




Energy Transfers in Fluid Flows

Turbulence remains an unsolved problem due to the complex nonlinear

interactions among a large number of multiscale structures. For hydrodynamic

turbulence, Kolmogorov’s theory provides quantitative measures of energy

contents of the fluid structures and energy flux. However, this theory based on real

space description does not quantify various scale-by-scale energy transfers. In

addition, generalisations of Kolmogorov’s theory to more complex system—

magnetohydrodynamic and buoyancy-driven turbulence, anisotropic flows,

etc.—are quite involved. Fortunately, spectral or Fourier space description, which

is the theme of this monograph, overcomes some of these deficiencies.

To quantify energy transfers in turbulence, Verma and his collaborators developed

a set of important spectral tools: mode-to-mode energy transfers, various energy

fluxes, shell-to-shell and ring-to-ring energy transfers, variable energy flux, etc.

These diagnostics are quite general, and they do not require the flows to be

homogeneous or isotropic, as is assumed in Kolmogorov’s theory. Researchers have

used the above tools to compute important quantities for various turbulent

systems. This analysis provides many valuable insights, e.g., energy transfers

responsible for the magnetic energy growth in astrophysical bodies, dynamics of

turbulent thermal convection.

In this monograph, Verma systematically describes various techniques of energy

transfers in turbulence. These tools include mode-to-mode transfers, fluxes,

shell-to-shell and ring-to-ring transfers of energy, as well as enstrophy, kinetic

helicity, and magnetic helicity. After developing the framework, the author employs

them to turbulence in hydrodynamics, magnetohydrodynamics, passive scalar,

buoyancy-driven flows, rotating flows, active scalar and vector, compressible flows,

etc. The book describes energy transfers in both real and Fourier space, but the

focus is on the latter. The energy transfer diagnostics provide many valuable

insights, which have been described throughout the book.
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Preface

The Navier–Stokes equations, first formulated in 1822, still remain unsolved in the

turbulent regime. Over time, scientists and engineers have been studying

turbulence in more complex systems, such as thermal convection, scalar flows,

flows in magnetofluids, boundary layers, flow across bluff bodies, etc. Turbulent

flows have many complex issues—boundary layers, inhomogeneity and anisotropy,

multiscale complex structures, spatiotemporal correlations among various fields,

etc. In this book we address several fundamental issues of turbulence such as

energy transfers in hydrodynamic, magnetohydrodynamic, scalar, compressible,

anisotropic, and other forms of turbulence; variable energy flux; effects of

enstrophy and kinetic helicity on turbulence.

Kolmogorov (1941) formulated a theory of hydrodynamic turbulence according

to which the energy flux that flows from large scales to small scale is related to the

third order structure function. This real-space formulation is applicable to

isotropic and homogeneous turbulence, and its extension to anisotropic turbulence

is difficult. On the other hand, such computations are relatively easier in spectral

space. In 1959, Kraichnan derived a formula for the combined energy transfer for a

wavenumber triad of hydrodynamic turbulence. This formalism is useful, but its

scope is limited. For example, the combined energy transfer formula does not yield

the energy transfers that are responsible for the generation of the large-scale

magnetic field in dynamos. Curiously, most research works on turbulence report

energy spectrum, but energy transfers such as energy flux have not been discussed

often.

We (Gaurav Dar, Vinayak Eswaran, and I) started to work on quantifying

energy transfers in magnetohydrodynamic (MHD) turbulence way back in

1999–2000. During the investigation, we discovered a very nice formalism called
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xx Preface

mode-to-mode energy transfer that helped us quantify all the energy transfers,

energy fluxes, and shell-to-shell transfers in hydrodynamic and MHD turbulence,

as well as in dynamos. After publication of this work (with some difficulties) in

2001, we extended this formalism to the following systems and obtained many

interesting insights (also see Acknowledgments):

• Passive scalar turbulence

• Helical turbulence

• Buoyancy-driven turbulence—stably stratified turbulence and turbulent

thermal convection

• Large-scale and small-scale dynamos

• Anisotropic turbulence

• Rotating turbulence

• Quasi-static MHD turbulence

• Field-theoretic computation of energy transfers, in particular, energy fluxes

• Role of energy transfers in pattern formation

In addition, Daniele Carati and Olivier Debliquy performed energy transfer

computations of MHD turbulence using large-resolution data; Bogdan Teaca,

Franck Jenko, and coworkers extended this formalism to gyrokinetic plasma

turbulence; and Rodion Stepanov and Franck Plunian employed similar techniques

to shell models of turbulence.

Several research groups have computed the energy fluxes in various turbulent

systems using the numerical procedure of Dar et al. and Frisch. Yet, the

underlying formalism of mode-to-mode energy transfer has remained somewhat

unnoticed. This book is an attempt to present this powerful formalism and its

applications to a variety of turbulent flows in a coherent and general framework so

as to reach the turbulence and fluid community. In the monograph I present the

fluxes, shell-to-shell and ring-to-ring transfers of kinetic energy, kinematic helicity,

enstrophy, etc., for hydrodynamic, MHD, and scalar turbulence. I also describe

popular turbulence phenomenologies, and their verification using numerical

simulations and experiments. The earlier derivation of mode-to-mode formalism by

Dar et al. had an uncomfortable issue of circulating energy transfer. In the present

book, using tensor analysis and the structure of the nonlinear terms, I show that

the circulating energy transfer is zero, thus resolving the ambiguity of the earlier

derivation. The present monograph illustrates the usefulness of the energy

transfers for understanding turbulence.

In addition to the earlier works (listed above) on the energy transfers, the book

contains several new works on energy transfers, which are as follows:
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https://doi.org/10.1017/9781316810019.001
https://www.cambridge.org/core


Preface xxi

• Derivation of mode-to-mode transfer formulas for kinetic helicity, magnetic

helicity, and enstrophy

• Energy transfers in compressible turbulence

• Energy transfers in electron MHD

• Energy transfers in Craya–Herring and helical basis

• Energy transfers in tensor flows, and in spherical flows

• Field-theoretic computation of energy transfers in Craya–Herring basis

The presentations on compressible turbulence, electron MHD, and flows on a sphere

are quite elementary and nascent. I believe that a lot more can be done in these

areas.

For a thematic presentation, the book is divided into four parts. The first part

deals with hydrodynamic flows—two-dimensional and three-dimensional

turbulence, helical turbulence, enstrophy transfers, Craya–Herring and helical

basis, and Kolmogorov theory of turbulence. In the second part, flows with a

scalar that includes passive scalar, stably stratified flows, thermal convection, and

binary fluid are covered. The third part is dedicated to flows with vectors, namely

MHD and electron MHD. In the last part, compressible and Burgers turbulence,

shell model, flows in spherical geometry, etc., have been discussed. The monograph

includes works of many researchers, including those of my collaborators, who are

listed in Acknowledgments. Yet, many important works could not be included due

to lack of space.

Though the book focuses on energy transfers in fluid flows, one can observe that

energy transfers would be useful for studying the nature of interactions in other

nonequilibrium systems. For example, we expect the detailed balance to be broken

in a generic nonequilibrium system, which would lead to directional energy transfers

in time, space, and across scales. These transfers also yield direction to time in

terms of evolution of the system. We believe that such analysis would be very useful

for studying many nonequilibrium systems—quantum turbulence, financial market,

coarsening in material science, etc. I do hope that the ideas of energy transfers

would be employed to these systems.

Lastly, I hope that the book will be useful to students and researchers. I would

greatly welcome comments, criticisms, and ideas on the contents of the book at my

email mkv@iitk.ac.in.

Mahendra Verma

IIT Kanpur
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Chapter 1

Introduction

Fluid flows exhibit rich behavior—regular flow in viscous regime; patterns and

chaos in weakly nonlinear regime; and turbulence in strongly nonlinear

regime. Such complex behavior arises due to nonlinearity. A good understanding

of some of these features, specially turbulence, is still lacking even after sustained

efforts extending over two centuries.

Hydrodynamics broadly deals with the analysis of the Navier–Stokes equations

and their generalization to magnetohydrodynamics, convection, passive scalars,

rotating flows, etc. The large-scale structures in such flows contribute to various

instabilities, patterns, and chaos, but turbulence is governed by structures at all

scales. Researchers have studied these phenomena using the energy exchanges

among various Fourier modes, a topic which has not been studied in great detail.

In this book we attempt to fill this gap by focusing on energy transfers in fluid

flows, and their role in turbulence. Note, however, that energy transfer formalism

developed in the book are general, and they could be applied to study pattern

formation and chaos as well.

The energy transfers in fluid flows are generic, and they arise in linear as well as

in nonlinear systems. A pendulum is an example of a linear system that exhibits a

periodic exchange of kinetic energy and potential energy during its oscillations.

Similar transfers occur in surface gravity waves and in internal gravity waves. Also

note that in the unstable configuration of the pendulum (vertically standing up), it

is the potential energy that drives the kinetic energy and makes the pendulum

unstable. The buoyancy-driven instabilities—thermal instability, Rayleigh–Taylor
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4 Energy Transfers in Fluid Flows

instability—have energy transfers similar to that in the unstable configuration of

the pendulum.

In nonlinear hydrodynamics, the energy transfers among the interacting modes

arise due to quadratic nonlinearities, for example, u ·∇u in fluids, u ·∇T in thermal

convection, ∇ × (u × b) and b · ∇b in magnetohydrodynamics, where u,b, and

T are respectively the velocity, magnetic, and temperature fields. Therefore, we

develop a general formulation to compute the energy transfers that help us formulate

interactions among the participating modes, energy flux, shell-to-shell and ring-to-

ring energy transfers, etc. The energy transfers among the large-scale modes help us

understand patterns and chaos. On the other hand, the energy flux, and the shell-to-

shell and ring-to-ring energy transfers provide useful information about turbulence in

hydrodynamics, magnetohydrodynamics, and buoyancy-driven flows. In this book,

we present these topics thematically, duly emphasizing the common features among

them. Also, the present book focusses on the nonlinear energy transfers.

In the next section we introduce a generic nonlinear equation that contains basic

features of nonlinear energy transfers.

1.1 A Generic Nonlinear Equation

In a nonlinear system, nonlinearity induces interactions among the Fourier modes.

These interactions are illustrated using the following equation:

∂

∂t
f(x, t) =

∂2

∂x2
f(x, t) + a[f(x, t)]2, (1.1)

where a is a constant. In this equation, f2 is the nonlinear term. We assume the

field f to be contained in a periodic box of length L. We decompose the field f(x)

into Fourier modes f(k):

f(x, t) =
∑
k

f(k, t) exp(ikx), (1.2)

where k = 2nπ/L with n as an integer. The corresponding inverse transform is

given by

f(k, t) =
1

L

∫ L

0

dxf(x, t) exp(−ikx). (1.3)

Using this definition, we derive an equation for f(k, t) in Fourier space. We start

with
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Introduction 5

∂

∂t

∑
f(k) exp(ikx) =

∂2

∂x2

∑
f(k) exp(ikx)

+a
∑

f(p) exp(ipx)
∑

f(q) exp(iqx). (1.4)

Using the orthogonality relation,

1

L

∫ L

0

dx exp(i(p+ q − k)x) = δp+q,k, (1.5)

we obtain the requisite equation:

d

dt
f(k) = −k2f(k) + a

∑
p

f(p)f(k − p). (1.6)

Note that the nonlinear term has become a convolution in Fourier space.

In the absence of the nonlinear term, Eq. (1.6) reduces to diffusion equation:

d

dt
f(k) = −k2f(k) (1.7)

that has a very simple solution—each Fourier mode decays exponentially as

f(k, t) = f(0) exp(−k2t). (1.8)

However, the nonlinear term, a
∑

p f(p)f(k − p), of Eq. (1.6), couples the Fourier

modes in an intricate manner. In Eq. (1.6), nonlinear interactions involve three

Fourier modes, for example, f(k), f(p), and f(k−p). In general, there is no analytical

solution for Eq. (1.6) because of the nonlinearity. Note however that analytical

solution may be possible for some specific cases.

The modal energy |f(k)|2/2 is the energy of the Fourier mode f(k). By

multiplying Eq. (1.6) with f∗(k) and summing the resulting equation with its

complex conjugate, we obtain an equation for the time evolution of |f(k)|2 as

d

dt

1

2
|f(k)|2 = −2k2 1

2
|f(k)|2 + a<

[∑
p

f(k − p)f(p)f∗(k)

]
, (1.9)

where <(.) stands for the real part of the argument. The last term of Eq. (1.9)

represents the nonlinear energy transfer. The modal energy decays exponentially

in the absence of such transfer. Note, however, that the nonlinear term could

stabilize the modal energy or make it time dependent. We remark that on many
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6 Energy Transfers in Fluid Flows

occasions, energy is more convenient to analyze than the Fourier modes. For

example, |f(k)|2 is real in contrast to complex f(k).

In the aforementioned equation, the decaying term −k2|f(k)|2 provides energy

transfer from coherent energy to heat or dissipation. The nonlinear term <(f(k −
p)f(p)f∗(k)) represents the energy transfers from the modes f(p) and f(k − p) to

f(k). Note that these energy transfers occur among various length scales, and it

differs from the energy transport in real space, for example,
∫
f2dS where dS is an

elemental area.

The aforementioned behavior is a generic feature of nonlinear partial differential

equations including the Navier–Stokes equation. In the present book, we will present

energy transfer formalism for hydrodynamics, magnetohydrodynamics, scalar flows,

buoyancy-driven flows, etc. Most of our discussion will be focused on incompressible

flows.

Before we start our detailed discussion on energy transfers, we outline the

contents of the book.

1.2 Outline of the Book

The book is divided into four parts. Part I contains discussion on various aspects

of hydrodynamics, while Parts II–IV cover more complex applications. Though the

book focuses on energy transfers, we also cover physics of the flows under

consideration—hydrodynamics, scalar flows, magnetohydrodynamics, thermal

convection, etc.

In Part I, Chapters 2 and 3 describe the governing equations of hydrodynamics

in real and Fourier spaces respectively. The formalism of energy transfers in

hydrodynamics is developed in Chapter 4. Chapters 5 and 7 describe

phenomenologies of three-dimensional and two-dimensional hydrodynamic

turbulence respectively. Here we describe energy fluxes and other related

diagnostics. Chapter 6 contains a discussion on enstrophy transfers in turbulent

flows.

In Chapter 8, we describe helical turbulence. Chapter 9 introduces Craya–

Herring and helical basis that are very useful for describing flow properties. In

Chapter 10 we briefly describe field-theoretic treatment of energy transfers. These

computations provide many useful insights into turbulence dynamics. Chapter 11

contains formulation of energy transfer in anisotropic turbulence.

Energy transfers in real space—energy flow from one scale to another—can be

described using structure function. This scheme was first derived by Kolmogorov

(1941a,b,c). In Chapter 12, we describe this formalism, and relate it to the energy
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Introduction 7

transfers in Fourier space. Note, however, that the present book focuses on energy

transfers in Fourier space.

In nature and in engineering, we encounter flows that advect scalar, vector, or

tensor fields along with it. There are many examples of such flows, as listed in

Table 1.1. In subsequent chapters, we will cover properties, especially related to the

energy transfers, of such flows.

Table 1.1 Examples of scalars, vectors, and tensors in flows.

Field Examples

Scalar
Densities of dust particles and pollution, fluid density,
temperature, binary fluid

Vector Magnetic field, flock velocity, dipoles

Tensor Polymer, elastic fluid

In Part II (Chapters 13 to 17), we systematically cover flows with scalars. We

describe properties of passive scalar flows, stably stratified flows, and thermal

convection. We also cover binary fluid mixture in this part.

In Part III (Chapters 18 to 25), we describe flows with vectors that include passive

vector flows, magnetohydrodynamics (MHD), and electron MHD. The topics covered

are energy transfers in MHD, turbulence phenomenologies, dynamo, etc.

In Part IV (Chapters 26 and 31), we include miscellaneous topics that go beyond

scalar and vector flows. These topics include tensor flows, rotating turbulence, shell

model of turbulence, Burgers turbulence, and compressible turbulence. The last two

topics in this part are on compressible hydrodynamics—an exception to the theme

of the book. We conclude in Chapter 32.

There are a large number of excellent textbooks and reviews on various kinds of

turbulent flows (hydrodynamic, magnetohydrodynamic, buoyancy-driven). In

Table 1.2 we list some of the important references, especially those connected to

our discussion. The present book attempts to highlight common features in the

aforementioned flows using energy transfers, energy fluxes, etc., and show that

energy transfer formalism provides important insights into turbulent flows.
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8 Energy Transfers in Fluid Flows

Table 1.2 Key references.

Hydrodynamic turbulence

Leslie (1973); McComb (1990, 2014); Frisch (1995);
Mathieu and Scott (2000); Pope (2000);

Davidson (2004); Lesieur (2008);
Kraichnan (1959); Alexakis and Biferale (2018)

Craya–Herring basis Sagaut and Cambon (2008); Lesieur (2008)

Buoyancy-driven turbulence
Manneville (2014); Verma (2018);

Lohse and Xia (2010); Verma et al. (2017)

MHD turbulence Biskamp (2003); Davidson (2017); Verma (2004)

Shell model
Ditlevsen (2010); Plunian et al. (2012);

Verma and Kumar (2016)

Anisotropy Davidson (2013); Verma (2017, 2018)
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Chapter 2

Basics of Hydrodynamics

In this chapter we describe the governing equations of incompressible hydrodynamics

in real space. We will also discuss the conserved quantities of hydrodynamics.

2.1 Governing Equations of Incompressible Flows

Under continuum1 and incompressibility2 approximations, the fluid flow is described

by the incompressible Navier–Stokes (NS) equations:

∂u

∂t
+ u · ∇u = −1

ρ
∇p+

1

ρ
Fu + ν∇2u, (2.1a)

∇ · u = 0, (2.1b)

where u(r, t) is the velocity field, p(r, t) is the pressure field, Fu(r, t) is the external

force field, ν is the kinematic viscosity, and ρ is the density of the fluid. In the

incompressible limit, ρ can be treated as a constant.

1In continuum approximation, the mean free path length between two collisions experienced by a microscopic
particle is much smaller than the system size.

2In an incompressible flow, in the comoving frame with a fluid parcel, the density ρ is constant, i.e., dρ/dt = 0.
From the continuity equation,

∂ρ

∂t
+∇ · (ρu) = 0,

we deduce that

dρ

dt
+ ρ∇ · u = 0.

Hence, the incompressibility approximation yields ∇ · u = 0.
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10 Energy Transfers in Fluid Flows

It is customary to nondimensionalize the Navier–Stokes equations. We use the

large-scale velocity U0 as the velocity scale, the system size L as the length scale,

and L/U0 as the time scale. Consequently, the nondimensional variables are

x′ = x/L; u′ = u/U0; t′ = t/(L/U0); (2.2)

∇′ = L∇; p′ = p/(ρU2
0 ); F′u = LFu/(ρU

2
0 ). (2.3)

In terms of these nondimensional variables, the Navier–Stokes equations are

∂u′

∂t′
+ u′ · ∇′u′ = −∇′p+ F′u +

1

Re
∇′2u′, (2.4a)

∇′ · u′ = 0, (2.4b)

where

Re =
U0L

ν
(2.5)

is a nondimensional number called the Reynolds number. It is a measure of the ratio

of the nonlinear term (u · ∇u) and the viscous term (ν∇2u). Turbulent flows have

Re � 1, while viscous flows have Re . 1. For convenience, in the above equations

we drop the primes and set Re = 1/ν. Hence, the new equations are

∂u

∂t
+ u · ∇u = −∇p+ Fu + ν∇2u, (2.6a)

∇ · u = 0. (2.6b)

The aforementioned equations in tensorial form are

∂ui
∂t

+ ∂j(ujui) = −∂ip+ Fu,i + ν∂jjui, (2.7a)

∂iui = 0. (2.7b)

Here, the indices i, j take values {1, 2, 3} or {x, y, z}. In Eqs. (2.7) we follow Einstein

convention according to which the repeated indices are summed. We will study the

properties of Navier–Stokes equations in subsequent discussions.

For incompressible flows, the pressure field is a dependent variable; it is a function

of the velocity field. By taking a divergence of Eq. (2.6a), and by assuming that the

force is divergence free, i.e., ∇ · Fu = 0, we obtain the following equation for the

pressure:

−∇2p = ∇ · [(u · ∇)u] , (2.8)

which is Poisson’s equation. Thus, the pressure field is uniquely determined given

u and the boundary condition.
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Basics of Hydrodynamics 11

A useful identity for fluid flows is

Df

Dt
=
∂f

∂t
+ (u · ∇)f, (2.9)

where f(r, t) could be a scalar or a vector field. Here, Df/Dt is the material

derivative or the total derivative of f , as it measures the time derivative of f while

moving with the flow.

2.2 Vorticity and its Equation

The vorticity field ω is defined as the curl of the velocity field, i.e.,

ω = ∇× u. (2.10)

Physically, vorticity is related to the circulation or curliness of the velocity field. In

a rotating flow, a cyclone has a finite vorticity.

To derive a dynamical equation for the vorticity field, we employ a vector identity

(u · ∇)u = −u× ω +∇u
2

2
(2.11)

and substitute it in Eq. (2.6a) that yields

∂u

∂t
= −∇

(
p+

u2

2

)
+ u× ω + Fu + ν∇2u. (2.12)

Taking a curl of the aforementioned equation yields the following dynamical equation

for ω:

∂ω

∂t
= ∇× (u× ω) + Fω + ν∇2ω, (2.13)

where Fω = ∇× Fu. The vector identities

∇× (A×B) = A∇ ·B−B∇ ·A + (B · ∇)A− (A · ∇)B, (2.14)

∇ · ω = ∇ · (∇× u) = 0, (2.15)

and the incompressibility condition ∇ · u = 0 yields

∂ω

∂t
+ (u · ∇)ω = ω · ∇u + Fω + ν∇2ω, (2.16)
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12 Energy Transfers in Fluid Flows

or

Dω

Dt
= ω · ∇u + Fω + ν∇2ω. (2.17)

This is another equation for ω.

For a two-dimensional flow,

u = ux(x, y)x̂+ uy(x, y)ŷ. (2.18)

Hence,

ω = ωẑ = (∂xuy − ∂yux)ẑ (2.19)

is perpendicular to the plane of the velocity field, and

Dω

Dt
=
∂ω

∂t
+ (u · ∇)ω = Fω + ν∇2ω, (2.20)

where

Fω = (∂xFy − ∂yFx). (2.21)

For a force-free and inviscid (ν = 0) flow,

Dω

Dt
= 0. (2.22)

This result is related to Kelvin’s circulation theorem, which will be discussed in

Section 2.4.

2.3 Quadratic Quantities in Hydrodynamics

For fluid flows, we construct several scalars using the velocity and vorticity fields:

Kinetic energy density Eu(r) =
1

2
u2, (2.23a)

Kinetic helicity density HK(r) =
1

2
u · ω, (2.23b)

Enstrophy density Eω(r) =
1

2
ω2. (2.23c)
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Basics of Hydrodynamics 13

We sum these quantities over the volume and obtain:

Total kinetic energy Eu =
1

2

∫
dru2, (2.24a)

Total kinetic helicity HK =
1

2

∫
dr(u · ω), (2.24b)

Total enstrophy Eω =
1

2

∫
drω2. (2.24c)

The total kinetic energy (KE in short), the total kinetic helicity, and the total

enstrophy are called quadratic quantities since they are products of two field

variables. Note that the kinetic energy density of a fluid flow is typically defined as

ρu2/2. Since ρ is a constant, we set it to unity.

In the following discussion, we derive equations for the aforementioned quadratic

quantities. By taking a scalar product of Eq. (2.6a) with u, we obtain the following

dynamical equation for kinetic energy:

∂

∂t

u2

2
+∇ ·

(
1

2
u2u

)
= −∇ · (pu) + Fu · u + νu · ∇2u. (2.25)

Using the following identity (Spiegel, 2010)3

u · ∇2u = −ω2 +∇ · [u× ω], (2.26)

we rewrite the equation for kinetic energy as

∂

∂t

u2

2
+∇ ·

[
u2

2
u

]
= −∇ · (pu− νu× ω) + Fu · u− νω2. (2.27)

Using a similar procedure, the Navier–Stokes equations and Eq. (2.16) yield the

following dynamical equations for enstrophy and kinetic helicity (with Fu = 0):

3Proof:

−ω2 +∇ · [u× ω] = −εkijεklm(∂iuj)(∂lum) + εijk∂i[ujωk]

= −εkijεklm(∂iuj)(∂lum) + εkijεklm∂i[uj(∂lum)]

= −(∂iuj)(∂iuj) + (∂iuj)(∂jui) + ∂i(uj∂iuj)− ∂i(uj∂jui)

= uj∂
2
i uj − uj∂j∂iui

= u · ∇2u− u · ∇(∇ · u).

For incompressible flows, ∇ · u = 0; hence

−ω2 +∇ · [u× ω] = u · ∇2u.
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14 Energy Transfers in Fluid Flows

∂

∂t

ω2

2
+∇ ·

[
ω2

2
u

]
= ω · [ω · ∇u] + νω · (∇2ω)

and
D

Dt
(u · ω) = ω · Du

Dt
+ u · Dω

Dt

= −∇ · [pω] + u · (ω · ∇)u + ν
[
ω · (∇2u) + u · (∇2ω)

]
. (2.28)

Now, let us write the KE equation in an integral form. We perform volume integrals

of each term of Eq. (2.25) over an arbitrary volume that yields

d

dt

∫
u2

2
dr = −

∮ (
1

2
u2u

)
·dS−

∮
(pu) ·dS+

∫
dr(Fu ·u)+

∫
drνu ·∇2u, (2.29)

where

Kinetic energy flux (real space) =
1

2
u2u, (2.30a)

Pressure energy flux (real space) = pu, (2.30b)

Viscous dissipation rate (real space) = νu · ∇2u, (2.30c)

Energy feed rate by forcing (real space) = Fu · u. (2.30d)

A physical interpretation of Eq. (2.29) is that the rate of change of kinetic energy in

a volume equals the sum of the four terms of Eq. (2.29). Viscous dissipation always

depletes KE. However, the other terms either enhance or deplete KE depending on

their sign. The term Fu · u can take both positive or negative values. The KE and

pressure energy fluxes redistribute kinetic and pressure energies from one region to

another, while viscous dissipation occurs locally.

The energetics arguments discussed up to now are for real space. In Section 4.4,

we will provide complimentary energy balance arguments for Fourier space. The

energetics in Fourier space provides scale-by-scale energy transfers and energy flux in

hydrodynamics. In Chapter 12, we will describe how structure function also captures

energy transfers.

Enstrophy has a similar integral form:

d

dt

∫
ω2

2
dr = −

∮ (
1

2
ω2u

)
· dS +

∫
ω · [ω · ∇u]dr +

∫
drνω · ∇2ω. (2.31)

The enstrophy flux
∫

(ω2u/2) · dS transfers enstrophy from one region to another.

However, the second term of the right-hand-side (RHS) of Eq. (2.31) represents the

enstrophy production due to vortex stretching by the velocity field. The integral

form of kinetic helicity can be derived in a similar manner.
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Basics of Hydrodynamics 15

Before closing this section, we prove a vector identity. For a scalar field f , in a

fixed volume,

d

dt

∫
fdr = lim

∆t→0

1

∆t

∫
[f(r, t+ ∆t)− f(r, t)]dr

=

∫
∂f

∂t
dr, (2.32)

where dr represents a volume element that is assumed to be fixed in the

aforementioned process. If the velocity field or f satisfies vanishing or periodic

boundary condition, then∫
(u · ∇)fdr =

∫
∇ · (uf)dr =

∫
fu · dS = 0. (2.33)

Therefore, for u or f satisfying vanishing or periodic boundary condition,

d

dt

∫
fdr =

∫ [
∂f

∂t
+ (u · ∇)f

]
dr =

∫
Df

Dt
dr. (2.34)

u

Figure 2.1 Initial volume (light grey region) expands to a larger volume (dark
grey region) due to the velocity field. A volume element dr is
represented by a blue patch.

We prove another useful theorem:

D

Dt
dr = (∇ · u)dr. (2.35)

Proof: Consider an arbitrary volume within a flow. See Fig. 2.1 for an illustration.

In a small time dt, the volume changes due to the velocity field at the surface:

V (t+ dt)− V (t) =

∮
(udt) · dS. (2.36)
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16 Energy Transfers in Fluid Flows

Hence,

D

Dt

∫
dr =

∮
u · dS. (2.37)

An application of Gauss theorem yields

D

Dt

∫
dr =

∫
(∇ · u)dr. (2.38)

This equation is evaluated for an arbitrary volume. Hence, we take a small volume

element dr for which (∇ · u) is constant. Therefore,

D

Dt
dr = (∇ · u)dr.

Thus, we prove the above theorem.

We can also prove this theorem by taking dr = dxdydz and then employing

Ddx/Dt = dx∂ux/∂x, etc. For incompressible flows, ∇·u = 0. Hence, according to

Eq. (2.35), volume of an incompressible fluid element does not change with time, as

expected.

In the next section we will discuss the conservation laws in hydrodynamics.

2.4 Conservation Laws in Hydrodynamics

We consider an inviscid flow for which ν = 0. We assume that the external force,

Fu = 0, and that the flow satisfies periodic or vanishing boundary conditions. For

such flows, in three dimensions (3D), the total kinetic energy and the total kinetic

helicity are conserved. However, in two dimensions (2D), the total kinetic energy

and the total enstrophy are conserved. In this section, we discuss these conservation

laws along with several others.

We start with Eq. (2.29) and employ the integral over a volume with periodic

or vanishing boundary conditions, and take ν = 0 and Fu = 0. Under these

approximations, the surface integrals and the viscous dissipation term vanish,

hence we obtain

d

dt

∫
u2

2
dr = 0, (2.39)

which is the statement of conservation of total kinetic energy for inviscid flows. Note

that this proof is valid for both 2D and 3D flows.
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Basics of Hydrodynamics 17

Now we prove the conservation of kinetic helicity in 3D. For the same, we employ

Eqs. (2.28, 2.34) with ν = 0, and obtain

d

dt

∫
1

2
u · ωdr =

1

2

∫
D

Dt
(u · ω)dr

=
1

2

∫ (
ω · Du

Dt
+ u · Dω

Dt

)
dr

=
1

2

∫
[ω · (−∇p) + u · (ω · ∇u)] dr

=
1

2

∫ [(
u2

2
− p
)
ω

]
· dS

= 0

under the periodic or vanishing boundary condition. Thus, we prove the conservation

of kinetic helicity for inviscid flows. In 2D, kinetic helicity is trivially zero since the

vorticity and velocity fields are perpendicular to each other. Hence, it is trivially

conserved.

Now we show why enstrophy is not conserved in 3D, but is conserved in 2D. The

equation for total enstrophy with ν = 0 is

d

dt

∫
ω2

2
dr = −

∮ (
1

2
ω2u

)
· dS +

∫
drω · [(ω · ∇)u] . (2.40)

The first term of the RHS is zero for the periodic or vanishing boundary condition.

However, the second term is nonzero, and it corresponds to the enstrophy production

due to vortex stretching. Hence, enstrophy is not conserved in 3D hydrodynamics.

Note however that in 2D hydrodynamics, (ω · ∇)u = 0, and hence enstrophy is

conserved.

So far we dealt with conservation of quadratic quantities. Now, we will discuss

the following non-quadratic conserved quantity called circulation:

Γ(t) =

∮
u · dl. (2.41)

The aforementioned integral is defined for a closed and comoving contour; here dl

is the line element. An application of Stokes’ theorem yields

Γ(t) =

∫
ω · dS, (2.42)
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18 Energy Transfers in Fluid Flows

where the surface integral is performed over any surface whose edge is the

aforementioned contour. In the inviscid limit, the circulation defined here is

conserved. This is Kelvin’s circulation theorem.

Proof: The time derivative of the circulation is4

d

dt

∮
u · dl =

∮
Du

Dt
· dl + u · Ddl

Dt

=

∮
(−∇p) · dl + u · [dl · ∇u]

=

∮
−dp+ du2/2 = 0. (2.43)

Hence, circulation is conserved. Q.E.D.

Example 2.1: Prove that for an inviscid and incompressible two-dimensional flow,

the integral
∫
ωndA over a closed and comoving contour is conserved. Here, the

exponent n is a constant, and dA is the area element.

Solution: The time derivative of
∫
ωndA is

d

dt

∫
ωndA =

∫
Dωn

Dt
dA+

∫
ωn
DdA

Dt

=

∫
nωn−1Dω

Dt
dA+

∫
ωn∇ · udA

=

∫
nωn−1(ν∇2ω)dA+ 0

= 0

because ∇ · u = 0 and ν = 0.

In the aforementioned derivation, we employ DdA/Dt = ∇ · udA that follows

from Eq. (2.35). For this case, we consider a cylindrical volume element dr = dAdh,

where height dh is perpendicular to the plane of the velocity field.

4In the derivation of Eq. (2.43), we employ Ddl/Dt = du, which is proven as follows. Let us denote dl as
separation between two points A and B whose position vectors are r and r + dl. Therefore,

Ddl

Dt
= uB − uA = du = dl · ∇u.
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Basics of Hydrodynamics 19

Example 2.2: Consider the following two-dimensional fluid flow in a two-dimensional

box of size π × π:

u = 4A(x̂ sinx cos y − ŷ cosx sin y).

Show that the fluid is incompressible. Compute the vorticity, the average kinetic

energy, and the average enstrophy for the flow. Plot the velocity field.

Solution: For the flow,

∇ · u = 4A(cosx cos y − cosx cos y) = 0.

Hence, the fluid is incompressible. The vorticity of the fluid is ω = ωẑ, where

ω = ∂xuy − ∂yux = 8A sinx sin y.

The average kinetic energy of the flow is

Eu =
1

2
〈u2〉 =

1

π2

∫ π

0

dxdy
1

2
(u2
x + u2

y)

= 8A2(〈sin2 x cos2 y〉+ 〈cos2 x sin2 y〉)

= 4A2.

The average enstrophy of the flow is

Eω =
1

2
〈ω2〉 = 8A2.

The vector plot of the velocity field is shown in Fig. 2.2.

p

p/2

0

p/20 p

y

x

Figure 2.2 Example 2.2: Vector plot of the velocity field.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316810019.003
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 04 Jul 2019 at 22:21:42, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316810019.003
https://www.cambridge.org/core


20 Energy Transfers in Fluid Flows

Example 2.3: In a periodic box of size (2π)2, the velocity field of a 2D flow is

2(− sin y, sinx, 0). Compute the vorticity field, the stream function, the average

kinetic energy and enstrophy of the flow. Plot the stream function and the velocity

field.

Solution: Using the definition of the stream function ψ,

ux =
∂ψ

∂y
; uy = −∂ψ

∂x
,

we derive

ψ = 2(cosx+ cos y).

The vorticity of the field is

ω = ∇× u = 2(cosx+ cos y)ẑ.

The vector plot of the velocity field and the density plot of the stream function are

shown in Fig. 2.3. Note that for this example, ωz = ψ. In the figures we observe a

periodic lattice of cyclones (positive ωz) and anticyclones (negative ωz).

2p

p

0
p0 2p

y

x

2p

p

0
p0 2p

y

x

3

0

–3

u( , )x  y y ( , )x  y

(b)(a)

Figure 2.3 Example 2.3: (a) Vector plot of the velocity field. The figure illustrates
a periodic lattice of cyclones (positive ωz) and anticyclones (negative
ωz). (b) Density plot of the stream function, which is same as ωz.

The average kinetic energy and enstrophy of the field are

Eu =
1

2
〈u2〉 = 2〈sin2 y〉+ 2〈cos2 y〉 = 2,
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Basics of Hydrodynamics 21

Eω =
1

2
〈ω2〉 = 2〈(cosx+ cos y)2〉 = 2.

The kinetic helicity of the flow is zero because u ⊥ ω.

Example 2.4: How does the results of Example 2.3 change if the velocity field is

2(− sin y,− sinx, 0)?

Solution: Following the same procedure as in Example 2.3, we can derive the

stream function of the flow as

ψ = 2(− cosx+ cos y).

Clearly, the velocity field is shifted horizontally (along x̂) by π, while the properties

of the flow remains the same.

Example 2.5: Consider a 2D flow with three components of the velocity field in a

periodic box of size (2π)2. The velocity field is 2(− sin y, sinx, cosx+ cos y). Make

a vector plot of u⊥ = (ux, uy), and density plot of uz. What are the vorticity field

and kinetic helicity of the flow?

Solution: The vorticity field ∇× u is

ω = (−2 sin y, 2 sinx, 2(cosx+ cos y)).

Hence, the average kinetic helicity of the field is

HK =
1

2
〈u · ω〉 = 4.

Note that ω = u; hence, the flow field is maximally helical.

The vector plot of the velocity fields u⊥ = (ux, uy), and the density plot of uz
(which is same as ωz) is the same as that plotted in Fig. 2.3. There is an anticyclone

at the centre (π, π), and cyclones at the corners. In addition, in the centre, both ωz
and uz are negative.

Example 2.6: If the velocity field of Example 2.5 was 2(− sin y, sinx,− cosx−cos y),

how does the result change?

Solution: For the velocity field 2(− sin y, sinx,− cosx − cos y), the vorticity field

∇× u is

ω = (2 sin y,−2 sinx, 2(cosx+ cos y)).

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316810019.003
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 04 Jul 2019 at 22:21:42, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316810019.003
https://www.cambridge.org/core


22 Energy Transfers in Fluid Flows

Clearly, ω = −u; hence, the flow field is maximally helical with negative kinetic

helicity. The average kinetic helicity of the field is

HK =
1

2
〈u · ω〉 = −4.

The vector plot of the velocity field u⊥ = (ux, uy) is same as that of Fig. 2.3(a),

while uz is negative of that shown in Fig. 2.3(b). Thus, in the centre of the figure,

ωz > 0, but uz < 0. This corresponds to maximal helicity with a negative sign.

Example 2.7: Consider the following fluid flow in a 3D box of size π × π × π:

u = 4C(x̂ sinx cos z − ẑ cosx sin z) + 4B(ŷ sin y cos z − ẑ cos y sin z)

+8A(−x̂ sinx cos y cos 2z − ŷ cosx sin y cos 2z + ẑ cosx cos y sin 2z).

Show that the fluid is incompressible. Also, compute the average kinetic energy of

the flow.

Solution: We find that ∇ · u = 0, hence the flow is incompressible. The average

kinetic energy of the field is

Eu =
1

2
〈u2〉 = 4C2 + 4B2 + 12A2.

In the next chapter we will describe the fluid equations in Fourier space.

Further Reading

There are many excellent textbooks on fluid dynamics. See for example, Kundu

et al. (2015), Choudhuri (1998), Tritton (1988), and Landau and Lifshitz (1987).

Exercises

1. Consider a 2D flow with u(ρ, φ) = (1/ρ)φ̂. Sketch the velocity field, and compute its curl and
divergence. Is the flow incompressible?

2. Show that the Navier–Stokes equation is Galilean invariant.

3. Consider the following flow field in a 2D box of size [π, π]:

u = 4B(ŷ sin 2x cos 2y − ŷ cos 2x sin 2y) + 4A(x̂ sinx cos y − ŷ cosx sin y).

Plot the vector field for A = 1, B = 1/2, and for A = −1, B = 1/2. Compute the vorticity, total
kinetic energy, total enstrophy, and total kinetic helicity of the flow.
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Chapter 3

Fourier Space Description of
Hydrodynamics

In fluid flows, energy transfer across multiple scales is nicely described using

Fourier modes. In the present chapter we will describe flow equations and

associated quantities (e.g., kinetic energy) in Fourier space. In the linear limit, the

Fourier modes evolve independently. Nonlinear interactions introduce coupling

among the Fourier modes that facilitates energy transfers among them. In the next

chapter, we will describe these energy transfers among Fourier modes.

We begin the present chapter with the definition and properties of Fourier

transform.

3.1 Fourier Transform and its Properties

Fourier series is used to represent a velocity field in a periodic box.1 Such

representation is very useful for studying turbulence properties away from the

walls.

We consider a periodic box of size Lx × Ly × Lz. In Fourier representation, the

velocity field is expanded using the Fourier modes as follows:

u(r, t) =
∑
k

u(k, t) exp(ik · r), (3.1)

1In this book, we consider Fourier transform of space coordinate r only, but not of time.
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24 Energy Transfers in Fluid Flows

where r is the real space coordinate, k = (kx, ky, kz) is the wavenumber with

kx =
2lπ

Lx
; ky =

2mπ

Ly
; kz =

2nπ

Lz
. (3.2)

Here l,m, n are integers (from −∞ to∞). The variables u(k, t) is Fourier amplitude

of the velocity field. The associated inverse transform is

u(k, t) =
1

LxLyLz

∫
dr[u(r, t) exp(−ik · r)], (3.3)

where the aforementioned integrals are performed over the whole box. Note that

the velocity field is real, hence

u(−k, t) =
1

LxLyLz

∫
dr[u(r, t) exp(−ik · r)] = u∗(k, t). (3.4)

Similarly, for pressure and other scalar fields,

p(−k, t) = p∗(k, t). (3.5)

As a result, in a computer simulation, we need to store only half the Fourier modes

that reduces computational and storage requirements.

The Fourier transforms have very interesting properties. They are listed as

follows:

1. Fourier transform of constant function, C, is Cδk,0, that is,

1

LxLyLz

∫
drC exp(−ik · r) = Cδk,0. (3.6)

2. The Fourier transform of a product of two real functions f(r) and g(r) is a

convolution, that is,

(fg)(k) =
∑
p

f(k− p)g(p), (3.7)

Proof:

(fg)(k) =
1

LxLyLz

∫
drf(r)g(r) exp(−ik · r)

=
1

LxLyLz

∑
p

∑
q

f(q)g(p)

∫
dr exp(i(p + q− k) · r)
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=
1

LxLyLz

∑
p

∑
q

f(q)g(p)(LxLyLz)δp+q−k

=
∑
p

f(k− p)g(p),

3. The Fourier transform of the derivative of a real function:

(∂f/∂xj)(k) = ikjf(k). (3.8)

Proof:

(∂f/∂xj)(k) =
1

LxLyLz

∫
dr
∂f(r)

∂xj
exp(−ik · r)

=
1

LxLyLz

{
[exp(−ik · r)f(r)]surface + ikj

∫
dr exp(−ik · r)f(r)

}
= ikjf(k).

The first term in the second step vanishes due to the periodic boundary condition.

4. Parseval’s theorem:

〈f(r)g(r)〉 =
∑
p

<[f∗(p)g(p)], (3.9)

where 〈.〉 stands for the spatial average of the quantity at hand.

Proof:

〈f(r)g(r)〉 =
1

LxLyLz

∫
drf(r)g(r)

=
1

LxLyLz

∑
p

∑
q

f(q)g(p)

∫
dr exp(i(p + q) · r)

=
1

LxLyLz

∑
p

∑
q

f(q)g(p)(LxLyLz)δp+q

=
∑
p

f(−p)g(p) =
1

2

[∑
p

f∗(p)g(p) +
∑
−p

f∗(p)g(p)

]

=
∑
p

<[f∗(p)g(p)],
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26 Energy Transfers in Fluid Flows

where <[.] stands for the real part of the argument. When f = g, we obtain

〈[f(r)]2〉 =
∑
p

<[f∗(p)f(−p)] =
∑
p

|f(p)|2. (3.10)

5. Fourier transform of the correlation function is the power spectrum, that is,

1

LxLyLz

∫
dl〈f(r)g(r + l)〉 exp(−i(k · l)) = f(−k)g(k) (3.11)

Proof:

1

LxLyLz

∫
dl〈f(r)g(r + l)〉 exp(−i(k · l))

=
1

(LxLyLz)2

∫ ∫
dldrf(r)g(r + l) exp(−i(k · l))

=
1

(LxLyLz)2

∫ ∫
dldr

∑
p

∑
q

f(p)g(q) exp(ip · r) exp(iq · (r + l))

× exp(−i(k · l))

=
∑
p

∑
q

δq,kδp,−qf(p)g(q)

= f(−k)g(k).

When f = g, we obtain

1

LxLyLz

∫
dl〈f(r)f(r + l)〉 exp(−i(k · l)) = |f(k)|2. (3.12)

The energy of a velocity Fourier mode, called modal kinetic energy, is given by

Eu(k) =
1

2
|u(k)|2. (3.13)

Using Parseval’s theorem, we obtain

Eu =
1

2
〈u2〉 =

∑
k

1

2
|u(k)|2. (3.14)

Eu of Eq. (3.14) is the total kinetic energy , and is a sum over all the Fourier modes.

In the next section, we present Navier–Stokes equations in Fourier space.
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Fourier Space Description of Hydrodynamics 27

3.2 Flow Equations in Fourier Space

Using the identities stated in the previous sections, we represent the incompressible

Navier–Stokes equations in Fourier space. That is, we rewrite Eq. (2.6) in Fourier

space as

d

dt
u(k) + Nu(k) = −ikp(k) + Fu(k)− νk2u(k), (3.15a)

k · u(k) = 0, (3.15b)

where the nonlinear term is

Nu(k) = i
∑
p

{k · u(q)}u(p) (3.16)

with q = k− p. Equations (3.15, 3.16) are the equations of motion for mode u(k).

Equation (3.15) can be written in tensorial form as

d

dt
ui(k) = −ikip(k)− ikj

∑
p

uj(q)ui(p) + Fu,i(k)− νk2ui(k), (3.17a)

kiui(k) = 0. (3.17b)

In Eq. (3.17), i represents
√
−1 in front of the kip(k) term, and x, y, z components

in ui. Note that the pressure p(k) is derived by taking dot product of Eq. (3.15a)

with ik and by employing k · u(k) = 0:

p(k) =
i

k2
k · {Nu(k)− Fu(k)}. (3.18)

To derive a dynamical equation for the modal KE, |u(k)|2/2, we perform a dot

product of Eq. (3.15a) with u∗(k), and add the resultant equation with its complex

conjugate. These operations yield

d

dt
Eu(k) =

∑
p

= [{k · u(q)}{u(p) · u∗(k)}] + <[Fu(k) · u∗(k)]− 2νk2Eu(k), (3.19)

where q = k− p, and <[.], =[.] stand respectively for the real and imaginary parts

of the argument. The modal energy Eu(k) changes with time due to the three

terms in the right-hand side of Eq. (3.19). These terms have the following physical

interpretations:

1. Term 1: The nonlinear energy transfers from all the Fourier modes to u(k). It

is usually denoted by Tu(k).

2. Term 2: The energy supply rate by the external force

Fu(k) = <[Fu(k) · u∗(k)]. (3.20)
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28 Energy Transfers in Fluid Flows

3. Term 3: The viscous dissipation rate

Du(k) = −2νk2Eu(k). (3.21)

From the above, we deduce that the total viscous dissipation rate in the flow is

εu =
∑
k

Du(k), (3.22)

and the total energy supply rate to the flow by the external force is

Fu =
∑
k

Fu(k). (3.23)

For a homogeneous and isotropic turbulence, the modal kinetic energies of all the

modes in a thin wavenumber shell are statistically equal. The averaging process

could be either ensemble or temporal. Hence, it is customary to define the following

one-dimensional KE spectrum, Eu(k), which is a sum of all the modes of a shell of

unit width around wavenumber k:

Eu(k) =
∑

k−1<k′≤k

1

2
|u(k′)|2. (3.24)

The dynamical equations for Eu(k) is obtained by summing Eq. (3.19) over all the

Fourier modes of the shell:

d

dt
Eu(k) =

∑
k−1<k′′≤k

∑
p

= [{k′′ · u(q)}{u(p) · u∗(k′′)}]−
∑

k−1<k′′≤k

2νk′′2Eu(k′′)

+
∑

k−1<k′′≤k

<[Fu(k′′) · u∗(k′′)] (3.25)

with q = k′′ − p.

For homogeneous and isotropic turbulence, the energy contents of the three

components of u(k) are equal (on an average), that is,

〈|ux(k)|2〉 = 〈|uy(k)|2〉 = 〈|uz(k)|2〉. (3.26)
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Fourier Space Description of Hydrodynamics 29

However, when the flow is under an influence of an external field, it becomes

anisotropic. We assume the direction of the external field or that of anisotropy to

be along ẑ. Hence, the flow has azimuthal symmetry, and

〈|ux(k)|2〉 = 〈|uy(k)|2〉 6= 〈|uz(k)|2〉. (3.27)

For a more general notation, we denote uz = u‖, and

u⊥ = uxx̂+ uyŷ. (3.28)

The modal KE of these fields are defined as follows:

Eu,‖(k) =
1

2
|u‖(k)|2, (3.29a)

Eu,⊥(k) =
1

2
|u⊥(k)|2, (3.29b)

and their corresponding one-dimensional KE spectra are as follows:

Eu,‖((k) =
∑

k−1<k′≤k

1

2
|u‖(k′)|2, (3.30a)

Eu,⊥(k) =
∑

k−1<k′≤k

1

2
|u⊥(k′)|2. (3.30b)

In Chapter 11, we also employ the following anisotropic parameter A(k) to quantify

anisotropy in turbulence:

A(k) =
Eu,⊥(k)

2Eu,‖(k)
. (3.31)

Chapter 11 contains a detailed discussion on quantification of anisotropic turbulence.

3.3 Vorticity, Kinetic Helicity, and Enstrophy

In Fourier space, the vorticity field ω = ∇× u gets transformed to

ω(k) = ik× u(k). (3.32)

Using k · u(k) = 0, we invert Eq. (3.32) as follows:

u(k) =
i

k2
k× ω(k). (3.33)

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316810019.004
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 04 Jul 2019 at 22:18:42, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316810019.004
https://www.cambridge.org/core


30 Energy Transfers in Fluid Flows

Note that for a 2D velocity field, ω(k) is perpendicular to the plane of the velocity

field.

Using Eqs. (2.13), we derive the dynamical equation for the vorticity in Fourier

space as

d

dt
ω(k) + Nω(k) = Fω(k)− νk2ω(k), (3.34)

where

Nω(k) = −ik×
∑
p

{u(q)× ω(p)} (3.35)

or

Nω(k) = i
∑
p

{k · u(q)}ω(p)− {k · ω(q)}u(p), (3.36)

and

Fω(k) = ik× Fu(k). (3.37)

There are two important quadratic quantities related to the vorticity—kinetic

helicity and enstrophy. The modal kinetic helicity is defined as follows:

HK(k) =
1

2
<[u(k) · ω∗(k)]. (3.38)

Using Eq. (3.33), we obtain

HK(k) =
1

2k2
<[ik · {ω(k)× ω∗(k)}]. (3.39)

The modal enstrophy is defined as

Eω(k) =
1

2
|ω(k)|2. (3.40)

Using Parseval’s theorem, we deduce that the total kinetic helicity and total

enstrophy are

HK =
1

2
〈u · ω〉 =

∑
k

1

2
<[u(k) · ω∗(k)] (3.41)

and

Eω =
1

2
〈|ω|2〉 =

∑
k

1

2
|ω(k)|2. (3.42)
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The evolution equations for the kinetic helicity can be derived by taking time

derivative of Eq. (3.39):

d

dt
HK(k) =

1

2k2
<[ik · {ω̇(k)× ω∗(k) + ω(k)× ω̇∗(k)}]. (3.43)

Since

ik · {ω(k)× ω̇∗(k)} = −ik · {ω̇∗(k)× ω(k)} = [ik · {ω̇(k)× ω∗(k)}]∗, (3.44)

Equation (3.43) is simplified to

d

dt
HK(k) =

1

k2
<[ik · {ω̇(k)× ω∗(k)}]. (3.45)

Note that for ν = 0 and Fu = 0,

ik · {ω̇(k)× ω∗(k)} = ik ·
∑
p

[i{k× (u(q)× ω(p))} × ω∗(k)]

= k ·
∑
p

[k{u(q)× ω(p)} · ω∗(k)]

=
∑
p

k2u(q) · {ω(p)× ω∗(k)}, (3.46)

where q = k− p. Therefore, with ν and Fu, Eq. (3.45) yields

d

dt
HK(k) =

∑
p

<[u(q) · {ω(p)× ω∗(k)}] + FHK (k)− νk2HK(k). (3.47)

where

FHK (k) =
1

2
<[u̇(k) · ω∗(k)] +

1

2
<[u(k) · ω̇∗(k)] = <[ω∗(k) · Fu(k)] (3.48)

is the kinetic helicity supply rate by the external force.

Following a similar procedure as earlier, we deduce the following dynamical

equation for the enstrophy:

d

dt
Eω(k) = <[ω̇(k) · ω∗(k)]

=
∑
p

= [{k · u(q)}{ω(p) · ω∗(k)}]−= [{k · ω(q)}{u(p) · ω∗(k)}]

+Fω(k)− 2νk2Eω(k) (3.49)

where

Fω(k) = <[ik× Fu(k) · ω∗(k)] = k2<[u∗(k) · Fu(k)] (3.50)
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32 Energy Transfers in Fluid Flows

is the enstrophy supply rate by the external force. Equation (3.49) indicates that

the enstrophy is enhanced by nonlinearity. Note however that a single mode with

u(k) ‖ ω(k) does not lead to stretching of a vortex. That is, vortex stretching is a

nonlinear phenomena.

In a 2D inviscid flow, ω(k) ⊥ u(k), hence u(p) · ω∗(k)) = 0. Therefore,

d

dt
Eω(k) =

∑
p

= [{k · u(q)}{ω(p)ω∗(k)}] + Fω(k)− 2νk2Eω(k). (3.51)

We will revisit these equations when we study kinetic energy, kinetic helicity, and

enstrophy transfers among the Fourier modes.

Example 3.1: Consider the following two-dimensional fluid flow in a periodic box of

size 2π × 2π:

u = 4A(x̂ sinx cos y − ŷ cosx sin y).

Compute the amplitudes of u(k) and that of the vorticity field. What are the total

kinetic energy and enstrophy of the flow?

Solution: We expand the components of the velocity field as

ux =
A

i
[exp(ix)− exp(−ix)] [exp(iy) + exp(−iy)] ,

uy = −A
i

[exp(ix) + exp(−ix)] [exp(iy)− exp(−iy)] ,

from which we can extract Fourier amplitudes u(±1,±1). These amplitudes are

listed in Table 3.1. We can compute the corresponding amplitudes for the vorticity

field using

ω(k) = ik× u(k).

The modal energy and modal enstrophy are computed using

Eu(k) =
1

2
|u(k)|2; Eω(k) =

1

2
|ω(k)|2. (3.52)

These values are also listed in Table 3.1. The total kinetic energy and enstrophy of

the flow are 4A2 and 8A2 respectively. One can easily verify that these results are

consistent with those presented in Example 2.2 for real space.
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Table 3.1 Example 3.1: Amplitudes of the velocity and vorticity Fourier modes.
The modal kinetic energy and modal enstrophy are also listed.

mode ux(k) uy(k) ωz(k) Eu(k) Eω(k)

(1,1) A/i −A/i −2A A2 2A2

(1,−1) A/i A/i 2A A2 2A2

(−1, 1) −A/i −A/i 2A A2 2A2

(−1,−1) −A/i A/i −2A A2 2A2

Example 3.2: Consider the two-dimensional fluid flows in a periodic box of size

2π × 2π:

u = 2(− sin y, sinx, 0).

Compute the amplitudes of u(k) and that of the vorticity field. What are the total

kinetic energy and enstrophy of the flow?

Solution: We compute the desired quantities following a similar procedure as in

the previous example. The results are listed in Table 3.2. Note that the total kinetic

energy and total enstrophy of the flow are 2 units each, which are the same as those

computed in Example 2.3 for real space.

Table 3.2 Example 3.2: Amplitudes of the velocity and vorticity Fourier
modes. The modal kinetic energy and modal enstrophy are also
listed.

Mode ux(k) uy(k) ωz(k) Eu(k) Eω(k)

(1,0) 0 1/i 1 1/2 1/2

(−1, 0) 0 −1/i 1 1/2 1/2

(0,1) −1/i 0 1 1/2 1/2

(0,−1) 1/i 0 1 1/2 1/2

Example 3.3: Consider the following two-dimensional fluid flows with three

components:

(a) : u = 2(− sin y, sinx, cosx+ cos y).

(b) : u = 2(− sin y, sinx,− cosx− cos y).

Compute the Fourier amplitudes of the velocity and vorticity fields, as well as the

total kinetic energy, enstrophy, and kinetic helicity.
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34 Energy Transfers in Fluid Flows

Solution: Following a similar procedure as in earlier exercises, we compute the

desired quantities, which are listed in Table 3.3. For the velocity field (a), u(k) =

ω(k), and the kinetic helicity is maximally positive. The total kinetic energy,

enstrophy, and kinetic helicity are 4 each. For the velocity field (b), u(k) = −ω(k),

and the kinetic helicity is maximally negative. Here, the total kinetic energy and

enstrophy are 4 each, while the total kinetic helicity is −4. These results are

consistent with those presented in Examples 2.5 and 2.6 of Chapter 1.2.

Table 3.3 Example 3.3: Amplitudes of the velocity and vorticity Fourier modes
for the given velocity fields. The modal kinetic energy, modal
enstrophy, and modal kinetic helicity are also listed.

Flow Mode u(k) ω(k) Eu(k) Eω(k) HK(k)

(a)

(1,0) (0,−i, 1) (0,−i, 1) 1 1 1
(−1, 0) (0, i, 1) (0, i, 1) 1 1 1
(0,1) (i, 0, 1) (i, 0, 1) 1 1 1

(0,−1) (−i, 0, 1) (−i, 0, 1) 1 1 1

(b)

(1,0) (0,−i,−1) (0, i, 1) 1 1 −1

(−1, 0) (0, i,−1) (0,−i, 1) 1 1 −1

(0,1) (i, 0,−1) (−i, 0, 1) 1 1 −1

(0,−1) (−i, 0,−1) (i, 0, 1) 1 1 −1

Example 3.4: Consider the following flow field:

u = x̂2B cos y + ŷ2C cosx+ (x̂− ŷ)2A sin(x+ y).

List the active Fourier modes. Compute the total kinetic energy of the flow.

Assuming that Fu = 0, derive equations of motion for A,B, and C.

Solution: In Fourier basis, the associated wavenumbers of the velocity field are

(±1, 0), (0,±1), (1, 1), and (−1,−1). The Fourier amplitudes of the Fourier modes

are listed in Table 3.4.

The total kinetic energy of the flow is

Eu =
∑
k

1

2
|u(k)|2 = C2 +B2 + 2A2.
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Table 3.4 Example 3.4: Amplitudes of the velocity Fourier modes.

Mode ux uy

(1,0) 0 C

(−1, 0) 0 C

(0,1) B 0

(0,−1) B 0

(1,1) A
i −Ai

(−1,−1) −Ai
A
i

In Figure 3.1, we illustrate the interacting Fourier wavenumbers. For the derivation

of the equations of motion for the modes, we focus on a single triad: q = (1, 0),

p = (0, 1), and k = (1, 1). Note that k = p + q. Using Eq. (3.16), we compute the

nonlinear term Nu as

Nu(k) = ik · u(q)u(p) + ik · u(p)u(q)

= iuy(q)ux(p)x̂+ iux(p)uy(q)ŷ = iBC(x̂+ ŷ),

Nu(q) = iq · u(k)u(−p) + iq · u(−p)u(k)

= iux(k)u∗x(p)x̂+ iu∗x(p)u(k) = AB(2x̂− ŷ),

Nu(p) = AC(x̂− 2ŷ).

y

(0, 1) (1, 1)

(1, 0) x

k p

q

Figure 3.1 Fourier modes of the flow field given in Example 3.4
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Using Eq. (3.18) we compute the pressure Fourier modes as

p(k) = −BC,

p(p) = −2iAC,

p(q) = 2iAB.

Now we substitute Nu(k) and p(k) in Eq. (3.15a) and set Fu(k) = 0 that yields

d

dt
u(k) = −Nu(k)− ikp(k)− νk2u(k)

= −iBC(x̂+ ŷ)− i(x̂+ ŷ)(−BC)− ν2u(k)

= −2νu(k).

Similar analysis yields

d

dt
u(q) = ABŷ − νu(q),

d

dt
u(p) = −ACx̂− νu(p).

Let us consider the inviscid limit for which ν = 0. Since u(k) = (A/i)(x̂ − ŷ),

u(q) = Cŷ, and u(p) = Bx̂, the equations of motion are

Ȧ = 0,

Ḃ = −AC,

Ċ = AB,

whose solution are

A = constant,

B = c cos(At),

C = c sin(At)

with c as a constant. Thus, B and C oscillate with frequency A. Note that

[B(t)]2 + [C(t)]2 + 4[A(t)]2 = [B(0)]2 + [C(0)]2 + 4[A(0)]2 = const.

Hence, the total kinetic energy is conserved, as expected for an inviscid flow.
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The dynamical equations are more easily derived when we employ dot products

of equations for u̇(k), u̇(p), u̇(q) with x̂ − ŷ, x̂, and ŷ respectively. This process

eliminates the pressure term automatically and yields the following dynamical

equations:

2Ȧ

i
= −Nu(k) · (x̂− ŷ) = 0,

Ḃ = −Nu(p) · x̂ = −AC,

Ċ = −Nu(q) · ŷ = AB,

which are same as those obtained earlier.

We will obtain the same set of equations for A,B, and C if we use the other

triads, for example, {(−1, 0), (0,−1), (−1,−1)}. This is because the amplitudes of

all the modes are related to each other as shown in Table 3.4.

Example 3.5: In the light of the previous example, what is the equation of motion

of the following flow field:

u = x̂2B cos y + ŷ2C cosx+ 2A cos(x+ y)(x̂− ŷ).

Solution: We follow the same procedure as in the previous example with q = (1, 0),

p = (0, 1), and k = (1, 1). For ν = 0, we obtain

d

dt
u(k) = 0

d

dt
u(q) = iABŷ

d

dt
u(p) = −iACx̂

that leads to

Ȧ = 0,

Ḃ = −iAC,

Ċ = iAB,

Since A,B,C are real, we obtain

Ḃ = 0; Ċ = 0; AC = 0; AB = 0,
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whose solution is

A = 0, B = const, C = const.

A = 0 implies that the nonlinear interactions among the modes are turned off.

Example 3.6: Consider the velocity field

u = 4C(x̂ sinx cos z − ẑ cosx sin z) + 4B(ŷ sin y cos z − ẑ cos y sin z)

+8A(−x̂ sinx cos y cos 2z − ŷ cosx sin y cos 2z + ẑ cosx cos y sin 2z).

Compute the vorticity, the total kinetic energy, and the total kinetic helicity of the

flow. Derive the equations of motion for A,B, and C.

Solution: The wavenumbers associated with the flow field are (±1, 0,±1),

(0,±1,±1), and (±1,±1,±2). In Table 3.5 we present the Fourier amplitudes for

the wavenumbers (1,0,1), (0,1,1), and (1,1,2). The amplitudes of other Fourier

modes can be written easily using the properties of sin and cos functions.

Table 3.5 also contains the amplitudes of the vorticity Fourier modes, as well as

the modal kinetic energy and modal kinetic helicity.

Table 3.5 Example 3.6: Fourier amplitudes of the velocity and vorticity field, as
well as the modal kinetic energy and kinetic helicity.

Mode u(k) ω(k) Eu(k) HK(k)

(1,1,2) (−Ai ,−
A
i ,

A
i ) (3A,−3A, 0) 3A2/2 0

(1,0,1) (Ci , 0,−
C
i ) (0, 2C, 0) C2 0

(0,1,1) (0, Bi ,−
B
i ) (−2B, 0, 0) B2 0

The total kinetic energy of the flow is

Eu =
∑
k

1

2
|u(k)|2 = 4× C2 + 4×B2 + 8× 3

2
A2 = 4(C2 +B2 + 3A2).

Here the prefactors are the number of Fourier modes in all the quadrants in Fourier

space. The vorticity field is computed using

ω(k) = ik× u(k),
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and they are listed in Table 3.5. The total kinetic helicity of the flow is

HK =
∑
k

1

2
<(u(k) · ω∗(k)) = 0.

Hence, the flow has zero kinetic helicity. Note that the kinetic helicity for each mode

is zero.

We focus on the following interacting triads:

(1, 1, 2)
⊕

(−1, 0,−1)
⊕

(0,−1,−1) = 0,

(−1, 1, 2)
⊕

(1, 0,−1)
⊕

(0,−1,−1) = 0,

(1,−1, 2)
⊕

(−1, 0,−1)
⊕

(0, 1,−1) = 0,

which are depicted in Fig. 3.2. Here the symbol
⊕

represent nonlinear interactions

among the modes. The nonlinear interactions involving the aforementioned modes

can occur among the following triads only:2

(1, 1, 2)

(–1, 0, –1)

(0, 1, –1)

(1, –1, 2) (–1, 1, 2)

(0, –1, –1)

(1, 0, –1)

Figure 3.2 Example 3.6. The interacting triads. The wavenumbers in a triad add
up to zero.

2Proof: If kx, ky = ±1 and kz = ±2, then the nonlinear interactions occur only through the following
triads:

(kx, ky , kz) = (kx, 0, k
′
z)
⊕

(0, ky , k
′′
z ),

(kx, 0, k
′
z) = [(kx, ky , kz)

⊕
(0,−ky ,−k′′z )] + [(kx,−ky , kz)

⊕
(0, ky ,−k′′z )]

(0, ky , k
′
z) = [(kx, ky , kz)

⊕
(−kx, 0,−k′′z )] + [(−kx, ky , kz)

⊕
(kx, 0,−k′′z )].

In the aforementioned expressions, when kz = 2 =⇒ k′z = 1, k′′z = 1, and when kz = −2 =⇒
k′z = −1, k′′z = −1.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316810019.004
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 04 Jul 2019 at 22:18:42, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316810019.004
https://www.cambridge.org/core


40 Energy Transfers in Fluid Flows

k = (1, 1, 2) = (1, 0, 1)
⊕

(0, 1, 1),

q = (1, 0, 1) = [(0,−1,−1)
⊕

(1, 1, 2)] + [(0, 1,−1)
⊕

(1,−1, 2)],

p = (0, 1, 1) = [(−1, 0,−1)
⊕

(1, 1, 2)] + [(1, 0,−1)
⊕

(−1, 1, 2)].

Using Eqs. (3.16, 3.18), we compute the nonlinear terms and pressure as

Nu(k) = iBC(x̂+ ŷ − 2ẑ),

Nu(q) = i2AB(x̂− ẑ),

Nu(p) = i2AC(ŷ − ẑ),

p(q) = p(p) = 0,

p(k) =
1

3
BC.

Substitution of Nu(k) and p(k) in Eq. (3.15a), and an assumption that Fu(k) = 0

yields

d

dt
u(q) = −i2AB(x̂− ẑ)− 2νu(q),

d

dt
u(p) = −i2AC(ŷ − ẑ)− 2νu(p),

d

dt
u(k) = −i4

3
BC(x̂+ ŷ − ẑ)− 6νu(k).

Substitution of u(q) = (C/i)(x̂− ẑ), u(p) = (B/i)(ŷ − ẑ), and u(k) = (−A/i)(x̂+

ŷ − ẑ) in the aforementioned equations yields (with ν = 0):

Ȧ = −4

3
BC,

Ḃ = 2AC,

Ċ = 2AB.

In Fig. 3.3, we plot the time series of A,B,C for an initial condition B = 1, C =

0.2, A = 0.2. Here, B oscillates around a mean value, and A,C oscillate around zero.

The role of B and C could have been flipped. Note that if A or C are zero, then the

modes will not couple nonlinearly, and B will remain a constant. We also remark

that the aforementioned equations have the same form as those of an asymmetric

top (Landau and Lifshitz, 1976; Verma, 2016).
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Figure 3.3 Example 3.6: Time series of A,B,C and −2ABC shown
respectively as red, green, purple, and black curves. Note that
−2ABC, the energy transfer from u(p) to u(k′) (to be discussed
in Example 4.4), oscillates around zero.

The next chapter contains discussion on the energy transfers among Fourier

modes.

Further Reading

For Fourier transform and its application to partial differential equations, refer to

texts on mathematical physics, such as Kreyszig et al. (2011). For applications of

Fourier transforms to fluid dynamics, refer to textbooks by Leslie (1973), Lesieur

(2008), McComb (1990), Davidson (2004), and Pope (2000).

Exercises

1. Consider an incompressible velocity field in the xy plane whose ux = 4A sin ax cos by with a, b > 0.
Construct the full velocity field.

2. Consider the following flow field in a two-dimensional box of size [π, π]:

u = 4C(x̂ sin 3x cos y − ŷ3 cos 3x sin y) + 4B(ŷ sin 2x cos 2y − ŷ cos 2x sin 2y)

+4A(x̂ sinx cos y − ŷ cosx sin y).
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42 Energy Transfers in Fluid Flows

For this field, identify the active Fourier modes and their amplitudes. Compute the total kinetic
energy and the total enstrophy of the flows. Verify that these fields are incompressible.

3. Consider a triad with wavenumbers k = (1, 0), q = (1/2,
√

3/2), p = (1/2,−
√

3/2), and
(−k,−p,−q). Construct an incompressible flow field using these wavenumbers, and compute its
kinetic energy. What kind of patterns does the flow generate?
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Chapter 4

Energy Transfers in
Hydrodynamic Flows

In the last chapter we introduced the dynamical equations for fluid flows in Fourier

space. According to the energy equation, a Fourier mode gains or loses energy to

the other Fourier modes via nonlinear interactions. In this chapter we will quantify

energy transfers among the Fourier modes, as well as discuss related quantities such

as energy flux.

Kraichnan (1959) was the first to derive a formula for the energy transfers in

hydrodynamics. Later, Dar et al. (2001) and Verma (2004) derived a more general

formula called mode-to-mode energy transfer, which will be described in the

present chapter. These transfers are related to the energy flux of Kolmogorov’s

theory (Kolmogorov, 1941a,c), but they are not the same. We remark that the

formulas derived in this chapter are applicable only to incompressible flows.

Compressible flows have additional complexities that will be briefly described in

Chapter 30.

It is important to note that the energy transfers discussed here refer to energy

exchanges across length scales. It differs from the usual definition of real-space

energy flux, which is the rate of energy crossing a unit area. Also, in this chapter

we use the phrase energy for u2/2, which is actually the kinetic energy. Here, this

notation is unambiguous because hydrodynamics has only one field, u. In later

chapters, we differentiate kinetic energy from other quadratic quantities like

magnetic energy, kinetic helicity, etc.
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44 Energy Transfers in Fluid Flows

We also remark that linear systems too can exhibit energy exchange. For

example, in a simple oscillator, the kinetic and potential energies are exchanged

via the spring force. However, the energy exchanges to be discussed in this chapter

are very different; they occur via nonlinear interactions.

We start this chapter with the derivation of the mode-to-mode energy transfers

in hydrodynamics.

4.1 Mode-to-mode Energy Transfers in Hydrodynamics

We start with Eq. (3.19) for the evolution of modal kinetic energy |u(k)|2/2:

d

dt
Eu(k) =

∑
p

= [{k · u(q)}{u(p) · u∗(k)}] + <[Fu(k) · u∗(k)]− 2νk2Eu(k). (4.1)

Clearly, the Fourier mode u(k) receives energy from other Fourier modes via

nonlinear interactions. The basic unit of interaction is a triad formed by three

Fourier modes with wavenumbers (k,p,q) satisfying a condition k = p + q. To

derive the formula for the mode-to-mode energy transfer, we consider a flow

formed by a pair of triads—(k,p,q) and (−k,−p,−q). See Fig. 4.1 for an

illustration. The velocity Fourier modes at these wavenumbers are u(±k), u(±p),

and u(±q). Note that u(−k) = u∗(k) due to the reality condition. We also

simplify the system by making it dissipationless (ν = 0) and force-free (Fu = 0).

Note that the total energy is conserved in this limit.
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Figure 4.1 (a,b) Two interacting wavenumber triads (k′,p,q) and (−k′,−p,
−q). (c) The energy transfer Suu(X|Y|Z): from u(Y) to u(X)
with u(Z) acting as a mediator.
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When we work with triad wavenumbers (k′,p,q) with k′ + p + q = 0, the

equations become symmetric in k′,p,q providing a major simplification. Note that

k′ = −k. Using Eq. (4.1) we derive an equation for the modal energy

Eu(k) = |u(k)|2/2 in the aforementioned triad as

d

dt
Eu(k′, t) = −= [{k′ · u(q)}{u(p) · u(k′)}+ {k′ · u(p)}{u(q) · u(k′)}] ,

= Suu(k′|p,q), (4.2)

where =[.] denotes the imaginary part of the argument. Kraichnan (1959) was the

first to derive Eq. (4.2). Suu(k′|p,q)1 is termed as the combined energy transfer

to u(k) from u(p) and u(q). The evolution equations for Eu(p) and Eu(q) can be

derived in a similar fashion:

d

dt
Eu(p, t) = −= [{p · u(q)}{u(p) · u(k′)}+ {p · u(k′)}{u(p) · u(q)}]

= Suu(p|q,k), (4.3)

d

dt
Eu(q, t) = −= [{q · u(p)}{u(q) · u(k′)}+ {q · u(k′)}{u(q) · u(p)}]

= Suu(q|p,k). (4.4)

By adding the above three equations, we obtain

d

dt
[Eu(k′, t) + Eu(p, t) + Eu(q, t)] = 0 (4.5)

because k′ · u(k′) = p · u(p) = p · u(p) = 0. Thus, for an interacting triad,

Eu(k′, t) + Eu(p, t) + Eu(q, t) = constant (4.6)

in the inviscid limit. This is the law of detailed energy conservation (Kraichnan,

1959; Lesieur, 2008). Note that the incompressibility condition is critical for this

conservation law. In compressible flows, there is an exchange of kinetic and the

internal energies (to be discussed in Chapter 30).

An important question is whether we can derive an expression for

mode-to-mode energy transfer rates from mode u(p) to mode u(k′), and from

mode u(q) to mode u(k′) separately. These individual energy transfers are not

provided by Kraichnan (1959). Dar et al. (2001) and Verma (2004) derived

formulas for these transfer rates. We denote these desired quantities by

Suu(k′|p|q) and Suu(k′|q|p) respectively, as shown in Fig. 4.1(c). Here the first

1The superscript uu represents u to u energy transfers. In magnetohydrodynamics, we will also consider Sbb

and Sub that represent the magnetic to magnetic, and magnetic to kinetic energy transfers respectively.
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46 Energy Transfers in Fluid Flows

argument is the receiver wavenumber, the second argument is the giver or donor

wavenumber, and the third argument is the mediator wavenumber. For dEu(p)/dt,

the corresponding energy transfer functions are Suu(p|k′|q) and Suu(p|q|k′), and

for dEu(q)/dt, they are Suu(q|k′|p) and Suu(q|p|k′). Note that the mode-to-mode

energy transfer Suu(k′|p|q) is very different from the combined energy transfer

S(k′|p,q).

According to Dar et al. (2001) and Verma (2004), the rate of mode-to-mode energy

transfer from mode u(p) to mode u(k′) with u(q) acting as a mediator is

Suu(k′|p|q) = −= [{k′ · u(q)}{u(p) · u(k′)}] . (4.7)

For brevity, we drop the term “rate of” and refer to Suu of Eq. (4.7) as mode-to-

mode energy transfer. In the aforementioned formula, the Fourier amplitudes of

the receiver and giver modes are dotted together, while the receiver wavenumber is

dotted with the amplitude of the mediator mode. Using this recipe, the formula for

other energy transfers in the triad are as follows:

Suu(k′|q|p) = −= [{k′ · u(p)}{u(q) · u(k′)}] , (4.8a)

Suu(p|k′|q) = −= [{p · u(q)}{u(p) · u(k′)}] , (4.8b)

Suu(p|q|k′) = −= [{p · u(k′)}{u(p) · u(q)}] , (4.8c)

Suu(q|k′|p) = −= [{q · u(p)}{u(q) · u(k′)}] , (4.8d)

Suu(q|p|k′) = −= [{q · u(k′)}{u(p) · u(q)}] . (4.8e)

Since k′ = −k, the formula Suu(k′|p|q) is also written as

Suu(k|p|q) = = [{k · u(q)}{u(p) · u∗(k)}] . (4.9)

In the following, we sketch the proof for the aforementioned formulas.

The functions Suu’s satisfy the following properties. For convenience, we label

the wavenumbers as X,Y,Z with X + Y + Z = 0.

1. The sum of Suu(X|Y|Z) and Suu(X|Z|Y) is the combined energy transfer to

mode u(X) from modes u(Y) and u(Z) (see Eq. (4.2)). Therefore,

Suu(k′|p|q) + Suu(k′|q|p) = Suu(k′|p,q), (4.10a)

Suu(p|k′|q) + Suu(p|q|k′) = Suu(p|k′,q), (4.10b)

Suu(q|k′|p) + Suu(q|p|k′) = Suu(q|k′,p). (4.10c)
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2. By definition, the energy transfer from mode u(Y) to the mode u(X),

Suu(X|Y|Z), is equal and opposite to the energy transfer from mode u(X) to

mode u(Y), Suu(Y|X|Z). Therefore,

Suu(k′|p|q) + Suu(p|k′|q) = 0, (4.11a)

Suu(k′|q|p) + Suu(q|k′|p) = 0, (4.11b)

Suu(p|q|k′) + Suu(q|p|k′) = 0. (4.11c)

Note that the terms in the derivation of Eq. (4.5) are cancelled due to the

identities of Eqs. (4.11).

The aforementioned conditions arise due to the principles of transactions. Similar

conditions would apply to financial transactions as well. Note that the mediator

mode does not receive any energy during a transaction, but its presence is required.

There is no transaction without the mediator mode.

The aforementioned six equations have six unknowns. It is easy to verify that

the mode-to-mode energy transfers of Eqs. (4.7, 4.8) satisfy Eqs. (4.10, 4.11).

Equations (4.10) are satisfied by definition, while Eqs. (4.11) are satisfied due to

the incompressibility condition q · u(q) = p · u(p) = k′ · u(k′) = 0. For example,

Suu(k′|p|q) + Suu(p|k′|q)

= −= [{k′ · u(q)}{u(p) · u(k′)}]−= [{p · u(q)}{u(p) · u(k′)}]

= −= [{(k′ + p) · u(q)}{u(p) · u(k′)}]

= = [{q · u(q)}{u(p) · u(k′)}] = 0.

Hence, the function of Eqs. (4.7, 4.8) form a solution for the energy transfers in a

triad.

We can rewrite Eqs. (4.10, 4.11) in the following matrix form:

1 1 0 0 0 0

0 0 1 1 0 0

0 0 0 0 1 1

1 0 1 0 0 0

0 1 0 0 1 0

0 0 0 1 0 1





Suu(k′|p|q)

Suu(k′|q|p)

Suu(p|k′|q)

Suu(p|q|k′)
Suu(q|k′|p)

Suu(q|p|k′)


=



Suu(k′|p,q
Suu(p|k′,q)

Suu(q|k′,p)

0

0

0


(4.12)

The determinant of the matrix in the above equation is zero. Hence, the set Suu’s of

Eqs. (4.7, 4.8) is not a unique solution of Eqs. (4.10, 4.11). It is straightforward to
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48 Energy Transfers in Fluid Flows

show that an arbitrary circulating transfer ∆ as shown in Fig. 4.2(b) can be added

to Suus. The new solution still satisfy Eqs. (4.10, 4.11). In the present book, we

however argue that the above circulating transfer is zero.

Note that the mode-to-mode energy transfers Suu’s cannot be measured using

numerical simulation or experimental data. We can make an analogy with

electrodynamics: Suu’s are similar to the scalar and vector potentials of

electrodynamics, while ∆ is like a gauge. Dar et al. (2001) and Verma (2004)

argued that the trivial circulating transfer ∆ flows via p→ k′ → q→ p, and

hence it does not alter physical observables such as dEu(k)/dt. For each

wavenumber, it gets cancelled by the two Suu’s. Most importantly, in this book,

we prove that ∆ = 0.
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Figure 4.2 (a) A set of solution to Eqs. (4.10, 4.11). They are Suu’s of Eqs. (4.7,
4.8). (b) We can add ∆ to the solution of (a); they still satisfy
Eqs. (4.7, 4.8). (c) Energy transfers opposite to those of (b).

In the following two subsections, we demonstrate uniqueness of the solution of

Eqs. (4.7, 4.8) using physical and mathematical arguments. The mathematical

arguments involve additional constraints imposed on Suu’s.

4.1.1 A physical argument

The mode-to-mode energy transfer formula Suu(k′|p|q) of Eq. (4.7) can be

interpreted in the following manner. The Navier–Stokes equations for a flow with a

mean velocity U0 are

∂u′

∂t
+ U0 · ∇u′ + u′ · ∇u′ = −1

ρ
∇p+

1

ρ
Fu + ν∇2u′. (4.13)

Here, the net velocity u = U0 + u′. In the above equations, the mean flow U0

advects the fluctuations u′. In similar lines, in the nonlinear term (u′ · ∇)u′, u′ in
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left of the ∇ operator is expected to advect the u′ in the right.2 This phenomena is

more transparent in the following equation for a scalar θ:

∂θ

∂t
+ (u · ∇)θ = κ∇2θ, (4.14)

where u in (u · ∇)θ advects the scalar θ. Here, κ is the scalar diffusion coefficient.

Hence, in the nonlinear term of the energy equation, [(u · ∇)u] · u, u in left of

the ∇ operator advects the field in the right of the ∇ operator, and it only mediates

the energy transfers among the u fields in the right of the ∇ operator.3 Hence, the

Fourier mode u(q) that appears in the scalar product with k must be the mediator in

the energy transfer. Therefore, Suu(k′|p|q) of Eq. (4.7) provides the energy transfer

from u(p) to u(k′). See Fig. 4.3 for an illustration.

Giver

S ( | | ) = – [{ }{ ( ) ( )}]p q u p uk’ k’ u q k’( )× ×
uu

u p( )

u( )k’
Receiver –[( ) ]u uÑ× × u

u q( ) Mediator

Figure 4.3 A schematic diagram exhibiting the mode-to-mode energy transfer
from mode u(p) to mode u(k′) with mode u(q) acting as a
mediator. During the energy transfer, the mode u(q) advects the
modes u(p) and u(k′) who exchange energy among themselves. The
mode u(q) does not receive any energy during the transaction.

A corollary to the above argument is that the mean flow U0 does not facilitate any

energy transfer. The mean flow corresponds to q = 0; hence, p = −k′. Therefore,

2Kraichnan (1964) argued that the large-scale velocity field sweeps the velocity fluctuations. The
aforementioned arguments of fluctuations advecting fluctuations could be connected to the sweeping effect.

3This interpretation also works for the K41 formula (Kolmogorov, 1941a):

εu = −Tu(l) = −
1

4
∇l · 〈δu[δu · δu]〉. (4.15)

Here, the first argument of the ∇l operator is the mediator field, while the other two δu’s are the giver
and receiver fields. See Section 12.3 for more details.
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Suu(k′|p|q) = −=[{k′.U0}{u(−k′) · u(k)}] = −=[{k′.U0}|u(k)|2] = 0 (4.16)

because U0 is real. Thus, the energy transfer formula captures the effects of the

mean velocity quite correctly.

In the next subsection we will provide a mathematical argument to claim that

Suu(k′|p|q) is the correct energy transfer formula.

4.1.2 A mathematical argument based on tensor analysis

The following mathematical argument to prove uniqueness of the solution given by

Eqs. (4.7, 4.8) is based on tensor analysis and the energy equations. Here we focus

on the mode-to-mode transfer Suu(k′|p|q). From the energy equation, Eq. (4.2),

the energy transfer from mode u(p) to mode u(k′), Suu(k′|p|q), must satisfy the

following properties (in addition to Eqs. (4.10, 4.11)):

1. Suu(k′|p|q) is real.

2. Suu(k′|p|q) is a linear function of the Fourier modes u(k′), u(p), and u(q).

Consequently, each of these modes appear only once in the expression of

Suu(k′|p|q).

3. Suu(k′|p|q) is a linear function of the wave vector k′ due to the derivative ∂j
in the nonlinear term ∂j(ujui).

4. Due to the reality condition, both the triads (k,p,q) and (−k,−p,−q) are

present in the system, and the corresponding Fourier modes are complex

conjugates of each other. Therefore, the energy transfer from u(p) to u(k′)

should be the same as u(−p) to u(−k′), that is,

Suu(−k′| − p| − q) = Suu(k′|p|q). (4.17)

Given the above properties, the tensor analysis yields the following form for

Suu(k′|p|q):

Suu(k′|p|q) = c1< [{k′ · u(q)}{u(p) · u(k′)}]

+ c2< [{k′ · u(p)}{u(q) · u(k′)}]

+ c3< [{k′ · u(k′)}{u(p) · u(q)}]

+ c4= [{k′ · u(q)}{u(p) · u(k′)}]

+ c5= [{k′ · u(p)}{u(q) · u(k′)}]

+ c6= [{k′ · u(k′)}{u(p) · u(q)}] , (4.18)
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where ci’s are constants. The fourth condition, Eq. (4.17), makes c1 = c2 = c3 =

0 because the corresponding formulas change sign under the (k′,p,q) → (−k′,

−p,−q) transformation. For example,

< [{k′ · u(q)}{u(p) · u(k′)}]→ < [{−k′ · u(−q)}{u(−p) · u(−k′)}]

= −< [{k′ · u∗(q)}{u∗(p) · u∗(k′)}] = −< [{k′ · u(q)}{u(p) · u(k′)}] .

In addition, the sixth term of Eq. (4.18) is zero because k′ · u(k′) = 0. Now we are

left with

Suu(k′|p|q) = c4= [{k′ · u(q)}{u(p) · u(k′)}]

+ c5= [{k′ · u(p)}{u(q) · u(k′)}] . (4.19)

When we substitute Eq. (4.19) in Eq. (4.11a), we obtain

c5= [{k′ · u(p)}{u(q) · u(k′)}] + c5= [{p · u(k′)}{u(q) · u(p)}] = 0. (4.20)

Hence, c5 = 0, and

Suu(k′|p|q) = c4= [{k′ · u(q)}{u(p) · u(k′)}] . (4.21)

Using similar arguments, we can show that the other energy transfers between modes

in a triad are given by Eqs. (4.8) with a factor of c4 as in Eq. (4.21). When we

substitute them in Eq. (4.10a), we obtain

c4 [= [{k′ · u(q)}{u(p) · u(k′)}]] + c4 [= [{k′ · u(p)}{u(q) · u(k′)}]] .

= Suu(k′|p,q). (4.22)

Comparison of this equation with Eq. (4.2) yields c4 = −1. Thus, we show that

Eqs. (4.7, 4.8) provide unique formulas for the mode-to-mode energy transfers in a

triad. Q.E.D.

Both the triads (k,p,q) and (−k,−p,−q) exist in the system. Using

Suu(k| − p| − q) = Suu(k′|p|q) we obtain

d

dt
Eu(k′, t) = Suu(k′|p|q) + Suu(k′|q|p) (4.23a)

d

dt
Eu(k, t) = Suu(k| − p| − q) + Suu(k| − q| − p). (4.23b)

Therefore,

d

dt
Eu(k′, t) =

d

dt
Eu(k, t), (4.24)
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or the net energy transfers to the modes u(k) and u(−k) via the corresponding

nonlinear triads are identical. Due to these reasons, S(k′|p|q) is also written as

S(k|p|q):

Suu(k|p|q) = −= [{k′ · u(q)}{u(p) · u(k′)}]

= = [{k · u(q)}{u(p) · u∗(k)}] . (4.25)

Example 4.1: Using Eq. (4.7) explicitly prove that Suu(−k′| − p| − q) = Suu(k′|p|q).

Solution: We apply Eq. (4.7) to the triad (−k′,−p,−q) and derive

Suu(−k′| − p| − q) = −= [{−k′ · u(−q)}{u(−p) · u(−k′)}]

= = [{k′ · u∗(q)}{u∗(p) · u∗(k′)}]

= −= [{k′ · u(q)}{u(p) · u(k′)}]

= Suu(k′|p|q)

since =(f∗) = −=(f).

Example 4.2: Show that the energy transfers for a triad (k = a, p = 3a/4, q = a/4)

are zero. Here a is a constant vector.

Solution: The vectors k,p,q are collinear along a. Therefore, all the Fourier modes

u(k),u(k),u(q) would be perpendicular to a. Hence, for the energy transfers, the

receiver wavenumber is always perpendicular to the vector direction of the mediator

mode. For example, k · u(q) = 0. Therefore, using Eq. (4.9) we deduce that the

energy transfers between any two modes is zero.

A typical flow involves a large number of interacting modes. In the following

section, we describe these collective interactions.

4.2 Energy Transfers in the Presence of Many Triads

Now we write down an equation for the energy in the presence of a large number of

triads. Following Eq. (4.1) we obtain

d

dt
Eu(k) =

∑
p

= [{k · u(q)}{u(p) · u∗(k)}] + <[Fu(k) · u∗(k)]− 2νk2Eu(k)
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=
∑
p

Suu(k|p|q) + Fu(k)−Du(k)

= Tu(k) + Fu(k)−Du(k), (4.26)

where q = k− p, Tu(k) is the total energy transfer to u(k) via nonlinear

interactions,

Fu(k) = <[Fu(k) · u∗(k)] (4.27)

is the energy supply by the external force, and

Du(k) = −2νk2Eu(k) (4.28)

is the viscous dissipation rate of Eu(k). The sum
∑

p is performed over all the modes

except k. Thus, the sum includes the energy transfer from wavenumber q = k− p

to k. This is the reason why we do not write Suu(k|q|p) in the aforementioned sum.

For the total energy Eu =
∑

kEu(k), in the absence of viscous dissipation and

eternal force,

d

dt
Eu =

∑
k

∑
p

S(k|p|q) = 0 (4.29)

because in the above equation, all the energy transfers appear in pairs, and they

cancel each other since

S(k′|p|q) + S(p|k′|q) = 0. (4.30)

Thus, we show that the total energy in the Fourier space is conserved. The nonlinear

interactions only exchange energy among the modes while keeping the total energy

constant. Using similar arguments as above, we can show that∑
k′∈A

∑
p∈A

Suu(k′|p|q) = 0, (4.31)

where A represents a wavenumber region.

Example 4.3: Consider the Fourier modes of Example 3.4. Compute the energy

transfers among the modes.

Solution: The interacting triad formed by the wavenumber is shown in Fig. 3.1.

The energy transfers among the modes of the triad are
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Suu{(−1,−1)|(0, 1)|(1, 0)} = −=([(−x̂− ŷ) · (Cŷ)][(Bx̂) · A
i

(−x̂+ ŷ)])

= ABC = −Suu{(0, 1)|(−1,−1)|(1, 0)},

Suu{(−1,−1)|(1, 0)|(0, 1)} = −=([(−x̂− ŷ) · (Bx̂)][(Cŷ) · A
i

(−x̂+ ŷ)])

= −ABC = −Suu{(1, 0)|(−1,−1)|(0, 1)},

Suu{(1, 0)|(0, 1)|(−1,−1))} = −=([x̂ · A
i

(−x̂+ ŷ)][Cŷ ·Bx̂)

= 0 = Suu{(0, 1)|(1, 0)|(−1,−1))}.

Hence, the energy ABC flows from u(0, 1) to u(−1,−1), which is then transferred to

u(1, 0). Therefore, the net energy gain by the mode u(−1,−1) is zero, and Ȧ = 0.

We show in Example 3.4 that A = constant, B = c cos(At), and C = c sin(At).

Therefore, ABC changes sign with a frequency of 2A. We depict the aforementioned

energy transfers in Fig. 4.4(a). Note that there is no energy transfer between the

modes u(0, 1) and u(1, 0).

y

(0, 1)

(1, 0)

(–1, –1)

x

A
B
C

A
B
C

–
2
A

B
C

–2
A

B
C

(0, 1, 1)
(1, 0, 1)

(–1, –1, –2)

(a) (b)

Figure 4.4 Energy transfers among the modes in the triads of (a) Example 4.3
and (b) Example 4.5.

The energy transfers in the second triad {(1, 1), (0,−1), (−1, 0)} can be computed

by following a similar procedure. Using the properties of the Fourier modes, we can

show that the energy transfers among the modes u(0,−1), u(−1, 0), and u(1, 1) are

identical to the corresponding transfers among u(0, 1), u(1, 0), and u(−1,−1).

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316810019.005
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 04 Jul 2019 at 22:23:26, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316810019.005
https://www.cambridge.org/core


Energy Transfers in Hydrodynamic Flows 55

Example 4.4: Compute the energy transfers among the modes of Example 3.5.

Solution: The flow of Example 3.5 is very similar to that of Example 3.4, except

that the amplitudes of the modes are all real. Note that the mode-to-mode energy

transfer is proportional to the imaginary part of the products of the Fourier

modes. Therefore, the energy transfers vanish for this example. As a result, the

mode amplitudes do not change with time, which is consistent with the results of

Example 3.5.

Example 4.5: Compute the energy transfers among the modes of Example 3.6.

Solution: The Fourier wavenumbers that constitute the flow are (±1, 0,±1),

(0,±1,±1), and (±1,±1,±2), and they form a number of triads. Here we focus on

energy transfers in one of the triads whose wavenumbers are q = (1, 0, 1),

p = (0, 1, 1), and k′ = (−1,−1,−2). In this triad, the energy transfers are

Suu(k′|p|q) = −= [{k′ · u(q)}{u(p) · u(k′)}] = −2ABC

Suu(k′|q|p) = −= [{k′ · u(p)}{u(q) · u(k′)}] = −2ABC

Suu(q|p|k′) = −= [{q · u(k′)}{u(p) · u(q)}] = 0

We depict the energy transfers in Fig. 4.4(b).

The energy flows from the modes u(p) and u(q) to the mode u(k) by an

amount −2ABC each. Therefore, net rate of energy transfer to u(k′) is −4ABC.

As discussed in Example 3.6, two quantities among A,B,C oscillates around zero,

while the third one oscillates around a mean value. Hence, Suu(k′|p|q) = −2ABC

oscillates around zero as shown in Fig. 3.3.

The energy transfers in other triads can be computed easily. We observe that all

the modes u(±1,±1,±2) gain energy by an amount −4ABC.

The energy transfer formula of Eq. (4.7) is general, and it is applicable to both 2D

and 3D fluid flows. The formulas in 2D however get simplified, as we will illustrate

in the next section.

4.3 Energy Transfers and Equations of Motion for a
Two-dimensional Flow

In the present section, we consider a two-dimensional flow in the xy plane. We derive

the energy transfer formulas for this flow.

In a 2D incompressible flow, the amplitude of a Fourier mode can be expressed

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316810019.005
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 04 Jul 2019 at 22:23:26, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316810019.005
https://www.cambridge.org/core
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using a single complex number due to the constraint k · u(k) = 0. The velocity

vector u(k) is in the direction of the unit vector k̂ × ẑ, where k̂ is the unit vector

along k, and ẑ is perpendicular to the plane containing the flow.4 Hence, we can

express u(k) as

u(k) = u(k)(k̂ × ẑ), (4.32)

where u(k) is the amplitude of the velocity Fourier mode. See Fig. 4.5(a) for an

illustration. This decomposition is related to the Craya–Herring decomposition, and

will be discussed in more detail in Chapter 9. For convenience, and to relate the

present discussion to the Craya–Herring decomposition, we denote

e1(k) = k̂ × ẑ. (4.33)

y

xz

k u(k)

u k( )

u(k’)

p

q

a

bg

k’

u(q)

u(p)

(a) (b)

Figure 4.5 For 2D hydrodynamics: (a) Representation of a velocity Fourier mode
u(k); (b) An interacting wavenumber triad. Here k′ + p + q = 0.
The figure illustrates the Fourier modes as well as the internal angles.

Now let us rephrase the formulas for the energy transfers in a triad for a 2D flow.

These formulas become somewhat simpler:

Suu(k′|p|q) = −= [{k′ · u(q)}{u(p) · u(k′)}]

= −[k′ · (q̂ × n̂)][(p̂× n̂) · (k̂′ × n̂)]={u(q)u(p)u(k′)}

= −k′[(k̂′ × q̂) · n̂](k̂′ · p̂)={u(q)u(p)u(k′)}

= k′ sinβ cos γ={u(q)u(p)u(k′)}, (4.34)

where the angles α, β, γ are shown in Fig. 4.5(b). Note that k̂′ · p̂ = − cos γ. Similar

4k̂ × ẑ is along ê1 of the Craya–Herring basis that will be discussed in Chapter 9.
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computations yield

Suu(p|q|k′) = −p[(p̂× k̂′) · n̂](p̂ · q̂)={u(q)u(p)u(k′)}

= p sin γ cosα={u(q)u(p)u(k′)}. (4.35a)

Suu(q|k′|p) = −q[(q̂ × p̂) · n̂](q̂ · k̂′)={u(q)u(p)u(k′)}

= q sin γ cosβ={u(q)u(p)u(k′)}, (4.35b)

A quick way to construct the above formulas is as follows. When we traverse the

wavenumbers (a,b, c) in a clockwise direction as in Fig. 4.5(b), the energy transfer

Suu(a|b|c) is a product of four terms: (a) the magnitude of the receiver wavenumber,

(b) ={u(a)u(b)u(c)}, (c) sin ζ, (b) cosψ, where ζ, ψ are respectively the angles of

the triangle at the tail and head of the receiver wavenumber. The aforementioned

formulas shows that the energy transfer is zero if the giver and the receiver Fourier

modes are perpendicular to each other.

We can also derive equations of motion for u(k) and other two modes.

Equation (4.32) is a convenient representation because of the automatic

elimination of the pressure term. Moreover, we have only one equation for every

wavenumber. If we focus on a single triad, then the equations of motion for the

modes are derived as follows.

d

dt
u(k′) = −i[k′ · u(−q)]u(−p)−i[k′ · u(−p)]u(−q)−ikp(k)−νk2u(k′) (4.36)

since k′ = −p− q. By taking a dot product of Eq. (4.36) with ê1(k′), we obtain

u̇(k′) = [−ik′ sinβê1(p) · ê1(k′) + ik′ sin γê1(q) · ê1(k′)]u∗(q)u∗(p)− νk2u(k′)

= ik′ sin(β − γ)u∗(p)u∗(q)− νk2u(k′). (4.37)

We derive the equations for the other two modes in a similar fashion:

u̇(p) = ip sin(γ − α)u∗(k′)u∗(q)− νp2u(p), (4.38a)

u̇(q) = iq sin(α− β)u∗(k′)u∗(p)− νq2u(q). (4.38b)

Example 4.6: Rework the energy transfer rates for the triad q = (1, 0), p = (0, 1),

k′ = (−1,−1) of Example 3.4 using the formula derived in Section 4.3.

Solution: The set of wavenumbers (k′,p,q) form a triad. Following the convention

described in the present section, we deduce that the velocity Fourier modes are

aligned as shown in Fig. 4.6 with the amplitudes of the modes being
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u(q) = u(1, 0) = −C; u(p) = u(0, 1) = B; u(k′) = u(−1,−1) = A
√

2/i.

The internal angles of the triangle are

α = 90◦; β = 45◦; γ = 45◦.

Substitution of these values in Eqs. (4.34) yields

Suu(k′|p|q) = k′ sinβ cos γ={u(q)u(p)u(k′)}

=
√

2× 1

2
=
[
B(−C)(

A

i

√
2)

]
= ABC.

Following a similar procedure, we derive that

Suu(p|q|k′) = 0,

Suu(q|k′|p) = ABC.

These results are the same as those derived in Example 4.3.

y

x

(0, 1) q

p

k’

u(p)
u(q)

a b

g
u(k’)

(1, 0)

Figure 4.6 Example 4.6.

The aforementioned formalism of mode-to-mode energy transfers is very useful

for analyzing pattern formation, energy flux, shell-to-shell energy transfers, etc. In

this book we will frequently use this formalism to derive expressions for the energy

flux and shell-to-shell energy transfers in turbulence.
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4.4 Spectral Energy Flux

The flow configuration of a fully developed turbulence is an organized state.5 The

phases of the Fourier modes are related to each other in an intricate manner so

as to transfer kinetic energy from large scales to small scales. Note that random

phases for the modes will yield zero energy flux. It is the complex correlations among

the modes that yield finite energy flux in turbulence. Thus, a turbulent flow is not

random as in white noise.

In the subsequent part of this chapter we will derive collective measures of energy

transfers—energy flux and shell-to-shell energy transfers. In this section we start

with energy flux. In a generic three-dimensional flow, the energy supplied at the

large scales cascades to the intermediate range (called inertial range), and then to

the dissipation range. We will define these wavenumber ranges more precisely in the

next chapter. Quantitatively, energy flux Π(k0) of a sphere of radius k0 is defined as

the cumulative energy transfer rate from the modes inside the sphere to the modes

outside the sphere. See Fig. 4.7 for an illustration of the energy flux.

k y

kx

k0

P ( )ku 0

k q

p

Figure 4.7 Energy flux from a wavenumber sphere of radius k0. It is a sum of the
energy transfers from all the modes inside the sphere to all the modes
outside the sphere. One such transfer is from mode u(p) residing
inside the sphere to mode u(k) that is outside the sphere.

This formula for the flux can be easily derived using the mode-to-mode energy

transfers. We need to sum over all the energy transfers for which the giver mode is

inside the sphere and the receiver mode is outside the sphere. Thus,

5Some researchers claim that fully-developed turbulence is a self-organized critical state. This is an
interesting field of research, but is beyond the scope of this book.
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Πu(k0) =
∑
|p|≤k0

∑
|k|>k0

Suu(k|p|q) (4.39)

with k = p + q.

We can derive the formula for the energy flux in several other ways. Using

Eq. (4.26), we derive

d

dt

∑
|k|≤k0

Eu(k) =
∑
|k|≤k0

Tu(k) +
∑
|k|≤k0

Fu(k)−
∑
|k|≤k0

Du(k). (4.40)

Physical interpretations of the three terms in the right-hand side of Eq. (4.40) are

as follows:

1.
∑
|k|≤k0 Fu(k) is the total energy supply rate inside the sphere by the external

force.

2.
∑
|k|≤k0 Du(k) is the total viscous dissipation rate inside the sphere.

3.
∑
|k|≤k0 Tu(k) is the energy transfer to the modes inside the sphere due to

nonlinearity.

We illustrate these transfers in Fig. 4.8. Clearly
∑
Du(k) depletes the energy, but∑

Fu(k) and
∑
Tu(k) enhance or deplete the energy depending on their signs. Under

steady state,
∑
Tu(k) < 0 in 3D hydrodynamics.

k y

kx

k0
P ( )ku 0

SD k( )u

S ( )ku

Figure 4.8 The energy of the sphere is affected due to the energy supply rate
by the forcing

∑
Fu(k), the energy flux Πu(k0), and the viscous

dissipation rate
∑
Du(k).

It is important to compare this energy balance in Fourier space with the

corresponding energy balance in real space (see Eq. (2.29)). The Fourier space

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316810019.005
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 04 Jul 2019 at 22:23:26, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316810019.005
https://www.cambridge.org/core


Energy Transfers in Hydrodynamic Flows 61

counterpart provides scale-by-scale energy transfer, which is not possible in real

space. Kolmogorov’s theory based on third order structure function however

provide a measure of the inertial range flux; this topic will be discussed in

Chapter 12.

Since the total kinetic energy is conserved for nonlinear interactions, the energy

lost by the sphere equals the gain of energy in the outer region. This energy transfer

is the kinetic energy flux. Hence,

Πu(k0) = −
∑
|k|≤k0

Tu(k). (4.41)

We can show equivalence between Eq. (4.39) and Eq. (4.41) using the following

arguments:

Πu(k0) = −
∑
|k′|≤k0

Tu(k)

= −
∑
|k′|≤k0

∑
p

Suu(k′|p|q)

= −
∑
|k′|≤k0

∑
|p|≤k0

Suu(k′|p|q)−
∑
|k|≤k0

∑
|p|>k0

Suu(k′|p|q)

= 0 +
∑
|p|>k0

∑
|k′|≤k0

Suu(p|k′|q)

=
∑
|k′|>k0

∑
|p|≤k

Suu(k′|p|q), (4.42)

which is the same as Eq. (4.39).

Similar interpretations apply to the region outside the sphere for which the energy

equation is

d

dt

∑
|k|>k0

Eu(k) =
∑
|k|>k0

Tu(k) +
∑
|k|>k0

Fu(k)−
∑
|k|>k0

Du(k). (4.43)

The modes outside the sphere gain energy via Π(k0), which is

Πu(k0) =
∑
|k|>k0

Tu(k)

=
∑
|k′|>k0

∑
p

Suu(k′|p|q)
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=
∑
|k′|>k0

∑
|p|≤k0

Suu(k′|p|q) +
∑
|k′|>k0

∑
|p|>k0

Suu(k′|p|q)

=
∑
|k′|>k0

∑
|p|≤k0

Suu(k′|p|q). (4.44)

This is same as Eq. (4.39).

We rewrite Eq. (4.40) for the spheres of radii k and k+ dk and take a difference

between the two equations that yields

d

dt

∑
k<k′≤k+dk

Eu(k′) =
∑

k<k′≤k+dk

Tu(k′) +
∑

k<k′≤k+dk

Fu(k′)−
∑

k<k′≤k+dk

D(k′)

= [−Πu(k + dk) + Πu(k)] +
∑

k<k′≤k+dk

Fu(k′)−
∑

k<k′≤k+dk

D(k′),

(4.45)

where dk → 0. We illustrate the aforementioned energetics in Fig. 4.9. The rate

of change of energy in a wavenumber shell is determined by the flux difference

Πu(k + dk) − Πu(k), the energy supply rate by the external force, and the viscous

dissipation rate in the shell.

D k dk( )u

( )k dku

P ( )ku P ( + )k dku

k

k

d
k

+

Figure 4.9 The rate of change of energy in a shell is given by the energy flux
difference Πu(k+dk)−Πu(k), the energy supply rate by the external
force Fu(k)dk, and the viscous dissipation rate Du(k)dk.

Now taking the limit dk → 0 yields

∂

∂t
Eu(k, t) = − ∂

∂k
Πu(k, t) + Fu(k, t)−Du(k, t), (4.46)
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where

Fu(k)dk =
∑

k<k′≤k+dk

<[Fu(k′) · u∗(k′)], (4.47)

Du(k)dk = 2ν
∑

k<k′≤k+dk

k′2Eu(k′). (4.48)

Equation (4.46) is quite important in turbulence research, and it helps us

understand the flow dynamics. Note that in numerical simulations, the above sums

are performed over the modes in the shell (k − 1, k). Refer to Eq. (3.25).

Before closing this section, we remark that the energy flux is not related to

the conservation of energy, rather it is the outcome of the nonlinear interactions

that facilitates energy transfers. Note that an energy flux is defined even when the

energy conservation breaks down, for example, in the presence of an external force

like buoyancy. Another important point to keep in mind is that the spectral energy

flux describes energy transfers across multiple scales. It is very different from energy

flow in real space.

