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Preface

vii

For those students who, like me, finished their studies toward the end of the
1960s, the advent of the laser was a magic new light illuminating a sector of
science which had become somewhat moribund. In fact, physics seemed to
be approaching an endpoint. Accelerators impelled particles at their targets
where the resulting interactions did not seem to suggest any great difficulties
for the perceived structure of elementary particle physics. The rapid advances
in the progress of technology did not make itself generally felt; industry
devoted more efforts to improving the function of automobile carburettors
than seeking to harvest the fruits of research laboratories.

The history of lasers has its own fascination. Its starting point can be seen
in the publication of an article in the Zeitschrift für Physik, in which a young
physicist, Albert Einstein, compelled by the logic of his own reasoning, 
postulated a radically new form of interaction between radiation and matter—
stimulated emission of radiation. That theory slept peacefully in the
archives until the physicist Charles Townes, in 1956, showed that one could
bring a microwave resonator into play as a basis for the realization of an
ammonia “maser.” Translating this concept to optical frequencies, using a
Fabry-Perot resonator, Thomas Maiman succeeded in 1960 in constructing,
for the first time, a coherent optical source—the ruby laser. One should under-
stand that the advent of lasers stemmed directly from fundamental research,
in that it was a discovery which owed nothing to any expectation of practi-
cal usage; it was the fruit of pure curiosity research.

Lasers appeared on the scene at just the right moment to revitalize labo-
ratories devoted to optical instrumentation. Around 1960 the situation was 
as follows: geometric optics had been known for ever; wave optics almost as
long; microscopes, telescopes, and spectroscopes—when adequately cor-
rected for inherent aberrations—seemed wholly adequate. Moreover, optical
physicists took quite a long time to embark on laser work; almost invariably
it was in university Departments of Electrical Engineering, that the research
on laser technology was initiated. This paradox stems no doubt from the fact
that, in the period 1940–1960, the fantastically rapid development in radio



telecommunications and in radar had led to a concentration, in these depart-
ments, of both human talent and physical resources.

The pure science origin of the laser had some unfortunate consequences
in that there was a relatively long delay before applications surfaced. The fact
that the discovery, which owed something to chance, had not emerged from
a prolonged development during the course of which related technologies
might have advanced, inhibited the rapid emergence of practical applications.
Whilst the scientific community had appreciated the extraordinary potential
of this new tool, the very real technological difficulties, together with the lack
of experience of electronic engineers in the manipulation of optical beams,
helps to explain why, twenty years after their birth, lasers were more appar-
ent in science fiction than in factories. During the 1970s there was no short-
age of witticisms at the expense of lasers: lasers are a solution in search of a
problem; or, yet again, lasers are a solution for the future—destined to remain
as such. . . .

Where are we now? Electronic engineers and optical physicists having
largely overcome the technological difficulties set out to evolve a bewilder-
ing range of applications. These clearly are based on the coherence of the
laser beams.

Spatial coherence allows beams to be focused into very small volumes
(mm3) with resulting energy densities of such a magnitude that one can envis-
age their use to initiate nuclear fusion reactions, or to create industrial cutting
tools or again for use in surgical dentistry.

Temporal coherence of electromagnetic waves at frequencies so high (1014

Hz) enables a single laser beam to transmit the totality of all of the telephonic
communications on the planet which are taking place at a given moment, that
is, if one was able to deal with all the associated modulation and multiplex-
ing problems. At this point we should mention another important technolog-
ical development, namely the optical fibers which allow the propagation of
optical signals with very low losses (fractions of a decibel per kilometer).

These applications are based on all the branches of classical optics, geo-
metric optics, as well as diffraction effects, anisotropy, and interference phe-
nomena. They have also brought into being the emergence of areas unknown
before the appearance of lasers: nonlinear optics and the generation of ultra-
short pulses. Picosecond pulses are now currently produced and the produc-
tion of attosecond pulses has been reported.

The interaction of light with a material substance proceeds via the per-
turbed movement of the outer electrons of the atoms. One usually adopts a
harmonic oscillator model to describe the movement that the optical wave
imposes on the electrons; the restoring force is provided by the combined
influence of the nucleus and of the other electrons. In the case of a low-
intensity optical wave, the amplitude of the movement is sufficiently small so
that the harmonic approximation remains valid. The electric field of a laser
wave is not always negligible compared with the field experienced by the
outer electrons, so that their movement can become anharmonic. Assuming
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that the laser beam excitation is purely sinusoidal at a frequency �, the elec-
trons will move periodically at the same frequency, but with an additional har-
monic content at frequencies 2�, 3�. . . . If the waves are traveling in a suitably
chosen medium, an infrared beam with a wavelength of 1.06mm will generate
a green beam with a wavelength of 0.53mm. This new field of nonlinear optics
was pioneered by Nicolas Blombergen in 1963. Frequency doubling is a spe-
cific example, but there are a host of other possibilities which bear on impor-
tant practical applications such as, for example, optical beam modulation.

The aim of this book is to provide students as well as engineers with a
simple account, covering both the traditional topics of optics as well as the
most recent developments. Reading and comprehension of this text does not
imply a significant prerequisite knowledge of the subject.

In the Spirit of Richard Feynman

Amongst all the authors of volumes intended for the teaching of physics, it is
Richard Feynman who has contributed the most original ideas. The manner
in which this Nobel Laureate of physics conveys the concept of “imagining”
and “explaining” physics has had a major influence on generations of teach-
ers who have sought to follow his approach.

In writing his books Richard Feynman thought about his students before
considering the topics he was presenting. In his preface to Lectures on

Physics, he explains this precisely:

The special problem we tried to get at with these lectures was to maintain the inter-

est of the very enthusiastic and rather smart students coming out of the high schools

and into Caltech.

Feynman’s attitude with regard to the role of mathematics in the teaching of
physics is well encompassed by G. Delacôte in his preface to the French
edition of the Feynman course:

At no point is the machinery of mathematics allowed to detract from the compre-

hension of the physical phenomena. On the contrary, the mathematical tools emerge

to respond to the problems defined by the physicist. The reader is thereby exposed

both to the great problems of physics as well as to the mathematical tools which are

needed to solve them in the simplest possible manner.

It is with the aim of following this Feynmanist philosophy of teaching
physics that I have attempted in this volume on optics.

Chronology of the Discoveries of the Nature of Light

Undoubtedly in examining ancient Egyptian, Greek, Roman, Arabic, and
Chinese texts one can sometimes find speculative ideas on the nature of light
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and how it is propagated. However, the real birth of modern optics begins in
the seventeenth century.

• The law of refraction was formulated in 1621 by Snell in the United
Kingdom and in 1637 by Descartes in France.

• 1657. Fermat makes a first theoretical attempt to explain the laws of reflec-
tion and refraction.

• 1665. Hooke advances the idea that light is a high-frequency self-
propagating vibration.

• 1665. Newton proposes the corpuscular nature of light.
• 1669. The Dane, Bartholimus, discovers the phenomenon of birefringence.
• 1801. Young explains the phenomenon of interference by means of the

wave theory of light.
• 1808. Malus discovers the polarization of light on reflection from a glass

surface. From this Young and Fresnel deduce that the optical vibration
must be vectorial and inherently transversal.

• 1818. In a celebrated lecture at the Academy of Sciences, Fresnel and
Arago give an experimental demonstration which underlines the wave
nature of light.

• 1849. Fizeau produced a highly accurate measurement of the velocity of
light.

• 1876. Maxwell derives his famous equations showing that they embrace
all the empirical knowledge of the behavior of light and that light is a
special example of electromagnetic waves.

• 1879. Maxwell proposes an experimental system for measuring the veloc-
ity of light relative to a “hypothetical ether.”

• 1881. Michelson carries out such an experiment and shows that light prop-
agates at the same speed with respect to all references.

• 1888. Hertz verifies Maxwell’s theory experimentally and shows that the
generation of electromagnetic waves arises from the oscillatory movement
of electric charges.

• At the beginning of the twentieth century optics advances rapidly and the
nature of light is clarified.

• 1905. Einstein creates the theory of relativity according to which no mate-
rial body nor any element of information can propagate faster than light
in a vacuum.

• 1905. Einstein rehabilitates the corpuscular nature of light and introduces
the concept of photons (photoelectric effect).

• 1920. De Broglie reconciles the two theories and introduces the concept
of the dual nature of light, particle and wave, that in different situations
one or the other aspect can manifest itself; he shows that electrons also
have a wavelike attribute.
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Lasers Made Their Appearance in 1960

Advances in telecommunications have always shown a trend toward ever
higher frequencies. It was natural therefore to consider the possibility of using
light waves (1015 Hz). Ordinary sources of light however have the unfortunate
property that they emit wave packets at a high rate but in a random time
sequence. Without going into detail this characteristic presents an insur-
mountable obstacle to the usage of such a light source for transmission of
large bandwidth signals. Toward the end of the 1950s electronic engineers
wondered why one might not seek to produce light waves by the same
methods used to generate radio waves. The key element needed to produce
a radio-frequency signal is an amplifier.

The requirement is then to discover a way of amplifying optical waves.
There are not many physical processes which one could utilize for signal
amplification—normally we are confined to just three:

• The control of the amplitude of an electron beam propagating in vacuum
(vacuum tubes).

• The control of a current of electrons or holes in a semiconductor (the 
transistors).

• The process of stimulated emission which leads to the creation of lasers.

Most vacuum tubes are not able to operate at frequencies above 100MHz;
using very clever arrangements, such as gyrotrons, frequencies as high as 30
or 40GHz can be reached; whilst transistors can be pushed to operate up to
several tens of gigahertz. Around 1956 it had been remembered that Einstein,
in the thermodynamic study of the interaction of an ensemble of atoms with
electromagnetic radiation, had postulated a process of interaction called stim-
ulated emission of radiation by the atoms. It was then appreciated that this
phenomenon could lead to a process of coherent amplification of light. The
generation of electromagnetic radiation by stimulated emission had in fact
first been exploited at microwave frequencies in the realization of the
ammonia MASER (1956) working at 23GHz. Shortly thereafter it was the dis-
covery of the ruby laser (1960) producing optical signals, in principle, well
adapted to the transmission of information. The ruby laser generated pulses
of coherent light, powerful but of very short duration; it was followed in 1961
by the helium-neon laser which provided a continuous output.

Since that time many new types of laser have been created and electronic
engineers now share with optical physicists the privilege of amplifying coher-
ent signals.
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Orders of Magnitude in Optics

1.1. Main Applications of Electromagnetic Waves

1.1.1. Electromagnetic Waves Can Carry Information

During the twentieth century, technological development has been dominated
by the use of radio waves for transporting signals over very long distances.
This development is directly correlated to the property of electromagnetic
(EM) waves to be propagated with no absorption in a vacuum, and with very
low absorption in the atmosphere.

An electromagnetic wave gives some information about the source from
which it has been emitted, often this information is not elaborated on at all,
typically: the source is ON, or the source is OFF. Astronomical observation
is very enlightening as an important indication of this; it just indicates that a
star exists in a given direction and has emitted light having a certain color.

Engineers have been creative and have elaborated devices able to perma-
nently emit electromagnetic waves, with well-controlled amplitudes and/or
frequencies: it is said that a carrier wave has been produced, some of its char-
acteristics being modulated. These same engineers have imagined and
achieved devices able to receive the wave and to extract from it, this is said
to detect the signal of modulation.

An electromagnetic wave is thus able to carry over great distances the
information that is represented by the modulating signal. If, for this modula-
tion, one uses the signal of a microphone in front of which an orator is speak-
ing, it is seen that the speech can be broadcast. After reception, detection,

1

Sections 1.1 to 1.6 of this chapter have been reviewed by Andrew Benn who was, at
that time, working for Teemphotonics and who is now with ATMEL. Sections 1.7 and
1.8 were reviewed by Dr. François Méot, Senior Physicist at the CEA (Commissariat
à l’Energie Atomique).



and, eventually, amplification, the speech will be reproduced in a loud-
speaker, see Figures 1.1 and 1.2.

The previous signal is rather simple, we may think of more elaborate
signals, TV signals, for example, where the signal is said to carry more infor-

mation. The more complex the signal is, the more necessary it is that the
signal includes higher frequencies.

No need, at this stage, to go deeper into the details of signal processing;
we will just consider it as evident that the frequency of the carrying wave has
to be higher, by several orders of magnitude, than the frequencies involved in
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Figure 1.1. Production and emission of an amplitude modulated radio wave. A
modulator is a device with two inputs and one output. Receiving e(t) on one input and
cos wct on the other, it elaborates an amplitude modulated signal [1 + ae(t)] cos wct.
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Figure 1.2. Reception and detection of a modulated wave. Receiving an amplitude
modulated signal, a detector is able to extract the carried signal e(t).



the signal to be carried. Then, higher and higher frequency carrying waves
will prove to be necessary.

In Electronics, one knows how to produce oscillators working at frequen-
cies ranging from zero (DC) up to tens of gigahertz (1010). Optics had started
to be really useful for Telecommunications only after the invention of optical

oscillators exhibiting the same coherency properties as radio oscillators.

1.1.1.1. In 1970, the Appearance of Optical Fibers

Between emission and reception, a carrying wave, modulated by the signal 
to be carried, is propagated inside some medium. In the case of Earth radio
telecommunications, this medium is just the atmosphere, in the case of Space
telecommunications the medium of propagation is partly air (to reach the
satellite) and partly cosmic vacuum.

Electromagnetic waves propagate with zero attenuation in a vacuum,
whatever the frequency. Radio waves of course interact only slightly with the
molecules that constitute the atmosphere, this is less true for light waves, and
completely false if the weather is rainy or foggy. Hopefully it has been noticed
that, on the one hand, amorphous silica, SiO2, is remarkably transparent in
the near infrared; and that, on the other hand, it can be given the shape 
of extremely long threads, inside of which light waves propagate with low
attenuation (0.16db/km - 3.6%/km, at a wavelength of 1.55mm).

Optical fibers are able to carry light over amazing distances; oceans are
now crossed by many undersea optical cables.

1.1.2. Electromagnetic Waves Allow Material Investigation

Any sample of material is a vast collection (think of the Avogadro number)
of a great number of tiny objects. These objects are themselves made of even
smaller particles (nuclei, atoms), that are electrically charged and may
support electric and/or magnetic dipolar momentum. Electromagnetic prop-
agation inside a material relies on the interaction of this collection of objects
with the electric and magnetic fields of the electromagnetic wave.
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Figure 1.3. Absorption spectroscopy. White light is the superimposition of a
continuum of many different lights with different colors. A spectrometer is a device
which separates the various components of an incident optical signal and gives
intensity variation versus frequency or wavelength. The response can be the darkening
of a photographic plate. It can also be some electric signal delivered by a
photodetector, in this case the signal will be displayed on a CRT screen or on a chart
recorder, it can also be digitized and put into the memory of a computer.



In the optical case, it is almost exclusively the interaction of the electric
field with the electrically charged particles that is responsible for the
light/material interaction. Since light interacts in a very intimate way with
materials, it does constitute a powerful tool for investigating their properties.
These interactions can be thought of in two different ways:

• Either on the material side: It is then studied how a material is modified
in the presence of a light beam;
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Figure 1.4. Emission spectroscopy. The incident light beam is totally, or partially,
absorbed and reemitted in the 4p steradians. The spectral composition of the new light
is not necessarily identical to the initial one, its analysis constitutes emission
spectroscopy.
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Figure 1.5. Cathodoluminescence emission spectroscopy. An electron beam of
sufficient energy (usually 1–100 keV) is sent to a sample and this induces light
emission, which is then analyzed by an optical spectrometer.



• or on the wave side: The properties of the wave are modified during prop-
agation inside a material sample allowing some processing of optical signals.

Differential spectroscopy: An absorption spectrum is an intrinsic property
of the sample under study, to obtain it with the previous method one has to
be sure that the initial beam is perfectly white, which means that its intensity
is fully independent of the frequency. This is never the case. This is why the
experimental absorption spectrum should be compared with the spectrum
that is obtained from the white light source. The real absorption spectrum
will be obtained by taking the difference of the two spectra; so the real spec-
trum will be corrected to include the frequency variation of the source inten-
sity, and also the spectral response of the spectroscope.

Emission spectroscopy: The material sample is placed under conditions
where it will emit some light, this light then being analyzed in a spectroscope
(see Figure 1.4). The two main methods for inducing light emission from the
sample are photoluminescence and cathodoluminescence (see Figure 1.5).

Time-resolved spectroscopy: In emission spectroscopy, instead of using
DC sources, pulsed sources are used. A piece of material is illuminated by
short light pulses, and the analysis of the time variation of the spectral
response gives useful information about the dynamics of the phenomena
taking place inside the sample under study.

1.2. Wave-Particle Duality

Despite the fact that, in this book, we will almost exclusively refer to the wave
aspect of light, it is not possible to start without mentioning the existence of
photons.

The word light immediately evokes something, which is immaterial, and
which propagates in space at very high speed. This something may receive
two different descriptions about which we will make no attempt at any philo-
sophical considerations. Light can be considered either as energy grains,

called photons, or as a wave.

1.2.1. Planck and De Broglie Relationships

Planck and De Broglie relationships quantitatively connect the wave and par-
ticle aspects of light.
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Photons are characterized by: Waves are characterized by:
• an individual energy W; • a frequency �;
• a momentum p. • a wave vector k.

Planck relationship: W = h� . De Broglie relationship: .

(h = 6,626 ¥ 10-34 J s, Planck’s constant.)

p k=
h

2p



1.2.2. Photons (Energy)—Light (Frequency)

Moving from radio frequencies (� @ 106 Hz = 1 MHz, h� @ 10-28 J) to nuclear
physics (h� @ 10-10 J, GeV = giga electron volt, � @ 1024 Hz) the energies of
photons and, consequently, the frequencies of the associated waves extend
over many orders of magnitude.
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Optical photon energy is of the order of electron volts (eV).

Optical frequencies are of the order of 1014 Hz.

1.2.2.1. Optical Photons Fit Very Well with Life on Earth

Typical energies of most chemical reactions are of the order of 1kJ/mol. If
one divides this energy, first by the Avogadro number (6 ¥ 1023) to obtain the
energy per molecule, and then by the elementary electric charge (1.6 ¥
10-19 C) to measure it in electron volts, the result is between 0.1 and 10eV. 
As it is the peripheral electrons of atoms that are concerned with chemical
reactions, it can be deduced that the bounding energies of peripheral elec-
trons are also of the order of electron volts. This is the main reason why
peripheral electrons efficiently interact with light. The former remark has
important consequences about life on Earth:

• Photochemical reactions, the most important being chlorophyll synthesis.
• Production of nervous impulses in the cells of the retina of the eye.
• Photoelectric effect.

1.3. What Is a Wave?

Wave concept is closely related to two main notions:

• Time-varying phenomenon.
• Propagating phenomenon.

1.3.1. Time-Varying Phenomenon, Necessity of a Source

Let us suppose that, at some point M(x,y,z), a physical process produces a time
variation of some physical parameter G, according to a law that will be written
as gM(t). If we admit that the physical properties of space have to be contin-
uous, it is reasonable to think that, at a point M¢ close to M, the parameter 
G will also vary versus time according to a law gM¢(t) very similar to the 
law at M. The argument can be extended to a point M≤ close to M¢; which
means that any variation produced anywhere will be felt later on in the 
surroundings.



The main point of what has just been said, is the necessity, for a wave 
to be created, of a zone where a physical process will provide the energy
required for generating the time variation of the parameter G. In the case of
electromagnetic waves, the parameter G is an electromagnetic field.

Starting from radio frequency up to ultraviolet radiation, most electro-
magnetic sources originate from the vibrations of some electric dipole: two

electric charges with opposite signs being set into a periodic motion. In the
surrounding space an electric field and a magnetic field are simultaneously
generated, synchronously vibrating.

1.3.2. Electromagnetic Waves and Einstein’s Relativity Principle

The determination of electric and magnetic fields in the vicinity of moving
electric charges is more complicated than would be supposed from a simple
application of the Coulomb and Biot-Savart laws that are only valid for DC
phenomena. Maxwell’s equations have to be used. The main physical result
is the following:

• There is no modification of the fields as long as the motion is rectilinear
and uniform. Moving charges will produce some electromagnetic radiation
if, and only if, they are accelerated.

• The effect of the acceleration is not felt immediately at a distant point. If
the acceleration occurs at time t = 0, the radiated field will not be felt,
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(a) Scheme of radio emission. (b) Scheme of a molecule emitting light.

Figure 1.6. Vibrating electric charges generate electromagnetic waves. In the left-
hand figure (a) an electric generator creates an AC voltage across a metallic conductor
(antenna) and free electrons of the conductor are set into periodic motion with regard
to the fixed positive charges of the nuclei. As a result, a roughly spherical wave is
generated (the circles are supposed to suggest the shape of wave surfaces). The right-
hand figure (b) represents a diatomic molecule: a cloud of peripheral electrons
surrounds the two positive nuclei, keeping them at a roughly equal distance. When the
molecule becomes excited, the cloud vibrates, generating an electromagnetic wave.



before a time t = d/c, by a physicist sitting at a distance d away from the
charge (c is called the light speed in a vacuum): time must be left for the
radiated field to reach the observer.

In the case of an oscillation, the acceleration is not permanently equal to
zero: this is the reason why the antenna permanently radiates an electro-
magnetic field.

The above result is in agreement with the Einstein relativity principle,
according to which no information should propagate faster than the light in
a vacuum.

1.3.3. Description of a Propagating Phenomenon

1.3.3.1. The Example of Elastic Surface Waves

Physics is dominated by propagation phenomena. To give a taste of the main
notions that are involved in propagation, we will start with a simple case,
which has nothing to do with electromagnetic waves, and we will describe
elastic surface waves propagating along the free surface of a liquid, the
surface of a lake, for example.

Each of us has surely observed those waves that can be excited when
stones are thrown into a lake. The small value (meter per second) of the speed
of propagation makes it easier to feel what a propagation phenomenon is
exactly.

The different points of the free surface of the liquid shown in Figure 1.7
are bound to one another because of the Van der Vaals forces that are respon-
sible for capillarity.

Except in the immediate vicinity of the central point, the surface at time
t2 will have the same general shape that it had at time t1: a circular ridge, the
radius of which increases with time.

Permanent waves: Instead of dropping a stone, a float is placed on the
surface and, in some way, is given a periodic motion: new circular ridges are
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t = 0 t = t1 t = t2

Figure 1.7. Propagation of waves along the free surface of a liquid. A stone is dropped
and reaches the surface at t = 0; the surface is distorted and, for the sake of continuity,
the distortion is transmitted to the neighboring points: a circular ridge having a profile
quite similar to the initial distortion propagates, starting from the point where the
stone initially hits the surface.



permanently created at the level of the oscillating float. For example, perma-
nent elastic surface waves can be excited by letting a needle slightly touch
the surface, the needle being linked to an electrically excited tuning fork.

Waves with surface waves having any shape: Instead of only one, we can
use many oscillating floats, each of them emitting a spherical wavelet similar
to those that have just been described. The oscillation of a point of the liquid
surface is the result of the actions of the different floats. Figure 1.8 gives an
illustration of what happens if the oscillators are all synchronized and located
along a straight line, it is easy to imagine that a planar wave can be gener-
ated. It should be easy to synchronize the children’s motions by playing music.

More elaborate scenarios can be imagined. The edge of the swimming pool
can be made circular, the envelope of the wavelets is now circular: a circular
wave is then generated.

A rectilinear edge can still be used, but the children are now independently
addressed by listening to the music through earphones that are individually
excited, thanks to radio links, for example. The rhythm is the same for all the
children, but the phase may be varied from one to the other. When all the chil-
dren hit the surface “in phase,” a rectilinear wave is generated parallel to the
edge. If the phase repartition is varied linearly versus the distance from the
child sitting in the middle, a rectilinear wave is still generated, but it propa-
gates obliquely. By properly choosing the phase repartition, any shape may
be given to the wave surfaces. It is left to the reader’s imagination to deter-
mine which phase repartition is required for circular waves.
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We are tapping
in rhythm

Figure 1.8. Generation of rectilinear waves from circular wavelets. Children are
sitting along the rectilinear edge of a swimming pool. With rods, they hit the water
surface generating circular waves. If the children hit at random, the surface takes on
a chaotic appearance. Their motions can be synchronized, for example, by playing
some rhythmic music. Close to the edge the surface has a fuzzy shape, further away
many waves will interfere to give a rectilinear wave which is the envelope of the
circular wavelets.



1.3.3.2. Mathematical Description of Propagation: f(t ± x/v)

Let us consider a function f(u) of the variable u, and suppose that u is a linear
combination of space x and of time t, according to a law that will be written
as u = (t ± x/V), V is a parameter homogeneous to a velocity.

The function f(u) then depends on x and t according to gM(t,x) = f(t ± x/V).
Let 0, t1, and t2, respectively, be the initial time and two subsequent times,

since f(t=0,x=0) = f(t1,x1=Vt1) = f(t2,x2=Vt2), it is seen that, if V is positive, the function f(t
- x/V) describes a forward propagation along the x axis, at a velocity equal
to V, of the physical parameter attached to f. In the same way, the function
f(t + x/V) represents a backward propagation along the x axis.

Since y and z do not appear in the argument of the function gM(t,x) = f(t ±
x/V), gM has the same value for all the points located in a given plane orthog-
onal to the x axis: surface waves are thus parallel planes, this kind of wave
is said to be planar.

A function such as gM(t,x) = f(t ± x/V) corresponds to propagation without
any deformation of the initial time variation law: whatever the position, the
physical parameter gM(t, x) varies according to the same law and with the
same amplitude. As these variations represent some energy, it is foreseen that
the previous description is ideal. A more realistic function could be a(x)f(t ±
x/V), where a(x) is a function which decreases with the modulus of the
abscissa x. When propagating inside a material the wave will give energy to
the atoms, a planar wave will not keep a constant amplitude. A formula, which
is frequently encountered, is of the type:

e-axf(t - x/V), a is called the absorption coefficient of the material.
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Figure 1.9. Generation of circular waves from circular wavelets. The swimming pool
now has a circular edge; when the children periodically and synchronously hit the
surface, the envelope of the wavelets takes the shape of circles having the same center
as the circular edge.



Spherical waves are described by gM(t,r) = a(r) f(t ± r/V), where r is the dis-
tance to the center of the wave, which is often called the focus of the wave.
The ± sign corresponds either to waves that diverge from the focus (-) or con-
verge toward it (+).

If we admit that the power carried by a wave is proportional to the square
of its amplitude, it is seen that a(r) must be proportional to 1/r, in order to
keep constant the flux of energy across the different spheres centered at the
focus.

For spherical waves propagating inside an absorbing material, the law a(r)
will take the shape a(r) = e-ar/r.

1.3.3.3. Sine Waves (also Called Harmonic Waves)

A wave is said to be harmonic when the time variation is sinusoidal. An har-
monic planar wave will thus be written as gM(u) = Acosu = Acos[w(t ± x/V )].

As harmonic planar waves are very useful, we will summarize the main
parameters that are used to describe them.
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Main parameters used to describe an harmonic planar wave.

Frequency, �.
Pulsation w (also called angular frequency), w = 2p�.

Period, .

Speed of propagation, V.
(Beware of typographical confusion between speed V and frequency �.)

Wavelength (space period), .

Wave vector module (space pulsation), .

Wave number (space frequency), .

The different forms of the argument of the propagation function.

Since the propagation function f(u) is sinusoidal and so is not linear,

to cope easily with a change of units, its argument u should not have

any dimension

.

Wave vector of a planar harmonic wave: k = kx = x(2p/l) = x(w /V),
where x is the unit vector of the direction of propagation.

The space pulsation k = w/V = 2p/l is a scalar number, which is often
abusively called the wave vector.
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1.3.4. Schema of an Electromagnetic Propagation Experiment

Figure 1.10 clearly shows the three main components of any electromagnetic
propagation set-up: a source, a medium supporting the propagation, and,
finally, a detection device that will reveal and possibly use the electromag-
netic radiation.

In Optics, of course, the same elements are found: emission antennas are
replaced by excited atoms. However, the physical mechanisms that are
responsible for emission and detection are less intuitive.

The spectral composition of the electromagnetic field at any point is deter-
mined by the source, and only by the source. If the source is sinusoidal with
a frequency �, the time variation of the electromagnetic field at any point will
also be a sine of the same frequency. Exceptions to the previous rule are very
uncommon, and will occur under special conditions, when “some nonlinear-
ity” appears in the interaction between the electromagnetic field and the
atoms of the propagation medium; this situation will be considered in Chapter
10 devoted to Nonlinear Optics.

Frequency is thus an intrinsic parameter of the problem and is the same

everywhere. This is not the case for the speed of propagation V that usually
depends on the properties of the medium of propagation. It is the same for the
different parameters that are linked to V, such as wavelength and wave vector.

In Electronics, as well as in Telecommunications, people almost exclu-
sively make use of the frequency, or of the angular frequency, to describe the
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Figure 1.10. Propagation of a radio wave from the emission antenna to the reception
antenna. An electric generator sets the free electrons of the antenna into motion,
creating an electromagnetic field which propagates, starting from the antenna. This
electromagnetic wave propagates in the vacuum (or in air) which constitutes the
propagation medium. When reaching the reception antenna, the electric field of the
wave makes the free electrons oscillate, thus generating an electric current which is
detected by some measurement device.



signals. In Optics the wavelength is usually preferred; if not indicated, it is the
wavelength in a vacuum. In Spectroscopy, the wave number (in cm-1) is widely
used, while in Chemistry the photon energy is frequently given in electron
volts.

1.4. Electric Dipole Radiation

1.4.1. Luminous Objects and Illuminated Objects

Two kinds of visible objects have to be distinguished, on the one hand, light
sources, and on the other hand, illuminated objects:

• Light sources receive from the outside some energy which is, totally or
partially, converted into light.

• Illuminated objects receive light from some sources, then they reemit light
waves having properties (frequency, coherence, polarization, . . .) in
general very similar to that of the illuminating light.

Two kinds of light sources:

• Classical sources: These were the only ones before the invention of lasers.
Most light sources that we use belong to this kind. Natural sources, such
as the Sun or stars, as well as the sources that we make for lighting:
candles, electric lamps where a wire is heated, or an electric discharge in
a gas. These classical sources are said to be incoherent; they are never
strictly monochromatic, the radiation that they produce always has a spec-
tral broadness which may be quite large. We will come back later to the
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Toward observer’s eye
or photodetector

Figure 1.11. Production of light by a candle. The heat produced by the combustion
of the wax provides energy to the air molecules and carbon atoms that are present in
the flame. Part of this energy will excite the electrons, which vibrate with regard to
the nucleus, at some frequency characteristic of the atom to which they belong.
Electromagnetic radiation is emitted and, when arriving at a detector, it will excite its
electrons producing a physiologic signal (eye) or an electric signal (photodetector).



concept of incoherency. At this stage we will only say that interference
phenomena cannot be observed by superimposing lights coming from two
different classical light sources, as well as light coming from two differ-
ent points of the same source. Strictly speaking, it’s better that classical
sources are not coherent, otherwise the world would appear as stripes
with interference fringes.

• Laser sources: These are coherent and often very monochromatic.

For the two kinds of sources, the mechanism which is responsible for the
emission of light is dipole electric radiation.

1.4.2. Phenomenological Approach of the Motion of 

Electrons Inside an Atom

1.4.2.1. Phenomenological Equations

A luminous object is always a piece of material, i.e., a collection of atoms.
This collection receives energy and transforms it into electromagnetic energy.
To start with we must imagine a model for the physical processes according
to which an atom receives energy and emits electromagnetic waves.

Our approach will be phenomenological, that is to say that the phenom-
ena will be described as we imagine them to be, without any special attempt

to be rigorous. The only real justification of our equations is that they give
good results in agreement with experimentation.

In an atom at rest we consider that electrons have equilibrium positions
with regard to the nucleus, we then admit that, after having been released
from those positions, electrons will go back to equilibrium by doing damped
oscillations. The oscillation frequency is characteristic of an atom and of the
special electron under consideration in an atom, its value is mainly deter-
mined by the electronic shell on which the electron is (K, L, M, . . . , s, p, d,
f, . . . ) and may correspond to very different spectral domains (X-ray, ultra-
violet, visible, infrared, microwave, radio frequency).

Let x be the distance between an electron and the nucleus, and let x0 be
its value at rest; the distance to the equilibrium position is noted as x = (x -
x0). If taken away from the equilibrium position, the electron is submitted to
a restoring force proportional to x.

m and e being, respectively, the mass and the electric charge of the elec-
tron, k and g ¢ being the phenomenological coefficients and, finally, f(t) being
the value, at time t, of the electric field at the place where the electron is, the
equation of motion of the electron can be written as

m
d

dt
k

d

dt
ef t

m
d

dt

d

dt
k ef t
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2

2

2

x
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Changing slightly our notations, we obtain the phenomenological equation
(1.1),
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Differential equation of the motion of an electron,

(1.1)
d

dt

d

dt

e

m
f t

2

2
2x

g
x

w x+ + = ( )atom .

Equation (1.1) is a second-order linear differential equation. It is well
known that its solution is obtained by adding two terms:

• Free regime: This is the general solution of the differential equation
obtained when the right-hand side of the equation is made equal to zero.

• Forced regime: This corresponds to a solution of the equation obtained
when the right-hand side of the equation is made equal to (e/m)f(t).

g will be considered to be small enough, thus the free regime is damped
and can be written as

(1.2)

where x0 and j are integration constants determined from initial conditions.
The damping coefficient g does not correspond to any viscous friction, it

is difficult to imagine in what kind of viscous medium the electron should
move, g is really a phenomenological coefficient. Its presence does repre-
sent a dissipation of energy. Instead of g, a damping time t = 1/g is often 
introduced.

watom is the eigenvalue of the angular frequency of the electron in the atom,
from an experimental point of view it corresponds to an absorption band of
the material. watom may belong to the whole spectrum of electromagnetic radi-
ation, between X-ray and radio frequency.

1.4.2.2. Shape of the Solution in the Case of Light Sources

To be able to emit dipole electric radiation, an atom should have previously
received some energy from the surrounding medium. In most cases the energy
is provided to the atom in a random way, during atomic collisions. The colli-
sions may occur with other atoms, or with thermal phonons of a crystalline
lattice, or with electrons of a gas discharge. . . .

Things can be thought of as follows: at random times qi (i is just an index
of numeration), the oscillator describing the electron receives very short

bursts of energy.
We now come back to the phenomenological equation (1.1), the right-hand

side is almost always equal to zero, except during very short intervals very
close to qi. The average value of the interval, (qi+1 - qi), between two con-

x x w j w wg= - @-
0

2
e t

t sin( ) ,with atom



secutive collisions is longer than the damping time constant t = 1/g ; under
such conditions, the motion of an electron is a succession of damped oscil-
lations that are reinitiated from time to time. Because of the large difference
of the orders of magnitude between Tatom = 2p/watom and t = 1/g, there is time
enough for many oscillations to be produced before complete damping.

It will be considered that the amplitude of the electromagnetic field
emitted by the oscillating dipole follows the same time variation law as the
motion of the electron. The electromagnetic field is just a succession of what
we will call “wave packets.” The initial phases of the different wave packets
are not correlated to one another.

One can be tempted to assimilate a wave train and a photon, this is com-
pletely false, and each wave train does correspond to many photons.

For a coherent beam—emitted by a perfect laser—the graph of the varia-
tion of the electromagnetic field amplitude would be an everlasting sine, i.e.,
a single wave packet of infinite damping time.

It is not at all obvious, and certainly not true, that all the wave trains of
Figure 1.13 should have the same amplitude; however, for the sake of sim-
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Figure 1.12. Motion of an electron going back to equilibrium. The damping time
constant t is far longer than the pseudo-period Tatom = 2p/watom, so the diagram is just
an illustration, since it is impossible to draw with the same scale the exponential and
the sine.
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Figure 1.13. Representation of the motion of an electron of an incoherent source and
of the variation of the electromagnetic field produced by the oscillatory motion of the
electron. The motion is reinitiated from time to time. The initial phases of the different
damped sinusoidal wave trains are not correlated to one another.



plicity, we will admit that this is the case. The time variation of the emitted
electromagnetic field will be written as

(1.3)

H(u) is a Heaviside step, equal to zero when its argument u is negative
and equal to one for any other value.

1.4.2.3. Object Illuminated by a DC Coherent Light Source

The electric field of the light coming from a DC coherent source follows a
sinusoidal law of constant amplitude E0 and angular frequency w.

The motion of an electron belonging to an object illuminated by a coher-
ent light source is described by the following equation:

(1.4)

The best way to solve equation (1.4) is to use complex numbers, the solu-
tion then has the following shape:

It can be shown that the squared modulus of the variation is given by

(1.5)

The amplitude of the motion is maximum at resonance, when the light fre-
quency is equal to the eigenfrequency of the electron of the illuminated object.

1.4.2.4. Object Illuminated by an Incoherent Source

Let us now consider the case of an object illuminated by an incoherent light
source. The electric field which must be written on the right-hand side of the
differential equation (1.1) is given by (1.3):

Most of the time:

(1.6)

When a collision occurs (t @ qi):

(1.6¢)

There are two kinds of parameters in equation (1.6):

• g and watom are characteristic of the atoms of the illuminated object.
• E0, w, and t are characteristic of the illuminating source.
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For the sake of simplicity we will consider the motion of electrons belong-
ing to the illuminated object as far more damped than the motion of the elec-
tron of the light source. The free regime of the illuminated electrons rapidly
goes to zero and will not be considered, keeping only the forced regime of
equation (1.6¢).

The right-hand side of equation (1.6¢) can be written as

It is easy to see that the forced regime of equation (1.6¢) is a combination
of terms such as (e/2m)E0e

(qi/t)e(-1/t±jw)t. A rather tedious calculation shows that
the motion of the electron looks very much like the wave packets of the inco-
herent light source. The amplitude of the motion of the electron is propor-
tional to the amplitude of the wave packet, and the proportionality coefficient
is higher as the wave packet frequency is nearer to the eigenfrequency of the
electron in its atom.

1.4.2.5. Colored Appearance of Objects

Objects have the same color as their absorption bands.
Let us now consider what happens when some object is illuminated by 

a white classical source. A white classical source emits incoherent wave
packets having any frequency in the visible spectrum. Suppose that the object
is absorbing in the red, which means that its atoms have an eigenfrequency
watom in the red. The different spectral components of the white light will be
reemitted with an intensity proportional to the incident intensity, as the 
proportionality coefficient is larger for red light, the object will be of a red
appearance.

In fact, a given object always has several absorption bands, their spectral
widths are never perfectly thin and they are characterized by a profile, i.e., a
law of variation of the proportionality coefficient versus frequency, or wave-
length. Illuminated by a white source, such objects will take a color which is
characteristic of the profiles of the different absorption bands. Of course, the
spectral composition will also play an important role in determining the aspect
of the object. For example, whatever its color under a white light, when illu-
minated by a monochromatic blue light, an object can only reemit blue light.

A white object is an object that has no absorption band in the visible, and
thus rediffuses with the same efficiency the various components of a white
light. A black object absorbs, with an efficiency that is higher as the object is
darker, all the visible components of the spectrum.

Trichromatism: The color attributed to an object is the result of the appre-
ciation, by an observer, of the superposition of the various frequencies that
have been reemitted under white illumination. Experiment shows that the
observer may be accurately given the impression of any color, by mixing the
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lights of three sources having three different colors. The sources should have
narrow enough spectra, or either be monochromatic. The color is tuned by
changing the proportions of the three components.

1.4.3. Radiation Emitted by an Oscillating Electric Dipole

1.4.3.1. Physical Significance of the Electric Field and of the 

Magnetic Field

This part of the book is very favorable in getting students to think about long

distance actions and radiated fields. The notion of field has two aspects:

• First, it is some physical property, electric, magnetic, acoustic, . . . , that
is described as a mathematical object, such as a scalar, a vector, a 
tensor, . . . .

• Second, it is a portion of space inside of which this physical property has
been modified, thanks to long distance actions.

The creation of a field, whatever its nature, always needs energy. This
energy is stored at the place where the field exists, with a density that is often
proportional to the squared modulus of the field.

In the case of Electromagnetism, Coulomb interaction is the long distance
action responsible for the existence of an electric field, the Biot-Savart inter-

action being responsible for the magnetic field.
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The Coulomb Law

Placed at some point O, an elec-
tric charge e will modify the
properties of the surrounding
space by creating an electric field
at any point M,
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point O at a velocity V, modifies the
properties of the surrounding space by
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1.4.3.2. Weaknesses of the Coulomb and Biot-Savart 

Formulas in Describing Waves

An oscillating dipole is, at the same time, two charges and an electric current,
this is the reason why it generates an electric and a magnetic field. Unfortu-
nately, the calculation of the fields is more complicated than one would



suppose, just thinking of the Coulomb and Biot-Savart laws, since they would
imply that any modification occurring somewhere would be immediately felt
all over the space, which is incompatible with the Einstein relativity principle.

Oscillating dipole radiation is well described, in many Electromagnetism
textbooks, as the topic Hertz dipole. Calculations are developped starting
from Maxwell’s equations, the results are quite intuitive for today’s physicists.

1.4.3.3. Field Radiated from an Oscillating Dipole

Let us consider a dipole made of an electron and a positively charged nucleus,
its electric dipole moment m is the product of the absolute value of the ele-
mentary electric charge e by the vector d joining the nucleus to the electron
m = ed. We now imagine that d is imposed as a sinusoidal time variation, so
that the electric moment will follow the same kind of time variation.

At a distance OM which is large as compared with the wavelength, field
expressions become rather simple expressions:

E is orthogonal to OM and inside the plane P defined by OM and m (this
is very different from what would be obtained from Coulomb’s law), see
Figure 1.14.

H is orthogonal to OM and also orthogonal to the plane P,

1.4.3.4. Remarks

• Because of the 1/r law for the field, and the 1/r2 law for the radiated power,
the amplitude and intensity decay are relatively slow. This is a typical char-
acteristic of such electric interaction, in opposition to nuclear interac-
tions, the range of which doesn’t extend much further than the radius
nucleus.

• The amazing range of electromagnetic waves has enormous practical con-
sequences. For example, the possibility for light to propagate along astro-
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Figure 1.14. Field radiated from an oscillating dipole. The expressions of the electric
and magnetic fields are quite complicated in close vicinity to the dipole, but they
become considerably simpler if the distance OM is large, as compared with atomic
size and with the distance covered by light during one period (wavelength).



nomic distances, which allows us to receive light rays from the extreme
edges of the universe. This is responsible for the ability of radio waves to
propagate over large distances.

1.5. Light Detectors

1.5.1. Definition of Detection

An electromagnetic wave is an alteration of space, a modification which is
due to the action of a source. This becomes real and exists only after it has

been detected, which means after it has interacted with a detector, that is to
say, a device which delivers a signal that can be measured.

An electromagnetic wave represents information concerning the emitting
source, this information is carried to the detector. The kind of information that
is carried may be as simple as: the source is on, or the source is off; however,
it can also be very elaborate, due to sophisticated modulation procedures.

To detect is to destroy: As long as the signal has not been detected, it keeps
transporting its information. The signal stops existing as soon as it has been
detected. Truly speaking, a detector usually receives a small part of the wave,
and so, only a small fraction of the signal will be destroyed by detection.

The information of an electromagnetic wave may be carried by one of the
four basic parameters that are: amplitude, frequency, phase, and polarization.

Detection is the operation which allows us to obtain again the informa-
tion carried by the wave, and which brings it to the attention of an observer
who can then make use of it.

Detection has a mathematical aspect, as well as a technological one. The
reader will usefully think of the following examples: astronomy, radar, broad-
casting and, more generally, telecommunications, spectroscopy, . . . .

We have already met the notion of detection in this chapter, this was on 
the occasion of the transportation of information, using a carrying wave. We
then considered a wave of the following form, which is called amplitude

modulation,

The information is contained in the function e(t), the frequency spectrum
of which should only have components having frequencies far lower than the
frequency wcar of the carrying wave. The role of the carrier wave is just to bear

the signal. In this case detection is made in several steps:

(i) Reception by the antenna of the electromagnetic wave and generation 
of an electric signal z(t) proportional to y(t).

(ii) Starting from z(t), elaboration of another electric signal proportional 
to the initial signal e(t).

(iii) Giving the previous electric signal a more useful shape for utilization 
(an acoustic signal, for example).

y t e t t( ) = + ( )[ ]1 a wcos .car
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In radio telecommunications it is often considered that detection only cor-
responds to topic (ii). In Optics, because of the extremely high value of light
wave frequencies, the two operations (i) and (ii) are made at the same time
by the photodetector.

From the previous examples we will be reminded that, if modulation and
detection are, in essence, signal processing operations (i.e., mathematical
operations) to be performed, they will always involve physical and techno-
logical processes.

1.5.2. Measuring a Power in Decibels

The power carried by a signal is obviously an important parameter: the more
powerful a signal, the easier it is to detect. The exact definition of the power
transported by a wave will be given in the next chapter, for the moment, it
will be considered as intuitive.

A signal processing set-up is always made of several successive elements,
each of which is characterized by the ratio of the transmitted power to the
received power (transmission coefficient):

The output power is equal to the product of the initial incident power 
multiplied by the transmission coefficient ri of the different elements. It is
because the human brain prefers performing summations rather than multi-
plications, that the decibel has been introduced. Given two physical parame-
ters of the same physical kind, G and G¢, and their usual ratio, G/G¢, we will
call a ratio in decibels (db) by the following expression:

(1.7)

Decibels fit very well with the way physicists usually speak by order of
magnitude. It’s not certain that the factor of 10 makes things easier, tradition
has not decided so . . . , if this were not the case bel would be used instead of
decibel.
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Scientists from Optics, or from Electronics, have a slightly different under-
standing of decibels. Because of the great value of the light frequency, in
Optics we have no direct experimental access to the instant field, E(t) =
Ê cos(wt - j) (Ê is the amplitude of the field), and usually we deal with its
averaged squared value. On the contrary, in Electronics, the fields are easily
handled and the time variations can be displayed on the screen of a cathode
ray tube (CRT). So, in Electronics, the temptation was high to extend the
notion of decibels to the field’s amplitudes.

First remark that since a logarithm is only defined for positive numbers,
decibels can only be used for the modulus of a signal. The power of an AC
signal being proportional to the square of the absolute value of its amplitude,
if we want the expressions to be comparable for both amplitude and power,
a factor of 20 (instead of 10) must be introduced in the definition of decibels
in the amplitude case,

The use of decibels may be troublesome for beginners, and also for others.
It must always be kept in mind that decibels have been introduced to describe
the ratio between two powers.
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Decibel milliwatt (dbmW)

By definition only ratios can be expressed in decibels. It’s nonsense to

express a power in decibels, nevertheless, this is very often the case. When

a power is given in decibels, a reference power has, more or less, been

implicitly introduced. As in optical telecommunications the powers are

of the order of milliwatts, the reference power is 1 mW. The number

giving the power will be followed by “dbmW” (decibel milliwatt),
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1.5.3. Physical Considerations About Photodetectors

The first point is to understand the physical processes that permit a 
photodetector to elaborate a signal from the energy that is brought to it by a
beam of light. The second point is to find the best way to make this signal
useful.



1.5.3.1. Photochemical Reactions

These are used in photographic plates, the most frequently used being the
chemical reduction of silver salts in the presence of light:

The silver ion belongs to a silver halide, a water insoluble salt that is immo-
bilized inside a thin film of gelatin. As long as it remains in darkness, the silver
halide stays white. The metallic silver atoms are black: the darkening of the
film is controlled by the light exposure.

1.5.3.2. Production of a Nerve Impulse

When retina cells receive visible photons, a type of photochemical reaction
occurs, the energy of the reaction induces a physiological signal: a nerve
impulse is produced and driven to the brain, which is well equipped for pro-
cessing and interpreting the signal.

Sensitivity: The human eye is remarkably sensitive; it can detect a few

photons per second. Of course, it is the spectral sensitivity of the human eye
that defines what is called the visible domain, which ranges from the red 
(l = 0.76mm @ 0.8mm) to the blue (0.4mm).

Response time: The eye is not a fast detector; its response time is of about
0.1s. This slowness is compensated for by the enormous amounts (~ 108) of
eye cells that are equivalent to photodetectors working in parallel. The fasci-
nating power of the human vision process really comes from the efficiency of
the way in which our brains can process in parallel all the data coming from
the retina cells.

Resolving power: The human retina has a surface area a little smaller than
1cm2; it is made of cells having a diameter d of a few micrometers. For two
points to be seen separately, their images should be focused on two different
retina cells. If D is the diameter of the eye sphere, the angular resolving power
e is equal to the ratio e = d/D.

From a practical point of view the human eye angular resolving power

is 1 min (3 ¥ 10-4 rad).

1.5.3.3. Classification of Photoelectric Detectors

The two previous detectors were of a very special kind, in all other cases the
light signal is transformed into an electric signal (current or voltage): photons

create charge carriers which then flow in electrical conductors.
At this stage of the book it cannot be omitted that it is on the occasion of

the discovery of the photoelectric effect that Einstein got the idea of intro-
ducing photons.

Ag electron photon Ag+ + + Æ .
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Main Properties of a Photodetector

• Spectral response: Mainly fixed by the work function of the photocathode
material or by the energy gap in a semiconductor. In most cases it corre-
sponds to wavelengths shorter than 1mm.

• Sensitivity: This gives the electrical intensity given by the photodetector
versus optical power, usually expressed in milliamps per watt.

• Quantum efficiency: The probability of a photon impinging on a photo-
cathode to generate a photoelectron is called “quantum efficiency.” Of
course, this smaller than one, the quantum efficiency of good detectors is
between 0.1 and 0.5.

• Darkness current: Even with no incident light a photodetector gives a
small current which is called the darkness current. This phenomenon, of
course, limits the possibility of exhibiting low signals. For each detector,
it is defined as a least detectable light flux fmin, the flux that produces a
current equal to the darkness current.

• Dynamic range: A very powerful incident beam will generate an intense
current and probably damage the detector. A detector is characterized by
a maximum allowed incident power fMax. The detector dynamic range is
the difference between fMax and fmin.

• Zone of linear response: The most favorable conditions are those where
the photoelectric current is proportional to the light power, for this to be
the case, it’s necessary that the incident power should not be too near fMax

or fmin.
• Response time: Two different processes, a priori, determine the response

time. First, the mechanism which is responsible for photocarrier genera-
tion and, second, by the time delay necessary for the charges to flow inside
the electric circuit. The first delay is always negligible with regard to the
second, which is fixed by some RC time constant of the circuit. Because
of parasitic capacitors the shortest response times are measured in
nanoseconds (10-9), a few microseconds being a typical value.

1.5.3.4. Vacuum Photodiode

When arriving on a conducting material, photons give free electrons enough
energy for them to escape outside the conductor. Their individual energy, 
h�, must be higher than some threshold energy Wthresh that is characteristic of
the material called its work function. This phenomenon is photoemission.
A frequency �thresh is associated to the work function by the formula 
Wthresh = h�thresh.

After the departure of photoelectrons an isolated conductor becomes elec-
trically positively charged and, because of Coulomb interaction, a restoring
force then prevents the electrons going very far away from the surface. On
the contrary, if a second positively polarized conductor (anode) has been
placed in front of the first one, an electric field will pull the photoelectrons to
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the anode: a photocurrent is generated, its intensity is proportional to the
number arriving each second on the photocathode of the photons.

1.5.3.5. Semiconductor Photodetectors

The energy difference between electrons and holes in semiconductors being
of the order of an electron volt, it is easy to make semiconductor photode-
tectors having interesting optical properties. The two most important are: (i)
photoresistive cells; and (ii) cells using PN junctions.

Photoresistive cells: When a semiconductor sample receives photons
having an energy h� larger than its energy gap, electron-hole pairs are created;
as a consequence the electrical resistance will be varied. If the sample is con-
nected to some electric circuit, the electric intensity is determined by the light
flux.

PN junction photocells are the most common. When a PN junction is back-
ward polarized, the junction area is depleted from free carriers, electrons as
well as holes. In the presence of suitable illumination, electron-hole pairs are
generated. The polarizing voltage sweeps the electrons in one direction and
the holes in the other; the resulting current is fixed by the light intensity.

The main advantages of PN photocells are their sensitivity and their short
rise time. It must be added that microelectronic technologies allow for easy
mass production at low cost. Detectors can be as small as a few micrometers,
or even less; they can be very close to one another. Arrays or matrices of
detectors are easily made. The remaining difficulty is then to be able to read,
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Figure 1.16. Vacuum photodiode. A high vacuum has been obtained inside the tube,
so that the electrons are very unlikely to collide with residual gas molecules and have
a mean free path larger than the tube size. Thanks to the photoelectric effect, electrons
are ejected outside the cathode. The anode, a ring through which the light can easily
go and reach the cathode, is positively polarized to attract the electrons. An electric
current, proportional to the light flux, flows in the circuit. The energy of each photon
must be larger than the work function of the cathode material.
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Figure 1.17. Photoresistive cells. An incident light flux generates electrons and holes
that are free to move inside a semiconducting sample. These electric charges are swept
by an electric field due to a polarizing electric generator. The electrical resistance gets
smaller with increasing light intensities.
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Figure 1.18. The PN junction is backward polarized; the junction area is depleted
from free carriers. In full darkness the electric current is in principle equal to zero,
except for a usually very small “dark current.” Photon energy must be larger than the
gap in the semiconductor. When the light intensity remains inside a suitable range of
values, the photocurrent is proportional.
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Figure 1.19. Ten arrayed PN junctions. The width and the periodicity are of the order
of 5–10 mm. The number of cells is usually a power of 2 (1024 is often met). Two-by-
two matrices are quite common, typically 1024/1024.



successively or simultaneously, an enormous number of individual detectors
(a few hundreds to several millions); these difficulties have found a solution
thanks to computers.

1.5.3.6. In Optics it Is Possible to Count the Photons

At radio frequencies, the energy of the photons is so weak compared to the
thermal agitation energy kT/2, that it’s completely out of the question to char-
acterize one, or even a few, of them. On the other side of the spectrum, nuclear
physicists often deal with events where only one g photon is involved.

Optics is the domain where photons start to be countable. On this occa-
sion it should be emphasized that, from an historical point of view, it is with
Optics that the concept of photons was brought up for the first time.

Avalanche Devices

Detector sensitivity, using either photoemission or PN junctions, may be 
considerably increased by using charge multiplying processes. Once it has
been emitted, a photoelectron will induce the production of an avalanche of

other electrons. The quantum efficiency of avalanche devices is much larger
than one.

Avalanche Photodiode

The PN junction is polarized so that, with regard to the Zener effect, the con-
ditions are slightly less critical. In darkness the current is extremely small
(dark current), when photons arrive in the junction area the generated pho-
toelectrons switch on a Zener discharge, giving high photocurrents.
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Electron before collision 
energy @ 100 eV

Incident electron after collision
energy < 100 eV

Secondary electron  
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Figure 1.20. An incident electron collides with a metallic target, thus initiating the
creation of n other electrons, this is called secondary emission, n is several units.
Secondary electrons have energies of a few electron volts, they can be collected by an
anode and driven to earth through a load resistance.



Photomultipliers

The physical process responsible for the avalanche is secondary emission, it
occurs when an electron collides with a metallic target after having been
accelerated to an energy of the order of 1keV.

1.5.4. Detection of Light Waves. Response Times of Photodetectors

In the case of radio waves it has already been said that we have first a recep-
tion in an antenna which gives a signal, very similar, apart from a propor-
tionality coefficient and also from some phase difference, to the signal that
had left the emission antenna. Detection then occurs, before detection, as well
as after, the signals can be displayed on the screen of a cathode ray tube
(CRT).

Optical frequencies are far too high to be able to excite an electric circuit,
or for the carrier signal to be displayed on a CRT.

The photodetection of a signal can be put in the following way: What is
the response r(t) of a detector receiving a signal such as

The notation wcar has been used to suggest a carrier wave.
When the carrier wave is a light wave, the time variation of the modula-

tion A(t) is very slow compared to the oscillations of coswcart. More accu-
rately, we can say that the frequencies of the Fourier components of A(t) are
much lower than wcar. Let wmod be an order of magnitude of the highest com-
ponent of the modulation spectrum, the response of the detector will be quite

E t A t t( ) = ( ) cos .w car
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Figure 1.21. Principle of a photomultiplier. Between the photocathode and the
anode, special electrodes, called dynodes, have been placed, there are p of them. The
voltage between the two following dynodes is 100 V. Each photoelectron creates a
“burst” of n secondary electrons on each of the different dynodes. To each initial
photoelectron will then correspond np secondary electrons ultimately reaching the
anode.



different if the response time tresp is small or, on the contrary, large as 
compared to 1/wmod.

Light Intensity

The power is proportional to the square of the amplitude. The proportional-
ity coefficient is called wave impedance, its accurate definition and its expres-
sion depend on the kind of wave that is considered (electromagnetic,
acoustic, mechanical, . . . ), an exact definition will be given in the next
chapter in the case of electromagnetic waves. In many cases the light inten-
sity will very simply be assimilated to the square of the wave amplitude

Fast Photodetectors

A photodetector is considered to be fast if tresp << 1/wmod. A fast photodetec-
tor is able follow the variations of A(t). In this case, it’s enough to consider
that the response r(t) is proportional to the mean value ·E2(t)Ò of the square

I t A t( ) = ( )2 .
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Figure 1.22. CRT representation of a wave with a constant amplitude (no
modulation). After detection such a wave gives a constant electric signal proportional
to the square of the amplitude of the initial wave.

Figure 1.23. Wave having its amplitude modulated by a sinusoidal signal. If the
frequency wsignal of the modulating signal is low enough, a photodetector will be able
to follow the time variations of the amplitude and will deliver a linear representation
(same period, amplitude proportional to the initial amplitude). If that’s not the case,
the detector cannot follow the modulation and will just give a constant output
proportional to the average value.



of the electromagnetic signal, the mean value being evaluated during a time
equal to the response time,

It can be considered that, during the interval (t, t + tresp), the function A2(t)
remains roughly constant and can be taken out of the integral. The average
value of a squared cosine depends on the interval q during which the evalua-
tion is made, it is exactly equal to 1/2 if q is a whole number of periods, and
is very near to 1/2 when q is very long, but not exactly equal to a whole number
of periods. Finally, the photodetector response is proportional to A2(t) and to
the light intensity.

Slow Photodetectors

When the detector is not saturated, it can be described by a differential 
equation and, to remain as simple as possible, we will consider that it is a
first-order linear equation

(1.8)

where K and tresp are two proportionality coefficients characteristic of the
detector.

tresp is called the rise time and often originates from capacitive effects. For
most detectors it is of the order of microseconds. Even for the best detectors,
tresp will never be shorter than a few tens of picoseconds (10-12 s).

Response to a Wave of Constant Amplitude

The solution to equation (1.8) is very simple: r(t) = KtrespI0.

Response to a Slowly Varying Signal

Slow means that the variations of I(t) are considered to be unimportant during
an interval of the order of tresp, meaning that
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For slow phenomena, the time variation of the response exactly follows
the variation of the intensity.

Response to Rectangular Signal

The input signal is described in Figure 1.24. It remains equal to zero as long
as t is negative or is greater than t and keeps a constant value within the inter-
val 0 £ t £ t.

The left-hand diagrams of Figure 1.24 correspond to the case when the
pulse duration is much longer than the response time. The response is 
given by

For the right-hand diagrams of Figure 1.24, the light pulse is shorter than
the response time. The response is a pulse which lasts for about q = t + tresp,
its height is all the smaller as t becomes shorter, exact values of q and IMax

can easily be obtained from previous equations.
A photodetector cannot discriminate two pulses which are separated by

an interval shorter than its response time.

Response of a Photodetector to a Sinusoidal Excitation

I(t) is given by I(t) = I0 cosWt, W is far below the light frequency.
Let us start with the case when W << 1/tresp, the excitation is a slowly

varying function, the response is proportional to the light intensity and is a
sine in phase with I(t). In the most general case, the response is still a sine

r t I K e t
t( ) = >- -

0 t tt t
resp

resp for( ) .

r t I K e t
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0 1 0t tt
resp
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Figure 1.24. The upper diagrams (left) describe a long pulse and (right) a short pulse.
The lower diagrams represent the respective response of a detector. In most cases 
the rise time and decay time are equal; examples may be found where this is not the
case.



of frequency W, but in this case the amplitude decreases with the frequency.
The photodetector behaves like a filter. The response is given by

Response of a Photodetector to the Light of a Classical Source

The time variation of the light intensity of a classical source has been given
in Section 1.4.2, it’s a succession of random light pulses, each of them lasting
for a time which is much shorter than the response time of a photodetector.

When a classical light source is said to have a constant intensity, it doesn’t
mean that it emits a permanent and constant electromagnetic field. It can be
considered that it works under random stationary conditions and emits light
pulses that can be described as follows:

• The pulses are all identical.
• They are randomly emitted.
• The number of pulses emitted during a given time q is proportional to q,

with the condition that q should be large with respect to the duration of
a pulse.

• The light intensity is proportional to the average number of pulses emitted
per second.

Each light pulse is very short, the photodetector gives a short pulse having
a duration just about equal to the response time. As the time between indi-
vidual pulses is shorter than the response time, the many electric pulses
become superimposed giving a constant electrical intensity proportional to
the light intensity.

1.6. Interference, Diffraction

1.6.1. The Paradox of Interference

An interference experiment consists of superimposing, on the same pho-
todetector, the electromagnetic fields of several different waves. For the sake
of simplification, we will just consider the interference between only two
waves. The detector is supposed to give a response proportional to the square
of the electromagnetic field.

Receiving alternatively the signals E1(t), then E2(t) and, ultimately, [E1(t)
+ E2(t)], a photodetector would, respectively, give the following responses:

It may happen that E1(t) = -E2(t) and under such conditions it is seen that
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Interference is a manifestation of what is called, by mathematicians,

the Schwartz inequality

1.6.2. No Interference if no Detection

Interference patterns can only be observed if a photodetector receives simul-
taneously several interferring beams. It is by time-averaging the square of the
sum of the amplitudes that an interference phenomenon is revealed. From
this point of view, the possibility of observing interference is a direct conse-
quence of the fact that detection is a nonlinear interaction between the elec-
tromagnetic field and the detector.

When two light beams cross somewhere, nothing special is to be observed
at the place where they intersect, even if they are coherent. At the place where
the two beams are superimposed, the electromagnetic field, which is the sum
of the electromagnetic field’s vectors of the two incident beams is however
spatially modulated. After they have crossed, the two beams don’t keep any
memory at all of the fact that they have just crossed.

If, in the arrangements described in Figures 1.25 and 1.26, a photoplate 
is disposed at the place where the two beams are intersecting, interference
fringes can be recorded, under the condition that the two beams should fulfill
interference conditions that we will define below in Section 1.6.3.

a b a b a b-( ) £ +( ) £ +( )2 2 2 2
.
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Interference is sometimes given the following paradoxical description:

However, usual observation shows that most often the situation is

When a phenomenon of interference occurs:

The intensity resulting from the superimposition of two beams is not

equal to the addition of their individual intensities.

Light light twice as much light,+ Æ

Light light darkness.+ Æ

Figure 1.25. Two light beams cross inside a transparent material. The electrons 
of the atoms located in the shaded area are simultaneously submitted to the
electromagnetic fields of the two beams. As the medium is perfectly transparent and
homogeneous no light is diffused outside: no interference pattern can be seen.



1.6.3. Conditions for Two Light Beams to Produce Interference

1.6.3.1. The Two Frequencies Must Be Equal

Let us suppose that on the sheet of paper of Figure 1.26 the two light beams
have the same amplitudes and are written in the following form:

The phases j1 and j2 depend on which point M is chosen between A and
B. The detector response is proportional to the average value of (y1 + y2)2:

As w1 and w2 are optical frequencies (1015 Hz), the terms of the frequen-
cies equal to 2w1, 2w 2, and (w1 + w 2) will give components having amplitudes
equal to zero in the response of the detector. An exception is possible for the
term (w1 - w 2) which can contribute to the detected signal under the condi-
tion that 2p /(w1 - w 2) should be of the order of the detector response time
tresp. This last condition corresponds to a rather severe limitation, and to be
able to interfere the two interfering frequencies must be very close: for
example, if

If this condition is not satisfied, the photodetector response will be pro-
portional to the sum of incident intensities. This is why it is said that light
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Figure 1.26. Two light beams illuminate a sheet of paper. The electrons of the paper
behave in the same way as those of the transparent medium of Figure 1.25, but they
reemit light above the screen; this light then goes to a photodetector, the eyes of some
observer, for example. It is when the detector averages the square of the light
amplitude that a nonlinear interaction occurs and when the fringes are created. In fact
the fringes only exist on the surface of the retina of the eye.



sources must have strictly identical frequencies to be able to produce 
interference.

Exercise: Evaluate the frequency of the term (w1 - w 2) in the case of 
the two components of a sodium doublet, with the following wavelengths: 
l1 = 589.0 nm and l2 = 589.6 nm.

Figure 1.27 represents an experimental set-up where two light beams with
very close frequencies interfere at a photodetector. A mirror is moving at a
speed u and receives a very monochromatic light beam of frequency �1,
because of the Doppler effect the frequency of the reflected beam is shifted
according to the formula D� = (�2 - �1) = �1(u/c). If D� is well inside the 
bandwidth of the photodetector, an electric signal will be produced at 
this frequency, allowing a measurement of the mirror speed.

1.6.3.2. The Two Light Sources Must Be Coherent

Coherence is a key point in studying interference, its study needs an appro-
priate approach to the statistical properties of light. It is out of the question
to do this in a first introductory chapter; it will be enough to introduce qual-
itatively the required notions.

The diffusing screen in Figure 1.26 is illuminated by two planar optical
waves, they have the same frequency w and two different wave vectors k1 and
k2. At any point M(x, y) the amplitudes of the electromagnetic fields are,
respectively, written as

with

Let us suppose that the origin O has been chosen inside the plane P
of the sheet. x is a unit vector of a direction lying along P, y is a unit vector

k x y k x y1 1 1 2 2 2
2 2

= -( ) = - -( )p
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Figure 1.27. Experiment showing the Doppler shift in Optics. When reflected back
onto the moving mirror, the frequency of the light is shifted because of the Doppler
effect: the output signal contains a beat at the frequency difference (�1 - �2).



orthogonal to P. If M belongs to P, then OM = xx and the electromagnetic
field at point M can be written as

The light intensity I is obtained by taking the time-averaged value of 
(E1 + E2)2:

(1.10)

The two sources are coherent: This means that their phase difference
doesn’t vary at random, for the sake of simplicity we will just consider the
phase difference to be constant. On the plane P, fringes can be observed with
a periodic repartition governed by the term (px/l)(cosa1 + cosa2), the fringe
separation is then l /(cosa1 + cosa2).

The two sources are not coherent: The phase difference (j1 - j2) cannot
at all be considered as constant, but varies randomly with time. At a given
time, (j1 - j2) has some value to which can be associated an interference
fringe pattern; as time advances, different patterns follow one another at a
pace that cannot be resolved by any photodetectors: the fringes are not clear
anymore.

When the two sources are incoherent, the light intensity is the same what-
ever the point on the screen, and is obtained by averaging (1.10), (j1 - j2)
being considered as a function of time,
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Electrical 
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Figure 1.28. Interference between waves coming from two different sources. The
two sources emit wave packets of the same frequency but having no phase coherence.
No interference can be seen by the detector for two reasons: first, it is very unlikely
that two wave packets should arrive simultaneously and, second, even if this were the
case, the phase difference would randomly vary from one coincidence to the next.



The intensity is just the addition of the intensities of each beam and no
interference can be observed.

1.6.3.3. Thermal Sources, Length of Coherence

We will now deal with two thermal sources of the kind described in Section
1.4.2.4, they emit damped wave packets described by E(t) = e-(t-qi)/t cos(wt -
ji): the instant qi and the phase ji randomly vary with i; t is a time charac-
teristic of the source and is called its coherency duration; the distance d = ct
covered by light during a time equal to t is called the coherence length.

1.6.4. The Validity of Geometrical Optics Is Limited by Diffraction

Development of geometrical optics relies on the notion of light rays. In a
homogeneous transparent medium, rays are straight lines along which light
energy is propagated. The notion of a ray is suggested by normal observation.
Who has never witnessed light rays filtering through the tiles of a roof and
revealed by the dust floating in the air? Or, who has never contemplated,
during a night by the seashore, the rays of a lighthouse illuminating the haze?

Accurate definition of a light ray meets serious theoretical difficulties, as
well as its accurate experimental observation. One can of course think of lim-
iting the cross section of a beam, using diaphragms with smaller and smaller
diameters, but then diffraction will occur. Diffraction is very general and is
observed for any kind of propagating phenomenon. Acoustic waves, as well
as De Broglie waves associated to particle beams, substantially diffract every
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Figure 1.29. Superposition of two waves coming from the same source after they
have traveled independently. In (a) the two light paths are only slightly different, the
two wave packets arriving at the detector come from the same initial one: the phase
difference is not at random but is determined by the lengths of the two optical
trajectories: interference is possible. In (b) the length difference is larger than the
length of coherence of the source: even if two different wave packets meet on the
detector they cannot interfere.



time they go through obstacles of the same order of magnitude as their 
wavelength.

On the observation screen of Figure 1.30, instead of having a clear sepa-
ration between shadow and light, it seems that some light penetrates inside
the shadow area. On the other hand, diffraction fringes exist in the clear area.
Let I0 be the illumination of the observation screen in the absence of the razor
blade:

• The illumination is equal to I0 /4 at the boundary between shadow and light,
and goes smoothly to zero far enough into the shadow.

• In the clear part of the screen, the illumination has well-contrasted 
oscillations and goes to I0 for points far from the edge.

Diffraction appears as a limitation to the rectilinear propagation of light.
To describe simply difficult phenomena, we will say that when a light beam
collides with an obstacle, after the collision, part of the light will travel in
many directions: the angle with the initial direction being all the larger as the
obstacle is smaller.

Diffraction is always followed by interference between the initial beam
and the diffracted beams; this is the reason why diffraction produces fringes,
usually called diffraction fringes.

Diffraction is enhanced when the diffracting obstacles have a periodic 
repetition and it becomes quite spectacular if the periodicity has the same
order of magnitude as the wavelength.

1.6.5. Diffraction of Electrons

Let us consider a beam of electrons that have been accelerated by a voltage
V = 150 V and evaluate the associated wavelength. We will use the De Broglie
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Figure 1.30. Diffraction by a sharp edge. A beam of parallel rays is partially hindered
by an obstacle limited by a straight and very sharp boundary having a tiny radius of
curvature (a razor blade). Some light is diffracted by the edge and interferes with the
undiffracted part of the light: fringes can be seen on the observation screen.



formula h = pl, where p is the momentum of the accelerated electrons. For
such weak energies it’s not necessary to use a relativistic theory and it’s
readily obtained that

For diffraction of the previous De Broglie waves to be observed, the peri-
odicity of a regular arrangement of the diffracting obstacle should be of a few

l = @ =-h

emV
V

2
10 110 m Å, if 150 V.�
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Figure 1.31. Diffraction of a light beam by a diffraction grating. It is possible to
engrave, or to imprint or to etch, parallel and equidistant linear grooves on planar
substrates having noticeable dimensions (10 ¥ 10 cm). Such arrangements are called
diffraction gratings. Each groove efficiently diffracts light. If a grating is illuminated
by a parallel light beam, there are only a few directions, determined by the wavelength
and by the geometry, for which the waves diffracted by the various grooves interfere
positively. A lens then focuses the different diffracted beams and each focal point
associated with a direction of positive interference is brightly illuminated.

Figure 1.32. Davisson and Germer electron diffraction experiment. A monocinetic
electron beam is sent onto the cleaved surface of a single crystal of nickel. Electrons
are diffracted by the atoms of the crystal lattice along directions that are in good
agreement with De Broglie wavelength and with the crystal cell size. Conversely, such
an experiment is now used to measure the parameters of a crystal cell.

Direction of 
incident electrons

Direction of 
diffracted electrons 

Single crystal of nickel 



angstroms. This has been done first by Davisson and Germer in 1928 (the 
diffracting elements were simply the atoms of a single crystal of nickel) and
then by Thomson (using the atoms of a polycrystalline aluminum sheet).

Electron diffraction experiments must be performed in a high vacuum, so
that the electrons can propagate with a low probability of collision with a mol-
ecule of some residual gas. Observation screens are painted with a material
which emits light when it receives electrons. Photographic plates can also be
used, since electrons are able to chemically reduce Ag+ ions to metallic silver
atoms.

The same kind of experiments can be done using X-rays having the same
wavelength as the electrons. Similar diffraction patterns are obtained. In the
same way, diffraction can also be observed using neutron beams.

1.7. Photometry

Electromagnetic radiation carries energy. The purpose of photometry is to
clarify this notion as far as light is concerned and to introduce the physical
parameters allowing us to quantify the visual observation of light sources and
illuminated objects.

1.7.1. Physical Parameters in Relation to Energy

Planar Monochromatic Wave

The problem is rather simple when we are concerned with planar waves. It’s
then enough to consider the amount of energy f (energy flux) which crosses
(per second) a surface S orthogonal to the wave vector

(1.11)E x kr= ( ), electric field of the planar light wave.E t0 cos w -
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Figure 1.33. Thomson’s experiment. Any sheet of metal is an arrangement of
microcrystals randomly oriented. Because of this random orientation in the sample,
the problem has cylindrical symmetry around the axis of the beam. The diffraction
pattern is made of concentric rings, the radii of which are determined by De Broglie
wavelength and the size of the crystal cell.



Using the Poynting theorem we can calculate what is called, by definition,
the luminous intensity I:

(1.12)

where Z is the wave impedance; the 1/2 factor corresponds to time-averaging
over a great number of periods.

Planar Nonmonochromatic Wave

A nonmonochromatic wave is the superimposition of an infinite number of
monochromatic waves. To calculate the flow of energy through a surface S,
the spectral domain is divided into narrow bands with wavelengths between
l and (l + dl), in formula (1.12) the light intensity has to be replaced by an
elementary luminous intensity dI defined by

(1.13)

where Il is the spectral density of the luminous intensity; its law of variation
versus wavelength is determined by the physical properties of the emitting
source.

Monochromatic Point Source

The luminous intensity of a point source is defined for a given direction

Oz: this is the ratio of the elementary luminous flux df to the elementary solid
angle dW of the elementary cone inside of which the flux is emitted, see 
Figure 1.34(a).
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Figure 1.34. Definition of the luminous intensity.



Case of a Surface with a Finite Size

The surface is divided into elementary surfaces of area dS, each of them then
being considered as a point source with the elementary luminous intensity dI.
A new parameter is then introduced, the luminance L of the emitting surface
at the point under consideration and in a direction that makes the angle q with
the normal to the surface (see Figure 1.34(b)).

(1.15)

The elementary flow of energy sent inside an elementary cone dW, cen-
tered around Oz, is given by

(1.16)

Source Emittance

The emittance M, also called exitance, of a source at one of its points is a 
characteristic of the total energy sent into all the surrounding space by an 
elementary surface drawn around this point

(1.17)

If the sources, point sources or more general sources, are not monochro-
matic, the notion of spectral density should be extended to luminance and to
emittance, using formulas similar to (1.13).

Irradiance of a Screen

Let us consider a point P of a screen receiving light coming from one 
or several light sources. An elementary area dS drawn around P receives
per second a total energy equal to dj. The irradiance E at point P is, by 
definition,

An illuminated screen can also be considered as a light source, its emit-
tance is smaller than its irradiance. In the case of negligible losses, irradiance
and emittance are equal.

Geometrical Width of a Light Pencil

Let us consider a light pencil emitted by some elementary surface dS inside
some elementary cone dW centered around the Oz axis, and let q be the angle
between Oz and the normal to the surface; by definition we will call the 

E
d

dS
E= ( )f

beware of confusion with the electric field which is also noted .

M
d

dS
L d= = Ú

f
qcos .W

d L d dS2f q= W cos .

L
dI

dS
=

cos
.

q

1.7. Photometry 43



elementary geometrical width d2G of the beam the quantity defined by the
following formula:

(1.18)

In Figure 1.35 have been drawn two elementary surfaces dS and dS¢ dis-
posed with regard to one another. Their respective centers are O and O¢, q
and q¢ are the angles of OO¢ with the normal to the two surfaces. We consider
two pencils, respectively, issued from O and O¢ and based on dS and dS¢, a
simple application of the definition of a solid angle shows that they have equal

geometrical widths:

Expression of the Energy Carried by a Pencil

Referring to formula (1.16), it is seen that the energy carried by a pencil is
proportional to its geometrical width

(1.19)

Conservation of the Geometrical Width by Refraction
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Figure 1.35. Geometrical width of a pencil.
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Snell-Descartes law of refraction: n1 sin i1 = n2 sin i2.
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Figure 1.36. Conservation of the geometrical width of a pencil after refraction.



Formula (1.20) is a relationship between the geometrical widths of an inci-
dent pencil and of the corresponding refracted pencil. The product of the geo-
metrical width by the square of the refractive index remains constant when
a pencil is refracted. Some authors include the square of the refractive index
in the definition of the geometrical width.

Conservation of the Geometrical Width in a Centered System

Formula (1.20) is readily extended to centered systems, since the propagation
of rays through a centered system is nothing other than a succession of refrac-
tions on various interfaces. Nevertheless, we are going to show that the 
conservation of n2d2G is also a consequence of the Lagrange-Helmholtz 
relationship.
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Figure 1.37. Conservation of the geometrical width in a centered system.

Lambert’s Law

Lambert’s law introduces an ideal source called a Lambertian source,
which is very much like a real heated body source. The radiation emitted 
by the blackbody introduced in Thermodynamics does follow Lambert’s
law.

The radiation emitted by a Lambertian source is the same for any 
direction and, if the source is extended, it is the same for any of its 
points.

Point Lambertian Source

The flux of energy (flow of energy per second) emitted by a point Lambert-
ian source having an intensity I, in the 4p steradians of the whole space, is
equal to

f p= =ÚI d IW 4 .



The flux emitted inside a cone having a summit half-angle a is given by

(1.21.a)

(1.21.b)

Because of the cosine in formula (1.21.a), Lambert’s law is often called
Lambert’s cosine law.

Extended Lambertian Source

Let us consider an extended Lambertian surface and determine the relation-
ship between its luminance L and its emittance M.

f p a= if the angle  is small enougha I2 ( ).
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Figure 1.38. Relationship between the emittance and luminance of a screen.

1.7.2. Physiologic Parameters

1.7.2.1. Introduction to Physiologic Parameters

In the first part of this chapter, joules and watts have been used in order to
characterize the light intensity and the radiated light flux, corresponding para-
meters are said to be energetic parameters. This approach is not well adapted
when the photodetector is the human eye; new parameters, called physiologic

parameters, need to be introduced. Visual perception is a complex phenom-
enon; it varies from one person to another and is different during daylight or
at night. After statistical studies concerning thousands of people, an average

human eye has been introduced. Two light beams, with two different wave-
lengths l and l¢ and two different intensities, illuminate alternately the same
sheet of white paper, an observer is then asked to say whether the illumina-
tion is the same in both cases. It is then possible to associate an elementary
physiologic flux djl with an elementary energetic flux dfl:

(1.23)

where kl is a proportionality coefficient that depends on the color (wave-
length) and on the light intensity. The graph of kl(l) versus wavelength is

d k df jl l l= ,



given in Figure 1.39, it’s a kind of bell-shaped curve; of course, the curve goes
down to zero at the boundaries of the visible spectrum (roughly 0.4–0.8 mm
and, more accurately, 0.390–0.790mm). For daylight observation the maximum
is at 0.555mm, which means that the sensitivity of the human eye is maximum
in the yellow. Table 1.1 gives the relative values of kl for several wavelengths.

1.7.2.2. Units

Candela: By definition a candela is the intensity, in a given direction (see
formula (1.14)), of a source emitting a monochromatic radiation of 
wavelength 0.555mm and having an energetic intensity of 1/683 = 0.00146 W/sr.

Lumen: This is the physiologic flux associated to the candela, it corre-
sponds to the flux sent inside a solid angle of one steradian by a source having
an intensity of one candela.

Lux: This is the physiologic irradiance associated to the lumen, it corre-
sponds to the irradiance of a surface receiving a physiologic flux of one lumen
per square meter. The lumen is also the irradiance unit.
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Figure 1.39. Spectral sensitivity curves of the human eye. Two curves are usually
given: the photopic curve corresponding to a comfortable lighting (the sensitivity is
maximum at 0.555 mm) and the scotopic curve which is obtained for a low level of
illumination, the maximum of sensitivity is shifted toward the blue (0.507 mm).

Table 1.1. Human eye sensitivity versus wavelength for daylight observation.

l (mm) 0.4 0.45 0.50 0.555 0.60 0.65 0.70 0.75

kl/k0.555 4 ¥ 10-4 0.038 0.032 1 0.63 0.107 4 ¥ 10-3 10-4



1.7.2.3. Order of Magnitude

To establish the link between physical and physiological parameters, two
kinds of experimental conditions must be considered: first, the spectral vari-
ations of the eye sensitivity and, second, the spectral composition of the light
source (Table 1.2). In fact the engineers and physiologists who have elabo-
rated these concepts have been very pragmatic and obtained quite concrete
proposals; since most observers agree when they compare their impressions
when watching color movies, either on TV or in the cinema, we can say that
they have been successful.
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Table 1.2. Orders of magnitude concerning various light sources.

Physiological Physiological Physical units Efficiency
units units

Luminance Illumination Luminance (lm/W)
(cd/m2) (lx) (W/m2 sr)

Sun before 2 ¥ 109 1.4 ¥ 105 2 ¥ 107 100
atmosphere

Sun on Earth’s 1.3 ¥ 109 105 1.3 ¥ 107 90
surface

White paper in 2 ¥ 104

the Sun

Tungsten lamp 6.5 ¥ 106

2700 K

Dazzling 104

threshold

Daylight vision > 10

Night < 0.01

Visibility 10-6

threshold

Comfortable 400 to 1000
lighting

Full moon 2.5 ¥ 103 0.2

Brilliant star 10-5



When a flow of energy is calculated, an integration is performed over the
whole spectral range; in the case of a “physiological flow,” the different wave-
lengths will be attributed to a pondering coefficient which can be obtained
from Table 1.1. Let us take the case of a 100W electric bulb, for which the
maker indicates 1000 lm. 100W is the electrical power obtained from the 
electrical network, if the conduction and convection losses are evaluated to
25%, 75W are radiated in the 4p sr, which makes 6 W/sr; 1000 lm at the 
wavelength of maximum sensitivity represent 1.46 W/sr, the difference corre-
sponds to the energy which is emitted outside the visible domain.

1.7.3. Thermodynamics and Conservation of the Geometrical Width

1.7.3.1. Luminance of a Blackbody

As illustrated in Figure 1.40, a blackbody is a closed box, the walls of which
are perfectly reflecting for electromagnetic waves, whatever the frequency,
and are adiabatically isolated from the outside. Initially the blackbody has
been brought into contact with a heat sink raised to the temperature T K.
Inside the blackbody, electromagnetic waves, with frequencies between zero
and infinity, endlessly reflected on the walls, follow zigzag paths having all
possible directions.

Let us consider a point M inside the blackbody and an elementary area ds
drawn around M. An elementary cone, solid angle ds, having its summit in M
and centered on the normal to dW, carries an elementary energy flux given by

(1.24.a)

(1.24.b)

where Ll is called the spectral luminance.
We are going to demonstrate that the spectral luminance Ll is the same

for all points inside the blackbody and doesn’t depend on the orientation 
of the elementary surface ds. Let us consider two different blackbodies C1

and C2 having the same temperature T K, but differing in their shape and by
the various objects that have been put inside. Holes of respective areas S1 and
S2 have been drilled in each of them, and it is assumed that they are small
enough so that the thermal equilibrium between C1 and C2 is not affected by

d d d L d d df f f s lll l l= withÚ = W ,

d Ld df s= W,
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Figure 1.40. Schematic illustration of a blackbody.



the losses of the electromagnetic radiation escaping through the hole. A per-
fectly transparent lens images S1 on S2, and conversely. Finally, a spectral filter
with a narrow band Dl is placed on each hole. W1 and W2 being the solid angles
of the two cones having S1 on S2 as summits and leaning on the lenses’ con-
tours, and s1 and s2 being their respective projections on planes normal to
the lens axis, the flow of energy Df1 radiated each second from C1 to C2 is
equal to

In the same way the energy flow radiated from C2 to C1 is equal to

Df2 and Df1 must be equal, if not, one blackbody would receive more energy
than it dissipates which would raise its temperature, which is in contradic-
tion to the thermodynamic second principle. On the other hand, we have 
s1W1 = s2W2, because of the conservation of the geometrical width, and we
finally obtain

In conclusion, the spectral luminance in a blackbody at thermal equi-
librium doesn’t depend on the particular blackbody under consideration.
Changing the direction of the lens axis, it is seen that the spectral luminance
is also independent of the direction of the light rays: which means that a hole
drilled in a blackbody is a Lambertian source.

1.7.3.2. Electromagnetic Energy Density Inside a Blackbody

u being the amount of electromagnetic energy per unit of volume (radiant
energy volume density) inside a blackbody, and ul the corresponding spectral
density, we seek a relationship between ul and Ll. The electromagnetic energy
is the energy of electromagnetic waves going back and forth inside the black-
body at the speed of light c. We consider an elementary surface dS inside the

L L1 2, , .l l=

D W Df s ll2 = L2 2 2, .

D W Df s ll1 = L1 1 1, .
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C1

S1

W1 W2

C2

S2

Figure 1.41. A lens conjugates two holes drilled in two different blackbodies having
identical temperatures. Since, because of the second principle, the exchange of energy
between them should be balanced, it can be shown that the two holes have the same
spectral luminance and it can then be deduced that the electromagnetic energy density
u�(v, T ) must be the same inside the two blackbodies. The final result is that the law
of variation of u�(v, T ) is a universal function, whatever the blackbody.



blackbody; the total amount of energy df carried per second inside an ele-
mentary cone (summit on dS, elementary solid angle dW) was, before reflec-
tion, inside a cylinder parallel to the cone axis and based on dS and having a
length equal to the distance covered by the light during one second, see Figure
1.42. If ds is the projection of dS on a plane normal to the cone axis, we can
write df = cduds and, according to formula (1.24.a), df = L dW ds. By inte-
gration over all the half-spaces located on the same side of dS, and using the
fact that the luminance doesn’t depend on the direction, we obtain

(1.25.a)

The same treatment can be used using spectral densities

(1.25.b)

We have thus demonstrated that the electromagnetic energy spectral
density is independent on the kind of blackbody that is considered, hence it
is a universal function of temperature and wavelength. The determination
of this universal function, which needs more Physics and more Mathematics,
can be found in Section 9.2 (see formula (9.18)).

du� being the amount of electromagnetic energy corresponding to waves
having their frequencies between � and (� + d�), it can be shown that

(1.26.a)

If dul = ul dl is the amount of electromagnetic energy corresponding to
waves having their wavelengths between l and (l + dl), we can write

(1.26.b)

1.7.3.3. Luminance of a Heated Object

We consider an object that is not perfectly transparent and can be character-
ized by an absorption coefficient al depending on the color; we are looking
for its spectral emittance el when raised to some temperature T K. This object
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Figure 1.42. The energy inside the cone was previously inside the cylinder.



is put inside a blackbody at temperature T K, each elementary area dS of its
surface receives per second an energy given by

The power reemitted by dS is given by

Equating these two powers, we obtain an important relation

(1.27)

The ratio of the spectral emittance to the spectral absorption of some
object is a constant which doesn’t depend on the kind of object under con-
sideration and which is equal to the luminance of a blackbody raised to the
same temperature.

For a blackbody al = 1 (" l), a blackbody is a perfect absorber, whatever
the wavelength. At a given temperature an absorbing object radiates more
energy than a transparent one. A piece of iron heated to 800° C seems quite
red and radiates a lot; a piece of quartz, raised to the same temperature, is
just a little brighter than at room temperature and one must be cautious and
not take it with bare hands.

1.8. Perception and Reproduction of Colors

Although photography and perhaps, even more, color TV appear as nice jewels
of modern technology, the analysis of the mechanisms of color vision and the
famous trichromatic system had been analyzed two centuries ago. As early as
1802 the British physicist Thomas Young said that it was impossible that any
point of our retina should have an infinity of cells able to vibrate in unison with
all the monochromatic waves of the visible spectrum; he estimated that only
three colors would be enough (red, yellow, blue) and admitted the existence
of nerve threads bringing the required information to our brain.

Given the enormous market concerned, a considerable effort of stan-
dardization has been necessary. Problems of normalization, and especially the
experimental protocols to be followed in the experimentation suggested in
Figure 1.43 are very tricky and have needed many international agreements.
The quality of color pictures as well as the reproducibility of most visualiza-
tion devices witnesses in favor of the quality of the work that has been 
produced.

Monochromatic Light

The color of a light beam is directly connected to the spectral composition of
the corresponding electromagnetic  radiation. The case of a monochromatic

e a Ll l l= .

e dS d d

S

l
l

lW
W
ÚÚÚ .

a ll l
l

lL dS d d L
S

W
W
ÚÚÚ ,  is the luminance of the blackbody.
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light is very simple, and there is a univocal relation between the wavelength
and the color that is described by some observer. Table 1.3 describes this 
correspondence.

Light of Arbitrary Spectral Composition

The light coming from most colored objects is not monochromatic; moreover,
it’s the diversity of the different spectra which make the painter’s palette 
so rich. The automatic reproduction of color (photo, cinema, television,
display, . . . ) has required an analysis of the reasons that makes us attribute
such color to such light. Lights of quite different spectral composition may
produce identical impressions. The basic experiment consists in illuminating
a white screen (i.e., a screen diffusing the light with the same efficiency what-
ever the color) with a superposition of different colored lights and to ask an
observer, or rather many observers, to say what color they attribute to the
mixture.

Two mixtures are said to be “metameric” if they appear to be identical
although they don’t have identical spectral compositions.

The principle of the additive trichromatic system relies on the fact that
it is possible to reproduce most of the colors by mixing, in suitable propor-
tions, three light beams having different colors. The scheme of Figure 1.43
shows the principle of an experimental set-up allowing the determination of
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Table 1.3. Wavelength and color correspondence in the monochromatic case.

l (nm) 400 500 600 700 800
390 455 492 577 597 622 760

Color ultraviolet violet blue green yellow orange red infrared

Red source 

Green source 

Blue source 

Source under study 

White
screen

Tunable
attenuators

Figure 1.43. Principle of the additive trichromatic system. The light of a source under
study is put side by side with the superposition of the lights coming from three
different colored sources.



the “suitable proportions.” The three colored sources can be extremely mono-
chromatic (laser) or only be reasonably monochromatic (white source +
colored filter). The light flux that each source sends toward the screen is
varied with calibrated tunable attenuators. The three sources are called
primary sources; in fact there is an infinity of possible triads, from which any
color can be reconstructed. A very common triad is blue-green-red.

The Space of Colors Follows a Linear Algebra

We now come back to the experiment described in Figure 1.43 and we con-
sider that the three colored sources are very stable, let [B], [G], and [R] be
the luminance that they, respectively, produce on the screen with no attenu-
ation. Within experimental error, it is found that there is only one setting of
the three attenuations for which the observer has the impression that the
superposition of the three colored lights reproduces exactly the color of the
source under study; let B, G, and R be the respective transmission coefficients
of the attenuators. In some way the triad (B, G, R) is a kind of coordinate of
the source on the basis of the three chosen primary sources.

The experiment also shows that if the triad (aB, aR, aP) is used the
observer will say that he sees the same color, except that the global bright-
ness is higher if a > 1, and lower if a < 1. The following quantity will be called
stimulus:

Given two stimuli [S1] = B1[B] + G1[G] + R1[R] and [S2] = B2[B] + G2[G] +
R2[R], we have the following relations:

As soon as the stimuli follow the rules of linear algebra, their manipula-
tion becomes easier, especially the change of primary colors. To go from the
reference triad (B, G, R) to another one (X, Y, Z ), we must at first give the
expression of the primary colors of one system on the basis of the primary
colors of the other system, and then apply the usual rules of matrix 
calculation:
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Chromatic Coordinates

Chromatic coordinates are the following normalized parameters:

Colorimetric Coefficients

We come back again to Figure 1.43, in the position of the source under study;
we place a monochromatic source (wavelength l) having a calibrated inten-

sity (1 mW/sr, for example). The chromatic coordinates (l), (l), (l) of the
calibrated source are then measured on the basis of the three chosen primary
sources; they are called the colorimetric coefficients of the apparatus.

Chromatic Coordinates of a Metamer

A spectral density Sl(l) characterizes the light flux emitted by a non-
monochromatic source S. The triad of coordinates (r, g, b) associated to a
given source is unique and fixed by Sl(l); on the contrary it is not possible,
starting from the triad, to go back to Sl(l) just by definition of a metamer. (r,
g, b) is given by

r S r d b S b d g S v d= ( ) ( ) = ( ) ( ) = ( ) ( )ÚÚ ÚÚ ÚÚl
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2

Electromagnetic Waves

2.1. Mathematical Formulation of Electromagnetism

2.1.1. E, D, H, B

The description of an electromagnetic (EM) field in any material, including
vacuum, requires four basic vectors. Everybody uses the following notation
and we call them E, D, H, B; everybody, of course, agrees about their physi-
cal interpretation, however there are some disagreements about their names.
E is always designated as the electric field. When introduced for the first time
by Maxwell, D had been called the “electric displacement vector,” some
people now prefer the expression “electric induction vector.” The same ambi-
guity is found for B and H which are often, respectively, called the “magnetic
induction vector” and the “magnetic field vector.” In a more recent trend B is
the “magnetic vector” and H the “magnetic excitation vector.” The author has
no clear-cut opinion, but he considers that E and D are attached to electric
properties, while H and B correspond to magnetic properties.

Since optical materials, by definition, are transparent, they don’t usually
have any magnetic properties; so H and B are strictly proportional and are
thus collinear, the proportionality coefficient is called the vacuum perme-
ability m0 = 4p ¥ 10-7 (SI units, henry/meter (H/m)), B = m0H.

For electric vectors, the situation is more complicated. Except in the very
special case of nonlinear optics, the relationship between E and D is linear.
For isotropic media, E and D are simply proportional, D = eE = e0erE, which
implies collinearity of the two vectors. The proportionality coefficient e is the
permittivity; in a vacuum, its value is e0 = 1/(36p ¥ 109) (SI units, farad/meter
(F/m)). In the case of an isotropic dielectric material e is proportional to e0,
and the proportionality coefficient er is the relative permittivity. For a given
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material er varies with the color (i.e., frequency) of the waves (dispersion). er

is a dimensionless parameter, with typical values between 1 and 10.
For anisotropic media the relationship between E and D remains linear

but is now described by a tensor, so that the two vectors are no longer
collinear, the coefficients of the matrices associated to the tensor vary with
color and of course with the medium under consideration.

2.1.2. The Electric Field Vector

From an electromagnetic point of view a system is characterized by:

• A medium, or different media, which can be:
• absorbing or transparent;
• isotropic or anisotropic;
• homogeneous or inhomogeneous.

• Discontinuities across the surfaces separating the previous media:
• separation between two dielectric materials (vacuum being considered

as a dielectric material);
• separation between a dielectric material and a metal (a metal being

considered as a dielectric material for which e is a complex number).
• A time variation law imposed on the electromagnetic field at some points

of the system, these points are called sources of radiation.

Even in the simple case of an isotropic transparent medium, Electromag-
netism is a very mathematical game which is played in a six-dimensional
space. For a given system we must find, at any time and at any point, a six-
component vector EM(x,y,z,t) which is called the “electromagnetic vector.” The
representation, in the three-dimensional usual geometrical space of a six-
component vector, is usually a difficult exercise; hopefully in this case the six
components may be associated in two individual sets of three components;
the electric vector E(x,y,z,t) on the one hand and the magnetic vector H(x,y,z,t) on
the other hand,

2.1.3. General Rules for the Determination of 

an Electromagnetic Field

To fulfill the laws of Electromagnetism E(x,y,z,t) and H(x,y,z,t) must satisfy:

• Four basic equations, called Maxwell’s equations.
• Continuity (or discontinuity) conditions when crossing surfaces separat-

ing different media.
• Boundary conditions in the vicinity of the points where the fields have

imposed values corresponding to the sources of radiation.

We will admit that existence and uniqueness theorems can be established,
so that, following the previous conditions, the problem has a solution and that

EM E Hx y z t x y z t x y z t, , , , , , , , ,( ) ( ) ( )= «{ }.
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this solution is unique. In many cases this unique solution will be obtained
thanks to intuitive considerations. In spite of its lack of purity the method will
be considered as satisfactory. An objective of this book is to develop the phys-
ical insight of the reader allowing him to guess the response of a system to a
given electromagnetic excitation.

2.1. Mathematical Formulation of Electromagnetism 59

• Any given field EM(x,y,z,t) will not, in general, fulfill Maxwell’s equations.
However, there is an infinite number of fields obeying the famous 
equations.

• Among this infinity of possible solutions, the continuity/discontinuity
conditions will select solutions that fit the special system under 
consideration.

• Eventually the boundary conditions, that’s to say, the excitation condi-
tions, will determine, among the possible fields, which one really exists.

Because of the linearity of Maxwell’s equations, any possible field in a
given system may be written as

The set of vectors EMi(x,y,z) constitutes a complete, although not unique,
basis which is characteristic of the system and allows the representation of
any possible fields inside the system.

The sources of radiation play a key role in the problem, eventually they
fix the field which really exists. The presence of an electromagnetic field cor-
responds to some electromagnetic energy stored inside the system, it is at the
places where the sources are located that this energy is transferred, this is
the reason why the sources should always be connected to an external source
of energy.

Let (xS, yS, zS) be the coordinates of a radiation source located at point S,
the field EM(xS,yS,zS) at point S cannot follow any arbitrary law. It must be pos-
sible to use the set of basis vectors EMi(x,y,z) to obtain an expression of the
electromagnetic field at point S. The following formula, which also defines the
ai(t) coefficients are finally obtained from

Remarks

• The previous method, very attractive because it is very general, is cur-
rently used to study microwave problems, less often in Optics, except in
the case of optical waveguides.

• The previous method is a magnificent example of the formulation of so-
called modern mathematics. In fact Electromagnetism, and especially
Optics, has probably played an important role in establishing the formal-
ism of the set theory and in raising the notion of vectorial spaces.

EM EMx y z t i i x y z t

i
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• An acoustic analogy can be made to illustrate previous considerations: the
acoustic fields that can be generated by a musical instrument are mainly
determined by mechanical considerations. A violin is able to generate an
infinity of acoustic fields, each of them obeying continuity conditions 
at the extremities of a string; the music which is produced is mainly 
determined by the way the player will excite the strings and, in lesser 
proportion, by the shape of the concert room.

2.1.4. Example of a Planar Sine Wave

The conditions for exciting a planar sine wave is a typical example of the pre-
vious method. An electromagnetic field EM(x,y,z,t) is said to be a planar sine wave
propagating in the direction of a wave vector k, when it can be written as

It can be shown that, provided that the frequency w and the wave vector
modulus k should be related by a specific law called the dispersion law of the
medium of propagation, such a time-space variation law does fulfill Maxwell’s
equations. To excite such a wave we just have to achieve a situation where,
at any point of a plane (P) orthogonal to the vector k, the electromagnetic
field should have a sine variation, with the same phase.

Figure 2.1 shows a situation where, at points spread over a plane (P), the
electromagnetic field is forced to follow a sinusoidal and in-phase variation
law EM(xs,ys,zs,t) = EM0 cos wt; (xS, yS, zS) are the coordinates of any point
located on (P). The plane (P) is the only discontinuity in the problem. The
law EM(x,y,z,t) = EM0 cos(wt - kOM) fulfills Maxwell’s equations and is in good
agreement with the law of variation at any point of (P). Thus it constitutes
the unique solution of the problem. Let us now consider the family of planes
(P¢) that are parallel to (P), a point O belonging to (P) and H is its projection
on (P¢), at any point M of a plane (P¢), the scalar product kOM = kOH keeps
a constant value. This means that the vibrations of the electromagnetic field
have the same phase all over (P¢), this is the reason why such a wave is called
a planar wave. (P¢) are called wave planes.

EM EM t kOMx y z t, , , = ( ).( ) -0 cos w
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Figure 2.1. Generation of a planar wave by a planar source.



Figure 2.2 is just a top-view of the experiment suggested in Figure 1.8
where children were periodically hitting the free surface of a liquid. At points
located along a straight line (D), a sinusoidal motion is given to the molecules
of water. A rectilinear wave is generated with a direction of propagation
orthogonal to (D), all the points belonging to the same line (D1) parallel to (D)
vibrate with the same phase. Of course, the phases are not the same along
two different parallel lines (D2) or (D3): there is a propagation phenomenon;
the distance between two lines for which the out-phasing is 2p is the wave-
length. For obvious reasons it’s only possible to achieve a discrete repartition
of sources, rather than a continuous one; this is not dramatic, since it can be
demonstrated that if the distance between a source and its nearest neighbor
is small enough, everything occurs as if the repartition was continuous. The
Shannon theorem (also called the sampling theorem) indicates that the pre-
vious condition is not difficult to fulfill, the distance between two sources
should be smaller than one wavelength.

2.2. The Different Kinds of Waves

2.2.1. Wave Equation

Analytic Formulation of a Propagation Phenomenon

Physics is largely dominated by the notion of waves and of propagating phe-
nomena. Some physical entity G is said to propagate when its value, at point
M(x,y,z) and at time t, is given by a relationship of the following kind:

(2.1)

where O is the origin of coordinates, u is a unit vector defining the direction
of propagation, and V is a parameter homogeneous to speed and specific to
the medium in which the propagation occurs. For the sake of simplification
and without any loss of generality, we will consider that the vector u which
defines the propagation direction is along the Ox axis and we keep only the
- sign in the argument of the function f(h), the relationship is then written as

(2.2)G G f t x V= 0 -( ).

G G f t V= with =0 h h( ) ±( )uOM ,
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(D4) 

Figure 2.2. Illustration of a planar wave with elastic surface waves. Along D, D1, D2,
and D3 the vibrations are in-phase (modulo 2p).



Such a formula describes a propagation phenomenon, since it implies that
G takes, at point x2 and at time t2, the same value that it had at the previous
time t1 at the point having an abscissa x1 such that (x2 - x1) = V(t2 - t1). The
physical meaning of the ± sign becomes clearer: the - sign corresponds to a
forward propagation (direction of increasing x), while the + sign is for a back-
ward propagation (direction of decreasing x).

Necessary Condition for a Function to Describe a Planar Wave

First we are going to establish that a function f(x, y, z, t) as defined by
formula (2.1) necessarily obeys a very specific partial differential equation,
called the wave equation. Such equations are very often met in Physics
(acoustics, mechanics, electromagnetism, quantum mechanics, . . . ), they are
always associated to some propagation effect.

Oxyz being a Cartesian system of reference, let (x, y, z) be the coordi-
nates of some point M(x, y, z) and (ux, uu, uz) the three components of some
unit vector u, the scalar product of u by the vector OM is equal to OMu =
xux + yuy + zuz, from formula (2.1) we obtain

Since u is a unit vector, we have u2
x + u2

y + u2
z = 1, it is then easy to evalu-

ate the time and space partial derivatives of h and G:

Finally G is a solution of the following partial differential equation:

(2.3)
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2.2.2. General Considerations About the Planar 

Wave Solutions of a Wave Equation

Planar waves are a solution of the wave equation (2.3), they are not the only
possible solution, however they are an important family of solutions.

Let us first consider a direction associated to some unit vector u, by def-
inition a planar wave is a function f(x, y, z, t) which, at a given time t, keeps
the same value at any point M belonging to a plane (P) orthogonal to u. If we
set z = ur = uxx + uyy + uzz, then f(x, y, z, t) only depends on t and z,

If we restrict ourselves to the planar solutions of the wave equation, we
obtain

We introduce new variables, p and q, and evaluate the new partial 
derivatives
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Figure 2.3. The scalar product, OMu = ru = OH, keeps a constant value for all points
M of plane (P). At a given time, f(h) = f(t - ur/V) has the same value anywhere on (P):
f(h) describes a planar wave orthogonal to the unit vector u.



The wave equation can then be written as

∂2f/∂p ∂q = 0, which implies that ∂f/∂p is independent of p and only
depends on q.

Two successive integrations lead to

The constant of integration doesn’t depend on q, but it can depend on p.
In other words, the general planar wave solution f(p, q) is the sum of a func-
tion f1(q) of q only, and of a function f2(p) of p only,

(2.4)

We don’t know, a priori, anything about the functions f1(t - z /V)
and f2(t + z /V), they are obtained from the boundary and excitation 
conditions.

2.2.3. General Considerations About the Spherical 

Wave Solutions of a Wave Equation

We are now looking at solutions of the wave equation that would keep a con-
stant value at any point on a sphere (centered at point O, radius equal to r).
Such waves are called spherical waves. Because of the symmetry of the
problem it is convenient to use spherical coordinates. We will present the fol-
lowing formulas:

Multiplying both sides of the last equation by r and taking advantage of
the fact that time and space derivatives commute, we obtain

Considering the product (rf ) as an auxiliary function, we can use the
results obtained for planar waves. It is seen that (rf ) is the sum of two func-
tions of the variables (r ± Vt). One of these functions represents a wave diverg-
ing from O, the second one is a wave converging toward O,
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Some Remarks About Spherical Waves

The presence of the 1/r factor in (2.5) is not at all surprising and only 
corresponds to the conservation of the flux of energy across spherical sur-
faces centered at point O. Point O plays a special role for a spherical wave
and is often called its focus, as well as its center. Unfortunately, when per-
forming the calculation, we had to multiply the two sides of the equation by
r, we have no right to do so when r is equal to zero: thus the 
solution described by formula (2.5) is not valid in the immediate proximity 
of the focus.

2.3. Solutions of Maxwell’s Equations for 

Harmonic Planar Waves

2.3.1. Maxwell’s Equations

2.3.1.1. Linear Operators Involved in Solving Maxwell’s Equations

Although Electromagnetism is exhaustively described by Maxwell’s equa-
tions, we have waited until the third section of this chapter before writing
them. This was deliberate, since we wanted the reader to become accustomed
to waves and to the associated physical parameters.

In fact, the resolution of many optical problems doesn’t explicitly require
going back to Maxwell’s equations. We can also emphasize the fact that 
very important developments in Optics (geometric optics, diffraction, inter-
ference, polarization of light, . . . ) had been extensively studied between 
the end of the seventeenth century and the end of the nineteenth century, at
a time when Maxwell’s equations had not yet been formulated. Still, Maxwell’s
equations constitute an extremely powerful tool. As the teaching of Physics
developed, it is on the occasion of Electrostatics, of Magnetism, and of 
Electromagnetism, that Maxwell’s equations are progressively introduced.
From that point of view it can be considered that they are experimentally

rooted.
Conversely, it is possible, a priori, to write Maxwell’s equations and then

deduce all the laws that govern Electrostatics, Magnetism, and Electromag-
netism (Coulomb, Laplace, Biot-Savart, Faraday, . . . laws).
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From a formal point of view, Maxwell’s equations are linear relations
between the first time and space partial derivatives of the electric and mag-
netic field components. Some combinations of the space partial derivatives
play a very important role, and are so commonly met that they have been
given special names: gradient, curl, divergence, scalar, and vector Laplacian;
they are mathematical operators operating in the space of the functions of x,

y, z.
Historically, Maxwell’s equations were first formulated using partial deriv-

atives, then using operators. Finally, a more general operator, called Nabla 
(—), has been introduced. Each of the previous operators can be expressed
using this Nabla operator which allows a very elegant and powerful presen-
tation of Maxwell’s equations.

