j.
Since the stability region is located on the Argand plan on the left of the point

(1, 0), if all the eigenvalues ωj∗ have real part less than one, ωRj∗ < 1, there always

are values of updating parameters α and β small enough to ensure stability. Other-

wise, if there exist at least an eigenvalue ωj∗ that have real part greater than one,

ωRj∗ > 1, the fixed-point is always non-stable whatever the values of updating

parameters α and β; in this case multiple fixed-points can be found (cfr Uniqueness

Condition C/arc-D. Remark 2), further comments on this issue in the following

Section 4.4.2.

Local stability condition (4.33) allows us to clearly distinguish the role of updat-

ing parameters α and β, which only affects the size of the ellipse, from the roles of

other parameters, such demand flows, arc capacities, parameters of choice functions

and cost function, …, which only affects the eigenvalues ωj∗:
Hence, the effect of any change of updating parameters α and β can be analysed

without re-computing the eigenvalues ωj, which do not depends on them. Moreover,

since eigenvalues ωj∗ have no dimension fixed-point local stability is not influenced

by the units chosen for flows and costs.

With reference to the trajectories of flow on route 1 shown in Fig. 4.2, Fig. 4.7 shows the stability

region and the eigenvalues ωj∗, the later depending on the demand flow d, results confirm the qual-
FI

St
itative analysis in Fig. 4.2. Similar results can be observed decreasing the Logit dispersion param-

eter θ and/or the arc capacities.
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G. 4.7

ability region and eigenvalues for trajectories in Fig. 4.2.



Eigenvalues of a matrix positive semi-definite for real vectors

Let A be a m�m square real matrix positive semi-definite for real vectors, A	0, that is

xT �A �x�08x 6¼0, x2ℝm, and λ¼ λR + i λI be one of its eigenvalues,
it has non-negative real part, λR�0.

Let be y¼ yR + i yI 6¼ 0 be one of the corresponding eigenvectors, so that A �y¼λ y,

A � yR ¼ λR yR�λI yI and A � yI ¼ λR yI + λI yR,

yR
T �A � yR ¼ λR yR

T � yR�λI yR
T � yI and yI

T �A � yI ¼ λR yI
T � yI + λI yIT � yR

yR
T �A � yR + yIT �A � yI ¼ λR yR

T � yR + λR yIT � yI ¼ λR yR
T � yR + yIT � yI

� �
:

Since y 6¼0, yR 6¼0 and/or yI 6¼0, thus yR
T � yR + yIT � yI > 0; since xT �A �x�08x 6¼0, x2ℝm,

yR
T �A � yR + yIT �A � yI � 0; therefore λR�0.

Eigenvalues of product of definite matrices

Let A and B be two m�m square matrices, B symmetric positive semi-definite, B	0.

Remark. Since B is symmetric positive semi-definite, there exist a matrix C, such that B¼C �CT,

thus A �B¼A �C �CT with the same non zero eigenvalues of matrix CT �A �C (cfr Uniqueness

Condition C/arc-D. Remark 2).

– IF A is symmetric THEN each eigenvalue of A �B is real (A �Bmay not be symmetric). Indeed in

this case matrix CT �A �C is symmetric, thus all its eigenvalues are real.

– IF A is positive semi-definite for real vectors, A	0, THEN each eigenvalue of A �B has non-

negative real part. Indeed, in this case matrix CT �A �C is positive semi-definite for real vectors,

thus its eigenvalues have non-negative real part.
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Particular conditions can be stated if the arc flow function has a symmetric neg-

ative semi-definite Jacobian (as it occurs for invariant choice functions, derived

from RUT).

Remark for arc cost functions with positive semi-definite Jacobian
Assuming that the arc flow function has a symmetric negative semi-definite Jaco-

bian,�Jf(x)	0, if the Jacobian of arc cost function is positive semi-definite for real
vectors, Jc(f)	0, as it occurs for increasing monotone arc cost functions, each eigen-

valueωj∗ of matrix�G(x, f)¼ �Jf(x) �Jc(f) has non-negative real part,�ωRj∗ � 08j,
or ωRj∗ � 08j, thus there always are values of α and β small enough to ensure

stability.

Local stability condition for arc cost functions with symmetric Jacobian
Assuming that the arc flow function has a symmetric negative semi-definite Jaco-

bian, �Jf(x)	0, if the Jacobian of arc cost function is symmetric, as it occurs for
separable arc cost functions, each eigenvalue ωj of matrix �G(x, f)¼ �Jf(x) �
Jc(f) is real, ωj¼ωRj8 j, thus the stability conditions (4.33) becomes:
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ωj
∗ 2
�ωo α, βð Þ,1½ 8j¼ 1,…,m (4.35)

Conditions (4.35) still holds in any case where all eigenvalues ωj∗ are real.
Local stability condition for arc cost functions with symm. positive
semi-definite Jacobian
Assuming that the arc flow function has a symmetric negative semi-definite Jaco-

bian, �Jf(x)	0, if the Jacobian of arc cost function is symmetric positive semi-def-
inite, as it occurs for separable increasing monotone arc cost functions, each

eigenvalue ωj of matrix�G(x, f)¼ �Jf(x) �Jc(f) is non-positive real, ωj¼ωRj�08 j,
thus the stability conditions (4.35) becomes:

|ωj
∗|�ωo α, βð Þ 8j¼ 1,…,m (4.36)

or

ρG∗¼ MAX j|ωj
∗|�ωo α, βð Þ:

According to stability conditions (4.36), after the computation of the spectral radius

ρG∗ <1 for a fixed-point state, if the choice updating parameter α is known, the max-

imum value βMAX of the cost updating parameter to guarantee stability, may easily be

obtained from condition (4.36) leading to:

β� βMAX ¼ 4�2αð Þ= 2�α 1�ρG∗ð Þð Þ (4.37)

As expected, the greater ρG∗Z the smaller the upper bound βMAX is.

Remark. Condition (4.37) may be useful to support ES filter design for informa-

tion systems.

Similar considerations hold for choice updating parameter α, but they mainly

have a theoretical use, since parameter α has a behavioural meaning only and cannot

be designed, but has to be calibrated against real data.

Even though the DP-ES/ES model is suitable for large applications, as already

noted, the large scale application of stability conditions (4.33), (4.35), (4.36) as such

seems quite hard requiring the computation of the eigenvalues of large matrices. In

this case it is useful to remember that any matrix norm is an upper bound for the

spectral radius, ν#(J)�ρ(J); thus, the spectral radius in stability conditions may

be approximated by any matrix norm, such the vector-induced 2-norm ν2(J)¼kJk2;
this norm usually provides a tight approximation of the spectral radius, but it is rather

hard to compute. The Frobenius norm, νF, even though not a vector-induced norm,

provides values very close to the 2-norm and can easily be computed, since given by

the square root of the sum of the square of the entries of the Jacobian matrix; at this

aim entries can be generated when needed avoiding the explicit definition of the

whole Jacobian matrix.

This approach is very effective for approximating stability condition (4.36)

leading to
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Approximated local stability condition

vF J x∗, f∗ð Þð Þ<ωo α, βð Þ (4.38)

All the above stability conditions are independent of the reference variables, say arc,

route, or i-route variables, moreover they hold with α¼1 and/or β¼1, for DP-OY/

ES, DP-ES/NI, DP-OY/NI. Similar results have not been fully exploited yet for

DP-MA/ES.
4.4.2 Local bifurcation analysis
If a DP is dissipative, but one of its fixed-point states is not an attractor, it is useful to

verify towards which type of attractor it converges. Effects of changes of parameters

on the type of attractor can be analysed through a bifurcation analysis to further

deepen the local stability analysis so far.
Bifurcations of a dissipative DP

A stable fixed-point of a dissipative DP may move towards instability after the change of an

eigenvalue induced by a parameter change according to three type of bifurcations.

Flip bifurcation. A real eigenvalue decreases along the real axis below the value �1; the fixed-

point becomes unstable and the DP evolves toward a periodic attractor, after a period-doubling an

a-periodic one may be reached.

Neumark bifurcation. The absolute value of a pair of complex conjugate eigenvalues increase

above the value 1, so that the eigenvalues traverse the border of the unitary circle; the fixed-point

becomes unstable and the DP evolves toward a quasi-periodic attractor.

Pitchfork bifurcation. A real eigenvalue increases along the real axis above the value 1; the fixed-

point becomes unstable and two new stable fixed-points are attractors, their attraction domains being

separated by the unstable fixed-point state. This kind of bifurcation is closely related with fixed-point

uniqueness.

Further bifurcations may be observed for non-dissipative systems, which may exhibit a non-

converging evolution over time (at least from some initial states).
DP-ES/ES is always dissipative for any state only three types of bifurcations may

occur, as discussed below with respect to each eigenvalue ωj
∗ (Fig. 4.8).

A real eigenvalue ωj may lead to a complex conjugate pair of eigenvalues λj and
λn+j with |λj | ¼ |λn+j |. In this case λj λn+j¼jλj j2¼jλn+j j2¼ (1�α)2(1�β)2<1 thus

the two eigenvalues for a fixed-point state are always within the stability region, and

these eigenvalues may not lead to any kind of a bifurcation.

A real eigenvalue ωj may also lead to two real eigenvalues λj and λn+j such that

λjλn+j¼ (1�α)(1�β)<1. Therefore a real eigenvalue ωj
∗ may lead to

a Flip bifurcation if ωj
∗ is negative and decreases below the value �ωo(α,β),

leading to a periodic attractor; or

a Pitchfork bifurcation if ωj
∗ is positive and increases beyond the value 1

leading to multiple fixed-points.
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Stability region and bifurcations.
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A complex conjugate pair of eigenvalues ωj ¼ωR + iωI and ωj+ 1 ¼ωR� iωI,with

ωI>0, leads to four two complex eigenvalues λj, λm+j, λj+1, and λm+j+1 that must

occur in two conjugate pairs since they are complex eigenvalues λ of a real matrix:

λj and λj+ 1, with |λj|¼ |λj + 1|
λm+ j and λm+ j + 1 with |λm+ j|¼ |λm+ j+ 1|

Since jλj j2 jλm+j j2¼ (1�α)4(1�β)4, |λj | |λm+j | ¼ (1�α)2(1�β)2<1, thus only one

pair may be out the unitary circle. Therefore a complex conjugate pair of eigenvalues

ωj
∗ and ωj+1

∗ may lead to

a Neumark bifurcation if their absolute value |ωj∗ |¼ |ωj+ 1∗ | increases outside

the border of the stability region leading to a quasi-periodic attractor.

Assuming that the arc flow function has a symmetric negative semi-definite Jaco-

bian, �Jf(x)	0, some further considerations can be drawn.

If the Jacobian of arc cost function is symmetric, as it occurs for separable arc cost
functions, each eigenvalue ωj is real, as in ‘Local stability condition for arc

cost functions with symmetric Jacobian’ (Eq. 4.35); thus Flip and Pitchfork

bifurcations only may be observed. Hence quasi-periodic attractors may only

occur with arc cost function with asymmetric Jacobian; furthermore at least

two independent variables are needed to have a pair of complex conjugate

eigenvalues, thus a quasi-periodic attractor.

If the Jacobian of arc cost function is positive semi-definite for real vectors,
Jc(f)	0, as it occurs for increasing monotone arc cost functions, each
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eigenvalue ωj has non-negative real part, as in ‘Remark for arc cost functions

with positive semi-definite Jacobian’; thus Flip and Neumark bifurcations

only may be observed. Hence, multiple fixed-points may not occur in

this case.

If the Jacobian of arc cost function is symmetric positive semi-definite for real
vectors, Jc(f)	0, as it occurs for separable increasing monotone arc cost

functions, each eigenvalue ωj is non-positive real, as in ‘Local stability

condition for arc cost functions with symm. positive semi-definite Jacobian’

(Eq. 4.36); thus Flip bifurcations only may be observed.

If the Jacobian of arc cost function is not positive semi-definite, pitchfork
bifurcation may be observed only if any eigenvalue ωa∗ has a real part greater

than 1 (cfr Uniqueness conditions C/arc-D); in this case the fixed-point state

actually reached depend on the start.

Fixed-point bifurcation analysis with respect to a parameter is generally represented

by a bifurcation diagram showing the point belonging to the attractor against the

values of the parameter, the fixed-points are shown in any case even if they are

not attractors.

With reference to the input data of the examples in Figs 4.2 and 4.7, Fig. 4.9 shows the bifurcation

diagram of flow on route 1 against the demand flow d. Similar results can be observed decreasing
the Logit dispersion parameter θ and/or the arc capacities.
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Bifurcation diagram against the demand flow d.
4.5 Basic equations for general models
This section present more general models for cost and choice updating equations

EQN3 and EQN5, respectively. DP models based on them are discussed in

Section 4.6.
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4.5.1 Supply models for general DP models
The arc-route flow consistency relation (4.1) and the arc cost function (4.2) still hold,

thus general models for specifying the route-arc cost consistency and updating equa-

tion (4.3.#) only are discussed below.

• Route-arc cost consistency and updating function

As already state (cfr Section 4.1.1), yesterday actual route costs depend on yesterday

arc costs (cfr Eq. 3.3) through the route-arc cost consistency relation:

wk�1;i ¼Bi
T � ck�1 +wZi 8i 8k2ℕ (4.39a)

omitting other route costs wZi and wZ in the following for simplifying notation.

Generally, today forecasted costs depend on costs incurred on previous days.

Hence, learning and forecasting processes can be modelled through filters applied

to costs incurred on previous days. The route-arc cost updating function is made

up by combining the route-arc cost consistency relation with a route cost updating
filter.

For simplify notations, forecasted costs yk;i are expressed as a function of yester-
day actualwk�1;i and forecasted costs y

k�1;i only, but they may depends on past days:

yk;i ¼ yi w
k�1;i, y

k�1;i,…
� � 8i 8k2ℕ (4.39b)

thus

yk;i ¼ yi Bi
T � ck�1, yk�1;i,…

� � 8i 8k2ℕ (4.39)

Forecasting filters are assumed day-invariant, that is their functional form and

parameters are independent of day k. A filter is time-homogeneous if

wk�1;i 6¼ yk�1;i ) yk;i 6¼ yk�1;i or y
k;i ¼ yk�1;i )wk�1;i ¼ yk�1;i 8i 8k2ℕ

that is, if yesterday users experienced costs different from their forecasted costs,

today they change their forecasts; vice versa if today they do not change their

forecasts, today forecasts are equal to yesterday experience. The above conditions

implies that y∗ ¼y(w,y∗))y∗ ¼w: the user forecasting process can start

from any initial guess about attributes making up the transportation costs, pro-

vided that it can be modified if not confirmed by experience. On the other hand,

non modifiable prejudices on congestion dependent attributes are excluded;

this assumption does not refer to cost congestion independent attributes, such

as fares or scenic quality. ES(β) filter, or its generalisation based on a matrix

rather than a single parameter β, is an instance of time-homogenous filter, MA

(β,μ) as well.
If the general filter (4.39) is linear with respect to yesterday actual and forecasted

costs, the same results are obtained by applying it to arc costs, otherwise two differ-

ent models are obtained.
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An arc cost filter may be time-homogenous as well:

ck�1 6¼ xk�1 ) xk 6¼ xk�1 or xk ¼ xk�1 ) xk ¼ ck�1

• Route cost updating function

The equations (4.1, 4.2, 4.39) can be combined to define the general route cost updat-
ing function (G) for given h0;i 8 i, blocks of h0 and y0;i 8 i, blocks of y0:

yk;i ¼ yi Bi
T � c

X
i
Bi � hk�1;i; κ

� �
, yk�1;i

� �
8i 8k2ℕ (4.40)
4.5.2 Demand models for general DP models
The route utility function (4.6) and the demand-route flow consistency relation (4.8)

still hold, thus general models for specifying the route choice updating equation

(4.7.#) only are discussed below.

If first route utility values are computed from actual route costs, then a general

filter is applied to past actual and/or forecasted utility values features of whole model

may be affected if it is not linear.

• Route choice updating function

As already noted, when modelling day-to-day dynamics today route choice behaviour

is generally affected by user habit effect and inertia to change yesterday choice. In the

most general approach, the proportion of users moving between o-d pair i (and belong-
ing to a user class) along route r at day k depends on the route j chosen the previous day
due either to habit and conservative behaviour, desire for variety, and/or available

information. With reference to day k and o-d pair i (and a user class), let:

pk;i r2 [0,1] be the route choice proportion that a user chooses route r on, withP
rp

k;i r¼1;

pk;i�0 be the ni�1 (column) vector of route choice proportions with entries

pk;i r such that 1Tpk;i¼1;

pk;i r/j2 [0,1] be the route transition proportion that a user chooses route r, given
that j is the route chosen the previous day, such that

P
rp

k;i r/j¼1;

Sk;i be the ni�ni route transition matrix with entries pk;i r/j; all its entries are
non-negative, Sk;i�0, with column sum equal to 1, 1TSk;i¼1T, thus Sk;i is a

column stochastic matrix;

Si(�) be the ni�ni route transition matrix function assumed time-independent.

A route proportion consistency equation holds between the today and yesterday

route choice proportions and the route transition proportions:

pk;i r ¼
X

j
pk;i r=j p

k�1;i j 8r2Ri8i8k2ℕ

or pk;i ¼ Sk;i � pk�1;i 8i 8k2ℕ
(4.41a)
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Generally, the route transition matrix depends on the today route utilities, as well

as on yesterday day actual and forecasted route costs (and possibly further

past costs, not indicated to simplify notations), through the route choice updating
filter:

Sk;i ¼ Si v
k;i,w

k�1;i, y
k�1;i,…

� � 8i 8k2ℕ (4.41b)

The route choice updating function is made up by combining the route proportion
consistency equation with the route transition function, leading to the S filters:

pk;i ¼ Si v
k;i,w

k�1;i, y
k�1;i

� � � pk�1;i 8i 8k2ℕ (4.42)

Very often conditional route choice models are formulated to explicitly simulate the

choice switching process leading to two-stage choice models. Let

pk;i C/j2 ]0, 1] be the switching choice proportion that a user reconsiders the

route j chosen the previous day;

Qk;i be the ni�ni diagonal route switching choice matrix with entries on main

diagonal given by pk;i C/j and null off-diagonal entries; since the entries on

the main diagonal are strictly positive this matrix is not singular (otherwise

some users would never reconsider previous day choice);

Qi(�) be the ni�ni route switching choice matrix function assumed time-

independent;

pk;i r/Cj2 [0,1] be the active route choice proportion that today a user

chooses route r after reconsidering the route j chosen the previous day,

with
P

rp
k;i r/Cj¼1;

Zk;i be the ni�ni square route active choice matrix on day k for each o-d pair i,
with entries pk;i r/Cj; since all its entries are non-negative, Zk;i�0, and its

column sum is equal to 1, 1TZk;i¼1T, Zk;i is a column stochastic matrix;

Zi(�) be the ni�ni route active choice matrix function assumed time-

independent.

As for the route transition matrix, both the route choice switching and route active

choice matrices depend on the route utilities as well as other route costs; a con-
sistency equation holds between the transition matrix function and these two

matrices:

Si v
k;i,w

k�1;i, y
k�1;i

� �¼Zi v
k;i,w

k�1;i, y
k�1;i

� � �Qi v
k;i,w

k�1;i, y
k�1;i

� �

+ Ini �Qi v
k;i,w

k�1;i, y
k�1;i

� �� � 8i8k2ℕ
(4.43)

Thus Eq. (4.42) can re-written as follows, leading to ZQ filters:

pk;i ¼Zi v
k;i,w

k�1;i, y
k�1;i

� � �Qi v
k;i,w

k�1;i, y
k�1;i

� � � pk�1;i

+ Ini �Qi v
k;i,w

k�1;i, y
k�1;i

� �� � � pk�1;i 8i8k2ℕ
(4.44)

Eq. (4.43) shows that S filters (4.42) and ZQ filters (4.44) are equivalent; S filters are

preferred for theoretical analysis due their compact notations (see also Chapter 5),

while ZQ filters are preferred for specification.
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The Logit choice function derived from RUT (cfr Chapters 2 and 5; for details see Appendix A to

the book) can be used to specify a S or a ZQ filter, as shown below for a user having travelled
yesterday along route j, omitting indices for day and o-d pair. Proportions are defined by

probabilities.

The switching choice probability pC/j that a user reconsiders the route j chosen the yesterday,

an entry of the diagonal matrix Q, can be defined as a function of yesterday forecasted and actual

route costs by a Binomial Logit choice function. The choice set contains only two alternatives:

reconsider (R), non-reconsider (N). The utility of alternative R is given by the difference wj�yj
between the yesterday actual wj and forecasted route costs yj, thus the greater the difference,

the greater the propensity to reconsidering is. The utility of alternative N, say the inertia to change

utility, may be assumed proportional to the opposite of the actual cost �θ1wj with θ1�0; thus the

smaller the actual cost the greater the propensity to not reconsider. Therefore:

pC=j ¼ exp wj�yj
� �

=θ0
� �

= exp �θ1wj=θ0
� �

+ exp wj�yj
� �

=θ0
� �� �� �

where θ0>0 is the dispersion parameter including the scale factor. This is an instance of the

logistic function, often used to described stochastic thresholds.

The j-th column of matrix Z gives the today active route choice probabilities pr/Cj and can be

defined as a function of today forecasted route costs by a Multinomial Logit choice function. The

choice set contains all available routes (for the o-d pair i). The utility of each route r different from j
is given by the opposite of the route forecasted cost�yr; but for route j chosen yesterday an extra-

utility is added; the greater the extra-utility the greater the propensity to not change the route chosen

yesterday.

S filters (4.42) and ZQ filters (4.44) are very general and includes as special cases

simple models described in Section 4.1.2, and others described below, as well as most

existing models. To simplify notation, below the today forecasted route costs only are

explicit included as argument of any function related to user choice behaviour.

A simpler modelling approach is obtained by assuming that the switching choice

proportion do not depend on the route j chosen made the previous day, and possibly

depends on the o-d pair i only: pk;i C/j¼pk;i C. Let

pk;i C2 ]0, 1] be the route independent switching choice proportion; so that:

Ak;i¼pk;i C Ini be the ni�ni diagonal route generic switching choice matrix,
with entries on main diagonal given by pk;i C and null off-diagonal entries;

since the entries on the main diagonal are strictly positive this matrix is not

singular;

pCi(�) be the route generic switching choice function assumed time-

independent;

Ai(�)¼pCi(�)Ini be the ni�ni route generic switching choice matrix function
assumed time-independent.

The generic switching choice matrix generally depends on the difference between

actual and forecasted route costs Ak;i¼A(wk�1;i,y
k�1;i)¼pCi(w

k�1;i,y
k�1;i)Ini, if

Qk;i¼Ak;i,then Zk;i �Qk;i¼Ak;i �Zk;i thus, a simpler version of ZQ filters (4.44) is

obtained, leading to AZ filters:

pk;i ¼ pCi w
k�1;i, y

k�1;i
� �

Zi v
k;i,w

k�1;i, y
k�1;i

� � � pk�1;i

+ 1�pCi w
k�1;i, y

k�1;i
� �� �

pk�1;i 8i8k2ℕ
(4.45)
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An even simpler modelling approach is obtained by assuming that all the columns of

each matrix Zi(�) of are equal to the vector function pi(vk;i;θi). If Zk;i¼pk;i �1T, then
Zi(v

k;i) �pk�1;i¼pk;i �1T �pk�1;i¼pk;i, thus a simpler version of AZ filters (4.45) is

obtained, leading to specific Ap filters:

pk;i ¼ pCi w
k�1;i, y

k�1;i
� �

pi v
k;i; θi

� �
+ 1�pCi w

k�1;i, y
k�1;i

� �� �
pk�1;i 8i8k2ℕ (4.46)

If the switching choice proportion function does not depend on the o-d pair (nor on

the user class) pci(�)¼pc(�) a simpler model is obtained, leading to generic Ap filters:

pk;i ¼ pCi w
k�1;i, y

k�1;i
� �

pi v
k;i; θi

� �
+ 1�pCi w

k�1;i, y
k�1;i

� �� �
pk�1;i 8i 8k2ℕ (4.47)

If the switching choice matrix does not depend on costs, thus it is constant over time,

model (4.47) becomes the ES(α) filter (4.7.2) with α¼pC(v
k;i).

• Route flow updating function

Either of the above choice updating model (4.42) or (4.44) can be combined with the

utility function (4.6) and the demand-route consistency equation (4.8) to define the

general route flow updating function for given h0;i8 i, blocks of h0:
hk;i ¼ Si �ψi y

k;i,w
k�1;i, y

k�1;i
� � � hk�1;i 8i 8k2ℕ (4.48)

hk;i ¼Zi v
k;i,w

k�1;i, y
k�1;i

� � �Qi v
k;i,w

k�1;i, y
k�1;i

� � � hk�1;i

+ Ini �Qi v
k;i,w

k�1;i, y
k�1;i

� �� � � hk�1;i 8i 8k2ℕ
(4.49)

with vk;i ¼�ψi y
k;i

Similar are results are obtained with simpler choice updating models (4.45), (4.46),

and (4.47):

hk;i ¼ pCi w
k�1;i, y

k�1;i
� �

Zi �ψi y
k;i

� � � hk�1;i

+ 1�pCi w
k�1;i, y

k�1;i
� �� �

hk�1;i 8i 8k2ℕ
(4.50)

hk;i ¼ dipCi w
k�1;i, y

k�1;i
� �

pi �ψi y
k;i; θi

� �
+ 1�pCi w

k�1;i, y
k�1;i

� �� �
hk�1;i 8i 8k2ℕ (4.51)

hk;i ¼ dipC wk�1;i, y
k�1;i

� �
pi �ψi y

k;i; θi
� �

+ 1�pCi w
k�1;i, y

k�1;i
� �� �

hk�1;i 8i 8k2ℕ (4.52)

Each of the functions Si(�), Zi(�), Qi(�), pCi(�), pC(�) can be specified by applying any
choice modelling theory (see Appendix A to the book). Some existing approaches to

modelling user inertia to change and habit are briefly described belowwithin the gen-

eral framework proposed above.

In aggregate approaches to model the effect of reliability of several information

sources the switching choice behaviour depends on the aggregate reliability, thus

may change over time. Examples of this kind models, sometimes called bounded-
rationality behavioural models, are mostly based on probabilistic (or deterministic)

threshold filters with respect to differences between actual and forecasted costs.

Modelling effects of an ATIS reliability is addressed by Bifulco et al. (2016) through

a modelling approach consistent with (4.52). Other aggregate approaches are based
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on extra utility inertia: the route chosen the previous day is given an extra utility,

expressing the so-called transition cost to a different alternative.

In route-disaggregate approaches, a choice updating parameter is defined for each

route separately depending on the difference between experienced and forecasted arc

costs. The use of probabilistic thresholds leads to route choice switching models. This

approach is rather effective when only two routes are available between eachO-D pair,

since there is no need of any route choice function. Indeed, when more than two routes

are available, a conditional route choice function should be applied to model route

choice behaviour of users who decide to reconsider their yesterday choice.

All above models can be applied in a multi-user framework, as already noted for

the simple models discussed in Section 4.1.2. In fully disaggregate approaches, each

class is made up by a single user, thus the choice updating parameters may be defined

for each single user. These models are better suited for disaggregate assignment

through stochastic process models, as described in Chapter 5.

4.5.3 Arc flow updating function
An explicit arc flow updating function extension of (4.10.2) cannot be obtained from

any of the above route choice updating functions (4.48), (4.49), (4.50), (4.51), (4.52).

A special case occurs if the switching choice proportion α does not depend on the

o-d pair, nor on route forecasted costs, but only depends on arc forecasted costs,

α¼α(x); in this case the arc flow updating function can properly be defined as:

fk ¼ α xk
� �

f xk; d
� �

+ 1�α xk
� �� �

fk�1 8k2ℕ (4.53)

which results an extension of Eq. (4.10.2).
4.6 General DP models
The set of six equations (4.1) (4.2), (4.40), (4.6), any choice updating equation, and

(4.8) defines aMarkovian deterministic process (DP) model with respect to all the six

basic variables, describing the evolution over time of them.

As in Section 4.2, to further analyse the resulting model it is better to reduce the

number of equations and variables. None of the models discussed below is suitable

for the explicit stability analysis carried out in Sections 4.3 and 4.4. They can be

specified with respect to route (i-route) vectors, and in some particular cases only

with arc variables.

4.6.1 Two equation assignment models
Given a cost updating filter and any choice updating filter, the resulting DP models

are made by two equations with respect to two vectors, a flow vector and a cost vec-

tor, say a two equation assignment models (TEAMs). Let

• Route costs and flows—G/S OR ZQ

wk�1;i ¼Bi
T � c

X
i
Bi � hk�1;i; κ

� �
8i 8k2ℕ (4.54)
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yk;i ¼ yi w
k�1;i, y

k�1;i
� � 8i 8k2ℕ (4.55)

hk;i ¼ Si �ψi y
k;i,w

k�1;i, y
k�1;i

� � � hk�1;i 8i 8k2ℕ (4.56)

Eq. (4.40) has been split into equations (4.54)—made up by (4.1), (4.2) and (4.39a)—

and (4.55)—say (4.39b)—for better readability; indeed Eq. (4.54) is an auxiliary

static equation (yesterday actual costs depend on yesterday flows); thus this model

is still considered a TEAM. A similar model is obtained by applying the ZQ filter

instead of the S filter:

hk;i ¼Zi v
k;i,w

k�1;i, y
k�1;i

� � �Qi v
k;i,w

k�1;i, y
k�1;i

� � � hk�1;i

+ Ini �Qi vy
k;i,w

k�1;i, y
k�1;i

� �� � � hk�1;i 8i 8k2ℕ

with vk;i ¼�ψi y
k;i

(4.57)

The DPmodel (4.54), (4.55) and (4.56 or 4.57) can easily be rewritten as a properMar-

kovian DP, today state only depends on yesterday one, by putting Eq. (4.54) into (4.55)

and both Eqs (4.54) and (4.55) into (4.56 or 4.57). The main state vectors of DP model

(4.54), (4.55) and (4.56 or 4.57) are (yk;i h
k;i)8 i, wk�1;i8 i being auxiliary vectors

introduced for readability only; the updating parameters are those in the updating fil-

ters; other parameters are demand flows, and any other parameter in choice functions

and in the arc cost function. Model (4.54), (4.55) and (4.56) is useful to highlight the

non-linearity of the relationship between today and yesterday flows, while (4.54),

(4.55) and (4.57) is useful to clearly distinguish the user route choice behaviour and

the switching one. Both the above models are useful when explicit path enumeration

can be carried out; it is worth noting that this is hardly the case if routes are hyperpaths.

These models are also useful as a base for developing stochastic process models

described in Chapter 5. No specification of this general model has been analysed in

literature, still some theoretical results can be drawn as shown in the next sub-sections.

Any simple cost updating equation presented in Section 4.1.1 may be used

instead of (4.54) and (4.55) as well as any simplified model (4.50), (4.51),

(4.52) can be used instead of (4.56) or (4.57). With reference to the route cost updat-

ing Eq. (4.52), Eqs (4.40) and (4.53) defines an equivalent model based on arc vec-

tors (xk, ck):

• Arc costs and flows—G/A

xk ¼ x c fk�1; κ
� �

, xk�1
� �� 0 8fk�1 2 Sf 8k2ℕ (4.40)

fk ¼ α xk
� �

f xk; d
� �

+ 1�α xk
� �� � 8k2ℕ (4.53)
4.6.2 OEAMs
One equation assignment models (OEAMs) may be based on the route cost updating

Eq. (4.4.1) with the Only Yesterday (OY) cost updating filter combined with any of

the above route flow updating equation. In this case indeed Eq. (4.55) becomes:

yk;i¼wk�1;i, 8 i 8k2N. Another kind of OEAMs are based on the route flow

updating Eq. (4.9.1) with the no inertia (NI) flow updating filter combined with

the general route cost updating Eq. (4.40). These models have been quoted out of
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sense of completeness, since they combine a very detailed specification of an updat-

ing equation with a very simple specification of the other.

4.6.3 Fixed-point states of general deterministic processes
Generally fixed-point states of model (4.54), (4.55) and (4.56) or (4.55) and (4.57)

are not consistent with CUE, as described by the fixed-point models presented in

Chapter 3.

If the cost updating filter is not time-homogenous (cfr Section 4.5.1), the fixed-

point states depend on the route cost updating filter, and the route actual costsw* at a
fixed-point state may be different from route forecasted costs y* Indeed the fixed-

point state conditions

yk;i ¼ yk�1;i ¼ yi∗ and hk;i ¼ hk�1;i ¼ hi∗,withwi
∗ ¼wi h∗; κð Þ 8i

combined with Eqs (4.54), (4.55) and (4.56), gives for each o-d pair i:

wi
∗ ¼BT

i � c
X

i
Bi � hk�1;i; κ

� �
8i (4.58)

yi∗ ¼ yi wi
∗, yi∗ð Þ 8i (4.59)

hi∗ ¼ Si �ψi yi∗,wi
∗, yi∗ð Þ � hi∗ 8i (4.60)

On the other hand, if the cost updating filter is time-homogenous:

yk;i ¼ yk�1;i ) yk;i ¼wk�1;i

Eq. (4.59) becomes: yi∗ ¼wi∗ that combined with Eq. (4.58) gives:

yi∗ ¼Bi
T � c

X
i
Bi � hk�1;i; κ

� �
8i (4.61)

Let Si yi∗ð Þ¼ Si �ψiyi∗, yi∗, yi∗ð Þ simplifying notations of arguments for readability,

Eq. (4.60) can be re-written:

Si yi∗ð Þ � hi∗ ¼ hi∗ 8i (4.62)

Thus, for time-homogenous cost updating filters fixed-point states (y*,h*) are the

solutions of the two equations (4.61) and (4.62). The analysis of these equations

shows that the fixed-point states do not depend on any time-homogenous cost updat-
ing filter.
Eigenvalues and eigenvectors of stochastic matrices

Let S be a n�n (non-negative) column (or left) stochastic matrix, that is all its entries are non-

negative, S�0,with column sum equal to 1, 1T �S¼1T, it has

– at least an eigenvalue equal to 1, S �π¼π, with a non-negative real eigenvector π�0, the

eigenvector π with sum equal to 1 is called a Perron vector πP�0 with 1TπP¼1;

if S is also irreducible, a necessary and sufficient condition being (In+S)
n�1>0, it has

– one eigenvalue equal to 1 with a positive real eigenvector π>0 (Frobenius theorem), and the

Perron vector πP is unique;

if S is also positive, S>0, it is irreducible and

– each of the other eigenvalues has absolute value less than 1 (Perron theorem).
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Since Si yi∗ð Þ is a column stochastic matrix it has at least an eigenvalue equal to 1,

thus for given yi∗ each route flow vector hi∗ solution of (4.62) is equal to the product

between the demand flow and a Perron vector, hi∗ ¼ diπP;if Si yi∗ð Þ is also irreducible
it has exactly one eigenvalue equal to 1, and the route flow vector hi∗ ¼ diπP is

unique.

Similar considerations hold with the choice updating filter ZQ leading to the

route flow updating Eq. (4.57); and the following equation is used instead of (4.60):

hi∗ ¼Zi vi∗,wi∗, yi∗ð Þ �Qi vi∗,wi∗, yi∗ð Þ � hi∗ + Ini �Qi Ini �Qi vi∗,wi∗, yi∗ð Þð Þ � hi∗ 8i (4.63)ð
with vi∗ ¼�ψi yi∗

As above, if the cost updating filter is time-homogenous, Eq. (4.59) combined with

Eq. (4.58) gives Eq. (4.61). In this case, let Zi yi∗ð Þ¼Zi �ψiyi∗, yi∗, yi∗ð Þ and

Qi yi∗ð Þ¼Qi �ψiyi∗, yi∗, yi∗ð Þ, simplifying notations of arguments for readability,

Eq. (4.63) can be re-written:

Zi yi∗ð Þ � Qi yi∗ð Þ � hi∗
� �¼ Qi yi∗ð Þ � hi∗

� � 8i (4.64)

Fixed-point states (y*, h*) are the solutions of the two equations (4.61) and (4.64).

The analysis of these equations shows that the fixed-point states do not depend on

any time-homogenous cost updating filter.

Since Zi yi∗ð Þ is a column stochastic matrix it has at least an eigenvalue equal

to 1, thus Qi yi∗ð Þ � hi∗ ¼ δiπP where δi is a scaling factor. Remembering that

Qi yi∗ð Þ is non-singular, for given yi∗ each route flow vector hi∗ solution of

(4.65) can be obtained from relation hi∗ ¼ δiQi yi∗ð Þ�1 �πP with scaling factor

δi ¼ di= 1T �Qi yi∗ð Þ�1 �πP

� �
so that 1Thi∗ ¼ di;if Zi yi∗ð Þ is also irreducible it

has exactly one eigenvalue equal to 1, and the route flow vector

hi∗ ¼ diQi yi∗ð Þ1 �πP= 1T �Qi yi∗ð Þ�1 �πP

� �
is unique.

With reference to the choice updating filter AZ leading to the route flow updating

Eq. (4.50); in this case the following equation is used instead of (4.62) or (4.64):

hi∗ ¼ pCi �ψi yi∗ð ÞZi yi∗ð Þ � hi∗ + 1�pCi �ψi yi∗ð Þð Þhi∗ 8i
or 0¼ pCi �ψi yi∗ð ÞZi yi∗ð Þ � hi∗�pCi �ψi yi∗ð Þhi∗ 8i
or 0¼Zi yi∗ð Þ � hi∗�hi∗ 8i

since pCi �ψi yi∗ð Þ> 0: Therefore

Zi yi∗ð Þ � hi∗ ¼ hi∗ 8i (4.65)

The analysis of Eqs (4.58), (4.59) and (4.65) shows that the fixed-point states do not
depend on switching behaviour for any ZQ filters. Eq. (4.65) looks like (4.62) with
matrix Zi yi∗ð Þ instead of Si yi∗ð Þ, thus all above comments still applies.

If the switching choice proportion only depends on arc forecasted costs,

α¼α(x)>0,the arc flow updating function can properly be defined by Eq. (4.53)

to be coupled with the arc cost updating Eq. (4.40). Assuming a time-homogenous
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cost updating filter, xk¼xk�1¼x∗)x∗ ¼c∗ , the fixed-point states (x*,f*) of this
DP are given by:

x∗¼ c f∗; κð Þ
f∗¼ α xð Þf x∗; dð Þ+ 1�α x∗ð Þð Þf∗
or

x∗¼ c f∗; κð Þ (4.66)

f∗¼ f x∗; dð Þ (4.67)

They are independent of the switching behaviour and consistent with fixed-point

states of simple DP models discussed in Section 4.2.3 and with CUE, as in Chapter 3.

General fixed-point existence conditions
Sufficient conditions for the existence of fixed-points of general deterministic process

modelswith time-homogeneous cost updating filters are given in the following. These

conditions are ageneralisationof those alreadydiscussed forCUE inSection3.2.3.For

brevity’s sake they are discussed with S filters for choice updating only, Eq. (4.43)

allowing to apply the so-obtained results to ZQ filters, and their simpler versions.

It is worth to express Eq. (4.61) in a different way. At this aim, remembering the

arc-route flow consistency equation (3.1), the arc cost function (3.2), and the route-

arc cost consistency equation (3.3), let

f∗ ¼P
iBihi

∗ be the arc flows corresponding to the fixed-point route flows

hi∗8i i;
c∗ ¼c(f∗;k) be the corresponding arc costs;

yi∗ ¼Bi
T � c∗ be the route costs corresponding to the fixed-point route flows

hi∗8i:
Thus, Eq. (4.61) is equivalent to the following equations:

f∗¼
X

i
Bihi∗ + fZ (4.68)

c∗¼ c f∗; kð Þ (4.69)

yi∗ ¼Bi
T � c∗ +wZi 8i (4.70)

Moreover, Eq. (4.62) implicitly defines a map between the route flow vector hi∗ and

the route cost vector yi∗; if matrix Si yi∗ð Þ is irreducible there is one route flow vector

hi∗ for each route cost vector yi∗, thus this map is a function φSi yi∗ð Þ, called the S
route flow function for o-d pair i, that can be used to express equation(4.62):

hi∗ ¼φSi yi∗ð Þ 8i (4.71)

Since the eigenvectors are continuous function of the entries of a matrix, if function

Si(�) is continuous, the S route flow function φSi(�) is continuous too.
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Therefore, fixed-point states hi∗, yi∗ð Þ defined by Eqs (4.61) and (4.62) can also

be described by (4.68), (4.69), (4.70), and (4.71). Furthermore, the generalised arc
flow function can be defined combining together Eqs (4.68), (4.70), and (4.71):

φARC cð Þ¼
X

i
BiφSi Bi

T � c� �
(4.72)

It is continuous if the S route flow function is continuous. It has values in the feasible

arc flow set , which

• has a finite dimension if the number of arcs is finite,

• is non empty if each o-d pair is connected by at least one route,

• is compact, since closed and bounded,

• is convex.

Thus, fixed-point states hi∗, yi∗ð Þ 8i are equivalent to the solutions (f*, c*) of the
following two equations:

c∗¼ c f∗; kð Þ (4.73)

f∗¼φARC c∗ð Þ (4.74)

These equations are a generalisation of the TEAM (3.15), (3.16) presented in

Chapter 3 for CUE. Combining them together the following fixed-point model with

respect to arc flows can be defined as a generalisation of the OEAM (3.17):

f∗¼φARC c f∗; κð Þð Þ 2 Sf (4.75)

Solutions f* of (4.75) allow to define the solutions (f*, c*) of (4.73) and (4.74) that

are equivalent to the solutions hi∗, yi∗ð Þ 8i of (4.68–4.72), say of (4.61) and (4.62).

Hence existence conditions can be stated with respect to the OEAM (4.75).

Thus, sufficient conditions for existence of solutions f* of (4.75) can be derived

with reference to the composed function φG(c(�)) defined over set Sf with values in

the same set, as:

1. each o-d pair i is connected by at least one route,

2. the arc cost function c(f; κ) is continuous with respect to the arc flows f,

3. the generalised arc flow function φARC(c) is continuous with respect to the arc

costs c, that is functions φSi(�)8 i are continuous, say functions Si(�) are
continuous and matrices Si(�) are irreducible (otherwise φSi(�) is not a function).

Proof, based on the Brouwer’s theorem, is similar to the proof of existence conditions

in Chapter 3, with reference to the composed function φARC(c(�)) instead of f(c(�)).

General fixed-point uniqueness conditions
Sufficient conditions for the uniqueness of fixed-points of general deterministic pro-

cess models with time-homogeneous cost updating filters can stated by applying the

uniqueness conditions discussed in Chapter 3 to the two equations (4.61) and (4.71)

with respect to route vectors, a generalisation of equations (3.11) and (3.12), or to

two equations (4.73) and (4.74) with respect to arc variables, a generalisation of
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equations (3.15) and (3.16). But it should be remarked that generally it is not easy to

check whether functions φS(�) or φARC(�) have the required features.

On the other hand, with route choice updating Eq. (4.51) based on Ap choice

updating filters (4.46), since dipCi yi∗ð Þ> 0 8i, Eq. (4.62) becomes:

hi∗ ¼ dipi vi∗ ¼�ψi yi∗; θið Þ 8i
or hi∗ ¼ hi yi∗; dið Þ 8i

(4.76)

with φSi yi∗ð Þ¼ dipi vi∗ ¼�ψi yi∗; θið Þ: Eqs (4.61) and (4.76) are exactly equations

(3.11) and (3.12) in Chapter 3.
4.6.4 Solution issues and convergence analysis
Any of the above described discrete-time Markovian deterministic process models

can be solved by repeatedly applying the recursive equations that specify it, given

an initial state and values of all parameters.

At each iteration of general models based on route costs and flows, arc costs and

flows can be computed through equations (4.3.#) and (4.1) respectively. Still these

models require explicit route enumeration, thus they may be unsuitable for very large

scale applications.

In any case, the trajectory of a DP may not converge to a fixed-point state and

other kinds of attractors may be reached possibly depending on the initial state, as

already noted for simple DP models.
4.7 Summary
4.7.1 Major findings
This chapter presented several simple and some general discrete-time Markovian

deterministic process models, casted within the general SEAM framework, for the

day-to-day dynamic assignment to congested transportation networks. They are

based on a model of user memory and learning and a model of user habit and inertia

to change. The presented DP models may include route choice functions from any

choice modelling theory (cfr Appendix A to the book). They have been developed

under steady-state conditions, but they can be applied to any transportation system

with supply modelled by a TAN. Relationship with fixed-point models for CUE, dis-

cussed in Chapter 3 has also been analysed.

This chapter also presented a general methodology to analyse discrete-time

Markovian deterministic process models (see for instance Stokey and Lucas, 1989

for more theoretical details). First, fixed-point states are defined and existence,

uniqueness, and global stability are investigated; then, if global stability cannot be

assessed, the Jacobian matrix is defined and dissipativeness analysis is carried

out; furthermore, the eigenvalues of the Jacobian matrix at a fixed-point state are

defined and the fixed-point local stability and bifurcation analyses can be carried out.
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This methodology has been applied to the presented DPmodels as far as possible,

a full analysis being available for some simple models only. The simple DP models

based on MA cost updating filters deserve further research effort to get complete

fixed-point local stability and bifurcation analyses. General conditions for global sta-

bility are still an open issue. Whether the general fixed-point existence conditions

could be extended to non irreducible stochastic matrices through the Kakutani’s

theorem is still an open issue as well.

The today state may also depends on itself when the system state is the result of

aggregation and/or averaging over sub-periods of the day k, or for idealised systems

used as ‘benchmarks’, such as traveller information systems where the future can

perfectly be forecasted, see for instance Bifulco et al. (2016). As already noted,

the resulting DP models can be put in Markovian form by applying either of the

approaches described in Appendix C.

As already noted for CUE models, the proposed modelling approach can rather

easily be extended to assignment with demand flows variable with respect to costs,

and/or multi-type or multi-mode assignment, where the choice behaviour among

vehicle types or transportation modes is explicitly described by choice models. These

extensions are out of the scope of this book (and will possibly be described in a future

book on advanced topics). All parameters introduced above are to be calibrated

against real/simulated data (Cheng et al. (2019) recently addressed this issue); this

relevant issues as well as implementation and application issues are out the scope

of this book, mainly focusing on mathematical features.

4.7.2 Further readings
Very few applications exist based on real input data. Surely worth of mention are the

several papers dedicated to modal split in freight transportation by Ferrari (2009,

2011, 2014, 2015, 2016, 2018).

Since the seminal paper by Horowitz (1984), the basic framework of DP models

has been developed in some papers published during 90s. After a break in the sequent

decade, many papers have been published from 2010, too many to be mentioned.

Some papers published by the authors are enlisted below. An analysis of attraction

basins or domains is in (Bie and Lo, 2010). An application for congestion toll design

is in (Han et al., 2017). An application to a simple multi-modal systems is in

Cantarella et al. (2019).

The approximated stability conditions presented in Section 4.4 may be included

as a constraint in optimization models for Transportation Supply Design with equi-

librium assignment (see Cantarella et al., 2012, for an example of large scale appli-

cations). The relevance of fixed-point stability analysis for transportation supply

design and project appraisal is discussed in Cantarella (2013).

4.7.3 Remarks
Some papers follow a continuous time approach to day-to-day dynamics modelling.

They (do not address this issue or) state that it can often be convenient for obtaining

analytical-theoretical results, which might be easier to establish in the continuous-
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timecase; still this is not case for relevantmodelling approaches.On theother hand, for

numerical solution time discretisation is necessary; indeed even if the model were

originally specified in continuous-time, it needs to be discretised for computational

purposes at least. Furthermore, the properties of the resulting DPmodels can be rather

different in the two cases, some qualitative phenomena evident in one and not in

another (see Cantarella andWatling, 2016). From a general point of view, continuous

timeDPmodels cannot be considered an effective approximation of discrete time ones

asmuchas like a circle generally is not a goodapproximation of a square or a rectangle.

Quite often, but not always, continuous time DP models are based on Wardrop

(1952) or Deterministic Utility route choice behaviour. This approach to route choice

modelling could be rather effective when only two routes are available between each

O-D pair, and the choice updating filter is specified by a switching model, since there

is no need of any route choice function. Indeed, when more than two routes are avail-

able, a conditional route choice function should be applied to model route choice

behaviour of users who decide to reconsider their yesterday choice. As noted in

the previous chapters Deterministic Utility choice modelling approach shows several

drawbacks, such as several path flow patterns may correspond to the one link flow

pattern, …; indeed, models based on this approach are classified as link-based or

path-based depending on the variables used to specify the models; this distinction

is meaningless if applied to more general choice modelling approaches.

DP models should not be confused with CUE solution algorithms, however sim-

ilar they may look. Indeed, in a DP model parameters are to be calibrated against real

data and convergence to a fixed-point state equivalent to CUE may not be guaran-

teed, as shown above through some simple examples. On the other hand, CUE solu-

tion algorithms are specified in order to converge to CUE anyway.
Appendix A: Dissipativeness of DP-MA/ES
(adapted from Cantarella and Watling, 2016)
The dissipativeness analysis of the DP-MA/ES model (4.18, 4.19) can be carried out

by specify an equivalent DP model with respect to i-route flows, see Section 2.3.

The i-route cost (block vector) function can be specified by combining together

equations (2.23) and (2.24) with arc cost function (4.2):

ew¼ ew eh
� �

(A1.1)

where the i-th block is given by ewi
ehi

� �
¼B0

iT � c B0
i � ehi + f 0Z; κ

� �
+ ewZi:

The i-route flow (block vector) function can be specified by combining together

equations (2.25), (2.26) and (2.27):

eh¼ eh ewð Þ (A1.2)

where the i-th block is given by ehi ewð Þ¼ diepi �ψiewi; θið Þ:
Thus an equivalent formulation of the the DP-MA/ES model (4.18, 4.19) with

respect to iro flows is given by:
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1ehk ¼ αeh
X

j¼1,…,μ
ζjew j ehk�1

; κ
� �

; d
� �

+ 1�αð Þ1ehk�1 8k2ℕ ,k> μ (A1.3)

jehk¼ j-1ehk�1 j¼ 2,…,μ (A1.4)

The DP (A1.3, A1.4) is formally similar to the DP (4.18, 4.19) and shares with it the

Jacobian matrix structure with reference to the μmatrices eGj ¼eJh �eJw generally dif-

ferent since computed in different points, with eJh ¼reh ewð Þ andeJw ¼rew eh
� �

, thus:

δ eGμ

� �
¼ δ eJh

� �
δ eJw
� �

j¼ 1,…,μ (A1.5)

If for each o-d pair i, the choice function is strictly (positive) regular (see Definition 2
in Section 2.3), such as invariant strictly positive probabilistic choice functions

derived from the RUT, the Jacobian of the i-route flow function is non-singular

det eJh
� �

6¼ 0: Moreover, the Jacobian of the i-route cost function is given by: eJw ¼
B0T Jc B0 with Jc¼ rc(f), thus:

δ eGμ

� �
¼ δ eJh

� �
δ B0TJc B0
� �

(A1.6)

Assuming that Jc is a (not necessarily symmetric) positive definite matrix with

respect to real vectors, thus it is non singular, det(Jc) 6¼0, two cases may occur, as

discussed below, about the rank rank(B0) of the m� en arc—i-route incidence matrix

B0, with blocks B0
i.

• The rank is equal to the number of i-routes, rank B0ð Þ ¼ en�m, and eB is full rank.