4.5 Variable Energy Flux

Equation (4.46) is derived based on energetics considerations and it provides useful

insights into the physics of turbulence. Let us analyze a steady state of a turbulent

flow. For such flows, ∂Eu(k, t)/∂t = 0. Consequently,

d

dk
Πu(k) = Fu(k)−Du(k) (4.49)

for a wavenumber shell. Hence, the energy flux Πu(k) varies with k depending on

Fu(k) and Du(k). The dissipation rate Du(k) is significant in the dissipative range,

which is k ' kDI in Fig. 4.10(b).

For the time being, we focus on the inertial range where Du(k) is negligible. We

assume an energy injection rate of Fin(k) in the inertial range, and FLS(k) at large

scales. Here, the subscripts “in” and “LS” stand for the inertial range and large

scales, respectively. Hence, in the inertial range,

d

dk
Πu(k) = Fin(k). (4.50)
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Figure 4.10 Schematic diagrams illustrating variations of energy flux Πu(k)
for various energy injection rates Fin(k): (a) Fin(k) = 0 and
Πu(k) = 0; (b) Fin(k) = 0 and Πu(k) = C > 0; (c) Fin(k) < 0
and dΠu(k)/dk < 0; (d) Fin(k) > 0 and dΠu(k)/dk > 0.
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Based on the nature of Fin(k), we can classify the turbulent systems into four

categories:

1. Fin(k) = 0 and Πu(k) = 0: Substitution of Fin(k) = 0 in Eq. (4.50) yields

Πu(k) = C = const. For an equilibrium configuration, C = 0 or Πu(k) = 0;

thus there is no energy flux in the inertial range. See Fig. 4.10(a) for an

illustration. For such cases, we expect the energy transfers among the velocity

modes to vanish on an average, i.e., 〈S(k′|p|q)〉 = 0. Note however that

S(k′|p|q), the energy transfer from u(p) to u(k′), could fluctuate around zero.

〈S(k′|p|q)〉 = 0 implies a detailed balance of energy transfers among any pair

of modes. Such a scenario is analogous to a thermodynamic equilibrium in

which there is no energy transfer from one region to another, both in real

space and in Fourier space.

In this case, there is no energy supply at large scales, and there is no viscous

dissipation at small scale. Also, for 〈S(k′|p|q)〉 = 0 to hold, we expect the

phases of the modes u(k′), u(p), and u(q) to be random. Such assumptions

are typically made for describing equilibrium phenomena.

2. Fin(k) = 0 and Πu(k) > 0: As in case (1), substitution of Fin(k) = 0 in

Eq. (4.50) yields Πu(k) = C = const. However, when the external force at

large scale feeds kinetic energy and the viscous dissipation at small scales kills

this kinetic energy, a constant energy flux is maintained in the inertial range,

that is, Πu(k) = C > 0. See Fig. 4.10(b) for an illustration. The energy flux is

destroyed in the dissipation range by viscosity.

For this case,

〈S(k|p|q)〉 > 0 for k > p,

〈S(k|p|q)〉 < 0 for k < p.

Thus, there is no detailed balance of energy transfers among the modes. This is

a nonequilibrium scenario, and it differs from the equilibrium case discussed in

(1).6 We also remark that the nonzero 〈S(k′|p|q)〉 requires certain dynamical

phase relations among the Fourier modes u(k′), u(p), and u(q); these phases

are not random as in case (1). Also, on some occasions, Πu(k) < 0, which

leads to a growth of energy at large scales; we will describe this feature in 2D

6In some literature, it is stated that the large-scale eddies provide energy to the small-scale eddies, which
are in statistical equilibrium among themselves. Strictly speaking, the phrase “equilibrium” here is meant
to be “steady state”. There is a steady transfer of energy from one scale to another; hence, the system is
far from being in equilibrium.
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hydrodynamic turbulence (see Chapter 7). In Section 4.8 we relate the steady

energy flux and lack of detailed balance to the arrow of time.

3. Fin(k) < 0 and dΠu(k)/dk < 0: From Eq. (4.50), Fin(k) < 0 leads to

dΠu(k)/dk < 0. Here, a fraction of the energy flux is transferred elsewhere,

while the remaining flux goes to the dissipation range where it is dissipated

by viscosity. See Fig. 4.10(c) for an illustration. We illustrate this case using

the following examples:

• Ekman turbulence: In quasi two-dimensional flows, Ekman friction is

typically modeled as −αu, where α is a constant. This force plays an

important role in atmospheric flows. Clearly, Fin(k) = −α|u(k)|2 < 0.

Hence, the energy flux will decrease with k that leads to a steepening of

the energy spectrum. In this case, the Ekman friction depletes the

energy flux in the inertial range. This is in addition to the viscous

damping that acts at the dissipation range. See Verma (2012) for details.

• Quasi-static magnetohydrodynamic turbulence: In turbulent flows of

liquid metals under the influence of an external magnetic field B0 = B0ẑ,

the electromagnetic force is proportional to −(B0 cos θ)2u(k), where θ is

the angle between k and ẑ (Verma, 2017). Here too, Fu(k) =

−(B0 cos θ)2|u(k)|2 < 0 that leads to a decrease of Πu(k) with k. In this

case, the Joule dissipation depletes the energy flux in the inertial range.

See Verma (2017) and Chapter 24 for details.

• Stably-stratified turbulence: In stably-stratified turbulence, the kinetic

energy is converted to potential energy, which leads to a depletion of Πu(k)

in the inertial range. We will describe this system in Chapter 15. Also see

Verma (2018).

4. Fin(k) > 0 and dΠu(k)/dk > 0: When we substitute a positive Fin(k) in

Eq. (4.50), we obtain dΠu(k)/dk > 0. See Fig. 4.10(d) for an illustration.

Turbulent convection and bubbly turbulence come in this category of flows.

Here, the kinetic energy feed by the external force enhances Πu(k) in the inertial

range. For more details, refer to Chapter 16 and Verma (2018).

Thus, the formalism of variable energy flux provides valuable insights into the

dynamics of turbulent flows. This formalism can be extended to the fluxes of scalars

and vectors, for example, for the temperature field in turbulent convection, and the

magnetic field in magnetohydrodynamics. We will describe these fluxes when we

cover these systems in Parts II and III of this book. Interestingly, we can extend

the ideas of multiscale flux to wealth and money transfers in an economy. We sketch

these ideas in Appendix B. Using the formalism of variable energy flux, we can also

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316810019.005
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 04 Jul 2019 at 22:23:26, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316810019.005
https://www.cambridge.org/core


Energy Transfers in Hydrodynamic Flows 67

model the energy flux and energy spectrum in the dissipation range of hydrodynamic

turbulence. We describe these models in Chapters 5 and 7.

Researchers have derived various formulas for the energy flux. In the next section,

we will show equivalence between these formulas.

4.6 Equivalence between Various Formulas of Energy Flux

In this section, we briefly describe some of the earlier derivations of energy flux. For

hydrodynamics, Kraichnan (1959) formulated the combined energy transfer from

two modes to the third mode in an interacting triad (see Eq. (4.2)). Using this

transfer Kraichnan (1959) derived a formula for the energy flux as

Π(k0) = TC − TD (4.51)

where

TC =
1

2

∑
k>k0

∆∑
p,q

S(k|p,q), (4.52a)

TD =
1

2

∑
k≤k0

∆∑
p,q

S(k|p,q). (4.52b)

Here, ∆ represents the condition that k = p + q. When we compare these

expressions with Eqs. (4.41, 4.44), we observe that

TC =
1

2

∑
k>k0

Tu(k) =
1

2
Π(k0), (4.53a)

TD =
1

2

∑
k≤k0

Tu(k) = −1

2
Π(k0). (4.53b)

Hence, TC − TD = Π(k0). Thus, we show consistency between Kraichnan’s formula

and Eq. (4.39) derived using the mode-to-mode formalism.

Frisch (1995) derived the following formula for energy flux:

Π(k0) =
〈
u<k0 · {u

<
k0
· ∇u>k0}

〉
+
〈
u<k0 · {u

>
k0
· ∇u>k0}

〉
. (4.54)

When we sum the aforementioned two terms, we obtain

Π(k0) =
〈
u<k0 · {u · ∇u>k0}

〉
. (4.55)
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Here the mediator field u is the full velocity field. However, the giver field u<k0 is

a sum of modes inside the sphere, while the receiver field u>k0 is the sum of modes

outside the sphere. Thus, Frisch’s formula is same as that of Eq. (4.39).

Example 4.7: Consider the flow field of Example 3.4. Compute the energy flux for

any wavenumber sphere.

Solution: The wavenumbers associated with the flow are (±1, 0), (0,±1), (1, 1), and

(−1,−1). The wavenumbers (±1, 0) and (0,±1) belong to the wavenumber sphere of

radius 1, while (±1,±1) belong to that of radius
√

2. In Example 4.3 we computed

the energy transfers among the modes. We observed that u(0, 1) transfers energy to

u(1, 1), who in turn transfers all of it to u(1, 0). Thus, neither of the spheres gain

any net energy. Therefore, energy flux of any wavenumber sphere is zero.

Example 4.8: Consider the flow field of Example 3.6. Compute the energy flux for

any wavenumber sphere.

Solution: The wavenumbers of the active Fourier modes are (±1, 0,±1),

(0,±1,±1), and (±1,±1,±2). The wavenumbers (±1, 0,±1), (0,±1,±1) belong to

the sphere of radius
√

2, while the wavenumbers (±1,±1,±2) belong to the sphere

of radius
√

6. As shown in Example 4.5, each of wavenumbers (±1,±1,±2) receive

kinetic energy of amplitude −4ABC from the modes (±1, 0,±1), (0,±1,±1).

Hence, the sphere of radius
√

6 receives energy at the rate of −32ABC. Therefore,

Πu(k0) =

{
−32ABC if

√
2 < k0 <

√
6

0 otherwise.

In the next section, we will derive a formula for shell-to-shell energy transfers in

hydrodynamic turbulence.

4.7 Shell-to-shell Energy Transfers

The other quantity of interest in turbulence research is the shell-to-shell energy

transfer between two wavenumber shells (see Fig. 4.11). Using Suu(k|p|q), the

energy transfer from shell m to shell n can be defined as

T u,mu,n =
∑
p∈m

∑
k∈n

Suu(k|p|q), (4.56)
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where the k-sum is over the shell n, p-sum is over the shell m, and k = p + q. As

shown in Fig. 4.11, the aforementioned formula yields correct contributions for both

the triads—type A, and type B—even though the wavenumber q of triad B is outside

the shell m. Note that the shell-to-shell energy transfers provide a more detailed

picture than the energy flux, and they are useful for testing locality (whether the

energy transfers are dominant for neighboring shells or distant shells) and direction

of energy transfers.

Shell n

k

p

q

p

q

A

B

Shell m

k

Figure 4.11 Shell-to-shell energy transfers from the wavenumber-shell m to
wavenumber-shell n. The participating triads are of two types:
Type A, where both p and q are inside the shell m, and Type B,
where only p is inside shell m.

Note that we cannot compute the shell-to-shell energy transfers accurately using

the combined energy transfer Suu(k|p,q) of Kraichnan (see Eq. (4.2)). If we write

the shell-to-shell energy transfer as

T
′u,m
u,n =

1

2

∑
p,q∈m

∑
k∈n

Suu(k|p,q) (4.57)

as done by Domaradzki and Rogallo (1990), Domaradzki (1992), Waleffe (1992),

Zhou (1993), and Domaradzki et al. (2009), then we encounter the following

difficulty. Rewriting Eq. (4.57) in terms of Suu(k|p|q) yields

T
′u,m
u,n =

1

2

∑
p,q∈m

∑
k∈n

[Suu(k|p|q) + Suu(k|q|p)]

=
[
T u,mu,n

]
triadA

. (4.58)
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Thus, T
′u,m
u,n includes triads of Type A, but not of type B. Another alternative,

T
′′u,m
u,n =

1

2

∑
p∈m,q/∈m

∑
k∈n

Suu(k|p,q), (4.59)

is also inadequate because Suu(k|p,q) is a symmetric function of p and q. Thus,

neither T
′u,m
u,n nor T

′′u,m
u,n provide correct values for the shell-to-shell energy transfer.

The researchers referred to earlier have alluded to the aforementioned difficulties.

Note however that Eq. (4.56), which is based on mode-to-mode energy transfer

formalism, provides an accurate and concise formula for the shell-to-shell energy

transfer.

We remark that the aforementioned formula can be generalized to compute

energy transfer from any region of wavenumber space to any other. For example,

the energy transfer rate from Fourier region A to region B is

T u,Au,B =
∑
k∈B

∑
p∈A

Suu(k|p|q). (4.60)

We will employ this measure to compute ring-to-ring energy transfer, which is useful

for quantifying anisotropic turbulence (see Chapter 11).

Example 4.9: Consider the flow field of Example 4.5. Compute the shell-to-shell

energy transfers among wavenumber shells whose inner and outer radii are (1,2),

(2,3), (3,4).

Solution: We denote the shells by S1 = (1, 2), S2 = (2, 3), and S3 = (3, 4). The

wavenumbers of the active Fourier modes are (±1, 0,±1), (0,±1,±1), and

(±1,±1,±2). Hence, (±1, 0,±1) ∈ S1, (0,±1,±1) ∈ S1, and (±1,±1,±2) ∈ S2. As

shown in Example 4.5, each of wavenumbers (±1,±1,±2) receive kinetic energy of

amplitude −4ABC from the modes (±1, 0,±1), (0,±1,±1). Hence, the shell S2

receives energy at the rate of −32ABC from shell S1. Therefore,

T u,1u,2 = −32ABC,

and T u,1u,3 = T u,2u,3 = 0.

In the next section, we digress to relate turbulent energy flux to arrow of time.
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4.8 Turbulent Energy Flux and Arrow of Time

In turbulent systems, the properties of energy transfer can be used to set the

direction of time. As mentioned earlier, kinetic energy cascades from large scales

to intermediate scales, and then to small scales, where it gets dissipated. Imagine

that we record a video of a flow along with its energy transfers. If the video is run

backward, the kinetic energy will flow from small scales to large scale, which is

distinguishable from the original flow behavior. It is important to note that we can

start a hydrodynamic turbulent system from an arbitrary initial condition, but it

always tends to move toward a state with a constant energy flux; it never returns

to its original configuration. Thus, the direction of energy transfer sets the

direction of temporal evolution.

Hence, in a turbulent system, the factors that determine time’s arrow are—

hierarchy of structures, direction of energy transfers, and viscous dissipation at

small scales. Many nonequilibrium dissipative systems (e.g., earthquakes, financial

system) exhibit similar behavior; here too, the direction of corresponding flux would

determine the arrow of time.

Contrast this phenomena with those in equilibrium systems that lacks a

direction of energy transfer (see 1st category of turbulent systems in Section 4.5).

Equilibrium systems behave as if they are frozen in time, apart from small

fluctuations in the energy exchange among the modes. Some equilibrium systems

may involve dissipation (e.g., see Langevin’s equation), but it is the lack of

direction of energy transfer that prevents us from determining time’s arrow in

these systems.

Hamiltonian and conservative nonequilibrium systems exhibit a somewhat

different behavior. Such systems have hierarchical structures with energy transfers

across multiple scales, and they are typically far from equilibrium. However, due to

lack of dissipation, the system is able to come to its original configuration, or close

to it. This process however may take a very long time. This is an intuitive

statement of Poincare’s recurrence theorem (Arnold, 1989). Such systems evolve so

as to preserve the phase space volume.7 This is called Liouville’s theorem (Arnold,

1989). These assumptions form a basis for the ergodic hypothesis and principle of

equal a priori probabilities, which are fundamental postulates of statistical

physics (Ma, 1985). In summary, such systems may go back and forth from one

state to another (possibly covering the available phase space with equal

probability); yet they lack a definite direction of energy transfer from one scale to

another. As a result, evolution of such systems do not have a definite pattern to

7The space formed by Fourier modes {u(k)} can be treated as phase space.
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define the temporal direction that distinguishes forward and backward motion of

the system.

Some researchers attribute the arrow of time to sensitivity to initial conditions.

That is, in a nonlinear system, an arbitrary initial condition is likely to take the

system to a chaotic state. Only a small set of initial conditions take a chaotic system

to an ordered state. Therefore, an arbitrary initial condition is likely to take the

system to a disordered state; such direction of evolution can define the arrow of

time. Note that this definition of time’s arrow differs significantly from that arising

due to turbulent energy flux from large scales to small scales.

A key ingredient for the turbulent energy flux is viscous dissipation. It may be

argued that such dissipation cannot be derived from first principles (involving only

fundamental forces). It is a serious objection, but may be circumvented by saying

that “organized structures” may be diffused by many-body interactions, thus

providing a semblance of dissipation. Note that some recents works on superfluid

turbulence (a quantum system) indicate presences of dissipation, possibly via

phonon coupling (Nemirovskii, 2012). These are difficult issues requiring careful

investigation.

An exception to the aforementioned energy transfers from large scales to small

scales is 2D hydrodynamic turbulence in which the energy transfer is in the opposite

direction. Hence, time’s arrow in 2D hydrodynamic turbulence will be one in which

the energy transfer is from small scales to large scales that leads to an increase in

order. These issues are quite tricky and beyond the scope of present discussion.

4.9 Spectral Decomposition, Energy Transfers, and Amplitude
Equations

As discussed in the present chapter, the dynamics of large-scale modes are captured

quite nicely using spectral decomposition (also called Galerkin truncation). A set of

equations thus constructed are called low-dimensional models. The energy transfers

among the Fourier modes shed important light into the dynamics of the flow, as

illustrated in Examples 4.3 to 4.8, as well as in the following example. Galerkin

truncation is especially useful for studying patterns and chaos near the onset of

instability (Verma, 2018). For example, we can study square patterns in thermal

convection by choosing Fourier modes (1, 0, 1), (0, 1, 1), and (1, 1, 2) as primary

interacting modes. Similarly, hexagonal patterns are formed by a wavenumber triad

{(−1, 0), (1/2,
√

3/2), (1/2,−
√

3/2)} and several other modes.

An alternative approach to address pattern formation is via amplitude equation.

Here we employ scale separation between the fast and slow time scales, and then
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derive appropriate equations for the slow variables. The choice of interacting modes

depend on the symmetries of the system. This is an extensive research field with

applications in many areas of physics, but it is beyond the scope of this book.

We refer readers to Manneville (2014), Cross and Greenside (2009), Hoyle (2006),

Knobloch (1992), and Cross and Hohenberg (1993).

Let us contrast the essential features of amplitude equations and those of

low-dimensional models constructed using spectral decomposition. An amplitude

equation is typically constructed based on symmetry principles and the nature of

nonlinear interactions (Hoyle, 2006). Such equations provide useful insights into

pattern formation. Construction of low-dimensional models using Galerkin

truncation however requires more work, as can be seen in this chapter. However,

the low-dimensional models capture the onset of instability and patterns more

accurately than amplitude equations. Energy transfers among modes provide

further insights. These topics, though very interesting, will not be covered in this

book. The interested reader is referred to the aforementioned books and Verma

(2018)

In the next section, we briefly describe numerical methods based on spectral

approach.

4.10 Numerical Simulations Using Spectral Method

Numerical simulations are akin to experiments. They help construct models and

test various conjectures. Numerical simulations also complement experiments. For

example, measurements of a high-resolution velocity field in the interiors of a liquid

metal flow is still a major experimental challenge. This computation however is very

easy in a numerical simulation. On the contrary, direct simulations of Re = 108 is

impossible even on the best supercomputers of present times, but many experimental

flows have Re far beyond 108.

For turbulence simulations, researchers employ various numerical techniques,

namely, finite difference, finite volume, finite element, pseudo-spectral, vortex

methods, etc. (Ferziger and Peric, 2001). In this book, we will discuss the

pseudo-spectral method (Boyd, 2003; Canuto et al., 1988) because it captures

multiscale features of turbulent flows in a natural way. Moreover, spectral method

is one of the most accurate numerical schemes for solving partial differential

equations. In the following, we will briefly describe the pseudo-spectral method.

In Fourier space, the incompressible hydrodynamics is described by Eqs. (3.17).

In spectral method, we rewrite these equations as
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{
d

dt
+ νk2

}
ui(k, t) = −ikip(k, t)−Nu,i(k) + Fu,i(k)− νk2ui(k), (4.61a)

kiui(k, t) = 0, (4.61b)

where Nu,i and Fu,i are the ith components of the nonlinear term and the external

force respectively. The pressure p is determined using

p(k) =
√
−1

1

k2
kj{Nu,j(k)− Fu,j(k)}. (4.62)

It is convenient to assume that the real space domain of the flow is Lx ×Ly ×Lz =

(2π) × (2π) × (2π) so that the wavenumber components ki = 2πni/Li = ni are

integers. We divide the domain into a M = Nx × Ny × Nz grid. Therefore, the

wavenumbers of the system are k = (kx, ky, kz) with kx = (−Nx/2 : Nx/2), ky =

(−Ny/2 : Ny/2), kz = (−Nz/2 : Nz/2). However, because of the reality condition,

u(−k) = u∗(k), we need to time advance only half of these wavenumbers, which are

kx = (−Nx/2 : Nx/2), ky = (−Ny/2 : Ny/2), kz = (0 : Nz/2). The evolution of each

of these Fourier modes is described by Eq. (4.61a). The objective of the computation

is to solve for the field variables at a later time given the initial condition {u(k, t =

0)}.
The computation of the nonlinear term is the most expensive part of a spectral

simulation. A naive calculation involving convolution will require O(M2) floating

point operations, which is prohibitively expensive. Hence, the nonlinear terms are

alternatively computed using fast Fourier transform (FFT), as suggested first by

Orszag (Boyd, 2003; Canuto et al., 1988). The method is as follows:

1. Compute u(r) from u(k) using inverse FFT.

2. Compute ui(r)uj(r) in real space by multiplying the fields at each space point.

3. Compute Fourier transform of ui(r)uj(r) using forward FFT that yields

(uiuj)(k).

4. Compute ikj(uiuj)(k) by multiplying the result of Step 3 by ikj, and then

summing over all j. The resulting vector is the desired Nu,i(k).

We illustrate these steps in Fig. 4.12. Since a FFT takes O(M log2M) floating

point operations, the aforementioned method is quite efficient. The multiplication

ui(r)uj(r) is performed in real space; therefore, this procedure is called pseudo-

spectral method instead of spectral method.

We need to take some care while choosing the grid size, the time-stepping scheme,

and the time step. Theory of turbulence, to be discussed in Chapter 5, tells us that

M & Re9/4. For time stepping, Runge–Kutta third- or fourth-order schemes, or
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multistep schemes (e.g. Adam–Bashforth method) are recommended. The equations

are stiff for large Re; hence, the exponential trick or Crank–Nicolson schemes are

suggested for the dissipation term (Verma et al., 2013a; Chatterjee et al., 2018). The

time step ∆t is estimated using Courant–Friedrichs–Lewy (CFL) condition. Refer

to Boyd (2003) and Canuto et al. (1988) for details of spectral methods.

u ( )ki

u ( )ri

ik u u[ ] ( )k( ) ( )r rjj i

IFFT

Mult FFT

Mult
ik j

[ ] ( )u u k( ) ( )r rj iu u( ) ( )r rj i

Figure 4.12 A schematic diagram depicting the computation of the nonlinear
term ikj(uiuj)(k) in a pseudo-spectral method.

Spectral methods are employed to study the following properties of a turbulent

flow:

1. Energy and dissipation spectra.

2. Energy flux.

3. Shell-to-shell energy transfer rates.

4. Evolution of global quantities like total energy, total enstrophy, and total

kinetic helicity.

5. Time series of the amplitudes of Fourier modes.

In the next section, we describe how to compute the energy transfers using

numerical and experimental data.

4.11 Computation of Energy Transfers Using Data

We can compute energy transfers at any time using an instantaneous flow profile,

which may have been obtained from a numerical simulation or from an experiment.

As in Eq. (4.60), the kinetic energy transfer rate from region A to region B is

T u,Au,B =
∑
k∈B

∑
p∈A

=[{k · u(q)}{u(p) · u∗(k)}]. (4.63)

Here the donor wavenumber p belongs to region A, the receiver wavenumber k to

region B, and q = k− p.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316810019.005
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 04 Jul 2019 at 22:23:26, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316810019.005
https://www.cambridge.org/core


76 Energy Transfers in Fluid Flows

To perform the computation in Eq. (4.63), we define two truncated variables uA

and uB as

uA(k) =

{
u(k) if |k| ∈ A

0 if |k| /∈ A
(4.64a)

uB(k) =

{
u(k) if |k| ∈ B

0 if |k| /∈ B.
(4.64b)

Now we rewrite Eq. (4.63) in terms of uA and uB as

T u,Au,B = =
[∑

k

[uBi (k)]∗
{
kj
∑
p

uj(k− p)uAi (p)

}]
. (4.65)

The p summation in this equation is a convolution, which is computed using FFT. In

fact, the term in the curly bracket is Nu,i(k)/i (nonlinear term) with the truncated

uA(p), and it can be computed easily using the pseudo-spectral method described

earlier. After the computation of nonlinear terms, we perform the k sum over region

B of the wavenumber space. Thus, we compute the energy transfer from region A

to region B.

For the flux computations, region A is the inner volume of the wavenumber

sphere, while region B is the outer volume of the sphere. For the shell-to-shell

energy transfer from shell m to shell n, regions A and B correspond to the volumes

of shells m and n respectively. In Chapters 5 and 7, we will report the numerical

results of energy flux and shell-to-shell energy transfers in 3D and 2D hydrodynamic

turbulence. In Parts II and III, we will cover these transfers for other systems such

as thermal convection and magnetohydrodynamics.

The computation of the aforementioned energy transfers requires a full dataset,

which is relatively easier in numerical simulations but at a moderate Reynolds

number (/ 105). High-resolution spectral simulations provide u(k) using which we

can compute energy flux and shell-to-shell energy transfers. For other numerical

schemes like finite difference, finite volume, and finite elements, we can interpolate

the data to a uniform mesh and then employ FFT to compute u(k) (Chandra and

Verma, 2011, 2013).

Equations (4.40, 4.41) provide another scheme to compute the energy flux:

Πu(k0) = − d

dt

∑
|k|≤k0

Eu(k) +
∑
|k|≤k0

Fu(k)−
∑
|k|≤k0

Du(k). (4.66)
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We measure

d

dt

∑
|k|≤k0

Eu(k) =

∑
|k|≤k0 Eu(k, t+ dt)−

∑
|k|≤k0 Eu(k, t)

dt
(4.67)

by computing the total kinetic energy inside the sphere at two nearby times (t and

t+dt). The energy supply rate by external force and the dissipation rate in the sphere

can be computed using the velocity and force fields. Verma et al. (1996) adopted this

strategy to compute the energy fluxes in magnetohydrodynamics (MHD) turbulence.

Experimental measurement of 3D datasets requires 3D particle image

velocimetry (PIV), which is very expensive. These measurements typically provide

low-resolution data that makes flux computations in the inertial range quite

difficult. Note, however, that for 2D hydrodynamics, high-resolution 2D PIV

provides data with sufficient resolution for the energy flux computation. Under an

assumption of isotropy and homogeneity, the data obtained using 2D PIV could

also be used for computing the energy flux of 3D turbulence. Researchers also

employ structure functions to compute the energy flux; this topic will be discussed

in Chapter 12. These discussions show that the computation of energy transfers

are relatively easier using numerical simulation than using experiments.

The properties of energy transfers have also been studied analytically using field-

theoretic methods (Kraichnan, 1959; Leslie, 1973; McComb, 1990; Verma, 2004;

Verma et al., 2005; Yakhot and Orszag, 1986). This analytic technique, though

quite involved, is very useful for computing energy flux and shell-to-shell energy

transfers. We briefly describe these computations in Chapter 10.

Here we close our discussion on energy transfers in hydrodynamic turbulence.

In the next chapter, we will describe some of the important properties (including

energy transfers) of 3D hydrodynamic turbulence.

Further Reading

The mode-to-mode energy transfer described in this chapter was first formulated by

Dar et al. (2001), and later expanded by Verma (2004). Their focus however was on

magnetohydrodynamic turbulence, which is a superset of hydrodynamic turbulence.

Earlier, Kraichnan (1959) derived the combined energy transfer of Eq. (4.2) and

associated energy flux.

Domaradzki and Rogallo (1990), Domaradzki (1992), and Waleffe (1992)

derived formulas for the shell-to-shell energy transfer using combined energy

transfers; however, these formulas have deficiencies. Mode-to-mode energy
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transfers provide accurate and concise formulas for the energy flux and shell-to-shell

energy transfers.

Exercises

1. Consider the following 2D fluid flow in a box of size [π, π]:

u = 4C(x̂ sin 3x cos y − ŷ3 cos 3x sin y) + 4B(ŷ sin 2x cos 2y − ŷ cos 2x sin 2y)

+4A(x̂ sinx cos y − ŷ cosx sin y).

Compute the Fourier amplitudes of the modes, and the energy transfers among them.

2. Consider the following 2D fluid flow in a box of size [π, π]:

u = 4D(x̂ sinx cos 3y − ŷ 1

3
cosx sin 3y) + 4C(x̂ sin 3x cos y − ŷ3 cos 3x sin y)

+4B(ŷ sin 2x cos 2y − ŷ cos 2x sin 2y) + 4A(x̂ sinx cos y − ŷ cosx sin y).

Compute the Fourier amplitudes of the modes, and the energy transfers among them. It is
convenient to use the Craya–Herring basis (see Section 4.3). Write down the equation of motion
for A,B,C, and D.

3. Consider a 2D flow field constructed using wavenumbers k′ = (−1, 0), q = (1/2,
√

3/2), and
p = (1/2,−

√
3/2). Denote the amplitudes of modes in the Craya–Herring basis as A,B, and C.

Write down equations of motion for the modes in the presence of viscosity. Solve for A,B, and
C. Compute the energy transfers among the aforementioned modes.

4. Consider the two-dimensional flow fields of Exercises 4.1 and 4.2. Compute the energy fluxes for
these fields.
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Chapter 5

Energy Spectrum and Flux of
3D Hydrodynamics

Turbulence is a complex problem with a very few analytical and exact results. In this

chapter we will present Kolmogorov’s theory of hydrodynamic turbulence (spectral

version) that yields energy spectrum and flux for the flow. Later in the chapter we

will also discuss energy spectrum and flux for the dissipative regime and for laminar

flows.

Kolmogorov’s theory of turbulence is a starting point for many applications

such as turbulence in passive and active scalars, magnetohydrodynamic turbulence,

thermal convection, etc. These systems will be discussed in Parts II and III of this

book. Hydrodynamic turbulence in two dimensions (2D) and in three dimensions

(3D) are quite different. In the present chapter, we cover 3D hydrodynamic

turbulence. 2D hydrodynamic turbulence will be discussed in Chapter 7.

5.1 Kolmogorov’s Theory for 3D Hydrodynamic Turbulence in
Spectral Space

Turbulent flows are typically quite complex. However, notable simplification is

achieved when we focus on the flow at intermediate and small scales away from the

walls. For such flows, Kolmogorov (1941a) and Kolmogorov (1941c) provided a

very important and powerful theory of turbulence. Kolmogorov’s theory of

turbulence has been presented in several ways. In the following discussion, we
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present this theory in spectral space using the constancy of energy flux and

dimensional arguments. In Chapter 12 we describe Kolmogorov’s original

arguments that are for real space.

In Section 4.4 we showed that the time evolution of the kinetic energy (KE)

spectrum Eu(k) is described by the following equation:

∂

∂t
Eu(k, t) = − ∂

∂k
Πu(k, t) + Fu(k, t)−Du(k, t), (5.1)

where Πu(k) is the energy flux, and

Fu(k)dk =
∑

k<k′≤k+dk

<[Fu(k′) · u∗(k′)], (5.2)

Du(k)dk = 2ν
∑

k<k′≤k+dk

k′2Eu(k′) (5.3)

are respectively the energy supply rate by the external force Fu and the viscous

dissipation rate in the wavenumber shell k.

The key assumptions of Kolmogorov’s theory are as follows:

1. The external force Fu is active at large length scales, which are of the order of

the system size. Thus, the external force peaks at wavenumber kf ∼ kL ≈ 1/L.

The KE feed by the external force is FLS(k). The wavenumber band near

k = kf is called the forcing range. See Fig. 5.1 for an illustration.

2. The kinematic viscosity ν → 0, or Re = UL/ν → ∞. Hence, Du(k) is

significant only in the dissipation range, which is at large k, due to the k2

Forcing
range

k

d
k

+

P ( )kuk
P ( + dk)ku

P
(

)
k

u

P ( ) = Cku

( ) = 0kin

LS

k f

Inertial
range

k DI

Dissipative
range

k
d

k

Figure 5.1 Schematic diagrams of the kinetic energy flux Πu(k) in hydrodynamic
turbulence. The energy supplied at small k cascades to intermediate
wavenumbers, and then to the dissipative wavenumbers. In the
intermediate or inertial range, Πu(k) = const.
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factor in Du(k). In Fig. 5.1, this range is illustrated as k > kDI, where kDI is

the transition wavenumber between the intermediate range and the dissipation

range.

3. The energy supplied by Fu cascades to the intermediate scales and then to

the small scales where the energy is dissipated. The intermediate wavenumber

band between the forcing range and dissipation range is called inertial range

where the nonlinear term and the pressure gradient play a dominant role (see

Fig. 5.1).

4. Kolmogorov assumed that the physics of inertial range is independent of forcing

and dissipative mechanisms, and that it depends on local properties—local

wavenumber, and the energy flux that traverses through the local scale.

5. The flow is statistically homogeneous and isotropic at the intermediate and

small scales.

6. In the early stages of evolution, typically, the velocity fluctuations are present

at large scales or small k. Hence, Eu(k) ≈ 0 at the intermediate and small

scales. Nonlinear interactions quickly transfer energy from small k’s to

intermediate k’s and then to small k’s. This energy transfer is fast and local,

that is, from a wavenumber shell to its neighboring shell. The flow typically

reaches a quasi-steady state in an eddy turnover time, L/U , where U is the

large scale velocity. In a steady state, the net energy supply rate by the

external force is balanced by the total dissipation rate εu, that is,∫ ∞
0

dk′Fu(k′) =

∫ ∞
0

dk′Du(k′) = εu. (5.4)

Under a steady state, we have ∂Eu(k)/∂t ≈ 0. In the inertial–dissipation range,

Fu(k) = 0, hence,

d

dk
Πu(k, t) = −Du(k, t). (5.5)

In addition, Du(k)→ 0 in the inertial range. Therefore, using Eq. (5.5), we deduce

that

Πu(k) = Πu = const, (5.6)

as illustrated in Fig. 5.1.

If we chose k just beyond kf , then an integration of Eq. (5.5) yields

Πu(k) = Πu =

∫ ∞
k

Du(k′)dk′. (5.7)
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Assuming that the dissipation in the band (0, kf ) is negligible, we can deduce that

Πu ≈
∫ ∞

0

Du(k′)dk′ = εu. (5.8)

This relation indicates that Πu / εu.

Now, we derive one-dimensional KE spectrum of the flow using dimensional

analysis. Since the physics of turbulence in the inertial range is independent of

forcing and dissipative mechanisms, the energy spectrum Eu(k) will depend only

on the local wavenumber, k, and energy flux, Πu, which is visible to all the

scales. Kolmogorov’s picture of energy cascade implicitly assumes local energy

transfer in the inertial range. Moreover, since Eu(k) does not depend on any

external length scale, it will be a power law1 in k. Therefore, we deduce the

following functional form for Eu(k):

Eu(k) = Πα
uk

β. (5.9)

Now using the fact that

[Eu(k)] = [Eu/k] = [L3/T 2]; [Πu] = [Eu/T ] = [L2/T 3]; [k] = [L]−1, (5.10)

we derive the following formula for the one-dimensional kinetic energy spectrum:

Eu(k) = KKoΠ2/3
u k−5/3, (5.11)

where the proportionality constant KKo is called Kolmogorov’s constant. Numerical

simulations, experiments, and analytical computations report that KKo ≈ 1.6. The

aforementioned energy spectrum and energy flux have been observed in experiments

and numerical simulations.

Note that Eqs. (5.6, 5.11) provide a universal description for hydrodynamic

turbulence, and they are applicable irrespective of the boundary condition, initial

condition, dissipative forces, and forcing mechanism. Due to its universal nature,

Kolmogorov’s theory is widely used for modeling many natural and engineering

systems, e.g., turbulent flows in planets, stars, galaxies, turbines, engines, etc.

Kolmogorov’s theory provides many useful insights into the physics of turbulence,

some of which will be discussed in the next section.

1Note that functions sin, exp take nondimensional numbers as arguments that can be constructed by
multiplying k with an appropriate length scale. Since the physics of turbulence in the inertial range is
independent of forcing or dissipative mechanisms, such length scale is unavailable.
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5.2 Insights from Kolmogorov’s Theory of Turbulence

From Kolmogorov’s theory of turbulence, we can make the following deductions:

1. We can estimate the large-scale or rms velocity U of a turbulent flow as follows.

The total kinetic energy of the flow is

Eu =

∫ ∞
0

Eu(k)dk ≈
∫ ∞
kL

Eu(k)dk ≈ ε2/3L2/3. (5.12)

It is assumed that the forcing and dissipation range do not contribute

significantly to this integral, and that Eu(k) in the integrand is given by

Eq. (5.11). Note that energy is concentrated at large scales because

Eu(k) ∼ k−5/3 drops rather sharply with k. Using Eq. (5.12) and Eu = U2/2,

we immediately deduce that

U ≈ ε1/3L1/3. (5.13)

2. In the inertial range, we can estimate the energy content at the length scale l

or at the wavenumber k = 1/l using

u2
l

2
=

∫ k+∆k

k

Eu(k)dk. (5.14)

Due to the power law physics of turbulence (see Appendix A), it is appropriate

to use ∆k ∼ k. Hence,

u2
l

2
=

∫ 2k

k

dk[ε2/3k−5/3] ∼ ε2/3k−2/3 (5.15)

that yields the magnitude of the velocity fluctuation and effective interaction

time scale as

uk ≈ ε1/3u k−1/3, (5.16a)

ul ≈ ε1/3u l1/3, (5.16b)

τl ≈
l

ul
≈ ε−1/3

u l2/3. (5.16c)

3. In Kolmogorov’s theory, the assumption that ν → 0 is crucial. The nonzero

but small viscosity causes viscous dissipation at k ≈ ∞, and it induces energy

cascade from large scales to intermediate scales and then to small scales. In the

limit of ν → 0, the dissipation in the inertial range is negligible, thus making
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Πu(k) a constant in the inertial range. Moreover, the inertial range is infinite

in this limit. Note that energy cascade from large scales to small scales makes

turbulence a nonequilibrium phenomena.

4. A real fluid however has a finite viscosity. Hence, the viscous dissipation in such

flows occur at a finite length scale ld, which is estimated as follows. When we

extend Kolmogorov’s scaling to the forcing and dissipative scales, Eq. (5.16b)

yields

εu ≈
U3

L
≈
u3
ld

ld
, (5.17)

where ld ≈ 1/kd is referred to as Kolmogorov’s length. Using ν ≈ uld ld, we

obtain

ld ≈
(
ν3

εu

)1/4

. (5.18)

Note that the dissipation scale ld is a function of ν and, surprisingly, of the

energy supply rate εu. We can also derive ld by multiplying Eq. (5.16b) with

ld and by setting l = ld. The corresponding wavenumber,

kd ≈
( εu
ν3

)1/4

(5.19)

is called Kolmogorov wavenumber. We remark that kd � kDI (see Fig. 5.1). For

moderately large Re, Pope (2000) shows that kd is an order of magnitude larger

than kDI. A more rigorous derivation of kd is arrived at in Section 5.5.

From the kinetic theory of dilute gas, ν = csλ, where cs is the sound speed,

and λ is the mean free path length. Note that uld 6= cs and ld 6= λ. In fact,

uld � cs and ld � λ. So, ld is very different from the mean free path length.

In fact, ld is the length scale at which the velocity field is completely diffused;

thus, ul ≈ 0 for l < ld.

It is important to note that the relations ν ≈ uld ld and ν = csλ connect

the nonequilibrium processes of hydrodynamic turbulence to the equilibrium

processes at kinetic scales. The detailed physical mechanism between the length

scale ld and λ that comes in the purview of kinetic theory is quite complex.

There are many unresolved issues in this field.

5. We can relate the Reynolds number to L/ld using

Re =
UL

ν
≈ UL

uld ld
≈
(
L

ld

)4/3

, (5.20)
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or

L

ld
≈ Re3/4. (5.21)

The aforementioned relation provides an estimate for the range of length

scales present in a turbulent flow. Clearly, a realistic numerical simulation of

a turbulent flow requires minimum grid resolution of L/ld along each

direction. For example, a numerical simulation of a turbulent flow with

Re = 104 requires

L

ld
≈ Re3/4 ≈ 103. (5.22)

Hence, we need (103)3 = 109 grid points to simulate a 3D turbulent flow

with Re = 104. Similarly, a numerical simulation of Re = 108 requires 1018

grid points, which is beyond the memory capacity of the best supercomputer

available at present. Turbulence simulations are hence very challenging.

6. Physics of turbulence involves power laws, as illustrated by the functional form

of Eu(k). As shown in item (2), the velocity magnitude at wavenumber k is uk ∼
ε1/3u k−1/3. Kolmogorov’s theory of turbulence makes an implicit assumption

that the dominant interactions in turbulence are local (among neighboring

wavenumber shells) and forward (from a lower wavenumber shell to larger

wavenumber shell). We verify this assumption by estimating the shell-to-shell

energy transfer from shell n to shell (n+ 1):

T u,nu,n+1 =
∑

k∈n+1

∑
p∈n

=[{k · u(q)}{u(p) · u∗(k)}]. (5.23)

Since the above shells are neighbor of each other, it is reasonable to assume,

p ∼ k ∼ q. From Eq. (5.16b), we estimate uk ∼ up ∼ uq ∼ ε1/3u k−1/3. Therefore,

T u,nu,n+1 ∼ ku3
k ∼ εu ∼ Πu. (5.24)

Thus, maximal energy indeed is transferred locally, which is consistent with

the assumptions of Kolmogorov’s theory.

7. Taylor (1954) showed that turbulence enhances diffusion. Using Kolmogorov’s

theory we can derive how the distance between two particles diverges in a

turbulent medium. We assume that the dispersion for inertial scales do not

depend on the viscosity and large-scale forcing, but it depends only on the

local length scale and the energy flux. Then, dimensional analysis yields
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∆r ∼ ε1/2u t3/2. (5.25)

Note that the aforementioned formula, which is applicable when ∆r lies in

the inertial range, indicates superdiffusion. This diffusion is faster than even

a ballistic process (∼ t) because large eddies advect the particles with speeds

faster than that of the particles. Also note that the diffusion coefficient is scale

dependent:

Dl ∼ ull ∼ ε1/3l4/3 (5.26)

substitution of which in ∆r =
√
Dlt yields Taylor’s formula.

In the next section, we will illustrate these results using numerical simulations.

5.3 Numerical Verification of Kolmogorov’s Theory

For 3D hydrodynamic turbulence, the energy spectrum Eu(k) of Eq. (5.11) has

been verified by many experiments and numerical simulations. In this book we do

not discuss those results in detail. Rather, we just illustrate the energy spectrum,

energy flux, and shell-to-shell energy transfers using a high-resolution (on 40963

grid) simulation (Verma et al., 2018). In this simulation, ν = 8 × 10−5, εu = 0.1,

Re = 6.8× 104, and Kolmogorov’s wavenumber kd ≈ 660. Hence,

ld =
π

kd
≈ π

660
, (5.27)

and the grid resolution is

∆ =
2π

N
=

π

2048
. (5.28)

Thus, ld/∆ ≈ 2048/660 ≈ 3. Therefore, the smallest velocity structure in the flow

is resolved in a 33 simulation grid. Therefore, we conclude that the flow is well

resolved2 in our simulation. Verma et al. (2018) also observe that

εu
U3/L

≈ 1, (5.29)

which is consistent with earlier results.

2It is customary to denote the condition for resolution in direct numerical simulation as kmaxld > 1.
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In Figs. 5.2 and 5.3 we illustrate Eu(k) and Πu(k) computed using the simulation

data. The gray region in the plots is the forcing band (2,4). The plots exhibit a

wide inertial range (4 / k / 100) where

Eu(k) ∼ k−5/3; Πu(k) ∼ const. (5.30)

k
–5/3

E
k(
)

u
101

10–3

10–7

100 101 102 103

k

Figure 5.2 The energy spectrum Eu(k) computed using spectral simulation. In
the inertial range, 4 / k / 100, Eu(k) ∼ k−5/3. Adopted from a
figure of Verma et al. (2018).
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Figure 5.3 The energy flux Πu(k) computed using spectral simulation. Πu(k) ≈
constant in the inertial band 4 / k / 100. Adopted from a figure of
Verma et al. (2018).

Using the numerical data, we compute

KKo =
Eu(k)k5/3

ε
2/3
u

≈ 1.75± 0.05, (5.31)
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which is close to the expected value of 1.6. The viscous dissipation starts to dominate

for k beyond 200. Note that Eu(k) is already negligible for k > kd ≈ 660.

Figure 5.4(a) exhibits the density plot of the shell-to-shell energy transfer from

shell m to shell n, T u,mu,n , for the same run. See Eq. (4.56) for the definition. The shell

radii in the inertial range are chosen as kn = 2n/5 to mimic the power law physics.

In the plot, the x, y axes represent the receiver and donor shells respectively. For

example, the 20th row exhibits the energy transfer from m = 20 shell to all other

shells. The figure shows that T u,20
u,20 = 0, and that T u,20

u,21 is maximally positive implying

that the 20th shell transfers maximum energy to the 21st shell. Similarly, T u,20
u,19 is

maximally negative, implying that the 20th shell receives maximum energy from the

19th shell. This observation shows that the shell-to-shell energy transfer is forward

and local. That is, the energy transfer is from lower wavenumber shells to larger

wavenumber shells, and the energy transfers peak for neighboring shells.

40
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–2

2
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27 33 40
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–1
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(a) (b)

Figure 5.4 The shell-to-shell energy transfers, T u,mu,n , computed using a spectral
simulation. The x, y axes represent the receiver and giver shells
respectively. The figure demonstrates forward and local shell-to-shell
energy transfer. From Verma et al. (2018). Reprinted with permission
from Springer

The 27th shell whose wavenumber range is [194, 223] falls in the transition region

between the inertial range and the dissipation range. Interestingly, the shell-to-shell

energy transfers in the dissipation range (shells 27 to 40) too are local and forward,

but they are relatively weaker than those in the inertial range (see Fig. 5.4(b)).

In Fig. 5.5 we plot T u,mu,n as a function of n −m for a different simulation. The

figure clearly illustrates a forward cascade of energy. The transfers peak for the

nearest neighbors, and then decline sharply for larger n−m, thus indicating locality

of the energy transfer in the wavenumber space. In addition, in the inertial range,

.
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T u,mu,n curves for various ms almost collapse into a single curve. This feature indicates

a scale-independent energy transfer in the inertial range. Thus, the shell-to-shell

energy transfer in three-dimensional fluid turbulence is forward, local, and scale

invariant in the inertial range. This is consistent with the power law physics of

hydrodynamic turbulence in the inertial range. Also see Verma et al. (2005).
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Figure 5.5 Plot of T u,mu,n as a function of n − m for 3D fluid turbulence with
Re = 1100.

Kolmogorov’s theory has been quite successful in explaining many important

features of incompressible hydrodynamic turbulence. Note however that it has

certain limitations that will be listed in the next section.

5.4 Limitations of Kolmogorov’s Theory of Turbulence

The shortcomings of Kolmogorov’s theory are listed as follows:
1. Anisotropic turbulence: Kolmogorov’s theory of turbulence assumes that the

flow is statistically isotropic. Consequently, the modal energy of all the modes

in a thin shell of radius k are equal, that is, C(k) = C(k). This assumption

holds good in the absence of an external force field, and away from the

boundaries. Note that external sources like rotation, external magnetic field,

and buoyancy induce anisotropy in the flow. In addition, channel flow is also

anisotropic. Surprisingly, in the absence of external sources, the flows far

away from walls tend to be isotropic at small scales, thus making

Kolmogorov’s theory applicable to such flows.

Note, however, that the energy equation [Eq. (5.1)] and the energy flux scenario

illustrated in Fig. 5.1 are applicable to anisotropic flows as well. Here, the
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energy transfer will not be isotropic, but Eq. (5.1) is valid for a wavenumber

shell of radius k. For deciphering the angular dependence of turbulence, Teaca

et al. (2009) and Nath et al. (2016) proposed ring spectrum and ring-to-ring

energy transfers, which will be discussed in Chapter 11.

2. Compressible turbulence: Kolmogorov’s theory for turbulence is applicable to

incompressible flows, but not to compressible turbulence (Lesieur, 2008). For

example, in compressible turbulence, there is an exchange of kinetic energy and

internal energy via pressure. Highly compressible flows exhibit shocks, which

are absent in incompressible flows. Note that Burger’s equation, for which the

sound speed is zero, has Eu(k) ∼ k−2 due to the shocks (Verma, 2000). In

Chapter 30 we will discuss energy transfers in compressible flows.

3. Two-dimensional turbulence: The space dimension does not appear explicitly

in the derivation of Kolmogorov’s spectrum (see Section 5.1). However,

Eqs. (5.6, 5.11) are applicable only to 3D hydrodynamic turbulence.

Enstrophy plays an important role in 2D hydrodynamic turbulence and

affects the scaling. We will describe 2D hydrodynamic turbulence in

Chapter 7.

4. Euler turbulence: As described in Section 5.2, finite but small viscosity is

mandatory for energy cascade. It makes turbulence a nonequilibrium

phenomena. On the contrary, in an ideal fluid with ν = 0, the energy

dissipation is zero. Such a flow may show randomness, which is referred to as

Euler turbulence. Force-free Euler’s equation conserves energy and has a

Hamiltonian structure. Consequently, the phase space volume is conserved

during the temporal evolution, which is the statement of Liouville’s

theorem (Arnold, 1989).

It is assumed that the Euler turbulence is ergodic as in equilibrium statistical

mechanics (Ma, 1985), that is, it scans all of the available phase space (region

of constant total energy) with equal probability. Therefore, in the asymptotic

limit (t → ∞), all the Fourier modes have equal energy, or Eu(k) = C.

Consequently, 1D energy spectrum is Eu(k) = 4πCk2 in 3D (Lesieur, 2008);

such spectrum has been observed in numerical simulations, see for example,

Krstulovic et al. (2009). This phenomena is related to the equilibrium

behavior for which Πu(k) ≈ 0 [see item (1) of Section 4.5]. Using

field-theoretic arguments, in Section 10.2.4 we show that Suu(k|p|q) = 0 and

hence Πu(k) ≈ 0 for Euler turbulence [also see Verma (2004)]. Thus, Euler

turbulence is not described by Kolmogorov theory.

Dallas et al. (2015) studied the energy spectra of turbulent flows at k < kf .

They argued that flows at these scale are in equilibrium, and hence exhibit zero
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energy flux. In Fig. 5.6 we exhibit the energy flux and spectrum of one such

flow that is forced at k = 10. For k < 10, Πu(k) = 0 and Eu(k) ∼ k2, consistent

with the conjecture that the modes in the band k < kf are thermalized.
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Figure 5.6 For hydrodynamic flow that is forced at k ≈ 10: (a) The energy
flux Πu(k), (b) Eu(k). Note that for k < 10, Πu(k) = 0 and
Eu(k) ∼ k2 indicating thermalization of these modes.

5. Fluctuations in the energy flux: Kolmogorov’s theory assumes constant

energy flux, which is not strictly correct. Turbulent flows exhibit fluctuations

in energy flux Πu(k), and Πu = 〈Πu(k)〉 is constant only on an average.

Kolmogorov (1962) argued that Πu(k) follows log-normal distribution, while

She and Leveque (1994) proposed Πu(k) to be log-Poisson. Note that such

fluctuations are related to higher-order correlations or structure functions.

These issues remain unresolved till date; they are discussed briefly in

Chapter 12.

6. Kolmogorov’s k−5/3 spectrum is valid for the inertial range, that is, for kL �
k � kDI. In Section 5.5, we present its generalization to the inertial–dissipation

range.

In the next section, we will generalize Kolmogorov’s energy spectrum and flux

to the dissipative range.

5.5 Energy Spectrum of Turbulent Flow in the Dissipative Regime

Kolmogorov’s theory works quite well for the inertial range. In the limit ν → 0,

the inertial range extends to k =∞. However, real flows have finite viscosity, hence
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we need to generalize the energy spectrum to the dissipative regime. For turbulent

flows, Pao (1965) and Pope (2000) generalized Kolmogorov’s energy spectrum to

the dissipative range. We will discuss these topics in this section.

For the following models, we start with the equation for the energy flux

[Eq. (5.1)]. We focus on the inertial–dissipative range where Fu(k) = 0. Under a

steady state (dEu(k)/dt = 0),

d

dk
Πu(k) = −Du(k) = −2νk2Eu(k). (5.32)

In the following discussion we will show how various models help us derive Πu(k)

and Eu(k) in the inertial–dissipative range. We start with Pao (1965)’s model.

5.5.1 Pao’s model for the inertial–dissipation range of turbulence

Equation (5.32) has two unknowns, Eu(k) and Πu(k), which cannot be derived from

a single equation. To overcome this difficulty, Pao (1965) assumed that in the inertial

and dissipative ranges, Πu(k)/Eu(k) is independent of ν, and is function only of k

and εu [also see Leslie (1973)]. Under this assumption, dimensional analysis yields

Eu(k)

Πu(k)
= KKoε

−1/3
u k−5/3. (5.33)

This is a universal form that works in both inertial and dissipation range.

Substitution of Eq. (5.33) in Eq. (5.32) yields

Πu(k) = εu exp

(
−3

2
KKo(k/kd)

4/3

)
, (5.34a)

Eu(k) = KKoε
2/3
u k−5/3 exp

(
−3

2
KKo(k/kd)

4/3

)
, (5.34b)

where kd is Kolmogorov’s wavenumber. Thus, the energy spectrum in the dissipation

range has an exponential form (exp(−(k/kd)
4/3)).

The aforementioned derivation, which based on variable energy flux, clearly

shows that the energy flux in the dissipative range is nonzero. This is contrary to

the often-quoted statement that the energy flux vanishes in the dissipative range.

Later in this section we will verify the above scaling using numerical simulations.
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5.5.2 Pope’s model for the inertial–dissipation range of turbulence

Another popular model for the turbulent flow is by Pope (2000). Based on Eu(k)

from experimental data, Pope proposed that

Eu(k) = KKoε
2/3k−5/3fL(kL)fη(k/kd) (5.35)

with the functions fL(kL) and fη(k/kd) representing the large-scale and dissipative-

scale components, respectively:

fL(kL) =

(
kL

[(kL)2 + cL]1/2

)5/3+p0

, (5.36a)

fη(k̃) = exp
[
−β

{
[k̃4 + c4

η]
1/4 − cη

}]
, (5.36b)

where k̃ = k/kd, and cL, cη, p0, β are constants. Note that fL(kL) and fη(k̃)

dominate in the forcing range and dissipative range respectively, and they are

approximately unity in the inertial range. As shown by Pope (2000), the choice of

constants is quite tricky. One of the choices is β = 5.2, CL = 6.78, cη = 0.40, and

p0 = 2. To compute Πu(k), we substitute Eu(k) of Eq. (5.35) in Eq. (5.32), and

solve the differential equation numerically.

Verma et al. (2018) performed numerical simulation of turbulent flows on 5123,

10243 and 40963 grids for Re = 5.7× 103, 1.4× 104 and 6.8× 104 respectively. Using

these numerical data, they computed the following normalized energy spectra and

fluxes for the aforementioned three runs:

Ẽ(k)

KKo

= Eu(k)k5/3ε2/3u , (5.37a)

Π̃(k) =
Πu(k)

εu
. (5.37b)

In Fig. 5.7, we plot the above quantities along with the aforementioned predictions of

Pope and Pao. Verma et al. (2018) observed that KKo = 2.2± 0.2, 1.85±0.05, 1.75±
0.05 for 5123, 10243, 40963 grids respectively. Similar variations of KKo have been

reported earlier. As shown in Fig. 5.7(a), the models of Pao and Pope capture the

energy spectra quite well. However, Πu(k) predicted by Pope’s model is significantly

smaller than the numerical values in the dissipative range. Pao’s model however

captures Πu(k) quite well.
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Figure 5.7 For the grid resolutions of 5123, 10243, and 40963: (a,b,c) plots
of the normalized energy spectrum Ẽ(k̃)/KKo vs. k̃; (d,e,f) plots

of normalized energy flux Π̃(k̃) vs. ˜k = k/kd. See Eqs. (5.37a) and
Eq. (5.37b). The plots include the spectra and fluxes computed using
numerical data (thick red line), and the model prediction of Pao
(thin green line) and Pope (dashed line). From Verma et al. (2018).
Reprinted with permission from Springer.

Based on these observations, we claim that Pao’s model describes the energy

spectrum and flux of hydrodynamic turbulence in the inertial–dissipative range quite

well. A word of caution, however, is in order. Both Pao’s and Pope’s models do not
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capture the bottleneck effect of hydrodynamic turbulence (Falkovich, 1994; Verma

and Donzis, 2007; Verma et al., 2018).

Before we close this section, we rederive kd because the derivation of Eq. (5.19)

appears rather ad hoc. The total dissipation rate is

εu =

∫ ∞
0

νk2Eu(k)dk

≈
∫ ∞

0

νKKoε
2/3
u k1/3fη(k/kd)dk

≈ νKKoε
2/3
u k

1/3
d

∫ ∞
0

x4/3fη(x)dx, (5.38)

where x = k/kd. Assuming that the constants including the integral are of the order

of unity, we obtain

kd ≈
( εu
ν3

)1/4

, (5.39)

which is the same kd of Eq. (5.19). The aforementioned argument is somewhat more

rigorous.

In the next section we will discuss the energy spectrum and flux for laminar

flows.

5.6 Energy Spectrum and Flux for Laminar Flows

Equations (5.34a, 5.34b) describe the inertial–dissipative range of a turbulent flow

quite well, but they fail to model laminar flows with Re = O(1). This is expected

since Eu(k) of a laminar flow is not proportional to k−5/3. It is important to note

that Πu(k) is nonzero for such flows. In fact, Πu(k) would be nonzero even when

Re or nonlinearity is very small.

Verma et al. (2018) proposed that for laminar flows with Re = O(1), the energy

spectrum and flux have exp(−k) form. Under this assumption, the solution of

Eq. (5.32) is

Eu(k) = A
1

k
exp(−k/k̄d), (5.40a)

Πu(k) = A2νk̄2
d(1 + (k/k̄d)) exp(−k/k̄d), (5.40b)

where k̄d is the dissipation wavenumber scale for laminar flows. We estimate k̄d as

k̄d ≈
( εu
ν3

)1/4

≈
(
νU2

L2ν3

)1/4

≈
√

Re

L
. (5.41)
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With εu ≈ νU2/L2. Numerical simulations yield the following form for the prefactor

A:

A =
U2

Re3 . (5.42)

Hence,

Eu(k) =
U2

Re3

1

k
exp(−k/k̄d), (5.43a)

Πu(k) = ε̄u(1 + (k/k̄d)) exp(−k/k̄d), (5.43b)

where

ε̄u =
U2

Re3 2νk̄2
d. (5.44)

Curiously, substitution of k̄d in Eq. (5.44) yields ε̄u = ν3/L4, which has the same

form as Eq. (5.18) with ld = L. Note that ε̄u is not the viscous dissipation rate;

rather, it is the value of the energy flux at the wavenumber from where Πu(k) has

functional behavior of the form of Eq. (5.43b).

In this phenomenology, the forms of A and k̄d have been derived from numerical

simulations. At present, we do not have a very good understanding why these

quantities take such forms. We hope that more refined and detailed simulations

will help us resolve this issue. In the later part of the section we will verify this

phenomenology using numerical simulations.

It is important to discuss the limiting case Re = 0 for which the energy flux

is zero due to the absence of nonlinear term. For a steady flow with Re = 0, the

viscous term matches with the external force:

νk2u(k) = Fu(k). (5.45)

Hence,

u(k) =
1

2νk2
Fu(k) =⇒ Eu(k) =

1

4ν2k4
|Fu(k)|2. (5.46)

Thus, the energy spectrum depends on the spectrum of the external force.

For the force-free and decaying case with Re = 0, Eq. (5.1) yields

∂

∂t
Eu(k, t) = −2νk2Eu(k, t), (5.47)
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whose solution is

Eu(k, t) = Eu(k, 0) exp(−2νk2t). (5.48)

Thus, the kinetic energy spectrum decays exponentially in time. These results show

that the behavior of energy spectrum for Re 6= 0 (but small) and Re = 0 are quite

different. This is due to the presence of energy flux for nonzero nonlinearity. It is

incorrect to assume that the energy flux is absent in laminar flows.

Verma et al. (2018) performed numerical simulations of laminar flows in a periodic

box for Re = 49, 32.4, 23.1, 17.6. For these runs, k̄d = 0.9, 0.7, 0.6, 0.5 respectively.

They computed Eu(k) and Πu(k) for the steady state of these flows. For these runs,

the normalized energy spectrum and flux are

Ẽu(k) =
Eu(k)k

A
= exp(−k/k̄d), (5.49a)

Π̃u(k) =
Π

ε̄u
= (1 + (k/k̄d)) exp(−k/k̄d), (5.49b)

which are plotted in Fig. 5.8 respectively. For k > kf , where kf is the forcing

wavenumber, numerically computed Ẽu(k̃) and Π̃u(k̃) collapse nicely, and fit with

the aforementioned model. Thus, we claim that the model presented here captures

the energy spectrum and flux for laminar flows quite well.
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Figure 5.8 For the laminar flow simulations with ν = 0.12, 0.16, 0.20, 0.24
or Re = 49, 32.4, 23.1, 17.6, plots of (a) Ẽu(k) of Eq. (5.49a),
(b) Π̃u(k) of Eq. (5.49b). For k > kf , the data collapse into single
curves. From Verma et al. (2018). Reprinted with permission from
Springer.

Verma et al. (2018) also computed the shell-to-shell energy transfers for the flows

with Re = 49 and 17.5. These transfers are depicted in Fig. 5.9 that exhibits nonlocal
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energy transfers from the shell of the forcing band to other shells. Note that the

energy transfer is always from small wavenumber shells to large wavenumber shells,

hence the shell-to-shell energy transfers for laminar flows are forward. Contrast

these transfers with the local energy transfers in the turbulent regime (see Figs. 5.4

and 5.5).
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Figure 5.9 For the laminar flow simulation, the shell-to-shell energy transfer
rate for (a) Re = 49, (b) Re = 17.5. The forcing wavenumbers
(belonging to the 2nd shell) gives significant energy to the shells 3
to 10 for Re = 49, and to the shells 3 to 7 for Re = 17.6. Thus, the
energy transfer in the laminar regime is forward and nonlocal. From
Verma et al. (2018). Reprinted with permission from Springer

5.7 Heisenberg’s Theory of Turbulence

For completeness, we describe Heisenberg’s theory of turbulence (Stanisic, 1984).

Heisenberg starts with Eq. (4.46) with Fu = 0, and integrates the equation over a

sphere of radius k that yields the following equation:

∂

∂t

∫ k

0

dk′Eu(k′, t) =

∫ k

0

T (k′)dk′ − 2ν

∫ k

0

k′2Eu(k′)dk′. (5.50)

He proposed that∫ k

0

T (k′)dk′ = −2ν ′(k)

∫ k

0

k′2Eu(k′)dk′, (5.51)

where ν ′(k) is the eddy viscosity. Using dimensional analysis, Heisenberg postulates

that ν ′(k) is the product of local velocity and length scales; hence,

.
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ν ′(k) = ukk
−1 = α

∫ ∞
k

√
Eu(k′)

k′3
dk′, (5.52)

where α is a constant.3 Substitution of these in Eq. (5.50) yields

∂

∂t

∫ k

0

dk′Eu(k′, t) = −2

(
ν + α

∫ ∞
k

√
Eu(k′)

k′3
dk′
)∫ k

0

k′2Eu(k′)dk′. (5.53)

Heisenberg assumed that in decaying turbulence, the large-scale eddies provide

energy to the smaller eddies, while the smallest eddies remain in statistical

equilibrium among themselves. Hence,

∂

∂t

∫ k

0

dk′Eu(k′, t) ≈ Πu. (5.54)

Then from dimensional analysis,

Πu ∼ [Eu(k)]3/2k5/3, (5.55)

that yields Kolmogorov’s spectrum.

Batchelor (1953) and Chandrasekhar (Spiegel, 2010) solved Eq. (5.53)

analytically and derived Kolmogorov’s spectrum for the initial range, and

Eu(k) ∼ k−7 for the dissipation range. In particular, Chandrasekhar (Spiegel,

2010) showed that

E(k) = E(k0)

(
k0

k

)5/3
1

[1 + (k/ks)4]4/3
, (5.56)

where k0 ∼ 1/L, and ks ∼ ν−3/4, which is related to Kolmogorov’s wavenumber kd
of Eq. (5.19). Equation (5.56) yields E(k) ∼ k−5/3 for k < ks, and k−7 for k > ks.

Note however that Pao’s spectrum (Eq. (5.32)) fits better with the numerical data

than the above model. For the dissipative range, the aforementioned prediction for

the spectrum, Eu(k) ∼ k−7, is too steep to fit with the numerical data. Hence we

believe that Pao’s model is more reliable than that by Heisenberg.

With this, we end our discussion on 3D hydrodynamic turbulence. The models

presented here form a starting point for more complex turbulence, as in 2D

hydrodynamics, scalars, magnetohydrodynamics, rotating flows, etc.

3In modern treatment, ν′(k) ∼ ε1/3k−4/3. Renormalization group analysis yields the proportionality
constant. See Appendix C for details.
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Further Reading

The textbooks by Frisch (1995), Leslie (1973), McComb (1990), Pope (2000),

Batchelor (1953), and Lesieur (2008) describe 3D hydrodynamic turbulence in

great detail. The numerical simulation described in this chapter can be found in

Verma et al. (2018). Heisenberg’s model and its solution are discussed in Spiegel

(2010) and Stanisic (1984). Also, refer to Alexakis et al. (2005a) who analyzed the

shell-to-shell energy transfer and locality issues of hydrodynamic turbulence.

Exercises

1. Estimate Kolmogorov’s length ld of

(a) A glass of turbulent water whose Re ∼ 105.

(b) Turbulent atmospheric flow with Re ∼ 106.

(c) In solar convection for which L ∼ 106 m, U ∼ 102 m/s, and Re ∼ 1013.

(d) In Earth’s outer core for which L ∼ 106 m, U ∼ 10−3 m/s, and Re ∼ 108.

Compare these results with the correspoding mean free path lengths. Compute the grid resolutions
required to simulate the aforementioned flows.

2. Argue why turbulence is a nonequilibrium process.

3. Consider two wavenumber shells (k, 2k) and (2k, 4k) in the inertial range of a turbulent flow.
Compare the energy contents of these shells.

4. Compute the integral of Eq. (5.38) for Pao and Pope’s models. Using the values of the integrals,
estimate the nondimensional prefactor in the formula for kd.
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Chapter 6

Enstrophy Transfers in
Hydrodynamics

Vorticity ω = ∇ × u plays an important role in hydrodynamics. In Chapters 2, 3,

and 4 we described several properties of vorticity and enstrophy (Eω = ω2/2). In this

short chapter we will derive formulas for the enstrophy transfers in hydrodynamics.

6.1 Mode-to-mode Enstrophy Transfers in Hydrodynamics

First, we derive formulas for the mode-to-mode enstrophy transfers following similar

steps as that for the mode-to-mode kinetic energy transfers (see Chapter 4). We start

with Eq. (3.49), which is

d

dt
Eω(k) =

∑
p

= [{k · u(q)}{ω(p) · ω∗(k)}]−= [{k · ω(q)}{u(p) · ω∗(k)}]

+Fω(k)− 2νk2Eω(k), (6.1)

where k = p + q, and Fω is the enstrophy injection rate by the external force. As

in Section 4.1, we set ν = 0 and Fω = 0, and focus on a pair of triads, (k′,p,q)

and (−k′,−p,−q), with k′ = −k. See Fig. 4.1 for an illustration. Given these

Fourier modes, following Eq. (6.1), the evolution equation for the modal enstrophy

Eω(k) = |ω(k)|2/2 is

d

dt
Eω(k′) = Sωω(k′|p,q) + Sωu(k′|p,q), (6.2)
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102 Energy Transfers in Fluid Flows

where

Sωω(k′|p,q)=−= [{k′ · u(q)}{ω(p) · ω(k′)}]−= [{k′ · u(p)}{ω(q) · ω(k′)}] , (6.3a)

Sωu(k′|p,q)== [{k′ · ω(q)}{u(p) · ω(k′)}] + = [{k′ · ω(p)}{u(q) · ω(k′)}] . (6.3b)

We can derive similar equations for Eω(p) and Eω(q).

Using the incompressibility condition k · u(k) = 0, we can show that

Sωω(k′|p,q) + Sωω(p|k′,q) + Sωω(q|k′,p) = 0. (6.4)

A physical interpretation of this equation is that the enstrophy in a triad is

conserved for the nonlinear interactions Sωω(k′|p,q). These interactions

correspond to advection of vortices by the velocity modes, and they involve

enstrophy exchange among vorticity modes, thus conserving total enstrophy in a

triad.

Note however that

Sωu(k′|p,q) + Sωu(p|k′,q) + Sωu(q|k′,p) 6= 0. (6.5)

This is because Sωu() represents stretching of vortices that leads to either

enhancement or depletion of Eω. This is the reason why the total enstrophy is not

conserved in 3D hydrodynamics.

Now we are ready to derive expressions for the mode-to-mode enstrophy

transfers—Sωω(k′|p|q) and Sωu(k′|p|q). This is the topic of the next two

subsections.

6.1.1 Derivation of mode-to-mode enstrophy transfer Sωω(k′|p|q)

In this subsection we derive an expression for Sωω(k′|p|q), which is the enstrophy

transfer from ω(p) to ω(k′) with u(q) acting as a mediator. For convenience, we

denote the wavenumbers in the triad as X,Y,Z with X + Y + Z = 0. Following

the derivation of Section 4.1, we deduce the following properties for Sωω(X|Y|Z)s:

1. The sum of Sωω(X|Y|Z) and Sωω(X|Z|Y) is the combined enstrophy transfer

Sωω(X|Y,Z) defined in Eq. (6.3a). Therefore,

Sωω(k′|p|q) + Sωω(k′|q|p) = Sωω(k′|p,q), (6.6a)

Sωω(p|k′|q) + Sωω(p|q|k′) = Sωω(p|k′,q), (6.6b)

Sωω(q|k′|p) + Sωω(q|p|k′) = Sωω(q|k′,p). (6.6c)
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2. The enstrophy transfer from ω(Y) to ω(X), Sωω(X|Y|Z), is equal and opposite

to the enstrophy transfer from ω(X) to ω(Y), Sωω(Y|X|Z). Therefore,

Sωω(k′|p|q) + Sωω(p|k′|q) = 0, (6.7a)

Sωω(k′|q|p) + Sωω(q|k′|p) = 0, (6.7b)

Sωω(p|q|k′) + Sωω(q|p|k′) = 0. (6.7c)

We find that the set

Sωω(X|Y|Z) = −= [{X · u(Z)}{ω(Y) · ω(X)}] (6.8)

satisfies Eqs. (6.6, 6.7). Hence, it is a solution of Eqs. (6.6, 6.7). Note that for

X = k′,Y = p,Z = q, the formula is

Sωω(k′|p|q) = −= [{k′ · u(q)}{ω(p) · ω(k′)}] . (6.9)

Unfortunately, this set is not a unique solution because the determinant of the

matrix formed by these linear equations is zero. We show in the following that

Sωω(X|Y|Z) of Eq. (6.8) indeed yields the mode-to-mode enstrophy transfers in the

triad.

The physical argument in support of the aforementioned statement is similar to

those in Section 4.1.1. In real space, the nonlinear term corresponding to Sωω(k′|p|q)

is [(u · ∇)ω] · ω. Here, the velocity field u advects the ω field, hence u does not

participate directly in the enstrophy exchange. The ω fields that appear in the right

of the ∇ operator interact among themselves and exchange enstrophy. Therefore, in

Sωω(k′|p|q), u(q) must be the mediator mode, and ω(p) and ω(k′) must be giver

and receiver vorticity modes respectively. See Fig. 6.1 for an illustration. Thus, we

show that Eq. (6.9) is indeed the mode-to-mode enstrophy transfer from ω(p) to

ω(k′) with the mediation of u(q).

Now we present mathematical arguments which are similar to those in Section 4.1.

Using the structure of Eq. (6.3a), we demand that Sωω(k|p|q) satisfies the following

properties:

1. Sωω(k′|p|q) is real.

2. Sωω(k′|p|q) is a linear function of the wave vector k′.

3. Sωω(k′|p|q) is a linear function of one of the Fourier modes u(k′), u(p), and

u(q). That is, the expressions of Sωω(k′|p|q) includes one of the three velocity

modes.
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104 Energy Transfers in Fluid Flows

Giver
w ( )p

w k’( )
Receiver –[( ) ]u Ñ× ×w w

u q( ) Mediator

S ( | | ) = – [{ }{ ( ) ( )}]p q pk’ k’ u q k’( )× ×w w
ww

Figure 6.1 A schematic diagram of Sωω(k′|p|q), the mode-to-mode enstrophy
transfer from mode ω(p) to mode ω(k′) with the mediation of mode
u(q). The modes u(q) advects the vorticity modes who exchange
enstrophy among themselves.

4. Sωω(k′|p|q) is a linear function of two of the three vorticity modes ω(k′), ω(p),

and ω(q). The arguments of ω’s differ from that of u.

5. Due to the equivalence of the triads (k,p,q) and (−k,−p,−q),

Sωω(−k′| − p| − q) = Sωω(k′|p|q). (6.10)

Given the aforementioned properties, the tensor analysis yields the following form

for Suu(k′|p|q):

Sωω(k′|p|q) = c1= [{k′ · u(q)}{ω(p) · ω(k′)}]

+ c2= [{k′ · u(p)}{ω(q) · ω(k′)}]

+ c3= [{k′ · ω(q)}{ω(p) · u(k′)}]

+ c4= [{k′ · ω(q)}{ω(k′) · u(p)}]

+ c5= [{k′ · ω(p)}{ω(q) · u(k′)}]

+ c6= [{k′ · ω(p)}{ω(k′) · u(q)}] . (6.11)

Here we have eliminated some terms by exploiting the conditions—k′ · u(k′) = 0

and k′ · ω(k′) = 0. From the structure of Sωω(k′|p,q) in Eq. (6.3a), we deduce that

the last four terms do not belong here; they are part of the solution for Sωu(k′|p|q)

that will be discussed in the next subsection. Note that <[.] does not appear in

Eq. (6.11) due to Eq. (6.10) (see Section 4.1). Therefore,
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Enstrophy Transfers in Hydrodynamics 105

Sωω(k′|p|q) = c1= [{k′ · u(q)}{ω(p) · ω(k′)}]

+ c2= [{k′ · u(p)}{ω(q) · ω(k′)}] . (6.12)

Now, an application of Eq. (6.7a) leads to c2 = 0, while that of Eq. (6.6a) yields

c1 = −1. Thus, we deduce that

Sωω(k|p|q) = −= [{k′ · u(q)}{ω(p) · ω(k′)}] (6.13)

is the formula for the enstrophy transfer from ω(p) to ω(k′) with the mediation of

u(q).

It is important to note that for the wavenumber triad,∑
k

∑
p

Sωω(k|p|q) = 0. (6.14)

This is the law of enstrophy conservation (via Sωω interactions) for any wavenumber

region.

In the next subsection, we derive a formula for Sωu(k′|p|q).

6.1.2 Derivation of mode-to-mode enstrophy transfer Sωu(k′|p|q)

In this subsection we derive a formula for Sωu(k′|p|q) that represents the mode-

to-mode enstrophy transfer from u(p) to ω(k′) with the mediation of ω(q). The

derivation is very similar to that for Sωω(k′|p,q), but with several critical differences.

The enstrophy transfers Sωu(X|Y|Z) satisfy the following property. The sum

of Sωu(X|Y|Z) and Sωu(X|Z|Y) is the combined enstrophy transfer Sωu(X|Y,Z)

defined in Eq. (6.3b). Therefore,

Sωu(k′|p|q) + Sωu(k′|q|p) = Sωu(k′|p,q), (6.15a)

Sωu(p|k′|q) + Sωu(p|q|k′) = Sωu(p|k′,q), (6.15b)

Sωu(q|k′|p) + Sωu(q|p|k′) = Sωu(q|k′,p). (6.15c)

Note however that

Sωu(X|Y|Z) + Sωu(Y|X|Z) 6= 0 (6.16)

due to the absence of back transfer Suω(Y|X|Z) from ω(X) to u(Y).

We start with the assumptions (1–5) of Section 6.1.1 that yields Sωu(k′|p|q) of

the same form as Eq. (6.11). As described in Subsection 6.1.1, the first two terms

are part of Sωω(k′|p|q). Therefore,
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106 Energy Transfers in Fluid Flows

Sωu(k′|p|q) = c3= [{k′ · ω(q)}{ω(p) · u(k′)}]

+ c4= [{k′ · ω(q)}{ω(k′) · u(p)}]

+ c5= [{k′ · ω(p)}{ω(q) · u(k′)}]

+ c6= [{k′ · ω(p)}{ω(k′) · u(q)}] . (6.17a)

Since ω(k′) is the receiver mode for the enstrophy (see Eq. (6.3b)), we can eliminate

the first and third terms of Eq. (6.17a). Hence,

Sωu(k′|p|q) = c4= [{k′ · ω(q)}{ω(k′) · u(p)}]

+ c6= [{k′ · ω(p)}{ω(k′) · u(q)}] . (6.18)

Now, note that in real space, the nonlinear term corresponding to Sωu is [(ω·∇)u]·ω,

where u is the giver, the last ω is the receiver, and the first ω is the mediator. Hence,

in Eq. (6.18), ω(q) must be the mediator (see Fig. 6.2). Therefore, the first term

represents the enstrophy transfer from u(p) to ω(k′) with the mediation of ω(q).

Thus, c6 = 0. In addition, Eqs. (6.3b, 6.15a) yields c4 = 1. Hence,

Sωu(k′|p|q) = = [{k′ · ω(q)}{ω(k′) · u(p)}] . (6.19)

We remark that for the wavenumber triad,∑
k

∑
p

Sωu(k|p|q) 6= 0 (6.20)

due to vortex stretching. Also note that the mode-to-mode enstrophy transfer is

zero in the absence of nonlinearity. A single mode with u(k) ‖ ω(k) cannot stretch

Giver
u( )p

w k’( )
Receiver [( ) ]Ñw w× ×u

w ( )q Mediator

S ( | | ) = [{ }{ ( ) ( )}]p q pk’ k’ q u k’( )× ×w w
wu

Figure 6.2 A schematic diagram of Sωu(k′|p|q), which is the mode-to-mode
enstrophy transfer from u(p) to ω(k′) with the mediation of ω(k′).
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Enstrophy Transfers in Hydrodynamics 107

itself and increase the net enstrophy. In some sense, the other modes of the triad

squeeze ω(k) that leads to enstrophy enhancement. We will illustrate this aspect

using several examples. Refer to Tennekes and Lumley (1972) for physical

interpretation of vortex stretching in real space. It will be interesting to work out

the connections between real and Fourier space interpretations.

Example 6.1: Consider the following 2D fluid flows with three components:

(a) : u = 2(− sin y − sin(x+ y)/
√

2, sinx+ sin(x+ y)/
√

2,

cosx+ cos y + cos(x+ y)).

(b) : u = 2(− sin y − sin(x+ y)/
√

2, sinx+ sin(x+ y)/
√

2,

− cosx− cos y − cos(x+ y)).

(c) : u = 2(− sin y − sin(x+ y)/
√

2, sinx+ sin(x+ y)/
√

2,

cosx+ cos y − cos(x+ y)).

Compute the velocity and vorticity fields in Fourier space, as well as mode-to-mode

kinetic energy and enstrophy transfers.

Solution: In Table 6.1, we list the active wavenumbers and their corresponding

velocity and vorticity Fourier modes. The wavenumbers k′,p,q form a triad and

they satisfy a condition k′ + p + q = 0. Note that a complimentary triad −k′,

−p,−q too exists in the system due to the reality condition.

Table 6.1 Example 6.1: Amplitudes of the velocity and vorticity fields of
wavenumbers k′, p, q.

Part Mode k u(k) ω(k)

(a)
k′ (−1,−1) (−i/

√
2, i/
√

2, 1) (−i, i,
√

2)

p (0, 1) (i, 0, 1) (i, 0, 1)

q (1, 0) (0,−i, 1) (0,−i, 1)

(b)
k′ (−1,−1) (−i/

√
2, i/
√

2,−1) (i,−i,
√

2)

p (0, 1) (i, 0,−1) (−i, 0, 1)

q (1, 0) (0,−i,−1) (0, i, 1)

(c)

k′ (−1,−1) (−i/
√

2, i/
√

2, 1) (−i, i,
√

2)

p (0, 1) (i, 0, 1) (i, 0, 1)

q (1, 0) (0,−i,−1) (0, i, 1)
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108 Energy Transfers in Fluid Flows

The mode-to-mode kinetic energy and enstrophy transfers are listed in Table 6.2.

These transfers are same for cases (a) and (b). We list all the six enstrophy transfers,

Sωu(X|Y|Z), because

Sωu(X|Y|Z) + Sωu(Y|X|Z) 6= 0.

For all the cases,∑
X

∑
Y

Sωu(X|Y|Z) = 0.

Hence, there is no net gain of enstrophy in the aforementioned triadic interactions.

It will be interesting to understand the vortex dynamics and its relation to the

mode-to-mode enstrophy transfers computed here.

Table 6.2 Example 6.1: Transfers Suu, Sωω, and Sωu = (Sωu(X|Y|Z),
Sωu(X|Z|Y).

Part Transfers Suu Sωω Sωu

(a)
S(k′|p|q) −1− 1/

√
2 −1−

√
2 1 +

√
2,−1−

√
2

S(p|q|k′) −1/
√

2 −1/
√

2 1,−1− 1/
√

2

S(q|k′|p) −1− 1/
√

2 −1−
√

2 1 + 1/
√

2,−1

(b)
S(k′|p|q) −1− 1/

√
2 −1−

√
2 1 +

√
2,−1−

√
2

S(p|q|k′) −1/
√

2 −1/
√

2 1,−1− 1/
√

2

S(q|k′|p) −1− 1/
√

2 −1−
√

2 1 + 1/
√

2,−1

(c)

S(k′|p|q) 1− 1/
√

2 1−
√

2 −1 +
√

2, 1−
√

2

S(p|q|k′) −1/
√

2 −1/
√

2 −1, 1− 1/
√

2

S(q|k′|p) 1− 1/
√

2 1−
√

2 −1 + 1/
√

2, 1

In the next section, we will show how the enstrophy transfers in 2D have a

relatively simpler form.

6.2 Mode-to-mode Enstrophy Transfers in 2D Hydrodynamics

As shown in Section 2.2, in 2D hydrodynamics with u = x̂ux + ŷuy, the vorticity is

along ẑ. As in Section 4.3, in Fourier space, we represent the 2D velocity field as

u(p) = u(p)(p̂× ẑ), (6.21)
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Enstrophy Transfers in Hydrodynamics 109

where u(p) is the amplitude of the velocity Fourier mode. See Fig. 4.5 for an

illustration. Therefore, the corresponding vorticity mode is

ω(p) = ip× (p̂× ẑ)u(p) = −ipu(p)ẑ. (6.22)

Hence, the vorticity field is along ẑ with its amplitude being ω(p) = −ipu(p).

Since the vorticity field and the velocity field are perpendicular to each other,

using Eq. (6.19), we immediately deduce that

Sωu(k′|p|q) = 0. (6.23)

Physically, in 2D hydrodynamics, infinitely long vortex tubes cannot be stretched

or compressed along ẑ. However, the enstrophy transfer Sωω(k|p|q) is nonzero,

and is given by

Sωω(k′|p|q) = −= [{k′ · u(q)}{ω(p)ω(k′)}]

= −= [{k′ · (q̂ × n̂)u(q)}{−ipu(p)}{−ik′u(k′)}]

= [k′2p(k̂ × q̂) · ẑ]={u(q)u(p)u(k′)}

= k′2p sinβ={u(q)u(p)u(k′)}. (6.24)

A comparison of Eq. (6.24) with Eq. (4.34) reveals that

Suu(k|p|q)

Sωω(k|p|q)
=

cos γ

kp
, (6.25)

where γ is the angle between k and p. See Fig. 4.5 for an illustration of the

aforementioned angles.

Example 6.2: Consider the two-dimensional fluid flow with two components:

u = 2(− sin y − sin(x+ y)/
√

2, sinx+ sin(x+ y)/
√

2).

Compute the velocity and vorticity fields in the Fourier space, as well as mode-to-

mode kinetic energy and enstrophy transfers.

Solution: The flow field is formed by wavenumbers k′ = (−1,−1), p = (0, 1) and

q = (1, 0) and their negative counterparts −k′,−p,−q. Note that (k′,p,q) is an

interacting triad. The amplitudes of the velocity and vorticity Fourier modes for

these wavenumbers are listed in Table 6.3.
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110 Energy Transfers in Fluid Flows

Table 6.3 Example 6.3: Mode amplitudes.

Mode k u(k) ω(k)

k′ (−1,−1) (−i/
√

2, i/
√

2, 0) (0, 0,
√

2)

p (0, 1) (i, 0, 0) (0, 0, 1)

q (1, 0) (0,−i, 0) (0, 0, 1)

In Table 6.4, we list the mode-to-mode energy and enstrophy transfer rates. Since

u ⊥ ω for the present flow, Sωu = 0.

Table 6.4 Example 6.3: Energy and enstrophy transfers among the modes.

Transfers Suu Sωω Sωu

S(k′|p|q) −1/
√

2 −
√

2 0

S(p|q|k′) 0 −1/
√

2 0

S(q|k′|p) −1/
√

2 −
√

2 0

A typical fluid flow involves a large number of interacting modes. In the following

section, we describe interactions in such systems.

6.3 Enstrophy Transfers for Many Triads

In the presence of a large number of triads, the rate of change of modal enstrophy

Eω(k) is

d

dt
Eω(k) =

∑
p

Sωω(k|p|q) +
∑
p

Sωu(k|p|q) + Fω(k)− 2νk2Eω(k)

= Tω1(k) + Tω2(k) + Fω(k)−Dω(k), (6.26)

where q = k− p, and Fω(k) is the enstrophy supply rate by the external force:

Fω(k) = <[ik× Fu(k) · ω∗(k)]. (6.27)

Thus, the modal enstrophy is affected by two nonlinear enstrophy transfer rates,

the enstrophy transfer rate by the external force, and the enstrophy dissipation rate

Dω(k). When we sum over all k’s, we obtain

d

dt
Eω =

∑
k

∑
p

Sωω(k|p|q) +
∑
k

∑
p

Sωu(k|p|q) (6.28)

+
∑
k

[Fω(k)−Dω(k)]

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316810019.007
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 04 Jul 2019 at 22:23:40, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316810019.007
https://www.cambridge.org/core


Enstrophy Transfers in Hydrodynamics 111

with ∑
k

∑
p

Sωω(k|p|q) = 0. (6.29)

Note however that∑
k

∑
p

Sωu(k|p|q) 6= 0, (6.30)

which is due to the stretching of vorticity by the velocity field. Hence,

d

dt
Eω =

∑
k

∑
p

Sωu(k|p|q) +
∑
k

Fω(k)−
∑
k

Dω(k). (6.31)

That is, the total enstrophy of the flow changes due to (a) the stretching of vortices

by the velocity field, (b) external force, and (c) enstrophy dissipation.

Note that for any region A,∑
k∈A

∑
p∈A

Sωω(k|p|q) = 0. (6.32)

However,∑
k∈A

∑
p∈A

Sωu(k|p|q) 6= 0 (6.33)

due to vortex stretching.

In the next section, we will derive formulas for enstrophy fluxes and shell-to-shell

enstrophy transfers.

6.4 Enstrophy Fluxes

The enstrophy flux for a wavenumber sphere has several parts. Here the superscript

and subscript refer to the giver and receiver modes respectively. Moreover, the

symbols < and > refer to the modes inside and outside the wavenumber sphere

respectively.

1. Πω<
ω>(k0): Enstrophy transfers from all the vorticity modes inside the sphere of

radius k0 to all the vorticity modes outside the sphere with the velocity modes

acting as mediator. This flux, which is via Sωω(k′|p|q), is

Πω<
ω>(k0) =

∑
|p|≤k0

∑
|k′|>k0

Sωω(k′|p|q). (6.34)
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112 Energy Transfers in Fluid Flows

2. Πu<
ω>(k0): Enstrophy transfers from all the velocity modes inside the sphere to

all the vorticity modes outside the sphere with the vorticity modes acting as

mediator. This flux, which is via Sωu(k′|p|q), is

Πu<
ω>(k0) =

∑
|p|≤k0

∑
|k′|>k0

Sωu(k|p|q). (6.35)

3. Πu<
ω<(k0): For all the wavenumbers inside the sphere, enstrophy transfers from

the velocity modes to the vorticity modes:

Πu<
ω<(k0) =

∑
|p|≤k0

∑
|k′|≤k0

Sωu(k|p|q). (6.36)

4. Πu>
ω>(k0): For all the wavenumbers outside the sphere, enstrophy transfers from

the velocity modes to the vorticity modes:

Πu>
ω>(k0) =

∑
|p|>k0

∑
|k′|>k0

Sωu(k|p|q). (6.37)

5. Πu>
ω<(k0): Enstrophy transfers from all the velocity modes outside the sphere

to all the vorticity modes inside the sphere:

Πu>
ω<(k0) =

∑
|p|>k0

∑
|k′|<k0

Sωu(k|p|q). (6.38)

In all the aforementioned cases, q = k− p. These fluxes, except Πu>
ω<(k0), are

illustrated in Fig. 6.3.

ky

k0
u<

u>

P ( )k
u<

w< 0

P ( )k
u<

w> 0 P ( )k
u>

w> 0

P ( )k0u

w >

P ( )k
w> 0

w<

w < kx

SD k( )w
S k( )w

k0

Figure 6.3 Various enstrophy fluxes in 3D hydrodynamics. See Section 6.4 for
definitions.
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Enstrophy Transfers in Hydrodynamics 113

When we sum Eq. (6.26) over all the modes outside the sphere of radius k0, we

obtain

d

dt

∑
|k|>k0

Eω(k) =
∑
|k|>k0

[Tω1(k) + Tω2(k)]−
∑
|k|>k0

Dω(k). (6.39)

Since the enstrophy is conserved for interactions Sωω, following arguments similar

to those in Section 4.4, we obtain∑
|k|>k0

Tω1(k) =
∑
|k′|>k0

∑
p

Sωω(k′|p|q)

=
∑
|k′|>k0

∑
|p|<k0

Sωω(k′|p|q) +
∑
|k|>k0

∑
|p|>k0

Sωω(k′|p|q).

= Πω<
ω>(k0). (6.40)

Note that the second term in the second line vanishes due to conservation laws given

by Eq. (6.14). Similarly,∑
|k|>k0

Tω2(k) =
∑
|k′|>k0

∑
p

Sωu(k′|p|q)

=
∑
|k′|>k0

∑
|p|<k0

Sωu(k′|p|q) +
∑
|k′|>k0

∑
|p|>k0

Sωu(k′|p|q)

= Πu<
ω>(k0) + Πu>

ω>(k0). (6.41)

Therefore, the net enstrophy flux from the modes inside the sphere to the modes

outside the sphere is

Πω(k0) = Πω<
ω>(k0) + Πu<

ω>(k0) + Πu>
ω>(k0). (6.42)

Also note that Πu>
ω>(k0) 6= 0 due to Eq. (6.20). In addition, we have

Πω<
ω>(k0 =∞) =

∑
k

∑
p

Sωω(k|p|q) = 0, (6.43)

but

Πu<
ω<(k0 =∞) =

∑
k

∑
p

Sωu(k|p|q) 6= 0. (6.44)

Since Sωu = 0 in 2D hydrodynamics, only Πω<
ω>(k0) flux survives in 2D turbulence.

We will discuss this case in the next chapter.
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114 Energy Transfers in Fluid Flows

When we sum Eq. (6.26) over the modes outside the wavenumber spheres of radii

k and k + dk, and take the difference (as in Section 4.4), we obtain

∂

∂t
Eω(k, t) = − ∂

∂k
[Πω<

ω>(k, t) + Πu<
ω>(k, t) + Πu>

ω>(k, t)]−Dω(k, t). (6.45)

This equation needs careful analysis since enstrophy is not conserved in 3D

hydrodynamics. For example, it is possible that ∂Eω(k, t)/∂t 6= 0 under a steady

state due to non-conservation of enstrophy.

6.5 Shell-to-shell Enstrophy Transfer

We define the shell-to-shell enstrophy transfers from shell m to shell n as

1. T ω,mω,n : Enstrophy transfer from all the vorticity modes of shell m to all the

vorticity modes of shell n with the velocity modes acting as mediator:

T ω,mω,n =
∑
p∈m

∑
k′∈n

Sωω(k′|p|q). (6.46)

2. T u,mω,n : Enstrophy transfer from all the velocity modes of shell m to all the

vorticity modes of shell n with the vorticity modes acting as mediator:

T u,mω,n =
∑
p∈m

∑
k′∈n

Sωu(k|p|q). (6.47)

In both the cases, q = −k′ − p.

In 2D hydrodynamics, Sωu(k|p|q) = 0; hence, 2D hydrodynamics has only T ω,mω,n .

6.6 Numerical Results on Enstrophy Fluxes

In this section we briefly describe several numerical results on the enstrophy fluxes.

Sadhukhan et al. (2018) performed numerical simulation of hydrodynamic

turbulence on a 5123 grid. The Reynolds number of the flow was approximately

5700. They computed the enstrophy fluxes Πω<
ω>(k) and Πu<

ω>(k) for various k’s.

These fluxes are plotted in Fig. 6.4. They observed that Πu<
ω>(k) � Πω<

ω>(k) in the

forcing and inertial range, and

Πω<
ω>(k) ∼ k2, (6.48a)

Πu<
ω>(k) ∼ k. (6.48b)
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Enstrophy Transfers in Hydrodynamics 115

We can explain the scaling of Eq. (6.48a) using dimensional analysis. In

hydrodynamic turbulence, the nonlinear interactions are local. Hence,

Πω<
ω>(k) =

∑
|p|≤k

∑
|k′′|>k

−= [{k′′ · u(q)}{ω(p) · ω(k′′)}]

∼ k2pukupuq ∼ k2εu. (6.49)

Here we have used k ∼ p ∼ q and uk ∼ up ∼ uq ∼ ε1/3u k−1/3.
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Figure 6.4 For hydrodynamic turbulence on a 5123 grid, plots of enstrophy fluxes
Πu<
ω> (solid line) and Πω<

ω> (dashed line). Note that Πu<
ω> � Πω<

ω>.
Adopted from figures of Sadhukhan et al. (2018).

The scaling of Πu<
ω>(k) is suppressed by a factor of k compared to Πω<

ω>(k). The

reason for this suppression is not clear at the moment. Note that the enstrophy

spectrum Eω(k) can be derived very easily from the energy spectrum E(k):

Eω(k) =
Eu(k)

k2
= KKoΠ2/3

u k−11/3. (6.50)

With this, we end our discussion on the enstrophy transfers in hydrodynamic

turbulence.

Further Reading

The textbooks by Lesieur (2008) and Davidson (2004) cover basic features of

enstrophy. Mode-to-mode enstrophy transfer and enstrophy flux are described here

for the first time. Refer to Sadhukhan et al. (2018) for further details on numerical

computation of enstrophy fluxes.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316810019.007
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 04 Jul 2019 at 22:23:40, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316810019.007
https://www.cambridge.org/core


116 Energy Transfers in Fluid Flows

Exercises

1. Consider the flows of Exercises 4.1 and 4.2. Compute the enstrophy transfers among the Fourier
modes. Also, compute the enstrophy fluxes for them.

2. Consider the flow field of Example 3.6. Compute the enstrophy transfers among the modes.
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Chapter 7

Two-dimensional Turbulence

On many occasions, flows become quasi-two-dimensional or two-dimensional

(2D). For example, strong rotation suppresses the velocity component along the

direction of rotation. Strong external magnetic field in magnetohydrodynamics

exhibits similar behaviour. Thermal convection in viscous fluids too exhibits

quasi-two-dimensional flow patterns. A cyclone is a practical example of a 2D flow.

Due to these reasons, understanding 2D hydrodynamic turbulence becomes quite

critical.

Properties of 2D hydrodynamic turbulence are very different from those of its

3D counterpart. In this chapter we describe characteristics of 2D hydrodynamic

turbulence.

7.1 Conservation Laws; Energy and Enstrophy Transfers in 2D
Hydrodynamics

In Chapter 2 we showed that in inviscid 2D hydrodynamics (with ν = 0), the total

kinetic energy (KE),
∫
dru2/2, and the total enstrophy,

∫
drω2/2, are conserved.

These conservation laws play an important role in 2D hydrodynamics. Note that in

3D hydrodynamics, the total KE,
∫
dru2/2, and the total kinetic helicity,

∫
dr(u·ω),

are conserved.

As argued in Sections 4.3 and 6.2, the mode-to-mode KE and enstrophy transfers

for 2D hydrodynamics are

Suu(k′|p|q) = −= [{k′ · u(q)}{u(p) · u(k′)}] , (7.1)
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118 Energy Transfers in Fluid Flows

Sωω(k′|p|q) = −= [{k′ · u(q)}{ω(p)ω(k′)}] . (7.2)

Note that for 2D flows,

Sωu(k′|p|q) = 0 (7.3)

because u and ω are perpendicular to each other. Also, the KE and enstrophy fluxes

are computed using Eqs. (4.39) and (6.34) respectively. For brevity, we write

Πω(k0) = Πω<
ω>(k0). (7.4)

Following the arguments of Sections 4.4 and 6.4, we find that

∂

∂t
Eu(k, t) = − ∂

∂k
Πu(k, t) + Fu(k, t)−Du(k, t), (7.5a)

∂

∂t
Eω(k, t) = − ∂

∂k
Πω(k, t) + Fω(k, t)−Dω(k, t), (7.5b)

where Eu(k), Eω(k) are respectively the one-dimensional KE and enstrophy shell

spectra; Du(k), Dω(k) are respectively the KE and enstrophy dissipation rates; and

Fu(k),Fω(k) are respectively the KE and enstrophy supply rates by the external

force. These quantities have been defined in Chapters 3, 4, and 6. Under a steady

state,

d

dk
Πu(k) = Fu(k)−Du(k), (7.6a)

d

dk
Πω(k) = Fω(k)−Dω(k). (7.6b)

As remarked in Chapter 4, turbulent fluxes are not directly related to conservation

laws; rather, they follow from energetics and nonlinear interactions. Yet,

conservations laws provide useful clues towards the nature of fluxes. For 2D

hydrodynamic turbulence, Fjørtoft (1953) showed that simultaneous conservation

of KE and enstrophy leads to inverse cascade of kinetic energy and forward

cascade of enstrophy. Nazarenko (2011) arrived at similar results based on

centroids of KE and enstrophy. Using direct interaction approximation, Kraichnan

(1967) deduced similar patterns for the KE and enstrophy fluxes. In Chapter 10,

we will compute the KE transfers for 2D hydrodynamic turbulence using

field-theoretic treatment and show similar results (also see Verma et al. (2005)).

Based on the directions of KE and enstrophy transfers, Kraichnan (1967)

constructed a phenomenological theory of 2D hydrodynamic turbulence, which is

described as follows.
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Two-dimensional Turbulence 119

7.2 Kraichnan’s Theory for 2D Hydrodynamic Turbulence

Unlike 3D hydrodynamics where external force is employed at large scales, for 2D

turbulence, Kraichnan (1967) considered forcing to be employed at intermediate

scales, i.e., at kf � 1/L. Using field-theoretic calculations, Kraichnan (1967) showed

that for k < kf , a constant energy flux Πu(k) cascades to small wavenumbers. For

wavenumber range k < kf , a dimensional analysis similar to that of Chapter 5 yields

the following results:

Eu(k) = K2DΠ2/3
u k−5/3, (7.7a)

Πu = const < 0, (7.7b)

where K2D is a constant whose numerical value is approximately 5.5–7.0.

For k > kf , Kraichnan (1967) argued that a constant enstrophy flux Πω flows

from intermediate wavenumbers to larger wavenumbers. Since

[Πω] = [ω2]/[T ] = [T ]−3, (7.8)

dimensional analysis yields

Eu(k) = K ′2DΠ2/3
ω k−3, (7.9a)

Πω = const > 0, (7.9b)

where K ′2D is another constant whose numerical value is 1.3–1.7.

Note that 2D hydrodynamic turbulence exhibits inverse cascade of KE in contrast

to forward cascade of KE in 3D hydrodynamic turbulence. These transfers lead to

a growth of Eu(k) at small wavenumbers or large length scales. This growth may

saturate due to friction at large scales, for example, Eckmann damping. The growth

of large-scale structures in 2D hydrodynamics, as in cyclones, is connected to the

aforementioned inverse cascade of kinetic energy.

7.3 Subtleties in Energy and Enstrophy Fluxes

Under a steady state, in the inertial–dissipation range where the external force is

absent, Eqs. (7.6) yield

d

dk
Πu(k) = −2νk2Eu(k), (7.10a)

d

dk
Πω(k) = −2νk2Eω(k). (7.10b)
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120 Energy Transfers in Fluid Flows

Therefore, using Eω(k) = k2Eu(k), we obtain

d

dk
Πω(k) = k2 d

dk
Πu(k) (7.11)

Hence, the relationship between Πu(k) and Πω(k) is somewhat tricky. We derive

these fluxes in the k < kf and k > kf regimes using Eqs. (7.10).

In Section 5.5.1, we derived Pao’s formula for Eu(k) and Πu(k) in the inertial–

dissipative range of 3D hydrodynamics as

Πu(k) = εu exp

(
−3

2
KKo(k/kd)

4/3

)
, (7.12a)

Eu(k) = KKoε
2/3
u k−5/3 exp

(
−3

2
KKo(k/kd)

4/3

)
. (7.12b)

The above formulas are expected to work in the k < kf regime of steady 2D

hydrodynamics turbulence with the following modifications:

Πu(k) = −εu exp

(
3

2
K2D(k/kd)

4/3

)
, (7.13a)

Eu(k) = K2Dε
2/3
u k−5/3 exp

(
3

2
K2D(k/kd)

4/3

)
, (7.13b)

where kd = (εu/ν
3)1/4 is Kolmogorov’s wavenumber. Note the change in the sign

of Πu(k) and in the argument of the exponential function. Consequently, |Πu(k)| is

expected to increase with k, though marginally.

When we substitute Eu(k) of Eq. (7.13b) in Eq. (7.10b), we obtain

d

dk
Πω(k) = −2νk4Eu(k). (7.14)

Hence,

Πω(k) = −2νK2Dε
2/3
u

∫ k

k′7/3 exp

(
3

2
K2D(k′/kd)

4/3

)
dk′

= −2νK2Dε
2/3
u k

10/3
d

∫ x

dx′x′7/3 exp

(
3

2
K2Dx

′4/3
)
, (7.15)

where x = k/kd. This integral needs to be computed numerically.

For the k > kf regime, in the inertial–dissipative range, the energy spectrum and

flux of Eq. (7.9) need to be modified as follows. Since there are two unknowns and a

single equation, following Pao (1965), we assume that Eω(k)/Πω(k) is independent

of ν, and it depends only on the enstrophy dissipation rate, εω, and k. Under this

ansatz, Eω(k) and Πω(k) that satisfy Eq. (7.10b) are
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Two-dimensional Turbulence 121

Πω(k) = εω exp
(
−K ′2D(k/kd2D)2

)
, (7.16a)

Eω(k) = K ′2Dε
2/3
ω k−1 exp

(
−K ′2D(k/kd2D)2

)
, (7.16b)

Eu(k) = K ′2Dε
2/3
ω k−3 exp

(
−K ′2D(k/kd2D)2

)
, (7.16c)

where

kd2D =
ε1/6ω√
ν

(7.17)

is the enstrophy dissipation wavenumber.

When we substitute Eq. (7.16b) in Eq. (7.10a), we obtain

Πu(k) = −2νε2/3ω

∫ k 1

k′
exp

(
−K ′2D(k′/kd2D)2

)
dk′

= − εω
k2
d2D

∫ k 1

k′
exp

(
−K ′2D(k′/kd2D)2

)
dk′

= − εω
k2
d2D

Ei(−K ′2D(k/kd2D)2), (7.18)

where Ei is the exponential integral. Asymptotically, −Ei(−x) ∼ exp(−x)/x.

Hence,

Πu(k) ≈ εω
k2

exp
(
−K ′2D(k/kd2D)2

)
. (7.19)

In the next section we attempt to verify the aforementioned spectra and fluxes using

numerical simulations.

7.4 Verification of 2D Hydrodynamic Turbulence Models Using
Numerical Simulations

In this section we report some of the numerical results related to Eu(k), Πu(k), and

Πω(k) of 2D hydrodynamic turbulence.

Gupta et al. (2018) performed numerical simulations of force 2D hydrodynamic

turbulence on a 20482 grid. They employed forcing at wavenumber band (50,51). The

viscosity was set at 3× 10−3 that led to the Reynolds number to be approximately

1.2 × 104. Gupta et al. (2018) computed the spectra and fluxes of kinetic energy

and enstrophy, as well as shell-to-shell energy transfers. These results are described

below.
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122 Energy Transfers in Fluid Flows

In Fig. 7.1 we plot the numerical computed KE spectrum using solid lines, and the

predictions from Eqs. (7.13b, 7.16c) as dashed lines. We observe that these equations

describe the numerical data quite well. Note that Eu(k) ∼ k−5/3 for k < kf , and

Eu(k) ∼ k−3 exp(−(k/kd2D)2) for k > kf . We remark that Sharma et al. (2018b)

observed Eu(k) ∼ k−3 exp(−(k/kd2D)2) in their simulation of rotating turbulence

that yields a quasi-two-dimensional flow.

