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Preface

For those students who, like me, finished their studies toward the end of the
1960s, the advent of the laser was a magic new light illuminating a sector of
science which had become somewhat moribund. In fact, physics seemed to
be approaching an endpoint. Accelerators impelled particles at their targets
where the resulting interactions did not seem to suggest any great difficulties
for the perceived structure of elementary particle physics. The rapid advances
in the progress of technology did not make itself generally felt; industry
devoted more efforts to improving the function of automobile carburettors
than seeking to harvest the fruits of research laboratories.

The history of lasers has its own fascination. Its starting point can be seen
in the publication of an article in the Zeitschrift fiir Phystk, in which a young
physicist, Albert Einstein, compelled by the logic of his own reasoning,
postulated a radically new form of interaction between radiation and matter—
stimulated emission of radiation. That theory slept peacefully in the
archives until the physicist Charles Townes, in 1956, showed that one could
bring a microwave resonator into play as a basis for the realization of an
ammonia “maser.” Translating this concept to optical frequencies, using a
Fabry-Perot resonator, Thomas Maiman succeeded in 1960 in constructing,
for the first time, a coherent optical source—the ruby laser. One should under-
stand that the advent of lasers stemmed directly from fundamental research,
in that it was a discovery which owed nothing to any expectation of practi-
cal usage; it was the fruit of pure curiosity research.

Lasers appeared on the scene at just the right moment to revitalize labo-
ratories devoted to optical instrumentation. Around 1960 the situation was
as follows: geometric optics had been known for ever; wave optics almost as
long; microscopes, telescopes, and spectroscopes—when adequately cor-
rected for inherent aberrations—seemed wholly adequate. Moreover, optical
physicists took quite a long time to embark on laser work; almost invariably
it was in university Departments of Electrical Engineering, that the research
on laser technology was initiated. This paradox stems no doubt from the fact
that, in the period 1940-1960, the fantastically rapid development in radio



viii Preface

telecommunications and in radar had led to a concentration, in these depart-
ments, of both human talent and physical resources.

The pure science origin of the laser had some unfortunate consequences
in that there was a relatively long delay before applications surfaced. The fact
that the discovery, which owed something to chance, had not emerged from
a prolonged development during the course of which related technologies
might have advanced, inhibited the rapid emergence of practical applications.
Whilst the scientific community had appreciated the extraordinary potential
of this new tool, the very real technological difficulties, together with the lack
of experience of electronic engineers in the manipulation of optical beams,
helps to explain why, twenty years after their birth, lasers were more appar-
ent in science fiction than in factories. During the 1970s there was no short-
age of witticisms at the expense of lasers: lasers are a solution in search of a
problem; or, yet again, lasers are a solution for the future—destined to remain
as such. ...

Where are we now? Electronic engineers and optical physicists having
largely overcome the technological difficulties set out to evolve a bewilder-
ing range of applications. These clearly are based on the coherence of the
laser beams.

Spatial coherence allows beams to be focused into very small volumes
(um®) with resulting energy densities of such a magnitude that one can envis-
age their use to initiate nuclear fusion reactions, or to create industrial cutting
tools or again for use in surgical dentistry.

Temporal coherence of electromagnetic waves at frequencies so high (10
Hz) enables a single laser beam to transmit the totality of all of the telephonic
communications on the planet which are taking place at a given moment, that
is, if one was able to deal with all the associated modulation and multiplex-
ing problems. At this point we should mention another important technolog-
ical development, namely the optical fibers which allow the propagation of
optical signals with very low losses (fractions of a decibel per kilometer).

These applications are based on all the branches of classical optics, geo-
metric optics, as well as diffraction effects, anisotropy, and interference phe-
nomena. They have also brought into being the emergence of areas unknown
before the appearance of lasers: nonlinear optics and the generation of ultra-
short pulses. Picosecond pulses are now currently produced and the produc-
tion of attosecond pulses has been reported.

The interaction of light with a material substance proceeds via the per-
turbed movement of the outer electrons of the atoms. One usually adopts a
harmonic oscillator model to describe the movement that the optical wave
imposes on the electrons; the restoring force is provided by the combined
influence of the nucleus and of the other electrons. In the case of a low-
intensity optical wave, the amplitude of the movement is sufficiently small so
that the harmonic approximation remains valid. The electric field of a laser
wave is not always negligible compared with the field experienced by the
outer electrons, so that their movement can become anharmonic. Assuming
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that the laser beam excitation is purely sinusoidal at a frequency v, the elec-
trons will move periodically at the same frequency, but with an additional har-
monic content at frequencies 2v, 3v. . . . If the waves are traveling in a suitably
chosen medium, an infrared beam with a wavelength of 1.06 um will generate
a green beam with a wavelength of 0.53 um. This new field of nonlinear optics
was pioneered by Nicolas Blombergen in 1963. Frequency doubling is a spe-
cific example, but there are a host of other possibilities which bear on impor-
tant practical applications such as, for example, optical beam modulation.

The aim of this book is to provide students as well as engineers with a
simple account, covering both the traditional topics of optics as well as the
most recent developments. Reading and comprehension of this text does not
imply a significant prerequisite knowledge of the subject.

In the Spirit of Richard Feynman

Amongst all the authors of volumes intended for the teaching of physics, it is
Richard Feynman who has contributed the most original ideas. The manner
in which this Nobel Laureate of physics conveys the concept of “imagining”
and “explaining” physics has had a major influence on generations of teach-
ers who have sought to follow his approach.

In writing his books Richard Feynman thought about his students before
considering the topics he was presenting. In his preface to Lectures on
Physics, he explains this precisely:

The special problem we tried to get at with these lectures was to maintain the inter-
est of the very enthusiastic and rather smart students coming out of the high schools
and into Caltech.

Feynman’s attitude with regard to the role of mathematics in the teaching of
physics is well encompassed by G. Delacote in his preface to the French
edition of the Feynman course:

At no point is the machinery of mathematics allowed to detract from the compre-
henstion of the physical phenomena. On the contrary, the mathematical tools emerge
to respond to the problems defined by the physicist. The reader is thereby exposed
both to the great problems of physics as well as to the mathematical tools which are
needed to solve them in the simplest possible manner.

It is with the aim of following this Feynmanist philosophy of teaching
physics that I have attempted in this volume on optics.

Chronology of the Discoveries of the Nature of Light

Undoubtedly in examining ancient Egyptian, Greek, Roman, Arabic, and
Chinese texts one can sometimes find speculative ideas on the nature of light
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and how it is propagated. However, the real birth of modern optics begins in
the seventeenth century.

e The law of refraction was formulated in 1621 by Snell in the United
Kingdom and in 1637 by Descartes in France.

e 1657. Fermat makes a first theoretical attempt to explain the laws of reflec-
tion and refraction.

e 1665. Hooke advances the idea that light is a high-frequency self-
propagating vibration.

e 1665. Newton proposes the corpuscular nature of light.

e 1669. The Dane, Bartholimus, discovers the phenomenon of birefringence.

e 1801. Young explains the phenomenon of interference by means of the
wave theory of light.

e 1808. Malus discovers the polarization of light on reflection from a glass
surface. From this Young and Fresnel deduce that the optical vibration
must be vectorial and inherently transversal.

e 1818. In a celebrated lecture at the Academy of Sciences, Fresnel and
Arago give an experimental demonstration which underlines the wave
nature of light.

e 1849. Fizeau produced a highly accurate measurement of the velocity of
light.

e 1876. Maxwell derives his famous equations showing that they embrace
all the empirical knowledge of the behavior of light and that light is a
special example of electromagnetic waves.

e 1879. Maxwell proposes an experimental system for measuring the veloc-
ity of light relative to a “hypothetical ether.”

e 1881. Michelson carries out such an experiment and shows that light prop-
agates at the same speed with respect to all references.

e 1888. Hertz verifies Maxwell’s theory experimentally and shows that the
generation of electromagnetic waves arises from the oscillatory movement
of electric charges.

e At the beginning of the twentieth century optics advances rapidly and the
nature of light is clarified.

e 1905. Einstein creates the theory of relativity according to which no mate-
rial body nor any element of information can propagate faster than light
in a vacuum.

e 1905. Einstein rehabilitates the corpuscular nature of light and introduces
the concept of photons (photoelectric effect).

e 1920. De Broglie reconciles the two theories and introduces the concept
of the dual nature of light, particle and wave, that in different situations
one or the other aspect can manifest itself; he shows that electrons also
have a wavelike attribute.
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Lasers Made Their Appearance in 1960

Advances in telecommunications have always shown a trend toward ever
higher frequencies. It was natural therefore to consider the possibility of using
light waves (10" Hz). Ordinary sources of light however have the unfortunate
property that they emit wave packets at a high rate but in a random time
sequence. Without going into detail this characteristic presents an insur-
mountable obstacle to the usage of such a light source for transmission of
large bandwidth signals. Toward the end of the 1950s electronic engineers
wondered why one might not seek to produce light waves by the same
methods used to generate radio waves. The key element needed to produce
a radio-frequency signal is an amplifier.

The requirement is then to discover a way of amplifying optical waves.
There are not many physical processes which one could utilize for signal
amplification—normally we are confined to just three:

e The control of the amplitude of an electron beam propagating in vacuum
(vacuum tubes).

e The control of a current of electrons or holes in a semiconductor (the
transistors).

e The process of stimulated emission which leads to the creation of lasers.

Most vacuum tubes are not able to operate at frequencies above 100 MHz;
using very clever arrangements, such as gyrotrons, frequencies as high as 30
or 40 GHz can be reached; whilst transistors can be pushed to operate up to
several tens of gigahertz. Around 1956 it had been remembered that Einstein,
in the thermodynamic study of the interaction of an ensemble of atoms with
electromagnetic radiation, had postulated a process of interaction called stim-
ulated emission of radiation by the atoms. It was then appreciated that this
phenomenon could lead to a process of coherent amplification of light. The
generation of electromagnetic radiation by stimulated emission had in fact
first been exploited at microwave frequencies in the realization of the
ammonia MASER (1956) working at 23 GHz. Shortly thereafter it was the dis-
covery of the ruby laser (1960) producing optical signals, in principle, well
adapted to the transmission of information. The ruby laser generated pulses
of coherent light, powerful but of very short duration; it was followed in 1961
by the helium-neon laser which provided a continuous output.

Since that time many new types of laser have been created and electronic
engineers now share with optical physicists the privilege of amplifying coher-
ent signals.
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Orders of Magnitude in Optics

1.1. Main Applications of Electromagnetic Waves

1.1.1. Electromagnetic Waves Can Carry Information

During the twentieth century, technological development has been dominated
by the use of radio waves for transporting signals over very long distances.
This development is directly correlated to the property of electromagnetic
(EM) waves to be propagated with no absorption in a vacuum, and with very
low absorption in the atmosphere.

An electromagnetic wave gives some information about the source from
which it has been emitted, often this information is not elaborated on at all,
typically: the source is ON, or the source is OFF. Astronomical observation
is very enlightening as an important indication of this; it just indicates that a
star exists in a given direction and has emitted light having a certain color.

Engineers have been creative and have elaborated devices able to perma-
nently emit electromagnetic waves, with well-controlled amplitudes and/or
frequencies: it is said that a carrier wave has been produced, some of its char-
acteristics being modulated. These same engineers have imagined and
achieved devices able to receive the wave and to extract from it, this is said
to detect the signal of modulation.

An electromagnetic wave is thus able to carry over great distances the
information that is represented by the modulating signal. If, for this modula-
tion, one uses the signal of a microphone in front of which an orator is speak-
ing, it is seen that the speech can be broadcast. After reception, detection,

Sections 1.1 to 1.6 of this chapter have been reviewed by Andrew Benn who was, at
that time, working for Teemphotonics and who is now with ATMEL. Sections 1.7 and
1.8 were reviewed by Dr. Francois Méot, Senior Physicist at the CEA (Commissariat
a I'Energie Atomique).



2 1. Orders of Magnitude in Optics

I speak into a
microphone which
produces a signal e(t)

EM wave of frequency @,
carrying away a signal e(t)
by amplitude modulation,

Device producing the
modulated signal
[1+0e(?)] cos w,.t

Emission
antenna

Signal to
be carried

Oscillator producing
the carrier signal
a cos @t

Figure 1.1. Production and emission of an amplitude modulated radio wave. A
modulator is a device with two inputs and one output. Receiving e(?) on one input and
cos w.l on the other, it elaborates an amplitude modulated signal [1 + ce(?)] cos w.l.

and, eventually, amplification, the speech will be reproduced in a loud-
speaker, see Figures 1.1 and 1.2.

The previous signal is rather simple, we may think of more elaborate
signals, TV signals, for example, where the signal is said to carry more infor-
mation. The more complex the signal is, the more necessary it is that the
signal includes higher frequencies.

No need, at this stage, to go deeper into the details of signal processing;
we will just consider it as evident that the frequency of the carrying wave has
to be higher, by several orders of magnitude, than the frequencies involved in

1 listen to a low-frequency
signal e(t) brought to the

antenna by a carrier wave and
then detected and amplified,

(

Reception
antenna
apl1+oe(t)] cos .t Ke(?)

—

Radio-frequency

signal modulated
by e(t)

Gag[1+ce()] cos w:t

Narrow band
amplifier tuned to
the carrier

frequency

Figure 1.2. Reception and detection of a modulated wave. Receiving an amplitude
modulated signal, a detector is able to extract the carried signal e(?).
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the signal to be carried. Then, higher and higher frequency carrying waves
will prove to be necessary.

In Electronics, one knows how to produce oscillators working at frequen-
cies ranging from zero (DC) up to tens of gigahertz (10'%). Optics had started
to be really useful for Telecommunications only after the invention of optical
oscillators exhibiting the same coherency properties as radio oscillators.

1.1.1.1. In 1970, the Appearance of Optical Fibers

Between emission and reception, a carrying wave, modulated by the signal
to be carried, is propagated inside some medium. In the case of Earth radio
telecommunications, this medium is just the atmosphere, in the case of Space
telecommunications the medium of propagation is partly air (to reach the
satellite) and partly cosmic vacuum.

Electromagnetic waves propagate with zero attenuation in a vacuum,
whatever the frequency. Radio waves of course interact only slightly with the
molecules that constitute the atmosphere, this is less true for light waves, and
completely false if the weather is rainy or foggy. Hopefully it has been noticed
that, on the one hand, amorphous silica, SiO,, is remarkably transparent in
the near infrared; and that, on the other hand, it can be given the shape
of extremely long threads, inside of which light waves propagate with low
attenuation (0.16 db/km — 3.6%/km, at a wavelength of 1.55 um).

Optical fibers are able to carry light over amazing distances; oceans are
now crossed by many undersea optical cables.

1.1.2. Electromagnetic Waves Allow Material Investigation

Any sample of material is a vast collection (think of the Avogadro number)
of a great number of tiny objects. These objects are themselves made of even
smaller particles (nuclei, atoms), that are electrically charged and may
support electric and/or magnetic dipolar momentum. Electromagnetic prop-
agation inside a material relies on the interaction of this collection of objects
with the electric and magnetic fields of the electromagnetic wave.

— > L
White light -Sampléunder { | o - - - . . Response of the
incident beam [+ - sy, . ", Spectrometer spectrometer

....... »

Figure 1.3. Absorption spectroscopy. White light is the superimposition of a
continuum of many different lights with different colors. A spectrometer is a device
which separates the various components of an incident optical signal and gives
intensity variation versus frequency or wavelength. The response can be the darkening
of a photographic plate. It can also be some electric signal delivered by a
photodetector, in this case the signal will be displayed on a CRT screen or on a chart
recorder, it can also be digitized and put into the memory of a computer.
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AN T 4
White light . Samiple-©
incident beam - upder stydy
Lens collecting and focusing v
the diffused light on the
entrance of the spectrometer
Response of the
Spectrometer —> spectrometer

Figure 1.4. Emission spectroscopy. The incident light beam is totally, or partially,
absorbed and reemitted in the 4r steradians. The spectral composition of the new light
is not necessarily identical to the initial one, its analysis constitutes emission
spectroscopy.

In the optical case, it is almost exclusively the interaction of the electric
field with the electrically charged particles that is responsible for the
light/material interaction. Since light interacts in a very intimate way with
materials, it does constitute a powerful tool for investigating their properties.
These interactions can be thought of in two different ways:

e Fither on the material side: It is then studied how a material is modified
in the presence of a light beam;

Electrostatic lens focusing Electron beam Grounded target

the electrons on the target (zero voltage)
—_ :—/— - —:;:;‘—: E

—hv kV ;'—‘
Heated filament Window glass
. N
High Optical lens B
voltage

Optical
spectrometer
N

Figure 1.5. Cathodoluminescence emission spectroscopy. An electron beam of
sufficient energy (usually 1-100keV) is sent to a sample and this induces light
emission, which is then analyzed by an optical spectrometer.
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* or on the wave side: The properties of the wave are modified during prop-
agation inside a material sample allowing some processing of optical signals.

Differential spectroscopy: An absorption spectrum is an intrinsic property
of the sample under study, to obtain it with the previous method one has to
be sure that the initial beam is perfectly white, which means that its intensity
is fully independent of the frequency. This is never the case. This is why the
experimental absorption spectrum should be compared with the spectrum
that is obtained from the white light source. The real absorption spectrum
will be obtained by taking the difference of the two spectra; so the real spec-
trum will be corrected to include the frequency variation of the source inten-
sity, and also the spectral response of the spectroscope.

Emission spectroscopy: The material sample is placed under conditions
where it will emit some light, this light then being analyzed in a spectroscope
(see Figure 1.4). The two main methods for inducing light emission from the
sample are photoluminescence and cathodoluminescence (see Figure 1.5).

Time-resolved spectroscopy: In emission spectroscopy, instead of using
DC sources, pulsed sources are used. A piece of material is illuminated by
short light pulses, and the analysis of the time variation of the spectral
response gives useful information about the dynamics of the phenomena
taking place inside the sample under study.

1.2. Wave-Particle Duality

Despite the fact that, in this book, we will almost exclusively refer to the wave
aspect of light, it is not possible to start without mentioning the existence of
photons.

The word light immediately evokes something, which is immaterial, and
which propagates in space at very high speed. This something may receive
two different descriptions about which we will make no attempt at any philo-
sophical considerations. Light can be considered either as energy grains,
called photons, or as a wave.

1.2.1. Planck and De Broglie Relationships

Planck and De Broglie relationships quantitatively connect the wave and par-
ticle aspects of light.

Photons are characterized by: Waves are characterized by:
e an individual energy W; * a frequency v;
°* a momentum p. * a wave vector k.
h
Planck relationship: W = hv. De Broglie relationship: p = z—k.
b3
(h = 6,626 x 107 J s, Planck’s constant.)
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1.2.2. Photons (Energy)—Light (Frequency)

Moving from radio frequencies (v = 10° Hz = 1 MHz, kv = 10 J) to nuclear
physics (kv = 107'°J, GeV = giga electron volt, v = 10* Hz) the energies of
photons and, consequently, the frequencies of the associated waves extend
over many orders of magnitude.

Optical photon energy is of the order of electron volts (eV).
Optical frequencies are of the order of 10" Hz.

1.2.2.1. Optical Photons Fit Very Well with Life on Earth

Typical energies of most chemical reactions are of the order of 1kJ/mol. If
one divides this energy, first by the Avogadro number (6 x 10%) to obtain the
energy per molecule, and then by the elementary electric charge (1.6 x
10C) to measure it in electron volts, the result is between 0.1 and 10eV.
As it is the peripheral electrons of atoms that are concerned with chemical
reactions, it can be deduced that the bounding energies of peripheral elec-
trons are also of the order of electron volts. This is the main reason why
peripheral electrons efficiently interact with light. The former remark has
important consequences about life on Earth:

e Photochemical reactions, the most important being chlorophyll synthesis.
¢ Production of nervous impulses in the cells of the retina of the eye.
e Photoelectric effect.

1.3. What Is a Wave?

Wave concept is closely related to two main notions:

¢ Time-varying phenomenon.
¢ Propagating phenomenon.

1.3.1. Time-Varying Phenomenon, Necessity of a Source

Let us suppose that, at some point M, .,, a physical process produces a time
variation of some physical parameter G, according to a law that will be written
as gy(?). If we admit that the physical properties of space have to be contin-
uous, it is reasonable to think that, at a point M’ close to M, the parameter
G will also vary versus time according to a law g,/(t) very similar to the
law at M. The argument can be extended to a point M” close to M’; which
means that any variation produced anywhere will be felt later on in the
surroundings.
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Vibrating
electron cloud

Atomic
nuclei
Emission
antenna
Scale Il m Scale I 0.5 nm
(a) Scheme of radio emission. (b) Scheme of a molecule emitting light.

Figure 1.6. Vibrating electric charges generate electromagnetic waves. In the left-
hand figure (a) an electric generator creates an AC voltage across a metallic conductor
(antenna) and free electrons of the conductor are set into periodic motion with regard
to the fixed positive charges of the nuclei. As a result, a roughly spherical wave is
generated (the circles are supposed to suggest the shape of wave surfaces). The right-
hand figure (b) represents a diatomic molecule: a cloud of peripheral electrons
surrounds the two positive nuclei, keeping them at a roughly equal distance. When the
molecule becomes excited, the cloud vibrates, generating an electromagnetic wave.

The main point of what has just been said, is the necessity, for a wave
to be created, of a zone where a physical process will provide the energy
required for generating the time variation of the parameter G. In the case of
electromagnetic waves, the parameter G is an electromagnetic field.

Starting from radio frequency up to ultraviolet radiation, most electro-
magnetic sources originate from the vibrations of some electric dipole: two
electric charges with opposite signs being set into a periodic motion. In the
surrounding space an electric field and a magnetic field are simultaneously
generated, synchronously vibrating.

1.3.2. Electromagnetic Waves and Einstein’s Relativity Principle

The determination of electric and magnetic fields in the vicinity of moving
electric charges is more complicated than would be supposed from a simple
application of the Coulomb and Biot-Savart laws that are only valid for DC
phenomena. Maxwell's equations have to be used. The main physical result
is the following:

e There is no modification of the fields as long as the motion is rectilinear
and uniform. Moving charges will produce some electromagnetic radiation
if, and only if, they are accelerated.

e The effect of the acceleration is not felt immediately at a distant point. If
the acceleration occurs at time ¢t = 0, the radiated field will not be felt,
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before a time ¢ = d/c, by a physicist sitting at a distance d away from the
charge (c is called the light speed in a vacuum): time must be left for the
radiated field to reach the observer.

In the case of an oscillation, the acceleration is not permanently equal to
zero: this is the reason why the antenna permanently radiates an electro-
magnetic field.

The above result is in agreement with the Einstein relativity principle,
according to which no information should propagate faster than the light in
a vacuum.

1.3.3. Description of a Propagating Phenomenon
1.3.3.1. The Example of Elastic Surface Waves

Physics is dominated by propagation phenomena. To give a taste of the main
notions that are involved in propagation, we will start with a simple case,
which has nothing to do with electromagnetic waves, and we will describe
elastic surface waves propagating along the free surface of a liquid, the
surface of a lake, for example.

Each of us has surely observed those waves that can be excited when
stones are thrown into a lake. The small value (meter per second) of the speed
of propagation makes it easier to feel what a propagation phenomenon is
exactly.

The different points of the free surface of the liquid shown in Figure 1.7
are bound to one another because of the Van der Vaals forces that are respon-
sible for capillarity.

Except in the immediate vicinity of the central point, the surface at time
t, will have the same general shape that it had at time {,: a circular ridge, the
radius of which increases with time.

Permanent waves: Instead of dropping a stone, a float is placed on the
surface and, in some way, is given a periodic motion: new circular ridges are

!

t=0 t=1t t=t,

Figure 1.7. Propagation of waves along the free surface of a liquid. A stone is dropped
and reaches the surface at ¢t = 0; the surface is distorted and, for the sake of continuity,
the distortion is transmitted to the neighboring points: a circular ridge having a profile
quite similar to the initial distortion propagates, starting from the point where the
stone initially hits the surface.
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permanently created at the level of the oscillating float. For example, perma-
nent elastic surface waves can be excited by letting a needle slightly touch
the surface, the needle being linked to an electrically excited tuning fork.

Wawves with surface waves having any shape: Instead of only one, we can
use many oscillating floats, each of them emitting a spherical wavelet similar
to those that have just been described. The oscillation of a point of the liquid
surface is the result of the actions of the different floats. Figure 1.8 gives an
illustration of what happens if the oscillators are all synchronized and located
along a straight line, it is easy to imagine that a planar wave can be gener-
ated. It should be easy to synchronize the children’s motions by playing music.

More elaborate scenarios can be imagined. The edge of the swimming pool
can be made circular, the envelope of the wavelets is now circular: a circular
wave is then generated.

A rectilinear edge can still be used, but the children are now independently
addressed by listening to the music through earphones that are individually
excited, thanks to radio links, for example. The rhythm is the same for all the
children, but the phase may be varied from one to the other. When all the chil-
dren hit the surface “in phase,” a rectilinear wave is generated parallel to the
edge. If the phase repartition is varied linearly versus the distance from the
child sitting in the middle, a rectilinear wave is still generated, but it propa-
gates obliquely. By properly choosing the phase repartition, any shape may
be given to the wave surfaces. It is left to the reader’s imagination to deter-
mine which phase repartition is required for circular waves.

Figure 1.8. Generation of rectilinear waves from circular wavelets. Children are
sitting along the rectilinear edge of a swimming pool. With rods, they hit the water
surface generating circular waves. If the children hit at random, the surface takes on
a chaotic appearance. Their motions can be synchronized, for example, by playing
some rhythmic music. Close to the edge the surface has a fuzzy shape, further away
many waves will interfere to give a rectilinear wave which is the envelope of the
circular wavelets.
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T

Figure 1.9. Generation of circular waves from circular wavelets. The swimming pool
now has a circular edge; when the children periodically and synchronously hit the
surface, the envelope of the wavelets takes the shape of circles having the same center
as the circular edge.

1.3.3.2. Mathematical Description of Propagation: f(t £ x/v)

Let us consider a function f(u) of the variable u, and suppose that « is a linear
combination of space x and of time ¢, according to a law that will be written
as u = (t £ a/V), Vis a parameter homogeneous to a velocity.

The function f(u) then depends on x and ¢ according to gy, = f(t = 2/V).

Let 0, ¢}, and ¢,, respectively, be the initial time and two subsequent times,
since f—o.-0) = f,0=v1p) =Ju,-1,) it i seen that, if V' is positive, the function f{¢
— x/V) describes a forward propagation along the x axis, at a velocity equal
to V, of the physical parameter attached to f. In the same way, the function
St + x/V) represents a backward propagation along the x axis.

Since y and z do not appear in the argument of the function gy ., = f(t *
x/V), gy has the same value for all the points located in a given plane orthog-
onal to the x axis: surface waves are thus parallel planes, this kind of wave
is said to be planaxr.

A function such as gy, = f(t £ 2/V) corresponds to propagation without
any deformation of the initial time variation law: whatever the position, the
physical parameter g,(t, x) varies according to the same law and with the
same amplitude. As these variations represent some energy, it is foreseen that
the previous description is ideal. A more realistic function could be a(x)f(t =
x/V), where a(x) is a function which decreases with the modulus of the
abscissa x. When propagating inside a material the wave will give energy to
the atoms, a planar wave will not keep a constant amplitude. A formula, which
is frequently encountered, is of the type:

e“f(t —x/V), «is called the absorption coefficient of the material.
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Spherical waves are described by gy, = a(v) f(t £ 1/V), where 7 is the dis-
tance to the center of the wave, which is often called the focus of the wave.
The = sign corresponds either to waves that diverge from the focus (-) or con-
verge toward it (+).

If we admit that the power carried by a wave is proportional to the square
of its amplitude, it is seen that a() must be proportional to 1/, in order to
keep constant the flux of energy across the different spheres centered at the
focus.

For spherical waves propagating inside an absorbing material, the law a(7)
will take the shape a(r) = e */r.

1.3.3.3. Sine Waves (also Called Harmonic Waves)

A wave is said to be harmonic when the time variation is sinusoidal. An har-
monic planar wave will thus be written as gy, = A cosu = A cos[w(¢ = 2/V)].

As harmonic planar waves are very useful, we will summarize the main
parameters that are used to describe them.

Main parameters used to describe an harmonic planar wave.

Frequency, v.

Pulsation o (also called angular frequency), o = 27v.
1 2

Period, T=—= —”.
v @

Speed of propagation, V.

(Beware of typographical confusion between speed V and frequency v.)

v 2
Wavelength (space period), A=VT =—= 7”
v
. 2r o
Wave vector module (space pulsation), k= T = v
1 k
Wave number (space frequency), N =I =§.

The different forms of the argument of the propagation function.

Since the propagation function f(u) is sinusoidal and so is not linear,
to cope easily with a change of units, its argument u should not have
any dimension

u=[wt-x/v)]=(0t—kx)=2rt/T —x/2).
Wave vector of a planar harmonic wave: k = kx = x(2n/A) = x(w/V),
where X is the unit vector of the direction of propagation.

The space pulsation k = @/V = 27/A is a scalar number, which is often
abusively called the wave vector.
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1.3.4. Schema of an Electromagnetic Propagation Experiment

Figure 1.10 clearly shows the three main components of any electromagnetic
propagation set-up: a source, a medium supporting the propagation, and,
finally, a detection device that will reveal and possibly use the electromag-
netic radiation.

In Optics, of course, the same elements are found: emission antennas are
replaced by excited atoms. However, the physical mechanisms that are
responsible for emission and detection are less intuitive.

The spectral composition of the electromagnetic field at any point is deter-
mined by the source, and only by the source. If the source is sinusoidal with
a frequency v, the time variation of the electromagnetic field at any point will
also be a sine of the same frequency. Exceptions to the previous rule are very
uncommon, and will occur under special conditions, when “some nonlinear-
ity” appears in the interaction between the electromagnetic field and the
atoms of the propagation medium,; this situation will be considered in Chapter
10 devoted to Nonlinear Optics.

Frequency is thus an intrinsic parameter of the problem and is the same
everywhere. This is not the case for the speed of propagation V that usually
depends on the properties of the medium of propagation. It is the same for the
different parameters that are linked to V, such as wavelength and wave vector.

In Electronics, as well as in Telecommunications, people almost exclu-
sively make use of the frequency, or of the angular frequency, to describe the

A Reception
» 1 -——=> antenna
4 -——>
Medium of
propagation
-> .| Detector
N
AN
‘ Meter
Emission
antenna

Figure 1.10. Propagation of a radio wave from the emission antenna to the reception
antenna. An electric generator sets the free electrons of the antenna into motion,
creating an electromagnetic field which propagates, starting from the antenna. This
electromagnetic wave propagates in the vacuum (or in air) which constitutes the
propagation medium. When reaching the reception antenna, the electric field of the
wave makes the free electrons oscillate, thus generating an electric current which is
detected by some measurement device.
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/

\ / Toward observer’s eye
/ \ or photodetector

Figure 1.11. Production of light by a candle. The heat produced by the combustion
of the wax provides energy to the air molecules and carbon atoms that are present in
the flame. Part of this energy will excite the electrons, which vibrate with regard to
the nucleus, at some frequency characteristic of the atom to which they belong.
Electromagnetic radiation is emitted and, when arriving at a detector, it will excite its
electrons producing a physiologic signal (eye) or an electric signal (photodetector).

signals. In Optics the wavelength is usually preferred; if not indicated, it is the
wavelength in a vacuum. In Spectroscopy, the wave number (in cm™) is widely
used, while in Chemistry the photon energy is frequently given in electron
volts.

1.4. Electric Dipole Radiation

1.4.1. Luminous Objects and Illuminated Objects

Two kinds of visible objects have to be distinguished, on the one hand, light
sources, and on the other hand, illuminated objects:

e Light sources receive from the outside some energy which is, totally or
partially, converted into light.

e [lluminated objects receive light from some sources, then they reemit light
waves having properties (frequency, coherence, polarization,...) in
general very similar to that of the illuminating light.

Two kinds of light sources:

e (lassical sources: These were the only ones before the invention of lasers.
Most light sources that we use belong to this kind. Natural sources, such
as the Sun or stars, as well as the sources that we make for lighting:
candles, electric lamps where a wire is heated, or an electric discharge in
a gas. These classical sources are said to be incoherent; they are never
strictly monochromatic, the radiation that they produce always has a spec-
tral broadness which may be quite large. We will come back later to the
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concept of incoherency. At this stage we will only say that interference
phenomena cannot be observed by superimposing lights coming from two
different classical light sources, as well as light coming from two differ-
ent points of the same source. Strictly speaking, it’s better that classical
sources are not coherent, otherwise the world would appear as stripes
with interference fringes.

e Laser sources: These are coherent and often very monochromatic.

For the two kinds of sources, the mechanism which is responsible for the
emission of light is dipole electric radiation.

1.4.2. Phenomenological Approach of the Motion of
Electrons Inside an Atom

1.4.2.1. Phenomenological Equations

A luminous object is always a piece of material, i.e., a collection of atoms.
This collection receives energy and transforms it into electromagnetic energy.
To start with we must imagine a model for the physical processes according
to which an atom receives energy and emits electromagnetic waves.

Our approach will be phenomenological, that is to say that the phenom-
ena will be described as we imagine them to be, without any special attempt
to be rigorous. The only real justification of our equations is that they give
good results in agreement with experimentation.

In an atom at rest we consider that electrons have equilibrium positions
with regard to the nucleus, we then admit that, after having been released
from those positions, electrons will go back to equilibrium by doing damped
oscillations. The oscillation frequency is characteristic of an atom and of the
special electron under consideration in an atom, its value is mainly deter-
mined by the electronic shell on which the electron is (K, L, M, ..., s, p, d,
f,...) and may correspond to very different spectral domains (X-ray, ultra-
violet, visible, infrared, microwave, radio frequency).

Let x be the distance between an electron and the nucleus, and let x, be
its value at rest; the distance to the equilibrium position is noted as & = (x —
Xo). If taken away from the equilibrium position, the electron is submitted to
a restoring force proportional to &.

m and e being, respectively, the mass and the electric charge of the elec-
tron, k and y’ being the phenomenological coefficients and, finally, f(t) being
the value, at time ¢, of the electric field at the place where the electron is, the
equation of motion of the electron can be written as

0]
d? ,dé

m%ﬂ/ —+kE=ef ().
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Changing slightly our notations, we obtain the phenomenological equation

(1.1,

Differential equation of the motion of an electron,

25 _g e
di? J/ +wat0m§ f(t) (LD

Equation (1.1) is a second-order linear differential equation. It is well
known that its solution is obtained by adding two terms:

e Free regime: This is the general solution of the differential equation
obtained when the right-hand side of the equation is made equal to zero.

e Forced regime: This corresponds to a solution of the equation obtained
when the right-hand side of the equation is made equal to (e/m)f(t).

y will be considered to be small enough, thus the free regime is damped
and can be written as

E=Ee " sin(wt— @) with © = ©yen, (1.2)

where & and @ are integration constants determined from initial conditions.

The damping coefficient y does not correspond to any viscous friction, it
is difficult to imagine in what kind of viscous medium the electron should
move, 7 is really a phenomenological coefficient. Its presence does repre-
sent a dissipation of energy. Instead of 7 a damping time 7 = 1/y is often
introduced.

My0m 1S the eigenvalue of the angular frequency of the electron in the atom,
from an experimental point of view it corresponds to an absorption band of
the material. @,,,, may belong to the whole spectrum of electromagnetic radi-
ation, between X-ray and radio frequency.

1.4.2.2. Shape of the Solution in the Case of Light Sources

To be able to emit dipole electric radiation, an atom should have previously
received some energy from the surrounding medium. In most cases the energy
is provided to the atom in a random way, during atomic collisions. The colli-
sions may occur with other atoms, or with thermal phonons of a crystalline
lattice, or with electrons of a gas discharge. . . .

Things can be thought of as follows: at random times 6; (% is just an index
of numeration), the oscillator describing the electron receives very short
bursts of energy.

We now come back to the phenomenological equation (1.1), the right-hand
side is almost always equal to zero, except during very short intervals very
close to 6;. The average value of the interval, (6;,, — 6;), between two con-
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5“

Time

Figure 1.12. Motion of an electron going back to equilibrium. The damping time
constant 7 is far longer than the pseudo-period Tyom = 277/ Waom, SO the diagram is just
an illustration, since it is impossible to draw with the same scale the exponential and
the sine.

secutive collisions is longer than the damping time constant 7 = 1/y; under
such conditions, the motion of an electron is a succession of damped oscil-
lations that are reinitiated from time to time. Because of the large difference
of the orders of magnitude between T = 27/ Wy, and 7= 1/, there is time
enough for many oscillations to be produced before complete damping,.

It will be considered that the amplitude of the electromagnetic field
emitted by the oscillating dipole follows the same time variation law as the
motion of the electron. The electromagnetic field is just a succession of what
we will call “wave packets.” The initial phases of the different wave packets
are not correlated to one another.

One can be tempted to assimilate a wave train and a photon, this is com-
pletely false, and each wave train does correspond to many photons.

