

© 2008 Course Technology, a part of Cengage Learning.

ALL RIGHTS RESERVED. No part of this work covered by
the copyright herein may be reproduced, transmitted,
stored, or used in any form or by any means graphic,
electronic, or mechanical, including but not limited to
photocopying, recording, scanning, digitizing, taping, Web
distribution, information networks, or information storage
and retrieval systems, except as permitted under Section
107 or 108 of the 1976 United States Copyright Act, without
the prior written permission of the publisher.

The Games Factory 2 is the property of Clickteam.

Library of Congress Control Number: 2008902388

ISBN-13: 978-1-59863-551-5

ISBN-10: 1-59863-551-4

Course Technology

25 Thomson Place
Boston, MA 02210
USA

Cengage Learning is a leading provider of customized
learning solutions with office locations around the globe,
including Singapore, the United Kingdom, Australia,
Mexico, Brazil, and Japan. Locate your local office at:
international.cengage.com/region

Cengage Learning products are represented in Canada by
Nelson Education, Ltd.

For your lifelong learning solutions, visit courseptr.com

Visit our corporate website at cengage.com

Picture Yourself Creating Video Games

Jason Darby

Publisher and General Manager,

Course Technology PTR: Stacy L. Hiquet

Associate Director of Marketing: Sarah Panella

Manager of Editorial Services: Heather Talbot

Marketing Manager: Jordan Casey

Acquisitions Editor: Heather Hurley

Project Editor: Sandy Doell

Technical Reviewer: Joshua Smith

PTR Editorial Services Coordinator: Erin Johnson

Interior Layout: Shawn Morningstar

Cover Designer: Mike Tanamachi

CD-ROM Producer: Brandon Penticuff

Indexer: Sharon Shock

Proofreader: Andy Saff

For product information and technology assistance,
contact us at

Cengage Learning Customer and Sales Support,

1-800-354-9706

For permission to use material from this text or
product, submit all requests online at

cengage.com/permissions

Further permissions questions can be emailed to
permissionrequest@cengage.com

Printed in the United States of America
1 2 3 4 5 6 7 11 10 09 08

eISBN-10: 1-59863-705-3

To my wife Alicia and children,
Jared, Kimberley, and Lucas,

who support me in anything that I do.

Acknowledgments

iv

C
reating a book requires the help of many different people and resources.
There are a number of people without whom this book could not have been completed, and I would
like to thank them all.

Many thanks go to the team at Course Technology PTR, who, as always, were efficient, friendly, and helpful in
getting this project off the ground and doing all of the hard work of editing the book.

Thanks to Yves and Francois, the creators of The Games Factory, who made an easy-to-use product that makes
the whole game creation process simple for anyone. I am also grateful for their prompt responses whenever
I had a question. Thanks to Jeff Vance, who provided support through this process.

A hello and thanks go to Adam Lobacz, who used his excellent artistic talent to draw the storyboards in
Chapter 3.

Thanks to my wife and children, who supported another book project, even though they know how much
work is involved. Jared, Kimberley, and Lucas, you are the best kids a dad can have!

Thanks to everyone who reads this book, and anyone who has read my other books.

J
ason Darby is the Director of Castle Software Ltd, an indie games and multimedia
development company in the heart of the United Kingdom. Jason started on his computer creation
business in 1998 when he released an offline web browser program. Since then, he has been working on

projects for businesses, including a CD-ROM project for PC Format Magazine (UK), a number of quiz programs
for large blue chip companies, educational multimedia programs, and small games.

Jason has had several books published in the Games Creation market, including Make Amazing Games in
Minutes, Awesome Game Creation, and Game Creation for Teens. He has also published a book for people who
want to make their own multimedia programs, called Power User’s Guide to Windows Development.

Over the last few years, Jason has written several magazine articles in leading UK magazines, on game and
screensaver creation. He has been published in magazines such as PC Format, PC Gamer, and PC Answers.

If you have any comments about this book, or would like to contact Jason about a general question, you can
email him at jason@makeamazing.com.

v

About the Author

This page intentionally left blank

vii

Introduction . xi

Chapter 1 Starting Out in Video Game Creation 1
Games Creation Software . 2

Hardware . 3

Personal Computer . 3

Printer. 4

Scanner. 4

Digital Camera . 5

Joystick. 5

Modem and DSL . 5

CD-Based Media . 5

Graphics Tablet. 6

Dual Monitors. 6

Chapter 2 Game Design . 9
Product Design and Planning. 10

Your Ideas . 11

The Story . 13

Storyboarding . 14

Chapter 3 Getting to Know The Games Factory 17
The Games Factory 2 Program Introduction . 18

Launching The Games Factory 2 . 19

Introducing The Games Factory 2. 20

Menu Bar . 21

Shortcut Buttons . 21

Workspace Toolbar . 21

Properties Window . 22

Editors Window . 23

Library Toolbar. 23

Layers Toolbar . 24

Table of Contents

The Games Factory 2 File Basics . 25

Creating a New TGF2 Game File . 25

Opening an Existing Game File. 26

Saving a Game File . 26

The Editors . 27

Storyboard Editor . 27

The Frame Editor . 30

The Event Editor. 31

The Picture and Animation Editor. 33

The Expression Evaluator . 34

Getting Help. 35

Tutorial Files. 36

Running Your Games . 37

Chapter 4 Creating the Scene and Using Objects 39
Objects in TGF2 . 40

Adding an Object . 40

Accessing Object Properties . 41

Common Objects. 43

Active Objects. 43

Backdrop and Quick Backdrop Objects . 44

Button Object . 46

Hi-Score Object . 48

Text-Based Objects . 50

Lives . 51

Score. 52

Chapter 5 Using the Event Editor . 55
The Event Editor . 56

The System Objects . 57

Events. 58

Actions . 61

Comments . 63

Code Groups . 64

viii

Chapter 6 Movement . 67
Accessing Movement . 68

Bouncing Ball Movement. 70

Path Movement . 74

Mouse Controlled . 77

Eight Directions . 78

Race Car. 80

Platform. 81

Pinball . 84

Other Available Movements . 85

Multiple Movements. 87

Chapter 7 Pictures and Animations . 91
The Picture Editor. 92

Tools . 93

Drawing Area . 109

The Color Palette. 109

The Animation Editor . 110

The Animation List . 112

Directions and Direction Tab . 113

Frames . 115

Chapter 8 Creating a Bat and Ball Game. 119
Setting the Scene . 120

Preparing Our Game. 120

Connecting to the Prebuilt Library . 121

Preparing the Main Menu . 122

Preparing Level 1 . 123

Preparing the End Screen . 128

Programming the Main Menu . 129

Programming Game Level 1 . 133

Programming the End Screen. 139

Chapter 9 Adding More Features . 143
New Features. 144

Adding New Objects . 144

Additional Event Editor Programming. 146

ix

Table of Contents

Chapter 10 Additional Program Changes 157
Screen Changes. 158

Full Screen . 158

Removing a Menu . 159

Default Menu Options . 160

Menu Dialog . 161

Menu Walkthrough . 164

Programming the Menu. 165

Icons . 167

Chapter 11 Distribution . 169
Creating an Executable File . 170

Zipping the File . 171

Creating an Installer . 174

Web Browser Games . 177

Chapter 12 Testing Your Games . 181
Lovely Bugs . 182

Testing Names. 183

The Debugger . 185

Starting the Debugger . 185

Adding Items to the Debugger . 188

Editing Object Properties . 191

Appendix A Keyboard Shortcuts . 195

Appendix B Bibliography . 199
Make Amazing Games in Minutes . 200

Power User’s Guide to Windows Development 201

Awesome Game Creation: No Programming Required,
Third Edition . 202

Game Creation for Teens . 203

Picture Yourself Creating Video Games . 204

Going to War: Creating Computer War Games. 205

Index. 206

x

T
his book is for people who are interested in creating their own computer games for
the Windows platform. Using the easy but powerful The Games Factory 2 software, you will be able to
make games quicker and easier than ever before, without any programming knowledge.

Game creation is a lot of fun and easier than you might have previously imagined; it really is simple to start
making your own games. The Games Factory 2 software that we use in this book allows you to make many
different types of games, such as card games, board games, puzzles, platform games, side-scrolling games,
shoot ‘em ups, adventure games, and more. If you have always dreamed of making your own games, now is
your chance.

Remember to try out different things and experiment with what you have created in each chapter before
proceeding on to the next one. You will find this really is a lot of fun, but it’s useful to take your time and
learn about the product.

Assumptions
This is a beginner’s book, and it is aimed at developers who want to learn the basics of game creation and
how to make their own games. You do not need to know any programming languages, and as long as you
have basic PC usage skills (can use the mouse and keyboard and navigate in Windows), you will be fine. Or
you may be experienced in games programming or game creation and simply be looking for a book on The
Games Factory 2; if so, this book is for you too.

Book Structure
The book is divided into 12 chapters and 2 appendixes. We begin with a straightforward discussion about
the equipment you will need to begin making games. We then discuss how to plan your games, creating
diagrams of how they will work. We then go through the basics of the program we use in this book, The
Games Factory 2. In later chapters, we show you how to build games using the product.

By the end of the book, you should have enough knowledge to begin making your own simple games.

xi

Introduction

C
reating computer games has long been considered a
difficult but rewarding hobby or career. Knowing where to start,
which language to choose, and what hardware and software to buy

meant that it was a potential minefield of disappointment and expense.
Many people want to make games, but few know where and how they
should start. You may have already tried to make a start but have come to
an impasse and don’t know what to do next.

In this first chapter you will learn which software and hardware you need.
You’ll also learn about some equipment that is just nice to have but not
essential. You don’t need much to get started, and most of the key items
are things you probably already own. Throughout this book, we will use a
game development creation program called The Games Factory 2; a trial
version of this program is included on the CD-ROM with this book.

More information about The Games Factory 2 can be found at
www.clickteam.com.

1
Starting Out in Video

Game Creation

www.clickteam.com

T
he Games Factory 2 is the software
that we will be using in this book to make
our games. This is the key software needed

to begin making your games. The software on
the CD-ROM of this book allows you to make
and save your games in its own native format.
You will not be able to create a Windows-
executable file and will need the full version if
you want to create games your friends can play.

The Games Factory 2 (TGF2) allows anyone with
just a basic computer game knowledge to be
able to put together a game in a matter of
minutes or hours. Rather than using traditional
programming methods, where you would type
in some text, compile it, check for errors, fix any
problems, and then run your code again, TGF2
is an all visual creation program. You create or
import your images and drag and drop them

onto an area to create your scene. You then
program your game logic using a graphical event
system. The event system allows you to code
your games using menus and selecting items
from a menu.

Even though TGF2 isn’t as powerful as tradition-
al programming languages such as C++, it allows
you to get results very quickly and still create
commercial-quality games. The Games Factory 2:

� Allows you to make games without the
need to learn a programming language.

� Is inexpensive (a free trial version is
included on the CD-ROM that accompa-
nies this book).

� Is easy to use and easy to learn.

� Shortens development time and shows
your results immediately.

2

Games Creation Software

Insert Figure 1.1
A high-quality game made in TGF2 by 3dlight-studio.com for Castle Software Ltd.

© 3dlight and Castle Software Ltd.

Starting Out in Video Game Creation Chapter 1

System Requirements
� Operating System: Windows 98 Second

Edition, Windows 2000, Windows XP,
Windows Vista

� Pentium 4 Processer

� 64MB RAM with Windows 98, 256MB
with Windows 2000 and XP, 1GB RAM
for Windows Vista

� Graphics card with 32MB RAM

� Sound Card

� 150–200MB free hard disk space

Y
ou will need the following

equipment before you can begin making
computer games.

Personal Computer
To use computer software, you obviously need
a PC. The Games Factory 2 program is Windows-
based, so you will also need a Windows operating
system to run it. Although the Games Factory 2
software runs on relatively low specification
computer hardware, the more memory, disk
space, and processing power your computer
has, the better. You can see the minimum and
recommended specifications for installing
and running TGF2 in the following lists.

Minimum Requirements
for Games Factory 2

� Operating System: Windows 98 Second
Edition, Windows NT4 with Service Pack
3 or above, Windows 2000, Windows
XP, Windows Vista

� Pentium Processer

� 32MB RAM with Windows 9x, 64MB
with Windows NT, 128MB with
Windows 2000 and Windows XP,
512MB RAM for Windows Vista

� CD-ROM drive

� Graphics card with 16MB or more

� Sound card (optional but recommended)

� 50–100MB free hard disk space

3

Hardware

About PC Specifications

Determining the PC requirements for game
making is not an exact science. Each game
you make could be different and have
differing amounts of images, sounds, and
complexity. The more files you import and
save to the hard drive, the bigger the game,
the more complicated the game, the harder
your PC will need to work. The more games
you make and the more complicated they
are, the more you will demand of your PC
and the sooner you will want to upgrade.

Printer
A printer is a useful piece of equipment for
printing out any documentation or information
you want to review. There are many different
makes and types of printers, some with built-in
memory card readers. Others have integrated fax
or scanning. You don’t have to have a printer to
be able to make games, but when you are doing
the planning of your games, you may find it
useful to print out your work. Printing out docu-
mentation makes it easier to review multiple
documents at the same time. Sometimes trying
to view several documents onscreen at once can
be distracting or difficult. Scanner

If you are good at line art or drawing/sketching
on paper you may want a scanner to get your
drawings into a digital format. You will then be
able to load them into a drawing package where
you can add color and complete them. There is
a great range in the quality of image different
scanners can import, but many have a high
enough import quality that the quality of your
drawings won’t suffer after import. If you
already have a printer and scanner combination,
this fulfills the requirement to do both while
taking up half the space. A scanner is not an
essential piece of your game creation kit unless
you do drawing.

4

Figure 1.2
A printer with a built-in scanner.

Paperless Office

When the PC came to be in common use
many years ago, it was predicted that the
paperless office would appear. This meant
that no one would need to use paper any
more. Many people still like to work looking
at printed paper rather than onscreen a
page at a time. Your preferences will deter-
mine whether you need a printer or not.

Starting Out in Video Game Creation Chapter 1

Joystick
Many games for the PC platform can be played
with a joystick. When making your own games,
you may want to have equipment that is likely
to be used by people playing your games. The
joystick is a perfect example of this. If you have
made it possible for a user to play your game
with a joystick, then you should test the game
yourself with a joystick. Any game you make
might play differently with different controllers,
so it is a useful exercise to test your game using
anything that will be allowed to the player.

Modem and DSL
Access to the Internet is an important aspect of
any game creator’s arsenal. You may have a high-
speed DSL or a cable connection or still be using
the much slower analog telephone system with
a 56k modem. Whichever method you use, the
Internet is a great way to research game ideas,
look at demos for other games, or just obtain
knowledge about a particular subject matter.

CD-Based Media
When you are making games, it is a good idea
to back up your game files on a regular basis so
that if you have any computer hardware problems,
particularly hard disk failure, all of your game
data will be safe.

In addition to CD-R, there are many different
CD-based writing devices, including CD-RW,
DVD-R, Dual Layer, and Blu-Ray. It doesn’t really
matter which type you have as long as it can
save your games. The smallest size drive is around
720MB, which should be a good starting point
for backing up your games.

Digital Camera
If you wish to get photo art into your games,
you have several options: you could purchase
photos online, buy a photo CD, or use a digital
camera to take your own photos and then import
them. There are many devices that can be used
to make images these days: webcams, mobile
phones, and the traditional digital cameras, to
name a few. Each type has varying scales of
quality. Webcams are usually low quality; mobile
phones are getting better with each new module,
but they lack storage space; and digital cameras
are relatively cheap, provide quality images, and
can be had for less than $150.

You can make games without a digital camera as
long as your games will not involve photo-realistic
scenes.

5

Figure 1.3
A digital camera.

Graphics Tablet
Rather than using a mouse to draw your com-
puter graphics, which can be alien to anyone
who is accustomed to drawing with a pen and
paper, you may want to consider a graphics
tablet. The graphics tablet provides a touch-
sensitive board where you use a pen that oper-
ates in a similar way to a mouse. Many tablets
also provide varying degrees of touch sensitivity,
so the harder you press down, the more virtual
ink will be applied in your paint package.

Dual Monitors
You have at least one monitor with your PC,
but you might be wondering what the benefits
would be of having two of them in your game
creation setup. The reason for having two moni-
tors is that when using Windows XP or Vista,
you have the ability to place programs on either
monitor at the same time. This allows you to
view two different programs at any one time,
rather than having to switch back and forth
between programs.

When using programs like TGF2, you will want
to utilize at least one screen for making your
games, while you use the other screen for
programs such as chat, browsing the Internet,
or finding files. Once you have a dual monitor
setup you will never want to go back to a single
monitor configuration again.

6

Figure 1.4
Different media for CD and DVD.

CD-R Availability

The majority of PCs purchased today will
have some form of CD writer already built
into them, so you will most likely have
access to one already. If you don’t, you can
pick up a CD-R device for less than $40.

Starting Out in Video Game Creation Chapter 1

Dual monitors are very useful for faster and
more enjoyable working, but they are not essen-
tial for game making, so if you cannot afford
another, or just don’t have the space, this is not
a problem. You can see a dual monitor setup in
Figure 1.5.

7

Figure 1.5
Dual monitors in use on a single PC.

Dual Monitors and
Graphics Cards

To use the dual monitor facility on Windows,
you will need a graphics card that has two
video connections. If your card does not
have a second video port, you will not be
able to connect two monitors to it. You
could upgrade your graphics card, or if you
have the right type of PC, you may be able
to put an additional graphics card into your
machine and run the second monitor off
that. If you are in any doubt, always seek
the help of a PC professional before buying
any equipment.

B
efore we begin learning about the Games Factory 2
software that is included on the CD-ROM, it is a good idea to think
about any games that you would like to make. Then document

what is going to happen and what is involved in the game before actually
getting started on such things as graphics and programming.

How you think about your game and document it will ultimately help
you in your goal of creating a game. Many people decide to make a game,
but some fall into a common trap and try to make the ultimate game as
soon as they have installed any software rather than first learning the
basics. In some cases, this just leads to disappointment because the game
you have always dreamed of making seems even farther away from
completion than ever.

In this chapter, we will look at how to best document your game ideas. We
will use the game we will create in Chapter 8 as our inspiration. We will be
recreating the tutorial game called ChocoBreak, and using our storyboards
and documents as a guide, we will create the game and then add additional
levels and features.

So let’s make a start on our game creating journey.

2

Game Design

Y
ou probably want to jump right
into making your games, and who can
blame you? Making games is great fun.

But before you start, you should consider docu-
menting what you intend to make. This will
make your whole game making process a lot
easier, and it will allow you to make games
faster in the long run.

It doesn’t matter if you are going to be making a
game for your friends or family or considering
a game that you might want to upload to the
Internet for many people to try; it is always a
good idea to write your game ideas down.

There are no right and wrong answers for creat-
ing game design documents for yourself, and
any of the following concepts can be tailored to
meet your own needs. As long as you are com-
fortable with what you are documenting and it
is helping you to complete your game, you can
pick and choose what you want to use from this
chapter in your games.

A basic structure of the order in which you do
things can be seen in Figure 2.1.

10

Product Design and Planning

Small Games

If your game is very small and will only take
about 20 minutes to make, you probably
don’t need to write anything down; then
again, it couldn’t hurt and might make the
creation go more smoothly in the long run.
You should always use this process when
you are making larger games. For smaller
games, just consider it an option. Figure 2.1

An approach to game design.

Game Design Chapter 2

Because you probably have lots of ideas floating
around in your head, it is best to put them on
paper where you can easily keep track of them
all. It is easy to forget good game ideas, so by
writing them down, you have at least a chance
of remembering what they were about. The best
way to write your initial ideas down is to put
them into a simple list as shown in Table 2.1.

T
he best place to start is with your
game ideas. In fact, it’s most likely that
you will have many ideas for games and

want to make as many of them as quickly as pos-
sible. The fact is you are better off selecting a
single game idea as the game you want to make,
because if you try to make a number of games at
once, you will most likely not finish many of them.

11

Your Ideas

Table 2.1 Organizing Your Game Ideas

Game Type Idea Technology Concept Rating Difficulty

Bat and Ball game You are on a break, a chocolate Bat and Ball game, High Easy

break. Time to get eating as much destroy the bricks,

chocolate as possible. Using a player static levels.

as a bat and a ball, hit the bricks to

destroy them and score points.

Space game You are the only surviving space Space Shoot-em Medium Medium

space pilot from the academy. up game—will include

You now have to fight alone scrolling.

to save your planet.

Scrolling Aliens have invaded a small town Scrolling—character- Low Medium

in your local area. You cannot stand based game.

by watching impending disaster.

A small team armed with weapons

goes in search of the alien menace.

Creating the list will allow you to write down
every idea you have. Don’t worry about it if you
are writing down game ideas that you think
might not be very good; they might be the
source of inspiration for another, better game
months from now. You might be able to use
some ideas as items in other games too, so don’t
worry if half your list consists of games you will
probably never make.

Table 2.1 is split into five columns, explained in
the following list:

� Game Type: Categorize your game into
a specific genre or type of game, such as
Space, Scrolling, or Platform.

� Idea: Add a brief idea of what the game
is about, or the aim of the player. This
doesn’t need to be very detailed, just
enough information for you to remember
what the object of gameplay is.

� Technology Concept: What things will
the game need to include with regards
to technology? Will it be in 2D, a first-
person shooter, or require scrolling?
Keeping a record of the technology
required will allow you to track game
ideas that you have the tools and soft-
ware available to make now. It will also
allow you to figure out which games
you will have to put on hold until either
your skills are at the right level or you
have purchased a specific tool to meet
a need of the game.

� Rating. How interested are you in
making the game idea that you have?
In your game making ideas, you will
have games that you really want to
make and those that are just an idea
that you have yet to fully develop.
Giving the games a rating will allow you
to gauge which games you really want
to pursue at this time.

� Difficulty: How difficult is the game
idea you want to make? If the game is
really complex, this difficultly rating
will give you enough information to
stay away from certain games until
you have the necessary skills.

12

Smaller Projects

It is a good idea to start making small
games before jumping into larger games, as
this is a good way to learn the game devel-
opment tool. Smaller games are easier to
complete than larger games, and if you are
attempting to make a portfolio of games for
professional use, small games show off your
talents just as well as large games.

Multiple Game Ideas

If you have a number of game ideas with the
same rating, use the difficultly and technology
columns to make it clearer which game you
should make first.

Game Design Chapter 2

The story to the game that we are making in
Chapter 8 is as follows:

You love chocolate. It’s 3:00 p.m. and it’s time
for your ChocoBreak. Eat as much chocolate
as you can by destroying the chocolate bricks.
Try not to let the ball disappear from the
bottom of the screen or your break time will
be over.

Keeping this short story in mind, we can now
expand on what we want in our game. Following
is a list of items or rules that we will want in our
ChocoBreak game.

� A selection of bricks. (These could be
different flavored.)

� A number of lives.

� 20 points for each brick destroyed.

� A menu screen to allow the player to
navigate to the game.

� A high scores table that will display the
top 10 scores in the game.

� An area of the screen (top, left, right)
protected so the ball does not fly out in
that direction.

� A ball that will bounce on hitting the
top, left, and right objects as well as the
player’s bat.

� Music playing on main screen and high
score screen.

� Different sounds when the ball hits
various objects.

� The player to be controlled by the
mouse.

From this list, we can now think about how our
game is structured screen-wise and begin to
think about our storyboards.

The Story
Once you have selected the game you want to
make, you may feel that you need to expand
on your story a little more. If the game idea is
small, you may not need to. It is impossible to
be unique with regards to stories these days
because many different ideas and concepts
could be claimed as coming from one particular
genre or idea. This doesn’t mean that you should
be taking other people’s stories and using them
in your own games, but it means your general
concept isn’t necessarily going to be new. For
example, how many films and books can you
think of that include zombies? Probably quite
a few, but each one has a different plot or story-
line.

The key to your story is to find the reason that
the player wants to play the game. Is it to rescue
someone or find a particular item? Did some-
thing happen to the characters to make them
want to find or chase someone else?

Simple games don’t need to have a large, com-
plicated story. You can explain what the player
needs to know in a paragraph. If you look at
many of the games hosted on
www.madword.com, you will notice that the
accompanying story is only a few sentences. This
is because the games themselves are fun and
simple; they don’t need long introductions and
complex storylines. Think about your audience
and how complex your game is before writing
your story. If the game is a single level where the
player does one simple task, a page worth of
story is too much. Players don’t want to read
text or view the long introductory stories; they
want to play your game.

13

www.madword.com

N
ow that you have an idea what
you want in your game, you can start to
draw it out on paper. This is called story-

boarding, and the process is used to give you an
idea what your game will look like before you
start to draw graphics and place your items
onscreen.

TGF2 works on the basis of frames, where each
level and screen is a different frame, which
makes the whole process of mapping out our
ChocoBreak game very easy.

There are a number of different storyboarding
drawings you can do at various levels of your
game. Following is a sample of drawings you
might make for your storyboard:

� Game Map: This is the top view of all of
your screens and levels. This is a simple
and effective way of seeing how all your
levels connect together, giving you an
overall view of how the user will navi-
gate around the screens in your game.
You can see an example of a game map
in Figure 2.2. This is our structure for
the ChocoBreak game, where we will have
three screens. You can use several letter-
sized pieces of paper stuck together or
a single piece to create your map; it all
depends on the size of your game.

� Level or Screen Map: In Figure 2.2 you
can see the individual screens but not
the actual content that you are hoping
to place within them. So at this point,
you should break your game down
further into additional storyboards
for each screen. You can see our three-
frame game, ChocoBreak, broken down
into further storyboards in Figures 2.3,
2.4, and 2.5.

� Object Level: It is very common in more
complex games to storyboard an indi-
vidual object, such as a player character
or enemy spaceship. Here you would
draw the individual object, and on the
same document, detail additional notes
about that particular object. So if you
were detailing the player character, and
he has changeable clothes or armor, you
wouldn’t necessarily detail each item.
You would just mention what is inter-
changeable with the character.

14

Storyboarding

Paper, Paper, Everywhere

When you are creating a large game, it is
sensible to label all of your drawings so that
you know where they fit within the game.
You may end up spending a lot of time
thinking about where all the levels go if
you do not document and label your work
correctly.

Game Design Chapter 2

15

Insert Figure 2.2
The game map for ChocoBreak.

Drawings and Text

Storyboarding doesn’t just involve drawing
pictures; the pictures can also have particular
text on each drawing to give more detail or
make a concept or interaction more clear.

Figure 2.3
Our main menu storyboard for the ChocoBreak game.

Figure 2.4
Our game storyboard for the ChocoBreak game.

Figure 2.5
Our end screen storyboard for the ChocoBreak game.

Storyboards Using Computer
Graphics

If you are not very artistic, you might worry
about drawing storyboards. Another option
is to use default graphics that you can
download free from the Internet or find on
the full version CD-ROM. This way, you can
still create a basic storyboard without having
to worry about your artistic skills. This is
particularly helpful if you are preparing a
storyboard for artists and want to give them
a good idea what you want.

Y
ou picture yourself wanting to be a game creator, either
for fun or maybe even as a career of some kind. You have the hardware
available. and you have the trial software of The Games Factory 2.

You are now ready to make a start on your game making journey.

You might have some reservations at this point because game creation
could mean getting into programming and difficult-to-learn concepts, but
don’t worry. The Games Factory 2 is a straightforward product to learn.

In this chapter, we will learn all about how to navigate the product. We’ll
also take some step-by-step walkthroughs of certain functionality that will
help you later on when you make your own games. Finally, you will also
learn the location of the program editors and what they are used for.

Making games is within your reach, so keep reading and before you know it,
you will be creating your first game.

3
Getting to Know

The Games Factory

T
he Games Factory 2 is a powerful
but easy-to-use programming system
that allows anyone, even those with no

programming knowledge, to make games and
screensavers. As with any creation system or
program, you must get to know its interface so
that you can get around quickly but also get
to feel comfortable using it. TGF2 only has a
few screens and editors so once you have gotten
acquainted with it, you don’t need to use the
program regularly to remember what to do
when you come back to it.

In The Games Factory 2 program there are three
key program creation editors, one picture editor,
and a special calculator for entering special
information. The editors and programs are as
follows:

� Storyboard Editor: Lets you specify the
order of screens or levels within your
game. Each level or screen is called a
frame. You can create as many frames
as you like within your TGF2 program.

� Frame Editor: Here, you look at a specific
frame and place the graphics and
objects onto the screen. You could
consider this the area where you set
the scene of your game.

� Event Editor: Here is where you create
your program login in a spreadsheet-
like program. You create events, which
tell TGF2 how to react in the game.

� Picture Editor: The Picture Editor is
where you can draw, import, and export
images. It has another editor built into
it called the Animation Editor. This is so
you can create multiple pictures of the
same image and animate it, so that it
looks like it is moving within your game.

� Expression Evaluator: When you need
to do calculations and comparisons of
numbers or text, or obtain information,
you will use the Expression Evaluator.
It looks like a giant scientific calculator
with some extra buttons on it.

18

The Games Factory 2 Program Introduction

Remembering Traditional
Programming

Traditional programming languages can be
difficult to remember when you’re just start-
ing out in your game making life. Many are
based on typing in code and having specific
words that you need to type (syntax). You
won’t have this problem with TGF2 because
it is all mouse-led. Once you have learned
the basics, it won’t matter if you take a
break from the program for a while. You’ll
have no problem getting back into creating
when you start again, because you won't
need to remember specific syntax or code.

Getting to Know The Games Factory Chapter 3

W
e are now ready to start up
TGF2 and take a look at its interface.
The following assumes you have

installed the program demo from the CD-ROM
included with this book, which is stored in the
Demos folder.

You can either double left click on The Games
Factory 2 icon that will be on the desktop or
choose Start > All Programs > The Games
Factory 2 > The Games Factory 2. One of two
things will happen:

� In the demo version (included with the
CD-ROM in this book), you will see a
dialog box which will advise you that
it is the demo version, as shown in
Figure 3.1. You can click on the Continue
button to move to the main screen.

� In the full version you will move to the
main interface screen.

19

Launching The Games Factory 2

Figure 3.1
The trial version dialog.

Figure 3.2
The TGF2 interface and an HTML tutorial file.

You will now see The Games Factory 2 program
screen load, and you will see an HTML help
tutorial program open on the right side of the
screen, as shown in Figure 3.2.

We will be creating a simple game using the
tutorials graphics later on in this book, but
for now you can close the Tutorial window by
clicking on the Red X in the top right corner.

ChocoBreak Tutorial

The ChocoBreak tutorial was made for TGF2
by Olivier Behr, and you can visit his web
site at http://www.oliverpearl.com. The
ChocoBreak game is a classic type of game
that was very popular on computer systems
during the 1980s.

http://www.oliverpearl.com

T
he main Games Factory 2 interface
allows you to access all of the key compo-
nents in one simple interface area. It has

different buttons, tabs, and windows to learn.

After a short time spent getting to know the
basics, these other options and features won’t
delay your game creation creativity. As you get
more experienced, you will then be able to use
these additional shortcuts and features to make
your games even quicker. You can see the main
windows of TGF2 in Figure 3.3.

20

Introducing The Games Factory 2

Figure 3.3
The layout of TGF2.