10
0

10
2

10
–2

10
–6

10
–10

10
–14

10
–18

10
1

10
2

10
3

k

E
k(
)

u

k k< f k k> f

Figure 7.1 KE spectrum for 2D hydrodynamic turbulence with forcing at k =
(50, 51). The predictions of Eqs. (7.13b, 7.16c), shown as dashed
lines, match with the numerical data (red curve) quite well. The
exponential fits are better than k−5/3 and k−3 lines (solid) shown in
the figure. Adopted from a figure of Gupta et al. (2018).
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Figure 7.2 For numerical simulation of Gupta et al. (2018), comparison
of |∂E(k, t)/∂t| with | − dΠ/dk − Du(k)| of the energy
equation [Eq. (7.5a)]. Significant measures of |∂E(k, t)/∂t|
indicates the unsteady nature of the flow. Adapted from a figure
of Gupta et al. (2018).
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Two-dimensional Turbulence 123

Two-dimensional turbulence involves inverse cascade of kinetic energy and

continual build up of large-scale structures. Such dynamic processes are expected

to make the flow unsteady. To verify whether 2D turbulence is steady or not,

Gupta et al. (2018) computed each term of Eq. (7.5a) and compared them. In

Fig. 7.2 we exhibit |∂E(k, t)/∂t| and | − dΠ/dk − Du(k)|. Though the left-hand

and right-hand sides of Eq. (7.5a) match each other, noticeably, |∂E(k, t)/∂t| is

significant, thus indicating an unsteady nature of the flow. This feature leads to

strong fluctuations in Πu(k) and Πω(k), and invalidates the formulas derived in

Section 7.3. However, as we show in the following, the time-averaged fluxes match

with the formulas of the previous section reasonably well.

In Fig. 7.3 we illustrate the numerically computed KE and enstrophy fluxes

along with the predictions from Eqs. (7.13a, 7.15, 7.16a, 7.19). Figures 7.3(a)
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Figure 7.3 For numerical simulation of Gupta et al. (2018), (a) Πu(k), (b)
Πω(k) for a snapshot. (c,d) Time averaged Πu(k) and Πω(k).
Adapted from figures of Gupta et al. (2018).
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and (b) exhibit the fluxes for a single snapshot. Clearly, both the fluxes show strong

fluctuations, specially for k < kf , due to the unsteady nature of the flow. Note that

the fluctuations for every snapshot are different.

In Fig. 7.3(c,d) we exhibit the time-averaged Πu(k) and Πω(k). 〈Πu(k)〉 of

Fig. 7.3(c) is quite smooth. For k < kf , 〈Πu(k)〉 ≈ const, which is consistent with

Kraichnan’s predictions, but the fluctuations are still strong. However, for k > kf ,

〈Πu(k)〉 matches with the predictions of Eq. (7.19) quite well.
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Figure 7.4 For numerical simulation of Gupta et al. (2018), (a) plot of shell-
to-shell KE transfers T u,mu,n vs. n−m when shells n,m are in k−5/3

regime. The transfers are local and forward for neighbouring shells,
but nonlocal and backward for distant shells. Adapted from a figure
of Gupta et al. (2018). (b) Density plots of T u,mu,n with x, y axes
representing receiver and giver shells

Regarding the enstrophy flux, 〈Πω(k)〉 of Fig. 7.3(d) is quite smooth for k > kf ,

and it matches with the predictions of Eq. (7.16a) quite well. However, 〈Πω(k)〉 > 0

and significant for k < kf . This issue needs further exploration.

Gupta et al. (2018) also computed the shell-to-shell energy transfers in the

wavenumber band k < kf . In Fig. 7.4(a), we exhibit averaged T u,mu,n vs. n−m over

several frames; here both the giver and receiver shells have k < kf . As shown in

the figure, shell n receives energy from n − 1, and but it gives energy to

n + 1. Thus, for the neighboring shells, the energy transfers in 2D hydrodynamic

turbulence is forward. Note however that T u,mu,n < 0 when n − m > 2 or 3

(depending on the shell). This implies that shell n receives energy from far away

shells. Therefore, in 2D hydrodynamic turbulence, the shell-to-shell energy

transfers to the neighboring shells are forward, but the energy transfers are

.
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backward for the distant shells.

In Fig. 7.4(b) we exhibit the density plot of T u,mu,n with x, y axes representing

the receiver (n) and giver (m) shells respectively. These plots show significant

fluctuations, yet n = m + 1 diagonal is primarily positive. Hence, we conclude

forward energy transfer to the nearest neighbor. The diagonals n = m + 3 and

n = m+4 are negative that indicates nonlocal backward transfer. These observations

are consistent with the description of the previous paragraphs.

We remark that for k > kf , we do not observe k−3 scaling for Eu(k), which is

due to the dissipative effects in this wavenumber regime. We need higher resolution

simulations with forcing at lower wavenumbers to observe k−3 scaling and a constant

Πω in the k > kf regime. We refer the reader to Boffetta and Ecke (2012) for further

details.

Verma et al. (2005) observed similar features in their field-theoretic

computations. They argued that the backward KE transfers from the distant shells

yield negative KE flux in the k−5/3 regime. We will revisit these arguments in

Chapter 10.

With this, we close our discussion on 2D hydrodynamic turbulence.

Further Reading

The model of Section 7.2 was proposed by Kraichnan (1967). For a detailed

discussion on 2D hydrodynamic turbulence, we refer the reader to Lesieur (2008),

Boffetta and Ecke (2012), and Tabeling (2002). Verma et al. (2005) discussed

shell-to-shell energy transfers in 2D turbulence. The simulation results presented

in this chapter have been taken from Gupta et al. (2018).

Exercises

1. Read the arguments of Fjørtoft (1953) and Nazarenko (2011) that determine the tendencies of
energy and enstrophy transfers.

2. What kind of energy spectrum is expected in a decaying 2D hydrodynamic turbulence with large
Re?
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Chapter 8

Helical Turbulence

Kinetic helicity is an important quantity of hydrodynamic flows. In this chapter we

will derive formulas for mode-to-mode kinetic helicity transfers and kinetic helicity

flux. Later in the chapter we will describe the numerical results on kinetic helicity

spectrum and flux.

8.1 Mode-to-mode Kinetic Helicity Transfers in Hydrodynamics

To derive an equation for mode-to-mode kinetic helicity transfers, we follow a

similar procedure as that adopted for the derivation of mode-to-mode kinetic

energy transfers (see Section 4.1). We start with Eq. (3.47), which is

d

dt
HK(k) =

∑
p

<[u(q) · {ω(p)× ω∗(k)}] + FHK (k)− νk2HK(k), (8.1)

where q = k− p, and FHK (k) is the kinetic helicity supply rate by the external

force. We focus on a pair of triads, (k′,p,q) and (−k′,−p,−q), where k′ = −k.

Note that the modal kinetic helicity is defined as (see Section 3.3)

HK(k) =
1

2
<[u(k) · ω∗(k)]. (8.2)

Following Eq. (8.1), for a triad, the evolution equation for HK(k) with ν = 0 and

FHK = 0 is
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d

dt
HK(k′) = SHK (k′|p,q)

= <[u(q) · {ω(p)× ω(k′)}] + <[u(p) · {ω(q)× ω(k′)}]. (8.3)

Similar equations can be derived for HK(p) and HK(q).

Using the identity A×B = −B×A, we obtain

SHK (k′|p,q) + SHK (p|k′,q) + SHK (q|k′,p) = 0. (8.4)

Hence,

HK(k′) +HK(p) +HK(q) = const. (8.5)

Or, the total kinetic helicity is conserved in a triadic interaction. This is the

statement of the detailed conservation of kinetic helicity in a triad.

Next, we derive a formula for SHK (k′|p|q) that represents the mode-to-mode

kinetic helicity transfer from wavenumber p to wavenumber k′ with wavenumber

q acing as a mediator. The derivation described in the following is very similar to

that for kinetic energy (see Section 4.1).

The mode-to-mode kinetic helicity transfer must satisfy the following properties.

For convenience, we denote the wavenumbers as X,Y,Z with X + Y + Z = 0.

1. By definition, the sum of SHK (X|Y|Z) and SHK (X|Z|Y) is the combined

kinetic helicity transfer SHK (X|Y,Z) defined in Eq. (8.3). Therefore,

SHK (k′|p|q) + SHK (k′|q|p) = SHK (k′|p,q), (8.6a)

SHK (p|k′|q) + SHK (p|q|k′) = SHK (p|k′,q), (8.6b)

SHK (q|k′|p) + SHK (q|p|k′) = SHK (q|k′,p). (8.6c)

2. The kinetic helicity transfer from wavenumber X to wavenumber Y is equal

and opposite to that from Y to X. Therefore,

SHK (k′|p|q) + SHK (p|k′|q) = 0, (8.7a)

SHK (k′|q|p) + SHK (q|k′|p) = 0, (8.7b)

SHK (p|q|k′) + SHK (q|p|k′) = 0. (8.7c)
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128 Energy Transfers in Fluid Flows

Equations (8.6, 8.7) do not yield a unique solution to six unknowns

SHK (X|Y|Z) because the determinant of the solution matrix is zero. Hence, we

need more constraints.

We employ tensor analysis to derive the formula for SHK (X|Y|Z). Using the

structure of Eq. (8.3), we infer that SHK (k′|p|q) is a function of u(k′), u(p), u(q),

ω(k′), ω(p), and ω(q) with the following additional conditions:

1. SHK (k′|p|q) is real.

2. SHK (k′|p|q) has two ω’s and one u, with each of them function of a distinct

wavenumber among k′,p,q.

3. SHK (k′|p|q) must have ω(k′) in the expression.

4. SHK (k′|p|q) = SHK (−k′| − p| − q).

Using these conditions and the structure of Eq. (8.3), we find that

SHK (k′|p|q) = c1<[u(q) · {ω(p)× ω(k′)}] + c2<[u(p) · {ω(q)× ω(k′)}]. (8.8)

The imaginary part is zero due to condition (4). Now we employ Eq. (8.7a) that

yields c2 = 0. Therefore,

SHK (k′|p|q) = c1<[u(q) · {ω(p)× ω(k′)}]. (8.9)

Application of Eqs. (8.3, 8.6a) yields c1 = 1. Therefore,

SHK (k′|p|q) = <[u(q) · {ω(p)× ω(k′)}] (8.10)

is the mode-to-mode kinetic helicity transfer from wavenumber p to wavenumber k′

with wavenumber q acting as a mediator.

The function SHK (k′|p|q) satisfies many important relations. One among them

is that for any wavenumber region A (which could be a single triad),∑
k′∈A

∑
p∈A

SHK (k′|p|q) = 0. (8.11)

In the presence of a large number of triads, the rate of change of modal kinetic

helicity HK(k) is

d

dt
HK(k) =

∑
p

SHK (k|p|q) + FHK (k)− 2νk2HK(k),

= THK (k) + FHK (k)− 2νk2HK(k), (8.12)

where q = k− p.
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Helical Turbulence 129

In the next section, we define flux and shell-to-shell transfers of kinetic helicity

for hydrodynamic turbulence.

8.2 Flux and Shell-to-shell Transfers of Kinetic Helicity

Using the formula of the mode-to-mode kinetic helicity transfer we derive expressions

for the flux and shell-to-shell transfers of kinetic helicity. The derivation is similar

to that for the kinetic energy flux and shell-to-shell transfers.

The kinetic helicity flux ΠHK (k0) is defined as the rate of kinetic helicity transfer

from all the modes inside the sphere of radius k0 to all the modes outside the sphere.

Using the mode-to-mode kinetic helicity transfer we deduce that

ΠHK (k0) =
∑
|k′|>k0

∑
|p|>k0

SHK (k′|p|q). (8.13)

Similarly, we can derive the shell-to-shell transfer of kinetic helicity from shell m to

shell n as

THK ,mHK ,n
=
∑
k′∈n

∑
p∈m

SHK (k′|p|q). (8.14)

When we sum Eq. (8.12) over the modes in a sphere of radius k0, we obtain

d

dt

∑
|k|≤k0

HK(k) =
∑
|k|≤k0

THK (k) +
∑
|k|≤k0

FHK (k)−
∑
|k|≤k0

2νk2HK(k),

= −ΠHK (k0) +
∑
|k|≤k0

FHK (k)−
∑
|k|≤k0

2νk2HK(k). (8.15)

In this derivation, the conservation of kinetic helicity plays an important role.

Following the similar lines of arguments as in Section 4.4, we observe that 1D

kinetic helicity spectrum follows the following evolution equation:

∂

∂t
HK(k, t) = − ∂

∂k
ΠHK (k, t) + FHK (k)−DHK (k, t), (8.16)

where DHK (k) is the kinetic helicity dissipation rate in the shell. See Fig. 8.1 for

an illustration. Under a steady state, ∂HK(k, t)/∂t = 0, and in the absence of an

external force, we obtain

∂

∂k
ΠHK (k) = −DHK (k). (8.17)

In the next section, we will discuss the spectrum of kinetic helicity in a

fully-developed isotropic and homogeneous turbulence.
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Figure 8.1 The rate of change of kinetic helicity in a shell is given by kinetic
helicity flux difference ΠHK (k + dk) − ΠHK (k), the kinetic helicity
supply rate by the external force FHK (k)dk, and the kinetic helicity
dissipation rate DHK (k)dk.

8.3 Phenomenology of Helical Turbulence

In Chapter 5 we derived that fully-developed isotropic and homogeneous turbulence

exhibits Kolmogorov spectrum (Eu(k) ∼ k−5/3). This derivation was silent on the

kinetic helicity. A leading question is whether the kinetic energy spectrum depends

on the kinetic helicity.

Zhou (1993) showed that the kinetic helicity does not alter the renormalized

viscosity (see Appendix C). Hence we can argue that the kinetic energy spectrum and

flux remain unaffected by the kinetic helicity. That is, Eqs. (5.6, 5.11) are applicable

to a hydrodynamic turbulence irrespective of the amount of kinetic helicity.

After these arguments, we derive the kinetic helicity flux and spectrum in

isotropic and homogeneous turbulence. Under a steady state, in the inertial range

where DHK (k)→ 0, using Eq. (8.17) we deduce that

ΠHK = const. (8.18)

Now we can derive an expression for HK(k) using dimensional analysis and the

following inputs:

1. HK(k) depends only on Πu, ΠHK , and k.

2. [Πu] = [L2/T 3]; [ΠHK ] = [L/T 3]; [HK(k)] = [L2/T 2] .
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Helical Turbulence 131

Using these inputs, based on dimensional analysis we postulate that

HK(k) = (ΠHK )α(Πu)βkγ . (8.19)

Note that we have only two fundamental dimensions, [L] and [T ], but three

unknowns—α, β, γ. To reduce one of the parameters, we exploit the fact that both

HK(k) and ΠHK are proportional to HK = u · ω, hence HK(k) ∝ ΠHK .1 Therefore,

α = 1.

Now matching the dimensions of [L] and [T] yields

β = −1/3; γ = −5/3. (8.20)

Hence,

HK(k) = KHΠHK (Πu)−1/3k−5/3, (8.21)

where KH is a nondimensional constant. Using field-theoretic computation, Avinash

et al. (2006) estimated KH to be 2.47. Following similar steps as in the derivation

of Eq. (5.8), we show that ΠHK equals the dissipation rate of kinetic helicity, which

is

εHK =

∫ ∞
0

2νk2HK(k)dk. (8.22)

The formula of Eq. (8.21) is extended to the dissipative range using the same

procedure as discussed in Section 5.5.1. The kinetic helicity spectrum and flux thus

obtained are as follows:

ΠHK (k) = εHK exp

(
−3

2
KH(k/kd)

4/3

)
, (8.23a)

HK(k) = KHεHK ε
−1/3
u k−5/3 exp

(
−3

2
KH(k/kd)

4/3

)
, (8.23b)

where

kd =
( εu
ν3

)1/4

(8.24)

is Kolmogorov’s wavenumber. We will verify these formulas using numerical

simulations.

A word of caution however is in order. Some of the recents works (Kessar et al.,

2015; Sahoo and Biferale, 2018) show that hydrodynamic turbulence with near

1Using field-theoretic arguments, Avinash et al. (2006) showed that ΠHK ∝ HK(k).
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maximum helicity have properties different from those described here. These

topics however are beyond the scope of this book.

In the next section, we describe numerical results related to helical

hydrodynamics.

8.4 Numerical Verification of Kinetic Helicity Spectrum and Flux

Sadhukhan et al. (2018) performed hydrodynamic turbulence simulation for the

nonhelical case (HK = 0) on a 10243 grid. They employed 0.1 nondimensional unit

of kinetic energy injection rate at large length scales, that is εu = 0.1. As expected,

in the steady state, they observed k−5/3 kinetic energy spectrum.

Sadhukhan et al. (2018) also performed a forced helical run with εu = 0.1 and the

kinetic helicity injection rate εh = 0.2 (the forcing employed at large scales). The

run was continued till the flow reached a steady state. In the following discussion,

we compare the results of helical turbulence with those of nonhelical ones. The

Reynolds number of both the flows are approximately 5700.
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Figure 8.2 For nonhelical (εu = 0.1, thin line) and helical (εu = 0.1, εHk = 0.2,
thick line) hydrodynamics: (a) Eu(k) and (b) Πu(k). The plots show
that kinetic helicity does not affect the kinetic energy spectrum and
flux significantly. The predictions by Pao’s formula (shown as dashed
lines) fits with the numerical data quite well. Adopted from figures
of Sadhukhan et al. (2018).

Using the steady state data, Sadhukhan et al. (2018) computed the spectra and

fluxes of kinetic energy and kinetic helicity. In Fig. 8.2, we exhibit the kinetic energy

spectra and fluxes for both helical and nonhelical runs. We observe that the kinetic

energy spectra and fluxes for both helical and nonhelical runs are approximately

equal, and they are described quite well by Pao’s formula (Eqs. (5.34a, 5.34b)). In
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the figure, the analytical formula are shown by dashed lines. Note that Eu(k) ∼
k−5/3 and Πu(k) ≈ const. in the inertial range, as expected. There is a minor

difference at small wavenumbers, which is primarily due to the forcing. Thus, Eu(k)

and Πu(k) remain primarily unaffected by helicity (Lesieur, 2008; Avinash et al.,

2006).

Sadhukhan et al. (2018) computed the kinetic helicity spectrum HK(k) as well

as the kinetic helicity flux ΠHK (k) for the helical run; these quantities are plotted in

Fig. 8.3. In the figure, we also plot the predictions of Eqs. (8.23). The predictions by

the analytical formula match quite well with the numerical results, thus validating

the phenomenology discussed in Section 8.3. Note that in the inertial range, HK(k) ∼
k−5/3 and ΠHK (k) ∼ const., consistent with the turbulence phenomenology described

earlier.

100

10–4

10–8

100 101 102

k

(a)

H
k(
)

K

k
–5/3

= 0.1,       = 0.2u

100 101 102

k

(b)

100

10–1

10–2

0

= 0.1,       = 0.2u

P
(

)
k

K
H

H
K H

K

Figure 8.3 For helical hydrodynamics with εu = 0.1, εHK = 0.2, (a) HK(k) and
(b) ΠHK (k). The numerical results, shown as solid lines, match quite
well with the predictions by formulas (dashed lines) of Eqs. (8.23). In
the inertial range, HK(k) ∼ k−5/3 and ΠHK (k) = const. Adopted
from figures of Sadhukhan et al. (2018).

Teimurazov et al. (2017) computed the shell-to-shell kinetic energy and kinetic

helicity transfers for helical and nonhelical hydrodynamics. We exhibit these

quantities in Fig. 8.4. Here the giver shells m are along the vertical axis, while the

receiver shells n are along the horizontal axis. The figures show that all the

transfers are local and forward. These observations are consistent with the

aforementioned result that hydrodynamic turbulence is not affected significantly

by kinetic helicity. Note however that for helical turbulence, both kinetic energy

and kinetic helicity exhibit slight nonlocal shell-to-shell transfers from the forcing

band to distant shells. This issue needs to be explored further.
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Figure 8.4 The shell-to-shell energy transfer for kinetic energy T u,mu,n for (a)
nonhelical turbulence, and (b) helical turbulence with εHK = 0.35.
(c) Kinetic helicity shell-to-shell transfer THK ,mHK ,n

for helical turbulence
with εHK = 0.35. Here m (along the vertical axis) are giver
shells, while n (along the horizontal axis) are receiver shells. From
Teimurazov et al. (2017). Reprinted with permission from Springer.

For completeness, we describe the results on enstrophy fluxes for the helical

hydrodynamic turbulence. See Chapter 6 for the definition of these fluxes. Using the

formulas described in Section 6.4, Sadhukhan et al. (2018) computed the enstrophy

fluxes for the aforementioned helical and nonhelical runs. As shown in Fig. 8.5, the

enstrophy fluxes for the helical case are close to those for the nonhelical case. Thus,

we show that kinetic helicity hardly affects the enstrophy fluxes.
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Figure 8.5 For nonhelical (εu = 0.1, blue curves) and helical (εu = 0.1, εHK =
0.2, red curves) hydrodynamics, plots of enstrophy fluxes Πu<

ω> (solid
line) and Πω<

ω> (dashed line). Note that Πu<
ω> � Πω<

ω>. The fluxes for
helical and nonhelical cases almost overlap on each other. Adopted
from figures of Sadhukhan et al. (2018).
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With this, we close our discussion on phenomenology of helical turbulence. We

will revisit kinetic helicity in subsequent chapters.

Further Reading

Lesieur (2008) describes the scaling of kinetic helicity spectrum and flux of helical

turbulence under eddy-damped quasi-normal Markovian (EDQNM) approximation.

The mode-to-mode kinetic helicity transfer was discussed earlier by Avinash et al.

(2006), but its proof is given here for the first time. Avinash et al. (2006) also

discussed the field-theoretic aspects of helical turbulence. The numerical results

described here are from Teimurazov et al. (2017) and Sadhukhan et al. (2018).

In recent times, Biferale et al. (2013) and coworkers, Stepanov et al. (2015), and

Kessar et al. (2015) have studied the energy transfers and fluxes for strongly helical

turbulence. These works are summarized in a recent review by Alexakis and Biferale

(2018).

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316810019.009
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 04 Jul 2019 at 22:23:51, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316810019.009
https://www.cambridge.org/core


Chapter 9

Craya–Herring and Helical
Basis

In this chapter we describe Craya–Herring and helical basis that simplify the energy

transfer computations. In addition, it is easier to construct low-dimensional models

in these basis. We start with the description of Craya–Herring basis.

9.1 Craya–Herring Basis for Hydrodynamics

Craya (1958) and Herring (1974) constructed the following basis vectors to represent

the velocity Fourier modes:

ê3(k) = k̂, (9.1a)

ê1(k) =
k̂ × n̂
|k̂ × n̂|

, (9.1b)

ê2(k) = ê3(k)× ê1(k), (9.1c)

where k̂ is the unit vector along the wavenumber k, and n̂ is along any direction (also

see Lesieur (2008); Sagaut and Cambon (2008)). For an illustration, see Fig. 9.1

in which n̂ is along ẑ. It is customary to choose n̂ along the anisotropy direction,

for example, along the acceleration due to gravity, or rotation axis, or the mean

magnetic field.
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Figure 9.1 Illustration of Craya–Herring basis vectors. The unit vector ê3 is
along k, while u(k) lies in the plane formed by ê1 and ê2.

For an incompressible flow, k · u(k) = 0, hence u3(k) = 0. Therefore, in Craya–

Herring basis,

u(k) = u1(k)ê1 + u2(k)ê2. (9.2)

Note that u1,2(k) are in general complex numbers.1 We can compute the

corresponding Cartesian components as

u(k) =

uxuy
uz

 =

 u1(k) sinφ+ u2(k) cos ζ cosφ

−u1(k) cosφ+ u2(k) cos ζ sinφ

−u2(k) sin ζ



=

 u1(k) ky
k⊥

+ u2(k)kzkx
kk⊥

−u1(k) kx
k⊥

+ u2(k)kzky
kk⊥

−u2(k)k⊥
k

 , (9.3)

where ζ, φ are respectively the polar and azimuthal angles of the wave vector k, as

shown in Fig. 9.2.
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Figure 9.2 Craya–Herring basis vectors and their relationships with the Cartesian
basis vectors: (a) in 3D, (b) in kx-ky plane.

1u1,2(k) are not the x and y components of u(k).
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In Craya–Herring basis, vorticity ω(k) of the Fourier mode is

ω(k) = ik× u(k) = ik

(
−u2(k)
u1(k)

)
. (9.4)

The modal kinetic energy (KE), Eu(k), and the modal kinetic helicity, HK(k), of

the velocity mode are

Eu(k) =
1

2
u∗(k)u(k) =

1

2
[|u1(k)|2 + |u2(k)|2], (9.5a)

HK(k) =
1

2
<[u∗(k) · ω(k)] = k=[u∗1(k)u2(k)]. (9.5b)

Therefore, for nonzero helicity, (a) both u1 and u2 must be nonzero, and (b) u1 and

u2 cannot be pure real or pure imaginary simultaneously. Also, if

u1(k) = |u1| exp(iφ1); u2(k) = |u2| exp(iφ2), (9.6)

then

HK(k) = k=[u∗1(k)u2(k)] = k|u1||u2| sin(φ2 − φ1). (9.7)

Hence, the mode u(k) is maximally helical with HK(k) = ±k|u1|u2| when φ2−φ1 =

±π/2.

Now let us write down the momentum equation in the Craya–Herring basis. Since

u3(k) = 0, Eq. (3.17a) transforms to

d

dt
uα(k) = −Nu,α(k) + Fu,α(k)− νk2uα(k) for α = 1, 2, (9.8a)

d

dt
u3(k) = 0 = −Nu,3(k)− ikp(k) + Fu,3(k), (9.8b)

where Fu is the external force, and Nu(k) is the nonlinear term defined in Eq. (3.16).

Equation (9.8b) yields the pressure p(k) as

p(k) =
i

k
[Nu,3(k)− Fu,3(k)]. (9.9)

Thus, the pressure is determined using the velocity field and the external force.

In Craya–Herring basis, the system evolves according to Eq. (9.8a) that contains

a pair of equations for every k. Also, for linear systems, Nu(k) = 0, and hence,

d

dt
uα(k) = Fu,α(k)− νk2uα(k) for α = 1, 2, (9.10a)

p(k) = − i
k
Fu,3(k). (9.10b)
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Craya–Herring and Helical Basis 139

Note that under parity transformation k→ −k,

ê1(−k) = −ê1(k), (9.11a)

ê2(−k) = ê2(k), (9.11b)

ê3(−k) = −ê3(k). (9.11c)

See Fig. 9.3 for an illustration. Therefore, the reality condition u(−k) = u∗(k) yields

the following relations:

u1(−k) = −u∗1(k) (9.12a)

u2(−k) = u∗2(k). (9.12b)

Under parity, the modal energy and modal kinetic helicity remain unchanged, that

is,

Eu(−k) = Eu(k), (9.13)

HK(−k) = k=〈u∗1(−k)u2(−k)〉 = k=〈−u1(k)u∗2(k)〉
= k=〈u∗1(k)u2(k)〉 = HK(k). (9.14)

This is expected because Eu and HK are real.
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Figure 9.3 Transformations of ê1 and ê2 under parity: k→ −k.

The aforementioned representation of Craya–Herring basis is used for 3D

systems. The basis functions become somewhat simpler for 2D flows, as shown in

the following.

A 2D flow is a function only of coordinates x and y in real space, or of kx and

ky in spectral space. Thus,

k = kxx̂+ kyŷ. (9.15)
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140 Energy Transfers in Fluid Flows

The unit vector n̂ is chosen along ẑ. Hence, the basis vectors ê1, ê2, and ê3 appear as

shown in Fig. 9.4. A two-dimensional incompressible velocity field can be expressed

as

u(k) = u1ê1. (9.16)

The Cartesian components of the velocity field are

u(k) =

(
ux
uy

)
=

(
u1 sinφ
−u1 cosφ

)
=

(
(ky/k)u1

−(kx/k)u1

)
. (9.17)

Note that the kinetic helicity is zero for a 2D flow since the vorticity ω(k) is

perpendicular to u(k).

A general 2D incompressible velocity field is

u(k) = u1ê1 + u2ê2 (9.18)

with u2ê2 along −n̂. Such two-dimensional three-component (2D3C) fields are often

encountered in magnetohydrodynamics with a strong external magnetic field.

k y

x

x

e3

e2

e1

e1

e3

e2

–k

k

u

n

f

kx

Figure 9.4 Illustration of Craya–Herring basis vectors and u(k) for a 2D flow.

As argued earlier, under parity transformation, k→ −k,

ê1(−k) = −ê1(k), (9.19a)

u1(−k) = −u∗1(k). (9.19b)

Therefore, if u1(k) = A+B/i with A,B as real, then

u1(−k) = −A+B/i. (9.20)
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Craya–Herring and Helical Basis 141

9.2 Equations of Motion in Craya–Herring Basis

As described in Chapter 4, the basic unit of nonlinear interactions in hydrodynamics

is a wavenumber triad (k′,p,q) with k′ + p + q = 0. The derivation of equations

of motion for the Fourier modes gets simplified considerably in the Craya–Herring

basis.

Consider a plane formed by the wavenumber triad (k′,p,q), as shown in Fig. 9.5.

Here the wavenumbers traverse in a clockwise direction. We choose

n̂ =
q× p

|q× p|
, (9.21)

which is perpendicular to the aforementioned plane. Now the three Craya–Herring

basis vectors are constructed using Eqs. (9.1). As a result, k′,p,q, ê1(k′), ê1(p),

ê1(q) lie in the plane of the triad, ê2’s are along −n̂, and the vectors ê3 are along

the wavenumbers. Note that ê1’s are to the right of the respective wavenumbers.

e ( )k’1

a

p
q

k’

e ( )p1

e ( )q1

bg

n

e e e n( ) = ( ) = ( ) = –k’ p q2 2 2

Figure 9.5 Craya–Herring basis vectors when the wavenumbers traverse in the
clockwise direction. Here, n̂ = q× p/|q× p|.

In the following derivation, we will need quantities like êi(k
′) · êj(p), where i, j

take values 1,2,3. For illustration, we compute two of them:

ê1(k′) · ê1(p) = (k̂′ × n̂) · (p̂× n̂) = {(k̂′ × n̂)× p̂} · n̂ = k̂′ · p̂ = − cos γ, (9.22a)

ê3(k′) · ê1(p) = k̂′ · (p̂× n̂) = (k̂′ × p̂) · n̂ = − sin γ. (9.22b)

We list these products in Table 9.1. In addition,

ê2(X) · ê1(Y) = 0 (9.23a)

ê2(X) · ê2(Y) = 1 (9.23b)

ê2(X) · ê3(Y) = 0, (9.23c)

where X,Y take values k′,p,q.
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142 Energy Transfers in Fluid Flows

Table 9.1 Product rules for the Craya–Herring basis vectors when the
wavenumbers traverse in the clockwise direction (See Fig. 9.5).

· ê1(k′) ê1(p) ê1(q)

ê3(k′) 0 − sin γ sinβ

ê3(p) sin γ 0 − sinα

ê3(q) − sinβ sinα 0

ê1(k′) 1 − cos γ − cosβ

ê1(p) − cos γ 1 − cosα

ê1(q) − cosβ − cosα 1

Craya–Herring basis provide a convenient framework to derive equations of

motion for the Fourier modes. A major advantage of this scheme is that the

pressure term gets eliminated from the equations automatically (see Eq. (9.8a)).

In the following, we derive an equation for u(k′):

d

dt
u(k′) = −i[k′ · u(−q)]u(−p)− i[k′ · u(−p)]u(−q)− ikp(k) (9.24)

since k′ = −p− q. Here we have ignored the trivial viscous term. By taking a dot

product of Eq. (9.24) with ê1(k′), we obtain

u̇1(k′) = [−ik′ sinβê1(p) · ê1(k′) + ik′ sin γê1(q) · ê1(k′)]u∗1(p)u∗1(q)

= ik′ sin(β − γ)u∗1(p)u∗1(q). (9.25)

Similar computation yields

u̇1(p) = ip sin(γ − α)u∗1(q)u∗1(k′), (9.26a)

u̇1(q) = iq sin(α− β)u∗1(p)u∗1(k′), (9.26b)

and

u̇2(k′) = ik′{sin γu∗1(p)u∗2(q)− sinβu∗1(q)u∗2(p)}, (9.27a)

u̇2(p) = ip{sinαu∗1(q)u∗2(k′)− sin γu∗1(k′)u∗2(q)}, (9.27b)

u̇2(q) = iq{sinβu∗1(k′)u∗2(p)− sinαu∗1(p)u∗2(k′)}. (9.27c)

These formulas are applicable when the wavenumbers k′,p,q traverse in the

clockwise direction (see Fig. 9.5). However, when the wavenumbers traverse in the

counterclockwise direction, as shown in Fig. 9.6, we choose

n̂ =
p× q

|p× q|
(9.28)
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Figure 9.6 Craya–Herring basis vectors when the wavenumbers traverse in the
counterclockwise direction. Here, n̂ = p× q/|p× q|.

so that ê1s still point toward the right of the respective wavenumber. The basis

vectors are shown in Fig. 9.6.

Under this scheme, ê1(X) · ê1(Y) are the same as before, but ê3(X) · ê1(Y) have

opposite signs. For example,

ê3(k′) · ê1(p) = k̂′ · (p̂× n̂) = (k̂′ × p̂) · n̂ = sin γ. (9.29)

See Table 9.2 for the multiplication table when the wavenumbers traverse in

counterclockwise direction, as shown in Fig. 9.6.

Table 9.2 Product rules for the Craya–Herring basis vectors when the
wavenumbers traverse in the counterclockwise direction (See
Fig. 9.6).

· ê1(k′) ê1(p) ê1(q)

ê3(k′) 0 sin γ − sinβ

ê3(p) − sin γ 0 sinα

ê3(q) sinβ − sinα 0

ê1(k′) 1 − cos γ − cosβ

ê1(p) − cos γ 1 − cosα

ê1(q) − cosβ − cosα 1

Due to the change in sign of ê3(X)·ê1(Y), Eqs. (9.25, 9.26, 9.27) get an additional

negative sign, for example,

ik′ sin(β − γ)→ −ik′ sin(β − γ); ik′ sin γ → −ik′ sin γ. (9.30)

The above forms of equations are very useful. However, sometimes it is also useful to

construct equations of motion using a specific n̂, not that of Eq. (9.21) or Eq. (9.28).
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144 Energy Transfers in Fluid Flows

For example, in the presence of several triads, Eq. (9.21) does not provide a unique

n̂ (see Example 9.5). In this case, we start with Eq. (9.24), and take its dot product

with ê1(k′) and ê2(k′) that yields the following dynamical equations for u1(k′) and

u2(k′):

d

dt
u1(k′) = −i[k′ · u(−q)]u(−p) · ê1(k′)− i[k′ · u(−p)]u(−q) · ê1(k′), (9.31a)

d

dt
u2(k′) = −i[k′ · u(−q)]u(−p) · ê2(k′)− i[k′ · u(−p)]u(−q) · ê2(k′). (9.31b)

The equations for u1,2(p) and u1,2(q) are derived similarly.

In the next section, we show how the expressions of energy transfers get simplified

in Craya–Herring basis.

9.3 Energy Transfer Functions in Craya–Herring Basis

The expression of the mode-to-mode energy transfer Suu(k′|p|q) in a triad takes a

simpler form in Craya–Herring basis, and it helps in many calculations.

We consider a triad (k′,p,q) with a condition that k′ + p + q = 0. To derive the

mode-to-mode transfers, it is convenient to work with the triangle of the previous

section. For a triad in which the wavenumbers traverse in a clockwise direction, the

formula for the mode-to-mode transfer is as follows:

Suu(k′|p|q) = −= [{k′ · u(q)}{u(p) · u(k′)}]
= −= [{k′ê3(k′) · ê1(q)u1(q)}{ê1(p) · ê1(k′)u1(p)u1(k′)

+ ê2(p) · ê2(k′)u2(p)u2(k′)}]
= k′ sinβ cos γ={u1(q)u1(p)u1(k′)} − k′ sinβ={u1(q)u2(p)u2(k′)}
= Su1u1(k′|p|q) + Su2u2(k′|p|q), (9.32)

where

Su1u1(k′|p|q) = k′ sinβ cos γ={u1(q)u1(p)u1(k′)}, (9.33a)

Su2u2(k′|p|q) = −k′ sinβ={u1(q)u2(p)u2(k′)}. (9.33b)

The sign would be reversed if the wavenumbers traverse in the counterclockwise

direction.

In Eq. (9.32), the first term Su1u1(k′|p|q) represents the mode-to-mode kinetic

energy transfer from u1(p) to u1(k′) with u(q) acting as a mediator, while the

second term Su2u2(k′|p|q) represents the corresponding transfer from u2(p) to

u2(k′) with u(q) acting as a mediator. Note that the full velocity mode u(q), not

the components, is the mediator for both these transfers. Also, there is no energy

exchange between u1 and u2 modes.
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Craya–Herring and Helical Basis 145

Following the same steps as in Section 4.1, we can derive the following identities

for the wavenumbers X,Y,Z of the triad:

Su1u1(X|Y|Z) = −Su1u1(Y|X|Z), (9.34a)

Su2u2(X|Y|Z) = −Su2u2(Y|X|Z). (9.34b)

Hence,∑
X,Y

Su1u1(X|Y|Z) = 0, (9.35a)

∑
X,Y

Su2u2(X|Y|Z) = 0. (9.35b)

These identities, which are based on energetics considerations, yields the following

detailed energy conservation for each component of the velocity field in a triad:

d

dt

∑
X

1

2
|u1(X)|2 = 0;

d

dt

∑
X

1

2
|u2(X)|2 = 0. (9.36)

Following the similar procedure as earlier, we derive

Su1u1(p|q|k′) = p sin γ cosα={u1(q)u1(p)u1(k′)}, (9.37a)

Su2u2(p|q|k′) = −p sin γ={u1(k′)u2(p)u2(q)}, (9.37b)

Su1u1(q|k′|p) = q sinα cosβ={u1(q)u1(p)u1(k′)}, (9.37c)

Su2u2(q|k′|p) = −q sinα={u1(p)u2(q)u2(k′)}. (9.37d)

A recipe to construct the above formulas is as follows: Su1u1 have ={u1(q)

u1(p)u1(k′)} as a common factor. The remaining parts of the factor are the

wavenumber magnitude and sin / cos of the two angles at the two sides of the

receiver wavenumber. The angle at the head of the receiver wavenumber arrow is

the argument of the cos function, while that at the tail of the wavenumber is the

argument of the sin function.

The energy transfer formula Su2u2 has a factor which is an imaginary part of

the product of the u1 component of the mediator mode with u2 components of

the receiver and giver modes. The other factors is a product of the magnitude of

the receiver wavenumber with sin function of the angle at the tail of the receiver

wavenumber.

Following similar arguments as earlier, we derive the combined energy transfer

to the mode u(k′) from the modes u(p) and u(q) as
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146 Energy Transfers in Fluid Flows

Su1u1(k′|p,q) = Su1u1(k′|p|q) + Su1u1(k′|q|p)

= k′ sin(γ − β)={u1(q)u1(p)u1(k′)} (9.38)

and

Su2u2(k′|p,q) = Su2u2(k′|p|q) + Su2u2(k′|q|p)

= +k′ sin γ={u1(q)u2(p)u2(k′)} − k′ sinβ={u1(p)u2(q)u2(k′)}.(9.39)

In 2D flows, u2 = 0, hence the terms involving u2 vanish automatically. Therefore,

Suu(k′|p|q) = Su1u1(k′|p|q) = k′ sinβ cos γ={u1(q)u1(p)u1(k′)}, (9.40a)

Suu(k′|p,q) = Su1u1(k′|p,q) = k′ sin(γ − β)={u1(q)u1(p)u1(k′)}. (9.40b)

For such flows, in a triad with p = q, β = γ, hence Suu(k′|p,q) = 0. Thus, the

aforementioned formulas provide intuitive understanding of the energy transfers.

Following similar procedure as before, we can derive expressions for the mode-

to-mode enstrophy transfers. In 3D, the enstrophy transfer from ω(p) to ω(k′) with

u(q) acting as a mediator is

Sωω(k′|p|q) = −= [{k′ · u(q)}{ω(p) · ω(k′)}]

= k′2p sinβ={u1(q)u1(p)u1(k′)}

−k′2p sinβ cos γ={u1(q)u2(p)u2(k′)}

= Sω1ω1(k′|p|q) + Sω2ω2(k′|p|q), (9.41)

where the first term Sω1ω1(k′|p|q) has contribution only from u1 modes, while the

second term Sω2ω2(k′|p|q) transfers via u2(p) to u2(k′). In 2D, u2 = 0. Therefore,

Sωω(k′|p|q) = Sω1ω1(k′|p|q) = k′2p sin γ={u1(q)u1(p)u1(k′)}. (9.42)

Hence,

Suu(k′|p|q)

Sωω(k′|p|q)
=

cos γ

kp
. (9.43)

The formula for the enstrophy transfer from u(p) to ω(k′) with ω(q) acting as a

mediator is

Sωu(k′|p|q) = = [{k′ · ω(q)}{u(p) · ω(k′)}] = k′2q sinβ cos γ={u2(q)u1(p)u2(k′)}

+k′2q sinβ={u2(q)u2(p)u1(k′)}. (9.44)
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Craya–Herring and Helical Basis 147

In 2D, u2 = 0. Therefore,

Sωu(k′|p|q) = 0, (9.45)

Similarly, using Eq. (8.10), we rederive the formula for the mode-to-mode kinetic

helicity transfer as

SHK (k′|p|q) = < [u(q) · ω(p)× ω(k′)}]

= −k′p[sinα<{u1(q)u2(p)u1(k′)}+ sinβ<{u1(q)u1(p)u2(k′)}]

+k′p sin γ<{u2(q)u2(p)u2(k′)}. (9.46)

Note that the transfers Sωu and SHK vanish when u2 = 0.

These derivations demonstrate the usefulness of Craya–Herring basis toward

computation of various transfers and derivation of truncated nonlinear equations.

In the next section we will use these formulas to derive energy fluxes in

Craya–Herring basis.

9.4 Fluxes in Craya–Herring Basis

A general flow involves many triads. We can generalize the energy transfers discussed

in the previous section to many triads. Since energy is an additive quantity, we can

compute the energy transferred to u1(k) from u1(p)’s with p ∈ B, where B is a

Fourier space region, as∑
p∈B

Su1u1(k′|p|q) =
∑
p∈B

k′ sinβ cos γ={u1(q)u1(p)u1(k′)}. (9.47)

Similarly, we can compute the energy transferred to u2(k) from a set of u2(p) modes.

An important thing to keep in mind is that the components u1’s and u2’s would

need to be computed for each triad individually. This is because the unit vectors

êi’s change for each triad.

Using this recipe, we can compute the energy fluxes Πu1
(k0) and Πu2

(k0) for u1

and u2 fields separately. They are as follows:

Πu1
(k0) =

∑
|p|≤k0

∑
|k|>k0

Su1u1(k|p|q), (9.48a)

Πu2
(k0) =

∑
|p|≤k0

∑
|k|>k0

Su2u2(k|p|q). (9.48b)
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148 Energy Transfers in Fluid Flows

Similarly, the shell-to-shell energy transfers for u1 and u2 fields from shell m to shell

n can be defined as

T u1,m
u1,n

=
∑
p∈m

∑
k∈n

Su1u1(k|p|q), (9.49a)

T u2,m
u2,n

=
∑
p∈m

∑
k∈n

Su2u2(k|p|q). (9.49b)

Similar formulas can be written down for the enstrophy transfers.

Example 9.1: Consider the 2D fluid flows with three components:

(a) : u = 2(− sin y − sin(x+ y)/
√

2, sinx+ sin(x+ y)/
√

2,

cosx+ cos y + cos(x+ y)).

(b) : u = 2(− sin y − sin(x+ y)/
√

2, sinx+ sin(x+ y)/
√

2,

− cosx− cos y − cos(x+ y)).

(c) : u = 2(− sin y − sin(x+ y)/
√

2, sinx+ sin(x+ y)/
√

2,

cosx+ cos y − cos(x+ y)).

Compute the Craya–Herring basis vectors and the components along the basis

vectors. Also compute the mode-to-mode kinetic energy, enstrophy, and kinetic

helicity transfers.

Solution: We compute the Craya–Herring basis vectors using Eqs. (9.1). Here we

choose n̂ = ẑ. The associated components are computed using

u1(k′) = u(k′) · ê1(k′); u2(k′) = u(k′) · ê2(k′).

For the flow fields of (a,b,c), the Craya–Herring basis vectors and the components

along these vectors are listed in Table 9.3. Note that ê2(k) = −ẑ for all the modes.

The table also lists the modal KE and modal kinetic helicity, which are

Eu(k) =
1

2
(|u1(k|2 + |u2(k|2),

HK(k) = k=[u∗1(k)u2(k)].

A careful observations of the Fourier modes indicate the following two interacting

triads for all the three cases:

(−1,−1) = −(0, 1)
⊕
−(1, 0),

(1, 1) = −(0,−1)
⊕
−(−1, 0).
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Table 9.3 Example 9.1: The Craya–Herring basis vectors, the velocity
components, modal KE and kinetic helicity for the velocity fields
(a,b,c).

Part Mode ê1(a) ê2(a) (u1(a), u2(a)) Eu(a) HK(a)

(a)

(1,1) (x̂− ŷ)/
√

2 −ẑ (i,−1) 1 1
(−1,−1) (−x̂+ ŷ)/

√
2 −ẑ (i,−1) 1 1

(0,1) x̂ −ẑ (i,−1) 1 1
(0,−1) −x̂ −ẑ (i,−1) 1 1
(1,0) −ŷ −ẑ (i,−1) 1 1

(−1, 0) ŷ −ẑ (i,−1) 1 1

(b)

(1,1) (x̂− ŷ)/
√

2 −ẑ (i, 1) 1 −1

(−1,−1) (−x̂+ ŷ)/
√

2 −ẑ (i, 1) 1 −1

(0,1) x̂ −ẑ (i, 1) 1 −1

(0,−1) −x̂ −ẑ (i, 1) 1 −1

(1,0) −ŷ −ẑ (i, 1) 1 −1

(−1, 0) ŷ −ẑ (i, 1) 1 −1

(c)

(1,1) (x̂− ŷ)/
√

2 −ẑ (i, 1) 1 −1

(−1,−1) (−x̂+ ŷ)/
√

2 −ẑ (i, 1) 1 −1

(0,1) x̂ −ẑ (i,−1) 1 1
(0,−1) −x̂ −ẑ (i,−1) 1 1
(1,0) −ŷ −ẑ (i,−1) 1 1

(−1, 0) ŷ −ẑ (i,−1) 1 1

Table 9.4 Example 9.1: The mode-to-mode transfers of kinetic helicity
transfer in a triad with wavenumbers k′ = (−1,−1), q = (0, 1)
and p = (1, 0).

Part Transfers SHK

(a)
S(k′|p|q) −2−

√
2

S(p|q|k′) −1−
√

2

S(q|k′|p) −2−
√

2

(b)
S(k′|p|q) 2 +

√
2

S(p|q|k′) 1 +
√

2

S(q|k′|p) 2 +
√

2

(c)

S(k′|p|q) 2−
√

2

S(p|q|k′) 1−
√

2

S(q|k′|p) 2−
√

2
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We assume k′ = (−1,−1), q = (0, 1), and p = (1, 0), and compute the mode-to-

mode transfers of KE, enstrophy, and kinetic helicity using the formulas described

in this section. The KE and enstrophy transfers computed using the Craya–Herring

basis are exactly the same as those computed in Example 6.1. The only extra

computation is for the kinetic helicity, which is listed in Table 9.4.

Example 9.2: Consider the following flow field:

u = x̂2B cos y + ŷ2C cosx+ (x̂− ŷ)2A sin(x+ y).

Compute the components of the velocity field in Craya–Herring basis. Also derive

equations of motion for A,B, and C using Craya–Herring decomposition.

Solution: The velocity field is composed with wavenumbers (1, 0), (0, 1), (1, 1),

(−1, 0), (0,−1), and (−1,−1). We choose n̂ = ẑ. Using the entries of Table 3.4

and u1(−k) = −u∗1(k), ê1, we deduce the u1 component of these modes as −C, B,

A
√

2/i, C, −B, −A
√

2/i respectively. We consider a wavenumber triad

{(1, 0), (0, 1), (−1,−1)} as shown in Fig. 9.7(a). The equations of motion for the

Fourier modes of the triad are

u̇1(−1,−1) = i
√

2 sin(45− 45)u∗1(1, 0)u∗1(0, 1) = 0,

u̇1(0, 1) = i sin(45− 90)u∗1(−1,−1)u∗1(1, 0),

u̇1(1, 0) = i sin(90− 45)u∗1(−1,−1)u∗1(0, 1).

y

x

(1, 0)

(0
, 
1
)

(–
1,

–1
)

(0
, 
1
)

(–1, 1)

(–
1,

–1
) (0

,
–
1
)

x

y

(0
, 
1
)

(1, 0)

(1, –1)

(–1, 0)

(a) (b)

Figure 9.7 (a) Example 9.2: The interacting wavenumber triads of the flow.
(b) Example 9.4: The three interacting wavenumber triads are in
black, gray, and dotted lines.
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Substitution of the amplitudes of the above modes in the aforementioned

equations yields

Ȧ = 0,

Ḃ = −AC,
Ċ = AB,

which are the same as those derived in Example 3.4. Note however that the present

derivation is much simpler than that of Example 3.4.

Example 9.3: How does the result in Example 9.2 change if the velocity field under

consideration is

u = x̂2B cos y + ŷ2C cosx+ (x̂− ŷ)2A cos(x+ y)?

Solution: We follow the same procedure as in Example 9.2. Note however that

the Carya-Herring amplitudes of the wavenumbers (1, 1) and (−1,−1) are A
√

2 and

−A
√

2 respectively. When we substitute them in the equations of motion, we obtain

the following equations:

Ȧ = 0,

Ḃ = −iAC,

Ċ = iAB.

Since A,B,C are real, we obtain Ȧ = Ḃ = Ċ = 0, which are the same as those of

Example 3.5.

Example 9.4: Consider the flow field

u = x̂2B cos y + ŷ2C cosx+ 4A(x̂ sinx cos y − ŷ cosx sin y).

Perform the same analysis as in Example 9.2.

Solution: This flow field contains Fourier modes with wavenumbers (0,±1), (±1, 0),

and (±1,±1). When n̂ = ẑ, the amplitudes of the u1 component of the four modes

are

u1(1, 0) = −C,

u1(0, 1) = B,

u1(1, 1) =
√

2A/i

u1(1,−1) = −
√

2A/i.
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152 Energy Transfers in Fluid Flows

The remaining modes are obtained using the relation u1(−k) = −u∗1(k). Note that

u2(k) = 0.

The wavenumbers and the three interacting triads are shown in Fig. 9.7(b)

using which we deduce that

(−1,−1) = −(1, 0)
⊕
−(0, 1),

(1,−1) = −(−1, 0)
⊕
−(0, 1),

(0, 1) = [−(1, 0)
⊕
−(−1,−1)] + [−(−1, 0)

⊕
−(1,−1)],

(1, 0) = [−(0, 1)
⊕
−(−1,−1)] + [−(0,−1)

⊕
−(−1, 1)],

where
⊕

represents the nonlinear interaction. It can be shown that the modes

u(1, 0), u(0, 1), u(1, 1), u(1,−1) are generated by the aforementioned nonlinear

interactions.2 Therefore, following Eqs. (4.37, 9.26), we deduce that

u̇1(−1,−1) = i
√

2 sin(45− 45)u∗1(1, 0)u∗1(0, 1) = 0,

u̇1(1,−1) = i
√

2 sin(45− 45)u∗1(−1, 0)u∗1(0, 1) = 0,

u̇1(0, 1) = i sin(45− 90)u∗1(−1,−1)u∗1(1, 0)− i sin(45− 90)u∗1(1,−1)u∗1(−1, 0),

u̇1(1, 0) = i sin(90− 45)u∗1(−1,−1)u∗1(0, 1) + i sin(45− 90)u∗1(−1, 1)u∗1(0,−1).

The negative sign in the second term of u̇1(0, 1) is due to the counterclockwise sense

of traversal of the wavenumbers in the triad {(0, 1), (−1, 0), (1,−1)}.
From these equations, we immediately deduce that

u1(1, 1) = const =
√

2A/i,

u1(1,−1) = const = −
√

2A/i.

Hence,

Ȧ = 0.

2If kx, ky = ±1, then the nonlinear interactions occur only through the following triads:

(kx, ky) = (kx, 0)
⊕

(0, ky),

(kx, 0) = [(kx, ky)
⊕

(0,−ky)] + [(kx,−ky)
⊕

(0, ky)],

(0, ky) = [(kx, ky)
⊕

(−kx, 0)] + [(−kx, ky)
⊕

(kx, 0)].
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Substitution of the amplitudes of the Fourier modes in the other two equations yields

Ḃ = 0,

Ċ = 0,

which implies that B and C are constants. Hence, in the absence of viscosity, the

flow is time independent. When we contrast the present example with Example 9.2,

we find that inclusion of an additional triad has led to cancelation of the nonlinear

interactions. Hence, having more Fourier modes does not necessarily imply stronger

nonlinear interactions. Such kind of interactions may be present in the square

patterns of thermal convection.

We compute the energy transfers to each of the Fourier modes using the

formulas for the mode-to-mode energy transfers, and observe them to be zero for

all the modes. We leave this computation as an exercise. These energy transfers

are consistent with the constancy of A,B, and C.

Example 9.5: Consider the field configuration of Example 3.6. Using n̂ = ẑ, compute

the Craya–Herring basis vectors and the components along the basis vectors. Derive

the nonlinear terms and equations of motion.

Solution: We choose n̂ = ẑ and compute the Craya–Herring basis vectors using

the formulas of Eqs. (9.1). The associated components are computed using

u1(k′) = u(k′) · ê1(k′); u2(k′) = u(k′) · ê2(k′).

These quantities are listed in Table 9.5. The righthand side of Eqs. (9.31a, 9.31b)

are the components −Nu,1,−Nu,2 of the nonlinear term. The computed values are

also listed in the table.

As illustrated in Example 3.6, the nonlinear interactions have the following triads:

(−1,−1,−2) = −(1, 0, 1)
⊕
−(0, 1, 1),

(1, 0, 1) = [−(0, 1, 1)
⊕
−(−1,−1,−2)] + [−(0,−1, 1)

⊕
−(−1, 1,−2)],

(0, 1, 1) = [−(1, 0, 1)
⊕
−(−1,−1,−2)] + [−(−1, 0, 1)

⊕
−(1,−1,−2)],

where
⊕

represents the nonlinear interaction. From the entries of the nonlinear

term of the table, we deduce that

u̇1(−1,−1,−2) = 0,

u̇2(−1,−1,−2) = i
4√
3
BC,
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u̇1(1, 0, 1) = (i− i) = 0,

u̇2(1, 0, 1) = −i2
√

2AB,

u̇1(0, 1, 1) = (i− i) = 0,

u̇2(0, 1, 1) = −i2
√

2AC.

Table 9.5 Example 9.5: The Craya–Herring basis vectors ê1,2, the
components of the velocity (u1, u2), and negative of the nonlinear
term (Nu,1, Nu,2). The three sets in the table are for three triads.

Mode e1 e2 (u1, u2) −(Nu,1, Nu,2)

(−1,−1,−2) (−1/
√

2, 1/
√

2, 0) (1/
√

3, 1/
√

3,−1/
√

3) (0,−iA
√

3) (0, i(4/
√

3)BC)

(1,0,1) (0,−1, 0) (1/
√

2, 0,−1/
√

2) (0,−iC
√

2) (i,−i
√

2AB)

(0,1,1) (1, 0, 0) (0, 1/
√

2,−1/
√

2) (0,−iB
√

2) (−i,−i
√

2AC)

(−1, 1,−2) (1/
√

2, 1/
√

2, 0) (1/
√

3,−1/
√

3,−1/
√

3) (0,−iA
√

3) (0, i(4/
√

3)BC)

(1,0,1) (0,−1, 0) (1/
√

2, 0,−1/
√

2) (0,−iC
√

2) (−i,−i
√

2AB)

(0,−1, 1) (−1, 0, 0) (0,−1/
√

2,−1/
√

2) (0,−iB
√

2) (i,−i
√

2AC)

(1,−1,−2) (1/
√

2,−1/
√

2, 0) (−1/
√

3, 1/
√

3,−1/
√

3) (0,−iA
√

3) (0, i(4/
√

3)BC)

(−1, 0, 1) (0, 1, 0) (−1/
√

2, 0,−1/
√

2) (0,−iC
√

2) (−i,−i
√

2AB)

(0,1,1) (1, 0, 0) (0, 1/
√

2,−1/
√

2) (0,−iB
√

2) (i,−i
√

2AC)

Substitution of u2(−1,−1,−2) = −iA
√

3, u2(1, 0, 1) = −iC
√

2, and u2(0, 1, 1) =

−iB
√

2 in these equations yields

Ȧ = −4

3
BC,

Ḃ = 2AC,

Ċ = 2AB,

which are identical to those derived in Example 3.6. The computations in

Craya–Herring basis function are relatively more convenient because the pressure

gets eliminated automatically in this basis.

Example 9.6: Consider the following flow field:

u = 2C sin(x+ z)(x̂− ẑ) + 2B sin(y+ z)(ŷ− ẑ) + 2A sin(x+ y+ 2z)(−x̂− ŷ+ ẑ).

By considering n̂ perpendicular to the plane formed by the interacting

wavenumbers, construct the Craya–Herring basis vectors and the components
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along the basis vectors. Derive the nonlinear terms and equations of motion.

Compute the mode-to-mode kinetic energy, enstrophy, and kinetic helicity

transfers.

Solution: The flow field is composed of Fourier modes with wavenumbers

k′ = (−1,−1,−2), p = (1, 0, 1), q = (0, 1, 1), and its negative counterparts. Note

that these wavenumbers form a triad (k′ + p + q = 0). The wavenumbers (1, 0, 1),

(0, 1, 1), and (−1,−1,−2) form a plane whose normal is along

n̂ =
q× p

|q× p|
= (1/

√
3, 1/
√

3,−1/
√

3).

Now we construct the Craya–Herring basis vectors for a wavenumber p using

ê3(p) = p̂; ê1(p) =
p̂× n̂
|p̂× n̂|

, ê2(p) = ê3(p)× ê1(p).

The Craya–Herring basis vectors for other wavenumbers are computed similarly.

Note that all the wavenumbers have

ê2 = −n̂ = (1/
√

3, 1/
√

3,−1/
√

3).

We also compute the components along the basis vectors using

u1(p) = u(p) · e1(p); u2(p) = u(p) · e2(p).

All these quantities are listed in Table 9.6. Note that the kinetic helicity of each of

the modes is zero.

Table 9.6 Example 9.6: The Craya–Herring basis vectors ê1,2, the
components of the velocity field (u1, u2), and negative of the
nonlinear term (Nu,1, Nu,2).

Mode ê1 (u1, u2) −(Nu,1, Nu,2)

(−1,−1,−2) (−1/
√

2, 1/
√

2, 0) (0,−iA
√

3) (0, i(4/
√

3)BC)

(0,1,1) (
√

6/3,−
√

6/6,
√

6/6) i(
√

6/3,−2/
√

3)B (0,−i
√

3AC)

(1,0,1) (
√

6/6,−
√

6/3,−
√

6/6) i(−
√

6/3,−2/
√

3)C (0,−i
√

3AB)

We compute the nonlinear terms for each of the wavenumbers using Eqs. (9.25,

9.26, 9.27); these terms are also listed in the table. Combining these results, we

obtain

d

dt
u1(−1,−1,−2) =

d

dt
u1(0, 1, 1) =

d

dt
u1(1, 0, 1) = 0.
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Hence,

u1(−1,−1,−2) = 0; u1(0, 1, 1) = i

√
6

3
; u1(1, 0, 1) = i

√
6

3
.

Using the results of the u2 components, we obtain

Ȧ = −4

3
BC,

Ḃ =
3

2
AC,

Ċ =
3

2
AB.

It is important to note that

∑
k

1

2
|u2(k)|2 =

1

2

(
3A2 +

4

3
B2 +

4

3
C2

)
,

and ∑
k

1

2
|u1(k)|2 =

1

3

(
B2 + C2

)
are separately conserved. These conservation laws are described in Eq. (9.36).

Table 9.7 Example 9.6: The mode-to-mode transfers of KE, enstrophy, and
HK in a triad k′ = (−1,−1,−2), p = (0, 1, 1), and q = (1, 0, 1).
Note that Sωu = (Sωu(X|Y|Z), Sωu(X|Z|Y)).

Transfers/ABC Suu Sωω Sωu SHK

S(k′|p|q) −2 −6 (−6,−6) 0

S(p|q|k′) 0 0 (−6, 4) 0

S(q|k′|p) 2 6 (4,−6) 0

We compute the mode-to-mode transfers among the Fourier modes. These

transfers are listed in Table 9.7. It is interesting to note that SHK is zero for all

the transfers. Also,∑
a

∑
b

Sωu(a|b|c) = −16ABC.

Thus, there is a net enstrophy transfer due to vortex stretching.
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Another set of basis vectors, called helical basis vectors, are useful for representing

helical fields. We describe them in the next section.

9.5 Helical Decomposition

The helical basis vectors are expressed using Craya–Herring basis vectors as (Waleffe,

1992; Sagaut and Cambon, 2008):

êsk(k) =
1√
2

[ê2(k)− iskê1(k)], (9.50)

where sk takes values 1 and −1. Note that the vectors ê±(k) are complex unlike

Craya–Herring basis vectors that are real, and

ê∗±(k) = ê∓(k). (9.51)

It is important to note that our normalization differs from that of Waleffe (1992).3

Our basis vectors are normalized so as to yield a unit magnitude. The vectors ê±(k)

have several interesting and queer properties: (Waleffe, 1992; Sagaut and Cambon,

2008):

êsk(k) · êsk(k) = 0, (9.52a)

êsk(k) · ê∗sk(k) = 1, (9.52b)

ê+(k) · ê−(k) = ê−(k) · ê+(k) = 1, (9.52c)

ik× êsk(k) = ikê3(k)× 1√
2

[ê2(k)− iskê1(k)] = skkêsk(k). (9.52d)

Under parity transformation, k→ −k. Using ê2(−k) = ê2(k) and ê1(−k) = −ê1(k),

we derive that

êsk(−k) =
1√
2

[ê2(−k)− iskê1(−k)]

=
1√
2

[ê2(k) + iskê1(k)]

= ê∗sk(k). (9.53)

In helical basis, the velocity field is represented as

u(k) = u+(k)ê+(k) + u−(k)ê−(k). (9.54)

3Waleffe’s notation: êsk (k) = ê2(k)− isk ê1(k), hence êsk (k) · ê∗sk (k) = 2.
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A comparison of this equation with u(k) = u1(k)ê1(k) + u2(k)ê2(k) yields the

following relationships between u±(k) and u1,2(k):

usk(k) =
1√
2

[u2(k) + isku1(k)], (9.55a)

u1(k) = − i√
2

[u+(k)− u−(k)], (9.55b)

u2(k) =
1√
2

[u+(k) + u−(k)]. (9.55c)

The vorticity field is conveniently represented in helical basis as

ω(k) = ik× u(k) = k[u+(k)ê+(k)− u−(k)ê−(k)]. (9.56)

Note that ω(k) lies in the plane of ê1(k) and ê2(k), and it has no component along

ê3(k). The modal kinetic energy and kinetic helicity are

Eu(k) =
1

2
u∗(k) · u(k) =

1

2
[|u+(k)|2 + |u−(k)|2], (9.57a)

HK(k) =
1

2
<[u∗(k) · ω(k)] =

1

2
k[|u+(k)|2 − |u−(k)|2]. (9.57b)

Thus, u±(k) are the maximal helical mode with HK(k)/(kE(k)) = ±1 respectively.

The helical modes have interesting properties in real space, which will be

discussed in the next sections.

9.6 Helical Modes

In this section we describe pure and mixed helical modes.

9.6.1 The helical mode u+

In real space, the helical mode u+ appears as

u+(r) =

(
u1(r)

u2(r)

)
= <[ê+(k)u+(k) exp i(k · r)]

=
1√
2
|u+(k)|<[(ê2(k)− iê1(k)) exp i(kz′ + φk+)]

=
1√
2
|u+(k)|

(
sin(kz′ + φk+)

cos(kz′ + φk+)

)
, (9.58)
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where <[.] stands for the real part of the argument, u+(k) = |u+(k)| exp(iφk+) with

φk+ as the phase of the mode, and z′ is the coordinate along ê3(k). See Fig. 9.8 for

an illustration of u+(r). When we hold the z′ axis in the left hand, the tip of the

vector u+ turns along the fingers. Therefore, u+(r) is said to be left-handed.

Pure u+(k) mode in the Craya–Herring basis is

1√
2

(
−i
1

)
=

1√
2

(
exp(−iπ/2)

1

)
. (9.59)

Therefore, phase of u2 is ahead of u1 by π/2. This is also reflected in the real space

description because in Eq. (9.58), cos(kz′ + φk+) = sin(kz′ + φk+ + π/2). Also,

|u1(r)|2 + |u2(r)|2 =
1

2
|u+(k)|2 = const. (9.60)

Therefore, the mode u+ is said to be circularly polarized.

e2

e1

u

e2

e1

u

(b)

(c)

–1

0

1 –1

0

1
0

10

20

(a)

e3

e1

e2

Figure 9.8 Helical mode u+: (a) Real space representation of the mode. (b,c)
The tip of u+(r) vector rotates in a clockwise direction as we traverse
along z′.
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9.6.2 The helical mode u−

In real space, the helical mode u− appears as

u−(r) =

(
u1(r)
u2(r)

)
= <[ê−(k)u−(k) exp i(k · r)]

=
1√
2
|u−(k)|<[(ê2(k) + iê1(k)) exp i(kz′ + φk−)]

=
1√
2
|u−(k)|

(
− sin(kz′ + φk−)
cos(kz′ + φk−)

)
, (9.61)

where u−(k) = |u−(k)| exp(iφk−). We illustrate u−(r) in Fig. 9.9. When we hold the

z′ axis in the right hand, the tip of u−(r) turns along the fingers. Therefore, u−(r)

is said to be right-handed. From the definition of the pure u− mode, we deduce that

the phase of u1 is ahead of u2 by π/2. In addition, |u1(r)|2 + |u2(r)|2 = |u−(k)|2/2,

hence we conclude that u− is circularly polarized.

e2

e1

u

e2

e1

u

(b)

(c)

–1

0

1 –1

0

1
0

10

20

(a)

e3

e2

e1

Figure 9.9 Helical mode u−: (a) Real space representation of the mode. (b,
c) The tip of u−(r) rotates in a counterclockwise direction as we
traverse along z′.
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9.6.3 Mixture of u+ and u−

A combination of u+ and u− modes yields

u(r) = <[{ê+(k)u+(k) + ê−(k)u−(k)} exp i(k · r)]

= <[{u1(k)ê1(k) + u2(k)ê2(k)} exp i(kz′)]

= <[{|u1(k)| exp(iφ1)ê1 + |u2(k)| exp(iφ2)ê2} exp i(kz′)]

=

(
|u1(k)| cos(kz′ + φ1)
|u2(k)| cos(kz′ + φ2)

)
. (9.62)

Hence,

u1(r) = |u1(k)| cos(kz′ + φ1) = |u1(k)| cos Φ, (9.63a)

u2(r) = |u2(k)| cos(kz′ + φ2) = |u2(k)| cos(Φ + ∆Φ), (9.63b)

where Φ = kz′+φ1 and ∆Φ = φ2−φ1. Elimination of Φ from these equations yields

u2
1(r)

|u1(k)|2
+

u2
2(r)

|u2(k)|2
− 2u1(r)u2(r)

|u1(k)||u2(k)|
cos(φ2 − φ1) = sin2(φ2 − φ1), (9.64)

which is an equation of an ellipse as shown in Fig. 9.10(a). This is the reason why

u(r) of Eq. (9.62) is said to be elliptic polarized.

e1

e2

u
r( )

e1

e2

(a)

Figure 9.10 (a) An illustration of an elliptically polarized mode. (b) An illustration
of a linearly polarized mode.

When φ1 = φ2, Eq. (9.64) yields

u2(r) =
|u2(k)|
|u1(k)|

u1(r) (9.65)

indicating that u2(r) is proportional to u1(r); this configuration corresponds to a

plane polarised wave (see Fig. 9.10(b)). When φ2 − φ1 = ±π/2, they correspond to

left-handed u+ and right-handed u− fields respectively. For these cases,
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u2
1(r) + u2

2(r) = |u1(k)|2 + |u2(k)|2 = const. (9.66)

Hence, they are circularly polarized modes. The aforementioned linear and circular

polarization are special cases of elliptic polarization.

Example 9.7: Consider the flow field

u = −ŷ2 sinx− ẑ2 cosx.

Analyze the flow field in the light of helical basis functions.

Solution: The flow field consists of u(k) and u(−k) with k = (1, 0, 0). Hence,

ê3(k) = x̂. We choose n̂ = ẑ. Using Eqs. (9.1), we obtain the other two Craya–

Herring basis vectors as

ê1(k) = −ŷ; ê2(k) = −ẑ.

Hence, u1(k) = 1/i and u2(k) = 1. Using the conversion formulas described in

Section 9.1, we deduce the velocity Fourier modes and its components in the helical

basis as

u(k) =
1

i
ê1(k) + ê2(k),

u+(k) =
1√
2

[u2(k) + iu1(k)] =
√

2,

u−(k) =
1√
2

[u2(k)− iu1(k)] = 0.

Thus, the aforementioned flow field has left-handed polarization (see Fig. 9.8). Note

that the phase of u2(k) is ahead of u1(k) by π/2.

We map this field to Eq. (9.58) using xy → yz, z → x, φk+ = π that yields

u+(r) =
1√
2
|u+(k)|

(
sin(x+ π)
cos(x+ π)

)
=

(
− sinx
− cosx

)
.

The modal energy and kinetic helicity are

Eu(k) =
1

2
|u(k)|2 = 1,

HK(k) = k=(u∗1u2) = k = 1.

Since the flow contains two wavenumbers—(1, 0, 0) and (−1, 0, 0), the total energy

Eu = 2, and the total kinetic helicity HK = 2. The flow field has maximal helicity.
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Example 9.8: Analyze the helicity of the following flow:

u = ŷ2 sinx− ẑ2 cosx.

Solution: Following similar steps as the earlier example, we can show that

u(k) = −1

i
ê1(k) + ê2(k).

Hence, u1(k) = i, u2(k) = 1, u+(k) = 0, and u−(k) =
√

2. The map of the

aforementioned field to Eq. (9.61) is as follows: xy → yz, z → x, φk− = π, and

u−(r) =
1√
2
|u−(k)|

(
− sin(x+ π)
cos(x+ π)

)
=

(
sinx
− cosx

)
.

For this case, the modal energy and kinetic helicity of the mode (1,0,0) are 1 and

−1 respectively. The flow field is right-handed and it has maximal helicity with

negative sign.

In the next section we will derive equations of motion for u(k) in the helical basis.

9.7 Equations of Motion in Helical Basis

The equation of motion of hydrodynamics can also be derived in helical basis.4

Following the procedure of Section 9.2 and Waleffe (1992), we consider the plane

formed by the wavenumbers of the triad (k′,p,q), and take

n̂ =
q× p

|q× p|
. (9.67)

Consequently, for all the wavenumbers, ê1 of Craya–Herring basis lie in the plane,

and ê2 = −n̂. Note that we consider clockwise orientation for the wavenumbers

of the triad, and that ê± do not lie in the plane of the triad. See Fig. 9.5 for an

illustration.

To derive the equation of motion for u(k), we start with Navier–Stokes equation:

d

dt
u(k′) = −ik′p(k′) + u(−q)× ω(−p) + u(−p)× ω(−q). (9.68)

We expand the velocity and vorticity fields in helical basis, and take dot product of

Eq. (9.68) with ê∗sk′ (k
′). As a result, we obtain

4This analysis was first done by Waleffe (1992)
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u̇sk(k
′) = [u∗(q)× ω∗(p) + u∗(p)× ω∗(q)] · ê∗sk′ (k

′)

=
∑
sp,sq

[pspu
∗
sq

(q)u∗sp(p){ê∗sq(q)× ê∗sp(p) · ê∗sk′ (k
′)}]

+
∑
sp,sq

[qsqu
∗
sq

(q)u∗sp(p){ê∗sp(p)× ê∗sq(q) · ê∗sk′ (k
′)}]

=
∑
sp,sq

(psp − qsq)u∗sq(q)u∗sp(p){ê∗sq(q)× ê∗sp(p) · ê∗sk′ (k
′)}, (9.69)

or

u̇sk(k
′) =

∑
sp,sq

g(psp − qsq)u∗sq(q)u∗sp(p), (9.70)

where

g = ê∗sq(q)× ê∗sp(p) · ê∗sk′ (k
′)

=
1

2
√

2
sk′spsq{sk′ sinα+ sp sinβ + sq sin γ}. (9.71)

Here, α, β, γ are the angles of the triangle formed by the wavenumbers k′,p,q. See

Fig. 9.5 for an illustration.

If a triad (k′,p,q) consists only of three modes—(usk′ , usp , usq), then the

equations of motion for these modes would be

u̇sk′ (k
′) = g(psp − qsq)u∗sp(p)u∗sq(q), (9.72a)

u̇sp(p) = g(qsq − k′sk′)u∗sq(q)u∗sk′ (k
′), (9.72b)

u̇sq(q) = g(k′sk′ − psp)u∗sk′ (k
′)u∗sp(p). (9.72c)

It is easy to verify that

1

2
[|usk′ (k

′)|2 + |usp(p)|2 + |usq(q)|2] = const. (9.73)

that corresponds to the detailed conservation of kinetic energy for a helical triad.

We could also arrive at the same conclusion from the energy transfer formulas.

The aforementioned set of equations can be mapped to Euler’s equation for

rigid body rotation (Landau and Lifshitz, 1976; Verma, 2016). From the above we

can make several simple deductions. If psp = qsq, then usk′ (k
′) = const., and the

other two modes oscillate around zero such that |usp(p)|2 + |usq(q)|2 = const. The

dynamics is similar to that of a symmetric top (Landau and Lifshitz, 1976; Verma,

2016).
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Let us consider stability of the solution—(usk′ , usp , usq) = (A, 0, 0). When we

take another time derivative of Eq. (9.72b), we obtain

üsp(p) = (qsq − k′sk′)(k′sk′ − psp)|gA|2usp(p). (9.74)

Hence, usp(p) will grow when

(qsq − k′sk′)(k′sk′ − psp) > 0. (9.75)

This is the condition for instability, which is achieved when qsq < k′sk′ < psp or

qsq > k′sk′ > psp. In other words, the system becomes unstable when the value of

k′sk′ lies between psp and qsq. The instability condition is akin to the instability

condition of an asymmetric top (Landau and Lifshitz, 1976; Verma, 2016). Note

however that the linear growth is observed only for a short time until usp(p) and

usq(q) are small. When these modes become comparable to A, we need to consider

the full set of nonlinear equations (Eqs. (9.72)).

In the next section we will derive formulas for the mode-to-mode transfers in

helical basis.

9.8 Mode-to-mode Transfer Functions in Helical Basis

To derive a formula for the mode-to-mode KE transfer in helical basis, we write the

giver mode u(p) and the receiver mode u(k′) as

u(p) =
∑
sp

usp(p)êsp(p), (9.76a)

u(k′) =
∑
sk′

usk′ (k
′)êsk′ (k

′). (9.76b)

Therefore, the mode-to-mode kinetic energy transfer is

Suu(k′|p|q) =
∑
sp,sk′

−=
[
{k′ · u(q)}usp(p)usk′ (k

′){êsp(p) · êsk′ (k
′)}
]
. (9.77)

Note that

êsp(p) · êsk′ (k
′) =

1

2
[ê2(p)− ispê1(p)] · [ê2(k′)− isk′ ê1(k′)]

=
1

2
(1 + spsk′ cos γ). (9.78)

Therefore,

Suu(k′|p|q) =
∑
sp,sk′

Suusk′sp(k
′|p|q), (9.79)
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where Suusk′sp(k
′|p|q) is the KE transfer from mode usp(p) to usk′ (k

′):

Suusk′sp(k
′|p|q) = −k

′

2
sinβ(1 + spsk′ cos γ)={u1(q)usp(p)usk′ (k

′)}. (9.80)

We use Eq. (9.55b) to expand u1(q) in terms of u± that yields

={u1(q)usp(p)usk′ (k
′)} = − 1√

2
<[u+(q)usp(p)usk′ (k

′)]

+
1√
2
<[u−(q)usp(p)usk′ (k

′)]. (9.81)

The other energy transfers in the triad are

Suuspsq(p|q|k
′) = −p

2
sin γ(1 + spsq cosα)={u1(k′)usp(q)usp(p)}, (9.82a)

Suusk′sp(q|k
′|p) = −q

2
sinα(1 + sqsk′ cosβ)={u1(p)usq(q)usk′ (k

′)}. (9.82b)

In helical basis, the mode-to-mode kinetic helicity transfer via usp(p) and usk′ (k
′)

channel is derived as follows. Using

ωsp(p) = ip× [usp(p)êsp(p)] = pspusp êsp(p), (9.83)

we obtain

SHK (k′|p|q) = < [u(q) · ω(p)× ω(k′)}]

=
∑
sp,sk′

sk′sppk
′<[{u(q) · êsp(p)× êsp(k′)}usp(p)usk′ (k

′)]

=
∑
sp,sk′

SHKsk′sp(k
′|p,q). (9.84)

Using

ê1(q) · êsp(p)× êsk′ (k
′) =

i

2
[sk′ sinβ + sp sinα], (9.85a)

ê2(q) · êsp(p)× êsk′ (k
′) =

1

2
sk′sp sin γ, (9.85b)

we derive that

SHKsk′sp(k
′|p,q) = −1

2
pk′[sk′ sinβ + sp sinα]={u1(q)usp(p)usk′ (k

′)}

+
1

2
pk′ sin γ<{u2(q)usp(p)usk′ (k

′)}. (9.86)
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Following similar arguments as earlier, we derive the following enstrophy transfer

formulas.

Sωωsk′sp(k
′|p|q) = −=

[
{k′ · u(q)}{ωsp(p) · ωsk′ (k

′)}
]

= −1

2
pk′2 sinβ[cos γ + spsk′ ]={u1(q)usp(p)usk′ (k

′)}. (9.87)

For

Sωusk′sp(k
′|p|q) = =

[
{k′ · ω(q)}{ωsk′ (k

′) · usp(p)}
]
, (9.88)

we employ

k′ · ω(q) = ik′ · (q× u(q))

= i(k′ × q) · u(q) = −ik′qu2(q) sinβ, (9.89)

and

ωsk′ (k
′) · usp(p) = sk′k

′êsk′ (k
′) · êsp(p)usk′ (k

′)usp(p)

= k′
1

2
(sk′ + sp cos γ)usk′ (k

′)usp(p). (9.90)

Therefore,

Sωusk′sp(k
′|p|q) = −1

2
qk′2 sinβ(sk′ + sp cos γ)<{u2(q)usk′ (k

′)usp(p}. (9.91)

In the next section we will employ the aforementioned mode-to-mode transfer

functions to compute fluxes in helical basis.

9.9 Fluxes and Shell-to-shell Energy Transfers in Helical Basis

Following the same lines of arguments as in Section 9.4, we define energy and other

fluxes in helical basis. Using Eq. (9.80), the kinetic energy flux from helical modes

usg to usr , where sg and sr are the signs of giver and receiver modes respectively,

can be written as

Π
usg<
usr>

(k0) =
∑
|p|≤k0

∑
|k|>k0

Suusgsr(k
′|p|q). (9.92)

Using this set of formulas we can compute the kinetic energy fluxes from u+ modes

to u+ modes (Πu+
u+

), u+ modes to u− modes (Πu+
u−

), u− modes to u+ modes (Πu−
u+

),

and u− modes to u− modes (Πu−
u−

).

Similarly, the shell-to-shell energy transfers from usg modes of shell m to usr
modes of shell n can be defined as
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T
usg ,m
usr ,n =

∑
p∈m

∑
k∈n

Suusrsg(k
′|p|q). (9.93)

Similar formulas can be written down for the enstrophy and helicity transfers. For

example, the kinetic helicity flux along the + to + channel is

ΠHK+
HK+(k0) =

∑
|p|≤k0

∑
|k|>k0

SHK++ (k′|p|q). (9.94)

The above discussion shows that helical basis provides interesting and useful

formulas, especially for helical flows.

Example 9.9: Consider the flow fields of Example 9.1. Compute the helical basis

vectors and the components along the basis vectors of these fields.

Solution: Refer to the solution of Example 9.1. Using ê1.2 and u1,2, we compute

ê±(k) =
1√
2

[ê2(k)∓ iê1(k)],

ω(k) = ik× u(k) = k[u+(k)ê+(k)− u−(k)ê−(k)],

Eu(k) =
1

2
u∗(k) · u(k) =

1

2
[|u+(k)|2 + |u−(k)|2],

HK(k) =
1

2
<[u∗(k) · ω(k)] =

1

2
k[|u+(k)|2 − |u−(k)|2].

The resulting values are listed in Table 9.8.

Table 9.8 Example 9.9: The helical basis vectors ê± and their associated
components, modal kinetic energy and kinetic helicity. Note that
ê+(k′) = (−ẑ − i(x̂ − ŷ)/

√
2)/
√

2, ê−(k′) = (−ẑ + i(x̂ −
ŷ)/
√

2)/
√

2.

Part Mode ê+(k) ê−(k) (u+(k), u−(k)) Eu(k) HK(k)

(a)

(1,1) ê∗+(k′) ê∗−(k′) (−
√

2, 0) 1 1

(−1,−1) ê+(k′) ê−(k′) (−
√

2, 0) 1 1

(0,1) (−ẑ − ix̂)/
√

2 (−ẑ + iŷ)/
√

2 (−
√

2, 0) 1 1

(0,−1) (−ẑ + ix̂)/
√

2 (−ẑ − iŷ)/
√

2 (−
√

2, 0) 1 1

(1,0) (−ẑ + iŷ)/
√

2 (−ẑ − iŷ)/
√

2 (−
√

2, 0) 1 1

(−1, 0) (−ẑ − iŷ)/
√

2 (−ẑ + iŷ)/
√

2 (−
√

2, 0) 1 1
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Table 9.8 Contd...

(b)

(1,1) ê∗+(k′) ê∗−(k′) (0,
√

2) 1 −1

(−1,−1) ê+(k′) ê−(k′) (0,
√

2) 1 −1

(0,1) (−ẑ − ix̂)/
√

2 (−ẑ + iŷ)/
√

2 (0,
√

2) 1 −1

(0,−1) (−ẑ + ix̂)/
√

2 (−ẑ − iŷ)/
√

2 (0,
√

2) 1 −1

(1,0) (−ẑ + iŷ)/
√

2 (−ẑ − iŷ)/
√

2 (0,
√

2) 1 −1

(−1, 0) (−ẑ − iŷ)/
√

2 (−ẑ + iŷ)/
√

2 (0,
√

2) 1 −1

(c)

(1,1) ê∗+(k′) ê∗−(k′) (0,
√

2) 1 −1

(−1,−1) ê+(k′) ê−(k′) (0,
√

2) 1 −1

(0,1) (−ẑ − ix̂)/
√

2 (−ẑ + iŷ)/
√

2 (−
√

2, 0) 1 1

(0,−1) (−ẑ + ix̂)/
√

2 (−ẑ − iŷ)/
√

2 (−
√

2, 0) 1 1

(1,0) (−ẑ + iŷ)/
√

2 (−ẑ − iŷ)/
√

2 (−
√

2, 0) 1 1

(−1, 0) (−ẑ − iŷ)/
√

2 (−ẑ + iŷ)/
√

2 (−
√

2, 0) 1 1

Example 9.10: Consider an arbitrary flow field constructed with wavenumbers k′ =

(−1,−1, 0), q = (0, 1, 0), p = (1, 0, 0), and their negative counterparts. Derive the

equations for the modes u±(k′), u±(p), u±(q). Also compute the energy transfers

among the modes.

Solution: The interacting wavenumbers form a right-angle triangle. The

associated magnitudes and the angles are (see Fig. 9.5(a))

k′ =
√

2; p = q = 1;

α = π/2; β = γ = π/4.

Following Eqs. (9.72), we derive the equations of motion for the helical modes as

u̇sk′ (k
′) = g(sp − sq)u∗sp(p)u∗sq(q),

u̇sp(p) = g(sq −
√

2sk′)u
∗
sq

(q)u∗sk′ (k
′),

u̇sq(q) = g(
√

2sk′ − sp)u∗sk′ (k
′)u∗sp(p),

where

g =
1

2
√

2
sk′spsq{sk′ sinα+ sp sinβ + sq sin γ}

=
1

2
√

2
sk′spsq{sk′ +

1√
2

(sp + sq)}.
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If sp = sq, then

u̇sk′ (k
′) = 0 =⇒ usk′ (k

′) = C,

and

u̇sp(p) = −aC∗u∗sq(q),

u̇sq(q) = aC∗u∗sp(p),

where a = g(
√

2sk′−sp). By taking another derivative of these equations, we obtain

üsp = −|aC|2usp ; üsq = −|aC|2usq .

Hence, both these modes oscillate with a frequency of ω = |aC|.
The energy transfers among the modes can be computed following the procedure

of the previous example.

With this, we close our discussion on the Craya–Herring and helical basis. We will

revisit them in the next chapter itself when we compute the energy transfers using

field theory. Later, we will employ these basis functions to thermal convection,

magnetohydrodynamic (MHD) turbulence, and dynamo.

Further Reading

For introduction to Craya–Herring and helical basis, refer to Lesieur (2008),

Sagaut and Cambon (2008), and Waleffe (1992). Waleffe (1992) discusses the

energy transfers in the helical basis. The mode-to-mode transfers in Craya–Herring

and helical basis have been discussed in this chapter for the first time. Recently,

Biferale et al. (2013) and coworkers studied energy transfers and fluxes in

truncated Navier–Stokes equations with u+ modes only.

Exercises

1. In Craya–Herring basis, the velocity field u(k1) = ê2(k1)+iê1(k1) and u(k2) = ê2(k2)+2ê1(k2),
where k1 = (1, 0, 1) and k2 = (1, 1, 1). The reality condition on the velocity field demands that
u(−k1) = u∗(k1) and u(−k2) = u∗(k2). Write down the velocity field in Cartesian coordinates,
in both Fourier space and real space.

2. Generalize Exercise 4.3 to make the velocity field quasi-2D. Write down the equations of motion
for the components of Craya–Herring basis.
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3. Consider a 2D flow field with Fourier modes with wavenumbers (0, 1), (px, py), (−px,−1− py),
and their complex conjugates. The kinematic viscosity of the fluid is ν, and the flow field is driven
by an external force F = x̂ cos y. Write down the equation of motion for the Fourier modes.

4. Compute the total energy transferred to each of the Fourier modes of Example 9.4. Show that
these transfers are zeros.

5. For the flow field of Example 9.5, compute the energy and enstrophy transfers among the modes
in Craya–Herring and helical basis.

6. Consider the flow fields of Exercise 4.1. Compute the components of the velocity field in Craya–
Herring basis. Derive equations of motion for A,B, and C.

7. Repeat Exercise 9.6 for Exercise 4.2. Derive equations of motion for A,B,C, and D.
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Chapter 10

Field-theoretic Treatment of
Energy Transfers

In earlier chapters we derived analytic formulas for kinetic energy transfers and

flux (see Chapter 4). These energy transfers have universal properties during a

steady state of hydrodynamic turbulence. We can compute these quantities using

experimental and/or numerical data of steady state turbulence. In addition, there is

an approximate yet powerful formalism based on field theory that provides estimates

for these transfers; this is the topic of the present chapter.

In some field-theoretic treatments (McComb, 1990; Leslie, 1973; Verma, 2004),

energy transfers are computed perturbatively to first order. The resulting

expressions involve Green’s function and the correlation function. Kolmogorov’s

spectrum Eu(k) ∼ k−5/3 is substituted for the correlation function, and Green’s

function is modeled similarly. By construction, these formulas are applicable to the

inertial range of homogeneous and isotropic hydrodynamic turbulence. We will

detail these computations in this chapter.

First, we describe the correlation functions of homogeneous and isotropic

turbulence.

10.1 Correlation Functions in Homogeneous and Isotropic
Turbulence

In homogenous and isotropic turbulence, the velocity–velocity correlation is of the

following form:
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〈ui(k)uj(k
′)〉 =

[
Pij(k)Cu(k)− iεijlkl

HK(k)

k2

]
δ(k + k′), (10.1)

where

Pij(k) = δij −
kikj
k2

(10.2)

is the projection operator, and Cu(k) and HK(k) are real functions of k. Note that

the correlation 〈ui(k)uj(k
′)〉 vanishes unless k′ = −k.

In most field-theoretic treatment, the components are taken to be along Cartesian

axis—x, y, z. In this chapter, however, we will consider the components in Craya-

Herring basis (see Figs. 9.1 and 9.2). Hence, in 3D, for a wavenumber k,

k1 = k2 = 0; k3 = k; u3(k) = 0. (10.3)

From Eq. (10.1), we deduce that in 3D,

〈|u1(k)|2〉 = 〈|u2(k)|2〉 = Cu(k). (10.4)

Note that the modal kinetic energy (KE) is defined as

Cu(k) =
1

2
(|u1(k)|2 + |u2(k)|2). (10.5)

Therefore,

〈Cu(k)〉 =
1

2
〈|u1(k)|2 + |u2(k)|2〉 = Cu(k). (10.6)

Thus, statistical average of modal KE equals Cu(k), which is a statement of isotropic

turbulence.

Similarly, using Eq. (10.1) we deduce that

〈u1(k)u2(−k)〉 = 〈u1(k)u∗2(k)〉 = −iε123

k

k2
HK(k) = − i

k
HK(k). (10.7)

Therefore,

HK(k) = ik〈u1(k)u∗2(k)〉. (10.8)

Since HK(k) is purely real, 〈u1(k)u∗2(k)〉 must be pure imaginary. Hence,

HK(k) = k=〈u∗1(k)u2(k)〉. (10.9)
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Using Eq. (9.5b) we deduce that the righthand side of Eq. (10.9) is the statistical

average of the modal kinetic helicity HK(k). Hence,

〈HK(k)〉 = HK(k). (10.10)

This is also a statement of statistical isotropy. Note that at a particular instance,

for a given k, u∗1(k)u2(k) may have a real part, but it will vanish on statistical

averaging.

In 3D, one-dimensional energy spectrum Eu(k) is related to Cu(k) in the following

manner:

Eu =

∫
Eu(k)dk =

1

2
〈u2〉 =

1

2
[〈u2

1〉+ 〈u2
2〉]

=

∫
Cu(k)dk =

∫
4πk2Cu(k)dk. (10.11)

Hence,

Eu(k) = 4πk2Cu(k). (10.12)

For a 2D flow in the xy coordinate system, in Craya–Herring basis,

k1 = 0; k2 = k; k3 = 0; u2(k) = 0, (10.13)

and

Cu(k) = 〈|u1(k)|2〉 = Cu(k). (10.14)

Here,

Eu =

∫
Eu(k)dk =

1

2
〈u2

1〉 =
1

2

∫
Cu(k)dk =

∫
πkCu(k)dk. (10.15)

Hence,

Eu(k) = πkCu(k). (10.16)

Note that there is no kinetic helicity associated with 2D flows.

Now we are ready to compute expressions for the mode-to-mode energy transfers

in homogeneous and isotropic turbulent flows.
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10.2 Field-theoretic Treatment of Mode-to-mode Kinetic
Energy Transfers and Flux

In this section we derive an expression for the mode-to-mode kinetic energy transfers

in Craya-Herring basis. We remark that earlier field theoretic derivations are based

on Cartesian coordinates. We will show below that Craya-Herring basis makes the

derivations simpler and more intuitive.

We start with Eq. (9.32). The mode-to-mode kinetic energy transfer from u(p)

to u(k′) with u(q) acting as a mediator is

Suu(k′|p|q) = Su1u1(k′|p|q) + Su2u2(k′|p|q), (10.17)

where

Su1u1(k′|p|q) = k′ sinβ cos γ={u1(q)u1(p)u1(k′)}, (10.18a)

Su2u2(k′|p|q) = −k′ sinβ={u1(q)u2(p)u2(k′)}. (10.18b)

Here, β, γ are two angles of the triangle formed by the wavenumbers k′,p,q (see

Fig. 9.5). The quantity Suu(k′|p|q) depends on the amplitudes of the Fourier modes.

However, a statistical average prescribed by field theory provides very useful results.

We estimate average values of two triple correlation of Eq. (10.17) to first order

in perturbation expansion. Here, u1, u2 are assumed to be quasi-Gaussian with

〈XY Z〉 = 0 to zeroth order, but nonzero to first order. The computation is sketched

in the following discussion.

10.2.1 Computation of =〈u1(q, t)u1(p, t)u1(k′, t)〉

Under Gaussian approximation, =〈u1(q, t)u1(p, t)u1(k′, t)〉 vanishes to zeroth order.

Hence, we go to the next order. Using Eq. (9.25), we write u1(k′, t) in terms of

Green’s function as

u1(k′, t) = ik′
∫ t

−∞
dt′G(k′, t− t′) sin(β − γ)u∗1(p, t′)u∗1(q, t′), (10.19)

substitution of which in the aforementioned triple correlation yields

=〈u1(q, t)u1(p, t)u1(k′, t)〉 = k′
∫ t

−∞
dt′G(k′, t− t′) sin(β − γ)

×〈u∗1(p, t′)u1(p, t)〉〈u∗1(q, t′)u1(q, t)〉. (10.20)
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176 Energy Transfers in Fluid Flows

Note that 〈u∗1(p, t′)u1(q, t)〉 = 0 when p 6= q (see Eq. (10.1)). We assume that the

average quantities are homogeneous in time; hence,

〈u∗1(p, t′)u1(p, t)〉 = C(p, t− t′), (10.21a)

〈u∗1(q, t′)u1(q, t)〉 = C(q, t− t′). (10.21b)

To simplify the above expression, we assume that Green’s function and the

correlation function relax with a time scale of 1/(ν(k)k2), where ν(k) is the

renormalized viscosity at wavenumber k, that is,

G(k′, t− t′) = exp[−ν(k′)k2(t− t′)], (10.22a)

C(k′, t− t′) = C(k′) exp[−ν(k)k2(t− t′)]. (10.22b)

Under the aforementioned assumptions, we obtain

=〈u1(q, t)u1(p, t)u1(k′, t)〉 =
1

denr
k′ sin(β − γ)C(p)C(q), (10.23)

where

denr = ν(k)k2 + ν(p)p2 + ν(q)q2. (10.24)

But this is not all. We need to also expand u1(q, t) and u1(p, t) of the correlation

function =〈u1(q, t)u1(p, t)u1(k′, t)〉. Following a similar procedure as earlier, we

obtain

=〈u1(q, t)u1(p, t)u1(k′, t)〉 =
1

denr
[k′ sin(β − γ)C(p)C(q)

+p sin(γ − α)C(k′)C(q)

+q sin(α− β)C(k′)C(p)], (10.25)

where denr is given in Eq. (10.24). We compute Su1u1(k′|p|q) using the correlation

function described earlier.

10.2.2 Computation of =〈u1(q, t)u2(p, t)u2(k′, t)〉

Using Eq. (9.27a), we write u2(k′, t) in terms of Green’s function as

u2(k′, t) = ik′
∫ t

−∞
dt′G(k′, t− t′)[sin γu∗1(p, t′)u∗2(q, t′)− sinβu∗1(q, t′)u∗2(p, t′)],

(10.26)
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substitution of which in the triple correlation and following similar steps as in the

previous subsection yields

=〈u1(q, t)u2(p, t)u2(k′, t)〉 =
1

denr
[k′ sinβC(q)(C(k′)− C(p))

+k′ sin γ
HK(p)

p

HK(q)

q
− p sin γ

HK(k′)

k′
HK(q)

q

+q sin(α− β)
HK(k′)

k′
HK(p)

p
], (10.27)

where denr is given in Eq. (10.24). We now compute Su2u2(k′|p|q) using the

correlation function described earlier. A sum of Su1u1(k′|p|q) and Su2u2(k′|p|q)

yields Suu(k′|p|q). For subsequent computation, we assume that the flow is

nonhelical, that is, HK = 0.

To understand the properties of 〈Suu(k′|p|q)〉 in the inertial range, we assume

that k′, p, q lie in the inertial range, and that

Cu(k) =
Eu(k)

4πk2
=
KKo

4π
Π2/3
u k−11/3. (10.28)

In Fig. 10.1 we present the density plot of 〈Suu(k′|p|q)〉 in logarithmic scale. Here

the x and y axes are p/k and q/k respectively. We observe that in most regions,

〈Suu(k′|p|q)〉 > 0 for p < k;

〈Suu(k′|p|q)〉 < 0 for p > k.

3

2

1

0
0 1 2 3

q
k/

p k/

103

0

–105

Figure 10.1 For 3D hydrodynamic turbulence, density plot of mode-to-mode
KE transfer 〈Suu(k′|p|q)〉 computed using field theory. Figure
indicates significant KE transfer from small p (p� k) to k.

Hence, wavenumbers p with p < k transfer KE to k, while wavenumbers p with

p > k receive KE from k. This indicates that the mode-to-mode KE transfer in 3D
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hydrodynamic turbulence is forward. In addition, as shown in Fig. 10.1,

〈Suu(k′|p|q)〉 is strong when p/k � 1, hence the mode-to-mode KE transfer is

predominantly nonlocal (see Fig. 10.2(a)). Also, in an equilateral triangle for which

α = β = γ = π/3, there is no KE exchange among the modes of the triad. See

Fig. 10.2(b) for an illustration. Domaradzki and Rogallo (1990) and Verma et al.

(2005) showed that 3D hydrodynamic turbulence exhibits nonlocal mode-to-mode

energy transfers but local shell-to-shell transfers. Refer to the original papers for

further details.

k’
q

p

p q

k’

0

0 0

(a) (b)

Figure 10.2 For 3D hydrodynamic turbulence, (a) 〈Suu(k′|p|q)〉 is dominant
when p� k, and (b) 〈Suu(k′|p|q)〉 = 0 when k = p = q.

To diagnose the energy transfers further, we compute 〈Su1u1(k|p|q)〉 and

〈Su2u2(k|p|q)〉 separately. We observe that

〈Su1u1(k|p|q)〉 � 〈Su2u2(k|p|q)〉. (10.29)

Hence, the total mode-to-mode energy transfer in 3D hydrodynamic turbulence is

dominated by 〈Su2u2(k′|p|q)〉. In Fig. 10.3(a) and (b) we present the density plots

of Su1u1(k|p|q) and Su2u2(k|p|q). These figures indicate that the nature of energy

transfer of Su2u2(k|p|q) is very similar to that of Suu(k|p|q). However, the energy

transfers of Su1u1(k|p|q) are approximately opposite to that of Su2u2(k|p|q). We

will revisit Su1u1(k|p|q) in Section 10.3.

Due to lack of space, we do not describe the properties of 〈Suu(k′|p|q)〉 in more

detail. The aforementioned results however show that important deductions can be

made using field-theoretic computations.
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(b)

Figure 10.3 For 3D hydrodynamic turbulence, density plots of mode-to-mode
KE transfers: (a) 〈Su1u1(k′|p|q)〉 and (b) 〈Su2u2(k′|p|q)〉. See
Eqs. (10.25, 10.27).

10.2.3 Computation of kinetic energy flux and shell-to-shell kinetic
energy transfer

Using 〈Suu(k′|p|q)〉 computed in the previous subsection, we can compute average

kinetic energy flux, Πu(k0), as

〈Πu(k0)〉 =
∑
|p|≤k0

∑
|k|>k0

〈Suu(k|p|q)〉. (10.30)

For the computation of this integral (or sum), refer to Leslie (1973) and McComb

(1990). They obtain an expression of the following form:

〈Πu(k0)〉 = Πu

K
3/2
Ko

ν∗
I, (10.31)

where I is the value of the integral, a nondimensional number, and KKo is

Kolmogorov’s constant. The constant ν∗ is computed analytically using

renormalization group approach (see Appendix C; McComb (1990, 2014);

McComb and Shanmugasundaram (1983, 1984); Zhou et al. (1988); Zhou (2010);

Verma (2004)). Also, 〈Πu(k0)〉 = Πu, the kinetic energy flux. These relations help

us deduce KKo as

KKo =
(ν∗
I

)2/3

. (10.32)
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180 Energy Transfers in Fluid Flows

These computations yield KKo to be approximately 1.6 (Leslie, 1973; McComb,

1990). We will not provide a detailed account of these computations here.

A similar approach can be adopted for the shell-to-shell energy transfer. We

compute the normalized shell-to-shell KE transfer from shell m to shell n, T u,mu,n ,

using the values of KKo and ν∗. For these computations, the ratio of the adjacent

shell radii, kn+1/kn = 21/4. T u,mu,n plotted in Fig. 10.4 show that the energy transfers

are local and forward. Interestingly, for the same kn+1/kn ratio, the field-theoretic

values match quite well with the DNS results (Verma et al., 2005).
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Figure 10.4 For 3D hydrodynamic turbulence, shell-to-shell KE transfer T u,murn

from shell m to shell n. The plot indicates local and forward energy
transfer.

10.2.4 Energy transfers for absolute equilibrium turbulence or Euler
turbulence

In Sections 4.5 and 5.4 we briefly discussed the energy transfers for equilibrium or

Euler turbulence. For such flows, the modal energies for all the Fourier modes are

equal, that is, Cu(k) = C, where C is a constant. When we substitute the above

form of modal energy in Eq. (10.25), we obtain

=〈u1(q, t)u1(p, t)u1(k′, t)〉 =
C2

denr
[k′ sin(β − γ) + p sin(γ − α) + q sin(α− β)

= 0 (10.33)

because

sinα

k
=

sinβ

p
=

sin γ

q
. (10.34)
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In addition, Eq. (10.27) with HK = 0 yields

=〈u1(q, t)u2(p, t)u2(k′, t)〉 =
1

denr
[k′ sinβC(q)(C(k′)− C(p))] = 0.

Therefore, for an equilibrium configuration, Suu(k′|p|q) = 0, or, there is no energy

exchange from one mode to another. Therefore, Πu(k) = 0. This is what is

expected for an equilibrium system, and it is captured quite nicely by

field-theoretic calculations.

In the next section, we will briefly describe the energy and enstrophy transfers

in 2D hydrodynamic turbulence.

10.3 Energy and Enstrophy Transfers in 2D Hydrodynamic
Turbulence

In 2D hydrodynamics, u2 = 0, hence,

〈Suu(k|p|q)〉 = 〈Su1u1(k|p|q)〉. (10.35)

In a 2D turbulence forced at k = kf , the kinetic energy exhibits inverse cascade in

the wavenumber regime k < kf where Eu(k) ∼ k−5/3. In the wavenumber regime

k > kf , the enstrophy cascades is in the forward direction and Eu(k) ∼ k−3. See

Chapter 7 for details. In this section, we will discuss the properties of 〈Suu(k|p|q)〉
in the k < kf regime where kinetic energy cascades from small scales to large scales.

We compute 〈Suu(k|p|q)〉 in 2D hydrodynamic turbulence using Eq. (10.25).

In this expression, we substitute Kolmogorov’s spectrum for the kinetic energy. In

Fig. 10.5, we exhibit the density plot of 〈Suu(k|p|q)〉 as a function of p/k and q/k. As

shown in the figure, 〈Suu(k|p|q)〉 is strongly negative when p/k → 0. Hence, small p

modes receive energy from intermediate scale wavenumbers k (k � p) via nonlocal

transfer (see the left oval of Fig. 10.5). These energy transfers are responsible for

the inverse energy cascade.

Now we focus on the bottom oval of Fig. 10.5. In this regime, Suu(k|p|q) > 0

when p < k, and vice versa when p > k. It implies forward energy transfers for

neighboring wavenumber modes. Thus, in 2D hydrodynamic turbulence, we have

local forward energy transfers and nonlocal inverse energy transfers.

We also perform energy flux and shell-to-shell energy transfer computations for

2D turbulence in the k−5/3 regime. We compute Kolmogorov’s constant for 2D

hydrodynamic turbulence following the same scheme as described in the previous

section. For ν∗ = −0.6, we find that KKo ≈ 6.3 (Verma, 2004). We plot the

shell-to-shell energy transfers in Fig. 10.6 that shows several interesting features.

The shell-to-shell energy transfers from shell m to m+ 1,m+ 2 are forward and
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Figure 10.5 For 2D hydrodynamic turbulence, density plot of mode-to-mode
KE transfer 〈Suu(k′|p|q)〉 computed using field theory. The figure
indicates that small p modes receive KE from modes with k � p
via nonlocal transfer; these transfers are responsible for the inverse
cascade. There are forward and local transfers for modes with
p/k ≈ 1.

significant. But those from m + i with i > 2 are negative (inverse), but small

(see Fig. 10.6). These negative transfers are responsible for the inverse energy

cascade in the k−5/3 regime, and they are consistent with the mode-to-mode energy

transfers described in the previous paragraph. Similar results were observed in direct

numerical simulations of 2D hydrodynamic turbulence (see Chapter 7 and Gupta

et al. (2018)).
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Figure 10.6 For 2D hydrodynamic turbulence, plot of shell-to-shell KE transfer
T u,mu,n from shell m to shell n vs. n −m. The plot indicates local
forward KE transfers (from m to m + 1,m + 2), and nonlocal
backward energy transfers.
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Field-theoretic Treatment of Energy Transfers 183

Moreover, the energy flux is a cumulative sum of many shell-to-shell energy

transfers. Consider a wavenumber sphere that contains all the shells up to shell m.

If we assume that energy transfers are scale invariant, that is, T u,mu,n = T u,m+i
u,n+i , then

the energy flux crossing the aforementioned sphere is

Πu(k) =
∞∑

n=m+1

(n−m)T u,mu,n . (10.36)

Verma et al. (2005) computed T u,mu,n in the k−5/3 regime of 2D hydrodynamic

turbulence, and showed that

∞∑
n=m+1

(n−m)
T u,mu,n

Π
= −1, (10.37)

which is consistent with the inverse cascade of kinetic energy in this regime. The

nonlocal and backward shell-to-shell transfers contribute to the negative sum (see

Fig. 10.6).

It is straightforward to compute the mode-to-mode enstrophy transfer in 2D.

Using Eq. (6.25), we deduce that

Sωω(k|p|q) =
kp

cos γ
Suu(k|p|q). (10.38)

In Fig. 10.7, we exhibit the density plot of Sωω(k|p|q) in the k < kf regime. The

enstrophy transfer comes with both positive and negative signs in approximately

the same measure, and they tend to cancel each other. The strong fluctuations
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Figure 10.7 For 2D hydrodynamic turbulence, density plot of mode-to-mode
enstrophy transfer 〈Sωω(k′|p|q)〉 computed using field theory.
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184 Energy Transfers in Fluid Flows

in numerically-computed enstrophy flux, which was reported in Section 7.4, may

be due to the aforementioned reasons. Also refer to Boffetta and Ecke (2012) for

further details on Πω. The forward enstrophy cascade regime of 2D turbulence is

interesting as well. However, we do not perform field-theoretic computation for this

regime here.

In the next section we describe the mode-to-mode kinetic energy and kinetic

helicity transfers in helical hydrodynamic turbulence.