For a coherent beam—emitted by a perfect laser—the graph of the varia-
tion of the electromagnetic field amplitude would be an everlasting sine, i.e.,
a single wave packet of infinite damping time.

It is not at all obvious, and certainly not true, that all the wave trains of
Figure 1.13 should have the same amplitude; however, for the sake of sim-

é“

Time

Figure 1.13. Representation of the motion of an electron of an incoherent source and
of the variation of the electromagnetic field produced by the oscillatory motion of the
electron. The motion is reinitiated from time to time. The initial phases of the different
damped sinusoidal wave trains are not correlated to one another.
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plicity, we will admit that this is the case. The time variation of the emitted
electromagnetic field will be written as

E@t)=EyY H o, " cos(@uont —0,)- (1.3)
P

H(u) is a Heaviside step, equal to zero when its argument « is negative
and equal to one for any other value.

1.4.2.3. Object Illuminated by a DC Coherent Light Source

The electric field of the light coming from a DC coherent source follows a
sinusoidal law of constant amplitude £, and angular frequency .

The motion of an electron belonging to an object illuminated by a coher-
ent light source is described by the following equation:

25 —€+ §—E L. 14
Py +y OZom 0 COS®@ (1.4

The best way to solve equation (1.4) is to use complex numbers, the solu-
tion then has the following shape:

& =|E cos(at + ¢) = Re{|Ee?e ],
It can be shown that the squared modulus of the variation is given by

1
|§| =— E'O 5 . (1.5)
(witom - 0)2) + 720)2
The amplitude of the motion is maximum at resonance, when the light fre-
quency is equal to the eigenfrequency of the electron of the illuminated object.

1.4.2.4. Object Illuminated by an Incoherent Source

Let us now consider the case of an object illuminated by an incoherent light
source. The electric field which must be written on the right-hand side of the
differential equation (1.1) is given by (1.3):

Most of the time:

@, 5
+ wd om 0 1.6
arr a0 &= (1.6)
When a collision occurs (t = 6;):
25 —é N —(t-6;)/t ’
2 - t y + atomg Eoe CcOos wt. (16 )
dt m

There are two kinds of parameters in equation (1.6):

e yand wy,, are characteristic of the atoms of the illuminated object.
e F, o, and 7 are characteristic of the illuminating source.



18 1. Orders of Magnitude in Optics

For the sake of simplicity we will consider the motion of electrons belong-
ing to the illuminated object as far more damped than the motion of the elec-
tron of the light source. The free regime of the illuminated electrons rapidly
goes to zero and will not be considered, keeping only the forced regime of
equation (1.6").

The right-hand side of equation (1.6") can be written as

2 Epet-00/[pior 4 gmiot| = & g o0/ 0[ gl rrion | pltmjor ],
2m 2m

It is easy to see that the forced regime of equation (1.6") is a combination
of terms such as (e/2m)E % 2"V A rather tedious calculation shows that
the motion of the electron looks very much like the wave packets of the inco-
herent light source. The amplitude of the motion of the electron is propor-
tional to the amplitude of the wave packet, and the proportionality coefficient
is higher as the wave packet frequency is nearer to the eigenfrequency of the
electron in its atom.

1.4.2.5. Colored Appearance of Objects

Objects have the same color as their absorption bands.

Let us now consider what happens when some object is illuminated by
a white classical source. A white classical source emits incoherent wave
packets having any frequency in the visible spectrum. Suppose that the object
is absorbing in the red, which means that its atoms have an eigenfrequency
Wyom IN the red. The different spectral components of the white light will be
reemitted with an intensity proportional to the incident intensity, as the
proportionality coefficient is larger for red light, the object will be of a red
appearance.

In fact, a given object always has several absorption bands, their spectral
widths are never perfectly thin and they are characterized by a profile, i.e., a
law of variation of the proportionality coefficient versus frequency, or wave-
length. Illuminated by a white source, such objects will take a color which is
characteristic of the profiles of the different absorption bands. Of course, the
spectral composition will also play an important role in determining the aspect
of the object. For example, whatever its color under a white light, when illu-
minated by a monochromatic blue light, an object can only reemit blue light.

A white object is an object that has no absorption band in the visible, and
thus rediffuses with the same efficiency the various components of a white
light. A black object absorbs, with an efficiency that is higher as the object is
darker, all the visible components of the spectrum.

Trichromatism: The color attributed to an object is the result of the appre-
ciation, by an observer, of the superposition of the various frequencies that
have been reemitted under white illumination. Experiment shows that the
observer may be accurately given the impression of any color, by mixing the
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lights of three sources having three different colors. The sources should have
narrow enough spectra, or either be monochromatic. The color is tuned by
changing the proportions of the three components.

1.4.3. Radiation Emitted by an Oscillating Electric Dipole

1.4.3.1. Physical Significance of the Electric Field and of the
Magnetic Field

This part of the book is very favorable in getting students to think about long
distance actions and radiated fields. The notion of field has two aspects:

¢ First, it is some physical property, electric, magnetic, acoustic, . . ., that
is described as a mathematical object, such as a scalar, a vector, a
tensor, . . ..

e Second, it is a portion of space inside of which this physical property has
been modified, thanks to long distance actions.

The creation of a field, whatever its nature, always needs energy. This
energy is stored at the place where the field exists, with a density that is often
proportional to the squared modulus of the field.

In the case of Electromagnetism, Coulomb interaction is the long distance
action responsible for the existence of an electric field, the Biot-Savart inter-
action being responsible for the magnetic field.

The Coulomb Law The Biot-Savart Law
Placed at some point O, an elec- | A moving electric charge e, passing
tric charge e will modify the | point O at a velocity V, modifies the
properties of the surrounding | properties of the surrounding space by
space by creating an electric field | creating a magnetic field at any point
at any point M, 4o (V AOM)

1 om B:Eew and H =B/pu,.

= e—.
47[80 OM3

A magnetic energy is accumulated in
An electrostatic energy is accu- | space with a density
mulated in space with a densit;
1Y y 1 y ,uO H2
O yagnetic = 2 B*=—.

1 2
O iectric ZEEOE . Ho 2

1.4.3.2. Weaknesses of the Coulomb and Biot-Savart
Formulas in Describing Waves

An oscillating dipole is, at the same time, two charges and an electric current,
this is the reason why it generates an electric and a magnetic field. Unfortu-
nately, the calculation of the fields is more complicated than one would
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suppose, just thinking of the Coulomb and Biot-Savart laws, since they would
imply that any modification occurring somewhere would be immediately felt
all over the space, which is incompatible with the Einstein relativity principle.

Oscillating dipole radiation is well described, in many Electromagnetism
textbooks, as the topic Hertz dipole. Calculations are developped starting
from Maxwell’s equations, the results are quite intuitive for today’s physicists.

1.4.3.3. Field Radiated from an Oscillating Dipole

Let us consider a dipole made of an electron and a positively charged nucleus,
its electric dipole moment y is the product of the absolute value of the ele-
mentary electric charge e by the vector d joining the nucleus to the electron
U = ed. We now imagine that d is imposed as a sinusoidal time variation, so
that the electric moment will follow the same kind of time variation.

At a distance OM which is large as compared with the wavelength, field
expressions become rather simple expressions:

E is orthogonal to OM and inside the plane IT defined by OM and u (this
is very different from what would be obtained from Coulomb’s law), see
Figure 1.14.

H is orthogonal to OM and also orthogonal to the plane I7,

1 1
E= EO _Sin[watom (t - T/C)]) H= HO _Sin[watom (t - T/C)].
r r

1.4.3.4. Remarks

¢ Because of the 1/r law for the field, and the 1/#* law for the radiated power,
the amplitude and intensity decay are relatively slow. This is a typical char-
acteristic of such electric interaction, in opposition to nuclear interac-
tions, the range of which doesn’t extend much further than the radius
nucleus.

¢ The amazing range of electromagnetic waves has enormous practical con-
sequences. For example, the possibility for light to propagate along astro-

Negatively
charged electron - M
H__ -

Positively
charged nucleus H

Figure 1.14. Field radiated from an oscillating dipole. The expressions of the electric
and magnetic fields are quite complicated in close vicinity to the dipole, but they
become considerably simpler if the distance OM is large, as compared with atomic
size and with the distance covered by light during one period (wavelength).
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nomic distances, which allows us to receive light rays from the extreme
edges of the universe. This is responsible for the ability of radio waves to
propagate over large distances.

1.5. Light Detectors

1.5.1. Definition of Detection

An electromagnetic wave is an alteration of space, a modification which is
due to the action of a source. This becomes real and exists only after it has
been detected, which means after it has interacted with a detector, that is to
say, a device which delivers a signal that can be measured.

An electromagnetic wave represents information concerning the emitting
source, this information is carried to the detector. The kind of information that
is carried may be as simple as: the source is on, or the source is off; however,
it can also be very elaborate, due to sophisticated modulation procedures.

To detect is to destroy: As long as the signal has not been detected, it keeps
transporting its information. The signal stops existing as soon as it has been
detected. Truly speaking, a detector usually receives a small part of the wave,
and so, only a small fraction of the signal will be destroyed by detection.

The information of an electromagnetic wave may be carried by one of the
four basic parameters that are: amplitude, frequency, phase, and polarization.

Detection is the operation which allows us to obtain again the informa-
tion carried by the wave, and which brings it to the attention of an observer
who can then make use of it.

Detection has a mathematical aspect, as well as a technological one. The
reader will usefully think of the following examples: astronomy, radar, broad-
casting and, more generally, telecommunications, spectroscopy, . . . .

We have already met the notion of detection in this chapter, this was on
the occasion of the transportation of information, using a carrying wave. We
then considered a wave of the following form, which is called amplitude
modulation,

y(t) =[1+ ce(t) cos Weut].

The information is contained in the function e(t), the frequency spectrum
of which should only have components having frequencies far lower than the
frequency .., of the carrying wave. The role of the carrier wave is just to bear
the signal. In this case detection is made in several steps:

(i) Reception by the antenna of the electromagnetic wave and generation
of an electric signal z(¢) proportional to y(?).

(i) Starting from z(t), elaboration of another electric signal proportional
to the initial signal e(?).

(iii) Giving the previous electric signal a more useful shape for utilization
(an acoustic signal, for example).
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In radio telecommunications it is often considered that detection only cor-
responds to topic (ii). In Optics, because of the extremely high value of light
wave frequencies, the two operations (i) and (ii) are made at the same time
by the photodetector.

From the previous examples we will be reminded that, if modulation and
detection are, in essence, signal processing operations (i.e., mathematical
operations) to be performed, they will always involve physical and techno-
logical processes.

1.5.2. Measuring a Power in Decibels

The power carried by a signal is obviously an important parameter: the more
powerful a signal, the easier it is to detect. The exact definition of the power
transported by a wave will be given in the next chapter, for the moment, it
will be considered as intuitive.

A signal processing set-up is always made of several successive elements,
each of which is characterized by the ratio of the transmitted power to the
received power (transmission coefficient):

_ P OWETyansmit
T - .
Powerreceived

The output power is equal to the product of the initial incident power
multiplied by the transmission coefficient p; of the different elements. It is
because the human brain prefers performing summations rather than multi-
plications, that the decibel has been introduced. Given two physical parame-
ters of the same physical kind, G and G’, and their usual ratio, G/G’, we will
call a ratio in decibels (db) by the following expression:

G G
( G’jdb =10 logm(g). (1.7

Decibels fit very well with the way physicists usually speak by order of
magnitude. It’s not certain that the factor of 10 makes things easier, tradition

has not decided so . . ., if this were not the case bel would be used instead of
decibel.
P in p p p P out
—» ! —] 2 — 3 —»
p 1 db p 2db p 3db

P out

B

By = PP, P3Pins |: :| =Piab t Prav T P3av
db

Figure 1.15. Cascade of several signal processing components. Each component is
characterized by a transmission coefficient.
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Scientists from Optics, or from Electronics, have a slightly different under-
standing of decibels. Because of the great value of the light frequency, in
Optics we have no direct experimental access to the instant field, E(t) =
E cos(wt — @) (E is the amplitude of the field), and usually we deal with its
averaged squared value. On the contrary, in Electronics, the fields are easily
handled and the time variations can be displayed on the screen of a cathode
ray tube (CRT). So, in Electronics, the temptation was high to extend the
notion of decibels to the field’s amplitudes.

First remark that since a logarithm is only defined for positive numbers,
decibels can only be used for the modulus of a signal. The power of an AC
signal being proportional to the square of the absolute value of its amplitude,
if we want the expressions to be comparable for both amplitude and power,
a factor of 20 (instead of 10) must be introduced in the definition of decibels

in the amplitude case,
(—tj =20 loglo( . t).
Ein db Ein

The use of decibels may be troublesome for beginners, and also for others.
It must always be kept in mind that decibels have been introduced to describe
the ratio between two powers.

Decibel milliwatt (dbmW)

By definition only ratios can be expressed in decibels. It's nonsense to
express a power in decibels, nevertheless, this is very often the case. When
a power is given in decibels, a reference power has, more or less, been
mplicitly introduced. As in optical telecommunications the powers are
of the order of milliwatts, the reference power is 1 mW. The number
ging the power will be followed by “dbmW?” (decibel milliwatt),

P Pabmw
Pypw =10 l0g1p| ————| — P, =[10 1 |
dbmW glO(Po =1ij mw [ }

0dbmW — 1 mW, 10dbmW — 10 mW, 20dbmW — 100 mW.

1.5.3. Physical Considerations About Photodetectors

The first point is to understand the physical processes that permit a
photodetector to elaborate a signal from the energy that is brought to it by a
beam of light. The second point is to find the best way to make this signal
useful.
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1.5.3.1. Photochemical Reactions

These are used in photographic plates, the most frequently used being the
chemical reduction of silver salts in the presence of light:

Ag* +electron + photon — Ag.

The silver ion belongs to a silver halide, a water insoluble salt that is immo-
bilized inside a thin film of gelatin. As long as it remains in darkness, the silver
halide stays white. The metallic silver atoms are black: the darkening of the
film is controlled by the light exposure.

1.5.3.2. Production of a Nerve Impulse

When retina cells receive visible photons, a type of photochemical reaction
occurs, the energy of the reaction induces a physiological signal: a nerve
impulse is produced and driven to the brain, which is well equipped for pro-
cessing and interpreting the signal.

Sensitivity: The human eye is remarkably sensitive; it can detect a few
photons per second. Of course, it is the spectral sensitivity of the human eye
that defines what is called the visible domain, which ranges from the red
(A =0.76 um = 0.8 um) to the blue (0.4 um).

Response time: The eye is not a fast detector; its response time is of about
0.1s. This slowness is compensated for by the enormous amounts (~ 10%) of
eye cells that are equivalent to photodetectors working in parallel. The fasci-
nating power of the human vision process really comes from the efficiency of
the way in which our brains can process in parallel all the data coming from
the retina cells.

Resolving power: The human retina has a surface area a little smaller than
1em? it is made of cells having a diameter d of a few micrometers. For two
points to be seen separately, their images should be focused on two different
retina cells. If A is the diameter of the eye sphere, the angular resolving power
€is equal to the ratio € = d/A.

From a practical point of view the human eye angular resolving power
is Imin (3 x 107~ rad).

1.5.3.3. Classification of Photoelectric Detectors

The two previous detectors were of a very special kind, in all other cases the
light signal is transformed into an electric signal (current or voltage): photons
create charge carriers which then flow in electrical conductors.

At this stage of the book it cannot be omitted that it is on the occasion of
the discovery of the photoelectric effect that Einstein got the idea of intro-
ducing photons.
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Main Properties of a Photodetector

e Spectral response: Mainly fixed by the work function of the photocathode
material or by the energy gap in a semiconductor. In most cases it corre-
sponds to wavelengths shorter than 1 um.

e Sensitivity: This gives the electrical intensity given by the photodetector
versus optical power, usually expressed in milliamps per watt.

e  Quantum efficiency: The probability of a photon impinging on a photo-
cathode to generate a photoelectron is called “quantum efficiency.” Of
course, this smaller than one, the quantum efficiency of good detectors is
between 0.1 and 0.5.

e Darkness current: Even with no incident light a photodetector gives a
small current which is called the darkness current. This phenomenon, of
course, limits the possibility of exhibiting low signals. For each detector,
it is defined as a least detectable light flux ¢, the flux that produces a
current equal to the darkness current.

e  Dynamic range: A very powerful incident beam will generate an intense
current and probably damage the detector. A detector is characterized by
a maximum allowed incident power @y... The detector dynamic range is
the difference between ¢y, and Q.

e Zone of linear response: The most favorable conditions are those where
the photoelectric current is proportional to the light power, for this to be
the case, it’s necessary that the incident power should not be too near ¢y,
Or Qrin-

e Response time: Two different processes, a priori, determine the response
time. First, the mechanism which is responsible for photocarrier genera-
tion and, second, by the time delay necessary for the charges to flow inside
the electric circuit. The first delay is always negligible with regard to the
second, which is fixed by some RC time constant of the circuit. Because
of parasitic capacitors the shortest response times are measured in
nanoseconds (107%), a few microseconds being a typical value.

1.5.3.4. Vacuum Photodiode

When arriving on a conducting material, photons give free electrons enough
energy for them to escape outside the conductor. Their individual energy,
hv, must be higher than some threshold energy W,,..., that is characteristic of
the material called its work function. This phenomenon is photoemission.
A frequency wy..sn iS associated to the work function by the formula
Winresh = R Vuresh-

After the departure of photoelectrons an isolated conductor becomes elec-
trically positively charged and, because of Coulomb interaction, a restoring
force then prevents the electrons going very far away from the surface. On
the contrary, if a second positively polarized conductor (anode) has been
placed in front of the first one, an electric field will pull the photoelectrons to
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Anode: positively polarized
Photocathode metallic ring

Transparent window glass
Emptied
tube
A Light beam
to be detected
AN

i, photocurrent proportional to the light energy flux

R | output signal, V=U — Ri

Biasing voltage :
e U=100V %

Figure 1.16. Vacuum photodiode. A high vacuum has been obtained inside the tube,
so that the electrons are very unlikely to collide with residual gas molecules and have
a mean free path larger than the tube size. Thanks to the photoelectric effect, electrons
are ejected outside the cathode. The anode, a ring through which the light can easily
go and reach the cathode, is positively polarized to attract the electrons. An electric
current, proportional to the light flux, flows in the circuit. The energy of each photon
must be larger than the work function of the cathode material.

the anode: a photocurrent is generated, its intensity is proportional to the
number arriving each second on the photocathode of the photons.

1.5.3.5. Semiconductor Photodetectors

The energy difference between electrons and holes in semiconductors being
of the order of an electron volt, it is easy to make semiconductor photode-
tectors having interesting optical properties. The two most important are: (i)
photoresistive cells; and (ii) cells using PN junctions.

Photoresistive cells: When a semiconductor sample receives photons
having an energy hv larger than its energy gap, electron-hole pairs are created,
as a consequence the electrical resistance will be varied. If the sample is con-
nected to some electric circuit, the electric intensity is determined by the light
flux.

PN junction photocells are the most common. When a PN junction is back-
ward polarized, the junction area is depleted from free carriers, electrons as
well as holes. In the presence of suitable illumination, electron-hole pairs are
generated. The polarizing voltage sweeps the electrons in one direction and
the holes in the other; the resulting current is fixed by the light intensity.

The main advantages of PN photocells are their sensitivity and their short
rise time. It must be added that microelectronic technologies allow for easy
mass production at low cost. Detectors can be as small as a few micrometers,
or even less; they can be very close to one another. Arrays or matrices of
detectors are easily made. The remaining difficulty is then to be able to read,
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Figure 1.17. Photoresistive cells. An incident light flux generates electrons and holes
that are free to move inside a semiconducting sample. These electric charges are swept
by an electric field due to a polarizing electric generator. The electrical resistance gets
smaller with increasing light intensities.

PN junction photocells
PN junction i
N R V=U-Ri
r\fUU\J" output signal
Light
beam

_— U biasing voltage
[

Figure 1.18. The PN junction is backward polarized; the junction area is depleted
from free carriers. In full darkness the electric current is in principle equal to zero,
except for a usually very small “dark current.” Photon energy must be larger than the
gap in the semiconductor. When the light intensity remains inside a suitable range of
values, the photocurrent is proportional.

Individual

1 q Common
electrode o clectrode
Substrate

Figure 1.19. Ten arrayed PN junctions. The width and the periodicity are of the order
of 5-10 um. The number of cells is usually a power of 2 (1024 is often met). Two-by-
two matrices are quite common, typically 1024/1024.
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successively or simultaneously, an enormous number of individual detectors
(a few hundreds to several millions); these difficulties have found a solution
thanks to computers.

1.5.3.6. In Optics it Is Possible to Count the Photons

At radio frequencies, the energy of the photons is so weak compared to the
thermal agitation energy k772, that it's completely out of the question to char-
acterize one, or even a few, of them. On the other side of the spectrum, nuclear
physicists often deal with events where only one y photon is involved.

Optics is the domain where photons start to be countable. On this occa-
sion it should be emphasized that, from an historical point of view, it is with
Optics that the concept of photons was brought up for the first time.

Avalanche Devices

Detector sensitivity, using either photoemission or PN junctions, may be
considerably increased by using charge multiplying processes. Once it has
been emitted, a photoelectron will induce the production of an avalanche of
other electrons. The quantum efficiency of avalanche devices is much larger
than one.

Avalanche Photodiode

The PN junction is polarized so that, with regard to the Zener effect, the con-
ditions are slightly less critical. In darkness the current is extremely small
(dark current), when photons arrive in the junction area the generated pho-
toelectrons switch on a Zener discharge, giving high photocurrents.

Incident electron after collision
energy < 100 eV

Secondary electron
energy = few eV

Electron before collision
o energy = 100 eV

Figure 1.20. An incident electron collides with a metallic target, thus initiating the
creation of n other electrons, this is called secondary emission, n is several units.
Secondary electrons have energies of a few electron volts, they can be collected by an
anode and driven to earth through a load resistance.
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photon window anode (1000 V)
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Figure 1.21. Principle of a photomultiplier. Between the photocathode and the
anode, special electrodes, called dynodes, have been placed, there are p of them. The
voltage between the two following dynodes is 100V. Each photoelectron creates a
“burst” of n secondary electrons on each of the different dynodes. To each initial

photoelectron will then correspond n” secondary electrons ultimately reaching the
anode.

N

Photomultipliers

The physical process responsible for the avalanche is secondary emission, it
occurs when an electron collides with a metallic target after having been
accelerated to an energy of the order of 1keV.

1.5.4. Detection of Light Waves. Response Times of Photodetectors

In the case of radio waves it has already been said that we have first a recep-
tion in an antenna which gives a signal, very similar, apart from a propor-
tionality coefficient and also from some phase difference, to the signal that
had left the emission antenna. Detection then occurs, before detection, as well
as after, the signals can be displayed on the screen of a cathode ray tube
(CRT).

Optical frequencies are far too high to be able to excite an electric circuit,
or for the carrier signal to be displayed on a CRT.

The photodetection of a signal can be put in the following way: What is
the response (1) of a detector receiving a signal such as

E(t) = A(t) COS Wenel.

The notation ., has been used to suggest a carrier wave.

When the carrier wave is a light wave, the time variation of the modula-
tion A(?) is very slow compared to the oscillations of cos w.,t. More accu-
rately, we can say that the frequencies of the Fourier components of A(t) are
much lower than @.,.. Let w,.,q be an order of magnitude of the highest com-
ponent of the modulation spectrum, the response of the detector will be quite
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Figure 1.22. CRT representation of a wave with a constant amplitude (no
modulation). After detection such a wave gives a constant electric signal proportional
to the square of the amplitude of the initial wave.

different if the response time 7.y, is small or, on the contrary, large as
compared to 1/®y0q.

Light Intensity

The power is proportional to the square of the amplitude. The proportional-
ity coefficient is called wave impedance, its accurate definition and its expres-
sion depend on the kind of wave that is considered (electromagnetic,
acoustic, mechanical, ...), an exact definition will be given in the next
chapter in the case of electromagnetic waves. In many cases the light inten-
sity will very simply be assimilated to the square of the wave amplitude

I(t)= A%(¢).
Fast Photodetectors
A photodetector is considered to be fast if 7., << 1/@0na. A fast photodetec-

tor is able follow the variations of A(%). In this case, it's enough to consider
that the response 7(f) is proportional to the mean value (E%(%)) of the square

. L "l

Figure 1.23. Wave having its amplitude modulated by a sinusoidal signal. If the
frequency g Of the modulating signal is low enough, a photodetector will be able
to follow the time variations of the amplitude and will deliver a linear representation
(same period, amplitude proportional to the initial amplitude). If that’s not the case,
the detector cannot follow the modulation and will just give a constant output
proportional to the average value.
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of the electromagnetic signal, the mean value being evaluated during a time
equal to the response time,

(H‘Tresp) 1 (t‘*'Tresp)
rit)=K J- E*(w)du=K J A%(u) cos® w,udu,
resp t resp '
(H'Tresp) 2
KA=(t
r(t) = KA%(t) cos?w,udu = T()
resp '

It can be considered that, during the interval (¢, ¢ + T.g,), the function A*(t)
remains roughly constant and can be taken out of the integral. The average
value of a squared cosine depends on the interval 0 during which the evalua-
tion is made, it is exactly equal to 1/2 if 6 is a whole number of periods, and
is very near to 1/2 when 01is very long, but not exactly equal to a whole number
of periods. Finally, the photodetector response is proportional to A%(¢) and to
the light intensity.

Slow Photodetectors

When the detector is not saturated, it can be described by a differential
equation and, to remain as simple as possible, we will consider that it is a
first-order linear equation

dr

—+
At Tresp

r=KI(t), (1.8)

where K and 7., are two proportionality coefficients characteristic of the
detector.

Tresp 1S called the rise time and often originates from capacitive effects. For
most detectors it is of the order of microseconds. Even for the best detectors,
Tesp Will never be shorter than a few tens of picoseconds (10%s).

Response to a Wave of Constant Amplitude

I =1, =constant.

The solution to equation (1.8) is very simple: 7({) = KTesplo.

Response to a Slowly Varying Signal

Slow means that the variations of I(?) are considered to be unimportant during
an interval of the order of 7.y, meaning that

dal
I(t+Tresp)zI(t) as I(t+Tresp)zI(t)+Trespay

dl dl
Tresp e <I(t) = Tresp e <<It) — r=Kt.,I({)
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For slow phenomena, the time variation of the response exactly follows
the variation of the intensity.

Response to Rectangular Signal

The input signal is described in Figure 1.24. It remains equal to zero as long
as t is negative or is greater than 7 and keeps a constant value within the inter-
val0<t< T

The left-hand diagrams of Figure 1.24 correspond to the case when the
pulse duration is much longer than the response time. The response is
given by

T(t) = IOKTresp (1 - eit/freSp) for 0<t < T,
r(t)= IOKTrespei(tif)/Tresp for t> 1.

For the right-hand diagrams of Figure 1.24, the light pulse is shorter than
the response time. The response is a pulse which lasts for about 8 = T+ T,
its height is all the smaller as 7 becomes shorter, exact values of 0 and Iy,
can easily be obtained from previous equations.

A photodetector cannot discriminate two pulses which are separated by
an interval shorter than its response time.

Response of a Photodetector to a Sinusoidal Excitation

I(t) is given by I(t) = I, cos t, 2 is far below the light frequency.

Let us start with the case when Q2 << 1/7,, the excitation is a slowly
varying function, the response is proportional to the light intensity and is a
sine in phase with I(¢). In the most general case, the response is still a sine

Al 1)

A
A

(1)

|
! t

| >

Rise Decay'
time time

Figure 1.24. The upper diagrams (left) describe a long pulse and (right) a short pulse.
The lower diagrams represent the respective response of a detector. In most cases
the rise time and decay time are equal; examples may be found where this is not the
case.
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of frequency 2, but in this case the amplitude decreases with the frequency.
The photodetector behaves like a filter. The response is given by

oI
t)=K res R . .
r(t) = Kvesy e{1+]QT}

Response of a Photodetector to the Light of a Classical Source

The time variation of the light intensity of a classical source has been given
in Section 1.4.2, it’s a succession of random light pulses, each of them lasting
for a time which is much shorter than the response time of a photodetector.

When a classical light source is said to have a constant intensity, it doesn’t
mean that it emits a permanent and constant electromagnetic field. It can be
considered that it works under random stationary conditions and emits light
pulses that can be described as follows:

¢ The pulses are all identical.

¢ They are randomly emitted.

¢ The number of pulses emitted during a given time 0 is proportional to 6,
with the condition that 6 should be large with respect to the duration of
a pulse.

¢ The light intensity is proportional to the average number of pulses emitted
per second.

Each light pulse is very short, the photodetector gives a short pulse having
a duration just about equal to the response time. As the time between indi-
vidual pulses is shorter than the response time, the many electric pulses
become superimposed giving a constant electrical intensity proportional to
the light intensity.

1.6. Interference, Diffraction

1.6.1. The Paradox of Interference

An interference experiment consists of superimposing, on the same pho-
todetector, the electromagnetic fields of several different waves. For the sake
of simplification, we will just consider the interference between only two
waves. The detector is supposed to give a response proportional to the square
of the electromagnetic field.

Receiving alternatively the signals E(t), then Fy(t) and, ultimately, [F,(t)
+ E,(1)], a photodetector would, respectively, give the following responses:

(EX ), (E5(®), and (Ef(0)+ E5 (1) + 2E() Ex (1))
It may happen that E(¢) = —E,(?) and under such conditions it is seen that
2
<[E1 )+ E» ()] > =0. (1.9)
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Interference is sometimes given the following paradoxical description:

Light +light — darkness.
However, usual observation shows that most often the situation is
Light +light — twice as much light,
When a phenomenon of interference occurs:

The intensity resulting from the superimposition of two beams is not
equal to the addition of their individual intensities.

Interference is a manifestation of what is called, by mathematicians,
the Schwartz inequality

(a—-b) <(a? +b2)S(a+b)2.

1.6.2. No Interference if no Detection

Interference patterns can only be observed if a photodetector receives simul-
taneously several interferring beams. It is by time-averaging the square of the
sum of the amplitudes that an interference phenomenon is revealed. From
this point of view, the possibility of observing interference is a direct conse-
quence of the fact that detection is a nonlinear interaction between the elec-
tromagnetic field and the detector.

When two light beams cross somewhere, nothing special is to be observed
at the place where they intersect, even if they are coherent. At the place where
the two beams are superimposed, the electromagnetic field, which is the sum
of the electromagnetic field’s vectors of the two incident beams is however
spatially modulated. After they have crossed, the two beams don’t keep any
memory at all of the fact that they have just crossed.

If, in the arrangements described in Figures 1.25 and 1.26, a photoplate
is disposed at the place where the two beams are intersecting, interference
fringes can be recorded, under the condition that the two beams should fulfill
interference conditions that we will define below in Section 1.6.3.

Figure 1.25. Two light beams cross inside a transparent material. The electrons
of the atoms located in the shaded area are simultaneously submitted to the
electromagnetic fields of the two beams. As the medium is perfectly transparent and
homogeneous no light is diffused outside: no interference pattern can be seen.
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Figure 1.26. Two light beams illuminate a sheet of paper. The electrons of the paper
behave in the same way as those of the transparent medium of Figure 1.25, but they
reemit light above the screen; this light then goes to a photodetector, the eyes of some
observer, for example. It is when the detector averages the square of the light
amplitude that a nonlinear interaction occurs and when the fringes are created. In fact
the fringes only exist on the surface of the retina of the eye.

1.6.3. Conditions for Two Light Beams to Produce Interference
1.6.3.1. The Two Frequencies Must Be Equal

Let us suppose that on the sheet of paper of Figure 1.26 the two light beams
have the same amplitudes and are written in the following form:

Y1 =acos(oit+@;) and y, = acos(®xt+@y).

The phases ¢; and ¢, depend on which point M is chosen between A and
B. The detector response is proportional to the average value of (y; + y2)*

<a2 [cos(@t + @) +cos(@st + @) >

=<a2{1+cos[(w1 — )t + @ —§02)]+"'

N cos(2wit +2¢;) +cos(2msyt +2¢;) + 2 cos(w; + wst + @, + (p2)}>
5 .

As w; and w, are optical frequencies (10" Hz), the terms of the frequen-
cies equal to 2wy, 2w, and (w; + @,) will give components having amplitudes
equal to zero in the response of the detector. An exception is possible for the
term (@, — @,) which can contribute to the detected signal under the condi-
tion that 27/(w, — @) should be of the order of the detector response time
Tesp- This last condition corresponds to a rather severe limitation, and to be
able to interfere the two interfering frequencies must be very close: for
example, if

Ao _ (0, -wy)
[ a (O]

Tresp =107 — <107,

If this condition is not satisfied, the photodetector response will be pro-
portional to the sum of incident intensities. This is why it is said that light



36 1. Orders of Magnitude in Optics

V) Mirror translated
at speed u
Vi Vi V) Vi ]
| LASER [

V2

V2

Vi, Vs

Vi ™ 2.) Photodetector
Output electric
V) signal

e

Figure 1.27. Experiment showing the Doppler shift in Optics. When reflected back
onto the moving mirror, the frequency of the light is shifted because of the Doppler
effect: the output signal contains a beat at the frequency difference (v; — ).

sources must have strictly identical frequencies to be able to produce
interference.

Exercise: Evaluate the frequency of the term (@, — ®,) in the case of
the two components of a sodium doublet, with the following wavelengths:
A; =589.0 nm and A, = 589.6 nm.

Figure 1.27 represents an experimental set-up where two light beams with
very close frequencies interfere at a photodetector. A mirror is moving at a
speed u and receives a very monochromatic light beam of frequency
because of the Doppler effect the frequency of the reflected beam is shifted
according to the formula Av = (1, — 1)) = w(w/c). If Av is well inside the
bandwidth of the photodetector, an electric signal will be produced at
this frequency, allowing a measurement of the mirror speed.

1.6.3.2. The Two Light Sources Must Be Coherent

Coherence is a key point in studying interference, its study needs an appro-
priate approach to the statistical properties of light. It is out of the question
to do this in a first introductory chapter; it will be enough to introduce qual-
itatively the required notions.

The diffusing screen in Figure 1.26 is illuminated by two planar optical
waves, they have the same frequency w and two different wave vectors k; and
k;. At any point M(x, y) the amplitudes of the electromagnetic fields are,
respectively, written as

E, =acos(wt—kOM+¢,) and E,=acos(ot—k,OM +¢,),
with

2 2
k = Tn-(xcos o;—ysina;) and k; = %(—xcos oy —ysinay).

Let us suppose that the origin O has been chosen inside the plane IT
of the sheet. x is a unit vector of a direction lying along I, y is a unit vector
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orthogonal to I1. If M belongs to Il, then OM = xx and the electromagnetic
field at point M can be written as

E, +E, =2acos[%(cosal +cosa2)+%} X

%+%}

X
x cos| wt ———(cos o, —cos ) + 3
Y

The light intensity I is obtained by taking the time-averaged value of
(Ei + Eb)*

I= <(E1 + E2)2> =4q? cosz[%(cos oy +cosas)+ %} (1.10)

The two sources are coherent: This means that their phase difference
doesn’t vary at random, for the sake of simplicity we will just consider the
phase difference to be constant. On the plane I7, fringes can be observed with
a periodic repartition governed by the term (7m/A)(cos ¢, + cos oy), the fringe
separation is then A/(cos oy + cos o).

The two sources are not coherent: The phase difference (¢, — ¢;) cannot
at all be considered as constant, but varies randomly with time. At a given
time, (¢, — @) has some value to which can be associated an interference
fringe pattern; as time advances, different patterns follow one another at a
pace that cannot be resolved by any photodetectors: the fringes are not clear
anymore.

When the two sources are incoherent, the light intensity is the same what-
ever the point on the screen, and is obtained by averaging (1.10), (¢; — ¢»)
being considered as a function of time,

<2a2 cos? [% (cosoy +cosas)— %D

T

A

2

=a2<1+cos[2 (cosa; +cosay)— (¢, —(pz)}>=a .

Photodetector

— W W ' Electrical
output signal

JESEN

Figure 1.28. Interference between waves coming from two different sources. The
two sources emit wave packets of the same frequency but having no phase coherence.
No interference can be seen by the detector for two reasons: first, it is very unlikely
that two wave packets should arrive simultaneously and, second, even if this were the
case, the phase difference would randomly vary from one coincidence to the next.
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Figure 1.29. Superposition of two waves coming from the same source after they
have traveled independently. In (a) the two light paths are only slightly different, the
two wave packets arriving at the detector come from the same initial one: the phase
difference is not at random but is determined by the lengths of the two optical
trajectories: interference is possible. In (b) the length difference is larger than the
length of coherence of the source: even if two different wave packets meet on the
detector they cannot interfere.

The intensity is just the addition of the intensities of each beam and no
interference can be observed.

1.6.3.3. Thermal Sources, Length of Coherence

We will now deal with two thermal sources of the kind described in Section
1.4.2.4, they emit damped wave packets described by E(f) = ¢ “% cos(wt —
¢,): the instant 6, and the phase ¢, randomly vary with ¢; 7 is a time charac-
teristic of the source and is called its coherency duration; the distance d =c7t
covered by light during a time equal to 7 is called the coherence length.