Menu Bar

Workspace
Toolbar

Library
Toolbar

Properties
Window

Shortcut/Menu
Buttons

Editors
Window

Getting to Know The Games Factory Chapter 3

Shortcut Buttons
The shortcut buttons reside at the top of the
application window and are a short list of all
the important options available in the program.
These buttons will change at different times,
depending on what you are doing and which
editor is currently displayed. You can see a
close-up of the shortcut buttons in Figure 3.5.
You will notice that many of the options are
grayed out; this means that they are not currently
available.

Workspace Toolbar
When you create your applications, the Workspace
toolbar will display the physical folder and file
structure of your game. You can see an example
of the structure involved in the Workspace
toolbar in Figure 3.6. At the very top of the
structure, you will see the application name.
Below the application name you will see any
frames that are within this game. Within each
frame, you will see the objects that you are
using for that frame.

Frames are physical separations of your game
within the program, so these may be multiple
levels or screens where you want to display
something. A perfect example of this would be
that shown in Figure 3.6. There you see a menu
screen that displays a loading screen, which either
tells the player a story or displays a waiting screen
before the game begins. The second frame is
the game screen, where the player will play the
game, and the final frame is the end screen,
which gives the player the score or end sequence
to the game.

Menu Bar
The menu bar is a standard way of accessing
specific features within any Windows-based
application, and TGF2 is no exception. When
you select one of the options from the menu
at the top, it will display a popup menu, which
displays all of the options under that heading.
If you see an arrow next to any of the options in
the list, this means that it is a subheading and
has more items under it. You can see that the
File option has been selected in Figure 3.4.

In some of the options, you will notice keyboard
options like Ctrl+N. These are shortcut keys, so
you can use the key combination to do the same
choice with keys rather than navigating through
the menu.

Figure 3.4
The File menu.

Figure 3.5
The shortcut buttons.

21

Objects are the games assets, such as graphical
items, objects to handle the score, lives, and so
forth. Without objects, you would not have any-
thing displayed onscreen. A perfect example of
this is the Active object, which is used for any
objects that will move or be animated onscreen.
This is used for game objects, such as spaceships
or meteorites. In gaming terms, the Active object
could be considered a game sprite.

Properties Window
Many items within the TGF2 program can have
a set of properties assigned to them. These prop-
erties allow for fine-tuning of that part of the
program. You can configure many aspects of
the program using properties, and you would
normally do this before beginning any event
programming. You can see an example of the
Properties window in use in Figure 3.7.

22

Figure 3.6
A game loaded into the Workspace toolbar.

Levels and Frames

Even though we have made the distinction
of placing one level on each frame, you can
make many levels on a single frame. The
upside of this is that you only have to place
the graphics on a single frame rather than
duplicate them over many frames. The
downside is that it can get very messy on a
single frame if you create 50 or 100 levels
with different graphics.

Figure 3.7
The properties of a particular application.

Getting to Know The Games Factory Chapter 3

Library Toolbar
The Library toolbar is a way of accessing graphic
and object content. Clickteam, the maker of
TGF2, has provided a large set of game back-
grounds, buttons, animations, and characters to
use in your games. This means you can use the
product straight out of the box rather than hav-
ing to draw or import your own content. If you
are using the trial version on the CD-ROM that
comes with this book, you will be provided with
a set of graphics for the tutorial game. We also
have provided some additional graphics to get
you started making your own fun games. These
can be found under the \Content directory on
the CD-ROM.

When you are using the Library toolbar, you
navigate a number of folders and files and then,
once you find something you are interested in,
you drag and drop this to your frame. You can
see the Library toolbar in use in Figure 3.8.

The levels of property configuration are:

� Application Level Properties: Any
changes to the application level of prop-
erties will affect the whole application.
These can include information, such as
the size of the program window,
whether the window will have maximize
or minimize buttons, any help file the
program will include, and copyright
information.

� Frame Level Properties: Any changes
will only affect the frame that they are
made on. You can have many frames,
and you may want some of them to
react differently. You can do things
such as sizing frames, fading in and out
of a frame, grabbing the desktop, and
changing the background color.

� Object Level Properties: On each of your
frames, you drop items called objects,
and each of these objects can have a set
of properties, such as movement, size,
screen location, and any special infor-
mation that might be stored in it.

Editors Window
You will notice on Figure 3.3 that there is nothing
displayed. This is because at the start of any
creation, no editors are open. Within this gray
background will appear the editors that we have
previously mentioned.

23

Figure 3.8
The Library toolbar in use.

The Library Toolbar Visibility

You may not initially see the Library toolbar.
To switch it on and off, you can use the
menu bar and select View > Toolbars >
Library Window.

Layers Toolbar
The Layers toolbar is not displayed by default
and not shown in Figure 3.3. When you want to
place graphics at different layers, you can either
do so on the frame or via the Layers toolbar.
A layer can be thought of as the layers of a cake;
some parts are on top of others. You can only
see parts of certain layers depending on how
much the layer above it covers the layer below
it. For example, if you eat half of the top layer
of a cake, you will see part of the layer below it
revealed. The same applies to layers in a game;
you might have a graphic partly covering
another, and it will appear in front of the graphic
below it. If you use art packages, you will be
familiar with layers. You can see the Layers
toolbar in Figure 3.9.

24

Figure 3.9
The Layers toolbar.

Layers Visibility

To switch on the Layers toolbar, you will use
the menu bar, then select View > Toolbars >
Layers Toolbar.

Getting to Know The Games Factory Chapter 3

To create a new file, complete the following steps:

1. Load up TGF2, by double clicking on the icon
on the desktop, or by clicking Start > All pro-
grams > The Games Factory 2 > The Games
Factory 2.

2. Click on the New button, press the Ctrl+N
keys, or use the File > New menu option.

Once you have created your new blank application
file, your game is ready to be put together. You
can see the blank application in Figure 3.10.

B
efore we get deeper into The
Games Factory 2 software, we will need
to take a look at the creation of a new

application and the loading of a file that has
already been worked on. Many of the features
of TGF2 will not appear unless there is a game
file loaded. Let’s take a quick look at opening,
saving, closing, and creating a game file.

Creating a New TGF2 Game File
Before you can start making your games, you
will first need to create a blank game file. This
blank file will contain a basic set of property
information and a single game frame for you to
begin working on.

The Games Factory 2 File Basics

Application Files

A game, and all its contents,
that is made in TGF2 is
called an application file.

Figure 3.10
The blank application file with a single frame and the Storyboard Editor open.

25

Opening an Existing Game File
If you have a game that you have previously cre-
ated or have perhaps downloaded a game from
the Internet that you want to open, there are
two ways to do this.

� Browse your machine using Windows
Explorer until you have located a file
with an MFA extension (this is a file
that ends with .mfa). Double left click
on it, and it will automatically load into
The Games Factory. Even if you don’t
have TGF2 already started, it will make
it appear and then load the file into it.

� If you already have TGF2 open and
know where the MFA file is located, you
can click on the Open button and use
the shortcut Ctrl+O or click File > Open
on the menu. You will then get a browse
dialog box as shown in Figure 3.11. You
can then browse for the file, single left
click on it to select it, and then click on
the Open button to load the file.

Saving a Game File
You have begun to create your game and you
want to save the file for reloading later on. You
may also want to save the game file to ensure
having a backup file just in case of any problems.
You should try to back up your game files on a
regular basis just in case there is a power loss or
computer crash, which could damage the file
you are working on.

To save a file, you can do one of the following:

� If this is the first time you have saved
this file, click on the Save button,
use Ctrl+S, or use the menu to select
File > Save As. A dialog box will appear.
Type in the name of the file you wish
your application to have. Click on the
Save button to save the file.

� If this isn’t the first time you have saved
this file and you wish to stay with the
same file name, you can use the Save
button, press Ctrl+S, or click on the
File > Save option.

26

Figure 3.11
The browse dialog used to find MFA files.

File Extensions

Files that are created in TGF2 are saved as
name.mfa, name being the name that you
call your game. This is a file that can be
opened on any computer that has TGF2
installed on it. If you own the full version of
TGF2, you will also be able to save files in
EXE format. This is a finished version of your
game, which cannot be opened by TGF2.

Getting to Know The Games Factory Chapter 3

Storyboard Editor
Most games are composed of several levels, or
screens. The Storyboard Editor lets you view all
of your frames in a list. This makes it easy for
you to see the order of the frames, and you can
drag and drop frames above or below others.
You also get a visual representation of each
frame’s contents in a small thumbnail image so
if you don’t remember exactly what a particular
frame contains, you might remember from
the picture. You can see an example of the
Storyboard Editor with a number of frames
added in Figure 3.13.

W
e briefly mentioned the editors
that are used in TGF2 earlier in this
chapter. We will now be taking a closer

look at them and how to access them. These
editors are parts of the program that you will
use the most and by the end of the book, you
will be very familiar with them. There are three
main editors for constructing your games: the
Storyboard Editor, the Frame Editor, and the
Event Editor.

You can quickly and easily move among these
three editors by using the buttons on the menu.
You can see the button graphics for the three
editors in Figure 3.12.

27

The Editors

Figure 3.12
The Storyboard Editor, the Frame Editor,

and Event Editor buttons.

The Editor Buttons’ Appearance

Not all editor buttons will be available at all
times.

Figure 3.13
The Storyboard Editor with a number of frames

loaded.

Creating Frames
When you make your own games, you will need
to create a set of frames that will hold your
game’s content, such as the game’s graphics.
These frames can be the levels in your game or
the different screens the player will visit. You
may create as few or as many as you require for
your game. To create new frames, you can use
one of the following methods:

First Method:

1. Start TGF2.

2. Create a new application by pressing the
New button or selecting File>New from the
menu. This will create a single frame applica-
tion file.

3. Click on the number 2 in the Storyboard
Editor. This is the number that is opposite
the text More.

4. Adding one will increase the last number,
which is opposite the More text. Continue to
click the number opposite the text More to
continue adding the number of frames you
require.

Second Method:

1. Start TGF2.

2. Create a new application.

3. Right click on the application name in the
Workspace toolbar. From the popup menu,
select New Frame.

4. Continue right clicking and selecting New
Frame to create the number of frames you
need.

Renaming Frames
You will notice that when you create a frame it
will have the name of Frame with a number at
the end of it. Every time you create a frame, it
will increase this frame number. When creating
a large game, you will find this numbering
system is not very helpful, especially when you
tell TGF2 to jump to a specific frame, and you
are required to select that specific frame. This is
not such a problem when you only have three
frames and you know what each frame does.
You might create a game with a large number
of frames, and remembering what each does by
number would be very difficult or impossible.
Renaming them to something more appropriate
can help a lot with this, because you could specify
that a frame fulfills a particular role within your
game, for example, Level 39 or End Screen.

In the same way that there are two ways to
create frames, there are also a number of ways
to rename a frame.

28

Storyboard Options

Some other options available in the
Storyboard Editor include setting the size of
each individual frame, setting a frame name,
and creating a fade in and out transition
effect.

Getting to Know The Games Factory Chapter 3

The second method to change the frame name is:

1. You need to ensure that the Storyboard
Editor is open. Then single left click on the
Title text (under the comments) for the
particular frame that you want to rename.

2. Type in the name of your frame and press
Enter.

3. You can see the before and after results of
the name change using this method in
Figure 3.15. In the example, you can see that
the title of Frame 1 has been changed to
Menu.

The first method is:

1. You have your TGF2 program open, with an
application created or open.

2. Right click on the frame number text in the
Workspace toolbar and select Rename from
the popup menu.

3. The frame you choose to rename will now
allow you to type in the text of the frame.
You can see the before and after results in
Figure 3.14. You can see in the example that
the Frame 2 text has been changed to Game.

29

Figure 3.14
Editing and renaming the frame names.

Figure 3.15
Changing the frame name using the Storyboard

Editor.

The Frame Editor
The Frame editor, as shown in Figure 3.16, is the
blank starting slate of your frame. The Frame
Editor is where you place your game graphics
and the objects that you need to make your
game work. The white area in the middle is
called the play area. This is the window that
will appear when you play the game and is
considered the viewable area of the game. The
gray area surrounding the play area is where you
can place items that you do not want to have
initially appear at the start of your game. You
could say that the Frame Editor is where you set
the scene of your game.

To give you an idea of what the frame could look
like in a working game, see Figure 3.17 as an
example of a game being set up on the frame.

30

Figure 3.16
All new frames will appear as a blank white area.

Figure 3.17
A complex game loaded in TGF2 and displayed

in the Frame Editor.

Getting to Know The Games Factory Chapter 3

The Event Editor
This is the screen where you build the logic of
your game. You could say this is where you do
your programming. The programming is based
on eventing, which is an English-readable form
of programming based on checking for each
event for conditions. If the conditions are true,
then the appropriate actions occur. There is an
Event Editor for each frame of the game, so if
you have a three-frame game and you program
something for the first frame, you will not see
this information in the second or third frames.
You can see an example of the blank Event
Editor in Figure 3.18 and one with code applied
in Figure 3.19.

31

What Are Events?

Think about your everyday life, and consider
what an event is. An event could be going to
work, making a cup of tea, and going to
bed. An event is not a single item, but a
combination of items. For example, making
a cup of tea involves filling the kettle with
water, switching it on, waiting for it to boil,
and so on. In TGF2, an event is a collection
of items called conditions.

What Are Conditions?

A condition in TGF2 checks to determine
when a specific task is true. If the condition
(or conditions) is true, the program will run
the actions. If we take making a cup of tea,
a condition for this could be “has the kettle
finished boiling?” If this is correct, then the
condition is true. In TGF2, it works the same
way: “Is the score set to a specific amount?”
“Is the player’s character at a particular posi-
tion on the screen?” “How many lives does
the player have?”

What Are Actions?

An action is something you want to happen.
So if a certain condition is true, you would
run the relevant actions. An example of this
could be that the player’s spaceship has
been hit by a missile, in which case the
action might be to reduce the ship’s health
or to subtract a life. You can have multiple
actions as the result of a particular event.

32

Figure 3.18
The blank Event Editor.

Figure 3.19
The Event Editor which has been programmed.

Getting to Know The Games Factory Chapter 3

The Picture and
Animation Editor
Throughout this book, we will refer to the
Picture and Animation Editor as the Picture
Editor, although it is actually two editors in one.
Whenever you are dealing with objects that are
of a graphical nature, you may with to edit them,
or you may even want to import graphics of
your own. To do this, you will need the Picture
Editor. If you wish to animate a graphic, in other
words, make it appear to be moving, waving, or
rotating, you will need to use the Animation
Editor. This editor appears in the bottom half of
the Picture Editor. You can see the Picture Editor
in Figure 3.20. We will cover more about the
Picture Editor in Chapter 6.

33

Figure 3.20
The Picture Editor with the Animation Editor in the bottom of the screen.

Animation Versus Movement

You may think that animation is the same as
movement, but this is not the case.
Movement is the physical moving of an
object (graphical or otherwise) on the
screen. Animation is changing the look of
an object’s state. This could be making a
character wave his arm, or a spaceship tilt
to the left or right. By combining the two
options, you can create some amazing-
looking game graphics.

The Expression Evaluator
When using the Event Editor or the Frame
Editor, you may be required to test and compare
numbers or text or get information from anoth-
er object. The Expression Evaluator looks like a
large scientific calculator, and it is used to type
in specific data that you want to retrieve from
the program or its objects. You will use the
Expression Evaluator most when using the Event
Editor. You can see an example of the Expression
Evaluator with some information entered into it
in Figure 3.21.

34

Objects Contain Information

All objects contain information, for example,
their position onscreen or their size. They
can also contain additional information,
data (called alterable variables), which you
can read and write to. This information is all
accessible from the Expression Evaluator.

Figure 3.21
The Expression Evaluator in use.

Getting to Know The Games Factory Chapter 3

You can see several items in Figure 3.22 that
correspond to the following numbered list:

1. By default, you will see the contents list. If
you have used the help system before and
used a different tab, this will be the default
view. The contents show all of the different
subject headings of the help system. You
can click on the plus (+) sign to expand the
contents and the minus (–) sign to collapse
them.

2. The Index provides a list of all of the key-
words that are used in the TGF2 help system.
So, if you are looking for a particular item,
you can type in the word and let the help
system search for it. If the word you are
searching for is a keyword, it will appear in
the list in the left window and you will be
able to click on an item to display its con-
tents in the right window.

3. The Search tab allows you to do a more
detailed search than the Index. The Index is
only words that have been identified within
the help system, while the Search tab will
search all of the documents used in the help
file and display the available content headings.
It will also highlight the word in the contents
as you look through them.

4. This is the content window, which displays
the help file information.

A
lthough this book will give you a
lot of information on how to make your
own games with The Games Factory 2,

you will at some point need more help to allow
you to understand a specific concept or find out
about a particular feature.

There are a number of different help options
available to you if you have gotten stuck on a
particular problem. The first and quickest way to
get help is to use the built-in help system. You
can access the built-in help by using the menu
option Help > Contents. You can see the help
system in Figure 3.22.

35

Getting Help

Figure 3.22
The built-in help system.

2 3

1 4

Tutorial Files
Another way of learning how to do something
or understanding particular concepts is to look
at the various tutorial files that are available. By
looking at them and seeing how they are struc-
tured and the code that they use, you can learn
a great deal. You can also pick the code apart
and use similar code in your own programs.
Tutorial files are a very easy way of learning new
things.

The Internet is also a great source of example
files and tutorials. Clickteam’s web site has a
number of example files you can download as
well as text-based articles, and you can find a
lot of different code examples on the forum
uploaded by its users. Other users also upload
examples to their own web sites that you might
find useful.

36

Tutorial Files

With the trial version of TGF2, the program
has a single tutorial file. We have included
a number of games so that you can look at
the source code to see how they are struc-
tured. In the full version of TGF2, there are
several games and example files for you to
learn from.

Downloading from the
Internet

Always be careful when downloading files
from the Internet and ensure that you are
using an anti-virus program which can check
on anything that you intend to place on your
PC’s hard drive and open.

Getting to Know The Games Factory Chapter 3

You can see the Run Application and Run Frame
buttons in Figure 3.23.

W
hen making your games, you
will want to test them occasionally to
make sure they work correctly or to see

how you are getting on with your game. There
are two ways to test your game. The first is to
run the whole game; this will play the game
from the very first screen (called frame) and
allow you to play it until the game exits or you
decide to close the program. The second method
allows you to run the current frame you are on.
This is a good way of testing the frame you are
working on without needing to skip or play
through all the levels that precede it.

37

Running Your Games

Figure 3.23
The Run Application and Run Frame buttons.

Shortcut Keys

You can also use shortcut keys to run
the application or frame by using F7
(Run Frame) or F8 (Run Application).

I
n Chapter 3, we took a tour of the TGF2 program and had
a look at its toolbars, menus, and editors. You should now be getting an
idea of the workflow of TGF2 and how you would go about using it.

In this chapter, we will be looking at setting up a scene, placing the
graphics and other objects onto our game frame. Setting your game scene
is a major aspect of creating your game, and in many cases, you might be
setting your scene based on your storyboards.

As well as placing your game graphics, you will also be placing other
items called objects on the game frame. These objects are one of the most
important aspects of creating your games with regards to setting up your
scene and getting it ready to be programmed.

4
Creating the Scene

and Using Objects

O
bjects could be considered the
cornerstone of anything you create in
TGF2. In fact, they could be considered

the single most import thing required for your
game. A game is comprised of various compo-
nents, for example, a simple spaceship graphic,
the graphic of a bullet being fired from an
enemy creature, in-game video, onscreen text
displaying your name, and an item that displays
how many lives you have left. Anything that is
added onto the frame is an object. The structure
of these objects is already defined using a built-in
list of objects that comes with TGF2.

The great thing about these objects is that they
are pre-programmed, allowing you to get on
with the task of making your game and then
configuring the object in the way you want it
to work. You will then be able to access most
objects via the Event Editor, which allows for
conditions and actions to be applied to them.

Adding an Object
To view all the available objects in TGF2, first
you must be in the process of adding an object.
You can only add an object if you are on the
Frame Editor screen. You might have 10 frames
in your game, and so you must be in the frame
you want to add your objects.

Following are the steps to view and add objects
to a single frame.

1. Start TGF2, and select File > New from the
menu.

2. Double-click on the text “Frame 1” in the
Workspace toolbar. This will load the frame
into the editor area of the program.

3. You can now view and add an object using
two methods: You can select Insert > New
object from the menu, or you can right click
on the blank white frame area and select
Insert Object.

4. You will then see a list of available objects
that you can choose from, as shown in Figure
4.1. You are also able to display the objects in
a list by clicking on the tick box on the right
side below the buttons. Select the object that
you want to add by single left clicking on it
and then clicking on OK.

5. You will be taken back to the frame, but your
cursor will have changed to a cross. Left click
on the frame to place the object.

40

Objects in TGF2

More Objects

If you are running the full version of TGF2,
you may see some additional objects.
Clickteam sometimes adds additional
objects via updates and patches.

Creating the Scene and Using Objects Chapter 4

You can see the object Properties window shown
in Figure 4.2. When accessing object Properties,
you will see a set of tabs, which allow certain
properties to be grouped together for ease of
use. An example of the Properties tabs can be
seen in Figure 4.3.

Accessing Object Properties
Every object you add to the frame has a set of
properties. These properties can be accessed by
single left clicking on the object. These proper-
ties might include:

1. The object’s screen location, using two
coordinates of X, which is horizontal, and Y,
which is vertical.

2. The object’s size or angle on the frame.

3. Whether the object should be resized and
if so, whether it should be resized using a
speed algorithm or based on quality.

4. Whether the object should be transparent or
use any ink effects to change the look of the
object when the frame is run.

5. Whether the object should have any move-
ment applied to it, and any additional
movement configurations, such as speed,
bounce, and rotation.

Figure 4.1
The Create new object dialog box.

Figure 4.2
The object Properties of the Active object.

Figure 4.3
The tabs available on the Properties window.

Tabs Available

For different objects, there will be different
tabs available in the object Properties window.
Some objects will only allow very small
changes to their properties.

41

An example of the types of tabs you will
encounter are:

� Display Options: This provides different
options for how the object should
appear on the frame.

� Size/Position: Determines the object’s
size and position on the frame. This
tab is used a lot to place an object at
a specific location on the frame.

� Movement: Those objects that can have
movement are set to static by default.
You can specify a different movement
type from within this tab.

� Runtime Options: Determines how the
object should react when the program
is running. This allows configuration of
such things as when an object should be
destroyed and if it should use specific
collision properties.

� Values: You can assign different text
and number values to an object, which
are then available to program in the
Event Editor.

� Events: You can create events that just
apply to the object. You access a special
event editor just for the objects.

� About:: Provides information about the
object, and a button link to the help
file. If you click on the help file button,
it will open the help file associated with
the object or property you are currently
viewing.

Some objects have too much property informa-
tion to store in the Properties window and will
open a separate window on top of the Frame
Editor window. To begin with, many of the
properties will be fine for starting out, but later
on, you may find that you have to edit these
properties to make your game look and feel
the way you want it to.

42

Tab Identification

You can identify the tabs by holding your
mouse cursor over them; a small text box
will appear telling you what each tab is.

Creating the Scene and Using Objects Chapter 4

Active objects are denoted by their icon of a run-
ning man in the Create new object dialog box
and as a green diamond in the Event Editor. The
icons can be seen in Figures 4.4 and 4.5. You can
access the Active object graphic by double left
clicking on the green diamond. This would take
you to the Picture Editor, where you could then
make changes to it or import another image.
We will cover the Picture Editor in Chapter 6.

W
e will now take a look at
some of the common objects that
you will use on a regular basis in your

game creation. There are over 40 objects that
come included with TGF2, which can do many
things from displaying text to creating a quiz
program. We will look at the key ones you will
need when making simple computer games.

Active Objects
Active objects are used as the main graphics for
your games and will probably be the most com-
mon objects that you will use. These graphic
objects could be a spaceship, bullets that fire
from a spaceship gun, a walking character, or a
player item, such as bonus health or lives. The
key reason for picking an Active object is that
the graphic will move, rotate, or animate in
some way.

43

Common Objects

Active Objects
That Don’t Move

You can also use active objects for graphics
that will be static and not animated. Each
type of object has different properties that
can be applied to it, and you may find the
active object is perfect for a specific task. You
may also want to animate a graphic later on
in the development of your game. This makes
the whole process easier if you change your
mind about an object and make it animated.

Figure 4.4
The Active object icon.

Figure 4.5
The default Active object inserted onto the frame.

Backdrop and Quick Backdrop
Objects
Backdrop and Quick Backdrop objects perform
a similar function, and that is to provide a back-
ground to your games. A Backdrop object is
usually constructed by using the Picture Editor
to import or draw an image; you could alterna-
tively use one of the many backdrops provided
on the CD-ROM of the full version of the software.

You use Backdrop objects to create a background
for your games; for example, if you were making
a space game, you might create a backdrop
that has a planet and stars in it. Backdrops will
always appear at the back of the frame, and you
cannot place them on top of other objects.

You can see the icons for the backdrop and
Quick Backdrop in Figure 4.6.

The Backdrop object uses an imported image,
using the Picture Editor, but the Quick Backdrop
object allows for further configuration to create
a background of different types. To take a look
at the specific properties of the Quick Backdrop
object, we need to add the object onto the frame
and then access its properties.

1. Ensure that TGF2 is started, and create a new
application by clicking on the New button.

2. Double-click on Frame 1 to display the first
Frame Editor. Right click on the frame and
select Insert Object.

3. Select the Quick Backdrop object and click
on OK.

4. Click on the Frame Editor to place the object.

You will now see the object properties and the
tabs that are associated with the Quick Backdrop
object. There are two areas of interest for anyone
wanting to use this object for backgrounds.
The first is under the Settings tab, under the
headings of Shape and Type. The Shape allows
you to change the general shape of the Backdrop
object. The Type is more important as it changes
the type of fill that the Quick Backdrop can use;
you can see the settings in Figure 4.7.

44

Figure 4.6
The Backdrop and Quick Backdrop icons.

Figure 4.7
The Type drop down box with the possible

options you can choose.

Creating the Scene and Using Objects Chapter 4

There is one other major setting of the Backdrop
and Quick Backdrop objects and this is kept
under the Runtime Options tab. This is the
Obstacle type as shown in Figure 4.10, and it
determines how the object will interact with
other objects and, in particular, the player’s
character. In total, there are four settings that
you can choose from:

� None: This option means that the
Backdrop object will not interact with
any other objects on the frame and will
be just a backdrop. This is the default
setting and is used when you just want
to display the background.

� Obstacle: This allows you to check for
any collisions between the backdrop
and any other objects. You can check
for any collisions between an object
and the backdrop in the Event Editor.

� Platform: This will allow the backdrop
to take the form of a platform. A plat-
form is a floor, upon which a player
character or computer-controlled
character can walk.

You have the following configurable options
when using the Type drop down box:

� None: This creates a shape which is not
filled, so, for example, if you select a
rectangle, it will just have a black
border by default.

� Solid color: This fills the shape with
a color. You can change the color by
clicking on the color settings property.

� Gradient: This creates a color that
changes its shade, so that it changes
from one color to another. If you have
played old computer games, you might
recognize the gradient option; it was
very common in games in the 1980s to
simulate backgrounds, especially those
for a sky effect. You can see an example
of a gradient in Figure 4.8. You can also
see the properties that we have selected
to make this happen in the Properties
window.

� Motif: This option allows you to import
an image and then display this image
multiple times on the frame. You can
see an example of this in Figure 4.9,
where we have used an image as a motif.

45

Figure 4.8
The gradient setting, set up as a rectangle and using

two blue colors.

Figure 4.9
A fighter plane, replicated many times to

create a motif.

� Ladder: This will allow the backdrop to
act like a ladder, so when the player
presses the up key on the keyboard,
the player’s character graphic will move
upwards and climb the ladder.

Button Object
In your games, you may want to create a button
to allow the player to move between screens or
get the user to make a selection from a group of
options. TGF2 has a Button object, which allows
you to configure the type of button you might
want in your game. You can see the Button
object icon that is displayed in the Insert Object
dialog box in Figure 4.11 and the button that is
placed on the frame in Figure 4.12.

46

Figure 4.10
The Obstacle Type options in the Object properties

window, the Runtime Options tab.

Navigation

The Button object can be used as a key
navigational aid for the player. It enables
the player to get from one frame to another
when she clicks on the button. In other cases,
you will make the game move automatically
between frames using other methods, such
as time, score, or clicking on text.

Selection

You may want the player to select from a
number of options. You can do this also with
the Button object. This is useful if you have a
game configuration screen where you get the
user to pick how he wants the game to work
or play.

Figure 4.11
The Button object icon.

Figure 4.12
The Button object placed on the frame.

Creating the Scene and Using Objects Chapter 4

� Radio button: The radio button is
another selection button. You can
choose to display one or a number of
radio buttons. The difference between
this and the checkbox is that you use
the checkbox when the user can select
multiple options, while the radio button
is used when they can only select one
from a group of radio buttons. You can
see an example of the radio button in
use in Figure 4.15.

� Bitmap Push button: With the Bitmap
Push button, you are able to import
your own images to use for the button,
meaning you can design an image that
fits in with your game. The Bitmap Push
button allows for three states: normal,
pushed, and disabled. For each one of
these states, you create a different
image. You can see an example of the
normal and clicked states in Figure 4.16.

� Text and Image Push button: The final
button is similar to the Bitmap Push
button, has three states, but also allows
the developer to add text, to the left,
right, above, or below the image. You
can see an example of this in Figure 4.17.

There are five different options available for
selecting different types of buttons in your
games. Having a wide range of button types is
useful. It means you can select a button type
that matches your game rather than being stuck
with a default-only option. These options are
shown in Figure 4.13 and are described in the
following list:

� Text Push button: This is the default
option and is a standard Windows
button you might see in PC applications
such as an FTP server, a screensaver,
or an e-mail program. You can see a
standard button in Figure 4.12.

� Checkbox: The checkbox is another use-
ful Windows button type, which allows
the player to click on a button and tick
it. This is called a checkbox and you can
have a single checkbox or many of
them, and allow the player to switch
some on or off. You can see an example
of the checkbox in use in Figure 4.14.

47

Default Button

The default button that is created by TGF2
is a Windows button. This is the standard
type of button that you will see in Windows
applications. This is not used often in games
because it doesn’t fit with a game’s style.

Five Button Properties

As each of the five buttons is different in
some way, they all have different properties.
These settings may determine what font to
use to display the text or how an image
might be created and displayed.

Hi-Score Object
When you want to display a hi-score table in
your game, you can use the Hi-score object.
Unlike a traditional programming language,
where you would have to program each line of
the table, TGF2 has already set this up for you.
All you need to do is configure how you want it
to look. By default, the hi-score table displays 10
names and score entries, and it will automatical-
ly check to see if a hi-score is generated by the
player. If so, it would then ask the player for her
name and then enter it into the table. You can
see the icon for the hi-score table in Figure 4.18
and the default look of the table in Figure 4.19.

48

Figure 4.13
The Type settings in the object properties

for the button object.

Figure 4.14
An example of a set of checkboxes which

allows for multiple selections.

Figure 4.15
An example of a radio button which allows for

a single selection within a group of buttons.

Figure 4.16
An example of a Push button with two

states displayed graphically.

Figure 4.17
An example of a Text and Image Push button, with

the button above the text.

Creating the Scene and Using Objects Chapter 4

You have a number of configurable options
available to you in the object properties, particu-
larly in the Settings tab, which can be seen in
Figure 4.20.