10.4 Kinetic Energy and Helicity Transfers in Helical Turbulence

First, we estimate the effects of kinetic helicity on the kinetic energy flux. Using

Eqs. (10.25, 10.27), we deduce that the kinetic helicity can influence 〈Suu(k′|p,q)〉
and kinetic energy flux only through 〈Su2u2(k′|p,q)〉. Following the discussion of

helical turbulence of Chapter 7.4, in the expressions of Eq. (10.27), we substitute

HK(k)

k
∼ k−8/3;

HK(k)

kEu(k)
= rK , (10.39)

where rK is a constant. For the computation of 〈Suu(k′|p,q)〉 of helical turbulence,

we take rK = 0.3. The computed 〈Suu(k′|p,q)〉’s are plotted in Fig. 10.8(a). When

we compare this transfer with its nonhelical counterpart shown in Fig. 10.1, we

observe that the plots are roughly similar, except that the negative regions are
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Figure 10.8 For 3D helical hydrodynamic turbulence, density plot of mode-
to-mode (a) KE transfer 〈Suu(k′|p|q)〉, and (b) kinetic helicity
transfer 〈SHK (k′|p|q)〉. For these computations we choose
HK(k)/kEu(k) = 0.3.
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more prominent in the helical turbulence. These results are consistent with the

fact that kinetic helicity does not affect the kinetic energy flux significantly (see

Chapter 7.4).

After the discussion on energy flux, we derive an expression for the mode-to-mode

kinetic helicity transfer using field-theoretic arguments. We start with Eq. (9.46):

SHK (k′|p|q) = −= [u(q) · ω(p)× ω(k′)}]

= −k′p sinα<{u1(q)u2(p)u1(k′)} − k′p sinβ<{u1(q)u1(p)u2(k′)}

+k′p sin sin γ<{u2(q)u2(p)u2(k′)}. (10.40)

To zeroth order, SHK (k′|p,q) = 0, hence we go to the next order. For the same, we

expand one of the arguments using Green’s function. Following similar steps as in

Section 10.2, we obtain the following formula for the mode-to-mode kinetic helicity

transfer:

〈SHK (k′|p|q)〉 = −kp sinα[k sin(γ − β)
HK(p)

p
C(q)− q sin(β − α)

HK(p)

p
C(k)

+ sinβ{HK(k)C(q)−HK(q)C(k)}]

−kp sinβ[p sin(γ − α)
HK(k)

k
C(q) + q sin(α− β)

HK(k)

k
C(p)

+ sinα{HK(p)C(q)−HK(q)C(p)}]

+kp sin γ[−k sin γ
HK(p)

p
C(q)

+p sin γ
HK(k)

k
C(q)− q sinβ

HK(k)

k
C(p)]. (10.41)

We plot 〈SHK (k′|p|q)〉 computed using HK(k) prescribed in Eq. (10.39). The

resulting kinetic helicity transfer is plotted in Fig. 10.8(b). The figure shows a

mixture of positive and negative transfers.

Field-theoretic treatment of turbulence is an extensive topic. Here we only sketch

some of the main results of the field. A novelty of the treatment presented here is an

introduction of mode-to-mode energy transfers, and an application of Craya-Herring

basis for these computations. These computations provide valuable insights to the

physics of turbulence.

Further Reading

There is an extensive literature on the field-theoretic treatment of turbulence.

Here we list only a small fraction of them. McComb (1990, 2014); Leslie (1973);
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186 Energy Transfers in Fluid Flows

Adzhemyan et al. (1999) are textbooks on this subject. For research papers, refer

to Kraichnan (1959); Yakhot and Orszag (1986); McComb et al. (1992); Zhou

(2010); Verma (2004); Verma et al. (2005), and references therein.

Exercises

1. Derive the transfer functions of Eqs. (10.25, 10.27, 10.41) yourself.

2. Derive Sωω(k′|p|q) and Sωu(k′|p|q) for 3D hydrodynamic turbulence using field-theoretic
arguments.

3. List the major assumptions of the field-theoretic treatment described in this chapter. Are they
likely to breakdown?
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Chapter 11

Energy Transfers in Anisotropic
Flows

Many natural and engineering flows become anisotropic on introduction of a

strong external force and/or walls. Consequently, the structures in such flows

exhibit anisotropy. A terrestrial hurricane which is created due to the strong

rotation and gravity of the Earth is one such example.

In the earlier chapters we discussed the shell spectrum, energy flux, and shell-

to-shell energy transfers that are averaged quantities over the polar angle. Hence,

these measures do not capture angular anisotropy. For the description of scale-by-

scale anisotropy, we divide the Fourier space along the polar angle, and construct

measures that capture the anisotropic energy distribution and energy transfers.

11.1 Ring Spectrum for Spherical Rings

First, we discuss the energy contents of an anisotropic flow in various regions of

Fourier space. We assume the asymmetry direction to be along ẑ. Hence, the flow

is symmetric azimuthally (along φ), but asymmetric along the polar angle ζ.1

Hence, the energy contents in Fourier space depend on both k and ζ. Therefore, we

divide a wavenumber shell into rings as shown in Fig. 11.1. A ring is

1In this book, we denote the polar angle by ζ. The usual symbol θ is used to denote the passive scalar and
temperature fluctuations.
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188 Energy Transfers in Fluid Flows

characterized by two indices—the shell index k and the sector index β (Teaca et al.,

2009; Reddy and Verma, 2014; Verma, 2017).

Note that the anisotropy direction is along ζ = 0. For convenience, we call the

rings containing ζ = 0 and ζ = π/2 as the polar and the equatorial rings respectively.

The energy spectrum of a ring, called the ring spectrum, is defined as

Eu(k, β) =
1

Norm(k, β)

∑
k−1<k′≤k;

∠k′∈(ζβ−1,ζβ ]

1

2
|u(k′)|2, (11.1)

where ∠k′ is the angle between k′ and the unit vector ẑ (anisotropy direction).

The sector β contains the modes between the polar angles ζβ−1 to ζβ, as shown in

Fig. 11.1(b), with a caveat. The band (ζβ−1, ζβ] means open interval from the left

and closed interval from the right, that is, modes with ζ = ζβ are included, but the

modes with ζ = ζβ−1 are not.

Shell
kz

g

z
k

ky

kx

Rings

g z
b

z
b – 1

k – 1 k

Shell

Ring

Sector

(a) (b)

Figure 11.1 A schematic diagram exhibiting spherical rings. (b) A vertical cross
section of a wavenumber sphere exhibiting shells, sectors, and rings.
From Nath et al. (2016). Reprinted with permission from APS.

For a uniform ∆ζ = ζβ − ζβ−1, the sectors near the equator contain more modes

than those near the poles. In addition, the number of Fourier modes in a ring

of radius k is proportional to k2 sin ζ, whose integral for the ring (k, β) yields the

following approximate number of modes in the ring:

No of modes = 2πk2| cos(ζβ−1)− cos(ζβ)|. (11.2)

Therefore, we employ one of the two normalization in Eq. (11.1):

Norm1(k, β) = 2πk2| cos(ζβ−1)− cos(ζβ)|. (11.3a)
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Norm2(k, β) = | cos(ζβ−1)− cos(ζβ)|. (11.3b)

Under the choice of Norm1(k, β), Eu(k, β) is an average energy content of a Fourier

mode in a ring. On the other hand, the second normalization only compensates for

the polar angle dependence; under this definition, Eu(k, β) has similar k dependence

as Eu(k). Note that for both the definitions,

E(k) =
∑
β

Norm(k, β)Eu(k, β). (11.4)

We also define the ring spectra for the perpendicular and parallel components of the

velocity as

Eu,⊥(k, β) =
1

Norm(k, β)

∑
k−1<k′≤k;

∠(k′)∈(ζβ−1,ζβ ]

1

2
|u⊥(k′)|2, (11.5a)

Eu,‖(k, β) =
1

Norm(k, β)

∑
k−1<k′≤k;

∠(k′)∈(ζβ−1,ζβ ]

1

2
|u‖(k′)|2, (11.5b)

where

u‖(k
′) = u(k′) · ẑ, (11.6a)

u⊥(k′) = u(k′)− ẑu‖(k′). (11.6b)

Note that the total energy

Eu(k, β) = Eu,⊥(k, β) + Eu,‖(k, β). (11.7)

We can define energy contents of a sector β as

Eu(β) =
∑
k

Eu(k, β), (11.8a)

Eu,⊥,‖(β) =
∑
k

Eu,⊥,‖(k, β). (11.8b)

In the next section we extend the above definition of the ring spectrum to cylindrical

rings.

11.2 Ring Spectrum for Cylindrical Rings

Cylindrical rings, illustrated in Fig. 11.2, is another type of ring decomposition. We

divide k⊥ into shells (k⊥ − 1, k⊥), and k‖ into vertical segments. A cylindrical ring
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is specified by a shell index k⊥ and a height index i, where the ith segment contains

k‖ in the range (Hi−1 : Hi] (open interval in the left and closed interval in the right).

The energy spectrum of this cylindrical ring is defined as

Eu(k⊥, i) =
1

Norm(k⊥, i)

∑
k−1<k′⊥≤k
Hi−1<k

′
‖≤Hi

1

2
|u(k′)|2. (11.9)

Since the number of modes in a cylindrical ring is approximately 2πk⊥(Hi −Hi−1),

we could employ two types of normalization:

Norm1(k⊥, i) = 2πk⊥(Hi −Hi−1), (11.10a)

Norm2(k⊥, i) = (Hi −Hi−1). (11.10b)

With the first normalization, Eu(k⊥, i) yields an average energy content of a Fourier

mode in a ring. However, the second normalization does not compensate for k⊥
factor. We can define Eu,⊥(k, i) and Eu,‖(k, i) in a similar manner.

H
i–1 H

i

k^

k^–1

Figure 11.2 A schematic diagram of a cylindrical ring. The inner and outer radii
of the ring are k⊥−1 and k⊥ respectively, while its vertical extent is
from Hi−1 to Hi. From Verma (2018). Reprinted with permission
from World Sci.

In an anisotropic flow,

〈|ux(k)|2〉 = 〈|uy(k)|2〉 6= 〈|uz(k)|2〉. (11.11)
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Therefore, as discussed in Chapter 3, the anisotropic parameter

A(k) =
Eu,⊥(k)

2Eu,‖(k)
. (11.12)

is another measure of anisotropy. See Section 3.2 for details.

In the next section we quantify the anisotropic energy transfers using ring-to-ring

transfers.

11.3 Ring-to-ring Energy Transfers

In Chapter 4, we introduced the energy flux that captures the energy transfers from

the modes inside the sphere to the modes outside the sphere. Similarly, the shell-

to-shell energy transfers tell us about the energy transfers from a shell to another

shell. Unfortunately these diagnostics are averaged over the polar angle; hence,

they do not describe the anisotropic energy transfers. In this section we introduce

ring-to-ring energy transfers that capture the anisotropic effects.

As described in Section 11.1, we divide the Fourier space into a set of rings.

The energy transfers among these rings are defined as follows. The modes in a ring

(m,α), where m and α represent the shell and sector indices of the ring, interacts

with all other rings. The ring-to-ring kinetic energy transfer from ring (m,α) to

ring (n, β) is

T
(u,m,α)
(u,n,β) =

∑
k∈(n,β)

∑
p∈(m,α)

Suu(k|p|q), (11.13)

where q = k− p, and Suu(k|p|q) is the mode-to-mode energy transfer defined in

Section 4.1. T
(u,m,α)
(u,n,β) is computed using the procedure described in Section 4.11.

Note that numerical computation of the ring-to-ring energy transfers for all the

rings is very time-consuming since it involves a large number of rings.

For cylindrical rings, the energy transfer from ring (m, i1) to ring (n, i2) is given

by

T
(u,m,i1)
(u,n,i2) =

∑
k∈(n,i2)

∑
p∈(m,i1)

Suu(k|p|q), (11.14)

where q = k− p, Suu(k|p|q) is the mode-to-mode energy transfer; m,n are shell

indices; and i1, i2 are height indices.

In anisotropic flows, the velocity components parallel and perpendicular to the

anisotropy direction have different energies. Therefore, there is a preferential
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energy transfer either from the equatorial region to the polar region or vice versa.

In quasi-static magnetohydrodynamics (QS MHD) with large interaction

parameters, u⊥ � u‖, and hence the kinetic energy tends to flow from the equator

to the polar region (Reddy et al., 2014; Verma, 2017). A similar trend has been

observed in magnetohydrodynamic (MHD) turbulence (Teaca et al., 2009; Sundar

et al., 2017) and in rotating turbulence. However, in turbulent thermal convection,

the anisotropic energy transfer is in the reverse direction, that is, from the polar

region to the equator region (Nath et al., 2016) because u‖ > u⊥ in turbulent

thermal convection. We will revisit these systems in later parts of this book.

A corollory of the aforementioned properties: In isotropic turbulence, there is no

energy transfer among the spherical rings of the same radius k due to the rotation

symmetry. That is, for all α, β,

T
(u,n,α)
(u,n,β) = 0 (11.15)

on an average. However, in an anisotropic flow, these transfers will be nonzero. In

strong MHD and QS MHD turbulence, Eu(m,β) > Eu(m,α) for β > α. Hence, we

expect that

T
(u,n,α)
(u,n,β) < 0 (11.16)

for such systems. However, the inequality is reversed in turbulent thermal convection

because the rings closer to the poles have more energy than those away from it.

In the following section, we will describe how energy is exchanged between u‖
and u⊥ in anisotropic turbulence.

11.4 Anisotropic Energy Fluxes, and u‖ ↔ u⊥ Energy Exchange

In an anisotropic turbulence, E⊥ 6= 2E‖; hence, we expect energy transfers from E⊥
to E‖, or vice versa. In this section we compute these transfers and show them to

be facilitated by the pressure.

In Section 4.1, we showed that pressure does not participate in the mode-to-mode

energy in an incompressible flow. However, the pressure redistributes the energy

between E‖(k
′) and E⊥(k′) in an anisotropic turbulence. We derive these results in

the following.

Using Eq. (3.17) we obtain the following equations for u⊥(k) and u‖(k):

d

dt
u‖(k) = i

∑
q

[k · u(q)]u‖(p)− ik‖p(k) + Fu(k)− νk2u‖(k), (11.17a)

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316810019.012
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 04 Jul 2019 at 22:23:57, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316810019.012
https://www.cambridge.org/core


Energy Transfers in Anisotropic Flows 193

d

dt
u⊥(k) = i

∑
q

[k · u(q)]u⊥(p)− ik⊥p(k)− νk2u⊥(k′), (11.17b)

where q = k− p, p is the pressure, and Fu is along the anisotropy direction. Note

that the external force is assumed to act along u‖. As in Section 3.2, we define

modal kinetic energy for u‖(k) and u⊥(k), which are

∂E‖(k
′)

∂t
=

∑
p

S‖(k
′|p|q) + P‖(k′)− 2νk′2E‖(k

′) + <(u∗‖(k
′)Fu(k′)),

(11.18a)

∂E⊥(k′)

∂t
=

∑
p

S⊥(k′|p|q) + P⊥(k′)− 2νk′2E⊥(k′), (11.18b)

where k′ + p + q = 0, k′ = −k, and

S⊥(k′|p|q) = −={[k′ · u(q)] [u⊥(k′) · u⊥(p)]} , (11.19a)

S‖(k
′|p|q) = −=

{
[k′ · u(q)]

[
u‖(k

′)u‖(p)
]}
, (11.19b)

P⊥(k′) = −={[k′⊥ · u⊥(k′)] p(k′)} , (11.19c)

P‖(k′) = −=
{[
k′‖u‖(k)

]
p(k′)

}
. (11.19d)

Note that S⊥(k′|p|q) and similar formulas for other modes satisfy Eqs. (4.10, 4.11)

as long as the giver and receiver modes are u⊥, while the mediator mode is full u.

Hence, following the same arguments as in Section 4.1, we can argue that S⊥(k′|p|q)

represents the energy transfer from u⊥(p) to u⊥(k′) with u(q) acting as a mediator.

Following similar arguments we can show that S‖(k
′|p|q) represents the energy

transfer from u‖(p) to u‖(k
′) with u(q) acting as a mediator.

Following the arguments of Section 4.1, it is easy to show that∑
k′

∑
p

S⊥(k′|p|q) = 0;
∑
k′

∑
p

S‖(k
′|p|q) = 0 (11.20)

for the modes in a triad (k′,p,q), as well as for the whole system. In addition, using

k′ · u(k′) = 0, we can show that

P⊥(k′) + P‖(k′) = 0. (11.21)

Now let us assume that ν = 0 and Fu = 0. For this case, we sum the terms of

Eqs. (11.18) over all k′ of the triad that yields

d

dt

∑
k′′

Eu,⊥(k′′) =
∑
k′′

P⊥(k′′), (11.22a)
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d

dt

∑
k′′

Eu,‖(k
′′) =

∑
k′′

P‖(k′′). (11.22b)

Therefore, using Eq. (11.21), we can show that for a triad∑
k′′

[Eu,⊥(k′′) + Eu,‖(k
′′)] = constant, (11.23)

and that

1. P⊥(k′′) is the energy transfer from u‖(k
′′) to u⊥(k′′).

2. P‖(k′′) is the energy transfer from u⊥(k′′) to u‖(k
′′).

Thus, Eq. (11.18b) reveals that Eu,⊥(k) receives energy from Eu,‖(k) with a rate of

P⊥(k). The energy gained by u⊥(k) via pressure equals the energy lost by u‖(k).

Thus, pressure plays an important role in the energy exchange between u‖ and u⊥.

It is important to note that there is no direct energy transfer between u⊥(k) and

u‖(k). It follows from the fact that the nonlinear transfer does not have a term of

the type [u∗⊥(k) · u‖(p)] (which would anyway vanish since they are perpendicular

to each other)

Following the arguments similar to those in Section 4.4, we define the energy flux

for u⊥ using S⊥(k′|p|q). The energy flux Πu,⊥(k0) is defined as the transfer of u2
⊥/2

from all the modes residing inside the wavenumber sphere of radius k0 to the modes

outside the sphere, and is given by

Πu,⊥(k0) =
∑
|k|>k0

∑
|p|≤k0

S⊥(k′|p|q). (11.24)

Similarly, for u‖, the energy flux Πu,‖(k0) is defined as

Πu,‖(k0) =
∑
|k|>k0

∑
|p|≤k0

S‖(k
′|p|q). (11.25)

The total kinetic energy flux Πu is a sum of Πu,⊥ and Πu,‖:

Πu(k0) = Πu,⊥(k0) + Πu,‖(k0). (11.26)

We can make the following interesting corollary. Using Eqs. (11.20), we derive

the temporal evolution of Eu,⊥ as

d

dt
Eu,⊥ =

∑
k′

P⊥(k′)−
∑
k′

2νk′2Eu,⊥(k). (11.27)
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Thus, the viscous term dissipates Eu,⊥. Hence, for a steady state, Eu,⊥ needs an

energy source, which is provided by P⊥; Eu,⊥ would vanish without P⊥. The term

P⊥ is the energy supply to u⊥ by u‖. This mechanism is present in turbulent thermal

convection. Here, buoyancy feeds E‖, which in turn feeds E⊥.

In the next chapter, we will describe the energy transfers in real space.

Further Reading

For a discussion on the ring spectrum and ring-to-ring energy transfers in MHD

turbulence, refer to Teaca et al. (2009); Sundar et al. (2017). These ideas have been

extended to liquid metals by Reddy and Verma (2014); Verma (2017); these works

also discuss energy transfers among u⊥ and u‖ modes via pressure. Nath et al.

(2016) discuss the anisotropy in turbulent thermal convection.
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Chapter 12

Turbulence Properties in Real
Space and K41 Theory

In Chapter 5 we described spectral energy flux and spectrum of three-dimensional

hydrodynamic turbulence. We showed that in the inertial range:

Πu(k) = εu; Eu(k) = KKoε
2/3
u k−5/3, (12.1)

where εu is the energy dissipation rate, and KKo is Kolmogorov’s constant.

In 1941, Kolmogorov (1941c) and Kolmogorov (1941a) derived the laws of

turbulence in real space. Using similarity hypothesis, Kolmogorov (1941c) showed

that for a homogeneous, isotropic, incompressible, and steady hydrodynamic

turbulence, the second order correlation varies as

〈u(r + l) · u(r)〉 = u2
rms − cε2/3u l2/3, (12.2)

where c is a constant. Throughout this chapter, 〈·〉 represents ensemble averaging.

The Fourier transform of this correlation yields Kolmogorov’s k−5/3 energy

spectrum. In a companion paper, Kolmogorov (1941a) showed that in the limit of

infinite Reynolds number, the third order structure function〈
(4u)

3

‖

〉
= −4

5
εul, (12.3)

where (4u)|| is the component of u(x + l)−u(x) along l. This is an exact relation.
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In this chapter we present Kolmogorov’s original results. In the later part of the

chapter, we will describe the properties of higher order structure functions.

12.1 Second Order Correlation Functions

We consider two real space points at r and r + l where the velocity fields are u(r)

and u(r + l) respectively (see Fig. 12.1). For brevity, we employ symbols r′, ui, u
′
i,

∂i, ∂
′
i to denote r + l, ui(r), ui(r + l), ∂/∂xi, ∂/∂x

′
i respectively.

u r l( + )

u r( )

y

r
r l+

l

x

l

nu2

u1

u¢1

u¢2

(a) (b)

Figure 12.1 (a) We consider two points located at r and r + l. The velocity
fields at the two points are u(r) and u(x + r) respectively. (b) The
components of velocity fields along l are u1 and u′1 respectively.
The perpendicular components are u2, u3, u′2 and u′3 respectively.
n = l/l is the unit vector along l.

Kolmogorov assumed the velocity field to be random. In addition, the flow is

assumed to be statistically homogeneous, isotropic, and steady. The homogeneity

property implies that the correlation functions are invariant under space translation,

and they depend only on the separation between the points. For example, for the

two points of Fig. 12.1,

〈ui(r, t)uj(r + l, t)〉 = Cij(l, t). (12.4)

For a steady flow, the correlation function is independent of time (t). For isotropic

flows, the correlation functions are invariant under rotation of the reference points.

Using the homogeneity property we deduce that

∂lj 〈f(r)g(r + l)〉 = ∂lj 〈f(r− l)g(r)〉 = −∂(r−l)j 〈f(r− l)g(r)〉. (12.5)
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198 Energy Transfers in Fluid Flows

Therefore,

∂′j〈fg′〉 = −∂j〈fg′〉. (12.6)

Using the isotropy of the flow, we deduce that the second order correlation function

is (Batchelor, 1953)

Cij(l) = 〈uiu′j〉 = 〈ui(r)uj(r + l)〉 = C(1)(l)ninj + C(2)(l)δij, (12.7)

where n = l/l is the unit vector along l. For the choice of coordinate system of

Fig. 12.1(b),

Cij(l) = 0 for i 6= j, (12.8)

and

C11(l) = 〈u1u
′
1〉 = C(1) + C(2) = ū2f(l), (12.9a)

C22(l) = 〈u2u
′
2〉 = C(2) = ū2g(l), (12.9b)

C33(l) = C22(l). (12.9c)

Here,

C11(0) = C22(0) = C33(0) = ū2 =
u2

3
=

2

3
u2

rms, (12.10)

and hence f(0) = g(0) = 1. In this chapter we assume that the flow respects

mirror symmetry. Hence, in Eq. (12.7) we have ignored the mirror asymmetric term

C(3)εijm(l)nm.

For the following discussion, we need the following identities:

∂jnj = ∂j(lj/l) =
1

l
∂jlj + lj∂j(1/l) =

2

l
, (12.11a)

∂jni = ∂j(li/l) =
1

l
δij −

1

l3
lilj =

1

l
Pij(n), (12.11b)

∂j(ninj) = ni∂jnj + nj∂jni =
2

l
ni, (12.11c)

where

Pij(n) = δij − ninm (12.12)
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is the projection tensor. The incompressibility condition, ∂juj = 0, implies that

∂iCij(l) = ∂jCij(l) = 0. (12.13)

Application of this relation to Eq. (12.7) yields

2

l
C(1)(l) +

d

dl
(C(1)(l) + C(2)(l)) = 0. (12.14)

Equation (12.14) yields the following relation for f(l) and g(l):

g = f +
l

2

df

dl
. (12.15)

Cauchy–Schwarz inequality leads to

〈u1u
′
1〉 ≤ |u1|2; 〈u2u

′
2〉 ≤ |u2|2. (12.16)

Hence, near l = 0, f(l) and g(l) must be convex functions with maxima at l = 0.

Therefore, for small l,

f(l) = 1 +
1

2
f ′′(0)l2 + .. ≈ 1− 1

2λ2
l2, (12.17a)

g(l) = f +
l

2
f ′ ≈ 1− 1

λ2
l2, (12.17b)

where

λ =
1√
−f ′′(0)

(12.18)

is Taylor’s microscale. We combine all the aforementioned properties to derive the

following relation:

Cii(l) ≈ ū2[f(l) + 2g(l)]

≈ ū2

[
3− 5

2λ2
l2
]
. (12.19)

Note that this correlation is valid for the dissipation range because l is assumed to

be small.

The dissipation tensor is

〈ωiω′i〉 = εijmεiαβ(∂jum)(∂′αu
′
β)

= (δjαδmβ − δjβδmα)(∂jum)(∂′αu
′
β)

= ∂j∂
′
j〈umu′m〉 − ∂′m∂j〈umu′j〉
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= −∂′j∂′j〈umu′m〉+
������
∂′m∂

′
j〈umu′j〉

= −∇2Cii(l). (12.20)

Due to isotropy of the flow, it is convenient to use spherical coordinates. Therefore,

〈ωiω′i〉 = −∇2Cii(l) = − 1

l2
d

dl
l2
d

dl
Cii(l). (12.21)

We compute the dissipation rate by substituting Cii(l) from Eq. (12.19) in

Eq. (12.21):

εu = ν〈ωiωi〉 = 15
νū2

λ2
. (12.22)

We employ the identity:

∂2

∂l2x
〈u1u

′
1〉 = 〈u1

∂2

∂l2x
u′1〉 = 〈u1

∂

∂lx
u′1|surface〉 − 〈(∂u1/∂x1)2〉

= −〈(∂u1/∂x1)2〉 (12.23)

because the surface term is zero due to periodic or vanishing boundary condition.

Therefore,

〈(∂u1/∂x1)2〉 = ū2/λ2. (12.24)

The Reynolds number based on Taylor’s microscale is defined as

Reλ =
ūλ

ν
. (12.25)

Equations (12.22, 12.10) and the definition Re = urmsL/ν yield

λ = ū

√
15ν

εu
= urms

√
2/3

√
15νL

u3
rms

= L

√
10

Re
. (12.26)

Therefore,

Reλ =
ūλ

ν
=

√
20Re

3
. (12.27)

In the next section, we derive the third order correlation and structure functions.
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12.2 Third Order Correlation and Structure Functions

We define the third order correlation function as

Cij,m(l) = 〈uiuju′m〉. (12.28)

For isotropic flows, we express Cij,m(l) using the isotropic tensor:

Cij,m(l) = A(l)δijnm +D(l)(δimnj + δjmni) + F (l)ninjnm. (12.29)

The incompressibility condition yields

∂mCij,m(l) = 0, (12.30)

application of which to Eq. (12.29) yields

lA′ + 2(A+D) = 0, (12.31a)

(2D′ + F ′)l + 2F − 2D = 0. (12.31b)

In the above expressions, ′ is shorthand for the derivative with respect to l. Using

the aforementioned equations, we derive

[l2(3A+ 2D + F )]′ = 0. (12.32)

Hence,

3A+ 2D + F =
const.

l2
. (12.33)

The correlation is finite for l = 0, which is possible only if the constant in Eq. (12.33)

vanishes. Therefore,

3A+ 2D + F = 0. (12.34)

Equations (12.31, 12.34) yield

D = −(A+ lA′/2), (12.35a)

F = lA′ −A. (12.35b)

Hence, the final form for Cij,m tensor is

Cij,m(l) = A(l)δijnm − (A+ lA′/2)(δimnj + δjmni) + (lA′ −A)ninjnm. (12.36)
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The third order structure function is defined as

Qijm(l) = 〈(u′i − ui)(u′j − uj)(u′m − u′m)〉. (12.37)

When i = j,

Qiij(l) = 〈(u′i − ui)(u′i − ui)(u′j − uj)〉

= −〈u′iu′iuj〉+ 〈uiuiu′j〉 − 2〈uiu′iu′j〉+ 2〈uiu′iuj〉. (12.38)

In this equation, we set

〈u′iu′iu′j〉 − 〈uiuiuj〉 = 0 (12.39)

due to the homogeneity of the flow.

By taking a divergence of Eq. (12.38) with relative to l and using the property

that ∂juj = 0, we obtain

∂ljQiij(l) = ∇l · 〈(u′ − u)2(u′ − u)〉 = −2∂′j〈uiu′iu′j〉+ 2∂′j〈uiu′iuj〉. (12.40)

We express the third order structure function of Eq. (12.37) in terms of the

aforementioned correlation function as

Qijm = 2(Cij,m + Cjm,i + Cim,j). (12.41)

Using the formula of Eq. (12.36), we deduce that

Qijm(l) = −2(lA′ +A)(δijnm + δimnj + δjmni) + 6(lA′ −A)ninjnm. (12.42)

Hence,

S3(l) = Q111(l) = 〈[(∆u)‖(l)]
3〉 = −12A (12.43)

and

Qiim(l) = [−4lA′ − 16A]nm, (12.44)

or

〈(u′ − u)2(u′ − u)〉 = [−4lA′ − 16A]
l

l
. (12.45)

Therefore, Eq. (12.40) can be rewritten as
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∂ljQiij(l) = ∇l · 〈(u′ − u)2(u′ − u)〉 = −4
1

l2
d

dl
l2(lA′ + 4A)

= −4
1

l2
d

dl

[
1

l

d

dl
(l4A)

]
=

1

3

1

l2
d

dl

[
1

l

d

dl
(l4S3(l))

]
. (12.46)

In the above derivation, we employ the divergence operator in spherical coordinates

system.

In the next section we derive Kolmogorov’s theory of turbulence for third order

structure function.

12.3 Kolmogorov’s Theory of Turbulence: Four-fifth Law

Kolmogorov (1941c) and Kolmogorov (1941a) derived the four-fifth law of turbulence

by relating the constant energy flux to the third order structure function. Also refer

to Landau and Lifshitz (1987), Frisch (1995), and Brachet (2000) for the derivation.

The details of the derivation are as follows. First, we derive a dynamical equation

for the second order correlation function:
∂

∂t

1

2
〈uiu′i〉 =

1

2
〈u′i

∂

∂t
ui〉+

1

2
〈ui

∂

∂t
u′i〉

=
1

2

[
−∂j〈u′i(ujui)〉 − ∂′j〈ui(u′ju′i)〉 −����∂i〈pu′i〉 −����∂′i〈p′ui〉

+〈u′iFi〉+ 〈uiF ′i 〉+ ν〈u′i∇2ui〉+ ν〈ui∇′2u′i〉
]

=
1

2

[
∂′j〈u′i(ujui)〉 − ∂′j〈ui(u′ju′i)〉+ 2〈u′iFi〉+ 2ν∇′2〈uiu′i〉

]
=

1

4
∇l · 〈(u′ − u)2(u′ − u)〉+ 〈Fiu′i〉+ ν∇′2〈uiu′i〉

= Tu(l) + Fu(l)−Du(l), (12.47)

where Tu(l) corresponds to the spectral energy transfer term Tu(k), Fu(l) is the

correlation corresponding to the energy feed by the external force, and Du(l)

corresponds to the dissipation rate. In the above expression, 〈pu′i〉 = 〈p′ui〉 = 0 due

to isotropy. In addition, in the second last step, we have used Eq. (12.40). Since

the flow is isotropic, for any function f ,

f(l) = f(l). (12.48)

Using the aforementioned property, we deduce that

∂

∂t
C(l) = Tu(l) + Fu(l)−Du(l), (12.49)
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where

C(l) =
1

2
Cii(l) =

1

2
〈uiu′i〉. (12.50)

To derive Kolmogorov’s four-fifth law, we make the following assumptions:

1. The flow is steady, hence ∂〈uiu′i〉/∂t = 0.

2. ν → 0, hence the dissipation wavenumber is at infinity.

3. We assume that the flow is forced at large scales; hence, Fu(l) is approximately

same at all scales. In spectral language, we assume that the forcing is employed

at a narrow band of small wavenumbers with an injection rate of εu. For

illustration, when Fu(k0) = Fu(−k0) = εu/2 with k0 → 0,

Fu(l) = 〈Fu(r) · u(r + l)〉 =
∑
k

Fu(k) exp(ik · l)

= εu cos(k0 · l) ≈ εu. (12.51)

4. We take the following limit: l � L or l → 0. In the inertial range, we ignore

the dissipation term ν∇′2〈uiu′i〉, and hence

Fu(l) ≈ εu ≈ −Tu(l). (12.52)

The above assumptions and an application of Eq. (12.46) yield

εu = −Tu(l) = −1

4
∇l · 〈(u′ − u)2(u′ − u)〉 = − 1

12

1

l2
d

dl

[
1

l

d

dl
(l4S3(l))

]
. (12.53)

The first integration of Eq. (12.53) yields

1

l

d

dl
(l4S3(l)) = −4εul

3. (12.54)

Multiplication of both sides of the equation by l and a subsequent integration yields1

S3(l) = −4

5
εul. (12.55)

This is the four-fifth law of Kolmogorov.

1The constants of integration vanish due to the condition that S3(l) is finite when l→ 0.
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In the above equation we can include the viscous effects in the following manner.

In Eq. (12.47), the dissipation term is

Du(l) = −ν∇′2〈uiu′i〉 = −νū2∇2(f + 2g)

= −νū2 d

l2
d

dl

[
l2
d

dl
(f + 2g)

]
= −νū

2

l2
d

dl

[
1

l

d

dl
(l4f ′)

]
. (12.56)

Under a steady state, an inclusion of Du(l) in Eq. (12.49) leads to

Du − Tu = εu, (12.57)

or

− 1

l2
d

dl

[
1

l

d

dl
{l4(νū2f ′ +

1

12
S3(l))}

]
= εu. (12.58)

This is a variant of Kármán–Howarth equation. Following similar steps as that

involved in the derivation of Kolmogorov’s four-fifth law, we derive that

νū2f ′ +
1

12
S3(l) = − 1

15
εul. (12.59)

Note that εu traverses to the inertial range and then to the dissipation range. In

the inertial range where νū2f ′ is negligible, we obtain Kolmogorov’s four-fifth law.

However, the viscous term dominates in the dissipation range. Hence, using

Eq. (12.22) and the boundary condition f(0) = 1, an integration of

νū2f ′ = − 1

15
εul (12.60)

yields

f(l) = 1− 1

2

l2

λ2
, (12.61)

which is the same as Eq. (12.17a).

From Eq. (12.55), using dimensional analysis, we can extrapolate that in the

inertial range

〈|u(r + l)− u(r)|2〉 ∼ ε2/3u l2/3. (12.62)
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Hence,

C(l) =
1

2
〈u(r + l) · u(r)〉 ∼ u2

rms(1− const× ε2/3u l2/3). (12.63)

Fourier transform of this correlation function yields k−5/3 spectrum that was

discussed in Chapter 5. In Fig. 12.2, we illustrate the velocity correlation function

in the dissipative and inertial regimes. Note that the correlation vanishes at

large l.

Dissipation
range

l

Inertial
range ~ System

size

C
l

u
(

)/
i
i

2 C

C
–

Œ

l

1

2
u

2/3
2/3

1 – 5 /(2 )l l
2 2

Figure 12.2 A schematic plot of normalized correlation function Cii(l)/ū
2 vs. l.

12.4 Another Derivation of Four-fifth Law—Frisch (1995)

In the derivation of the previous section, it was assumed that −Tu(l) ≈ εu, which

is not strictly valid. To place the derivation in a stronger footing, Frisch (1995)

provided a variant of the aforementioned derivation of the four-fifth law in terms of

energy flux. Also refer to Brachet (2000).

We start with the definition of the energy flux for a wavenumber sphere of radius

K (see Section 4.4):

Πu(K) = −
∫ K

0

Tu(k)dk = −
∫
|k|<K

Tu(k)dk. (12.64)

Since Tu(k) is the Fourier transform of Tu(l) that appears in Eq. (12.47), we obtain

Πu(K) = −
∫
|k|<K

dk

∫
dl

(2π)3
exp(−ik · l)Tu(l)

= − 1

(2π)3

∫
dlTu(l)

∫
|k|<K

dk exp(−ik · l). (12.65)
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For the k integral, we choose l along ẑ. We denote the angle between l and k by ζ.

With this, the integral becomes

Πu(K) = − 1

2π2

∫
dlTu(l)

∫
k2dkd cos ζ exp(−ikl cos ζ)

= − 1

2π2

∫
dl

sinKl −Kl cosKl

l3
Tu(l)

= − 2

π

∫ ∞
0

dl
sinKl

l
(1 + l∂l)Tu(l). (12.66)

We make a change of variable Kl = x and take the limit K → ∞. In this limit,

Πu(K) gets maximal contribution from l→ 0.

For simplification, we denote

−(1 + l∂l)Tu(l) = G(l). (12.67)

With this, under the limit K →∞,

Πu(K) = G(0)
2

π

∫ ∞
0

sinx

x
= G(0). (12.68)

In the inertial range, Πu(K) = εu, and hence, in the limit of small l, we obtain

−(1 + l∂l)Tu(l) = εu. (12.69)

This equation has the following solution:

Tu(l) = −εu +
A

l
, (12.70)

where A is a constant. Note however, Tu(l) is finite when l → 0, hence A = 0.

Therefore,

Tu(l) = −εu, (12.71)

which is same as Eq. (12.53) that yields the four-fifth law. Thus, we obtain the same

relation when we start with the spectral definition of energy flux.

12.5 Comparison with Spectral Theory

When we compare Kolmogorov’s arguments in real space with the energetics

arguments of Fourier space (Chapter 4), we observe that both the theories assume

that (a) ν → 0; (b) the flow is steady; (c) the external force field is applied at large
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208 Energy Transfers in Fluid Flows

scales. The two derivations (in real and Fourier space) are similar due to the

energetics considerations. The energy supplied by the external force cascades from

large scales to the dissipation range via the intermediate range of wavenumbers

where the energy flux remains constant.

More crucially, the forms of −Tu(l) and Πu(k) have close connections as

illustrated in Fig. 12.3. The δu’s of the product (u′ − u)2 are the giver and receiver

fields, while the third δu of −Tu(l) is the mediator field. In Πu(k), we sum over p

and k modes because δu is a linear superposition of many Fourier modes. Also

note that K = 1/l is the radius of the wavenumber sphere for which energy flux is

being computed. These arguments also indicate that −Tu(l) is a sum of many

Suu(k|p|q)’s. Note that the giver and receiver fields cannot be contrasted in real

space because −Tu(l) is a sum of all the mode-to-mode energy transfers.

1
4 lu

du is a sum over modes

P ( ) =Ku [{ ( )}{ ( ) *( )}]k   u q u p u k× ×

| |p K£

å
| |>k K

å

Mediator

Giver Receiver

Figure 12.3 Connections between the formulas −Tu(l) and the energy flux
Πu(K). We identify the receiver, giver, and mediator fields in the
figure.

Inspired by the above connections, we deduce the following relationships

between the structure functions and the energy fluxes Π⊥ and Π‖ of Section 11.4.

We consider an anisotropy direction, say ẑ, and split the velocity field into parallel

and perpendicular components as:

u(r) = u⊥(r) + u‖(r). (12.72)

Now, we split Tu(l) into two parts:

Tu,⊥(l) =
1

4
∇l · 〈(u′⊥ − u⊥)2(u′ − u)〉, (12.73a)

Tu,‖(l) =
1

4
∇l · 〈(u′‖ − u‖)

2(u′ − u)〉. (12.73b)

In Tu,⊥(l), (u′ − u) mediates energy transfers among (u′⊥ − u⊥) field components,
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while in Tu,‖(l), the energy transfer is among the (u′‖ − u‖) field components.

Therefore, it is reasonable to expect that

Π⊥(K) = −Tu,⊥(l), (12.74a)

Π‖(K) = −Tu,‖(l). (12.74b)

The above formulas would be useful for quantifying anisotropy in turbulence with

strong rotation, or magnetic field, or gravity. However, we need to verify the above

conjecture.

Kolmogorov’s theory assumes homogeneity and isotropy of the flow, but this

assumption is not required for the statement Πu(K) = const. (see Section 4.5).

This is because Πu(K) is a combined effect of the energy transfers among the modes

inside and outside the sphere of radius K. Consequently, energy flux is meaningful

for anisotropic flows as well. Hence, the energetics arguments of Fourier space, in

some sense, are more general, and they could be employed to anisotropic turbulence,

for example, to rotating turbulence, magnetohydrodynamic turbulence with external

magnetic field, and buoyancy-driven turbulence. We will discuss these topics in later

parts of the book.

In the next section, we describe the properties of higher order structure functions.

12.6 Higher Order Structure Functions of Hydrodynamic
Turbulence

In literature, the structure function of order q is defined as

Sq(l) = 〈[{u(r + l)− u(r)} · n]q〉, (12.75)

where q is a real number, but is typically taken to be an integer. Customarily, Sq(l)

is modeled as the following:

Sq(l) ∼ (〈εu〉l)ζq , (12.76)

where ζq is the exponent of Sq(l). In this section, we briefly describe several models

for Sq(l).

As described in the earlier sections, Kolmogorov derived an exact relation

between S3(l) and the viscous dissipation rate. However, all attempts to derive

exact relations for the structure functions of other orders have failed. There are

several approximate theories, some of which are listed below.
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210 Energy Transfers in Fluid Flows

A trivial generalization of Eq. (12.55) leads to

Sq(l) =
〈

(4u)
q

‖

〉
∼ (〈εu〉l)q/3 . (12.77)

However, experiments and numerical simulations reveal that ζq 6= q/3, and the

correction, ζq − q/3, is called the intermittency correction (Meneveau and

Sreenivasan, 1987; She and Leveque, 1994; Sreenivasan, 1991; Lesieur, 2008). For

example, numerical simulations and experiments show that ζ2 ≈ 0.71 6= 2/3 and

ζ10 ≈ 2.6 6= 10/3 (Meneveau and Sreenivasan, 1987; She and Leveque, 1994;

Sreenivasan, 1991). Note that ζ2 ≈ 0.71 yields E(k) ∼ k−1.71, thus the real spectral

exponent is closer to −1.71, not −5/3.

These properties of ζq are quite interesting but complex, and they are beyond the

scope of this book. Here we provide a brief description of several popular models

of ζq.

1. The derivation of Eq. (12.77) is based on an assumption that in the inertial

range, the energy flux Πu(k) is constant, that is, independent of k. This

assumption however breaks down. The energy flux fluctuates around a mean

value that makes ζq 6= q/3.

2. Kolmogorov’s log-normal model: Kolmogorov (1962) and Obukhov (1962)

argued that εu fluctuates around its mean, and the probability distribution

function of εu is log-normal. That is, the dispersion of the logarithm of εu
follows:

σ2
logεu

= A+B logL/l, (12.78)

where A and B are constants. The log-normal model yields

ζq =
q

3
− µ

18
q(q − 1). (12.79)

This model fits with numerical simulations and experiments quite well when

µ = 0.2.

3. The β-model: Frisch et al. (1978) and Novikov et al. (1997) proposed that the

energy dissipation process is fractal-like. They argued that when we go from

ln to ln+1, the dissipation rate Dn spilts into 23−δ eddies of length ln+1. Here

β = 2−δ. In this model,

ζq =
q

3
− δ

3
(q − 3). (12.80)

4. The multifractal models: Frisch and Parisi (1985) and Meneveau and

Sreenivasan (1987) modeled the variations in the energy dissipation at
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various scales using a multifractal model. Frisch and Parisi (1985) derived the

generalized dimensions in their model. In Meneveau and Sreenivasan (1987)’s

model, the viscous dissipation Du(l) at scale l is divided into two eddies of

size l/2 as pDu(l) and (1− p)Du(l). It was derived that

ζq =
(q

3
− 1
)
Dq + 1, (12.81)

where the generalized dimension Dq is given by

Dq = log2 (pq + (1− pq))1/(1−q)
. (12.82)

Several experimental data fit well with the aforementioned model when p = 0.7.

5. The log-Poisson model: She and Leveque (1994) argued that the ratio ε
(q)
l =

〈εq+1
l 〉/〈ε

q
l 〉 forms a hierarchy with ε∞l ∼ l−2/3. Using various arguments, She

and Leveque (1994) showed that

ζq =
q

3
+ 2

[
1−

(
2

3

)q/3]
. (12.83)

We illustrate the model predictions in Fig. 12.4. It is observed that She and Leveque

(1994)’s model provides best fit to experimental and numerical data. We reiterate

that there is no analytical theory to derive ζq starting from Navier–Stokes equations.

Kolmogrov

Log-normal

Log-poisson (fluid)

b –model

MHD–SL(Kolm)

MHD–SL(KID)

5

4

3

2

1

0

n
z

0 2 4 6 8 10 12 14
n

Figure 12.4 Plots of ζn vs. n for various intermittency models. The numerical
simulation and experimental data appear to fit best with She and
Leveque (1994)’s model. The functions for the MHD would be
discussed in Chapter 22. From Verma (2004). Reprinted with
permission from Elsevier.
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212 Energy Transfers in Fluid Flows

With this, we end our discussion on turbulence properties in real space. In

subsequent chapters of the book we will describe turbulence properties of scalars

and vectors in a turbulent flow. They include passive scalar, temperature field in

convection, fluid density in stably stratified flows, magnetohydrodynamics, rotating

turbulence, etc.

Further Reading

Refer to the original papers by Kolmogorov (1941c) and Kolmogorov (1941a) for

the derivation of the four-fifth law. Frisch (1995) and Brachet (2000) discuss these

derivations in more detail. For a more detailed discussion on intermittency, refer to

the textbook by Frisch (1995), as well as original papers cited in this chapter.
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FLOWS WITH SCALARS
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Chapter 13

Energy Transfers in Flows with
Scalars

In the present and the next four chapters of the book we will discuss flows with

scalars. Typical examples of scalar fields are density of dust particles, pollution,

temperature, material density, etc. These scalars may or may not affect the velocity

field. For example, massless or light dust particles do not backreact on the velocity

field, while heavy or energy-releasing particles/fields often do. The temperature field

also affects the flow via buoyancy. This property is used to classify a scalar field

either as active or passive; scalars that back-react on the velocity field are called

active, while those that do not are called passive.

In the present chapter we describe the governing equations and the energy

transfers for a scalar flow. In Chapter 14, we will describe the spectral properties

of a passive scalar, while in Chapters 15 and 16, we will describe buoyancy-driven

flows where the fluid density and temperature act as active scalars. A more

complex example called binary fluid mixture will be considered in Chapter 17.

In the next section we describe the governing equations of a flow containing a

scalar.

13.1 Governing Equations

First, we describe the equations of a flow with a scalar. The evolution equation for

the velocity field u and the scalar field θ are described respectively by the

incompressible Navier–Stokes equations and an advection equation:
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216 Energy Transfers in Fluid Flows

∂u

∂t
+ (u · ∇)u = −∇(p/ρ) + ν∇2u + Fu, (13.1a)

∂θ

∂t
+ (u · ∇)θ = κ∇2θ + Fθ, (13.1b)

∇ · u = 0, (13.1c)

where p is the pressure field, ρ is the density which is assumed to be unity, ν is the

kinematic viscosity of the fluid, κ is the diffusion coefficient of the passive scalar,

and Fu, Fθ are respectively the force fields for the velocity and scalar fields. The

ratio of the viscosity and the diffusion coefficient is called the Schmidt number (Sc)

in passive scalar literature, and the Prandtl number (Pr) for buoyancy-driven flows:

Sc =
ν

κ
; Pr =

ν

κ
. (13.2)

As we will show in subsequent chapters, this ratio plays an important role in scalar

turbulence. For the scalar equation, the ratio of the nonlinear term and the diffusion

term is the Péclet number:

Pe =
UL

κ
, (13.3)

where L is the system size, and U is the large-scale velocity of the flow.

A scalar is said to be an active scalar when it affects the force field Fu, otherwise

it is called a passive scalar. In addition, the force field of the scalar, Fθ, could either

be a function of the velocity field or Fθ = 0. In this book, we will cover four kinds

of Fu and Fθ, which are related to important physical systems:

1. Passive scalar flow: Fu is independent of θ.

2. Stably stratified flow: Fu ∝ −ρ and Fρ ∝ uz; here, the fluid density ρ acts as

an active scalar.

3. Thermal convection: Fu ∝ θ and Fθ ∝ uz; here, the temperature θ acts as an

active scalar.

4. Binary fluids: Fu ∝ (∇θ)(∇2θ) and Fθ = 0, where θ is the difference in densities

of the two fluid components. Here too θ is an active scalar.

In Eqs. (13.1), the equations for the velocity field are the Navier–Stokes equations

discussed in Part I of the book. Hence, we need not repeat their properties. An

immediate consequence of the aforementioned connection is that when Fu = 0 and

ν = 0 (force-free and inviscid), the conservation laws for the velocity field remains

the same as in hydrodynamics—in 3D hydrodynamics, the kinetic energy and kinetic
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helicity are conserved, but in 2D hydrodynamics, the kinetic energy and enstrophy

are conserved. See Chapter 2 for details.

For the scalar field, we define the scalar energy density as

Eθ(r) =
1

2
θ2, (13.4)

whose evolution equation is:

∂

∂t

θ2

2
+∇ ·

(
1

2
θ2u

)
= Fθθ + κθ∇2θ. (13.5)

Clearly, in the absence of Fθ and κ, for periodic or vanishing boundary condition,∫
1

2
θ2dr = const. (13.6)

This is a statement of conservation of scalar energy in a nondiffusive scalar flow.

The equations for the velocity and scalar fields in Fourier space are as follows:

d

dt
u(k) + Nu(k) = −ikp(k) + Fu(k)− νk2u(k), (13.7a)

d

dt
θ(k) +Nθ(k) = Fθ(k)− κk2θ(k), (13.7b)

k · u(k) = 0, (13.7c)

where the nonlinear terms are

Nu(k) = i
∑
p

{k · u(q)}u(p), (13.8a)

Nθ(k) = i
∑
p

{k · u(q)}θ(p), (13.8b)

with q = k− p. The equations for the kinetic energy and scalar energy are as

follows:

d

dt
Eu(k) =

∑
p

= [{k · u(q)}{u(p) · u∗(k)}] + <[Fu(k) · u∗(k)]− 2νk2Eu(k), (13.9a)

d

dt
Eθ(k) =

∑
p

= [{k · u(q)}{θ(p)θ∗(k)}] + <[Fθ(k)θ∗(k)]− 2κk2Eθ(k). (13.9b)

The first term in the RHS of Eq. (13.9b) represents the nonlinear transfer of scalar

energy to θ(k) from all other modes in the system. The second and third terms of
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218 Energy Transfers in Fluid Flows

the RHS are respectively the scalar energy supply rate by the external source Fθ,

and the decay rate of Eθ(k) by scalar diffusion.

In the following section we describe the mode-to-mode scalar energy transfers in

a scalar flow.

13.2 Mode-to-mode Scalar Energy Transfers

In this section we derive an expression for the basic unit of scalar energy transfers.

The derivation is similar to that in Section 4.1 where we derive formulas for the

mode-to-mode kinetic energy transfers. As in Section 4.1, we focus on a triad

(k′,p,q), and its negative counterpart, (−k′,−p,−q); the wavenumbers satisfy the

condition k′ + p + q = 0. Note that k′ = −k. Also, we set Fθ = 0 and κ = 0. See

Fig. 13.1 for a schematic diagram of the mode-to-mode energy transfers in a flow

with a scalar.
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Figure 13.1 The circles represent the velocity modes, while the squares represent
the scalar modes. The mode-to-mode kinetic energy transfer
Suu(X|Y|Z) is from u(Y) to u(X) with u(Z) acting as a
mediator. The mode-to-mode scalar energy transfer Sθθ(X|Y|Z)
is from θ(Y) to θ(X) with u(Z) acting as a mediator.

We remark that the mode-to-mode kinetic energy transfer, whose origin is

[u · ∇u] · u, is the same as that derived in Section 4.1. That is,

Suu(k′|p|q) = −= [{k′ · u(q)}{u(p) · u(k′)}] . (13.10)

For the scalar field we start with Eq. (13.9b):
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d

dt
Eθ(k

′) = Sθθ(k′|p,q)

= −= [{k′ · u(q)}{θ(p)θ(k′)}]−= [{k′ · u(p)}{θ(q)θ(k′)}] . (13.11)

The term Sθθ(k′|p,q) is the combined scalar energy transfer to the mode θ(k′) from

θ(p) and θ(q). It is easy to show that

Sθθ(k′|p,q) + Sθθ(p|q,k′) + Sθθ(q|k′,p) = 0, (13.12)

which is a statement of the detailed energy conservation via Sθθ channel.

In this section, we derive a different quantity, Sθθ(k′|p|q), which is the mode-

to-mode scalar energy transfer from θ(p) to θ(k′) with the mediation of u(q). For

convenience, we denote the wavenumbers by variables X,Y,Z with a constraint that

X + Y + Z = 0.

The functions Sθθ(X|Y|Z) satisfy the following relations:

1. By definition, the sum of Sθθ(X|Y|Z) and Sθθ(Y|X|Z) is the combined scalar

energy transfer Sθθ(X|Y,Z). Therefore,

Sθθ(k′|p|q) + Sθθ(k′|q|p) = Sθθ(k′|p,q), (13.13a)

Sθθ(p|k′|q) + Sθθ(p|q|k′) = Sθθ(p|k′,q), (13.13b)

Sθθ(q|k′|p) + Sθθ(q|p|k′) = Sθθ(q|k′,p). (13.13c)

2. The scalar energy transfer from θ(X) to θ(Y) is equal and opposite to the

scalar energy transfer from θ(Y) to θ(X). Therefore,

Sθθ(k′|p|q) + Sθθ(p|k′|q) = 0, (13.14a)

Sθθ(k′|q|p) + Sθθ(q|k′|p) = 0, (13.14b)

Sθθ(p|q|k′) + Sθθ(q|p|k′) = 0. (13.14c)

We find that

Sθθ(k′|p|q) = −= [{k′ · u(q)}{θ(p)θ(k′)}] (13.15)

and similar formulas for other Sθθ’s satisfy Eqs. (13.13a-13.14c). However, this set is

not a unique solution because the determinant of the matrix formed by Eqs. (13.13,

13.14) is zero (see Section 4.1).

Following similar arguments as in Section 4.1, we provide the following physical

and mathematical arguments to prove that Eq. (13.15) is indeed the recipe for the

mode-to-mode scalar energy transfers in a triad.
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220 Energy Transfers in Fluid Flows

13.2.1 A physical argument

In Eq. (13.1b), the nonlinear term (u ·∇)θ represents an advection of the scalar field

θ by the velocity field u. Therefore, as argued in Section 4.1.1, u only mediates the

scalar energy transfer. In the equation for the scalar energy, [(u · ∇)θ]θ, the field u

acts as a mediator for the scalar energy transfer between θ’s that are present in the

right of ∇ operator. In Fourier space, these fields correspond to the modes u(q),

θ(p), and θ(k′) respectively; the scalar energy transfer occurs between mode θ(p)

and mode θ(k′) with the mediation of u(q). See Fig. 13.2 for an illustration.

Hence, Sθθ of Eq. (13.15) is indeed the formula for the scalar energy transfer.

Note that in Eq. (13.15), the giver and receiver scalar modes are multiplied

together, while the mediator velocity mode and receiver wavenumber appear as a

scalar product. Using this recipe we can write down the formulas for other

mode-to-mode scalar energy transfers. Note that this formula is applicable to

active as well as passive scalars because the nonlinear terms for them are the same.

Giver
q( )p

q k’( )
Receiver –[( ) ]Ñu × q q

u q( ) Mediator

S ( | | ) = – [{ }{ ( ) ( )}]p q pk’ k’ u q k’( )× q q
qq

Figure 13.2 A schematic diagram exhibiting mode-to-mode scalar energy
transfer from mode θ(p) to mode θ(k′) with the mediation of mode
u(q). For this energy transfer, the modes u(q) advects the scalar
modes θ(p) and θ(k′), who exchange energy among themselves.

13.2.2 A mathematical argument

We construct arguments similar to those in Section 4.1.2. Using the structure of

Eq. (13.11) and tensor analysis, we demand that Sθθ(k|p|q) satisfies the following

properties:

1. Sθθ(k′|p|q) is real.
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2. Sθθ(k′|p|q) is a linear function of wave vector k′ and θ(k′).

3. Sθθ(k′|p|q) is a linear function of one of the Fourier modes u(k′), u(p), and

u(q). That is, the expressions of Sθθ(k′|p|q) includes one of the three velocity

modes.

4. Sθθ(k′|p|q) is a linear function of two of the three scalar modes θ(k′), θ(p),

and θ(q).

5. The arguments of the participating u and θ modes are distinct among

wavenumbers k,p,q.

6. Due to the equivalence of the triads (k,p,q) and (−k,−p,−q),

Sθθ(−k′| − p| − q) = Sθθ(k′|p|q). (13.16)

Given these properties, the tensor analysis yields the following form for Suu(k′|p|q):

Sθθ(k′|p|q) = c1= [{k′ · u(q)}{θ(p)θ(k′)}]

+ c2= [{k′ · u(p)}{θ(q)θ(k′)}] . (13.17)

Here we have dropped the term involving k′ · u(k′) because it is zero. Also note

that <[.] does not appear in Eq. (13.17) due to Eq. (13.16) (see Section 4.1). Now,

an application of Eq. (13.14a) leads to c2 = 0, while that of Eqs. (13.13a, 13.11)

yields c1 = −1. Thus, we deduce that

Sθθ(k|p|q) = −= [{k′ · u(q)}{θ(p)θ(k′)}] (13.18)

is the formula for the scalar energy transfer from θ(p) to θ(k′) with the mediation

of u(q).

Scalar flows may involve a large number of triads. Hence, a typical scalar mode

θ(k) is affected by many modes belonging to various triads. Therefore, the evolution

equation for the scalar energy spectrum Eθ(k) is

d

dt
Eθ(k) =

∑
p

Sθθ(k|p|q) + Fθ(k)− 2κk2Eθ(k),

= Tθ(k) + Fθ(k)−Dθ(k), (13.19)

where q = k− p, and

Fθ(k) = <[Fθ(k)θ∗(k)] (13.20)

is the scalar energy supply rate by the external scalar force Fθ.
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222 Energy Transfers in Fluid Flows

In the next section, we define scalar energy flux and shell-to-shell transfers for

scalar turbulence.

13.3 Flux and Shell-to-shell Transfers for Scalar Turbulence

In scalar turbulence, the formulas for the kinetic energy flux and the shell-to-shell

kinetic energy transfers are the same as those described in Chapter 4. In this section

we derive the flux and shell-to-shell transfers for the scalar field.

We consider a wavenumber sphere of radius k0. The scalar energy flux Πθ(k0)

is the net scalar energy transferred from the modes inside the wavenumber sphere

to the modes outside the sphere. Using the definition of the mode-to-mode scalar

energy transfers, we define the scalar energy flux Πθ(k0) as

Πθ(k0) =
∑
|k′|>k0

∑
|p|≤k0

Sθθ(k′|p|q). (13.21)

Similarly, we derive the shell-to-shell scalar energy transfer from shell m to shell n

as

T θ,mθ,n =
∑
k′∈n

∑
p∈m

Sθθ(k′|p|q). (13.22)

We remark that the above formulas for the flux and the shell-to-shell energy transfers

are the same for active and passive scalars. We can also extend these formulas to

ring-to-ring scalar energy transfers.

Following arguments similar to those in Section 4.4, we derive the evolution

equation for the scalar energy spectrum Eθ(k) as

∂

∂t
Eθ(k, t) = − ∂

∂k
Πθ(k, t) + Fθ(k, t)−Dθ(k, t), (13.23)

where Fθ(k) is the scalar energy supply rate by Fθ, and Dθ(k) is the diffusion rate

of the scalar energy in shell k, that is,

Fθ(k)dk =
∑

k<k′≤k+dk

<[Fθ(k
′)θ∗(k′)], (13.24)

Dθ(k)dk =
∑

k<k′≤k+dk

2κk2Eθ(k
′). (13.25)

Under a steady state, ∂Eθ(k)/∂t ≈ 0, we obtain

d

dk
Πθ(k) = Fθ(k)−Dθ(k). (13.26)

In the next section, we will use this relation to describe variable scalar energy flux.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316810019.014
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 04 Jul 2019 at 22:25:59, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316810019.014
https://www.cambridge.org/core


Energy Transfers in Flows with Scalars 223

13.4 Variable Scalar Energy Flux

In Section 4.5 we described how the kinetic energy flux Πu(k) is affected by energy

injection rate Fu(k). Equation (13.26) is similar to Eq. (4.49); hence, we expect

similar behavior for the scalar energy flux Πθ(k).

We focus on the inertial range of the scalar field; hence, we can assume that

Dθ(k) ≈ 0. Therefore,

d

dk
Πθ(k) = Fθ,in(k), (13.27)

where Fθ,in(k) is the scalar energy injection rate by Fθ in the inertial range. Using

this equation, the behavior of the scalar energy flux can be classified into the

following four categories. If Fθ,in(k) = 0, then Πθ(k) = C, where C = 0 or > 0; if

Fθ,in(k) < 0, then dΠθ(k)/dk < 0; if Fθ,in(k) > 0, then dΠθ(k)/dk > 0. See

Fig. 13.3 for an illustration. Following similar lines of arguments as in Section 4.5,

we detail them as follows:

1. Fθ,in(k) = 0 and Πθ(k) = 0: This case, illustrated in Fig. 13.3(a), corresponds

to an equilibrium configuration for which 〈Sθθ(k′|p|q)〉 = 0. That is, there

is no net scalar energy transfer from any mode to any other mode, and the

system respects detailed balance of energy exchange. According to the absolute

equilibrium theory, such behavior is expected when κ = 0.

In the absence of mode-to-mode energy transfers (〈Suu(k′|p|q)〉 =

〈Sθθ(k′|p|q)〉 = 0), the Fourier modes u(k′), u(p), u(q), θ(k′), θ(p), and θ(q)

are expected to have random and uncorrelated phases. For pure

hydrodynamic turbulence, absolute equilibrium theory predicts that the

modal kinetic energy of all the velocity modes are equal on an average.

Hence,

Eu(k) ≈ const. =⇒ Eu(k) ∼ k2. (13.28)

An extension of the aforementioned theory to scalar turbulence yields

Eθ(k) ∼ k2. (13.29)

2. Fθ,in(k) = 0 and Πθ(k) = C > 0: As in Kolmogorov’s picture of

hydrodynamic turbulence, in scalar turbulence, the scalar energy would

cascade from large scales (small k’s) to small scales (large k’s). See

Fig. 13.3(b) for an illustration in which Πθ(k) = C for 1/L < k < kDI, where

L is the box size, and kDI is the wavenumber from which diffusion becomes
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Figure 13.3 Schematic diagrams illustrating behavior of scalar energy flux Πθ(k) for
various types of scalar energy injection rates Fθ,in(k): (a) Fθ,in(k) = 0
and Πθ(k) = 0; (b) Fθ,in(k) = 0 and Πθ(k) = C > 0; (c) Fθ,in(k) <
0 and dΠθ(k)/dk < 0; (d) Fθ,in(k) > 0 and dΠθ(k)/dk > 0.
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significant. Here “DI” stands for diffusion. Here, κ is finite but small, and the

nonlinear term, (u · ∇)θ, is much larger than the diffusion term, κ∇2θ.

For this case, which is detailed in Chapter 14 of this book, both Eu(k) and

Eθ(k) follow k−5/3 spectrum.

3. Fθ,in(k) < 0 and dΠθ(k)/dk < 0: In this case, Πθ(k) decreases with k as shown

in Fig. 13.3(c). Stably stratified flows exhibit such behavior. The fluid density

is to be treated as the scalar field for this case. See Chapter 15 for more details.

4. Fθ,in(k) > 0 and dΠθ(k)/dk > 0: In this case, Πθ(k) increases with k as shown

in Fig. 13.3(d). With temperature as the scalar field, the scalar energy flux of

turbulent thermal convection shows such behavior.

The aforementioned discussion illustrates how variable energy flux captures

various kinds of scalar turbulence in a single framework. We will revisit these

arguments when we describe passive scalar turbulence and buoyancy-driven

turbulence.

13.5 Scalar Field in Craya–Herring Basis

As described in Chapter 9, Craya–Herring basis provides a compact representation

for hydrodynamic flows. In Section 9.2, we showed how to derive equations for u1,2,

the components of u in Craya–Herring basis.

In the following discussion, following Section 9.2, we focus on a single triad

(k′,p,q) with a constraint that k′ + p + q = 0, and derive equations for the scalar

modes corresponding to these wavenumbers. The equations of the velocity field are

the same as those derived in Section 9.2.

For the scalar field, the equation for the Fourier mode θ(k′) is as follows:

d

dt
θ(k′) = −i[k′ · u(−q)]θ(−p)− i[k′ · u(−p)].θ(−q)− κk2θ(k′) (13.30)

with k′ = −p− q. The equations for θ(p) and θ(q) are written in a similar manner.

Following the same steps as in Section 9.2, we simplify the aforementioned equations

and those for the wavenumbers p and q as

θ̇(k′) = ik′{sin γu∗1(p)θ∗(q)− sinβu∗1(q)θ∗(p)} − κk2θ(k′), (13.31a)

θ̇(p) = ip{sinαu∗1(q)θ∗(k′)− sin γu∗1(k′)θ∗(q)} − κp2θ(p), (13.31b)

θ̇(q) = iq{sinβu∗1(k′)θ∗(p)− sinαu∗1(p)θ∗(k′)} − κq2θ(q). (13.31c)
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Note that the structure of the equations for the scalar field is same as that for u2.

Also note that the above equations conserve the total triadic scalar energy:

Eθ =
1

2

(
|θ(k′)|2 + |θ(p)|2 + |θ(q)|2

)
. (13.32)

The formulas for the mode-to-mode scalar energy transfers too get simplified in

Craya–Herring basis. Following similar steps as in Section 9.3, we derive

Sθθ(k′|p|q) = −k′ sinβ={u1(q)θ(p)θ(k′)}, (13.33a)

Sθθ(p|q|k′) = −p sin γ={u1(k′)θ(p)θ(q)}, (13.33b)

Sθθ(q|k′|p) = −q sinα={u1(p)θ(q)θ(k′)}. (13.33c)

On some occasions (e.g. with many triads), it is practical to use the common

direction as n̂ for all the triads. For this case, the derivations of equations of motion

require explicit computations of [k′ · u(−q)] and [k′ · u(−p)] in Eq. (13.30). Similar

calculations are needed for the scalar energy transfers.

With this, we end our discussion on Craya–Herring basis for scalar flows.

Example 13.1: In a periodic box [2π, 2π], consider the following force-free scalar flow

with ν = κ = 0:

u = x̂2B cos y + ŷ2C cosx+ (x̂− ŷ)2A sin(x+ y),

θ = 2B′ cos y + 2C ′ cosx+ 2A′ sin(x+ y).

Derive equations for A′, B′, and C ′ as in Example 3.4.

Solution: The Fourier transforms of velocity and scalar fields yield Fourier modes

with wavenumbers (1, 0), (0, 1), (1, 1), (−1, 0), (0,−1), and (−1,−1). We choose

n̂ = ẑ. For the interacting triad k′ = (−1,−1), p = (0, 1), and q = (1, 0), the

amplitudes of the Fourier modes in the Craya–Herring basis are listed in Table 13.1.

Note that u2 = 0 since the field is two-dimensional.

Table 13.1 Example 13.1: The amplitudes of the velocity and scalar Fourier
modes.

Mode u1 θ

k′ = (−1,−1) −A
√

2
i −A

′

i

p = (0, 1) B B′

q = (1, 0) −C C′
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The equations for the velocity field in a scalar flow are the Navier–Stokes

equations. Hence, the equations of motion for A, B, and C are same as those in

Example 3.4 or Example 9.2. The solution of these quantities are

A = constant,

B = c cos(At),

C = c sin(At).

For the scalar field, we consider the interacting triad shown in Fig. 9.7(a), whose

internal angles are α = 90◦, β = 45◦, and γ = 45◦. Substitution of these in

Eq. (13.31) yields

θ̇(−1,−1) = −Ȧ
′

i
= i

√
2√
2

(BC ′ + CB′),

θ̇(0, 1) = Ḃ′ = i(−C(A′/i)− (A/i)C ′),

θ̇(1, 0) = Ċ ′ = ((A/i)B′ −B(A′/i)),

or,

Ȧ′ = BC ′ + CB′,

Ḃ′ = −CA′ −AC ′,
Ċ ′ = AB′ −BA′.

We can solve for A′, B′, and C ′ using the solution of A,B, and C. Also note that

A′2 +B′2 + C ′2 = const.,

as expected from the conservation of scalar energy for the nondiffusive case.

Example 13.2: Compute the mode-to-mode scalar energy transfers for the flow field

of Example 13.1.

Solution: We employ Eqs. (13.33) for these computations:

Sθθ(k′|p|q) = −k′ sinβ={u1(q)θ(p)θ(k′)}

= −
√

2√
2
={(−C)B′

(
−A

′

i

)
} = A′B′C.

Sθθ(p|q|k′) = −p sin γ={u1(k′)θ(p)θ(q)}

= − 1√
2
={
(
−A
√

2

i

)
B′C ′} = −AB′C ′.

Sθθ(q|k′|p) = −q sinα={u1(p)θ(q)θ(k′)}

= −={BC ′
(
−A

′

i

)
} = −A′BC ′.
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We illustrate these scalar energy transfers in Fig. 13.4.
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Figure 13.4 Scalar energy transfers among the modes of Example 13.2.

With this, we end our discussion on scalar flows. In the next four chapters, we will

discuss various examples of passive and active scalars, in particular, passive scalar,

stably stratified turbulence, turbulent thermal convection, and binary fluid mixture.

Exercises

1. In a closed box [π, π, π], consider the following force-free scalar flow with ν = κ = 0:

u = 4C(x̂ sinx cos z − ẑ cosx sin z) + 4B(ŷ sin y cos z − ẑ cos y sin z)

+8A(−x̂ sinx cos y cos 2z − ŷ cosx sin y cos 2z + ẑ cosx cos y sin 2z).

θ = 4C′ cosx sin z + 4B′ cos y sin z + 8A′ẑ cosx cos y sin 2z.

Derive equations for A,B,C, A′, B′, and C′.

2. In a periodic box [π, π], consider the following force-free scalar flow with ν = κ = 0:

u = 4C(x̂ sin 3x cos y − ŷ3 cos 3x sin y) + 4B(ŷ sin 2x cos 2y − ŷ cos 2x sin 2y)

+4A(x̂ sinx cos y − ŷ cosx sin y).

θ = 4C′ cos 3x sin y + 4B′ cos 2x sin 2y + 4A′ cosx sin y.

Derive equations for A,B,C, A′, B′, and C′.
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Chapter 14

Flows with a Passive Scalar

In the previous chapter, we provided a framework for describing a fluid flow with

a scalar, which could be either active or passive. In the present chapter, we will

describe spectral properties of a passive scalar flow. We start with the governing

equations of the flow.

14.1 Governing Equations

The equation of an incompressible passive scalar is a special case of Eqs. (13.1) in

which Fu is independent of θ. Hence,

∂u

∂t
+ (u · ∇)u = −∇(p/ρ) + ν∇2u + Fu, (14.1a)

∂θ

∂t
+ (u · ∇)θ = Fθ + κ∇2θ, (14.1b)

∇ · u = 0, (14.1c)

where u, θ, p are the velocity, scalar, and pressure fields respectively; ρ is density

which is assumed to be unity; Fu, Fθ are the force fields for the velocity and scalar

fields; ν is the kinematic viscosity for the flow; and κ is the diffusion coefficient for

the scalar. The ratio of the viscosity and the diffusivity coefficient is the Schmidt

number:

Sc =
ν

κ
. (14.2)
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230 Energy Transfers in Fluid Flows

The equation for the kinetic energy is the same as that for pure hydrodynamics;

hence, it is not repeated here. As described in Chapter 13, the equation for the

scalar energy density θ2/2 is

∂

∂t

θ2

2
+∇ ·

(
1

2
θ2u

)
= Fθθ + κθ∇2θ. (14.3)

Clearly, for κ = 0 and Fθ = 0, and for periodic or vanishing boundary condition,∫
1

2
θ2dr = const. (14.4)

This is a statement of conservation of scalar energy in a nondiffusive flow.

The equations for the velocity and scalar fields in Fourier space are the same

as Eqs. (13.7). The equations for the mode-to-mode scalar energy transfers, scalar

energy flux, and the shell-to-shell scalar energy transfers are the same as those

described in Sections 13.2 and 13.3.

The evolution equation for the passive scalar energy spectrum Eθ(k) is

∂

∂t
Eθ(k, t) = − ∂

∂k
Πθ(k, t) + Fθ −Dθ(k, t). (14.5)

Under a steady state, ∂Eθ(k)/∂t ≈ 0; hence, we obtain

d

dk
Πθ(k) = Fθ − 2κk2Eθ(k). (14.6)

In the next section, we will use this relation to derive the scalar energy spectrum

and flux.

14.2 Phenomenology of Passive Scalar Turbulence

In passive scalar flows, the velocity field u is unaffected by the passive scalar; hence,

for 3D and 2D systems, the kinetic energy spectra and fluxes would be same as those

described in Chapters 5 and 7 respectively. In this section, we will derive the scalar

energy spectrum and flux for 3D passive scalar turbulence. We assume that Fθ acts

at large scales of the flow.

Under a steady state, in the inertial range where Fθ = 0 and Dθ(k) → 0, using

Eq. (14.6), we deduce that

d

dk
Πθ(k) = 0 =⇒ Πθ = const. (14.7)
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Based on scaling arguments, we expect that Eθ(k) depends on Πu, Πθ, and k, whose

dimensions are respectively

[Πu] = [L2/T 3]; [Πθ] = [Θ2/T ]; [Eθ(k)] = [Θ2L]. (14.8)

Using dimensional analysis we postulate that

Eθ(k) = (Πθ)
α(Πu)βkγ . (14.9)

Now matching the dimensions of [Θ], [L], and [T ] yields

α = 1; β = −1/3; γ = −5/3. (14.10)

Therefore,

Eθ(k) = KOCΠθ(Πu)−1/3k−5/3, (14.11)

where KOC is the Obukhov–Corrsin constant. Using field-theoretic computations,

Yakhot and Orszag (1986) reported that KOC = 1.16, while Verma (2001b) observed

that KOC = 1.25. Following the derivation of Eq. (5.8), using Eq. (14.6) we deduce

that Πθ equals the dissipation rate of scalar energy, that is,

Πθ ≈ εθ =

∫ ∞
0

2κk2Eθ(k)dk. (14.12)

We can also derive Eq. (14.11) from Eq. (13.9b) by equating the nonlinear term

with the scalar energy flux:

kθ2
kuk = Πθ. (14.13)

Now, substitution of uk = Π1/3
u k−1/3 immediately yields Eq. (14.11).

In the next section we will describe the spectral properties of scalar flows for

various limiting cases of Reynolds and Péclet numbers.

14.3 Various Regimes of a Passive Scalar Flow

The spectral properties of a scalar flow depends on two parameters—Re and Pe.

In the present section we will describe the properties of a passive scalar flow for

various ranges of these parameters. In Fig. 14.1, we plot the kinetic and scalar

energy spectra for various combinations of Re and Pe. For the plot, we take U = 1

and θrms = 0.1 (except in (c), where they are both 1).
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In the following subsection, we explain these cases in detail.
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Figure 14.1 The kinetic energy spectrum Eu(k) (red curve) and scalar energy
spectrum Eθ(k) (green curve) for (a,b) Sc = 1; (c,d) Sc = 10−3;
(e,f) Sc = 103. We take U = 1 and θrms = 0.1 (except in (c)).
See Section 14.3 for details.

14.3.1 Turbulent regime I: Re� 1; Pe� 1; Sc 5 1

In the previous section we described the kinetic and scalar energy spectra and fluxes

in the inertial range. Here we generalize the aforementioned results to inertial–

dissipation range.

In Section 5.5.1 we showed how Pao (1965) derived the following kinetic energy

spectrum and flux for the inertial–dissipation regime of hydrodynamic turbulence:

Πu(k) = εu exp

(
−3

2
KKo(k/kd)

4/3

)
, (14.14a)
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Eu(k) = KKoε
2/3
u k−5/3 exp

(
−3

2
KKo(k/kd)

4/3

)
, (14.14b)

where εu is the viscous dissipation rate, and

kd =
( εu
ν3

)1/4

(14.15)

is Kolmogorov’s wavenumber. For passive scalar turbulence, the kinetic energy

spectrum and flux remain the same as that of Eq. (14.14) because the scalar field

does not affect the velocity field.

Now we extend Pao (1965)’s arguments to passive scalar turbulence. We assume

that in the inertial–dissipation range, Eθ(k)/Πθ(k) is independent of ν and κ, and

depends on εu and k. Under this assumption, using Eq. (14.11), we obtain

Eθ(k)

Πθ(k)
= KOCε

−1/3
u k−5/3, (14.16)

substitution of which in Eq. (14.6) yields the following solution:

Πθ(k) = εθ exp

(
−3

2
KOC(k/kc)

4/3

)
, (14.17a)

Eθ(k) = KOCεθε
−1/3
u k−5/3 exp

(
−3

2
KOC(k/kc)

4/3

)
, (14.17b)

where εθ is the diffusion rate of the scalar, and

kc =
( εu
κ3

)1/4

(14.18)

is Kolmogorov’s diffusion wavenumber. Therefore,

kc
kd

=
(ν
κ

)3/4

= Sc3/4. (14.19)

Since Sc 5 1, we deduce that kc 5 kd. The other limit when kc � kd will be

discussed in Section 14.3.5. We illustrate these cases in Fig. 14.1(a, c); the former

corresponds to Sc = 1, and the latter to Sc� 1.

In the next subsection, we describe the scaling for a passive scalar flow which is

laminar.

14.3.2 Laminar regime: Re / 1; Pe / 1

For laminar flows, as derived in Section 5.6, the kinetic energy spectrum and flux

are
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234 Energy Transfers in Fluid Flows

Eu(k) = A
1

k
exp(−k/k̄d), (14.20a)

Πu(k) = A2νk̄2
d(1 + (k/k̄d)) exp(−k/k̄d), (14.20b)

where k̄d is the dissipation wavenumber scale for laminar flows [see Eq. (5.41)].

When the nonlinear term of the scalar equation is smaller than the diffusion

term, or when Pe < 1, the scalar energy flux is nonzero but small. Note that the

flux Πθ(k) 6= 0 as long as the nonlinear term u · ∇θ is finite. When Pe / 1, there

is no inertial range where Πθ(k) ∼ const. Rather, as shown in Fig. 14.1(b), Πθ(k)

and Eθ(k) decrease with k as exp(−k). For Pe / 1, the solution of Eq. (14.6) is

Eθ(k) = B
1

k
exp(−k/k̄c), (14.21a)

Πθ(k) = 2Bκk̄2
c(1 + k/k̄c) exp(−k/k̄c), (14.21b)

where

k̄c =
1

L

√
UL

κ
=

√
Pe

L
. (14.22)

Using Eqs. (5.41, 14.22) we deduce that for the laminar regime,

k̄c
k̄d
≈
√

Pe

Re
=
√

Sc. (14.23)

Since Eθ ∼ θ2, an integration of Eq. (14.21a) yields

B ∼ θ2
rms. (14.24)

This case is illustrated in Fig. 14.1(b).

14.3.3 Mixed regime I: Re� 1; Pe / 1

Since Re� 1, the kinetic energy spectrum and flux would be given by the formulas

for the turbulent regime, which are Eqs. (14.14). For the passive scalar, since Pe / 1,

the scalar energy spectrum and flux would be given by Eqs. (14.21). See Fig. 14.1(d)

for an illustration. Note that Sc� 1 for this case.

For this regime, Batchelor et al. (1959) proposed that

Eθ(k) =
1

3
KKoεθε

2/3
u κ−3k−17/3. (14.25)
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A brief derivation of this scaling is as follows. Matching the diffusion term with the

nonlinear term yields:

κk2θk ∼ ukkθk ∼ uk(∇θ)k. (14.26)

By squaring Eq. (14.26), and using

κ(∇θ)2 = εθ, (14.27)

Batchelor et al. (1959) obtained

κ3k4θ2
k ∼ u2

kεθ (14.28)

that leads to Eq. (14.25).

Though several authors, for example, Yeung and Sreenivasan (2013), have argued

in favor of Batchelor et al. (1959)’s scaling, we believe that the exponential functions

of Eqs. (14.21) would model the scalar energy spectrum and flux better.

14.3.4 Mixed regime II: Re / 1; Pe� 1

There are situations when the velocity field is laminar, but the scalar field is

turbulent, that is, Re / 1 and Pe � 1. Since Re / 1, and the velocity field is

unaffected by the scalar field, the formulas for the kinetic spectrum and flux would

be same as Eqs. (14.20).

Since Pe� 1, the scalar energy spectrum extends much beyond k̄d. For k > k̄d,

since uk → 0, we expect that the effective Pe ≈ ukdL/κ � 1. Therefore, the scalar

turbulence for k̄d < k < kc would be described by Eq. (14.21). In the wavenumber

range k̄d < k < kc, u(k̄d) would act as a mediator for nonlinear energy transfers of

scalar energy. Hence, scalar energy transfers involve triads with k, p� q ≈ kd that

differs from typical local and forward transfers in 3D hydrodynamics that involves

k ≈ p ≈ q. See Fig. 14.1(f) for an illustration.

The wavenumber band k < k̄d is quite narrow. In this band, the kinetic energy

flux decays exponentially. Hence, we expect Eθ(k) to have a laminar form even

though Pe� 1.

14.3.5 Turbulent regime II: Re� 1; Pe� 1; Sc� 1

Since the velocity field is not affected by the passive scalar and Re� 1, the kinetic

energy spectrum and flux would be given by Eqs. (14.14). Note that kc � kd because

Sc � 1. For k < kd, the scalar energy spectrum would be given by Eq. (14.11).
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However, the situation is somewhat tricky for kd < k < kc. In this wavenumber

band, u(kd) acts as a mediator for the nonlinear scalar energy transfers. As argued

in Subsection 14.3.4, we expect that the scalar energy spectrum and flux would be

described by Eq. (14.21). See Fig. 14.1(e) for an illustration.

Along with the above scaling arguments, we briefly describe two other popular

models of passive scalar turbulence for Sc� 1. Batchelor (1959) proposed that for

kd < k < kc,

Eθ(k) = KBaεθ(ν/εu)1/2k−1 exp(−KBaκk
2(ν/εu)1/2), (14.29)

but Kraichnan (1968) argued that

Eθ(k) = KBaεθ(ν/εu)1/2(1 +
√

6KBa)k−1 exp(−
√

6KBa(k/k̄c)). (14.30)

The difference between Batchelor’s and Kraichnan’s models is in the form of the

exponential function—Batchelor predicts exp(−k2) form, while Kraichnan argues

for exp(−k).

Note that Eq. (14.21a) derived using the flux equation has the same form as

Eq. (14.30), proposed by Kraichnan. For kd < k < kc, the prefactors of all the three

formulas are approximately the same:

εθ(ν/εu)1/2 =
θ2

rmsU

L

[
νL2

νU2

]1/2

= θ2
rms. (14.31)

Our formula derived using variable energy flux is consistent with the exp(−k) form.

Refer to Gotoh and Yeung (2013) for further details on this topic.

We summarize the aforementioned scaling in Table 14.1.

Table 14.1 Spectral properties for various regimes of scalar flow. Here Pao’s
spectra refer to Eqs. (14.14, 14.17), while laminar spectra refer
to Eqs. (5.40, 14.21). Generalized spectrum is a combination of
Eq. (14.11) and Eq. (14.21a), as described in Section 14.3.5.

Regime Re Pe Sc Eu(k) Eθ(k) Fig. reference

Turb I � 1 � 1 ≈ 1 Pao Pao 14.1(a)

Turb I � 1 � 1 � 1 Pao Pao 14.1(c)

Turb II � 1 � 1 � 1 Pao Generalized 14.1(e)

Laminar / 1 / 1 Any Laminar Laminar 14.1(b)

Mix I � 1 / 1 � 1 Pao Laminar 14.1(d)

Mix II / 1 � 1 � 1 Laminar Laminar 14.1(f)
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In the next section, we describe several numerical simulations that attempt to

verify some of the aforementioned scaling.

14.4 Numerical Simulations of Passive Scalar Turbulence

Flows with passive scalar are simulated by solving Eqs. (14.1). There is a large body

of work in this field, and it is impossible to detail them in a short chapter. In the

following, we list main results for the three cases—Sc ≈ 1, Sc� 1, Sc� 1.

14.4.1 Sc ≈ 1

Yeung et al. (2005) simulated passive scalar turbulence for Taylor-scale Reynolds

number, Reλ ≈ 700, and for Sc = 1, 1/8. These parameters corresponds to Turbulent

regime I of Subsection 14.3.1 and Fig. 14.1(a). Yeung et al. (2005) demonstrated that

in the inertial range, the scalar energy spectrum follows Eq. (14.11). See Fig. 14.2

for an illustration. Yeung et al. (2005) reported that KOC = 0.67.
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Figure 14.2 The normalized scalar energy spectrum Eθ(k)ε−1
θ ε1/3u k5/3 for

Reλ ≈ 700, and Sc = 1 (circles) and 1/8 (triangles). The plots
verify the spectrum of Eq. (14.11). Read χ, ε of the figure as εθ
and εu respectively. Taken from Yeung et al. (2005). Reprinted
with permission from AIP.
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We are not aware of any simulation that attempts to verify Eqs. (14.17) for the

inertial–dissipation range when Sc ∼ 1.

14.4.2 Sc� 1

Yeung and Sreenivasan (2013) simulated scalar turbulence with large Re and small

Sc (Reλ ≈ 100; Sc = 1/512), which corresponds to Mixed regime I of

Subsection 14.3.3 and Fig. 14.1(d). They reported that Eu(k) is Kolmogorov-like

(k−5/3), but that Eθ(k) follows Eq. (14.25), which is Batchelor et al. (1959)’s

scaling.

Batchelor et al. (1959)’s scaling is very different from Eq. (14.21a) derived in the

earlier section. Also, refer to Fig. 14.1(d) for an illustration. We believe that the

exponential spectrum may provide a better and more reliable fit to Eθ(k) than the

steep power law of Eq. (14.25). We also believe that the variable flux arguments

provide a stronger basis for the derivation of Eθ(k) than the scaling arguments of

Batchelor et al. (1959). The proposed exponential spectrum however needs to be

tested for Sc� 1 limit.

14.4.3 Sc� 1

Gotoh et al. (2014) and Yeung et al. (2004) performed large resolution simulations

in order to test scaling of passive scalar turbulence for Sc � 1. They employed Sc

as high as 1000. This case corresponds to Mixed regime II of Subsection 14.3.4 and

Fig. 14.1(f). The numerical results support the predictions of Kraichnan (1968) and

Eq. (14.21a), that is,

Eθ(k) ∼ 1

k
exp(−k/k̄c). (14.32)

See Fig. 14.3 for an illustration.

In the penultimate section we relate the third order structure function to the

passive scalar flux, in similar lines as Kolmogorov’s 1941 theory for 3D hydrodynamic

turbulence.
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Figure 14.3 The normalized scalar energy spectrum kEθ(k)(εu/ν)1/2/εθ vs. k
for Reλ ≈ 8 and Sc = 64, 128, 256(A − C) from a 2563 grid
simulation, and Sc = 256, 512, 1024(D − F ) from a 5123 grid
simulation. The predictions of Batchelor and Kraichnan models
are shown as dotted and dashed lines respectively [Eqs. (14.29,
14.30) respectively]. Numerical results are closer to Kraichnan’s
predictions, which are same as Eq. (14.21a). Read χ, ε of the figure
as εθ and εu respectively. Taken from Yeung et al. (2004). Reprinted
with permission from Springer Nature.

14.5 Third Order Structure Function for Passive Scalar
Turbulence: Four-third Law

Kolmogorov’s four-fifth law for hydrodynamic turbulence, which was discussed in

Chapter 12, was extended to passive scalar turbulence by Yaglom (1949). We present

Yaglom’s derivation in this section.

We assume the flow to be homogeneous and isotropic. For such flows, the second

order correlation function involving two scalar fields is

C(l) = 〈θ(r)θ(r + l)〉 = 〈θθ′〉. (14.33)

Following Chapter 12, the unprimed and primed variables are measured at r and

r + l respectively. For isotropic flows,

C(l) = C(l) = θ̄2fθ(l), (14.34)
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where fθ(l) is a convex function near l = 0 with fθ(0) = 1.

The third order isotropic correlation tensor involving two scalar fields and the

velocity field is

Cj(l) = 〈θ(r)θ(r + l)uj(r)〉 = 〈θθ′uj〉. (14.35)

Note that 〈θu′j〉 = 0 and 〈θθu′j〉 = 0 for isotropic flows because u′j and −u′j occur

with the same frequency (Batchelor, 1953). Using the properties of isotropic tensors,

we deduce that

Cj(l) = A(l)nj, (14.36)

where n = l/l is the unit vector along l.

We also define third order structure function as

Qj(l) = 〈(θ′ − θ)(θ′ − θ)(u′j − uj)〉 (14.37)

that is expanded as

Qj(l) = −����〈θ′θ′uj〉+
����〈θθu′j〉 − 2〈θ′θu′j〉+ 2〈θ′θuj〉. (14.38)

In this expression, 〈θ′θ′uj〉 = 〈θθu′j〉 = 0 due to isotropy. In addition,

〈θ′θ′u′j〉 − 〈θθuj〉 = 0 (14.39)

due to homogeneity of the flow. Now

〈θ′θu′j〉 = 〈θ(r + l)θ(r)u′j(r + l)〉 = 〈θ(r)θ(r− l)u′j(r)〉

= Cj(−l) = −A(l)nj = −Cj(l). (14.40)

Therefore,

Qj(l) = 4〈θ′θuj〉 = 4A(l)nj, (14.41a)

Or, Q(l) = 4A(l)n, (14.41b)

and

Sθ3(l) = 〈(θ′ − θ)2(u′ − u) · n〉 = Q1(l) = 4A(l), (14.42)

∇l ·Q(l) =
1

l2
d

dl

[
l24A(l)

]
=

1

l2
d

dl

[
l2Sθ3(l)

]
. (14.43)

Now we derive a dynamical equation for the second order correlation function:
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∂

∂t

1

2
〈θθ′〉 =

1

2
〈θ′ ∂
∂t
θ〉+

1

2
〈θ ∂
∂t
θ′〉

=
1

2

[
−∂j〈θ′(ujθ)〉 − ∂′j〈θ(u′jθ′)〉

+〈θ′Fθ〉+ 〈θF ′θ〉+ κ〈θ′∇2θ〉+ κ〈θ∇′2θ′〉
]

=
1

2

[
∂′j〈θ′(ujθ)〉 − ∂′j〈θ(u′jθ′)〉+ 2〈θ′Fθ〉+ 2κ∇′2〈θθ′〉

]
=

1

4
∇l · 〈(θ′ − θ)2(u′ − u)〉+ 〈θ′Fθ〉+ κ∇′2〈θθ′〉

= Tθ(l) + Fθ(l)−Dθ(l), (14.44)

where Tθ(l) corresponds to the spectral energy transfer term Tθ(k), whereas Fθ(l)
and Dθ(l) are respectively the correlations corresponding to the scalar energy feed

by the external force and the diffusion rate.

We make similar assumptions as in Section 12.3—steady state, κ → 0, and

forcing at large scales. Under these assumptions, in the inertial range, Dθ(l) → 0,

and hence,

Fθ(l) = εθ = −Tθ(l) = −1

4
∇l ·Q(l) (14.45)

or

εθ = −1

4

1

l2
d

dl

[
l2Sθ3(l)

]
. (14.46)

An integration of this equation yields

Sθ3(l) = 〈(θ′ − θ)2{(u′ − u) · n}〉 = −4

3
εθl, (14.47)

which is the four-third law for a passive scalar, first derived by Yaglom (1949).1

Yeung et al. (2005) performed numerical simulation of turbulent passive scalar and

verified the four-third law.

The diffusion term is

1Note that Sθ3 (l) is a mixed product of (δθ)2 and δu‖. This combination yields scalar energy flux. From the
equation for the scalar energy, Eq. (13.9b), we deduce that

kθ2kuk = Πθ, (14.48)

which corresponds to Eq. (14.47).
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Dθ(l) = −κ∇′2〈θθ′〉 = −κθ̄2∇2C(l)

= −κθ̄2 1

l2
d

dl

[
l2
d

dl
fθ

]
. (14.49)

Now, we combine the nonlinear and diffusion terms as

− 1

l2
d

dl

[
l2
(
κθ̄2f ′θ +

Sθ3(l)

4

)]
= εθ (14.50)

that yields

κθ̄2f ′θ +
Sθ3(l)

4
= −1

3
εθl. (14.51)

This equation yields Sθ3(l) = −(4/3)εθl in the inertial range, and

fθ(l) = 1− εθ
6κθ̄2

l2 (14.52)

in the diffusive range.

Before we close this session, we contrast the the four-third law described above

and the scalar energy flux discussed earlier. In Fig. 14.4 we relate the terms of

−Tθ(l) with Πθ(K). Here δu, which corresponds to u(q) in spectra space, mediates

the energy transfers among δθ fields that appear in the product of −Tθ(l). Note that

the giver mode and the receiver mode cannot be contrasted in real space because

−Tθ(l) is a sum of many mode-to-mode energy transfers.

In the next section we briefly describe the field-theoretic results of passive scalar

turbulence.

1
4 lq

du is a sum over modes

P ( ) =K [{ ( )}{ ( ) ( )}]k   u q p k× ¢q q

| |p K£

å
| |>k K

å

Mediator

Giver Receiver

q

Figure 14.4 Connection between the formulas −Tθ(l) and the energy flux
Πθ(K). δu mediates energy transfer between δθ fields in the
product term of −Tθ(l).
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14.6 Field-theoretic Treatment of Passive Scalar Turbulence

In chapter 10 we described how to compute the renormalized viscosity and

Kolmogorov’s constant for hydrodynamic turbulence using McComb’s procedure

(McComb, 1990, 2014). These computations involve energy flux computations. For

passive scalar turbulence, Zhou and Vahala (1993), Lin et al. (2000), and Verma

(2001b) employed a similar procedure to compute renormalized diffusivity and

scalar energy flux. Yakhot and Orszag (1986) employed ε-expansion for these

computations, and Adzhemyan et al. (1999) employed an alternate scheme of

renormalization.

We do not detail the above calculations due to lack of space. We state that Verma

(2001b)’s computations yields the renormalized or scale-dependent scalar diffusivity

as

κ(k) = κ∗
√
KKoΠ1/3

u k−4/3, (14.53)

where κ∗ = 0.85 for 3D turbulence. He also reported that the Obukhov–Corrsin

constant KOC = 1.25. Other field-theoretic computations yields similar results.

There is a vast literature on the computation of intermittency exponents for

passive scalar, but these discussions are beyond the scope of the book. The reader

can refer to Falkovich et al. (2001).

In summary, passive scalar turbulence is useful for modeling diffusion of light

particles and nonreactive fields. In addition, it acts as a starting point for

understanding more complex flows such as buoyancy-driven flows, diffusion of

pollution, binary fluid, etc. We will discuss buoyancy-driven flows and binary fluids

in the subsequent chapters.

Further Reading

There is an extensive literature on passive scalar turbulence. In addition to the

references cited in the chapter, we refer the reader to books by Leslie (1973) and

Lesieur (2008). For a detailed discussion on earlier works on passive scalar spectrum

and flux, refer to Batchelor (1959); Kraichnan (1968); Lesieur (2008); Gotoh and

Yeung (2013), and the original papers cited in this chapter.

In this book, we have avoided discussions on intermittency and higher order

structure functions of a passive scalar. Refer to Falkovich et al. (2001) for details

and references.
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Exercises

1. The discussion in this chapter was focused on 3D passive scalar turbulence. How will the energy
spectrum and flux change in 2D?
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Chapter 15

Stably Stratified Turbulence

In this chapter we will describe physics of stably stratified turbulence, which is a

turbulent flow with an active scalar. The omnipresent gravity affects all kinds of

flows. For example, most of Earth’s atmosphere is strongly stratified with fluid

density decreasing with height1; this configuration leads to a strong horizontal wind

velocity, and a weak vertical wind velocity. Gravity affects the flow via buoyancy.

Hence, the material density acts as an active scalar.

In the present chapter we will describe the properties of the density and velocity

fields of stably stratified turbulence. We start with the description of the governing

equations in real space.

15.1 Governing Equations in Real Space

We consider a fluid under a vertical and stable density stratification, as shown in

Fig. 15.1. The local density %(x, y, z) is a sum of mean density ρ̄(z) and density

fluctuation ρ(x, y, z):

%(x, y, z) = ρ̄(z) + ρ(x, y, z). (15.1)

1The density stratification near the surface of the Earth is more complex, and it could become unstable at
some time of the day.
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We assume a linear density profile for ρ̄(z):

ρ̄(z) = ρb +
dρ̄

dz
z = ρb +

ρt − ρb
d

z, (15.2)

and that the gravity is along −ẑ. Under stable stratification, ρt < ρb.

Light

Dense

r
t

r
b

g

z

rr
t

r
b

r( )z

(a) (b)

Figure 15.1 (a) Schematic diagram of a stably stratified flow with lighter fluid
above the heavier fluid. The densities at the bottom and top are ρb
and ρt respectively. (b) The mean density ρ̄(z) falls linearly with z.

We assume Oberbeck–Boussinesq (OB) approximation under which (a) the

density is assumed to be constant except for the buoyancy term; (b) the fluid

parameters like kinematic viscosity and thermal diffusivity are constant in space

and time. Under this approximation, the governing equations for the flow are:

∂u

∂t
+ (u · ∇)u = − 1

ρm
∇σ − ρ

ρm
gẑ + ν∇2u + Fu, (15.3a)

∂ρ

∂t
+ (u · ∇)ρ = −dρ̄

dz
uz + κ∇2ρ, (15.3b)

∇ · u = 0, (15.3c)

where σ is the pressure field that includes contributions from gravity, ρm is the mean

density, Fu is the external force in addition to gravity, g is the acceleration due

to gravity, and ν, κ are respectively the kinematic viscosity and density diffusivity

of the fluid. Note that the density field affects the flow via the buoyancy term,

−(ρ/ρm)gẑ. Also, in relation to Eq. (14.1b), Eq. (15.3b) has Fρ = −(dρ̄/dz)uz. For

a detailed derivation of Eqs. (15.3) and discussion on Oberbeck–Boussinesq (OB)

approximation, refer to Verma (2018). Note that in stably stratified turbulence,

buoyancy and Fρ acts at all scales, in contrast to the situation in passive scalar
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turbulence where the forces are assumed to be at large scales. In this chapter we

will study the consequences arising due to these differences.

A linearized version of the aforementioned equations with ν = κ = 0 and Fu = 0

are

∂u

∂t
= − 1

ρm
∇σ − ρ

ρm
gẑ, (15.4a)

∂ρ

∂t
= −dρ̄

dz
uz, (15.4b)

which are the equations of internal gravity waves. These waves have a frequency of

N =

√
g

ρm

∣∣∣∣dρ̄dz
∣∣∣∣, (15.5)

which is called the Brunt–Väisälä frequency. For a detailed solution of Eq. (15.4),

refer to Verma (2018). Here we present an internal gravity wave traveling along the

x-axis:

k = kxx̂, (15.6a)

u = ẑA cos(kxx−Nt), (15.6b)

ρ = A

√
ρm
g

∣∣∣∣dρ̄dz
∣∣∣∣ sin(kxx−Nt). (15.6c)

Note that 〈ρuz〉 = 0 (volume averaged quantity) for internal gravity waves.

We employ N , ρm, and g to construct a new variable ρ that has the dimensions

of velocity:

ρ→ g

N

ρ

ρm
. (15.7)

In terms of the new variable, the equations for the stably stratified flows are as

follows.

∂u

∂t
+ (u · ∇)u = − 1

ρm
∇σ −Nρẑ + ν∇2u + Fu, (15.8a)

∂ρ

∂t
+ (u · ∇)ρ = Nuz + κ∇2ρ. (15.8b)

The above equations indicate the following quadratic quantities for stably stratified

flows:

Kinetic energy density Eu(r) =
1

2
u2, (15.9a)
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Potential energy density Eρ(r) =
1

2
ρ2. (15.9b)

The volume average of these quantities are the total kinetic and potential energies,

and they are denoted by Eu and Eρ respectively. The evolution equations for Eu(r)

and Eρ(r) are

∂

∂t

u2

2
+∇ ·

[
u2

2
u

]
= −∇ · (σu)−Nρuz + νu · ∇2u + Fu · u, (15.10a)

∂

∂t

ρ2

2
+∇ ·

[
ρ2

2
u− κρ∇ρ

]
= Nρuz − κ(∇ρ)2. (15.10b)

Under the approximation that ν = κ = 0 and Fu = 0, a sum of the volume integrals

of the aforementioned equations for periodic or vanishing boundary conditions yields

d

dt
(Eu + Eρ) = 0, (15.11)

which is a statement of the conservation of total energy. Note that Eu and Eρ are

not conserved individually.

In the absence of the nonlinear, viscous, and diffusive terms, the system supports

gravity waves for which Eu and Eρ oscillate around their mean values while keeping

Eu + Eρ = const. Here, 〈ρuz〉 = 0. This is the neutral equilibrium of the system.

Note that a wave solution yields neither a growth nor a decay of Eu and Eρ. Also, the

energy exchange between Eu and Eρ is due to the linear interactions of Eqs. (15.4),

and is different from the nonlinear energy transfers.

In the presence of nonlinearity, 〈ρuz〉 > 0 for the following reasons. The volume

average of nondissipative and force-free (Fu = 0) version of Eq. (15.10a) yields

1

2

∂

∂t
〈u2〉 = −N〈ρuz〉. (15.12)

This is because the volume average of the nonlinear and pressure gradients vanish

for periodic or vanishing boundary conditions. From Eq. (15.12), we deduce that

the stability of a stably stratified flow is possible only when the average energy feed

by buoyancy, −N〈ρuz〉 < 0 or 〈ρuz〉 > 0. If −N〈ρuz〉 were to be positive, the kinetic

energy would grow in time and make the flow unstable, which is a contradiction for

a stably stratified flow. Thus, we prove that 〈ρuz〉 > 0 for stably stratified flows.

Due to the above reasons, Eu is transferred to Eρ. Therefore, Eu decays when

Fu = 0. This is the reason why we need Fu to generate a steady state. In the next

section we will describe the equations of stably stratified flows in Fourier space.
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15.2 Governing Equations in Fourier Space

The aforementioned equations in real space can be written in Fourier space as

follows:

d

dt
u(k) + Nu(k) = −ikσ(k)−Nρ(k)ẑ − νk2u(k) + Fu(k), (15.13a)

d

dt
ρ(k) +Nρ(k) = Nuz(k)− κk2ρ(k), (15.13b)

k · u(k) = 0, (15.13c)

where

Nu(k) = i
∑
p

[k · u(k− p)]u(p), (15.14a)

Nρ(k) = i
∑
p

[k · u(k− p)]ρ(p), (15.14b)

and

σ(k) =
i

k2
[k ·Nu(k) +Nkzρ(k)]. (15.15)

The modal potential energy is defined as

Eρ(k) =
1

2
|ρ(k′)|2. (15.16)

The dynamical equations for Eu(k) and Eρ(k) are

d

dt
Eu(k) = =

[∑
p

[k · u(q)] [u(p) · u∗(k)]

]
−N<[ρ(k)u∗z(k)]

+< [Fu(k) · u∗(k)]− 2νk2Eu(k), (15.17a)

d

dt
Eρ(k) = =

[∑
p

[k · u(q)] [ρ(p)ρ∗(k)]

]
+N<[ρ(k)u∗z(k)]− 2κk2Eρ(k).(15.17b)

When we compare the above equations with the corresponding equations for

hydrodynamics (Eq. (3.19)) and that for passive scalar, we observe the following:

1. Term 1 of Ėu(k): The nonlinear kinetic energy transfers to u(k) from other u

modes. This is exactly the same as the nonlinear term of Eq. (3.19).

2. Term 2 of Ėu(k): Depletion rate of Eu(k) by gravitational force. The depleted

energy is transferred to the potential energy.
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3. Term 3 of Ėu(k): The kinetic energy supply rate to Eu(k) by the external force

Fu, which is in addition to the buoyancy. Typically, Fu is employed at large

length scales to maintain a steady flow.

4. Term 4 of Ėu(k): The viscous dissipation rate of Eu(k).

5. Term 1 of Ėρ(k): The nonlinear potential energy transfers to ρ(k) from other

ρ modes.

6. Term 2 of Ėρ(k): Potential energy supply rate to Eρ(k) by gravitational force.

This energy comes from the velocity field.

7. Term 3 of Ėρ(k): The diffusion rate of Eρ(k).

In the absence of an external force Fu, the evolution equation for the total energy,

Eu + Eρ, is

d

dt
(Eu + Eρ) = −2ν

∑
k

k2Eu(k)− 2κ
∑
k

k2Eρ(k). (15.18)

Thus, the total energy decays in the presence of ν and κ. Clearly, the total energy

is conserved when ν = κ = 0.

As argued in the previous section, the stability condition yields 〈ρuz〉 > 0. Using

Parseval’s theorem, we deduce that∑
k

<[ρ(k)u∗z(k)] > 0. (15.19)

This equation does not imply that <[ρ(k)u∗z(k)] > 0 for each k; yet numerical and

experimental results indicate that

<[ρ(k)u∗z(k)] > 0 (15.20)

for almost all the Fourier modes. Hence, the shell spectrum for the buoyancy feed

is negative, that is,

FB(k) =
∑

k−1<k′≤k

−N〈ρ(k′)u∗z(k
′)〉 < 0. (15.21)

The buoyancy FB(k) = −Nρ(k)ẑ feeds kinetic helicity to the mode u(k). Using

Eq. (3.48) we show that

FHK (k) = <[ω∗(k) · FB(k)]

= −N<[(−ik× u∗(k)) · ẑρ(k)]
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= −N<[(ik× ẑ · u∗(k))ρ(k)]

= Nk(sin ζ)=[u∗1(k)ρ(k)], (15.22)

where u1 is the first component of the velocity field in the Craya–Herring basis (with

ẑ = n̂), and ζ is the angle between the wave vector k and ẑ. Refer to Section 9.1 for

details on Craya–Herring basis. Following Eq. (3.50) and similar lines of arguments

as above, we derive the enstrophy feed to the mode by buoyancy as

Fω(k) = k2<[u∗(k) · FB(k)]

= −k2N<[ρ(k)u∗z(k)]. (15.23)

In the next section we describe energy transfers and fluxes in stably stratified

turbulence.