1.6.4. The Validity of Geometrical Optics Is Limited by Diffraction

Development of geometrical optics relies on the notion of light rays. In a
homogeneous transparent medium, rays are straight lines along which light
energy is propagated. The notion of a ray is suggested by normal observation.
Who has never witnessed light rays filtering through the tiles of a roof and
revealed by the dust floating in the air? Or, who has never contemplated,
during a night by the seashore, the rays of a lighthouse illuminating the haze?

Accurate definition of a light ray meets serious theoretical difficulties, as
well as its accurate experimental observation. One can of course think of lim-
iting the cross section of a beam, using diaphragms with smaller and smaller
diameters, but then diffraction will occur. Diffraction is very general and is
observed for any kind of propagating phenomenon. Acoustic waves, as well
as De Broglie waves associated to particle beams, substantially diffract every
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Figure 1.30. Diffraction by a sharp edge. A beam of parallel rays is partially hindered
by an obstacle limited by a straight and very sharp boundary having a tiny radius of
curvature (a razor blade). Some light is diffracted by the edge and interferes with the
undiffracted part of the light: fringes can be seen on the observation screen.

time they go through obstacles of the same order of magnitude as their
wavelength.

On the observation screen of Figure 1.30, instead of having a clear sepa-
ration between shadow and light, it seems that some light penetrates inside
the shadow area. On the other hand, diffraction fringes exist in the clear area.
Let I be the illumination of the observation screen in the absence of the razor
blade:

e Theillumination is equal to I,/4 at the boundary between shadow and light,
and goes smoothly to zero far enough into the shadow.

e In the clear part of the screen, the illumination has well-contrasted
oscillations and goes to I, for points far from the edge.

Diffraction appears as a limitation to the rectilinear propagation of light.
To describe simply difficult phenomena, we will say that when a light beam
collides with an obstacle, after the collision, part of the light will travel in
many directions: the angle with the initial direction being all the larger as the
obstacle is smaller.

Diffraction is always followed by interference between the initial beam
and the diffracted beams; this is the reason why diffraction produces fringes,
usually called diffraction fringes.

Diffraction is enhanced when the diffracting obstacles have a periodic
repetition and it becomes quite spectacular if the periodicity has the same
order of magnitude as the wavelength.

1.6.5. Diffraction of Electrons

Let us consider a beam of electrons that have been accelerated by a voltage
V =150V and evaluate the associated wavelength. We will use the De Broglie
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Figure 1.31. Diffraction of a light beam by a diffraction grating. It is possible to
engrave, or to imprint or to etch, parallel and equidistant linear grooves on planar
substrates having noticeable dimensions (10 x 10 cm). Such arrangements are called
diffraction gratings. Each groove efficiently diffracts light. If a grating is illuminated
by a parallel light beam, there are only a few directions, determined by the wavelength
and by the geometry, for which the waves diffracted by the various grooves interfere
positively. A lens then focuses the different diffracted beams and each focal point
associated with a direction of positive interference is brightly illuminated.

Direction of
é ~ .
incident electrons

Direction of
diffracted electrons

Single crystal of nickel

Figure 1.32. Davisson and Germer electron diffraction experiment. A monocinetic
electron beam is sent onto the cleaved surface of a single crystal of nickel. Electrons
are diffracted by the atoms of the crystal lattice along directions that are in good
agreement with De Broglie wavelength and with the crystal cell size. Conversely, such
an experiment is now used to measure the parameters of a crystal cell.

formula i = pA, where p is the momentum of the accelerated electrons. For
such weak energies it's not necessary to use a relativistic theory and it’s
readily obtained that
h .
A=———=10""m=1A, ifV=150V.
V2emV

For diffraction of the previous De Broglie waves to be observed, the peri-

odicity of a regular arrangement of the diffracting obstacle should be of a few



1.7. Photometry 41

Observation

Diffracted screen
— electrons
Electron beam ~ >
o >
Polycrystalline i‘
aluminum sheet L

Figure 1.33. Thomson’s experiment. Any sheet of metal is an arrangement of
microcrystals randomly oriented. Because of this random orientation in the sample,
the problem has cylindrical symmetry around the axis of the beam. The diffraction
pattern is made of concentric rings, the radii of which are determined by De Broglie
wavelength and the size of the crystal cell.

angstroms. This has been done first by Davisson and Germer in 1928 (the
diffracting elements were simply the atoms of a single crystal of nickel) and
then by Thomson (using the atoms of a polycrystalline aluminum sheet).

Electron diffraction experiments must be performed in a high vacuum, so
that the electrons can propagate with a low probability of collision with a mol-
ecule of some residual gas. Observation screens are painted with a material
which emits light when it receives electrons. Photographic plates can also be
used, since electrons are able to chemically reduce Ag" ions to metallic silver
atoms.

The same kind of experiments can be done using X-rays having the same
wavelength as the electrons. Similar diffraction patterns are obtained. In the
same way, diffraction can also be observed using neutron beams.

1.7. Photometry

Electromagnetic radiation carries energy. The purpose of photometry is to
clarify this notion as far as light is concerned and to introduce the physical
parameters allowing us to quantify the visual observation of light sources and
illuminated objects.

1.7.1. Physical Parameters in Relation to Energy
Planar Monochromatic Wave

The problem is rather simple when we are concerned with planar waves. It's
then enough to consider the amount of energy ¢ (energy flux) which crosses
(per second) a surface S orthogonal to the wave vector

E = Eyxcos(wt—kr), electric field of the planar light wave. (1.1
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Using the Poynting theorem we can calculate what is called, by definition,
the luminous intensity I.

¢ _LE

20w/, (112)

where Z is the wave impedance; the 1/2 factor corresponds to time-averaging
over a great number of periods.

Planar Nonmonochromatic Wave

A nonmonochromatic wave is the superimposition of an infinite number of
monochromatic waves. To calculate the flow of energy through a surface S,
the spectral domain is divided into narrow bands with wavelengths between
A and (A + dA), in formula (1.12) the light intensity has to be replaced by an
elementary luminous intensity dI defined by

dl=I,d} and I=[I,dA (W/m?), (1.13)
0

where I, is the spectral density of the luminous intensity; its law of variation
versus wavelength is determined by the physical properties of the emitting
source.

Monochromatic Point Source

The luminous intensity of a point source is defined for a given direction
Oz: this is the ratio of the elementary luminous flux d¢ to the elementary solid
angle dQ of the elementary cone inside of which the flux is emitted, see
Figure 1.34(a).

d
I= d—g. (1.14)
Point source Elementary source
dQ
o
z
dl

Intensity, I = a4 Luminance, L =

’ (9] dScos 0

(@) (b)

Figure 1.34. Definition of the luminous intensity.
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Case of a Surface with a Finite Size

The surface is divided into elementary surfaces of area dsS, each of them then
being considered as a point source with the elementary luminous intensity dl.
A new parameter is then introduced, the luminance L of the emitting surface
at the point under consideration and in a direction that makes the angle 6 with
the normal to the surface (see Figure 1.34(b)).

al

L=———. 1.15
dScos6 ( )

The elementary flow of energy sent inside an elementary cone d£2, cen-
tered around Oz, is given by

d%p = L dQ dS cos6. (1.16)

Source Emittance

The emittance M, also called exitance, of a source at one of its points is a
characteristic of the total energy sent into all the surrounding space by an
elementary surface drawn around this point

a¢

=——=|LcosOdQ. 1.17
=1 (1.17)
If the sources, point sources or more general sources, are not monochro-

matic, the notion of spectral density should be extended to luminance and to
emittance, using formulas similar to (1.13).

Irradiance of a Screen

Let us consider a point P of a screen receiving light coming from one
or several light sources. An elementary area dS drawn around P receives
per second a total energy equal to d¢. The irradiance E at point P is, by
definition,
de¢ . . . Lo

E= S (beware of confusion with the electric field which is also noted E).

An illuminated screen can also be considered as a light source, its emit-
tance is smaller than its irradiance. In the case of negligible losses, irradiance
and emittance are equal.

Geometrical Width of a Light Pencil

Let us consider a light pencil emitted by some elementary surface dS inside
some elementary cone d€2 centered around the Oz axis, and let 8 be the angle
between Oz and the normal to the surface; by definition we will call the
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Figure 1.35. Geometrical width of a pencil.

elementary geometrical width d°G of the beam the quantity defined by the
following formula:

d*G=dQ dScosO=dQdX. (1.18)

In Figure 1.35 have been drawn two elementary surfaces dS and dS’ dis-
posed with regard to one another. Their respective centers are O and O, 6
and & are the angles of OO’ with the normal to the two surfaces. We consider
two pencils, respectively, issued from O and O’ and based on dS and dS’, a
simple application of the definition of a solid angle shows that they have equal
geometrical widths:

dS’cos 6’ _ dScos6

dQ=——"- dQ'=
00/2

0072 dQ2 dScosf =d€Q’'dS cosb’.

Expression of the Energy Carried by a Pencil

Referring to formula (1.16), it is seen that the energy carried by a pencil is
proportional to its geometrical width

d*p=Ld°G — L= d‘2¢ . (1.19)
d*G

Conservation of the Geometrical Width by Refraction

0, is the image of O, Magnification is equal to unity — dS; = dS,.
Snell-Descartes law of refraction: n; sin ¢, = n, sin 7,.
Geometrical width of the incident pencil

d?G, =dS, cost, dQ, =27 sini, cosi, dS, di;.

Geometrical width of the refracted pencil

d?G, = dS, cosi, dQ, =2 sini, cos i, dS, di,,

n nZd?G, =n2d*G,. (1.20)

ny 4

Figure 1.36. Conservation of the geometrical width of a pencil after refraction.
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Formula (1.20) is a relationship between the geometrical widths of an inci-
dent pencil and of the corresponding refracted pencil. The product of the geo-
metrical width by the square of the refractive index remains constant when
a pencil is refracted. Some authors include the square of the refractive index
in the definition of the geometrical width.

Conservation of the Geometrical Width in a Centered System

Formula (1.20) is readily extended to centered systems, since the propagation
of rays through a centered system is nothing other than a succession of refrac-
tions on various interfaces. Nevertheless, we are going to show that the
conservation of n?d’G is also a consequence of the Lagrange-Helmholtz
relationship.

dSl =ny‘12, dSz =7[y;,

2

aQ, :%(dul) . deQ, :%(duz)z.

ds, ds,
Lagrange-Helmholtz relation:

I %
n \ / ny Ty Uy = NaYols,

COSU; = COoSU, =1,

- n2dG, = n3d?G,.

Figure 1.37. Conservation of the geometrical width in a centered system.

Lambert’s Law

Lambert’s law introduces an ideal source called a Lambertian source,
which is very much like a real heated body source. The radiation emitted
by the blackbody introduced in Thermodynamics does follow Lambert’s
law.

The radiation emitted by a Lambertian source is the same for any
direction and, if the source is extended, it is the same for any of its
points.

Point Lambertian Source

The flux of energy (flow of energy per second) emitted by a point Lambert-
ian source having an intensity I, in the 4r steradians of the whole space, is
equal to

o=I1[dQ=4nl.
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The flux emitted inside a cone having a summit half-angle o is given by
9=1[dQ=1[2rsin0d6 =21I(1-cosa), (1.21.2)
0

¢ =ma*l (if the angle o is small enough). (1.21.b)

Because of the cosine in formula (1.21.a), Lambert’s law is often called
Lambert’s cosine law.

Extended Lambertian Source

Let us consider an extended Lambertian surface and determine the relation-
ship between its luminance L and its emittance M.
Flux sent inside the conical shell,

d?¢ = L dSdQcos6 = 2xL.dS sinf cos O d 6.

Total flux sent in the half-space in front of dS,

/2
do = rldS I d(sin6)? = aLds,
0

_dp _
u=2 =i, (1.22)

Figure 1.38. Relationship between the emittance and luminance of a screen.

1.7.2. Physiologic Parameters
1.7.2.1. Introduction to Physiologic Parameters

In the first part of this chapter, joules and watts have been used in order to
characterize the light intensity and the radiated light flux, corresponding para-
meters are said to be energetic parameters. This approach is not well adapted
when the photodetector is the human eye; new parameters, called physiologic
parameters, need to be introduced. Visual perception is a complex phenom-
enon; it varies from one person to another and is different during daylight or
at night. After statistical studies concerning thousands of people, an average
human eye has been introduced. Two light beams, with two different wave-
lengths A and A" and two different intensities, illuminate alternately the same
sheet of white paper, an observer is then asked to say whether the illumina-
tion is the same in both cases. It is then possible to associate an elementary
physiologic flux d¢, with an elementary energetic flux dg;:

dg; =k, dos, (1.23)

where k, is a proportionality coefficient that depends on the color (wave-
length) and on the light intensity. The graph of k;(1) versus wavelength is
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Figure 1.39. Spectral sensitivity curves of the human eye. Two curves are usually
given: the photopic curve corresponding to a comfortable lighting (the sensitivity is
maximum at 0.555 um) and the scotopic curve which is obtained for a low level of
illumination, the maximum of sensitivity is shifted toward the blue (0.507 um).

given in Figure 1.39, it’s a kind of bell-shaped curve; of course, the curve goes
down to zero at the boundaries of the visible spectrum (roughly 0.4-0.8 um
and, more accurately, 0.390-0.790 um). For daylight observation the maximum
is at 0.555 um, which means that the sensitivity of the human eye is maximum
in the yellow. Table 1.1 gives the relative values of k, for several wavelengths.

1.7.2.2. Units

Candela: By definition a candela is the intensity, in a given direction (see
formula (1.14)), of a source emitting a monochromatic radiation of
wavelength 0.5565 um and having an energetic intensity of 1/683 = 0.00146 W/sr.

Lumen: This is the physiologic flux associated to the candela, it corre-
sponds to the flux sent inside a solid angle of one steradian by a source having
an intensity of one candela.

Lux: This is the physiologic irradiance associated to the lumen, it corre-
sponds to the irradiance of a surface receiving a physiologic flux of one lumen
per square meter. The lumen is also the irradiance unit.

Table 1.1. Human eye sensitivity versus wavelength for daylight observation.

A(um) | 0.4 0.45 0.50 0.555 | 0.60 | 0.65 0.70 0.75

kikosss | 4x10™ | 0.038 | 0.032 | 1 0.63 | 0.107 | 4x10° | 10™




48 1. Orders of Magnitude in Optics

1.7.2.3. Order of Magnitude

To establish the link between physical and physiological parameters, two
kinds of experimental conditions must be considered: first, the spectral vari-
ations of the eye sensitivity and, second, the spectral composition of the light
source (Table 1.2). In fact the engineers and physiologists who have elabo-
rated these concepts have been very pragmatic and obtained quite concrete
proposals; since most observers agree when they compare their impressions
when watching color movies, either on TV or in the cinema, we can say that
they have been successful.

Table 1.2. Orders of magnitude concerning various light sources.

Physiological Physiological Physical units Efficiency
units units
Luminance Illumination Luminance (Im/W)
(cd/m?) (Ix) (W/m?sr)

Sun before 2 % 10° 1.4 x 10° 2 x 107 100

atmosphere

Sun on Earth’s 1.3 x 10° 10° 1.3 x 107 90

surface

White paperin | 2 x 10*

the Sun

Tungsten lamp | 6.5 x 10°

2700 K

Dazzling 10*

threshold

Daylight vision | > 10

Night < 0.01

Visibility 1076

threshold

Comfortable 400 to 1000

lighting

Full moon 2.5 x 10° 0.2

Brilliant star 107
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When a flow of energy is calculated, an integration is performed over the
whole spectral range; in the case of a “physiological flow,” the different wave-
lengths will be attributed to a pondering coefficient which can be obtained
from Table 1.1. Let us take the case of a 100W electric bulb, for which the
maker indicates 1000 Im. 100W is the electrical power obtained from the
electrical network, if the conduction and convection losses are evaluated to
25%, 75 W are radiated in the 4m sr, which makes 6 W/sr; 1000lm at the
wavelength of maximum sensitivity represent 1.46 W/sr, the difference corre-
sponds to the energy which is emitted outside the visible domain.

1.7.3. Thermodynamics and Conservation of the Geometrical Width
1.7.3.1. Luminance of a Blackbody

As illustrated in Figure 1.40, a blackbody is a closed box, the walls of which
are perfectly reflecting for electromagnetic waves, whatever the frequency,
and are adiabatically isolated from the outside. Initially the blackbody has
been brought into contact with a heat sink raised to the temperature 7' K.
Inside the blackbody, electromagnetic waves, with frequencies between zero
and infinity, endlessly reflected on the walls, follow zigzag paths having all
possible directions.

Let us consider a point M inside the blackbody and an elementary area do
drawn around M. An elementary cone, solid angle do, having its summit in M
and centered on the normal to d£2, carries an elementary energy flux given by

d¢=LdodeQ, (1.24.2)
dg=[ dg, with dg; =L,dodQd), (1.24.b)

where L, is called the spectral luminance.

We are going to demonstrate that the spectral luminance L; is the same
for all points inside the blackbody and doesn’t depend on the orientation
of the elementary surface do. Let us consider two different blackbodies C,
and C, having the same temperature T K, but differing in their shape and by
the various objects that have been put inside. Holes of respective areas S; and
S, have been drilled in each of them, and it is assumed that they are small
enough so that the thermal equilibrium between C; and C; is not affected by

dQ

Figure 1.40. Schematic illustration of a blackbody.
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Figure 1.41. A lens conjugates two holes drilled in two different blackbodies having
identical temperatures. Since, because of the second principle, the exchange of energy
between them should be balanced, it can be shown that the two holes have the same
spectral luminance and it can then be deduced that the electromagnetic energy density
u,(v, T') must be the same inside the two blackbodies. The final result is that the law
of variation of u,(v, T') is a universal function, whatever the blackbody.

¢

the losses of the electromagnetic radiation escaping through the hole. A per-
fectly transparent lens images S; on S, and conversely. Finally, a spectral filter
with a narrow band AA is placed on each hole. £, and £, being the solid angles
of the two cones having S; on S, as summits and leaning on the lenses’ con-
tours, and o, and o, being their respective projections on planes normal to
the lens axis, the flow of energy A¢, radiated each second from C, to C; is
equal to

A¢1 = LI,AO-IQIAA"
In the same way the energy flow radiated from C; to C, is equal to
A¢2 = Lgy;LO_ZQZAl.

Ag, and A¢; must be equal, if not, one blackbody would receive more energy
than it dissipates which would raise its temperature, which is in contradic-
tion to the thermodynamic second principle. On the other hand, we have
0102, = 0.4, because of the conservation of the geometrical width, and we
finally obtain

Ll,/l = LZ,/I-

In conclusion, the spectral luminance in a blackbody at thermal equi-
librium doesn’t depend on the particular blackbody under consideration.
Changing the direction of the lens axis, it is seen that the spectral luminance
is also independent of the direction of the light rays: which means that a hole
drilled in a blackbody is a Lambertian source.

1.7.3.2. Electromagnetic Energy Density Inside a Blackbody

u being the amount of electromagnetic energy per unit of volume (radiant
energy volume density) inside a blackbody, and u, the corresponding spectral
density, we seek a relationship between u; and L;. The electromagnetic energy
is the energy of electromagnetic waves going back and forth inside the black-
body at the speed of light c. We consider an elementary surface dS inside the
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Figure 1.42. The energy inside the cone was previously inside the cylinder.

blackbody; the total amount of energy d¢ carried per second inside an ele-
mentary cone (summit on dS, elementary solid angle d{2) was, before reflec-
tion, inside a cylinder parallel to the cone axis and based on dS and having a
length equal to the distance covered by the light during one second, see Figure
1.42. If do is the projection of dS on a plane normal to the cone axis, we can
write d¢ = cduds and, according to formula (1.24.a), d¢ = L d<2 do. By inte-
gration over all the half-spaces located on the same side of dS, and using the
fact that the luminance doesn’t depend on the direction, we obtain
2r

w=""1L. (1.25.2)
C

The same treatment can be used using spectral densities

2
Us Z?HLA- (1.25.b)

We have thus demonstrated that the electromagnetic energy spectral
density is independent on the kind of blackbody that is considered, hence it
is a universal function of temperature and wavelength. The determination
of this universal function, which needs more Physics and more Mathematics,
can be found in Section 9.2 (see formula (9.18)).

du, being the amount of electromagnetic energy corresponding to waves
having their frequencies between v and (v + dv), it can be shown that

8nhv? 1

pr m (1.26.3)

du, =u,dv with wu,=
If du, = u; dA is the amount of electromagnetic energy corresponding to
waves having their wavelengths between A and (4 + dA), we can write

- dv=—£d/'L - u,1=87rh 1

C
V=7 2 FERTE

(1.26.b)

1.7.3.3. Luminance of a Heated Object

We consider an object that is not perfectly transparent and can be character-
ized by an absorption coefficient a, depending on the color; we are looking
for its spectral emittance e, when raised to some temperature 7' K. This object
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is put inside a blackbody at temperature T K, each elementary area dS of its
surface receives per second an energy given by

[[Je:LidSaQanr, L, is the luminance of the blackbody.
SQAr

The power reemitted by dS is given by
'”J.e,l dS dQdA.

SQA

Equating these two powers, we obtain an important relation
€, =a1L,1. (127)

The ratio of the spectral emittance to the spectral absorption of some
object is a constant which doesn’t depend on the kind of object under con-
sideration and which is equal to the luminance of a blackbody raised to the
same temperature.

For a blackbody a, = 1 (V 1), a blackbody is a perfect absorber, whatever
the wavelength. At a given temperature an absorbing object radiates more
energy than a transparent one. A piece of iron heated to 800° C seems quite
red and radiates a lot; a piece of quartz, raised to the same temperature, is
just a little brighter than at room temperature and one must be cautious and
not take it with bare hands.

1.8. Perception and Reproduction of Colors

Although photography and perhaps, even more, color TV appear as nice jewels
of modern technology, the analysis of the mechanisms of color vision and the
famous trichromatic system had been analyzed two centuries ago. As early as
1802 the British physicist Thomas Young said that it was impossible that any
point of our retina should have an infinity of cells able to vibrate in unison with
all the monochromatic waves of the visible spectrum; he estimated that only
three colors would be enough (red, yellow, blue) and admitted the existence
of nerve threads bringing the required information to our brain.

Given the enormous market concerned, a considerable effort of stan-
dardization has been necessary. Problems of normalization, and especially the
experimental protocols to be followed in the experimentation suggested in
Figure 1.43 are very tricky and have needed many international agreements.
The quality of color pictures as well as the reproducibility of most visualiza-
tion devices witnesses in favor of the quality of the work that has been
produced.

Monochromatic Light

The color of a light beam is directly connected to the spectral composition of
the corresponding electromagnetic radiation. The case of a monochromatic
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Table 1.3. Wavelength and color correspondence in the monochromatic case.

A (nm) 400 500 600 700 800
390 455 492 | 577 597 | 622 760
Color |ultraviolet | violet | blue | green | yellow | orange red infrared

light is very simple, and there is a univocal relation between the wavelength
and the color that is described by some observer. Table 1.3 describes this
correspondence.

Light of Arbitrary Spectral Composition

The light coming from most colored objects is not monochromatic; moreover,
it’'s the diversity of the different spectra which make the painter’s palette
so rich. The automatic reproduction of color (photo, cinema, television,
display, . . . ) has required an analysis of the reasons that makes us attribute
such color to such light. Lights of quite different spectral composition may
produce identical impressions. The basic experiment consists in illuminating
a white screen (i.e., a screen diffusing the light with the same efficiency what-
ever the color) with a superposition of different colored lights and to ask an
observer, or rather many observers, to say what color they attribute to the
mixture.

Two mixtures are said to be “metameric” if they appear to be identical
although they don’t have identical spectral compositions.

The principle of the additive trichromatic system relies on the fact that
it is possible to reproduce most of the colors by mixing, in suitable propor-
tions, three light beams having different colors. The scheme of Figure 1.43
shows the principle of an experimental set-up allowing the determination of

Tunable
attenuators

Red source

. Green source
‘White

screen

Blue source

— Source under study

Figure 1.43. Principle of the additive trichromatic system. The light of a source under
study is put side by side with the superposition of the lights coming from three
different colored sources.
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the “suitable proportions.” The three colored sources can be extremely mono-
chromatic (laser) or only be reasonably monochromatic (white source +
colored filter). The light flux that each source sends toward the screen is
varied with calibrated tunable attenuators. The three sources are called
primary sources; in fact there is an infinity of possible triads, from which any
color can be reconstructed. A very common triad is blue-green-red.

The Space of Colors Follows a Linear Algebra

We now come back to the experiment described in Figure 1.43 and we con-
sider that the three colored sources are very stable, let [B], [G], and [R] be
the luminance that they, respectively, produce on the screen with no attenu-
ation. Within experimental error, it is found that there is only one setting of
the three attenuations for which the observer has the impression that the
superposition of the three colored lights reproduces exactly the color of the
source under study; let B, G, and R be the respective transmission coefficients
of the attenuators. In some way the triad (B, G, R) is a kind of coordinate of
the source on the basis of the three chosen primary sources.

The experiment also shows that if the triad (0B, oR, aP) is used the
observer will say that he sees the same color, except that the global bright-
ness is higher if o> 1, and lower if « < 1. The following quantity will be called
stimulus:

[S]=B[B]+G[G]+R[R].

Given two stimuli [S;] = B{[B] + G;[G] + R{[R] and [S;] = By;[B] + G2[G] +
R,[R], we have the following relations:

If[S,]=[S;] and if[S,]=[S;], then [S;]=[S.],
[S:]=[S:] < {B;=B;andG,;=G; andR; =R;},
[S1]+[S:]= (B, +By)[B]+(G + G3)[G]+(R; +Ry)[R].

As soon as the stimuli follow the rules of linear algebra, their manipula-
tion becomes easier, especially the change of primary colors. To go from the
reference triad (B, G, R) to another one (X, Y, Z), we must at first give the
expression of the primary colors of one system on the basis of the primary

colors of the other system, and then apply the usual rules of matrix
calculation:

X R X, Xo Xz R X
Y|=T|G| with T=|Y, Vs Yy| and |G|=T7|V|
Z B Zp Zg Zp B Z
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Chromatic Coordinates

Chromatic coordinates are the following normalized parameters:

. (R) e @) _ (B)
(R)+(@)+(B)’ (R)+(@)+(B)’ (R)+(@)+(B)’
r+g+b=1.

Colorimetric Coefficients

We come back again to Figure 1.43, in the position of the source under study;
we place a monochromatic source (wavelength 1) having a calibrated inten-
sity (1 uW/sr, for example). The chromatic coordinates b 1y, gy, 7@ of the
calibrated source are then measured on the basis of the three chosen primary
sources; they are called the colorimetric coefficients of the apparatus.

Chromatic Coordinates of a Metamer

A spectral density S;(A) characterizes the light flux emitted by a non-
monochromatic source S. The triad of coordinates (7, g, b) associated to a
given source is unique and fixed by S;(1); on the contrary it is not possible,
starting from the triad, to go back to S;(A) just by definition of a metamer. (7,
g, b) is given by

r=[[S;:WFA)aa, b=[[S, (Wb dA, g=][S.(A(R)dA.
A A A
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Electromagnetic Waves

2.1. Mathematical Formulation of Electromagnetism
2.1.1. E, D, H, B

The description of an electromagnetic (EM) field in any material, including
vacuum, requires four basic vectors. Everybody uses the following notation
and we call them E, D, H, B; everybody, of course, agrees about their physi-
cal interpretation, however there are some disagreements about their names.
FE is always designated as the electric field. When introduced for the first time
by Maxwell, D had been called the “electric displacement vector,” some
people now prefer the expression “electric induction vector.” The same ambi-
guity is found for B and H which are often, respectively, called the “magnetic
induction vector” and the “magnetic field vector.” In a more recent trend B is
the “magnetic vector” and H the “magnetic excitation vector.” The author has
no clear-cut opinion, but he considers that E and D are attached to electric
properties, while H and B correspond to magnetic properties.

Since optical materials, by definition, are transparent, they don’t usually
have any magnetic properties; so H and B are strictly proportional and are
thus collinear, the proportionality coefficient is called the vacuum perme-
ability o = 47 x 107" (SI units, henry/meter (H/m)), B = u,H.

For electric vectors, the situation is more complicated. Except in the very
special case of nonlinear optics, the relationship between E and D is linear.
For isotropic media, E and D are simply proportional, D = eE = g&FE, which
implies collinearity of the two vectors. The proportionality coefficient € is the
permittivity; in a vacuum, its value is g = 1/(36x x 10%) (SI units, farad/meter
(F/m)). In the case of an isotropic dielectric material € is proportional to &,
and the proportionality coefficient &, is the relative permittivity. For a given

Chapter 2 has been reviewed by Dr. Francois Méot, Senior Physicist at the CEA
(Commissariat a I'Energie Atomique).
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58 2. Electromagnetic Waves

material & varies with the color (i.e., frequency) of the waves (dispersion). &,
is a dimensionless parameter, with typical values between 1 and 10.

For anisotropic media the relationship between E and D remains linear
but is now described by a tensor, so that the two vectors are no longer
collinear, the coefficients of the matrices associated to the tensor vary with
color and of course with the medium under consideration.

2.1.2. The Electric Field Vector

From an electromagnetic point of view a system is characterized by:

¢ A medium, or different media, which can be:
o absorbing or transparent;
o isotropic or anisotropic;
©o homogeneous or inhomogeneous.
¢ Discontinuities across the surfaces separating the previous media:
o separation between two dielectric materials (vacuum being considered
as a dielectric material);
o separation between a dielectric material and a metal (a metal being
considered as a dielectric material for which € is a complex number).
e A time variation law imposed on the electromagnetic field at some points
of the system, these points are called sources of radiation.

Even in the simple case of an isotropic transparent medium, Electromag-
netism is a very mathematical game which is played in a six-dimensional
space. For a given system we must find, at any time and at any point, a six-
component vector EM,,, . , which is called the “electromagnetic vector.” The
representation, in the three-dimensional usual geometrical space of a six-
component vector, is usually a difficult exercise; hopefully in this case the six
components may be associated in two individual sets of three components;
the electric vector E,, . , on the one hand and the magnetic vector H,,..,, on
the other hand,

EM(x,y,z,L) = {E(x,y,z,t) M H(x,g/,z,t)}-

2.1.3. General Rules for the Determination of
an Electromagnetic Field

To fulfill the laws of Electromagnetism E ., and H,, ., must satisfy:

¢ Four basic equations, called Maxwell’s equations.

e Continuity (or discontinuity) conditions when crossing surfaces separat-
ing different media.

e Boundary conditions in the vicinity of the points where the fields have
imposed values corresponding to the sources of radiation.

We will admit that existence and uniqueness theorems can be established,
so that, following the previous conditions, the problem has a solution and that
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this solution is unique. In many cases this unique solution will be obtained
thanks to intuitive considerations. In spite of its lack of purity the method will
be considered as satisfactory. An objective of this book is to develop the phys-
ical insight of the reader allowing him to guess the response of a system to a
given electromagnetic excitation.

* Any given field EM,,, ., will not, in general, fulfill Maxwell’s equations.
However, there is an infinite number of fields obeying the famous
equations.

e Among this infinity of possible solutions, the continuity/discontinuity
conditions will select solutions that fit the special system under
consideration.

¢ Eventually the boundary conditions, that’s to say, the excitation condi-
tions, will determine, among the possible fields, which one really exists.

Because of the linearity of Maxwell’s equations, any possible field in a
given system may be written as

EM,., = 2 0 EM; ).
i

The set of vectors EM,,, ., constitutes a complete, although not unique,
basis which is characteristic of the system and allows the representation of
any possible fields inside the system.

The sources of radiation play a key role in the problem, eventually they
fix the field which really exists. The presence of an electromagnetic field cor-
responds to some electromagnetic energy stored inside the system, it is at the
places where the sources are located that this energy is transferred, this is
the reason why the sources should always be connected to an external source
of energy.

Let (xs, ys, 25) be the coordinates of a radiation source located at point S,
the field EM|,, ., at point S cannot follow any arbitrary law. It must be pos-
sible to use the set of basis vectors EM,,, ., to obtain an expression of the
electromagnetic field at point S. The following formula, which also defines the
o,y coefficients are finally obtained from

EM(zs,ys 2sit) = 2 aiEMi(xs YsiEsit)
i

Remarks

e The previous method, very attractive because it is very general, is cur-
rently used to study microwave problems, less often in Optics, except in
the case of optical waveguides.

e The previous method is a magnificent example of the formulation of so-
called modern mathematics. In fact Electromagnetism, and especially
Optics, has probably played an important role in establishing the formal-
ism of the set theory and in raising the notion of vectorial spaces.
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¢ An acoustic analogy can be made to illustrate previous considerations: the
acoustic fields that can be generated by a musical instrument are mainly
determined by mechanical considerations. A violin is able to generate an
infinity of acoustic fields, each of them obeying continuity conditions
at the extremities of a string; the music which is produced is mainly
determined by the way the player will excite the strings and, in lesser
proportion, by the shape of the concert room.

2.1.4. Example of a Planar Sine Wave

The conditions for exciting a planar sine wave is a typical example of the pre-
vious method. An electromagnetic field EM |, ., is said to be a planar sine wave
propagating in the direction of a wave vector k, when it can be written as

EM, .., = EM, cos(wt —kOM).

It can be shown that, provided that the frequency w and the wave vector
modulus k should be related by a specific law called the dispersion law of the
medium of propagation, such a time-space variation law does fulfill Maxwell’s
equations. To excite such a wave we just have to achieve a situation where,
at any point of a plane (P) orthogonal to the vector k, the electromagnetic
field should have a sine variation, with the same phase.

Figure 2.1 shows a situation where, at points spread over a plane (P), the
electromagnetic field is forced to follow a sinusoidal and in-phase variation
law EM, ..., = EM, cos wt; (xs, ys, 2s) are the coordinates of any point
located on (P). The plane (P) is the only discontinuity in the problem. The
law EM ., ., = EM, cos(wt — kOM) fulfills Maxwell’s equations and is in good
agreement with the law of variation at any point of (P). Thus it constitutes
the unique solution of the problem. Let us now consider the family of planes
(P’) that are parallel to (P), a point O belonging to (P) and H is its projection
on (P), at any point M of a plane (P), the scalar product kOM = kOH keeps
a constant value. This means that the vibrations of the electromagnetic field
have the same phase all over (P), this is the reason why such a wave is called
a planar wave. (P") are called wave planes.

(P) Planar source

®)

Figure 2.1. Generation of a planar wave by a planar source.
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T " ) S
[@h)

(4A)
(43)
(4y)

Figure 2.2. Illustration of a planar wave with elastic surface waves. Along A, A;, A,,
and A; the vibrations are in-phase (modulo 2r).

Figure 2.2 is just a top-view of the experiment suggested in Figure 1.8
where children were periodically hitting the free surface of a liquid. At points
located along a straight line (A), a sinusoidal motion is given to the molecules
of water. A rectilinear wave is generated with a direction of propagation
orthogonal to (A), all the points belonging to the same line (A,) parallel to (A)
vibrate with the same phase. Of course, the phases are not the same along
two different parallel lines (A4;) or (43): there is a propagation phenomenon;
the distance between two lines for which the out-phasing is 2x is the wave-
length. For obvious reasons it’s only possible to achieve a discrete repartition
of sources, rather than a continuous one; this is not dramatic, since it can be
demonstrated that if the distance between a source and its nearest neighbor
is small enough, everything occurs as if the repartition was continuous. The
Shannon theorem (also called the sampling theorem) indicates that the pre-
vious condition is not difficult to fulfill, the distance between two sources
should be smaller than one wavelength.

2.2. The Different Kinds of Waves

2.2.1. Wave Equation
Analytic Formulation of a Propagation Phenomenon

Physics is largely dominated by the notion of waves and of propagating phe-
nomena. Some physical entity G is said to propagate when its value, at point
M, and at time ¢, is given by a relationship of the following kind:

G=Gof(n) with n=(+uOM/V), 2.1)

where O is the origin of coordinates, u is a unit vector defining the direction
of propagation, and V is a parameter homogeneous to speed and specific to
the medium in which the propagation occurs. For the sake of simplification
and without any loss of generality, we will consider that the vector u which
defines the propagation direction is along the Ox axis and we keep only the
— sign in the argument of the function f(1), the relationship is then written as

G=Goft—x/V). (2.2)
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Such a formula describes a propagation phenomenon, since it implies that
G takes, at point &, and at time ¢,, the same value that it had at the previous
time ¢, at the point having an abscissa x; such that (x, — x;) = V(t; — t;). The
physical meaning of the *+ sign becomes clearer: the — sign corresponds to a
forward propagation (direction of increasing x), while the + sign is for a back-
ward propagation (direction of decreasing x).

Necessary Condition for a Function to Describe a Planar Wave

First we are going to establish that a function f(x, y, 2, t) as defined by
formula (2.1) necessarily obeys a very specific partial differential equation,
called the wave equation. Such equations are very often met in Physics
(acoustics, mechanics, electromagnetism, quantum mechanics, . . . ), they are
always associated to some propagation effect.