In this case, matrix eBT
Jc eB is a (not necessarily symmetric) positive definite

matrix with respect to real vectors, thus it is non singular. Thus, in this case

δ eGμ

� �
6¼ 0:

Indeed ifQ is a n�n (not necessarily symmetric) positive definite matrix with respect to real vectors

(but necessarily with respect to complex vectors too):
xT Qx> 0 8x 6¼ 0,x2ℝn

and if M is a m�n full rank matrix with n�m,

then the n�n matrix MT Q M is positive definite matrix with respect to real vectors:

yTMTQ My > 0 8y 6¼ 0,y2ℝn

sinceM y> 08y 6¼ 0,y2ℝn:
• The rank is less than the number of i-routes, rank B0ð Þ< en; in this case, matrix B0

may be expressed as the product of two full rank matrices both with rank rank(B0)
through a rank factorization: B0 ¼B1�R.
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Indeed a m�n matrix Q with rank r �min(m,n) contains r linearly independent columns making
up the (m�r) full rank sub-matrix Q1, hence after some re-arrangements of the column Q¼
[Q1 jQ2], with the (m� (n�r)) matrix Q2 containing the (n� r) linearly dependent columns, thus

for a suitable (r� (n� r)) full rank matrix A, Q2¼Q1�A.

Therefore, Q¼ [Q1 j Q2]¼Q1� [Ir j A], where the (r�n) matrix R¼ [Ir jA] is full rank.
In this case the DP (A1.3, A1.4) can be reformulated in the space of the i-routes

corresponding to the r linearly independent columns of B0 through a linear transfor-

mation defined by matrix R. In this space for the reformulated DP it occurs that

δ eGμ

� �
6¼ 0, properly redefining matrix eGμ:
Some assumptions about the arc-route incidence matrix are useful to reduce the number of linearly
dependent columns (or rows):

1. each arc belongs to at least a route, thus no row is null,

2. each route contains at least one arc, thus no column is null,

3. no pair of routes are equal, thus no pair of columns are equal,

4. no route is properly contained in another route.

All the above assumptions are quite mild and/or reasonable and can easily be accepted. On the

other hand two arcs may well have equal rows if the share all routes, as it occurs for instance for two

arc in series or in parallel.
Once in a properly defined space the matrix eGμ is non-singular the dissipative-

ness analysis can be carried out. If the partial derivatives in matrix eGμ are well-

defined, say finite and continuous, the absolute value of the determinant of

matrix eGμ,δ eGμ

� �
, is a continuous function defined over a compact set, thus

δ eGμ

� �
has an upper bound δMAX (and a lower bound, as well), so that α ζμ δ eGμ

� �
�

α ζμ δMAX , thus α ζμ δMAX<1 implies δ(J0)<1. Value of δMAX cannot easily com-

puted, an approximation may be obtained through matrix norms. It is worth noting

that the entries of matrix eGμ as well as δMAX have no dimension, thus the above con-

dition is not affected by the units used to measure flows or costs.

It can easily demonstrated that ζμ is decreasing with μ, and limμ!∞ζμ¼0

whichever the value of β 2 ] 0.5, 1.0 [ is, thus there always exists a large enough

memory depth μ∗ such that for any memory deeper than this value μ∗ the DP is

dissipative from any initial state. The minimum memory depth value μ∗ is

defined by:

μ∗ ¼ min μ : ζμ < 1= αδMAXð Þ
n o
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Appendix B: Local stability conditions for of DP-ES/ES
Below some general considerations are reported about the combination of the general

stability conditions MAXj |λj∗|< 1 or λj∗
�� ��2 < 1, 8j¼ 1,…,2m with either of the two

solutions (roots) λ1 and λ2 of a reduced quadratic equation:

λ2�pλ+ q¼ 0 (A2.1)

λ1 ¼ p=2 +Δ½ (A2.1a)

λ2 ¼ p=2�Δ½ (A2.1b)

Δ¼ p2=4�q (A2.1c)

where Δ is the discriminant of Eq. (A2.1).

Remark. The linear coefficient, p, is equal to the sum of the two solutions,

λ1+λ2¼p, and the constant coefficient, q, is equal to the product of the two solutions,
λ1 λ2¼q.

Remark. If the linear and/or the constant coefficient is null, p¼0 and/or q¼0, the

Eq. (A2.1) can easily be solved without using Eqs (A2.1a), (A2.1b), (A2.1c), thus in

the following these coefficients are assumed non null, p 6¼0 and q 6¼0.

• If both p and q are real the discriminant Δ is real, and

Δ is real non-negative, Δ�0, then Δ½ is real and non-negative, Δ½�0;

in this case λ1 and λ2 are both real with λ1�λ2; thus the stability conditions

becomes

1> λ1 � λ2 >�1, thus :

1> p=2 +Δ½ � p=2�Δ½ >�1

or

Δ½ < 1�p=2ð Þ
Δ½ < 1 + p=2ð Þ

If both right sides are non-negative, (1�p/2)>0 and (1+p/2)>0, or

�2< p< 2 (A2.2a)

squaring both of the above conditions do not affect the inequality thus the stability

conditions become:

Δ< 1�p=2ð Þ2

Δ< 1 + p=2ð Þ2
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Therefore the stability conditions are equivalent to (A2.2a) together with:

� 1 + qð Þ< p< 1 + q (A2.2b)

Depending on the value of q either of (A2.2a) and (A2.2b) dominates the other.

• If both p and q are real the discriminant Δ is real, and

Δ is real negative, Δ<0, then Δ½ is imaginary Δ½ ¼ i �Δð Þ½;
in this case λ1 and λ2 occur in a complex conjugate pair such that

λ1 ¼ p=2 + i �Δð Þ½
and λ2 ¼ λ1 ¼ p=2� i �Δð Þ½; thus the stability conditions becomes j λ1 j2¼

j λ2 j2<1,

thus:

p2=4�Δ¼ q< 1 (A2.3)

with p2/4�Δ¼q�0 in any case.

• If either p or q or both are complex the discriminant Δ is complex, Δ¼ a + i bð Þ
in this case λ1 and λ2 are both complex, but do not occur in a conjugate pair; thus the

stability conditions becomes:

λ1j j2 < 1 (A2.4a)

λ2j j2 < 1 (A2.4b)

The above stability conditions (A2.2) or (A2.3) turn out special cases of (A2.4).

To apply (A2.4). It is useful to remember that the square root of the discriminant

is given by:

Δ½ ¼ a + ibð Þ½ ¼ a2 + b2
� �½

+ a
� �

=2
� �½

+ i j bj =bð Þ a2 + b2
� �½� a

� �
=2

� �½

where (a2+b2)½, ((a2+b2)½+a)/2)½, (((a2+b2)½�a)½ are positive square roots,

and (jb j /b) is the sign of b.

Local stability conditions for of DP-ES/ES
In the following the solutions of Eq. (4.31) relative to DP-ES/ES are combined with

the stability conditions to get the stability conditions (4.33) for a DP-ES/ES model.

As proved in the main text, for each eigenvalue ωj of matrixG two eigenvalues λj
and λn+j of matrix J can be obtained from each eigenvalueωj of matrixG, as solutions

of the reduced quadratic equation (4.31). It is reported below omitting superscript to

simplify notations:

λ2� 1�αð Þ + 1�βð Þ + αβωð Þ λ+ 1�αð Þ 1�βð Þð Þ¼ 0 (4.31)

with p¼ (1�α)+ (1�β)+α β ω, q¼ (1�α)(1�β)2 ] 0, 1 [

Δ½ ¼ 1�αð Þ+ 1�βð Þ+ α β ωð Þ2=4� 1�αð Þ 1�βð Þð Þ
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If the linear coefficient is zero, p¼0, that isω¼ � ((1�α)+(1�β))/(α β), the two solu-
tionsarepure imaginary,λj ¼ i 1�αð Þ 1�βð Þð Þ½ andλn+ j ¼�i 1�αð Þ 1�βð Þð Þ½, in
this case the stability condition jλj j2¼jλn+j j2<1become((1�α) (1�β))<1, thus the

stability conditions is always satisfied. Therefore, below the linear coefficient is

assumed different from zero, p 6¼0.

A real eigenvalue ωj may lead to two real eigenvalues λj�λn+j; in this case the

two eigenvalues λj and λn+j have the same sign since λj λm+j¼ (1�α) (1�β)>0, and

at least one satisfies the stability condition MAXj | λj | <1 since λj λm+j¼ (1�α)
(1�β)<1; moreover they are both positive if p> 0, otherwise they are both

negative.

Since q¼ (1�α) (1�β)<1, 1+q<2, thus conditions (A2.2b) dominates (A2.2a)

and describe the stability conditions:

� 1 + qð Þ< p< 1 + q (A2.2b)

After some algebra we get the stability conditions below:

�ωo α, βð Þ<ω< 1 8j¼ 1,…,m

where: ωo(α,β)¼1+2 ((1�α)+ (1�β))/(α β)�1, as in (4.34) in the main text.

A real eigenvalue ωj may also lead to a complex conjugate pair of eigenvalues λj
and λm+j with | λj | ¼ | λm+j | ; in this case both the eigenvalues λj and λn+j always sat-
isfy the stability condition (A2.4) since λj λm+j¼j λj j2¼j λm+j j2¼ (1�α)2

(1�β)2<1. Therefore, above stability conditions are equivalent to ‘Local

stability condition for arc cost functions with symmetric Jacobian’ (4.35).

A complex conjugate pair of eigenvalues ωj ¼ωR + iωI andωj+ 1 ¼ωR� iωI,

with ωI>0, leads to four two complex eigenvalues λj, λm+j, λj+1, and λm+j+1 that must

occur in two conjugate pairs since they are complex eigenvalues λ of a real matrix:

λj and λj + 1, with | λj|¼ |λj+ 1|
λm+ j and λm+ j + 1 with | λm+ j|¼ |λm+ j + 1|

The general stability conditions become:

λRj
� �2

+ λIj
� �2

< 1 (A2.5a)

λRm+ j

� �2
+ λIm+ j

� �2
< 1 (A2.5b)

Since | λj | ¼ |λj+1 |and | λn+j | ¼ |λn+j+1 | with no loss of generality in the following

ωj ¼ωR + iωI with ωI>0 is considered only. At least one of two eigenvalues

λj and λn+ j 0 satisfies the stability conditions (A2.4) since jλj j2 jλn+j j2¼
(1�α)4 (1�β)4<1.

Generally the discriminant is complex, Δ¼ a + i b, after the eigenvalue ω, let

a¼τ2� (α β ωI)
2�4 (1�α) (1�β) be the real part of it,

b¼2 α β ωI�0 be the imaginary part of it, non-negative as commented above.

Thus, from the expression of the square root of a complex number a + i bð Þ with
b�0, the positive square root of the discriminant is given by:



137Appendix B: local stability conditions for of DP-ES/ES
Δ½ ¼ a + ibð Þ½ ¼ a2 + b2
� �½

+ a
� �

=2
� �½

+ i a2 + b2
� �½� a

� �
=2

� �½
:

Thus:
λ1,2 ¼ τ+ iαβωI� a2 + b2
� �½

+ a
� �

=2
� �½

+ i a2 + b2
� �½� a

� �
=2

� �½
� �

=2

¼ τ� a2 + b2
� �½

+ a
� �

=2
� �½

� �
=2 + i αβωI� a2 + b2

� �½� a
� �

=2
� �½

� �
=2

and

λ1,2j j2 ¼ τ� a2 + b2
� �½

+ a
� �

=2
� �½

� �2

=4 + αβωI� a2 + b2
� �½� a

� �
=2

� �½
� �2

=4

¼ 0:25 τ2�2 τ a2 + b2
� �½

+ a
� �

=2
� �½

+ a2 + b2
� �½

+ a
� �

=2ÞÞ

+ 0:25 αβωIð Þ2�2αβωI a2 + b2
� �½� a

� �
=2

� �½
+ a2 + b2

� �½� a
� �

=2ÞÞ

¼ 0:25 ðτ2 + αβωIð Þ2 + a2 + b2
� �½

�0:50 τ a2 + b2
� �½

+ a
� �

=2
� �½

+ αβωI a2 + b2
� �½� a

� �
=2Þ½ÞÞ

Therefore the stability conditions (A2.4), that is jλ1, 2 j2<1, are equivalent to the fol-

lowing two conditions, depending on the sign of the left-side term:

�2 τ a2 + b2
� �½

+ a
� �

=2
� �½

+ αβωI a2 + b2
� �½� a

� �
=2Þ½ÞÞ

< 4� τ2 + αβωIð Þ2 + a2 + b2
� �½� � (A2.6)

Conditions (A2.6) with positive left-side term can only be satisfied if the right-hand

side is positive:

a2 + b2
� �½

< 4� τ2 + αβωIð Þ2
� �

(A2.7)

On the other hand, if condition (A2.7) is satisfied, condition (A2.6) with a negative

left-side term becomes redundant, thus conditions (A2.7) can be restated as:

2 |τ a2 + b2
� �½

+ a
� �

=2Þ½ + αβωI a2 + b2
� �½� a

� �
=2Þ½|

< 4� τ2 + αβωIð Þ2 + a2 + b2
� �½� � (A2.8)

Since both the left-side and the right-side terms are positive condition (A2.8) can be

restated squaring both sides:

4 τ a2 + b2
� �½

+ a
� �

=2
� �½

+ αβωI a2 + b2
� �½� a

� �
=2Þ½ÞÞ2

< 4� τ2 + αβωIð Þ2 + a2 + b2
� �½� �� �2

(A2.9)

therefore the stability conditions (A2.4) are equivalent to (A2.7) and (A2.9).
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Since (((a2+b2)½)2�a2)½¼ (a2+b2�a2)½¼ (b2)½¼b¼2 τ α β ωI (remembering

that b�0), after some algebra on either term, condition (A.2.9) becomes:

2 τ2� αβωIð Þ2
� �

a + 2 τ2 + αβωIð Þ2
� �

a2 + b2
� �½

+ 8 τ2 αβωIð Þ2

< 16 + τ4 + αβωIð Þ4 + a2 + b2
� ��8τ2�8 αβωIð Þ2�8 a2 + b2

� �½

+ 2 τ2 αβωIð Þ2 + 2 αβωIð Þ2 a2 + b2
� �½

+ 2 τ2 a2 + b2
� �½

or

8 τ2 αβωIð Þ2 + 2 τ2 a�2 a αβωIð Þ2a

< 16 + τ4 + αβωIð Þ4�8 τ2�8 αβωIð Þ2 + 2 τ2 αβωIð Þ2�8 a2 + b2
� �½

+ a2 + b2
� � (A2.10)

Since a2 + b2
� �¼ τ4 + αβωIð Þ4 + 16 1�αð Þ2 1�βð Þ2 + 2 τ2 αβωIð Þ2

�8 τ2 1�αð Þ 1�βð Þ + 8 αβωIð Þ2 1�αð Þ 1�βð Þ
The above condition becomes:

0< 16�8τ2�8 αβωIð Þ2�8 a2 + b2
� �½

+ 16 1�αð Þ2 1�βð Þ2

Thus, after reordering and dividing by 8 (A.19) becomes:

a2 + b2
� �½

< 2 1 + 1�αð Þ2 1�βð Þ2
� �

� τ2 + αβωIð Þ2
� �

(A2.11)

Since 0<α�1 and 0<β�1 it results that 0�1�α<1 and 0<1�β<1, thus 0�
(1�α)2(1�β)2<1 and then 1� (1+(1�α)2(1�β)2)<2, therefore the right-hand

side of (A2.11) is less than the right-hand side of (A2.7), and condition (A2.11) dom-

inates condition (A2.7).

Before squaring both sides of (A2.11) in order to eliminate the square root, it is

necessary to assure that the right-hand side is non-negative, thus condition (A2.11) is

equivalent to the two following conditions:

0� 2 1 + 1�αð Þ2 1�βð Þ2
� �

� τ2 + αβωIð Þ2
� �

(A2.12)

a2 + b2
� �

< 2 1 + 1�αð Þ2 1�βð Þ2
� �

� τ2 + αβωIð Þ2
� �� �2

(A2.13)

Condition (A.2.12) can be restated as:

τ2 + αβωIð Þ2 � 1 + 1�αð Þ 1�βð Þð Þ2 + 1� 1�αð Þ 1�βð Þð Þ2 (A2.14)

Remembering the expression of (a2+b2) condition (A2.13) becomes:

�8τ2 1�αð Þ 1�βð Þ + 4τ2 1 + 1�αð Þ2 1�βð Þ2
� �

+ 8 αβωIð Þ2 1�αð Þ 1�βð Þ+ 4 αβωIð Þ2 1 + 1�αð Þ2 1�βð Þ2
� �

< 4 1 + 1�αð Þ2 1�βð Þ2
� �2

�16 1�αð Þ2 1�βð Þ2
(A2.13)
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Therefore dividing by 4 condition (A2.13) can be re-stated as:

τ2 1� 1�αð Þ 1�βð Þð Þ2 + αβωIð Þ2 1 + 1�αð Þ 1�βð Þð Þ2

< 1� 1�αð Þ 1�βð Þð Þ2 1 + 1�αð Þ 1�βð Þð Þ2
(A2.15)

As already noted, assumption 0<α�1 and 0<β�1 implies 0�1�α<1 and

0<1�β<1, thus: 0� (1�α)(1�β)<1 and then:

0< 1� 1�αð Þ 1�βð Þð Þ� 1 and 1� 1 + 1�αð Þ 1�βð Þð Þ< 2

or 0< 1� 1�αð Þ 1�βð Þð Þ2 � 1 and 1� 1 + 1�αð Þ 1�βð Þð Þ2 < 4

Thus, dividing condition (A.2.15) by (1� (1�α)(1�β))2>0 leads to:

τ2 + αβωIð Þ2 ð 1 + 1�αð Þ 1�βð Þð Þ2= 1� 1�αð Þ 1�βð Þð Þ2 < 1 + 1�αð Þ 1�βð Þð Þ2 (A2.16)

Since ((1+(1�α) (1�β))2/(1� (1�α) (1�β))2)�1, the left-hand side of (A2.16) is

not less than the left-hand side of (A2.14), moreover since (1� (1�α) (1�β))2>0

the right-hand side of (A2.16) is less than the right-hand side of (A2.14), thus

condition (A2.16) dominates condition (A2.14).

As a conclusion, stability condition (A2.2) is equivalent to condition (A2.16),

which can be restated as:

τ= αβð Þð Þ2= 1 + 1�αð Þ 1�βð Þð Þ= αβð Þð Þ2 + ωIð Þ2= 1� 1�αð Þ 1�βð Þð Þ= αβð Þð Þ2 < 1 (A2.17)

Remembering the expression of τ it results that:

τ= αβð Þ¼ωR + 1�αð Þ + 1�βð Þð Þ= αβð Þ¼ωR� 1� 1 + 1�αð Þ 1�βð Þð Þ= αβð Þð Þ

Thus stability condition (A2.17) becomes (4.33):

ωRj∗� 1� eRð Þ� �2
=eR

2 + ωIj∗
� �2

=eI
2 < 1 8j¼ 1,…,m (4.33a)

where

eR ¼ 1 + 1�αð Þ 1�βð Þð Þ= αβð Þ� 1 (4.33b)

eI ¼ 1� 1�αð Þ 1�βð Þð Þ= αβð Þ� 1 (4.33c)
Appendix C: DP with today states depending on itself
(adapted from Cantarella and Watling, 2016)
In some case it may occurs that today state also depends on itself. This condition may

occur for instance when the system state is the result of aggregation and/or averaging

over sub-periods of the day k, or at idealised systems which cannot exist in the
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real-world but act as ‘benchmarks’, such as idealised traveller information systems

where the ITS and/or travellers can see perfectly into the future

xk ¼φ xk�1, xk
� �2 S 8k2ℕ (A3.1)
Implicit function theorem

briefly: if f(x, y) is continuously differentiable and the Jacobian matrix ryf(x,y)¼I�ryφ (x,y) is

invertible, then there exists a unique continuously differentiable function y¼g(x), from an open set X
to an open set Y, such that for any given x2X, y¼g(x)2Y is a solution in y to f(x,y)¼0.
Quite often the following approach may be followed to express the above DP model

as a proper Markovian model xk¼φ(xk�1).

The implicit function method. Let us express Eq. (A3.1) as y¼φ(x,y), assuming

f(x,y)¼y�φ(x,y) it yields f(x,y)¼0. Thus, if the hypotheses of the implicit func-

tion theorem hold then the following equation can be obtained for a properly defined

function g(�):
xk ¼ g xk�1

� �2 S 8k2ℕ

where rxg(x)¼ � (ryf(x,y)jy5 g(x))
�1 � (rxf(x,y)jy5 g(x)). This expression of

Jacobian is remarkably useful when analysing the evolution over time close to a

fixed-point state x∗ ¼xk¼xk�1, that is x∗ ¼φ (x∗,x∗), since it does not require

to know function g(�).
If the transition function in Eq. (A3.1) is separable with respect the two arguments

another approach is also available as described below. This approach, applied in

Bifulco et al. (2016), can be proved a particular instance of the previous one. Anyhow

it is outlined below for comparison’s purpose.
Global inverse function theorem

briefly: if f(y) is continuously differentiable and the Jacobian matrix ry f(y)¼ I�ry φ2(y) is

invertible in an open set Y, then there exists a unique continuously differentiable inverse function h

(z)¼ f�1(z) for z2 f(Y), where f(Y) denotes the image of the set Y.
The inverse function method. If the transition function φ (�, �) in Eq. (A3.1) is sep-
arable with respect the two arguments: φ (xk�1,xk)¼φ1(x

k�1)+φ2(x
k), Eq. (A3.1)

may be rewritten as:

xk�φ2 xk
� �¼φ1 xk�1

� �
(A3.2)

Let us express Eq. (A3.2) as y�φ2(y)¼φ1(x), assuming f(y)¼y�φ2(y) it yields

f(y)¼φ1(x). Thus, if the hypotheses of the global inverse function theorem hold, then

the following equation can be obtained for a properly defined function h (�):
xk ¼ h φ1 xk�1

� �� �
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where, since the Jacobian matrix of function h(z) isrzh(z)¼ (I�ryφ2(y)jy5 h(z))
�1,

the Jacobian matrix of function h(φ1(x)) is rxh(φ1(x)) ¼(I�ryφ2(y)jy5 φ1(x))
�1 �

(rxφ1(x)). [The same result may be obtained by applying the implicit function method

expressing Eq. (A3.2) as: �(y�φ2(y))+φ1(x)¼0. ] This expression of Jacobian is

remarkably useful when analysing the evolution over time close to a fixed-point state

x∗ ¼xk¼xk�1, that is x∗�φ2(x∗)¼φ1(x∗), since it does not require to know the

inverse function h (�).
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Cantarella, G.E., Velonà, P., Watling, D.P., 2019. Day-to-day dynamics & equilibrium stabil-

ity in a two-mode transport system with responsive bus operator strategies. Netw. Spat.

Econ. 15 (3), 485–506.
Cascetta, E., 1987. Static and dynamic models of stochastic assignment to transportation net-

works. In: Szaego, G., Bianco, L., Odoni, A. (Eds.), Flow Control of Congested Networks.

Springer Verlag, Berlin.

Cascetta, E., 1989. A stochastic process approach to the analysis of temporal dynamics in

transportation networks. Transp. Res. B 23, 1–17.
Cheng, Q., Wang, S., Liu, Z., Yuan, Y., 2019. Surrogate-based simulation optimization

approach for day-to-day dynamics model calibration with real data. Transp. Res. C

105, 422–438.
Ferrari, P., 2009. The effect of the competition between cars and trucks on the evolution of the

motorway transport system. Transp. Res. C Emerg. Technol. 17 (6), 558–570.
Ferrari, P., 2011. The dynamics of the competition between cars and trucks on motorways.

Transp. Res. C Emerg. Technol. 19 (4), 579–592.
Ferrari, P., 2014. The dynamics of modal split for freight transport. Transp. Res. E Logist.

Transport. Rev. 70 (1), 163–176.
Ferrari, P., 2015. Dynamic cost functions and freight transport modal split evolution. Transp.

Res. E Logist. Transport. Rev. 77, 115–134.
Ferrari, P., 2016. Instability and dynamic cost elasticities in freight transport systems. Transp.

Policy 49, 226–233.
Ferrari, P., 2018. Some necessary conditions for the success of innovations in rail freight trans-

port. Transp. Res. A Policy Pract. 118, 747–758.

http://refhub.elsevier.com/B978-0-12-814353-7.00004-2/rf0010
http://refhub.elsevier.com/B978-0-12-814353-7.00004-2/rf0010
http://refhub.elsevier.com/B978-0-12-814353-7.00004-2/rf0015
http://refhub.elsevier.com/B978-0-12-814353-7.00004-2/rf0015
http://refhub.elsevier.com/B978-0-12-814353-7.00004-2/rf0015
http://refhub.elsevier.com/B978-0-12-814353-7.00004-2/rf0020
http://refhub.elsevier.com/B978-0-12-814353-7.00004-2/rf0020
http://refhub.elsevier.com/B978-0-12-814353-7.00004-2/rf0025
http://refhub.elsevier.com/B978-0-12-814353-7.00004-2/rf0025
http://refhub.elsevier.com/B978-0-12-814353-7.00004-2/rf0030
http://refhub.elsevier.com/B978-0-12-814353-7.00004-2/rf0030
http://refhub.elsevier.com/B978-0-12-814353-7.00004-2/rf0030
http://refhub.elsevier.com/B978-0-12-814353-7.00004-2/rf0035
http://refhub.elsevier.com/B978-0-12-814353-7.00004-2/rf0035
http://refhub.elsevier.com/B978-0-12-814353-7.00004-2/rf0035
http://refhub.elsevier.com/B978-0-12-814353-7.00004-2/rf9020
http://refhub.elsevier.com/B978-0-12-814353-7.00004-2/rf9020
http://refhub.elsevier.com/B978-0-12-814353-7.00004-2/rf9020
http://refhub.elsevier.com/B978-0-12-814353-7.00004-2/rf9021
http://refhub.elsevier.com/B978-0-12-814353-7.00004-2/rf9021
http://refhub.elsevier.com/B978-0-12-814353-7.00004-2/rf9021
http://refhub.elsevier.com/B978-0-12-814353-7.00004-2/rf9022
http://refhub.elsevier.com/B978-0-12-814353-7.00004-2/rf9022
http://refhub.elsevier.com/B978-0-12-814353-7.00004-2/rf0040
http://refhub.elsevier.com/B978-0-12-814353-7.00004-2/rf0040
http://refhub.elsevier.com/B978-0-12-814353-7.00004-2/rf0040
http://refhub.elsevier.com/B978-0-12-814353-7.00004-2/rf0045
http://refhub.elsevier.com/B978-0-12-814353-7.00004-2/rf0045
http://refhub.elsevier.com/B978-0-12-814353-7.00004-2/rf0050
http://refhub.elsevier.com/B978-0-12-814353-7.00004-2/rf0050
http://refhub.elsevier.com/B978-0-12-814353-7.00004-2/rf0055
http://refhub.elsevier.com/B978-0-12-814353-7.00004-2/rf0055
http://refhub.elsevier.com/B978-0-12-814353-7.00004-2/rf0060
http://refhub.elsevier.com/B978-0-12-814353-7.00004-2/rf0060
http://refhub.elsevier.com/B978-0-12-814353-7.00004-2/rf0065
http://refhub.elsevier.com/B978-0-12-814353-7.00004-2/rf0065
http://refhub.elsevier.com/B978-0-12-814353-7.00004-2/rf0070
http://refhub.elsevier.com/B978-0-12-814353-7.00004-2/rf0070


142 CHAPTER 4 Deterministic process models
Han, L., Wang, D.Z.W., Lo, H.K., Zhu, C., Cai, X., 2017. Discrete-time day-to-day dynamic

congestion pricing scheme considering multiple equilibria. Transp. Res. Part B 44 (1),

1–16.
Horowitz, J.L., 1984. The stability of stochastic equilibrium in a two-link transportation net-

work. Transport. Res. B 18, 13–28.
Stokey, N., Lucas, R., 1989. Recursive Methods in Economic Dynamics. Harvard University

Press, Cambridge, MA.

Sylvester, J.R., 2000. Determinants of block matrices. Math. Gazette 84 (501), 460–467.
Wardrop, J.G., 1952. Some theoretical aspects of road traffic research. Proc. Inst. Civ. Eng.

2 (1), 325–378.
Further reading
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All my days I have longed equally

to travel the right road and

to take my own errant path.

Sigrid Undset

The problem with putting two and two together is that

sometimes you get four, and sometimes you get twenty-two.

Dashiell Hammett, The Thin Man

Outline. This chapter describes a comprehensive modelling approach to day-to-day

dynamic assignment to congested networks through discrete-time Markovian sto-

chastic process (SP) models; presented models are consistent with the SEAMmodel-

ling framework presented in Chapter 1; contents of this chapter mirrors those of

Sections 4.5 and 4.6, in the previous Chapter 4, on general deterministic process

models.

As stated in the previous Chapter 4, methods for day-to-day (or inter-periodic)

dynamic assignment play a central role in advanced transportation system analysis,

since they allow to analyse and forecast equilibrium stability and fluctuations around

it, as a result of past events.

This chapter discusses stochastic process (SP) models for day-to-day dynamic

assignment to congested transportation networks, a kind of assignment still at

research level and not yet implemented in commercial software. They can be con-

sidered a sort of generalisation of the deterministic process (DP) models, described

in the previous Chapter 4. Indeed in a DP model the system state is described by
Dynamics and Stochasticity in Transportation Systems. https://doi.org/10.1016/B978-0-12-814353-7.00005-4
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144 CHAPTER 5 Stochastic process models
deterministic variables, while in a SP one it is described by random variables. Still a

SP model for day-to-day dynamic assignment is meaningful under the assumptions

of probability theory only, whilst any uncertainty theory can be applied to specify the

demand model in a DP model.

Even though exactly one user equilibrium flow and cost patterns exist (cfr

Chapter 3) and conditions for its local stability can be stated by embedding it within

a deterministic process model (cfr Chapter 4), a full description of day-to-day

dynamics can only be obtained through a stochastic process analysis. Indeed, the

DP analysis does not allow to analyse transients after demand and/or supply changes,

nor to obtain a statistical description of the system state evolution over time, i.e.

means, modes, moments and, more generally, frequency distributions, this kind of

analysis requiring SP models.

Indeed, a complete day-to-day dynamic analysis cannot be based on DP models

only, it also needs the specification and application of stochastic process (DP)

models, the only models that can provide full statistical description of the evolution

over time of the system state for asymptotic behaviour through invariant probability

distribution(s) as well as for transient from an initial state (distribution). On the other

hand, a proper day-to-day dynamic analysis we need both kinds of models: DP

models mainly provide the basis for fixed-point stability conditions including bifur-

cation analysis useful to support sensitivity analysis with respect to model parame-

ters, while SP model provide a complete statistical characterization of the limit state

distribution as well as tools for transient analysis. … .

As already noted in the previous chapter, day-to-day dynamics ontologically

occur over discrete time, while within-day dynamics, discussed in Chapter 6, occur

over continuous time, say any instant of time within a day (cfr Introduction). Thus in

this chapter we will only discussed discrete-time stochastic process models.

Just few years after Horowitz (1984) first proposed to analyse day-to-day dynam-

ics in transportation networks through DP models, Cascetta (1987, 1989) was the

first to apply models derived from the theory of stochastic processes to analyse

day-to-day dynamics in transportation systems. Davis and Nihan (1993) discussed

some issues of stochastic modelling of assignment. Then, Cantarella and Cascetta

(1995) were the first to propose a unifying general theory, based on RUM, encom-

passing FPmodels for UE assignment and DP and SPmodels for day-to-day dynamic

assignment to general transportation networks. Since then few other papers have

been proposed, such as Hazelton and Watling (2004). Recently Watling and

Cantarella (2013) proposed a general framework and Watling and Cantarella

(2015) discussed some examples.

In this chapter, we introduce and discuss general SP models for day-to-day

dynamic assignment to congested networks, consistent with general DP models dis-

cussed in Sections 4.5 and 4.6. They may include most route choice modelling

approaches based on the theory of probability (cfr Appendix A to the book). They

described under steady-state conditions, but they also apply to any TAN used for

within-day dynamics, as discussed in Chapter 6. Presented SP models are consistent
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with the SEAMmodelling framework presented in Chapter 1. Section 5.1 introduces

basic equations for general stochastic process models discussed in Section 5.2.
5.1 Basic equations for SP models
This section presents the basic equations for day-to-day dynamic assignment through

SP models; again the presented approach can straightforwardly be applied to i-route

variables instead of route ones and/or to multi-class assignment as well. All defini-

tions and assumptions introduced in the previous chapters still hold, unless

otherwise stated.

As noted above in SP models the state of the system is described by random vari-

ables. Each of the main vectors appearing in the SEAM are modelled by a random

vector so that the state of the system at day k is described by a realisation of each

of them.

For clear notation a random variable is denoted by an italic upper case letter as

usually, even though an ambiguity may occur with set notation; a random vector

(r.v.) or matrix (r.m.) is denoted by an italic bold lower or upper case, respectively;

a realisation of a random variable or vector or matrix is denoted as a deterministic

variable or vector or matrix; a discrete or a continuous r.v. or r.m. is described by the

joint probability mass (pmf) or the probability density function (pdf), respectively.

The equations introduced for general DP models in Sections 4.5 and 4.6 are used

to specify relationships among the following random vectors:

ck2Sc is the m�1 (column) random vector of actual arc costs on day k;
fk2Sf is them�1 (column) random vector of arc flows on day k, it has discrete

entries as explained in Section 5.1.1;

hk;i2Shi is the ni�1 (column) random vector of route flows for o-d pair i on day
k, it has integer entries as explained in Section 5.1.2;

pk;i�0 is the ni�1 (column) random vector of route choice probabilities for
o-d pair i on day k;

vk;i is the ni�1 (column) random vector of route systematic utilities for o-d pair
i on day k;

wk;i2Swi
is the ni�1 (column) random vector of actual route costs for o-d pair i

on day k;
yk;i2Syi is the ni�1 (column) random vector of forecasted route costs for o-d

pair i on day k.
di�0 is the demand flow for o-d pair i, it is assumed integer as explained in

Section 5.1.2.

If any input data, such as demand flows, are to be modelled through random vectors,

they have to be included among the state vectors, even if they do not depend on day.

Main vector notations from Chapter 4 as well few new ones used in the following

are enlisted below in alphabetical order for reader’s convenience (sets come first,
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then Roman letters, at last Greek letters). Variables, vectors, or matrices that may

change over the day have a superscript, usually k.

A is the set of arcs, with m¼ |A | elements;

is the set of real m�1 (column) vectors with Euclidean distance;

m is the number of arcs;

ℕ is the set of natural numbers, that is positive integers;

ℕ0 is the set of non-negative integers;

ni is the number of routes connecting o-d pair i;
Ri is the set of routes for o-d pair i, with ni¼ |Ri | elements;

is the arc cost set, given by the convex hull of set c(Sf), non-empty,

compact and convex, since c(Sf), the co-domain of the arc cost function c(�),
is non-empty and compact for a continuous arc cost function;

is the feasible arc flow set, non-empty, compact since finite, see

Section 5.1.1;

Shi�ℕni;0 is the feasible route flow set for o-d pair i, non-empty, compact since

finite see Section 5.1.2;

is the route cost set for o-d pair i, non-empty, compact and convex

since an affine transformation of the arc cost set Sc, see Eq. (5.3a);

Bi is the (m�ni) i-th block of the ARGIM for o-d pair i;
ck2Sc is the m�1 (column) vector of arc actual costs on day k;
c(�) is the m�1 (column) arc cost function;
fk2Sf is the m�1 (column) vector of total arc flows on day k;
fZ�0 is the m�1 (column) vector of other arc flows;
f(�) is the m�1 (column) arc flow function;
hk;i2Shi is the ni�1 (column) vector of route flows for o-d pair i on day k;
hk2Shi is the n�1 (column) vector of route flows for all o-d pairs on day k;
hi(�) is the ni�1 (column) vector route flow function for o-d pair i;
pk;i�0 is the ni�1 (column) vector of route choice proportions with entries

pk;i r such that 1Tpk;i¼1;

pi(�) is the ni�1 (column) vector route choice function for o-d pair i;
Sk;i be the ni�ni route transition matrix with entries pk;i r/j; all its entries are

non-negative, Sk;i�0, with column sum equal to 1, 1TSk;i¼1T, thus Sk;i is a

column stochastic matrix;

Si(�) be the ni�ni route transition matrix function assumed time-independent;

vk;i is the ni�1 i-th block of the (column) vector of route systematic utility for
o-d pair i on day k;

wk;i2Swi
is the ni�1 i-th block of the (column) vector of actual route costs for

o-d pair i on day k;
wZi�0 is the ni�1 (column) vector of other route costs for o-d pair i;
wi(�) is the ni�1 block the (column) vector route cost function for o-d pair i;
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xk2Sc is the m�1 (column) vector of forecasted arc costs for day k;
yk;i2Syi is the ni�1 (column) vector of forecasted route costs for o-d pair i on

day k;
yk2Sy is the n�1 (column) vector of forecasted route costs for all o-d pairs on

day k;

α2 ]0, 1[ is the choice updating parameter;
β2 ]0, 1[ is the cost updating parameter;
ζj is the weight given to the actual cost occurred in any of the μ previous days, in

a moving average filter;

θi>0 is the vector of the route choice function parameters for o-d pair i;
κ>0 is the m�1 (column) vector of the arc capacities, with entries κa;
μ>1 is the integer memory depth, in a moving average filter;

ψi>0 is the utility scale parameter in the route choice model, for o-d pair i.
Relationships between two random vectors or matrices
Let x and y be two random vectors with values in sets SX and SY respectively, and φ(�) be a vector
function from sets SX and SY.

• Relationship in variables (RiV) occurs if y¼φ(x), often referred to as function of a r.v.;

– if function φ(�) is linear, moments—such means, variances, and co-variances—of r.v. y may

easily be obtained from those of r.v. y;

– if functionφ(�) is invertible, or generally if for any given y2SY, equation y¼φ(x) has at most a

countable number of roots, the pmf/pdf of ymay be defined from that of x, then moments of r.

v. y may easily be defined.

• Relationship in all parameters (RiAP) occurs if all parameters of r.v. y are a function of r.v. x; since

moments of r.v. y depend on its parameters they may easily be defined. The same relationship can

be obtained if (a large enough number of) moments are expressed as functions of r.v. x.

Remark. In both cases the uncertainty modelled by r.v. y is the same of that modelled by r.v. x,

even though their dispersion indices, such as variances, take different values.

• Relationship in some parameters (RiSP) occurs if some but not all parameters of r.v. y are function

of r.v. x (this case may only occurs if r.v. y has at least two parameters). A similar relationship is

obtained if some moments are expressed as a function of r.v. x.

The most common case occurs if the mean E[y] only of r.v. y is defined as a function of r.v. x, E

[y]¼φ(x), and the r.v. y is defined by the sum of its mean and an additional r.v. yA with null mean, E

[yA]¼0, say y¼φ(x)+yA.
Remark. If the two r.v.’s φ(x) and yA are independently distributed, they are uncorrelated thus the

uncertainty, as measured by variances for instance, modelled by y is always greater than that of φ(x)
(if Var[yA]>0). On the other hand, if the two r.v.’sφ(x) and yA are correlated the effect depends on the
sign of correlation.

Similar considerations apply for a matrix function of random vectors and/or matrices.
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5.1.1 Supply models for SP
Transportation supply models express how user behaviour affects network perfor-

mances. This section describes the three equations that according to the SEAM

framework specify the transportation supply model for the day-to-day dynamics

of a transportation system within a stochastic framework. The arc-route flow consis-

tency relation (4.1), the arc cost function (4.2) and the route-arc cost consistency and

updating function (4.39) still apply with some extensions to random vectors.

• Stochastic arc-route flow consistency relation

The yesterday arc flows due to all o-d pairs are assumed modelled by a random vec-

tor. It can be obtained through an affine transformation from the route space to the arc

space defined by the arc-route generalised incidence matrix (cfr Eq. 4.1),

f k�1 ¼
X
i

Bi � hk�1;i + fZ 2 Sf 8k2ℕ (5.1.1)

with f 0 ¼
X
i

Bi � h0;i + fZ 2 Sf ,givenh
0;i 2 Shi8i

Thus its stochastic characterisation can easily be obtained. Moreover, the uncertainty

modelled by r.v. f k�1 is the same of that modelled by r.v.’s hk�1;i8 i. Since all ran-
dom vectors hk�1;i are integer, fk�1 is a discrete random vector as well, and Sf is
finite.

According to the more general RiSP modelling approach, some but not all param-

eters (or moments) of r.v. fk�1 may depend on r.v.’s hk�1;i8 i. In a simple instance of

this approach the mean E[ fk�1] is defined as a linear function of r.v.’s hk�1;i8 i
through (5.1.1) leading to:

f k�1 ¼
X
i

Bi � hk�1;i + fZ + fA 8k2ℕ (5.1.2)

where fA is the additional arc flow r.v. with E[ fA]¼0, it is assumed independent of

r.v.’s hk�1;i8 i, and day-invariant; the r.v. fA tries to model uncertainty about arc

flows due to missing arcs after zoning, route definition, flow composition, lack of

information about other flows, … .

• Stochastic arc cost function

Due to congestion, say driving user behaviour, yesterday actual arc costs depend on

yesterday arc flows (cfr Eq. 4.2):

ck�1 ¼ c f k�1; κ
� �2 Sc 8k2ℕ (5.2.1)

with c0 ¼ c f 0; κ
� �2 Sc
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Arc cost function are assumed day-invariant. If the arc cost flow function may be

assumed strictly monotone, thus invertible, the stochastic characterisation of r.v.

ck�1 can be obtained from that of fk�1. Moreover, the uncertainty modelled by r.

v. ck�1 is the same of that modelled by r.v. fk�1.

According to the more general RiSP modelling approach, some but not all param-

eters (or moments) of r.v. ck�1 may depend on r.v. fk�1. In a simple instance of this

approach the mean E[ck�1] is defined as a function of r.v. fk�1 through Eq. (5.2.1)

leading to:

ck�1 ¼ c f k�1; κ
� �

+ cA 8k2ℕ (5.2.2)

where cA is the additional arc cost r.v. with E[cA]¼0, it is assumed independent of

r.v. f k�1, and day-invariant; the r.v. cA tries to model uncertainty about arc costs due

to weather and lighting conditions and traffic control that may affect capacity, mon-

etary cost heterogeneity and dispersion, … .

• Stochastic route-arc cost consistency and updating function

The yesterday actual route cost r.v. for o-d pair i can be obtained from the yesterday

actual arc cost r.v. through an affine transformation (cfr Eq. 4.39a):

wk�1;i ¼Bi
T � ck�1 +wZi 2 Swi

8i 8k2ℕ (5.3a)

withw0;i ¼Bi
T � c0 +wZi 2 Swi

8i
Thus its stochastic characterisation can easily be obtained. Moreover, the uncertainty

modelled by r.v.’s wk�1;i 8 i. is the same of that modelled by r.v. ck�1. (Usually the

additional actual route cost r.v.’s are not explicitly considered, since they are defined

by the affine transformation of the additional arc cost r.v. if present.)

Today forecasted costs depend on actual or forecasted costs incurred on a finite

number of previous days (cfr Eq. 4.39b) through a forecasting filter assumed day-

invariant and continuous:

yk;i ¼ yi w
k�1;i, y

k�1;i,…
� �2 Syi 8i 8k2ℕ (5.3b)

with y0;i ¼w0;i 2 Swi
8i

where

Syi is the set of forecasted route costs for o-d pair i, it assumed compact and

independent of the day k, as explained below.

Indeed, the domain of the function specifying the forecasting filter is the product of a

finite number of sets, each containing the actual or the forecasting route costs relative

to one previous day. If each of these sets is compact their product is a compact set.

In this case for a continuous filter the function is continuous and its co-domain

(or image) Syik 8 i is a compact set as well, generally depending on the day k. By
induction if all the costs at day 0 belong to a compact set, such as Swi

8 i, the
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forecasted route set at any day k Sk;yi8 i is a compact set; moreover the union of the

first k+1 sets Syij from day j¼0 up to day j¼k is a compact set. Still, the limit as k
goes to infinity of the sequence of the unions up to day k may not be compact. In the

following it is assumed that this limit set Syi8 i exists and is compact. This surely is

the case for a convex filter, based on a convex combination of past actual or fore-

casted costs, such as the ES(β) and the MA(β,μ), if all the costs at day 0 belong

to a convex set, such as Swi
8 i, thus the co-domain is a convex set.

The route-arc cost consistency and updating function is defined combining

together Eqs (5.3a) and (5.3b).

yk;i ¼ yi Bi
T � ck�1 +wZi, y

k�1;i,…
� �2 Syi 8i 8k2ℕ (5.3.1)

The uncertainty modelled by r.v.’s yk;i is the same of that modelled by r.v. ck�1 and r.

v.’s yk�1;i8 i. The stochastic characterisation of r.v.’s yk;i can easily be obtained with
linear filters; examples are the ES(β) filter or the MA(β,μ) filter described in

Section 4.1.1:

yk;i ¼ βBi
T � ck�1 + 1�βð Þyk�1;i 8k2ℕ

yk;i ¼
X

j¼1,…,μ
ζjBi

T � ck�j 8i 8k2ℕ ,k> μ

with ζj ¼ β 1�βð Þj�1= 1� 1�βð Þμð Þ� 0 8j¼ 1, 2, …, μ

According to the more general RiSP modelling approach, some but not all parame-

ters (or moments) of r.v.’s yk;imay depend on other r.v.’s. In a simple instance of this

approach the mean E[yk;i] is defined as a function of the other r.v.’s through

Eq. (5.3.1) leading to:

yk;i ¼ yi Bi
T � ck�1 +wZi, y

k�1;i,…
� �

+ yA 8i 8k2ℕ (5.3.2)

where yA is the additional forecasted route cost r.v. with E[yA]¼0, it is assumed inde-

pendent of the other r.v.’s, and day-invariant; the r.v. yA tries to model uncertainty

about forecasted route costs due to user heterogeneity, variations of attitude, … .

• Stochastic route cost updating function

Eqs (5.1.1), (5.2.1), and (5.3.1) can be combined to define the general route cost
updating function (cfr Eq. 4.40):

yk;i ¼ yi Bi
T � c

X
i

Bi � hk�1;i + fZ; κ

 !
+wZi, y

k�1;i,…

 !
8i 8k2ℕ (5.4)

Eq. (5.4) can be specified through the ES(β) filter or the MA(β,μ) filter:

yk;i ¼ βBi
T � c

X
i

Bi � hk�1;i + fZ; κ

 !
+wZ + 1�βð Þyk�1;i 8i 8k2ℕ

yk;i ¼
X

j¼1,…,μ
ζjBi

T � c
X
i

Bi � hk�j;i + fZ; κ

 !
+wZ 8i 8k2ℕ ,k> μ
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with ζj ¼ β 1�βð Þj�1= 1� 1�βð Þμð Þ� 0 8j¼ 1, 2, …, μ

• Stochastic arc cost updating function

The very same route cost updating function (5.4) is obtained by first computing fore-

casted arc costs by applying any of the above linear cost updating filters to arc costs:

xk ¼ β c f k�1; κ
� �

+ 1�βð Þxk�1 8k2ℕ

xk ¼
X

j¼1,…,μ
ζjc f k�j; κ
� � 8k2ℕ ,k> μ

with ζj ¼ β 1�βð Þj�1= 1� 1�βð Þμð Þ� 0 8j¼ 1, 2, …, μ

In this case either of the above equations are used instead of Eq. (5.2.1) or (5.2.2),

with forecasted route cost r.v.’s defined by the following relation (cfr Eq. 4.3.#) to be

used instead of Eq. (5.3.#):

yk�1;i ¼Bi
T � xk�1 +wZi 8i 8k2ℕ (5.5)
5.1.2 Demand models for SP models
Travel demand models express how network performances affect user choice

behaviour. This section describes the three equations that according to the SEAM

framework specify the travel demand model for the day-to-day dynamics of a trans-

portation system within a stochastic framework.

The route utility function (4.6) and the general route choice updating equation

(4.42) as well as the route-demand flow consistency relation (4.8) still apply with

some extensions to random vectors and matrices. In SP models route choice propor-

tions have to be considered choice probabilities obtained by applying any choice

modelling theory based on probability, such as the Random Utility Theory referred

to in this chapter (as briefly reviewed above, for details see Appendix A to the book).
Random utility theory (RUT) is based on three main choice modelling hypotheses.

A. Perfect rationality hypothesis: each decision-maker, belonging to a group of homogeneous

individuals, for instance all users travelling between the same o-d pair i (and belonging to same

class):

A.1 considers all the alternatives in a set of relevant alternatives, called choice set, for instance
Ri the set of routes available for travelling between o-d pair i;

A.2 gives each alternative r, for instance a route, a value of perceived utility, Ui,r;

A.3 chooses an alternative r* with maximum value of perceived utility, Ui, r∗�Ui, r8 r2Ri.

Remark. Hypothesis A is rather unrealistic, but it is mitigated by the following one.

B. Uncertainty hypothesis: the perceived utility of each alternative is modelled taking into account

uncertainty regarding the non-complete information available to each user aswell as to themodeller.

Continued



Remark. Hypothesis B greatly weaken the above hypothesis A, modelling user errors and

heterogeneity as well as unavoidable modelling approximations about availability of alternatives and

perceived utility (such as dividing the study area into zones, where a journey starts or ends, and

singling out main infrastructures and services to support journeys between any pair of them, cfr

Preface).

C. Randomness hypothesis: the perceived utility of each alternative is modelled through a continuous

random variable; the mean of the perceived utility is called the systematic utility, vi, r¼E[Ui, r].

Thus, as for any random variable with finite mean, the random residual can be defined as ξi, r¼
Ui, r�E[Ui, r]¼U,r�vi, r, with E[ξi, r]¼0 and Var[ξi, r]¼Var[Ui, r]; the distribution of the random

residual can be obtained from that of the perceived utility.

Remark. This hypothesis rules out modelling other kinds of uncertainty not included in Theory of

Probability, such as vagueness in Theory of Possibility.

Therefore, the probability pi,r that the decision-maker chooses alternative r is given by the

probability that the perceived utility of this alternative is greater than or equal to the perceived utility

of any other alternative:

pi,r ¼ Pr Ui,r �Ui, j, 8j2Ri

� �¼ Pr vi,r �vi, j � ξi, j� ξi,r , 8j2Ri

h i

Remark. Since the perceived utility is assumed a continuous random variable the two conditions

Ui, r∗�Ui, r and Ui, r∗>Ui, r8 r2Ri are equivalent and the same results is obtained by the following

equation (often found in literature):

pi,r ¼ Pr Ui,r >Ui, j, 8j 6¼ r 2Ri

� �¼ Pr vi,r �vi, j > ξi, j� ξi,r , 8j 6¼ r 2Ri

h i
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According to RUT it is assumed that each user travelling between o-d pair i associate
to each route r in the set of the available routes Ri a perceived utilityUi,rmodelled as

a random variable, let

uk;i be the ni�1 (column) random vector of perceived utilities for o-d pair i on
day k, with entries Uirk; its mean E[uk;i] is given by the systematic

utility vector.

The r.v. uk;i tries to model several sources of uncertainty about perceived utility from

the point of view of the users as well as the modeller (see Section 1.3). Some of them

are enlisted below.

• User perception errors: users may take wrong decisions since they wrongly

perceived or weight attributes such as travel time or money affecting the set

and the utility values of the available options.

• User heterogeneity: aggregation is necessary to keep any model at a manageable

level of complexity but it introduces some unavoidable modelling errors:

– over space, for example during study area delimitation and zoning;

– over time, for example neglecting difference among days of the week;

– over type, for example grouping users with respect to class of income, age,

education degree.
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• Missing attributes: due lack of data modeller may decide to exclude some

attributes who affect users’ behaviour, for example weather conditions, or may

ignore them.

• Attribute measurement errors: attribute measurements may be affected by errors

due to for example data collection procedures, different conditions during

collection.