2.3.1.2. Writing Maxwell’s Equations Using Operators

Maxwell’s equations will not be written for the most general case, but only
for conditions corresponding to the propagation of the usual light waves: the
propagation will occur in nonmagnetic transparent dielectric materials,
inside of which the electric charge density is equal to zero and where the only
electric currents will be the displacement currents.
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Main Operators Used in Electromagnetism.

V(x, y, z) is a scalar.
E(x,y,z) = Ex(x,y,z)x + Ey(x,y,z)y + Ez(x,y,z)z is a vector.
(x, y, z) is an orthogonal and normalized trihedral.

Nabla operator: 

Gradient: vector.

Divergence: scalar.

Scalar Laplacian: 

curl:

curl(E) is a vector.
Vector Laplacian: D(E) = xD(Ex) + yD(Ey) + zD(Ez) = D2E vector.

The following important identity can be established:
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The value of the magnetic permeability will be taken equal to the vacuum
permeability (m0 = 4p ¥ 10-7 (MKS units, H/m)). Except in the case of an inho-
mogeneous media, the dielectric constant e will be considered to have the
same value at any point.

e is submitted to dispersion: its value varies with the frequency. This cor-
responds to serious theoretical difficulties in writing Maxwell’s equations in
the more general case, for example, when the time variation laws of the fields
are not sinusoidal. When the Fourier components of the signals occupy a
broad frequency domain, as soon as e depends on the frequency, a question
must immediately be answered: Which value should be used for e? The
problem is not that serious, since in many practical situations e will keep an
almost constant value over all the frequency bands of the signals. Formulas
(2.6) are strictly valid in a vacuum which is definitely a nondispersive medium
(e = e0), they are quite acceptable as long as the frequencies remain outside
the absorption bands of the material where the waves are propagated.
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2.3.2. Deducing the Electromagnetic Wave Equation 

from Maxwell’s Equations

Using the fact that time derivation commutes with space derivation, and
taking advantage of vector identities previously written, we have

(2.7)

Apart from the fact that they are concerned with vectors, equations (2.7)
are identical to the wave equation (2.3). Any component EMi of the electro-
magnetic field will follow equation (2.8),

(2.8)
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Therefore a wave equation is obtained from Maxwell’s equations, an
important result being that we obtain an expression of the speed of light V
versus e and m0,

(2.9)

2.3.3. Maxwell’s Equations for Harmonic Planar Waves

A harmonic planar wave is a wave for which both time and space variation
laws are sinusoidal. If we restrict ourselves to this category of waves,
Maxwell’s equations take a far simpler form: they become algebraic

equations instead of partial derivative equations (or equations between 
operators).

Of course we will use the complex notation for the analytic expression of
the electromagnetic field, any of its components EMi can thus be written as

Within the restriction to complex exponential functions, the derivative
operators are replaced by the products:

k u=
w
V

is the wave vector.
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(2.10.a)

(2.10.c)— = -EM kEMj ,

∂
∂

w

∂
∂
∂

∂
∂

∂

t
EM j EM

x
EM jk EM

y
EM jk EM

z
EM jk EM

i i

i x i

i y i

i z i

( ) =

( ) = -

( ) = -

( ) = -

,

,

,

,

(2.10.b)

(2.10.d)— =2 2EM k EM- .

∂
∂

w

∂
∂
∂

∂
∂

∂

2

2
2

2

2
2

2

2
2

2

2
2

t
EM EM

x
EM k EM

y
EM k EM

z
EM k EM

i i

i x i

i y i

i z i

( ) = -

( ) = -

( ) = -

( ) = -

,

,

,

,

• deriving once versus x (or y, or z) Æ multiplying by -jkx (or -jky, or -jkz);
• deriving twice versus x (or y, or z) Æ multiplying by -k2

x (or -k2
y, or -k2

z);
• taking the divergence of a vector Æ scalar multiplication of the vector by

-jk;
• taking the Laplacian of a vector Æ multiplication by the number -k2;
• taking the curl of a vector Æ vector multiplication by the vector -jk.



2.3.4. Decomposition of a Wave in Planar Harmonic Waves

The previous operators are all linear since we have

The linearity of the time derivative operator is very often met in Physics,
and is responsible for the possibility of Fourier developments: a time func-
tion f(t) can always be considered as the superposition of an infinite number
of sine functions lasting for ever and having a suitably chosen repartition of
frequencies

where a is a normalizing coefficient and a(w) is a complex number that varies
with the frequency. The time variation of f(t) is the result of the interference
of all the different sine components.

Planar waves play the same role for functions of space variables (x, y, z),
as the sine functions for functions of time. To use a slightly emphatic, but
sometimes useful language, it can be said that planar waves constitute a set
of orthogonal functions and allow a representation of the space of the func-
tions of (x, y, z). In other words, a function f(x, y, z) can always be consid-
ered as a superposition of an infinite number of planar waves, each of them
having a different wave vector,

with r = xx + yy + yy and k = kxx + kxy + kxz.
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Maxwell’s equations (general case)
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The formulation of Maxwell’s equations is considerably simplified by the
following equivalence rules:

∂
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2.4. Structure of an Electromagnetic Planar Wave

2.4.1. General Topics

Let us consider:

• A propagation medium having an infinite extension, filled with a dielectric
material (e and m0).

• An angular frequency w and a wave vector k.
• An electromagnetic field EM, defined by the union of an electric field E0

and of a magnetic field H0.

Let us ask the following question: Which conditions should obey the pre-
vious parameters, if we want the planar waves defined by formulas (2.12) to
satisfy Maxwell’s equations?

(2.12)

After a few elementary manipulations of vector algebra, and making good
use of the double vector product formula and of its equivalent formulation
using the Nabla operator, equations (2.12) become

(2.13)

2.4.2. The Geometry of a Planar Electromagnetic Wave

Because of formulas (2.13), E0 and H0 are mutually orthogonal; they are also
orthogonal to the wave vector and thus belong to a plane orthogonal to k,
such a plane is called a wave plane. The trihedral (E0, H0, k) is orthogonal
and direct.
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E0

H0
k

Figure 2.4. Respective positions of vectors E0 and H0 lying in the wave plane.
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Dispersion Law of the Medium Supporting the Waves

Starting from formulas (2.7) it is readily obtained that

(2.14)

The frequency, on the one hand, and the modulus of the wave vector, on
the other, cannot be given arbitrary values, they must obey a relation involv-
ing e and m0; this relation is called the dispersion law of the medium sup-
porting the wave,

(2.15)

From (2.15) we can deduce the value of what is called the phase velocity

V of the wave,

(2.16)

If e doesn’t depend on the frequency, the modulus of the wave vector is
proportional to the frequency. The dispersion law is then said to be linear and
the material is said to have no dispersion; in this case, the phase velocity
doesn’t depend on the frequency.

Vacuum Is the Only Medium to Have No Dispersion

The speed of propagation in a vacuum is called the celerity of light and is
usually designated by the letter c,

Any material shows dispersion: The dispersion law is never linear over
the whole spectral range (frequencies going from zero to infinity). This depen-
dence of e is rooted very deep in the physical processes governing light/mate-
rial interactions, it is connected to the causality principle by means of the
Kramers-Krönig formulas.

Wave Impedance

Relations (2.13) imply that the modulus of the electric and magnetic fields are
proportional. It can be shown that the proportionality coefficient is measured
in ohms, this is the reason why it is called the wave impedance Z, in a vacuum
its value Z0 is equal to 120p (about 400 W),

(2.17)
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Index of Refraction

For a given material, the ratio between the celerity of light and the phase
velocity in the material is the index of refraction, n. The index of refraction
can be simply related to the relative dielectric permeability of the material, 
er = e/e0,

(2.18)

Formula (2.18) is only valid for nonmagnetic transparent materials, 
otherwise the relative magnetic permeability should be introduced.

2.4.3. Energy Transportation by an Electromagnetic Wave

Having felt the heat of the Sun, everybody is surely convinced that light waves
carry some energy. When trying to evaluate the amount of energy transported
by a planar wave, a slight difficulty is immediately met, since such a wave has
an infinite extension in any direction orthogonal to the wave vector. We can
easily get round this difficulty by considering the energy flux across a given
closed loop; of course, we will find it more convenient to choose a planar loop
orthogonal to the direction of propagation.

To calculate the amount of energy, f, that is sent across a given area, S,
during one second, a new vector is introduced, this is called the Poynting vector
and is equal to the vector product of the electric field by the magnetic field,

(2.19)

f is simply equal to the flux of the Poynting vector across the loop under
consideration. We will now establish this proposition and we recommend the
reader to refer to a textbook about Electromagnetism where a more rigorous
demonstration will be found. To obtain f from the parameters that charac-
terize a planar wave, we will develop a less powerful and less general theory.
This method is however quite meaningful from a physical point of view and

P = ŸE H Poynting vector.
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Figure 2.5. Energy transportation by an electromagnetic wave.



emphasizes the fact that some electromagnetic energy is stored at places
where an electromagnetic field has been created.

If an electromagnetic field (E, H) exists at a point P and around it, it
should be considered that some energy is stored with a density u expressed
in joules per unit volume and given by

(2.20)

Let us evaluate the electromagnetic energy density at a point where the
fields are given by E = E0icos(wt - j) and H = H0 jcos(wt - j) (i and j are
two orthogonal unit vectors), the instantaneous value u(t) is equal to

We consider that the stored energy is the time-averaged value of u(t), since
·cos2 wt Ò = 1–

2
we obtain

(2.21)

The amount of energy which crosses the surface S of Figure 2.5 during
time t was previously stored inside a cylinder having a cross section equal 
to S and length equal to Vt (V is the speed of the propagation of light). 
If the area S is taken equal to one area unit and the time equal to one 
second, the corresponding amount of energy is called the light intensity I of
the wave,

(2.22)

Using the wave impedance Z that was introduced in formula (2.17),
formula (2.22) can be made more elegant,

(2.23)

The above formula reminds us of the expression of the electric power, 
P = RI2/2 = V 2/2R, in a resistor R when the current and the voltage are, re-
spectively, Icoswt and Vcoswt.

2.5. General Harmonic Waves

2.5.1. Helmholtz’s Equation

Planar waves are not the only possible solutions of the wave equation. They
are the simplest and correspond to many practical situations.
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We now consider waves for which the time variation is still sinusoidal (har-
monic waves), but for which the space variation is of a more general kind.
The field components will be taken as

We are now looking at conditions which the two functions ai(r) and gi(r)

should obey for EMi(r,t) to be an acceptable solution of Maxwell’s equations
and, more specifically, of the wave equation

We introduce the complex function U(x,y,z) = U(r) of the real variables x, y,
z using the following relations:

Using the equivalence ∂2/∂t2 Æ -w2 we obtain, for U(x,y,z), a partial deriva-
tive equation that is called the Helmholtz equation:

(2.24)

Many problems of Electromagnetism consist in finding a solution 
of the Helmholtz equation, which can fit with the special boundary condi-
tions of the system under consideration. The functions U(x,y,z) = e-jkr (planar
waves) and U(r) = e-jkr (spherical waves) are solutions of the Helmholtz 
equation.

It should be remembered that, after having found a possible solution, we
must solve the problem of the excitation: Along which curve will the children
of Figure 1.8 be asked to sit around the swimming pool to generate the right
function U(x,y,z)?

2.5.2. Helmholtz’s Equation for Slowly Varying Amplitudes

There are many practical situations where the propagation mostly occurs
along one direction that will be chosen as the Oz axis. It is then conve-
nient to separate the function U(r) = a(r)e

-jg(r) into two parts: one part varies
periodically and rapidly with z, while the second part has smoother 
variations:

(2.25)

where e-jkz is a periodic function, which takes again the same value when z
is increased by one wavelength. In Optics l is quite short, so the variation 
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is very fast. On the contrary, y(x,y,z) varies slowly with z, this will be expressed
in the following way:

(2.26.a)

The condition of slow variations can then be written in the following 
way:

(2.26.b)

To use relation (2.24), we must first calculate the derivatives of the func-
tion U(x,y,z):

The Helmholtz equation then becomes

As the coordinate z plays a special role, it seems convenient to divide the
Laplace operator into two parts:

• A longitudinal part ∂2/∂z2.
• A transverse part Dt = ∂2/∂x2 + ∂2/∂y2 = —t

2.

For functions that slowly vary with z, the longitudinal part of the Laplace
operator is negligible with regard to its transverse part, the Helmholtz equa-
tion can be written as

(2.27)Dt jk
z

y
∂y
∂

- =2 0.

Dy
∂y
∂

- =2 0jk
z

.

∂ y
∂

∂ y
∂

∂ y
∂

∂y
∂

y y
2

2

2

2

2

2
2 22 0

x y z
jk

z
k k e jkz+ + - - +Ê

Ë
ˆ
¯ =- ,

∂
∂

∂ y
∂

∂y
∂

y
2

2

2

2
22

U

z z
jk

z
k e jkz= - -Ê

Ë
ˆ
¯

- .

∂
∂

∂ y
∂

∂
∂

∂ y
∂

2

2

2

2

2

2

2

2

U

x x
e

U

y y
ejkz jkz= =- -, ,

∂
∂

∂y
∂

∂
∂

∂y
∂

∂
∂

∂y
∂

y
U

x x
e

U

y y
e

U

z z
jk ejkz jkz jkz= = = -Ê

Ë
ˆ
¯

- - -, , ,

∂ y
∂

∂ y
∂

y
2

2
2

z
k

z
k<< << .

y y
p ∂ y

∂
p ∂ y

∂lx y z x y z
k z k z

, , , , . . . .+( ) ( )= + + +
2 2 2

2

2

2

y y l
∂ y
∂

l ∂ y
∂lx y z x y z

z z
, , , , . . . ,+( ) ( )= + + +

2 2

22

y ylx y z x y z, , , , ,+( ) ( )ª

2.5. General Harmonic Waves 75



2.5.3. Light Rays and Propagation Speed 

for Inhomogeneous Waves

When the functions a(r) and g(r) have no special properties and, for example,
don’t correspond to planar or spherical waves, the corresponding wave is 
said to be inhomogeneous. For such waves two kinds of surfaces are usually
introduced:

• equiamplitude surfaces along which a(r) keeps a constant value; and
• wave surfaces along which it is the phase g(r) which remains constant.

For planar waves and spherical waves, equiamplitude and wave surfaces
coincide.

Surface waves, sets of points all vibrating in phase, play an important role
in studying the properties of inhomogeneous waves. It is probably because
the amplitude of vibration varies along a surface wave that they are said to
be inhomogeneous.

Let us imagine an observer moving along some trajectory T, see Figure
2.6(b), and ask the question: How should he move if he wants to see an instant
phase (wt - g(r)) that remains constant? At time t, and at point M, the phase
is [wt - g(r)]; at time t + dt, and at point M¢, the phase is [w(t+dt) - g(r+dr)], if the
phases are the same at points M and M¢ we obtain

Let q be a unit vector of the tangent to T at point M, and let s(t) be the
abscissa of the observer, measured along T. We have dr = q ds and the speed
of the observer on his trajectory is thus defined by

ds

dt g
= ( )( )

w
q rgrad
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(a)
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Light rays  

Figure 2.6. (a) shows the surface waves and light rays of inhomogeneous waves.
(b) indicates how to evaluate the speed of propagation of an inhomogeneous wave.
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This speed is minimum when the scalar product q grad(g(r)) is maximum,
this occurs when the two vectors q and grad(g(r)) are parallel. Trajectories for
which the speed is minimum are orthogonal to the wave surfaces: they con-
stitute the light rays, and the corresponding phase velocity is given by

Let us use the above formula to again find the dispersion law of a planar
wave

for a planar wave

2.6. Spherical Waves

2.6.1. Physical Difficulties Associated with Spherical Waves

An important part of Optics consists in obtaining the image of an object.
Ideally a light point source emits spherical waves, diverging waves if the
object is real and converging waves if virtual. The main role of optical instru-
ments is to transform an initial spherical wave into another spherical wave.
Although spherical waves are easily conceivable, it is impossible to obtain
them rigorously. From a mathematical point of view this comes from the fact
that, when integrating the wave equation for spherical waves, we had to
exclude the focus where r is equal to zero. From a physical point of view, it
can be said that if the wave surfaces remain strictly spherical up to the focus,
all the rays would intersect at the same point where the electromagnetic field
would be infinite.

The modification of the shape of the surface waves near the focal point is
a manifestation of diffraction: it is not possible to focus a wave in a spot
having a size much smaller than the wavelength.

2.6.2. p Out-Phasing of a Spherical Wave when Crossing its Focus

A spherical wave is always limited by some diaphragm and never occupies
the 4p steradian of the whole space; it is usually limited to a cone of half-angle
q (see Figure 2.7). When crossing its focus, the wave first converges, and 
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then diverges; if r is arithmetic and thus positive, the representation of the
wave is:

• before focus (1/r) cos(wt + kr);
• after focus (1/r) cos(wt - kr).

In Figure 2.7 we have drawn, as solid lines, a family of wave surfaces, i.e.,
the points where the vibrations have the same value, j or j + 2pp (p is an
integer); a new surface is obtained each time p is increased by one. Using
dotted lines we have drawn planes that are tangent to the wave surfaces at
the points where they intersect the axis Oz of the cone. These planes are par-
allel, far away from the focus they are equidistant from and separated by one
wavelength, then they coincide with the wave planes of a planar wave that
would propagate parallel to the cone axis.

For a planar wave, the phase smoothly varies when z varies from -• to
+•; for spherical waves, there is an abrupt discontinuity or, more likely, a
rapid variation of p in the close vicinity of the focus.

If will be shown (see Section 2.6.5) that the rectilinear converging rays of
a spherical wave are replaced by hyperbolas. Farther away the rays are the
asymptotes; near the focus the spherical wave merely looks like a planar wave
(!). The region where the spherical wave can be assimilated to a planar one
is called the Rayleigh zone. At the focus most of the energy is inside a circle
having a diameter W, so the field amplitude doesn’t go to infinity. The half-
angle q between the asymptotes of the hyperbola are related to the wave-
length l and to W by q = Kl/W (K is a dimensionless coefficient of the order
of unity). This formula reminds us of the expression of the resolving power
of a microscope (1.22l/d).

2.6.3. Series Development of a Collimated Spherical Wave

It will be considered that we are far enough from the center of a spherical
wave so that the wave surfaces are again quite spherical; in fact, the limita-
tion is not very severe and it’s sufficient to be separated from the focus by
several wavelengths. We are now going to introduce a new approximation that
is traditionally called Gaussian approximation.

In practice, spherical optical waves are always limited by a diaphragm: the
aperture angle q of the cone which contains the energy of the wave is usually
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Figure 2.7. Representation of an ideal spherical
wave near focus.



small enough, so that the higher-order terms can be omitted in the develop-
ment of trigonometric functions (cosq @ 1, sinq @ tan q @ q). Our purpose is
now to give an approximate expression for the mathematical description of
a spherical wave: calculations using Cartesian or cylindrical coordinates will
then be quite simple.

Let us consider a spherical electromagnetic wave and its center O, the
various components of the field can be written as

with

The - sign is associated with a wave that diverges from point O, while the +
sign corresponds to a wave that converges toward O, and diverges after. Atten-
tion must be paid to the fact that in the expression e-jk0OM, we don’t have the
scalar product of two vectors, but rather the product of the length of the wave
vector k0 by the length of the vector r = OM, both lengths being positive numbers.

In Figure 2.9, (S ) represents a given surface wave of a spherical wave cen-
tered at point O and propagating in the vicinity of the Oz axis, with a small
numerical aperture. PP¢ is the trace of the plane which is tangent to (S) at
point H(0, 0, z) where PP¢ intersects the Oz axis; Ox and Oy are two orthog-
onal axes on (P). To any point M(x,y,z) belonging to (S), we associate the point
M¢(x¢,y¢,z¢) where OM intersects pp¢. Far enough away from the center, the 
values of the coordinates (x, y), as well as (x¢, y¢), are very small as compared
to the value of z, an approximate expression of the field components is readily
obtained using the following development of OM:
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Figure 2.8. A more realistic representation of a spherical wave crossing its focus.



(ii) In the argument of the complex exponential : this term is
responsible for the fact that the phase is not the same for all the points
of a plane perpendicular to the Oz axis.

(iii) In the argument of the complex exponential : this term represents a
very fast variation, since its sign changes every time z increases by one
half-wavelength.

Let us now consider the two waves illustrated in Figures 2.9(a) and (b);
since they both propagate in the positive direction of the Oz axis, we will
choose the exponential term e-jkz and describe the amplitude repartition over
a plane (P) orthogonal to Oz by the following expression:

(2.28.a)

Such a wave can be considered to be a spherical wave having its center
at the origin O of the Oz axis; the radius of curvature of the wave surface that
is tangent to the plane PP¢ is related to the modulus k0 of the wave vector or
to the wavelength l by relations (2.28.b):

(2.28.b)

where a > 0 corresponds to a wave converging toward point O; and
a < 0 corresponds to a wave diverging from point O.
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 is just a proportionality coefficient.

e jkz±

e
jk x y z± +( )2 2 2

The main interest of the previous expression of U(x,y,z) comes from the fact
that, in the argument of the exponential, the square root is replaced by a poly-
nomial expression.

The variable z is found at three different places in the expression of 
U(x,y,z):

(i) In the denominator of the real term, a/z decreases slowly with z and can
be considered to keep a constant value inside rather long distances.
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Figure 2.9. Spherical waves. The points M and M¢ are considered to be almost at the
same place.
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2.6.4. Using an Optical Device to Transform a 

Planar Wave into a Spherical Wave

To illustrate the interest of the previous development, we are going to show
how this allows understanding as to how a lens, or a spherical mirror, trans-
forms a planar wave into a spherical one.

2.6.4.1. Reflection of a Wave on a Spherical Mirror

When an electromagnetic wave hits the mirror surface, its electric field sets
into vibration the electrons which then become emitting sources: a reflected
wave is thus generated. For the sake of simplicity it will be considered that
the phase of the motion of an electron is equal to the phase of the incident
wave at the place where the electron is. The complex amplitude of the sources
is determined by the incident wave and by the shape of the mirror. In the case
of an incident planar wave and a spherical mirror, it will be shown that the
law of variation of the complex amplitudes of the reflected wave is just the
same as for a spherical wave.

Let us consider, Figure 2.10, a planar wave arriving at a concave spherical
mirror after having propagated parallel to one of its diameters. The mirror is
defined by the following parameters: its center W and its radius of curvature
WS = WN = R. We will compare the complex amplitudes of the incident and
reflected waves on the plane (P) tangent to the mirror at point S. If the mirror
is a perfect reflector, the moduli of these amplitudes are equal. However, there
is a phase difference associated to a distance of the light equal to 2NM, N is
on the mirror, M is on plane (P). Using Sxyz as the axis of coordinates, the
equation of the mirror surface is x2 + y2 + (R - z)2 = R2, in the vicinity of point
S it can be simplified as x2 + y2 - 2Rz = 0.

For the incident planar wave the phase would be constant along (P), we
use the conditional since the incident wave doesn’t reach (P ). On the con-
trary, the phase of the reflected beam varies along (P), the phase variation
being given by e-jk0MN.

R

F

M(x,y,0)
N(x,y,z)

S z

W

Incident wave plane 

Reflected surface wave 

x

y

(P)

Figure 2.10. Reflection of a planar wave on a spherical mirror. W and R are,
respectively, the center and radius of the mirror.
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MN is easily obtained from the simplified equation of the mirror: MN = r

= (x2 + y2)/2R.
Finally, the complex amplitude of the reflected wave at point M is given by

The above expression coincides with the first term of the development of
a spherical wave centered at point F in Figure 2.10; the focal length of a spher-
ical mirror is found to be equal to half of its radius of curvature. It is left as
an exercise to consider the case of an incident spherical wave and establish
the conjugation law for spherical mirrors.

2.6.4.2. Focusing a Parallel Beam with a Spherical Lens

To simplify the presentation and Figure 2.11 we will consider the case of a
planoconvex lens; the method is however quite general and the reader is
advised to treat the case of a biconvex lens, either by adapting the previous
method, or by considering a biconvex lens as the assembly of two planocon-
vex lenses.

The lens is a piece of glass (index of refraction n) limited on one side by a
plane (SH) and on the other side by a sphere (center W, radius WS¢ = R). Using
the coordinate axis (S¢xyz), the sphere equation can be approximated as

All the points of the plane (SH) are set in motion with the same phase by
the incident wave. Inside the lens, the light propagates at speed V = c/n,
outside the lens the speed is equal to c. The light takes a longer time to cross
the lens at the level of SS¢ than it does at the level of HH¢.

If we now consider the vibrations at points located on the plane S¢H¢ , they
are not in phase: the phase retardation is maximum at the center and dimin-
ishes as the distance to the axis S¢z increases. tSS¢ and tHH¢ being, respectively,
the times for going from S to S¢ and from H to H¢, we have

From the simplified equation of the sphere it is seen that KH¢ = (x2 + y2)/2R,
the definition of K is given in Figure 2.11. The phase difference between S¢
and H¢ is given by the following expression, where w and k0 are, respectively,
the angular frequency and the vacuum wave vector of the light,

The above phase repartition is quadratic in x and y and corresponds to a
spherical wave; at the level of S¢ the radius of curvature of the surface wave
is the focal length f = R/(n - 1).
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This example shows the mathematical meaning of Gauss approximation:
stigmatism is obtained only within the limit of validity of the development 
of formula (2.26.b). Aberrations correspond to the omitted terms of the 
development.

2.6.5. Gaussian Beams

Gaussian beams are a very important type of light beam. They have been made
very popular by lasers, since such devices usually emit such beams. There 
are two reasons for using the word Gaussian, first, the transverse variations
of the amplitude is governed by a Gaussian function and, second, Gaussian
beams provide a very convenient mathematical description of the pro-
pagation of light along centered optical systems using paraxial rays (Gauss
approximation).

2.6.5.1. Helmholtz’s Equation Solution for Beams 

with Slow Amplitude Variations

We will only consider problems having a radial symmetry about the propaga-
tion Oz axis. The Gaussian beams that are obtained are said to be zero-order
Gaussian beams, they are surely not the most general, however they are the
most commonly met. To introduce the Gaussian beams we will use a rather
formal approach and solve equation (2.27), the mathematical development is
rather tedious and can be bypassed going directly to the final result in equa-
tions (2.30) and (2.31).

Because of the radial symmetry, the transverse Laplace operator is much
simpler and reduces to

— = + = +t
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Figure 2.11. Focusing a parallel light beam with a lens. W and R are the center and
radius of the spherical interface. H and H¢ are considered to be at the same place.



the function y(x) follows the following equation:

(2.29)

To find a solution of equation (2.29), we draw our inspiration from a
description already used for spherical waves fulfilling Gauss approximation.
Let us introduce two auxiliary functions P(z) and a(z) and write the function
y(r, z) as

(2.29.a)

As equation (2.29.a) should be satisfied for any value of r, it is deduced
that the two terms of (2.29.a) are both equal to zero:

where a is a constant of integration that will be taken as a = jz0,

The integration constant b corresponds to a phase shift that can be put in
the complex amplitude y0, thus it will be made equal to zero, y(x,y,z) is given
by

Using the identity
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Going back now to equation (2.25), the propagating field is finally obtained 
as

(2.30)

with the following notations:

(2.30.a)

Equation (2.30) is made more convenient by setting q(z) = (z - jz0):

(2.31)

where U1 is a new constant that could be related to U0. It can be shown that

Rayleigh zone: The function Arctan(z ) remains constant over large vari-
ations of its argument z, except in the immediate vicinity of zero. It can be
roughly considered that the domain of variation can be restricted to ±1. Going
back to equation (2.30), is seen that the term Arctan(z/z0) is only important
when z0 < z < +z0. The corresponding region is called the Rayleigh zone, z0 is
known as the Rayleigh range.
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Physical interpretation of the various terms of 
equations (2.30) and (2.31).

In a plane orthogonal to Oz, the amplitude of
vibration decreases according to a Gaussian law, as
we get away from the axis. The width of the bell-
shaped Gaussian curve is minimum when z = 0, its
value is then equal to w0 and is called the beam 
waist.

This term describes a diminution of the amplitude 
when moving away from the origin. Further away 
a 1/z law is obtained, just as in the case of a
spherical wave.
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If we consider the expression R(z) = z(1 + z2
0/z), it can be considered that:

• Outside the Rayleigh zone R(z) ª z, the transverse phase repartition, as well
as the amplitude variation law versus distance to origin, are very similar
for Gaussian and spherical waves.

• Inside the Rayleigh zone:
• R(z) ª z2

0/z, the phase repartition and the amplitude variations are quite
different for Gaussian and spherical waves.

• Arctan(z/z0) @ z/z0, the phase variation is linear versus z: the Gaussian
wave behaves more like a planar wave, the phase velocity is however
different from the speed of light in the same medium. (It is left as an
exercise to evaluate the phase velocity.)

Diffraction and Gaussian beams: Out of the Rayleigh zone, a Gaussian
wave is nothing but a spherical wave limited by some circular aperture of
radius w(z). Since it is a solution of the wave equation the effect of diffrac-
tion is immediately taken into account.

Let us consider the variations of the modulus of the field amplitude, U(x,y,z),
inside a plane orthogonal to Oz at abscissa z; this amplitude is maximum 
on the axis and decreases as the absolute value of x and/or y increases; let
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e-jkz This term simply describes the propagation 
along Oz. Further away from the origin, it is the 
only complex term of equation (2.30): a Gaussian
wave, as well as a spherical wave, coincides 
with a planar wave.

Because of this term, the phase varies inside a
plane orthogonal to Oz. The curvature of the wave 
surfaces is introduced by a quadratic variation 
of the phase versus distance. Further away from 
the origin there are no more transverse phase 
variations, as for a planar wave.

R(z) is the radius of curvature of the wave 
R(z) ª z if z Æ • surface at abscissa z. Further away the radius is 
R(z) Æ • if z Æ 0 equal to the distance from the origin. In the 

vicinity of the origin, a Gaussian wave is very 
similar to a planar wave.

This term remains almost constant when z is
varied, except for a fast variation from -p/2 to 
+p/2 when crossing the origin (see Section 2.6.2).
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us consider a point M(x,y,z) where the modulus is equal to the maximum divided
by e (Neperian logarithm basis)

M(x,y,z) belongs to a hyperboloid of revolution about Oz, the half-angle q
of the asymptotic cone is obtained by taking the limit of r/z as z goes to 
infinity:

(2.32)

We consider the plane (Ox, Oy), it is located at the center of the Rayleigh
zone; the energy of the field is almost entirely contained inside a circle having
a radius equal to the waist w0. The divergence of the beam can be approxi-
mated by q = l/pw0, this result is sensible and should be compared to the dif-
fraction of a planar wave by a circular aperture of radius w0, the light is then
diffracted inside a cone having an angle equal to 1.22l/2w0.

The energy of a Gaussian beam remains constant during propagation. 
The demonstration of this point, which is a physical necessity, is left as 
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an exercise. It will be shown that the surface integral doesn’t

depend on z, (P) is a plane of abscissa z and orthogonal to the z axis, U(x,y,z)

is given by equation (2.30).

P x y zU ds( ) ( )ÚÚ , ,
2

Variation of the amplitude U(x,y,z)
during propagation 
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Figure 2.12. Illustration of a Gaussian beam. Amplitude variations U(x,y,z) versus
distance to the axis follow a Gaussian law, the width of which increases with z, while
its maximum value, U(0,0,z), decreases. The locus of the points where U(x,y,z)/U(0,0,z) = 1/e
is a hyperbola.



2.6.5.2. Parameters Required to Characterize a Gaussian Beam

Given a frequency and a direction of propagation, to fully define a planar wave
it’s necessary to know its complex amplitude at some point. In the case of a
spherical wave a few more indications are needed, since in addition to the
complex amplitude at a given point, the center of the wave must be defined;
the extension of the beam is always limited and we must know the axis in the
vicinity of which the propagation is made and the size of the aperture.

For a Gaussian beam, the following parameters should have been defined:
frequency, direction of propagation, location, and size w0 of the waist; instead
of w0, the Rayleigh range z0 can be used (the two quantities are connected by
equation (2.30.a)).

How to Find the Characteristics of a Given Gaussian Beam?

We are looking at the properties (place and size of the waist) of a Gaussian
beam, knowing the complex amplitude repartition along a given plane. Thanks
to some uniqueness and existence theorems concerning the solutions of
Maxwell’s equations, we can be assured that this Gaussian beam is unique.

The complex amplitude repartition along a given plane (P) is completely
determined from a complex number q = z + jz0 which is then introduced in
equation (2.31). The real part of q defines the place of the waist, it indicates
where to place the origin of coordinates so that (P) will be located at abscissa
z. If z is positive, the waist is located before (P); if z is negative, the waist is
after (P). The imaginary part, z0, should be a positive number, otherwise the
amplitude and, consequently, the energy of the beam would go to infinity as
x or y increases indefinitely. Finding a negative value for z0 at the end of some
calculation cannot be anything other than an error.

Let us give some practical examples to show how the parameter q(z) should
be manipulated. The wavelength being equal to l = 0.5mm, we want to charac-
terize two Gaussian beams for which the q parameters, along a plane (P) are,
respectively, equal to q = (3 + j4)cm and q = (-2 + j0.5)cm, see Figure 2.13.

In the first case, the real part is positive, which means that the waist is in
front of the plane (P), at a distance equal to z = 3cm,  (P) is inside the Rayleigh
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zone. The waist radius is .
In the second case, the waist is 2cm after (P), the beam converges 

toward the waist and then diverges, the radius of the waist is equal to 
w0 = 28.2mm.

2.6.5.3. Transformation of a Gaussian Beam by a Spherical Lens

A thin spherical lens (focal length f ) receives a Gaussian beam which is char-
acterized by q = (z + jz0) along the input face L- just in front of the lens. Start-
ing from the complex amplitude repartition along U(x, y, L-), we have to
calculate the complex amplitude along the output face L+, just after the lens.

w z0 0 80= ªl p mm
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U(x,y,L+) is obtained by a simple multiplication by a term which makes a trans-
versal correction of the phase, just as we did in Sections 2.4.6.1 and 2.4.6.2.

We are going to show that the new repartition is that of a Gaussian beam:
a lens transforms an initial Gaussian beam, q = (z + jz0), into a new Gaussian
beam, q¢ = (z¢ + jz¢0),

(2.33)

Equation (2.33) is the lens formula for Gaussian beams.
Identification of the real and imaginary parts of equation (2.33) allows the

expression of z¢ and z¢0 versus z and z¢. If the lens is largely outside the
Rayleigh zone (z >> z0), equation (2.33) becomes very similar to the usual lens
formula; this is quite normal since a spherical wave can be considered as the
limit of a Gaussian wave, if the Rayleigh range goes to zero. However, when
comparing equation (2.33) with the usual lens formula, care should be taken
of the fact that z is algebraically measured from the object to the lens, while
in Geometric Optics the distances are usually measured from the lens to the
object.
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Figure 2.13. Examples of Rayleigh zones.
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Figure 2.14. Image-forming with Gaussian beams.
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Rather tedious calculations using complex numbers give the following,
and sometimes useful, expressions in which the following parameter has been
introduced:

M
f z f

z z f

=
-( )

+ -( )1 0
2 2

.

Waist radius w¢0 = M2w0 (2.34.a)

Position of the waist (z¢ - f ) = M2(z - f ) (2.34.b)

Rayleigh range z¢0 = M2z0 (2.34.c)

Divergence q ¢0 = q0 /M (2.34.d)

Image of a Waist Placed at the Object Focal Point of a Lens

From equation (2.34.b), it is seen that the output waist is at the image focal
point. The incident and transmitted beams are however very different, since
M = f/z0 Æ w¢0 = w0 f 2/z2

0 and q0¢ = q0 f/z0.

Focusing a Beam with a Lens Disposed at the Center of the Rayleigh

Zone

If the focal length is much larger than the Rayleigh zone of the incident
beam, the image almost coincides with the focal point; if this condition is not
satisfied, the distance between the image and the lens focal point can no
longer be neglected.
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3

Geometrical Optics

3.1. Geometrical Propagation of Light

3.1.1. Light Rays

Geometrical optics is that part of Optics where the formation of an image
starting from an object is mostly studied. The notion of a light ray is used
extensively, allowing an intuitive and efficient understanding of the way
optical instruments are working. In any optical experiment some light energy
propagates from a source toward a detector, or toward infinity if the medium
of propagation is perfectly transparent and if no detector is present.

From a mathematical point of view a light ray is just a curve, which means
a vectorial space having only one dimension. From a physical point of view,
a light ray is a trajectory followed by the electromagnetic (EM) energy. The
impossibility of isolating a light ray considerably weakens any physical inter-
pretation, a ray will be considered as nothing other than a useful mathemat-
ical tool.

3.1.2. Medium Supporting the Propagation of Light

In this chapter we will only deal with isotropic mediums of propagation,
having identical properties, whatever the direction of propagation. These
mediums will be considered as perfectly transparent, the light intensity, as
defined in formula (2.23), remains constant along a given ray.
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Homogeneous Medium—Inhomogeneous Medium

The mediums of propagation can be either homogeneous or inhomogeneous:
their optical properties will be, or will not be, the same whatever the point
under consideration. Here we propose a classification of the different trans-
parent mediums.
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Homogeneous medium. Same properties at
any point. The speed of light and the refrac-
tive index have, respectively, the same value
everywhere. To go from one point to another
the light follows the path taking the shortest
time, i.e., a straight line.

Discontinuously inhomogeneous medium.
Succession of different mediums, each of
them being homogeneous. Two consecutive
mediums are in contact along “surfaces of dis-
continuity.” Inside a given medium the light
follows a straight line, the light path is made
of several rectilinear segments intersecting on
discontinuity surfaces.

Continuously inhomogeneous medium.
Properties are not the same at the different
points, however, their variations are continu-
ous functions of the coordinates. The path
actually followed by the light when going from
a point A to a point B is no longer a straight
line but a curve along which the transit time
tAB is the shortest possible one. V(x,y,z) being
the local value of the light speed and s the
abscissa along the curve tAB is given by the

integral:

Example of discontinuity: the plane mirror.

The discontinuity occurs along a perfectly pol-
ished surface (irregularities are smaller than
the wavelength). The path going from A to B

is made of two rectilinear segments joining at
the mirror.

t
ds
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3.1.3. Speed of Propagation—Index of Refraction

In this chapter no difficulty will be raised concerning the definition of the
speed of propagation, only one speed will be introduced and it will be assim-
ilated to the phase velocity.

As far as geometrical optics is concerned, a transparent medium is exhaus-
tively characterized if the value of the propagation speed of the light V and
its law of variation with the color (that’s to say, with the frequency) are known.

The speed V is enormous and measured in hundreds of thousands of kilo-
meters per second. It’s the reason why a normalized speed is introduced
thanks to a division by the speed c of the light in vacuum. Very often we will
have to use 1/V, this parameter is a very small number. The index of refrac-

tion n is the inverse of the normalized speed.
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Diffusion of light by a rough surface.

If the surface of discontinuity is uneven and
exhibits irregularities of the order of (or larger
than) the wavelength, we are faced with a dif-
ficult problem of diffraction: the only general
conclusion that can be formulated is that light
is diffused in all directions (a sheet of paper
is a good example of such a rough surface).

Discontinuously inhomogeneous mediums

made of particles.
The medium is a collection of particles. If the
size of the particles is small as compared to
the wavelength, the medium can be consid-
ered as fully homogeneous with, however, 
the restriction that the particles’ distribution
should be homogeneous. If the particles are 
of the same order of magnitude as (or larger
than) the wavelength, the situation is compli-
cated, in most cases light is diffused in all
directions.

A

B

The index of refraction of a transparent medium is given by

n
c

V
= =

light speed in a vacuum
light speed in the medium

.



Dispersion

The index of refraction is a very basic parameter in Optics, it can be mea-
sured with an accuracy which can be extremely high and reach 10-8 and which
is easily equal to 10-4. The law of dispersion of a given material is the law of
variation of the index of refraction versus wavelength (or frequency). The
values of refraction indices of transparent mediums may be found in Optical
Handbooks for almost any spectral lines (sodium doublet, mercury lines, main
laser frequencies, . . .). Dispersion laws are also given, with good precision,
by semitheoretic/semiempiric analytical formulas.

3.2. Fermat’s Principle

3.2.1. Different Ways of Introducing the Fermat Principle

From an historical point of view, the principle of Fermat, also known as the
principle of the shortest optical path, was introduced by Pierre de Fermat as
early as the seventeenth century. It’s a very powerful formulation of geomet-
rical optics. The Snell-Descartes laws of reflection and refraction can be math-
ematically demonstrated from the principle of Fermat. On the other hand, it
is also possible to start from the Snell-Descartes laws and then demonstrate
what will now be the theorem of Fermat; as reflection and refraction laws can
be experimentally verified, the Fermat principle can thus be considered 
as having experimental roots. Finally, it should be noticed that the principle
of Fermat, as well as the Snell-Descartes laws, are easily obtained from
Maxwell’s equations.

3.2.2. Formulation of the Fermat Principle

The path followed by light going from point A to point B is such that the transit
time is stationary.

By stationary we mean that the transit time along the special path fol-
lowed by the light is either minimum or maximum with regard to the times
that would be taken along other paths having the same extremities and
remaining very close to the light trajectory. In most cases the time taken will
be minimum; an example is given in Figure 3.10(c) where the time is
maximum, of course it’s not an absolute maximum, it’s only a minimum rela-
tive to the neighboring paths.
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Discontinuously inhomogeneous medium

Above has been drawn an optical system using three lenses, with
indices, respectively, equal to n1, n2, and n3, and they are immersed in a
medium with index n0. Using a solid line we have drawn the path that the
light follows AIJKLMNB, and using a dotted line we have drawn another
path very close to the first one AI¢J¢K¢L¢M¢N¢B.

The transit times along AIJKLMNB and AI¢J¢K¢L¢M¢N¢B at the speed of
light in the various mediums requires, respectively, the following times:

if the different points I¢, J¢, K¢, . . . get nearer and nearer the points I, J, K,
. . . , the limit of t¢ is equal to t. Among the different times, associated to
the various paths I¢J¢K¢, . . . , t is stationary and usually the shortest.

Continuously inhomogeneous medium

n(x,y,z) is the law of variation of the index of refraction. The single arrowed
curve is the path that is taken by the light going from A to B, the double
arrowed curve is a neighboring path. The times to be compared are now
given by integrals. The following integral is stationary when taken along
the trajectory followed by the light:

t
c

n ds sx y z
A

B

= Ú
1

( , , ) ,  is the abscissa measured along the curve.
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If we consider an optical system and two points, A and B, in general there
is one, and only one, light ray joining A to B; this is a consequence of the fact
that the light path corresponds to an extreme value (minimum or maximum)
and that, by definition, an extreme value is unique. This property is illustrated
in Figure 3.1.

It may happen that many different paths take exactly the same time for
the light to go from A to B, each of these paths represents a possible path for
the light: in such a case, there are many rays going from A to B, and it is then
said that B is the image of A.

3.2.3. Principle of Reversibility

At a given point of a trajectory the speed of light is the same, whatever the
direction. An important consequence is that the curve followed by the light
going from A to B is the same as the curve followed by going from B to A,
since the transit times will be the same in both cases. This property is known
as the principle of reversibility.

3.2.4. Demonstration of the Snell-Descartes Laws

The Snell-Descartes laws allow the calculation of the trajectory of a light beam
after it has arrived at an interface between two different transparent mediums
(respective indices of refraction, n1 and n2). The situation is that of a discon-
tinuously inhomogeneous medium. The experiment shows that the trajectory
of the light is made of straight lines joining at the interface: an incident ray
generates a reflected ray and a refracted ray. Laws of refraction and reflec-
tion indicate in which directions the two new rays will propagate.
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Second mirror 

First mirror 

Refraction 
prism 

A

B

Laser 

Figure 3.1. Illustration of Fermat’s principle; a child plays the following game: using 
a well-collimated laser source he wants to light up his foot, but he also wants 
that the light should travel across a glass prism and be reflected from two mirrors. He
immediately finds that only one path fulfils the imposed conditions and goes from his
hand to his foot.



Law of Reflection

Let us consider Figure 3.2, to go from point S to point R, the light will follow
a broken line made of two rectilinear segments joining at the point of I where
the incident beam hits the interface. The length of the path SIR should be as
short as possible. Let S¢ be the symmetrical point of S with regard to the planar
interface, it’s easy to see that SIR = S¢IR, SI¢R = S¢I≤R, SIR = S¢IR, the minimum
path is obtained when S¢IR is a straight line.

Law of Refraction

We refer to Figure 3.3 where i and r are called, respectively, the angles of inci-
dence and of refraction. The first medium is supposed to be faster than the
second and the speeds of propagation are, respectively, equal to V1 = c/n1 and
V2 = c/n2. We will first evaluate the time taken by the light to go from A to B

versus various geometrical parameters, the path really followed by the light
is then obtained by cancelling the derivative of t versus x,
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i = i¢

Figure 3.2. Fermat’s principle in the case of
reflection: the shortest path from S to R is obtained
when the angle of incidence is equal to the angle of
reflection i¢.
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Figure 3.3. Fermat’s principle for
refraction: the time from A to B is
minimum when n1 sin i = n2 sin r, which
corresponds to the path AIB.



since

we obtain n1 sin i = n2 sinr.
This is the famous Snell-Descartes law, also known as the “sine law”; this

demonstration gives only the directions of the reflected and refracted beams,
but it doesn’t give any information about the percentages of energy carried
away by each beam. Another demonstration, starting from Maxwell’s equa-
tions, will be given in Section 4.3.

3.2.5. Fermat’s Principle for Stigmatic Optical Systems

An important role of Optics is to obtain images. In this section we intend to
use the formalism of Fermat to give an interpretation of the mechanism of
imaging and to examine the condition for obtaining high-quality images.

3.2.5.1. Stigmatism and the Principle of Fermat

It may happen, although it’s not generally the case, that all the rays proceed-
ing from a point source A, after they have been transmitted by an optical
system, will converge toward the same point B (Figure 3.4); it is then said:

• That the system is stigmatic for points A and B.
• That the points A and B are conjugate across the optical system.

As emphasized in Figure 3.1, among all the beams emitted by the point
source A, one, and only one, will go to a given point B. The case when A and
B are conjugate is very special; since all the paths from A to B take the same
time, the notion of minimum (or maximum) vanishes: there is a kind of degen-
eracy and every path is a possible trajectory for the light.

sin sin ,i
x

x a
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b x

b x b
=

+
=
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and
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[S ]

Figure 3.4. [S ] is the optical system limited by two interfaces. Input and output
mediums are homogeneous, before and after [S ] light rays are rectilinear. [S ] is made
of a succession of either continuously or discontinuously inhomogeneous mediums.
All the paths from A to B take the same time.



3.2.5.2. Perfect Imaging

Stigmatism as it has been introduced is also called perfect imaging and also
sharp imaging. Systems where all light beams issued from the same object
point then intersect at the same image point are really rare. First, it should be
noticed that stigmatism is a notion that is restricted within the domain of geo-
metrical optics, since we know that diffraction forbids any electromagnetic
wave to be focused inside a spot smaller than the wavelength.

Even if we forget the preceding remark about diffraction, there are very
few strictly stigmatic systems, that’s to say, systems for which the rules of
geometrical optics lead to an exact convergence at point B of light beams
issued from point A. What will often happen is the following: the emerging
beams will run very close to point B, in such a case the system will be said
to be approximately stigmatic. We will now describe systems that are strictly 
stigmatic.

A Planar Mirror Is Stigmatic for any Point
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A

B

Figure 3.5. A planar mirror is strictly stigmatic. Any
incident beam issued from A gives a reflected beam
passing through point B symmetric to A with regard to
the plane of the mirror. B is the image of A.

An Elliptic Mirror Is Stigmatic for its Focus

F F¢

I

Figure 3.6. An ellipse is a set of points for which the sum of the distances to two
given points, called focus, is constant. Any beam issued from one focus is reflected
toward the other focus. It’s a well-known property of an ellipse that the normal to the
ellipse surface at point I is a bisector of the angle FIF¢.



A Parabolic Mirror Is Stigmatic for its Focus

Hyperbolic and parabolic mirrors are also stigmatic for their focuses. From
the point of view of applications the most important case is that of parabolic
mirrors which are used for making telescopes for astronomy (radio as well
as optical telescopes).

Stigmatic Points of a Spherical Interface

We consider a sphere (center O, radius OC = R, see Figure 3.8), filled with a
transparent material of refractive index n and surrounded by a second trans-
parent medium of index n¢. A point object is immersed inside the sphere and
emits light rays in all directions. We are looking for conditions so that all the
beams that are refracted on the spherical interface will pass point A¢. For the
sake of symmetry A and A¢ should belong to the same diameter BC of
the sphere. Let us choose A and A¢ so that we have CA¢/CA = -BA¢/BA = n/n¢.
For any point I of the sphere we also have IA¢/IA = n/n¢. We now draw a sphere
with a radius equal to L and centered at A¢, then we consider a light ray AI

and the corresponding refracted ray IM (M belonging to the sphere).
The time taken by the light going from A to M is equal to t = (nAI + n¢IM)/c

= (nAI - n¢IA + n¢L)/c = n¢L/c, t is the same for all rays emitted by A, accord-
ing to Fermat’s principle, the previous result implies that A¢ is a sharp image
of A. A and A¢ are called the stigmatic points of the spherical interface, they
are known as points of Weierstraß in Germany and points of Young in the
United Kingdom. They are often used to make high-resolution microscope
objectives.

From the theory of diffraction it will be shown that a high resolving power
needs an important numerical aperture (NA) for the objective of the micro-
scope. The numerical aperture is the product of the sine of the half-angle of
the cone of light rays arriving at the first lens of the objective, by the index
of refraction of the medium where incident rays propagate. To improve the
resolution rays making an important angle with the axis are required, so Gauss
conditions are not satisfied. In the objective of Figure 3.9, the first lens takes
advantage of the stigmatic points of a sphere, the light rays emerging from
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Figure 3.7. A parabolic mirror is
stigmatic for its focuses F, the other
focus is at infinity. A parabola is a set of
points located at equal distance from a
point called the focus and a line (D) called
the directrix. MF = MH Æ the paths I1J1F,
I2J2F, I3J3F, I4J4F are all equal to I0H0.



the sphere make a small angle with the axis, so the second part of the objec-
tive rays propagate in Gauss conditions.

Attempt of Perfect Imaging Using Refraction at an Interface

We refer to Figure 3.10, light rays emitted by some point source A arrive at a
boundary between two transparent mediums (respective indices of refraction
n and n¢), is it possible to obtain a perfect image A¢? According to the princi-
ple of Fermat, we should have nIA + n¢IA¢ = nSA + n¢SA¢ = constant. The pre-
vious formula defines a surface of revolution about the axis AA¢, this surface
is called a Cartesian oval which is of course rather different from a sphere.
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Figure 3.8. Points of Young-Weierstrass. A¢ is a sharp image of A. A¢ is at the
intersection of the refracted rays TT¢, II¢, JJ¢, and SS¢.
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Figure 3.9. Schematic arrangement of a microscope objective using stigmatic points
of a spherical interface to obtain a high numerical aperture. The first lens is a truncated
sphere, the object is immersed in a liquid having the same index as the sphere. The
second and third lenses work in the conditions of Gauss.
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Figure 3.10. Cartesian oval: nIA + n¢IA¢ =
nSA + n¢SA¢ = constant.
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Here DD¢, EE¢, and MM¢ are three mirrors
having the same tangent at point I¢. DD¢ is a
planar mirror and EE¢ is an elliptical mirror
of focuses f and f¢. The radius of curvature
of the surface of mirror MM¢ at point I is
smaller than the radius of curvature of the
ellipse. FI is an incident ray and IF¢ is the
associated reflected ray.

In the case of the elliptical mirror, the three
paths FIF¢, FI¢F¢, and FI≤F¢ are equal and 
correspond to three possible paths for the
light.

The radius of curvature of mirror MM¢ is
smaller than the radius of the ellipse. The
path FIF¢ followed by the light is larger than
FI¢F¢ and FI≤F¢: this is a case where the
light path is maximum relative to the adja-
cent paths.

In the case of a planar mirror, FI¢F¢ and
FI≤F¢ are longer than the light path FIF¢
which is then minimum. The same result
would be obtained for a mirror having a
radius of curvature larger than the ellipse
radius of curvature.
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Figure 3.11. Examples of where the transit times are minimum or maximum.

3.3. Formation of Images

3.3.1. Real or Virtual Objects and Images

An image-forming instrument is a device which, receiving light rays coming
from point sources, gives emerging beams which converge toward point
sources. Such a device is always limited by some input interface and some
output interface, according to the fact that the point source and the point
image are before or after those interfaces, the object and image will be real

or virtual.



• A real object is located before the input interface (outside the instrument),
and sends on it a diverging beam.

• A virtual object is located after the input interface (inside the instrument),
this one receives a converging beam.

• A real image is located after the output interface (outside the instrument),
the emerging beam is convergent.

• A virtual image is located before the output interface (inside the instru-
ment), the emerging beam is divergent.

3.3.2. Perfect Imaging—Approximate Imaging

The situation where all the light rays initially coming from a given point are
exactly focused at the same point image is an ideal, and thus very rare, 
situation. We then speak of perfect or sharp imaging. Some examples have
already been described.

Approximate Imaging

In many cases all the rays issuing from a given point source will not be 
strictly focused at the same point, however, it will often happen that the
emerging rays will be very near to a point which will then be considered as
an image.
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(d) Virtual object/virtual image
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(c) Virtual object/real image
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(b) Real object/virtual image
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(a) Real object/real image

Figure 3.12. The different kinds of objects and images.



A Lens Is too Converging at its Periphery, as Compared to its Center

When a screen is moved behind a converging lens illuminated by a beam of
light rays propagating parallel to its axis, it can be observed that the focusing
of the beam is not perfect. Referring to Figure 3.13 it is seen that:

• For position (4) of the screen a very bright spot is observed, the size of
which is determined by diffraction phenomena and is equal to 1.22fl/d ( f

is the focal length, l is the wavelength, and d is the diameter of the lens).
The spot is surrounded by a less luminous circular halo which constitutes
the geometrical aberrations.

• Position (3) of the screen corresponds to what is called the circle of less

diffusion; in the absence of stop, the screen should be placed there.

If a stop is used in order to keep only the rays that propagate close enough
to the axis, geometrical aberrations are avoided: the system is then working
under the conditions of Gauss.

Acceptable Images May be Obtained in Spite of Aberrations
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Magnified view of the focus area
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Gaussian focus Geometrical 
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Figure 3.13. A beam of parallel rays is transformed by a lens into a beam of rays,
which almost converge to the same point. An incident ray is all the more bent toward
the axis, that it propagated further from the axis of the lens. Unfortunately the marginal
rays are bent too much; the role of the stop is to avoid them contributing to the
formation of the image.

B

A
T

Figure 3.14(a). Pinhole camera: a small circular hole T has been drilled in one side
of a box, the opposite side is made of a translucent paper. Some object AB is placed
in front of the drilled face, each of its points sends to the inside of the box a conic
pencil of light rays limited by the edge of the hole. Each pencil will produce on the
translucent paper a small illuminated spot: if the size of the spot is small enough, the
set of spots has an appearance which really looks like the object AB.
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A

B

B¢

A¢

Converging lens 

Figure 3.14(b). Elementary camera. The set-up is the same as in Figure 3.13 except
that a converging lens has been placed just in front of the hole. The lens conjugates
the bottom of the box and the plane of the object AB. The image A¢B¢ is sharper. The
reader will ask why, in the second case, the image is brighter?

3.4. Thin Lenses

3.4.1. Definition

The more general spherical lens is made of a transparent material limited by
two spherical interfaces (respective centers O1 and O2, respective radii of cur-
vature R1 and R2). O1O2 is called the axis of the lens; the points S1 and S2 where
the axis meets the interfaces are the summits of the lenses. According to the
signs of the radius of curvature, a spherical lens may have one of the differ-
ent shapes indicated in Figure 3.16.

Very often the thickness of the lens is far smaller than the radius of cur-
vature, and the points S1 and S2 are assimilated to only one point S which is
called the center of the lens.

O1 O2

R2R1

O1

R1

O2

R2

Figure 3.15. Cross section of spherical lenses.

Biconvex
R1 > 0, R2 < 0

Planoconvex
R1 > 0, R2 infinite

Meniscus-convex
R1 > 0, R2 < 0

Biconcave
R1 < 0, R2 > 0    

Planoconcave
R1 infinite, R2 > 0

Meniscus-concave
R1 > 0, R2 > 0  

Figure 3.16. Different kinds of spherical lenses. Since the lenses are often thin, a
symbolic representation is often used as shown on the left for converging lenses and
on the right for diverging lenses. The radii of curvature are algebraic quantities, the
signs correspond to an orientation from left to right.



We refer to Figure 3.17, the incident ray AI gives an emerging ray IA¢ which
is all the more bent toward the axis that the point of incidence I is further
from the center S of the lens. It will be shown in Annex 3.A that the angle of
deviation D is proportional to the distance SI: D = KSI, K is a specific con-
stant of the lens under consideration. K is homogeneous to the inverse of a
length: f = 1/K is called the focal length of the lens. K is related to the index
of refraction and to the radius of curvature and given by the following
formula:

The axis being oriented by the direction of propagation of the light and R1

and R2 are algebraic quantities.

3.4.2. Ray Tracing in a Thin Spherical Lens

From a mathematical point of view, the following operation is achieved by a
lens: to each point A of the axis is associated another point A¢. The corre-
spondence between A and A¢ is a bijection: there is one, and only one, point
A¢ associated to the point A, and reciprocally. The terminology of the set
theory is well adapted to this problem; this is not at all surprising, since the
association “object space ´ image space” is the first example of correspon-
dence between items of two sets that have been met by both physicists and
mathematicians. The set theory jargon is nothing but a generalization of the
object ´ image correspondence in Optics.

Focal Points: A Focal Point Is Conjugated with 

a Point that Is at Infinity

If the point is rejected at infinity in the direction of the axis of the lens, the
associated point is a principal focus. If the point is rejected in another direc-
tion, the associated point is a secondary focal point associated with the direc-

tion under consideration.
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Figure 3.17. The imaging process in a thin spherical lens: since the angle of deviation
D is proportional to SI and since this angle is small, all the rays coming from A con-
verge to the same point A¢.



If the point at infinity is an object, the associated point is an image focal

point. If the point at infinity is an image, the associated point is an object focal

point.

Principal image focal point = image of a point source at infin-

ity in the direction of the axis.
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Figure 3.18. Principal image focal point.

Principal object focal point = point having its image at infinity

in the direction of the axis.

F
Principal object 
focal point (real) 

F

Principal object 
focal point (virtual)

Figure 3.19. Principal object focal point.

Existence and Property of the Optical Center of a Thin Lens

The two summits of the spherical interfaces of a thin spherical lens are con-
sidered to coincide at one point s that is called the optical center of the lens.
An important property of the optical center is that any incident beam directed
toward the optical center will not be bent. The existence of an optical center
is special to thin lenses and will not be generalized to centered optical
systems.

A ray which is directed toward the center of a thin lens is not bent.

S S

Figure 3.20. Optical center of a thin lens. A ray directed toward the optical center is
not bent and keeps straight on.



Focal Planes—Secondary Focal Points

Secondary image focal point F¢ = image of a point at infinity in

the direction of the line F¢S, joining the center and the focal

point.
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S

Image focal
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S

Image focal
plane (virtual)

F ¢

F ¢

Figure 3.21. All the secondary focal points f¢ belong to the image focal plane.

The object focal plane is the plane that contains the principal object focal
point and is orthogonal to the axis. All the secondary focal points belong to
the object focal plane.

The image focal plane contains the principal image focal point and is
orthogonal to the axis. All the secondary image focal points belong to the
image focal point.

Secondary object focal point F: its image is at infinity in the

direction of the line FS, joining the center and the focal point.

S

Object focal 
plane  (real) 

S

Object focal
plane (virtual) 

F

F

Figure 3.22. All the secondary object focal points belong to the object focal plane.
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(a) The emerging ray QR should pass by
the image focal point F¢ associated to the
direction of the incident ray PQ.

(b) P belongs to the object focal plane.
Considered as an incident ray PP¢ gives an
emerging ray P¢F¢: QR should be parallel to P¢F¢.

Figure 3.23. Construction of the emerging ray QR associated to the incident ray PQ.



Construction of the Image of a Point Object A Belonging to the Axis
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(a) PQ intersects the object focal plane
at F. Considered as an incident ray, FS
is not bent by the lens. QR is parallel to
FS.

(b) FQ¢ is drawn parallel to PQ, considered as
an incident ray it gives an emergent ray Q¢F¢
parallel to the axis. QR intersects the image
focal plane at F¢.

Figure 3.24. Other construction of the emerging ray QR associated to the incident
ray PQ.
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Figure 3.25. The image A¢ is at the intersection of the axis with an emergent ray
associated to an incident ray AQ coming from A. Each of the methods of Figures 3.23
and 3.24 may be used.

Construction of the Image of a Point Object Out of the Axis

It can be proved from elementary geometrical considerations that the image
formed by a lens of a small object belonging to a plane P normal to the axis
will belong to another plane P also orthogonal to the axis. The two planes P
and P¢ are said to be conjugated by the lens.
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F A¢
F¢

S
A

B

B¢

I

J

Figure 3.26. Construction of the image B¢ of a point B taken out of the axis. We
consider two incident rays coming from B, B¢ is at the intersection of the associated
transmitted rays. The more commonly used incident beams are those of Figures 3.23
and 3.24.

F A¢
F¢

S
A

B

B¢

f f f f

Figure 3.27. The 4-f arrangement. The object is placed at a distance equal to twice
the focal length in front of a converging lens. The image is real and located at the same
distance behind the lens, it has the same size as the object, but is inverted. In this
disposition the object-image separation is the shortest.

S F¢F A

B

B¢

A¢

Figure 3.28. Virtual image of a real object. A real object placed between the lens and
its focal plane gives a virtual image.



In Figure 3.30 have been drawn the paths followed by light rays issuing
from the real point object B and the pencil of rays which finally penetrate the
eye of an observer. The real object AB is replaced by a virtual image A¢B¢
which in fact plays the role of a real object for the observer. Such a lens is
used to help a short-sighted eye to accommodate an object located far away.
It’s left as an exercise to see how a converging lens can be used to correct
the vision of a long-sighted eye.

3.4.3. Thin Lenses Equations

We consider a point object A which is imaged at A¢ by some lens, A¢ can as
well be considered as an object and A as its image. A and A¢ are said to be
conjugated by the lens, the expression conjugate points is often used. The
lenses equations are formulas relating, on the one hand, the abscissas of two
conjugated points and, on the other hand, the ratio of the object to image size.
There are different kinds of equations, they differ in the choice of the origins
used to represent, respectively, the object and image spaces. Two are more
commonly used:

• Descartes’ formula: The summit S of the lens is taken as a common origin
for both the object and image space.

• Newton’s formula: Two different origins are chosen, namely the object
focal point F for objects, and the image focal point F¢ for the image.

Conjugation equations are readily obtained from simple geometric con-
siderations in Figure 3.26, such as expressing the similarity of several trian-
gles (SAB/SA¢B¢, FAB/FSJ, F¢IS/F¢A¢B¢).
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S F¢
F A

BB¢

A¢

Figure 3.29. The image focal plane
plays no special role in the object space.
Here a virtual object AB is in the image
focal plane; the image A¢B¢ is real,
erected and located in the middle of SF¢.

SF¢ A¢A

B
B¢Figure 3.30. Lens for a short-sighted

eye. The real object AB is replaced by
the virtual image A¢B¢ located nearer to
the eye.



3.5. Centered Systems Under Gauss Conditions

3.5.1. Definition of a Centered System

3.5.1.1. Spherical Interface

It has been shown that perfect imaging cannot be obtained by refraction at a
spherical interface. However, if we use only paraxial rays (i.e., rays making 
a small angle with the axis), acceptable, although nonperfect, images are
obtained. In such conditions the Snell-Descartes law, nsin i = n¢sin i¢, is
replaced by the Kepler law, ni = n¢i¢, which is linear.

We refer to Figure 3.31, on the left-hand side of the figure the interface has
been drawn as a sphere and, on the right-hand side, the interface has schemat-
ically been replaced by a plane, which is orthogonal to the axis. Whatever the
angle of incidence, the following relations are rigorously valid, even the angles
are not small:
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Descartes’ equations Newton’s equations

FAF¢A¢ = SFSF¢ = -f 2. (3.1.b)

setting SA = p, SA¢ = p¢, and SF¢ = f, (3.1.c)

(3.1.a) (All quantities are algebraic.)
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Figure 3.31. Image construction at a spherical interface. When the angles u and u¢
are small enough the point of incidence I can be considered as belonging to the plane
tangent to the sphere at point S.



A given incident ray AI gives a refracted ray that intersects the axis at a
point A¢. According to equation (3.2.b), it is clear that the position of A¢ on the
axis will depend on the incident ray: the spherical interface is not stigmatic.

Conjugation Equation (Small Angles)

If the angles are small enough, the sine can be assimilated to the angle

If we place the origin at point S, after some algebraic manipulations we
obtain the equation of conjugation for a spherical interface

(3.3)

(3.4)

According to equation (3.3), A¢ is at the same place, whatever the incident
ray: if the angles are small, a spherical interface is stigmatic for points located
on the axis of revolution. For a given spherical interface, SC, n and n¢ are con-
stant, the correspondence between SA and SA¢, as expressed by equation
(3.3), is a homographic transformation.

Aplanetism

The stigmatism is also obtained for points that are not on the axis. A point B
belonging to the plane (P), that contains A and is perpendicular to the axis,
has its image B¢ in the plane (P¢) that contains the image A¢ of A and is per-
pendicular to the axis. The previous property is known as aplanetism. The
two planes (P) and (P¢) are said to be conjugated. Under the condition that
the angles should remain small, the ratio g = A¢B¢/AB keeps the same value,
whatever the size of AB. g is called the magnification associated to the two
conjugate planes, it’s a real number which can be positive or negative, and
larger or smaller than one.

The Lagrange-Helmholtz Equation

We refer again to Figure 3.31, a light ray emitted by AI gives a refracted 
beam IA¢, let u and u¢, respectively, be the angles of the two rays with the
axis, we have the important relationship, called the Lagrange-Helmholtz
formula,
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3.5.1.2. Centered Systems

A centered system is a succession of spherical interfaces having their centers
aligned along a unique diameter called the axis of the system. Very often the
interfaces will go two by two, and a centered system is nothing other than an
assembly of spherical (thin or thick) optical lenses.

A real, or virtual, point source A is placed in front of the system, the first
interface gives an image A1 that acts as an object for the second interface,
hence a second image A2 is formed, and this acts as an object for the third
interface, and so on. . . .

3.5.1.3. Basic Properties, Centered Systems

The properties that have just been established for a spherical interface can
be generalized by transitivity to the centered system:

• Approximate stigmatism under Gauss conditions: All the rays emitted
by a point object are focused at the same point image.

• Aplanetism: A plane perpendicular to the axis is called a front plane. All
the points of a given front plane (P) have their images in another front
plane (P¢). (P) and (P¢) are said to be conjugated by the system.

• The object ´ image transformation is a homographic transformation:
It’s known in mathematics that the product of two homographic transfor-
mations is also a homographic transformation. The position of some point
object A being referred to as origin S, and the position of its image being
referred to as origin S¢ (S and S¢ can be either identical or distinct), SA

and SA¢ obey a relationship of the following kind:

(3.6)

where a, b, and c are constant parameters that are only determined by the
optogeometric characteristics of the system (radius of curvature, positions 

a b cSASA SA SA¢ + + ¢ + =1 0,
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n1 n2 n3 n4 n5 n6 n7

Figure 3.32. General arrangement of a centered system. Several spherical interfaces
with their centers aligned along a common diameter, called the axis of the system. The
first and last interfaces are, respectively, called the input and output interfaces. The
refractive indices n1 and n7 are often equal and correspond to the transparent medium
inside of which the system is immersed.
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of the centers, indices of refraction) and by the positions of the two origins
S and S¢.

• Linear magnification: The image to object ratio, g = A¢B¢/AB, doesn’t
depend on the positions of A and B in a front plane, its value is charac-
teristic of a given pair of conjugate planes. To a given value of g is asso-
ciated one, and only one, pair of conjugate planes.

• Angular magnification: An incident light ray, intersecting the axis at some
point A and making the angle u with the axis, gives an emerging ray that
intersects the axis at the conjugate point A¢ and makes the angle u¢ with
the axis. The ratio g = u¢/u is called the angular magnification; g takes
the same value for any pair of rays, respectively, going through A and A¢.
To a given value of g is associated one, and only one, pair of conjugate
points.

• The Lagrange-Helmholtz invariant (see Figure 3.33): If equation (3.5) is
successively used for the different interfaces of a centered system, it is
seen that the product nABu keeps a constant value from interface to 
interface, so it is called the Lagrange-Helmholtz invariant,

(3.7)

3.5.2. Cardinal Elements of Centered Systems

A conjugating equation is an equation between the positions of two conjugate
points A and A¢. Equation (3.6) is a conjugating equation, the coefficients of
which depend on the two points of reference S and S¢; it becomes simpler by
a clever choice of the origins: if S and S¢ are conjugate points, SA and S¢A¢
cancel simultaneously, equation (3.6) becomes

(3.8)

Cardinal elements (points and planes) are special conjugate elements
playing an essential role for a centered system. The most important cardinal
elements are: focuses and focal planes on the one hand, and principal points
and principal planes on the other.
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Figure 3.33. Successive images in a centered system with two interfaces. The first
object AB, the intermediate image A0B0, and the final image A¢B¢ are, respectively,
immersed in mediums of refractive indices n, n0, and n¢.
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F

F = main object focal point

F 
(P) = object focal plane

F = secondary object focal point

F¢

F¢= main image focal point

F¢ 

(P¢) = image focal plane
F ¢ = secondary image focal point

(P)

(P¢)

Figure 3.34. Focal points and focal planes.

Focus and Focal Planes

A focus, or focal point, is conjugated with a point at infinity. A main focus is
the conjugate of a point at infinity in the direction of the axis; a secondary
focus is conjugate with a point rejected at infinity in any other direction. 
All the different focuses are located in the same front plane, called a focal
plane.

Principal Points and Principal Planes

The correspondence between conjugate objects and image front planes is a
one-to-one correspondence; in the same way, the correspondence between
the values of the linear magnification g and a pair of conjugate front planes
is also a one-to-one correspondence.

Principal planes are the conjugate planes for which the linear magnifi-

cation is equal to g = +1.

The points H and H¢ of intersection of the principal planes with the axis
are called principal points.

In the case of a thin lens, there is a kind of degeneracy, the two principal
planes are not separate and coincide with the plane of the lens.

Once the principal points of a system are known it’s easy to draw the
emerging ray associated to some incident ray. Let I be the intersection point
of the incident ray with the object principal point, the emerging ray will inter-
sect the image principal point at a point I¢ having the same ordinates as I:
HI = H¢I¢.



Object focal length: This is the algebraic distance, HF = f, between the prin-
cipal object point and the object focal point.

Image focal length: This is the algebraic distance, H¢F¢ = f ¢, between the
image principal point and the image focal point. In the absence of other indi-
cations, the distance focal of a system is its image focal length.

There are two focal lengths, f and f ¢, starting from the Lagrange-Helmholtz
equation and it can be seen that the two focal lengths fulfill the following 
equation:

(3.9)

If the input and output mediums have the same index of refraction, the
image and object focal lengths are equal: f = -f ¢.

3.5.3. Image Construction in a Centered System

3.5.3.1. Image Construction Using Cardinal Elements

To obtain the position of the image from the position of the object, we could
use the basic homographic relationship (3.8); the three parameters a, b, and
g can be obtained from the optogeometrical characteristics of the different
spherical interfaces, although very tedious this method can be used with com-
puters. Very often it will proceed in another way, three couples of conjugate
points will first be directly determined; then by writing equation (3.8) with the
coordinates of those three couples of points, three equations are obtained,
from which a, b, and g may be calculated. From a practical point of view,
things are even simpler, the three couples of conjugate points are:

Point object at infinity ´ image focal point.
Object focal point ´ point image at infinity.

Principal object point ´ principal image point.

It will not be necessary to determine a, b, and g since geometrical 
constructions will be proposed to obtain the image of an object. For 
constructing the image of some point object B located out of the axis, see
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Figure 3.35. Object and image principal planes. In this case the two principal planes
are virtual, since they are inside the system. I¢ is the image of I.



Figure 3.36, the two following rays are considered:

• Incident ray parallel to the axis Æ emerging ray going from point I¢ belong-
ing to the principal image plane and having the same ordinate as B to the
image focal point F¢.

• Incident ray going from B to the object focal point F and intersecting the
object principal plane at some point J Æ emerging ray parallel to the axis
and at the same distance from the axis as J.

3.5.3.2. Newton’s Equations

Two different origins are chosen: the image focal point F¢ for the image and
the object focal point F for the object. Expressing the similarity of the trian-
gles ABF and HJF on one hand and of H¢I¢F¢ and A¢B¢F¢ on the other, and
noticing that AB = IH = I¢H¢ and A¢B¢ = H¢J¢ = HJ, we obtain

(3.10)

3.5.3.3. Descartes’ Equations

Two different origins are also used: the principal object and image points H
and H¢. Starting from the Newton equations, using the equalities FA = FH +
HA, F¢A¢ = F¢H¢ + H¢A¢, and f/n = -f ¢/n¢, we finally obtain

(3.11)

3.5.3.4. Magnification

Linear magnification: This is the ratio of the size of the image to the size of
the object,
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Figure 3.36. Ray tracing using principal planes and focal points. In the absence of
further indications about the system, only the lines supporting the rays can be drawn.
This is the reason why, inside the system, the rays are represented by dotted lines,
since it cannot be known which parts are real or virtual.



Angular magnification: Let u and u¢, respectively, be the angles with the
axis of an incident ray and of the associate emerging ray, the angular magni-
fication is the ratio Gangular = u¢/u. Thanks to the Lagrange-Helmholtz equation
(3.7), the two different magnifications are easily related to one another:

(3.13)

As illustrated by rays AK and K¢A¢ the linear and angular magnifications
have the same signs.

Axial magnification: This third magnification is not as useful as the other
two. Given two object points A1 and A2 belonging to the axis, let B1 and B2 be
their respective images, the axial amplification is the ratio Gaxial = B1B2/A1A2,
its value can be obtained by differentiating Descartes’ equation (3.11):

(3.14)

The axial magnification is always positive, which means that an object and
its image always move in the same direction along the axis.

3.5.4. Matrix Methods for Centered Systems

The problem is to follow a light ray as it propagates across the system and is
refracted from the different interfaces. In order to reference a light ray we
must have an indication about its position, which needs the two coordinates
(x, y) of the point of intersection with a given front plane and we must also
have an indication about its direction, which needs the two angles (u, v) that
makes the axis with the two projections on two orthogonal planes (Oxz and
Oyz). The situation is illustrated in Figure 3.37.
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Figure 3.37. To reference a ray, a point and a direction are needed. In the most
general case, two coordinates and two angles are required. The case of a meridional
ray is simpler, one coordinate and one angle are sufficient.



3.5.4.1. Ray’s Equations Are Linear and Homogeneous 

Versus Angles and Positions

For the sake of simplicity we will only consider rays that belong to a merid-
ional plane. Figure 3.39 indicates the notations we use, (P1) and (P2) are two
standard front planes and, in general, they are not conjugate through the
system. We start from the input parameters (u1, r1) and we would like to obtain
the output associate parameters (u2, r2). The angles being small (Gauss con-
ditions), the sine law is replaced by the Kepler law. The relations between u
and r are thus linear, furthermore, if u1 and r1 are equal to zero, u2 and r2 are
also equal to zero: the relations must be homogeneous. Under such conditions
the use of matrices is very appropriate.

The matrix elements are determined by two considerations: on one 
hand, by the special centered system under consideration and, on the other
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Figure 3.38. Trajectory of a light ray propagating across a centered system. The path
of the light is made of segments joined along the different interfaces. If the initial ray
is in a plane containing the axis, because of symmetry all the refracted rays will remain
inside this plane.
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Figure 3.39. Definition of a matrix connecting two front planes (P1) and (P2). The
matrix of cascaded systems is the product of the matrices of the different elements.
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hand, by the positions of the two planes (P1) and (P2), their values are deter-
mined by the laws of geometrical optics.

Refraction produces a discontinuity for the directions of the rays, but not
for their positions. The two planes (P1) and (P2) coincide with the interface:
(P1) can be considered to be “just” before, and (P2) “just” after the interface.
(R12) is called the matrix of refraction.

3.5.4.2. Matrices for Skew Rays

The result given in Figure 3.42 for a transfer matrix is quite general: the two
sets of variables (x, u) and (y, v) follow matrix equations that are identical to
the equations obtained for meridional rays. The two sets can be treated simul-
taneously by introducing the following complex variables:

• Complex coordinate: r* = (x + jy). (3.19.a)
• Complex angle: q* = (u + jv). (3.19.b)
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Figure 3.40. Matrix of transfer.
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Figure 3.41. Matrix of refraction.



Of course we have the following equations:

Optical Angles

Optical angles are introduced to simplify the different matrices. The matrices
are all unitary matrices, i.e., matrices having a determinant equal to unity. The
main interest is that the product of unitary matrices is also a unitary matrix.
For a given ray, an optical angle is equal to the usual angle multiplied by 
the index of refraction of the transparent medium inside of which the ray
propagates.

• Usual angles: u and v.
• Optical angles: nu and nv. (3.20.a)
• Complex optical angles: nq* = n(u + jv). (3.20.b)

3.5.4.3. Matrix of an Association of Centered Systems

The propagation of a light ray across the four interfaces of the system of
Figure 3.43 is obtained by the product of transfer Tij and refraction Rij

matrices,
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Figure 3.42. A skew ray is projected onto the two planes of coordinates, the set of
variables (x, u) and (y, v) describing the two projections obey the same matrix law as
a ray belonging to a meridional plane.



3.5.4.4. Matrices of a Centered System

We consider a centered system where the two extreme mediums have the
same index of refraction. The two focal lengths have equal absolute values.
The image focal length will be called H¢F = f. The elements of the matrix con-
necting the object to the image principal plane are evaluated in Figure 3.44.

In Figure 3.45 are evaluated the elements of a matrix connecting two
planes having no special positions and, respectively, located at distances equal
to d1 and d2 from the object and image principal planes.

It should be noticed that all the previous matrices are unitary. In this type
of calculation great attention should be paid to the homogeneity of the expres-
sions: some elements are homogeneous to a length, while others have dimen-
sions of the inverse of a length.

3.5.4.5. Vergence—Matrix of Conjugation

Given a centered system, any pair of planes (A) and (A¢) is associated to one, 

and only one, matrix which can be written as .T
T T

T T
AA¢ = Ê

Ë
ˆ
¯

11 12

21 22
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Figure 3.43. Optical centered system made of four spherical interfaces. The
respective refractive indices of the first and last transparent mediums are equal to n
and n¢.

H¢F¢ = -HF = f = focal length,
(HI) and (H¢I¢) = principal planes.
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Figure 3.44. Matrix connecting the two principal planes of a centered system.



It can be seen that the element T21 has the same expression, T21 = -1/f,
for the two matrices TAA¢ and THH¢ (see formulas (3.23) and (3.24)). This is a
general property that will be admitted: whatever the two planes (A) and (A¢),
the matrix element T21 is an intrinsic parameter of a centered system.

By definition, the vergence of a centered system is equal to V = -T21.
In the general case where the input and output indices, respectively, n and

n¢, are different, it can be established that V is related to the focal lengths

(3.24)

The vergence is homogeneous to the inverse of length and is measured in
m-1; opticians have given a special name, diopter, to this unit.

Matrix of Conjugation

When two planes (A) and (A¢) are conjugate planes, the matrix CAA¢ is called
the matrix of conjugation, the matrix elements then have special physical
meanings that are given in Figure 3.46. Let us consider an object AB and its
image A¢B¢, and let (r, u) and (r¢, u¢) be the two couples of parameters that,
respectively, describe an incident beam and the associate emerging beam,

r¢ = C11(AA¢)r + C12(AA¢)u:

• Since B¢ is the image of B the value of r¢ cannot depend on the orienta-
tion of the ray, thus the matrix element C12(AA¢) is equal to zero.

• C11(AA¢) = r¢/r is nothing other than the linear magnification Glinear associ-
ated to the couple of conjugate planes (A) and (A¢).
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Figure 3.45. The matrix connecting two planes is equal to the product of the matrix
between the two principal planes by two transfer matrices.



u¢ = C21(AA¢)r + C22(AA¢)u = -Vr + Gangularu:

• We have seen that C21 is equal to the vergence.
• To have an interpretation of C22, we consider the case where point A is on

the axis: r = 0 Æ C22 = u¢/u. C22(AA¢) = u¢/u is seen to be equal to the angular
magnification, Gangular, associated to the two conjugated planes.
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Figure 3.46. Matrix of conjugation.



Annex 3.A

Thin Lenses

3.A.1. Lens Considered as a Prism 

Having a Variable Angle

Let C1, C1S2 = R1, C2, and C2S1 = R2, respectively, be the centers and the radii
of curvature of the two interfaces. B and B¢ are two conjugate points. We use
the following notations: I1J1 = I2J2 = r, OB = p, and OB¢ = p¢, as well as the
geometric indications given in Figure 3.A.1. The lens can be considered as a
prism with an angle Â, which would vary proportionally to the distance r to
the axis. A ray is all the more deviated so that it hits the input interface at a
point located farther from the axis. The angles being small, we use the law of
Kepler to evaluate the deviation of the ray B1I1 Æ D̂ = (n - 1)Â, we obtain

(3.A.1)
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Figure 3.A.1. For the light ray B1I1I2B2 the lens is equivalent to a refracting prism of
the same index and having an angle A equal to the angle of the two planes that are
tangent to the interfaces at points I1 and I2. As the lens is considered to be thin, the
points S1, J1, J2, and S2 coincide.



In formula (3.A.1) the radii of curvature are positive for convex interfaces,
and negative for concave interfaces. The distances to the origin O are alge-
braically measured along the axis that is oriented in the direction of propa-
gation of the light. In the example of Figure 3.A.1, the focal length f = OF¢ is
positive, corresponding to a converging lens.

3.A.2. Lens Considered as a Phase Correcting Device

The lens of Figure 3.A.2 receives a planar wave having its wave planes orthog-
onal to the axis. A light beam propagating parallel to the axis, respectively,
intersects the input and output interfaces at points A and B. (H) is a plane
orthogonal to the axis at the point H of intersection with the spherical inter-
face, C is the point where the emerging beam intersects the plane (H).

The input planar interface coincides with a wave plane of the incident
beam. Along the plane (H) the phase of the vibration is not constant since the
delay is not the same at point C or at point H: the emerging wave is no longer
a planar wave. The distance between A, B, and C is of the order of a few
micrometers, if we just think of the positions or of the directions of the rays,
only a small error is made by assuming that the three points are at the 
same place. On the contrary, if we want to compare the phases of the vibra-
tions, we must be more careful, since in Optics, several micrometers repre-
sent several wavelengths and a phase difference of several times 2p.
This problem was studied in Section 2.6.4.2 and formula (3.A.1) was already
established.

3.A.3. Matrices for the Association of Thin Lenses

To study a system made of a succession of cascaded thin lenses it is con-
venient to have the expression of the matrix TL-L+ connecting the plane (H-)
located “just before” the lens, with the plane (H+) located “just after.” A thin
lens is nothing other than a centered system in which the two principal planes 
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Figure 3.A.2. An incident beam propagates
parallel to the axis and is focused by a plano-
convex lens. The part of the optical light path
which is inside the glass, is longer if the light
propagates nearer to the axis: the vibration at
point C is in advance with regard to the vibration
at point H.



coincide, the matrix TL-L+ has already been calculated and is given by formula
(3.22) of Section 3.5.4.4

Association of Two Lenses
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Figure 3.A.3. Matrix connecting the plane (O1-) located “just before” the first lens,
with the plane (O2+) located “just after” the second lens. A matrix of transfer is inserted
between the matrices of the two lenses.

The Gullstrand Formula

The Gullstrand formula gives the focal length f of a doublet made of two thin
lenses. Recalling that the matrix element T21 is an intrinsic parameter of a cen-
tered system that is equal to its vergence, we may write

(3.A.3)

where d is the separation between the two lenses. D = F1¢F2 is the distance
between the image focal point of the first lens and the object focal point of
the second.

Periscopic Stability

In submarines, periscopes are (or were) long (several meters) pipes with an
objective at one end and an eyepiece at the other. If no special attention is
paid, even with low diverging beams (Gauss conditions), the diameter of the
beam can easily reach 0.5m . . . , which would require enormous lenses. The
solution had been to place a regular succession of converging lenses, as indi-
cated in Figure 3.A.4. The next problem is to ask if the light rays will remain
confined in the vicinity of the axis (the system will then be said to be stable)
or, on the contrary, if they will escape (unstable system). Thanks to TV
cameras, periscopic stability is now quite obsolete for submarines, however
it remains up to date for particle accelerators, where the accelerated charges
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should remain in the close vicinity of some average trajectory. An interesting
application is also to be found when studying the stability of a laser resonator.

The arrangements of Figures 3.A.4 and 3.A.5 are made of a periodic suc-
cession of identical elementary patterns; usually a pattern will be made of two
converging lenses of respective focal lengths, f1 and f2. A matrix T of the kind
given by formula (3.A.2) characterizes each pattern. r0 and u0 are, respectively,
the distance to the axis of the point where the first ray hits the first lens and
the angle of the ray with the axis; rn and un are the same parameters for the
emerging ray, we have

(3.A.4)

where Tn is the matrix obtained by elevating the elementary matrix T to
the nth power. It is shown in mathematics that rn and un can be expressed
using the eigenvalues, l1 and l2, of the matrix T, the following formulas are
obtained:

rn = al1
n + bl2

n, un = gl1
n + dl2

n, a, b, g, and d are from the initial values
r0 and u0.

The matrix is written T
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Figure 3.A.4. Unstable system. Starting with the fifth lens the light rays fall outside
the lens, furthermore, they would surely not fulfill Gauss conditions.

Figure 3.A.5. Stable system. The light rays oscillate on both sides of the axis.



Its determinant is equal to one since the matrices

are unitary.
The eigenvalues are obtained by cancelling the following determinant:

(3.A.5)

Since its coefficients are real, the solutions of equation (3.A.5) are complex
conjugate, their product is equal to one, and their sum is equal to (A + D) and
thus real. The following two situations may be encountered:

• The two solutions are real, the absolute value of one of the solutions is
necessarily larger than one, l1, for example; l1

n goes to infinity if n

increases indefinitely: the system is then unstable.
• The two solutions are complex conjugate, their modules are equal and

equal to one; they may be written as e ± jq. After some algebraic manipula-
tions it is obtained that rn = a ¢cosnq + b¢sinnq and un = g ¢cosnq + d ¢sin
nq.

un and rn no longer go to infinity, the system is stable.
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Optical Prisms
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3.B.1. Definition and Description of Optical Prisms

Optical prisms are components that are commonly met in optical experi-
mental arrangements and optical instruments; so far their main role has been
to disperse the light in spectrometers, now they have been universally
replaced by diffraction gratings. However, they remain very important in
changing the direction of a beam, thanks either to refraction or, more often,
to total internal reflection. Following the mathematical definition an optical
prism is a triangular-based prism. The sides are carefully polished with a pre-
cision of the order of a small fraction of a micrometer (a good standard is
l/10 of the sodium wavelength). The precision of the angles is usually of one
minute; once a prism has been polished the angles can be measured with
extremely high precision (one second).

Optical prisms are very often cut from a piece of glass. For a given trans-
parent material the knowledge of the index of refraction is very important.
The more accurate method of measuring the index of refraction is to fashion
a prism with the medium under consideration, and to measure the angle of
deviation of a parallel monochromatic light beam. Index measurements using
a refractometer are very accurate and easily give the value of refractive
indices to five figures.

3.B.2. Light Propagation Inside a Prism

Demonstrations concerning the formulas that govern the propagation of light
in a prism rely on rather simple geometrical considerations and will not be
given here.



Conditions of Emergence for a Light Ray

The constructions in Figure 3.B.2 are valid only if the angle of incidence r¢
on the second side of the prism is smaller than the critical angle Ĉ = sin-1(1/n).
The conditions for a light ray to emerge after having been refracted twice are
indicated in Figure 3.B.3.

Minimum Deviation

We refer to Figure 3.B.4, it’s important to notice that the bisecting plane of
the angle Â is a plane of symmetry for the prism. To a given angle of incidence
i is associated an angle of emergence i¢ and an angle of deviation D; because
of the principle of reversibility and because of the symmetry, if the incidence
angle on the first side is made equal to i¢, then the angle of emergence is equal
to i and the deviation has the same value in both cases. Finally, there are two
values of the angle of incidence that give the same deviation and, conse-
quently, the deviation should exhibit a maximum or a minimum for some value
imin of the angle of incidence. It’s a minimum Dmin that is obviously obtained
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when the light ray inside the glass is orthogonal to the bisecting plane. When
the deviation is minimum, we have

Equation (3.B.2) is quite useful for very accurate determinations of the
index of refraction, since the determination of the minimum is very sensitive
and since angular measurements can be extremely accurate.
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A¢ ≤ 2C. All the incident rays that give a ray inside the
prism which is not totally reflected are inside the
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internal reflection, no ray is
allowed to emerge through
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Figure 3.B.3. Conditions of emergence through the second side of a prism.
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Dmin Figure 3.B.4. Ray path in a prism at the minimum
deviation; the figure is symmetric with respect to the
bisector plane.
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In Figure 3.B.5 have been drawn the variations of the deviation versus the
angle i of incidence on the first interface. For each value of the prism angle,
i can vary from the value i0 to which corresponds a grazing emergence (i¢ =
90°) up to a grazing incidence (i = 0). The tangent is vertical for i = i0, and
makes an angle of 45° with the axis when i = 90°. When the prism angle is
small (Â < 10°) the Snell-Descartes law is replaced by the Kepler law, the devi-
ation is then almost independent of the angle of incidence and is given by

(3.B.3)

Prism Spectrometer

In Figure 3.B.6 is shown the scheme of a spectrometer where the light is dis-
persed by a prism. A light source emits two rays of different colors (l1, l2)
and is placed in front of a thin slit disposed in the object focal plane of a 
collimating lens. The prism receives a beam of parallel rays and gives two 
parallel beams of different colors and different directions. The second lens
focuses these two beams at two different secondary focal points.

3.B.3. Reflecting Prisms

Reflection is very convenient for changing the direction of a beam. Rather
than a plane mirror, it is often preferred to use reflecting prisms; first because,

D n A= -( ) .1

134 3. Geometrical Optics

20°

40°

60°

80°

0

A = 80°

A = 60°

A = 45°

A = 30°
A = 10°

D

i90°

n = 3/2 

-90°

Figure 3.B.5. Variations of the devia-
tion versus angle of incidence for
different values of the prism angle.
When the angle Â is small the deviation
is almost independent of the incidence.

Fl1 
Fl2

Slit

Light
source 

Photographic plate or
array of photodiodes

Figure 3.B.6. Principle of a spectrometer using a prism.



in the case of total internal reflection, the reflection coefficient is very close
to unity, whatever the wavelength, which is not always the case with ordinary
mirrors. And second, because maintenance is less severe in the case of a prism
since the reflection occurs inside the glass, whilst the surface of a mirror is
quite sensitive to dust and atmospheric pollution hazards. Opticians have
been very imaginative in conceiving many different schemes using prisms; we
will describe only a few of them.

Under the conditions of total internal reflection, the phase shift between
the incident and reflected beams is not the same if the electric field is paral-
lel, or orthogonal, to the plane of incidence. A polarization, which doesn’t
coincide with one of the previous directions, will be modified after total inter-
nal reflection: a linearly polarized light beam will, in general, give an ellip-

tically polarized reflected beam.

The cross section of the prism of Figure 3.B.7(a) is a right angled isosce-
les triangle, total internal reflection occurs on the hypotenuse: incident 
and reflected rays are symmetric with regard to a plane orthogonal to the
hypotenuse; in the case of normal incidence on one side of the right angle,
the incident and reflected beams are orthogonal.

The prism of Figure 3.B.7(b) also has a right angle and isosceles triangle
cross section; the emerging beam leaves the prism after two total internal
reflections. The path followed by the ray is very familiar to billiard players: if
rays propagate in a cross section, the reflected and incident beams are par-
allel. This property is not true outside a cross section.

The arrangement of Figure 3.B.7(c) is called a corner cube prism. It is a
generalization of the Porro prism, three reflections, one on each side, are
involved. The interesting property is that retrodirectivity is achieved, what-
ever the incident beam.
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Figure 3.B.7. Optical prisms.



Annex 3.C

Gradient Index Devices—Light Optics and

Electron Optics
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When traveling inside a volume where the electric and magnetic fields are
equal to zero, an electric charge follows a rectilinear path. The existence of
a nonconstant electric voltage, which creates an electric field, bends the tra-
jectory. In the same way, a light beam is rectilinear in a material where the
index of refraction is constant and is bent in the presence of a gradient index.
W.R. Hamilton first pointed out the analogy between optical rays and electric
charge trajectories in 1831. For about one hundred years this “Hamiltonian
analogy” was considered as a remarkable aesthetic curiosity and it was only
in 1925 that H. Busch got the idea of using electric and magnetic fields to focus
beams of charged particles. Since then, electron optics and, more generally,
the optics of charged particles, was born; almost immediately the method of
geometrical optics was transposed to electron optics, especially the matrix
analysis of centered systems.

It was also around 1920 that Quantum Mechanics was invented. E.
Schrödinger took advantage of the Hamiltonian analogy to obtain the approx-
imations that are required to reduce Wave Optics to Geometrical Optics; 
then he suggested that the relationship between Quantum Mechanics and
Classical Mechanics involved the same kind of approximation. De Broglie’s
wavelength, in Mechanics, plays the same role as the optical wavelength in
Optics. As early as 1940, electron microscopes and accelerators of particles
were available.

In spite of the theoretical identity between the optics of light rays and the
optics of beam particles, the associated technologies are completely differ-
ent. While light propagates just as easily in a vacuum or in air, beam particles
require a high vacuum. In both cases microscopes can be fabricated, giving
magnified images. In both cases the ultimate resolution is fixed by the wave-
length. The value l of De Broglie’s wavelength is obtained from the energy of
the particles and, in the case of electrons, is given by (3.C.1), where f is the
accelerating voltage

(3.C.1)l
f fangstrom

volt

= =
h

m2

12 5.
.



In microscopes, f ª 104-105 V, the theoretical resolution is smaller than
1 Å. Of course the image is spoiled by geometric and chromatic aberrations.
The chromatic aberrations come from the fact that all particles don’t have
exactly the same energy. The correction of the geometric aberrations, which
have the same origin as the usual optics of light rays, is more difficult in the
case of electron microscopy.

3.C.1. The Eikonal Equation

The eikonal equation governs the propagation of light rays in a gradient index
material, which means that the index of refraction is not constant and varies
with position. To be fair, the eikonal equation (from the Greek, eiko� = image)
is not very convenient; its main interest comes from the fact that it empha-
sizes the approximations that are made when Wave Optics is reduced to Geo-
metrical Optics. We will not develop in great detail all the calculations, which
can be found in the book, Principles of Optics by Born and Wolf.

We start with Maxwell’s equations. The dielectric and magnetic constants
e and m are not constant and vary in function of x, y, z; however, they are sup-
posed to vary slowly at the scale of the wavelength. We are looking for a har-
monic solution that is different from a planar wave solution. The electric and
magnetic fields are written as

where e(r) and h(r) are unknown vectors; S(r) is an unknown scalar, which is
called the optical path. After some calculation, the following expressions are
obtained:

(3.C.2)

where

(3.C.3)

The only pleasant thing about the above formulas is that, in the case of a
homogeneous medium, the gradient’s terms vanish and they coincide with
those of the homogeneous case.

If l/k0 = l0/2p is considered to be very small, formula (3.C.2) is a serial
development. The geometrical approximation consists in omitting the small
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terms of the series; in other words, Geometrical Optics is the limit of Wave

Optics when the wavelength goes to zero. Equations (3.C.2) and (3.C.3) then
become

(3.C.4)

Direct Demonstration of the Eikonal Equation

We refer to Figure 3.C.1 on which we have drawn:

• A light ray (G) going from point A to point B.
• Two points M and M¢ belonging to (G).
• The surface (S) of constant index containing point M.

By definition of the optical path S(r) we have , s is

the curvilinear abscissa, measured along the light ray, which is bent when the
propagation material is not homogeneous. The variation dS of the optical
path, when going from M to M¢, is given by dS = grad S dru (u is a unit vector
perpendicular to (S) at point M). As dr may have any orientation, it is con-
cluded that

(3.C.5)

3.C.2. Differential Equation of Light Rays

The main difference between the propagation in homogeneous and inhomo-
geneous materials is that in the last case the light rays are bent, instead of
being rectilinear. This property obviously comes from the Fermat principle.
We describe some experimental demonstrations of this phenomenon.

n S n Su = Æ =grad grad .

S B S A n ds
A

B

( ) - ( ) = Ú

n S= grad , eikonal equation.

n S2 2
0- ( ) =grad ,

K e e, , grad ,S n n S( ) = - ( )( ) =2 2
0
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A
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z

x

y

r + dr

M¢M(G )
(S )

Figure 3.C.1. Bent light ray in an inhomogeneous medium.



At Grazing Incidence Total Internal Reflection 

May Occur on a Gradient Index

When the surface of the Earth is overheated by the Sun, the temperature of
the soil is often much higher than the temperature of the air layers that are
just above. As a consequence, an important gradient of temperature and, cor-
relatively, a gradient of air density, and finally of an index of refraction are
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Salted water

Dq
**********

Figure 3.C.2. Propagation of light inside a gradient index material. The tank is filled
with salted water, the concentration increases with depth, diluted near the surface and
saturated at the bottom. The index of refraction varies from 1.33 to 1.38. An incident
horizontal light ray is bent toward the region of higher index. Dq is about 10°.

Earth

Atmosphere

*
* Apparent position of the star 

Real position 
of the star 

Dq 

Figure 3.C.3. Stellar aberration due to the
gradient index of the atmosphere. The index
of refraction increases from one at the upper
limit of the atmosphere up to 1.0003 at the
surface of the Earth. Dq is typically of 1min,
which is much larger than the accuracy of
usual astronomic measurements.

*

*
Dq 

Sun or 
other star 

Figure 3.C.4. Deviation of a light ray by a heavy mass. According to the General
Theory of Relativity the presence of a heavy mass modifies the property of the
surrounding space and especially the index of refraction. A light ray coming from some
star is deviated when passing in the neighborhood of the Sun. According to the fact
that the light travels on one side of the Sun or on the other, the sign of the deviation
is changed. Dq is very small (seconds), but still measurable, which comforts the theory
of General Relativity.



generated. Light rays may be deviated and possibly totally reflected, see
Figures 3.C.5 and 3.C.6.

We refer to Figure 3.C.8; x, y, z are the respective unit vectors of the ref-
erential Ox, Oy, Oz. We consider a point M belonging to a light ray (OM = r

= xx + yy + zz); s is the curvilinear abscissa of M. u is the unit vector of the
tangent to the light ray at point M where the local index of refraction is equal
to n. We start from equation (3.C.5) and calculate the derivative of nu, with
respect to s.
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Figure 3.C.5. Bending of rays through the
heated layers of air produces a mirage. The
observer sees a palm tree and its image on a
planar horizontal mirror. Planar mirrors that
are most commonly met at the surface of the
Earth are ponds or lakes; the step is narrow to
dream of the presence.

Figure 3.C.6. Tar on the road, locally heated
by the Sun, produces a kind of mirage. The
corresponding mirror is far from perfect.

Earth 

Ionized layers of
the atmosphere

A B

Figure 3.C.7. Reflection of radio waves by the ionized layers of the atmosphere. The
upper layers of the atmosphere contain charged particles (ions and free electrons) that
can be set in motion by the electromagnetic field of the wave. The plasma frequency
is much lower than the frequency of a light beam, which propagates without inter-
acting; the situation is different for radio waves, for which the index of refraction of
this part of the atmosphere is quite high. Thanks to total reflection, links are possible
between removed points for which a direct communication is not possible.



According to (3.C.5), we have nu = grad S (S is the optical path),

After development of the scalar product we obtain

Finally, the differential equation of a light ray is

(3.C.6)

In a homogeneous medium the index of refraction is constant and the 
gradient is equal to zero: (d/ds)(nu) = n(du/ds) = 0 Æ u = constant Æ the light
ray is a straight line.

The Snell-Descartes Law of Refraction in an Inhomogeneous Medium

In an inhomogeneous medium the surfaces of the constant index of refrac-
tion play the same role as the interfaces in homogeneous media. We refer to
Figure 3.C.8; let us call u1 and u2 the unit vectors of the tangents to the ray,
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M + dM
n

n + dn

Light ray

C

M

Center of curvature 
of the light ray

i

i + di

R
di

Tangent to the ray at M

Surfaces of constant 
index

Tangent to the ray at (M + dM) di

Figure 3.C.8. Propagation of a light ray in an inhomogeneous material. We have
drawn the two planes that are tangent to the surfaces of constant index (respectively,
n and n + dn). The light ray is bent and intersects the index surfaces at points M and
M¢. C and R = CM are, respectively, the center and the radius of curvature of the ray
at point M.



respectively, at points M and M¢, and call N a unit vector orthogonal to the
surface of constant index. After integration of equation (3.C.6) from M to M¢,
we obtain

and after projection on the surface of the constant index,

(3.C.7)

Radius of Curvature of a Light Ray

We consider a curve, a light ray, for example, and some point M of this curve.
Let u be the unit vector of the tangent to the curve at point M. The derivative
of the vector u with regard to the curvilinear abscissa s is a vector that is
orthogonal to u and which defines the direction of what is called the princi-

pal normal to the curve. The center of curvature C is located on this princi-
pal normal at a distance of M equal to the radius of curvature R = CM. For
any curve, we have the following formula:

from (3.C.6), we obtain

(3.C.8)

After scalar multiplication by �, we have

(3.C.9)

As a radius of curvature is always positive, the angle of the vector � with
the gradient is smaller than 90°, which implies that the concavity of a light
ray is on the same side as the gradient. If i is the angle of incidence on the
surface of constant index, the radius of curvature is given by

(3.C.10)

3.C.3. Centered Optical System with a Nonconstant

Index of Refraction

We refer to Figure 3.C.9 and consider a medium that is not homogeneous but
has a radial symmetry around the Oz axis. The index of refraction is a con-
tinuous function of the coordinates. In such material the notion of rays is, 
of course, still valid; however, the rays are no longer rectilinear. A point M

1 1
R n
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ds
i= - tan .
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nu + = ( )� grad .
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� is the unit vector of the principal normal ,

n dn i di n i+( ) +( ) =sin sin .
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belonging to a ray is referenced either by its three coordinates x, y, z, or by
its curvilinear abscissa s measured along the ray. As we did in the case of
more usual centered systems made of successive lenses, we will restrict our-
selves to paraxial light rays that propagate in the vicinity of the Oz axis. For
the sake of simplification, we will only consider rays that are in a meridian
plane, with the following consequences:

• The tangent at point M intersects the Oz axis, point of intersection W.
• The determination of the position of point M needs only two coordinates:

the abscissa z, and the distance r to the Oz axis.

The surfaces on which the index keeps a constant value (n(x, y, z) = con-
stant, surfaces of constant index) play a special role; in a sense, they can be
considered as analogous to interfaces between two transparent materials, of
respective indices n and n + dn. As we remain very near to the Oz axis, the
surfaces of constant index will be replaced by osculating spheres (center G,
radius r). Because of the symmetry of the problem, the index is only a func-
tion of the two variables r and z; the law of variation along the Oz axis is
written as n(z), instead of n(z, r = 0). Let us call i the angle of incidence (see
Figure 3.C.9), because of symmetry it can be shown that the differential equa-
tion of a ray is

(3.C.11.a)

Changing slightly the notation by setting a(z) = n(z), b(z) = dn/dz, c(z) =
(1/r) dn/dz, we obtain

(3.C.11.b)

where a(z), b(z), and c(z) are functions of z, therefore the trajectories of the
light rays obey a second-order linear differential equation. The optical prop-
erties of the centered optical system are just a consequence of the mathe-
matical properties of the solutions of this kind of equation. We consider two

a z
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constant index 
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Figure 3.C.9. Refraction of a light ray on
a surface of constant index, which is
assimilated to the osculating sphere at
point S (center G, radius r = GS = GM). M

is the point of incidence; C and CM are,
respectively, the center and the radius of
curvature of the light ray. jM is tangent to
the light ray. For the sake of simplicity the
ray is contained in a meridian plane.



specific functions u(z) and v(z) that are solutions of (3.C.12); any other solu-
tion can be written as

(3.C.12)

where l and m are two constants that are characteristic of the special 
solution (which means the special light ray) under consideration.

Properties of the Light Rays in a Centered Optical System

The light rays that propagate inside a centered optical system make a family
with two degrees of freedom, as shown by formula (3.C.12). The number of
degrees of freedom is lowered to one if all the rays of a given family should
intersect at a given point A: the two constants, l and m, should obey an equa-
tion characteristic of the point A.

We consider first the case where A is on the Oz axis (abscissa z = z1), we
have

where kA(z1) is a constant characteristic of point A. All the rays passing point
A have the same kind of equation r(z) = m[kA(z1)u(z) + v(z)].

Let us now look for the abscissa of the different points at which the ray
again intersects the Oz axis, they are solutions of the equation

(3.C.13.a)

This equation is the same for all rays that pass point A. The different solu-
tions of this equation correspond to the different intermediate images, A1, A2,
. . . , and to the final image, A¢; which means that the system is stigmatic for
points A and A¢.

We now examine the case of point C that is out of the Oz axis (coordi-
nates z1, r1). Two rays emitted by this point are, respectively, defined by the
two couples of constants (la, ma) and (lb, mb), and their equations are
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Inhomogeneous medium
Homogeneous 

medium 
Homogeneous 

medium 

Object 
A

Final image 
A¢A1 A2

Figure 3.C.10. Trajectories of different light rays emitted by the same object A. A1,
A2, and A¢ are images of A (intermediate and final images).



Let us introduce the auxiliary function

with lab = (la - lb) and mab = (ma - mb); rab(z) is also a solution of the differ-
ential equation (3.C.12). As we have rab(z1) = 0, the two constants lab and mab

are related by

The abscissas of the different points where the two rays intersect are again
solutions of the equation

(3.C.13.b)

Equations (3.C.13.a) and (3.C.13.b) are identical; which means that the
images C1, C2, and C¢ have, respectively, the same abscissa as points A1, A2,
and A¢: the optical system is thus stigmatic and also aplanetic. We are now
going to show that the linear magnification g = A¢C¢/AC keeps a constant value,
whatever the position of C in a plane orthogonal to the Oz axis. The linear
magnification is given by

As the correspondence between z2 and z2 is a one-to-one correspondence,
g is characteristic of the couple of conjugate planes.