� Number of scores: The number of scores
that you want to display in your table.
The default listing displays 10. If you
have a small area in which to show
scores, you can reduce this figure.

� Length of names: You can configure the
number of characters that the user is
able to use for his name once he gets a
high score.

� Show name before score: You can switch
the name and score around to display
either one first.

� Hide at start: This will enable or disable
the visibility of the hi-score table when
the frame is run.

� Check at starrt: This is enabled by
default and will check to see if there is
a hi-score and then present the player
with a box to enter his name.

� Hide scores: If you do not wish to
display the scores, but just the names,
you can enable this option.

� Edit content: This allows you to amend
the default starting names and scores
for your game. You can see the setup
box in Figure 4.21.

� Name (Ini file to use): By default, the
scores are saved on the user’s computer
in a file called cncscore.ini. If you want
to create a different ini file to save the
information to, you can enter the file
name in this box.

49

Figure 4.18
The Hi-score object icon.

Figure 4.19
The default scoreboard.

Hi-Score Generation

The TGF2 program knows when a hi-score is
generated, so you don’t have to program it.
It has a list of the default scores that are
displayed within the Hi-score object. When
the player enters the frame that contains the
Hi-score object, it will compare the player’s
score with those in the table. You can also
configure it so that it doesn’t check for a
hi-score by default.

Arcade Games from the 1980s

In older computer games and arcade machines
from the 1980s, you might be asked for only
three characters for your name.

Text-Based Objects
In many games, you will want to add text on to
the screen, maybe for instructions or comments
or to tell the user the game is over. TGF2 can
easily handle text using its collection of text
objects. You can use the following three objects
for adding text to your games:

� Formatted text: The formatted text
object allows you to display text but
also import text from an RTF (rich text
format) document. RTF is a common
text document, used in Wordpad or
Microsoft Word. You can open, save,
and load an RTF document as well as
print it. You can also make the window
transparent, which is very useful if you
want to display items behind the object.

� Static text: This is a very basic text
object that does not interact with the
frame in any way and is displayed on
top of any objects. This object is not
transparent, so is not very useful for
a graphically busy screen.

50

Multiple Hi-Score Tables

If you want to have a number of separate
hi-score tables within one game, you can create
multiple ini files to store the information.

Figure 4.20
The Settings tab for the Hi-score object

Properties window.

Figure 4.21
The dialog box for entering your own

names and scores.

Entering Your Own Scores

By entering your own names and scores, you
can really tailor your game and also provide
a challenge to the players. For example, you
should set the highest score to something
that would be difficult to obtain (but not
necessarily impossible), while the bottom
score should be relatively easy for the player
to get.

Creating the Scene and Using Objects Chapter 4

Lives
The Lives object allows you to keep track of how
many lives a player has. You can then make deci-
sions based on how many lives the player has
left. For example, if the player has no lives left,
you can tell the program to go to another frame
or display a Game Over message. You can set,
add to, and subtract from the Lives object.

You can see the Lives object icon in Figure 4.24
and how it is displayed on the frame in Figure
4.25. As you can see in Figure 4.25, it displays
the lives as three heart graphics. This is because
the initial starting value of the Lives object is 3.

� String: This simple text object can
display text on the frame. You can cre-
ate multiple paragraphs for this object
and then select at runtime which para-
graph to display; the object also is
transparent.

You can see the object icons in Figure 4.22.

Each of the three objects allows you to specify
the size, font type, and styles of the text you will
use in the object, but each of the three objects
has various properties that are unique to each
object. You can access the font options from the
toolbar or from the object properties window.
You can see the toolbar options in Figure 4.23.

51

Figure 4.22
The three text objects that you can use in TGF2.

Figure 4.23
The various font options available from the toolbar

when using the text objects.

Lives Graphics

If you don’t like the heart graphic as your
Lives image, you can change it by editing
the properties and replacing the image with
another, or you can draw your own.

Starting Lives

You can change the starting lives number by
accessing the application properties Runtime
tab. The Lives object will read the amount
stored in the application level and then
display the relevant number of heart images.
If you change the application level number,
this will amend the image on the frame.

For the Lives object, you can access the graphic
configuration of the object in the Settings tab of
the object properties. You can see the settings in
Figure 4.26. They consist of the following:

� Player: This is the player to which the
current Lives object will apply. You can
have as many as four players in your
game, so you can select which one this
object applies to.

� Type: If you want to change the look
of the lives, using an image, displaying
it as text, or displaying it as a number.

� Images: By clicking on the Edit button,
you can enter the Picture Editor and
then replace the standard image used
for the lives icon.

Score
Another essential game object is the Score
object. The Score object is used to keep track of
a player’s current score. You are able to set the
current value and then add to and deduct points
from it. The Score object is a counter that stores
a number.

You can see the Score object icon in Figure 4.27.

52

Figure 4.24
The Lives object in the Object Selection dialog box.

Figure 4.25
The default display on the frame of the Lives object.

Figure 4.26
The Settings tab of the Lives Object Properties.

Figure 4.27
The Score object icon in the Add Object dialog box.

T
he area where you will spend most of your time in the
Games Factory 2 is the Event Editor. This is where you program
the game logic and make your games come to life. The Event Editor

is where you do your game programming, but unlike traditional program-
ming, where you might type in lots of text and then get an error message,
TGF2 is a wholly different experience. TGF2 is an all visual programming
language, which means to start making games you use the mouse, and, yes,
you will need to do some typing, but usually that’s to add specific values.

In a traditional programming language, you might write some code, and
when you are ready to run it to see if it works, the programming tool
might give you an error message. You then have to go back into the code,
find the error, and retest it. Hopefully, you will find the problem and it will
run. This can be sometimes slow and laborious. TGF2 is different and gives
immediate feedback and will never give you an error message of this kind.
If you program something incorrectly, for instance, telling a bouncing ball
to move left when you meant to tell it to move right, the error manifests
itself onscreen, so that you can immediately see that you made a mistake
and correct it. The great thing is that any programming errors you might
make are visual and logical.

In this chapter, we are going to look at the structure of the Event Editor,
how it works, and how you enter in your code and other information.

5
Using the

Event Editor

T
o use the Event Editor, you will
need to be on the frame that you wish to
create your code against. Remember, each

frame can have different events assigned to it,
and the event sheet is unique to that frame. To
access the Event Editor:

1. Create a new game file by clicking on the
New button or by selecting File > New, or,
alternatively, you can use the shortcut key
of Ctrl+E.

2. Double-click on the Frame 1 name in the
Workspace toolbar.

3. You will now see the blank frame. Click on
the Event Editor button to access the blank
frame.

The Event Editor is now ready for you to begin
programming. There are a few things to note.
First, you will notice seven icons across the top
of the page as shown in Figure 5.1. These are
called system objects and are always present
within every Event Editor that you open.

As you add active, string, hi-score, and other
objects to your frames, these will also appear
in this list, as shown in Figure 5.2. This list of
objects is called the Event Editor Object list.

56

The Event Editor

Frame and Event Editor

When making your own games, you might
have multiple frames, and you will certainly
have objects already placed on the frame
before accessing the Event Editor.

Figure 5.1
The seven default objects that appear in every Event Editor.

Using the Event Editor Chapter 5

Special Conditions perform special
functions, such as enabling and disabling
groups, accessing the clipboard, creating
loops, and accessing text or numbers.

If you want to play sounds and music,
you would use the Sound object. You can
also use this object for checking when a
sound has begun or finished playing.

Storyboard Controls tell you which frame
the game is currently on, and provides
navigational commands, such as jump to
frame, next, and previous frames. The
Storyboard Controls object also controls
the running of the application and can
restart and close the application.

If you want to measure an amount
of time that has passed or check for
something at a certain interval (every
5 seconds, for example), then you can
use the Timer functions.

The System Objects
As previously mentioned, the first seven icons
are reserved for system objects. These objects
perform many of the basic tasks and functionality
of a TGF2 game, from playing sounds to moving
between frames. You will access these objects in
two places: when you create a condition and
when you create an action.

57

Figure 5.2
The seven default objects and others that have been added to the frame.

Object Icons
in the Event Editor

There are two objects that will not appear
in the Event Editor Object list; they are the
Backdrop and Quick Backdrop objects. This
is because these objects do not generally
interact with any part of the game.

Conditions

In Chapter 3, we discussed conditions;
remember, a condition occurs when you
want to check for something.

Actions

In Chapter 3, we discussed actions; an action
occurs when you want something to happen
to a particular object.

In many games you might want to create
an exact copy of a game object, for
example, an enemy space ship. The Create
New Object function allows you to test
for these objects and pick one at random,
or to create new objects.

You will use the mouse pointer and key-
board object if you want to check when
the user has pressed a key, moved the
mouse into a specific area of the screen,
or pressed a mouse button. You can also
hide or display the mouse cursor within
the game using this object.

The Player 1 object allows you to check
the status of a player’s lives and score as
well as any controls the player might be
using (joystick or keyboard). Using this
object, you can check the number of lives
or perhaps add or remove a life.

Events
Events are the names given to single or multiple
conditions that have a common task; the events
are the grouping of these conditions. Each event
line is given a line number starting with the
number 1. When you first access the blank event
system, you will see a single line with the words
New Condition; this is a blank event line waiting
for you to begin programming.

The conditions within these events are tested by
TGF2 when the game is run. When these condi-
tions are true, the program will run that event
line and the actions corresponding to that line.
If they are currently false, they will be ignored
and checked again once the program has been
through all of the other events below it.

Different events may be true or false at different
times during the life of the game. For example,
you may have a condition/event that checks for
when the player presses the spacebar. If the
player does not press the spacebar, then this
event will be false. Once the player presses the
spacebar, it will be true, but after the actions
have run, unless the player is still pressing the
spacebar, the event will again be false.

We will create our first event that will contain
one condition; this condition will run when the
frame has started. This is just an example of
how to add an event, and the process for adding
further single events is the same. The Start of
Frame condition we will use is very useful for
setting up certain conditions of your game
before it starts.

� Click on the New Condition text. This
brings up the New Condition dialog box
as shown in Figure 5.3.

� You will notice that the New Condition
box contains the seven system objects.
If you had added any further objects,
they would be displayed here as well.

58

Readable Code

Most code you enter in the event lines
(the gray boxes) will be readable as it is
displayed in English and is quite logical.

Using the Event Editor Chapter 5

You can add multiple conditions to the same
event. This allows for more complex code state-
ments; for example, you could add a condition
that checks to see if the mouse cursor is over an
object. The second condition could then be that
the user presses the spacebar. TGF2 will only run
this event if both conditions are true. This allows
you to create quite complex statements and make
your games much more fun and complicated,
using the same simple Event Editor process.

� Right-click on the Storyboard Controls
icon; this is the icon that looks like a
chessboard and knight. A popup menu
will appear which displays all the possi-
ble conditions that you can create for
this object, as shown in Figure 5.4.

� Select the Start of Frame text from the
menu.

� This will now add a single condition to
our first event line, on event line 1, as
shown in Figure 5.5.

Figure 5.3
The New Condition dialog box.

Figure 5.4
The popup menu from right-clicking an object.

Figure 5.5
The single condition in event line 1.

59

To add a second condition to the same event you
will need to:

� Right-click on the Start of Frame text in
the first event line. This will bring up a
popup menu, as shown in Figure 5.6.

� Select Insert and you will then be
presented with the Choose an Object
dialog box. This allows you to insert a
new condition with the one that has
already been created.

� Select the Player 1 object, then right-
click. From the popup menu, select
When number of lives reaches 0.

� You will now have two conditions in one
event line, where both conditions have
to be true before TGF2 will run any
actions.

As previously mentioned, when the program is
run, it will check this event and see if it is true.
In the case of the example in Figure 5.7, the
start of frame is always run when the frame is
first run, so this is true immediately. The second
condition is then checked to see if it is true.
In this case, TGF2 will check to see if the player’s
number of lives equals 0. By default, the applica-
tion lives is set to 3, so this second condition is
false, and the event line will not run. TGF2 will
now skip this line and continue to run any
below it. At the moment, there are no more
events.

60

Figure 5.6
The Insert option when right-clicking on

a condition that has been previously added.

Figure 5.7
The two conditions now entered into one event.

Using the Event Editor Chapter 5

object, so from event line 1 we move across until
we are directly under the Storyboard Controls
object as shown in Figure 5.8. As you can see in
Figure 5.8, we have highlighted the action box
with a cross. To add an action, you would right-
click this box. Once you right-click on an action
box, you will get another popup menu. From
the popup menu, you can select from any num-
ber of options, but choose End the Application.

You can see the popup menu options for the
Storyboard Controls object in Figure 5.9.

You can add actions to any of the object in the
object list on the same event line, and you can
also add actions to the same object. All you will
need to do is right click on the action box where
you have already added an action in order to add
a further action. You can add many actions on
the same object.

When you have added an action, the action box
displays a check icon as shown in Figure 5.10.
This tells the programmer that something exists
on this event line. To see what code is placed on
this action box, you will need to hold the mouse
over it, and a box will appear showing the code
as shown in Figure 5.11.

Actions
An action is what you want to happen. We have
already discussed the seven system objects and
how any additional objects you add to the frame
will appear. The action boxes are directly to the
right of the events, in the blank white and gray
squares. When you want to add an action, you
will first find the event that you want to use the
action on and then move across to the right
until you are directly under the object you want
the action to apply to.

In the event we have just added in Figure 5.7,
perhaps we want to end the application if the
number of lives equals 0. The action to end an
application is under the Storyboard Controls

61

Start of Frame

The start of frame condition is only run
when the frame starts. In the case of Figure
5.7, the second condition is not yet true,
and even if the number of lives changes to 0
later on in the game, this event will no
longer run because the start of frame
condition will no longer be true.

Figure 5.8
The location of the Storyboard action box on the first event line.

62

Figure 5.9
The action popup menu with options for

the Storyboard object.

Figure 5.10
The action box displays a check when an action has been assigned.

Figure 5.11
How to see the actions under an action box.

Using the Event Editor Chapter 5

To add a comment:

� Right-click on an event line number.
In the case of our single event line, you
could do this on the number 1 or the
number 2. Whichever line you do this
on, the comment will appear above that
line number.

� We intend to add a comment on the top
of the Event Editor, so right-click on
event line 1. A popup menu will appear.
Select Insert > A Comment from the
popup menu as shown in Figure 5.12.

� An Edit Text dialog box will appear as
shown in Figure 5.13.

� Enter your text in the text area. You can
also change the font, font color, and
back color, as well as setting the align-
ment of the text.

� For the example shown in Figure 5.14,
we have selected Centered text and
typed in the words My First Program.
We set the background color to a light
red (the first red on the color picker).
To complete the text comment, you
need to click on OK.

Comments
Comments are useful for a number of different
reasons; it is always good to label your game
with details such as when it was created, the
date it was last amended, and any general
comments about the game. This way, if you
open up your program a long time after you
created it, this information may provide an
insight into when you made it and what it does.

Comments are also very useful for commenting
your code. So if you write a particularly difficult
piece of code, you can place some information
between lines of code or at the start of the code
to explain what you have done and how you
achieved it. This is important if you leave your
code for any amount of time and then go back to
it, because it may take some time to familiarize
yourself with what you have done. Adding com-
ments makes this process a lot quicker, meaning
you can get back to programming rather than
spending time trying to understand what you
have done.

63

Figure 5.12
The popup menu when right-clicking on an event number.

64

Figure 5.13
The Edit Text dialog box.

Figure 5.14
The final comment with the changes applied via the dialog box.

The Need for Comments

There is no requirement to add comments to
your programs. In fact, you don’t need to add
any for your program to work. You may find
that it will help you understand your programs
when going back to them later, though. Even
simple programs can benefit from adding
comments.

Code Groups
Creating events on lots of lines is something that
you will do in every program, but sometimes you
may find that you need to group a set of events
together and keep it separate from the main set
of code. As the program runs from top to bottom
reading the conditions, you may want some code
not to run until a specific point in time, but it
would run if it was a normal event line. These two
items can be corrected by creating a code group.

A code group allows you to tidy up your code by
placing it in a group, which can be expanded or
collapsed, and that helps keep the Event Editor
tidier. Additionally, you can enable and disable
a group, so that when the code is being run
through by TGF2 it can be ignored until a point
when you want this code to run.

Using the Event Editor Chapter 5

To create a code group, you will need to access
the event number popup as you did for creating
a comment:

� Right-click on any event line number. If
you still have the example we have been
working on, right-click on event line 3.

� A popup will appear. Select Insert >
A Group of Events.

� A dialog box will appear, called Group
Events, as shown in Figure 5.15.

� Enter the title of the group. In this case,
we will call it First Group. You can pass-
word protect the group if you want, but
in most cases you can leave this blank.

� You will notice that the Active when
frame starts checkbox is checked. This
is the default setting. To ensure that the
code within this group does not run
when the program is run, you must
uncheck this.

� When you are happy with the group
name, click on the OK button to create
the group. You will see the created
group in Figure 5.16.

You will notice in the created group that there is
an additional New Condition line. You can either
create new events using this button or cut and
paste code you’ve already written and place it in
the group.

65

Drag and Drop

You can also drag and drop event lines into
a group by clicking and holding down the
left mouse button on the event line number
and then dragging to the group line.

Enabling Code Groups

Code groups can be enabled and disabled
using the Special Object in the Event Editor.

Figure 5.15
The code events group ready for configuring.

Figure 5.16
The final look of the code group added to the Event Editor.

I
n nearly every computer game you will play, the graphic
characters, spaceships, and items will move on the screen. Movement
is a key component of making your game, and in this chapter we will

look at how we move things from one part of the screen to another and
how to let the player control the movement of an object.

Movement is an important part of making a game in TGF2. If we consider
the order in which a game is made, first would come setting the scene,
where you create your frames and place your objects. You next would
configure object properties and movement, and then you would program
the logic in the Event Editor. You might be wondering why this Movement
chapter falls after the Event Editor in Chapter 5, when it precedes it in
setting up a game. The reason for this is that although you would config-
ure the movement properties before going into the Event Editor, in order
to really make some of your movements work correctly, you will need to
do some logic programming. You wouldn’t have been able to do that
before learning about the Event Editor.

So we will now take a look at all of the movements available to our games.

6

Movement

I
n Chapter 4, you looked at all the
available objects and added some of them to
the frame. Nearly every object you can apply

to the frame can have a movement assigned to it.
Some objects generally do not require a move-
ment in games, for example, the button object,
but the option is there if you ever require it.

To display an object’s movement property, first
we need to have an object on the frame. In this
example, we will be using an active object, but
the process would be the same for any other
object placed on the screen.

1. Create a new TGF2 application by clicking
on the New button, or using the File>New
menu option.

2. Double left-click on text Frame 1 in the
Workspace toolbar window to access the
blank frame.

3. Right-click on the frame area and select
Insert > Object from the popup menu.

4. Select the Active object by single left-clicking
on it and then click on the OK button.

5. Your mouse cursor will change to a crosshair.
Now left-click anywhere on the frame to
place the object.

6. The active object will be placed on screen
and automatically the Object Property
window will display the object properties.
Click on the Movement tab in the Properties
window (this is the graphic of the running
man).

7. You will now see the Movement Property
window as shown in Figure 6.1.

68

Accessing Movement

Default Movement

All objects by default are set to static
movement.

Copy and Paste Objects

If you copy and paste objects from other
games, they will retain the movement
properties assigned to them.

Movement Chapter 6

The second type are special movements which
require an additional object, called the Clickteam
Movement Controller, to be placed onscreen,
and any programming will be accessed via this
object in the Event Editor. We will cover this
later in this chapter.

First, we will need to take a look at the first
group of Movement Type. These include:

� Bouncing Ball

� Path

� Mouse Controlled

� Eight Directions

� Race Car

� Platform

� Pinball

There are three basic options available, Movement,
Type, and Initial Direction. Both Movement and
Initial Direction can be clicked on, but when the
object is set to static, these options will have no
effect. We will discuss these options and how
they work with movement shortly.

To access all of the available movement properties
available in TGF2, you need to click on the Static
button across from the Type property. You will
then see the movement types available in TGF2,
as shown in Figure 6.2.

Within the Type list are two types of movement
objects. The first is configured through Properties
and then any additional movement is applied
to the object through the Event Editor. So in
the case of the Active object, we would set
actions via the Active Object icon in the editor.

69

Figure 6.1
The default Movement Property.

Figure 6.2
The movement types available in TGF2.

Bouncing Ball Movement
When you want an object to react like a bouncing
ball, you can apply the Bouncing Ball Movement.
The bouncing ball movement can also be config-
ured in such a way as to create other types of
movements; for example, a set of alien space-
ships moving diagonally across the screen. It is
important to remember that even though the
default settings are set up in such a way as to
create a specific movement type, you can also
use it in other ways. This is more so the case
with the bouncing ball movement than any of
the other movement types.

Using the Active object that we added to the
frame, ensure that the movement tab is selected
and is set to Bouncing Ball as shown in Figure
6.3. You will then see the movement properties
as shown in Figure 6.4.

There are a number of important settings for the
Bouncing Ball movement, inclduing:

� Initial Direction: This is the direction in
which the object will move when the
frame is first run. If you click on the
initial direction list of numbers, you will
be presented with a circle surrounded
by a number of arrows and squares as
shown in Figure 6.5. The icon on the
bottom left will remove all directions,
while the icon on the right will add all
directions.

� Speed: You can set the speed of the
object. The default is 60, but you can
increase it if you want it to move faster
and decrease it to make it go slower.

� Ball Deceleration: If the ball hits a wall
or another object, you can make it slow
down. The default setting is 0, which
means that it will continue to bounce
forever.

� Moving at Start: Do you want the object
to be moving as soon as the frame
starts? If so, leave the checkbox checked.
This is the default option, but if you
uncheck it, you will need to start the
movement for the object in the Event
Editor.

70

Figure 6.3
The Bouncing Ball icon.

Figure 6.4
The Bouncing Ball properties.

Movement Chapter 6

� # of Angles: By default, there are 32
directions (angles) that the ball can
move in. If you don’t want to use this
many, you can reduce the number of
angles using the drop-down box. You
can set this number to 16 or 8 instead
of 32.

� Bounce Randomizer: If you want the
ball to bounce in a predictable direction,
for example, based on the angle of it
hitting an object, you would ensure the
number is lower for bounce randomiza-
tion. If you want a more varied bounce,
where it could go in a totally different
direction than expected, increase this
number.

� Bounce Security: When the ball bounces,
there is always a chance that it could
bounce a number of times in the same
direction. For example, it could bounce
up and down in the same direction
multiple times. If you are creating a bat
and ball game, you will not want it to do
this, so you would increase this number.

71

Initial Starting Directions

If you place multiple starting directions,
TGF2 will randomly select a direction from
those that are enabled.

Adding and
Removing Directions

You can add or remove a specific direction
by clicking on the black box in the Direction
dialog box.

Direction Numbers

In TGF2, there are a maximum of 32 move-
ment directions. Each direction is given a
number from 0 to 31. You can tell TGF2 to
move an object in a particular direction by
telling it the direction number in the Event
Editor.

Figure 6.5
The directions available to select and deselect.

There are two ways of testing your newly config-
ured movement. You can click on the Try
Movement button in the Movement properties
(Object Properties window). This will show you
the object bouncing around the screen, and you
can then decide if you need to make any
changes to the relevant properties.

The second option is to run the frame or appli-
cation using the F7 or F8 keys or clicking the
buttons on the Button toolbar.

The big difference with these two options is that
when you use the Try Movement button, it cre-
ates a window that will make the object bounce
around the screen. This is to show you what the
movement will be like with the configuration
changes you have made. When you actually run
your game, the ball will fly off in a direction, get
to the edge of the screen, and then fly off the
screen. This is because in reality although you
have given the ball movement you haven’t con-
figured any logic to your game to prevent the
ball going off the screen. This is because you
may actually want it to go off a specific part of
the screen, so TGF2 doesn’t have this configured
by default.

To stop the ball from bouncing around the
screen, you will need to go into the Event Editor
and program it:

1. Click on the Event Editor button to enter
the Event Editor. You will see a blank Event
Editor with one event line with the words
New Condition on it.

2. Click on New Condition to create your event
line. We want to test the position of the ball
(in this case, a green diamond). So the condi-
tion will be against the active object, so in
the dialog box right-click on the green active
object and select Position > Test Position of
Active as shown in Figure 6.6.

3. A new dialog box will appear. This is the Test
position of “Active” dialog box, and it allows
you to quickly click on areas of the screen
that you wish to check for. We want the
four arrows pointing outwards as shown in
Figure 6.7. Click on OK to save the direction
to the Event Editor.

4. You will now have a single condition on
the event line, which reads active (graphic)
Leaves the play area.

72

Figure 6.6
The test object Position location on the popup menu.

Movement Chapter 6

On running the program, by pressing F7 or F8,
you will see the ball moving around the screen,
and when it hits the edge of the application win-
dow, it will bounce back. In your own games,
you might want to not stop the ball going off
the screen in a specific direction. To do this, you
would just not select the arrow that corresponds
to that side of the screen.

73

Test Position Options

In Figure 6.7, there are several tests you can
do for object placement. The first four arrows
you previously selected were checking to see
if an object was about to leave the screen,
from the left, right, top, or bottom of the
screen. The four arrows pointing inward will
check to determine whether any object is
about to enter the frame. The big arrow in
the middle of the dialog box is a general
test to see if the object is in the frame,
regardless of its position. Finally, the large
arrow on the bottom left corner is checking
to see if the object is on the outside of the
frame, again regardless of its general position. Figure 6.7

The Test Position of “Active” dialog box with
four outward positions tested.

Figure 6.8
The final event and action for the bouncing ball to move around the screen.

5. We now want the ball to bounce when it hits
any of these edges, so we need to add an
action. Move to the right of this event until
you are directly under the active object and
right-click on the blank action box. Select
the Movement > Bounce option. You will
now see your event and action as shown in
Figure 6.8.

Path Movement
Path movement allows you to tell an object
where to move on the screen using a number
of points, called nodes. You are able to draw the
path of where you want the object to move and
configure such things as its speed and whether
or not it should reverse its movement. Using the
same active object we configured for bouncing
ball movement, you can access its properties and
change the Type drop-down to Path. You can see
the Path icon and the properties it displays once
it’s selected in Figures 6.9 and 6.10.

As you can see in Figure 6.10, there are no
properties available for this movement within
the Properties window. To create a path for the
active object, you need to click on the Edit button.
This will open an external editor as shown in
Figure 6.11. We have also labeled the relevant
buttons, but you can see what they are called
by hovering the mouse cursor over the button.
A text tooltip will appear.

1. Newline: Create a brand new path move-
ment line. This will be created from the
object to the mouse pointer cursor. You will
then need to click on the frame to place at
the end of the line, called a node.

2. Tape Mouse: This allows you to draw your
path using the mouse, in the same way
you can paint a line on a drawing package.
Holding down the left mouse button as you
move the cursor over the frame will draw the
path.

74

Figure 6.9
The Path movement icon.

Figure 6.10
The Properties window for the path movement.

Figure 6.11
The Path Movement Setup dialog box.

1 2 3 4 5 6 7 8

Movement Chapter 6

3. Set a Pause: If you want your object to stop
at a specific point (node), you can create a
pause. First, you must select the node upon
which you want to create the pause, and
then click on the Pause button. An additional
dialog box will appear as shown in Figure
6.12, where you type in the time for the
pause.

4. Loop the Movement: This will make the
movement follow the same path over and
over again.

5. Reverse at End: When it gets to the last
node, the object will return back along the
same path. For example if you have two
points, A and B, connected by a line, the
object will move from point A to B, and if
Reverse at End is selected, the object will
then move back from point B to point A.

6. Reposition Object at End: This will return
the object to its starting position.

7. Node Color: The default color of your path
and its nodes is black, but if you are running
a game with a black background, you will not
be able to see the path. You are able to change
the lines to something else.

8. Speed: You can change the speed between
each node from the default of 50. The lower
the number, the slower it will go; the higher,
the faster.

75

Figure 6.12
Use this dialog box to choose the time for the pause.

Moving Nodes

You can move the exact position of a node
by holding down the left mouse button over
a node square and then dragging it to a new
position.

If you want to test the movement, you can click
on the Try Movement button, and then watch it
work. If you want to quit the test, you can press
the Escape key in the top left corner of your key-
board or click the Stop button in the dialog box
that appears. If you want to save the movement
to the object, click on the OK button; otherwise,
click on Cancel. You can see an example of a
path movement in Figure 6.13.

You can also access additional information and
properties by right-clicking on a node. You can
create another line, use tape mouse, set a pause
or its speed, and name a node. You can also
delete a line. The majority of these you will
access through the path editor dialog except for
Set Name. Setting a name is a useful option as
you can tell the object to go to a node using its
name through the Event Editor.

Figure 6.13
An example of a path created using the tape mouse option.

Looping Movement

If you use Loop Movement, you may find
that the object disappears off the screen.
This is because when you use just Loop
Movement, the object will begin the same
path from its current position onscreen. So if
you have a path that makes the object move
to the right, it will continue to move right
until it disappears off screen. If you don’t
want it to disappear, you can use Reposition
Object at End to place it back at the very first
node position on the screen.

76

Movement Chapter 6

When you click the Edit button, a dotted line
appears around the object, as shown in Figure
6.16, and a mouse movement dialog box appears.
This dotted line represents the area where this
object will be able to move around in the frame.
At the moment this area isn’t very big, and you
can expand it by holding down the left mouse
button on one of the black boxes and dragging
the box to where you want it.

Once you are happy with the area in which the
object will move, click on Try movement to test
it, or click on OK to save the information. If you
do run the application, you will need to use Alt
+ F4 to close it.

Mouse Controlled
When you want an object to be controlled by
the mouse, you can select the Mouse Controlled
option. The Mouse Controlled option makes any
object follow the mouse cursor. It also makes
the standard mouse cursor disappear. You can
see the mouse controlled icon and the default
properties in Figures 6.14 and 6.15.

You can see in Figure 6.15 that the Mouse
Controlled option has a Player field. This allows
you to configure this type of movement to a
specific player. There are no other options with-
in the properties, and further configuration is
required via the Edit button.

77

Figure 6.14
The Mouse Controlled icon in the Type drop-down

menu.

Figure 6.15
The properties of the Mouse Movement.

Limited Mouse Control

When making games, you must be careful
that you include an option for the user to
easily exit an application. In the previous
example, we have set the mouse area, but
this then removes the ability for the user
(in this case, you) to be able to close the
application by clicking on the red x in the
top right corner. Whenever you use the
mouse controlled option, you must allow
for other ways of closing the application or
exiting from that frame and returning to
another screen. A good way to do that is
to use the Esc (escape) key to exit.

Eight Directions
One of the most common ways of controlling a
game character, spaceship, or object is to use the
keyboard arrow keys. In fact, there are two sets
of these keys on the keyboard. First there are the
up, down, left, and right keys; then there are
eight keys that are available on the number pad
(usually the set of number keys on the right side
of the keyboard). You can see an example of the
number pad and arrow keys in Figure 6.17.

78

Figure 6.16
The Mouse Controlled dialog box and the mouse

movement area.

Moving the Object

If you move the object, the dotted box area
will move with the object, so you may need
to reposition the mouse area box if you
move objects on the screen.

Number Pad Keys

To use the keys on the number pad, you
must ensure that the Num Lock key has
been switched off. You can normally tell if it’s
switched off if there is no Num Lock light on
the keyboard.

Figure 6.17
An example of the arrow and number pad keys.