Oxyz being a Cartesian system of reference, let (x, y, 2) be the coordi-
nates of some point M(x, y, 2) and (u,, u,, u.) the three components of some
unit vector u, the scalar product of u by the vector OM is equal to OMu =
xu, + yu, + 2u,, from formula (2.1) we obtain

XU, + YUy, +2U,
\%

XU, + YU, + U,

ith ={=x
J i gessey

G =Gof(77)=Gof(ti

Since u is a unit vector, we have u2 + u} + u% = 1, it is then easy to evalu-
ate the time and space partial derivatives of 11 and G:

an a*n on  u, a°n
_:1 _— —_— =T —_—=
ot - o> 7 ox v dx?
9G_9G . 9G_aG o _, u. oG

ot on MY 9T mox TV o

82G_i'8_n(8_G)'_82G(@)2+8_G I*n _(+uxj2 PG
ox> dxldx\adn)l on*\ox ondx: \" V) on?’
82G_i'8_n(8_G)'_82G(@)2+8_G I*n _(+ﬂj2 PG
dy> dylay\an)l on*\oy ondy: U V) on*’
76 _ 2 on96))_26(on} 3670 ) 7
02> dzloz\on)l on?\adz) onoz2 " V) on*’

Finally G is a solution of the following partial differential equation:

*’G 9*G G 1 9*G
+ + -
dx® Jdy? 9zF V2 It?

=0. 2.3)
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Figure 2.3. The scalar product, OMu =ru = OH, keeps a constant value for all points
M of plane (P). At a given time, f(1) = f(¢ — ur/V) has the same value anywhere on (P):
f(n) describes a planar wave orthogonal to the unit vector u.

2.2.2. General Considerations About the Planar
Wave Solutions of a Wave Equation

Planar waves are a solution of the wave equation (2.3), they are not the only
possible solution, however they are an important family of solutions.

Let us first consider a direction associated to some unit vector u, by def-
inition a planar wave is a function f(x, y, 2, ) which, at a given time ¢, keeps
the same value at any point M belonging to a plane (P) orthogonal to u. If we
set {=ur =ux + uy + w2, then f(x, y, 2, ) only depends on ¢ and ¢,

& ¢ d d 82_8(1) , 0%
U, — 0, — Eye uxagz,

dx ox:

ox  9E 9a ox

% _, 9 _, 9_,9 & :i(i):uzi
dy "’ dy> ' dy ' IE ay* dy\dy Yo’
’_, L T, d_, 9 i:i(ijzuz‘i
dz 022 dz  9E 922 9z\0=z T oEY’
- o + J + > = (u? +uj +ul 8_2:8_2
dx?  Jy? 027 R <

If we restrict ourselves to the planar solutions of the wave equation, we

obtain
If 1P S _ {(i_ii)(i ii)} _
o2 viar 0 7 e va\agTva) ="

We introduce new variables, p and ¢, and evaluate the new partial
derivatives

o) o)+ {152) o e{s2)
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op 2(8t agj P z(aﬁ ag)
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The wave equation can then be written as

9*f/op dq = 0, which implies that 9f/dp is independent of p and only
depends on q.

Two successive integrations lead to

af
90 9(g) and f(p,q9)=]g(g) dg= fi(q)+constant.

The constant of integration doesn’t depend on ¢, but it can depend on p.
In other words, the general planar wave solution f(p, q) is the sum of a func-
tion fi(q) of q only, and of a function f;(p) of p only,

S, t)=fl(t—€)+fz(t—§). (2.4)

We don’t know, a priori, anything about the functions fi(t — {/V)
and fy(t + {/V), they are obtained from the boundary and excitation
conditions.

2.2.3. General Considerations About the Spherical
Wave Solutions of a Wave Equation

We are now looking at solutions of the wave equation that would keep a con-
stant value at any point on a sphere (centered at point O, radius equal to 7).
Such waves are called spherical waves. Because of the symmetry of the
problem it is convenient to use spherical coordinates. We will present the fol-
lowing formulas:

O 0N O _10° 1a 15

dx? +8y2 9z 1o () _%ﬁ(f)

Multiplying both sides of the last equation by 7 and taking advantage of
the fact that time and space derivatives commute, we obtain

02 1 9?
—(rf)———=—(f)=0.
57 (1) Vo ()
Considering the product (7f) as an auxiliary function, we can use the
results obtained for planar waves. It is seen that (7f) is the sum of two func-
tions of the variables (  Vt). One of these functions represents a wave diverg-

ing from O, the second one is a wave converging toward O,

1 =g t-r/v)+gt+r/v) - fOr)== [gl(t r/v)+ g (t+r/v)]. (2.5)
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Some Remarks About Spherical Waves

The presence of the 1/ factor in (2.5) is not at all surprising and only
corresponds to the conservation of the flux of energy across spherical sur-
faces centered at point O. Point O plays a special role for a spherical wave
and is often called its focus, as well as its center. Unfortunately, when per-
forming the calculation, we had to multiply the two sides of the equation by
r, we have no right to do so when 7 is equal to zero: thus the
solution described by formula (2.5) is not valid in the immediate proximity
of the focus.

2.3. Solutions of Maxwell’s Equations for
Harmonic Planar Waves

2.3.1. Maxwell’s Equations
2.3.1.1. Linear Operators Involved in Solving Maxwell’s Equations

Although Electromagnetism is exhaustively described by Maxwell’s equa-
tions, we have waited until the third section of this chapter before writing
them. This was deliberate, since we wanted the reader to become accustomed
to waves and to the associated physical parameters.

In fact, the resolution of many optical problems doesn’t explicitly require
going back to Maxwell’s equations. We can also emphasize the fact that
very important developments in Optics (geometric optics, diffraction, inter-
ference, polarization of light,...) had been extensively studied between
the end of the seventeenth century and the end of the nineteenth century, at
a time when Maxwell’s equations had not yet been formulated. Still, Maxwell’s
equations constitute an extremely powerful tool. As the teaching of Physics
developed, it is on the occasion of Electrostatics, of Magnetism, and of
Electromagnetism, that Maxwell’s equations are progressively introduced.
From that point of view it can be considered that they are experimentally
rooted.

Conversely, it is possible, a priori, to write Maxwell’s equations and then
deduce all the laws that govern Electrostatics, Magnetism, and Electromag-
netism (Coulomb, Laplace, Biot-Savart, Faraday, . . . laws).
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Main Operators Used in Electromagnetism.

V(x, y, 2) is a scalar.
Eg,»=E,y»X +Eyuy»y + E.y2 is a vector.
(x, y, z) is an orthogonal and normalized trihedral.
d Jd d }
Nabla operator: V=|x—+y—2z—|
p [ ox y Jdy 0dz

A% oV PA%
Gradient: grad(V,,.)= [x —ty—+z —} = VYV vector.

x oy dz
Divergence: div(E) = {aEx + oF, + oF. } =VE scalar.
Jdx dy 0dz

FPV 2V PV
+ +

ox® oy 027

JE, 8Ez] (8E’z J0E, ) (8Ex JE,
- + - +z -

dJdz  dy Jdx 0z Jy OJx

curl(E) is a vector.
Vector Laplacian: A(E) = xA(E,) + yA(E,) + zA(E,) = A°E vector.

Scalar Laplacian: AV = [ } =div[grad(V)] =V(VV) = V2V.

curl: curl(E)= x( ) =VAE.

The following important identity can be established:
curl[curl(E)] = grad(div E)—AE =V A(V A E)=V(VE)-VZE.

From a formal point of view, Maxwell’s equations are linear relations
between the first time and space partial derivatives of the electric and mag-
netic field components. Some combinations of the space partial derivatives
play a very important role, and are so commonly met that they have been
given special names: gradient, curl, divergence, scalar, and vector Laplacian;
they are mathematical operators operating in the space of the functions of x,
Y, 2.

Historically, Maxwell’s equations were first formulated using partial deriv-
atives, then using operators. Finally, a more general operator, called Nabla
(V), has been introduced. Each of the previous operators can be expressed
using this Nabla operator which allows a very elegant and powerful presen-
tation of Maxwell’s equations.

2.3.1.2. Writing Maxwell’s Equations Using Operators

Maxwell’s equations will not be written for the most general case, but only
for conditions corresponding to the propagation of the usual light waves: the
propagation will occur in nonmagnetic transparent dielectric materials,
inside of which the electric charge density is equal to zero and where the only
electric currents will be the displacement currents.
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The value of the magnetic permeability will be taken equal to the vacuum
permeability (uy = 47 x 10”7 (MKS units, H/m)). Except in the case of an inho-
mogeneous media, the dielectric constant € will be considered to have the
same value at any point.

€ is submitted to dispersion: its value varies with the frequency. This cor-
responds to serious theoretical difficulties in writing Maxwell’s equations in
the more general case, for example, when the time variation laws of the fields
are not sinusoidal. When the Fourier components of the signals occupy a
broad frequency domain, as soon as € depends on the frequency, a question
must immediately be answered: Which value should be used for &€? The
problem is not that serious, since in many practical situations & will keep an
almost constant value over all the frequency bands of the signals. Formulas
(2.6) are strictly valid in a vacuum which is definitely a nondispersive medium
(e = &), they are quite acceptable as long as the frequencies remain outside
the absorption bands of the material where the waves are propagated.

Maxwell’s equations
JH JH
curl(E) = —u, ETR VA Mo~
Curl(H)=+88—It), V/\H=+(Z—?,
(2.6.2) (2.6.b)
div(D) =0, VD =0,
div(H) =0, VH =0,
D=¢E. D=¢E.

2.3.2. Deducing the Electromagnetic Wave Equation
Jrom Maxwell’s Equations

Using the fact that time derivation commutes with space derivation, and
taking advantage of vector identities previously written, we have
’E *H
V’E —euy—5-=0 and V°H-euy—, =0. 2.7
dt dt
Apart from the fact that they are concerned with vectors, equations (2.7)
are identical to the wave equation (2.3). Any component EM; of the electro-
magnetic field will follow equation (2.8),

J*EM; 0°EM, J°EM, J*EM,; J*EM,
T s T 7 Mo ;=0 2
ox oy 0z ot ox

2.8)

with i e{x,y,2} and EM, {E,, E,, E.,H, H,, H.}.
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Therefore a wave equation is obtained from Maxwell’s equations, an
important result being that we obtain an expression of the speed of light V
versus € and L,

1
ey

2.3.3. Maxwell’s Equations for Harmonic Planar Waves

A harmonic planar wave is a wave for which both time and space variation
laws are sinusoidal. If we restrict ourselves to this category of waves,
Maxwell’s equations take a far simpler form: they become algebraic
equations instead of partial derivative equations (or equations between
operators).

Of course we will use the complex notation for the analytic expression of
the electromagnetic field, any of its components EM; can thus be written as

EMi — &eja)(t—ur/V) — &ejwte—jwur/V — Aiejwte—jwkr
)
[0
k= uV is the wave vector.

Within the restriction to complex exponential functions, the derivative
operators are replaced by the products:

0 9*
“ V=4 . —(EM;)=-w*EM,,
at(EMl) JOEM;, 8t2( )=-o
d . i )
——(EM;) = - jk. EM;, 2 (EM;)=~k;EM;,
o @102 9% (2.10.b)
. d
@(EMJ = _JkyEMh (9y2 (EMl) = _kZEMn
d . PE 5
g(EMi) =—jk.EM;, Fe (EM;)=—-k2EM,,
VEM =—jkEM, (2.10.c) VZEM =-K*EM. (2.10.d)

¢ deriving once versus x (or y, or 2) — multiplying by —jk, (or —jk,, or —jk.);

* deriving twice versus x (or y, or 2) — multiplying by —k2 (or —k;, or —k2);

e taking the divergence of a vector — scalar multiplication of the vector by
—Jk;

e taking the Laplacian of a vector — multiplication by the number —k?

e taking the curl of a vector — vector multiplication by the vector —jk.
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The formulation of Maxwell’s equations is considerably simplified by the
following equivalence rules:

)
— > jo, V—o—-jk and V?— k%,

ot
Maxwell’s equations (general case) | Maxwell’s equations (planar waves)
H kAE= H,
VA E =, JH , A Wiy
dt k A H =-weE,
OF KE =0 (2.11)
VAH=e—, Y
It KH =0.
VeE =0,
VH =0.

2.3.4. Decomposition of a Wave in Planar Harmonic Waves

The previous operators are all linear since we have
d d d
—(A+B)=—(A)+—(B d V(A+B)=V(A4)+V(B).
at(+) at()+at() and V(A+B)=V(A)+V(B)

The linearity of the time derivative operator is very often met in Physics,
and is responsible for the possibility of Fourier developments: a time func-
tion f(¢) can always be considered as the superposition of an infinite number
of sine functions lasting for ever and having a suitably chosen repartition of
frequencies

f® =0 [ e 'a(w)do,

where ¢ is a normalizing coefficient and a(w) is a complex number that varies
with the frequency. The time variation of f(?) is the result of the interference
of all the different sine components.

Planar waves play the same role for functions of space variables (x, y, 2),
as the sine functions for functions of time. To use a slightly emphatic, but
sometimes useful language, it can be said that planar waves constitute a set
of orthogonal functions and allow a representation of the space of the func-
tions of (x, y, 2). In other words, a function f(x, ¥y, 2) can always be consid-
ered as a superposition of an infinite number of planar waves, each of them
having a different wave vector,

S =aff[e ™ ag, i) dk. dk, dk.,

withr=ax+yy +yy andk =k.x +k.y +k,z.
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2.4. Structure of an Electromagnetic Planar Wave

2.4.1. General Topics

Let us consider:

e A propagation medium having an infinite extension, filled with a dielectric
material (€ and p).

¢ An angular frequency w and a wave vector k.

* An electromagnetic field EM, defined by the union of an electric field E,
and of a magnetic field H,,.

Let us ask the following question: Which conditions should obey the pre-
vious parameters, if we want the planar waves defined by formulas (2.12) to
satisfy Maxwell’s equations?

E =E;e’®'e ™,
H=H e, (2.12)
After a few elementary manipulations of vector algebra, and making good

use of the double vector product formula and of its equivalent formulation
using the Nabla operator, equations (2.12) become

E:—ik/\H, kA(kAE)=+ouk A H,
we (2.13)
H=+

EAE, kA(kAH)=-wekAH.
[N

2.4.2. The Geometry of a Planar Electromagnetic Wave

Because of formulas (2.13), E, and H, are mutually orthogonal; they are also
orthogonal to the wave vector and thus belong to a plane orthogonal to k,
such a plane is called a wave plane. The trihedral (E,, H,, k) is orthogonal
and direct.

Figure 2.4. Respective positions of vectors E, and H, lying in the wave plane.
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Dispersion Law of the Medium Supporting the Waves

Starting from formulas (2.7) it is readily obtained that
(K* —euow*)E =0, (k* —euo0®)H=0 — k*—euo0*=0. (2.14)

The frequency, on the one hand, and the modulus of the wave vector, on
the other, cannot be given arbitrary values, they must obey a relation involv-
ing € and uy; this relation is called the dispersion law of the medium sup-
porting the wave,

k* =eupw® — k=weu, dispersion law. (2.15)

From (2.15) we can deduce the value of what is called the phase velocity
V of the wave,

k=0/V — eu,V’=1 - V=

1
T (2.16)

If £ doesn’t depend on the frequency, the modulus of the wave vector is
proportional to the frequency. The dispersion law is then said to be linear and
the material is said to have no dispersion; in this case, the phase velocity
doesn’t depend on the frequency.

Vacuum Is the Only Medium to Have No Dispersion

The speed of propagation in a vacuum is called the celerity of light and is
usually designated by the letter c,

glyc*=1 — c= =299,792.458 km/s =~ 3 x 10° m/s.

1
VEW U

Any material shows dispersion: The dispersion law is never linear over
the whole spectral range (frequencies going from zero to infinity). This depen-
dence of is rooted very deep in the physical processes governing light/mate-
rial interactions, it is connected to the causality principle by means of the
Kramers-Kronig formulas.

Wave Impedance

Relations (2.13) imply that the modulus of the electric and magnetic fields are
proportional. It can be shown that the proportionality coefficient is measured
in ohms, this is the reason why it is called the wave impedance Z, in a vacuum
its value Z, is equal to 1207 (about 400 (2),

k Ho

E’():_HO: —
WE £

k E 1
Hy=—E,=| 5B, z=-0- M _yv-—.
(/90 Ho H, S v

H07
2.17)
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Index of Refraction

For a given material, the ratio between the celerity of light and the phase
velocity in the material is the index of refraction, n. The index of refraction
can be simply related to the relative dielectric permeability of the material,

€. = €lg,
c el / € 5
n=—= =,]— = n°=g,. 2.18
Vo Neouo & ( )

Formula (2.18) is only valid for nonmagnetic transparent materials,
otherwise the relative magnetic permeability should be introduced.

2.4.3. Energy Transportation by an Electromagnetic Wave

Having felt the heat of the Sun, everybody is surely convinced that light waves
carry some energy. When trying to evaluate the amount of energy transported
by a planar wave, a slight difficulty is immediately met, since such a wave has
an infinite extension in any direction orthogonal to the wave vector. We can
easily get round this difficulty by considering the energy flux across a given
closed loop; of course, we will find it more convenient to choose a planar loop
orthogonal to the direction of propagation.

To calculate the amount of energy, ¢, that is sent across a given area, S,
during one second, anew vector is introduced, this is called the Poynting vector
and is equal to the vector product of the electric field by the magnetic field,

II=E AH Poynting vector. (2.19)

¢ is simply equal to the flux of the Poynting vector across the loop under
consideration. We will now establish this proposition and we recommend the
reader to refer to a textbook about Electromagnetism where a more rigorous
demonstration will be found. To obtain ¢ from the parameters that charac-
terize a planar wave, we will develop a less powerful and less general theory.
This method is however quite meaningful from a physical point of view and

/ AEo /
N H, |> A [
\J 7 [\ | U
< v , &) /

Figure 2.5. Energy transportation by an electromagnetic wave.
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emphasizes the fact that some electromagnetic energy is stored at places
where an electromagnetic field has been created.

If an electromagnetic field (E, H) exists at a point P and around it, it
should be considered that some energy is stored with a density u expressed
in joules per unit volume and given by

&g poH”
2 2

(2.20)

Let us evaluate the electromagnetic energy density at a point where the
fields are given by E = Eicos(wt — ¢) and H = Hyjcos(wt — ¢) (i and j are
two orthogonal unit vectors), the instantaneous value u(?) is equal to

eb? + 1, H?
2

We consider that the stored energy is the time-averaged value of u(?), since
(cos’® o) =+ we obtain

u(t) = cos?(wt — ).

Ustored = <u(t)> = - ="/ = —2 (221)

The amount of energy which crosses the surface S of Figure 2.5 during
time ¢ was previously stored inside a cylinder having a cross section equal
to S and length equal to V¢ (V is the speed of the propagation of light).
If the area S is taken equal to one area unit and the time equal to one
second, the corresponding amount of energy is called the light intensity I of
the wave,

11 eEf _ o moHE

I == —UsioreaSVE = Ustored V =V —/—
St tored tored

5 5 (2.22)

Using the wave impedance Z that was introduced in formula (2.17),
formula (2.22) can be made more elegant,
1E 1
I =uyoedV=——-==ZH;. 2.23
Ustored 92 7 9 0 ( )

The above formula reminds us of the expression of the electric power,
P = RIP2 = V%2R, in a resistor R when the current and the voltage are, re-
spectively, I cos wt and Vcos wt.

2.5. General Harmonic Waves

2.5.1. Helmholtz’s Equation

Planar waves are not the only possible solutions of the wave equation. They
are the simplest and correspond to many practical situations.
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We now consider waves for which the time variation is still sinusoidal (har-
monic waves), but for which the space variation is of a more general kind.
The field components will be taken as

EM;.y = ayr) cos(wt — gi(r))-

We are now looking at conditions which the two functions a;,, and g;q,
should obey for EM;, , to be an acceptable solution of Maxwell’s equations
and, more specifically, of the wave equation

0*EM,; N J*EM; N 0*EM,; i82EMi _0
ox? y? 22>  V? ot ’

We introduce the complex function Uy, ., = U, of the real variables x, y,
2 using the following relations:

U(,) = a(,)e"-”’(') e EMi(r,t) = Re{U<,)e-7“"}.

Using the equivalence 0%0t* — —@" we obtain, for U, ), a partial deriva-
tive equation that is called the Helmholiz equation:
U U U w?
+ + +—U=0,
dx? Jdy* 09z2* VP

(2.24)
w? o®
AU+FU =0 — V2U+FU =0, Helmholtz equation.

Many problems of Electromagnetism consist in finding a solution
of the Helmholtz equation, which can fit with the special boundary condi-
tions of the system under consideration. The functions U,,,., = ¢7*" (planar
waves) and U,, = e? (spherical waves) are solutions of the Helmholtz
equation.

It should be remembered that, after having found a possible solution, we
must solve the problem of the excitation: Along which curve will the children
of Figure 1.8 be asked to sit around the swimming pool to generate the right
function U, .,?

2.5.2. Helmholtz’s Equation for Slowly Varying Amplitudes

There are many practical situations where the propagation mostly occurs
along one direction that will be chosen as the Oz axis. It is then conve-
nient to separate the function U, = a7 into two parts: one part varies
periodically and rapidly with z, while the second part has smoother
variations:
—jkz 3 2”

U(x‘y‘z) =Y (r,y,2)€ with k= 7, (225)
where e7* is a periodic function, which takes again the same value when z
is increased by one wavelength. In Optics A is quite short, so the variation
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is very fast. On the contrary, v, ., varies slowly with z, this will be expressed
in the following way:

',l/(,r,y,zurl) = V/(r,y,Z) )

oy 12 2’y
Vyer) = Viye T /182 9 02> +'“’ (2.26.a)
2r dy  2m Oy
Vyern) =Wy k Oz 5.t k2 022

The condition of slow variations can then be written in the following
way:

dFy oy
EYR kg <K*y. (2.26.b)

To use relation (2.24), we must first calculate the derivatives of the func-
tion U(x,y,z):

Uy W _oy . U (31// j »
jkz 7= ik jz
ox - ax’ oy Ty’ a9r \gg TRV
IU _ Y . U _IV .
dx?  dx? T oy? dy? ’
U (d*w oy )
LA —2k DL _ g2y e,
922 (822 T oe TV

The Helmholtz equation then becomes

Py Py Iy
(0902 " dy? " d9z2

ok Y gy kzy/)eﬂ“ -0,
0z

Ay — 2]k(;—w=0

As the coordinate z plays a special role, it seems convenient to divide the
Laplace operator into two parts:

¢ A longitudinal part 0%/02>.
e A transverse part A, = 9%/02% + 9%/0y* = V2.

For functions that slowly vary with z, the longitudinal part of the Laplace
operator is negligible with regard to its transverse part, the Helmholtz equa-
tion can be written as

P
Ay - 2ﬂca—‘” 0. (2.27)
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2.5.3. Light Rays and Propagation Speed
Jor Inhomogeneous Waves

When the functions a, and g, have no special properties and, for example,
don’t correspond to planar or spherical waves, the corresponding wave is
said to be inhomogeneous. For such waves two kinds of surfaces are usually
introduced:

¢ equiamplitude surfaces along which ., keeps a constant value; and
e wave surfaces along which it is the phase g, which remains constant.

For planar waves and spherical waves, equiamplitude and wave surfaces
coincide.

Surface waves, sets of points all vibrating in phase, play an important role
in studying the properties of inhomogeneous waves. It is probably because
the amplitude of vibration varies along a surface wave that they are said to
be inhomogeneous.

Let us imagine an observer moving along some trajectory 7, see Figure
2.6(b), and ask the question: How should he move if he wants to see an instant
phase (@t — g,) that remains constant? At time ¢, and at point M, the phase
is [@t — g¢]; at time ¢ + d¢, and at point M, the phase is [®.ar) — Gam), if the
phases are the same at points M and M’ we obtain

wdt = 9irvar) —9r) = dr grad(g(r))‘

Let g be a unit vector of the tangent to T at point M, and let s(¢) be the
abscissa of the observer, measured along 7. We have dr = q ds and the speed
of the observer on his trajectory is thus defined by

as_ o
dt  qgrad(g.))’

Wave
surfaces

() (b)

Light rays

Figure 2.6. (a) shows the surface waves and light rays of inhomogeneous waves.
(b) indicates how to evaluate the speed of propagation of an inhomogeneous wave.
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This speed is minimum when the scalar product g grad(g-) is maximum,
this occurs when the two vectors g and grad(g) are parallel. Trajectories for
which the speed is minimum are orthogonal to the wave surfaces: they con-
stitute the light rays, and the corresponding phase velocity is given by

®
A —
lgrad (gl

Let us use the above formula to again find the dispersion law of a planar
wave

r=xx+yy+zz, k=kx+ky+k.z,
for a planar wave

9o =kr=k.x+ky+k.z — gradlg,)=k.x+k,y+k.z,

1/2 w w C
lerad(g)l= (62 + k2 +12)* = > V= __2_C
Y lgrad(ge)l & n

2.6. Spherical Waves

2.6.1. Physical Difficulties Associated with Spherical Waves

An important part of Optics consists in obtaining the image of an object.
Ideally a light point source emits spherical waves, diverging waves if the
object is real and converging waves if virtual. The main role of optical instru-
ments is to transform an initial spherical wave into another spherical wave.
Although spherical waves are easily conceivable, it is impossible to obtain
them rigorously. From a mathematical point of view this comes from the fact
that, when integrating the wave equation for spherical waves, we had to
exclude the focus where 7 is equal to zero. From a physical point of view, it
can be said that if the wave surfaces remain strictly spherical up to the focus,
all the rays would intersect at the same point where the electromagnetic field
would be infinite.

The modification of the shape of the surface waves near the focal point is
a manifestation of diffraction: it is not possible to focus a wave in a spot
having a size much smaller than the wavelength.

2.6.2. w Out-Phasing of a Spherical Wave when Crossing its Focus

A spherical wave is always limited by some diaphragm and never occupies
the 47 steradian of the whole space; it is usually limited to a cone of half-angle
0 (see Figure 2.7). When crossing its focus, the wave first converges, and
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Y

: 0 ]
N
1 3 i . Figure 2.7. Representation of an ideal spherical

S

wave near focus.

then diverges; if 7 is arithmetic and thus positive, the representation of the
wave is:

e Dbefore focus (1/r) cos(wt + kr);
e after focus (1/7) cos(wt — kr).

In Figure 2.7 we have drawn, as solid lines, a family of wave surfaces, i.e.,
the points where the vibrations have the same value, ¢ or ¢ + 2pn (p is an
integer); a new surface is obtained each time p is increased by one. Using
dotted lines we have drawn planes that are tangent to the wave surfaces at
the points where they intersect the axis Oz of the cone. These planes are par-
allel, far away from the focus they are equidistant from and separated by one
wavelength, then they coincide with the wave planes of a planar wave that
would propagate parallel to the cone axis.

For a planar wave, the phase smoothly varies when z varies from — to
+o0; for spherical waves, there is an abrupt discontinuity or, more likely, a
rapid variation of r in the close vicinity of the focus.

If will be shown (see Section 2.6.5) that the rectilinear converging rays of
a spherical wave are replaced by hyperbolas. Farther away the rays are the
asymptotes; near the focus the spherical wave merely looks like a planar wave
(M. The region where the spherical wave can be assimilated to a planar one
is called the Rayleigh zone. At the focus most of the energy is inside a circle
having a diameter W, so the field amplitude doesn’t go to infinity. The half-
angle 6 between the asymptotes of the hyperbola are related to the wave-
length A and to W by 6 = KA/W (K is a dimensionless coefficient of the order
of unity). This formula reminds us of the expression of the resolving power
of a microscope (1.22A/d).

2.6.3. Series Development of a Collimated Spherical Wave

It will be considered that we are far enough from the center of a spherical
wave so that the wave surfaces are again quite spherical; in fact, the limita-
tion is not very severe and it’s sufficient to be separated from the focus by
several wavelengths. We are now going to introduce a new approximation that
is traditionally called Gaussian approximation.

In practice, spherical optical waves are always limited by a diaphragm: the
aperture angle 6 of the cone which contains the energy of the wave is usually



2.6. Spherical Waves 79

7 A
Figure 2.8. A more realistic representation of a spherical wave crossing its focus.

small enough, so that the higher-order terms can be omitted in the develop-
ment of trigonometric functions (cos 0 = 1, sin 6 = tan 6 = 6). Our purpose is
now to give an approximate expression for the mathematical description of
a spherical wave: calculations using Cartesian or cylindrical coordinates will
then be quite simple.

Let us consider a spherical electromagnetic wave and its center O, the
various components of the field can be written as

a
EM(x,y,z,t) = Re{ oM

e Rell 00},

with

a

U(M/Z) =
T Nty 4t

The — sign is associated with a wave that diverges from point O, while the +
sign corresponds to a wave that converges toward O, and diverges after. Atten-
tion must be paid to the fact that in the expression e7*°" we don’t have the
scalar product of two vectors, but rather the product of the length of the wave
vector k, by the length of the vector = OM, both lengths being positive numbers.

In Figure 2.9, (2) represents a given surface wave of a spherical wave cen-
tered at point O and propagating in the vicinity of the Oz axis, with a small
numerical aperture. PP’ is the trace of the plane which is tangent to (X) at
point H(0, 0, 2) where PP’ intersects the Oz axis; Ox and Oy are two orthog-
onal axes on (I1). To any point M, ., belonging to (%), we associate the point
M ) where OM intersects pp’. Far enough away from the center, the
values of the coordinates (x, ), as well as (&’, ¥), are very small as compared
to the value of z, an approximate expression of the field components is readily
obtained using the following development of OM:

eijlco \/xz +yP+2?

2 2\1/2 2 2
x©+ _ X+
zy] _5, Y

T=OM=(36‘2+y2+22)1/2=§(1+ —
z 2z

‘%2+y2

a tjko

e
U(x,y,z) de 7 e,

Z is the absolute value of z.
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(a) Diverging wave. (b) Converging wave.

Figure 2.9. Spherical waves. The points M and M” are considered to be almost at the
same place.

The main interest of the previous expression of U,, ., comes from the fact
that, in the argument of the exponential, the square root is replaced by a poly-
nomial expression.

The variable z is found at three different places in the expression of
U(w,y,z):

(i) Inthe denominator of the real term, a/z decreases slowly with z and can
be considered to keep a constant value inside rather long distances.

i 2,,2 =
(i) In the argument of the complex exponential M, i term s

responsible for the fact that the phase is not the same for all the points
of a plane perpendicular to the Oz axis.

(iii) In the argument of the complex exponential ¢***: this term represents a
very fast variation, since its sign changes every time z increases by one
half-wavelength.

Let us now consider the two waves illustrated in Figures 2.9(a) and (b);
since they both propagate in the positive direction of the Oz axis, we will
choose the exponential term e7* and describe the amplitude repartition over
a plane (P) orthogonal to Oz by the following expression:

U, = Ke’ a(xzwz), K is just a proportionality coefficient. (2.28.a)

Such a wave can be considered to be a spherical wave having its center
at the origin O of the Oz axis; the radius of curvature of the wave surface that
is tangent to the plane PP’ is related to the modulus k, of the wave vector or
to the wavelength A by relations (2.28.b):

ko T

Upy = Ke™" ) p=t T
(rw) 200 Ao

(2.28.b)

where o > 0 corresponds to a wave converging toward point O; and
a < 0 corresponds to a wave diverging from point O.
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2.6.4. Using an Optical Device to Transform a
Planar Wave into a Spherical Wave

To illustrate the interest of the previous development, we are going to show
how this allows understanding as to how a lens, or a spherical mirror, trans-
forms a planar wave into a spherical one.

2.6.4.1. Reflection of a Wave on a Spherical Mirror

When an electromagnetic wave hits the mirror surface, its electric field sets
into vibration the electrons which then become emitting sources: a reflected
wave is thus generated. For the sake of simplicity it will be considered that
the phase of the motion of an electron is equal to the phase of the incident
wave at the place where the electron is. The complex amplitude of the sources
is determined by the incident wave and by the shape of the mirror. In the case
of an incident planar wave and a spherical mirror, it will be shown that the
law of variation of the complex amplitudes of the reflected wave is just the
same as for a spherical wave.

Let us consider, Figure 2.10, a planar wave arriving at a concave spherical
mirror after having propagated parallel to one of its diameters. The mirror is
defined by the following parameters: its center (2 and its radius of curvature
QS = ON = R. We will compare the complex amplitudes of the incident and
reflected waves on the plane (I]) tangent to the mirror at point S. If the mirror
is a perfect reflector, the moduli of these amplitudes are equal. However, there
is a phase difference associated to a distance of the light equal to 2NM, N is
on the mirror, M is on plane (I1). Using Sxyz as the axis of coordinates, the
equation of the mirror surface is 2% + ¥* + (R — 2)* = R?, in the vicinity of point
S it can be simplified as x* + y* — 2Rz = 0.

For the incident planar wave the phase would be constant along (I1), we
use the conditional since the incident wave doesn’t reach (IT). On the con-
trary, the phase of the reflected beam varies along (I1), the phase variation
being given by e "

Incident wave plane

7 | ,
\ | <
\)<F\‘ | “
: |

D \ Reflected burface wave

Figure 2.10. Reflection of a planar wave on a spherical mirror. 2 and R are,
respectively, the center and radius of the mirror.
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MN is easily obtained from the simplified equation of the mirror: MN = r
= (@ + ¥)/2R.
Finally, the complex amplitude of the reflected wave at point M is given by

k) U] g g

The above expression coincides with the first term of the development of
a spherical wave centered at point F'in Figure 2.10; the focal length of a spher-
ical mirror is found to be equal to half of its radius of curvature. It is left as
an exercise to consider the case of an incident spherical wave and establish
the conjugation law for spherical mirrors.

2.6.4.2. Focusing a Parallel Beam with a Spherical Lens

To simplify the presentation and Figure 2.11 we will consider the case of a
planoconvex lens; the method is however quite general and the reader is
advised to treat the case of a biconvex lens, either by adapting the previous
method, or by considering a biconvex lens as the assembly of two planocon-
vex lenses.

The lens is a piece of glass (index of refraction ») limited on one side by a
plane (SH) and on the other side by a sphere (center €2, radius S’ = R). Using
the coordinate axis (S’xyz), the sphere equation can be approximated as

x*+y? -2Rz =0.

All the points of the plane (SH) are set in motion with the same phase by
the incident wave. Inside the lens, the light propagates at speed V = ¢/n,
outside the lens the speed is equal to c. The light takes a longer time to cross
the lens at the level of SS’ than it does at the level of HH'.

If we now consider the vibrations at points located on the plane S’"H’, they
are not in phase: the phase retardation is maximum at the center and dimin-
ishes as the distance to the axis S’z increases. tg¢ and t;;; being, respectively,
the times for going from S to S” and from H to H’, we have

SS’ SS’ HK+KH’ _ (mHK+KH’) (nSS’+KH’)

lgg =——=n and tyy =
58 \% c e 1% c c c

From the simplified equation of the sphere it is seen that KH’ = (2> + y*)/2R,
the definition of K is given in Figure 2.11. The phase difference between S’
and H’ is given by the following expression, where  and k, are, respectively,
the angular frequency and the vacuum wave vector of the light,

, xz + 2
Oss — Qi = Otss —tgn) =ko(n —1)KH' = ko(n — 1)%

The above phase repartition is quadratic in x and ¥ and corresponds to a
spherical wave; at the level of S’ the radius of curvature of the surface wave
is the focal length f= R/(n — 1).
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Incident wave plane \KA X,y
H| V24
/ S S ! >
Q | X
Z Transmitted surface
N /e « wave

Figure 2.11. Focusing a parallel light beam with a lens. 2 and R are the center and
radius of the spherical interface. H and H” are considered to be at the same place.

This example shows the mathematical meaning of Gauss approximation:
stigmatism is obtained only within the limit of validity of the development
of formula (2.26.b). Aberrations correspond to the omitted terms of the
development.

2.6.5. Gaussian Beams

Gaussian beams are a very important type of light beam. They have been made
very popular by lasers, since such devices usually emit such beams. There
are two reasons for using the word Gaussian, first, the transverse variations
of the amplitude is governed by a Gaussian function and, second, Gaussian
beams provide a very convenient mathematical description of the pro-
pagation of light along centered optical systems using paraxial rays (Gauss
approximation).

2.6.5.1. Helmholtz’s Equation Solution for Beams
with Slow Amplitude Variations

We will only consider problems having a radial symmetry about the propaga-
tion Oz axis. The Gaussian beams that are obtained are said to be zero-order
Gaussian beams, they are surely not the most general, however they are the
most commonly met. To introduce the Gaussian beams we will use a rather
formal approach and solve equation (2.27), the mathematical development is
rather tedious and can be bypassed going directly to the final result in equa-
tions (2.30) and (2.31).