As a conclusion, the correspondence object ´ image has exactly the same
properties for a gradient index centered optical system as for the more usual
centered system, made of a succession of spherical interfaces. As a conse-
quence, it will be possible to introduce the notion of cardinal elements (focus,
focal planes, principal planes, . . .) and to obtain the Descartes and Newton
formulas.
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Figure 3.C.11. Trajectories of light rays emitted by point C that is not on the Oz axis.



3.C.4. Optics of Charged Particle Beams

The purpose of this section is to show that the trajectories of charged parti-
cles, submitted to the action of an electrostatic field, obey an equation that is
identical to equation (3.C.11.b), and that the notion of cardinal elements
should be transposed to the optics of charged particle beams.

3.C.4.1. Differential Equations of the Trajectories

The electrostatic field under consideration is created by electrodes with radial
symmetry around the Oz axis. We admit that the particles remain in close
proximity to the Oz axis and that, as a consequence, the kinetic energy in a
direction perpendicular to Oz is negligible in comparison with the kinetic
energy parallel to Oz. For the sake of simplicity, we will only consider tra-
jectories that are in a meridian plane.

As long as the distance r to the Oz axis remains small enough, Ez(r, z)
remains constant and equal to Ez(0, z), which will be simplified as Ez(z). The
radial component Er(r, z) cancels for r = 0; a simple expression of Er(r, z) is
obtained, thanks to the Gauss theorem for electrostatics,

(3.C.14)

The possibility of focusing a beam of particles is a direct consequence of
the fact that the radial component of the field is proportional to the distance
r. The situation is analogous to the action of a thin lens on an optical light
ray, the angle of deviation being proportional to the distance to the axis (see
Figure 3.A.1). The equations of the motion of a particle (charge q, mass m)
are

The differential equation of the trajectory is obtained after the elimination
of time. We take advantage of the fact that the radial component of the veloc-
ity is negligible as compared to the longitudinal component
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we have

(3.C.15)

Equation (3.C.15) is formally identical to equation (3.C.11.b) (second-
order linear equation). It is possible to show that if we replace the index of
refraction n by the square root of the potential in equation (3.C.11.b), we
obtain equation (3.C.15). We will give a direct demonstration of this 
proposition.

3.C.4.2. Light Optics and Electron Optics Are Equivalent if 

A grounded source (see Figure 3.C.12) emits charged particles (q, m) in the
direction of two pairs of parallel metallic plates. The two electrodes of the
first pair are at the same potential V1, the two other plates being at V2. Emitted
with no initial velocity, the particles are first accelerated from the potential
zero up to the potential V1 and follow a straight line until they leave the first
pair of electrodes with a vector velocity v1. Inside the gap between the two
pairs of electrodes, the particles are accelerated and follow a parabolic tra-
jectory; between the second pair of electrodes they again have a linear tra-
jectory with a vector velocity v2,

Inside the gap, the electric field is parallel to x, the force is parallel to x,
and thus the y-component of the velocity remains constant:

It’s worthwhile noticing that in light optics, the Snell-Descartes law
expresses the conservation of the projection of the wave vector on the inter-
face; while in electron optics it expresses the conservation of the projection
of the momentum on the plane of discontinuity of the potential.
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Figure 3.C.12. Refraction of the electron
trajectory on an abrupt variation of potential.



3.C.4.3. The Fermat and Maupertuis Principles

Starting from the equations of Mechanics it can be shown that once it is
launched in a field of forces a particle of mass m, going from point A to point
B, follows the path along which the following integral, also called the action

integral, is minimum:

This principle, which was first introduced by Maupertuis as early as 1764,
is also called the Principle of Least Action. The striking similarity with the
Fermat Principle has played a very important role in the development of
Quantum Mechanics by Schroedinger.

We come back to the motion of a charged particle in a field of force that
comes from a potential; by a proper choice of the origin of the potential the
kinetic energy can be written as

Because of the equivalence , the Fermat Principle implies the 
Maupertuis Principle, and vice versa.

n V´

1
2

2mv qV V ds
A

B

= Ú; .the action integral is thus proportional to 

mv s ds s V s
A

B

( ) ( )Ú ;  is the curvilinear abscissa,  is the velocity.
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V and H
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Electrically 
heated filament

Emitting cathode
V = 0 

8

Negative
wehnelt

Focusing 
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Electron 
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C

Figure 3.C.13. General arrangement of a cathode ray tube. A heated cathode emits
electrons perpendicular to its surface. A first negatively polarized electrode called
wehnelt, concentrates the electrons at a point that acts as an object C. The voltage of
the wehnelt controls the number of emitted electrons; the more negative, the less
electrons. The focusing electrodes image the point C on the screen, which is coated
with an electroluminescent material.



4

Polarized Light—Laws of Reflection

4.1. Light Vibration Is a Vector

4.1.1. Elliptical, Rectilinear, and Circular Vibrations

Light vibration is a vibrating vector. The oscillating aspect of light can be
expected after some observation, its subtler vector character remains to be
discovered. If the study of Optics is started from Maxwell’s equations, the
optical vibration is immediately introduced as a vector. The direction of 
the vector may be along any direction of the wave plane and is determined
by the light source. x and y being two orthogonal unit vectors of the wave
plane, and Oz being the direction of propagation, the light vibration and its
two components can be written as

(4.1)

(4.2)

Using a suitable change of the time origin, (4.2) can be written

(4.2a)

Figure 4.1 indicates that, as times progresses, the endpoint of vector E
describes an ellipse, this is the reason why it is said that the more general
polarization is elliptical. According to the phase difference between Ex and
Ey the ellipse will take different aspects and will be described clockwise or
anticlockwise.
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Any Polarization Is the Superposition of a 

Right- and Left-Handed Polarization

As shown by formula (4.2), any polarization can be considered as the super-
position of two orthogonal rectilinear polarizations. In the same way, any
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Right-handed elliptical polarization

zO

Figure 4.1. General right- and left-handed elliptical polarizations. A vibration is said
to be right-handed (left-handed) when it rotates toward the right (left) side of an
observer who receives the light.
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Left-handed circular polarization, 
Ex = a cos wt, Ey = b cos wt. Ex = a cos wt, Ey = -a cos wt.
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Right-handed circular polarization, 
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Figure 4.2. Left- and right-handed circular polarizations. The two components have
equal amplitudes. The phase difference is p/2. If the two amplitudes are different, the
polarization would be elliptical, Ox and Oy being the axes of the ellipse.
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Figure 4.3. Rectilinear polarizations. The two components have the same phases, or
opposite phases, j = (2p + 1)p. The angle a with the Ox axis is given by tan a = b/a.



polarization can be considered as the addition of two opposite circular polar-
izations. We will only establish that the important result, according to which
a rectilinear polarization may be obtained, is by superposing two opposite cir-
cular polarizations of equal amplitudes; the orientation is determined by the
phase difference between the two circular polarizations.

Let us consider two opposite circular polarizations and their 
superposition:

(4.3)

Equations (4.3) represent a rectilinear polarization making the angle j/2
with the Ox axis.

Intensity of an Elliptically Polarized Wave

According to formula (4.2) an elliptically polarized wave is the superposition
of two orthogonal and linearly polarized waves. We now want to evaluate its
intensity, that’s to say, the amount of electromagnetic energy flowing, each
second, across a unit surface disposed perpendicularly to the wave vector.
The same kind of calculation has already been made for a linearly polarized
wave; it was found that the intensity of a wave having an amplitude E0 was
easily given using the wave impedance Z:

(4.4)

Using Pythagoras’ theorem, we obtain

Since the response time of any photodetector is very long, as compared
to the light frequency, we have to consider the time-averaged value of the elec-
tric field. Under such conditions, the terms cos 2wt and cos 2(wt - j) disap-
pear and we finally obtain (a2 + b2)/2Z. Apart from its immediate interest,
formula (4.4) contains an important physical result: two waves with orthogo-
nal polarizations are unable to interfere, since their phase difference disap-
pears during the time-averaging process.

4.1.2. Unpolarized Light

Usual light sources, such as the Sun, a candle, or an electrically heated wire,
emit light waves that are said to be unpolarized. We have already considered
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such sources and shown that their light was not coherent, see Section 1.6.3.
The notion of incoherency will now be extended to polarization. Let us go
back to formula (4.2.a):

In the case of unpolarized light, the end of the electric vector moves errat-
ically and the light shows any preferential direction inside a plane perpen-
dicular to the direction of propagation. A simple description may be obtained
by considering that the quantities a, b, and j are random functions of time
exhibiting the following properties:

(i) They vary very slowly, at the time scale of the light period. So it can 
be considered that they keep a constant value during periods lasting for 
many hours.

(ii) They vary very quickly, if the time scale is now the response of a light 
detector.

An exhaustive description of the statistical properties of unpolarized light
waves is a difficult subject; we will limit ourselves to a very simple model and
only consider light beams having the following properties:

• Monochromatic and coherent (w = constant).
• Rectilinear polarization (j = 0).
• Constant amplitude (a2 + b2 = constant).
• Random variation of the polarization direction (a and b are random time

functions following the above criteria (i) and (ii)).

4.2. Analyzers—Polarizers

(These two words have almost the same meaning.)

4.2.1. Linear Dichroism, Malus’ Law

Linear dichroic media are used to make analyzers, they have the following

properties:

• They are almost perfectly transparent for a linearly polarized beam having
a polarization parallel to a specific direction D, called the direction of the

analyzer.
• They have an important absorption coefficient for light beams that are not

linearly polarized along D. The experiment shows that the absorption is
maximum when the polarization is orthogonal to D; if the beam is com-
pletely absorbed, the analyzer is then said to be perfect.
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Receiving an unpolarized light beam, a dichroic sample will transmit a lin-
early polarized beam, the transmitted polarization being parallel to its direc-
tion D; the corresponding device is then called a polarizer. If the incident
beam is already polarized, the transmitted beam will be the projection of 
the initial polarization on the direction D, the device is then said to be an 
analyzer.

Since 1928 when Edwin H. Land, a young Harvard College student,
invented the first dichroic sheet polarizer, most polarizers were of the
polaroid kind. They were made of plastic plates with two parallel faces; the
direction D was parallel to the faces. For a thickness between 0.5mm and 
1mm, it can be considered that a beam polarized orthogonal to D is practi-
cally not transmitted. The plastic material of a polaroid is obtained by poly-
merization of polyvinyl alcohol impregnated with iodine; dichroism is a
consequence of an excellent alignment of long organic molecules, this align-
ment is obtained by applying strength to the material during polymerization,
D is parallel to the direction of the strength.

We now consider a planar wave, linearly polarized and propagating along
a direction Oz orthogonal to the faces of some polarizer. The angle of the
polarization with the direction D of the polarizer is equal to q. We are going
to determine the characteristics of the transmitted beam. We call D the unit
vector of the direction of the polarizer, x and y are orthogonal unit vectors
used to represent the polarizations of the incident and transmitted beams, see
Figure 4.4.

Direction of the polarizer: D = xcosb + ysinb.
Incident vibration: Eincident = Aincident(xcosa + ysina)coswt.
Vibration after the polarizer:

(4.5)
Etransmit incident incident= -( ) =A t A tD Dcos cos cos cos .a b w q w

E E x y x ytransmit incident incident= ( ) = +( ) +( )[ ]D D DA tcos sin cos sin cos .a a b b w
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Figure 4.4. An analyzer transmits a polarization that is the projection of the incident
polarization on its direction D. Atransmit = Aincident cos q Æ Itransmit = Iincident cos2 q.



Malus’ Law

Incident and transmitted amplitudes are related by

(4.6)

Incident and transmitted intensities are related by

(4.7)

For real polarizers the extinction of polarizations orthogonal to D is very
efficient; on the other hand, polarizers are never perfectly transparent for
polarizations parallel to D, a transmission coefficient t should be introduced,
t 2 is usually between 50% and 90%:

(4.8)

Formulas (4.7) and (4.8) are known as Malus’ law.

4.2.2. Transmission of a Beam with any Polarization

4.2.2.1. Unpolarized Light Beams

An unpolarized light beam is considered to have constant amplitude and a
polarization varying at random from time to time. After a polarizer, the trans-
mitted polarization is of course rectilinear and parallel to the direction of the
polarizer. To obtain the transmitted intensity we use formula (4.5) and take
the time-averaged value of the following expression (Aincident cosq coswt)2.

Given the difference of the rhythms of variation of q on one hand and of
wt on the other, we have the following expressions, where angle brackets indi-
cate time-averaging:

(4.9)

The transmitted light intensity is only one-half of the incident intensity, the
polarizer absorbs half of the incident power; in the case of a dichroic polar-
izer, half of the power is transformed into heat.

4.2.2.2. Crossed Polarizers, Parallel Polarizers

Two polarizers are said to be crossed when their respective directions, D and
D¢, are mutually orthogonal. They are said to be parallel when D and D¢ are
parallel.

Using real polarizers, the intensity between two crossed polarizers is not
strictly equal to zero. Let us consider the set-up of Figure 4.5, and let J and J¢
be the respective intensities before and after the second polarizer. The quality
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of the polarizer is defined by J¢/J, expressed in decibels, 10 Log10(J¢/J), it varies
from -20db for usual polarizers and up to -40db for excellent polarizers.

4.2.2.3. Evaluation of the Transmission of an Elliptic Polarization

Let us consider an elliptic polarization described by

We want to determine the polarization transmitted by a polarizer, the direc-
tion D of which makes an angle b with Ox,

We find a rectilinear vibration with amplitude, Atransmit, and a phase that are
obtained after a rather tedious trigonometric calculation. It’s probably more
comfortable to use imaginary notations and to write

We finally obtain |Atransmit|2 = (acosb + bsinb cosj)2 + b2 sin2bsin2j.

4.3. Reflection—Refraction

4.3.1. General Considerations on Reflection and Refraction

Refraction and reflection occur when an electromagnetic wave impinges 
on a surface separating two different transparent media, with two different
indices of refraction.
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Figure 4.5. Crossed polarizers. The incident is polarized at random and has an
intensity I0. After the first polarizer the light is linearly polarized and has an intensity
J = I0 /2. The second polarizer doesn’t transmit any light.



The variation law of the refractive index versus position shows a discon-
tinuity when crossing the separation surface. In fact, a perfect discontinuity
is not needed, it’s enough that the index variation is produced over a distance
that is small, as compared to the wavelength.

The separation between two media having two different indices of refrac-
tion will be called an interface. Two different kinds of reflection should be
distinguished according to the physical type of the materials located on both
sides of the discontinuity:

• Vitreous reflection: The two media are made of dielectric materials. A
good example is the interface air/glass or vacuum/glass.

• Metallic reflection: One medium is a dielectric, the other is a metal.

The two kinds of reflections can be studied using the same formalism,
using a complex index of refraction n = n¢ - jn≤:

• Ideal dielectric: n≤ = 0, the index is a real number.
• Practical dielectric: The index is almost real, its imaginary part being

small in comparison with the real part.
• Real metal: n¢ = 0, the index is purely imaginary.
• Practical metal: The index is almost imaginary, its real part being small

in comparison with the imaginary part.

Reflection and refraction laws have been known for a long time; they were
formulated as early as the seventeenth century, mainly from experimental
observations. They give exact indications about the directions of the reflected
and refracted beams, but they don’t say anything about their relative intensi-
ties, nor do they say the way the incident power is shared between the two
beams.

The First Snell-Descartes Law

The first Snell-Descartes law indicates that, in the case of isotropic media, the
incident beam, the reflected beam, and the refracted beam are all in the same
plane, called a plane of incidence.

Symmetry considerations are of preeminent importance in such problems.
Let us consider the family of planes that is orthogonal to the interface. When
the interface separates two isotropic materials, all the planes are strictly
equivalent. However, the presence of an incident light ray causes the plane
containing the incident ray (plane of incidence) to play a special role, for the
sake of symmetry the reflected and refracted rays should belong to this plane.

The Second Snell-Descartes Law

The second Snell-Descartes law gives qualitative information about the
respective directions of propagation of the different beams. The angles of the
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incident, reflected, and refracted (also called transmitted) beams, with the
normal to the interface are, respectively, the angles of incidence (i1), of reflec-
tion (r), and of refraction (i2). The second law will be established later on, it
is divided into two parts:

• The law of reflection, which says that the angles of incidence and refrac-
tion are equal: i1 = r.

• The law of refraction, also designed as the sine law, which is a relation
between the sine of the angles of incidence and of refraction:

Normal incidence: If the angle of incidence is equal to zero, the reflection
and refraction angles are also equal to zero, the three beams are collinear, and
the incidence is then said to be normal.

Physical Interpretation of the Generation of 

the Reflected and Refracted Beams

The electrons belonging to the atoms located along the interface are respon-
sible for the generation of the reflected and transmitted waves. Set into

n i n i1 1 2 2sin sin .=
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Figure 4.6(a). The first Snell-Descartes law. The normal to the interface, the incident,
reflected, and refracted rays belong to the same plane, called the plane of incidence.
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Figure 4.6(b). The second Snell-Descartes law. The figure has been drawn in the
plane of incidence.



motion by the electric field of the incident wave, these electrons play the role
of the children sitting along the swimming pool of Figure 1.8. Electromagnetic
wavelets are generated; their superposition corresponds to the reflected and
refracted beams.

When arriving at the interface the incident wave sets in vibration the elec-
trons located in the hatched area of Figure 4.7. As the incident wave planes
are not parallel to the interface, the vibrations are not in phase but have phase
repartition that linearly varies with the position along the interface. The phase
delay increases as the point is moving from left to right. The phase velocities
of the wavelets are, respectively, equal to v1 = c/n1 and v2 = c/n2 in the upper
and lower media (respective index of refraction, n1 and n2); under such con-
ditions it can be shown that the wavelets interference gives planar waves
propagating along directions obeying the second Snell-Descartes law.

4.3.2. Polarized Light Reflection

4.3.2.1. TE and TM Waves

To establish the first Snell-Descartes law we have taken advantage of the sym-
metry of the problem. In spite of the fact that it is part of the symmetry, we
did not have to introduce the notion of light polarization, we shall do it now
and show that the orientation of the electromagnetic vibration determines 
the repartition of the incident energy between the reflected and refracted
beams.

Formulas (2.13) show that as soon as one of the two vectors E or H is
known, then the other is also known. E or H can also represent what we 
call “the light vibration.” In Optics, where the interaction between light and
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Figure 4.7. The electrons located near the interface are set in vibration by the electric
field of the incident wave. Thanks to the electric dipolar radiation, wavelets are
emitted on both sides, their interference corresponds to the reflected and refracted
waves.



material is almost exclusively due to electric dipolar mechanisms, the tradi-
tion is to assimilate the light vibration to the electric field.

The three wave vectors (incident, reflected, and refracted) are in the plane
of incidence. In the case of planar waves E and H should be orthogonal to
their respective wave vectors, which implies that they belong to a plane P
orthogonal to the associated wave vector (P is a wave plane). Inside P two
directions play a special role:

• The direction orthogonal to the plane of incidence.
• The direction contained in the plane of incidence, which is also the inter-

section of P with the plane of incidence.

The notations vary considerably from author to author; the most com-
monly used are shown overleaf:
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4.3.2.2. Conservation of TE and TM Polarizations 

by Reflection or by Refraction

It will be shown in Annex 4.A how TE and TM modes can be theoretically
introduced, starting from Maxwell’s equations. The most important conse-
quence is the following: when a TE polarized wave meets some interface, the
reflected and refracted waves are also TE polarized; in the same way, a TM
wave only generates TM waves.

4.3.3. Reflection and Refraction Coefficients

4.3.3.1. Brewster Phenomenon

The amplitudes of the reflected and refracted waves vary with the angle of
incidence, special experimental conditions may be found for which the ampli-
tude of the reflected beam goes down to zero. David Brewster, in 1815, when
observing the reflection on a windowpane, of the blue light of the sky which
is partially polarized, first noted this extinction of a reflected beam. Measur-
ing the variations of the reflected intensity versus the angle of incidence, the
following results are obtained:

• For TE polarization: The reflected intensity permanently increases when
the angle of incidence increases from 0° to 90° and is minimum at normal
incidence.

• For TM polarization: The variation is not monotonic, a special angle of
incidence exists (the Brewster angle), for which the intensity goes to a
minimum equal to zero. The refracted beam is orthogonal to the direction
that would take the reflected beam if its intensity were not equal to zero.

The fact that experimental conditions exist where the reflected intensity
is equal to zero is proof of the fact that the electromagnetic vibrations are
vectors orthogonal to the direction of propagation. The reflected intensity
could not cancel if the vibrations were scalar numbers, or if they were vectors
having a component along the direction of propagation.

The formula giving the Brewster angle will be established using Fresnel’s
expression for the reflection coefficient for TM waves, here it will be obtained
from more physical considerations, considering how the reflected beam is
generated by the motion of the electrons located along the interface. We will
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limit ourselves to the case of a vacuum/dielectric interface (n1 = 1), but the
result is quite general. The oscillating electrons belong to the dielectric and
are set in vibration by the electric field of the refracted wave; the direction of
propagation of this latter wave is orthogonal to its electric field. We now con-
sider the generation of the reflected wave; it’s only the projection of the elec-
tron vibrations on the direction of the reflected wave planes that contributes
to this generation. If the polarization is TM and if the reflected and refracted
beams are orthogonal, then the projection of the dipole vibrations is equal to
zero: no wave can be generated in the direction of the reflected beam. The
only solution is that the reflected beam doesn’t exist, all the incident energy
being taken away by the transmitted beam.

The Brewster angle iB is the angle of incidence for which the reflected and
refracted beams are orthogonal, if rB is the corresponding angle of refraction
we have

(4.10)

The preceding considerations do not hold for the TE case. A TE polarized
incident beam always generates a reflected beam, whatever the angle of 
incidence.

4.3.3.2. Fresnel Formulas

Fresnel formulas give the reflected and refracted amplitudes, versus 
the incident amplitude. Their expressions are different for TE or TM 
polarizations.

The reference axes are Oxyz, the plane of incidence is (Ox, Oz) and (Oy,
Oz) is the plane of the interface. We use the following notations, where the
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Figure 4.9. Brewster angle: The electric field of the transmitted beam sets in vibration
the electrons of the interface; if the directions of the refracted and reflected beams
are orthogonal and if the polarization is TM, then the motion of the electrons cannot
generate any reflected wave, since its electric field is parallel to the direction of
propagation.



indices i, r, and t, respectively, stand for incident, reflected, and transmitted
(refracted) waves:

We have to ask the following question: Is it possible to choose arbitrarily the
nine vectors above? Of course the answer is no, they must satisfy equations
(2.13) which are repeated below:

(4.11)

where (Ei, Hi, ki), (Er, Hr, kr), and (Et, Ht, kt) are orthogonal and positive,
the field moduli are related to the impedances of their respective medium 
(Z0 = w/c):

(4.12)

Boundary Conditions Along an Interface

We recall the boundary conditions along an interface separating two dielectric
materials which don’t contain any electric charges or any electric current:

• Tangential components (parallel to the interface) of both electric and mag-
netic fields should be continuous across the dielectric interface, at all
points along the boundary.

• There are discontinuities for the normal components.

In the incident medium: (1) the fields result from the superposition of the
incident and reflected fields, in the transmission medium; and (2) we only
have the transmitted field. The Snell-Descartes law as well as the Fresnel for-
mulas are simply obtained by writing the equality of the addition of the inci-
dent and reflected fields on one hand and of the transmitted field on the other.

Demonstration of the Snell-Descartes Laws

Along the interface x is equal to zero, the continuity of tangential components
gives

(4.13)

As equation (4.13) must be fulfilled for all values of y and z, the arguments
of the exponential functions should be equal:
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The equality of the projection of the three wave vectors on the plane of
the interface directly implies the Snell-Descartes laws:

• First law: The three vectors lie in the same plane (plane of incidence).
• The second law is also called the phase matching condition: The tangen-

tial components of the wave vectors are conserved by reflection and
refraction, this simply means that the three waves have equal phase veloc-
ities along the interface.

To obtain the famous sine law, we just have to introduce the modulus of
the wave vectors (ki = kr = n1w/c, kt = n2w/c) and the angles of incidence, reflec-
tion, and refraction Æ i1 = r and n1 sin i1 = n2 sin i2.

Fresnel Formulas for Reflection and Refraction

To establish the Snell-Descartes laws we have only taken advantage of the
invariance of planar waves when a translation is operated, this is the reason
why the same result was obtained for TE or TM polarizations. We are now
going to express qualitatively the conditions of continuity for the electric and
magnetic fields and obtain relations between the incident, reflected, and
refracted amplitudes. We will admit the existence of a transmitted beam, the
case of total internal reflection will be considered later.

The calculations will be fully developed only for the TE case. A reflection
coefficient rTE and a transmission (or refraction) coefficient tTE are introduced
using the following expressions in which kiz = kix = kz:
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For tangential components, the boundary conditions at x = 0 may be
written as

and

After some calculations we finally obtain:

The TE-Fresnel Formula

(4.15)

The TM-Fresnel Formula

(4.16)

Variations of the Reflection and Transmission Coefficients

Phase shifts at reflection: As long as we are not in the condition of total inter-
nal reflection (see Section 4.3.4), the reflection and refraction coefficients are
real numbers, either positive or negative; their signs are related to the rela-
tive phases of the reflected and refracted waves, with regard to the phase 
of the incident wave. A negative coefficient corresponds to a phase shift of p.
If the coefficient is positive the corresponding wave is in phase with the 
incident one.

Normal incidence: When the angles i1 and i2 are small enough, formulas
(4.15) and (4.16) show that, for both polarizations, the reflection coefficients 
are equivalent to -(i1 - i2)/(i1 + i2) and takes the same value at normal 
incidence:
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The case of normal incidence is degenerated; the difference between TE
and TM loses its significance.

A material is said to be all the more refringent as its refractive index has
a higher value.
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Reflection at normal incidence on a more refringent medium,

n2 > n1 Æ r < 0, incident and reflected waves have opposite phases.

Reflection at normal incidence on a less refringent medium,

n2 < n1 Æ r > 0, incident and reflected waves are in phase.

Example: n1 = 1.5, n1 = 1 Æ rTE(i=0) = rTM(i=0) = -0.2. The r coefficients corre-
spond to the amplitudes of the oscillations; to obtain the reflection coeffi-
cients for intensities they have to be squared Æ R(i=0) = 0.04 = 4%. In the case
of a glass plate with two parallel interfaces, the global transmission losses
due to reflection are equal to 8%.

When the incident medium is more refringent, rTE is always negative 
whatever the angle of incidence: TE reflected and incident waves have oppo-
site phases. For TM polarization the phase shift changes from p to 0, when
the angle of incidence becomes greater than the Brewster angle, this sudden
change of phase is not at all dramatic, since it occurs when the reflected
amplitude is equal to zero.

0

-0.2 

n1 = 1, n2 = 1.5, iB = tan-1(n2/n1) = 56°

4% 

Brewster
angle

Brewster
angle

rTM

rTE

(rTM)2

(rTE)2

Figure 4.11. Variation of the various reflection coefficients versus angle. The
reflection occurs on an air/glass interface, the second medium is more refringent. At
normal incidence rTE and rTM are negative corresponding to a phase shift of p. The TM
coefficient cancels and changes sign at the Brewster incidence.



Variation of the Polarization by Reflection or Refraction

Let us consider first a linearly polarized incident beam, its electric field can
be projected in TE and TM directions: the two components have equal (or
opposite) phases. The reflection and transmission coefficients being real, the
TE and TM components of the two reflected and refracted beams have equal
(or opposite) phases, which means that they are also linearly polarized. An
elliptic incident polarization will of course generate elliptically polarized
reflected or refracted beams; the axis ratios of the ellipses will however be
different since rTE π rTM as well as tTE π tTM.

Mathematical interpretation of Brewster’s angle: If we consider formula
(4.16), it is seen that if i1 + i2 = p/2, then tan(i1 + i2) is infinite and rTM is equal
to zero.

We consider the experiment of Figure 4.12, after the two interfaces of the
first plate the ratio between the TE/TM amplitudes is equal to the squared
ratio of the reflection coefficients; the ratio of the intensities is the fourth
power. If N plates are used the intensity ratio is given by the 4Nth power. It’s
easy to establish the following formulas:
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Unpolarized
incident light beam 

Vertically (TE)
polarized reflected beams 

Horizontally (TM) 
polarized transmitted beam 

Stacks of vertical and 
parallel glass plates 

Figure 4.12. A parallel beam of unpolarized light is incident at the Brewster angle on
a stack of parallel glass plates. TM polarization is integrally transmitted, while TE
polarization is only partly transmitted. After many plates the transmitted beam is
almost entirely TM polarized.

(4.18)



For n = 3/2 and N = 8, formula (4.18) gives a value equal to 0.077 for the
intensity ratio, transmitted light should almost perfectly be linearly polarized.
The reality is not so good, first the incidence cannot be exactly equal to the
Brewster angle and, second, because the plates are never perfectly polished:
small irregularities remain and produce some depolarization; the practical
result is about 10-2.

Energy Conservation

In Figure 4.13 have been illustrated the variations, versus angle of incidence,
of the squared values of the reflection and refraction coefficients and of their
sums. The sums are never equal to unity, which is not at all paradoxical and
is not in contradiction with the energy conservation principle as explained in
Figure 4.14. An incident pencil of cross section Si creates a reflected pencil
of some cross section Si¢ = Si and a transmitted pencil having a cross section
St. To obtain the energy conservation we must take care that the cross section
of the transmitted pencil is not equal to the incident and reflected cross sec-
tions, and also that the wave impedances are not equal on both sides of the
interface.
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Figure 4.13. The sum of the squared values of the reflection and refraction
coefficients is not equal to unity.
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Figure 4.14. Energy conservation by reflection and
refraction.



Referring to Figure 4.14 we may write S = Si cos i1 = Sr cos i1 = St cos i2. The
expressions of the light intensities should take into account the wave imped-
ances of the various media: Z1 = Z0 /n1 and Z2 = Z0 /n2. Let us call A, B = rA

and C = tA, respectively, the amplitudes of the incident, reflected, and trans-
mitted waves (r and t can as well correspond to TE or TM polarizations). The
different light intensities are given by

Using the relation between the cross sections, the expressions of the Snell-
Descartes law and the Fresnel formulas, it can be seen that

4.3.4. Total Internal Reflection

The Snell-Descartes law is a relation between the sine of the incident and
refraction angles. Conditions may be encountered where the application of
the formula gives a value greater than one for the sine of the angle of refrac-
tion. The question to be asked is: What about the significance of an angle
having a sine greater than one? If we stay at an elementary level the answer
is simple: the refraction angle doesn’t exist, there is no more refracted beam,
and there only remains the reflected beam. For the sake of energy conserva-
tion the reflected beam takes all the incident energy; this is completely in
accordance with experimental observations.

At a less elementary level in mathematics, the notion of angle can be gen-
eralized and angles with sine greater than one can be imagined; if we keep
the basic relation (sin2 + cos2 = 1), these angles should have cosine that are
purely imaginary. We can now go back to the Fresnel formulas and calculate
the reflection and transmission coefficients: complex values are found for
which a physical interpretation should be given:

• The reflection coefficient is a complex number, its modulus is equal 
to unity, which is indeed in good agreement with the notion of total

reflection.
• The transmission coefficient is purely imaginary. To understand what

happens, a new kind of wave, called an evanescent wave, must be
invented.

To treat, at the same time, the case of electric and magnetic fields, we will
consider a vector V representing one or the other. We analytically describe
three planar waves (incident [i], reflected [r], and transmitted [t]), using the
following notations:

Incident wave (directed toward negative x and positive z):

V V k x y zk r
i i

j
i ix iy izx y z e k k ki( , , ) .= = - + +- with

P P Pincident reflected transmitted= + .
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2
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2
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Reflected wave (directed toward positive x and positive z):

Transmitted wave (directed toward negative x and positive z):

The continuity of the tangential components at x = 0 is written as

(4.19)

In an isotropic medium and for a given frequency, the wave vectors have
the same modulus k whatever their direction (k = nk0 = nw/c).

V V Vi yOz

j k y k z

r yOz

j k y k z

t yOz

j k y k ziy iz ry rz ty tz( ) + ( ) = ( )- +( ) - +( ) - +( )
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V V k x y zk r
t t

j
t tx ty tzx y z e k k kt( , , ) .= = - + +- with

V V k x y zk r
r r

j
r rx ry rzx y z e k k kr( , , ) .= = + + +- with
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Figure 4.15. Description of the incident, reflected, and transmitted wave vectors.

(4.20.a)

4.3.4.1. Graphical Illustration of the Snell-Descartes Law

The second Snell-Descartes law expresses the conservation of the tangential
components of the wave vectors; it can be given a geometric illustration,
usually called Descartes’ construction of the reflected and refracted beams.
Two concentric circles are drawn, centered at the point of incidence O and
having radius, respectively, equal to the refractive indices. The incident ray is
prolonged until it intersects at point I the circle having the incident index, n1,
as radius; a line is then drawn orthogonal to the interface, R and T are the
points of intersections, respectively, with the circles of radii n1 and n2. The
reflected ray is OR and the refracted ray is OT.

If the incidence medium is less refringent than the second medium (n1 <
n2), whatever the angle of incidence, the sine law gives a value that is smaller
than one for the sine of the refracted angle. The largest value for the angle of
incidence is 90°, the incidence is then called the grazing incidence; the asso-
ciated angle of refraction is called the critical angle, often labeled as l (not
to be confused with the wavelength) and is given by

(4.21)

If the incident medium is more refringent (n1 > n2), the construction of the
refracted ray is only possible if the angle of incidence is less than the critical

l = ( )-sin .1
1 2n n

(4.20.b)



angle. For an angle of incidence equal to l, the transmitted ray is parallel to
the interface, grazing emergence.

4.3.4.2. Total Internal Reflection, Evanescent Waves

We consider the situation where Descartes’ construction doesn’t give any
transmitted ray. The second medium is less refringent and the angle of inci-
dence i1 is larger than the critical angle l. The mathematical formulas can still
be formally written for a given value i1 of the angle of incidence:

where g is a real number larger than unity; the cosine of i2 is obtained from

cos .i j j2
2 2 21 1 0= ± - = ± = - >g d d gwith
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2
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Figure 4.16. Descartes’ construction when n1 < n2. This is just a graphical inter-
pretation of the formula n1 sin i1 = n2 sin i2. If the upper medium is less refringent, the
construction is always possible.
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Figure 4.17. Descartes’ construction when n1 > n2. It is always possible to draw the
reflected beam. The refracted beam can be obtained only if the angle of incidence is
smaller than the critical angle.



From a mathematical point of view the problem is solved and a complex
value is obtained for i2. Correlatively, the wave vector of the transmitted wave
is complex:

Going back to formula (4.19) the transmitted plane wave is written as

As we are permanently juggling with real and complex numbers, it is prob-
ably safer to get back to the definitions at the moment of trying to give a phys-
ical interpretation of the transmitted wave in the case of total internal
reflection. To do so we will reintroduce the factor ejwt in the formulas and use
real expressions of the harmonic waves:

(4.22)

The vector [Re(Vt)] doesn’t raise any special problem and may be obtained
from Vi and the expression of the boundary conditions. Let us now examine
the other terms of formula (4.22):

• cos(wt - gn2k0z): This term simply describes a propagation along Oz at a
phase velocity of c/n2.

• e�dn2k0x: This term is constant for a given value of x. The phase doesn’t vary
with x: no propagation along Ox. The amplitude of the field decays expo-
nentially with the depth of penetration inside the second medium.

The ambiguity associated with the ± sign is not dramatic since it can easily
be solved by energy considerations. The space domain in which formula (4.22)
is valid extends to the negative side of Ox, in this region x may go to -•, only
the positive sign should be kept.

In the lower medium of Figure 4.18, propagation is parallel to the interface;
most of the energy is concentrated inside a layer having a thickness of the
order of D = 1/dn2k0. D is usually quite small (a tiny fraction of the wavelength),
this is the reason why evanescent waves are sometimes called surface waves.

Formally considered as interesting curiosities, evanescent waves play an
important role in guided optics and optical fibers, inside which the light is
guided thanks to total internal reflection.

4.3.4.3. Interpretation of the Presence of Electromagnetic 

Energy in the Second Medium

The existence of an evanescent wave of course corresponds to the presence
of energy inside the second medium. How has this energy penetrated in this
second medium if the incident beam is totally reflected? The answer to this
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question is rather subtle. The representation of a harmonic signal by a com-
plex exponential function of time corresponds to the replacement of the time
derivative operator d/dt by the multiplication by jw, doing this we implicitly
consider that a permanent state has been reached. We admit that the incident,
reflected, and transmitted waves have always existed and will always exist.
In fact, it should be considered that the incident wave has arrived at some
initial time; a transient state then starts during which energy is accumulated
inside the second medium. It’s only at the end of the transient state that the
light is totally reflected. The transient state should in principle last for an infi-
nite time, but it is almost reached after a very short delay of the order of some
(or even many) periods of the light signal (10-15 s).

4.3.4.4. Fresnel Formulas for Total Internal Reflection

The phase shift is neither zero nor p. and is given by the above formula.
In the TM case the reflection coefficient also has a modulus equal to unity,

the expression for the TM phase shift is a bit more complicated:
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x

z

In the upper medium the phase 
varies linearly with x and z; the 
amplitude remains constant.

In the lower medium the phase 
varies linearly with z and doesn’t
depend on x; the amplitude 
decays exponentially with x.

Figure 4.18. Phase and amplitude repartitions for total internal reflection. The small
lines perpendicular to the wave vectors are supposed to suggest wave planes along
which the fields have the same phase (modulo 2p).



4.3.4.5. Optical Tunnel Effect or Frustrated Total Internal Reflection

We consider the arrangement of Figure 4.19 where a layer of a low index mate-
rial is sandwiched between two more refringent media. If the sandwich is very
thick, total internal reflection occurs on the first interface in the usual way.
On the contrary, if the sandwich is thin enough, the tail of the evanescent
wave will penetrate inside the lowest medium inside of which light will be
transmitted. This is very similar to the tunnel effect in Quantum Mechanics,
it’s the reason why this phenomenon is often referred to as the optical tunnel

effect; it’s also called frustrated total internal reflection.
The optical tunnel effect is used in an optical component called the

Lummer cube, which is a beam splitter. The two hypotenuse faces of two
isosceles rectangular glass prisms are put in close proximity. If the air gap is
small (@ l/10) light is partially transmitted, and the ratio between the trans-
mitted and reflected beams can be adjusted by playing with the thickness. In
commercially available splitters dielectric layers have replaced the air gap.
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Figure 4.19. Optical tunnel effect or frustrated total internal reflection.
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Figure 4.20. Beam splitter using a Lummer cube,
this set-up is an experimental demonstration of the
optical tunnel effect.



Annex 4.A

TE Modes—TM Modes

4.A.1. Scalar Nature of Two-Dimensional

Electromagnetic Problems

We will say that a problem is a two-dimensional problem if one of the geo-
metrical coordinates, z, for example, is not involved. We also say that the
problem is invariant in a translation parallel to Oz. We intend to show, in the
case of an electromagnetic problem exhibiting the Oz invariance, that the set
of the electromagnetic vectors is the union of two independent subsets that
are called the TE and TM modes.

Introducing the six components (Ex, Ey, Ez, Hx, Hy, Hz) of an electromag-
netic field and the unit vectors (x, y, z) of the coordinate axis, TE and TM
are defined by

Any field can be considered as the addition of a TE and TM field.
The independence versus z is simply introduced by cancelling all z deriv-

atives, (d/dz = 0). We write the two first Maxwell equations for harmonic
waves in a vacuum:

(4.A.1)

(4.A.2)

Equations (4.A.1) and (4.A.2) are relations between vectors, and represent
in fact six equations between the components of the electromagnetic field,
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The six equations (4.A.3) may be assembled in another way:

For a TE mode (Ez = 0, Hx = 0, Hy = 0), the three (4.A.4) equations are auto-
matically fulfilled, as well as the (4.A.5) equations for a TM mode (Hz = 0, Ex

= 0, Ey = 0). As a consequence, on the occasion of the various transformations
of a field during its propagation (reflection, refraction, diffraction) the TE (or
TM) nature is kept.

Deriving equations (4.A.4) and (4.A.5) and doing suitable linear combina-
tions, we can obtain the Helmholtz equations for TE and TM modes:

Each solution may be described using only one function of z, Ez for TM
and Hz for TE. As a matter of fact, for TE and TM modes, we can forget the
vector nature of electromagnetic waves and consider that they are scalar
quantities following a Helmholtz equation.
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(4.A.4)

(4.A.5)



Annex 4.B

Determination of an Unknown Polarization

176

The diagram on the following page indicates a procedure to be followed in
order to determine the characteristics of the unknown polarization state of a
light beam. A simple analysis, using a linear polarizer, will not usually be suf-
ficient, except in the case where minima with zero intensity are observed. If
the minima are not equal to zero, the light can as well be elliptically polarized
or be the superposition of a fully polarized component (linear or elliptical)
and of a nonpolarized component.

To remove the uncertainty a quarter wave should be placed upstream of
the linear analyzer. The measurements of the ratio between maxima and
minima that are observed when the analyzer is rotated, give information about
the polarized and unpolarized components.
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5

Birefringence

5.1. Double Refraction

When some incident beam hits the interface separating two transparent
media, it may happen that two transmitted beams are generated; when this
is the case, at least one of the two media is anisotropic. This phenomenon
was first observed in 1669 by the Dane Erasmus Bartholimus who called it
double refraction. Media in which double refraction occurs are said to be bire-
fringent. As early as 1690, using his famous construction of refracted beams,
Huygens could give an interpretation of the principal aspects of birefringence.

When crossing an anisotropic material limited by two planar interfaces, a
parallel beam of natural (unpolarized) light generates two transmitted beams,
they are linearly polarized along two mutually orthogonal directions which
are labeled (1) and (2) in Figures 5.1 and 5.2, and which are determined by
the orientation of the material.

When the two sides of the anisotropic sample are planar and parallel, the
two emerging beams are parallel to the incident beam. In the case of Figure
5.1(a), the intensities of the two transmitted beams are equal. In the case of
Figure 5.1(b), a polarizer has been introduced before the plate; in general two
transmitted beams are observed, their relative intensities varying with the 
orientation of the polarizer. Figure 5.2 show the existence of two special 
orientations of the polarizer for which only one transmitted beam is observed,
while the other beam is extinguished. We will call these very special orienta-
tions privileged directions of vibrations, labeled (1) and (2) in Figures 5.1 
and 5.2. The orientations of (1) and (2) depend of course on the anisotropic
material under consideration, but they also depend on the direction of pro-
pagation, this is the reason why we will speak of privileged directions of

vibrations associated to a given direction of propagation.
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5.2. Permittivity Tensor

Tensors are mathematical tools generalizing the notion of vectors, in the same
way as vectors are the generalization of scalar numbers. Tensor relationships
are a generalization of proportionality relations between vectors. It’s often on
the occasion of birefringence that young students will meet tensors for the
first time.

5.2.1. The Relationship Between Electric and 

Displacement Fields Is a Tensor

In an isotropic material the electric displacement vector D is proportional to
the electric field E, which means that the three components (Dx, Dy, Dz) of D
are proportional to the corresponding component (Ex, Ey, Ez) of the electric
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Figure 5.1. Transmission of a parallel beam of natural (unpolarized) light by an
anisotropic plate. Two transmitted beams are observed, they have two mutual linear
and orthogonal polarizations, along directions that are determined by the orientation
of the plate. Since the two sides of the plate are parallel, the two transmitted beams
and the incident beam are also, respectively, parallel.
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Figure 5.2. Transmission of a parallel beam with a linear polarization parallel to one
of the privileged directions of vibration. Only one transmitted beam is observed.



field. The situation is different in an anisotropic material where (Dx, Dy, Dz)
are linear combinations of (Ex, Ey, Ez).
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Relationship between D and E

Isotropic material Anisotropic material

Any coordinates Any coordinates Principal axes of tensor [e]

Dx = eEx Dx = exxEx + exyEy + exzEz DX = eXEX

Dy = eEy Dy = eyxEx + eyyEy + eyzEz DY = eYEY

Dz = eEz Dz = ezxEx + ezyEy + ezzEz DZ = eZEZ

A relation between a tensor and a vector is symbolically written as

(5.1)

In the same way that, in three-dimensional space, a vector is represented
by three numbers (the components on the coordinate axes), a vector is rep-
resented by nine numbers arranged in a 3 ¥ 3 matrix. The values of the matrix
elements are associated to a given set of coordinate axes.

When a change of coordinate axes is operated, the matrix elements 
take new values that are obtained from the initial values thanks to well-
established formulas. If the coordinate axes have no special orientation, the
matrix elements will be different from zero; however, except for very special
situations requiring a rather fanciful mathematical imagination, it is always
possible to find a special system of reference for which the matrix is diago-
nal (all the elements are equal to zero, except the diagonal elements). The 
corresponding coordinate axes are called the principal axes of the sample,
their orientation is of course correlated with the symmetry elements of the
material,

(5.2)

The mathematical operation leading to the principal axes is called diago-
nalization of the matrix, the rules of this game have been well established by
our mathematical colleagues. The values of the matrix elements, once the
matrix has been diagonalized, are called the principal dielectric constants of

the material.
The relationship D = eE is just the expression of the interaction between

the electric field of the light wave with electric charges of the material. Figure
5.3 shows a simplified model of this interaction: the bound electrons of an
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atom make an electron cloud that is assimilated to a spherical shell to which
the nucleus is linked by six springs (only four have been represented).

In the case of an isotropic material, the six springs have the same stiff-
nesses. In the absence of any electric field, the respective centers, G+ and G-,
of the positive and negative charges, coincide with the center of the sphere.
When an electric field is applied, G+ and G- become separated in such a way
that the vector G+G- is collinear with the field, this is the reason why the elec-
tric field and the electric displacement vectors remain collinear Æ D = eE,
where e is a scalar number.

The model for an anisotropic material is roughly the same, except that the
stiffnesses of the different springs are not equal. The vector G+G- is no longer
collinear with the applied electric field, as well as the electric displacement
vector Æ D = [e]E.

Natural and Artificial Birefringence

Tensor relationships are met whenever the space, in which the physical 
phenomenon occurs, loses its symmetry.

Natural birefringence: In the case of transparent crystalline materials, the
arrangement of the atoms inside the elementary cell is responsible for the
anisotropy of the space inside of which the light is propagating. The proper-
ties of the tensor [e] are directly connected to the symmetry of the lattice.

Artificial (or induced) birefringence: A naturally isotropic material can
be made anisotropic if the symmetry of the environment is modified, for
example, if an electric or a magnetic field or mechanical stresses are applied.
One of the coordinate axes that diagonalizes the tensor then coincides with
the direction of the field.

5.2.2. Principal Dielectric Constants, Principal 

Indices of Refraction

Using the formulas that are given in the following table, principal velocities

and principal indices of refraction are associated to the principal dielectric
constants eX, eY, and eZ:
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Figure 5.3. Oversimplified case of isotropic and anisotropic atoms.



5.3. Planar Waves Obeying Maxwell’s Equations 

in an Anisotropic Material

5.3.1. Maxwell’s Equations for Planar Harmonic Waves

Maxwell’s equations are formally the same in isotropic or anisotropic 
materials; however, the existence of a tensor relation between E and D

considerably modifies the properties of the solutions.
As in the isotropic case, we start from a planar harmonic wave for which

the four fields are described by the following expressions:

The results have already been established for the isotropic case (see
Section 2.4). E0, H0, D0, and B0 cannot be chosen at random if we want E, H,
D, and B to be allowed solutions of Maxwell’s equations. There are two kinds
of conditions:

• The first are concerned with the relative orientations of the different
vectors.

• The other is a relation (see formula (2.14)), between the values of the 
frequency, of the dielectric constants, and the modules of the wave
vectors.

H H B Bkr kr= =- -
0 0e e e ej t j j t jw w, .

E E D Dkr kr= =- -
0 0e e e ej t j j t jw w, ,
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Maxwell’s Equations for Harmonic Planar Waves 

in an Anisotropic Medium

In an anisotropic medium Maxwell’s equations for harmonic planar waves are
exactly the same as for the isotropic case:

(5.3)

We will consider that the medium is isotropic from a magnetic point of
view and is anisotropic from an electric point of view. In other words, the
relation between B and H is just a proportionality, while the relation between
D and E involves a tensor:

(5.4)

Relations (5.3) show that the vectors D and k are orthogonal and thus we
can write

it is then easily deduced that (kxEx + kyEy + kzEz) is not equal to zero, which
shows that the electric field E is not orthogonal to the wave vector k.

In an anisotropic material the Poynting vector has the same definition as
in an isotropic material, it is defined as the vector product of the electric field
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Figure 5.4. Positions of the different vectors in the case of an anisotropic material.
D and H are orthogonal to the wave vector k and, consequently, in the wave plane.
E, D, P, and k are in a same plane which is orthogonal to H.



by the magnetic field: P = E Ÿ H. An important difference is that P is no longer

parallel to the wave vector, this implies that the light rays no longer coin-

cide with the normal to the wave surfaces.
Which vector should be chosen to represent the light vibration? Any of

the three vectors D, H, or E could, a priori, be chosen, since if one vector is
known the other two are easily deduced. However, D or E should be pre-
ferred because the light propagation in a material is mostly concerned with
electric dipolar interactions. In the isotropic case where D and E are paral-
lel there is no reason to take one or the other; in the anisotropic case we will
choose D, because it is parallel to the wave planes and orthogonal to the wave
vector.

The above considerations about the positions of the different vectors are
nothing but necessary conditions, and not at all necessary and sufficient con-
ditions. More detailed calculations are developed in Annex 5.B. In the fol-
lowing section we will give an illustration and type of recipe of the main
results of those calculations.

5.3.2. Comparison of Propagation Laws for Isotropic 

and Anisotropic Conditions

(5.5.a)

In the isotropic case, starting from the above equations, we arrive at the
fact that the only condition that is required for the direction of the electric
vector is that it be orthogonal to the wave vector. For formula (5.5.a) to be
satisfied, we must have

This last relation is nothing other than the law of dispersion of the mate-
rial. It should be emphasized that the dispersion law doesn’t depend on the
direction of propagation, i.e., on the direction of the wave vector.

In the anisotropic case, the situation is made more complicated by the
presence of the tensor [e]. We obtain

(5.5.b)

Formula (5.5.b) implies three linear and homogeneous equations between
the (x, y, z) components of the electric field and of the wave vector, these
three equations can be concisely written as

(5.6)
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The three components of the electric field are thus obtained from the set
of three equations (5.6). If we don’t want to limit ourselves to the trivial solu-
tion (Ex = Ey = Ez = 0) the following conditions should be fulfilled:

• A proper choice for the direction of the electric field.
• The determinant of the set of equations should be equal to zero (this will

give the law of dispersion of the medium).

5.3.3. Main Characteristics of a Planar Wave 

in an Anisotropic Medium

We now consider a harmonic planar wave (angular frequency w, wave vector
k, propagation speed V ) propagating along a direction defined by some unit
vector s (sx, sy, sz); we have the following relations:

(5.7)

Calculations developed in Annex 5.B and formula (5.6) show that, if VX,
VY, and VZ are the principal phase velocities introduced in Section 5.2.3, the
speed of propagation V along the direction s (sx, sy, sz) is given by the fol-
lowing equation:

(5.8)

where V 2 is the solution of a second degree equation which has two solutions,
V¢2 and V≤2, finally we find four possible values for V: ±V¢ and ±V≤. The ± signs
correspond to waves propagating either in the direction of the unit vector s
or in the opposite direction.
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Figure 5.5. The two privileged directions of vibration. For a given direction of
propagation there are two possible speeds of propagation, V ¢ and V≤, the wave vector
thus has two possible moduli: k¢ = w/V¢ and k≤ = w/V≤. To each value is associated a
specific disposition of the trihedral (D, H, k) and of the electric field.



To the waves propagating, respectively, at the speed V¢ or at the speed V≤,
are associated to two specific sets of vectors (E¢, D¢, H¢) and (E≤, D≤, H≤).
D¢ and D≤ are the privileged directions of vibrations that have been experi-
mentally introduced at the beginning of this chapter. The way to obtain D¢ and
D≤ is not at all straightforward, it will be explained later on, and only in the
simplest case of a uniaxial material.

A linear vibration, parallel to one of the privileged directions, D¢ or D≤,
keeps its polarization during propagation. If the initial polarization is linear,
but not parallel to one of the privileged directions of vibration associated to
the considered direction of propagation, we will consider its projections on
D¢ and D≤. Initially in phase the two components will accumulate an out-
phasing as propagation occurs since they don’t propagate with the same phase
velocity: the vibration becomes elliptical. The shape of the ellipse changes
during propagation and periodically coincides with a straight segment, when
the two components are again in phase.

5.3.4. Light Rays and Normal to Wave Surfaces

Refraction of the Normal

We consider a planar wave which is refracted from an isotropic medium onto
an anisotropic one, see Figure 5.8. Two refracted waves are generated in the
second medium, they propagate at two different speeds with two different
wave vectors, k¢ and k≤, which determines the directions of the wave planes
that are, respectively, normal to k¢ and k≤.
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Figure 5.6(a). A linear vibration parallel to one of the privileged directions keeps its
polarization while propagating. The two privileged vibrations, D¢ and D≤, do not
propagate at the same speed.

z
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Figure 5.6(b). Propagation of an ellipti-
cal vibration. The vibration is projected 
along the two privileged directions, the
two components don’t propagate syn-
chronously giving a new elliptical vibra-
tion, the axis of which progressively
rotates during propagation.



The representations of Figures 5.7 and 5.8 are far too schematic, since 
the tree wave vectors of the incident and refracted waves are not always lying
in the same plane. The two refracted waves are linearly polarized along two
directions D¢ and D≤ that have not been represented; the rules for obtaining
D¢ and D≤ will be given later.

5.4. Constructions of the Refracted Beams

The mathematical formulas are rather complicated, this is the reason why
graphical constructions play an important role in anisotropic geometrical
optics, they largely take advantage of the Huygens and Descartes construc-
tions. Both constructions are just a graphic solution of the Descartes-Snell
equation. However, we would like to recall that those constructions are asso-
ciated to some physical interpretation:

• Conservation of the tangential component of the wave vector in the case
of the Descartes construction.

• Envelope of the wavelets emitted by the different points of the interface
in the case of the Huygens construction.

5.4.1. The Descartes and Huygens Constructions 

for Isotropic Media

The constructions are far simpler when the two media are both isotropic,
since the surfaces that are used have only one sheet which is spherical, with
the consequence that rays and wave vectors coincide.
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Isotropic medium

Anisotropic medium

Incident beam 
natural light 

Two linearly 
polarized beams

k0

k¢ k¢¢

Figure 5.7. When arriving at an interface separating an isotropic medium from an
anisotropic one, a planar wave generates two planar waves that propagate at two
different speeds. If the incidence is oblique, of course the two refracted waves
propagate along two different directions.



For Descartes’ construction, we start with two concentric circles having
radii that are, respectively, equal to the indices of refraction of the two media.
From the common center O of the two circles a line is drawn parallel to the
direction of the incident beam which propagates in the medium of index n1,
let I1 be the intersection point with the circle of radius n1. A line I1H is then
drawn orthogonal to the interface, let I2 be the intersection point with the
circle of radius n2, the direction of the refracted beam is given by OI2.

For Huygens’ construction we also start with two concentric circles, their
radii are now, respectively, equal to the inverse values, 1/n1 and 1/n2, of the
indices of refraction. From the common center O, a line is drawn parallel to
the incident beam direction; it intersects the circle of radius 1/n1 at point T1,
the tangent line to the circle at this point intersects the interface at point T.
From T we draw the tangent TT2 to the circle of radius 1/n2, OT2 gives the
direction of the refracted beam.

5.4.2. Shape of the Wavelets in an Anisotropic Medium

In the Huygens method, or preferably the Huygens-Fresnel method, the
reflected and refracted waves that are generated by an incident wave are con-
sidered to be produced by the interference of wavelets emitted by the differ-
ent points of the interface. The refracted and reflected wave surfaces are the
envelopes of the different wavelets that have been emitted at the same time.
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Isotropic

(a) (b)

Anisotropic
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StopIncident 
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Figure 5.8. Illustration of the difference between the directions of propagation of 
the phase on one hand and of the energy on the other hand. The incidence is normal:
the incident wave planes, as well as the refracted wave planes, are parallel to the
interface. In the second medium two waves are propagating at two different speeds:
their wave planes remain parallel to the interface, while the Poynting vectors lie along
two different directions. In (b) a stop limits the cross section of the incident beam:
two different refracted light beams are observed, each of them being parallel to the
corresponding Poynting vector.



In the case of a parallel beam (planar wave) the amplitudes of the wavelets
are all equal and proportional to the amplitude of the incident beam, the initial
phase of a wavelet is governed by the phase of the incident wave at the point
under consideration. The amplitude proportionality coefficient, as well as the
phase shift, are functions of the indices and of the angle of incidence (see the
Fresnel formulas for refracted and reflected beams).

When the two media are both isotropic, the propagation speed doesn’t
depend on the direction of propagation: the wavelets are spherical. The 
situation must be reconsidered in the anisotropic case. To do so, let us
imagine an oscillating electric dipole which would be located at point O and
which would have started oscillating at time t = 0. By definition a wavelet is
the set of points reached by the oscillation after a given time, which is usually
taken equal to one second. The trouble in an anisotropic material is that the
propagation speed varies with the direction of propagation and also with the
orientation of the vibrations.

We thus place at point O of an anisotropic medium, an electric dipole that
vibrates along a given direction. We then consider, see Figure 5.10, waves
propagating parallel to some vector k, their polarizations should be parallel
to one or the other directions of the two privileged polarizations, D¢ and D≤,
associated to the direction of k. As those two polarizations do not propagate
at the same speed, after one second, two different points P ¢ and P≤ will have
been reached: in an anisotropic medium the wave surface has two sheets.

5.4.3. The Huygens and Descartes Constructions 

in Anisotropic Media

In the case of isotropic media, two kinds of spherical surfaces have been used,
their radii were equal either to the indices or to the inverse of the indices of
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refraction. These notions can be generalized to the case of anisotropic media
in which are introduced: (i) a surface of the indices; and (ii) a surface of the

inverse of the indices. Each of the previous surfaces has two sheets that are
not necessarily spherical.

The surface of the indices is used to determine the direction of the wave
vectors of the refracted waves, thanks to Descartes’ construction.

The surface of the inverse of the indices is used to determine the direc-
tion of the light rays, thanks to Huygens’ construction.

Descartes’ Construction of the Normal

We refer to Figure 5.13. Starting from the origin O a line is drawn parallel to
the direction of the wave vector of the incident wave plane and is prolonged
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P¢¢

O
Optical axis

Ordinary wave

Extraordinary wave

Figure 5.10. Aspect of wavelets in an anisotropic medium. The figure corresponds to
a positive uniaxial material. A wavelet is the set of points reached after one second by
a wave having left the origin at time t = 0. Two polarizations and two speeds of
propagation are associated to a given direction such as OP ¢P≤. After one second one
polarization will have reached P ¢, and the other reached P≤: the wavelet has two sheets.

Incident wave propagating in an isotropic medium 

Wavelets in the anisotropic medium 

Wave planes (envelope of the wavelets) 

Figure 5.11. Wave planes and Huygens’ wavelets in the case of normal incidence.
Wavelets simultaneously emitted at four different points of the interface have been
illustrated. Each wavelet has two sheets. The incidence being normal, the three wave
vectors are normal to the interface. The envelopes of the wavelets are two planes
parallel to the interface.



until its intersection, at point N, with the surface of the indices of the 
incident medium (a sphere of radius n1). The line, drawn from point N and
orthogonal to the interface, intersects the two sheets of the surface of the
indices of the anisotropic medium at points N¢ and N≤. ON¢ and ON≤ give the
directions of the two refracted waves.
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isotropic medium 
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Figure 5.12. Wavelets and wave planes for a nonnormal incidence. The incident wave
first reaches point A1, and then A2, A3, and A4, . . . . There are two different directions
for the refracted wave planes. One sheet of the wavelets being spherical, the
corresponding wave vector (ANord) and light ray (ARord) coincide. The situation is
different for the other sheet which is elliptical, ANextraord and ARextraord are distinct.
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Figure 5.13. Descartes’ construction of the wave vectors. The lower medium is
anisotropic and its indices of refraction are higher than the index of the upper isotropic
medium: the two sheets of the surface of the indices are outside the sphere of the
indices of the upper medium. ON¢ and ON≤ indicate the directions of the refracted
wave vectors.



Huygens’ Construction of the Refracted Light Rays

We refer to Figure 5.13(i). Starting from the origin O a line is drawn parallel
to the direction of the incident light rays and is prolonged till its intersection,
at point R, with the surface of the inverse of the indices of the incident
medium (a sphere of radius 1/n1). A line drawn tangent to the previous sphere
intersects the interface at point T. Starting from T two lines are drawn, respec-
tively, tangent at points R¢ and R≤, to the two sheets of the surface of the
inverse of the indices: OR¢ and OR≤ indicate the directions of the refracted
light rays.

5.5. Aspect of the Surfaces of the Indices and 

the Inverse of the Indices

5.5.1. Uniaxial and Biaxial Materials

The shape of the characteristic surfaces (indices or inverse of the indices) is
directly linked to the symmetry of the material; it is all the more simple that
this symmetry is higher. The classification of the different birefringent mate-
rials is obtained from the properties of their dielectric permittivity tensor. 
Let us recall that the principal axes of a material are the coordinate axes in
which the tensor is diagonalized. The equations of the characteristic surfaces
are the simplest when the principal axes are used. In the most general case,
when the symmetry is the lowest possible, each principal axis meets the char-
acteristic surfaces at two different points, the abscissa of which are called the
two principal indices (or inverse of the principal indices).
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Figure 5.13(i). Huygens’ construction of the light rays. The lower medium is
anisotropic and its indices of refraction are higher than the index of the upper isotropic
medium. The two sheets of the surface of the inverse of the indices are inside the
sphere of the indices of the upper medium. OR¢ and OR≤ indicate the directions of the
refracted light rays.



The orientations of the principal axis are, of course, in close connection
with the orientation of the crystalline lattice. The classification of anisotropic
materials follows the shape of the ellipsoid of the indices that will be
described in Section 5.B.5 of the annex to this chapter, where an accurate dis-
tinction between uniaxial and biaxial crystals will be given.

Biaxial materials: The principal axes have fixed positions inside the
lattice; however, for lower symmetry, the orientation of two axes (monoclinic)
or, possibly, of three axes (triclinic), will vary with the color of the light. When
the symmetry increases (trigonal, tetragonal, and hexagonal) one axis is fixed
and has a well-defined orientation, the two others axes being freely rotatable
and then indeterminate.

Optically isotropic materials: The simplest case, after isotropic materi-
als, is the case of cubic crystals: in both cases the principal indices are equal.
The two sheets of the characteristic surfaces are spherical and coincide. From

an optical point of view, a cubic crystal behaves as an isotropic material.
Uniaxial materials: In the case of hexagonal, tetragonal, and trigonal

crystals, two of the three principal indices are equal; the corresponding axis
can freely rotate about the third axis which is called the “optical axis” of the
material. One sheet of the characteristic surface is a sphere, the second sheet
is an ellipsoid of revolution about the optical axis.
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5.5.2. Uniaxial Material

Uniaxial materials are the most important materials and also the most com-
monly met. The two sheets of a characteristic surface are, respectively, spher-
ical and elliptical. The constructions involving the spherical sheet are very
similar to the constructions in an isotropic material: rays have the same direc-
tions as the wave vectors and are orthogonal to the wave surfaces. This is the
reason why the corresponding elements are said to be ordinary: ordinary
sheet of the surface, ordinary rays and wave vectors, ordinary polarization.
In opposition, the other sheet and the associated elements are said to be 
extraordinary.

In a uniaxial material two of the three principal indices are equal, their
common value is called the ordinary index no, the third principal index is the
extraordinary index ne. According to the sign of the difference (ne - no) a
uniaxial material will be said to be positive or negative:

• Positive uniaxial material: (ne - no) > 0.
• Negative uniaxial material: (ne - no) > 0.

The two most important materials for elaborating anisotropic optical com-
ponents are calcite and crystalline quartz. Calcite is one of the most birefrin-
gent crystals, unfortunately its relatively high price and poor mechanical
properties are a limitation.
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Material nx ny nz Crystal system

Sodium D light (l = 589.29nm)
Mica, Na and K aluminosilicate 1.560 1.594 1.598 monoclinic
Aragonite, CaCO3 1.531 1.682 1.686 orthorhombic
Lithargite, PbO 2.512 2.610 2.710 —
Stibnite, Sb2S3 (l = 762nm) 3.194 4.046 4.303 —
Anhydrite, CaSO4 1.569 1.575 1.613 orthorhombic
Gypse, CaSO4, 2H2O 1.529 1.523 1.530 monoclinic
Sulfur 1.950 2.043 2.240 orthorhombic
Topaze, (2AlO)FSiO2 1.619 1.620 1.627 orthorhombic
Turquoise copper 1.520 1.523 1.530 —

aluminophosphate
Tartaric acid, (COOH)2 1.496 1.535 1.604 monoclinique
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Figure 5.14. In a uniaxial material the two sheets of a characteristic surface (a sphere
and a revolution ellipsoid) are tangent at the points of intersection with the optical
axis. A flat ellipsoid looks like a frying pan, a sharp ellipsoid looks like a rugby ball.

Principal indices of some uniaxial crystals
(sodium D ray, l = 589nm)

Positive uniaxial no ne

Quartz SiO2 crystallized hexagonal 1.5442 1.5533
Calomel HgCl quadratic 1.9732 2.6559
Zircone SiO, 2ZrO2 quadratic 1.92 1.97
Rutile TiO2 biaxial 2.6131 2.9089

Negative uniaxial
Calcite CaCO3 rhombohedral 1.6584 1.4865
Sodium nitrate NaNO3 rhombohedral 1.5874 1.3361
Tourmaline rhombohedral 1.639 1.620
KDP KH2PO4 4̄2m 1.51 1.47
Lithium niobate LiNbO3 3m 2.29 2.20



5.5.3. Light Propagation in a Uniaxial Material

5.5.3.1. Polarization of the Refracted Beams

We have given methods to graphically obtain on one hand the directions of
the wave vectors (and, consequently, of the wave planes) and, on the other
hand, the directions of the light rays. We have now to determine the direc-
tions of the associated vibrations, that is to say, the directions of the electric
displacement vectors of the ordinary and extraordinary waves. The method
relies on rather elaborated graphical constructions involving the index
surface that will be introduced in Annex 5.B. From a practical point of view,
the following important results should be kept in mind:

• Ordinary and extraordinary polarizations (electric displacement vectors)
are parallel to the wave planes.

• The ordinary polarization is orthogonal to the optical axis.
• The extraordinary polarization is parallel to the projection of the optical

axis on the wave plane.
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Isotropic medium: n = 1

Anisotropic uniaxial medium 
ne, no

Index and inverse index (n = 1) 
Surface of the upper medium

Lower medium: 
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Index extraordinary sheet 
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Ordinary ray and 
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vector
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1

ne
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Figure 5.15. In this illustration have been shown Descartes’ construction (index
surfaces) and Huygens’ construction (inverse index surfaces). Ordinary rays and wave
vectors coincide. The ordinary polarization is orthogonal to the plane of the figure, the
extraordinary polarization lies in the plane of the figure.



5.5.3.2. Recapitulation of the Various Constructions 

in a Uniaxial Material

In the case of hexagonal, tetragonal, and trigonal crystals, two of the three
principal indices are equal characteristic surfaces.

5.6. Circular Birefringence

5.6.1. Introduction to Circular Birefringence

The phenomenon of circular birefringence was discovered at the beginning
of the nineteenth century by Arago on one hand and by Biot on the other. For
historical reasons, it is also called optical activity. Materials in which this
phenomenon can be observed are said to be optically active.

Circular birefringence experiments are no more complicated than the
experiments involving linear birefringence. However, the microscopic inter-
pretation at the atomic level is more complicated in the case of optical 
activity.

Figure 5.16 describes an experimental arrangement demonstrating the
existence of optical activity. The cell having been removed, the analyzer and
polarizer are first adjusted to have crossed positions, so that the transmitted
light is extinguished; in the presence of the cell, light is transmitted again,
extinction can be restored by a suitable rotation of the analyzer. Thus it can
be said that the emerging beam is still linearly polarized, but the polarization
has rotated during propagation in the optically active material. This kind of
polarization is not modified by optical activity: an elliptical polarization will
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Natural
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Linear 
polarizer

Linearly
 polarized light 
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optically active liquid

Analyzer

Linearly
polarized light

Figure 5.16. Basic experiment on optical activity. A cell, filled with an optically active
liquid, is lighted by a parallel beam of linearly polarized light. The emerging beam 
is still linearly polarized, but the output polarization is not parallel to the input
polarization and keeps a constant direction as the cell is rotated about its axis. If the
incident linear polarization is rotated, the emerging polarization rotates as well, the
angle between the two polarizations remaining constant and proportional to the cell
length.



lead to an emerging elliptical polarization, the ratio of the two axes of the
ellipse remains the same, their orientation is only rotated. Of course, an inci-
dent beam of natural light gives an emerging beam of the same nature.

An optically active material causes the polarization of an incident beam to
rotate: if, for an observer receiving the light, the polarization appears to have
revolved clockwise, the material is said to be dextrorotatory; if the rotation
is anticlockwise the material is levorotatory.

Circular birefringence, as linear birefringence, is due to the symmetry of
the environment in which are found the electrons of the atoms of the mater-
ial under consideration. In the case of gases, liquids, or amorphous solids, cir-
cular birefringence is met any time that the elementary molecules may have
one of two different configurations that are mirror images of one another. In
the case of a crystal, the elementary crystal cell will also have two different
mirror image configurations. In both cases the material will take two differ-
ent forms that are said to be enantiomorphs of each other. In the case of crys-
tals the two enantiomorphs will correspond to two different crystallographic
structures; a well-known example is crystalline quartz in which the molecules
are arranged along a helix which can rotate either clockwise or anticlockwise.
Very often during a chemical synthesis the two enantiomorphs are obtained
in equal proportions, the mixture which, by compensation, has no optical
activity, is called a racemic. The two enantiomorphs have very similar physi-
cal and chemical properties and are, of course, very difficult to separate.
Studying the optical activity of a material is quite important from a chemical
point of view.

Following Fresnel we will use a purely phenomenological description 
of circular birefringence. We consider that optically active materials are spe-
cial anisotropic media where the electromagnetic vibrations that remain
unchanged during propagation are left- and right-handed circular polariza-

tions. We will admit that right or left circular waves have different wave veloc-
ities that will be quoted as Vleft and Vright and to which will be associated two
indices of refraction and two wave vectors:

(5.9)

where w is the angular frequency and k0 is the vacuum wave vector.
It is important to notice that circular birefringence is less important, by at

least two orders of magnitude, than linear birefringence. The circular bire-
fringence which is defined as the index difference, Dncircul = (nleft - nright), is
always smaller than 10-2, while the linear birefringence, Dnlinear = (ne - no), is
about 10-2 for quartz and can reach 0.18 in the case of calcite.

The first observation of circular birefringence was achieved by Arago in a
quartz crystal. As already mentioned, quartz exhibits an important linear bire-
fringence by which circular birefringence is usually hidden. Arrangements
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where the propagation is parallel to the optical axis should be selected to
observe the effects of optical activity, light beams can then be considered as
ordinary beams, whatever the polarization; see, for example, Figure 5.17
which clearly illustrates the expression “circular birefringence.” It is well
known in crystallography that quartz crystals are found in two different forms,
mirror images of one another, referring to the optical activity these two forms
are called, respectively, right-quartz and left-quartz.

Asymmetrical Atoms of Carbon in Organic Chemistry

An important example of optical activity is given by organic molecules where
a carbon atom is bound to four atoms of a different species, such an atom 
of carbon is said to be asymmetrical. The molecule to which this carbon atom
belongs has two possible different forms, one a mirror image of the other.

Corresponding compounds may exist in two different enantiomorph
forms. A given enantiomorph is optically active. If dissolved in some solvent
an enantiomorph gives a solution which is all the more optically active as the
solution is more concentrated. The most famous example is probably given
by sugar syrups which are a mixture of d-glucose and l-glucose, the propor-
tions of each component are usually measured using a polarimeter.
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For left quartz: nleft < nrightFor right quartz: nright < nleft

Figure 5.17. Separation of the right- and left-hand circular polarizations using
circular birefringence. Two prisms have been cut, respectively, in a right and in a left
quartz crystal, the optical axis being orthogonal to the bisector plane. A nonpolarized
light beam is sent into the prisms in the conditions for minimum deviation: for the
right quartz prism the right-hand polarized beam is less deviated, it’s the opposite for
the left quartz prism.
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L L
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Figure 5.18(a). Arrangement imagined by Fresnel to increase the effect of circular
birefringence, it is made of a succession of alternate right and left quartz prisms.



Birefringence of Tartaric Acid and Tartarate Salts

The story of the optical activity of tartaric acid is a very nice story, as it was
the first scientific contribution by Louis Pasteur on the occasion of his PhD
thesis. The asymmetrical character of tartaric acid is even enhanced in a salt
called double tartarate of sodium and ammonium, where one acid function
has been neutralized by ammonia and the other by soda: one carboxyl radical
is bound to an NH4

+ ion and the other to an Na+ ion. Tartarate of sodium and
ammonium may give nice small crystals, dextrorotatory or levorotatory crys-
tals have slightly different aspects; using a microscope and a sharp needle,
Louis Pasteur was able to separate the left microcrystal from the right one.
After dissolution in water, he finally obtained two solutions, a dextrorotatory
one and a levorotatory one. As he was also a biologist, he remarked that a
culture of penicillium glaucum on a racemic of sodium-ammonium tartarate,
selectively destroys, by moisture, the dextrorotatory compound, leaving only
the levorotatory enantiomorph.

5.6.2. Description of the Propagation in 

an Optically Active Medium

Any vibration can be considered as the superposition of a left-hand circular
polarization, VL, and of a right-hand circular polarization, VR. A linear polar-
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Figure 5.18(b). In spite of its weakness, the optical activity of liquid can be
demonstrated by using liquid prisms alternately filled with dextrorotatory or levoro-
tatory enantiomorphs.
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Figure 5.19. The four isomers of tartaric acid. Tartaric acid has four carbon atoms,
two alcohol functions, and two acid functions. The two most central carbon atoms are
asymmetrical since they are bound to four different atoms or radicals. Tartaric acid
may have four different forms, among which two are optically active (dextrorotatory
and levorotatory) and two are not.



ization V is the superposition of two inverse circular vibrations of the same
amplitudes:

(5.10)

The orientation of the linear vibration described by (5.10) is determined
by the phase difference j between its two circular components: V makes with
the Ox axis an angle which is equal to j. Referring to Figure 5.21, it is seen
that V is directed along the bisector of the angle between the two vectors VL

and VR,

(5.11.a)

(5.11.b)

During propagation in an optically active transparent material, left and
right circular waves keep constant amplitudes, while the angles qL and qR vary
according to (5.9), in which kl and kr have been defined in formula (5.9). The
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Figure 5.20. Analytical expressions of circular vibrations.
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Figure 5.21. A linear vibration V is the superposition of
two opposite circular vibrations VR and VL of the same
amplitude. The direction of V is along the bisector of the
angle (VR, VL).



polar angle q between the two rotating vectors is given by (5.11.b), the polar-
ization remains linear but its direction rotates at the same time as propaga-
tion occurs.

5.6.3. Rotatory Power

The angle of rotation of the polarization is thus proportional to the propaga-
tion length inside the optically active material; the proportionality coefficient
[a] is called the rotatory power of the material and is given by (5.11.c):

(5.11.c)

In the definition of rotatory power, anticlockwise rotations are considered
as positive; other authors use another possibility, which changes the sign of
[a]. The rotatory power of quartz has a specially high value of the order of
20°/mm, the corresponding value of the circular birefringence is equal to Dn

= |(nright - nleft| ª 10-5. Usually the rotatory power of liquids is smaller and of
the order of a few degrees per centimeter.

The rotatory power of a solution is proportional to the number of asym-
metric molecules per volume unit, and thus to the concentration. In the case
of a mixture of several optically active compounds, the rotatory power is
given by formula (5.12), where [ai] and ci are, respectively, the rotatory power
and the concentrations of the different components,

(5.12)

5.7. Induced Birefringence

5.7.1. Definition of Induced Birefringence

A material can see its index of refraction modified if one exerts some exter-
nal influence on its environment, such as mechanical stresses, or a magnetic
or electric field. If these external influences are not isotropic, the optical bire-
fringence will be modified:

• An initially isotropic medium will then acquire induced birefringent 
properties.

• If the medium is already birefringent, the shape of its characteristic sur-
faces is modified.

According to the electronic dipolar model for the interaction of a light
wave with a material, the value of the index of refraction is determined by
the local electric field Eatomic existing in the electronic cloud surrounding the
nucleus of the atoms. The forces that are responsible for the coherence of a
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piece of material are quite strong, which implies that Eatomic is high; the
induced index variations are quite small and can only be demonstrated thanks
to interference experiments.

Interference experiments using polarized light beams are very much sim-
plified by the fact that problems due to spatial coherency are completely
avoided since the ordinary and the extraordinary beams issue from a single
initial beam.

The polarization of a light beam, after propagation in a birefringent mate-
rial, is just the interference of two vibrations oriented along the directions of
the privileged directions. As propagation occurs over distances that can be
important (as compared to the wavelength), even in the case of a small-
induced birefringence, rather important phase differences can be accumu-
lated. This is the reason why induced birefringence can produce spectacular
effects, and so provide useful methods for measuring the physical process
responsible for the index variations.

5.7.2. Stress Birefringence

Stress birefringence effects, also known as photoelasticity, was discovered in
1813 by Seebeck and was studied by Brewster around 1816. When a material
is submitted to compressing forces, its density d and its index of refraction 
n increase simultaneously, the ratio (n - 1)/d follows Gladstone’s law and
remains roughly constant.

Let us consider some isotropic material, a piece of glass for example, its
dielectric permittivity tensor is diagonal, all nonzero elements being equal.
When external mechanical forces are applied to a sample that has been cut
in such a material, stresses appear inside the material. The field of stresses is
described by a tensor, the mechanical stress tensor. Consequently, the mate-
rial becomes birefringent, the permittivity tensor has the same symmetry as
the stress tensor and its elements take new values: the variation of a given
element is proportional to the value of the corresponding element of the
mechanical stress tensor.

5.7.2.1. Case of a Uniaxial Stress

We refer to Figure 5.22, an isotropic sample is submitted to the action of two
opposite forces and becomes anisotropic, uniaxial with the optical axis par-
allel to the direction of the forces.

The thickness and length of the sample are, respectively, equal to e and l,
the surface of its face is S = le. The direction of the force makes an angle of
45° with the direction of the analyzer. To again obtain the extinction, the com-
pensator should introduce an optical length difference d between the ordinary
and extraordinary beams. Let us call, respectively, ne and no the extraordinary
and ordinary indices of the stressed material, the birefringence Dn is related
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to the pressure P = F/S by formula (5.13), in which k is a constant which can
be positive or negative; the experiment indicates that k is roughly indepen-
dent of the wavelength l,

(5.13)

(5.14)

The optical length difference d is simply given by (5.14), its value is 
independent of the thickness and only determined by the amount of force per
unit length F/l, in the visible and for the usual glass k is negative and of 
the order of 10-2 if the lengths are expressed in millimeters and the forces in
kilograms.
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Figure 5.22. Experimental set-up for studying stress birefringence. A parallelepiped
has been cut into an isotropic transparent material. Two opposite forces applied on
parallel sides generate a uniaxial stress repartition inside the material. In the absence
of any applied forces no light is transmitted by the crossed polarizer-analyzer. Some
light is transmitted again when a force is applied, the direction of the force should not
be parallel to the direction of the polarizer. Using a compensator, the extinction can
be obtained again and quantitative measurements of the birefringence can be made.

(a)

DD
A A A A B B B 

(b) 

Figure 5.23. Direct demonstration of stress birefringence. In (a) the angle DD is very
small, a few seconds for a pressure of 1 kg/mm2. In (b) the effect is amplified by
cascading stressed A-prisms and unstressed B-prisms cemented by glue having the
same index.



5.7.2.2. Photoelasticity

As polarized light beams make it very easy to obtain interferences and to
demonstrate small optical delay, photoelasticity is used as a technique for
studying the stresses inside transparent materials. If one wants to know the
repartition of the forces inside some fixed or mobile mechanical structure
(shaft of a crane, driving shaft of a motor, . . .), a transparent scale model is
made out of a suitable transparent material having a high proportionality coef-
ficient between the stress and permittivity tensor elements. PMMA is a suit-
able material. Starting from the orientation of the privileged vibrations and
from local optical birefringence, it is possible to obtain qualitative informa-
tion about stresses.

It must however be said that, since the existence of very powerful com-
puting tools, the experimental determination of the stress repartition inside a
solid has lost part of its interest: mechanical equations can now be integrated
even with complicated boundary conditions.

5.7.2.3. Some Remarks About the Presence of Residual 

Stresses in a Piece of Glass

Glass is of course a very important material in Optics; it is used to make a large
variety of components that are usually molded from molten glass. Glass being
a rather poor heat conductor, it is difficult to maintain a homogeneous tem-
perature during cooling; external layers getting colder faster, the most inner
parts are submitted to stresses, which sometimes remain frozen. For example,
it is possible that some light could be transmitted through a thick glass plate
disposed between crossed polarizers. Lenses to be used for interference exper-
iments using polarized light beams should have been annealed (reheated and
then slowly and carefully cooled). The proportionality coefficients between
stress and birefringence being positive for some glasses and negative for
others, composite glasses can be made with a low residual birefringence.
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F

Figure 5.24. Basic experiment of photoelasticity. A sample made of PMMA put onto
two prismatic blocks and submitted to a force F is placed between two crossed
polarizers. A light beam propagating perpendicular to the figure produces inter-
ferences: dark and clear lines appear in the sample, they are a representation of the
lines along which the stress keeps a constant value. If a white light beam is used, the
stress variations will be suggested by nice color variations.



5.7.3. Flow Birefringence

At the scale of one wavelength of visible light, a fluid, liquid, or gaseous mate-
rial, is a priori homogeneous. A cubic element of the order of 0.4 to 0.8mm3,
always contains an enormous number of molecules submitted to Brownian
agitation; the distribution of their speed vectors is thus statistically isotropic.
When this fluid is flowing, a drift motion is superimposed to the anarchic agi-
tation; the medium becomes birefringent with the same symmetry as the field
of speed vectors. Studying this so-called flow birefringence brings important
information about either the speed repartition of the molecules or the sym-
metry of the flowing molecules.

5.7.4. Electrical Birefringence

Electrical birefringence corresponds to a situation where the anisotropy of a
material is created or modified by the application of an electric field.

5.7.4.1. The Kerr Effect

5.7.4.1.1. Orientation of Molecular Electric Dipoles by an Electric Field

Observed for the first time by Kerr in 1875, this effect is mostly observed in
liquids and possibly in gases. Let us consider a liquid made of molecules in
which the centers of positive and negative charges do not coincide, each mol-
ecule can be considered as an electric dipole. Good examples of such a liquid
are given by mono-nitrobenzene (C6H5NO2) and carbon disulfide CS2 and
C6H5NO2, unfortunately both are toxic and explosive materials.
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Turbine 

Figure 5.25. To obtain the aerodynamic profile of some object a scale model is
disposed inside a wind tunnel, between two very large crossed Polaroid sheets. The
interference allows a very good visualization of the air streams. This method, which
has long been used to improve airplanes and rockets, is now superseded by numerical
simulation techniques.
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Materials Kerr constant
(SI units)

Sodium D light
Benzene C6H6 0.67 ¥ 10-14

Carbon disulfide CS2 3.56 ¥ 10-14

Chloroform CHCl3 -3.88 ¥ 10-14

Water H2O 5.1 ¥ 10-14

Nitrotoluene C6H5CH3NO2 1.37 ¥ 10-12

Nitrobenzene C6H5NO2 2.44 ¥ 10-12

In the absence of any applied electric field, every tiny cell with a volume
of the order of the cube of the wavelength has a global electric momentum
equal to zero since the orientation of the molecules is at random, because of
thermal agitation. An external electric field will try to orient all the molecules,
an anisotropy will be created, and finally the liquid becomes birefringent, uni-
axial, with the optical axis parallel to the direction of the electric field.

The experiment shows that Kerr-induced birefringence is proportional to
the square value of the electric field, this is not at all surprising since the phe-
nomenon should remain the same if the direction of the field is reversed. For
a given wavelength l, the birefringence Dn is given by

(5.15)

where B, a constant specific of the liquid under consideration, is called the
Kerr constant; it is usually positive and of the order of 10-13 to 10-12 (MKS
units). B, as well as the index of refraction, varies with the wavelength l. If
n, ne, and no are, respectively, the refractive index in the absence of a field,
and of the extraordinary and ordinary indices when a field is applied, we have
the following relations that have been established by Havelock:

(5.16.a)

(5.16.b)
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Figure 5.26. The Kerr cell. A Kerr cell is made of a cuvette with two parallel and
transparent windows and filled with a Kerr active material in which are immersed the
two plates of a planar capacitor. The electric field E = V/e orients the molecules of the
liquid which becomes birefringent and uniaxial.



5.7.4.1.2. Order of Magnitude of the Field Necessary for Producing 

the Kerr Effect

In its attempts to increase the degree of order in a liquid by giving a common
orientation to all the molecular electric dipoles, an electric field is disturbed
by the action of thermal agitation. Let us call M the electric dipole momen-
tum of an individual molecule, its energy in an electric field E is equal to the
scalar product Welec = ME. The effectiveness of the orientation effect of the
field is obtained by comparing Welec to the thermal agitation energy Wtherm of
the molecule at temperature T K. To evaluate Wtherm, we must examine the
number of degrees of freedom of a molecule under consideration, as we just
need an order of magnitude we will take Wtherm = kT = 25meV (room temper-
ature). If the electric momentum is taken equal to 10-26 (MKS), the equality
between the two energies is obtained for a field of 4 ¥ 104 V/m, which corre-
sponds to a voltage V of a few kilovolts if the distance between the two elec-
trodes of Figure 5.27 is 1cm.

5.7.4.1.3. Optical Kerr Switches

From a practical point of view, an important property of the Kerr effect is 
certainly the rapidity with which the birefringence is established after the
application of an electric field, allowing optical switches with rise times as
short as picoseconds. The first Q-switched lasers used nitrobenzene Kerr
cells.

We now consider Figure 5.26, the Kerr cell is placed between a crossed
polarizer and analyzer and the electric field is oriented at 45° in the direction
of the polarizer. In the absence of any electric field applied to the Kerr cell,
the liquid remains isotropic: the switch is “open,” which means that it is
opaque and that no light is transmitted. The switch is “closed” and becomes
fully transparent if the Kerr cell behaves as a half-wave plate, the emerging
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Figure 5.27. Measurement of Kerr-induced birefringence using a Jamin inter-
ferometer. A first parallel light beam generates two separate beams: one propagates
between the two plates of the capacitor and the other one outside. A polarizer sets
the polarization to be either ordinary or extraordinary inside the Kerr material. The
two beams are then recombined and interfere on a photodetector.



vibration, which is symmetrical to the incident vibration, being parallel to the
direction of the analyzer.

Numerical application: Calculate the voltage Vl/2 necessary for a Kerr cell
to be equivalent to a half-wave plate

(5.17)

As a first approximation, Vl/2 doesn’t depend on the color. For a cell with
a reasonable size (e = 1cm, l = 10cm) filled with nitrobenzene: Vl/2 = 14 ¥ 103 V,
corresponding to an electric field of 14 ¥ 105 V/m.

5.7.4.1.4. Kerr Effect Rise Time

P being the electrical momentum per unit volume, it can be considered, as a
first approximation, that its time evolution is a first-order phenomenon related
to the electric field E by a first-order differential equation of the following
kind:

(5.18)

According to (5.18), it is seen that if the electric field is initially equal to
zero and is suddenly raised to some value E, then P is progressively oriented
parallel to E and reaches, with a relaxation time t, a constant limit value equal
to tcE; c is a proportionality coefficient characteristic of the Kerr activity of
the liquid.

According to the molecules, two different mechanisms may be associated
to the Kerr effect, the order of magnitude of the time constants are quite dif-
ferent. In the case of the first mechanism, the electrical molecular dipoles
exist before the application of the electric field, the role of which is just to
orient the dipoles. All the dipoles are coupled together by electrostatic forces,
which are responsible for the viscosity of the liquid and, consequently, for the
time constant t. Mono-nitrobenzene, C6H5NO2, is a typical example of this first
category of Kerr active liquid, the time constant is of the order of a few
nanoseconds (10-9 s).

Self-induced Kerr effect: For the second category of liquids, the electric
dipole momentum is equal to zero in the absence of any applied electric 
field. The electric field then plays a double role: first, it creates electric dipoles
by separating the positive and negative centers of charges in each molecule
and, second, it orients all the dipoles. The appearance of electric dipole
momentum is due to the deformation of the electronic clouds of the mole-
cules; in this case, it is spoken of as the self-induced Kerr effect. In this second
case Kerr constants, B, as well as the rise times, t, are much smaller; carbon
disulfide, CS2, is a typical example, t is of the order of a few picoseconds 
(10-12 s).
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Static Kerr effect: The orientating electric field is a DC field or, as well, a
slowly varying field. By slowly we mean that the value and the orientation of
the field do not vary appreciably during a lapse of time of the order of the
relaxation time; the electric field of radiowave or even of a microwave are
considered to produce a static Kerr effect.

Optical Kerr effect: The orientating field is the electric field of a linearly
polarized light wave. Characterization and utilization of the optical Kerr effect
require rather important fields and had been made possible only after the
appearance of lasers.

Optical sampling: Once we know how, rapidly and periodically, to open
a gate, it becomes possible to perform optical sampling and to characterize
optical signals having rise times shorter than the response time of a 
photodetector.

If the beam F1 in Figure 5.28 is made of a succession of periodic short light
pulses (period Tsignal), and under the condition that the Kerr relaxation time
(tKerr) should be shorter than the duration of the light pulses, the beam trans-
mitted from F2 will be a succession of short pulses having the same period-
icity. If the period of the light pulses is longer than the response time tphotodetector

of the photodetector, the electric signal V will be a succession of pulses of
duration tphotodetector and a periodicity of Tsignal.

Autocorrelation Measurement of Picosecond Light Pulses

Mode synchronized lasers deliver periodic light pulses having a duration 
of the order of 1 ps or less. The response time of a photodetector and of 
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F1 Sampling light pulse 

F2 DC light pulse to be gated 

P Polarizer

An analyzer
crossed with P

Photodetector V(t) response of the photodetector

Profile of the transmitted beam 

Optical Kerr cell 

Figure 5.28. Principle of an optical gate. The two light beams F1 and F2 cross inside
a cell filled with a Kerr active liquid. F2 has a constant intensity and doesn’t usually
reach the photodetector, because of the crossed polarizer and analyzer. F1 is a
powerful and short light pulse which makes the cell birefringent, and so allows F2 to
reach the photodetector during the time of the pulse.



the associated circuitry is always much longer. Hopefully the successive 
light pulses are very identical and produced with an accurate periodic-
ity, which allows the determination of their time profile by way of optical 
sampling.

We refer to Figure 5.29; a light beam, made of periodic light pulses is first
linearly polarized by a polarizer P and then split into two beams, F1 and F2.
A half-wave plate makes the polarization of F2 orthogonal to the polariza-
tion of F1. The two beams cross inside a Kerr optical gate. An optical delay
line, made of two translatable reflecting prisms, allows a careful tuning of the
delay q between F1 and FS light pulses, so that the pulses will coincide a 
little, completely, or not at all. . . . For a given adjustment of the delay line, the
photodetector receives short periodic bursts of light that are shorter than its
response time and thus integrates the signal and delivers a photocurrent I
which is proportional to the hatched areas of Figure 5.29(c). The optical delay
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Moving table 
(parallel to Ox)

(Ox)

Periodic light pulses 

P Polarizer parallel 
to the plane of figure 

l/2 plate at 45° with P

Analyzer at 90° with the vibration
transmitted by the l/2 plate 

F2

F1

Optical Kerr cell 

Optical delay line

F1

F1

F2

F2

Dt = 2Dx/c

(b)

(c)

(a)

Figure 5.29. Optical sampler using an optical delay line. In the case of (a), the delay
between the pulses of the two beams is so important that there is almost no
superposition. In the case of (c), the pulses coincide over a long time; the photo-
detector is illuminated during the periods corresponding to the hatched areas and
delivers a DC signal, which is proportional to these areas.



q is easily varied by a translation of the prisms, a translation of Dx produces
an augmentation (or a diminution) of the delay of Dq = 2Dx/c (Dq/Dx = 2/c

= 6.7 ps/mm). The law of variation I(q) is nothing other than the autocorre-
lation function of the time variation law I(t) of an individual light pulse.

5.7.4.2. The Pockels Effect

5.7.4.2.1. Definition of the Pockels Effect

The German physicist Pockels discovered the Pockels effect, also called the
electrooptic effect, in 1893. It is a consequence of the deformation of the elec-
tron clouds of the atoms under the action of an external electric field which
produces a modification of the polarization of the medium and thus of the
index of refraction. If the material was initially isotropic, the application of
an electric field will make it uniaxial, with the optical axis parallel to the field.
In an initially birefringent material the shape of the characteristic surfaces
will change; a uniaxial material may become biaxial. The main properties of
the electrooptic effect are the following:

• It’s a linear effect: The deformation of the characteristic surfaces is pro-
portional to the modulus of the field and not its squared value.

• Because of its “electronic” origin the electrooptic effect has a very short
rise time, always subpicoseconds.

• There is no possibility of an electrooptic effect in centrosymmetric mate-
rials and especially in isotropic materials.

5.7.4.2.2. Mathematical Description of the Electrooptic Effect

In order to describe the electrooptic effect we will use the ellipsoid of the
indices (see Annex 5.B), using a general axis of coordinates and in the absence
of any external electric field, its equation is written as

(5.19.a)

Using the following convention for contracting the indices (Voigt 
notations):

the equation becomes

(5.19.b)
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5.7.4.2.3. The Electrooptic Tensor

When an external electric field E is applied, equations (5.19) remain quite
similar except that the values of the coefficients will depend on the values of
the projections of the field on the coordinate axis. As the variations are small
we will admit that the variations D(1/n2

i ) of the various coefficients are related
to the field components (Ex, Ey, Ez) through linear formulas. Using the fol-
lowing conventions for indexing the field components: 1 = x, 2 = y, 3 = z;
D(1/n2

i) can be written using a matrix formulation and [rij] is called the 
electrooptic tensor:

(5.20)

As an example let us evaluate D(1/n2
1) and D(1/n2

6):

With eighteen elements the 6 ¥ 3 electrooptic tensor is, a priori, rather
complicated. Hopefully, and as is often the case in such situations, many 
elements are equal to zero, while the other elements have either equal or
opposite values. The form of the rij tensor is determined uniquely by the point-
group symmetry of the crystal. When the symmetry is high, only a few ele-
ments are not equal to zero. Triclinic crystals are the only crystals in which
none of the eighteen elements is equal to zero.

In a centrosymmetric crystal, because of the existence of inversion sym-
metry, the properties should remain the same when the electric field is
reversed. From equation (5.20) it is seen that all the elements of the tensor
are equal to zero,

The most important electrooptic materials are lithium niobate, LiNbO3,
potassium dehydrogenated phosphate, KH2PO4 (often designated as KDP),
and potassium dideuterium phosphate, KD2PO4 (designated as KD*P).
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Electrooptic Tensors of Some Crystals

(The values of the tensor elements are given in 10-12 m/V.)

Exercise: Write the equation of the index ellipsoid in a KDP crystal in some
electric field: E = Exx + Eyy + Ezz. The symmetry of the crystal is 4̄2m, Oz is
a fourfold axis of symmetry and corresponds to the optical axis, and Ox and
Oy are chosen to make an orthogonal trihedral. The initial ellipsoid index
equations are

We now have to determine the principal axes of the last ellipsoid, that is
to say the referential for which the ellipsoid equation has rectangular terms.
This needs well-known and rather tedious mathematical manipulations; we
will only consider the special situation where the electric field is parallel to
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the optical axis Oz. The new referential is (Ox¢y¢z), Ox¢ and Oy¢ are obtained
after a rotation of 45° of Ox and Oy,

(5.21)

Equation (5.21) shows that the medium is now biaxial. As the value of r63Ez

is small as compared to 1/n2
o the three principal indices are given by

(5.22)

Equation (5.22) contains an important general result according to which
n3rij is an important parameter to be used in such cases.

5.7.4.2.4. Devices Using an Electrooptic Effect

The Pockels effect, because of its linearity and because it requires lower volt-
ages, is much more convenient than the Kerr effect for modulating a light
beam. If the applied electric field is constant, the indices will vary and produce
a phase and/or a polarization modulation of the light. If the crystal is placed
between crossed polarizers, a polarization modulation is readily transformed
into an amplitude modulation. Thanks to the very short time constant of the
Pockels effect, very high frequencies of modulation can be reached.

The first thing to do in applying an electric field is to evaporate electrodes
on two opposite sides of a crystal. The electric field can be perpendicular near
to the direction of propagation of the light or collinear with it. The second
arrangement, Figure 5.30(b) requires transparent electrodes.
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Figure 5.30. The two main arrangements for applying an electric field inside a crystal.



Phase Modulator

We refer to Figure 5.31; an electric field is applied in the direction of the
optical axis, which is also parallel to the propagation of an incident beam. Ox

and Oy are the directions of the privileged polarizations; Oz is the direction
of propagation. A polarizer fixes the incident polarization to be parallel to Ox,
for this polarization the index of refraction is . If
w is the angular frequency of the light wave and Eoptic,in x sinwt is the inci-

dent optical vibration, the output vibration Eoptic,out can be written as

Equation (5.23) represents a light wave (vacuum wavelength l), phase
modulated by the voltage V(t).

Amplitude Modulator

The arrangement of Figure 5.32 allows the transformation of a phase modu-
lation into an amplitude modulation. A KDP crystal, with its optical axis par-
allel to the direction of propagation Oz, is placed between a polarizer and a
crossed analyzer. The polarizer has been oriented so as to be parallel to one
of the privileged directions (Ox) of vibration in the KDP crystal when no
voltage is applied. According to equation (5.21), the privileged vibrations are
along Ox¢ and Oy¢ in the presence of an electric field parallel to Oz. Before
reaching the analyzer the beam crosses a quarter wavelength plate, the neutral
axes of which are, respectively, parallel to Ox¢ and Oy¢.
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Figure 5.31. Phase modulator. A voltage V(t) is applied to a KDP crystal; the index
of refraction and the optical length are not constant, their variations follow the
variation of the voltage Æ phase modulation of the transmitted beam.

(5.23)



The electric field of the optical wave arriving at the KDP crystal is written
as

The x¢ and y¢ components of the incident optical vibration are in phase,
after the crystal there is a phase difference G which, according to equation
(5.22), is given by

(5.24)

The electric field and the light intensity after the crystal are given by

The graph of Iout versus V is plotted in Figure 5.33(b). Near the origin the
curve can be assimilated to a parabola, which is not well adapted for a linear
modulation. Let us evaluate the output signal in the case of a sine signal V(t)
= aVp sinwt of small amplitude (a is supposed to be much less than unity):
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Figure 5.32. Amplitude modulator. The privileged vibrations in KDP are along Ox

and Oy if no voltage is applied, and along Ox¢ and Oy¢ in the presence of an electric
field parallel to Oz, (Ox, Ox¢) = 45°. The polarizer and the analyzer are, respectively,
parallel to Ox and Oy. The neutral axes of the l/4 waveplate are parallel to Ox¢ and
Oy¢.
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According to equation (5.26), the variations of Iout do not reproduce the
modulating signal V(t); this drawback could be overcome by using an elec-
trical bias equal to Vp /2 (the working point being in coincidence with the
turning point F). We are going to show how a l/4 wave plate provides an
elegant optical solution, the phase difference G is increased by ±p/2, the
choice of the sign corresponds to the fact that the polarizer is parallel to one
bisector, or the other, of the angle (x¢, y¢); in formula (5.25), G should be
replaced by (G ± p/2):

(5.27)

5.7.5. Magnetic Birefringence

5.7.5.1. The Faraday Effect

The application of a magnetic field makes a material birefringent. A magnetic
field involves a cross product and its definition needs a referential: for that
reason, vectors of that kind are called axial vectors (or also pseudo vectors),
in opposition to ordinary vectors, such as an electric field, which are called
polar vectors. The symmetries of the two kinds of field vectors are quite dif-
ferent, and so are the properties of electrical and magnetic birefringence.

Faraday studied the action of a magnetic field on the optical properties of
a transparent material for the first time in 1845. The basic experiment per-
formed by Faraday is described in Figure 5.34: a linearly polarized light beam
propagates along the direction of a magnetic field to which is submitted a
glass rod, the polarization remains linear but its direction rotates through
an angle a which is proportional to the length l of the medium traversed and
also to the magnetic field H. The direction of rotation remains the same if the
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propagation is reversed and is attached to the direction of the magnetizing
current. a is given by equation (5.28):

(5.28)

The proportionality coefficient r, designated as the Verdet constant, is con-
sidered positive when the rotation occurs in the direction of the current. In
most cases r is positive; materials in which it is negative can be found, the
most famous being iron salts and potassium bichromate, which often corre-
spond to materials with paramagnetic atoms. The Verdet constant is very sen-
sitive to the color of light; an order of magnitude is one degree per tesla and
per centimeter for liquids and solids (at 0.5mm). In a field of 1 T (104 Gauss),
which is rather an important value, a 1 cm long cell, filled with water pro-
duces a rotation of about 2°. This angle is multiplied by a factor of about seven
if the water cell is replaced by a 1cm long piece of heavy flint glass contain-
ing lead oxide.

5.7.5.2. Comparison with Natural Optical Activity

The Faraday effect bears a resemblance to natural optical activity, the main
difference comes from the axial character of the magnetic field and has
already been mentioned: it’s a nonreciprocal effect, which simply means that
the direction of rotation is fixed by the magnetic field and is independent of
the direction of propagation. The polarization behaves differently in the case
of natural optical activity where the direction of propagation is reversed with
the direction of propagation.

The best illustration of the difference between the two situations is
observed when light is reflected by a mirror and makes a double transit inside
the sample. In Figure 5.35(a) a levorotatory active sample is crossed by a light
beam, the polarization rotates at some angle; the light is reflected by a mirror

a r= lH .
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Figure 5.34. Basic Faraday effect experiment. A transparent material is put along the
axis of a solenoid fed with an electric current I. A rectilinear polarized light beam
propagates parallel to the magnetic field. During the propagation, the polarization
remains rectilinear, but rotates through an angle, which is proportional to the length
of the traversed medium and to the magnetic field. The sign of the rotation changes
with the direction of the field. The optical vibration rotates in the same direction as
the current in the coil, whatever the beam propagation direction along the axis.



and again crosses the sample, the polarization rotates the same angle, but in
the other direction and is finally parallel to its initial orientation. In Figure
5.35(b) the sample is submitted to a magnetic field, the second transit pro-
duces a rotation a in the same direction as the first: the initial and final polar-
izations don’t coincide and make an angle equal to 2a.

5.7.5.3. Optical Faraday Isolators

In order that a source emitting coherent electromagnetic waves works cor-
rectly, which means with a constant power and stable frequency, any feed-
back, even very small, should be carefully avoided. This problem is very
general and is also met in microwave where the generators (klystron, car-
cinotron, or Gunn diode, . . .) are always efficiently decoupled from their load
by a uniline component. In the case of lasers, as in the case of the previous
oscillators, the working conditions are determined from a stationary wave
pattern inside some resonator. A part of the signal coming back to the source
contributes to the stationary waves process, the properties of which then
depend on the phase of the return signal.

A Faraday cell is placed between a polarizer and an analyzer making an
angle of 45°. The current is tuned for a 45° Faraday rotation for one transit,
and 90° for a double pass. The emitted light is polarized at 45° with regard to
the analyzer. The feedback light, which is polarized by the analyzer and which
takes, after a 45° Faraday rotation, a polarization orthogonal to the polarizer
is blocked and doesn’t reach the laser.

5.7.5.4. The Faraday Effect Ammeter

The Faraday effect proves to be useful for measuring electric currents thanks
to the magnetic field produced in a coil. The main interest of such a device
comes from the high electric insulation between the wire in which the current
is circulating and the meter. A basic arrangement for measuring a current is
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(a)

Natural optical activity Faraday effect

(b)

H

Figure 5.35. Comparison between natural optical activity and the Faraday effect.
After a double transit, the input and return polarizations are parallel in the case of
natural activity and orthogonal in the case of the Faraday effect.



described in Figure 5.34, the electric wire is wound around a glass rod with
parallel end faces; the measurement of the rotation of the polarization and
equation (5.28) give the value of the intensity.

Currents in a lead raised to a very high voltage can be easily measured
using a Faraday ammeter, the corresponding arrangement is shown in Figure
5.37. An optical fiber is wound around the lead, in this case the current is not
the same at the different points of the Faraday material: an integral is
involved. Hopefully, Ampère’s theorem shows that the rotation of the polar-
ization is proportional to the current. If N is the number of turns made by the
optical fiber around the wire, we have

(5.29)

An important effort in developing optical fiber ammeters has been pro-
duced between 1980 and 1990; unfortunately, they appear to be very sensitive

a r r r= = =Ú ÚH dl H dl NI
fiber fiber

.
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Figure 5.36. Optical Faraday isolator.
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Figure 5.37. Optical fiber ammeter for measuring the current in a high voltage wire.



to temperature variations and also to mechanical vibrations (50 or 60 Hz) that
are often met in electrotechnical equipment. Nevertheless, they remain quite
attractive because of their large dynamics and their short rise time.

5.7.5.5. The Cotton-Mouton Effect, the Voigt Effect

The Voigt and Cotton-Mouton effects have been, respectively, discovered in
1902 and 1905 and have taken the names of their discoverers. The difference
with the Faraday effect is that the magnetic field is now applied perpendic-

ular to the propagation of the light.
The Voigt and Cotton-Mouton effects are very similar; the first is con-

cerned with gases and the second with liquids. As for the optical Kerr effect,
the birefringence is a consequence of the orientation of the molecules by the
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Polarizer AnalyzerNorth pole

South poleTransparent 
sample

B

Figure 5.38. The Voigt and Cotton-Mouton effects. A transparent isotropic material
is made birefringent (uniaxial) after the application of a magnetic field. The Voigt effect
(gas) and the Cotton-Mouton effect (liquid) correspond to propagation along a
direction orthogonal to the field.

Polarizer

Analyzer

Electromagnet

Figure 5.39. The Magnetooptic Kerr effect. During the reflection on a mirror made
of a ferromagnetic material the polarization of the reflected beam is controlled by the
presence of a magnetic field.



magnetic field. In the absence of any external field the material is isotropic
and becomes uniaxial after the application of a magnetic field. The difference
between the values of the principal indices is proportional to the square of
the field with a formula quite similar to the Kerr effect:

(5.30)

For organic materials such as mono-nitrobenzene, the proportionality
coefficient C is of the order of 10-14 MKS units. A field B of 4 T (40,000 Gauss)
is necessary to produce a phase difference of p/4 after 25cm. Weaker, by about
three orders of magnitude, the Voigt effect has mainly a theoretical interest
because it allows us to deduce a magnetooptical effect from the Zeeman
effect. In the same way, electrooptical effects are connected to the Stark
effect.