Saving the Settings

Your settings won’t be saved until you click
on the OK button, and if you click on Cancel,
the changes you made since the last edit will
be lost.

Movement Chapter 6

These properties are:

� Player: You can assign the eight direc-
tions movement to a particular player.

� Directions: Using the same direction
dialog as the bouncing ball object,
you can select the directions that the
object can move in using the arrow and
number pad keys.

� Initial Direction: This is the initial
direction that the object can move in.
Again using the standard direction
dialog, you can select and deselect the
directions by clicking on them using
the mouse.

� Speed: This is the speed of the object.
The default speed is 50; the lower the
number, the slower it goes and the
higher, the faster.

� Deceleration: When the player releases
the keys, how quickly will the object
slow down and then come to a stop?
The default is 50. If you want the object
to stop as soon as the key is released,
change Deceleration to 0. Increasing
this number increases the distance the
object travels before stopping.

� Acceleration: This defines how long
the object will take to reach its set
maximum speed. If you want the object
to take longer to get up to top speed,
you can decrease this number.

You can easily test the movement of your object
by pressing F7 and then using the arrow keys to
move around the screen. You can also move in a
diagonal direction if you hold down both the
left and up, right and up, left and down, or right
and down keys.

The Eight Directions icon can be seen in Figure
6.18, and its properties are shown in Figure 6.19.
As you can see from Figure 6.19, there are a
number of options available in the dialog box.

79

Figure 6.18
The Eight Directions icon.

Figure 6.19
The Eight Directions Properties dialog box.

Race Car
If you want to create a racing car game or give
an object the ability to react like a car, then Race
Car movement is the option to select. You might
think this seems a very similar movement to the
eight direction movement, which is also a good
choice for car movement. There are some subtle
differences, however, that will make a difference
to which of the two movements you pick for any
racing games you make. The main difference is
that the object can turn at an angle, and you can
reverse and turn at the same time. So you can
make the object look like a car moving and turn-
ing. The keys used for the movement of the car
can be seen in Table 6.1.

You can see the Race Car icon and Properties
window in Figures 6.20 and 6.21.

There are only two additional options that you
haven’t seen in any of the other movements.
These are the Enable Reverse and the Rotating
Speed options. By enabling reverse, you can
press the down arrow key to stop the object and
then press it again to make the object reverse
backwards. The rotating speed defines how
quickly the object will rotate when it is turning.

80

Table 6.1 Keys Used for the Race Car Movement

Action Keyboard
Accelerate Up Arrow

Brake Down Arrow

Reverse Down Arrow

Turn Left Left Arrow

Turn Right Right Arrow

Figure 6.20
The Race Car icon.

Figure 6.21
The Race Car Properties window.

Movement Chapter 6

You can see the icon for the Platform movement
and its Properties window in Figures 6.22 and
6.23.

Platform
If you are thinking about making a platform
game where a character moves along a series of
platforms, climbs up ladders, and jumps between
floors, then you need to use the Platform move-
ment. The Platform movement takes a little more
work to get set up initially than all of the other
movements as you need to take into account the
platforms and ladder graphic configurations as
well as configuring the player character.

Movement of the character or graphic that is
given the Platform movement will, by default,
be controlled by the arrow keys and the Shift
key to jump.

To create a platform game, you will need to
complete the following tasks:

1. Place a number of graphic backdrop objects
onto your frame that will represent your
ladders, platforms, and elevators.

2. Configure the properties of these backdrop
objects by accessing their runtime tab and
configuring the obstacle type.

3. Create your character as an active object, and
change its movement to platform. Configure
any other properties you require.

4. Create some event code to prevent the player
character from falling through any platforms,
which it will do by default.

81

Figure 6.22
The Platform icon in the Type drop down box.

Figure 6.23
The Platform movement properties.

Some of the options that are important to this
object are:

� Gravity: This option affects the gravity
of the object. A high setting makes your
character fall more quickly, while a
lower figure makes it slow down. This
will also affect the height of a jump,
and a lower figure will only allow for
a shorter distance.

� Strength: This affects the jumping
power of your character.

� Jump Controls: Here you can select from
one of four options from a drop down
box. Button 1 allows the fire button of
a joystick or the Shift key to make the
character jump. Button 2 means the
second fire button on the joystick and
the Ctrl key to activate a jump, while no
jump means the character cannot jump,
and finally up left/right arrow makes
the left and right arrow keys activate
the jump.

82

Figure 6.24
A simple example platform game.

To complete the process of creating a platform
game, you need to do the event programming to
prevent the character from falling off the screen.
On the CD-ROM that accompanies this book, a
simple example file has been created for you.
Locate the example in the Movements folder and
open the file called platform-movement.mfa. You
will see a small creature, two rows of platform,
and a single ladder as shown in Figure 6.24.

If you click on the platform and/or the ladder
and check the Runtime tab of its properties, you
will see the obstacle type is set to Platform and
Ladder, as shown in Figures 6.25 and 6.26.

Movement Chapter 6

If you were to run this program now, nothing
would happen because currently the player char-
acter is set to static. You will need to change the
player character to have the platform movement.

1. Click on the fish-like creature called Blinky.

2. Click on the Movement tab of the object
properties.

3. Change it from Static to Platform movement.

Press F7 to run the game and watch the Blinky
character fall through the platform and off the
screen. This now requires some game logic to be
written in the Event Editor to stop the character
from falling through the platform.

To do this, we need to do the following:

1. Click on the Event Editor button.

2. You will be presented with a blank Event
Editor screen.

3. We will now program a condition that will
check for a collision between our character
Blinky and the backdrop object (remember,
all of our platform objects are backdrops).
Click on the New condition text.

83

Figure 6.25
The Platform setting in Obstacle type.

Figure 6.26
The Ladder setting in Obstacle type.

4. Because we want to test against Blinky,
right-click on the Blinky graphic to reveal
the popup menu. Then select Collisions >
Backdrop. You have now created the event
and are ready to create the action.

5. The action we want is quite simple. We want
to tell the object to stop moving. This action
will only prevent it from moving downward
and won’t prevent the object from moving
left or right. Move across until you are directly
under the Blinky object, right-click on the
action box, and select Movement > Stop.

6. Your event and action will look like Figure
6.27.

Pinball
If you want to create a pinball game or any
game where a ball will have gravity applied to
it, you can use the Pinball movement. In many
cases, you might use the Bouncing ball for stan-
dard ball movement, but that does not have any
gravity options, so the Pinball option is very
specific to games where you need this feature.

If you have played a pinball machine, you know
that the ball can increase and decrease in speed,
depending on its being hit by a paddle or
encountering other obstacles. The most important
aspect is that the ball is always trying to get to
the bottom of the board. This is gravity having
an effect on the ball, just as it does when you
throw a ball into the air. When using the
Bouncing ball movement, if the ball is thrown
upward, it will continue to move in the same
direction.

84

Pinball Movement

Remember, you will need to program the
code in the Event Editor to prevent the ball
from falling off the screen. This is done using
the Test position option and then using the
action Bounce.

Figure 6.27
The event, condition, and action to prevent the Blinky character from falling through the platform.

Movement Chapter 6

Other Available Movements
There are another eight movement types included
with TGF2 that were written by a third party.
These add special movement features to TGF2
and allow you to really configure unique games
with ease, where before you might have had to
make your own special movement engine using
code in the Event Editor.

The additional movement types that are avail-
able are:

� Circular: This can be used if you want
to create circular-based movement,
for example, spiral effects or objects
rotating around other objects.

� Invaders: Space Invaders is a very popu-
lar type of old game, where you would
have waves of enemy ships moving in
tandem down the screen. This effect can
be created by manually using code in
the Event Editor; alternatively, using
this movement will reduce the hassle of
needing to create the code for moving
set amounts of space and then changing
directions.

� Presentation: If you have ever wanted
to create a presentation or a game with
text that scrolls on and off screen, this
movement type will make it a breeze.
You can select many different text entry
and exit options from within the prop-
erties dialog box.

� Regular Polygon: A polygon is a shape
that is connected by a number of
straight lines. These straight lines will
be in a closed format, which means
all line ends connect to one another.
A triangle, square, or rectangle can all
be classed as polygons. Using polygon
movement means that an object can
move around these polygon shapes.

You can see the Pinball icon and its Properties
window in Figures 6.28 and 6.29.

85

Figure 6.28
The Pinball movement icon.

Figure 6.29
The Pinball movement Properties.

� Simple Ellipse: An ellipse is like a
squashed circle. If you think of a shape
that the bottom of a cone makes, this is
usually an ellipse. This movement
option allows you to make objects move
in an elliptical shape.

� Sinewave: Sinewave allows you to move
objects from one point to another while
also moving them in a wave effect. If
you think of a wave in the ocean, you
can make an object move in this way
from one point to another.

� Vector: The Vector movement is very
powerful and allows for many different
movement types, with acceleration and
velocity vectors. Vector movement has
many movement options available to it
in the Event Editor.

� Spaceship: In some games you may
want to create a spaceship. This space-
ship might have a thruster, an engine
that can move it in one direction and
increase its velocity.

These movement types work in a slightly different
way than the other ones we previously mentioned.
You apply them in the same way by clicking on
the object, accessing the object Properties
Movement tab, and clicking on the Type drop
down box. In the first set of objects we talked
about, you would configure any actions on the
object that you want to do the action with. For
example, when you want an object to bounce,
you would access these properties against the
active object you set the Bouncing ball move-
ment on.

These additional movement types have addition-
al properties and configuration options but are
accessed through a separate object that you
need to add to the frame before you can access
these additional functions. We will go through
this process to show you how it works for these
objects:

1. Create your game file and create your frames.

2. Add any objects.

3. Configure any movements.

4. You would now be ready to add the additional
movement controller, right-click on the frame.
and select Insert > Object.

5. Select the object Clickteam Movement
Controller. You can see the Objects icon in
Figure 6.30.

6. The object itself does not have any important
options in its properties. Click on the Event
Editor button to access the Event Editor.

Figure 6.30
The icon for the Clickteam Movement Controller.

86

Movement Chapter 6

Multiple Movements
You have learned all about the different move-
ment types available in TGF2, but you may have
noticed one option in the Movement tab that
we haven’t discussed. There is an option that is
displayed as Movement #1. This is the default
movement number, and by clicking on it, you
can create many different movements for a
single object. This means that for a single object
you could create movement #1 as a Bouncing
ball, movement #2 as Path, and movement #3
as Pinball. This allows you a large amount of
power to configure individual objects with
different movements and then switch them on
and off when needed.

7. To see the object in action, you need to
create a single event line so you can view the
object Properties. Click on New Condition
text and select the Storyboard Controls icon;
then right-click and select Start of Frame.

8. Move across to the Clickteam Movement
Controller and right-click. You will now see
several menus as shown in Figure 6.31. These
are the options for the other movement
options available.

87

Movement Controller

You will not be able to access any of the
special movement options for an object until
you have added the Movement Controller.
Both the type of movement and the extra
movement options in the action box are
reliant on each other, so even if the
Movement Controller has been added, you
will not be able to use the movement options
until you have selected a corresponding
movement in the Type drop down box.

Figure 6.31
Some of the options available through the Event Editor for the Clickteam Movement Controller.

This is particularly useful for computer-controlled
enemies, because you could create a path move-
ment for them to move around a set path on the
screen. Once they get within a set distance from
the player, you could then change the movement
to Bouncing ball and make them move towards
the character.

To access additional movements:

1. Ensure that you have an active object added
to the frame. Click on the object to access its
movement.

2. Click on the text Movement #1. This will
bring up a + and – sign. Click on it.

3. A Movements dialog box will appear as
shown in Figure 6.32. You will see a single
default movement that was added to the
object when it was created.

4. By clicking on the Create New button, you
can create additional movements.

88

Changing Movements

To change among different movements you
have set up, you must use the Event Editor.

Note

Once you have created a movement, you
will need to select it from the drop down
box and then configure its movement type.

Default Movement

Movement # 1 is the first movement that
will be applied to the object.

Figure 6.32
The dialog box for adding multiple movements.

Move Item Up

Name Movement

Delete Movement

Create New

Move Item Down

C
reating games with built-in graphics is a quick way
of getting a game up and running quickly. In many cases, you may
want to import or draw your own. This is possible with the built-in

Picture and Animation Editor.

If you are a talented artist but could never program, then TGF2 is the
perfect platform for you to use to make games. If you aren’t that good at
making your own graphics, then you have the option of importing images
you have scanned, or photos taken with a digital camera. Either way, you
most likely will spend some time in the Picture Editor.

In this chapter, we will look at the interface to the Picture and Animation
Editor and show how to import images and use the built-in tools to draw
your own. We will also look at how to animate your own characters to
create interesting and fun animations.

7
Pictures and

Animations

T
he Picture Editor can be accessed
in several different ways, but the most
common is by double-clicking on an active

object in the Frame Editor. You may also find
yourself accessing it by clicking on an edit but-
ton in the object or application properties.

To access the Picture Editor using an active
object, you can:

� Create a new TGF2 application by click-
ing on the New button or using the Ctrl
and N key combination.

� Double-click on the text Frame 1 in the
Workspace toolbar.

� Right-click on the frame and select
Insert > Object. From the object list,
select the Active object.

� Click on the frame to place the object.
Double-click on the green diamond
object. This will display the Picture and
Animation Editor as shown in Figure 7.1.

92

The Picture Editor

Note

Although the actual name is Picture and
Animation Editor, in general use, that is
shortened to Picture Editor in TFG2.

Figure 7.1
The Picture Editor displayed after double-clicking on an active object.

Drawing area

Tools

Tool
properties
sheet

Animations
Editor

Color Palette

Pictures and Animations Chapter 7

In Figure 7.1 you can see the following areas on
the Picture Editor:

1. Tools

2. Tool properties sheet

3. Drawing area

4. Color Palette

5. Animations Editor

Tools
The drawing tools shown in Figure 7.2 are a
standard set of features that you would find in
graphic creation programs. If you have used
Adobe Photoshop, Fireworks, Microsoft Paint,
or any other paint package, you may recognize
some of these tools already.

Clear
This option, shown in Figure 7.3, will
clear/remove any image that is currently in the
drawing area. This is something you will use a
lot because you will always want to replace the
active object’s green diamond with a different
graphic. You may also use it to delete a graphic
you’re working on if you aren’t happy with it.

93

Tooltips

If you hold the mouse cursor over the tool
icon, you will be presented with a popup box
containing the name of that tool.

Figure 7.2
The drawing tools for the Picture Editor.

Figure 7.3
The Clear image option.

Clear Shortcut

You can also use the shortcut keys of
Ctrl+N to clear the picture.

Import
It is very likely that at some point you will want
to import an image from your computer. Perhaps
it’s an image you drew yourself in another paint
package or an image from a digital camera. The
Import option, shown in Figure 7.4, also works
with multiple images, which allow you to import
animations in one quick and easy process.

� PNG: Portable Network Graphics
format. This is a very popular web and
printing file format, which allows loss-
less data compression. The file size of
the image is made smaller without the
loss of overall quality of the image.

� JPEG: Joint Photographic Experts Group.
This format has been one of the most
popular for displaying images on a web
page. Using compression, it can reduce
the file size of the image, thus making
the file smaller than PNG files, but not
without an effect on the overall quality
of the image.

� GIF: Graphics Interchange Format. This
is another format that was widely used
on the Internet, again because it could
reduce the file size of an image. Over
the last few years, it has become less
popular due to licensing issues, so it
has generally been replaced by PNG.

� FLC: Originally used in a program called
Autodesk, this is a simple animation
format that plays a set of images
quickly to create an animation.

� BMP: Also known as Bitmap, this file
type is a very common format in paint
packages. Files are generally larger than
in many other formats.

� PCX: This very early file format was
used in some early graphics packages.
Generally considered obsolete, but it is
available if required.

94

Undo

If you clear the image and decide you want
to put it back, you can press Ctrl+Z to undo
the clear. Figure 7.4

The Import option icon.

Graphics Formats for Games

The best formats to use for your games are
BMP and PNG. PNG is the best format to use
overall because it will also make the file for-
mat smaller. Both formats keep the standard
of the graphics at a high quality. If you are
creating a simple game for the Internet,
then you might want to consider looking at
JPG and reducing the quality to a level that
is acceptable for your game.

Pictures and Animations Chapter 7

Options
The Options button allows you to configure
the Picture Editor preferences; you can see the
Options icon in Figure 7.6. When drawing on
the canvas you can set-up a background color
or colors, this helps with seeing where there is
currently no pixels (where it is transparent).
By default these colors are grey and white and
are the most common background in paint
packages.

You can see the Picture Editor Preferences dialog
box in Figure 7.7. You are able to configure how
the right mouse button will react in the Picture
Editor, whether it will draw a pixel color or get
the current color at the mouse pointer location.

Export
The Export option shown in Figure 7.5 allows
you to export any images you have in TGF2 and
save them as BMP, PNG, or JPG formatted files.
If you have an animation (multiple images), you
can save them out to a set of image files.

The importance of the Export option becomes
more apparent when you have either drawn your
own images in the Picture Editor or amended
pre-loaded images, and you want to store them
on your machine for use in other games.

95

Import Quick Key

You can quickly open the Import dialog box
by using the Ctrl+O keys.

Figure 7.5
The Export option icon.

Export Quick Key

You can launch the Export dialog box by
pressing the Ctrl+S key combination.

Figure 7.6
The Options icon.

Figure 7.7
The Picture Editor Preferences dialog box.

Cut, Copy, Paste, and Delete
When you are drawing images on the canvas,
you may find that you want to delete what you’ve
done, paste content from another image, cut out
part of an image, or copy a section of the image.
You can do all of this using the Cut, Copy, Paste,
and Delete buttons as shown in Figure 7.8.

The buttons do the following:

� Cut: The area on the image is cut out
and replaced by the transparent
checkerboard color. You will have to use
the selection tool to highlight the area
on the image.

� Copy: The area that is highlighted on
the image using the selection tool is
copied on to the Windows clipboard.
The original image is left intact.

� Paste: Any image that is currently
stored in the Windows clipboard will
be pasted into the current image on
the canvas.

� Delete: Any area on the canvas that has
been selected is immediately deleted.

96

Editor Preferences

In most cases, you should not have to
change the default settings of the Options
icon because they will be fine for any
general work that you are doing within the
program. Only change these options if you
are really sure you want to change the way
the Picture Editor works.

Figure 7.8
The Cut, Copy, Paste, and Delete buttons.

The Selection Tool

We will cover the selection tool shortly.

Quick Keys

The quick keys are:

� Ctrl+X for cut

� Ctrl+C for copy

� Ctrl+V for paste

� The Delete key to delete

Pictures and Animations Chapter 7

Flip Vertically
This tool, shown in Figure 7.10, will flip the
image from top to bottom, which will turn the
image upside down.

Undo and Redo
If you want to either undo a set of pixels you
have drawn on the canvas or reapply a change
you have undone, you can use the Undo and
Redo buttons as shown in Figure 7.9.

Flip Horizontally
This tool, shown in Figure 7.10, will take the
image that is currently displayed on the canvas
and flip it over. This will swap your image from
left to right, so it would be the same as looking
in a mirror; the image that you can see is the
new image.

97

Figure 7.9
The Undo and Redo buttons.

Redo and Undo

As with many other programs, if you make
a mistake and you want to undo it, you can
use Ctrl+Z, and if you want to reapply the
change you have undone, you can use Ctrl+Y.

Figure 7.10
The Flip horizontally and Flip vertically icons.

Flipping the Graphic

If you flip the graphic and decide that you
do not want it displayed in this new position,
you can either use the Undo button or you
can click the same flip button a second time
to set it back to its original position.

Flipping the
Image Quick Keys

You can flip the image vertically by using
the Ctrl+J keys, and horizontally by using the
Ctrl+I keys.

Crop
When you draw an image on a canvas or import
an image onto a canvas which is larger than the
image, you might have a large white space. This
transparent space is where there are currently
no pixels and is effectively wasted space. You
can crop an image, which will remove this blank
space from around an image. The crop icon can
be seen in Figure 7.11.

Transparency
Transparency is a section of an image that is
clear, and you will be able to see straight
through it to any images behind it. You can dis-
play and hide the current transparency color by
clicking the icon in Figure 7.12; you will also get
an option to switch it on or off in the Tools
Properties window as shown in Figure 7.13.

98

Figure 7.11
The Crop image icon.

Crop Quick Key

You can crop the image automatically by
using the Ctrl+ K keys.

Figure 7.12
The Transparency icon.

Figure 7.13
The Transparency Properties box.

Transparency Quick Key

You can change to the Transparency tool by
pressing the Y key.

Pictures and Animations Chapter 7

The Selection Tool
Using the Selection tool, you can select a rectan-
gular block, which you can then cut or copy
from the image. This tool is used in conjunction
with the Cut, Copy, Paste, and Delete buttons we
discussed earlier. First, you would select the area
that you wish to make changes to, and then use
the other buttons to make the relevant change.
You can see the Selection tool in Figure 7.15.

Zoom
When you are drawing an image, you might
want to have more precision drawing of pixels
on to the canvas. To do this, you need to zoom
in as close as possible so you can have pixel
perfect positioning; you can do this using the
Zoom bar as shown in Figure 7.14.

To zoom, you need to hold down the left mouse
button and drag to the left or to the right.
Moving to the right zooms inward, and dragging
the bar to the left will zoom out.

99

Figure 7.14
The Zoom bar.

Zooming Using the Mouse

You can also zoom in and out if you have
a middle mouse button on your mouse.
Rolling the button toward you zooms in, and
pushing the middle mouse button away from
you zooms outward.

Figure 7.15
The Selection tool icon.

Selection Tool

You will notice that the Selection tool only
allows you to select a square or rectangular
area. If you need to remove part of an image
more precisely, you may find it easier to use
a more advanced graphics program and
then import the image back into TGF2.

Selection Tool Quick Key

You can change to the Selection tool by
pressing the B key.

Color Picker
When you are drawing an image, sometimes you
may want to get the exact color that is being
used in another part of the image. When draw-
ing with many different shades of similar colors,
this might be a little difficult to do using the
naked eye. The color picker icon shown in Figure
7.16 can be used to copy the color of a pixel at a
specific location on the canvas.

To use the color picker, select the icon, then
click on the canvas at the pixel location that
you want to copy the color.

The Brush Tool
When you want to draw on the canvas, you can
select the Brush tool. This will allow you to draw
freehand by holding down the left mouse but-
ton and then pointing at the canvas to create
your shape. You can see the icon that represents
the Brush tool in Figure 7.17.

The Line Tool
If you want to draw a straight line or several
straight lines, you would find this difficult with
the Brush tool, so the Line tool makes this easier,
as shown in Figure 7.18. You can also select the
thickness of the line by increasing the size
option in the Toolbar properties box. The larger
the number, the thicker the line will become.

100

Figure 7.16
The Color Picker icon.

Color Picker Quick Key

You can change to the Color Picker tool by
pressing the P key.

Figure 7.17
The Brush tool icon.

Brush Tool Quick Key

You can change to the Brush tool by pressing
the D key.

Pictures and Animations Chapter 7

The Ellipse Tool
An ellipse is a circle shape, and with the Ellipse
tool you can draw a variety of circle-based
images. When you click on the Ellipse tool, you
hold down the left mouse button and then drag
the cursor to create your circle-based shape. You
can see the Ellipse icon and its property sheet in
Figures 7.21 and 7.22.

The Rectangle Tool
If you want to draw a rectangle or square shape
quickly and easily, then you can use this tool.
You can also choose to fill the shape that is
created with another color. You can see the
Rectangle tool icon and its properties in Figures
7.19 and 7.20.

By default, the Rectangle tool creates an unfilled
(clear) rectangle; by selecting one of the other
icons in the Tools options box, you can choose
to fill it instead, with or without a border.

101

Figure 7.18
The Line tool icon.

Line Quick Key

You can change to the Line tool by pressing
the L key.

Figure 7.19
The Rectangle tool icon.

Figure 7.20
The Rectangle tool properties box.

Rectangle Quick Key

You can change to the Rectangle tool by
pressing the R key.

Figure 7.21
The Ellipse icon.

The Polygon Tool
A polygon is any shape that is created with
straight lines that form a connecting shape.
A triangle, square, and rectangle can all be
considered polygons. The Polygon tool is very
similar to the Line tool, where you draw a straight
line, except once you have drawn a single line, it
will then expect you to draw another line. It will
only stop drawing lines when you have connected
back to the original starting line. You can see the
Polygon tool icon in Figure 7.23 and its properties
in Figure 7.24.

102

Figure 7.22
The Ellipse tools property box.

Ellipse Quick Key

You can change to the Ellipse tool by pressing
the E key.

Drawing a Polygon

If you have drawn two lines, for example,
and want the third line to join back to the
starting line, just double-click to draw the
final line automatically.

Figure 7.23
The Polygon button icon.

Figure 7.24
The Polygon tool property box.

Pictures and Animations Chapter 7

The Fill Tool
When you want to change the color in an
enclosed space, you can use the Fill tool to
change the area on the canvas to a single color.
You can see the Fill icon and tool sheet in
Figures 7.27 and 7.28.

The Shape Tool
The Shape tool lets you draw a non-uniform
shape (without using straight lines) and when
you take your finger off the left mouse button,
it will close the shape automatically. The main
difference between this and the Polygon tool is
that this does not draw straight lines. You can
see the icon for this tool in Figure 7.25 and its
property box in Figure 7.26.

103

Polygon Quick Key

You can change to the Polygon tool by
pressing the G key.

Figure 7.25
The Shape tool icon.

Figure 7.26
The Shape tool property box.

Shape Tool Quick Key

You can change to the Shape tool by
pressing the M key.

Figure 7.27
The Fill tool icon.

Figure 7.28
The Fill tool property sheet.

The Spray Tool
If you think about a spray can of paint, the Spray
tool works in the same way. The longer you keep
the spray can over a particular part of the can-
vas, the more pixels are covered in the selected
color. You can change the size of the paint pixel
and the amount of pressure that is applied. You
can see the icon for the Spray tool in Figure 7.29
and its property box in Figure 7.30.

104

Fill Tool Leakage

If you have a gap in any area you intend to
fill, the color that you use will also fill any
other areas around it. This may cause graphi-
cal issues with your image, so it is always
sensible to make sure you have no gaps in
the image before using the Fill option.

Fill Tool Quick Key

You can change to the Fill tool by pressing
the F key.

Figure 7.29
The Spray tool icon.

Figure 7.30
The Spray tool property box.

Spray Quick Key

You can change to the Spray tool by pressing
the S key.

Pictures and Animations Chapter 7

Eraser Tool
If you want to delete part of your image, you
can use the Eraser tool. This will allow you to
rub out part of the image. You can increase the
size of the eraser if you want to delete a larger
area of the canvas; alternatively, you can make it
smaller to make it more precise. The Eraser icon
can be seen in Figure 7.33.

The Text Tool
Using the Text tool allows you to type a piece
of text and then place it on the canvas. You can
also apply standard text formatting to the text
including bold, italic, and underline. You are also
able to change the font type, so you can have
text, which is more appropriate for your game.
You can see the Text tool icon in Figure 7.31 and
its property sheet in Figure 7.32.

105

Figure 7.31
The Text tool icon.

Figure 7.32
The Text tool property sheet.

Text to Image

Once you have finished applying the text
to the canvas, it is no longer a piece of text
but is converted to an image, so you cannot
re-edit the text.

Text Quick Key

You can change to the Text tool by pressing
the T key.

Figure 7.33
The Eraser tool icon.

Eraser Tool

If you want to delete large amounts of the
canvas, you may want to do this in another
graphics package and import it back into
TGF2. The paint package in TGF2 is ade-
quate for most jobs, but sometimes it is
quicker to use a program that has been
made solely to do graphics creation.

Size Tool
If you want to amend the size of your canvas,
you can use the Resize option. You will also be
given options to stretch the image, resample it,
and make it proportional to the canvas size. You
can see the icon for the Size tool in Figure 7.34
and its options in Figure 7.35.

106

Eraser Quick Key

You can change to the Eraser by pressing the
U key.

Proportional, Stretch, Resample

The Proportional option will reduce both
the width and height of the graphic the
same number of pixels. This is useful when
you want to amend the width and height by
the same amount.

Using Stretch will amend the current image
and stretch it to fit the new canvas size.

Using Resample will take the original image
and resize it as best it can to the new canvas
size, giving an overall better resizing quality.

Figure 7.34
The Size tool icon.

Figure 7.35
The Size tool property box.

Size Quick Key

You can change to the Size tool by pressing
the W key.

Pictures and Animations Chapter 7

View Hot Spot
Every active object within TGF2 has a hot spot.
This is an invisible marker that is attached to the
graphic and is important when referencing its
coordinates. For example, if you place the hot
spot of a graphic to the bottom left of the
image, and then tell TGF2 to place the object on
the frame at the X coordinate of 0 and the Y
coordinate of 0, the image will appear off frame.
This is because the bottom left will be placed at
zero while the rest of the image (above the hot
spot) will be placed above this location. You can
see the View Hot Spot icon in Figure 7.38.

In addition to manually setting the hot spot
by using the left mouse button and clicking on
the location on the image, you can also use the
Quick Position button in the Tools property box.
This provides you with a grid of nine boxes.
Select one to quickly position the hot spot.
You can see this in Figure 7.39.

Rotate
You may wish to rotate an image by a specific
angle. Once you have selected the Rotate icon,
shown in Figure 7.36, you will see the additional
options in the Tools property sheet box in Figure
7.37. You can type in a number and then click
Apply, or if you want to rotate by 90 degrees left
or right, you can click on the additional buttons.

107

Figure 7.36
The Rotate icon.

Figure 7.37
The Rotate properties sheet.

Rotation and Animations

Rotation of a graphic is very useful if you
are creating animations. In an animation,
you have multiple images, so you can make
small direction changes to each image to
create a rotation animation.

Rotate Quick Key

You can change to the Rotate tool by
pressing the A key.

Figure 7.38
The View Hot Spot icon.

View Action Point
Within your games, you may want another
graphic to appear from a specific part of the
character; for example, you might want to show
a bullet being fired from the character's weapon.
To do this, you need to set an action point. By
default, all active objects have a default action
point in their top left corner. You can see the
Action Point icon in Figure 7.40.

You can place the action point either by clicking
on the image or by using the View Action prop-
erty sheet. This property sheet looks the same as
the Hot Spot property sheet in Figure 7.39. You
can type in precise coordinates or use the Quick
Move buttons.

108

Figure 7.39
The Hot Spot property box.

Frame Area

When viewing the visible frame area, the X
and Y coordinate of 0,0 will be at the top left
quadrant of the screen.

Hot Spot Quick Key

You can quickly check the hot spot by
pressing the H key.

Figure 7.40
The Action Point icon.

Action Point Quick Key

You can access the Action Point options by
using the quick key of Q.

Pictures and Animations Chapter 7

The Color Palette
The Color Palette is a selection of color blocks,
which you can select using the mouse buttons,
that will then be used to color the canvas area.
Below the Color Palette are three color boxes,
two overlapping each other and one separate.
The two boxes on the left are the current draw
colors, which respond to the left and right
mouse buttons on the canvas. The right box is
the current transparency color.

You can see a close-up image of the Color Palette
in Figure 7.42.

Drawing Area
There’s not much to say about the drawing area.
This is the area where you will see any imported
images or draw on the canvas to create your
picture. If you create an image that is too big for
the canvas, the horizontal and vertical scrollbars
will become enabled, which will allow you to
scroll around the image.