In a simplified approach the perceived utility r.v. also model any additional uncer-

tainty about arc flows or costs, or forecasted route costs as in Eqs (5.1.2), (5.2.2),

or (5.3.2).
A random utility model (RUM), derived from RUT, is fully specified by two functions:

• the utility function between the systematic utility and attributes that can be measured in the current

scenario or assumed in a design scenario, for instance the route cost;

• the choice function between the choice probabilities and the systematic utilities and attributes that

can be measured in the current scenario or assumed in a design scenario, for instance the route

cost; its expression depends on the joint distribution of the perceived utilities.

Parameters of the systematic utility function as well as those of the distribution of the perceived

utility can be calibrated through statistical inference applied to a sample of observed choices

(disaggregate calibration) and/or on data about user flows (aggregate calibration).

A random utility choice model is defined PROBABILISTIC if the perceived utilities have non-

null (finite) variance. (If all the variances are null the deterministic utility choice model is obtained.)

A probabilistic choice model is defined STRICTLY POSITIVE if the choice probability of any

alternative is strictly positive, whichever are the systematic utility values.

A probabilistic choice model is defined INVARIANT if the random residual distribution (and the

choice set) is independent of the systematic utility. In this case the choice probability vector actually

depends only on the differences between the values of systematic utility and any reference value; the

choice function is increasing monotone, and if differentiable has a symmetric positive semi-definite

(with respect to real vectors) Jacobian matrix.
• Stochastic route utility function

Under the assumptions of the RUT, the systematic utility vector vk;i is the mean of the

random vector of perceived utilities uk;i :v
k;i¼E[uk;i],8 i 8k2ℕ. It is a r.v. given by

a linear transformation of the r.v. of today route forecasted costs (cfr Eq. 4.6):

vk;i ¼�ψi y
k;i 8i 8k2ℕ (5.6)

where ψi>0 is the utility scale parameter.

• Stochastic route choice updating function

A general approach to choice updating can be defined through an S filter (cfr

Eq. 4.42) or the equivalent ZQ filter described in Section 4.5.2:

pk;i ¼ Si v
k;i,w

k�1;i, y
k�1;i,…

� � � pk�1;i 8i 8k2ℕ (5.7)

where Sk;i¼Si(v
k;i,w

k�1;i,y
k�1;i,…) is a random matrix since function of r.v.’s.
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In the most straightforward approach to choice updating for each o-d pair i the
today route choice probabilities depend on today route systematic utility values

through any RUM (cfr Eq. 4.7.1):

pk;i ¼ pi v
k;i; θi

� � 8i 8k2ℕ

In a very simple, approach to choice updating, only some users reconsider yes-

terday choice (but not necessarily change them), and their route choice behaviour

is modelled through any RUM as in Eq. (5.7) while the other users’ choice

behaviour is modelled by yesterday route probabilities. For each o-d pair i today
choice proportions are given by an exponential smoothing filter (cfr Eq. 4.7.2

or 4.47):

pk;i ¼ αpi vk;i; θi
� �

+ 1�αð Þpk�1;i 8i 8k2ℕ

where

α2 ]0, 1[ is the choice updating parameter, that is the probability that a

user reconsiders yesterday choice; it is assumed day-invariant,

independent of route chosen yesterday, and common to all users (anyhow

dispersion among users is somehow modelled through the randomness of

perceived utilities).

• Stochastic route-demand flow consistency relation

For each o-d pair i the demand flows di8 i and the route flows hi8 i are assumed

integer; hence the feasible route flow set Shi for o-d pair i is discrete and

finite (since the route flows are upper bounded by the demand flows), thus is

compact (but not convex); it also is non-empty if at least one route connect each

o-d pair.

For each o-d pair i there are di (indistinct) users who may choose among ni¼ |Ri |
distinct routes in set Ri, thus the number of feasible route flow vectors jShi j, say
the number of elements in set Shi is equal to the number of the di-multisubsets of

Ri : jShi j¼ (ni+di�1) ! /(di)! (cfr enumerative combinatorics: case 2.1 of the 12-fold

way, or case 7.1 of the 20-fold way).

If users choose routes independently from each other, for each o-d pair i the
route flow r.v. can be assumed distributed as a sum of di identically and inde-

pendently distributed (i.i.d.) Categorical r.v.’s (a generalisation of the Bernoulli

random variable) with category probabilities given by the choice probabilities

pk;i (however specified) that is a multinomial (MN) r.v. (a generalisation of

the binomial random variable), with number of categories given by the demand

flow di and category probabilities given by the route choice probabilities pk;i
(RiAP modelling approach):

hk;i �MN di, p
k;i

� � 8i 8k2ℕ (5.8.1)

with mean E[hk;i]¼di, p
k;i (cfr Eq. 4.8) expressing flow conservation.
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If for each o-d pair i the route choice updating function is specified

through a S filter, as in Eq. (5.7) another specification of the route flow r.v. can

be adopted. Let

Hk�1;ij be an entry of r.v. hk;i, that is the yesterday integer flow of route j, say
the number of users who followed it, connecting o-d pair i;

sk;ij¼ sij(v
k;i,w

k�1;i,y
k�1;i,…) be the j-th column of the r.m. Sk;i¼Si(v

k;i,

wk�1;i,y
k�1;i,…), say the today choice probability (random) vector for users

who yesterday chose route j.

For each o-d pair i the route flow r.v. is assumed distributed as a sum of ni indepen-
dently distributedMN r.v.’s, one for each route j, with number of categories given by

Hk�1;ij and category probabilities given by sk;ij:

hk;i �ΣjMN Hk�1;ij, s
k;ij

� � 8i 8k2ℕ (5.8.2)

If the switching choice behaviour is explicitly simulated through a ZQ filter, or any

of its particular instance such as the ES(α) filter (5.7), the route flows can be mod-

elled as the sum of the combination of a Bernoulli random variable, for switching

choice behaviour, and a categorical random vector for (conditional) route choice

behaviour.

• Stochastic route flow updating function

Combining together Eqs (5.6), (5.7) and (5.8.1) leads to the general route flow updat-
ing function

hk;i �MN di, Si �ψi y
k;i,w

k�1;i, y
k�1;i,…

� � � pk�1;i
� � 8i 8k2ℕ (5.9)

or using Eq. (5.8.2) instead of Eq. (5.8.1) to

hk;i �ΣjMN Hk�1;ij, sij �ψi y
k;i,w

k�1;i, y
k�1;i,…

� �� � 8i 8k2ℕ (5.10)
5.1.3 Arc flow updating function
Within SP modelling approach an explicit arc flow updating function, extension of

Eq. (4.10.2), that does not requiring explicit route enumeration cannot be obtained

but for very simple cases; thus this topic is not discussed.
5.2 General SP models
The set of six equations (5.1.#), (5.2.#), (5.3.#) and (5.6), (5.7), (5.8.#) defines a dis-

crete time Markovian stochastic process (SP) model with respect to all the six basic

variables, describing the stochastic evolution over time of them.



Stochastic processes and deterministic processes
To each SP model defined by the state space S and the transition function φ (�) a DP model with same

state space and transition function can be associated.

Remark. If the transition function is linear the sequence xk8k2ℕ given by the associated DP is

equal to the sequence of the means E[xk]8k2ℕ of the SP model, otherwise these sequences are

generally different.

Remark. If the r.v. xk has the same jpf each day k so that only the parameters of jpf change each

day, the SP can be described by a DP over the space of parameters of jpf.

Discrete time Markovian stochastic processes
Let φ(x;θ) be a vector function from set S to set φ(S), and x0, x1, x2, …, xk�1, xk, xk+1, …2S be a

sequence of random vectors defined by any kind of relationship between consecutive r.v.’s xk and

xk�1, … specified through function φ(x,…;θ), the sequence is a discrete time Stochastic—or

random—process (SP), useful to describe the stochastic evolution over time of a system where the

state at time (day) k is described by xk ⇜ xk a realisation of the random vector xkwith joint probability

function (jpf) ϕk(x)¼ϕxk(x) on day k, S is the state space, φ (�) is the transition function, and θ are its
parameters; the state space S may be discrete or continuous or mixed.

The process is called Markovian if today state depends on yesterday state only.

Remark. This condition can be obtained even if today state depends on finite number of previous

day states by duly specifying an equivalent process with further state variables.

Remark. A SP may also be specified by an explicit relationship between the jpf ϕxk(x) of the

random vector xk with respect the jpf ϕxk�1(x) of xk�1.

Remark. A stochastic process can be interpreted as a deterministic process in the space (with

infinite many dimensions) of the jpf ϕx(x).
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As in Sections 4.2 and 4.6, to further analyse the resulting model it is better to

reduce the number of equations and variables. The resulting model can be specified

with respect to i-route variables as well (not explicitly reported for brevity’s sake) but

not to arc variables, apart very particular cases.
5.2.1 General two equation assignment models
Given a cost updating filter specified as a RiV and a choice updating filter specified

as a RiAP, the resulting SP models are made by two equations with respect to two

vectors, a flow vector and a cost vector, say a two equation assignment models

(TEAMs). Let

wk�1;i ¼Bi
T � c

X
i

Bi � hk�1;i; κ

 !
8i 8k2ℕ (5.11)
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yk;i ¼ yi w
k�1;i, y

k�1;i
� � 8i 8k2ℕ (5.12)

hk;i �MN di, Si �ψi y
k;i,w

k�1;i, y
k�1;i,…

� � � pk�1;i
� � 8i 8k2ℕ (5.13)

orhk;i �ΣjMN Hk�1;ij, sij �ψi y
k;i, w

k�1;i, y
k�1;i,…

� �� � 8i 8k2ℕ (5.14)

Eq. (5.3.#) has been split into Eqs (5.11)—made up by Eqs (5.1.#) and (5.2.#) and

(5.3a)—and (5.12)—say (5.3b)—for better readability; indeed Eq. (5.11) is an aux-

iliary static equation (yesterday actual costs depend on yesterday flows); thus this

model is still considered a TEAM, with two vectors defining the system state.

Eq. (5.13) can be specified by Eq. (5.9) or (5.10).

The SP model (5.11), (5.12) and (5.13 or 5.14) can easily be rewritten as a proper

Markovian SP, today state only depends on yesterday one, by putting Eq. (5.11) into

Eq. (5.12) and both Eqs (5.11) and (5.12) into Eq. (5.13 or 5.14). Let

Sy¼[iSyi be the set of route cost vectors for all o-d pairs, assumed compact;

yk2Sy be the n�1 (column) block random vector of forecasted route costs for
all o-d pairs, with i-th block given by yk;i;

Sh¼[iShi be the set of feasible route flow vectors for all o-d pairs, a finite

(compact) set with Πi jShij integer elements;

hk2Sh be the n�1 (column) block random vector of route flows for all o-d
pairs on day k, with the i-th block given by hk;i, it has integer entries.

The main state vectors of SP model (5.11), (5.12) and (5.13 or 5.14) are (yk,hk),
wk�1;i8 i being auxiliary vectors introduced for readability only; the state space is

Sy�Sh, assumed compact; the updating parameters are those in the updating filters;

other parameters are demand flows, and any other parameter in choice functions and

in the arc cost function.

The SP model (5.11), (5.12) and (5.13 or 5.14) can be applied to define the jpf

Φkðy,hÞ¼Φðyk ,hkÞðy,hÞ of the today state (yk, hk) conditional to the yesterday state

space (yk�1,hk�1) starting from an initial state (yo, ho), which might also be defined

by two deterministic vectors (yo, ho). Since the forecasted route costs are assumed as

a continuous r.v., while the route flows are assumed an integer r.v., the joint prob-

ability function ϕk(y,h) is a joint probability density function with respect to y and a
joint probability mass function with respect to h. The marginal probability function

of route flow r.v. is given by: ϕk(h)¼ Ð Syϕk(y,h) dy.

The SP model (5.11), (5.12) and (5.13 or 5.14) can be generalised to include an

additional arc flow r.v., and/or additional arc cost r.v., as well as additional fore-

casted route costs r.v.’s.

The ES(β) filters are an example of cost updating filters that fit well in the above

general SP model. Further considerations are useful for MA(β,μ) filters, as reported
in the next subsection.
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5.2.2 Simple two equation assignment models
with MA cost updating filters
SP models with MA(β,μ) cost updating filters can be put in a Markovian form

as shown in the Section 4.2 (see Eqs 4.18 and 4.19); the state is defined by

a random vector including the route flows of the last μ days; the state space is the

union of μ copies of set Sh. In this case the SP modes is a non-linear Markov chain

since the state space is finite with integer elements, as noted above.
Markov chains
A Markov chain is a discrete time Markov stochastic process with a n-dimensional finite state

space S. The joint probability mass function (pmf) of today state πk(x)¼π(xk)(x) is defined through

a linear transformation of the yesterday joint pmf πk�1(x)¼π(xk�1)(x): πk(x)¼P �πk�1(x), where P

is called a Markov matrix, an entry pij being the probability of jumping from state j to state i.

Each Markov matrix is a n�n square column stochastic matrix, that is all its entries are non-

negative, P�0, with column sum equal to 1, 1T �P¼1T; n, the number rows and columns, is equal to

the number of distinct states in the finite state space S.
If the matrix P does not depend on the system state the Markov chain is called linear; otherwise, if

it depends on the state P¼P(x) theMarkov chain is called non-linear (for some authors the latter is not

a Markov chain).

Remark. Different definitions of a Markov chain may be found in literature.
5.2.3 Ergodic sets of stochastic processes
Below some notions about the convergence of a stochastic process are briefly reviewed

below to introduce notations and definitions (and to support the unfamiliar reader).
Ergodic sets and stationary joint probability functions
of a stochastic process
An ergodic set of a SP is a minimal subset of the state space such that there is a null probability of

leaving it from a state inside it; minimal means that it does not contain any proper subset with this

property. (Cfr convergence sets and attractors of a DP.)

An SP may have several ergodic sets. (Cfr convergent DP’s.)

A stationary joint probability function is associated to each ergodic set, it expresses the probability

that the system state belongs to the ergodic set as k!∞ :

ϕ∗ xð Þ¼ lim
k!∞

ϕk xð Þ
Each stationary joint probability function completely defines stationary moments, such as the

mean vector and the co-variance matrix.

Remark. If the stochastic process is interpreted as a deterministic process in the space of

the jpf ϕx(x), a stationary probability function is to be compared with the definition of fixed-point

attractor.



Stationary, ergodic, regular or strongly converging stochastic processes
A stochastic process is called stationary if its state space contains at least one ergodic set, thus there

exists at least on stationary probability function ϕ∗ (x).
A stationary stochastic process is called ergodic if its state space contains only one ergodic set,

that is there exists at only one stationary probability function ϕ∗ (x).
An ergodic stochastic process is called regular if its probability converges towards the unique

stationary probability function, regardless of the initial state (or its distribution).

In this case, the moments of the jpf ϕk(x) converge to the stationary moments of ϕ∗ (x).
Remark. If the stochastic process is interpreted as a deterministic process in the space of the jpf

ϕx(x), stationarity, ergodicity and regularity are to be compared with the concepts of existence,

uniqueness and global stability of a fixed-point states.
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Regularity conditions—Invariant distribution existence
and uniqueness conditions
Regularity conditions for a general S stochastic process model (5.11), (5.12) and

(5.13 or 5.14) mainly require all involved functions are continuous, and that each

matrix Si is positive.
Necessary and sufficient regularity conditions for a Markov
stochastic process
A necessary and sufficient condition for the regularity of a discrete timeMarkov SP requires that there

exists a finite number of days such that the probability of a transition from any feasible state to any

subset of the state space or to its complement is significantly greater than zero. More formally, for a

given Markov process, let

Prm(x, E) be the probability of a transition in m days from state x2S to the subset E�S.

The Markov process is regular if and only if

9ε> 0,m� 1 : 8E� S, Prm x, Eð Þ� ε8x2 S OR Prm x, S�Eð Þ� ε 8x2 S

where S�E is the complement of E with respect to S (see Stokey and Lucas, 1989).
Assuming that each O-D pair is connected by at least one path, IF
– each matrix Si¼Si(�ψi yi,yi,yi) is positive whatever the value of y in set Sy,

– each function Si(�, �, �) is continuous over the compact set Sy�Sy�Sy,

– the forecasting filter y(�, �), made up by blocks yi(�, �), is continuous over Sy�Sy,
– arc cost-flow functions c(f) are continuous over set Sf,

THEN the resulting stochastic process is regular.

Indeed, since each matrix Si is positive the transition probability to any path flow vector from a

given previous day state is positive:

8 yk�1, hk�1
� �2 Sy�Sh ) Pr hkj yk�1, hk�1

� �� �
> 0 8hk 2 Sh

Since the transition probability function is positive over a compact set, it is positively lower

bounded, that is:
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9ε> 0,ε� 1 :8 yk�1, hk�1
� �2 Sy�Sh ) Pr hkj yk�1, hk�1

� �� �� ε 8hk 2 Sh

Moreover, given any previous day state, the corresponding forecasted path cost vector belongs

to the set of feasible forecasted path cost vectors:

8 yk�1, hk�1
� �2 Sy�Sh ) yk�1 ¼ y yk�1, hk�1

� �2 Sy

Therefore, for any initial state and any subset of the state space, only two cases are possible

corresponding to the required condition:

8 yk�1, hk�1
� �2 Sy�Sh, 8E� Sy�Sh,

• 9hk2Sh : (y
k,hk)2E�Sy�Sh

then Pr yk , hk
� �2E j yk�1, hk�1

� �� �� ε

• 8hk2Sh : (y
k,hk) 62E,

,8hk 2 Sh : yk, hk
� �2 Sy�Sh�E� Sy�Sh

then Pr yk , hk
� �2 Sy�Sh�Ej yk�1, hk�1

� �� �¼ 1� ε
Remark. The above conditions are adapted from Cantarella and Cascetta (1995)

who extended to a general S formulation the conditions proposed by Davis and Nihan

(1993) for a simpler formulation.

Remark. The assumption of positive matrices Si 8 i is satisfied by any strictly pos-
itive random utility model, as those usually adopted. This assumption also implies

that each matrix Si is irreducible, thus map Si(�, �, �) is a function.

Remark. The extension to irreducible (but not positive) matrix Si 8 i is still an
open issue.

Remark. The assumption that function Si(�, �, �) is defined over a compact, that is

closed and bounded, set Sy�Sy�Sy requires that forecasted path costs, and thus

actual path and link costs cannot tend to infinity even if any link flow is over the

link capacity (as already noted for deterministic processes, and for fixed-point

models for equilibrium).

Remark. If switching choice behaviour is explicitly simulated following a ZQ

formulation the regularity conditions require that the diagonal matrices Qi8 i are
non-singular, that is all entries on the main diagonal are strictly positive (as already

assumed in Chapter 4), and that matrices Zi8 i are positive, a condition which again

occurs for any strictly positive random utility model.

Remark. The above regularity conditions can almost straightforwardly be applied

to other filters depending on several past costs.

Remark. The above regularity conditions can almost straightforwardly be

applied to SP models including additional an arc flow r.v., and/or an additional

arc cost r.v.

Remark. Regularity of a stochastic process is a weaker property than the exis-

tence, uniqueness and stability of a fixed-point of the associated deterministic pro-

cess; indeed no assumptions about monotonicity of demand and/or supply functions
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or the structure of their Jacobian matrices are needed to assure regularity of the sto-

chastic process. Moreover the forecasting filter does not need to be homogeneous.

Remark. The above regularity conditions implies convergence with respect to

moments of the state space jpf, such as mean vector, co-variance matrix, … too.
Strongly and weakly converging stochastic processes
A SP is called weakly converging, if convergence occurs with respect to moments of the state space

jpf, such as mean vector, co-variance matrix, … .

From this point of view a regular SP is called strongly converging.
A strongly converging SP is also weakly converging, but general the converse is not true. But if the

r.v. xk has the same jpf each day k so that only the jpf parameters change each day, an SP weakly

converging with respect to a large enough number of moments to completely define the parameters of

the jpf is also strongly converging.
5.2.4 Solution issues and convergence analysis
Any of the above described discrete-timeMarkovian stochastic process models can be

numerically solved, say the probability of each state on each day k can be estimated, by

applying Monte Carlo techniques, given an initial state and values of all parameters.
Monte Carlo techniques are used to compute (an unbiased estimate of) the probability that a random

variable X gets value xwhen direct computation is unavailable, such as the probability of each state on

each day k of a stochastic process.

LetΦx(x)¼Pr[X�x] be the distribution function of a random variable X (if this function cannot be

expressed in a closed form, approximation functions can be used).

If X is a continuous random, for each value x that X may assumed, variable Φx(x) is strictly

increasing monotone, thus its inverse function ΦX�1(�) exists. Given a random number p, uniformly

distributed over interval [0, 1], a realisation x ⇜ X of the random variable X is ΦX
�1 pð Þ: Value p can

actually be generated with a Pseudo-Random Number Generator (PRNG). In literature various

procedures have been proposed for PRNG.

If X is a discrete random variable, for each value xi that Xmay assumedΦx(xi) has a jump equal to

pi¼Pr[X¼xi], and a similar procedure may be applied, dividing the interval [0,1] in to as many

segments, each long pi, as the number of values xi that X may assume.

Solution of stochastic processes
The jpf of the state at each day k can be estimated by averaging several realisations of the process,

obtained through Monte Carlo techniques, given an initial state x02S. Each realisation, say each

sequence x0, x1, x2, … , generated this way is often called a trajectory.
From the jpf moments, such as means, variances, co-variances, can be computed.



Solution of regular stochastic processes
The stationary jpf ϕ∗ (x) of a regular SP can be estimated from a single realisation of the process,

obtained through Monte Carlo techniques, given an initial state x02S, collecting results after the

transient long enough to reach stationarity, say from a day k0 far enough from the first day k¼1.

Remark. The end of transient can be checked through duly statistical tests, or through checking the

trajectory of the associated DP.

Remark. The statistical characterisation of the transient requires averaging several realisations of

the process anyway.
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A realisation of any of the a general S stochastic process model (5.11), (5.12) and

(5.13 or 5.14) can be computed recursively applying the following steps given initial

route flows h0;i2 Shi8 i, and a proper initialisation of the forecasted route costs

y0;i2 Syi8 i.
• Arc flows

A realisation of the yesterday arc flows is computed from route flows through a

deterministic version of Eq. (5.1.1):

fk�1 ¼
X
i

Bi � hk�1;i + fZ 2 Sf (5.15)

If additional arc flows fA are considered as in Eq. (5.1.2), a realisation fA ⇜ fA of

them is computed applying Monte Carlo techniques and added to fk�1.

• Actual arc costs

A realisation of the yesterday actual arc costs is computed from yesterday arc flows

through a deterministic version of Eq. (5.2.1):

ck�1 ¼ c fk�1; κ
� �2 Sc (5.16)

If additional arc costs cA are considered as in Eq. (5.2.2), a realisation cA ⇜ cA of

them is computed applying Monte Carlo techniques and added to ck�1.

• Actual route costs

A realisation of the yesterday actual route costs is computed from yesterday arc costs

through a deterministic version of Eq. (5.3a):

wk�1;i ¼Bi
T � ck�1 +wZi 2 Swi

8i (5.17)

• Forecasted route costs

A realisation of the today forecasted route costs is computed from yesterday actual

and forecasted costs (and possibly further past costs) through any cost updating filter,

say a deterministic version of Eq. (5.3b):

yk;i ¼ yi w
k�1;i, y

k�1;i,…
� �2 Syi 8i (5.18)
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Instances of Eq. (5.17) are the ES(β) and the MA(β,μ) filters:

yk;i ¼ βwk�1;i + 1�βð Þ yk�1;i 8i (5.18.1)

yk;i ¼
X

j¼1,…,μ
ζjw

k�1;i 8i,k> μ (5.18.2)

Remark. In fully aggregate approaches to memory and learning behaviour users are

assumed sharing information to generate a common memory, thus all users have the

same forecasted route costs. Any heterogeneity and/or dispersion is modelled

through additional forecasted route costs yA or in the randomness of the perceived

utility. In fully disaggregate approaches to memory and learning behaviour users

are assumed to have information about own experience only, thus each user has spe-

cific forecasted route costs. In this case the memory of each single user is separately

modelled. Real world behaviour is in between the above two limit cases depending

on availability of information systems.

• Route choice probabilities

Applying the S choice updating filter, a realisation of the today choice probabilities is

computed as a function of today forecasted route costs and possibly other past route

costs through the following deterministic version of Eq. (5.7) equation including a

deterministic version of the utility function (5.6):

pk;i ¼ Si �ψi y
k;i,w

k�1;i, y
k�1;i,…

� � � pk�1;i 8i (5.19)

wherepk�1;i ¼ 1=dið Þhk�1;i

An instance of Eq. (5.19) is the ES(α) filter:

pk;i ¼ αpi �ψi y
k;i; θi

� �
+ 1�αð Þpk�1;i 8i

• Route flows—general method

Once choice probabilities have been computed a realisation of the route flows is

computed applying Monte Carlo techniques to Eq. (5.8.1)

hk;iMN di, p
k;i

� � 8i (5.20)

A multinomial random vector is obtained by independently repeating several times a

Categorical random vector (in the very same way that a Binomial random variable

is obtained by independently repeating several times a Bernoulli random variable).

Thus for each o-d pair i and for each of the di users travelling between o-d pair i a
route is associated as a realisation of a Categorial r.v. with category probabilities pk;i.

• Route flows—alternative method for s choice updating filters

According to an alternative method for SP models based on S choice updating filters,

first a realisation of the route transition matrix is computed as:

Sk;i ¼ Si �ψi y
k;i,w

k�1;i, y
k�1;i,…

� � 8i (5.21)



164 CHAPTER 5 Stochastic process models
then route flows are computed as a realisation of the sum of Multinomial r.v. apply-

ing Eq. (5.8.2)

hk;i
X
j

MN hk�1;ij, sk;ij
� � 8i (5.22)

• Route flows—alternative method for ES choice updating filters

According to an alternative method for SP models based on ES(α) choice updat-

ing filters, first for each o-d pair i and for each of the di users travelling between

o-d pair i the choice of reconsidering or not reconsidering yesterday choice is

defined as a realisation of a Bernoulli random variable with probability α. Then,
a route is associated as a realisation of a Categorial r.v. with category probabil-

ities pk;i or pk�1;i¼ (1/di) hk�1;i depending of the realisation of the Bernoulli

random variable.

Remark. In the above described method Monte Carlo techniques have been

applied to route flows only, but these techniques may be applied to other variables.

From a single trajectory after the transient of a regular SP estimates of the jpf

function through frequencies can be obtained, as well as of mean, variance, co-

variances, and the autocorrelogram, say the correlation index between any pair of

states in two different days.

With reference to the examples already discussed in Chapters 2–4, Fig. 5.1 shows the trajectories of
flow on route 1 from day 105 to day 120 obtained by applying SP and DP-ES/ES with α¼0.50,
β¼0.60, dispersion parameter θ¼7, and demand flow d¼3600. The trajectory of DP reaches the

unique fixed-point state.
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FIG. 5.1

A route flow against day given by SP-ES/ES or DP-ES/ES with d¼3600.
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Fig. 5.2 shows the trajectories of flow on route 1 from day 75 to day 90 obtained by

applying SP and DP-ES/ES with α¼0.50, β¼0.60, dispersion parameter θ¼7, and demand flow

d¼3900. The trajectory of DP reaches a 2-periodic attractor, since the unique fixed-point state is

not stable.

In both case SP and DP trajectories are not very different since the number of users, say the

demand flow, is rather great.
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FIG. 5.2

A route flow against day given by SP-ES/ES or DP-ES/ES with d¼3900.
5.3 Summary
5.3.1 Major findings
This chapter presented several simple and some general discrete-time Markovian

stochastic process models, casted within the general SEAM framework, for the

day-to-day dynamic assignment to congested transportation networks. As the DP

models presented in the previous Chapter 4, SP models are based on a model of user

memory and learning and a model of user habit and inertia to change. Presented SP

models have been developed under steady-state conditions, but they can be applied to

any transportation system with supply modelled by a TAN.

A complete day-to-day dynamic analysis of a transportation systems cannot be

based on deterministic process models only, it also needs the specification and appli-

cation of stochastic process models, the only models that can provide full statistical

description of the evolution over time of the system state for asymptotic behaviour

through invariant probability distribution(s) as well as for transient from an initial

state. Moreover SP models allow disaggregate approaches to users memory and
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learning behaviour. On the other hand, DP models provide the basis for fixed-point

stability and bifurcation analysis useful to support sensitivity analysis with respect to

model parameters; DP models may also be used to provide indications about tran-

sient length. Therefore a proper day-to-day dynamic analysis needs both kinds of

dynamic models. (Some papers seem suggesting that one kind only of dynamic pro-

cess models is the right tool for day-to-day dynamic analysis, in some cases in favour

of SPmodels in others of DPmodels, thus missing the useful contribution of the other

kind of models.)

The SP models may include route choice functions from any choice modelling

theory based on the theory of probability only, such the random utility theory (cfr

Appendix A to the book), while DPmodels can be applied with any choice modelling

theory. Moreover DP can be used to specify stability equilibrium constraint for trans-

portation supply design methods.

Generally for non-linear dynamic process models, considering a regular SP

model and the associated DP model, if the DP has one fixed-point attractor, it

may be considered an approximation of the mean, or the mode, of the stationary

jpf of the SP; if two (or more) stable fixed-point attractors exist, they may be con-

sidered an approximation of the modes of stationary jpf. Similar considerations hold

for periodic and quasi-periodic as well as aperiodic attractors.

Applying a regular SP model there always is a positive probability for the system

state jumping from the neighbour of one fixed-point to another one, in other words

SP models provide (more realistic) stochastic boundaries between the attraction

basins. On the other hand DP models provide only deterministic boundaries between

the attraction basin (often called domain) of each fixed-point attractor.

Main open issues about SP models regard extension to random-fuzzy vectors,

possibly defined over a fuzzy set.

As already noted for CUE and DP models, the proposed modelling approach can

rather easily be extended to assignment with demand flows variable with respect to

costs, and/or multi-type or multi-mode assignment, where the choice behaviour

among vehicle types or transportationmodes is explicitly described by choicemodels.

These extensions are out of the scope of this book (and will possibly be described in a

future book on advanced topics). All parameters introduced above are to be calibrated

against real data; this relevant issues as well as implementation and application issues

are out the scope of this book, mainly focusing on mathematical features.
5.3.2 Further readings
The application of SPmodels to uncongested vs congested transportation networks is

described by Watling and Cantarella (2013). The application of SP model to

schedule-based assignment of transit systems is described by Nuzzolo et al. (1999).

For more considerations about DP models as approximation of SP for assignment

see Cascetta (1989), Davis and Nihan (1993), Hazelton andWatling (2004), Watling

and Cantarella (2015).
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5.3.3 Remarks
SP models based on Wardrop or deterministic utility route choice behaviour are

inconsistent.
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CHAPTER
6
Assignment to transportation
networks: Within-day
dynamics
Giulio Erberto Cantarella
University of Salerno, Salerno, Italy
Nothing, of course, begins at the time you think it did.

Lillian Hellman—An Unfinished Woman (1969)

Outline. This chapter proposes a modelling approach to within-day dynamic assign-

ment to transportation networks through models derived from the Traffic Flow

Theory.

Methods for within-day (or intra-periodic) dynamic assignment play a central role in

advanced transportation system analysis, since they allow to analyse the effects of

variability over time of capacities and demand flows, queue formation and dissipa-

tion at bottlenecks, real time traffic management systems as well as user while-trip

re-routing due to information (or indications) provided by an ATIS or to unexpected

traffic conditions.

This chapter discusses deterministic and stochastic process models for within-day

dynamic travel demand assignment to a transportation network, a kind of assignment

still worth of further research efforts, but some software is available for real case

applications under some simplifying assumptions. DP and SP models used for

within-day dynamic analysis are properly specified in continuous time (see

Chapter 1), even though they need to be discretised over time and possibly space

for solution, as in the modelling approach followed in this chapter.

Macroscopic continuous time DP models are based on sets of differential equa-

tions derived from macroscopic models of the Traffic Flow Theory (see Appendix

B); discretisation over time leads to sets of finite difference equations. As already

noted in a mathematical note in Chapter 4, in the resulting discrete-time DP models

time might well take real values (for example one tenth of second); these models

should not be confused with native discrete time DP models, for which time is inte-

ger and increased by 1 at each iteration, as those used for day-to-day dynamic

analysis.
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Continuous time or event-driven SP models, often called discrete event simula-

tion (DES) methods when coupled withMontecarlo solution techniques, are based on

microscopic models of the Traffic Flow Theory (see Appendix B); discretisation

over time leads to discrete time or time-driven SP models, in which time might well

take real values (for example one tenth of second). These models should not be con-

fused with discrete time SP models for which time is integer and increased by 1 at

each iteration, as those used for day-to-day dynamic analysis.
Continuous time or event-driven stochastic process models

In a continuous time or event-driven stochastic process model the system state is updated each time an

event (in a discrete set) occurs; the solution approach based on Montecarlo techniques is often called

next-event time progression.

Discrete-time or time-driven stochastic process models

In a discrete time or time-driven stochastic process model time is divided into intervals (of same

duration) and the system state is updated at the end of each of such intervals, cumulating all changes of

state occurred within the interval; the solution approach based on Montecarlo techniques is often

called fixed-increment time progression.
Under within-day dynamic conditions, travel time should explicitly be modelled,

if different from transportation cost, in order to specify the consistency equations in

the supply model and the utility function in the demand models, as shown in

Section 6.1.

Indeed, the relation between arc and route flows is highly non-linear since the

flow entering an arc at a given time depends on travel time to reach the arc, generally

through different routes; the travel time of each of these routes depends on the travel

time of each arcs previously traversed, which in turn depend on the flow that has

traversed them. Hence, within-day dynamic models for transportation supply anal-

ysis are highly non-linear including several feedbacks.

Moreover, demand modelling requires to include departure time choice behav-

iour through pre-fixed proportions or explicit choice models derived from a Choice

Modelling Theory (see Appendix A). Utility functions for modelling departure time

choice behaviour usually include a disutility attribute for early/late arrival with

respect to the desired time; this attribute depends on the route travel time generally

depending on the departure time.

Under within-day dynamic conditions different modelling approaches are usually

followed to describe transportation supply with discrete (scheduled) or continuous

service systems (see Section 6.1.2). In the former case, indeed, a diachronic discrete

TAN can effectively be used to model both space and time (see for instance Nuzzolo,

2009), each node representing a point in space and an instant of time. Thus models

for steady-state conditions can almost straightforwardly be applied, as already noted
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in previous chapters (see also Gentile and N€okel, 2016). On the other hand, generally
diachronic networks are not suitable for properly modelling Within-day Dynamics

for continuous service systems to avoid a huge number of nodes and arcs, apart some

very particular cases (see the recent Watling et al., 2019).

This chapter proposes a general approach for within-day dynamic assignment to

continuous service systems consistent with the SEAM modelling framework. Since

flows and costs depend on time and on the position within the arc, most modelling

approaches are based on continuous networks (see Section 6.1.1) and continuous

time. However, space and time discretisation is assumed as in any solution method

suitable for real size applications.

Section 6.1 introduces basic equations for within-day dynamic supply and

demand models after space and time discretisation; in Section 6.2 within-day assign-

ment models are briefly discussed first for uncongested networks, then for congested

network under the assumptions of equilibrium or day-to-day dynamics.
6.1 Basic equations
This section presents the basic equations for within-day dynamic assignment mirror-

ing the approaches already followed under steady-state conditions in previous chap-

ters; all definitions and assumptions introduced in the previous chapters still hold,

unless otherwise stated. The proposed modelling approach is consistent with the

SEAM framework even if in some cases a basic equation is split into more equations

for better readability.

User modelling. In aggregate modelling approaches users are grouped into o-d

pairs (and user classes), and the results of their routing behaviour is described by

flows and related variables, while in disaggregate modelling approaches each single

user is distinguished from the others and the routing behaviour is described by the

user trajectory, say the user’s position over time.

Space modelling. Space is assumed modelled through a continuous network, so

that flows and related variables as well as costs can be attached to any point along an

arc, and a vehicle trajectories may be traced by its position over time. However, for

solution space discretisation is needed, in this case each link may be described by a

single arc, or by several arcs (called sub-arcs, segments, cells, etc.) and variables are

attached to arcs only. A variable may be defined with respect the beginning or the end

of an arc or to the whole arc. Let

Δxa be the length of arc a; if a links is described by several arcs, usually each of
them has the same length, the same notation is used in any case.

Time modelling. Time is assumed continuous for model specification. However, for

solution, time discretisation is needed; thus time is assumed divided in small inter-

vals of same (real) duration, thus all time variables are integer, actually defining the

number of intervals. Therefore time appears as a subscript for flow and cost vari-

ables. The analysis time period, such as the morning peak period, is made by nT
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intervals. A variable may be defined with respect the beginning or the end of an inter-

val or to the whole interval. Let

Δt be the duration of each time interval.

Main vector notations from previous chapters should be reviewed to take into

account within-day dynamics. Route variables common to both the supply and

demand models are introduced below. Let

A is the set of arcs, with m ¼ jA j elements;

m is the number of arcs;

ni is the number of routes available to o-d pair/user i;
nT is the number of time intervals within the analysis time period;

Ri is the set of routes available to o-d pair/user i, with ni ¼ jRi j elements;

i be an o-d pair—that is all the users travelling between the o-d—or a single

user for aggregate or disaggregate modelling, respectively;

hisr � 0 be the route flow moving on route r and departing at the beginning of

interval s for o-d pair i/user i; in the latter case hisr¼ 1 if route r is the chosen
route hisr ¼ 1 otherwise;

his � 0 be the vector of the route flows departing at the beginning of interval s
for o-d pair i/user i, with entries hisr 8r 2Ri;

yisr � 0 be the route travel time along route r departing at the beginning of

interval s for o-d pair i/user i;
yis � 0 be the vector of the route travel times departing at the beginning of

interval s for o-d pair i/user i, with entries yisr 8r 2Ri;

wisr� 0 be the route transportation cost along route r departing at the beginning
of interval s for o-d pair i/user i; this cost may include other disutility

attributes beside the travel time, such monetary costs, on-board

crowding, etc.;

wis� 0 be the vector of the route transportation costs departing at the beginning

of interval s for o-d pair i/user i, with entries wisr 8r 2Ri.
6.1.1 Supply models
Transportation supply models express how user behaviour as described by route

flows per departure interval affects network performances as described by route

travel times and route transportation costs per departure interval. After the introduc-

tion of some preliminary assumptions, this section describes the three main rela-

tions that according to the SEAM framework specify the transportation supply

model for a within day-dynamic transportation system, assuming space and time

discretisation.

The proposed modelling approach is rather formal trying to encompassing most

of the main approaches to within-day dynamics in a transportation networks avail-

able from the Traffic Flow Theory (see Appendix B).
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Arc flow modelling approaches

• aggregate approaches through mono-dimensional fluid (MDF) approximation;

in this case conditions are needed to assure mono-dimensional fluid
assumption: a particle may never reach (or overtake) a particle who has entered

the link before, otherwise the fluid is no longer mono-dimensional; this condition

is often referred to in literature as the (MDF) FIFO rule;

• disaggregate approaches, through direct representation by tracing the position of
each vehicle; in this case FIFO rule is irrelevant.

Arc speed modelling approaches

• aggregate approaches, speed and travel time are function of the arc density;

• disaggregate approaches, the speed of each single vehicle is modelled as a results

of the interaction with the surrounding vehicles.

Inmacroscopic models flow is represented through aggregate variables, so far single

vehicles are not explicitly traced, and aggregate speed-density (or other LoS attri-

butes) relations are used, derived from stationary models. Macroscopic models

can be:

• continuous in time and space;

• continuous in time and discrete in space;

• discrete in time and space.

For solution models of the first two types are formulated as models of the third

type, after space and time discretisation. FIFO rule is a relevant issue for proper

specification of macroscopic models; space discretisation may lead to FIFO rule

violation. The less coarse the space discretisation, the less significant the FIFO rule

violation is.

In mesoscopic models: flow is represented through disaggregate variables, by

explicitly tracing each single vehicle but aggregate speed-flow relations are used,

derived from stationary models. In microscopic models flow is represented through

disaggregate variables, by explicitly tracing single vehicles, and disaggregate speed

modelling is adopted based on explicit modelling of driver behaviour of speed adjust-

ment (through well established models of car following, lane changing, overtaking,

gap-acceptance, etc.). FIFO rule is not an issue for mesoscopic or microscopic

models.

As already noted, in macroscopic and mesoscopic models, the flow entering an

arc at a given time depends on travel time to reach the arc, generally through different

routes, the travel time of each of these routes depends on the travel time of each arcs

previously traversed, which in turn depend on the flow that has traversed them. This

condition leads to a fixed-point between flow and density on one hand and speed and

travel time on the other. Time discretisation breaks down this feedback providing an
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approximated solution to this fixed-point. The less coarse the time discretisation, the

less significant the fixed-point violation is.

Main notations for describing within-day dynamics in an arc and between adja-

cent arcs are introduced below together withmain relationships existing among them.

• Arc flow models

- Aggregate modelling is applied for macroscopic models. Let
mIN

mO

nON

nON
ka(t
kat
fINa
fOU
at be the number of users entering arc a during interval t;

UTat be the number of users exiting arc a during interval t;

a(t�1) be the number of users on arc a at the end of interval t � 1,

that is at the beginning of interval t;

at be the number of users on arc a at the end of interval t;

�1) ¼ nONa(t�1)/Δxa be the density on arc a at the beginning of interval t;
¼ nONat/Δxa be the density on arc a at the end of interval t;

t ¼ mINat/Δt be the flow entering arc a during interval t;

Tat ¼ mOUTat/Δt be the flow exiting arc a during interval t.
The following general conservation equation holds:

nONat ¼ nONa t�1ð Þ +mINat�mOUTat (6.1)

or

nONat ¼ nONa t�1ð Þ + fINat� fOUTatð ÞΔt (6.2)

thus

kat ¼ fINat� fOUTatð ÞΔt=Δxa + ka t�1ð Þ (6.3)

Remark. Initial density ka0, say density at the beginning of the analysis period can be
assumed equal to zero, or given by initial traffic conditions (see pre-load in

Section 6.2).

- Disaggregate modelling is applied for mesoscopic and microscopic. Let

xiat be the position of user i on arc a time at time t.

From the position of each vehicle the above variablesmINat,mOUTat, nONa(t�1), nONat,
can easily be computed, thus flows and densities.

• Arc speed and travel time models

- Aggregate modelling is applied for macroscopic and mesoscopic models. Let

vvat be the average (space) speed entering arc a during interval t;

ttat be the average travel time entering arc a during interval t.

The average speed is assumed a function of density at the beginning of interval t after
time discretisation:

vvat ¼ vva ka t�1ð Þ
� �

(6.4)
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and the travel time is given by:
ttat ¼Δxa=vvat (6.5)

- Disaggregate modelling is applied for microscopic models. Let

vviat be the speed of user i on arc a at time t.

From the speed of each vehicle on arc a at time t the average speed can be computed.

• Arc entering and exiting models

According to aggregate modelling used for macroscopic models after time discreti-

sation, the flow of users fOUTat exiting arc a during interval t is function of the enter-
ing flow fINat and the average travel time ttat during interval t:

fOUTat ¼ fOUTat fINat, ttatð Þ (6.6)

The detailed expression of this function depends on the macroscopic model actually

used. Generally, exit flow also depend on the exiting capacity of arc a.
Remark. If time discretisation is not carried out some feedbacks may occur lead-

ing to fixed-point conditions.

• Arc queuing models

Queue formation and dissipation at bottlenecks, such as the approaches of a junction,

can explicitly be modelling by dividing the number of users nONat on a arc a into

- the number of moving users at the speed above defined, and

- the number of queuing users exiting the queue at a rate given by the reciprocal of

the service time, depending on the control strategy.

In this case a conservation equation hold separately for moving and for queuing

users. Moreover, the travel time is the sum of the running time and the waiting time.

The queue length greatly affects the entering capacity of an arc up to spillback,

occurring when the whole arc is occupied by queuing users, and no entering capacity

is available. This way queues may spread backward through all the network.

• Network flow propagation models

If arc a precedes one arc a0 only the exit flow fOUTat is the entering flow of arc a0

during interval t. If a diversion occurs after arc a the exit flow is distributed among

several arcs to contribute to the entering flows of these arcs. On the other hand, if a

merging occurs before an arc the entering flow of this arc depends on the exit flows of

all the merging arcs; all route flows departing during interval time t from arc a have
also to be considered. Thus a relationship holds between arc and route flows, defined

by the so-called network flow propagation (NFP) models. The specification of the

diversion or the merging flow models and of the NFP model depends on the macro-

scopic model actually used.
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Remark. In advanced models the exit flow from an arc a is also constrained by the
available entering capacity on the arcs beyond arc a, with respect to the number of

users on these arcs. This condition is more relevant if queuing is explicitly modelled.

• Main arc variables and functions

After time discretisation with reference to arc a and interval (t�1), given the density at

the beginning of the interval ka(t�2), the set of four equations (Eqs 6.3–6.6) contains
five variables: the entering flow fINa(t�1), the exiting flow fOUTa(t�1), the density ka(t�1),

the average speed vva(t�1), and the travel time tta(t�1). Thus 4 variables may be consid-

ereddependentvariables, and theenteringflowduring interval (t�1) fINa(t�1) is theonly

independent variable, therefore it id the flowassociated to eacharca and interval (t�1):

fa t�1ð Þ ¼ fINa t�1ð Þ (6.7)

For aggregate modelling approaches the average speed vvat, the average travel time

ttat and the average transportation cost cat entering arc a during interval t are assumed

function of this flow:

vvat ¼ vva fa t�1ð Þ
� �

(6.8)

ttat ¼ tta fa t�1ð Þ
� �

(6.9)

cat ¼ ca fa t�1ð Þ
� �

(6.10)

Remark. If time discretisation is not carried out the average travel time ttat and the

average transportation cost cat would be function of the arc flow during the same

interval fat. In this case fixed-point conditions may occur due to feedbacks among

the variables.

The three main equations for supply modelling consistent with the SEAM frame-

work are discussed below; a main equation may be split into more equations for

readability.

• Arc-route flow consistency relation

Under the within-day dynamic assumption, after time discretisation, the arc flows

during time interval t can be obtained from the route flows departed in any interval

up to interval t through an affine transformation from the route space to the arc space,

defined by the flow dynamic arc-route generalised incidence matrix:

f t ¼
X

s�t

X
i
BFits � his + fZt (6.11)

where

i stays for an o-d pair i or a single user i, as defined at the beginning of the section;
fZt � 0 is the m � 1 (column) vector of arc other flows during interval t;
his � 0 is the ni � 1 (column) vector of the route flows departing at the

beginning of interval s, as defined at the beginning of the section;
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BFits is them� ni flow dynamicARGIM for intervals t and s� t; each entry bFitsar
2 [0,1] describes howmuch the flowonroute rdeparted in interval s contributes
to the flow on an arc a during interval t; accordingly BFits ¼ 0 for s > t;

ft � 0 is the m � 1 (column) vector of arc flows during interval t, with entries

defined according to Eq. (6.7).

The flow dynamic ARGIMBFits for intervals t and s� t is a non-linear function of the
travel times up to interval t:

BFits ¼BFi ttj j¼ 1,…, t
� �

(6.12)

where

ttj is them� 1 (column) vector of the average arc travel times during interval j.
BFi(�) is the flow dynamic ARGIM function assumed independent of the time

intervals.

Remark. Any model expressing the relation between arc and route flows obtained

combining together Eqs (6.11), (6.12) is called a NFP model as said above.

• Arc travel time and transportation cost functions

As already stated in Eqs (6.9), (6.10) for a single arc, like in the previous Chapters 3–
5, the arc average travel times and transportation costs depend on the arc flows due to

congestion, say driving user behaviour:

ttt ¼ tt f t�1ð Þ
� �� 0 (6.13)

ct ¼ c f t�1ð Þ
� �� 0 (6.14)

where

ct is the m � 1 (column) vector of the average arc transportation costs during

interval t, possibly different from the travel times since they may include

other cost attributes;

tt(�) is the arc travel time function assumed independent of the time intervals;

c(�) is the arc transportation cost function assumed independent of the time

intervals.

Remark. The combination of a NFP model and some travel time functions,

Eqs (6.11)–(6.13), is often called a dynamic network loading (DNL) model.

Remark. If time discretisation is not carried out, travel time would be function of

the arc flows during the same interval, and the DNL model would be specified by a

fixed-point.
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• Route-arc cost consistency relation

Under the within-day dynamic assumption, after time discretisation, the travel time

yisra� 0 along route r up to arc a 2 r departing at interval s can be obtained through a
recursive equation. Let a0 and a00 be two consecutive arcs along route r, it yields:

yisra00 ¼ yisra0 + tta0twhere t¼ yisra0 (6.15a)

with yisrao ¼ 0, ao being the first arc of route r.

According to the above equation the route travel time yisr along route r departing at

interval s � 0 is given by the travel time up to the last arc of route r:

yisr ¼ yisra∗ (6.15b)

a* being the last arc of route r.

From the above Eqs (6.15a), (6.15b) the route travel times departing at interval s can
be obtained from the arc travel times during any interval equal to or after s through an
affine transformation from the arc space to the route space, defined by the cost

dynamic arc-route generalised incidence matrix:

yis ¼
X

t�s
BCist � ttt8i (6.16)

where

i stays for an o-d pair i or a single user i, as defined at the beginning of the section;
BCist is the ni � m cost dynamic ARGIM for intervals s and t � s; each entry

bCistar 2 {0,1} describes whether the travel time on an arc a during interval t
affects the flow on route r departed in interval s or not; accordingly BCist¼ 0

for t < s;
yis � 0 is the ni � 1 (column) vector of the route travel times departing at the

beginning of interval s, as defined at the beginning of the section.

REMARK. Summation for t� s in Eq. (6.13) ends as the last arc of a route is reached or
the analysis period ends, whichever occurs first (see post-load in Section 6.2).

Remark. MatrixBCist is not the transpose of matrixBFits; thus the above equations

do not define a TAN (see Chapter 1).

The cost dynamic ARGIMBCist for intervals s and t� s is a non-linear function of
the travel times from interval s:

Bcist ¼Bci ttj j¼ s,…
� �

(6.17)

The very samematrixBcist defines the relation that holds between arc and route trans-

portation costs:

wis ¼
X

t�s
BCist � ct +wZi8i (6.18)

where

wis � 0 is the ni � 1 (column) vector of the route transportation costs departing

at the beginning of interval s;
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wZis � 0 is the ni � 1 (column) vector of the route other transportation costs

departing at the beginning of interval s.

• Route travel time and transportation cost functions

Eqs (6.11)–(6.13), (6.16), (6.17) describing the supply model can be combined to

define the route travel time function:

y¼ y hð Þ (6.19)

where

h � 0 is the whole vector of the route flows made by blocks his;

y � 0 is the whole vector of the route travel times made by blocks yis.

Adding Eqs (6.14), (6.18) that describe the effects of route flows on route costs, if

different from travel times, the route transportation cost function is defined:

w¼w hð Þ (6.20)

where

w � 0 is the whole vector of the route transportation costs made by blocks wis.

Remark. The specification of the route transportation cost function requires that the arc

travel time functions have already been defined, since they are needed to assure consis-

tency between arc and route variables through matrices BFits ¼ BFi(ttj j ¼ 1, … , t)
and Bcist ¼ Bci(ttj j ¼ s,…).
6.1.2 Demand model
Travel demand models express how network performances as described by route

travel times and route transportation costs per departure interval affect user choice

behaviour as described by route flows per departure interval. This section describes

the three main equations that according to SEAM framework specify the travel

demand model for a within day-dynamic transportation system, assuming space

and time discretisation; a main equation may be split into more equations for

readability.