5.7.5.6. The Magnetooptic Kerr Effect

The magnetooptic Kerr effect, which should not be confused with the elec-
trooptic Kerr effect, occurs when a linearly polarized light beam is reflected
at about normal incidence on a ferromagnetic material having its magnetiza-
tion normal to the plane of the mirror: the reflected beam is elliptically polar-
ized. The ellipse is very flat (ratio of the two axes ª 10-3). The angle of the
main axis with the direction of the linear incident polarization is proportional
to the magnetization, for saturated iron this angle is small but easily measur-
able (ª 20min). Using appropriate materials, such as YIG (Yttrium Iron
Garnet) more important angles can be obtained (a few degrees). The magne-
tooptic Kerr effect is used to optically read magnetic memories in which the
information is stored in magnetic domains having their magnetization per-
pendicular to the plane of the sample; an upside magnetization being, for
example, associated to a zero, and a downside to a one.

n n C H C
B

1 2
2

2

0

- = =l l
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Polarizer 
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domains 

Figure 5.40. Optical reading of magnetic
memories. A lens focuses the reading beam
on a magnetic domain; the polarization of
the reflected beam carries information,
which allows the determination of the
magnetization at the focus. Mechanical
scanning allows reading the different
domains.



Annex 5.A

Ray Tracing in Uniaxial Media

5.A.1. Construction of the Refracted Beam on 

an Isotropic/Uniaxial Interface

We will limit ourselves to the most simple and frequent case where the optical
axis is parallel to the plane of incidence. In all the following examples the
medium is negative uniaxial (ne - no < 0). In all cases the ordinary ray and the
normal ray coincide and may be obtained either by Descartes’ or Huygens’
constructions, this not true for the extraordinary ray and normal ray. The
polarizations are represented by the electric displacement vectors and Do;
both vectors are parallel to the wave plane, the extraordinary polarization De

is the projection of the optical axis on the wave plane and the ordinary polar-
ization is perpendicular to the optical axis.

In the case of normal incidence, the directions of the ordinary and extra-
ordinary rays in Figure 5.A.1 coincide, however, they don’t propagate at the
same speed: a linear incident polarization will give an elliptical refracted
polarization. For a general angle of incidence, there are two refracted rays
with orthogonal polarizations (De and Do in Figure 5.A.1), they can also be
traced using the Descartes or Huygens constructions.

At normal incidence ordinary and extraordinary rays remain collinear, a
linear incident polarization giving an elliptical refracted polarization. For an
oblique incidence there are two different refracted rays, polarized at right
angles, they are different from the normals, which have not been shown in
Figure 5.A.2. Rays have been obtained by the Huygens construction; normals
would be obtained by the Descartes construction.

When the optical axis is perpendicular to the interface and parallel to the
plane of incidence (Figure 5.A.3), any ray arriving at normal incidence can be
considered as ordinary, whatever its polarization: the incident and refracted
beams have exactly the same polarization. An oblique incidence with any
polarization gives two refracted beams having orthogonal polarizations.
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In Figure 5.A.4 the optical axis is still parallel to the plane of incidence,
but is now oblique with regard to the interface. Even at normal incidence
there are two different refracted rays, the ordinary ray being in the prolon-
gation of the incident ray.
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Figure 5.A.1. Ray tracing when the optical axis is orthogonal to the interface and
parallel to the plane of incidence. Intersections of the characteristic surfaces are just
circles. The second medium is equivalent to some isotropic medium with two indices
no and ne. Rays and normals coincide.
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Figure 5.A.2. Ray tracing when the optical axis is parallel to the interface and to the
plane of incidence.
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5.A.2. Refraction of a Monochromatic Beam 

by a Birefringent Prism

All the prisms considered in this section have been cut in a uniaxial negative
material (ne < no). The incident rays are monochromatic, orthogonal to the
first interface and are not polarized (natural light).

The case described in Figure 5.A.5 is very simple, the optical axis is per-
pendicular to the plane of incidence and the constructions of the refracted
rays are made as if we had two isotropic materials of respective indices no

and ne. After the first interface, ordinary and extraordinary rays are collinear
but they propagate at different speeds, the second refraction orientated the
two families of rays in two different directions. Either Descartes’ or Huygens’
constructions can be used.

Uniaxial negative

Incident wave plane

Refracted wave plane

Optical axis

Air

Normal incidence 

Uniaxial negative 

Incident wave plane

Optical axis

Air

Ordinary
Do

De Extraordinary

Oblique incidence 

Figure 5.A.3. Ray tracing when the optical axis is parallel to the plane of incidence
and perpendicular to the interface.
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Optical axis

Air
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Ordinary

De

De

Do

Do

Figure 5.A.4. Ray tracing when the optical axis is parallel to the plane of incidence
and has no special orientation with regard to the interface.
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Do

De

Optical axis

Ordinary

Extraordinary

1

no

ne

Figure 5.A.5. Normal incidence, optical axis parallel to the first interface and
orthogonal to the plane of incidence. The behavior of the race is the same as if we had
two isotropic materials of refractive indices ne and no. Descartes’ construction has
been used.

1
1/ne

1/no

Optical axis

Figure 5.A.6. Normal incidence, optical axis
orthogonal to the first interface and parallel to
the plane of incidence. Whatever its direction,
the incident polarization is orthogonal to the
optical axis and should be considered as
ordinary, the second refraction gives only one
refracted beam with the same polarization.

Optical axis

Figure 5.A.7. Normal incidence on the
first interface, optical axis parallel to the
plane of incidence in any direction. For 
the sake of simplicity the construction of
the emerging ordinary ray has not been
shown.
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5.A.3. Separation of Extraordinary Rays from 

Ordinary Rays by a Birefringent Plate

Figure 5.A.8 shows an unpolarized ray arriving at a parallel birefringent plate
made of calcite; the problem is to calculate the distance D between the extra-
ordinary and ordinary emerging rays. The plate has been cut so that the
optical axis is parallel to the plane of incidence and makes an angle of 45°
with the surface of the plate. We introduce two axes, Ox and Oy, respectively,
parallel and orthogonal to the optical axis. Let us, respectively, call q and a
the angles of the extraordinary ray OO¢ with the normal to the plate and with
Oy, we have q = (a - 45°).

The equation of the extraordinary sheet of the inverse index surface is

the slope of the tangent at point (x, y) is easily deduced:

Let (X, Y) be the coordinates of the point of intersection of the extraor-
dinary ray with the extraordinary sheet, N is defined by the fact that the
tangent is parallel to the plate and has a slope of -1:

(5.A.1)
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Figure 5.A.8. A parallel plate of calcite of
thickness e, has been cut and polished so
that the optical axis makes an angle of 45°
with the end faces. An incident ray at
normal incidence is split into an ordinary
(IO) and an extraordinary (IE) ray and
finally gives two parallel transmitted beams.



5.A.4. Realization of Polarizers

5.A.4.1. Nicol Polarizer

Because of the noticeable difference between the values of the ordinary and
extraordinary indices in calcite, it is possible to find conditions where the
ordinary beam is totally reflected, while the extraordinary beam is fully trans-
mitted. The first arrangement of this kind had been proposed in 1828 by Nicol,
and for many years a polarizer was simply designated as a “Nicol,” an exhaus-
tive description is not so easy and requires a good knowledge of calcite crys-
tals and the way they can be cleaved; the development of a Nicol polarizer
has been made possible by the large size of calcite samples than can be found
(several tens of cm3).

Conditions for total internal reflection should be obtained from the 
direction of the normal and obtained using the Descartes construction. The
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Figure 5.A.9. (a) shows a natural rhombus of calcite (AD ª 2 cm, AB ª 5 cm). In (b)
it is shown how to make a polarizer: the sample is sawed along the diagonal plane AC,
the two faces are carefully polished and reassembled using a suitable glue (initially
Canada balsam) with a refractive index (1.53) intermediate between the two indices
of calcite (1.49, 1.66). The ordinary ray is totally reflected by the glue, the extraordinary
ray being transmitted.

Ordinary

Extraordinary
a

38°5

Figure 5.A.10. Glan prisms. The gap between the two half-prisms is filled with glue
for the Glan-Thomson prism and with air for the Glan-Foucault prism.
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thickness of the film of glue should be very thin but, however, thick enough
to avoid an optical tunnel effect. The lower face DC is painted black to absorb
the light. The incident and transmitted beams are parallel.

5.A.4.2. Glan-Thomson, Glan-Foucault, and Wollaston Prisms

The Nicol prism is only of historical interest, other arrangements such as the
Glan prisms are now preferred, they are based on the same principle and also
made of calcite, they need less material, and the orientation of the optical axis
is easier. A Glan polarizer is made of two identical half-prisms separated by
a thin film of glue (Glan-Thomson) or, more simply, of air (Glan-Foucault). To
be totally reflected on the intermediate film a ray must lie inside a cone having
its axis orthogonal to one face of the prism, at an angle of 30° for a Glan-
Thomson prism, and at 10° for a Glan-Foucault prism. The latter prism having
the advantage of accepting more powerful beams, which is important in the
case of laser beams.

The Wollaston prism is a polarizing beam-splitter, which orientates one
polarization in one direction and the orthogonal polarization in another direc-
tion. It is made of calcite or of quartz of two half-prisms assembled as indi-
cated in Figure 5.A.11, they can be cemented or optically contacted. The trick
is that an ordinary ray in the first section becomes an extraordinary ray in the
second, and vice versa. According to the prism angle the separation between
the emerging beams ranges from 10° to 45°.

Optical
axes 

1/ne

1/no

Separation between 
the two half-prisms

Figure 5.A.11. Wollaston beam splitter. The constructions have been drawn for the
case of quartz, which is a positive uniaxial material.



5.A.5. Birefringence and Dispersion

Both ordinary and extraordinary indices vary with color. A spectroscope using
a birefringent prism gives two spectra. The angular separation between ordi-
nary and extraordinary spectra is much larger than the separation between
the blue and red light rays. The dispersion of calcite is normal, angular devi-
ation is more important for blue light than for red light.
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Figure 5.A.12. Birefringence and dispersion.



Annex 5.B

Characteristic Surfaces in Anisotropic Media

5.B.1. Fresnel Formulas in Anisotropic Media

The relative positions of the four basic vectors E, D, H, B were easy to find
from the elementary geometrical properties of a vector product, we now want
to establish quantitative relationships between the frequency of the waves,
the module, and the direction of the wave vector. We also want to find the
rules that give the directions of the privileged vibrations D¢ and D≤.

We start from Maxwell’s equations for planar harmonic waves and obtain
the wave equation for the electric field

(5.B.1)

To use this tensor equation we choose the principal axes of the tensor as
the axes of coordinates,

(5.B.2)

Equation (5.B.2) represents a set of three homogeneous and linear 
equations that allow the determination of the three components of the elec-
tric field,

(5.B.3)

If we want the set of equations to have a solution other than the trivial
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solution (Ex = Ey = Ez = 0), the determinant should be equal to zero:

(5.B.4)

In the three-dimensional space of vectors k (kx, ky, kz) equation (5.B.4) rep-
resents a sixth-degree surface that is sometimes called the surface of the

normals, since k is orthogonal to the wave surfaces. It’s more convenient to
introduce the surface of the indices which is just homothetic with a ratio
equal to c/w (c is the speed of light and w is the angular frequency).

Let us now express the wave vector k versus its unit vector s (sx, sy, sz),
the angular frequency, the vacuum wave vector modulus k0 = w /c, the speed
of propagation V, and the refractive index n = c/V associated with the planar
wave under consideration,

Taking into account the fact that s2
x + s2

y + s2
z = 1, the following two 

equivalent equations are obtained; they are called the Fresnel equations 

for normals:

(5.B.5)

(5.B.6)

Equation (5.B.6) is a second-degree equation if we take n2 as the unknown;
we will admit that for a given direction s (sx, sy, sz), two positive solutions are
found for n2 and, consequently, two real solutions, n¢ and n≤, for the index of
refraction.

5.B.2. Surface of the Normals (or Surface of the Indices)

The surfaces that we are now introducing are useful for geometrical con-
structions of the normals to the wave surfaces (Descartes’ construction).

Given a planar wave having wave planes orthogonal to some unit vector
s of (sx, sy, sz) in some coordinate axis (Oxyz), starting from the origin O and
along the direction of s, we plot two points P¢ and P≤ such as

(5.B.7)

When the direction of s is varied, the points P¢ and P≤ move along a double
sheet surface which is the index surface. The planes drawn orthogonal to OP¢
and OP≤ are wave planes: there are two families of plane waves.
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Equation of the index surface: The coordinates of points P¢ and P≤ are
given by

The equation of the index surface is

The equation with the (xOy) plan is

Figure 5.B.2 shows the general aspect of the index surface which, except
for a center of symmetry, is rather complicated. Because of the existence of
two umbilical points, D¢ and D≤, the most general birefringent material is said
to be biaxial, OD¢ and OD≤ are called the two optical axes of the material.
For a propagation occurring along the optical axes the two refractive indices
are equal.

5.B.3. Wave Surface 

(or Surface of the Inverse of the Indices)

In Section 5.4.2 we have described Huygens’ wavelets inside an anisotropic
material, these wavelets had been defined as the set of points reached, after
some propagation time t, by a vibration that had been coming from the origin
of coordinates. For a given homogeneous material all the wavelets are homo-
thetic, initially we had decided to make t = 1s, thus giving a simple interpre-
tation of OP which was simply equal to the speed of light V along the light ray.

Instead of plotting a length equal to V, we can also plot a length equal to
V/c, which is just the inverse of the index of refraction. We will call the surface

of the inverse of the indices this new surface; the expression is not very
elegant but it avoids any confusion. Other expressions can be found in text-
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Figure 5.B.1. The two sheets of the index surface.



books, such as ray surfaces, because they are used for the geometrical con-
struction of light rays (Huygens’ construction).

Relation Between Index and Inverse Index Surfaces

The relative positions of the two surfaces correspond to a well-known, but
rather complicated, geometrical transformation which is shown in Figure
5.B.3 and clearly illustrates the fact that the wave surface (n-surface) is the
envelope of the wave plane.
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Figure 5.B.3. Transformation of the surface wave into the index surface. A light ray
intersects the surface wave at point R, the wave plane intersects the wave surface at
point R; the projection of the origin on the wave plane belongs to the wave surface.
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5.B.4. Index Ellipsoid

We consider a biaxial material, and the axis in which the permittivity tensor
is diagonal. We introduce the indices of refraction associated to the principal
dielectric constants:

By definition the equation of the index ellipsoid is

(5.B.8)

If the material is uniaxial, it is a revolution ellipsoid around the optical
axis.

The index ellipsoid is mainly used to find the directions of the privileged
vibrations associated to a given wave vector or, on the contrary, to find 
the direction of propagation of a wave that carries a given light vibration 
(the following results come from rather tedious calculations that are not 
given here and can be found in the book Principles of Optics by Born and
Wolf):

(a) In Figure 5.B.5(a) the direction of the wave vector k is known. To obtain
the privileged light vibration we consider the ellipse of intersection of a
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are, respectively, the light rays and the normals. A wave plane is the envelope of the
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wave plane (P) with an index ellipsoid having its center O on (P): the two
axes, ON¢ and ON≤, of this ellipse are, respectively, parallel to the privi-
leged vibrations and the associated indices are equal to the length of the
two segments.

(b) In Figure 5.B.5(b) the direction of vibration, OM, is given. We consider
first the normal MN to the ellipsoid at point M and the plane (P ) that con-
tains OM and MN; the direction of the wave plane that carries the vibra-
tion OM is parallel to the plane that contains OM and is orthogonal to
(P ).

Example of a Uniaxial Material

In the case of a uniaxial material the constructions are, of course, easier.
Figure 5.B.6 corresponds to Figure 5.B.5(a) in the simpler case of uniax-

ial material. N¢N≤ which is orthogonal to the optical axis is the ordinary vibra-
tion, the refractive index, ON¢, is always equal to no, whatever the orientation
of the wave vector. The extraordinary vibration M¢M≤ is the projection of the
optical axis on the wave plane, the corresponding index is nextra = OM¢ = OM¢.
Let us call q the angle between the optical axis and the wave vector, and 
(x, y) the coordinate of M¢; we can write

(5.B.9)
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wave vector.
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Direction of propagation of a wave
carrying a given vibration.

Figure 5.B.5. Privileged vibrations and associated direction of propagation in the
most general case of a biaxial material.
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It is left as an exercise to use the method of Figure 5.B.5(a) and to show
that a vibration orthogonal to the optical axis can propagate in any direction
and to examine what happens when the vibration is not orthogonal to the
optical axis. (Hint: The normal to the ellipsoid index always intersects the
optical axis.)
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ne
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Figure 5.B.6. Privileged vibrations and corresponding indices in a uniaxial material.



Annex 5.C

Interference Using Polarized Light Beams. 

Wave Plates

5.C.1. Orthogonally Polarized Beams 

Are Unable to Interfere

Let us first consider two scalar signals, (S1, S2), with sinusoidal time variations
of the same frequency w, let (A1, A2) and (I1, I2), respectively, be their ampli-
tudes and intensities. The two signals are considered to interfere if the
response of a detector, receiving them simultaneously, is not equal to the addi-
tion of the responses obtained for separate receptions, but depends on their
phase difference. More accurately, we can write

The superposition of the two signals is written as

The corresponding intensity is

(5.C.1)

The last term of (5.C.1) describes the interference phenomenon.
Instead of scalar signals let us now consider vector signals V1 and V2,

The intensity corresponding to the superposition of the two signals V1 and
V2 is given by

(5.C.2)

If the two vectors A1 and A2 are parallel, formulas (5.C.1) and (5.C.2) are
identical, but if they are orthogonal, their scalar product is equal to zero and
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the interference term disappears: I = I1 + I2. Two orthogonal vector signals

cannot interfere.

A Polarizer Allows the Interference of Two Orthogonal Vector

Vibrations

Two polarized light beams, having any initial polarization, after having been
transmitted by a polarizer, are parallel to the direction of the polarizer and
are thus able to interfere. In Figure 5.C.1 have been represented two orthog-
onal vibrations V1 and V2, respectively, parallel to the unit vectors x and y and
a direction parallel to the unit vector p which makes an angle a with the 
direction of x; omitting the ejwt factor the vibrations are written V1 = A1x and
V2 = A2e

-jjx.
After the polarizer, the addition of the two vibrations V1 and V2 is described

by

The intensity is given by

(5.C.3)

where A1A2 sin2acosj corresponds to interference.

5.C.2. Interference Using Polarized Monochromatic 

Light Beams

Wave plates, also called retarders, are optical components that are very often
met in many optical arrangements. They are very thin plates (10–100mm) of
a birefringent material with polished and parallel faces. Most of the time they
are used at normal or quasi-normal incidence. As the thickness is very small
the lateral separation between ordinary and extraordinary rays is negligible
(see Section 5.A.3).

We call the neutral lines of such plates the two orthogonal privileged
directions of vibration associated with a propagation perpendicular to the
faces. To each neutral line is associated a refractive index (ordinary and extra-
ordinary) and a speed of propagation. The neutral line with the highest speed

I A A A A= + +1
2 2

2
2 2

1 2 2cos sin sin cos ,a a a j

I A A e A A e
j j= +( ) +( )- +

1 2 1 2cos sin cos sin ,a a a aj j

P V V p p p= +( )[ ] = +( )-
1 2 1 2A A e

jcos sin .a aj

x

 y 

p

a 

Figure 5.C.1. A polarizer allows the interference of
orthogonal vibrations.



(and the smallest index) is often referred as the fast axis and the direction
perpendicular to it is the slow axis.

We consider Figure 5.C.2; x, y, p1, and p2 are, respectively, the unit vectors
of the neutral lines of the wave plate and of the two polarizers. nx and ny are
the indices for vibrations along x or y. Before and after P1 the vibrations can
be written as

Before (WP) the x and y components of the vibration are in phase, after
that they have a phase difference equal to f = (2pe/l)(nx - nz) = 2peDn/l and
the vibration is A(x cosa1 + ye-jf sina1). The vibration and the final intensity
Iout after the last polarizer are

(5.C.4.a)

(5.C.4.b)

(5.C.4.c)

(5.C.4.d)

5.C.3. Wave Plates

A wave plate, or retarder, is said to be l/n, when the phase difference Df
between the x and y components is equal to 2p/n. Since retarders modify the
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Figure 5.C.2. The light of a natural source is collimated by a lens and polarized by
a first polarizer P1 and then crosses a wave plate WP and then a polarizer P2. The
interference pattern is examined on a screen.
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phase difference between the two orthogonal projections of a given vibration,
they alter the state of polarization of a beam; this is their main role.

Note that a l plate, also called a full-wave plate, doesn’t at all change the
polarization (Df = 2p).

Half-Wave Plate (l /2 plate) Æ f = p

We refer to Figure 5.C.3 and to the formulas below the illustrations. The sub-
scripts in and out just mean before and after the wave plate. The elliptical
character of the incident vibration is due to the presence of the term j. The
phase shift y that exists in both components of the transmitted vibration is
not important and can be canceled by a suitable change of the time origin; we
can symbolically consider that, in the case of a half-wavelength plate, we have

In other words, the transmitted polarization is symmetric to the incident
polarization, with respect to the neutral lines. As a consequence, a linear
polarization remains linear after a l/2 wave plate. An easy way to adjust the
orientation of the polarization of a beam is to rotate a l/2 wave plate around
an axis orthogonal to the plate.

Quarter-Wave Plate (l/4 Plate Æ f = p/2). Circular Polarizers

l/4 are mostly used, starting from linear vibrations, to obtain elliptical vibra-
tions with predeterminate properties, and especially circular polarizations.

The transformation of a linear polarization in a circular one is the most
important application of l/4 plates; the angle of the linear polarization with

X X

Y Y

out in

out in

=
= -

Ï
Ì
Ó

,

.

x

y

x

y

Xin = Acoswt,
Yin = Bcos(wt + j).

Incident elliptical vibration

Xout = Acos (wt + y) = Acoswt¢,
Yout = Bcos(wt + j + y + p) = -Bcos(wt¢ + f).

Transmitted elliptic vibration.

Figure 5.C.3. Description of an elliptic vibration, before and after a l/2 wave plate.
The transmitted ellipse is symmetric to the incident ellipse, with regard to the neutral
lines.



the neutral lines should be equal to 45°. If the angle is different, an elliptical
polarization is obtained, the axes of the ellipse always coincide with the
neutral lines, and the ratio of the two axes is fixed by the angle of the linear
polarization with the neutral lines.

A recipe for obtaining the sign of the rotation is given in Figure 5.C.5.

Order of Magnitude of the Wave Plate Thickness

The most common materials for making wave plates are quartz (Dn ª 0.009)
and calcite (Dn ª 0.18). For a half-wave plate at a wavelength of 0.5mm the
thicknesses are the following: el/2,quartz = 14mm and el/2,calcite = 1.4mm; in the case
of calcite the plates would be too thin, in this case it would be better to make
plates with a thickness of l/2 + pl. Some transparent organic materials, such
as cellophane, or scotch tape if submitted to some stress during polymeriza-
tion, are birefringent; the birefringence is small, which means that the wave
plates will be thicker (hundreds of mm) and easier to manipulate and much
cheaper.
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Figure 5.C.4. Transformation of a linear polarization into a circular polarization.
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Figure 5.C.5. The elliptic polarization rotates in the same direction as the rotation
that puts in coincidence the initial linear polarization with the slow axis with an angle
less than 90°.



Annex 5.C. Interference Using Polarized Light Beams. Wave Plates 245

Compensators

Babinet compensator: Compensators are a type of retarder in which the
phase difference is adjustable and finely tunable. We refer to Figure 5.C.6: for
a light beam propagating along AB, a vibration having its polarization paral-
lel to y is ordinary in the first prism and extraordinary in the second. It’s
exactly the opposite for a vibration parallel to x. The respective thicknesses,
a and b, covered by the light in each prism will vary when the prisms are
shifted. The phase difference between the two polarizations is given by

(5.C.5)

A high sensitivity for tuning the phase difference is readily obtained if a
small value is given to the acute angle of the prisms. To work properly a
Babinet compensator must receive beams with narrow enough cross sections,
if not, the phase difference and, hence, the polarization will not be constant
from one point to another, inside a given cross section. This drawback is
avoided with the Soleil compensator.

Soleil compensator: This second type of compensator is described in
Figure 5.C.7. The phase difference introduced by the Soleil compensator is
the same for all rays and is given by

(5.C.6)

Lyot Optical Filter

A Lyot optical filter, Figure 5.C.8, is made of a succession of parallel polariz-
ers between which birefringent plates (L0, L1, L2, . . .) have been inserted. The
neutral lines (x and y) are, respectively, parallel to one another and make an
angle of 45° with the unit vector p of the polarizers.
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Figure 5.C.6. Babinet compensators. Two geometrically identical prisms have been
cut in a piece of quartz with their optical axes oriented as shown in the figure. The
two hypotenuses are put in contact and can smoothly and accurately slide one against
the other.



nx and ny being, respectively, the refractive indices of the plates for vibra-
tions polarized along x or y, and j = 2p/l(nx - ny) being the phase difference
introduced by the first plate, the phase differences introduced by the plates
are equal to

The vibrations after the different polarizers P1, P2, P3, . . . , Pn are, respec-
tively, written as a1p, a2p, a3p, . . . , anp.

Vibration transmitted by the Lyot filter: 

It can be shown that
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Figure 5.C.7. Soleil compensator. Again two sliding
prisms are used, but their optical axes are now parallel
to one another and parallel to the plane of incidence. A
parallel plate has been cut in the same material as the
two prisms, its thickness is equal to the small side of each
prism, and its optical axis is orthogonal to that of the
prisms.
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Figure 5.C.8. Scheme of a Lyot optical filter.
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If I and I0 are the incident and transmitted intensities, we have

(5.C.7)

According to (5.C.7) the ratio I/I0 differs from zero only if j is very near
to an integer multiple of 2p, and the graph of the variation of I/I0 versus wave-
length is a succession of very narrow maximums equal to one.

Numerical Application

Thickness of the first plate e = 250mm, (nx - ny) = 10-2; four plates (n = 3).
The well-transmitted wavelengths l are given by

If l belongs to the visible: 0.4 < 2.5/p < 0.8mm Æ p = {4, 5, 6} Æ l = {0.625,
0.500, 0.417}.

The frequencies of a Lyot filter quickly vary with thickness and birefrin-
gence, as these two parameters are strongly temperature dependent, it’s nec-
essary to stabilize accurately the temperature, at the same time a fine-tuning
of the filter can be obtained by adjusting the temperature.

5.C.4. Interference with Polarized White Beams

We now come back to the arrangement of Figure 5.C.2 and to formulas
(5.C.4.a,b,c,d) which give the intensity of the light on the screen, this 
intensity is uniform over all of the screen and depends on two different 
parameters:

• The phase difference f introduced by the wave plate.
• The angles a1 and a2 between the neutral lines and the directions of the

polarizer and of the analyzer.

For the sake of simplification we will only consider the cases where the
analyzer and the polarizer are parallel (a1 = a2) or orthogonal (a1 = a2 + 90°),

(5.C.8.a)

(5.C.8.b)

The phase difference f depends on the frequency and thus on the color of
the light. If the initial light is white, the aspect of the screen will result in the
superposition of the various interference patterns corresponding to all the
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colors of the white spectrum. The radiations for which f = 2pp give a
maximum, while the radiations for which f = (2p + 1)p are completely faded.

To make things simpler, we will forget the effect of dispersion on bire-
fringence and consider that Dn = (nx - ny) is constant whatever the wave-
length. Using the expression of the phase difference f = (2p/l)(nx - ny)e =
2ppDn/l, we obtain

(5.C.9.a)

(5.C.9.b)

The screen of Figure 5.C.2 is not illuminated by a monochromatic light,
but by a white light source that has passed through a filter having a profile
described by equations (5.C.4.a,b,c,d). The curves of Figure 5.C.10 correspond
to a plate for which Dne = 0.6mm. For a wavelength of 0.6mm, and parallel
analyzer and polarizer, the reinforcement of the light by interference is
maximum for a wavelength of 0.6mm; the screen appears to be orange-red.
When the analyzer and polarizer are crossed, on the contrary, the light is
destroyed by interference and the intensity is minimum, this minimum is equal
to zero if the neutral lines make an angle of 45° with the polarizer and 
analyzer.
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Wavelength in mm

Polarizer and analyzer
parallel

Polarizer crossed
with the analyzerI/I0

1

The neutral lines of the
birefringent plate make an angle

of 45° with the polarizer

0.4 0.6 0.8 1.0 1.2 1.4

Figure 5.C.9. Interference using polarized white light beams. The curves go up to
one and down to zero, because the angle between the polarizer and the neutral lines
is 45°.
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As we have I =
out + I +

out = I0, whatever the wavelength, the two colors taken
by the screen in Figure 5.C.2, for a parallel or crossed polarizer and analyzer,
are complimentary.

In principle the colors taken by the screen are the same as interference
colors obtained from a double-beam interference experiment using a thin film
of air. In fact, because of the dispersion of the birefringence the colors are
very similar although not exactly identical.

The number and position of maximums and minimums within the visible
domain characterize a spectrum like that of Figure 5.C.9. If the birefringent
plate is thin enough, as is the case for the curves of the figure, there is only
one maximum or one minimum; the color of the screen is then brilliant and
pure. If the plate is thick, many wavelengths will give maximums and mini-
mums, the global color will be white. If the light enters the slit of a spec-
trometer the spectrum is crossed by light and dark bands and is called a
channeled spectrum.

Numerical Application

We refer to Figure 5.C.10, P1 and P2 are parallel, the thickness of (WP) is e =
50mm and its birefringence is Dn = 0.18; we are looking for the positions of
the light and dark bands. The light bands are obtained when eDn = plp; let us
calculate the values of eDn/l for the two extremities of the visible spectrum:

Therefore eleven light bands, corresponding to the eleven integers
between 12 and 22, will be observed: l11 = 9/12 = 0.75mm is a red stripe and
l22 = 9/22 = 0.41mm is a blue stripe.

For the dark bands we have eDn = (2p + 1)lp/2 Æ 11 < p < 21 Æ 11 dark
bands, the wavelengths of the external stripes are 0.78mm and 0.42 mm.

l m l l m l= Æ = = Æ =0 8 11 25 0 4 22 5. . ; . . .m me n e nD D

(WP)

White light
source

Screen

Spectroscope

P1 P2

Figure 5.C.10. Channeled spectrum. A prism spectroscope disperses a light beam
that has previously crossed a polarizer, a birefringent wave plate, and an analyzer. The
wave plate is thick, the spectrum is crossed by light and dark stripes which correspond
to reinforcement or extinction of the light by interference.



Annex 5.D

Liquid Crystals

5.D.1. Introduction

Liquid crystals are certainly one of the nicest examples of crossed fertiliza-
tion between basic and applied research. The first theoretical introduction of
the notion of an organized state of matter in the case of liquids and the first
experimental observations were made by Reinitzer in 1888, the expression
liquid crystal was introduced for the first time by O. Lehmann in 1890. At that
time scientists were merely concerned in studying a phase transition between
two states of matter and surely didn’t think of display or of signal processing
devices.

Once the high technological potentialities of liquid crystals were identi-
fied, it became necessary to identify and understand the physical mechanisms
responsible for their behavior. This necessitated a large research effort, in
both applied and basic research. The French Physics Nobel Prizewinner, P.G.
de Gennes, was among those who, as early as 1960, had anticipated the impor-
tance of liquid crystals in technology and who has largely contributed in devel-
oping the physics of the related phenomena.

One purpose of liquid crystal devices is to compete with cathode ray tubes,
their main advantage is their extremely low-energy consumption which has
allowed them to take an overwhelming position on the market of small-size
display devices (watch, pocket computer and, more recently, personal 
computer screens).

5.D.2. Physical-Chemistry of Liquid Crystals

From a thermodynamic point of view a liquid crystal is intermediate between
a crystal where a quasi-perfect order is found and a liquid where no long-range
order remains. A crystal is a regular arrangement of an enormous number
(Avogadro number) of identical groups of several atoms or ions. These groups
may have anisotropic properties, because of the existence of electric or 

250



Annex 5.D. Liquid Crystals 251

magnetic dipoles or, in a simpler way, because of their geometric shape which
can be elongated or flattened.

The long-range order in crystals first concerns the positions of the groups.
The sites occupied by the groups can be deduced one from the other by trans-
lations, the vectors of which define the elementary crystal cell: we then speak
of translation order. The long-range order in a crystal may also be concerned
by the orientation of the groups, it is then spoken of as orientation order.
When the transition solid/liquid (fusion) occurs the order collapses; gener-
ally speaking, the two types of order disappear simultaneously.

In the case of liquid crystals, on the one hand, the translation order dis-
appears before the orientation order and, on the other hand, the anisotropy
takes its origin in the shape of the elementary groups. After fusion, the mate-
rial is in a new state called mesophase which is intermediate between a crystal
and a liquid: the groups have become mobile but they keep the same orien-
tation. In the mesophase the fluidity is that of a liquid (the material can be
poured), but the anisotropy is that of a solid.

Liquid crystals are always organic materials, the elementary groups are
made of organic molecules which have an elongated shape. There are several
possibilities for mesophases, they have been classified by a French chemist,
G. Friedel, in smectic, nematic, and cholesteric. Oversimplifying the phe-
nomena, it can be considered that, as the temperature is raised, the following
phase transitions are met, corresponding to a diminution of the order in the
system: solid crystal Æ smectic liquid crystal Æ nematic liquid crystal Æ ordi-
nary liquid. During the two first transitions the orientation order is preserved,
the molecules remaining parallel.

In the smectic phase, the groups are parallel and lie along planar layers
inside which they have an erratic distribution. The layers can easily slip with

Solid crystal: The individual
groups are parallel and each
group is at the right place.

Smectic liquid crystal: The
groups are parallel, they lie
along planar layers with a
random repartition.

Nematic liquid crystals: The
groups are parallel, the
volume repartition is
at random.

Figure 5.D.1. The different kinds of liquid crystals.



regard to one another, the name smectic comes from this property, smectos

meaning soap in Greek. In the nematic phase (nematos = filament) the repar-
tition along planar layers diappears, the groups remain parallel but with a
random volume distribution. Both smectic and nematic crystals behave as a
uniaxial material which is highly birefringent, typically Dn = ne - no is of the
order of 0.1 to 0.3.

The cholesteric phase looks very much like the nematic phase, except that
the molecules are of the same kind as the molecules that we have met on the
occasion of circular birefringence (two possible forms that are not mirror
images of one another). As was the case for SiO2 molecules in quartz, in a cho-
lesteric phase the molecules are arranged along helical filaments. Cholesteric
liquid crystals have a high rotatory power.

For display devices, nematic crystals, added to a small part of cholesteric,
are used. An electric field is used to change the orientation of the molecules
and hence the birefringence Dn, and also the orientation of the neutral lines.

5.D.3. Orientation of Molecules in a Nematic Phase

In a liquid crystal all the molecules are supposed to be parallel, the next ques-
tion is: Parallel to which direction? A liquid crystal is a fluid and has no shape
of its own, it must be contained inside a vessel where it has usually a milky
appearance which is due to the existence of tiny liquid microcrystals having
any orientation and diffusing the light.

If liquid crystals are to be used in some devices, the equivalent of single
crystals should be made. An electric field can be used to impose a common
orientation, more often and more simply it is obtained by the creation of suit-
able mechanical boundary conditions on the inner faces of the vessel. As
boundary conditions play an important role, the surfaces should be extremely
clean and free of any remaining adsorbed molecules.

Orientation of Molecules Perpendicular to a Surface

We consider molecules that can be assimilated to tiny elongated ellipsoids of
revolution (they look like rugby balls). The experiment shows that, when 
they are put in contact with a well-cleaned surface, such molecules try to 
minimize the area of contact and orient their axes perpendicular to the sur-
face. Special detergent compounds, called surfactants, can be used to
enhance this effect.

Orientation Along Grooves Drawn on a Surface

This method is the result of a very simple experimental observation: if, after
careful cleaning, a surface is gently wiped along a given direction with a soft
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tissue (usually a type of velvet which acts like a brush), fine grooves are drawn
on the surface along which the molecules will then align. After this prelimi-
nary observation a careful technological development has defined the rules
for obtaining grooves, in a reproducible way. The method is still very empiri-
cal and the physical and chemical surface interactions, at the interface
between the substrate and the liquid crystal, are not completely understood;
a lot of progress is still possible.

Figure 5.D.2(b) represents a useful arrangement for display devices. Over
a distance of 5 to 10mm the orientation of the molecules is rotated by 90°.
From an optical point of view the arrangement is equivalent to a uniaxial
material inside of which the direction of the optical axis would continuously
rotate. If a light beam has its polarization parallel to the grooves of the first
plate, its polarization will remain linear and follow the local optical axis. An
artificial optically active material has been obtained, the rotatory power is
very high: a rotation of the polarization can be 90° over a distance of a few
micrometers. The addition of a small amount of some cholesteric consider-
ably enhances the phenomenon.

Application of an Electric Field

Because of their elongated shape, the molecules of a liquid crystal behave as
electric dipoles that are easily oriented parallel to some applied electric field.
Using the brushing technique the liquid crystal is first put into a state where
all the molecules are parallel to the surface; if an electric field is then applied
perpendicular to the surface, the molecules will follow the field.

In the presence, as well as in the absence, of an electric field the liquid
crystal is birefringent. The application of the electric field changes the orien-

Grooves Molecules of
liquid crystal

Parallel plates      

Grooves

Twisted nematic crystal

(a) Near the brushed face, the molecules
align parallel to the grooves; the orientation
is then progressively extended to the entire
volume. The material is uniaxial with the
optical axis parallel to the molecules axes.

(b) Grooves have been brushed along
two orthogonal directions on two parallel
plates separated by 5 to 10 mm. The
orientation of the molecules progressively
varies from one orientation to the other.

Figure 5.D.2. Orientation of the molecules by the boundary conditions.



tation of the optical axis and controls the birefringence of the liquid crystal
cell. The next problem is that of the electrodes, since they must be, at the
same time, transparent to the light and the conductor of electricity. In most
cases they are made of an oxide of indium and tin (ITO—Indium Tin Oxide).

The required voltages are small (volts), however the electric field is quite
high (0.1 MV/m) since the electrodes separation is measured in micrometers.
Liquid crystals, being organic material, the impedances of liquid crystal cells
are very high and need almost no power to maintain the molecular orienta-
tion. This is very important for applications.

5.D.4. Liquid Crystal Display

Liquid Crystal Display Using a Mirror

This kind of display is very popular and, for example, is used in watches and
pocket calculators, as there in no internal light source the energy required is
small. They are illuminated with a white unpolarized light source, reflection
occurs only at places where the electrodes apply an electric field, the shape
of the electrodes then appear as if they where painted on the screen.

In the absence of any electric field, the molecules are parallel to the
grooves that have been brushed parallel to the electrodes. For a light beam
propagating perpendicular to the plates, the cell is a wave plate having its
neutral lines parallel and perpendicular to the grooves. The cell is given such
a thickness that it is a l/4 wave plate; because of the mirror, the light makes
a double passage in the cell which becomes equivalent to a l/2 wave plate.
The polarizer is oriented at 45° with regard to the grooves, and so polarizes
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Polarizer at 45° with
the grooves Mirror

Incident light
(unpolarized)

Direction of the
grooves
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Reflected light
(polarized)

Electric
contacts
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Figure 5.D.3. In the absence of any electric polarization, molecules are parallel to
the grooves Æ the optical axis is vertical. The electric field orients the molecules and
makes the optical axis perpendicular to the plates.
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the light arriving at the cell. The polarization of the light coming back is flipped
90° and is thus blocked by the polarizer. The electric field makes the optical
axis parallel to the direction of propagation, the light rays are ordinary, 
whatever the polarization, and the returned light is fully transmitted by the
polarizer.

Transmission Nematic Liquid Crystal Modulator

We refer to Figure 5.D.4, the final orientation of the molecules is the result of
two contradictory actions: the grooves and the electric field. If the electric
field is strong enough, its orientation action is predominant; after several mol-
ecular layers of transition all the molecules become parallel to the field and
the cell completely loses its circular birefringence. The transparency of the
cell goes from unity for zero voltage on the electrodes, to zero for a sufficient
value. If the voltage varies versus time, the transmitted light intensity is mod-
ulated. The time constant is of a few milliseconds, and the frequency of 
modulation ranges in the kilohertz domain.

Matrix Display

Liquid crystal cells may have a very small size, allowing a local, and almost
punctual, control of the birefringence of a transparent plate.

Figure 5.D.5 illustrates the principle of a matrix of elementary cells with
an electrically controlled birefringence. Each cell is a liquid crystal sand-
wiched between two transparent electrodes, the molecule’s orientation is
addressed by a voltage applied between the front and back sides of the cell.
All the front electrodes of the cells belonging to the same line (designated 
by m) are connected to the same wire, in the same way that all the back 
electrodes of the same column (n) are connected together. The (mn) cell is
addressed by modifying the voltage between conductors m and n.

Transparent conducting
electrodes

PolarizerPolarizer

Cell filled with a nematic
liquid crystal

Figure 5.D.4. With zero voltage on the cell, the molecular orientation follows the
indications of the grooves: the cell is optically active, the polarization is flipped 90°
and the light is fully transmitted. The electric field orientates the molecules parallel to
the direction of propagation making the rotatory power disappear, the cell becomes
opaque.



The elementary cells are called pixels (picture elements). The size of a
pixel and the matrix step are typically of a few hundred nanometers. Two
major technological difficulties have to be overcome. First, the realization of
a matrix with a million elements, knowing that the human eye doesn’t accept
a failure rate larger than 1% and, second, the electrical addressing of the
pixels. We will forget the computing side of the problem that is easily solved
and will focus on the addressing voltage.

If we don’t want to cope with high voltage, the different pixels must be
made electrically independent of one another. The arrangement of Figure
5.D.6 shows how this obtained. All the back electrodes are connected together
and earthed; the front electrodes are connected to the column electrodes by
a field-effect transistor the grid of which is connected to the line electrodes.
A transistor should be made for each pixel; this is easy work in microelec-
tronics, the size of each transistor is of the order of 1 mm.

Color display can be made using a three-color representation. A matrix of
holes is inserted between the light source and the liquid crystal cell matrix;
the holes are filled with a colored gelatin. One pixel is now made of four sub-
pixels, three would be enough but, for the sake of symmetry, it’s easier to have
four, then it has been decided to double the number of green subpixels and,
accordingly, to increase the opacity of the green filters.

Local Control of the Optical Thickness of a Transparent Plate

We consider a matrix analog to that of Figure 5.D.5; each elementary cell is
filled with a nematic liquid crystal and the grooves on the two plates are par-
allel. In the absence of any applied voltage the molecules lie parallel to the
grooves, the crystal is birefringent and uniaxial. If an electric field is applied,
the molecules will be submitted to an orientating torque; the number of mol-
ecules that become parallel to the field increases with its strength. The crystal
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Figure 5.D.5. Matrix of addressable liquid crystal cells.
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is now biaxial; one privileged polarization is parallel to the grooves, the asso-
ciated index decreases with increasing fields and its value is a function of the
field module: in other words, for a light beam polarized parallel to the grooves,
the optical thickness of the cell varies with the voltage and can be addressed
thanks to the matrix arrangement.

5.D.5. Light Valve

The notion of valve has been initially introduced in the technology of tires
and is a device that allows air to inflate tires or balloons. The word is also

Line m

Column n

Transistor

Line m + 1

Elementary
cell

0.1 mm

Figure 5.D.6. Transistors may be used to lower the addressing voltage.

Source of white
diffused light

Polarizers

Matrix of holes filled
with blue, green, or
red dyes

Matrix of addressable
cells

Blue Green

Green Red

Figure 5.D.7. Principle of a color display. Each pixel is made of four cells, each giving
one color for a trichromatic representation.



used in electronics for components that conduct the current in only one direc-
tion, in this case the word diode is also used. In electronics the notion of valve
has been enriched by the invention of driven valves. A driven valve still allows
the current to go only in one direction, but only if some suitable driving signal
is applied; the situation becomes very interesting if the power of the driving
signal is much smaller than the main current in the diode.

Optical valves have been proposed, they are usually opaque and become
transparent when they receive a small optical signal. Optical valves are
elegant and promising devices, it seems too early to predict any important
development.

Figure 5.D.8 describes the principle of an optically driven optical valve.
The trick is to apply the polarizing voltage to the liquid crystal across a photo-
conducting transparent material. This material is BSO (Bi12SiO20); an electri-
cal insulator in darkness, this compound becomes a conductor when suitably
illuminated. At places where BSO receives the driving light signal, a voltage
is applied to the liquid crystal, and the optical axis becomes parallel to the
direction of propagation of the light to be transmitted.

The exact way the device works uses a special state of liquid crystals that
has not yet been introduced and for which the liquid crystals have a milky
aspect and diffuse the light. In the absence of any electric field, the so-called
light to be transmitted is diffused and only a small part reaches the Wollas-
ton prism. With an electric field the crystal becomes transparent and bire-
fringent, and the field is adjusted so that the liquid crystal cell is a l/4 wave
plate for a single transit (and thus l/2 for a double passage). Having a polar-
ization orthogonal to the polarization of the incident light, the light reflected
by the mirror is transmitted by the Wollaston prism.
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Figure 5.D.8. Optically driven optical valve.



6

Interference

Because it is a basic property of every process involving vibrations, interfer-
ence has been introduced as early as the first chapter of this book. Further-
more, the notion of interference is usually generalized to other domains, quite
often far from Physics, such as Economy or Psychology. . . . Two phenomena
are said to interfere if their simultaneous actions have new consequences, and
if compared with the superposition of the consequences of their independent
actions.

General conditions for two light beams to interfere have already been
given: they should have exactly, and with high accuracy, the same frequency;
their polarizations should not be strictly orthogonal and, last but not least,
they must be coherent with one another. The fact that two light beams,
coming from two independent sources, cannot interfere is rather a good thing,
if this were not the case everyday life would occur in a vast field of interfer-
ence where everything would be striped with interference fringes.

All the experimental set-ups that we are going to describe are supposed
to work with incoherent sources. To give the photodetectors the impression
that they receive coherent beams, we will always use arrangements in which
all the different interfering beams originate from a unique point source.

6.1. Wave Front Division Interferometers

The interest of wave front division arrangements is mostly didactic. The pro-
totype of such arrangements was proposed by Young.

6.1.1. The Young Experiment

A lamp illuminates, with a light which, for the moment, will be considered as
monochromatic (wavelength l), a tiny hole S with a diameter d of the order
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of fifty to hundred times the wavelength. The light wave is diffracted through
the hole inside a sharp cone (angle of the order of l/d). The light is then dif-
fracted again through the two holes S1 and S2 (about the same size as S) which
can be considered as two sources emitting the same frequency. If S is at the
same distance from S1 and S2 the two sources are synchronous, if not, the
phase difference is equal to 2p(SS1 - SS2)/l. At each point M of the common

zone (CZ) arrive two beams which have traveled along two different paths
SS1M and SS2M and have a phase difference equal to 2p(SS1M - SS2M)/l. If
the difference between the times taken to cover the two paths is smaller than
the coherence time of the source S, S1 and S2 can be assimilated to coherent
sources: interference will then be observable at point M, with maxima if the
waves arrive in phase (constructive interference) and minima if they 
have opposite phases (destructive interference). If the two holes are identi-
cal the two sources have the same amplitude and the minima are equal to
zero.

To simplify the formulas we consider that S1M = S2M and the positions of
the maxima and minima are given by

• Maxima:

• Minima: 

The above formulas define a family of revolution hyperboloids; each
hyperboloid is labeled by the integer p which is called the order of interfer-

ence along the considered hyperboloid. The intersection of the common zone

y
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l
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Figure 6.1. Young’s experiment. A tiny hole S is illuminated by an extended light
source; some light is diffracted inside the first cone inside of which two other holes
are placed in close vicinity. S1 and S2 can be considered as two coherent sources,
interference can be produced in the shadowed area CZ, which is the common zone
(CZ) between the two cones of light diffracted from S1 and S2. The interference fringes
are visible on a screen.



(CZ) and the observation screen seems to be painted with alternately brilliant
and dark fringes that are the intersections of a family of hyperboloids with
the plane of the screen.

In order to make the fringes brighter, the holes are replaced by narrow
parallel slits perpendicular to the plane SS1S2. The revolution hyperboloids
are then replaced by hyperbolic cylinders, the fringes are parallel to the slits.

To evaluate the state of interference at a given point M(x) we refer to
Figure 6.2 in which S1 and S2 are two parallel slits. The difference between
the phases of the waves arriving at point M corresponds to the propagation
of the light from S2 to K (point of intersection of S2M with the circle centered
at M and of radius MS1). In all practical situations the distance d = S1S2 is small
in comparison with the distance D to the screen, K can be considered as the
projection of S1 on S2M:

(6.1)

If S is equidistant from S1 and S2, the interferences are constructive or
destructive at points of respective abscissas xMax and xmin, given by

(6.2)

(6.3)

The interference pattern is made of bright and dark bands called inter-
ference fringes, they are equidistant and orthogonal to the plane SS1S2. The
spacing, i, between the centers of two adjacent brilliant, or dark, fringes 
(see formula (6.3)) is made of the order of a few millimeters by the magnify-
ing ratio D/d; d is a small fraction of one millimeter while D is one meter or
more.

We now want the expression of the variation of the light intensity versus
abscissa x. We need the expressions of the complex amplitudes of the vibra-
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Figure 6.2. Definition of the notations used to describe the Young experiment.



tions at points S1 and S2. Of course, we omit the 1/r attenuation of the waves
and use the expressions and , their superposition
gives

The intensity is then given by

(6.4)

(6.5)

6.1.2. Other Arrangements Using Wave Front Division

In front of some extended light source is disposed a small hole which, of
course, transmits only a small amount of light but which can be considered
as a source S of spatially coherent light. The spherical wave diverges and then
its wave front is divided into two parts that will follow two different optical
paths. In the experimental arrangements that we are going to examine, two
optical systems, mirrors and lenses, form two different images of S, these two
images play the same role as the Young holes.

The Lloyd mirror arrangements, or some derivative arrangements, are
often used for making holographic diffraction gratings. A photoresist is
deposited on the mirror. A photoresist is an organic resin made of molecules
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Figure 6.3. Fresnel and Lloyd mirrors. Mirrors are used to duplicate the initial point
source S. The point source is in fact replaced by a slit perpendicular to the plane of
the figure. Interferences are localized inside the common zone (CZ). In the case of
Lloyd mirrors, an extra difference of phase should be added because of the reflection
of a dielectric mirror, the zero-order fringe (achromatic) is black.



(monomers) that easily polymerize (photopolymerize) if illuminated by a suit-
able light, giving a solid material. Polymerization is of course more active at
the places of brilliant fringes than at the places of dark fringes, after devel-
opment of the resin the interference pattern has been permanently transferred
onto the substrate. The advantage of this arrangement comes from the fact
that it is very insensitive to mechanical vibrations, since the light source S
and the mirror can be firmly attached together.

6.1.3. Some Physical Remarks About the Preceding 

Interference Arrangements

Two Waves Interference

Along the interference field the law of variation of the light intensity versus
position is a sine. Such a law is characteristic of a two-beam interference phe-
nomenon. Let us go back to formulas (6.4) and (6.5), and suppose that one
source has been switched off, the light intensity would be constant all over
the screen and equal to I = a2, and the energy received per unit of surface pro-
portional to I = a2. When the two beams are sent simultaneously the energy
is not constant but spatially modulated as indicated by (6.5), the average value
of the energy per unit surface is now 2a2, which is consistent with energy con-
servation: more energy is concentrated in the clear fringes and less in the dark
fringes.

Nonlocalized Fringes

Because of the existence of a vast zone (CZ) inside of which interference phe-
nomena may be observed, it is said that the fringes are nonlocalized. Later on
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Figure 6.4. Billet’s and Meslin’s split lenses. A convex lens is sawn along an equatorial
plane and the two halves are separated by a small distance, at a right angle to the optic
axis for Billet’s lenses and along the axis for Meslin’s lenses. Two real images are
produced from a single point source, S1S2 being smaller than the coherence length of
S, the two secondary sources can be considered as coherent. In the case of the Meslin
arrangement, as one wave passes through a focus, and not the other, the zero-order
fringe is dark.



we will meet other arrangements where fringes are observable only within
restricted areas.

Effect of the Geometric Width of the Slit Sources

To avoid, or at least to limit, the inconvenience of spatial incoherency of the
usual light sources, the slits should be as narrow as possible. The slits cannot
obviously be completely closed, the question is then: What happens when the
slits are progressively enlarged? An exhaustive answer is difficult and needs
a description of the electromagnetic boundary conditions at the level of the
slit edges. Hopefully the result is not that difficult. On the observation screen
the fringes keep their positions, the illumination of dark fringes progressively
increases and, at the same time, the clear fringes become less and less bril-
liant. When the slits become too broad, the screen becomes homogeneously
illuminated: the fringes have faded and disappear.

Fringes with Quasi-Monochromatic and White Light, Achromatic

Fringe

The wavelength is explicitly written in formulas (6.2) and (6.3) that give the
positions of the fringes, which implies that we are using monochromatic
beams. At a given point M the two waves coming from points S1 and S2 have
accumulated a phase difference of geometric origin, the value of which is
equal to 2p(S1M - S2M )/l. If the arrangement is fully symmetric, it’s this phase
difference that should be considered for the determination of the state of the
interference; if not, some extra phase difference may have to be introduced,
this is the case for Lloyd’s mirrors (reflection or dielectric mirror) and for
Meslin’s lenses (passing through a focus), where the phase difference is to be
increased of p.

Let us now come back to the symmetrical case, the clear fringes are
defined from (S1M - S2M ) = pl, where p is an integer that allows us to label
the fringes. The fringe labeled zero, the zero-order fringe or the central

fringe, has the same position whatever the color, this is the reason why it’s
also designated as the achromatic fringe. It is always interesting to see where
the achromatic fringe of a given arrangement is; from an experimental point
of view the achromatic fringe is easily observed with a white light source,
since it is the only noncolored fringe. It’s easy to see that for the Lloyd and
Meslin arrangements the achromatic fringe is black. The zero-order fringe is
the only one to be achromatic, since the spacing between adjacent fringes is
proportional to the wavelength.

Far enough away from the achromatic fringe, there is a superposition of
the fringes associated with the different colors of the white light: the screen
has a white appearance. In fact, some colors are lacking. If the entrance slit
of a spectrometer, see Figure 6.6, is at a point where different wavelengths
are extinguished, the corresponding colors will not appear and will be
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replaced by dark bands; the colors with a maximum of intensity will give (bril-
liant bands. Such a spectrum is called a channeled spectrum.

6.2. Amplitude Splitting Interferometers

6.2.1. Fringes Localization

Amplitude splitting interferometers are experimental arrangements that
allow the observation of interference fringes using extended sources. Of
course, a way should be found to alleviate the lack of spatial coherency.

In Figure 6.7 is described the general organization of experimental
arrangements of most amplitude splitting interferometers. An incident light
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Figure 6.5. Aspect of the achromatic fringe. The red spacing (l = 0.8 mm) is twice as
broad as the blue spacing (l = 0.4 mm). The central part of the fringe which has all the
colors is white, the edges seem to be colored in red.
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Figure 6.6. Spectral analysis of a channeled spectrum. A spectrometer reveals the
presence of brilliant and dark bands parallel to the slits.



ray arrives at a first optical system S which generates several different trans-
mitted beams J1M1, J2M2, J3M3, . . . , JnMn. A second optical system S¢ then
recombines all these beams to converge toward some point P: so, to each light

ray OI, is associated a point P. If we now consider a set of incident rays such
as OI, we obtain a set of points P, all belonging to a surface SL. On condition
that the difference between the times taken by the light in going from O to P

are smaller that the coherence time of the source, it can be considered that
all the rays arriving at P are coherent and may interfere.

The amplitude of the light vibration at point P is determined by the ampli-
tudes and phases of the vibrations associated to the different rays KiP. SL 
is called the surface of localization of the fringes, it is the only surface along

which interferences are observable. If this surface is real, by opposition to
the virtual, it can be covered by an observation screen on which fringes seem
to have been painted.

Let F1, F2, F3, . . . ,Fn be the respective phases of the different rays KiP;
very often the arrangement will have been chosen in such a way that the phase
difference y = (Fi - FI+1) is independent of i and is only determined by the
initial light ray OI; then at each point P of SL is associated some value of y.
If y = 2pp (p is an integer), all the rays arriving at P will interfere construc-
tively: all the points corresponding to the same value of p will be distributed
along a curve drawn on SL and called the pth brilliant fringe of interference.
In the same way the set of points for which y = (2p + 1)p, y will define the
pth dark fringe.

Let x and h be two coordinates of a point P on the surface SL and let l be
the wavelength, y can always be written as a function of x and h,

(6.6)

where f(x,h) is homogeneous to a length and represents the difference between
the optical of two consecutive rays arriving at point P.

It is convenient to classify the interferometers according to the total
number n of light rays that are generated by the optical system S, the most
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Figure 6.7. Fringe localization. The different rays arriving at P are coherent and may
interfere. If a screen has been placed on (SL) it seems that fringes are painted on it.



interesting cases are:

• n = 2, dual beam interferometer.
• n > 2, and usually n >> 2, multiple beam interferometer.

6.2.2. Dielectric Films, Double Beam Interference

A parallel dielectric plate of refractive index n and thickness e is surrounded
by a medium of index equal to one, it is illuminated by an extended light
source S, wavelength l. An incident ray SA, because of the numerous reflec-
tions on each side of the film, generates two families (R, R¢, R≤, . . .) and (T,
T¢, T≤, . . .), interferences are possible, and the localization surfaces are
rejected at infinity. The fringes may then be observed in the focal plane of a
lens, see Figure 6.9, these are often called fringes of equal inclination.

A parallel plate is, a priori, a multiple beam device, however, a simple eval-
uation of the amplitudes of the successive different reflected beams will show
that usually it should be considered only as a dual beam arrangement. The
reflection coefficient, at normal incidence, on a dielectric interface is of the
order of 4%, under such conditions it’s easy to see that the ratios to the initial
intensity of ray SA of the respective intensities of the rays R, R¢, R≤, . . . are
equal to 4%, 3.8%, and 0.15%: only the first two reflected beams will thus be
considered.

Starting from points B and K of Figure 6.8, the two beams R and R¢ cover
equal distances, their phase difference just comes from the difference neces-
sary to travel along ADB which is air and AK which is glass, the optical length
difference d and the phase difference are given by the following expressions,
in which i and r are the angles of incidence and of refraction:

AD DB
e

r
AB e r r

e
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= = = =

cos
, tan , cos ,2
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Figure 6.8. The two families of parallel rays generated by reflection on the two sides
of a thin film. The localization surfaces are rejected at infinity.



(6.7)

In equation (6.7) f has been increased by a factor of p, and d by l/2,
because of the phase differences occurring at reflection on the two sides of
the film.

If d is equal to an integer number of wavelengths the two reflected beams
R and R¢ interfere constructively, on the contrary they interfere destructively
if d is an odd number of half-wavelengths. Generally speaking, d is neither odd
nor integer, two important parameters are then the order of interference p

and the fractional order of interference e which are defined as

(6.8)

For given values of d and l, p is the largest possible integer and e is smaller
than unity. The state of interference is fixed by the fractional order e.

Nothing very general can be said about the state of interference at normal
incidence, the first thing to do is to determine the fractional order of 2ne +
l/2; the order of interference, p, is maximum at normal incidence.

Figure 6.9 shows an experimental set-up that allows the observation of the
interference pattern between two waves, respectively, reflected on the two
sides of a parallel thin plate at normal, or almost normal, incidence. The light
coming from an extended source is sent to the plate using a semitransparent
mirror which, on one hand, sends the rays toward the plate and, on the other,
from transmits the reflected rays to a lens and then to a screen on which the
interference pattern is observed. The fringes are localized in the focal plane
of the lens; at each point of this plane two rays arrive, one has been reflected
the upper face of the plate and the other the lower face. According to  for-
mulas (6.7) and (6.8) their phase difference is the same for all pairs of rays
making the same angle with the normal to the plate. The axis of the lens which
is orthogonal to the plate is an axis of symmetry: the phase difference and
interference state are the same for all rays making the same angle with the
axis.

We refer to Figure 6.10, the rays making angle i with the axis are focused
at points located at the same distance, fi, from the focal point.

Let r1, r2, . . . , rP and i1, i2, . . . , iP be, respectively, the angles of refraction
and of incidence for which the phase difference is a multiple of the wave-
length: corresponding rays interfere constructively at the point of recombi-
nation by the lens where a family of circular clear fringes will be found.
Between two adjacent clear rings, there is a dark ring for which the phase dif-
ference is an odd multiple of a half-wavelength. P and e are, respectively, the
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order of interference and the fractional excess at normal incidence, the case
of clear fringes corresponds to

2
2

2
2 2

1
1
2

ne r ne l
r

Pcos ,+ ª -Ê
ËÁ

ˆ
¯̃ + =

l l
l

2
2

ne P+ = +( )l
e l,

i nr i nr i nrp p1 1 2 2= = =, , . . . , ,

6.2. Amplitude Splitting Interferometers 269

Lens

Plane of localization of the fringes

Semitransparent
mirror

Parallel glass plate

Monochromatic 
light source

Figure 6.9. Interference after reflection on the two sides of a parallel plate.
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Figure 6.10. Recombination of two parallel rays R and R¢. PP≤ is the trace of a plane
orthogonal to R and R¢. After the lens, the transmitted beams intersect at the focal
point f¢. Because of stigmatism, the two paths Pf¢ and P¢f take the same time: when
they arrive at f¢ the two rays have the same phase difference as in P and P¢.



Let us suppose that the fractional excess is just equal to zero at normal
incidence, the center of the field pattern is clear. The radii of the different
fringes, r1, r2, . . . , rp, are obtained by multiplying the angle of incidence by
the focal length and they are proportional to the square roots of the succes-
sive integers:

(6.9)

6.2.3. Fringes of Slides with a Variable Thickness

6.2.3.1. Prismatic Plate

Interferences given by the prismatic plate of Figure 6.11 can been easily
observed by the naked eye of some observer accommodating on the plate,
and making the two rays, IR and KR¢, converge and interfere on the retina.
The retina image will be clear at points where the two rays are in phase and
dark at points where the phase difference is an odd multiple of p. Finally, the
observer gets the impression that the fringes are painted on the plate.

The points I, J, and K of Figure 6.11 are very close, IJ ª JK can be con-
sidered as the thickness e of the prism at this point. The difference in the
optical length d of the two rays at point M is the result of two contributions,
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Figure. 6.11. Fringe localization for a prismatic plate. An incident ray SI generates
two main reflected rays IR and KR¢ that are mutually coherent. The determination of
the surface of localization is simple only in the case when IR and KR¢, at some point
M that in the case of quasi-normal incidence, remain in close vicinity with the two
sides of the prism: the fringes seem to have been painted on the plate.



one has a geometrical origin and the other comes from the difference of the
type of reflection of the two beams

For a clear fringe, the thickness is such that

The fringes are lines parallel to the edges of the prism, the difference in
thickness (e2 - e1) corresponding to two adjacent fringes is obtained by incre-
menting p of one unit. The fringe separation, i, is constant and is given by

(6.10)

6.2.3.2. Fringes of an Air-Filled Prism

In the experimental arrangements of Figures 6.12 or 6.8, an incident ray gen-
erates several reflected and transmitted beams, we have only drawn those
who correspond to air/glass or glass/air reflections. However, four reflected
beams still remain; we consider that the thicknesses of the plates are greater
than the length of coherence of the light source, which eliminates the 
interference between the following pairs of rays: RR1, R¢R¢1, and R1R¢1. Finally,
we only keep the rays R and R¢: the arrangement becomes equivalent to an
air prism which would be limited by two semitransparent mirrors 
with reflection coefficients of about 4% (intensity). If the wavelength is 0.6mm
and the angle 0.1¢ = 3 ¥ 10-5 rad, formula (6.10) gives a fringe separation of 
5mm.
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Figure 6.12. Fringes of an air prism. A thin air prism is readily obtained by inserting
a thin sheet of paper between the two glass plates.



6.2.3.3. Fringes of Equal Thickness, Thin Plates Colors

A prismatic plate, illuminated near its edge, is a special case of a thin trans-
parent medium of nonconstant thickness. It’s usual in Physics to use thin
dielectric plates, having a good transparency and a thickness of a few micro-
meters: oil films on a water surface, soap bubbles, faintly oxidized metallic
surfaces. . . . Current observation shows that illumination by a white light
source produces very pretty interference colors. These colors resemble the
wings of some butterflies, the colors of which are also due to interference.

If the film of Figure 6.13 is very thin, the order of interference is not very
high and interference fringes may be observed with a white light source. A
white source is the superposition of an infinity of monochromatic vibrations,
each of which has an infinitesimal amplitude. Let us call al dl the amplitude
of the component of wavelength l; the different colors cannot interfere and
the global intensity, which is the sum of the intensities of the different colors,
is proportional to the integral

(6.11)

where Il is a function of the wavelength, the law of variation versus l deter-
mines the special shade of the white light under consideration.

The two rays IR and I¢R¢ of Figure 6.13 that interfere, after having been
reflected at a point where the thickness is e, have a difference of optical paths
equal to d = 2ne + l/2; the complex amplitude of the vibration da(l) and the
intensity dI(l) are given by

(6.12.a)

(6.12.b)

If the two reflections are of the same kind it is not necessary to add a phase
difference of p/2 and we then have
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Figure 6.13. The material between the surfaces AA¢
and BB¢ is transparent (index of refraction n), its
thickness e varies from one point to another. The two
rays IR and I¢R¢ combine on the retina of the observer
who gets the impression that lines of equal thickness
are painted on the film. Dark fringes are obtained
when 2ne + l/2 = (2p + 1)/l/2.



If the plate is thin enough, there will be only a few wavelengths, or even-
tually only one wavelength, for which the argument of the integrals of (6.11)
are equal to zero: illuminated by a white source, the plate takes a color which
is characteristic of its thickness. If the thickness is not constant, the fringes
of equal thickness are colored. In addition to the aesthetic aspect, this method
gives an elegant way to evaluate the thickness of a thin plate; the colors
change from straw-yellow to purple as the thickness varies from 280 to 560
nm. The colors obtained by interference of two white light waves is also met
on the occasion of the interference between polarized white light beams, and
the corresponding calculations are exhaustively developed in Section 5.C.2 of
Annex 5.C.

Interference Colors

The colors corresponding to formulas (6.11) and (6.12) are conventionally rep-
resented using the following notations:

(6.13)

Formula (6.13) shows that the two different colors, respectively, associ-
ated to the same delay d, are complementary, in the same sense of the word
as used by painters. Interference colors are sometimes useful for evaluating,
at a glance, the thickness of a thin film. For small delays colorations are bright
(as an example, the coloration of butterfly wings are, more or less, the result
of an interference process). As the delay is increased the colors get duller to
become what is called a higher-order white, when the geometric path differ-
ence is larger than a few visible wavelengths. The colors that are indicated
below are obtained within the two following conditions:

• The spectral composition Il of the light source is very similar to the light
of the Sun.

• The refractive index dispersion of the film material is negligible; this
second condition is fully satisfied in the case of a film of air.

There are many situations in life where interference colors may be
observed. Illuminated by a white source, the soap shells of blown bubbles,
which have a thickness of a fraction of a micrometer, provide a magnificent
illustration of interference colors. In the same way, under white light illumi-
nation, the thin films that are obtained when some oil spreads on a wet surface
are an illustration of interference colors; because of its nonmiscibility with
water, grease tends to have an area as extended as possible and produces
extremely thin films, possibly monomolecular. In the case of very small thick-
nesses, no coloration will appear.
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6.3. Dual-Beam Interference

6.3.1. The Michelson Interferometer

The Michelson interferometer is a very nice optical device, its construction
requires the greatest care; the accuracy of the angular and translation posi-
tion measurements are, respectively, 1 s and 50 nm. One of its most spectac-
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ular utilizations was made by the physicists Michelson and Morley who gave
experimental proof of the fact that the value of the speed of light was inde-
pendent of the coordinate axis and so brought a demonstration of the valid-
ity of Einstein’s theory of relativity.

A Michelson interferometer, see Figures 6.14 and 6.15, is made of two
mirrors, M1 and M2, with high reflection coefficients disposed along two ver-
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Figure 6.14. The Michelson interferometer.
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S

Figure 6.15. Top view of a Michelson interferometer. One interest of this device is
to allow the observation of zero- and low-order fringes. M1 and M2 can be accurately
shifted, the compensator plate is finely rotatable to equalize the length of the two arms
SM1 and SM2.



tical and orthogonal planes. An important component is the beam splitter,
another vertical semitransparent mirror making an angle of 45° with M1 and
M2; one side is antireflection coated, the reflection and transmission coeffi-
cients of the other side are equal to 50%. The interferometer is illuminated by
an extended monochromatic source. The beam splitter plays two roles: first,
it separates the incident beam into two identical beams that are sent to M1

and M2 and, second, it recombines them so that they interfere on a screen or
a photodetector. The purpose of this interferometer is the observation fringes
with a low order of interference; the beam that is reflected from mirror M1

makes an extra double transit inside the beam splitter, this is the reason why
a fourth vertical plate, called a compensator plate, is inserted in front of
mirror M2. The compensator plate is almost identical to the beam splitter
except that it is antireflection coated on both sides. Rotating finely the com-
pensator plate around a vertical axis allows a fine tuning of the length of SM1

and makes it equal to SM2.
A Michelson interferometer has many degrees of freedom, in Figure 6.16

are shown two interesting ways of using it. Let us consider the image M¢2 of
the mirror M2 in the beam splitter, in Figure 6.16(a) M¢2 and M1 are parallel
and separated by a distance e that can be adjusted by a translation of one of
the mirrors. The interference pattern is the same as for a parallel plate of the
same thickness and filled with air. In Figure 6.16(b), M¢2 and M1 make a small
and adjustable angle, the fringes are those of a wedge plate. If a transparent
and weakly inhomogeneous plate P is placed in one arm of the interferome-
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Figure 6.16. M¢2 is the image of M2 through the beam splitter. According to the
adjustment of S, M¢2 and M1 can be parallel or make a small angle. P is a transparent
inhomogeneous plate. In the absence of P, the fringes are concentric rings (virtual
parallel plates) or parallel lines (virtual wedge plates). The order of interference being
almost zero, the fringes are observable with a white illumination giving typical colored
fringes.



ter, the fringe pattern (rings or parallel lines) is modified, and the optical char-
acteristics of the plate are easily obtained from the modifications of the
fringes. The method is so sensitive that the variation of the index of refrac-
tion of air should be considered.

6.3.2. The Twyman-Green Interferometer

The Twyman-Green interferometer is a direct consequence of the Michelson
interferometer; its main objective is the characterization of high-quality
optical components, such as optical prisms, lenses, or objectives. Disposed
in one arm of a Michelson interferometer, the element to be tested is crossed
twice by the light rays. In the case of perfect optical quality of the element
under test, the return wave and the incident wave are both planar waves, and,
according to the setting, usual fringes (parallel plate or wedge plate) are
observed. If the optical element has some defects, the return wave is no longer
planar, the shape of the fringes is modified, and their modifications give inter-
esting information about the optical imperfections.
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Incident waves 
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Figure 6.17. Test of optical components using a Twyman-Green interferometer.

6.3.3. The Mach-Zehnder Interferometer

The Mach-Zehnder interferometer is described in Figure 6.18; it’s a two-wave
amplitude splitting interferometer using two beam splitters and two Porro
prisms, which can be replaced by two 100% reflecting mirrors. The two arms
ABC and ADC can be given the same optical length and the interference order
is almost equal to zero. The two interfering beams travel along two well-
separated paths, one is used as a reference (ADC), the other (ABC) is used
for testing some equipment. A Mach-Zehnder interferometer is very conve-
nient for testing refractive index variations occurring inside volumes that can
be quite large.

The two emerging beams, CR and CR¢, can be parallel or make a small
angle; the fringe pattern is that of a thin parallel plate in the first case, and of
a wedge plate in the second case. Before the appearance of laser sources it



was hard work to tune a Mach-Zehnder interferometer; using sources having
a long length of coherence considerably simplifies the problem.

In the experimental arrangement of Figure 6.19 the Mach-Zehnder inter-
ferometer works as a wedge plate; it is used for characterizing a transparent
plate with a step variation of thickness. A lens is used to image the plate on
a screen on which the interference fringes of a wedge are superimposed on
the image of the plate. Counting the number of fringes allows an accurate
measurement of the thickness of the step.
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Figure 6.18. Mach-Zehnder interferometer.
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Figure 6.19. Characterization of a thickness variation using a Mach-Zehnder inter-
ferometer. Nine fringes may be counted, which corresponds to an optical thickness
variation of nine wavelengths.

6.4. The Fabry-Perot Interferometer

It was in an attempt to increase the visibility of the interference fringes that
were obtained with thin plates (see Section 6.2.2) that the French physicist
Raymond Boullouch, at the end of the nineteenth century, proposed to 



partially silver the two faces of a glass plate, the purpose being to increase
the reflection coefficient and to give it a value higher than 4% which is typical
of an air/glass interface. He opened the way to multiple wave interference.
Charles Fabry immediately guessed all the spectroscopic possibilities offered
by the arrangement of two parallel mirrors and, with the help of Alfred Perot,
a very skilled mechanical engineer, gave an experimental demonstration of
this fascinating device, which is now universally known as the Fabry-Perot

resonator, often designated as an FP resonator. The FP resonator is an essen-
tial component of most lasers.

6.4.1. Description of a Fabry-Perot Resonator

An FP resonator is mainly made of two parallel mirrors, their reflection co-
efficients are usually high (80–90%) and the parallelism is excellent (10 s ª
10-6 rad).

In Figure 6.20 are shown the two main arrangements of an FP resonator.
In Figure 6.20(a) the FP resonator is made of two separate mirrors, each of
which is made of a wedge glass plate, one side is coated to have a high reflec-
tion coefficient; the two faces are not parallel and make an angle of a few
degrees, so that the beams that are reflected on the noncoated faces don’t 
participate in the interference process. A high precision screw allows an 
accurate translation of the mirrors, which remain parallel while their 
separation is smoothly varied.

In the arrangement of Figure 6.20(b), reflecting layers are deposited each
side of a transparent plate, the faces of which are parallel with a high accu-
racy. This arrangement, which is known as a Fabry-Perot etalon, is very con-
venient although the separation of the two mirrors is, of course, not tunable.

The performances of an FP resonator come from the quality and the par-
allelism of the mirrors. The roughness of the faces should be very low, the
mean quadratic error with regard to an ideal plane is always better than l /10
(l is some optical wavelength, usually the sodium wavelength) and usually of
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(a) FP Interferometer (b) FP Etalon

Figure 6.20. Examples of an FP resonator.



l /100. Initially, the mirrors were made by metal evaporation, dielectric coat-
ings are now exclusively used, since their absorption coefficients are very low
(0.1% = 10-3).

In Figure 6.21 is shown a simplified model that will be used for a theoret-
ical analysis, the glass plates supporting the mirrors are omitted: the resonator
is made of two reflective planes separated by a medium having a refractive
index equal to one. To each mirror are associated a reflection, a transmission,
and an absorption coefficient. Two kinds of coefficients are used corre-
sponding, respectively, to the complex amplitudes or to the intensities of 
the waves. For complex amplitudes we use lowercase italic letters (r1, r2, t1,
t2, a1, a2) and for intensities capital italic letters (R1, R2, T1, T2, A1, A2). The
amplitude coefficients are complex numbers, the argument of which is deter-
mined by the phase shift occurring at reflection. The intensity coefficients are
real and equal to the squared modulus of the amplitude coefficients,

(6.14)

Referring to Figures 6.21 and 6.22, it is seen that an incident ray generates
two families of parallel rays that, respectively, propagate on the left and right
sides of the resonator. Since all the rays belonging to a given family are par-
allel they interfere at infinity and the interference pattern should be observed
in the focal plane of a lens L. An FP resonator is usually illuminated by an
extended source emitting rays in all directions. To each direction D is associ-
ated a focus P(D). If the lens is stigmatic, the phase repartition between the
different rays is kept on their arrival at P(D) and determines the state of inter-
ference. The phase difference between the following two rays is fixed by the
angle of incidence i, and remains the same for all the rays making the same
angle with the normal to the mirrors. This normal to the mirrors is an axis of
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Figure 6.21. Simplified representation of an FP resonator.



symmetry, which means that the interference fringes are concentric circular

rings centered on the focus of the lens corresponding to the direction of the
normal.

We must be aware of the fact that the previous treatment is, a priori, not
valid since its uses, explicitly and extensively, the notion of light rays to 
analyze an interference phenomenon, which should be described by waves.
The result is however quite correct and there is no paradox at all; the reason
is that the resonator is illuminated by planar waves, and a ray like I0J0 of
Figure 6.22 is just the wave vector of the incident wave, in the same way KiJi+1

and KiTi are the wave vectors of reflected and transmitted waves that are 
generated on the mirrors.

A planar monochromatic wave (angular frequency w = 2p�, vacuum wave-
length l = c/�, vacuum vector k = 2p /l) illuminates the devices of Figures 6.21
and 6.22, the wave vector is oriented along I0J0 . The interaction with the first
mirror generates a reflected wave J0R0 and a transmitted wave J0K0 , this last
wave generates in turn a planar transmitted wave K0T0 and a reflected wave
K0J1, and so on. . . . Almost all analog treatments can be given for the two fam-
ilies of waves, the expressions are slightly simpler for the transmitted waves,
because they all follow the same law of recurrence, while the first reflected
wave J0K0 has a different expression from the others. Although they have
equal wave vectors and, consequently, parallel wave planes, all the waves of
a given family don’t constitute a unique planar wave since there is a phase
discrepancy between two successive waves. The phase difference f is evalu-
ated in Figure 6.22:
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Figure 6.22. Ray trajectories inside an FP resonator. All rays coming from the initial
ray I0J0 are focused at the same point P(D) where they interfere with the same phases
that they had, respectively, at points T0, T1, T2. During the time taken by the ray, which
leaves the FP resonator at point K1 to travel along the optical path K0J1K1, the ray
leaving at point K0 will only have covered K0H.



6.4.2. Expressions of the Transmitted Waves, Airy Function

From the complex amplitudes of the transmitted and reflected waves that are
given in Figure 6.21, it is easy to calculate the amplitude Y(f) of the wave that
is transmitted in the direction which makes an angle i with the normal to the
mirrors,

(6.16)

Formula (6.16) is quite general, however, if the reflection coefficients are
small the factor (r1r2)p rapidly becomes negligible as p increases. If r1 = r2 =
(4%)1/2 Æ (r1r2)3 = 6 ¥ 10-5, only the two first waves will have some importance
in the interference process. Now if r1r2 = 0.8 Æ (r1r2)10 = 0.10, after ten reflec-
tions the signal still has a meaningful value: the FP resonator is really a 
multiple wave interferometer.

The summation indicated in (6.16) is readily done and the result is

(6.17)

If the incident wave is given an intensity equal to unity, (6.18) gives the
transmitted intensity:

(6.18)

(6.18.a)

We use the reflection (r = r1r2) and transmission (t = t1t2) coefficients for
intensities and we define the coefficient of finesse F, which is an important
parameter of an FP resonator:

(6.19)

Using a new function, called the Airy function, which is defined by
formula (6.20), the intensity is given by formula (6.21):

(6.20)

(6.21)

According to (6.15), f is proportional to the frequency; the graph It(f) can
thus be considered as a representation of the spectral response of the FP 
resonator.
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The Airy function is periodic (2p) and so is the spectral response with a
period equal to 2d/c = tRT (RT for return time), tRT is the time taken by the
light to go back and forth between the mirrors. The finesse factor such as
defined by formula (6.19) is a dimensionless parameter that becomes infinite
when the two mirrors are perfectly reflecting. A(f) is maximum and equal to
one when f is an integer multiple of 2p, and A(f) is minimum and equal to
1/(1 + F ) for odd multiples of p. When F is of the order of unity, or even
smaller, the Airy function looks very much like a sine oscillating between 1
and 1/(1 + F ): it can then be considered that only two beams are interfering.
Multiple interferences correspond to high values of the finesse coefficient; as
F goes to infinity, A(f) becomes a succession of equidistant peaks, with 
height equal to one and width equal to zero. This is a general property: the
higher the number of waves that interfere, the more accurately the condition
of positive interference has to be fulfilled; for an infinite number of interfer-
ing waves, light is observed only in the directions for which the condition 
f = p2p is strictly satisfied.

Finesse and Coefficient of Finesse

Instead of the coefficient of finesse F another parameter is often introduced,
it is simply called the finesse Fi of the FP resonator and is defined by the 
following formula:

(6.22)

Let Df1/2 be the half-width height of the teeth of the Airy function comb
and let �p be the frequency of the pth tooth (f = 2pp), for large enough values
of the finesse we have

(6.23)

If the graph of Figure 6.23 is considered as the representation of the spec-
tral response of the FP resonator as a function of the frequency �, the finesse
is easily written as a function of the half-width spectral height D�1/2 on the one
hand, and of the frequency difference (�p - �p-1) between two adjacent teeth
on the other hand; this frequency difference (�p - �p-1) has been given a name:
the free spectral range (FSR) of the interferometer,

(6.24)

Following a rule of thumb, the finesse is considered to give an order of
magnitude for the number of rays that really interfere, since their amplitude
is not too small.
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Quality Factor Q

The quality factor Q is a number that is mostly used in electronics to char-
acterize an RLC circuit, or the selectivity of a frequency filter; it is defined 
as the ratio of the central frequency to the bandwidth, it is usually a large
number. A Q factor can be defined for the teeth of the comb of mode

(6.25)

Numerical Application

We consider an FP resonator with the following optogeometric properties:

Ratio of vibrations, respectively, labeled p = 0 and p = 40 in formula (6.16):

Free Spectral Range: (FSR) = (�p - �p-1) = 1/tRT = 2.5 ¥ 1010 Hz = 25 GHz.

Spectral width of a tooth belonging to the comb of modes,
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Figure 6.23. Combs of modes for different values of the finesse.



The Fabry-Perot Resonator Using Spherical Mirrors

Up to now the waves propagating between the two mirrors were always 
supposed to be planar and to have an infinite transverse extension, with the
nonformulated assumption that the mirrors also have infinite transverse
dimensions. . . . If the mirrors don’t have an infinite extension, oblique rays,
after a great number of reflections, will eventually fall outside the mirrors;
this is the reason why the finesse hardly exceeds 50. In the middle of the twen-
tieth century the French physicist Pierre Connes proposed replacing the
planar mirrors by spherical mirrors; under such conditions the light rays
remain in the vicinity of the line joining the centers of the two mirrors, finesses
as high as 1000 can then be reached. Lasers almost exclusively use spherical
mirrored resonators.

6.4.3. Size of the Rings

We consider the rays that are transmitted through an FP resonator; observed
on a screen disposed in the focal plane of a lens, their interference pattern is
made of concentric circular fringes, which appear as bright rings on a dark
background. Let FP = x be the distance of some point P to the center of the
rings and let i be the angle associated to the direction for which P is the focal
point. If f is the focal length of the lens, we can write

The thickness d of the FP resonator contains a large number of wave-
lengths, we can always write

(6.26)

e is a positive number smaller than unity and is called the fractional

excess.
p0 is the largest number of half-wavelengths l /2, contained in the thick-

ness d, and is called the order of interference at the center of the interference
pattern.

i being the angle of incidence corresponding to some bright interference
ring, we have

(6.27)

For a given thickness, according to formula (6.27), the order of interfer-
ence is at most equal to p0 and decreases with the distance to the center of
the interference pattern. For the first clear ring the order of interference is 
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p = p0, the following rings are obtained by decrementing p, one unit after 
the other. The angles of incidence of the successive rings are given by the 
following formulas, in which the angles are considered to be very small:

6.4.4. Chromatic Resolving Power

The main purpose of a spectroscope is the examination of the detailed struc-
ture of spectral lines; its performances can be described using either the fre-
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Figure 6.24. Variation of the diameter of the rings as a function of the FP thickness.
When the fractional excess e = 0, we observe a broad and bright spot at the center,
surrounded by clear thin rings. As e increases from 0 to 0.5, a new ring appears, starting
from the center.



quency or the wavelength. The chromatic resolution is the smallest wave-
length difference Dlmin, or the smallest frequency difference D�min that can be
measured. The chromatic resolving power is the ratio of the wavelength to
the chromatic resolution, or of the frequency to the chromatic resolution,

(6.28)

where Dlmin is obtained from point C of Figure 6.25(b) and from the expres-
sion of the Airy function A(f) for the two wavelengths l1 and l2, see formula
(6.23),

(6.29)

The chromatic resolving power is proportional to the coefficient of finesse
and to the order of interference.

It is sometimes convenient to introduce the Free Spectral Range (FSR) in
the expression of Dlmin:
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C

Figure 6.25. Separation of two adjacent rays. Here are shown the intensity profiles
of two rings having the same order of interference but two different wavelengths. In
(a) the wavelengths are quite different and easily resolved. In (b) the two curves
intersect at the point C where the intensity is equal to one-half of the maximum; it is
considered that this situation represents the limit of the resolution.



(6.30)

where Dlmin is all the smaller as the FP resonator is thicker. Very important
thicknesses are not however of practical use, since the different orders of
interference would then overlap, making impossible the interpretation of the
spectrograms.

Scanning the Fabry-Perot Interferometer

Taking photographs and then performing densitometric measurements has
been, for some time, the only way to analyze the interferograms. Direct mea-
surements, using photodetectors, are of course more comfortable; in Figure
6.26 is shown a very convenient arrangement, known as the Scanning Fabry-

Perot arrangement. As illustrated in Figure 6.24, the diameter of the fringes
increases with the distance d between the two mirrors; when d is increased
by a half-wavelength, the ring labeled (q + 1) takes the place of the ring labeled
q. A translation of a fraction of one micrometer is readily obtained with a
piezoelectric cell.

The interference pattern is analyzed by a photodetector through a tiny
hole, the dimension of which is small as compared to the broadness of an
interference fringe. Let us suppose that the light is monochromatic (wave-
length l) and that the hole is located on a clear ring; if the separation between
the mirrors is increased, the diameter of the ring also increases: the intensity
of the light transmitted through the hole diminishes according to a law which
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Figure 6.26. Scanning Fabry-Perot arrangement. One of the mirrors is fixed on a
piezoelectric cell. The mirror separation, d, is modulated, thanks to a low-frequency
(1 kHz) driving voltage e(t). A tiny hole is placed in the focal plane of the second lens
in front of a photodetector. The output signal is proportional to the light intensity at
the location of the hole.



is determined by the Airy function. We now consider the case of a light
source that is no longer monochromatic, that’s to say that its intensity is a
function, I(l), of the wavelength; however, the variation is supposed to be
smooth enough, so that I(l) remains constant inside the frequency band cor-
responding to the broadness of the ring of the FP resonator: the arrangement
of Figure 6.27 allows the sampling of the function I(l) and a suitable signal
processing, which takes account of the shape of the Airy function, finally
giving the profile of I.

6.5. Interference Using Stacks of Thin 

Transparent Layers

6.5.1. Considerations About the Technology of Thin Films

As an answer to the demand in Optics and also in microelectronics, efficient,
reproducible, and cheap methods have been developed for depositing thin
films on the surface of various substrates. The films can be made of dielec-
tric or metallic materials. Their thicknesses, which range from a few nanome-
ters to a few micrometers, and their chemical composition are controlled with
high accuracy. The layers that we will consider here are made of a dielectric
material of constant composition and constant refractive index, with a thick-
ness of the order of an optical wavelength (1000 to 10,000 nm).

In most cases, the aim is to elaborate stacks of alternately low-index layers
(typically n = 1.3) and higher-index layers (n = 2), see Figure 6.28. The inter-
esting property of such an arrangement is that its reflection and transmission
coefficients vary with the wavelength according to a law that can be easily
controlled, by playing on the thickness and on the index of refraction of the
layers. A great variety of response curves can be obtained, going from very
selective filters to a flat response function inside a given spectral band.
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Figure 6.27. Sampling of the spectral profile of a radiation. When the mirror
separation d is varied, the frequency distance between two adjacent teeth can be
considered to keep a constant value, and the comb is shifted as a whole. The entire
Free Spectral Range is swept as d is increased to l /2.



6.5.2. Antireflection Coatings

Antireflection coatings were probably the first industrial applications of thin
optical layers. Only one layer is used, its refractive index n1 is intermediate
between the index n0 of the superstrate and the refractive index ns of the sub-
strate, see Figure 6.29. The purpose is to obtain that the two first reflected
rays, R1 and R2, cancel by interference: all the incident energy is then trans-
ferred to the transmitted ray. The problem is to determine the index n1 and
the thickness e, so that R1 and R2 have the same amplitudes and opposite
phases. The incidence is supposed to be quasi-normal, the moduli of the
normal reflection coefficient are given by the following expressions:

(6.31.a)

The optical path length difference d between R1 and R2 is equal to

d = ª2 21 1n e r n ecos , since the incidence is normal or almost normal.
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Figure 6.28. Stack of dielectric layers deposited on top of a substrate. An incident
wave generates many reflected and transmitted waves. The reflected (or trans-
mitted) wave is the result of the interference of the various partially reflected or
transmitted waves.
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Figure 6.29. Antireflection coating. The
incidence is supposed to be quasi-normal. If
the index of the layer is equal to (n0ns)1/2, and
if the thickness is such that a double transit
inside the layer produces a phase difference
equal to p, then the two reflected rays are
mutually destroyed by interference.



The interference will be destructive at the wavelength l, if the layer thick-
ness is such that 2n1e = (2p + 1)l / 2, the smallest value of the thickness 
fulfilling this condition is

(6.31.b)

Numerical application: Let us look for a material which would make an
antireflection coating, if deposited on a piece of glass suspended in air.

n0 = 1, ns = 1 Æ (n0ns)1/ 2 = 1.35; no convenient material exists with such a
low index, the nearest one is cryolithe, AlF6Na3, the index of which is 1.35.
The deposition of a layer of cryolithe with a suitable thickness on top of a
glass slide reduces the normal reflection coefficient from 4% down to 0.3%.
All the interfaces of optical instruments, including spectacles, are covered
with antireflection coatings. Let us consider the case of a microscope objec-
tive made of five different lenses, the light rays will cross ten air/glass inter-
faces; in the absence of any treatment the ratio of the transmitted intensity
to the incident lens is 0.9610 = 66%, while it becomes 0.99710 = 97% with antire-
flection coatings. The gain of luminosity is not the only advantage; the
unwanted reflected light rays constitute a parasitic light signal returning to
the eyes of the observer.

If a treated surface is illuminated by a white source, it appears to have a
faint blue-violet characteristic color, this comes from the fact that the reflec-
tion coefficient is practically equal to zero for a yellow light and has a small,
but still appreciable, value for red and blue light rays.

6.5.3. Generalization to the Case of n Layers

6.5.3.1. Matrix Representation of Reflection and 

Transmission by an Interface

To determine the waves that are transmitted, or reflected, by an FP resonator,
the method used in Section 6.4 consists in the superposition (interference) of
the various waves generated on the two mirrors. Although it should be theo-
retically possible, this method can hardly be generalized to the arrangement
shown in Figure 6.28. We are going to follow another way, a matrix will char-
acterize each layer and the action of several cascaded layers will be described
using a product of matrices. An excellent description of the matrix treatment
of thin layers can be found in the book Optical Waves in Layered Media by
Pochi Yeh (Wiley).

In Annex 4.A of chapter four it is shown how the invariance in a 
translation parallel to an interface leads to the conservation of TE and TM
polarizations when a beam is reflected or refracted. We refer to Figure 
6.30(a and b): the first interface receives a planar wave (wave vector, k1,R); a
planar reflected wave (wave vector, k1,L) and a planar transmitted wave (wave
vector, k2,R) are created on the first interface. Similarly, a planar reflected wave

e n= l 4 1.
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(k2,L) and a planar transmitted wave (k3,R) are created on the second inter-
face. The labeling conventions are the following:

• 1, 2, 3 refers to the medium inside of which the propagation is made.
• R or L, respectively, mean toward the right- or the left-hand side.

(6.32)

If there is only one planar incident wave on the first interface, in the layer
labeled a we will find two planar waves with the respective wave vectors ka,R

and ka,L. These two wave vectors are obtained from the Snell-Descartes laws
for refraction and reflection. Because of the orientation chosen for k1,R in
Figure 6.30, all the vectors ka,R are parallel to the positive directions of the
Ox and Oz axes, while all the ka,L are directed parallel to the positive direc-
tion of Ox and the negative direction of Oz. To justify the above allegations,
we can either be confident in our physical intuition, other waves being hardly
conceivable, or we can say that the solution that we are going to exhibit does
satisfy Maxwell’s equations, since it’s the superposition of planar waves and
since it has been specially adjusted to fulfill the boundary conditions along
the various interfaces.

According to the Descartes-Snell formula, the projections of all the wave
vectors on the axis Oz have the same value b,

(6.33)

where k0 = w /c and ka are, respectively, the moduli of the wave vectors in a
vacuum and in a material of refractive n. The projections of the wave vectors
on the Ox axis are given by the following formulas:

(6.34)k k n k k nx R x La a a a a aq q, ,cos cos .= = -0 0and
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Figure 6.30. TE and TM waves keep their polarization by reflection or refraction.



The electric and magnetic fields on both sides of the first interface of
Figure 6.30 are given by

(6.35.a)

(6.35.b)

(6.36)

For homogeneous and isotropic materials the boundary conditions are
very simple: the tangential components of the electric and magnetic fields vary
continuously when crossing an interface.

TE Wave

The electric field is along Oy; the magnetic field has two components along
Ox and Oz. We set E1,R = ETE

1,Ry and E1,L = ETE
1,Ly and we obtain

(6.37)

If we introduce the matrix 

,

equation (6.37) can be written

(6.38)

TM Wave

The electric field has two components along Ox and Oz, the magnetic field is
along Oyo; we write the continuity of Ez and of Hy:

(6.39)

(6.40)

Fresnel’s Formula for Reflection and Refraction

If the second medium is infinitely extended on the positive side of the Ox

axis Æ ETE
2,L = ETM

2,L = 0; we can then define the reflection and refraction coeffi-
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cients: rTE = (ETE
1,L/ETE

1,R) and tTE = (ETE
2,R /ETE

1,R), and equivalent formulas for the
TM waves,

(6.41)

Formulas (6.41) are the same as the Fresnel formulas that have already
been established in Section 4.3.3.2, see formulas (4.15) and (4.16).

6.5.3.2. Representation of a Thin Layer by a 2 ¥ 2 Matrix

We now come back to the arrangement of Figure 6.30. For a TE polarization
there is no discontinuity for the electric vector E, since it is purely tangen-
tial; the situation is different for the magnetic vector H, the normal com-
ponent of which is discontinuous. For a TM polarization, the magnetic vector
is purely tangential and thus continuous, while the normal component of the
electric field varies discontinuously.

The full calculation of the matrix method will only be made in the case of
a TE polarization. As the electric fields are always parallel, we can forget that
they are vectors and treat them as if they were scalar,

where Ea,R and Ea,L are constant values inside the layer labeled a; the ampli-
tudes of the waves propagating toward the right- or left-hand side are, respec-
tively, written as:

(6.42.a)

(6.42.b)

Dropping the label TE, formula (6.38) becomes
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where 0- and 0+ are the abscissas of two points, respectively, located imme-
diately before or immediately after the interface.

The phase difference f 2 = (k2)xd due to the propagation from the plane 
x = 0+ to the plane x = d-, and the phase difference -f2 for a propagation in
the opposite direction, correspond to a propagation matrix P2,

(6.43.b)

The above formula remains valid for a TM polarization, if the matrix D is
taken from formula (6.40).

6.5.3.3. Matrix of an Arrangement of n Layers

Formula (6.44), which is a generalization of (6.43), is not very convenient for
handmade calculations, but proves to be useful if a computer is used,

(6.44)

The matrix elements are obtained from formula (6.34), instead of using
the sine or cosine of the angle qa, it may be more convenient to use 
the modulus of the projection on the Ox axis, ka,x = k0na cosqa, of the wave
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Figure 6.31. Stack of N multidielectric layers sandwiched between a substrate nout

and a superstrate nin.



vector

The products of matrices, Dl,l+1 = Dl
-1Dl+1, that are found in (6.43) and (6.44)

have the following expressions:

(6.45.a)

(6.45.b)

From a practical point of view, the projection b of the wave vector on the
Oz axis will first be evaluated, and then the projection on the Ox axis will be
obtained using the following formula (6.46):

(6.46)

if ka,x is either real or complex, and if ka,x is real the wave inside the layer of
index na is a progressive wave. There are two situations for which ka,x is not
real: in the first one, the material is absorbing and the index of refraction na

is a complex number. The second situation is more interesting, the material 
is fully transparent, na is real, but the conditions are those of total internal
reflection; ka,x is purely imaginary.

Stack of l /4 Layers

We now consider the case where the stack of Figure 6.31 is made of the 
succession of N pairs of layers each having an optical thickness equal to l /4
(n1d1 = n2d2 = n3d3 = . . . = nada = l /4).

According to formulas (6.38) and (6.39), the matrices have the same
expression for TE and TM polarizations,
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Finally, we suppose that the last medium is infinitely extended on the 
positive side of the Ox axis, which means that there is no wave coming back
from the right-hand side,

We can now evaluate the reflection coefficients of the stack of dielectric
layers for either the amplitude or the intensity of the waves,

n0 = nin and n2N+1 = nout are the respective indices of the first and last 
mediums.
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N 0 1 2 3 4 5 6 7

R2N 0.04 0.207 0.425 0.621 0.765 0.860 0.919 0.953

N 8 9 10 11 12 13 14 15

R2N 0.974 0.985 0.992 0.995 0.997 0.998 0.9991 0.9995

The above table gives the values of the reflection coefficient for different
values of the number of pairs of layers. The first medium is air (nin = 1), the
indices of the two layers of each pair are, respectively, n1 = 2 and n2 = 1.4, the
index of the substrate is nout = 1.5.

An important application of dielectric multilayers is the fabrication of
mirrors, totally or partly reflecting. The main advantage of using dielectric
materials, rather than a metal, is the low value of their absorption coefficients,
which is as small as 0.1% (compared with a few per cent for silvered 
mirrors).



6.5.3.4. Interference Filter

An interference filter is used to select a very narrow spectral band of light
emitted by a less monochromatic source, they are very common optical com-
ponents. As shown in Figure 6.32, they are made of an FP etalon, made by
depositing dielectric multilayers on both sides of a transparent plate, and of
a colored glass plate. The FP etalon transmits all the wavelengths of the dif-
ferent teeth of the comb of modes, its thickness e is adjusted so that one of
the teeth just coincides with the frequeqency which is to be selected; if e

is small, the frequencies of the adjacent teeth will be quite different and 
easily removed by a broader band filter.

298 6. Interference

Multidielectric layers  

Colored filter

Transparent glass substrate 

FP etalon e

Figure 6.32. Interference filter. The FP etalon only transmits the frequencies of the
teeth of the comb of modes. The colored piece of glass is a broader filter centered on
the frequency to be selected; it keeps only one tooth and rejects all the others. The
substrate is a high-quality piece of glass and ensures mechanical rigidity.



7

Diffraction

7.1. The Huygens-Fresnel Postulate

Diffraction has played an important role in the development of Optics and,
more generally, of Physics. It should be remembered that the wave nature of
light had been recognized only after Arago and Fresnel had made their exper-
iments on diffraction by circular holes and disks.

The propagation of light had been experimentally analyzed well before any
theoretical formulation (Maxwell’s equations) or before the introduction of
the necessary mathematical tools (vector analysis, Fourier development, . . .).
The physicists working during the eighteenth century proved to be very imag-
inative and pragmatic when they described the phenomena that they were
observing.

7.1.1. Intuitive Approach of the Huygens-Fresnel Principle

The Huygens-Fresnel principle is a typical example; the description of the
propagation of light waves using wavelets is completely intuitive and is in full
agreement with experimental results. Its validity is extended to many other
domains and is not restricted to electromagnetic waves.

Diffraction is characteristic of any physical phenomenon leading to the
propagation of waves, such as electromagnetic waves, acoustic waves,
mechanical surface waves, De Broglie waves. . . . Diffraction occurs any time
that some obstacle is interposed on the wave trajectory; its effects are espe-
cially noticeable when the cross section of a beam is limited by a diaphragm
having dimensions that cannot be considered as infinite, that’s to say large, as
compared to the wavelength.
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To introduce the Huygens-Fresnel principle, we will start from the obser-
vation of the diffraction of mechanical surface waves propagating along the
free interface of a liquid; the experimental arrangement is shown in Figure
7.1: a tank is divided into two parts by a wall inside of which a small hole 
H has been drilled. An electrically activated vibrator is disposed at point S,
generating circular waves. All the walls are covered with a special foam to
eliminate reflected waves. The two parts of the tank only communicate
through the small hole H; the molecules of the liquid are set in motion by the
wave coming from S. As far as the second half of the tank is concerned, every-
thing occurs as if a vibrator is disposed at point H and generates circular
waves.

According to the Huygens-Fresnel postulate, the vibrations of the mole-
cules located at the hole are the same as the vibrations that would be created
by the source S in the absence of the wall. In the arrangement of Figure 7.2,
the hole is quite large and the effects of diffraction are only noticeable in the
vicinity of the edges.

Diffraction and Interference

In most practical situations, the light that arrives at a given point has several
origins: light coming directly from the source and light that has been dif-
fracted by different obstacles. What is observed is the result of the interfer-
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S H

Figure 7.1. Diffraction of mechanical
surface waves by a small aperture. The
hole can be assimilated to a point
source which, apart from a p/2 phase
difference, has the same amplitude as
the vibration produced, at point H, by
the wave emitted by the source S.

Figure 7.2. Diffraction of a circular
wave by a large size obstacle. The effect
of diffraction is only noticeable in 
the close vicinity of the edges of the
diaphragm.



ence between all these radiations; if the initial source is coherent enough,
fringes will be seen. The arrangement of Young’s holes is an interesting
example involving, simultaneously, diffraction and interference.

Qualitative Considerations on Diffraction Patterns

The basic properties of a planar wave are the following:

• Only one wave vector is involved.
• The wave surfaces have an infinite extension, since they are planar, with

the mathematical meaning of this word.
• The complex amplitude of the vibrations remains constant and doesn’t go

to zero at infinity.

When the transverse extension of a planar wave is limited by some hole
drilled in an opaque screen, the wave is said to be stopped down. The trans-
mitted wave is no longer planar: the surface waves are not planar and the
amplitude goes to zero on the border of the diffracted pattern. Such a wave
(see Section 2.3.4) should be considered as the superposition of an infinity of
elementary planar waves, having different wave vectors and different ampli-
tudes. The amplitude of these planar waves is all the larger as the orientation
of their wave vectors is closer to the wave vector of the incident planar wave.
In Figure 7.3 has been drawn a curve, called an indicatrix, which is obtained
by plotting, from the center of the diaphragm and in the direction of the wave
vector, a segment having a length proportional to the intensity of the corre-
sponding planar wave. All the diffracted wave vectors are practically inside
the cones shown in the figure, the shape and size of the diaphragm determine
their angle a. Practically a = Kll/a, where a is of the order of the transverse
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Incident planar 
wave a ª l/a

Circular hole 

Elongated hole 

Diffracted rays 
(circular cone) 

Diffracted rays 
(elliptic cone) 

Figure 7.3. Diffraction of a planar wave by a hole. The smaller the hole, the wider
the cone inside of which the diffracted light is spread. For an elongated hole, the
diffraction pattern is more spread in a direction orthogonal to the larger size of 
the hole.



size of the diaphragm, and K is a proportionality coefficient of the order of 1.
For a circular diaphragm having a diameter a, the coefficient K is 1.22. A small
hole transmits only a little light, but the light is all the more spread the smaller
it is. The indicatrix of a very small hole is a half-sphere.

Very often the diaphragm has the shape of a thin rectangular slot, the
length of which can be considered as infinite compared to its width a. There
is no diffraction in a direction parallel to the slot; it will be shown that in the
other direction the angle of diffraction is a = l/a.

Huygens-Fresnel Wavelets

To solve a problem of electromagnetic propagation, we have to determine the
electromagnetic vector at a given time and at all the points of the geometric
space, knowing its repartition, over a given surface and at some previous time.
The given surface can be the surface of the emitting source. The fields are
supposed to be harmonic and can be expressed by the following formula:

The source S of Figure 7.4 continuously produces harmonic waves with a
period equal to T. In the same figure are shown, at time t = 5T, the six surface
waves that have been emitted at the respective instants t = 0, T, 2T, 3T, 4T,
5T.

A first way of formulating the Huygens-Fresnel principle consists in the
replacement of the source S by a set of point sources (called auxiliary

Huygens-Fresnel sources), disposed over a wave surface (S ) and emitting in-

phase spherical waves (called Huygens-Fresnel wavelets) having the same
amplitude that was produced at the same place as the source S. It is consid-
ered that the surface waves are the envelope of the wavelets emitted by all
the auxiliary sources.

A e ex y z
j j tx y z

, ,
, , .( )

- ( )j w
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S (source)

Instant pictures, at time t = 5T,
of the wave surfaces that were emitted
at respective times 0, T, 2T, …, 5T. 

Shape, at time t = 5T, of the spherical
wavelets that were emitted at t = 4T.

0
T
2T
3T
4T
5T

Figure 7.4. Illustration of the Huygens-Fresnel principle in the case where the
auxiliary sources are distributed over a surface.



Incident wave 
surfaces  

(S ) Open part of the 
diaphragm 

Sets of wavelets at 
two different times 

Wave surfaces at two 
different times 

Diaphragm

S

Figure 7.5. Interpretation of diffraction by diaphragm. To reconstitute the same field
as produced by the source, it is necessary to let all the auxiliary sources interfere. If
the diaphragm obliterates some of them, the reconstituted field is different as it was
in the absence of a diaphragm.

As an example, we have drawn the wavelets that have been emitted at time
t = 4T, their envelope, at time t = 5T, coincides with the wave surface that
had been emitted at time t = 0.

Once the Huygens-Fresnel principle is admitted, the interpretation of dif-
fraction is immediate: to reconstitute exactly a field identical to the one 
that is radiated by the source, we need to consider all the auxiliary sources;
if a diaphragm obliterates some of them, the field is modified. The utilization
of the wavelets for determining the diffraction pattern in the situation of
Figure 7.5 is surely not rigorous, although commonly used.

7.1.2. Huygens-Fresnel Mathematical Formulation 

Starting from the wave equation (2.3), Helmholtz and Kirchhoff gave a demon-
stration of the Huygens-Fresnel principle, which is then no longer a principle.
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S+
S- S+

Figure 7.6. According to the Huygens-Fresnel principle, two waves S+ and S-, should
be considered. Mathematicians could find good arguments to eliminate the wave,
which has no experimental existence.