15.3 Energy Transfers and Fluxes for Stably Stratified Turbulence

As described in Section 13.2, the mode-to-mode kinetic and potential energy

transfers are

Suu(k|p|q) = −= [{k′ · u(q)}{u(p) · u(k′)}] , (15.24a)

Sρρ(k|p|q) = −= [{k′ · u(q)}{ρ(p)ρ(k′)}] . (15.24b)

Similarly, from Section 13.3, the flux formulas for the kinetic and potential energies

are as follows.

Πu(k0) =
∑
|k′|>k0

∑
|p|≤k0

Suu(k′|p|q), (15.25a)

Πρ(k0) =
∑
|k′|>k0

∑
|p|≤k0

Sρρ(k′|p|q). (15.25b)

The shell-to-shell kinetic and potential energy transfers from shell m to shell n are

defined as follows:

T u,mu,n =
∑
k′∈n

∑
p∈m

Suu(k′|p|q), (15.26a)

T ρ,mρ,n =
∑
k′∈n

∑
p∈m

Sρρ(k′|p|q). (15.26b)

Following the arguments of variable energy flux as in Sections 4.4 and 13.3, we

obtain the following set of equations for the inertial–dissipative range:

∂

∂t
Eu(k, t) = − ∂

∂k
Πu(k, t) + FB(k, t)− 2νk2Eu(k, t), (15.27a)
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∂

∂t
Eρ(k, t) = − ∂

∂k
Πρ(k, t)−FB(k, t)− 2κk2Eρ(k, t), (15.27b)

where

FB(k)dk = −
∑

k<k′≤k+dk

N<[ρ(k′)u∗z(k
′)]. (15.28)

We assume that the external force Fu is active only at small wavenumbers. Hence,

Fu(k) = 0 in the inertial range.

We limit our attention to the inertial range where the dissipative effects are

negligible. Therefore, under a steady state (∂t = 0), we obtain

d

dk
Πu(k) = FB(k), (15.29a)

d

dk
Πρ(k) = −FB(k). (15.29b)

Hence, the total energy flux

Πu(k) + Πρ(k) = const. (15.30)

We will discuss the properties of these fluxes in the subsequent sections.

15.4 Various Regimes of Stably Stratified Turbulence

Before getting into a discussion of phenomenological theories of stably stratified

turbulence, we define a quantity called Richardson number Ri, which is the ratio of

buoyancy and the nonlinear term:

Ri =
N |ρ|rmsL

u2
rms

, (15.31)

where L is the length scale of the system. The other important parameter is the

Prandtl number Pr = ν/κ.

Using Re and Ri we can broadly classify the stably stratified turbulence (SST)

into the following three categories:

1. Re� 1 and Ri ≈ 1 (turbulent SST with moderate buoyancy): In this regime,

the flow is nearly isotropic because buoyancy and nonlinearity are of the same

order. For this parameter regime, Bolgiano (1959) and Obukhov (1959) showed

that Eu(k) ∼ k−11/5 and Eρ(k) ∼ k−7/5 in the wavenumber range affected

by buoyancy, and Eu(k) ∼ k−5/3 and Eρ(k) ∼ k−5/3 beyond this range. In

Section 15.5.2, we also present a modified version of Bolgiano–Obukhov scaling.
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2. Re � 1 and Ri � 1 (turbulent SST with weak buoyancy): In this regime,

strong nonlinearity yields behavior similar to passive scalar turbulence, that

is, Eu(k) ∼ k−5/3 and Eρ(k) ∼ k−5/3. Since passive scalar turbulence has

already been discussed in Chapter 14, we will not describe this regime in the

present chapter.

3. Re � 1 and Ri � 1 (turbulent SST with strong buoyancy): In this regime,

due to strong gravity, the flow becomes quasi-2D with strong u⊥ and weak u‖.

Such flows are quite complex with many unsolved issues; hence, they are not

discussed in the present book.

Note that Re � 1 for all the aforementioned cases. In the following discussion,

we provide further details for regime 1.

15.5 Stably Stratified Turbulence with Moderate Buoyancy

For moderate stratification in which buoyancy is of the same order as the

nonlinear term, Bolgiano (1959) and Obukhov (1959) constructed a

phenomenology that provides the spectra and fluxes for the kinetic and potential

energies. We describe this phenomenology in the following subsection.

15.5.1 Bolgiano–Obukhov phenomenology

In this section we describe the Bolgiano–Obukhov phenomenology that is applicable

to moderately buoyant SST. A key ingredient of this phenomenology is that

FB(k) < 0 (15.32)

due to the stable nature of the flow. We proved the negativity of FB(k) at the end of

Section 15.1. We showed that for an inviscid, nondiffusive and linear stratification,

a negative FB(k) enables a transfer from kinetic energy to potential energy that

makes the flow stable.

The condition that FB(k) < 0 yields

d

dk
Πu(k) = FB(k) < 0 (15.33)

in the inertial range. Hence, the kinetic energy flux Πu(k) decreases with k in this

range. See Fig. 15.2(a) for an illustration. A decreasing Πu(k) is in contrast to the

constant Πu(k) in 3D hydrodynamics. A consequence of a decreasing Πu(k) is that

Eu(k) is steeper than Kolmogorov’s k−5/3 spectrum.
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Since FB(k) < 0, following Eq. (15.29b), we obtain

d

dk
Πρ(k) = −FB(k) > 0. (15.34)

Hence, as illustrated in Fig. 15.2(b), Πρ(k) increases with k. Note, however, that in

the inertial range,

d

dk
[Πu(k) + Πρ(k)] = 0. (15.35)

Hence, the sum, the total energy flux,

Πu(k) + Πρ(k) = Π (15.36)

is a constant, and equals the total energy dissipation rate. In Section 15.5.2, we

will show that this constancy leads to a rapid decrease of Πu(k), but a very slow

increase of Πρ(k).

k

k

d
k

+

P ( )ku P ( + )k dku

( )k dkB

Kinetic energy flux

k

k

d
k

+

P
(

)
k

r

P ( )kr P ( + )k dkr

( )k dk
B

(b)

–

P
(

)
k

u

k

LS

kDI

d

k
dk

P
( )/

< 0

u

( )<0k
B

D k( )u

kB

B
» 0

kkDI

d k dkP ( )/ > 0r

( )>0k
B

D k( )r

kB

B
» 0

–

(a)

Potential energy flux

Figure 15.2 Bolgiano (1959) and Obukhov (1959) model for SST: Schematic
diagrams of (a) kinetic energy flux Πu(k); (b) potential energy flux
Πρ(k). In the band kf � k � kB, Πu(k) decreases with k.
However, for kB � k � kDI , FB(k) ≈ 0, hence Πu(k) = const.
Πρ(k) first increases with k and then becomes constant.
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After this background, in the following discussion, we describe the model of

Bolgiano (1959) and Obukhov (1959) for SST. We denote the velocity and density

fluctuations at wavenumber k using symbols uk and ρk respectively. Since Ri ∼ 1,

the balance of nonlinear term and buoyancy yields

ku2
k = Nρk. (15.37)

Bolgiano (1959) and Obukhov (1959) argued that the potential energy flux is

approximately constant in the inertial range, and that it equals the dissipation

rate of the potential energy (ερ). As argued above, Πρ increases with k, yet

constancy of Πρ is a reasonable assumption for the inertial range, as will be shown

in Section 15.5.2. Hence, using dimensional analysis we deduce that

Πρ = kρ2
kuk = ερ. (15.38)

Using Eqs. (15.37, 15.38) we can solve for uk and ρk that yields

Eu(k) =
u2
k

k
= ε2/5ρ N4/5k−11/5, (15.39a)

Eρ(k) =
ρ2
k

k
= ε4/5ρ N−2/5k−7/5, (15.39b)

Πu(k) = ku3
k = ε3/5ρ N6/5k−4/5, (15.39c)

Πρ(k) = ερ. (15.39d)

This is how Bolgiano (1959) and Obukhov (1959) showed that for stably stratified

turbulence with moderate stratification, Πu(k) ∼ k−4/5 and Eu(k) ∼ k−11/5. Clearly,

Πu(k) decreases with k, consistent with Eq. (15.33).

Bolgiano and Obukhov went further and argued that buoyancy weakens at large

k. For negligible buoyancy, the spectra and fluxes of SST would be same as those

of passive scalar turbulence:

Eu(k) = KKoε
2/3
u k−5/3, (15.40a)

Eρ(k) = KOCε
−1/3
u ερk

−5/3, (15.40b)

Πu(k) = εu, (15.40c)

Πρ(k) = ερ, (15.40d)

where εu is the viscous dissipation rate, and KKo,KOC are respectively

Kolmogorov’s and Obukhov–Corrsin’s constants. The behavioral transition from
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Eq. (15.39) to Eq. (15.40) occurs near Bolgiano wavenumber kB, which is obtained

by matching Πu(k) in the two regimes. This operation yields

kB ≈ N3/2ε−5/4
u ε3/4ρ . (15.41)

In the following discussion, we however show that with the increase of k, uk gets

weaker compared to ρk, and hence the second regime is impossible. Therefore, we

expect only one scaling, that of Eq. (15.39) for SST. This is the topic of the next

subsection.

15.5.2 Modified Bolgiano–Obukhov scaling

The aforementioned derivation of Bolgiano and Obukhov is based on the following

two assumptions:

1. Πρ(k) ≈ const.

2. Buoyancy weakens at large wavenumbers (beyond Bolgiano wavenumber), and

hence the scaling of passive scalar turbulence for this regime.

In the following discussion, we do not make either of the aforementioned

assumptions. Here we make use of Eqs. (15.37), and conservation of total energy

flux [Eq. (15.36)].

The conservation of total energy flux yields

Πu(k) + Πρ(k) = ku3
k + kρ2

kuk = εu + ερ = ε, (15.42)

where ε is the total energy dissipation rate. Using Eq. (15.37) we eliminate ρk in

Eq. (15.42) that yields the following fifth-order polynomial in uk:

ku3
k

[
1 +

k2u2
k

N2

]
= ε. (15.43)

Alam et al. (2018) solved Eq. (15.43) for uk and then computed ρk using Eq. (15.37).

After this, they computed Πu(k), Πρ(k), Eu(k), and Eρ(k), which are plotted in

Fig. 15.3. For a wide range of wavenumbers (from k = 1 to 1010), they observed a

scaling consistent with Eqs. (15.39) with no transition to Eqs. (15.40). Hence, the

transition proposed by Bolgiano (1959) and Obukhov (1959) is incorrect. In the

following paragraph we show why only a single scaling of Eqs. (15.39) is expected

for SST with moderate stratification.
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Figure 15.3 Solution of Eqs. (15.37, 15.43) yields: (a) Fluxes Πu(k) and
Πρ(k). (b) Kinetic and potential energy spectra Eu(k) and Eρ(k).
These plots exhibit scaling of Eqs. (15.39), and no transition from
Eqs. (15.39) to Eqs. (15.40). Adopted from figures of Alam et al.
(2018).

Using Eqs. (15.39), which is the solution of Eqs. (15.37, 15.43), we deduce that

uk ≈ ε1/5ρ N2/5k−3/5,

ρk ≈ ε2/5ρ N−1/5k−1/5. (15.44)

Hence, with the increase of k, uk decreases faster than ρk, and

Πu(k)

Πρ(k)
≈ ku3

k

kρ2
kuk
≈ ε−2/5

ρ N6/5k−4/5. (15.45)

Therefore, with the increase of k, Πu(k) decreases faster than Πρ(k) [see Fig. 15.3(a)].

Since uk is weaker than ρk in this regime, there is no possibility that ku2
k will ever

overcome the buoyancy term at large k. Hence, the second scaling of Eqs. (15.40)

is not expected.

In Fig. 15.4, we sketch Πu(k) and Πρ(k) obtained using the aforementioned

arguments. The kinetic energy flux Πu(k) decreases quite rapidly as k−4/5.

Therefore,

Πu(k) ≈ Ak−4/5 =⇒ d

dk
Πu(k) = FB(k) = −4

5
Ak−9/5. (15.46)

Thus, the energy feed by buoyancy becomes weaker with increasing k. Using

d

dk
Πρ(k) = −FB(k) =

4

5
Ak−9/5, (15.47)
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we obtain

Πρ(k) = Πρ(k0) +

∫ k

k0

dk′
4

5
Ak′−9/5 ≈ Πρ(k0). (15.48)

Due to power law physics, Πu(k) decreases rapidly, but Πρ(k) does not change

significantly (still keeping the sum to be a constant).

The above scaling is valid for k > 1. But for k < 1, the role of the two energy

fluxes switch. From Eq. (15.45), we deduce that Πu(k)� Πρ(k) for k � 1. A simple

analysis shows that for k � 1, the scaling relations are

Πu(k) = εu, (15.49a)

Πρ(k) = N−2ε5/3u k4/3, (15.49b)
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Eu(k) = KKoε
2/3
u k−5/3, (15.49c)

Eρ(k) = N−2ε4/3u k−1/3. (15.49d)

However, it is not certain if k � 1 regime is indeed realizable in experiments or in

numerical simulations.

Before we end this subsection, we state that the Bolgiano–Obuknov scaling can be

derived by substituting the variable kinetic energy flux in formulas for passive scalar

turbulence. When we substitute Πu(k) of Eq. (15.39c) in Kolmogorov’s formula for

Eu(k), we obtain

Eu(k) = KKo[Πu(k)]2/3k−5/3 ∼ KKoε
2/5
ρ N4/5k−11/5. (15.50)

Similar substitution in the formula for the potential energy spectrum [Eq. (14.11)]

yields

Eθ(k) = KOCΠθ[Πu(k)]−1/3k−5/3 ∼ KOCε
4/5
ρ N−2/5k−7/5. (15.51)

In the next subsection we will describe a numerical simulation that shows partial

agreement with this phenomenology.

15.5.3 Numerical results on moderately stratified turbulence

To verify the Bolgiano–Obukhov scaling, Kumar et al. (2014a) performed a

numerical simulation of stably stratified turbulence on a 10243 periodic grid. They

chose Pr = 1 and Ri = 0.01; this choice of modest Ri leads to a moderate

stratification of the flow (nonlinearity ≈ buoyancy). Kumar et al. forced the flow

at large length scales and obtained a steady state with Reynolds number

Re ≈ 649. Using the steady-state data, they computed the spectra and fluxes of

the kinetic and potential energies, which are exhibited in Figs. 15.5 and 15.6.

Figure 15.5 shows that Eu(k)k11/5 ≈ const. for a relatively narrow wavenumber

range, hence Eu(k) ∼ k−11/5 for this regime. Similarly, we observe that Eρ(k)k7/5 ≈
const., hence Eρ(k) ∼ k−7/5. Note that the plots of Eu(k)k5/3 and Eρ(k)k5/3 are not

flat. Thus, Kumar et al. (2014a)’s simulations provide evidences for Bolgiano and

Obukhov’s predictions of Eqs. (15.39).

In adidition, Kumar et al. (2014a) did not observe any transition from the

spectra of Eqs. (15.39) to those of Eqs. (15.40), consistent with the modified

Bolgiano and Obukhov scaling. This statement however needs verification from

numerical simulations with more grid points (say 20483).
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The kinetic energy flux Πu(k) exhibited in Fig. 15.6 does not fall as steeply

as k−4/5, which is a prediction of Bolgiano–Obukhov scaling. However, there is a

certain decrease in Πu(k) with k. The potential energy flux plotted in Fig. 15.6

show that Πρ(k) ∼ const. As described in the previous subsection, we expect that

the sum Πu(k) + Πρ(k) ≈ const.; but the numerical data show a minor decrease
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with k. Thus, the plots of the fluxes of kinetic and potential energies agree with the

Bolgiano–Obukhov scaling only qualitatively.

15.6 Stably Stratified Turbulence with Strong Buoyancy

When Re � 1 and Ri � 1, the strong buoyancy tends to make the flow quasi-2D

with |u⊥| � u‖. Lindborg (2006) and Davidson (2013) provide scaling analysis for

this regime, and argue that

E⊥(k⊥) ∼ ε2/3u k
−5/3
⊥ , (15.52a)

E⊥(k‖) ∼ N2k−3
‖ . (15.52b)

The tools described in Chapter 11 would be very useful for quantifying anisotropy

in this regime. However, such discussions are skipped for brevity.

Though there are interesting numerical and phenomenological work in this area,

there are a number of unresolved issues. Refer to Davidson (2013), Lindborg (2006),

and references therein for more details.

With this, we end our discussion on stably stratified turbulence. In the next

chapter we will describe scaling of turbulent thermal convection.

Further Reading

For more details on stably stratified flows, refer to books by Davidson (2013), Sagaut

and Cambon (2008), and Verma (2018). The original sources for the Bolgiano–

Obukhov scaling are Bolgiano (1959) and Obukhov (1959). For numerical verification

of the Bolgiano–Obukhov scaling, refer to Kumar et al. (2014a).

For SST with strong stratification, refer to Davidson (2013), Lindborg (2006),

and references therein.
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Chapter 16

Thermal Convection

When we heat a fluid from the bottom and cool it from the top, hot fluid elements

ascend and cold ones descend. This phenomena, called thermal convection, is due

to the density variations induced by heating. Since the temperature affects the fluid

flow, it is an active scalar. In this chapter we will study the properties of thermal

convection, especially from energy transfer perspectives.

The equations for thermal convection are identical to those for stably stratified

flows, except for the sign of density stratification: dρ/dz < 0 for stably stratified

flows, but dρ/dz > 0 for thermal convection. This sign difference has strong

ramifications on the stability and dynamics of the flow, as will be shown below.

We start with the governing equation of thermal convection.

16.1 Governing Equations

We assume that the fluid is confined between two conducting horizontal plates that

are kept at z = 0 and d. See Fig. 16.1 for an illustration. The temperature of the

corresponding plates are Tb and Tt respectively, with Tb > Tt. The local temperature

is a combination of the imposed linear temperature T̄ (z) and temperature fluctuation

θ:

T (x, y, z) = T̄ (z) + θ(x, y, z), (16.1)
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Thermal Convection 263

where

T̄ (z) = Tb +
dT̄

dz
z = Tb −

Tb − Tt
d

z. (16.2)

This particular configuration of thermal convection is the Rayleigh–Bénard

convection, denoted in short by RBC.

Cold

Hot

g

z

(a) (b)

tT

bT
tT bT T

( )zT

Figure 16.1 (a) A schematic diagram of Rayleigh–Bénard convection. The
temperature of the bottom and top thermal plates are Tb and Tt
respectively. (b) The mean temperature T̄ (z) falls linearly with z.

For such flows, the equations of motion for the velocity and temperature

fluctuations are

∂u

∂t
+ (u · ∇)u = − 1

ρm
∇σ + αgθẑ + ν∇2u, (16.3a)

∂θ

∂t
+ (u · ∇)θ =

∆

d
uz + κ∇2θ, (16.3b)

∇ · u = 0, (16.3c)

where ∆ = Tb − Tt, and ν, κ are respectively the kinematic viscosity and thermal

diffusivity of the fluid. The temperature field is an active scalar since it affects the

velocity field. For details refer to Verma (2018).

The equations for the kinetic energy and scalar energy (θ2/2) are

∂

∂t

u2

2
+∇ ·

[
u2

2
u

]
= −∇ · (σu− νu× ω) + αgθuz − νω2, (16.4a)

∂

∂t

θ2

2
+∇ ·

[
θ2

2
u− κθ∇θ

]
=

∆

d
θuz − κ(∇θ)2. (16.4b)
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264 Energy Transfers in Fluid Flows

In literature, θ2/2 is also called entropy. However, in this book, θ2/2 is referred to as

scalar energy for consistency with the convention followed in the earlier chapters. It

is easy to show that for ν = κ = 0, and for periodic or vanishing boundary condition,

the conserved quantity for RBC is

1

2

∫
dr

(
u2 − αgd

∆
θ2

)
. (16.5)

The derivation is similar to that followed in Chapter 2.

The hot plumes (θ > 0) almost always ascend (uz > 0), and cold plumes (θ < 0)

almost always descend (uz < 0)1, hence 〈uzθ〉 > 0. Therefore, the average energy

feed by buoyancy,

FB = αg〈θuz〉 > 0. (16.6)

In the absence of viscous and diffusive effects, the flow becomes unstable due to this

energy feed.2 Under a steady state, the energy feed by buoyancy balances the viscous

dissipation, and 〈u2〉 is constant statistically. Note that θ2 too gets a positive feed

from (∆/d)〈uzθ〉, which is balanced by the diffusion term. A key difference between

thermal convection and stably stratified flows is the sign of FB: FB > 0 in thermal

convection, but it is negative for stably stratified flows.

Equations (16.3) can be nondimensionalized using d as the length scale, free-

fall velocity
√
αg∆d as the velocity scale, and temperature difference ∆ as the

temperature scale. Hence,

u→ u
√
αg∆d; θ → θ∆. (16.7)

In terms of these variables, Eqs. (16.3) translate to the following nondimensional

counterparts:

∂u

∂t
+ (u · ∇)u = −∇σ + θẑ +

√
Pr

Ra
∇2u, (16.8a)

∂θ

∂t
+ (u · ∇)θ = uz +

1√
RaPr

∇2θ, (16.8b)

∇ · u = 0, (16.8c)

1This pattern may be altered briefly during a flow reversal, as shown by Chandra and Verma (2013).
2This is a generic feature of all unstably stratified flows—bubbly turbulence, Rayleigh–Taylor turbulence,
etc.
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where

Ra =
αgd3∆

νκ
, (16.9)

Pr =
ν

κ
(16.10)

are the Rayleigh number and Prandtl number respectively.

In the next section, we will derive the above equations in Fourier space.

16.2 Governing Equations in Fourier Space, Energy Transfers,
and Fluxes

The RBC equations in Fourier space are

d

dt
u(k) + Nu(k) = −ikσ(k) + αgθ(k)ẑ − νk2u(k), (16.11a)

d

dt
θ(k) +Nθ(k) =

∆

d
uz(k)− κk2θ(k), (16.11b)

k · u(k) = 0, (16.11c)

where

Nu(k) = i
∑
p

[k · u(k− p)]u(p), (16.12a)

Nθ(k) = i
∑
p

[k · u(k− p)]θ(p) (16.12b)

are the nonlinear terms, which were derived in Chapters 4 and 13, and the pressure

is

σ(k) =
i

k2
[k ·Nu(k)− αgkzρ(k)]. (16.13)

The governing equations for the modal kinetic energy |u(k)|2/2 and the modal

scalar energy |θ(k)|2/2 are as follows:

d

dt
Eu(k) = =

[∑
p

[k · u(q)] [u(p) · u∗(k)]

]
+ αg<[θ(k)u∗z(k)]− 2νk2Eu(k), (16.14a)

d

dt
Eθ(k) = =

[∑
p

[k · u(q)] [θ(p)θ∗(k)]

]
+

∆

d
<[θ(k)u∗z(k)]− 2κk2Eθ(k), (16.14b)
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266 Energy Transfers in Fluid Flows

where q = k− p, and <,= stand respectively for the real and imaginary parts of

the argument. In the aforementioned equation, Eu(k) changes with time due to (a)

the nonlinear energy transfers from other Fourier modes, (b) the kinetic energy feed

by buoyancy,

FB(k) = αg<[θ(k)u∗z(k)], (16.15)

and (c) the viscous dissipation rate

Du(k) = −2νk2Eu(k). (16.16)

Similar interpretations hold for Eθ(k). When we contrast the above equations with

those for passive scalar, we observe that in RBC, both kinetic and scalar energies

receive additional contributions from buoyancy.

In the previous section we showed that the volume averaged kinetic energy feed

by buoyancy, αg〈uzθ〉 > 0. Hence, using Parseval’s theorem, we deduce that∑
k

αg<[θ(k)u∗z(k)] > 0. (16.17)

Note however that each term of this sum is not necessarily positive. Yet, numerical

and experimental results indicate that

FB(k) = αg<[θ(k)u∗z(k)] > 0 (16.18)

for all the Fourier modes. This relation implies that the shell spectrum

FB(k) =
∑

k−1<k′≤k

αg〈θ(k′)u∗z(k′)〉 > 0. (16.19)

The formulas for the mode-to-mode kinetic energy and scalar energy transfers, as

well as their associated energy fluxes, would be the same as those discussed in earlier

chapters because of the identical forms of the nonlinear term. Hence,

Suu(k|p|q) = −= [{k′ · u(q)}{u(p) · u(k′)}] , (16.20a)

Sθθ(k|p|q) = −= [{k′ · u(q)}{θ(p)θ(k′)}] , (16.20b)

and

Πu(k0) =
∑
|k′|>k0

∑
|p|≤k0

Suu(k′|p|q), (16.21a)

Πθ(k0) =
∑
|k′|>k0

∑
|p|≤k0

Sθθ(k′|p|q). (16.21b)
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Following the same set of energetics arguments as in Sections 4.4 and 13.3, we derive

the following set of equations for Eu and Eθ in the inertial–dissipative range:

∂

∂t
Eu(k, t) = − ∂

∂k
Πu(k, t) + FB(k, t)− 2νk2Eu(k, t), (16.22a)

∂

∂t
Eθ(k, t) = − ∂

∂k
Πθ(k, t) +

∆

αgd
FB(k, t)− 2κk2Eθ(k, t). (16.22b)

Under a steady state (∂/∂t = 0), in the inertial range where the dissipation and

diffusion terms are negligible, the aforementioned equations yield

d

dk
Πu(k) = FB(k), (16.23a)

d

dk
Πθ(k) =

∆

αgd
FB(k). (16.23b)

Hence, under the above assumptions, we obtain

Πu(k)− αgd

∆
Πθ(k) = const. = C1. (16.24)

To compare the two fluxes, we construct their nondimensional counterparts—

Π′u(k),Π′θ(k)—as:

Πu(k) =
U3

d
Π′u(k), (16.25a)

Πθ(k) =
U∆2

d
Π′θ(k), (16.25b)

where U is the rms velocity of the flow. Substitution of these terms in Eq. (16.24)

yields

U3

d

[
Π′u(k)− αg∆d

U2
Π′θ(k)

]
= const. (16.26)

Since U ≈
√
αg∆d, we deduce that

Π′u(k)−Π′θ(k) ≈ C2. (16.27)

Numerical simulations however reveal that C2 ≈ 0.

The buoyancy αgθ(k)ẑ feeds kinetic helicity to the Fourier mode u(k). Using

Eq. (3.48) we obtain

FHK (k) = <[ω∗(k) · Fu(k)]

= αg<[(−ik× u∗(k)) · ẑθ(k)]
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= αg<[(ik× ẑ · u∗(k))θ(k)]

= −αgk(sin ζ)=[u∗1(k)θ(k)], (16.28)

where u1 is the first component of the velocity field in the Craya–Herring basis (see

Section 9.1), and ζ is the angle between the wave vector k and ẑ. Similarly, we can

derive the enstrophy feed to u(k) by buoyancy as (see Eq. (3.50))

Fω(k) = k2<[u∗(k) · Fu(k)]

= k2αg<[θ(k)u∗z(k)]. (16.29)

In the next section we briefly describe the structure of the temperature field in RBC.

16.3 Structure of Temperature Field in Thermal Convection

In RBC, the temperature field has an interesting large-scale pattern, as will be

described in this section. For convenience, we work with nondimensional variables

in which the temperature of the bottom and top plates located at z = 0, 1 are T = 1

and 0 respectively. We take planar average of Eq. (16.1) over the xy plane that

yields

Tm(z) = T̄ (z) + θm(z) = 1− z + θm(z), (16.30)

where the subscript m stands for mean.

For small thermal diffusivity, Tm(z) varies sharply in the thermal boundary layers,

but is nearly 1/2 in the bulk. Hence,

θm(z) ≈ z − 1 + 1/2 ≈ z − 1/2 (16.31)

in the bulk (which is nearly all of the flow when the boundary layers are thin). See

Fig. 16.2 for an illustration.

Pandey and Verma (2016) and Verma et al. (2017) performed Fourier transform

of Eq. (16.31) that yields

θm(0, 0, kz) ≈
{
− 1
πkz

for even kz

0 otherwise
(16.32)

Hence, the scalar energy spectrum of θm is

Eθm(k) =
1

2
|θm(0, 0, kz)|2 ∼ k−2. (16.33)

We will revisit this result in Section 16.6.2.
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Figure 16.2 A schematic diagram of the planar-averaged temperature Tm(z) and
θm(z). From Pandey and Verma (2016). Reprinted with permission
from AIP.

In the next section, we will describe a phenomenology of turbulent thermal

convection.

16.4 Phenomenology of Turbulent Thermal Convection

The equations for RBC are very similar to those of stably stratified flows.

Motivated by these similarities, many researchers argued that the

Bolgiano–Obukhov (BO) phenomenology for stably stratified turbulence would

also apply to turbulent thermal convection (TTC), that is, Eu(k) ∼ k−11/5 and

Eθ(k) ∼ k−7/5 (L’vov, 1991; L’vov and Falkovich, 1992). We will show in this

section that the energetics of stably stratified turbulence and TTC are very

different. Based on new energetics arguments and some subtle properties of TTC,

we deduce that TTC exhibits Kolmogorov-like kinetic energy spectrum, that is,

Eu(k) ∼ k−5/3.

For the inertial range of TTC, we start with Eq. (16.23a). Since hot plumes

ascend and cold plumes descend, θ and uz are positively correlated, or

〈θ(r)uz(r)〉 > 0. (16.34)

As argued in Section 16.2, we claim that

FB(k)dk =
∑

k<k′≤k+dk

αg〈θ(k′)u∗z(k′)〉 > 0. (16.35)

Therefore,

d

dk
Πu(k) = FB(k) > 0. (16.36)
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270 Energy Transfers in Fluid Flows

Hence, Πu(k) is expected to increase with k. Recent numerical simulations of Kumar

et al. (2014a) and Verma et al. (2017) however show that Πu(k) of RBC is nearly

constant. The constancy of Πu(k) in RBC is due to the following reasons.

Verma et al. (2017) showed that FB(k) ∼ k−5/3. Therefore, using dimensional

analysis we deduce that

FB(k) = αg〈θ(k)u∗z(k)〉 ∼ αgU∆(kd)−5/3. (16.37)

Therefore, Eq. (16.23a) yields

1

Πu(k)

d

dk
Πu(k) =

1

Πu(k)
FB(k)

∼ d

U3
αgU∆(kd)−5/3

∼ (kd)−5/3. (16.38)

In this derivation, we employ αg∆d ∼ U2. Using Eq. (16.38) we infer that the

buoyancy weakens with the increase of k. Hence, in the inertial range, it is not strong

enough to be able to increase Πu(k) significantly. See Fig. 16.3 for an illustration.

There is however a subtle difference between the hydrodynamic turbulence

(Kolmogorov’s picture) and turbulent thermal convection. As described earlier,

thermal plumes drive the flow at all scales, though prominently at large scales.

Under a steady state,

d

dk
Πu(k) = FB(k)−Du(k). (16.39)

An integration of this equation from k0 to ∞ yields

����Πu(∞)−Πu(k0) =

∫ ∞
k0

FB(k)dk −
∫ ∞
k0

Du(k)dk =

∫ ∞
k0

FB(k)dk − εu. (16.40)

Note that∫ ∞
k0

FB(k)dk > 0 (16.41)

unlike in Kolmogorov’s model of hydrodynamics turbulence for which the external

force in the inertial range is zero. Hence,

Πu(k0) = εu −
∫ ∞
k0

FB(k)dk < εu. (16.42)
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Thus, Πu(k0) in the inertial range is less than the energy dissipation rate. To

illustrate, Bhattacharya et al. (2018b) show that for very large Ra and Pr ≈ 1, the

inertial range Πu is around half of εu. We however remark that the constant kinetic

energy flux is still a good assumption. The sum of weak buoyancy feed over the

whole range of wavenumbers is only half of εu.

k

k

d
k

+

P ( )ku P ( + )k dku

( )k dkB

Kinetic energy flux
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Figure 16.3 A schematic diagram of the kinetic energy flux Πu(k) of TTC.
(a,b) We expect Πu(k) to increase due to positive FB(k), but this
is not so. (c) FB(k) is much smaller than the pressure gradient.
Therefore, dΠu(k)/dk ≈ 0, or Πu(k) ≈ const.

This result is consistent with the numerical results of Pandey and Verma (2016)

who showed that in the momentum equation, buoyancy is much smaller than the

pressure gradient.3 Hence, turbulent thermal convection is driven primarily by the

3In a related work, Verma (2018) also showed that Ri ≈ 0.1 for turbulent thermal convection (see Sec. 11.3
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pressure gradient, as in 3D hydrodynamics. Buoyancy essentially supplies energy at

large scales. Therefore, the statement that plumes drive RBC is incorrect.

Similar constancy is also observed for the scalar energy or temperature flux.

From Eq. (16.23b) we observe that

d

dk
Πθ(k) =

∆

αgd
FB > 0. (16.43)

Hence, we may expect the scalar energy (temperature) flux to increase with k. Note

however that

1

Πθ(k)

d

dk
Πθ(k) =

1

Πθ(k)

∆

αgd
FB(k)

∼ d

U∆2

∆

αgd
αgU∆(kd)−5/3

∼ (kd)−5/3. (16.44)

Therefore, in the inertial range,

1

Πθ(k)

d

dk
Πθ(k) ≈ 0. (16.45)

Hence, Πθ(k) too remains an approximate constant in the inertial range. See

Fig. 16.4 for an illustration. Both Πu(k) and Πθ(k) increase slightly due to small

FB(k), but the difference between the two fluxes remains a constant, as in

Eq. (16.24).

k
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+

P
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d k dkP »( )/ 0
q

D k( )
q

q,B » 0
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q,B

Scalar energy (temperature) flux

Figure 16.4 A schematic diagram of the scalar energy or temperature flux,
Πθ(k). The scalar energy flux dΠθ(k)/dk ≈ 0, or Πθ(k) ≈ const.

of Verma (2018)).
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Constant values for Πu and Πθ, and similarities between TTC and hydrodynamic

turbulence lead us to conclude that the kinetic energy spectrum Eu(k) of TTC

follows Kolmogorov’s spectrum:

Eu(k) = KKo(Πu)2/3k−5/3. (16.46)

Refer to Chapter 5 for the derivation of Kolmogorov’s spectrum for hydrodynamic

turbulence. Note that the literature is divided on the suitability of

Bologiano–Obukhov phenomenology or Kolmogorov’s phenomenology for TTC.

The aforementioned arguments however conclusively show that TTC should have

constant kinetic energy flux and k−5/3 kinetic energy spectrum. For clarity, in

Table 16.1, we contrast some of the important properties of stably stratified

turbulence and TTC.

Table 16.1 Turbulent thermal convection vs. stably stratified turbulence with
moderate stratification.

Property Thermal convection Stably stratified turbulence

Nature of stability Unstable Stable

Phenomenology Kolmogorov Bolgiano–Obukhov

FB(k) Positive Negative

Πu(k) Πu(k) ≈ const. Πu(k) ∼ k−4/5

Eu(k) k−5/3 k−11/5

Density/temperature flux constant in k constant in k

Density/temperature spec. bi-spectrum k−7/5

In the next section we describe the structure function of turbulent thermal

convection that is similar to that of hydrodynamic turbulence (apart from some

subtle differences).

16.5 Structure Functions of Turbulent Thermal Convection

In this section we describe the structure functions for the velocity field of TTC.

We show that these structure functions are very similar to those of hydrodynamic

turbulence. The derivation for TTC is very similar to that by Kolmogorov (1941c,a).

Earlier, Nath et al. (2016) had shown that the distribution of the velocity field

in turbulent convection is nearly isotropic. Hence, we employ the assumptions of

homogeneity and isotropy to TTC.
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The qth order structure function for the velocity field is defined as

Suq (l) = 〈[{u(r + l)− u(r)} · n]q〉, (16.47)

where n = l/l. See Fig. 12.1 for an illustration. As described in the previous

section, in the inertial range of turbulent thermal convection, the buoyancy is

much weaker than the pressure gradient. Hence, its flow behavior is similar to that

of hydrodynamic turbulence. Hence, we expect (see Sec. 12.3)

S3(l) = −4

5
Πul. (16.48)

The only difference is that Πu < εu, and the difference is the energy supply rate by

buoyancy in the inertial range.

For a more rigorous derivation, we start with Eq. (12.47):

∂

∂t

1

2
〈ui(r)ui(r + l)〉 = Tu(l) + FB(l)−Du(l), (16.49)

where Tu(l) is the nonlinear energy transfer at length scale l, and FB(l) and Du(l)

are respectively the correlations associated with the energy feed by buoyancy and

viscous dissipation. Under steady state, ∂〈ui(r)ui(r + l)〉/∂t = 0. In addition we

focus on the inertial range where Du(l)→ 0. Therefore,

−Tu(l) = FB(l). (16.50)

Numerical simulations of Verma et al. (2017) show that FB(l) of TTC is dominant

at small wavenumbers, but has a power law tail in the inertial range (k−5/3). For

simplification of the calculation, we model FB(l) as

FB(k) =
A

2
(δk,k0

+ δk,−k0
) +Bk−α, (16.51)

where A,B are constants but B � A, and α ≈ 5/3. Inverse Fourier transform of

this equation yields

FB(l) = 〈F(r) · u(r + l)〉

=
∑
k

F(k) exp(ik · l)

= A cos(k0 · l) +

∫
dkBk−α exp(ik · l)

≈ A+DBlα−1 ≈ A+DBl2/3, (16.52)

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316810019.017
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 04 Jul 2019 at 22:26:18, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316810019.017
https://www.cambridge.org/core


Thermal Convection 275

where D is a nondimensional constant coming out of the integral.

In Eq. (16.50), we substitute this FB(l), and Tu(l) of Eq. (12.53). These

operations yield

− 1

12

1

l2
d

dl

[
1

l

d

dl
(l4S3(l))

]
= A+DBl2/3. (16.53)

Following similar procedure as in Section 12.3, we obtain

S3(l) = −4

5
(Al +DBl5/3). (16.54)

The large-scale forcing at k = k0 equals the energy flux Πu. We ignore the second

term under the assumption that B is small, and hence,

S3(l) = −4

5
Πul, (16.55)

which is of the similar form as Kolmogorov (1941a). Note that Πu ≈ εu/2 for

Pr ≈ 1 (Bhattacharya et al., 2018b).

In Section 12.6 we discussed multiscaling exponents for hydrodynamic

turbulence. We show in Section 16.6.3 that the multiscaling exponents for u of

turbulent convection are quite similar to those of hydrodynamic turbulence.

However, the temperature field of TTC is inhomogeneous as shown in Fig. 16.2.

Hence, it is difficult to extend the derivation of Section 14.5 to thermal turbulence.

Therefore, we do not discuss the structure function of θ in this book.

In the next section we will test the aforementioned phenomenology of TTC using

numerical simulations.

16.6 Numerical Verification of the Phenomenology of Turbulent
Thermal Convection

There have been a large number of numerical simulations of turbulent thermal

convection. Some of these simulations report agreement with Kolmogorov-like

spectrum for TTC, while some show similarities with Bolgiano–Obukhov scaling.

In the present section we present recent numerical results that conclusively show

that TTC and hydrodynamic turbulence have similar properties.

Verma et al. (2017) simulated RBC on a 40963 grid for Pr = 1 and

Ra = 1.1 × 1011. At the thermal plates, they employed free-slip boundary for the

velocity field and conducting boundary condition for the temperature field.

Periodic boundary condition was employed along the horizontal directions.
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Though most results presented here are for free-slip and conducting boundary

conditions, we also report kinetic energy spectrum and flux of a no-slip simulation

by Kumar and Verma (2018) with Pr = 1 and Ra = 108.

16.6.1 Kinetic energy spectrum and flux; Scalar energy flux

Using the steady state data, Verma et al. (2017) computed the spectrum and flux

of the kinetic energy. They also computed the scalar energy flux. We exhibit these

quantities in Fig. 16.5, and describe their properties in this section.
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Figure 16.5 For the RBC simulation with Pr = 1 and Ra = 1.1 × 1011 on
a 40963 grid with free-slip and isothermal boundary conditions:
(a) plots of normalized kinetic energy spectra Eu(k)k5/3 and
Eu(k)k11/5 indicate that Eu(k) ∼ k−5/3. (b) The fluxes
Πu(k),Πθ(k) are approximate constants in the inertial range
(shaded region in the plot). The flux difference, Πu(k)−Πθ(k), is
flat. From Verma (2018). Reprinted with permission from World
Scientific.

As shown in Fig. 16.5(a), Eu(k)k5/3 ∼ const., hence Eu(k) ∼ k−5/3. Note that

Eu(k)k11/5 is not flat, thus ruling out the Bolgiano–Obukhov spectrum for kinetic

energy. We also observe that both Πu(k) and Πθ(k) are nearly constant in the

inertial range. These fluxes however show a slight increase with k due to buoyancy,

but the difference, Πu(k) − Πθ(k), is a constant, as predicted by Eq. (16.24). Here

αgd/∆ = 1 due to normalization.

RBC simulations with the no-slip boundary condition too exhibit similar

spectrum and flux for the kinetic energy. For example, Kumar and Verma (2018)

simulated RBC under no-slip boundary condition for Pr = 1 and Ra = 108.

Figure 16.6 illustrates Eu(k) and Πu(k) computed using the steady-state data.

Clearly, Eu(k) ∼ k−5/3, and Πu(k) ≈ const., consistent with Kolmogorov’s
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phenomenology.
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Figure 16.6 For a RBC simulation with Pr = 1 and Ra = 108 under no-slip
boundary condition along all the walls. The kinetic energy spectrum
Eu(k) ∼ k−5/3, and kinetic energy flux Πu(k) ≈ constant in the
inertial range. From Kumar and Verma (2018). Reprinted under
Creative Commons Attribution License.

16.6.2 Scalar energy or temperature spectrum

Considering the similarities between the TTC and hydrodynamic turbulence, we

may expect the scalar energy spectrum to be Kolmogorov-like, as in Eq. (14.11).

However, the scalar energy or temperature spectrum, Eθ(k), is surprisingly quite

different for that of passive scalar. As shown in Fig. 16.7, Eθ(k) exhibits a bi-

spectrum with the upper branch as k−2. The lower branch however follows neither

k−5/3 nor k−7/5 spectrum.

In Section 16.3 we showed that the planar average of the temperature fluctuation,

θm(z), yields (Pandey and Verma, 2016; Verma et al., 2017)

Eθm(k) ∼ k−2. (16.56)

The upper branch of Fig. 16.7 corresponds to Eθm(k). The remaining modes (not of

the form θ(0, 0, kz)) make up the lower branch of Eθ(k). Equation (16.45) demands

that the scalar energy (temperature) flux is constant in the inertial range of RBC.

Here, both the branches of Eθ(k) contribute to a constant Πθ(k).

For the no-slip turbulent thermal convection, the temperature spectrum and flux,

not shown here, too have similar behavior.
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Figure 16.7 For the RBC simulation with Ra = 1.1 × 1011, plot of Eθ(k)
exhibits a bispectrum. The upper branch ∼ k−2, while the lower
branch scales neither as k−7/5 nor as k−5/3. From Verma et al.
(2017). Reprinted under Creative Commons Attribution 3.0 license.

16.6.3 Structure functions

Bhattacharya et al. (2018b) took a filtered data from the 40963 grid simulation

described earlier, and computed the structure functions Suq (l) for the velocity field.

Figure 16.8(a) illustrates the Suq (l) vs. l plot along with ζq values in the inertial

range, while Fig. 16.8(b) exhibits the ζq vs. q plot. As shown in the figure, the

exponents ζq of thermal convection are in good agreement with She–Leveque’s

predictions (shown as dashed line) that describes ζq of hydrodynamic turbulence
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Figure 16.8 For RBC simulation with Ra = 1.1 × 1011: (a) Plots of velocity
structure functions Suq (l). (b) Plot of multiscaling exponents ζq
vs. q. ζq’s are in good agreement with She–Leveque’s predictions
(dashed line) for hydrodynamic turbulence. Adopted from a figure
of Bhattacharya et al. (2018b).
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quite well (see Section 12.6 for details on ζq for hydrodynamic turbulence). Thus, the

structure function exponents ζq of TTC are quite close to those of hydrodynamic

turbulence, hence reinforcing our viewpoint that TTC has a similar behavior as

hydrodynamic turbulence.

We remark that the temperature structure functions of TTC are not similar to

that of passive scalar turbulence. The differences between the two are due to the

walls. We do not present these results here.

16.6.4 Shell-to-shell energy transfers

In this subsection we report the shell-to-shell kinetic energy transfers for TTC.

Verma et al. (2017) computed these transfers for the velocity field using the 40963

data described earlier. Figure 16.9 illustrates the shell-to-shell transfers with x and

y axes representing the receiver and giver shells respectively. As shown in the figure,

shell n gives energy primarily to shell n + 1, and receives maximum energy from

shell n − 1. Thus, the shell-to-shell energy transfers of TTC are local and forward

as in hydrodynamic turbulence.

Thus, there are many evidences to claim that the turbulent thermal convection

has behavior very similar to hydrodynamic turbulence. Vashishtha et al. (2018)

exploited this property to perform large-eddy simulation (LES) of turbulent RBC

using a subgrid model of hydrodynamics with turbulent Prandtl number as unity.

Their LES results provide satisfactory results.
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Figure 16.9 For RBC simulation with Ra = 1.1 × 1011: Density plot of shell-
to-shell energy transfers T u,mu,n reveals that the energy transfers are
local and forward as in 3D hydrodynamic turbulence. From Verma
et al. (2017). Reprinted under Creative Commons Attribution 3.0
license.
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16.7 Forcing, Energy Dissipation, and Drag Reduction in
Turbulent Convection

In 3D hydrodynamic turbulence, the kinetic energy dissipation rate and turbulent

drag (FL) are respectively

εu =
U3

L
, (16.57a)

FL =
U2

L
, (16.57b)

apart from prefactors that are of the order of unity. Note that εu ≈ fLU . In this

section we will explore if the kinetic energy dissipation rate and turbulent drag are

altered in turbulent thermal convection.

Using numerical simulations, Pandey and Verma (2016), Bhattacharya et al.

(2018a), and Verma (2018) showed that the kinetic energy dissipation rate in

turbulent thermal convection is smaller than its hydrodynamic counterpart:

εu =
U3

L
Ra−0.18. (16.58)

They also reported that the ratio of the nonlinear term and the viscous term is lower

than Re:

Nonlinear term

Viscous term
=
〈|(u · ∇)u|〉
〈|ν∇2u|〉

=
UL

ν
Ra−0.14 ∼ Re Ra−0.14. (16.59)

Since the turbulent drag is proportional to the nonlinear term, we can claim

turbulent drag reduction in RBC. Hence, for a given U ,

(εu)TTC < (εu)Hydro; (FL)TTC < (FL)Hydro. (16.60)

Or, for the same energy supply rate, U for TTC is larger than that for hydrodynamic

turbulence.

The suppressed nonlinear term (u · ∇)u in TTC yields a lower energy cascade

rate Πu(k) compared to hydrodynamic turbulence. This is consistent with Verma

(2018)’s arguments that some of the Fourier modes are absent in RBC due to the

walls. For example, 2D hydrodynamic turbulence with periodic boundary condition

contains modes {(0, 1), (1, 0), (1, 1)}, but the Fourier modes {(0, 1), (1, 0)} are

absent in RBC with walls on all sides. In fact, RBC excludes modes of the form

{(0, n), (n, 0)}, where n is an integer. As a result, some of the important triads of

hydrodynamics are absent in RBC, leading to a suppression of nonlinearity
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compared to hydrodynamic turbulence. We believe this to be one of the key reasons

for the reduction in εu and fL in TTC.

A related issue is the nature of forcing, which is buoyancy for RBC. Compared to

the random forcing hypothesized in Kolmogorov’s model, buoyancy is more orderly.

This is because large-scale velocity and temperature are proportional to each other

in RBC. Such ordered flow suppresses nonlinearity. The truncation of some of the

Fourier modes mentioned above is related to such ordered structures. A lesson to

be learned from the aforementioned observations is that the turbulent drag and

dissipation rates not only depend on the magnitude of the velocity, but also on the

phases of the large-scale Fourier modes [Eqs. (16.20)]. That is,

εu = C
U3

L
, (16.61)

where C is a function of the phase relations between the large-scale Fourier modes.

Note that random phases of the Fourier modes would yield zero flux irrespective of

the magnitude of U .

The third factor is the presence of FB at all scales of TTC. Consequently, as

indicated by Eq. (16.42), Πu < εu. This factor too plays a role in the reduction of

the kinetic energy flux and turbulent drag in thermal convection.

Spandan et al. (2018) showed that bubbly turbulence too exhibits turbulent

drag reduction. Since bubbly flows are also driven by buoyancy, we can

extrapolate that the drag reduction mechanisms described earlier would also be

applicable to bubbly turbulence. It will be interesting to study bubbly turbulence

from the energy transfer perspectives. In Chapters 23 and 27 we will revisit

turbulent drag reduction in magnetohydrodynamic (MHD) turbulence and in

polymeric flows from the viewpoint of energy transfers.

In the next section, we will describe anisotropy in TTC.

16.8 Anisotropy in Turbulent Thermal Convection

In this section we describe the anisotropic properties of TTC using the diagnostics

tools described in Chapter 11. Nath et al. (2016) simulated RBC for a set of Pr

and Ra, and computed various anisotropy diagnostics—A(k) of Eq. (11.12), ring

spectrum, energy fluxes Π⊥ and Π‖, and energy transfers from u‖ to u⊥. Here, we

present their main results. We focus on Pr = 1 and Ra = 108.
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Figure 16.10 For turbulent thermal convection with Pr = 1 and Ra = 108,
the density plots of the ring spectra E(k, β), Eu,⊥(k, β), and
Eu,‖(k, β). The magnitude of kinetic energy is proportional to
the darkness. These plots indicate near isotropy of the flow. From
Nath et al. (2016). Reprinted with permission from APS

Figure 16.10 exhibits the density plot of the spherical ring spectra: E(k, β),

Eu,⊥(k, β), and Eu,‖(k, β) for spherical rings. See Section 11.1 for definition. Nath

et al. (2016) employed Norm2(k, β) [Eq. (11.3b)] for their computation. The ring

spectra are nearly independent of the polar angle ζ apart from minor deviations

near the k⊥ and k‖ axes (Nath et al., 2016). Near isotropy of the ring spectra is yet

another similarity between TTC and hydrodynamic turbulence.

Figure 16.11(a) exhibits the energy fluxes Πu(k), Πu,⊥(k), and Πu,‖(k). See

Section 11.4 for definitions. Figure 16.11 exhibits the following:
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Figure 16.11 For turbulent thermal convection with Pr = 1 and Ra = 108: (a)
Plots of Πu(k), Πu,⊥(k), and Πu,‖(k); (b) Plots of FB(k), Du(k),
and P‖(k). From Verma (2018). Reprinted with permission from
World Scientific.

1. Πu,⊥(k),Πu,‖(k): Both these fluxes are positive with Πu,⊥(k) > Πu,‖(k), except

for small wavenumbers.
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2. FB(k): The kinetic energy feed by buoyancy is positive as argued in

Section 16.4.

3. Du(k): The viscous dissipation rate is naturally positive.

4. P‖(k): This is the energy transfer rate from u⊥ to u‖ via pressure. P‖(k) < 0 for

many k′s indicting that u‖ loses kinetic energy to u⊥. Since P‖(k) = −P⊥(k),

we conclude that u⊥ gains energy from u‖. Without this transfer, u⊥, which

is without any external force, would decay to zero.

16.9 Various Regimes of Thermal Convection

In Section 14.3 we described the spectral properties of passive scalar turbulence for

various regimes of Schmidt number (small, moderate, and large). We may expect

RBC to have a similar behavior as that of passive scalar turbulence. However, this

is not so because temperature in RBC is an active scalar.

When Pr is either too large or too small, the Kolmogorov wavenumber kc and

the diffusion wavenumber kd could be quite far apart. Following Eq. (14.19), in the

turbulent regime, we expect that

kc
kd

= Pr3/4. (16.62)

Now we examine the spectral properties of TTC in the inertial–dissipation range for

various parameter regimes.

16.9.1 Re� 1; Pe� 1; Pr ≈ 1

For this case, the kinetic energy spectrum and flux are the same as those for

hydrodynamic or passive scalar turbulence, and they are given by

Πu(k) = εu exp

(
−3

2
KKo(k/kd)

4/3

)
, (16.63a)

Eu(k) = KKoε
2/3
u k−5/3 exp

(
−3

2
KKo(k/kd)

4/3

)
, (16.63b)

See Section 5.5.1 for a derivation.

As described in Section 16.6.2, the scalar energy has a bispectrum. The

dissipative range may have behavior similar to those of Eqs. (14.17). This

conjecture needs to be verified.
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16.9.2 Re� 1; Pr = 0

In this book, the zero or very small Prandtl numbers limit corresponds to the thermal

diffusivity κ → ∞. Using Pe = Re Pr, we deduce that Pe = 0 for such flows. To

derive the spectra for such flows, we start with the following equation (Verma, 2018):

uz +∇2θ = 0 =⇒ uz(k) = θ(k)k2. (16.64)

Therefore, the energy feed by buoyancy,

FB(k) ∼ Ra〈θ(k)u∗z(k)〉 ∼ Ra〈|uz(k)|2〉/k2, (16.65)

has a very steep spectrum. Hence, buoyancy is active at small wavenumbers only,

as assumed in Kolmogorov’s phenomenology. Therefore, the velocity field has the

following spectrum:

Eu(k) = KKoΠ2/3
u k−5/3. (16.66)

Using Eq. (16.64) we deduce that

Eθ(k) =
Ez(k)

k4
≈ Π2/3

u k−17/3. (16.67)

Note that for Pr→ 0, the thermal boundary layer spans the whole volume. Hence,

θm(z) → 0, and the k−2 branch is absent. See Mishra and Verma (2010) for a

numerical demonstration of this scaling.

When we contrast this scaling with those of passive scalar, we notice that in RBC,

the diffusion term matches with Fθ that leads to a very steep power law (k−17/3) for

Eθ(k). In passive scalar turbulence, an absence of Fθ yields the following equation:

∂θ

∂t
= κ∇2θ, (16.68)

which is the diffusion equation.

16.9.3 Re� 1; Small Pr

For small Pr, we expect Eq. (16.64) to hold approximately. Hence, the kinetic

energy feed by buoyancy would still be at small wavenumbers. Thus, we expect

Eu(k) ∼ k−5/3, as in Section 16.9.2.

For this case, the mean profile θm(z) starts to emerge and generate a weak k−2

branch for Eθ(k), albeit for a small range. See Fig. 16.12 for an illustration for

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316810019.017
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 04 Jul 2019 at 22:26:18, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316810019.017
https://www.cambridge.org/core


Thermal Convection 285

Pr = 0.02 (Mishra and Verma, 2010). To study the other branch, we start with

Eq. (16.22a) and set ∂/∂t = 0 that yields

d

dk
Πθ(k) + 2κk2Eθ(k) =

∆

αgd
FB(k). (16.69)
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Figure 16.12 For RBC simulation with Pr = 0.02, plot of Eθ(k) exhibits
a bispectrum with an exponential lower branch (Eθ(k) ∼
exp(−k/kc)) and a weak k−2 upper branch. From Mishra and
Verma (2010). Reprinted with permission from APS.

For small Pr, FB(k) is active at small wavenumbers. Hence, for the inertial–

dissipation range,

d

dk
Πθ(k) = −2κk2Eθ(k). (16.70)

Therefore, using the smallness of nonlinear terms, we derive the following equations

for the temperature spectrum and flux (see Section 14.3.2):

Eθ(k) = B
1

k
exp(−k/k̄c), (16.71a)

Πθ(k) = 2Bκk̄2
c(1 + k/k̄c) exp(−k/k̄c), (16.71b)

Interestingly, the lower branch of Eθ(k) is proportional to exp(−k), which is borne

out in Fig. 16.12. See subfigure.
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16.9.4 Pe� 1; Pr =∞

In the limit of infinite Prandtl number (ν →∞), the momentum equation is linear

(Pandey et al., 2014; Verma, 2018):

−ikσ(k) + αgθ(k)ẑ − νk2u = 0. (16.72)

For simplification, we equate the viscous and buoyancy terms and obtain

αgθk ≈ νk2uk. (16.73)

The nonlinear term of temperature equation is significant, and it yields a constant

entropy flux leading to

Πθ ≈ kθ2
kuk. (16.74)

The aforementioned equations yield the following formulas for the kinetic and scalar

energy spectra:

Eu(k) =
(αg
ν

)4/3

ε
2/3
θ k−13/3, (16.75a)

Eθ(k) =
(αg
ν

)−2/3

ε
2/3
θ k−1/3. (16.75b)

Pandey et al. (2014) performed numerical simulations for Pr = ∞ and 100.

Figure 16.13 illustrates Eu(k) and Eθ(k) computed by them. From Fig. 16.13(a)

we deduce that Eu(k) ∼ k−13/3. In the scalar energy spectrum exhibited in

Fig. 16.13(b), the upper branch k−2 is due to θm(z), and the lower branch is
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Figure 16.13 For RBC simulation with Pr = ∞ and 100: (a) Plots of Eu(k)
and normalized Eu(k)k13/3 indicating that Eu(k) ∼ k−13/3. (b)
Plots of Eθ(k) indicating bispectrum. From Pandey et al. (2014).
Reprinted with permission from APS.
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somewhat flat. Thus, we do not observe Eθ(k) ∼ k−1/3, as predicted by the

aforementioned scaling. This discrepancy is due to the presence of walls.

Pandey et al. (2014) showed that the spectra for very large Prandtl numbers are

very similar to those for Pr =∞. See Fig. 16.13 for an illustration. There is a minor

difference between the spectra for Pr = ∞ and Pr = 100. In the dissipation range,

the spectra for Pr = 100 are steeper than those for infinite Prandtl number. This is

because kc ∝ Pr4/3 [see Eq. (16.62)]; larger the Prandtl number, larger the kc, and

hence a larger range of power law.

Note that the passive scalar turbulence with very large Schmidt number has

Eu(k) ∼ k−1 exp(−k/k̄c) [see Eqs. (14.21)], which is very different from the kinetic

energy spectrum described earlier. This difference arises due to the active nature of

temperature. In Eq. (16.73), the buoyancy matches with the viscous term; this is

the origin for the k−13/3 power law for Eu(k). In passive scalar turbulence, Eu(k) ∼
exp(−k) due to lack of such scale-dependent force. Thus, the nature of energy

spectra of active and passive scalars are very different.

16.10 Two-dimensional Turbulent Thermal Convection

The scaling arguments described so far are for 3D TTC. Since 2D turbulence tends to

promote an inverse cascade of kinetic energy (see Chapter 7), the phenomenological

arguments described in Section 16.4 needs modification. This topic has not been

explored in detail. Here we make some conjectures that require verification.

A possible kinetic energy flux scenario for 2D TTC is illustrated in Fig. 16.14.

We start with the kinetic energy flux equation:

d

dk
Πu(k) ≈ FB(k) > 0. (16.76)

Since Πu(k) < 0 for 2D flows, we obtain

d

dk
|Πu(k)| ≈ −FB(k) < 0. (16.77)

Hence |Πu(k)| is expected to decrease with k, as in stably stratified turbulence

(see Section 15.5). The aforementioned flux scenario is illustrated in Fig. 16.14.

Motivated by this simple picture, it may be tempting to adopt the derivation of

Section 15.5 to 2D TTC and conjecture that

Eu(k) =
u2
k

k
= ε

2/5
θ (αg)4/5k−11/5, (16.78a)
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Eθ(k) =
ρ2
k

k
= ε

4/5
θ (αg)−2/5k−7/5, (16.78b)

Πu(k) = ku3
k = ε

3/5
θ (αg)6/5k−4/5, (16.78c)

Πθ(k) = εθ. (16.78d)

For the conversion of Eqs. (15.39) to Eqs. (16.78), we employ N → αg and

ερ → εθ. This proposed phenomenology however requires verification using

numerical simulations and/or experiments. This scaling may also apply to the

boundary layers of TTC.
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Figure 16.14 A possible schematic diagram of the kinetic energy flux Πu(k) for
two-dimensional TTC, and in the boundary layers of TTC.

Before we close this chapter, we remark that many unstably buoyant systems

have similar behavior as turbulent thermal convection. Leading examples in this

category are Rayleigh–Taylor turbulence, Taylor–Couette turbulence, and bubbly

turbulence. These similarities are due to the energetics arguments discussed in

Section 16.4. Refer to Verma (2018) for a detailed discussion on these topics.

With this we end our discussion on turbulent thermal convection. In the next

chapter we will describe another active scalar—binary fluid mixture.

Further Reading

This chapter discusses only one aspect of turbulent thermal convection—the energy

spectrum and flux. The phenomenology discussed in Section 16.4 was first described

by Kumar et al. (2014a), who also performed a numerical simulation to verify it.

Verma et al. (2017) found similar results for a higher resolution RBC simulation.

See Verma (2018) for a comprehensive review on this topic.
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For a more comprehensive discussion on thermal convection, refer to books by

Chandrasekhar (2013), Getling (1998), and Verma (2018); and review articles by

Ahlers et al. (2009), Lohse and Xia (2010), Chillà and Schumacher (2012),

Bodenschatz et al. (2000), and Verma et al. (2017).
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Chapter 17

A More Complex Example of an
Active Scalar: Binary Fluid

Mixture

In Chapters 15 and 16 we described how the material density acts as an active scalar

and affects a buoyant flow. In these flows, the forces Fu(k) and Fθ(k) are linear

functions of θ(k) and uz(k) respectively. Hence, the energy feed by buoyancy at

wavenumber k are functions of the same wavenumber:

Fu(k) ∝ Fθ(k) ∼ <[uz(k)θ∗(k)]. (17.1)

From the stability criteria, we could infer the sign of Fu(k) that determines the

nature of kinetic and scalar energy fluxes.

In this short chapter, we will introduce a more complex example of an active

scalar for which the determination of the energy flux is much more complex. We

will show how the concepts of energy transfers help us understand these systems

better.

17.1 Dynamics of a Binary Fluid Mixture

In this section, we present the dynamics of a binary fluid mixture, as in Ruiz and

Nelson (1981). We consider a binary fluid mixture that contains two fluids in

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316810019.018
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 04 Jul 2019 at 22:26:21, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316810019.018
https://www.cambridge.org/core


A More Complex Example of an Active Scalar: Binary Fluid Mixture 291

approximately equal proportions. The difference in the mass densities of the two

species is the following scalar field:

θ(r) = ρA(r)− ρB(r), (17.2)

whose equation of motion is (Ruiz and Nelson, 1981)

∂θ

∂t
+ (u · ∇)θ = κ∇2θ. (17.3)

This equation is same as that of a passive scalar with Fθ = 0 [see Eq. (14.1b)]. Ruiz

and Nelson (1981) argued that the velocity field is affected by the scalar field, and

its evolution equation is

∂u

∂t
+ (u · ∇)u = −∇p/ρ0 − α(∇θ)(∇2θ) + ν∇2u, (17.4)

where ρ0 is the mean density of the fluid, ν is the kinematic velocity, and α is a

positive constant.

Ruiz and Nelson (1981) studied various aspects of the aforementioned fluid. In

this chapter we will briefly describe the spectral properties of the system. From

Eq. (17.4), we deduce that Fu = −α(∇θ)(∇2θ); hence the kinetic energy feed by

the external force is

Fu(r) = Fu(r) · u(r). (17.5)

In Fourier space, Fu(r) transforms to

Fu(k) = −α
∑
p

<[iq2θ(q)θ(p){p · u∗(k)}]

= α
∑
p

=[q2θ(q)θ(p){p · u∗(k)}], (17.6)

where q = k− p.

Compared to Fu(k) of Rayleigh–Bénard convection (RBC) and stably stratified

turbulence, Fu(k) of the binary fluid is a convolution involving many triads whose

analysis is much more complex. For example, we cannot easily determine the sign of

Fu(k). Determination of the effects of Fu(k) on the kinetic energy flux Πu(k) needs

further inputs from numerical simulation and/or from field-theoretic computations

(see Chapter 9.9 for illustration).

In the turbulent regime, let us assume that

Πu(k) ∼ εukβ, (17.7)
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where k is nondimensionalized wavenumber (using the box size), and β is a constant.

Substitution of this form in Kolmogorov’s model yields the following kinetic energy

spectrum:

Eu(k) = KKo[Πu(k)]2/3k−5/3 ∼ KKoε
2/3k−5/3+(2β)/3. (17.8)

This derivation is similar to that used for Bolgiano–Obukhov scaling where β =

−4/5.

For the scalar field, we can derive the scalar energy flux following the arguments

of Section 14.2. Note that the scalar field is force-free, hence

Fθ(k) = 0. (17.9)

Therefore, in the inertial range, where the diffusion process can be ignored, we

obtain

Πθ(k) = const. = εθ. (17.10)

After this, we can employ Eq. (14.11) of Section 14.2:

Eθ(k) = KOCΠθ[Πu(k)]−1/3k−5/3. (17.11)

Now using Eq. (17.7), we deduce that

Eθ(k) = εθ(εu)−1/3k−5/3−β/3. (17.12)

We need to determine β using numerical simulations or by other means such as field

theory.

The aforementioned discussion is for the inertial range of 3D turbulent flows with

Schmidt number of the order of unity. Appropriate modifications are required for

2D flows, and for flows with very small or very large Schmidt numbers.

The present discussion shows that the dynamics of active scalars can become

quite complex. We also remark that spinodal decomposition and domain growth

are described using coupled Cahn–Hilliard and Navier–Stokes equations (Perlekar

et al., 2017) for which we could employ some of the aforementioned scaling ideas.

In the next set of chapters we will describe flows with vectors.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316810019.018
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 04 Jul 2019 at 22:26:21, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316810019.018
https://www.cambridge.org/core


Part III

FLOWS WITH VECTORS
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Chapter 18

Energy Transfers in Flows with
Vectors

A fluid flow often advects vector fields. A prime example of such fields is the

magnetic field in magnetohydrodynamics (MHD). Other examples are flow of

nematic liquid crystal and dipoles, motion of a flock, etc. In similar lines as for

scalars, we classify such vector fields as active vectors or passive vectors depending

on whether they affect the velocity field or not. The magnetic field in MHD is an

example of an active vector field because it affects the velocity field via Lorentz

force. However, a dilute concentration of dipoles could act as a passive vector.

In this chapter we introduce a general framework for flows with vectors. In

Chapter 19 we will describe the spectral properties of passive vector turbulence,

and in Chapters 20–24 we will detail properties of MHD turbulence with a focus

on energy transfers. As we show in the following sections, the equations for a

vector flow are similar to those of a scalar flow discussed in Chapter 13. Hence, we

state the final equations and results without derivation, and we refer the reader to

Chapter 13 for details.

In the next section we describe the governing equations for a flow field with

vectors embedded in it.

18.1 Governing Equations

The equations for a flow with a vector field (denoted by w) are similar to those of

a scalar flow, which was discussed in Chapter 13:
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∂u

∂t
+ (u · ∇)u = −∇(p/ρ) + ν∇2u + Fu, (18.1a)

∂w

∂t
+ (u · ∇)w = η∇2w + Fw, (18.1b)

∇ · u = 0, (18.1c)

where u is the velocity field, ρ is density which is assumed to be unity, ν is the

kinematic viscosity for the velocity field, η is the diffusion coefficient for the vector

field, and Fu,Fw are respectively the force fields for the velocity and vector fields.

The ratio

Prw =
ν

η
(18.2)

is called Prandtl number of the flow. For MHD, it is referred to as magnetic Prandtl

number. In Eq. (18.1b), the ratio of the nonlinear term and the diffusion term is

Reynolds number based on w, that is,

Rew =
UL

η
, (18.3)

where L is the system size, and U is the large-scale velocity field. Note that the

vector field w may or may not be div-free.

In this book we will cover the following vector flows:

1. Passive vector flow: Fu is independent of w.

2. Magnetohydrodynamics: Fu ∝ (∇×B)×B and Fb ∝ (B · ∇)u, where B is

the magnetic field. Clearly, B is an active vector.

3. Quasi-static magnetohydrodynamics: Fu ∝ (B0 · ∇)2u and Fb ∝ (B0 · ∇)u;

here too the magnetic field B acts as an active vector.

Due to lack of space, in this book we do not detail the following vector flows:

1. Nematic liquid crystal: Liquid crystals often flow with molecules oriented along

a particular direction. We can treat the orientation of the molecules as a vector

field.

2. Flock of animals: Animals like birds and fish travel in flocks. Their flow can

be treated as vector field w (Ramaswamy, 2010).

For the vector field w, we define the vector energy density as

Ew(r) =
1

2
w2, (18.4)
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whose evolution equation is

∂

∂t

w2

2
+∇ ·

(
1

2
w2u

)
= Fw ·w + ηw · (∇2w). (18.5)

Clearly, in the absence of Fw and η, for periodic or vanishing boundary condition,∫
1

2
w2dr = const. (18.6)

This is a statement of conservation of vector energy in a nondiffusive and force-free

vector flow.

In Fourier space, the equations of motion for the velocity field and the vector

field w are

d

dt
u(k) + Nu(k) = −ikp(k) + Fu(k)− νk2u(k), (18.7a)

d

dt
w(k) + Nw(k) = Fw(k)− ηk2w(k), (18.7b)

k · u(k) = 0, (18.7c)

where the nonlinear terms are

Nu(k) = i
∑
p

{k · u(q)}u(p), (18.8)

Nw(k) = i
∑
p

{k · u(q)}w(p), (18.9)

with q = k− p. Using the above equations, we derive the following evolution

equations for the kinetic energy and vector energy:

d

dt
Eu(k) =

∑
p

= [{k · u(q)}{u(p) · u∗(k)}] + <[Fu(k) · u∗(k)]− 2νk2Eu(k),

(18.10)

d

dt
Ew(k) =

∑
p

= [{k · u(q)}{w(p) ·w∗(k)}] + <[Fw(k) ·w∗(k)]− 2ηk2Ew(k).

(18.11)

In the next section we will state the formulas for the energy transfers in a vector

flow.
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18.2 Mode-to-mode Vector Energy Transfers and Energy Fluxes

Following similar arguments as that for scalars (Chapter 13), we derive the formulas

for the mode-to-mode energy transfers and related quantities. For kinetic energy,

these transfers take place via the nonlinear term (u · ∇)u. Hence, the formula for

the mode-to-mode kinetic energy transfer from Fourier mode u(p) to mode u(k′)

with u(q) acting as a mediator is same as that derived in Chapter 4:

Suu(k′|p|q) = −= [{k′ · u(q)}{u(p) · u(k′)}] . (18.12)

The energy flux and shell-to-shell energy transfer are also the same as those derived

in the same chapter.

However, for the vector field, the nonlinear term (u · ∇)w facilitates the energy

transfers among the w modes with u acting as a mediator. For a triad (k′,p,q)

satisfying k′ + p + q = 0, using the force-free and diffusionless version of Eq. (18.11),

we derive that

d

dt
Ew(k′) = Sww(k′|p,q)

= −= [{k′ · u(q)}{w(p) ·w(k′)}] + = [{k′ · u(p)}{w(q) ·w(k′)}] ,
(18.13)

where Sww(k′|p,q) is the combined vector energy transfer to mode w(k′) from modes

w(p) and w(q). It is easy to show that

Sww(k′|p,q) + Sww(p|q,k′) + Sww(q|k′,p) = 0, (18.14)

which is a statement of the detailed energy conservation via Sww channel.

Following arguments similar to those in Section 13.2, we derive the mode-to-

mode vector energy transfer from vector mode w(p) to vector mode w(k′) with the

mediation of velocity mode u(q) as

Sww(k′|p|q) = −= [{k′ · u(q)}{w(p) ·w(k′)}] . (18.15)

In the derivation, the only difference is that we replace the scalar field θ by the

vector field w, and the normal product between two scalar modes with a dot product

between two vector modes.

In Eq. (18.1b), the nonlinear term (u · ∇)w represents advection of the vector

field w by the velocity field u. Therefore, u mediates the vector energy transfer

between w fields of [(u · ∇)w] ·w. In Fourier space, this transfer translates to

the vector energy transfer from mode w(p) to mode w(k′) with mode u(q) acting
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as a mediator. See Sections 4.1.1 and 13.2.1 for detailed arguments. In Fig. 18.1

we illustrate the aforementioned energy transfer. Note that we can also derive

Eq. (18.15) using mathematical arguments similar to those of Section 13.2.2.

Giver

w k’( )
Receiver –[( ) ]Ñu w w× ×

u q( ) Mediator

S ( | | ) = – [{ }{ ( ) ( )}]p q pk’ k’ u q w w k’( )× ×
ww

w( )p

Figure 18.1 A schematic diagram exhibiting mode-to-mode vector energy
transfer from mode w(p) to mode w(k′) with mode u(q) acting
as a mediator. For this energy transfer, u(q) advects the vector
modes w(p) and w(k′) who exchange energy among themselves.

Now we derive the flux and shell-to-shell transfers for a vector flow. For a

wavenumber sphere of radius k0, the vector energy flux Πw(k0) is the net vector

energy transferred from the modes inside the sphere to the modes outside the

sphere. Using the definition of the mode-to-mode vector energy transfer, we obtain

Πw(k0) =
∑
|k′|>k0

∑
|p|≤k0

Sww(k′|p|q). (18.16)

Similarly, we can derive the shell-to-shell vector energy transfer from shell m to shell

n as

Tw,mw,n =
∑
k′∈n

∑
p∈m

Sww(k′|p|q). (18.17)

Note that the above formulas are applicable to both active and passive vectors.

Following the arguments of Section 13.4, we deduce the evolution equation for

the vector energy spectrum Ew(k) as

∂

∂t
Ew(k, t) = − ∂

∂k
Πw(k, t) + Fw(k, t)−Dw(k, t), (18.18)

where Fw(k) is the vector energy supply rate by Fw, and Dw(k) is the diffusion rate
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of vector energy in shell k. These quantities are defined as follows:

Fw(k)dk =
∑

k<k′≤k+dk

<[Fw(k′) ·w∗(k′)], (18.19)

Dw(k)dk =
∑

k<k′≤k+dk

2ηk2Ew(k′). (18.20)

Under a steady state,

d

dk
Πw(k) = Fw(k)−Dw(k). (18.21)

We will use this relation in the next section where we describe the variable vector

energy flux.

18.3 Variable Vector Energy Flux

In this section, we briefly describe the behavior of vector energy flux that depends

on the nature of Fw(k). The arguments are similar to those of Section 13.4; hence,

we only state the results, and skip the intermediate steps.

In the inertial range, Dw(k) ≈ 0. Hence, the vector energy flux is governed by

the following equation:

d

dk
Πw(k) = Fw,in(k), (18.22)

where Fw,in(k) is the vector energy supply rate in the inertial range. The behavior

of vector energy flux depends crucially on Fw,in(k), as was the case for scalar energy

flux. In Table 18.1 we list the four possibilities. In MHD turbulence, we expect

the magnetic energy flux to vary with k due to Fw,in(k). We will describe these

variations in Chapters 21 and 22.

Table 18.1 Behavior of vector energy flux for different kinds of Fw,in(k).

Fw,in(k) Πw(k) Figure reference

0 0 13.3(a)

0 Positive const. 13.3(b)

< 0 dΠw(k)/dk < 0 13.3(c)

> 0 dΠw(k)/dk > 0 13.3(d)

In the next section we describe how equations of motion and energy transfers of

vector turbulence are represented in Craya–Herring basis.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316810019.019
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 04 Jul 2019 at 22:26:28, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316810019.019
https://www.cambridge.org/core


Energy Transfers in Flows with Vectors 301

18.4 Vector Flow in Craya–Herring Basis

In Chapter 9 we employed Craya–Herring basis to derive equations of motion for

the velocity modes of hydrodynamic flows. In this section we will repeat this

exercise for vector flows without forces Fu,Fw and dissipative terms. Under this

condition, the momentum equations remain the same as those of hydrodynamics.

Hence, the equations for the velocity field would be exactly the same as those

derived in Section 9.2.

To derive equations of motion for the vector field w, we follow the same steps

as in Section 9.2. For a triad with wavenumbers (k′,p,q), following the condition

k′ + p + q = 0, the equation of motion for mode w(k′) is

d

dt
w(k′) = −i[k′ · u(−q)]w(−p)− i[k′ · u(−p)]w(−q). (18.23)

A dot product of this equation with ê1(k′) yields

ẇ1(k′) = ik′[sinβ cos γu∗1(q)w∗1(p)− sin γ cosβu∗1(p)w∗1(q)], (18.24)

where α, β, γ are internal angles of the triangle formed by the wavenumbers of the

triad. See Fig. 9.5 for an illustration. Similarly, a dot product of Eq. (18.23) with

ê2(k′) yields

ẇ2(k′) = ik′{sin γu∗1(p)w∗2(q)− sinβu∗1(q)w∗2(p)}. (18.25)

Following similar steps, we derive equations of motion for the other two modes:

ẇ1(p) = ip[sin γ cosαu∗1(k′)w∗1(q)− sinα cos γu∗1(q)w∗1(k′)], (18.26a)

ẇ1(q) = iq[sinα cosβu∗1(p)w∗1(k′)− sinβ cosαu∗1(k′)w∗1(p)]. (18.26b)

and

ẇ2(p) = ip{sinαu∗1(q)w∗2(k′)− sin γu∗1(k′)w∗2(q)}, (18.27a)

ẇ2(q) = iq{sinβu∗1(k′)w∗2(p)− sinαu∗1(p)w∗2(k′)}. (18.27b)

18.5 Energy Transfers in Craya–Herring and Helical Basis

Following the same procedure as in Chapter 9, we compute the mode-to-mode vector

energy transfers in Craya–Herring basis. The mode-to-mode vector energy transfer

from w(p) to w(k′) with u(q) acting as a mediator is

Sww(k′|p|q) = Sw1w1(k′|p|q) + Sw2w2(k′|p|q) (18.28)
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where

Sw1w1(k′|p|q) = k′ sinβ cos γ={u1(q)w1(p)w1(k′)} (18.29a)

Sw2w2(k′|p|q) = −k′ sinβ={u1(q)w2(p)w2(k′)}. (18.29b)

As in Section 9.3, Sw1w1(k′|p|q) represents vector energy transfer from w1(p) to

w1(k′) with u(q) acting as a mediator. Similarly, Sw2w2(k′|p|q) represents the

transfer from w2(p) to w2(k′) with u(q) acting as a mediator. Therefore, for w1

and w2 fields, the vector energy fluxes crossing a wavenumber sphere of radius k0

are

Πw1<
w1>

(k0) =
∑
|p|≤k0

∑
|k|>k0

Sw1w1(k|p|q), (18.30a)

Πw2<
w2>

(k0) =
∑
|p|≤k0

∑
|k|>k0

Sw2w2(k|p|q). (18.30b)

The other mode-to-mode vector energy transfers for the triad are

Sww(p|q|k′) = p sin γ cosα={w1(k′)Bw1(q)u1(p)}

−p sin γ={u1(k′)w2(q)w2(p)}, (18.31a)

Sww(q|k′|p) = q sinα cosβ={u1(p)w1(k′)w1(q)}

−q sinα{u1(p)w2(k′)w2(q)}. (18.31b)

In helical basis, the mode-to-mode energy transfer from w(p) to w(k′) is given

by

Sww(k′|p|q) = −= [{k′ · u(q)}{w(p) ·w(k′)}]

= −
∑
sp,sk′

=
[
{k′ · u(q)}wsp(p)wsk′ (k

′){êsp(p) · êsk′ (k
′)}
]

=
∑
sp,sk′

Swwsk′sp(k
′|p|q). (18.32)

The above expression is simplified further into

Swwsk′sp(k
′|p|q) = −k

′

2
sinβ(1 + spsk′ cos γ)={u1(q)wsp(p)wsk′ (k

′)}. (18.33)

Note that Swwsk′sp(k
′|p|q) represents the vector energy transfer from wsp(p) to wsk′ (k

′)

with u(q) acting as a mediator. Hence, the vector energy flux from helical modes

wsg to wsr , where sg and sr are the signs of the giver and receiver modes respectively,

is

Π
wsg<
wsr>

(k0) =
∑
|p|≤k0

∑
|k|>k0

Swwsrsg(k
′|p|q). (18.34)
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The shell-to-shell energy transfer from wsg of shell m to wsr of shell n is

T
usg ,m
usr ,n =

∑
p∈m

∑
k∈n

Suusrsg(k
′|p|q). (18.35)

Example 18.1: In a periodic box [2π, 2π], consider the following force-free vector

flow with ν = η = 0:

u = x̂2Du cos y + ŷ2Cu cosx+ (x̂− ŷ)2Au sin(x+ y),

w = x̂2Dw cos y + ŷ2Cw cosx+ (x̂− ŷ)2Aw sin(x+ y).

Derive equations for Au, Cu, Du, Aw, Cw, and Dw as in Example 3.4.

Solution: These fields are constructed with wavenumbers (1, 0), (0, 1), (1, 1),

(−1, 0), (0,−1), and (−1,−1). We choose n̂ = ẑ. For the interacting triad

k′ = (−1,−1), p = (0, 1), and q = (1, 0), the amplitudes of the Fourier modes in

the Craya–Herring basis are listed in Table 18.2. Note that u2 = w2 = 0 since the

field is two-dimensional.

Table 18.2 Example 18.1: The amplitudes of the velocity and vector Fourier
modes.

Mode u1 w1

k′ = (−1,−1) −Au
√

2
i −Aw

√
2

i

p = (0, 1) Du Dw

q = (1, 0) −Cu −Cw

Without Fu, the equations of motion of A, B, and C are the same as those in

Example 3.4 or Example 9.2. The solution of these equations are

A = constant,

D = c cos(At),

C = c sin(At),

where c is a constant.

For the vector field w, following similar steps as earlier, and as in Example 13.1,

we derive the following equations of motion for the vector modes:

ẇ1(−1,−1) =
−Ȧw

√
2

i
=

i√
2

(−CuDw +DuCw),

ẇ1(0, 1) = Ḋw = i(0 + Cu(Aw/i)),
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ẇ1(1, 0) = −Ċw = i(Du(A/i) + 0).

Or

Ȧw =
1

2
(−CuDw +DuCw),

Ḋw = CuAw,

Ċw = −DuAw.

Given Au, Du, Cu, we can solve for Aw, Dw, and Cw. Note

2A2
w +D2

w + C2
w = const.,

that follows from the conservation of vector energy for the diffusionless case.

Example 18.2: Compute the mode-to-mode vector energy transfers for the flow field

of Example 18.1.

Solution: We employ Eqs. (18.28, 18.31a, 18.31b) to compute the mode-to- mode

energy transfers:

Sww(k′|p|q) = k′ sinβ cos γ={u1(q)w1(p)w1(k′)}

=

√
2

2
={(−Cu)Dw

(
−Aw

√
2

i

)
} = −CuAwDw

Sww(p|q|k′) = p sin γ cosα={u1(k′)w1(p)w1(q)} = 0,

Sww(q|k′|p) = q sinα cosβ={u1(p)w1(q)w1(k′)}

= −={Du(−Cw)

(
−Aw

i

)
} = DuAwCw.

Note that the pattern of the energy transfer is similar to that of Example 4.3 (see

Fig. 4.4), except that Sww(k′|p|q) and Sww(q|k′|p) are not equal, unlike Example

4.3 where these quantities are equal.

With this, we end our discussion on flows with vectors.
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Chapter 19

Flow with a Passive Vector

In the previous chapter we introduced governing equations and energy transfers for

a fluid flow with a vector field. In the present chapter we will describe the spectral

properties of a passive vector flow. In the next section we describe the governing

equations of the flow.

19.1 Governing Equations

To derive equations of motion for an incompressible passive vector flow, we assume

that Fu is independent of w, and that both Fu,Fw act at large scales. Under these

assumptions, the equations of motion are

∂u

∂t
+ (u · ∇)u = −∇(p/ρ) + ν∇2u + Fu, (19.1a)

∂w

∂t
+ (u · ∇)w = η∇2θ + Fw, (19.1b)

∇ · u = 0, (19.1c)

where u,w, p are the velocity, passive vector, and pressure fields respectively; ρ

is density which is assumed to be unity; Fu,Fw are the respective force field for

the velocity and vector fields; ν is the kinematic viscosity; and η is the diffusion

coefficient of w. The ratio

Pm =
ν

η
. (19.2)
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is the Prandtl number.

Following the same set of arguments as those for the passive scalar (see

Chapter 14), we can derive the following results for the passive vector w:

1. When η = 0 and Fw = 0, the total vector energy is conserved, that is,∫
1

2
w2dr = const. (19.3)

2. In Fourier space the equations for u and w are same as Eqs. (18.7).

3. The formulas for the mode-to-mode vector energy transfer and vector energy

flux are the same as those derived in Chapter 18

4. The evolution equation for the vector energy spectrum Ew(k) is

∂

∂t
Ew(k, t) = − ∂

∂k
Πw(k, t) + Fw(k, t)−Dw(k, t). (19.4)

Under a steady state, ∂Ew(k)/∂t ≈ 0, the aforementioned equation for w

transforms to

d

dk
Πw(k) = Fw(k)−Dw(k) = Fw(k)− 2ηk2Ew(k). (19.5)

We will use this relation in the next section.

19.2 Phenomenology of a Passive Vector Turbulence

We can derive the vector energy flux and spectrum for the passive vector turbulence

using the following arguments. The derivation is very similar to that of Section 14.2.

Note that the kinetic energy spectra for the 3D and 2D flows would be the same as

those in Chapters 5 and 7 because the velocity field is not affected by the passive

vector w.

In the inertial range, Fw(k, t) = 0, and the diffusion term is quite weak. Hence,

Eq. (19.5) yields

Πw(k) = const. = εw. (19.6)

From scaling analysis, we expect that Ew(k) depends on Πu, Πw, and k, whose

dimensions are

[Πu] = [L2/T 3]; [Πw] = [w2/T ]; [Ew(k)] = [w2L]. (19.7)
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Using dimensional analysis, we postulate that

Ew(k) = (Πw)α(Πu)βkγ . (19.8)

Now matching the dimensions of [w], [L], and [T ] yields

α = 1; β = −1/3; γ = −5/3. (19.9)

Therefore,

Eθ(k) = KΠw(Πu)−1/3k−5/3, (19.10)

where K is a nondimensional constant. Note that this derivation and the final

formula are very similar to those for passive scalar.

In the next section, we will describe the spectral properties of a passive vector

flow in various regimes.

19.3 Various Regimes of a Passive Vector Flow

A passive vector flow has two nonlinear and two dissipative terms. The energy

spectra and fluxes for u and w depend on the relative strengths of the nonlinear

and dissipative terms. A careful analysis of the relevant equations shows that the

energy spectra and fluxes of passive scalar and passive vector flows are very similar.

Refer to Section 14.3 for a detailed derivation. To go from a passive scalar to a

passive vector, we employ the following translation:

θ → w. (19.11a)

kc → kw =

(
εw
η3

)1/4

. (19.11b)

kc
kd
→ kw

kd
=

(
ν

η

)3/4

= (Prw)3/4. (19.11c)

k̄c → k̄w =
1

L

√
UL

η
=

√
Rew
L

. (19.11d)

With this, we close our discussion on passive vector flows. In the next set of chapters

we will describe the properties of magnetohydrodynamics, which is an example of

an active vector flow.
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Chapter 20

Magnetohydrodynamics:
Formalism

Charged fluids support electric current and electromagnetic field. A special class

of quasi-neutral and highly conducting charged fluid is called magnetofluid, and its

dynamics is described by magnetohydrodynamics (MHD). A significant part of the

universe is magnetofluid, for example, stellar convection zone, interstellar medium,

etc. Hence, a good understanding of MHD is important for understanding these

systems.

It is also important to note that in MHD, ions and electrons carry linear

momentum and electric current respectively. It is the low frequency limit of the

flow. Later, in a chapter on electron MHD (EMHD), we will describe the high

frequency regime of the flow in which ions are stationary, and electrons carry both

linear momentum and electric current. Note that we follow CGS system of units

for these discussions.

In the following six chapters of the book, we will cover MHD and EMHD as

examples of active vector flows, mostly focusing on energy transfer issues. For a

broader discussion on MHD turbulence, refer to Biskamp (2003) and Verma (2004).

We start with the governing equations for MHD turbulence.

20.1 Governing Equations in Real Space

A magnetofluid experiences Lorentz force:

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316810019.021
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 04 Jul 2019 at 22:26:43, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316810019.021
https://www.cambridge.org/core
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Fu =
1

c
J×B, (20.1)

where B is the magnetic field, and J is the electric current density.1 Under MHD

approximation (Verma, 2004),

J =
c

4π
∇×B, (20.2)

substitution of which in Eq. (20.1) yields

Fu =
1

4π
[(∇×B)×B] = − 1

4π
∇B2 +

1

4π
(B · ∇)B. (20.3)

Since Fu is a function of B, the magnetic field is an active vector. Note that Fu

is a nonlinear function of the field variable B. The nonlinear form of Fu induces

nonlinear energy transfers among modes (to be covered in the next chapter). This

is unlike Fu of a stably stratified flow and of RBC that induces energy exchange

between u(k) and θ(k) of the same wavenumber (linear interaction).

With the Lorentz force, the Navier–Stokes equations are

∂u

∂t
+ u · ∇u = −1

ρ
∇p+

1

4πρ
(B · ∇)B + ν∇2u, (20.4a)

∇ · u = 0, (20.4b)

where ρ, ν are respectively the density and kinematic viscosity of the fluid, and p

is sum of the hydrodynamic and magnetic pressure:

p = phydro +
B2

8π
. (20.5)

In the present and subsequent chapters on MHD, we set ρ = 1.

The evolution of the magnetic field is described by the following Maxwell’s

equations:

∂B

∂t
= ∇× (u×B) + η∇2B, (20.6a)

∇ ·B = 0, (20.6b)

where η is the magnetic diffusivity of the fluid. Equation (20.6a) can be simplified

further to
∂B

∂t
+ (u · ∇)B = (B · ∇)u + η∇2B. (20.7)

1Under MHD approximation, the electric field is much smaller than the magnetic field; hence, the electric
force is ignored.
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When we compare this equation with Eq. (18.1b), we observe that B is a vector

field with

FB = (B · ∇)u. (20.8)

Note that FB is a nonlinear function of the fields B and u, similar to Fu. Hence,

FB induces nonlinear energy transfers among the Fourier modes (to be covered in

the next chapter). Also note that B is advected by u.

Equation (20.6a) has a very similar form as the vorticity equation (see

Section 2.2). In analogy with the vorticity equation, the term (u · ∇)B yields

magnetic energy transfers within the magnetic field, while the term (B · ∇)u

represents the stretching of the magnetic field by the velocity field that causes a

transfer of kinetic energy to magnetic energy, and hence a growth of the magnetic

field.

It is convenient to express B in velocity units using a transformation:

BCGS√
4πρ

→ B (20.9)

that converts Eqs. (20.4, 20.6) to

∂u

∂t
+ (u · ∇)u = −∇p+ (B · ∇)B + ν∇2u, (20.10a)

∂B

∂t
+ (u · ∇)B = (B · ∇)u + η∇2B, (20.10b)

∇ · u = 0, (20.10c)

∇ ·B = 0. (20.10d)

In this chapter we will work with this set of equations. These equations can also be

expressed in tensorial form as

∂ui
∂t

+ ∂j(ujui −BjBi) = −∂ip+ ν∇2ui, (20.11a)

∂Bi
∂t

+ ∂j(ujBi −Bjui) = η∇2Bi, (20.11b)

∂iui = 0, (20.11c)

∂iBi = 0, (20.11d)

where ∂if is shorthand for ∂f/∂xi.
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In MHD the equation for the vorticity is

∂ω

∂t
= ∇× (u× ω + J×B) + ν∇2ω. (20.12)

There is another interesting quantity called vector potential A, which is defined

using

B = ∇×A. (20.13)

Using Eq. (20.6a) we derive the following dynamical equation for A:

∂A

∂t
= u×B + η∇2A +∇Ψ, (20.14)

where Ψ is a scalar, which is determined using a gauge condition (Biskamp, 2003).

Using B = ∇×A, Eq. (20.14) is rewritten as

∂Ai
∂t

+ uj∂jAi = uj∂iAj + η∇2Ai + ∂iΨ. (20.15)

In 2D,

A = A(x, y)ẑ. (20.16)

Consequently, Eq. (20.15) reduces to

∂A

∂t
+ uj∂jA = η∇2A. (20.17)

This form of equation indicates that in 2D, A can be treated as a passive scalar (see

Chapter 14).

Often magnetofluids are subjected to a constant magnetic field, denoted by B0,

that is,

B = B0 + b, (20.18)

where b is the magnetic fluctuation. In terms of these variables, the MHD equations

are

∂u

∂t
− (B0 · ∇)b + (u · ∇)u− (b · ∇)b = −∇p+ ν∇2u, (20.19a)

∂b

∂t
− (B0 · ∇)u + (u · ∇)b− (b · ∇)u = η∇2b, (20.19b)

∇ · u = 0, (20.19c)

∇ · b = 0. (20.19d)
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When u � B0 and b � B0, the nonlinear terms can be dropped. Linearized

incompressible and inviscid MHD generates Alfvén waves (Verma, 2004). These

waves, which will be discussed in Section 20.4, are conveniently described using

Elsässer variables:

z± = u± b. (20.20)

The dynamical equations for these variables are

∂z±

∂t
∓ (B0 · ∇)z± + (z∓ · ∇)z± = −∇p+ ν+∇2z± + ν−∇2z∓, (20.21a)

∇ · z± = = 0, (20.21b)

where

ν± =
1

2
(ν ± η). (20.22)

In tensorial form, the MHD equations for z± are

∂

∂t
z±i ∓B0j∂jz

±
i + ∂j(z

∓
j z
±
i ) = −∂ip+ ν+∂jjz

±
i + ν−∂jjz

∓
i , (20.23a)

∂jz
±
j = 0. (20.23b)

In the next section we will describe the conservation laws of MHD.

20.2 Conservation Laws

In MHD, in addition to kinetic energy and kinetic helicity, we have the following

quadratic quantities:

Magnetic energy density Eb(r) =
1

2
B2, (20.24a)

Energy density of z± Ez±(r) =
1

2
(z±)2, (20.24b)

Cross helicity density Hc(r) =
1

2
u ·B, (20.24c)

Magnetic helicity density HM(r) =
1

2
A ·B, (20.24d)

Enstrophy density Eω(r) =
1

2
ω2, (20.24e)

Mean square vector potential density EA(r) =
1

2
A2. (20.24f)
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The evolution equations for Eu(r) and Eb(r) are as follows:

∂

∂t
Eu(r) + ∂j

(
1

2
u2uj

)
= −∂j(ujp) + ui∂j (BjBi)− νω2, (20.25a)

∂

∂t
Eb(r) + ∂j

(
1

2
B2uj

)
= Bi∂j (Bjui)− ηJ2. (20.25b)

Adding these two equations yields

∂

∂t
(Eu + Eb)(r) + ∂j [(Eu + Eb)uj] = −∂j(ujp) + ∂j (2HcBj)− νω2 − ηJ2. (20.26)

Taking a dot product of Eqs. (20.11a, 20.11b) with B and u respectively, and then

adding them yields

∂

∂t
2Hc(r) + ∂j (2Hcuj) = −∂j(Bjp) + ∂j [(Eu + Eb)Bj]− νBi∇2ui − ηui∇2Bi.

(20.27)

We can define the total of the aforementioned quantities by integrating them

over the whole volume. Also note that in terms of Alfvén variables,

Ez± = Eu + Eb ± 2Hc, (20.28a)

E =
1

2
(Ez+ + Ez−), (20.28b)

Hc =
1

4
(Ez+ − Ez−). (20.28c)

Two commonly used quantities of MHD are Alfvén ratio rA and normalized cross

helicity σc, which are defined as

rA =
Eu
Eb
, (20.29a)

σc =
2Hc

E
. (20.29b)

From Eq. (20.28a) equations, it follows that

εz± = εu + εb ± 2εc, (20.30)

where ε±, εu, εb, εc are respectively the dissipation rates of E±, Eu, Eb and Hc.

In dissipationless and diffusionless MHD, the quadratic invariants are the total

energy, total cross helicity, and total magnetic helicity. The first two invariants are

quite easy to prove using Eqs. (20.26, 20.27). When we integrate these equations

for periodic or vanishing boundary conditions, the terms of the form ∂j(fuj) and

∂j(fBj) vanish (by Gauss theorem) leading to the conservation of the total E and
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Hc. Given these conservation laws, using Eq. (20.28a), we conclude that the total

E+ and E− are also conserved.

It is important to note that neither the kinetic energy nor the magnetic energy is

conserved in dissipationless MHD. This is because of the energy exchange between

the velocity and magnetic fields. We will derive these transfers in Chapter 21. The

conservation of magnetic helicity is proven in the following manner.

Proof: Using the notation ε = u×B and Eq. (2.34), we obtain

d

dt

∫
HM(r)dr =

∫
dr

[
B · DA

Dt
+ A · DB

Dt

]
=

∫
dr [B · (ε +∇Ψ) + A · (∇× ε)]

=

∫
dr [B · ε + ε · (∇×A)] +

∫
dS · (ΨB)

=

∫
dr[2B · ε] +

∫
dS · (ΨB)

= 0, (20.31)

provided the above surface term vanishes.2 Note that B · ε = 0. In the third step

of the above derivation we employ integration by parts to obtain∫
drA · (∇× ε) = (A× ε)i|Si +

∫
drε · (∇×A). (20.32)

The surface term vanishes for periodic boundary condition.

There is an important nonquadratic invariant of MHD, which is the magnetic

flux crossing a surface enclosed by a comoving closed contour:

Φ =

∫
B · dS. (20.33)

This conservation law is called Alfvén frozen-in theorem. A physical interpretation

of this theorem is that the magnetic field lines are frozen in a magnetofluid, and

they move along with the fluid. This theorem is analogous to Kelvin’s circulation

theorem of hydrodynamics.

Proof: The time derivative of Φ is

d

dt

∫
B · dS =

d

dt

∮
A · dl

2This method can also be used to prove conservation of kinetic helicity.
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=

∮
DA

Dt
· dl + A · Ddl

Dt

=

∮
dliuj∂iAj +

∮
(∇Ψ) · dl + A · [dl · ∇u]

=

∮
[dliuj∂iAj +Ajdli∂iuj] +

∮
(∇Ψ) · dl

=

∮
dl · ∇(u ·A + Ψ) = 0. (20.34)

In this derivation we have employed Eq. (20.15) and an identity—Ddl/Dt = dl ·∇u

(see Section 2.3).

We can also prove this theorem using the following arguments:

d

dt

∫
B · dS =

∫
DB

Dt
· dS + B · DdS

Dt
. (20.35)

During a short interval, a movement of the closed contour forms a cylinder. The

change in the surface area enclosed by the closed contours, ∆(dS), is the surface

area of the cylinder. Note that ∆(dS) = (udt) × dl, where u is the velocity of the

line segment dl. Hence,

d

dt

∫
B · dS =

∫
DB

Dt
· dS + B · DdS

Dt

=

∫
∇× (u×B) · dS + B · (u× dl)

=

∫
∇× (u×B) · dS + (B× u) · dl

=

∫
∇× (u×B) · dS +∇× (B× u) · dS

= 0. (20.36)

In 2D MHD, total magnetic helicity is zero; hence, it is trivially conserved. The

nontrivial conserved quantity in diffusionless 2D MHD is the total of the mean

square vector potential, EA = A2/2. This is conversed because A acts as a passive

scalar (see Chapter 14).

Note that Alfvén’s frozen-in theorem is very similar to Kelvin’s circulation

theorem, which was discussed in Section 2.4. In addition, the evolution equations

of the magnetic and vorticity fields are very similar. Hence, there are certain

similarities between the behavior of these two fields. For example, the velocity

field stretches the vorticity field as well as the magnetic field. Note however that

the magnetic field is an independent field, while vorticity, ∇× u, is a derivative of
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the velocity field. As a result, the analogy is not perfect. We will revisit these

issues in subsequent chapters.

To summarize, the conserved quantities for 3D MHD are the total energy, total

cross helicity, and total magnetic helicity. However, 2D MHD has conservation of

total energy, total cross helicity, and total of mean square vector potential. It is easy

to show that the total kinetic energy, total magnetic energy, total kinetic helicity,

total enstrophy, and circulation are not conserved in MHD.

In the next section we describe the MHD equations in Fourier space.

20.3 Governing Equations in Fourier Space

In Fourier space, the MHD equations are

d

dt
u(k) + Nu(k) = −ikp(k) + Fu(k)− νk2u(k), (20.37a)

d

dt
B(k) + NB(k) = FB(k)− ηk2u(k), (20.37b)

k · u(k) = 0, (20.37c)

k ·B(k) = 0, (20.37d)

where the nonlinear terms are

Nu(k) = i
∑
p

{k · u(q)}u(p), (20.38a)

NB(k) = i
∑
p

{k · u(q)}B(p), (20.38b)

Fu(k) = i
∑
p

{k ·B(q)}B(p), (20.38c)

FB(k) = i
∑
p

{k ·B(q)}u(p), (20.38d)

with k = p + q. Using Eq. (20.6), we obtain

−NB(k) + FB(k) = i
∑
p

k× [u(q)×B(p)]. (20.39)

When the magnetic field is decomposed into the mean field B0 and fluctuation b,

the dynamical equations for the fluctuations u,b are given by

d

dt
u(k)− i(B0 · k)b(k) + Nu(k) = −ikp(k) + fu(k)− νk2u(k), (20.40a)
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d

dt
b(k)− i(B0 · k)u(k) + Nb(k) = fb(k)− ηk2u(k), (20.40b)

k · u(k) = 0, (20.40c)

k · b(k) = 0, (20.40d)

where the nonlinear terms are

Nu(k) = i
∑
p

{k · u(q)}u(p), (20.41a)

Nb(k) = i
∑
p

{k · u(q)}b(p). (20.41b)

fu(k) = i
∑
p

{k · b(q)}b(p), (20.41c)

fb(k) = i
∑
p

{k · b(q)}u(p). (20.41d)

We can derive Eqs. (20.40, 20.41) from Eqs. (20.37, 20.38) by setting B(k = 0) = B0.

The equations for z± in Fourier space are

d

dt
z±(k)∓ i(B0 · k)z±(k) + Nz±(k)(k) = −ikp(k)− ν+k

2z±(k)− ν−k2z∓(k),

(20.42a)

k · z±(k) = 0, (20.42b)

where the nonlinear terms are

Nz±(k) = i
∑
p

{k · z∓(q)}z±(p). (20.43)

The equation for the vorticity is

d

dt
ω(k) + Nω(k) = Fω(k)− νk2ω(k), (20.44)

where

Nω(k) = −ik×
∑
p

{u(q)× ω(p)}, (20.45a)

Fω(k) = ik×
∑
p

{J(q)×B(p)}. (20.45b)
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Using Eq. (20.14), we deduce that

d

dt
A(k) = i

∑
p

[u(k− p)×B(p)]− ηk2u(k)− ikΨ(k). (20.46)

In MHD, in addition to the modal kinetic energy, modal enstrophy, and modal

kinetic helicity (see Section 2.3), we have modal magnetic energy and modal

magnetic helicity:

EB(k) =
1

2
|B(k)|2, (20.47a)

HM(k) =
1

2
<[A(k) ·B∗(k)]. (20.47b)

The spectral equations for the modal kinetic energy (|u(k)|2/2) and magnetic energy

(|B(k)|2/2) are as follows:

d

dt
Eu(k) = −<[Nu(k) · u∗(k)] + <[Fu(k) · u∗(k)]− 2νk2Eu(k)

=
∑
p

= [{k · u(q)}{u(p) · u∗(k)} − {k ·B(q)}{B(p) · u∗(k)}]

−2νk2Eu(k), (20.48a)

d

dt
EB(k) = −<[NB(k) ·B∗(k)] + <[FB(k) ·B∗(k)]− 2ηk2EB(k)

=
∑
p

= [{k · u(q)}{B(p) ·B∗(k)} − {k ·B(q)}{u(p) ·B∗(k)}]

−2ηk2EB(k). (20.48b)

Similarly,

d

dt
Ez±(k) =

∑
p

=
[
{k · z∓(q)}{z±(p) · z±∗(k)}

]
− 2ν±k

2Ez±(k)

−2ν−k
2[Eu(k)− Eb(k)]. (20.49)

Now let us write down the spectral equation for the kinetic helicity. We start

from Eq. (3.45), which is

d

dt
HK(k) =

1

k2
<[ik · {ω̇(k)× ω∗(k)}]. (20.50)

By following the same algebra as in the derivation of ḢK in Section 3.3, we obtain
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ik · {ω̇(k)× ω∗(k)} = ik ·
∑
p

[i{k× (u(q)× ω(p) + J(q)×B(p))} × ω∗(k)]

−2νk2HK(k)

= k ·
∑
p

[k{u(q)× ω(p) + J(q)×B(p)} · ω∗(k)]

−2νk2HK(k)

= k2
∑
p

u(q) · {ω(p)× ω∗(k)}

+k2
∑
p

J(q) · {B(p)× ω∗(k)} − 2νk2HK(k), (20.51)

where q = k− p. Hence,

d

dt
HK(k) =

∑
p

<[u(q)·{ω(p)×ω∗(k)}+J(q)·{B(p)×ω∗(k)}]−2νk2HK(k). (20.52)

The equation for the magnetic helicity is derived similarly. Using Coulomb gauge

k ·A(k) = 0, we derive that

A(k) =
i

k2
k×B(k). (20.53)

Substitution of this form of A(k) in Eq. (20.47b) yields

HM(k) =
1

2k2
<[ik · {B(k)×B∗(k)}]. (20.54)

Following the same algebra as that for HK , we obtain

d

dt
HM(k) =

1

k2
<[ik · {Ḃ(k)×B∗(k)}]

= − 1

k2
<
∑
p

k · [{k× (u(q)×B(p))} ×B∗(k)]− 2ηk2HM(k)

= <
∑
p

u(q) · {B(p)×B∗(k)} − 2ηk2HM(k). (20.55)

The equation for enstrophy is derived similarly. In 2D, the equation for mean square

vector potential EA is

d

dt
EA(k) =

∑
p

= [{k · u(q)}A(p)A∗(k)]− 2ηk2EA(k). (20.56)

In the next section, we describe the properties of Alfvén waves.
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20.4 Alfvén Waves

When u � B0 and b � B0, the nonlinear terms can be dropped. The resulting

linear equations support waves that will be described in this section.