• Route utility function

The utility function is assumed specified through a linear combination of the route

transportation costs and the disutility for early/late arrival with respect a desired

arrival time:

vis ¼�ψ1iwis�ψ2i zis (6.21)

where

i stays for an o-d pair i or a single user i, as defined at the beginning of the section;
zisr � 0 is the early/later arrival disutility departing at interval s and following

route r;
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zis� 0 is the ni� 1 (column) vector of the early/later arrival disutility departing

at interval s, with entries zisr;
ψ2i> 0 is the utility scale parameter for early/late arrival disutility;

wis � 0 is the ni � 1 (column) vector of the route transportation costs departing

at interval s, as already introduced;

ψ1i> 0 is the utility scale parameter for transportation costs;

vis� 0 is the ni� 1 (column) vector of the route utilities departing at interval s.

The disutility for early/late arrival with respect a desired arrival time departing at is a

function of the difference between the desired and the actual arrival time:

zisr ¼ zi sΔt+ yisr�datið Þ� 0 (6.22)

where

dati is the desired arrival timewith respect to the start of the analysis time period;

s Δt is the departure time with respect to the start of the analysis time period;

s Δt + yisr is the arrival time with respect to the start of the analysis time period.

All the above time variables as well as the early/late arrival disutility are real num-

bers. Some specifications of function (Eq. 6.22) are described in Appendix A.4.

• Route choice function

The departure time and route choice behaviour can be described by applying any

discrete choice modelling theory (see Appendix A), thus choice proportions depend

on systematic utilities.

In a general modelling approach the choice behaviour occurs over two levels, in

the bottom one the choice options are the routes r conditional to a departure interval
s, in the top one the choice options are the departure intervals s:

pis ¼ pDis pRis vis; θið Þ (6.23)

where

θi is the route choice function parameter vector;

pRis is the ni � 1 (column) vector of the route proportions conditional to the

departure interval s;
pDis is the choice proportion of departing at interval s;
pRis(�) is the route choice function conditional to the departure interval s;
pis is the ni � 1 (column) vector of route proportions departing at interval s.

The choice proportion of departing at interval s, pDis, can be an input data or the result
of a choice model. In this case the utility function is a linear transformation of an

aggregate value of the route utilities departing at interval s, such as the Expected

Maximum Perceived Utility for choice models derived from Random Utility Theory

(see Appendix A):

vDis ¼ vDi visð Þ (6.24)
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where

vDis is the utility of departing at interval s;
vDi(�) is the departure interval utility function.

Any choice function can be applied to model the departure choice behaviour.

pDi ¼ pDi vDi; θDið Þ (6.25)

where

θDi is the choice function parameter vector;

vDi is the nT � 1 (column) vector of the departure interval utilities, with entries

vDis;
pDi is the nT � 1 (column) vector of the departure interval proportions, with

entries pDis;
pDi(�) is the departure interval choice function.

Remark. In simpler modelling approaches the choice options are the departure time

and route pairs (s, r).
Remark. In advanced route choice modelling while-trip re-routing after

en-route diversions due to the availability of real-time information can also be

considered.

• Route-demand flow consistency relation

Flow conservation for each departure interval s can be expressed as:

his ¼ di pDis pRis (6.26)

It assures that flows of all routes departing at interval s sum up to demand flow di pDis.

• Route flow function

Eqs (6.21)–(6.26) describing the demand model can be combined to define the route
flow function:

h¼ h w, yð Þ (6.27)

As in the steady-case (see Section 6.2) since demand flows are non-negative the route

flow function has the same features of the route choice proportion functions.
6.2 Assignment
This section briefly describes how assignment models presented in Chapters 2–5
can be extended to within-day dynamics. Many features of the involved functions

do not hold in this case, thus general conditions for fixed-point existence, unique-

ness and stability as well as for stationary joint probability functions cannot

be stated.
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Whichever is the adopted assignment model a so-called pre-load of the network is

needed for effective solutions, that is some users are already loaded on the network at

the beginning of the analysis time period, otherwise speed values would be unreal-

istic high. At the end of the analysis time period some users may still be on the net-

work without having reached their destination yet, thus a so-called post-load is

generated. The assignment algorithm may further be applied until all users have

reached their destination using arc speeds constant over time such the values at

the last interval.
6.2.1 Pseudo-dynamics
Pseudo-dynamics is a heuristic approach to within-day dynamic user equilibrium

assignment. The whole analysis time period is subdivided into rather large time inter-

vals, for instance 2 h are subdivided into six 20 min sub-intervals. Then demand

flows are distributed among these sub-intervals and a user equilibrium assignment

is carried out for reach sub-interval; queue lengths, parking use, ... at the end of each

sub-interval are used as initial conditions for the next sub-interval. This approach is

rather crude, but can be used to provide coarse solutions as indications for more

sophisticated approaches.
6.2.2 Uncongested networks
If the network is uncongested (cfr Chapter 2) arc travel times and transportation costs

do not depend of arc flows, thus Eqs (6.13), (6.14) are not considered. Therefore, the

flow and the cost dynamic ARGIM’s are fixed, since Eqs (6.12), (6.17) can be used

once for all before the application of the model. The resulting network models is both

a FAN and a CAN (see Chapter 1); still, as already remarked, either matrix is not the

transpose of the other, thus the resulting network is not a TAN (see Chapter 1).

The within-day dynamic arc flow function can be defined combining together

Eqs (6.11), (6.16), (6.18) from the supply model with the route flow function

Eq. (6.27) describing the demand model:

f c, ttð Þ≜BF � h 2BT � c,2BT � ttð Þ + fZ (6.28)

where vectors fZ, tt, c, as well as f and matrices BT and BF are made up by blocks

given by the corresponding vectors and matrices already introduced. Even though

Eq. (6.28) is formally similar to Eq. (2.33) in Chapter 2, the within-day dynamic

arc flow function is much more complex and hardly shows features similar to the

steady-state counterpart.

Applying the within-day dynamic arc flow function, the arc flows over all inter-

vals can be expressed as a function of the arc travel times and transportation costs

over all intervals:

f¼ fWD c, tt; dð Þ (6.29)
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Eq. (6.29) formally describes the within-day dynamic travel demand assignment to

an uncongested network. In some cases it can be computed avoiding explicit route

enumeration.
6.2.3 Congested networks: User equilibrium—Fixed point models
User Equilibrium assignment searches for mutually consistent arc flows and costs. It

can effectively be addressed through fixed-point models as discussed in Chapter 3

under steady state conditions. The set of equations describing the supply and the

demand models defines a fixed-point model with respect to all the basic variables.

To further analyse the model it is better to reduce the number of equations and

variables with references to Eqs (6.9), (6.10), (6.27) for route variables, and to Eqs

(6.13), (6.14), (6.29) for arc variables. Explicit formulations is not reported for

brevity’s sake.

Quite effective instances of macroscopic models based on arc variables are the

link transmission model (LTM) and the cell transmission models (CTM); an instance

of mesoscopic model is the TRAFFMED. All these models are described in Appen-

dix B to the book. Many microscopic models exist allowing very detailed modelling

of arc flow and speed as well as of other traffic phenomena, some of them are also

available as open software; still most of them are specifications of the arc route con-

sistency equation, since route flows are input data, thus they do not provide a com-

plete assignment model, not including a model of the departure interval and route

choice behaviour.
6.2.4 Congested networks: Day-to-day dynamics—Dynamic
process models
Day-to-day dynamic assignment tries to describe the evolution over days of the costs

and the flows in a transportation system. Under steady state conditions it can be

addressed by the discrete time deterministic process (DP) models discussed in

Chapter 4 under steady state conditions or through discrete time stochastic process

(SP) models discussed in Chapter 5.

The supply and demand models described in Section 6.1 can be combined with

any of the general cost updating filters and flow updating filters described in

Section 4.5. Explicit formulations are not reported since some notations used in

Chapters 4 and 5 have different meanings in this chapter due to the limited numbers

of available letters.

Resulting models are often referred to in literature as double dynamic assignment

models. Cascetta and Cantarella (1991) was one of the first papers addressing this

topic proposing a general formal framework for both macroscopic DP and SPmodels

with reference to choice models from Random Utility Theory. However, operative

doubly dynamic models are still open research issue.

More recently, operative macroscopic modelling approaches based on DPmodels

have been proposed under some simplifications assumptions; Guo et al. (2018)
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review several approaches of this kind based on the Wardrop choice behaviour (see

remark at the end of the chapter), and some extensions of it. Some extensions of the

mesoscopic TRAFFMED model to DP model have also been proposed.

Microscopic models are better suited to be combined with discrete time SP

models, in particular with disaggregate modelling approaches to user memory and

habit. No significant microscopic models have been proposed to author’s knowledge,

perhaps due to the limitation of operative microscopic models already discussed in

the previous sub-section on user equilibrium assignment.
6.3 Summary
6.3.1 Major findings
This chapter presented a general modelling framework for within-day dynamic

assignment including most of the models from Traffic Flow Theory presented in

Appendix B. It is not surprising that no fully consistent unifying general theory is

available yet; indeed, conditions have not been stated yet for consistency among

the different approaches and with steady state conditions as limit cases. Effective

modelling of entering exiting flows from a junction under consistent behavioural

hypotheses is another relevant still open research issue.
6.3.2 Further readings
Several references are reported at the end of Appendix B to the book. Some papers by

Malachy Carey and other authors proposed requirements for effective macroscopic

modelling focusing on the so-called FIFO rule (Bar-Gera and Carey, 2017; Carey

et al., 2014a, b).
6.3.3 Remarks
Several macroscopic within-day dynamic assignment modelling approaches are

based on Wardrop choice behaviour and extensions of it, leading to variational

inequality models of the kind briefly discussed in the remarks at the end of Chapters

2 and 3. The several drawbacks of this choice modelling approach have already been

discussed in the remarks at the end of the previous chapters. These drawbacks seem

even more relevant in within-day dynamic assignment, since it is really unrealistic

assuming that users behave in such a way the used departure time and route pairs

have the same disutility.
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Praise a book when ‘tis read.

Cfr. the Hávamál

Outline. This chapter resumes the general framework presented in the previous

chapter and outlines some of the major research in progress and perspectives.

A quite long title better reflecting the contents of this book would be “Graph,

Dynamic and Stochastic models for analysing distribution over Space, evolution

over Time and Uncertainty (due to lack of information) about flows and costs in

a Transportation System: the modern theory of travel demand assignment to a

transportation network.”

Indeed, this book presented a general theory encompassing most already existing

or devisable assignment models for transportation systems analysis. It focused on the

mathematical issues needed to fully understand transportation systems analysis,

rather than implementation or practical issues (possibly discussed in a future book).

The proposed general modelling theory of demand assignment has been pre-

sented in a progressive way from simpler to increasingly more general and complex

modelling approaches. All of them have been described within the powerful frame-

work of the Six Equation Assignment Modelling (SEAM) approach useful to classify

and specify assignment models. In many case the six equations can be reduced to two

equations only, one about costs and one about flows to ease the analysis, leading to

the Two Equation Assignment Modelling (TEAM) approach.

The possibly too ambitious purpose is that this theory will help researchers to

share a common language about the core elements of demand assignment and to pro-

pose advancements in a clear and consistent way. This book will hopefully be useful

to teachers and students too for supporting exchange of knowledge within a common

framework.

At this aim a consistent set of notations has been developed as described at the

end of most chapters and proposed to the scientific community; in some cases tra-

ditional notations have been changed to clearly distinguish scalar variables from vec-

tors and matrices, deterministic variables from random ones, main variables (Roman

letters) from parameters (Greek letters).
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This book will also provide a tool box for practitioners supporting the under-

standing and the specification of the right modelling approach for applications such

as project assessment and evaluation, feasibility studies, urban planning, evacuation

plan design, transportation systems with ITS and/or autonomous-connected

vehicles.

The presented assignment models can be embedded within transportation supply

design methods regarding for instance traffic lights, urban lane allocation, fares and

tolls, transit frequencies and stops, … . However, a full integration is still an open

issue, in particular with reference to dynamic models.

All the presented models have been described for transportation systems with a

single transportation mode, without explicit modelling of mode choice behaviour as

well as of demand variability with costs (elastic demand). Indications for the exten-

sion to multi-type multi-mode transportation systems with elastic demand have been

provided at the end of Chapter 3, but this is still an open issue for dynamic assign-

ment (possibly discussed in a future book on advanced topics).

• Additional materials
A mathematical companion is currently in progress to support the unfamiliar

reader with the mathematical background behind the mathematical notes within

the main text. Materials is also planned about detailed discussions of presented

examples as well as of others about cost functions with asymmetric Jacobian or

with indefinite Jacobian.

• Research in progress
The stability and bifurcation analysis of Deterministic Processes with

Moving Average cost updating filters with μ-day memory requires the

specification of a μ-th degree polynomial equation. The analysis of this model

with μ¼2, mirroring results reported in Sections 4.3 and 4.4 for Deterministic

Processes with Exponential Smoothing cost updating filters is currently in

progress and will be the main topic of an add-on. Main results will possibly be

anticipated in a paper.

Day-to-day Dynamic Process models for assignment with daily updated

traffic control strategies are still to be specified and analysed requiring a further

updating equation describing how control variables are defined each day.

Preliminary results indicates that the kind of stability and bifurcation analysis

carried out in Sections 4.3 and 4.4 requires the specification of a 3-rd degree

polynomial equation.

• Technical details
All numerical results in the reported examples have been computed through

an-hoc Mathcad 15 code. Figures showing numerical results have been provided

by this code, then further edited in PowerPoint, the others have directly been

drawn in PowerPoint. Tables showing numerical results provided by this code

have been designed in Word over a grid with 5�10mm cells, then further edited

in PowerPoint.
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7.1 Research perspectives
Several issues are worth of further research efforts, beside those already mentioned

above, such as detailed specifications of the discussed assignment models for transit

systems and for freight transportation, use of other choice modelling theories, rela-

tionship with (stochastic) evolutionary game theory.

As noted in Chapters 4 and 5, very few results are already available about the

parameter calibration of Dynamic Process models, another topic surely worth of fur-

ther research efforts.

Looking into the future of demand assignment, the most promising approach

seems based on the integration of multi-agent systems within disaggregate stochastic

process models, allowing to deal with both day-to-day and within-day dynamics.
7.2 Remarks
He is no true friend who only says pleasant things.

from the Hávamál.

The many drawbacks of assignment models based on the assumption Wardrop route

choice behaviour have already been highlighted in several chapters; main ones are

briefly remembered below.

– Behavioural issues: it is assumed that users have a perfect and complete

knowledge of the route costs, and the modeller has a perfect and complete

knowledge of the costs affecting user choice behaviour; even unavoidable

uncertainty about costs due to modelling simplifications are neglected.

– Mathematical issues: resulting flow maps are not functions, uniqueness of arc

flows does not guarantee uniqueness of route flows; more than that, this

behavioural approach is arguable for specifying Deterministic Process models,

and cannot be applied at all to support Stochastic Process modelling.

In a general perspective, the wide set of available choice modelling theories include as

a special case utility-based theories, which in turn include uncertainty-based theories,

which include theories based on belief theory including as special case probability and

possibility theories leading to random variables and fuzzy numbers, respectively. In

comparison to this richness of modelling approaches, still to be fully exploited, the

Wardrop choice behaviour modelling approach is just a limit case of the last two,

say Random and Fuzzy Utility Theories. These considerations are even more relevant

remembering that Random Utility Theory has been proposed forty five years ago.

Indeed often the simplest approach is not the most effective one, as shown by an

analogy. Five centuries ago Nicolaus Copernicus presented his well known heliocen-

tric model, the orbit of each planet supposed being a circle; after one century

Johannes Kepler showed that the orbit of each planet is an ellipse. Afterwards
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nobody used circles for modelling planet orbits even if a circle a simpler curve

than an ellipse, and a circle is the limit of a succession of ellipses as eccentric goes

to zero.

Needless to say, all researchers belonging to the scientific community working

on travel demand assignment to a transportation network will forever be in debt

to J.D. Wardrop who gave birth to this topic and more generally to transportation

system analysis with his 1952 seminal paper, worth to be quoted again as end of this

chapter.
Further reading
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Postface
No book can ever be finished. While working on it we learn just enough to find it immature

the moment we turn away from it.

Karl Popper

Outline. This chapter presents some final philosophical considerations about the

content of this book.

As noted in the Preface modelling is an attitude intrinsic to the mankind nature and

to its approach to the knowledge of the real word; still each models, whichever the

kind, is an opinion and as such should not be confused with subject of the modelling

activity: the real world. A mathematical model can be considered a metaphor from

the real world to the mathematical one [interestingly the Greek word μεταφορά also

means transportation].

In this book the epistemologems (cfrmythologems introduced by Károly Ker�enyi)
of the general complex system modelling and analysis have been discussed and used

to propose epistemologems for the transportation system analysis as founding ele-

ments of a consistent theory of travel demand assignment to a transportation net-

work. Indeed, this book describes a general approach to develop an effective

mathematical theory for analysing any consistent class of highly dimensional real

systems with non-linear feedbacks, and proposes an application of this approach

to develop such a theory to demand assignment.

On the other hand, Karl Popper warned against any ultimate theory stating that

whenever a theory appears to you as the only possible one, take this as a sign that you
have neither understood the theory nor the problem which it was intended to solve.
Thus the presented theory should mainly be considered just a step towards a more

general theory of demand assignment, in much as the same way as a traveller stop-

ping in an inn at evening before re-starting the trip next day towards the final des-

tination; hence readers are expected to argue about the contents of the book, to

further advance them, to propose modification, … .
A short history of this book
I began working on travel demand assignment to a transportation network in the early

1990s and rather soon I established a fruitful cooperation with Ennio Cascetta, as

well as a still warm deep friendship, born when the two of us were at the University

of Reggio Calabria. After having published some papers on dynamic assignment we

decided to prepare some more extended documents, and we involved Maria Nadia
191



FIG. 1

An old fashion diskette containing the very first version of this book.

192 Postface
Postorino in what now can be considered an early version of this book and of the

mathematical companion. Fig. 1 shows the diskette containing the two files.

In the next decade I moved to the University of Salerno, close to my hometown,

but I still had the chance to working on this topic as a tutor of a PhD student, Pietro

Velonà, at the University of Reggio Calabria. Together we kept working on Deter-

ministic Process models and on tools for analysing them for several years, before he

became a college teacher in a small town close to Reggio Calabria.

In 2010 David Paul Watling and I met at a congress in London (we were already

in acquaintance since the jotter initiative in 2004) and decided to work together and

to focus our research efforts on both Deterministic and Stochastic Process models

and their relationships. We developed a special approach to working, based on think-

ing, walking, talking together during meeting in Leeds or in Salerno, before starting

writing separately. I really enjoyed the time spent together speaking about several

fundamental topics of transportation analysis as well as any other topic about life.

In 2017 David and I decided to answer to a call for books from Elsevier, and after

some months our proposal was accepted. Unfortunately afterwards David had to

withdraw from this project due to new unforeseeable compelling academic commit-

ments. Therefore the original contents of the book was redesigned and Stefano de

Luca and Roberta Di Pace both members of the Transportation Systems Analysis

and Design Team at the University of Salerno, and good friends of mine since long

were involved.
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A final comment
There are two kinds of truth: the truth that lights the way and the truth that warms

the heart. The first of these is science, and the second is art. Neither is independent

of the other or more important than the other. Without art science would be as

useless as a pair of high forceps in the hands of a plumber. Without science

art would become a crude mess of folklore and emotional quackery. The truth

of art keeps science from becoming inhuman, and the truth of science keeps art

from becoming ridiculous. (Great Thought, February 19, 1938)

Raymond Chandler (from The Notebooks of Raymond Chandler)

In my opinion mathematics is a sort of language for speaking of science rather than a

science in itself, a kind of poetry, a form of art. Thus, to get an effective mathematical

theory you have to look at the same time for a beautiful elegant theory. Fig. 2 below

tries to suggest the reader which is the right perspective needed to catch the deep

meaning of this book. Moreover it is an artistic portrayal of the state space of a

dynamic system with several attractors and circling trajectories to reach each

of them.

Giulio Erberto Cantarella
FIG. 2

A particular of the inside of the Salerno Cathedral.
Photo shoot by Roberta Di Pace.
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Not to be absolutely certain is, I think, one of the essential things in rationality.

Bertrand Russell

Knowledge is an unending adventure at the edge of uncertainty.

Jacob Bronowski

Outline. Travel demand analysis and simulation is one of the main issues of Trans-

portation Engineering and represents one of the most investigated topics in the last

40years.

Generally a travel demand model could be interpreted as a tool to estimate origin-

destination demand flows, to simulate travel behaviour, but also a tool to understand

and quantify the determinants of travel choices.

In general, a travel/demand choice model tries to simulate the real choice phe-

nomenon by describing input factors and output effects through numerical variables

and existing relationships through a function

y¼ g x; θð Þ
where y is the vector of the output variables, x is the vector of the input variables,

g(•) is the modelling function, and θ is the vector of the model parameters.

The meaning of input and output variables come out from the description of the

real phenomenon itself (assuming that they can be observed and measured). For

instance, when dealing with discrete choice analysis, choice attributes play the role

of input variables and observed choice fractions (equal to 0 or 1) of output ones.

Provided that a sample of observations concerning the real phenomenon is avail-

able, a model can be completely defined by a trial-and-error process which consists

in three main stages: specification, calibration and validation.

The specification (the definition of a specific mathematical expression) of the

modelling function, g(x; θ) is a matter of the analyst’s judgement based on
195
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observations, except in the very simplest cases, since several options are often avail-

able. It should be stressed that, as is well-known from calculus, given a finite number

of points, infinite many functions can be found that fit them perfectly (provided that

the functions include a large enough number of parameters).

Three different modelling approaches can be distinguished to specify modelling

functions:

• White Box: the function is derived from theoretical considerations which try to

explain the phenomenon itself. This is often the case for models emanating from

the direct application of physics or the like (e.g. models describing the trajectory

of a car moving on a road) or through some analogy (e.g. models describing car

flow along a highway). In these cases the model parameters may often be given a

clear interpretation.

• Black Box: the function is derived from empirical considerations. This is often

the case when no satisfactory theoretical paradigm is available. In this case

parameters may be interpreted with difficulty, although a larger set of functions

may be taken into consideration; this is the case of ANNs.

• Grey Box: any mix of the two types above and usually adopted when only a

partially satisfactory theoretical paradigm is available. This is generally the

case when human decision-making is concerned, e.g. econometric choice models

such as Random Utility Models.

Once a type of modelling function has been specified, the calibration of its param-

eters should be performed in an attempt to best reproduce a sample of observations

(data-set).

Usually, a (scalar) calibration function κ(θ; S) (not to be confused with the model-

ling function) is defined as an indicator expressing how well the observations in the

sample S are reproduced by a given set of parameters, θ (the modelling function hav-

ing already been defined).

The values of parameters corresponding to the best value of the calibration func-

tion are considered the most sensible values. When a statistical technique may be

employed, the obtained values of the parameters can be considered statistical esti-

mates of those values. An example of this approach is the maximum likelihood esti-

mation, well-known within statistical inference.

More generally, any distance function (d) over the sample S, between the ith
observed inputs (xi) and predicted outputs (yi) can be adopted, κ(θ; S)¼P

i d(yi,
g(xi; θ)), such as the minimum of the sum of the squares of differences being the

most commonly adopted choices (least square estimators within a statistical frame-

work). Special care should be devoted to the possibility of multiple local optimal

points. It is common practice to deal with this condition by applying the optimisation

algorithm to several (randomly generated) starting conditions, when an in-depth

study of the calibration function is not easy.
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It should be noted that even though the calibrated values of the model parameters

are optimal (in the sense that they optimise the adopted calibration function), the

resulting model may yet perform poorly, since the modelling function might have

been badly specified (apart from the rather irresolvable case of the availability of

poor data). Thus, the effectiveness of the model resulting from the specification

and calibration stages must be explicitly analysed, that is, the validation stage should
be carried out, before the model can be effectively used to generalise. Besides con-

sistency with modelling assumptions, at least two features should be considered:

quality of approximation, in other words, how closely the real phenomenon is repro-

duced, and robustness, that is, the stability of the model with respect to small vari-

ations in calibration data or input variables, the last feature being closely linked to

generalisation. Several indices have been developed with this in mind, which are eas-

ily available within a statistical inference framework. Moreover, it is good practice to

use another sample of observations, hold-out or validation sample, in order to test the

generalisation capability of the obtained model on it (despite the fact that this stage is

often skipped to reduce the costs of model building). Once a model has been vali-

dated, it can be compared with others through the same indices adopted for valida-

tion. The final selection, among all the available specified and calibrated models, is

made by also considering their efficiency, or rather, computational speed and mem-

ory requirements.

Within the before mentioned general context, different theoretical paradigms

have been developed in the last decades: behavioural and not-behavioural.

Behavioural models are mainly founded on the Utility theory, and may refer to per-

fect rationality and/or bounded rationality paradigms.Non-behavioural aremainly non-

linear regressive approach thatmay rely on traditionalmethods or onNeuralNetworks..

The aim of the chapter is threefold, it introduces

(i) Consolidated approaches for modelling disaggregate travel behaviour.

(ii) The most commonly adopted choice models for route choice and departure

choice.

(iii) Alternative approaches to disaggregate travel behaviour that can be

interpreted as an alternative paradigm and/or as a benchmark in terms of

interpretation of the uncertainty and/or in terms of capability to reproduce

users’ choice.

It should be clarified that the aim of this chapter is not to cover any possible approach

for travel behaviour analysis and modelling, but to give a synthetic and compact

overview of the possible solutions that may be implemented within the theoretical

framework proposed in the book.

The chapter is organised as follows. SectionA.1 introduces the random utility the-

ory (RUT) and the main random utility models (RUMs), moreover the issues related

to the calibration and validation of RUMs are discussed. SectionA.2 introduces a gen-

eral framework for modelling the route choice process, and the modelling solutions
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founded on random utility theory. Section A.3 introduces the modelling solutions for

departure time choice issues. Section A.4 introduces an alternative paradigm to inter-

pret uncertainty within utility theory: fuzzy utility theory and fuzzy utility models are

discussed. Section A.5 introduces the non-behavioural modelling approach founded

on artificial neural network model.
A.1 Random utility theory for modelling traveller’s choice
Transportation Systems users’ choices are commonly analysed through models

derived from the random utility theory (Domencich and McFadden, 1975; reviews

in Ben-Akiva and Lerman, 1985; Train, 2009; see also Daganzo, 1979, Hensher and

Button, 2000; and Cascetta, 2009), where:

a. Each user (of a class of homogenous users) of a transportation system.

a1. considers a set of alternatives;

a2. gives each alternative a value of perceived utility;

a3. chooses the alternative with the maximum value of perceived utility (homo-

economicus assumption).

b. The perceived utility of a mode is modelled through a (continuous) random

variable due to several sources of uncertainty, such as unobserved attributes,

unobserved taste variations, measurements errors and imperfect information,

instrumental variables (Ben-Akiva and Lerman, 1985).

To apply models derived from this theory three main elements must be specified:

R the choice set, which is the set of available alternatives, mutually exclusive,

it is assumed non-empty and finite, with m¼jR j;
Ur the perceived utility, or better its distribution ϕUr;

vr¼E[Ur] the systematic utility, or the expected value of the perceived utility,

specified as a function, vr¼v(xr; ψ) of a vector of attributes (xr) which can

be measured for the current state or assumed for a design scenario and of a

vector of parameters that should be estimated (ψ).

Hypotheses on perceived utility pdf, ϕUr, allow to define the probability that the per-

ceived utility of alternative r be maximum, that is the probability of choosing alter-

native r conditional to the choice-set R:

p r=R½ � ¼ Pr Ur >UM*½ �
whereUM*¼maxh 6¼r [Uh]. Thus, the choice probability vector, p, results a function

of the systematic utility vector, v, and (possibly) other parameters, θ, of the perceived
utility distribution:

p¼ p v; θð Þ
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Parameters of the utility function, ψ, as well as those of the perceived utility pdf, θ,
can be estimated through statistical inference from a sample of observed choices

(disaggregate) and/or data from user flows (aggregate).

In the following sections the following three main issues will be addressed:

(i) the definition of the choice set (R),
(ii) the specification of systematic utility function (vr; v),
(iii) the hypotheses on perceived utility pdf, ϕUr.

The discussion will adopt the traditional formulation which expresses the per-

ceived utility of the generic alternative Ur as the sum of the systematic utility,

vr, e and of a random residual ξrwhich represent the dispersion between systematic

and perceived utilities (uncertainty). Moreover, all the specification that will be

introduced refers to a specific user class, thus no specific identifying symbol will

be introduced.
A.1.1 Choice set definition
Users may differ with respect to available alternatives, say choice set, R. Alternative
availability can be simulated through several approaches, as for any other socio-

economic characteristic, such as income or sex:

• availability attributes within the choice model (implicit approach) and

• segmentation of demand with a discrete distribution (explicit approach), which

may be prefixed or explicitly modelled.

Availability attributes, may take binary values, say 0 or 1, to simulate non-

availability or availability of the alternative; availability can be stated by the user

during the demand survey, or checked by the modeller. These attributes may be used

jointly with or instead of other socio-economic ones, such as the ratio between the

number of cars and the number of licensed drivers in the user household.

More generally, availability attributes in the range [0,1] can be considered as

degree of possibilities, say the choice set is modelled as a fuzzy set (e.g. implicit

availability perception approach, introduced by Cascetta and Papola, 1997).

A simple, but effective, approach to model alternatives availability is represented

by the Dogit model (Gaudry and Dagenais, 1979a; Gaudry, 1981). For each alternative

r a non-negative parameter, qr, is introduced proportional to the share of users who

have available that alternative only (qr¼0 meaning no captivity on alternative r):

pr ¼ 1= 1 +
X

h
qh

� �
�pr=nc + qr= 1 +

X
h
qh

� �
h2R

where qr/(1+
P

h qh) is theprobability of being captive to alternative r; 1/(1+
P

h qh)
is the probability of not being captive to any alternative; pr/nc is the probability of

choosing alternative r conditional to not being captive to any alternative, which

may be specified by any random utility model.
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Parameters to be calibrated are those within the utility specification and the Dogit

captivity parameters (qr).
Another approach, also known as implicit availability perception (IAP) method,

considers that an alternative may have intermediate levels of availability/perception

to a decision-maker (Cascetta and Papola, 1997). The decision-maker’s choice set is

then viewed as a “fuzzy set”; it is no longer represented as a set of [0/1] Boolean

variables, but as a set of continuous variables τR(r) defined on the interval [0,1]

and with respect to choice-set R.
The model accounts for different levels of availability and perception of an alter-

native by directly introducing an appropriate functional transformation of τR(r) into
the alternative’s utility function:

Ur ¼ vr + lnτR rð Þ+ ξr
whereUr is the perceived utility of alternative r; vr is the systematic utility of alter-

native r; ξr is the random residual of alternative r; τR(r) is the level of membership of

alternative r in the choice set R (0� τR�1).

In this way, all the alternatives can be considered as theoretically available, but if

alternative r is not available (τR(r)¼0), the term ln(τR(r)) forces its perceived utilityUr

tominus infinity and the probability of choosing it to zero, regardless of the value of vr.
The main issue of this approach relies on the specification of the term ln(τR(r))

which may expressed as random variable with mean valued expressed as a function

of the availability and perception attributes (e.g. a Binomial Logit model may be

used). However practical formulations may be found in Cascetta (2009).

A different approach may consist in explicitly modelling the composition of the

generic decision-maker’s choice set. In particular, in the explicit approach, the choice

probability of an alternative r may be expressed through a two-stage choice model:

p r½ � ¼
X

R2G p r, R½ � ¼
X

R2G p r=R½ � �p R½ �
where R is the generic choice set; G is the set made up of all possible non-empty

choice sets (non-empty subsets of the set of all the possible alternatives); p[r,R] is the
joint probability that decision-maker will choose alternative r and that R is his/her

choice set; p[r/R] is the probability that decision-maker will choose alternative r,
his/her choice set being R; p[R] is the probability that R is the choice set.

The choice probability p[r/R] conditional on set R can be represented with any of

choice models that will be introduced in the next sections, whilst the probability that

R is the choice set can be formulated in terms of probability that each single alter-

native belongs to the choice set, which, in turns, may be expressed through regressive

or logistic functions properly calibrated from a sample of users (details in Cascetta,

2009; Mansky, 1977; Morikawa, 1996; Swait and Ben-Akiva, 1987a, 1987b).

The explicit approach, although very interesting and consistent from a theoretical

point of view, presents significant computational problems for large number of

alternatives.
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A.1.2 Specification of the systematic utility
For each alternative r, the systematic utility, vr is generally specified as a function of
several attributes, xrj, and parameters, ψ j. For instance a linear in parameters and in

attributes utility specification is usually adopted:

vr ¼
X

j
ψ j xrj

The effectiveness of a model can be greatly improved by considering user socio-eco-
nomic attributes (SE—such as income, age, etc.) and land-use ones (LU—such as

population of zones, etc.) a part from those describing level-of-service (LoS—such

as travel time and monetary cost). Moreover, for every alternative, but one, an alter-
native specific attribute (ASA) is usually introduced to consider (quantify) those

determinants that may significantly affect choice behaviour, but known to the analyst

and/or not easily measurable.

Attributes can be introduced in the above systematic utility specification as such

(absolute attributes), or as a ratio with respect to an alternative used as reference (rel-

ative attributes). Moreover, but depending on the choice context, LoS attributes may

be weighted by continuous/discrete attributes, usually socio-economic, in order to

explicitly represent (and weight) the different sensitivity to the Los of different

SE characteristics.

Attributes effectiveness may further be improved by considering non-linearity

with respect to continuous attributes; a part from a better estimation of the effect

of such attributes, non-linearity allows to simulate asymmetry of choice probability

elasticity. Several approaches can be devised as described below.

• Dummy variables.

ASA’s can further be differentiated by the range of values. Then, users are grouped

into demand segments with common value of ASA’s.

• Threshold variables.

The parameter of a (LoS) attribute varies according to the some (pre-fixed) ranges of

values. Ranges and parameters can be specified in order to get a (continuous) piece-

wise linear relation between the values of the systematic utility and of the attribute

(continuous thresholds). Else it may assumed that the parameter increases when

(given) thresholds about the value of an attribute are overcome (non-continuous

thresholds).

• Box-Cox transformations.

A more general approach is based on Box-Cox transformations (Box and Cox, 1964;

Gaudry, 1981; Gaudry and Dagenais, 1979b). Such a (monotone strictly increasing)

transformation yrj of attribute xrj, that may be applied to a strictly positive variable

only, is defined by a non-negative shape parameter, λj:
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yrj λj
� �¼ xrj

λj�1
� �

=λj if λj 6¼ 0

yrj λj
� �! ln xrj

� �
if λj ! 0

Box-Cox transformation can be considered as a (continuous) non-linear generalisa-

tion of the continuous threshold introduced above. The partial first derivative of sys-

tematic utility, vr, with respect to the attribute, xrj, depends on the value of the

attribute, according to the value of the shape parameter, λj; however, it will be linear
with respect to the corresponding beta coefficient.

In principle, a different Box-Cox transformation can be implemented to each

attribute, but it is usually more effective to apply it to few attributes only. The intro-

duction of Box-Cox parameters slightly increases the computational effort needed

for calibration, but the specification of the resulting model is more flexible, allows

representing not symmetric behaviour and does not require any prefixed values with

respect to threshold variables.

All the previous attributes measure characteristics easily identifiable of the alter-

natives and/or characteristics of the decision makers, but they are not able to grasp

the psychological factors that may significantly affect users’ behaviour, such as per-

ceptions, beliefs, attitudes.

Within this context, an increasing attention towards specifications able to embed

in random utility model such attributes has been observed.

In particular, random utility choice models with latent variables (often defined

hybrid models) have been increasingly adopted for simulating choice contexts in

which psychological factors may play a significant role.

The hybrid choice model (HCM) based on random utility theory is a discrete

choice model which integrates and simultaneously estimates different types of

sub-models into a unique structure. If the HCM includes a latent variable model,

it is possible to take into account the effects of users’ latent attitudes, perceptions

and concerns (i.e. Integrated Choice and Latent Variable model, ICLV).

Fig. A.1 introduces the general structure of a ICLV and allow to comprehend the

different sub-models that define a ICLV: the latent variable model and the discrete

choice model. In particular, the ellipses represent the unobservable (latent) variables,

the rectangles represent the observable variables, and the circles represent the error

variance or disturbance terms.

Since the latent variables (attitudes, perceptions and concerns) cannot be directly

observed and measured from a revealed choice or a stated preference experiment, they

have to be modelled and then indirectly identified starting from a set of indicators. The

latent variable model allows to identify and measure these unobservable variables as a

function of the indicators, in order to include them in a choice model.

Mathematically, a latent variable is treated as a random variable; the latent var-

iable is specified through a structural equation formalising it as a function of several

parameters and a random error term. With regard to the relationship between indi-

cators and latent variables, it can be formalised through a measurement equation, in
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which each observed psychological indicator is a function of a latent variable and a

random error term. In general, each latent variable may be part of more than onemea-

surement equation.

Finally, in accordance with the random utility theory, the latent variables are

included in the utility function of the alternatives as explanatory variables. Indeed,

ICLVmodels may have any of the previously introducedmathematical formulations,

but they differ from traditional models for the systematic utilities specification.

Indeed, the systematic utility functions may be expressed as a function of instrumen-

tal attributes of alternative r (xrj), users’ specific attributes (xs) and latent

variables, LVl.

vr ¼
X

j
ψ j xrj +

X
s
ψh xs +

X
l
ψ l LVl

With reference to the LVl two equations should be specified: the structural and the

measurement equations.

The structural equations are introduced in order to specify the latent variables,

whilst the measurement equations are introduced in order to specify the perception

indicators.

In particular, if l is the generic latent variable, the structural equation for each

latent variable may be expressed as follows:
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LVl ¼ γl +
X

p
ϕp XSE,p +ωl

where γl is the intersect; XSE,p is the pth users’ socioeconomic attribute which con-

curs in the definition of the LVl;ϕp is the pth coefficient associated with the pth users’
socioeconomic attribute; ωl be the error term which is usually normally distributed

with zero mean and standard deviation to be estimated.

The specification/estimation of each LVl requires the specification/calibration of

psychometric indicators. Indeed, different psychometric indicators (Il,n) reveal the
latent variable LVl and, vice versa, each psychometric indicator concurs to the def-

inition of the LVl. Il,n which may be expressed through a measurement equation as

follows (measurement equation):

Il,n ¼ αl,n + λl,n LVl + νl,n

where Il,n be the nth perception; αl,k is the intersect; λl,k is the coefficient associated
with the latent variable (to be estimated); νl,k is the error terms usually assumed nor-

mally distributed with zero mean and standard deviation to be estimated.

The psychometric indicators may be observed through ad hoc surveys and are,

usually, coded using a Likert scale. These indicators can be considered to be a linear

continuous expression of the LV’s or an ordered discrete variable. The first approach
has been historically chosen because simpler and more practical with lower

computational cost.

In recent years, several studies have treated them as discrete variables, but with a

higher computational cost. In particular, if the measurement is represented by an

ordered discrete variable Φ having m elements {ϕ1, ϕ2, …, ϕm}, one for each

response in the survey, we may have:

Φ¼ ϕ1 if Il,n < τ1; ϕ2 if τ1 � Il,n < τ2;…; ϕm if τm�1 � Il,n < τm½ �
where and τ1� τ2����� τm-1 are parameters to be estimated, but due to symmetry

constraints, only (m�1)/2 parameters can be independently be estimated.

Usually, the ordered Probit model is used for estimating the probability ofΦ elements.

Hybrid choice models with latent variables can be an effective modelling solu-

tion to embed psychological factors in traditional random utility models. However,

their operative implementation in travel demand estimation and/or traffic assign-

ment problems could be particularly demanding. In this sense, the approach is

mainly finalised to better understand travel behaviour and/or to interpret the role

that not-instrumental attributes play in the choice process and within the “utilitar-

ian” behaviour.
A.1.3 Distribution of perceived utility and choice functions
Several assumptions can be adopted about the perceived utility random distribution.

The probability of selecting alternative r conditional on his/her choice set R, can
be formally expressed as the probability that the perceived utility of alternative r is
greater than that of all the other available alternatives:
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p r=R½ � ¼ Pr Ur >Uh; 8r 6¼ h, h2R½ �
That, in turn, may be expressed into the following formulation which depend on the

vector of perceived utilities (U) and on their joint density function f(U).

p r=R½ � ¼
ð

U1<Ur

ð +∞

Uj¼�∞…

ð

Um<Uj

f Uð Þ �dU1…dUm

In conclusion, the estimation of choice probabilities of a random utility model

involves multi-dimensional integral computation and its complexity mainly depend

on the assumption that can be made on f(U).
The general, and most important, assumption concerns the independence of joint

density function f(U) from the perceived utilities mean values and from the choice-

set R composition. Such an hypothesis defines a class of models, also known as

invariant random utility models, that allows to simplify the expression of the prob-

ability of choosing the generic alternative r.
Indeed, expressing the rth perceived utilityUr as the sum of the systematic utility

vr and the random residual ξr, the choice probability may be formulated as

p r=R½ � ¼ Pr vr� vh > ξh� ξr; 8r 6¼ h, h2R½ �
and can be calculated assuming the difference, ξh � ξr, independently distributed

from the difference between systematic utilities vr � vh 8r 6¼h.
Under the assumptions made above, choice probabilities depend on the differ-

ences among the utilities, and not on the absolute values of the utilities. Furthermore,

invariant random utility models not only allow an easier computation of choice prob-

abilities, but they also have some important properties that are useful for the spec-

ification od RUM and are worth of interest for the general mathematical framework

of the book (see mathematical notes 1 for proofs and further details):

(1) Choice probabilities do not change if the utility values are multiplied for a scale

factor. In other words. The scale does not matter in RUMs.

(2) The only parameters that can be estimated are those concurring to define utilities

differences.

(3) If the joint density function of the random residuals is continuous with

continuous first derivatives, the choice probabilities are also continuous

functions of the systematic utilities with continuous first derivatives.

(4) The Jacobian of choice probabilities is (symmetric and) positive semidefinite.

(5) The choice probabilities are monotonic increasing functions of the systematic

utilities. Indeed, the choice probability of a generic alternative does not decrease

as its systematic utility increases, if all the other systematic utilities remain

unchanged. Using an analogous argument, it can be demonstrated that, as vr
tends to minus infinity, the choice probability of alternative r tends to zero.

Before introducing the possible mathematical formulations, it is useful to introduce a

classification based on the possible assumptions that can be made on the random



Table A.1 Classification of type of random utility models

Parameters of systematic utility functions

Not distributed Distributed

Random
residuals

Identically
distributed

Not
jointly

Homoscedastic
with no correlation
among perceived
utilities

Heteroscedastic
models and perceived
utilities potentially
correlated

Jointly Homoscedastic
and correlated

Heteroscedastic and
perceived utilities
correlated

Not
identically
distributed

Not
jointly

Heteroscedastic
and not correlated

Heteroscedastic and
perceived utilities
potentially correlated
(also over time)

Jointly Heteroscedastic
and correlated

Heteroscedastic and
perceived utilities
correlated (also over
time)
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distribution of the vector of random residuals (ξ) and/or on the vector of parameters

of systematic utility functions (ψ). (See Table A.1.)

Indeed, random residuals can be.

a1 identically distributed among alternatives and

a2 not identically distributed among alternatives.

Random residuals can be.

b1 not jointly distributed among alternative and

b2 jointly distributed.

Parameters of systematic utility functions can be.

c1 deterministic,

c2 randomly distributed across the users,

c3 randomly distributed across the alternatives, and

c4 randomly distributed over time.

A family of models may be obtained by the combination of the above hypotheses

and, in general, three main issues require particular attention in practical

applications:

(i) modelling the correlation across perceived utilities (usually related to

alternatives that are similar and/or that share same characteristics);
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(ii) modelling the correlation over time of user choices;

(iii) modelling the heterogeneity across users and/or over time.

With respect the above-mentioned classification, the mathematical complexity of the

corresponding choice models can be significantly different. In particular all the

model highlighted in grey may have a closed-form solution, whereas all the others

need simulation for estimating the choice probabilities.

In the following, the most adopted random utility models are briefly introduced

for each of the classes introduced in the table.

Homoscedastic and not correlated perceived utilities
The multinomial logit (MNL) model is the simplest random utility model. It is

based on the assumption that the random residuals ξr are independently and iden-

tically distributed (i.i.d.) according to a Gumbel random variable of zero mean and

parameter θ. Under the assumptions made, the probability of choosing alternative

r among those available belonging to choice-set R can be expressed in closed

form as:

p rð Þ¼ exp vr=θð Þ=
X

h2R exp vh=θð Þ
The MNL model is characterised by three main properties:

• dependence on the differences among systematic utilities,

• influence of residual variance,

• independence from irrelevant alternatives (I.I.A.).

In particular, the last property, can be an advantage, but sometimes may lead to unre-

alistic results if the choice set is not composed by clearly distinct choice alternatives.

As a consequence, the variance–covariance matrix of perceived utilities has a

block diagonal structure and the elements of the main diagonal are all equal to

(π2θ2/6).
MNL model can be easily adopted for modelling any travel choice dimensions,

but with perceived utilities not correlated.

Homoscedastic and correlated perceived utilities
A closed form, but effective, alternative to the MNL is the single-level Nested Logit
model (Williams, 1977), which allows to partially overcome the assumption of inde-

pendent random residuals underlying the MNL model, retaining, at the same time, a

closed analytical expression.

The Nested Logit (NL) assumes that alternatives are hierarchically nested in a

finite number of nests (G) and the random residuals of each alternative are decom-

posed into two independently distributed Gumbel random variables: one for each

alternative and one for each nest.

The mathematical formulation continues to hold a closed form, and can be

expressed as the product of two MNL formulations, the former estimating the
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probability to choose the nest g among the nestsG, the latter the probability to choose
the generic alternative r belonging to the nest g. Each alternative is characterised by

its systematic utility function, whilst each nest is characterised by the “nest utility”

measured as maximum expected utility associated to the nest g.

p rð Þ¼ p gð Þ p r=gð Þ¼ exp δYg

� �
=
X

n2G exp δYnð Þ
� �

� exp vr=θð Þ=
X

h2g exp vh=θð Þ
� �

where p(g) is the probability to choose the nest (group of alternatives) g; p(r/g) is
the probability to choose the alternative r, belonging to the nest g, once chosen the

nest g; θ is the parameter associated to the choice within the group g; θo is the param-

eter associated to the choice between the nests (root); δ is a scale parameter obtained

as the ratio of the scale parameters: θo/θ; Yg is the maximum expected utility asso-

ciated to the nest g (satisfaction). In the case of single level NL, Yg, also known as

logsum variable, may be expressed as follows: Yg¼ ln [Σh exp (vh)], with h the alter-
natives belonging to nest g.a

NL allows a positive co-variance between each pair of alternatives belonging to a

same nest, as described by parameter δ (the ratio θo/θ) which may have value 2[0,1]
with δ¼1 meaning no correlation, that is MNL.

From the previous results, the variance–covariance matrix of random residuals

has a block diagonal structure. The elements of the main diagonal are all equal to

(πθo)
2/6, the covariance between each pair of alternatives belonging to the same

group is constant and equal to (π2θo
2�π2θ2)/6, while the covariance between alter-

natives belonging to different groups is null. Therefore, if the alternatives of each

group are ordered sequentially, the resulting variance–covariance matrix has a block

diagonal structure.

The single level NL structure may be relaxed by assuming different θ parameters

for each group and/or by introducing more levels, thus more root parameters.

In order to overcome the limitation of a block-diagonal structure of the variance–
covariance matrix, a generalisation of the NLmodel can be introduced assuming that

an alternative may belong to more than one nest (g), with different degrees of mem-

bership. The degree of membership of an alternative r to a nest g is denoted by the

parameter αrgwhich is included in the [0,1] interval. Degrees of membership have to

satisfy the normalising equation: Σg αrg¼1 8 r.
This model, also known as Cross-Nested Logit—CNL (Vovsha, 1997), keeps the

same formulation of the single-level NLmodel with the only difference that the sum-

mation is extended over all the nests (G). Indeed, the choice probability of the generic
alternative r, continues to hold a closed-form expression and it can be expressed as:

p rð Þ¼
X

g2G p gð Þ p r=gð Þ
aNested Logit formulation can also be specified assuming, for each choice level, random residuals not

Gumbel distributed. In this case the satisfaction variabile could not be expressed in a closed form, as

well as the resulting choice probabilities.



209APPENDIX A Discrete choice modelling
p gð Þ¼
X

n2Igαng
1=δg � exp vn=θg

� �� �δg
=
X

g’2G
X

n2Ig’αng’
1=δg’ � exp vn=θg’

� �� �δg’

p r=gð Þ¼ αrg
1=δk � exp vr=θg

� �
=
X

n2Ig αng
1=δg � exp vn=θg

� ���

where Ig (Ig0) is the generic set of alternatives belonging to nest g (g0); θg (θg0) is the
parameter associated to the choice between alternatives belonging tonestg (g0);θo is the
parameter associated to the root; and δg (δg0) the ratio θg/θo (θg0/θo).

In this case, the variance–covariance matrix of random residuals may have

covariances different from zero but with the elements of the main diagonal

all equal.

Although the CNL allows a greater flexibility in substitution across alternatives,

it should be noted that it is still an homoscedastic model and that the covariances of

the CNL model cannot be computed with a closed-form expression. Moreover, it has

been demonstrated that the CNL is not able to reproduce the whole. Homoscedastic

covariance matrices domain (Marzano and Papola, 2008).
Heteroscedastic and correlated perceived utilities
Two classes of model allow to take into account both of heteroskedasticity and cor-

relation among perceived utilities: the Probit model and the Mixed-models.

The Probitmodel (Daganzo, 1979) overcomes most of the drawbacks of the previ-

ousmodels and its generalisations, thoughat the cost of analytical tractability. It is based

on the hypothesis that residuals ξr are distributed according to a multivariate normal

(MVN) random variable with zero mean and general variances and covariances.

The choice probability of alternative r can be formally expressed as the joint

probability that utility Ur will assume a value within an infinitesimal interval and

that the utilities of the other alternatives will have lower values. The choice proba-

bility can be expressed as multi-dimensional integral, and this probability must be

integrated over all possible values of Ur.

p r=Rð Þ¼
ð

U1<Ur

ð +∞

Uj¼�∞

ð

Um<Uj
exp �1=2 U�vð ÞT Σ�1 U�vð Þ= 2πð Þm det Σð Þð Þ1=2 �dU1…dUm

�

The flexibility of the Probit model is paid at the cost of a computational complexity

greater than the other previous models.

Indeed, the Probit model does not allow to express the choice probabilities in

closed form, therefore approximation methods based on simulation should be

adopted. A general overview on simulation procedure for the Probit model may

be found in Hajivassiliou et al. (1996), the most adopted are: Monte-Carlo,

Kernel-Smoothed Frequency (McFadden, 1989), Stern Decomposition (Stern,

1992), GHK (Geweke, 1991; B€orsch-Supan and Hajivassiliou, 1993; Keane,

1994), Acceptance/Rejection or Gibbs Sampler (Hajivassiliouı̀ and McFadden,

1990), Sequentially Unbiased and Approximately Unbiased.
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With regard to the variance–covariance matrix, although there are at most

(m(m+1))/2 different values, with m the number of choice alternatives, the esti-

mation of all the possible values can be problematic if the number of alternatives

is large. To this aim, different methods might be adopted to reduce the number of

unknown elements by assuming some structure underlying to the random resid-

uals. One of the most adopted is the Factor Analytic Probit which expresses the

vector of random residuals as a linear function of a vector of independent standard

normal variable.

An effective alternative to the Probit model may be presented by mixed models,

in which it is assumed that random residuals are distributed as sum of two terms: one

distributed anyway and the second one identically, independently distributed as an

extreme value random variable:

ξr ¼ωr + γr

As a consequence, the choice probability becomes an integral in joint density f(ω,γr),
that, if assumed to be independent from each other, allows formally expressing the

choice probabilities the following integral:

p r=Rð Þ¼
ð

ω
p r=ω½ � � f ωð Þ �dω

Although any kind of joint probability distribution with any variance–covariance
matrix may be adopted, generally simplified, but realistic, assumptions can be made

in order to simplify the final mathematical formulation of the model.