Their demonstration is valid in the case when the auxiliary sources are spread
over a closed surface. Quite interesting from a theoretical point of view, this
theory doesn’t bring any additional physical features with regard to the intu-
itive approach; in addition, there are very few situations where rigorous cal-
culations can be carried over. However, thanks to computers, numerical
integration techniques have largely contributed to new developments of this
aspect of electromagnetism.

Amplitude of Vibration of the Auxiliary Sources

A second formulation of the Huygens-Fresnel principle is to place over the
open part (S ) of the diffracting diaphragm, auxiliary sources that have
complex amplitudes proportional to the amplitudes F(M ) of the vibration at
the same place, but in the absence of the diaphragm. These elementary ampli-
tudes become meaningful only after an integration over the surface (S ), they
are proportional to the area ds of an elementary surface drawn around point
M and will be written as KF(M) ds, K is a proportionality coefficient that must
be evaluated. The elementary field dE created at a point P of a spherical
wavelet coming from point M is given by

A full development of the theory gives, for the proportionality coefficient,
a value, K = j/l, which can be interpreted in the following way: dE and F(M)
have the same dimension, thus K is homogeneous to the inverse of a length;
the only length already met in the problem is the wavelength, which can be
considered as a good reason for making K = 1/l. The existence of the imagi-
nary factor j = ejp/2 is easily understood if we think of a spherical wave that
diverges from the center of the wavelet and if we remember that there is a p
phase shift for a spherical wave crossing its focus.

To obtain a mathematical expression for the Huygens-Fresnel principle,
we will use the two formulas (7.1) and (7.2), given in Figure 7.7.
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Figure 7.7. Interference of the wavelets emitted by the points located in the open
part of the diaphragm.



Figure 7.8 shows an arrangement often used in microwave to obtain an
angular scanning of a radar electromagnetic wave. Antennas are regularly dis-
posed along a plane; they are connected to a unique source through phase
shifters, each of them shifting the phase of a specific amount that can be elec-
trically tuned by an external signal.

If all the antennas are excited in phase, the superposition of all the waves
that they emit makes a planar wave emitted parallel to the plane of the anten-
nas. By a suitable choice of the phase shifts, wave surfaces of any shape can
be synthesized. If the phase shifts vary according to an arithmetic progres-
sion, a planar wave is generated obliquely; if the step of the progression is
varied versus time, an angular scanning is achieved.

7.1.3. Resolution of a Problem of Diffraction

7.1.3.1. Notations

Figure 7.9 summarizes any diffraction experimental arrangement: an incident
wave illuminates an aperture opened in a diaphragm, which may have any
shape but most often is a plane (xOy). The diffraction pattern is observed on
a plane (XO¢Y ) that is parallel to (xOy). Usual experimental conditions are
such that, on one hand, the distance d between the two planes is far larger
than the wavelength and that, on the other hand, the line MP joining any point
of the diffracting diaphragm to any point of the plane observation makes a
small angle with Oz; to be more precise, the two angles, u and v, of Oz with
the projection of OM, respectively, on the plane xOz (or XOz) or on the plane
yOz (or YO¢z) are small enough to be assimilated to their sine or tangent.
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All antennas are excited with the same phase.
The phase shifts are electronically
tuned so that ji = (i - 1)f(t).

Figure 7.8. Concrete illustration of the Huygens-Fresnel principle: electronic angular
scanning of the wave emitted by a microwave antenna network.



7.1.3.2. Near Field Diffraction (Fresnel), 

Far Field Diffraction (Fraunhofer)

Near field diffraction, preferably called Fresnel diffraction, is the most
general and the most difficult problem of diffraction. The distance between
the diffracting aperture and the point of observation (distance d between the
two planes xOy and XO¢Y of Figure 7.9), is of course far larger than the wave-
length, but can be comparable to the size of the aperture.

Far field diffraction is preferably called Fraunhofer diffraction. Let us
suppose that the plane XO¢Y is covered by a screen on which the diffrac-
tion pattern is observed and let us see what happens when the distance d is
increased: the diffraction pattern becomes larger and larger and less con-
trasted, but it tends to keep, whatever the distance, the same aspect that is
called the far field diffraction pattern.

In fact, it’s not necessary to go as far as infinity to observe a far field
pattern, since infinity can be brought to the focal plane of a lens. Joseph von
Fraunhofer was the first to propose this method of studying diffraction, it’s
probably the reason why the following epitaph has been written on his tomb-
stone: “Approximavit sidera,” “He made the stars closer.”
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7.1.3.3. Approximate Expressions for the Diffraction Integrals

Since the angles u and v are small, formula (7.3) can be simplified thanks to
a series of developments in the arguments of the complex exponential, the
method is very similar to what we did in Section 2.6,

The presence of the square root of polynomials inside the argument of an
exponential is never pleasant, the development considerably simplifies the
calculation

(7.4)

Let ex, ey, and ez, respectively, be the three projections of a unit e vector
parallel to MP, on the three axes Ox, Oy, and Oz we can write

Because of the assumption of small angles, the orientation of MP involves
only the two parameters u and v. We now look at what happens when 
d Æ •, the following asymptotic formulas can be written:

(7.5)
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where kx and ky are the two projections on the axes OX and OY of a wave
vector parallel to the unit vector e.

The modulus of the complex number K is easily obtained and is equal to
1/ld; on the other hand, the determination of this is more difficult and would
need more information about the asymptotic behavior of (X2 + Y2)/2d. In fact
we don’t really care about the phase, since expressions like (7.4) and (7.6) 
are mostly designated to evaluate the intensity of the diffracted light: in the
end, F(X, Y ) will be multiplied by its complex conjugate and the phase will
disappear.

Relationship Between Diffraction and Fourier Transform

Formula (7.8) is very interesting for two reasons:

• It is the decomposition of the diffracted field in planar harmonic waves.
• F(kx, ky) is the two-dimensional Fourier transform of f(x, y).

A Fourier transform makes a correspondence between a function f(x, y)
defined in the Ox, Oy geometric space and a function F(kx, ky) defined in the
space of the wave vectors. A planar wave of vector (kx, ky) is focused by a
lens at a focal point fk; let x and h be the coordinates of fk (see Figure 7.10),
the repartition F(x, h) of the complex amplitudes of the light vibration over
the plane (Fx, Fh) is the Fourier transform of f(x, y).

7.2. Fraunhofer Diffraction

7.2.1. Definition and Conditions of Observation

We refer to Figure 7.10; because of the Malus theorem, the stigmatism of the
lens implies that it takes the same time to cover the optical paths MIfk, H¢I¢fk,
H≤I≤fkk, and H0I0fk: when arriving at the point fk the rays emitted by the 
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auxiliary sources M, M¢, O, and M≤ have exactly the same phase differences
that they had at points M, H¢, H0, and M≤.

We suppose that the incident wave is a planar wave propagating parallel 
to Oz; the phase difference jM between the two planar waves, respectively, is
diffracted by the points O and M in the direction defined by the angles u and v,

Superposing, at the focal point fuv, all the planar waves diffracted in the
(u, v) direction by the different points of the diffracting aperture gives the
same result as expressed by formula (7.7).

Diffraction in the Vicinity of a Geometric Image

The case of Fraunhofer diffraction is more general than far field diffraction. We
will say that we are in the situation of Fraunhofer diffraction every time that the
diffraction pattern is observed in the vicinity of the image of an object through
some optical imaging device. It is shown in Figure 7.10 how a Fraunhofer dif-
fraction problem can be studied as a far field diffraction problem.

7.2.2. Diffraction by One or Several Slits

7.2.2.1. One Slit

Direct Determination of the Diffraction Pattern

The problem is to calculate the diffraction pattern of a rectangular aperture
having a length L that is considerably larger than its width a. The notations
and experimental conditions are described in Figure 7.12. Since the incident
wave propagates orthogonal to the plane of the slit, all the auxiliary sources
vibrate with the same phase, let b0 be the amplitude of their vibrations.

j M kOM k ux vy= = +( ).
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Figure 7.11. If the observation screen is in (2), we have Fresnel diffraction, while (1)
corresponds to Fraunhofer diffraction. The lens of the left-hand figure (focal length f)
is replaced by two separate lenses (focal lengths f1 and f2, such that 1/f1 + 1/f2 = 1/f ).
The right-hand figure can then be considered as a far field diffraction arrangement
through the fictitious diffracting aperture.



We first consider all the rays that arrive at the focal point f associated to
the direction of propagation corresponding to the angle q, the diffracted ray
coming from point M has covered a shorter path than the ray coming from
point O, the difference is equal to OH and the phase difference is equal to 
j = kOH = kOMsinq. The global vibration diffracted by the slit in the 
direction q and at point f is given by the integral

(7.9)

Determination of the Diffraction Pattern Using the Fourier Transform

(7.10)

It is established in mathematics that the Fourier transform F(u) of a rec-
tangle function is a sinc and that, omitting the proportionality coefficient, we
have
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Figure 7.12. Fraunhofer diffraction by a thin slit. The diffraction pattern is observed
in the focal plane of the lens.



The method for obtaining the Fourier transform of the function Rect(x/a)
is indeed very similar to the calculations of formulas (7.9) and (7.10). The
interest in using the Fourier method is that we can take full advantage of all
the results that have been accumulated by mathematicians concerning the
Fourier transform. Figures 7.13, 7.14, and 7.15 are good examples of the
advantages of the method, which also justify an affirmation that we made
earlier, see Figure 7.3: a diffraction pattern is all the more spread as the dif-
fracting aperture is smaller.
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7.2.2.2. Several Equidistant Slits

Two Slits
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amplitude repartitions, see Figure 7.13, but different phase repartitions. The phase
difference depends on the position in the focal plane and produces an interference
pattern described by a sine, superimposed on the diffraction pattern described by a
sinc.
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Figure 7.16. Variation of the light intensity in the focal plane of Figure 7.15. The
interference fringes, analogous to Young’s slit fringes, are “modulated” by diffraction
fringes (see Figure 6.1).
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Many Slits

Before studying the diffraction pattern given by a great (possibly infinite)
number of slits, we will introduce some useful mathematical functions:

• Dirac’s pulse d(z ), where z is a real dimensionless variable,

(7.11.a)

• Dirac’s pulse occurring for a given value, n, of the variable dn(z ) = d(z - n),

(7.11.b)

• Product of convolution, f(z ) ƒ dn(z ), of a function f(z ) by dn(z ),

• Fourier transform of a product of convolution,

• Dirac’s comb: succession of equally spaced Dirac pulses,
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• Infinite comb of slits (see Figure 7.17):

(7.11.d)

The rectangle function Rect[x/a] has already been introduced in Section
7.2.2.1, formula (7.10).

• An infinite comb of slits is easily reduced to a finite comb of only N slits
(see Figure 7.17), by multiplying by the function Rect[x/Nb]:

(7.11.e)

Diffraction Pattern of a Comb of Slits

The Fourier transform is a convenient and powerful tool for studying 
diffraction patterns, and provides a nice illustration of the respective roles of
diffraction and interference and also of multiple interference. Making the
Fourier transform of the various formulas (7.11) and the products of convo-
lution needs rather tricky mathematical manipulations, we will develop the
full calculations only in the cases where the number of slits is infinite (for-
mulas (7.11.c) and (7.11.d)).

The Fourier transform of Dirac’s pulse is another Dirac pulse; in the same
way, the Fourier transform of a Dirac comb is another Dirac comb. Observed
in the focal plane of a lens, the Fraunhofer diffraction pattern of an infinite
number of parallel equidistant infinitely narrow slits, illuminated by a mono-
chromatic planar wave, is an infinite set of parallel and infinitely thin bright
lines.

The infinitely narrow slits are now replaced by an infinite set of narrow
slits (width equal to a). The diffraction pattern is obtained from the Fourier
transform of formula (7.11.d),

(7.12.a)

(7.12.b)

The first term of (7.12.a) comes from the multiple interference of all the
waves diffracted by the different apertures: constructive interference only
occurs in the directions for which the waves diffracted by two neighboring
slits show a phase difference exactly equal to 2p. The second term comes from
the diffraction by each individual slit. Formula (7.12.b) gives the variation of
the light intensity on the focal plane of the lens of Figure 7.17: a set of equidis-
tant and infinitely thin fringes have an appreciable intensity only between the
first two zeros of the sinc-function (|x| < lf/a); the narrower the slit is, the
greater is the number of fringes.
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The calculation, in the case of a finite number of slits with a finite width
a (formula (7.11.e)), is less trivial, because of the presence of a usual product
and of a convolution product. The limited number of slits corresponds to 
the term Rect(x/(Nb)) in formula (7.11.e); its Fourier transform is the sinc-
function sinc[kNbu/2]. In the focal plane the diffraction pattern is a comb.
The light intensity of each individual tooth is given by sinc2[pNbx/lf ], it has
a principal maximum for x = 0, surrounded by two minima equal to zero that
are obtained for

(7.13)

Two Waves and Multiple Wave Interference

In the previous arrangements diffraction and interference are produced by a
regular distribution of diffracting objects, the phase shift varies versus the
angle and versus the position of the object. The angular repartition of the
intensity of the diffracted light shows important principal maxima for some
directions, between them subsidiary maxima are found, their intensity being
far smaller. Between two consecutive maxima there is a minimum having an
intensity equal to zero.

The directions of the principal maxima are those for which the phase shift
between two neighboring objects is precisely equal to 2p. The diffracted inten-
sity decreases all the more rapidly as the total number of diffracting objects
is larger.

• In the case of only two diffracting objects (Young’s slits, for example), the
variation of the intensity is a sine.

• In the case of an infinite number of diffracting objects, the variation law
of the intensity is a succession of Dirac pulses.

• In the case of a finite number N of diffracting objects, the variation law is
a comb tooth having a width that is all the thinner as N is larger.

Resolving Power of Diffraction Grating Spectroscope

A set of regularly spaced slits is illuminated by a planar wave that has two
spectral components of respective wavelengths l1 and l2. The diffraction
pattern, observed on the focal plane of a lens, is made of the superposition
of the two sets of fringes of two colors. Such an arrangement is a spectro-
scope, its ability to separate two wavelengths is all the more interesting as
the diffraction peaks have a narrower angular width.

If Dl is the smallest difference of two wavelengths that can be discrimi-
nated by the spectroscope, by definition, the resolving power of the spectro-
scope is equal to

It is considered that two wavelengths are discriminated if the distance
between the two principal maxima corresponding to l1 and l2 is larger than

R =
l
lD

.

x l= ± f Nb.
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the distance from a principal maximum to the first minimum. The positions
of the principal maxima come from Comb(bx/lf ), and are given by

The distance to a principal minimum is obtained from (7.13): Dx = lf/Nb,
the resolving power is equal to

(7.14)

The total number N of diffracting slits mainly determines the resolving
power.

7.2.3. Far Field Diffraction by a Circular Aperture

The circular aperture of radius a of Figure 7.18 is described by the following
expression:

The Fourier tranform of C(x, y) is a Bessel function of the first order,

The function J1(Z)/Z plays, in the case of a circular aperture, the same role
as the sinc-function in the case of a rectangular slit. The graph of (J1(Z)/Z)2

looks like that of a square sinc: a central maximum surrounded by subsidiary
less intense maxima, with a minimum equal to zero between two consecutive
maxima. The first minimum is obtained for Z = 3.83, the corresponding radius,
which is the radius of the Airy disk, see Figure 7.18, is equal to
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Figure 7.18. The diffraction pattern of a circular aperture, observed in the focal plane
of a lens, is made of a disk surrounded by rings. The central disk is often called an
“Airy disk.”



Resolving Power of an Imaging System

Because of diffraction, the image of a point source is not a point, but an Airy
disk; the images of two neighboring points are seen separately if their Airy
disks don’t overlap too much. It is considered that this is case if the center of
one disk coincides with the first zero of the other (this approximation is called
the Rayleigh criterion).

The distance between two points that are seen separately is the limit of

resolution of the objective. In the case of a telescope the limit of resolution is
an angle equal to 1.22l/2a according to formula (7.15). The case of a micro-
scope objective raises some difficulty since it involves angles that are not
small, it is found that the angular limit of resolution is 1.22l/2nsinu, where 
u is the greatest value of the angle that makes, with the axis, a ray entering
into the objective. It is interesting to notice that, in both cases, the resolving
power is all the better as the objective transmits a higher light flux to the 
eyepiece.

7.2.4. Far Field Diffraction of a Rectangular Aperture

An (a, b) rectangular aperture is represented by the product of two 
rectangle functions with respective arguments equal to x/a and y/b. The 
corresponding diffraction pattern is the product of two sinc-functions. In
Figure 7.20 is shown the diffraction pattern of a square aperture: it is a 
regular arrangement of squares and rectangles having their respective 
centers at the nodes of a network with a step equal to l/a. The light inten-
sity rapidly decreases with the distance to the origin, and only the most
central have been represented. At the center is a square, the side of which is
equal to 2l/a.
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Figure 7.19. Resolving power of an objective. For the two images, (f1 and f2) or (A¢
and B¢), to be separated when observed through an eyepiece, it is considered that their
distance should be greater than the radius of the first dark Airy ring.



7.3. Fresnel Diffraction

The integration of the integrals in the case of Fresnel’s diffraction is more
complicated than in the case of Fraunhofer’s diffraction. We are going to
describe a method that was used by Fresnel to determine the intensity of the
light that is diffracted by an opaque circular disk, at a point located on its
axis. Submitted to the French Academy of Sciences in 1818, this calculation
had been rejected by Poisson who objected that one consequence was that
some light should exist only in the middle of the geometric shadow. Arago
who participated in the Academy meeting made the experiment in his labo-
ratory and could demonstrate experimentally the existence of the litigious
bright point, bringing a clear argument in favor of the wave theory of light.
The experimental arrangement is described in Figure 7.21.
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Figure 7.20. Far field diffraction pattern of a square aperture (side a).
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Figure 7.21. Diffraction by a circular aperture or by an opaque disk. The two
diffraction patterns have the same general aspect. In the case of the opaque disk, as
soon as the screen is sufficiently remote, there is always a bright dot at the center. In
the case of the circular aperture the center is either bright or dark, according to the
position of the screen.



Fresnel Zones

The Fresnel method of integration of the integrals is made possible because
of a suitable division of the domain of integration: the elementary areas are
defined in Figure 7.22. From geometric considerations it can be shown that
all the Fresnel zones have equal areas pal and that the radius of the nth zone
is equal to rn = (nal)1/2.

To determine the diffracted vibration sent to point A, we start by adding
the elementary vibrations sent by all the points of the same zone, and then
we add the contributions of the different zones. Since all the Fresnel zones
have the same area, the moduli of the contributions of the different zones are
almost equal. In fact, the moduli decrease slowly as the radius is increased,
and this is for two reasons. First, the distance to point A increases; the second,
and most important, reason is due to the fact that the amplitude of the vibra-
tion sent to point A decreases with the angle q between the normal to the
plane of the zone and the line that joins a point of the zone to point A.

The total vibration at point A can be calculated using the Huygens-Fresnel
principle; it is found, but the result is quite obvious because of the method
that has been chosen to divide the surface of integration, that the vibrations
arriving from two consecutive rings have opposite phases. The vibration at
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Figure 7.22. Definition of the Fresnel zones associated to a given point A. The
intersection of a set of spheres, centered at point A and having radii, respectively, equal
to a, a + l/2, a + 2l/2, a + 3l/2, . . . , with the plane of the aperture, are concentric
circles. A Fresnel zone is delimited by two consecutive circles. The first zone is a circle,
the following zones are circular rings.



point A is the sum of alternately positive and negative terms, let si be the vibra-
tion coming from the Fresnel zone labeled I, and we have

In the case of the circular aperture of Figure 7.21(a), the total number of
Fresnel zones is either even or odd. In the first case the waves interfere
destructively: the intensity at point A is almost equal to zero, the center of the
diffraction pattern is dark. On the contrary, an odd number of zones gives a
maximum of light at the center.

The case of an opaque disk is different since the more central Fresnel
zones are not illuminated; let p be the label of the first nonobliterated zone,
the total vibration is now given by

(7.16)

To be rigorous we should consider the convergence of the sum; we will
admit that the two terms in parentheses cancel and that the first term, sp/2, is
the only remaining one. Finally, there is always a maximum of light at the
center.

Fresnel Zone Plate

Although they have been considered, for a long time, as esthetical curiosities,
the Fresnel zone plates have now found interesting applications for making
lenses in cases where it is difficult to substantially increase the index of refrac-
tion with regard to the surroundings, for example, in integrated optics or in
X-ray imaging systems.

The principle of a zone plate is rather simple; opaque rings obliterate one
Fresnel zone over two, the purpose being to keep only, in the development of
formula (7.16), the terms that have the same sign.

If a = 1m and l = 0.5mm, the radius of the first zone is 0.707mm. 
A zone plate can readily be obtained by drawing, using a large scale, circles
having radii varying as the square root of the successive integers. The 
rings between two consecutive circles are then darkened and photographed
using a given magnification; the resulting slide is a zone plate. The radius 
of the nth ring is , its thickness is equal to the difference

. It can be shown that the optical quality of the
image increases with the number of zones, the transverse size (aberration) of
the focal point is of the order of the thickness of the last ring. In the case of
a photographic process, this thickness is fixed by the photoplate.

If a planar monochromatic wave is sent orthogonal to a Fresnel zone plate,
an accumulation of light is found in the vicinity of the different points Fn, see
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Figure 7.23, that satisfy the following relation, in which n is an integer, R is
the radius of the first zone, and l is the wavelength,

A Fresnel zone plate appears to be a lens that has several focal points. Of
course the chromatic aberrations are important since the focal length is pro-
portional to the inverse of the wavelength. If, instead of using a parallel inci-
dent beam, a spherical wave centered at some point P is sent to the plate, the
transmitted light is made of several spherical waves centered at the points Qn

defined by

Number of Fresnel Zones Inside an Aperture-Limited Spherical Wave

The solid angle of a full spherical wave is equal to 4p steradians; the beams
that are used in systems working in Gauss conditions are far less open. As
soon as the aperture of a spherical wave is quite limited, diffraction effects
are observed. A good evaluation of the effect of diffraction is provided by the
notion of Fresnel’s number. The definition of Fresnel’s number, associated 
to a given spherical wave and a given circular aperture, is given in Figure 
7.24 where a spherical wave is obtained by focusing a planar wave with an
aberration-free lens. We consider concentric spheres centered at the focal
point; the first one is tangent to the plane of the aperture and its radius is
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Figure 7.23. Examples of Fresnel zone plates. On the left-hand plate, the even zones
are suppressed; on the right-hand plate, the odd zones have been suppressed.



equal to a, the radii of the other spheres are regularly increased l/2 by l/2.
The intersections of the different spheres with the plane of the aperture are
circles. A Fresnel zone is a ring between two adjacent circles. The Fresnel
number is just the total number of zones inside the aperture. The larger the
Fresnel number, the smaller is the diffraction spot in the vicinity of the focus.

7.4. Diffraction Gratings

During the last decades the technology for making diffraction gratings has con-
siderably improved, opening the way to efficient mass production methods. 
Diffraction gratings are now usual and relatively cheap components.

7.4.1. Diffraction–-Diffusion of Light

Diffraction is observed any time that an electromagnetic wave hits some
small-sized object, by small size we mean of the order of one to fifty times the
wavelength. The object under consideration is often made of the collection
of smaller (as compared to the wavelength) constituents that will be called
particles, each of them participates in the diffraction process.

The light that is diffracted by the global object is the result of the inter-
ference of all the wavelets diffracted by the different particles. Although the
following formal distinction is not universally used, we will distinguish two
main cases:

• Diffusion, where the spatial distribution of the particles is at random.
Typical examples are the repartition of water drops in fog, or of nitrogen
and oxygen molecules in the atmosphere.
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Figure 7.24. The Fresnel number of an aperture-limited spherical wave is equal to
the number of Fresnel zones inside the open part of the aperture.



• Diffraction, where the distribution of the particles is perfectly organized.
The two most famous examples are the equidistant grooves of a grating
and the arrangement of the atoms inside a perfect crystal.

From a practical point of view, the main difference between diffraction
and diffusion is related to the directivity of the diffracted beams. No privi-
leged direction exists in the case of diffusion, the diffused light being emitted
in all directions. On the contrary, in the case of a regular arrangement of the
particles there are only a few directions in which the wavelets interfere pos-
itively, these directions are called the orders of diffraction.

A diffraction grating is made of identical, parallel, and equidistant grooves
that are considered to have an infinite length. The most important character-
istic of a grating is its periodicity, which is the separation of two adjacent
grooves. The directions of the diffraction orders are fixed by the periodicity.

Another characteristic of a grating is the shape of its grooves. This shape
doesn’t play any role in the determination of the direction of the orders,
however it determinates how the incident energy is shared by the different
orders. This is the reason why a significant effort is made to achieve given
profiles, so that only one order will carry away most of the energy.

Working in the far field diffraction regime, a grating must be placed
between two lenses, a collimating lens and then a focusing lens. As shown in
Figure 7.27, two main different arrangements are used, the light being either
reflected or transmitted by the grating. In fact, the transmission arrangement
is handicapped by the fact that the light travels through the substrate on which
the grating is deposited; consequently, this substrate should be very homo-
geneous with a perfectly planar and well-polished second interface, in order
to avoid unwanted phase modifications.
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Diffraction grating Diffusing material

Figure 7.25. Comparison between diffusion and diffraction. For a periodic
arrangement, the diffracted beams are observed only along specific directions called
the orders of diffraction. Diffused light is emitted in all directions.

Figure 7.26. Some usual groove profiles. The periodicity ranges from 10 mm to 
0.5 mm, i.e., 100 to 2000 grooves per millimeter.



7.4.2. The Bragg Formula

Diffraction by a grating is a multiple interference process. The total vibration
diffracted in a given direction is obtained by summing up all the waves dif-
fracted by the different particles of the diffracting object. In the case of a
grating, the wavelets diffracted by all the particles belonging to the same groove
are first added, and then the contributions of the different grooves. As the total
number of grooves is enormous, it’s a highly multiple interference process.

The directions of constructive interference are those for which the phase
difference between the contributions of two neighboring grooves is very close
to a multiple of 2p; in the case of an infinite number of grooves the phase dif-
ference should be strictly equal to a multiple of 2p. This condition is often
referred to as the phase matching condition.

The Bragg formula is a relationship between the angle of incidence and
the angle of diffraction. It indicates the directions in which the different dif-
fracted beams are emitted, but it doesn’t give any indication as to how the
energy is shared between them, the shape of the grooves governs the parti-
tion rule.

7.4.2.1. The Bragg Formula in the Optical Case

The grating will be considered here as an infinite set of parallel and equidis-
tant infinitely thin grooves; the only parameter to be defined is the periodic-
ity a, which is the separation of two neighboring grooves,

(7.17.a)

(7.17.b)

The orientation (7.17.b) is often more convenient.
Formulas (7.17) give, for a given value of the angle of incidence, a set of

values for the angle of diffraction, labeled by the integer p. Only the values of
p corresponding to absolute values of sinqdiff smaller than one should, a priori,

sin sin .q q
l

diff inc opposite orientation for the two beams+( ) = ( )p
a

sin sin ,q q
l

diff inc same orientation for the two beams-( ) = ( )p
a
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Grating working by transmission Grating working by reflection

Figure 7.27. A grating can work either by transmission or by reflection. The second
arrangement is preferred since it is not concerned with a possible lack of homogeneity
of the substrate that supports the grating.



be considered. An interpretation of the case when the sine is greater than one
will be given in Section 7.4.2.3.

The directions of the different orders of diffraction explicitly depend on
the wavelength, except for the zero order, which is said to be nondispersive.

7.4.2.2. The Bragg Formula for a Three-Dimensional 

Crystal Lattice (Diffracting X-Rays)

The distance between atoms (angstroms) being far smaller than optical wave-
lengths, a crystal lattice doesn’t diffract light waves; the situation is, of course,
different for X-rays. By the way, gratings can also diffract X-rays; the experi-
ment was successfully made at a time when some doubt existed about a
common identity between X-rays and light waves. Let us come back to the
diffraction of X-rays by a crystal; the practical interest is enormous, since it
provides information about the crystal lattice. From the angular repartition
of the diffracted beams and the Bragg formula, we obtain the shape and size
of the crystal cell; from the comparison of the respective intensities of the dif-
ferent orders of diffraction, we obtain information about the chemical nature
of the atoms, or groups of atoms in the cell.

When an X-ray electromagnetic wave reaches the crystal, it penetrates
deep inside and each atom reemits X-rays in all directions. Because of the
three-dimensional arrangement of the diffracting particles, the expression of
the phase-matching condition is rather different from the case of a diffraction
grating. We will proceed in two steps: first we consider the diffracting particles
belonging to the same reticular plane, and then consider the phase matching
between the vibrations produced by two neighboring parallel reticular planes.

We refer to Figure 7.30, the different atoms of a given reticular plane are
labeled A1, A2, . . . , Ai, . . . , the phase-matching condition should be written
for any couple of points AiAk:

sin sin .q q
l

diff inc-( ) = p
A Ai k
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Figure 7.28. Evaluation of the difference d of the optical lengths of the waves diffracted
by two neighboring grooves. According to the authors, two different orientations are
commonly used for the angles between the rays and the normal to the plane of the grating.



Due to the high value of the possible number of pairs, the only possible
value is p = 0, which means that the angles of incidence and diffraction are
equal and that each reticular plane behaves as a mirror on which X-rays are
reflected according to the Snell-Descartes law for reflection. Finally, we write
the phase-matching condition between the waves that are reflected by two
consecutive planes. In the X-ray domain, it’s more usual to refer to the direc-
tion of the beams with regard to the angle a with the reticular planes, d being
the distance between two neighboring planes, the difference of the optical
paths is given by

(7.18)IA A J d d p2 2 2 2+ = Æ = ( )sin sin .a a l Bragg formula for a crystal
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Figure 7.29. Schematic representation of some reticular planes of a two-dimensional
lattice with two different atoms in each individual cell.

The diffracted waves are not shown
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Figure 7.30. X-ray diffraction by a crystal lattice. A given incident beam will generate
a diffracted beam if, and only if, its direction is properly oriented so that the Bragg
condition is fulfilled.



7.4.2.3. Numerical Applications of the Bragg Formula in the Optical Case

Knowing the periodicity, a, of a grating, the wavelength, l, and the angle of
incidence, qinc, we want to calculate the angles of diffraction qdiff. The number
N of grooves per millimeter (or per inch) is often preferred to the periodic-
ity: N = 1/a. We use the orientation defined by (7.13.b) (opposite orientations
for the incident and diffracted beam).
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Normal incidence

N a a N= = = = =-1800 1 8 0 5 0 91grooves mm m m. , . , . .m m l l

qdiff Œ{ }- ∞ ∞65 4 0 65 4. ; ; . .

p Œ{ } Œ{ }- -1 0 1 0 9 0 0 9; ; , sin . ; ; . ,qdiff

sin . . . ,qdiff £ Æ - £ £ Æ - £ £1 1 0 9 1 1 1 1 1p p

sin sin . ,q q ldiff inc= - + =p a p0 9

q inc = 0,

qdiff Œ{ }- ∞ ∞ ∞60 1 95 69; . ; .

p Œ{ } Œ{ }-0 1 2 0 866 0 034 0 934; ; , sin . ; . ; . ,qdiff

sin . . . ,qdiff £ Æ - £ £1 0 148 0 9 2 07p

sin . . . ,q ldiff = - + = - +0 866 0 866 0 9p a p

q inc = ∞60 ,

Incidence 60°

N = 100 mm-1; l = 0.5mm; normal incidence, qinc = 0. Calculate the total
number of diffracted orders:

• Nl = 0.05 Æ sinqdiff = 0.05p Æ -20 £ p £ 20.
• The total number of diffracted orders is 41. This example shows that the

number of diffracted orders is all the larger as the number of grooves per
unit length is smaller.

N = 2000 mm-1; l = 0.5mm; qinc = 10°. Calculate the total number of dif-
fracted orders:

• Nl = 1.2 Æ sinqdiff = -sin10° + 1.2p = -017 + 1.2p.
• 0.69 £ p £ 0.95 Æ the only possible value is p = 0 Æ qinc = -qdiff. The zeroth

order is the only order allowed, the periodicity is too small and the grating
is equivalent to a mirror, there is no dispersion.



7.4.2.4. Littrow’s Configuration

Incidence conditions may be found where the diffracted beam propagates
exactly in the opposite direction to the incident beam, qinc = -qdiff; the grating
is then said to work in the Littrow condition, which is defined by

(7.19)

For a given grating and a given order of diffraction, except the zeroth
order, the angle qLittrow corresponding to the Littrow condition depends on the
wavelength.

Numerical Application

• Nl = 1. There are only two possible values for p in formula (7.19):
� p = 0, q Littrow = 0, this case is not interesting, since the zero-order mode

is not dispersive.
�

• Nl = 0.6 Æ sinq Littrow = 0.3p Æ sinq Littrow Œ {0; 0.3; 0.6; 0.9}.
� There are four different orders for which the Littrow condition can be

satisfied.
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Figure 7.31. In the Littrow configuration the grating sends back the diffracted beam
exactly in the opposite direction of the incident beam. As qLittrow depends on the wave-
length such an arrangement is commonly used as the second mirror of a tunable laser,
a rotation of the grating changes the laser frequency.

7.4.2.5. A Diffraction Grating May Support Evanescent Waves

A formal application of the Bragg formula may give values of sinqdiff that are
larger than +1 or smaller than -1. A similar situation has already been encoun-
tered when using the Snell-Descartes law of refraction in the conditions of
total internal reflection. An interpretation has been given thanks to evanes-
cent waves. The situation here is very analogous: each time that the Bragg
formula gives a sine or cosine greater than one, in absolute value, evanescent
waves can be observed.



We consider a diffracted mode such that the sine of the angle of diffrac-
tion is equal to some real number ap, with an absolute value greater than one,

the cosine of qdiff is obtained by the usual formula, cos2 qdiff + sin2 qdiff = 1,

Let us call V(x, y) the electromagnetic vibration at some point M(x, y), to
obtain an expression for V(x, y) we go back to the usual form of a planar wave
having a wave vector k making an angle qdiff with the axis Oy, see Figure 7.32.

We set

V(x, y) represents a wave, that is:

A progressive wave in a direction that is parallel to the grating Ox.
An evanescent wave in a direction that is orthogonal to the grating Oy.

7.4.3. Practical Considerations about Gratings

7.4.3.1. Methods for Making Gratings

Until rather recently the gratings were quite expensive; nowadays, they can be
considered as relatively cheap optical components since collective methods
of elaboration are now available, a large number of identical gratings being
simultaneously duplicated from an initial “master grating.” The grating market
is an important one, thanks to applications such as spectrometers (biology,
chemistry) and, more recently, to optical communications (wavelength 
multiplexing).
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Figure 7.32. Radiated and evanescent modes of diffraction.



Up to the utilization of lasers and photodyes, the gratings were obtained
by engraving a glass surface with a diamond tool, the displacement of which
was driven by a special ruling machine. As early as 1880, Rowland made a
grating with 1700 grooves per millimeter; Michelson could produce a 30cm
long grating with 500 grooves per millimeter, which means that the diamond
tool has notched 150,000 identical lines. . . . Once a first grating has been
engraved, it can be replicated: Figure 7.33 shows one of the first methods 
that was used for duplication, it is based on the property of a varnish, called
collodion.

The technology of the elaboration of gratings has largely benefited from
the applied research efforts that have been devoted to the elaboration com-
ponents for microelectronics, especially photolithography and cutting sub-
strates in small pieces, using diamond saws or laser beams.

The fabrication methods rely on the polymerization of organic dyes, which
can be either photosensitive (polymerization being enhanced by a suitable
ultraviolet or visible radiation), or thermosensitive (polymerization being due
to heating). A first grating is developed, usually 10 ¥ 10cm. Replicas are then
made and cut in smaller pieces, 1 ¥ 1cm.

A dye is an organic liquid compound, made of molecules called monomers,
which remains independent as long as they are not put into a situation where
they polymerize, giving a solid state compound. Polymerization needs some
energy that can be obtained from a light beam of a suitable color, or by a heat
source of suitable temperature.

The procedure for making gratings is roughly described in Figures 7.34
and 7.35. Although there are no good reasons for that, this kind of grating is
usually called a holographic grating.
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Collodion film

Figure 7.33. Duplication of a ruled grating. Using a diamond tool, a large number of
parallel and equidistant grooves are notched on a planar glass surface, giving a master
grating. A thin layer of liquid collodion is poured onto its surface. After drying, a
collodion cast of the master grating is obtained, it’s a solid-state film (thickness ª
0.1 mm) that is then glued onto a glass substrate. After metallization, an excellent
replica of the initial grating is obtained.
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A drop of liquid dye is poured onto a horizontal glass
plate that is rapidly rotated (1000 rpm) around a vertical axis.

      The centrifugal effect spreads the dye in a thin layer that
has a well-reproducible thickness (≈ 0.1–10 mm) that can be
controlled by the temperature, the speed of rotation, and the
viscosity of the dye.

A moderate heating transforms the layer in a thin film
that sticks to the substrate.

      Two beams coming from the same laser interfere inside
the dye. Photopolymerization occurs at the places of
brilliant fringes, printing a periodic array of grooves. 

Exposure times are of a few minutes.

Polymerized and nonpolymerized dyes are selectively
etched, using appropriate solvents.

Figure 7.34. Modern techniques of fabrication of a master grating. The periodicity is
determined by the angle of the two laser beams. The depth and shape of the grooves
are reproducibly determined by the time of exposure and by the etching process.

A thick (5 mm) layer of dye is deposited onto a
substrate, and then raised to a high enough temperature,
so that thermopolymerization is obtained.

After cooling, the thermopolymerized grating can be
separated from the master guide that can be used again.
The separation is not an easy operation.

Figure 7.35. Duplication of a master grating using a thermopolymerized dye.

7.4.3.2. Blazed Grating

Blazed gratings are a good illustration of why and how the energy is distrib-
uted among the different orders of diffraction. The profile of a blazed grating
is shown in Figure 7.36, it’s a succession of parallel narrow rectangular
mirrors making an angle a with the plane of the grating. The global diffracted



light is the result of the interference of the different waves diffracted by each
individual mirror. The only directions in which some diffracted light can be
observed are obtained from the Bragg formula.

The angular repartition of the light that is diffracted by a given mirror, A0B0

for example, is described by a (sinu/u) function with a maximum in the direc-
tion D of specular reflection on the mirror. By a suitable choice of periodic-
ity a, angle a, angle of incidence q, and of wavelength l, it is possible to find
conditions where D coincides with the direction of an order of diffraction of
the grating, say the mth mode, while the directions of the other orders coin-
cide with the zeros of the (sinu/u) function. Under such conditions the pth
mode carries away all the energy

(7.20)

Numerical application: l = 0.5mm, N = 1000 mm-1, a = 1mm.

• a = 30°. Find the angles of incidence and of refraction for the grating to
be blazed in the first order: cos(q + a) = 0.5 Æ q = 0, q ¢ = 30°.

• Find a so that the blaze and the Littrow conditions are simultaneously ful-
filled for the first order of diffraction,

7.4.3.3. The Littrow Autocollimation Mounting

Figure 7.37 describes a simple and efficient spectrometer that uses a grating
in the Littrow arrangement. For a given wavelength l, the diffracted light
comes back exactly in the opposite direction to the incident light. The
entrance slit is placed in the focal plane of an achromatic lens; if the planes
of the slit and of the grating are parallel, the autocollimated image just coin-
cides with the slit, a few degrees tilt shifts the image in a place where it can
be disposed as a photographic plate or an array of photodiodes.
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Figure 7.36. Groove profile of a blazed grating.



7.4.3.4. Monochromator

Starting from a white source, a monochromator gives a light with a tunable
wavelength l and a narrow bandwidth. Using a grating and an optical imaging
system, an entrance slit is imaged on an exit slit. The Littrow autocollimation
mounting can be used, the photographic plate being replaced by a slit. The
wavelength is tuned by rotating the grating around an axis in its plane. The
spectral width is determined by the width of the exit slit, typically 5 to 50mm.
Chromatic aberrations should of course be avoided; this is the reason why
spherical mirrors are preferred to lenses.
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Figure 7.37. Spectrometer using the Littrow mounting.

Entrance  slit 

Exit  slit 

      

Figure 7.38. Examples of monochromators.

7.5. Holography

Denis Gabor in the middle of the twentieth century proposed the idea of
holography. In the beginning, the purpose was to improve the resolving 
power of electron microscopes; the De Broglie waves associated to the elec-
tron beam would have been used to register the holograms that would have
then been read with a monochromatic optical wave. Gabor immediately intro-



duced the word hologram from the Greek, holos meaning as a whole, to
suggest that both the amplitude and phase of the waves are registered in the
photographic plate. In fact, the development of holography could only occur
after the invention of lasers, the writing and reading of the hologram being
made by optical waves. Denis Gabor became a Nobel Laureate in 1971.

7.5.1. Definition of Holography

We first consider the reason why, watching the planar picture of a landscape,
we have the feeling that it is a representation of a three-dimensional space.
Then we explain how different is the case of a holographic representation.

7.5.1.1. Appreciation of the Relief on a Picture, Depth of Field

Figure 7.39 reminds us what happens when a picture is taken of some land-
scape. An objective images the landscape on the photographic plate. The
focusing process on some point A consists of translating the plate until it coin-
cides exactly with the image front plate (P¢) associated to the object front
plane (P) of point A. A landscape is not usually planar. The focusing is only
valid in this couple of planes, to a point such as B is associated a tiny spot
bb¢, instead of a dimensionless point; if the spot is small enough, we still get
the impression that bb¢ is a good image of B. The thickness, on the inside of
which must be located the points that give acceptable images, is called the
depth of field of the camera.

A picture, as well as a painting made by an artist, is nothing other than a
two-dimensional object; the sensation of relief, or of perspective, is purely
subjective and calls up our memory.
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Figure 7.39. The camera is focused on the front wall of the house. The image of some
point B at the top of the roof is slightly before the plate; if the tiny spot (bb¢), generated
by a pencil of rays coming from B, is small enough, the image of B is considered as
acceptable.



7.5.1.2. Appreciation of the Relief on a Hologram

Holography is a technique that memorizes the phase of a wave at the instant
of exposure; in fact, it’s the relative phase shifts from one point to the next
that are stored. The phase storage is obtained thanks to the interference of
the incident wave to be recorded with a reference wave that has a well-known
and well-reproducible phase repartition. The photographic plate registers
interference fringes, the blackening being more intense at the place of clear
fringes, where both incident and reference waves are in phase. After impres-
sion and development the plate becomes a hologram.

The hologram is illuminated with a reading wave that has the same phase
distribution as the reference wave that was used when recording the holo-
gram; each point of the hologram becomes a source of coherent optical wave-
lets. It will be shown that the repartition of the complex amplitudes along 
the plane of the hologram is identical with the repartition that was created 
by the initial wave at the level of the photographic plate of Figure 7.40(a): 
the Huygens-Fresnel principle says that, along the line O1O2O3O4, the optical
fields are identical, respectively:

• In Figure 7.40(a), in the absence of the plate.
• Beyond the hologram of Figure 7.40(b), the three dimensions of the land-

scape have actually been reconstituted.

It is interesting to say that, if the hologram is broken in several pieces, each
piece contains all the information about the landscape and can be used as the
entire initial hologram.
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(a) Recording of the hologram. (b) Reading of the hologram.
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Figure 7.40. Recording and reading a hologram. An observer moves from O1 to O4.
Between O1 to O2 the two objects are simultaneously visible; from O2 to O3, A is hidden
by B and is not visible; from O3 to O4, A and B can be seen again.



7.5.2. Principle of Holography

Let us consider an initial wave A of complex amplitude a1(x,y,z)e
jj(x,y,z). The plate

where the hologram is to be recorded is taken as the xOy reference plane of
coordinate (z = 0); in this plane the complex amplitude is simplified as

For the sake of simplicity, the reference wave will be a planar wave of
amplitude a2 and parallel to the plate, a2 is supposed to be real. The ampli-
tudes of vibration and intensity at point P(x,y,0) are given by

We admit that the conditions of exposure and of development of the pho-
tographic plate have been chosen so that the variation of the darkening varies
linearly with the light intensity. Under such conditions, when the hologram is
illuminated by the reference wave, the repartition of the amplitude of the
Huygens-Fresnel sources is described by the following formula:

(7.21)

The second term of (7.21) reproduces exactly the complex amplitude
repartition of the initial wave.

7.5.3. Examples of Holograms

We are now going to study several examples to illustrate how the initial wave
can be regenerated.

7.5.3.1. Hologram of a Planar Wave (see Figure 7.41)

The reference and wave to be recorded are both planar and have equal ampli-
tudes. The intersection of the plane of the hologram with the plane of the two
wave vectors is taken as the Ox axis. The interference pattern of the two
waves is extremely simple; the variation of transparency follows a sine law,
versus x, and is proportional to the following expression:

(7.22)

We recognize the three terms of the more general formula (7.16). The holo-
gram is made parallel with equidistant lines (periodicity a = l/sinq). Illumi-
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nated at normal incidence by the reference beam, the grating generates dif-
fracted beams in the directions defined by the Bragg formula:

When the hologram is illuminated by the reference wave of Figure 7.41,
its surface is covered with secondary radiating sources. The diffracted field
is the Fourier transform of the amplitude repartition of formula (7.22), to each
term of which is associated a parallel beam propagating in one of the fol-
lowing directions:

• +q, this is the reconstructed wave;
• Oz axis, corresponding to a partial transmission of the reference wave;
• -q, this is a parasitic wave.

The reason why there are only three orders of diffraction comes from the
sinusoidal variation of the transparency; this effect is very analogous to the
blaze effect in the case of a triangular profile.

The previous results are general: when reading a hologram, besides the
reconstruction of the initial wave, parasitic waves are also obtained.

7.5.3.2. Hologram of a Spherical Wave

We are now going to holograph a diverging spherical wave that is supposed to
have an aperture small enough to allow the same type of development that
was used in Section 2.6.3. A parasitic spherical wave is also generated; an
oblique reference wave efficiently separates the reconstructed wave from the
parasitic wave.

sin sin sin .q q
l

qdiff = + = +( )p
a

p1
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Figure 7.41. Writing and reading the hologram of a planar wave.



7.5.3.3. The Reference Writing and Reading Waves Are 

Both Orthogonal to the Hologram

We refer to Figure 7.42; the reference wave and spherical wave have the same
amplitudes a0. r being the distance of a point P of the hologram to Oz and D

the distance D = A0O of the center of the spherical wave to the plate, the spher-
ical wave is described by a0e

-jp(r2/lD). The amplitude a(r) and the intensity I(r)
of the optical vibration at point P are, respectively, given by

(7.23.a)

(7.23.b)

The hologram, as is shown by formula (7.23.b), is made of alternate clear
and dark rings, their radii increasing as the square root of the successive inte-
gers. It looks like a Fresnel zone plane (see Section 7.3), except that the trans-
parency is not equal to zero or to one, but varies sinusoidally. A Fresnel zone
plate has many focal points (see Figure 7.23); because of a kind of blaze effect,
in the case of a sinusoidal variation of the transparency, only two focuses are
illuminated, they correspond to the points A0 and A¢0 of Figure 7.42. The spher-
ical wave centered at point A0 is the reconstituted wave; it corresponds to the
term e jpr2/lD of formula (7.18.a). The wave centered at point A0 is a parasitic
wave; it should be associated to the term e-jpr2/lD.

An observer facing the hologram has the impression that he sees a real
point A0 that would be behind the hologram. If the hologram was registered
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Figure 7.42. Hologram of a spherical wave with a reference wave orthogonal to the
plate. Interference fringes are concentric circles.



with some extended object, the same treatment can be repeated for every
point of the object. The parasitic wave also reproduces the initial object,
which appears as a real object located in front of the hologram.

7.5.3.4. The Planar Reading Reference Wave Is Oblique

In the arrangement of Figure 7.42 the observer’s eye also receives the refer-
ence wave and the parasitic wave, this drawback can be avoided by using an
oblique reference wave, as is the case in Figure 7.43.

If the angle between the direction of the reference wave and the normal
to the hologram, the intensity of the light vibration when recording the holo-
gram, is equal to

(7.24.a)

When the hologram is illuminated by the reference wave, the repartition
of the complex amplitudes, a(r), is obtained by multiplying the amplitude of
the reference wave by the transparency of the hologram, which is given by
(7.24.a):

(7.24.b)
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Figure 7.43. With an oblique reference wave, the reconstructed wave is well
separated; the observer is not dazzled by the transmitted reference wave or by the
parasitic wave.



The first term in equation (7.24.b) reconstitutes the reference wave that
propagates in the direction q. The second term reconstitutes a diverging
spherical wave, which seems to have been emitted by point A0. The last term
is a spherical wave that converges at point A¢0 in front of the hologram and in
a direction making an angle 2q with the normal.

7.5.3.5. Volume Holography

In the previous sections the holograms were planar, we are now going to use
photographic emulsions that are no longer very thin. We thus consider the
interference of a planar reference light wave (R) with some other wave (W )
inside a volume of finite size. If the two waves are both planar, a family of
parallel, alternately bright and dark, planar layers is printed inside the 
emulsion.

If the second wave is not a planar wave, it can always be considered as
the superposition of planar waves with suitable wave vectors and intensities;
each component of the planar wave decomposition of W, when interfering
with the reference wave R, creates a family of parallel layers. The set of
printed layers is called a volume hologram.

Let k0 and kr be the respective wave vectors of W and R that will be 
supposed to have the same amplitude a0; the interference pattern is described
by
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Figure 7.44. Recording and reading of a volume hologram. The Bragg reflection on
the layers printed in the plate reconstructs the initial wave.



where

kG = (k0 - kr) is called the grating vector;
uG = kG/kG is a unit vector parallel to one of the bisectors of the angle 

(k0, kr); and
L = l /(sinq/2) is the periodicity of the printed grating.

We now examine what happens when the reference beam illuminates the
hologram. The situation can be compared to the diffraction by the reticular
planes of a crystal lattice; the parallel planes of a grating reflect the light if a
kind of Bragg condition is satisfied. Let l¢ be the wavelength of the reference
beam and let a be the angle between the reference wave vector and the layers
of the hologram:

(7.25)

The initial Gabor proposition was to make a hologram with an electron
beam, and then to read it with an optical beam; l would have been the wave-
length of the De Broglie wave associated to the electrons and l¢ an optical
wavelength. For many reasons no realization has ever been obtained. Let us
come back to the case where the writing and reading reference waves are
optical waves of the same frequency (see Figure 7.44): l¢ = l, which implies
that a = q/2. The set of bright and dark layers plays the same role as the retic-
ular planes in the diffraction by a crystal: the reading beam is selectively
reflected in the direction of the second bisector of the angle (k0, kr), and
reconstructs the initial planar beam.

Because information is stored in a three-dimensional space, volume holog-
raphy is, in principle, more powerful. Several, eventually many, different holo-
grams can be registered inside the same volume, either changing the direction
or the frequency of the reference wave.

Color holograms: A volume hologram can be read by a white reference
light beam, Bragg reflection occurs only for that part of the spectrum which
coincides with the color that was used for recording. Using the principle of
the trichromatic system (see Section 7.8), “colored holograms” can be made;
three holograms are registered in the same plate with three different wave-
lengths, when the plate is illuminated with a white light, the initial object
appears in color and in three dimensions.

7.5.3.6. Interference Holography

Very small deformations (mm) of large size objects can be revealed thanks to
holography, for example, the stress deformations of mechanical structures
such as a bridge, a shaft, or the body of a car. Two holograms are consecu-
tively recorded in the same plate, the object being successively in the two sit-
uations to be compared. The reference beam then simultaneously illuminates
the two holograms and an objective makes a projection on a screen. The
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image reproduces the object, but it is striped with interference fringes, the
deformation remaining constant along a given fringe.

The method can work under real time conditions. A hologram of the
unstressed object is first registered and the virtual image that is obtained
when illuminated by the reference beam is put into exact coincidence with
the object that is also illuminated. On the screen the fringes due to deforma-
tion appear as if they were painted on the object.

7.6. Diffraction and Image Processing

The Fourier transform plays a preeminent role in diffraction problems and in
the formation of images. Starting from some object, described as a reparti-
tion of amplitudes f(x, y) in a front plane, a lens L1 elaborates the Fourier
transform F(X, Y) of f(x, y), which is available in its image focal plane. A
second lens L2 then makes a second Fourier transform f¢(x¢, y¢) of F(X, Y).
f ¢(x¢, y¢), which is available in the image focal plane of L2, is the image of the
initial object and, except for a multiplication by a “magnification coefficient,”
is similar to f(x, y). The intermediate Fourier transform F(X, Y) can be mod-
ified by placing a slide with a controlled transparency on the focal plane (P )
of L1, (P ) is also called the Fourier plane of the arrangement.

7.6.1. Fourier Plane

The arrangement shown in Figure 7.45, which is analogous to that of Figure
7.11, will allow us to go deeper into the insight of the mechanism of the for-
mation of an image by a lens. An object is placed in the focal plane (p) of a
lens (focal length f ). We consider an elementary area dx dy around some point
M(x, y), a spherical wavelet emitted by this point is collimated by the lens
into a planar wave propagating in the direction defined by the coefficients 
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Figure 7.45. The image focal plane of L1 coincides with the object focal plane of L1.
(p) and (p¢) are the antiprincipal planes of the centered system.



u = x/f and y/f; its amplitude is proportional to dx dy and is written as 
f(x, y) dx dy, f(x, y) varies from one point of the object to another and is a
complex number. Let us evaluate the complex amplitude F(X, Y ) of the
optical vibration at a point P(X, Y ) of the second focal plane (P ) of the lens.
F(X, Y ) results from the superposition of all the planar waves coming from
the different points of the object. If M doesn’t belong to the lens axis Oz, the
planar wave coming from M is not parallel to Oz; the corresponding ampli-
tude repartition is described by

The total amplitude at point P(X, Y) is given by

(7.26)

We have considered that the size of the lens is large enough so that the
diffraction effects by the corresponding aperture are negligible, and so, the
integrals are extended to infinity. Formula (7.21) shows that the amplitude
distribution in the plane (P) is the Fourier transform of the function f(x, y),

The plane (P ) is then considered as an object playing, for lens L2, the same
role as (p) for L1. The amplitude repartition, f ¢(x¢, y¢), in the focal plane (p¢)
of the second lens is the Fourier transform of F(X, Y):

The intermediate plane (P ) is called the Fourier plane of the arrangement.
The previous method is nothing other than a sophisticated method for

establishing that the two planes (p) and (p¢) are the two conjugate planes of
the centered system for which the magnification is equal to -1; such planes
are also called “antiprincipal planes,” by analogy with the principal planes of
Section 3.5.2. The method is however very interesting, since it opens the way
to very powerful methods of image processing. If a plate, with a variable trans-
parency t(X, Y), is placed on the Fourier plane, the planar wave decomposi-
tion of the function f(x, y) can be modified at will, as well as the appearance
of the image that the second wave will reconstruct, by the inverse Fourier
transform.

7.6.2. Image Processing

We are now going to examine different examples where optical signals are
processed by modification of their planar wave decompositions. To each com-
ponent of the planar wave decomposition is associated a point of the Fourier
plane; if a tiny opaque obstacle is placed at this point, the corresponding com-
ponent will be filtered out.
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7.6.2.1. Strioscopic Arrangement—Phase Contrast Microscopy

We refer again to Figure 7.45, the optical inhomogeneity concerns the phase,
the refractive index being slightly different from the surrounding index, this
is, for example, the case of bacteria floating in water of a microscopic prepa-
ration. The amplitude repartition in the plane (p) is described by

where r is the distance to the axis and d(r) is a Dirac pulse. The index dif-
ference Dn between the bacteria and water is very small. Changing the phase
origin and considering that eDn is small, as compared to the wavelength, we
can write

Since the Fourier transform of a Dirac pulse is a constant and vice versa,
the amplitude repartition in the Fourier plane is equal to

(7.27.a)

After a second Fourier transform, made by the second lens, we finally
obtain the amplitude and intensity repartitions in the image plane,

(7.27.b)

(7.27.c)

According to formula (7.27.c), plane (p¢) is homogeneously illuminated
with, in the middle, a clearer spot corresponding to the presence of the bac-
teria. Figure 7.45 gives an interpretation of what happens, in terms of optical
light rays. The planar incident wave is focused at the center of the Fourier
plane and gives the term a0d(r) in formula (7.27), it then diverges and is col-
limated by the second lens to give a constant illumination on (p¢). The second
term, -ja0(2pDne/l)d(r) in (7.27), should be associated to the light that is dif-
fracted by the bacteria.

It’s not difficult to take into account the fact that the lenses have a finite
size and that the diameter of the bacteria is not equal to zero. Let R and r be
the respective radii of the lens and of the bacteria. In the Fourier plane (P )
the amplitude repartition of the “geometric light” on the one hand, and of the
“diffracted light” on the other are described by Airy functions (J(r)/r). The
spot inside which the geometric light is concentrated has a diameter equal to
1.22lf/R and goes to zero if R Æ •. On the contrary the diffracted light spreads
over a large area (1.22lf/r).
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Strioscopic Arrangement

In the case of the arrangement of Figure 7.45, the variation of intensity at the
place of the image of the bacteria is very small, ª (2pDne/l)2, and will hardly
be perceived. In the spectroscopic arrangement the “geometric light” is
removed by covering the focal point O with a tiny opaque stop. The plane (p¢)
remains completely dark in the absence of bacteria, and the image of the bac-
teria is more easily revealed.

Phase Contrast

The strioscopic arrangement is not very luminous, and its ability to exhibit
small details is quite limited by the unavoidable existence of parasitic stray
light. In the phase contrast method, the tiny stop is replaced by a transparent
plate, which has the same size, and a thickness such that the optical path of
the geometric light is increased by an odd number of half-wavelengths, with
regard to the diffracted light. Formulas (7.27.a) and (7.27.b), giving respec-
tively, the amplitude repartitions in the Fourier plane and in the image plane,
are now replaced by

(7.28.a)

(7.28.b)

Neglecting second-order terms, the intensity repartition in the image 
plane is

(7.29)

The intensity variation is larger, since it’s now of the order of (2pDne/l).
According to the fact that the geometric and diffracted beams are in phase,
or in opposition, the variation is positive (clear image on a dark background)
or negative (dark image on a clear background).

The phase contrast method is still handicapped by the existence of stray
light. It’s finally the aptitude of the observer to perceive a small intensity con-
trast that fixes the smallest size of detectable details. Using a plate, which at
the same time, changes the phase and partially absorbs the geometric light,
can accumulate the advantage of strioscopy and of phase contrast. Let us
suppose that the phase difference is still ±p /2, while the intensity is multi-
plied by a coefficient a smaller than unity, (7.24) then becomes
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The geometric light is more attenuated than the diffracted light and the
contrast more favorable. With a proper choice of a, a difference of optical
length as low as a few nanometers can be perceived. Phase contrast micro-
scopy is much appreciated by biologists who generally observe transparent
objects immersed inside a liquid having almost the same index of refraction.
A typical example is the observation of living cells; phase contrast allows the
observation in vivo, without using a coloring dye that is selectively fixed by
a given component of the cell.

7.6.2.2. Optical Image Processing

Spatial Filtering

The planar waves that are focused near the center of the Fourier plane are
said to be low-frequency spatial components. The spatial frequency is so high
that the wave vector makes a greater angle with the axis, the corresponding
focus being farther from the center. A tiny opaque spot, suitably placed in the
Fourier plane, will filter out a given component.

A tiny opaque stop, at the center of the Fourier plane, is a high-frequency

filter, which blocks the low-frequency component and especially the zero fre-
quency; this is the case of strioscopy. On the contrary, a small hole is a low-

frequency filter, transmitting only the low frequencies. With a pair of scissors
and a sheet of black paper, various filters can easily be made. A horizontal
slit, with broadness D, will only transmit the so-called vertical frequencies,
with a bandwidth of the order of Dk = D/2lf. In the same way a vertical slit
only transmits the horizontal frequencies.

A function that is rapidly varying versus x and/or y, has many high-fre-
quency components. If a high-frequency filter is used the areas, inside of
which the intensity variations are smooth, will appear dark, while the zone of
more rapid variation will be more brightly illuminated (see Figure 7.48).
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Analog Calculation of a Two-Dimensional Fourier Transform

The calculation of a two-dimensional Fourier transform needs a powerful
computer. A simple lens achieves this operation in an analog way and can, in
principle, do it in real time. This is the reason why, between 1960 and 1980,
an important research effort was devoted to optically computing the Fourier
transform. A drawback of this method is due to the noise that artificially intro-
duces high-frequency components. Hopefully, or not, at the same time, the
important development of microelectronics has drastically increased the
storage capacity of computers and simultaneously decreased computation
times, Fourier transforms are exclusively made by computers.
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Figure 7.48. With a high-frequency filter, only the zones where the gradient of
intensity is important will be illuminated. The image contour will appear as bright lines
drawn on a dark background.



Computer-Assisted Image Processing

The continuous variation of the light intensity along some image can easily
be sampled, using small adjacent surfaces that are called pixels. Each pixel
is characterized by one real number (or by two real numbers if the amplitude
is complex). These numbers, stored in good order in the memory of a com-
puter, constitute a numerical image. Once the image has been replaced by a
set of numbers, it’s easy to imagine many operations, including the Fourier
transform.

A first Fourier transform will give the repartition of complex amplitudes
A(X, Y) in the Fourier plane. Spatial filtering becomes very easy; it is just a
multiplication by a number a(X, Y). A new set of numbers is obtained from
which, thanks to a cathode ray tube or a printer, the new image can be 
visualized.

A Fourier transform followed by a spatial filtering was the first operation
to be thought of. Since then, engineers have invented many other mathemat-
ical manipulations which, on one hand, are more adequately fitted to com-
puter calculations and, on the other hand, give images of better quality. Such
methods have considerably improved the numerical images that are trans-
mitted from telescopes installed in satellites rotating around the Earth. The
numerization of the image is done with a matrix of photodiode places in the
focal plane of the telescope. Radio or microwaves make the transmission of
the set of numbers back to Earth. This can be images of the Earth or of the
stars and planets. In the last case, the main interest comes from the fact that
the perturbations due to crossing the atmosphere are avoided. A difficulty
with these indirect methods comes from the fact that an image is always
obtained, the problem is to be sure that it has something to do with the initial
object.
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Fourier Transform Holography

Thanks to holography it is possible to store the repartition of complex ampli-
tudes existing in a given plane. The arrangement of Figure 7.49 shows how to
store the amplitude repartition of the Fourier plane; the hologram is then
called a Fourier hologram. If the object is a point, the wave after the lens is
a planar wave propagating parallel to Oz; the interference with the oblique
reference wave gives horizontal fringes parallel to Oy: the transparency of the
hologram is a sine function of x. A parallel beam illuminating the hologram is
diffracted in three directions that are focused by the lens at S, S1, and S-1, the
two last points can be considered as the images of the initial object.
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8

Index of Refraction

The Snell-Descartes law of refraction introduces the index of refraction, n,
very early in the development of Optics where, as a matter of fact, it is con-
sidered as a normalized value of the speed of propagation, V, of light in a
transparent material. The normalization being made with respect to the speed
of propagation, c, of electromagnetic waves in a vacuum.

In this chapter, we analyze the physical mechanisms, which indicate that
V is different from c, as well as the law of variation of the index of refraction
versus the frequency of the electromagnetic waves. First of all, we would like
to introduce some important notions that a physicist should bear in mind
when he starts to study the index of refraction:

• Principle of Relativity: No information can be transmitted faster than the
speed of light in a vacuum; more specifically, the electric and magnetic
fields that are produced at time t, by a moving electrical charge, cannot
be perceived earlier than (t + r/c) at a distance r from the charge.

• Vacuum is the only medium to show no dispersion: radio waves, as well
as light waves or g-rays, propagate exactly at the same speed c.

• The phase velocity of a sine wave in a given material depends on the fre-
quency, the variation being more important in the vicinity of the bands of
absorption of the considered material.

• Although it’s not generally the case, there is no reason why the phase
velocity of a wave should not be larger than c, or why the index of refrac-
tion should not be smaller than one. For example, the index of refraction
of metals for X-ray waves is smaller than unity. This is not contradictory
to the relativity principle, since information is carried at the group veloc-
ity, which, because of dispersion, is not equal to the phase velocity.
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8.1. Physical Mechanisms Involved with Propagation 

in a Transparent Material

As far as vacuum propagation is concerned, we will make no attempt to
answer the meaningless question: What is vibration? Neither shall we try to
find a support to the Maxwell displacement currents that must be introduced,
even in a vacuum. Maxwell’s equations will be considered as a fundamental
hypothesis, fully verified by many experimental consequences. Up to now,
Maxwell’s equations have never failed.

We will analyze the difference between the propagation in a vacuum and
the propagation in a transparent material; the latter being considered as a set
(C) of largely submicroscopic particles, bearing either positive charges
(nuclei) or negative charges (electrons). C is very often made of subsets with
equal numbers of positive and negative charges (atoms or molecules) and 
also of subsets in which the number of charges of one kind is only slightly
larger than the number of charges of the other kind (positive or negative 
ions).

When a collection of atoms, such as C, receives an electromagnetic wave,
an oscillating electromagnetic field, due to this wave, is superimposed on the
field of forces that is responsible for the coherency of the corresponding mate-
rial. It’s up to the reader to imagine all the possible interactions. We will only
consider the simplest one, that’s to say, the action of the electric field of the
wave on the charged particles, which is known as Electric Dipole Interaction

(see equation (1.1)),

(8.1)

For the sake of simplification, C is limited by a planar interface and the
electromagnetic wave is a sine planar wave with a wave vector orthogonal to
the interface. The electric charges are put into a forced sine vibration and, in
turn, each of them becomes the source of a spherical electromagnetic wave.
The electromagnetic field, at a given point P of C, is the addition (interfer-
ence) of the following fields:

• The field that would exist if C was replaced by vacuum, which is in fact
the incident wave.

• The fields that are generated by all the spherical waves.

Because of the symmetry of the problem, the resulting field should have
the same value at any point of a plane orthogonal to the direction of propa-
gation. The children that hit the surface of the swimming pool of Figures 1.8
and 1.9 suggest that the superposition of the numerous waves coming from
all the elements of C reconstitute a planar wave.
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8.2. Determination of the Index of Refraction

The determination of the phase velocity of a wave propagating in a trans-
parent material is certainly a difficult problem; at first, the equations of the
motion of the charged particles should be integrated and the resulting field at
a given point P should be calculated. The next problem would be to find the
function written in the right-hand side of equation (8.1). Each of the Q parti-
cles of C is submitted to the action of the Q - 1 other particles which, at the
same time, are submitted to the action of the particle under study. . . . The
case of a gas is simplified by the fact that the mutual interactions between 
the charges are negligible compared to the action of the field of the incident
wave.

8.2.1. Case of a Diluted Material

We consider a gas made of neutral atoms or molecules. Under the action of
the electric field of the incident wave, the electrons vibrate with respect to
the nucleus: the gas is then a collection of electrical dipoles, each of them
having an electric dipolar momentum that varies sinusoidally versus time. Let
N be the number of dipoles per unit volume.

We refer to Figure 8.2, a planar light wave crosses a thin layer of gas, and
the light propagates in a vacuum. We want to obtain the expression for the
electromagnetic field, EP,total, at a point P located some distance behind the
layer of gas. EP,total can always be considered as the addition of the field EP,0

that exists in the absence of the layer of gas and of some extra field EP,slice that
is due to the presence of the layer of gas. Let n and Dz be, respectively, the
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the electric charges of the atoms, which become oscillating dipoles having the same
frequency as the incident wave. The small circles are supposed to suggest the wave
surfaces of the spherical wavelets emitted by the dipoles.



index of refraction and the thickness of the gas sample, we can write the 
following expressions:

(8.2)

(8.3)

The refractive index of a gas being very close to one, we have

The field generated by the layer of gas is thus equal to

(8.4)

The gas is considered as a set of oscillating dipoles; let h0 = NDz be the
number of dipoles per unit of surface. The field that is created at point P is
calculated in Annex 8.A and is given by formula (8.A.11):

(8.5)

A comparison of the two formulas (8.4) and (8.5) gives an expression of
the refractive index if we are able to relate E0 and x0. Because of the thinness
of the slice, all the charges vibrate in phase and the function f(t) in equation
(8.1) is taken as f(t) = E0e

jwt; the solution is then given by

(8.6)

At last, we obtain the refractive index

(8.7)

A physical interpretation of the index of refraction can be imagined as
follows: the electric field of the incident wave polarizes the atoms and sets
the electrons in a forced sine motion. The acceleration of the charges radi-
ates a new field that is superimposed on the initial one. The two fields vibrate
at the same frequency, however they are not in phase: when interfering they
create, inside the material, a field that is not in phase with the incident field.
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As the phase difference is proportional to the product of the propagation
speed by the length covered inside the material, it seems that the light prop-
agates with a phase velocity that is not equal to c.

8.2.2. Calculation of the Index of Refraction 

in a More General Case

To be able to integrate the equation, we made the assumption of a suitably
diluted material so that the oscillations of the electrons were only driven by
the incident wave; the mutual interaction of the dipoles was neglected. In a
dense material this assumption is no longer valid, so we will come back to
Maxwell’s equations and make the same kind of development that was made
already in Section 2.3. At that time we made no real difference between the
propagation in a vacuum or in a transparent dielectric material, except that
e0 was just replaced by e.

8.2.2.1. Polarizability of a Material

For a more accurate description of the material inside which the propagation
occurs, we come back to the definition of the Maxwell displacement vector
D and we introduce the polarization vector P that is the dipolar momentum
of an unitary volume of the sample. Polarization is of course originated at the
atomic level; when one of its electrons is taken away from the equilibrium
position by some distance x, an atom becomes an electric dipole with an elec-
tric dipole momentum equal to p = qx (q is the electric charge of the elec-
tron). If N is the cubic density of atoms, we have

(8.8)

In the frame of a linear interaction between the material and the light,x is
proportional to the electric field E, the proportionality coefficient is called the
atomic polarizability v and is defined as

(8.9)

Let l be the number of electrons that, inside a given atom, are concerned
with the interaction with a light wave. A simple model of a harmonic oscilla-
tor is chosen, with an eigenfrequency w0,k and a damping coefficient gk, k is a
labeling index (0 < k < l),

with
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The variation of the atomic polarizability versus frequency is described by

(8.11)

Oscillator Strength

We should be reasonably worried by the previous method of establishing the
equations, which is at the same time pragmatic and relaxed, since we used a
very classical treatment for microscopic phenomena that fall, in principle, into
the scope of Quantum Mechanics. A full quantum treatment is possible and
gives very similar results, except for the introduction of a set of real coeffi-
cients, called the oscillator strengths fk, which are characteristic of the atoms
under consideration,

(8.12.a)

with

(8.12.b)

Electrical Susceptibility

When the polarization results from the application of an electric field E, the
electrical susceptibility c is introduced by the following formula:

(8.13)

Going back to formulas (8.11) and (8.13) and introducing the cubic density
of electrons Nk, we obtain

(8.14)

The variation of the polynomial Dk = -w2 + jgkw + w 2
0,k is rather smooth,

except in the close vicinity of a band of absorption, when w ª w 0,k. The
damping coefficient gk is much smaller than the eigenfrequency, so the roots
of the polynomial are almost equal to w 0,k and Dk(w) can be simplified as
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Formula (8.14) becomes

setting c(w) = c¢(w) - jc≤(w),

(8.15.a)

(8.15.b)

Law of Refraction of the Index of Refraction

The square of the index of refraction is equal to the square of the dielectric
constant e0. In a dielectric material, the simple relationship D = e0E, that is
valid in a vacuum, becomes D = e0E + P. When the existence of the polariza-
tion is the result of the action of an external electric field, we can write the
following equations:

(8.16.a)

(8.16.b)

(8.17.a)

In the case of a diluted material the refractive index is of the order of one,
formula (8.17.a) then takes a simpler form that coincides with (8.7),

(8.17.b)

8.2.2.2. Local Field Correction (Lorentz-Lorenz or 

Clausius-Mossotti Formula)

The method for establishing formula (8.15) is no longer limited by the neces-
sity that the index of refraction is close to unity; however, it contains the
implicit assumption that the incident field is the polarizing field, that’s to say,
the field that creates the dipolar oscillation. Reasonable in the case of a
diluted material, this hypothesis is not true in a dense material where the field
that exists in the environment of an atom, also called a local field, is the super-
position of the applied field and of a depolarizing field, which corresponds
to the action of all the other atoms.

The same problem is also met in Electrostatics, when it is desired to cal-
culate the electric field inside a dielectric material. A good description may
be found in a standard textbook, see, for example, Solid State Physics by
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Charles Kittel. To evaluate the depolarizing field, we imagine that the atom is
inside a small cavity dug inside the material.

In the case of an isotropic or a cubic material, the cavity can be a sphere.
To obtain the local field Elocal inside the cavity, a term equal to P/3e0 should
be added to the external field E,

(8.18)

We will do the calculation in the simpler case where there is only one elec-
tron per atom that contributes to the index of refraction,

(8.19)

When more than one electron per atom contributes to the index of refrac-
tion, formula (8.19) is generalized as

(8.20)

Formula (8.20) is called the Lorentz-Lorenz or also Clausius-Mossoti

formula. Its demonstration explicitly admits a cubic environment of the atoms.

Gladstone’s Law

For a gas, formula (8.20) becomes simpler and coincides with (8.7). If the gas
is made of only one kind of molecule, the right-hand term is proportional to
the number of molecules per unit volume, that’s to say, to the density d. In
this case the Lorentz-Lorenz formula is written as

(8.20¢)

Known as the Gladstone law, (8.20¢) shows that the index of refraction
increases with pressure, which makes the material denser, and decreases with
temperature. Previous remarks remain true in the case of a liquid or solid-
state material. The index variation that can be produced by a reasonable vari-
ation of the temperature remains weak (up to three decimal places); the
temperature effect is however a convenient way to finely tune the value of
the refractive index.
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The acoustooptic effect is an interesting consequence of the effect of pres-
sure. The propagation of an acoustic wave inside (sonic, ultrasonic, or hyper-
sonic) a material modulates the index of refraction at the same frequency. If
a light beam and an acoustic wave, with wavelengths of the same order of
magnitude, propagate simultaneously in a liquid or a solid, the light can be
efficiently diffracted by the index grating formed by the acoustic wave.

8.3. The Index of Refraction Is a Complex Number

According to formulas (8.16) and (8.17) the dielectric constant and the index
of refraction are complex numbers:

(8.21)

Negative signs have been introduced in the above formulas, because in
most cases (sample at thermal equilibrium, for example) the imaginary parts
of the index and of the dielectric constant are negative.

8.3.1. Beer’s Law

The imaginary part of the refractive index corresponds to attenuation, or pos-
sibly amplification, of the wave during propagation. It is convenient to define
a complex wave vector:

(8.22)

where ejw(t-n¢z/c) is a complex number that keeps a constant modulus during the
propagation. On the contrary e-wn≤z/c is a real number that decreases if n≤ is
positive. The expression of the intensity is given by

(8.23)

The relationship (8.23) is called Beer’s law of variation of the intensity
during the propagation of a light beam in an absorbing material. The coeffi-
cient a is called the absorption coefficient; its variation a(w) versus frequency
is the absorption spectrum of the material and is easily obtained from spec-
troscopic measurements.

Beer’s law can also be written using the logarithm of the intensity

adb = 10a log10(e) = 4.3a is the “db-coefficient of absorption.”
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8.3.1.1. Order of Magnitude

• For a standard piece of glass, in the middle of the visible spectrum (l =
0.6mm), the real part of the index is 1.5 and the absorption coefficient is
of the order of some db/cm,

• For silica, which is probably one of the most transparent materials in the
near infrared (1.55mm), adb ª 0.15 db/km = 0.15.10-3 db/m.

• For a rather absorbing material adb ª some db/mm. An absorption of one
decibel per wavelength is very high.

Remark

The imaginary part of the index comes from the phenomenological damping
coefficient in the equation of the harmonic oscillator that describes the
motion of an electron. As with any damping coefficient it corresponds to some
energy dissipation: it’s the reason why the wave is attenuated. Our model says
nothing of what happens with the dissipated energy, the answer to this diffi-
cult question would need a more accurate description of the phenomena. The
lost energy will often appear as heat, corresponding to erratic vibrations of
the atoms, but it can also appear as stray light diffused around the propaga-
tion medium (see, for example, “The Reason Why the Sky Is Blue” in the
Annex of Chapter 11).

8.3.2. Index of Refraction of a Metal

The phenomenological model of equation (8.1) corresponds to a dielectric
material inside which the electrons are bound by a restoring force associated
to the term w 2

atom·x. The case of a metal is different: beside bound electrons,
as in the case of a dielectric, free electrons can move all over the sample. The
phenomenological equation of the motion of a free electron is almost identi-
cal to (8.1), except that the restoring force is withdrawn,

For free electrons formula (8.17.a) is to be replaced by

(8.24)

The index of refraction of a metal has in principle two components,
however the contribution of the bound electrons is negligible as compared to
the contribution of free electrons. Free electrons, by definition, can be found
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anywhere in the metal and they see an average electric field, and there is no
necessity to make a local field correction.

Plasma Frequency

The dissipation of energy is due to collisions of the free electrons with the
atoms. An important parameter in this case is the mean free path that is the
average distance covered by an electron between two collisions; the collision
time t, which is the time necessary to cover this distance, is typically 
10-13 s, about ten times the optical period (wt @ 10). The conductivity 
s of the metal is linked to the collision time and it can be established that 
the square of the index is given by

(8.24¢)

If wt is considered to be much greater than one, (8.24¢) becomes

(8.25)

where wp and lp are, respectively, the plasma frequency and plasma wave-
length of the metal; for most metals they belong to the ultraviolet or X-band
domains. The optical frequencies are much smaller than the plasma frequen-
cies, and so the square of the index of refraction is negative. As a first approx-
imation the index of a metal is purely imaginary, which means that metals are
always very absorbing for optical waves.

The modulus of the refractive index of metals has always had a high value;
as a consequence, the reflection coefficient is also very high, which explains
the typical sparkling appearance of nonoxidized metals. In reality, the indices
of metals are complex numbers, with an imaginary part larger than the real
part. At a frequency higher than the plasma frequency, in the ultraviolet or X-
band, the index is real and smaller than unity.

8.3.3. The Kramers-Krönig Formula

When a light beam is incident on an interface separating a vacuum from some
material, a reflected beam and a transmitted beam are generated. The 
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Table 8.1. Complex indices of some metals at 
l = 589.3 nm.

Sodium 0.044 - j2.42 Tin 1.48 - j5.25
Silver 0.2 - j3.44 Gold 0.47 - j2.83
Aluminum 1.44 - j5.23 Copper 0.62 - j2.57



material can be considered as a system that is submitted to an excitation by
the incident beam and then gives a response that is made of the reflected 
and transmitted beams. As these two beams are a consequence of the forced
vibrations of the dipoles of the material, the polarization of the material can
also be considered as the answer to the system of the excitation of the incom-
ing light. The existence and main properties on the optical index come from
the fact that the excitation and response are linked by linear equations; 
these equations are, at first, the relation (8.13) between P and E, and second,
the differential equation (8.1) that governs the motion of electrons.

Because of the linearity, a sine excitation produces a proportional sine
response; the proportionality coefficient is a complex number that varies with
the frequency. This is the reason why the permittivity, as well as the index of
refraction, are dispersive complex quantities. We are now going to show that
an important consequence of the principle of causality is the existence of two
necessary relations between the frequency variation laws of the real and 
imaginary parts of the index of refraction. These relations were introduced
independently by Krönig in 1926 and by Kramers in 1927; known as the
Kramers-Krönig formulas, they establish relations between the dispersion laws
of the real part, c ¢(w), and the imaginary part, c≤(w), of the susceptibility.

The physical reason for the Kramers-Krönig formulas comes from the fact
that, because of the causality principle, the response cannot happen before
the excitation. In our case, the electrons cannot start to oscillate prior to the
arrival of the incident beam. This mathematical demonstration is rejected in
Annex 8.B; the result is given by formula (8.26):

(8.26)

The examination of (8.26) immediately shows a mathematical difficulty
since the denominators of the fractions to be integrated cancel if w = w¢. A
mathematical trick should be used considering the principal part of the inte-
grals (see Annex 8.B). The interesting point is that, once the variation law
c¢(w) has been measured, or calculated, c≤(w) can be obtained from (8.26),
and vice versa. However, one must be aware that (8.26) is a relationship

between two functions which has two consequences:

(i) the knowledge of the value of c ¢(w 0) at a given frequency w0 doesn’t allow
any prediction about c≤(w0);

(ii) to obtain c≤(w) from (8.26) requires, in principle, knowing the variations
of c ¢(w) over the whole frequency range, from zero to infinity.

8.3.4. Analytical Expression of the Laws of Dispersion

The index of refraction can be measured with high accuracy over all of the
visible spectrum; as this knowledge is very important in many cases, various
empirical formulas have been established to describe its variation versus 
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frequency. These formulas are quite accurate and give the value of the refrac-
tive index up to five decimal places.

Cauchy’s formula: This is valid for materials that have only ultraviolet
absorption bands,

Briot’s formula: This is valid for materials with infrared and ultraviolet
absorption bands,

The previous formulas are nothing other than series developments of the
Lorentz-Lorenz formula. They concern materials that are transparent in the
visible and are valid far from the absorption bands.

Normal dispersion: Inside a transparency band, the index of refraction is
a decreasing function of the wavelength or, which is the same, an increasing
function of the frequency. In Annex 8.B, this proposition will be established
as a consequence of the Kramers-Krönig formulas. It’s convenient to remem-
ber that the refractive index is higher in the blue than in the red.

nblue > nred: a blue ray is more deviated by a prism than a red one.

A frequency domain inside of which the index increases with frequency is
sometimes called a zone of normal dispersion.
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Frequency

Imaginary part of the
index of refraction 

Real  part of the index of
refraction 

Visible Ultraviolet

Figure 8.3. Dispersion and absorption curves of a material that is transparent in the
visible and has three absorption bands in the ultraviolet.



Anomalous dispersion: When the frequency falls inside an absorption
band, the index variation is no longer monotonic; one then speaks of a zone

of anomalous dispersion.

8.4. Index of Refraction and Populations of 

the Energy Levels of a Transition

This section should be read in parallel with Section 9.2.3 where the absorp-
tion is related to the transitions made by an atom between the two energy
levels associated to a dipolar transition (cf. formula (9.31)); the absorption
coefficient a is related to the transition parameters by the following formula:

(8.27)

The expression of the imaginary part of the susceptibility, c≤(�), can be
deduced from the absorption coefficient using the following expressions that
come from equations (8.17.b) and (8.23):

(8.28)

It is left as an exercise to use the Kramers-Krönig formulas to deduce the
expression of the real part, c¢(�), of the susceptibility from (8.28) in the case
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c ≤ absorptionc ¢ dispersion

Frequency
Central frequency of the 

absorption band

Figure 8.4. Representation of the variations c¢ and c≤ versus frequency, in the case
of a Lorentzian profile. For the central frequency, the absorption is maximum while c¢
changes its sign.



of a Lorentzian expression of the function f(�). It’s easier to make the ratio of
the two formulas (8.15.a) and (8.15.b):

(8.29)
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Annex 8.A

Electric Dipole Radiation

Any piece of material is in fact a collection of electric dipoles that can freely
oscillate or that are forced to oscillate by an incoming electromagnetic wave.
The purpose of this annex is to calculate the electromagnetic field radiated
from an oscillating dipole.

8.A.1. Definition of an Oscillating Dipole

We refer to Figure 8.A.1 and consider a dipole made of two electric charges,
+q and -q, disposed at points Q+ and Q- separated by a distance d; by defini-
tion, the electric dipolar momentum p of the dipole is the product of the
absolute value of the charges by the vector a = Q-Q+,

If p is a constant vector, the dipole is said to be static; an oscillating dipole
corresponds to the case where the distance follows a sine time variation:

(8.A.1)

8.A.2. Electric and Magnetic Fields Created by a Dipole

We will first successively consider the case of a static dipole and then of an
oscillating dipole.

8.A.2.1. Static Dipole

The determination of the electric field created by a static dipole is a trivial
electrostatic calculation: the field at point P in Figure 8.A.1 is parallel to the
plane that contains point P and vector p0; using the unitary vectors r1 and q1,
the expression of the field is
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8.A.2.2. Oscillating Dipole

An oscillating dipole is, at the same time, a pair of charges and an electric
current, since the charges are moving; and so an electric field and a magnetic
field are generated. The calculation of this electromagnetic field is interest-
ing, from a physical point of view; the Theory of Relativity is implicitly
involved, since the effect of a change in the positions of the charges cannot
be felt instantaneously at point P. This calculation is also trivial in Electro-
magnetics courses. The components of the field can be deduced from a scalar
potential V and from a vector potential A,

(8.A.3)

(8.A.4.a)

(8.A.4.b)

In general, the spatial field distributions are quite complicated, they
become simpler if:

• a << l = 2pc/w, the distance between the charges is small as compared to
the wavelength.

• The point P is far from the dipole.

If the frequency goes to zero (or if the wavelength goes to infinity), formula
(8.A.4.a) becomes identical to (8.A.2). At a long distance from the dipole and
keeping only the 1/r terms, the following formulas are obtained:
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P
 r1
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a = Q–Q+

y1
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Figure 8.A.1. Oscillating dipole. (r1, q1, y1) is a
unitary direct tetrahedron; r1 is parallel to a, q1 is
in the plane (OP, a), y1 is orthogonal to the two
other vectors.
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H

Figure 8.A.2. Diagram of emission of a dipole. The field keeps a constant modulus
along a circle that is tangent to the dipole at point O. No emission in the direction of
the dipole.
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The expression ejw(t-r/c)/r in (8.A.5) and (8.A.6) corresponds to the propa-
gation of a wave. (E, H, OP) is a direct trihedron. The ratio of the modulus
of the electric and magnetic fields remains constant and is equal to the wave
impedance

(8.A.7)

The 1/r law, which must be associated to the energy conservation, corre-
sponds to a slow diminution of the amplitude of the wave as a function of
the distance of propagation; the rate of decrease would be much faster if it
were an exponential law. This is the explanation of the enormous range of the
waves that are emitted by an oscillating dipole. The radio wave coming from
a modest emitter (a few watts) can still be detected after having covered
several thousands of kilometers; light rays coming from the very edge of the
universe are seen with the naked eye. . . .

Polarization and Angular Repartition of the Radiation of a Dipole

The light radiated by a dipole is linearly polarized; at a given point P, the 
electric field is parallel to the plane, that is defined by P and the electric
momentum p of the dipole, and is perpendicular to the line joining P to the
center of the dipole.

Despite the presence of ejw(t-r/c)/r in the expression for the fields, even at a
great distance, the radiation of a dipole is quite different from a spherical
wave. The indicatrix of emission doesn’t have any spherical symmetry, since
the amplitude cancels in the direction of the dipole. From a mathematical
point of view, the cancellation comes from the presence of sin q in formulas
(8.A.5) and (8.A.6); the physical interpretation comes from the fact that an
electromagnetic wave must be transversal and that, because of the cylindri-
cal symmetry of the problem, the fields cannot have components that would
be orthogonal to the dipole.
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8.A.3. Power Radiated by an Oscillating Dipole

We will give two methods for calculating the power that is radiated by an 
oscillating dipole. The first method is fully electromagnetic and relies on the
previous expressions of the fields and on the Poynting theorem. The second
will use results of the Theory of Relativity: it’s because of the acceleration of
the moving charges that energy is radiated by the dipole.

8.A.3.1. Calculation Using the Poynting Theorem

The power that is radiated through a given surface S is equal to the flux of
the Poynting vector P through the surface,

In the above formula, the asterisk is for complex conjugation; its presence
is the time to disappear (ejwte-jwt) in the vector product; from a physical point
of view this means that the power is averaged over many periods,

To evaluate the integral, S is a sphere with the dipole at the center,

(8.A.8)

• P is independent of the radius of the sphere, which ensures the conser-
vation of energy.

• P varies as the fourth power of the frequency or, similarly, as the fourth
power of the inverse of the wavelength. For a given dipolar momentum,
the radiated power is 24 = 16 times larger in the blue (0.4mm) than in the
red (0.8mm).

8.A.3.2. Calculation Using Relativity Considerations

Richard Feynman gave an elegant and didactic presentation in the chapter 
entitled “Electromagnetic Radiation” of his book Lectures on Physics.

Formulas (8.A.9) give the expressions of the electric and magnetic fields
that are created by a charge q moving along some trajectory G,
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The two first terms of (8.A.9.a) are the relativistic expression of the
Coulomb law for the electric field created by a charge q. The last term is asso-

ciated to the electromagnetic field that is radiated by the oscillating dipole;
to obtain its expression, we need to know the acceleration of the extremity
of the unit vector er ¢. The electromagnetic field that is radiated, at a given point
P and at a given time t, may be expressed as a function of the acceleration of
the charge at time (t - r/c).

The following important results are obtained:
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q

P¢

P

M

r'

r

er¢

G

er

Figure 8.A.3. An electric charge q is moving along the trajectory G; er and er ¢ are the
respective unit vectors of MP and MP¢.

A charge with a uniform rectilinear motion doesn’t radiate any field.

A charge radiates electromagnetic energy, only if it is accelerated.

The total radiated power is proportional to the square of the 

acceleration.

Consequences

• In the case of harmonic oscillations, the acceleration is proportional to the
square of the angular frequency w, and thus the radiated power is 
proportional to w4, which agrees with formula (8.A.8).

• Synchrotron radiation: A charged particle orbiting along the trajectory of
some accelerator (a synchrotron, for example) is permanently submitted
to a centripetal acceleration and radiates an electromagnetic field, which
is called synchrotron radiation. According to the working conditions of
the accelerator, the radiated spectrum covers the whole electromagnetic
domain, including visible, ultraviolet, and X-rays.



8.A.3.3. Lifetime of the Excited Level of an Electric 

Dipole Transition

We consider an atom that is isolated in a vacuum; an electron of this atom
and the nucleus makes an electric dipole, their distance x(t) follows the equa-
tion of a harmonic oscillator:

After having been taken away from its equilibrium position, the electron
will do free oscillations, let W(t) and W0, respectively, be the values of the
“mechanical energy” of the oscillator and consider that the damping is weak
(watom >> a):

The energy W(t) that is stored by the oscillator decreases as time passes;
the instant power that is dissipated is given by

where trad is called the radiative lifetime of the oscillator. To obtain an
expression of this time constant, we will admit that the dissipation of energy
corresponds to the radiated power that has already been calculated and is
given by formula (8.A.8):

(8.A.10.a)

To obtain a value of trad we need to know W; for no good reason, except
that the result of the calculation is correct, we will replace W by h�:

(8.A.10.b)

Our demonstration is not really satisfactory, since we treat in a classical
way the spontaneous emission (see Chapter 9), which is typically a quantum
process. Despite its impure origin, formula (8.A.10.b) is valid and verified by
the experiment; a more rigorous demonstration can be given on a quantum
basis. We have chosen this kind of presentation because it insists on the phys-
ical meaning of electric dipole radiation.
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Order of Magnitude of the Radiative Lifetime

To do numerical applications of (8.A.10.b), we need an order of magnitude of
p0, we will make the product of the elementary charge e = 1.6 ¥ 10-19 C by an
order of magnitude of the diameter of an atom (1 Å = 10-10 m) Æ
p0 ª 10-29 Cb.m. The time constant tradiative is also called the relaxation time of
the transition.

372 8. Index of Refraction

Wavelength 1 m 1 cm 100 mm 10 mm 1 mm 0.1 mm 1 Å

Frequency 300 MHz 30 GHz 3 ¥ 3 ¥ 3 ¥ 3 ¥ 3 ¥
1012 Hz 1013 Hz 1014 Hz 1015 Hz 1018 Hz

tradiative 1012 s 106 s 1 s 10-3 s 10-6 s 10-9 s 10-18 s
Lifetime millennium one day ms ns

Orders of Magnitude of the Relaxation Times of Fully 

Allowed Transitions, p0 ª 10-29 Cb.m

The above table gives some orders of magnitude of the relaxation times. Very
long (a few days or more) relaxation times are not really meaningful: they just
indicate that, in such cases, the system will find other relaxation processes
(collisions with other atoms or with the walls of the tank, in the case of a gas;
collision with phonons in a crystal).

As far as optical transitions are concerned the relaxation times are usually
in the nanosecond-microsecond range. Radiative lifetimes can be measured;
experimental values, tmeasured, are always larger than the theoretical value given
by (8.A.10.b). The value f of the ratio of the calculated to the measured life-
time is smaller than one:

It can be shown that the parameter f is identical to the oscillator strength

of formulas (8.12).

• If f = 0, the transition is said to be forbidden, the lifetime is then infinite.
• If f = 1, the transition is said to be fully allowed, the lifetime is equal to

the calculated value.
• If 0 < f < 1, the transition is said to be partly allowed (or partly forbidden).

The lifetime was calculated in the case of an isolated dipole that was radi-
ating in the open space. Inside an atom, an electron belongs to the electron
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cloud, which constitutes a type of electrical screening. We can give the 
following analogy of a dipole that is inside a closed box. At first the walls of
the box are perfect conductors, the radiation that is produced by the dipole
is reflected by the walls and stored: the lifetime is infinite, but an external
observer is not aware that there is an oscillating dipole inside. Let us suppose
now that small holes are drilled through the walls; only a part of the radiation
will be diffracted outside while the remaining part is sent back to the 
dipole.

A transition associated to an electron belonging to an outer shell is fully
allowed, this is the case of the emission of the well-known D-light by sodium
atoms (there is only one peripheral electron); the lifetime of the excited level
is of a few nanoseconds.

A transition associated to an electron belonging to an inner shell is only
partly allowed, such cases are often met with in rare earth atoms and transi-
tion atoms of the Mendeleev chart. The lifetimes are then measured in mil-
liseconds ( f ª 10-3), the excited level is then said to be metastable (in ancient
Greek, meta = almost). A famous example is given by chromium ions Cr3+,
which have been selected to obtain the first laser emission (0.6943mm)
because of the existence of a metastable level, with a lifetime of three 
milliseconds.

Absorption and Stimulated Emission Are the Same Kind of

Phenomena

Absorption and stimulated emission will be introduced on a quantum basis in
Section 9.2, however, contrary to spontaneous emission, they can be classi-
cally interpreted. We consider a dipole oscillating at some frequency w and
receiving an electromagnetic wave of the same frequency. The dipole inter-
acts with the electric alternating field of the wave, the difference between the
phase of the field and the phase of the motion of the dipole plays a key role;
it is interesting to understand what happens when j = p or when j = 0. When
the motion and the field variation are in phase, the action of the field increases
the amplitude of the dipole vibrations, which in turn gains more energy; on
the contrary, if j is equal to p, the dipole loses energy.

Let us now see what happens on the field side: stimulated emission cor-
responds to the case of phase concordance where the two fields are mutually
reinforced by positive interference; absorption corresponds to the case of
opposite phases and of attenuation by destructive interference.

8.A.4. Field Radiated by a Planar Distribution 

of Oscillating Dipoles

Richard Feynman in his Lectures on Physics proposed the following calcula-
tion. We refer to Figure 8.A.4, electrical charges are spread on a plane with a
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surface density h that keeps a constant density h0 inside a circle of radius R0,
and then rapidly decreases outside the circle. The distribution admits the 
symmetry of revolution around the axis of the circle. All the charges are
vibrating in phase, with the same frequency w and the same amplitude x0,
the direction of vibration is orthogonal to the plane. We want to calculate the
electromagnetic field that is radiated at a point P located on the axis of the
circle at a distance z that is far larger than R0.
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The electric field created by the dipoles is given by the following integral:

The presence of the term e-j• is very unpleasant, this is the reason why we
have chosen that h goes to zero when the distance to the center of the circle
becomes infinite. The field is then given by
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Figure 8.A.4. The plane supports a distribution of oscillating dipoles; the vibrations
are orthogonal to the plane. The elementary electric fields generated by the different
dipoles are parallel to the unit vector x.
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Annex 8.B

The Kramers-Krönig Formula

8.B.1. Demonstration of the Kramers-Krönig Formula

The demonstration of this formula requires a rather sophisticated knowledge
of mathematics and, more specifically, about Riemann and Cauchy integrals.
A presentation can be found in the book Solid State Physics by C. Kittel, here
we will just emphasize the physical articulations of the demonstration. By the
way, we would like to underline the specific beauty of the argument which
put the Principle of Causality on a mathematical basis and which also estab-
lishes a well-known experimental result, according to which blue light is more
deviated than red light by a prism.

Let P be the polarization taken by a piece of material when submitted to
an electric field E. If the field varies with time, so does the polarization. A sine
variation of the field will create a sine variation of the polarization. The
complex vector is proportional to : the field plays the role of an 
excitation, the polarization being the response,

(8.B.1)

If the excitation is no longer sinusoidal, but follows some other law of 
variation versus time, the situation is more complicated and the Fourier 
transform method should be used. We will now consider the case where the
excitation is a Dirac pulse,

(8.B.2)
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Formula (8.B.2) is a well-known result; the harmonic susceptibility 
c(w) (ratio response/excitation in the harmonic case), is the inverse Fourier
transform of the time response to a Dirac pulse,

(8.B.3)

Since the response cannot exist prior to excitation, P(t) is identically equal
to zero when t < 0. The domain of integration of the integral of the Fourier
transform should be limited to [0, •].

It can be established mathematically that formula (8.B.3) implies that the
real and imaginary parts of the harmonic susceptibility are Hilbert transforms

of one another. Under such conditions the function c(w) has the following
properties:

• The poles (values of the frequency that make the function infinite) are all
above the real axis.

• c(w) Æ 0 when w Æ •.
• c¢(w) is an even function and c≤(w) is an odd function of the real variable

w.

•

The integrals raise some problems, since w = w¢ is a pole; this is the reason
why the Principal Parts (PP) have been introduced in the Kramers-Krönig 
formulas.

It’s a good exercise to examine how the Kramers-Krönig formulas can be
applied to formulas (8.15.a) and (8.15.b). As an example, consider the case of
an atom with only one absorption band and derive the expression of c≤(w)
from the expression of c¢(w); in other words, start from
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8.B.2. Normal Dispersion

We consider a piece of material that is transparent inside a window limited
by the two frequencies w1 and w 2, the absorption being equal to zero at any
frequency between w1 and w 2,

Anybody able to juggle with principal parts of integrals will easily 
establish that

(8.B.4)

The arguments of the integrals in (8.B.4) being positive, the derivatives
dc¢/dw and dn/dw are also positive and, inside a transparency band, the index
of refraction increases with the frequency.
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9

Lasers

9.1. Laser, a Feedback Oscillator

9.1.1. Light Amplification by Stimulated Emission of Radiation

A laser is a device which, receiving energy from a pumping source, transfers
this energy to a coherent light beam.

In the above definition the word light should not be taken literally, as the
wavelength of lasers very often falls outside the famous octave (0.8–0.4mm)
inside of which the human eye can see. Lasers can emit within the deep
infrared (300mm) as well as within the visible or the ultraviolet (0.1mm). There
is no theoretical limitation for obtaining stimulated emission with X-rays or
even G-rays. The family of presently existing lasers is extremely diversified
and affects various branches of Physics and Chemistry. The lasers that are
most often encountered are certainly semiconductor lasers, they easily emit
in the near infrared (0.8–1.6mm) and their efficiency is exceptionally high
(70%). Being produced in large quantities they are very cheap, all the more as
their technology is very similar to microelectronics.

Lasers, a Brilliant Result of Basic Research

It was at the end of the 1950s that the American physicist Thomas H. Maiman
obtained a burst of coherent light from of a ruby rod that had been placed
along the axis of a helical flash tube, initially designed for professional film
production. For many scientific or technical inventions, such as steam engines
or superconductivity or even most electromagnetic effects, experimentalists
or engineers had discovered and developed the phenomena before the
approach of the corresponding basic research.
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Lasers, as well as transistors ten years earlier, are however the result of
the imagination of physicists (theoreticians as well as experimentalists). They
have unambiguously issued from fundamental research work, with no expec-
tation of immediate applications.

Although there were early prospects for useful applications, it has 
taken more than twenty years before the lasers could find a market. This long
delay is probably due to the fact engineers were suddenly provided with 
light beams that had such new and original properties that it took some time
for the new possibilities to be appreciated; at the same time, sophisticated
technologies had to be invented to take full advantage of the fascinating 
properties of laser beams. During the two decades 1960–1980, the approach
of scientists and engineers working in Optics completely changed; they had
first to learn how to manage coherent and powerful light beams; they 
also had to cope with the fast-growing markets of Electronics and Telecom-
munications. Another difficulty was associated with the fact that lasers are 
a multidisciplinary domain, connected to many different scientific fields,
among which we would like to note: Optics, Spectroscopy, Electromagnetism,
Solid State and Plasma Physics, Chemistry. . . . In the same way, lasers rely 
on a great variety of technologies: Optics, Electronics, Precision Mechanics,
Epitaxy and Thin Films Deposition, Crystal Growth, Control of Electrical 
Discharges. . . .

Lasers Could Have Been Invented Forty Years Earlier

The basic phenomenon for laser emission, stimulated emission of radiation by
excited atoms, was introduced by Albert Einstein as early as 1917, from ther-
modynamical speculation on the interaction of a collection of atoms 
with blackbody radiation. The two main elements (synthetic ruby and a 
Fabry-Perot resonator) of Maiman’s experiment did exist at that time; flash
tubes didn’t yet exist, but a flame of burning magnesium powder could have
replaced them. The paradox is not that big, if we are aware that the notion 
of self-oscillations had not been discovered, as well as the notions of signal
amplification and of feedback. Historically, lasers are the transposition of elec-
trical feedback oscillators. To make a laser the following two elements are
required: an amplifier working at optical frequencies and a feedback circuit.

The idea of taking advantage of stimulated emission in a material con-
taining a population inversion for amplifying microwave or optical signals 
was independently and simultaneously proposed by the Americans Weber and
Townes and by the Russians Basov and Prokhorov in 1953. At that time, the
analogy between a tuned electrical circuit, a microwave resonator, and a
Fabry-Perot resonator, had been known for a long time; the brilliant idea was
just to put a piece of material with a population inversion between the two
mirrors of a Fabry-Perot resonator.
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9.1.2. Laser Emission and Principle of Correspondence

In Quantum Mechanics, the description of the state of a given system needs
a set of integers that are specific to the system and called its “quantum
numbers.” The discovery of the quantum numbers of a system is not always
straightforward; a possible solution is to start from a “classical” description
and to make use of ad hoc postulates. A test of validity of the quantum
numbers is to see what happens if they are given larger and larger values: the
quantum description should then give results much more similar to the clas-
sical one.

The quantum description of a light beam introduces the number n of
photons. A rigorous introduction of this number is of course possible. In the
case of a monochromatic (frequency �) parallel beam, the value of the number
n¢ of photons crossing a perpendicular cross section of the beam each second,
is readily obtained by dividing the power P by the individual energy of each
photon n¢ = P/h�. If we consider that photons travel at speed c, it can be
deduced that there are n = n¢/c photons per unit volume.

Let us try a numerical application for the case of a 1 mW laser emitting a
parallel beam having a wavelength l = 0.5mm and a cross section of 
1mm2, the result is n � 8 ¥ 1010 photons/m3, which is enormous: although a
quantum treatment should be used, in most cases a classical method (i.e.,
Maxwell’s equations) is quite suitable to describe a laser beam.

An X-Ray Laser Would Be Far More Dangerous

A laser such as the previous one is not at all powerful and is not diffi-
cult to build; so stimulated emission allows an easy creation of a great 
number of identical photons. It is possible to make far more powerful 
lasers, the emitted power can be as high as several terawatts (1012),
megawatt powers are quite common; of course this kind of laser only 
emits short light pulses with a duration ranging from nanoseconds (10-9)
to a few tens of femtoseconds (10-12). One gigawatt during one nanosecond
makes energy of only one joule; this energy is negligible if compared to 
the kinetic energy of a bullet (10 g at the speed of sound makes approxi-
mately 1 kJ). So, at the moment, laser guns mostly exist in science 
fiction novels; although laser weapons for blinding the enemy are in 
service. These rather optimistic considerations should be reconsidered, if 
it became possible to generate comparable densities of X or G photons.

Enormous laser equipments do exist for military applications and they can
deliver nanosecond and megajoule pulses; if focused with lenses the corre-
sponding beams provide, inside a volume of a hundred cubic micrometers, an
energy density of the same order of magnitude as that which is obtained in a
thermonuclear explosion.
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9.1.3. Feedback Oscillators

If we exclude electromechanical devices, such as alternators or microphones,
most AC electrical generators are feedback oscillators which are also called
positive feedback oscillators and self-oscillating generators. Lasers belong to
this type.

Among the signal processing devices, feedback oscillators are distinct 
in that they deliver an output signal in the absence of any input signal. To
introduce the main properties of positive feedback we will consider radio
oscillators using electronic components (resistors, capacitors, coils, and 
transistors), explanations are simpler because the frequency is low enough
for the circuit size to be small as compared to the wavelength of the associ-
ated electromagnetic waves (l � meter to kilometers). Under such conditions
the differences in phase between currents and voltages are well localized and
solely due to capacitors and coils, it has nothing to do with wave propaga-
tion. The situation is of course very different in Optics where the wavelength
is measured in micrometers.

From a very general mathematical point of view, a signal-processing 
device is described by some differential equation between an input signal e(t),
an output signal s(t), and all their time derivatives. The easiest equations 
to be solved are linear equations; this is probably one reason why most
devices are, at first sight, considered to be linear. It is then well known that
the output signal of a linear system is the superposition of a free regime and
of a forced regime. When conditions for self-oscillations are fulfilled, the two
following properties are met, they are associated with deep mathematical 
difficulties:

(i) the response to some sine input signal of a well-chosen frequency is the-
oretically infinite; and

(ii) the amplitude of the free regime goes to infinity with time.

We will not attempt to give a general theory and will only develop two 
examples, one on the free regime and the other on the forced regime. We refer
to the circuit of Figure 9.1(a), from an input signal e = ê exp( jwt)
the amplifier produces an output signal s = Aê exp(jwt), a fraction b of
the output signal is mixed with the input signal; if a signal e0 = ê0 exp( jwt)
is applied to the second port of the mixer we finally have the following 
equations:
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where A and b are complex numbers which depend on the angular frequency
w, according to a law that is determined by the arrangement of resistors,
capacitances, and chokes, they can always be written as

(9.3)

Formula (9.2) defines the gain G = A/(1 - bA) of an amplifier with feed-
back. It’s well known in electronics that, playing with the feedback circuit, it
is possible to change at will the value of the gain and the shape of the response
curve of an amplifier. Very often a negative feedback is used to broaden the
bandwidth, the price to pay being a diminution of the gain.

The values of the frequency that cancel the denominator of the gain in
formula (9.2) are of course of special interest, they are obtained from the very
important formula,

(9.4)

Let w = wosc be a solution of equation (9.4), for values of the angular fre-
quency equal to or very close to wosc, the circuit is said to be unstable. From
an experimental point of view an output signal is obtained, even if no input
signal is applied: an AC current (frequency � wosc) exists in the load resistor
RL, the system autooscillates.