You can see an image on the canvas in Figure
7.41.

109

Figure 7.41
An image on the picture canvas.

Figure 7.42
A close-up of the Color Palette.

W
ithin the Picture Editor is the
Animation Editor. This is located at
the bottom of the Picture Editor, and

when you create a new active object, you will
by default see a single graphic in the Frames
section.

An animation is a set of images played one after
another, which then makes the graphic object
look like it is animated. This could be a character
waving its hand, a knight waving his sword, or a
spaceship tilting to the left and right.

In most cases, the process for getting ready to
create your animations would be that you have
already drawn them in another art package or
will make changes to images that you already
have to create the animation. Normally, you
would create a new active object on your frame,
double-click on it, and then either draw or
import a set of images.

The Animation Editor can be split into a number
of parts, as shown in Figure 7.43.

These parts are as follows:

� The Animation List: This is a list of all
the different animations an object can
have. The default starting animation is
stopped, which means it will run when
the object is not moving. We will
discuss this in more detail shortly.

� The Directions: A graphic object can
have as many as 32 directions. This is
because if you were creating a game
with a character, which could move
upwards, to the left and right, and so
on, you would need to create a set of
animations for each direction that the
character is facing.

� The Animation Frame Toolbar: These
small icons show which frame you are
currently on (1 of 1), and you can press
the + or – buttons to add or remove
frames. The slider allows you to scroll
back and forth through all your anima-
tions.

The Animation Editor

Figure 7.43
The Animation Editor in the Picture Editor.

110

Pictures and Animations Chapter 7

� Frames: This is a two-tabbed window,
the Frames, which displays all of the
individual images for the animation,
and a second tab called Direction
Options.

� Play Button: If you want to test what an
animation looks like, clicking the Play
button will launch a window which will
then play all of the frames.

To give you an idea of what a fully completed
animation looks like, there is a completed ani-
mation of a flying dragon available on the
CD-ROM that comes with this book.

1. Click on the File | Open option in TGF2.

2. When the browse box appears, navigate to
the CD-ROM drive that contains the CD from
the book. Navigate to the \Animation folder
and select the dragonanimation.mfa file.

3. Once the file is loaded, double-click on the
text Frame 1 in the Workspace toolbar to
display the frame.

4. You will now see a dragon displayed on the
desktop as shown in Figure 7.44.

5. Click the Run Application button or press F8
to launch the application. You will now see a
flying dragon, animated as it moves its wings.
Click on the red X in the top right corner of
that application window to close the applica-
tion.

6. We will now move to the Picture Editor and
double-click on the dragon to access the
Picture Editor.

7. You will now see the dragon on the canvas
and a large number of frames, which are
used to animate the dragon as it moves its
wings as shown in Figure 7.45.

111

Figure 7.44
The dragon animated on a test application.

Figure 7.45
The animation frames of the dragon.

Leave the animation of the dragon loaded
because we will use it as an example of how an
animation is used in the Animation Editor.

The Animation List
The Animation List contains a set of 12 anima-
tions already pre-defined within TGF2. Each ani-
mation name can have as many as 32 directions
assigned to it and many animation frames.

These animations are pre-programmed for certain
aspects of your game, and in order to utilize
them, all you need to do is draw or create your
animations within them.

In Figure 7.46 for our loaded dragon animation,
you can see that the first two animation names
have a dot next to them. This means that they
contain animation frames. For this animation of
a dragon, the dots are beside the Stopped and
Walking animations.

When using movement within TGF2, if your
dragon is moving left or right, it will automati-
cally play the Walking animation. It will then
check to see if there is a set of animations for
the direction the dragon is moving in, and if so,
it will play them. In the case of Figure 7.47, you
can see that there are animations for left and
right because there are black squares in the
Direction box.

112

Clicking on the Dragon

You must ensure, when clicking on the dragon,
that you click on the part of the image that
contains colored pixels. Although the box
surrounding the image is quite large, if you
click on the transparent part (the bit that’s
white), TGF2 will launch an Insert an Object
dialog box.

Figure 7.46
The Walking animation selected for

our dragon example.

Animation Names

Additional animation names/groups can be
added to the Animation list by right-clicking
on the Animations box and selecting New.
You can then name your animation and
access it through the Event Editor.

Pictures and Animations Chapter 7

� Jumping: If platform movement is being
used and a player graphic is told to
jump, then this animation set will run.

� Falling: When an object is considered to
be falling, the animation will play. The
falling state is triggered when a player’s
character is set to Platform movement
and it falls from a platform.

� Climbing: When using the platform
movement, TGF2 will check for when
the player is moving up a ladder and
then play the Climbing animation.

� Crouch Down: This is another animation
for the platform movement. You can
make the character crouch down.

� Stand Up: When the character is not
crouching down in the platform move-
ment, it is considered to be standing up.

Directions and Direction Tab
When you click on any of the animations names
listed in the Animation list, you will notice that
each has a separate set of frames but also that
they have a different set of directions. An exam-
ple of this can be seen in Figure 7.47. In the left
image, you can see that the Walking animation
group is selected and the left direction tab is
chosen. In the right image is the Walking anima-
tion group, but this time the right direction tab
is chosen.

Each animation set will run automatically when
certain criteria have been met when the game is
running. In the following list, you can see when
this will happen:

� Stopped: When the graphic object is not
moving (i.e., it is static).

� Walking: If the object is moving at a set
speed (set in the Direction options tab
against lower speed), it will play the
animation that applies to walking.

� Running: If the object is moving at a set
speed (against the higher speed in the
Direction options tab), it will play the
animation that applies to running.

� Appearing: The animation will start as
soon as the object is created.

� Disappearing: Any animations will
begin as the object is destroyed.

� Bouncing: When an object is bouncing
onto another object (using the bouncing
ball movement), it will play this anima-
tion set.

� Shooting: The animation starts when a
shoot object action is created.

113

Animations and Directions

Each direction will display the animation
frames within the Frames box, but you cannot
see all of them at one time. We will cover
directions shortly.

Default Number of Directions

The default number of directions for each
animation set is always set to 4. You can
increase this by using the slider under the
directions box. You can increase it to a maxi-
mum of 32.

Direction Tab
If you click on the Direction tab, you will see a
set of basic information about that particular
direction. You can see in Figure 7.48 some infor-
mation relating to the Dragon Animation, for
the Walking group, and Right direction.

Within the Direction options tab, you will notice
the Lower Speed and Higher speed buttons,
where you can enter a number. The smallest
number you can enter is 0 and the largest is 100.
This speed is the speed of the animation and not
the speed of the movement on the frame.

114

Figure 7.47
The Direction tab in use.

Creating Different
Directions

You might think that creating animations for
all of these different animation directions
would be very time-consuming. You could
either prepare the graphics in an external
paint package before importing them, or
alternatively, you could copy and paste the
different frames. Once you have pasted the
frames into the opposite direction, you can
use the Flip and Rotate tools to get them
pointing in the correct direction.

Pictures and Animations Chapter 7

The Back to option allows you to specify which
animation frame to return to. This allows you to
play the whole animation once and then play
only specific parts of the animation x number
of times (depending on the number in the
repeat option).

Frames
Here are all the frames of your animation for its
particular direction. You can see a close-up of a
set of animations for the dragon in Figure 7.49.
Each of these frames has a different position
that, once played, will allow the dragon to flap
its wings up and down. There are 48 frames for
this one particular animation. When you create
your own animation, you may choose varying
amounts.

The lower and higher speed are also used by the
animation sets. Previously, we talked about the
Walking and Running groups; these work hand
in hand with the Lower and Higher speed
options.

The repeat option can be used to repeat an ani-
mation several times. This is set to 1 by default
when you create a new active object. In many
cases, you will probably want to loop the anima-
tion. To do this you need to check the Loop box.
In the Dragon animation, we have automatically
looped the animation by checking the Loop
checkbox. This means that the dragon will flap
its wings until the object is either destroyed or
the player moves to a different screen where
there is no dragon present.

115

Figure 7.48
Direction options for the Walking animation group for the Right direction.

Lower and Higher Speed

Your lower speed cannot be larger than the
higher speed. TGF2 will not allow you to
enter an incorrect number. If you do, it will
enter the same speed as the higher speed
dialog box.

Animation Frames

These frames are for one particular direction
and one specific animation set.

New Animation Frames
To delete any frames, you can click on the frame
and then press the Delete key. On doing so, you
will be asked if you wish to delete the frame.
You can also drag your mouse over the graphics
and a select box will appear; again, you can
select Delete to remove them. You can also
delete a single item using the – button (delete
frame) on the Animation Frame toolbar.

To add frames, you can copy and paste already
existing animation frames. You can also import
them using the Import button we discussed pre-
viously in this chapter. Or alternatively you can
use the + button (add frame) on the Animation
Frame toolbar.

You should now have a good idea how to get
your game assets into TGF2 and how you can
animate them. In the next chapter, we will build
the tutorial game that cmes with the product
called ChocoBreak.

116

Figure 7.49
The different animations of the dragon.

Delete Frame Button

When you want to delete a frame, it is rec-
ommended that you use the mouse button
to highlight the frame you want to remove
and then press the Delete key.

Cancelling Changes

You can click on the Cancel button in the
bottom right corner of the Picture Editor to
undo any changes you might have made
since you last accessed that particular object.
This means that you can make changes, and
if you change your mind, you only need to
click on Cancel to return the object to its
previous state. If you click on the OK button,
TGF2 will save any changes to the active
object on the frame and you will have to
re-import or copy and paste the frames to
their original configuration.

I
n Chapter 2, we covered how to collate your ideas into
potential game stories, creating the storyboards and thinking about the
mechanics of a particular game. We covered a game called ChocoBreak,

which is a bat and ball game. Now that you have covered many aspects of
TGF2, it’s time to create this game.

In this game, we are going to create several instances of extra functionality
over the original tutorial that comes with the product.

By the end of the process, you will have created a game, and you’ll have
a good idea how to use TGF2 to make your own game concepts. You will
also have a good grounding, which will help you be ready to move on to
other game genres.

8
Creating a Bat and

Ball Game

F
irst, we will need to create our
blank game structure, which, in this case,
is a three-frame game. The first frame will

be our menu, the second will be our game, and
the third will be our high scores frame.

We will call our three frames:

� Main Menu

� Game Level 1

� End Screen

Preparing Our Game
We first need to create our game file, or, as it’s
called in TGF2, our application file. Click on the
New button or use the File > New option. You
will now have an application file and a single
frame.

In total, we are going to have three frames, but
at the moment we only have one. We need to
create two more:

1. Ensure that you are in the Storyboard Editor.
Then click twice on the number opposite the
More text box to add two more frames.

2. You should now have three frames, so let’s
rename them and name the application.

3. Right-click on the text Frame 1 in the
Workspace toolbar and select Rename from
the popup menu. Then type in the text
“Main Menu” and press Return.

4. Right-click on the text Frame 2, select
Rename, and type in “Game Level 1”; then
press Return.

5. Finally, right-click on the text Frame 3, select
Rename, type in the text “End Screen,” and
press Return.

6. Now we will rename the application.
Right-click on the text Application 1 in the
Workspace toolbar and then type
“ChocoBreak.”

7. You will see the results of this work in Figure
8.1.

120

Setting the Scene

Game Assets for ChocoBreak

The game graphics and objects have already
been created for this game. In your own
games, you may end up using some graphics
off the full version CD or creating your own.
You may even use a combination of prebuilt
and new content.

Creating a Bat and Ball Game Chapter 8

Let’s display the Library toolbar, and then connect
to the library for ChocoBreak:

1. First, let’s display the Library toolbar, if it
currently isn’t displayed. Click on the View
menu option, and then select Toolbars >
Library Window. The Library toolbar window
will appear.

2. In the left windowpane, you will see the
words Local Library, next to a plus (+) sign.
The plus sign means that you can click on it
to expand the Local Library folder. Click on
it once.

3. You will see the word Tutorials appear under
the Local Library heading. Click on the word
Tutorials.

4. Now the words ChocoBreak Tutorial appear
in the right pane of the Library toolbar.
Double-click on the words ChocoBreak
Tutorial to display all the graphics we can use
in the game we are about to make. You can
see the library of graphics that will be used
in Figure 8.2.

Connecting to the
Prebuilt Library
You are nearly ready to start placing your graph-
ics onscreen, but first you will need to get access
to them. If you have the Library toolbar in the
bottom of the TGF2 application, you will not
need to do step one.

121

Figure 8.1
The frames created and renamed.

Figure 8.2
Graphics available in the ChocoBreak tutorial.

Preparing the Main Menu
The first thing we need to do with our game is
to place all of the objects onscreen. The first
screen we will configure is the Main Menu. This
is the frame that is used as the program’s start-
ing point, and you will be able to move from
this screen to the game.

The Main Menu is a simple frame with a single
background image. So let’s first go to the frame
editor of the correct frame and set up the single
graphic on the screen.

1. We need to get on the Main Menu frame.
Double-click on the Main Menu text in the
Workspace toolbar or click on the number 1
in the Storyboard Editor to access the first
frame.

2. You should now see the blank frame. Click
on the object “ScreenTitle” in the Library
toolbar, keep the left mouse button pressed,
and drag the object over the frame. Release
the left mouse button, and the graphic will
appear on the screen.

3. The graphic is most likely not centered
correctly. Right-click on it and select Align
in Frame>Horz Center. This will move the
object to the left or right so it is in the cor-
rect position. Right-click again and this time
select Align in Frame>Vert Center. This will
move the object up or down so that it
correctly fits the frame.

4. Your frame will now resemble Figure 8.3.

122

Library Files

You can create your own library files that can
be accessed through the Library toolbar. All
library files are made in TGF2 and saved as
standard MFA files. Place them in a folder.
You then can right-click on the left pane of
the Library toolbar to create a new connec-
tion, and then point to the folder where your
MFA file is stored and name your library. This
is a great way of accessing common objects
that you might want in your games.

Figure 8.3
The ScreenTitle placed on the frame.

Creating a Bat and Ball Game Chapter 8

Preparing Level 1
In this game, we have a single level game. In
your own games, you might also have a single
level or many levels. Setting up the levels is the
same process as setting up the Main Menu frame,
by dragging and dropping your objects onscreen.
There is an additional step that you will need to
do to create all the bricks in the game, which,
you will recall from Chapter 2, is the aim of the
game. We will come to this shortly.

We will need to be on the correct frame, and
then we will need to get the main components
onto the frame.

123

Positioning an Object

There are three ways to position an object. Where you want the object to appear on the screen will
depend on which method is best to use. You can use:

Center: If the image, as in the case of the main menu, is the same size as the frame, then you just
want to position it at the center vertically and horizontally. This will cover the whole frame precisely.
To do this, you right-click on the object and select Align in Frame>Horz Center and Align in
Frame>Vert Center.

Exact coordinates: If you want to place an object at a particular position on the screen, you
can type in the X and Y coordinates. To do this, click on the object that is currently on the frame
(which in this case is the ScreenTitle object). You will see the object properties window filled with
information. Click on the Size/Position tab within this property window. You can then put in the
exact location coordinates. For a graphic that is the same size as the frame, you can type in 0 for
both coordinates.

Precise movement: If you have placed an object onscreen and you want to move it a couple of
pixels in any one direction, you have the cursor keys. The cursor keys (also called the arrow keys)
allow you to move it in any one of four directions with each key press. Each key press will move
the object a single pixel position in the direction of the key you have pressed. Before you press the
cursor keys, you must ensure that the object has been selected by clicking on it.

Object Coordinates

We have specified the coordinates of each
particular object that we place onscreen
within the following instructions so you
can position them in the same location.
You can also just place them in the relative
position and the game will still work.

1. Double-click on the text “Game Level 1” in
the Workspace toolbar to display the blank
second frame of our game.

2. Let’s first place the background sky image
onto the frame. Drag and drop the Sky object
from the Library toolbar and place it any-
where on the Game Level 1 frame. You may
need to click the right mouse button on the
object and use the Align in Frame option to
center it perfectly (X0 and Y0).

3. We now will place the area in which the ball
can bounce around. Drag and drop the
object called SugarHorizontal, and place it in
the top center of the frame (X321 and Y47).

4. Take the SugarVertical1 object and place it
on the left side of the frame (X71 and Y264).

5. Drag and drop the SugarVertical2 object and
place it on the right side of the frame (X572
and Y264).

6. Now we need to place the bat and ball, so
place the Player object at the center bottom
of the frame (Player at X317 and Y425). Drag
the BallGolden to the frame above the Player
object (X319 and 357).

Your frame will now look like Figure 8.4.

124

Figure 8.4
The Game Level 1 frame with most of the objects in place.

Creating a Bat and Ball Game Chapter 8

4. In the Rows box, type in the number 4,
and in the Columns box type in 12. This will
create a selection of bricks across the frame,
as shown in Figure 8.6.

Creating Our Bricks
In our game, we want a set of bricks that the
ball can hit and destroy. There are a couple of
ways we could add the bricks. First, we could
add them individually, but this is a laborious
process, especially in this case where you must
add 48 bricks. Alternatively, you can use the
duplicate option, which will allow you to copy
an object and replicate it a number of times on
the frame.

We will now create our selection of boxes:

1. First, we need to place one brick onto the
frame. Drag the White brick from the Library
and drop it on the frame. Its position on the
frame should be 145 for the X coordinate
and 113 for Y.

2. To duplicate, right-click on the object, and the
popup menu will appear. Select Duplicate.

3. The Duplicate dialog box, shown in Figure
8.5, will appear. This dialog box allows you to
specify how many rows and columns of an
object to create, and also how much space
you want between each object.

125

Figure 8.5
The Duplicate Object dialog box.

Figure 8.6
The frame with the selection of bricks all placed

onscreen.

Object Naming

When you use the Duplicate option, TGF2
will automatically create the new object on
the frame with the same name as the copied
object. When you use cloning, TGF2 will take
the original name and add the next chrono-
logical number to the end of it. So if you
have an object called Brick, the next cloned
object name will be called Brick2, then
Brick3, and so on.

Configuring the Objects
Before we leave the Game Level 1 screen and
move on to the last screen, there is one final bit
of configuration that we need to do. We need to
set up the properties on the ball and the bat so
that they have their movement applied to them.
This will allow you to move on to the logic
programming of the game. The ball is going to
use ball movement, and the bat (the spinning
player graphic) will have mouse movement
applied to it.

Let’s configure the movement:

1. Click on the BallGolden object. This will
display its properties in the Properties
window. Click on the Movement tab in the
Properties window to access the BallGolden
movement properties. Currently, the move-
ment is set to static, so click on the word
Static (opposite the Type text) and from the
drop down box, choose Bouncing Ball.

2. We want the BallGolden to fly initially only
in an upward direction. Otherwise, the game
might be very difficult if the ball flew in a
downward direction as soon as the game
frame has started. So click on the numbers
opposite the Initial Direction text. A dialog
box with arrows appears, showing that cur-
rently the ball can fly in any of the 32 direc-
tions. Click on the icon in the bottom right
corner of the box to remove all the arrows.
Click on some of the squares in an upward
direction. You can see an example of this in
Figure 8.7. The ball is now configured.

126

Duplicate Versus Clone

There are two ways of making multiple ver-
sions of the same object. For the ChocoBreak
game, you have used the Duplicate option,
but there is also the Clone object. Again,
this is accessible from the popup menu
when right-clicking on the object. There is a
big difference when using these two options,
although from first use they seem to have
the same result. Duplicate creates copies
of an image, which are all accessible via a
single object in the Event Editor. Cloning
will create a brand new object, and this will
be represented by a separate object in the
Event Editor. In our ChocoBreak game, we
will check to determine when the ball has
hit a brick, and if we used Duplicate, we only
need to do a single check to see whether the
ball has collided with the White brick. TGF2
will then check which duplicate brick the
ball has collided with, and any actions for
that event will only apply to that brick. If we
cloned, we would have to create a number
of events to check which brick was collided
with. This would be a lot of work; in this
game, it would mean 48 events just to check
for a collision between the ball and each
individual brick.

Creating a Bat and Ball Game Chapter 8

3. To give the Player character the mouse move-
ment, click on the Player object to access the
player’s properties. Because we were just in
the Movement tab for a previous object, it
will automatically be selected for this object.
Click on the Static text, and from the drop
down menu choose Mouse Controlled.

4. We need to configure the Mouse Controlled
movement so that the player only moves
between the two vertical sugar bars, so click
on the Edit button opposite the Edit move-
ment text in the Properties window. A dotted
lined box will appear around the Player
object. Move it so it covers most of the area
between the bars as shown in Figure 8.8.

5. Click on the OK button in the Mouse
Movement dialog box.

Figure 8.7
Configuring the ball’s initial direction to upwards

only.

Figure 8.8
The mouse-controlled area where the player will be able to move.

127

Preparing the End Screen
Now you will need to set all the objects in place
for the final screen—the End Screen. For this
screen, we will also be placing a high scores
table using the Insert Object option.

Let’s move to the correct frame, add the back-
ground image, and then insert an object for the
high scores table.

1. Double-click on the text End Screen in the
Workspace toolbar to display the blank third
frame.

2. Drag and drop the object ScreenHighscores
to the frame.

3. Right-click on the object and use the Align
in Frame>Horz Center and the Align in
Frame>Vert Center to position it in the
correct location.

4. Right-click anywhere on the frame area to
see the popup menu and select Insert Object.
The Create New Object dialog box will
appear. Ensure that you select the Hi-score
object and then click on OK.

5. The mouse cursor will change to a crosshair.
Click anywhere in the center of the frame to
place the object. We want to change the size
of the Hi-score object to fit in better with our
game, so ensure that it is selected, and then
in the object properties, click on the Size
position tab.

6. Change X coordinate to 165, Y coordinate to
206, width to 307, and height to 229. You
can see this information in Figure 8.9.

Your final setup for the End Screen will look like
Figure 8.10.

128

Figure 8.9
The Hi-scores object properties for its size and position.

Figure 8.10
The final layout of the End Screen.

Creating a Bat and Ball Game Chapter 8

5. Click on the Choose Font button, then select
the Size of 16, and click on the OK button.

6. Click on the Set back color button, and then
choose any light color from the color palette.
In this example, we have selected the color
yellow from the second row, second column.
Once you have chosen your color, click on OK.

7. You will be back at the Edit text box. Click
on OK to save this information to the Event
Editor. You will see our comment line in
Figure 8.11.

N
ow that you have all of the
scenes set for your game, it is time to
begin programming them. We will start

with the first frame, which is the first of our
three frames. We only need to create a few events
for this frame. First we will create a comment,
then play some music, and finally, we will check
for when the player presses the spacebar to make
the game move to the Game Level 1 frame.

First, we need to ensure that we are on the
correct frame before we access the Event Editor.
Then we will add our first event, which will be
a comment line about the game.

1. Double-click on the text Main Menu in the
Workspace toolbar. This will display the first
frame graphics that you set up earlier.

2. Click on the Event Editor button to display
the blank sheet.

3. Now to add a comment: Right-click on the
number 1 and select Insert>A comment.
In the Comment dialog box, type in the
following: “Picture Yourself Creating Games.”
Then press Return twice, and type in
“ChocoBreak Version 1.”

4. Click on the Centered radio button in the
Alignment section.

129

Programming the Main Menu

Notes and Colors

Many users find using comments and colors
is a great way of making notes about their
code. This is particularly useful if you have
something complicated, so if you come back
to it at a later stage, you will be able to
understand. You can store text and numbers
in TGF2 against particular slots, which are
referenced by a number or name, so making
a note of which parts of the program are
writing to these slots is very helpful and will
save you lots of time in the long run.

The next event we will need to create is to play
some music when the frame first loads. We can
do this using the Start of Frame condition. We
will tell TGF2 to play some music, as this is
something that will make the Main Menu frame
more enjoyable to the player.

Let’s add our first event and action:

1. Click on the New Condition text on event
line 2. When the New Condition dialog box
appears, right-click on the Storyboard
Controls object (the knight and chessboard
icon), and from the popup menu, select Start
of Frame. This condition will be added to the
second event line.

2. Now you need to add the action; in this case,
you want to play a song when the frame
starts. To accomplish this, you need to right-
click on the blank action box on event line 2,
which is directly under the Sound object
(the icon looks like a speaker). From here,
two options will appear in a popup menu:
samples or music. We want the Samples
option, so select that, and then select the
option Play Sample.

3. A Play Sample dialog box will appear, as
shown in Figure 8.12; this allows you to
search for a file on your computer, or in this
case, on the CD-ROM that accompanies
this book. So click on the Browse button that
is next to the From a file text.

130

Figure 8.11
The first event line is our game comment.

Creating a Bat and Ball Game Chapter 8

4. You now have an open dialog box, which
allows you to browse for a particular sound
file, and in this case a WAV file. Browse to
your CD-ROM drive where the CD-ROM from
this book is located, and go into the Game
folder. You will see a file called Action
Point.wav. Select this file and click on Open.

You will now see the action added to the Event
Editor as shown in Figure 8.13.

131

Start of Frame

Even though this condition will only run at
the very beginning of the frame, any actions
can run for the life of the frame.

Figure 8.12
The Play Sample dialog box.

Figure 8.13
The Start of Frame event and its single action.

Samples and Music

In TGF2, the program differentiates between
certain types of sound files. A sample is
considered a WAV formatted file, while music
is MIDI. WAV is a standard sound format on
computers and is used in many aspects of
the PC’s operating system, including playing
a short tune when logging in and beeping
when there is an error. MIDI is quite an old
sound format and although it is supported in
TGF2, we don’t recommend using it because
it can create a pause between your program
loading and the file actually being played.

Now it’s time to add our next event, which will
contain a single condition that will test for the
player pressing the spacebar. When the player
presses the spacebar, we will create an action to
tell the game to go to the second screen.

1. First let’s add the condition for the checking
of the keyboard. Click on the New Condition
text on event line 3. When the Object dialog
box appears, right-click the Mouse Pointer
and Keyboard object (its icon is a mouse and
keyboard). From the popup menu, choose
The Keyboard>Upon pressing a key. A dialog
box will appear as shown in Figure 8.14,
which is awaiting your key press. Press the
spacebar, and the information will then be
written to the Event Editor.

2. We have our condition, so now we need our
action. The action is to move to the next
frame, and to do this, we need to move
across to the right until we are directly under
the Storyboard Controls object. Right-click
the action box and select Next Frame. You
can see your action and event in Figure 8.15.

3. Well done, you have now completed the first
screen in your game; you can test it by press-
ing the Run Application button or the F8
key. You will notice that the menu screen
appears and plays some music (once), and if
you press the spacebar, it will move to the
game screen.

4. Quit the running game by pressing the red X
in the top right corner, or alternatively press
the Alt+F4 keys.

132

Figure 8.14
The dialog box awaiting a key press.

Figure 8.15
The condition and action on event line 3.

Creating a Bat and Ball Game Chapter 8

2. Click on the Event Editor button on the tool-
bar to go to the events for this frame. You
will go to the Event Editor and see only a
single line with New Condition. This is now
ready for you to begin creating the logic for
the game.

3. We will create an event that will check for a
collision between the ball and the left side
sugar stick. Click on the New Condition text,
and from the New Condition dialog box,
right-click on the BallGolden object; this is
the object we want to test. Then from the
popup menu, select Collisions>With another
object. Another dialog box will appear; select
the SugarVertical1 object and click on OK.

4. Now we need the action; in this case, when
the ball hits the sugar stick, we want the ball
to bounce. Move to the right of the event
line until you are directly under the ball,
right-click the blank action box, and select
Movement>Bounce. You can see the event
and action in Figure 8.16.

5. We need to replicate the same events and
conditions so that we check for a collision
between the BallGolden and the
SugarVeritcal2, and the BallGolden and
SugarHorizontal. The actions for each of
these three items will be that the BallGolden
will bounce.

Programming Game Level 1
The game is the most important part of our
three screens because this is where all of the
action is going to take place. You may recall back
in Chapter 2 where we discussed what would
happen within our game and the features we
wanted to include. We will now be adding some
of these features into the game to create our
first level.

Some of the things we need to do are:

� Checking for the ball colliding with our
Sugar bars, then telling it to bounce.

� Checking for the ball colliding with the
bat, then telling it to bounce.

� Checking for the ball leaving the play
area at the bottom.

� Checking for the ball colliding with the
bricks.

Let’s go to the correct frame, so we can then
access the Event Editor for that frame. We will
then start with our basic events to create the
logic for our game:

1. First let’s get to the right frame. Double-click
on the Game Level 1 text in the Workspace
toolbar. This will display the ball, bat, and
bricks.

133

Figure 8.16
The first event and action for the Game Level 1 frame.

6. Next, do the same process, but this time
check for a collision between the BallGolden
and the Player object. Again move across to
the right, until you are under the BallGolden
object, and then set the Movement>Bounce.

7. Once you have done this, your actions and
events will look like Figure 8.17.

8. You can run this frame of the program by
pressing F7. Or, alternatively, press F8 to run
the whole application and test the main
menu also.

Ball Going Out of Play
You will notice by running the game that the
ball bounces around the screen off the sugar
sticks and also bounces off the player’s bat.
Already, with only four events, you have a work-
ing game. Now we need to make it a little more
fun and a little better at handling other events.
For example, the ball can currently leave the
bottom of the screen, and the game continues
to play. This is not good for the player because
all he can do at this point is move the bat
around the screen.

We will now check when the ball has left the
bottom of the screen. Once it has, we will end
the game.

1. Click on the New Condition text on event
line 5. We need to check for the BallGolden’s
position on the screen, so right-click the
BallGolden object. From the popup menu,
select Position>Test position of BallGolden.

134

Figure 8.17
The four events that check for the collision between the ball and the game objects.

Exiting the Game Level 1 Frame

Remember that you will need to use the Alt
and F4 key to exit the Game Level 1 frame
because the mouse is tied to the player
object.

Creating a Bat and Ball Game Chapter 8

Destroying the Bricks
To give the player a challenge, but also to have
something that we can register a score against,
we need to destroy the bricks once they have
been hit by the ball. If you think about this
logically, the condition you will need is to check
for a collision between the BallGolden and the
White brick.

We will now add this condition and the actions
that will be needed to destroy the White brick,
and we will also add 20 to the score.

A new dialog box will appear as shown in
Figure 8.18. This dialog box allows you to
specify where the object (in this case,
BallGolden) leaves or enters the screen.
Click on the arrow that is pointing downward
(at the bottom of the white box area called
the frame area). If you are unsure which
arrow to click, you can hold your mouse over
the arrow and a text message will appear
advising you what the graphic means. The
arrow you need to select is called Leaves in
the Bottom. Once this is selected, click on OK.

2. The event condition for line 5 will read
“BallGolden leaves the play area on the
bottom.” We need to end the game when this
is true, and we do that by moving to the next
frame. Move across to the right until you are
directly under the Storyboard Controls
object, right-click, and select Next Frame.

3. Test the game and notice that once the ball
has gone out of play, you are taken to the
End Screen.

135

Figure 8.18
The testing of an object’s position onscreen.

Test Position of an Object

The test position option allows you to check
the current location of an object within the
game. In the ChocoBreak example, this was
to test that the ball was leaving the bottom
of the screen. In other games, you might
want to use some of the other options. This
includes testing whether the object is leaving
the top, bottom, left, or right of the screen
by clicking on any of the small outpointing
arrows. The large arrow in the middle checks
to see if the object is currently in the frame
play area. You can also test to determine if an
object is coming into the frame by clicking
one of the small arrows pointing inwards for
the particular direction (top, left, and so on).
Finally, you can also test to see if an object is
outside the frame by clicking on the large
arrow in the bottom left of the dialog box.