One of the most used Mixed models is the Mixed-Logit which assumes that the

second term, γr, is identically and independently as a Gumbel variable among all

the alternatives. It allows to express the probability of choosing the alternatives r,
as the integral over ω of a MNL function conditional on values of ω.

p r=Rð Þ¼
ð

ω
exp vr +ωrð Þ=θð Þ=

X
h2R exp vh +ωh=θð ÞÞ � f ωð Þ �dω

Moreover, if random residuals ωr are expressed through independent, but non iden-

tical random variables, the final mathematical formulation, and the consequent com-

putational efforts, can be significantly simplified.

Mixed Logit model allows to approximate any random utility model with a sat-

isfying degree of closeness (McFadden and Train, 2000) and may be expressed into

two different specification, but formally equivalent:

1. the error component formulation and

2. the random parameters formulation.

In the error component formulation, the γr residuals are i.i.d. Gumbel random vari-

able and independent randomly distributed error components are introduced among

the alternatives. It allows to represent heteroscedasticity and cross-correlation among

perceived utilities that share the same error components. However, it should be

pointed out that identification issues (Walker et al., 2007) may arise when the



211APPENDIX A Discrete choice modelling
number of alternatives and the error components raise. To avoid such a drawback, it

is advisable to preventively hypothesise parsimonious and realistic correlation

structures.

The random parameters formulation assumes the systematic utility parame-

ters, ψ j, randomly distributed, whilst the error components remain distributed

as i.i.d. Gumbel random variables. Random parameters formulation allows to

explicitly take into account taste heterogeneity among users, but in this case

the taste heterogeneity and the cross correlation between perceived utilities are

expressed (and interpreted) in terms of specific attributes (e.g. travel time). There-

fore, correlations among perceived utilities depend on the systematic utility attri-

butes and not on specific error components; moreover, correlation magnitudes

depend on the values assumed by the attributes whose parameters are assumed

randomly distributed.

However, it should be noted that also forMixed-models, the dimensionality of the

multifold integrals requires the use of unbiased efficient estimators of choice prob-

abilities as, for instance, the MonteCarlo method.

In conclusion, Mixed Logit models allow more flexible choice models without

significant computational efforts, and also allows an interpretation of taste hetero-

geneity and of correlation. Indeed, MNP model, although allowing complete flex-

ibility in the variance–covariance matrix, on the other hand it does not permit

an easy interpretation of correlations and variances, except for specific choice

contexts, such as route choice, in which the variance–covariance structure is pre-
defined. Furthermore, the parameters identification issue should be carefully

addressed.
A.1.4 Calibration and validation of a choice model
Parameters of the utility function,ψ, as well as those of the choice function, θ, can be
estimated by trying to reproduce a sample of observations of user choices (disaggre-

gate) and/or demand flows (aggregate).

The parameters estimation is a calibration-validation procedure, not easily auto-

matable, that should be performed until the most effective modelling solution is

achieved.

Random Utility models are usually calibrated through the Maximum Likelihood
Method (ML).

The method, as well known, maximises the probability L of observing the whole

sample S, indeed the probabilities that each user (i) chooses alternative actually cho-
sen by him/her, r(i). The probabilities pi[r(i)](Xi; ψ, θ) are computed by the random

utility model and therefore depend on the coefficient vectors. Thus, the probability L
of observing the whole sample is a function (the likelihood function) of the unknown

parameters:

L¼L ψ, θð Þ



212 APPENDIX A Discrete choice modelling
The Maximum Likelihood estimates the vectors of parameters ψ and θ by maximis-

ing the previous equation or, more conveniently, its natural logarithm (the log-

likelihood function):

ψ, θ½ �ML ¼ argmax lnL ψ, θð Þ

The formulation of the likelihood function depends on the type of sample strategy

(e.g. stratified or simple), on the type of the survey (revealed preferences or stated

preferences) and on the type collected observations (cross-sectional or panel). For

more details the reader may refer to Cascetta, 2009).

Once estimated the parameters, the effectiveness of the model must then be

explicitly analysed, that is, the validation stage should be carried out before the

model can effectively accepted and/or be used.

Indeed, a choice model should be able to address the following issues:

(1) Description and interpretation of the phenomenon through its parameters.
Choice model parameters should allow an interpretation of the phenomenon,

giving a clear meaning of the variables and of their relationships. The

parameters interpretation allows a first validation of the choice model goodness

and gives first insights to the analyst and to the policy makers.
(2) Reproduction of observations about choice behaviour used to calibrate model

parameters (calibration sample).
A choice model at least should reproduce the users’ choices (or choice

fractions) that have been used to calibrate its parameters (calibration sample).

Such an analysis may be carried out through some benchmarking indicators.
(3) Generalisation to choice behaviour in the same transportation scenario

(observations not used to calibrate model parameters—hold-out sample) and/or

in different transportation scenarios (model sensitivity to level of service

attributes).
Even though reproduction capabilities are usually used to evaluate and

choose the best model or approach, the most performing model may show very

poor generalisation capabilities because of over-fitting phenomena. The

resulting choice model might not be able to reproduce users’ behaviours even if

they belong to the same transportation scenario, and it might not be able to

simulate model sensitivity.
In the following sections, the analyses that should be carried out are summarised.

All the proposed indicators can be calculated for RUMs, but most of them

can be easily used for different approaches, such those introduced in Sections

A.4 and A.5 (see also de Luca and Cantarella, 2009).

Analysis on utility parameters
First, an informal stage consistency between the meaning of the jth attribute and the
sign of the relative parameter (ψ j) is checked. Unexpected signs of parameters likely

indicate errors in available data and/or model misspecification, moreover the ratios
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between the parameters of some pairs of attributes may be expected to be greater than

one, such as waiting time and on-board time for transit. In addition, the ratio between

the parameters of monetary cost and travel time attributes can be considered an

estimate of the value-of-time (VoT), which can also be estimated through other

approaches.

Once, passed the first informal validation, some formal tests are usually adopted.

For RUMs, if utility parameters are estimated through maximum likelihood esti-

mators, the t-test may be applied to verify statistical significance of parameters, for

large samples of available data, through statistics:

tj ¼ |ψ j
ML |=Var ψ j

ML
� �0:5

where an approximate estimate of the variances (and covariances) of parameters ψ j
ML

can be easily obtained since equal (minus) the inverse of the log-likelihood function

Hessian. Usually the size of the available sample is large enough to approximate the

T random variable through a Normal r.v.; if the value of tj is >1.96, the value ψ j
ML

may be considered (statistically) different from zero at a confidence level 0.95.

Analysis through aggregate indicators
The indicators described below when applied to calibration (or hold-out) sample help

us to understand how the model reproduces (generalises) the observed choice scenario

(to other choice scenarios). All the indicators are to be comparedwith a reference value

obtained from the simplest choice model or the benchmark modelling approach.

Simulated vs. observed shares for each choice alternative
Since differences take a null value over the calibration sample for any Logit model

calibrated through maximum likelihood and with only alternative specific constants,

such a comparison is useful only when referred to the hold-out sample and/or to other

choice models.

Test and indicators based on Log-Likelihood value
This value is always less than or equal to zero, zero meaning that all choices in

the calibration sample are simulated with probability equal to one. Usually, the

comparisons carried out are based on the goodness of fit statistic (pseudo-ρ2) and
the Likelihood Ratio test; less widely used is the comparison test (it will be called

adjusted ρ2).

• Goodness of fit statistic

The goodness of fit statistic checks the null hypothesis that the maximum value of

log-Likelihood, ln L(βML), is equal to the value corresponding to null vector of coef-

ficients, ln L(0). Thus their difference is due to sampling errors. This test is based on

the so-called (pseudo-)rho-square statistic:

ρ2 ¼ 1� ln L βML
� �

=lnL 0ð Þ� �2 0, 1½ �
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If equal to zero, L(βML)¼L(0), the model has no explanatory capability; if equal to

one, the model gives, for each user in the sample, a probability equal to one to the

alternative actually chosen, thus the model perfectly reproduces observed choices.

Usually, the model with a better rho-square statistic is preferred, even if the differ-

ences are small this criterion does not seem very effective.

• Adjusted ρ2

The adjusted ρ2 test is based on an enhanced value of rho-square statistic (sometimes

called rho-square bar):

�ρ2 ¼ 1� ln L βML
� ��Nβ

� �
=lnL 0ð Þ� �

It attempts to eliminate the effect of the number of parameters included in the model

(Nβ) to allow the comparison of models with different numbers of parameters.

• Adjusted ρ2 test

Starting from the proposed statistics, a specific test may be carried out. It assumes as

null hypothesis that the statistic ρ21 for model 1 is not greater than the statistic ρ22
(assuming ρ22 � ρ21) for model 2, their actual difference being due to sampling errors.

It is based on the relation:

Pr j�ρ12��ρ2
2 j > z

� ��Φ �zð Þ
where Φ(�) is the distribution function of standard normal, z ¼ �[�2 z ln L(0)+
(N1 – N2)]

1/2; N1 and N2 are the number of parameters in model 1 and 2 respectively.

This test can be used to ascertain whether model 2 can be considered (statisti-

cally) better than model 1.

• Likelihood ratio test

The likelihood ratio test, LR(ψML), checks the null hypothesis that the maximum

value of log-likelihood, ln L(ψML), is equal to the maximum value corresponding

to a reference model with null utility parameters or to a simpler one. Hence thus

the difference is due to sampling errors. This test is based on the likelihood ratio
statistic:

LR ψML
� �¼�2 ln L ψ°ð Þ� ln L ψML

� ��

which, on the null hypothesis, is asymptotically distributed according to a chi-square

variable with a number of degrees of freedom equal to the number of constraints

imposed (the number of parameters). This test can be used to check whether utility

parameters (ψML) are (statistically) different from zero or from those of a reference

model (ψ°).
As stated for the ρ2 test, the likelihood ratio and the adjusted ρ2 tests might not be

very significant, since small differences are sufficient to verify such tests.
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Indicators based on Simulated vs. observed choice fractions for each user
in the sample

• Mean square error—MSE

MSE¼Σi Σr psimr, i�pobsr, i
� �2

=Nusers � 0

Mean square error between the user observed choice fractions and the simulated ones

of alternative r belonging choice-set R, over the number of users (i) in the sample

(Nusers) Apart of MSE indicators, the corresponding standard deviation (SD) may

be computed, representing how the predictions are dispersed, if compared with

the choices observed. If different models have similarMSE errors, the one with smal-

ler SD value is preferable.

• Fitting factor—FF

FF¼Σi p
sim rchosen, ið Þ=Nusers 2 0, 1½ �

It is the ratio between the sum over the users in the sample of the simulated choice

probability for the mode actually chosen, psim(rchosen,i) 2 [0,1], and the number of

users in the sample, Nusers. FF¼1 means that the model perfectly simulates the

choice actually made by each user (say with psim(rchosen,i)¼1).

• Level of service impact—LoSimpact

The level of service impact may be calculated by the sum of the square differences

between choice probabilities computed with or without ASA’s, hence it describes the

effect of ASA’s: the less this index, the better the corresponding model is.

Analysis of clearness of predictions
It is common practice that this analysis is carried out through the %right indicator,
that is the percentage of users in the calibration sample whose observed choices are

given the maximum probability by the model. This index, very often reported, is

somewhat meaningless if the number of alternatives is greater than two.

Really effective analysis can be carried out through the indicators proposed

below:

• %clearly right(t) percentage of users in the sample whose observed choices are

given a probability greater than threshold t by the model;

• %clearly wrong(t) percentage of users in the sample for whom the model gives a

probability greater than threshold t to a choice alternative differing from the

observed one;

• %unclear(t)¼100 – (%clearly right+%clearly wrong) percentage of users for whom the

model does not give a probability greater than threshold t to any choice.

The three indicators may be defined for each alternative and/or for all the alternatives

available to users in the sample. Moreover, they can be plotted as the threshold
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changes, thus allowing the comparison between different models by comparing the

diagrams themselves, or by measuring the difference between the areas below the

diagrams. Indeed, integrating the areas under both curves, it is possible to estimate

different indicators able to measure model effectiveness, and to appreciate differ-

ences between models and/or approaches.

As for aggregate indicators, the indicators applied to the calibration (hold-out)

sample allow us to understand how the model reproduces (generalises) the observed

choice scenario (to other choice scenarios).

Elasticity analysis
Elasticity analysis is a further approach, well-consolidated in the literature, helps

understand how a model generalises to other choice scenarios. This is called elasticity

analysis and is based on indicators obtained from partial derivatives (point elasticity)

or finite differences (arc elasticity) of choice probabilities w.r.t. specific attributes.

The point direct elasticity of the choice probability for alternative r with respect

to an infinitesimal variation in the jth attribute (xjr) of its own utility function is

defined as:

Er=j ¼ ∂ p r½ � Xð Þ=∂ xj,r r½ �
� � � xj,r=p r½ �� �

where X includes the vectors of attributes for all alternatives.

The point cross elasticity of the choice probability of alternative r with respect to
an infinitesimal variation of the kth attribute, xk,h, of the utility function of alternative
h is defined as:

Er=kh ¼ ∂ p r½ � Xð Þ=∂ xk,hð Þ � xk,h=p r½ �ð Þ
The “arc” elasticity is calculated as the ratio of incremental ratios over an “arc” of the

demand curve. In general, direct elasticity, Ej,r, may be defined as the percentage

variation in choice probability of an alternative r divided by the percentage variation
in the value of an attribute j of the systematic utility, xj,r:

Er=j ¼Δp r½ �=p r½ � �Δxj:r=xj,r
Analogously, cross elasticity Er/kh is defined as the percentage variation in choice

probability of an alternative r divided by the percentage variation in the value of

an attribute k of another alternative h, xk,h:

Er=kh ¼Δp r½ �=p r½ � �Δxk,h=xk,h
A.2 Random utility models for route choice
Route choice represents one of the most complex characteristics of travel demand

to observe, understand and simulate. Elements of complexity in other choice dimensions

stem from the larger number of degrees of freedom characterising route choice:

� Updating between one trip and the next: high day-to-day elasticity.
Route choice is very elastic to the functional characteristics of the transport

supply system and the experience of previous trips; hence it is an easily
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modifiable choice from one day to the next (between homogeneous reference

periods).

� Updating within the same trip: high within-day elasticity.
Within the same period the user may decide whether to depart or postpone his/

her departure, and once the trip has begun, the user may decide to modify his/her

(preventively chosen) route one or more times in the presence of changed traffic

conditions that make a route deviation worth taking.

� Effect of user heterogeneity.
Compared with other demand characteristics, in route choice there may be

more significant user heterogeneity by virtue of the larger number of alternatives,

the non-clear identification of the set of alternatives (choice-set), the variety of

variables affecting choice, and the greater weight that psychological and

cognitive factors assume in choice behaviour.

The above issues are assuming particular importance alongside the increasing

development of new technologies (e.g. intelligent information systems)which require

the simulation of increasingly realistic and disaggregate route choice behaviour.

The aim of this section is to schematise route choice behaviour by formalis-

ing an interpretative paradigm (a set of rules capable of describing the phenom-

enon) and a theoretical paradigm (formulating a theory or general principles to

simulate individual phenomena) for simulating route choice issues in dynamic

contexts.
A.2.1 Formalisation of an interpretative framework
In studying route choice behaviour, it is important to make the choice process explicit

and how it is expressed in the time between homogeneous time periods and within

each time period.

In general, the route choice process may be expressed as the process of the pos-

sible choice behaviours that a generic user may have:

(i) at the trip origin node (o),
(ii) at a diversion nodes (q),
(iii) at an information nodes (qinf).

In this context, simulation of route choice behaviour may be studied in a day-to-day

time context (between homogeneous reference periods) and/or in a within-day

space–time context.

In the day-to-day context we are interested in the evolution of the choice process

between one trip and another in the next day, i.e. whether and how the user modifies

his/her choice process with the variation in experience accumulated on previous trips

and/or in the presence of an information system.

In the within-day context we are interested in the evolution of the choice process

within the same trip, i.e. whether and how the user modifies his/her choices once a

trip has begun.
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If we suppose a subdivision of the phenomenon into homogeneous periods

(days), we may distinguish:

- the day on which the phenomenon begins (g0),
- subsequent days (g+1, g+2, etc…), and

- possibly the day (g*) on which the phenomenon reaches a steady-state condition.

To each of the above-mentioned contexts, different interpretative paradigms may be

associated (e.g. holding or switching choices, etc….) and it is necessary to define

theoretical paradigms and effective/realistic mathematical models.

By combining the day-to-day time dimension and the within-day dimension

we may distinguish the following operational contexts and modelling issues

(Table A.2).

In the following each of the afore mentioned issues are addressed.
A.2.2 Trip behaviour and alternatives in route choice modelling
As regards the trip behaviour we may distinguish:

(a) a completely preventive behaviour: route choice is carried out at the trip origin

and the sequence of nodes to be crossed by the user is completely known and not
Table A.2 Operational contexts and modelling issues

When Where

Origin node o Diversion node q Information node qinf

g0, g* (g0, g*, o)
- type of trip
behaviour

- type of
alternative

- choice set
- reaction to
pre-trip
information

- holding
choice

(g0,, g*, q) or (g+, q)

- reaction to en-route
information

- switching choice in a
“reference route”
approach

- holding choice in a
“strategy approach”

(g0,g*, qinf) or (g
+, qinf)

- reaction to en-route
information

g+ (g+, o)
- reaction to
pre-trip
information

- costs and
choice
updating
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modifiable by events or information which the user might encounter along

the way;

(b) a mixed preventive/adaptive behaviour: the user extends his/her decisional

process to the whole trip duration and the chosen route cannot be defined a

priori.

The interpretative paradigm of the phenomenon for this choice dimension may be (i)

not-behavioural or (ii) behavioural.

Following a non-behavioural approach, it is assumed that the user does not make

a choice every time he/she travels, and the most reasonable theoretical paradigm

must be sought within regressive-classification methods.

Under the behavioural approach, the user makes a choice which is sensitive to

system functionality and can be modified from one day to the next if boundary con-

ditions vary and/or if an information system exists. In this context, the user chooses

from the alternatives available and can change his/her choice as the boundary con-

ditions vary (e.g. existence of an information system and type of information sup-

plied). In such a context it is reasonable to imagine a theoretical paradigm based

on a binary choice model founded on random utility theory.

Once the interpretative paradigm on the type of behaviour has been chosen, the

type of alternative should be defined.
In a completely preventive context the choice alternatives consist of routes con-

necting the origin–destination, whilst in a mixed preventive/adaptive context the user
has the possibility to make route diversions. In this regard, two possible behaviours

can be distinguished:

(a) reference route and
(b) strategy.

In the reference route approach, the user chooses a route preventively, then at spe-

cific nodes (diversion nodes) he/she considers the possibility of modifying his/her

choice, taking account of the most efficient changes. Each of these changes will

begin at the diversion node and will be characterised by network conditions which

have either been directly experienced or exogenously supplied (information).

In the strategy approach, the user starts by choosing a set of routes and a strategy to
adopt along theway on the basis of the functional characteristics encountered and/or the

information supplied. The approaches are significantly different if threshold and non-

compensatory behaviours are present (in particular cases they may be equivalent).

The type of alternative which users consider in their mind should be previously

investigated and modelled. It may depend on the user characteristics, on the trip pur-

pose, on the type of network, on the existing information systems and/or on the type

of supplied services (e.g. transit, services of sharing, etc.). To this aim, classification

methods may be adopted such as cluster analyses and or regressive classification

methods based on Neural Networks models.
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A.2.3 Choice set in route choice modelling
Modelling choice behaviour requires to defines the set of alternatives from which

each user will choose (Prato and Bekhor, 2007; Bekhor et al., 2006; Cascetta

et al., 2002).

The choice set depends on the user’s experience and the information available.

The information system, in particular, may either extend the perceived choice set, or

reduce it to a few more efficient alternatives.

However, it may be hypothesized that the user considers all the elementary alter-

natives available, or he/she takes only part of them into account.

In the first case, the user considers all available alternatives (routes, reference

routes or strategies), although the topological complexity of the network may gen-

erate alternatives which are scarcely realistic or consistent with a behavioural inter-

pretation of the phenomenon.

In a deeper analysis three types of approaches may be adopted:

(a) Exhaustive, e.g. all the elementary routes without circuits are considered

admissible. This approach may generate a significant computational complexity

due to the overall large number of routes and due to the number of routes that

may share same links, generating correlation among their perceived utilities.

However, these issues may be addressed through implicit route enumeration
algorithms and by adopting proper random utility models.

(b) Selective, e.g. applies heuristic behavioural rules to identify only a subset of the

elementary routes (examples in Cascetta, 2009). In general the selective

approach requires explicit route enumeration between each O-D pair, and

usually applies a combination of criteria.

(c) Modelling, e.g. if the set of admissible alternatives is defined by a further

behavioural model which simulates perception/availability of the alternatives

and supplies the probability of each route belonging to the set of alternatives

perceived by a generic user. In the literature two types of modelling approaches

are consolidated: explicit and mixed. The explicit solution entails specification

of a random utility model which allows us to assign to each non-empty sub-set of

the alternatives choice set a probability of being the actual choice set of the

generic user (see Section A.1.1).

The mixed solution tackles simulation of the choice set and alternative choice at the

same time. The problem may be formalised in the framework of random utility the-

ory by introducing an attribute that measures the availability/perception of the within

the utility function (see Section A.1.1).
A.2.4 Holding choice in route choice modelling
Depending on his/her previous decisions the user chooses the alternative may be a

route, a reference route or a strategy. Holding choices may occur before the trip, but

also at a diversion node.
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The most adopted paradigm in holding choices relies on the random utility the-

ory. In this case, the specification of a route choice model requires, as usual, the def-

inition of the attributes in the systematic utility function and of the joint probability

distribution of random residuals. It is usually assumed that the variables influencing

route choice are disutility attributes that enter in the utility function, and may be

expressed as a linear combination of user’s socio-economic characteristics, of per-

formance attributes which may be additive (the sum of the corresponding arc perfor-

mance attributes) or might include some attributes that cannot be obtained as the sum

of arc variables (non-additive attributes).
The simplest and first proposed route choice model is the deterministic utility

model, which can be seen as a special case of a random utility model in which

the variance of the residuals ξr is assumed to be equal to zero, thus Ur¼vr. In this

case, a route r can be used only if, from among the set of alternative routes, its utility

vr is max:

p r½ �> 0) vr � vh8h 6¼ r r,h2R

In particular, the deterministic utility model does not provide a unique route choice

probability vector, except when there is a unique minimum cost route. Although

deterministic choice models are less realistic than probabilistic models, for compu-

tational reasons they are often applied to very large networks with implicit route enu-

meration. See remarks at the end of the chapter for further details.

In the following, the most adopted route choice RUMs are introduced.
Multinomial Logit and Logit-based model
The easiest probabilistic choice models used to calculate route choice probability is

the multinomial Logit model (MNL), however the assumption of Independence of

irrelevant alternatives (I.I.A.) property may be unrealistic when the routes in the

choice set overlap (shared links). At the same time, the hypothesis of homoscedas-

ticity may be quite unrealistic in some choice contexts. The choice probability

expression of the resulting model has been introduced in Section A.1.3.

To reduce the effects of the I.I.A. property, the MNL model should be used with

an explicit route enumeration method that eliminates highly overlapping routes.

The MNL is usually implemented by means of the Dial’s algorithm (Dial, 1971).

However, Dial’s algorithm has strong limitations, other than the limitations of the

MNL itself, indeed, it restricts the choice set to efficient routes only and, if

single-step formulation is used, it introduces the unrealistic assumption of equal var-

iance parameter for each O-D pair.

To overcome the problems deriving from the Logit I.I.A. property, a modification

to theMNL route choice model is widely adopted in practical application and several

commercial software.

The modification consists in introducing a negative term (commonality factor,
CFr) in the systematic utility specification of each alternative. It reduces the system-

atic utility of a route according to its degree of overlap with other routes. Indeed, CFr
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is inversely proportional to route r’s degree of independence from other routes, and is

equal to zero if no other route shares links with route r.
The resulting model, usually called C-Logit model (Cascetta et al., 1996; Zhou

et al., 2012), reduces the probability of choosing overlapping routes and increases the

probability of choosing non-overlapping routes. It has the following specification:

p rð Þ¼ exp vr=θð Þ�CFr½ �=
X

h2R exp vh=θð Þ�CFr½ �
The commonality factor may be specified in various ways.

The most used expression reported in the following allows using implicit route

enumeration algorithms similar to Dial’s.

CFr ¼ ln 1 +
X

h 6¼r
zhr= zh�zrð Þ1=2

� �
h2R

where zr is an additive route cost attribute of route r. It is different from the actual

route cost wr in order to satisfy the random utility model’s property of additivity; zh, is
the additive route cost attribute of route h belonging to the choice-set R; and zhr is the
cumulative value of the cost attribute over the links belonging the two routes h and r.

The previous specification does not take into account the relative weight of

shared links in the overall route cost. Therefore, different specifications of the com-

munality factor may be adopted.

One of the most adopted defines a communality factor larger for a route whose

shared links contribute a larger fraction to its total length or cost:

CFr ¼
X

a2r qar � ln Nað Þ

where a is the generic arc belonging to route r, qar is the weight of arc a in route r
which may be expressed as the ratio (sa/zr) with sa being the arc, a, cost attribute
coherent with the used route cost attribute, and Na is the number of routes of

choice-set R pair using arc a.
Another possible formulation may be obtained by expliciting the dependence of

the communality factor on the cost of its non-shared links. In this case the common-

ality factors of two routes increases as the percentage of common attributes cost, with

respect to the total one, increases:

CFr ¼ ln 1 +
X

h6¼r
zhr= zh�zrð Þ2

� �
� zr� zhr=zh� zhrð Þ

h i

Multinomial Weibit model
The Multinomial Weibit model (MNW) has been applied to route choice issues by

Castillo et al. (2008) and Kitthamkesorn and Chen (2014), and it adopts the multi-

plicative random utility model formulation with the Weibull distribution as the ran-

dom error term.

The Weibull distribution, as the Gumbel distribution, is a particular case of the

more general Generalised Extreme Value distribution. The latter, in general, depends
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on three parameters: the systematic utility (vr), the scale parameter representing the

variance (θ) and a parameter γ. Whilst the Gumbel distribution is obtained for γ!0,

the Weibull distribution is obtained when the parameter γ<0.

Gammit formulation has been predominantly implemented to route choicemodels

and with systematic utility functions that coincide with route path cost, wr.

The MNW utility function in usually written in terms of route costs as follows:

ur ¼ wr�wr

� �θ
� ξr8r2R

where wr is the route r cost; ξr is the random residual independently Weibull

distributed; θ is the scale parameter and is related to the route perception variance

with θ>0; λ is the location parameter which identifies the lower bound of

route perceived travel cost between the considered origin–destination pair, with

0<wr � wr;

The choice probability expression of the resulting model, is

p r=Rð Þ¼ wr� λð Þ�θ=
X

h2R wh� λð Þ�θ

The resulting model is a heteroscedastic model, but not able to reproduce any cross-

correlation among alternatives perceived utility.
Multinomial Probit model
An effective alternative to the multinomial Logit model is represented by the mul-

tinomial Probit model (MNP).

Although the general formulation of the MNP model may be adopted, the most

widely used specification is usually obtained by applying the Factor Analytic

approach to the route choice context.

The factor analytic approach assumes a specific structure underlying the random

residuals which allows reducing the number of unknown variance–covariance matrix

elements, and it is particularly suitable for modelling route choice under reasonable

assumptions.

Within this framework, alternatives random residual (the vector of random resid-

uals) may be expressed as a linear function of independent standard normal variables

(of a vector ζ), ξ¼F ζ, which in scalar form may be expressed as:

ξr ¼
X

t2T frt ζt

where ζt is the tth identical and independent standard normal random variables

which composes the vector ζ�MVN(0, Ι) vector of identical and independent stan-
dard normal random variables; frt is the tth loading factor belonging to the matrix (F)

of factor “loadings” which maps the vector of standard normal random variables (ζ)
to the vector of random residuals (ξ).
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The extension of the factor analytic approach to the route choice problem

assumes that the variance of the random residuals is proportional to an additive route

cost attribute zr (different from the actual route cost in order to satisfy the random

utility model’s property of additivity), and that the covariance of the residuals of

two routes is proportional to the cumulative value of the cost attribute over the links

that are shared by the two routes (zrh):

var ξr½ � ¼ γ zr r2R

cov ξr,ξh
� �¼ γ zrh h,r2R

Since each route perceived utility may be expressed in terms of the perceived utility

of the arcs belonging to the route, the random residual of each route may be

expressed as the sum of arc random residuals.

Assuming each arc random residual independently normally distributed with var-

iance proportional (through the parameter γ) to the value of the arc performance var-

iable of which zr is the sum, each route random residual may be expressed as a sum of

univariate normal random residuals that may associated to each arc belonging to the

route (ηa).
In other words, the formulation of the Probit model can be obtained by applying

the Factor Analytic approach to the route choice context assuming a matrix of factor

“loadings” given by the arc-route incidence matrix and the parameter γ.

ξr ¼Ur� vr ¼
X

a
δak Ua� vað Þ¼

X
a
δak ηa

Which may be expressed in vectorial form as.

ξ¼F ζ¼BT η

where ξ is the vector of multivariate normal distributed route random residuals, ξ�
MVN(0,Σ);Β is the arc-route incidencematrix;η is the vector of independent normal

distributed arc random residuals, η � MVN(0, Ση); ζ is the vector of i.i.d. standard
normal randomvariables, ζ �MVN(0, Ι);F is thematrix thatmaps the randomvector

ζ into route choice random residuals ξ.
The Probit model allows handling perceived utility correlation (route overlap-

ping) and particularly suitable for applications with exhaustive route generation

(implicit enumeration). Obviously, the choice probabilities cannot be expressed

in closed form, thus simulation method should be adopted, but Factor analytic

Probit formulation allow the use of algorithms that are based on Monte Carlo

simulation.

Finally, if the hypothesis of a unique variance parameter (γ) may be considered a

strong assumption, on the other hand no effective alternative solutions have been

proposed in literature.
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Multinomial Gammit model
The Gammit model is obtained assuming that perceived utilities are jointly distrib-

uted as a non-negative shifted MultiVariate Gamma random variable, with mean

equal to the systematic utilities and variance–covariance matrix Σ.
Gammit formulation has been predominantly implemented to route choice

models (Cantarella and Binetti, 2002) and with systematic utility functions that coin-

cide with route cost, wr.

The Gammit formulation to route choice, once defined the systematic utility for

each alternative, can be specified as follows.

Let

ca be the arc cost of arc a.
ca the reference cost on arc a (for instance zero-flow cost), assumed not greater

than the arc cost: 0<ca � ca.

The perceived utility of arc a, Ua, is assumed distributed (independently of the per-

ceived disutility of any other arc) as a non-negative shifted Gamma variable with

mean given by the arc cost (ca), variance proportional to the reference arc cost

(σa¼θca) and shifting factor given by the difference between the arc cost and the

reference cost (ca - ca):

Ua � ca� ca

� �
+Gamma αa ¼ ca=θ, β¼ θ

� �

In other words, the arc perceived utility is the sum of a non-negative deterministic

term depending on arc flows and non-negative stochastic term independent from arc

flows. The assumption on link reference cost yields that the corresponding reference

cost on route r, wr, is strictly positive and not greater than the systematic utility cost,

wr. Thus, the perceived utility on route r is marginally distributed as a non-negative

shifted Gamma variable.

Ur � wr�wr

� �
+Gamma αr ¼wr=θ, β ¼ θ

� �

The described specification leads to an additive choice model if the variance param-

eter θ and the reference arc costs do not vary with arc costs.

The resulting model presents a route perceived utility vector distributed as a non-

negative shifted MultiVariate Gamma with variance–covariance matrix proportional

to route reference cost through the parameter θ.
In conclusion, the Gammit model allows simulating heteroscedasticity and

taking into account the covariance between overlapping routes. Indeed, the vari-

ance for route r is proportional to the reference cost wr, whilst the covariance

between two routes is proportional to the reference costs of arc shared by the

two routes.
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Gammit path choice probabilities cannot be expressed in a closed form, and their

computation requires simulation techniques such as MonteCarlo method.
A.2.5 Updating choices in route choice modelling
On the generic day g 6¼g-1 the user elaborates his/her experience from the previous

day, past experience and any information which is supplied exogenously, and rede-

fines his/her own trip behaviours. In general an indifferent behaviour and an active
behaviour may be distinguished.

Under the assumption of indifferent behaviour, the user does not question the

choice made the previous day in the same context (purpose, OD, time slice) and

hence does not update the previous day’s behaviour or the characteristic variables,

such as level of service attribute, on which the previous day’s choice behaviour was

based. Under this hypothesis, the user repeats his/her holding choice according to the

paradigm proposed for day g0; no evolution occurs between one period and the next

unless there is an information system.

In the case of active behaviour, the user analyses and elaborates experiences dur-
ing the trip on previous days (from g0 to g-1), receives information on the current day

and evaluates whether to behaviour in the same way as day g-1.
In general, a choice updating process can be defined, and in which we distinguish:

(a) the analysis phase and

(b) the choice phase.

In the analysis phase the user analyses the choice already made the day before by

comparing experience and prediction and the choice by comparing personal experi-

ence with the possible available alternatives perceived (or supplied by an informa-

tion system). Then, in the choice phase, the user decides whether to reconsider all the

behaviours which led to the final choice, or only some them and, finally, takes the

choice for the next period.

In specifying a theoretical paradigm, there are two major issues:

(i) simulating cost updating, in other words, simulating how experience and

information on costs for the previous and current days affect current choices and

(ii) simulating the phenomenon of choice updating, that is, how choices in a day are

affected by choices made on previous days.

Costs and choices may be updated using models that simulate choice behaviour in

day g (in a certain cost configuration), cost updating models and choice updating

models (for further details, see Cascetta, 2009).

The cost updating model simulates the way the predicted utilities vector are

affected by the costs on previous days. Costs relative to the previous days may be

the result of direct experience or they may be representative of information obtained

before undertaking the trip.

A simple example of cost updating model is defined by means of an exponential

filter in which utility predicted at day g is expressed by a convex combination of
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predicted utility on the previous day g-1, vg-1, and of the opposite of route costs

incurred on day g-1, �wr
g-1:

vr
g ¼�βwr

g�1 + 1�βð Þ urg�18od
where β 2]0,1] is the weight attributed by users to costs that are occurred on day

g-1; with β ¼1 the predicted cost coincides with the costs incurred on day g-1, and
the costs of the days even before do not affect user behaviour.

As regards the specification of the choice updating model, it is necessary to sim-

ulate how daily choices are influenced by previous days’ choices. The most general

approach may be expressed by a matrix, known as the matrix of conditional choices,

with as many rows and columns as there are routes and whose elements define the

percentage of conditional route choice, that is, the percentage of users choosing route

r on day g, having chosen route r on the previous day, g-1.
As with cost updating, an efficient model of efficient choice updating may be

defined by means of an exponential filter. It hypothesizes that every day a fraction

of users (1 – α) repeats the choices of the previous day, while the remaining part (α)
chooses independently of the choice actually made the previous day. At day g let pr

g

2]0,1] be the probability of a user choosing route r having reconsidered the choice

made the previous day, g�1, and qr
g be the probability of the user choosing route r on

day g, it yields:

qr
g ¼ αpr

g + 1�αð Þ �qrg�1

In this approach α 2]0,1] is the probability of a user reconsidering the choice made

the day before, g-1. It may be estimated using regressive non-behavioural models or

behavioural models. Probabilities pr
g may be simulated with a model derived from

random utility theory as a function of utilities predicted for day g.
A.2.6 Switching choices in route choice modelling
The choice behaviours are termed switching (Ben-Akiva and Morikawa, 1990) when

the choice occurs over an alternative which can be considered as a reference alter-

native and treated differently from others (e.g. the reference route, previous day’s

choices, etc…).

A possible modelling solution consists of the implementation of random utility

models, possibly combined with a bounded rationality approach that leads to sto-

chastic thresholds.

Switching choices may occur at the origin of the trip (node o) or at a diversion
node (node q). In the former case the user may switch from the pre-trip choice made

in the previous day (g-1), in the latter case the user may switch from his/her pre-trip

choice to different solution.

In defining the utility function we consider as an attribute the difference between

preventive route travel time (from origin o—or node q—to destination d) and the

travel time of the best route connecting o (q) and d. The problem consists in estimat-

ing the probability of users changing his/her pre-trip choice. This probability, below
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indicated as the probability of switching, may be expressed as the probability that the

time saved exceeds the maximum of the two stochastic thresholds (INTj):

- threshold 1, which is the threshold below which the user does not modify his/her

choice and

- threshold 2, which is the of total travel time beyond which the user is believed to

consider the hypothesis of changing his/her preventive choice.

User makes his/her route choice preventively to travel from origin o, or from diver-

sion node q, to destination d. Once the choice has been made, a route r (in a reference
route approach) or a strategy IR (in a strategy approach) is identified (each with non-
zero probability).

Hence it is possible to define with regard to a time interval t (subsequently
neglected):

UTTPr,od is the utility associated to route r (or to strategy IR) relative to origin o
(ore node q) and destination d;

UTTMs,od is the utility associated to the shortest route s between node origin o (or
node q) and destination d.

The difference between the two costs gives the saving obtainable from adopting the

minimum route instead of route r or strategy IR: UTTSr,od¼UTTPr,od – UTTMs,od.

The user changes his/her route if, and only if, the saving in terms of perceived

utility exceeds an indifference threshold (ΔINTod) which may be deterministic or

stochastic.

Following a deterministic approach the phenomenon of switching may be sche-

matised by a binary variable, ϕr,od, which is equal to 1 if the user changes his/her

preventive choice, 0 otherwise:

ϕr,od ¼ 0 if 0�UTTSr,od �ΔINTod

ϕr,od ¼ 1otherwise

Assuming a stochastic approach, diversion probabilities are thus defined:

Pr ϕr,od ¼ 0
� �¼ Pr 0�UTTSr,od �Δ ΙNTod½ �) p ϕr,od ¼ 1

� �¼ 1�p ϕr,od ¼ 0
� �

In both cases it is necessary to make both UTTS r,jı̀od and ΔINTod explicit.
As regards the estimate ofUTTSr,od the problem basically entails the estimate of the

maximum utility (or minimum route cost),UTTMs,od, from origin o (or node q) to des-
tination d. UTTMod in turn may be the maximum utility (minimum route cost) per-

ceived by the user at node o (or node q), possibly different from the preventive one.

In the first case, the user observes and elaborates the traffic flow and re-elaborates

his/her trip costs. Specification of such an attribute requires an easy implementation

of a model of travel costs. The main difficulties concern the need to have a signi-

ficant number of test observations and reliable measurements of vehicle flow
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characteristics at the time of the interview. Unlike many studies developed in sim-

ulation laboratories, in this case it is hard to reproduce in a virtual environment the

perturbations and sensations that can be perceived in a real context.

Under the assumption of exogenously supplied route costs, the problem may be

seen as one of minimum route cost estimation, which may be expressed by one of two

approaches:

(a) instantaneous: according to the transportation system characteristics at the

moment of the switching choice and

(b) predictive: based on forecasts of network future conditions so that it is congruent
with the cost that the user will encounter along the way.

As already specified above, instantaneous information is based on the network flow
configuration at the moment when the user moves from origin o, or arrives at diver-
sion node q. In this case the user is supplied with instantaneous information which

does not predict system evolution over time. The benefit lies in the greater simplicity

in calculating level of service attributes; the main drawback lies in the incongruence

of information against the costs that the user will actually encounter along the way.

Non-congruent information may cause indifference to information, or may render

the day-to-day evolution of the system highly unstable, thereby distancing the system

from equilibrium. In addition, this kind of information may cause the user wander

through the network without reaching intended destination. For all these consider-

ations the instantaneous approach is not much considered in literature.

Predictive information may be obtained by simulating: (a) the evolution of the

current systemwithout route diversions, (b) evolution of the system allowing for pos-

sible diversions. The first hypothesis, undoubtedly less computationally burden-

some, leads to costs which are not necessarily congruent with the costs that the

user will encounter up to destination. The second hypothesis, at least in theory, guar-

antees congruence between the costs supplied to the diversion nodes and costs which

the user will encounter on the network. The computational burden of such a solution

is not banal, especially in the presence of many diversion possibilities, above all in

light of the need to ensure information in real time.

As regards the estimate of the interval of indifference (ΔINTod), it may be repre-

sented as a deterministic variable or as a random variable. In the former case, the

upper limit of the above interval may be estimated through test observations and con-

solidated statistical techniques. In the latter caseΔINTod is assumed characterised by

a known distribution function with parameters that can be estimated using the usual

statistical inference techniques. The latter approach, which is definitely preferable,

allows for the heterogeneity among the perceptions of various users (cross-sectional

heteroscedasticity), the heterogeneity among the various perceptions of the same

user due to explicitly not easy to simulate factors (longitudinal heteroscedasticity)

and some estimation errors of level-of-service attributes which combine to define

travel costs. Generally, the band of indifference may be expressed as the maximum

of two deterministic or random variables:
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ΔINTod ¼ max ηod TTPod, πodð Þ
where ηod is the percentage of the chosen travel cost TVPod of the route which the

user believes significant to change his/her choice. πod indicates the minimum time

that user expects to save following a change in his/her preventively chosen route.

In practice the user, to be able to change his/her preventive choice, wishes to per-

ceive a time saving greater than, or equal to, part of the current travel time and, at any

rate, no less than a minimum threshold.

In the case of the random interval of indifference, it is reasonable to assume ηod
and πod as two random variables, characterised by a systematic component and by a

random component:

ηod ¼ϕ SE,LoSod, θð Þ + ξod

πod ¼φ SE,LoSod, θð Þ+ ζod
where SE is a vector of socioeconomic attributes; LoSod is the vector of level-of-
service attributes concerning the pre-trip choice; θ is the vector of parameters to be

estimated of functions ϕ and φ; and ξod and ζod are the random components.

Also in this case, it may be assumed that the probabilities of diversion are inde-

pendent or dependent among themselves. In the latter case the probabilities of diver-

sion may be expressed as the probability of diversion conditional upon have made a

diversion at the previous node, that is, have already affected a diversion during the

current trip.

The problem may be tackled by a modelling approach, specifying models that

take into account the correlation between choices made at different times (e.g. Probit

or Mixed-Logit).
A.2.7 Diversion choices in route choice modelling
The Analysis of behaviour at the diversion node is important within a mixed preven-

tive/adaptive approach.

On the basis of the trip behaviour and the type of alternative (route, strategy or
reference route), the choice set (exhaustive vs. selective) and the choice made (route
or strategy chosen), the user begins his/her trip and starts to acquire information from

experience or from the information system if any.

Users compare what they know from past experience with what they observe (in

real time) and with what they receive, and begin to build expectations regarding the

network functional characteristics and, especially, those of the reference route or

strategy. Downstream of this process, once a possible diversion node has been

reached, users decide whether to change their own reference route, or choose how

to continue the trip within the preventively chosen strategy.

In the strategy approach it is supposed that the user, at each diversion node

belonging to the strategy, chooses which arc (or sequence of arcs up to the next diver-

sion node) to follow in continuing his/her trip. Such decisional behaviour may be
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schematised as a holding choice between a set of alternatives known a priori whose

costs may differ from those perceived at the beginning of the trip both in terms of

values and quality.

In the reference route approach, there are two choice dimensions to be revisited:

(a) the definition of the choice set and

(b) the choice of a new reference route.

The diversion node becomes the new origin and a behaviour similar to that described

in the previous sections may be assumed. If information systems exist, choice behav-

iour may be strongly affected as the type of information varies.

In the presence of descriptive information (e.g. travel time, congestion rates, etc.),

users may choose among the available route from the diversion node to the final des-

tination. In this case a holding model can be adopted, with the only difference that

each user will have a better knowledge of the current network conditions and will

choose combining past experience and personal forecast of route costs. It can be

expected a less dispersed behaviour, since the users may have a reduced (or more

crisp) choice-set and more accurate information on network conditions. In this case,

a holding choice model should be specifically calibrated, since different dispersion

parameters are expected.

In the presence of prescriptive (or mixed) information, users may choose to com-

ply or not comply with the proposed solutions, if alternative to the reference route.
To this aim two approaches may be pursued: (i) with complete rationality, (ii) with

bounded rationality. The complete rationality approach is founded on the utilitarian

paradigm, the same adopted for the preventive choice behaviour. The bounded ratio-

nality approach assumes a behavioural paradigm for which the user does not change

his/her preventively chosen alternative as long as the variation in perceived utility

stays within an interval of indifference.

Both types of behaviour are significantly affected by the part of the trip already

undertaken and according to the diversion behaviours adopted hitherto.
A.2.8 Reaction to information in route choice modelling
Simulation of the degree of compliance to the supplied information is important for

realistic simulation of route choice behaviour in the presence of an information sys-

tem. As the type of information varies, we may distinguish three approaches to

modelling compliance to information as described in the following.

Explicit model of adaptation to information
In the presence of prescriptive information, the approach simulates the user’s com-

pliance to the information (that is, the probability of complying), as binomial choice

behaviour, based on random utility theory and in which the utility of the alternative

of not adapting is assumed zero. Under this assumption the problem may be formu-

lated as follows:
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Pr δ¼ 1½ � ¼ Pr Uc > 0½ � ¼ Pr ξc > vc½ �
where δ is a binary variable with the value of 1 if the user follows the indication

supplied; Pr[δ¼1] is the probability to comply to the information, also called com-

pliance rate; Uc is the utility perceived to comply to the information; vc¼vc(SE,
LoS): is the systematic utility associated to the alternative, SE being socioeconomic

variables and LoS the level of service variables; and ξc is the associated random

residual.

Several modelling solutions may be adopted, which must in any case take into

account that the phenomenon is a succession of correlated choices over time

(day-to-day) and in space (with respect to possible diversion nodes), and that there

may be relevant behavioural dispersion.

If user choice perceived utilities can be assumed to be independent of one another

over time and space, the most effective modelling solution is a binomial Logit model.

To take into account the correlation among different day and/or different diver-

sion (decision) nodes, it is necessary to interpret the phenomenon according to a

process of choice from a discrete number of alternatives which is no longer binary.

Let us suppose that each diversion (origin) node is a decision node q and that each

node has a time index representing the generic day g. At each node (q), at day g, the
user associates a perceived utility uc

q,g and makes a binary choice. The choice prob-

ability is a probability conditional upon the choices already made at the other deci-

sion nodes and/or on previous days. The problem may be also approached by

introducing some error terms (Probit or Mixed-Logit model) which allow simulation

of correlations between utilities of the same node but referring to different days, or

between utilities of different nodes but crossed on the same day.

An alternative approach may be based on the theoretical paradigm of bounded

rationality and on switching models.

Implicit model of adaptation to information
In the presence of prescriptive user information, reaction to information may be sim-

ulated as a holding choice introducing information within systematic utility

functions.

Let:

q be the decision node (origin or diversion node);

Rq be the set of possible alternatives to reach destination d starting from q (the

choice set may be exogenously supplied and/or defined by the user);

chq be the pre-trip chosen alternative;

bq be the best alternative (possibly supplied by an information system), it may

be equal to chq; and
hq be one of the remaining choice alternatives (hq 6¼bq, chq 2 Rq).

The user’s behaviour can be schematised as a choice between: alternative bq, alter-
native chq and the remaining alternatives hq.
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Following an approach based on random utility theory, to each alternative a per-

ceived utility function may be associated:

Uhq ¼ vhq + ξhq8hq 6¼ bq,chq

Ubq ¼ vbq + ξbq

Uchq ¼ vchq + ξchq

Although different modelling solutions could be hypothesized, the most effective is

the Mixed-logit model. Since alternative bq is supplied by an information system, it

is considered different by the user and it should be modelled differently. This

can be schematised by introducing a component of utility (latent variable), Ubq2,

in formulating the perceived utility function of alternative bq. Such component

measures the degree of user adaptation to the information, if zero there is no

reason why the information supplied should increase the utility of the alternative

indicated. Hence:

Uhq ¼ vhq + ξhq8hq 6¼ bq,chq

Ubq ¼U1,bq +U2,bq ¼ v1,bq + ξbq + v2,bq + ηbq

Uchq ¼ vchq + ξcq

where U2,bq is sum of systematic utility, v2,bq, and a random residual, ηbq, which in
turn permits us to simulate the heteroscedasticity of utilityUbq in any case. While the

systematic utilities (v1,bq, vhq, vchq) express the typical characteristics that affect the
route choice (e.g. socio-economic, level of service variables). The systematic utility

v2,bq, in turn, may be expressed as a linear combination of variables representing the

degree of adaptation to information.

The degree of user adaptation to the information should be calibrated, four types

of variables may be reasonably used:

(i) variables representing past user experience (e.g. observed delay on previous

days following information or otherwise);

(ii) variables representing the quality/reliability of information (e.g. dispersion of

travel time supplied);

(iii) variables representing the network congestion level (usually represented by

aggregate measures for crossed links or by symbolic variables calibrated

ad hoc);

(iv) variables representing the benefits to be gained by adaptation to information

(e.g. travel time saving supplied together with the information but also total

travel time);

(v) socio-economic variables.
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As regards the probability distribution functions of the random residuals (ξbq, ξchq,
ξhq), they could be differently distributed in order to simulate the heteroscedasticities

among the alternative’s utilities.

At this point it may be worth studying the two possible situations separately:

(bq¼chq), if the best route coincides with the route currently chosen;

(bq 6¼chq), if the two routes do not coincide.

In the former case (bq¼chq) it can be useful to introduce an error term which

simulates heteroscedasticity between the two groups of alternatives (bq and hq). In
the latter case (bq 6¼chq), by the same token, it could be worth introducing an error

term which simulates the correlation between the utilities of alternatives chq and hq,
in that they are not affected by the adaptation phenomenon.

Together with the adaptation phenomenon, the inertia phenomenon can be

simulated implicitly, i.e. what induces the user not to change his/her preventive

choice.

Since inertia affects the choice, it is correct to introduce into the perceivedutility of
the preventively chosen alternative a latent variable that simulates the dis/utility that

the user attributes to abandoninghis/her choice.Aswith the above case, aMixed-Logit

model seems to be the best option, and the perceived utilities have similar formulation.

If (bq 6¼chq), it is hypothesized that the utilities of alternatives hq 6¼ (bq, chq) and
chq, by means of an error term τq, are correlated as they are not characterised by infor-
mation and lastly, that the utilities of alternatives hq 6¼ (bq, chq) and bq are correlated
by means of the error term ωq since they are not characterised by inertia:

Uhq ¼ vhq + ξhq +ωq + τq8hq 6¼ bq,chq

Ubq ¼ vbq + ξbq +ωq

Uchq ¼U1,chq +U2,chq ¼ v1,chq + ξchq + v2,chq + ηchq + τq

Also in this case, it is possible to assume the same four types of variables described

above for compliance models and make the same considerations on the residuals and

the possible correlations existing.

Explicit model of the cognitive process to acquire and use the information
The process underlying route choice in the presence of an information systems may

be expressed as follows:

(a) the user acquires the information,

(b) the user decides to use it, and

(c) the user chooses on the basis of the acquisition process and the use of

information.

While issue (c) may be addressed through the modelling approaches introduced

before, issues (a) and (b) are worth of interest in the presence of different information

systems.
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Let be:

φ is the generic source of information (e.g. variable message panels) and that Iφ
is the set of all the available sources of information;

Uaφ is the perceived utility associated to acquiring information of type φ;
Urφ is the perceived utility of using the information of type φ;
aφ is a binary variable which has the value of 1 if the user obtains information

from source φ, 0 otherwise;

rφ is a binary variable which has the value of 1 if the user refers (thus use) to the

information received from source φ in the process of choosing his/her route,

0 otherwise.