Equation (9.4) involves complex numbers and so implies two real 
equations:

(9.5)

(9.6)

Equation (9.6) shows that, to obtain autooscillation, it is necessary that
the reinjected feedback signal should be in phase with the original signal; this
condition is only the condition of constructive interference in Optics. The fre-
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Figure 9.1. Organization of a feedback oscillator: (a) shows the principle, (b) is more
realistic. The input impedance of the amplifier is infinite and the input current is equal
to zero, the output generator is a current source with an electromotive current Is = g e

proportional to the input voltage e.



quency, or the frequencies, of possible autooscillation are the solutions of
equation (9.6).

Some initial signal e0 will give, after amplification and feedback, a signal
Abe0, successive signals (Ab)2e0, (Ab)3e0, . . . are then generated. Finally, the
input and output signals will be given by

(9.7.a)

(9.7.b)

This is another demonstration of formula (9.2), it has the interest of
showing that (9.5) is in fact a threshold condition, since the sum of the series
diverges as soon as

(9.8)

When |Ab| = 1 and e0 = 0, s takes the indeterminate form 0/0 and the ques-
tion arises as to what are the physical mechanisms which remove the inde-
termination and finally determine the amplitude of the oscillations produced
by a self-oscillating device.

Analysis of an Autooscillator Using a Tuned RLC Circuit

We now refer to Figure 9.1(b), the feedback circuit contains an RLC resonant
parallel circuit; it can be considered that the Fabry-Perot resonator of a laser
has many similarities with such a circuit. The voltage e across the RLC circuit
is applied at the input of an amplifier which delivers an output current Is = g e

proportional to e; this current goes through the primary coil of a transformer
of mutual inductance M, the secondary coil is the coil of a resonant circuit. g
is considered to be independent of the frequency; it can be shown that e(t)
obeys the following differential equation:

(9.9)

Setting

we obtain

(9.10)

It is possible to choose large enough values for M and g so that (1 - RMg/L)
is negative, in such conditions the time constant t is also negative and the
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amplitude of the voltage oscillations across the resonant circuit increases
exponentially versus time. According to equation (9.10) these oscillations
increase indefinitely and should become infinite; for reasons that will be ana-
lyzed later this is of course not the case.

In order to understand the physical processes involved in the production
of an oscillation by the circuit in Figure 9.1(b) let us take away the feedback
and make Mg = 0, we then just have an ordinary RLC circuit. Let us suppose
that the capacitor has been charged with an initial voltage ê0, corresponding
to the storage of an electrostatic energy Cê2

0 /2; damped sine oscillations are
then produced with a frequency almost equal to w0 = (LC)-1/2. The initial energy
is periodically transferred from the capacitor to the coil and vice versa, at the
same time that this exchange occurs, a current exists in the resistor inside
which there is heat dissipation: the total amount of energy stored in the coil
and in the capacitor decreases exponentially with some time constant t¢.

We now again reestablish the feedback and the amplification and we
suppose that RMg/L = 1. In spite of the presence of the resistor R, the damping
term of equation (9.9) disappears. The resonant circuit is now said to be
undamped: during each period the amplifier brings to the circuit an energy
which is just equal to the energy dissipated in the resistor. This energy is pro-
vided by the DC power supply of the amplifier.

If RMg/L > 1, the energy coming from the amplifier is larger than the energy
dissipated in the resistor, the amplitude of the electrical oscillations, as well
as the energy dissipated in the resistor, increase exponentially. As the ampli-
fier obviously cannot give an infinite output signal a steady state will be
reached where the power in the resistor is just equal to the power that can
be brought by the amplifier. This steady state is obtained after a transient
state, see Figure 9.2.
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Figure 9.2. Transient state of an oscillator. As long as the amplitude of the signal
remains small, linear equations are valid and give a sine oscillation with exponentially
growing amplitude. Then saturation effects occur in the amplifier and a steady state
is reached in which the amplitude remains constant.



We have already suspected mathematical difficulties about formulas (9.2)
and (9.10) if Ab = 1; the first one becoming meaningless and the second 
giving signals with an infinite amplitude. Our difficulties are a consequence of
the fact that the circuit has been described by linear differential equations,
whatever the amplitude of the signal. Let us go back to equation (9.9); this is
a linear equation as long as R, L, M, and g are perfectly constant and inde-
pendent of the amplitude of the signal. If the values of the passive compo-
nents (R, L, C) are certainly constant, on the contrary it’s not the same for the
active components of the amplifier (transistors), which will “saturate” for
important values of the amplitude. As a consequence, it can be considered
that a linear description is only valid for small signals when we come nearer
and nearer to saturation of some parameters, A in equation (9.2) and g in
equation (9.9) become dependent on the amplitude: equations are no longer
linear and their resolution needs far more than two lines. . . .

If nonlinearity is properly taken into account, the following results are
obtained:

• The linear theory allows a correct determination of the threshold condi-
tion: Ab = 1.

• If Ab is given a value larger than one, after a transient state, a steady state
is finally reached; an almost sine periodic oscillation is produced, its ampli-
tude is finite and all the more intense as the difference (Ab - 1) is larger.

9.1.4. Spectral Characteristics of the Ray Emitted by an Oscillator

Figure 9.3 shows a typical variation of the respective modules of the gain and
feedback parameters, A(w) and b(w). They are often bell-shaped curves, to
make the threshold condition (|A(w)b(w)| = 1) possible it’s necessary that the
two curves overlap along a large enough area. The oscillating frequency will
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be intermediate between the two maxima; if they coincide their common
value is the frequency of oscillation. It often happens that one curve is much
narrower than the other; this curve will then define the frequency. In the
example of Figure 9.1(b), the gain was represented by g and was supposed
to be independent of the frequency; the oscillation was obtained at the fre-
quency of the resonant circuit.

An Autooscillator Starts from the Noise

In spite of its weaknesses the linear theory is quite valid for small signals,
however formulas (9.2) and (9.10) still raise some problems. To give some 
importance to formulas (9.2) and (9.7) we had decided that ê0 should be equal
to zero and we had considered an autooscillator as a device giving an output
signal with no input signal. Nevertheless, things are more complicated, and if
we make e0 = 0 in formula (9.10), e(t) will remain equal to zero even if t is
negative. In reality, e0 is never permanently equal to zero because of the noise.
In the case of a laser the noise is the result of the spontaneous emission of
radiation by excited atoms.

We now consider the arrangement in Figure 9.1(a) in which the amplifier
and the feedback circuit are supposed to be tuned to the same central fre-
quency. Let us examine what happens when the feedback coefficient is pro-
gressively increased from a small value up to the threshold value for which
oscillations are obtained. In Figure 9.4 are shown the frequency spectrums of
the output signals that are obtained in the absence of any input signal. Curves
(1) and (2) correspond to conditions that are below the oscillation threshold:
the output power remains quite small; the spectra become narrower and 
narrower as the threshold is approached. When the threshold is passed, even
by a small amount, the phenomena change drastically: the power is suddenly
increased, while the spectrum becomes very narrow.

The signal emitted by an oscillator is of course never strictly monochro-
matic. The theoretical determination of the spectral bandwidth D�osc is
an interesting, although very difficult, problem. D�osc is a function of the
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Figure 9.4. Spectra of the output power of an amplifier with positive feedback. No
input signal has been applied. Curves (1) and (2) are below threshold, curve (3) is
above threshold: autooscillation.



respective bandwidths, D�feedback and D�amplifier, of the feedback circuit and of 
the amplifier. If the feedback circuit is more selective than the amplifier, 
D�feedback << D�amplifier, it can be established that

(9.11)

where h is Planck’s constant and � and P are, respectively, the frequency and
power of the emitted oscillation.

Numerical Application

We consider the case of a 1 W laser emitting photons of 1 eV; the resonator 
has a “finesse” F = 50 and is made of two mirrors separated by a distance 
d = 1 m.

The free spectral range is (FSR) = c/2d = 1.5 ¥ 108 Hz; the feedback band-
width is D�feedback = (FSR)/F = 3 ¥ 106 Hz and, finally, D�osc = 9 ¥ 10-6 Hz.

Such a spectral purity is completely meaningless, since it would require
relative mechanical and thermal stabilities of the same order of magnitude for
the resonator. We will just keep in mind that lasers are able to produce
extremely monochromatic signals.

9.1.5. General Laser Arrangement

In Figure 9.5 is given a very general scheme of a laser: an adequate pumping
device provides enough energy for a medium to become an amplifier for
optical waves of suitable frequency, this medium is disposed between two 
parallel mirrors which permanently send the light back (feedback) into the
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Figure 9.5. Principle of a laser. The material inside the resonator receives energy
from a pumping source and stores it as a population inversion. A wave of suitable
frequency travels back and forth; during each journey it receives energy from the
material and loses energy at each reflection on the mirrors. When the gained and lost
energies are equal the amplitude of the wave remains constant, this is the laser effect.



amplifier. Let us first consider the case of an empty resonator and let us
suppose that, for some process, which is not described here, it has sent a
planar wave between the two mirrors with its wave planes parallel to the
plane of the mirrors. Planar waves will indefinitely travel between the mirrors;
their existence corresponds to the storage of electromagnetic energy inside
the resonator. If the mirrors were perfectly reflecting, the initial wave would
be trapped and the amount of energy would remain constant. In the case of
a partially transmitting mirror, some electromagnetic energy will escape
outside and, because of these leaks, the lifetime of the stored energy is no
longer infinite. It can be shown that the amplitude of the wave decays expo-
nentially as it goes back and forth between the mirrors.

Laser Effect

Instead of an empty resonator, we now place a material that is able to amplify
the waves traveling between the mirrors. If the amplification during a double
transit just compensates for the losses caused by the partial reflection on the
mirrors, then the system is said to be self-sustained: the resonator has become
a light source which emits light through the partially transmitting mirrors. To
understand the way a laser is working, it will be necessary to: (i) describe the
physical reasons why a sample may amplify a wave; and (ii) understand how,
and at which frequency, two parallel mirrors act as a positive feedback circuit.

9.2. Optical Amplification

9.2.1. Blackbody

Dark Red, Hot Red, or White

The story started at the end of the nineteenth century, at that time physicists
were desperately chasing a law that would give quantitative indications about
the radiation that is emitted by a heated body, a heated horseshoe, for
example. After having identified the notion of electromagnetic radiation, it
was pointed out that the power radiated from a heated body considerably
increases with temperature while, at the same time, the spectral composition
extended further and further toward shorter wavelengths. It was also noticed
that the amount of emitted power depends on the special body under con-
sideration, this is the reason why physicists invented an ideal object called a
“blackbody.” This can be thought of as a cavity almost completely isolated
from the external world with which electromagnetic energy can only be
exchanged through a tiny hole O, see Figure 9.6. The inner walls of the black-
body are perfectly reflecting, any ray penetrating inside will be almost indef-
initely reflected, with a low probability of escaping through the aperture O.
For an external observer the hole looks like a source of radiation.
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At a given temperature T K the blackbody reaches an equilibrium state, 
the problem is then to evaluate the power that is emitted through the hole. It
can be shown that the problem is completely solved as soon as we know the
global electromagnetic energy density u inside the cavity; by electromagnetic
energy density we mean the amount of energy inside each unit of volume of
the blackbody.

The global density u has, of course, a spectral composition and we will
call u� the associated spectral density: u� d� is the amount of energy associ-
ated to waves having a frequency falling inside the band limited by the fre-
quencies � and � + d�.

By definition we have

(9.12)

We now consider a blackbody having the shape of a cylinder and closed
by a piston and we make an adiabatic compression of the electromagnetic
radiation that is contained inside. The pressure of radiation tries to repel the
piston. It can be shown that, in order that the second principle of thermody-
namics should not be violated, the electromagnetic spectral density u� must
depend on the frequency � and the temperature T according to the law given
by (9.13):

(9.13)

where F(�/T) is a universal function of the variable �/T, F(�/T) doesn’t depend
either on the shape of the blackbody or on what it contains. The determina-
tion of this function had been a strong preoccupation for physicists at the end
of the nineteenth century, its discovery has been the fruit of the imagination
of Rayleigh and Jeans and, finally, of Planck. Rayleigh and Jeans considered

u T F T� �= ( )3 ,

u u d=
•

Ú � �
0

.
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O

Figure 9.6. Schematic representation of a blackbody. Once it has penetrated inside
the blackbody a light ray is almost indefinitely reflected on the perfectly reflecting
walls, the probability that it could escape being small. A small amount of light can
however escape through the small aperture O, which appears to some external
observer as a point source of radiation.



the blackbody as a resonator that was ideal since its walls were perfectly
reflecting. They admitted that the only waves that could exist inside such a
resonator were the waves corresponding to a standing wave pattern compat-
ible with its shape and size. Such a pattern is called a mode of the resonator.
A mode is characterized by a frequency � and a law of variation of the field
amplitude versus the position inside the resonator.

We now consider a frequency domain limited by the two frequencies � and
� + d�, the determination of the number dg of modes with a frequency falling
inside this band is not completely trivial and is described in any Thermody-
namics textbook. It is obtained that dg is proportional to the volume V of the
blackbody and to the spectral width

(9.14)

Rayleigh and Jeans were the first to consider the modes of a resonator as
individual physical entities with two degrees of freedom. On the analogy of
the kinetic theory of gases, that attributes an average individual energy equal
to kT/2 to each microscopic object belonging to a collection at thermal equi-
librium at a temperature of T K (k = 1.37 ¥ 10-23 J/°K is the Boltzmann con-
stant), each mode is given an energy equal to kT. An expression is thus
obtained for the electromagnetic spectral density u� inside a blackbody,

(9.15)

where u� as given by (9.15) is in good agreement with (9.13); although this
kind of measurement can never be very accurate, it can be considered that,
as long as the frequency is not too high, (9.15) is in good agreement with
experimental results. Unfortunately there is a severe drawback, which has
been called the ultraviolet catastrophe: the integral of formula (9.12) diverges.
A solution was found by Planck who, in 1900, had postulated that the indi-
vidual energy of a mode could not vary continuously and should be an integer
multiple of a quantum of energy equal to h�. Since that time the theory has
been put on a more solid basis. Using Maxwell’s equations and boundary con-
ditions associated to perfectly reflecting walls, a rigorous mathematical for-
mulation can be obtained for the modes, it can also be shown that the time
dependence of the amplitude of a given mode is just the equation of an har-
monic oscillator of frequency �.

The quantification of an electromagnetic radiation then becomes an easy
problem since the harmonic oscillator is extensively studied in Quantum
Mechanics. The energy of a harmonic oscillator cannot have arbitrary values
but must have one or another from a set of allowed values given by
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The term 1/2 is the result of a theoretical refinement that will be ignored
here. As a conclusion Planck considered the blackbody as a set of indepen-
dent harmonic oscillators obeying the Boltzmann law, and that the number of
oscillators (modes) with an energy equal to En are proportional to e-En/kT. Per-
forming a simple, although not completely straightforward calculation, Planck
obtained that the average energy of a mode at temperature T is not equal to
the Rayleigh-Jeans value kT, but is equal to

(9.17)

The angle brackets · Ò indicate an averaged value taken over the whole set of
modes. An expression, now called Planck’s formula, is finally obtained for u�:

(9.18)

Rayleigh-Jeans (9.15) and Planck (9.18) formulas coincide, if h� goes to
zero.

9.2.2. Einstein’s Attempt to Establish Planck’s Law

This is an attempt to find a new demonstration of the blackbody formula that
Einstein had introduced, the three basic processes between the radiation and
a sample of material. These processes are now universally known and, respec-
tively, called absorption, spontaneous emission, and stimulated emission. We
would like to emphasize the amazing physical simplicity of the model and
perhaps, even more, the pragmatism of Einstein’s treatment. He started from
the fact that the function F(�/T) should be universal and should not depend
of the kind of blackbody under consideration, not on what is inside the black-
body which can, for example, contain a collection of atoms with two energy
levels. Einstein then studied the energy exchanges between the collection of
atoms and the radiation inside the blackbody and he invented a very simple
model for the interaction.

In a first model only absorption and spontaneous emission is introduced,
the result is a law for the electromagnetic density u� that is not quite identi-
cal with the formula (9.18) obtained by Planck, but can converge to it when
the frequency is high enough. Einstein then concluded that his model was not
completely wrong and could be easily modified to obtain a good result. A third
process, initially called induced emission by Einstein, is thus introduced
beside the two initial ones.

9.2.2.1. Populations of the Energy Levels of an Atom

In the frame of Quantum Mechanics the absorption or emission of light are
associated to a transition between two energy levels. Let us now come back
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to the description of a piece of material as a collection [C] of charged parti-
cles, these particles are first arranged in subsets that, for the sake of sim-
plicity, will be called atoms, although they can be molecules or ions. The
energy of an atom cannot be arbitrary, the atom must have one or another out
of a set of allowed energies, which are called allowed energy levels or allowed
states. A given atom is characterized by a ladder of “allowed levels,” the rungs
of which are not usually equidistant. The lowest state is the fundamental state,
the others are excited states, and they are labeled as Ei. The atoms of [C] are
distributed between the different levels; the number of atoms occupying a
given level is the population of that level.

If Ntotal is the total number of elements of the collection and if Ni is the
population of the level Ei, we have

(9.19)

An atom may make transitions from one level to another. To jump from a
level Ei toward a higher level Ei, an atom must receive energy equal to (Ei -
Ej). On the contrary an atom can drop toward a less excited level and give
the corresponding energy to the surrounding medium. Various processes can
be involved for the exchange of energy, the most common being: absorption
or emission of a photon with a suitable frequency; collision with another atom
of the collection; or collision with the wall of the blackbody.

All transitions are not possible. An atom can occupy any allowed level,
however it cannot jump, or drop, from a given level toward any other level:
Quantum Mechanics establishes accurate rules, called selection rules, which
predict which transitions are allowed or forbidden.

Inside a vessel at temperature T, the atoms of our collection exchange
energy with the surrounding medium and reach a thermal equilibrium gov-
erned by the Maxwell-Boltzmann law according to which the ratio of the pop-
ulations of levels are given by

(9.20)

Order of Magnitude of Equilibrium Populations

As far as optical transitions are concerned the energy difference between the
two levels is of the order of 1.5 eV, at room temperature (300 K) the thermal
agitation energy kT is 25 meV; the argument of the Maxwell-Boltzmann expo-
nential is equal to -60, which means that the ratio of the populations is almost
equal to zero: in other words, all the atoms are located at ground level. The
situation is quite different if the transition belongs to the radio frequency
domain or even to the microwave domain, the energy difference between the
energy levels is then negligible as compared to kT: the equilibrium popula-
tions are practically equal.
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Inversion of Population

By an external action on the collection of atoms it is possible to obtain an
“out of equilibrium situation” where the ratio between the populations is
different from the equilibrium Maxwell-Boltzmann ratio. For example, it is
possible to reach situations where the excited level is more populated than
the ground level, the collection of atoms is then said to contain an inversion

of population.

Relaxation Time of a Transition

Let us now consider a collection of atoms with only two energy levels E0 and
E1, and let N0(0) and N1, respectively, be the populations at time t = 0. The 
collection is brought into contact with a heat tank at temperature T, the pop-
ulations are supposed to be different from values given by (9.20). Energy will
be exchanged between the collection and the heat tank, transitions will occur
between the two levels and, finally, the populations will reach their equilib-
rium values. The experiment shows that the time variation laws of the popu-
lations are exponential and characterized by a time constant t,

(9.21)

where t is called the relaxation time of the transition; t is characteristic of the
transition and of the mechanisms responsible for the exchange of energy.

Radiative Transitions

Relaxation analysis is an interesting, although difficult, part of Physics. Annex
9.A describes the determination of the relaxation time in the case of a radia-
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Figure 9.7. Populations of two energy levels. At thermal equilibrium the ground level
is far more populated than the excited level. An inversion of population is a situation
where the excited level is the most populated.



tive transition. A transition is said to be radiative when the absorbed or
emitted energy is of an electromagnetic kind; it will be described by an elec-
tromagnetic field in the case of a classical analysis or by photons in the case
of a quantum analysis.

Transitions leading to laser action are obviously radiative transitions.

9.2.2.2. Equilibrium of a Collection of Atoms Inside a Blackbody

We consider a blackbody that is at thermal equilibrium at T K and that con-
tains a collection of atoms having two energy levels E0 and E1; we admit that
the atoms can only interact with the radiation with a frequency very close to
the frequency of the atomic transition, �atom = (E1 - E0)/h.

Einstein’s First Model

In a first model Einstein only introduces absorption and spontaneous emis-
sion. The absorption allows the atoms to jump from ground level to the
excited level with a probability which is all the higher as the ground level is
more populated and as the electromagnetic energy density u� is larger: if
dN0,abs and dN1,abs are the respective variations of the populations during time
dt we have

(9.22)

where B is a proportionality coefficient, the minus sign in formula (9.22) only
indicates that the spontaneous emission causes the population N0 to decrease,
while the population N1 increases by the same amount.

Spontaneous emission is introduced to allow the deexcitation of the
excited level, Einstein simply considered that the number of atoms that jump
downward during time dt is proportional to dt and to the population of the
excited level

(9.23)

Equilibrium is reached when upward and downward transitions are bal-
anced and then we have

At equilibrium the populations are supposed to follow the law of Maxwell-
Boltzmann (9.20), an expression is finally obtained for u�,equilibrium:
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where A and B are usually known as the two Einstein coefficients, they have
been introduced as proportionality coefficients, and they can be imposed on
the following relationship:

(9.24)

(9.25)

Although not completely identical, Planck’s formula (9.18) and formula
(9.25) have the same behavior if the frequency goes to infinity. Under such
conditions Einstein came to the conclusion that his model should contain a
part of the reality and that it could be amended to find the right formula.

Einstein’s Second Model

A new interaction mechanism, called stimulated emission, is added; initially
this interaction was called induced emission by Einstein. According to this
interaction atoms may fall from the excited level to the ground level under
the influence of the electromagnetic field. The number of atoms dN1,stimulated

that are deexcited following this process is given by

(9.26)

Taking the three processes into account and expressing the equilibrium,
we obtain

(9.26¢)

If A and B are imposed to follow (9.24) and if we make B = B¢, (9.26¢) is
exactly the same as Planck’s formula. The fact that B = B¢ corresponds to the
fact that absorption and stimulated emission have the same physical origin;
they are called Einstein’s coefficient for stimulated interaction.

A is Einstein’s coefficient for spontaneous effect. A is homogeneous to the
inverse of time, and is the reason why it is also written as

(9.27)

where tradiative is the radiative lifetime of the excited level.

9.2.2.3. Illustration of the Three Einstein Processes

Instead of constituting a new demonstration of the famous Planck formula,
Einstein’s treatment has provided a phenomenological description of the
interaction of an electromagnetic field with a piece of material. The coinci-
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dence of the results of both methods is an excellent proof of the physical
reality of the three basic processes that allow the collection to reach equilib-
rium; of course they still exist for a system out of equilibrium.

The illustration that is given in Figure 9.8 is convenient and often used.
Here again phenomenology plays a more important role than rigor. The inter-
actions are considered as “chemical reactions” between atoms and photons.

During the absorption process, the radiation loses energy: a photon is anni-
hilated. The stimulated emission process creates photons that are indiscern-
able, with the same frequency, the same moment, and the same spin.

Role Played by the Profile of the Atomic Transition

We now consider the interaction of a monochromatic electromagnetic wave
of frequency � with a collection of atoms having two energy levels and a radia-
tive transition of frequency �atom. Let u� be the electromagnetic energy density
created by the presence of the wave. The phenomenological description of
the interaction is governed by the following equations:

(9.28.a)

If the energy levels are infinitely sharp an interaction will take place only
if the two frequencies � and �atom are strictly equal, to be sure that this condi-
tion is fulfilled we must introduce a Dirac distribution d(x) in formula (9.28.a),
where the variable x is related to the frequency � by x = (�/�atom - 1). d(x) is
equal to zero for any value of its argument x, except for x = 0; d(x = 0) is con-
sidered to be infinite and the integral Ú•

0 d(x) dx is by definition equal to one.
Thus equation (9.28.a) is now written as

(9.28.b)
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Figure 9.8. Illustration of the three Einstein basic processes; atom* means excited
atom.



In fact the levels are never infinitely sharp and to any transition is associ-
ated a spectral ray with a specific profile that can easily be obtained from
spectroscopic measurements.

The exact shape of the profile is determined by the physical mechanisms
responsible for the broadening of the ray, it is usually a bell-shaped curve,
which is maximum when � = �atom. It can be described by a curve f(x) and can
be normalized using the condition Ú•

0 f(x) dx = 1. Let us call D�atom the broad-
ness of the ray, if the ray is sharp enough we can write

(9.28.c)

The accurate value of the proportionality coefficient a depends on the
shape of the ray (Gaussian, Lorentzian, . . .) but is always of the order of one.

Finally, the phenomenological equation becomes

(9.28.d)

We now come back to the interaction of a collection of atoms with the
modes of a blackbody. In fact the atoms will interact with all the modes having
a frequency falling inside the frequency band where the function f(x) sig-
nificantly differs from zero. When falling by spontaneous emission from the
excited state to the ground state an atom emits a photon having a frequency
falling inside the ray profile. The probability for a photon of frequency � to be
generated is proportional to the product of f(x) by the mode density as defined
by (9.14).

If the initial values of the populations are different from the Maxwell-
Boltzmann equilibrium values, the system made by the collection of atoms
and the blackbody is not in equilibrium. The return to equilibrium is accom-
panied by atomic transitions and by the emission of light rays that have the
following properties:

• The emission is isotropic, the rays being emitted inside the 4p steradians
of the free space.

• The emitted light is not monochromatic: its spectrum is described by the
function f(x), at least if we consider the mode density to remain roughly
constant inside the frequency band D�atom. The spectral analysis of this
light allows an experimental determination of f(x).

There are many modes of the blackbody which have frequencies falling
inside D�atom. Spontaneous transitions correspond to the term AN1 f(x) of
equation (9.28.d) and produce photons that may be emitted in any of the
modes near enough to the maximum of the profile. Einstein’s spontaneous
coefficient A is the global probability of spontaneous emission for one atom,
during one second, and for a unit volume of the blackbody.
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The case of stimulated emission is quite different from spontaneous emis-
sion, the two photons written on the right-hand side of the chemical reaction
are indiscernible, and they both belong to the same mode of the blackbody,
the special mode that contained the initial photon. The two photons have
exactly the same frequency. The probability that a given photon of frequency
� will induce the creation of a second identical photon is proportional to
u� f(x).

The directions of the momenta of spontaneous photons are at random
inside the 4p steradians of the geometric space: spontaneous emission is
isotropic. The photon produced by stimulated emission has the same momen-
tum as the initial photon. Nothing very general can be said about the polar-
ization of the spontaneous emission, on the contrary the two stimulated
photons have the same polarization (or spin).

9.2.2.4. Using the Number of Photons to Write 

the Phenomenological Equations

It is often convenient to use the number of photons in a mode to write the
phenomenological equations (9.28). Here again a rigorous treatment falls far
beyond the scope of this book and a major role will be played by intuition.
The number n of photons in a mode of frequency � is proportional to the elec-
tromagnetic spectral density u� and equation (9.28.a) can be written as

(9.29.a)

Let us call, respectively, N1,equilibrium, N0,equilibrium, and nequilibrium, the equilibrium
values of the populations and of the number of photons inside a blackbody.
At equilibrium the time derivatives are equal to zero and we can write

(9.29.b)

Using the Maxwell-Boltzmann formula (9.20) we obtain the value of the
number of photons at equilibrium, formula (9.29.c) is also known as the Bose-
Einstein distribution,

(9.29.c)

9.2.2.5. The Three Einstein Processes in a Semiconductor

Of course Einstein had not considered the interaction of photons inside a
semiconductor in 1917; however, the three basic processes (absorption, spon-
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taneous, and stimulated emission) also exist in the case of a semiconductor
material. A semiconductor can be considered as a collection of electrons and
holes, from a statistical point of view the repartition of the holes and elec-
trons between the various allowed energy levels is governed by a Fermi-Dirac
distribution. If a piece of semiconductor is put inside a blackbody, it will be
shown in Annex 9.A that the three basic processes are required to obtain a
Bose-Einstein distribution for the photons and a Fermi-Dirac distribution for
the electrons and holes.

A semiconductor can be considered as a single crystal inside which neg-
ative charges (electrons) and positive charges (holes) are free to move. The
two kinds of charges may give the following reaction:

where
(1) corresponds to electroluminescence and to semiconductor lasers; and
(2) corresponds to the absorption of light by a semiconductor and also to

photoconduction.

The energy, which appears on the right-hand side of this kind of chemi-
cal reaction, may come from light (photons) but also from mechanical 
vibrations propagating along the crystal lattice (phonons). The reaction will
occur:

• if a hole and an electron are simultaneously at the same place inside the
crystal; and

• if energy and momentum conservation conditions are satisfied.

More details will be found in Annex 9.A. The momentum conservation
laws are complicated and need the knowledge of the shape of the energy
bands of the semiconductor, which shape is associated with the fact that the
energy of an allowed level for an electron (or a hole) depends on its momen-
tum, that’s to say, on the wave vector of the associated quantum wave. For a
restricted category of semiconductors, direct band gap semiconductors, the
momentum conservation doesn’t raise any problem, they are the only ones in
which laser action is possible.

The most famous direct band gap semiconductors are gallium arsenide
(GaAs) and indium antimonide (InSb) and also the many ternary compounds
of the same family (GaAlAs, InGaAs, . . .).

Electrons and holes are not really free and are linked to the lattice. The
creation, or the recombination, of an electron-hole pair occurs at the place of
an atom of the lattice. In direct band gap semiconductors the moduli, phole

and pelectron, of the momenta are equal, or almost equal; the conservation 
condition is obtained as soon as the two vectors have opposite directions, a
slight difference can be transferred to the atom. On the contrary, in indirect
band gap semiconductors where phole and pelectron are quite different, a phonon

electron hole   energy.
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is necessary to absorb the difference, the electron-hole recombination is then
written as

The necessary presence of a phonon at the place of the interaction
strongly reduces the probability of the reaction; this is the reason why it is
not possible to obtain laser action in silicon or germanium.

The three interaction processes in a direct band gap semiconductor can
be summarized as:

Absorption: photon Æ electron + hole.
Spontaneous emission: electron + hole Æ photon.
Stimulated emission: electron + hole + photon Æ 2 photons (identical).

9.2.3. Propagation of a Wave in a Two-Levels Material

9.2.3.1. Balance of the Energy Exchanges Between a Wave 

and a Collection of Atoms

Let us consider a coherent light beam made of identical-indiscernible

photons, having the same frequency and momentum. We are now going to
study the interaction of photons with a collection of atoms that have only two
energy levels: we will restrict ourselves to stimulated emissions and absorp-
tions; the spontaneous emissions will be ignored. For interactions to occur,
the light frequency should be close enough to the frequency of the atomic
transition.

If the excited level is less populated than the ground level as, for example,
is the case for thermal equilibrium, the number of absorptions is greater than
the number of stimulated emissions: the number of annihilated photons
exceeds the number of created photons and the intensity of the beam
decreases during propagation. If, on the contrary, a situation has been
achieved where the excited level is the most populated (population inver-
sion), then the intensity increases as the light propagates and an amplifica-
tion is observed: this is the laser effect (light amplification by stimulated
emission of radiation).

electron hole phonon photon.+ + Æ
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Attenuation Amplification

Figure 9.9. Light propagation inside a two-levels material. If the higher level is the
less populated, the number of absorptions is greater than the number of stimulated
emissions: the beam is attenuated. In the case of population inversion, it is just the
opposite and the beam is amplified.



It should be emphasized that if photons were not bosons, amplification of
light would not be possible. It’s because photons are indiscernible particles
and don’t obey the exclusion Pauli principle that it is possible to obtain a great
number of identical photons.

Beer’s law (see Chapter 8 on Index of Refraction) governs the evolution
of the intensity of a light beam propagating in an absorbing or an amplifying
material; we would now like to find an expression of the absorption (or ampli-
fication) coefficient a versus the populations of the levels.

We refer to Figure 9.10 and we suppose that the propagation material is
made of a collection of atoms with two energy levels separated by (E1 - E0)
= h�atom. Let N0 and N1 be the respective populations of the two levels,
expressed in numbers of atoms per unit volume. We describe now the
exchange of energy that occurs inside a slice having a cross section equal to
S and a thickness equal to dz. The difference between the light intensities I(z)
and I(z + dz) at the respective abscissas z and z + dz corresponds to a vari-
ation of the energy stored inside the slice:

It takes time dt = dz/V for the light to cross the slice dz, using the formu-
las (9.22), (9.26) and introducing the absorption ray profile f(�) we have:

• Absorption: Bu�N0 f(�)S dz dt.
• Stimulated emissions: Bu�N1 f(�)S dz dt.

I z I z dz S
dI

dz
S dz( ) - +( )[ ] = - .
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Figure 9.10. Variations of the absorption/attenuation coefficient a versus frequency
for different values of the populations. The absorption coefficient a and the population
inversion (N1 - N0) have opposite signs, a < 0 corresponds to amplification. The
population inversion is maximum when all the atoms occupy the excited level.



When a steady state is reached the populations remain constant; remem-
bering that each transition corresponds to an energy equal to h�atom and that
the intensity I is related to the electromagnetic energy density u� and to the
light speed V by I = u� /V, we have

(9.30)

If we admit that the populations are independent of the abscissa z, (9.30)
is nothing other than a differential expression of Beer’s law:

(9.31)

The variation of the coefficient a versus frequency for different values of
the populations is shown in Figure 9.10; we have a family of bell-shaped
curves, geometrically affine to one another. The profile of the different curves
is described by the same function f(z ). The upper curve, labeled (1), corre-
sponds to the thermal equilibrium; the following curves correspond to a col-
lection of atoms submitted to a pumping process which is all the more intense
as the level of the curve is increased. For the lowest curve a total inversion

of population is achieved: the ground level is empty and all the atoms occupy
the excited level. An interesting case is obtained when the two populations
have been equalized, it is then said that the transition is saturated, and the
coefficient a is equal to zero; the material is thus transparent whatever the
frequency.

9.2.3.2. Lifetime of a Radiative Transition

Let us consider a situation where, by any process, the populations N1(0) and
N0(0) have been given initial values that are different from the thermal equi-
librium values, and let us study how the collection of atoms goes back to equi-
librium. The populations are now functions of time and obey the following
equations:

(9.32.a)

(9.32.b)
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Due to the presence of the product u�(N1 - N0) the solution of equations
(9.32) is not straightforward. We are going to seek situations where simple
solutions can be found.

Let us suppose that the pumping process is not very powerful and that the
collection of atoms remains very near to thermal equilibrium at room tem-
perature. As �atomic is an optical frequency h�atomic is considerably larger that
the thermal agitation energy kT, under such conditions we have the follow-
ing order of magnitude:

where u� can be omitted and we obtain

The populations exponentially recover their equilibrium values so that, in
the case of an optical transition, they are, respectively, equal to N0 � Ntotal and
N1 � 0. The time constant is equal to the inverse of the Einstein coefficient
for spontaneous emission,

(9.33)

9.2.4. Saturation of a Transition

A pumping light beam of the same frequency as the atomic transition sud-
denly illuminates a collection C of atoms initially at thermal equilibrium at
room temperature T. At time t = 0 the electromagnetic density suddenly jumps
from its equilibrium value u�,equilibrium to some other value u� which is all the
larger as the pumping is more intense. For the sake of simplification we will
suppose that the thickness of the collection is small enough for the beam not
to be substantially attenuated during the crossing of C; as a consequence, u�

may be considered as having the same value at any point of the collection.
The evolution of the populations is still governed by equation (9.32.b); 

in the beginning, the populations have their thermal equilibrium values, 
N1,equilibrium and N0,equilibrium. Let us introduce a time constant q = 1/(A + Bu�),
the evolution of the populations is given by
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A steady state is reached where the populations are given by

(9.34)

In the case of a powerful pumping beam, A is small compared to Bu�

and the two levels become equally populated, the common value of the two
populations being equal to half of the total number of elements of the col-
lection of atoms: it is then said that the transition has been saturated.

It was for the sake of simplicity that the beam intensity had been supposed
to remain constant during the crossing of the collection of atoms; if this is not
the case the results are slightly different. During the first moments of the inter-
action the beam is attenuated, the energy being absorbed to make transitions
that populate the excited level; as soon as the populations are equal, the mate-
rial becomes transparent: the numbers of upward and downward transitions
being equal. In fact the transmitted intensity is a little smaller than the 
incident intensity because of spontaneous transitions that emit light in all
directions.

9.2.5. Optical Pumping

A sample is submitted to an electromagnetic pumping process when the pop-
ulations of its energy levels are modified because of the interaction with an
electromagnetic wave having a well-chosen frequency. We have just seen that
an intense and resonant optical pumping can, at most, equalize the popula-
tion of two levels, however it can never produce an inversion of population.

N N
Bu

A Bu

N
1,steady total

totalintense pumping=
+

æ Æææææ�

�2 2
.

N N
A Bu

A Bu

N
1,steady total

totalintense pumping=
+
+

æ Æææææ�

�2 2
,

9.2. Optical Amplification 405

Iin
Iout

Iout/Iin

Time

Spontaneous emission 

Collection of atoms 

Figure 9.11. Saturation of a transition by optical pumping by an intense resonant
light beam propagating inside a collection of atoms. After a transient state, during
which the populations become equal, the material becomes transparent. The
transmitted beam is in fact a little less intense than the incident beam due to the energy
which is disseminated in the 4p steradian by spontaneous emission.



9.2.5.1. Three-Levels Pumping Scheme

In the arrangement shown in Figure 9.12 the atoms have three energy levels
E0, E1, and E2; the pumping is resonant for the transition between the ground
level E0 and the most excited level E2. If the pumping power is sufficient, the
respective steady state values, N0,steady and N2,steady, are equal. The intermedi-
ate level is not concerned by the pumping and keeps a constant population.
Finally, we can write

If the intermediate level is closer to the upper level than to the ground
level, N2,steady < N1,equilibrium and an inversion of population is created between
the levels E1 and E2. If, on the contrary, the intermediate level is closer to the
ground level, this last level is depopulated and an inversion of population now
exists between E1 and E0.

9.2.5.2. Achieving Pumping at Optical Frequencies

To achieve pumping according to the schemes that are proposed in Figure
9.12 we need a monochromatic pumping source with a frequency equal to the
frequency of the transition between the two extreme levels.

N N
N N

0,steady 2,steady
0,equilibrium 2,equilibrium= =

+
2

.
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Figure 9.12. Three-levels pumping scheme. Optical pumping is resonant for the
upper and lower levels and doesn’t concern the intermediate level. According to the
position of the intermediate level, an inversion of population (IP) is obtained either
between the upper and intermediate levels or between the intermediate and ground
levels.



The three-levels pumping schemes were initially invented for radio or
microwave devices where, thanks to frequency tunable oscillators, it is 
possible to concentrate an important power inside a narrow spectral band. 
In Optics, before the invention of lasers, powerful enough sources did not exist
and the three-levels scheme was not possible; this is the reason why it is neces-
sary to select atoms for which the upper narrow level is replaced by an absorp-
tion band (see Figure 9.13). The pumping scheme is slightly different because
the sublevels of a band usually have a very short lifetime and cannot accumu-
late atoms; very often this band is efficiently coupled to an intermediate level on
which atoms will accumulate and, if the radiative lifetime tradiative is long enough,
will create an inversion with regard to the ground level.

The existence of an absorption band relaxes the necessity of a mono-
chromatic pumping source and a white source can, in principle, be used; 
referring to Figure 9.13 it is seen that the useful part of the white spectrum is
between the two frequencies �Max and �min. The first laser (ruby) was pumped
by a flashtube designed for phototographic purposes.

Four-Levels Pumping Scheme

The previous method can be improved by using atoms that have a fourth
energy level, which is denoted as E1 on the left-hand diagram of Figure 9.13,
the choice of this level obeys the following principles:

• The energy gap (E1 - E0) being much larger than kT, the level is almost
empty at equilibrium.

• The lifetime is short, so that atoms cannot accumulate population so the
level remains empty.

In the three-levels method, at least one-half of the atoms should have been
transferred to the upper intermediate level E2 before reaching population
inversion. This is not the case with the four-levels scheme since the first atom
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Figure 9.13. Pumping schemes using an absorption band. A fast transition occurs
between the absorption band and the upper intermediate state which has a long
lifetime in which the atoms accumulate. The left-hand diagram has four levels; the
lower intermediate level has a very short lifetime and so is almost always empty, which
makes it easier to obtain an inversion of population.



to arrive at level E2 creates an inversion of population with regard with the
lower intermediate level. The thresholds are considerably lower in the case
of four-level lasers than in the case of three-level lasers.

Orders of Magnitude

Optical pumping is not the only method for obtaining inversions of popula-
tion; it is mostly used in the case of lasers where the active medium is dense
enough (solid or, more seldom, liquid) to allow an efficient coupling with the
pumping source. The collection of atoms, in fact it will often be ions, is con-
tained as impurities inside a crystalline lattice.

In the case of ruby the active elements to obtain a laser effect (wavelength
0.6943mm) are chromium ions (Cr3+) inserted into a sapphire lattice (Al2O3).
Neodymium ions are in common use, inserted in a glass or in a crystalline
matrix (YAG (Yttrium Aluminum Garnet) being very favorable), they provide
a four-levels energy diagram and emit a laser light at 1.06mm. In both cases
the doping concentration is around 1019 to 1020 ions per cubic centimeter.

The radiative lifetime of the upper lever of a laser transition is an impor-
tant parameter; it must be long enough to allow an accumulation of popula-
tion; in other words, the transition should not be fully allowed, such a level
is said to be metastable (in ancient Greek, meta = almost). According to
formula (9.31) the gain per unit length is proportional to the inverse of the
lifetime, which means that it should not be too long. Finally, a compromise
has to be found, typical lifetimes for solid-state laser materials are of the order
of milliseconds (3 ms for ruby; 200 to 800 ms, according to the host matrix,
for neodymium ions).

For some special lasers, semiconductor lasers and dye lasers, for example,
where very efficient pumping processes exist, fully allowed transitions can be
used; extremely high gains are then obtained and the laser oscillation thresh-
old is reached even with extremely thin pieces of material (tens to hundreds
of micrometers).

Transitions from the upper band, as well as transitions from the lower
intermediate state in the case of four levels, are associated to the creation or
annihilation of phonons in the crystalline lattice, they are very fast (relaxation
times are of the order of picoseconds).

9.2.5.3. Atomic Clocks

Cesium atomic clock: Atomic clocks are devices that deliver a periodic signal
with a well-defined frequency and an extreme spectral purity. They are also 
a didactic illustration of electromagnetic pumping at various frequencies
(optical and microwave). In the cesium atomic clock the frequency of a micro-
wave oscillator, thanks to an appropriate signal processing, is tuned to be
in exact coincidence with the frequency of a hyperfine transition which is 
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known to a high accuracy and is equal to 9,192,631,830Hz. Figure 9.15 shows
some of the energy levels of the atom of cesium that are necessary to under-
stand the way the clock is working. As with any alkaline atom cesium has
only one peripheral electron, the energy of the atom is different whether the
spin of this electron is parallel or antiparallel to the spin of the nucleus. 
The energy difference is rather small and the associated frequency belongs to
the microwave domain. An interesting consequence is that excited and nonex-
cited atoms don’t behave in the same way when they propagate in an inho-
mogeneous static magnetic field. This property, which allows sorting one
category of atoms from another, was established for the first time in a famous
experiment made in 1922 by Stern and Guerlach, and gives a demonstration
of the existence of the quantization of the momentum and of the existence of
the spin. The experiment is well described in Lectures on Physics by Richard
Feynman.

In the arrangement of Figure 9.14, an atomic beam of excited and non-
excited cesium atoms is emitted through the hole O of an oven containing a 
piece of cesium. The energy difference between the two levels of the hyper-
fine transition is very small and negligible as compared to the thermal agita-
tion energy kT and, according to the Maxwell-Boltzmann law, the initial
atomic beam contains the same number of the two categories of atoms.

During its propagation from O to D, the beam will cross three different
regions (1), (2), and (3):
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Figure 9.14. Cesium atomic clock. An atomic beam of cesium atoms is emitted from
a heated furnace. The detector of atoms receives atoms if, and only if, the microwave
signal frequency exactly coincides with the frequency of a transition of the cesium

atoms. The main role of the microwave cavity is to enhance, thanks to a stationary
pattern, the electromagnetic energy density of the microwave signal that pumps the
collection of cesium atoms and equalizes the populations. The atomic beam must
propagate in a high vacuum.



• In region (2) the static magnetic field is constant and equal to zero. Point
C is inside a microwave resonator, which is excited by antenna at the exact
frequency of the atomic transition.

• In region (1) the magnetic field is inhomogeneous with a repartition that
has been designed in such a way that the excited atoms issued from O are
focused at point C and that the ground state atoms are repelled from the
ACD axis and that very few of them will reach point C.

• In region (3) the field repartition is almost the same, except that the
excited atoms are now repelled from the axis, while the ground state
atoms are focused onto the detector of atoms D which gives an electric
output signal when hit by atoms.

When penetrating into the resonator the atomic beam contains a total
inversion of population. If no microwave signal is sent into the resonator, the
inversion of population remains and the gradient magnetic field in (3) will
spread the atomic beam so that almost no atoms will reach the detector. If,
on the contrary, the resonator is excited at a frequency equal to the atomic
transition frequency, the atomic beam is submitted to a resonant pumping
which equalizes the populations of the two levels and repopulates the ground
level so that one-half of the initial atoms now reach the detector. The signal
given by the detector is maximized when the microwave oscillator has a fre-
quency just equal to that of the atomic transition. The microwave oscillator
of Figure 9.14 is electrically controlled in such a way that its frequency is per-
manently equal to the atomic transition frequency. An elective signal is pro-
vided by a signal processor receiving an error signal from the atom detector.

The cesium atomic clock is an illustration of the fact that a two-levels
pumping scheme cannot give population inversion; in this case, the excited
level is partially depopulated by the pumping.
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Figure 9.15. Cesium atoms levels and populations. Atoms arriving at point C are all
excited. A resonant microwave pumping equalizes the populations of the hyperfine
levels. �1 and �2 are optical frequencies and constitute the famous alkaline optical
doublet.



Rubidium Atomic Clock

In a rubidium clock advantage is taken from the fact that there are two iso-
topic kinds of rubidium atoms. The energy levels of rubidium atoms are
described in Figure 9.16. Rb 85 atoms have no nuclear spin and, consequently,
don’t have any hyperfine structure; on the contrary, Rb 87 atoms do have such
a structure. A collection of Rb 87 atoms can emit or absorb an optical doublet
of frequencies �1 and �2; a collection of Rb 85 can only emit or absorb the fre-
quency �2. The lifetimes of the hyperfine levels are very long (seconds) and
mostly determined by the collisions with the walls of the cell, that’s to say, by
the pressure of the vapor. The optical transitions from the upper toward the
hyperfine levels are fully allowed and correspond to a lifetime of the order of
a few nanoseconds. Atoms, when they fall from the upper level, have about
exactly the same probability to go to one of the hyperfine levels or to any
other. At thermal equilibrium, and in the absence of any pumping, the two
hyperfine levels have equal populations while the upper level is almost empty.

We refer to Figure 9.16. The lamp, which is filled with Rb 87 vapor, is a
light source emitting the doublet (�1, �2). A passive cell C1 filled with Rb 85
vapor acts as a filter blocking �1 and transmitting �2. A second passive cell C2,
filled with Rb 87 vapor, is placed inside a microwave resonator tuned at the
�3 frequency of the hyperfine transition.
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when the microwave frequency is exactly equal to the hyperfine frequency of the
rubidium atoms.



At first we suppose that the microwave oscillator has been switched off:
the atoms of cell C2 are only submitted to an optical pumping at �2 which tries
to make the populations of the upper level E2 and of the ground level E0 equal,
in fact the atoms are trapped by the intermediate level E1 on which all 
the atoms are stored. At the start of pumping, cell C2 is absorbing and then
becomes fully transparent at the end of a transient regime, since the ground
level is now empty.

The microwave oscillator is now switched on and the collection is simul-
taneously pumped at �2 and �3. The difference from the previous case is that
the pumping at �3 repopulates the ground level, making cell C2 absorbing again
at the optical frequency �2: the photodetector becomes aware of any differ-
ence occurring between the microwave and the hyperfine frequencies and
elaborates an error signal to make the necessary correction.

9.3. How to Obtain an Inversion of Population

9.3.1. Optical Pumping

It has been seen in the previous sections how inversions of population could
be obtained using optical pumping. This method is convenient mostly for
dense laser materials (solids or liquids) so that the pumping light is efficiently
absorbed. Referring to Figure 9.13 it is seen that in the case of a three-levels
scheme the pump should be able to raise at least one-half of the total number
of atoms to the upper laser level in a time shorter than its lifetime (typical
value 10-3 s). The number of laser active centers is typically of 1019/cm3, the
energy of a transition is of the order of 1 eV; thus the energy to bring this
about is 1 J/cm3 corresponding to a power of 1kW/cm3. If the pumping light
source is a type of blackbody, and thus is not monochromatic at all, a large
fraction of its power falls outside the absorption band of the laser material:
only pulsed sources can be used. Flash tubes are able to emit kilowatt pulses
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lasting a few milliseconds. With a four-levels scheme the required pumping
power is lower by one order of magnitude and a continuous laser emission
can be obtained using tungsten-halogen lamps.

There are two main reasons for the poor efficiency of optical pumping:

• The first and most important reason is the mismatch between the emis-
sion spectrum of the lamp and the absorption spectrum of the material.

• The second reason is a bad coupling of the pump with the laser rod.

The use of semiconductor lasers as pumping sources for solid-state lasers
has been an important improvement. First of all, semiconductor lasers have
an excellent efficiency for converting into light the energy coming from their
electrical supply. Second, they produce a monochromatic light which can be
chosen to coincide with the frequency of the absorption band. Finally, their
light is spatially coherent and can be sharply focused inside a small volume.

9.3.2. Pumping of Semiconductor Lasers

Let us consider a sample of a semiconductor material at thermal equilibrium
in darkness and at a temperature T; let N electron

equilibrium and Nhole
equilibrium be the density

of free carriers, the product of these two densities is a constant K(T) which
is determined by the material and the temperature:

In a semiconductor at equilibrium the number of free carriers is small, the
material is very absorbing for light: each photon propagating in the semicon-
ductor has a high probability of being absorbed thus creating an electron-hole
pair. Let us suppose that, by any means, we have been able to change the
carrier’s densities and to give them values that are large enough so that their
product is larger than K(T); and let us suppose that the semiconductor sample
is kept in darkness and in contact with a thermostat at temperature T: elec-
tron-hole recombination will occur until the product is again equal to K(T).
Had the product been smaller than K(T), electron-hole pairs would have been
created. . . . The relaxation time, which is characteristic of this returning to
equilibrium, is called the radiative recombination time. In a direct band gap
semiconductor this time is of the same order of magnitude as the lifetime of
a fully allowed radiative transition, i.e., nanoseconds.

The following three interaction processes are introduced:

• Absorption: photon Æ electron + hole.
• Spontaneous emission: electron + hole Æ photon.
• Stimulated emission: electron + hole + photon Æ 2 photons 

(indiscernible).

The two photons on the right-hand side of the stimulated emission reac-
tion are indiscernible and they open the door to a potential optical amplifi-

N N K Telectron
equilibrium

electron
equilibrium = ( ).
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cation. When the product of the two carrier densities is greater than K(T) a
photon has more chance of stimulating the creation of a second identical
photon rather than be annihilated; the situation is very similar to a popula-
tion inversion: the semiconductor sample then behaves as an optical ampli-
fier for a light signal having a frequency higher than DE/h, where DE is the
semiconductor band gap,

(9.35)

To obtain the situation described by equation (9.35) we can use optical
pumping and create numerous electron-hole pairs by lighting the piece of
semiconductor with a light wave having a frequency higher than DE/h. A bom-
bardment by electrons of suitable energy (cathodoluminescence) can also be
used. The two previous methods are interesting and have been experimen-
tally demonstrated, however most of the semiconductor lasers use forward
biased PN junctions. Positive holes coming from the P doped region, and neg-
ative electrons coming from the N doped region, are massively injected into
the junction; playing with the current allows us to give a high value to the
product NelectronNhole.

Figure 9.18(a) shows a very simple laser diode; real devices are far more
complicated and require sophisticated techniques of epitaxy. The emitting
area has the shape of a narrow and horizontal rectangle; because of diffrac-
tion the angle of divergence is much larger along the vertical direction (40°)
than along the horizontal direction (10°).

Figure 9.18(b) shows a more realistic device, it is a gallium-arsenide diode.
The junction is sandwiched between two layers made of an alloy, Ga1-xAlxAs,
where some atoms of gallium are replaced by aluminum; the refractive index

N N N N K Telectron hole electron
equilibrium

electron
equilibrium> = ( ).
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Figure 9.18. (a) represents an oversimplified laser diode. The purpose of the more
realistic scheme of (b) is to confine the electric current by a control of the conductivity
and to confine the light by a suitable refractive index repartition.



of the PN junction is higher than the indices of the two layers and so the junc-
tion is a kind of optical guide which traps the light in the region where there
is a large excess of electrons and holes. To obtain laser action, high current
densities are required (kA/cm2); in order to limit the total current to an 
acceptable value (mA) the repartition of the electrical conductivity 
is designed in such a way that the current is confined to the region of the 
wave guide.

9.3.3. Gas Laser Pumping

9.3.3.1. Principle

In the case of a gas laser the collection of atoms (it may be ions or molecules
as well) in which the laser effect is to occur is a gas; the modification of the
populations of the levels is created by an electrical discharge between two
electrodes immersed in the gas.

In a gas discharge electrons are emitted from a cathode and travel to the
anode, meanwhile they collide with the different components of the gas
mixture with which they exchange energy. By a proper choice of the physical
condition of the discharge (partial pressure of the different components,
current, and voltage, . . .) it is possible to tune the mean energy that is given
to an atom after each collision and so to selectively populate specified energy
levels, putting them in a situation of population inversion with regard to the
lower levels. If the gas discharge is placed inside a Perot-Fabry resonator a
laser emission is possible at a transition frequency of the atoms. Very often a
device such as the one shown in Figure 9.19 is able to produce laser rays 
of different frequencies according to the spectral zone for which the mirrors
are designed. Typical lasers of that kind are CO2 and argon lasers.
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voltage) the atom-electron collisions will selectively populate specified levels.



9.3.3.2. Helium-Neon Laser

In He-Ne lasers the laser transition occurs on a transition of the neon atoms, the
helium atoms allow a selective population of certain levels of neon atoms. The
gas mixture contains 90% helium and 10% neon with a total pressure of one mil-
limeter of mercury. The electric discharge is set (few milliamps, 1000 V) so that
the atoms are not ionized. The selective population of the S levels of neon atoms
is a consequence of the possibility of resonant collisions. We consider that A
and B are atoms having energy levels each having almost equal distance, in their
excited state they are labeled C and B*; it’s a well-known Quantum Mechanics
exercise to study the collision between excited atom A* with atom B at the
ground level: the probability is then very high that after the collision atom A is
deexcited while B becomes excited (see Figure 9.20).

The energy level diagram of Figure 9.20 shows that the 2S levels of helium
are at the same distance from the ground level as the 3S levels of neon, making
possible resonant collisions between the two families of atoms. The S levels
have relatively long lifetimes (microseconds) and become populated, reso-
nant collisions then selectively populate the corresponding levels of neon,
which become overpopulated with regard to the P levels. As the energy
diagram of neon is quite rich, several laser transitions are possible, the most
famous being the red one at 0.6328mm.

9.3.4. Chemical Lasers

The products of a chemical reaction are often obtained in an excited state,
the reaction is then followed by a second step during which the products go
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Figure 9.20. Energy level diagram of helium and neon atoms. Being neighbors in the
Mendéleiev chart the two atoms have certain levels that are in good agreement. 
The existence of a greater number of levels and sublevels in the case of neon is due
to the fact that this atom has more electrons (ten instead of two).



back to the ground level and emit light, most chemical reactions used for light-
ing purposes belong to this type (a candle for example). Figure 9.21 describes
some chemical reaction between two gaseous reactants A and BC, C is pro-
duced in an excited state and an inversion of population is immediately
obtained. If the deexcitation of C occurs spontaneously light is emitted in the
4p steradian, if the reaction occurs inside a Perot-Fabry resonator stimulated
emission can predominate and a laser is emitted. Chemical energy can be
stored with a high volume density, this is the reason why chemical lasers are
potentially very powerful and easily transportable.

9.4. The Fabry-Perot Resonator

9.4.1. The Fabry-Perot Resonator Was Ignored for too Long

It was the French physicists Boullouch and Fabry who, at the beginning of
the twentieth century, discovered the fascinating optical properties of the
arrangement of two facing parallel mirrors with excellent accuracy. For many
years this arrangement was universally known as the Fabry-Perot (FP) res-
onator and was exclusively used for spectroscopic applications since it is a
very dispersive and very luminous device. For a long time after that the FP
resonator was considered as an electromagnetic resonator very analog with
the resonant circuits used in radio or with microwave resonators. In Section
6.4 we have studied the FP resonator as a multiple wave interferential device,
we are now going to use a new approach very near to radio and microwave
methods.

9.4.2. Transient State of a Fabry-Perot Resonator

The FP resonator of Figure 9.22 is made of two planes and two parallel mirrors
separated by a distance d. A planar monochromatic wave R0, with its wave
vector parallel to the axis of the FP resonator, arrives at mirror M1 on which
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Figure 9.21. Obtaining a population inversion from a chemical reaction. The
chemical reaction A + BC Æ AB + C* produces the compound C in an excited state
and is followed by a second reaction C* Æ C + photon or C* + photon Æ C + 2 photons.



a transmitted wave R1 and a reflected wave L0 are generated. The wave R1

propagates toward the right and arrives at the second mirror where a reflected
wave L1 and a transmitted wave R2 are generated. There is no reason to intro-
duce a wave L2 since the half-space located after the second mirror extends
to infinity.

We suppose that the FP resonator is initially empty of any electromagnetic
energy and we take, as the time origin, the instant when wave R0 just arrives
at the first mirror. Waves R1 and L1 go back and forth between the two mirrors
and their amplitudes reach constant values, this situation being obtained
when the energy brought each second by R0 is equal to the sum of the ener-
gies, respectively, transmitted and reflected by R2 and L0. Figure 9.22 describes
an intuitive shape of the variation versus time of the intensities of the differ-
ent waves L0, L1, R1, and R2. These intensities increase step by step, each step
having a duration equal to the time tRT = 2d/c necessary for the light to make
a double passage in the resonator. The following formulas, which give the time
variations of the intensities, will be justified in the next section:

(9.36)

where tres is a time constant which is characteristic of the resonator and which
depends on tRT, see (9.37).

Energy Storage Inside a Fabry-Perot Resonator

After a time, which is theoretically very long but which is in fact of the order
of a few times tres, according to formulas (9.36) a steady state is reached where
|Ri|2 and |Li|2 are constant. This steady state, which will be studied in Section
9.4.3, is the result of constructive interference of the waves L1 and R1 and cor-
responds to the storage of electromagnetic energy inside the resonator; the
accumulation of energy occurs during the transient state.
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Figure 9.22. Transient state of an FP resonator. tRT = 2d/c is the time to make a round
trip between the two mirrors. Li and Ri are, respectively, waves propagating toward
the left or the right side.



Lifetime t¢res of the Energy Inside the Resonator

Once the steady state has been obtained, the incident wave R0 is suddenly
switched off; the waves L1 and R1 keep oscillating between the two mirrors,
each time they hit a mirror they lose some energy which is transmitted outside
the mirrors. Let us follow the successive reflections of one of these waves; if
at time t its intensity is equal to some value I(t), at time (t + tRT) this inten-
sity has decreased and is equal to r1r2I(t) (r1 and r2 are the respective reflec-
tion coefficients of the two mirrors), since during a round trip the wave is
reflected once from each mirror

The energy still stored in the resonator at time t is proportional to the
intensity of the wave, so we can write

(9.37)

where t ¢res is the lifetime of the wave inside the resonator, the physical
processes involved in emptying the resonator are identical to those involved
in filling it with energy and thus we will consider that t ¢res = tres. The lifetime
increases with the reflection coefficients and becomes infinite when the two
coefficients are equal to unity.

In the case of two mirrors separated by one meter and having reflection
coefficients such that r1r2 = 1, we have tRT = 6.7 ns and tres = 134 ns.

9.4.3. DC Behavior of a Fabry-Perot Resonator

We go back to Figure 9.22, we suppose that a steady state has been reached
and we would like to describe it. We then have to find an electromagnetic field
fulfilling Maxwell’s equations and the boundary conditions on the mirrors. As
we deal with plane, parallel and infinitely extended mirrors, the problem is
simplified; we can choose planar waves for Li and Ri:

where Li and Ri are the respective complex amplitudes at z = 0 on the first
mirror.
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The boundary conditions are expressed by the following set of equations:

(9.38.a)

(9.38.b)

where ti and ri are the transmission and reflection of the mirrors for the
amplitude of the waves, in the case of nonabsorbing mirrors we have |ti|2 +
|ri|2 = 1. We had previously introduced reflection coefficients, ri, for the inten-
sities, we simply have ri = |ri|2. If we consider that the amplitude R0 of the
incident wave is given, the problem has four unknown L0, L1, R1, and R2 that
can be obtained from the four equations (9.38), we obtain

(9.39.a)

with

(9.39.b)

where A(f) is the same function that was introduced when studying the FP
resonator in Chapter 6 on interference, see formula (6.17). f is the phase dif-
ference corresponding to a return journey between the mirrors and is pro-
portional to the frequency. The graph of A(f) is a succession of sharp maxima,
which are all the sharper as r1r2 is closer to unity. The conditions for obtain-
ing a maximum correspond to a resonance inside the resonator and are illus-
trated in Figure 9.23.
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Figure 9.23. Illustration of the resonance condition of an FP resonator.



Let lp, �p, and Tp, respectively, be the wavelength, frequency, and period
of an incident wave R0 that fulfills the resonance condition: if tRT is a multi-
ple of the period, the different waves are still in phase after a round trip and
interfere constructively.

If the mirrors are covered with a metallic layer the phase shift at reflec-
tion is equal to p, the electric field is equal to zero on them; a node of the sta-
tionary wave pattern is located on each mirror. The separation between the
mirrors is an integer number of half-wavelengths. In the case of dielectric
layers, the phase shifts at reflection, y1 and y2, are not equal to p, so we have

usually the first term in parentheses is considerably larger than the second one.
Between the two mirrors, stationary waves are found with fixed minima

(nodes) and maxima (antinodes) where the electric and magnetic fields may
be considerably reinforced. If a piece of material is placed between the
mirrors the electric dipolar interactions are considerably enhanced at the
place of the antinodes of the electric field: at these antinodes the amplitude
of the fields is equal to the amplitude of the incident wave R0 multiplied by
the quality coefficient Q.

The Fabry-Perot Resonator Is Well Adapted to Optics

The previous considerations apply whatever the frequency. They are valid in
the radio or microwave domains, however, in these two cases, theoretical and
practical difficulties arise; on the one hand, the wavelengths, being larger than
in Optics, cannot be considered to be small as compared to the transversal
size of the mirrors and planar waves are not suitable solutions. On the other
hand, it’s more difficult to make good reflectors with the same quality as in
Optics.

Vacuum deposition techniques allow the deposition of reflecting coatings
almost perfectly transparent for optical waves. Thanks to lasers the technol-
ogy of thin layer deposition has been greatly improved, and any correspond-
ing methods are carefully protected, if they are not military secrets. Given the
high values of the power involved in laser beams a low value of the absorp-
tion coefficient is essential for a laser mirror.

9.4.4. The Role of Diffraction

When the transversal dimensions of the mirrors are not large enough to be
considered as infinite, planar waves don’t describe accurately the electro-
magnetic solution of the problem of a resonator made of two parallel mirrors.
The exact solution resembles a planar wave that would be limited by a
diaphragm, Figure 9.24 illustrates the reason why higher losses are found in
the case of transversally limited mirrors: the light reflected by one mirror

d
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covers an area which is a little larger than the reflecting zone of the other
mirror; even if its coatings are perfectly reflecting, the second mirror sends
back an energy which is smaller than the incident energy. It can be shown
that the diffraction losses are substantially decreased if the planar mirrors 
are replaced by spherical mirrors. Before the invention of lasers the French
physicist P. Cohnes used spherical mirrors to improve the resolution of FP
spectrometers. The eigenmodes of spherical resonators are made of spheri-
cal waves, instead of planar waves. The adjustment of a spherical FP res-
onator is easier than the adjustment of a planar FP resonator since the
parallelism of the mirrors is less critical.

The theoretical description of a resonator with noninfinitely extended
mirrors is not simple. We must first find special waves which will reproduce
identically, reflection after reflection, on the two mirrors. Let us consider a
given wave leaving mirror M1 of Figure 9.24 and going toward mirror M2, and
let be the expression of its complex amplitude on the mirror
M1. Using Huygens’ wavelets, we can, in principle, calculate the figure of dif-
fraction that is created on the other mirror and obtain the repartition of the
complex amplitudes along M2, say . To calculate the wave that
is reflected by M2, P¢1 is then multiplied by a complex factor r2(x,y), which varies
with the coordinates according to the following law: r2(x,y) is constant inside
the mirror and is equal to zero outside.

We obtain a new repartition of the complex amplitudes along mirror M2,
, from which is obtained, using the same method, the

repartition of complex amplitudes, P¢2, created on M1 by the reflected wave.
P¢2 is multiplied by a reflection coefficient r1(x,y) equal to zero outside 
mirror M1 and the new figure of diffraction is now calculated after two 
reflections.

The iteration may be continued indefinitely; we obtain the expression 
of the wave after a number l of reflections, knowing its expression after 
l - 1 previous reflections. The calculations are of course not straightfor-
ward, but the result can be considered rather simple: if the initial 
function, , is selected from a special set of functions

, called the eigenmodes of the resonator, then Pl is simply propor-
tional to Pl-1,
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M1 M2
Figure 9.24. Diffraction losses. Because of
diffraction, part of the light coming from one
mirror covers an area which is larger than the
reflecting part of the other mirror and is only
partially reflected.



where Dm,n
(x,y) and fm,n

(x,y) are specific to the resonator under consideration: size of
the mirrors, distance between them, radius of curvature if they are spherical;
m and n are integers.

The case of planar mirrors of infinite transverse extension is degenerated

corresponding to planar waves: Dmn
(x,y) and fmn

(x,y) are independent of m and n as
well as of the coordinates x and y, the coefficient K of formula (9.41) is equal
to the product of reflection coefficients of the mirrors. In the case of perfectly
reflecting mirrors of limited extension, the modulus of K is smaller than one
because of the diffraction losses.

Coming back to the general cases, the eigenmodes make a family with two
degrees of freedom associated to the two indices m and n. The usual form of
Dmn

(x,y)e
jfmn

(x,y) is given by

(9.42)

It is the term e-(x2+y2)/w2
that really describes the effect of the limited size of

the mirrors. The modes are Gaussian beams, their waist, w, is of the order of
the diameter of the mirrors. Hmn

(x,y) is a real function, typical patterns are shown
in Figure 9.25. The mode labeled (0, 0) is called the principal mode, H 00

(x,y) and
f00

(x,y) are independent of x and y; this mode looks very much like a planar
wave. Modes for which (m,n) π (0,0) are called transverse modes, the elec-
tromagnetic energy is confined in smaller spots inside which the phase is con-
stant but varies from one spot to the next. The coefficient K of formula (9.41)
diminishes rapidly with increasing values of m and n, since the diffraction
losses increase when the size of the spot decreases.

In most cases a laser will emit on the fundamental mode of its resonator,
which has the smaller losses. It may happen accidentally that the laser emis-
sion occurs on a transverse mode, the emission patterns are very esthetic and
coincide with the patterns of Figure 9.25, the corresponding laser beams are
more divergent because of diffraction. In commercial lasers the transverse
modes are carefully avoided.
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Figure 9.25. Principal and transverse modes of an FP resonator. In the left-hand
diagram, a line with a height proportional to the quality coefficient represents each
mode. The frequency difference between two adjacent principal modes is equal to the
inverse of the round trip time. The diagram is not to scale since the frequencies of the
transverse modes are closer.



9.4.5. The Comb of Modes, Orders of Magnitude

The eigenmodes that have been introduced in the previous sections should
be considered as original and independent physical objects, which can be
excited independently. From a mathematical point of view, this corresponds
to the fact that they are described by orthogonal functions.

The frequency of a mode involves three indices, mnp, two of them, m and
n, have been introduced in formula (9.42), the third one, p, is associated with
the standing wave pattern and is related to formula (9.40) and is equal to the
number of antinodes between the mirrors, see Figure 9.23. The frequency
repartition of the modes is given in Figure 9.25; if we just consider the prin-
cipal modes the diagram looks like a comb, since the frequency difference
between two adjacent principal modes is constant and is equal to 1/tRT. Except
for semiconductor lasers, which are very short, the length of a laser resonator
ranging from centimeters to meters is considerably larger than an optical
wavelength and p goes from 104 to 106.

In a 1 m length resonator the return time is tRT = 2d/c = 6.7 ns and the fre-
quency between adjacent modes is (�p+1 - �p) = 150 MHz. An optical frequency
being of about 1014, it is seen than the different principal modes are very close.

The determination of the frequencies of the transverse modes requires
knowledge of the functions fmn; the distance between two adjacent transverse
modes is typically 10 MHz.

Quality Coefficient of a Mode

As for any resonant element it is interesting to evaluate the bandwidth and
the quality coefficient Q of a mode. To do so we must first evaluate the losses;
if we ignore the diffraction losses and just take into account the reflection
losses, it is sufficient to know the reflection coefficients of the mirrors, r1 and
r2. The same kind of calculation has already been made in Section 6.4.2. The
quality coefficient of a 1 m long resonator, using mirrors for which
r1r2 = 0.95, is about 109 and the bandwidth is about 1 MHz.

9.4.6. How to Undamp a Fabry-Perot Resonator: Laser Effect

In the presence of a weakly damped circuit, the instinctive reaction of
someone who is familiar with radio frequency is to try to use it to make an
autooscillator. The next requirement is the need for an amplifier working at
the right frequency, and to consider an FP resonator filled with a medium like
the one studied in Section 9.2.3 and then let us use the methods of Section
9.4.3. We again write the set of equations (9.38), but now the wave vector of
L1 and R1 is a complex number, k = k¢ - jk≤:

R R e e G G e ei i
k z j t k z
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We obtain formulas identical to (9.39) where A(f) = 1/(1 - r1r2e
-jf) is

replaced by

(9.43)

with

In the case of an inversion of population, the imaginary part, -k≤, of the
wave vector is positive

When f is varied, the module of the complex number oscillates between
the two values 1/(1 - r1r2e

+ad) and 1/(1 + r1r2e
+ad). If r1r2e

+ad = 1, frequencies
can be found for which the complex number A¢(f) becomes infinite: the 
resonator is no longer damped and light is emitted.

The oscillation condition is thus given by

(9.44)

Equation (9.44) is a relation between complex numbers and implies two
relations between real numbers:

(9.45.a)

(9.45.b)

Equation (9.45.b) shows that laser emission is produced at the frequencies
of the eigenmodes of the resonator. Relation (9.45.a) receives an easy 
physical explanation: after a double transit inside the resonator, the reflec-
tion losses, r1r2, are compensated for by the amplification ead. The condition
expressed by (9.44.b) should be replaced by a threshold condition:

(9.46.a)

To obtain a laser effect with given mirrors, the inversion of population
should be greater than some threshold value so that a > athreshold. Introducing
the reflection coefficients for intensities, r1 = r1

2 and r2 = r2
2, (9.46.a) is written

as
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A Laser Starts from Spontaneous Emission

Formulas (9.46) are exactly equivalent to formula (9.8) that was obtained at
the very beginning of this chapter for a feedback oscillator. We are now going
to show how to apply the treatment that helped to solve the mathematical dif-
ficulties associated with this kind of device.

Because of pumping, an inversion of population is created, the collections
of atoms being largely out of equilibrium, numerous spontaneous emissions
occur. Waves are emitted in all directions with frequencies falling inside the
spectral band of the function f(�) which defines the profile of the atomic 
transition: among these waves, the only ones which will survive and become
amplified, while propagating back and forth between the mirrors, are those
which have the same properties as the eigenmodes.

The amplification is a consequence of stimulated emissions, which occur
at a rate that increases with the amplitude of the wave. The more intense 
the laser light, the greater is the number of stimulated emissions per second
and also the number of atoms falling to ground level. When the laser light
becomes intense, the population inversion decreases and so does the ampli-
fication coefficient: this is the reason why the amplifier saturates and why the
amplitude of the oscillation doesn’t grow indefinitely.

9.5. Spectral Characteristics of Light 

Emitted by a Laser

9.5.1. Multimode Emission

Figure 9.26 shows the variation of the feedback coefficient of an FP resonator
(comb of modes) and the variation of the optical gain of a material with an
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Figure 9.26. Gain and feedback coefficients versus frequency. This figure is to be
compared with Figure 9.3.



inversion of population. Generally speaking, the autooscillation condition
(9.44) is fulfilled for many modes, and very often for a tremendous number of
modes. All the modes having a frequency near enough to the central frequency
of the atomic transition will be undamped. In such a case the laser will emit
several rays, which are extremely monochromatic and have very close fre-
quencies: the laser is then said to be multimode.

9.5.1.1. Random Multimode Emission

If no special care is taken a laser will work in this way. In principle, the dif-
ferent modes are not coupled to one another and oscillate independently.
After the pumping has been switched on, there is a transient state during
which the different modes start oscillating. A given mode starts when the
autooscillation condition is fulfilled, initially increasing the oscillation ampli-
tude saturates. When a steady state is reached, the electromagnetic field can
be written as En cos(2p�nt - fn), where n is the index of the mode. The signal
emitted by the laser is the sum of the different oscillations of all the oscillat-
ing modes

The phase fn is fixed by the instant when the oscillation started; usually
there is no deterministic relation between fn and n. The above summation is
not possible in the absence of more information about fn, however if the
number of oscillating modes is large, it is considered that the global intensity
is equal to the addition of the individual intensities:

9.5.1.2. Mode Locking

It is possible to suppress the uncertain repartition of the different phases fn.
When this is the case, it is said that the different modes are synchronized, or
that their phases are locked to one another.

The time variation law of the intensity of a mode-locked laser is completely
different and is the result of the interference of a great number of signals
whose frequencies are equally separated by the intermodal separation 
c/2d = 1/tRT,
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For the sake of simplification we will consider that all the fn are equal to
zero and that all the modes oscillate with the same amplitude E0,

(9.47)

(9.48)

The total number of modes N that have been locked is determined by the
number of teeth in the comb that are contained inside the bandwidth of the
amplifier, this is usually a large number (104–106). Equation (9.48) represents
a sinusoidal signal having a frequency close to �0 and modulated by an enve-
lope describing the function g(t) of formula (9.48).

The intensity becomes equal to IMax = (N + 1)2E2
0 � N2E2

0, everytime that 
t is equal to an integer multiple of tRT and decreases to zero after a duration
equal to tRT/N, the intensity then oscillates between zero and E2

0 and will grow
again to IMax. So, a mode-locked laser regularly emits very short and power-
ful pulses. The duration of an individual pulse is of the order of tRT/N, the rep-
etition period is tRT.

An elegant physical explanation can be given for mode locking. At t = 0,
the N + 1 terms of the summation of formula (9.47) are in phase and interfere
constructively, the resulting amplitude is equal to (N + 1)E0; as they don’t oscil-
late exactly at the same frequency, the phase distribution spreads rapidly over
2p and their sum is almost equal to zero (it fact it oscillates between zero and
E0). The time for the amplitude to decrease from (N + 1)E0 to E0 is about equal
to the round trip time divided by the number of synchronized modes. The
modes will again be in phase when t is an integer multiple of tRT. Finally, the
laser emits a succession of regularly spaced pulses. A numerical application
shows that pulses as short as a picosecond, and even a tenth of a femto-
second, may be obtained. A few femtosecond light pulses have only several
light periods. . . .

Fourier analysis can also obtain the previous result. According to formula
(9.47) the Fourier spectrum of a mode-locked laser is a Dirac comb (separa-
tion of the teeth 1/tRT) multiplied by a rectangle having a length equal to N/tRT.
To obtain the time law of variation we make a Fourier transform. If N were
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infinite, the amplitude would also be a Dirac comb with a tooth separation
equal to (1/tRT)-1 = tRT. If there is only a finite number of teeth, the Fourier
transform is again a comb, each tooth being the Fourier transform of a rec-
tangle, that’s to say, a sinc function having its first zero at time tRT/N as given
by (9.48).

There are many methods of synchronizing the modes of a laser, they, more
or less, find a way to break the randomness of the modes, their dates of birth.
In the experimental set-up of Figure 9.27, use is made of the acoustooptic
effect in a well-chosen crystal placed inside the laser cavity. When a trans-
parent material supports an acoustic wave of frequency �acoust its index of
refraction is modulated at the same frequency; the experiment shows, and the
theory verifies (see the Brillouin effect), that a light wave of frequency �opt

propagating in such a medium is partly converted into two new light waves
of respective frequencies (�opt ± �acoust). If the frequency of the oscillator that
generates the acoustic wave frequency is tuned to be just equal to the inter-
modal separation, �acoust = (�p + 1 - �p) = 1/tRT, the optical waves obtained by
the acoustooptic effect from one initial mode belong to the family of modes
of the FP resonator. The successive appearance of the modes is no longer at 
random.

9.5.2. Single Mode Emission

As opposed to the multimode case, a laser may be a single mode and emit
only one frequency. If the bandwidth of the optical amplifier is narrow (a few
gigahertz), the FP resonator can be given a short enough length (10 cm), so
that only one tooth of the comb of modes is inside the gain curve: only one
mode will be able to oscillate, see Figure 9.28. A fine-tuning of the distance
between the mirrors is necessary to put the mode frequency in good coinci-
dence with the central frequency of the gain curve; this is obtained thanks to
a piezoelectric cell, see Figure 9.29. The DC voltage across the piezo is
adjusted so that the output signal is maximized; the laser frequency is exactly
equal to the frequency of the atomic transition.
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Figure 9.27. Synchronization of the modes using an acoustooptic effect.



If the gain curve is broad, thousands of gigahertz, a single mode emission
is difficult to achieve by the previous method; in this case a thin FP etalon
(thickness e) is inserted inside the main resonator. This arrangement is shown
in Figure 9.30, the incidence q on the etalon is oblique and tunable. The beams
having a frequency equal to an eigenfrequency of the etalon are well trans-
mitted, the others being rejected in a direction making an angle 2q with the
axis. Two combs of modes are now involved: one for the laser resonator and
one for the etalon; their respective intermodal separations are quite different;
laser emission can only occur at frequencies that belong to the two combs.
The etalon is narrow, so its modes are quite distant if its index of refraction
is equal to n; the mode separation, which is equal to c/2necosq, is finely
tunable by playing with q : One frequency of the etalon can be put in coinci-
dence with a frequency of the laser resonator.
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Figure 9.28. Relative disposition of the gain curve and of the comb of modes for two
different sizes of the resonator. (a) is well adapted to a multimode emission. In the
case of (b) the intermodal separation is large, only one mode falls inside the bandwidth
of the gain curve.
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Figure 9.29. Single frequency laser. The FP resonator is short and only one mode
falls inside the gain curve. A piezoelectric crystal attached to one of the mirrors finely
tunes the mirror separation. An electronic device permanently adjusts the voltage U
to maximize the laser intensity.



Frequency Tunable Lasers

The invention of frequency tunable lasers has considerably modified the art
of optical spectroscopy. Figure 9.31 shows two possible arrangements. A
prism is placed between the amplifying material and the second mirror; let 
us consider a light ray IJ propagating orthogonal to mirror M1 and having a
wavelength l, after refraction by the prism it gives the light ray KL. If 
mirror M2 is disposed perpendicular to KL, the reflected beam propagates
along the same direction and then indefinitely goes back and forth between
the mirrors: a laser emission is possible if the autooscillation condition is ful-
filled. As the deviation by a prism changes with the wavelength, a rotation of
the prism tunes the wavelength, the wavelength for which laser emission is
obtained.

The second arrangement of Figure 9.31 uses a diffraction grating in 
the Littrow arrangement; for a given angle of incidence on the prism we can
find a wavelength for which the diffracted beam propagates in the opposite
direction to the incident beam. If the grating is suitably blazed the diffracted
beam D doesn’t exist. Rotating the grating allows the tuning of the laser 
frequency.
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Figure 9.30. Mode selection using a FP etalon. Laser emission can only occur at a
frequency which belongs to the two combs of modes of the etalon and of the laser
resonator. A rotation of the etalon finely shifts the frequencies of the associated comb.
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Figure 9.31. Dispersive optical components are used to tune the frequency of a laser.



9.6. Laser Transient Effects

9.6.1. Laser Rate Equations

Our purpose is now to describe the time evolution of the light emitted by a
laser. The laser is supposed to work only on one mode.

We use the set of equations (9.29) to which must be added the description
of the pumping and of the optical losses of the resonator. The losses are
“useful losses” since they represent the light that is emitted by the laser. Let
us call dnloss the number of photons that leave the resonator during the 
time dt,

(9.49.a)

The power emitted by the laser is given by formula (9.49.b):

(9.49.b)

We suppose that the lower level of the laser transition is the ground level,
the pumping becomes completely inefficient when this level is empty, so the
pumping term in the equation is written as WpN0,

(9.50)

Ntotal = (N1 + N0) total number of atoms,
N = (N1 - N0) inversion of population,

Equations (9.50) become

(9.51)

(9.52)

Equations (9.50), (9.51), and (9.52) are called the laser rate equations; they
need two variables h and n, the variation of which has to be calculated. Their
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solution is not immediate because of the presence of the stimulated term

nN/trad and can only be made by numerical integration.

Initial Conditions

At time t = 0, the pump is suddenly switched on and the pumping term jumps
from zero to WP and then remains constant. The initial conditions are:

• N0(0) = Ntotal.
• N(0) = -Ntotal, initial inversion of population.
• n(0) = 0, initial number of photons in the mode.

The following scenario can summarize the result of the numerical 
integration:

• Because of the pumping, the inversion of population, initially negative,
starts growing and at a certain time becomes positive.

• The collection of atoms is then an optical amplifier; however, the inver-
sion of population is not sufficient for the gain to compensate for the
losses. The autooscillation can start only when the inversion of popula-
tion reaches the threshold value Nthreshold.

• The excited level becoming more and more populated, spontaneous emis-
sion creates more and more photons. The number n of photons remains
small as long as N < Nthreshold. Once the threshold is passed, n suddenly
increases faster and, in a few nanoseconds, goes from almost nothing to
an enormous value.

• The number of stimulated emissions per second is now important and the
inversion of population decreases to keep a value close to the threshold
value.

Threshold Population Inversion

If the inversion of population is considered as constant, the solution of equa-
tion (9.51) is

(9.53)

The condition that the number of photons increases is given simply by

In formula (9.53), the term (N + Ntotal)/(2trad/t) = N1/(trad/t) represents the
spontaneous emission, which clearly demonstrates that the laser oscillation
starts from spontaneous emission.
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Maximum Value of the Inversion of Population

Let us suppose that the collection of atoms has not been placed inside a res-
onator or, which is equivalent, that one mirror is hidden. No autooscillation
is to occur, we have 1/tres = 0 and n = 0 in equation (9.52). The inversion of
population is then given by

(9.54)

with

where in NMax is the maximum value that can be obtained with a given
pumping represented by WP; this value is reached with a time constant equal
to Q0. In the presence of a resonator it can be considered that formula (9.54)
remains almost valid until the instant Q0 when the laser oscillation starts,
which instant is close to the instant when the inversion of population becomes
positive.

Q0 is given by

We arrive at a time t that is larger than Q0, the spontaneous emission is
now negligible as compared to the spontaneous emission and the associate
term, N1/trad, can be neglected in equations (9.50) and (9.51).

We introduce the reduced variables

(9.55)

Cancellation of the time derivative in (9.55) gives the steady state values
of x and y,

Once the steady state is reached, the population inversion remains con-
stant and equal to the threshold value. The permanent value of the number of
photons is all the higher as the maximum possible inversion of the popula-
tion is larger than the threshold. A rigorous integration of the rate equation
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being impossible, we are going to see what happens if the pumping is not too
strong and that x and y remain close to their steady state values. We intro-
duce the auxiliary functions p(t) and q(t),

(9.56)

The solutions of (9.56) are damped oscillations: y = Ae-g t coswmt, with

where wm is a good indication of the order of magnitude of the frequency of
the oscillations of relaxation that are often emitted by solid-state lasers and
that will be described in the next section.

9.6.2. Oscillation of Relaxation

To study what happens in the case of a strong pumping rate we use a hydraulic
analogy in which the populations are assimilated to the respective levels in
two tanks.

We refer to Figure 9.32. Water is pumped from a lower tank to another 
situated above. A siphon can empty the upper tank if the level of the water is
higher than a threshold level, which can be reached only if the pump is able
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Figure 9.32. Hydraulic analogy of a laser. The two tanks are, respectively, the ground
and excited levels. The leaks represent spontaneous emission. The syphon is for
stimulated emission.



to compensate for the leaks. When this is so, the upper tank fills until the
syphon starts operating.

If the rate of filling by the pump and the rate of emptying by the syphon
are comparable, the level in the upper tank remains just above the threshold
and the syphon continuously pours water into the lower tank.

If the syphon has a large diameter, the upper tank is suddenly emptied, a
large amount of water being lowered; we must then wait until the upper tank
is again filled before a second quantity of water is lowered: a relaxation
process then takes place.

The results of a numerical solution of the rate equations are in good agree-
ment with the hydraulic analogy. According to this model, relaxation pulses
are periodically emitted and their intensity decreases from one pulse to the
next.

The agreement with experimental results is reasonable but not excellent.
A solid state laser emits short (microsecond) and intense (10 to 100 kW) relax-
ation light pulses that don’t have the nice regularity of the theoretical pulses.
They are erratically emitted, the average time separation between two suc-
cessive pulses being of the order of 1 ms.

Several explanations can be given for this experimental discrepancy. The
rate equations implicitly suppose a monomode laser; in fact, many modes are
simultaneously emitted and they compete in sharing the inversion of popula-
tion. Coming back to the hydraulic analogy, to simulate the competition
between the different modes, many different syphons should be introduced.
. . . The erratic character of the relaxation light pulse comes from the fact that,
because of the nonlinear term nN, the solution of equations (9.51) and (9.52)
may have a chaotic behavior.

Let us conclude by saying that the relaxation emission of pulses is not safe
for a solid state laser and is often accompanied by a deterioration of the laser
material.

9.6.3. Q-Switching

One of the mirrors of the laser is hidden during the start of the pumping, mean-
while the quality coefficient Q of the cavity is kept at a low value, which allows
the inversion of population to reach a high value, almost equal to the value
NMax that is calculated in formula (9.54). As a result, an important amount of
energy (J/cm3) is stored in the collection of atoms.

If a high value is again given to Q (this is the reason for the expression Q-

switch), the laser will immediately start oscillating. Coming back to the
hydraulic analogy, the syphon is first closed allowing the accumulation of
water in the upper tank, which is then rapidly emptied after reopening.

As far as lasers are concerned, the time necessary to restore a high value
to the quality coefficient must be shorter than the relaxation period of the
laser (i.e., 1 ms); techniques for fast optical switching will be described later.
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The experiment shows that a powerful pulse (megawatt to gigawatt) is
emitted with duration in the nanosecond range; such a pulse is commonly
called a giant pulse.

Let us come back to the rate equations and integrate equations (9.51) and
(9.52) using the following initial conditions: time t = 0 is the instant when Q
takes a high value. The laser has not yet started oscillating and the number
of photons n(0) is equal to zero. The initial value of the inversion of popula-
tion has a high value N(0) = Ni. Spontaneous emission and pumping are neg-
ligible during the emission of the giant pulse. Changing the time unit by setting
t¢ = t/tres, we can write

The number of photons is maximum at the instant when the population
inversion is just equal to its threshold value and is then equal to

According to (9.49), the peak power of the pulse is equal to

Nfinal being the inversion of population at the end of the pulse, the total
number of atomic transitions during the pulse is simply equal to Ni - Nfinal; the
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Figure 9.33. Variation of the inversion of population and of the number of photons
in a Q-switched laser. The initial population inversion is far greater than the threshold
value.



global energy W of the pulse is then easily deduced. If the pulse is assimilated
to a square pulse we obtain an order of magnitude of its duration q ;

where Nfinal is obtained by making n = 0 and solving the transcendental 
equation

Numerical application: Volume of the laser crystal 1cm3; doping concen-
tration Ntotal = 1020 atoms/cm3; photon energy 1.5eV.

Ni = 0.1Ntotal; Nthreshold = 0.01Ntotal; Nfinal = 0; tres = 10ns. nMax = 0.221019;
W = 1.2 J; PMax = 0.53108 W; q = 2.2610-8 s.

Q-Switching Devices

Figure 9.34 shows two devices used for Q-switching a solid-state laser. The
rotating prism has been largely used and is now obsolete. A Porro prism
rotates at high speed about an axis that is orthogonal to the edge and parallel
to the hypotenuse. The rays can oscillate inside the optical cavity when the
angle between the edge of the prism and the plane of the mirror is smaller than
the diffraction angle of divergence q of a beam limited by a diaphragm having
the same diameter D as the laser rod (q = l /D � 10-3 rad). The speed of 
rotation should be greater than q divided by the relaxation period of the laser,
which makes radian/microsecond � ten thousand rounds per minute.

Electrooptic Q-switching was initially obtained with a Kerr cell, but
Pockels’ cells using the electrooptic effect in a crystal are far better since they
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Fig. 9.34. The laser in (a) can oscillate only when the edge of the rotating prism is
parallel to the mirror with an accuracy better than l/D (diameter of the rod divided
by the wavelength). The neutral lines of the electrooptic crystal of (b) are oriented at
45° with the polarizer; if the voltage is such that it behaves as a l/4 plate, the reflected
light is polarized at 90° with the polarizer and is blocked, the switch becomes
transparent again when the voltage drops to a value for which the crystal is a l plate.



need a lower voltage (one hundred instead of several thousand volts). A polar-
izer and an electrooptic crystal are inserted between the laser material and
one of the mirrors. Two different voltages, respectively, Vl /4 and Vl, are used
to bias the crystal. When the voltage is equal to Vl /4, the crystal is equivalent
to a l /4 wave plate with its neutral axis at 45° with the polarizer, for a double
passage of the rays the crystal behaves as a l /2 wave plate. For Vl the crystal
is a l wave plate. The voltage being equal to Vl /4, let us consider a beam that
is transmitted by the polarizer and then comes back to it, after one reflection
and two passages in the crystal, its polarization, which is obtained by con-
sidering a symmetry with regard to the neutral lines of the crystal, is orthog-
onal to the direction of the polarizer and the light is blocked by the polarizer.
The light is fully transmitted for Vl. Q-switching is achieved by maintaining a
voltage equal to Vl /4 during the beginning of the pumping, and commuting to
Vl when the inversion of population is maximum.

The Q-switching device of Figure 9.35 is completely passive and takes
advantage of the saturation of an atomic transition. A cell, filled with a solu-
tion of molecules having an absorption band including the laser frequency, is
placed between the laser material and one of the mirrors. Initially, the cell is
opaque and the laser material doesn’t see the mirror; as the pumping contin-
ues the light emitted by spontaneous emission saturates the transition and the
cell becomes transparent; the concentration of the solution is chosen so that
the time to reach transparency is equal to the time that is necessary for the
inversion of population to become maximum, a giant pulse is then emitted.

9.7. Originality of Laser Light

The main originality of a laser beam is to have two coherencies, spatial and
temporal. Spatial coherency is synonymous with directivity, temporal
coherency with monochromaticity. These two properties come directly from
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Figure 9.35. Passive Q-switch using a saturable absorber. A cell, filled with a solution
of molecules having an absorption band at the laser frequency, is placed inside the
laser cavity. Initially opaque, the cell becomes transparent after the spontaneous
emission has saturated the transition.



the stimulated emission, which produces photons in the same mode of the
resonator. It’s because of the properties of autooscillation that the optical
characteristics (frequency and shape of the wave surfaces) of the emitted
wave fit exactly with the resonator.

Directivity: The wave surfaces of a laser beam are perfectly defined and
don’t vary erratically from time to time; their shape is determined by the geo-
metrical characteristics of the mirrors. If the output mirror is plane, the rays
are orthogonal to its surface, the difference is only determined by diffraction
and the angle is equal to 1.22l /D (l is the wavelength and D the diameter of
the mirror). With the usual values of l and D, the divergence is of the order
of a milliradian. If the mirror is spherical, the laser wave is spherical and of
course divergent, however a stigmatic optical arrangement can always trans-
form it in a parallel beam, the divergence of which is limited by diffraction.

1.22l /D is a theoretical limit, the divergence of beams delivered by real
lasers is always a little larger. When the divergence is almost equal to this
value, the laser is said to be diffraction limited, which is a criterion of high
optical quality.

Monochromaticity: The time variation law of the electromagnetic field of
the laser beam is fully deterministic. In the case of a single-mode laser the
signal is in principle sinusoidal, which means perfectly monochromatic. The
residual bandwidth of a laser is estimated in Annex 9.B and is incredibly
narrow; the real value is mostly due to the mechanical and thermal instabili-
ties of the resonator.
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Figure 9.36. Illustration of spatial and temporal incoherencies. A collimator delivers
an almost parallel beam. The narrower slit is, the smaller is the divergence of the beam.
When the slit is closed the divergence is only limited by the diameter of the lens, 
but the intensity is then equal to zero. . . . In the same way, the beam delivered by 
the collimator is all the more monochromatic as the slit is narrow; a perfectly
monochromatic light is obtained when the width of the slit goes to zero, the intensity
also goes to zero. . . .



Annex 9.A

Light-Semiconductor Interaction

9.A.1. Energy Levels in a Semiconductor

A semiconductor can be considered as a collection of negative charges (elec-
trons) and of positive charges (holes) free to move inside a crystal. Because
of Quantum Mechanics, the energy of the electrons and holes cannot take any
value and should be equal to some allowed values. Figure 9.A.1 shows the
diagram of the energy levels that are allowed for electrons and holes in a semi-
conductor: energy levels gather in energy bands.

The upper band is called the conduction band and corresponds to elec-
trons; the lower band is called the valence band and corresponds to holes.
The repartition of the electrons and holes among the different levels is fixed
by the temperature and follows the Fermi-Dirac statistic; it is described by a
Fermi function, see Figure 9.A.1. This is to be compared with the case of
atoms and molecules that followed a Maxwell-Boltzmann distribution, see
formula (9.20) in Section 9.2.2.1.

We now intend to show that, if a piece of sample of semiconductor is
placed inside a blackbody, the three basic Einstein processes are necessary
to ensure that:

• The photons are distributed according to a Bose-Einstein distribution.
• The electrons and holes are distributed according to a Fermi-Dirac 

distribution.

The interaction with light is considered as a “chemical reaction” which is
illustrated in Figure 9.A.2. The energy at the right-hand side of the reaction
may correspond to not only light (photons) but also to mechanical vibrations
of the lattice of the semiconductor crystal. If this reaction is to occur, the two
following conditions should be met:

• An electron and a hole are simultaneously at the same place.
• Energy and momentum conservation conditions are satisfied.

441



442 9. Lasers

Fermi level

Conduction band

Valence band 

1

(E – EF)
State density
in the bands

Fermi
function

F(E)

0

 rC(E)

 rv(E)

Fermi function:
1e

1
F

kTFEEE
+

= − /)()(

Figure 9.A.1. Diagram of the energy levels in a semiconductor. The energy is plotted
vertically. rC(E) and rV(E) are the densities of the allowed states of energy. The Fermi
function indicates which levels are occupied; EF is the energy of the Fermi level.

hn

Figure 9.A.2. Creation and recombination of pairs of electrons and holes.

The energy conservation is very simple:

The conservation of the momentum is less easy to understand. It should
be considered that the energy of electrons and holes depends on their respec-
tive momenta or, which is the same, on the wave vectors of the associated

E E helectron hole- = �.

(1) Corresponds to the light emission by electroluminescence and to
lasers.

(2) Corresponds to the absorption of light by a semiconductor and to
photoconduction.

electron hole   energy.
1

2
+ æ Ææ̈ææ



quantum waves. For a certain category of semiconductors, direct band gap

semiconductors, the conservation of the momentum doesn’t raise very 
difficult problems. Typical direct band gap semiconductors are GaAs and InSb
and their derivatives. The momenta of holes and electrons have almost 
equal moduli and the conservation is obtained if they have opposite 
directions, a motion of an atom of the lattice can compensate for a possible 
discrepancy.

For indirect band gap semiconductors the presence of a photon is
required, its main role being to provide, or absorb, a small momentum dis-
crepancy. The reaction is then written

9.A.2. Spontaneous and Stimulated Effects 

in a Semiconductor

We will restrict ourselves to direct band gap semiconductors; the three basic
mechanisms are the following:

Absorption (stimulated): photon Æ electron + hole.
Spontaneous emission: electron + hole Æ photon.
Stimulated emission: electron + hole + photon Æ 2 photons (identical).

We introduce the densities of allowed states in the two bands, rC(E) and
rV(E): the number of states having an energy between E and E + dE are, respec-
tively, equal to rC(E) dE for the conduction band and to rV(E) dE for the valence
band.

At thermal equilibrium, the probability that a level E is occupied by an
electron is given by a Fermi function Pelectron(E) = F(E), the probability of a hole
being the complementary probability Phole(E) = (1 - F(E)). Of course the proba-
bilities are different if the semiconductor is out of equilibrium. The numbers,
dNelectron and dNhole, of electrons and holes having their energy between E and
E + dE are, respectively, given by the following formulas:

Electrons in the conduction band: dNC,electron = rC(E)Pelectron(E) dE.

Electrons in the valence band: dNV,electron = rV(E)Pelectron(E) dE.

Holes in the conduction band: dNC,hole = rC(E)Phole(E) dE.

Electrons in the valence band: dNV,hole = rV(E)Phole(E) dE.

The above chemical reactions couple together two levels separated by h�.
A recombination of an electron and a hole will happen if level E is occupied
by a hole, while level E + h� is occupied by an electron. In the same way, an
electron-hole pair is generated if the same respective levels are simultane-
ously empty.

Let n be the number of photons and let dnspon, dnabsorp, and dnstimul be the
number of photons that are, respectively, created or absorbed during time dt,
by spontaneous emission, absorption, or stimulated emission. If u� is the 

electron + hole+ phonon photon.Æ

Annex 9.A. Light-Semiconductor Interaction 443



electromagnetic energy density at frequency �, and A and B are Einstein coef-
ficients, we can write

(9.A.1)

(9.A.2)

At thermal equilibrium, the time derivatives cancel. The fact that, if the
probabilities Phole(E) and Pelectron(E+h�) are Fermi-Dirac functions, the blackbody
formula is obtained for u� will be considered as a justification of our 
description,

Dividing the numerator and denominator by F(E+h�)F(E), we obtain

9.A.3. The Bernard-Duraffourg Formula, 

Inversion of Population

If electron-hole pairs have been generated in excess, the numbers of electrons
and holes are larger than the equilibrium values. To recover equilibrium, the
semiconductor will follow a relaxation process with a time constant equal to
the inverse, 1/A, of the Einstein coefficient for spontaneous emission. 1/A is
also called the recombination time of electrons and holes trecomb which is of
the order of a few nanoseconds in a direct band gap semiconductor and is
much longer in the case of an indirect band gap.

An efficient way of creating electrons and holes is to use a forward biased
PN junction. Figure 9.A.3 illustrates the phenomenon that occurs in such a
case. When the electric current is equal to zero, there are only a few electrons
in the conduction band and a few holes in the valence band. The forward bias
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repels the electrons of the P region and the holes of the N region toward the
junction area inside which they will remain during a time equal to trecomb. The
equilibrium recovery is made in two steps:

• During the first period (picoseconds) the excess carriers rapidly reach
thermal equilibrium between the sublevels of the band: the electrons
gather at the bottom of the conduction band, while the holes gather at the
top of the valence band, as illustrated in the right-hand diagram of Figure
9.A.3.

• During the second period (nanoseconds) electrons and holes recombine.

To describe the carriers’ repartition among the sublevels it is convenient
to introduce the “quasi-Fermi levels” EFc and EF�, the probabilities of occupa-
tion are given by the following formulas:

(9.A.3)

(9.A.4)P P
e

V V E E kTF
, , .hole electron= -( ) = -

+-( )1 1
1

1�
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Figure 9.A.3. Populations of the conduction and valence bands of a forward biased
PN junction. Hollow circles are holes and dark circles are electrons.



To obtain the amplification condition, we come back to formulas (9.A.1)
and (9.A.2) and we replace the occupation probabilities by (9.A.3) and (9.A.4).

Amplification is obtained when the stimulated emissions overcome the
number of absorptions. It is found that [(dn/dt)stimul - (dn/dt)absorp] is propor-
tional to (1 - e(EF�-EFc+h�)/kT ). The semiconductor can amplify optical waves
whose frequency fulfills the double inequality, which is called the Bernard-
Durrafourg equation, because of the names of the two French physicists who
established it for the first time,

E E h E EC V FC FV- < < -� .

446 9. Lasers



Annex 9.B

Spectral Width of a Laser Oscillation

The oscillation emitted by a monofrequency laser is very monochromatic, but
it has, of course, a spectral width D�osc. The laser oscillator is supposed to
have reached a steady state and emits a beam of constant intensity. We will
only consider the case when the inversion of population has a high value while
the lower laser level remains unpopulated. n is the number of photons inside
the resonator, N2 is the population of the upper level, and tres is the lifetime
of the electromagnetic energy when the resonator is empty.

The number of photons that are lost, or gained, by the mode during time
dt is given by

(9.B.1)

For the steady state we have

The population N2,steady cannot be greater than (1/Atres) since nsteady cannot
be infinite; in the case of low losses, it can however be almost equal to this
limit. The emitted power P is given by

From a physical point of view, the residual spectral width of the laser light
is a consequence of the losses of the resonator. Let us consider the case of
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an empty resonator (with no amplifying material inside) using the same
mirrors as the laser and suppose that at time t = 0 the number of photons
inside is n0, the evolution of the number n of photons follows a first-order dif-
ferential equation

(9.B.2)

The empty resonator is a filter whose bandwidth Dwres is given by

A comparison of (9.B.1) and (9.B.2) suggests that a laser behaves as a res-
onator in which the losses are not completely compensated for by the gain
and whose time constant t¢ is given by

The laser spectral width D�osc is finally equal to D�osc = 2p(h�/P)(D�res)2.
A numerical application of this formula has been given in Section 9.1.4.
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10

Nonlinear Optics

A problem often encountered in Physics is to find the response r(t) of a system
to some excitation e(t) that is time dependent. In many cases the relationship
(excitation ´ response) is linear, the simplest case being proportionality. If
the excitation is harmonic, which means sinusoidal time variation, the linear
response is also harmonic, with the same frequency. In many cases, the linear
approach is a simplification of more general systems that are said to be non-

linear. The response to a harmonic signal (frequency w) is still periodic with
the same frequency, but is no longer harmonic: the frequency spectrum has
many more components, among which the double frequency (2w) component
is often the most important.

As a light beam propagates inside a piece of material (see Annex 8.B of
the chapter on the Index of Refraction), the electric field of the incident wave
can be considered as an excitation, while the polarization taken by the mate-
rial is the response. As long as the light intensity is not very powerful, the
interaction remains linear and the light that is transmitted has only one com-
ponent at the same frequency. The nonlinear aspect of the light/material inter-
action could not be revealed before the appearance of the powerful beams
delivered by lasers. The first demonstration was made in 1961: the incident
red light (0.6943mm) of a ruby laser, after propagation inside a quartz crystal,
gave birth to an ultraviolet beam (0.34715mm). A spectacular and useful appli-
cation is the generation of green light (0.553mm) from the near infrared light
(1.06mm) of a neodymium laser.

If the excitation is a sine function of frequency w, so is the response. e(t)
and r(t) vibrate at the same frequency but don’t have, in general, the same
phase; this is because a linear interaction is described by a linear relation
between the functions e(t) and r(t) and all their derivatives,

(10.1)a
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with e(t) and r(t) being considered as the real part of the two complex
numbers and , we have

(10.2)

Equation (10.2) clearly shows that the response is proportional to the exci-
tation. Any linear system has the following properties:

• The proportionality coefficient: is independent of the amplitude of
the signal. In the case of Optics the index of refraction doesn’t depend on
the light intensity.

• Principle of superposition: If r1 is the response to e1, and r2 the respective
response to e2; when e1 and e2 are simultaneously applied, the response is
(r1 + r2).

• If the excitation is purely sinusoidal, the response is also purely sinusoidal
of the same frequency.

• If the excitation has several components w1, w2, w3, the response has no
other components. The moduli of the different proportionality coefficients

, , are not equal. Some of them can be equal to zero: the
corresponding component is then filtered out.

A nonlinear process doesn’t follow the preceding rules. It’s not possible to
give a general formulation for nonlinear interactions. To exhibit the proper-
ties that are useful for nonlinear optics, we will restrict ourselves to the simple
example where the (excitation ´ response) relation is not a differential equa-
tion and has a polynomial form

(10.3)

The first term is the linear part of the response; the higher-order terms are
the nonlinear part. If the excitation e(t) is small, the higher-order terms are
negligible. The most important consequence of (10.3) is the appearance of
new frequencies in the Fourier spectrum of the answer. Let us first consider
the case of a monochromatic excitation and keep only the two first terms of
(10.3):

(10.4)

In the Fourier spectrum, in addition to a term at the frequency of the exci-
tation that comes from the linear part of (10.3), are found:

• A DC term (frequency equal to zero): a2ê
2/2.

• A double frequency term, also called a second harmonic, (a2ê
2/2) cos2wt;

the expression Second Harmonic Generation (SHG) is commonly used.
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We now consider the case of an excitation with two frequencies w1 and
w2:

The principle of superposition doesn’t apply and the Fourier spectrum is
considerably enriched.

10.1. Microscopic Interpretation of a Nonlinear 

Optical Interaction

Light propagation in a transparent material is accompanied by the vibrations
of electrons bound to the atoms, whose vibrations are forced by the electric
field of the light wave. As a result of the fact that the electrons are taken away
from their equilibrium positions by the action of the electric field (excitation),
an electric polarization (response) is created. The global action of the nucleus
and of the other electrons of an atom corresponds to a potential V(r), as a
first approximation this potential is parabolic and creates a restoring force
that is proportional to the distance from the equilibrium position, and whose
proportionality is responsible for the linear character of the interaction. As
suggested by Figure 10.1, the parabolic potential is a first approximation, and
the real potential should be represented by a serial Taylor development.

As long as the amplitude of the forced oscillations keeps a small ampli-
tude, the parabolic approximation is accurate enough. If the incident field is
more intense, the motion of the electrons has three components: one at the
incident frequency, another at the double frequency, and the last one is a DC
component.
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Figure 10.1. A bound electron is trapped inside a potential well. In the limit of a linear
interaction this well is parabolic and the electron is submitted to a restoring force
proportional to the distance of its equilibrium position.



It will be shown that if the environment of the electron is centrosymmet-
ric, which happens in cubics and in isotropic materials, the development of
equation (10.3) has no second-order term, the first higher term being the third
one. Because of the absence of a component at 2w in the Fourier spectrum
of cos3 wt, the second harmonic generation is then impossible.