1. Click on the New Condition text on event
line 6. When the dialog box appears, right-
click on the BallGolden object. From the
popup menu, choose Collisions>Another
object. The Test a collision dialog box
appears. Select the White brick object and
click on OK. The event is now added.

2. Next we will add to the score, so move across
to the right of event line 6 until you are
directly under the Player1 object. This object’s
icon is a joystick and a hand. Right-click on
the blank action box and select Score>Add to
score. The Expression Evaluator will appear,
so type in 20, as shown in Figure 18.19, and
then click on OK.

3. Still on event line 6, move across until you
are directly under the GoldenBall icon,
right-click, and select Movement>Bounce.

4. Again on event line 6, move across until you
are under the White brick object, right-click
the action box, and select Destroy. You will
see the event and its actions in Figure 8.20.

Figure 8.19
Expression Evaluator with the score of 20 added.

The Score

Even though we won’t have anything
onscreen displaying the score, TGF2 will keep
track of the score in the background. If it finds
that the score obtained once the game goes
to the End Screen is higher than those on the
high scores table, it will ask the user for her
name and then add it to the board results.

Figure 8.20
The condition and actions for event line 6.

136

Creating a Bat and Ball Game Chapter 8

Adding Sounds
At the moment, our Game Level 1 frame is
missing one vital ingredient, and that is sound.
If you play the game without sound, it doesn’t
feel complete. It is very important to add sound
to make the game more fun to play. We don’t
need to add any additional events to put our
sound actions against; we can use those that we
have already created.

First we will create a sound against the BallGolden
colliding with SugarVertical1, SugarVertical2,
and SugarHorizontal.

1. Our very first event is a collision between the
BallGolden and SugarVertical1. Move across
this event line until you are directly under
the Sound object. Right-click the blank
action box and select Samples>Play Sample.
When the dialog box appears, click on the
Browse button opposite the From a file text,
and locate the Game folder on the CD-ROM.
Select the file called impact02.wav and click
on Open.

2. You can now do the same action using the
same method for event lines 2 and 3, or you
can drag and drop the check mark in the
action box for event line 1 into the corre-
sponding action boxes below it. You will see
the result of putting this sound action into
the other two events in Figure 8.21.

3. We want a sound when the BallGolden col-
lides with the White brick, so move across
from event line 6, right-click on the Sound
icon, Samples>Play Sample, and then browse
for a file. Select the pop04.wav file.

Run the game now and you will see that when
the BallGolden hits a White brick, it will bounce
off it, but the brick will be destroyed. If the play-
er is really good at the game and destroys all of
the bricks, currently there would be no result.
So we need to add a condition that will check to
see if all White bricks have been destroyed and,
if so, move to the next frame.

Let’s now add this new event:

1. Click on the New Condition text in event line
7. Right-click the White bricks object, then
select Pick or Count>Have all White been
destroyed. This will then create a new condi-
tion, which will continue to test until the
final White brick has been destroyed. After
the condition is met, the actions will be run.

2. Move to the right until you are directly under
the Storyboard Controls object and then
select Next Frame.

137

Destroying Bricks

You can configure your games differently by
just changing a single action. In this case,
we told the ball to bounce when it hit a
brick. It would then destroy that brick.
This creates a situation where the ball only
destroys one brick at a time. If we removed
the bounce action, the ball would go
through the bricks in its path and destroy
them.

Automatic High Scores Dialog
If you run the game now, you will see that you
can play the game and destroy the bricks, and
if you let the ball go off the bottom of the
screen, the game will go to the End Screen.
You may also notice that in some cases it
might ask you for your name as shown in
Figure 8.22. This is because we have a Hi-score
object on the last screen, and by default, this
will check any score contained within TGF2
against the table when the frame is loaded.

138

Figure 8.21
The actions in all three events.

Figure 8.22
The Hi-score object finds that the player has scored a new

high score and asks the player for his name.

Creating a Bat and Ball Game Chapter 8

Let’s make sure we are on the correct frame
before we enter the Event Editor; then we will
create our two events. The first will be a Start of
Frame event because we want music to play as
soon as the frame is entered and because we will
do a timer event to check when the timer has
reached five seconds before restarting the
application.

1. Double-click on the text End Screen in the
Workspace toolbar to display the final frame
of our game. Then click on the Event Editor
button, where you will then be taken to the
blank events screen.

2. We will now create our first event for this
frame. Click on the New Condition text on
line 1 and then right-click on the Storyboard
Controls icon and select Start of Frame. Move
across to the Sound object and then right-
click on the action box and select Samples>
Play Sample. The Play Sample dialog box will
appear, and you will notice that it lists all of
the samples we previously used. We want to
play the song that we used on the Main
Menu screen, so all we need to do is select
Action Point from the samples list and click
on OK.

3. Now we will add the timed event. Click on
the New Condition text on event line 2 and
then right-click the Timer object; this object
resembles a stopwatch. From the popup
menu, select Is the timer equal to a certain
value? A dialog box will appear, allowing you
to select a timeframe in hours, minutes, and
seconds. Change the 1 second to 5 seconds,
either using the box where you can type the
result or the slider bar. You can see how it
should look in Figure 8.23. Once it is set to
5 seconds, click on the OK box to save this
information to the event.

Programming the End Screen
The final frame of our game is the End Screen.
This is where you show the player all of the
current scores and enter a high score if she
obtains it. There are only two things we need
to do on this screen. These include:

� Play music when entering the frame.

� Wait five seconds and then tell the
program to restart the application.

139

Difference Between
Restarting the Application
and Jumping to Frame

In this example, we restarted the application.
This has a major benefit over using Jump to
Frame that you need to remember when
making your own games. Restarting the
application clears all the scores and lives the
player has obtained and effectively resets
them. If you used Jump to Frame, the player’s
scores and lives would be retained. This
means the player would only have to hit a
small number of bricks each time and her
score would slowly increase. Restarting a
frame is very useful if you want to repeat
the same level over because this keeps the
scores and lives as we mentioned. This is a
very quick and easy way of making multiple
levels of your games.

4. The condition will have been added, so now
move across to the right until you are under
the Storyboard Controls object, right-click the
action box, and select Restart the Application.

If you now run the whole game, which you can
do by pressing the F8 key or clicking on the
Run Application button, you will be able to run
through the whole game, try to get a high score
and enter it on the score table. Finally after five
seconds, the game will be completed.

Congratulations! You have completed your first
game and are on your way to making your own
fun and exciting games.

140

Figure 8.23
The timer dialog box where you specify a timeframe.

I
n Chapter 8, you created a game called ChocoBreak.
This game was a simple bat and ball game where you had to destroy
the bricks to gain your points and the ultimate aim was to get on the

high scores table. ChocoBreak is a lot of fun, but there is so much more that
we could do with it by adding a few objects, making some configuration
changes, and adding some new code. In this chapter, we will add some
more features to ChocoBreak, which will take the game up another level.

In our game, we made changes that were necessary to get the game
working; now we will see how we can improve the overall game and add
other features that you come to expect in any typical computer game.

This chapter will build on what you have already learned and hopefully
will give you an idea of how to improve your own games once they have
been considered complete.

9
Adding More

Features

I
f we take a look at the current
ChocoBreak game, there are several areas
that could be improved, and that will

increase the overall enjoyment for the player. At
the moment the game is not using the concept
of lives because it ends as soon as the ball leaves
the screen. Additionally, there is no onscreen
indication of how well you are doing score-wise.
Finally, we will need to think about additional
levels and other features.

The things we will be adding in this chapter
include:

� Add a score object to the screen so
players can see how well they are doing.

� Add a lives object to the screen so
players can see the lives they have.

� Change the code for the game level 1
frame to not exit when the ball goes out
of the bottom of the screen.

� Change the code for game level 1 that
removes a life when the ball exits
from the bottom of the frame, then
replace the ball back into the middle
of the frame and remove one life.

� Check when there are no lives left, and
if none are left, go to the End Screen.

� Configure the high scores table on the
End screen to be more of a challenge for
the player.

� Repeat the level or add a level.

� Create items that will fall for the player
to catch which will add bonus items.

Adding New Objects
We will first add a score object to keep track of
the player’s score and a lives object to display
the number of lives the player has left. It is good
to give the game player an indicator of how well
she is doing because this gives her an idea of
how far away she is from getting her next high
score, which is one of the factors that will make
someone want to replay your game.

Let’s open the game file and continue with
adding some new features:

1. Open TGF2. Click on File>Open, then browse
to the CD-ROM that contains the CD from
this book. Navigate to the Game folder, select
chococomplete.mfa, and click on Open.

2. We need to be on the Game Level 1 frame to
place our objects, so double-click on the
Game Level 1 text in the Workspace toolbar.
You will now see the game level 1 frame with
the Player, White, and BallGolden objects.

3. Right-click anywhere on the frame and
select Insert Object. From the dialog box
that appears, select the Score object. Click
anywhere on the frame to place it. Click on
the Score object that is now somewhere
on the frame, then access its Size/Position
tab in the Properties toolbar and set its X
coordinate to 166 and its Y coordinate to 470.

144

New Features

Adding More Features Chapter 9

4. Right-click again anywhere on the frame and
select Insert Object. From the selection of
objects, choose the Lives object. Click any-
where on the frame to place the lives graphic,
which is represented by three hearts. On the
Size and Position tab for the lives object,
ensure that the X coordinate is set to 471
and the Y coordinate to 445. You can see
what the frame now looks like in Figure 9.1.

If you run the frame now by pressing F7, you
will notice that the score will update automati-
cally without your needing to write any addi-
tional code. This is because when you set the
score to add 20 every time a brick is hit, TGF2
kept this score ready. As soon as you place the
Score object, TGF2 knows that it needs to set the
current score to the graphical object that is on
the frame.

145

Figure 9.1
How the frame will look once you’ve added the two new objects.

Lives

By default, the player has three lives. This
is configured whenever you use the lives
system. This is fine for our game. The lives
starting number can be changed in the
application properties or via an action in
the Event Editor.

Additional Event Editor
Programming
We now need to make some changes to the
Event Editor to update our game with these new
features. When doing this in your own game,
you may only have a few events or you may have
many. It is sensible to make a small number of
changes and then test your game to see how it is
reacting. First, we need to be in the Event Editor
for the Game Level 1 frame. So click on the
Event Editor button.

Removing a Life
You will see the seven events that made up the
original game frame. The first thing we will do
is make a small change to the game to stop the
game from ending when the ball has left the
play area. This is a very simple change, and it
just requires the deletion of an action. We will
then create the action on the same event line to
remove a life. In many cases, you can use already
created conditions; you do not always need to
create new ones.

1. Move across from event line 5 of the Game
Level 1 frame and click on the action that is
contained within the Storyboard Controls
object. Press the Delete key to remove this
action. This will not end the game when the
ball leaves the bottom of the screen.

2. Now we need to add the action to reduce the
lives by one, so on the same event line (5),
move across until you are directly under the
Player 1 object, right-click the action box,
and select Number of Lives>Subtract from
number of Lives. When the Expression
Evaluator appears, type in the number 1
and click on OK. Now every time the ball
goes off the screen, a life will be removed.

3. We also need to destroy the BallGolden after
it has left the screen because we no longer
need it. So move across on event line 5 until
you are directly under BallGolden, right-click
the action box, and select Destroy.

4. Finally, we need to create a new ball because
we destroyed the one that went off screen.
Still on event line 5, move across from the
condition until you are under the Create
object. Right-click and select Create Object.
The Create Object dialog box appears as
shown in Figure 9.2. Scroll down until you
can see the BallGolden object. Select it
because this is the one you want to create.
Click on OK in the Create Object dialog box.

5. You will now see a dialog box asking you
where you want this new object to be created.
Drag the box with the cross in it over the
original BallGolden and then click on OK.

6. You can see the new actions and the order
they were added in Figure 9.3.

146

Figure 9.2
The Create Object dialog box.

Adding More Features Chapter 9

147

Figure 9.3
The new action to remove a life when the ball goes off the screen.

Order of Actions

It is very important to add the actions in
the order that has been detailed previously;
otherwise, you could experience problems
with your game. For example, you could
have programmed your game to create the
ball before destroying it. If you had done
this, as the ball is created and repositioned
back onscreen, it would have then been
destroyed. This would mean you wouldn’t
see any new ball.

Other Ways to Program

TGF2 is a very powerful program which
allows you to achieve the same results using
different code. Rather than destroy and recre-
ate the ball, you could have repositioned it
back on the screen. The benefit of destroying
the ball and recreating it is that the ball will
be reset and will move in an upward direction
because that is how it is configured in the
initial movement. If we just reposition it,
the ball will continue to move downwards
after it is repositioned. Of course, you could
also code an action to tell the ball to move
upwards. You can see that there are a
number of ways of achieving the same result.

No Lives Left
If you play the game, you will notice that the
ball can fly off screen and that a life will be
removed and the ball repositioned back to its
original spot, where it will move in an upward
direction. You may also notice that you can lose
all three lives and the game continues to play.
We now need to add the condition and action to
check when the player has no lives left.

This is a very straightforward process:

1. Click on the New Condition text on event
line 8. We want to do a test on the number
of lives, and this is stored under the Player 1
object, so right-click on it and select When
number of lives reaches 0.

2. We now need to add the action, which in this
case is to go to the next frame. Move to the
right of this event until you are directly
under the Storyboard Controls object, right-
click the action box, and select Next Frame.
You can see the event line and action in
Figure 9.4.

Configuring the High Scores Table
When playing the game at the moment, the user
doesn’t have any challenge; as long as he hits a
brick, he will get on the scoreboard. The default
settings are set to the name Empty and the score
of 0. When creating a game, you should consider
how challenging the game is for the player. You
should place a number of lower scores in the
table to ensure that the player can relatively
easily score enough points to get on the board.
The scores should get progressively harder for
the player to reach to give him a target to strive
for, which ultimately will give your game more
longevity.

You will now edit the high scores table to give
the player more of a challenge:

1. First we need to be on the last frame, so
double-click on the End Screen text in the
Workspace toolbar.

2. You can see the high scores table with its 10
empty slots. Double-click on it to open up
the Setup dialog box. You will see the 10
empty names and scores all set to zero.

3. Starting from the top, double-click any line
to bring up the Edit dialog box, where you
can then type in an entry. You can see the
dialog box for the name if you double-click
the empty text in Figure 9.5.

148

Figure 9.4
Checking the number of lives and moving to the next frame.

Adding More Features Chapter 9

5. After you click on OK in the dialog box in
Figure 9.6, the high scores table will be
updated with the relevant entries.

Adding Additional Levels
At the moment, we have a single game level
called Game Level 1, but what if you wanted to
create many levels with varying difficulty and
different items on each one? There are a number
of ways you can achieve this goal.

Here are some ways of creating additional levels:

� Copy and Paste: You can copy and paste
whole frames and their Event Editor
code to create new frames. You can do
this using the Workspace toolbar or the
Storyboard Editor, and then use the
standard keyboard shortcuts to copy a
frame, then paste it. You can then go
into the frame and Event Editors for
each of your pasted frames and make
changes, and then you have your new
levels.

4. You will have to also double-click on the 0 to
edit the number separately. You can see the
dialog box with all the entries complete in
Figure 9.6.

149

Figure 9.5
The Hi-score object edit box used to edit

a particular entry.

High Scores Table Updates

When you were testing the game, you may
have entered your name. Even after entering
a new set of score data, you will still see the
old data and not the new entries you have
just entered. This is because TGF2 checks to
see if there is any data already in a file called
an ini file, and if there is, it will not display
this new data. The important thing to
remember is that when you give the game to
someone else, it will display the correct list
that you entered manually. You do have
another option if you want to see the data
displayed when you run the game. You can
click on the Hi-score object, and in the
Settings tab, you can enter a file name to use
for the ini file. This will create a brand new
score file and will automatically display the
information you entered.

Figure 9.6
The final contents of the Hi-score object.

� Restart Frame: If you want a level to
repeat over and over without needing
to change anything, you don’t need to
make any additional levels. We already
have a condition that checks for when
all bricks have been destroyed. All you
need to do is replace the action to jump
to the next frame with a restart frame.
This won’t increase the complexity of
the level, but in certain types of games
where the difficultly level is already
quite high, this allows a good player to
score more points.

� Brand New Frames: If you are making
a game where different levels will actu-
ally contain different graphics or game
types, then you can create a new frame
in the same way you would create a
normal frame. Place all of your objects
on the frame and then program it in the
Event Editor. This is the slowest of the
three options, and it is unlikely that you
will create many games where the level
does not use some of the graphics or
code.

Creating Items That Will Fall
We are going to make another change to our
game to show you how to add bonus items to
the game. We will, at random, drop items from
the bricks that the player can catch or avoid.
This will make the game more complex for the
player but also add another level of fun to it.

We will create an event so that every two sec-
onds an object will fall from one of the bricks
that still exist. To make sure we have enough
time to play the game, we will also restart the
level if all of the bricks have been destroyed.

The CD-ROM included with this book already
contains the ChocoBreak game file ready to use;
alternatively, if you have the ChocoBreak game
still open from the previous chapter, you can
also use that.

Let’s load the file and begin to make our
changes to the game:

1. Open TGF2, then click on File>Open from
the menu options. Browse your computer
and go to the CD-ROM drive that contains
the book’s CD. Navigate into the Game folder
and select chococomplete2.mfa and click
on Open.

2. We first need to add an object that will drop
from the bricks onto the Frame Editor. We
will need to be on the Game Level 1 frame,
so double-click on the text Game Level 1 in
the Workspace toolbar.

3. Expand the Local Library text in the Library
toolbar, select Tutorials, and double-click on
the ChocoBreak Tutorial text in the right-side
windowpane. Look for the object called
Option1 and drag it on to the frame. Place
it to the left of the game window so that it
does not appear onscreen. You can see a
good location to put it in Figure 9.7. The
location of this object is X –46 and Y 239.

150

Adding More Features Chapter 9

4. We want to add a movement to the Option1
object, so on the Frame Editor, click on the
object to bring up the object’s properties.
Click on the Movement tab, and then choose
Bouncing Ball in the Type drop down menu.
Click on the Initial direction numbers and
remove all the arrows, and then place a single
arrow pointing downward. This will mean
that when the object appears in the game,
it will move downward automatically. You
can see the object movement properties in
Figure 9.8.

5. Now we need to add some code, so enter
the Event Editor for the Game Level 1 frame.
First, we need to amend event line 7 where
the last brick has been destroyed. Move
across to the action under the Storyboard
Controls object and delete it. Right-click on
the now blank storyboard controls action
box and select Restart the current Frame.
This will now make the frame loop until the
player has no lives left, at which time it will
then go to the final frame.

151

Figure 9.7
The new object that will fall from our bricks, currently off screen.

Figure 9.8
The Option1 movement properties.

6. Let’s now create the condition that will wait
two seconds. Click on the New Condition
text on event line 9, then select the Timer
object. From the popup menu, choose Every.
When the Timer dialog box appears, change
the seconds number to two and click on OK.

7. We now need to add a second condition to
the same event line to pick a White brick at
random. So right-click on the text Every
02”-00 on event line 9 and from the popup,
select Insert. The New Condition dialog box
will appear. Right-click on the White brick
object and then select Pick or Count>Pick
White at Random. Now every two seconds,
it will pick one of the bricks at random.

8. Move across from the conditions on event
line 9 until you are under the Create New
Objects object. Right-click on the action box
and select Create Object. The Create Object
dialog box appears. Scroll down until you
find the Option1 object, select it, and click
on OK. You will now be asked to position this
newly created object, and there are a number
of options. We could specify a particular posi-
tion, but we want it to appear to come from
one of the bricks. So click on the “Relative to”
radio button and a dialog box will appear.

Choose the White brick object and click on
OK. You can see this event and its action in
Figure 9.9.

9. A further dialog box will appear as shown in
Figure 9.10. You will also see that one of the
White bricks is selected and is connected to a
dotted line and dotted box. By moving this
box, you can tell TGF2 where to create the
object based on the position of the selected
object. Because we used Duplicate, all of
these White bricks are the same, so the posi-
tion will be the same for any of the bricks.
For example if you stated that the object’s
position was five pixels to the right of the
object, then an object will always be created
five pixels to the right of any of the White
bricks. Move the dotted box or type in 0, 0
for the X and Y coordinates. This will place
the creation of the Option1 object in the
center of the brick. Click on OK to save this
information to the Event Editor.

152

Figure 9.9
The conditions and actions for creating an object every two seconds at random.

Adding More Features Chapter 9

These are all things that can be configured in any
way you want in your own games; for example,
if the player catches the Option1 object, perhaps
it adds an additional life or adds more to the
score.

With objects flying off screen, it is always recom-
mended that you destroy the objects once they
have left the screen. This just makes your pro-
gram a little more efficient. You won’t notice any
problems with a game as small as ChocoBreak,
but if you were making a game with hundreds of
objects flying off screen and you didn’t delete
these objects after they left the screen, you might
find your game slowing down. This is because
the computer needs to spend processor time and
memory keeping track of the position and other
properties of these no longer in use objects. Of
course, in some games you will want objects to
go off screen and then to fly back onscreen, and
in that case, you wouldn’t destroy that particular
object.

Let’s now create our additional code changes to
check for a collision, add 30 points to the score
when they catch an Option1 object, and destroy
any objects if they are off screen.

1. First we will check for a collision. So click on
the New Condition text and select the Player
object (the bat). From the popup menu,
choose Collisions>Another object, then
select the Option1 object. Move across to the
right until you are directly under the Player1
object (the joystick icon) and select
Score>Add to score. In the Expression
Evaluator, type in 30 and click on OK.

If you now run the game, you can play it and
every two seconds an object will fall from one of
the White bricks at random. There are a number
of things that you would now need to consider
with this game. You will need to check for a
collision between the object and the player
object (the bat). Also, what action do you want
to happen when it does hit, and finally, what
happens if the player misses the Option1 object?

153

Figure 9.10
The location relative to the object.

Creating an Object
from White Brick

You might wonder when you set the relative
position to the White brick why the 0,0
coordinates were in the center of the object.
This is because, within the object, the Action
point is placed directly in the middle of the
object.

2. The second thing we need to do is check
to see if the Option1 object leaves the
bottom area of the screen. Click on the
New Condition text, and select the Option1
object; then from the popup menu, choose
Position>Test position of Option1. When
the Position dialog box appears, click on the
down pointing arrow in the bottom half of
the dialog box and click on OK. Move across
to the right of this event until you are directly
under the Option1 action box, right-click,
and select Destroy.

3. You can see the conditions and actions for
this in Figure 9.11.

You might also want to destroy the option1
object once it collides with the player1 object.
To do this, all you will need to do is find the
event that contains the collision between play-
er1 and option1, move across to the action box
for the option1, and select Destroy.

Congratulations! You have finished your first
game and added some new features along the
way. Think about other ways you could improve
your game. Perhaps you could add more falling
objects that create different effects, for example,
creating a second ball and removing a life.

154

Figure 9.11
The final events for our game.

W
hen making your own games, you may want to
configure the game to look a certain way. You might want to
display a menu or remove the menu. You might want to display

the game in a window or in full screen mode where it covers the whole
desktop. TGF2 is very powerful and has many options available that you
can configure to give your games a unique look and feel.

In this chapter, we will look at some of the options that are available to
you and how they might affect how your game looks and plays.

10
Additional Program

Changes

T
GF2 allows you to change many
aspects of the screen size. We have already
talked about the frame and application

sizes in Chapter 3. Now we will look at some
other screen changes that you might require.

Full Screen
You may have noticed when playing games that
often the screen resolution changes and the
game takes over the whole screen. The Windows
Start bar is covered and no part of the desktop
is shown. This is called full screen, and it resizes
the games frame size to match the screen size.

To change your game to use this settings do the
following:

1. Open TGF2 and load a game using the
File>Open option.

2. Click on the application name in the
Workspace properties toolbar to access the
application properties sheet.

3. Click on the Window tab in the application
properties sheet.

4. Scroll down and select the Change
Resolution Mode checkbox as shown in
Figure 10.1.

This checkbox is enough to change the program
to take the whole screen. You can see an example
of this process in the Examples folder on the
CD-ROM. The file is called fullscreen.mfa. You
will notice when running that file and any
games that you set to full screen that there is
a bar that appears on the top of the window.

158

Screen Changes

Figure 10.1
The Change Resolution option selected.

Additional Program Changes Chapter 10

This is the debugger bar, and it is used to check
for bugs within your games. You can click on the
X to close it for now. Behind the debugger bar,
you will see a set of file menus. In most full
screen games, you would create your own menus
and not use the default one that is used in
games that appear in a window. We will show
you how to remove this shortly. You can see
these items in Figure 10.2.

Removing a Menu
If you are working in full screen, you may want
to remove the text menu that appears on the
top of the screen. To do this:

1. With your file open, click on the application
name to access the application properties.

2. Click on the Windows tab in the application
properties window.

3. Unselect the Menu bar option as shown in
Figure 10.3.

159

Figure 10.2
The debugger bar and the text menu on our full

screen. Figure 10.3
The Menu bar unchecked will remove the

menu when running the game.

Removing the Menu
When Running the Game

You may want to leave the menu and allow
the player to display or hide it when required.
The default key to hide the menu is F8.

Default Menu Options
Built into your games by default is a selection
of menu options. These allow you to configure
certain aspects of your game, ranging from
changing the controls to accessing any help files
and displaying the About box, which details
copyright information. You can see an example
of the default menu in Figure 10.4.

The basic menu contains three main headings,
File, Options, and Help. These main headings
contain the following:

File
� New: This starts the program afresh,

thus causing the game to reload as if it
was just started.

� Password: You can configure a password
for a frame. By selecting this option and
entering a password, you can make the
program jump to a specific frame.

� Pause: This will pause the game in
progress.

� Players: This configures the default
player controls. This allows the player
to change the controls of the game from
keyboard to joystick (as many as four
joysticks).

� Quit: This will exit the game.

160

Figure 10.4
The default menu system provided by TGF2.

Passwords Option

You can configure the passwords for each
frame in the Storyboard Editor screen.

Password Option in Menu

The Password option in the menu will not
appear unless you configure a password in
the Storyboard Editor.

Additional Program Changes Chapter 10

Menu Dialog
It is very likely that you will want to change this
default menu system to contain items that are
more specific to your game. Many games create
additional menu options to help navigate around
the various screens of their programs. Games
such as Railroad Tycoon and Civilization have
many menu selections, which would not be easy
to replicate onscreen using images and buttons.
Using the in-game screen menus, users can
quickly access some areas that would otherwise
require two, three, or more clicks to reach.

To change the menu options used within your
games, you will need to access the menu config-
uration dialog box, which is available via the
application properties.

1. Start TGF2, click on the option File>New on
the menu to create a new game file.

2. Click on the word Application 1 in the
Workspace toolbar to bring up the properties
sheet. On the application properties sheet,
click the Window tab to bring up options
relating to the menu. You should now see a
properties sheet as shown in Figure 10.1.

3. Under the section Menu, you will see two
checkboxes and an Edit button. If you wish
to include a menu bar, you leave the Menu
bar option selected, and if you would like the
menu to appear when the game is started,
the second option should be left at its default.

4. Click on the Edit button to open the Menu
Editor. You will now see a menu dialog box
as shown in Figure 10.5.

Options
� Play Samples: By default this is enabled,

so any samples that are expected to
play within the game will be heard on
the speakers. Uncheck this, and no
samples will be played.

� Play Music: This is the same as Play
Samples, except that it applies to any
music that will play within the game.

� Hide the Menu: If you don’t want to see
the menu while playing the game, you
can hide it by selecting this option. It
can be brought back by pressing the F8
key.

Help
� Contents: Disabled by default, Contents

allows you to assign a Help file to the
Menu option or shortcut key (a range of
file formats including hlp, wri, and doc).

� About: When the user selects this, an
information box details the product
name and any copyright information.

161

The parts of the Menu Editor dialog box shown
in Figure 10.5 are as follows:

1. You can see an example of your text displayed
automatically within the dialog box. It
currently shows the File, Options, and Help
menus. As you change your menu, this will
be updated to reflect how it currently looks.

2. These are menu buttons that allow you to
edit and change your menus. We will discuss
each of these buttons shortly.

3. This is the actual structure of your menu, with
its shortcut keys and any menu separations.

Dialog Buttons
The menu buttons consist of the following
(from left to right):

� Reset Menu: This will reset the menu
back to its original settings after
changes have been made.

� Load a Menu: This loads a menu from a
file, allowing you to create an original
menu and use it in multiple games with-
out needing to recreate it each time.

� Save a Menu: This saves a menu so that
it can be used at a later stage in the
current or future programs.

� Insert a Separator: This creates a line
separator between menu options. It is
useful for grouping similar items
together.

� Insert an Item: This allows you to create
a menu text item.

� Insert an Item from the Default Menu:
If you have created your own menu
system but would like to take advantage
of some of the default menu options,
you can choose which ones to add.

162

Figure 10.5
The Menu Editor dialog box is labeled as shown.

Shortcut Keys

Shortcut keys, also known as hot keys, are
specific key combinations you can use that
do the same thing as selecting the option
from a menu. You may do this already when
using your PC; for example, pressing Alt+F4
closes an application.

Additional Program Changes Chapter 10

These options are:

� Text of Menu: Type in the text that you
wish to appear in the menu system. By
using an ampersand (&), you are telling
TGF2 that it should underline the next
available letter in the menu, so in this
example the N would be underlined.
This tells users that they can access
this option using a shortcut key (a key
combination that is configured under
the Accelerator section).

� Checked: This places a check mark next
to the word in the menu. This is useful
for options that can be switched on or
off (for example, in the default menu,
the user can turn the music on and off).

� Grayed: A check in this box will gray out
the option in the menu. When an item
is grayed, it is effectively switched off
and cannot be selected.

�Bitmap: By clicking on the Edit button,
you will enter the Picture Editor and be
able to create a button for your menu
option. This allows users to create
XP-based menus where many of the
options have graphic images next to
the menu text.

�Accelerator: This allows you to configure
a shortcut key to a menu option. These
are used in many types of games and
applications to allow you to quickly
access certain options. A default exam-
ple would be quitting a TGF2 game by
using the Alt key and F4 together to exit
the program.

� Edit Current Item: Edit the currently
selected line item (you will need to click
on an item that you wish to be edited
before clicking on this button).

� Delete an Item: Remove an item from
the menu.

� Push Left: You can create various levels
of menus, so that when one is selected,
it will bring up another menu to the
right of the selected option. This allows
you to move the menu option higher or
lower in the menu order.

� Push Right: You can move a menu item
to the right of its current position using
this button.

Editing a Menu Option
To edit a current menu option, you can either
double-click on the item or single-click to high-
light it and select the Edit current item button.
Once you have done this, you will be presented
with the Setup application menu dialog box,
which can be seen in Figure 10.6.

163

Figure 10.6
The Setup application menu dialog box for

editing a menu option.

Menu Walkthrough
We are going to reconfigure the menu and add
another main menu item alongside File, Options,
and Help. This fourth entry will be called Book.
Under the Book heading, we will create a num-
ber of entries, including one item with an image,
a separator line, and two additional menus to
create the menu in Figure 10.7.