The user’s decisional process can be schematised assuming a hierarchical structure in

which the user first chooses to acquire information from the source φ, then decides to
refer to it (or use). In this case, the phenomenon may be modelled as the probability

of acquiring information multiplied by the probability of using it, conditional upon

having acquired it.

Pr aφ, rφ
� �¼ p aφ

� � �p rφ=aφ
� �

Adopting the Utility Theory, the user uses information φ that he/she receives (aφ¼1)

and uses it (rφ¼1), if perceived utilities Uaφ and Urφ exceed two threshold values

Τaφ and Τ rφ:

! acquire ifUaφ � Τ aφ

! refer to ifUrφ � Τ rφ

where Uaφ is the perceived utility to acquire information from source φ; Urφ is the

perceived utility to refer to information from source φ; Τaφ is the threshold relative to

the acquisition process and may be expressed as a random variable consisting of a

systematic part τaφ and a random residual ηaφ; and Τ rφ is the threshold relative to

the process of information use, and may be expressed as a random variable consisting

of a systematic part τrφ and a random residual ζrφ.
Thus Pr[aφ, rφ] may be written as follows:

Pr aφ
� �¼ Pr Uaφ � Τ aφ

� �¼ Pr Vaφ + ξaφ � τaφ + ηaφ
� �¼ Pr Vaφ� τaφ � ηaφ� ξaφ

�

Pr rφ=aφ
� �¼ Pr Urφ � Τ rφ

� �¼ Pr Vrφ + ξrφ � τrφ + ζrφ
� �¼ Pr Vrφ� τrφ � ζr� ξrφ

� �

The perceived utilities may be expressed as follows:

Uaφ ¼Σm ψmφ � λm
� �

+Σp γpφ � trippφ
� �

+ ξaφ

Urφ ¼Σn γnφ � tripnφ
� �

+Σq δqφ �mqφ

� �
+ ξrφ

where λm is mth latent variable that measure cognitive involvement and the capac-

ity to process information (see Section A.1.2); tripn(or p) is the nth (pth) variable
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characterising the trip made up to that moment or the user’s past experience on the

trip he/she is about to undertake: e.g. trip purpose, route characteristics, level of con-

gestion encountered along the route or expected in the past days. In general, the

choice of acquiring and referring to information may be expressed as a function

of benefits that the user may obtain (or have obtained in the past) from the same infor-

mation (e.g. travel time saving). mqφ is the qth variable characterising the source of

information φ: e.g. type, accuracy. ψmφ, γnφ, δqφ are the systematic utility parame-

ters; and ξaφ and ξrφ are the random residuals of the perceived utilities.

Assuming that the random residuals (ζrφ, ξrφ, ηaφ, ξaφ) are Gumbel i.i.d. random

variables, the probabilities may be formulated as the product of two MNL models,

but different choice models can also be adopted.

The hierarchical structure specified may also be extended to the choice of the

alternative. In this case a mathematical formulation which is internally consistent

with a behavioural approach can be obtained.
A.3 Random utility models for departure time and route
choice modelling
Route choice may be strictly correlated to departure time choice process, and this

issue is particularly relevant in dynamic traffic assignment frameworks.

Usually elastic demand and rigid demand profiles can be distinguished.

In rigid demand profile models, it is assumed that the distribution of demand

flows over departure times is known and independent from variations in travel

times. It follows that path is the only choice dimension considered given a

departure time.

In elastic demand, the flow of users following a route r connecting a generic od
pair and starting at time τ can be estimated simulating in addition to path, departure

time choice given the desired arrival time at destination, τd, or the desired departure
time from the origin τo.

Let:

pod,k(τ/τd) be the choice probability of time τ and route r, given the O-D pair od
and the desired arrival time τd;

vr(τ/τd) be the systematic utility of route r and departure time τ, given the

desired arrival time τd;
vr(τ/τo) be the systematic utility of route r and departure time τ, given the

desired arrival time τd;
T be the simulation interval in which the departure time choice may occur.

vod(τ/τd) be the vector of systematic utilities relative to all the paths connecting

the pair od, r2 R, for a given departure time τ and desired arrival time τd.

Choice probabilities of departure time τ and route r are usually expressed with ran-

dom utility models as a function of the systematic utilities of available path-departure

time alternatives:
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pod,r τ=τdð Þ¼ pod,r vod τ’=τdð Þ, 8τ’ð Þ
Such models are usually “single-level” random utility models with mixed continuous

(departure time)/discrete (path) alternatives, or partial share models.

Usually different sequences may be adopted.

(1) pod,r(τ/τd) ¼ pod(τ/τd) pod[r/τ,τd]

where pod,r (τ/τd) is the product of the probability to choose route r given the depar-

ture time τ, and the probability to depart at time τ.

(2) pod,r(τ/τd) ¼ pod[r] pod(τ/r,τd)

where pod,r (τ/τd) is the product of the probability to choose route r, and the

probability to depart at time τ given the route r.
With regard to the specification of departure time choice model pod,r(τ/τd),

continuous or discrete approaches may be adopted.

In the continuous approach, a simultaneous Multinomial Logit model may be

adopted:

pod,r τ=τdð Þ¼ exp vr τ=τdð Þð Þ=Σr’2R
ðT

0

exp vr’ τ’=τdð Þð Þ dτ’

In the discrete approach, users do not choose among an infinite number of departure

instant (τj), but rather among a finite number of times intervals (e.g. 5min long). Dis-

crete departure time models can be adopted for the continuous flows assuming that

that actual departure times are uniformly distributed within the chosen interval. In

this case the probability of leaving at time τ(j), within interval j, and following path

r computed with a Multinomial Logit model would be:

pod,r τj=τd
� �¼ exp vr τj=τd

� �� �
=Σj’Σr’2R exp vr’ j’=τdð Þð Þ=Tð�

However, departure time and path choice probabilities can be expressed through

different discrete choice models depending on the type of choice set. For instance

Multinomial Logit specification as introduced before, but also through ordered

choice models (Small, 1987) or hierarchical specifications able to introduce a

correlation structure among adjacent departure intervals (e.g. with a Cross-

Nested Logit).

Finally, it can be useful to highlight that some dynamic assignment models pro-

posed in the literature assume deterministic utility departure time and route models.

In this case, as for static systems, choice probabilities cannot be expressed in closed

form as may exist several departure time/route alternatives with equal systematic

disutilities.

With regard to the systematic utility functions, together with route attributes (usu-

ally Level of Service), attributes representing the penalty for arriving early or late

with respect to the desired arrival time. In particular:

• the penalty, Er, related to early arrival with respect to τd, departing in τ and

following route r. This penalty is considered only if the early arrival is above
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a minimum threshold Δe, and it is usually expressed as function of the travel time

on route r at time τ, TTr(τ):

Er τ, τd, TTr τð Þð Þ¼ τd �Δe� τ +TTr τð Þð Þ if τd �Δe� τ +TTr τð Þ> 0ð

¼ 0otherwise

• The penalty, Lr, related to a delay with respect to τd, departing in τ and following
route t. This penalty is usually considered only if the delay is above a minimum

threshold Δl, and it is usually expressed as function of the travel time of route r at
time τ

Lr τ, τd, TTr τð Þ½ � ¼ τ +TTr τð Þ� τd�Δl if τ + TTr τð Þ� τd�Δl > 0

¼ 0otherwise

For both penalties, deterministic or stochastic approaches may be pursued; moreover

perfect rationality o bounded rationality approaches may pursued, however to

address such an issue the reader ay refer to the considerations and approaches dis-

cussed in Section A.2.6.

The problem can be also expressed in terms of desired departure time τo from
the origin. In this case the probability pod,r (τ/τo) can be expressed in a similar manner

of pod,r (τ/τd), but with different specification of the systematic utility functions.

Indeed, the desired departure time from the origin τo is function of a scheduled

delay, but in this case the scheduled delay does not depend on the route travel time

TTr(τ). Two kind of penalty may be considered:

• the penalty, E, related to early departure with respect to τo, departing in τ, usually
considered only if the early departure is above a minimum threshold Δe.

E τ, τoð Þ¼ τo�Δe� τ if τo�Δe�τ> 0

¼ 0otherwise

• the penalty, L, related to a delay with respect to τo, departing in τ, usually
considered only if the delay is above a minimum threshold Δl:

L τ, τoð Þ¼ τ� τo�Δl if τ� τo�Δl > 0

¼ 0otherwise
A.4 Fuzzy utility models for modelling traveller’s choice
Fuzzy utilitymodels share the samehypothesis ofRandomUtilitymodels except for the

assumption on uncertainty paradigm. Instead of the probability theory, perceived utility

asa randomvariable, theuncertainty ismodelledwithin thepossibility theory,perceived

utility as a fuzzy number (see mathematical notes 2 for further details).



239APPENDIX A Discrete choice modelling
Possibility theory allows taking into account two types of uncertainty: dispersion
(due to contrasting alternatives) and imprecision of information (or data) available to
the users (or to the modeller).

Most existing approaches to simulate uncertainty in choice behaviour through

fuzzy numbers are based on ranking indices: given a set of fuzzy numbers, a crisp

number (ranking index) is associated to each of them, so that the fuzzy numbers

can linearly be ordered. The most effective indices seem those proposed by

Dubois and Prade (1983). Once the value of the ranking index has been computed

for the fuzzy number describing the perceived utility of each alternative, an estimate

of the choice share for each alternative is obtained from the values of the ranking

index. Henn (2002) presents a review on this approach (see also Henn, 2000;

Binetti and De Mitri, 2002). Approaches based on ranking indices may lead to some

counter intuitive results, as argued also by Henn (2002).

To overcome these limitations, a different approach, coherent with the Utility

Theory may be pursued assuming that the perceived utility is modelled through a

fuzzy number, leading to the fuzzy utility theory and to fuzzy utility models

(FUM). Fuzzy utility models may be specified assuming that.

a. Each user (of a class of homogenous users) of a transportation system.

a1 considers a set of alternatives,

a2 gives each alternative a value of perceived utility, and

a3 chooses the alternative with the maximum value of perceived utility

(homo-economicus assumption);

b. The perceived utility of a mode is modelled through a fuzzy variable due to

several sources of the above-mentioned uncertainties. Let.

R be the choice set, containing all the available alternatives, it is assumed

non-empty and finite, with m¼jR j;
Ur be the perceived utility associated to alternative r 2 R¼{1, …, m},

considered a fuzzy number with fuzzy distribution function (fdf) μUr(Ur);

vr is the core value of the fuzzy distribution function;

qr�0 be the choice possibility associated to alternative r, with maxr qr¼1;

zr�0 be an estimate of the choice fraction associated to alternative r, with
P

r

zr¼1, hence, they be considered as a probability distribution.

FUM can be formulated by defining the maximum perceived utility fuzzy distribu-

tion (defined from the perceived utility fuzzy distribution of each alternative as for

RUT) and defining the possibility that the perceived utility of an alternative be equal

to the maximum value. Then, choice fractions are deducted from choice possibilities,

which model both non-specificity and discord, through a transformation which pre-

serves the total amount of uncertainty considering choice fractions as a probability

distribution.

FUMs allow estimating choice fractions as a function of the core values of the

alternatives perceived utility (v) and of vector of parameters θ.
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z¼ z v; θð Þ
The specification of a FUM requires to address 3 main issues:

(i) the definition of the choice set,

(ii) the specification of systematic utility function, and

(iii) the identification of the most effective choice function (fuzzy distribution

function).
A.4.1 Choice set definition
As regards the definition of the choice set, the same considerations introduced in

Section A.1.1 hold for a FUM, thus no details are reported. In particular, it could

be useful to point out how the perception/availability approach is consistent with

the overall fuzzy utility theory.
A.4.2 Specification of the systematic utility
As for RUM’s, the application of a FUM requires that the core value, vr, of each
choice alternative r be specified as a function, vr¼v(xr; ψ), of attributes, xr,

measured or assumed for a design scenario. A linear expression is commonly used:

vr¼
P

j ψj xrj.

With regard to the attributes to use, the same consideration introduced in

Section A.1.2 hold.
A.4.3 Distribution of perceived utility and choice functions
As for random utility models, FUM can be formulated by defining the maximum

perceived utility fuzzy distribution and defining the possibility that the perceived

utility of an alternative be equal to the maximum value.

Choice possibilities, qr, can be obtained from the perceived utility fdf, μUr(ur), of
each alternative, r, through a two-step procedure.

The (possibilistic) maximum perceived utility, UMAX, can be defined by repeat-

edly applying the fuzzy MAX operator (it can equivalently be defined by the general

expression of the maximum of several fuzzy numbers):

UMAX ¼U1

UMAX ¼ MAX UMAX ,Urð Þ8r� 2

The possibility that any alternatives is chosen, say it is a maximum perceived utility

alternative, is given by:

qr ¼ Pos Ur ¼UMAXð Þ¼ maxx min μUr xð Þ, μUMAX xð Þf g2 0, 1½ �8r� 1

It should be noted that at least one alternative will have a choice possibility equal to

one, say maxr qr¼1, thus a n-valued discrete possibility distribution is obtained.
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Choice fractions, sr, can be obtained from choice possibilities (qr) by applying a

general possibility-probability (P-P) transformation, p¼p(q), between a possibility

distribution, q, and a probability one, p.

Such a transformation is called consistent if the corresponding components of the

two distributions are ordered the same way, pr�pr+1 , qr�qr+1. Generally, infinite

many consistent transformations may be devised, such as the power transformation

which assures existence and uniqueness of transformation (in both directions). The

following equation, which assures both normalisation constraints, is usually adopted:

zr ¼ qr
1=α=

X
h2R qh

1=α8r� 1

where 0<α<1 assures a consistent transformation.

For example, for two alternatives, probability and possibility definitions yield: p1,
p2 2[0,1], p1+p2¼1 or p1¼1 - p2, and q1, q2 2[0,1], max{q1, q2}¼1. Due to nor-

malisation, a consistent P-P transformation is expressed by any relation p2¼p2(q2)
for which both p2�0.5(since p2�p1 , q2�q1¼1)and p2�q2 (besides

p1�q1¼1) hold.

The successive application of the above presented equations lead to a relation

between the choice share vector (z), the central value (core) vector v and the vector

of parameter θ.
s¼ s v; θð Þ
The explicit expression of this relation depends on the assumptions adopted about the

perceived utility fuzzy distribution (fdf) as well as the values of its parameters (such

as values of the variability index).

Also for FUMs, different formulations may been derived and it is possible to

introduce a classification based on the possible assumptions that can be made on

the fdf of the perceived utilities.

Usually a fdf can be described by a specific shape (e.g. triangular), by a core value

of vr, by width and/or shape parameters. In general, perceived utilities can be iden-

tically distributed among alternatives or not identically distributed among alterna-

tives. In this case, differently from RUMs, two families of models may be

obtained by the combination of the above hypotheses: homoscedastic or heterosce-

dastic models.

To this aim the following fuzzy distribution functions have been adopted in

practical application:

• triangular symmetric–generic: characterised by the core value, and by equal

width for the right and the left sides;

• triangular symmetric–specific: characterised by the core value, and by the same

widths for the right and the left sides;

• triangular asymmetric–generic: characterised by the core value, and by different

widths for the right and the left sides.

The last allowing to take into account heteroscedasticity between alternative

perceived utilities.
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The parameters, ψ, of the core value function, as well as other parameters for the

fdf (such as the ratio between left and right widths, wL/wR, for asymmetric triangular

fuzzy distribution function), are calibrated trying to reproduce a sample of observa-

tions about user choices (disaggregate) and/or demand flows (aggregate).

Any distance function between observed and modelled values, such as the most

widely used Euclidean one, can express how well the observations are reproduced by

a set of parameters; the minimum of the distance function leads to the estimates of

parameters. (this approach can also be adopted for RUM’s, which are usually cali-

brated through maximisation of log-Likelihood.)

It should be noted that if all the choice possibilities are independent of any linear

transformation of the core value utility, a scale parameter cannot be identified.

As it occurs for models derived from random utility theory, if all the parameters

of the descriptive functions, but the position index, do not depend on the position

index itself, the choice possibilities are independent of any (crisp) linear transforma-

tion of perceived utility, say Ur’¼a+b�Ur, in other word any change of utility origin

or scale does not affect choice shares, as usually assumed in economic-based choice

behaviour theories.

In conclusion, it should be highlighted that FUM have been implemented to mode

choice contexts, but several issues are worth of further research work before a fully

consistent fuzzy utility theory could be considered acquired, namely:

- models resulting from different fuzzy distributions of perceived utility, such as the

beta fdf, which also includes a shape parameter (besides the core, the left and the

right widths), but requires a numerical computation of UMAX;

- fuzzy vector distributions to model similarity between perceived utility of pairs of

alternatives,

- analysis of mathematical features, such as continuity and monotonicity, of choice

fractions from FUM against core values;

- calibration method;

- algorithms for application.

Finally, specific solutions should be formulated for modelling the correlation across

perceived utilities (usually related to alternatives that are similar and/or that share

same characteristics) and/or the correlation over time of user choices.
A.5 Neural network for modelling traveller’s choice
A different approach to travel demand and to travel choice analysis based on artificial

neural network models has been proposed by several researchers (a review in

Cantarella and de Luca, 2005a; Karlaftis and Vlahogianni, 2011) and has showed

excellent capability to simulate choice behaviour.

Artificial neural networks (ANNs) were first developed as a simplified model

of the neural tissue which made up animal neural systems. According to this
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biological metaphor an ANN may be considered a modelling function made up of

sub-modelling functions, namely the called neurons, and in this sense it may be con-

sidered a parallel distributed processing (PDP) model. As such they are capable to

generalise a phenomenon starting from experimental input–output pairs of data

(supervised learning).

Formally, a parallel distributed processing (PDP) model is a function made up of

several sub-functions or basic processing units (PUs) working as follows. At each

PU, k, first a linear transformation of the upstream inputs is performed: namely each

received input, xj, is weighted, wjk � xj, all weighted inputs are summed up,
P

j UP k

wjk�xj and added to a constant (usually called bias), bk, leading to zk¼
P

j wjk xj+bk.
Then, an activation function is valued, yk¼φ(zk). Finally, the output value yk is

forwarded to downstream PUs, (Fig. A.2).
Output processing units supply their outputs to the model-user, whilst input pro-

cessing units just receive their inputs from the model-user during the model appli-

cation and forward them to the downstream PUs without any transformation (so

far, they actually do not perform any process). All the other PUs are called hidden
processing units, since the model-user does not see them (of course the model-

builder is well aware of them). The layouts can be described by a digraph, with a

node for each PU, and an arc for each pair of connected PUs.
A multilayered feedforward network (MLFFN) is obtained when the layout can

be described by a multi-level graph, where all PUs are grouped into layers, and the

layers are sequentially ordered from the input one to the output one so that each PU is

only connected with all those in the upstream layer (if any) and in the downstream

layer (if any) but not with those in the same layer, Fig. A.3. This architecture is the

most used ANN models for classification and non-linear regression analysis as well

as choice analysis.

According to these assumptions, a MLFFN should be considered a black box

model of the relationship y¼ψ(X; w, b), between attributes X and users’ choices

y, and not an explicit model of the cognitive processes underlying user choices.

Traditional MLFFN does not allow any interpretation, but a possible solution

may be achieved by specifying a utility based lay-out (Cantarella and de

Luca, 2005b).

Indeed, the proposed lay-out is made-up by two intermediate layers besides the

input and output ones (Fig. A.4), expressing the combination of two functions,
FIG. A.2

A processing unit (PU) and its activation function.



FIG. A.4

Utility-based MLFFN architecture.

FIG. A.3

A multilayered feedforward network (K�3�3�3).
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according to the utility-based approach introduced above, with the combination of

two functions:

v¼v(x) utility function: from layer 0 to layer 1.

p¼p(v) choice function: from layer 1 to 3 through 2.

[0] Input layer. This layer contains one PUmj for each attribute j (for instance: travel
time, monetary cost, …) and each alternative m, it simply forwards the input value

xmj (from the data-set given by the model user) to downstream PUs, without

processing it.



FIG. A.5

PU of the utility layer.
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[1] Utility layer. This layer contains one PU m for each mode m, which only

receives input values from the upstream input PUs mj corresponding to the same

alternative m (Fig. A.5). So far the input and utility layers are not fully connected.

Assuming the identity function as activation function, φ(•), the output, vm, is
given by a linear combination of attributes:

vm ¼
X

j
βmj xmj +ASAm

where βmj is the weight associated to the connection between input PUmj (attribute
j for modem) and utility PUm and ASAm is the bias (constant) associated to utility PU

m (named after Alternative Specific Attribute from econometrics).

The provided output vm is formally analogous to commonly adopted utility func-

tion, quoted in the previous sub-section. Once parameters such as weights and biases

have been calibrated they may be given an interpretation.

[2] Hidden layer. The number of PUs in this layer is defined during the model-

building stage. Each PU n in this layer is connected to (receives an input from) each

PUm in the utility layer (Fig. A.6). Assuming an activation function χ(•), common to

all PUs in this layer, the output, yn, is given by:

yn ¼ χ
X

m
γmn vm + cn

� �

where γmn is the weight associated to the connection between utility PU m
(for mode m) and hidden PU n and cn is the bias (constant) associated to hidden

PU n.
It should be noted that the calibrated weights and biases in this layer should

hardly be given a clear interpretation.
FIG. A.6

PU of the hidden layer.



FIG. A.7

PU of the output layer.
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[3] Output layer. This layer contains one PU m for each alternative m, which is

connected to (receives an input from) each PU n in the hidden layer. Assuming an

activation function ψ(•) with values in the range [0,1] and common to all PUs in this
layer, the output, pm, is given by (Fig. A.7):

pm ¼ψm

X
n
δnm yn + bm

� �

where δnm is the weight associated to the connection between hidden PU n and out-
put PU m (for mode m) and bm is the bias (constant) associated to hidden PU n.

According to the proposed lay-out allows both the utility function and the choice

function are explicitly and separately specified, as in random utility models (RUMs)

within an econometric framework.

The specification of a ANN for discrete choice analysis requires to address 3main

issues:

(i) the definition of the choice set,

(ii) the specification of systematic utility function,

(iii) the identification of the most effective choice function (fuzzy distribution

function).
A.5.1 Choice set definition
As regards the definition of the choice set, the same considerations introduced in

Section A.1.1 hold for a the ANN, thus no details are reported. However, it should

be noted that availability may be considered as a PU unit and availability may be

implicitly calibrated into the overall calibration procedure of the ANN model.
A.5.2 Specification and calibration of a neural network model
Given the choice set, R, in order to define a MLFFN model for user choice analysis,

one input processing unit is introduced for each attribute of each alternative, and one

output processing unit, giving a value in the range [0,1], is introduced for each alter-

native. In order to compensate for numerical errors, a normalisation stage is usually

carried out to ensure that the sum of output values (non-negative in any case) over all

the alternatives is equal to one. The input and output layers are connected by one or

more hidden layers.
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The specification of a MLFFN model requires to address the following main

operational issues:

(1) input attributes definition,

(2) selection of MLFFN architecture: general or utility-based,
Besides assigning the meaning of input and output PUs, which depends on

the particular problem at hand, three items should be defined for a complete

specification of a MLFFN:
(a) number of layers, including the input and output ones, as well as some hidden

layers, conventionally numbered from 0 (the input layer) to N (the output layer);

(b) number of PUs for each layer k, say nk;
(c) activation function, usually common to all PUs in the same layer k, say φk(•),

clearly no activation function is associated to PUs in the input layer; commonly

adopted activation functions are:

- linear, say φ(zk)¼α+β zk,
- logistic, say φ(zk)¼1/(1+e-β zk)

- hyperbolic tangent, say φ(zk)¼ (eβ zk - e-β zk)/(eβ zk+e-β zk)

Usually, the parameters of the activation functions, say α and β in the examples

above, are chosen by the model-builder. The MLFFN parameters to be calibrated

include one weight for each connection and one bias for each PU except the input

ones, hence their number is
P

k¼1,N (nk-1 �nk)+
P

k¼1,N nk. Due to the high number

of parameters the possibility of over-fitting should be carefully checked.

Once specified the ANN architecture, the calibration can be schematised in the

following main operational issues:

(1) calibration and validation data-sets definition,

(2) error function to minimise,

(3) parameters (weight and biases) initialisation technique,

(4) number of epochs and of starting conditions (initialisations),

(5) selection of MLFFN architecture,

(6) computation of the parameters for the selected MLFFN architecture.

First of all, the available sample of observations (data-set) has to be split into the

calibration data-set, and the hold-out or validation data-set, which is set aside to carry

out the validation stage, some items should be defined to carry out a calibration. This

stage is very important, since the calibration of a ANN model simultaneously carry

out the validation stage to avoid over-training and over-fitting phenomena.

Secondly, the error function (calibration function) to minimise should be

defined. The calibration function is the mean sum of the squares of differences

(MSE) between the observed and predicted outputs; a (local) minimum can be

found through the back-propagation algorithm, a specific implementation of the

gradient algorithm that duly exploits the structure of the MLFFN by backwards
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updating weights and biases from the output layer to the input layer (different algo-

rithm may be also used).

As many non-linear optimisation problems, MLFFN calibration has to deal with

many local minima due to several reasons, the obtained solution can be greatly

affected by the starting values of weights and biases, thus requires different initia-

lisations of parameters. Since the convergence is not guaranteed when all the weights

are set to the same value, an appropriate weights initialisation can improve both rate

of convergence and precision. Two techniques may be used: random or Nguyen–
Widrow initialisation. The latter distributes the initial weights and bias values for

a layer so that the active region of the layer’s processing units is distributed roughly

evenly over the input space.

Once defined the desired input attributes, then the maximum number of epochs

must be defined, that is the number of copies of the calibration data-set which are

actually used for calibration. An excessively high number of epochs may lead to

over-training, that is, a very close reproduction of calibration data-set with poor gen-

eralisation of validation data-set. Over-training can be prevented by heuristic tech-

niques or by the Early Stopping criterion that stops the calibration when the error,

computed on a limited data set, increases. Then, the number of repetitions of the

back-propagation algorithm with different starting conditions should also be defined.

Clearly the higher the number of repetitions the more likely a good approximation of

the global minimum is obtained. This approach leads to several values for calibration

parameters, the values corresponding to the best value of the calibration function are

usually adopted during the applications.

Generally, it can be useful to adopt techniques to deal with over-fitting (such as

the well-known heuristic criteria, weight decay technique or pruning techniques),

that is, the MLFFN is able to reproduce well the calibration sample but unable to

generalise new samples. This depends on the whole number of parameters (depend-

ing on the numbers of PUs and hidden layers) which should be much less than the

number of observations in the calibration data-set. Over-fitting may also be affected

by factors causing over-training.

So far different architectures should be calibrated with different number of

epochs (usually from 50 to 5000) and different number of starting conditions

(e.g. from 10 to 200). It should be noted that each starting condition leads to a

different set of parameters, still the values of the calibration function (MSE) can

be quite similar, in other words different sets of parameters may show similar

reproduction capability.

The MLFFN architecture is selected among all instances obtained by varying the

number of hidden layers (e.g. 1, 2, 3), the number of processing units per layer (e.g.

from 10 to 50), and the activation function per processing unit (e.g. linear, hyperbolic

tangent and sigmoid functions, usually common to all processing units in the same

layer). It should be recalled that to each instance is associated a different set of

parameters for each starting condition.

Generally, an architecture should be preferred when it shows:
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(a) Good reproducibility, as measured by the error between observations and

simulated values for the calibration data-set,

(b) Good generalisation, as measured by the error between observations and

simulated values for the validation data-set (using parameters obtained from

calibration).

(c) Low dependency on starting conditions, as measured by the dispersion of error

between observations and simulated values for the calibration data-set over the

starting conditions. Several indices may be adopted to describe the above

criteria, for instance: mean square error between the user observed mode choice

fractions and the simulated ones (over the calibration or the validation data-

sets), measures of reproducibility, measures of generalisation, etc.

Usually, a multi-criteria technique can be applied based on the three criteria above

introduced. First, non-dominated (Pareto-optimal) architectures are devised, then

criteria are normalised over the range [0,1], finally an architecture is selected through

the least-distance-from-origin criterion. More sophisticated selection criteria could

be implemented.

Once a MLFFN architecture has been selected during the previous step, for each

starting condition a different set of parameters is obtained by applying the calibration

algorithm, as already pointed out. A set of parameters must be selected to apply the

calibrated and validated model to any scenario. The most adopted approach is also

the simplest one: just select the set of parameters with the best value of error function.

Other approaches may consist in selecting a combination of sets of the obtained

parameters.
A.5.3 Validation
Due to the high number of parameters of an MLFFN as well as its flexible structure,

the validation stage plays a very relevant role in checking whether generalisation vs.

reproduction of observations is obtained. To this end, an in-depth validation analysis,

as previously introduced, should be carried out. An effective approach is the boot-

strap technique that re-samples data from the original calibration sample many times

in order to generate an empirical distribution of the calibration error. However, the

validation of an ANN model outputs can be carried out through some of the indica-

tors proposed in section 2.4.
A.6 Summary
A.6.1 Major findings
This chapter presented a general overview of the possible approaches for modelling

disaggregate travel behaviour with special attention to route choice modelling. In

particular, three theoretical paradigms are discussed: the consolidated Random
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Utility behavioural paradigm, the Fuzzy Utility behavioural paradigm and the not-

behavioural paradigm based on artificial neural network models.

First, random utility theory (RUT) is introduced and all the issues regarding the

specification, calibration and validation of a random utility model (RUM) are

addressed. Two relevant choice dimensions are discussed in details: route and depar-

ture time choice. Route choice process are analysed by distinguishing the different

types of choice that a user may be called to take; indeed, the following issues are

addressed: pre-trip choices, en-route choices, reaction to information, switching

behaviour. For each of the above-mentioned choice problems, the most adopted

RUMs are formalised and discussed.

Then, fuzzy utility theory, though not yet widely applied in practice, represents an

alternative paradigm that explicitly allows to interpret and quantify a different type

of uncertainty. Fuzzy utility models represent a potential alternative to RUMs for

simulating choice behaviour, but also a reference approach to understand if and

how a different type of uncertainly may lead to most performing models and/or to

different interpretation of the choice process determinants.

ANNmodels are a powerful tool to predict users’ behaviour and represent a bench-

markmodelling solution for the above-mentioned utilitarian paradigms. Their use may

be rather effective in those choice contexts in which choice behaviour may rapidly

change and the choicemodel parameter’smay require to be continuously, or frequently,

updated. Finally, a general protocol for validating any choice model is presented.
A.6.2 Further readings
The chapter does not aim to cover all the possible paradigms and all the possible

route choice models, but those paradigms that can be easily embedded into the math-

ematical framework proposed in the book. Indeed, the literature of the past decade is

rich of several and different interpretative and theoretical paradigms, also fruitfully

applied to disaggregate (discrete) choice modelling.

For a general and comprehensive framework on choice modelling and on all the

related issues, the reader may refer to the contributions by Luce (1959), Domencich

and McFadden (1975), Daganzo (1979), Ben-Akiva and Lerman (1985), Klir and

Wierman (1999), Hensher and Button (2000), Louviere et al. (2000), McFadden

(2001), Washington et al. (2003), Train (2009), Cascetta (2009), and Rasouli and

Timmermans (2015).

With regard to route choice modelling, different models, not introduced in this

chapther, have been proposed within the RandomUtility paradigms and can be worth

of interest: the paired combinatorial logit model (Chu, 1989), the link-Nested Logit

(Vovsha and Bekhor, 1998), the path-size Logit (Ben-Akiva and Bierlaire, 1999), the

implicit availability perception Logit (Cascetta and Papola, 2001; Cascetta et al.,

2002),the quantum utility models (Vitetta, 2016), the CoRum (Papola, 2016). How-

ever an interesting state of art can be found in Prashker and Bekhor (2004).

Recently different theoretical paradigms have been investigated and applied

to discrete choice issues: the Prospect theory (Katsikopoulos et al., 2000;
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Avineri and Prashker, 2004; Gao et al., 2010; de Luca and Di Pace, 2015); Elimina-

tion by Aspects theory (Tversky, 1972a,b; Batley and Daly, 2003; the Random

Regret minimisation framework (Chorus et al., 2008; Prato, 2013; Mai et al., 2017).

A.6.3 Remarks (G. E. Cantarella)
Some choice modelling approaches assume that all sources of uncertainty are neg-

ligible, thus all users travelling between o–p pair i follow maximum utility routes,

and do not use at all any of the other routes. In this case, a route r can be used only

if, from among the set of alternative routes, its utility vr is the max. This approach

does not provide a unique route choice probability vector, except when there is a

unique maximum utility route.

This user choice behaviour modelling approach (cfr Wardrop, 1952) may be

obtained from Deterministic Utility Theory, or as a limit of random/fuzzy utility the-

ory when dispersion goes to zero, as well as from the expected utility theory, where

perceived utility is modelled by a random variables but users are assumed choosing

according the expected values of the perceived utility. Although these choice models

are less realistic than probabilistic models, for computational reasons they are often

applied to very large networks with implicit route enumeration.

In this case, as noted above, the route choice function p¼p(v; θ) is actually a

multi-valued function (also called a one-to-many or a point-to-set function or a

map), since it may well be the case that the systematic utility values of two or more

routes are equal to the maximum. A different approach is often followed to avoid this

kind of functions. Let.

pD(v)�0 be any of the route deterministic choice proportion vectors correspond-

ing to systematic utility vector v with 1T pD(v)¼1; for any route r

if vr < vmax thenpr ¼ 0, if pr > 0 then vr ¼ vmax

[The case pr¼0 with vr¼vmax it is not ruled out by this condition.] From the above

condition, for any systematic utility vector v, pD¼pD(v) is equivalent to the follow-

ing condition (see Appendix A for more details):

vT � pD�qð Þ� 08q� 0with1T q¼ 1
A.7 Mathematical notes (G. E. Cantarella)
A.7.1 Mathematical properties of random or deterministic utility
models
Several useful mathematical properties of random or deterministic utility models can

be proved as shown below (reported proofs are adapted from Cantarella, 1997, see

also Daganzo, 1979). The expected maximum perceived utility (EMPU) variable, s,
may associated to any random utility models, it is defined as the expected value of

perceived utility over the alternatives available in the choice set:
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s¼ s Uð Þ¼E maxr Uð Þ½ � ¼E max v+ ξð Þ½ � ¼
ð

…

ð

…

ð
max v + ξð Þ f ξð Þ dξ

The EMPU is a function of the systematic utilities of all the alternatives, vector v, and

that it depends on the joint probability density function of the random residuals, f(ξ),
as well as on the composition of the choice set R.

The EMPU is always greater than or equal to the maximum systematic utility:

s vð Þ� max vð Þ
¼

Indeed, by definition,
ð ð
s vð Þ¼
ε1:… εm

max v+ ξð Þ f ξð Þ dξ

and since f(ξ) �0 and max(v + ε) � Vr + εr 8 r2R, it follows that:

s vð Þ¼
ð
ε1…

ð
εm

max v+ ξð Þ f ξð Þdξ

�
ð
ε1…

ð
εm

vr f ξð Þdξ+
ð
ε1…

ð
εm

ξr f ξð Þdξ

¼ vr

ð
ε1…

ð
εm

f ξð Þdξ+
ð
ε1…

ð
εm

ξr f ξð Þdξ

vr + E ξr½ � ¼ vr8h2R

Therefore s(v) is greater than or equal to the largest systematic utility, s(v)�Vh 8h2R.
In addition, the mean systematic utility, calculated by weighing the systematic

utility of each alternative r by its respective choice probability pr(v), is less than

or equal to the EMPU variable. From the previous expression, it follows that:

p vð ÞT v¼Σr pr vð Þ vr �Σr pr vð Þ max vð Þ¼ max vð Þ� s vð Þ
Writing the EMPU variable for a MNLmodel with constant parameter θ, other prop-
erties can be derived. Indeed, since the EMPU variable for MNL can be written in the

following closed-form formulation (also known as logsum variable)

s vð Þ¼ θ lnΣr exp vr=θð Þ
It is important to note that the EMPU increases if the systematic utility of one or more

alternatives increases since the functions ln(�) and exp(�) are both monotonic increas-

ing. Furthermore, because of the non-negativity of the exponential function, the

EMPU increases with the number of available alternatives. In fact, the addition of

a new alternative to the choice set results in an increase in the EMPU even if the

new alternative has a systematic utility less than that of the alternatives already
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available. This is because of the randomness of perceived utilities: there is a positive

probability that the new alternative will be perceived as having a utility greater than

that of any other alternative.

These properties of EMPU, directly derived here for the MNL model, also apply

to the larger class of invariant random utility models. Recall that, for these models,

the density function of the random residuals does not depend on v.
Moreover, if the joint density function of the random residuals f(ξ) is continuous

with continuous first derivatives, the choice probabilities p(v) and the EMPU s(v) are

also continuous functions of v with continuous first derivatives. All random utility

models described in theprevious sections satisfy these continuity requirements.Under

these assumptions, invariant random utility models share a number of general math-

ematical properties that are connectedwith the ExpectedMaximumPerceivedUtility.

In particular, the following properties are worth of interest for the aims of the book.

(1) The partial derivative of the EMPU with respect to the systematic utility vr is

equal to the choice probability of alternative r:

∂ s vð Þ=∂ vr ¼ pr vð Þ
The gradient of the EMPU is thus equal to the vector of choice probabilities:

rs vð Þ¼ p vð Þ
and its Hessian is equal to the Jacobian of choice probabilities:

Hess s vð Þ½ � ¼ Jac p vð Þ½ �
Indeed, for a continuous function with continuous first derivatives, the integration and differentia-

tion operators can be exchanged:
∂ s vð Þ=∂ vr ¼ ∂

ð
ε1…

ð
εm

max v+ ξð Þ f ξð Þdξ
� 	

=∂ vr ¼
ð
ε1…

ð
εm ∂ max v+ ξð Þ=∂ vrð Þ f ξð ÞdξÞ

Since ∂ max(v+ξ)/∂ vr¼1 for r such that (vr+ξr)¼max (v+ξ), ¼ 0 otherwise, the integral is

equal to the probability that the perceived utility of alternative r, vr+ξk, is the largest among all them
alternatives available. This result can be checked immediately for the Multinomial Logit model, for

which the EMPU can be differentiated analytically.
Furthermore, since the choice probability pr is always greater than or equal to

zero, it can be easily demonstrated that the derivative of the EMPU with respect

to the systematic utility is always non-negative: the EMPU increases (or does not

decrease) as the systematic utility of each alternative increases and, by extension,

as the number of available alternatives increases.

(2) The EMPU function is convex with respect to v, the vector of systematic

utilities.
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Indeed, for each ξ, f(ξ)�0 and max(v+ξ) is a convex function of v; it follows that the Expected

Maximum Perceived Utility function s(v) is a linear combination with non-negative coefficients
of convex functions, and therefore is convex too. By virtue of this property, the EMPU function

has a Hessian matrix, Hess(s(v)), which is (symmetric and) positive semidefinite. Consequently,

the Jacobian of choice probabilities, Jac(p(v)), is (symmetric and) positive semidefinite.
(3) If the EMPU function is continuous and differentiable then:

s v’ð Þ� s v”ð Þ+ p v”ð ÞT v’2v”ð Þ8v’,v” (a)

and the choice probabilities are monotonic increasing functions of the systematic

utilities.

p v’ð Þ�p v”ð Þð ÞT v’�v”ð Þ� 08v’,v” (b)
Indeed, because the EMPU function is convex and differentiable, it follows that:
s v’ð Þ� s v”ð Þ+rs v”ð ÞT v’2v”ð Þ8v’,v”
and its gradient must be an increasing monotonic function:

rs v’ð Þ�rs v”ð Þð ÞT v’2v”ð Þ� 08v’,v”
The two preceding expressions can be also formulated in terms of the vector of choice

probabilities:

s v’ð Þ� s v”ð Þ� p v”ð ÞT v’2v”ð Þ8v’,v”

s v”ð Þ� s v’ð Þ� p v’ð ÞT v”2v”ð Þ8v’,v”
Summing the last two inequalities yields:

0� p v”ð ÞT v’2v”ð Þ+ p v’ð ÞT v”2v”ð Þ8v’,v”
from which Eq. (a) is easily obtained.
Eq. (b) can be expressed for a single alternative, assuming that the systematic

utilities of all other choice alternatives are constant:

pr vr’ð Þ� pr vr”ð Þ if vr’� vr”

In other words, the choice probability of a generic alternative does not decrease as its

systematic utility increases, if all the other systematic utilities remain unchanged.

Using an analogous argument it can be demonstrated that, as vr tends to minus infin-

ity, the choice probability of alternative r tends to zero.

The deterministic choice model satisfies condition invariant models. If there are

two or more alternatives with (equal) maximum systematic utility, there are infinitely

many choice probability vectors satisfying the above conditions. In this case, the
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relation p(v) is not a function, but a one-to-many map. Let pD(v) be one of the pos-

sible choice probability vectors corresponding to vector v through the deterministic

choice map.

The following necessary and sufficient condition guarantees that a probability

vector p* (with p*�0 and 1Tp*¼1) is a deterministic choice probability vector:

p∗¼ pD vð Þ, vTp∗¼ max vð Þ1Tp∗¼ max vð Þ
Given a vector of deterministic probabilities p*¼pD(v), it follows that v

Tp*¼max

(v) since pr* can be positive only for an alternative r having maximum systematic

utility, and conversely. Furthermore, the condition 1Tp*¼1 implies that max(v)

1Tp*¼max(v).

In general, for any vector of choice probabilities p, since 1Tp¼1 then, as

observed earlier:

vTp� max vð Þ1Tp¼ max vð Þ8p : p� 0,1Tp¼ 1

Therefore, equality holds in the above relationship only for a vector of deterministic

probabilities. Combining the two above relationships, the following basic relation-

ship can be obtained:

v� max vð Þ1ð ÞT p�pD vð Þð Þ� 08p : p� 0,1Tp¼ 1

The deterministic utility model has properties (2) and (3) described above for prob-

abilistic and invariant models. Regarding property (2), the Expected Maximum Per-

ceived Utility of a deterministic model is a convex function of systematic utilities and

is equal to the maximum systematic utility.

s vð Þ¼ max vð Þ¼ pD vð ÞT v
This condition implies that, for a given vector of systematic utilities v, the

EMPU of a deterministic choice model is less than or equal to that of any prob-

abilistic choice model involving the same systematic utility. A behavioural inter-

pretation of this result suggests that the presence of random residuals makes the

perceived utility for the chosen alternative, on average, larger than the alterna-

tive’s systematic utility, which is the perceived utility in a deterministic

choice model.

Regarding property (3), the deterministic choice map is monotone non-

decreasing with respect to systematic utilities, just as are invariant probabilistic

choice functions.

s v’ð Þ� s v”ð Þ� pD v”ð ÞT v’2v”ð Þ8v’,v”

s v”ð Þ� s v’ð Þ� pD v’ð ÞT v”2v”ð Þ8v’,v”
or

pD v’ð Þ�pD v”ð Þð ÞT v’�v”ð Þ� 08v’,v”
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Indeed, max(v0)¼ (v0)T pD(v0) and max(v00)¼ (v)TpD(v
00). Subtracting the last two equations term by

term gives:
max v0ð Þ�max v00ð Þ ¼ v0ð ÞT pD v0ð Þ� v00ð ÞTpD v00ð Þ (c)

Since:

v0ð ÞT pD v0ð Þ¼ max v0ð Þ� v0ð ÞT p8p
for p¼pD(v

00) it follows that:

v0ð ÞTpD v0ð Þ� v0ð ÞT pD v00ð Þ
from which:

v0ð ÞTpD v0ð Þ� v00ð ÞTpD v00ð Þ � v0ð ÞT pD v00ð Þ� v00ð ÞTpD v00ð Þ (d)

Therefore, combining Eqs. (c), (d) yields:

max v0ð Þ�max v00ð Þ � v0 �v00ð ÞT pD v00ð Þ
as above for random utility models.
A.7.2 Modelling uncertainty
Some approaches to uncertainty modelling are briefly reviewed below, for more

details see for instance:

Klir, G.J., Yuan, B., 1995. Fuzzy Sets and Fuzzy Logic: Theory and Applications.

Prentice Hall, Upper Saddle River, NJ.

Klir, G.J., Wierman, M.J., 1999. Uncertainty-Based Information. Physica-

Verlag, Heidelberg, New York.

Fuzzy and crisp sets
A set is a collection of elements, taken from a universe class, that show a relevant

feature, with reference to the problem at the hand. Let.

X be the universe class, containing all relevant values, for instance the set of

real numbers R, or any n-dimensional extension Rn;

∅ be the empty set, assumed included within the universe class, as denoted by

∅	X;
x, y be elements of the universe class, as denoted by x 2 X, y 2 X;
A, B be sets containing elements of the universe class, as denoted by A	X,

B	X.

Each fuzzy set within the universe class, A	X, may be described by a membership
function: μA(x): X! [0, 1], which gives the membership grade of element x within

set A. If the membership function may take only binary values 0 / 1, it is also called

a characteristic function, χA(x): X!{0, 1}, and the corresponding set is

called crisp. A set A is said a subset of set B, as denoted by A	B, if A¼A \ B
or μA (x)�μB (x) 8x.
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Three basic operations can be defined on sets (all the other set operations can be

obtained by duly combining them):

C¼�A or ¬A complement of set A (with respect to the universe class X), in
this case

μ¬A (x)¼1 - μA (x);

C¼A [ B union of sets A e B, with μC (x)¼max{μA (x), μB (x)};

C¼A \ B intersection of sets A e B, with μC (x)¼min{μA (x), μB (x)}.

Moreover, the Zadeh extension principle makes possible to extend any function on

real numbers to a function on fuzzy quantities.
Monotone set measures
The degree of uncertainty about how much an uncertainly defined object satisfied a

feature expressed by a crisp set can be described by a monotone set measure. [The
use of term fuzzy set measures use sometimes may be misleading since no fuzzi-

ness is modelled by these set measures.] Two well-known examples of such a mea-

sure are possibility-necessity and probability measures, special case of measures

defined within the (Dempster-Shafer) evidence theory. Their main features are

briefly reviewed below (for simplicity’s sake max denotes both usual max or

sup operators).
Possibility-necessity measures
 Probability measures
Pos(A), Nec(A) (uncertainty as imprecision)
 Pro(A) (uncertainty as dispersion)
Pos(A) 2 [0, 1], with Pos(X)¼1 and
Pos(∅)¼0
Pro(A) 2 [0, 1], with Pro(X)¼1 and
Pro(∅)¼0
A	B)Pos(A)�Pos(B)
 A	B)Pro(A)�Pro(B)
Nec(A)¼1 – Pos((¬A)
 Pro(A)¼1 – Pro(¬A)
Pos(A [ B)¼max{Pos(A), Pos(B)}
 Pro(A [ B)+Pro(A \ B) ¼ Pro(A)+Pro(B)
Nec(A \ B)¼min{Nec(A), Nec(B)}
Normalisation:
 Normalisation:
max{Pos(A), Pos(¬A)}¼1
 Pro(A)+Pro(¬A)¼1
With Pos(A)+Pos(¬A)�1
 With max{Pro(A), Pro(¬A)}�1
Monotone set measures can be applied to fuzzy set too.
Uncertain numbers
According to above introduced monotone set measures, a real uncertain number
U can be described by two types of variables; main features of their descriptive

functions are briefly presented below.
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Fuzzy numbers (f.n.) U
 Continuous random variables (r.v.) U
Described by a fuzzy distribution function
 Described by a probability density function
μU(x) 2 [0,1], with
 ϕU(x) 2 [0,+∞)
{x2X j μU(x)>0} bounded
{x2X j μU(x)¼α} closed and convex
8α2(0,1]

Normalisation:
 Normalisation:
maxx2X μU(x)¼1

Ð
X ϕU(x) dx¼1
Relationship with possibility measures:
 Relationship with probability measures:
Pos(U¼x)¼μU(x)
 dPro(U¼x)¼ϕU(x) dx
Pos(U2 [a,b])¼maxx2[a,b] μU(x)
 Pro(U 2 [a,b])¼ Ð
[a,b] ϕU(x) dx
It is usually assumed that functions μU(x) and ϕU(x) are continuous over the sup-
port set, say {x2X j μU(x)>0} or {x2X j ϕU(x)>0} respectively. A special case is

obtained when the object can precisely be defined, say U¼v, with
Crisp numbers:
 Deterministic variables:
μU(v)¼1, μU(x)¼0 8 x 6¼v x2X
 ϕU(v)¼1, ρϕU(x)¼0 8 x 6¼v x2X
For random variables it is common practice to use the mean (value):

v¼
ð

X

xϕU xð Þ dx

as a position index (less used are the mode and the median), as well as the variance:

σ2 ¼
ð

X

x� vð Þ2 ϕU xð Þ dx

(or derived indices) as a variability index.

For fuzzy numbers a central value v can be defined by the barycentre of μU(x) or
by the core value, equal to middle point of the core set of μU(x)

y : μU yð Þ¼ maxx2X μU xð Þ¼ 1f g¼ u1, u2½ �
Clearly, if μU(x) is symmetrical, the central value and the core value are equal.

(Sometimes a fuzzy number with a non-singleton core set is called a flat fuzzy

number or better a fuzzy interval). The area of below μU(x),

ω¼ χδ
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can be used as variability index, it is given by the product of the highness, equal to 1
due to normalisation, say the extension of the support set δ, and a factor, χ2[0,1],
depending on the shape of μU(x), (for instance χ¼½ for a triangular fuzzy numbers).

The possibility that two fuzzy numbers U and T are equal is given by:

Pos U¼Tð Þ¼ maxx min μU xð Þ, μT xð Þf g
The possibility that the (fuzzy) maximum, MAX(U,T), of two fuzzy numbers, U and

T, gets a value equal to z is given by:

Pos MAX U, Tð Þ¼ zð Þ¼ μMAX U, Tð Þ zð Þ¼ maxz¼max x, yð Þ min μU xð Þ, μT yð Þf g
Several properties hold for MAX operator, idempotence, MAX(U, U)¼U, commu-

tativity, MAX(U, T)¼MAX (T, U), and associativity, MAX(U, MAX(T, S))¼
MAX(MAX(U, T), S). Associativity allow to extend the MAX operator to more than

two numbers (the general expression is not reported for brevity’s sake). It is also

worth noting that the features of the MAX operator assure that the results is a fuzzy

number (say maxx2X μUMAX(x)¼1).

Possibility values given by the fuzzy distribution function of a fuzzy number can

be transformed into choice proportions through uncertainty preserving transforma-

tion, see above quoted references for details.
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The enjoyment of scientific research also means coming up against obstacles to overcome,

coming up with even better investigation tools and even more complex theories while

endeavouring to always move forward despite knowing that we will likely get closer to

comprehending reality, without ever fully being able to understand it.
Margherita Hack

Outline. Preliminary studies on traffic flow theory may be found in literature since

1930s (Greenshields, 1935) as the congestion phenomena increased due to the impact

of vehicles interactions.

In the first part of the appendix the observable variables will be initially defined and

then the relationships between them and models are introduced and analysed. In par-

ticular phenomena along links (running links) are discussed in accordance with the

uninterrupted flow theorywhilst queuing phenomena are analysed in accordancewith

the interrupted flow theory (queuing links). Depending on the nature of the input vari-
ables, stationary and non-stationary conditions may be identified then phenomena

respectively related to the running and queuing links are analysed with respect to each

one of two conditions.

The second part of the appendix focuses on non-stationary models. The

approaches classification is based on the level of aggregation of traffic flow

variables; in particular, as discussed in more detail in Section B.2, users and supply

variables are distinguished in aggregate or disaggregate.