Because of the radial symmetry, the transverse Laplace operator is much
simpler and reduces to

2 9 9 120

ox* " y* Tort ror

Vi=
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the function y(x) follows the following equation:

2
Iy LoV oV,

ar:  r or 0z (2.29)

To find a solution of equation (2.29), we draw our inspiration from a
description already used for spherical waves fulfilling Gauss approximation.
Let us introduce two auxiliary functions P(2) and a(z) and write the function

w(r, 2) as

—j[P(z)Jréera(z)}

v(r,2)=ye
A (dp szd“) v _ . Fy . _—
NGt TR e — —jka(1- jk
0z Nz 2 az)V oy TV 5T a(l- jkar®)y,
da dP
k22( 2 ——) Zk(——- ' ):o. 99,
- rl a +dz + dz+ja (2.29.a)

As equation (2.29.a) should be satisfied for any value of 7, it is deduced
that the two terms of (2.29.a) are both equal to zero:

(2 daj 1
a*+— =0 = a= ,
dz (z+0a)

where o is a constant of integration that will be taken as o = jz,,

(dP . ) dP .
—+ja|=0 —» —=—ja=- —,
dz dz 2+ J=o

- P= —jLog(1+§)+constant = —jLog(l—jzi)+ﬁ.
0

The integration constant 3 corresponds to a phase shift that can be put in
the complex amplitude y, thus it will be made equal to zero, v, is given
by

| 2 kr? 1
_j[_JLOg( I_J?OJJrT (2+720) }

Vi = WVire = Wo€ .

Using the identity
1 b
Log(a + jb) = ELogV a’+b% +j Arctan(—),
a

we obtain

- j[— jLog( - jiﬂ —Log(l— ji) 1 JjArctan—
e l=e 0= =0,

B _w/1+22/z§ ¢
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Going back now to equation (2.25), the propagating field is finally obtained
as

Wo

w(z)

with the following notations:

2/ w? . . .
Uty =Us e r/“’(z)e—ﬂﬂ‘z/2R(2)eJArctan(2/zo)e—sz7 (2.30)

2 2
zﬁzm, w(2) =w, [1+Z—2j, R(z)zz(1+z—g} (2.30.2)
k b4 2

20

wi =

Equation (2.30) is made more convenient by setting q(2) = (2 — jzo):

U,

Uty =—e 772001 @2.31)

(2)
where U, is a new constant that could be related to U,. It can be shown that

1 1 . 2

= _ ] .
d(2) R(z) kw(zz)

Rayleigh zone: The function Arctan({) remains constant over large vari-
ations of its argument {, except in the immediate vicinity of zero. It can be
roughly considered that the domain of variation can be restricted to 1. Going
back to equation (2.30), is seen that the term Arctan(z/z,) is only important
when 2, < 2 < +2. The corresponding region is called the Rayleigh zone, 2, is
known as the Rayleigh range.

Physical interpretation of the various terms of
equations (2.30) and (2.31).

¢~ 0w’ In a plane orthogonal to Oz, the amplitude of
vibration decreases according to a Gaussian law, as
we get away from the axis. The width of the bell-
shaped Gaussian curve is minimum when z = 0, its
value is then equal to w, and is called the beam
waist.

Wy 5 /_s\1/2 | This term describes a diminution of the amplitude
1/ (1+z / %) when moving away from the origin. Further away

a 1/z law is obtained, just as in the case of a

~1/z ifz—>e spherical wave.

(continued)
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e This term simply describes the propagation
along Oz. Further away from the origin, it is the
only complex term of equation (2.30): a Gaussian
wave, as well as a spherical wave, coincides
with a planar wave.

e*j’""z/ 2Re) 51 Because of this term, the phase varies inside a

if2 — oo plane orthogonal to Oz. The curvature of the wave
surfaces is introduced by a quadratic variation
of the phase versus distance. Further away from
the origin there are no more transverse phase
variations, as for a planar wave.

R. =2(1+23/2%) R(2) is the radius of curvature of the wave
Ry=z ifz—>e surface at abscissa z. Further away the radius is
R, — >~ ifz—0 | equalto the distance from the origin. In the
vicinity of the origin, a Gaussian wave is very
similar to a planar wave.

e Arctan(z/20) This term remains almost constant when z is

varied, except for a fast variation from —7/2 to
+m/2 when crossing the origin (see Section 2.6.2).

If we consider the expression R, = 2(1 + 2{/2), it can be considered that:

* Outside the Rayleigh zone R, = 2, the transverse phase repartition, as well
as the amplitude variation law versus distance to origin, are very similar
for Gaussian and spherical waves.

¢ Inside the Rayleigh zone:
°© Ry = 2%/z, the phase repartition and the amplitude variations are quite

different for Gaussian and spherical waves.

o Arctan(z/z,) = 2/z,, the phase variation is linear versus z: the Gaussian
wave behaves more like a planar wave, the phase velocity is however
different from the speed of light in the same medium. (It is left as an
exercise to evaluate the phase velocity.)

Diffraction and Gaussian beams: Out of the Rayleigh zone, a Gaussian
wave is nothing but a spherical wave limited by some circular aperture of
radius w(z). Since it is a solution of the wave equation the effect of diffrac-
tion is immediately taken into account.

Let us consider the variations of the modulus of the field amplitude, U, ),
inside a plane orthogonal to Oz at abscissa z; this amplitude is maximum
on the axis and decreases as the absolute value of x and/or y increases; let
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A Variation of the amplitude Uy, )

wg propagation
/{x,y,z)
X,
> y

L
0

0=Ar
W, Z>

(,{___Bgﬂglgh zone

i A +71/2 \
/-—
i Arctan(z/zy)

2! +2
—m/2

Figure 2.12. Illustration of a Gaussian beam. Amplitude variations U, ., versus
distance to the axis follow a Gaussian law, the width of which increases with 2z, while
its maximum value, U ), decreases. The locus of the points where U, .,/Uq,. = 1/e
is a hyperbola.

us consider a point M, ., where the modulus is equal to the maximum divided
by e (Neperian logarithm basis)

2 2 2
U U(O 0,2) xr+ Y R =1
(w,9,2) — 2 g
e Wy 20

M, - belongs to a hyperboloid of revolution about Oz, the half-angle 0
of the asymptotic cone is obtained by taking the limit of 7/z as z goes to
infinity:

2 2 2 2 2
r X +y Wy Wy r 200 r A
— = P = + % hence — —= =0. (232)
k4 2 20 4 K4 2 W,

We consider the plane (Ox, Oy), it is located at the center of the Rayleigh
zone; the energy of the field is almost entirely contained inside a circle having
a radius equal to the waist w,. The divergence of the beam can be approxi-
mated by 6 = A/mw,, this result is sensible and should be compared to the dif-
fraction of a planar wave by a circular aperture of radius w,, the light is then
diffracted inside a cone having an angle equal to 1.224/2w,.

The energy of a Gaussian beam remains constant during propagation.
The demonstration of this point, which is a physical necessity, is left as
an exercise. It will be shown that the surface integral jj( U2 ||2 ds doesn’t

depend on z, (P) is a plane of abscissa z and orthogonal to the z axis, U,
is given by equation (2.30).
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2.6.5.2. Parameters Required to Characterize a Gaussian Beam

Given a frequency and a direction of propagation, to fully define a planar wave
it’'s necessary to know its complex amplitude at some point. In the case of a
spherical wave a few more indications are needed, since in addition to the
complex amplitude at a given point, the center of the wave must be defined,
the extension of the beam is always limited and we must know the axis in the
vicinity of which the propagation is made and the size of the aperture.

For a Gaussian beam, the following parameters should have been defined:
frequency, direction of propagation, location, and size w, of the waist; instead
of w,, the Rayleigh range 2z, can be used (the two quantities are connected by
equation (2.30.2)).

How to Find the Characteristics of a Given Gaussian Beam?

We are looking at the properties (place and size of the waist) of a Gaussian
beam, knowing the complex amplitude repartition along a given plane. Thanks
to some uniqueness and existence theorems concerning the solutions of
Maxwell’s equations, we can be assured that this Gaussian beam is unique.

The complex amplitude repartition along a given plane (P) is completely
determined from a complex number q = 2 + jz, which is then introduced in
equation (2.31). The real part of q defines the place of the waist, it indicates
where to place the origin of coordinates so that (P) will be located at abscissa
z. If z is positive, the waist is located before (P); if z is negative, the waist is
after (P). The imaginary part, z,, should be a positive number, otherwise the
amplitude and, consequently, the energy of the beam would go to infinity as
2 or y increases indefinitely. Finding a negative value for 2z, at the end of some
calculation cannot be anything other than an error.

Let us give some practical examples to show how the parameter g, should
be manipulated. The wavelength being equal to A = 0.5 um, we want to charac-
terize two Gaussian beams for which the g parameters, along a plane (P) are,
respectively, equal to ¢ = (3 + j4)cm and q = (-2 + j0.5) cm, see Figure 2.13.

In the first case, the real part is positive, which means that the waist is in
front of the plane (P), at a distance equal to z =3 cm, (P) is inside the Rayleigh
zone. The waist radius is w, =vz, 14 / =80 um.

In the second case, the waist is 2cm after (P), the beam converges
toward the waist and then diverges, the radius of the waist is equal to
Wy = 28.2 um.

2.6.5.3. Transformation of a Gaussian Beam by a Spherical Lens

A thin spherical lens (focal length f) receives a Gaussian beam which is char-
acterized by q = (2 + j2,) along the input face L™ just in front of the lens. Start-
ing from the complex amplitude repartition along U(x, y, L™), we have to
calculate the complex amplitude along the output face L*, just after the lens.



2.6. Spherical Waves 89

g=0@B+j4) cm g=(=2+;0.5) cm

e N Waist
Waist diameter e 3cm 2wy =56.4 um

2wo=160 um [ 77

Rayleigh zone Rayleigh zone
2zp=8 cm 2zp=1cm

Figure 2.13. Examples of Rayleigh zones.

U1+ 1s obtained by a simple multiplication by a term which makes a trans-

versal correction of the phase, just as we did in Sections 2.4.6.1 and 2.4.6.2.
We are going to show that the new repartition is that of a Gaussian beam:

a lens transforms an initial Gaussian beam, q = (2 + jz,), into a new Gaussian

beam, ¢’ = (2’ + j='y),

o x2+y2 . x2+y2 . .1’?2+y2 . x2+y2

Tk gk S J Ny
e ¥ =Use 2Aztja0) o7 2 =Ule Z(z+120),

Uleit) = Ul r)
11 1 1.1 1

’ .7 . - ;= T4
'+jz0 z+j20 f a q f

2,y,L")

(2.33)

Equation (2.33) is the lens formula for Gaussian beams.

Identification of the real and imaginary parts of equation (2.33) allows the
expression of 2’ and z; versus z and 2’. If the lens is largely outside the
Rayleigh zone (z >> z;), equation (2.33) becomes very similar to the usual lens
formula; this is quite normal since a spherical wave can be considered as the
limit of a Gaussian wave, if the Rayleigh range goes to zero. However, when
comparing equation (2.33) with the usual lens formula, care should be taken
of the fact that z is algebraically measured from the object to the lens, while
in Geometric Optics the distances are usually measured from the lens to the
object.

7 +jz),
7<0

z>0

Figure 2.14. Image-forming with Gaussian beams.
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Rather tedious calculations using complex numbers give the following,
and sometimes useful, expressions in which the following parameter has been
introduced:

Lf/(z= 1) '
1+23/(z= f)

M:

Waist radius wh = MPw, (2.34.a)
Position of the waist @ -NH=Mz-1) (2.34.0)
Rayleigh range 2 = Mz, (2.34.0)
Divergence 6y = 6,/M (2.34.d)

Image of a Waist Placed at the Object Focal Point of a Lens

From equation (2.34.b), it is seen that the output waist is at the image focal
point. The incident and transmitted beams are however very different, since
M = f/zy > wi = wof¥23 and 6] = 0,1/,

Focusing a Beam with a Lens Disposed at the Center of the Rayleigh
Zomne

Wy Wo
2=0, W=7~ !

, 2= .
(1+25/.f?) (1+s° /25)

If the focal length is much larger than the Rayleigh zone of the incident
beam, the image almost coincides with the focal point; if this condition is not
satisfied, the distance between the image and the lens focal point can no
longer be neglected.
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Geometrical Optics

3.1. Geometrical Propagation of Light

3.1.1. Light Rays

Geometrical optics is that part of Optics where the formation of an image
starting from an object is mostly studied. The notion of a light ray is used
extensively, allowing an intuitive and efficient understanding of the way
optical instruments are working. In any optical experiment some light energy
propagates from a source toward a detector, or toward infinity if the medium
of propagation is perfectly transparent and if no detector is present.

From a mathematical point of view a light ray is just a curve, which means
a vectorial space having only one dimension. From a physical point of view,
a light ray is a trajectory followed by the electromagnetic (EM) energy. The
impossibility of isolating a light ray considerably weakens any physical inter-
pretation, a ray will be considered as nothing other than a useful mathemat-
ical tool.

3.1.2. Medium Supporting the Propagation of Light

In this chapter we will only deal with isotropic mediums of propagation,
having identical properties, whatever the direction of propagation. These
mediums will be considered as perfectly transparent, the light intensity, as
defined in formula (2.23), remains constant along a given ray.

Chapter 3 has been reviewed by Dr. Olivier Delléa from Teemphotonics.
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Homogeneous Medium—Inhomogeneous Medium

The mediums of propagation can be either homogeneous or inhomogeneous:
their optical properties will be, or will not be, the same whatever the point
under consideration. Here we propose a classification of the different trans-
parent mediums.

Homogeneous medium. Same properties at
any point. The speed of light and the refrac-
tive index have, respectively, the same value
/ everywhere. To go from one point to another
the light follows the path taking the shortest
time, i.e., a straight line.

Discontinuously inhomogeneous wmedium.
Succession of different mediums, each of
them being homogeneous. Two consecutive
/ mediums are in contact along “surfaces of dis-
A B continuity.” Inside a given medium the light
follows a straight line, the light path is made
of several rectilinear segments intersecting on
discontinuity surfaces.

Continuously  inhomogeneous  medium.
Properties are not the same at the different
points, however, their variations are continu-
ous functions of the coordinates. The path
actually followed by the light when going from
M,z B a point A to a point B is no longer a straight

A line but a curve along which the transit time
tsp is the shortest possible one. V, ., being

the local value of the light speed and s the

abscissa along the curve t,p is given by the
ds

V(x,y,z)

. B
integral: ¢,z = JA

Example of discontinuity: the plane mirror.
A B The discontinuity occurs along a perfectly pol-
ished surface (irregularities are smaller than
the wavelength). The path going from A to B
is made of two rectilinear segments joining at
N the mirror.
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Diffusion of light by a rough surface.

If the surface of discontinuity is uneven and
exhibits irregularities of the order of (or larger
than) the wavelength, we are faced with a dif-
ficult problem of diffraction: the only general
conclusion that can be formulated is that light
is diffused in all directions (a sheet of paper
is a good example of such a rough surface).

Discontinuously inhomogeneous mediums
made of particles.

The medium is a collection of particles. If the
size of the particles is small as compared to

o the wavelength, the medium can be consid-
000 ot Z OB ered as fully homogeneous with, however,

A 0 c> Oé) S S the restriction that the particles’ distribution
QO gog OQ should be homogeneous. If the particles are
> O of the same order of magnitude as (or larger

than) the wavelength, the situation is compli-
cated, in most cases light is diffused in all
directions.

3.1.3. Speed of Propagation—Index of Refraction

In this chapter no difficulty will be raised concerning the definition of the
speed of propagation, only one speed will be introduced and it will be assim-
ilated to the phase velocity.

As far as geometrical optics is concerned, a transparent medium is exhaus-
tively characterized if the value of the propagation speed of the light V and
its law of variation with the color (that’s to say, with the frequency) are known.

The speed V is enormous and measured in hundreds of thousands of kilo-
meters per second. It’s the reason why a normalized speed is introduced
thanks to a division by the speed c of the light in vacuum. Very often we will
have to use 1/V, this parameter is a very small number. The index of refrac-
tion n is the inverse of the normalized speed.

The index of refraction of a transparent medium is given by

_ ¢ _ light speed in a vacuum

"~V light speed in the medium




94 3. Geometrical Optics
Dispersion

The index of refraction is a very basic parameter in Optics, it can be mea-
sured with an accuracy which can be extremely high and reach 10 and which
is easily equal to 10™. The law of dispersion of a given material is the law of
variation of the index of refraction versus wavelength (or frequency). The
values of refraction indices of transparent mediums may be found in Optical
Handbooks for almost any spectral lines (sodium doublet, mercury lines, main
laser frequencies, . . .). Dispersion laws are also given, with good precision,
by semitheoretic/semiempiric analytical formulas.

3.2. Fermat’s Principle

3.2.1. Different Ways of Introducing the Fermat Principle

From an historical point of view, the principle of Fermat, also known as the
principle of the shortest optical path, was introduced by Pierre de Fermat as
early as the seventeenth century. It's a very powerful formulation of geomet-
rical optics. The Snell-Descartes laws of reflection and refraction can be math-
ematically demonstrated from the principle of Fermat. On the other hand, it
is also possible to start from the Snell-Descartes laws and then demonstrate
what will now be the theorem of Fermat; as reflection and refraction laws can
be experimentally verified, the Fermat principle can thus be considered
as having experimental roots. Finally, it should be noticed that the principle
of Fermat, as well as the Snell-Descartes laws, are easily obtained from
Maxwell’s equations.

3.2.2. Formulation of the Fermat Principle

The path followed by light going from point A to point B is such that the transit
time is stationary.

By stationary we mean that the transit time along the special path fol-
lowed by the light is either minimum or maximum with regard to the times
that would be taken along other paths having the same extremities and
remaining very close to the light trajectory. In most cases the time taken will
be minimum; an example is given in Figure 3.10(c) where the time is
maximum, of course it’s not an absolute maximum, it’s only a minimum rela-
tive to the neighboring paths.
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Discontinuously inhomogeneous medium

Above has been drawn an optical system using three lenses, with
indices, respectively, equal to n;, n,, and ns, and they are immersed in a
medium with index n,. Using a solid line we have drawn the path that the
light follows AIJKLMNB, and using a dotted line we have drawn another
path very close to the first one AI'J’K'L’M’N’B.

The transit times along AIJKLMNB and AI'J’K’L’M’N’B at the speed of
light in the various mediums requires, respectively, the following times:

t = (oAl +n 1J +ngJK + 1o KL + 1o LM + 15 MN + nONB)/c,
t' =(no A’ +n I T + o 'K’ + s K'L' +ng LM’ +ns M’N’ + noN'B)/c,
if the different points I, J', K', . . . get nearer and nearer the points I, J, K,

..., the limit of ¢’ is equal to {. Among the different times, associated to
the various paths I'’JJK', . . ., t is stationary and usually the shortest.

Continuously inhomogeneous medium

Ny, 1S the law of variation of the index of refraction. The single arrowed
curve is the path that is taken by the light going from A to B, the double
arrowed curve is a neighboring path. The times to be compared are now
given by integrals. The following integral is stationary when taken along
the trajectory followed by the light:

18 . .
t=—| M@y ds, sisthe abscissa measured along the curve.
cda (x,y,2)
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Refraction Second mirror

First mirror
B

Figure 3.1. Illustration of Fermat’s principle; a child plays the following game: using
a well-collimated laser source he wants to light up his foot, but he also wants
that the light should travel across a glass prism and be reflected from two mirrors. He
immediately finds that only one path fulfils the imposed conditions and goes from his
hand to his foot.

If we consider an optical system and two points, A and B, in general there
is one, and only one, light ray joining A to B; this is a consequence of the fact
that the light path corresponds to an extreme value (minimum or maximum)
and that, by definition, an extreme value is unique. This property is illustrated
in Figure 3.1.

It may happen that many different paths take exactly the same time for
the light to go from A to B, each of these paths represents a possible path for
the light: in such a case, there are many rays going from A to B, and it is then
said that B is the image of A.

3.2.3. Principle of Reversibility

At a given point of a trajectory the speed of light is the same, whatever the
direction. An important consequence is that the curve followed by the light
going from A to B is the same as the curve followed by going from B to A,
since the transit times will be the same in both cases. This property is known
as the principle of reversibility.

3.2.4. Demonstration of the Snell-Descartes Laws

The Snell-Descartes laws allow the calculation of the trajectory of a light beam
after it has arrived at an interface between two different transparent mediums
(respective indices of refraction, 7, and n,). The situation is that of a discon-
tinuously inhomogeneous medium. The experiment shows that the trajectory
of the light is made of straight lines joining at the interface: an incident ray
generates a reflected ray and a refracted ray. Laws of refraction and reflec-
tion indicate in which directions the two new rays will propagate.
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Figure 3.2. Fermat’s principle in the case of
reflection: the shortest path from S to R is obtained
when the angle of incidence is equal to the angle of
reflection 7'.

Law of Reflection

Let us consider Figure 3.2 to go from point S to point R, the light will follow
a broken line made of two rectilinear segments joining at the point of I where
the incident beam hits the interface. The length of the path SIR should be as
short as possible. Let S” be the symmetrical point of S with regard to the planar
interface, it’s easy to see that SIR = S’IR, SI'R = S'I”R, SIR = S’IR, the minimum
path is obtained when S’IR is a straight line.

Law of Refraction

We refer to Figure 3.3 where 7 and r are called, respectively, the angles of inci-
dence and of refraction. The first medium is supposed to be faster than the
second and the speeds of propagation are, respectively, equal to V, = ¢/n; and
V, = c¢/n,. We will first evaluate the time taken by the light to go from A to B
versus various geometrical parameters, the path really followed by the light
is then obtained by cancelling the derivative of ¢ versus x,

1 3 dt 1 nx n,(b" — x)
t=—|n Jx®+a® +ny |’ -x) +b*) > —=— - b S
et R B ey
dt nax nz(b,_x)

=O 2 2 = 2 ’
dx Jx +a \/(b’—x) +b?

Figure 3.3. Fermat’s principle for
refraction: the time from A to B is
minimum when 7,sin? = n,sin7, which
corresponds to the path AIB.

OA=a
OH=b
OK =10
Ol=x
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since
(b —x)

x .
——— and sinr=————m—,
r ta VO —x) +b

we obtain n;sin? = nysin7.

This is the famous Snell-Descartes law, also known as the “sine law”; this
demonstration gives only the directions of the reflected and refracted beams,
but it doesn’t give any information about the percentages of energy carried
away by each beam. Another demonstration, starting from Maxwell’s equa-
tions, will be given in Section 4.3.

sini =

3.2.5. Fermat’s Principle for Stigmatic Optical Systems

An important role of Optics is to obtain images. In this section we intend to
use the formalism of Fermat to give an interpretation of the mechanism of
imaging and to examine the condition for obtaining high-quality images.

3.2.5.1. Stigmatism and the Principle of Fermat

It may happen, although it’s not generally the case, that all the rays proceed-
ing from a point source A, after they have been transmitted by an optical
system, will converge toward the same point B (Figure 3.4); it is then said:

e That the system is stigmatic for points A and B.
e That the points A and B are conjugate across the optical system.

As emphasized in Figure 3.1, among all the beams emitted by the point
source A, one, and only one, will go to a given point B. The case when A and
B are conjugate is very special; since all the paths from A to B take the same
time, the notion of minimum (or maximum) vanishes: there is a kind of degen-
eracy and every path is a possible trajectory for the light.

)
Jy

A (2]
L /s B

I3 A
—

Figure 3.4. [X] is the optical system limited by two interfaces. Input and output
mediums are homogeneous, before and after [X] light rays are rectilinear. [ Y] is made
of a succession of either continuously or discontinuously inhomogeneous mediums.
All the paths from A to B take the same time.
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3.2.5.2. Perfect Imaging

Stigmatism as it has been introduced is also called perfect imaging and also
sharp imaging. Systems where all light beams issued from the same object
point then intersect at the same image point are really rare. First, it should be
noticed that stigmatism is a notion that is restricted within the domain of geo-
metrical optics, since we know that diffraction forbids any electromagnetic
wave to be focused inside a spot smaller than the wavelength.

Even if we forget the preceding remark about diffraction, there are very
few strictly stigmatic systems, that’s to say, systems for which the rules of
geometrical optics lead to an exact convergence at point B of light beams
issued from point A. What will often happen is the following: the emerging
beams will run very close to point B, in such a case the system will be said
to be approximately stigmatic. We will now describe systems that are strictly
stigmatic.

A Planar Mirror Is Stigmatic for any Point

Figure 3.5. A planar mirror is strictly stigmatic. Any
incident beam issued from A gives a reflected beam
passing through point B symmetric to A with regard to
the plane of the mirror. B is the image of A.

An Elliptic Mirror Is Stigmatic for its Focus

Figure 3.6. An ellipse is a set of points for which the sum of the distances to two
given points, called focus, is constant. Any beam issued from one focus is reflected
toward the other focus. It's a well-known property of an ellipse that the normal to the
ellipse surface at point I is a bisector of the angle FIF".
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Ji dl Figure 3.7. A parabolic mirror is
H pooees M AN K stigmatic for its focuses F, the other
H % DN I focus is at infinity. A parabola is a set of
0 points located at equal distance from a
I F Iy point called the focus and a line (A) called
I Iy the directrix. MF = MH — the paths I,J,F,

(A 14\ . LJoF, IJ5F, LJ,F are all equal to I,H,.

A Parabolic Mirror Is Stigmatic for its Focus

Hyperbolic and parabolic mirrors are also stigmatic for their focuses. From
the point of view of applications the most important case is that of parabolic
mirrors which are used for making telescopes for astronomy (radio as well
as optical telescopes).

Stigmatic Points of a Spherical Interface

We consider a sphere (center O, radius OC = R, see Figure 3.8), filled with a
transparent material of refractive index n and surrounded by a second trans-
parent medium of index 7’. A point object is immersed inside the sphere and
emits light rays in all directions. We are looking for conditions so that all the
beams that are refracted on the spherical interface will pass point A’. For the
sake of symmetry A and A’ should belong to the same diameter BC of
the sphere. Let us choose A and A’ so that we have CA’/CA = -BA’/BA =n/n’.
For any point I of the sphere we also have IA’/IA =n/n’. We now draw a sphere
with a radius equal to L and centered at A’, then we consider a light ray Al
and the corresponding refracted ray IM (M belonging to the sphere).

The time taken by the light going from A to M is equal to t = (Al + n’IM)/c
= (mAI — n'IA + n’L)/c = n'L/c, t is the same for all rays emitted by A, accord-
ing to Fermat’s principle, the previous result implies that A’ is a sharp image
of A. A and A’ are called the stigmatic points of the spherical interface, they
are known as points of Weierstrafd in Germany and points of Young in the
United Kingdom. They are often used to make high-resolution microscope
objectives.

From the theory of diffraction it will be shown that a high resolving power
needs an important numerical aperture (NA) for the objective of the micro-
scope. The numerical aperture is the product of the sine of the half-angle of
the cone of light rays arriving at the first lens of the objective, by the index
of refraction of the medium where incident rays propagate. To improve the
resolution rays making an important angle with the axis are required, so Gauss
conditions are not satisfied. In the objective of Figure 3.9, the first lens takes
advantage of the stigmatic points of a sphere, the light rays emerging from
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For any point of the sphere: % = i,
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Figure 3.8. Points of Young-Weierstrass. A’ is a sharp image of A. A" is at the
intersection of the refracted rays 77", II’, JJ', and SS".

Toward the real image
and eyepiece of a microscope

Figure 3.9. Schematic arrangement of a microscope objective using stigmatic points
of a spherical interface to obtain a high numerical aperture. The first lens is a truncated
sphere, the object is immersed in a liquid having the same index as the sphere. The
second and third lenses work in the conditions of Gauss.

the sphere make a small angle with the axis, so the second part of the objec-
tive rays propagate in Gauss conditions.

Attempt of Perfect Imaging Using Refraction at an Interface

We refer to Figure 3.10, light rays emitted by some point source A arrive at a
boundary between two transparent mediums (respective indices of refraction
n and n’), is it possible to obtain a perfect image A’? According to the princi-
ple of Fermat, we should have nlA + n'IA’ = nSA + n’SA’ = constant. The pre-
vious formula defines a surface of revolution about the axis AA’, this surface
is called a Cartesian oval which is of course rather different from a sphere.

’

n
L
n
Figure 3.10. Cartesian oval: nIA +n’IA" = m >

nSA + n’SA’ = constant. A S A
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(a) Here DD’, EE’, and MM’ are three mirrors
having the same tangent at point I’. DD’ is a
planar mirror and EE” is an elliptical mirror
of focuses ¢ and ¢’. The radius of curvature
of the surface of mirror MM’ at point I is
smaller than the radius of curvature of the
ellipse. @I is an incident ray and /@' is the
associated reflected ray.

(b)
v In the case of the elliptical mirror, the three
\; 7 paths @I, OI'd, and OI”d are equal and
L / correspond to three possible paths for the
M/N light.
® N @’
(0 The radius of curvature of mirror MM’ is
\ smaller than the radius of the ellipse. The
N path @@ followed by the light is larger than
L ’ ®I'd and PI’d': this is a case where the
M \ light path is maximum relative to the adja-
D N > cent paths.

In the case of a planar mirror, ®I'®’ and
@I"d are longer than the light path ®I@
which is then minimum. The same result
would be obtained for a mirror having a
radius of curvature larger than the ellipse
radius of curvature.

Figure 3.11. Examples of where the transit times are minimum or maximum.

3.3. Formation of Images

3.3.1. Real or Virtual Objects and Images

An image-forming instrument is a device which, receiving light rays coming
from point sources, gives emerging beams which converge toward point
sources. Such a device is always limited by some input interface and some
output interface, according to the fact that the point source and the point
image are before or after those interfaces, the object and image will be real
or virtual.
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(a) Real object/real image

(¢) Virtual object/real image

(d) Virtual object/virtual image

Figure 3.12. The different kinds of objects and images.

e Areal object is located before the input interface (outside the instrument),

and sends on it a diverging beam.

e Avirtual object is located after the input interface (inside the instrument),

this one receives a converging beam.

e Areal image is located after the output interface (outside the instrument),

the emerging beam is convergent.

e A virtual image is located before the output interface (inside the instru-

ment), the emerging beam is divergent.

3.3.2. Perfect Imaging—Approximate Imaging

The situation where all the light rays initially coming from a given point are
exactly focused at the same point image is an ideal, and thus very rare,
situation. We then speak of perfect or sharp imaging. Some examples have

already been described.

Approximate Imaging

In many cases all the rays issuing from a given point source will not be
strictly focused at the same point, however, it will often happen that the
emerging rays will be very near to a point which will then be considered as

an image.
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123 4 Magnified view of the focus area
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Figure 3.13. A beam of parallel rays is transformed by a lens into a beam of rays,
which almost converge to the same point. An incident ray is all the more bent toward
the axis, that it propagated further from the axis of the lens. Unfortunately the marginal
rays are bent too much; the role of the stop is to avoid them contributing to the
formation of the image.

A Lens Is too Converging at its Periphery, as Compared to its Center

When a screen is moved behind a converging lens illuminated by a beam of
light rays propagating parallel to its axis, it can be observed that the focusing
of the beam is not perfect. Referring to Figure 3.13 it is seen that:

e For position (4) of the screen a very bright spot is observed, the size of
which is determined by diffraction phenomena and is equal to 1.22fA/d ( f
is the focal length, A is the wavelength, and d is the diameter of the lens).
The spot is surrounded by a less luminous circular halo which constitutes
the geometrical aberrations.

e Position (3) of the screen corresponds to what is called the circle of less
diffusion; in the absence of stop, the screen should be placed there.

If a stop is used in order to keep only the rays that propagate close enough
to the axis, geometrical aberrations are avoided: the system is then working
under the conditions of Gauss.

Acceptable Images May be Obtained in Spite of Aberrations

A [eX
T

—

%
,
A

Figure 3.14(a). Pinhole camera: a small circular hole 7 has been drilled in one side
of a box, the opposite side is made of a translucent paper. Some object AB is placed
in front of the drilled face, each of its points sends to the inside of the box a conic
pencil of light rays limited by the edge of the hole. Each pencil will produce on the
translucent paper a small illuminated spot: if the size of the spot is small enough, the
set of spots has an appearance which really looks like the object AB.
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Converging lens| .

Figure 3.14(b). Elementary camera. The set-up is the same as in Figure 3.13 except
that a converging lens has been placed just in front of the hole. The lens conjugates
the bottom of the box and the plane of the object AB. The image A’B’ is sharper. The
reader will ask why, in the second case, the image is brighter?

3.4. Thin Lenses

3.4.1. Definition

The more general spherical lens is made of a transparent material limited by
two spherical interfaces (respective centers O, and O,, respective radii of cur-
vature R; and R;). 0,0, is called the axis of the lens; the points S; and S, where
the axis meets the interfaces are the summits of the lenses. According to the
signs of the radius of curvature, a spherical lens may have one of the differ-
ent shapes indicated in Figure 3.16.

Very often the thickness of the lens is far smaller than the radius of cur-
vature, and the points S; and S, are assimilated to only one point S which is
called the center of the lens.

Figure 3.15. Cross section of spherical lenses.

) |

Biconvex Planoconvex  Meniscus-convex Biconcave Planoconcave Meniscus-concave
R >0,R,<0 R;>0, Ryinfinite R;>0,R,<0 R;<0,R,>0 R,infinite, R,>0 R >0,Ry)>0

Figure 3.16. Different kinds of spherical lenses. Since the lenses are often thin, a
symbolic representation is often used as shown on the left for converging lenses and
on the right for diverging lenses. The radii of curvature are algebraic quantities, the
signs correspond to an orientation from left to right.
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Figure 3.17. The imaging process in a thin spherical lens: since the angle of deviation
D is proportional to SI and since this angle is small, all the rays coming from A con-
verge to the same point A’.

We refer to Figure 3.17, the incident ray Al gives an emerging ray IA” which
is all the more bent toward the axis that the point of incidence I is further
from the center S of the lens. It will be shown in Annex 3.A that the angle of
deviation D is proportional to the distance SI: D = KSI, K is a specific con-
stant of the lens under consideration. K is homogeneous to the inverse of a
length: f = 1/K is called the focal length of the lens. K is related to the index
of refraction and to the radius of curvature and given by the following

formula:
1 1 1
K=—=n-1| ——— |
7o )(Rl RZJ

The axis being oriented by the direction of propagation of the light and R,
and R, are algebraic quantities.

3.4.2. Ray Tracing in a Thin Spherical Lens

From a mathematical point of view, the following operation is achieved by a
lens: to each point A of the axis is associated another point A”. The corre-
spondence between A and A’ is a bijection: there is one, and only one, point
A’ associated to the point A, and reciprocally. The terminology of the set
theory is well adapted to this problem; this is not at all surprising, since the
association “object space <> image space” is the first example of correspon-
dence between items of two sets that have been met by both physicists and
mathematicians. The set theory jargon is nothing but a generalization of the
object <> image correspondence in Optics.

Focal Points: A Focal Point Is Conjugated with
a Point that Is at Infinity

If the point is rejected at infinity in the direction of the axis of the lens, the
associated point is a principal focus. If the point is rejected in another direc-
tion, the associated point is a secondary focal point associated with the direc-
tion under consideration.
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If the point at infinity is an object, the associated point is an image focal
point. If the point at infinity is an image, the associated point is an object focal
point.

Principal image focal point = image of a point source at infin-
ity in the direction of the axis.

1 A Y /
_
/ ]
S F\ F S~US
— Principal image Principal image \
v focal point (real) focal point (virtual)A

Figure 3.18. Principal image focal point.

Principal object focal point = point having ils image at infinity
in the direction of the axis.
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Pr1nc1p§l object > Principal object
focal point (real) Afocal point (virtual)

Figure 3.19. Principal object focal point.

Existence and Property of the Optical Center of a Thin Lens

The two summits of the spherical interfaces of a thin spherical lens are con-
sidered to coincide at one point s that is called the optical center of the lens.
An important property of the optical center is that any incident beam directed
toward the optical center will not be bent. The existence of an optical center
is special to thin lenses and will not be generalized to centered optical
systems.

A ray which is directed toward the center of a thin lens is not bent.

Y

[95)

S

A

Figure 3.20. Optical center of a thin lens. A ray directed toward the optical center is
not bent and keeps straight on.



108 3. Geometrical Optics
Focal Planes—Secondary Focal Points
Secondary image focal point @ = image of a point at infinity in

the direction of the line @'S, joining the center and the focal
point.

Image focal
\AA plane |(real) Y
\ N —>
> \\ S >
S N\
\ Imag f0> \
@’ lane [virtual \
v P i\

Figure 3.21. All the secondary focal points ¢ belong to the image focal plane.

The object focal plane is the plane that contains the principal object focal
point and is orthogonal to the axis. All the secondary focal points belong to
the object focal plane.

The image focal plane contains the principal image focal point and is
orthogonal to the axis. All the secondary image focal points belong to the
image focal point.

Secondary object focal point @: its image is at infinity in the
direction of the line @S, joining the center and the focal point.

Object focal Object focal
plane|(real) A plane|(virtual)
]

P A

@ Q

(a) The emerging ray QR should pass by  (b) P belongs to the object focal plane.
the image focal point @ associated to the ~Considered as an incident ray PP’ gives an
direction of the incident ray PQ. emerging ray P’F’: OR should be parallel to P'F’.