10.2. Phase Matching Condition

Nonlinear optics is dominated by the important notion of phase matching

that will be introduced on a phenomenological basis in the case of second
harmonic generation. Because of the presence of the incident wave, each
atom of the nonlinear crystal is made an electric dipole, which radiates elec-
tromagnetic wavelets at two frequencies, w and 2w. The amplitude of the
wavelets at the fundamental frequency w is much larger than the amplitude
at the double frequency. At a given point P, the field is the result of the inter-
ference of all wavelets. We first consider the wavelets of frequency w; the
value of the phase velocity Vw is, by construction, such that the wavelets inter-
fere constructively (see Chapter 8 on Index of Refraction). The situation is

452 10. Nonlinear Optics

Ruby laser
10 kW

l = 694.3nm

l = 694.3nm
and l¢ = 347.15nm (10–4 W) Fl¢

Fl

Quartz  crystal plate 

Nonlinear crystal V = voltage induced by
       the light pulse 

Q-Switched
laser

Figure 10.2(a). First SHG experiment by Maker, Terhune, and Savage (1961). The
conversion efficiency is very low.

Figure 10.2(b). Optical rectification. The two sides of the nonlinear crystal are
coated with a metal layer. When the short and intense light pulse of a Q-switched laser
travels across the crystal, a voltage is generated.



different for the wavelets at frequency 2w, since they propagate at V2w, but are
emitted by oscillating dipoles that have a phase repartition corresponding to
a propagation speed equal to Vw. Because of the law of normal dispersion the
two speeds are not equal (Vw < V2w): the interference between the double fre-
quency wavelets will not normally be constructive, this is the reason why the
conversion efficiency is very small in the experiment described in Figure
10.2(a). More favorable conditions can be found where the interference is con-
structive at both frequencies; they constitute the phase matching condition.

We refer to Figure 10.3, the crystal is very transparent and only a small
amount of energy is transferred from the fundamental beam to the second
harmonic beam: the amplitude of the fundamental beam remains roughly con-
stant along the crystal and can be written as

We first evaluate the amplitude E2w(Z) of the second harmonic field at point
P of abscissa Z. This field is created by all the dipoles between 0 and Z. The
contribution, dE2w, of the dipoles of the slice z, z + dz is proportional to the
square of the amplitude of the field at the fundamental frequency, the time of
propagation from abscissa z to abscissa Z is equal to (Z - z)/V2w,; it seems
natural to write

(10.5)
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Figure 10.3. A planar wave propagates inside a nonlinear crystal, parallel to the Oz

axis; the transmitted light is due to the interference of wavelets emitted by dipoles
oscillating at w and 2w.



where Dk = k2w - 2kw is called the phase mismatch between the two waves.
The light intensity at the double frequency is given by

(10.6)

The intensity of the second harmonic is a periodic function of the thick-
ness e of the crystal plate and is maximized for well-chosen values of the
thickness

where nw and n2w are, respectively, the indices of refraction at the fundamen-
tal and second harmonic frequencies.

A better efficiency of the generation of the second harmonic generation is
obtained when the phase mismatch, Dk, is made equal to zero; according to
(10.6), the intensity of double frequency light is then equal to k2e2A4

0 and it con-
tinuously increases with the thickness. The cancellation of the phase mis-
match implies the equality of the two indices nw and n2w, which, because of
dispersion, is impossible if the two beams have the same polarization. The
trick is to use beams with orthogonal polarizations, and to find suitable con-
ditions where the ordinary index at one frequency is equal to the extraordi-
nary index at the other frequency, which is not forbidden by the law of
dispersion.

In Figure 10.5 are shown the ordinary and extraordinary sheets of the
index surface of a negative uniaxial crystal, respectively, at the frequencies w
and 2w. The ordinary layer at w and the extraordinary layer at 2w intersect at
the four points P1, P2, P3, and P4. The conditions for an efficient w/2w con-
version are obtained when the incident wave (w) is ordinary polarized and
propagates along the direction OP1. The wavelets that are generated at the
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Incident wave
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Figure 10.4. Second harmonic generation using a thick plate. The crystal may be
decomposed as pairs of slices with a thickness of l/2Dn. The SHG signals that are,
respectively, generated in the first and second halves of a given slice interfere
destructively. Only the very last section contributes to the generation of second
harmonic light in the emerging beam.



frequency 2w propagate at the same phase velocity as the incident wave.
Under such conditions, an important part of the energy is transferred from
the fundamental beam to the second harmonic beam; equations (10.5) and
(10.6) are no longer valid since the fundamental beam is now depleted as it 
propagates.

Let us now calculate the angle q between the optical axis and the direc-
tion OP1 for which the two indices no,w and ne,2w(q) are equal. Whatever the
direction of propagation, the ordinary wave sees the same index no,w; the index
ne,2w(q) of the extraordinary wave, at frequency 2w, is given by

In the case of KDP, the indices have the following values: ne(l=694 nm) = 1.465,
no(l=694 nm) = 1.505, ne(l=347 nm) = 1.487, no(l=347 nm) = 1.534; the angle q is equal to
51°. As it’s more convenient to work at normal incidence, the end faces of the
crystal are cut perpendicular to the direction OP1. The w and 2w wave vectors
are parallel, but not the light rays, see Figure 10.5. Frequency doublers are
now very common, especially for doubling the 1.06mm light of neodymium
lasers into a green 0.53mm light. The most popular crystal being KDP (potas-
sium diphosphate). Lithium niobate (LiNbO3) and “banana” (Ba2NaNb5O15)
have important nonlinear coefficients; in this case, the values of the ordinary
and extraordinary indices vary appreciably with temperature, and it is possi-
ble to find a temperature at which the ordinary index of one color is equal to
the extraordinary index of the other color.
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Figure 10.5. Determination of the phase matching condition. Along OP1, an ordinary
frequency w propagates at the same speed as an extraordinary wave of frequency 2w.
The faces of the crystal plate are cut perpendicular to OP1, so that the incidence is
normal. Inside the crystal, the wave vectors at w and 2w are parallel, the rays don’t
exactly coincide, the walk-off is however small.



Quantum Interpretation of Nonlinear Effects

Nonlinear effects belong to the category of multiphoton processes, harmonic
generation being a two-photon process that can be described by the follow-
ing reaction:

The probability of such an event happening is maximum and, in fact, is
different from zero, only if two specific conditions are satisfied: energy con-
servation and momentum conservation. Energy conservation is to be asso-
ciated with the frequency doubling and momentum conservation to phase
matching. In the case of photons, of frequency � and traveling along parallel
directions, we have

10.3. Nonlinear Polarization

The fact that the permittivity of dielectric material is different from that of a
vacuum has already been interpreted in terms of polarization, the polariza-
tion being a consequence of the motion of the electrons that is forced by the
electric field. As long as the motion of an electron is described by a linear 
differential equation with constant coefficients, the abscissa of an electron,
within a possible phase difference, is proportional to the electric field. This

Momentum conservation: n
h

c
n

h

c
n

h

c
1 1 2

2� � �
+ = .

Energy conservation: ,h h h� � �+ = 2

photon photon photon 2h h h� � �( ) + ( ) Æ ( ).
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Rw = R2w =100%

Nd3+ laser
1.06mm

Nonlinear
crystal

Pump

Green light
0.53mm

Rw  = 100% 
R2w  = 0 

Figure 10.6. Efficient second harmonic generation. The conversion efficiency
increases with the square of the intensity of the fundamental beam; this is why the
nonlinear crystal is placed inside a laser cavity. One mirror is fully reflecting at the
fundamental (w) frequency and the harmonic (2w) frequency, the other one is dichroic,
fully reflecting at w and perfectly transparent at 2w. The only losses from the laser
resonator are due to harmonic conversion.



is the reason why a permittivity, independent of the field amplitude, can be
introduced. The situation is different when the potential is no longer 
parabolic and the restoring force is not proportional to the distance from 
equilibrium.

10.3.1. Motion of an Electron in a Nonparabolic Potential

Let us write the equation of the motion of an electron submitted to an elec-
tric field f(t) and placed in a potential V(x) that will be developed as

(10.7)

Inside a crystal the situation is more complicated, since the displacement,
the forces, and the electric field are related by tensors. . . . To understand what
happens we will limit ourselves to scalar relations. Another complication
comes from the fact that the utilization of the complex numbers, to obtain the
response of a system to a sine excitation, is only valid because equation (10.1)
is a linear equation with constant coefficients.

The function f(t) that represents the electric field is a sine, but we must
be very careful when using the imaginary notation and always treat it with
real functions and write f(t) as

To obtain a solution for equation (10.7), we will follow an iterative
approach. As a first step we will omit the x2 term and obtain

(10.8)

The term “cc” in (10.8) indicates that the “complex conjugate” of the term
already written should automatically be added.

The value of x(t) is taken from (10.8) and was introduced in (10.7):

The next step of the iteration would be to introduce x2w(t) in (10.7) and then
determine the 4w component, which will be considered as negligible.

x x x xw w w w
w w

t t t t
e

m
E

D( ) = ( ) + ( ) ( ) = - ( ) +2 2

2

2
2 2

2
2

with cc
D D

.

D w w w gw( ) = - +atom
2 2 j .

xw w

w

w

w

w

w

w
( ) ,t

e

m
E

e e e

m

ej t j t j t

= +Ê
Ë

ˆ
¯ = +Ê

Ë
ˆ
¯( )

-

-( ) ( )2 2D D D
cc

f t E t
E

e ej t j t( ) = = +( )-
w

w w wwcos ,
2

d

dt

d

dt
D

e

m
f t

2

2
2 2x

g
x

w x x+ + + + = ( )atom
. . . .

d

dt

d

dt

e

m
f t

m

dV

d

2

2

1x
g

x
x

+ = ( ) - ,

V m Dx w x x( ) = - +( )1
2

2 2 1
3

3
atom ,

10.3. Nonlinear Polarization 457



10.3.2. Polarization of a Second-Order Nonlinear Susceptibility

To the term xw(t) corresponds, for the polarization, a term of frequency w,
which, after multiplication by the number N of atoms per volume unit, gives
the linear susceptibility cw:

In the same way, the polarization at 2w can be written as

where d2w is called the second-order nonlinear susceptibility at the pair of
frequencies w/2w, and we can introduce the linear susceptibilities at the
respective frequencies w/2w, and

Generalization of the Notion of Susceptibility

Let P be the polarization of the material under the influence of an electric field
E, a Taylor serial development can always be established

(10.9)

where c(2) and c(3) are called the second- and third-order susceptibilities. As
in the previous section, another second-order susceptibility is also introduced
by e0c(2) = 2d. It’s also convenient to consider two parts in the expression of
polarization: a linear part PL and a nonlinear part PNL:

(10.10)

We refer to Figure 10.7, a nonlinear material receives two different beams
having two different frequencies w¢ and w≤, if we consider only the “two-
photons interactions” the emergent light beam will have the following fre-
quencies: w¢, w≤, 2w¢, 2w¢, 2w≤, w¢ ± w≤; the polarization is then

Because the light vibration is a vector, formula (10.10) is not sufficient,
and the different terms are in fact tensors. . . . As an example, we will write
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the relation that gives the component Px of the polarization along the Ox axis
and in the case of a second harmonic generation,

(10.11)

Kleinman Relation

The tensor that connects the nonlinear polarization P2w to the nine terms 
(E2

x, E2
y, E2

z, ExEy, EyEx, EyEz, EzEy, EzEx, ExEz) is a (6 ¥ 6) tensor.
A permutation of Ej and Ek, having no physical consequence, dijk = dikj, the

tensor has only 18 independent elements. Formula (10.12) give the general
aspect of this tensor, when the following contraction rules are used:

(10.12)

Kleinman found good reasons to show that the three indices can be written
in any order, and that it still only contains ten coefficients:

In the end, if the symmetry of the crystal is taken into consideration and
if the referential is suitably chosen, most of the coefficients are equal to zero;
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w¢

w≤

Nonlinear material

pw¢ + qw≤

2w¢

w¢
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2w≤

Figure 10.7. When a nonlinear material receives two different frequencies, w¢ and w≤,
a large number of new frequencies, pw¢ + qw≤, may be generated.



for example, in the case of a KDP crystal, the matrix of the tensor is written
as

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0
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There is no second-order nonlinear effect in a centrosymmetric
material.

A centrosymmetric material has a center of inversion, which means that
if Ej

w and Ek
w are changed into -Ej

w and -Ek
w, the value of the polarization

remains unchanged; we write the expression of the polarization as

It is easily seen that the matrix (d2w
ijk) is identically equal to zero, which

establishes the proposition. Of course third-order nonlinear effects are 
possible.

10.4. Equations of Propagation in a Nonlinear Material

When the nonlinear polarization is introduced into Maxwell’s equations, the
wave equation takes a different form (see formula (10.13)), since the second
member is no longer equal to zero and contains terms that vibrate at 2w.

P d E Eijk j k

j k x y z

1
2 2w w w w=

=
Â

, , ,

.

Table 10.1. Values of some second-order nonlinear 
coefficients of the most usual crystals. The fundamental

and SHG wavelengths are of the order of 1 mm and 0.5 mm.

Crystal 10-23

(mks units)

KDP d14 = 0.50
Quartz d11 = 0.41
GaP d14 = 90
GaAs d14 = 120
LiNbO3 d31 = 5.3

d22 = 2.5
Ba2NaNb5O15 d33 = 11.5

d32 = 8
LiIO3 d31 = 7



In the case of a linear material illuminated by a monochromatic beam of fre-
quency w on the boundary, the field is identically equal to zero at the frequency
2w and nothing happens at this frequency. On the contrary, in the case of a
nonlinear material, a wave is created inside the sample.

The term ∂ 2PNL/∂t2 is often called a source term.
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Maxwell’s equations Wave equation
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10.4.1. Planar Waves Coupled by a Second-Order Nonlinear Effect

We consider three planar waves propagating in a nonlinear transparent mate-
rial, parallel to the Oz axis; the respective frequency and wave vector moduli
are (w1, k1), (w2, k2), (w3, k3),

Many frequencies may be created, and we suppose that the phase match-
ing condition is obtained only if w3 = (w1 + w2). The only source terms to be
considered are then
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In a linear material PNL is equal to zero.
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The problem is to find Ew1
(z), Ew2

(z), Ew3
(z). In this kind of calculation, it is always

assumed that the functions vary slowly with z, which means that their varia-
tions, and the variations of their derivatives, are very small when the distance
is increased by one wavelength and is expressed by

(10.14)

We write the equation for Ew1
(z); the other equations are obtained by 

permutation

We make (w3 - w2) = w1 and ∂/∂t = jwi:

since wi
2eim0 = ki

2 the formulas get simpler

(10.15.a)

We have similar formulas at the other two frequencies:

(10.15.b)

(10.15.c)

Equations (10.15) describe the interactions of three waves, the frequen-
cies of which are linked by the relation w3 = (w1 + w2). The phase mismatch
that was already intuitively introduced is included in the term k3 - k1 - k2. To
cancel the phase mismatch, the three waves must have different polarizations;
the nonlinear coefficient is then equal to the corresponding element, dij, of
the nonlinear susceptibility tensor.
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10.4.2. Second Harmonic Generation

In the case of a second harmonic generation we have w1 = w2 = w and w3 =
2w. We will make the assumption that the fundamental signal w is not depleted
and that keeps a constant value. The incident intensity at 2w is
equal to zero, E2w

(0) = 0. The set of equations (10.15) reduces to only one 
equation

(10.16)

The integration of the first-order linear equation (10.16) is straightforward
and gives the second harmonic intensity on the end face of the crystal, 
at z = d,

To obtain the light intensity I2w at 2w, we must use the wave impedance
,

(10.17)

When the phase matching condition is satisfied, the cardinal sine is
maximum, since Dk = 0. The refraction indices have almost the same value,
and the best parameter to be considered for comparing two different nonlin-
ear materials is the ratio of the nonlinear susceptibility to the third power of
the index of refraction.

Conversion Efficiency When the Depletion of 

the Incident Beam Is Not Neglected

We are now going to again integrate the set of equations (10.15), but we will
not suppose that the incident beam is not attenuated as it propagates and gen-
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erates a beam at the double frequency. To simplify the equations we will con-
sider that the phase matching condition is fulfilled (Dk = 0); we set

(10.18.a)

(10.18.b)

Equation (10.17.b) is the expression of the energy conservation.
As boundary conditions we chose A3(z=0) = A1(z=0) = A0, we suppose that A0

is a real number, and we set A¢3(z) = -jA3(z), and equation (10.18.a) becomes

(10.19.a)

(10.19.b)

(10.19.c)

where A¢3(z) Æ A0 if z Æ •, which means that, in the case of phase matching,
the conversion efficiency is 100% if the crystal is long enough.

10.4.3. Optical Parametric Amplification

Parametric phenomena are well known in electronics where varactors (capac-
itor with a capacitance C(V) that varies with the voltage V) are used to make
parametric amplifiers and parametric oscillators. In such capacitors the
charge Q is not proportional to the voltage, but is a nonlinear function of V.
This technique can be transposed in nonlinear optics.

In a parametric device there are always three signals, with three different
frequencies w1, w2, and w3 (w3 = w1 + w2). The terminology has been defined
for electronic devices and adopted in Optics. The signal which has the highest
frequency is called the pump and is usually more intense, and brings some
energy that contributes to the amplification of the two other beams that are,
respectively, called the signal and the idler; but there is no rule for defining
which is which.

¢ = ( )( )A A A zz3 0 tanh ,k 0

d

dz
A A Az z

¢ = - ¢( )( ) ( )3 0
2

3
2k ,

¢ + = =( ) ( )A A A
z z3

2
1
2

0
2k constant,

dA

dz
A

z

z

¢
=( )

( )
3

1
2k ,

dA

dz
A A

z

z z

1
3 1

( )
( ) ( )= - ¢k ,

d

dt
A A

d

dt
A A j A A A Az z z z z z z z3 3 1 1 3 1

2
3 1

2
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) = ( ) = -( )k .* * * *

dA

dz
j A

z

z

3
1
2( )
( )= - k ,

dA

dz
j A A

z

z z

1
3 1

( )
( ) ( )= - k * ,

A E
n d

n n n
i z z

i

i

i
( ) ( )= =w

w
k

m
e

w w w
and

2
0

0

1 2 3

1 2 3

,

464 10. Nonlinear Optics



We come back to the three equations (16.15) and we consider that the
phase matching condition is satisfied,

(10.20)

A linear combination of equations (10.20) gives

We will only consider the case when the pump is undepleted and keeps 
a constant amplitude A3(0) that is supposed to be real. The system is now
reduced to only two equations:

(10.21.a)

We suppose that there is no incident beam at the idler frequency A*2(0) = 0:

(10.21.b)

The fact that the amplified signal becomes infinite with z is a consequence
of the restrictive hypothesis of an undepleted pump.
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Nonlinear crystalPump w 3 

Signal w 1 

Idler w 2

w 3 attenuation

w 1 amplification

w 2 amplification

w 3 = w 1 + w 2

Figure 10.8. Principle of a parametric interaction. Three beams of respective
frequencies w1, w2, w3 propagate simultaneously in a nonlinear crystal. The highest
frequency beam is called the pumping beam; energy is transferred from the pump,
which is attenuated, to the two other beams that are amplified.



Calculation of the Parametric Gain in the Case of Phase Mismatch

If the mismatch term Dk is kept, equations (10.20) become

(10.22)

(10.23)

with b2 = g2 - DK2/4.
In the case of phase mismatch, the condition for having gain is 2g > Dk.
Numerical application: Let us evaluate the gain coefficient g of a lithium

niobate crystal pumped by a green pump (0.53mm) having an intensity of 
10 MW/cm2:

(10.24)

10.4.4. Parametric Oscillator

A gain of 1cm-1 is of the same order of magnitude as the gain in a solid-state
laser, Nd-YAG for example, and an autooscillation may be obtained if the 
nonlinear crystal is placed inside a resonator having a high enough quality
coefficient.

The condition of oscillation is easily obtained from the length l of the
crystal and the product; as the phase condition is satisfied for only one direc-
tion of propagation the condition of oscillation is given by R1R2e

g l = 1; R1 and
R2 are the reflection coefficients of the two mirrors of the resonator and l is
the length of the crystal. A pumping power of about 50W/cm2 is needed with
a lithium niobate crystal and R1R2 = 98%.
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Interpretation of the Parametric Interaction in Terms of Photons

A parametric interaction can be described by the reaction:

(10.25)

The energy conservation on one hand, and the momentum conservation
on the other, give two equations that determine the signal and idler frequen-
cies, if the frequency of the pump is known:

• Energy conservation: w1 + w2 = w3. (10.26.a)
• Momentum conservation: n1w1 + n2w2 = n3w3 (10.26.b)

(in the case when the three beams have parallel wave vectors).

The quantum theory of parametric interactions is completely beyond the
scope of this book; the theory that was shown in Section 10.3.3 is a classical
theory corresponding to a stimulated parametric interaction, beside which
there is also a spontaneous interaction. Let n1, n2, and n3 be the respective
numbers of photons at the three frequencies (beware possible confusion
between the index of refraction and the number of photons), and the time
variations obey the following equations:

(10.27)

To justify equation (10.27) we can say that, at thermal equilibrium (d/dt =
0), the numbers of photons are consistent with the Bose-Einstein equation
(see Section 9.2),
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Figure 10.9. Parametric oscillator. The mirrors of the resonator are totally reflecting
for the signal and idler, and transparent for the pump. Signal and idler frequencies can
be tuned by tilting the angle q.



The unit terms in the brackets of equation (10.27) represent the sponta-
neous parametric interaction; if they were absent a parametric oscillator
could not start: if we make n1(0) = n2(0) and n3(0) π 0, we obtain

10.4.5. Parametric Frequency Conversion

The parametric frequency conversion in Optics is comparable to the hetero-
dyne methods that are currently used in Electronics. A heterodyne device is 
a device that receives a first carrying wave (frequency �1

carrier) modulated by
some signal f(t), and delivers a new carrying wave (frequency �2

carrier) modu-
lated by the same signal f(t). Since new frequencies are introduced, hetero-
dyning is obviously a nonlinear process. A good example is described in 
Figure 10.10. The beam of a CO2 laser (wavelength l1 = 10.6mm), that carries
a signal f(t), is mixed with the light of an Nd-YAG laser (wavelength l2 =
1.058 mm) in a nonlinear crystal. The light emerging from the crystal is mod-
ulated by f(t), the new carrying wavelength is now equal to l3 = l1l2/(l1 ± l2),
0.96mm or 1.17mm. The ± sign is determined by the phase-matching conditions.
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Nonlinear
crystal

Modulator f(t) Signal f(t) carried by
a wave l2 = 10.6 mm

Nd-YAG laser
l1 = 1.058mm

CO2 laser
l2 = 10.6mm

Signal f(t) carried by a wave
l3 = l1l2/(l1 ± l2)

Figure 10.10. The signal f(t) is first carried by a far infrared beam and then by a near
infrared beam, after an up-conversion of the frequency in a nonlinear crystal.

The Manley-Rowe Equation

There are two possibilities of achieving a frequency conversion:

• A photon of frequency �3 is split into two photons of frequencies �2 and
�1.

• Two photons �1 and �2 are mixed and generate a photon �3.

We consider three waves of frequencies �1, �2, and �3 that interact in a non-
linear crystal with �1 + �2 = �3. During the interaction they exchange energy,
the highest frequency wave loses some energy P3, while the two other beams,
respectively, gain P1 and P2. Any time that a photon �3 is created (or annihi-



lated) a photon v1 and a photon v2 are simultaneously annihilated (or created),
the result is a relation that is called the Manley-Rowe relation:

(10.28)

10.4.6. Interpretation of the Electrooptic Effect

The electrooptic effect, also called the Pockels effect, has already been intro-
duced on the occasion of induced birefringence (cf. Section 5.7.4.2), and it
was described how the application of a DC electric field modifies the index
of refraction of a crystal. We are now going to show that this effect can be
considered as a nonlinear effect, considering the DC field as having a fre-
quency equal to zero.

A DC electric field is applied to a nonlinear crystal inside of which is also
sent an optical wave of frequency w. The polarization of the crystal has a
linear part PL and a nonlinear part PNL. PL has a zero-frequency component 
to which is associated the static permittivity e(0) = e0, and a component at w,
to which corresponds a permittivity e(w) and an index of refraction

. Because of dispersion, e(0) and e(w) are often quite differ-
ent. The nonlinear part of the polarization now has a DC field and a 2w term.
The electric field in the nonlinear material and the polarization are given by
the following equations:

(10.29.a)

(10.29.b)

where e0c(w) comes from the linear interaction and 4dE(0) originates from the
nonlinear interaction; in fact it comes from the double product of the devel-
opment of the square brackets and is responsible for the presence of a term
that vibrates at w and contributes to the index of refraction at this frequency.
n + Dn and n being, respectively, the indices with and without a DC field, 
we have

(10.30)

Unfortunately, a difficulty is hidden behind equations (10.29). The non-
linear coefficient d is obtained from equations (10.8.b) and (10.10.b) and
depends on the frequency and surely takes a different value if the frequency
is equal either to zero or to w. The same kind of difficulty was also encoun-
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tered when the question was to give a general formulation of Maxwell’s equa-
tions. In Section 2.3.1.2 the difficulty was discarded by considering fields with
a narrow spectrum; the same trick cannot be used here, since we have, at the
same time, DC and optical signals. Ignoring this difficulty, we have obtained
an interesting interpretation of the Pockels effect; the calculated values of the
different coefficients are, however, in good agreement with the experimental
values.

10.5. Third-Order Nonlinear Phenomena

Third-order nonlinear effects come from the product of c(3) by three optical
fields having, respectively, three different frequencies w1, w2, and w3; in the
nonlinear polarization are found expressions such as

The Fourier spectrum is made of frequencies chosen from among the
various combinations of ±w1 ± w2 ± w3:

• w1 = w2 = w3 = w and (w1 + w2 + w3) = 3w Æ frequency tripling.
• w1 = w2 = w3 = w and (w1 + w2 - w3) = w Æ Kerr effect (see Section

10.4.1).

In the most general case three different fields, Ei
w1, Ej

w2, Ek
w3, are combined

to give a fourth field, El
w4; such interactions are also called four waves inter-

actions. The notation should provide many indications about the different fre-
quencies and polarizations and so the letters are heavily loaded with indices.
The nonlinear polarization is written as

(10.31)

The lower indices (ijkl) indicate on which axis (Ox, Oy, Oz) the field is
projected, the upper indices indicate the frequencies. The frequency w4 is
taken among ±w1 ± w2 ± w3.

Third-harmonic generation is easily obtained experimentally, and is
observed even in centrosymmetric materials, and is often used to obtain
coherent ultraviolet beams.

10.5.1. The Kerr Effect

The Kerr effect was already encountered on the occasion of induced bire-
fringence; we distinguished two types of the Kerr effect, the DC Kerr effect
and the optical Kerr effect. The first one corresponds to the application of a
DC electric field which, in fact, is often a field that varies slowly at the optical
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scale; it is interpreted as a nonlinear third-order effect, with:

• w1 = w2 = 0 (DC field).
• w3 = w4 = w (optical field).

The polarization has two components at w, one of linear origin and the
other of nonlinear origin. The index of refraction which comes from the polar-
ization at w now has two components:

• The first component, which is the most important, comes from the linear
part of the polarization, and is equal to the value of the index in the
absence of any DC field.

• The second, which has a nonlinear origin, is much weaker. Because of the
tensor character of equation (10.31), the material becomes anisotropic.

10.5.1.1. The Optical Kerr Effect

In the case of the optical Kerr effect the following set of frequencies is
selected: (w1 = w2 = w), (w3 = -w), (w4 = 2w - w = w), all these fields have the
same frequency. The nonlinear polarization is given by

The modification of the susceptibility at w and the expression of the index
of refraction are then given by the following expressions, where I is the light
intensity and Z is the wave impedance:

(10.32)

Because of the optical Kerr effect, the index of refraction is a linear func-
tion of the light intensity. The coefficient n2 is positive or negative; the
absolute value is very small; a very high power (kW-MW/cm2) is necessary to
demonstrate the Kerr effect. Equation (10.32) is too simple, because it doesn’t
take into account the induced birefringence. Under the action of the electric
field of the light wave the material becomes uniaxial, with the optic axis par-
allel to the field, the two principal indices are given by

One of the most famous materials for the Kerr effect is carbon disulfide
(CS2) for which n2 = +3 ¥ 10-12 mm2/W. In the case of silica (SiO2), n2 =
+3 ¥ 10-14 mm2/W. In some glasses, doped with crystallites of lead sulphide
(PbS), n2 can be as high as n2 = 10-7 mm2/W.
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10.5.1.2. Self-Phase Modulation

The index of refraction, that’s to say the phase velocity, of a Kerr-effect mate-
rial depends on the intensity of the light; as a consequence, the phase of the
light wave is modulated by the intensity. After propagation over a distance L
the phase shift is:

• f = nwL/c if the intensity is low.
• f = (n + n2I)wL/c for a higher intensity.
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n(I) = n + n2I
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I

Figure 10.11. The index of refraction is larger when the intensity is maximum. The
middle part of the pulse propagates slower than the front and the tail of the pulse, as
a result the duration of the pulse increases during propagation.

Another consequence is the augmentation of the duration of a light pulse
as it propagates inside a material where the index varies with the intensity,
as is shown in Figure 10.11. The case of the propagation of a light pulse is
more complicated, because of the time variation of the intensity. The instant
phase of a sine signal is proportional to the time, the proportionality coeffi-
cient being the frequency f(t) = wt. The phase of a sine wave can be written
as f(t, z) = (w0t - nz/c) and the frequency can be defined as the partial time
derivative of the argument. If the index of refraction is now a function of the
intensity, and the intensity a function of time, the phase at some point z is
given by f(t, z) = [w0t - (n + n2I(t))z/c], an instant frequency can be defined as
the time partial derivative of the argument

(10.33)

The equation shows that the frequency of the optical wave that carries the
pulse varies during propagation. This effect is known as chirping, from a word
that describes the modulated song of a bird. It can be shown that, if n2 is pos-
itive, the front of the output signal has as a lower frequency than the tail, see
Figure 10.14.
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10.5.1.3. Self-focusing

We refer to Figure 10.12. A parallel light beam arrives at a transparent mate-
rial; the intensity is not constant over the cross section and is maximum at
the center where, because of the optical Kerr effect, the index of refraction
is also maximum. The material becomes a gradient index lens, which is con-
verging if n2 is positive and focuses the beam: the cross section decreases
while the intensity increases, in other words, the focusing effect is more and
more important as the light propagates. The cross section would go to zero 
if the diffraction didn’t have an opposite action. The effect of diffraction is
noticeable only when the size of the cross section becomes of the order of
the wavelength. In the end, the initial beam is divided into tiny filaments (with
a diameter of the order of a few micrometers) inside which the intensity may
be extremely high.
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Self-focused filament

z

Spatial soliton 

Planar guide 

Figure 10.12. A beam with an inhomogeneous intensity repartition creates a gradient
of index of refraction, which has the same effect as a lens. If the lens is converging
the intensity along the axis is increased, the focusing effect becomes increasingly 
important, and the cross section of the beam decreases. When the cross section 
is of the order of the wavelength, diffraction has the opposite action. As a result, 
tiny filaments are produced with a diameter of a few micrometers and a very high
intensity.

These phenomena are known as self-focusing or self-trapping; they are
only observed with the light of powerful lasers. From a theoretical point of
view they are very complicated, since the equation of Helmholtz is no longer
linear and contains terms that are proportional to the square of the modulus
of the electric field of the light wave. The mathematical behavior of the solu-
tion is unstable and often chaotic. As the transversal repartition of intensity
across their sections is never very homogeneous, high-power laser beams are
transformed in many very brilliant filaments when they travel inside a Kerr
material. When the support of propagation has only two dimensions, a planar
waveguide for example, experimental conditions may be found where the
solution is stable; the filaments are then called spatial solitons. If n2 is posi-
tive, the filaments are bright and called white spatial solitons; if n2 is nega-
tive, dark spatial solitons are produced.



From a practical point of view self-focusing is often considered as a draw-
back which deteriorates the optical quality of powerful laser beams. Because
of the extremely high electric field existing in the filaments, irreversible
damage may be created inside the transparent materials.

In the case of a laser working in a multimode regime, the Fourier spec-
trum has many spectral components, the intense power enhances a large
variety of nonlinear effects (frequency beat, Raman and Brillouin scattering,
. . .), and the final result is a new light beam with a broad almost continuous
spectrum. An elegant application is described in Figure 10.13. A very short 
(1ps) and rather monochromatic (1nm) powerful laser pulse is divided into
two parts. One beam is focused on a cell filled with water; the transmitted
pulse has about the same duration and a larger spectrum (100nm). The two
beams intersect inside a sample; the first beam is used to probe the sample
when it is submitted to the illumination of the second beam. Thanks to an
optical delay line, the absorption spectrum of the sample is exactly analyzed
during the illumination of the sample, or at any time before or after.

10.5.1.4. Optical Solitons

Optical solitons were invented before spatial solitons; in both cases there are
two antagonistic mechanisms: one is linear, the other comes from a non-
linear optical interaction. The linear processes are, respectively, the disper-
sion, for optical solitons, and the diffraction, for spatial solitons. The 
nonlinear processes are automodulation and self-focusing. The linear process
tends to decrease the light intensity either by extending the pulse over a
longer period (dispersion) or by expanding the beam inside a larger area (dif-
fraction). Automodulation and self-focusing have exactly the opposite effect,
and tend to decrease the intensity. Because of these two antagonistic actions,
equilibrium is sometimes reached where the size and shape of the beam, in
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Figure 10.13. Time-resolved absorption spectroscopy experiment. This experiment
is also an elegant illustration of the inequality D�Dt ≥ 1.



one case, or the duration and profile of the pulse, in the other case, are con-
stant during propagation.

Optical solitons are thus light pulses that keep a constant duration and
profile, whatever the distances over which they propagate. The only practical
case where optical solitons are produced is in silica optical fibers; the per-
manency of the properties of optical solitons has been observed over
1000 km . . . . We will not attempt to write equations that are really compli-
cated, and will only consider the mechanisms that are illustrated in Figure
10.14.
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In a linear material with negligible dispersion, the two pulses are identical.  

In the case of anormal dispersion the highest frequency waves arrive first.

In the case of automodulation the lowest frequency waves arrive first.

One mechanism balancing the other, the light pulse tends toward 
a permanent shape and spectrum.

    Incident pulse   Material                    Transmitted pulse

Figure 10.14. Qualitative explanation of the propagation of solitons.



White and dark solitons: The explanation of Figure 10.15 is valid for
anormal dispersion. In the case of normal dispersion, the equilibrium of the
two mechanisms is still possible and produces “dark solitons,” which corre-
spond to a brief extinction of the intensity of a permanent beam.

Electromagnetic waves are the only domain where solitons may be
observed, they also exist in acoustic waves. Lord Rayleigh said that he
observed the propagation of a soliton along a channel and that, riding his
horse, he was able to follow it for several kilometers.

10.5.2. Phase Conjugation

Phase conjugation is a four-waves interaction, which is often considered as
degenerated, because the frequencies of the three waves are equal. In Figure
10.16 is shown the general arrangement of what is also called a four-waves
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Figure 10.15. Principle of phase conjugation. The nonlinear interaction of (1), (2),
and (3) generates a polarization repartition at w which, in turn, creates a fourth beam
propagation in the opposite direction of (3).
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Figure 10.16. Experimental demonstration of phase conjugation. In order to be
coherent and to have exactly the same frequency, beams (1), (2), and (3) are obtained
from the same laser beam. The existence of light along OA establishes the existence
of phase conjugation.
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Classical mirrors Phase conjugation mirrors 

Figure 10.17. Comparison between a classical and a self-conjugation mirror. In a
classical reflection, the tangential component of the wave vector is conserved and the
normal component is reversed. For a phase conjugation mirror both components are
reversed.

mixing experiment. Inside a nonlinear material, in which c3 is especially high,
are sent three waves labeled (1), (2), and (3); the source terms of equation
(10.13) generate a fourth wave, labeled (4). Waves (1) and (2) propagate in
opposite directions and are more powerful than (3).

For the sake of simplicity, we will ignore the polarization of the waves and
drop the indices i, j, k in equation (10.31). The three planar waves (1), (2),
and (3), and the nonlinear polarizations that they generate, are written as

(10.34)

To the polarization of equation (10.34) is associated a planar wave, prop-
agating in the opposite direction to the wave labeled (3). Everything happens
as if this last wave was reflected on the nonlinear crystal, which behaves as
a kind of mirror. From a physical point of view the two beams, (1) and (2),
produce, inside the crystal, a standing wave pattern on which beam (3) is
reflected.

Figure 10.17 is a comparison of the ways that light rays are reflected, either
on a classical mirror or on a phase conjugation mirror. In the last case, the
reflected ray follows the same path as the incident ray, but in the opposite
direction. The image of a real object is a virtual object, symmetric with respect
to the mirror plane. In the case of phase conjugation, the image and the object
are exactly superimposed.
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11

Raman-Brillouin-Rayleigh Diffusion

11.1. Raman, Brillouin, Rayleigh, and Mie Scattering

As early as 1923, Einstein generalized the notion of stimulated and sponta-
neous emission to a new kind of light scattering process, in which the fre-
quency of the scattered light is shifted with regard to the incident light. It was
only after their experimental demonstration that these new effects were given
a name, the spontaneous Raman effect in 1928 and the Brillouin effect in 1932.
It was not until 1963, and with the availability of powerful and monochromatic
laser beams, that the existence of the stimulated Raman effect was experi-
mentally demonstrated.

In the case of stimulated interactions many photons are emitted in the
same mode (see Section 9.2.1) and are coherent. It is possible to obtain a laser
action without the necessity of an inversion of population.

Raman and Brillouin diffusion of light is based on the electric dipolar inter-
action of an incident light beam of frequency w with the molecular electric
dipoles of a transparent material. The same model that allowed the calcula-
tion of the index of refraction (8.1) can describe the situation. In this model
the electric field of the light wave creates oscillating dipoles vibrating at the
same frequency w as the incident wave; the light that is transmitted by a piece
of material is the result of the interference of the incident beam with the elec-
tromagnetic field radiated by the dipoles. In the case of the Raman and Bril-
louin interactions, the oscillation frequency wm of the dipoles is different from
the incident frequency w. The frequency shift (Wm = w - wm), which can be pos-
itive or negative, is always small as compared to w and is specific to the mol-
ecular dipole.

As new frequencies are generated, the interaction between a light wave
and a piece of material is a nonlinear interaction.

The distinction between the Raman and Brillouin diffusions is not always
clear-cut; it is based on the fact that the vibrations of the different dipoles 
of the transparent material can either be independent or coupled to one
another.
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• The Raman effect corresponds to the case when the vibrations are inde-
pendent, which mainly occurs for gases or liquids.

• The Brillouin effect corresponds to the case when the molecular dipoles
are coupled by mechanical waves (acoustic waves if the frequency is low
enough) propagating inside the transparent material.

Because of the electric dipolar origin of the scattering process the efficiency
varies, in both cases, as the inverse of a fourth of the wavelength (1/l4).

The Brillouin diffusion effect is more general than the Raman diffusion
effect and can be observed in all materials, with an efficiency that is much
higher in dense materials (liquid or solid) than in dilute material (gas). Raman
diffusion is present only for specific molecules that are said to be Raman

active, or to show Raman activity.

Importance of the Homogeneity of the Medium 

Supporting the Propagation

We come back to the usual propagation of a light beam in a transparent 
material and consider a planar light wave (w, k) traveling in a transparent
material considered as a collection of electric dipoles that interact with the
oscillating electric field of the wave. Each dipole becomes a secondary source
emitting a spherical wavelet of frequency w. At a given point P (see Figure
11.1) which can be either inside or outside the transparent material, will 
arrive all the wavelets that have been emitted by all the different points; the
electromagnetic field at P results from the interference of all these wavelets.
The same theory was developed in Chapter 8; here we just want to empha-
size what happens when the medium is not perfectly homogeneous. It’s only
in the case when the homogeneity is perfect that the different spherical
wavelets reconstruct a planar wave with a wave vector parallel to the wave
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E

H

k P

Incident wave Transmitted wave

Figure 11.1. A transparent material is made of a set of electric dipoles. Set in
vibration by the electric field of an incident light wave, the dipoles emit spherical
wavelets. The electromagnetic field at some point P is the result of the interference of
the wavelets. For the sake of symmetry, the transmitted wave that is reconstructed
from an incident planar wave (of infinite transverse extension) should also be planar.



vector of the incident wave. The existence of nonhomogeneous domains
breaks the symmetry, the reconstructed transmitted wave is no longer planar:
the Fourier planar wave decomposition shows a wave in different directions.

If the medium is not homogeneous, the situation is different: some light is
scattered in directions other than the incident wave vector. The intensity of
the diffused light may be important and, for example, is responsible for the
blue color of a clear sky, as well as for the milky appearance of clouds. The
properties of the diffused light are determined by the size of the domains
inside which the material is not homogeneous:

• Rayleigh diffusion: The domains are much smaller than the wavelength.
The efficiency of the diffusion process varies as 1/l4 is a function of the
wavelength.

• Mie diffusion: The dimension of the domains is comparable to the wave-
length. The efficiency is almost independent of the wavelength.

11.2. Experimental Introduction to the Raman Effect

11.2.1. Description of the Original Raman Experiment

For his original experiment Raman used benzene (C6H6). The light source,
(nowadays we would say the pumping light), was a mercury vapor discharge
followed by a filter isolating only one ray of frequency �pump. If no special care
was taken, the diffused light appeared to be monochromatic and to have the
same frequency as the pumping light; in fact the diffusion occurred on the
dust particles and on the bubbles contained in the liquid. If the benzene was
carefully filtered and distilled several times, the diffused light became less
intense allowing the appearance of two families of rays, the frequencies of
which are different from the pumping frequency, some frequencies being
higher and others being lower than �pump.

The two families of rays are now, respectively, called the Stokes and the
anti-Stokes rays:

• Stokes rays: Their frequencies, �S, �¢S, �≤S, . . . , are lower than the pumping
frequency.

• Anti-Stokes rays: Their frequencies, �AS, �¢AS, �≤AS, . . . , are higher than the
pumping frequency.

• The anti-Stokes rays are less intense than the Stokes rays.

The absolute values of the Stokes and anti-Stokes frequency shifts are
equal and specific to the Raman active molecules (benzene in the original
Raman experiment),

(11.1)

� � � � �

� � � � �

� � � � �

AS S

AS S

AS S

- = - =
¢ - = - ¢ = ¢
¢¢ - = - ¢¢ = ¢¢

Ï
Ì
Ô

ÓÔ

pump pump molec

pump pump molec

pump pump molec

,

,

.

11.2. Experimental Introduction to the Raman Effect 481



11.2.2. Raman Spectroscopy

Independently of any theoretical interpretation, Raman diffusion is a very
interesting tool for chemical analysis, since a Raman spectrum is a type of
signature of the diffusing molecules. Furthermore, it provides information
about the chemical bonds between the atoms of a molecule.

Using a laser, instead of a spectral lamp, considerably shortens the time
of exposition of the photoplates, which, in most Raman spectrometers, are
now replaced by an array of photodiodes.

Raman Effect Microprobe

The Raman microprobe is a transposition of the electron scanning microprobe
in which a beam of monokinetic electrons is sharply focused on the surface
of material to be analyzed. Under the impact of the electrons the atoms of the
target emit X-rays. The identity of the atoms is revealed by a spectral analy-
sis of the emitted X-rays.
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Mercury vapor
discharge

Optical filter 
(npump)

Raman active
liquid

Raman light

Photoplate for recording
the Raman spectrum

Figure 11.2. Original Raman arrangement. A monochromatic light beam illuminates
a cell, filled with a Raman active material. Part of the Raman light, which is
spontaneously emitted in the 4p steradian, is collected by a lens and analyzed by a
dispersing prism. To avoid the dazzling effect of the pumping light, the diffused light
is observed in an orthogonal direction. The Raman light is extremely weak; the
exposure time was several weeks.



In a Raman microprobe, a laser beam is sharply focused on the surface of
a Raman active sample, the molecules of which emit Stokes and anti-Stokes
rays. The local chemical composition is deduced from a spectroscopic analy-
sis of the Raman light. A mechanical scanning of the target provides cartog-
raphy of the chemical composition.

Lidar (Light Detection and Ranging) is the apparatus that inspired Radar
(Radio Detection and Ranging). Short and powerful light pulses coming from
a Q-switched laser are sent into the atmosphere where they interact with the
molecules they meet, mostly nitrogen, oxygen, and water, and also the
inevitable impurities. These molecules reemit some light by a spontaneous
Raman effect, each of them having a specific spectrum. Part of the Raman
back-scattered light is collected by the telescope and analyzed by a spectro-
scope which gives an electric signal, from which the position (by measuring
the flight time) and the identity (by spectral identification) are measured.

11.2.3. Stimulated Raman Effect, the Woodbury and 

Ng Experiment

The diffusion of light in the original Raman experiment corresponds to a 
spontaneous Raman effect. In 1923 Einstein introduced the possibility of a
stimulated effect, an experimental demonstration was made by chance in
1963, at the early stages of laser Q-switching. The two physicists, Woodbury
and Ng, used a Kerr cell filled with mono-nitrobenzene (C6H5NO2) to obtain
giant pulses from a ruby laser (see Figure 11.6 and also Figure 9.34) and were
surprised to find that the laser light contained two spectral components:
beside the usual component at 694.3nm of a ruby laser another component
was observed at 765.8nm which, having nothing to do with any frequency of
the ruby spectrum, was rapidly identified as a Raman-Stokes frequency of
C6H5NO2.

As many aromatic compounds, mono-nitrobenzene is well known to show
Raman activity; the Raman shift is equal to 1340cm-1 and corresponds to a
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Toward spectroscope
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Raman light

Figure 11.3. Scanning Raman microprobe. A laser beam is sharply focused on the
surface; the focal point becomes a light source emitting, by the spontaneous Raman
effect, the Stokes and anti-Stokes frequencies.
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Table 11.1. Chart of some Raman frequencies.

Frequency, Type of chemical Chemical compounds
cm-1 bond

445–550 S—S aliphatic disulfide

490–522 C—I aliphatic iodide

510–594 C—Br aliphatic bromide

570–650 C—Cl aliphatic chloride

600–700 C—SH mercaptans

630–705 C—S aliphatic sulfide

700–1100 C—C aliphatic carbon-carbon bond

750–850 benzene ring paraderivatives of benzene

884–899 5 carbon ring monosubstituted cyclopentane

939–1005 4 carbon ring cyclobutane and derivates

990–1050 benzene ring benzene and mono-, bi-, tri-substituted benzene

1020–1075 C—O—C aliphatic compound

1085–1125 C—OH aliphatic alcohol

1120–1130 C=C=O aliphatic compound

118–1207 3 carbon ring cyclopropane and derivativees

1190 SO2 aliphatic compound

1216–1230 —S=O aliphatic compound

1340 NO2 aromatic compound

1380 NO2 aliphatic compound

1610–1640 N=O aliphatic compound

1620–1680 C=C aliphatic compound

1630 C=N aliphatic compound

1654–1670 C=N aliphatic compound

1650–1820 C=O aliphatic compound

1695–1715 C=O aliphatic compound

1974–2260 triple bond C∫C aliphatic compound

2150–2245 triple bond C∫N nitriles

2800–3000 C—H aliphatic compound

3000–3200 C—H aliphatic compound

3150–3650 O—H aromatic compound

3300–3400 N—H aliphatic compound

4160 H—H gaseous hydrogen



vibration of the radical NO2. If we make 1/l1 - 1/l2 = 1340nm and l1 = 694.3
nm, we obtain l2 = 765.8nm. The monochromatic and well-collimated char-
acteristics of the beam emitted at this frequency clearly demonstrate the stim-
ulated origin of the new beam.
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Cloud of molecules to
be detected
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Figure 11.4. Lidar scheme. The light of a powerful laser is sent into the atmosphere
via a telescope, which also collects the spontaneous Raman light emitted by molecules
located several miles away.
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Water

Existence of
molecules at 1.25 km

Back scattered signals
at different frequencies

Existence of
a cloud at 0.9 km

Oxygen

Figure 11.5. Typical curves obtained with a Lidar. At frequencies corresponding to
the molecules that are always met in the atmosphere (nitrogen, oxygen, water, . . .) the
return signal decreases as the inverse of the square of the distance.
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Mirror Mirror

High voltage
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Well-collimated beam
with two spectral components

694.3nm and 765.8nm

Kerr cell

Polarizer

Figure 11.6. Q-switching of a ruby laser with a Kerr cell filled with nitrobenzene. The
electromagnetic density is so high inside the laser cavity that the stimulated Raman
effect becomes very important.

Laser
pumping
beam

Raman active
material

Initial laser light
and Stokes light

Zone with a high light density

Figure 11.7. Stimulated Raman interaction is all the more efficiently produced when
the pumping energy density is higher. Focusing the pumping beam increases the
density inside the focal volume. The coherent Stokes light that is generated comes
from the focal point of the first lens and is then collimated by the second lens.

Other Experimental Arrangements for Obtaining 

the Stimulated Raman Effect

An important research effort was produced during the 1965–1975 decade to
develop Raman lasers, which had the interest of enriching the number of avail-
able coherent laser frequencies. Efficient materials for the Raman effect are
often made of polar molecules and, consequently, the threshold for obtaining
self-focusing is quite low. It is now known that self-focusing often has a
chaotic behavior, that is the reason why Raman lasers appeared impossible
to tame. Meanwhile, dye lasers and optical parametric oscillators proved to
be more convenient, and the interest in Raman lasers rapidly decreased. There



are two cases where self-focusing effects can be ignored:

• High-pressure gaseous material: The small value of the number of 
molecules per cm3 makes it difficult to run a stimulated Raman effect in a
gas; however, very nice experiments have been reported in high-pressure
hydrogen.

• Single-mode silica fibers: See Section 11.3.2.

11.3. Theoretical Analysis of the Raman Effect

Raman interaction can be either spontaneous or stimulated. As in the case 
of the usual interaction of radiation with a collection of two-level atoms, the
stimulated effect can receive either a classical or a quantum interpretation.
We will first describe the classical model of interaction and then describe the
Einstein theory for introducing spontaneous and stimulated effects.

11.3.1. The Classical Model of Raman Interaction

An atom is made of a nucleus surrounded by electrons: most of the electrons
are bound to the nucleus. A molecule is made of atoms that are linked together
by chemical bonds, which correspond to most external electrons that are not
bound to a specific nucleus and make a cloud ensuring the chemical stability
of the arrangement. A molecule is thus a set of heavy positively charged nuclei
and of light negatively charged electrons. All these particles can vibrate; a 
harmonic oscillator, which has a specific eigenfrequency, represents each
vibration:

• The eigenfrequencies of nuclei belong to the infrared (ª 1000cm-1); they
are designed by �molec,i, where i is used to label the atom inside the 
molecule.

• The eigenfrequencies of electrons are much higher and belong to the ultra-
violet part of the spectrum (ª 25,000cm-1), they are designed by �electron,k,
where k is used to label the electron inside the atom.
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Figure 11.8. Stokes photons are emitted in any direction. In this case the photons
that are emitted perpendicular to the mirrors are stored: because of the cumulative
effect of stimulated emission a coherent beam is emitted.



When a molecule is submitted to the action of an optical wave, the nuclei
are too heavy to follow and vibrate with negligible amplitude; on the contrary,
the electron will vibrate more easily. The two kinds of motion (nucleus or
electron) can either be completely independent, or they can be coupled
together. In the last case, part of the excitation of the electrons is transferred
to the nuclei, which are set in vibration: of course, the nuclei will vibrate at
one of their eigenfrequencies �molec,i. The ith mode of vibration of the mole-
cule is then said to be Raman active.

If a Raman active molecule is illuminated by a light beam of frequency 
w = 2p�, its electrons vibrate at the same frequency, while the nuclei vibrate 
at �molec,i. Adopting a phenomenological point of view, we consider that the
electric dipolar momentum of the molecule varies according to the following
law:

(11.2)

where a is a proportionality coefficient and e is a unit vector.

11.3.1.1. Raman Diffusion Is a Nonlinear Process

Formula (11.2) clearly shows the nonlinear aspect of Raman interaction. 
The two frequencies (� ± �molec,i) come from the corresponding terms in the
expression of the electric dipolar momentum. This model gives a nice inter-
pretation of the Raman diffusion; unfortunately, the Stokes and anti-Stokes
rays should have the same intensity, which is in contradiction to the experi-
mental observations. Einstein’s theory anticipates different amplitudes for 
the two rays, the ratio of which is in good agreement with the experimental
results.

11.3.2. Einstein’s Theory, Raman Effect

11.3.2.1. Real and Virtual Energy Levels 

By absorption of a photon of frequency �, a molecule reaches the level 
E¢ = (E0 + h�) if initially on level E0, and level E≤ if initially on level E1.

Since they are not allowed levels of the molecules, E¢ and E≤ are called
virtual levels. The molecule cannot stay for long on these energy levels and
makes almost immediately a transition toward one of the two allowed states,
E0 or E1:

• If the molecule makes the following trip:

a photon of frequency � is first annihilated and then a photon of frequency
�Stokes = (� - �molec) is created. This is Raman-Stokes diffusion.

E E E h E0 0 1Æ ¢ = +( ) Æ� ,

m = = -( ) + +( )[ ]a w w
a

w w w we ecos cos cos cos ,, , ,t t t ti i imolec molec molec
2
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• If the molecule makes the following trip:

a photon of frequency � is first annihilated and then a photon of frequency
�anti-Stokes = (� + �molec) is created. This is Raman-anti-Stokes diffusion.

• If the molecules make one of the following trips:

a photon � is first annihilated and then a new photon of frequency � is
created again. This is Rayleigh diffusion.

We now consider the interaction of a collection of molecules at thermal
equilibrium between the two states E0 and E1 with a pumping beam: the
numbers of Stokes and anti-Stokes diffusions are, respectively, proportional
to the populations of the two levels. The lower level being more populated,
the number of Stokes photons exceeds the number of anti-Stokes photons.
The ratio of the two intensities is obtained from the Maxwell-Boltzmann ratio
of populations,

(11.3)

11.3.2.2. Equilibrium in a Blackbody

After having invented this new mechanism for the interaction of an electro-
magnetic radiation with a collection of molecules, Einstein could not resist
the temptation of enclosing a sample of some Raman active material inside a
blackbody. The problem is now to describe the coupling mechanisms between
the following objects:

• Mode (1) of the blackbody with n1 photons of frequency �1.
• Mode (2) of the blackbody with n2 photons of frequency �2 = �1 - �molec.
• Mode (3) of the blackbody with n3 photons of frequency �3 = �1 + �molec.

I

I
e eE E kT h kTanti-Stokes

Stokes

molec= =- -( ) -1 0 � .

E E E h E E E E h E0 0 0 1 1 1Æ ¢ = +( ) Æ Æ ¢¢ = +( ) Æ� �or ,

E E E h E1 1 0Æ ¢ = +( ) Æ� ,
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E0 and E1 =  molecule energy levels

E¢ and E≤ = virtual levels 

By absorption of a photon hn the molecules are
raised up to the levels E¢= (E0 + hn) or E≤ =
(E1 + hn). E¢ and E≤ are not eigenlevels Æ the
molecules almost immediately fall again on one
of the two levels E0 or E1, with emission of
photons of frequencies hn or h (n ± nmolec).

Vmolec = (E1 – E0)/h,
v = light wave frequency: n >> nmolec.

Figure 11.9. Real and virtual energy levels of a molecule.



• Collection of molecules with two energy levels E1 and E0 of respective 
populations N1 and N0.

We will consider independently the equilibrium of the collection of 
molecules with modes (1) and (2) on one hand and with modes (1) and (3)
on the other hand. The interaction mechanisms are phenomenological and
find their justification in the fact that they give the right statistical distribu-
tions for the two kinds of photons and for the molecules. Following Einstein
we will use the electromagnetic energy densities u1 and u2 at the respective
frequencies �1 and �2 and we introduce two phenomenological coefficients 
A and B.

We first consider the case of the Stokes interaction, �2 = (�1 - �molec) < �1,
and introduce the spontaneous and stimulated processes:

• Spontaneous effect:

• Stimulated effect:

• Cumulative action of the two effects:

(11.4)

At equilibrium the populations remain constant:

Inside a blackbody at thermal equilibrium, u1 and u2 are given by

As the two frequencies �1 and �2 are almost equal we can write

Formula (11.3) gives exactly the expected value for the ratio of the popu-
lations, which can be considered as proof of the validity of the Einstein model
and justification for the existence of spontaneous and stimulated Raman
processes.
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Instead of using the electromagnetic energy density, u�, we can also intro-
duce the number of photons. Let n1 and n2 be the respective numbers of
photons at the frequencies �1 and �1, the phenomenological equations become

(11.5)

(11.6)At equilbrium:
equilibrium equilibrium
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A photon n2 interacts with a ground state
molecule and is annihilated; the molecule
gets excited and a photon n2 is created.

A photon n1 interacts with an excited
molecule and is annihilated; the molecule
falls to the ground state, a photon n2 is
created.
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Figure 11.10. Illustration of Raman spontaneous interactions. 

Stimulated Raman effect 
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Two photons (n2, n1) interact with a ground
state molecule. The photon n2 is annihilated;
the photon n1 stimulates the creation of a
second and identical photon n1. The
molecule falls to the ground state.

Two photons (n2, n1) interact with an excited
molecule. The photon n1 is annihilated; the
photon n2 stimulates the creation of a second
and identical photon n1. The molecule gets
excited.
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Figure 11.11. Illustration of Raman stimulated interactions.



If we make n1 = 1/(eh�1/kT - 1) and n1 = 1/(eh�1/kT - 1) we obtain

Very similar equations can be written for the anti-Stokes ray,

(11.7)

(11.8)

Remarks

(a) In the parentheses such as (ni + 1), the term ni corresponds to the stim-
ulated effects (emission or absorption), while the term +1 comes from
the spontaneous emission.

(b) Although ni is a number of photons, its value is not necessarily an
integer, since it is the expected value of the number of photons over a
large number of identical systems placed in similar situations. This is the
reason why we will often speak of numbers of photons that are small

compared to unity.

11.3.2.3. Interpretation of the Raman Initial Experiment

The conditions of the initial Raman experiment of Figure 11.2 are not strictly
the conditions of a blackbody at thermal equilibrium, since the collection of
benzene molecules is illuminated by a pumping beam of frequency �1. It can
be considered that:

• The collection of benzene molecules is very close to thermal equilibrium:
N1/N0 @ e-h(E1 - E0)/kT.

• The number of Stokes photons n2 is equal to zero.
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• The number of anti-Stokes photons n3 is equal to zero.
• The number of pump photons n1 is far greater than one.

Under such conditions equations (11.5) and (11.8) reduce to

Spontaneous photons haven’t any specific direction and are emitted in the
4p steradians. The Raman light intensity is proportional to the intensity of 
the pumping beam n1. The Stokes light is proportional to the population of
the ground level N0; the anti-Stokes light is proportional to the population 
of the excited level N1.

dn

dt

dn

dt
An N

3 1
1 0= - = for the anti-Stokes ray.

dn

dt

dn

dt
An N

2 1
1 0= - = for the Stokes ray,
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 Spontaneous effect: One photon interacts with one molecule. 

Stokes
photon1 + molecule ´ photon2 + molecule* 

hn1 hn1 
hn3

hn1 

hn2

hn2 hn3
hn1

 One photon, n1, is annihilated. 

 One molecule is excited. 
 One photon, n2, is emitted in any direction. 

n2 = (n1 – nmolec)

 One photon, n2, is annihilated. 

 One molecule falls to ground level.
 One photon, n1, is emitted in any direction. 

Anti-Stokes
photon1 + molecule ´ photon3 + molecule* 

 One photon, n1, is annihilated. 

 One molecule falls to ground level. 
 One photon, n3, is emitted in any direction. 

n3 = (n1 + nmolec)

 One photon, n3, is annihilated. 

 One molecule is excited. 
 One photon, n1, is emitted in any direction. 

Figure 11.12(a). Spontaneous Raman transitions.



11.3.2.4. Raman Laser

We refer to Figures 11.13 and 11.14, a coherent and powerful light beam (�1)
is sent into a collection of Raman active molecules. This pumping beam is
parallel to the Oz axis. The Raman material extends from the abscissa z = 0
to z = L. A lot of identical Stokes photons (�2 = �1 - �molec) are produced by
stimulated Raman emission and make a parallel beam and a monochromatic
beam, which have the properties of a laser beam and will be designated as
“the Raman laser beam.” We admit that the two beams are collinear and prop-
agate at the same speed V, we have the following expressions where n1(z)
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mode as the initial photon, n3.

Two photons, n1 and n2 , interact with a

molecule at the excited state. 
The photon of lowest frequency, n1, is
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A second photon, n2, is created in the same

mode as the initial photon, n2.

Two photons, n1 and n3 , interact with a

molecule at the excited state. 
The photon of lowest frequency, n3, is

annihilated.
A second photon, n1, is created in the same

mode as the initial photon, n1.

Two photons, n1 and n2 , interact with a

molecule at the excited state. 
The photon of lowest frequency, n2, is

annihilated.
A second photon, n1, is created in the same

mode as the initial photon, n1.

n3 = (n1 + nmolec)

Stimulated effect: Two photons interact simultaneosly with one molecule.

Figure 11.12(b). Stimulated Raman transitions.



and n2(z) are the respective photon densities:

(11.9.a)

(11.9.b)

Relation (11.9.b) is only a consequence of the fact that, each time a 
Stokes photon �2 is created, a photon �1 of the pump is annihilated; it’s also
an expression of the energy conservation. We consider that the populations
of the molecular levels are constant and keep their Maxwell-Boltzmann equi-
librium values.

The integration of equation (11.9.a) is not easy because of the existence
of the term n1(z)n2(z). We first look at what happens at the entrance of the
sample (z @ 0); there are very few Stokes photons, most of them are emitted
spontaneously in all directions (4p steradians) and constitute the noise from
which the Raman laser will start. For z @ 0, the number of Stokes photons
belonging to the Raman laser beam is only a small part of the spontaneous
photons; we assume that n2(z) linearly increases with the abscissa,
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Raman material

OPumping
light beam, n1

Transmitted beam, n1
and Stokes beam, n2

z = 0 z = L

Figure 11.13. Emission of a coherent beam at the Stokes frequency. The size of the
small rectangles is proportional to the number of the Stokes photons at abscissa z.

Pumping
beam

A

C

B

D

Figure 11.14. A pumping beam is sent into a cell filled with a Raman active material.
The Stokes photons are produced by spontaneous and stimulated effects. The Stokes
photons that are emitted in the same direction as the pumping beam interact over 
a longer distance and have a better opportunity to stimulate other interactions: as a
consequence, a coherent beam is generated at the Stokes frequency, its geometrical
characteristics are identical to those of the pumping beam.



This linear relation is valid as long as the number of photons remains much
smaller than one. If the sample is short enough, this condition is valid at 
any point inside the sample: only a spontaneous Raman effect is observed.
For longer samples, it may happen that n2(z) becomes greater than one. Let
z be the abscissa for which n2(z ) = 1, for z > z the numbers of photons n1(z)
and n2(z) are both greater than one; equation (11.9.a) simplifies as

(11.10.a)

(11.10.b)

The derivative of n2(z) is positive and proportional to n2(z), which implies
an exponential growth. This fast variation cannot last forever, the limitation
comes from relation (11.9.b): as n2(z) increases, n1(z) and, correlatively, 
the constant D of equation (11.10.b) decreases. The integration of equation
(11.10.a) is now possible:

(11.11)

From equation (11.11) we see that n2(z) becomes equal to n1(0) as z Æ •:
all the energy is transferred from the pumping beam to the Raman beam.

The arrangements of Figures 11.15 and 11.14 are basically the same, except
that in the first one a lens is used to obtain a higher energy density in the focal
zone, which lowers the global power required for the stimulated regime to
become predominant.

We refer again to Figure 11.14 where an incident cylindrical beam propa-
gates inside a Raman active material. Once it has been emitted, a spontaneous
Stokes photon may stimulate the creation of identical photons, this is only
possible as long as this photon remains inside the volume that is illuminated
by the pumping beam, which is bounded by ABCD. The photons that are
emitted perpendicular to the direction of propagation rapidly escape from this
volume and produce only a few stimulated emissions. On the contrary, a
photon, which by chance has been emitted in the direction of the pumping
beam, will stimulate the creation of many identical phonons.
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11.3.2.5. Raman Laser Oscillator

We refer to Figure 11.16(a). Only one beam is sent into the Raman active mate-
rial. The laws of variation of the numbers of pump photons, n1(z), and of the
Stokes photons, n2(z), have been given by formulas (11.11) and are plotted in
the figure. At the beginning the interaction is weak: the variation of n1(z) and
n2(z) is very slow and mostly due to spontaneous emission. After a distance
Lthreshold, which is called the threshold length, stimulated emissions suddenly
predominate and coherent Stokes photons are massively produced: we then
speak of Raman laser emission. It is important to notice that this laser effect
doesn’t require any inversion of population.

For a given material Lthreshold decreases with the pumping power. Laser
action is obtained when the length of the cell is greater than the threshold
length. Conversely, inside a given cell, there is a threshold power above which
laser action is observed. In fact it’s not the global power that matters, but 
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Focal volume with a
high electromagnetic

energy density

Stokes beam
and

Pumping beam

Pumping
beam

Figure 11.15. A lens is used to increase the local energy density. A coherent Stokes
beam, having the same geometric characteristics as the incident beam, is emitted in
the focal zone and then recollimated by a second lens.

n1(0) n1(0)

n2(0)
n2(0)

n2(z)n1(z)

zL threshold 

Raman oscillator, n2(0) = 0 

z

 Raman amplifier, n2(0) > 0

n2(z)

n1(z)

n1(0) + n2(0)

(a) (b)

Figure 11.16. Variation of the number of pump and Stokes photons as a function of
the length of propagation. In the case of (a), there is no input signal at the Stokes
frequency: above a distance Lthreshold, stimulated interactions predominate, correspond-
ing to a new kind of laser oscillator. In the case of (b), two beams are simultaneously
sent into the Raman active material; n2(0) is not equal to zero, stimulated interactions
immediately predominate: the Stokes beam is amplified.



the electromagnetic energy density inside the pumping beam, which can be
increased by focusing.

Laser Action Is not Possible at the Anti-Stokes Frequency

For the anti-Stokes ray, equation (11.10.a) becomes

(11.12)

with D = (A/c)(N0 - N1). The derivative of the number of anti-Stokes photons,
dn3 /dz, is negative making any exponential growth impossible.

Forward and Backward Raman Diffusion

When writing equations (11.9) and (11.10), we considered that the sponta-
neous Stokes photons emitted in the same direction could interact over a long
distance with the pumping beam. In fact this is also true for the photons that
are emitted in the opposite direction. A coherent beam is also emitted at the
Stokes frequency and propagates in the opposite direction to the pumping
beam.

11.3.2.6. Higher-Order Raman Diffusion

We now come back to the experimental arrangements of Figures 11.14 
and 11.15 and we suppose that the cell is longer than Lthreshold: the coher-
ent pumping beam, �1, is converted into a new coherent beam of frequency �¢2
= (�2 - �molecule), which can in turn act as a pumping beam and generate a
second coherent beam of frequency �¢2 = (�2 - �molecule) = (�1 - 2�molecule). If the
initial pumping beam is powerful enough a third coherent beam of frequency
�2≤ = (�1 - 3�molecule) will be generated. Finally, the spectrum of the light emit-
ted by the cell may be very rich. The different beams are, respectively, called
first-, second-, and third-order, . . . Raman beams.
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Pumping
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Backward
Raman laser

Forward Raman laser
and

Transmitted pumping light

Beam
splitter

Figure 11.17. Raman diffusion may occur in any direction. The Stokes photons 
that are emitted in the opposite direction to the pumping beam also remain in an
illuminated zone, which makes a laser action possible.



Complication Due to Self-Focusing

Most Raman active molecules are also polar molecules, which means that 
self-focusing is easily observed in the corresponding liquids. The energy
density being very high inside an autofocused filament, the stimulated Raman
threshold is more easily reached; unfortunately, self-focusing is often chaotic,
making it almost impossible to tame the Raman lasers. Because of the high
pumping density a large variety of nonlinear effects is obtained, the result
being complex combinations of the initial laser frequency and of the various
Raman frequencies, a very rich and almost continuous spectrum is obtained
(see Figure 10.13).

11.3.2.7. Raman Effect in Optical Fibers

The SiO2 molecule shows a Raman active transition at N = 250cm-1. Single-
mode optical fibers are a very favorable medium for achieving the stimulated
Raman effect because extremely long samples are available and, more impor-
tant, there is no self-focusing. There are two main arrangements:

• Optical oscillator providing a coherent source at the Stokes frequency.
• Optical amplifier.
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Silica fiber

lpump = 1.06 mm

Filter to reject lpump

l1

l2

50 to 500 cm

Figure 11.18. The Raman laser oscillator. The light of an Nd-YAG laser is focused in
a monomode fiber. According to the pumping power, one or several wavelengths (l1,
l2, . . .) are obtained, corresponding to the different Raman orders (1/l1 = 1/lpump - N,
1/l2 = 1/lpump - 2N, . . .).

In the arrangement of Figure 11.18, we must wait until the stimulated emis-
sion has produced enough Stokes photons before the stimulated interaction
predominates. In the case of Figure 11.19, another procedure is followed: two
coherent beams, of respective frequencies �pump and �signal = (�pump - �molecule),
are simultaneously sent into the fiber. This situation is described in Figure
11.16(b): the stimulated interactions immediately predominate and the energy
of the highest frequency beam (pumping beam) is transferred to the lowest
frequency beam, which is amplified.



11.4. Brillouin Diffusion

Brillouin diffusion of light is very similar to Raman diffusion:

• Nonlinear process involving the emission of new optical frequencies.
• Existence of spontaneous and stimulated effects.

There are however important differences, which are listed below:

• The frequency shifts are much smaller in the Brillouin case (ª cm-1) than
in the Raman case (thousands of cm-1).

• The Brillouin effect occurs in dense materials (liquids or solids). Any ele-
mentary volume, even if it’s small compared to the wavelength, will always
contain many atoms or molecules that diffuse the light. Because of the
close proximity of those radiating elements, the vibrations that are dif-
fused are coherent and interfere.

Because of the small value of the frequency shift, very monochromatic
light sources are required to study the Brillouin effect. For the same reasons,
the liquids should be perfectly free of bubbles and dust and the solid samples
free of impurities, dislocations, or other imperfections.

11.4.1. A Homogenous Dense Material Doesn’t Diffuse Any Light

To evaluate the light that is diffused out of a macroscopic sample of mate-
rial, we must integrate the contributions of the different elements. We are
going to show that this integral is equal to zero if the material is perfectly
homogeneous, and that the existence of diffused light originates from the exis-
tence of irregularities. We refer to Figure 11.20, a parallel monochromatic
beam propagates in a transparent material, and we want to determine the light
that is diffused in a direction that makes an angle q with the incident beam.
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Figure 11.19. Raman optical amplifiers. A low optical signal is mixed with the light
of a powerful laser. The difference between laser and signal frequencies is equal to the
Raman frequency of SiO2.



The diffusing volume is divided into thin parallel slices oriented parallel to
the bisector of the angle q; all the molecules of a given slice, T1 for example,
send in this direction elementary contributions that all have the same phase
(this is easily understood by virtually replacing the slice by a mirror). We now
consider a second slice T2 parallel to T1 and separated by a distance d; the
optical path difference D and the phase difference j, and between the respec-
tive contributions of the two slices, respectively, are given by

(11.13)

A given elementary slice can always be paired with another one located
at a distance d such that j = p ; the two contributions then have opposite
phases; if the material is perfectly homogeneous, they have equal amplitude
and, finally, they mutually cancel by destructive interference. In other words,
there is no diffusion in the direction q; except if q = 0, which corresponds 
to the propagation of the incident beam. The previous demonstration is no
longer valid in the following two cases:

• The sample is very thin and reduces to a thin film. In this case, the slice
reflects the light as if it were a mirror, except that the reflected intensity
varies with the wavelength (think of antireflection coatings).

• The material is not homogeneous; the amplitude of the contributions of
the two paired slices don’t exactly cancel by interference. The light dif-
fused from a dense material is due to the existence of irregularities.

11.4.2. Diffusion of Light by a Crystal

Let us consider a crystal sample of “good quality”; this may contain two kinds
of heterogeneities that contribute to light diffusion:

(a) Permanent irregularities due to crystal imperfections: interstitial atoms,
vacancies, and dislocations of the network.
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D = T1T2 + T2H = 2d sinq/2

Figure 11.20. Brillouin diffusion of light. The diffusing volume is divided into parallel
slices that are thin compared to the wavelength.



(b) Transient irregularities due to thermal agitation, to which are asso-
ciated density fluctuations that can, in turn, be subdivided into two 
categories:

Entropy fluctuations (in fact, temperature fluctuations).
Acoustic vibrations propagating erratically inside the crystal.

We will only be concerned with (b) type heterogeneities.

Rayleigh Diffusion

The entropy fluctuations are accompanied by fast density fluctuations, occur-
ring erratically with no correlation from one point to the next. The light dif-
fusion occurs at constant frequency, except for a broadening of the spectrum.
This kind of diffusion is referred to as Rayleigh diffusion; its efficiency is
proportional to the absolute temperature and cancels at 0 K.

Brillouin Diffusion

In a solid sample, because of thermal agitation, a given atom vibrates around
an equilibrium state; the motions of two adjacent atoms are not independent
and are coupled together, which corresponds to the propagation of acoustic
waves. To these waves, Quantum Mechanics associates particles that are
called phonons.

At a given temperature T K, acoustic waves in any direction run across
any solid sample; their frequency spectrum goes from low frequencies up to
very high frequencies (possibly infrared). A modulation of the pressure inside
the material and, consequently, a modulation of the density and of the index
of refraction should be associated to any acoustic wave propagating inside a
transparent sample. This optical heterogeneity produces the diffusion of a
light beam propagating through the sample.

11.4.3. Classical Theory of the Brillouin Effect

We consider a transparent material that supports a parallel optical beam of
frequency �opt and a parallel acoustic wave of frequency �acoust. Because of the
acoustic wave the atoms are set in vibration at this last frequency; the elec-
tric field of the optical vibration that is emitted by an atom is phenomeno-
logically written as

(11.14)

where K is a proportionality coefficient and j is a phase shift that depends
on the point where the diffusion is made.
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According to formula (11.14), the diffusion is accompanied by a frequency
shift. Two new components are obtained:

• The Stokes ray of frequency: �Stokes = �opt - �acoust. (11.15.a)
• The anti-Stokes ray of frequency: �anti-Stokes = �opt + �acoust. (11.15.b)

The lowest frequency is called the Stokes ray; the highest frequency is
called the anti-Stokes ray. The previous theory, which is a classical theory,
indicates that the two rays have the same intensity. The result of a quantum
theory that will be given in the next section indicates that the anti-Stokes ray
is less intense; however, owing to the small value of acoustic frequencies, the
Stokes and anti-Stokes rays have almost the same intensity.

11.4.4. Quantum Theory of the Brillouin Effect

Acoustic vibrations that may exist inside a crystal can of course be quantized,
the associated particles are called phonons, which are bosons and follow the
Bose-Einstein statistics.

The Brillouin effect can be written as a chemical reaction between
phonons and photons:
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Brillouin diffusion (Stokes)

Incident photon Æ diffused photon + phonon,

h�1 = h�2 + h�phonon.

An incident photon (�1) is annihilated.
A diffused photon (�2) and a phonon (�phonon) are created.
The diffused light has a lower frequency than the incident light,

�2 = (�2 - �phonon).

Brillouin diffusion (anti-Stokes)

Incident photon + phonon Æ diffused photon,

h�1 = h�phonon = h�3.

An incident photon (�1) and a phonon (�phonon) are annihilated.
A diffused photon (�3) is created.
The diffused light has a higher frequency than the incident light,

�3 = (�1 + �phonon).



As we did for the Raman effect, we are going to show that if we want the
Bose-Einstein statistics to be simultaneously satisfied for both the photons
and the phonons, it is necessary to introduce spontaneous and stimulated
effects.

We will consider the interaction of the following three items:

• A mode of radiation of frequency �1 with n1 photons.
• A mode of radiation of frequency �2 with n2 photons.
• A mode of vibration of frequency �phonon with N phonons.

The different interactions are stated in Table 11.2. Following a phenome-
nological approach, the rate equations are

(11.16)

At thermal equilibrium the time derivatives are equal to zero, which
implies that

The above equation is satisfied and the different numbers of photons and
phonons, respectively, are given by

with �1 = (�2 + �phonon).

11.4.5. The Brillouin Doublet

11.4.5.1. Classical Approach

Let us consider the arrangement of Figure 11.21; a planar monochromatic
wave of frequency �optic propagates in a solid-state transparent material. Dif-
fused light is, a priori, emitted in all directions and with different frequencies;
however, we are going to show that the light that is diffused in a given direc-
tion, making an angle q with the incident direction, has a well-defined 
frequency, �¢optic(q), and that this frequency is given by formula (11.17), which
is called the Brillouin doublet formula.

We return to the demonstration that allowed us to establish that a per-
fectly homogeneous material cannot diffuse any light (see Figure 11.20).
Among the numerous thermal acoustic waves that run across the sample, we
consider one that has its wave planes parallel to the two slices T1 and T2, let
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lacoust be the wavelength. The amplitudes of the light that is diffused from the
two slices are no longer equal and they don’t exactly cancel by interference.
The difference between the two diffused signals is maximum when the
acoustic pressure is, respectively, maximum on one slice and minimum on 
the other. The distance d between the two slices is then equal to lacoust/2. As
the slices have been paired in such a way that D = lopt/2, the maximum of 
diffused light is obtained when

D = = = Æ =2
2 2 2

2
2

d sin sin sin .
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q l

l l
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photon1
photon2

phonon

The photon2 and the phonon are
emitted in any direction. 

photon1 Æ photon2 + phonon.
Absorption of a photon1.

Spontaneous emission of a photon2 + a phonon,

12 An1.
dt

dn

dt

dN

dt

dn =−==

photon1
photon2

phonon

The photon1 is emitted in any direction.

photon2 + phonon • photon1.
Absorption of a photon2 and a phonon.

Spontaneous emission of a photon1,

An2N.
dt
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dn 12 −=+=−=−

photon1

photon2

phonon

photon2

photon2

The two photons2 are indiscernible.

photon1 + photon2 Æ 2 photons2 + phonon.
Absorption of a photon1.

Stimulated emission of a photon2.
Spontaneous emission of a phonon,
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 The two phonons are indiscernible.

photon1 + photon2 + phonon Æ 2 photons1.
Absorption of a photon1 and a phonon.
Spontaneous emission of a photon2.

Stimulated emission of a phonon,
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photon1

photon2

photon1
photon1

phonon

The two photons1 are indiscernible.

Absorption of a photon1 a photon2 and a phonon.
Stimulated emission of a photon1.

The probability of such a reaction, which
would need the presence of three particles at

the same place and the same time (triple collision),
is very low.

Table 11.2. Recapitulation of the different Brillouin interactions.



Let us introduce the respective speeds of propagation of the optical waves,
Vopt, and of the acoustic waves, Vacoust, and the frequencies �opt and �acoust:

Finally, we see that the light diffused in direction q has two spectral com-
ponents, which are defined by

(11.17)

11.4.5.2. Quantum Approach

The emission of Stokes phonons can be described by the reaction:

The probability of this interaction is significantly different from zero only
if the following conservation conditions are satisfied:

• Energy conservation: h�1 = (h�2 + h�acoust) Æ �Stokes = (�1 - �acoust).
• Momentum conservation.

The momentum conservation will provide an alternative demonstration of
the Brillouin formula. k1, k2, and K are the respective momenta of photon1,
photon2, and of the phonon; k1, k2, and K are their moduli. We consider that
the two optical waves propagate at the same speed Vopt. The momentum con-
servation implies that it should be possible to draw a triangle with the three
vectors.
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Figure 11.21. Experimental arrangement for studying the Brillouin doublet. The
collecting lens and the small aperture select the light that is diffused in a given
direction and send it into a spectroscope.



11.4.6. Diffraction of Light by Ultrasonic Waves

In 1921 Brillouin predicted that a liquid traversed by an ultrasonic wave of
very short wavelength should behave like a diffraction grating. The first exper-
imental demonstration was made in 1932 by the Americans Debye and Sears
and by the Frenchmen Lucas and Biquard who opened a new domain called
acoustooptics. These experiments have now found many useful applications
in optical processing and for Q-switching lasers. They have been transposed
in integrated optics where guided optic waves interact with acoustic surface
waves.

Let us again examine the rate equation (11.16) in the case of the two sit-
uations described by Figures 11.21 and 11.23.

11.4.6.1. The Brillouin Doublet Experiment (Figure 11.21)

The initial conditions are: n2(0) = 0, N(0) = 0, and n1(0) π 0 (n1(0) >> 1).
For t ª 0, dn2/dt = dN/dt = -dn1/dt = An1 Æ the intensity of the diffused

light is proportional to the intensity of the incident beam: photons2 and
phonons are spontaneously created.
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The same calculation gives

Figure 11.22. Demonstration of the Brillouin doublet formula using the conservation
of momentum.
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11.4.6.2. Diffraction by an Ultrasonic Wave (Figure 11.23)

For t ª 0:

Thanks to the transducer the number of phonons is very high: N(0) is much
larger than one, the diffraction of light by an ultrasonic wave is more efficient
than diffusion by thermal phonons.

11.4.6.3. Production of Phonons by Mixing Two Light Beams 

of Different Frequencies (Figure 11.24)

Let us send two light beams of frequencies �1 and �2 into a transparent mate-
rial. The initial conditions are now n1(0) >> 1, n2(0) >> 0, and N(0) = 0; for t
ª 0, equation (11.16) then gives dn2/dt = dN/dt = -dn1/dt = An1n2. The term
An1n2 may be given a high value, the two derivatives dn2/dt and dN/dt are then
positive and also have high values, which means that phonons are massively
generated, the corresponding energy being borrowed from the highest fre-
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Transducer generating
an ultrasonic wave nacoust

Light beam
nopt

Acoustic
wave

Diffracted light
(nopt ± nacoust)

Figure 11.23. Diffraction of light by ultrasonic waves. A transducer generates a
hypersonic wave of frequency �acoust in a liquid, which is traversed by compression
waves that create a stratification of the density. At a given time the liquid is made of
a succession of layers of alternately higher and lower refraction index and thus
behaves as a diffraction grating.



quency optical beam. This generation of acoustic waves can be understood
as a beat between the two optical beams.

Electrostriction: The presence of an electric field E in a liquid (or crystal)
gives rise to an electrostrictive strain which is analogous to a hydrostatic pres-
sure P. P is proportional to the squared amplitude of the electric field P = gE2

(g is the electrostriction constant of the material). Electrostriction is a non-
linear process. A static electric field generates a static pressure. A time-
varying electric field is capable of driving acoustic waves in the material:
however, the frequency should not be too high; if not, the pressure takes a
constant value, which is proportional to the squared value of the amplitude
of the oscillating electric field. This is the case of a light wave, which creates
a static pressure proportional to the light intensity.

The superposition of two optical waves inside a piece of material creates
an interference field. The optical electric field is maximum at the bright fringes
and minimum at the dark fringes. Because of electrostriction, the interference
field creates a periodic stratification of matter. The pressure, density, and
index of refraction are maximum along the bright fringes and minimum along
the dark fringes. Finally, the interference pattern prints a phase grating inside
the material.

Figure 11.24 shows the interference pattern of two planar waves propa-
gating in two different directions. The interference fringes are planes that 
are parallel to the bisector plane of the dihedron made by the wave planes 
at an angle equal to q. Two different cases are considered. In the first 
case, the two waves have the same frequency and an interference pattern is
fixed. In the second case, their frequencies, �1 and �2, are slightly different,
and the interference fringes move in a direction that is perpendicular to their
planes.

11.4.6.4. Interference of Two Beams of the Same Frequency

Electric field of the first beam: E1 = Acos(2p�t - k1r).
Electric field of the second beam: E2 = Acos(2p�t - k2r).
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q

First light wave

Second light wave

Figure 11.24. Interference pattern of two light beams.
Because of electrostriction the index of refraction is increased
at the location of the bright fringes. The light from one beam
is exactly diffracted in the direction of the other beam. If the
two frequencies are equal the fringes are immobile, while they
move vertically if they are different.



The electrostriction pressure is equal to the time-averaged value of 
g (E1 + E2)2:

(11.18.a)

The pressure is spatially modulated but the fringes are immobile.

11.4.6.5. Interference of Two Beams of Different Frequencies

The calculation is exactly the same with

(11.18.b)

If the frequency difference (�1 - �2) is small enough and corresponds to
possible acoustic or hypersonic waves, the time-averaged value of (11.18.b)
is different from zero. This formula describes fringes that propagate in the
direction of the difference of the wave vectors (k1 - k2). The speed of prop-
agation is equal to

(11.19)

We suppose that �1 is the highest frequency and we call B1 the corre-
sponding beam; B2 is the other beam, frequency �2. The theoretical analysis
is not straightforward, however the results are quite simple.

• Each beam diffracts light that is exactly emitted in the direction of the
other beam.

• Because the diffraction occurs on a moving target, the Doppler effect
changes the frequency. The frequency of light that is diffracted from one
beam is equal to the frequency of light from the other beam.

• The light that is diffracted from B1 (highest frequency) is in phase with
B2. Reciprocally the light that is diffracted from B2 is in opposition to the
phase with B1. The two optical beams thus exchange energy: the lowest

frequency beam is amplified, while the highest energy beam is attenuated.
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• Mechanical vibrations are generated: The energy received by B2 is slightly
smaller than the energy lost by B1; the difference is used to generate a
mechanical vibration of frequency (�1 - �2).

There is a resonance effect if the speed of propagation of the fringes is
equal to the speed of propagation of an acoustic wave of frequency (�1 - �2).
The amplification of the beam B2 is then maximized, as is the power of the
acoustic wave.

Let I1 and I2 be the intensities of the two optical beams before interaction,
and let Iacoust be the intensity of the generated acoustic wave. During the inter-
action the respective variations of intensities of the beams are DI1 and DI2, the
theory establishes that

(11.20)

Equation (11.20) is a Manley-Rowe relation (see formula (10.28)) and is
more easily obtained from the reaction

photon1 photon2 phonon.Æ +

D DI I I I1

1

2

2 1 2� � � � �
= =

-
=acoust acoust

acoust( )
.
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Annex 11.A

Diffusion of Light by a Scattered Medium

The Earth Is a Blue Planet

Seen from space, the Earth appears as a nice blue balloon on which white
clouds are often painted. The atmosphere looks like a dome, the color of
which varies from the well-known blue to red, according to the time of day.
The coloration of the atmosphere is one of the most elegant proofs of elec-
tric dipolar radiation.

The atmosphere and clouds work in the same way as a diffuser placed
around an electric bulb to ensure a better repartition of the light. Under the
action of the electric field of the light coming from the Sun, the electrons of
the molecules of the atmosphere are set in vibration and become light
sources. By the way, we may notice that the planets that are surrounded by
an atmosphere are the only ones to have a clear sky, which is not the case for
the Moon.

The diffusion of light occurs differently according to whether it’s obtained
from independent molecules (mostly nitrogen, oxygen, and water vapor) or
from clusters of molecules (water droplets, tiny crystals of ice, dust, 
aerosols, . . .). Independent molecules are isolated and separated by distances
that are greater than an optical wavelength; since the light of the Sun is not
coherent, the different wavelets have random phases and cannot interfere,
our eyes will just add their intensities.

Diffusion by droplets or solid particles is different; first, it is more efficient
because the number of diffusing particles per unit volume is much higher and,
second, the wavelets emitted by different molecules of the same particle are
coherent and interfere. Of course, the two signals coming from two dif-
ferent particles are not coherent. The diffusion by particles with a dimension
of the order of the wavelength is called “Mie diffusion” from the name of the
physicist who studied it for the first time. This is a problem of Electromag-
netism that is easily formulated but doesn’t have a straightforward solution,
since the diffusing object is neither very large nor very small as compared to
the wavelength. The calculation is exhaustively described in the book Prin-
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ciples of Optics by Born and Wolf. The main result is that the efficiency of
light scattering is roughly constant over all of the visible spectrum; this is the
reason why clouds appear to be white in sunlight.

Let us come back to the diffusion by independent gaseous molecules; as
this is the result of a dipolar radiation, the efficiency varies as 1/l4, and it is
sixteen times more efficient in the blue (0.4mm) than in the red (0.8mm).

A Red Sky at Night Is the Shepherd’s Delight

At points O1 and O2 in Figure 11.A.1, the rays coming from the Sun have tra-
versed a rather small distance in the atmosphere: the sky is blue and the
clouds are white. The situation is different for points O3 and O4, which cor-
respond to sunset and dawn: before arriving there the rays had to cover a
large distance in space: the blue components of the sunlight have been pro-
gressively attenuated, the sky is now red, as well as an eventual cloud. If,
before arriving at O3 and O4, the rays crossed important clouds, in which the
diffusion is more or less achromatic, the sky has almost no coloration.

We can understand the popular British dictum “a red sky at night is the
shepherd’s delight”: a nice red sunset sky witnesses the absence of clouds in
the western part of the country. As in Europe, the wind often blows from the
west; this constitutes a favorable indication of good weather in the near
future.
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Earth   

Sun

Cloud

Atmosphere
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O2

SunsetO3

O4

Dawn

Figure 11.A.1. The white light coming from the Sun is partly diffused in the 4p
steradians, either by the molecules of oxygen and nitrogen in the atmosphere (1/l4

Rayleigh diffusion) or by the droplets of water clouds (Mie diffusion), which is almost
independent of the frequency. Seen from points O1 or O2 the sky is blue and the clouds
are white. At points O3 and O4, the sky, as well as the clouds, are colored red. Seen
from space the Earth appears as a blue sphere on which are often painted white 
clouds.
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The Light That Is Diffused by the Sky Is Partly, or 

Possibly, Totally Polarized

The amplitude of the electromagnetic field that is radiated by a dipole depends
upon the direction of observation; equal to zero in the direction of the dipole,
this amplitude is maximum in a perpendicular direction. We refer to Figure
11.A.3; a molecule is placed at the origin O and is illuminated by a ray of
natural light that propagates parallel to the Oz axis. The molecule acquires an
electric momentum that has a random orientation in the xOy plane. For a
person observing the field that is emitted in the Oz direction, the radiation is
not polarized; on the contrary, the light that is emitted in the Oy (or Ox) direc-
tion is linearly polarized. In the same way, light coming from a blue sky is lin-
early polarized, if observed in a direction orthogonal to the Sun’s rays.

Plume of blue smoke 

Plume of
white smoke

Incandescent side 

Tip 

Figure 11.A.2. Light diffusion by the smoke of a cigarette. At the incandescent end
the smoke is made of very thin solid particles that follow the hot gases, the diffused
light obeys the 1/l4 Rayleigh diffusion law and has a bluish color. At the tip end the
smoke is white, because of Mie diffusion on the condensation droplets of water
produced by tobacco combustion.

O

x

y

z

M

q

mxcosw t

mycosw t

Figure 11.A.3. The amplitude of the field that is
radiated by the dipole mxcoswt at point M is
independent of q. On the contrary, the field
radiated by the dipole mycoswt varies as cos2 q,
it cancels for q = 90°.

Absorption of Light by the Atmosphere

During its propagation inside a diffusing material a light beam is attenuated.
Let I(z) and I(z + dz) be the values of the intensity at the respective abscis-
sas z and z + dz. The variation dI of the intensity is proportional to I, and we



have dI = -kIdz. The calculation of the proportionality coefficient k is given
in the French book Optique by Bruhat and Kastler, the result is

(11.A.1)

where n is the index of refraction and N is the number of molecules per unit
volume.

After propagation over a distance z, the light intensity is given by

(11.A.2)

Numerical Application

Air under normal conditions: n = 1.0003; N = 6 ¥ 1023 molecules for 22.4 liters.
At l = 0.4mm Æ k0.4 = 4 ¥ 10-5 m-1, which makes 0.17db/km. It is interesting
to compare the atmosphere attenuation to the attenuation of the best optical
fibers (0.16db/km at 1.55mm): k1.55 = 0.17(0.4/1.55)4 = 7.5 ¥ 10-4 db/km.

It is interesting to calculate the attenuation of the Sun’s rays before they
reach the surface of the Earth. As the total number of molecules only deter-
mines the attenuation, it’s enough to evaluate the attenuation of a cylinder of
air that would have the same mass as a cylinder of the same cross section, of
length 76cm, and filled with mercury. The result is 27%.
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z z + dz 

I(z) I(z + dz)

Figure 11.A.4. Attenuation of a light beam because of the diffusion by the molecules
contained inside a slice of thickness dz.



12

Guided Optics

The capacity of a wave for transporting signals is all the more important, as
the frequency is higher. What is needed if a wave is to be used as a carrier
wave? First of all, coherent and powerful enough sources are necessary, then
a support for the propagation of the wave is needed, with a low attenuation.
Finally, one should be able to “hang to the wave” the information to be carried;
in other words, to modulate the wave. Since 1960, with the appearance of
lasers, coherent light sources were available. However, ten more years were
necessary before it became possible to start thinking of optical telecommu-
nications. 1970 was the important year, it was at that time that engineers
became aware of the fact that silica capillary tubes made of silica SiO2 were
amazingly transparent for light waves and could thus carry light waves over
very long distances, compatible with telecommunications requirements. 1970
was also the year when a laser emission was obtained from a semiconductor
at room temperature.

After some time of propagation, a few kilometers in the case of radio
waves propagating along metallic wires and one hundred kilometers in the
case of optical fibers, the signal vanishes and must be reamplified. In 1990 a
new breakthrough happened with the invention of optical amplifiers using
erbium-doped silica and working at 1.55mm. Prior to this date the only 
possibility was to use electronic amplifiers; at each step of regeneration 
the optical signal was detected into an electronic signal that was amplified
(with a severe bandwidth limitation) and then used to modulate a new laser
diode.
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12.1. Introduction

The Transportation Capacity of a Light Wave Is Really Enormous

The frequency band occupied by a telephone conversation is of the order of
a few kilohertz: with a frequency of 1015 Hz, a light wave is able to carry easily
1010 to 1012 simultaneous telephone calls, which is larger than the total number
of worldwide telephone calls at any given time. This limit is theoretical and
raises difficult problems of modulation, of multiplexing and demultiplexing.
At present the rate of transportation of a single fiber is 100 gigabits (ten
million telephone calls).

Open space is the first propagation medium to think about, it has several
drawbacks. The Earth being spherical and light propagating along straight
lines, the range is limited by the horizon (250km if the emitter is raised to a
height of 100m). Even on a clear day the atmosphere is not completely trans-
parent and transmits light rays poorly in the case of rain or fog, intersatellite
communications don’t have this problem. Coming back to Earth, optical 
communications had been developed only after the introduction of optical
fibers; the attenuation of the early fibers was 40db/km (at 0.8mm), it has 
now been reduced to 0.17db/km (at 1.55mm). This low value is to be 
compared to the attenuation of the best coaxial radio and microwave cables
(100db/km).

Why Dielectric Optical Guides?

In a coaxial cable, or along a pair of conducting wires, the guiding effect is
due to the interaction of an electromagnetic wave with a metal, that’s to say
with the free electrons of the metal. In the case of an optical fiber, the prop-
agation is made inside a dielectric material. In both cases the attenuation
comes from the imperfection of the material and is described by the fact that
the conductivity s of the metal, or the permittivity e of the dielectric mater-
ial, are complex numbers, characterized “loss angles,” fmetal or fdielec.

(12.1)

It’s because a metal is not a single crystal but an agglomerate of micro-
crystals that the losses are higher in a metal than in an amorphous dielectric,
which has no boundaries between grains, as is the case in a polycrystal: fmetal

is much larger than fdielec.

Total Internal Reflection

Total internal reflection occurs when a light beam is reflected on an interface
between two transparent materials, the index of the first material being higher
than the second one, and when the angle of incidence is larger than a critical

s s s s e e e ef f= ¢ - ¢¢ = = ¢ - ¢¢ =- -
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metal dielecand .
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angle. Under total internal reflection the cosine of the angle of refraction, that
is obtained by a direct application of the Snell-Descartes law for refraction,
is greater than one. Consequently (see Section 4.3.4), the sine is purely imag-
inary and the Fresnel law shows than the reflection coefficient is a complex
number, with a modulus equal to one (see Figure 4.18). The refracted wave is
evanescent and doesn’t carry any energy. The incident and reflected waves
have the same modulus, but their difference in phase varies with angle of inci-
dence and is not the same for TE or TM waves.

Definition of Guided Propagation

Guided optics is defined with reference to the usual optics, which is also
called three-dimensional optics or free-space optics. In the latter case, the
obstacles met by the light rays are always made of surfaces that are, more or
less, orthogonal to the direction of propagation; there are no boundary con-
ditions due to interfaces that would be parallel to the rays. The volume inside
which electromagnetic energy is present, a priori, extends indefinitely in a
direction perpendicular to propagation.

In guided optics, on the contrary, longitudinal boundary conditions are
imposed and the energy is confined inside a more restricted volume. As a 
first approximation, it can be considered that guided optic devices are one-
dimensional (fiber) or two-dimensional objects. Using an ambiguous lan-
guage, we will say that the one dimension (planar guides) or two dimensions
(fibers) of the propagating space are small compared to the third dimension,
which is often used as the propagation axis.

Brief Description of an Optical Fiber

Guided optics may be the occasion of sophisticated and often tedious math-
ematical developments, our purpose, here, is to give some orders of magni-
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Water stream 

Light diffused by the 
roughness of the stream

Window

Lamp

Figure 12.1. Illuminated fountain. Sent along the axis of the out-going stream of a
fountain and totally reflected on the boundary, a bundle of light rays are trapped inside
the jet. The reflecting surface is chaotic, which allows a small part of the light to
escape, giving the impression of a liminous pipe.



tude of the objects of the components about which those calculations will be
done. As far as fibers are concerned we will mostly consider silica fibers,
which are exclusively used in telecommunications. Other important fibers
also exist, especially plastic fibers.

We refer to Figure 12.2; the length (km) of an optical fiber is far larger than
the diameter. The cladding is made of pure silica and has a constant index of
refraction n0. The core is made of silica, suitably doped, to increase the index
up to a value ncore which is slightly higher than n0. Inside the core, the index
is constant, or not; it often varies with the distance to the axis

ncore = n0 + Dnf(r), Dn is usually very small; Dn/n0 ª 10-3 is a typical value.

The domain inside of which f(r) is significantly different from zero defines
the diameter of the core. The following classification is useful:

• Step index fiber: f(r) = 1 if -d/2 £ r £ d/2, elsewhere f(r) = 0.
• Gradient index fiber: f(r) has usually one maximum inside the core, some-

times two, f(r) is a dimensionless function; its maximum value is normal-
ized to one.

• Single mode fiber: The core diameter is small: a few wavelengths 
(5–10mm).

• Multimode fiber: The core diameter is large: many wavelengths 
(150–200mm).

The conditions for a fiber to be single mode are fixed by the wavelength,
by the index variation, and by the core diameter and will be given more accu-
rately later.
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Core f ª 1–250 mmCladding ª 125-1000 mm

Figure 12.2. Scheme of an optical fiber.
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Figure 12.3. Several usual index profiles.



Integrated Optics

The expression integrated optics was invented in the early 1970s, by analogy
with integrated electronics; many of the integrated optical technologies are
inspired from microelectronics. Examples of integrated optical components
are described in Figure 12.4, they are mainly made of narrow (mm) and rather
long (mm) stripe guides deposited on top of a planar substrate, or embedded
inside it.

A layer made of a transparent material is deposited on a transparent sub-
strate with a lower index. As in the case of optical fibers the index variation
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Planar guide

Substrate 

The planar wave guide is on top of the
substrate.

Planar guide

Substrate 

Superstrate 

Buried guide: the guide is sandwiched
between two materials of lower index. 

Figure 12.4(a). Planar optical guides for integrated optics.
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Buried cylindrical
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Intersection of two 
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Evanescent wave
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Resonant coupler Mach-Zehnder
interferometer

Figure 12.4(b). Some usual objects of integrated optics.
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Figure 12.5. Zigzag of light rays alternately reflected by the upper and lower inter-
faces. A ray is guided if the angular conditions of total reflection are satisfied and if
the phase difference between points O and P is a multiple of 2p.

versus depth may be a step or a gradient. The index variation can be very
small (10-3) or more important (0.1 to 2), 0.05 is the usual value. The width
and depth are of the same order of magnitude as the diameter of the core of
a fiber. Because of the difficulty of making quality high optical thick layers,
it’s almost impossible obtain highly multimode planar guides. The losses of
integrated guides are still quite low (0.1db/cm). The losses are much larger
than in the case of fibers, but propagation lengths are usually limited to the
centimeter range.

12.2. Propagation in a Step Index Planar Guide

From a theoretical point of view, a step index planar guide is the simplest
arrangement in guided optics; we will use it as an introduction to the behav-
ior of guided waves.

12.2.1. Simple Theory Using Light Rays

A dielectric slice is sandwiched between a substrate and a superstrate that
are considered as infinitely thick, the index repartition is indicated in Figure
12.5. The extension of the three elements is infinite in any direction parallel
to the interfaces.

Guidance Conditions

Surprisingly enough, a theory using light rays and geometric optics gives 
good results, although the transversal dimensions are of the order of the 
wavelength.

A guide works as the illuminated fountain of Figure 12.1, and a first con-
dition is that total internal reflection occurs on both interfaces; the angle of
incidence, i, should overcome the two critical angles

(12.2)i n n n n≥ ( ) ( )[ ]Sup Arcsin ; Arcsin .1 2 3 2



A second condition is added to (12.2); the different rays, such as (JJ¢),
(KK¢), (LL¢), (MM¢) (see Figure 12.5), belong to the same planar wave, the
wave planes of which are orthogonal to the previous rays: the phase differ-
ences along a path such as (OJ¢MP) must be equal, modulo 2p. The phase dif-
ference has two origins:

• fpropag = 2pn2/l(OJ¢ + J¢M + MP) coming from the propagation.
• f21 and f23 coming from the reflection on the interfaces, which is obtained

from Fresnel’s formula:

(12.3)

Guided Modes, Leaky Modes

Equations (12.3) (there is one equation for each value of the integer p),
allow the determination of a finite set of allowed values of the angle of 
incidence (i1, i2, . . . , ip). For those angles, the waves interfere con-
structively as they bounce from one interface to the other. If the two relations
(12.2) and (12.3) are satisfied, the electromagnetic energy is trapped inside
the guide.

To each allowed angle is associated what is called a mode of propagation.

We are now going to examine the repartition of the electromagnetic energy
inside the guide; it comes from the interference between two families of
oblique waves propagating upward and downward.

• Along a direction perpendicular to the interfaces, a standing wave pattern
is observed. The amplitude of the minima is equal to zero, since the two
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Figure 12.6. Guided mode and leaky modes.



interfering waves have the same amplitude. The field on the interfaces is
not equal to zero, corresponding to the presence of evanescent fields in
the substrate and superstrate.

• Along a direction parallel to the interface a progressive wave is observed.
Its wave vector is parallel to the interfaces, in a direction that is fixed by
the excitation conditions.

If the conditions for total reflection are not fulfilled, rays are refracted in
the substrate and superstrate, inside of which the evanescent waves are
replaced by progressive waves that carry energy outside the guide. An inter-
ference pattern still exists in the guide; we then speak of leaky modes.

TE Modes, TM Modes

As they are reflected on a planar interface, only the TE or TM polarized beams
keep their initial polarization. As a consequence, the polarization modes are
also linearly polarized. Fresnel’s laws are not exactly identical for TE or 
TM polarizations and formula (12.3) defines two sets of allowed angles, 
corresponding to two families of modes, the TE and TM modes. Fresnels’
equations are transcendental and can only receive graphical (or numerically
computed) solutions, the angles, ip,TE and ip,TM, associated to the same integer
p are not usually very different.

Monomode Guides, Multimode Guides

When solving equation (12.3), we can either choose a value for the thickness
d of the guide and vary the wavelength l or, on the contrary, attribute a given
value to the wavelength and vary the thickness. Given a step-index guide 
(n1, n2, n3, and d) and a wavelength l, the following possibilities can be met:

• Equation (12.3) has no solution, whatever the value of p. This will happen
if the wavelength is too large as compared to the thickness of the guide.
If l is progressively decreased, the equation will have one, two, or many
solutions. There is a wavelength (lcut-off)0 (and an associated angular fre-
quency wcut-off = 2pc/lcut-off) called the cut-off wavelength (cut-off fre-
quency) of the guide which is such that:

l > (lcut-off)0 Æ the set of modes is empty,

l < (lcut-off)0 Æ the set of modes has at least one element.

• Monomode guide: Equation (12.3) has one and only one solution.
• Multimode guide: Equation (12.3) has many solutions. To a given guide is

associated a set of cut-off wavelengths {(lcut-off)0, (lcut-off)1, (lcut-off)2, . . .}:

l < (lcut-off)p Æ the set of modes has (p - 1) elements, 
p is called the cut-off wavelength of the pth mode.
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The cut-off wavelengths are different for TE and TM modes, however they
are very close for a given order. A guide supporting only one TE mode and
one TM mode is often considered to be a monomode guide.

Order of Magnitude of the Angle of Incidence 

of the Different Modes

Fundamental mode: The zeroth-order mode is also called the fundamental
mode, or principal mode. The rays are at grazing incidence, the angle of inci-
dence is very close to p/2, and the propagation is almost parallel to the bound-
ary interfaces. The phase velocity, which will be calculated in the next section,
is practically equal to the speed of propagation, c/n2, of light waves propa-
gating in an open space filled with a material of index n2.

Highest-order mode: The angle of incidence decreases with the mode
order, the highest possible value of p is obtained when the conditions for 
total reflection are no longer satisfied; let ip,Max be the corresponding angle 
of incidence. A thick guide is highly multimode; the number of allowed 
values of p is large. For the highest-order mode we have n2 sin ip,Max ª n3 sin
p/2 = n3, it can then be shown that the phase velocity is equal to V3 = c/n3,
which is the speed of propagation in an open space filled with a material of
index n3.