1. Choose File>New option from the menu to
create a brand new program file. Double-
click on the text Frame 1 in the Workspace
toolbar to open the Frame Editor.

2. Click on the word Application1 in the
Workspace toolbar to bring up the properties
sheet. On the application properties sheet,
click the Window tab to bring up options
relating to the menu.

3. Under the section Menu, click on the Edit
box to begin changing the configuration of
the menu.

4. Use the scrollbar to scroll downwards until
you see a blank space below the word
&About. Double-click on the blank line or
click to highlight it and click on Insert an
Item.

5. When the dialog box appears, type in &Book
in the Text of Menu edit box, and then click
on the OK button. Click on the Push Left
button to move the Book item to the left;
this will make it into its own menu option
rather than an entry under Help.

6. Scroll down again, double-click on the blank
line under the &Book entry, and type in the
word About; then click on the OK button. On
looking at the menu, you will notice that a
new menu option has appeared and we wish
it to be an item under &Book, so ensure the
About entry is highlighted and then click on
the Push Right button once to move it to the
correct position.

7. Click on the blank line. Click on the Insert a
Separator option to add a straight line under
the About item.

8. Double-click on the blank line under the
Separator item. Type in the text Links and
click on the OK button.

9. Double-click on the blank line under the
Links item and type in the text Book, then
click on the OK button.

10. Double-click on the blank line under Book,
type in the text Publisher, and click on the
OK button.

164

Figure 10.7
The menu that you will create.

Additional Program Changes Chapter 10

Programming the Menu
If you want to make changes to the basic menu
that is provided by default, you will need to create
conditions and actions so that when a player
selects a specific menu option the game will
react in a certain way. All configuration of the
menus is done via the Event Editor and via event
code. When adding a condition, from the dialog
box you would choose the Special object (the
object that looks like two computers connected
to each other); then from the popup menu, you
would choose the Application menu to pick rele-
vant conditions for what you want to be tested.
In the following walkthrough, we are going to
use the menu we have just created and create
a condition that when the player selects
Book>About, the game will display some text.

1. Using the file created in the Menu
Walkthrough, open the file called
Menu1.mfa.

2. Double-click on the text Frame 1 in the
Workspace toolbar to open the Frame Editor.
Click on the Event Editor button to begin
programming the menu system.

11. We now need to move both the Book and
Publisher items to the right of the Links
item. Select the Book line (which is just
below the Links line) by clicking on it. Then
click on the Push Right button. Do the same
process for the Publisher item.

12. Double-click on the blank line under
Publisher, type in the text Contents, and then
click on Edit button in the Bitmap section.
You will now enter the Picture Editor, select
the Fill Tool, and select a color. Fill the small
square image with a single color and then
click on the OK button. Then click on the OK
button again to return to the Menu Editor.
Ensure Contents is highlighted and then
click on the Push Left button to place it in
the correct sequence in the menu system.

13. Your menu is now completed. Click on OK to
save the configuration of the menu to TGF2
(you will still need to save the game file to
ensure that all changes are kept).

14. Ensure that you are on the Frame Editor,
right-click on the frame, and select Insert
Object. Choose the Formatted Text object
and click on the frame. This will place the
text object onscreen. You will see a box out-
line on the frame; double-click on it to make
it editable. Type in some text within the box
and then click off it to save the text to the
object.

15. Click on the Formatted Text object again to
access the object properties. Click on the
Display options tab and then deselect the
Visible at Start option so that it is unchecked.

16. Save the TGF2 file as Menu1.mfa; you will
need to access this example shortly to
program it within the Event Editor.

165

Using Menus

To utilize the menu you have just created,
you will need to use the Event Editor to
access its options and program how it should
react to user selections.

3. Click on the New Condition text to open the
New Condition dialog box. Right-click on the
Special object and choose Has an option been
selected? from the popup menu. You will
now see a dialog box as shown in Figure 10.8.

4. Click on the Click Here button to see the
already created menu, and choose
Book>About. You will now see an event that
says Menu option About selected.

5. Move to the right of the event until you are
directly under the Formatted Text object,
right-click, and choose Visibility, Make object
Reappear from the popup menu.

166

Figure 10.8
Menu option selector.

Additional Program Changes Chapter 10

To amend these icons:

1. In the Workspace Properties toolbar, click
on the topmost object (icon) to reveal the
application properties in the properties tab.

2. Click on the About tab in the Properties
toolbar.

3. Click on the line that represents Icon, and
then click on the Edit box that appears.

The Picture Editor appears with four icons that
can be amended. You can see an example of the
icons used in the final version of a game in
Figure 10.10.

W
hen you run a game within an
application window, or look at the
executable of any game you have made

by browsing the folder it is stored in, you will see
a graphic icon. These icons are specially created
to give the game individuality from others that
are on your machine, as shown in Figure 10.9.
The image on the left in Figure 10.9 is the graphic
image you will see if you search for the program
using Windows Explorer. The icon image on the
right can be seen on the top left corner of the
application window. There is a default set of
icons pre-made within TGF2, which can be
changed to better represent your games.

167

Icons

Figure 10.9
An example of two icons that are displayed.

Figure 10.10
Example of the icons being amended.

Icons

You will notice in Figure 10.10 that there
are a number of icons. There are a variety of
sizes and colors. The icon used will depend
on the screen resolution.

Y
ou have made your game, but now what? Well, you might
want to pass it to your friends to play, or perhaps you want to place
it on the Internet so that users can download the game or even play

it online. TGF2 has a number of different options available to the game
creator to help you distribute your games.

Thanks to the Internet, there are many more ways of delivering your games
and giving you access to a wider audience. There is still the challenge of
making all these new users aware of your game on the Internet, but the
potential is great.

In this chapter, we will look at how to create a single Windows executable
file that can be played on any Windows machine. Unfortunately, you cannot
e-mail executable files; programs like Outlook generally remove them
because they consider executables to be potential viruses. Therefore,
we will also explain how to place your game file into a zip file. This is a
specially formatted file that is supported by Windows and that places one
or many files into a single named file.

We will look at creating an installer for your game. This is very useful if you
intend to use external graphics and sounds. The installer helps you easily
place these files on the end user’s PC, so that she doesn’t need to worry
about which files she needs to copy to which folder to get the game to work.

Finally, we will look at how you can place your games in a web browser
using TGF’s own web plug-in called Vitalize, which creates a file in a
special format called CCN that can then be uploaded to a web site and
displayed in a web browser such as Internet Explorer.

11

Distribution

W
hen using your PC, you will use
executable files all the time. Each time
you run Internet Explorer, MS Paint, or

the calculator, you are running executable files.
This is a standard formatted file that will run
as soon as you access it from the menu bar or
double-click on it from a folder. Within TGF2,
you can create your games in this Windows
format.

The process for converting your MFA TGF2 file to
an executable is very straightforward:

1. Load the game that you wish to convert to
an exe file.

2. Select File>Build>Application from the
menu.

3. A dialog box will appear as shown in Figure
11.1., Type in the name of the game and then
click on the Save button.

Your game has been saved, and you can now
double-click on it and run it. You can see an
example of the ChocoBreak game saved as an
executable in the Game folder on the CD-ROM.
The file is called Choco.exe.

170

Creating an Executable File

Creating Executables

Using the trial version of TGF2, you cannot
create an executable game. We are showing
you how to do it here for future reference
or if you currently own the full version.

Figure 11.1
The Save dialog box used to create an executable.

Internal and External Assets

If you create a game that uses external assets,
such as images and sounds, you will need to
place them with the game when you distrib-
ute them. Otherwise, these elements may
not work. Items such as the active object
and .wav sound files are stored internally,
but other objects can be used externally,
such as the Picture object and video files.

Distribution Chapter 11

Windows XP and Vista both come with a built-in
zip utility. To zip a file in Windows:

1. Locate the folder where the files you want to
zip are located. In the case of this example,
we will use some of the book files that the
author has been working on in the produc-
tion of this book. You can see a folder with
some files in Figure 11.2.

A
fter you create your executable
file, you may want to place it within a
zip file. A zip file can be considered a

filing cabinet where you store your files. You can
place a single file or many files in a zip file, and
it will then be just one single file, which you
can easily distribute. Zip files also have other
features, notably, password protection and the
ability to compress the files to make a version
smaller than the original, and so easier to e-mail.

171

Zipping the File

Executable Files

Some anti-virus programs and e-mail clients
balk at executables sent in an e-mail. Outlook,
for example, will remove the actual executable
from within the e-mail so that you cannot
access it.

Zip Password Security

Even though zip password security may be
very useful, don’t forget to make a note of
the password you have used. Although it is
possible to download software from the
Internet to access a password from a zip file,
it does require more time and effort. It’s
better if you just make sure you remember
your password!

Zip Compression

Zip compression can make some of your
files a lot smaller. This has the added benefit
of any zip file you upload being smaller
than the original. This can save you valuable
bandwidth if you have limited download
limits. Zip compression works better on
some files than others, so you may find that
zipping your file does not save you any
space whatsoever. Zip compression does not
compress executable files very well (if at all
in many cases), but can be very good on
graphics formats such as BMP and JPG.

2. Select the files that you want to place in a zip
file. You can select a single file by clicking on
it. You can select a group of files from one
continuous point to another using the Shift
key and highlighting all the files in a group,
or you can select multiple non-contiguous
files using the Ctrl key and clicking on each
file individually. In this example, we have
selected the Choco.exe file only, as shown in
Figure 11.3.

3. Right-click on the highlighted file and then,
from the popup menu, select Send To >
Compressed (zipped) folder. You can see this
in Figure 11.4 on a Windows XP system.

4. The zip utility will then compress the file and
place it within a single zip file, which can be
seen in Figure 11.5.

172

Figure 11.2
The folder that is being used for zipping.

Figure 11.3
The file that has been selected ready for zipping.

Figure 11.4
The menu option in XP to zip a file, files, or folder(s).

Figure 11.5
The executable file now placed in a zip file.

Distribution Chapter 11

If this were your file and it were now in a zip
file, you would have it ready to e-mail or upload
to the Internet. The user can download the zip,
and as long as he is running XP or Vista, he will
be able to extract the files to his machine and
play the game. If he doesn’t have XP or Vista, he
can download zip utilities off the Internet.
Winzip is a zip compression program, and a trial
can be downloaded from www.winzip.com.

173

Selecting Files to Zip

If you are sending zip files of your games to
your friends or uploading the files to the
Internet, you would only need to select the
executable and any external asset files, such
as images. Unless you do not mind people
seeing your code files, do not zip your MFA
game files with your executable. This would
allow anyone (if the file is on the Internet)
to download your game code, and if they
have the right software, they can also export
images and sounds from the file.

Zip File Names

The zip file that is created will be named
after the last selected file, effectively, the
last file placed into the zip file. We have only
one file for the example we have just used,
so in this case, the file is called Choco.zip.

www.winzip.com

C
reating a zip file is very useful,
but it requires that users have the correct
software (Vista or XP) or a zip utility. It

also requires them to download the file, place it
somewhere, extract the files, and then remember
where they put the file and run the executable
to start the game. This brings a lot of possible
variables into play where the user might not
be computer-literate and might have trouble
running the file.

It is easier and more straightforward for the user
if she can run a single executable file and install
the software directly onto her computer. She
would follow some simple onscreen instructions
and once those are complete, an icon would be
placed on the desktop or on the startup toolbar.
The user doesn’t have to worry about extraction
or where to find the files; she can just double-
click on the shortcut that has been created
for her.

As a developer, you may also want to include
other files, a license document to tell the user
any rules that are associated with the software,
provide a web link to access your web site, and a
multitude of other things. Doing this in a zip file
is not practical because you will have many files
that the user is unlikely to access. Creating an
installer fixes a number of possible issues and
provides you with a way to give the user access
to all manner of information as she installs the
program.

An install system is built into TGF2, and
although it is not as complex as some installer
programs available on the market, it is built into
the program and does not cost you any more
than the original cost of TGF2.

174

Creating an Installer

Install Program

The install program in TGF2 is only useable
if you have the full version. We document it
here to show you how to use it should you
decide to purchase the full program.

Install Creator

If you want a more powerful installation
program for your games, you can use the
free program called Install Creator, which is
also available from Clickteam.com. The install
program has an advertisement for the soft-
ware at the end of the installation program,
but it is very powerful and a good way of
distributing your games.

Distribution Chapter 11

3. Click on the Edit button to access the
installer program (remember this will only
work in the full version).

4. You will now see an Install Settings dialog
box as seen in Figure 11.7.

5. Type in the name of the product (game) in
the area where it currently says Application1
in the image. If you have loaded a game that
has a different application name, it will dis-
play it here instead (for example, ChocoBreak).

6. The default installation direction is the stan-
dard Windows installation path in Program
Files. Unless you have a very good reason
to do otherwise, this path is the best place to
put your game files.

7. Clicking on the File tab will display which
files are in the installer to be installed on the
end user’s PC. In Figure 11.8, the example
game we have loaded into TGF2 only contains
a single file called test.exe.

To create your installer, you will need to do the
following:

1. First, you need to have a game already open
in TGF2, and you should have already com-
piled an executable game. Once you have
done this, click on the application name in
the Workspace properties toolbar to access
the application properties.

2. You will now see the application properties.
One of the options within that window is
Install Settings and an Edit button as shown
in Figure 11.6.

175

Figure 11.6
The properties of the application include an

Install Settings option.

Figure 11.7
The Install Settings dialog box.

8. On clicking the Build Install Program button,
you will be provided with a dialog box asking
you where to save the executable installation
file. Here, you would enter your installer
name, for example, Chocosetup.exe.

9. Once the installation is complete and the
file is created, you can view a report on the
success of the process on the Build tab. This
report will also detail how much space was
saved when it compressed the files and what
files have been included in the installer. You
can see the Build tab in Figure 11.9.

176

Figure 11.8
The files that the installer will place on the user’s PC.

Figure 11.9
The Build installation tab.

ChocoBreak Setup

On the CD-ROM that comes with this book,
we have placed the installer example created
using this same process for the ChocoBreak
game. It is called ChocoSetup.exe and is
located in the Game folder.

Distribution Chapter 11

There are a number of steps for creating your
game online. These can be detailed as:

� Create a CCN file format. This is the
format used and read by the Vitalize
plug-in.

� Create or edit a web page with a link to
the CCN file. You may also amend some
additional information that will affect
how the link will look on the page.

� Upload the CCN and HTML page you
have created to a web site.

� Go to the page and test.

I
f you have a web page or web site
that you want to make more interactive, or
perhaps you want to upload your games so

other people can play them without download-
ing them, there is another build option available
to TGF2. TGF2 has its own web browser plug-in
called Vitalize, which allows you to place a
specially formatted file onto your web site, then
point to it via your web page. Users will need to
download a small plug-in to play the game, but
once they have downloaded the plug-in, they
will be able to access any Vitalize games that
you upload.

177

Web Browser Games

Vitalize Plug-in

The Vitalize plug-in works on many
different browsers, but will only work
for a Windows-based machine.

Vitalize Site

If you want to take a look at a sample web
site that contains Vitalize-based games,
you can visit www.madword.com. This is an
arcade web site with a growing number of
Vitalize-based games.

Creating Web Games

You can only create web-based games in the
full version of TGF2, although you are able
to download the free plug-in for TGF2 and
play Vitalize games for free.

www.madword.com

Follow these steps to create your CCN game file:

1. Start up TGF2. Then click on File>Open and
find the file that you want to upload as a
web game. In this example, we are loading
the file chococomplete3.mfa, which is located
in the Game folder on the CD-ROM.

2. Click on the application name, which in the
case of chococomplete3.mfa is chocobreak.
This will display the application properties in
the properties window. Click on the Build
Type drop down menu, which is currently set
to Stand-alone application, and change it to
Internet Application as shown in Figure 11.10.

3. Select File>Build>Application from the
menu. TGF2 will then ask for the file name
of the CCN file. In this case, we saved it as
Choco.ccn.

By placing this code within your HTML file and
changing a few items, you can quickly get a
game displayed on a web page. This HTML page
can be viewed from your machine, on a CD-ROM,
or on a web site.

� Width: This is the width of your game.

� Height: This is the height of the game.

� Codebase: This is the page location of
the Vitalize plug-in. When the page
loads, it will check to determine whether
Vitalize is installed. If not, it will start
the plug-in installation. There is a ver-
sion number on the end of this line, and
the program you created in TGF2 will
check to see if you’re running the latest
plug-in. If you have an older version, it
will ask you to update. This version
code is for Internet Explorer only.

� PARAM NAME=”URL”: This is the loca-
tion of the CCN game. You can place the
game in the same folder as the HTML
file or in another location.

� Checkversion: This will check the ver-
sion of the plug-in installed and update
the user’s version if it’s not up-to-date.
This is used for Firefox, Netscape, and
Opera.

� WIDTH/HEIGHT: Enter additional width
and height information for non-Internet
Explorer browsers.

178

Figure 11.10
The Build Type allow you to build different

types of programs.

Distribution Chapter 11

You can find the web page called Vitalize.html
located in the Game folder on the CD-ROM that
accompanies this book. You may also notice that
the CCN file is located in the same folder.

If you try to run this game offline, you will not
be able to access the Vitalize plug-in. You can
install this from the CD-ROM rather than the
Internet; the setup file is located in the Demos
folder and is called instvtz4.exe.

We have placed the game ChocoBreak within a
web page on the CD. This will show you how to
place the game on a page. When running the
game offline, you will be given a security warn-
ing about running the CCN file. This is normal,
and all programs that are plug-ins on a web
page will do this when you are not online.

179

Create a standard web page, and within the <body> and </body> tag of your HTML file,
you will need to insert a specific set of code as shown:

Vitalize Code

<OBJECT ID=”Vitalize1” WIDTH=320 HEIGHT=200 type=”application/x-cnc”

CLASSID=”CLSID:EB6D7E70-AAA9-40D9-BA05-F214089F2275”

CODEBASE=”http://www.clickteam.com/vitalize4/vitalize.cab#Version=4,0,248,1”>

<PARAM NAME=”URL” VALUE=”yourapp.ccn”>

<EMBED TYPE=”application/x-cnc”

SRC=”yourapp.ccn”

checkversion=”4,0,248,1”

PLUGINSPAGE=”http://www.clickteam.com/vitalize4/download.html”

WIDTH=320

HEIGHT=200>

</EMBED>

</OBJECT>

I
n Chapter 11 we discussed how you could compile, package,
and distribute your games. You may spend a lot of time making your
games, but before you distribute them you will need to test them to

ensure they don’t contain any bugs. These bugs may be errors with your
code (events) or a mistake in the way you designed your game. Either way,
it is always a good idea to take a look at your program from a gamer’s
perspective rather than from a programmer’s view to ensure that the game
is working correctly before you distribute it.

Although we could have put this chapter on testing your games before
Chapter 11, “Distribution,” we chose to reverse the order for a very good
reason. The best way to test your game is to create it as if it were ready to
be installed, downloaded, or extracted by the user, so you need to under-
stand how to do that before you can test it.

By testing your game precisely as the user would receive the game, you
will have more chances of finding any problems. This will help solve
distribution errors as well as bugs within your game.

12
Testing Your

Games

U
nfortunately, no matter how
hard we try to make the perfect game,
there will always be some issue with it.

As a games programmer, you might spend a lot
of time making your games and because so
much effort and focus are placed upon creating
the game, it is very common to miss bugs or
issues that may irritate the end user.

These bugs can range from simple spelling
mistakes to game crashes that can make the
game unplayable. The longer you have spent on
making your game, the more acute this issue
becomes. The longer the development time, the
more chance that you will want to rush the final
stage of your game and get it released as quickly
as possible. Beware of trying to rush your game
just to get it finished and released. A few simple
checks can really make a difference in the final
quality of your game. You might only need to
spend 5 or 10 minutes or a couple of hours
checking your spelling, but in the long run, it
will improve what users think of your game.

182

Lovely Bugs

The Spelling Bee Bug

You might think that simple bugs, such as
spelling mistakes, can be ignored because
your priority is getting your game released.
Do not underestimate how much you can
improve the quality of your game by spend-
ing a few hours checking spelling and
grammar.

Testing Your Games Chapter 12

suitable enough to show to people as
the work in progress (even if you are a
hobbyist creator). The alpha is used to
get feedback on how the product sticks
together and if the interface works well
enough. This is the final stage of devel-
opment before the product will be
locked down with regards to features
and its look and feel. At the alpha stage,
you could continue adding new features
and never actually release a product
because it could always be added to.
The end of the alpha stage is an indica-
tion of the beginning of the final
program and its functionality.

� Beta: At the end of the alpha process,
you may have received comments about
how the product looks and whether the
interface works well. Once you are satis-
fied that you have taken the comments
on board and have made final decisions
about the interface (and made those
changes to the product), then you enter
the beta stage. The beta stage is where
the product is fully locked down with
regards to functionality, look, and feel.
This stage means that all that needs to
be done is the removal of any bugs
within the program. You can start to
give this version to your testers, who
will then try and locate any problems
within the game. Beta testers could be
a group of friends or anyone who has
downloaded the game from your web site
and who replies to you with comments.

W
hen your game is in the process
of being made, you will go through a
number of stages of the product’s life

cycle. When you reach different stages of devel-
opment, you will give the product a different
name/classification. This helps you understand
where the game currently is with regards to
completeness, and, if you are using any testers,
this will help them understand what they need
to be doing to help you test.

� General Bug Fixing or Pre-Alpha: When
you are creating your game, you will
also test to see if it works. This is just to
confirm that you have completed that
section of code and then can move on
to the next part of the program. There
may also be issues with the look and
feel and general stability. All of this
will be done while you are programming
the main part of the game, but you will
not be going out of your way to find
problems.

� Alpha Version: When the product is in
a suitable condition and a lot of the
functionality has been implemented,
you can say that your product is at
version alpha. This means that it could
still be unstable, but it is in a state
where a lot of the options are function-
al (though not all), and it has the
general look and feel of the final
product. The product may still have
some major bugs and issues, but this
is the first version that is considered

183

Testing Names

� Post Release: Once the product has been
released, there will be people using the
game on configurations that you may
not have expected or ways that even the
beta testers didn’t pick up. There are
generally bugs to be fixed once the
product is available to a larger number
of people.

184

Testing One, Two, Three

Different users and different companies have
different testing policies. A game maker who
is making games for fun at home has a totally
different experience than a large games
company testing games that will run on a
games console. If you are making games on
your own, you might decide to just wait until
you have made your game before you begin
to test it. Larger organizations might have
teams of testers ready to test the game at
different stages. You can pick or choose
whichever methods that you feel are most
useful to you to help you make your game
better.

Using Testers

Beta testers are an essential resource for
finding bugs within your games. Game
developers who have been working on a
product for a while will find it harder to
find bugs because they are so used to the
product. A new user to a product tries
things that the developer just wouldn’t
think about and so can be a great asset for
finding those bugs the developer didn’t
even know about.

Testing Your Games Chapter 12

Starting the Debugger
To make the debugger start, you will need to
have a program running within TGF2. Once you
have opened up one of your games, if you run
the frame or the whole game, then the debugger
will appear in the top left corner, as shown in
Figure 12.1.

Figure 12.2 gives you a closer look at what the
debugger bar contains.

W
hen you need to test your games,
there is a debugger tool within TGF2
that can help you search out problems

quickly and easily. You may have noticed this
tool before because it appears every time you run
a TGF2 game within the editor. The debugger is
very much like other debuggers for other pro-
gramming languages and offers lots of nice little
features to make the developer’s life much easi-
er. Every program you make contains data infor-
mation, for example, the current number of lives
the player has or the location of the spaceship
on the screen. All of this information is essential
if you wish to fix issues with your program. The
new debugger allows you to get access to all of
these details so you can spend more time devel-
oping your programs rather than bug finding.

185

The Debugger

Figure 12.1
The debugger open and ready to use.

Figure 12.2
A close-up of the debugger bar.

There are a number of buttons and functionality
that you can access:

� If you click on the plus (+) sign on the
right side of the debugger bar, it will
expand the amount of information that
you will be able to see. All options and
program data can now be viewed.
Within the whole program (each frame,
object, etc.) is specific information,
such as location on the screen, screen
size, current counter values, and string
details. The expanded debugger can be
seen in Figure 12.3. To collapse it back,
click on the minus (–) sign that replaced
the plus sign when you expanded the
contents.

� The first button on the debugger bar
(the line with the left pointing arrow)
signifies that the program will start
from the beginning of the frame once
clicked. This is very useful if you are try-
ing to track a bug and want to watch
what is being changed (something we
will detail shortly); you can keep repeat-
ing the process until you have found the
problem.

� The square icon on the debugger bar is
the stop button. This stops the frame
and program from running, and it will
also close the running game and the
debugger.

� The third icon is the pause button,
which will pause your program (nothing
will happen on the game’s playfield)
until you press play to start it back up.
This will allow you to get to a specific
point in the program and then check
the result of the current data being
stored by TGF2.

� The fourth icon from the left looks
like a grayed-out right pointing arrow.
In fact, this is the Next Step button,
which allows you to step through you
game code a line at a time. To use this
function, you will need to pause the
program first using the pause button
mentioned above. This is a very useful
option if you want to see slowly what
changes are made to your program
(otherwise, things can happen very
quickly and you might miss them).

� The fifth icon is the play button; once
you have paused the program, you
would use this to start it back at real
time (playing at normal speed).

186

Debugger

The debugger will appear when you run the
frame or application even if there is no
content.

Memory and Objects

The debugger contains a text bar, which dis-
plays the number of objects and the memory
that the current frame is using. You can get a
good idea of the performance of each frame
by making a note of the numbers displayed
here.

Testing Your Games Chapter 12

� The display in the middle of the
debugger bar shows two bits of useful
information: first, how many objects
are being used in the current frame,
and second, the amount of bytes for the
total memory used by the application.

187

Figure 12.3
The debugger expanded to reveal more information.

Figure 12.4
Basic information that is stored in the debugger.

Within the expanded debugger you will see the
system node; by clicking on this, you can display
the default information that is available in all
applications. This can be seen in Figure 12.3.

Expanding the System folder, as shown in Figure
12.4, will give you all standard game informa-
tion. Frame number is the current frame that is
running within the game. The time is the actual
amount of time that frame has been running
(it is very important to remember that the time
is reset between frames). You also have two addi-
tional expandable folders, which display all of
the global values and global strings being used
within the program. At the bottom right of the
expanded debugger, you will see three additional
buttons that you can use to add and remove
additional items. The first icon is to add additional
items; the second is to delete any items (if you
only have System to begin with, it will delete
that group); and finally, you will have an edit
button, which is displayed as three dots and is
used when you wish to edit specific data entries.

Adding Items to the Debugger
You will want to add an item to the debugger so
that you can watch it and see what happens to it
when your game is running.

1. Click on the New application button to
create a new game file.

2. Double-click on the text “Frame 1” in the
Workspace toolbar to access the Frame
Editor.

3. Right-click on the blank frame and select
Insert Object. Choose the Lives object and
click on OK; then click on the frame to place
the object.

4. Run the game by pressing the “run applica-
tion” button on the toolbar. This will start
the game and open up the debugger.

5. Click on the + sign on the debugger to
expand it.

6. Click on the first of the three buttons
(the Add object button) in the bottom right
corner of the expanded debugger.

7. Whenever you have a frame with different
objects, when you click on add, you will see
a set of folders that you can expand. In this
case, you have already added a Lives object,
and you can expand this folder to see the any
Lives objects within it as shown in Figure 12.5.

188

Global Values and Strings

Anything that uses the term global means
that any the information that it contains is
available throughout the whole program
and not just in a single frame. Many items
you might use in your program, for example,
a simple bit of text, will only appear if you
add a text object on that frame and then set
that value of text. Global values and strings
mean you can save a value or text into a
slot, which can then be called at any time
for the life of the program.

Frame and Time

When you move between frames in your
game, the debugger will update the frame
number and reset the timer.

Testing Your Games Chapter 12

9. Now that you have added the object, you
can see its properties in the debugger, with
information about its screen location, width
and height, any movement that has been
assigned, and any specific object information.
In this case, the number of lives equals 3.
This is the default setting of this object. You
can see this information in Figure 12.6.

8. Make sure the folder is expanded and select
the Lives object; then click on OK.

189

Figure 12.5
The Lives object folder with the Lives item within it.

190

Figure 12.6
The information of the Lives object now that it has been added to the debugger.

Object Folders

In a frame you might have multiple objects
of the same type; in this case, you might
have more than one Lives object. These are
displayed in the same folder for neatness.

Each Frame’s Objects

It is important to note that for each frame,
you will need to set up the objects that you
want to watch. Once you move frames, the
debugger resets the items within its list to
just the original System folder. This is because
each frame will have different objects
allocated to them, so it needs to do this to
refresh the list. You will need to add any
objects you want to watch in each frame.

Testing Your Games Chapter 12

Editing Object Properties
Sometimes within your game you may want to
change the value of an item to see what effect
it might have on your game. You can use the
Edit object button to set a particular value to
an object. In this case, we are using the simple
example file we just created with the Lives
object onscreen.

1. Run the game that you want to test (in this
case, it is the single Lives object on frame 1).
Expand the debugger by clicking on the +
button.

2. Ensure that the Lives object is added to the
debugger using the Add object button.

191

Figure 12.7
The Edit box where you can change the information and save it back into the program.

3. Expand the Lives folder so that you can see
the item “Number of lives:3”.

4. You can either double-click on that item or
single-click on the item and click on the Edit
button.

5. When you are in edit mode, a small dialog
box will appear allowing you to edit the con-
tents. Once you have changed the content
(typed in another value), you can click on OK
to save this information back to the program.

6. You can see that if you haven’t paused the
game before you change the value, the value
will automatically update. If you change the
lives to 2, the number of heart graphics on
the frame also changes to 2.

This chapter presented the basics of using the
debugger. As you create larger games, you will
find yourself using this program more and more
to help you find any programming issues with
your game. It is very useful and can save you lots
of time and effort trying to find those difficult
bugs that you couldn’t see in the Event Editor.
It’s a great little tool that you should consider
looking at if you start to get stuck with your
game and you are not sure why it’s not doing
what you have told it to do.

192

Figure 12.8
The updated frame which reflects the changes made to the debugger dialog box.

Editing Objects Information

Changing any data when running the debugger
is only a temporary change. In this example,
we amended the number of lives. Once the
program has finished and we run it again,
any amended data will be reset back to its
original settings.

K
eyboard shortcuts allow you to use certain key
combinations to do things quicker rather than finding items within
the menu system. Within TGF2 there is a default set of shortcut

commands, but you can also amend them to suit your own requirements.
Over time, you may find that you are duplicating certain menu combinations
when you are developing your games; by setting up your own keyboard
shortcuts, you will be able to work faster and more efficiently. The other
option you have is not to change the defaults but to make a list of all the
important key combinations that you use for future reference.

A
Keyboard

Shortcuts

To view the default keyboard preferences:

1. Start TGF2, and go to the menu bar at the
top of the program.

2. Select the Tools option.

3. Select the Keyboard Shortcuts option.

The keyboard shortcuts dialog box will load, as
shown in Figure A.1.

Some default key combinations can be seen in
Table A.1.

196

Figure A.1
Keyboard shortcut list dialog box.