Firstly macroscopic models may be identified in which users’ behaviour variables

are aggregate (arc density or entry flows can be obtained from the vehicle position on

the arc) as well as level of service variables (space mean speed, arc performance func-

tions are derived from fundamental diagram). Furthermore they may be classified in

accordance with time and space. Then there are the mesoscopicmodels in which users’

behaviour variables are disaggregate (packets of users or single users are considered;

arc density or entry flows can be obtained from packets/users position on the arc) and
265
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the level of service variables are aggregate (such as spacemean speed; arc performance

functions are derived from the fundamental diagram).

Finally, microscopic models able to describe traffic flow dynamics in terms of a

single vehicle may be identified. Indeed, in this models users’ behaviour variables

are disaggregate (single users are considered; link density or entry flows can be

obtained from the users’ position on the link) as well as the level of service variables

(time speed and link performance functions are derived from the drivers’ behaviour

models such as car-following models).

In the perspective of extended applications, each model is also analysed with

respect to the network equations that are introduced in order to define the outflow

rates from incoming links at each node within the network.

The chapter is organised as follows. First we introduce basic notations and defini-

tions in Section B.1, by distinguishing stationary from non-stationary models then we

discuss each class of non-stationary models; in particular in Sections from B.2 to B.4

macroscopic models are analysed, whilst mesoscopic and microscopic models are

respectively displayed in Sections B.5 and B.6.

Finally it must also be highlighted that some of the symbols adopted in this

appendix will appear with a different meaning from the rest of the book chapters.
B.1 Basic TFT
The first aim of the section is to provide an overview of the main observable variables

describing the running and queuing phenomena. Then the variables classification

will be related to the running and queuing links. Starting from these observable vari-

ables and depending on nature, stationary or non-stationary, of the input variables,

two classes of models are presented: steady state and non-steady state models.
Main variables are enlisted below in alphabetical order for reader’s convenience

(notations come first, then Roman letters, at last Greek letters):

a is an index denoting a arc;

Cap is the capacity of the road measured in vehicles per unit of time;

f is the flow measured in vehicles per unit of time;

fK is the equilibrium flow as a function of density speed;

fIN is the entering flow;

fOUT is the exiting flow during;

fV is the equilibrium flow as a function of density speed;

h is an index denoting the headway between successive users measured in time

per unit of vehicle;

i is an index denoting an observed vehicle/user;

k is the density measured in vehicles per unit of length;

l is the length of road segment;

la is the length of road segment corresponding to arc a;
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m is the number of vehicles traversing a point in a time interval;

n is the number of vehicles between two points at a given time;

p is the pressure term reflecting the speed variance and then the effect of different

vehicles;

s is the spacing between vehicles at a given time;

t is the time at which the system/traffic is observed;

tsi is the service time of user i;
twi is the total waiting time of user i;
u(t) is the function representing the vehicles cumulative arrival function;
v is the speed measured in space per unit of time;

v0 is the free flow speed measured in space per unit of time;

vi is the speed of vehicle i measured in space per unit of time;

vk is the equilibrium speed as a function of density k;
vS is the space mean speed, among all vehicles between two points at a

given time;

vT is the time mean speed, among all vehicles crossing a point during time

interval.

w(t) is the function representing the vehicles cumulative departure function.
x is a point along an arc, or rather, its abscissa increasing (from a given

origin, usually located at the beginning of the arc) along the traffic direction

(s 2 [0, la]);
τ is the relaxation time representing the aggressiveness of drivers;

Δt is the time variation;

Δx is a position variation;
φ diffusion term in Payne’s model.
B.1.1 Fundamental variables
Running links
Running links are introduced in order to describe the vehicles interactions along links;

indeed vehicles using the same linkmay interact with each other and the level of inter-

action depends on the demand. In particular, if the demand is great enough that the

interaction may affect the link performances in terms of mean speed and travel time

the congestion phenomenon may occur.

In general, modelling may be based on deterministic or stochastic approaches

depending; it is very often sufficient to adopt the aggregate deterministic models

described below in case of running links whilst stochastic models may also be used

in case of queuing representation in order to characterise an interaction event that

causes a delay in a probabilistic sense.

The observable variables will be initially defined and then the relationship

between some observed variables and uninterrupted flow models in stationary and

non-stationary conditions will be introduced.
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Let us consider a road infrastructure which may be represented by a segment,

several variables may be referred to the arc and representing the vehicles moving

along a road segment. In particular, for traffic observed at time t in a road segment

[x, x+Δx] the variables to be defined are:

si(t) the spacing between vehicles i and i � 1 at time t; that is the front spacing
vehicle to vehicle at time t;

n(t; x, x+Δx) the number of vehicles at time t between points x and x+Δx;
s(t)¼Σi¼1, …,n si(t)/n(t; x, x+Δx) the mean spacing, among all vehicles between

points x and x+Δx at time t; and
vi(s, t) the speed of vehicle i at time t while traversing point (abscissa) x;

For traffic observed at point s during time interval [t, t+Δt], several variables can be
defined:

hi(x) the headway (temporal spacing) between vehicles i and i � 1 crossing

point x;
m(x; t, t+Δt) the number of vehicles traversing point x during time interval

[t, t+Δt];
h(x) ¼ Σi¼1,…,m hi(x)/m(x; t, t+Δt) the mean headway, among all vehicles

crossing point x during time interval [t, t+Δt];
vS(t) ¼ Σi¼1,…,n vi/n(t; x, x+Δx) the space mean speed, among all vehicles

between points x and x+Δx at time t.
vT(x) ¼ Σi¼1, …,m vi (x)/m(x; t, t+Δt) the time mean speed, among all vehicles

crossing point y during time interval [τ, τ+Δt].

Some other relationships may be defined:

f(x; t, t + Δt)¼ m(x; t, t + Δt)/Δt is the flow of vehicles crossing point x during
time interval [t, t + Δt], measured in vehicles per unit of time;

k(t; x, x + Δx)¼ n(t; x, x + Δx)/Δx is the density between points x and x + Δx at
time t, measured in vehicles per unit of length.

Regarding the variation in the number of vehicles between points x and x+Δx during
Δt and the variation in the number of vehicles during time interval [t, t + Δt] over
space Δx they may be respectively represented as in the following:
Δn(x, x + Δx; t, t + Δt) ¼ n(t + Δt; x, x + Δx) � n(t ; x, x+ Δx);
Δm(x, x + Δx; t, t + Δt) ¼ m(x + Δx ; t, t + Δt) � m(x ; t, t + Δt);
thus the general the flow conservationmay be formulated in accordance with the flow
conservation equation as follows:

n t; x, x+Δxð Þ+m x; t, t+Δtð Þ¼m x+Δx; t, t+Δtð Þ+ n t+Δt; x, x +Δxð Þ (B.1)
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Furthermore let.

Δz(x, x + Δx, t, t + Δt) be the number of entering minus exiting vehicles (if any)

during time interval [t, t + Δt], due to entry/exit points (e.g. on/off ramps), between

points x and x+Δx the flow conservation equation may be generalised as

Δn x, x+Δx, t, t+Δtð Þ+Δm x, x+Δx, t, t+Δtð Þ¼Δz x, x+Δx, t, t+Δtð Þ (B.2)

Furthermore, let

Δf(x, x + Δx, t, t + Δt) ¼ Δm(x, x + Δx, t, t + Δt)/Δt be the variation of the flow

over space;

Δk(x, x + Δx, t, t + Δt)¼ Δn(x, x + Δx, t, t + Δt)/Δs be the variation of the density
over time.

Δe(x, x + Δx, t, t + Δt) ¼ Δz(y, x + Δx, t, t + Δt)/Δt be the (net) entering/

exiting flow.

if the general flow conservation Eq. (B.2) is divided by Δt, it may also be

rewritten as:

Δn=Δt+Δf ¼Δe (B.3)

and finally if the equation is divided again by Δs it may be rewritten as

Δk=Δt+Δf=Δx¼Δe=Δx (B.4)

Queuing links
The average delay experienced by vehicles that queue to cross a flow interruption

point (intersections, toll barriers, merging sections, etc.) is affected by the number

of vehicles waiting. This phenomenon may be analysed with models derived from

queuing theory, developed to simulate any waiting or user queue formation at a

server (administrative counter, bank counter, etc.). Below the subject is treated with

reference to generic users, at the same time highlighting the similarities with

uninterrupted flow.

The main variables that describe the queuing phenomena are:

hi¼ ti � ti�1 the headway between successive users i and i � 1 joining the queue

at times ti and ti�1;

mIN(t, t+Δt) number of users joining the queue during [t, t+Δt];
mOUT(t, t+Δt) number of users leaving the queue during [t, t+Δt];
h(t, t + Δt) ¼ Σi¼1, …,m hi/mIN(t, t+Δt) mean headway between all vehicles

joining the queue in the time interval [t, t+Δt];
n(t) number of users waiting to exit (queue length) at time t;

With reference to observable quantities, flow variables may be introduced:

fIN(t, t + Δt)¼mIN(t, t + Δt)/Δt arrival (entering) flow during [t, t + Δt];
fOUT (t, t+Δt)¼mOUT(t, t+Δt)/Δt exiting flow during [t, t + Δt];
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Note that the main difference with the basic variables of running arcs is that space

(x, Δx) is no longer explicitly referred to since it is irrelevant. Some of the above

variables are shown in Fig. B.1.
N° of  users

Arrivals

Departures

mIN (t+Dt)

t+Dt t

mOUT (t, t+Dt)

hIN
 i

n(t)

t ti−1
ti

FIG. B.1

Fundamental variables for queuing systems.
B.1.2 Steady-state models
In this section we describe several deterministic models developed under the

assumption of stationarity, running phenomena along links are analysed in

accordance with the uninterrupted flow theory whilst queuing phenomena at

network nodes are analysed in accordance with the interrupted flow theory.
All models are formally presented in each section about running links and

queuing links.

Running links
In formulating such steady state models for running links models it is assumed that

a traffic stream (a discrete sequence of vehicles) is represented as a continuous

(one-dimensional) fluid.

Traffic flow is called stationary during a time interval [t, t + Δt] between points x
and x + Δx under the following conditions.

- flow is (on average) independent of point s, hence f(x; t, t+Δt)¼ f
- density is independent of time t, hence k(t; x, x + Δx)¼k
- time mean speed is independent of location and the space mean speed is

independent of time:

�vT sð Þ¼�vT and �vS tð Þ¼�vS

In the case of stationarity, both terms in the left side of the conservation equation are

identically null, anyhow other flow conservation conditions may be formulated.
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In particular in the case of stationarity

- the number of vehicles crossing each cross-section during time Δt is equal to f Δt;
- the number of vehicles, time-independent due to the assumption of stationarity, on

the stretch of road between cross-sections x and x + Δx, equals k Δx;

vs, the space mean speed of these vehicles on the stretch of road equals to k vs Δt.
Thus the number of vehicles in the stretch of road will be made up of vehicles

entering the section during the time interval Δt and f Δt¼k vS Δt. Hence, under sta-
tionary conditions, if the previous equation is divided by Δt, flow, density and space
mean speed must satisfy the stationary flow conservation equation:

f ¼ k v (B.5)

where v¼ �vS is the space mean speed, simply called speed for further analysis of

stationary conditions.a

Flow and density are related to mean headway and mean spacing through the

following relations:

f x; t, t+Δtð Þffi 1=�h sð Þ and k t; x, x +Δxð Þffi 1=�s tð Þ
thus the stationary conservation equation may be rewritten as follows:

f � 1=�sð Þ v then 1=�hð Þ� k v and �s� �hv:

In stationary conditions, empirical relationships can be observed between each pair

of variables: flow, density, speed. In general, observations are rather scattered (see

Fig. B.2 for an example of a speed-flow empirical relationship) and various models

may be adopted to describe such empirical relationships.

These models are generally given the name fundamental diagram (of traffic flow)
(see Fig. B.3) and are specified by the following relations:

vK ¼ v kð Þ (B.6)

fK ¼ f kð Þ (B.7)

fV ¼ f vð Þ (B.8)

Though only a model representation of empirical observations, this diagram permits

some useful considerations to be made. It shows that flow may be zero under two

conditions: when density is zero (no vehicles on the road) or when speed is zero

(vehicles are not moving). The latter corresponds in reality to a stop-and-go

condition.

In the first case the speed assumes the theoretical maximum value, free - flow
speed, v0, while in the second the density assumes the theoretical maximum value,
a It is worth noting that the time mean speed is not less than the space mean speed, as can be shown

since the two speeds are related by the equation �vT ¼ �vs + σ2/ �vS, where σ
2 is the variance of speed

among vehicles. σ2 ¼ 0, hence �vτ ¼ �vs… var.(v) ¼ Σi¼1..n (vi � v)2/n.
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Fundamental diagram of traffic flow.
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Relationship between speed and flow.
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jam density, kjam. Therefore, a traffic stream may be modelled through a partially
compressible fluid, i.e. a fluid that can be compressed up to a maximum value.

The peak of the speed - flow (and density - flow) curve occurs at the theoretical
maximum flow, capacity,Cap, of the facility; the corresponding speed vc and density
kc are referred to as the critical speed and the critical density. Thus any value of flow
(except the capacity) may occur under two different conditions: low speed and high

density and high speed and low density. The first condition represents an unstable
state for the traffic stream, where any increase in density will cause a decrease in

speed and thus in flow. This action produces another increase in density and so

on until traffic becomes jammed. Conversely, the second condition is a stable state
since any increase in density will cause a decrease in speed and an increase in flow.

At capacity (or at critical speed or density) the stream is non-stable, this being a

boundary condition between the other two.

These results show that flow cannot be used as the unique parameter describing

the state of a traffic stream; speed and density, instead, can univocally identify the

prevailing traffic condition. For this reason the relation vK¼v(k) is preferred to study
traffic stream characteristics.

Mathematical formulations have been widely proposed for the fundamental diagram, based on

single regime or multi-regime functions.
An example of a single regime function is Greenshields’ linear model:

v kð Þ¼ v0 1�k=kjam
� �

or Underwood’s exponential model (useful for low densities):

v kð Þ¼ v0 e
�k=kc:

An example of a multi-regime function is Greenberg’s model:

v kð Þ¼ a1 ln a2=kð Þ for k> kmin

v kð Þ¼ a1 ln a2=kminð Þ for k� kmin

where a1, a2 and kmin�kjam are constants to be calibrated.

Starting from the speed-density relationship, the flow-density relationship, fK ¼ f(k), may be

easily derived by using the flow conservation equation under stationary conditions, or fundamental

conservation equation:

f kð Þ¼ v kð Þ k
Greenshields’ linear model yields:

f kð Þ¼ v0 k�k2=kjam
� �

In this case the capacity is given by:

Cap¼ v0 kjam=4

Moreover the flow-speed relationship can be obtained by introducing the inverse speed-

density relationship: k¼v�1(v), thus

f vð Þ¼ v k¼ v�1 vð Þ� �
v�1 vð Þ¼ v v�1 vð Þ:

For example, Greenshields’ linear model yields: v�1(v)¼kjam (1 � v/v0) thus.

f vð Þ¼ kjam v�v2=v0
� �
Continued
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In general, the flow-speed relationship may be inverted by only considering two different rela-

tionships, one in a stable regime, v2[vc, vo], and the other in an unstable regime, v2[0, vc].
Greenshield’s linear model leads to:

vstable qð Þ¼ v0=2ð Þ 1 + 1�4f= v0 kjam
� �� �� � 1=2ð Þ ¼ v0=2ð Þ 1 + 1� f=Capð Þð Þ 1=2ð Þ

vunstable qð Þ¼ v0=2ð Þ 1� 1� f=Capð Þð Þ 1=2ð Þ

In the particular case that one can assume the flow regime is always stable, with reference to

relation v¼vstable(f) the corresponding relationship between travel time, t, and flowmay be defined as

t¼ t fð Þ¼ l=vstable fð Þ
Other models have been proposed in the literature; these models are listed below with respect

to the speed–density relationship:

Drew :V kð Þ¼ v0 1� k=kjam
� �0:5h i

Greenberg :V kð Þ¼�v∗0 ln k=kjam
� �

Underwood :V kð Þ¼ v0 exp �k=k0½ �
Drake :V kð Þ¼ v0 exp � k=k0ð Þ2=2

h i

The first two models are very similar to Greenshields’s approach and still fail in simulating the

low or critical densities situations. In particular Greenberg’s model is very limited in simulating the

high speed scenarios corresponding to the low density situations. Regarding the Underwood and

Drake models, these consider the density ko in reference to the road capacity.

Greenberg’s model tends towards an infinite value in case of density which tends towards zero

value thus v0/3 (v0∗) is usually adopted in place of v0. In general Underwood and Drake provide a
non-null speed value for kjam.

For allmodels the flowdensity relationshipsmaybe easily derivedbyusing the flowconservation

equation under stationary conditions, or fundamental conservation equation: f(k)¼v(k)k, as in the pre-

vious case of Greenshields’s models.

Queuing links—Deterministic models
In this subsection we describe several deterministic models developed under the

assumption that the arrival flow and the service time are represented by deterministic

variables. The following definitions may be introduced:

ts(t, t+Δt) average service time among all users joining the queue in time interval

[t, t+Δt];
tw(t, t+Δt) average total waiting time among all users joining the queue in time

interval [t, t+Δt];
f(t, t+Δt)¼1/ts(t, t+Δt) the (trasversalb) capacity or maximum exit flow, i.e. the

maximum number of users that may be served in the time unit, assumed

constant during [t, t + Δt] for simplicity’s sake (otherwise Δt can be

redefined).
b In some cases it is also necessary to introduce longitudinal capacity, i.e. the maximum number of

users that may form the queue.
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Regarding the capacity constraint on exiting flow it is expressed by: fOUT� f.
A general conservation equation, introduced for uninterrupted flow, holds in this

case:

n tð Þ�n t+Δtð Þ¼mOUT t, t+Δtð Þ�mIN t, t+Δtð Þ (B.9)

Moreover, dividing by Δt we obtain:

Δn=Δt+ fOUT t, t+Δtð Þ� fIN t, t+Δtð Þ½ � ¼ 0 (B.10)

Deterministic queuing systems can also be analysed through the cumulative number

of users that have arrived at the server by time t, and the cumulative number of users

that have departed from the server (leaving the queue) at time t, as expressed by

two functions termed cumulative arrival function, u(t), that is the cumulative number

of users that arrive and cumulative departure function, w(t) that is the cumulative

number of users that leave constrained to the cumulative arrival function as in the

following:

u tð Þ�w tð Þ

Queue length n(t) at any time t is given by:

n tð Þ¼ u tð Þ�w tð Þ (B.11)

provided that the queue at time 0 is given by n(0)¼u(0)�0 with w(0)¼0. The

arrival and departure functions are linked to entering and exiting users by the follow-

ing relationships:

mIN t, t+Δtð Þ¼ u t+Δtð Þ�w tð Þ (B.12)

mOUT t, t+Δtð Þ¼ u t+Δtð Þ�w tð Þ (B.13)

If during time interval [t0, t0 +Δt] the entering flow is constant over time, fIN(t)¼
� fIN, then the queuing system is named (flow) stationary and the arrival function

u(t) is linear with slope given by �u:

u tð Þ¼ u t0ð Þ+ � fIN t� t0ð Þ t2 t0, t0 +Δt½ �

The exit flow may be equal to the entering flow, �f IN, or to the capacity, Cap, as
described below in more detail.

When the arrival flow is less than capacity, �f IN<Cap, the system is under-sat-
urated and two conditions may occur: (i) the queue length at the beginning of period

is zero or (ii) there is a queue at time t0.
If the queue length at the beginning of period is zero.

n t0ð Þ¼ 0

n tð Þ¼ 0

n tð Þ¼ n t0ð Þ� Cap��f INð ÞΔt and �f OUT ¼�f IN
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If there is a queue at time t0, its length decreases with time and vanishes after a time

Δt¼ t � t0.
Before time t0+Δt, the queue length is linearly decreasing with t and the exiting

flow� fOUT is equal to capacity Cap:

n tð Þ¼ n t0ð Þ� Cap��f INð ÞΔt

fOUT ¼Cap

w tð Þ¼w t0ð Þ+CapΔt (B.14a)

After time t0+Δt the queue length is zero and the exiting flow �f OUT is equal to the

arrival flow �f IN:

n t0 +Δtð Þ¼ 0

�f OUT ¼�f IN

Δt¼ n t0ð Þ= Cap� fINð Þ

w tð Þ¼ u tð Þ¼ u t0ð Þ +�f IN Δt (B.14b)

When the arrival flow rate is larger than capacity, �f IN�Cap, the system is over-sat-
urated. As in case of under-saturated conditions two situations may occur: (i) the

queue length at the beginning of period is zero or (ii) there is a queue at time t0.
If the queue length at the beginning of period is zero

n tð Þ¼ �f IN �Capð ÞΔt0

�f OUT ¼Cap

w tð Þ¼w t0ð Þ+CapΔt0 (B.15a)

If there is a queue at time t0, the queue length linearly increases with time t and the

exiting flow is equal to the capacity Cap

n tð Þ¼ n t0ð Þ+ �f IN �Capð ÞΔt0

�f OUT ¼Cap

w tð Þ¼w t0ð Þ+CapΔt0 (B.15b)

By comparing Eqs (B.14a), (B.14b), (B.15a), (B.15b) it is possible to formulate this

general equation for calculating the queue length at generic time instant t:

n tð Þ¼ MAX 0, n t0ð Þ + �f IN �Capð ÞΔt0ð Þ� 0
� �

(B.16)

With the above results, any general case can be analysed by modelling a sequence of

periods during which arrival flow and capacity are constant.

Finally the delay can be defined as the time needed for a user to leave the system

(passing the server), accounting for the time spent queuing (pure waiting). Thus the

delay is the sum of two terms:

tw ¼ ts + twq (B.17)

where tw is the total delay; ts ¼1/Cap is the average service time (time spent at the

server); and twq is the queuing delay (time spent in the queue).

In under-saturated conditions (�f IN<Cap) if the queue length at the beginning of

period is zero, the queuing delay is equal to zero, twq(�f IN)¼0, and the total delay is
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equal to the average service time: tw¼ ts otherwise twq(�f IN)¼n(t0) Δt0/2 and then tw is
derived.

In over-saturated conditions (�f IN�Cap), the queue length, and respective delay,

would tend towards infinity in the theoretical case of a stationary phenomenon last-

ing for an infinite time. In practice, however, over-saturated conditions last only for a

finite period, T.
If the queue length is equal to zero at the beginning of the period, it will reach a

value (�f IN � Cap) T at the end of the period. Thus, the average queue over the whole

period T is:

�n¼ �f IN �Capð ÞT=2 (B.18)

In this case the average queuing delay is �n/Cap, and the average total delay is

tw �f INð Þ¼ ts + �f IN �Capð ÞT=2Cap (B.19)

Queuing links—Stochastic models
In order to properly apply the deterministic models the simulation interval is usually

discretized in sub-intervals during which it is supposed that the input variables

(flows and capacity) are stationary. However if the flow fluctuations are observed

and then these cannot be modelled through deterministic models, stochastic models

are required.

If the system is under-saturated, it can be analysed through (stochastic) queuing

theory which includes the particular case of the deterministic models already

discussed.

It is particularly necessary to specify the stochastic process describing the

sequence of user arrivals, the sequence of service times and the queue discipline.

Main variables are enlisted below in alphabetical order for reader’s convenience

(notations come first, then Roman letters, at last Greek letters).

fIN, is the arrival rate or the expected value of the arrival flow;

Cap¼1/ts, is the service rate (or capacity) of the system, the inverse of the

expected service time;

fIN /Cap, is the traffic intensity ratio or utilisation factor;

n is a value of the random variable N, number of users present in the system,

consisting of the number of users queuing plus the user present at the server,

if any (the significance of the symbol n is thus slightly different);

tw is a value of the random variable TW, the time spent in the system or overall

delay, consisting of queuing time plus service time.

The queuing discipline:

FIFO¼First In � First Out (i.e. service in order of arrival);

LIFO¼Last In � First Out (i.e. the last user is the first served);

SIRO¼Service In Random Order;

HIFO¼High In� First Out (i.e. the user with the maximum value of an indicator
is the first served).
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The probability density function describing the intervals between two successive

arrivals/departures:

D¼deterministic variable.

M¼negative exponential random variable.

E¼Erlang random variable.

G¼general distribution random variable.

The probability density function describing the intervals between two successive

departures.

The characteristics of a queuing phenomenon can be redefined in the following

concise notation:

a=b=c d, eð Þ
where a denotes the type of arrival pattern represented as already described

above;

b denotes the type of departure represented as already described above; c is the

number of service channels: {1, 2, …}; d is the queue storage limit: {∞, nmax} or

longitudinal capacity; and e denotes the queuing discipline represented as already

described above.

Fields d and e, if defined respectively by ∞ (no constraint on maximum queue

length) and by FIFO, are generally omitted.

In the following we will report the main results for the M/M/1 and the M/G/1
queue systems, which are commonly used for simulating transportation facilities,

such as signalised intersections.

Some definitions or notation differ from those traditionally adopted in dealing

with queuing theory (the relative symbols are in brackets) so as to be consistent with

those adopted above. The parameters defining the phenomenon are as follows:

M/M/1 systems
In under-saturated conditions (fIN/Cap<1):

The expected number of users in the system may be generally defined as

E N½ � ¼ fIN=Capð Þ= 1� fIN=Capð Þ¼ fIN= Cap� fINð Þ

Let

E TW½ � ¼ 1= 1� fIN=Capð Þ
then in accordance with Little’s formula.

E N½ � ¼ fIN E TW½ �

VAR N½ � ¼ fIN=Capð Þ= 1� fIN=Capð Þ2

The expected time spent in the queue, E[twq], (or queuing delay) is given by the

difference between the expected delay, E[tw], and the average service time

ts¼1/Cap:

E TWq

� �¼ 1= Cap� fINð Þ�1=Cap¼ fIN=Cap Cap� fINð Þ
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According to Little’s second formula, the expected value of the number of users in

the queue, E[Nq], is the product of the expected queuing delay, E[TWq], multiplied by

the arrival rate, u:

E Nq

� �¼ fIN E TWq

� �

and then:

E Nq

� �¼ fIN
2=Cap Cap� fINð Þ
M/G/1 (∞, FIFO) systems
In this case the main results are the following:

E N½ � ¼ fIN=Capð Þ 1 + fIN=2 Cap� fINðð

E TW½ � ¼ 1=Cap 1 + fIN=2 Cap� fINð Þð Þ

E TWq

� �¼ fIN=2Cap Cap� fINð Þ
Non-steady state models
Running links
In the case of non-stationary models the main variable describing the uninterrupted

flow conditions, will be considered as a function of space and time. In particular

flow speed and density will be represented as a function of space and time.

In this model, also called first order model, the macroscopic variables will be

represented as.

f ¼ f x, tð Þ

v¼ v x, tð Þ

k¼ k x, tð Þ

The observed variables, m(x; t, t+Δt), the number of vehicles traversing point x dur-
ing time interval [t, t+Δt] and n(t; x, x+Δx), the number of vehicles at time t between
points x and x+Δx, can be averaged (flow with respect to space and density with

respect to time) hence density and flow will be consistently defined.

Thus flow is related to m through following equation

m x, t, t+ΔTð Þ¼
Z

t

t+ΔT

f x, tð Þ dt (B.20)

density is related to n through following equation

n t, x, x+Δxð Þ¼
Z
y

y+Δx

k x, tð Þ dx (B.21)

In this context the continuity equation is a partial differential equation for the mac-

roscopic quantities’ density, flow and speed. It is able to describe the density vari-

ations in terms of gradients (or differences) of the flow. The continuity equation may
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be completed through the general equation of flow (f¼k v), which can be usually

applied in case of stationary conditions; to this aim the time intervals may be fixed

with a sufficiently small size in order to guarantee the flow stationarity condition.

However this approach is not suitable because it is unrealistic.

Furthermore the fIN(t) may be introduced and then the cumulative in-flow may be

derived and the fOUT(t) from which the cumulative outflow may be derived; in

particular let.

fIN(t)¼ f(x1;t) then the cumulative in (entering)—flow is given by

u tð Þ¼
Z

0

t

f x1;z
� �

dz

and let

fOUT(t)¼ f(x2;t) then the cumulative out (exiting)—flow is given by

w tð Þ¼
Z t

0

f x2;z
� �

dz

With respect to the speed

1= x2�x1ð Þð Þ
Z x2

x1

v x;t
� �

dx¼ vs t; x1, x2ð Þ

All these variables may be represented in aggregate or disaggregate ways (in partic-

ular position and speed are the most common aggregate or disaggregate variables)

therefore non-stationary traffic flow models may be classified on the base of their

representation.

In macroscopic models users’ behaviour variables are aggregate (arc density or

entry flows can be obtained from the vehicle position on the arc) as well as level of

service variables (space mean speed, arc performance functions are derived from the

fundamental diagram). They may be classified in accordance with time and space.

Time-continuous and space-continuous macroscopic models are formulated by dif-

ferential equations in time and space dimensions; a solution approach in discrete time

and space is adopted using the finite difference method. The first class of model is

also called point based models whereas the second class is the finite difference class
of models. The first class of models is discussed in this section whilst the finite dif-

ference class of models is discussed in Section B.2.

Inmesoscopicmodels users’ behaviour variables are disaggregate (packets of users

or single users are considered; arc density or entry flows can be obtained from packets/

users position on the arc) and the level of service variables are aggregate (such as space

mean speed; arc performance functions are derived from the fundamental diagram).

Microscopic models describe traffic flow dynamics in terms of a single vehicle.

In particular users’ behaviour variables are disaggregate (single users, i, are consid-
ered; arc density or entry flows can be obtained from the users’ position, xi, on the

arc) as well as the level of service variables (time speed and arc performance func-

tions are derived from the drivers’ behaviour models such as the car-following

models) (Fig. B.4).
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Overview of TFM.
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Queuing links
Unlike stationary models, in the case of non-stationary models the input variables are

not fixed.

With reference to the following figure, the first diagram displays the arrivals and

departures trajectories, whilst the second figure shows the cumulative value of

arrivals and departures. The figures may be analysed with respect to four successive

steps and in particular with respect to the time window between t1 and t3 during

which a capacity variation (reduction) occurs:

- at time t1 the beginning of the queue propagation may be observed

- at time t2 the link capacity decreases until a minimum value

- at time t3 the link capacity increases until the fIN
- at time t5 the queue discharging appears

- at time t3 the queue length achieves the maximum value

and the following equations may be obtained (Fig. B.5):

dn tð Þ=dt+ fOUT tð Þ� fOUT tð Þð Þ¼ 0
n� 0
fOUT tð Þ�Cap tð Þ
or equivalently

n tð Þ¼ w tð Þ�u tð Þð Þ
Then in terms of the general expressions of the average unitary delay, the total delay

may be derived.

In particular with respect to the unitary delay it may be computed as.

d tð Þ¼ n tð Þ=Cap
whilst the total delay is given by

D tð Þ¼
Z

0

T

n tð Þ dt
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FIG. B.5

(A) arrivals and departures flows and (B) arrivals and departures cumulative values.
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and finally the average unitary delay during a time interval [0, T] is equal to.

d 0, Tð Þ¼D tð Þ=u tð Þ
B.2 Continuous time continuous space macroscopic models
Two types of kinds are identified in the class of continuous time continuous space

(CC) models: the first order models also called point based models and the second
order models. The main difference between them is in the introduction of the accel-

eration equation in the second order model in order to properly reproduce the traffic

inhomogeneity with respect to different vehicles desired speed.

The main variables are:

f is the flow measured in vehicles per unit of time;

k is the density measured in vehicles per unit of length;

v is the speed measured in space per unit of time;

vk is the equilibrium speed as a function of density k.
B.2.1 Point based models
An approach in which the flow is given as a function of density was introduced by

Lighthill and Whitham (1955) and Richards (1956) thus this class of models are also

called LWR models and differ only for the functional form of the fundamental

diagram; the corresponding equations are listed below.

f(x,t)¼ f (k(x,t)) which represents the relationship between flow and density;

v(x,t)¼vK(k(x,t)) which represents the relationship between speed and density.
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Thus the conservation equation may be rewritten as follows:

∂f=∂kð Þ ∂k=∂xð Þ+ ∂k=∂tð Þ¼ 0 (B.23)

which is also called the LWR model.

The previous equation may be rewritten considering the fundamental diagram

vk + k ∂vk=∂kð Þ ∂k=∂xð Þ + ∂k=∂tð Þ¼ 0 (B.24)

Since the functional form of the fundamental diagram is not specified these models

are generally classified as LWR models. Furthermore, it must be observed that this

class of model has only one dynamic equation which is represented by the continuity

equation thus they are also called first order models.

Propagation of density variations
Let d be ∂ f/∂k, the conservation equation may be rewritten as

d ∂k=∂xð Þ+ ∂k=∂tð Þ¼ 0 (B.25)

thus the solution of the differential equation is a function φ (differentiable) and the

argument of the function is x – d t thus the solution equals

k¼φ x�d tð Þ (B.26)

Furthermore

k0 (x)¼k(x,0) defines the initial density which according to Eq. (B.26)

uniformly moves with speed d and let k00 be the derivative with respect to its

argument, then

∂k=∂tð Þ¼�dk00 x�d tð Þ

∂k=∂xð Þ¼ k00 x�d tð Þ
The conservation equation may be rewritten as

∂f=∂kð Þ k00 x�d tð Þ�dk00 x�d tð Þ¼ 0 (B.27)

Some considerations may be made about d which is assumed equal to ∂ f/∂k (see

Fig. B.6); indeed the propagation speed d depends on the density consistently with

the steady state flow density relationship (fundamental diagram). In particular the

density variations may propagate in driving direction (with positive derivative) in

the right part of the diagram (free flow condition, stable flow) and against the driving
f
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f2

k1
k2

k

2

α; tan α = d = ∂f(k1)/∂k > 0

δγ

FIG. B.6

Flow-density diagram.
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direction (with negative derivative) in the left part of the diagram (congested condi-

tion, unstable flow).

Shock waves
Let us consider a road segment (see Fig. B.7) in which at time t∗ two different flow

conditions may be observed which are respectively stable in the first section (before

section A-A) and unstable in the second section (after section A-A); a space- time

diagram may be introduced to support the description of the phenomenon. Phenom-

ena in the first section propagate with speed tan(α) and may be represented in the

space diagram through parallel segments with angular coefficient equals to α; the
same approach may be applied for section 2. Therefore space–time segments related

to section 1 and space–time segments related to section 2, will meet in the wave front

(continuous line) which propagates against driving direction and the relative speed

equals the slope of the secant of two different states. A further example may be made

if the state 2 is represented by point A in Fig. B.8, which is close to the capacity; in

this case the wave front propagates in driving directions.
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(A) Flow-density diagram. (B) Waves trajectories in a space–time diagram.
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(A) Flow-density diagram. (B) Waves trajectories in a space–time diagram.
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This is the case of the density discontinuity which is described though the shock

wave propagation; in particular regarding the previous example, the shock wave

speed propagation is computed as z¼ (f2 � f1)/(k2 � k1).

Another example may be represented with the capacity variation (this is the case

of the bottleneck; see Fig. B.9) indeed in this case it is necessary to consider a dif-

ferent fundamental diagram; in particular due to the effect of the lower capacity the

internal fundamental diagram must be considered. If the flow is lower than the bot-

tleneck capacity, the shock wave propagates stationary in a horizontal direction,

when flow is higher than capacity the flow propagates under capacity restriction thus

the shock wave propagates backwards.
State A

State D

State B

State C

f

DA C

x
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B
t

k

Shock wave speed
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Speed with which wave
leaves the bottleneck

FIG. B.9

(A) Flow-density diagram. (B) Waves trajectories in a space–time diagram.
B.2.2 Second order models
Two main limitations may be identified in the LWRmodel: the first one refers to the

model assumption of instantaneous adaptation of the vehicles speed which is cer-

tainly an idealisation; the second one is about non-homogeneous traffic indeed dif-

ferent desired speed for different vehicle class may be expected. Therefore the

acceleration equation is introduced and these models are classified in a second order

model

dv=dt¼ ∂v=∂t+ v ∂v=∂x¼ 1=τ vK �v½ � (B.28)
Payne model
A generalised expression for the acceleration equation is considered in the Payne-

Whitham model (Payne, 1979; Whitham, 1974)

dv=dt¼ ∂v=∂t+ v ∂v=∂x+ 1=kð Þ ∂p=∂x¼ 1=τ vK �v½ � (B.29)

which has a formal relationship with the Euler and Navier-Stockes equation from

hydrodynamics. In particular

• the term v ∂v/∂x represents the transport or convection term and describes the

speed profile of vehicles;

• the term (1/k) ∂p/∂x represents the pressure term reflecting the speed variance

and then the effect of different vehicles;
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• the term 1/τ [vK� v] represents the relaxation term and delineates the adaptation

of the speed to the equilibrium speed based on speed – density relationship and τ
is the relaxation time representing the aggressiveness of drivers.

Models differences are based on the specification of the traffic pressure,

p, the relaxation time, τ, and finally the equilibrium speed, vK. For instance

supposing that

p kð Þ¼ 1=2τð Þ v0�vK½ �
In which v0 is the free flow speed, if we combine this equation with the acceleration

equation Payne’s model is derived:

∂v=∂t+ v ∂v=∂x�1=τ vK �v½ �+ 1=2kð Þ ∂vK kð Þ=∂kÞ ∂k=∂xð Þ¼ 0

which may be generalised for τ!0 in Payne’s simplified model:

v¼ vK � τ=kð Þ ∂p=∂xð Þ¼ vK + 1=2kð Þ ∂vK kð Þ ∂k=∂xð Þ
In accordance with Payne’s simplified model the conservation equation may be

rewritten as:

∂k=∂t+ ∂ k vK + 1=2ð Þ ∂vK=∂kð Þ ∂k=∂xð Þð Þ=∂x¼ 0 (B.30)

that is the LWR model including the diffusion term:

∂k=∂t+ ∂ k vKð Þ=∂x¼ ∂ φ kð Þ ∂k=∂xð Þ=∂x (B.31)

Where the diffusion term depends on density and it is equal to

φ kð Þ¼ �1=2kð Þ ∂vK=∂kð Þ� 0

Ross model
Regarding the Ross model this originates from the consideration that the vehicle

speed is influenced (limited) by congestion even if each driver would like to travel

at free flow speed, v0 which is independent of density and density is limited by den-

sity kjam thus let T be the time interval necessary for the flow equilibrium the accel-

eration equation may be rewritten as follows:

∂v=∂t+ v∂v=∂x¼ 1=Tð Þ v0�v½ �,k� kjam

Kerner and Konh€auser model [KK model]
Regarding the pressure term in the KK model it is equal to

P¼ kθ0�γ0∂v=∂x

where θ0 >0 is a constant term and γ0 >0 is the viscosity coefficient thus the

acceleration equation will be rewritten as below

∂v=∂t+ v∂v=∂x¼� θ0=kð Þ ∂k=∂xð Þ+ γ0=kð Þ∂2v=∂2x + 1=Tð Þ ∂ vK �vð �½
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In general the space and time continuous second order model may be formulated

through the following equationsc

∂f=∂kð Þ ∂k=∂xð Þ+ ∂k=∂tð Þ¼ 0 (B.32)
f x, tð Þ¼ k x, tð Þ v x, tð Þ (B.33)

and a third additional equation representing the acceleration.
B.2.3 Network equations
In order to properly apply these models at network level it is necessary to define

the outflow rates from incoming links at each node within the network. To this

aim the network equations are required which are able to define the inflows into

and outflows out of each node taking into account the inflow capacities into out-

going links.

However in practical applications the network equations for CC models are

obtained through a discretized approach then a proper and more detailed discussion

is proposed in Section B.4.
B.3 Continuous time discrete space macroscopic models
In terms of macroscopic models other approaches to flow propagation are based on

time-continuous and space-discrete representation (CD), also referred to as link-
based models. This class of models is specified through differential equations with

respect to the time, for each arc. Main notations used in the following are enlisted

below in alphabetical order (notations come first) for reader’s convenience(notations

come first, then Roman letters, after Greek letters).

nL(t) is the number of vehicles on a arc l, at time t;

fINL(t) is the inflow on a arc l, at time t;

fOUTL(t) is the outflow on a arc l, at time t;

ttL(t) is the travel time on a arc l, at time t;

vF be the free flow speed.

These models can be subdivided into whole-link and wave models. Each one of them
is discussed in more detail in the following sections.
c The expression may be generalised to the case of on—ramps, with in—flows equals to E∗(y,t) thus
the conservation equation may be rewritten as (∂q/∂y) + (∂k/∂ t) ¼ E∗(y,t).
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B.3.1 Whole link models
Running links
The time-continuous and arc based models may be classified into two main

approaches: the exit function formulation and the travel time formulation. The first

class of model is based on the exit function relationship which governs the outflow

from a arc; whilst the second class of model is based on the arc travel time. The second

class of model has been introduced in order to overcome the theoretical limitations of

exit function approaches. Indeed these models do not satisfy the following require-

ments: (1) the First in First out (FIFOd) rule able to ensure that no overtaking can occur

between two users who have entered an arc at different times and (2) the consistency

between flow propagation and speed which has to be lower than free flow speed.

Starting from the equation.

nL t+ 1ð Þ¼ nL tð Þ + fINL tð Þ� fOUTL tð Þð ÞΔt (B.34)

then the conservation equation may be rewritten as:

dnL=dt¼ fINL tð Þ� fOUTL tð Þ (B.35)

In the case of the exit function model, the exit arc function governing the outflow

from the arc (the inflow which is supposed to be known and independent from pre-

ceding arcs) is introduced. Depending on the number of users n(t), the exit function

arc may be formalised as in the following:

fOUT tð Þ¼w n tð Þð Þ (B.36)

then the arc is modelled through the system of differential equations made up of Eqs.

(B.35), (B.36).

An example of formulation for the exit function might be the following:

fOUT tð Þ¼Cap 1�e�n tð Þ=tt
� 	

where Cap is the arc capacity.

In the case of travel time formulation the arc travel time function tt of the user

who arrives at the time t at the beginning of the arc is introduced as tt(t). A travel

time value tt(t) depends on the number of users on the arc thus it may be expressed

through a travel time function T(n) as

tt tð Þ¼T n tð Þð Þ (B.37)

Regarding the arc model it is formalised through the system of differential equations

made up of Eqs (B.34), (B.36).

A further discussion for the FIFO necessary and sufficient condition is required;

in particular the rule behaviour is:

dtt tð Þ=dt>�1
d Under the assumption of one-dimensional fluid flow, the first vehicle entering the arc will be the first

vehicle exiting the arc.
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which guarantees that the exit flows are positive in the case of positive entry flows,

then the condition is equivalent to.

dtt tð Þ=dt¼�1 + fIN tð Þ=fOUT t+ tt tð Þð Þ

which implies that fIN(t) has to be>0 if some users are entering the arc and fOUT(t)�0

is not moving in the wrong direction and one of two of the above conditions ensures

that no FIFO violation occurs. The condition may be also rewritten as:

fOUT t+ tt tð Þð Þ¼ fIN tð Þ= 1 + dtt tð Þ=dtð Þ (B.38)

furthermore it is still guaranteed that the denominator in the previous expression is

positive.

Finally the equation states that, if the flow on arc at time t is decelerating (dt/
dtt>0), the flow exiting the arc after the travel time required to cross it will be less

than the flow entering at t. Vice versa, if the flow on the arc is accelerating (dt/
dtt< 0), the flow exiting the arc will exceed that entering. However, when the arc

travel time at time t is constant (dt/dtt¼ 0) (in non-congested networks with constant

supply or in steady state conditions in the system), the flow exiting from an arc is

simply translated in time compared with the entry flow.

Therefore the arc model it is formalised through the system of differential equa-

tions composed by Eqs (B.35), (B.36), (B.38).

In general different expressions are proposed for travel time representation (see

Eq. B.37) however the FIFO condition is not necessarily guaranteed. For instance, an

example of travel time expression for running links constrained to the FIFO condi-

tion is given by the following linear function

T n tð Þð Þ¼ tt0 + n tð Þ=Cap
where tt0 represents the free flow travel time and implies that the exiting flow is con-

strained to the capacity and then guarantees that the FIFO condition is never violated.

A similar equation is proposed for the queuing links but the estimated time is the

queuing time (the time spent in the waiting link; Tw)

Tw n tð Þð Þ¼ 1=Cap+ n tð Þ=Cap
Network equations
In order to define the network loading model a further flow conservation for each

node within the network is required. However the solution requires the time discre-

tization of Eq. (B.34) and the link discretization in segments. The final result is the

time-discrete and space-discrete models discussed in more details in following

Section B.4.

B.3.2 Wave models
In order to discuss the wave models and in particular the Link Transmission Model

(LTM), first of all the Newell simplified theory of kinematic waves (NSTKW) must

be introduced; indeed the LTM uses the NSTKW to propagate traffic flows on arcs.
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Newell model
Main notations used in the following are enlisted in Section B.1.1 in alphabetical

order (notations come first) for reader’s convenience(notations come first, then

Roman letters, after Greek letters) in addition.

n(x, t) is the number of the last vehicle to pass section x before time t;

A curve of cumulative flow versus time is also known as a Newell-curve or simply

N-curve (Daganzo, 1994), since Newell 1993 developed a simplified version

of the LWR kinematic wave theory based on this concept. This theory is founded

on the conservation of vehicles.

The cumulative function N(x, t) is the number of the last vehicle to pass section x

before time t; the space–time diagram shows the vehicles position as a function of

time (trajectories). The vehicles have been numbered in increasing order in the direc-

tion of increasing time (Fig. B.10).
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FIG. B.10

vehicles trajectories and values of cumulative vehicle function N(x,t).
In particular if one draws the curves of the cumulative number of vehicles to pass

some locations x1 and x2 by time t, the vertical distance at time t between two curves

represents the number of vehicles between x1 and x2, the horizontal distance between

two curves at height j, represents the trip time of the jth vehicle from x1 to x2; the area

between curves represents the total travel time of all vehicles. Therefore the evolu-

tion of the traffic is represented by the cumulative number of vehicles that pass the up

and downstream ends x1 and x2 of each arc by time t.

Let

- n(x, t1) � n(x, t0) be the number of vehicles observed at location x during time

interval [t0, t1];

- n(x0, t) � n(x1, t) be the number of vehicles in section [x0, x1] at time t.

Starting from the relations already introduced in Section B.3 the following equations

may be obtained:
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the first one is between observed vehicles during time interval and flow

∂n x, t, t+Δtð ÞÞ=∂t¼ f x, tð Þ
the second one is between observed vehicles on section and density

∂n t, x, x+Δxð Þ=∂x¼�k x, tð Þdx
where the negative sign arises because n decreases in the direction of increasing x.

The function n(x, t) ensures vehicles are not created nor lost along the road segment;

thus n(x,t) exists in a certain region (Δx, Δt) as well as first and second derivatives;

hence

∂
2n x, t, t+ΔTð ÞÞ=∂t∂x¼ ∂

2n t, x, x+Δxð Þ=∂x∂t
and the conservation equation may be rewritten as

∂f x, tð Þ=∂x+ ∂k x, tð Þ=∂t¼ 0 (B.39)

Finally the Green’s theorem yields:

n x2, t2ð Þ�n x1, t1ð Þ¼
Z

t

t+ΔT

∂m x, t, t+ΔTð ÞÞ=∂t dt+
Z

x

x+Δx

∂n t, x, x+Δxð Þ=∂x dx

¼
Z

t

t +ΔT

q x, tð Þ dt�
Z

x

x+Δx

k x, tð Þ dx (B.40)

Instead of using the NSTKW to evaluate the flows and densities, and then determine

the cumulative number of vehicles, Newell uses the NSTKW to directly evaluate the

cumulative vehicle number n(x, t).

Newell uses the triangular fundamental diagram and four main parameters are

identified: the free flow speed, the maximum capacity, the critical density and the

traffic jam density; for density less than critical value, vehicles propagate with a free

flow speed otherwise for density higher than the critical value, vehicles propagate in

congested regime. Finally two speed values are identified: v that is a positive speed

and is referred to the free flow conditions and z that is negative and is referred to the

congested flow conditions.
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FIG. B.11

(A) homogeneous road segment with capacity restriction and (B) triangular fundamental

diagram.
Assume an arc [x0a; x
l
a] representing a homogeneous road segment of length la;

vehicles travel belong arc from x0a to xla; suppose that at time t1 a capacity restriction
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(f2) at downstream (xla) occurs, traffic statesmaybe described by considering a triangular

fundamental diagram. The initial condition is k(x, t0)¼0 and boundary conditions are

k x0a, t0, tn½ �� �¼ k1
k xla, t1, tn½ �� �¼ k2

As displayed in Fig. B.11A the two traffic states (which are identified in accordance

with figure B), respectively, free flow in case of traffic demand f1, and congested

in case of traffic demand f2, and respectively identified with following variables,

k1, f1 and v1 and k2, f2 and v2, intersect each other in a shock; the shock wave travels

with a negative speed and back propagates against traffic direction. At time t2 the

congested states reach arc boundary x0
a and from that time the road segment is con-

gested. Below the cumulative vehicle curve at upstream and downstream are

displayed (Fig. B.12).
FIG. B.12

(A) Cumulative vehicle numbers at the upstream boundary x0a and (B) at the downstream

boundary xLa.
Consider now the following example (Fig. B.13):
t0 t1

f1

f2

n(X0
a, t) n(XL

a, t)

n(XL, t1)

t2 tn t t0 t1 t2 tn t

FIG. B.13

Upstream x0a (A) x
L
a boundary conditions on a arc a (B).
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Free flow traffic state q1 travels form upstream; if this state does not intersect with

another state, then it will reach the downstream arc in la/v1 time, and the initial traffic

condition at t0 will be identical to the traffic condition at time t0+ la/v1 hence the

Green’s theorem may be rewritten as

n x0
a, t0ð Þ�n xLa, t0 + la=v1

� �¼ f1 �la=v1ð Þ� k1 �lað Þ¼ la �f1=v1 + k1ð Þ¼ 0

The congested traffic state q2 travels from downstream to upstream; if it does not

intersect any other state then (Fig. B.14)

n x0
a, t2ð Þ�n xLa, t2 + la=w

� �¼ f2 �la=wð Þ�k2 �lað Þ¼ la �f2=w + k2ð Þ¼ kjamla
FIG. B.14

Translations of upstream(A) and downstream (B) boundary conditions and the lower

envelope of the double-valued solution (C).
Based on the NSTKW a very accurate procedure to determine sending and receiving

may be defined.
Link transmission model (LTM)
Running links
Regarding the LTM it uses Newell’s simplified theory to propagate traffic flows on

arcs. In LTM traffic states are updated in successive steps, hence the algorithm pro-

vides a discrete time solution of the KW model. At each time interval, Δt, the algo-
rithm determines the sending flow at the downstream arc, and the receiving flow at

the upstream arc.e

The sending flow is defined as the maximum number of vehicles that could leave

the downstream end of this arc during time interval [t, t+Δt].
With reference to the sending flow the NSTKW states that in case of free flow

traffic condition (see Fig. B.15), the states have been emitted from upstream tF free

flow time units earlier (let vF be the free flow speed, tF¼ l/vF).
e The general application of the LTM algorithm is based on three successive steps which may be sum-

marised in: (i) estimation of sending and receiving flows, (ii) generation of transition flows at nodes,

and (iii) update of cumulative vehicle number (based on transition flows estimation).
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Free flow traffic state propagation.
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Regarding the conservation equation it may be rewritten as in the following:

n xi
0, t+Δt� lf =vF

� ��n xLi, t+Δt
� �¼ f1 �li=vFð Þ�k1 �lið Þ¼ li �f=vF + kð Þ¼ 0 (B.41)

thus

n xi
0, t+Δt� lF=vF

� �¼ n xLi, t+Δt
� �

Furthermore in accordance with the sending flow definition, may be formulated as:

Si tð Þ� n xi
l, t+Δt

� ��n xli, t
� �¼ n xi

0, t+Δt� lF=vF
� ��n xli, t

� �

and the sending flow is also constrained to the arc’s capacity thus:

Si tð Þ¼ min n xi
0, t+Δt� lF=vF

� �
; f Δt

� �

The receiving flow is defined as the maximum number of vehicles that could enter the

upstream end of this arc during time interval [t, t+Δt]. The NSTKW states that

in case of congested traffic flow condition (see Fig. B.16), the states have been

emitted from upstream tF free flow time units earlier (let vF be the free flow speed,

tF¼� l/wF).

n xi
0, t +Δt

� ��n xli, t +Δt+ lF=wf

� �¼ f �lF=wFð Þ�k �lFð Þ
¼ lF �f=wF + kð Þ¼ kjamlF (B.42)

n xi
0, t+Δt

� �¼ n xli, t+Δt+ lF=wF

� �
+ kjamlF
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Congested traffic state propagation.
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As in case of the sending flow, the receiving flow is still constrained by the arc’s

capacity, therefore the receiving flow will be given by:

Rj tð Þ¼ min n xli, t+Δt+ lF=wF

� �
+ kjam lF�n xj

0, t
� �

; f Δt
� �

Network equations
In order to define the network loading model a further flow conservation for each

node within network is required and in particular a node model needs to be intro-

duced. This model is able to describe the rules governing the vehicles transferring

from upstream to downstream. Three main examples are discussed: the ordinary

node, the merge and diverge nodes (see Fig. B.17).
FIG. B.17

(A) ordinary node, (B) merge node, and (C) diverge node.
An ordinary node connects an incoming link, to an outgoing link, c. The flow

through an ordinary node is the maximum that can be sent by the upstream link

to the downstream link then the following expression may be applied:

n xla, t+Δt
� �¼ n xla, t

� �
+ min Sa tð Þ, Rc tð Þf g

A merge node connects two incoming links, a and b, to only one outgoing link, c.