The linearized, incompressible, dissipationless, and diffusionless MHD equations

are

d

dt
u(k) = −ikp(k) + i[B0 · k]b(k), (20.57a)

d

dt
b(k) = i[B0 · k]u(k), (20.57b)

k · u(k) = k · b(k) = 0. (20.57c)

We work in Craya–Herring basis that eliminates pressure and yields relatively

simpler set of equations:

d

dt


u1(k)
u2(k)
b1(k)
b2(k)

 =


0 0 iω 0
0 0 0 iω
iω 0 0 0
0 iω 0 0



u1(k)
u2(k)
b1(k)
b2(k)

 , (20.58)

where

ω = B0 · k (20.59)

is the dispersion relation. The above matrix has eigenvalues −iω,−iω, iω, iω, and

the corresponding eigenvectors are
−1
0
1
0

 ;


0
−1
0
1

 ;


1
0
1
0

 ;


0
1
0
1

 . (20.60)

In real space, these eigenvectors correspond to the following wave solutions:
−1
0
1
0

 cos(kz′ − ωt+ Ψk1);


0
−1
0
1

 cos(kz′ − ωt+ Ψk2);


1
0
1
0

 cos(kz′ + ωt+ Ψk3);


0
1
0
1

 cos(kz′ + ωt+ Ψk4), (20.61)

where z′ is the coordinate along k, and Ψk’s are the phases of the wave modes. From
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the phases of the cosine function we deduce that the first two solutions represent

the waves propagating along k, while the next two are the waves propagating along

−k. These waves are called Alfvén waves, and they are depicted in Fig. 20.1. Note

that the first two waves have u = −b, but the next two have u = b.

u b= –

z

z

x

u

b

k c+

c–

e2

u b=

z

z

x

u

b

k

e2

(a) (b)

Figure 20.1 (a) An Alfvén wave traveling along k with a phase velocity of
c+ = B0 cos ζ. It has u = −b (b) An Alfvén wave traveling along
−k with a phase velocity of c− = −B0 cos ζ. It has u = b. From
Verma (2018). Reprinted with permission from World Scientific.

The phase velocities of the waves are

c± = ±ω
k
k̂ = ±B0 cos ζk̂. (20.62)

Note that for k = k⊥ = kxx̂+ kyŷ, we obtain ω = 0 (because ζ = π/2). Hence, the

fluctuations in the kz = 0 plane are not waves; they are two-dimensional fluctuations.

20.5 MHD Equations in Craya–Herring Basis

As described in Chapter 9, Craya–Herring basis helps present the hydrodynamic

Fourier modes (their equations, energies, and helicities) in a compact manner. Here

we describe how the magnetic field is represented in Craya–Herring basis. Since

k · b(k) = 0, we can employ Craya–Herring basis vectors to represent the magnetic

Fourier mode (k 6= 0) as

b(k) = b1(k)ê1 + b2(k)ê2. (20.63)

In Craya–Herring basis, the magnetic energy and magnetic helicity are

Eb(k) =
1

2
b∗(k) · b(k) =

1

2
[b1(k)|2 + b2(k)|2], (20.64a)

HM(k) =
1

2
<[b∗(k) · a(k)] =

1

k
=[b∗1(k)b2(k)]. (20.64b)
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In Chapters 9, 13, and 18 we presented derivations of the equations of motion for

hydrodynamics, and for flows with scalar and vector fields. In the present section,

we extend these derivations to MHD equations. These equations are very useful for

constructing low-dimensional models for dynamos (see Chapter 23).

As in Section 9.2, we consider a triad (k′,p,q) with k′ + p + q = 0. Following

similar steps as in Section 9.2, we start with the dynamical equations for u(k′):

d

dt
u(k′) = −i[k′ · u(−q)]u(−p)− i[k′ · u(−p)]u(−q)− ikp(k′)

+i[k′ · b(−q)]b(−p) + i[k′ · b(−p)]b(−q). (20.65)

A projection of these equations along ê1(k′), one of the Craya–Herring basis vector,

yields the following equation for u1((k′):

u̇1(k′) = [−ik′ sinβê1(p) · ê1(k′) + ik′ sin γê1(q) · ê1(k′)]

×[u∗1(p)u∗1(q)− b∗1(p)b∗1(q)]

= ik′ sin(β − γ)[u∗1(p)u∗1(q)− b∗1(p)b∗1(q)]. (20.66)

Similar computation yields the following equations for u1(p) and u1(q):

u̇1(p) = ip sin(γ − α)[u∗1(q)u∗1(k′)− b∗1(q)b∗1(k′)], (20.67a)

u̇1(q) = iq sin(α− β)[u∗1(k′)u∗1(p)− b∗1(k′)b∗1(p)]. (20.67b)

A projection of Eqs. (20.65) along ê2 yields the following equations:

u̇2(k′) = ik′{sin γu∗1(p)u∗2(q)− sinβu∗1(q)u∗2(p)}

−ik′{sin γb∗1(p)b∗2(q)− sinβb∗1(q)b∗2(p)}, (20.68a)

u̇2(p) = ip{sinαu∗1(q)u∗2(k′)− sin γu∗1(k′)u∗2(q)}

−ip{sinαb∗1(q)b∗2(k′)− sin γb∗1(k′)b∗2(q)}, (20.68b)

u̇2(q) = iq{sinβu∗1(k′)u∗2(p)− sinαu∗1(p)u∗2(k′)}

−iq{sinβb∗1(k′)b∗2(p)− sinαb∗1(p)b∗2(k′)}. (20.68c)
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The equations for the the magnetic mode b(k′) are

d

dt
b(k′) = −i[k′ · u(−q)]b(−p)− i[k′ · u(−p)]b(−q)

+i[k′ · b(−q)]u(−p) + i[k′ · b(−p)]u(−q). (20.69)

Projections of these equations and those for b(p) and b(q) along the Craya–Herring

basis vectors yield the following equations:

ḃ1(k′) = ik′ sin(β + γ)[b∗1(p)u∗1(q)− u∗1(p)b∗1(q)],

= ik′ sinα[b∗1(p)u∗1(q)− u∗1(p)b∗1(q)], (20.70a)

ḃ1(p) = ip sin(γ + α)[b∗1(q)u∗1(k′)− u∗1(q)b∗1(k′)],

= ip sinβ[b∗1(q)u∗1(k′)− u∗1(q)b∗1(k′)], (20.70b)

ḃ1(q) = iq sin(α+ β)[b∗1(k′)u∗1(p)− u∗1(k′)b∗1(p)]

= iq sin γ[b∗1(k′)u∗1(p)− u∗1(k′)b∗1(p)]. (20.70c)

Similarly,

ḃ2(k′) = ik′{sin γu∗1(p)b∗2(q)− sinβu∗1(q)b∗2(p)}

−ik′{sin γb∗1(p)u∗2(q)− sinβb∗1(q)u∗2(p)}, (20.71a)

ḃ2(p) = ip{sinαu∗1(q)b∗2(k′)− sin γu∗1(k′)b∗2(q)}

−ip{sinαb∗1(q)u∗2(k′)− sin γb∗1(k′)u∗2(q)}, (20.71b)

ḃ2(q) = iq{sinβu∗1(k′)b∗2(p)− sinαu∗1(p)b∗2(k′)}

−iq{sinβb∗1(k′)u∗2(p)− sinαb∗1(p)u∗2(k′)}. (20.71c)

Example 20.1: In a periodic box [2π, 2π], consider the following velocity and

magnetic fields in MHD:

u = x̂2Du cos y + ŷ2Cu cosx+ (x̂− ŷ)2Au sin(x+ y),

b = x̂2Db cos y + ŷ2Cb cosx+ (x̂− ŷ)2Ab sin(x+ y).

Assume ν = η = 0. Derive equations for Au, Cu, Du, Ab, Cb, and Db as in Example

3.4.
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Solution: These vector fields are the same as those in Example 18.1 (with w

replaced by b). As in Example 18.1, we decompose the fields in Craya–Herring

basis, and then write down the equations for the components. The amplitudes of

the components are same as those in Table 18.2.

The difference between the present example and Example 18.1 is the following.

In MHD, the velocity and magnetic fields are forced by (b · ∇)b and (b · ∇)u

respectively, in contrast to the passive vector of Example 18.1 having Fu =

FB = 0. Consequently, the dynamical equations for the modes have additional

terms compared to Example 18.1. The aforementioned two-dimensional field

configurations have u2 = b2 = 0; hence, we write down the evolution equations for

u1 and b1 components only. Following Eqs. (20.66, 20.67), we obtain

u̇1(−1,−1) = Ȧu(−
√

2/i) = 0,

u̇1(1, 0) = Ḋu = −i sin(γ − α)[−Cu(Au
√

2/i) + Cb(Ab
√

2/i)].

u̇1(0, 1) = −Ċu = i sin(α− β)(Du(Au
√

2/i)−Db(Ab
√

2/i)),

or

Ȧu = 0,

Ḋu = CuAu −AbCb,

Ċu = −DuAu +AbDb.

For the magnetic modes we employ Eqs. (20.70) that yields

ḃ1(−1,−1) = Ȧb(−
√

2/i) = i
√

2 sinα[−CuDb +DuCb],

ḃ1(1, 0) = Ḋb = i sinβ[−Cb(Au
√

2/i) + Cu(Ab
√

2/i)],

ḃ1(0, 1) = −Ċb = i sin γ((Ab
√

2/i)Du − (Au
√

2/i)Db),

or

Ȧb = −CuDb +DuCb,

Ḋb = −AuCb + CuAb,

Ċb = AuDb −DuAb.

This set of differential equations could be solved numerically.

It is interesting to note that the total energy

(A2
u +A2

b) +
1

2
(D2

u +D2
b) +

1

2
(C2

u +D2
u) = const.
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which follows from the conservation of total energy for inviscid MHD. Note that the

total kinetic energy and total magnetic energy are not conserved.

In the next section, we present the equations of MHD in helical basis.

20.6 MHD Equations in Helical Basis

Helical basis, discussed in Chapter 9, is very useful for dynamo studies. Magnetic

energy and magnetic helicity can be written in terms of helical basis vectors as

follows:

Eb(k) =
1

2
b∗(k) · b(k) =

1

2
[|b+(k)|2 + |b−(k)|2], (20.72a)

HM(k) =
1

2
<[u∗(k) · a(k)] =

1

2k
[|b+(k)|2 − |b−(k)|2]. (20.72b)

To derive the equations of motion for u(k) in helical basis, we start with the Navier–

Stokes equations with ν = 0:

d

dt
u(k′) = −ik′p(k′) + u(−q)× ω(−p) + u(−p)× ω(−q)

−b(−q)× J(−p)− b(−p)× j(−q), (20.73)

where

j(k) = ik× b(k). (20.74)

Following the same procedure as in Section 9.7, we expand the fields u, j,b and ω

in helical basis, and take a dot product of the equation with helical basis vectors

ê∗sk′ (k
′). These operations yield the following equations (when ν = 0):

u̇sk(k
′) = [u∗(q)× ω∗(p) + u∗(p)× ω∗(q)

−b∗(q)× j∗(p)− b∗(p)× j∗(q)] · ê∗sk′ (k
′)

=
∑
sp,sq

[psp{u∗sq(q)u∗sp(p)− b∗sq(q)b∗sp(p)}ê∗sq(q)× ê∗sp(p) · ê∗sk′ (k
′)]

+
∑
sp,sq

[qsq{u∗sq(q)u∗sp(p)− b∗sq(q)b∗sp(p)}ê∗sp(p)× ê∗sq(q) · ê∗sk′ (k
′)]

=
∑
sp,sq

(psp − qsq)[u∗sq(q)u∗sp(p)− b∗sq(q)b∗sp(p)]ê∗sq(q)× ê∗sp(p) · ê∗sk′ (k
′).

(20.75)
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Hence,

u̇sk(k
′) =

∑
sp,sq

g(psp − qsq)[u∗sq(q)u∗sp(p)− b∗sq(q)b∗sp(p)], (20.76)

where

g = ê∗sq(q)× ê∗sp(p) · ê∗sk′ (k
′)

=
1

2
√

2
sk′spsq{sk′ sinα+ sp sinβ + sq sin γ}, (20.77)

with α, β, γ as the angles of the triangle formed by the wavenumbers k′,p,q. See

Fig. 9.5 for an illustration.

To derive the equations for the magnetic modes, we start with the induction

equation:

d

dt
b(k′) = ik′ × ε(k′)

=
∑
s′k

εsk(k
′)ik′ × êsk′ (k

′)

=
∑
s′k

k′sk′εsk(k
′)êsk′ (k

′), (20.78)

where ε = u× b is the induction term. From this equation, we deduce that

ḃs′k(k
′) = k′sk′εsk(k

′). (20.79)

Using ε = u× b, we obtain

εsk′ (k
′) =

∑
sp,sq

[u∗(q)× b∗(p) + u∗(p)× b∗(q)] · ê∗sk′ (k
′)

=
∑
sp,sq

g[u∗sq(q)b∗sp(p)− u∗sp(p)b∗sq(q)], (20.80)

where g is given by Eq. (20.77). Therefore,

ḃsk′ (k
′) = k′sk′

∑
sp,sq

g[u∗sq(q)b∗sp(p)− u∗sp(p)b∗sq(q)]. (20.81)

It is interesting to note that

1

2
[|usk′ (k

′)|2+|bs′k(k
′)|2+|usp(p)|2+|bsp(p)|2+|usq(q)|2+|bsq(q)|2] = const. (20.82)

This is the statement of conservation of total energy under a triadic interaction.
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We will revisit these equations in Chapter 23 when we discuss dynamos. In the

next section we will describe the nondimensionalized version of MHD equations.

20.7 Nondimensionalized MHD Equations

We start with the MHD equations with a mean magnetic field B0:

∂u

∂t
−B0 · ∇b + u · ∇u− b · ∇b = −∇p+ ν∇2u, (20.83a)

∂b

∂t
−B0 · ∇u + u · ∇b− b · ∇u = η∇2B. (20.83b)

We nondimensionalize these equations using the system’s large-scale velocity U0 and

length L:

r→ Lr; u→ U0u; b→ U0b; p→ (U2
0 )p. (20.84)

Substitution of these terms in Eqs. (20.83) yields

∂u

∂t
− 1

U0

B0 · ∇b + u · ∇u− b · ∇b = −∇p+
1

Re
∇2u, (20.85a)

Rm

[
∂b

∂t
+ u · ∇b− b · ∇u

]
=

B0L

η
· ∇u +∇2b, (20.85b)

where

Re =
u · ∇u

ν∇2u
=
U0L

ν
, (20.86)

Rm =
u · ∇b

η∇2b
=
U0L

η
, (20.87)

are Reynolds number and magnetic Reynolds number respectively.

In this book we consider the following two broad categories of flows:

1. B0 = 0: For this case, the equations are

∂u

∂t
+ u · ∇u = −∇p+ b · ∇b +

1

Re
∇2u, (20.88a)

∂b

∂t
+ u · ∇b = b · ∇u +

1

Rm
∇2b, (20.88b)

2. Rm = 0: This case, called quasi-static MHD, has b � B0, and the resulting

equations are

∂u

∂t
+ u · ∇u = −∇p+

1

U0

B0 · ∇b +
1

Re
∇2u, (20.89a)
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B0L

η
· ∇u +∇2b = 0. (20.89b)

We will analyze these equations in Chapter 24.

Based on Re and Rm, we can classify MHD flows into four categories:

1. Re � 1, Rm � 1: Turbulent MHD in which all the nonlinear terms are

significant. See Eqs. (20.88)

2. Re� 1, Rm→ 0: For such flows, the nonlinear terms of the induction equation

can be ignored. This is quasi-static MHD limit. See Eqs. (20.89).

3. Re / 1, Rm� 1: The nonlinear terms of the induction equation is significant,

but those of the Navier–Stokes are not.

4. Re / 1, Rm / 1: Laminar MHD in which all the nonlinear terms are negligible.

We will discuss these cases in the subsequent chapters.

Further Reading

There are many books and review articles on MHD formalism. For the topics

discussed in this book, we refer the reader to Biskamp (2003) and Verma (2004).

More articles and books will be referred to in the subsequent chapters.

Exercises

1. Derive evolution equations for the kinetic helicity and enstrophy. Show that these quantities are
not conserved.

2. Derive the conservation laws of MHD using the equations in Fourier space.
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Chapter 21

Energy Transfers in MHD

In the present chapter we describe various mode-to-mode energy transfers and

energy fluxes of MHD. These quantities are very useful for the construction of

turbulence phenomenologies, for understanding experimental and observational

data, and for understanding dynamo mechanism. These applications will be

described in later chapters.

We start with the combined energy transfers in MHD.

21.1 Combined Energy Transfers in MHD

We start with the equations for kinetic and magnetic energies without dissipation

(see Eqs. (20.48)):

d

dt
Eu(k) = −<[Nu(k) · u∗(k)] + <[Fu(k) · u∗(k)]

=
∑
p

= [{k · u(q)}{u(p) · u∗(k)} − {k ·B(q)}{B(p) · u∗(k)}] , (21.1a)

d

dt
EB(k) = −<[NB(k) ·B∗(k)] + <[FB(k) ·B∗(k)]

=
∑
p

= [{k · u(q)}{B(p) ·B∗(k)} − {k ·B(q)}{u(p) ·B∗(k)}] ,(21.1b)

where k = p + q. Here, ν = η = 0.
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Now we focus on a pair of triads, (k′,p,q) and (−k′,−p,−q), with k′ = −k. See

Fig. 4.1 for an illustration. For these modes, the aforementioned equations yield

d

dt
Eu(k′) = Suu(k′|p,q) + Sub(k′|p,q), (21.2a)

d

dt
Eb(k

′) = Sbb(k′|p,q) + Sbu(k′|p,q), (21.2b)

where

Suu(k′|p,q) = −= [{k′ · u(q)}{u(p) · u(k′)}]−= [{k′ · u(p)}{u(q) · u(k′)}] ,
(21.3a)

Sbb(k′|p,q) = −= [{k′ · u(q)}{B(p) ·B(k′)}]−= [{k′ · u(p)}{B(q) ·B(k′)}] ,
(21.3b)

Sub(k′|p,q) = = [{k′ ·B(q)}{B(p) · u(k′)}] + = [{k′ ·B(p)}{B(q) · u(k′)}] ,
(21.3c)

Sbu(k′|p,q) = = [{k′ ·B(q)}{u(p) ·B(k′)}] + = [{k′ ·B(p)}{u(q) ·B(k′)}] .
(21.3d)

These are combined energy transfers to wavenumber k′ from the other two

wavenumbers p and q, as described in Table 21.1. Similar equations can be

derived for wavenumbers p and q. Note that the energy transfer Suu(k′|p,q) has

been discussed in Chapter 4, while Sbb(k′|p,q) has been discussed in Chapter 18

(with w→ b); in these chapters we showed the following conservation laws:

Suu(k′|p,q) + Suu(p|k′,q) + Suu(q|k′,p) = 0, (21.4a)

Sbb(k′|p,q) + Sbb(p|k′,q) + Sbb(q|k′,p) = 0. (21.4b)

These are the laws of detailed conservation; Eq. (21.4a) is related to kinetic energy

exchanges among the wavenumbers of the triad via uu channel, while Eq. (21.4b) is

related to the corresponding exchanges of the magnetic energy via bb channel.

Table 21.1 Summary of various combined energy transfers in MHD turbulence.

ET Receiver mode Giver modes

Suu(X|Y,Z) u(X) u(Y), u(Z)

Sbb(X|Y,Z) B(X) B(Y), B(Z)

Sub(X|Y,Z) u(X) B(Y), B(Z)

Sbu(X|Y,Z) B(X) u(Y), u(Z)
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In addition to the aforementioned equations, we also have the following equation

for the triad:

Sub(k′|p,q) + Sub(p|k′,q) + Sub(q|k′,p)

+Sbu(k′|p,q) + Sbu(p|k′,q) + Sbu(q|k′,p) = 0. (21.5)

This statement, the third detailed energy conservation law, is related to the energy

exchanges among u and B modes. Note however that the total magnetic energy in

a triad can change via bu transfer since

Sbu(k′|p,q) + Sbu(p|k′,q) + Sbu(q|k′,p) 6= 0. (21.6)

Similarly, the total kinetic energy changes via the following ub transfers:

Sub(k′|p,q) + Sub(p|k′,q) + Sub(q|k′,p) 6= 0. (21.7)

But, the total energy is conserved when we add the Sbu and Sub transfers. These

results lead to the conservation of the total energy
∑

k[Eu(k) + EB(k)] in a triad.

Now we are ready to derive the mode-to-mode energy transfers in MHD.

21.2 Mode-to-mode Energy Transfers in MHD

In MHD, the active modes in a triad are u(k′),u(p),u(q), B(k′),B(p), and B(q). In

this section we will derive mode-to-mode energy transfers from velocity to velocity,

magnetic to magnetic, velocity to magnetic, and magnetic to velocity modes, which

are illustrated in Fig. 21.1.

In MHD, the kinetic energy transfers among the velocity modes are facilitated

by the nonlinear term Suu of Eq. (21.3a), whose structure is the same as those for

hydrodynamic turbulence (see Chapter 4). Therefore, the mode-to-mode kinetic

energy transfer from u(p) to u(k′) with the mediation of u(q) is given by the

following expression (see Section 4.1 for derivation):

Suu(k′|p|q) = −= [{k′ · u(q)}{u(p) · u(k′)}] . (21.8)

Similarly, the magnetic energy exchange via the nonlinear term Sbb has the same

structure as that for vector flow (see Chapter 18). Therefore, as discussed in

Section 18.2, the magnetic energy transfer from B(p) to B(k′) with the mediation

of u(q) is

Sbb(k′|p|q) = −= [{k′ · u(q)}{B(p) ·B(k′)}] . (21.9)
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Figure 21.1 In a triad (k′,p,q) with k′ + p + q = 0, circles and squares
represent the velocity and magnetic modes respectively. In the
figure, Suus are the mode-to-mode kinetic energy transfers
between velocity modes, Sbbs are the magnetic energy transfers
between magnetic modes, and Sbus are the energy transfers
from velocity modes to magnetic modes. The magnetic-to-velocity
transfers Sub are not shown in the figure. Note that Sub(k′|p|q) =
−Sbu(p|k′|q).

These mode-to-mode energy transfers are exhibited in Fig. 21.2(a,b). In both

these kinds of transfers, the velocity mode u(q) acts a mediator since it advects the

modes (see Sections 4.1, 18.2 for detailed arguments). For convenience, the energy

transfers Suu and Sbb are denoted by U2U and B2B respectively.

As discussed in the previous section, mode u(k′) receives energy from the

magnetic modes via Sub terms. Similarly, mode B(k′) receives energy from the

velocity modes via Sbu terms. Let us try to construct formulas for the

velocity-to-magnetic and magnetic-to-velocity mode-to-mode energy transfers,

which are denoted by Sbu and Sub respectively. Figures 21.2(c, d) illustrate these

transfers.

For convenience, we denote the wavenumbers in the triad as X,Y,Z with

X + Y + Z = 0. We denote the mode-to-mode energy transfer from u(Y) to B(X)

with the mediation of mode B(Z) as Sbu(X|Y|Z), which are illustrated in

Fig. 21.1. The energy transfer from B(Y) to u(X) with the mediation of mode

B(Z) is denoted by Sub(X|Y|Z).
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Figure 21.2 A schematic diagram exhibiting mode-to-mode energy transfers in
MHD turbulence: (a) U2U, (b) B2B, (c) B2U, (d) U2B. Here
the wavy lines represent the mediator modes.

The functions Sub(X|Y|Z) and Sbu(X|Y|Z) satisfy the following properties:

1. The sum of Sub(X|Y|Z) and Sub(X|Z|Y) is the combined energy transfer

Sub(X|Y,Z). That is,

Sub(X|Y|Z) + Sub(X|Z|Y) = Sub(X|Y,Z). (21.10)

Similarly, for Sbu,

Sbu(X|Y|Z) + Sbu(X|Z|Y) = Sbu(X|Y,Z). (21.11)
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2. The energy transfer from u(Y) to B(X), Sbu(X|Y|Z), is equal and opposite

to the energy transfer from B(X) to u(Y), Sub(Y|X|Z); that is,

Sbu(X|Y|Z) = −Sub(Y|X|Z). (21.12)

Note that Eq. (21.5) follows from the aforementioned equation, which are based

on the rules of transaction.

The above properties yield twelve equations using which we attempt to solve for

twelve unknowns—six Sub(X|Y|Z) and six Sbu(Y|X|Z). Following the structure in

Eqs. (21.3c, 21.3d) and the above properties, we can show that

Sub(X|Y|Z) = −= [{X ·B(Z)}{B(Y) · u(X)}] ,

Sbu(X|Y|Z) = −= [{X ·B(Z)}{u(Y) ·B(X)}] (21.13a)

satisfy Eqs. (21.10, 21.11, 21.12) . Hence, they are respectively the magnetic-

to-velocity and velocity-to-magnetic mode-to-mode transfers. In shorthand, these

transfers are denoted by B2U and U2B respectively.

Unfortunately, the matrix formed by Eqs. (21.10, 21.11, 21.12) has a vanishing

determinant. Hence, the aforementioned solution is not unique. Strictly speaking,

the physical arguments of Sections 4.1.1 and 18.2 are not applicable because in

the nonlinear terms [(B · ∇)u] ·B and [(B · ∇)B] · u, the B field in the left of ∇
operator does not advect the fields that appear in the right of the ∇ (unlike u field

that advects in Suu and Sbb transfers). Yet, following a mathematical analogy, we

claim that the B field in the left of ∇ operator in [(B · ∇)u] ·B and [(B · ∇)B] · u
advects the modes that appear in the right of ∇ operator.

In addition, we provide a convincing mathematical derivation in the lines of

Section 4.1.2. From the structure of the nonlinear terms of Eqs. (21.3) we demand

that Sub(k′|p|q) and Sbu(k′|p|q) satisfy the following properties:

1. Sub(k′|p|q) and Sbu(k′|p|q) are real.

2. Sub(k′|p|q) and Sbu(k′|p|q) are linear functions of the wave vector k′.

3. Sub(k′|p|q) and Sbu(k′|p|q) are linear functions of the Fourier modes u(k′),

u(p), u(q), B(k′), B(p), B(q) with the following conditions:

(a) One velocity mode and two magnetic modes appear in the function.

(b) The wavenumbers of the Fourier modes must be distinct.

4. Due to the equivalence of the triads (k,p,q) and (−k,−p,−q),

Sub(−k′| − p| − q) = Sub(k′|p|q). (21.14)
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Using these properties and Eqs. (21.10, 21.11, 21.12), we derive the formulas

for Sub(k′|p|q) and Sbu(k′|p|q). The function Sub(k′|p|q) involving two magnetic

modes and a single velocity mode is of the following form:

Sub(k′|p|q) = c1= [{k′ · u(q)}{B(p) ·B(k′)}]

+ c2= [{k′ · u(p)}{B(q) ·B(k′)}]

+ c3= [{k′ ·B(q)}{B(k′) · u(p)}]

+ c4= [{k′ ·B(p)}{B(k′) · u(q)}]

+ c5= [{k′ ·B(q)}{B(p) · u(k′)}]

+ c6= [{k′ ·B(p)}{B(q) · u(k′)}] . (21.15)

Here we have dropped terms involving k′ · u(k′) and k′ · b(k′) because they are

zeros. Following Eq. (21.9), the first two terms in this expression are Sbb(k′|p|q)

and Sbb(k′|q|p) respectively. Hence, we drop them from the expression.

For Sub(k′|p|q), a closer examination of Eq. (21.3c) reveals that the receiver

mode is u(k′), and it appears in the dot product with one of the magnetic modes.

Hence,

Sub(k′|p|q) = c5= [{k′ ·B(q)}{B(p) · u(k′)}]

+ c6= [{k′ ·B(p)}{B(q) · u(k′)}] . (21.16)

In real space, the nonlinear term corresponding to Sub(k′|p|q) is

[(B · ∇)B] · u = ui∂j(BjBi). Here, the receiver, giver, and mediator fields are ui,

Bi, and Bj respectively. Hence, in Eq. (21.16), B(q) must be the mediator mode.

Therefore, c6 = 0, and

Sub(k′|p|q) = c5= [{k′ ·B(q)}{B(p) · u(k′)}] . (21.17)

Substitution of this term in Eq. (21.10) yields c5 = 1. Therefore,

Sub(k′|p|q) = = [{k′ ·B(q)}{B(p) · u(k′)}] (21.18)

is the mode-to-mode energy transfer from mode B(p) to mode u(k′) with the

mediation of B(q).

Similarly for Sbu(k′|p|q), using Eq. (21.3d) we deduce that B(k′) is the receiver

mode. Hence,

Sbu(k′|p|q) = c3= [{k′ ·B(q)}{B(k′) · u(p)}]

+ c4= [{k′ ·B(p)}{B(k′) · u(q)}] . (21.19)
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Note that Sbu(k′|p|q) is related to the nonlinear term [(B · ∇)u] ·B = Bi∂j(Bjui),

for which Bi, ui, and Bj are respectively the receiver, giver, and mediator modes.

Hence, c4 = 0, and c3 = 1 [following Eq. (21.11)]. Therefore,

Sbu(k′|p|q) = = [{k′ ·B(q)}{u(p) ·B(k′)}] (21.20)

is the mode-to-mode magnetic energy transfer from mode u(p) to mode B(k′)

with the mediation of B(q). The mode-to-mode energy transfers Sub(k′|p|q) and

Sbu(k′|p|q) are illustrated in Fig. 21.2(c, d).

Following similar lines of arguments, we can also derive mode-to-mode energy

transfers among the Elsäser variables z+ and z−. This is the topic of the next

section.

21.3 Mode-to-mode Transfers for Elsäser Variables

The equations for the modal energy of z± variables for inviscid MHD are [see

Eqs. (20.49)]

d

dt
Ez±(k) =

∑
p

=
[
{k · z∓(q)}{z±(p) · z±∗(k)}

]
. (21.21)

For the triads (k′,p,q) and (−k′,−p,−q) with k′ = −k, Eq. (21.21) yields

d

dt
Ez+(k) = Sz

+z+(k′|p,q), (21.22a)

d

dt
Ez−(k) = Sz

−z−(k′|p,q), (21.22b)

where

Sz
+z+(k′|p,q) = −=

[
{k′ · z−(q)}{z+(p) · z+(k′)}

]
−=

[
{k′ · z−(p)}{z+(q) · z+(k′)}

]
, (21.23a)

Sz
−z−(k′|p,q) = −=

[
{k′ · z+(q)}{z−(p) · z−(k′)}

]
−=

[
{k′ · z+(p)}{z−(q) · z−(k′)}

]
(21.23b)

are the combined energy transfers. Using these equations and the condition that

k · z±(k) = 0, we derive the following conservation laws for the triad:

Sz
+z+(k′|p,q) + Sz

+z+(p|q,k′) + Sz
+z+(q|k′,p) = 0, (21.24a)

Sz
−z−(k′|p,q) + Sz

−z−(p|q,k′) + Sz
−z−(q|k′,p) = 0. (21.24b)

Thus, Ez+ and Ez− are individually conserved for MHD interactions in a triad.
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In the following discussion, we construct mode-to-mode transfers Sz
+z+(k′|p|q)

and Sz
−z−(k′|p,q). Following the arguments of the previous section, we show that

Sz
+z+(X|Y|Z) + Sz

+z+(X|Z|Y) = Sz
+z+(X|Y,Z), (21.25a)

Sz
+z+(X|Y|Z) = −Sz

+z+(Y|X|Z). (21.25b)

We obtain similar equations for Sz
−z− . A solution for Eqs. (21.25) is as follows:

Sz
+z+(k′|p|q) = −=

[
{k′ · z−(q)}{z+(p) · z+(k′)}

]
, (21.26a)

Sz
−z−(k′|p|q) = −=

[
{k′ · z+(q)}{z−(p) · z−(k′)}

]
. (21.26b)

Unfortunately, the determinant of the matrix formed by Eqs. (21.25a, 21.25b) is

zero. Hence, we invoke physical and mathematical arguments to prove uniqueness

of this solution.

Physically, in Eq. (21.26a), mode z−(q) advects z+(p) and z+(k′) modes that

exchange energy among themselves. Hence, Eq. (21.26a) is the mode-to-mode energy

transfer from z+(p) to z+(k′) with the mediation of z−(q). See Fig. 21.3 for an

illustration.

–[( ) ]z z z× Ñ ×

(a)

S ( | | )p qk’z+ z+

z p( )+

z k’( )+

z q( )–

– + +

– ( ) ( )k’ z q z k’× ×[{ }{ ( ) }]z p– + +

–[( ) ]z z z× Ñ ×

(b)

S ( | | )p qk’z– z–

z p( )–

z k’( )–

z q( )+

+ – –

– ( ) ( )k’ z q z k’× ×[{ }{ ( ) }]z p+ – –

Figure 21.3 Schematic diagram exhibiting mode-to-mode energy transfers
among the Elsäser variables z±: (a) z+ to z+, (b) z− to z−. Here
the wavy lines represent the mediator modes. Note that there is
no energy transfer from z− to z+ and vice versa.

We also provide a mathematical argument for the above formula. In the following

discussion we derive Sz
+z+(k′|p|q) for which the additional conditions are

1. Sz
+z+(k′|p|q) is real.
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2. Sz
+z+(k′|p|q) is a linear function of k′.

3. Sz
+z+(k′|p|q) consists of a scalar product of z+(k′) with another z+ mode.

This quantity is multiplied by a scalar product of wavenumber k′ and a z−

mode. The arguments of the Fourier modes are distinct wavenumbers chosen

from k′,p,q.

4. Sz
+z+(k′|p|q) = Sz

+z+(−k′| − p| − q).

Under these constraints, we deduce that

Sz
+z+(k′|p|q) = c1=

[
{k′ · z−(q)}{z+(p) · z+(k′)}

]
+c2=

[
{k′ · z−(p)}{z+(q) · z+(k′)}

]
. (21.27)

Substitution of the above equation and their counterparts in Eqs. (21.25a, 21.25b)

yields

c1 = −1; c2 = 0. (21.28)

Therefore,

Sz
+z+(k′|p|q) = −=

[
{k′ · z−(q)}{z+(p) · z+(k′)}

]
(21.29)

is the energy transfer from z+(p) to z+(k′) with z−(q) acting as a mediator.

Using similar arguments we can show that

Sz
−z−(k′|p|q) = −=

[
{k′ · z+(q)}{z−(p) · z−(k′)}

]
(21.30)

is the energy transfer from z−(p) to z−(k′) with the mediation of z+(q). Note that

in these expressions, the mediator mode has an opposite sign compared to the giver

or receiver modes. Moreover, there is no cross transfer from z+ to z−, and vice

versa. These transfers are illustrated in Fig. 21.3.

In the next section we describe the mode-to-mode kinetic and magnetic helicity

transfers, as well as mode-to-mode transfers of EA in 2D.

21.4 Miscellaneous Transfers in MHD

In this section we will describe mode-to-mode transfers of magnetic helicity, kinetic

helicity, and EA.

21.4.1 Mode-to-mode magnetic helicity transfers in MHD

For the derivation of mode-to-mode magnetic helicity transfers, we start with the

dissipationless version of the evolution equation for the magnetic helicity

[Eq. (20.55)]:
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d

dt
HM(k) = <

∑
p

u(q) · {B(p)×B∗(k)}. (21.31)

For the pair of triads (k′,p,q) and (−k′,−p,−q) with k′ = −k, we obtain

d

dt
HM(k′) = SHM (k′|p,q)

= <[u(q) · {B(p)×B∗(k)}+ u(p) · {B(q)×B∗(k)}], (21.32)

where SHM (k′|p,q) is the combined energy transfer to wavenumber k’ from

wavenumbers p and q. The above combined helicity transfer and related formulas

satisfy the following relation:

SHM (k′|p,q) + SHK (p|k′,q) + SHK (q|k′,p) = 0. (21.33)

Hence,

HM(k′) +HM(p) +HM(q) = const. (21.34)

Or, the total magnetic helicity is conserved in a triadic interaction, which is a

statement of the detailed conservation of magnetic helicity in a triad.

Now we proceed to solve for the mode-to-mode magnetic helicity transfers from

wavenumber Y to wavenumber X with the mediation of wavenumber Z. Following

arguments as in the previous section, we claim that SHK (X|Y|Z) satisfies the

following equations:

SHM (X|Y|Z) + SHM (X|Z|Y) = SHM (X|Y,Z), (21.35a)

SHM (X|Y|Z) = −SHM (Y|X|Z). (21.35b)

Clearly,

SHM (X|Y|Z) = <[u(Z) · {B(Y)×B(X)}] (21.36)

is a solution to the above set of equations. However this solution is not unique

because the determinant of the solution matrix is zero. Hence, we employ more

constraints using tensor analysis. Using the structure of Eq. (21.32), we infer that

SHM (k′|p|q) is a function of u(k′), u(p), u(q), B(k′), B(p), and B(q) with the

following conditions (in addition to Eqs. (21.35a, 21.35b)):

1. SHM (k′|p|q) is real.

2. SHM (k′|p|q) has two B’s and one u with distinct wavenumbers k′,p,q as

arguments.
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3. SHM (k′|p|q) must have B(k′) in the expression.

4. SHM (k′|p|q) = SHM (−k′| − p| − q).

Using these conditions and the structure of Eqs. (21.35a, 21.35b), we deduce that

SHM (k′|p|q) = c1<[u(q) · {B(p)×B(k′)}] + c2<[u(p) · {B(q)×B(k′)}]. (21.37)

We do not take the imaginary part due to condition 4. Substitution of Eq. (21.37)

in Eqs. (21.35a, 21.35b) yields

c1 = 1; c2 = 0. (21.38)

Hence,

SHM (k′|p|q) = <[u(q) · {B(p)×B(k′)}] (21.39)

is the mode-to-mode kinetic helicity transfer from wavenumber p to wavenumber k′

with the mediation of wavenumber q.

21.4.2 Mode-to-mode kinetic helicity transfers in MHD

For the kinetic helicity, we start with Eq. (20.52) with ν = 0:

d

dt
HK(k) =

∑
p

<[u(q) · {ω(p)× ω∗(k)}+ J(q) · {B(p)× ω∗(k)}]. (21.40)

Compared with the hydrodynamic counterpart, this equation for MHD gets an

addition term <[J(q) · {B(p) × ω∗(k)}]. In Chapter 8 we showed that the term

<[u(q) · {ω(p) × ω∗(k)}] conserves total kinetic energy in a triad, and the

mode-to-mode kinetic helicity with this term is (see Eq. (8.10))

SHK (k′|p|q) = <[u(q) · {ω(p)× ω(k′)}]. (21.41)

The term <[J(q)·{B(p)×ω∗(k)}] feeds a net kinetic helicity to the triad, and hence

breaks the conservation of triadic kinetic helicity. With the inclusion of this term,

the mode-to-mode kinetic helicity transfer from wavenumber p to wavenumber k′

with the mediation of wavenumber q is

SHK (k′|p|q) = <[u(q) · {ω(p)× ω(k′)}+ J(q) · {B(p)× ω(k′)}]. (21.42)
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21.4.3 Mode-to-mode transfers of EA in 2D

To derive mode-to-mode energy transfer for the mean square vector potential EA
in 2D, we start with the dynamical equation for the vector potential in 2D. From

Eq. (20.17), which is

∂A

∂t
+ (u · ∇)A = η∇2A, (21.43)

we deduce that A acts as a passive scalar. Therefore, following the derivation of

Section 13.2, we deduce that the mode-to-mode transfer from A(p) to A(k′) with

the mediation of u(q) is

SAA(k′|p|q) = −= [{k′ · u(q)}{A(p)A(k′)}] . (21.44)

We will use this relation while discussing the anti-dynamo theorem in 2D MHD

turbulence.

In Table 21.2, we summarize all the mode-to-mode energy transfers described

here:

Table 21.2 Summary of various mode-to-mode energy transfers in MHD
turbulence. Here the wavenumbers of the receiver, giver, and
mediator modes are k′,p,q respectively.

ET Receiver Giver Mediator Formula

U2U u(k′) u(p) u(q) −=
[
{k′ · u(q)}{u(p) · u(k′)}

]
B2B B(k′) B(p) u(q) −=

[
{k′ · u(q)}{B(p) ·B(k′)}

]
B2U u(k′) B(p) B(q) =

[
{k′ ·B(q)}{B(p) · u(k′)}

]
U2B B(k′) u(p) B(q) =

[
{k′ ·B(q)}{u(p) ·B(k′)}

]
z+ to z+ z+(k′) z+(p) z−(q) −=

[
{k′ · z−(q)}{z+(p) · z+(k′)}

]
z− to z− z−(k′) z−(p) z+(q) −=

[
{k′ · z+(q)}{z−(p) · z−(k′)}

]
A2A A(k′) A(p) u(q) −=

[
{k′ · u(q)}{A(p)A(k′)}

]
HM k′ p q <[u(q) · {B(p)×B(k′)}]

Example 21.1: In a periodic box [2π, 2π], consider the following velocity and

magnetic fields in MHD:

u = x̂2Du cos y + ŷ2Cu cosx+ (x̂− ŷ)2Au sin(x+ y).

b = x̂2Dw cos y + ŷ2Cw cosx+ (x̂− ŷ)2Aw sin(x+ y)

Compute various energy transfers of MHD turbulence.

Solution: The mode amplitudes (in Craya–Herring basis) for these velocity and

magnetic fields are listed in Table 18.2 (with w replaced by b). Note that u2 = b2 = 0

for these fields.
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The U2U and B2B energy transfers have been computed in Examples 4.5 and

18.2 respectively, and they are

Suu(k′|p|q) = −AuDuCu

Suu(p|q|k′) = 0,

Suu(q|k′|p) = AuDuCu

Sbb(k′|p|q) = −CuAbDb

Sbb(p|q|k′) = 0,

Sbb(q|k′|p) = DuAbCb.

Using Eqs. (21.96, 21.97, 21.98, 21.99), we obtain

Sub(k′|p|q) = AuDbCb

Sub(p|q|k′) = 0,

Sub(q|k′|p) = AbDbCu

Sbu(k′|p|q) = AbCbDu

Sbu(p|q|k′) = 0,

Sbu(q|k′|p) = AuDbCb.

We can determine other transfers using variants of these formulas.

Note that the energy transfer functions satisfy:∑
X,Y

Suu(X|Y|Z) =
∑
X,Y

Sbb(X|Y|Z) = 0,

∑
X,Y

Sub(X|Y|Z) +
∑
X,Y

Sbu(X|Y|Z) = 0.

21.5 Transfers for Many Triads and Fluxes

In the presence of a large number of triads, the evolution equations for the modal

kinetic and magnetic energies are

d

dt
Eu(k) =

∑
p

Suu(k|p|q) +
∑
p

Sub(k|p|q)− 2νk2Eu(k)

= Tuu(k) + Tub(k)−Du(k), (21.45a)
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d

dt
Eb(k) =

∑
p

Sbb(k|p|q) +
∑
p

Sbu(k|p|q)− 2ηk2Eb(k)

= Tbb(k) + Tbu(k)−Db(k). (21.45b)

Here Tuu(k), Tub(k), Tbu(k), and Tbb(k) are transfer functions, and Du(k), Db(k)

are respectively the kinetic and magnetic energy dissipation rates. Using the laws of

detailed energy conservation of Section 21.1, we can show that for any wavenumber

region R, ∑
k∈R

∑
p∈R

Suu(k|p|q) = 0, (21.46a)

∑
k∈R

∑
p∈R

Sbb(k|p|q) = 0, (21.46b)

∑
k∈R

∑
p∈R

[Sub(k|p|q) + Sbu(k|p|q)] = 0. (21.46c)

However,∑
k∈R

∑
p∈R

Sbu(k|p|q) 6= 0, (21.47a)

∑
k∈R

∑
p∈R

Sub(k|p|q) 6= 0. (21.47b)

Hence, the magnetic modes in R can gain or lose energy. When R represents the

complete Fourier space, Eqs. (21.45) yield

d

dt
(Eu + Eb) = εu + εb, (21.48)

where εu, εb represent the kinetic and magnetic energy dissipation rates

respectively, and they arise due to viscous dissipation and Joule heating

respectively. This equation implies that the total energy decays in the absence of

an external force.

Now we can define various energy fluxes of MHD for a wavenumber sphere of

radius k0. These fluxes are as follows:

1. Πu<
u>(k0): Energy transfers from all the velocity modes inside the sphere to all

the velocity modes outside the sphere:

Πu<
u>(k0) =

∑
|p|≤k0

∑
|k′|>k0

Suu(k′|p|q). (21.49)
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2. Πu<
b> (k0): Energy transfers from all the velocity modes inside the sphere to all

the magnetic modes outside the sphere:

Πu<
b> (k0) =

∑
|p|≤k0

∑
|k′|>k0

Sbu(k′|p|q). (21.50)

3. Πb<
b>(k0): Energy transfers from all the magnetic modes inside the sphere to all

the magnetic modes outside the sphere:

Πb<
b>(k0) =

∑
|p|≤k0

∑
|k′|>k0

Sbb(k′|p|q). (21.51)

4. Πb<
u>(k0): Energy transfers from all the magnetic modes inside the sphere to

all the velocity modes outside the sphere:

Πb<
u>(k0) =

∑
|p|≤k0

∑
|k′|>k0

Sub(k′|p|q). (21.52)

5. Πu<
b< (k0): Energy transfers from all the velocity modes inside the sphere to all

the magnetic modes inside the sphere:

Πu<
b< (k0) =

∑
|p|≤k0

∑
|k′|≤k0

Sub(k′|p|q). (21.53)

6. Πu>
b> (k0): Energy transfers from all the velocity modes outside the sphere to

all the magnetic modes outside the sphere:

Πu>
b> (k0) =

∑
|p|>k0

∑
|k′|>k0

Sbu(k′|p|q). (21.54)

In the above notation, the superscript represents the giver modes, and subscript

represents the receiver modes. Also, < and > represent the modes residing inside

and outside the sphere respectively. These fluxes are illustrated in Fig. 21.4. Note

that the flux Πu<
b< (k0) involves velocity and magnetic modes inside the sphere, while

Πu>
b> (k0) involves modes outside the sphere. From the above reasoning we can deduce

that the flux of the total energy, which is the total energy leaving the sphere of radius

k0, is

Πtot(k0) = Πu<
u> + Πu<

b> + Πb<
b> + Πb<

u>. (21.55)
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Figure 21.4 Various energy fluxes of MHD turbulence. εu, εb are the dissipation
rates of the velocity and magnetic fields respectively.

In addition to conservation laws of Eq. (21.46), we also have conservation laws

of Ez± and HM for any wavenumber region R:∑
k∈R

∑
p∈R

Sz
+

(k|p|q) = 0, (21.56a)

∑
k∈R

∑
p∈R

Sz
−

(k|p|q) = 0, (21.56b)

∑
k∈R

∑
p∈R

SHM (k|p|q) = 0. (21.56c)

In 2D MHD, EA is conserved in place of HM :∑
k∈R

∑
p∈R

SAA(k|p|q) = 0. (21.57)

In the following we define the fluxes for the aforementioned quantities, as well as for

kinetic helicity:

1. Πz+(k0): Energy transfers from z+ modes inside the sphere to z+ modes outside

the sphere:

Πz+(k0) =
∑
|p|≤k0

∑
|k′|>k0

Sz
+z+(k′|p|q). (21.58)
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2. Πz−(k0): Energy transfers from z− modes inside the sphere to z− modes outside

the sphere:

Πz−(k0) =
∑
|p|≤k0

∑
|k′|>k0

Sz
−z−(k′|p|q). (21.59)

3. ΠHM (k0): Magnetic helicity transfers from the modes inside the sphere to the

modes outside the sphere:

ΠHM (k0) =
∑
|p|≤k0

∑
|k′|>k0

SHM (k′|p|q). (21.60)

4. ΠHK (k0): Net kinetic helicity transfers from inside the sphere to the modes

outside the sphere:

ΠHK (k0) =
∑
|p|≤k0

∑
|k′|>k0

SHK (k′|p|q). (21.61)

5. ΠA(k0): Net EA transfer from inside the sphere to the modes outside the

sphere:

ΠA(k0) =
∑
|p|≤k0

∑
|k′|>k0

SAA(k′|p|q). (21.62)

In Fig. 21.5, we illustrate the energy flux Πz± .
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z
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P ( )kz 0–

ez–
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Figure 21.5 Energy fluxes Π+ and Π− in MHD turbulence. εz+ , εz− are the
dissipation rates of z+ and z− fields respectively.
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Note that

Πtot =
1

2
[Πz+ + Πz− ], (21.63a)

ΠHc =
1

4
[Πz+ −Πz− ]. (21.63b)

We can also derive the above fluxes using transfer functions, which are defined in

Eqs. (21.45). Equation (4.41) shows that∑
|k|>k0

Tuu(k) = Πu<
u>(k0). (21.64)

Similar derivation can be used to derive∑
|k|>k0

Tbb(k) = Πb<
b>(k0). (21.65)

∑
|k|>k0

Tub(k) =
∑
|k′|>k0

∑
p

Sub(k′|p|q)

=
∑
|k′|>k0

∑
|p|<k0

Sub(k′|p|q) +
∑
|k′|>k0

∑
|p|>k0

Sub(k′|p|q)

= Πb<
u>(k0) + Πb>

u>(k0), (21.66)

and ∑
|k|>k0

Tbu(k) =
∑
|k′|>k0

∑
p

Sbu(k′|p|q)

=
∑
|k′|>k0

∑
|p|<k0

Sbu(k′|p|q) +
∑
|k′|>k0

∑
|p|>k0

Sbu(k′|p|q)

= Πu<
b> (k0) + Πu>

b> (k0). (21.67)

Adding Eqs. (21.64-21.67) yields∑
|k|>k0

[Tuu(k) + Tbb(k) + Tbu(k) + Tub(k)] = Πtot(k0). (21.68)

Here we employed Πu>
b> (k0) + Πb>

u>(k0) = 0.

In the next section, we relate these transfer functions to variable energy fluxes.

21.6 Variable Energy Fluxes and Conserved Fluxes of MHD
Turbulence

In MHD, the velocity field experiences Lorentz force, while the magnetic field is

advected and stretched by the velocity field. In the following discussion we show

how these forces affect the kinetic and magnetic energy fluxes.
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21.6.1 Kinetic and magnetic energy fluxes

In the beginning of Section 21.5, we showed that the total energy decays due to

viscous and Joule dissipation. Hence, to obtain a steady state, we need to employ

an external force. Typically, it is assumed that the large-scale force Fext acts on the

velocity field. This force feeds kinetic energy at the rate of

Fext(k) = <[Fext(k) · u∗(k)]. (21.69)

Note that Fext(k) = 0 in the inertial and dissipation range.

With Fext, the modified equation of the kinetic and magnetic energies are

d

dt
Eu(k) = Tuu(k) + Fu(k) + Fext(k)−Du(k), (21.70a)

d

dt
Eb(k) = Tbb(k) + FB(k)−Db(k), (21.70b)

where Fu is the Lorentz force, while

FB(k) = i
∑
p

{k ·B(q)}{u(p) ·B∗(k)}. (21.71)

Note that Fu(k) = Tub(k), FB(k) = Tbu(k). Now, using Eqs. (21.64, 21.65) we

deduce that under a steady state,

Tuu(k, t) = − d

dk
Πu<
u>(k, t), (21.72a)

Tbb(k, t) = − d

dk
Πb<
b>(k, t). (21.72b)

An addition of Eq. (21.70a) and Eq. (21.70b) and subsequent summation over

all wavenumbers yield (under a steady state)∑
k

Fext(k) =
∑
k

[Du(k) +Db(k)] = εu + εb = εtot. (21.73)

This equation implies that the kinetic energy feed by the external force balances the

total dissipation rate εtot.

To derive the variations of the energy fluxes with k, we start with Eqs. (21.70a,

21.70b), and use the arguments of Section 4.4. We perform two sums of the Fourier

modes: first sum over sphere of radus k, and the second sum over the sphere of

radius k + dk. The differences of the two sums for Eu and Eb yield the following

equations:

∂

∂t
Eu(k, t) = − ∂

∂k
Πu<
u>(k) + Fu(k, t) + Fext(k, t)−Du(k, t), (21.74a)
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∂

∂t
Eb(k, t) = − ∂

∂k
Πb<
b>(k) + FB(k, t)−Db(k, t). (21.74b)

Under a steady state (∂Eu(k, t)/∂t = 0; ∂Eb(k, t)/∂t = 0), Eq. (21.74) gets

converted to

d

dk
Πu<
u>(k) = Fu(k) + Fext(k)−Du(k), (21.75a)

d

dk
Πb<
b>(k) = FB(k)−Db(k). (21.75b)

In the inertial range, where Fext = 0 and the dissipation rates are weak, these

equations yield

d

dk
Πu<
u>(k) = Fu(k), (21.76a)

d

dk
Πb<
b>(k) = FB(k). (21.76b)

A physical interpretation of the aforementioned equations is as follows. The forces

Fu(k) and FB(k) are present in the inertial range; hence, they can induce variations

in the fluxes Πu<
u>(k) and Πb<

b>(k) with k. This is in a similar spirit as in Sections 4.5

and 18.3.

Using Eqs. (21.66, 21.67) we deduce that

Fu(k) = Tub(k) = − d

dk
[Πb<

u>(k) + Πb>
u>(k)], (21.77a)

FB(k) = Tbu(k) = − d

dk
[Πu<

b> (k) + Πu>
b> (k)], (21.77b)

substitution of which in Eqs. (21.76) yields

Πall
u>(k) = Πu<

u>(k) + Πb<
u>(k) + Πb>

u>(k) = Cu, (21.78a)

Πall
b>(k) = Πb<

b>(k) + Πu<
b> (k) + Πu>

b> (k) = Cb, (21.78b)

where Cu and Cb are constants.

We choose a wavenumber k0 such that k0 > kf , but it is in the beginning of the

inertial range. Integration of Eqs. (21.75) from k0 to ∞ yields

Cu = Πall
u>(k0) =

∫ ∞
k0

Du(k) ≈
∫ ∞

0

Du(k) = εu, (21.79a)

Cb = Πall
b>(k0) =

∫ ∞
k0

Db(k) ≈
∫ ∞

0

Db(k) = εb. (21.79b)

Physically, the net energy flux convergent on the velocity channel are dissipated

by viscous force, while the total energy flux in the magnetic channel is dissipated
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by the Joule heating. Also, note that the magnetic energy in each shell reaches a

steady state though it is not forced. This is due to the steady energy supply to the

magnetic field from the velocity field. The total energy transferred from the velocity

field to the magnetic field is dissipated by Joule heating. Hence,

Πu<
b< (k) + Πu<

b> (k) + Πu>
b< (k) + Πu>

b> (k) = εb. (21.80)

An addition of Eqs. (21.78a, 21.78b) yields the conservation of total energy flux in

the inertial range:

Πtot(k0) = Πu<
u> + Πu<

b> + Πb<
b> + Πb<

u> = Cu + Cb = εtot. (21.81)

For the derivation of this equation, we employed Πb>
u> + Πu>

b> = 0. Also, a steady

state condition for the magnetic and velocity wavenumber spheres of radius k yields

Πu<
b< (k) + Πu>

b< (k) = Πb<
b>(k), (21.82a)

Πu<
u>(k) + Πu<

b< (k) + Πu<
b> (k) =

∑
k

Fext(k) = εtot. (21.82b)

In summary, Eqs. (21.78, 21.80, 21.81, 21.82) are the identities for the energy fluxes

of MHD turbulence. Note that these identities are not independent, and they can

be combined to construct new identities.

21.6.2 Fluxes for Elsäser fields and magnetic helicity

For the Elsäser variables,

d

dt
Ez±(k) = Tz±z±(k) + Fext(k)−D±(k)− 2ν−k

2ER(k), (21.83)

where

Tz±z±(k) =
∑
p

Sz
±z±(k|p|q), (21.84a)

Dz±(k) = 2ν±k
2Ez±(k), (21.84b)

ER(k) = Eu(k)− Eb(k). (21.84c)

Using the definition of energy fluxes Πz± , we obtain∑
|k|>k0

Tz±z±(k) =
∑
|k|>k0

∑
p

Sz
±z±(k|p|q) = Πz±(k0). (21.85)
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Now following similar steps as in the previous subsection, we obtain the following

equations for the energy fluxes Πz±(k):

∂

∂t
Ez+(k, t) = − ∂

∂k
Πz+(k, t) + Fext(k)−Dz+(k, t)− 2ν−k

2ER(k), (21.86a)

∂

∂t
Ez−(k, t) = − ∂

∂k
Πz−(k, t) + Fext(k)−Dz−(k, t)− 2ν−k

2ER(k). (21.86b)

Under a steady state, in the inertial range where Fext(k) = 0 and the dissipation

terms are negligible, we obtain

d

dk
Πz±(k) = 0. (21.87)

That is, the fluxes Πz+(k) and Πz−(k) are constants in the inertial range. This is

unlike Πu<
u> and Πb<

b> that vary with k. Therefore, it is recommended that the fluxes

Πz+(k) and Πz−(k) be measured in numerical simulations and in experiments.

Similarly, we can derive that

∂

∂t
HM(k, t) = − ∂

∂k
ΠHM (k, t)−DHM (k, t), (21.88)

where

DHM (k) = 2νk2HM(k). (21.89)

Under a steady state,

d

dk
ΠHM (k) = −DHM (k). (21.90)

Further, in the inertial range where DHM (k) is negligible, we have constancy of

magnetic helicity flux, that is,

ΠHM (k) = const. (21.91)

21.7 Shell-to-shell Transfers in MHD

For MHD turbulence, we define the following shell-to-shell transfer from shell m to

shell n:

T u,mu,n =
∑
p∈m

∑
k∈n

Suu(k|p|q), (21.92a)
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T b,mb,n =
∑
p∈m

∑
k∈n

Sbb(k|p|q), (21.92b)

T b,mu,n =
∑
p∈m

∑
k∈n

Sub(k|p|q), (21.92c)

T u,mb,n =
∑
p∈m

∑
k∈n

Sbu(k|p|q). (21.92d)

These transfers represent U2U , B2B, B2U , and U2B transfers, and are depicted in

Fig. 21.6. They provide valuable insights into the physics of turbulence, as well as

into dynamo mechanism.

u field

b field

m n

m n

T
u m,
u n,

T
u m,
b n,

T
b m,
u n,

T
b m,
b n,

Figure 21.6 Illustration of U2U , B2B, U2B, and B2U shell-to-shell transfers
in MHD turbulence.

In addition to the aforementioned shell-to-shell transfers, we define shell-to-shell

energy transfers for z+ and z− fields as follows:

T z
+,m

z+,n =
∑
p∈m

∑
k∈n

Sz
+z+(k|p|q), (21.93a)

T z
−,m

z−,n =
∑
p∈m

∑
k∈n

Sz
−z−(k|p|q). (21.93b)

These transfers are exhibited in Fig. 21.7. Note that there is no cross transfer from

z+ to z−. On similar lines, we also define shell-to-shell kinetic and magnetic helicity

transfers, as well as shell-to-shell EA transfers, which are

THM ,mHM ,n
=

∑
p∈m

∑
k∈n

SHM (k|p|q), (21.94a)

THK ,mHK ,n
=

∑
p∈m

∑
k∈n

SHK (k|p|q), (21.94b)

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316810019.022
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 04 Jul 2019 at 22:26:42, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316810019.022
https://www.cambridge.org/core


Energy Transfers in MHD 353

TA,mA,n =
∑
p∈m

∑
k∈n

SAA(k|p|q). (21.94c)

z field

m n

m n

T
z   m,

+

z field–

+

z   n,+

T
z   m,–

z   n,–

Figure 21.7 Illustration of z+2z+ and z−2z− shell-to-shell transfers in MHD
turbulence.

Note that from energetics considerations, the shell-to-shell transfer from field X

of shell m to field Y of shell n is equal and opposite to the shell-to-shell transfer

from field Y of shell n to field X of shell m. That is,

TX,mY,n = −T Y,nX,m. (21.95)

In the next section, we describe the mode-to-mode energy and helicity transfers in

Craya–Herring basis.

21.8 Energy Transfers in Craya–Herring Basis

Following the same procedure as Chapters 9 and 18, we compute the mode-to-mode

energy transfers in Craya–Herring basis. The B2B energy transfer is same as the

w(p) to w(k′) energy transfer discussed in Chapter 18. Since the U2U and B2B

transfers have already been discussed in Chapters 4 and 18, we will not repeat them

here. In the following, we describe the mode-to-mode energy transfer from b(p) to

u(k′), and vice versa.

The mode-to-mode energy transfer from b(p) to u(k′) with the mediation of

b(q) is

Sub(k′|p|q) = Su1b1(k′|p|q) + Su2b2(k′|p|q), (21.96)

where

Su1b1(k′|p|q) = −k′ sinβ cos γ={b1(q)b1(p)u1(k′)}, (21.97a)

Su2b2(k′|p|q) = k′ sinβ={b1(q)b2(p)u2(k′)}. (21.97b)
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In these equations, Su1b1(k′|p|q) represents energy transfer from b1(p) to u1(k′) with

the mediation of b(q). Similarly, Su2b2(k′|p|q) represents the transfer from b2(p) to

u2(k′) with the mediation of b(q). Similarly, we can define the energy transfer from

u(p) to b(k′) with the mediation of b(q) as

Sbu(k′|p|q) = Sb1u1(k′|p|q) + Sb2u2(k′|p|q), (21.98)

where

Sb1u1(k′|p|q) = −k′ sinβ cos γ={b1(q)u1(p)b1(k′)}, (21.99a)

Sb2u2(k′|p|q) = k′ sinβ={b1(q)u2(p)b2(k′)}. (21.99b)

Here, Sb1u1 , Sb2u2 represent respective energy transfers from u1 to b1, and u2 to b2.

Using these mode-to-mode energy transfers, we can define energy fluxes among

u1, b1, u2, and b2 fields. These fluxes are

Πb1<
u1>

(k0) =
∑
|p|≤k0

∑
|k|>k0

Su1b1(k|p|q), (21.100a)

Πb2<
u2>

(k0) =
∑
|p|≤k0

∑
|k|>k0

Su2b2(k|p|q), (21.100b)

Πu1<
b1>

(k0) =
∑
|p|≤k0

∑
|k|>k0

Sb1u1(k|p|q), (21.100c)

Πu2<
b2>

(k0) =
∑
|p|≤k0

∑
|k|>k0

Sb2u2(k|p|q). (21.100d)

The mode-to-mode magnetic helicity transfer in Craya–Herring basis is

SHM (k′|p|q) = < [u(q) · b(p)× b(k′)}]

= − sin γ={b1(k′)b1(p)u2(q)} − sinβ={b1(k′)b2(p)u1(q)}

− sinα={b2(k′)b1(p)u1(q)}}. (21.101)

The formulas for the enstrophy and kinetic helicity transfers can be derived in a

similar fashion.

In the next section we describe energy transfers in helical basis.

21.9 Energy Transfers in Helical Basis

The energy transfers among the helical velocity modes have been discussed in

Section 9.8; and those among the vector modes, here B field, have been covered in
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Section 18.5. In this section, we will derive formulas for the energy transfers

between the helical velocity and magnetic modes.

In helical basis, the mode-to-mode energy transfer from b(p) to u(k′) with the

mediation of b(q) is given by

Sub(k′|p|q) = = [{k′ · b(q)}{b(p) · u(k′)}]

=
∑
sp,sk′

=
[
{k′ · b(q)}bsp(p)usk′ (k

′){êsp(p) · êsk′ (k
′)}
]

=
∑
sp,sk′

Subsk′sp(k
′|p|q), (21.102)

where Subsk′sp(k
′|p|q) represents the energy transfer from mode bsp(p) to mode

usk′ (k
′) with the mediation of mode b(q). Note that Subsk′sp(k

′|p|q) can be

simplified further into [see Eq. (9.80)]

Subsk′sp(k
′|p|q) =

k′

2
sinβ(1 + spsk′ cos γ)={b1(q)bsp(p)usk′ (k

′)}.

(21.103)

Similarly,

Sbu(k′|p|q) = = [{k′ · b(q)}{u(p) · b(k′)}]

=
∑
sp,sk′

Sbusk′sp(k
′|p|q) (21.104)

with

Sbusk′sp(k
′|p|q) =

k′

2
sinβ(1 + spsk′ cos γ)={b1(q)usp(p)bsk′ (k

′)}

(21.105)

representing the energy transfer from mode usp(p) to mode bsk′ (k
′) with the

mediation of mode b(q).

The mode-to-mode magnetic helicity transfer is

SHM (k′|p|q) = < [u(q) · b(p)× b(k′)}]

=
∑
sp,sk′

<[{u(q) · êsp(p)× êsp(k′)}bsp(p)bsk′ (k
′)]

=
∑
sp,sk′

SHMsk′sp(k
′|p,q). (21.106)

Using

ê1(q) · êsp(p)× êsk′ (k
′) =

i

2
[sk′ sinβ + sp sinα], (21.107a)
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ê2(q) · êsp(p)× êsk′ (k
′) =

1

2
sk′sp sin γ, (21.107b)

we derive that

SHMsk′sp(k
′|p,q) = −1

2
[sk′ sinβ + sp sinα]={u1(q)bsp(p)bsk′ (k

′)}

+
1

2
sin γ<{u2(q)bsp(p)bsk′ (k

′)}. (21.108)

The formulas for the mode-to-mode kinetic helicity and enstrophy transfers can be

computed following the procedure outlined in Section 9.8.

Using these energy transfers we can define associated energy fluxes as

Π
bsg<
usr>

(k0) =
∑
|p|≤k0

∑
|k|>k0

Subsrsg(k
′|p|q), (21.109a)

Π
usg<

bsr>
(k0) =

∑
|p|≤k0

∑
|k|>k0

Sbusrsg(k
′|p|q), (21.109b)

Π
HMsg
HMsr

(k0) =
∑
|p|≤k0

∑
|k|>k0

SHMsrsg(k
′|p|q), (21.109c)

where sg and sr are the signs of the giver and receiver modes respectively. The

corresponding shell-to-shell energy transfers are as follows.

T
bsg ,m
usr ,n =

∑
p∈m

∑
k∈n

Sbusrsg(k
′|p|q). (21.110)

T
usg ,m

bsr ,n
=

∑
p∈m

∑
k∈n

Subsrsg(k
′|p|q). (21.111)

In the next four chapters, we will employ the formulation developed in the

previous and present chapters to discuss MHD turbulence phenomenologies,

dynamo mechanism, etc.

Further Reading

The present chapter presents the most detailed descriptions of energy transfers in

MHD turbulence. Historically, Dar et al. (2001) were the first to formulate the

mode-to-mode energy transfer for MHD turbulence. Verma (2004) provided more

details on this formalism. Alexakis et al. (2007) too discussed shell-to-shell energy

transfers in MHD turbulence.
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Exercises

1. Show that in MHD turbulence, the kinetic energy feed by the Lorentz force equals Tub.

2. Derive formulas for the cross helicity and enstrophy fluxes in MHD turbulence.
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Chapter 22

Models of MHD Turbulence

In the present chapter we present some of the important models of

Magnetohydrodynamic (MHD) turbulence. In addition, we also present several

solar wind observations and numerical results that provide validation for these

models.

22.1 Models of MHD Turbulence

In this section, we briefly describe a number of MHD turbulence phenomenologies.

These theories make the following assumptions:

1. As in Kolmogorov’s theory for hydrodynamic turbulence, it is assumed that

the velocity field is forced by an external force Fext that acts at large scales.

Note that this force is in addition to the Lorentz force.

2. Most MHD models assume that the flow is three dimensional.

3. For MHD turbulence, both Re and ReM are large. Hence, both, the velocity

and magnetic fields exhibit forward cascade.

Now, we start our discussion on the models.

22.1.1 Kraichnan and Iroshnikov’s model—E(k) ∝ k−3/2

Kraichnan (1965) and Iroshnikov (1964) constructed the first phenomenological

model of MHD turbulence. They considered a magnetofluid in an external field
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B0. Here, z+ and z− modes travel in opposite directions with a phase velocity of

B0. Therefore, for z± � B0, the oppositely traveling waves of wavenumber k

interact weakly during a short interval of Alfvén time τA(k) = (B0k)−1. Using

dimensional arguments, they concluded that the total energy flux

Π = A2τA(k) (Eb(k))
2
k4 = A2B−1

0 (Eb(k))
2
k3. (22.1)

Hence,

Eb(k) = A (ΠB0)
1/2

k−3/2, (22.2)

where A is a nondimensional constant of order unity. Note that above arguments

assume z± � B0. In the absence of a mean magnetic field, Kraichnan (1965) and

Iroshnikov (1964) assumed that the magnetic field of the large eddies would act as

B0.

The aforementioned phenomenology belongs to a broad category of weak

turbulence models because z± � B0. Due to weak interactions, Kraichnan and

Iroshnikov argued that the kinetic and magnetic energies are equipartitioned. Note

that for an Alfvén wave, the average kinetic and magnetic energy are equal. See

Section 20.4.

Dobrowolny et al. (1980) generalized this model in the following manner.

22.1.2 Dobrowonly et al.’s model

Dobrowolny et al. (1980) assumed local interactions among the Fourier modes. That

is, the wavelengths of the interacting modes z+ and z− are approximately equal. We

denote the interaction time scales for the fluctuations z±k as τ±k . In a unit interaction,

the variations in these fluctuations are

δz±k ≈ τ±k z+
k z
−
k k. (22.3)

Assuming the interactions to be stochastic, in N such interactions, the amplitude

variations would be

∆z±k ≈ (δz±k )
√
N±k . (22.4)

Therefore, numbers of interactions N±k required to obtain variations equal to the

initial amplitude z±k are

N±k ≈
1

k2
(
z∓k
)2 (

τ±k
)2 , (22.5)
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and the corresponding times scales are

T±k ≈ N±k τ±k ≈
1

k2
(
z∓k
)2
τ±k
. (22.6)

Therefore, the fluxes Πz± of the fluctuations z±k would be

Πz± ≈
(
z∓k
)2

T±k
≈ τ±k

(
z±k
)2 (

z∓k
)2
k2. (22.7)

In this expression, when we substitute

τ±k ≈
1

kB0

, (22.8)

as prescribed by Kraichnan (1965) and Iroshnikov (1964), we obtain

Πz+ ≈ Πz− ≈
1

B0

Ez+(k)Ez−(k)k3 = Π. (22.9)

For Ez+(k) ≈ Ez−(k), we obtain

Ez+(k) ≈ Ez−(k) ≈ (B0Π)
1/2

k−3/2, (22.10)

which is the energy spectrum proposed by Kraichnan (1965) and Iroshnikov (1964).

The other choice of the time scale is the nonlinear time scales:

τ±k ≈ τ±NL ≈
1

kz∓k
. (22.11)

Substitution of these time scales in Eqs. (22.7) yields

Πz± ≈
(
z±k
)2 (

z∓k
)
k

≈ Ez±(k)
√
Ez∓(k)k5/2 (22.12)

that in turn leads to

Ez±(k) = K±(Πz±)4/3(Πz∓)−2/3k−5/3, (22.13)

where K± are constants, referred to as Kolmogorov’s constants for MHD

turbulence (Marsch, 1991; Verma, 2003b, 2004). Due to its similarity with

Kolmogorov’s fluid turbulence phenomenology, we refer to this phenomenology as
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Kolmogorov-like MHD turbulence phenomenology. Equation (22.13) also yields

Ez+(k)

Ez−(k)
=
K+

K−

(
Πz+

Πz−

)2

. (22.14)

Marsch (1991) derived Eq. (22.12) by matching the nonlinear term of ∂Ez±/∂t with

εz± , which is

kz∓k
(
z±k
)2 ∼ εz± . (22.15)

This process too yields Eqs. (22.13).

22.1.3 Model based on energy fluxes

In this subsection, we construct MHD turbulence phenomenology based on energy

fluxes. The arguments are in similar lines as those in Secstion 14.2 and 19.2 [also

see (Marsch, 1991)].

In the inertial range, where Fext = 0 and the dissipative terms are weak,

Eqs. (21.86) yield constant fluxes for z± variables:

Πz+ = εz+ , (22.16a)

Πz− = εz− , (22.16b)

where εz± are the dissipation rates of z± fields. This constancy of the fluxes is valid

even in the presence of B0. Thus, following the arguments of Section 19.2, we expect

that the energy spectra Ez±(k) depend on B0, Πz+ , Πz− , and k. Since z± are in

units of velocity, the dimensions of these quantities are as follows:

[Πz± ] = [L2/T 3]; [Ez±(k)] = [L3/T 2], [B0] = [L/T ]; [k] = [L−1]. (22.17)

Since the dynamical equations for z± are symmetric, we argue that

Ez±(k) = (Πz±)
α

(Πz∓)
β
kγBδ

0 . (22.18)

There are four unknowns and two equations (one each for L and T ); hence, it is not

possible to determine the four unknowns without additional constraints. For the

special case when B0 effects are ignored (δ = 0), using the dynamical form of the

MHD equations [Eq. (22.12)], we obtain

α = 4/3; β = −2/3; γ = −5/3, (22.19)

which is the same as Eq. (22.13). This formulation requires further refinement.
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362 Energy Transfers in Fluid Flows

We remark that the fluxes Πz± are constant in the inertial range, but the energy

fluxes such as Πu<
u>, Πb<

u>, Πu<
b> , Πb<

b> are not constant.

22.1.4 Goldreich and Sridhar—E(k⊥) ∼ k−5/3
⊥

Goldreich and Sridhar (1995) constructed a model for strong MHD turbulence. They

argued that a critical balance is established between the Alfvén and nonlinear time

scales, that is,

k‖B0 ≈ k⊥z±k⊥ . (22.20)

An assumption of constant energy flux Π yields

Π =
(
z±k⊥
)3
k⊥ = const., (22.21)

or

z±k⊥ ∼ k
−1/3
⊥ . (22.22)

Hence,

E(k⊥) ≈
(
z±k⊥
)2

k⊥
∝ k−5/3

⊥ . (22.23)

The condition for critical balance [Eq. (22.20)] and Eq. (22.22) yields

k‖ ∝ k2/3
⊥ . (22.24)

Using the above, Goldreich and Sridhar (1995) deduced that

E(k⊥, k||) =
Π2/3k

−5/3
⊥

k⊥k‖
= Π2/3k

−10/3
⊥ g

(
k||/k

2/3
⊥

)
. (22.25)

From this, they further deduced that

E(k⊥) ∼
∫
E(k⊥, k||)dk|| ∼ k−8/3

⊥ , (22.26a)

E(k||) ∼
∫
E(k⊥, k||)k⊥dk⊥ ∼ k−2

|| . (22.26b)

The aforementioned phenomenologies of Kraichnan (1965), Iroshnikov (1964),

Dobrowolny et al. (1980), and Goldreich and Sridhar (1995) assume a forward

energy cascade in the presence of a mean magnetic field B0. Later in this chapter
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we describe how large B0 makes the flow quasi-two-dimensional with an inverse

cascade of energy. Thus, the ideas discussed in this section need closer examination

when the external magnetic field is strong.

22.1.5 Verma—Effective mean magnetic field and E(k) ∝ k−5/3

As described in the previous section, Kraichnan (1965) and Iroshnikov (1964)

assumed that the Alfvén waves propagate with Alfvén velocity, which is of the

order of B0. However, in a strong turbulent regime, magnetic fluctuations are

present at all scales. For the fluctuations of Fig. 22.1, we expect that the Alfvénic

fluctuation at scale λ1 would be affected by magnetic field fluctuations of all scales

(e.g., of scales λ2 and λ3), as well as by the mean magnetic field B0. Hence, we

need to compute the “effective mean magnetic field” that affects the Alfvénic

fluctuation at any scale.

B0

l1

l2

l3

Figure 22.1 A schematic diagram exhibiting magnetic fluctuations at various
scales in MHD turbulence. B0 is the mean magnetic field. A
fluctuation with wavelength λ1 is scattered by the combined effects
of all the fluctuations existing at various scales, not by B0 alone.

Using renormalization group calculations, Verma (1999, 2004) showed that the

Alfvén wave of wavenumber k is scattered primarily by the local fluctuations with

wavenumbers ak, where a < 1. This is in a similar spirit as the local interactions

of Kolmogorov’s theory in which the maximal energy transfer takes places among

neighboring wavenumber shells (see Section 5.2). For an Alfvén wave of wavenumber

k, Verma (1999, 2004) showed that the effective mean magnetic field for the nonlinear

interactions is

B0(k) ∝ Π1/3k−1/3. (22.27)
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Interestingly, when we substitute this B0(k) in the Kraichnan and Iroshnikov’s model

(Eq. (22.2)), we obtain Kolmogorov-like spectrum for MHD turbulence:

Eu(k) ≈ Eb(k) ≈ [ΠB0(k)]1/2k−3/2 ≈ Π2/3k−5/3 (22.28)

Thus, Verma shows consistency between Kraichnan and Iroshnikov’s model with

Kolmogorov-like scaling, which is observed in the solar wind and in numerical

simulations (to be discussed subsequently).

22.1.6 Galtier et al.—Weak turbulence and E(k⊥) ∝ k−2
⊥

Galtier et al. (2000) employed weak turbulence technique to MHD turbulence and

showed that

Π ∼ 1

k||B0

Ez+(k⊥)Ez−(k⊥)k4
⊥. (22.29)

In this expression, the Alfvén time scale (kB0)−1 used by Kraichnan and Iroshnikov

is replaced by (k||B0)−1. For Ez+(k⊥) ≈ Ez−(k⊥), Eq. (22.29) yields

E(k⊥, k‖) ∝ B1/2
0 k

1/2
‖ k−2

⊥ . (22.30)

22.1.7 Boldyrev et al.—Dynamic alignment yields k−3/2 spectrum

Boldyrev (2006) hypothesized that in MHD turbulence, the fluctuations in the

inertial range have certain alignment. Hence, the interaction time scale is

Tk ∼
1

kuk sin θk
∼ 1

kukθk
, (22.31)

where θk is a measure of the alignment between the velocity and magnetic

fluctuations at scale 1/k. Boldyrev (2006) postulates that θk ∼ k−1/4 that yields

the following energy flux:

Π ∼ u2
k

Tk
∼ ku3

kk
−1/4. (22.32)

Hence,

uk ∼ Π1/3k−1/4 (22.33)
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that yields the energy spectrum as

Eu(k) ∼ Eb(k) ∼ u2
k

k
∼ Π2/3k−3/2. (22.34)

Boldyrev and coworkers (Boldyrev, 2006) performed numerical simulations and

observed consistency between the numerical results and the aforementioned scaling

arguments. A word of caution however is in order. In these simulations, the

wavenumber range exhibiting θk ∼ k−1/4 and E(k) ∼ k−3/2 is quite narrow.

Beresnyak (2011) has contested this scaling.

In addition, Verma (2001a), Verma (2003b), Verma (2003a), and Verma (2004)

employed renormalization groups (RG) to MHD turbulence and showed that for

zero cross helicity, the following forms of renormalized magnetic diffusivity ν(k),

renormalized viscosity η(k), and energy spectra form a self-consistent solution of

the RG equations:

ν(k) =
√
Kuν∗Π

1/3
tot k

−4/3, (22.35a)

η(k) =
√
Kuη∗Π

1/3
tot k

−4/3, (22.35b)

E(k) = KΠ
2/3
tot k

−5/3, (22.35c)

where Ku,K, ν∗, η∗ are constants, and E(k) is the total energy spectrum. These

solutions are modified in the presence of cross helicity (Verma, 2003a). These results

reinforce Kolmogorov-like phenomenology for MHD turbulence.

The aforementioned MHD turbulence models clearly indicate varying predictions

on the energy spectra and fluxes. We will show below that solar wind observations

and numerical simulations support 5/3 exponent more strongly than 3/2 exponent.

Yet, in this field there are more questions than answers. Moreover, we need more

refined work to solve this problem conclusively.

In the next section we will take a detour to real space and extend Kolmogorov’s

four-fifth law for hydrodynamic turbulence to MHD turbulence.

22.2 Third Order Structure Function: Four-third Law

In this section we derive a relationship between third order structure function and

the dissipation rate of MHD turbulence under the assumption of homogeneity and

isotropy. The derivation, first performed by Politano and Pouquet (1998), is simpler

for z± fields because z± have constant energy fluxes in the inertial range. The method

is very similar to that for passive turbulence (see Section 14.5).

We assume the flow to be homogeneous and isotropic for which the second order
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correlation functions for z± fields are

Cz+(l) = 〈z+(r) · z+(r + l)〉 = 〈z+ · z+′〉,

Cz−(l) = 〈z−(r) · z−(r + l)〉 = 〈z− · z−
′
〉, (22.36)

where the unprimed and primed variables are measured at r and r + l respectively.

We can model Cz±(l) as

Cz±(l) = (z±)2fz±(l), (22.37)

where fz±(l) are convex functions in l with their maxima at l = 0, and fz±(0) = 1.

The third order correlation functions that appear in the dynamical equations are

Cz+,j(l) = 〈{z+ · z+′}z−j 〉, (22.38a)

Cz−,j(l) = 〈{z− · z−
′
}z+
j 〉. (22.38b)

Using the properties of isotropic tensors we deduce that Cz±,j should transform as

vectors that depend only on l. Hence,

Cz+,j(l) = Az+(l)nj, (22.39a)

Cz−,j(l) = Az−(l)nj, (22.39b)

where n = l/l is the unit vector along l.

The third order structure function for z+ field is defined as

Qz+,j(l) = 〈{(z+′ − z+) · (z+′ − z+)}(z−
′

j − z−j )〉, (22.40)

whose expansion is

Qz+,j(l) = −
��������
〈{z+′ · z+′}z−j 〉+

�������
〈{z+ · z+z−

′

j }〉

−2〈{z+′ · z+}z−
′

j 〉+ 2〈{z+′ · z+}z−j 〉. (22.41)

In these expressions, the cancelations are due to isotropy. In addition,

〈{z+′ · z+′}z−
′

j 〉 − 〈{z+ · z+}z−j 〉 = 0 (22.42)

due to homogeneity of the flow, and

〈{z+′ · z+}z−
′

j 〉 = Cz+,j(−l) = −Cz+,j(l). (22.43)

Therefore,

Qz+,j(l) = 4Az+(l)nj, (22.44)
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and

Sz
+

3 (l) = 〈{(z+′ − z+) ·(z+′ − z+)}{(z−
′
− z−) ·n}〉 = Qz+,1(l) = 4Az+(l). (22.45)

Hence,

Qz+ = 4Az+(l)n = S3(l)n. (22.46)

We will employ these tensors in the following dynamical equation and derive

relationships between the structure function and the energy dissipation rate.

The evolution equation for Cz+(l) is

∂

∂t

1

2
〈z+ · z+′〉 =

1

2
〈z+′ · ∂

∂t
z+〉+

1

2
〈z+ · ∂

∂t
z+′〉

=
1

2

[
−∂j〈{z+ · z+′}z−j 〉 − ∂′j〈{z+′ · z+}z−

′

j 〉

+〈z+′ · Fz+〉+ 〈z+ · F′z+〉+ ν〈z+′ · ∇2z+〉+ ν〈z+ · ∇′2z+′〉
]

=
1

2

[
∂′j〈{z+ · z+′}z−j 〉 − ∂′j〈{z+′ · z+}z−

′

j 〉
]

+2〈z+′ · Fz+〉+ 2ν∇′2〈z+ · ∇2z+′〉
]

=
1

4
∇l · 〈{(z+′ − z+) · (z+′ − z+)}(z−

′
− z−)〉

+〈z+′ · Fz+〉+ ν∇′2〈z+ · ∇2z+′〉

= Tz+(l) + Fz+(l)−Dz+(l), (22.47)

where Tz+(l) is the nonlinear energy transfer term, and Fz+(l) and Dz+(l) are

respectively the correlations associated with the energy feed by the external force

Fz+ and the dissipation rate of z+ (See Section 12.3).

To derive an expression for the third order structure function, we make similar

assumptions as in Section 12.3—steady state, ν → 0, and the forcing employed at

the large length scales. Under these assumptions, in the inertial range, Dz+(l)→ 0,

and hence,

Fz+(l) = εz+ = −Tz+(l), (22.48)
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or

εz+ = −1

4

1

l2
d

dl

[
l2Sz

+

3 (l)
]
. (22.49)

We perform an integration of this equation that yields

Sz
+

3 (l) = −4

3
εz+ l. (22.50)

This derivation could be easily extended to z− variable too using z+ ↔ z−. Hence,

Sz
±

3 (l) = −4

3
εz± l, (22.51)

which is the four-third law for MHD turbulence, first derived by Politano and

Pouquet (1998).

The dissipation term with ν− = 0 is

Dz±(l) = −ν∇′2〈z± · z±
′
〉 = −ν(z±)2∇2Cz±(l)

= −ν(z±)2 d

l2
d

dl

[
l2
d

dl
fz±

]
. (22.52)

A combination of the nonlinear and diffusion terms yields

− 1

l2
d

dl

[
l2
(
ν(z±)2f ′z± +

Sz
±

3 (l)

4

)]
= εz± , (22.53)

or

ν(z±)2f ′z± +
Sz
±

3 (l)

4
= −1

3
εz± l. (22.54)

Equation (22.54) yields Sz
±

3 (l) = −(4/3)εz± l in the inertial range, and

fz±(l) = 1− εz+

6ν(z±)2
l2 = 1− 1

2

l2

λ2
z±

(22.55)

in the dissipation range. Here,

λz± =

(
3ν(z±)2

εz±

)1/2

(22.56)

are Taylor’s microscales for z± fields.

We make two remarks regarding the connections between the structure functions,
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energy transfers and spectra discussed earlier.

1. Following the discussion of Section 12.5, we can make connections between

the four-third law described earlier and the energy fluxes Πz±(K) discussed in

Chapter 21. In Fig. 22.2, we relate the terms of −Tz+(l) with Πz+(K). Clearly,

δz− ↔ z−(q) mediates the energy transfers among δz+ fields that appear in

the product of −Tz+(l). Note that in Fourier space, the giver mode and the

receiver mode can be contrasted, but that is not the case in real space where

−Tz+(l) is a sum of all the mode-to-mode energy transfers.

– ( ) = –— ( – )[ ]T l × ¢z zÑ ¢ × ¢á ñ( – )   ( – )z z z z1
4 lz

dz is a sum over modes

P ( ) =K [{ ( )}{ ( ) *( )}]k   z q z p z k× ×

| |p K£

å
| |>k K

å

Mediator

Giver Receiver

+
– – + + + +

z+ – + +

±

Figure 22.2 Connection between the formulas −Tz+(l) and the energy flux
Πz+(K). δz− mediates energy transfer between δz+ fields in the
product term of −Tz+(l).

2. From the third order structure functions derived here, we can estimate that

〈(δz±)2
l (δz

∓)l〉 ∼ εz± l. (22.57)

In Fourier space, this relation transforms to(
z±k
)2 (

z∓k
)
k ∼ εz± (22.58)

that corresponds to Eq. (22.12) and Kolmogorov-like energy spectrum for MHD

turbulence. Thus, the structure function computations are consistent with

k−5/3 spectrum.

A word of caution—this derivation assumes isotropy that breaks down in the

presence of a mean magnetic field.
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22.3 Higher Order Structure Functions of MHD Turbulence

Unlike hydrodynamic turbulence, MHD turbulence involves several variables. In

this book, for brevity, we present structure function only of z±. The four-third law

discussed in the previous section involves mixed products of δz+ and δz−. Hence,

Sq(l) may involve various combinations of δz+ and δz−. Yet, for simplicity,

researchers often define S±q (l) for MHD as follows:

Sq(l) =
〈(
4z±

)q
‖

〉
∼ lζq . (22.59)

There are several models for ζq. A trivial generalization of Kolmgorov-like model

yields ζq = q/3. Politano and Pouquet (1995) and Biskamp and Müller (2000)

generalized She and Leveque (1994)’s model for hydrodynamic turbulence to MHD

turbulence. They predicted that Kolmogorov-like phenomenology yields

ζKo
q =

q

9
+ 1− 1

3q/3
, (22.60)

while the Kraichnan–Iroshnikov model leads to

ζKI
q =

q

8
+ 1− 1

2q/4
. (22.61)

These ζq’s are plotted in Fig. 12.4. Note that ζKo
3 = 1 and ζKI

4 = 1, as expected.

Biskamp and Müller (2000) performed numerical simulations and showed that

numerical ζq’s are in closer agreement with ζKo
q than with ζKI

q . Thus, structure

functions too provide stronger support to Kolmogorov-like scaling than to

Kraichnan–Iroshnikov’s scaling. Basu et al. (1998) reported multiscaling exponents

for the velocity and magnetic fields of MHD turbulence.

In the following discussions, we go back to Fourier space and describe scaling of

various quantities of MHD turbulence.

22.4 Scaling of Cross Helicity and Magnetic Helicity

In MHD turbulence, cross helicity, kinetic helicity, and magnetic helicity play a very

important role. In this section, we briefly describe the scaling of cross helicity and

magnetic helicity. Note that these are inviscid invariants of MHD turbulence.
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22.4.1 Scaling of cross helicity

The easiest description of cross helicity in MHD turbulence is via Ez± and Πz± .

Since Hc = (Ez+ − Ez−)/2, we obtain

ΠHc = (Πz+ −Πz−)/2. (22.62)

As described in the previous section, Πz+ = Πz− in the Kraichnan–Iroshnikov

model, while they are unequal in Kolmogorov-like models of MHD turbulence [See

Eqs. (22.9) and (22.14)].

Following a similar procedure as in Section 5.5.1, we can extend the Kolmogorov-

like model of MHD turbulence to the inertial–dissipative range. We start with

Eqs. (21.86), and search for a steady state solution in the inertial–dissipative range.

For simplicity, we also set ν− = 0, which corresponds to unit magnetic Prandtl

number (ν+ = ν = η).1 The resulting equations are

d

dk
Πz±(k) = −2νk2Ez±(k). (22.63)

Now we employ Pao’s ansatz to Ez±(k) of Eqs. (22.13) that yields

Ez±(k

Πz±(k)
= K±(εz±)1/3(εz∓)−2/3k−5/3. (22.64)

Substitution of this term in Eq. (22.63) yields

d

dk
Πz±(k) = −2νk1/3K±(εz±)1/3(εz∓)−2/3Πz±(k) (22.65)

whose solution is

Πz±(k) = εz± exp

[
−3

2
K±(k/k±)4/3

]
, (22.66a)

Ez±(k) = K±(εz±)4/3(εz∓)−2/3k−5/3 exp

[
−3

2
K±(k/k±)4/3

]
,

(22.66b)

where

k± =

[
ε2z∓

εz±ν3

]1/4

(22.67)

are the dissipation wavenumber for z±.

1MHD turbulence with very small and very large Pm will be described in Section 22.5.
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In the limiting case when Ez+(k) = Ez−(k) or Hc(k) = 0, we obtain

Ez±(k) = K (εtot)
2/3

k−5/3 exp

[
−3

2
K(k/kν)

4/3

]
, (22.68)

where K+ = K− = K and

k± =
[εtot

ν3

]1/4

= kν = kη. (22.69)

Note that kν and kη are the dissipation wavenumbers for the velocity and magnetic

fields respectively. Since Hc(k) = 0, we obtain

Eu(k) ∼ Eb(k) ∼ (εtot)
2/3

k−5/3 exp

[
−3

2
K(k/kν)

4/3

]
. (22.70)

22.4.2 Scaling of magnetic helicity

In this subsection, we will derive the spectrum and flux of magnetic helicity, which

is an inviscid invariant of MHD turbulence. For a steady state, using Eq. (21.88),

we deduce that in the inertial range, where DHM (k) ≈ 0,

ΠHM (k) = εHM , (22.71)

where εHM is the dissipation rate of magnetic helicity. Now following the derivation

of kinetic helicity spectrum (see Section 8.3), we may be tempted to argue that

HM(k) = KHMΠHM (Πu)−1/3k−5/3, (22.72)

where KHM is a nondimensional constant.

The solar wind observations (Matthaeus and Goldstein, 1982; Brandenburg et al.,

2011; Iovieno et al., 2015) however indicate that |HM(k)| ∼ k−8/3. This spectrum

can be derived using the following arguments. In the solar wind, HM(k)/(kEb(k))

is quite small; hence, we expect some Fourier modes to yield positive HM(k), while

others to yield negative HM(k). If we assume that

kHM(k)

Eb(k)
≈ rHM = a small constant c(k), (22.73)

then

HM(k) = c(k)
1

k
Eb(k) ∼ c(k)Π2/3k−8/3. (22.74)
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Note that |c(k)| � 1. Clearly, these arguments need verification from numerical

simulations and solar wind observations.

22.5 MHD Turbulence for Small and Large Prandtl Numbers

The magnetic Prandtl number, Pm, of many physical systems are either too small

or too large. For example, liquid metals and Earth’s outer core have Pm ∼ 10−6,

but interstellar medium has Pm ∼ 1012 (with significant uncertainties).

We derive the magnetic diffusion wavenumber, kη, by balancing εb with the

dissipation rate of the magnetic energy, that is,∫ kη

0

ηk2Eb(k)dk = εb. (22.75)

Using

Eb(k) ∼ (εtot)
2/3

k−5/3 exp

[
−3

2
K(k/kη)

4/3

]
(22.76)

as an approximation, we estimate the magnetic dissipation wavenumber kη as

kη =

(
ε3b

η3ε2tot

)1/4

. (22.77)

Similarly, matching εu with the viscous dissipation yields the viscous dissipation

wavenumber as2

kν =

(
ε3u

ν3ε2tot

)1/4

. (22.78)

Hence,

kη
kν

=

(
ν

η

)3/4(
εb
εu

)3/4

=

(
Pm

εb
εu

)3/4

. (22.79)

Clearly, for systems with very small or very large Pm, kν and kη are very different.

This feature leads to complex magnetic and kinetic energy spectra for MHD

turbulence with small and large Pm’s.

In the next subsection we describe the kinetic and magnetic energy spectra of

MHD turbulence with small magnetic Prandtl number.

2Note that the viscous dissipation wavenumber for MHD turbulence differs from the corresponding
wavenumber for hydrodynamic turbulence, which is Kolmogorov’s wavenumber kd = (εu/ν3)1/4.
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22.5.1 Energy spectra of small Pm MHD

For MHD turbulence with small Pm, εb � εu because of the dominance of Joule

dissipation over viscous dissipation (Verma and Kumar, 2016). Yet, Pm dominates

in Eq. (22.79) leading to kη � kν . Therefore, for k < kη, where all the nonlinear

terms are significant, both Eu(k) and Eb(k) exhibit k−5/3 spectra.

However, for kη < k < kν , the Lorentz force is weak, thus making Fu(k) → 0.

Therefore,

Πu(k) = const.; Eu(k) ∼ Π2/3k−5/3. (22.80)

The magnetic energy spectrum Eb(k) however is expected to steepen due to strong

Joule dissipation. Using the following scaling arguments (similar to that in

Section 16.9), Odier et al. (1998) showed that Eb(k) ∼ k−11/3. Matching the

nonlinear term (b · ∇)u with the magnetic diffusion term yields3

kbkηuk ∼ ηk2bk. (22.82)

Hence, using Eu(k) ∼ k−5/3, we obtain

Eb(k) =
b2
k

k
∼
(
bkη
ηk

)2
u2
k

k
∼
(
bkη
η

)2

ε2/3k−11/3. (22.83)

Numerical results of Verma and Kumar (2016) however showed steeper spectrum

than k−11/3 which they compensated by incorporating an exponential factor to take

into account the dissipation effects:

Eb(k) ∼
(
Bkη
η

)2

ε2/3k−11/3 exp(−k/kη). (22.84)

Since the magnetic energy flux is dissipated by the Joule dissipation, Eqs. (21.75b,

21.77b) yield

d

dk
Πall
b> = −2ηk2Eb(k), (22.85)

where Πall
b> = Πb<

b> + Πu<
b> + Πu>

b> is the total energy flux coming to the magnetic field

at small scales. Using Eq. (22.84), we obtain

Πall
b>(k) ∼ 2ηk3Eb(k) ∼ k−2/3 exp(−k/kη). (22.86)

3In the language of energy transfers, the energy transfer from uk to bk with the mediation of bkη is balanced
by the joule dissipation:

kbkηukkk ∼ ηk
2b2k. (22.81)

Note that this energy transfer is nonlocal for k � kη .

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316810019.023
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 04 Jul 2019 at 22:26:51, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316810019.023
https://www.cambridge.org/core
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For k > kν , we expect Eu(k) to follow Pao’s spectrum, which is described in

Section 5.5.1.

Verma and Kumar (2016) used the shell model to simulate MHD turbulence

with Pm = 10−3 and 10−9. The energy spectra Eu(k) and Eb(k) computed in

these simulations are exhibited in Fig. 22.3. These figures exhibit good agreement

between the aforementioned analytical models and numerical results. Here, we point

out another interesting feature of the Eu(k) plot. We observe a prominent dip near

k ≈ kη, which may be due to nonlocal energy transfer from ukη . This issue needs

further exploration.
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Figure 22.3 For a shell model simulation, the kinetic energy, magnetic energy,
and total energy spectra with (a) Pm = 10−3 and (b) Pm =
10−9. The dashed vertical lines represent dissipation wavenumbers
kν and kη. Note that for the shell model, Eu(k) = u2

k/k and
Eb(k) = b2

k/k. From Verma and Kumar (2016). Reprinted with
permission from Taylor and Francis.
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22.5.2 Energy spectra of large Pm MHD

For large Pm, ν � η; hence, viscous dissipation dominates Joule heating leading

to εu � εb (Verma and Kumar, 2016). Yet due to the larger role of Pm than the

dissipation rates, Eq. (22.79) yields kν � kη. In the wavenumber region k < kν , all

the nonlinear terms are significant; hence, we obtain Eu(k) ∼ Eb(k) ∼ k−5/3.

In the wavenumber band kν < k < kη, the momentum equation can be

approximated as

�������∂u

∂t
+ u · ∇u = −∇p+ b · ∇b + ν∇2u, (22.87)

Therefore,

kb2
k ∼ νk2uk. (22.88)

Since uk � bk, it is expected that Eb(k) will not be affected significantly. Hence,

Eb(k) = b2
k/k ∼ ε

2/3
tot k

−5/3. Therefore,

Eu(k) ∼ u2
k

k
∼
(
b2
k

νk

)2
1

k
∼ ε

4/3
tot

ν2
k−13/3. (22.89)

Following Eqs. (21.75a, 21.77a) we deduce that

d

dk
Πall
u> = −2νk2Eu(k), (22.90)

where Πall
u> = Πu<

u> + Πb<
u> + Πb>

u> is the total energy flux coming to the velocity field

at small scales. Using Eq. (22.89), we deduce that

Πall
u>(k) ∼ 2νk3Eu(k) ∼ k−4/3 (22.91)

Verma and Kumar (2016) simulated the MHD shell model for Pm = 103 and 109.

Their numerical results, shown in Fig. 22.4, are in good agreement with the

aforementioned model predictions. We also observe a dip in Eb(k) near k ≈ kν ,

which is possibly due to the nonlocal energy transfers from this region.

In the next section, we compare the model predictions described earlier in this

chapter with the solar wind observations.
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Figure 22.4 For a shell model simulation, the kinetic energy, magnetic energy,
and total energy spectra with (a) Pm = 103 and (b) Pm = 109.
From Verma and Kumar (2016). Reprinted with permission from
Taylor and Francis.

22.6 Validation Using Solar Wind

Solar wind is a magnetofluid emanating from the Sun, and it flows in all directions.

It is a rarified plasma with an average density of 3 to 6 protons per cubic centimeters.

Solar wind travels with a speed ranging from 300 km/s to 800 km/s. See Goldstein

and Roberts (1995) and Tu and Marsch (1995) for details. Here we list only some

of the main results relevant to our discussion.
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In the solar wind, the average value of the Alfvén ratio rA = Eu/Eb decreases

from ≈ 5 at 0.3 AU to ≈ 0.5 at 1 AU and beyond (Matthaeus and Goldstein, 1982;

Goldstein and Roberts, 1995). The normalized cross helicity σc too decreases with

heliocentric distance; it is nearly 1 (purely outward propagating Alfvén waves) near

0.3 AU and nearly 0 by 8 AU (Goldstein and Roberts, 1995; Tu and Marsch, 1995).

See Fig. 22.5(c) and (d) for an illustration of instantaneous rA and σc.
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Figure 22.5 (a,b) Energy spectra Ez±(k), Eu(k), and Eb(k) of solar wind. (c)
The normalized cross helicity σc(k). (d) Alfvén ratio rA(k). The
frequency f is to be converted to wavenumber k using Taylor’s
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Reprinted with permission from AGU.
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Using the solar wind data measured by spacecrafts, researchers have computed

the energy spectra Eu(k), Eb(k), and Ez±(k) and compared them with theoretical

predictions (see Goldstein and Roberts (1995), Tu and Marsch (1995), and

references therein). The observed spectra4 are in general agreement with

Kolmogorov-like phenomenology of MHD turbulence. For example, refer to the

energy spectra of Fig. 22.5.

The magnetic helicity spectrum of the solar wind takes both positive and negative

signs, and |HM(k)| ∼ k−8/3, as discussed in Section 22.4.2 (Iovieno et al., 2015).

There is an enormous work on the cross helicity of the solar wind, but they are

beyond the scope of this book. Refer to Goldstein and Roberts (1995) and Podesta

(2011) for details.

It is difficult to measure the energy fluxes in the solar wind due to lack of three-

dimensional data. Therefore, several researchers have measured the energy fluxes

indirectly. Some of these attempts are listed here:

1. Verma et al. (1995) computed the total energy flux by substituting the

observed energy spectra into Eqs. (22.9, 22.12). They reported that for the

observed solar wind temperature profile, the Kolmogorov-like phenomenology

yields better predictions than the Kraichnan–Iroshnikov model. Their

estimate for the energy flux is 103 m3/s.

2. Sorriso-Valvo et al. (2007) computed the dissipation rates using the structure

function [see Eqs. (22.51)]. Their estimate for the total dissipation rate is

around 200 m2/s, which is in general agreement with Verma et al. (1995)’s

estimate. Also, note that the structure functions of Sorriso-Valvo et al. (2007)

are in general agreement with the predictions of Kolmogorov-like

phenomenology of MHD turbulence.

The viscosity and magnetic diffusivity of solar wind are complex tensors due to

the presence of mean magnetic field (Parker field) that makes the flow anisotropic.

Various uncertainties in the solar wind observations and lack of sound theoretical

framework make accurate estimation of ν and η impossible at present. Verma

(1996) estimated these quantities using turbulence models, in particular by using

Eqs. (22.78, 22.77). He assumed εu = εb, and computed them by substituting the

observed energy spectra in Eqs. (22.12). He found that εu ≈ εb ≈ 103 m2/s. In

addition, he estimated kν ≈ kη ≈ 10−2 km−1 based on the observed solar wind

spectra that show transition from the inertial range to the dissipation range near

4Spacecrafts measure the velocity and magnetic fields at a point. Since the spacecraft speeds are much
smaller than that of the solar wind, these measurements can be translated to scanning the solar wind
along a line. This conversion is by Taylor’s frozen-in turbulence hypothesis. The energy spectra E±(f) of
Fig. 22.5 are translated to E±(k) using this idea.
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this wavenumber. Substitution of these inputs in Eqs. (22.78, 22.77) yields

ν ≈ η ≈ 5× 107 m2/s. (22.92)

The energy spectrum in the dissipation range is of current interest. The spectral

indices reported for the dissipative energy spectrum are −4, −3, −7/3, −11/3, etc.

We believe that the generalized Pao’s model of Eq. (22.68) may also be a suitable

candidate for describing the inertial–dissipative range spectrum; this issue needs

further exploration.

22.7 Validation Using Numerical Simulations

Numerical simulations are often used to test the predictions of MHD turbulence.

Here we list key numerical results of MHD turbulence.

The competing spectral indices of MHD turbulence, −3/2, −5/3, −2, are quite

close to each other. Hence, contrasting them using numerical simulations is quite

difficult. Therefore, Verma et al. (1996) set out to test the validity of the MHD

turbulence models using the properties of energy fluxes. According to Eq. (22.9),

in the Kraichnan–Iroshnikov model, Π+ ≈ Π− irrespective of the ratio Ez+/Ez− .

However, Π+ 6= Π− in the Kolmogorov-like model [see Eq. (22.14)]. Verma et al.

(1996) exploited this difference between the two phenomenologies and showed that

the numerical results for simulations with Ez+ � Ez− match with the predictions

of the Kolmogorov-like turbulence model (Eq. (22.14)). This was the first such

numerical demonstration of the Kolmogorov-like scaling for MHD turbulence.

Later, Müller and Biskamp (2000) performed numerical simulation of MHD

turbulence on the 5123 grid and reported the spectral index to be closer to −5/3

than −3/2, hence showing consistency with the Kolmogorov-like turbulence model.

Beresnyak (2011) made a similar claim, but Mason et al. (2006) argued in favor of

a −3/2 scaling. We exhibit these results in Fig. 22.6. The plots reveal that neither

k−5/3 nor k−3/2 spectra are conclusive. More refined simulations may resolve some

of these differences.

Dar et al. (2001) performed numerical simulations of 2D MHD turbulence and

reported various energy fluxes during a quasi-steady state. Later, Debliquy et al.

(2005) repeated these computations for a 3D decaying MHD turbulence. In

Fig. 22.7(a) we plot the fluxes computed by Debliquy et al. (2005). The maximum

values of these fluxes near k ≈ 10 are exhibited in Fig. 22.7(b). Note that all the

fluxes except Πu<
b< are positive. Πb<

b> is positive indicating forward magnetic energy

cascade.
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Based on the numerical results of decaying MHD turbulence, Debliquy et al.

(2005) and Verma (2004) observed that

Πu<
b<

Π
≈ 0.57(rA − 0.4). (22.93)

Hence, the kinetic energy is transferred to the magnetic energy for rA > 0.4, and

vice versa. This phenomena resembles the solar wind evolution in which rA starts

from ≈ 5 near 0.3 AU, approaches ≈ 1/2 near 1 AU, and maintains this value

subsequently.
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Figure 22.7 From Debliquy et al. (2005)’s numerical simulation of decaying
MHD turbulence: (a) Plots of various energy fluxes normalized
with Πmax when rA ≈ 0.40. (b) Max values of these fluxes near
k ≈ 10. (a) is adapted from a figure of Debliquy et al. (2005).

Debliquy et al. (2005) also computed the shell-to-shell energy transfers—T u,mu,n ,

T b,mb,n , T u,mb,n for the wavenumber shells in the inertial range. These transfers are

exhibited in Fig. 22.8. We summarize these observations in a schematic diagram

shown in Fig. 22.8(d). From the figures we deduce that U2U and B2B shell-to-shell

transfers are forward and local. The shell-to-shell transfers T u,mb,n too are forward and

local. Note however that for rA ≈ 0.4, T u,mb,m < 0 indicating energy transfers from

the magnetic field to the velocity field for the same shell. Alexakis et al. (2005b),

Mininni et al. (2005), and Alexakis et al. (2007) too computed the shell-to-shell

energy transfers for MHD turbulence and observed similar results.

In the next section, we describe how a mean magnetic field affects MHD

turbulence.
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Figure 22.8 From Debliquy et al. (2005)’s numerical simulation of decaying
MHD turbulence: During the stage when rA ≈ 0.40, (a, b, c)
Shell-to-shell energy transfers. (d) A schematic diagram of the
shell-to-shell energy transfers. (a), (b), and (c) from Verma (2004),
which are reprinted with permission from Elsevier.