Figure 3.23. Construction of the emerging ray QR associated to the incident ray PQ.
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(a) PQ intersects the object focal plane
at @. Considered as an incident ray, @S
is not bent by the lens. QR is parallel to
a@s.
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(b) FQ' is drawn parallel to PQ, considered as
an incident ray it gives an emergent ray Q’d’
parallel to the axis. QR intersects the image
focal plane at @'.

Figure 3.24. Other construction of the emerging ray QR associated to the incident

ray PQ.

Construction of the Image of a Point Object A Belonging to the Axis

A
Q, 0, Q

A F S AT A s |F A~a Fl s FA"
v

Figure 3.25. The image A’ is at the intersection of the axis with an emergent ray
associated to an incident ray AQ coming from A. Each of the methods of Figures 3.23

and 3.24 may be used.

Construction of the Image of a Point Object Out of the Axis

It can be proved from elementary geometrical considerations that the image
formed by a lens of a small object belonging to a plane P normal to the axis
will belong to another plane P also orthogonal to the axis. The two planes P
and P’ are said to be conjugated by the lens.
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Figure 3.26. Construction of the image B’ of a point B taken out of the axis. We
consider two incident rays coming from B, B’ is at the intersection of the associated
transmitted rays. The more commonly used incident beams are those of Figures 3.23
and 3.24.

Some Useful Arrangements

f f £ £

TS
A Ll
\ 4
B/ §
v

Figure 3.27. The 4-f arrangement. The object is placed at a distance equal to twice
the focal length in front of a converging lens. The image is real and located at the same

distance behind the lens, it has the same size as the object, but is inverted. In this
disposition the object-image separation is the shortest.

—~
~

Figure 3.28. Virtual image of a real object. A real object placed between the lens and
its focal plane gives a virtual image.
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A
Figure 3.29. The image focal plane N B/’
plays no special role in the object space. - —>
Here a virtual object AB is in the image d — A >
focal plane; the image A’B’ is real, § A F \
erected and located in the middle of SF”. y

v

B
Figure 3.30. Lens for a short-sighted
eye. The real object AB is replaced by
the virtual image A’B’ located nearer to A >

the eye.

In Figure 3.30 have been drawn the paths followed by light rays issuing
from the real point object B and the pencil of rays which finally penetrate the
eye of an observer. The real object AB is replaced by a virtual image A’B’
which in fact plays the role of a real object for the observer. Such a lens is
used to help a short-sighted eye to accommodate an object located far away.
It’s left as an exercise to see how a converging lens can be used to correct
the vision of a long-sighted eye.

3.4.3. Thin Lenses Equations

We consider a point object A which is imaged at A’ by some lens, A" can as
well be considered as an object and A as its image. A and A’ are said to be
conjugated by the lens, the expression conjugate points is often used. The
lenses equations are formulas relating, on the one hand, the abscissas of two
conjugated points and, on the other hand, the ratio of the object to image size.
There are different kinds of equations, they differ in the choice of the origins
used to represent, respectively, the object and image spaces. Two are more
commonly used:

e Descartes’ formula: The summit S of the lens is taken as a common origin
for both the object and image space.

e  Newton’s formula: Two different origins are chosen, namely the object
focal point F for objects, and the image focal point F” for the image.

Conjugation equations are readily obtained from simple geometric con-
siderations in Figure 3.26, such as expressing the similarity of several trian-
gles (SAB/SA’B’, FAB/FSJ, FIS/IFFA’'B").
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Descartes’ equations Newton'’s equations

1L 1 1 __ 1 FAFA’ = SFSF' = —f%. (3.1b)
SA’ SA_SF . SF

A'B° _FS FA

- 22 (310
AB  FA F'S

setting SA = p, SA” = p’, and SF” = f, Y

1 1 1 A'B" SA" p
- = = —;.(3-1@ (All quantities are algebraic.)

3.5. Centered Systems Under Gauss Conditions

3.5.1. Definition of a Centered System
3.5.1.1. Spherical Interface

It has been shown that perfect imaging cannot be obtained by refraction at a
spherical interface. However, if we use only paraxial rays (i.e., rays making
a small angle with the axis), acceptable, although nonperfect, images are
obtained. In such conditions the Snell-Descartes law, nsini = n’sini’, is
replaced by the Kepler law, ni = n’i’, which is linear.

We refer to Figure 3.31, on the left-hand side of the figure the interface has
been drawn as a sphere and, on the right-hand side, the interface has schemat-
ically been replaced by a plane, which is orthogonal to the axis. Whatever the
angle of incidence, the following relations are rigorously valid, even the angles
are not small:

Q=>G-w)=>0"+u"), (3.2.a)
IA IC CA and 1A IC"  CA
sinQ sinw sini sinQ sinw’ sini’’
CA ,CA’

Figure 3.31. Image construction at a spherical interface. When the angles « and u’
are small enough the point of incidence I can be considered as belonging to the plane
tangent to the sphere at point S.
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A given incident ray Al gives a refracted ray that intersects the axis at a
point A”. According to equation (3.2.b), it is clear that the position of A” on the
axis will depend on the incident ray: the spherical interface is not stigmatic.

Conjugation Equation (Small Angles)

If the angles are small enough, the sine can be assimilated to the angle

PO .
S Ssc’ T sA’ T SAT

If we place the origin at point S, after some algebraic manipulations we
obtain the equation of conjugation for a spherical interface

2o (3.3)
SA SA”T SC

_A'B'_CA'_n SA -
AB T CA n SA

According to equation (3.3), A” is at the same place, whatever the incident
ray: if the angles are small, a spherical interface is stigmatic for points located
on the axis of revolution. For a given spherical interface, SC, n and n’ are con-
stant, the correspondence between SA and SA’, as expressed by equation
(3.3), is a homographic transformation.

Aplanetism

The stigmatism is also obtained for points that are not on the axis. A point B
belonging to the plane (P), that contains A and is perpendicular to the axis,
has its image B’ in the plane (P) that contains the image A" of A and is per-
pendicular to the axis. The previous property is known as aplanetism. The
two planes (P) and (P") are said to be conjugated. Under the condition that
the angles should remain small, the ratio y= A’B’/AB keeps the same value,
whatever the size of AB. yis called the magnification associated to the two
conjugate planes, it’s a real number which can be positive or negative, and
larger or smaller than one.

The Lagrange-Helmholtz Equation

We refer again to Figure 3.31, a light ray emitted by Al gives a refracted
beam IA’, let v and u’, respectively, be the angles of the two rays with the
axis, we have the important relationship, called the Lagrange-Helmholtz
formula,

nABu=n’A"B'u’. 3.5
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Figure 3.32. General arrangement of a centered system. Several spherical interfaces
with their centers aligned along a common diameter, called the axis of the system. The
first and last interfaces are, respectively, called the input and output interfaces. The
refractive indices n, and n; are often equal and correspond to the transparent medium
inside of which the system is immersed.

3.5.1.2. Centered Systems

A centered system is a succession of spherical interfaces having their centers
aligned along a unique diameter called the axis of the system. Very often the
interfaces will go two by two, and a centered system is nothing other than an
assembly of spherical (thin or thick) optical lenses.

A real, or virtual, point source A is placed in front of the system, the first
interface gives an image A, that acts as an object for the second interface,
hence a second image A, is formed, and this acts as an object for the third
interface, and so on. . ..

3.5.1.3. Basic Properties, Centered Systems

The properties that have just been established for a spherical interface can
be generalized by transitivity to the centered system:

e Approximate stigmatism under Gauss conditions: All the rays emitted
by a point object are focused at the same point image.

e  Aplanetism: A plane perpendicular to the axis is called a front plane. All
the points of a given front plane (P) have their images in another front
plane (P). (P) and (P) are said to be conjugated by the system.

e The object <> image transformation is a homographic transformation:
It's known in mathematics that the product of two homographic transfor-
mations is also a homographic transformation. The position of some point
object A being referred to as origin S, and the position of its image being
referred to as origin S” (S and S’ can be either identical or distinct), SA
and SA’ obey a relationship of the following kind:

OSASA’ + BSA + ySA’+1=0, (3.6)

where ¢, 8, and y are constant parameters that are only determined by the
optogeometric characteristics of the system (radius of curvature, positions
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Figure 3.33. Successive images in a centered system with two interfaces. The first
object AB, the intermediate image A,B,, and the final image A’B’ are, respectively,
immersed in mediums of refractive indices n, n,, and n’.

of the centers, indices of refraction) and by the positions of the two origins
Sand S

e Linear magnification: The image to object ratio, y = A’B/AB, doesn't
depend on the positions of A and B in a front plane, its value is charac-
teristic of a given pair of conjugate planes. To a given value of y is asso-
ciated one, and only one, pair of conjugate planes.

e Angular magnification: An incident light ray, intersecting the axis at some
point A and making the angle w with the axis, gives an emerging ray that
intersects the axis at the conjugate point A” and makes the angle v’ with
the axis. The ratio g = u’/u is called the angular magnification; g takes
the same value for any pair of rays, respectively, going through A and A’.
To a given value of g is associated one, and only one, pair of conjugate
points.

e The Lagrange-Helmholtz invariant (see Figure 3.33): If equation (3.5) is
successively used for the different interfaces of a centered system, it is
seen that the product nABu keeps a constant value from interface to
interface, so it is called the Lagrange-Helmholtz invariant,

nABu = nyAyByuy, =n’A’B'u/’. 3.7

3.5.2. Cardinal Elements of Centered Systems

A conjugating equation is an equation between the positions of two conjugate
points A and A’. Equation (3.6) is a conjugating equation, the coefficients of
which depend on the two points of reference S and S’; it becomes simpler by
a clever choice of the origins: if S and S” are conjugate points, SA and S’A’
cancel simultaneously, equation (3.6) becomes

SAS’A’+ 3SA+ yS’A’=0 or +2—+1=0. 3.8

Cardinal elements (points and planes) are special conjugate elements
playing an essential role for a centered system. The most important cardinal
elements are: focuses and focal planes on the one hand, and principal points
and principal planes on the other.
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Figure 3.34. Focal points and focal planes.

Focus and Focal Planes

A focus, or focal point, is conjugated with a point at infinity. A main focus is
the conjugate of a point at infinity in the direction of the axis; a secondary
focus is conjugate with a point rejected at infinity in any other direction.
All the different focuses are located in the same front plane, called a focal
plane.

Principal Points and Principal Planes

The correspondence between conjugate objects and image front planes is a
one-to-one correspondence; in the same way, the correspondence between
the values of the linear magnification y and a pair of conjugate front planes
is also a one-to-one correspondence.

Principal planes are the conjugate planes for which the linear magnifi-
cation is equal to y=+1.

The points H and H’ of intersection of the principal planes with the axis
are called principal points.

In the case of a thin lens, there is a kind of degeneracy, the two principal
planes are not separate and coincide with the plane of the lens.

Once the principal points of a system are known it’s easy to draw the
emerging ray associated to some incident ray. Let I be the intersection point
of the incident ray with the object principal point, the emerging ray will inter-
sect the image principal point at a point I’ having the same ordinates as I:
HI=HT.



3.5. Centered Systems Under Gauss Conditions 117

Focal object Principal Principal Focal image
plane object plane  image plane plane
o e me
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interface interface

Figure 3.35. Object and image principal planes. In this case the two principal planes
are virtual, since they are inside the system. I’ is the image of I.

Object focal length: This is the algebraic distance, HF =f, between the prin-
cipal object point and the object focal point.

Image focal length: This is the algebraic distance, H'F' = f’, between the
image principal point and the image focal point. In the absence of other indi-
cations, the distance focal of a system is its image focal length.

There are two focal lengths, f and f”, starting from the Lagrange-Helmholtz
equation and it can be seen that the two focal lengths fulfill the following
equation:

S__ S (3.9)
n n’
If the input and output mediums have the same index of refraction, the

image and object focal lengths are equal: = —f".

3.5.3. Image Construction in a Centered System
3.5.3.1. Image Construction Using Cardinal Elements

To obtain the position of the image from the position of the object, we could
use the basic homographic relationship (3.8); the three parameters ¢, B, and
Y can be obtained from the optogeometrical characteristics of the different
spherical interfaces, although very tedious this method can be used with com-
puters. Very often it will proceed in another way, three couples of conjugate
points will first be directly determined; then by writing equation (3.8) with the
coordinates of those three couples of points, three equations are obtained,
from which ¢, 8, and y may be calculated. From a practical point of view,
things are even simpler, the three couples of conjugate points are:

Point object at infinity <» image focal point.
Object focal point <> point image at infinity.
Principal object point <> principal image point.

It will not be necessary to determine ¢, 3, and ¥ since geometrical
constructions will be proposed to obtain the image of an object. For
constructing the image of some point object B located out of the axis, see
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Figure 3.36. Ray tracing using principal planes and focal points. In the absence of
further indications about the system, only the lines supporting the rays can be drawn.
This is the reason why, inside the system, the rays are represented by dotted lines,
since it cannot be known which parts are real or virtual.

Figure 3.36, the two following rays are considered:

e Incident ray parallel to the axis — emerging ray going from point I’ belong-
ing to the principal image plane and having the same ordinate as B to the
image focal point F”.

¢ Incident ray going from B to the object focal point F' and intersecting the
object principal plane at some point J — emerging ray parallel to the axis
and at the same distance from the axis as J.

3.5.3.2. Newton’s Equations

Two different origins are chosen: the image focal point F” for the image and
the object focal point F' for the object. Expressing the similarity of the trian-
gles ABF and HJF on one hand and of H'I'F’ and A’B’F’ on the other, and

noticing that AB = IH = I'H" and A’B’ = H'J' = HJ, we obtain
AF H'F’
— = FAF'A’=FHF'H’ = ff". 3.10
T i) (3.10)

3.5.3.3. Descartes’ Equations

Two different origins are also used: the principal object and image points H
and H'. Starting from the Newton equations, using the equalities FA = FH +
HA, FA'=FH + HA’, and f/n = —f’'/n’, we finally obtain
Lol woaw
P v pr f

—% with HA=pand HA =p’. (3.11)

3.5.3.4. Magnification

Linear magnification: This is the ratio of the size of the image to the size of
the object,

piw _np (3.12)

4

AB f FA ~
p/n  w p

AB ~FA f

G]jnea.r -

- Glinea.r = _%% =
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Angular magnification: Let u and «’, respectively, be the angles with the
axis of an incident ray and of the associate emerging ray, the angular magni-
fication is the ratio Ggu. = %”/u. Thanks to the Lagrange-Helmholtz equation
(3.7), the two different magnifications are easily related to one another:

n p

Ga.ngularGlinear =— - Gangu]ar = (3 13)
n

As illustrated by rays AK and K’A’ the linear and angular magnifications
have the same signs.

Axial magnification: This third magnification is not as useful as the other
two. Given two object points A; and A, belonging to the axis, let B, and B, be
their respective images, the axial amplification is the ratio G, = B By/AA,,
its value can be obtained by differentiating Descartes’ equation (3.11):

2
dp” n ( p’j n
Gaxi = =" :_Ginear' 3.14

. dp n'\p no 31D
The axial magnification is always positive, which means that an object and

its image always move in the same direction along the axis.

3.5.4. Matrix Methods for Centered Systems

The problem is to follow a light ray as it propagates across the system and is
refracted from the different interfaces. In order to reference a light ray we
must have an indication about its position, which needs the two coordinates
(x, y) of the point of intersection with a given front plane and we must also
have an indication about its direction, which needs the two angles (u, v) that
makes the axis with the two projections on two orthogonal planes (Oxz and
Oyz). The situation is illustrated in Figure 3.37.

A
Z
0 >
Axis of the system
y
AB =skew ray O, AB = meridional ray O,
(doesn’t intersect the axis) (in a plane containing the axis)

Figure 3.37. To reference a ray, a point and a direction are needed. In the most
general case, two coordinates and two angles are required. The case of a meridional
ray is simpler, one coordinate and one angle are sufficient.
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A A
V=

Figure 3.38. Trajectory of a light ray propagating across a centered system. The path
of the light is made of segments joined along the different interfaces. If the initial ray
is in a plane containing the axis, because of symmetry all the refracted rays will remain
inside this plane.

3.5.4.1. Ray’s Equations Are Linear and Homogeneous
Versus Angles and Positions

For the sake of simplicity we will only consider rays that belong to a merid-
ional plane. Figure 3.39 indicates the notations we use, (P;) and (P,) are two
standard front planes and, in general, they are not conjugate through the
system. We start from the input parameters (u,, ;) and we would like to obtain
the output associate parameters (u,, 13). The angles being small (Gauss con-
ditions), the sine law is replaced by the Kepler law. The relations between «
and 7 are thus linear, furthermore, if %, and r, are equal to zero, u, and 7, are
also equal to zero: the relations must be homogeneous. Under such conditions
the use of matrices is very appropriate.

The matrix elements are determined by two considerations: on one
hand, by the special centered system under consideration and, on the other

vy =0+ fuy,
L] = S
| Uy =Y1 +O0Uy,
7’1 My2) ) 2

Py) / P, > Z ) :(3 g)(; ) (3.15)

@) [;2 j - (Mlz)(:j )
2 1
Y n
’ (o=} )
r (M )] r X2 |(M73) " "
" 7 o (udj :(MZS)(MZ} (3.16)
\ ) = () )(”)
(b) uy) M), )

Figure 3.39. Definition of a matrix connecting two front planes (P;) and (P,). The
matrix of cascaded systems is the product of the matrices of the different elements.
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2/' The space between (P;) and (P,) is homogeneous and has no
L interface; a ray is just propagating straight on.
— 1 4
— r _
r ’ REfrL (’"2):(1 dj(”). (3.17)
| Uy = Uy, U, 0 1)\
P1) (Pp)
d
Transfer matrix
Figure 3.40. Matrix of transfer.
Hn=n
. roo, .
N =Nyly, O=—, 4 =U+Q, ¢=uUy+iy,
i (i P
1
u (AN K > u2=Tl( —ﬂ)—u n—l,
1 s c X PL TR T

" " K _ R 1
1 2 (uz)_( 12)(’11,1)’

SC = p, radius of the spherical 1 0
interface. (Ryy) = [l(l_ﬂj_ﬂ} (3.18)

Matrix of refraction p Ny ) My

Figure 3.41. Matrix of refraction.

hand, by the positions of the two planes (P;) and (Ps), their values are deter-
mined by the laws of geometrical optics.

Refraction produces a discontinuity for the directions of the rays, but not
for their positions. The two planes (P;) and (P,) coincide with the interface:
(P)) can be considered to be “just” before, and (P,) “just” after the interface.
(Ry2) is called the matrix of refraction.

3.5.4.2. Matrices for Skew Rays

The result given in Figure 3.42 for a transfer matrix is quite general: the two
sets of variables (x, ) and (y, v) follow matrix equations that are identical to
the equations obtained for meridional rays. The two sets can be treated simul-
taneously by introducing the following complex variables:

e  Complex coordinate: r* = (x + jy). (3.19.a)
e  Complex angle: 6 = (u + jv). (3.19.n)
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Uy = Uy,
XIA XZA
ﬂué 7')1 = 7_)2,
%/' %y =% +u,0,0, = 2, +u,d,
a1 p
Py O/( 2 o Yy =Y +1,0,0, =y, +v,d,
' — ()l D)
L uy) 0 1\w )
T,

Coon (46 1)

Figure 3.42. A skew ray is projected onto the two planes of coordinates, the set of
variables (x, w) and (y, v) describing the two projections obey the same matrix law as
a ray belonging to a meridional plane.

Of course we have the following equations:

x =Re[r*], j=Im[r*], w=Re[0*%], v=Im[6*]

Optical Angles

Optical angles are introduced to simplify the different matrices. The matrices
are all unitary matrices, i.e., matrices having a determinant equal to unity. The
main interest is that the product of unitary matrices is also a unitary matrix.
For a given ray, an optical angle is equal to the usual angle multiplied by
the index of refraction of the transparent medium inside of which the ray
propagates.

e  Usual angles: u and v.
e Optical angles: nu and nv. (3.20.a)
e  Complex optical angles: n6* = n(u + jv). (3.20.b)

3.5.4.3. Matrix of an Association of Centered Systems

The propagation of a light ray across the four interfaces of the system of
Figure 3.43 is obtained by the product of transfer Tj; and refraction R;
matrices,

re rf r¥
=Ty RysTis Roa T3y Ros Tos Ry T =M ) (3.21.a)

nug il

M = 71561345714513347;’:4}3237'2313127112 . (321b)
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Figure 3.43. Optical centered system made of four spherical interfaces. The
respective refractive indices of the first and last transparent mediums are equal to n
and n'.

3.5.4.4. Matrices of a Centered System

We consider a centered system where the two extreme mediums have the
same index of refraction. The two focal lengths have equal absolute values.
The image focal length will be called H'F = f. The elements of the matrix con-
necting the object to the image principal plane are evaluated in Figure 3.44.

In Figure 3.45 are evaluated the elements of a matrix connecting two
planes having no special positions and, respectively, located at distances equal
to d; and d, from the object and image principal planes.

It should be noticed that all the previous matrices are unitary. In this type
of calculation great attention should be paid to the homogeneity of the expres-
sions: some elements are homogeneous to a length, while others have dimen-
sions of the inverse of a length.

3.5.4.5. Vergence—Matrix of Conjugation

Given a centered system, any pair of planes (A) and (A”) is associated to one,
T le)

and only one, matrix which can be written as T, =(
Ty T

1 L HI=n, HT =1, - 1,=n1+0, u=n,
= K K Uy u—HK_Tl
e )
) > HF f
F H 2 F W HE 5 HE 1
Uy = =- =——+u,

S S S
H'F’ = —HF = f=focal length, (1 0 599
(HI) and (H'I') = principal planes. HH _(_1/f 1)' (3.22)

Figure 3.44. Matrix connecting the two principal planes of a centered system.
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’ 1 0
”]I : (A') Taa ((1) dlzj(_% 1]((1) dll}
ry K X W &;‘
(AF H lig d. d,d.
d, d, _ (1:172) (dl Eldi ﬂ)lfz). (3.23)
S S

Figure 3.45. The matrix connecting two planes is equal to the product of the matrix
between the two principal planes by two transfer matrices.

It can be seen that the element 7T, has the same expression, Ty, = —1/f,
for the two matrices T, and Ty (see formulas (3.23) and (3.24)). This is a
general property that will be admitted: whatever the two planes (A) and (A”"),
the matrix element 75, is an intrinsic parameter of a centered system.

By definition, the vergence of a centered system is equal to V = —T5,.

In the general case where the input and output indices, respectively, n and
n’, are different, it can be established that V is related to the focal lengths

’

n _ n
ﬂ)bject .f;mage

The vergence is homogeneous to the inverse of length and is measured in
m™!; opticians have given a special name, diopier, to this unit.

(3.24)

Matrix of Congugation

When two planes (A) and (A”") are conjugate planes, the matrix C,, is called
the matrix of conjugation, the matrix elements then have special physical
meanings that are given in Figure 3.46. Let us consider an object AB and its
image A’B’, and let (r, ) and (+/, ") be the two couples of parameters that,
respectively, describe an incident beam and the associate emerging beam,

r

el e Ko=)

CZI(AA’)
v = CH(AA/)T + CIZ(AA')u:

Since B’ is the image of B the value of v cannot depend on the orienta-
tion of the ray, thus the matrix element C},(AA") is equal to zero.
C11(AA") = ¥/r is nothing other than the linear magnification Gy, associ-
ated to the couple of conjugate planes (4) and (A”").

CIZ(AA’)

Cosganr
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B A’B’ B w
linear — H’ angular — Z’
Gy 0
C :( linear ) (325)
( (AA)) -V Gangula.r

Figure 3.46. Matrix of conjugation.

u/ = CZI(AA')T + CzZ(AA')u =-Vr+ Gangumu:

e We have seen that C,, is equal to the vergence.

e To have an interpretation of C,,, we consider the case where point A is on
the axis: =0 — Cy =u'/u. C55(AA") = u’/u is seen to be equal to the angular
magnification, Gaguar, associated to the two conjugated planes.
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Thin Lenses

3.A.1. Lens Considered as a Prism
Having a Variable Angle

Let C,, C\S; = R, C,, and C,S;| = R,, respectively, be the centers and the radii
of curvature of the two interfaces. B and B’ are two conjugate points. We use
the following notations: I}J, = IJ; = r, OB = p, and OB’ = p’, as well as the
geometric indications given in Figure 3.A.1. The lens can be considered as a
prism with an angle A, which would vary proportionally to the distance » to
the axis. A ray is all the more deviated so that it hits the input interface at a
point located farther from the axis. The angles being small, we use the law of
Kepler to evaluate the deviation of the ray B,I; — D = (n — 1)A, we obtain

?_;=(n_1)(—+—j=—. BAD

C,S,=R,, C,S, =R, r=IJ,=IJ,

A r A r

Cz—, Cyz=z—,
1 R, 2 R,
B’EL,, éz—i,
D D

Figure 3.A.1. For the light ray B,I,I,B; the lens is equivalent to a refracting prism of
the same index and having an angle A equal to the angle of the two planes that are
tangent to the interfaces at points I; and I,. As the lens is considered to be thin, the
points Sy, Ji, J5, and S, coincide.

126
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Figure 3.A.2. An incident beam propagates 4
parallel to the axis and is focused by a plano- A L) c

convex lens. The part of the optical light path

which is inside the glass, is longer if the light |O H| |H >
propagates nearer to the axis: the vibration at F\;
point C is in advance with regard to the vibration
at point H.

o NY

In formula (3.A.1) the radii of curvature are positive for convex interfaces,
and negative for concave interfaces. The distances to the origin O are alge-
braically measured along the axis that is oriented in the direction of propa-
gation of the light. In the example of Figure 3.A.1, the focal length f = OF" is
positive, corresponding to a converging lens.

3.A.2. Lens Considered as a Phase Correcting Device

The lens of Figure 3.A.2 receives a planar wave having its wave planes orthog-
onal to the axis. A light beam propagating parallel to the axis, respectively,
intersects the input and output interfaces at points A and B. (H) is a plane
orthogonal to the axis at the point H of intersection with the spherical inter-
face, C is the point where the emerging beam intersects the plane (H).

The input planar interface coincides with a wave plane of the incident
beam. Along the plane (H) the phase of the vibration is not constant since the
delay is not the same at point C or at point H: the emerging wave is no longer
a planar wave. The distance between A, B, and C is of the order of a few
micrometers, if we just think of the positions or of the directions of the rays,
only a small error is made by assuming that the three points are at the
same place. On the contrary, if we want to compare the phases of the vibra-
tions, we must be more careful, since in Optics, several micrometers repre-
sent several wavelengths and a phase difference of several times 2.
This problem was studied in Section 2.6.4.2 and formula (3.A.1) was already
established.

3.A.3. Matrices for the Association of Thin Lenses

To study a system made of a succession of cascaded thin lenses it is con-
venient to have the expression of the matrix 77+ connecting the plane (H")
located “just before” the lens, with the plane (H") located “just after.” A thin
lens is nothing other than a centered system in which the two principal planes
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coincide, the matrix 77+ has already been calculated and is given by formula
(3.22) of Section 3.5.4.4
1 0
T, = _l 10
J

Association of Two Lenses

________ d A (1 0yl 0yl d
T(OI’OZ*)_(—l/fQ 1)(0 1)(—0 1)
L NB o, :( (1-d/ ) d )
0, ft h/’ (A~ F,~ K/ ify) A-d[£))
Ay (3.A2)

Figure 3.A.3. Matrix connecting the plane (O,.) located “just before” the first lens,
with the plane (O,,) located “just after” the second lens. A matrix of transfer is inserted
between the matrices of the two lenses.

The Gullstrand Formula

The Gullstrand formula gives the focal length f of a doublet made of two thin
lenses. Recalling that the matrix element 73, is an intrinsic parameter of a cen-
tered system that is equal to its vergence, we may write

1 1 1 1 1 d Jifo
A

Thy=——=——""— > —=—+4—— and f=
Vo fimage S h h Nk
where d is the separation between the two lenses. A = F,'F; is the distance

between the image focal point of the first lens and the object focal point of
the second.

. (3.A3)

Periscopic Stability

In submarines, periscopes are (or were) long (several meters) pipes with an
objective at one end and an eyepiece at the other. If no special attention is
paid, even with low diverging beams (Gauss conditions), the diameter of the
beam can easily reach 0.5m .. .., which would require enormous lenses. The
solution had been to place a regular succession of converging lenses, as indi-
cated in Figure 3.A.4. The next problem is to ask if the light rays will remain
confined in the vicinity of the axis (the system will then be said to be stable)
or, on the contrary, if they will escape (unstable system). Thanks to TV
cameras, periscopic stability is now quite obsolete for submarines, however
it remains up to date for particle accelerators, where the accelerated charges
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Figure 3.A.4. Unstable system. Starting with the fifth lens the light rays fall outside
the lens, furthermore, they would surely not fulfill Gauss conditions.

Figure 3.A.5. Stable system. The light rays oscillate on both sides of the axis.

should remain in the close vicinity of some average trajectory. An interesting
application is also to be found when studying the stability of a laser resonator.

The arrangements of Figures 3.A.4 and 3.A.5 are made of a periodic suc-
cession of identical elementary patterns; usually a pattern will be made of two
converging lenses of respective focal lengths, f; and f;. A matrix T of the kind
given by formula (3.A.2) characterizes each pattern. ,and u, are, respectively,
the distance to the axis of the point where the first ray hits the first lens and
the angle of the ray with the axis; 7, and u,, are the same parameters for the

emerging ray, we have
( T j — ()" ( o ) (3.A.4)
Uy, o

where T" is the matrix obtained by elevating the elementary matrix 7' to
the nth power. It is shown in mathematics that 7, and u, can be expressed
using the eigenvalues, A; and A,, of the matrix 7, the following formulas are
obtained:
.= oAl + A3, wu,=7YAl + 045, «a, B, ¥, and § are from the initial values
7o and .

. . A B
The matrix is written T = .
C D
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A B
Its determinant HC DH =(AD - BC)=1is equal to one since the matrices

are unitary.
The eigenvalues are obtained by cancelling the following determinant:
H(A -A) B

C

(D-2) =0 > X +(A+D)A+1=0. (3.A5)

Since its coefficients are real, the solutions of equation (3.A.5) are complex
conjugate, their product is equal to one, and their sum is equal to (A + D) and
thus real. The following two situations may be encountered:

e The two solutions are real, the absolute value of one of the solutions is
necessarily larger than one, A;, for example; A goes to infinity if n
increases indefinitely: the system is then unstable.

e The two solutions are complex conjugate, their modules are equal and
equal to one; they may be written as e*’°. After some algebraic manipula-
tions it is obtained that 7, = a’cosn6 + ff’sinn6 and u,, = ¥’ cosnb + &’sin
no.

u,, and 7, no longer go to infinity, the system is stable.
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Optical Prisms

3.B.1. Definition and Description of Optical Prisms

Optical prisms are components that are commonly met in optical experi-
mental arrangements and optical instruments; so far their main role has been
to disperse the light in spectrometers, now they have been universally
replaced by diffraction gratings. However, they remain very important in
changing the direction of a beam, thanks either to refraction or, more often,
to total internal reflection. Following the mathematical definition an optical
prism is a triangular-based prism. The sides are carefully polished with a pre-
cision of the order of a small fraction of a micrometer (a good standard is
A/10 of the sodium wavelength). The precision of the angles is usually of one
minute; once a prism has been polished the angles can be measured with
extremely high precision (one second).

Optical prisms are very often cut from a piece of glass. For a given trans-
parent material the knowledge of the index of refraction is very important.
The more accurate method of measuring the index of refraction is to fashion
a prism with the medium under consideration, and to measure the angle of
deviation of a parallel monochromatic light beam. Index measurements using
a refractometer are very accurate and easily give the value of refractive
indices to five figures.

3.B.2. Light Propagation Inside a Prism
Demonstrations concerning the formulas that govern the propagation of light

in a prism rely on rather simple geometrical considerations and will not be
given here.

131
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AN —’AA—’
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The prism is used for deviating the light by | The beam is totally reflected on the bottom
refraction on the sides BAFE and CAFD. side BCDE.

Figure 3.B.1. Two typical propagation schemes inside a prism.

Conditions of Emergence for a Light Ray

The constructions in Figure 3.B.2 are valid only if the angle of incidence 7
on the second side of the prism is smaller than the critical angle C = sin™'(1/n).
The conditions for a light ray to emerge after having been refracted twice are
indicated in Figure 3.B.3.

Minimum Deviation

We refer to Figure 3.B.4, it’s important to notice that the bisecting plane of
the angle A is a plane of symmetry for the prism. To a given angle of incidence
1 is associated an angle of emergence 4’ and an angle of deviation D; because
of the principle of reversibility and because of the symmetry, if the incidence
angle on the first side is made equal to ¢/, then the angle of emergence is equal
to 7 and the deviation has the same value in both cases. Finally, there are two
values of the angle of incidence that give the same deviation and, conse-
quently, the deviation should exhibit a maximum or a minimum for some value
iin Of the angle of incidence. It's a minimum D, that is obviously obtained

sini =nsinr,

siné’ =sin7”,

A=K=r+7/, (3.B.1)
D=i+i-A,

r’ <sin~1(1/n).

Figure 3.B.2. Ray tracing in a prism. The deviation is the angle D of the prolongation
of the incident light ray with the emerging ray.
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) 6) &
sin C = 1/n,
C = critical angle.
(@) (b) ©

A ray will emerge through the second side of the prism, | If A > 2C, because of total
under the condition that #" < C, which is possible only if | internal reflection, no ray is
A’ £2C. All the incident rays that give a ray inside the allowed to emerge through
prism which is not totally reflected are inside the the second side of the prism.
hatched triangles.

Figure 3.B.3. Conditions of emergence through the second side of a prism.

when the light ray inside the glass is orthogonal to the bisecting plane. When
the deviation is minimum, we have

A
. . ’ . .
Umin = Umin = Tmin = Tmin =5 — Dmin = (lmin + Umin — A)7

2
_ (A + Dmin )
2 (3.B.2)
sin(iA * Duin j
2 )

n=
sin(éj
2

Equation (3.B.2) is quite useful for very accurate determinations of the
index of refraction, since the determination of the minimum is very sensitive
and since angular measurements can be extremely accurate.

Figure 3.B.4. Ray path in a prism at the minimum
deviation; the figure is symmetric with respect to the
bisector plane.
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s0° F2 Figure 3.B.5. Variations of the devia-
A=80° tion versus angle of incidence for
different values of the prism angle.
n=32 60° k When the angle A is small the deviation
\ A =60 is almost independent of the incidence.
Tage |\
A =10
A =30°
-90° 0 90° i

In Figure 3.B.5 have been drawn the variations of the deviation versus the
angle 7 of incidence on the first interface. For each value of the prism angle,
% can vary from the value 7,to which corresponds a grazing emergence (i’ =
90°) up to a grazing incidence (7 = 0). The tangent is vertical for 7 = 7,, and
makes an angle of 45° with the axis when ¢ = 90°. When the prism angle is
small (A < 10°) the Snell-Descartes law is replaced by the Kepler law, the devi-
ation is then almost independent of the angle of incidence and is given by

D=(n-1A. (3.B.3)

Prism Spectrometer

In Figure 3.B.6 is shown the scheme of a spectrometer where the light is dis-
persed by a prism. A light source emits two rays of different colors (4,, 1)
and is placed in front of a thin slit disposed in the object focal plane of a
collimating lens. The prism receives a beam of parallel rays and gives two
parallel beams of different colors and different directions. The second lens
focuses these two beams at two different secondary focal points.

3.B.3. Reflecting Prisms

Reflection is very convenient for changing the direction of a beam. Rather
than a plane mirror, it is often preferred to use reflecting prisms; first because,

Photographic plate or
array of photodiodes

Slit\ A

Light Q \ S A— F
source F 2

Figure 3.B.6. Principle of a spectrometer using a prism.
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Reflection on the hypotenuse side Porro prism Corner-cube prism

\
N\

(@) (b) (©
Figure 3.B.7. Optical prisms.

A

in the case of total internal reflection, the reflection coefficient is very close
to unity, whatever the wavelength, which is not always the case with ordinary
mirrors. And second, because maintenance is less severe in the case of a prism
since the reflection occurs inside the glass, whilst the surface of a mirror is
quite sensitive to dust and atmospheric pollution hazards. Opticians have
been very imaginative in conceiving many different schemes using prisms; we
will describe only a few of them.

Under the conditions of total internal reflection, the phase shift between
the incident and reflected beams is not the same if the electric field is paral-
lel, or orthogonal, to the plane of incidence. A polarization, which doesn’t
coincide with one of the previous directions, will be modified after total inter-
nal reflection: a linearly polarized light beam will, in general, give an ellip-
tically polarized reflected beam.

The cross section of the prism of Figure 3.B.7(a) is a right angled isosce-
les triangle, total internal reflection occurs on the hypotenuse: incident
and reflected rays are symmetric with regard to a plane orthogonal to the
hypotenuse; in the case of normal incidence on one side of the right angle,
the incident and reflected beams are orthogonal.