The flow through a merge node is the sum of the Sending flows of the incoming

links constrained to the Receiving flow of the outgoing link j. Indeed if the send-

ing flow exceeds the Receiving flow, it will be assumed that the maximum

amount that can be received by link j will be transferred according to pij which
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represents the fraction of the total amount of vehicles, coming from link i and

Σi pij¼1.

Each merge model may be applied in order to determine the transition flows yij
for the upstream links. Then the cumulative curves at the link boundaries are updated

as follows:

n xLa, t+Δt
� �¼ n xLa, t

� �
+ yac tð Þ
n xLb, t+Δt
� �¼ n xLb, t

� �
+ ybc tð Þ
n x0c, t+Δt
� �¼ n x0c, t

� �
+ yac tð Þ + ybc tð Þ

where the transition flows may be modelled in accordance with Daganzo (1995) as in

the following:

yij ¼median Sij, Rj,� Σi Sij� Sij
� �

, pij Rj

� ��

A diverge node connects one incoming link, a, to two outgoing links, c and d.

Diverge models determine the transition flows that are used to update the cumulative

curves as follows:

n xa
L, t+Δt

� �¼ n xa
L, t

� �
+ yac tð Þ + yad tð Þ
n xc
0, t+Δt

� �¼ n xc
0, t

� �
+ yac tð Þ
n xd
0, t+Δt

� �¼ n xd
0, t

� �
+ yad tð Þ

The flow through a diverge node is the maximum that can be sent by the incoming

link, unless one of the outgoing links is unable to receive its allocated part of the

Sending flow. We study two approaches for diverging modelling: the FIFO based

on split factor (see Daganzo, 1995) and the parallel method with split factors

(see Lebacque, 1996). Both methods are based on exogenously defined split factors,

pc and pd representing the percentage of vehicles going on link c and link d (the sum

equals 1). Two methods are described below:

[FIFO model]

Gij ¼ pij min Si, min i Rij=pij

� 	h i
[Parallel method with split factors]

Gij ¼ min pij Si, Rij

h i
B.4 Discrete time discrete space macroscopic models
In this section the finite difference models as an example of the macroscopic discrete

time and discrete space models are discussed. In particular as already stated in

Section B.3, CCmacroscopic models are formulated by differential equations in time

and space dimensions and a solution approach in discrete time and space (this class
of models is also called discrete time and discrete space, DD) is adopted using the
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finite difference method. In this models it is assumed that the road segment is

divided into cells.

Main notations used in the following are enlisted in Section B.3 in alphabetical

order (notations come first) for reader’s convenience(notations come first, then

Roman letters, after Greek letters). In addition.

k is a uniform density in a cell during time interval Δt;
ni be the number of vehicles on cell i, equals to k Δx;
Ni is the maximum number of vehicles present in cell i.

Cap is the maximum flow rate in cell i;

v is the free flow speed coefficient;

z is the wave speed coefficient;

yi(t) is the inflow (to cell i) at time t;

yi+1(t) is the outflow (from cell i) at time t;

Δ¼ z/v with z�v.
B.4.1 Finite difference models
The LWR models need to be solved numerically by finite-difference methods.

In particular the road segment is divided into cells of constant length and time

in the index k increasing in the downstream direction. Each cell is characterised

by the same density and speed (as a function of the speed–density relationship) as

well as the flow between neighbouring cells which is constant during the time

interval.

The most common integration method for LWR models solution is the Godunov
scheme. This method is based on an exact solution of the continuity equation for a

one-time step assuming stepwise initial conditions given by the actual densities of

the cells.

In particular at the first step the road is divided into cells each one of width Δx.
The cell length Δx is the distance a vehicle would travel in a free flow condition,

in a one-time step hence it is equal to free flow speed times the length of the

time step (also called clock tick), Δx¼vΔt. In must be remarked that the relation-

ship between the cell length and the time step corresponds to the Courant-
Friedrich-Lewy condition and for stability of explicit solution methods that is

vΔt� Δx.
Regarding the Godunov scheme, the densities are initially averaged for each cell

(each cell has a constant value of density), and from one step, t, to the successive one,

t+ Δt, the solution evolution is averaged again in order to obtain a the piecewise con-
stant solution.

The density is obtained as a function of flows at the cell boundaries (Fig. B.18).

kj t+Δtð Þ¼ kj tð Þ+ Δt=Δxð Þ fj�1=2� fj + 1=2
� �
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FIG. B.18

Solution evolved exactly (A) solution at time t+Δt.
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The cell transmission model
Let Ni(t) be the vehicle holding capacity of cell i and kjam is the jam density (the

maximum number of vehicles which can fit into cell i) thus (Fig. B.19)

Ni tð Þ¼ kjamΔx
nh ni nj

vijvhi

cell h cell i cell j

FIG. B.19

Junction represented trough cell transmission model.
The conservation equation may be rewritten as

ni + 1 t+ 1ð Þ¼ ni tð Þ+ yi tð Þ� yi+ 1 tð Þ

The key quantities of the method can be introduced based on the (trapezoidal) fun-

damental diagram Fig. B.20.
f
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FIG. B.20

Trapezoidal fundamental diagram.
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The number of vehicles moving from cell i to cell j is given by.

yi tð Þ¼ min ni�1 tð Þ,Cap, δ Ni tð Þ�ni½ �f g¼ min kv, Cap, z kjam�k
� �� �

(B.43)

and this is the result of a comparison between the maximum number of vehicles that

can be sent by the cell i directly upstream of the boundary Si(t)¼min{kv, Cap} and
those that can be received by the downstream cell i, Ri+1(t)¼min {Cap, z(kjam-k)}.

Summing up, the flow equation inherently accommodates different traffic con-

ditions from low level flow to oversaturation. In low level traffic (uncongested),
the flow is equal to the number of vehicles in cell i at time t, ni; in bottleneck traffic

(flow capacity), the flow is equal to the saturation flow rate fi times Δt, and in over-

saturated traffic (congested case), the flow is restricted by the jam density and

depends on the available space in cell i at time t, zi/v[Ni – ni]}. This allows us to sim-

ulate the propagation of blocking back phenomena by considering constraints on the

cell outflow equation (receiving function).

Hence in accordance with the Godunov scheme, the flow yi(t) can be rewritten in
accordance with the supply (sending)-demand (receiving) rule of the cell transmis-

sion model (Fig. B.21):

yi tð Þ¼ min Si, Ri+ 1f g
Si

fi

kc kc

k

fi+1

Ri

k

FIG. B.21

The sending (A) and receiving rule of cell transmission model.
Depending on the density of each cell, the cells flow propagates into the upstream

cell (propagation speed <0) or downstream (propagation speed >0). Summing up

all steps of the Godunov scheme for the triangular fundamental diagram leads to

the supply–demand method constrained as in following: if supply is the limiting fac-

tor, information travels upstream; if demand limits the traffic flow, information

travels downstream.

B.4.2 Network equations
In order to define the network loading model a further flow conservation for each

node within the network is required and in particular a node model need to be intro-

duced. This model is able to describe the rules governing the vehicles transferring
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from upstream to downstream. In accordance with the LTMmodel three main exam-

ples are discussed: the ordinary node, the merge and diverge nodes. In the specific

case of CTM the node is represented by a cell then the classification is not referred to

a node but to a cell (Fig. B.22).
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FIG. B.22

Ordinary, merging and diverging cell transmission model.
In an ordinary cell if one entering and one leaving are considered, the number of

vehicles moving from cell i to cell j is given by

yi tð Þ¼ min ni, min Capi,Capi + 1½ �, δ Ni+ 1� ni + 1½ �f g
however if we consider the maximum flows that can be sent and received by cell i in

the interval between t and t+1 a further simplification may be introduced:

Si tð Þ¼ min ni,Capif g

Ri tð Þ¼ min w kjam�k

� �
,Capi

� �¼ min δ Ni�ni½ �,Capif g
Then the number of vehicles moving from i to j is given by

yi tð Þ¼ min Si tð Þ, Ri + 1 tð Þf g
The cell occupancies may be updated in accordance with following expressionsf:

n’i t+ 1ð Þ¼ ni t+ 1ð Þ� yi tð Þ

ni + 1 t+ 1ð Þ¼ n’ i + 1 t+ 1ð Þ + yi tð Þ
In the case of merge there are two links that enter and one leaves. In general flows

must satisfy the following conditions.

yi tð Þ� Si;yii tð Þ� Sii
yi tð Þ+ yii tð Þ�Ri + 1

as in the case of ordinary links, however it will be assumed that cells i and ii send the

maximum traffic possible if cell i+1 can receive it then if the condition is

Ri+ 1 > Si + Sii
yi tð Þ¼ Si;yii tð Þ¼ Sii

If this condition is not satisfied it will assume that the maximum number of possible

vehicles Ri+1 advances in i+1 and the fractions of the vehicles come from i and ii,

respectively given by pi and pii (and the sum equals 1) then if R i+1 < (Si +Sii).
f The occupancies n’k (t + 1) are intermediate variables introduced only for mathematical notation pur-

poses; they can be eliminated during computer implementation.
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yi ¼median Si, Ri + 1�Siið Þ, pi Ri + 1ð Þ

yii ¼median Sii, Ri+ 1�Sið Þ, pii Ri + 1ð Þ
These flows are finally combined with the cell occupancies equations.

The last case is related to the diverge in which one link enters and two leave it. It

must be specified that vehicles diverging is regulated on the base of the FIFO rule.

Supposing that the proportions of Si, αi+1 and αii+1, are exogenously determined, then

the number of vehicles exiting from i, y j
i generates.

yi ¼ αi + 1 yi

yii + 1¼ αii + 1 yi

furthermore in order to constrain the number of vehicles that can be received by i+1

and ii + 1, with respect to Ri+1 and Rii, the following conditions are introduced:

max yi � Si, αi+ 1 yi �Ri + 1, αii+ 1 yi �Rii + 1f g
and the solutionof the linear problem is given by

yi + 1 ¼ min Si, Ri + 1=αi+ 1, Rii + 1=αii+ 1f g
as in case of ordinary links and merging, these flows are finally combined with the

cell occupancies equations.
B.5 Mesoscopic models
These models may be classified in terms of flow representation. Two different

approaches may be identified in the literature: the packet, say the group of users/

the single user representation and the single vehicle representation. A packet of vehi-

cles acts as one entity and its speed on each road (arc) is derived from a speed-density

function defined for that arc. Each packet is dealt with as a single entity which expe-

riences the same traffic conditions. Several authors have proposed methods based on

packets of vehicles to reduce the computed effort with respect to available computer

resources. This feature is significant in order to classify papers proposed in the past

since computing resources which are currently available make it possible to consider

each packet made up of one vehicle only and, therefore, this distinction is no longer

available.

A further classification of packet based models can be made in terms of a dis-

crete packet and a continuous packet. In the first case, a discrete distribution of

vehicles in the packet is considered. All users are grouped in a single point (for

instance the head of the packet) and, therefore, are located contemporarily at the

same position over the arc. In the continuous packet based approach, the vehicles

are considered uniformly distributed (in time or space) in the packet, which is thus

identified by two main points i.e. the head and the tail of the packet. Due to their

inherent difficulties related to numerical problems of internal consistency when

instantaneous density variations between adjacent simulation steps occur, only a

few authors in literature have investigated continuous packet models and the most
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relevant contributions rely on discrete packet methods. It is worth noting that con-

tinuous packets are relevant only when packets are made up of more than one

vehicle.

In general, these models do not allow detailed simulation of the behaviour of indi-

vidual vehicles (overtaking, lane-changing, etc.)

Mesoscopic traffic flow models may be further classified in terms of queu-

ing representation in arc based models, which are in turn grouped further

depending on the performance function, and node based models, usually refer-

ring to the models which consider the flow splitting rates. In particular, arc

based models are also divided in (i) travel time models and (ii) exit function

models.

Travel time models may also be classified depending on the arc representation:

by considering the whole arc so that the travel time is the sum of running travel time

and queuing time or by considering the arc divided in a running part (free flow mov-

ing) and a queuing part.
B.5.1 Traffic analysis and flow forecasting mesoscopic dynamic
[TRAFFMED]
In this section an overview of the TRAFFMED (traffic analysis and flow forecasting

mesoscopic dynamic) is provided in particular with reference to the packet genera-

tion and the traffic dynamics.

This traffic model is based on discrete packet representation and each packet is

made up of a single vehicle only. It is an arc based model, falling within the class of

the travel time models, and makes it possible to explicitly represent: horizontal

queues; proportional traffic leaving a node through an explicit path choice model;

the dynamic generation of the path-flows incidence matrix.

Furthermore, a speed-density relationship is adopted to evaluate the speed of a

packet on the running part only and it is not used as a cost function. In this way,

double counting the delay experienced by the vehicles is avoided, firstly due to the

traversal speed (which is computed as a function of the actual density) and then

due to the queuing delay (which is obtained as a result of the simulation). It is

considered a dynamic queue-running part representation by including arc capacity

restrictions which are due to the signal timings variations over the time steps of

simulation.

Main notations used in the following are enlisted below in alphabetical order

(notations come first) for reader’s convenience(notations come first, then Roman

letters, after Greek letters).

a is the arc;

kac is the critical density on the arc a, i.e. the density corresponding to the capacity
in the fundamental diagram;
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kγa is the density of the running part of the arc a at beginning of sub-interval γ;
la is the length of arc a,
la � xSa is the part of the arc occupied by the queue;

ne(P) is the number of elements of packet P, that is, ne(P)¼1;

Capa is the capacity at the final section of the arc a;
t are the discrete simulation time intervals;

ua(t1) is the number of packets which left the arc until time t1;
vγa is the speed on the running part of the arc a, updated at the beginning of each

sub-interval γ, as a function of density kγa;

xSa is the abscissa of a section S in arc a that divides the arc into two parts named

respectively running part [0, xSa) and queuing part [xSa, la];

γ are the sub-intervals of the discrete simulation time intervals;

δ is the length of the generic sub-interval γ and let t1 2 [0, δ];
δ/T is the ratio between the length of interval γ and the time unit T considered for

the capacity.

The generic packet P, is characterised by a departure time η within the departure
interval, h (which is the simulation interval during which the departure occurs)

and an origin/destination pair rs; path choice is evaluated at the beginning of each

departure interval, say at the origin and may be updated at the beginning of each sim-

ulation interval t, if en route rerouting occurs.

A packet P moves in the network and it is subject to queuing phenomena. The net-

work is represented by a graph G(N,A), with N the set of nodes and A the set of arcs.

The position of section S is obtained by the dynamic network loading (a detailed

description is provided in Fig. B.23) and is updated at each time interval t considering

the number of packets in the queuing part of the arc at the previous interval t� 1; the

speed on the running part of the arc at interval t depends on the outflow conditions of

the previous interval t � 1.This approach is slightly inconsistent since the level of

service in the interval is considerably affected by flows and queues in the previous

interval and not in the current. This assumption makes it possible to greatly simplify

the computation while the inconsistence can be limited by reducing the length for the

sub-interval, t.

Outflow conditions on each arc are considered homogeneous and constant for the

entire duration of a sub-interval, δ. They are estimated at the beginning of each sub-

interval and maintained for its entire duration, thus avoiding the occurrence of the

internal fixed point problem.

Summing up, the movement of a generic packet depends on its position on the arc

(running or queuing) and it can change its outflow conditions by moving forward

from the running part to the queuing part of the arc.

At each simulation time, the length of the queue on the arc (and, consequently, the

abscissa of section S) is updated and it is possible to take into account the eventual

occurrence of queue spillback.
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Then the movement rules of packets within each part of the arc and the queue

spillback simulation are described. These rules also make it possible to compute

the travel time on the running part and on the queuing part.

Let Γodη be a sub-graph composed of the set of arcs that belong to the feasible

paths connecting the O/D pair computed at time t0, and let x be the abscissa on

arc a belonging to sub-graph Γodη representing the position, at time t1 of interval

tn, of packet P left at the time t0 of the departure interval h� t1 (if h¼ t1 then t0< t1).

With reference to the arc model described above, the following cases may occur:

if x<xSa, packet P is located on the running part of the arc, it moves forward at a

speed va
γ; then within the interval tn, packet P may reach a maximum abscissa xSa;

consequently.

if (xSa – x)< (δ – t1) v
γ
a, packet P enters the queuing part of the arc a, before the

end of the interval, at time t’ computed as in follows:

t01 ¼ t1 + xSa�x
� �

=vγa

otherwise, at the end of the interval it remains located on the running part;

if x�xSa, packet P moves on the queuing part of the arc a; the length of the queu-
ing part travelled by packet P by end of the interval is given by:

Δ¼ δ� t1ð ÞCapa=kacð
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if x+Δ > la, packet P leaves the arc a during the interval t at time:

t1
00 ¼ t1 + la�xð Þ kacð Þ=la

otherwise it remains on the queuing part of the arc a.
Network equations
When packet P reaches the end of arc a, it is necessary to identify the next arc of its

followed path.

Let A+ be the choice set of available arcs (made up by the arcs of Directed

Acyclic Graph—DAG) whose initial node correspond to the final node of arc

a, a choice weight is associated to each one of these arcs so that the arc-choice

problem can be formulated. All arcs in the set, belong to at least one path connect-

ing the rs pair, starting from r at time t, the arrival at destination of the packet is

ensured. For each origin–destination pair, and departure time a DAG sub-graph is

associated to the packet P. Such a sub-graph is composed of the set of arcs that

belong to the feasible paths connecting the origin–destination pair rs computed at

time τ.
A choice weight is associated to each arc; the sub-graph is generated by implicit

paths enumeration (i.e. Dial’s STOCH; see Dial, 1971) thus the arc-path incidence

matrix is dynamically generated at the beginning of each interval t as well as the path

flow patterns.

Before entering the next arc a+ it must be verified that (i) arc a+ can accept the

incoming packet and (ii) the residual capacity of arc a allows packet P to move to the

next arc a+.

When packet P reaches the end of the arc a, before moving forward to the next arc

a+, it has to be verified that the length of the running part of the arc a+ is not null, that

it is xSa+>0.

If xSa+>0, packet Pmay enter the arc a+ otherwise it means that the entire length

of arc a+ is occupied by a queue and packet P remains on arc a until the queue length

on arc a+ is smaller than the length of the arc a+, that is for the time until the con-

dition la+�xSa+< la+ is satisfied.
Once verified that the length of the running part of a arc a+E A+ is not null, that is

xSa+ >0, itmust beverified that the residual capacityof the arca allowspacketP tomove

to the next arca+. Itmust be remarked that consistentlywith the discrete time simulation

xSa is defined at the beginning of each simulation interval and then it is assumed constant

during the whole interval; thus the error strictly depends on the simulation interval size

(a smaller interval size induces lower error).

In general two topological representations may be considered at node as dis-

played in following Fig. B.24; in particular Fig. B.24 guarantees a more realistic rep-

resentation of spillback phenomena.
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Junction topological representation.

306 APPENDIX B Traffic flow theory
Finally some further information needs to be introduced in terms of capacity

constraint.

If [ua(t1)+ ne(P)]/t�Cap δ/T packet P may leave the arc a, otherwise the arc a is

saturated and packet P remains on the arc as long as a residual capacity, which allows

the packet to leave the arc, becomes available.

Finally it is possible to express:

the arc queue length, (la � xSa).
the (arc) delay, (la � xSa) k

a
c Capa.

the network total delay (the total queuing time): Σa (la � xSa) k
a
c Capa.
B.6 Microscopic models
Models able to simulate the vehicles interactions can be classified in car following

models for longitudinal interactions for vehicles along the same lane and lane chang-

ing models for vehicles travelling along different lanes. In this section some of the

most relevant car following models are discussed.

Main notations used in the following are enlisted below in alphabetical order

(notations come first) for reader’s convenience(notations come first, then Roman let-

ters, after Greek letters) (Fig. B.25).

an is the desired acceleration of vehicle n at time t.

an, max be the upper bound of the vehicle acceleration.

b∗n is an estimate of the deceleration applied by the preceding vehicle.

bn is the desired deceleration.

d’n-1 be the leading vehicle deceleration.

dn, is the vehicle acceleration.

dn,max is the max deceleration in the braking condition.

n, is the following vehicle.

n-1 is the leading vehicle.
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sn(t)¼xn(t) � xn-1(t), is the spacing between two successive vehicles, n and n-1,

front to front;

sn, max is the lower bound of the free flow driving condition.

sn, min is the upper bound of the braking condition.

sn, s is the safety spacing representing the upper bound of the collision condition.
sn-1 is the effective length.

T¼1/w kjam is the time shift between two consecutive trajectories with w wave

speed and kjam density;

u is the speed of vehicles travelling along the highway.

v is the vehicle speed.

v’n(t) is the vehicle free flow speed.

vβn(t) is the vehicle speed due to the presence of the leading vehicle.

vdn(t) is the desired vehicle speed.

vK is the equilibrium speed as a function of density k.

x is the vehicle position.

xn(t+T) is the longitudinal position of vehicle n at time t+T.

Δvn (t-τn) is the speed difference between subject vehicle and leading vehicle.

Δx is the relative position between leading and following vehicle.

δ¼1/k is the space shift.

λ is the sensitivity parameter which may assume different functional forms.

τn is the reaction time.
direction

n n-1

Xn-1

Xn

B.25

eral overview of the road stretch with leading and following vehicles.
In particular in this section an overview of five main models is provided: the

Stimulus- Response models, the Safety and Collision Avoidance models, the Lower

Order models, the Psycho-Physical models and finally an alternative approach based

on a Cellular Automata models is also briefly presented (see Fig. B.26).



FIG. B.26

Microscopic models overview.
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B.6.1 Stimulus–response models
Gazis-Herman-Rothery (GHR) model
TheGazis-Herman-Rothery (GHR)familyofmodels isprobably themost studiedmodel

class.Thebasic relationshipbetweena leader anda followervehicle is in this case a stim-
ulus-response type of function that was first introduced by the GeneralMotors research

laboratories (Chandler et al., 1958;Gazis et al., 1961).The framework assumes that each

driver responds to a given stimulus in accordance with the following relationship:

response¼ sensitivity� stimulus

In general the following vehicle response (the acceleration) is strictly influenced by

the speed difference between follower and leader, and the space headway.

The first developed model was by a Chandler et al. (1958); it was a mono-regime

model based on a linear expression in which the vehicle acceleration is proportional

to the relative speed between follower and leader (stimulus)
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an tð Þ¼ λΔvn t� τnð Þ (B.44)

The main limitation of this model was on the independence of the stimulus from vehi-

cles distance thus if the speed of the leading vehicles is higher than the speed of the

following vehicle the acceleration is positive however the acceleration is still positive

also in the case of small distances. Further developments were proposed in order to

increase the model realism specifically the sensitivity term was modified in order

to be proportional to the speed and inversely proportional to the vehicles distance.

The final expression is

an tð Þ¼ α 	 vβn tð Þ 	Δvn t� τnð Þ=Δxn t� τnð Þγ (B.45)

where α>0, β and γ are model parameters that control the proportionalities.

However this model is unrealistic in representing the human ability to perceive

small changes in driving conditions in particular any response is appreciated when

the speed difference is null and in case of low density conditions.

In order to capture differences in driving behaviour Yang and Koutsopoulos

(1996) proposed a multi-regime model in which depending on the spacing between

vehicles three different driving conditions may occur:

� emergency: if the headway is lower than a fixed threshold (hlower);
� free flow driving: if the headway is higher than a fixed threshold (hupper);
� car-following: if the headway is between two thresholds above.

an tð Þ¼ αacc=dec 	 vnβacc=dec tð Þ 	Δvn t� τnð Þλacc=dec=Δxn t� τnð Þγacc=dec (B.46)

where αacc/dec, βacc/dec, γacc/dec and λacc/dec are parameters to be calibrated.
Stability in microscopic models
The equation proposedbyChandler is a differential equation thus it is necessary to study

the stability and the stationarity of the equation and thenof a vehicles stream.As already

anticipated thismodel is realistic only in the case of high spatial density and it is not able

to analyse vehicles travelling in platoons which are independent of each other.

A vehicles stream can be considered stable if a perturbation of the motion of one

vehicle in the flow slightly affects the others vehicles without introducing any phe-

nomenon amplification.

A vehicles stream can be considered stationary if all variables describing the flow

are constant over time; in general an unstable vehicles stream never achieves the sta-

tionary condition.

Stability may be studied with reference to two successive vehicles and all ana-

lyses may be further extended to the whole vehicles stream.

In particular the local stability may be distinguished if the analyses are limited to

a set of nearby vehicles whereas in the case of asymptotic stability the analyses may

be extended to all vehicles in stream.

Usually stability is primarily studied at local level and then extended to the

global conditions.
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Local stability has been proposed by Herman in the case of β¼γ¼0 and the gen-

eral car-following equation may be rewritten as:

an tð Þ¼ α 	Δvn t� τnð Þ (B.47)

stability depends on ατn; in particular four different conditions may be observed

(Fig. B.27):

ατn�1/e: non-harmonic motion;

1/e<ατn<π/2: damped harmonic motion;

ατn¼π/2: simple harmonic motion;

ατn>π/2: increasing harmonic motion.
non-harmonic motion

simple harmonic motion

damped harmonic motion

increasing harmonic motion

time time

timetime

FIG. B.27

Local stability in a car-following model: vehicles relative speed.
The local stability may occur when drivers travelling in the same stream are char-

acterised by the same reaction times and they rapidly react to the stimulus.

If for a specific driver the term ατn is lower than 1/e (around 0.37) the asymptotic

stability will be observed otherwise in the opposite condition local stability

cannot exist.

Asymptotic stability may be observed in two conditions:

ατn � 1/e stable;

ατn > 1/e unstable.

The stationarity phenomenon may exist only when delay τn equals zero otherwise

stability will never be observed.

When driver react with any delay, the following general equation may be applied:

an tð Þ¼ αacc=dec 	 vnβacc=dec tð Þ 	Δvn t� τnð Þ=Δxn t� τnð Þγacc=dec (B.48)
The solution for the equation with specific values of β and γ, provides some macroscopic models

in particular:
β¼0, γ¼1: Greenberg’s model;

β¼0, γ¼2: Greenshields’s model;

β¼0, γ¼3: Drake’s model.

β¼1, γ¼2: Underwood’s model.

β¼1, γ¼3/2: Drew’s model.
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B.6.2 Safety and collision avoidance models
In this class of models drivers of the following vehicle try to completely preserve the

safety distance with respect to the leading vehicle. In particular the speed is selected

by the driver in order to ensure that the vehicle can be safetly stopped in the case that

the preceding vehicle should suddenly brake.

The safety distance is computed on the base of the motion equations. Gipps

(1981) proposed a multi-regime model in which two driving conditions are

identified: the free flow driving and the car-following regime; the driver chooses

the smaller speeds between them:

vn(t+τn)¼min {c; d} where c and d are equal to.

c¼ vn tð Þ+ 2:5 an τn 1�vn tð Þð Þ=vdnÞ 0:025 + vn tð Þ=vdn
� �1=2

;

d¼ bn tð Þ τn + bn2 tð Þτn2�b∗n 2 Δxn tð Þ� sn�1ð Þ�vn τn�vn�1 tð Þ2=b∗
h i

(B.49)

B.6.3 Lower order models
These classes of models unlike models that operate on acceleration or speed directly

operate on vehicles position thus are called lower order models.
A model developed by Newell (2002) was based on the assumption that the time

space trajectory of vehicles on a homogeneous highway is identical to the preceding

vehicles’ trajectory except for space and time shifts then

xn t+Tð Þ¼min
xn tð Þ+ vT, infreeflowconditions

xn�1 tð Þ�δ, incongestionconditions

(
(B.50)

It must be observed that in this model a driver’s reaction time is not considered.

Link between microscopic and macroscopic models
It may be verified that a macroscopic model, in particular Payne’s model, is derived

from a car following model.

v x t+ τnð Þ, t+ τnð Þ¼ vk k x+Δxð Þ, tð Þ
In order to derive the partial differential equation of Payne’s model, Taylor’s expan-

sion rule has to be applied respectively on the left and right term of the previous

equation

v x t+ τnð Þ, t+ τnð Þ’ v x, tð Þ+ τnv x, tð Þ ∂v=∂x+ τn∂v=∂t
and

vk k x +Δxð Þ, tð Þ’ vk k x, tð Þ +Δx∂k=∂x ∂ vk k x, tð Þ=∂ kðð
The traffic density k equals 1/Δx thus the first equation about the car followingmodel

may be reduced to

v x, tð Þ ∂v=∂x+ ∂v=∂t¼ 1=τn vk k x, tð Þ�v x, tð Þð Þ� 1=τn∂vk=∂kð Þ 1=k ∂k=∂xð Þð
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which may be reduced to the following equation.

v x, tð Þ ∂v=∂x + ∂v=∂t¼ 1=τn vk k x, tð Þ�v x, tð Þð Þ� c2 kð Þ 1=k ∂k=∂xð Þ�

if 1=τn ∂vk=∂kð Þ¼ c2 kð Þ
B.6.4 Psycho-physical or action point models
This class of models was introduced in order to improve traffic safety and to better

understand some of the most relevant traffic phenomena such as capacity drop, hys-

teresis phenomenon, stop and go oscillations. These models aim to reproduce the

human abilities and the errors by explicitly introducing the human-factors in the rep-

resentation of the driving process.

In general it is expected that each driver is different in his driving style therefore it

is necessary to integrate the latest CF models from both engineering and psycholog-

ical perspectives.

Some of the human factors affecting drivers’ behaviour are

- The socioeconomic characteristics

- The reaction time

- The accuracy (the error) in estimating spacing and speeds

- The perception threshold

- The ability in predicting traffic situations

- The impact of different traffic situations (context sensitivity)

- The imperfect driving: the same driver may exhibit different behaviours even

though the traffic conditions are the same

- The aggressiveness and risk propensity

- The distraction

- The desired speed/spacing/headway

The basics of the psycho-physical models are the introduction of perceptual

thresholds aiming to define the minimum value of the stimulus affecting the

driver’s reaction avoiding the simulation of the driver’s reaction in case of the

small changes.

These thresholds or action points introduced by Michaels (1963) are expressed as

a function of speed difference and spacing between two successive vehicles in a car

following regime. In general thresholds are able to alert drivers or provide more free-

dom depending on the spacing if it is small or large. The key point is the introduction

of driver’s perception of vehicle distance by the effect of different relative speed

perception due to the visual angle threshold.
Wiedemann’s model
Wiedemann (1974) proposed a further method for thresholds computation in order to

identify four driving regimes (Fig. B.28)
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Thresholds of the action point model.
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A more detailed example is provided in following figure:
Decreasing distanceIncreasing distance

Collision

Deceleration

Relative distance DX
Approach of  faster vehicle

SDV

CLDV

Perceptual
threshold

Reaction Zone

Leader relative speed DV

BX

AX

A

B

Perceptual
thresholdOPDV

SDX

Reaction Zone

No reaction
Zone

Unconscious reaction

FIG. B.29

Wiedmann’s CF model.
Source: Wiedemann, R., 1974. Simulation des Strassenverkehrsflusses. Schriftenreihe des Institutes f €ur

Verkehrswesen der Universit€at Karlsruhe.
AXE: the desired spacing between the front sides of two successive vehicles in a

standing queue; AXE¼Ln-1+AXadd where Ln-1 is the length of the leading

vehicle.
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ABX: the desired minimum following distance; it is a function of AXE, the safety

distance and speed; ABX(t)¼AXE + BX [vn(t)]
(1/2) where vn(t) is the

minimum of the speed of the subject vehicle and the lead vehicle.

SDVg: the actionpointwhere adriver consciouslyobserves that he/she is approaching

a slower leading vehicle SDV(t)¼ [(xn-1(t) � xn(t)� Ln-1 � AXE)/CX]2.

CLDV: closing delta velocity is an additional threshold that accounts for

additional deceleration by the application of brakes; CLDV (t)¼ [(xn-1(t) �
xn(t) � Ln-1 � AXE)/CLDVCX]2.

OPDV (Opening Difference in Velocity) curve is primarily a boundary to the

unconscious reaction region. It represents the point where the driver

notices that the distance between his or her vehicle and the lead vehicle is

increasing over time. When this realisation is made the driver will accelerate

in order to maintain the desired space headway thus this is the action

point where a driver notices that he/she is slower than a leading vehicle;

OPDV¼CLDV 	 k.
SDX: A perception threshold to model the maximum following distance; it is

1.5–2.5 times BX; SDX(t)¼AXE + EX 	BX [vn(t)]
(1/2).

AXadd, CLDVCX, k, EX.

The dark line in Fig. B.29 shows the decision path of an approaching vehicle. A vehi-

cle travelling faster than the leader will get close to it until the deceleration percep-

tual threshold (SDV) is crossed (at Point A). The driver will then decelerate to match

the leader’s speed. However, as a human being, the driver is unable to accurately

replicate the leader’s speed, and spacing will increase until the acceleration percep-

tual threshold (OPDV) is reached (at Point B). The driver will again accelerate to

match the leader’s speed and the process continues, as shown in the unconscious

reaction zone.

In particular in accordance with the identified action points four driving regimes

are identified:

Free deriving regime: the driver applies the maximum value of acceleration,

bmax, in order to achieve the desired speed;

Closely Approaching regime: the regime occurs when a vehicle in the Free Driv-

ing Regime passes the SDV Perception Threshold the driver of the following vehicle

applies deceleration in order to preserve the distance value ABX

an tð Þ¼ 1=2ð Þ Δvð Þ t� τnð Þ2= ABX t� τð Þ�Δx t� τnð Þ½ � + an�1 t� τnð Þ (B.51)

Car-following process is defined in accordance with following constraints:

ABX tð Þ�Δx� SDX tð Þ

CLDV tð Þ�Δv�OPDV tð Þ
g A further similar threshold can be applied when the subject vehicle is already engaged in following

the lead vehicle; it is still the point where the driver notices that the distance between his or her vehicle

and the lead vehicle is decreasing over time.
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and further described through the two following regimes:

Deceleration following regime: The deceleration following regime occurs as a

result of a vehicle in the approaching or closely approaching regime passes the per-

ception threshold or a vehicle in the acceleration following regime passes the second

perception threshold.

Acceleration following regime: The acceleration following regime occurs when a

vehicle in the deceleration following regime passes the opening difference in veloc-

ity threshold or a vehicle in the emergency regime passes the minimum following

distance threshold.

Emergency regime: regime occurs any time that the space headway is below the

minimum following distance threshold and may be influenced by the leading

vehicle’s behaviour that suddenly decelerates:

an tð Þ¼ 1=2ð Þ Δvð Þ t� τnð Þ2=AX 	 Δx t� τnð Þ+ an�1 t� τnð Þ+ bmin 	 ABX t� τnð Þ�Δx t� τnð Þ½ �=BX (B.52)

where bmin is the maximum value of deceleration.
B.6.5 Cellular automata models
Another approach that may be proposed for microscopic traffic flow modelling, is

the cellular automata. In this kind of model the space is discretized in an array of

cells and each cell may be empty or not depending on the vehicle presence. The state

of each cell is described in discrete time steps and is affected by the state of neigh-

bouring cells.; the length of each cell is related to the vehicles length (around two/

three vehicles) and the array dimension depends on the number of lanes. Vehicles

move to cells ahead based on specified rules.
Nagel-Schreckenberg model
A simplified approach has been proposed by the Nagel-Schreckenberg model in

which a single lane is considered and each cell size corresponds to the length of

one vehicle. Speed is unidimensional and is given by the ratio between the cell length

and the time step; furthermore speed is usually constrained by a maximum value.

Vehicle speed and position at the next time steps are updated in accordance with

the following three equations.

Deterministic acceleration:
v(t) is the vehicle speed.

The vehicle speed v∗(t+1) may be updated considering the minimum value

among three terms:

gα is the number of empty cells between the vehicle and the next vehicle and the

corresponding speed is gα�1.

the desired speed, v0.

the speed obtained when accelerating and given by v+1 in free flow conditions.

the safety speed.
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Dawdling:
depending on a random term p, the speed may not be accelerating or decelerating

thus

v t+ 1ð Þ¼ max
v∗ t+ 1ð Þ�1, 0ð Þ with probability p

v∗ t+ 1ð Þ otherwise




Driving:

x t + 1ð Þ¼ x tð Þ+ v t + 1ð Þ
B.7 Summary
B.7.1 Major findings
This chapter aims to provide an overview of the traffic flow theory. In particular

starting from the main definitions and assumptions, the focus in the first part is

on the stationary models whilst in the second part on the non-stationary models.

In both cases all analyses are referred to the running and queuing links. Additionally

in non-stationary models the network equations are also described in order to prop-

erly support the applications at a network level.

Some relevant considerations may be made specifically with respect to each of

dynamic models discussed in the chapter.

Macroscopic models are based on a compact analytical formulation however it is

not easy to support the extension at network level; furthermore, as will be discussed

in the following section about main remarks, another limitation is on queues model-

ling. Finally these models require, as properly discussed in Section B.4, a finite dif-

ference of solution methods.

Some relevant difference may be revealed in mesoscopic models. Indeed these

models are not based on a compact formulation however the extension at network

level may be easily pursued. A proper queue modelling and spillback simulation

is also formalised in mesoscopic models. Finally these models may be easily solved

through a simulation approach. Both models, macroscopic and mesoscopic should be

considered for large scale analyses. Regarding the microscopic models these provide

a very detailed representation including queuing phenomena, junction control etc.

however these models are based on several parameters thus the calibration procedure

is very complicated unlike macroscopic and mesoscopic models.

In general, as already specified in the book, several parameters in the chapter

need to be calibrated however this relevant issue is out the scope of this book.
B.7.2 Further readings
Themost elementary continuous traffic flowmodel is the first order model developed

concurrently by Lighthill andWhitham (1955) and Richards (1956), based around the

assumption that the number of vehicles is conserved between any two points if there

are no entrances (sources) or exits (sinks). They finally proposed a continuous model

known as the Lighthill-Whitham-Richards (LWR). This particular model suffers



317APPENDIX B Traffic flow theory
from several limitations. The model does not contain any inertial effects, which

implies that vehicles adjust their speeds instantaneously, nor does it contain any dif-

fusive terms, which would model the ability of drivers to look ahead and adjust to

changes in traffic conditions, such as shocks, before they arrive at the vehicle itself.

In order to address these limitations Payne (1971), Ross (1988), and Kerner and

Konh€auser (1994) proposed a second order continuous model governing traffic flow.

Daganzo (1995) demonstrates that the Payne model, as well as several other

second-order models available in the literature, produces unrealistic behaviour for

some traffic conditions. Specifically, it is noted that traffic arriving at the end of

a densely-packed queue would result in vehicles travelling backwards in space,

which is physically unacceptable. This is due to the vehicles behaviour that is influ-

enced by vehicles behind them due to diffusive effects.

As the differential equations used in theLWRmodel are difficult to solve, especially

in situations of high density variations like bottlenecking (in these cases the LWR calls

for a shock wave), different approximate techniques have been proposed to solve those

equations. Newell (1993), introduces a simplified theory of kinematic waves in which,

byusing cumulative inflow/outflowcurves, the state of flowat an extreme, according to

the traffic conditions of another one, can be predicted without considering traffic con-

ditions at intermediate sections. This theory provides a relation between traffic flowand

density. Therefore the author proposes a space discrete model (link based) which pro-

vides link travel times complying with the simplified kinematic wave theory.

Consistently with simplified first order kinematic wave theory after Newell,

Yperman et al. (2006) it presents the link transmission model (LTM) in which link

volumes and link travel times are derived from cumulative vehicle numbers. Another

way to solve the LWR space continuous problem is introduced by Daganzo (1994)

through the “Cell Transmission model”, developed as a discrete analogue of the

LWR differential equations in the form of difference equations which are easy to

solve and also take care of high density changes.

With reference tomesoscopicmodels classification in the literature at present con-

cerns headway distribution, cluster and gas kinetic models. Regarding the first group,

Hoogendoorn and Bovy (1998) developed a headway distribution model for multi-

class traffic flow and multiclass multilane traffic flow, whilst an example of cluster

models based on the homogeneous representation of the cluster according to the speed

and size of the cluster itself was provided by Botma (1978). In contrast, some meso-

scopic models are derived in analogy to gas-kinetic theory and are based on dynamic

representation of speed distributions (Prigogine and Herman, 1971; Paveri-Fontana,

1975; Hoogendoorn and Bovy, 1998). Moreover, as with cluster-based models, a fur-

ther classification proposed in the literature refers to packet-based models in which

vehicles are assumed grouped into packets (Leonard et al., 1989; Cascetta et al.,

1991; Dell’Orco, 2006; Celikoglu and Dell’Orco, 2007). In this case two main

methodsmay be distinguished depending on the representation of packets, namely dis-

crete or continuous (Di Gangi, 1992). These methods consider vehicles as packets

and their travel times are calculated as a function of current flow on the link. A

similar approach may be found in Mahut et al. (2002) who, on the basis of the

space–time queue concept, estimate travel time in accordance with the flow-density

relationship.
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As highlighted in Dell’Orco (2006), a common problem in mesoscopic models is

how to represent the anisotropic property of traffic flow models. In order to obtain a

more realistic representation and thus overcome the limitation of all vehicles moving

at the same speed, the author proposed a model in which packets are uniformly accel-

erated, thereby avoiding averaging speed.

Further model developments are proposed in the literature in terms of: acceleration

behaviour description (Celikoglu andDell’Orco, 2007;Celikoglu et al., 2009), link rep-

resentation which may be considered instantaneous (Ran and Boyce, 1996) or traffic-

responsive (see He, 1997; Di Gangi et al., 2016), outflow capacity which may be clas-

sified as fixed (He, 1997) or variable (Bliemer, 2006), and multicommodity modelling

(Bliemer, 2006). Finally, path choice modelling has been treated by Ben-Akiva et al.

(1996), Jayakrishnanetal. (1994),CelikogluandDell’Orco (2007), andBliemer (2006).

Although mesoscopic traffic dynamics (queue lengths, delays, shockwaves etc.)

have been widely investigated especially in terms of queue modelling (Ben-Akiva

et al., 1998; Ben-Akiva, 2003a, b; Burghout, 2004; Di Gangi et al., 2016), less is

known about traffic flow propagation phenomena in terms of dispersion and vehicle

discharging.

Regarding microscopic models the main efforts are on the car-following theory

able to model the interaction between the leading and the following vehicle; each

vehicle reacts to the stimulus of the leading vehicle in terms of driving behaviour

by accelerating or decelerating. The basic representation of the dynamic representing

the interaction in the car-following models, is the stimulus–response approach in

which the stimulus may be represented through the vehicle speed, the acceleration,

the relative speed and the spacing between vehicles. The General Motors model was

the most well-known stimulus–response model, which was first put forward by

Chandler et al. (1958); in particular in this model stimulus is specified through the

relative vehicles speed then each vehicle tends to move in accordance with the speed

of the leading vehicle. Further developments may be found in Gazis et al. (1959) in

order to overcome the main limitation of not explaining the traffic situation in higher

density. The Collision avoidance (Gipps, 1981)models focus on a safe distance rather

than describing a stimulus–response type function; in accordance with this model

according, the collision would be unavoidable if the distance is shorter than the safe

distance. However one of the model limitations is that the driver might take the

behaviour of several preceding vehicles into account and predict to what extent

the preceding vehicle might then react by decelerating. Another approach is the

physiology-psychology model is also called the Action Point firstly introduced by

Michaels (1963). The main idea is that driver reacts if he perceives that it is now

approaching the vehicle then thresholds must be defined before the driver reacts. Fur-

ther enhancements are proposed byWiedemann (1974) aiming to define the different

regimes in car following based on the driver’s relative distance and velocity to the

front vehicle. Therefore the model considers that larger headways driving behaviour

is not influenced or alternatively small headways driving behaviour is influenced only

if changes in relative speed and headways are large enough to be perceived. It is

assumed that the driver behaves differently in each regime, and then, the acceleration

is calculated differently. The considered regimes are the free driving, closing in, and
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emergency regimes, corresponding to a set of thresholds. Some of these thresholds

use a speed parameter, but others rely solely upon the difference in speed between

the subject vehicle and the lead vehicle. In the class of microscopic models the cel-

lular automata model firstly introduced by Nagel and Schreckenberg (1992) for traf-

fic flow simulation may also be considered. This model is based on a space

discretization corresponding to the road representation by cells. Themodel was based

on a one- dimensional array of cells with some boundary conditions; each cell may be

occupied or empty depending if there is a car or not and each cell may be occupied by

no more than one car. Regarding the speed it is represented by an integer variable in

the range between zero and an upper bound corresponding to the maximum speed

(equal to 5 in the original research); the number of cells that vehicles may progress

depends on the speed (if speed equals 3 the vehicle may move forward 3 cells).

For further details on other models and some practical examples the book by

Treiber and Kesting (2013) about data, models and simulation in traffic flow dynam-

ics is suggested to the reader.
B.7.3 Remarks
In general it must be remarked that the appendix aim is to provide the reader with the

main notations, assumptions and definitions with reference to the traffic flow theory.

In particular the main idea is to propose to the reader an useful appendix supporting

the chapter about within day traffic flow modelling. Indeed arc traffic performance

models can be used to specify dynamic network loading (DNL) models, which pro-

vide arc flows and travel times consistent with path flows. Therefore DNL can be

combined with a travel time model aiming at path travel times computing; the path

travel times can be used to define transportation costs.

Another remark may be referred to the spillback and vehicles dispersion phenom-

ena that significantly affect the realism in traffic flow simulation; however these phe-

nomena are not reproduced by all models in literature.

In particular regarding vehicles dispersion during the last five decades several

methods have been proposed to predict traffic flow profiles in order to derive the link’s

delay/offset relation (kinematic theory, diffusion theory, etc.); one of the most straight-

forward is undoubtedly the platoon dispersion model (PDM) presented by Robertson

(1969),widely adopted in a number of practical applications. After discussing the queu-

ing representation in macroscopic models, two different approaches are proposed

below in macroscopic and mesoscopic models for vehicles dispersion reproduction.

Queuing in macroscopic models
Below some further considerations are provided about queue models in the case of

macroscopic models. As already discussed in the section about major findings, one of

the main limitations of macroscopic models is on queue simulation and spillback rep-

resentation. In particular let

l be the arc length.

nr be the vehicle running (the number of vehicles in the running link).

nw be the vehicle waiting (the number of vehicles in the queuing link).
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v be the free flow speed.

Cap be arc capacity.

two main queue representations may be identified in literature

- the vertical queue given by l/v(nr(t)/l)+0

- the horizontal queue: l/v(nr(t)/l)+nw(t)/Cap

where the horizontal queue representation provides a more realistic simulation of

spillback phenomena.

However a third approach may also be considered in which the length of the

running link is variable and depends on the number of the waiting vehicles then

the physical queue [spillback] is given by.

l�nw tð Þlvehð Þ=v nr tð Þ=lð Þð Þ+ nw tð Þ=Cap
Dispersion in macroscopic models
As shown above, in CTM equations, due to the assumption that all vehicles travel at

the same speed (thereby retaining the same density) to reach the downstream section,

there may be no detection of platoon dispersion. To overcome this shortcoming, a

platoon dispersion volume function is taken into account for describing situations

of low-density cells. In particular, by employing the well-known Underwood (or

alternative) speed-density relationship we introduce a further equation:

Xi tð Þ¼ ki tð Þ∗v0∗ exp � ki tð Þ=kcð Þ½ �
where Xi(t) is the platoon dispersion volume function; ki(t)¼ [ni(t)+ni+1(t)]/2L is the

density of cell i and cell i+1 at time t, l being the length of the cell; v0 is the free-flow
speed; kc is the traffic density at maximum flow.Then the flow fi(t) is given by

h

fi tð Þ¼ min Si tð Þ, Ri+ 1 tð Þ, Xi tð Þf g
Furthermore it may be verified that the model is still consistent with the first-order

traffic flow theory. In particular, let.

k be the density,

f be the flow,
v be the average speed,

vK be the equilibrium speed.

For completeness, the proposed model is based on the following three equations,

consistent with first-order traffic flow theory:

conservation equationð Þ ∂f=∂ xð Þ+ ∂k=∂tð Þ¼ 0
flow�density relationshipð Þ f ¼ kv
speed�density relationshipð Þ vK ¼ v kð Þ

h The modified CTM differs from the traditional CTM only in the definition of an additional parameter

which refers to traffic jam conditions. The definition of demand and supply, the flow function and the

density updating equation remain the same as those in the traditional CTM. Thus the Godunov scheme

(Lebacque, 1996; Daganzo, 1995) may still be applied.
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Furthermore, it is a discretised version of the LWR thus let.

δx be the cell length.

δt be the time step.

ki(t) be the average density at time t.

fi(t) be the average exit flow in the interval [t;δt]

ki t+ δtð Þ¼ ki tð Þ+ ∂t=∂ xð Þ fi�1 tð Þ� fi tð Þð Þ
Dispersion in mesoscopic models
In order to reproduce the vehicles dispersion in mesoscopic models (consider for

instance the dispersion implementation in the proposed model TRAFFMED) the

Robertson’s model may be directly represented. In particular this model takes the

following mathematical form. Let.

T be mean link travel time;

t be 0.8T;

fd (j) be the flow rate over a time step Δt arriving at the downstream signal at time

interval j;

f0 (i) be the discharging flow over time step Δt observed at the upstream signal at

time interval i;

Δt be the time step duration, usually assumed as 1s;

F be the smoothing factor;

α and β be dimensionless model parameters.

Let us consider a generic interval j of length Δt and a generic time instant 0< t0<Δt
within interval j. At time interval j the following are known: the density k(j), the link

speed v(j) and the cruise time T(j), derived from the previous time interval j-1. The

speed could be obtained by any speed density function (fundamental diagram – stable
regime). Let us consider a packet pwhich reaches link a at time t0, and the number of

packets n(t0) which reach link a during interval j until time instant t0. The entry flow

at link a could thus be obtained as f(t0)¼n(t0)/t0.
Assuming that within the generic interval j steady state conditions hold, the pre-

vious equation could be rewritten as

k jð Þ v jð Þ¼ fd jð Þ
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