12.2.2. Electromagnetic Approach of a Step Index Guide

We consider again the step index guide of Figure 12.5 and we would like to
obtain in a more rigorous way the previous results, equation (12.3) for
example, and also obtain the repartition of the electromagnetic field. We will
use the fact that, for given boundary conditions, the solution of Maxwell’s
equations is unique. The geometric space is divided into three subspaces,
superstrate-guide-substrate, which are in contact along the two interfaces. In
each subspace, the solution is supposed to be a planar wave that is of the fol-
lowing form:

(12.4)

Planar waves are solutions of Maxwell’s equations, the problem is 
now to find suitable values for the amplitudes A1, A2, A3, and for the three 
wave vectors k1, k2, k3. We choose the following referential: the 
plane yOz is parallel to the interfaces and in the middle of the guiding layer,
Ox is orthogonal to yOz. Because of the symmetry of the problem, which 
is invariant in any translation parallel to the interfaces, the three wave 
vectors are parallel to xOz and have only two components, kix and kiz. The
moduli of the wave vectors of planar waves propagating in open spaces filled
with transparent media of respective indices n0 = 1, n1, n2, and n3 are equal

A e e ii
j t jw - Œ{ }k ri , , , .1 2 3
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to k0 = w/c, k1 = n1k0, k2 = n2k0, and k3 = n1k0. The Pythagoras theorem indi-
cates that

(12.5.a)

Analytical Expressions of the Guided Modes

Invoking again the translation invariance parallel to Oz, we see that the Oz

components of the three wave vectors must have a common value, which will
be called kz. This condition is also known as the phase matching condition

since the progressive wave in the guide and the progressive part of the waves
in the substrate and superstrate travel at the same speed in the Oz direction,

(12.5.b)k k k kz z z z1 2 3= = = , phase matching condition.
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n2 > n3 > n1

guide

x

x = +d/2

n1

n3

n2

x = –d/2

z

Oz has any direction parallel to the interface.
· Whatever the zone, fields are progressive along Oz.
· kz has the same value in the three zones.

· kz < n2k0, kz > n1k0, kz < n3k0. (12.5.c)

Along Ox, orthogonal to the interface, the fields are:
· Progressive in the guide.
· Evanescent in the substrate and superstrate.

Figure 12.7. Structure of a guided mode.

In order to have a progressive wave in the region of the guide, it’s neces-
sary that the x and z components of the wave vector are both real and, there-
fore, because of (12.5.a), kz < k2 = n2k0. On the contrary, the fields must be
evanescent in the Ox direction and kz > k1 = n1k0 and kz > k2 = n2k0 so that k1x

and k2x are purely imaginary; let us introduce two real numbers, a1x and a3x,
by the following formulas:

(12.5.d)

The modes are linearly polarized, either TE or TM. The disposition of the
different vectors is recalled in Figure 12.8.

k
n

c
k n k k j k n k

k
n

c
k n k k j k n k

x z z x x z

x z z x x z

1
1
2 2

2
2

1
2

0
2 2

1 1
2

1
2

0
2

3
3
2 2

2
2

3
2

0
2 2

3 3
2

3
2

0
2

= - = - = fi = -

= - = - = fi = -

w
a a

w
a a

,

.



TE Modes

Explicit expressions of the fields in the three regions can be obtained by
writing the continuity of the tangential components on both sides of each
interface:

(12.7.a)

(12.7.b)

(12.7.c)

Formulas (12.6) are not quite identical to formulas (12.4) that were ini-
tially proposed for the fields; however, they can be made identical, using the
complex expressions of the sine and cosine.
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Electric field parallel to the interface and parallel to the  
plane of incidence: y.E yE=

Magnetic field parallel to the interface and parallel to the 
plane of incidence:

TM wave
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Eincident

Hincident

Ereflected
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Magnetic field parallel to the interface and orthogonal to 
the plane of incidence: H Hy y.=

Electric field parallel to the plane of incidence: 

Figure 12.8. Respective positions of the electric and magnetic fields for TE and TM
waves.
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The problem is now to find suitable values for the amplitudes of the fields
and for the components of the wave vector along the Ox axis. kz is first given
some value that is compatible with the inequality expressed by formula
(12.5.c) of Figure 12.7. We then write that the tangential components of the
fields have, respectively, the same value on both sides of the interfaces located
at ±d/2,

(12.8.a)

(12.8.b)

To determine the three quantities A1, A2, and A3 we obtain a set of four
equations (12.8) that are linear and homogeneous. As there are more equa-
tions than unknown quantities, a solution doesn’t always exist. The condition
required for having a solution is called the guiding condition, which is
obtained when the determinant of the linear system is made equal to 
zero. When a solution exists, there is an indetermination: only the amplitude
is known, within a multiplication coefficient. From a physical point of 
view, this constant is obtained from the total power carried by the guided
mode.

Guiding Condition

The cancellation of the determinant leads to

(12.9)

(12.10)

(12.11)

(12.12)

Formula (12.12) is identical to formula (12.3) that was established from 
geometrical considerations. The electromagnetic approach is however more
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powerful, since the maps of the field repartition for each mode are also
obtained,

(12.13.a)

(12.13.b)

(12.13.c)

TM Modes

The method for obtaining the TM modes is exactly the same as for the TE
modes; the results area is a bit more complicated because, by opposition to
the magnetic permeability m0, the dielectric constant is not the same in the
three regions. Formula (12.12) is replaced by

(12.14)

In fact, the TM expressions for the magnetic field are identical to the TE
expressions of the electric field in the TE case, the TM electric field being
more complicated.

The fields that are obtained from formulas (12.13) just represent 
possible forms of the field in this structure. The real field is determined by
the input signal, at z = 0, especially the amplitude A2. The more an external
source shape is similar to a mode field shape at the input interface, the 
more power of the source is transmitted to and carried by that mode in the
guide.

Field Distribution of a Guided Mode

To each value of p, equation (12.12) associates a value of k2x, which de-
pends on the size d of the guide and on the frequency w. Once k2x is known,
kz = k1z = k2z = k3z is also known from (12.5.a) and then k2x, a1x, and a3x. For
each value of p, equations (12.13) give a specific distribution of the field. In
Figure 12.9 are represented the field distributions of the fundamental mode
and the third mode of a given guide, for four different frequencies; two fre-
quencies are, respectively, close to the cut-off frequencies of the fundamen-
tal and first-order modes, the other two being quite different.
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Dispersion Curves of the Modes

The propagation constant kz of a given mode depends on the frequency. A rela-
tion between the frequency and the modulus of a wave vector is generally
called a relation of dispersion, the associated graph being a dispersion curve.
To a given guide is associated a set of dispersion curves, one curve per mode.
Figure 12.10 shows a typical set of dispersion curves. The dotted lines are the
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Frequency w

kz wave vector component along Oz

p = 0

p = 1

p = 2

p = 3

Cut-off frequencies of
the different modes

n2 > n1 > n3

w = kzn3/c
w = kzn1/c

w = kzn2/c

Figure 12.10. Set of dispersion curves of a planar guide. The dotted lines are the
dispersion of light in an open space filled, respectively, with materials of indices n1,
n2, and n3.
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Near the cut-off frequency, a noticeable 
part of the energy is in the superstrate and
the substrate: the mode is weakly guided.

For a frequency further away from the cut-
off, most of the energy is inside the guide.
Guidance is more efficient. 

Figure 12.9. Examples of field distributions of the fundamental and first guided
modes.



dispersion curves of the light in an open space filled with transparent mate-
rials of respective indices n1, n2, and n3; as the variation of the index with the
frequency has been omitted they are straight lines of equation w = kzni/c. The
index n3 of the substrate being the larger, the set of dispersion curves of 
the guide is between the dispersion curves of the material of the guide and of
the superstrate. The dispersion curve of a mode is asymptotic to the disper-
sion curve of the material of the guide; it starts from a point located on the
dispersion curve of the substrate, the frequency of which is the cut-off fre-
quency of the mode.

12.2.3. Excitation of a Planar Wave Guide—Numerical Aperture

The previous analysis was only preoccupied by the field repartition and 
not by the way it could be excited. It’s clear from Figure 12.11(a) that 
oblique planar waves can only excite leaky modes and cannot excite guided
modes.

A guide can be excited through a lateral side, see Figure 12.11. For total
internal reflection to occur on the interfaces, the angle of incidence q on the
input face must be smaller than some value, called the numerical aperture
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n1

n2

n3

Figure 12.11(a). An oblique light ray, after refraction, makes an angle with the
normal to the interfaces, which is smaller than the critical angle and cannot be totally
reflected. Only leaky modes can be excited.

q 
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n0 = 1

n2 > n3 > n1
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Useful part
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NA = Numerical aperture
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0 2 2£ £ ( ) =q NA n nD

Figure 12.11(b). Numerical aperture of a guide. A planar guide is never really infinite
and has a lateral side through which the guide can be infinite. The numerical aperture
(NA) is the maximum angle of incidence that still ensures total internal reflection on
the interfaces.



(NA) of the guide. Let L12 and L23 be the respective critical angles on the two
interfaces. Usually L23 = Arcsin(n3/n2) is the smaller and

(12.15.a)

(12.15.b)

12.2.3.1. Prism Coupler

A guide is a type of closed box for a guided mode and, in principle, it’s not
possible to enter into a closed box; except if a kind of tunnel effect can be
imagined. The field of a guided mode is evanescent in the superstrate; to
excite the guide, one must think of an arrangement that would create an
evanescent field along the upper interface of a planar guide. Such an arrange-
ment is proposed in Figure 12.12, which is called a prism coupler.

We refer to Figure 12.12, the hypotenuse of an isosceles and rectangular
prism is disposed very close to the surface of a planar guide, the air gap being
smaller than a quarter of the wavelength. The refractive index nprism of the
prism is higher than the refractive index n2 of the guiding layer. A planar wave
propagates inside the prism and is totally reflected from the hypotenuse.
Below the hypotenuse, the field is evanescent in a direction orthogonal to the
interface and progressive parallel to the interface. Let Kz,prism = (2p/l)nprism sin
rprism be the propagation constant along the interface (rprism is the angle of inci-
dence inside the prism).

12.2.3.2. M-Lines Method of Determination of the Propagation 

Constants of the Guided Modes

The evanescent field due to total reflection penetrates inside the guide
through the very thin air gap and sets in vibration the electrons of the guide
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Guide index n2

Substrate index n3

 Very thin air gap
Evanescent

field

Wavelets excited by
the evanescent field

Prism
index nP

Superstrate index n1

nP > n2 > n3 > n1

Air gap

qprism

Figure 12.12. Prism coupler. A light beam is totally reflected on the hypotenuse side
of the prism, which is very close (less than l/4) to the guide. An evanescent field
penetrates inside the guide that is excited by an optical tunnel effect.



which, in turn, generate spherical wavelets that can possibly be guided. The
wavelets are not in phase, but have a phase repartition that is represented by
e-jkz,prismz; if this phase repartition fits the phase repartition of a guided 
mode the wavelets interfere positively and the guided mode is excited. Let imp

and km = (2p/l)n2 sin im be, respectively, the angle of incidence of the zigzag
path (see Figure 12.5) and the propagation constant of the mth mode; the con-
dition of constructive interference is nothing other than the Snell-Descartes
law:

(12.16)

When relation (12.16) is satisfied, the corresponding rays are no longer
totally reflected, part of the energy being coupled inside the guide; this 
occurs only for some specific angles of incidence. In the arrangement 
of Figure 12.13, a lens focuses light on the hypotenuse of the prism, most of 
the rays are totally reflected; the rays that contribute to the excitation of
guided modes are only partly reflected. On a sheet of paper receiving the
reflected beam can be seen an illuminated circular area with darker lines 
that correspond to the different modes of the guide. The directions of the 
dark lines, that are usually called m-lines, can be measured accurately pro-
viding a method of measurement of the propagation constants of the guided
modes.

The Bragg equation for diffraction gratings may give angles with a sine 
(or a cosine) greater than one, under such conditions evanescent waves are
produced; they can be used to couple a planar wave to a guide. This method
of excitation of a guide, which has many useful applications, is described in
Figure 12.14.

k k n n iz m m,prism prism prism= =  Æ sin sin .q 2
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Illuminated area
Dark lines

Figure 12.13. m-lines determination of the propagation constants of the guided
modes. An incident ray that contributes to the excitation of a mode is only partly
reflected. To each guided mode is associated a darker line, also called an m-line.



12.2.4. Generalization to Any Type of Guide

The example of a step index planar guide was chosen because of its simplic-
ity. We are now going to generalize the different notions that have been intro-
duced and, more specifically, the notion of the mode of propagation. The
basic parameters are:

• Frequency w, the associated vacuum wavelength l = 2pc/w, and the
vacuum wave vector k0 = w/c.

• Optogeometric characteristics of the guides (index repartition, shape, and
size of the cross section).

Local modes: Modes of propagation can be introduced only for devices
that are invariant in a translation parallel to some axis, which requires an infi-
nite length. Real systems are not that long; the concept remains valid if the
length is long compared to the wavelength. We will often deal with guides
having optogeometric properties that vary smoothly with distance; examples
are given in Figure 12.15. The notion of a local mode is then introduced: the
local modes are the modes of a guide which would have an infinite length and
optogeometric properties identical to those of the guide at the place under
consideration.

Cut-off frequency: At a given frequency is associated a set of guided
modes, each of them being referenced by a labeling coefficient p. If the fre-
quency is too low and lower than a frequency (wcut-off)0, the set of modes is
empty. As the frequency is increased the set of modes has more and more 
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Figure 12.15. Examples of guides that are not invariant in a translation: the
optogeometric properties (diameter, index of refraction, radius of curvature, . . .) vary
smoothly from point to point and can be considered to remain constant along a section
that is much larger than l.

Diffraction gratings

Coupling Decoupling

Figure 12.14. Prism and grating coupler.



elements. According to the frequency, a guide will support no mode, be
monomode, weakly multimode, and largely multimode. Each mode has a 
specific cut-off frequency.

Cut-off wavelength: The vacuum wavelength can be used instead of the
frequency. A wave can be guided if the wavelength is smaller than the cut-off
wavelength. Using a metaphor, it can be said that it’s not possible to enter a
large wavelength inside a small guide.

Propagation speed of a guide mode: At a given frequency, the electro-
magnetic analysis of a guide gives the set of constants of propagation of the
different modes kz,p. The ratio Vp = kz,p /w is the phase velocity of the mode, it
should be noted that Vp is larger than the phase velocity in an open space filled
with a material having the index as the guide.

Effective index of a mode: The ratio np = Vp/c is the effective refractive
index of the mode. Three indices are usually involved in a guiding structure,
we have the following relations:

In the case of an optical fiber, nsuperstrate = nsubstrate = ncladding and nguide = ncore.
Dispersion: The phase velocities of the modes and, consequently, the

effective indices vary with the frequency. A guide is characterized by its sets
of dispersion curves. There are two categories of dispersion curves. In the
first one the frequency is plotted versus the modulus of the wave vector, in
the second the effective index is plotted versus frequency.

The phase velocity concerns sinusoidal waves. If the wave is modulated,
the spectrum has more than one component; the group velocity, which is then
introduced, may be obtained from the dispersion curves.

The dispersion of a guided mode has two origins. One comes from the
geometry while the second comes from the dispersion of the material, that’s
to say, the variation of refractive indices with the frequency.

Structure of a guided mode: The electromagnetic description of a mode
involves two main terms:

• A propagation term e-jkz,pz, where kz,p is the propagation constant of the pth
mode.

• A description of the electromagnetic field as a function of the transverse
coordinates (x, y).

From a mathematical point of view, the functions f(x, y) that describe 
the field have the property of being orthogonal. We will not speculate about
this property, however, we would like to insist on an important consequence.
Let us suppose that one mode, and only one mode, has been excited, during
the propagation the electromagnetic energy will remain confined in this 
mode, and will not be coupled to the other modes. In reality this orthogonal
character is rather theoretical and, because of unavoidable irregularities along
the guide, the different modes are always more or less coupled to one 
another.

n n n n n npsuperstrate substrate guide substrate guide < < < < .Æ
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Numerical Aperture: This notion was introduced by formula (12.15) and
is very important for any kind of guide. Taking typical values for the indices, 
n = 1.50 and Dn = 0.01, we obtain 

12.3. Optical Fibers

Optical fibers are basically made of a core and a cladding. At a given frequency
and according to the diameter of its core, a fiber is monomode or multimode.
The index of the core, which is higher than the index of the cladding, can be
constant (step index profile) or vary with the distance to the axis (graded
index profile). Very often the index difference is weak, and most fibers are
said to be weakly guiding.

12.3.1. Gradient Index Fibers

In the case of graded index multimode fibers, where the core diameter is much
larger than the wavelength, a ray analysis is possible and often useful. In
Figure 12.16 is shown the scheme of an optical fiber and a convenient ana-
lytical expression of the index profile. Very often D << 1 and p = 2, so that n(r)
can be simplified as

Using the Snell-Descartes laws, it can be shown that the rays, inside the
fibers and within Gauss conditions, follow two linear differential equations,
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Figure 12.16. Representation of an optical fiber. a is a parameter that is homo-
geneous to a length and indicates the order of magnitude of the core diameter. p has
no dimension parameter and it varies from 1 (triangular profile) to infinity (step
profile). For weakly guiding fibers D << 1.
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where A, y , A¢, and y ¢ are constants of integration, they are obtained from
the injection conditions. The maximum angle between an incident light ray
and the Oz axis is obtained by expressing that the constants A (or A¢) are at
most equal to the diameter of the fiber, this maximum angle defines the
numerical aperture (NA) of the fiber.

12.3.2. Modal Analysis of Graded Index Fibers

The tremendous development of optical telecommunications has generated
the development of a great variety of methods to describe the electromag-
netic field in fibers. It’s completely out of the question to give an exhaustive
list, our ambition is to give general ideas that are supposed to help the reader
in his/her comprehension of calculations that are always tricky and special-
ized. We will start by studying step index fibers that are equivalent to the step
index planar guides. Their modal analysis is not conceptually more compli-
cated than the case of planar guides, except that, because of the cylindrical
symmetry, the trigonometric functions are replaced by Bessel functions; there
are also a family of orthogonal functions, unfortunately less familiar to most
people than sine or cosine.

Let us consider a step index fiber, the core and cladding indices are,
respectively, equal to n1 and n2, the radius of the core is equal to a, and the
radius of the cladding is infinite. The Helmholtz equation takes two different
expressions in the core or in the cladding:

(12.18.a)

(12.18.b)

where k0 = w/c = 2p/l0 is the wave vector modulus in a vacuum and U repre-
sents any component of the electromagnetic field.

The variables are separated by setting
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z

Figure 12.17. Ray propagation inside a fiber. An incident ray contained in a meridian
plane will remain in this plane. Nonmeridian rays follow helical trajectories winding
around the Oz axis.



We introduce two constants of propagation in a direction orthogonal 
to Oz:

(12.21.a)

(12.21.b)

The differential equation (12.20) is now written as

(12.22.a)

(12.22.b)

Using the usual notations, the solution of equation (12.22.a) is a Bessel func-
tion Jl(x), while the solution of (12.22.b) is a modified Bessel function Kl(h),

(12.23.a)

(12.23.b)

where A and B are proportionality coefficients.
Developments of Bessel functions show that the solutions are very similar

to the case of the step index planar guide, since

The choice of Bessel functions ensures that Maxwell’s equations (in fact
the Helmholtz equation) will be satisfied; writing the boundary conditions
along the only surface of discontinuity, which is located at r = a, will give the
constants A and B of formulas (12.23). The expression of the continuity of Ez

and Hz on both sides of the interface provides a first equation; only one equa-
tion is obtained, since the ratio Hz/Ez is equal to the wave impedance. To
obtain a second equation, we go back to Maxwell’s equations (jweE = D Ÿ H

and -jwm0H = D Ÿ E) and write the continuity of the components Ef and Hf.
Using Maxwell’s equations and equations (12.21), a dispersion curve is

obtained for each value of the integer l: kz is expressed as a function of the
integer l, the frequency w. The mathematical expressions are not simple and
need a computer; they are represented by a diagram identical to the diagram
of Figure 12.10.

12.3.3. Total Number of Guided Modes

For a mode to be a guided mode it’s necessary that the coefficients kT and g
introduced by formulas (12.21) are real numbers, which implies a condition
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on k0 = w/c. As was the case for a planar wave guide, an optical fiber can only
guide a definite number of modes, NMax(w, l), of frequency w. Each mode is
characterized by a constant along Oz, a cut-off frequency w l,cut-off, and a map
of the electromagnetic field.

The number NMax(w, l) depends on the optogeometric characteristics of
the fiber (n1, n2, index profile). The number of modes that really propagate
along the fiber is at most equal to NMax(w, l), but is mostly fixed by the source
to which the fiber is coupled. The excitation of a mode is all the more effi-
cient as the field repartition created by the source on the entrance face of the
fiber is similar to the field repartition of the mode under consideration.

The V Parameter

To evaluate the number of modes, it is convenient to introduce a new para-
meter, which is called the V parameter (or the guide normalized frequency),
and is defined by

We introduce the numerical aperture: 

(12.24)

The main interest of the V parameter is to allow an easy evaluation of the
number M of modes. If M is big enough, it can be shown that

(12.25)

where a is a coefficient of the order of one, it is equal to 4/p2 ª 1/2 for a step
index multimode fiber, and to 0.25 for a parabolic gradient index fiber.
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Figure 12.18. Examples of the field repartition of two modes of a step index fiber.
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12.3.4. Effective Index and Phase Velocity of Guided Modes

The propagation along the fiber is described by ; the integer q is
smaller than M. For the profiles that are described by equation (12.17), it can
be shown that

The phase velocity and the corresponding effective index are easily
obtained

Group Velocity

The propagation constant is not proportional to the frequency, the phase
velocity then varies with the frequency, and a group velocity Vq

group should be
introduced for each mode, it can be shown that

For step index fibers (p = •):

For a parabolic gradient index fiber (p = 2):

The dispersion is less important in the case of a parabolic profile.

Flight Time of a Light Pulse in an Optical Fiber

The carrying capacity of a fiber can be evaluated from the highest number of
elementary pulses that can be transmitted each second. A source emits at a
high frequency, called the clock frequency fclock, a succession of very short
pulses (Dirac pulses) that are coupled to the fiber. At the output, see Figure
12.20, a succession of light pulses is observed; the repetition frequency 
is still fclock, but the pulse duration is no longer equal to zero and is equal to
Dq = (ncore - ncladding)L/c. If Dq is longer than 1/fclock, the pulses overlap and
cannot be discriminated,
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This limitation doesn’t apply to the case of a monomode fiber; if there is
only one mode, there is only one speed of propagation. This is true, except
that we must now pay attention to another phenomenon that we had previ-
ously ignored and which is due to the dispersion of the material of which the
fiber is made.

The spectrum of pulse extends over a frequency band that is all the more
broad, as it is short. Because of the side bands, a light wave, modulated by a
short pulse, cannot be considered as monochromatic. The different compo-
nents of its Fourier spectrum don’t propagate at the same speed: if the dis-
persion of the material is normal, the lowest frequencies travel slower than
the highest frequencies. Here again, the pulse duration is increased after prop-
agation in the fiber.
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Figure 12.20. A very short light pulse is coupled, at time q, inside a multimode fiber.
We consider that all the modes are excited with the same efficiency. The fastest modes
arrive at the end of the fiber at time (q + ncladdingL/c), the slowest arrive later, at time
(q + ncoreL/c). The duration is increased by Dq = ncore - ncladding)L/c.
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Figure 12.19. Variation of the effective index as a function of the mode number. The
index of the lowest-order modes is equal to the index in the middle of the core; for
higher-order modes, the index is very close to the index of the cladding.
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To treat this problem properly, we start from the variation law of the pulse
and obtain, by Fourier transform, the spectrum. The Fourier spectrum of the
modulated light wave is deduced and the propagation of each component
along the fiber is then studied using the proper value of the index of refrac-
tion. The spectrum of the emerging signal is calculated and, by inverse Fourier
transform, the time variation law is finally obtained. During the calculation,
the group velocity is introduced; it depends on the dispersion curve of the
mode and also on the group velocity of light waves propagating in an open
space filled with the same material as the fiber (usually silica). The group
velocity is calculated in the last chapter of this book, see formula (13.19):

We consider a light pulse of central wavelength l, occupying a spectral
width Dl. It can be shown that, after having propagated over a distance L, the
duration of the pulse is increased of Dq, which is given by

(12.26)

It’s not surprising that Dq is proportional to Dl. In the case of a silica fiber
carrying a 1.55mm wave, a numerical application of (12.26) indicates that, for
the pulses that are commonly used in optical telecommunications, Dq is mea-
sured in picoseconds per kilometer.

In the case of silica, the experiment shows that the second derivative of
the index of refraction, d2n1/dl2, cancels for l = 1.3mm. For a carrier wave of
this wavelength, the effect of the material dispersion vanishes; the duration
increase then comes only from the dispersion of the mode and is very small.
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Annex 12.A

Splitters and Couplers

In guided optics the electromagnetic energy is confined inside guides that
have a very small cross section; a rather difficult problem arises if it is desired
to transfer this energy to one or several other guides. It will be shown in
Annex 12.C how fibers can be efficiently coupled to one another; the purpose
of this annex is first to study how one guide, fiber, or integrated guide, can be
coupled to one or two guides.

12.A.1. The Y-Junction

A signal can be introduced into a Y-junction, either by the “one-arm” side as
in Figure 12.A.1(a), or by one of the two channels of the “two-arms” side, as
in Figure 12.A.1(c). An accurate analysis is necessary, involving all the modes
of propagation, including the leaky modes. In the case of single-mode guides
and a symmetric Y-junction, the results are simple and can be described as
follows:

• In the case of Figure 12.A.1(a), and if we omit the losses, the emerging
signals are equal to one-half of the incident signal.

• In the case of Figure 12.A.1(c), a unit signal is introduced in the upper arm,
no signal being introduced in the lower arm. The transmitted signal is only
one-half of the incident signal; the other part goes to the cladding. In that
case, a Y-junction has at least 3db losses.

• In the case of Figure 12.A.1(b), a second Y-junction, very similar to the first
one, has been placed as shown in the figure. When they arrive at the node
of the second Y, the two signals are in phase and interfere constructively
in the emerging arm: the transmitted signal is equal to one mode and no
light is transferred to the leaky modes.

In conclusion, Y-junctions, since they are easy to make, are efficient
devices for splitting a signal into 2, 4, 8, . . . parts, but they cannot be used to
mix independent signals.
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12.A.2. Distributed Couplers

Two single-mode identical guides are disposed parallel and in close vicinity;
the guided modes are coupled by their evanescent parts. In Figure 12.A.2(a),
the upper guide is excited from the outside; the percentage of energy in each
output port can be tuned by changing the length of the guides. The coupling
is efficient when the two guides are close enough.

This kind of coupling is said to be directional; the coupling is made in 
the direction of propagation of the light: the light that is injected into arm (1),
goes to arm (3) and/or arm (4), but doesn’t go to arm (2). In fact, because of
unavoidable imperfections, a small part will go to arm (2); this part is however
very small and less than 60db.

From a technological point of view this technique is easy to use in inte-
grated optics; it can also be made available for optical fibers. Two or more
fibers are twisted together and then heated with a flame or with a laser, so
that the temperature almost reaches the melting point of silica; simultane-
ously, the fibers are gently pulled apart. As a result the cores of the different
fibers get closer and a coupling effect is obtained.

Phase Matching Condition

A directional coupler works in the same way as a coupling prism. The second
guide is in a situation that is often met in electromagnetism: a medium M is
excited at points that are distributed over a distance that is made of a large
number of wavelengths. Starting from those points, wavelets propagate at
some velocity, which is characteristic of the medium M. The initial phases of
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Figure 12.A.1. Division of a signal by a Y-junction.

(a) (b)

(1)

(2)

(3)

(4)

Figure 12.A.2. Distributed couplers. Two monomode guides are put in close vicinity;
the two guides periodically exchange optical energy.



the wavelets are governed by some external mechanism, the propagation in
the first guide in our case.

The field, at a given point of M, is the result of the interference of many
wavelets. As is always the case for highly multimode interference, the field
will be different from zero, if and only if the condition of constructive inter-
ference is satisfied. It is then easy to understand that the coupling will occur
if the guided waves propagate at the same speed inside the two guides: the
wave vectors of two modes must be equal, which is obviously the case if the
guides are identical.

A Distributed Coupler Is Reciprocal

The coupling length, which is defined in Figure 12.A.3, rapidly increases with
the distance between the guides. The energy exchange is total when the two
wave vectors are equal; if not, the exchange rate is less than 100%, and goes
to zero when the wave vectors are very different. The coupling is reciprocal,
which means that the exchange rate from one port to another, for example
from (1) to (3), is equal to the exchange rate in the opposite way, from (3) to
(1). A directional coupler is characterized by a coupling length Lc, which is
the propagation distance necessary for the signal to be completely transferred
from one guide to the other; Lc is a function of the distance between the two
guides and of the wavelength. A coupler can be designed so that the coupling
length at l1 is equal to one-half of the coupling length at l2; such an arrange-
ment is shown in Figure 12.A.4 and is currently used for Wavelength Division
Multiplexing (WDM).
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(1) 

(2) 

(3)

(4)
Lc

P Q R SO

Figure 12.A.3. Illustration of the energy exchanges between the two guides. At the
levels of the two planes P and R, the intensities are the same in the two guides. At the
level of Q, all the energy is transferred to the second guide. Lc = OG is called 
the characteristic length, or the coupling length.

(l1 + l2) (l1 + l2)(l1) (l1)
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Figure 12.A.4. Wavelength Division Multiplexing (WDM).



12.A.3. Coupled Mode Theory

12.A.3.1. Normalization of the Guided Modes

In the description of the electromagnetic field of a guided mode, see, for
example, formulas (12.13.a, b, c), there is a proportionality coefficient A2, in
many cases it doesn’t matter knowing exactly this coefficient that is deter-
mined by the power carried by the mode. For an accurate definition of the
coupling coefficient between the two guides of a directional coupler, it is nec-
essary to have a definition of the proportionality coefficients of the modes.
The electric and magnetic fields will be written as

(12.A.1.a)

The two vectors En(x, y) and Hn(x, y) constitute the representation of the
mode labeled n; their analytical expressions are chosen so that the boundary
conditions are satisfied. The electromagnetic power Wn, which crosses a
surface orthogonal to the direction of propagation Oz, is obtained from the
Poynting vector Pn:

A mode is said to be normalized when Wn is equal to one. If the normal-
ized fields are noted as en(x, y) and hn(x, y), when the power is equal to Wn,
the fields are equal to

(12.A.1.b)

where en and hn are of course orthogonal and, with no loss of generality, the
electric fields and the magnetic fields can be, respectively, oriented parallel
to Oy and Ox. Using Maxwell’s equations, it can be shown that

(12.A.1.c)

Lorentz Reciprocity Theorem

Starting from the modal structure of a given device and using the Lorentz 
reciprocity theorem, a perturbation method gives indications about another
device that has almost similar, although not strictly identical, optogeometric
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characteristics. The demonstration is not pleasant, however the result is
simple.

We consider two lossless and nonmagnetic (m = m0) systems that are
described by two different repartitions, e(x, y, z) and e¢(x, y, z), of the per-
mittivity. [E(x, y, z), H(x, y, z)], on the one hand, and [E¢(x, y, z), H¢(x, y,
z)], on the other, being two fields that satisfy Maxwell’s equations and 
the respective boundary conditions in each system, we have the following
equations:

Making use of the vector identity —(A Ÿ B) = B—A - A—B, we obtain

If we now consider a volume V enclosed inside a surface S and make use
of the following theorem:

we obtain

(12.A.2)

Equation (12.A.2), which is called the Lorentz reciprocity theorem, is
valid for any system; we are now going to use it for a system that is 
invariant in a translation parallel to the Oz axis. The volume V is shown in
Figure 12.A.5, it’s a cylindrical box with thickness Dz and a large radius 
R. For small values of Dz, we can reduce the volume integral to a surface 
integral,
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Figure 12.A.5. Application of the Lorentz reciprocity theorem to a cylindrical box.



The flux of some vector A across a surface S is made of several 
contributions:

• The flux across the lateral surface; this flux is considered as equal to zero
if the field goes to zero for large values of the radius, which is the case for
a guided mode.

• The two fluxes across the side faces, which have opposite signs:

Coming back to (12.A.2) we can write

Finally, the z component of the vector products are only functions of the
transverse components of the vectors

(12.A.3.a)

The Modes of a Dielectric Wave Guide Are Orthogonal

We are now going to use formula (12.A.3) to show that the modes of the dielec-
tric guide are orthogonal. We consider the electromagnetic fields of two dif-
ferent modes, respectively labeled n and n¢. As the guiding structure is the
same for the two modes, the difference (e¢ - e) is identically equal to zero.
The z derivative is equivalent to a multiplication by -jknz for one mode and
by -jkn¢z for the other:

(12.A.3.b)

Equation (12.A.3.b) is called the mode orthogonality relation. Using the
Kronecker notation (dnn = 1 and dnn¢ = 0 if n π n¢) we can write

(12.A.3.c)
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Coupled Mode Equations

In this section the electromagnetic properties of a given system (S ¢) will be
deduced from the properties of another system (S ), which has almost the
same optogeometric characteristics.

Let us write the normalized expressions of the electric and magnetic fields
of the nth mode of the second system:

We admit that the electromagnetic fields, E¢(x, y, z) and H¢(x, y, z), of the
system (S ¢) can be expressed as the superposition of normal modes of (S ):

(12.A.4)

The summation should be made over all the modes of (S ), including the
radiated modes, which will be ignored in most cases.

Coupled Wave Guides

We consider the case of Figure 12.A.6(b); the arrangement (S) is defined by
a permittivity repartition e(x, y, z), while (S ¢) is defined by e ¢(x, y, z). Making
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(a) (b)

Two cylindrical guides are embedded in a 
cladding; on the left side the separation is
smaller.

The first system is made of a planar guide 
deposited on a substrate. A grating has been
etched on top of the guide. 

Figure 12.A.6. Examples of systems with almost similar optogeometric
characteristics.
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use of the Lorentz reciprocity relation and of the modes orthogonality, we
obtain, after some vector algebra manipulations, a set of differential 
equations

(12.A.5)

[Dnm - (kzn - kzm)] is called the phase mismatch between the modes 
m and n,

where S(z) is the cross section of the guides at abscissa z.
The coefficients amn thus satisfy a set of coupled linear differential 

equations.

Forward Coupling of Two Monomode Guides

We consider the case of the two guides of Figure 12.A.6(a) and, furthermore,
we suppose that they are monomode. The set of coupled equations then
reduces to only two equations. An accurate description of the repartitions of
the dielectric permittivity is needed and is given in the table below.
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where kz,A and kz,B are the propagation constants of the normalized modes.
The coefficients aA and aB follow a set of two differential equations,

(12.A.6.b)

Inside the cross section of the guide B, |eA| is much smaller than |eB|, so
that CAA is much smaller than CBA; and, in the same way, CBB << CAB. In the
end (12.A.6.b) can be simplified as

(12.A.6.c)

The set of differential equations (12.A.6.c) is made a set of algebraic equa-
tions by assuming that and ; A, B, gA, and gB are
unknown and don’t depend on z,

(12.A.7.a)

Since A and B don’t depend on z, it is required that Dk = (gB - gA),

(12.A.7.b)

The only solution of (12.A.7.b) is the trivial one A = B = 0; except if the
determinant of the system is equal to zero,
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Two values are obtained for gA, and two values for gB. aA(z) and aB(z) are
linear combinations of the complex exponential functions e±jgAz

and e±jgBz
. By

a proper choice of the coefficients, aA(z) can always be written as

(12.A.8.a)

where aB(z) is obtained from aB(z) = j(1/CBA)e-jDkz(daA(z)/dz); the two con-
stants A1 and A2 are fixed by the input conditions. Let us suppose, for example,
that at z = 0, all the energy is in the guide B, aA(0) = 0 Æ A2 = 0:

The power that is carried by the modes is proportional to the square of
the modulus |aA(z)|2 and |aA(z)|2, if P0 is the power in the guide (B) at z = 0,
we have

In the case when the two guides are identical:

• The phase matching condition is satisfied, Dk = 0.
• The two coupling coefficients are equal, CAB = CBA = W,

The coupling length, such as defined in Figure 12.A.3, is equal to Lc = p/2W.
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Annex 12.B

Attenuation of Silica Fibers

The attenuation coefficient of amorphous quartz Is 0.16db/km at

l = 1.55mm

The fascinating properties of silica fibers are a direct consequence of the fact
that silicon and oxygen atoms easily combine to make a very stable and pure
compound, SiO2, which is called quartz and is an abundant constituent of the
Earth’s surface. Quartz may exist in the form of crystals, or as a vitreous and
amorphous material also called fused quartz. Silica is one of the most trans-
parent materials, at least for the case of very long samples. The reason for
this comes from the fact that oxygen and silicon atoms have a great chemi-
cal affinity; they make very resistant covalent bonds, that don’t allow the pres-
ence of free electrons inside the material. Furthermore, in the case of
amorphous silica there are no dislocations and no grains on which the light
could diffuse. In spite of all these good reasons, the remarkable transparency
of SiO2 was not really noticed before 1970, when it was suggested using silica
fibers for the transportation of light waves over very long distances.

The losses have two main origins:

• Rayleigh diffusion by the electrons of the different atoms. The corre-
sponding attenuation varies as 1/l4, and decreases as the wavelength
increases.

• Mechanical vibrations of the molecules (mostly SiO2) and ions (mostly
OH).
� SiO2 has two main absorption bands:

� One is due to the vibration of the electrons with respect to the
nuclei; it falls in the ultraviolet part of the spectrum, and doesn’t
play an important role in our case.

� The other one is associated to the relative motion of the silicon
and oxygen atoms, with a resonance frequency that corresponds
to a wavelength of l = 2.4mm. Its effect is already felt in the near
infrared (l ª 1–2mm).
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� OH: The presence of OH ions in silica leads to an absorption peak cen-
tered at 2.73mm, which presents overtones and combinations with
silica at 0.95mm, 1.24mm, and 1.39mm. For a concentration of 1ppm,
the corresponding attenuations are about 1db/km@0.95mm, 3db/km@
1.24mm, and 40db/km@1.39mm. State of the art fibers keep the OH con-
centration at levels below 0.1ppm.

� Si—O—H has several mechanical resonances between l ª 1.2mm and 
l ª 1.4mm.

The Rayleigh diffusion and excitation of the 2.4mm oscillation of SiO2 have
opposite effects, and the experiment shows that the attenuation curve has a
minimum at l ª 1.55mm. The attenuation at minimum is as low as 0.16db/km.

The presence of OH ions comes from the water vapor that is dissolved in
the silica; recent progress in the technology of fabricating silica fibers has con-
siderably reduced the concentration of OH ions which, in some cases, can be
completely eliminated.

1.60.8 1.0 1.2 1.4

0.1

1

Attenuation (db/km)

Wavelength

in mm

1.55mm   0.16db/km

OH absorption
IR vibration
of SiO2

Rayleigh diffusion (1/l4)

Figure 12.B.1. Dependence of the attenuation coefficient of silica on the wavelength.
The lower curve corresponds to a purer silica (less OH ions). There is a local minimum
at 1.3mm and an absolute minimum at 1.55mm.



Annex 12.C

Elaboration of Optical Guides

It is out of the question to give an exhaustive description of the various
methods for making optical waveguides; we will only describe the principle
of the original methods that have then been the occasion of many tricks.

12.C.1. Optical Fibers

Optical fibers are very long pieces of material (hundreds of kilometers), with
a very small diameter (hundreds of micrometers). The index profile is accu-
rately controlled, especially in the core region (tens of micrometers). They
are pulled out of a preform, a rod that is much shorter and thicker, and that
has an index profile, which is about homothetic of the profile of the fiber. If
D and d are the respective diameters of the preform and of the fiber, the con-
servation of the total mass and of the density implies that a preform with a
length L will give a length l of fiber equal to l = L(D/d)2. If D = 5cm and d =
125mm, 160km of fiber are obtained from 1 m of preform.

12.C.1.1. Elaboration of the Preform

Optical fibers may be made of silica or plastic; we will only describe the fab-
rication of silica fibers. Fibers are, of course, made of vitreous quartz. Silica
can be mixed in any proportion with other oxides, such as germanium oxide,
GeO2, or phosphor oxide, P2O5, or boron oxide, B2O3; the index of refraction
depends on the composition of the mixture.

The chemistry of the elaboration of the preform is largely inspired by the
technology of silicon-based microelectronic devices. The key point is that
many chloride compounds (SiCl4, GeCl4, POCl3, B2Cl3) are gases; a mixture of
gases is very homogeneous and has a chemical composition that can easily
be controlled, using valves and taps. At high temperatures, these chlorides
can be oxidized and give solid compounds that have the shape of soot and
deposit either inside a pipe or around a bait rod. The oxides have two main
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effects; they modify the refractive index and they lower the melting point rel-
ative to pure silica. The main chemical reactions that are involved are sum-
marized below:

An excess of Cl2, which is added at the various stages of the process,
purges the OH ions to give HCl and O2, which are rejected in the exhaust
fumes. The presence of OH ions induces losses in the wavelength region of
interest for telecommunications (1.3–1.6mm).

In the case of the Inside Vapor Deposition (IVD) method, the chemical
reactions are made inside a hollow tube, the soot deposit on the inner walls.
At the end of the first operation, which is described in Figure 12.C.2(a), a suc-

SiCl O SiO Cl GeCl O GeO Cl
gas gas solid soot gas gas gas solid soot gas

4 2 2 2 4 2 2 2+ Æ + + Æ + .
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Thin plastic layer deposited
immediately after pulling (f 500 mm)

Plastic envelope for mechanical
protection  (f 1 mm)

Core  
Monomode (f 10 mm)
Multimode (f 50-100 mm)

Cladding (f 125 mm)

Figure 12.C.1. Typical size of the main parts of an optical fiber.

Gas + oxygen 

Gas burner 

Flame 2200° C

Gas mixture
Oxygen

+ GeCl4 + SiCl4

+ other components 

Exhaust
fumes

Zone where the  
chemical reactions occur

Cloud of soot of 
GeO2 and SiO2

Deposition of a  
molten mixture of 

GeO2 and SiO2

Initial hollow tube of pure silica:
(length: one to several meters, diameter: 10–30 cm, thickness of the walls: 5–10 mm)

Figure 12.C.2(a). Inside Vapor Deposition (IVD) method. The gas burner
periodically goes back and forth along the pipe, while the chemical composition is
modified to obtain the desired chemical composition of the layers that are successively
deposited.



cession of concentric layers are deposited inside the tube; the next operation,
which is described in Figure 12.C.2(b), is called collapse: the tube is heated
very near to the melting point and pulled along a direction parallel to its axis.
The surface energy, corresponding to capillary forces, is smaller when the
central hole is filled: the hollow pipe spontaneously becomes a cylindrical rod,
the core of which is made of the concentric layers and has a gradient of chem-
ical composition. This rod is called a preform. The final fiber will be drawn
out of the preform as shown in Figure 12.C.3.

In the case of the Outside Vapor Deposition (OVD) method, which is
described in Figure 12.C.2(c), the preform is obtained directly by deposition
of successive layers of soot directly on a bait rod made of graphite or of fused
silica. This rod is removed from the preform after completion of the soot
deposition. A porous preform is obtained, which is then transformed into a
bubble-free clear preform after heating in a zone furnace to about 1500°C. At
the end of the previous operation, which is called preform sintering, a small
hole appears in the center, it will disappear during the drawing of the fiber.
OVD preforms can have very large diameters and give very long optical fibers.

The last operation consists of drawing the fibers; this is achieved inside a
specially designed tower (see Figure 12.C.3). The diameter of the cladding is
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Gas + oxygen 

Gas burner 

Inside coated tube

Preform 

Collapse

Figure 12.C.2(b). Elaboration of a preform in the case of the IVD method. After
being coated with many layers of different compositions, the tube is heated and
elongated: the internal hole collapses and the tube becomes a full rod.

O2 + SiCl4 + GeCl4 + POCl3 + B2Cl3

+ other components 

Flame  

Deposition of soot: 
SiO2 + GeO2 + P2O3 + B2O3

Bait rod 
(carbon or silica)

Figure 12.C.2(c). Outside Vapor Deposition (OVD) method. The successive layers
are deposited on a bait rod that is finally removed; leaving along the center a small
hole that disappears during the drawing of the fiber.



558 12. Guided Optics

optically measured during the drawing process, and a feedback control of the
speed of rotation of the drum allows an excellent control of the diameter
(better than ±1mm); the core occupies the center of the fiber with the same
accuracy. Immediately after pulling, the fiber is coated with a thin layer of
plastic, which makes an efficient protection against humidity (avoiding rein-
trusion of OH ions).

12.C.1.2. Cutting and Connecting Optical Fibers

In spite of their very small diameters, optical fibers are not difficult to cut and
connect. The connection losses are usually lower than 1db. Cutting a fiber is
a routine operation, which consists of creating a local stress on the fiber
surface and pulling the fiber with a proper tension. The principle is illustrated
in Figure 12.C.4, a blade (diamond or tungsten carbide) scores the fiber and
then tension is applied. Because of the cylindrical symmetry and the small

Electrical heating 

Optical measurement 
of the diameter
Deposition of a 
plastic coating

Rotating drum to
wind the fiber 

Electronic control of
the speed of rotation 

of the drum

Height @
a few meters

Figure 12.C.3. Fiber drawing. The preform is raised to a temperature close to the
softening point of silica. Immediately after drawing, the fiber is protected against
intrusion of OH ions. Thanks to an optical measurement and a feedback control of the
drawing speed, the diameter is accurately controlled.

Fiber
to be cut 

Diamond tool Optical
fiber

Abrasive
paper Tiny and very

hot flame
2200° C

Gas
+ oxygen 

Fibers sections
to be welded

Figure 12.C.4. Principle of the main operations for cutting and connecting fibers.
The gas burner is often replaced by an electric arc.



size of the diameter, the cross section is usually a mirror-like surface. The
cleaved surface is easily and rapidly polished: after insertion inside a capil-
lary tube, the fiber is gently wiped with a fine-graded abrasive paper (0.1mm).

The area inside which the electromagnetic energy is confined is very small,
a few tenths of square micrometers in the case of monomode fibers. The con-
nection of two fibers is thus a delicate operation. Not so delicate, in fact,
because of the excellent calibration of the external diameter of the cladding
and also because of the fact that the core is placed accurately at the center
of the cross section. When two sections of fibers are to be connected, they
are inserted inside hollow cylinders having an external diameter equal to the
diameter of the cladding. Their tips can then be prepositioned and brought
into close vicinity (micrometer). One fiber is excited and thanks to microma-
nipulators the energy transferred to the other fiber is optimized. At this stage
there are two possibilities:

• A drop of glue is poured with a syringe and UV polymerized. The value of
the index of refraction of the glue is important for eliminating Fresnel
reflections on the interfaces.

• The two sections are pushed into contact and heated up to 2200°C with a
miniblowtorch, which can be replaced by an electric arc or a CO2 laser.
No extra material must be added. Since they are more doped, the cores
become liquid before the claddings, thanks to capillarity an accurate self-
alignment is obtained.

Coupling Efficiency

The electromagnetic field of a guided wave cannot have any shape but should
be a combination of specific functions, which are the modes of the guiding
structure and are usually described by the normalized expressions en(x, y)
and hn(x, y) (see formulas (12.A.1)). Let us consider the excitation of a guide
by an external source that illuminates the input face; only a fraction of the
energy coming from the source is coupled to the guided modes, the remain-
ing part is reflected (Fresnel reflection) or transferred to the cladding. The
Fresnel reflection comes from the index difference between the core of the
fiber and the material in which the source is embedded, antireflection coat-
ings may be useful.

Let E f(x, y) be a vector describing the electric field that is created by 
the source on the surface of the input face, the nth mode will be all the more
efficiently excited as f(x, y) is similar to en(x, y). If the function f(x, y) is 
normalized, it can be shown that the coupling efficiency h is given by the 
following integral, which is called an overlap integral:

h = ( ) ( )
-•

•

-•

•

ÚÚ e fn x y x y dx dy, , .
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When the two functions en(x, y) and f(x, y) are identical, the overlap inte-
gral is equal to one; which is the case when two identical fibers are put in
contact (butt-coupling). If the two functions en(x, y) and f(x, y) are quite dif-
ferent, it is necessary to use a lens, see Figure 12.C.5. If the contact is not
perfect, the two main parameters that control the efficiency are: the distance
d between the two endfaces and the angle of tilt q between the normal to the
faces.

Of course h Æ 0, if d Æ • or if q Æ p/2. The coupling efficiency is signif-
icantly different from zero as long as the distance remains small as compared
to the diameter of the core and the tilt is much smaller than the numerical
aperture of the fiber.

12.C.2. Integrated Optics

The orders of magnitude concerning the guides that are used in integrated
optics are quite different from those of optical fibers:

• Integrated optical wave guides are always made on a substrate.
• They are much shorter. The length is usually of a few millimeters, one-

tenth of a centimeter being possible but exceptional.
• The losses remain low, but are quite high, 0.1 to 1db/m, instead of db/km

in the case of fibers.
• The index difference between the guide and the substrate or superstrate

may be as small as the index difference between the core and the cladding
of an optical fiber, ª 0.001 to 0.05. It can also be higher, ª 0.1 to 0.5.

12.C.2.1. Classification of the Different Technologies 

of Integrated Optics

The substrates are always planar and made of a very transparent material.
The most common material substrates are: ordinary glass, amorphous silica,

p
n

Drop of glue 
Glass marble 

Coupling of an SC laser
with a cylindrical lens

Butt coupling of
two fibers

Coupling of two fibers
with a spherical lens

Figure 12.C.5. Some ways of exciting fibers. The cylindrical lens compensates for
the important astigmatism of the beam emitted by a semiconductor laser. Glass
marbles are cheap and efficient lenses.



lithium niobate, and some semiconductors, such as gallium arsenide and
indium phosphide and their derived ternary compounds.

Guides of practical interest are monomode, or weakly multimode, which
corresponds to a thickness of 0.1mm to 10mm according to the index differ-
ence Dn between the substrate and the guide. An order of magnitude of the
number of modes that can be supported by a given guide is obtained by divid-
ing the optical thickness eDn by the wavelength.

The first problem is to make, on top of a given substrate, a layer with a
higher index of refraction. The different technologies to do that can be divided
into two main categories:

• Deposition of a layer of a well-chosen material.
• Modification of the chemical composition of the surface by the introduc-

tion of impurities across the surface.

12.C.2.2. Deposition of Thin Layers

Any method for depositing a thin layer of material on a substrate can, in prin-
ciple, be used, especially vacuum evaporation and epitaxy. In many cases, a
planar layer is first deposited, the stripe guides being etched, using conven-
tional methods of photolithography.

A good example is given in Figure 12.C.6. Silicon cannot be directly used
as a substrate, since it has a high absorption coefficient in the infrared and 
a very large index of refraction. Nevertheless, because of the possibility 
of having cheap and large size single crystals of high quality, silicon is very
important for integrated optics. The chips are of the same kind as those that
are used in microelectronics. At first, a thick buffer layer of oxide, SiO2, is
thermally grown on top of the surface before making optical guides; this layer
of pure silica constitutes the substrate on which the guiding layer is deposited.
There are two possibilities for making the guide:

• Deposition of a layer of Si3N4: This technology is derived from micro-
electronics where the silicon nitride is used to passivate the integrated cir-
cuits. Because of the high value of the index (n ª 2), the layer must be
very thin, if a monomode guide is desired (ª 0.5mm).

• Deposition of a layer of doped silica: This method is a transposition 
of the technology of elaboration of silica fibers. The thickness of a mono-
mode guide is typically equal to a few micrometers.

12.C.2.3. Diffusion of Impurities Inside a Substrate

12.C.2.3.1. Wave Guides Made by Ion Exchange in Glass

Glass is certainly one of the most popular materials in Optics and it should
not be a surprise that one of the most convenient ways of making integrated
optical devices takes advantage of the properties of this material. Common
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glass is mainly a mixture of sand, which is made of silica, SiO2, and of various
oxides. Among those oxides the most important is sodium oxide, Na2O. His-
torically, glass was invented by the Egyptians who had noticed that, although
they could not reach the melting point of sand, a mixture of sand and sodium
carbonate became plastic and then liquid below 800°C. After cooling, a new
and very hard material, a piece of glass, was formed.

When the temperature is increased, the sodium carbonate transforms 
in carbon dioxide, CO2, which escapes and in a solid phase, in principle 
made of sodium oxide, Na2O. From a thermodynamic point of view the
mixture becomes more stable if the atoms of sodium are ionized to give 
Na+ ions while the remaining oxygen atoms join the network of silicon and
oxygen atoms of silica, which now has a nonstoichiometric formula SiO2+x.
All the silicon atoms have four covalent bonds. Most of the oxygen atoms have
two covalent bonds, but some of them have only one covalent bond, the
second being a “pending bond”; those mono-coordinated atoms have an extra
electron. A piece of glass can thus be considered as a fixed network of nega-
tive sites, inside which the positively charged sodium ions are relatively 
free to move. Low at room temperature, the mobility of the Na+ ions becomes
important when the temperature is increased and approaches the softening
point.

We now consider a molten bath of some salt, M+A-, being in a liquid phase
the M+ and A- ions can move rapidly. If a glass slide is immersed in such a
bath, because of the gradient of chemical concentration that exists in the
immediate vicinity of the surface, the M+ ions will exchange with the Na+ ions
of the glass sample: as a result, the chemical composition of the glass is mod-
ified, starting from the surface. After they have penetrated the glass, the M+

ions continue their diffusion into the glass by further exchange with other
sodium ions: a gradient of the concentration of M+ ions is created inside the
glass.

Silicon monocrystal substrate
(500 mm)

Pure SiO2 buffer layer
(10 –15 mm)

Waveguide:
doped SiO2 (5–10 mm)
or Si3N4 (0.1–0.7 mm)

Pure SiO2 superstrate (10 mm)

Etched stripe 
guide 

Pure SiO2 cover layer (10 mm)

Profile of the
guided wave 

Figure 12.C.6. Elaboration of a planar or a stripe guide on top of a silicon chip. A
first thick layer is first grown by oxidation of the silicon substrate. A guiding layer and
a superstrate are then deposited. Stripe guides are etched by photolithography. A
protection cover layer is often deposited.



When the slide is taken out of the bath and goes back to room tempera-
ture, the diffusion stops. Because of the necessary conservation of the elec-
tric charge, only single-charged ions can be introduced using this technique.
Silver ions are the easiest ions that can be introduced into a glass matrix; in
the vicinity of the surface all the Na+ ions can be replaced by Ag+ ions.

To the modification of the chemical composition corresponds a correla-
tive variation of the index of refraction. If the index of refraction is increased,
the ion exchange process generates an optical wave guide on top of the glass
slide. In the case of silver, the variation of the index can be as high as Dn =
0.1 for a total replacement. There are not many single-charged ions that can
be used; beside silver, thallium and potassium can also be used. The variation
of chemical composition is not the only reason for the modification of the
index of refraction, mechanical stresses should be considered if the size of
the introduced ions is different from that of the sodium ions. This is the case
for potassium ions: the guides are often birefringent.

The experiment shows that the law of variation of the index, versus the
depth z inside the glass, can be described by the following formula:

n(z) = n0 + Dnf(z/a),

where

n0 is the index of the glass prior to the ion exchange.
Dn depends on the glass material and on the ion M+, 0.001 < Dn < 0.1.
a is a parameter that is homogeneous to a length and that gives an order of

magnitude of the depth of penetration of the ions. a is determined by the
glass material, the temperature, and duration of the exchange.

f(z/a) is a function of the dimensionless variable z/a, it goes to zero when z
Æ •. f(z/a) usually has a maximum on the surface (z = 0), but the maximum
can also occur below the surface (buried guide).

Ion exchange has proved to be one of the cheapest and most efficient ways
to make passive optical waveguides. With silver or thallium ions Dn is of the
order of 0.1, the index being increased from 1.5 up to 1.6. Such a value is often
too high, lower values are obtained by diluting the M+A- salt with sodium
nitrate. The depth of penetration, as in many diffusion processes, varies as
the square root of the duration. Typically a is of the order of 1mm after a few
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minutes at 300°C. A depth, as large as 100mm, can be reached after several
hours.

The maximum of the function f(z/a) can be obtained for an abscissa cor-
responding to a point that is located below the surface; to do so, the glass
slide is first plunged into a molten bath of M+A- and then into a second bath
of pure sodium nitrate. During the first immersion, M+ ions are introduced
inside the glass; during the second immersion some of them will leave the
slide and be replaced by sodium ions. The guide is said to be buried; the main
advantage is that the guided light becomes less sensitive to the imperfections
of the surface, scratches or dust; this is the way to reach attenuation as low
as 0.1db/cm.

The ion exchange method is compatible with the usual photolithographic
techniques as shown in Figure 12.C.7. An aluminum mask is transferred to the
glass slide before immersion in the molten salt.

The ions can also be put in motion by a voltage applied across the glass
sample: ions are introduced on one side of the slide, while other ions are
extracted from the other side. This kind of electrical control of the exchange
allows an easy control of the shape of the index profile. With a slide having a
thickness of 1mm, a temperature of 300°C and a voltage of 100V, the current
is of the order of 100mA.

12.C.2.3.2. Integrated Optical Amplifiers

A severe drawback of glass-based integrated optical circuits comes from the
passivity of the glass material which shows no electrooptic effects and has
no direct amplification properties. This last inconvenience has recently been
circumvented, and integrated laser amplifiers as well as integrated laser oscil-
lators can be made using the ion exchange technique. The trick is to ask the
glassmaker to introduce suitable ions inside a glass matrix; slides are then cut
and polished before performing the ion exchange. Very interesting results are
obtained with neodymium and erbium ions.

Figure 12.C.9 shows an example of integrated optical amplifiers made by
Teemphotonics, this is a good illustration of the possibilities of integrated

Careful substrate cleaning 

Deposition of an
aluminum layer 0.1 mm

Photoresist deposition
0.5 mm

Positioning of a mask 

UV insulation
The mask is removed

after insulation

Photoresist
development

Etching of the
aluminum layer

Photoresist removal

Ion exchange

Aluminum removal 

Figure 12.C.8. Typical procedure for making stripe guides by ion exchange.



optics. As Er-doped lasers have a three-level pumping scheme, the unpumped
parts are absorbing and all the passive components are thus made in ordinary
glass. To increase the length of the amplifying guide (40cm) a special double
spiral has been designed. The pumping light comes from a semiconductor
laser and is coupled by a Wavelength Division Multiplexer (WDM 1). The
remaining part of the pumping light should not reach the output fiber and is
decoupled by a second WDM; a Bragg reflector, designed to reflect the
pumping light, is added to increase the efficiency. Two Y-junctions extract a
small part of the input and amplified signals are sent to two photodetectors;
the detected signals are used to control the pumping power and keep the
output signal at a given level. An important advantage of integrated amplifiers
is their compactness and, most of all, the possibility of integrating many ampli-
fiers on the same chip.

12.C.2.3.3. Wave Guides Made in Lithium Niobate

Lithium niobate, because of its nonlinear optical properties, is a very attrac-
tive material for integrated optics; especially for making modulators and 
electrically activated switches. It can also be doped with erbium and acquire
amplification properties. The two main techniques for making guides on a
lithium niobate substrate are the thermal diffusion of titanium atoms and the
exchange of some lithium atoms with protons.

As for titanium diffusion, a thin layer of titanium (50–120 nm) is first
deposited on the surface of the LiNbO3 sample, which is then heated to 1000°C
for about ten hours. The titanium atoms penetrate inside the crystal and
induce an augmentation of the ordinary and extraordinary indices. Unfortu-
nately, their presence makes the material more sensitive to optical damaging
by intense light beams. However, in the telecommunications spectral band
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Figure 12.C.9. Integrated amplifier made by Teemphotonics.



(1300–1600nm) the damage problem is not so severe and can be ignored as
long as the power density remains below 0.1 W inside a 5 ¥ 5mm2 monomode
guide.

An easy technique for exchanging lithium ions with protons is to immerse
the lithium niobate crystal in a molten bath of benzoic acid (C6H5COOH),
which provides the protons H+ that exchange with lithium ions. The exchange
temperature is about 200° C and lasts for about two hours. The exchange
induces mechanical strains that damage the crystal, which must be annealed
at 350° C over several hours. The extraordinary index is mostly concerned by
the exchange; good guides are obtained with losses of 0.15db/cm in the
800–1500nm band.
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13

Fourier Analysis and Fourier Transform

Fourier analysis is a good example of a mathematical tool that has been exhib-
ited by physicists and for which mathematicians have developed a very pow-
erful and elegant theory, for the highest mutual benefit. We will consider
Fourier analysis as a useful tool and will not raise any problem about the def-
inition of real or complex functions or about their expression by means of
Fourier integrals. For the reader who is familiar with this theory we hope that
it will be an opportunity of a new visit, and that it will help others to become
familiar with it.

13.1. Fourier Series

A periodic function f(t), of angular frequency w, can always be con-
sidered as the sum of harmonic functions whose frequencies are multiples of
w, which is called the fundamental frequency. Using obvious notations we
write

(13.1)

Formula (13.1) is the Fourier series representation of the periodic 
function f(t), it’s also called the Fourier development of f(t). It is strictly 
equivalent to know f(t) or to know the set of complex numbers {bn}.

The variable t will always be considered as real. If the function f(t) is also
real we have bn = b*-n.
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13.2. Fourier Integrals and Fourier Transform

For more general functions f(t), i.e., nonperiodic functions, Fourier series are
replaced by Fourier integrals. The function f(t) is then the sum of infinity of
sinusoidal functions, as indicated by the following formula:

(13.2.a)

Recall that, following Riemann’s definition, an integral is actually the 
limit of a sum, as the number of elements goes to infinity while their size
approaches zero,

(13.2.b)

F(�i) is a complex number, which has a phase; using language that is famil-
iar to opticians, for the time variation f(t) that is represented in Figure 13.1,
formula (13.2.b) can be understood as follows:

• At time t = q, all the components have the same phase and add (interfere)
constructively, giving a maximum of amplitude.

• Since the frequency is not the same for the different components, the
phase concordance doesn’t last long and the amplitude decreases.

From a mathematical point of view, formula (13.2) indicates a correspon-
dence between two different spaces: the space of the functions of time t

and the space of the frequency �. It can be established that the inverse trans-
formation, that’s to say, the transformation going from F(�) to f(t), is
described by a very similar formula:
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tq

f(t)

Figure 13.1. The function f(t) is the result of the interference of all the Fourier
components. At time t = q, all the components have the same phase and interfere
constructively to give a maximum. As time progresses the phase coincidence vanishes
and so does the signal.



where F(�) is said to be the Fourier transform (FT) of f(t); conversely, f(t) is
the inverse Fourier transform of F(�), (FT-1). Formulas (13.2) and (13.3) can
be summarized as

(13.4)

Some authors make use of the angular frequency w, instead of the fre-
quency �; the definition is almost the same, except that a coefficient (2p)-1/2

should be introduced in the definition:

(13.5)

Bandwidth of a Signal

It is not so easy, and perhaps not so important, to give an exact definition of
the bandwidth of a signal. For most functions used in practical problems in
Physics the amplitude of the Fourier components goes to zero as the fre-
quency is indefinitely increased.

• In the case of a periodic signal, the module of the coefficients bn goes to
zero if n becomes infinite.

• In the case of a nonperiodic function, F(�) Æ 0 if � Æ •.

The bandwidth of a signal is the frequency band, inside which the Fourier
components significantly differ from zero.

13.3. Some Important Properties of 

the Fourier Transform

Fourier Transform of the Fourier Transform

Linearity

It’s because of its linear character that the Fourier transform is so impor-
tant in Physics and Signal Processing.
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Scaling

If the variable t is replaced by t/t (t being real), the Fourier transform of f(t/t)
is proportional to F(�t):

According to this property, we see that the narrower the spectrum in 
one space, the broader it is in the other space. For example, the Fourier trans-
form of a Dirac pulse, which is infinitely narrow, is a function that is constant,
whatever the frequency.

Translation Theorem

Changing the origin of coordinates in one space produces a phase shift in the
other space,

Fourier Transform of a Derivative

Fourier Transform of tf(t)

Fourier Transform of a Convolution Product

The convolution product of two functions f1(t) and f2(t) is defined by

A convolution in one space is equivalent to a multiplication in the other
space,
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Parseval’s Theorem—Energy of a Signal

The instant power of a signal is proportional to its squared modulus |f(t)|2, the
total energy is obtained by the integral of the squared modulus. The follow-
ing formula, known as Parseval’s theorem, can be established:

13.4. Two-Dimensional Fourier Transform

The Fourier transform is generalized to functions of several variables. We will
write the formulas in the case of two variables. The two spaces that are con-
nected now have two dimensions; the coordinates in the two spaces will,
respectively, be (x, y) and (�x, �y). The Fourier transform of f(x, y) is F(�x, �y),

(13.6.a)

(13.6.b)

Formula (13.6.b) is nothing other than the planar wave decomposition of
f(x, y).

13.5. Some Famous Fourier Transforms

13.5.1. Gaussian Function

The Fourier transform of a Gaussian function is another Gaussian function;
the Gaussian function is an eigenfunction of the Fourier transform

13.5.2. Dirac Pulse d(t)

The Dirac pulse was invented as a convenient mathematical representation
of a very short signal of finite total energy. It can be considered as the limit
of a rectangular signal of constant area, as its duration goes to zero while its
amplitude becomes infinite,
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The Fourier transform of a Dirac pulse is a constant function. In the same
way the Fourier transform of a constant function is a Dirac pulse.

It is interesting to notice that the existence of discontinuities is not a
serious handicap in taking the Fourier transform of a function. When a func-
tion has one or several discontinuities, it’s often more convenient to work
with its Fourier transform.

13.5.3. Rectangular Function

13.5.4. Rectangle of Duration q

Using the scaling theorem we obtain

13.5.5. Sinusoidal Signals with a Limited Duration
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13.5.7. Dirac Comb

A Dirac comb is a succession of Dirac pulses that are periodically repeated.
The Fourier transform is another comb,
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13.5.8. Comb of Thin Periodic Teeth

Infinite Comb of Identical Teeth
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t

d(t)

q0

n

D(n) = FT[d(t)]

1/q0

Comb with a Finite Number of Identical Teeth

We now consider a comb made of a finite number of identical teeth. Such a
signal is the product of a rectangle of duration q by an infinite comb of iden-
tical teeth of duration t. The Fourier transform is the convolution product of
the Fourier transform of a rectangle (i.e., a sinc function) by the Fourier trans-
form of an individual tooth.

Figure 13.5 represents a comb of short rectangular pulses of duration t
and periodicity d, modulated by a rectangular pulse of duration q. The assump-
tion that t is much shorter than q makes the Fourier transform quite simple:
it is a comb of a narrow sinc of periodicity 1/d, modulated by a broader sinc
having its first zero for � = 1/q.
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Figure 13.4. The Fourier transform of an infinite comb of identical teeth is a comb
of Dirac pulses modulated by the Fourier transform of an individual tooth.
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Figure 13.5. Fourier transform of a comb made of a finite number of identical 
teeth.

Figure 13.3. Fourier transform of an infinite comb.



13.6. Wave Packet

We consider a sinusoidal wave (frequency �, wave vector k) modulated by a
bell-shaped function f(t):

• �c is a frequency that is defined by the source (radio or optical frequency).
The subscript c has been chosen to describe a carrier wave.

• e(t) is called a wave packet. The variation of f(t) is slow in comparison
with the variation of the carrier, which means that �c is higher than the fre-
quency components of f(t) and well outside the bandwidth. k = n(2p�c /c)
is the wave vector, n is the index of refraction and varies with the fre-
quency (dispersion).

The linear property of the Fourier transform makes it easy to obtain the
spectrum of a wave packet by a simple application of the following trigono-
metric identity to each of the Fourier components of f(t):
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Figure 13.6. Respective representation of a carrier wave, a signal, and a modulated
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Each Fourier component of f(t) generates two components in the Fourier
development of the modulated signal. If, as is usually the case, the Fourier
transform F(�) of f(t) is a bell-shaped curve starting at �min and ending at �Max,
the Fourier transform of the wave packet is made of two bell-shaped curves.
Located on both sides of the carrier frequency they are easily deduced from
F(�), since their equations are, respectively, F(�c ± �). They are called the side
bands.

Phase Velocity—Group Velocity

A wave packet is the superposition of an infinite number of sinusoidal com-
ponents that, having different frequencies, don’t propagate at the same speed.
If we want to study the propagation of a wave packet, we must study the prop-
agation of its various components and calculate the Fourier integrals at each
point. Let us write the equation of the wave packet at the origin of the coor-
dinates and at a point of abscissa z.

• At the origin z = 0:

By application of the translation theorem we again find the two side
bands,

• At point M: (13.7)

If the wave packet propagates in vacuum, the module of the wave vector
is independent of the frequency and is equal to k0 = 2p(�/c).

(13.8.a)

By application of the translation theorem of Section 13.3, equation (13.8.a)
becomes

(13.8.b)

Formula (13.7.b) is a clear consequence of the fact that, on their arrival at
the abscissa z, the Fourier components have kept the same phase repartition
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that they had at z = 0, since all of them travel at the same speed c. The signal
that is seen, at time t by an observer sitting at abscissa z, is identical to the
signal that was observed earlier at (t - z/c) by an observer sitting at the 
origin.

Let us come back to a dispersive material for which the module k(�) of
the wave vector is a function of the frequency. The bandwidth of a side band
is much smaller than the carrier frequency, which allows us to replace the
wave vector by the approximate development,

The contribution of the side band (� + �c) to the signal at the abscissa z is
given by

(13.9)

In formula (13.9) we recognize the carrier wave which propagates at the
usual phase velocity �c/k(�c). The second term, f(t - z/VG), which represents the
speed of propagation of the maximum of the wave packet, is called the group

velocity. It is often convenient to introduce the index of refraction n:

While propagating, the shape of the wave packet is also modified and the
pulse duration changes. Our first-order approximation is not accurate enough
to evaluate this modification.
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4-f arrangement, 110

A

absorber, saturable, 439
absorption, 373, 392, 397

of light by atmosphere, 514–515
absorption coefficient, 10, 364
absorption spectroscopy, 3

differential, 5
time resolved, 474

acoustooptic effect, 359, 429
action integral, 148
additive trichromatic system, 53–54
Airy disk, 316
Airy function, 282–283, 287, 289
allowed energy levels, 488
ammeter, Faraday effect, 221–223
amplification, 359
amplitude modulation, 21
amplitude modulator, 217–219
amplitude splitting interferometers,

265–274
dielectric films double beam

interference, 267–270
fringes localization, 265–267
fringes of slides with inconstant

thickness, 270–274
analyzers, 152–155

direction, 152
perfect, 152
see also polarizers

angle, critical, 169
angular magnification, 115, 119
anomalous dispersion, 364

zone of, 364
anti-Stokes rays, 481, 503, 507
antiprincipal planes, 343
antireflection coatings, 290–291
aplanetism, 113, 114
approximate imaging, 103
Arago, François, x, 198, 199, 299, 319
asymmetrical atoms, 200
atmosphere

absorption of light by, 514–515
coloration, 512

atomic clocks, 408–412
atomic polarizability, 355
atoms, 393
attenuation, 359, 515

of silica fibers, 553–554
autooscillator, 383

analysis using tuned RLC circuit,
384–385

start from noise, 387–388
avalanche photodiode, 28
average electric field, 361
axial magnification, 115, 119
axial vectors, 219
axis

fast, 242
optical, 194
slow, 242

B

B, 57
Babinet compensator, 245
“banana” (Ba2NaNb5O15), 455

second-order nonlinear coefficient, 460

Index

579



580 Index

bandwidth of signal, 569
Bartholimus, Erasmus, x, 179
Basov, Nikolai, 380
beam splitter, 276
Beer’s law, 359, 402
Bernard-Durrafourg formula, 444–446
biaxial materials, 194
Billet’s lens, 263
Biot, Jean-Baptiste, 198
Biot-Savart interaction, 19
Biquard, Pierre, 507
birefringence, 179

artificial/induced, 182
circular, 198–203

comparison with linear
birefringence, birefringence, 199

classification of materials, 194
and dispersion, 232
electrical, 207–219

amplitude modulator, 217–219
electrooptic tensors, 214–216
phase modulator, 217
Pockels effect, 213–214, 216
see also Kerr effect

flow, 207
induced, 203
magnetic, 219–224
natural, 182
stress, 204–206

birefringent plate, 227–229
birefringent prism, 226–227
blackbody, 49, 389–392

energy density inside, 50–51
equilibrium in, 395, 489–492
luminance, 49–50

border detection, 347
Bose-Einstein distribution, 399, 441
bosons, 402, 503
Boullouch, Raymond, 278, 417
Bragg formula, 324–329
Brewster, David, 160, 204
Brewster angle, 160

mathematical interpretation, 166–167
Brewster phenomenon, 160–161
Brillouin doublet, 504–507
Brillouin effect, 429, 479, 480, 500–511

classical theory, 502–503
diffraction of light by ultrasonic

waves, 507–511

diffusion by crystal, 501–502
diffusion due to irregularities, 500–501
quantum theory, 503–504

Briot’s formula, 363
BSO, 258
Busch, H., 136
butt-coupling, 560

C

calcite, 196
cameras

elementary, 105
pinhole, 104

candela, 47
carbon, asymmetrical atoms of, 200
cardinal elements, 115–117
cathode ray tube, 148
cathodo-luminescence, 4, 5
Cauchy’s formula, 363
celerity of light, 71
centered systems, 112–125

basic properties, 114–115
cardinal elements, 115–117
definition, 114
image construction in, 117–119
matrix methods for, 119–125
with nonconstant index of refraction,

142–145
cesium atomic clocks, 408–410
channeled spectrum, 249
charged particle beams, optics of, 146–148
chemical lasers, 416–417
chirping, 472
cholesteric liquid crystals, 251, 252
chromatic coordinates, 55
chromatic resolution, 287
chromatic resolving power, 286–288
circle of less diffusion, 104
circular aperture, diffraction by, 316
circular birefringence see birefringence,

circular
circular waves, generation, 9, 10
Clausius-Mossoti formula, 358
clock frequency, 540
coherence length, 38
coherence time, 266
coherency

spatial, 439–440
temporal, 439–440
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Cohnes, P., 422
collapse, 557
collisions, resonant, 416
colored appearance of objects, 18
colorimetric coefficients, 55
colors

interference, 272–274
perception of, 52–55
reproduction of, 52–55
space of, 54

comb of periodic teeth, 574
compensators, 245
conduction band, 441
conjugate points, 111
conjugation, 109

equations, 111, 113
matrix of, 124–125

Connes, Pierre, 285
corner-cube prism, 135
correspondence, principle of, 381
Cotton Mouton effect, 223
Coulomb interaction, 19
coupled mode theory, 546–552

equations, 549
couplers, 543

distributed, 544–546
coupling, directional, 544
coupling efficiency, 559–560
critical angle, 169
crossed polarizers, 154–155
cryolithe, 291
crystals, 250–251

diffraction of X-rays by, 325–326
diffusion of light by, 501–502
liquid see liquid crystals

curl, 66
cut-off frequency, 534–535
cut-off wavelength, 524, 535

D

D, 57, 180
dark solitons, 476
darkness current, 25
Davisson and Germer electron diffraction

experiment, 40–41
de Broglie, Louis-Victor, x
de Broglie relationship, 5
de Broglie waves, diffraction, 40–41
de Broglie’s wavelength, 136

de Gennes, P.G., 250
Debye, Peter, 507
decibel, 22
decibel milliwatt (dbmW), 23
decomposition, in planar harmonic

waves, 69
depolarizing field, 357
Descartes, René, x
Descartes’ construction

for anisotropic media, 190–192
for isotropic media, 189
of refracted rays, 169–170

Descartes’ equations for lenses, 112, 118
detection, definition, 21
dichroism, linear, 152–154
dielectric

ideal, 156
practical, 156

dielectric constants, 67
principal, 181, 182–183

differential equations
of charged particle beam trajectories, 146
of light rays, 140–142

differential spectroscopy, 5
diffraction, 38–41, 299–349

by sharp edge, 39
of electrons, 39–41
evanescent modes, 329
far field, 306, 309
and Fourier transform, 308
Fraunhofer see Fraunhofer diffraction
Fresnel see Fresnel diffraction
Huygens-Fresnel postulate see

Huygens-Fresnel principle
and image processing, 342–349
and interference, 300–301
of light by ultrasonic waves, 507–511
near field, 306
orders of, 323

diffraction fringes, 39
diffraction gratings, 322–333

blazed, 331–332
Bragg formula, 324–329
duplication, 331
evanescent wave support, 328–329
holographic, 330
Littrow autocollimation mounting, 332
methods for making, 329–331
monochromator, 333
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diffusion, 322
Brillouin see Brillouin effect
by crystal, 501–502
by rough surface, 93
by scattered medium, 512–515
distinction from diffraction, 322–323
Mie, 481, 512
Raman see Raman effect
Raman-anti-Stokes, 489
Raman-Stokes, 488
Rayleigh, 481, 489, 502, 553–554

diopter, 124
dipole, electric see electric dipole

radiation; oscillating dipoles;
static dipole

Dirac comb, 313, 573
Dirac pulse, 313, 571–572
directional coupling, 544
directions of vibration, privileged, 186,

238
directivity, 440
dispersion, 67, 71, 94, 351

anomalous, 364
zone of, 364

birefringence and, 232
laws of, analytical expression,

362–364
normal, 363, 377

zone of, 363
dispersion curves, of modes of

propagation, 530–531, 535
displacement currents, 352
divergence-dir, 66
double refraction, 179
dyes, polymerization of, 330

E

E, 57, 58, 180
effective index of mode, 535, 540
Eikonal equation, 137–138
Einstein, Albert, vii, x, 380, 392

attempt to establish Planck’s formula,
392–401

first model, 395–396
second model, 396

on Raman effect, 479, 483, 488, 489
Einstein coefficients, 396

for spontaneous effect, 396
for stimulated interaction, 396

elastic surface waves, 8–9
electric dipole interaction, 352
electric dipole radiation, 13–21, 366–374

definition of oscillating dipole, 366
electric and magnetic fields created by

dipole, 366–368
field radiated by planar distribution of

oscillating dipoles, 373–374
field radiated from oscillating dipole,

20
power radiated by oscillating dipole,

369–373
electric dipole transition, 371
electric displacement vector (D), 57, 

180
electric field vector (E), 57, 58, 180
electric induction vector, 57
electric interaction, 20
electrical birefringence see

birefringence, electrical
electrical susceptibility see

susceptibility, electrical
electromagnetic field, 57

general rules for determination, 58–60
electromagnetic waves

applications, 1–5
and Einstein’s relativity principle, 8
structure, 70–73
see also planar harmonic waves

electron
differential equation of motion, 15

object illuminated by DC coherent
source, 17

object illuminated by incoherent
source, 17–18

shape of solution in case of light
sources, 15–17

free, 360
electron optics, 136, 147
electrooptic effect, 213–214, 216

interpretation, 469–470
electrooptic tensors, 214–216
electrostriction, 508
ellipsoid, index, 237–239
emergence, grazing, 170
emission

multimode, 426–429
random, 427

single mode, 429–431
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spontaneous, 392, 397, 426
stimulated, vii, 373, 392, 397

emission spectroscopy, 4, 5
time resolved, 5

emittance, 43
enantiomorph, 200
energetic parameters, 46
energy bands, 441
energy conservation

by reflection and refraction, 167–168
in multiphoton processes, 456

energy levels
allowed, 488
virtual, 488–489

energy transportation, by
electromagnetic wave, 72

evanescent waves, 168, 170–171, 
328–329

excitation, 362, 449, 451
of planar wave guide, 531–533

exitance, 43
extraordinary index, 195
eye, human see human eye

F

Fabry, Charles, 279, 417
Fabry-Perot etalon, 279
Fabry-Perot interferometer/resonator,

278–289, 380, 417–426
chromatic resolving power, 286–288
comb of modes, 284, 424
DC behavior of, 419–421
description, 279–281
energy storage inside, 418–419
expressions of transmitted waves,

282–284
laser effect, 424–426
principal mode, 423
role of diffraction, 421–423
scanning, 288–289
size of rings, 285–286
suitability to optics, 421
transient state, 417–418
transverse mode, 423
using spherical mirrors, 285, 422

far field diffraction, 306, 309
see also Fraunhofer diffraction

Faraday, Michael, 219
Faraday effect, 219–220

ammeter, 221–223
comparison with natural optical

activity, 220–221
Faraday isolators, optical, 221
fast axis, 242
feedback oscillator, 379, 382–388

special characteristics of ray emitted
by, 386

Fermat, Pierre de, x, 94
Fermat’s principle, 94–102

and Maupertuis principle, 148
for stigmatic optical systems, 

98–102
Fermat’s theorem, 94
Fermi-Dirac distribution, 441
Feynman, Richard, ix, 369, 373
field, notion, 19
filters

high-frequency, 346
low-frequency, 346

finesse, 283
coefficient of (finesse factor), 282

Fizeau, Armand-Hippolyte-Louis, x
flow birefringence, 207
focal length

image, 117
of lens, 106
object, 117

focal planes, 108, 116
focal points, 106–107, 116

secondary, 106, 108
forced regime, 15
forward coupling, of monomode guides,

550–552
four-waves interactions, 470, 476
four-waves mixing experiment, 

476–477
Fourier analysis, 567
Fourier development, 567
Fourier hologram, 349
Fourier integrals, 568–569
Fourier plane, 342–343
Fourier series, 567
Fourier transform, 308, 569

of comb of periodic teeth, 574
of convolution product, 570
of derivative, 570
of Dirac comb, 573
of Dirac pulse, 572
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of Fourier transform, 569
of Gaussian function, 571
inverse, 569
properties, 569–574

linearity, 569
Parseval’s theorem, 571
scaling, 570
translation theorem, 570

two-dimensional, 571
analog calculation of, 347

Fourier transform holography, 349
fractional excess, 285
Fraunhofer, Joseph von, 306
Fraunhofer diffraction, 306, 308–318

by circular aperture, 316
by many slits, 313–314
by one slit, 309–311
by rectangular aperture, 317–318
by two slits, 312
diffraction pattern of comb of slits,

314–316
free electrons, 360
free regime, 15
free-space optics, 519
free spectral range (FSR), 283, 287
frequency, 11
Fresnel, Augustin-Jean, x
Fresnel diffraction, 306, 309, 318–322
Fresnel equations for normals, 234
Fresnel formulas

in anisotropic media, 233–234
for reflection and refraction, 163–164,

293–294
for total internal reflection, 172

Fresnel mirrors, 262
Fresnel number, 321
Fresnel zone plates, 320–321
Fresnel zones, 319–320
Friedel, G., 251, 299, 318
fringes

achromatic, 264–265
of air filled prism, 271
of equal inclination, 267
of equal thickness, 272
localization, 265–267
nonlocalized, 263–264
of slides with inconstant thickness,

270–274
zero-order/central, 264

front plane, 114
fundamental frequency, 567
fundamental mode, 525

G

Gabor, Denis, 333–334, 341
gain, of amplifier, 383
gallium arsenide (GaAs), 215

second-order nonlinear coefficient,
460

gallium arsenide diode, 414
gallium phosphide (GaP), 460
gas laser pumping, 415–416
Gauss approximation, 83
Gaussian beams, 83–90

transformation by spherical lens,
88–90

Gaussian function, 571
geometrical optics, 91
geometrical width, 43

conservation, 44–45
thermodynamics and, 49–52

giant pulse, 437
Gladstone’s law, 204, 358
Glan-Foucault prism, 230–231
Glan-Thomson prism, 230–231
glass, 562

ion exchange in, 561–564
residual stresses in, 206

gradient, 66
gradient index, 136
gradient index fibers, 520, 536

modal analysis of, 537–538
number of guided modes, 538–539

grating vector, 341
gratings, diffraction see diffraction

gratings
grazing emergence, 170
grazing incidence, 169
group velocity, 540, 542, 577
guide normalized frequency, 539
guided modes, 523–524, 526–527,

529–530
normalization, 546
structure, 526, 535

guided optics, 517
definition, 519
see also optical fibers; step index

planar guide
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guiding conditions, 522–523, 528–529
Gullstrand formula, 128

H

H, 57
Hamilton, W.R., 136
Hamiltonian analogy, 136
harmonic waves, 11

general, 74–77
planar see planar harmonic waves

Havelock, T.H., 208
helium-neon laser, 416
Helmholtz equation, 74

for beams with slow amplitude
variations, 83–87

for slow amplitude variations, 74–75
Helmholtz, Hermann von, 303
Hertz dipole, 20
heterodyne device, 468
highest-order mode, 525
Hilbert transforms, 376
holograms, 335

color, 341
of planar wave, 336–337
of spherical wave, 337–340
volume, 340

holography, 333–342
definition, 334–335
Fourier transform, 349
interference, 341–342
principle, 336
volume, 340–341

Hooke, Robert, x
human eye, 24

average, 46
long-sighted, 111
sensitivity, 47
short-sighted, 111

Huygens, Christian, 179
Huygens’ construction

for anisotropic media, 190–191, 193
for isotropic media, 189

Huygens-Fresnel principle, 299–308
intuitive approach, 299–303
mathematical formulation, 303–305
resolution of problem of diffraction,

305–308
Huygens-Fresnel sources, auxiliary, 302
Huygens-Fresnel wavelets, 302

I

idler, 464
illuminated objects, 13
image processing, 343–349

computer-assisted, 348
Fourier transform holography, 349
phase contrast method, 345–346
spatial filtering, 346–347
strioscopic arrangement, 344–345

images
formation of, 102–105
real, 103
virtual, 103

imaging
approximate, 103
perfect, 99, 103

using refraction at interface, 101–102
incidence

grazing, 169
normal, 157

incoherency
spatial, 440
temporal, 440

index ellipsoid, 237–239
index of refraction see refraction,

index of
indices surface of, 191, 234–235, 236
indicatrix, 301
indium tin oxide (ITO), 254
induced birefringence see birefringence,

induced
inhomogeneous waves, 76
Inside Vapor Deposition (IVD), 556–557
integrated optical amplifiers, 564–565
integrated optics, 507, 521, 560–566

classification of technologies of,
560–561

deposition of thin layers, 561
diffusion of impurities inside

substrate, 561–566
intensity

constructive, 261
destructive, 261
of elliptically polarized wave, 151
luminous, 42

interference, 33–38, 240, 259–298
conditions for two light beams to

produce, 35–38
diffraction and, 300–301
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dual-beam, 274–278
fractional order of, 268
order of, 260, 268

at center, 285
paradox, 33
two waves, 263
using polarized light beams, 241–242
using polarized white beams, 247–249
using stacks of thin transparent layers

see thin layers, interference by
stacks of

see also interferometers
interference colors, 272–274
interference filters, 298
interferometers

amplitude splitting see amplitude
splitting interferometers

dual beam, 267
Fabry-Perot see Fabry-Perot

interferometer/resonator
Mach-Zehnder, 277–278
Michelson, 274–276
multiple beam, 267
Twyman-Green, 277
wave front division, 259–265

inverse of the indices, surface of, 191,
235–237

inversion of population, 394, 444–446
maximum value, 435
means of obtaining, 412–417
threshold, 433
total, 403

ion exchange in glass, 561–564
irradiance, 43

J

Jeans, James, 390–391

K

KDP, 196, 214, 215, 218, 455
second-order nonlinear coefficient,

460
KD*P, 214, 215
Kepler law, 112
Kerr, John, 207
Kerr cell, 438
Kerr constant, 208
Kerr effect

electrooptic, 207–213, 470–476

optical, 211, 471
self-focusing, 473–474
self-phase modulation, 472
static (DC), 211, 470–471

magnetooptic, 223, 224
Kerr-induced birefringence, 208
Kerr switches, optical, 209–210
Kirchhoff, Gustav, 303
Kleinman relation, 459
Kramers, Hans, 362
Kramers-Krönig formula, 361–362,

375–377
Krönig, Ralph, 362

L

Lagrange-Helmholtz equation, 113
Lagrange-Helmholtz invariant, 115
Lambertian source, 45, 50
Lambert’s law, 45
Land, Edwin H., 153
laser rate equations, 432–435
lasers, 379

chemical, 416–417
definition, 379
diffraction limited, 440
emission and principle of

correspondence, 381
frequency tunable, 431
gas, 415–416
general arrangement, 388–389
helium-neon, 416
invention, 379–380
originality of beam, 439–440
Raman, 486, 494–497
semiconductor, 413–414
single frequency, 430
spectral characteristics of light

emitted by, 426–431
spectral width of oscillation, 

447–448
see also Fabry-Perot interferometer/

resonator; feedback oscillator
leaky modes, 523–524
least action principle, 148
Lehmann, O., 250
lenses

thin, 105–112, 126–130
considered as phase correcting

device, 127
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considered as prism having variable
angle, 126–127

equations, 111–112
matrices for association of, 127–130
optical center, 107
ray tracing in, 106–111

LIDAR (Light Detection and Ranging),
483, 485

light amplification, 379
light pencil, geometrical width see

geometrical width
light rays, notion, 91
light-semiconductor interaction, 441–446
light sources, 13–14

classical, 13
orders of magnitude concerning, 48
primary, 54
see also lasers

light valves, 257–258
linear magnification, 115, 118
liquid crystals, 250

cholesteric, 251, 252
light valves, 257–258
liquid crystal display, 254–257
nematic, 251, 252

orientation of molecules in, 252–254
physico-chemistry, 250
smectic, 251–252

lithium iodate (LiIO3), 460
lithium niobate (LiNbO3), 196, 214, 215,

455
second-order nonlinear coefficient,

460
wave guides made in, 565–566

Littrow autocollimation mounting, 332
Littrow’s configuration, 328
Lloyd mirrors, 262, 264
local field, 357

correction, 357–358
Lorentz reciprocity theorem, 546–548
Lorentz-Lorenz formula, 358
loss angles, 518
Lucas, René, 507
lumen, 47
luminance, 43

of blackbody, 49–50
of heated object, 51–52

luminous intensity, 42
Lummer cube, 173

lux, 47
Lyot optical filter, 245–247

M

m-lines, 532–533
Mach-Zehnder interferometer, 277–278
magnetic birefringence see

birefringence, magnetic
magnetic field vector (H), 57
magnetic induction vector (B), 57
magnetic permeability, 67
magnetooptic Kerr effect, 223, 224
magnification

angular, 115, 119
axial, 115, 119
linear, 115, 118

Maiman, Thomas H., vii, 379, 380
Maker, P.D., 452
Malus, Étienne-Louis, x
Malus’ law, 152–154
Manley-Rowe equation, 468–469, 511
matrix display, 255
matrix methods

for centered systems, 119–125
for thin layers, 291

matrix of reflection and transmission,
291–294

Maupertuis principle, 148
Maxwell, James Clerk, x, 57
Maxwell-Boltzmann distribution, 393,

441
Maxwell’s equations, 65–69, 352, 461

deducing wave equation from, 
67–68

for planar harmonic waves, 68–69
in anisotropic material, 183–185

Mediums of propagation, 91–93
continuously inhomogeneous, 92
discontinuity, 92
discontinuously inhomogeneous, 92

made of particles, 93
homogeneous, 92

Meslin’s lens, 263, 264
mesophase, 251
metal

ideal, 156
practical, 156

metallic reflection, 156
metameric mixtures, 53



588 Index

metastable levels, 373, 408
mica (Na-K aluminosilicate), 195
Michelson, Albert, x, 275, 330
Michelson interferometers, 274–276
microwave, 305
Mie diffusion, 481, 512
mirage, 140
mirrors

elliptic, 99
parabolic, 100

mode locking, 427–429
mode orthogonality relation, 548
modes

of resonator, 391
comb of, 284, 424
principal, 423
quality coefficient of, 424
synchronized, 427
transverse, 423

modes of propagation, 523
dispersion curves of, 530–531, 535
effective index of, 535, 540
fundamental, 525
guided, 523–524, 526–527, 529–530

normalization, 546
structure, 526, 535

highest-order, 525
leaky, 523–524
local, 534
TE, 524, 527–528
TM, 524, 529

momentum conservation, in multiphoton
processes, 456

monochromacity, 440
monochromators, 333
monomode guides, 524–525

forward coupling of, 550–552
mono-nitrobenzene (C6H5NO2), 483
Morley, Edward, 275
multimode emission, 426–429

random, 427
multimode fiber, 520
multimode guides, 524
multiphoton processes, 456

N

nabla operator, 66
natural light, 179
near field diffraction, 306

nematic liquid crystals, 251, 252
orientation of molecules in, 252–254

neutral lines, 241
Newton, Isaac, x
Newton’s equations for lenses, 112, 118
Nicol, William, 229
Nicol polarizers, 229–230
noise, 387, 495
nonlinear optics, 449–477

microscopic interpretation, 451–452
phase matching condition, 452–456
quantum interpretation, 456
third-order nonlinear phenomena,

470–477
phase conjugation, 476–477
see also Kerr effect

see also polarization, nonlinear;
propagation, in nonlinear 
material

nonlocalized fringes, 263–264
normal dispersion, 363, 377

zone of, 363
numerical aperture, 531–532, 536

O

objects
real, 103
virtual, 103

optical activity, 198
optical angles, 122
optical axis, 194
optical center, 107
optical Faraday isolators, 221
optical fibers, 3, 519–520, 536–542,

555–560
connecting, 558–559
coupling efficiency, 559–560
cutting, 558–559
elaboration of preform, 555–558
flight time of light pulse in, 540–542
see also gradient index fibers

optical guides, elaboration, 555
optical oscillators, 3
optical parametric amplification,

464–466
optical pumping, 405–413

atomic clocks, 408–412
four-levels pumping scheme, 407–408,

413
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orders of magnitude, 408
reasons for poor efficiency, 413
three-levels pumping scheme, 406,

412–413
optical rectification, 452
optical sampling, 211
optical solitons, 474–476
optical tunnel effect, 173
optical valves, 257–258
optically isotropic materials, 194
ordinary index, 195
orientation order, 251
oscillating dipoles, 367–368

definition, 366
field radiated by planar distribution

of, 373–374
field radiated from, 20
polarization of radiation of, 368
power radiated by, 369–373

oscillation of relaxation, 435–436
oscillator, feedback see feedback

oscillator
oscillator strength, 356, 372
Outside Vapor Deposition (OVD), 557
overlap integral, 559

P

parametric amplification, optical,
464–466

parametric frequency conversion,
468–469

parametric interaction
interpretation in terms of photons,

467–468
stimulated, 467

parametric oscillator, 466–468
parasitic waves, 337
Parseval’s theorem, 571
particles, 322
Pasteur, Louis, 201
perfect imaging, 99, 103

using refraction at interface, 101–102
period, 11
periscopic stability, 128–130
permittivity, 57
permittivity tensor, 180–183
Perot, Alfred, 279
Perot-Fabry interferometer see Fabry-

Perot interferometer/resonator

phase conjugation, 476–477
phase conjugation mirror, 477
phase contrast, 345–346
phase matching condition, 163, 324,

452–456, 526, 544–545
phase mismatch, 454, 462
phase modulator, 217
phase velocity, 71, 351, 540, 577
phenomenological coefficients, 14, 15
phenomenological equations, 397–398

using number of photons, 399
phonons, 502, 503
photochemical reactions, 24
photodetectors, 22

classification, 24
fast, 30
properties, 25
response times, 29–33
semiconductor, 26
slow, 31

photoelasticity, 205
photoemission, 25
photoluminescence, 5
photometry, 41–52

physical parameters, 41–46
physiologic parameters, 46–49

thermodynamics and conservation
of geometrical width, 49–52

photomultipliers, 29
photons, 5
photopic curve, 47
photoresist, 262–263
photoresistive cells, 26
physiologic parameters, 46–49
p out-phasing, 77–78
pinhole camera, 104
pixels, 256, 348
planar harmonic waves, 60

in anisotropic medium, 183–188
decomposition of wave in, 69
transformation into spherical waves,

81–83
see also electromagnetic waves

planar waves, 10
coupled by second-order nonlinear

effect, 461–462
Planck, Max, 390, 391, 392
Planck relationship, 5
Planck’s formula, 392
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planes
antiprincipal, 343
focal, 108, 116
Fourier, 342–343
front, 114
of incidence, 156
principal, 116
wave, 70

plasma frequency, 361
plate

birefringent, 227–229
prismatic, 270–271

PN junction photocells, 26
arrayed, 27
forward biased, 444–445

Pockels’ cells, 438–439
Pockels effect, 213–214, 216

interpretation, 469–470
Pockels, Friedrich, 213
Poisson, Siméon, 318
polar vectors, 219
polarizability, 355

atomic, 355
polarization

circular, 243–244
left-handed, 150
right-handed, 150

elliptical, 244
left-handed, 150
right-handed, 150
transmission of, 155

nonlinear, 456–460
motion of electron in nonparabolic

potential, 457
second-order susceptibility, 

458–460
see also nonlinear optics

of radiation of dipole, 368
rectilinear, 150
unknown, determination of, 176–177

polarization vector (P), 355
polarizers, 152–155

crossed, 154–155
Glan-Foucault prism, 230–231
Glan-Thomson prism, 230–231
Nicol, 229–230
parallel, 154
polaroid, 153
Wollaston prism, 230–231

see also analyzers
polarizing field, 357
polaroid, 153
populations of energy levels, 392–393

equilibrium, order of magnitude of,
393

inversion, 394, 444–446
maximum value, 435
means of obtaining, 412–417
threshold, 433
total, 403

Porro prism, 135, 438
potassium diphosphate see KDP
potassium diphosphate, deuterated see

KD*P
power, rotatory, 203
Poynting theorem, 369
Poynting vector, 72, 184–185
preform, 555, 557
preform cintering, 557
principal axes, 181, 193
principal dielectric constants, 181,

182–183
principal indices of refraction, 182–183,

193
principal normal, 142
principal planes, 116
principal points, 116
prism coupler, 532
prism spectrometer, 134
prismatic plate, 270–271
prisms, 131–135

air filled, 271
birefringent, 226–227
conditions of emergence, 132
corner-cube, 135
definition, 131
Glan-Foucault, 230–231
Glan-Thomson, 230–231
light propagation inside, 131
minimum deviation, 132–134
Porro, 135, 438
reflecting, 134–135
Wollaston, 230–231

product of convolution, 313
Fourier transform of, 313

Prokhorov, Alexander, 380
propagation

analytic formulation, 61–62
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comparison for isotropic and
anisotropic conditions, 185–186

elastic surface waves example, 8–9
guided, 519

see also guided optics; step index
planar guide

mathematical description, 10–11
modes of see modes of propagation
in nonlinear material, 460–470

interpretation of electrooptic effect,
469–470

optical parametric amplification,
464–466

parametric frequency conversion,
468–469

parametric oscillator, 466–468
planar waves coupled by second-

order nonlinear effect, 461–462
second harmonic generation, 463–464

in transparent material, physical
mechanisms involved, 352

proportionality coefficient, 450
pseudo vectors, 219
pulsation, 11
pulse, giant, 437
pump, 464

Q

Q-switching, 436–439
devices, 438–439

quality factor/coefficient, 284, 424
quantum efficiency, 25
quartz, 196, 553

second-order nonlinear coefficient,
460

quasi-Fermi levels, 445

R

radiative lifetime, 371, 396
order of magnitude of, 372

radiative recombination time, 413
radiative transitions, 394–395

live time of, 403–404
saturation of, 404–405

radio wave, propagation, 12–13
radius of curvature, of light ray, 142
Raman, C.V., 481
Raman activity, 480, 488
Raman-anti-Stokes diffusion, 489

Raman effect, 479, 480
classical model, 487–488
complication due to self-focusing, 499
experimental introduction to, 481–487
forward and backward diffusion, 498
higher-order diffusion, 498
nonlinear aspect, 488
in optical fibers, 499–500
spontaneous, 483, 491, 492, 493
stimulated, 483–487, 491, 492, 494

Raman frequencies, 484
Raman laser, 486, 494–497
Raman laser emission, 497
Raman laser oscillator, 497–498, 499
Raman microprobe, 482–483
Raman spectroscopy, 482
Raman-Stokes diffusion, 488
ray surfaces, 236
ray tracing

in thin lens, 106–111
in uniaxial media, 225–232

Rayleigh, Lord (John Strutt), 390–391,
476

Rayleigh criterion, 317
Rayleigh diffusion, 481, 489, 502,

553–554
Rayleigh range, 85, 88
Rayleigh zone, 78, 85
recombination time, 444
rectangular aperture, diffraction by,

317–318
rectangular function, 572
rectification, optical, 452
rectilinear waves, generation, 9
reflection, 155–173

coefficients, 160–168
general considerations, 155–158
law of, 97
metallic, 156
phase shifts at, 164
polarized light, 158–160
total internal, 168, 170–173, 518–519

frustrated, 173
variation of polarization by, 166
vitreous, 156

refraction, 155–173
coefficients, 160–168
double see double refraction
general considerations, 155–158



592 Index

index of, 72, 93, 577
as complex number, 359
determination in diluted material,

353–355
determination in general case,

355–359
law of refraction of, 357
of metal, 360–361
and populations of energy levels of

transition, 364–365
principal, 182–183, 193

law of, 97
matrix of, 121
of normal, 187–188
variation of polarization by, 166

refractive index see refraction, index of
Reinitzer, Friedrich, 250
relativity principle, 8, 351
relaxation, oscillation of, 435–436
relaxation times, 372, 394
relief

on hologram, 335
on picture, 334

resolving power
of diffraction grating spectroscope,

315
of imaging system, 317

resonant collisions, 416
response, 362, 449, 451
retarders, 242–247
reversibility, principle of, 96
rotatory power, 203
Rowland, Henry, 330
rubidium atomic clock, 411–412
rutile, 196

S

sampling, optical, 211
saturable absorber, 439
Savage, C.M., 452
scalar Laplacian, 66
scanning Fabry-Perot, 288–289
Schrödinger, E., 136
scotopic curve, 47
Sears, F., 507
second harmonic, 450
second harmonic generation (SHG), 450,

452, 463–464
Seebeck, Thomas, 204

self-focusing, 473–474
self-oscillations, 380
self-phase modulation, 472
self-trapping, 473–474
semiconductor lasers, pumping of,

413–414
semiconductor photodetectors, 26
semiconductors

direct band gap, 400, 443
Einstein processes in, 399–401
energy levels in, 441–443
indirect band gap, 443
interaction with light, 441–446
shape of energy bands of, 400
spontaneous effects in, 443–444
stimulated effects in, 443–444

side bands, 576
signal, 464
signal processing, 2
silica fibers, attenuation, 553–554
sinc-function, 314–315
sine law, 98
sine waves see harmonic waves
single mode emission, 429–431
single mode fiber, 520
sinusoidal signals

lasting forever, 573
with limited duration, 572–573

skew rays, matrices for, 121–122
slits

comb of, 314
diffraction pattern, 314–316

slow axis, 242
slowly varying signal, 31
smectic liquid crystals, 251–252
Snell, Willebrord, x
Snell-Descartes laws, 96, 156–157, 162,

351
graphical illustration, 169–170
in inhomogeneous medium, 141–142

Soleil compensator, 245
solitons

dark, 476
optical, 474–476
spatial, 473
white, 476

source term, 461
sources of radiation, 58
space pulsation, 11
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spatial filtering, 346–347
spatial solitons, 473
spectral density, 390
spectral width of laser oscillations,

447–448
spectrometer, prism, 134
spectroscopy

absorption, 3
differential, 5
time resolved, 474

emission, 4, 5
time resolved, 5

Raman, 482
spectrum, channeled, 249
speed of propagation, 11, 93
spherical interface, 112–113
spherical waves, 11, 64–65, 77–90

Gaussian beams, 83–90
physical difficulties associated, 77
p out-phasing, 77–78
series development, 78–80
transformation of planar waves into,

81–83
splitters, 543
spontaneous emission, 392, 397, 426
stability, periscopic, 128–130
Stark effect, 224
static dipole, 366
stellar aberration, 139
step index fibers, 520, 537–538
step index planar guide

propagation in, 522–534
electromagnetic approach, 525–531
excitation, 531–533
guiding conditions, 522–523, 528–529
monomode guides, 524–525
multimode guides, 524
numerical aperture, 531–532, 536
simple theory using light rays,

522–525
stigmatic points, 100
stigmatism, 98

approximate, 114
stimulated emission, vii, 373, 392, 397
stimulus, 54
Stokes rays, 481, 503, 507
stress

residual, 206
uniaxial, 204–205

stress birefringence, 204–206
superposition, principle of, 450
surface waves, 76, 171

elastic, 8–9
surfaces

equiamplitude, 76
indice, 191, 234–235, 236
inverse indice, 191, 235–237
of localization, 266
of normals, 234–235
ray, 236
wave, 76, 235–237

surfactants, 252
susceptibility

electrical, 356, 364
linear, 458
second-order nonlinear, 458–460
third-order nonlinear, 458

synchrotron radiation, 370

T

tartarate salts, 201
tartaric acid, 195, 201
TE modes, 174–175, 524, 527–528
Terhune, R.W., 452
thermal sources, 38
thermodynamics, and conservation of

geometrical width, 49–52
thin layers

interference by stacks of, 289–298
antireflection coatings, 290–291
interference filter, 298
matrix of arrangement of n layers,

295–296
matrix of reflection and

transmission, 291–294
representation of thin layer by 2 ¥ 2

matrix, 294–295
stack of l /4 layers, 296–297
technology of thin films, 289

thin lenses see lenses, thin
Thomson electron diffraction

experiment, 41
threshold length, 497
threshold population inversion, 433
time resolved absorption spectroscopy,

474
time resolved emission spectroscopy, 

5
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time-varying phenomenon, 6–7
TM modes, 174–175, 524, 529
total internal reflection, 168, 170–173,

518–519
frustrated, 173

Townes, Charles, vii, 380
transfer, matrix of, 121
transitions

electric olipole, 371
forbidden, 372
fully allowed, 372
partly allowed, 372
radiative, 394–395

live time of, 403–404
saturation of, 404–405

translation order, 251
trichromatism, 18, 53–54
tunnel effect, optical, 173
two-levels material, wave propagation

in, 401–404
Twyman-Green interferometer, 277

U

ultrasonic waves, diffraction of light by,
507–511

ultraviolet catastrophe, 391
uniaxial materials, 194–196

light propagation in, 197–198
privileged vibrations in, 238–239
ray tracing in, 225–232

uniaxial stress, 204–205
unpolarized light, 151–152, 154, 179

V

V parameter, 539
vacuum permeability, 57
vacuum photodiode, 25
valence band, 441
vector Laplacian, 66
vectors

axial, 219
grating, 341
polar, 219

Verdet constant, 220
vergence, 124
vibration, privileged, 186, 238
virtual energy levels, 488–489
virtual images, 103
virtual objects, 103

vitreous reflection, 156
Voigt effect, 223
Voigt notations, 213

W

waist, 87, 88
wave concept, 6
wave equation, 61, 461

planar wave solutions, 63–64
source term, 461
spherical wave solutions, 64–65

wave front division interferometers,
259–265

wave impedance, 42, 71, 151
wave number, 11
wave packet, 16, 575–577
wave-particle duality, 6–7
wave plane, 70
wave plates, 242–247

full-wave (l), 243
half-wave (l /2), 243
quarter-wave (l /4), 243

wave surfaces, 76, 235–237
wave vector module, 11
wavelength, 11
Wavelength Division Multiplexing

(WDM), 545
wavelets

in anisotropic medium, 190
Huygens-Fresnel, 302

waves
evanescent, 168, 170–171, 328–329
harmonic see harmonic waves
inhomogeneous, 76
parasitic, 337
planar see planar waves
planar harmonic see planar harmonic

waves
spherical see spherical waves
stopped down, 301
ultrasonic see ultrasonic waves

Weber, Joseph, 380
white, higher-order, 273
white solitons, 476
Wollaston prism, 230–231
Woodbury and Ng experiment, 483–486

X

X-ray diffraction, 325–326
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Y

Y junction, 543
Yeh, Pochi, 291
Young, Thomas, x, 52, 259
Young experiment, 259–262

Z

Zeeman effect, 224
Zener effect, 28
zircone, 196
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