The prism of Figure 3.B.7(b) also has a right angle and isosceles triangle
cross section; the emerging beam leaves the prism after two total internal
reflections. The path followed by the ray is very familiar to billiard players: if
rays propagate in a cross section, the reflected and incident beams are par-
allel. This property is not true outside a cross section.

The arrangement of Figure 3.B.7(c) is called a corner cube prism. It is a
generalization of the Porro prism, three reflections, one on each side, are
involved. The interesting property is that retrodirectivity is achieved, what-
ever the incident beam.
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Gradient Index Devices—Light Optics and
Electron Optics

When traveling inside a volume where the electric and magnetic fields are
equal to zero, an electric charge follows a rectilinear path. The existence of
a nonconstant electric voltage, which creates an electric field, bends the tra-
jectory. In the same way, a light beam is rectilinear in a material where the
index of refraction is constant and is bent in the presence of a gradient index.
W.R. Hamilton first pointed out the analogy between optical rays and electric
charge trajectories in 1831. For about one hundred years this “Hamiltonian
analogy” was considered as a remarkable aesthetic curiosity and it was only
in 1925 that H. Busch got the idea of using electric and magnetic fields to focus
beams of charged particles. Since then, electron optics and, more generally,
the optics of charged particles, was born; almost immediately the method of
geometrical optics was transposed to electron optics, especially the matrix
analysis of centered systems.

It was also around 1920 that Quantum Mechanics was invented. E.
Schrodinger took advantage of the Hamiltonian analogy to obtain the approx-
imations that are required to reduce Wave Optics to Geometrical Optics;
then he suggested that the relationship between Quantum Mechanics and
Classical Mechanics involved the same kind of approximation. De Broglie’s
wavelength, in Mechanics, plays the same role as the optical wavelength in
Optics. As early as 1940, electron microscopes and accelerators of particles
were available.

In spite of the theoretical identity between the optics of light rays and the
optics of beam particles, the associated technologies are completely differ-
ent. While light propagates just as easily in a vacuum or in air, beam particles
require a high vacuum. In both cases microscopes can be fabricated, giving
maghnified images. In both cases the ultimate resolution is fixed by the wave-
length. The value A of De Broglie’s wavelength is obtained from the energy of
the particles and, in the case of electrons, is given by (3.C.1), where ¢ is the
accelerating voltage

2"an strom — [ . . 3.C.1
’ 2m¢ (bvolt ( )

136
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In microscopes, ¢ = 10°-10° V, the theoretical resolution is smaller than
1 A. Of course the image is spoiled by geometric and chromatic aberrations.
The chromatic aberrations come from the fact that all particles don’t have
exactly the same energy. The correction of the geometric aberrations, which
have the same origin as the usual optics of light rays, is more difficult in the
case of electron microscopy.

3.C.1. The Eikonal Equation

The eikonal equation governs the propagation of light rays in a gradient index
material, which means that the index of refraction is not constant and varies
with position. To be fair, the eikonal equation (from the Greek, eikov =image)
is not very convenient; its main interest comes from the fact that it empha-
sizes the approximations that are made when Wave Optics is reduced to Geo-
metrical Optics. We will not develop in great detail all the calculations, which
can be found in the book, Principles of Optics by Born and Wolf.

We start with Maxwell’s equations. The dielectric and magnetic constants
£ and u are not constant and vary in function of z, y, 2; however, they are sup-
posed to vary slowly at the scale of the wavelength. We are looking for a har-
monic solution that is different from a planar wave solution. The electric and
magnetic fields are written as

{E(r H=ee JkoS(r)ert

H, , =R e 750l with & =o]c,

where e, and h, are unknown vectors; S(r) is an unknown scalar, which is
called the optical path. After some calculation, the following expressions are
obtained:

K(e,5, n)—%L(e, 8,m, 1)+ — Heen-0 6o
J

(Jko
where

K(e, S,n)=(n*~(gradS)’)e, n is the index of refraction, (3.C.3)

L(e, S, n, u) = (grad S grad(log 1) — V>S)e
—2(egrad(logn))grad S —2(grad S grad)e,

M(e, &, 1) = curl e A grad(log 1) — Ve — grad(e grad(log €)).

The only pleasant thing about the above formulas is that, in the case of a
homogeneous medium, the gradient’s terms vanish and they coincide with
those of the homogeneous case.

If I/k, = Ay/21 is considered to be very small, formula (3.C.2) is a serial
development. The geometrical approximation consists in omitting the small
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X

!\
v!\l

Figure 3.C.1. Bent light ray in an inhomogeneous medium.

terms of the series; in other words, Geometrical Optics is the limit of Wave
Optics when the wavelength goes to zero. Equations (3.C.2) and (3.C.3) then
become

K(e,S,n)= (nz —(grad S)Q)e =0,
2 2 _
n® —(gradS) =0, (3.0.4)

n =|grad S|, eikonal equation.

Direct Demonstration of the Eikonal Equation

We refer to Figure 3.C.1 on which we have drawn:

e A light ray (I') going from point A to point B.
e Two points M and M’ belonging to (I).
e The surface (X) of constant index containing point M.

By definition of the optical path S(r) we have S(B)-S(A)= an ds, s is

the curvilinear abscissa, measured along the light ray, which is bent when the
propagation material is not homogeneous. The variation dS of the optical
path, when going from M to M’, is given by dS = grad S dru (u is a unit vector
perpendicular to (X) at point M). As dr may have any orientation, it is con-
cluded that

nu=gradS — mn=|gradS|. (3.C.5)

3.C.2. Differential Equation of Light Rays

The main difference between the propagation in homogeneous and inhomo-
geneous materials is that in the last case the light rays are bent, instead of
being rectilinear. This property obviously comes from the Fermat principle.
We describe some experimental demonstrations of this phenomenon.
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Salted water

S

Figure 3.C.2. Propagation of light inside a gradient index material. The tank is filled
with salted water, the concentration increases with depth, diluted near the surface and
saturated at the bottom. The index of refraction varies from 1.33 to 1.38. An incident
horizontal light ray is bent toward the region of higher index. A6 is about 10°.

sk

*‘\ Apparent position of the star

Figure 3.C.3. Stellar aberration due to the
gradient index of the atmosphere. The index
of refraction increases from one at the upper
limit of the atmosphere up to 1.0003 at the
surface of the Earth. A6 is typically of 1min,
which is much larger than the accuracy of
usual astronomic measurements.

Atmosphere

Sun or
other star

Figure 3.C.4. Deviation of a light ray by a heavy mass. According to the General
Theory of Relativity the presence of a heavy mass modifies the property of the
surrounding space and especially the index of refraction. A light ray coming from some
star is deviated when passing in the neighborhood of the Sun. According to the fact
that the light travels on one side of the Sun or on the other, the sign of the deviation
is changed. A@is very small (seconds), but still measurable, which comforts the theory
of General Relativity.

At Grazing Incidence Total Internal Reflection
May Occur on a Gradient Index

When the surface of the Earth is overheated by the Sun, the temperature of
the soil is often much higher than the temperature of the air layers that are
just above. As a consequence, an important gradient of temperature and, cor-
relatively, a gradient of air density, and finally of an index of refraction are
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Figure 3.C.5. Bending of rays through the
heated layers of air produces a mirage. The
observer sees a palm tree and its image on a
planar horizontal mirror. Planar mirrors that
are most commonly met at the surface of the
Earth are ponds or lakes; the step is narrow to
dream of the presence.

M Figure 3.C.6. Tar on the road, locally heated

|0_m_(_%/ by the Sun, produces a kind of mirage. The
corresponding mirror is far from perfect.

ITonized layers of
the atmosphere

—

A B
Earth

Figure 3.C.7. Reflection of radio waves by the ionized layers of the atmosphere. The
upper layers of the atmosphere contain charged particles (ions and free electrons) that
can be set in motion by the electromagnetic field of the wave. The plasma frequency
is much lower than the frequency of a light beam, which propagates without inter-
acting; the situation is different for radio waves, for which the index of refraction of
this part of the atmosphere is quite high. Thanks to total reflection, links are possible
between removed points for which a direct communication is not possible.

generated. Light rays may be deviated and possibly totally reflected, see
Figures 3.C.5 and 3.C.6.

We refer to Figure 3.C.8; x, y, z are the respective unit vectors of the ref-
erential Ox, Oy, Oz. We consider a point M belonging to a light ray (OM =r
=xX + yy + 2z); s is the curvilinear abscissa of M. u is the unit vector of the
tangent to the light ray at point M where the local index of refraction is equal
to n. We start from equation (3.C.5) and calculate the derivative of nu, with
respect to s.
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Lightray A Center of curvature
of the light ray
C
Tangent to the ray at M
Tangent to the ray at (M + dM) di L di/ R
M
Surfaces of constant n
index n+dn M+ dM
i+di

Figure 3.C.8. Propagation of a light ray in an inhomogeneous material. We have
drawn the two planes that are tangent to the surfaces of constant index (respectively,
n and n + dn). The light ray is bent and intersects the index surfaces at points M and
M. C and R = CM are, respectively, the center and the radius of curvature of the ray
at point M.

According to (3.C.5), we have nu = grad S (S is the optical path),
S as dS )

% X+ @ y+ E Z |,
aS as d(0dS aS\dr
d(g) = grad(gj dr — d—s(gj = grad(gjg,

dr d(dS aS dS\[1
ds u - E(%j = grad(%ju = grad(%j[% grad S}

After development of the scalar product we obtain

1
%(3—5) = %8%(%2) = g—z and similar expressions for y and z.

d(nu) _ d

d
ds ds (grad $) = E(

Finally, the differential equation of a light ray is

d an _ dn_ dn
—(nu)=| —x+—y+—
ds

e 9y E zj = grad(n). (3.C.6)

In a homogeneous medium the index of refraction is constant and the
gradient is equal to zero: (d/ds)(nu) = n(du/ds) =0 — u = constant — the light
ray is a straight line.

The Snell-Descartes Law of Refraction in an Inhomogeneous Medium

In an inhomogeneous medium the surfaces of the constant index of refrac-
tion play the same role as the interfaces in homogeneous media. We refer to
Figure 3.C.8; let us call u; and u,the unit vectors of the tangents to the ray,
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respectively, at points M and M’, and call N a unit vector orthogonal to the
surface of constant index. After integration of equation (3.C.6) from M to M,
we obtain

(n+dn)u, —nu, = N grad(n)ds,
and after projection on the surface of the constant index,

(n+dn) sin(i +di) = nsini. 3.C.7

Radius of Curvature of a Light Ray

We consider a curve, a light ray, for example, and some point M of this curve.
Let u be the unit vector of the tangent to the curve at point M. The derivative
of the vector u with regard to the curvilinear abscissa s is a vector that is
orthogonal to u and which defines the direction of what is called the princi-
pal normal to the curve. The center of curvature C is located on this princi-
pal normal at a distance of M equal to the radius of curvature R = CM. For
any curve, we have the following formula:

d
d—u = % (v is the unit vector of the principal normal),
s

from (3.C.6), we obtain

dn n
Y + ke grad(n). 3.C.8)

After scalar multiplication by v, we have

dn n
——v=vgrad(n). 3.C.9
s RV (n) 3.C.9)

As a radius of curvature is always positive, the angle of the vector v with
the gradient is smaller than 90°, which implies that the concavity of a light
ray is on the same side as the gradient. If 7 is the angle of incidence on the
surface of constant index, the radius of curvature is given by

1 1dn

—=———tanu. (3.C.10)
R n ds

3.C.3. Centered Optical System with a Nonconstant
Index of Refraction

We refer to Figure 3.C.9 and consider a medium that is not homogeneous but
has a radial symmetry around the Oz axis. The index of refraction is a con-
tinuous function of the coordinates. In such material the notion of rays is,
of course, still valid; however, the rays are no longer rectilinear. A point M



Annex 3.C. Gradient Index Devices 143

Figure 3.C.9. Refraction of a light ray on
a surface of constant index, which is
assimilated to the osculating sphere at
point S (center I, radius p = I'S = I'M). M
is the point of incidence; C and CM are,
respectively, the center and the radius of
curvature of the light ray. M is tangent to
the light ray. For the sake of simplicity the
ray is contained in a meridian plane. Surface of
constant index

belonging to a ray is referenced either by its three coordinates x, y, 2, or by
its curvilinear abscissa s measured along the ray. As we did in the case of
more usual centered systems made of successive lenses, we will restrict our-
selves to paraxial light rays that propagate in the vicinity of the Oz axis. For
the sake of simplification, we will only consider rays that are in a meridian
plane, with the following consequences:

e The tangent at point M intersects the Oz axis, point of intersection 2.
e The determination of the position of point M needs only two coordinates:
the abscissa z, and the distance 7 to the Oz axis.

The surfaces on which the index keeps a constant value (n(x, vy, 2) = con-
stant, surfaces of constant index) play a special role; in a sense, they can be
considered as analogous to interfaces between two transparent materials, of
respective indices n and n + dn. As we remain very near to the Oz axis, the
surfaces of constant index will be replaced by osculating spheres (center T
radius p). Because of the symmetry of the problem, the index is only a func-
tion of the two variables 7 and z; the law of variation along the Oz axis is
written as n(z), instead of n(z, » = 0). Let us call 7 the angle of incidence (see
Figure 3.C.9), because of symmetry it can be shown that the differential equa-
tion of a ray is

i(nﬂ)ﬁl—"i 0. (3.C.11.a)
dz\ dz) dzp

Changing slightly the notation by setting a(z) = n(z), b(z) = dn/dz, c(z) =
(1/p) dn/dz, we obtain

2
a(z)d—2+b(z)ﬂ+c(z) =0, (3.C.11.b)
dz dz

where a(z), b(2), and c¢(z) are functions of z, therefore the trajectories of the
light rays obey a second-order linear differential equation. The optical prop-
erties of the centered optical system are just a consequence of the mathe-
matical properties of the solutions of this kind of equation. We consider two
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specific functions u(z) and v(z) that are solutions of (3.C.12); any other solu-
tion can be written as

r(2) = Au(z) + uw(2), (3.C.12)

where A and u are two constants that are characteristic of the special
solution (which means the special light ray) under consideration.

Properties of the Light Rays in a Centered Optical System

The light rays that propagate inside a centered optical system make a family
with two degrees of freedom, as shown by formula (3.C.12). The number of
degrees of freedom is lowered to one if all the rays of a given family should
intersect at a given point A: the two constants, A and 1, should obey an equa-
tion characteristic of the point A.

We consider first the case where A is on the Oz axis (abscissa z = z), we
have

A v(21)

Au(z)+pv(z)=0 —» —= =k,(z)=constant V Aand u,
H u(z1)

where k,(z,) is a constant characteristic of point A. All the rays passing point
A have the same kind of equation 7(2) = ulk (zDu(2) + v(2)].

Let us now look for the abscissa of the different points at which the ray
again intersects the Oz axis, they are solutions of the equation

[k4(z)u(z)+0(2)] =0. (3.C.13.2)

This equation is the same for all rays that pass point A. The different solu-
tions of this equation correspond to the different intermediate images, A;, A,,
..., and to the final image, A’; which means that the system is stigmatic for
points A and A’.

We now examine the case of point C that is out of the Oz axis (coordi-
nates z;, 11). Two rays emitted by this point are, respectively, defined by the
two couples of constants (A, t,) and (4;, i), and their equations are

1,(2) = A u(2) + 1, v(2),

73(2) = Ayu(2) + 1y v(2), with 7, (21) =7 (21) =7

Object Final image

A/

Homogeneous
medium

Homogeneou

; Inhomogeneous medium
medium

Figure 3.C.10. Trajectories of different light rays emitted by the same object A. Aj,
A,, and A’ are images of A (intermediate and final images).
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Final image

Figure 3.C.11. Trajectories of light rays emitted by point C that is not on the Oz axis.

Let us introduce the auxiliary function
Par(2) = 7,(2) = 1,(2) = A u(2) + Uap0(2),

with A, = (A4, — A&) and u, = (U, — Up); Pap(2) is also a solution of the differ-
ential equation (3.C.12). As we have p,,(2;) = 0, the two constants A,, and L,
are related by

@ = —M =ka(2)).
Moy u(21)

The abscissas of the different points where the two rays intersect are again
solutions of the equation

Pav(2) = oy [u(2)k 4 (2) +0(2)] = 0. (3.C.13.b)

Equations (3.C.13.a) and (3.C.13.b) are identical; which means that the
images C,, C,, and C’ have, respectively, the same abscissa as points A, A,,
and A”: the optical system is thus stigmatic and also aplanetic. We are now
going to show that the linear magnification y= A’C’/AC keeps a constant value,
whatever the position of C in a plane orthogonal to the Oz axis. The linear
maghnification is given by

CACT u(zs)+kav(2)
r= AC  w(z)+kav(z)”

As the correspondence between z, and 2, is a one-to-one correspondence,
7 is characteristic of the couple of conjugate planes.

As a conclusion, the correspondence object <> image has exactly the same
properties for a gradient index centered optical system as for the more usual
centered system, made of a succession of spherical interfaces. As a conse-
quence, it will be possible to introduce the notion of cardinal elements (focus,
focal planes, principal planes, ...) and to obtain the Descartes and Newton
formulas.
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3.C.4. Optics of Charged Particle Beams

The purpose of this section is to show that the trajectories of charged parti-
cles, submitted to the action of an electrostatic field, obey an equation that is
identical to equation (3.C.11.b), and that the notion of cardinal elements
should be transposed to the optics of charged particle beams.

3.C.4.1. Differential Equations of the Trajectories

The electrostatic field under consideration is created by electrodes with radial
symmetry around the Oz axis. We admit that the particles remain in close
proximity to the Oz axis and that, as a consequence, the kinetic energy in a
direction perpendicular to Oz is negligible in comparison with the kinetic
energy parallel to Oz. For the sake of simplicity, we will only consider tra-
jectories that are in a meridian plane.

As long as the distance 7 to the Oz axis remains small enough, E.(r, 2)
remains constant and equal to E,(0, 2), which will be simplified as E.(z). The
radial component E,(r, 2) cancels for » = 0; a simple expression of E (7, 2) is
obtained, thanks to the Gauss theorem for electrostatics,

rJdE, 182V

E.(r,2)=—— =+ , Visthe electrostatic potential. (3.C.14)
2 dz 2 dz

The possibility of focusing a beam of particles is a direct consequence of
the fact that the radial component of the field is proportional to the distance
r. The situation is analogous to the action of a thin lens on an optical light
ray, the angle of deviation being proportional to the distance to the axis (see
Figure 3.A.1). The equations of the motion of a particle (charge q, mass m)
are

d’z av

ar T
m & g gV

a ~ T e

The differential equation of the trajectory is obtained after the elimination
of time. We take advantage of the fact that the radial component of the veloc-
ity is negligible as compared to the longitudinal component

1 (dz)z (dr)z 1 (dz)z dz [2qV
—ml|— |+ | |=om|— | =qV — —=4—.
2|\ dt dt 2 \dt a Vm

Using the identity
d*r d*r (dz)z dr d?*z
- = | — + —_——,
di?  dz*\ dt dz dt?
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we have

d*r dVdr rd*V
2V 2 dede 2 da? =0. (3.C.15)
Equation (3.C.15) is formally identical to equation (3.C.11.b) (second-
order linear equation). It is possible to show that if we replace the index of
refraction n by the square root of the potential in equation (3.C.11.b), we
obtain equation (3.C.15). We will give a direct demonstration of this
proposition.

3.C.4.2. Light Optics and Electron Optics Are Equivalent if n <> N

A grounded source (see Figure 3.C.12) emits charged particles (g, m) in the
direction of two pairs of parallel metallic plates. The two electrodes of the
first pair are at the same potential V;, the two other plates being at V. Emitted
with no initial velocity, the particles are first accelerated from the potential
zero up to the potential V; and follow a straight line until they leave the first
pair of electrodes with a vector velocity v,. Inside the gap between the two
pairs of electrodes, the particles are accelerated and follow a parabolic tra-
jectory; between the second pair of electrodes they again have a linear tra-
jectory with a vector velocity vs,

U =V, X+ VY, U= Vo X + V2, Y.

Inside the gap, the electric field is parallel to x, the force is parallel to x,
and thus the y-component of the velocity remains constant:

Vyy =V —  U;Sin% =0, Sini,
It =qV, and 1wmw?=qV;
2 1 =4V1 2 2 =qVa,
VV; siné; =+V; sini,, the Snell-Descartes law withn =+/V.

It's worthwhile noticing that in light optics, the Snell-Descartes law
expresses the conservation of the projection of the wave vector on the inter-
face; while in electron optics it expresses the conservation of the projection
of the momentum on the plane of discontinuity of the potential.

Figure 3.C.12. Refraction of the electron — S
trajectory on an abrupt variation of potential. 1
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Emitting cathode Negative  Focusing v a'nd H
V=0 wehnelt  electrodes ~ Scanning plates

High
vacuum

_Icl_ I

Electrically Electron Electroluminescent
heated filament beam screen

Figure 3.C.13. General arrangement of a cathode ray tube. A heated cathode emits
electrons perpendicular to its surface. A first negatively polarized electrode called
wehnelt, concentrates the electrons at a point that acts as an object C. The voltage of
the wehnelt controls the number of emitted electrons; the more negative, the less
electrons. The focusing electrodes image the point C on the screen, which is coated
with an electroluminescent material.

3.C.4.3. The Fermat and Maupertuis Principles

Starting from the equations of Mechanics it can be shown that once it is
launched in a field of forces a particle of mass m, going from point A to point
B, follows the path along which the following integral, also called the action
integral, is minimum:

B
va(s) ds; sis the curvilinear abscissa, V(s) is the velocity.
A

This principle, which was first introduced by Maupertuis as early as 1764,
is also called the Principle of Least Action. The striking similarity with the
Fermat Principle has played a very important role in the development of
Quantum Mechanics by Schroedinger.

We come back to the motion of a charged particle in a field of force that
comes from a potential; by a proper choice of the origin of the potential the
kinetic energy can be written as

B
%mv2 =qV; the action integral is thus proportional to jﬁ ds.
A

Because of the equivalence n < N , the Fermat Principle implies the
Maupertuis Principle, and vice versa.
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Polarized Light—Laws of Reflection

4.1. Light Vibration Is a Vector

4.1.1. Elliptical, Rectilinear, and Circular Vibrations

Light vibration is a vibrating vector. The oscillating aspect of light can be
expected after some observation, its subtler vector character remains to be
discovered. If the study of Optics is started from Maxwell’s equations, the
optical vibration is immediately introduced as a vector. The direction of
the vector may be along any direction of the wave plane and is determined
by the light source. x and y being two orthogonal unit vectors of the wave
plane, and Oz being the direction of propagation, the light vibration and its
two components can be written as

E =Re{(xa +ybe7?)e/@=-®1} (4.1)
E, =acos(wt—kz—®d),

4.2)
E, =bcos(wt—kz— D).
Using a suitable change of the time origin, (4.2) can be written
E, =acos(wt— ), (4.22)

E, =bcos(wt - ).

Figure 4.1 indicates that, as times progresses, the endpoint of vector E
describes an ellipse, this is the reason why it is said that the more general
polarization is elliptical. According to the phase difference between E, and
E, the ellipse will take different aspects and will be described clockwise or
anticlockwise.

Chapter 4 has been reviewed by Dr. Francois Méot, Senior Physicist at the CEA
(Commissariat a I'Energie Atomique).
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Left-handed elliptical polarization Right-handed elliptical polarization

Figure 4.1. General right- and left-handed elliptical polarizations. A vibration is said
to be right-handed (left-handed) when it rotates toward the right (left) side of an
observer who receives the light.

Left-handed circular polarization, Right-handed circular polarization,
Ex =a cos wt, Ey =b cos wt. Ex =a cos wt, Ey =—a cos Wt.
Figure 4.2. Left- and right-handed circular polarizations. The two components have
equal amplitudes. The phase difference is /2. If the two amplitudes are different, the
polarization would be elliptical, Ox and Oy being the axes of the ellipse.

A A
y y
o
> >
Z X
x Z o
b=acos o
Linear polarization, Linear polarization,
E.=acos ot, Ey =b cos wt. E.=acos wt, E,=-bcos wt.

Figure 4.3. Rectilinear polarizations. The two components have the same phases, or
opposite phases, ¢ = (2p + 1)7. The angle o with the Ox axis is given by tan o = b/a.

Any Polarization Is the Superposition of a
Right- and Left-Handed Polarization

As shown by formula (4.2), any polarization can be considered as the super-
position of two orthogonal rectilinear polarizations. In the same way, any
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polarization can be considered as the addition of two opposite circular polar-
izations. We will only establish that the important result, according to which
arectilinear polarization may be obtained, is by superposing two opposite cir-
cular polarizations of equal amplitudes; the orientation is determined by the
phase difference between the two circular polarizations.

Let us consider two opposite circular polarizations and their
superposition:

El =acoswt, . E! =a cos(wt— @),
left| . righty
E, =a sin wt, E} =—-a cos(wt - @),
{E‘;+E§ =2acos(wt—¢/2) cos ¢/2, 4.3)
E} +E! =2acos(wt—¢/2)sinp/2. ’

Equations (4.3) represent a rectilinear polarization making the angle ¢/2
with the Ox axis.

Intensity of an Elliptically Polarized Wave

According to formula (4.2) an elliptically polarized wave is the superposition
of two orthogonal and linearly polarized waves. We now want to evaluate its
intensity, that’s to say, the amount of electromagnetic energy flowing, each
second, across a unit surface disposed perpendicularly to the wave vector.
The same kind of calculation has already been made for a linearly polarized
wave; it was found that the intensity of a wave having an amplitude E, was
easily given using the wave impedance Z:

_E

1= 4.4)

Using Pythagoras’ theorem, we obtain
E2+EZ =a*cos® ot +b? cos®(wt — ) = 1[a® +b* + a* cos 2wt +b* cos 2(wt — 9)].

Since the response time of any photodetector is very long, as compared
to the light frequency, we have to consider the time-averaged value of the elec-
tric field. Under such conditions, the terms cos 2wt and cos 2(wt — ¢) disap-
pear and we finally obtain (a® + b*)/2Z. Apart from its immediate interest,
formula (4.4) contains an important physical result: two waves with orthogo-
nal polarizations are unable to interfere, since their phase difference disap-
pears during the time-averaging process.

4.1.2. Unpolarized Light

Usual light sources, such as the Sun, a candle, or an electrically heated wire,
emit light waves that are said to be unpolarized. We have already considered
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such sources and shown that their light was not coherent, see Section 1.6.3.
The notion of incoherency will now be extended to polarization. Let us go
back to formula (4.2.a):

E, =acoswt,
E, =bcos(wt - ).

In the case of unpolarized light, the end of the electric vector moves errat-
ically and the light shows any preferential direction inside a plane perpen-
dicular to the direction of propagation. A simple description may be obtained
by considering that the quantities a, b, and ¢ are random functions of time
exhibiting the following properties:

(i) They vary very slowly, at the time scale of the light period. So it can
be considered that they keep a constant value during periods lasting for
many hours.

(ii) They vary very quickly, if the time scale is now the response of a light
detector.

An exhaustive description of the statistical properties of unpolarized light
waves is a difficult subject; we will limit ourselves to a very simple model and
only consider light beams having the following properties:

e Monochromatic and coherent (@ = constant).

¢ Rectilinear polarization (¢ = 0).

¢ Constant amplitude (a”® + b® = constant).

e Random variation of the polarization direction (a and b are random time
functions following the above criteria (i) and (ii)).

4.2. Analyzers—Polarizers

(These two words have almost the same meaning.)

4.2.1. Linear Dichroism, Malus’ Law

Linear dichroic media are used to make analyzers, they have the following
properties:

e They are almost perfectly transparent for a linearly polarized beam having
a polarization parallel to a specific direction A, called the direction of the
analyzer.

e They have an important absorption coefficient for light beams that are not
linearly polarized along A. The experiment shows that the absorption is
maximum when the polarization is orthogonal to A4; if the beam is com-
pletely absorbed, the analyzer is then said to be perfect.
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Receiving an unpolarized light beam, a dichroic sample will transmit a lin-
early polarized beam, the transmitted polarization being parallel to its direc-
tion A; the corresponding device is then called a polarizer. If the incident
beam is already polarized, the transmitted beam will be the projection of
the initial polarization on the direction A, the device is then said to be an
analyzer.

Since 1928 when Edwin H. Land, a young Harvard College student,
invented the first dichroic sheet polarizer, most polarizers were of the
polaroid kind. They were made of plastic plates with two parallel faces; the
direction A was parallel to the faces. For a thickness between 0.5mm and
1mm, it can be considered that a beam polarized orthogonal to A is practi-
cally not transmitted. The plastic material of a polaroid is obtained by poly-
merization of polyvinyl alcohol impregnated with iodine; dichroism is a
consequence of an excellent alignment of long organic molecules, this align-
ment is obtained by applying strength to the material during polymerization,
A is parallel to the direction of the strength.

We now consider a planar wave, linearly polarized and propagating along
a direction Oz orthogonal to the faces of some polarizer. The angle of the
polarization with the direction A of the polarizer is equal to 6. We are going
to determine the characteristics of the transmitted beam. We call A the unit
vector of the direction of the polarizer, x and y are orthogonal unit vectors
used to represent the polarizations of the incident and transmitted beams, see
Figure 4.4.

Direction of the polarizer: A=xcosf+ ysinf.
Incident vibration: E;ciqent = Aincident(X COS & + y Sin ) cos wt.
Vibration after the polarizer:

Etransmit = (EincidentA)A = Aincident [(x Cos o + y Sin a)(x Cos ﬁ + y Sin ﬂ)]ACOS ()Ot

4.5
E\nsmit = Aincidens Acos(a — B) cos ot = Aipcigent A €O 6 cOs L. (45)

A
A g . o
( ( G N Incident polarization
0 A direction of the polarizer
y
x o
B
z >x

Figure 4.4. An analyzer transmits a polarization that is the projection of the incident
polarization on ltS direction A Atransmit = Aincident Cos 9 4 Itransmit = Iinci(lem COSZ 0
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Malus’ Law

Incident and transmitted amplitudes are related by
Atansmit = Aincident COS 0. (4.6)
Incident and transmitted intensities are related by
I vnsmic = Lincidens COS2 0 ideal polarizer. 4.7

For real polarizers the extinction of polarizations orthogonal to A is very
efficient; on the other hand, polarizers are never perfectly transparent for
polarizations parallel to A, a transmission coefficient 7 should be introduced,
72 is usually between 50% and 90%:

AInPIitUde: Atransmit = TAincident COos 97
) ) ) ) 4.8)
Intensity: I ansmit = T~ Tincidgent €OS~ @ real polarizer.

Formulas (4.7) and (4.8) are known as Malus’ law.

4.2.2. Transmission of a Beam with any Polarization
4.2.2.1. Unpolarized Light Beams

An unpolarized light beam is considered to have constant amplitude and a
polarization varying at random from time to time. After a polarizer, the trans-
mitted polarization is of course rectilinear and parallel to the direction of the
polarizer. To obtain the transmitted intensity we use formula (4.5) and take
the time-averaged value of the following expression (Ajnciden: COS 8Os W)

Given the difference of the rhythms of variation of 6 on one hand and of
ot on the other, we have the following expressions, where angle brackets indi-
cate time-averaging:

Itransmit = Aizncident <COSZ 9><c0s2 wt> = %'é-Aizncidem = %Iincident' (49)

The transmitted light intensity is only one-half of the incident intensity, the
polarizer absorbs half of the incident power; in the case of a dichroic polar-
izer, half of the power is transformed into heat.

4.2.2.2. Crossed Polarizers, Parallel Polarizers

Two polarizers are said to be crossed when their respective directions, A and
A’, are mutually orthogonal. They are said to be parallel when A and A" are
parallel.

Using real polarizers, the intensity between two crossed polarizers is not
strictly equal to zero. Let us consider the set-up of Figure 4.5, and let J and J’
be the respective intensities before and after the second polarizer. The quality
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Polarization

parallel to A
Unpolarized /VA,
npolarize: No transmitted
light beam > ( &( ( G ) light beam

Figure 4.5. Crossed polarizers. The incident is polarized at random and has an
intensity I,. After the first polarizer the light is linearly polarized and has an intensity
J = I/2. The second polarizer doesn’t transmit any light.

of the polarizer is defined by J'/J, expressed in decibels, 10 Log,,(J’/J), it varies
from —20db for usual polarizers and up to —40db for excellent polarizers.

4.2.2.3. Fvaluation of the Transmission of an Elliptic Polarization

Let us consider an elliptic polarization described by
Eincident = xEx,incident + yEy,incident =xacoswt+ yb COS(wt - (P)

We want to determine the polarization transmitted by a polarizer, the direc-
tion A of which makes an angle  with Ox,

Etransmit = (EincidentA)A = [a/ COs ﬁ coswt+bsin ﬁ COS((Dt — (p)]A,
Eansmit = Atvansmit COS(CDt - l//) A.

We find a rectilinear vibration with amplitude, A ..smit, and a phase that are
obtained after a rather tedious trigonometric calculation. It's probably more
comfortable to use imaginary notations and to write

[a cos Bcos wt+bsin Bcos(wt — )] = Re{ej”" [acosB+bsinBe ™ ]},
ELransmiL = Re{ALransmiLejwteijw }A

We finally obtain A umemid® = (@ cosB + bsinfcos@)® + b*sin’Bsin®g.

4.3. Reflection—Refraction

4.3.1. General Considerations on Reflection and Refraction

Refraction and reflection occur when an electromagnetic wave impinges
on a surface separating two different transparent media, with two different
indices of refraction.



156 4. Polarized Light—Laws of Reflection

The variation law of the refractive index versus position shows a discon-
tinuity when crossing the separation surface. In fact, a perfect discontinuity
is not needed, it’s enough that the index variation is produced over a distance
that is small, as compared to the wavelength.

The separation between two media having two different indices of refrac-
tion will be called an interface. Two different kinds of reflection should be
distinguished according to the physical type of the materials located on both
sides of the discontinuity:

e Vitreous reflection: The two media are made of dielectric materials. A
good example is the interface air/glass or vacuum/glass.
e Metallic reflection: One medium is a dielectric, the other is a metal.

The two kinds of reflections can be studied using the same formalism,
using a complex index of refraction n =n’ — jn”:

e Ideal dielectric: n” = 0, the index is a real number.

e Practical dielectric: The index is almost real, its imaginary part being
small in comparison with the real part.

® Real metal: n” = 0, the index is purely imaginary.

® Practical metal: The index is almost imaginary, its real part being small
in comparison with the imaginary part.

Reflection and refraction laws have been known for a long time; they were
formulated as early as the seventeenth century, mainly from experimental
observations. They give exact indications about the directions of the reflected
and refracted beams, but they don’t say anything about their relative intensi-
ties, nor do they say the way the incident power is shared between the two
beams.

The First Snell-Descartes Law

The first Snell-Descartes law indicates that, in the case of isotropic media, the
incident beam, the reflected beam, and the refracted beam are all in the same
plane, called a plane of incidence.

Symmetry considerations are of preeminent importance in such problems.
Let us consider the family of planes that is orthogonal to the interface. When
the interface separates two isotropic materials, all the planes are strictly
equivalent. However, the presence of an incident light ray causes the plane
containing the incident ray (plane of incidence) to play a special role, for the
sake of symmetry the reflected and refracted rays should belong to this plane.

The Second Snell-Descartes Law

The second Snell-Descartes law gives qualitative information about the
respective directions of propagation of the different beams. The angles of the
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Interface

AN
2) N Plane of i &
incidencéI

N/

Figure 4.6(a). The first Snell-Descartes law. The normal to the interface, the incident,
reflected, and refracted rays belong to the same plane, called the plane of incidence.

i

n ip=r,
ny sin iy = ny sin ip.

n

Figure 4.6(b). The second Snell-Descartes law. The figure has been drawn in the
plane of incidence.

incident, reflected, and refracted (also called transmitted) beams, with the
normal to the interface are, respectively, the angles of incidence (7,), of reflec-
tion (), and of refraction (i,). The second law will be established later on, it
is divided into two parts:

e The law of reflection, which says that the angles of incidence and refrac-
tion are equal: 7, = 7.

e The law of refraction, also designed as the sine law, which is a relation
between the sine of the angles of incidence and of refraction:

Ny Sint; =N, sint,.

Normal incidence: If the angle of incidence is equal to zero, the reflection
and refraction angles are also equal to zero, the three beams are collinear, and
the incidence is then said to be normal.

Physical Interpretation of the Generation of
the Reflected and Refracted Beams

The electrons belonging to the atoms located along the interface are respon-
sible for the generation of the reflected and transmitted waves. Set into
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Planar incident wave .
-X" Planar reflected wave

Planar refracted wave

Figure 4.7. The electrons located near the interface are set in vibration by the electric
field of the incident wave. Thanks to the electric dipolar radiation, wavelets are
emitted on both sides, their interference corresponds to the reflected and refracted
waves.

motion by the electric field of the incident wave, these electrons play the role
of the children sitting along the swimming pool of Figure 1.8. Electromagnetic
wavelets are generated; their superposition corresponds to the reflected and
refracted beams.