22.8 MHD Turbulence in the Presence of a Mean Magnetic Field

We start with Eqs. (20.48). Substitution of B = B0 + b in these equations yields

the following set of equations:

d

dt
Eu(k) =

∑
p

= [{k · u(q)}{u(p) · u∗(k)} − {k · b(q)}{b(p) · u∗(k)}]

−2νk2Eu(k)− {k ·B0}= [b(k) · u∗(k)] , (22.94a)

d

dt
Eb(k) =

∑
p

= [{k · u(q)}{b(p) · b∗(k)} − {k · b(q)}{u(p) · b∗(k)}]

−2ηk2Eb(k) + {k ·B0}= [b(k) · u∗(k)] . (22.94b)
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Clearly,

d

dt
Eb(k = 0) = 0. (22.95)

That is, the mean magnetic field remains unaltered during the evolution. Also, note

that the mean magnetic field induces an energy transfer from u(k) to b(k) by an

amount {k ·B0}= [b(k) · u∗(k)].

The mean magnetic field affects MHD turbulence significantly (Oughton et al.,

1994; Teaca et al., 2009; Sundar et al., 2017). Here we describe the results of Sundar

et al. (2017) who performed numerical simulations of forced MHD turbulence for

B0 = 2 and 10. The rms values of the velocity and magnetic field are of the order of

unity. Earlier, Teaca et al. (2009) had performed similar simulations for B0 = brms

and B0 = brms

√
10.

The main effects of a strong mean magnetic field on MHD turbulence are listed

here:

1. The flow develops strong vortical structures thus making it quasi-2D.

2. Both kinetic and magnetic energies tend to concentrate near the equator (polar

angle ζ = π/2). In the equatorial plane, k ·B0 = 0. Hence, Alfvén waves are

absent in this plane leading to dominance of the nonlinear term u · ∇u and the

pressure gradient. This is one reason why the flow is turbulent in the equatorial

plane.

3. The quasi-2D nature of the flow leads to a strong inverse cascade of kinetic

energy. This cascade is responsible for the large-scale vortical structures

observed in such flows. Note that Eu,⊥/2Eu,‖ > 1 at large scales.

4. For large wavenumbers or at small length scales, Eu,⊥/2Eu,‖ < 1. This is

because the parallel component of the velocity field acts like a passive scalar,

and it cascades in the forward direction (from small k to large k).

In the next chapter we will show that the quasi-static MHD turbulence exhibits

similar behavior as described above.

Based on these results, we make the following remarks that are relevant for the

present MHD turbulence models:

1. A large mean magnetic field suppresses the Alfvén effect in the equatorial plane

(ω = k ·B0 = 0). Therefore, the velocity fluctuations in this plane is driven

primarily by (u · ∇)u. This result is somewhat contrary to the existing weak

turbulence theory of MHD turbulence.

2. A strong mean magnetic field makes the flow strongly anisotropic leading to an

inverse cascade of total energy. Note that most of the MHD turbulence models
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assume forward cascade of energy; hence, they would need a revision for strong

B0. This feature is relevant for the debate on suitability of the present MHD

turbulence models.

3. In the solar wind, Parker field is an order of magnitude stronger than the

magnetic field fluctuations (Matthaeus and Goldstein, 1982). Hence, we expect

the solar wind to be quasi-two-dimensional exhibiting inverse cascade of energy.

However, based on the computations of structure functions and temperature

evolution, solar wind appears to exhibit a forward energy cascade. This issue

needs further investigation.

In summary, the physics of MHD turbulence is still not fully understood. Some

of the key topics are—energy spectra and fluxes, hierarchical interactions of Alfvén

waves, effects of mean magnetic field and helicity, etc. We hope that future

analytical, experimental, observational, and numerical works will help resolve some

of these issues. We remark that MHD turbulence models are critical for modeling

many astrophysical objects—stars, planets, galaxies, interstellar medium, dynamo,

etc.

Further Reading

The present chapter provides a brief review of MHD turbulence models. For more

details, refer to Biskamp (2003), Verma (2004), and original papers cited in this

chapter. Also refer to Alexakis et al. (2005b), Mininni et al. (2005), and Alexakis

et al. (2007) for shell-to-shell energy transfer computations using numerical

simulations. For decay laws of MHD turbulence with and without helicity, refer to

Brandenburg and Kahniashvili (2017).
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Chapter 23

Dynamo: Magnetic Field
Generation in MHD

Self-generation or self-induction of magnetic field in magnetohydrodynamics is called

dynamo mechanism. It involves growth of initial seed (small magnitude) magnetic

field (Moffatt, 1978; Krause and Rädler, 1980; Ruzmaikin et al., 1988; Cardin and

Cugliandolo, 2011). Such processes occur in astrophysical objects such as stars,

planets, and galaxies. Some recent laboratory experiments (Gailitis et al., 2008;

Stieglitz and Müller, 2001; Monchaux et al., 2007) too have been able to produce

magnetic field via dynamo mechanism.

Realistic systems exhibiting dynamo processes are quite complex. For example,

planetary and stellar dynamos typically involve rotating magnetofluids with a

temperature gradient. Dynamo processes are studied from different

perspectives—analytical, numerical, experimental—and they are covered in many

books and papers. There are many important results, such as α-dynamo,

anti-dynamo theorems, experimental dynamos (Karlsruhe, Van-Karman sodium,

etc.), dynamo transition, numerical dynamos, planetary and stellar dynamos,

galactic dynamos. In this chapter we will discuss only the basic aspects of dynamo,

primarily from energy transfer perspectives. For a more detailed discussion, the

reader is referred to Moffatt (1978); Krause and Rädler (1980); Ruzmaikin et al.

(1988); Verma (2004); Cardin and Cugliandolo (2011); Brandenburg and

Subramanian (2005).
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23.1 Definitions

In this section, we define the dynamo action. We solve MHD equations (20.10) for

a given geometry, force field, and set of parameters. If a magnetic field (constant

or time dependent) is sustained asymptotically (t → ∞), then the system is said

to exhibit dynamo action. Otherwise, the dynamo process is said to be absent.

Generation of a transient magnetic field is not considered to be a dynamo action.

Typically, external forces act as control parameters. For example, in convective

dynamos, the temperature difference across the two surfaces acts as a control

parameter. A crossover from a no-dynamo state to a dynamo state is called

dynamo transition (Verma and Yadav, 2013), and the corresponding transition

parameters are called critical parameters.

A dynamo process depends on the Reynolds number, magnetic Prandtl number

Pm, force fields, etc. In nature, the magnetic Prandtl number of magnetofluids

is either too small or too large—liquid metals and Earth’s core have small Pm

(∼ 10−6), and the interstellar medium has typically very large Pm (∼ 1012). In this

chapter we will describe properties of large Pm and small Pm dynamos.

When the magnetic field is very small, it does not have a significant influence on

the evolution of the velocity field. But, the velocity field always affects the evolution

of the magnetic field. In the beginning of a dynamo process, a small seed field starts

to grow. Such a process is called kinematic dynamo. When the strength of the

magnetic field becomes comparable to the velocity field, it starts to influence the

evolution of the velocity field. This is called dynamic dynamo. In this chapter we

will illustrate these dynamos using several examples.

In the next section, we state some of the anti-dynamo theorems.

23.2 Anti-dynamo Theorems

Many flow configurations do not exhibit dynamo action. Primary examples of such

systems are 2D and 2D3C MHD, and axisymmetric flows (Moffatt, 1978; Cardin

and Cugliandolo, 2011). We will describe these results in this section.

Theorem 1: Dynamo action is impossible in 2D MHD.

Proof: In 2D MHD, the vector potential evolves according to the following equation

[Eq. (20.17)]:

∂A

∂t
+ u · ∇A = η∇2A. (23.1)
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Note that A = Aẑ. From Eq. (23.1) the equation for A2 can be derived as

∂

∂t

1

2
A2 +∇ · (1

2
A2u) = −η(∇A)2. (23.2)

When we integrate this equation over the whole volume, the convective term vanishes

for a periodic or vanishing boundary condition; hence,
∫
A2dx decays due to the

dissipative term. Thus, A → 0, and consequently, B = ∇×A → 0. Therefore,

dynamo action is impossible in 2D MHD.

In terms of energy transfers, the advection term of Eq. (23.2) exchanges EA = A2/2

among themselves; hence, it cannot enhance or deplete EA. In the absence of any

source term for EA, the dissipation term simply destroys EA. Note however that in

3D, according to Eq. (20.15), the three-dimensional vector potential A is stretched

by the velocity field leading to an enhancement of the magnetic field. This process

is analogous to vortex stretching in 3D hydrodynamics that enhances enstrophy.

Theorem 2: Dynamo action is impossible in 2D3C MHD.

Proof: We assume that the velocity and magnetic fields are functions only of x, y.

Following Jones (2008), 2D3C velocity and magnetic fields can be written as

B = Bz ẑ + B⊥ = Bz ẑ +∇× (Aẑ), (23.3a)

u = uz ẑ + u⊥, (23.3b)

where⊥ represents the horizontal fields. The evolution equations for the components

of B are

∂A

∂t
+ (u⊥ · ∇)A = η∇2A, (23.4a)

∂Bz
∂t

+ (u⊥ · ∇)Bz = η∇2Bz + (B⊥ · ∇)uz. (23.4b)

Following the same arguments as in Theorem 1, we can show that A → 0

asymptotically. Hence, B⊥ → 0. Therefore, without the source term, Bz too

vanishes asymptotically. Hence, there is no dynamo action for this field

configuration.

Theorem 3: Axisymmetric velocity and magnetic fields vanishing at infinity cannot

generate self-induced magnetic field.

The proof for this anti-dynamo theorem is somewhat more complex. We refer the

reader to Cowling (1976) and Jones (2008). There are other anti-dynamo theorems

as well, but they are beyond the scope of this book.
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23.3 Energetics of a Dynamo

In Chapter 21 we discussed various energy transfers in MHD. We showed that in

the equation for magnetic energy EB, the term [(u · ∇)B] ·B represents exchange

of the magnetic energy among the magnetic modes, while the term [(B · ∇)u] ·B
yields energy transfers from the velocity field to the magnetic field. The latter term

is responsible for the growth of the magnetic field.

For the growth of the magnetic field, it is essential that the growth rate due to

the U2B energy transfer exceeds the Joule dissipation. Using dimensional analysis,

we translate this condition to the following estimate:

(B · ∇u) ·B ' ηB · (∇2B), (23.5)

or

Rm =
UL

η
' 1. (23.6)

Hence, the lower bound on the magnetic Reynolds number for the dynamo transition

is of the order of unity. For more strict bounds on Rm, refer to Moffatt (1978);

Ruzmaikin et al. (1988); Jones (2008).

Verma et al. (2013b) estimated magnetic Reynolds number for protostars and

showed Rm ∼ 109. Using the aforementioned bound on Rm for the dynamo action,

they argued that magnetic field would be generated in protostars. Tzeferacos et al.

(2018) generated a laser-induced plasma whose Rm ∼ 600; based on the

aforementioned bound, they argued for the presence of dynamo action in their

experiment.

In the next section, we present several examples of kinematic dynamos.

23.4 Kinematic Dynamos

There are a large number of kinematic dynamo models. Here we present only two

of them as examples.

23.4.1 Six-mode model—Verma et al. (2008)

Verma et al. (2008) considered the following velocity and magnetic fields containing

six Fourier modes:

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316810019.024
Downloaded from https://www.cambridge.org/core. Access paid by the UCSF Library, on 04 Jul 2019 at 22:59:36, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316810019.024
https://www.cambridge.org/core


390 Energy Transfers in Fluid Flows

u = (Cu/
√

2)(x̂ sinx cos z − ẑ cosx sin z) + (Du/
√

2)(ŷ sin y cos z − ẑ cos y sin z)

+(4Au/
√

6)(−x̂ sinx cos y cos 2z − ŷ cosx sin y cos 2z + ẑ cosx cos y sin 2z).

(23.7a)

b = (Cb/
√

2)(x̂ sinx cos z − ẑ cosx sin z) + (Db/
√

2)(ŷ sin y cos z − ẑ cos y sin z)

+(4Ab/
√

6)(−x̂ sinx cos y cos 2z − ŷ cosx sin y cos 2z + ẑ cosx cos y sin 2z),

(23.7b)

where Au, Cu, Du, Ab, Cb, and Db are real numbers. We consider the box size to be

π3. The velocity and magnetic fields are nondimensionalized using

u→ u(ν/d); b→ b(ν/d), (23.8)

where d is the system size.

For a given u, the evolution equations for the magnetic modes are (Verma et al.,

2008)

Ȧb = − 6

Pm
Ab, (23.9a)

Ċb =
1√
6

[DuAb −DbAu]− 2

Pm
Cb, (23.9b)

Ḋb =
1√
6

[CuAb − CbAu]− 2

Pm
Db. (23.9c)

Clearly, Ab → 0 asymptotically. Hence,

d

dt

(
Cb
Db

)
=

(
−2/Pm −Au/

√
6

−Au/
√

6 −2/Pm

)(
Cb
Db

)
. (23.10)

The eigenvalues of the above matrix are

λ± = ±Au√
6
− 2

Pm
. (23.11)

If we assume Au > 0, then λ− is always negative, but λ+ can become positive if

Au√
6
>

2

Pm
. (23.12)

Under this condition, Cb and Db would grow with the growth rate of λ+. Thus, the

six-mode model of Verma et al. (2008) would exhibit dynamo action if

Au > 2
√

6/Pm. (23.13)
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Another way to deduce this result is the following. In order to focus on growth rate

due to the U2B energy transfers only, we take Pm→∞ limit. In addition, Ab → 0

as t→∞. Now, taking a time derivative of Eq. (23.9b) yields

C̈b =
1

6
A2
uCb. (23.14)

Thus, Cb would grow with a growth rate of Au/
√

6 due to the nonlinear energy

transfers. In the presence of magnetic diffusivity, this growth rate must exceed the

diffusion rate, which is 2/Pm. Thus, we arrive at the same condition as Eq. (23.13).

The aforementioned condition yields the following lower bound on the magnetic

Reynolds number for dynamo action:

Rm =
Ud

η
> AuPm > 2

√
6. (23.15)

In the next subsection we describe kinematic Roberts dynamo.

23.4.2 Roberts dynamo

Roberts (1972) [also see Jones (2008)] considered the following 2D3C velocity field

to excite dynamo action:

u = x̂2 sin y + ŷ2 sinx+ ẑ2(cosx− cos y). (23.16)

This is a helical field with the Fourier components (in Craya–Herring and helical

basis) listed in Table 23.1. For the aforementioned flow, the following solution for

the magnetic field was attempted:

B = b(x, y) exp(pt+ ikz). (23.17)

Dynamo transition occurs when <(p) > 0. Roberts (1972) showed an existence of

dynamo transition for a set of k’s and Rm’s. Note that the magnetic field is three-

dimensional that makes the dynamo possible (recall anti-dynamo theorem for 2D3C

flows).

Table 23.1 Fourier decomposition of the velocity field of the Roberts flow
in Craya–Herring and helical basis. These modes are maximally
helical.

Mode (u1, u2) (u+, u−) E(k) HK(k)

q = (1, 0, 0) (i,−1) (−
√

2, 0) 1 1

p = (0, 1, 0) (−i, 1) (
√

2, 0) 1 1
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The analysis of Roberts dynamo in real space is quite complex. In the following

simplified analysis, we will consider a set of interacting triads and explore if dynamo

solution exists for such systems. Here, we present two simple spectral models based

on Roberts flow.

23.4.3 A 2D3C helical dynamo model?

We consider the velocity field of Eq. (23.16). Note that the wavenumbers p = (0, 1, 0)

and q = (1, 0, 0) of the flow couples nonlinearly with k′ = (−1,−1, 0). We consider

helical magnetic modes at these wavenumbers—bsp(p), bsq(q), and bsk′ (k
′)—and

explore if they grow or not. We also choose usk′ (k
′) = 0.

In Section 20.6 we derived the equations for the helical magnetic modes in a triad

as

ḃsk′ (k
′) = k′sk′

∑
sp,sq

g[u∗sq(q)b∗sp(p)− u∗sp(p)b∗sq(q)]− 1

Pm
k′2bsk′ (k

′). (23.18)

Hence, the dynamical equations for the helical modes discussed here are

ḃsk′ (k
′) = −2gsk′(b

∗
sp

(p) + b∗sq(q))− 2

Pm
bsk′ (k

′), (23.19a)

ḃsp(p) =
√

2gspb
∗
sk′

(k′)− 1

Pm
bsp(p), (23.19b)

ḃsq(p) =
√

2gsqb
∗
sk′

(k′)− 1

Pm
bsq(q), (23.19c)

where

g =
1

2
√

2
sk′spsq{sk′ sinα+ sp sinβ + sq sin γ}. (23.20)

The variables in these equations are complex. Hence, we will get six real equations

whose stability matrix is to be analyzed. In the following discussion, we take a

shorter and approximate approach by taking the limit Pm→∞.

Taking the limit Pm → ∞ allows us to decipher the U2B energy transfer. We

take another time derivative of Eq. (23.19a) and then substitute Eqs. (23.19b, 23.19c)

in the resulting equation. These operations yield

b̈sk′ (k
′) = −2g2

√
2sk′(sp + sq)bsk′ (k

′). (23.21)

Hence, the growth rate of the dynamo due to nonlinear energy transfer is

γb = g

√
−2g2

√
2sk′(sp + sq). (23.22)
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For the magnetic field to grow, this growth rate must be positive, which is possible

only if

sk′(sp + sq) < 0, (23.23)

that is, when sk′ and (sp + sq) have opposite signs. Otherwise, the magnetic field

will decay.

According to Theorem 2 of Section 23.2, the above field configuration should not

exhibit dynamo action, but a truncated model does show a possibility of dynamo

action. This is related to the difference between global stability and the stability

of a truncated system. Hence, care needs to be exercised. We expect a decay

of magnetic energy if we solve the full set of equations, or when we include more

interacting modes.

23.4.4 A tetrahedron helical dynamo model—Stepanov and Plunian
(2018)

Stepanov and Plunian (2018) considered another dynamo based on Roberts flow. In

the following discussion, we describe a special case of Stepanov and Plunian (2018)’s

dynamo. The wavenumbers of the model are shown in Fig. 23.1. The velocity field

is nonzero only for wavenumbers q1 = (1, 0, 0) and q2 = (0, 1, 0), while the magnetic

field is nonzero for the wavenumbers p = (0, 0, 1), k′1 = (−1, 0,−1), k′2 = (0,−1,−1).

As in the previous example, we assume the modes to be purely helical.

z

x

y

(1
,0,0)

(0
,–

1,
–1

)

(–1,0,–1)

(0,1,0)

(0
,0

,1
)

Figure 23.1 The wavenumbers of the dynamo model of Stepanov and Plunian
(2018) form two triads: {(0, 0, 1), (1, 0, 0), (−1, 0,−1)} and
{(0, 0, 1), (0, 1, 0), (0,−1,−1)}. The wavenumbers (1,0,0) and
(0,1,0) contain velocity modes, while (0,0,1), (0,−1,−1) and
(−1, 0,−1) contain magnetic modes.
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Following the same procedure as in the previous example, we deduce the following

dynamical equations for the three helical magnetic modes:

ḃsk′
1

(k′1) = −2g1sk′1b
∗
sp

(p)− 2

Pm
bsk′

1

(k′1), (23.24a)

ḃsk′
2

(k′2) = 2g2sk′2b
∗
sp

(p)− 2

Pm
bsk′

2

(k′2), (23.24b)

ḃsp(p) =
√

2sp[g1b
∗
sk′

1

(k′1)− g2b
∗
sk′

2

(k′2)]− 1

Pm
bsp(p), (23.24c)

where g1, g2 are given by

g1 =
1

2
√

2
sk′1sp{sk′1 sinα+ sp sinβ + sin γ}, (23.25a)

g2 =
1

2
√

2
sk′2sp{sk′2 sinα+ sp sinβ + sin γ}. (23.25b)

Note that sq1 = sq2 = 1.

Equations (23.24) can be written in matrix form as

v̇(t) = Av∗, (23.26)

which has to be converted to six real equations with real and imaginary parts of v.

Then, the condition for the dynamo action can be determined from the eigenvalues of

the matrix. This analysis is somewhat complex; hence, we look for an approximate

solution by taking the limit Pm→∞.

We take another time derivative of Eq. (23.24c) that yields

b̈sp(p) = −2
√

2sp(g
2
1sk′1 + g2

2sk′2)bsp(p) (23.27)

resulting in the following growth rate due to the nonlinear energy transfer:

γb =
√
−2
√

2sp(g2
1sk′1 + g2

2sk′2). (23.28)

By ignoring some of the terms of b̈sp(p) and using Eq. (23.24c), we can estimate

the decay rate of bsp(p) as 1/Pm. Hence, an approximate condition for the dynamo

action is

γb > 1/Pm. (23.29)

From the form of γb, it is evident that the dynamo action is possible when

sp(g
2
1sk′1 + g2

2sk′2) < 0, (23.30)
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or, when the helicity of (0, 0, 1) mode is opposite to that of k1 and k2.

Example 23.1: Work out the mode-to-mode energy transfers for the aforementioned

dynamo model of Stepanov and Plunian (2018).

Solution: We derive the following mode-to-mode energy transfers from the velocity

field to the magnetic field using Eq. (21.102) of Section 21.9, which is

Sbu(k′|p|q) = = [{k′ · b(q)}{u(p) · b(k′)}]

=
∑
sp,sk′

Sbusk′sp(k
′|p|q).

Substitution of the mode amplitudes in this formula yields

Sbu(p|q1|k1) = −1

2
={bspbsk′

1

}

Sbu(p|q2|k2) =
1

2
={bspbsk′

2

}

Sbu(k1|q1|p) = − 1√
2

(1 +
sk′1√

2
)={bspbsk′

1

}

Sbu(k2|q2|p) =
1√
2

(1 +
sk′2√

2
)={bspbsk′

2

}.

The total energy transferred from the velocity field to the magnetic field is a sum

of all the aforementioned terms.

Example 23.2: Consider the aforementioned dynamo model of Stepanov and Plunian

(2018). Solve the model in Craya–Herring basis, instead of helical basis.

Solution: We label the wavenumbers as q1 = (1, 0, 0), q2 = (0, 1, 0), p = (0, 0, 1),

k′1 = (−1, 0,−1), and k′2 = (0,−1,−1), and take the velocity field of Eq. (23.16).

From Table 23.1, we have u1(q1) = i, u2(q1) = −1, u1(q2) = −i, u2(q2) = 1. Using

the equations of Section 20.5 we derive the equations of motion for the b1 and b2

components of the magnetic modes as

ḃ1(k′1) =
√

2b∗1(p)− 2

Pm
b1(k′1),

ḃ1(k′2) = −
√

2b∗1(p)− 2

Pm
b1(k′2),

ḃ1(p) =
1√
2

(b∗1(k2)− b∗1(k1))− 1

Pm
b1(p),

ḃ2(k′1) = −b∗2(p) + ib∗1(p)− 2

Pm
b1(k′1),
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ḃ2(k′2) = b∗2(p)− ib∗1(p)− 2

Pm
b1(k′1),

ḃ2(p) = b∗2(k′1)− b∗2(k′2)− i√
2

(b∗1(k′1)− b∗1(k′2))− 1

Pm
b2(p).

Now we take the limit Pm → ∞. Taking another time derivative of the equations

for b1(p) and b2(p) yields

b̈1(p) = −2b1(p),

b̈2(p) = −2b2(p).

Hence, the nonlinear interactions induce pure oscillations on b1(p) and b2(p), and

consequently on other modes as well. Therefore, the magnetic diffusion will kill the

magnetic field. Hence, for a general magnetic configuration, this model does not

exhibit dynamo action.

The said conclusion appears to contradict the result described in the present

section according to which the magnetic field grows if the condition of Eq. (23.30) is

satisfied. Note however that the aforementioned condition is derived for pure helical

modes. The configuration of this example consists of a combination of several helical

modes. To illustrate:

ḃ+(k1) =
1√
2

(ḃ2(k1) + iḃ1(k1)) = −b2(p)√
2

+ ib1(p)(1 +
1√
2

).

From Eq. (23.18), we deduce that

ḃ+(k1) =
√

2(−
√

2g+b
∗
+(p)−

√
2g−b

∗
−(p))

= − 2

2
√

2
{(1 +

√
2)b∗+(p)− b∗−(p)}

= −b2(p)√
2

+ ib1(p)(1 +
1√
2

).

Hence, a general b field consists of both positive and negative helicity modes. Thus,

the condition for dynamo action for a general field configuration and for purely

helical modes are very different.

There are many more issues in kinematic dynamo, but they are beyond the scope

of this book. Now we move on to discuss dynamic dynamo models.
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23.5 Dynamic Dynamos

In dynamic models, both u and b fields affect each other. An external force is

employed to the velocity field to compensate for the Joule dissipation. Without an

external force, both velocity and magnetic fields would decay away.

23.5.1 Six-mode model—Verma et al. (2008) revisited

Let us reconsider the six-mode model of Verma et al. (2008), and make a dynamic

model for the same. Verma et al. (2008) forced the three velocity modes with

amplitudes 0, f/
√

2, and f/
√

2 respectively. They derived the following evolution

equations for the velocity and magnetic modes of Eqs. (23.7a, 23.7b):

Ȧu = − 2√
6

[CuDu − CbDb]− 6, (23.32a)

Ċu =
1√
6

[DuAu −DbAb]− 2 +
f√
2
, (23.32b)

Ḋb =
1√
6

[CuAu − CbAb]− 2 +
f√
2
, (23.32c)

Ȧb = − 6

Pm
Ab, (23.32d)

Ċb =
1√
6

[DuAb −DbAu]− 2

Pm
Cb, (23.32e)

Ḋb =
1√
6

[CuAb − CbAu]− 2

Pm
Db. (23.32f)

Verma et al. (2008) reported that for this system, dynamo transition occurs for

Pm > 1; Rm > Rmc = 6
√

2Pm. (23.33)

Note that the transition parameters for the kinematic and dynamic models are

quite different. Interestingly, this dynamic model yields a constant solution for the

magnetic field. For details on this model, refer to Verma et al. (2008).

In the next section we describe properties of dynamo transition.

23.6 Dynamo Transition and Bifurcation Analysis

MHD systems exhibit very interesting behavior near the onset of dynamo transition.

It is an extensive area of research. Here we list only some of the salient properties

of dynamo transition.
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1. Dynamo transition in dynamic models is an example of nonlinear instability.

Without the nonlinear terms, the induction equation is a diffusion equation,

∂tb = η∇2b, (23.34)

which yields a decaying solution. It is the nonlinear terms that generate

dynamo. Note however that kinematic dynamos generate magnetic field via

linear instability.

2. The nature of dynamo transition appear to depend significantly on the

magnetic Prandtl number. Yadav et al. (2010, 2012) show that in

Taylor–Green dynamo, dynamos with large Prandtl numbers yield

supercritical pitchfork bifurcation in which the magnetic field increases with

the forcing as

B ∝
√
f − fc, (23.35)

where fc is the critical forcing. On the other hand, Taylor–Green dynamos

with small Prandtl numbers exhibit subcritical pitchfork bifurcation. Morin

and Dormy (2009) obtained similar behavior in spherical dynamo simulations.

These features of dynamo transition have been captured reasonably well by

several low-dimensional models (Verma and Yadav, 2013).

3. Beyond the dynamo transition, but not too far away from it, MHD systems

exhibits rich behavior. They exhibit all sorts of dynamical states—fixed point,

periodicity, quasi-periodicity, chaos, etc. Yadav et al. (2010, 2012) reported

such behavior in Taylor–Green dynamo. Von-Karman Sodium (VKS) dynamo

(an experimental dynamo) also shows such states (Berhanu et al., 2010). Yadav

et al. (2010, 2012) obtained two chaotic states that transition to chaos via

period doubling and quasi-periodic routes.

4. A dynamo is typically a higher-dimensional dynamical system. On many

occasions, it exhibits multiple coexisting states that are accessed by different

initial conditions (for a given set of parameters). In fact, Verma and Yadav

(2013) showed that in the subcritical transition regime, for a given parameter

set, some initial conditions yield a no-dynamo solution, but some others yield

a dynamo solution. Some researchers believe that such mechanism may be

responsible for the abrupt shutdown of Martian dynamo.

5. Interestingly, B(0, 0, 1) appears to be a generic magnetic mode during the

transition. It occurs in Roberts dynamo (Roberts, 1972) as well as in Taylor–

Green dynamo (Yadav et al., 2010). This issue needs further investigation.
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6. Near a dynamo transition, the magnetic energy and kinetic energy are not

necessarily equipartitioned. In fact, their ratio can differ significantly from

unity (Yadav et al., 2012; Roberts and Glatzmaier, 2000). This behavior is

contrary to the behavior in the turbulent regime where equipartition is

expected among Eu and Eb. This deviation from equipartition is due to the

existence of multiple complex attractors near the dynamo transition.

In the next section we describe energy transfers in turbulent dynamos.

23.7 Energy Transfers in Turbulent Dynamos

A magnetofluid becomes turbulent far beyond the dynamo transition. It is usually

assumed that the turbulent systems are ergodic, that is, they cover all of the

available phase space.1 As a result, MHD turbulence exhibits generic

properties—similar energy spectrum, an approximate equipartition of kinetic

energy and magnetic energy, etc. Here we list some of the generic properties of

turbulent dynamos; these properties have been deduced using turbulent models

and numerical results.

In a generic dynamo simulation, we start with a small seed magnetic field. For

suitable parameters, the magnetic energy grows exponentially in the initial stages,

after which it saturates. The initial growth is governed by kinematic processes

(because the seed field is weak), but the back-reaction from the magnetic field

become significant during saturation. Though the magnetic energy growth is

exponential in time, the rate of growth depends on the initial condition and

Prandtl number. See Fig. 23.2 for an illustration in which two different initial

conditions—narrow wavenumber band (NB) at k = [2, 4], and broad band (BB) at

k = [2, 384]—yield very different growth rates for the magnetic field.

The growth rate of the magnetic energy is also scale dependent. We start with

an equation for the growth of the magnetic energy:

∂tEb(k) ≈
∑
p

−= [{k · b(q)}{u(p) · b∗(k)}]

+
∑
p

= [{k · u(q)}{b(p) · b∗(k)}]− 2ηEb(k). (23.36)

The terms in the RHS represent U2B and B2B transfers, and magnetic diffusion.

Assuming local interactions (k ≈ p ≈ q), we obtain

∂tEb(k) ≈ kukEb(k)− 2ηk2Eb(k). (23.37)

1The phase space structure of a chaotic system is typically quite complex, and is far from ergodic. Hence,
the often-quoted assumption of ergodicity for a turbulent flow is questionable.
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Figure 23.2 Plots of Eu(t) and Eb(t) vs. t: (a) For Pm = 20 with broad
band (BB) and narrow band (NB) initial condition. In NB, Eb is
uniformly distributed in k = [2, 4] band, but in BB, it is distributed
over k = [2, 384]. The growth rates are very different for the two
cases. (b) For Pm = 0.2. From Kumar et al. (2014b, 2015).
Reprinted with permission from Institute of Physics, and Taylor
and Francis respectively.

Hence, the growth rate of Eb(k) is

γb(k) ≈ kuk − ηk2 ≈ ε1/3k2/3 − ηk2, (23.38)

where ε is the total dissipation rate. The two factors in the growth rate balance

each other at

kη =

(
ε

η3

)1/4

, (23.39)

which is the diffusion wavenumber of the magnetic field. Hence, for k � kη, the

magnetic energy grows at a rate of

γb(k) ∼ k2/3, (23.40)

but in the dissipative range (k > kη), Eb decays exponentially.

Considering the complex energy exchange mechanisms in MHD such as variable

energy fluxes of Section 21.6, we can claim that these scaling arguments are

approximate. Yet, they explain some of the growth processes in the kinematic

regime, which may be their domain of applicability.
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It is useful to note that the viscous dissipation wavenumber, also called

Kolmogorov wavenumber, is

kν =
( ε
ν3

)1/4

. (23.41)

Hence,

kη
kν

= Pm3/4. (23.42)

A more sophisticated arguments of Section 22.5 indicate that

kη
kν

=

(
Pm

εb
εu

)3/4

, (23.43)

where εu, εb are the respective dissipation rates for the velocity and magnetic fields.

For the present discussion, we will ignore the εu/εb factor. Clearly, kη � kν for

small Prandtl numbers, and kη � kν for large Prandtl numbers. This separation

has a major impact on the energy transfers mechanism, which will be described in

the following section.

Dynamos with moderate Prandtl numbers (∼ 1), small Prandtl numbers, and

large Prandtl numbers show different patterns of energy transfers. The behavior

of dynamos with moderate Prandtl numbers are quite similar to those discussed in

Chapter 21. The properties of small Pm and large Pm dynamos will be described

now.

23.7.1 Small Pm dynamos

The Prandtl number of liquid metals is quite small due to their large electrical

conductivity. For example, sodium and Earth’s outer core have Pm ∼ 10−6. Using

the arguments described in Section 22.5.1, we deduce that kη is small.

Since η is large for small Pm dynamos, using Eq. (23.38), we deduce that the

growth rate γb(k) is positive only for small k’s or at large length scales. Hence,

during the kinematic regime, the maximum energy transfer to the magnetic field

occurs at large scales. Using the formula for U2B energy transfers, the growth rate

of Eb(k) is

∂tEb(k) ≈
∑
p

−= [{k · b(q)}{u(p) · b∗(k)}] , (23.44)
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where q = k− p. Under the assumption of local interaction (k ≈ p ≈ q ≈ 1/L), we

obtain

∂tEb ≈
U

L
Eb, (23.45)

where U,L are the large-scale velocity and length respectively. Therefore, we can

deduce that (Verma, 2002; 2004)

Eb(t) = Eb(0) exp(tU/L). (23.46)

Thus, the time scale for the growth of the magnetic energy is L/U , which is the

eddy turnover time of large-scale flows.

Note that the aforementioned formula is applicable in the kinematic regime only,

much before the saturation of the dynamo. This growth rate is consistent with many

observations and numerical simulations. Also, using these arguments we can estimate

the saturation time scale as L/U , or one eddy turnover time. For galaxies, taking

L ∼ 1018 km and U ∼ 103 km/s yields the saturation time scale as approximately

107 years, which appears to be reasonable. Hence, such mathematical models are

useful for assessing general features of dynamo action in astrophysical objects.

Kumar et al. (2015) studied the energy transfers in a dynamo with Pm = 0.2

with vanishing kinetic and magnetic helicities. Their conclusions on these transfers

are illustrated in Fig. 23.3. The energy fluxes and shell-to-shell energy transfers for

this case are quite similar to those for Pm = 1. See Kumar et al. (2015) for details.

In the next section we describe the energy transfers in large Pm dynamos.
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Figure 23.3 For small-Pm dynamo (with Pm = 0.2), a schematic diagram of
shell-to-shell energy transfers among the u-shells and the b-shells.
From Kumar et al. (2015). Reprinted with permission from Taylor
and Francis.
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23.7.2 Large Pm dynamos

Interstellar magnetofluids have large magnetic Prandtl number (' 1011). As argued

in Section 22.5.2, large Pm dynamos have kη � kν . The properties of dynamos for

large Pm dynamos are different from those of small Pm dynamos.

Large Pm dynamos have small η and large kη. Hence, the nonlinear term

dominates the weak magnetic diffusion. Therefore, in the kinematic regime, the

magnetic energy growth is proportional to k2/3 for k � kη. Consequently, the

magnetic energy at large wavenumbers grows at a fast rate. This feature is

observed in many numerical simulations [see for example, Kumar et al. (2014b,

2015)]. It is however important to keep in mind that the highest growth rate and

the highest energy level are two different things. The wavenumber shell with

largest growth rate may not have the largest energy.

The aforementioned growth law is expected only during the kinematic regime.

At a later stage, when the magnetic energy has also grown at smaller wavenumbers,

the velocity field transfers energy to the magnetic field at large scales, as discussed

in the previous subsection.

Using numerical simulation of nonhelical dynamo with Pm = 20, Kumar et al.

(2014b, 2015) constructed a scenario of the energy transfers for large-Pm dynamo.

These transfers are summarized in Fig. 23.4, according to which the magnetic energy

growth is caused by nonlocal energy transfers from large-scale (or forcing-scale)

velocity field to small-scale magnetic field. With time, the peak of these energy

transfers moves towards lower wavenumbers. As a result, the integral length of the

magnetic field increases with time.2
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Figure 23.4 For large-Pm dynamo (with Pm = 20), a schematic diagram of
shell-to-shell energy transfers among the u-shells and the b-shells.
The wavenumber range with maximal U2B transfer shifts leftward
with time (see red thick arrow). From Kumar et al. (2015).
Reprinted with permission from Taylor and Francis.

2The formula of Eq. (23.38) may need to be modified due to the nonlocal interactions.
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For this dynamo, in Fig. 23.5 we illustrate various energy fluxes at various times.

As illustrated in the figure, Πu<
b> , which is positive, is responsible for the growth of

the magnetic field. Note that the peak of Πu<
b> shifts leftward with time, as in the

schematic diagram of Fig. 23.4. Also, note that Πb<
b> > 0. Hence, the growth of the

large-scale magnetic field is not due to an inverse cascade of magnetic energy.
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Figure 23.5 For large-Pm dynamo (with Pm = 20), plots of various energy
fluxes at different times. Πu<

b> dominates all other fluxes. From
Kumar et al. (2014b). Reprinted with permission from Institute
of Physics.

In Fig. 23.6 we also plot the shell-to-shell energy transfers for the dynamo with

Pm = 20. The figure clearly demonstrates nonlocal U2B transfers. Thus, small

wavenumber velocity field transfers energy to all the magnetic modes, which is

consistent with the schematic diagram of Fig. 23.4.
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Figure 23.6 For large-Pm dynamo (with Pm = 20), plots of shell-to-shell
energy transfers (U2U , B2B, U2B) at t = 0.48 (a1,a2,a3) and
t = 18.73 (b1,b2,b3). U2U and B2B transfers are local and
forward, but U2B transfers are nonlocal from the forcing band.
From Kumar et al. (2015). Reprinted with permission from Taylor
and Francis

23.7.3 Large-scale dynamo with forcing at intermediate scale

The dynamos discussed in the last two sections were forced at large length scales.

In the present section we consider a scenario when the velocity field is forced at an

intermediate scale. Kumar and Verma (2017) analyzed one such dynamo in which

the forcing was employed at scale 1/10 the box size, i.e., k = (10, 12), and the kinetic

and magnetic helicities were negligible. In addition, Pm = 1.

In Fig. 23.7 we exhibit various energy fluxes and dissipation rates toward the

later stages of the dynamo process when the system has reached a steady state. We

compute various fluxes for wavenumber sphere of radius k0 = 8 (central sphere of

Fig. 23.7). The velocity field is forced at k = [10, 12], which is represented as outer

wavenumber shell in the figure. In the figure, Πu>
b< (k0) ≈ 0.01 is the most dominant

energy input to the magnetic sphere. Also, the b < sphere loses relatively small

amounts of energy to u < and b >. The Joule dissipation (∼ 0.01) in the magnetic

sphere, represented by wavy line, approximately balances the energy input to the

sphere. Hence, the large-scale magnetic field is sustained by the Πu>
b< energy flux.

Note that this energy flux is only 1% of the total energy injection rate, but it is

sufficient for a steady state because the Joule dissipation is quite weak at this scale

(Dη ∝ k2).

.
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Figure 23.7 Various energy fluxes for the dynamo which is forced at k =
[10, 12]. These fluxes are of t = 127 eddy turnover time. Adapted
from a figure of Kumar and Verma (2017).

The energy transfers for this dynamo is schematically illustrated in Fig. 23.8.

The large-scale magnetic energy grows due to Πu>
b< energy flux. In addition, it also

receives energy from small-scale magnetic field at early stages. These two transfers

arise due to the energetic velocity modes near k = 10. Note that at later stages,

Πb<
b> > 0, but is quite weak compared to Πu>

b< . These results demonstrate that the

magnetic field at large-scale can grow when the velocity field at an intermediate

scale is forced. This is a large-scale dynamo.

Forcing

Early time

u

b

k = 1 k = 2 k = 3 k = 10 k = 12

Figure 23.8 For a dynamo with forcing at k = [10, 12] and Pm = 1, a
schematic diagram of shell-to-shell energy transfers among the u-
shells and the b-shells. From Kumar and Verma (2017). Reprinted
with permission from AIP.
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In Fig. 23.9, we illustrate the kinetic and magnetic energy spectra for this

dynamo. We observe that for k < kf , Eu(k) ∼ k2, which is the prediction of the

absolute equilibrium theory (Dallas et al., 2015). In Chapter 5 we presented a

numerical result from hydrodynamic turbulence that yields k2 energy spectrum for

k < kf (see Fig. 5.6). The magnetic energy spectrum Eb(k) decreases with k,

clearly demonstrating that the magnetic energy is maximal at k = 1, which is the

largest scale of the system.
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Figure 23.9 For a dynamo with forcing at k ∈ [10, 12] and Pm = 1, the kinetic
and magnetic energy spectra. For k < kf , Eu(k) ∼ k2 consistent
with the predictions of absolute equilibrium theory. From Kumar
and Verma (2017). Reprinted with permission from AIP.

In the next section we will describe the effects of helicity in a dynamo.

23.8 Role of Helicities in Dynamos

It is generally believed that both kinetic and magnetic helicities help the dynamo

process (Cardin and Cugliandolo, 2011). This has been demonstrated by Pouquet

et al. (1976) using eddy damped quasi normal Markovian (EDQNM)

approximation, and by Brandenburg (2001) using numerical simulations. Using

field-theoretic computations, Verma (2004) showed that the magnetic energy flux

in the presence of kinematic and magnetic helicities is

Πb<
(b>,u>)helical = −ar2

M + brMrK , (23.47)

where rK = HK(k)/(kEu(k)) and rM = kHM(k)/Eb(k). Clearly, the magnetic

energy flux due to the helicity would become negative if rMrK < 0, that is, when

the magnetic helicity and kinetic helicity are of opposite sign. This condition will

help the dynamo process.
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Alexakis et al. (2005b), Mininni et al. (2005), and Alexakis et al. (2007) have

analyzed the shell-to-shell energy transfers for an Arnold–Beltrami–Childress (ABC)

dynamo, which is a helical dynamo. The energy transfers reported by them have

similarities with those presented in earlier sections.

23.9 Analogy between the Vorticity and Magnetic Fields

The dynamical equations for the vorticity and magnetic fields are identical [see

Eqs. (2.13, 20.6a). Consequently, researchers have attempted to relate the properties

of these two fields. In Table 23.2, we list the similarities and dissimilarities between

the two fields.

Table 23.2 Similarities (first six) and dissimilarities (last two) between vorticity
and magnetic fields.

ω B

Divergence-free Divergence-free
Vortex stretching Stretching of B field lines
U2ω transfer U2B transfer

Enhancement of enstrophy Growth of magnetic field
ω2ω transfer (forward) B2B transfer (forward for nonhelical)

No vortex stretching in 2D No dynamo in 2D

ω = ∇× u B is independent field
No ω2U transfer B2U transfer is defined

These similarities help us understand the two systems better. However, the two

systems are different, and caution is required when we relate them.

In the last section of this chapter we describe how the magnetic field reduces

turbulent drag in magnetofluids.

23.10 Turbulent Drag Reduction in MHD

In this section, we compare the turbulent drag and kinetic energy flux in MHD

turbulence with the corresponding quantities of hydrodynamic turbulence. We can

ask the following question: For the same Re, what is the relative magnitudes of

the nonlinear term (u · ∇)u for the two systems? In general, the magnitude of

(u · ∇)u is not computed in numerical simulations; hence, we compare the related

quantities—kinetic energy flux Πu<
u>.

As discussed in the present and previous chapters, an introduction of magnetic

field induces strong energy transfers among the velocity and magnetic fields, mainly
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Πu<
B<, Πu<

B>, and Πu>
B> (see Fig. 23.5). Since the injected energy is divided along many

channels, Πu<
u> for MHD is reduced compared to its hydrodynamic counterpart. That

is,

[Πu<
u>]

MHD
< [Πu<

u>]
Hydro

. (23.48)

Since Πu<
u> ∼ [(u · ∇)u] · u, we can claim that the turbulent drag (u · ∇)u is

proportional to this flux. In other words, for the same large-scale velocity of the

two systems (U), the fluxes Πu<
u> (or the nonlinearity (u · ∇)u, or turbulent drag)

of MHD is lower than that for hydrodynamics. These observations indicate a

turbulent drag reduction in MHD turbulence.

The numerical results of MHD turbulence are in agreement with this

prediction. In Figs. 22.7 and 23.5, the kinetic energy fluxes Πu<
u> are much smaller

than the total energy flux. When we compare MHD turbulence with corresponding

hydrodynamic turbulence, the total energy flux would be Πu<
u> for hydrodynamic

turbulence. Hence, these simulations demonstrate that MHD turbulence exhibits

turbulent drag reduction. In Chapter 27 we will show that a similar mechanism

induces turbulent drag reduction in polymeric flows.

With this, we close our discussion on dynamos.

Further Reading

The present chapter provides only a brief review of dynamos mechanism from energy

transfer perspectives. For a more detailed discussion on dynamos, refer to books

and reviews by Moffatt (1978); Krause and Rädler (1980); Ruzmaikin et al. (1988);

Verma (2004); Cardin and Cugliandolo (2011); Brandenburg et al. (2005). The

reader could also refer to the papers cited in the chapter.

Exercises

1. Derive the equations of the six-mode kinematic and dynamic models discussed in this chapter.

2. Consider the models of Section 23.4. Write down the real and imaginary parts of the equations,
and construct the stability matrices. Analyze the parameters for dynamo action.

3. Consider the 2D3C helical dynamo of Section 23.4.3. Analyze the corresponding equations for
the vector potential and contrast it with those appearing in the no-dynamo theorem.
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Chapter 24

Phenomenology of Quasi-static
MHD Turbulence

In earlier chapters on MHD it was implicitly assumed that both velocity and

magnetic fields are turbulent; that is, Reynolds number, Re, and magnetic

Reynolds number, Rm, are large. In the present chapter we focus on a different

class of MHD flows for which Rm → 0. Liquid metals have very small Prandtl

numbers (∼ 10−6) or large magnetic diffusivity. Hence, for liquid metal flows with

moderate Re, Rm = RePm → 0. Such flows are referred to as quasi-static (QS)

MHD.

In this chapter we describe the energy spectrum and flux of QS MHD turbulence.

For simplification, we avoid the effects of the walls on the flow. In the next section,

we start with the governing equations of QS MHD.

24.1 Governing Equations

The MHD equations with a mean magnetic field B0 are as follows.

∂u

∂t
−B0 · ∇b + u · ∇u− b · ∇b = −∇p+ ν∇2u, (24.1a)

∂b

∂t
−B0 · ∇u + u · ∇b− b · ∇u = η∇2B. (24.1b)
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In these equations, B0 and b are in the units of velocity. We nondimensionalize

these equations using system’s velocity scale U0 and length scale L:

r→ Lr; u→ U0u; b→ U0b; p→ (U2
0 )p. (24.2)

As a result, the MHD equations become

∂u

∂t
− 1

U0

B0 · ∇b + u · ∇u− b · ∇b = −∇p+
1

Re
∇2u, (24.3a)

Rm

[
∂b

∂t
+ u · ∇b− b · ∇u

]
=

B0L

η
· ∇u +∇2b. (24.3b)

Note that in these equations, b is dimensionless, but B0 still has the units of velocity.

Under the limit Rm→ 0 and η →∞, we obtain

∂u

∂t
+ u · ∇u = −∇p+

1

U0

B0 · ∇b +
1

Re
∇2u, (24.4a)

∇2b = −B0L

η
· ∇u. (24.4b)

Equation (24.4b) is Poisson’s equation that can be solved given the source term

and the boundary condition. Thus, in QS MHD, b can be determined from u as

b = −∇−2[
L

η
B0 · ∇u]. (24.5)

Substitution of this b in Eq. (24.4a) yields the Lorentz force as

Fu = −B
2
0L

U0η
(B̂0 · ∇)∇−2[B̂0 · ∇u] = −N(B̂0 · ∇)∇−2[B̂0 · ∇u], (24.6)

where B̂0 is the unit vector along B0, and

N =
B2

0L

U0η
(24.7)

is called interaction parameter.1 Note that b � u under the QS MHD

approximation.

Now we construct the equations for QS MHD in Fourier space. First, we assume

that B0 is along the z direction, or B0 = B0ẑ. Under this notation, in Fourier space,

1In SI units,

N =
σB2

0L

ρU0
,

where σ and ρ are respectively the electrical conductivity and density of the liquid metal.
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Eqs. (24.5, 24.6) become

b(k) = i
B0L

η

kz
k2

u(k), (24.8)

Fu(k) = −B
2
0L

U0η

k2
z

k2
u(k) = −[N cos2 ζ]u(k), (24.9)

where ζ is the angle between the mean magnetic field and the wavenumber k.

Substitution of these terms in the Navier–Stokes equations yields

d

dt
u(k) + i

∑
p

{k · u(q)}u(p) = −ikp(k)− [N cos2 ζ]u(k)− νk2u(k),

(24.10a)

k · u(k) = 0. (24.10b)

The equation for the modal kinetic energy Eu(k) = |u(k)|2/2 is

d

dt
Eu(k) = Tu(k) + Fu(k)−Du(k), (24.11)

where Tu(k) is the total energy transfer to u(k) via nonlinear interactions, and

Fu(k) = <[Fu(k) · u∗(k)] = −[2N cos2 ζ]Eu(k) = −DJ(k), (24.12)

where DJ is the Joule dissipation. The quantity

Du(k) = 2νk2Eu(k) (24.13)

is the viscous dissipation rate.

When we compare the above energy equation with those of MHD (see

Chapter 21), we observe that

Tu(k) =
∑
p

Suu(k|p|q) (24.14)

yields kinetic energy flux, while the term Fu(k) originates from Sub. Note that B0 is

the mediator in this transaction, hence q = 0 and p = k. Therefore, the normalized

energy transfer term is

Tub(k) = − 1

U0

= [{k ·B0}{b(k) · u∗(k)}]

= −[2N cos2 ζ]Eu(k). (24.15)
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Thus, u(k) transfers energy directly to b(k) because q = 0. The transferred

energy is dissipated immediately via Joule heating. In addition, under quasi-static

approximation,

Tbb(k) = = [{k · u(0)}{b(k) · b∗(k)}]→ 0, (24.16a)

Tbu(k) = = [{k ·B0}{u(k) · b∗(k)}] = −Tub(k), (24.16b)

where u(0) is mean velocity of the flow, and b(k)→ 0.

Note that both viscous and Joule terms are dissipative. Hence, in the absence

of an external force, the kinetic energy of the flow will decay and vanish. In this

chapter we assume an additional large scale forcing for u that make the QS MHD

flow steady. In the following sections we will describe the steady-state properties of

QS MHD turbulence.

24.2 Distribution and Spectrum of Kinetic Energy

In this section we will describe the distribution of kinetic energy in Fourier space.

Since the Lorentz force and the Joule dissipation are proportional to cos2 ζ, they

vanish in the equatorial plane (ζ = π/2, or kz = 0). As a result, the nonlinear term

u · ∇u dominates in this plane. Hence, the dynamics in the kz = 0 plane is similar

to that of 2D hydrodynamic turbulence. Inverse energy cascade in this plane and

near it leads to strong vortical flow structures (Reddy and Verma, 2014; Verma,

2017).

For large N , the mean magnetic field makes the flow anisotropic, yet respecting

azimuthal symmetry. Hence, statistically, the modal kinetic energy is independent of

the azimuthal angle, and it is a function of k and the polar angle ζ (see Chapter 11).

We sum the modal energies in a ring whose inner and outer radii are k and k + ∆k

respectively, and sector angles are ζ and ζ + ∆ζ (see Fig. 11.1). The ring spectrum

is defined as

E(k, ζ) =
1

∆k∆ζ

∑
k′

E(k′). (24.17)

Let us characterize the ring spectrum of the liquid metal flows under a steady

state. We start with Eq. (4.40), sum the equation over the modes in the ring, and

then divide by ∆k∆ζ that yields

d

dt
Eu(k, ζ) = Tu(k, ζ) + Fu(k, ζ)−Du(k, ζ) + Fext(k, ζ), (24.18)
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where Tu(k, ζ) is the rate of nonlinear energy transfer to the ring; Du(k, ζ) is the

ring dissipation spectrum; and Fu(k, ζ),Fext(k, ζ) are respectively the ring spectra

of the Lorentz force and the external force. Note that −Fu is the Joule dissipation.

For a steady state, in the inertial–dissipation range where Fext(k, ζ) = 0, we

obtain

Tu(k, ζ) + Fu(k, ζ)−Du(k, ζ) = 0. (24.19)

We also assume that in the inertial range,

E(k, ζ) = E(k)
g(ζ)

π
. (24.20)

By definition,∫ π

0

dζE(k, ζ) =

∫ π

0

dζE(k)
g(ζ)

π
= E(k). (24.21)

Therefore,∫ π

0

dζ
g(ζ)

π
= 1. (24.22)

Under the above assumption, and on integration of Eq. (24.19) over ζ,

Tu(k) + Fu(k)−Du(k) = 0. (24.23)

Using Tu(k) = −dΠu(k)/dk, we convert this equation to

d

dk
Πu(k) = −(2νk2 + 2Nc2)Eu(k), (24.24)

where∫ π

0

dζ cos2 ζ
g(ζ)

π
= c2. (24.25)

Equation (24.24) has two unknowns—Eu(k) and Πu(k). Hence, following Pao

(1968), we make an additional assumption that Eu(k)/Πu(k) is independent of ν

and N , and that it depends only on the total dissipation rate εu and local k (also

see Section 5.5.1). For large Re and for N / 1, we expect the spectrum to be

Kolmogorov-like. Hence,

Eu(k)

Πu(k)
= KKoε

−1/3
u k−5/3, (24.26)
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substitution of which in Eq. (24.24) yields

d

dk
Πu(k) = −(2νk2 + 2Nc2)KKoε

−1/3
u k−5/3Πu(k). (24.27)

This equation has the following solution:

log

(
Πu(k)

Πu(k0)

)
= −3

2
KKo[(k/kd)

4/3 − (k0/kd)
4/3]

−3c2KKo

[
(k/kd2)−2/3 − (k0/kd2)−2/3

]
, (24.28)

where

kd =
( εu
ν3

)1/4

, (24.29a)

kd2 =

(
N3

εu

)1/2

. (24.29b)

We take Πu(k0) = εu and obtain Eu(k) using Eq. (24.26). Note however that this

model is expected to work well for N / 1.

We (with Anas) attempted to fit the aforementioned model with the numerical

data of Reddy and Verma (2014) and Verma and Reddy (2015). For N = 0.5,

with KKo = 2.5 and c2 = 0.3, we observed very good agreement between the model

predictions and numerical results. See Fig. 24.1 for an illustration. We remark that

the model of Verma and Reddy (2015) is somewhat similar to the model discussed

here and its predictions fit with the inertial range spectrum quite well; but this

model is deficient in capturing the dissipation–range energy spectrum.

The above model is expected to work for N / 1 for which Eu(k) is nearly

Kolmogorov-like. However, this prescription does not work for N � 1. Using the

numerical data of Reddy and Verma (2014), Verma and Reddy (2015) showed that

Eu(k) for large N has an exponential behavior (Fig. 24.2). Hence, in Eq. (24.24), we

assume that both Eu(k) and Πu(k) are proportional to exp(−k/k̄d). This assumption

yields the following solution (Verma and Reddy, 2015):

Eu(k) = A exp(−k/k̄d), (24.30a)

Πu(k) = A
[
2νk̄d(k

2 + 2kk̄d + 2k̄2
d) + 2Nc2k̄d

]
exp(−k/k̄d), (24.30b)

where A is the amplitude of the spectrum, while k̄d is an adjustable parameter.

Verma and Reddy (2015) showed that this model fits with the numerical data of

N = 130 and 220 with k̄d ≈ 1/0.18.
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Figure 24.1 For N = 0.5, model predictions (solid lines) of (a) energy
spectrum and (b) energy flux match with the numerical results
(dashed lines) of Reddy and Verma (2014) and Verma and Reddy
(2015).

Both these models exhibit steepening of energy spectrum from Kolmogorov’s

k−5/3 spectrum. In addition, the energy flux too decreases with wavenumber in the

inertial range itself. This feature is due to the Joule dissipation that saps the energy

flux at all scales [see Eq. (24.24)]. Here, the framework of variable energy flux is

useful for explaining this behavior of QS MHD turbulence.2

N = 130

N = 230

exp(–0.18 )k

100

10–2

10–4

10–6

10–8

10–10

E
k(
)

20 40 60 80 100
k

Figure 24.2 For very large N , the kinetic energy spectrum of QS MHD exhibits
exponential spectrum. From Reddy and Verma (2014). Reprinted
with permission from AIP.

2Several researchers had attributed the steepening of the energy spectrum to two-dimensionalization of the
flow. The aforementioned theory provides a contrary viewpoint.
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The one-dimensional energy spectrum is a sum of modal energies of all the modes

of the shell, and hence it does not capture the angular dependence, which is a

crucial aspect of anisotropic flows. To overcome this deficiency, Reddy and Verma

(2014) computed the ring spectra for various Ns; they showed that the anisotropy

in QS MHD increases with N . The ring spectra exhibited in Fig. 24.3(a, b, c) for

N = 0, 18, 130 illustrates this feature. Naturally, the ring spectrum for N = 0 is

isotropic. However, for finite N , maximum energy resides in the equatorial plane,

that is, E(k, ζ) peaks at ζ = π/2. The figure also contains the density plot of the

ring spectrum of the Joule dissipation:

DJ(k, ζ) = [2N cos2 ζ]Eu(k, ζ). (24.31)

The spectrum of DJ(k, ζ) is somewhat similar to Eu(k, ζ) with a subtle difference;

DJ(k, ζ) = 0 for ζ = π/2, but it peaks just above the equator for large N (Reddy

and Verma, 2014).
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Figure 24.3 Density and contour plots of logarithm of ring energy spectra
for (a) N = 0, (b) N = 18, (c) N = 130. (d, c, f) The
corresponding ring spectra for the Joule dissipation rate. Adapted
from the figures of Reddy (2015).
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Figure 24.4 (a) Plots of energy flux Π⊥(k) and Π‖(k), and the energy transfer
from u⊥ to u‖ via pressure, P‖. (b) Schematic diagram of the
energy transfers in QS MHD with large N indicating inverse
cascade of u⊥ and forward cascade of u‖, as well as energy
transfers from the equator toward the polar region. The Joule
dissipation dominates just above the equator. From Reddy et al.
(2014). Reprinted with permission from AIP.

24.3 Energy Transfers in Quasi-Static MHD

In this section, we describe some of the salient features of energy transfers in QS

MHD. For more details, refer to Reddy et al. (2014); Verma (2017).

1. The shell-to-shell and ring-to-ring energy transfers are local and forward.

2. For the same shell, the ring-to-ring energy transfers are from larger polar-angle

regions to smaller polar-angle regions, that is, from the equatorial region to

the polar region.

3. When QS MHD is forced at an intermediate scale, the flow exhibits interesting

energy transfers. Reddy et al. (2014) computed the kinetic energy fluxes for

u⊥ and u‖, denoted by Π⊥ and Π‖. As shown in Fig. 24.4(a), for k < kf ,

Π⊥ > Π‖ in magnitude (both negative). However, for k > kf , Π‖ > Π⊥ (both

positive). Thus, u⊥ flows from intermediate scales to large scales as in 2D

hydrodynamic turbulence (see Chapter 7), while u‖ cascades from intermediate

scales to small scales as in passive scalar turbulence (see Chapter 14). For

large N , a combination of u⊥ and u‖ makes the flow quasi-2D or 2D3C (two-

dimensional flows with three components).
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4. Figure 24.4(a) illustrates the energy exchange between u⊥ and u‖ via pressure.

We observe that P‖ > 0 implying energy transfers from u⊥ to u‖.

We summarize the above energy transfers in Fig. 24.4(b).

Thus, QS MHD turbulence exhibits interesting turbulent behavior: decrease of

energy flux in the inertial range, steepening of the energy spectrum, anisotropic

turbulence, exchange of energy among the parallel and perpendicular components

of the velocity, etc. We remark that many of these features are also observed in

MHD turbulence with a strong magnetic field (Teaca et al., 2009; Sundar et al.,

2017). This is because the mean magnetic field plays a similar role in MHD and QS

MHD.

With this, we end our discussion on QS MHD turbulence.

Further Reading

The present chapter provides a brief introduction to QS MHD turbulence. For more

details, refer to Moreau (1990), Knaepen and Moreau (2008), Zikanov et al. (2014),

and Verma (2017).
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Chapter 25

Electron
Magnetohydrodynamics

In magnetohydrodynamics (MHD), the linear momentum and electric current are

carried by ions and electrons respectively. However, at very short time scales, the

ions are immobile, and hence, electrons become the carriers of both linear

momentum and electric current. Such a system is referred to as electron

magnetohydrodynamics, or EMHD. In this short chapter we will describe the

properties of EMHD turbulence, specially from energy transfer perspectives.

25.1 Governing Equations

We denote the mass and charge magnitude of the electron by me and e respectively.

Throughout this chapter, the particle density and the velocity of the electron fluid

are represented by n and u respectively, and the magnetic and electric fields by B

and E respectively. In terms of these variables, the equations for the velocity field

of the electron fluid in CGS system are

men

[
∂u

∂t
+ u · ∇u

]
= −∇p− ne

[
E +

1

c
u×B

]
− µmenu, (25.1)

where µ is the frictional coefficient that has dimension of 1/[T ]. We assume perfectly

conducting electron fluid, hence E + (1/c)u×B = 0. Therefore, these equations

and the equations for the magnetic field are as follows:
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me

∂u

∂t
= me(u× ω)−∇(p/n+meu

2/2)− µmeu, (25.2a)

∂B

∂t
= ∇× (u×B), (25.2b)

∇×B =
4π

c
J = −4πne

c
u, (25.2c)

∇ · u = ∇ ·B = 0, (25.2d)

where J = −neu is the current density. In this derivation, we employ Eq. (2.12).

Note that in EMHD, B is in CGS units, not in Alfvénic units (in which B has

dimension of velocity).

Equation (25.2b) yields the following equation for the vector potential A:

∂A

∂t
= u×B +∇Ψ, (25.3)

where Ψ is a scalar. The generalized momentum is given by

P = meu−
e

c
A. (25.4)

We can sum Eq. (25.2a) and (−e/c)×Eq. (25.3) to derive the following equation for

P:

∂P

∂t
= u× (∇×P)−∇

[
p/n+meu

2/2 + (e/c)Ψ
]
− µmeu. (25.5)

Taking a curl of this equation yields

∂Q

∂t
= ∇× (u×Q) + µd2

e∇2B, (25.6)

where

Q = −(c/e)∇×P = B− mc

e
ω = B− d2

e∇2B, (25.7)

and

d2
e =

c2me

4πne2
=

c2

ω2
pe

, (25.8)

with ωpe as the plasma frequency of electrons.
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Therefore, the final equations for EMHD are Eq. (25.6), or

∂

∂t
Q + (u · ∇)Q = (Q · ∇)u + µd2

e∇2B. (25.9)

This is the only equation we need to solve in EMHD. Note that for given B, we

can compute u using Eq. (25.2c). The structure of this equation is analogous to the

induction equation of MHD [see Eq. (20.7)].

Biskamp et al. (1999) employed the following quadratic quantity:

E =

∫
(B2 + d2

eJ
2)dr =

∫
(Q ·B)dr. (25.10)

Note that this quantity is not conserved.1

In the next section, we present EMHD equations in Fourier space.

25.2 Fourier Space Description

Fourier space description of Eq. (25.9) provides useful insights into turbulence

properties. Following similar steps as in Section 20.3, we write Eq. (25.9) in

Fourier space as

d

dt
Q(k) + i

∑
p

{k · u(q)}Q(p) = i
∑
p

{k ·Q(q)}u(p)− µ(kde)
2B(k), (25.11)

where

Q(k) = [1 + (kde)
2]B(k). (25.12)

We define the modal energy of the system as

E(k) =
1

2
Q(k) ·B∗(k) =

1

2
[1 + (kde)

2]|B(k)|2. (25.13)

The governing equation for E(k) is

d

dt
E(k) =

1

2

[
B∗(k) · Q̇(k) + Q(k) · Ḃ∗(k)

]
=

∑
p

[SQQ(k|p|q) + SQu(k|p|q)], (25.14)

1Some papers incorrectly argue that E of Eq. (25.10) is a conserved quantity.
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where q = k− p, and SQQ(k|p|q) is the mode-to-mode energy transfer via QQ

channel from wavenumber p to wavenumber k with wavenumber q acting as a

mediator. SQu(k|p|q) is the corresponding mode-to-mode energy transfer via Qu

channel. Using these mode-to-mode transfers we can define the energy fluxes for

EMHD turbulence (similar to MHD turbulence).

In the next section we describe the turbulence phenomenology of EMHD.

25.3 Phenomenology of EMHD Turbulence

EMHD becomes turbulent when the nonlinear terms dominate the magnetic

diffusion term. In literature, the turbulence phenomenology is presented for two

different regimes: kde � 1 and kde � 1 (Biskamp et al., 1999; Shaikh, 2009). We

present these scaling arguments in this section.

25.3.1 kde � 1

In this regime, Q→ B, and hence Eq. (25.9) is reduced to

∂

∂t
B = ∇× (u×B) + µd2

e∇2B, (25.15)

which is the same as the equation for the magnetic field in MHD. By making an

analogy with the magnetic field, we deduce that the nonlinear terms (u · ∇)B and

(B · ∇)u induce the B2B and U2B transfers respectively, which lead to the energy

cascades Πb<
b>, Πu<

b< , and Πu<
b> (see Section 21.6). As described in Section 21.6,

Πb<
b> + Πu<

b< + Πu<
b> = const = εb, (25.16)

where εb is the total dissipation rate. Note that U2B transfers can yield growth of

the magnetic field, or dynamo action. This feature could be useful for

understanding the dynamics of EMHD systems, such as neutron star and laser

induced plasmas (Tzeferacos et al., 2018; Mondal et al., 2012).

By dimensional analysis of the energy equation and under the assumption of

local interactions, we obtain

kukB
2
k ∼ εb. (25.17)

From Eq. (25.2c), we obtain uk ∼ kBk, substitution of which in Eq. (25.17) yields

Bk ∼ k−2/3ε
1/3
b . (25.18)
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Hence, the energy spectrum in the kde � 1 regime is

EQ(k) ≈ EB(k) =
B2
k

k
= ε

2/3
b k−7/3. (25.19)

25.3.2 kde � 1

In this limit,

Q→ −mc
e
ω; E → j2 ∼ u2. (25.20)

Hence, the present limit corresponds to a weakly magnetized plasma. Therefore, we

expect the dynamics to be governed by Eq. (25.2a). For small µ, the flow becomes

turbulent, and it will follow Kolmogorov’s spectrum, as described in Chapter 5,

that is,

E(k) = ε2/3k−5/3. (25.21)

In the next section we show that this discussion can be simplified in the language

of energy transfers.

25.4 Simplified Version

We present EMHD equations and energy transfers in a simpler way.

25.4.1 Governing equations and conservation laws

Assuming perfectly conducting fluid, the equations for EMHD are

men

[
∂u

∂t
+ u · ∇u

]
= −∇p− µmenu, (25.22a)

∂B

∂t
= ∇× (u×B), (25.22b)

∇×B =
4π

c
J = −4πne

c
u, (25.22c)

∇ · u = ∇ ·B = 0. (25.22d)

Equation (25.22a) are the Navier–Stokes equations whose viscous term is

proportional to u. Note that Eq. (25.22a) does not get feedback from the magnetic

field. The equation for the magnetic field is same as the induction equation of
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MHD except that it is diffusionless (the magnetic diffusivity η = 0). Since the

magnetic field does not affect the velocity field, the above equations2 are similar to

those of kinematic dynamo with several subtle differences—(a) the new equations

are diffusionless, (b) the new viscous dissipation is active at all scales. Note that

the velocity field is time-dependent and it evolves simultaneously with the

magnetic field.

From the above equations we can conclude that
∫
dru2/2 is conserved when

µ = 0. But neither
∫
drB2/2 nor

∫
dr(u2/2 + B2/2) are conserved. Note however

that in 2D,
∫
drA2/2 is conserved because η = 0. Consequently, dynamo action is

possible in 2D EMHD. Thus, the conservation laws of EMHD are very different from

those of MHD.

25.4.2 Energy transfers in EMHD

Making a connection with the energy transfers of MHD turbulence (Chapter 21),

we conclude that

d

dt
Eb(k) =

∑
p

Sbb(k|p|q) +
∑
p

Sbu(k|p|q)

= Tbb(k) + Tbu(k), (25.23)

where Tbb(k) is the energy transfer to Eb(k) from other magnetic modes, while

Tbu(k) is the energy transfers to Eb(k) from the velocity modes. Note that Tbu(k)

is responsible for growth or decay of the magnetic energy, as in dynamo action.

Interestingly, without diffusion, the magnetic energy growth can saturate only via

nonlinear interactions.

The above arguments indicate that the magnetic field interacts with the velocity

field. However, there is no such coupling in Eq. (25.22a). We expect that such

interactions is incorporated at some level.

We assume that the velocity field is forced at large scales. With this, Eq. (25.22a)

yields the following equation for the variable kinetic energy flux under a steady state:

d

dk
Πu(k) = −2µEu(k), (25.24)

where Πu(k) and Eu(k) are the kinetic energy flux and spectrum respectively. In

the inertial range where the dissipation is weak, we expect

Πu(k) = const = εu, (25.25a)

Eu(k) = Kε2/3u k−5/3. (25.25b)

2In Eqs. (25.22), the magnetic field is a passive vector.
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Note however that the dissipation term 2µEu(k) is active at all scales, and it may

affect the above scaling in a significant way.

The equation for the magnetic energy appears more tricky. The flux of magnetic

energy is not constant due to the energy injection by the Tbu(k) term. Yet, following

Eq. (25.16), we can use the total magnetic energy dissipation rate εb as the parameter

for dimensional analysis.3 Therefore, following the arguments of Section 25.3.1, we

deduce that

EB(k) = ε
2/3
b k−7/3. (25.26)

These discussions reveal many ambiguities in the phenomenology of EMHD

turbulence, which we hope will be removed soon.

With this, we end our brief discussion on EMHD.

Further Reading

EMHD is a relatively recent field with not many rigorous results. Refer to Biskamp

et al. (1996, 1999), Shaikh (2009), Cho (2016), and Das et al. (2011) for more details.

3Magnetic energy dissipation requires resistivity, which is absent in Eq. (25.22b). Yet, we postulate small
magnetic diffusivity at small scales.
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MISCELLANEOUS FLOWS
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Chapter 26

Rotating Turbulence

Many natural and industrial flows involve rotation. All planets, stars, and galaxies

are rotating; hence, a good understanding of rotating flows is very important. In

this chapter we will describe energy transfers in such flows.

Rotating flows are described by the Navier–Stokes equation with centrifugal and

Coriolis forces. The centrifugal force is absorbed in the pressure gradient term,

and hence the dynamics is dictated primarily by the Coriolis force (Kundu et al.,

2015). In this chapter we will show that dynamics of rotating turbulence is quite

complex. Several proposed phenomenologies of rotating turbulence invoke analogy

with magnetohydrodynamics (MHD) turbulence. This is the reason why rotating

turbulence appears after the chapters on MHD turbulence.

We start our discussion with the basic equations of rotating turbulence.

26.1 Governing Equations

In real space, the equations for rotating flows are

∂u

∂t
+ (u · ∇)u = −∇p− 2Ω× u + ν∇2u, (26.1a)

∇ · u = 0, (26.1b)

where u, p are the velocity and pressure fields respectively, Ω = ωẑ is the rotation

velocity, and ν is the kinematic viscosity. The flow is assumed to be incompressible

with density chosen to be unity. The external force
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Fu = −2Ω× u (26.2)

represents the Coriolis force.1 The ratio of the Coriolis force and the nonlinear term

is called the Rossby number:

Ro =
Ω

UL
, (26.4)

where U,L are the large-scale velocity and length respectively. Since the Coriolis

force does no work (note that (Ω× u) · u = 0), the equation for the kinetic energy

is same as that for hydrodynamic flows [Eq. (2.27)]:

∂

∂t

u2

2
+∇ ·

[
u2

2
u

]
= −∇ · (pu− νu× ω)− νω2. (26.5)

Hence, the kinetic energy of an inviscid rotating flow is conserved under periodic or

vanishing boundary conditions.

In Fourier space, the corresponding equations are

d

dt
u(k) + Nu(k) = −ikp(k)− 2Ω× u(k)− νk2u(k), (26.6a)

k · u(k) = 0, (26.6b)

where

Nu(k) = i
∑
p

[k · u(k− p)]u(p). (26.7)

Since the nonlinear term is same as that for hydrodynamic flows [Eq. (3.16)], the

formulas for the kinetic energy flux and shell-to-shell energy transfers are same as

those for hydrodynamic turbulence. See Chapter 4 for the same.

In Fourier space, the kinetic energy injection rate in rotating turbulence is

Fu(k) =
1

2
Fu(k) · u∗(k) + c.c.

= {−Ω× u(k)} · u∗(k) + c.c.

= −Ω · [u(k)× u∗(k)] + c.c. = 0, (26.8)

where c.c. stands for complex conjugate. Similarly, the enstrophy injection rate is

1The centrifigural force can be written as

Fc = −Ω× (Ω× r) = −Ω(Ω · r) + Ω2r = −
1

2
∇
[
(Ω · r)2 − Ω2r2

]
, (26.3)

which is absorbed in the pressure gradient term.
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2Fω(k) = ik× Fu(k) · ω∗(k) + c.c.

= iFu(k) · [ω∗(k)× k] + c.c.

= Fu(k) · u∗(k)k2 + c.c. = 0. (26.9)

The kinetic helicity injection rate is

FHK (k) = <[ω∗(k) · Fu(k)]

= −2<[(−ik× u∗(k)) · (Ω× u(k)]

= 2<[ik · {u∗(k)× (Ω× u(k))})
= 2<[i(Ω · k)|u(k)|2] = 0. (26.10)

Thus, the Coriolis force does not inject any kinetic energy, enstrophy, or kinetic

helicity.

In the next section, we describe the properties of linear rotating hydrodynamics.

26.2 Properties of Linear Rotating Hydrodynamics

The linearized version of Eqs. (26.1) admits columnar structures called Taylor’s

column and intertial waves. We will describe these phenomena in the present section.

26.2.1 Taylor–Proudman theorem

Taylor–Proudman theorem predicts Taylor’s columns using the following arguments.

The linearized and inviscid version of Eqs. (26.1) is

∂u

∂t
= −∇p− 2Ω× u. (26.11)

For slow or steady motion, ∂u/∂t ≈ 0. Under this approximation, taking a curl of

Eq. (26.11) yields

∇× (Ω× u) = 0. (26.12)

Under the assumption of constant Ω and irrotational flow (∇×u = 0), Eq. (26.12)

becomes

Ω · ∇u = Ω
∂

∂z
u = 0; (26.13)

that is, the velocity field is invariant along ẑ. In other words, such rotating flows have

strong vortical structures that do not vary along ẑ. This is the Taylor–Proudman

theorem (Chandrasekhar, 2013).
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Taylor’s columns are time-independent solution of Eq. (26.11). The time-

dependent rotating hydrodynamics admits wave solution, which will be described

in the next section.

26.2.2 Inertial waves in rotating flows

In Fourier space, the linearized and inviscid version of Eqs. (26.6) yields

(Chandrasekhar, 2013)

d

dt
u(k) = −ikp(k)− 2Ω× u(k), (26.14a)

k · u(k) = 0. (26.14b)

In Craya–Herring basis, the Coriolis force is (see Figs. 9.1 and 9.2)

F(k) = −2Ω× u(k)

= −2Ω{ê3 cos ζ − ê2 sin ζ} × {u1ê1 + u2ê2}

= 2Ω{ê1u2 cos ζ − ê2u1 cos ζ − ê3u1 sin ζ}, (26.15)

where ζ is the angle between k and ẑ. Hence, the dynamical equations along

ê1(k), ê2(k) are

u̇1(k) = ωu2(k), (26.16a)

u̇2(k) = −ωu1(k), (26.16b)

where

ω = 2Ω cos ζ. (26.17)

Equations (26.16) have oscillatory solutions, which are inertial waves. These

solutions are represented more conveniently in helical basis as (see Section 9.5):

u̇+(k) =
1

2
(u̇2(k) + iu̇1(k))

=
1

2
[−ωu1(k) + iωu2(k)] = iωu+(k), (26.18)

and

u̇−(k) = −iωu−(k). (26.19)

These equations admit the following solution:

u+(k, t) = u+(k, 0) exp(iωt), (26.20a)
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u−(k, t) = u−(k, 0) exp(−iωt), (26.20b)

with Eq. (26.17) as the dispersion relation. Note that u+(k) and u−(k) modes have

maximal helicity with HK(k)/(kE(k)) = 1 and −1 respectively (Chandrasekhar,

2013).

Since u+(r, t) ∼ u+(k, t) exp(ik · r), we deduce that u+ moves along −k, while

u− moves along k. The phase velocity of the wave modes u+ and u− are

c± = ∓k̂2Ω

k
cos ζ. (26.21)

These waves are depicted in Fig. 26.1.

c– c–

c– c–

c+ c+

c+ c+

x

z

k

z

Figure 26.1 Wave u− that travels along k has phase velocity c−, while u+

traveling along −k has phase velocity c+.

Takng a projection of Eq. (26.14a) along ê3(k) yields

−ikp(k)− 2Ωu1(k) sin ζ = 0, (26.22)

using which we determine the pressure p(k) as

p(k) =
i

k
2Ωu1(k) sin ζ. (26.23)

In the next section we describe the nonlinear aspects of rotating flows.

26.3 Nonlinear Regime in Rotating Flows

Rotation induces anisotropy that makes the flow quite complex. Though Coriolis

force does not inject any kinetic energy or kinetic helicity, it induces an exchange of

energy between the parallel and perpendicular components of the velocity field via

pressure (see Section 11.4). We describe these transfers here.
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The pressure gets contributions from the nonlinear term (u · ∇)u and the Coriolis

force. The pressure due to the Coriolis force induces an energy exchange between

u⊥ and u‖. We derive this energy transfer by invoking Eq. (11.19d):

P‖(k) = k‖=[p(k)u∗‖(k)]

= −2k‖=[i
Ω

k
sin ζu1(k)u∗2(k) sin ζ]

= −
2Ωk‖
k

sin2 ζ<[u1(k)u∗2(k)], (26.24)

and

P⊥(k) = −P‖(k). (26.25)

Note that the pressure induced by nonlinearity is

p(k) =
i

k2
k ·Nu(k) (26.26)

that too contributes to P‖(k).

In Section 11.4, we described the kinetic energy fluxes Π‖ and Π⊥ for u‖ and

u⊥ components respectively. These fluxes are affected by P‖(k). Following the

discussion of Section 4.5, we obtain the following equations:

d

dk
Π‖(k) = P‖(k)− νk2E‖(k), (26.27a)

d

dk
Π⊥(k) = −P‖(k)− νk2E⊥(k). (26.27b)

Hence, P‖(k) induces variations in Π‖(k) and Π⊥(k) with k. We will describe these

effects in the subsequent discussion.

In the next section we will describe the leading turbulence phenomenologies of

rotating turbulence.

26.4 Phenomenology of Rotating Turbulence

26.4.1 Zeman’s phenomenology

Making an analogy with stably stratified turbulence, Zeman (1994) argued that the

Bologiano–Obukhov (BO) spectrum is applicable to rotating turbulence. In this

framework, they substitute N → Ω and ερ → εu in Eq. (15.39a) that leads to

Eu(k) = ε2/5u Ω4/5k−11/5 for k < kΩ (26.28a)

Eu(k) = ε2/3u k−5/3 for k > kΩ (26.28b)
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where kΩ, called the Zeman wavenumber, is obtained by matching the

aforementioned two spectra, which is

kΩ =

√
Ω3

εu
. (26.29)

The above arguments however have several flaws. In the BO phenomenology the

kinetic energy flux decreases with k due to the conversion of kinetic energy to

potential energy (see Section 15.5.1). But there is no potential energy in rotating

turbulence. In addition, in BO phenomenology, buoyancy is equated to the

nonlinear term [see Eq. (15.37)]. Similar matching of the Coriolis force with the

nonlinear term does not yield the above scaling. Hence, a simple extension of the

Bolgiano–Obukhov scaling to rotating turbulence is not appropriate.

26.4.2 Zhou’s phenomenology

Rotating flow has two kinds of inertial waves that travel along opposite directions

(see Section 26.2.2). Zhou (1995) made an analogy between inertial waves and

Alfvén waves of MHD, and argued that the time scale for the interactions between

the the inertial waves in rotating turbulence is

τ ≈ 1/ω ∼ 1/Ω. (26.30)

Now, using Eq. (22.7), Zhou (1995) argued that the kinetic energy flux is

Πu ≈ Πu+
≈ Πu− ≈

1

Ω
[Eu+

(k)Eu−(k)k4], (26.31)

where Eu± are the kinetic energies of u± fluctuations. For Eu+
(k) ≈ Eu−(k) ≈

Eu(k), we obtain

Eu(k) ≈ (ΠuΩ)1/2k−2. (26.32)

Thus, Zhou (1995)’s phenomenology yields Eu(k) ∼ k−2.

26.4.3 Smith and Waleffe’s phenomenology

A simplified version of Smith and Waleffe (1999)’s phenomenology is as follows.

They equated the Coriolis force with the nonlinear advection term that leads to

ku2
k ∼ ukΩ. (26.33)
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Hence,

Eu(k) =
u2
k

k
= Ω2k−3. (26.34)

26.4.4 Kuznetsov–Zakharov–Kolmogorov spectrum

Galtier (2003) employed weak wave turbulence theory to rotating turbulence and

derived the following Kuznetsov–Zakharov–Kolmogorov spectrum for the rotating

turbulence:

Eu(k⊥, k‖) ∼ k−5/2
⊥ k

−1/2
‖ . (26.35)

A derivation for this energy spectrum is as follows. Verma (2004) derived the

following formula for MHD turbulence under the weak turbulence limit:

Π ∼ k‖k6
⊥E

2
u(k)/B0, (26.36)

where B0 is the Alfvén speed, and Eu(k) is the modal energy. Note that the model

energy is related to the one-dimensional spectrum Eu(k) as

Eu(k) =
Eu(k)

k⊥k‖
. (26.37)

We can translate the formula of Eq. (26.36) to rotating turbulence by employing

B0 → Ωk−1
⊥ , (26.38)

substitution of which in Eq. (26.36) yields

Eu(k⊥, k‖) ∼ (ΠuΩ)1/2k
−5/2
⊥ k

1/2
‖ (26.39)

that has the same k⊥ dependence as Eq. (26.35), although with a sign difference for

k‖. For k‖ ≈ k⊥, we recover Zhou (1995)’s formula [Eq. (26.32)].

The aforementioned phenomenologies predict divergent spectral exponents. In

the following subsection, we present arguments based on energy fluxes that can

provide an alternative explanation for the variations in the spectral exponents

depending on the strength of Ω.
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26.4.5 Inferences from the energy transfers in rotating turbulence

Using Eq. (26.27) we deduce that in the inertial range where Du(k) = 0, the energy

flux would be affected by P‖(k). Unfortunately, these effects have not been studied

in detail, except in some works that will be presented in the next section. Here we

make certain conjectures on the energy spectrum and flux based on P‖(k).

For low Reynolds number, the nonlinear term can be ignored, and the sign of

P‖(k) will determine the variations in Π‖ and Π⊥. However, for large Reynolds

numbers, a strong nonlinearity makes u⊥ stronger than u‖. Thus, the flow becomes

quasi-two-dimensional that leads to an inverse cascade of kinetic energy as in two-

dimensional turbulence (see Chapter 7). Thus, in rotating turbulence, anisotropy

induced by rotation exhibits a major complexity depending on the strength of Ω.

In the next section, we will describe some of the leading experimental and

numerical results of rotating turbulence, and relate them to the aforementioned

phenomenologies.

26.5 Experimental and Numerical Results on Rotating
Turbulence

There have been a large number of experimental and numerical works on rotating

turbulence. Here, we present only a small fraction of these results.
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Figure 26.2 (a): Eu(k) for the rotating turbulence of Morize et al. (2005)’s
experiment. The spectral exponent varies from −5/3 to −2.2 as
Ro decreases from 5.5 to 0.35. (b): For a numerical simulation
for Ro = 0.25, Biferale et al. (2016) reported dual spectrum for
Eu(k) with exponents −2 and −5/3. Figures (a) from Morize
et al. (2005). Reprinted with permission from AIP. Figure (b) from
Biferale (2016). Reprinted under Creative Commons Attribution
3.0 License.
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Morize et al. (2005) performed experiments on rotating turbulence with slow and

moderate rotation and showed that Eu(k) ∼ k−5/3 for Ro from 100 to 1, but Eu(k)

steepens gradually from k−5/3 to k−2.2 as the Rossby number decreases from 1 to

0.1 (see Figure 26.2(a)). Mininni et al. (2009) studied scale interactions and scaling

laws in rotating flows with moderate Ro. Biferale et al. (2016) simulated rotating

turbulence for Ro = 0.25 and reported Eu(k) with dual spectrum, a combination of

k−2 and k−5/3. See Figure 26.2(b) for an illustration. It will be interesting to relate

these spectra to energy flux variations, as described in Section 26.4.5.

Sharma et al. (2018b) simulated rapidly rotating decaying turbulence with the

asymptotic Ro ranging from 10−3 to 10−2. They reported a strong inverse cascade of

kinetic energy leading to strong columnar structures as shown in Figure 26.3(a). In

fact, these structures have dominant contributions from the Fourier modes u(1, 0, 1)

and u(0, 1, 1), where the indices represent kx, ky, kz respectively. Such structures

lead to a weakening of energy at intermediate and small scales. It is important to

note that these structures arise due to a strong inverse cascade of energy (a nonlinear

effect). Hence, the structures of Fig. 26.3 are not Taylor columns that arise in linear

rotating systems.

Decaying

turbulence

x

z

x

y

0 108

| |w

y

x

| |u

0 2
(a) (b)

Forced

turbulence

Figure 26.3 Strong columnar structures appear (a) in decaying rotating
turbulence simulations of Sharma et al. (2018b) during the
asymptotic regime, and (b) in forced rotating turbulence
simulations (kf = 80–82) of Sharma et al. (2018a). The structures
in forced turbulence are more diffused compared to those of
decaying turbulence. Adopted from the two figures of Sharma
et al. (2018b) and Sharma et al. (2018a).

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316810019.027
Downloaded from https://www.cambridge.org/core. Access paid by the UCSF Library, on 04 Jul 2019 at 22:59:36, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316810019.027
https://www.cambridge.org/core


Rotating Turbulence 439

Sharma et al. (2018b) observed that the energy flux is very weak in rapidly

rotating decaying turbulence though the Reynolds number is as high as 3000. As

in 2D hydrodynamics, the enstrophy flux Πω(k) dominates Πu(k) for large k (see

Fig. 26.4(c, d)). Here the large-scale structures provide effective forcing at their

respective scale, hence kf ≈ 1/L. It is believed that the energy buildup at large

scales is stronger in rotating turbulence than that in 2D turbulence.
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Figure 26.4 For decaying rotating turbulence simulations of Sharma et al.
(2018b) at t = 49 and 148: (a) the normalized energy spectrum
k3E⊥(k) for a horizontal cross-section; (b) the energy spectrum
k3E(k); (c) the energy flux Πu(k); (d) the enstrophy flux Πω(k).
The predictions of Eqs. (26.40), plotted as dashed lines, match
with the numerical results (solid lines) quite well. E⊥(k) and
Πω(k) are computed for a horizontal cross-section.

Note however that Πω(k) is much weaker than its 2D hydrodynamic counterpart.

This is due to the weakening of fluctuations at k > 10 due to the strong inverse

cascade of energy. Sharma et al. (2018b) modeled the energy spectrum and flux using

Pao’s model for 2D turbulence in the enstrophy cascade regime (see Section 7.3):

Πω(k) = εω exp
(
−K ′2D(k/kd2D)2

)
, (26.40a)
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Eω(k) = K ′2Dε
2/3
ω k−1 exp

(
−K ′2D(k/kd2D)2

)
, (26.40b)

Eu(k) = K ′2Dε
2/3
ω k−3 exp

(
−K ′2D(k/kd2D)2

)
. (26.40c)

The enstrophy flux and E⊥(k) are computed for a horizontal cross-section of the

flow. See Fig. 26.4(a, b) for an illustration of the energy spectrum at t = 49 and t =

149 during the evolution of turbulence. The predictions of Eqs. (26.40), represented

by dashed lines, match with the numerical results (solid lines) quite well.
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Figure 26.5 For rapidly rotating forced turbulence simulations of Sharma et al.
(2018a) with kf = (80–82): (a) the energy flux Πu(k); (b) the
enstrophy flux Πω(k). (c) energy spectrum E(k), E⊥(k), E‖(k)
in log-log scale; (d) E(k), E⊥(k), E‖(k) in semilog-y scale. For
k < kf , Eu(k) ∼ k−5/2, but for k > kf , the predictions of
Eqs. (5.40) match with the numerical results quite well.
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Later, Sharma et al. (2018a) simulated rapidly rotating forced turbulence with

isotropic forcing employed at the intermediate range (kf = (80–82)). They showed

that the vertical structures are diffused compared to the decaying case. See

Fig. 26.3(b) for an illustration. For k < kf , Eu(k) ∼ k−5/2 consistent with the

Kuznetsov–Zakharov–Kolmogorov spectrum (Galtier, 2003). However, at the

intermediate and small scales, the flow is nearly three-dimensional with very small

amount of energy. Consequently, the flux and spectrum are similar to those for

laminar flows [of the form exp(−ak) as in Eqs. (5.40). See Fig. 26.5 for an

illustration of the energy spectrum, and the energy and enstrophy fluxes.

Sharma et al. (2019) computed Π⊥,Π‖, and P‖ for the aforementioned rapidly

rotating decaying and forced turbulence. These quantities are plotted in Fig. 26.6.

The figure exhibits strong variations in these quantities. In addition, P‖ > 0

implying energy transfers from u⊥ to u‖. However P‖ is weak.
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Figure 26.6 For the decaying and forced rotating turbulence simulations of
Sharma et al. (2018b) and Sharma et al. (2018a), plots of Π,
Π⊥,Π‖, and P‖. Note that P‖ > 0. Adopted from a figure of
Sharma et al. (2019).

In summary, these simulations indicate that for slow and moderate rotation, the

energy spectrum is a dual spectrum with two power laws (see Fig. 26.2(b)). However,

for the rapidly rotating turbulence, the spectrum for k > kf is exponential due to a

strong inverse cascade of energy. The aforementioned results illustrate the usefulness

of energy flux and energy transfers for describing rotating turbulence.

With these remarks, we end our discussion on rotating turbulence.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316810019.027
Downloaded from https://www.cambridge.org/core. Access paid by the UCSF Library, on 04 Jul 2019 at 22:59:36, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316810019.027
https://www.cambridge.org/core


442 Energy Transfers in Fluid Flows

Further Reading

The literature on rotating turbulence is extensive. For an introduction to this

topic, we recommend books by Davidson (2013) and Greenspan (1968). For the

phenomenological theories, refer to Zeman (1994), Zhou (1995), Smith and Waleffe

(1999), Galtier (2003), and the reference therein. For further details on

experimental investigations of rotating turbulence, refer to the papers cited in this

chapter as well as in Moisy et al. (2010). Refer to Sharma et al. (2018a,b) for

more details on numerical results presented in this chapter.
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Chapter 27

Flow with a Tensor

On many occasions we encounter fluid flows that advect tensorial fields, for example,

polymers, elastic material, etc. A polymer, which will be discussed in this chapter is

modeled as a second rank tensor. Following the categorization of scalar and vector

fields, we classify a tensor as passive or active depending on whether it affects the

velocity field or not.

In this short chapter, we will provide a cursory view of the energy spectra and

fluxes of a tensor flow. Some of the predictions discussed in this chapter are new,

and they need to be tested in future. For a more detailed discussion on earlier works

on tensor flows, specially those with polymers, refer to de Gennes (1979) and Benzi

and Ching (2018).

27.1 Governing Equations

Consider a tensor C being advected by an incompressible flow. The equations for

the two fields—C and velocity field u—are

∂u

∂t
+ (u · ∇)u = −∇(p/ρ) + ν∇2u + Fu, (27.1a)

∂Cij
∂t

+ (u · ∇)Cij = η∇2Cij + FC,ij, (27.1b)

∇ · u = 0, (27.1c)

where p is the pressure field, ρ is density which is assumed to be unity, ν is the

kinematic viscosity, η is the diffusion coefficient of the tensor, and Fu, FC are the
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444 Energy Transfers in Fluid Flows

force fields to u, C respectively. In this equation, Cij represents a component of the

tensor field; here, the indices i, j take values 1, 2, 3 or x, y, z. In Eq. (27.1b), the

ratio of the nonlinear term and the diffusion term is termed as Reynolds number

based on C:

ReC =
(u · ∇)C
η∇2C

=
UL

η
. (27.2)

For the tensor field, we define the energy density as

EC(r) =
1

2
C2 =

1

2
CijCji, (27.3)

whose evolution equation is

∂

∂t

C2

2
+∇ ·

(
1

2
C2u

)
= FC,ijCji + ηCji(∇2Cij). (27.4)

In the above equations, we follow Einstein’s notation in which the repeated indices

are summed. Clearly, in the absence of FC and η, for periodic or vanishing boundary

conditions,∫
1

2
C2dr = const. (27.5)

This is a statement of conservation of tensor energy in a nondiffusive and force-free

tensor flow.

In Fourier space, the dynamical equations are

d

dt
u(k) + Nu(k) = −ikp(k) + Fu(k)− νk2u(k), (27.6a)

d

dt
Cij(k) +NC,ij(k) = FC,ij(k)− ηk2Cij(k), (27.6b)

k · u(k) = 0, (27.6c)

where the nonlinear terms are

Nu(k) = i
∑
p

{k · u(k− p)}u(p), (27.7a)

NC,ij(k) = i
∑
p

{k · u(k− p)}Cij(p). (27.7b)

The equations for the modal kinetic energy and modal tensor energy, Cij(k)C∗ji(k)/2,

are as follows:
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d

dt
Eu(k) =

∑
p

= [{k · u(q)}{u(p) · u∗(k)}] + <[Fu(k) · u∗(k)]− 2νk2Eu(k),

(27.8a)

d

dt
EC(k) =

∑
p

=
[
{k · u(q)}{Cij(p)C∗ji(k)}

]
+ <[FC,ij(k)C∗ji(k)]− 2ηk2EC(k).

(27.8b)

In the next section we describe the properties of energy transfers in a tensor flow.

27.2 Mode-to-mode Tensor Energy Transfer and Tensor Energy
Flux

The energy exchange among the velocity modes is facilitated by the nonlinear term

(u · ∇)u. Hence, the formulas for the mode-to-mode kinetic energy transfer and

kinetic energy flux in a tensor flow would be the same as those derived in Chapter 4.

We do not repeat them here. Rather, we focus on the energy transfers for the tensor

field.

The energy transfers among the tensor Fourier modes occur via the nonlinear

term (u · ∇)Cij. For the triad (k′,p,q) that satisfies k′ + p + q = 0, using

Eq. (27.8b), we derive that

d

dt
EC(k

′) = SCC(k′|p,q)

= −= [{k′ · u(q)}{Cij(p)Cij(k′)}] + = [{k′ · u(p)}{Cij(q)Cij(k′)}] ,
(27.9)

where SCC(k′|p,q) is the combined tensor energy transfer to the mode C(k′) from

C(p) and C(q). It is easy to show that

SCC(k′|p,q) + SCC(p|q,k′) + SCC(q|k′,p) = 0, (27.10)

which is a statement on the detailed conservation of tensor energy in a triad.

We can derive the mode-to-mode tensor energy transfer following the same

arguments as in Section 6.1.1. We skip the details and just state the result. The

mode-to-mode tensor energy transfer from tensor mode C(p) to tensor mode C(k′)
with the mediation of velocity mode u(q) is

SCC(k′|p|q) = −= [{k′ · u(q)}{Cij(p)Cij(k′)}] . (27.11)

In Eq. (27.8b), the nonlinear term [(u · ∇)C] · C represents advection of the tensor

field C by the velocity field u. Therefore, u mediates the tensor energy transfer
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between C fields (see Section 4.1.1 for a detailed argument). In Fourier space, this

translates to the tensor energy transfer from mode C(p) to mode C(k′) with mode

u(q) acting as a mediator. In Fig. 27.1 we illustrate this transfer.

Giver

S ( | | ) = – [{ }{ ( ) ( )}]p q pk’ k’ u q k’( )× ×

( )p

( )k’
Receiver –[( ) ]u Ñ× ×

u q( ) Mediator

Figure 27.1 A schematic diagram exhibiting mode-to-mode tensor energy
transfer from mode C(p) to mode C(k′) with mode u(q) acting
as a mediator. In this energy transfer, mode u(q) essentially
advects tensor modes C(p) and C(k′) who exchange energy among
themselves.

Using the aforementioned mode-to-mode energy transfer, we deduce that the

tensor energy flux for a wavenumber sphere of radius k0 is

ΠC(k0) =
∑
|k′|>k0

∑
|p|≤k0

SCC(k′|p|q). (27.12)

Refer to Chapter 4 for a definition of energy flux.

Following the arguments of Section 4.4, we deduce the evolution equation for the

tensor energy spectrum EC(k) as

∂

∂t
EC(k, t) = − ∂

∂k
ΠC(k, t) + FC(k, t)−DC(k, t), (27.13)

where FC(k) is the tensor energy supply rate by FC, and DC(k) is the diffusion rate

of tensor energy in shell k, that is,

FC(k)dk =
∑

k<k′≤k+dk

<[FC,ij(k
′)C∗ji(k′)], (27.14)

DC(k)dk =
∑

k<k′≤k+dk

2ηk2EC(k
′). (27.15)
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Under a steady state, ∂EC(k)/∂t ≈ 0, we obtain

d

dk
ΠC(k) = FC(k)−DC(k). (27.16)

In the inertial range, DC(k) is negligible. Hence, in the inertial range, ΠC(k) depends

on the properties of FC(k):

d

dk
ΠC(k) = FC(k). (27.17)

As argued for the velocity, scalar, and vector fields (see Section 4.5),

1. ΠC(k) = const. when FC(k) = 0.

2. ΠC(k) increases with k when FC(k) > 0.

3. ΠC(k) decreases with k when FC(k) < 0.

In the next section, we will derive the spectrum and flux of a passive tensor field.

27.3 Energy Spectrum and Flux in a Passive Tensor

A tensor field is called passive when Fu is independent of the tensor field. For such

a configuration, we derive the turbulent spectra and fluxes for both velocity and

tensor fields. Since the velocity field is unaffected by the tensor field, its spectrum

and flux follow Kolmogorov’s phenomenology if Fu acts at large scales.

Now for the tensor field, if we assume that FC is active only at large scales, then

in the inertial range, Eq. (27.17) yields

ΠC(k) = const. (27.18)

We derive the energy spectrum for the tensor field following similar arguments as

in Chapters 14 and 19. Scaling arguments indicate that the inertial EC(k) would

depend on Πu, ΠC, and k, whose dimensions are

[Πu] = [L2/T 3]; [ΠC] = [C2/T ]; [EC(k)] = [C2L]. (27.19)

Now we postulate that

EC(k) = (ΠC)
α(Πu)βkγ . (27.20)

Matching the dimensions of [C], [L], and [T ] yields

α = 1; β = −1/3; γ = −5/3. (27.21)
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Therefore,

EC(k) = KΠC(Πu)−1/3k−5/3, (27.22)

where K is a nondimensional constant. Thus, we derive the spectrum and flux of the

tensor energy; these formulas are similar to those of a passive scalar and a passive

vector.

In the next section we describe the properties of a turbulent flow of dilute polymer

solution in which the polymer acts as an active tensor.

27.4 Flow with an Active Tensor Field: FENE-p Model

When a small concentration of polymer is dispersed in a turbulent flow, the flow

exhibits many interesting phenomena, one among them being turbulent drag

reduction. In such flows, the polymer is often described by the finitely extensible

nonlinear elastic-Peterlin (FENE-P) model. In this section we briefly describe the

equations and turbulence properties of such flows.

27.4.1 Governing equations

For the FENE-p model, the equations for the flow velocity and the

polymer-conformation tensor C are given by the following simplified equations

(Fouxon and Lebedev, 2003; Perlekar et al., 2006):

∂u

∂t
+ (u · ∇)u = −c1∇(p/ρ) + ν∇2u + c1∇ · (fC), (27.23a)

∂C
∂t

+ (u · ∇)C = (∇u)T · C + C · (∇u) + η∇2C, (27.23b)

∇ · u = 0, (27.23c)

where c1 is a constant, and f is a function of C. When we compare these equations

with Eqs. (27.1), we deduce that the following forces are associated with u and C:

Fu,i = c1∂j(fCji), (27.24)

FC,ij = [(∇u)T · C + C · (∇u)]ij ∼ Cil∂luj, (27.25)

and the energy feed to kinetic energy and tensor energy in Fourier space are

respectively:

Fu(k) = −c1

∑
p

= [kjf(q)Cij(p)u∗i (k)] , (27.26)
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FC(k) = −
∑
p

=
[
Cil(q)pluj(p)C∗ij(k)

]
, (27.27)

where q = k− p. Both the injection rates are convolutions due to their nonlinearity.

From the above form of energy injection, we deduce that the polymer in the FENE-p

model is an active tensor.

In a turbulent flow of dilute polymer solution, we expect that the velocity field

stretches the polymers. This mechanism is similar to the stretching of the magnetic

field by the velocity field in MHD or dynamo (u→ b), and vortex stretching by

the velocity field (u→ ω) (Tabor and de Gennes, 1986; Fouxon and Lebedev, 2003;

Thais et al., 2013). For such energy transfers associated with polymers stretching,

Fu(k) < 0; FC > 0. (27.28)

These relations imply energy transfers from the velocity field to the tensor field.

After this, we describe energy spectra of the aforementioned system.

27.4.2 Energy spectra and fluxes in the FENE-p model

Depending on the relative strengths of the nonlinear terms, a tensor flow can be

divided into four categories, which will be described in the following. This

classification is similar to those adopted for scalar and vector flows.

Based on Eq. (27.28) we argue that Eu(k) would be steeper and EC(k) shallower

than the corresponding spectra for the passive tensor (see Section 27.3).

Re� 1; ReC � 1

This case corresponds to a turbulent flow of dilute polymer solution. As argued in

Section 4.5 case (3), negative Fu(k) leads to a reduction of the flux Πu(k) with k.

Hence, we expect that Eu(k) will be steeper than the k−5/3 spectrum. However,

positive FC will make ΠC increase with k, thus making it shallower than the k−5/3

spectrum of a passive tensor. Determination of the spectral exponents however

would require exact forms of Fu and FC.

Re� 1; ReC � 1

This case corresponds to gels that move very slowly. We derive the energy spectra

for this case following arguments similar to that in Section 16.9.4. Since Re � 1,

Eq. (27.23a) yields (assuming f ∼ 1)

νk2uk ≈ kCk. (27.29)
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Since ReC � 1, we expect a cascade of tensor energy. An assumption of a constant

tensor energy flux yields

ΠC ≈ kukC2
k. (27.30)

Equations (27.29, 27.30) yield

uk ≈ ν−2/3Π
1/3
C k−1; Ck = ν1/3Π

1/3
C . (27.31)

Therefore,

Eu(k) ≈ ν−4/3Π
2/3
C k−3, (27.32a)

EC(k) ≈ ν2/3Π
2/3
C k−1. (27.32b)

The aforementioned spectra get modified when the tensor energy flux varies with k,

or when we include the effects of f of Eq. (27.23a). Note that these predictions are

in general agreement with some of the experimental results (Majumdar and Sood,

2011).

Due to uncertainties in the scaling of Fu and FC, it is difficult to model the other

two cases: Re � 1; ReC � 1, and Re � 1; ReC � 1. For the former, EC(k) will be

steeper than the k−5/3 spectrum, but for the latter, both Eu(k) and EC(k) would

be much steeper than the k−5/3 spectrum, possibly of an exponential form as in

laminar hydrodynamics (see Section 5.6).

In the next section, we will invoke Eq. (27.28) to describe polymer-induced

turbulent drag reduction.

27.5 Turbulent Drag Reduction in Polymeric Flows

Many experiments and numerical simulations report turbulent drag reduction in a

flow of dilute polymer solution. This phenomena remains an unsolved problem in

turbulence. Researchers attribute this drag reduction to boundary layers,

nonlinearity, back-reaction by polymers to the flow, etc. In this section we will

show that the energy transfers play an important role in turbulent drag reduction.

An analogy with MHD turbulence provides interesting clues to this intriguing

problem.

In MHD turbulence and dynamo, the magnetic field typically gains energy from

the velocity field. These transfers are responsible for the growth of the magnetic

energy in the early stages of the dynamo, and for saturation at later stages. As

argued in the previous section, in polymeric turbulent flows, we expect energy

transfers from the velocity field to the configuration tensor (Tabor and de Gennes,
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1986; Fouxon and Lebedev, 2003; Thais et al., 2013). These energy transfers lead

to stretching of the polymers.

In analogy with the discussion of Section 23.10, we argue that the injected

energy in the polymeric fluid at large scales is divided among the kinetic energy

and tensor energy. Though tensor energy flux is not as clearly defined as the

energy fluxes of MHD turbulence, we can safely argue that the kinetic energy flux

Πu<
u> in polymeric turbulent flow would be smaller than the corresponding flux of

hydrodynamic turbulence, as in MHD turbulence (see Section 23.10). Since the

flux Πu<
u> arises due to the term [(u · ∇)u] · u, and turbulent drag is proportional to

(u · ∇)u, we deduce that

[(u · ∇)u]Tensor < [(u · ∇)u]Hydro . (27.33)

Or, the turbulent drag is reduced in a polymeric flow compared to its hydrodynamic

counterpart. Thus, we argue for turbulent drag reduction in polymeric fluids from

energy transfer perspectives.

With this, we conclude our discussion on tensor flows. We provide certain

predictions for the energy spectra and fluxes that need to be tested using

numerical simulations and experiments.