Keyboard Shortcuts Appendix A

197

Table A.1 Common Key Combinations and Shortcut Keys

Action Key Combination Details
or Shortcut Keys

Copy Ctrl+C Copy the selection and put it on the clipboard

Cut Ctrl+X Cut the selection and put it on the clipboard

Delete Delete Delete the selected object

Enlarge canvas Ctrl+W Enlarge the canvas of the picture

Event Editor Ctrl+E Open the Event Editor window

Events list editor Ctrl+L Open event list window

Find Ctrl+F Find the specified text

Frame Editor Ctrl+M Open Frame Editor window

Help Shift+F1 Display help for clicked on buttons, menus, and windows

New Ctrl+N Create a new document

Open Ctrl+O Open an existing document

Paste Ctrl+V Insert clipboard contents

Play F5 Play the current frame from the current position

Print Ctrl+P Print the active document

Redo Ctrl+Y Redo the previously undone action

Run Application F8 Run the current application

Run Frame F7 Run the current frame

Save Ctrl+S Save the active document

Select All Ctrl+A Select the entire document

Storyboard Editor Ctrl+B Open storyboard window

Undo Ctrl+Z Undo the last action

Zoom in F2 Zoom the current window inwards

Zoom out F3 Zoom the current window outwards

Zoom to fit F4 Set the zoom factor of the current window to obtain
a complete display

W
e hope you have enjoyed your experience of video game
creation. If you want to take your game creating skills to the
next level, there are a number of other books written by Jason

Darby that can help you in your game creating goals.

B

Bibliography

M
any game enthusiasts have aspirations to create their own games but don’t know where
to start. Make Amazing Games in Minutes introduces the game creation process to the aspiring
game developer with no experience or programming ability. Taking the reader step-by-step

through the various stages of developing a game and using the popular “drag-and-drop” game creation
software included on the CD-ROM, this book will help the reader build his very own games. Using the
tutorials and step-by-step methods, the reader will complete a fully playable retro game, as well as
platform, bat and ball, and side-scrolling shoot ‘em up games. Other chapters cover more complex game
features such as adding effects and scoreboards, porting the game onto the web, and installation script
building. This must-have book is the essential resource for anyone interested in learning game creation
and the retro game style.

200

Make Amazing Games in Minutes

Make Amazing Games in Minutes
ISBN: 1-58450-407-2

Bibliography Appendix B

M
icrosoft Windows is the most popular operating system in the world. Millions of
computers are shipped every year with it as the OS, making Windows the platform of choice
for developers. And because of its widespread use, there are numerous programming languages

that can be used to create applications that will work with Windows. But you don’t have to be a
programmer to develop practical, fun, and interesting applications with Windows. Many people have
learned how to harness the power of Windows to make their own tools, and the Power User’s Guide to
Windows Development will teach you how to create your own without knowing how to program! Written
for power Windows users, web developers, and beginning programmers who want to go beyond the
basic functional uses of Windows but who aren’t programmers, this book is a complete guide to making
your own games, music players, CD-ROM menus, screensavers, movie players, advertising materials,
and more. Using a free trial version of Multimedia Fusion 2 Developer (Clickteam), you’ll learn how
to develop your own tools in Windows. A variety of fun projects are used throughout the book to get
you developing practical applications quickly. Beginning with basic screensavers, you’ll progress through
edutainment tools, interactive tutorials, games, CD-ROM menus, graphic creation, videos, music, and
networking tools. So, if you want to make your own applications to use on Windows, Power User’s Guide
to Windows Development will teach you everything you need to know—no programming required!

201

Power User’s Guide to Windows Development

Power User’s Guide to Windows Development
ISBN: 1-58450-518-4

T
his is one of the first books Charles River Media published in game development,
and it has been very successful. There are thousands more game players today than there were
in 2000 and many of these players want to know how to make their own games. Most of these

people are not programmers, however, so they need a non-programming way to learn and that’s why
this book works so well! Awesome Game Creation: No Programming Required, Third Edition teaches game
enthusiasts and aspiring developers how to create their own computer games without programming
skills. It teaches how the whole game design process works, beginning with an overview of how to design
a game, and moving through the creation process from the basic building blocks to sound, music, and
graphics. Throughout the book, you’ll learn how to create a variety of games, including a 2D dragon
flying game, first person shooter, space shoot ‘em up, and more. To make sure you’re able to follow
along easily, each game is created through step-by-step tutorials that use “drag-and-drop” game engines.
You’ll learn how to make and modify your own interactive 2D and 3D computer games. And, you’ll learn
how to use a variety of development tools, including The Games Factory 2 (latest version), GameMaker,
and FPS Creator (new to this edition). This is a great way to learn the basics of game design and creation
without having to learn how to program!

202

Awesome Game Creation:
No Programming Required, Third Edition

Awesome Game Creation: No Programming Required, Third Edition
ISBN: 1-58450-534-6

Bibliography Appendix B

L
earn how to create your very own video games to play and share with friends! Game
Creation for Teens teaches beginners how to build games using The Games Factory 2, a simple
drag-and-drop software. No previous programming or game development experience is required to

get started, and the technology and software used in the book will show readers how to create a variety
of games. Using the hands-on tutorials presented in the book, aspiring game developers will create three
games that incorporate graphics, sound and music, objects, and more, and even discover how to test and
fix their games.

203

Game Creation for Teens
ISBN: 1-59863-500X

Game Creation for Teens

T
he book you now hold in your hands, Picture Yourself Creating Video Games, teaches
amateur game creators how to make their very own games, with no programming skills or prior
experience required! The easy to follow, step-by-step instructions use a drag-and-drop software,

the Games Factory 2, to show readers everything they need to create their own video games for fun.
Readers will learn simple programming terms, storyboarding techniques, and basic game creation skills.
And the Games Factory 2 provides all the components they need to create games including heroes,
monsters, sound, and music.

204

Picture Yourself Creating Video Games

Picture Yourself Creating Video Games
ISBN: 1-59863-551-4

Bibliography Appendix B

Coming soon!

Have you ever wanted to recreate a famous battle from history or imagined a battle on a distant planet?
If you love to play tabletop war games or strategy computer games, now is the chance to make your own
computer war games. This book gives you all you need to know to make your own computer war games,
including movement, weather effects, and terrain issues. Using an easy-to-use game creation program, you
will be making games rather than worrying about how to code, and in no time, you will be recreating
your own ideas and battles. ISBN: 1-59863-566-2

205

Going to War: Creating Computer War Games

206

A
About command (Help menu), 161
About tab (Properties window), 42
acceleration settings

eight directions movement, 79
race car movement, 80

Accelerator option (Setup application menu
dialog box), 163

action points, 108
actions

action box, 61–62
ChocoBreak game example, 130–131
defined, 31, 57
End of Application, 61
order of, 147

Active objects, 43
alignment, object, 122–123
alpha testing, 183
alterable variables, 18
angle settings, bouncing ball movement, 71
animation

appearing animation set, 113
bouncing animation set, 113
climbing animation set, 113
crouch down animation set, 113
direction settings, 113–115
falling animation set, 113
flying dragon example, 111–112
frames, 115–116
jumping animation set, 113
movement versus, 33

repeating, 115
running animation set, 113
shooting animation set, 113
speed settings, 115
stand up animation set, 113
stopped animation set, 113
walking, 112–113

Animation Editor
Animation List, 112
components of, 110–111
description of, 18, 33
overview, 91
starting, 110

anti-virus programs, 36
appearing animation set, 113
application files. See also files

End of Application action, 61
restarting, 139

application level properties (TGF2 Properties
window), 23

Awesome Game Creation: No Programming
Required (Darby), 202

B
Backdrop objects, 44–45
background images, 124
Behr, Olivier, 19
beta testing, 183–184
Bitmap option (Setup application menu dialog

box), 163
Bitmap Push button, 47

Index

BMP (Bitmap) format, 94
bouncing animation set, 113
bouncing ball movement, 126–127

adding and removing directions, 71
angle settings, 71
deceleration settings, 70
direction settings, 70
initial starting directions, 71
randomization settings, 71
speed settings, 70
stopping from bouncing, 72
testing, 72–73

brake settings, race car movement, 80
brick creation, ChocoBreak game example, 125
Brush tool (Picture Editor), 100
bugs, debugger

adding items to, 188–189
basic information stored in, 187
expanding/collapsing, 186
frames object, 187
memory display, 186
Next Step, 186
overview, 159
pause button, 186
play button, 186
starting, 185
stop button, 186
system node, 187

Button objects, 46–48
buttons

Bitmap Push, 47
checkbox, 47
Newline, 74
properties, 47–48
radio, 47
Run Application, 37
Run Frame, 37
shortcut/menu, 21

Tape Mouse, 74
Text and Image Push, 47
Text Push, 47

C
calculations, Expression Evaluator

alterable variables, 18
description of, 18
example of, 34

Cancel button (Picture Editor), 116
Castle Software Ltd., 2
CCN file format, 177–179
CD-based media, 5
centering objects, 123
changes. See screen changes
checkbox button, 47
Checked option (Setup application menu dialog

box), 163
ChocoBreak game

actions and events, 130–131
background sky image, 124
ball going out of play, 134–135
brick creation, 125
bricks, destroying, 135–136
conditions, 130
end screen preparation, 128
end screen programming, 139–140
game map for, 15
level 1 setup, 123–127, 133–135
library graphics available, 121
main menu preparation, 122–123
movement configuration, 126–127
music samples, 130–132
notes and colors, 129–131
scene setup, 120–121
scoring, 136–138
storyboard for, 15
tutorial, 19

207

Index

circular-based movement, 85
Civilization game, 161
Clear tool (Picture Editor), 93
clickteam Web site, 1
climbing animation set, 113
cloned objects, 125
cloning versus duplication, 126
code groups

creating, 64–65
enabling/disabling, 65
moving event lines into, 65

collision detection, 133–134, 153
color, Backdrop objects, 45
Color Palette (Picture Editor), 109
Color Picker tool (Picture Editor), 100
comments

adding, 63
commenting your code, 63
need for, 64
uses for, 63

compression, zip, 171
conditions

adding multiple to same event, 59–60
ChocoBreak game example, 130
defined, 31
New Condition dialog box, 58–59
start of frame, 61

Content command help options, 35
Contents command (Help menu), 161
coordinates, object, 123
Copy button (Picture Editor), 96
copying

images, 96
levels, 149
shortcut keys, 197

copyright information, 160
Create New Object function, 57

Crop tool (Picture Editor), 98
cropping images, 98
crouch down animation set, 113
Cut button (Picture Editor), 96
cutting

images, 96
shortcut keys, 197

D
Darby, Jason

Awesome Game Creation: No Programming
Required, 202

Game Creation for Teens, 203
Make Amazing Games in Minutes, 200
Picture Yourself Creating Video Games, 204
Power User’s Guide to Windows Development, 201

debugger
adding items to, 188–189
basic information stored in, 187
expanding/collapsing, 186
frames object, 187
memory display, 186
Next Step, 186
overview, 159
pause button, 186
play button, 186
starting, 185
stop button, 186
system node, 187

deceleration settings
bouncing ball movement, 70
eight directions movement, 79

default menu options, 160–161
Delete an Item option (Menu Editor dialog

box), 163
Delete button (Picture Editor), 96

208

deleting
images, 96
items from menus, 163
shortcut keys, 197

design
basic structure of order, 10
game ideas, 11–12
overview, 9
project design and planning, 10
storyboarding, 14–15
storylines, 13

dialog, menus, 161–163
digital cameras, 5
direction settings

animation, 113–115
bouncing ball movement, 70
eight directions movement, 79

disappearing animation set, 113
disk space, minimum and recommended

requirements, 3
Display Options tab (Properties window), 42
distribution

discussed, 169
executable file creation, 170
Install Creator program, 174–176
installer, creating, 174–176
zipped files, 171–173

drawing area (Picture Editor), 109
DSL, 5
dual monitors, 6–7
duplicating

cloning versus, 126
objects, 125

E
Edit Current Item option (Menu Editor dialog

box), 163
Edit Text dialog box, 63–64

editing. See also screen changes
menu options, 163
object information, 192
object properties, 191

editors
Animation

Animation List, 112
components of, 110–111
description of, 18, 33
overview, 91
starting, 110

Event
blank screen example, 32
default objects that appear in, 56
description of, 18
events defined, 31
Object list, 56
overview, 55
starting, 56

Frame, 18, 30
Picture

Brush tool, 100
Clear tool, 93
Color Palette, 109
Color Picker tool, 100
Copy button, 96
Crop, 98
Cut button, 96
Delete button, 96
description of, 18, 33
drawing area, 109
Ellipse tool, 101
Eraser tool, 105–106
Export tool, 95
Fill tool, 103–104
Flip Horizontal tool, 97
Flip Vertical tool, 97
Import tool, 94

209

Index

editors (continued)

Line tool, 100
overview, 91
Paste button, 96
Polygon tool, 102
Rectangle tool, 101
Redo tool, 97
Rotate tool, 107
Selection tool, 99
Shape tool, 103
Size tool, 106
Spray tool, 104
starting, 92
Text tool, 105
tooltips, 93
Transparency tool, 98
Undo tool, 93, 97
View Hot Spot tool, 108
Zoom tool, 99

Storyboard
description of, 18
example of frames loaded into, 27
frames, 28–29

switching between, 27
Editors window (TGF2), 23
eight directions movement, 78–79
ellipse movement, 86
Ellipse tool (Picture Editor), 101
end screen preparation, ChocoBreak game, 128
end screen programming, ChocoBreak game,

139–140
Eraser tool (Picture Editor), 105–106
events

ChocoBreak game example, 130–131
conditions within, 58
defined, 31
multiple conditions, 59

placing in code groups, 65
readable code, 58
timed, 139–140

Events tab (Properties window), 42
executable file creation, 170
Export tool (Picture tool), 95
exporting images, 95
Expression Evaluator

alterable variables, 18
description of, 18
example of, 34

extensions, file, 26

F
falling animation set, 113
falling objects, 150–153
File menu commands, 160
files

creating new, 25
extensions, 26
opening existing, 26
running, 37
saving, 26

Fill tool (Picture Editor), 103–104
FLC format, 94
flipping images, 97
folders, object, 190
fonts, 51, 105
formatted text, 50
Frame Editor, 18, 30
frame level properties (TGF2 Properties window),

23
frames

action points, 108
animation, 115–116
creating, 28
Jump to frame option, 139

210

Play area, 30
renaming, 28–29
restarting, 150
size of, changing, 158–159

G
Game Creation for Teens (Darby), 203
game design. See design
game files. See files
games

ChocoBreak
actions and events, 130–131
background sky image, 124
ball going out of play, 134–135
brick creation, 125
bricks, destroying, 135–136
conditions, 130
end screen preparation, 128
end screen programming, 139–140
game map for, 15
level 1 setup, 123–127, 133–135
library graphics available, 121
main menu preparation, 122–123
movement configuration, 126–127
music samples, 130–132
notes and colors, 129–131
scene setup, 120–121
scoring, 136–138
storyboard for, 15
tutorial, 19

Civilization, 161
QUICK draw, 2
Railroad Tycoon, 161
Space Invaders, 85

GIF (Graphics Interchange Format), 94
global values, 188
gradients, 45
grammar checking, 182

graphics cards
minimum and recommended requirements, 3
the need for, 7

Graphics Interchange Format (GIF), 94
graphics tablets, 6
gravity settings, platform movement, 82
Grayed option (Setup application menu dialog

box), 163

H
hardware, 4
Help menu commands, 161
help options

built-in, 35
Content command, 35
Index options, 35
Search tab, 35
tutorial files as, 36

Hide the Menu command (Options menu), 161
hiding menus, 161
Hi-score object, 48–49, 128, 138
hi-scores table configuration, 148–149
hot spots, 107–108
HTML files, 178–179

I
icons, screen changes, 167
ideas, game design, 11–12
images

background, 124
clearing/removing, 93
copying, 96
cropping, 98
cutting, 96
deleting, 96
erasing parts of, 105
exporting, 95

211

Index

images (continued)

flipping, 97
importing, 94
pasting, 96
resampling, 106
rotating, 107
size, 106
stretching, 106
zooming in/out, 99

Import tool (Picture Editor), 94
importing images, 94
Index help option, 35
Insert a Separator option (Menu Editor dialog

box), 162
Insert an Item from the Default Menu option

(Menu Editor dialog box), 162
Insert an Item option (Menu Editor dialog box),

162
Install Creator program, 174–176
installer, creating, 174–176
Internet, anti-virus programs, 36
invaders movement, 85
italicized text, 105

J
joysticks, 5
JPEG (Joint Photographic Experts Group) for-

mat, 94
jump controls, platform movement, 82
Jump to frame option, 139
jumping animation set, 113

K
keyboard shortcut keys

common key combinations, 197
default keyboard preferences, 196
running applications, 37
to menus, 163

L
ladders, 46, 82–83
Layers toolbar, 34
left and right turn settings, race car movement,

80
levels, creating additional, 149–150
Library toolbar (TGF2)

description of, 23
displaying, 121
library file creation, 122
switching on and off, 23

Line tool (Picture Editor), 100
lives

configuring, 145–148
no lives left, 148
removing, 146–147

Lives object, 51–52
Load a Menu option (Menu Editor dialog box),

162
loading menus, 162
looping movement, 76

M
Madword Web site, 177
main menu preparation, 122–123
Make Amazing Games in Minutes (Darby), 200
memory

displaying on debugger bar, 186
minimum and recommended requirements, 3

menu bar (TGF2), 21
menus

check marking words in, 163
creating new, 164–165
current selected line item, editing, 163
default options, 160–161
deleting items from, 163
dialog, 161–163

212

grayed out items in, 163
hiding, 161
line separations between, 162
loading, 162
menu options, editing, 163
menu options, moving, 163
options within, changing, 161–163
programming the, 165–166
removing, 159
resetting, 162
saving, 162
Setup application menu dialog box, 163
shortcut keys to, 163
text items in, 162
XP-based, 163

.mfa file extensions, 26
MIDI file format, 131
modems, 5
monitors, 6–7
motif, 45
mouse controlled movement, 77–78, 127
movement

animation versus, 33
bouncing ball, 126–127

adding and removing directions, 71
angle settings, 71
deceleration settings, 70
direction settings, 70
initial starting directions, 71
randomization settings, 71
speed settings, 70
stopping from bouncing, 72
testing, 72–73

changing between, 88
ChocoBreak game example, 126
circular-based, 85
default, 88
default Movement property, 69

eight directions, 78–79
ellipse, 86
falling objects, 150–153
invaders, 85
looping, 76
mouse controlled, 77–78, 127
Movement Controller, 86–87
multiple, 87–88
object properties, displaying, 68
overview, 67
path, 74–75
pinball, 84–85
platform, 81–84
polygon, 85
presentation, 85
race car, 80
sinewave, 86
spaceship, 86
types, 69
vector, 86

Movement tab (Properties window), 42
moving menu options, 163
music samples, 130–132

N
naming objects, 125
navigation, Button object, 46
New command (File menu), 160
Newline button, 74
Next Step button (debugger), 186
nodes, path movement, 74
number pad keys, eight directions movement,

78–79

O
object level properties (TGF2 Properties window),

23
Object list (Event Editor), 56

213

Index

objects
accessing properties of, 41–42
Active, 43
adding to frames, 40
alignment, 122–123
Backdrop, 44–45
Button, 46–48
cloned, 125
coordinates, 123
Create New Object function, 57
defined, 39
duplicating, 125
editing properties of, 191
falling, 150–153
folders, 190
Hi-score, 48–49, 128, 138
information, editing, 192
Lives, 51–52
naming, 125
positioning, 123
Quick Backdrop, 44–45
Score, 52
Sound, 57, 137
system, 57
testing position of, 135
text-based, 50–51
viewing, 40

Obstacle setting, Quick Backdrop objects, 45
online games, 177–179
opening existing game files, 26
operating systems, minimum and recommended

requirements, 3
Options menu commands, 161

P
Password command (File menu), 160
passwords, zip password security, 171

Paste button (Picture Editor), 96
pasting

images, 96
levels, 149
shortcut keys for, 197

path movement, 74–75
pause button (debugger), 186
Pause command (File menu), 160
pausing

games, 160
path movement, 75

PCs
minimum and recommended requirements, 3
specifications, 3

PCX format, 94
Picture Editor. See also images

Brush tool, 100
Cancel button, 116
Clear tool, 93
Color Palette, 109
Color Picker tool, 100
Copy button, 96
Crop tool, 98
Cut button, 96
Delete button, 96
description of, 18, 33
drawing area, 109
Ellipse tool, 101
Eraser tool, 105–106
Export tool, 95
Fill tool, 103–104
Flip Horizontal tool, 97
Flip Vertical tool, 97
Import tool, 94
Line tool, 100
overview, 91
Paste button, 96
Polygon tool, 102

214

Rectangle tool, 101
Redo tool, 97
Rotate tool, 107
Selection tool, 99
Shape tool, 103
Size tool, 106
Spray tool, 104
starting, 92
Text tool, 105
tooltips, 93
Transparency tool, 98
Undo tool, 93, 97
View Hot Spot tool, 108
Zoom tool, 99

Picture Yourself Creating Video Games (Darby),
204

pinball movement, 84–85
planning, game design, 10
platform movement, 81–84
Platform setting, Quick Backdrop objects, 45
Play area (frames), 30
play button (debugger), 186
Play Music command (Options menu), 161
Play Samples command (Options menu), 161
Players command (File menu), 160
PNG (Portable Network Graphics) format, 94
polygon movement, 85
Polygon tool (Picture Editor), 102
Portable Network Graphics (PNG) format, 94
positioning objects, 123
post release testing, 184
Power User’s Guide to Windows Development

(Darby), 201
presentation movement, 85
printers, 4
processors, minimum and recommended

requirements, 3
programs, starting, 160

Properties window (TGF2)
application level properties, 23
description of, 22–23
frame level properties, 23
object level properties, 23
tabs, 41

Push Left option (Menu Editor dialog box), 163
Push Right option (Menu Editor dialog box), 163

Q
Quick Backdrop objects, 44–45
QUICK draw game, 2
Quit command (File menu), 160
quitting games, 160

R
race car movement, 80
radio buttons, 47
Railroad Tycoon game, 161
RAM, minimum and recommended require-

ments, 3
randomization settings, bouncing ball move-

ment, 71
Rectangle tool (Picture Editor), 101
Redo tool (Picture Editor), 97
renaming frames, 28–29
repeating animation, 115
resampling, 106
Reset Menu option (Menu Editor dialog box),

162
resetting menus, 162
resolution, screen changes, 158–159
restarting applications, 139
reverse settings, race car movement, 80
rich text format (RTF), 50
Rotate tool (Picture Editor), 107

215

Index

rotating images, 107
RTF (rich text format), 50
Run Application button, 37
Run Frame button, 37
running animation set, 113
running applications, 37
Runtime Options tab (Properties window), 42

S
Save a Menu option (Menu Editor dialog box),

162
Save As command (File menu), 26
Save command (File menu), 26
saving

game files, 26
menus, 162
shortcut keys, 197

scanners, 4
scene setup, 120–121
Score object, 52
scoring

automatic high scores dialog, 138
ChocoBreak game, 136–138
entering your own score, 50
Hi-score object, 48–49, 128, 138
hi-scores table configuration, 148–149
properties, 49
Score object, 52

screen changes
full screen, 158–159
icons, 167
menus

check marking words in, 163
creating new, 164–165
current selected line item, changing, 163
default options, 160–161
deleting items from, 163

dialog, 161–163
editing menu options, 163
grayed out items in, 163
hiding, 161
line separations between, 162
loading, 162
Menu Editor dialog box, 161–162
moving menu options, 163
options within, changing, 161–163
programming the, 165–166
removing, 159
resetting, 162
saving, 162
Setup application menu dialog box, 163
shortcut keys to, 163
text items in, 162
XP-based, 163

resolution, 158–159
Search tab help option, 35
Selection tool (Picture Editor), 99
Setup application menu dialog box, 163
Shape tool (Picture Editor), 103
shooting animation set, 113
shortcut keys

common key combinations, 197
default keyboard preferences, 196
to menus, 163
running applications, 37

shortcut/menu buttons (TGF2), 21
sinewave movement, 86
sites. See Web sites
size of screen, changing, 158–159
Size tool (Picture Editor), 106
Size/Position tab (Properties window), 42
sound

Play Samples command, 161
sound cards, minimum and recommended

requirements, 3

216

Sound object, 57, 137
Space Invaders, 85
spaceship movement, 86
speed settings

animation, 115
bouncing ball movement, 70
eight directions movement, 79
path movement, 75

spell checking, 182
Spray tool (Picture Editor), 104
stand up animation set, 113
start of frame condition, 61
starting

programs, 160
TGF2, 19

static text, 50
stop button (debugger), 186
stopped animation set, 113
Storyboard Editor

description of, 18
example of frames loaded into, 27
frames

creating, 28
renaming, 28–29

storylines, game design, 13
strength settings, platform movement, 82
stretching images, 106
string values, 188
system node (debugger), 187
system objects, 57

T
tabs, in Properties window, 41–42
Tape Mouse button, 74
testing

alpha, 183
beta, 183–184

bouncing ball movement, 72–73
grammar checking, 182
methods of, 184
mouse controlled movement, 77
object position, 135
overview, 181
platform movement, 83–84
post release, 184
pre-alpha, 183
spell checking, 182

text
Edit Text dialog box, 63–64
font styles, 105
fonts, 51
formatted, 50
italicized, 105
static, 50
storyboard, 15
strings, 51
text items in menus, 162
underlined, 105, 163

Text and Image Push button, 47
Text of Menu option (Setup application menu

dialog box), 163
Text Push button, 47
Text tool (Picture Editor), 105
text-based objects, 50–51
TGF2 (The Games Factory 2)

basic description of, 2
Editors window, 23
Event Editor

blank screen example, 32
default objects that appear in, 56
description of, 18
events, 31
Object list, 56
overview, 55
starting, 56

217

Index

TGF2 (The Games Factory 2) (continued)

Expression Evaluator
alterable variables, 18
description of, 18
example of, 34

Frame Editor, 18, 30
game files

application files, 25
creating new, 25
file extensions, 26
opening existing, 26
saving, 26

launching, 19
Layers toolbar, 34
layout of, 20
Library toolbar, 23
menu bar, 21
overview, 17
Picture Editor

Brush tool, 100
Cancel button, 116
Clear tool, 93
Color Palette, 109
Color Picker tool, 100
Copy button, 96
Crop tool, 98
Cut button, 96
Delete button, 96
description of, 18, 33
drawing area, 109
Ellipse tool, 101
Eraser tool, 105–106
Export tool, 95
Fill tool, 103–104
Flip Horizontal tool, 97
Flip Vertical tool, 97
Import tool, 94

Line tool, 100
overview, 91
Paste button, 96
Polygon tool, 102
Rectangle tool, 101
Redo tool, 97
Rotate tool, 107
Selection tool, 99
Shape tool, 103
Size tool, 106
Spray tool, 104
starting, 92
Text tool, 105
tooltips, 93
Transparency tool, 98
Undo tool, 93, 97
View Hot Spot tool, 108
Zoom tool, 99

Properties window
application level properties, 23
description of, 22–23
frame level properties, 23
object level properties, 23
tabs in, 41–42

shortcut/menu buttons, 21
Storyboard Editor

description of, 18
example of frames loaded into, 27
frames, creating, 28
frames, renaming, 28–29

Web site, 1
Workspace toolbar

description of, 21–22
game loaded into, 22

timed events, 139–140
Timer functions, 57

218

toolbars
Layers, 34
Library

description of, 23
displaying, 121
library file creation, 122
switching on/off, 23

Workspace
description of, 21–22
game loaded into, 22

Toolbars command (View menu), 23–24
traditional programming, 18
Transparency tool (Picture Editor), 98
turn settings, race car movement, 80
tutorials

ChocoBreak game, 19
as help options, 36

U
underlined text, 105, 163
Undo tool (Picture Editor), 93, 97
undoing shortcut keys, 197

V
Values tab (Properties window), 42
vector movement, 86
View Hot Spot tool (Picture Editor), 108
viruses, 36
Vitalize plug-in, 177, 179

W
walking animation, 112–113
WAV file format, 131
Web browser games, 177–179

Web sites
3dlight-studio, 2
clickteam, 1
Madword, 177
TGF2, 1

windows
Editors, 23
Properties

application level properties, 23
description of, 22–23
frame level properties, 23
object level properties, 23
tabs in, 41–42

Winzip utility, 173
Workspace toolbar (TGF2)

description of, 21–22
game loaded into, 22

X
XP-based menus, 163

Z
zipped files

compression, 171
executable files, 171–172
file names, 173
password security, 171
selecting files to zip, 173
Winzip utility, 173

zooming
shortcut keys, 197
Zoom tool (Picture Editor), 99

219

Index

License Agreement/Notice of Limited Warranty

By opening the sealed disc container in this book, you agree to the following terms and conditions. If, upon
reading the following license agreement and notice of limited warranty, you cannot agree to the terms and
conditions set forth, return the unused book with unopened disc to the place where you purchased it for a
refund.

License:
The enclosed software is copyrighted by the copyright holder(s) indicated on the software disc. You are
licensed to copy the software onto a single computer for use by a single user and to a backup disc. You may
not reproduce, make copies, or distribute copies or rent or lease the software in whole or in part, except with
written permission of the copyright holder(s). You may transfer the enclosed disc only together with this
license, and only if you destroy all other copies of the software and the transferee agrees to the terms of the
license. You may not decompile, reverse assemble, or reverse engineer the software.

Notice of Limited Warranty:
The enclosed disc is warranted by Course Technology to be free of physical defects in materials and workmanship
for a period of sixty (60) days from end user’s purchase of the book/disc combination. During the sixty-day term
of the limited warranty, Course Technology will provide a replacement disc upon the return of a defective disc.

Limited Liability:
THE SOLE REMEDY FOR BREACH OF THIS LIMITED WARRANTY SHALL CONSIST ENTIRELY OF REPLACEMENT
OF THE DEFECTIVE DISC. IN NO EVENT SHALL COURSE TECHNOLOGY OR THE AUTHOR BE LIABLE FOR
ANY OTHER DAMAGES, INCLUDING LOSS OR CORRUPTION OF DATA, CHANGES IN THE FUNCTIONAL
CHARACTERISTICS OF THE HARDWARE OR OPERATING SYSTEM, DELETERIOUS INTERACTION WITH OTHER
SOFTWARE, OR ANY OTHER SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES THAT MAY ARISE, EVEN IF
COURSE TECHNOLOGY AND/OR THE AUTHOR HAS PREVIOUSLY BEEN NOTIFIED THAT THE POSSIBILITY OF
SUCH DAMAGES EXISTS.

Disclaimer of Warranties:
COURSE TECHNOLOGY AND THE AUTHOR SPECIFICALLY DISCLAIM ANY AND ALL OTHER WARRANTIES,
EITHER EXPRESS OR IMPLIED, INCLUDING WARRANTIES OF MERCHANTABILITY, SUITABILITY TO A PARTICULAR
TASK OR PURPOSE, OR FREEDOM FROM ERRORS. SOME STATES DO NOT ALLOW FOR EXCLUSION OF IMPLIED
WARRANTIES OR LIMITATION OF INCIDENTAL OR CONSEQUENTIAL DAMAGES, SO THESE LIMITATIONS
MIGHT NOT APPLY TO YOU.

Other:
This Agreement is governed by the laws of the State of Massachusetts without regard to choice of law principles.
The United Convention of Contracts for the International Sale of Goods is specifically disclaimed. This Agreement
constitutes the entire agreement between you and Course Technology regarding use of the software.