When arriving at the interface the incident wave sets in vibration the elec-
trons located in the hatched area of Figure 4.7. As the incident wave planes
are not parallel to the interface, the vibrations are not in phase but have phase
repartition that linearly varies with the position along the interface. The phase
delay increases as the point is moving from left to right. The phase velocities
of the wavelets are, respectively, equal to v, = ¢/n, and v, = ¢/n, in the upper
and lower media (respective index of refraction, n; and n,); under such con-
ditions it can be shown that the wavelets interference gives planar waves
propagating along directions obeying the second Snell-Descartes law.

4.3.2. Polarized Light Reflection
4.3.2.1. TE and TM Waves

To establish the first Snell-Descartes law we have taken advantage of the sym-
metry of the problem. In spite of the fact that it is part of the symmetry, we
did not have to introduce the notion of light polarization, we shall do it now
and show that the orientation of the electromagnetic vibration determines
the repartition of the incident energy between the reflected and refracted
beams.

Formulas (2.13) show that as soon as one of the two vectors E or H is
known, then the other is also known. E or H can also represent what we
call “the light vibration.” In Optics, where the interaction between light and
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TE polarization
(also called L polarization)

« k
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\%ntcrface
H, Plane of
mmdence

‘ TM polarization
(also called // polarization)
E, \/
H,; /
\Aﬂterface

Plane of E,
incidence H, k,

Figure 4.8. Relative positions of the different vectors for TE and TM waves (i =
incident, r = reflected, ¢ = transmitted).

material is almost exclusively due to electric dipolar mechanisms, the tradi-
tion is to assimilate the light vibration to the electric field.

The three wave vectors (incident, reflected, and refracted) are in the plane
of incidence. In the case of planar waves E and H should be orthogonal to
their respective wave vectors, which implies that they belong to a plane IT
orthogonal to the associated wave vector (I1 is a wave plane). Inside IT two
directions play a special role:

e The direction orthogonal to the plane of incidence.
e The direction contained in the plane of incidence, which is also the inter-
section of IT with the plane of incidence.

The notations vary considerably from author to author; the most com-
monly used are shown overleaf:
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// ™ FE is parallel to the plane of incidence.
Parallel transverse | P | H is perpendicular to the plane of
magnetic incidence.
4L TE FE is perpendicular to the plane of
Perpendicular | transverse | S incidence.
electric H is parallel to the plane of incidence.

4.3.2.2. Conservation of TE and TM Polarizations
by Reflection or by Refraction

It will be shown in Annex 4.A how TE and TM modes can be theoretically
introduced, starting from Maxwell’s equations. The most important conse-
quence is the following: when a TE polarized wave meets some interface, the
reflected and refracted waves are also TE polarized; in the same way, a TM
wave only generates TM waves.

4.3.3. Reflection and Refraction Coefficients
4.3.3.1. Brewster Phenomenon

The amplitudes of the reflected and refracted waves vary with the angle of
incidence, special experimental conditions may be found for which the ampli-
tude of the reflected beam goes down to zero. David Brewster, in 1815, when
observing the reflection on a windowpane, of the blue light of the sky which
is partially polarized, first noted this extinction of a reflected beam. Measur-
ing the variations of the reflected intensity versus the angle of incidence, the
following results are obtained:

e  For TE polarization: The reflected intensity permanently increases when
the angle of incidence increases from 0° to 90° and is minimum at normal
incidence.

e  For TM polarization: The variation is not monotonic, a special angle of
incidence exists (the Brewster angle), for which the intensity goes to a
minimum equal to zero. The refracted beam is orthogonal to the direction
that would take the reflected beam if its intensity were not equal to zero.

The fact that experimental conditions exist where the reflected intensity
is equal to zero is proof of the fact that the electromagnetic vibrations are
vectors orthogonal to the direction of propagation. The reflected intensity
could not cancel if the vibrations were scalar numbers, or if they were vectors
having a component along the direction of propagation.

The formula giving the Brewster angle will be established using Fresnel’s
expression for the reflection coefficient for TM waves, here it will be obtained
from more physical considerations, considering how the reflected beam is
generated by the motion of the electrons located along the interface. We will
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Incident beam No reflected Incident beam Reflected beam
(TM polarization) beam (TM polarization)

Figure 4.9. Brewster angle: The electric field of the transmitted beam sets in vibration
the electrons of the interface; if the directions of the refracted and reflected beams
are orthogonal and if the polarization is TM, then the motion of the electrons cannot
generate any reflected wave, since its electric field is parallel to the direction of
propagation.

limit ourselves to the case of a vacuum/dielectric interface (n, = 1), but the
result is quite general. The oscillating electrons belong to the dielectric and
are set in vibration by the electric field of the refracted wave; the direction of
propagation of this latter wave is orthogonal to its electric field. We now con-
sider the generation of the reflected wave; it’s only the projection of the elec-
tron vibrations on the direction of the reflected wave planes that contributes
to this generation. If the polarization is TM and if the reflected and refracted
beams are orthogonal, then the projection of the dipole vibrations is equal to
zero: no wave can be generated in the direction of the reflected beam. The
only solution is that the reflected beam doesn’t exist, all the incident energy
being taken away by the transmitted beam.

The Brewster angle i3 is the angle of incidence for which the reflected and
refracted beams are orthogonal, if 73 is the corresponding angle of refraction
we have

/4 n
5+ 73 =§ —  Mn;Sintg =nycosnry  — taniB——z. (4.10)
n,
The preceding considerations do not hold for the TE case. A TE polarized
incident beam always generates a reflected beam, whatever the angle of
incidence.

4.3.3.2. Fresnel Formulas

Fresnel formulas give the reflected and refracted amplitudes, versus
the incident amplitude. Their expressions are different for TE or TM
polarizations.

The reference axes are Oxyz, the plane of incidence is (Ox, Oz) and (Oy,
Oz) is the plane of the interface. We use the following notations, where the
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indices %, 7, and ¢, respectively, stand for incident, reflected, and transmitted
(refracted) waves:

Incident wave: E; =E;je™" H;,=H e Kk =—k,x+k,y+k.z,
Reflected wave: E,=E,je ™", H,=H, e ™" k =-k,x+k,y+k.z,
Refracted wave: E,=E,je™" H,=H, ;e k =—k,x+k,y+k.z.

We have to ask the following question: Is it possible to choose arbitrarily the
nine vectors above? Of course the answer is no, they must satisfy equations
(2.13) which are repeated below:

-1 1
=—kAH and H=—KkAE, 4.11)
we [T}
where (E;, H,, k;), (E,, H,, k,), and (E,, H, k,) are orthogonal and positive,
the field moduli are related to the impedances of their respective medium
(ZO S a)/C):
Zo|\H ol Zo| H

s Bl =——=, [El=——"" (4.12)

" E,,j’o " — 0 ” 7,0 "
n " Ny

Boundary Conditions Along an Interface

We recall the boundary conditions along an interface separating two dielectric
materials which don’t contain any electric charges or any electric current:

e Tangential components (parallel to the interface) of both electric and mag-
netic fields should be continuous across the dielectric interface, at all
points along the boundary.

¢ There are discontinuities for the normal components.

In the incident medium: (1) the fields result from the superposition of the
incident and reflected fields, in the transmission medium; and (2) we only
have the transmitted field. The Snell-Descartes law as well as the Fresnel for-
mulas are simply obtained by writing the equality of the addition of the inci-
dent and reflected fields on one hand and of the transmitted field on the other.

Demonstration of the Snell-Descartes Laws
Along the interface x is equal to zero, the continuity of tangential components
gives

( Ei() )yoz e—j(kiyy+ki22) + ( Ero )yoz e‘j("’/wy*krzz) — ( Ezo) e—j(kwyﬂcmz). (4' 13)

yOz

As equation (4.13) must be fulfilled for all values of ¥ and z, the arguments
of the exponential functions should be equal:

Koy +hie =k +he =y +he 08 (K0, = () 0, = (K)o (4.14)
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The equality of the projection of the three wave vectors on the plane of
the interface directly implies the Snell-Descartes laws:

e First law: The three vectors lie in the same plane (plane of incidence).

e The second law is also called the phase matching condition: The tangen-
tial components of the wave vectors are conserved by reflection and
refraction, this simply means that the three waves have equal phase veloc-
ities along the interface.

To obtain the famous sine law, we just have to introduce the modulus of
the wave vectors (k; =k,=n,w/c, k,=n,w/c) and the angles of incidence, reflec-
tion, and refraction — %; = 7 and n,sin%, = nysin,.

Fresnel Formulas for Reflection and Refraction

To establish the Snell-Descartes laws we have only taken advantage of the
invariance of planar waves when a translation is operated, this is the reason
why the same result was obtained for TE or TM polarizations. We are now
going to express qualitatively the conditions of continuity for the electric and
magnetic fields and obtain relations between the incident, reflected, and
refracted amplitudes. We will admit the existence of a transmitted beam, the
case of total internal reflection will be considered later.

The calculations will be fully developed only for the TE case. A reflection
coefficient prg and a transmission (or refraction) coefficient ;g are introduced
using the following expressions in which k;. = k;, = k.

T ny o . NS
E; = Aye 7 Fuwtksz) H, =— A(-xsini, — zcosi, e/ kur+he?)
Zy

. n .. N =i
E, = pTEAye*J(kmxwzz), H, = P1E Z_A(_x sini; + zcosi, )e J(kmerkzz)’
0

. 1 .. N (=
E, = 1y Aye 7 hurthsd) - H = 1o A A(=xsini, — zcos i, )e /2],
0

TE polarization TM polarization

Figure 4.10. Definition of the notations used to establish Fresnel formulas.
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For tangential components, the boundary conditions at x = 0 may be
written as

E,+E,=E, and H.+H,.=H,,
and
A+pw)=tx and n(prg—1)cosi; =—ny(prg +1)cosis.

After some calculations we finally obtain:

The TE-Fresnel Formula

7, COS 1y — Ny COS Ty sin(é; — 1)
PrE = - T T v
N; COS 1, + Ny COS Ty sin(#; +12)
2n, cosi, 2sin, cos i,
TTg = = = (1 + PrE ) (4 15)

7, COS% + My COSTy  sin (i +13)

The TM-Fresnel Formula

N, COS 1y — Ny COS Ty tan(; —4s)
P = =-

N, COSiy+Mycosi;  tan(i; +1iy)
(4.16)

n
; P — — =— (14 prm)-
N,COS %y + My oSt sin(i; +145) cos(i; —iy) 1y

2n, cos 1, 2sin, cos?,;

Tr™m =

Variations of the Reflection and Transmission Coefficients

Phase shifts at reflection: As long as we are not in the condition of total inter-
nal reflection (see Section 4.3.4), the reflection and refraction coefficients are
real numbers, either positive or negative; their signs are related to the rela-
tive phases of the reflected and refracted waves, with regard to the phase
of the incident wave. A negative coefficient corresponds to a phase shift of .
If the coefficient is positive the corresponding wave is in phase with the
incident one.

Normal incidence: When the angles 7, and 7, are small enough, formulas
(4.15) and (4.16) show that, for both polarizations, the reflection coefficients
are equivalent to —(¢; — %2)/(i; + 1) and takes the same value at normal
incidence:

Ny — Ny
Ny + My ’

4.17)

PTE®#=0) = PTM(4=0) = —
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The case of normal incidence is degenerated; the difference between TE
and TM loses its significance.

A material is said to be all the more refringent as its refractive index has
a higher value.

Reflection at normal incidence on a more refringent medium,
ny >n; — p <0, incident and reflected waves have opposite phases.

Reflection at normal incidence on a less refringent medium,

Ny <My — p >0, incident and reflected waves are in phase.

Example: n; = 1.5, 1, =1 — Prrgi—o) = Prva=0) = —0.2. The p coefficients corre-
spond to the amplitudes of the oscillations; to obtain the reflection coeffi-
cients for intensities they have to be squared — R.o) = 0.04 = 4%. In the case
of a glass plate with two parallel interfaces, the global transmission losses
due to reflection are equal to 8%.

When the incident medium is more refringent, prg is always negative
whatever the angle of incidence: TE reflected and incident waves have oppo-
site phases. For TM polarization the phase shift changes from 7 to 0, when
the angle of incidence becomes greater than the Brewster angle, this sudden
change of phase is not at all dramatic, since it occurs when the reflected
amplitude is equal to zero.

Brewster P™

angle
0 & (pre)

-0.2

PTE
Brewster

an gle (p I‘M)

2
4%

n=1, ny=15, ig=tan-l(ny/n;)=56°

Figure 4.11. Variation of the various reflection coefficients versus angle. The
reflection occurs on an air/glass interface, the second medium is more refringent. At
normal incidence prg and pry are negative corresponding to a phase shift of 7. The TM
coefficient cancels and changes sign at the Brewster incidence.
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Variation of the Polarization by Reflection or Refraction

Let us consider first a linearly polarized incident beam, its electric field can
be projected in TE and TM directions: the two components have equal (or
opposite) phases. The reflection and transmission coefficients being real, the
TE and TM components of the two reflected and refracted beams have equal
(or opposite) phases, which means that they are also linearly polarized. An
elliptic incident polarization will of course generate elliptically polarized
reflected or refracted beams; the axis ratios of the ellipses will however be
different since prg # prv as well as 7y # oy

Mathematical interpretation of Brewster's angle: If we consider formula
(4.16), it is seen that if 7, + 7, = /2, then tan(?, + %) is infinite and pyy is equal
to zero.

We consider the experiment of Figure 4.12, after the two interfaces of the
first plate the ratio between the TE/TM amplitudes is equal to the squared
ratio of the reflection coefficients; the ratio of the intensities is the fourth
power. If N plates are used the intensity ratio is given by the 4Nth power. It’s
easy to establish the following formulas:

2tani;,  2n
1+tan2 il 1+n

TTE .. P .
(—) =cos(#; —1,) =sin2i, = > withn= N/,
1 interface

T™

2N
T 2n
intensity ratio for one plate: (ﬂ) = ( 5 j , (4.18)
TT™M /2N interfaces 1+n

T

4N
2n
intensity ratio for N plates: ( j = [ > J .
TM /2N interfaces 1+n

Horizontally (TM)
larized transmitted beam

Vertically (TE)
polarized reflected beams

incident light beam

Figure 4.12. A parallel beam of unpolarized light is incident at the Brewster angle on
a stack of parallel glass plates. TM polarization is integrally transmitted, while TE
polarization is only partly transmitted. After many plates the transmitted beam is
almost entirely TM polarized.
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For n = 3/2 and N = 8§, formula (4.18) gives a value equal to 0.077 for the
intensity ratio, transmitted light should almost perfectly be linearly polarized.
The reality is not so good, first the incidence cannot be exactly equal to the
Brewster angle and, second, because the plates are never perfectly polished:
small irregularities remain and produce some depolarization; the practical
result is about 1072

Energy Conservation

In Figure 4.13 have been illustrated the variations, versus angle of incidence,
of the squared values of the reflection and refraction coefficients and of their
sums. The sums are never equal to unity, which is not at all paradoxical and
is not in contradiction with the energy conservation principle as explained in
Figure 4.14. An incident pencil of cross section S; creates a reflected pencil
of some cross section S;’ = S; and a transmitted pencil having a cross section
S,. To obtain the energy conservation we must take care that the cross section
of the transmitted pencil is not equal to the incident and reflected cross sec-
tions, and also that the wave impedances are not equal on both sides of the
interface.

(P2 + T2.)
g P T

2
Tm
2
TTE
Pie 5
Pm
Angle of incidence 90° Angle of incidence 90°

Figure 4.13. The sum of the squared values of the reflection and refraction
coefficients is not equal to unity.

)

Figure 4.14. Energy conservation by reflection and
refraction.
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Referring to Figure 4.14 we may write X'=S;cosi, =S, cos?, =S,cos?,. The
expressions of the light intensities should take into account the wave imped-
ances of the various media: Z; = Zy/n, and Z, = Zy/n,. Let us call A, B = pA
and C = 1A, respectively, the amplitudes of the incident, reflected, and trans-
mitted waves (p and 7 can as well correspond to TE or TM polarizations). The
different light intensities are given by

2 2 2
Rncident = niz Z_g; Preﬂected = 7?/lzpz Z_g, Ptransmitted = nZZTz Z_g
Using the relation between the cross sections, the expressions of the Snell-
Descartes law and the Fresnel formulas, it can be seen that

I)incident = P reflected + Ptransmitted'

4.3.4. Total Internal Reflection

The Snell-Descartes law is a relation between the sine of the incident and
refraction angles. Conditions may be encountered where the application of
the formula gives a value greater than one for the sine of the angle of refrac-
tion. The question to be asked is: What about the significance of an angle
having a sine greater than one? If we stay at an elementary level the answer
is simple: the refraction angle doesn’t exist, there is no more refracted beam,
and there only remains the reflected beam. For the sake of energy conserva-
tion the reflected beam takes all the incident energy; this is completely in
accordance with experimental observations.

At a less elementary level in mathematics, the notion of angle can be gen-
eralized and angles with sine greater than one can be imagined; if we keep
the basic relation (sin® + cos® = 1), these angles should have cosine that are
purely imaginary. We can now go back to the Fresnel formulas and calculate
the reflection and transmission coefficients: complex values are found for
which a physical interpretation should be given:

e The reflection coefficient is a complex number, its modulus is equal
to unity, which is indeed in good agreement with the notion of total
reflection.

e The transmission coefficient is purely imaginary. To understand what
happens, a new kind of wave, called an evanescent wave, must be
invented.

To treat, at the same time, the case of electric and magnetic fields, we will
consider a vector V representing one or the other. We analytically describe
three planar waves (incident [?], reflected [r], and transmitted [¢]), using the
following notations:

Incident wave (directed toward negative x and positive 2):

Vi(x,y,2)=Vie " with k;=-k,x+k,y+k.z.
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Reflected wave (directed toward positive x and positive z):
V,(x,y,2)=V,e ™" with k, =+k.x+k,y+k.z.

Transmitted wave (directed toward negative x and positive 2):
V.(x,y,2)=Ve ™ with k, =-k,x+k,y+k.z.

The continuity of the tangential components at x = 0 is written as

—j(kiyy+kizz) —j(kryy+krz2) —j(kyy+kiz2)
Wyor W) T = (W) 0 (4.19)

yOz

In an isotropic medium and for a given frequency, the wave vectors have
the same modulus k£ whatever their direction (k = nk, = nw/c).

) [9)
il =, Nl = by =y = andl [yl = oy ==,
k; = —xk; +zk;, =nky(-xcosi; +zsini),
k, =+xk, +zk,  =nk)(xcosi +zsini),

k, = xk,, +zk,, = noky(-x cos i, + zsind,), (4.20.2)

k,, =k,, =k, =kyn, sini, =k;n,sini,. (4.20.b)

iz 2

Figure 4.15. Description of the incident, reflected, and transmitted wave vectors.

4.3.4.1. Graphical Illustration of the Snell-Descartes Law

The second Snell-Descartes law expresses the conservation of the tangential
components of the wave vectors; it can be given a geometric illustration,
usually called Descartes’ construction of the reflected and refracted beams.
Two concentric circles are drawn, centered at the point of incidence O and
having radius, respectively, equal to the refractive indices. The incident ray is
prolonged until it intersects at point I the circle having the incident index, #,,
as radius; a line is then drawn orthogonal to the interface, R and T are the
points of intersections, respectively, with the circles of radii n; and n,. The
reflected ray is OR and the refracted ray is OT.

If the incidence medium is less refringent than the second medium (n,; <
n,), whatever the angle of incidence, the sine law gives a value that is smaller
than one for the sine of the refracted angle. The largest value for the angle of
incidence is 90°, the incidence is then called the grazing incidence; the asso-
ciated angle of refraction is called the critical angle, often labeled as A (not
to be confused with the wavelength) and is given by

A =sin"'(n,/ny). (4.21)

If the incident medium is more refringent (n, > n,), the construction of the
refracted ray is only possible if the angle of incidence is less than the critical
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Any incidence Grazing incidence
Figure 4.16. Descartes’ construction when n, < n,. This is just a graphical inter-
pretation of the formula n,sin#, = n,sini,. If the upper medium is less refringent, the
construction is always possible.

Figure 4.17. Descartes’ construction when n; > n,. It is always possible to draw the
reflected beam. The refracted beam can be obtained only if the angle of incidence is
smaller than the critical angle.

angle. For an angle of incidence equal to A, the transmitted ray is parallel to
the interface, grazing emergence.

4.3.4.2. Total Internal Reflection, Evanescent Waves

We consider the situation where Descartes’ construction doesn’t give any
transmitted ray. The second medium is less refringent and the angle of inci-
dence 17, is larger than the critical angle A. The mathematical formulas can still
be formally written for a given value %, of the angle of incidence:

N sy =Ny SN, — Sl =—SINYy =Y,
Ny
where 7yis a real number larger than unity; the cosine of i, is obtained from

cos®iy =1-sin®i, =1-72,

cosiy =tjVy*—1=%j6 with &*=y*-1>0.
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From a mathematical point of view the problem is solved and a complex
value is obtained for 7,. Correlatively, the wave vector of the transmitted wave
is complex:

k = nyky (—x cosiy + zsindy) = noky (FXj6 + y2).
Going back to formula (4.19) the transmitted plane wave is written as
V,(x,y, 2) =V,e/rm#ozgFnko  gych a wave is an evanescent wave.

As we are permanently juggling with real and complex numbers, it is prob-
ably safer to get back to the definitions at the moment of trying to give a phys-
ical interpretation of the transmitted wave in the case of total internal
reflection. To do so we will reintroduce the factor ¢ in the formulas and use
real expressions of the harmonic waves:

I/t (.%‘, y’ 2') — Re[me—jynzkoze$5nzlawejwt ]’

: 4.22
V.(x,y,2)=Re[V,]e™"** cos(ot — ynqkz). (422)

The vector [Re(V;)] doesn’t raise any special problem and may be obtained
from V; and the expression of the boundary conditions. Let us now examine
the other terms of formula (4.22):

e cos(wt — myky2): This term simply describes a propagation along Oz at a
phase velocity of ¢/n,.

o 7%k This term is constant for a given value of x. The phase doesn’t vary
with x: no propagation along Ox. The amplitude of the field decays expo-
nentially with the depth of penetration inside the second medium.

The ambiguity associated with the * sign is not dramatic since it can easily
be solved by energy considerations. The space domain in which formula (4.22)
is valid extends to the negative side of Ox;, in this region x may go to —eo, only
the positive sign should be kept.

In the lower medium of Figure 4.18, propagation is parallel to the interface;
most of the energy is concentrated inside a layer having a thickness of the
order of A =1/dn.k,. Ais usually quite small (a tiny fraction of the wavelength),
this is the reason why evanescent waves are sometimes called surface waves.

Formally considered as interesting curiosities, evanescent waves play an
important role in guided optics and optical fibers, inside which the light is
guided thanks to total internal reflection.

4.3.4.3. Interpretation of the Presence of Electromagnetic
Energy in the Second Medium

The existence of an evanescent wave of course corresponds to the presence
of energy inside the second medium. How has this energy penetrated in this
second medium if the incident beam is totally reflected? The answer to this
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A

X

{In the upper medium the phase
varies linearly with x and z; the
amplitude remains constant.

Z

" >

In the lower medium the phase
varies linearly with z and doesn’t
depend on x; the amplitude
decays exponentially with x.

il

Figure 4.18. Phase and amplitude repartitions for total internal reflection. The small
lines perpendicular to the wave vectors are supposed to suggest wave planes along
which the fields have the same phase (modulo 27).

question is rather subtle. The representation of a harmonic signal by a com-
plex exponential function of time corresponds to the replacement of the time
derivative operator d/dt by the multiplication by jo, doing this we implicitly
consider that a permanent state has been reached. We admit that the incident,
reflected, and transmitted waves have always existed and will always exist.
In fact, it should be considered that the incident wave has arrived at some
initial time; a transient state then starts during which energy is accumulated
inside the second medium. It’s only at the end of the transient state that the
light is totally reflected. The transient state should in principle last for an infi-
nite time, but it is almost reached after a very short delay of the order of some
(or even many) periods of the light signal (10™"*s).

4.3.4.4. Fresnel Formulas for Total Internal Reflection

sin(i; —1;) sinidy cosi; —sini; cosi; Y cosi; — josinig,

PE=""" . " . . = T —
sin(i, +14,) sint,cost; +sind; cosi, Yy cosi; + jésing,
O,
1-j—tanv, 0 s
PrE = Y _o*m with tan2® = Ztan i.
1+ j—tans, Y
Y

The phase shift is neither zero nor r and is given by the above formula.
In the TM case the reflection coefficient also has a modulus equal to unity,
the expression for the TM phase shift is a bit more complicated:

8 Otand,
o 1-j —1-
tan(i; —4y) Y tan, Y -jemm
tan(i +iy) 0 Stani, .
1R 1+j —1+7 1
vy tani, Y

P =




4.3. Reflection—Refraction 173

nl s ée %<
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Figure 4.19. Optical tunnel effect or frustrated total internal reflection.

Air gap A10

Figure 4.20. Beam splitter using a Lummer cube,
this set-up is an experimental demonstration of the
optical tunnel effect.

4.3.4.5. Optical Tunnel Effect or Frustrated Total Internal Reflection

We consider the arrangement of Figure 4.19 where alayer of a low index mate-
rial is sandwiched between two more refringent media. If the sandwich is very
thick, total internal reflection occurs on the first interface in the usual way.
On the contrary, if the sandwich is thin enough, the tail of the evanescent
wave will penetrate inside the lowest medium inside of which light will be
transmitted. This is very similar to the tunnel effect in Quantum Mechanics,
it’s the reason why this phenomenon is often referred to as the optical tunnel
effect; it’s also called frustrated total internal reflection.

The optical tunnel effect is used in an optical component called the
Lummer cube, which is a beam splitter. The two hypotenuse faces of two
isosceles rectangular glass prisms are put in close proximity. If the air gap is
small (= &/10) light is partially transmitted, and the ratio between the trans-
mitted and reflected beams can be adjusted by playing with the thickness. In
commercially available splitters dielectric layers have replaced the air gap.



Annex 4.A

TE Modes—TM Modes

4.A.1. Scalar Nature of Two-Dimensional
Electromagnetic Problems

We will say that a problem is a two-dimensional problem if one of the geo-
metrical coordinates, z, for example, is not involved. We also say that the
problem is invariant in a translation parallel to Oz. We intend to show, in the
case of an electromagnetic problem exhibiting the Oz invariance, that the set
of the electromagnetic vectors is the union of two independent subsets that
are called the TE and TM modes.

Introducing the six components (., E,, E., H,, H,, H,) of an electromag-
netic field and the unit vectors (x, y, z) of the coordinate axis, TE and TM
are defined by

B3 =) ana (EM)TM=[ o ]
H.z (H,x+H,y)

Any field can be considered as the addition of a TE and TM field.

The independence versus z is simply introduced by cancelling all z deriv-
atives, (d/dz = 0). We write the two first Maxwell equations for harmonic
waves in a vacuum:

curl H = joe, E = jkeeoE, k=o]c, (4.A.1)
curl E = —jou,H = —jkcuo H. (4.A.2)

Equations (4.A.1) and (4.A.2) are relations between vectors, and represent
in fact six equations between the components of the electromagnetic field,

JE, . oH,
oE. . oH, )
o JkeuoH o Jkee E,, (4.A.3)
JE, OE. oH, OJH,
———=—Jkcu H., L - = jkee, E. .
ow oy 7 oHo ox oy T

174
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The six equations (4.A.3) may be assembled in another way:

JE, .
E» =—JgkcuoH,,
JE. .
T™ e = jkceu,H,, (4.A4)
oH, OJH, .
— = jkecey E .,
ox dy JreEo
&yz = jkcgo Ex )
oH, .
TE o = gkce B, (4.A.5)
JE, OE,
————=—jkcu,H,.
o oy JKCUy

For a TE mode (£, =0, H,=0, H,=0), the three (4.A.4) equations are auto-
matically fulfilled, as well as the (4.A.5) equations for a TM mode (H, =0, E,
=0, E,=0). As a consequence, on the occasion of the various transformations
of a field during its propagation (reflection, refraction, diffraction) the TE (or
TM) nature is kept.

Deriving equations (4.A.4) and (4.A.5) and doing suitable linear combina-
tions, we can obtain the Helmholtz equations for TE and TM modes:

2 2 2 2
TE: o H, +%+k2Hz =0 and TM: JIE. +%+k2Ez =0.

ox?  oy? ox?  o0y?

Each solution may be described using only one function of z, E, for TM
and H, for TE. As a matter of fact, for TE and TM modes, we can forget the
vector nature of electromagnetic waves and consider that they are scalar
quantities following a Helmholtz equation.



Annex 4.B

Determination of an Unknown Polarization

The diagram on the following page indicates a procedure to be followed in
order to determine the characteristics of the unknown polarization state of a
light beam. A simple analysis, using a linear polarizer, will not usually be suf-
ficient, except in the case where minima with zero intensity are observed. If
the minima are not equal to zero, the light can as well be elliptically polarized
or be the superposition of a fully polarized component (linear or elliptical)
and of a nonpolarized component.

To remove the uncertainty a quarter wave should be placed upstream of
the linear analyzer. The measurements of the ratio between maxima and
minima that are observed when the analyzer is rotated, give information about
the polarized and unpolarized components.

176
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Nonzero
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Birefringence

5.1. Double Refraction

When some incident beam hits the interface separating two transparent
media, it may happen that two transmitted beams are generated; when this
is the case, at least one of the two media is anisotropic. This phenomenon
was first observed in 1669 by the Dane Erasmus Bartholimus who called it
double refraction. Media in which double refraction occurs are said to be bire-
fringent. As early as 1690, using his famous construction of refracted beams,
Huygens could give an interpretation of the principal aspects of birefringence.

When crossing an anisotropic material limited by two planar interfaces, a
parallel beam of natural (unpolarized) light generates two transmitted beams,
they are linearly polarized along two mutually orthogonal directions which
are labeled (1) and (2) in Figures 5.1 and 5.2, and which are determined by
the orientation of the material.

When the two sides of the anisotropic sample are planar and parallel, the
two emerging beams are parallel to the incident beam. In the case of Figure
5.1(a), the intensities of the two transmitted beams are equal. In the case of
Figure 5.1(b), a polarizer has been introduced before the plate; in general two
transmitted beams are observed, their relative intensities varying with the
orientation of the polarizer. Figure 5.2 show the existence of two special
orientations of the polarizer for which only one transmitted beam is observed,
while the other beam is extinguished. We will call these very special orienta-
tions privileged directions of vibrations, labeled (1) and (2) in Figures 5.1
and 5.2. The orientations of (1) and (2) depend of course on the anisotropic
material under consideration, but they also depend on the direction of pro-
pagation, this is the reason why we will speak of privileged directions of
vibrations assoctated to a given direction of propagation.

Chapter 5 has been reviewed by Dr. Francois Méot, Senior Physicist at the CEA
(Commissariat a I'Energie Atomique).
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Anisotropic medium Anisotropic medium

1 0
Natural . Nz}tural . /:/(
lightgq/*,,,— /@) light e ¥

Polarizer with
any orientation

(a) (b)

\
\

Figure 5.1. Transmission of a parallel beam of natural (unpolarized) light by an
anisotropic plate. Two transmitted beams are observed, they have two mutual linear
and orthogonal polarizations, along directions that are determined by the orientation
of the plate. Since the two sides of the plate are parallel, the two transmitted beams
and the incident beam are also, respectively, parallel.

Anisotropic medium Anisotropic medium
10
Natural A Natural - ’/T('Z)
light NG light -
Polarizer parallel to one of Polarizer parallel to the other
the privileged vibrations privileged vibration
(a) (®)

Figure 5.2. Transmission of a parallel beam with a linear polarization parallel to one
of the privileged directions of vibration. Only one transmitted beam is observed.

5.2. Permittivity Tensor

Tensors are mathematical tools generalizing the notion of vectors, in the same
way as vectors are the generalization of scalar numbers. Tensor relationships
are a generalization of proportionality relations between vectors. It’s often on
the occasion of birefringence that young students will meet tensors for the
first time.

5.2.1. The Relationship Between Electric and
Displacement Fields Is a Tensor

In an isotropic material the electric displacement vector D is proportional to
the electric field E, which means that the three components (D,, D,, D,) of D
are proportional to the corresponding component (E,, E,, E.) of the electric
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field. The situation is different in an anisotropic material where (D,, D,, D,)
are linear combinations of (E,, E,, E.).

Relationship between D and E
Isotropic material Anisotropic material
Any coordinates Any coordinates Principal axes of tensor [g]
D,=¢F, D,=¢e, b, + &y, + &L, Dy = &Fx
D,=¢E, D,=¢,E, +¢,F, +¢.F, Dy =gy
D.=¢E.  |D.=e.E, +e,E,+¢e.E. D, =&k,

A relation between a tensor and a vector is symbolically written as
D =[¢]E, |e]is called the dielectric permittivity tensor. (GRY)

In the same way that, in three-dimensional space, a vector is represented
by three numbers (the components on the coordinate axes), a vector is rep-
resented by nine numbers arranged in a 3 X 3 matrix. The values of the matrix
elements are associated to a given set of coordinate axes.

When a change of coordinate axes is operated, the matrix elements
take new values that are obtained from the initial values thanks to well-
established formulas. If the coordinate axes have no special orientation, the
matrix elements will be different from zero; however, except for very special
situations requiring a rather fanciful mathematical imagination, it is always
possible to find a special system of reference for which the matrix is diago-
nal (all the elements are equal to zero, except the diagonal elements). The
corresponding coordinate axes are called the principal axes of the sample,
their orientation is of course correlated with the symmetry elements of the
material,

[8]= Ey s Setting Exx =€x, Eyy =&y, Ezz =&yz. (52)
Ez

The mathematical operation leading to the principal axes is called diago-
nalization of the matrix, the rules of this game have been well established by
our mathematical colleagues. The values of the matrix elements, once the
matrix has been diagonalized, are called the principal dielectric constants of
the material.

The relationship D = €F is just the expression of the interaction between
the electric field of the light wave with electric charges of the material. Figure
5.3 shows a simplified model of this interaction: the bound electrons of an
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Nuclei

Isotropic case Anisotropic case

Figure 5.3. Oversimplified case of isotropic and anisotropic atoms.

atom make an electron cloud that is assimilated to a spherical shell to which
the nucleus is linked by six springs (only four have been represented).

In the case of an isotropic material, the six springs have the same stiff-
nesses. In the absence of any electric field, the respective centers, G, and G_,
of the positive and negative charges, coincide with the center of the sphere.
When an electric field is applied, G, and G_ become separated in such a way
that the vector &,G_ is collinear with the field, this is the reason why the elec-
tric field and the electric displacement vectors remain collinear — D = ¢FE,
where ¢ is a scalar number.

The model for an anisotropic material is roughly the same, except that the
stiffnesses of the different springs are not equal. The vector &,G_ is no longer
collinear with the applied electric field, as well as the electric displacement
vector —» D = [¢]E.

Natural and Artificial Birefringence

Tensor relationships are met whenever the space, in which the physical
phenomenon occurs, loses its symmetry.

Natural birefringence: In the case of transparent crystalline materials, the
arrangement of the atoms inside the elementary cell is responsible for the
anisotropy of the space inside of which the light is propagating. The proper-
ties of the tensor [€] are directly connected to the symmetry of the lattice.

Artificial (or induced) birefringence: A naturally isotropic material can
be made anisotropic if the symmetry of the environment is modified, for
example, if an electric or a magnetic field or mechanical stresses are applied.
One of the coordinate axes that diagonalizes the tensor then coincides with
the direction of the field.

5.2.2. Principal Dielectric Constants, Principal
Indices of Refraction

Using the formulas that are given in the following table, principal velocities
and principal indices of refraction are associated to the principal dielectric
constants &, &y, and &
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Principal Associated phase Principal indices of
dielectric velocities refraction
constants
1 c £
15 EX,LLOV)%=1, Vy = Ny =N =——= =
ExMto Vx &o
f 1 c Ey
£Y £ szl, VY: ny:nzz—: —_—
rHo¥y EyUo Vy &o
1 c £
&z SZ‘U,()VZ2=1, VZ: Ny =Ng=—= b
EzHo V, &o

5.3. Planar Waves Obeying Maxwell’s Equations
in an Anisotropic Material

5.3.1. Maxwell’s Equations for Planar Harmonic Waves

Maxwell’s equations are formally the same in isotropic or anisotropic
materials; however, the existence of a tensor relation between E and D
considerably modifies the properties of the solutions.

As in the isotropic case, we start from a planar harmonic wave for which
the four fields are described by the following expressions:

E=E;e’"e* D=Dje'™e’*,

H=H e/”e* B=Bye' e,

The results have already been established for the isotropic case (see
Section 2.4). E, H,, D,, and B, cannot be chosen at random if we want E, H,
D, and B to be allowed solutions of Maxwell’s equations. There are two kinds
of conditions:

e The first are concerned with the relative orientations of the different
vectors.

e The other is a relation (see formula (2.14)), between the values of the
frequency, of the dielectric constants, and the modu