Further Reading

There is extensive literature on polymeric flows. Here we provide only some of

the references. de Gennes (1979) provides an introduction to polymers. Benzi and

Ching (2018) and Sreenivasan and White (2000) have written reviews on turbulent

drag reduction in polymeric flows.
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Chapter 28

Shell Models of Turbulence

Analytical and numerical works on turbulence with all the Fourier modes are quite

involved. Therefore, researchers often employ shell models that contain much fewer

variables. There are a large number of research papers (e.g., Biferale (2003); Plunian

et al. (2012)) and books (e.g., Ditlevsen (2010)) that cover a variety of shell models

and their properties, for example, energy spectrum and flux, multiscaling exponents,

etc. In this chapter we will focus on the energy transfers in a shell model (Plunian

et al., 2012; Kumar and Verma, 2015; Verma and Kumar, 2016).

We start with a shell model for hydrodynamic turbulence.

28.1 Shell Model for Hydrodynamic Turbulence

Researchers have constructed many shell models for hydrodynamic turbulence. In

this section, we will describe one such shell model, and then we will discuss the

energy transfers in the model.

28.1.1 Shell model

In a shell model, the wavenumber space is divided into concentric shells. In

Fig. 28.1 we illustrate one such shell whose inner and outer radii are kn and kn+1

respectively. The velocity field for the shell is denoted by a single complex variable

Un. Considering that turbulence exhibits power law energy spectrum, the radii

{kn} are binned logarithmically, that is,
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kn = k0λ
n, (28.1)

where λ > 1 is a constant (see Appendix A).

ky

kx

kn

kn+1

Un

Figure 28.1 For a shell model, a schematic diagram of a shell whose inner
and outer radii are kn and kn+1 respectively. A single variable Un
represents the velocity field of this shell.

As described in Chapter 5, the turbulence interactions among the shells are local.

Hence, shell kn interacts with shells kn−1 and kn+1. In the shell model, the condition

on the wavenumbers, k = p + q, corresponds to

kn+1 = kn + kn−1. (28.2)

Substitution of k0λ
n in this equation leads to

λ2 = λ+ 1, (28.3)

hence λ = (
√

5 + 1)/2, which is the golden mean.

Using the above properties, a Sabra-based shell model (L’vov et al., 1999) is

written as

dUn
dt

= Nn[U,U ]− νk2
nUn + Fn, (28.4)

where

Nn[U,U ] = −i(a1knU
∗
n+1Un+2 + a2kn−1Un+1U

∗
n−1 − a3kn−2Un−1Un−2).(28.5)
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Here, a1, a2, a3 are constants. In this equation, the complex conjugates are chosen

to mimic the reality condition [U(−kn) = U∗(kn)]. For example, for the first term in

the right-hand-side, kn = kn+2−kn+1; hence, the corresponding product is Un+2U
∗
n+1.

When ν = 0 and Fu = 0, the conserved quantities of the shell model are as

follows.

Total kinetic energy Eu =
∑
n

|Un|2/2, (28.6a)

Total kinetic helicity HK =
∑
n

(−1)nkn|Un|2. (28.6b)

These conservation laws yield the following conditions on the nonlinear term:∑
n

< (U∗nNn[U,U ]) = 0, (28.7a)

∑
n

< ((−1)nknU
∗
nNn[U,U ]) = 0. (28.7b)

The aforementioned conditions yield the following relations for the constants ai’s:

a1 + a2 + a3 = 0, (28.8a)

a1 − λa2 + λ2a3 = 0. (28.8b)

These two equations do not provide a unique solution for ai’s. Therefore, we write

a1 and a3 in terms of a2 as

a1 = −(1 + λ)a2; a3 =
1 + λ

λ
a2. (28.9)

In the next section we will describe energy transfers and energy flux in the above

shell model.

28.1.2 Energy transfers in the shell model

For the derivation of shell-to-shell energy transfers in the shell model, we focus on

a set of three consecutive shells (kn−1, kn, kn+1). This set is analogous to the triad

(k,p,q) with k = p + q in Fourier space. Using Eqs. (28.4, 28.5) with ν = 0 and

Fu = 0, we derive the following energy equations for the above three shells:

d

dt

1

2
|Un−1|2 = Suu(n− 1|n, n+ 1) = a1kn−1=(U∗n−1U

∗
nUn+1) (28.10a)

d

dt

1

2
|Un|2 = Suu(n|n− 1, n+ 1) = a2kn−1=(U∗n−1U

∗
nUn+1) (28.10b)

d

dt

1

2
|Un+1|2 = Suu(n+ 1|n, n− 1) = a3kn−1=(U∗n−1U

∗
nUn+1), (28.10c)
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where = denotes the imaginary part of the argument, and Suu(X|Y,Z) represents

the combined energy transfer from shells Y and Z to shell X. Using the condition

Eq. (28.8a), we derive

1

2
[|Un−1|2 + |Un|2 + |Un+1|2] = const., (28.11)

which is a statement on the detailed kinetic energy conservation in a triadic unit of

shells. Naturally, when all the triads are included, the total kinetic energy is also

conserved (see Section 4.1).

Now, let us derive shell-to-shell transfer Suu(X|Y |Z), which is the energy transfer

from shell Y to shell X with the mediation of shell Z. By definition,

Suu(X|Y |Z) + Suu(X|Z|Y ) = Suu(X|Y,Z), (28.12a)

Suu(X|Y |Z) + Suu(Y |X|Z) = 0. (28.12b)

See Fig. 28.2 for an illustration.

n
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n
n
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-1
|
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(
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|
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a
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1
n
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a
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Figure 28.2 Schematic diagram of the shell-to-shell energy transfers in a triad
(n− 1, n, n+ 1) of the shell model.

As discussed in Section 4.1, these set of equations do not have a unique solution.

In addition, in the absence of the condition k · u(k) = 0, we do not have a nice

formula like Eq. (4.7) for the shell model. We postulate that

SUU(n|n− 1|n+ 1) = α1An, (28.13a)

SUU(n+ 1|n|n− 1) = α3An, (28.13b)

SUU(n− 1|n+ 1|n) = α2An, (28.13c)

where

An = kn−1=(U∗n−1U
∗
nUn+1). (28.14)
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456 Energy Transfers in Fluid Flows

Using Eqs. (28.12), we obtain

α1 − α3 = a2, (28.15a)

α2 − α1 = a1, (28.15b)

α3 − α2 = a3. (28.15c)

We take α1 as a free parameter in terms of which

α3 = α1 − a2, (28.16a)

α2 = α1 + a1. (28.16b)

In 3D hydrodynamic turbulence, the energy transfer is forward, that is, from a

small wavenumber shell to a large wavenumber shell. Therefore, given An > 0, we

demand that

α1 > 0; α2 < 0; α3 > 0. (28.17)

Using Eqs. (28.9, 28.16) we deduce that

a2 < α1 < (1 + λ)a2. (28.18)

Thus, we derive the shell-to-shell energy transfers for the shell model. Note that α1

is a free parameter with the constraint given by Eq. (28.18).

We choose

α1 = (1 +
λ

2
)a2 (28.19)

with a2 > 0. Using Eq. (28.9) we derive that

α2 = −λ
2
a2, (28.20a)

α3 =
λ

2
a2. (28.20b)

Also, the above solution is not unique; we can add a circulating transfer that

traverses (n − 1) → n → (n + 1) → (n − 1) (Dar et al., 2001; Verma, 2004). This

transfer however does not alter the energy flux, which is a measurable quantity.

The energy flux in fluid turbulence is defined as the energy leaving a

wavenumber sphere of radius K due to nonlinear interactions. For a shell model,
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ΠU<
U>(K) is the net energy transfer from all the shells within a sphere of radius K

to the shells outside the sphere:

ΠU<
U>(K) =

∑
m≤K

∑
n>K

∑
p

SUU(n|m|p). (28.21)

Due to local interactions among the shells,

ΠU<
U>(K) =

∑
n>K

∑
m≤K

∑
p

SUU(n|m|p)

= SUU(K + 1|K|K − 1) + SUU(K + 1|K|K + 2)

+SUU(K + 1|K − 1|K) + SUU(K + 2|K|K + 1)

= α3kK−1=(U∗K−1U
∗
KUK+1) + α1kK=(U∗KU

∗
K+1UK+2)

−α2kK−1=(U∗K−1U
∗
KUK+1)− α2kK=(U∗KU

∗
K+1UK+2). (28.22)

Similarly, the shell-to-shell kinetic energy transfer from shell K to K + 1, and from

shell K to K + 2 are

TU,KU,K+1 = SUU(K + 1|K|K − 1) + SUU(K + 1|K|K + 2)

= α3kK−1=(U∗K−1U
∗
KUK+1) + α1kK=(U∗KU

∗
K+1UK+2), (28.23a)

TU,KU,K+2 = SUU(K + 2|K|K + 1) = −α2kK=(U∗KU
∗
K+1UK+2). (28.23b)

Using the numerical simulations of the shell model, we observe that in these

equations, all the terms of the form =(U∗U∗U) are positive. Hence, all the terms

Eqs. (28.22, 28.23) are positive. Thus, our formulas for the energy flux and shell-

to-shell energy transfers are consistent with the forward energy transfer observed in

3D hydrodynamics.

Researchers have performed numerical simulations of the shell models of 3D

hydrodynamics. Interestingly, they observed Kolmogorov’s k−5/3 energy spectrum

and constant energy flux for these models. In addition, numerically computed

intermittency exponents of the shell models and direct numerical simulations are

quite close to each other. Here we omit discussions on the numerical results of shell

models due to lack of space. We refer the reader to Ditlevsen (2010), Biferale

(2003), Plunian et al. (2012), and references therein for further details on this

topic.
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458 Energy Transfers in Fluid Flows

28.2 Shell Model for Scalar, Vector, and Tensor Flows

As discussed in Chapters 13, 18, and 27, the velocity field often advects vector,

scalar, or tensor fields. The advection term is of the form u · ∇θ, where θ represents

a scalar, vector, or tensor field. In addition, the force fields could be complex

functions of u and θ.

We construct the following shell model for such flows:

dUn
dt

= Nn[U,U ]− νk2
nUn + Fn, (28.24a)

dθn
dt

= Mn[U, θ]− κk2
nθn +Gn, (28.24b)

where Fn, Gn are the force fields for Un and θn respectively, ν is the kinematic

viscosity, and κ is the diffusivity of θ. The nonlinear term Nn[U,U ] is same as

Eq. (28.5), while Mn[U, θ] corresponds to the advection term u · ∇θ that yields

conservation of the total scalar energy for diffusionless and force-free flows:

Eθ =
∑
n

1

2
|θn|2. (28.25)

This condition implies that∑
n

< (θ∗nMn[U, θ]) = 0. (28.26)

The following form of Mn[U, θ] satisfies the aforementioned condition:

Mn[U, θ] = −i[kn(d1U
∗
n+1θn+2 + d3θ

∗
n+1Un+2)

+kn−1(d2U
∗
n−1θn+1 − d3θ

∗
n−1Un+1)

+kn−2(d1Un−1θn−2 + d2θn−1Un−2)], (28.27)

where d1, d2, and d3 are arbitrary constants.

Now we derive mode-to-mode transfers for the θ field in a triadic interactions

among the shells (kn−1, kn, kn+1). For this triad, the combined θ2/2 transfers are

Sθθ(n− 1|n, n+ 1) = d1kn−1=(U∗nθ
∗
n−1θn+1) + d3kn−1=(Un+1θ

∗
n−1θ

∗
n), (28.28a)

Sθθ(n|n− 1, n+ 1) = d2kn−1=(U∗n−1θ
∗
nθn+1)− d3kn−1=(Un+1θ

∗
n−1θ

∗
n), (28.28b)

Sθθ(n+ 1|n, n− 1) = −d1kn−1=(U∗nθ
∗
n−1θn+1)− d2kn−1=(U∗n−1θ

∗
nθn+1). (28.28c)

Clearly,

Sθθ(n− 1|n, n+ 1) + Sθθ(n|n− 1, n+ 1) + Sθθ(n+ 1|n, n− 1) = 0, (28.29)
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which is a statement on the detailed conservation law of θ2/2 in a triad.

Now we seek a formula for the shell-to-shell θ2
n/2 transfer from θY to θX with

the mediation of UZ . Such transfers, denoted by Sθθ(X|Y |Z), satisfy the following

conditions:

Sθθ(X|Y |Z) + Sθθ(X|Z|Y ) = Sθθ(X|Y,Z), (28.30a)

Sθθ(X|Y |Z) + Sθθ(Y |X|Z) = 0. (28.30b)

As argued in the earlier section, Eqs. (28.30) do not have a unique solution. Yet,

the following convenient formulas satisfy the aforementioned equations:

Sθθ(n− 1|n+ 1|n) = d1kn−1=(U∗nθ
∗
n−1θn+1), (28.31a)

Sθθ(n− 1|n|n+ 1) = d3kn−1=(Un+1θ
∗
n−1θ

∗
n), (28.31b)

Sθθ(n|n+ 1|n− 1) = d2kn−1=(U∗n−1θ
∗
nθn+1), (28.31c)

Sθθ(n|n− 1|n+ 1) = −d3kn−1=(Un+1θ
∗
n−1θ

∗
n), (28.31d)

Sθθ(n+ 1|n− 1|n) = −d1kn−1=(U∗nθ
∗
n−1θn+1), (28.31e)

Sθθ(n+ 1|n|n− 1) = −d2kn−1=(U∗n−1θ
∗
nθn+1). (28.31f)

Note that the velocity field acts as a mediator in all the above scalar/vector/tensor

energy transfers. If =(U∗n−1θ
∗
nθn+1) > 0, then the forward shell-to-shell transfer

implies that d2 < 0. Similar conditions are derived for other constants.

Kumar and Verma (2015) used a generalized version of the shell model of

Eq. (28.24) to simulate buoyancy-driven turbulence—stably stratified turbulence

and turbulent thermal convection. In their model, Fn is the buoyancy, while Gn is

proportional to Un. The results of the shell model and direct numerical

simulations are in general agreement with each other. Refer to the original paper,

and Verma (2018) for more details.

Verma and Kumar (2016) simulated magnetohydrodynamic (MHD) turbulence

with another generalized shell model with Fn, Gn representing B · ∇B and B · ∇U

respectively. They showed a preferential energy transfer from the velocity field to the

magnetic field that leads to generation of large-scale magnetic field. A limitation

of the present MHD model is lack of nonlocal interactions that is important for

small-scale dynamo (Plunian et al., 2012; Kumar et al., 2014b). Refer to Verma and

Kumar (2016) for details.

Kalelkar et al. (2005), and Ray and Vincenzi (2016) constructed a shell model for

a turbulent flow with dilute polymers. The overall structure of their shell model for

polymeric flow is similar to Verma and Kumar (2016)’s model for MHD turbulence

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316810019.029
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 04 Jul 2019 at 23:00:33, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316810019.029
https://www.cambridge.org/core


460 Energy Transfers in Fluid Flows

with some differences. It will be interesting to study the energy transfers in the

shell model for polymeric flows. We do not detail any of these works, but make a

remark that the connection between the shell models of MHD and polymeric fluid

leads us to believe that the kinetic energy may indeed be transferred to the elastic

energy of the polymers [see Eq. (27.28)]. These results have direct implications on

the turbulence drag reduction in polymeric flows, as described in Section 27.5.

With this, we end our discussion on the shell model.

Further Reading

Ditlevsen (2010)’s book described various shell models and their properties. Also

refer to review articles by Biferale (2003) and Plunian et al. (2012); the latter article

focuses on the energy transfers. The energy transfer formalism discussed in this

chapter are covered in Kumar and Verma (2015) and Verma and Kumar (2016).
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Chapter 29

Burgers Turbulence

In this chapter we describe the energy spectrum and flux of Burgers turbulence.

Burgers equation describes fully compressible flows with vanishing sound speed.

As we show in the following sections, removal of the incompressibility condition

introduces new complexities.

29.1 Governing Equations

Burgers equation is

∂tu+ u∂xu = ν∂xxu+ Fu, (29.1)

where u is the velocity field along the x-axis, Fu is the external force, and ν is

the kinematic viscosity. This equation is a limiting case of compressible Navier–

Stokes equations with vanishing pressure gradient. This condition corresponds to

zero sound speed for the system.

Force-free Burgers equation with ν → 0 limit has an exact solution (Kida, 1979;

Verma, 2000):

u(x) =
1

t
(x− ηi) for ξi < x ≤ ξi+1, (29.2)

where ξi is the position of the ith shock where the velocity jumps by µi; ηi, which

lies between ξi and ξi+1, is the ith zero of u(x). See Fig. 29.1 for an illustration.

Also, note that u(x) has a slope of 1/t, and that the kinetic energy is dissipated
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462 Energy Transfers in Fluid Flows

at the shocks. For finite viscosity, the shocks become smoother (Kida, 1979). In

the presence of Fu, the flow becomes steady with the dissipation rate and energy

injection rate balancing each other.

u

m
i

h
ix

i
x

i+1
x

Figure 29.1 A schematic diagram of the velocity field of the force-free inviscid
Burgers equation. ξi is the position of the ith shock, where ∆u =
µi, and u(ηi) = 0.

The equation for the kinetic energy density, u2/2, is

∂tu
2/2 + ∂xu

3/3 = νu∂xxu+ uFu. (29.3)

For Fu = 0, ν = 0, and periodic or vanishing boundary condition, using Eqs. (29.1,

29.3) we deduce the following conserved quantities for the Burgers equation:

Total linear momentum =

∫ L

0

udx, (29.4a)

Total kinetic energy Eu =

∫ L

0

1

2
u2dx, (29.4b)

where L is the system size. It is easy to show that
∫ L

0
undx, where n is an integer, is

conserved. Note that the conservation laws of Eq. (29.4) follow from the conservation

of
∫ L

0
undx.

In Fourier space, Eq. (29.1) transforms to

d

dt
u(k) = −ik

2

∑
p

u(q)u(p)− νk2u(k) + Fu(k), (29.5)

with q = k − p. We multiply Eq. (29.5) with u∗(k), and then add the resulting

equation with its complex conjugate. This operation yields the following equation

for the modal kinetic energy, Eu(k) = |u(k)|2/2:
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d

dt
Eu(k) =

k

2

∑
p

=[u(q)u(p)u∗(k)]− 2νk2Eu(k) + <[Fu(k)u∗(k)]

= Tu(k)−Du(k) + Fu(k), (29.6)

where Tu(k) is the nonlinear energy transfer to u(k), Du(k) is the dissipation rate,

and Fu(k) is the energy injection rate by the external force.

In the next section we will discuss the energy transfer and flux of Burgers

turbulence.

29.2 Energy Transfers in Burgers Turbulence

As discussed in Chapter 4, we focus on the energy equations for triads (k′, p, q) and

(−k′,−p,−q) with k′+p+q = 0. Note that k′ = −k. We also set ν = 0 and Fu = 0.

Under these conditions, the equations for the modal energies are

d

dt
Eu(k) = S(k′|p, q) = −k′=[u(q)u(p)u(k′)], (29.7a)

d

dt
Eu(p) = S(p|q, k′) = −p=[u(q)u(p)u(k′)], (29.7b)

d

dt
Eu(q) = S(q|k′, p) = −q=[u(q)u(p)u(k′)]. (29.7c)

Clearly, when we sum Eqs. (29.7), using k′ + p+ q = 0, we obtain

Eu(k) + Eu(p) + Eu(q)] = const. (29.8)

This is a statement of detailed conservation of energy in a triad.

In the aforementioned equations, Suu(X|Y, Z) is the combined kinetic energy

transfer to u(X) from u(Y ) and u(Z). Here, X+Y+Z = 0. An important question is

whether we can derive mode-to-mode kinetic energy transfer, Suu(X|Y |Z), which is

the energy transfer from u(Y ) to u(X) with the mediation of u(Z). As in Chapter 4,

the nature of transactions yield the following conditions for Suu(X|Y |Z):

Suu(X|Y |Z) + Suu(X|Z|Y ) = S(X|Y, Z), (29.9a)

Suu(X|Y |Z) + Suu(Y |X|Z) = 0. (29.9b)

As argued in Section 4.1, these equations do not have a unique solution. For

incompressible flows, we could obtain a convenient formula, Eq. (4.7), that satisfies

Eqs. (29.9). Unfortunately, no such formula exists for Burgers equation.1

1For example, Suu(X|Y |Z) = −Y =[u(X)u(Y )u(Z)] satisfies Eq. (29.9a), but not Eq. (29.9b).
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Though Burgers equation does not have a convenient formula for the mode-to-

mode kinetic energy transfer, we can derive a formula for its energy flux. As in

Section 4.4, we define energy flux Πu(k0) as the net nonlinear energy transfer from

all the modes in the band |k| ≤ k0 to the modes outside the band. Following

arguments similar to those in Section 4.4,

Πu(k0) = −
∫ k0

−k0
Tu(k′)dk′. (29.10)

In addition,

∂

∂t
Eu(k, t) = − ∂

∂k
Πu(k, t) + Fu(k, t)−Du(k, t), (29.11)

whose physical interpretation is described in Section 4.4. Also see Fig. 4.9.

In the next section, we describe the phenomenology of Burgers turbulence.

29.3 Phenomenology of Burgers Turbulence

We assume a steady Burgers turbulence with Fu active only at large scales. Under

these conditions, following Eq. (29.11), we obtain the following equation for the

inertial–dissipation range:

d

dk
Πu(k) = −Du(k). (29.12)

In the inertial range where Du(k)→ 0, we obtain

Πu(k) = const. = Πu. (29.13)

Using dimensional analysis, Girimaji and Zhou (1995) and Verma (2000) derived

that

Πu =
µ3

L
, (29.14)

where µ = 〈µi〉 is the average velocity difference across the shocks. For a steady

turbulence, µ is maintained at a constant value. However, µ decreases with time for

a decaying turbulence.

The derivation of energy spectrum Eu(k) is somewhat tricky. Eu(k) depends on

three parameters: Πu, µ, and k. Therefore, we cannot derive it using dimensional

analysis because dimension matching yields only two equations.2 In fact, Eu(k) is

derived using the structure function.

2Based on constancy of Πu(k) and the derivation of Section 5.1, we may be tempted to claim k−5/3 spectrum
for Burgers turbulence. But this is not correct because Eu(k) depends on µ as well.
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Using the velocity profile of Eq. (29.2), we derive the qth order structure function

for Burgers turbulence as (Kida, 1979; Verma, 2000)

Sq(l) =
1

L

∫ L

0

|u(x+ l)− u(x)|qdx

=
1

L

∑
i

[∫ ξi+1−r

ξi

(
l

t

)q
dx+

∫ ξi+1

ξi+1−r

(
µi+1 −

l

t

)q
dx

]

=

(
l

t

)q
+
l

L

∑
i

(
µi+1 −

l

t

)q
. (29.15)

Therefore, for small l,

S2(l) ≈ µ2 l

L
. (29.16)

Hence,

〈u(x+ l)u(x)〉 = 〈u2〉 − 1

2
S2(l) ≈ 〈u2〉 − µ2 l

2L
, (29.17)

whose Fourier transform yields

Eu(k) =
µ2

L
k−2 =

Πu

µ
k−2 (29.18)

apart from a dimensionless proportionality constant. Thus, the energy spectrum for

Burgers turbulence differs from k−5/3 spectrum for incompressible hydrodynamic

turbulence. Note that the above derivation extends to the Burgers equation with

small ν because their shocks are quite sharp.

The aforementioned formulas for Eu(k) and Πu(k) are applicable to the inertial

range. But these formulas could be extended to the inertial–dissipation range by

extending Pao’s hypothesis for hydrodynamic turbulence to Burgers turbulence. We

argue that in the inertial–dissipation range, Eu(k)/Πu(k) is independent of ν and

L, and it is a function of k and µ. Hence, using Eq. (29.18), we deduce that

Eu(k)

Πu(k)
=
k−2

µ
. (29.19)

Substitution of this equation in Eq. (29.12) yields

d

dk
Πu(k) = −2

ν

µ
Πu(k) (29.20)

whose solution is

Πu(k) = Πu exp

(
−2ν

µ
k

)
. (29.21)
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Substitution of Eq. (29.21) in Eq. (29.19) yields

Eu(k) =
Πu

µ
k−2 exp

(
−2ν

µ
k

)
. (29.22)

The aforementioned forms of energy spectrum and flux needs to be tested using

numerical simulations.

There is a large body of numerical works on Burgers turbulence that describe

energy spectrum and structure function, for example,Verma (2000), Girimaji and

Zhou (1995), and references therein. However, we do not detail them here due to

lack of space.

With this, we end our discussion on Burgers turbulence.

Further Reading

Kida (1979) describes asymptotic properties of decaying Burgers turbulence. For a

detailed discussion on the topics of this chapter, refer to Verma (2000), and Girimaji

and Zhou (1995).

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316810019.030
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 04 Jul 2019 at 23:00:37, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316810019.030
https://www.cambridge.org/core


Chapter 30

Compressible Turbulence

All the past chapters except Chapter 29 dealt with incompressible flows. Note

however that most astrophysical flows are compressible. In addition, the flows around

high speed jets and vehicles are also compressible. Hence, compressible turbulence

is widely studied by scientists and engineers. In the present chapter we will briefly

describe the equations and energy transfers in compressible turbulence.

We start with the governing equations of compressible flows.

30.1 Governing Equations

The material density % varies in compressible turbulence, and its evolution equation

under diffusionless limit is

∂%

∂t
+∇ · (%u) = 0. (30.1)

The equation for the linear momentum density %u is

∂

∂t
[%ui] + ∂j[%ujui] = −∂iσ + µ[∇2ui +

1

3
∂i(∇ · u)], (30.2)

where σ is the pressure field, and µ is the dynamic viscosity. Using Eq. (30.1) we

can rewrite Eq. (30.2) as

%

[
∂

∂t
u + (u · ∇)u

]
= −∇σ + µ[∇2u +

1

3
∇(∇ · u)]. (30.3)
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We focus on the nonlinear interactions in the compressible flow, hence we set µ = 0.

By taking a dot product of Eq. (30.2) with u, we derive the following equation

for the kinetic energy density:

∂

∂t

[
1

2
%u2

]
+∇ ·

[
1

2
%u2u

]
= −(u · ∇)σ. (30.4)

Note that the volume integral of the second term of Eq. (30.4) vanishes for a

periodic or vanishing boundary condition. However, the integral of the third term

of the equation is nonzero for a compressible flow. Recall that the corresponding

integral for an incompressible flow vanishes because of the constraint ∇ · u = 0.

Consequently, the total kinetic energy∫
dr

1

2
%u2 (30.5)

is not conserved for a compressible flow.

According to the first law of thermodynamics,

de = dQ− σdv, (30.6)

where de is the change in internal energy per unit mass, dQ is the elemental heat

source in the form of heat conduction and viscous dissipation, and dv is the change

in specific volume. We assume adiabatic process, that is, dQ = 0. In addition, using

v = 1/ρ, we obtain

de =
σ

%2
d%. (30.7)

Note that in an incompressible flow,

d% = 0 =⇒ de = 0. (30.8)

Thus, the internal energy is constant for an incompressible flow.

After some more steps, we derive (Kundu et al., 2015)

∂

∂t
[%e] +∇ · [%eu] = −σ∇ · u. (30.9)

Clearly, the total internal energy∫
dr%e (30.10)
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is not conserved due to the last term of Eq. (30.9) whose volume integral is nonzero;

this term represents the rate of increase in internal energy density due to the work

done by pressure. Note that ∇ · u represents the rate of change of volume [see

Eq. (2.35)].

The total energy density is

E = e+
1

2
u2, (30.11)

whose evolution equation is obtained by adding Eqs. (30.4, 30.9):

∂

∂t
[%E] +∇ · [%Eu] = −∇ · [σu]. (30.12)

In this equation, the volume integral of −∇· [σu] vanishes for periodic and vanishing

boundary condition. Hence, the total energy∫
dr[e+

1

2
u2] (30.13)

is conserved for a compressible flow. The pressure induces an exchange between

kinetic energy and internal energy keeping the total energy fixed.

For incompressible flows, e = const., and σ is dynamic pressure that is determined

using

−∇2σ = %∇ · [(u · ∇)u], (30.14)

which is independent of thermodynamic variables, for example, temperature,

density. For compressible flows, σ is the thermodynamic pressure. However,

dynamic pressure too exists in compressible flows, and it is determined using the

incompressible part of the nonlinear term. We will describe these computations in

Section 30.5.

A compressible flow has five unknown variables—three components of u, σ, and

%. To solve for them, in addition to the four equations [Eq. (30.1, 30.3)], we invoke

the equation of state:

σ = σ(ρ). (30.15)

For polytropic processes,

σ = Cρn, (30.16)
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where C, n are constants. For an adiabatic process,

n = γ =
Cp
Cv
, (30.17)

where Cp, Cv are specific heats at constant pressure and volume respectively. Note

that in some literature, internal energy e and its corresponding evolution equation,

Eq. (30.9), are added for compressible flows. In comparison, incompressible

hydrodynamics has four unknowns—ux, uy, uz, and σ—and four equations,

Eqs. (2.1a, 2.1b). Note that Eq. (2.1b) is a constraint equation that helps solve for

σ using Eq. (30.14).

In the next three sections we will illustrate the limiting cases of compressible

hydrodynamics.

30.2 Linear Compressible Flow; Sound Waves

For linearization, we divide the density % into mean density ρ0 and density

fluctuation ρ:

% = ρ0 + ρ, (30.18)

and assume that ρ � ρ0. We also assume that the velocity fluctuations are small;

hence, the nonlinear term can be ignored.

Under this approximation, the linearized version of Eq. (30.1) is

∂ρ

∂t
= −ρ0∇ · u. (30.19)

Fourier transform of this equation yields

d

dt
ρ(k) = −iρ0[k · u(k)]. (30.20)

We assume that k = kx̂, and

u(k) = ux(k)x̂+ uy(k)ŷ. (30.21)

The linearized momentum equations are

ρ0

d

dt
ux(k) = −ikσ(k), (30.22a)

ρ0

d

dt
uy(k) = 0. (30.22b)
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Using Eqs. (30.20, 30.22a) and σ(k)/ρ(k) = c2
s, where cs is the speed of sound, we

derive that

ρ̈(k) = −k2c2
sρ(k), (30.23)

which is the equation of the sound wave. Thus, the longitudinal velocity mode

ux(k) helps propagate sound waves with the assistance of density and

thermodynamic pressure. Equation (30.22b) yields uy = const. Hence, the

incompressible component of the velocity field is not affected by the

thermodynamic pressure.

In the next section we will describe a nearly incompressible flow.

30.3 Nearly Incompressible Flow

Under nearly incompressible limit, in addition to the division of density as in

Eq. (30.18), the total velocity field is decomposed into incompressible and

compressible components:

u = uinc + ucomp. (30.24)

Under nearly incompressible approximation, we assume that

ρ� ρ0; |ucomp| � |uinc|; (30.25a)

∇ · u ≈ ∇ · uinc = 0. (30.25b)

Under this approximation, to leading order, Eqs. (30.1, 30.3) reduce to

∂

∂t
uinc + (uinc · ∇)uinc = −1

ρ
∇σ + ν∇2uinc, (30.26a)

∂

∂t
ρ+ (uinc · ∇)ρ = 0. (30.26b)

An expansion of Eq. (30.3) to the next order yields

∂

∂t
ucomp + (uinc · ∇)ucomp = ν∇2ucomp. (30.27)

These equations clearly indicate that ρ is a passive scalar, and ucomp is a passive

vector, both being advected by the incompressible velocity field uinc. The pressure

field, which is the dynamic pressure, affects uinc only. Using these equations, we

deduce that all the three fields follow k−5/3 spectrum—uinc on the basis of

Kolmogorov’s theory (see Section 5.1), while ρ and ucomp follow the
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phenomenology of passive scalar and passive vector respectively (see Chapters 14

and 19).

Zank and Matthaeus (1991) derived a generalized expansion of the

Navier–Stokes equations using singular expansion technique. Our arguments given

here are a simplified version of Zank and Matthaeus (1991)’s derivation. We also

remark that the density spectrum of interstellar medium follows k−5/3 spectrum,

and it is explained using the aforementioned scaling (Zank and Matthaeus, 1993).

In the next section we will connect the equations of compressible flow with

Burgers equation.

30.4 Fully Compressible Turbulence: Burgers Turbulence
Revisited

Fully compressible flow with uinc = 0 is the opposite of the incompressible limit. In

this limit,

u = ucomp. (30.28)

Therefore, the equations of the flow are

∂

∂t
u + u · ∇u = −1

%
∇σ + ν[∇2u +

1

3
∇(∇ · u)], (30.29a)

∂

∂t
%+∇ · (%u) = 0, (30.29b)

σ = C%γ , (30.29c)

where C and γ are constants. Note that σ is the thermodynamic pressure; for an

adiabatic process, γ = Cp/Cv.

Limiting the aforementioned set of equations to 1D and setting σ = 0 (zero sound

speed) yield the Burgers equation. The equations for this case with u = ux̂ are

∂tu+ u∂xu = ν∂xxu, (30.30a)

∂t%+ ∂x(ρu) = 0. (30.30b)

In Chapter 29 we described the properties of Eq. (30.30a); hence, they will not be

repeated here. Solving Eq. (30.30b) is an interesting exercise, but it is beyond the

scope of this book.

In the next section we will discuss the properties of compressible turbulence using

Craya–Herring decomposition.
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30.5 Equation of Motion of a Compressible Flow in
Craya–Herring Basis

In this section we describe the equations of a compressible flow in Fourier space.

For simplification, we further assume that the density fluctuations are small, that

is, ρ ≈ ρ0. Moreover, to disentangle various components of nonlinearity, we focus

on a single triad k′,p,q, and set µ = 0.

We expand the velocity field in Craya–Herring basis as (see Figs. 9.1 and 9.2):

u(X) = u1(X)ê1(X) + u2(X)ê2(X) + u3(X)ê3(X)

= u⊥(X) + u3(X)ê3(X), (30.31)

where X is the wavenumber. Note that for the said triad,

ê3(p) · ê3(q) = − cosα; ê3(q) · ê3(k′) = − cosβ; ê3(k′) · ê3(p) = − cos γ. (30.32)

Using

u̇i = −uj∂jui −
1

ρ0

∂iσ, (30.33)

we obtain the following equations for the Fourier mode u(k′):

d

dt
u(k′) = −i[(−p) · u(−q)]u(−p) + p↔ q− i

ρ0

kσ(k)

= −i[(−p) · {u∗⊥(q) + u∗3(q)ê3(q)}][u∗⊥(p) + u∗3(p)ê3(p)]

+(p↔ q)− i

ρ0

k′σ(k′)

= −Ninc
⊥ (k′)−Nint

⊥ (k′)−
[
N inc

3 (k′) +N int
3 (k′) +N comp

3 (k′)
]
ê3(k′)

− i

ρ0

k′σ(k′), (30.34)

where ⊥= (1, 2) stands for the components perpendicular to k′, while the index 3

represents the component along k′. In these equations, the incompressible

components are

N inc
1 (k′) = i[k′ · u∗⊥(q)][ê1(p) · ê1(k′)]u∗1(p) + p↔ q

= −i[k′ · u∗⊥(q)] cos γu∗1(p) + p↔ q, (30.35a)

N inc
2 (k′) = i[k′ · u∗⊥(q)][ê2(p) · ê2(k′)]u∗2(p) + p↔ q
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= i[k′ · u∗⊥(q)]u∗2(p) + p↔ q, (30.35b)

N inc
3 (k′) = i[k′ · u∗⊥(q)][ê1(p) · ê3(k′)]u∗1(p) + p↔ q

= −i[k′ · u∗⊥(q)](sin γ)u∗1(p) + p↔ q; (30.35c)

the compressible component is

N comp
3 (k′) = i[−p · ê3(q)][ê3(p) · ê3(k′)]u∗3(q)u∗3(p) + p↔ q

= −ip(cosα cos γ)u∗3(q)u∗3(p) + p↔ q; (30.36a)

while the mixed terms involving interactions among the u⊥ and u3 components are

N int
1 (k′) = i[−p · ê3(q)][ê1(p) · ê1(k′)]u∗3(q)u∗1(p)

= −ip(cosα cos γ)u∗3(q)u∗1(p) + p↔ q, (30.37a)

N int
2 (k′) = i[−p · ê3(q)][ê2(p) · ê2(k′)]u3(q)u∗2(p) + p↔ q

= ip(cosα)u3(q)u∗2(p) + p↔ q, (30.37b)

N int
3 (k′) = i[k′ · u∗⊥(q)][ê3(p) · ê3(k′)]u∗3(p) + p↔ q

= −i[k′ · u∗⊥(q)](cos γ)u∗3(p) + p↔ q. (30.37c)

The equations of motion along ê1(k) and ê2(k) are

u̇1(k′) = −N inc
1 (k′)−N int

1 (k′), (30.38a)

u̇2(k′) = −N inc
2 (k′)−N int

2 (k′). (30.38b)

For consistency with the incompressible limit (u3 = 0), we postulate that

N inc
3 (k′) = − i

ρ0

k′σdyn(k′) (30.39)

and

u̇3(k′) = −N int
3 (k′)−N comp

3 (k′)− i

ρ0

k′σthermo(k′). (30.40a)

Here, σthermo and σdyn represent thermodynamic and dynamic pressure fields

respectively. Note that

u̇3(k′) 6= −N3(k′)− i

ρ0

k′σthermo(k′) (30.41)

with

N3 = N comp
3 +N inc

3 +N int
3 . (30.42)
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The evolution of the density field is given by

ρ̇+ ρ0∇ · u = 0, (30.43)

whose Fourier space counterpart is

ρ̇(k′) = −iρ0ku3(k′). (30.44)

We can derive the following limiting cases from the aforementioned set of equations:

1. Incompressible flows: N comp
3 = 0, N int

i = 0, and σthermo = 0. Therefore, the

equations are

u̇inc
⊥ (k′) = −Ninc

⊥ (k′); N inc
3 (k′) = − i

ρ0

k′σdyn(k′). (30.45)

2. Sound waves: All the nonlinear terms are zero. Hence,

u̇3(k′) = − i

ρ0

k′σthermo(k′). (30.46)

3. Nearly incompressible flow: N comp
3 = 0, N int

1,2 = 0, and σthermo = 0 yielding

u̇inc
⊥ (k′) = −Ninc

⊥ (k′); u̇3(k′) = −N int
3 (k′); (30.47)

N inc
3 (k′) = − i

ρ0

k′σdyn(k′). (30.48)

4. Burgers equation: All nonlinear terms except N comp
3 vanish. In addition, σ = 0.

Due to 1D nature, α = π and γ = 0. Therefore,

u̇3(k′) = −N comp
3 (k′) = ik′u∗3(p)u∗3(q), (30.49)

which is same as Eq. (29.5) for an interacting triad.

In the Navier–Stokes equations for incompressible flows, σ = σdyn, and for

compressible flows, σ = σthermo. Note however that dynamic pressure exists in

compressible flows, and that it is computed internally using Eq. (30.39); σdyn does

not appear explicitly in the momentum equation. Thus, care is required while

computing pressure in compressible flows.

We can also derive equations for the kinetic energy using Eqs. (30.34). In these

equations,
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1. Ninc induces energy transfers among the incompressible modes, as in Chapter 9.

2. Ncomp induces energy transfers among the compressible modes.

3. Nint facilitates energy transfers across incompressible and compressible

components.

4. σthermo induces transfers between the compressible component of the kinetic

energy and internal energy.

5. The incompressible components satisfy the locality property in Fourier space.

However, the interactions of compressible flows are local in real space, and

nonlocal in Fourier space.

6. Neither kinetic energy nor internal energy are conserved for triadic interactions.

In addition, the total energy for a triad too is not conserved, that is,

Eu(k′) + Eu(p) + Eu(q) + e(k′) + e(p) + e(q) 6= const. (30.50)

This property arises due to the nonlocal interactions among the Fourier modes.

7. For compressible flows, we do not have simple formulas for the mode-to-mode

energy transfers [like Eqs. (4.7)]. This is due to the nonlocal interactions in

Fourier space.

In the next section we will discuss energy transfers in compressible flows.

30.6 Energy Transfers in Compressible Flows

For compressible flows, the kinetic energy density ρu2/2 is a product of three fields.

Hence, it is not possible to define a corresponding modal kinetic energy, which is a

quadratic quantity (see Parceval’s theorem in Chapter 3). To express kinetic energy

as a product of two variables, we define

v = ρu. (30.51)

In terms of v and u, the modal kinetic energy is

Eu(k) =
1

2
<[v(k) · u∗(k)]. (30.52)

In the next subsection we describe the equations for the modal kinetic energy and

modal internal energy.
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30.6.1 Equations for modal kinetic and internal energies

Using the momentum equation, we derive

∂tv(k) = −i
∑
p

{k · u(q)}v(p)− ikσ(k) (30.53a)

∂tu(k) = −i
∑
p

{k · u(q)}u(p)− ikσ̃(k), (30.53b)

where q = k− p and

∇σ̃ =
∇σ
ρ

; σ̃(k) = FT [
∇σ
ρ

](k), (30.54)

where FT stands for the Fourier transform. Equation (30.53a)×u∗(k) +

Equation (30.53b)×v∗(k), and subsequent addition of the resulting equations with

its complex conjugate yields

∂tEu(k) = Tu(k) + Fσ(k), (30.55)

where

Tu(k) =
∑
p

1

2
=[{k · u(q)}{u(p) · v∗(k) + v(p) · u∗(k)}] (30.56)

is the nonlinear energy transfer to Eu(k). In this equation, u(q) advects u · v.

Moreover,

Fσ(k) = = [{k · u∗(k)}σ(k) + {k · v∗(k)}σ̃(k)] (30.57)

is the kinetic energy gain from the internal energy via pressure. Note that Fσ(k)

vanishes in the incompressible limit.

We define internal energy per unit volume as

ẽ = ρe. (30.58)

Using Eq. (30.12), we derive the spectral equation for ẽ as

∂tẽ(k) = −i
∑
p

{k · u(q)}ẽ(p)− i
∑
p

{p · u(p)}σ(q)

= Te(k) + Fe,σ(k), (30.59)

where Te(k) is the internal energy transfer to ẽ(k), and Fe,σ(k) is the gain in internal

energy via pressure. Note that∑
k

[Fσ(k) + Fe,σ(k)] = 0 (30.60)
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because
∫
dr∇ · (σu) = 0. Kinetic and internal energies are exchanged via

thermodynamic pressure while keeping the total energy constant.

Note that (u · ∇)ẽ represents the local transfer of internal energy in real space,

that is, energy transfer from position r to r + dr. This is because the energy

transfers mediated by the thermodynamic pressure is transmitted at the speed of

sound (finite), and hence they are local in real space. These transfers however are

nonlocal in Fourier space. Contrast these against the energy transfers among the

incompressible components of the velocity field that are transmitted at an infinite

speed; these transfers are nonlocal in real space, and local in Fourier space.

In the next subsection we explore whether we can derive formulas for the mode-

to-mode energy transfers for compressible flows.

30.6.2 Triadic interactions in a compressible flow?

We focus on triads (k′,p,q) and (−k′,−p,−q) satisfying k′ + p + q = 0. Using

Eq. (30.56) and using k · u⊥(k) = 0, we show that

Tu(k′) + Tu(p) + Tu(q) = =[qu3(q){u(p) · v(k′) + v(p) · u(k′)}]

+=[pu3(p){u(q) · v(k′) + v(q) · u(k′)}]

+=[k′u3(k′){u(q) · v(p) + v(q) · u(p)}]. (30.61)

Clearly, detailed energy conservation does not hold for triadic interactions in

compressible turbulence. Note however that∑
k

Tu(k) = 0 (30.62)

because
∫
dr∇ · [(u2/2)u] = 0.

For compressible flows, there is no simple formula for the mode-to-mode kinetic

energy transfer. This is essentially because of the lack of incompressibility condition

that makes it very difficult to satisfy Suu(k′|p|q) + Suu(p|k′|q) = 0. Still we can

define energy flux, as we will show in the next subsection.

Also note that

Te(k
′) + Te(p) + Te(q) 6= 0. (30.63)

In addition, the total energy is not conserved for triadic interactions, that is,

Tu(k′) + Tu(p) + Tu(q) + Te(k
′) + Te(p) + Te(q) 6= 0. (30.64)

This feature is due to the nonlocal interactions of compressible flows in Fourier

space.

In the next subsection we describe energy fluxes for compressible turbulence.
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30.6.3 Energy fluxes in compressible turbulence

Following the discussion of the previous section and Section 4.4, we define the

fluxes of kinetic and internal energies for a wavenumber sphere of radius k0 as [see

Eq. (4.41)]

Πu(k0) = −
∑
k≤k0

Tu(k), (30.65a)

Πe(k0) = −
∑
k≤k0

Te(k), (30.65b)

with Tu(k) and Te(k) defined using Eqs. (30.56, 30.59) respectively. Under steady

state, in the inertial range,

d

dk
Πu(k) = Fσ(k), (30.66a)

d

dk
Πe(k) = Fe,σ(k). (30.66b)

Thus, in the inertial range, Πu(k) and Πe(k) are not constant due to the exchange

among kinetic energy and internal energy via pressure. These computations are

quite complex. Here we present approximate formulas.

We can separate fluxes into incompressible and compressible parts. For the same,

we start with Eq. (30.34), and construct an approximate equation for the energy

evolution, using which we derive Tu(k) and then divide it into various components:

Tu(k) = T inc
u (k) + T comp

u (k) + T inc,int
u (k) + T comp,int

u (k)

= −<[Ninc
⊥ (k) · u∗⊥(k)]−<[N comp

3 (k)u∗3(k)]

−<[Ninc,int
⊥ (k) · u∗⊥(k)]−<[N comp,int

3 (k)u∗3(k)], (30.67)

where T inc
u (k), T comp

u (k) represent interactions among incompressible and

compressible components respectively, while T inc,int
u (k) and T comp,int

u (k) arise due to

cross interactions between u⊥ and the compressible components. Again, following

the definition of Eq. (4.41), we define

Πinc
u (k0) = −

∑
k≤k0

T inc
u (k), (30.68a)

Πcomp
u (k0) = −

∑
k≤k0

T comp
e (k). (30.68b)

Under a steady state, the fluxes Πinc
u (k) and Πinc

u (k) would not be constant due to

the cross-interaction terms, and hence,
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d

dk
Πinc
u (k) = T inc,int

u (k) + Fσ(k), (30.69a)

d

dk
Πcomp
u (k) = T comp,int

u (k) + Fe,σ(k). (30.69b)

Note that the above equations assume ρ ≈ ρ0; the general set of equations are too

complex and involved to be presented here. The aforementioned fluxes need to be

studied carefully using numerical simulations.

With this, we end our discussion on equations and energy transfers in

compressible flows.

Further Reading

For introduction to the equations and formalism of compressible flows, refer to

textbooks by Kundu et al. (2015) and Choudhuri (1998). The energy transfer

formalism for compressible flows is not well developed. The reader is referred to

recent papers by Ristorcelli (2018) and Wang et al. (2018) on numerical studies of

spectra of compressible and incompressible components. Zank and Matthaeus

(1991) discuss nearly incompressible flows. Also refer to Eyink and Aluie (2009)

for locality studies of compressible flows, and Galtier and Banerjee (2011) for exact

relations of energy transfers in real space.

The discussion in the present chapter provides an alternate perspective in terms

of disentangling contributions of compressible and incompressible components, as

well as those of dynamic and thermodynamic pressures.
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Chapter 31

Miscellaneous Applications of
Energy Transfers

So far in the book we described scalar, vector, and compressible flows, as well as

energy transfers in such flows. In the present chapter we will describe three additional

flows—a flow with Ekman friction, gyrokinetic turbulence, and a flow in spherical

geometry. These examples further illustrate the power of energy transfer formalism.

In the next section we describe a flow with Ekman friction.

31.1 Variable Enstrophy Flux in 2D Turbulence with Ekman
Friction

In a thin layer of fluid, the bottom surface offers frictional resistance to the flow. A

generic form for such friction is −αu, where α is a constant, and u is the velocity

field. Consequently, the governing equations for an incompressible 2D flow with

Ekman friction is

∂u

∂t
+ u · ∇u = −∇p− αu + ν∇2u + Fu, (31.1a)

∇ · u = 0. (31.1b)

Hence, the equation for the vorticity field is

∂ω

∂t
+ u · ∇ω = (−α+ ν∇2)ω + Fω, (31.2)
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where ω = [∇× u]z and Fω = [∇× Fu]z.

Let us assume that the flow is forced at kf ≈ 1/L, where L is the system size. In

such a 2D flow, for α = 0, we expect a constant enstrophy cascade and Eω(k) ∼ k−1

in the inertial range (see Section 7.2). An addition of Ekman friction leads to a

stronger enstrophy dissipation; hence, there is steepening of enstrophy flux and

spectrum compared to pure 2D hydrodynamics. In the following discussion we will

derive the extent of steepening as a function of α using the variable enstrophy

flux formalism (Verma, 2012). The present derivation, which is a variant of Verma

(2012)’s work, invokes Pao (1968)’s model.

Following the discussion of Section 7.3, we deduce that in the inertial–dissipation

range where Fω(k) = 0, under a steady state,

d

dk
Πω(k) = −(α+ νk2)Eω(k). (31.3)

To solve this equation, we extend Pao (1968)’s model for 3D hydrodynamics to the

present system and propose that Eω(k)/Πω(k) is independent of ν, and that it is a

function of the enstrophy injection rate, εω, and k. That is,

Eω(k)

Πω(k)
= K ′2Dε

−1/3
ω k−1. (31.4)

Substitution of Eω(k) of Eq. (31.4) in Eq. (31.3) yields

d

dk
Πω(k) = −K ′2D(2νk + α/k)ε−1/3

ω Πω(k), (31.5)

whose solution is

Πω(k) = Πω(k0)

(
k

k0

)−αK′2Dε−1/3
ω

exp

(
−K

′
2D

k2
d2D

(k2 − k2
0)

)
, (31.6)

where

kd2D =
ε1/6ω√
ν
, (31.7)

and Πω(k0) is the reference value of the enstrophy flux at k = k0. Note that Πω(kf ) ≈
εω, where kf is the forcing wavenumber. Substitution of the above enstrophy flux

in Eq. (31.4) yields the following enstrophy spectrum:

Eω(k) = K ′2Dε
2/3
ω k−1

(
k

k0

)−αK′2Dε−1/3
ω

exp

(
−K

′
2D

k2
d2D

(k2 − k2
0)

)
. (31.8)
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Thus, compared to the α = 0 case, the enstrophy flux and spectrum are steeper by

a factor of k−αK
′
2Dε
−1/3
ω . This result is similar to that predicted by Verma (2012).

In the next section we describe energy transfers in gyrokinetic plasma turbulence.

31.2 Energy Transfers in Gyrokinetic Plasma Turbulence

Typically, plasma turbulence is more complex than hydrodynamic turbulence.

Interestingly, Teaca et al. (2014) showed that the mode-to-mode energy transfer

formalism could be extended to the gyrokinetic plasma turbulence (GKT), one of

the important plasmas prevalent in fusion reactors. Since this turbulence is quite

complex, here, we only state the result, and refer the reader to the original paper

for details. The derivation is similar to that in Section 4.1.

In GKT, g is the perturbed distribution function from the mean, and φ is the

gyro-averaged self-consistent electrostatic field. Teaca et al. (2014) performed

Fourier transform for g and φ perpendicular to the direction of the mean magnetic

field that yields h(k⊥, z) and g(k⊥, z), where k⊥ = (kx, ky). The formula for the

energy transfers were derived for the (k⊥, z) space.

Teaca et al. (2014) showed that the nonlinear term in GKT is

N(k⊥, z) =
∑
p⊥

[q⊥ × p⊥]zφ(q⊥, z)h(p⊥, z), (31.9)

where q⊥ = k⊥ − p⊥, and the modal energy is of the following form (apart from a

proportionality constant):

E(k⊥) = <[h∗(k⊥)g(k⊥)]. (31.10)

The nonlinear energy transfer term is

T (k⊥) = <[h∗(k⊥)N(k⊥)] =
∑

p⊥,q⊥

S(k⊥|p⊥,q⊥), (31.11)

where S(k⊥|p⊥,q⊥) is the combined energy transfer from p⊥ and q⊥ to k⊥:

S(k⊥|p⊥,q⊥) = [q⊥ × p⊥]z[φ(q⊥)h(p⊥)− φ(p⊥)h(q⊥)]h∗(k⊥). (31.12)

As in Section 4.1, we consider a triad (k′⊥,p⊥,q⊥) satisfying the property k′⊥ +

p⊥ + q⊥ = 0. Note that k′⊥ = −k⊥. For such a triad, using Eq. (31.12), we can

show that
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S(k′⊥|p⊥,q⊥) + S(p⊥|q⊥,k′⊥) + S(q⊥|k′⊥,p⊥) = 0; (31.13)

this is a statement of the detailed energy conservation in a triad.

Using the structure of the nonlinear term, Teaca et al. (2014) derived the

following formula for the mode-to-mode energy transfer from h(p⊥) to h(k⊥) with

the mediation of φ(q⊥) as

S(k′⊥|p⊥|q⊥) = [q⊥ × p⊥]zφ(q⊥)h(p⊥)h(k′⊥). (31.14)

Note that this function satisfies the following properties required for the mode-to-

mode energy transfers:

S(k′⊥|p⊥,q⊥) = S(k′⊥|p⊥|q⊥) + S(k′⊥|q⊥|p⊥), (31.15)

S(k′⊥|p⊥|q⊥) = −S(p⊥|k′⊥|q⊥). (31.16)

Hence, S(k′⊥|p⊥|q⊥) is indeed the desired formula for mode-to-mode energy

transfer.

Using the above mode-to-mode energy transfer formula, one can construct energy

flux that is very useful for modeling such flows. For further details, refer to Teaca

et al. (2014) and subsequent papers on this topic.

31.3 Energy Transfers in Spherical Geometry

Many natural systems like planets and stars are spherical. Hence, the spherical

coordinate system is best suited for describing fluid flows in these systems.

Unfortunately, the flow equations in the spherical coordinate system are quite

complicated. Therefore, we illustrate the main ingredients of nonlinear interactions

in spherical geometry using a simplified equation.

We assume that a scalar field f(ζ, φ) is on the surface of a sphere, and its evolution

is described by

∂

∂t
f = f2 +∇2f. (31.17)

In the spherical coordinate system, f is expanded using spherical harmonics Y m
l as

f(ζ, φ) =
∑
l,m

fml Y
m
l (ζ, φ), (31.18)
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where fml is the coefficient of the expansion. It is important to note that −l ≤ m ≤ l.
See Fig. 31.1 for an illustration of (l,m) pairs of spherical harmonics.

Substitution of f of Eq. (31.18) in Eq. (31.17) yields∑
l,m

ḟml Y
m
l (ζ, φ) =

∑
l1,m1,l2,m2

fm1

l1
fm2

l2
Y m1

l1
(ζ, φ)Y m2

l2
(ζ, φ)+

∑
l,m

fml ∇2Y m
l (ζ, φ). (31.19)

Now we employ the following identities of Y m
l (ζ, φ) (Sakurai, 1994):∫

dΩY m
l (ζ, φ)

[
Y m′

l′ (ζ, φ)
]∗

= δll′δmm′ , (31.20a)

∇2Y m
l (ζ, φ) = −l(l + 1)Y m

l (ζ, φ), (31.20b)∫
dΩY m1

l1
(ζ, φ)Y m2

l2
(ζ, φ) [Y m

l′ (ζ, φ)]
∗

= g(l1,m1, l2,m2, l,m), (31.20c)

m

l(0,0)

(1,1)

(2,2)

(3,3)

(3,2)

(3,1)(2,1)

(1,0) (2,0) (3,0)

(1,–1) (2,–1) (3,–1)

(2,–2) (3,–2)

(3,–3)

Figure 31.1 For a spherical system, an illustration of coordinates (l,m). Here
−l ≤ m ≤ l. To compute energy EL (l ≤ L), we sum over all
the modes of the triangle up to l = L.

where dΩ is the solid angle, and

g(l1,m1, l2,m2, l,m) =

√
(2l1 + 1)(2l2 + 1)(2l2 + 1)

4π

×
(
l1 l2 l
0 0 0

)(
l1 l2 l
m1 m2 −m

)
(31.21)
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486 Energy Transfers in Fluid Flows

with the bracketed terms as the Clebsch–Gordan coefficients. Substitution of the

above identities in Eq. (31.19) yields

ḟml =
∑

l1,m1,l2,m2

g(l1,m1, l2,m2, l,m)fm1

l1
fm2

l2
− l(l + 1)fml . (31.22)

The modal energy in spherical coordinates is defined as

Em
l =

1

2
|fml |2, (31.23)

whose evolution equation is

Ėm
l =

∑
l1,m1,l2,m2

g(l1,m1, l2,m2, l,m)<[fm1

l1
fm2

l2
f∗ml ]− 2l(l + 1)Em

l

= Tml − 2l(l + 1)Em
l . (31.24)

Here, the first term in the RHS contributes to the growth rate of Em
l via nonlinear

energy transfers, while the second term represents the dissipation of Em
l .

Contrast the aforementioned dynamical and energy equations [Eqs. (31.22,

31.24)] with those in Fourier basis discussed in Chapter 1. For comparison, we

extend the equations of Chapter 1 to two dimensions with k → k = (kx, ky). In

Fourier space, the nonlinear interaction among the three interacting modes of the

triad is

T (k,p,q) = <[f(q)f(p)f∗(k)] (31.25)

with q = k− p [see Eq. (1.9)]. The corresponding interaction term in the spherical

coordinate system is

T (l1,m1, l2,m2, l,m) = g(l1,m1, l2,m2, l,m)<[fm1

l1
fm2

l2
f∗ml ], (31.26)

where g is a complex function involving Clebsch–Gordan coefficients, and

m1 +m2 = m; |l1 − l2| ≤ l ≤ l1 + l2. (31.27)

These conditions are similar to the selection rules1 for l,m in quantum

mechanics (Sakurai, 1994). Thus, the nonlinear term in the spherical basis is much

more complex than the corresponding term in Fourier basis. In Table 31.1, we

make correspondence between the Fourier and spherical representations.

1The second selection rule is similar to that for sin–cos basis functions. Note that interactions of sin(px)
and sin(qx) yield harmonic functions with wavenumbers |p− q| and p+ q.
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Table 31.1 Contrasting 2D flows in Cartesian and spherical coordinate systems.
In the fourth row,

⊕
represents nonlinear interaction.

Property Cartesian system Spherical system

Basis function exp(i(kxx+ kyy)) Yml (ζ, φ)

Real space coord. x, y ζ, φ

Fourier space wavenumbers k = (kx, ky) (l,m)

Interacting wavenumbers
(p,q,k) (l1,m1)

⊕
(l2,m2) = (l,m)

with p + q = k with m1 +m2 = m

and |l1 − l2| ≤ l ≤ l1 + l2

Modal energy |f(kx, ky)|2/2 |fml |
2/2

−∇2 k2 l(l + 1)

Triad interaction <[f(q)f(p)f∗(k)]
<[fm1

l1
fm2

l2
f∗ml ]

×g(l1,m1, l2,m2, l,m)

Due to the above complexities, it is quite difficult to derive combined energy

transfer and mode-to-mode energy transfer in spherical geometry. Yet, we can derive

a formula for the energy flux as follows. We define the energy EL by summing the

modes of the triangle of Fig. 31.1 up to l = L, that is,

EL =
∑
l≤L

Em
l . (31.28)

This is equivalent to the wavenumber sphere of radius L discussed in Chapter 4.

Note that this sum includes m-sums with −L ≤ m ≤ L. We derive an equation for

the temporal evolution of EL by summing Eq. (31.24) for l ≤ L that yields

d

dt
EL =

∑
l≤L

Tml −
∑
l≤L

2l(l + 1)Em
l

= −Π(L)−
∑
l≤L

2l(l + 1)Em
l . (31.29)

Here, the first term in the RHS represents the energy gained by EL due to the

nonlinear interactions, or −Π(L), where Π(L) is the energy flux leaving the sphere

of radius L. The second term is the dissipation rate of EL. This is how we can

define the energy flux in spherical geometry. The definition of Π(L) presented here

is similar to Eq. (4.41) of Chapter 4.

The equations for the velocity field are even more complex, and we skip them

altogether. We refer the reader to Amit and Olson (2010) and references therein for

some details on hydrodynamics in spherical geometry,
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488 Energy Transfers in Fluid Flows

Further Reading

For the three topics covered in this chapter we refer the reader to Verma (2012),

Teaca et al. (2014), and Amit and Olson (2010) respectively.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316810019.032
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 04 Jul 2019 at 23:03:56, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316810019.032
https://www.cambridge.org/core


Chapter 32

Conclusions

In this book, we describe nonlinear energy transfers in incompressible and

compressible hydrodynamics; scalar flows including stably stratified and thermal

convection; vector flows including magnetofluids, electron magnetohydrodynamics

(MHD), tensor flows, etc. After introducing such flows, we describe the formalism

of mode-to-mode energy, enstrophy, kinetic helicity, and magnetic helicity transfers

in respective flows.

Using the formulas for the mode-to-mode transfers, we can easily derive fluxes

and shell-to-shell transfers for the corresponding quantities (e.g., kinetic energy,

kinetic helicity, etc.). Complex flows like thermal convection and MHD have various

kinds of energy fluxes that are covered in this book. For anisotropic flows, the

useful transfer functions are ring-to-ring transfers, and energy transfer from u⊥ to

u‖ via pressure. In the book we also describe various phenomenologies of energy

flux and spectrum, and compare the phenomenological predictions with numerical

and experimental results.

This book also includes discussions on energy transfers in Craya–Herring and

helical basis. These formulations provide alternate perspectives, as well as simplify

many derivations. For example, the field-theoretic computation of energy transfers,

and the energy transfers in helical turbulence and dynamo are much more compact

in Craya–Herring and helical basis.

The formalism of energy transfers is very powerful and it provides valuable

tools for analyzing turbulent flows. Yet this formulation has limitations. The

scheme of mode-to-mode energy transfer cannot be extended to compressible flows
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490 Energy Transfers in Fluid Flows

in a straightforward manner, yet energy flux can be defined for such flows. Moreover,

the derivation of energy transfers for flows in spherical geometry are quite involved

due to the complex nature of spherical harmonics.

In compressible flows, there are interesting energy transfers among compressible

and incompressible components of the flows. In addition, there are exchanges

between the internal energy and kinetic energy. Separation of the equations for the

incompressible and incompressible components also contrasts the dynamic and

thermodynamic pressures, the former involves incompressible components, while

the latter participates with the compressible components. These ideas are covered

in the chapters on compressible turbulence.

Most discussions in this book are based on Fourier space formalism, but we also

cover energy transfers in real space, namely, Kolmogorov’s theory of turbulence. We

highlight connections between the multiscale energy transfers in real space and in

Fourier space.

I believe that it may be possible to extend the energy transfer formalism described

in this book to other fields like electrodynamics, optics, quantum systems, etc. The

constraints ∇ · E = ∇ · B = 0 (where E and B are electric and magnetic fields

respectively) of free-space electrodynamics is similar to the incompressible condition

∇·u = 0; these similarities may help decipher connections between electrodynamics

and hydrodynamics. Also note that energy fluxes in equilibrium field theory are

zero, while those in nonequilibrium field theory are nonzero (see Chapter 4). The

latter field theories are active areas of research, and the energy transfer formulation

may provide interesting insights into this complex field.

A large fraction of the material covered in this book are based on published

material, but some topics, for example, compressible turbulence, EMHD,

field-theoretic computation of energy transfers, energy transfers in tensor flows are

unpublished works. In the present book we present the formalism of energy

transfers in a coherent manner and provide connections between a variety of flows.

We do hope that you as a reader would have enjoyed these discussions.
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Appendix A

Power Law Physics

Multiscale phenomena have many interesting features. Some of the analytical tools

used to describe such phenomena are unique. We illustrate them using examples

including turbulent flows.

Consider a one-dimensional rod whose density is ρ(x) with x = [0, L]. The mass

of the rod segments [0, x] and [0, x+ dx] are respectively

M(x) =

∫ x

0

ρ(x′)dx′, (A.1)

M(x+ dx) =

∫ x+dx

0

ρ(x′)dx′. (A.2)

Hence, the elemental mass of the rod segment [x, x+ dx] is ρ(x)dx.

Contrast this with the multiscale mass distribution in our universe. Our universe

has asteroids, planets, stars, galaxies, galaxy clusters, etc. at different length scales,

which are denoted by r. Hence, it is meaningful to think of variations of length in

the universe as

dr = βr. (A.3)

For example, the Earth is many times smaller than our solar system, the next object

in the hierarchy. Hence, the increment from one system to another is not small.

Now, let us consider a mass function M(r), which is the total mass up to length

scale r. It is expected that

M(r) = Crα, (A.4)
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492 Appendix A

where α lies between 2 and 3 due to the fractal nature of the universe. Note that a

sphere with a uniform mass density ρ has M(r) = (4/3)πρr3, but in the universe,

the voids at multiple scales lead to α between 2 and 3.

When we go from scale r to r + dr = (1 + β)r, the change in mass is

δM(r) = M(r + dr)−M(r) = Crα[(1 + β)α − 1] ∼M(r). (A.5)

Contrast this with the example of the rod for which dx and δM(x) are small, and

δM(x)�M(x).

Similar analysis is employed to the inertial range of a turbulent flow that exhibits

multiscale physics. We estimate the energy content in a scale range of dr as follows.

Using dr ∼ r, wavenumber k ∼ 1/r, and dk ∼ k, we obtain

δE(r) =
u2
r

2
=

∫ 2k

k

E(k)dk. (A.6)

Using E(k) ∼ ε2/3u k−5/3 from Kolmogorov’s theory, we deduce that

u2
r

2
∼ ε2/3u k−2/3 ∼ ε2/3u r2/3. (A.7)

Hence, the velocity magnitude at length scale r is

ur ∼ ε1/3u r1/3. (A.8)

Also recall that for the shell-to-shell energy transfers, the radii of the wavenumber

shells were chosen as kn = k02ns, where n is the shell index, and s is a positive real

number. This choice of kn is motivated by the arguments given earlier.

The arguments given here are general, and they are applicable to all multiscale

phenomena. For example, water flow in streams and rivers at different scales, energy

contents in multiscale fractures of an earthquake system, oxygen content in the lungs

at different scales, wealth distribution (to be discussed in the next Appendix), etc.

Further Reading

Refer to Newman (2005) and reference therein for further discussion and examples

of power law physics.
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Appendix B

Wealth Distribution and
Cascade in an Economy

In this appendix we make a simple multiscale model for the wealth distribution in an

economic system. This model is motivated by Kolmogorov’s picture of turbulence.

Let us assume that the wealth is generated at the largest scale, for example,

by government, large companies, etc., and it flows from large scales to small scales

in a steady manner. We consider a 2D wavenumber mesh with each grid point

representing a financial entity with wealth of W (k). The number density of mesh

points in a 2D shell of radius k is1

n(k) = 2πk. (B.1)

We aim to solve for the wealth distribution n(W ), which is the number density of

financial entities with wealth W . To illustrate, there are fewer financial entities at

small k, and they correspond to financial giants like Google and Apple. Intermediate

and large k’s represent intermediate-scale and small-scale companies. The smallest

unit in the financial model are consumers of the wealth.

As in the shell model of turbulence discussed in Chapter 28, we assume local

interactions (in wavenumber space) among financial entities, and a constant

cascade of wealth from large scales to intermediate scale and then to small scales.

1The real number density of financial entities can be determined from the dimension of the network of the
companies. This exercise however requires extensive data analysis.
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494 Appendix B

Hence, taking a cue from the shell model of turbulence, we construct the following

multiscale model for finance:

dWk

dt
= akαWk−1Wk+1 − bkβWk +Qk,1, (B.2)

where a, b, α, and β are constants, and Wk is the wealth spectrum, which is

analogous to the shell spectrum in turbulence.2 Hence,

Wk = 2πkW (k). (B.3)

In Eq. (B.2), the first term in the RHS represents nonlinear interactions among the

financial entities at scales k − 1, k, and k + 1; while the second term represents

financial losses at scale k. The third term Qk,1 represents wealth generation at the

largest scale, which is k = 1.

This simple model ignores nonlocal interactions, as well as other complex

processes like loans, savings, banks, generation of wealth at the intermediate and

small scales, etc. Further, we assume a steady state with money flowing from large

scales to small scales. The wealth is finally consumed at the smallest scale of the

system.

For this system, we model the flux and distribution of wealth by making an

analogy with Kolmogorov’s theory of turbulence. We assume no pilferage of wealth

due to corruption; hence, the money flux in the intermediate scale is constant, as

shown in Fig. B.1(a). In the intermediate range, we expect a power law behavior

for Wk (to be derived in the following).

Since the financial losses at the intermediate scales are assumed to be negligible,

we expect that at these scales,

Πm =
dWk

dt
≈ kαW 2

k ≈ const., (B.4)

where Πm is the cascade of wealth. Inversion of this equation yields

Wk ∼ Π1/2
m k−α/2. (B.5)

This is the wealth distribution as a function of scale (k). We illustrate the

aforementioned spectrum in Fig. B.1(b).

2In the shell model of hydrodynamic turbulence discussed in Chapter 28, the amplitude of the velocity, Un
is a complex variable, while the kinetic energy, |Un|2, is a real quantity. In Eq. (B.2), Wn is real. It may
also be possible to write an equation for a complex Wn. These issues need further investigation.
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In Eq. (B.5), we replace k and Wk using Eqs. (B.1, B.3) that yields

n(W ) ∼ Π
1

α+2
m W− 2

α+2 , (B.6)

Wealth
generation

Cascade of
money

Consumption
of money

Thermo
range

LS

P
(

)
k

m

P ( ) = Ckm

k

W
k

k f kDI k

P

k
m

1/2
–

/2a

Pao-like

Large
economic

entities

Medium
economic

entities

Small
economic

entities

Individuals

k f kDI kh

kh

(a)

(b)

Figure B.1 For the finance model of Eq. (B.2): (a) the flux of wealth Πm(k),
and (b) the wealth distribution of financial entities. The large and
medium scale entities have constant wealth flux and power law
distribution of wealth (Π1/2

m k−α/2). Small scale entities exhibit
exponential distribution (Pao’s model), while the smallest ones
exhibit Gibbs distribution. Adopted from a figure of Verma (2019).

where we write W (k) as W . Thus, we derive the number of financial entities n(W )

with wealth W . Clearly, α = −1 gives

n(W ) ∼ ΠmW
−2, (B.7)

which is the Pareto’s law for the wealth distribution (Pareto, 1964; Chakrabarti
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496 Appendix B

et al., 2013) of the large financial entities. Note however that n(W ) depends quite

crucially on the choice of α. In Fig. B.2, we plot wealth distribution n(W ) vs. W .

Note that in some sense, n(W ) vs. W plot is an inverted form of Wk vs. k plot.

Pao-like

W –2n
(W

)

Thermo

W

Figure B.2 Plot of wealth distribution n(W ) vs. W , which is the number
distribution of financial entities with wealth W . Adopted from a
figure of Verma (2019).

The wealth cascades down to smaller scales, and it finally gets consumed at the

smallest scales or at the individual level, say in the form of consumption of food and

basic needs. At this scale we can employ Saha and Srivastava (1950)’s equilibrium

model according to which the wealth distribution follows Gibbs distribution. We

also expect an income group between the power law regime and the equilibrium

regime. Here, a construct similar to Pao’s model for turbulence (see Section 5.5.1)

may be handy. Refer to Figs. B.1 and B.2 for illustrations of these regimes.

The above finance model is very simple since it ignores many important

ingredients such as savings, banking, pilferage of wealth, nonlocal interactions, etc.

The model however has a certain novelty. It emphasizes nonequilibrium and

multiscale nature of the financial system, cascade of money at different scales, etc.,

which are normally absent in equilibrium models (Saha and Srivastava, 1950).

Further Reading

The model discussed in this Appendix is taken from Verma (2019). Saha and

Srivastava (1950) constructed one of the earliest financial model based on

equilibrium theory. For more detailed discussion on this topic, refer to Chakrabarti

et al. (2013).
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Appendix C

Renormalization Group
Analysis of Hydrodynamic

Turbulence

Hydrodynamic turbulence involves multiscale physics; hence, renormalization group

(RG) formulation is a useful tool for studying hydrodynamic turbulence. Some of the

leading efforts on RG formulation of hydrodynamic turbulence are: Yakhot–Orszag

perturbative approach (Yakhot and Orszag, 1986); and self-consistent iterative RG

(i-RG) of McComb (1990) and Zhou (2010). In this Appendix we present i-RG

procedure (McComb, 1990, 2014; McComb and Shanmugasundaram, 1983, 1984;

Zhou et al., 1988; Zhou, 2010; Verma, 2004).

In Chapter 3 we derived the Navier–Stokes equations in Fourier space. An

inclusion of pressure gradient in Eq. (3.17a) yields (McComb, 1990)

(−iω + νk2)ui(k̂) = − i
2
Pijm(k)

∫
p̂+q̂=k̂

dp̂ [uj(p̂)um(q̂)] + fi(k̂), (C.1a)

kiui(k) = 0, (C.1b)

where

Pijm(k) = kjPim(k) + kmPij(k), (C.2)

k̂ = (ω,k), p̂ = (ω′,p), and q̂ = (ω′′,q).

In the RG scheme, the wavenumber range (kN , k0) is divided logarithmically into

N shells with the nth shell as (kn, kn−1), where kn = hnk0 (h < 1) and kN = hNk0.

See Fig. C.1 for an illustration.
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k< k>

kN kn k2 k1 k0 k

Figure C.1 Division of wavenumber range into shells. In the first iteration
of RG, we average the velocity field of the shell (k1, k0), which is
denoted by k>. The remaining modes (kN , k1) belong to the band
k<. This procedure is repeated subsequently to shells (k2, k1),
(k3, k2), and so on.

In the first step, the spectral space is divided into two bands: (k1, k0) = k> (to

be eliminated) and (kN , k1) = k< (to be retained). The equation for a Fourier mode

k̂ in k< is[
−iω + ν(0)k

2
]
u<i (k̂) = − i

2
Pijm(k)

∫
p̂+q̂k̂

dp̂([u<j (p̂)u<m(q̂)]

+2[u<j (p̂)u>m(q̂)] + [u>j (p̂)u>m(q̂)]) + F<
i (k̂), (C.3)

where ν(0) = ν. The equation for u>i (k̂) modes is obtained by interchanging < and

> in the aforementioned equations.

In the RG procedure, we compute the corrections to the viscosity, δν(0), due to

the second and third terms in the RHS of Eq. (C.3). The steps involved in this

process are described as follows.

1. The terms in the second and third brackets in the right-hand side of

Eq. (C.3) are computed perturbatively. It is assumed that {u>(k̂)} has a

Gaussian distribution with a zero mean, while {u<(k̂)} is unaffected by the

averaging process. We perform an ensemble average of the system (McComb,

1990) that yields〈
u>i (k̂)

〉
= 0;

〈
u<i (k̂)

〉
= u<i (k̂). (C.4)

For homogeneous and isotropic flows [Eq. (10.1)],

〈
u>i (p̂)u>j (q̂)

〉
=

[
Pij(p)C(p̂)− iεijlpl

HK(p̂)

p2

]
δ(p̂+ q̂), (C.5)

where C(p̂), HK(p̂) are related to the modal energy and modal kinetic helicity

respectively (Batchelor, 1953). Using Eq. (C.5) and Pijm(k = 0) = 0, we

observe that the second and third terms vanish to the zeroth order. Hence we

go to the first order.

For the expansion to the first order, we employ the properties that the triple

order correlations
〈
u>i (k̂)u>j (p̂)u>m(q̂)

〉
are zero due to the Gaussian nature of
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Appendix C 499

the fluctuations, and the fourth order correlations are expressed as products

of second order correlations. In addition, the contributions from the triple

nonlinearity
〈
u<(k̂)u<j (p̂)u<m(q̂)

〉
are neglected (Zhou et al., 1988). Zhou et al.

(1988) and Zhou (2010) performed a more refined calculation to take into

account the effects of triple nonlinearity, but this topic is beyond the scope of

this appendix.

2. To first order, the second bracketed term of Eq. (C.3) vanishes, but the

nonvanishing third bracketed term yields corrections to ν(0) (McComb, 1990,

2014). Consequently, Eq. (C.3) gets transformed to[
−iω + (ν(0)(k) + δν(0)(k))k2

]
u<i (k̂) =

− i

2
Pijm(k)

∫
p̂+q̂=k̂

dpdω′

(2π)d+1
[u<j (p̂)u<m(k̂ − p̂)] + F<

i (k̂) (C.6)

with

δν(0)(k̂)k2 =
1

d− 1

∫ ∆

p̂+q̂=k̂

dpdω′

(2π)d+1
[B(k, p, q)G(q̂)C(p̂)], (C.7)

where

B(k, p, q) = Pijm(k)Pmai(p)Pja(q)

= kp[(d− 3)z + 2z3 + (d− 1)xy] (C.8)

with d is the space dimensionality that is taken to be 3 in this appendix,

x, y, z are the direction cosines of k,p,q (McComb, 1990; Verma, 2004). It is

important to note that the helical component of Eq. (C.5) does not contribute

to Eq. (C.6) because the tensor corresponding to the helical component is of

the following form:

B′(k, p, q)G(q̂)HK(p̂) = − i

q2
Pijm(k)Pmai(p)qlεjalG(q̂)HK(p̂)

= − i

q2
[kjPim(k) + kmPij(k)][paPmi(p) + piPma(p)]

×qlεjalG(q̂)HK(p̂)

= 0. (C.9)

due to the asymmetric nature of εjal. Thus, δν is independent of the kinetic

helicity HK .
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500 Appendix C

Green’s function G(q̂) is defined as

G(q̂) =
1

−iω′′ + ν(0)(q)q2
. (C.10)

In addition, we assume that the correlation function and Green’s function

have the same frequency dependence (McComb, 1990). Hence, the correlation

function C(p̂) is defined as

C(p̂) =
C(p)

−iω′ + ν(0)(p)p2
, (C.11)

where C(p) is the modal kinetic energy.

3. We substitute this Green’s function and the correlation function in Eq. (C.7),

and take the limit ω → 0 (long time scale) that yields

δν(0)(k)k2 =
1

d− 1

∫ ∆

p+q=k

dp

(2π)d
B(k, p, q)C(p)

ν(0)(p)p2 + ν(0)(q)q2
. (C.12)

4. We perform the integral of Eq. (C.12) over the first shell (k1, k0) that yields

the following renormalized viscosity after the first step:

ν(1)(k) = ν(0)(k) + δν(0)(k). (C.13)

We keep eliminating the shells one after the other in a similar manner. After

n+ 1 iterations, we obtain

ν(n+1)(k) = ν(n)(k) + δν(n)(k), (C.14a)

δν(n)(k)k2 =
1

d− 1

∫ ∆

p+q=k

dp

(2π)d
B(k, p, q)C(p)

ν(n)(p)p2 + ν(n)(q)q2
, (C.14b)

with the integration performed over the nth shell.

5. We compute Eqs. (C.14a, C.14b) self-consistently for which we employ

Kolmogorov’s spectrum for energy, that is,

C(p) =
2(2π)d

Sd(d− 1)
p−(d−1)E(p); E(p) = KKoΠ2/3p−5/3, (C.15)

where Sd is the surface area of a d-dimensional sphere of unit radius, and E(p)

is the one-dimensional Kolmogorov’s spectrum. In addition, we attempt the

following form of solution for ν(n)(k):

ν(n)(k) = ν(n)(knk
′) = (KKo)1/2Π1/3k−4/3

n ν∗(n)(k
′) (C.16)
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with k = knk
′ and k′ < 1. We expect ν∗(n)(k

′) to be a universal function for

large n. Here, we follow the notation of Verma (2004).

Substitutions of these forms of C(p) and ν(n)(k) in Eqs. (C.14a, C.14b) yields

the following equations:

δν∗(n)(k
′) =

1

(d− 1)

∫
p′+q′=k′

dq′
2

(d− 1)Sd

Eu(q′)

q′d−1

×
[

S(k′, p′, q′)

ν∗(n)(hp′)p′2 + ν∗(n)(hq′)q′2

]
, (C.17a)

ν∗(n+1)(k
′) = h4/3ν∗(n)(hk

′) + h−4/3δν∗(n)(k
′), (C.17b)

where the integral in this equation is performed over a region 1 ≤ p′, q′ ≤ 1/h

with the constraint p′ + q′ = k′. Note that k′ = k/kn, p′ = p/kn, q′ =

q/kn. Fournier and Frisch (1978) showed that the above volume integral in d

dimensions is∫
p′+q′=k′

dp′ = Sd−1

∫
dp′dq′

(
p′q′

k′

)d−2

(sinα)
d−3

, (C.18)

where α is the angle between vectors p′ and q′.

6. We solve for ν∗(n)(k
′) iteratively using Eqs. (C.17). For h in the range 0.55

to 0.75, Zhou et al. (1997) showed that the Kolmogorov constant computed

using RG is approximately 1.6 independent of h. Therefore, we choose h =

0.7 for our computation. We start with a constant value of ν∗(0)(k
′), and

compute the integral using Gaussian quadrature. We iterate the above process

till it converges, that is, ν∗(n+1)(k
′) ≈ ν∗(n)(k

′). The result of our RG analysis,

exhibited in Fig. C.2, shows a constancy of ν∗(k
′) with k′.

For large n, ν∗(n)(k
′) converges asymptotically to ν∗ ≈ 0.38 as k′ → 0 (see

Fig. C.2). A downward profile of ν∗(n+1)(k
′) near k′ = 1 is attributed to the neglect

of the triple nonlinearity of the unresolved modes (see item 1, and Zhou et al.

(1988)).

Thus, Kolmogorov’s spectrum and renormalized viscosity of Eq. (C.16) are self-

consistent solutions of the RG equations. Here we also show that the renormalized

viscosity is independent of kinetic helicity.
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Figure C.2 Plot of ν∗(k
′) vs k′ for various RG iterations (n). The

function approaches ν∗(k
′) ≈ 0.38 (the black horizontal line)

asymptotically.

Further Reading

There are a large number of books and reviews on the renormalization group

treatment of turbulence. We refer the reader to the following leading articles and

books: Yakhot and Orszag (1986), McComb (1990), Zhou (2010), and references

therein.
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Notation

Fields and Fourier transform:

r Real space coordinate

k Wavenumber in Fourier space

k Magnitude of k

f(k) Fourier transforms of f(r)

k‖, kz Component of k along ẑ

k⊥
√
k2
x + k2

y

Miscellaneous Variables:

ζ Polar angle in spherical coordinate system

φ Azimuthal angle in spherical coordinate system

φ Polar angle in 2D coordinate system (for Craya–Herring basis)

ê1,2,3 Unit vectors of Craya–Herring basis

u1,2,3 The components of the velocity field in Craya–Herring basis

ê± Unit vectors of helical basis

u± The components of the velocity field in helical basis

β Sector index of a ring

<(.) Real part of the argument

=(.) Imaginary part of the argument
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504 Notation

Velocity, pressure, scalar, vector, tensor, and magnetic fields:

u Velocity field

u‖ Velocity field parallel to the anisotropy direction

u⊥ Velocity field perpendicular to the anisotropy direction

ω Vorticity field

θ Scalar field (temperature, density, etc.)

w Vector field

C Tensor field

b Magnetic field fluctuation

B Total magnetic field (mean B0 + fluctuation)

z± Elsässer variables (u± b)

A Vector potential

Fu,Fω Forcing field for the velocity/vorticity field

Fθ,Fw, FC Forcing field for the scalar/vector/tensor field

p Pressure field

ν, µ Kinematic/Dynamic viscosity

κ Diffusivity of scalar field

η Diffusivity of vector/tensor/magnetic field

U Large scale velocity (= Urms)

εu,ω,HK Viscous/enstrophy/kinetic helicity dissipation rate

Definitions of quadratic quantities:

Kinetic energy (KE) density Eu(r) =
1

2
u2

KE density in Craya−Hering basis Eui(r) =
1

2
u2
i (i = 1, 2, 3)

KE density in helical basis Eu±(r) =
1

2
u2
±

Kinetic helicity density HK(r) =
1

2
u · ω
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Notation 505

Magnetic helicity density HM(r) =
1

2
A ·B

Enstrophy density Eω(r) =
1

2
ω2

Magnetic energy density Eb(r) =
1

2
b2

Energy density of z± : Ez±(r) =
1

2
(z±)2

Cross helicity density Hc(r) =
1

2
u ·B

Mean square vector potential density EA(r) =
1

2
A2

Total of quadratic quantities (real space) (f, g) :

∫
dr

1

2
(fg)

Modal energy (f, g) :
1

2
<[f(k)g∗(k)]

Total of quadratic quantities (Fourier space) (f, g) :
∑
k

1

2
<[f(k)g∗(k)]

KE parallel/perp to the anisotropy direction = Eu‖,⊥ =

∫
dr

1

2
|u‖,⊥|2

Energy spectrum:

Ef (k) Modal energy of f

Ff (k) Energy supply rate to f by external force

Ef (k) One-dimensional energy spectrum for f

Ef,‖(k) Energy spectrum of f parallel to anisotropy direction

Ef,⊥(k) Energy spectrum of f perpendicular to anisotropy direction

Ef (k, β) Ring spectrum of f in spherical system (β= sector index)

Ef (k, i) Ring spectrum of f in cylindrical system (i = height index)

Mode-to-mode transfer:

SXY (k′|p|q) Mode-to-mode energy transfer from field Y (p) to field X(k′)

SHK ,HM (k′|p|q) Mode-to-mode transfer of kinetic helicity/ magnetic helicity

SXY (k′|p,q) Combined energy transfer from field Y (p) and Y (q)

to field X(k′)
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506 Notation

Energy transfers:

Πf (k) Spectral flux of quadratic quantity f

TX,mY,n Shell-to-shell transfer from field X of shell m to field Y of shell n

TX,AY,B Transfer of quadratic quantity from field X of region A

to field Y of region B

T
(X,m,α)
(Y,n,β) Ring-to-ring transfer from field X of ring (m,α)

to field Y of (n, β) (spherical)

T
(X,m,h1)
(Y,n,h2) Ring-to-ring transfer from field X of ring (m,h1)

to field Y of (n, h2) (cylindrical)

P‖(k′) Kinetic energy gained by u‖(k) from u⊥(k) via pressure

P⊥(k′) Kinetic energy gained by u⊥(k) from u‖(k) via pressure

System parameters:

λ Taylor’s microscale

Re Reynolds number (UL/ν)

Reλ Reynolds number based on Taylor scale (Uλ/ν)

ReM Magnetic Reynolds number (UL/η)

Pe Péclet number (UL/κ)

Pr Prandtl number (ν/κ)

Sc Schmidt number (ν/κ)

Ra Rayleigh number (αg∆d3/(νκ))

Ro Rossby number (U/(ΩL))

N Brunt Väisälä frequency (in Chapter 15)

N Interaction parameter (in Chapter 24)

Structure functions:

l Distance between the two points [u(r),u(r + l)]

Sq(l) qth order Structure function for the velocity field

Sθq (l) qth order Structure function for the scalar field θ
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Notation 507

Sz
±

q (l) qth order Structure function for the Elsässer variables of MHD

C(l) Real space second order correlation of the fields

Shell model:

kn Wavenumber of shell n

Un Velocity field of shell n

θn Scalar/vector/tensor field of shell n
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Knaepen, Bernard, and René Moreau. 2008. “Magnetohydrodynamic Turbulence

at Low Magnetic Reynolds Number.” Annu. Rev. Fluid Mech. 40: 25–45.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316810019.037
Downloaded from https://www.cambridge.org/core. Access paid by the UCSF Library, on 04 Jul 2019 at 23:00:32, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316810019.037
https://www.cambridge.org/core


References 515

Knobloch, E. 1992. “Onset of Zero Prandtl Number Convection.” Journal de

Physique II 2 (5): 995–99.

Kolmogorov, Andrey Nikolaevich. 1941a. “Dissipation of Energy in Locally

Isotropic Turbulence.” Dokl Acad Nauk SSSR, 32 (1): 16–18.

Kolmogorov, Andrey Nikolaevich. 1941b “On the Degeneration of Isotropic

Turbulence in an Incompressible Viscous Fluid.” Dokl. Akad. Nauk SSSR, 31:

319–23.

Kolmogorov, Andrey Nikolaevich. 1941c. “The Local Structure of Turbulence in

Incompressible Viscous Fluid for Very Large Reynolds Numbers.” Dokl Acad Nauk

SSSR, 30 (4): 301–05.

Kolmogorov, Andrey Nikolaevich. 1962. “A Refinement of Previous Hypotheses

Concerning the Local Structure of Turbulence in a Viscous Incompressible Fluid

at High Reynolds Number.” Journal of Fluid Mechanics 13 (1): 82–85.

Kraichnan, Robert H. 1959. “The Structure of Isotropic Turbulence at Very High

Reynolds Numbers.” Journal of Fluid Mechanics 5 (4): 497–543.

Kraichnan, Robert H. 1964. “Kolmogorov’s Hypotheses and Eulerian Turbulence

Theory.” Physics of Fluids 7 (11): 1723–34.

Kraichnan, Robert H. 1965. “Inertial-range Spectrum of Hydromagnetic

Turbulence.” Physics of Fluids 8 (7): 1385–87.

Kraichnan, Robert H. 1967. “Inertial Ranges in Two-dimensional Turbulence.”

Physics of Fluids 10 (7): 1417–23.

Kraichnan, Robert H. 1968. “Small-scale Structure of a Scalar Field Convected by

Turbulence.” Physics of Fluids 11 (5): 945–53.
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Burgers turbulence, 462

Compressible flow, 469
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Second order (Fourier space), 173
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Magnetohydrodynamics, 321
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Mode-to-mode transfer, 144, 226,

301, 353

Parity transformation, 139
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Detailed conservation

Burgers turbulence, 463
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Dynamo, 386
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Anti-dynamo theorems, 387

Biffurcation analysis, 397

Bound on Rm, 389

Definitions, 387
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Small-Pm dynamos, 401

Tetrahedron helical dynamo model,
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Dynamo transition, 397

Ekman friction, 481

Energy flux, 482

Energy spectrum, 482

Ekman turbulence, 66

Electron MHD turbulence, see EMHD

turbulence, 420

Elsässer variables, 312

EMHD turbulence, 420

Energy transfer, 425

Turbulence phenomenology, 423

Energetics arguments, 14

Hydrodynamic turbulence, 63, 80

Energy exchange between u‖ and u⊥,
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Energy flux, 82

3D hydrodynamic turbulence, 82

Burgers turbulence, 464

Compressible turbulence, 479

FENE-p model, 449

Field theory, 179

Hydrodynamic turbulence, 82

Kolmogorov’s theory, 82

MHD turbulence, 359

Passive scalar turbulence, 230

Passive tensor turbulence, 447

Passive vector turbulence, 306

Energy flux

Shell model, 457

Energy spectrum

2D hydrodynamic turbulence, 119

3D ydrodynamic turbulence, 82

Burgers turbulence, 464

FENE-p model, 449

Helical turbulence, 130

MHD turbulence, 358

Passive scalar turbulence, 230

Passive tensor turbulence, 447

Passive vector turbulence, 306

Energy transfers, 434

Compressible turbulence, 476

Enstrophy, 12, 268

Enstrophy flux, 119

2D hydrodynamic turbulence, 119

3D Hydrodynamics, 111

Equations of motion for Fourier modes

Craya–Herring basis, 142, 301, 322,
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Fourier basis, 27

Helical basis, 163, 325

Euler turbulence, 90

Experimental and numerical results, 437

External force, 9
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Enstrophy supply rate, 32

Kinetic energy supply rate Fu(k),

28

Kinetic helicity supply rate, 31

Fast Fourier transform (FFT), 74

FENE-p model

Turbulence phenomenology, 449

Vector energy flux, 449

Vector energy spectrum, 449

Field theory

Kinetic energy flux, 179

Kinetic energy flux (2D), 182

Mode-to-mode energy transfer, 174,

181

Mode-to-mode kinetic helicity

transfer, 184

Shell-to-shell kinetic energy

transfer, 179

Shell-to-shell kinetic energy transfer

(2D), 182

Finance model, 494

Cascade of wealth, 494

Equilibrium regime, 496

Wealth distribution, 494

Flow on a sphere, 484

Modal energy, 486

Spherical harmonics, 485

Flow with a scalar, 215

Flow with a tensor, 443

Flow with a vector, 295

Flow with an active tensor field:

FENE-p model, 448

Flux

Kinetic energy flux, see energy flux,

82

MHD turbulence, 343

Scalar energy, 222

Stably stratified turbulence, 251

Tensor energy, 446

Thermal convection, 266

Vector turbulence, 298

Four-third law and energy flux, 369

Four-third law and scalar energy flux,

242

Fourier mode, 4, 23

Energy, 5

Enstrophy, 31

Kinetic energy, 27

Kinetic helicity, 30

Vorticity, 29

Fourier series, 23

Fourier space description

Navier-Stokes equations, 27

Pressure, 24, 74

Fourier space description of

hydrodynamics, 23

Galerkin truncation, 72

Gyrokinetic turbulence, 483

Mode-to-mode energy transfer, 484

Helical basis, 157

ê±(k), 157

Energy transfers, 165

Enstrophy transfers, 167

Equations of motion, 163, 325

Helical decomposition, 157

Kinetic helicity transfers, 166

Magnetohydrodynamics, 325

MHD turbulence, 354

Mode-to-mode transfer, 165, 301,

354

Vector turbulence, 301

Helical mode

u+ , 158

u− , 160

Circularly polarized, 159

Elliptic polarization, 161
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Maximal helical mode, 158

Mixture of u+ and u−, 161

Planes polarization, 161

Helical turbulence, 126

Energy flux, 130

Energy spectrum, 130

Kinetic helicity flux, 131

Kinetic helicity spectrum, 131

Homogeneous and isotropic turbulence,

28, 196–197, 239, 365

Hydrodynamic turbulence

Combined energy transfer, 45

Detailed energy conservation of

Craya–Herring components, 145

Detailed energy conservation of

helical components, 164

Detailed kinetic energy

conservation, 45

Detailed kinetic helicity

conservation, 127

dissipation length ld, 84

Dissipative regime, 91

energetics arguments, 80

Energy flux Πu(k), 82

Energy spectrum Eu(k), 82

Enstrophy flux, 111

Field theory (see Field theory), 172

Fluctuations in the energy flux, 91

Four-fifth law, 203–204

Heisenberg’s theory, 98

Intermittency correction, 210

Kolmogorov’s constant KKo, 82

Kolmogorov’s length, 84

Kolmogorov’s theory, 79

Kolmogorov’s wavenumber, 84

Pao’s model, 92

Shell-to-shell energy transfer, 88

Transition wavenumber between

inertial and dissipation kDI, 81

Two-dimensional

Energy inverse cascade, 119

Enstrophy forward cascade, 119

Kraichnan’s theory, 119

Incompressibility approximation, 9

Inertial waves, 432

Integral form

Enstrophy, 14

Kinetic energy, 14

Intermittency

β model, 210

Hydrodynamic turbulence, 210

Kolmogorov’s log-normal model,

210

Log-Poisson model, She-Leveque

model, 211

MHD turbulence, 370

Multifractal model, 210

Thermal convection, 278

Inviscid flows, 16

Kinematic viscosity, 9

Kinetic energy, 12

Also KE, 12

density Eu(r), 12

modal Eu(k), 26, 158

total Eu, 12, 26

Kinetic energy transfers

2D hydrodynamics, 55

Arrow of time, 71

Computation using data, 75

Computation using experimental

data, 77

Craya–Herring basis, 144

Dar et al., 45

Energy flux, 59

Frisch, 67

Hydrodynamics, 44

Kraichnan, 67
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Mode-to-Mode energy transfer, 44

Shell-to-shell transfer, 68

Variable energy flux, 63

Variable scalar energy flux, 222

Verma, 45

Kinetic helicity, 12, 30

density HK(r), 12

modal HK(k), 138, 158

Thermal convection, 267

total HK , 13

Kinetic helicity transfers, 126

Craya–Herring basis, 147

Helical basis, 166

Kolmogorov’s four-fifth law and energy

flux, 207

Kolmogorov’s theory of turbulence, 79,

82

Energy flux, 82

Structure function, 201, 209

Kolmogorov’s theory of turbulence:

four-fifth law (K41), 203

Laminar flows

Energy flux, 95

Energy spectrum, 95

Linear energy transfer, 3

Locality of interactions

Compressible turbulence, 478

Low-dimensional models, 72

Magnetic energy, 312

Magnetic field generation in MHD, 386

Magnetic Reynolds number, 327

Magnetohydrodynamics

ν±, 312

FB, 310

Fu, 309

Alfvén ratio rA, 313

Alfvén wave, 320

Conservation laws, 312

Craya–Herring basis, 321

Cross helicity, 312

Elsässer variables, 312

Energy of z±, 312

Enstrophy, 312

Formalism, 308

Governing equations in Fourier

space, 316

Governing equations in real space,

308

Helical basis, 325

Magnetic energy, 312

Magnetic helicity, 312

Magnetic Reynolds number, 327

Mean square vector potential, 312

Nondimensionalized equations, 327

Vector potential, 311

Vorticity, 310

With a constant magnetic field, 311

Maximal helical mode, 158

MHD turbulence, 329, 358

SAA, 341

Sbb, 332

Sbu, 333

SHK , 340

SHM , 339

Sub, 331, 333

Sz
±z± , 336

Πb<
u>, Πu<

b< , Πu>
b> , 344

Πu<
u>, Πu<

b> , Πb<
b>, 343

Πtot, ΠHc, 347

ΠHK
, ΠA, 346

Πz± , ΠHM
, 345–346

Alfvén frozen-in theorem, 314

Boldyrev et al.—Dynamic

alignment, 364

Combined energy transfer, 329

Conserved flux, 347

Craya–Herring basis, 353
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Critical balance, 362

Detailed conservation, 330

Detailed conservation of magnetic

helicity, 339

Dobrowonly et al.’s model, 359

Energy flux-based model, 361

Flux, 343

Four-third law, 365

Galtier et al.—Weak turbulence,

364

Goldreich and Sridhar, 362

Helical basis, 354

Kolmogorov-like turbulence

phenomenology, 361

Kraichnan and Iroshnikov’s model,

358

Large Pm MHD, 376

Magnetic dissipation wavenumber,

373

Marsch, 361

Modal energies, 318

Mode-to-mode transfer, 331, 336

Models, 358

Normalized cross helicity σc, 313

Numerical simulations, 380

Scaling of cross helicity, 371

Scaling of magnetic helicity, 372

Shell model, 460

Shell-to-shell transfer, 351

Small Pm MHD, 374

Solar wind, 377

Structure functions, 365, 370

Turbulence phenomenology, 358

Turbulent drag reduction, 408

Variable energy flux, 347

Verma—Effective mean magnetic

Field, 363

Viscous dissipation wavenumber,

373

With a mean magnetic field, 383

Mode-to-mode transfer, 44

Craya–Herring basis, 144, 226, 301,

353

Enstrophy, 183

Craya–Herring basis, 146

Field theory, 175

Giver or donor, 46

Helical basis, 165, 301, 354

Kinetic energy, 44, 101, 175

Kinetic helicity, 184

Mathematical argument, 220

Mediator, 46

MHD turbulence, 331, 336

Physical argument, 48, 103, 220,

337, 446

Receiver, 46

Scalar energy, 218

Shell model, 455, 459

Stably stratified turbulence, 251

Tensor energy, 445

Thermal convection, 266

Vector turbulence, 298

Navier–Stokes equations, 3, 9

in Fourier space, 27

Nondimensionalized version, 10

Tensorial form, 10

Nearly incompressible flow, 471

Nonlinear energy transfer, 4–5

Hydrodynamic turbulence, Tu(k),

27

Hydrodynamic turbulence, Tu(l),

203

MHD turbulence, 342, 367

Scalar turbulence, 241

Scalar turbulence, Tθ(k), 221

Nonlinear energy transfers Tu(k), 27

Normalized cross helicity σc, 313
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Numerical computation of energy

transfers, 75

Numerical simulations, 73

Obukhov-Corrsin constant KOC, 231

One-dimensional KE spectrum, 28, 174

Péclet number, 216

Pao’s model

2D hydrodynamic turbulence, 120

3D hydrodynamic turbulence, 92

Burgers turbulence, 465

Helical turbulence, 131

MHD turbulence, 371

Passive scalar turbulence, 233

Thermal convection, 283

Parseval’s theorem, 25

Passive scalar turbulence, 229

Batchelor’s formula, 234

Batchelor’s scaling, 236

energy spectrum Eθ(k), 233

energy spectrum for laminar flow,

233

Field-theoretic treatment, 243

Four-third law, 239

Governing equations, 229

Kraichnan’s scaling, 236

Laminar regime, 233

Numerical results, 237

Numerical results for Sc ≈ 1, 237

Numerical results for Sc� 1, 238

Numerical results for Sc� 1, 238

Obukhov–Corrsin constant KOC,

231

Pao’s model, 233

Scalar energy flux Πθ(k), 230

Scalar energy spectrum Eθ(k), 230

Structure functions, 239

Turbulence phenomenology, 230

Turbulent regime, 232, 235

Various regimes, 231

Passive tensor turbulence, 447

Turbulence phenomenology, 447

Vector energy flux, 447

Vector energy spectrum, 447

Passive vector turbulence, 305

Governing equations, 305

Turbulence phenomenology, 306

Various regimes, 307

Vector energy flux Πw(k), 306

Vector energy spectrum Ew(k), 306

Power law physics, 491

Prandtl number, 216, 265

Pressure, 9

in Fourier space, 24, 27

Projection tensor, 199

QS MHD turbulence, see Quasi-static

MHD turbulence, 410

Quasi-static MHD turbulence, 66, 410

Energy transfer, 412, 418

Governing equations, 410

Interaction parameter, 411

Joule dissipation, 412

Pao’s model, 414

Ring energy spectrum, 417

Turbulence model, 414, 416

Rayleigh number, 265

Renormalization group analysis of

hydrodynamic turbulence, 497

Renormalized viscosity, 501

Reynolds number, 10

Reynolds number based on Taylor’s

microscale Reλ, 200

Ring spectrum, 187, 189

Roberts dynamo, 391

Rossby number, 430

Rotating turbulence, 429

Energy transfers and fluxes, 437
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Kuznetsov-Zakharov-Kolmogorov

spectrum, 436

Phenomenologies, 434

Smith and Waleffe’s

phenomenology, 435

Zeman’s phenomenology, 434

Zhou’s phenomenology, 435

Scalar turbulence, 215

Active, 215

Combined energy transfer, 219

Craya–Herring basis, 225

Detailed energy conservation, 219

Flux Πθ(k), 222

Governing equations, 215

Mode-to-mode transfer, 218

Nonlinear terms, 217

Péclet number, 216

Passive, 215

Passive scalar, see Passive scalar

turbulence, 229

Prandtl number, 216

Schmidt number, 216

Shell-to-shell transfer, 222

Stably stratified turbulence, see

Stably stratified turbulence, 245

Thermal convection, see Thermal

convection, 262

Variable flux, 223

Schmidt number, 216

Shell model, 452

Combined energy transfer, 455

Detailed energy conservation, 455

Energy flux, 456

MHD turbulence, 460

Mode-to-mode transfer, 455, 459

Polymeric flow, 460

Scalar turbulence, 458

Shell-to-shell transfer, 457

Stably stratified turbulence, 459

Tensor turbulence, 458

Thermal convection, 459

Vector turbulence, 458

Shell-to-shell transfer

2D hydrodynamic turbulence, 124

3D hydrodynamic turbulence, 68

MHD turbulence, 351

Scalar turbulence, 222

Shell model, 457

Thermal convection, 279

Sound wave, 470

Spectral decomposition, 72

Spectral method, 73

Pseudo-spectral simulation, 73

Stably stratified turbulence, 245

Bolgiano wavenumber, 256

Bolgiano–Obukhov Phenomenology,

253

Brunt-Väisälä frequency N , 247

Conservation of total energy, 248

Enstrophy, 251

Flux Πρ, 251

Governing equations in Fourier

space, 249

Governing equations in real space,

245

Internal gravity wave, 247

Kinetic energy flux, 255

Kinetic energy injection rate, 248

Kinetic helicity, 250

Mode-to-mode transfer, 251

Modified Bolgiano-Obukhov

Phenomenology, 256

Numerical results, 259

Oberbeck-Boussinesq (OB)

approximation, 246

Potential energy flux, 255

Shell model, 460
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Various regimes, 252

With moderate buoyancy, 253

Stably-stratified turbulence, 66

Structure functions

Burgers turbulence, 464

Hydrodynamic turbulence, 202, 209

MHD turbulence, 365, 370

Passive scalar turbulence, 239

Thermal convection, 273

Taylor’s microscale, 199, 200

Taylor-Proudman theorem, 431

Tensor turbulence, 443

Active, 443

Combined energy transfer, 445

Conservation laws, 444

Detailed energy conservation, 445

Flux ΠC(k), 446

Governing equations, 443

Mode-to-mode transfer, 445

Nonlinear terms, 444

Passive, 443

Shell model, 460

Turbulent drag reduction, 450

Variable flux, 447

Thermal convection, 66, 262

Anisotropy, 281

Conservation law, 264

Energy dissipation, 280

Enstrophy, 268

Entropy, 264

Fluxes, 266

Four-fifth law, 273

Governing equations, 262

Infinite Prandtl number, 286

Kinetic energy dissipation rate, 271

Kinetic energy flux, 270

Kinetic energy injection rate, 270

Kinetic energy spectrum, 270

Kinetic helicity, 267

Kolmogorov-like turbulence

phenomenology, 269

Mode-to-mode transfer, 266

Numerical results on spectra and

fluxes, 275

Numerical simulation, 275

Pao’s model, 283

Prandtl number, 265

Rayleigh number, 265

Scalar energy flux, 272

Shell model, 460

Shell-to-shell transfer, 279

Structure functions, 273, 278

Turbulence phenomenology, 269

Turbulent drag reduction, 280

Two-dimensional, 287

Zero Prandtl number, 284

Thermodynamic pressure, 469

Turbulence phenomenology

2D hydrodynamic turbulence, 119

3D hydrodynamic turbulence, 79

Burgers turbulence, 464

FENE-p model, 449

Helical turbulence, 130

MHD turbulence, 358

Passive scalar turbulence, 230

Passive tensor turbulence, 447

Passive vector turbulence, 306

Turbulent flow, 10

Turbulent drag reduction

MHD turbulence, 408

Tensor turbulence, 450

Thermal convection, 280

Variable energy flux, 63

2D hydrodynamic energy, 119

3D hydrodynamic turbulence, 63

Ekman friction, 481
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MHD turbulence, 347

Scalar turbulence, 223

Tensor turbulence, 447

Vector turbulence, 300

Vector turbulence, 295

Combined energy transfer, 298

Craya–Herring basis, 300–301

Detailed energy conservation, 298

Flux, 299

Governing equations, 295

Helical basis, 301

Mode-to-mode transfer, 298

Nonlinear terms, 297

Reynolds number based on w, 296

Variable energy flux, 300

Viscous dissipation rate, 28

Viscous flow, 10

Vortex stretching, 14, 106, 111, 408

Vorticity, 11, 138

in Fourier space, 29
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